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Preface to “Computational Finance” 
In a Special Issue of the Journal of Risk and Financial Management, there was a call for 

contributions within the broad topic of Computational Finance. The topic includes novel research on 
the use of computational methods and techniques for modelling financial asset prices, returns, and 
volatility, and in the pricing, hedging, and risk management of financial instruments. 
Theoretical and empirical articles on the application of novel computational techniques in 
estimation, simulation, optimization, and calibration with applications to asset pricing, derivative 
valuation, hedging, and risk management were welcomed and contributions focusing on 
multivariate or high-dimensional applications in today’s complex world, novel measures of 
financial risk, and other types of risks implied from derivative markets, and on the use of high-
frequency data of all sorts, were especially encouraged. 

This book contains 10 contributions appearing in this special issue. A first group of papers 
contain new multivariate models, see Cheng et al. (2019), and novel techniques for pricing 
derivatives in such flexible models, see Reesor and Marshall (2020), and examines how flexible 
valuation methods based on simulation and regression techniques, see, e.g., Longstaff and 
Schwartz (2001), can be improved upon in general, see Létourneau and Stentoft (2019), and 
specifically when it comes to pricing realistic and relevant long maturity real options, see Stentoft 
(2019). A second group of papers examines how pricing and hedging techniques can be used to 
asses the challenges faced by insurance companies by changing regulatory requirements, see Van 
Dijk et al. (2018), by pension plan participants due to the increased use of defined contribution 
plans, see Forsyth and Vetzal (2019), and by market participants in general as a result of the 
increased sovereign linkages, see Dunne (2019). Finally, the last group of papers considers in one 
way or another issues related to high-frequency trading in general, see Mukerji et al. (2019), to the 
use of statistical arbitrage strategies in particular, see Stübinger and Schneider (2019), and to the use 
of high-frequency data to asses risk and volatility in financial markets, see Petrov et al. (2019). 

Cheng et al. (2019) introduce a novel multivariate mean-reverting stochastic volatility 
model obtained by combining recently developed univariate volatility models with factor models 
using a principal component and factor covariance decomposition. The model is referred to as a 
multivariate Generalized Mean-Reverting 4/2 Factor Model, a name that comes from the 
superposition of a CIR term and a 3/2-model component. Compared to other existing multivariate 
stochastic volatility models the setting used reduces the dimension of the parametric space 
making popular estimation methods feasible. The authors find conditions for well-defined 
changes of measure and develop closed form expressions for two key characteristic functions, 
which allow for fast and efficient calculation of derivatives prices and risk measures and 
exposures, and they demonstrate numerically the significant impact of their model, both with 
respect to changes on the implied volatility surface and on two standard risk measures. 

Reesor and Marshall (2020) present a new numerical technique for pricing multiple exercise 
options by simulation referred to as the Forest of Stochastic Trees (FOST) method. The proposed 
method uses stochastic trees in place of binomial trees in the Forest of Trees algorithm originally 
proposed to value swing options and extends this algorithm to allow for a multi-dimensional 
underlying process. The method can also be viewed as extending the stochastic tree method          
for valuing (single exercise) American-style options to multiple exercise options. The authors 



demonstrate that the proposed valuation method results in low and high biased estimators for the 
true option value and that these estimators are consistent for the true option value. The 
proposed method is of particular use in cases where there is potentially a large number of 
underlying assets and/or where the underlying price process depends on multiple risk factors. 

Létourneau and Stentoft (2019) also consider option pricing but uses instead simulation and 
regression based techniques, see, e.g., Longstaff and Schwartz (2001). The authors propose an 
algorithm that improves on the approximation of the optimal early exercise boundary for 
American options. The method works by exploiting and leveraging the information in multiple 
cross-sectional regressions by averaging the individually obtained estimates at each early exercise 
step in the backwards induction algorithm. With this method, less errors are accumulated, and as 
a result of this, the price estimate is essentially unbiased even for long maturity options. 
Moreover, because the method naturally disassociates the estimation of the optimal early exercise 
boundary from the pricing of the option, significant efficiency gains can be obtained by using less 
simulated paths and repetitions to estimate the optimal early exercise boundary than with the 
regular method. 

Stentoft (2019) also considers the LSM method of Longstaff and Schwartz (2001) and uses put-
call symmetry to estimated call prices by pricing these as symmetric put options instead. His results 
show that, for a large sample of options with characteristics of relevance in real-life 
applications, the symmetric method performs much better on average, is the best method for 
most of the options, never performs poorly and, as a result, is extremely efficient compared to the 
optimal, but unfeasible method that picks the method with the smallest Root Mean Squared Error. 
The relative improvements of using symmetric pricing increases with option maturity and with 
asset volatility, and using the method to price, for example, real options, many of which are call 
options with long maturities on volatile assets, for example energy, could improve the estimates 
significantly. 

Using option pricing theory, Van Dijk et al. (2018) consider the challenges faced by 
insurance companies when it comes to valuing issued guarantees at a one year horizon as is 
required by recent changes in regulation. These guarantees have option like features and the 
standard approach is to assume that the parameters of these option pricing models are constant, i.e., 
the calibrated parameters from time t = 0 are also used to value the guarantees at t = 1. 
However, it is well-known that the parameters are not constant and may depend on the state of the 
market. The authors propose an improved regression model that, given a set of market 
variables such as the VIX index and risk-free interest rates, can be used to estimate accurately the 
calibrated parameters at future dates. They show that, depending on the initial state of the 
market, the impact on the Solvency Capital Requirement may vary between 46% and 52%. 

The increased use of Defined Contribution (DC) plans implies that more pension plan 
participants will bear the risk that final realized portfolio values may be insufficient to fund 
desired retirement cash flows. Forsyth and Vetzal (2019) compare the outcomes of various asset 
allocation strategies for a typical DC plan investor in a synthetic market and also using bootstrap 
resampling of historical data. They propose a strategy based on optimal dynamic (multi-period) 
time consistent quadratic shortfall and demonstrate that the probability that portfolio values at 
retirement will be insufficient to provide adequate retirement incomes is relatively high, unless DC 
investors adopt optimal allocation strategies and raise typical contribution rates. The results suggest 
that there is a looming crisis in DC plans, which requires educating plan holders in terms of realistic 
expectations, required contributions, and optimal asset allocation strategies. 



The above contributions rely on having access to safe or risk free assets in combination with 
risky assets to generate sufficient cash flows. Dunne (2019) considers the benefits and 
disadvantages of introducing a European Sovereign Bond-Backed Securitisation (SBBS) to 
address the need for a common safe asset that would break destabilising bank-sovereign linkages. 
The author uses a simulation approach to assess the effectiveness of hedges incurred while 
making markets in individual euro area sovereign bonds by taking offsetting positions in one or 
more of the SBBS tranches. He finds that optimal hedging with SBBS reduces risk exposures 
substantially in normal market conditions. In volatile conditions, hedging is not very effective but 
leaves dealers exposed to mostly idiosyncratic risks which disappears if dealers are 
diversified in providing liquidity across country-specific secondary markets and SBBS tranches. 

Mukerji et al. (2019) also use simulation methods, though at a high frequency, to study the 
impact of algorithmic trading (AT) in a market in which human and algorithmic counterparts 
trade based on technical and fundamental analysis and statistical arbitrage strategies. 
Considering variations in the level of market uncertainty and the degree of algorithmic versus 
human trading, they show that liquidity increases initially as AT rises to about 10% share of the 
market. The authors also demonstrate that statistical arbitrage can lead to significant deviations in 
asset prices from fundamentals. 

Stübinger and Schneider (2019) uses a mean-reverting jump–diffusion model applied to 
high-frequency data of the S&P 500 constituents to identify temporary market anomalies during the 
first minutes of a trading day. Using data from January 1998–December 2015, the authors show 
that a statistical arbitrage strategy to select stocks based on overnight price gaps delivers 
statistically and economically significant returns of 51% and an annualized Sharpe ratio of 2.38 
after transaction costs which is shown to be superior to several alternative existing quantitative 
strategies. 

Finally, using high-frequency data from several sources Petrov et al. (2019) propose a novel 
intraday instantaneous volatility measure which utilises sequences of drawdowns and drawups as 
indicators of high-frequency activity of financial markets. The authors use their measure to 
uncover weekly seasonal patterns in volatility for three Forex and one Bitcoin exchange rates, as 
well as a stock market index. The provided volatility estimation method can be used for risk-
management independent of the discreteness and the type of analysed high-frequency data. 

This volume includes a wide variety of theoretical and empirical contributions that address a 
wide range of issues and topics related to computational finance. The published papers consider asset 
pricing in general with applications to bond pricing, see Dunne (2019), commodity 
modelling, see Cheng et al. (2019), and derivatives pricing, see Létourneau and Stentoft (2019), 
Reesor and Marshall (2020) and Stentoft (2019); uses calibration techniques, see Van Dijk et al. 
(2018); and considers issues related to hedging, see Dunne (2019). The published papers develop 
new multivariate models, see Cheng et al. (2019), considers option pricing in this challenging 
setting, see Reesor and Marshall (2020), and addresses issues related to risk management, see 
Cheng et al. (2019), Forsyth and Vetzal (2019), and Van Dijk et al. (2018). The volume contains 
several papers that use simulation, see Dunne (2019), Létourneau and Stentoft (2019), Mukerji et al. 
(2019), and Stentoft (2019), and papers that provide new ways to model volatility, see Cheng et al. 
(2019), and for estimating this, see Petrov et al. (2019). 

Lars Stentoft

Editor
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Abstract: We present the Forest of Stochastic Trees (FOST) method for pricing multiple exercise
options by simulation. The proposed method uses stochastic trees in place of binomial trees in the
Forest of Trees algorithm originally proposed to value swing options, hence extending that method
to allow for a multi-dimensional underlying process. The FOST can also be viewed as extending
the stochastic tree method for valuing (single exercise) American-style options to multiple exercise
options. The proposed valuation method results in positively- and negatively-biased estimators for
the true option value. We prove the sign of the estimator bias and show that these estimators are
consistent for the true option value. This method is of particular use in cases where there is potentially
a large number of assets underlying the contract and/or the underlying price process depends on
multiple risk factors. Numerical results are presented to illustrate the method.

Keywords: Monte Carlo; multiple exercise options; dynamic programming; stochastic optimal
control

1. Introduction

The broad class of stochastic optimal control problems includes many important applications
in management sciences and quantitative finance such as development of natural resources,
project initiation or abandonment, maintenance scheduling, land use decisions, and valuation and
hedging of complex contracts. Very few problems have closed form solutions. For example the
Black–Scholes–Merton formula for pricing European-style options does not have an American-style
option analog. Approaches such as binomial lattice methods, partial differential equation (PDE)
methods, variational inequalities and integral equations have been adopted for pricing these types
of derivatives. However, all of these methods mentioned are limited in the number of sources of
uncertainty and the dimensionality of the underlying asset that can be practically incorporated, leaving
Monte Carlo (MC) as a general method of solution.

Multiple exercise options (MEOs) are generalizations of American-style options as they provide
the holder more than one exercise right and sometimes control over one or more other variables, such
as the amount exercised. Similar to pricing American-style options, MEO valuation is a problem
in stochastic optimal control. For American-style options, the solution provides both a value and
optimal exercise rule—a stopping time. For MEOs the solution gives both a value and optimal exercise
policy. In cases in which the holder controls only the exercise times, the exercise policy is a sequence of
stopping times. For MEOs in which the holder controls the exercise times and amounts, the exercise
policy is a paired sequence of stopping times and exercise amounts. The policy generalizes to other
control variables. Multiple exercise option valuation algorithms are generalizations of those used for
pricing American-style options. Most of the work in the literature has focused on swing options in
which the holder controls the exercise times and amounts. Hence, we discuss MEO valuation in the

J. Risk Financial Manag. 2020, 13, 95; doi:10.3390/jrfm13070095 www.mdpi.com/journal/jrfm1
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context of swing options and note that the FOST method and the FOST price estimators’ properties
apply to general MEOs.

The Forest of (Binomial/Trinomial) Trees method of Lari et al. (2001) and Jaillet et al. (2004)
extends the binomial method of Cox et al. (1979) for pricing American style options to value swing
options. As with most tree-based methods, the Forest of Trees is not able to handle high-dimensional
underlying processes. Tangential to the Forest of Trees extension, the Stochastic Tree method
of Broadie and Glasserman (1997) extends the binomial method for pricing American style options to
allow for a high-dimensional underlying asset.

In this paper, we replace the binomial and trinomial trees of Lari et al. (2001) and Jaillet et al. (2004)
with the stochastic trees of Broadie and Glasserman (1997), hence creating the Forest of Stochastic Trees
(FOST) method for valuing multiple exercise options. The FOST can be thought of as generalizations
of two different methodologies; specifically, it extends

• The Forest of Trees method of Lari et al. (2001) and Jaillet et al. (2004) for valuing multiple exercise
options on a single asset to allow for high-dimensional underlying assets and processes; and

• The Stochastic Tree method of Broadie and Glasserman (1997) for valuing high-dimensional
American-style options (single exercise right) to options having multiple exercise rights and
additional controls (e.g., volume control).

Visually these generalizations complete the final entry in the two-by-two table shown in Table 1.

Table 1. Table showing that the Forest of Stochastic Trees extends (i) the Forest of Trees method to a
high-dimensional underlying; and (ii) the Stochastic Tree method to multiple exercise options.

1-Dimensional Asset High-Dimensional Asset

Single exercise American option Binomial Tree Stochastic Tree
Cox et al. (1979) Broadie and Glasserman (1997)

Multiple exercise option Forest of Trees Forest of Stochastic Trees
Lari et al. (2001), Jaillet et al. (2004) Marshall and Reesor

We construct high and low biased FOST estimators that are analogous to those from the
Stochastic Tree. The main theoretical results, presented in Sections 2.2 and 2.3 and proven Appendix B,
are listed below.

1. The high FOST estimator has positive bias.
2. The low FOST estimator has negative bias.
3. On any given realization the high FOST estimator is at least as big as the low FOST estimator.
4. The high and low FOST estimators are asymptotically unbiased.

The remainder of this section provides a literature review. Section 2 describes the Forest of
Stochastic Trees estimators in detail; specifies results giving estimator properties (e.g., biasedness and
convergence); provides numerical results showing the method is effective at pricing; and supplies
discussion on improving computational performance through parallel processing. Section 3
summarizes and concludes the paper. A list of the notation used is given in Appendix A and proofs of
the paper’s main theoretical contributions on estimator properties are given in Appendix B.

Literature Review

Multiple exercise options arise in many different areas and the structure of these contracts is
typically tailored to particular clients/needs, in contrast to standardized derivatives such as interest rate
swaps and exchange-traded commodity futures. A non-exhaustive list of examples of MEOs include (i)
tolling agreements used in the steel Kim et al. (2019) and electricity Deng and Oren (2006) sectors; (ii)
chooser flexible caps which are exotic interest rate derivatives Meinshausen and Hambly (2004); (iii)
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valuation and control of energy production and storage facilities Chen and Forsyth (2007); Ludkovski
and Carmona (2010); Thompson et al. (2009); and (iv) swing options Calvo-Garrido et al. (2017);
Jaillet et al. (2004); Lari et al. (2001); Wilhelm and Winter (2008).

Valuation methods for MEOs are extensions of those used for American-style options. There are
continuous-time solutions to both the American-style and multiple exercise option valuation
problems; these are computed by solving a system of Hamilton–Jacobi–Bellman quasi-variational
inequalities Korn et al. (2005). These methods give more accurate and stable price and sensitivity
estimates than those computed using simpler tools (e.g., trees). However, these methods are quite
complex mathematically and break down in higher dimensions.

In this article, we focus on the mathematically simpler time-discretized version of the valuation
problem. Discrete-time tree-based methods for valuing American-style options Cox et al. (1979)
have been extended to MEOs via the Forest of Trees Jaillet et al. (2004); Lari et al. (2001).
Techniques for pricing American-style options using solutions of PDEs have been modified to
MEOs Calvo-Garrido et al. (2017); Chen and Forsyth (2007); Thompson et al. (2009); Wilhelm and
Winter (2008). These methods for MEOs inherit properties similar to the corresponding methods for
single-exercise options. One crucial property is that these methods fail as the dimensionality of the
problem increases.

Monte Carlo is the obvious tool to overcome the curse of dimensionality, as the rate of
convergence of Monte Carlo estimators is independent of the dimension. Tilley (1993) was
the first to show that the forward-in-time Monte Carlo approach could be used to solve the
backward-in-time dynamic programming problem arising from valuation of an American-style option.
Since this seminal paper, numerous other methods for the Monte Carlo valuation of American
style options have appeared. These include methods that attempt to parameterize the exercise
region Barraquand and Martineau (1995) and those that discretize the state space Bally et al. (2005).
Methods that parameterize the early-exercise region have been extended to value multiple exercise
options by parameterizing the set of exercise level curves Ibán̈ez (1996). Similarly state space
aggregation methods have been used for multiple exercise option valuation Ben Latifa et al. (2016).
These approaches, however, also suffer from the curse of dimensionality and do not easily generalize
to arbitrary payoffs and underlying price processes.

Monte Carlo methods that do not break down with the dimensionality and that accommodate
general payoff and price processes include those that solve the optimal stopping-time problem
through estimation of the hold or continuation value. These include the stochastic tree and mesh
techniques of Broadie and Glasserman (1997 2004) and the regression-based approach first appearing
in Carriere (1996) and then subsequently generalized in Longstaff and Schwartz (2001). For each of
these valuation techniques, high- and low-biased estimators are easily generated, along with a hybrid
interleaving estimator that has properties of both. Duality-based methods solve the optimal control
problem in the dual space by approximating an optimal martingale, typically by regression Andersen
and Broadie (2004); Haugh and Kogan (2004).

Least-squares Monte Carlo has been modified for the pricing of swing options in
Barrera et al. (2006); Meinshausen and Hambly (2004), respectively. Although increased dimensionality
does not decrease the performance of these methods, they suffer from other drawbacks. In least-squares
Monte Carlo methods one must select a set of basis functions on which to run regressions to estimate
continuation values. In general only a complete (infinite) set of basis functions results in continuation
value estimators that are consistent for the true option value. In practice, of course, a finite set of basis
functions is used and introduces an approximation error. Continuation value estimators are consistent
for the true approximation value and not the true option value Clement et al. (2001); Stentoft (2004).

Duality methods have been extended to MEOs Bender (2011); Chandramouli and Haugh (2012);
Gyurko et al. (2015); Meinshausen and Hambly (2004). Duality methods rely on having a sub-optimal
exercise policy that produces a low-biased estimate from which the solution to the dual problem can be
approximated to yield a high-biased estimate. Typically regression-based methods are used to estimate

3



J. Risk Financial Manag. 2020, 13, 95

the sub-optimal exercise policy Chandramouli and Haugh (2012); Gyurko et al. (2015); Meinshausen
and Hambly (2004) implying the above noted issues of least-squares Monte Carlo persist when pricing
MEOs. Policy iteration methods such as Bender (2011), yield approximations of the time-0 value at
each iteration of the dynamic program. As with the pricing of American-style options this method is
advantageous because it removes the requirement to calculate nested conditional expectations prior to
the time-0 value being approximated.

The stochastic mesh of Broadie and Glasserman (2004) has been extended to MEOs via the Forest
of Stochastic Meshes (FOSM) Marshall (2012); Marshall and Reesor (2011). High and low biased FOSM
estimators are derived Marshall and Reesor (2011) and their properties shown Marshall (2012), similar
to the work presented here for the Forest of Stochastic Trees estimators.

2. Results

We consider the valuation of multiple exercise options as a stochastic optimal control problem with
three relevant state variables—the underlying variable (S), number of exercise rights remaining (N ),
and usage level (U) assuming some volume control. At each exercise opportunity and given (S,N , U),
the current values of the state variables, the holder must choose between

• Exercising u units plus continuing with an option having N − 1 remaining exercise rights and
usage level U + u; and

• Continuing with an option having N exercise rights and usage level U (i.e., no exercise).

Note that with volume control the payoff from exercising u units changes with u (as does the
continuation value of the option). Thus, the holder chooses the value-maximizing u when deciding to
exercise. Also note that with N = 1 and u constrained to be 1, this is an American-style option.

We work with the time-discretized problem and use dynamic programming to solve for the
optimal exercise policy and the corresponding optimal value. In all variables, let the subscript i denote
time-ti and let Ui be the time-ti set of admissible volume choices which includes the zero volume
choice (i.e., hold). The recursive equations for the dynamic program are

Hi(Si,Ni+1, Ui+1) = E[Bi+1(Si+1,Ni+1, Ui+1)|Zi] and (1)

Bi(Si,Ni, Ui) = max
u∈Ui

[
hi(Si,Ni, Ui, u) + Hi(Si,Ni − I{u �=0}, Ui + u)

]
, (2)

with the terminal conditions

Hm(Sm,Nm, Um) = φ̃ (Um) and (3)

Bm(Sm,Nm, Um) = max
u∈Um

[
hm(Sm,Nm, Um, u) + Hm(Sm,Nm − I{u �=0}, Um + u)

]
, (4)

where Hi(S,N , U) and Bi(S,N , U) are the time-ti, state-Zi continuation and option values, respectively,
hi(S,N , U, u) is the payoff from exercising u units with hi(S,N , U, 0) = 0, Zi is the time-ti information
set generated by the paths of (S,N , U), I is an indicator function and φ̃ (·) is a cumulative usage penalty
term. Estimator properties and their proofs are given for this multiple exercise option setup. However,
the dynamic program and estimator properties can be stated and proven for alternative specifications
provided there is a finite number of exercise rights and usage levels. For example, a swing option
contract may specify a certain number of up and down swing rights, Nu and Nd. An up swing right
allows the holder to take more than the baseline amount of the underlying asset while a down swing
right allows the holder to take less. Another variation is to allow for multiple rights to be exercised at
each opportunity where each right corresponds to a fixed volume amount Bender and Schoenmakers
(2006); Meinshausen and Hambly (2004).
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2.1. Forest of Stochastic Trees

The FOST generalizes the stochastic tree method for valuing American-style options to
the valuation of multiple exercise options and extends the Forest of Trees method to handle
a high-dimensional underlying asset. This is done by replacing the binomial/trinomial trees with
stochastic trees in the framework of Lari et al. (2001) and Jaillet et al. (2004) hence giving the FOST.
The stochastic tree is constructed identically as described in Broadie and Glasserman (1997) and the tree
is replicated multiple times, with one replication corresponding to each possible (N , U) combination.
This is analogous to the Forest of Trees in which the same underlying binomial/trinomial tree is
replicated for each possible (N , U) combination.

The dynamic program is approximately solved by replacing the continuation values in
Equations (1) and (3) with stochastic tree-type estimators. As with the original stochastic tree technique,
high- and low-biased option value estimators are constructed by using the analogous high- and
low-biased estimators, respectively, on each stochastic tree in the forest. The recursive equations for
the high estimator are

Ĥi(S
j
i ,Ni+1, Ui+1) =

1
b

b

∑
k=1

V̂i+1(S
k
i+1,Nt+1, Ut+1), and (5)

V̂i(S
j
i ,Ni, Ui) = max

u∈Ui

[
hi(S

j
i ,Ni, Ui, u) + Ĥi(S

j
i ,Ni − I{u �=0}, Ui + u)

]
, (6)

with the terminal conditions

V̂m(S
j
m,Nm, Um) = max

u∈Um

[
hm(S

j
m,Nm, Um, u) + φ̃ (Um + u)

]
, (7)

where Ĥi(S,N , U) and V̂i(S,N , U) are the time-ti, state-Zi continuation and option value estimators,
respectively, hi(S,N , U, u) (with hi(S,N , U, 0) = 0) is the time-ti, state-Zi payoff from exercising
u units, b is the branching factor, I is an indicator function and φ̃ (Um + u) is a global usage
penalty term. The superscript j = {j0, j1, . . . , ji} indicates the specific node within a given stochastic
tree and k = {j, k}.

Figure 1 is a diagram of a section of a Forest of Stochastic Trees with two volume choices, u1 and u2.
It illustrates the nodes in the forest which need to be considered when making an exercise decision
given state (N , U). The three choices are no exercise, exercise u1 units, and exercise u2 units.
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(N , U)

(N − 1, U + u1) (N − 1, U + u2)

Figure 1. Section of a Forest of Trees with N = # of exercise rights remaining, U = usage level, and
three exercise choices—no exercise, excerise u1 units, and exercise u2 units.

The low estimator is similarly defined using the low estimator on each stochastic tree via the
dynamic program,

ĝil(S
j
i ,Ni, Ui, u) = hi

(
S

j
i ,Ni, Ui, u

)
+

1
b − 1

b

∑
k=1
k �=l

v̂i+1(S
k
i+1,Ni − I{u �=0}, Ui + u), (8)

Ĥil(S
j
i ,Ni, Ui) = max

u∈Ui

[
ĝil(S

j
i ,Ni − I{u �=0}, Ui + u)

]
, (9)

v̂il(S
j
i ,Ni, Ui) = hi(S

j
i ,Ni, Ui, û∗) + v̂i+1(S

l
i+1,Ni − I{u∗ �=0}, Ui + û∗), and (10)

v̂i(S
j
i ,Ni, Ui) =

1
b

b

∑
l=1

v̂il(S
j
i , Ni, Ui) (11)

where Ĥil(X
j
i ,Ni, Ui) is the l−th leave-one-out hold value estimator and û∗ is the estimated optimal

exercise amount which depends on i and l. The terminal conditions associated with this dynamic
programming scheme are,

v̂m(S
j
m,Nm, Um) = max

u∈Um

[
hm(S

j
m,Nm, Um, u) + φ̃ (Um + u)

]
, (12)

where φ̃ (Um + u) is a cumulative usage penalty term.

2.2. Estimator Bias

In order to justify using the high- and low-biased estimators to construct upper and lower option
price bounds, respectively, we prove that the high estimator is always positively biased and that the
low estimator is always negatively biased. In addition we include a comparison of the estimators
which orders their values on any realization of the simulated forest.

The theorems that follow are direct extensions of those in Broadie and Glasserman (1997).
Below, the branching factor, b, appears as an argument in the estimators. For example, V̂0(b, S0,N0, U0)

refers to the time-0, state-Z0 high-biased estimator with a stochastic tree branching factor of b.
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This argument has been suppressed to this point for convenience. We begin with the theorem regarding
the bias of the high estimator.

Theorem 1. (High estimator bias) The high estimator is biased high, i.e.,

E
[
V̂0 (b, S0,N0, U0)

]
≥ B0 (S0,N0, U0) (13)

for all b.

Similarly, the result stating the bias of the low estimator follows.

Theorem 2. (Low estimator bias) The low estimator is biased low, i.e.,

E [v̂0 (b, S0,N0, U0)] ≤ B0 (S0,N0, U0) (14)

for all b.

Finally, an ordering result for the high and low estimators is stated in Theorem 3.

Theorem 3. (Comparison of Estimators) On every realization of the forest the low estimator is less than or
equal to the high estimator. That is,

v̂i

(
b, S

j
i ,Ni, Ui

)
≤ V̂i

(
b, S

j
i ,Ni, Ui

)
(15)

with probability one for all j, i.

Theorems 1–3 are proven in Appendix B.

2.3. Estimator Convergence

An advantage of the stochastic tree method over some other MC valuation methods is that its
estimators are consistent to the true option value. This property also holds for the FOST estimators.
In this section we state two theorems—one for the consistency of the high estimator, and the other for
the consistency of the low estimator. Here convergence is in probability to the true option value and as
above the argument b that appears with the estimators refers to an arbitrary branching factor size of
b with convergence being shown as b → ∞. Before stating the result, define V̄0 (b, S0,N0, U0) as the
average of R independent replications of V̂0 (b, S0,N0, U0).

Theorem 4. (High estimator convergence) Suppose E
[
|hi (Si,Ni, Ui)|p

′]
< ∞, for all ti, and some p′ > 1.

Then V̄0 (b, S0,N0, U0) converges to B0 (S0,N0, U0) in p-norm for any 0 < p < p′ as b → ∞. This holds
for an arbitrary number of repeated valuations of the forest, R. In particular V̄0 (b, S0,N0, U0) converges to
B0 (S0,N0, U0) in probability and is thus a consistent estimator of the option value.

This results implies that

E
[
V̂0 (b, S0,N0, U0)

]
→ B0 (S0,N0, U0) (16)

as b → ∞. Hence the estimator is asymptotically unbiased.
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Theorem 5. (Low estimator convergence) Suppose that,

P
[

hi

(
Si,Ni, Ui, u1

)
+ Hi

(
Si,Ni − I{u1 �=0}, Ui + u1

)
�= hi

(
Si,Ni, Ui, u2

)
+ Hi

(
Si,Ni − I{u2 �=0}, Ui = u2

)]
= 1,

for u1, u2 ∈ Ui, u1 �= u2 and all i. Then Theorem 4 also holds for the low estimator.

The additional condition imposed in Theorem 5 is analogous to that used in Theorem 3 of Broadie
and Glasserman (1997). This condition says that, with probability one, the optimal exercise policy is
never indifferent between the choices of volumes to exercise (including u = 0). As in Broadie and
Glasserman (1997) imposing this condition simplifies the analysis of the estimator. Theorems 4 and 5
are proven in Appendix B.

2.4. Numerical Results

Pricing swing contracts involves a large number of parameters and in this section we provide
some results which illustrate the validity of our method across a variety of specifications. We assume
that the underlying assets follow a risk neutral stochastic process, there are no transaction costs and
other than penalties, there are no other constraints considered. We also assume a constant risk free rate
of interest and the volatilities of all assets are known constant functions of time.

The option swing rights may be exercised at discrete times up to and including expiry and the
volume choices given are in discrete amounts. That is, anytime the holder chooses to exercise a right,
they must choose from a finite list of possible volume amounts. The rationale behind allowing all time
steps to be exercise opportunities is the exponential growth in computational time caused by adding
intermediate non-exercise times. However, the method can easily be modified to incorporate these
extra time steps. As previously mentioned penalties can be implemented globally and are based on
the net volume exercised during the contract.

2.4.1. Single Dimension

Beginning with the one dimensional case, we have based our simulations on an underlying asset
with a risk neutralized price process that satisfies the following stochastic differential equation,

dSi = Si [(r − δ) dt + σdZi] . (17)

In this equation, r is the riskless interest rate, Zi is a standard Brownian motion process,
σ is a constant volatility parameter and the underlying asset itself pays a continuous dividend yield δ.
The parameter values for the underlying asset are specified as r = 0.05, δ = 0.1, and σ = 0.2.

The swing options considered have both up and down swing rights and the payoff upon exercise is

u × max [max (S − Ku, 0) , max (Kd − S, 0) , 0] , (18)

where u is the volume exercised, S is the price of the underlying asset at the exercise time, and Ku

and Kd are the up and down swing strike prices, respectively. For the examples considered here,
we set Ku = Kd = K which simplifies the payoff function to

u × max (S − K, K − S) . (19)

For all examples in Section 2.4.1 the option expiry is 3.0 years and the options have both up and
down swing rights with strike prices Ku = Kd = 40.0, respectively. In examples where the holder
controls the amount exercised, a list of volume choices is given. The volume choices are consecutive
integer multiples of a base amount and the up swing and down swing volumes have the same

8
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magnitude. For comparison purposes the results in this subsection include a binomial value which is
calculated using the Forest of Trees Lari et al. (2001).

All simulations in this subsection were completed on the SHARCNet cluster Whale. Whale is
located at the University of Waterloo and consists of Opteron 2.2 GHz processors (four per node) with
a Gigabit Ethernet interconnect. Timing results listed below are given in total cpu time accumulated
which is approximately equal to (program runtime) × (number of processors used).

Example 1. (Illustration of Bias and Convergence) The swing option in this example has one up and one
down swing right, three exercise opportunities, exercise volume of 60 units of the underlying and there is no
penalty. The initial price is USD 40. Here we illustrate the effect of the branching factor b on the value estimates.
Specifically, we perform R repeated valuations of the FOST with a branching factor of b and hold the total sample
size fixed using the relation R = 32,000

(
10
b

)
. Figure 2 plots the FOST estimates versus branching factor

(the estimates are the averages of the R repeated valuations). Taking the Binomial estimate as the true option
value, it is clear that the high estimator overestimates the true price while the low estimator underestimates the
true price. Furthermore, as the branching factor increases, the high estimator decreases and the low estimator
increases to the true option price, clearly illustrating estimator convergence. Estimator standard errors are
approximately 0.07% of estimator value.
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Figure 2. Option value estimates (USD) vs. log branching factor (b) with a single underlying asset.
The option has one up and one down swing right, 3 exercise opportunities, exercise volume of 60 units
of the underlying and there is no usage penalty. The initial price is USD 40. The number of repeated

valuations R = 32000
(

10
b

)
results in standard errors ≈ 0.07% of option value.

Example 2. (Effect of Usage Penalty and Initial Asset Price) In this example, the option has two up and two
down swing rights and, upon exercise there are three volume choices—20, 40 and 60 units of the asset. Should the
final net volume exercised exceed 90 units or be below −90 units a penalty is imposed. The penalty is calculated
by multiplying the terminal asset price by ten times the excess usage above 90 units or below −90 units. To see
the effect of the penalty on option value, we also turn the penalty term off and value the corresponding option
with no penalty. The initial asset value ranges from USD 20 to USD 60 in steps of USD 10. There are m = 5
exercise opportunities and we use a branching factor of b = 20 with R = 4000 repeated valuations.

The pricing results are presented in Table 2. In each row of the table, we see that the high and low estimators
bound the true price. Unsurprisingly, imposing a penalty on the cumulative volume reduces the option value.
Furthermore, as the initial stock price increases, the increase in an up swing right’s value is more than the
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decrease in a down swing right’s value. The opposite is true as the initial stock price decreases. The end result is
that as the initial stock price moves away from being at-the-money, the option value increases.

The average computing time per row (not including the binomial forest valuation) was 5.6 h for the cases
with usage penalty and was 1.1 h without usage penalty. The reduction in runtime for the case with no penalty
can be described as follows. If there are no constraints (e.g., penalty, storage) on the option holder then upon
exercise it is always optimal to choose the maximum amount. Therefore with no penalty this option is equivalent
to that of an otherwise identical swing option with no volume choices and an exercise volume of 60 units.
The latter has fewer trees in its forest and is therefore quicker to evaluate. In Table 2 we have chosen to exploit
this as a convenient way to save computational time. For the binomial method run times were on the order of
a few seconds.

Table 2. Swing option values as a function of initial asset price and usage penalty with a single
underlying asset. Parameter values used are Nu = Nd = 2, Ui = {20, 40, 60}, b = 20, R = 4000, m = 5,
Umin = −90, and Umax = 90.

S0 Penalty High Error Low Error Binomial

60 ON 2271.153 1.418 2240.319 1.378 2259.845
OFF 2422.781 1.576 2392.872 1.523 2411.844

50 ON 1445.468 0.844 1408.843 0.904 1429.645
OFF 1542.053 0.978 1503.963 0.980 1526.055

40 ON 1018.104 0.859 968.793 1.044 989.651
OFF 1156.591 0.911 1134.093 0.903 1145.801

30 ON 1345.556 1.205 1309.214 1.280 1326.266
OFF 1562.347 1.316 1532.854 1.343 1546.055

20 ON 2189.531 0.905 2147.623 1.018 2157.976
OFF 2443.877 0.924 2402.192 1.034 2412.354

Example 3. (Effect of Number of Exercise Rights) In this example we illustrate that the option value increases
with the number of exercise rights and compare the swing option value with that of a corresponding basket of
American options. The option has m = 5 exercise opportunities, an exercise volume of 60 units, and there is
no usage penalty. Additionally, we set the initial price to S0 = 40 and use a branching factor of b = 20 with
R = 4000 repeated valuations. We consider options having an equal number of up and down swing rights.
Table 3 gives the option price estimates for Nu = Nd = 1, 3, 5 along with prices computed using the Forest of
Trees. First notice that the high and low estimates bound the true option from the binomial model. Next note that
with Nu = Nd = 5 exercise rights, the high and low estimates are exactly the same. In this case the number of
exercise opportunities is equal to the numbers of up and down swing rights and since the up and down swing
strikes are equal, exactly one of these rights will be exercised at each opportunity (see Equation (19)). This makes
both the exercise payoff and the continuation value estimates exactly the same at all times and along all branches
for both the low and high estimators, yielding identical prices.

Second, the option value increases with the number of swing rights. However, the price increases by a factor
that is less than the increase in the number of swing rights. For example, when the number rights increases by
a factor of 3 (e.g., going from Nu = Nd = 1 to Nu = Nd = 3) the option value increases by a factor of 2.5
and when the number of rights increases by a factor of 5

3 (e.g., going from Nu = Nd = 3 to Nu = Nd = 5),
the option value increases by a factor of 1.2. This result matches with the intuition that a swing option with a
given number of rights is less valuable than a basket of American put and call options with otherwise identical
parameters and Kd ≤ Ku.
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Table 3. Swing option values as a function of the number of exercise rights with a single underlying
asset. Parameter values used are exercise volume of 60 units, S0 = 40, b = 20, R = 4000, m = 5, and no
usage penalty.

Nu = Nd High Error Low Error Binomial

1 630.054 0.449 605.394 0.453 617.832

3 1573.237 1.449 1559.517 1.437 1567.344

5 1852.788 2.128 1852.788 2.128 1852.627

For the case of one up and one down swing right the basket of American options would contain a single
call corresponding to the up swing right and a single put corresponding to the down swing right, with equal
strike prices for the call and put. Changing the number of up and down swing rights invokes a change in the
corresponding number of call and put options in the basket. Figure 3 shows a comparison between the values
of a basket of American options and a swing option with a comparable number of exercise rights. The value
of the basket is linear in the number of exercise rights and the swing option value is below the value of the
corresponding basket when the number of rights is greater than one. This follows from the restriction that only
one swing right may be exercised at any exercise opportunity whereas all American options of a particular type
could be exercised at a given time. In the case of one up and one down right the two are equal since it would
never be optimal to exercise both the put and call style rights at the same time. As the number of rights increases,
the difference in values increases due to the swing option restriction allowing only a single right to be exercises
at each opportunity. The low-biased estimator is used for both the basket and swing option values in Figure 3.
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Figure 3. Basket of American calls and puts and swing option values versus the number of exercise
rights using a single underlying asset. Parameter values used are exercise volume of 60 units, S0 = 40,
b = 20, R = 4000, m = 5, and no usage penalty.

2.4.2. Calibrated Forward Curve

In this example, we use the trinomial-tree model described in Section 4 of Jaillet et al. (2004)
from which price movements are simulated. This model is a 1-factor model with mean reversion that
is seasonally adjusted and calibrated to the forward curve. The option we value is Example (a) of
Section 4.2 in Jaillet et al. (2004). This option a two up right swing option with each right allowing
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the holder to take delivery of either 1 or 2 MMBTus of natural gas. We simplify to have four exercise
opportunities and 4 months until expiry. Upon exercise the holder gets

max (Ui (AiSi − K) , 0) (20)

where Ui is the volume chosen, Ai is the seasonality factor and Si is the deseasonalized spot price.
Figure 4 plots the option price estimates, including 95% confidence intervals, against branching

factor. The number of repeated valuations used to generate prices with a branching factor of b is
R = 160,000

b . We see that, with a branching factor of only 8, the confidence intervals for the high-
and low-biased estimators begin to overlap and quickly become almost indistinguishable for higher
branching factors, numerical illustration of both estimators’ consistency. Additionally, the high and
low estimators converge to the true price computed using the trinomial model. We note that the serial
computational times (for a single FOST valuation) for branching factors of 8 and 32 were approximately
4.5 and 110 s, respectively using a 2.1 Ghz Core 2 Duo processor. The pricing results shown in Figure 4
are consistent with the results in Jaillet et al. (2004) but we note that the valuation method in that
publication breaks down in higher dimensions and in cases where the inclusion of more risk factors
is desirable.
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Figure 4. Option-value estimates versus (log) branching factor. Approximate pointwise 95% confidence
intervals for each estimate are given by the vertical bars. The option and underlying model in
this example is from Jaillet et al. (2004) with the Trinomial price given by their Forest of Trinomial
Trees method.

2.4.3. Five Dimensions

Due to the computationally intensive nature of this method it only becomes truly useful in cases
where PDE or tree based methods fail. In this subsection we present high-dimensional versions of
the examples presented in Section 2.4.1. The asset prices are assumed to follow a risk neutralized
correlated geometric Brownian motion described by the stochastic differential equations,

dSk
i = Sk

i

[(
r − δk

)
dt + σkdZk

i

]
, k = 1, . . . , d, (21)

where Zk
i is a standard Brownian motion process and the instantaneous correlation between Zk and Zs

is ρks. Here the parameter values are specified as r = 0.05, δk = δ = 0.1, σk = σ = 0.2 for all k and that
ρks = 0 for all k �= s. In addition all assets have the same initial value, S0, and we take the number of
assets to be d = 5.

12



J. Risk Financial Manag. 2020, 13, 95

The swing options considered have both up and down swing rights and the payoff upon exercise is

u × max
[(

max
k=1,...,d

Sk − Ku, Kd − max
k=1,...,d

Sk
)

, 0
]

, (22)

where Sk is the price of the kth underlying asset at the exercise time. This payoff is an extension of the
example given in Broadie and Glasserman (1997) and Broadie and Glasserman (2004) for single-exercise
American-style options. For the examples considered here, we set Ku = Kd = K which simplifies the
payoff function to

u × max
(

max
k=1,...,d

Sk − K, K − max
k=1,...,d

Sk
)

. (23)

As in Section 2.4.1, the option expiry is 3.0 years and the options have both up and down swing
rights with strike prices Ku = Kd = 40.0, respectively. In examples where the holder controls the
amount exercised, a list of volume choices is given. Note that we present results from our FOST
methodology without comparisons to other methods as there is no generally accepted benchmark for
the examples considered here.

Example 4. (Illustration of Bias and Convergence) This 5-dimensional example corresponds with Example 1.
The swing option has one up and one down swing right, three exercise opportunities, exercise volume of 60 units
of the underlying and there is no penalty. The initial price is USD 40. We perform R repeated valuations of
the FOST with a branching factor of b and hold the total sample size fixed using the relation R = 32000

(
10
b

)
.

This results in standard errors ≈ 0.09% of option value. Figure 5 plots the FOST estimates versus branching,
showing that the high estimator overestimates the option price while the low estimator underestimates the price.
Furthermore, as the branching factor increases, the high estimator decreases and the low estimator increases and
they appear to be converging to the same value, illustrating estimator convergence. These findings are consistent
with those in Example 1.
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Figure 5. Option value estimates (USD) vs. log branching factor (b) with a five-dimensional underlying.
The option has one up and one down swing right, three exercise opportunities, exercise volume of

60 units and there is no usage penalty. The number of repeated valuations R = 32000
(

10
b

)
results in

standard errors ≈ 0.09% of option value.

Example 5. (Effect of Usage Penalty and Initial Asset Price) This 5-dimensional example corresponds with
Example 2, with the option specifications the same as presented there, modulo the adjustment to the payoff
function to five dimensions. The pricing results are in Table 4. The effects of a usage penalty and initial stock
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price are qualitatively the same compared with the 1-dimensional results. We note that the option value estimates
in this example are higher than those in Example 2 due to the payoffs depending on the maximum of the five
asset prices. The computing times for the 5-dimensional case are similar to those for the 1-dimensional asset.

Example 6. (Effect of Number of Exercise Rights) This 5-dimensional example corresponds with Example 3,
with the option specifications the same as presented there, modulo the adjustment to the payoff function to
five dimensions. The results are given in Table 5 and Figure 6. The results, intuition, and interpretation are
qualitatively the same as the 1-dimensional results.

Table 4. Swing option values as a function of moneyness and penalties with a five-dimensional
underlying asset. Parameter values used are Nu = Nd = 2, Ui = {20, 40, 60}, b = 20, R = 4000, m = 5,
Umin = −90, and Umax = 90.

S0 Penalty High Error Low Error

60 ON 3577.280 2.864 3517.297 2.845
OFF 3832.050 2.286 3772.123 2.856

50 ON 2246.657 2.280 2197.957 2.259
OFF 2479.081 2.341 2431.065 2.318

40 ON 1221.847 1.595 1189.610 1.564
OFF 1257.171 1.499 1226.370 1.467

30 ON 1105.831 0.453 1087.851 0.447
OFF 1209.179 0.393 1196.255 0.391

20 ON 1937.615 0.445 1930.860 0.472
OFF 2177.194 0.489 2177.031 0.513

Table 5. Swing option values as a function of the number of exercise rights with a five-dimensional
underlying asset. Parameter values used are base volume = 60 units, S0 = 40, b = 20, R = 4000, m = 5,
and no usage penalty.

Nu = Nd High Error Low Error

1 683.144 0.741 652.481 0.721

3 1728.947 2.279 1709.497 2.248

5 2087.495 3.114 2087.495 3.114
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Figure 6. Basket of American calls and puts and swing option values versus the number of exercise
rights using a 5-dimensional underlying asset. Parameter values used are exercise volume of 60 units,
S0 = 40, b = 20, R = 4000, m = 5, and no usage penalty.

2.5. Algorithmic Enhancement via Parallel Processing

One method for enhancing the computational efficiency of this algorithm is by taking advantage
of multi-processor computing techniques. The simplest and most obvious implementation would
be to parallelize across repeated valuations of the forest resulting in serial farming of the repeated
valuations. Since each repeated valuation results in an iid random value for the option estimate,
the generation of all the results may be completed independently of one another, removing the need
for communication between processors. This method is simple and effective. However we state here
without numerical evidence that it results in a near perfect speed up without the need for expensive
interconnections. With this method the minimum run time that can be produced is determined by the
number of processors available, the number of repeated valuations necessary for the desired accuracy
and the run time of a single forest.

A variation on the aforementioned parallel implementation is to parallelize the FOST
computations internally within the forest. In the results shown in Figure 7 the FOST algorithm
has been modified so that the computation of the individual trees within the forest is done using
multiple processors. Here we have begun the parallelization after the first time step by dividing up the
computation of the remaining subtrees across different processors. Upon completion, the results are
gathered and the option value at the initial time step is determined. In Figure 7 we see that this method
results in a near perfect speed up due to the small ratio of communication time versus computational
time. This implementation may be combined with serial farming resulting in further computational
time efficiency. This is discussed more fully in Marshall et al. (2011).

In Figure 7 the swing option is identical one in Example 4 and pricing is done with a branching
factor b = 160. The computational times were generated using the SHARCNET cluster Hound which
comprises 2.2 GHz Opteron processors with 4 GB per core and Infini-Band interconnections. Run times
are normalized to the run time of a single processor.
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Figure 7. Normalized runtime using MPI versus number of CPUs (np). The option is identical to
the no volume choice swing option with a five-dimensional underlying considered in Section 2.4.3.
The branching factor used is b = 160.

3. Discussion and Conclusion

The FOST can be thought of as generalizations of two existing pricing methodologies.
First, it generalizes the Forest of Trees method to a high-dimensional underlying. Second, it generalizes
the Stochastic Tree pricing method for single-exercise right options to multiple exercise rights.
We construct high and low FOST estimators analogous to those defined for the Stochastic Tree.
We prove properties regarding FOST estimator bias, ordering, and convergence and present numerical
results as illustrations.

In related work, we have replaced the binomial/trinomial trees in the Forest of Trees method with
Stochastic Meshes Broadie and Glasserman (2004), creating the Forest of Stochastic Meshes Marshall
and Reesor (2011). This avoids the exponential growth in computing time with the number of
exercise opportunities experienced by the FOST. Another avenue of future work involves algorithmic
enhancement. In Section 2.5 we discussed the use of parallel processing to reduce computing time.
Two alternatives to this are variance reduction and bias reduction. There are some standard variance
reduction methods (e.g., antithetic variates, control variates) that could be used to produce more
efficient estimators. The bias reduction technique given in Whitehead et al. (2012) for Stochastic
Tree estimators successfully reduces the branching factor required to obtain a desired accuracy for
an American option value. This technique can be extended to correct the bias in FOST estimators
and we have preliminary evidence of its effectiveness Marshall (2012). Combinations of variance
reduction, bias reduction, and parallel processing can be investigated to further improve the
algorithm’s performance.
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Abbreviations

The following abbreviations are used in this manuscript:

MEO Multiple Exercise Option
PDE Partial Differential Equation
FOST Forest of Stochastic Trees
FOSM Forest of Stochastic Meshes
MC Monte Carlo

Appendix A. Nomenclature

In this appendix we describe the notation used in this paper.
If X is a random variable, we write ||X|| for the p-norm (E|X|p)1/p of X. The conditional p-norm

of X on Zi, (E|X|p|Zi)
1/p, is denoted ||X||Zi . Here we include a summary of notation used for the

proofs contained in this appendix as well as all subsequent appendices.

• Time is indexed by i for ti, i = 0, 1, . . . , m.
• R is the number of repeated valuations of the forest.
• b is the branching factor.

• S
j
i is the spot price vector at time ti for branch j = {j0, j1, . . . , ji}. For convenience we may suppress

the bold superscript if there is no ambiguity in doing so, in these cases S
j
i+1 refers to the time-ti+1

price along the branch path j = {j0, j1, . . . , ji, j}.

• Zi represents the time-ti history of the set of state variables (Sj
i ,Ni, Ui), where we suppress the

branching history index.

• V̂i

(
b, S

j
i ,Ni, Ui

)
is the time-ti, state-Zi high estimator.

• v̂il(b, S
j
i ,Ni, Ui) is the time-ti, state-Zi leave one out low biased estimator which does not include

node l at time-ti+1.
• Ĥil(b, S

j
i ,Ni, Ui, u) is the time-ti, state-Zi leave one out hold value estimator for exercising u units

which does not include node l at time-ti+1,

Ĥil

(
b, S

j
i ,Ni, Ui, u

)
=

1
b − 1

b

∑
k=1
k �=l

Di+1v̂k
i+1

(
b, Sk

i+1,Ni − I{u �=0}, Ui + u
)

k = {j, k}

• ĝil(b, S
j
i ,Ni, Ui, u) = hi(S

j
i ,Ni, Ui, u) + Ĥil(b, S

j
i ,Ni, Ui, u)

• v̂i(b, S
j
i ,Ni, Ui) is the time-ti, state-Zi low estimator

v̂i =
1
b

b

∑
l=1

v̂il

(
b, S

j
i ,Ni, Ui

)
• Ni is the time-ti number of exercise rights remaining.
• Ui is the time-ti cumulative volume.
• Ui is the time-ti discretized set of available volume choices,

Ui = {u0, u1, u2, . . . , uz : z ∈ N} ,

where u0 = 0.
• u is the time-ti volume exercised. Here u ∈ Ui.
• Di+1 is the discount factor from ti+1 to ti.

• hi

(
S

j
i ,Ni, Ui, u

)
is the time-ti, state-Zi payoff from exercising u units with hi

(
S

j
i ,Ni, Ui, 0

)
= 0.
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• Hi

(
S

j
i ,Ni, Ui

)
is the time-ti, state-Zi true hold value,

Hi

(
S

j
i ,Ni, Ui

)
= E

[
Di+1Bi+1(S

k
i+1,Ni+1, Ui+1)|Zi

]
• Bi(S

j
i ,Ni, Ui) is the time-ti, state-Zi true option value,

Bi(S
j
i ,Ni, Ui) = max

u∈U

[
hi

(
S

j
i ,Ni, Ui, u

)
+ Hi

(
S

j
i ,Ni − I{u �=0}, Ui + u

)]
where I{A} is the indicator function for set A.

Appendix B. Proofs of Main Results and Lemmas

Appendix B.1. Proofs of Main Results

In this section we prove the main results of the paper, Theorems 1–5, presented in Section 2.

Proof of Theorem 1. Here we prove the more general statement that E[V̂i(b, S
j
i ,Ni, Ui)|Zi] ≥

Bi(S
j
i ,Ni, Ui) for i = 0, 1, . . . , m. The proof proceeds by backward induction. At expiry the inequality

holds trivially since V̂m(b, S
j
m,Nm, Um) = Bm(S

j
m,Nm, Um) so that E[V̂m(b, S

j
m,Nm, Um)|Zm] ≥

Bm(S
j
m,Nm, Um). We now assume the inductive hypothesis, E[V̂i+1(b, S

j
i+1,Ni+1, Ui+1)|Zi+1] ≥

Bi+1(S
j
i+1,Ni+1, Ui+1), and proceed to the time-ti case. We have,

E
[
V̂i

(
b, S

j
i ,Ni, Ui

)
|Zi

]
= E

[
max
u∈Ui

[
hi

(
S

j
i ,Ni, Ui, u

)
+ Di+1V̂i+1

(
b, Sk

i+1,Ni − I{u �=0}, Ui + u
)]

|Zi

]
≥ max

u∈Ui

[
hi

(
S

j
i ,Ni, Ui, u

)
+ E

[
Di+1V̂i+1

(
b, Sk

i+1,Ni − I{u �=0}, Ui + u
)
|Zi

]]
= max

u∈Ui

[
hi

(
S

j
i ,Ni, Ui, u

)
+ E

[
Di+1E

[
V̂i+1

(
b, Sk

i+1,Ni − I{u �=0}, Ui + u
)
|Zi+1

]
|Zi

]]
≥ max

u∈Ui

[
hi

(
S

j
i ,Ni, Ui, u

)
+ E

[
Di+1Bi+1

(
Sk

i+1,Ni+1, Ui+1

)
|Zi

]]
= max

u∈Ui

[
hi

(
S

j
i ,Ni, Ui, u

)
+ Hi

(
S

j
i ,Ni, Ui

)]
= Bi

(
S

j
i ,Ni, Ui

)
,

where the first equality comes from the definition of the high estimator, the first inequality comes from
the conditional Jensen’s inequality and note that Ni+1 = Ni − I{u∗ �=0} and Ui+1 = ui + u∗ where u∗ is
the value-maximizing volume choice, the second equality uses the tower law and the fact that Di+1 is
Zi-measurable, and the second inequality invokes the inductive hypothesis.

Proof of Theorem 2. As with the proof of the bias of the high estimator we prove the more general
statement that E[v̂i(b, S

j
i ,Ni, Ui)|Zi] ≤ Bi(S

j
i ,Ni, Ui) for i = 0, 1, . . . , m by backward induction.

Again at expiry the inequality holds trivially since v̂m(b, S
j
m,Nm, Um)= Bm(S

j
m,Nm, Um). We now

assume the inductive hypothesis, E[v̂i+1(b, S
j
i+1,Ni+1, Ui+1)|Zi+1] ≤ Bi+1(S

j
i+1,Ni+1, Ui+1). We also

note that since the v̂il’s are iid we have that, E[v̂i|Zi] = E[v̂il |Zi]. In what follows we define û∗
l ∈ Ui to

be the volume choice which maximizes a particular v̂il . That is,

û∗
l = arg max

u∈Ui

[
ĝil(b, S

j
i ,Ni, Ui, u)

]
. (A1)
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Note that ĝil(b, S
j
i ,Ni, Ui, u) is conditionally independent of v̂i+1,l(b, Sl

i+1,Ni+1, Ui+1, u) given Zi
and subsequently û∗

l is also independent of v̂i+1,l given Zi since it is a function of ĝil .
Now,

E
[
v̂il

(
b, S

j
i ,Ni, Ui

)
|Zi

]
= E

[
Di+1v̂i+1,l

(
b, Sk

i+1,Ni, Ui

)
I{û∗

l =0}|Zi

]
+ E

[(
hi

(
S

j
i ,Ni, Ui, u1

)
+ Di+1v̂i+1,l

(
b, Sk

i+1,Ni − 1, Ui + u1

))
I{û∗

l =u1}|Zi

]
+ . . . + E

[(
hi

(
S

j
i ,Ni, Ui, uz

)
+ Di+1v̂i+1,l

(
i + 1, Sk

i+1,Ni − 1, Ui + uz

))
I{û∗

l =uz}|Zi

]
= E

[
Di+1v̂i+1,l

(
b, Sk

i+1,Ni, Ui

)
|Zi

]
P (û∗

l = 0|Zi) + hi

(
S

j
i ,Ni, Ui, u1

)
P (û∗

l = u1|Zi)

+ E
[

Di+1v̂i+1,l

(
b, Sk

i+1,Ni − 1, Ui + u1

)
|Zi

]
P (û∗

l = u1|Zi)

+ . . . + hi

(
S

j
i ,Ni, Ui, uz

)
P (û∗

l = uz|Zi)

+ E
[

Di+1v̂i+1,l

(
b, Sk

i+1,Ni − 1, Ui + uz

)
|Zi

]
P (û∗

l = uz|Zi)

= E
[

Di+1v̂i+1,l

(
b, Sk

i+1,Ni, Ui

)
|Zi

]
p0

+ hi

(
S

j
i ,Ni, Ui, u1

)
p1 + E

[
Di+1v̂i+1,l

(
b, Sk

i+1,Ni − 1, Ui + u1

)
|Zi

]
p1

+ . . . + hi

(
S

j
i ,Ni, Ui, uz

)
pz + E

[
Di+1v̂i+1,l

(
b, Sk

i+1,Ni − 1, Ui + uz

)
|Zi

]
pz

where in the second equality we have used the conditional independence of ĝil and v̂i+1,l .
Here p0 = P(û∗

l = 0|Zi) and pj = P(û∗
l = uj|Zi) for 1 ≤ j ≤ z and p0 + . . . + pz = 1. Thus, using the

tower law, we have,

E
[
v̂i

(
b, S

j
i ,Ni, Ui

)
|Zi

]
= E

[
v̂il

(
b, S

j
i ,Ni, Ui

)
|Zi

]
= E

[
Di+1E

[
v̂i+1,l

(
b, Sk

i+1,Ni, Ui

)
|Zi+1

]
|Zi

]
p0

+ hi

(
S

j
i ,Ni, Ui, u1

)
p1 + E

[
Di+1E

[
v̂i+1,l

(
b, Sk

i+1,Ni − 1, Ui + u1

)
|Zi+1

]
|Zi

]
p1

+ . . . + hi

(
S

j
i ,Ni, Ui, uz

)
pz + E

[
Di+1E

[
v̂i+1,l

(
b, Sk

i+1,Ni − 1, Ui + uz

)
|Zi+1

]
|Zi

]
pz

≤ E
[

Di+1Bi+1

(
Sk

i+1,Ni, Ui

)
|Zi

]
p0

+ hi

(
S

j
i ,Ni, Ui, u1

)
p1 + E

[
Di+1Bi+1

(
Sk

i+1,Ni − 1, Ui + u1

)
|Zi

]
p1

+ . . . + hi

(
S

j
i ,Ni, Ui, uz

)
pz + E

[
Di+1Bi+1

(
Sk

i+1,Ni − 1, Ui + uz

)
|Zi

]
pz

= Hi

(
S

j
i ,Ni, Ui

)
p0 +

(
hi

(
S

j
i ,Ni, Ui, u1

)
+ Hi

(
S

j
i ,Ni − 1, Ui + u1

))
p1

+ . . . +
(

hi

(
S

j
i ,Ni, Ui, uz

)
+ Hi

(
S

j
i ,Ni − 1, Ui + uz

))
pz

≤ max
u∈Ui

[
hi

(
S

j
i ,Ni, Ui, u

)
+ Hi

(
S

j
i ,Ni − I{u �=0}, Ui + u

)]
= Bi(S

j
i ,Ni, Ui)

where the first inequality follows from the inductive hypothesis and the remaining steps follow from
the definitions for Bi and Hi.

Proof of Theorem 3. At expiry we have that v̂m(b, S
j
m,Nm, Um) = V̂m(b, S

j
m,Nm, Um) =

Bm(S
j
m,Nm, Um) so the relation holds trivially. We now take the inductive hypothesis to be
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v̂i+1(b, S
j
i+1,Ni+1, Ui+1) ≤ V̂i+1(b, S

j
i+1,Ni+1, Ui+1) for ji+1 = 1, . . . , b. Using the ĝil as defined above

we first consider the case where for a given tree,

û∗
l = arg max

u∈Ui

[
ĝil(b, S

j
i ,Ni, Ui, u)

]
, (A2)

is the same for all l (i.e., û∗
l = û∗, for all l).

Then,

v̂i

(
b, S

j
i ,Ni, Ui

)
=

1
b

b

∑
l=1

v̂il

(
b, S

j
i ,Ni, Ui

)
=

1
b

b

∑
l=1

[
hi

(
S

j
i ,Ni, Ui, û∗

)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û∗ �=0}, Ui + û∗
)]

≤ 1
b

b

∑
l=1

[
hi

(
S

j
i ,Ni, Ui, û∗

)
+ Di+1V̂i+1

(
b, Sl

i+1,Ni − I{û∗ �=0}, Ui + û∗
)]

= hi

(
S

j
i ,Ni, Ui, û∗

)
+

1
b

b

∑
l=1

[
Di+1V̂i+1

(
b, Sl

i+1,Ni − I{û∗ �=0}, Ui + û∗
)]

≤ max
u∈Ui

[
hi

(
S

j
i ,Ni, Ui, u

)
+

1
b

b

∑
l=1

[
Di+1V̂i+1

(
b, Sl

i+1,Ni − I{u �=0}, Ui + u
)]]

= V̂i

(
b, S

j
i ,Ni, Ui

)
where the first inequality comes from the inductive hypothesis and the remaining relations come from
the parameter definitions.

Next consider the case where the low estimator gives two different estimated optimal exercise
amounts, û1, û2, across all l branches where û1 �= û2. That is û∗

l = û1 or û∗
l = û2 for all l = 1, . . . , b.

As above we take û∗
l to be the optimal exercise amount determined by the l-th leave one out

estimator, then,

v̂i

(
b, S

j
i ,Ni, Ui

)
= 1

b ∑b
l=1 v̂il

(
b, S

j
i ,Ni, Ui

)
= 1

b ∑b
l=1

[
hi

(
S

j
i ,Ni, Ui, û∗

l

)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û∗
l �=0}, Ui + û∗

l

)]
= 1

b ∑b
l=1

{[
hi

(
S

j
i ,Ni, Ui, û1

)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û1 �=0}, Ui + û1
)]

I{û∗
l =û1}

+
[

hi

(
S

j
i ,Ni, Ui, û2

)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û2 �=0}, Ui + û2
)]

I{û∗
l =û2}

}
=

(
1
b ∑b

l=1 I{û∗l =û1}

)
×
(

1
b ∑b

l=1

[
hi

(
S

j
i ,Ni ,Ui ,û1

)
+Di+1 v̂i+1

(
b,Sl

i+1,Ni−I{û1 �=0} ,Ui+û1
)]

I{û∗l =û1}

)
1
b ∑b

l=1 I{û∗l =û1}

+

(
1
b ∑b

l=1 I{û∗l =û2}

)
×
(

1
b ∑b

l=1

[
hi

(
S

j
i ,Ni ,Ui ,û2

)
+Di+1 v̂i+1

(
b,Sl

i+1,Ni−I{û2 �=0} ,Ui+û2
)]

I{û∗l =û2}

)
1
b ∑b

l=1 I{û∗l =û2}

= p ×
1
b ∑b

l=1

[
hi

(
S

j
i ,Ni ,Ui ,û1

)
+Di+1 v̂i+1

(
b,Sl

i+1,Ni−I{û1 �=0} ,Ui+û1
)]

I{û∗l =û1}
1
b ∑b

l=1 I{û∗l =û1}

+ (1 − p)×
1
b ∑b

l=1

[
hi

(
S

j
i ,Ni ,Ui ,û2

)
+Di+1 v̂i+1

(
b,Sl

i+1,Ni−I{û2 �=0} ,Ui+û2
)]

I{û∗l =û2}
1
b ∑b

l=1 I{û∗l =û2}
,

where p = 1
b ∑b

l=1 I{û∗
l =û1}.

Without loss of generality, suppose that û∗
l = û1 for l = 1, . . . , k and û∗

l = û2 for l = k + 1, . . . , b.
Then the above ratios become

∑k
l=1

[
hi

(
S

j
i ,Ni, Ui, û1

)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û1 �=0}, Ui + û1
)]

k
(A3)
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and
∑b

l=k+1

[
hi

(
S

j
i ,Ni, Ui, û2

)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û2 �=0}, Ui + û2
)]

b − k
, (A4)

respectively. Now for any i∗ ≤ k < j∗ ≤ b we have

ĝii∗
(

b, S
j
i ,Ni, Ui, û1

)
> ĝij∗

(
b, S

j
i ,Ni, Ui, û1

)
which from the definition of ĝil , implies that

Di+1v̂i+1

(
b, Si∗

i+1,Ni, Ui + û1
)
≤ Di+1v̂i+1

(
b, S

j∗
i+1,Ni, Ui + û1

)
.

Therefore,

max
1≤a≤k

[
Di+1v̂i+1

(
b, Sa

i+1,Ni, Ui + û1
)]

≤ min
k+1≤a≤b

[
Di+1v̂i+1

(
b, Sa

i+1,Ni, Ui + û1
)]

.

This implies that Equation (A3)

1
k

k

∑
l=1

[
hi

(
S

j
i ,Ni, Ui, û1

)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û1 �=0}, Ui + û1
)]

≤ 1
b

b

∑
l=1

[
hi

(
S

j
i ,Ni, Ui, û1

)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û1 �=0}, Ui + û1
)]

,

and similarly for Equation (A4)

1
b − k

b

∑
l=k+1

[
hi

(
S

j
i ,Ni, Ui, û2

)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û2 �=0}, Ui + û2
)]

≤ 1
b

b

∑
l=1

[
hi

(
S

j
i ,Ni, Ui, û2

)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û2 �=0}, Ui + û2
)]

.

Therefore

v̂i

(
b, S

j
i ,Ni, Ui

)
≤ p × 1

b

b

∑
l=1

[
hi

(
S

j
i ,Ni, Ui, û1

)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û1 �=0}, Ui + û1
)]

+ (1 − p)× 1
b

b

∑
l=1

[
hi

(
S

j
i ,Ni, Ui, û2

)
+ Di+1v̂i+1

(
b, Sl

i+1,Ni − I{û2 �=0}, Ui + û2
)]

≤ p × 1
b

b

∑
l=1

[
hi

(
S

j
i ,Ni, Ui, û1

)
+ Di+1V̂i+1

(
b, Sl

i+1,Ni − I{û1 �=0}, Ui + û1
)]

+ (1 − p)× 1
b

b

∑
l=1

[
hi

(
S

j
i ,Ni, Ui, û2

)
+ Di+1V̂i+1

(
b, Sl

i+1,Ni − I{û2 �=0}, Ui + û2
)]

≤ max

[
1
b

b

∑
l=1

[
hi

(
S

j
i ,Ni, Ui, û1

)
+ Di+1V̂i+1

(
b, Sl

i+1,Ni − I{û1 �=0}, Ui + û1
)]

,

1
b

b

∑
l=1

[
hi

(
S

j
i ,Ni, Ui, û2

)
+ Di+1V̂i+1

(
b, Sl

i+1,Ni − I{û2 �=0}, Ui + û2
)]]

≤ max
u∈Ui

[
1
b

b

∑
l=1

[
hi

(
S

j
i ,Ni, Ui, u

)
+ Di+1V̂i+1

(
b, Sl

i+1,Ni − I{u �=0}, Ui + u
)]]

= V̂i(S
j
i ,Ni, Ui),
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where the second inequality comes from the inductive hypothesis, the third inequality is an application
of Jensen’s inequality, the fourth inequality comes from maximizing over a larger set, and the final
equality is the definition of the high-biased estimator.

For the cases where the low estimator gives z∗ distinct estimated optimal exercise amounts,
û1, . . . , ûz∗ , across all z branches, z∗ = 3, . . . , z, arguments similar to those given above (for 2 distinct
estimated optimal exercise amounts) show that,

v̂i(S
j
i ,Ni, Ui) ≤ V̂i(S

j
i ,Ni, Ui).

Since we restrict the number of volume choices to be finite, the theorem is proven.

Prior to proving Theorems 4 and 5 we first state the following preliminary result.

Lemma A1. If ||hi(Si,Ni, Ui, u)|| < ∞ for all ti, for some p ≥ 1, then the following are true for all
0 ≤ ti ≤ tk ≤ tm:

‖Bk(Sk,Nk, Uk)‖Zi
< ∞ (A5)

sup
b

∥∥V̂k(b, Sk,Nk, Uk)
∥∥
Zi

< ∞ (A6)

sup
b

‖v̂k(b, Sk,Nk, Uk)‖Zi
< ∞ (A7)

The proof of this lemma can be found in the appendix. A second preliminary result is

Lemma A2. Let a1, . . . , an, b1, . . . , bn, c1, . . . , cn be real numbers. Then,

An ≡ |max (a1 + b1, . . . , an + bn)− max (a1 + c1, . . . , an + cn)| ≤ 2
n+1

∑
i=1

|bi − ci| ≡ Bn. (A8)

Its proof can also be found in the appendix. We now prove Theorems 4 and 5.

Proof of Theorem 4. Here we take R = 1 and state that if the convergence holds for a single
realization of the forest then it will hold for the mean of any number of realizations due to
the independence of each repeated valuation. Here we prove by backward induction the more
general statement ‖V̂i(b, Si,Ni, Ui) − Bi(Si,Ni, Ui)‖Zi → 0 for any generic node in a given
tree and for all i = 0, . . . , m. At expiry the relation holds trivially since at ti = tm

we have that V̂m(b, Sm,Nm, Um) = Bm(Sm,Nm, Um). The inductive hypothesis is taken to be
‖V̂i+1(b, Si+1,Ni+1, Ui+1)− Bi+1(Si+1,Ni+1, Ui+1)‖Zi+1 → 0.
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Now,∥∥V̂i(b, Si,Ni, Ui)− Bi(Si,Ni, Ui)
∥∥
Zi

=

∥∥∥∥∥max
u∈Ui

[
hi (Si,Ni, Ui, u) +

1
b

b

∑
j=1

Di+1V̂i+1

(
b, S

j
i+1,Ni − I{u �=0}, Ui + u

)]

− max
u∈Ui

[
hi (Si,Ni, Ui, u) + Hi

(
Si,Ni − I{u �=0}, Ui + u

)]∥∥∥∥
Zi

=

∥∥∥∥∥
∣∣∣∣∣max

u∈Ui

[
hi (Si,Ni, Ui, u) +

1
b

b

∑
j=1

Di+1V̂i+1

(
b, S

j
i+1,Ni − I{u �=0}, Ui + u

)]

− max
u∈Ui

[
hi (Si,Ni, Ui, u) + Hi

(
b, S

j
i ,Ni − I{u �=0}, Ui + u

)]∣∣∣∣ ∥∥∥∥
Zi

≤
∥∥∥∥∥ 2

z

∑
k=0

1
b

∣∣∣∣∣ b

∑
j=1

Di+1V̂i+1

(
b, S

j
i+1,Ni − I{uk �=0}, Ui + uk

)
− Hi

(
Si,Ni − I{uk �=0}, Ui + uk

)∣∣∣∣∣
∥∥∥∥∥
Zi

≤ 2
z

∑
k=0

∥∥∥∥∥1
b

b

∑
j=1

Di+1V̂i+1

(
b, S

j
i+1,Ni − I{uk �=0}, Ui + uk

)
− Hi

(
Si,Ni − I{uk �=0}, Ui + uk

)∥∥∥∥∥
Zi

≤ 2
z

∑
k=0

∥∥∥∥∥1
b

b

∑
j=1

Di+1

[
V̂i+1

(
i, S

j
i+1,Ni − I{uk �=0}, Ui + uk

)
− Bi+1

(
S

j
i+1,Ni − I{uk �=0}, Ui + uk

)]∥∥∥∥∥
Zi

+ 2
z

∑
k=0

∥∥∥Di+1Bi+1

(
S

j
i+1,Ni − I{uk �=0}, Ui + uk

)
− Hi

(
Si,Ni − I{uk �=0}, Ui + uk

)∥∥∥
Zi

= 2
z

∑
k=0

(Ek + Ck)

where the first equality comes from the definitions of the estimator and the true value. The third step
comes as a result of Lemma A2, the fourth step comes from a generalization of the triangle inequality.
In the final step we rewrite the expression for convience in what follows.

First we deal with the Ck’s. Given Zi we have that Di+1Bi+1(S
j
i+1,Ni − I{uk �=0}, Ui + uk) for

j = 1, . . . , b and k = 0, . . . , z are iid with means of Hi(Si,Ni − I{uk �=0}, Ui + uk) and finite p-norms.
Then by Theorem I.4.1 of Gut (1988) we have that all Ck’s in the above expression go to zero.

Next we consider the Ek’s. Here we have, by the properties of p-norms and the fact that the terms
being averaged are iid, that

Ek ≤
∥∥∥V̂i+1

(
b, Si+1,Ni − I{uk �=0}, Ui + uk

)
− Bi+1

(
Si+1,Ni − I{uk �=0}, Ui + uk

)∥∥∥
Zi

since Ek is bounded by the p-norm of any one of the terms being averaged. By the inductive hypothesis∥∥V̂i+1 (b, Si+1,Ni+1, Ui+1)− Bi+1 (Si+1,Ni+1, Ui+1)
∥∥
Zi+1

→ 0,

where Ni+1 = Ni − I{uk �=0} and Ui+1 = Ui + uk.
Also by a standard condition for uniform integrability (see Gut (1988) p. 178) we have that∥∥V̂i+1 (b, Si+1,Ni+1, Ui+1)− Bi+1 (Si+1,Ni+1, Ui+1)

∥∥
Zi

→ 0, (A9)

provided
sup

b
E
[∣∣V̂i+1 (b, Si+1,Ni+1, Ui+1)− Bi+1 (Si+1,Ni+1, Ui+1)

∣∣p+ε |Zi

]
< ∞
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for some ε. From Lemma A1 we know that

sup
b

E
[∣∣V̂i+1 (b, Si+1,Ni+1, Ui+1)

∣∣p+ε |Zi

]
< ∞

and that
E
[
|Bi+1 (Si+1,Ni+1, Ui+1)|p+ε |Zi

]
< ∞.

Thus (A9) holds for each k = 0, . . . , z and hence the result is proven.

Proof of Theorem 5. As with the proof of Theorem 4 we proceed by backward induction. Again at
expiry the relation holds trivially since v̂m(b, Sm,Nm, Um) = Bm(Sm,Ni, Ui). The inductive hypothesis
is taken to be ‖v̂i+1(b, Si+1,Ni+1, Ui+1)− Bi+1(Si+1,Ni+1, Ui+1)‖Zi+1 → 0.

Let ĝil(b, S
j
i ,Ni, Ui, u) be as defined at the start of Appendix A and note that, with probability one,

hi

(
S

j
i ,Ni, Ui, u1

)
+ Hi

(
S

j
i ,Ni − I{u1 �=0}, Ui + u1

)
�= hi

(
S

j
i ,Ni, Ui, u2

)
+ Hi

(
S

j
i ,Ni − I{u2 �=0}, Ui + u2

)
,

for all u1, u2 ∈ Ui, u1 �= u2.

Before proceeding, we stop to make three claims:

1.
∥∥∥ 1

b ∑b
l=1 Di+1v̂i+1

(
b, Sl

i+1,Ni − I{u �=0}, Ui + u
)
− Hi

(
S

j
i ,Ni − I{u �=0}, Ui + u

)∥∥∥
Zi

→ 0

2.
∥∥∥ĝil(b, S

j
i ,Ni, Ui, u)−

[
hi

(
S

j
i ,Ni, Ui, u

)
− Hi

(
S

j
i ,Ni − I{u �=0}, Ui + u

)]∥∥∥
Zi

→ 0

3.
∥∥∥I{û∗

l =u} − I{u∗=u}
∥∥∥
Zi

→ 0

for all u ∈ Ui and where

û∗
l = arg max

u∈Ui

[
ĝil(b, S

j
i ,Ni, Ui, u)

]
and

u∗ = arg max
u∈Ui

[
hi

(
S

j
i ,Ni, Ui, u

)
− Hi

(
S

j
i ,Ni − I{u �=0}, Ui + u

)]

The proof of item (i) is the same as the proof of the corresponding step in Theorem 4. Since the
estimators in (i) and (ii) differ only in the omission of one term in ĝil , similar arguments prove that (ii)
also holds.

Now for (iii), if û∗
l = u∗ then the result holds trivially. Now suppose that û∗

l = u �= u∗ for
some u ∈ Ui. Then,∥∥∥I{û∗

l =u} − I{u∗=u}
∥∥∥
Zi

=
∥∥∥I{û∗

l =u}
∥∥∥
Zi

= [P (û∗
l = u|Zi)]

1
p

=
[
P
(

ĝil(b, S
j
i ,Ni, Ui, u) ≥ hi(S

j
i ,Ni, Ui, u) + Hi(S

j
i ,Ni − I{u �=0}, Ui + u)

)]1/p

→ 0.

Since (ii) holds and convergence in p-norm implies convergence in probability. Thus (iii) is proven.
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Now proceeding from the definition of the low estimator and the true option value for all u ∈ Ui,

‖v̂i (b, Si,Ni, Ui)− Bi (Si,Ni, Ui)‖Zi

=
∥∥∥ 1

b ∑b
l=1 v̂il (b, Si,Ni, Ui)− Bi (Si,Ni, Ui)

∥∥∥
Zi

=
∥∥∥ 1

b ∑b
l=1

(
Di+1v̂i+1,l

(
b, Sl

i+1,Ni, Ui

)
I{û∗

l =0}

+
[

ahi (Si,Ni, Ui, u1) + Di+1v̂i+1,l

(
b, Sl

i+1,Ni − 1, Ui + u1

)]
I{û∗

l =u1}

+ . . . +
[

ahi (Si,Ni, Ui, uz) +Di+1v̂i+1,l

(
b, Sl

i+1,Ni − 1, Ui + uz

)]
I{û∗

l =uz}
)
− Bi (Si,Ni, Ui)

∥∥∥
Zi

≤
∥∥∥ 1

b ∑b
l=1 Di+1v̂i+1,l

(
b, Sl

i+1,Ni, Ui

)
I{û∗

l =0} − Hi (Si,Ni, Ui) I{u∗=0}
∥∥∥
Zi

+
∥∥∥ 1

b ∑b
l=1 Di+1v̂i+1,l

(
b, Sl

i+1,Ni − 1, Ui + u1

)
I{û∗

l =u1} − Hi (Si,Ni − 1, Ui + u1) I{u∗=u1}
∥∥∥
Zi

+ . . . +
∥∥∥ 1

b ∑b
l=1 Di+1v̂i+1,l

(
b, Sl

i+1,Ni − 1, Ui + uz

)
I{û∗

l =uz} − Hi (Si,Ni − 1, Ui + uz) I{u∗=uz}
∥∥∥
Zi

+
∥∥∥hi (Si,Ni, Ui, u1) I{û∗

l =u1} − hi (Si,Ni, Ui, u1) I{u∗=uz}
∥∥∥
Zi

+ . . . +
∥∥∥hi (Si,Ni, Ui, uz) I{û∗

l =uz} − hi (Si,Ni, Ui, uz) I{u∗=uz}
∥∥∥
Zi

(A10)

where the inequality in the third step is due to a generalization of the triangle inequality.
The immediate consequence of claim (iii) above is that all terms in Equation (A10) with the form∥∥∥hi(Si,Ni, Ui, u)I{û∗

l =u} − hi(Si,Ni, Ui, u)I{u∗=u}
∥∥∥
Zi

→ 0

for all u ∈ Ui. Thus

z

∑
k=0

∥∥∥hi(Si,Ni, Ui, uk)I{û∗
l =uk} − hi(Si,Ni, Ui, uk)I{u∗=uk}

∥∥∥
Zi

→ 0.

It remains to show that the remaining terms in (A10) converge in the p-norm. Taking one of these
terms, that is, fix a u ∈ Ui, we now show this converges in the p-norm to zero.∥∥∥ 1

b ∑b
l=1 Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u �=0}, Ui + u
)

I{û∗=u} − Hi

(
Si,Ni − I{u �=0}, Ui + u

)
I{u∗

l =u}
∥∥∥
Zi

=
∥∥∥ 1

b ∑b
l=1

[
Di+1v̂i+i,l

(
b, Sl

i+1,Ni − I{u �=0}, Ui + u
)

I{û∗
l =u} − [Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u �=0}, Ui + u
)

I{u∗=u}
]

+ 1
b ∑b

l=1 Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u �=0}, Ui + u
)

I{u∗=u} − Hi

(
Si,Ni − I{u �=0}, Ui + u

)
I{u∗=u}

∥∥∥
Zi

≤
∥∥∥ 1

b ∑b
l=1

[
Di+1v̂i+i,l

(
b, Sl

i+1,Ni − I{u �=0}, Ui + u
)

I{û∗
l =u} − Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u �=0}, Ui + u
)

I{u∗=u}
]∥∥∥

+
∥∥∥ 1

b ∑b
l=1 Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u �=0}, Ui + u
)

I{u∗=u} − Hi

(
Si,Ni − I{u �=0}, Ui + u

)
I{u∗=u}

∥∥∥
Zi

≤
∥∥∥Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u �=0}, Ui + u
)∥∥∥

Zi
·
∥∥∥I{û∗

l =u} − I{u∗=u}
∥∥∥
Zi

+
∥∥∥I{u∗=u}

∥∥∥
Zi

·
∥∥∥ 1

b ∑b
l=1 Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u �=0}, Ui + u
)
− Hi

(
Si,Ni − I{u �=0}, Ui + u

) ∥∥∥
Zi

,

where the first step comes from adding and subtracting the same term, the second comes from applying
the triangle inequality and the third step comes from factoring out common terms.

Now by (iii), ∥∥∥I{û∗
l =u} − I{û∗=u}

∥∥∥
Zi

→ 0,

by (i), ∥∥∥∥∥1
b

b

∑
l=1

Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u �=0}, Ui + u
)
− Hi

(
Si,Ni − I{u �=0}, Ui + u

) ∥∥∥∥∥
Zi

→ 0,
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and we note that ∥∥∥I{u∗=u}
∥∥∥
Zi

< ∞ and∥∥∥Di+1v̂i+1,l

(
b, Sl

i+1,Ni − I{u �=0}, Ui + u
)∥∥∥

Zi
< ∞,

by (A7).
Hence we have proven the consistency of the low-biased estimator.

Appendix B.2. Lemma Proofs

Proof of Lemma A1. If every hi(Si,Ni, Ui, u) has finite p-th moment, then each ||hi(Sk,Nk, Uk, u)||Zi

is finite. Since the max, discounting, and conditional expectation operators preserve finiteness of
moments then it follows that ||Bk(Sk,Nk, Uk)||Zi and also ||Hk(Sk,Nk, Uk)||Zi must also be finite.

Proceeding to (A6), fix ti and proceed by backward induction on tk from tm to ti. At expiry (A6)
follows from (A5). Then for tk < tm,

sup
b

∥∥V̂k(b, Sk,Nk, Uk)
∥∥
Zi

= sup
b

∥∥∥∥max
u∈Uk

[
hk(Sk,Nk, Uk, u) + Ĥk(b, Sk,Nk − I{u �=0}, Uk + u)

]∥∥∥∥
Zi

= sup
b

∥∥∥∥∥ max
u∈Uk ,u

[
hk(Sk,Nk, Uk, u) +

1
b

b

∑
j=1

Dk+1V̂k+1(b, S
j
k+1,Nk − I{u �=0}, Uk + u)

]∥∥∥∥∥
Zi

≤ ‖hk(Sk,Nk, Uk, 0)‖Zi
+ sup

b

∥∥∥∥∥1
b

b

∑
j=1

Dk+1V̂k+1(b, S
j
k+1,Nk, Uk)

∥∥∥∥∥
Zi

+ ‖hk(Sk,Nk, Uk, u1)‖Zi
+ sup

b

∥∥∥∥∥1
b

b

∑
j=1

Dk+1V̂k+1(b, S
j
k+1,Nk − 1, Uk + u1)

∥∥∥∥∥
Zi

+ . . . + ‖hk(Sk,Nk, Uk, ur)‖Zi
+ sup

b

∥∥∥∥∥1
b

b

∑
j=1

Dk+1V̂k+1(b, S
j
k+1,Nk − 1, Uk + ur)

∥∥∥∥∥
Zi

≤ sup
b

∥∥V̂k+1(b, Sk+1,Nk, Uk)
∥∥
Zi

+ ‖hk(Sk,Nk, Uk, u1)‖Zi
+ sup

b

∥∥V̂k+1(b, Sk+1,Nk − 1, Uk + u1)
∥∥
Zi

+ . . . + ‖hk(Sk+1,Nk, Uk, ur)‖Zi
+ sup

b

∥∥V̂k+1(b, Sk+1,Nk − 1, Uk + ur)
∥∥
Zi

,

where hk(Sk,Nk, Uk, 0) = 0. This is the sum of a finite number of terms, each of which is finite.
For (iii) the proof is similar to that of (ii).

Proof of Lemma A2. In order to prove Lemma A2 we proceed by induction by considering the cases
for n = 1 and n = 2. For n = 1,

A1 = |max(a1 + b1)− max(a1 + c1)| = |b1 − c1| < B1

therefore A1 ≤ B1. Now, for n = 2

A1 = |max(a1 + b1, a2 + b2)− max(a1 + c1, a2 + c2)|

Consider the following,

1. a1 + b1 > a2 + b2

(a) a1 + c1 > a2 + c2

Then
A2 = |a1 + b1 − a1 − c1| = |b1 − c1| ≤ B2
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(b) a1 + c1 < a2 + c2

Note that conditions (i) and (b) imply that

b2 − b1 < a1 − a2 < c2 − c1 (A11)

and we have

A2 = |a1 + b1 − a2 − c2|
= |a1 + b1 − c1 + c1 − a2 − c2|
≤ |b1 − c1|+ |(a1 − a2)− (c2 − c1)|
≤ |b1 − c1|+ |(b2 − b1)− (c2 − c1)|
= |b1 − c1|+ |b2 − c2 − (b1 − c1)|
≤ 2|b1 − c1|+ |b2 − c2|
≤ 2|b1 − c1|+ 2|b2 − c2|
= B2

where the first inequality comes from the triangle inequality, the second comes from
Inequality (A11) and the third inequality comes from another application of the
triangle inequality.

2. a2 + b2 > a1 + b1

(a) a2 + c2 > a1 + c1

Then
A2 = |a2 + b2 − a2 − c2| = |b2 − c2| ≤ B2

(b) a2 + c2 < a1 + c1

Note that conditions (ii) and (b) imply that

b1 − b2 < a2 − a1 < c1 − c2 (A12)

and we have

A2 = |a2 + b2 − a1 − c1|
= |a2 + b2 − c2 + c2 − a1 − c1|
≤ |b2 − c2|+ |(a2 − a1)− (c1 − c2)|
≤ |b2 − c2|+ |(b1 − b2)− (c1 − c2)|
= |b2 − c2|+ |b1 − c1 − (b2 − c2)|
≤ 2|b2 − c2|+ |b1 − c1|
≤ 2|b2 − c2|+ 2|b1 − c1|
= B2

where again the first inequality comes from the triangle inequality, the second comes
from Inequality (A12) and the third inequality comes from another application of the
triangle inequality.

Therefore A2 ≤ B2.
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Now assume that the inductive hypothesis An ≤ Bn is true. We need to show that An+1 ≤ Bn+1.
First define in and jn such that

ain + bin = max(a1 + b1, . . . , an + bn)

and
ain + cin = max(a1 + c1, . . . , an + cn)

respectively. Now,

An+1 = |max(a1 + b1, . . . , an + bn, an+1 + bn+1)− max(a1 + c1, . . . , an + cn, an+1 + cn+1)|
=
∣∣max(ain + bin , an+1 + bn+1)− max(ajn + cjn , an+1 + cn+1)

∣∣
Consider the following,

1. ain + bin > an+1 + bn+1

(a) ajn + cjn > an+1 + cn+1

An+1 = |ain + bin − ajn − cjn |

≤ 2
n

∑
i=1

|bi − ci|

≤ 2
n+1

∑
i=1

|bi − ci|

= Bn+1

where the first inequality comes from the inductive hypothesis.
(b) ajn + cjn < an+1 + cn+1

By the definitions of in and jn and (b) we have

ain + cin ≤ ajn + cjn < an+1 + cn+1.

This combined with (i) gives

bn+1 − bin < ain − an+1 < cn+1 − cin (A13)

Then

An+1 = |ain + bin − an+1 − cn+1|
= |ain + bin − cin + cin − an+1 − cn+1|
≤ |bin − cin |+ |(ain − an+1)− (cn+1 − cin)|
≤ |bin − cin |+ |(bn+1 − bin)− (cn+1 − cin)|
= |bin − cin |+ |bn+1 − cn+1 − (bin − cin)|
≤ 2|bin − cin |+ |bn+1 − cn+1|
≤ Bn+1

where again the first inequality comes from the triangle inequality, the second comes
from Inequality (A13) and the third inequality comes from another application of the
triangle inequality.

2. ain + bin < an+1 + bn+1
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(a) ajn + cjn < an+1 + cn+1

An+1 = |an+1 + bn+1 − an+1 − cn+1|
= |bn+1 − cn+1|

≤ 2
n+1

∑
i=1

|bi − ci|

= Bn+1

(b) ajn + cjn > an+1 + cn+1

By the definitions of in and jn and (ii) we have

ajn + bjn ≤ ain + bin < an+1 + bn+1.

This combined with (b) gives

bjn − bn+1 < an+1 − ajn < cjn − cn+1 (A14)

Then

An+1 = |an+1 + bn+1 − ajn − cjn |
= |an+1 + bn+1 − cn+1 + cn+1 − ajn − cjn |
≤ |bn+1 − cn+1|+ |(an+1 − ajn)− (cjn − cn+1)|
≤ |bn+1 − cn+1|+ |(bjn − bn+1)− (cjn − cn+1)|
= |bn+1 − cn+1|+ |bjn − cjn − (bn+1 − cn+1)|
≤ 2|bn+1 − cn+1|+ |bjn − cjn |
≤ Bn+1

where again the first inequality comes from the triangle inequality, the second comes
from Inequality (A14) and the third inequality comes from another application of the
triangle inequality.

Therefore An+1 ≤ Bn+1 and the Lemma is proven.
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Abstract: This paper proposes an innovative algorithm that significantly improves on the
approximation of the optimal early exercise boundary obtained with simulation based methods
for American option pricing. The method works by exploiting and leveraging the information in
multiple cross-sectional regressions to the fullest by averaging the individually obtained estimates at
each early exercise step, starting from just before maturity, in the backwards induction algorithm.
With this method, less errors are accumulated, and as a result of this, the price estimate is essentially
unbiased even for long maturity options. Numerical results demonstrate the improvements from our
method and show that these are robust to the choice of simulation setup, the characteristics of the
option, and the dimensionality of the problem. Finally, because our method naturally disassociates
the estimation of the optimal early exercise boundary from the pricing of the option, significant
efficiency gains can be obtained by using less simulated paths and repetitions to estimate the optimal
early exercise boundary than with the regular method.

Keywords: American options; least-squares Monte Carlo; exercise boundary; simulation

JEL Classification: C15; G12; G13

1. Introduction

Simulation and regression based methods are by now standard methods used for American
option pricing. Simulation methods are flexible, work in multiple dimensions, can be used with even
the most complicated models and payoff functions, and are straightforward to use. Essentially, if you
can simulate it (the underlying dynamics), you can price it (the derivatives contract).1 Moreover,
under standard assumptions, the estimates have nice properties since averages over independent
samples converge to expected values. Almost all the simulation methods that have been proposed
for American option pricing share the feature that in one way or another, they involve estimating
or approximating the early exercise boundary or, more generally, estimating or approximating
the conditional expectations that are used to decide whether or not to exercise at each step.2

In the Least-Squares Monte Carlo (LSM) method of Longstaff and Schwartz (2001), for example,
the conditional expectations are approximated with polynomials, and based on these approximations,

1 See also Boyer and Stentoft (2013) for applications of this method to longevity risk products in insurance.
2 See Ibanez and Zapatero (2004) for an example of a simulation method that directly approximates the optimal early

exercise boundary.
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it is then decided at each early exercise point and along each simulated path whether the option should
be exercised or not; implicitly determining the early exercise region.

While the asymptotic properties of the LSM method are well established (see for example
(Stentoft 2004b)), the quality of the price estimate obtained with this method depends on the order
of the polynomial, M, used in the cross-sectional regression and the number of paths, N, used in the
simulation (see, e.g., Moreno and Navas 2003; Stentoft 2004a). With a finite choice of polynomial terms,
M, and simulated paths, N, the early exercise boundary is estimated with some error. Because of this,
sub-optimal decisions are made, and everything else equal, low biased price estimates are obtained.
Moreover, because sub-optimal decisions are made early on, errors are propagated backwards through
the algorithm. This paper presents an innovative bias reduction technique directly applicable to the
LSM method, as well as to many other similar methods. The method successfully delivers at each
early exercise step, starting from just before maturity, a “better” estimated early exercise boundary.
Because of this, less errors are accumulated, and by recursively correcting the estimated optimal early
exercise boundary, we end up with essentially unbiased price estimates even for long maturity options.

To motivate our methodology, we first demonstrate that significantly less biased estimates can
be obtained if the precision of the early exercise boundary is improved upon by simply averaging
it over several independently repeated simulations. Next, we show that by averaging at each step,
and therefore obtaining a less noisy estimate of the early exercise strategy, less errors are propagated
backwards through the algorithm. Our method is based on the simple observation that if one uses
the average of the approximated early exercise strategies instead of, say, the I = 100 individually
determined strategies, the estimated prices are much closer to the benchmark prices. Our proposed
method exploits and leverages this observation to the fullest by averaging at each step in the backwards
induction algorithm instead of only after having gone through all the steps of the backward induction
algorithm. We refer to our method as a bootstrapping approach because of the similarities it has with
how the term structure of interest rates is bootstrapped and the way bootstrapping is used for inference
in regression models. As a result of the bootstrapping approach, the final bias of the estimated price is
almost completely eliminated.

We compare the results from our bootstrapping approach to the regular method of
Longstaff and Schwartz (2001) and show that our proposed method works extremely well across
various levels of moneyness, maturity, and volatility. Moreover, compared to the regular LSM
method, the bootstrapping method is much less sensitive to the choice of polynomial order used
in the cross-sectional regressions and to the number of paths used in the Monte Carlo simulation.
When a reasonable order, say M = 9, is used in the regressions and when a standard number of
paths, say N = 100,000, is used in the simulation, our proposed method essentially provides unbiased
price estimates. We also demonstrate that the technique generalizes straightforwardly to multi-asset
options with various payoffs. To illustrate this, we price arithmetic and geometric average options and
options on the maximum and minimum of three assets. For all four payoff functions, the results hold,
and the bootstrapped method always performs the best and delivers price estimates with negligible
or very small bias for reasonable choices of the number of regressors and paths used in the Monte
Carlo simulation.

Our method successfully corrects the bias even in very small samples and allows for using, e.g.,
N = 10,000 paths or less to determine the early exercise boundary. Our detailed results also show that
one does not need hundreds of repeated simulations to obtain a good estimate of the early exercise
boundary, but a much lower number, e.g., I = 10 suffices. Determining the early exercise boundary
is the most computationally complex part of the algorithm since this involves performing several
cross-sectional regressions, and our method therefore offers significant computational speedups.
For example, one can run I = 10 initial simulations with N = 10,000 paths to estimate the optimal
early exercise boundary. One can then use N = 1,000,000 paths for pricing, whereby an estimate with
very low bias and low variance is obtained. Note that in this setup, obtaining the initial estimate of the
optimal early exercise boundary takes no more time than running the standard LSM method once,
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and since it is straightforward to parallelize our method, it could run in a fraction of this time on
multicore processors or modern computer clusters.

It should be noted that several papers have proposed alternative refinements to this type of simulation
method. In particular, it has been suggested to use well known variance reduction techniques like
antithetic simulation, control variates, importance sampling, as well as initial dispersion together with
the LSM method (see, among others: (Juneja and Kalra 2009; Lemieux and La 2005; Rasmussen 2005)).
However, there are very few alternative suggestions for how to reduce the bias of the simulated estimates
of American option prices in general and of the LSM method in particular. One potentially interesting
method, which could be combined with our method, is that of Kan et al. (2009), although their application
was to the value function iteration method of, e.g., Carriere (1996) and Tsitsiklis and Van Roy (2001).
Our proposed method could also be used together with the inequality constrained least-squares method
suggested in Létourneau and Stentoft (2014) or the method that corrects for heteroskedasticity in the
cross-sectional regression proposed by Fabozzi et al. (2017).

Finally, our current applications are to standard financial options, but our results have important
implications for other applications of simulation based pricing as well. One particularly important
and challenging area in which the LSM method has been used is the field of real option valuation.
For example, the work in Gamba and Fusari (2009) proposed a general valuation approach for capital
budgeting decision involving modularization, and the work in Kang and Létourneau (2016) studied
the investment decision and choice between coal and natural gas power plants under political risk
with options to turn production on or off, while the work in Power et al. (2015) studied the valuation
and timing of complex infrastructure projects. In all these cases, the regular LSM method was used
to approximate complex decision problems in settings with multiple risk factors with complicated
dynamics and for problems where the payoff function is non-standard and “exotic”. We conjecture that
our proposed bootstrapping method will allow more efficient determination of the optimal controls
and more precise valuation of these assets.

The remainder of the paper is structured as follows: Section 2 describes the discrete time framework
used for valuation, introduces the least-squares Monte Carlo method of Longstaff and Schwartz (2001),
and demonstrates how our proposed bootstrapping method can be implemented and improves
estimation of the early exercise boundary. Section 3 presents an extensive numerical analysis of
the performance of our proposed method demonstrating its robustness to changes in the simulation
setup, to different option characteristics, and its applicability to higher dimensional problems. Section 4
provides a discussion of the potential benefits of separating the estimation of the early exercise boundary
from the pricing and demonstrates that our method can be implemented in a very efficient way that
works well in empirically relevant settings. Section 5 concludes.

2. Framework

The first step in implementing a numerical algorithm to price early exercise options is to assume
that time can be discretized. We specify J exercise points as t0 = 0 < t1 ≤ t2 ≤ . . . ≤ tJ = T, with
t0 and T denoting the current time and maturity of the option, respectively. Thus, we are essentially
approximating the American option by the so-called Bermudan option. The American option price is
obtained in the limit by increasing the number of exercise points, J; see also Bouchard and Warin (2012)
for a formal justification of this approach.3 We assume a complete probability space (Ω,F ,Q) equipped
with a discrete filtration

(
F
(
tj
))J

j=0 and a unique pricing measure corresponding to the probability
measure Q. The derivative’s value depends on one or more underlying assets modeled using a
Markovian process, with state variables

(
X
(
tj
))J

j=0 adapted to the filtration. We denote by
(
Z
(
tj
))J

j=0
an adapted discounted payoff process for the derivative satisfying Z

(
tj
)
= π

(
X
(
tj
)

, tj
)

for a suitable

3 We do not stress any further this difference as the literature on pricing early exercise options using simulation generally
refers to these as American style options; see, e.g., Longstaff and Schwartz (2001).
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function π (·, ·) assumed to be square integrable. This notation is sufficiently general to allow for
non-constant interest rates through the appropriate definition of the state variables X and the payoff
function π (see, e.g., Glasserman 2004). Following, e.g., Karatzas (1988) and Duffie (1996), in the
absence of arbitrage, we can specify the American option price as:

P (X (0) = x) = max
τ(t1)∈T (t1)

E [Z (τ) |X (0) = x] , (1)

where T
(
tj
)

denotes the set of all stopping times with values in {tj, . . . , tJ}. Thus, we explicitly assume
that the option cannot be exercised at time t = 0.

The problem of calculating the option price in (1) with J > 1 is referred to as a discrete time
optimal stopping time problem and typically solved using the dynamic programming principle.
Intuitively this procedure can be motivated by considering the choice faced by the option holder at
time tj. The optimal choice will be to exercise immediately if the value of this is positive and larger than
the expected payoff from holding the option until the next period and behaving optimally onwards.
Let V

(
X
(
tj
))

denote the value of the option for state variables X at a time tj prior to expiration and
define F

(
X
(
tj
))

≡ E[Z
(
τ
(
tj+1
))

|X
(
tj
)
] as the expected conditional payoff, where τ

(
tj+1
)

is the
optimal stopping time. It then follows that:

V
(
X
(
tj
))

= max
(
Z
(
tj
)

, F
(
X
(
tj
)))

, (2)

and the optimal stopping time can be derived iteratively as:⎧⎨⎩τ
(
tJ
)
= T

τ
(
tj
)
= tj1{Z(tj)≥F(X(tj))} + τ

(
tj+1
)

1{Z(tj)<F(X(tj))}, 1 < j ≤ J − 1.
(3)

Based on this stopping time, the value of the option in (1) can be calculated as:

P (X (0) = x) = E [Z (τ (t1)) |X (0) = x] . (4)

The backward induction theorem of Chow et al. (1971) (Theorem 3.2) provides the theoretical
foundation for the algorithm in (3) and establishes the optimality of the derived stopping time
and the resulting price estimate in (4).

2.1. Simulation and Regression Methods

The idea behind using simulation for option pricing is quite simple and involves estimating
expected values and, therefore, option prices by an average of a number of random draws.
However, when the option is American, one needs to determine simultaneously the optimal early
exercise strategy, and this complicates matters. In particular, it is generally not possible to implement
the exact algorithm in (3) because the conditional expectations are unknown, and therefore, the
price estimate in (4) is infeasible. Instead, an approximate algorithm is needed. Because conditional
expectations can be represented as a countable linear combination of basis functions, we may write
F
(
X
(
tj
))

= ∑∞
m=0 φm

(
X
(
tj
))

cm
(
tj
)
, where {φm (·)}∞

m=0 form a basis.4 To make this operational we
further assume that the conditional expectation function can be well approximated with the first

4 This is justified when approximating elements of the L2 space of square integrable functions relative to some measure. Since
L2 is a Hilbert space, it has a countable orthonormal basis (see, e.g., Royden 1988).
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M + 1 terms such that F
(
X
(
tj
))

≈ FM
(
X
(
tj
))

= ∑M
m=0 φm

(
X
(
tj
))

cm
(
tj
)

and that we can obtain an
estimate of this function by:

F̂N
M
(
X
(
tj
))

=
M

∑
m=0

φm
(
X
(
tj
))

ĉN
m
(
tj
)

, (5)

where the coefficients ĉN
m
(
tj
)

are approximated or estimated using N ≥ M simulated paths.
For example, in the Least-Squares Monte Carlo (LSM) method of Longstaff and Schwartz (2001),
these are determined from a cross-sectional regression of the discounted future path-wise payoff on
transformations of the state variables.

Based on the estimate in (5), we can derive an estimate of the optimal stopping time as:⎧⎨⎩τ̂N
M
(
tJ
)
= T

τ̂N
M
(
tj
)
= tj1{Z(tj)≥F̂N

M(X(tj))} + τ̂N
M1{Z(tj)<F̂N

M(X(tj))}, 1 < j ≤ J − 1.
(6)

From the algorithm in (6), a natural estimate of the option value in (4) is given by:

P̂N
M (X (0) = x) = E[Z

(
τ̂N

M (1)
)
|X (0) = x]. (7)

In the special case when all the paths are started at the current values of the state variables, i.e.,
X (0) = x, the conditional expectation in (7) can be estimated by the sample average given by:

P̂N
M (X (0) = x) =

1
N

N

∑
n=1

Z
(

n, τ̂N
M (1, n)

)
, (8)

where Z
(
n, τ̂N

M (1, n)
)

is the payoff from exercising the option at the estimated optimal stopping
time τ̂N

M (1, n) determined for path n according to (6). Convergence of this type of estimate has
been analyzed in detail in the existing literature. The first step in doing so is to establish the
convergence of the estimated approximate conditional expectation function, which is done in, e.g., the
following lemma.

Lemma 1 (Adapted from Theorem 2 of Stentoft 2004b). Under some regularity and integrability
assumptions on the conditional expectation function, F (see Stentoft (2004b) for details), if M = M (N)

is increasing in N such that M → ∞ and M3/N → 0, then F̂N
M
(
X
(
tj
))

converges to F
(
X
(
tj
))

in probability
for j = 1, . . . , J.

Proof. See Stentoft (2004b).

The result in Lemma 1 can now be combined with Proposition 1 of Stentoft (2004b) to demonstrate
that when all the simulated paths are started at the current values of the state variable, i.e., X (0) = x,
then the estimate in (8) converges to the true price, which establishes the convergence of the LSM
method in a general multi-period setting.5 Moreover, this type of algorithm has nice properties, and
the work in Stentoft (2014) documented that it is the most efficient method when compared to, e.g.,
the value function iteration method of Carriere (1996) or Tsitsiklis and Van Roy (2001). When paths
are started at initially dispersed values, the LSM method still allows one to estimate the optimal early
exercise boundary, and Lemma 1 continues to hold. However, when it comes to pricing the option

5 One of the important assumptions in Stentoft (2004b) is that the support is bounded. In Glasserman and Yu (2002),
convergence was studied in the unbounded case. This complicates the analysis, and therefore, they limited their attention
to the normal and lognormal cases. See also Gerhold (2011) for generalizations of the results to other processes and
Belomestny (2011) for a proof using nonparametric local polynomial regressions.
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with initially dispersed paths, this is more complicated, and an initial regression is needed at time
t = 0; see, e.g., Létourneau and Stentoft (2019) for a proof that this method converges.

2.2. Regression and Optimal Early Exercise

It is explicit in Equation (3) that the optimal early exercise region is determined by the comparison
of Z

(
tj
)

and F
(
X
(
tj
))

or in the case when the conditional expectations are approximated by the
comparison of Z

(
tj
)

and F̂N
M
(
X
(
tj
))

. In particular, we can define the true early exercise region
implicitly as the value B

(
tj
)

that solves:

Z
(
tj
)
> F

(
B
(
tj
))

. (9)

Similarly the estimated early exercise region is defined as the value B̂N
M
(
tj
)

that solves:

Z
(
tj
)
> F̂N

M

(
B̂N

M
(
tj
))

. (10)

In the case where there is only one state variable, the exercise region at an exercise date is
determined by a single point of intersection between the payoff function and conditional expectation.
The work in Rasmussen 2005 proposed a Newton–Raphson procedure to find the exercise boundary.
In our application, we find this exercise boundary by subtracting the exercise value from the
approximated conditional expectation and determining the roots of the resulting polynomial. Note that
with an approximated conditional approximation, multiple roots may exist. If this happens, the largest
root below the strike is kept as the exercise boundary.

While it is simple to find and represent the optimal early exercise boundary in the plain vanilla
single option case, for more complex options, this might not be the case. For example, when there are
two state variables, the conditional expectations and payoff functions are planes in a three-dimensional
space. Hence, the intersection is a curve in a three-dimensional space, and it becomes much more
difficult to represent the intersection.6 Moreover, while finding polynomial roots is easy in one
dimension, this approach does not generalize easily to more complex situations. On the other hand,
comparing the payoff function to the approximated conditional expectation is straightforward in
multiple dimensions. Since the conditional expectations are completely described by the estimated
coefficients ĉN

m
(
tj
)

from the cross-sectional regression, in practical implementations, it is therefore
much easier to store these than it is to attempt to characterize and store a representation of the
exercise region.

It follows from Lemma 1 above that as M and N tend to infinity, the estimated early exercise
boundary will converge to the true early exercise boundary. For finite choices, however, B̂N

M
(
tj
)

is only
an estimate of the true early exercise boundary, and the “quality” of this estimate will depend on the
choice of M and N in a particular application. The fact that the early exercise boundary is estimated
leads to two types of biases. First, when using a given estimated frontier, the option may be exercised
at times when it should not have been or not exercised at times when it should have been. In both
cases, this suboptimal early exercise will result in a low biased price estimate.7 Second, when using
the same set of simulated paths to the approximation of the exercise boundary and to price the option,
what we call in-sample pricing, the method suffers from a high bias from over-fitting the continuation
value to the current sample of simulated paths. As explained first by Broadie and Glasserman (1997),
the practice of using the same paths for the exercise decision and the payoff calculation introduces
a positive correlation between the exercise decision and the future payoffs, essentially resulting in

6 For exotic options like stair-step options, there can be multiple intersections and multiple exercise regions.
7 Exercising when you should and not exercising when you should not have, on the other hand, no effect.
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a foresight bias. The standard LSM estimator has both the low and the high bias, and therefore, the
overall bias is difficult to sign.

2.3. Bootstrapping the Early Exercise Boundary

Although simulation and regression methods like the LSM method outlined above determine
sequentially a number of conditional expectations as can be seen from Equation (6), these are used
only to determine if the option at a given time should be exercised along a given path. As such, the
conditional expectations are used as a convenient way to summarize, by subtracting the exercise
value, the early exercise region and hence the path-wise optimal stopping time, which uniquely
determines the option value. In Figure 1a, we plot in light gray I = 100 such estimated early exercise
boundaries for a put option. As the figure shows, these are close to the true optimal early exercise
boundary with the dotted black line although quite noisy, and this particularly so at the first steps
in the simulation. Figure 1a however also shows that taking averages of the I = 100 conditional
expectation approximations at any time and using that to back out the optimal early exercise boundary
leads to a much smoother frontier shown with the dotted blue line and, supposedly, a better behaved
estimated price.

Figure 1. Individual, average, and bootstrapped early exercise boundaries. This figure shows I = 100
individually estimated early exercise boundaries using N = 100,000 paths of simulated data with M = 9
regressors and a constant term in the cross-sectional regressions. The right hand plot uses the proposed
Initial State Dispersion (ISD) method from Rasmussen (2005). The option has a strike price of K = 40,
a maturity of T = 1 year, and J = 50 early exercise points per year. The initial stock price is fixed at
S(0) = 40; the volatility is σ = 20%; and the interest rate is r = 6%. The dotted blue line shows the early
exercise boundary estimated from the average of the I = 100 continuation value approximations at each
time and the red line the frontier backed out from our bootstrapped recursively averaged continuation
values. The dashed black line shows the true early exercise boundary estimated with a binomial model
with 50,000 steps.

Our proposed bootstrapping technique averages at each step in the backwards induction
algorithm instead of only after having gone through all the steps in the backward induction
algorithm. For example, at time t = T − 1, we estimate I = 100 independent conditional expectation
approximations, i.e., polynomials of order M = 9 and a constant term in the cross-sectional regressions.
Before proceeding backwards, we take the average of these approximations and use this same average
across the I = 100 independent simulations to determine if the option along a given path in a given
simulation at time t = T − 1 should be exercised or not. We then simply proceed, in a similar manner,
backwards in time, always averaging at each early exercise point to time t = 0. In Figure 1a, we show
in red the early exercise boundary backed out from these average conditional expectations at each

39



J. Risk Financial Manag. 2019, 12, 190

early exercise time. This estimated optimal early exercise boundary is for the most part extremely close
to the true optimal early exercise boundary, and estimated option prices obtained with this estimate
are therefore expected to be very close to the true option price.

In Table 1, we report the corresponding price estimates using both In-Sample (IS) pricing, i.e.,
when the same paths are used to determine the optimal early exercise boundary and for pricing,
and Out-of-Sample (OS) pricing, where new simulated stock prices are used for pricing. A benefit of
using OS pricing in the LSM method is that the price estimate is guaranteed to have a low expected
bias because of the sub-optimality of the estimated optimal early exercise boundary. The first line in
the table reports the relevant benchmark values for both the IS and OS method generated by applying
the true early exercise boundary estimated from the binomial model with 50,000 steps to the relevant
simulated paths. In this case, the IS and OS simply represent two different sets of paths. The table
shows that as expected, the regular LSM method provides a high biased estimate when using IS and a
low biased estimate when using OS, and these differences are in fact significant at standard levels.8

The difference between the two estimates is about half a cent, though slightly less when factoring in
the Monte Carlo error as evidenced by the difference of 0.0013 between the benchmark price using the
IS and OS sample. For the methods based on averages, the table shows that the estimated prices, both
IS and OS, are much closer to the benchmark values and insignificantly different. This is particularly
so for the recursive averages based on our bootstrapping method, which are spot on for the IS method
and off by only a hundredth of a cent for the OS method. This indicates that for this setup, we have
essentially obtained the true optimal early exercise strategy with our proposed bootstrapping method.

Table 1. Option prices using In-Sample (IS) and Out-of-Sample (OS) methods. LSM, Least-Squares
Monte Carlo.

Using IS Method Using OS Method Difference

Benchmark Boundary 2.3150 (0.0084) 2.3137 (0.0080) 0.0013
Individual LSM 2.3170 (0.0087) 2.3119 (0.0079) 0.0051
Regular Average 2.3148 (0.0085) 2.3136 (0.0079) 0.0013
Recursive Average 2.3150 (0.0084) 2.3138 (0.0080) 0.0012

This table shows the estimated prices and standard deviations using I = 100 individually estimated early
exercise boundaries using N = 100,000 paths of simulated data with M = 9 regressors and a constant term in
the cross-sectional regressions. The option has a strike price of K = 40, a maturity of T = 1 year, and J = 50
early exercise points per year. The initial stock price is fixed at S(0) = 40; the volatility is σ = 20%; and the
interest rate is r = 6%. The binomial model estimate obtained with 50,000 steps is 2.3141. The benchmark
boundary denotes the results from a method in which the true early exercise boundary estimated from the
binomial model is used in the Monte Carlo simulation. Individual LSM denotes the regular method where
the average of the I = 100 individual simulations are used. Regular average denotes the method where
the average of the individually estimated optimal early exercise strategy is used, and recursive average
denotes the method where the bootstrapped estimated optimal early exercise strategy is used. By comparing
these results to the values from the benchmark boundary, the error coming from the Monte Carlo simulation
is eliminated.

The very jagged paths early on in the simulations in Figure 1a are due in part to there being very
few paths that are deep in the money, which makes it difficult to estimate the value for which exercise
is optimal. This can be corrected or improved upon by using Initial State Dispersion (ISD) as suggested
by, e.g., Rasmussen (2005). The resulting estimated early exercise boundaries are shown in Figure 1b.
Compared to Figure 1a, we see that using an ISD helps quite a bit for the individual early exercise
boundaries, which are quite a bit less volatile up to the 25th early exercise points. However, while using
an ISD may help when estimating the individual optimal early exercise boundaries, comparing the
two figures clearly shows that bootstrapping helps much more.

8 The one-sided p-value for a test of zero bias when compared to the estimate obtained with the benchmark boundary is 4.9%
and 5.5% for the IS and OS prices, respectively.
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The method we propose is simple to implement and yields very good results with finite choices
of the number of regressors used in the simulation, the number of simulated paths, and the number of
repeated independent simulations. A natural next step is to ask about the asymptotic properties of
this algorithm. It is straightforward to show that our method provides asymptotically unbiased price
estimates, which we state in the following corollary.

Corollary 1. The bootstrapping method provides an asymptotically unbiased estimate of the option price for
any choice of I, i.e., the number of repeated independent simulations used, under the assumptions outlined in
Lemma 1.

Proof. This follows by applying Lemma 1 to each of the independent simulations and noting that since
the individual F̂N

M
(
X
(
tj
))

converge to F
(
X
(
tj
))

in probability for j = 1, . . . , J so does the average of
I such simulations.

3. Results

The previous section demonstrated how our bootstrapping method can be implemented and
shows that it leads to much more precise estimates of the optimal early exercise boundary and results
in estimated prices that are essentially unbiased for a benchmark option. In this section, we test the
robustness of these findings along several dimensions. First, we show that our results are robust
across choices in the simulation setup for the number of regressors and the number of paths used and
across option characteristics like the moneyness and maturity of the option and the volatility of the
underlying asset. To illustrate this, we consider first options on a single stock in a simple model with
Black–Scholes–Merton dynamics because this allows us to characterize the true optimal early exercise
boundary, which can be used to obtain Monte Carlo benchmark values. Finally, we show that our
results generalize to the case with multiple underlying assets. We consider four different payoffs, and
though the pricing performance varies across payoffs and depends on the order of the polynomial
approximation, our bootstrapped method performs the best across different approximations.9

3.1. Robustness to the Simulation Setup

In Section 2.3, we demonstrated how to implement the bootstrapping method for a given number
of regressors, M = 9, and number of simulated paths, N = 100,000. However, both M and N are
choice parameters in the simulation setup that need to be picked when implementing the method.
Thus, the first thing we analyze is the robustness of our proposed method to the choice of the number
of simulated paths, N, used for determining the estimated optimal early exercise boundary and
subsequently for pricing in case the OS method is used. The option we consider here has a strike price
of K = 40, a maturity of T = 1 year, and J = 50 early exercise points per year. The initial stock price is
fixed at S(0) = 40; the volatility is σ = 20%; and the interest rate is r = 6%. For now, we continue to
use a polynomial of order M = 9 in the cross-sectional regressions.

Figure 2 compares the results from using the three different methods to determine the estimated
optimal early exercise boundary: the regular LSM method, the regular average of the individual LSM
boundaries, and the recursively bootstrapped boundaries, as a function of the number of simulated
paths, N. The red lines represent the average price over I = 100 independent repetitions of the LSM
method, each of which uses N paths. The line above the benchmark reference uses the IS method,
whereas the line below uses the OS method. To eliminate the sampling bias from using a finite number
of paths in the Monte Carlo simulation, we compare the price estimates to what would be obtained
using the true early exercise boundary backed out from a binomial model with 50,000 steps on the
two sets of simulated paths. The green lines use the regular average over the I = 100 individual LSM

9 All simulations were conducted using MATLAB.
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repetitions using N paths, and the blue lines use the recursive average over I = 100 individual LSM
repetitions using N paths.

Figure 2. Convergence of price estimates as a function of sample size, N. This figure shows the price
estimates from I = 100 simulations with different numbers of paths N. Individually, early exercise
boundaries are estimated with M = 9 regressors and a constant term in the cross-sectional regressions.
The option has a strike price of K = 40, a maturity of T = 1 year, and J = 50 early exercise points
per year. The initial stock price is fixed at S(0) = 40; the volatility is σ = 20%; and the interest rate
is r = 6%. The red lines report the results for the standard LSM method. The green lines report the
results when the early exercise boundary is estimated from the average of the I = 100 continuation
value approximations. The blue lines report the results when the early exercise boundary is backed out
from our bootstrapped continuation values. The horizontal black line shows the result when the true
early exercise boundary estimated with a binomial model with 50,000 steps is used.

First, the figure clearly shows that the regular IS LSM price can be strongly biased if the number of
paths is too low. This is due to using the same paths to determine the individual optimal early exercise
boundary and for calculating payoffs, which as we discussed earlier, leads to a high bias in the estimated
option price. The OS prices, i.e., from the method that uses a new set of paths for pricing, are guaranteed
to be low biased as shown in the figure. As the number of paths used in the individual simulation
increases, the IS and OS results converge to a value that is (slightly) lower than the benchmark value,
but corresponds to the true approximate value obtained when the approximation FM

(
X
(
tj
))

based on a
polynomial of order M = 9 of the true conditional expectation F

(
X
(
tj
))

is used.
Next, the figure shows that using the regular average method over the I = 100 repetitions

improves on the results when a low number of paths is used. This is the situation where the early
exercise boundary is estimated with the most noise, and averaging helps counter that somewhat.
Note that the IS prices for this method are also low biased because of the averaging. As expected, both
price estimates converge to the true approximated price as the number of paths used increases and in
the limit, which in our setting corresponds to using N = 512,000 paths; averaging has very little effect
on the estimated prices.

The final and most interesting thing the figure shows is that using the recursive average
dramatically improves on the results across all values of N. In fact, Figure 2 essentially shows that the
recursive method is virtually unbiased, even when using as little as N = 1000 paths to approximate the
conditional expectations. Using only N = 1000 paths for OS pricing with the estimated early exercise
boundary also leads to unbiased estimates, although both of these estimates will naturally have quite
large variances.

In addition to N being a choice parameter for the LSM method, so is M. In Figure 3, we plot
equivalent results to those in Figure 2, but using M = 5 and M = 15, respectively. The first thing to
notice is that the two plots in Figure 3 show a pattern that is very similar to that obtained when using
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M = 9 in Figure 2. For example, the LSM method is high biased when using IS pricing and low biased
when using OS pricing with M = 5, as well as with M = 15. Figure 3, however, does indicate that
these biases are larger for a given value of N when M = 15 than when M = 5. This is expected since
the degree of overfitting increases with M. This also affects the method that averages the optimal early
exercise boundaries somewhat, although our bootstrapping method is much less effected. In particular,
our proposed method works very well for both M = 5 and M = 15, even when a low number of
simulated paths, N, is used in the simulation.

Figure 3. Convergence of price estimates for other values of regressors, M. This figure shows the price
estimates from I = 100 simulations with different numbers of paths N. Individually, early exercise
boundaries are estimated with M = 5 and M = 15, respectively, regressors„ and a constant term in the
cross-sectional regressions. The option has a strike price of K = 40, a maturity of T = 1 year, and J = 50
early exercise points per year. The initial stock price is fixed at S(0) = 40; the volatility is σ = 20%;
and the interest rate is r = 6%. The red lines report the results for the standard LSM method. The green
lines report the results when the early exercise boundary is estimated from the average of the I = 100
continuation value approximations. The blue lines report the results when the early exercise boundary
is backed out from our bootstrapped continuation values. The horizontal black line shows the result
when the true early exercise boundary estimated with a binomial model with 50,000 steps is used.

3.2. Robustness across Option Characteristics

We now demonstrate that our previous findings are robust to considering options with different
moneyness, maturity, and volatility of the underlying asset. To examine this, we consider additional
options with strike prices of K = 36 and K = 44, maturities of T = 0.5 and T = 2 years, and volatilities
of the underlying of σ = 10% and σ = 40%. Again, we assume that the options have J = 50 early
exercise points per year, such that the option with T = 0.5 years maturity has 25 early exercise points
and the option with T = 2 years maturity has 100 early exercise points, respectively. We keep the
number of regressors fixed at M = 9, but plot the resulting price estimates as a function of the number
of simulated paths, N.

Figure 4 shows the performance of the three methods for an Out of The Money (OTM) option
with K = 36 in the left hand plot and for an In The Money (ITM) option with K = 44 in the right hand
plot. The first thing to notice is that the two plots in Figure 4 show a pattern that is very similar to that
obtained for the At The Money (ATM) option with K = 40 in Figure 2. Figure 4 does indicate, though,
that the biases in the LSM method are larger for a given value of N when pricing an OTM option than
when pricing an ITM option. This is expected since the degree of overfitting increases as we go out
of the money where less paths are used in the cross-sectional regressions. However, our proposed
method continues to work very well, and much better than the regular LSM method, for both OTM
and ITM options even when a low number of simulated paths, N, is used in the simulation.
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Figure 4. Convergence of price estimates for other values of the strike price, K. This figure shows the
price estimates from I = 100 simulations with different numbers of paths N. Individually, early exercise
boundaries are estimated with M = 9 regressors and a constant term in the cross-sectional regressions.
The option has a strike price of K = 36 and K = 44, respectively, a maturity of T = 1 year, and J = 50
early exercise points per year. The initial stock price is fixed at S(0) = 40; the volatility is σ = 20%; and
the interest rate is r = 6%. The red lines report the results for the standard LSM method. The green
lines report the results when the early exercise boundary is estimated from the average of the I = 100
continuation value approximations. The blue lines report the results when the early exercise boundary
is backed out from our bootstrapped continuation values. The horizontal black line shows the result
when the true early exercise boundary estimated with a binomial model with 50,000 steps is used.

Figure 5 shows the performance of the three methods for a Short Maturity (ST) option with
T = 0.5 years to maturity and 25 early exercise points in the left hand plot and for a Long Maturity (LT)
option with T = 2 years to maturity and 100 early exercise points in the right hand plot. The first thing
to notice is again that the two plots in Figure 5 show a pattern that is very similar to that obtained for
the option with a maturity of T = 1 year in Figure 2. Figure 5 does indicate, though, that the biases in
the LSM method are larger for a given value of N when the maturity of the option increases. This is
to be expected since errors in the approximation of the conditional expectations accumulate in the
backward algorithm, and we thus expect larger accumulated errors for longer maturities. However,
our proposed method continues to work very well, and much better than the regular LSM method, for
both ST and LT options even when a low number of simulated paths, N, is used in the simulation.

Figure 6 shows the performance of the three methods for an option on an asset with a low volatility
of σ = 10% in the left hand plot and for an option on an asset with a high volatility of σ = 40% in the
right hand plot. Again, the first thing to notice is that the two plots in Figure 6 show a pattern that
is very similar to that obtained for the option on an underlying asset with a volatility of σ = 20% in
Figure 2. Figure 6 does indicate, though, that the biases in the LSM method are larger for a given value
of N when the volatility of the underlying asset increases. However, our proposed method continues
to work very well, and much better than the regular LSM method, for both options on low and high
volatility assets even when a low number of simulated paths, N, is used in the simulation.

3.3. Robustness to the Dimensionality of the Problem

We now demonstrate that our previous findings for options on a single asset are robust when
increasing the number of underlying assets. To examine this, we consider options on three underlying
assets with payoffs on the arithmetic average, the geometric average, the maximum, and the minimum
of the underlying assets. We consider options that are at the money with K = 40 and a maturity of
T = 0.5 years, and have J = 25 early exercises in total. The underlying asset prices are Si(0) = 40;
the volatilities are σi = 40%, for i = 1, 2, 3; the correlation between all assets is ρ = 0.5; and the interest
rate is r = 6%. Benchmark prices are obtained with a binomial model with 2000 steps a year. Since it is
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difficult to characterize explicitly the optimal early exercise boundary for these options, we compare to
the true price, and we therefore cannot take the Monte Carlo error into consideration.

Figure 5. Convergence of price estimates for other maturities, T. This figure shows the price estimates
from I = 100 simulations with different numbers of paths N. Individually, early exercise boundaries are
estimated with M = 5 and M = 15 regressors and a constant term in the cross-sectional regressions,
respectively. The option has a strike price of K = 40, a maturity of T = 0.5 and T = 2 years, respectively,
and J = 50 early exercise points per year. The initial stock price is fixed at S(0) = 40; the volatility is
σ = 20%; and the interest rate is r = 6%. The red lines report the results for the standard LSM method.
The green lines report the results when the early exercise boundary is estimated from the average of the
I = 100 continuation value approximations. The blue lines report the results when the early exercise
boundary is backed out from our bootstrapped continuation values. The horizontal black line shows the
result when the true early exercise boundary estimated with a binomial model with 50,000 steps is used.

Figure 6. Convergence of price estimates for other values of the volatility, σ. This figure shows the
price estimates from I = 100 simulations with different numbers of paths N. Individually early exercise
boundaries are estimated with M = 9 regressors and a constant term in the cross-sectional regressions.
The option has a strike price of K = 40; a maturity of T = 1 year; and J = 50 early exercise points per
year. The initial stock price is fixed at S(0) = 40, the volatility is σ = 10% and σ = 40%, respectively,
and the interest rate is r = 6%. The red lines report the results for the standard LSM method. The green
lines report the results when the early exercise boundary is estimated from the average of the I = 100
continuation value approximations. The blue lines report the results when the early exercise boundary
is backed out from our bootstrapped continuation values. The horizontal black line shows the result
when the true early exercise boundary estimated with a binomial model with 50,000 steps is used.

Figure 7 shows the price estimates for options with the four different payoff across the number of
paths used in the simulation, N. In all cases, the complete set of polynomials of order M = 9 and a
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constant term are used as regressors in the cross-sectional regressions. The first thing to note is that
in all cases the algorithms converge, though for options on the maximum and minimum, this is to a
somewhat low biased estimate. This makes sense since the conditional expectations are more difficult
to approximate for these options; see also Stentoft (2004a). More importantly, though, for all the
payoffs, our proposed bootstrapping method delivers the least biased price estimates. Thus, the results
clearly show that our proposed method is robust to increases in the dimension of the pricing problem.

Figure 7. Convergence of price estimates for options on three assets. This figure shows the price
estimates from I = 100 simulations with different numbers of paths N. Individually, early exercise
boundaries are estimated with the complete set of polynomials of order M = 9 and a constant term
as regressors in the cross-sectional regressions. The option has a strike price of K = 40, a maturity of
T = 0.5 year, and J = 50 early exercise points per year. The initial stock price is fixed at S(0) = 40;
the volatility is σ = 40%; and the interest rate is r = 6%. The red lines report the results for the standard
LSM method. The green lines report the results when the early exercise boundary is estimated from
the average of the I = 100 continuation value approximations. The blue lines report the results when
the early exercise boundary is backed out from our bootstrapped continuation values. The horizontal
black line shows the benchmark price obtained with a binomial model with 2000 steps per year.

To demonstrate further our method’s robustness, Figure 8 shows the corresponding price estimates
when the maximum order of the complete polynomial is M = 15, in which case a total of 816 regressors
are used in the cross-sectional regressions. It is possible that by using other regressors, e.g., functions of
the maximum asset value, than the complete set of polynomials, better results could be obtained with
less regressors; however, for consistency and simplicity, we chose to stay with monomials as the basis.
The figure shows that when M is increased, the asymptotic bias, apparent when using a very large
number of simulated paths N, decreases, and this is particularly so for the maximum and minimum
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options. Note though that for all payoffs, our proposed bootstrapping method again continues to
perform the best and deliver price estimates with the lowest bias of all the methods reported.

Figure 8. Convergence of price estimates for options on three assets, M = 15. This figure shows
the price estimates from I = 100 simulations with different numbers of paths N. Individually, early
exercise boundaries are estimated with the complete set of polynomials of order M = 15 and a constant
term as regressors in the cross-sectional regressions. The option has a strike price of K = 40, a maturity
of T = 0.5 year, and J = 50 early exercise points per year. The initial stock price is fixed at S(0) = 40;
the volatility is σ = 40%; and the interest rate is r = 6%. The red lines report the results for the standard
LSM method. The green lines report the results when the early exercise boundary is estimated from
the average of the I = 100 continuation value approximations. The blue lines report the results when
the early exercise boundary is backed out from our bootstrapped continuation values. The horizontal
black line shows the benchmark price obtained with a binomial model with 2000 steps per year.

4. Discussion

The results in Section 3 were obtained by averaging over I = 100 repeated samples with the same
number of simulated paths, N, for both IS and OS pricing. In this section, we first demonstrate that it
is in fact not necessary to average over such a large number of repeated samples when bootstrapping
the optimal early exercise boundary. We also show that it is in fact not necessary to average over
independently repeated simulations with a large number of simulated paths in the bootstrapping
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method either.10 Finally, since the number of repeats, IIS, and the number of simulated paths, NIS,
used for IS pricing can be disassociated from the number of repeats, IOS, and number of simulated
paths, NOS, used for OS pricing, we propose to price options using our proposed bootstrapping method
with reasonably low values for IIS and NIS, since this is enough to obtain unbiased results, and large
values of, in particular, NOS, since this will deliver price estimates with a low variance.11

Figure 9 shows that the quality of the approximation of the estimated early exercise boundary
very quickly improves, reflected in decreasing absolute bias of the estimated price, as IIS and NIS
increase. In fact, if as little as IIS = 10 repeats and NIS = 10,000 simulated paths are used, the OS bias
is very small, and when IIS = 10 repeats and NIS = 50,000 simulated paths are used, it is essentially
eliminated. Note that estimating the optimal early exercise boundary with IIS = 10 repeats and NIS =

10,000 simulated paths can be done in roughly the same time as running the regular LSM method once
with N = 100,000, a number typically used.12

Figure 9. OS bias in the bootstrapping method This figure shows the out-of-sample bias obtained
using IOS = 100 and NOS = 100,000 paths when using early exercise boundaries determined with
different numbers of in sample repeats, IIS, and paths, NIS, using our proposed bootstrapping method
with a polynomial of order M = 9 and a constant term as regressors in the cross-sectional regressions.
The option has a strike price of K = 40, a maturity of T = 1 year, and J = 50 early exercise points
per year. The initial stock price is fixed at S(0) = 40; the volatility is σ = 20%; and the interest rate is
r = 6%.

To illustrate the efficiency of our method, we now report for all combinations of moneyness,
maturity, and volatility, a total of 27 options, the estimated prices from implementing our bootstrapping
method with IIS  IOS and NIS < NOS. Specifically, we set IIS = 10 and NIS = 50,000 and price
the options out of sample with IOS = 100 and NOS = 100,000, the standard choice in the literature.
Compared to the regular LSM method, the IS results can be calculated in a fraction of the time
(5% roughly) with our bootstrapping method. The results are reported in Table 2, which compares
the bootstrapped results to the results that would be obtained had the true optimal early exercise
boundaries been used.

10 Given the results in, e.g., Figure 2, this should come as no surprise.
11 Note that since the same approximations are used for all OS simulations, it does not matter if we simulate I = 100 times

with 100,000 paths or once with N = 10,000,000 paths.
12 Note that our proposed bootstrapping method is straightforward to implement on multiple cores, and more generally, it can

be implemented on clusters to take advantage of available parallel computing resources.
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Table 2. Option prices using bootstrapping.

Benchmark Boundary Recursive Average

K T σ Price St. Dev. Price St. Dev Difference

36 0.5 10% 0.0304 (0.0006) 0.0303 (0.0006) −0.0000
36 1 10% 0.0896 (0.0012) 0.0894 (0.0012) −0.0001
36 2 10% 0.1715 (0.0018) 0.1714 (0.0018) −0.0001
36 0.5 20% 0.4974 (0.0035) 0.4971 (0.0035) −0.0003
36 1 20% 0.9169 (0.0052) 0.9166 (0.0052) −0.0003
36 2 20% 1.4317 (0.0069) 1.4311 (0.0071) −0.0006
36 0.5 40% 2.1978 (0.0104) 2.1972 (0.0102) −0.0006
36 1 40% 3.4360 (0.0135) 3.4355 (0.0134) −0.0006
36 2 40% 4.9619 (0.0168) 4.9606 (0.0169) −0.0013
40 0.5 10% 0.7344 (0.0029) 0.7343 (0.0029) −0.0000
40 1 10% 0.8892 (0.0031) 0.8891 (0.0032) −0.0001
40 2 10% 1.0235 (0.0038) 1.0234 (0.0038) −0.0001
40 0.5 20% 1.7907 (0.0072) 1.7907 (0.0071) −0.0001
40 1 20% 2.3137 (0.0080) 2.3133 (0.0079) −0.0005
40 2 20% 2.8833 (0.0099) 2.8824 (0.0099) −0.0009
40 0.5 40% 3.9708 (0.0144) 3.9697 (0.0144) −0.0010
40 1 40% 5.3115 (0.0170) 5.3103 (0.0168) −0.0011
40 2 40% 6.9149 (0.0210) 6.9131 (0.0210) −0.0017
44 0.5 10% 3.9474 (0.0019) 3.9474 (0.0019) −0.0000
44 1 10% 3.9473 (0.0018) 3.9472 (0.0018) −0.0001
44 2 10% 3.9480 (0.0020) 3.9480 (0.0019) −0.0000
44 0.5 20% 4.3079 (0.0094) 4.3078 (0.0093) −0.0001
44 1 20% 4.6528 (0.0098) 4.6523 (0.0098) −0.0005
44 2 20% 5.0804 (0.0112) 5.0796 (0.0116) −0.0008
44 0.5 40% 6.3232 (0.0176) 6.3228 (0.0176) −0.0005
44 1 40% 7.6107 (0.0200) 7.6095 (0.0197) −0.0011
44 2 40% 9.1784 (0.0232) 9.1764 (0.0233) −0.0020

This table shows estimated prices and standard deviations using our proposed bootstrapping method.
The OS method is used with IOS = 100 and NOS = 100,000 with IS recursive averages calculated with IIS = 10
and NIS = 50,000 with M = 9 regressors, and a constant term in the cross-sectional regressions. The option
characteristics are given in the first 3 columns. In all cases, the initial stock price is fixed at S(0) = 40;
the options have J = 50 early exercise points per year; and the interest rate is r = 6%. The benchmark
boundary denotes the results from a method in which the true early exercise boundary estimated from the
binomial model with 50,000 steps is used in the Monte Carlo simulation. By comparing the results to the
values from the benchmark boundary, the error coming from the Monte Carlo simulation is eliminated.
The differences are shown in the last column.

Table 2 shows that all the estimated prices are low biased, which is expected since we are using
OS pricing. However, the absolute size of the bias is indeed very small, and in all cases, the bias is
statistically insignificant. Across the 27 options, the largest bias in absolute value is −0.0020, well below
a cent, and the average bias across the sample of options is −0.0005. Moreover, the table shows that
the standard deviations of our estimated prices are similar to what is obtained when applying the
benchmark frontier. Thus, when pricing this sample of diverse and empirically relevant options, our
bootstrapping method essentially yields unbiased price estimates that are as precise as if the true
optimal early exercise boundary had been used. If the regular LSM method had been used instead, the
corresponding biases, both the largest ones and the average across options, would have been much
larger and more volatile.13 Note that the option for which the bias is the largest is the long term in the
money option on a high volatility underlying asset. The results in Section 3 demonstrate that this is the
most challenging option to price with the regular LSM method, and in light of this, our bootstrapping
method performs remarkably well.

The constant volatility Gaussian models considered above may not be adequate for empirical
option pricing. Thus, to check the robustness of our results to more realistic alternatives, we now
consider models with time varying volatility of the GARCH type. The work in Duan (1995) was

13 These results are available from the authors upon request.
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among the first to show how to price options in a (Gaussian) GARCH model, and this framework has
since been widely used empirically. See Christoffersen et al. (2013) for a detailed survey of the use
of GARCH option pricing models. In the GARCH option pricing model, returns under the pricing
measure Q are given by:

Rt = r − 1
2

ht + εt, (11)

where εt | Ft−1 ∼ N (0, ht), with Ft denoting the information set at time t and where the conditional
variance, ht, follows a NGARCH process given by:

ht+1 = ω + βht + α
(

εt − (λ + γ)
√

ht

)
, (12)

where ω, β, α, and γ are parameters governing the dynamics under the physical measure P and λ is the
constant unit risk premium. The GARCH model is obtained when γ = 0, and the constant volatility
model amounts to setting all parameters except ω equal to zero.

Table 3 shows the results for three different volatility specifications and thus examines the robustness
of our results to using more general stochastic processes. The first thing to notice from the table is that
our proposed bootstrapping method generates price estimates with insignificant biases irrespective of
the dynamic model used. Thus, the table demonstrates that the excellent performance of our proposed
method does not depend on the complexity of the dynamics. Using the ordinary LSM method, however,
leads to significantly biased price estimates, and this is particularly so when the conditional volatility
follows the more complicated NGARCH process. Our proposed method, on the other hand, continues
to deliver statistically insignificant price estimates when more complicated and empirically relevant
dynamics are used, and the estimates are much less biased than with the ordinary LSM method.

Table 3. Option prices with time varying volatility.

Panel A: Constant Volatility Model

Individual LSM Recursive Average

K Price St. Dev. Bias T-stat Price St. Dev. Bias T-stat

36 0.4983 (0.0036) −0.0011 −2.8281 0.4990 (0.0036) −0.0004 −1.0196
40 1.7936 (0.0068) −0.0021 −2.9162 1.7945 (0.0066) −0.0012 −1.6947
44 4.3158 (0.0075) −0.0018 −2.2127 4.3171 (0.0073) −0.0005 −0.6237

Panel B: GARCH Model

Individual LSM Recursive Average

K Price St. Dev. Bias T-stat Price St. Dev. Bias T-stat

36 0.5060 (0.0037) −0.0021 −5.4783 0.5076 (0.0037) −0.0005 −1.3202
40 1.7725 (0.0068) −0.0031 −4.3681 1.7747 (0.0069) −0.0009 −1.2259
44 4.2844 (0.0074) −0.0030 −3.7376 4.2873 (0.0074) −0.0001 −0.1330

Panel C: NGARCH model

Individual LSM Recursive Average

K Price St. Dev. Bias T-stat Price St. Dev. Bias T-stat

36 0.5822 (0.0045) −0.0026 −5.4823 0.5842 (0.0044) −0.0005 −1.1326
40 1.7431 (0.0072) −0.0035 −4.6303 1.7454 (0.0071) −0.0012 −1.5857
44 4.1799 (0.0072) −0.0036 −4.7237 4.1826 (0.0072) −0.0010 −1.2543

This table shows estimated prices and standard deviations using the individual LSM method and our proposed
bootstrapping method for models with time varying volatility of the GARCH type. The OS method is used
with IOS = 100 and NOS = 100,000 with the complete set of polynomials of order MS = 5 and MV = 3
in the stock price and the volatility, respectively, in the cross-sectional regressions. The individual LSM
uses the same numbers in the IS method, whereas the recursive averages are obtained with IIS = 10 and
NIS = 50, 000. The option strike prices are given in the first column, and all options have a maturity of
T = 0.5 year and J = 252 early exercise points per year. The initial stock price is fixed at S(0) = 40; the
volatility is σ = 20%; and the interest rate is r = 6%. The following parameters were used: β = 0.92,
α = 0.05, γ = 0.5, and λ = 0.1, and to ensure a risk neutral unconditional annual volatility of 20%, we set

ω =
(

1 − β − α
(

1 + (λ + γ)2
))

∗ 0.20/
√

252. Benchmark prices are calculated using N = 1,000,000 paths
and the complete set of polynomials of order MS = 9 and MV = 5 in the stock price and the volatility,
respectively, in the cross-sectional regressions.
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5. Conclusions

This paper proposed an innovative algorithm that significantly improves on the approximation of
the optimal early exercise boundary obtained with simulation based methods for American option
pricing like, e.g., the Least-Squares Monte Carlo (LSM) method of Longstaff and Schwartz (2001).
The method successfully exploited and leveraged the information in multiple cross-sectional
regressions to the fullest by averaging the individually obtained estimates at each early exercise
step, starting from just before maturity, in the backwards induction algorithm. We referred to our
method as a bootstrapping approach because of the similarities it had with how the term structure of
interest rates was bootstrapped and the way bootstrapping was used for inference in regression models.
With the bootstrapping approach, less errors were accumulated in the backward induction algorithm,
and as a result of this, the price estimate was essentially unbiased even for long maturity options.

We compared the results from our bootstrapping approach to the regular LSM method, and the
numerical results demonstrated large and significant improvements from our method. These findings
were robust to the choice of simulation setup, the characteristics of the option, and the dimensionality
of the problem. Finally, because our method naturally disassociated the estimation of the optimal early
exercise boundary from the pricing of the option, significant efficiency gains could be obtained by
using less simulated paths and repetitions to estimate the optimal early exercise boundary than with
the regular method. To illustrate this, we priced a diverse sample of options with different moneyness,
maturity, and levels of volatility of the underlying asset. The results showed that when pricing this
sample of empirically relevant options, our bootstrapping method essentially yielded unbiased price
estimates that were as precise as if the true optimal early exercise boundary had been used.

Our bootstrapping method should have wide applications empirically. First, the majority of the
options traded are in fact American style, and the recent global financial crisis clearly demonstrated
that considering more risk factors is essential to model the complex behavior of financial markets
properly. Our proposed method can be used with such advanced models and will allow more efficient
pricing than what is currently possible. Second, our results have important implications for other
simulation based applications. One particularly important and challenging area in which the LSM
method has been used is the field of real option valuation. In particular, the dynamics of the underlying
assets for this type of options are often very complicated, and simulation is the only viable method.
We conjecture that our proposed bootstrapping method will allow more efficient determination of the
optimal controls and more precise valuation of these assets, benefiting the economy at large.

Besides the empirical applications outlined above, there are other important lines for future
research. First, we are currently working on establishing the finite sample properties of our
proposed bootstrapping method to demonstrate theoretically its usefulness and to assess if there
are any limitations to the applicability of the methodology. Second, simulation based methods
have recently been used to obtain estimates of option risk sensitivities or hedge ratios, the Greeks,
for American options. We conjecture that our bootstrapping method would allow such quantities
to be estimated with much more precision as well and are currently working on establishing this
empirically. Finally, our general idea could be applied to other methods that use simulation and
regression techniques for pricing early exercise style option like, e.g., the value function iteration
method of Carriere (1996) and Tsitsiklis and Van Roy (2001), and to other dynamic programming
methods used to solve optimal control type problems.
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Abstract: This paper proposes and investigates a multivariate 4/2 Factor Model. The name 4/2 comes
from the superposition of a CIR term and a 3/2-model component. Our model goes multidimensional
along the lines of a principal component and factor covariance decomposition. We find conditions for
well-defined changes of measure and we also find two key characteristic functions in closed-form,
which help with pricing and risk measure calculations. In a numerical example, we demonstrate
the significant impact of the newly added 3/2 component (parameter b) and the common factor (a),
both with respect to changes on the implied volatility surface (up to 100%) and on two risk measures:
value at risk and expected shortfall where an increase of up to 29% was detected.

Keywords: stochastic covariance; 4/2 model; option pricing; risk measures

1. Introduction

Continuous-time stochastic covariance models are crucial in capturing many stylized facts in
financial data, from heteroscedasticity and fat tails to changing correlations and leverage effects.
Early work in this field focused on discrete time models in the form of generalized autoregressive
conditional heteroskedasticity (GARCH) models (see Engle 2002). The best-known representatives
in continuous time, are the stochastic Wishart family (see Da Fonseca et al. 2007; Gourieroux 2006)
and the Ornstein–Uhlenbeck (OU) family (see Muhle-Karbe et al. 2012) of models, as well as general
linear-quadratic jump-diffusions (see Cheng and Scaillet 2007). These approaches are more realistic
than the classical Black–Scholes lognormal model, but they quickly become intractable as dimensions
increase in terms of the number of parameters and simulation paths, commonly known as the “curse of
dimensionality”. Recent papers (see De Col et al. 2013; Escobar 2018) have presented models built from
linear combination of tractable one-dimensional counterparts. These models involve fewer parameters
than Wishart- or OU-type approaches, owing to a reduction in dimensionality while providing a
closed-form solution to financial problems.

In this paper, we introduce a multivariate mean-reverting stochastic volatility factor model
that combines 1/2 (Heston-type, Heston 1993) and 3/2 processes (Platen 1997) for the modeling of
volatility. Such underlying volatility processes were coined 4/2 by Grasselli (2017). Our paper takes
advantage of the factor structure in asset prices and allows for a mean-reverting structure on the
assets thereby aiming at capturing either multivariate commodity behavior or multiple volatility
indexes (see Gnoatto et al. 2018 for an alternative multivariate non-mean-reverting generalization
based on a pairwise-structure applied to the exchange-rate market). In particular, our setting reduces
the dimension of the parametric space which is a way of controlling the “curse of dimensionality”
making parameters identifiable and popular estimation methods feasible. Secondly, the presence
of independent common and intrinsic factors, each with its own stochastic volatility, enables an
elegant separable structure for characteristic functions (c.f.s) and captures several stylized facts, such
as: stochastic volatility, stochastic correlation among stocks (see Engle 2002), co-movements in the
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variances (see Diebold and Nerlove 1989), multiple factors in the volatilities (see Heston et al. 2009)
and stock correlations (see Da Fonseca et al. 2007). Thirdly, a factor representation is compatible
with economical interpretations, where common factors are exogenous variables explaining financial
markets, and intrinsic factors relate to companies’ intrinsic risks. Lastly, closed-form expressions are
available for joint c.f.s; this is useful for derivative pricing and risk management calculations via Fourier
transformations, and it makes c.f.-based estimations methods feasible (see Carr and Madan 1999; Caldana
and Fusai 2013; Fusai et al. 2018).

The rationale for a 4/2 volatility process rather than a 1/2 or 3/2 model is masterly presented
in Grasselli (2017) for a one-dimensional structure. For instance, as observed by the author, the 1/2
process predicts that the implied volatility skew will flatten when the instantaneous volatility increases
(crises), while the 3/2 model predicts steepening skews. The empirical violation of the Feller condition
in the 1/2 model is also noted, which makes volatility paths stay closer to 0 for a longer period
than empirically supported, while the 3/2 model admits extreme paths with spikes in instantaneous
volatility. The two processes complement each other as they imply very different dynamics for the
evolution of the implied volatility surface. It stands to reason that such a convenient underlying drive
for multidimensional structures should be used to improve not only marginal volatility behavior,
but also the dependence structure.

We obtain an analytical representation for the c.f. of the vector of asset prices, which is in
closed-form for non-mean-reverting nested cases. This type of c.f. is helpful for derivative pricing
purposes. We also produce a second conditional c.f. that can be used for exact simulations of the
non-mean reverting assets given the terminal volatilities, where the latter can be simulated exactly via
chi-squares. We identify a set of conditions that not only produces well-defined changes of measure,
but also avoids local martingales; hence, it can be used for risk-neutral pricing purposes.

Our results were applied numerically to parameters inspired by commodity prices1. There is a
vast literature on commodity modeling (see, for instance, Chiarella et al. 2013; Schwartz 1997, and more
recently Schneider and Tavin 2018). In our numerical study, we investigated the impact of the new
parameters (b, the weight of 3/2 in the overall instantaneous volatility) on the shape of the implied
volatility surface and the values of two risk measures: VaR and expected shortfall.

2. Model Description

Next, we define the model in a filtered probability space (Ω,F ,P ,F) where F0 contains all
subsets of the (P−) null sets of F and F is right-continuous. We first provide the processes under
the historical measure P , then followed by the processes under a (conveniently chosen) risk-neutral
measure Q. Suppose that X(t) = (X1(t), . . . , Xn(t))′ is a vector of asset prices with the following
P-measure representation:

dXi(t)
Xi(t)

=

⎧⎪⎨⎪⎩Li + ci

p

∑
j=1

a2
ij

⎛⎝√vj(t) +
bj√
vj(t)

⎞⎠2

−
n

∑
j=1

βij ln(Xj(t)) + c̃i

(√
ṽi(t) +

b̃i√
ṽi(t)

)2
⎫⎪⎬⎪⎭ dt

+
p

∑
j=1

aij

⎛⎝√vj(t) +
bj√
vj(t)

⎞⎠ dWj(t) +

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dW̃i(t)

dvj(t) = αj(θj − vj(t))dt + ξ j

√
vj(t)dBP

j (t), j = 1, . . . , p

dṽi(t) = α̃i(θ̃i − ṽi(t))dt + ξ̃i

√
ṽi(t)dB̃P

i (t), i = 1, . . . , n

1 This can also be applied to volatility indexes, such as those reported by the Chicago Board Options Exchange (CBOE),
which are clearly a mean-reverting asset class with stochastic volatility.
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The quadratic variation structure is
〈

dBP
j (t), dWj(t)

〉
= ρjdt,

〈
dB̃P

i (t), dW̃i(t)
〉
= ρ̃idt and zero

otherwise. In the language of factor analysis, aij is the ijth entry of the matrix of factor loadings
(A) that captures the correlations among assets. The communalities are represented by Vj(t) =(√

vj(t) +
bj√
vj(t)

)2
(in matrix form, Λnxp = A diag

(
V1/2(t)

)
) and the intrinsic residual variance

is Ψ = diag(Ṽ(t)), with Ṽj(t) =

(√
ṽi(t) +

b̃i√
ṽi(t)

)2
. This leads to a factors decomposition of the

quadratic variation of asset prices as follows:

Σ(t)dt =
(
ΛΛ′ + Ψ

)
dt =

(
A diag(V(t))A′ + diag(Ṽ(t))

)
dt

Whenever necessary, we assume n = p and A = (aij)n×p to be an orthogonal matrix. In this
setting, ci and c̃i represent risk premiums of asset Xi(t) associated with the common and intrinsic
factors, respectively. β = (βij)n×n is an invertible matrix, which captures the spillover at the expected
return level Xi(t) on asset Xj(t). In other words, it represents the impact from other assets on the long
term average price of the current one.

Based on the quadratic variation relationship defined in this model, if we assume that BP
j , BP

j (t)
⊥,

B̃P
i (t), B̃P

i (t)
⊥ are independent Brownian motions with −1 ≤ ρj ≤ 1 and −1 ≤ ρ̃i ≤ 1. Then,

dWj(t) = ρjdBP
j (t) +

√
1 − ρ2

j dBP
j (t)

⊥

dW̃i(t) = ρ̃idB̃P
i (t) +

√
1 − ρ̃2

i dB̃P
i (t)

⊥.

vj j = 1, . . . , n and ṽi i = 1, . . . , n follow standard CIR processes, hence αj, θj, and ξ j are

positive constants satisfying αjθj ≥ ξ2
j

2 (the Feller condition). Similarly, α̃i, θ̃i, and ξ̃i are positive

constants satisfying α̃i θ̃i ≥ ξ̃i
2

2 . Note that the Feller condition in CIR model guarantees that the process
remains positive.

The transformation Y = ln X would create a multivariate Ornstein–Uhlenbeck process with a 4/2
stochastic factor structure:

dYi(t) =

⎧⎪⎨⎪⎩Li +

(
ci −

1
2

) n

∑
j=1

a2
ij

⎛⎝√vj(t) +
bj√
vj(t)

⎞⎠2

−
n

∑
j=1

βijYj(t) +
(

c̃i −
1
2

)(√
ṽi(t) +

b̃i√
ṽi(t)

)2
⎫⎪⎬⎪⎭ dt

+
n

∑
j=1

aij

⎛⎝√vj(t) +
bj√
vj(t)

⎞⎠ dWj(t) +

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dW̃i(t)

This general model includes a notable particular case, which is a direct generalization of
Grasselli (2017) to a factor setting when βij = 0, i, j = 1, . . . , n ; this case is studied in more detail and it
is named FG, given its analytical flexibility.

3. Results

This section describes viable changes of measure and two key characteristic functions of the
targeted multivariate process; one for pricing and the other for simulations. The proofs are presented
in Appendix A.

3.1. Change of Measure

Here, we explore the topic of creating a risk-neutral measure Q for pricing purposes. As noted
by Grasselli (2017); Platen and Heath (2010) and Baldeaux et al. (2015) among others, a risk-neutral
measure may not be supported by data in the presence of a 3/2 model (e.g., 1√

v(t)
), as the parametric
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constraints needed for the discounted asset price process to be a Q- martingale are violated with real
data; hence, we can only produce a strict Q-local martingale (i.e., Q would be absolute continuous
but not equivalent to P). In such situation, the standard risk-neutral pricing methodology would fail
(biased prices), and we have to turn to the benchmark approach for pricing (see Baldeaux et al. 2015).

The next proposition entertains the following changes of measure with constant λj, λ⊥
j , λ̃i and

λ̃⊥
i (see Escobar and Gong 2019 for other types of changes of measures) then identifies the parametric

conditions needed for the existence of a valid risk-neutral measure Q.

dBQ
j (t) = λj

⎛⎝√vj(t) +
bj√
vj(t)

⎞⎠ dt + dBP
j (t), dB̃Q

i (t) = λ̃i

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dt + dB̃P

i (t)

dBQ
j (t)

⊥ = λ⊥
j

⎛⎝√vj(t) +
bj√
vj(t)

⎞⎠ dt + dBP
j (t)

⊥, dB̃Q
i (t)⊥ = λ̃⊥

i

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dt + dB̃P

i (t)
⊥

Proposition 1. The change of measure is well-defined for pricing purposes under the following four conditions:

ξ2
j ≤ 2αjθj − 2ξ j max

{∣∣bjλj
∣∣ , ∣∣∣λ⊥

j bj

∣∣∣ , ∣∣bja1jρj
∣∣ , . . . ,

∣∣bjanjρj
∣∣} (1)

ξ̃2
i ≤ 2α̃i θ̃i − 2ξ̃i max

{∣∣∣b̃iλ̃i

∣∣∣ , ∣∣∣λ̃⊥
i b̃i

∣∣∣ , ∣∣∣b̃i ρ̃i

∣∣∣} (2)

max
{∣∣λj

∣∣ , ∣∣∣λ⊥
j

∣∣∣} <
αj

ξ j
(3)

max
{∣∣∣λ̃i

∣∣∣ , ∣∣∣λ̃⊥
i

∣∣∣} <
α̃i

ξ̃i
(4)

Moreover, if βij = 0 for i, j = 1, . . . , n, then the following must also be satisfied:

Li = r, ci =
n

∑
j=1

aij

(
ρjλj +

√
1 − ρ2

j λ⊥
j

)
, c̃i = ρ̃iλ̃i +

√
1 − ρ̃2

i λ̃⊥
i (5)

Proof is included in Appendix A.

3.2. Characteristic Function

This section aims at obtaining an analytical representation for the c.f. If Z(t) = eβtY(t) is defined
such that eβt is a matrix exponential, then Zi(t) is represented as:

dZi(t) =
n

∑
j=1

(
eβt
)

ij

⎧⎪⎨⎪⎩Li +

(
cj −

1
2

) n

∑
k=1

a2
jk

(√
vk(t) +

bk√
vk(t)

)2

+

(
c̃j −

1
2

)⎛⎝√ṽj(t) +
b̃j√
ṽj(t)

⎞⎠2
⎫⎪⎬⎪⎭ dt (6)

+
n

∑
j=1

(
eβt
)

ij

⎧⎨⎩ n

∑
k=1

ajk

(√
vk(t) +

bk√
vk(t)

)
dWk(t) +

⎛⎝√ṽj(t) +
b̃j√
ṽj(t)

⎞⎠ dW̃j(t)

⎫⎬⎭
For convenience, we use

(
eβt)

ij as the ij component of the matrix eβt. Note that Zi(t) is no longer
a mean-reverting process although it accounts for time dependent coefficients.

Next, we find the conditional c.f. for the increments of Z, defined as

ΦZ(t),v(t)(T, ω) = E
[
exp
{

iω′(Z(T)− Z(t))
}
| Z(t) = zt, v(t) = vt

]
(7)

Under a risk neutral measure, this c.f. can be used for pricing some financial products, given the
integrability conditions (a discussion of the generalized c.f. as per Grasselli 2017 is beyond the scope
of this paper.). For convenience, we formulate it as v(t) = (v1(t), . . . , vn(t), ṽ1(t), . . . , ṽn(t)).
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Proposition 2. Let (Z(t))t≥0 evolve according to the model in Equation (6). The c.f. ΦZ(t),v(t) is then given
as follows:

ΦZ(t),v(t)(T, ω) = E
[
exp iω′(Z(T)− Z(t)) | Z(t) = yt, v(t) = vt

]
=

n

∏
k=1

ΦGG

(
T, 1; Lk(ω), hk(ω), gk(ω), κk, θk, ξk, ρk, bk, ck, vk,t, S∗

k,t

)
×

n

∏
j=1

ΦGG

(
T, 1; 0, Lj(ω), hj(ω), gj(ω), κ̃j, θ̃j, ξ̃ j, ρ̃j, b̃j, c̃k, ṽj,t, S∗j

t

)
where ΦGG is a one-dimensional generalization of the c.f. from Grasselli (2017) provided in Lemma A1.

Proof is provided in Appendix A. The c.f. above involves single expected values with respect to
Brownian motion B(t). In each term, ΦGG (i.e., the second set of Brownian W(t)) is eliminated, hence
this is a drastic simplification compared to the original 2n dimensional joint expectation.

A particular, fully solvable case is the FG model (βij = 0, i, j = 1, . . . , n).

Corollary 1. Let (Z(t))t≥0 evolve according to the FG model (βij = 0, i, j = 1, . . . , n). The c.f. ΦZ(t),v(t) is
subsequently presented as follows:

ΦZ(t),v(t)(T, ω) = E
[
exp iω′(Z(T)− Z(t)) | Z(t) = yt, v(t) = vt

]
=

n

∏
k=1

ΦG

(
T, 1; Lk(ω), hk(ω), gk(ω), κk, θk, ξk, ρk, bk, ck, vk,t, S∗

k,t

)
×

n

∏
j=1

ΦG

(
T, 1; 0, Lj(ω), hj(ω), gj(ω), κ̃j, θ̃j, ξ̃ j, ρ̃j, b̃j, c̃k, ṽj,t, S∗j

t

)
where ΦG is the one-dimensional c.f provided by Grasselli (2017) in Proposition 3.1 and given in the Appendix B
for completeness.

See Appendix A for proof. Next, we turn to the conditional c.f. of the increments of Z given the
terminal value of the CIR processes. This is defined as follows:

ΦZ(t),v(T)(τ, ω) = E
[
exp
[
ω′(Z(T)− Z(t))

]
| Z(t) = zt, v(T) = vT

]
(8)

The above is useful when we need to work with the joint distribution of (Z(T), v(T)) given
(Z(t), v(t)). For such cases, we can try to rely on a convenient simulation scheme combining the
distribution of Z(T) given (Z(t), v(T)) (via Equation (8)) with that of v(T) given v(t), the latter is
known to be non-centered chi-squared. In this way, we can avoid usual discretization algorithms such
as the Euler–Maruyama or Milstein schemes, which are generally not suitable for the CIR process (due
to failure of the Lipschitz condition at 0).

In this vein, when working with the non mean-reverting factor model (βij = 0, i, j = 1, . . . , n),
we can easily adapt the procedures in Grasselli (2017) to provide an exact simulation scheme for the
model given the vector of the independent CIR process at maturity T (i.e., v(T)). This requires only
the c.f. provided next:
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Corollary 2. Let (Z(t))t≥0 evolve according to the FG model (βij = 0, i, j = 1, . . . , n). Then, the c.f. ΦZ(t),v(T)
is then given as follows:

ΦZ(t),v(T)(T, ω) =
n

∏
j=1

ΦG,T

(
T, φ; L, hj, gj, κj, θj, ξ j, ρj, bj, cj, vj,T , S∗

j,t

)
×

n

∏
i=1

ΦG,T

(
T, 1; 0, hi, gi, κ̃i, θ̃i, ξ̃i, ρ̃i, b̃i, c̃i, ṽi,T , S∗i

t

)
where ΦG,T is the one-dimensional c.f provided by Grasselli (2017) in Proposition 4.1 and given in the Appendix B
for completeness.

Proof of this result is provided in Appendix A. Unsurprisingly, the previous result cannot be
extended to the mean-reverting case, due to the absence of closed formulas for the object:

E

[
exp
{

u
(∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +
∫ T

t
D(s) ln(ν(s))ds

)}
| ν(T)

]
which is not solvable even when two of the three deterministic functions B(s), C(s) and D(s) are zero.

4. Discussion: One Common Factor in Two Dimensions

We assume two assets, i.e., X1(t) and X2(t), with one common volatility component, and one
intrinsic factor each. The asset prices thereby follow the system of SDE for i = 1, 2:

dYi(t) = (Li − βiYi(t)) dt

+

(
(ci −

1
2
)[a2

i (
√

v1(t) +
b1√
v1(t)

)2] + (c̃i −
1
2
)(
√

ṽi(t) +
b̃i√
ṽi(t)

)2

)
dt

+ai

(√
v1(t) +

b1√
v1(t)

)
dW1(t) +

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dW̃i(t)

dv1(t) = α1(θ1 − v1(t))dt + ξ1

√
v1(t)dB1(t)

dṽi(t) = α̃i(θ̃i − ṽi(t))dt + ξ̃i

√
ṽi(t)dB̃i(t)

with
〈
dBj(t), dWj(t)

〉
= ρjdt,

〈
dB̃i(t), dW̃i(t)

〉
= ρ̃idt for j = 1; i = 1, 2.

The following table (Table 1) gives a baseline parameter set for the one-factor, two-dimensional
4/2 factor model used in the subsequent sections. The choice of parameters in Scenario A was
made by combining the seminal works of Schwartz (1997) (see Oil and Copper in Tables IV and
V) and Heston (1993). Scenario B combines Schwartz (1997) (see Oil and Copper, Tables IV and V)
with Heston et al. (2009). In both cases, we assume a simple structure for the market price of risk
(c1 = c2 = c̃1 = c̃2 = 0)2.

2 Variations on c will be studied in future research as part of a calibration exercise (see Medvedev and Scaillet 2007 for viable
approaches and Escobar and Gschnaidtner 2016 for some pitfalls).
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The θ̃i, i = 1, 2 in the table are set to match the long term volatilities as estimated in
Schwartz (1997), which are 0.334 (Oil, Table IV) and 0.233 (Copper, Table V):

E

[
a2

1

(√
v1(t) +

b1√
v1(t)

)2
+

(√
ṽ1(t) +

b̃1√
ṽ1(t)

)2
]

= a2
1

(
2α1b2

1
2α1θ1−ξ2

1
+ 2b1 + θ1

)
+

2α̃1 b̃2
1

2α̃1 θ̃1−ξ̃2
1
+ 2b̃1 + θ̃1 = (0.334)2

(9)

This explains the values of θ̃i in the table.

Table 1. Toy parametric values.

Initial Values

X1(0) = 18, X2(0) = 100
v1(0) = θ1, ṽ1(0) = θ̃1, ṽ2(0) = θ̃2
Commodity Drift, Schwartz (1997)
β11 = 0.301, β12 = 0, β21 = 0, β22 = 0.369
L1 = 3.09β11 = 0.93, L2 = 4.85β22 = 1.79
Commodity St. Volatility, Heston (1993); Schwartz (1997). Scenario A
α1 = α̃1 = α̃2 = 2
θ1 = 0.01, θ̃1 = 0.0753, θ̃2 = 0.0124
ξ1 = ξ̃1 = ξ̃2 = 0.1
ρ1 = ρ̃1 = ρ̃2 = −0.5
Commodity St. Volatility, Heston et al. (2009); Schwartz (1997). Scenario B
α1 = α̃1 = α̃2 = 0.2098
θ1 = 0.1633, θ̃1 = 0.0685, θ̃2 = 0.0689
ξ1 = ξ̃1 = ξ̃2 = 0.1706
ρ1 = ρ̃1 = ρ̃2 = −0.9
New parameters.
c1 = c2 = c̃1 = c̃2 = 0
a1 = a2 = 0.75
b1 = b̃1 = b̃2 = 0.008

The present section considers two independent cases. First, we study the impact of the parameters
b1, b̃1 and b̃2 on implied volatility surfaces and on two risk measures for a portfolio of underlyings.
We then assess the impact of the commonalities a1 and a2 on these same targets, i.e., implied volatilities
and risk measures. To ensure that the cases lead to reasonable assets behavior, we report the expected
return, variance of return for each asset, as well as the correlation between two assets and the leverage
effects in Tables 2 and 3 under Scenarios A and B, respectively.

We simulated 500,000 paths with dt = 0.1 and considered the following scenarios for b: b1 = 0.008,
b̃1 = b̃2 = 0; b1 = 0, b̃1 = b̃2 = 0.008; b1 = b̃1 = b̃2 = 0 and b1 = b̃1 = b̃2 = 0.008.

Table 2. First four moments for scenarios on 3/2 component (b), Scenario A.

b1 = 0.008, b̃1 = b̃2 = 0 b1 = 0, b̃1 = b̃2 = 0.008 b1 = b̃1 = b̃2 = 0 b1 = b̃1 = b̃2 = 0.008

E[X1(T)−X1(0)
X1(0)

] 0.0494 0.0489 0.0503 0.0480

E[X2(T)−X2(0)
X2(0)

] 0.0760 0.0754 0.0764 0.0750

V[X1(T)−X1(0)
X1(0)

] 0.0663 0.0680 0.0618 0.0729

V[X2(T)−X2(0)
X2(0)

] 0.0367 0.0390 0.0323 0.0445
Corr(ln X1(T) , ln X2(T)) 0.3194 0.0896 0.1060 0.2799
Corr(ln X1(T) ,< ln X1(T) >) −0.4287 −0.4520 −0.4443 −0.4406
Corr(ln X2(T) ,< ln X2(T) >) -0.4148 −0.4511 −0.4420 −0.4280
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Table 3. First four moments for scenarios on 3/2 component (b), Scenario B.

b1 = 0.008, b̃1 = b̃2 = 0 b1 = 0, b̃1 = b̃2 = 0.008 b1 = b̃1 = b̃2 = 0 b1 = b̃1 = b̃2 = 0.008

E[X1(T)−X1(0)
X1(0)

] 0.0514 0.0504 0.0527 0.0499

E[X2(T)−X2(0)
X2(0)

] 0.0774 0.0775 0.0787 0.0754

V[X1(T)−X1(0)
X1(0)

] 0.0360 0.0606 0.0247 0.1022

V[X2(T)−X2(0)
X2(0)

] 0.0359 0.1508 0.0248 0.0723
Corr(ln X1(T) , ln X2(T)) 0.7533 0.0099 0.4698 0.0156
Corr(ln X1(T) ,< ln X1(T) >) −0.4509 −0.2031 −0.5560 −0.0273
Corr(ln X2(T) ,< ln X2(T) >) −0.4496 −0.0398 −0.5517 −0.2444

Similarly, we considered the following scenarios for a: a1 = a2 = 0; a1 = 0.75, a2 = 0; a1 = 0,
a2 = 0.75 and a1 = a2 = 0.75. Tables 4 and 5 present key statistics for the returns under Scenarios A

and B, respectively.

Table 4. First four moments for scenarios on commonalities (a), Scenario A.

a1 = a2 = 0 a1 = 0.75, a2 = 0 a1 = 0, a2 = 0.75 a1 = a2 = 0.75

E[X1(T)−X1(0)
X1(0)

] 0.0491 0.0492 0.0493 0.0492

E[X2(T)−X2(0)
X2(0)

] 0.0761 0.0757 0.0746 0.0759

V[X1(T)−X1(0)
X1(0)

] 0.0658 0.0727 0.0660 0.0732

V[X2(T)−X2(0)
X2(0)

] 0.0371 0.0370 0.0444 0.0447
Corr(lnX1(T) , lnX2(T)) 0.0000 −0.0011 0.0004 0.2841
Corr(lnX1(T) ,< lnX1(T) >) −0.4523 −0.4400 −0.4529 −0.4430
Corr(lnX2(T) ,< lnX2(T) >) −0.4507 −0.4521 −0.4285 −0.4279

Table 5. First four moments for scenarios on commonalities (a), Scenario B.

a1 = a2 = 0 a1 = 0.75, a2 = 0 a1 = 0, a2 = 0.75 a1 = a2 = 0.75

E[X1(T)−X1(0)
X1(0)

] 0.0514 0.0496 0.0512 0.0500

E[X2(T)−X2(0)
X2(0)

] 0.0768 0.0772 0.0756 0.0752

V[X1(T)−X1(0)
X1(0)

] 0.0420 0.0733 0.0420 0.0857

V[X2(T)−X2(0)
X2(0)

] 0.0507 0.0564 0.0746 0.0719
Corr(lnX1(T) , lnX2(T)) 0.0004 −0.0000 −0.0005 0.0039
Corr(lnX1(T) ,< lnX1(T) >) −0.1126 −0.0047 −0.3203 −0.2634
Corr(lnX2(T) ,< lnX2(T) >) −0.1600 −0.2544 −0.0164 −0.0111

4.1. Pricing Option

The section prices European call option on the asset X1 based on our 4/2 generalized factor model.
It explores the implied volatility surface in a three-dimensional plot with strike prices as the x-axis,
time to maturity as the y-axis, and corresponding implied volatility as z-axis. We take the strike prices
K to be 15, 16.4, 17.8, 19.2, 20.6, and 22 and the expiry dates T are 0.2, 0.36, 0.52, 0.68, 0.84 and 1.0.
By choosing these strike prices, we account for the in-the-money, at-the-money, and out-of-the-money
options, given the initial asset price 18. Subsequently, for each strike price and expiry date, we can
obtain a simulated call price as follows

c(T, K) = e−rTEQ[(X1(T)− K)+],

where X1(T) is approximated using the Euler method.
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We extract the implied volatility by matching the Black–Scholes option price formula with
simulated call prices and solve for the volatility parameter. Hence, we can treat the dynamics of Y(t)
as an O-U process such that:

dY(t) = (L1 − 0.5σ2 − βY(t))dt + σdW∗(t).

Next, we consider the two cases described above. The first one studies the impact of b, which
represents the size of the 3/2 component on the covariance; and the second examines the impact of a,
the size of the commonality.

In the case of b, we first extract the implied volatility surface by matching the standard BS formula
for changes on b and b̃ respectively (see Figures 1 and 2).

(a) b̃1=0, b1 between (0, 0.008) (b) b̃1=0.008, b1 between (0, 0.008)

Figure 1. Impact of b1 (common factor, 3/2 component) on implied volatility, Scenario A.

(a) b̃1=0, b1 between (0, 0.008) (b) b̃1=0.008, b1 between (0, 0.008)

Figure 2. Impact of b1 (common factor, 3/2 component) on implied volatility, Scenario B.

For Scenario A, Figure 1a,b illustrates that even small changes in (b1) the common factor 3/2
component (from 0 to 0.008) can lead to a 7% difference in implied volatility (from 0.275 to 0.295,
or 0.285 to 0.305). The joint effect of the common and intrinsic 3/2 components (b1 and b̃1) can be
obtained by combining those two figures leading to a 11% change (from 0.275 to 0.305) in the presence
of relatively small values of b.

For Scenario B, we observe that the impact of intrinsic factor on volatility surface is more
significant than in Scenario A through a comparison of Figure 2a,b. The effect of b1 on implied
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volatility increase by approximately 31% (0.145 to 0.19), as shown in Figure 2a, when only the common
factor is present. In Figure 2b, we observe a volatility “smile" with the difference of approximately
12.2% (0.245 to 0.275). The joint effect of the common and intrinsic 3/2 components in this case is 100%
(0.145 to 0.29).

Figures 1 and 2 jointly demonstrate that, given different underlying process for common and
intrinsic factors, the impact of the 3/2 component can be crucial.

Next, we study a, the weight of the common factor (commonality). We again extract the implied
volatility surface from matching the standard BS formula for changes on a.

Figure 3a,b displays the significant increase in implied volatility due to the commonality of the
asset with the market (a1). The change in implied volatility can increase up to 12.5% (from 0.28 to
0.315) in Scenario A and up to 30% (from 0.22 to 0.32) in Scenario B.

(a) a1 between (0, 1). Scenario A (b) a1 between (0, 1). Scenario B

Figure 3. Impact of commonality (a1) on implied volatility.

4.2. Risk Measures

This section examines the impact of b and a on important risk measures, in particular the value at
risk (VaR) and the expected shortfall (ES). For clarity and calculation purposes, these measures are
defined as follows:

α = P (X(T) ≤ −VaRα) (10)

ES = − 1
α

∫ α

0
VaRγdγ (11)

where X(T) = ω1(X1(T)− X1(0)) + ω2(X2(T)− X2(0)) is the profit and loss portfolio with equal
weights (w1 = w2 = 1/2) (see DeMiguel et al. 2007 for a rationale and support of this simple strategy).
We let α vary from 0.001 to 0.2 with a discretization size of 200.

We first study the impact of b1, b̃1 and b̃2 on VaR and ES for a fixed value of α = 0.01. Figure 4a,b
illustrates a substantial increase in VaR, from 16 (when all b values are set to zero) to 19.5 (all b set to
0.008), which is a 21% increase (α = 0.01) due to the presence of b. In other words, an investor would
have to set aside 21% more capital in the presence of 3/2 components. Similarly, ES increases from
−21 in the presence of 3/2 components to −18.5 in their absence, which constitutes a 12% increase in
the average VaR.
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(a) Value at Risk vs. α, various b (b) Expected Shortfall vs. α, various b

Figure 4. Impact of 3/2 components (b) on Risk measures, Scenario A.

Figure 5a,b also displays a substantial increase in VaR, from 17.5 (all b set to zero) to 22.5 (b set
to 0.008), which represents a 28.6% increase (α = 0.01) due to b. This means 28.6% more capital is
required in the presence of 3/2 components. Similarly, the ES increases from −27 with 3/2 components
to −19 without them, representing a 29.6% increase in the average VaR.

(a) Value at Risk vs. α, various b (b) Expected Shortfall vs. α, various b

Figure 5. Impact of 3/2 components (b) on Risk measures, Scenario B.

A similar analysis was performed with respect to the commonality a, in the presence of stochastic
volatility (in the common factor) versus constant volatility; in other words, we assessed the impact
of a per se and that of stochastic correlation produced by the 4/2 model. Figure 6a demonstrates an
increase in VaR, from 16 to 18.5, a 15.5% increase (α = 0.01). Figure 6b shows that the VaR jumps from
17 to 23, a 35% growth due to the increase in a.
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(a) Scenario A: Value at Risk vs. α for different
commonality (a) values.

(b) Scenario B: Value at Risk vs. α for different
commonality (a) values.

Figure 6. Impact of commonality (a) on Value at Risk under Scenario A and Scenario B.

5. Conclusions

The generalized men-reverting 4/2 factor model is proposed and studied in this paper. We provide
analytical expressions for key characteristic functions and conditions for well-defined changes of
measures. We also explore the impact of b, i.e., the 3/2 component of the model in the volatility
process, and a, the commonalities in the absence and presence of stochastic volatility on the common
factor. These impacts were measured with respect to implied volatility surfaces and two important
risk measures. The results demonstrate that even small values of the 3/2 component (b) can lead to a
100% change in the implied volatility surface, as well as up to 28% and 29% increases in the VaR and
ES measures, respectively.
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Appendix A. Proofs

Proof. Proof of Proposition 1.
The first step is to ensure the change of measure is well-defined and for this we use Novikov’s

condition, i.e., generically

E

⎡⎣exp

⎛⎝1
2

∫ T

0
λ2

(√
ν(t) +

b√
ν(t)

)2

ds

⎞⎠⎤⎦ = eλ2bTE

[
exp
(

λ2

2

∫ T

0
ν(s)ds +

λ2b2

2

∫ T

0

1
ν(s)

ds
)]

< ∞.

From Grasselli, in order for this expectation to exist, we need two conditions:

− λ2

2
> − α2

2ξ2 =⇒ |λ| < α

ξ
(A1)

and

− λ2b2

2
≥ − (2αθ − ξ2)2

8ξ2 =⇒ |λ| ≤ 2αθ − ξ2

2|b|ξ =⇒ ξ2 ≤ 2αθ − 2|λ||b|ξ (A2)

The latter condition in Equation (A2) implies, in particular, that our volatility processes satisfy
Feller’s condition under P and Q; in other words, it ensures all our CIR processes stay away from zero
under both measures.
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Applying Equation (A2) to our setting leads to (i, j = 1, . . . , n):

ξ2
j ≤ 2αjθj − 2ξ j max

{∣∣λjbj
∣∣ , ∣∣∣λ⊥

j bj

∣∣∣} (A3)

ξ̃2
i ≤ 2α̃i θ̃i − 2ξ̃i max

{∣∣∣λ̃i b̃i

∣∣∣ , ∣∣∣λ̃⊥
i b̃i

∣∣∣} (A4)

Now, we apply Equation (A1) producing two extra set of conditions (i, j = 1, . . . , n):

max
{∣∣λj

∣∣ , ∣∣∣λ⊥
j

∣∣∣} <
αj

ξ j
(A5)

max
{∣∣∣λ̃i

∣∣∣ , ∣∣∣λ̃⊥
i

∣∣∣} <
α̃i

ξ̃i
(A6)

The second step applies to the case βij = 0 for i, j = 1, . . . , n and it is to ensure the drift of the
asset price equal the short rate:

Li = r, ci =
n

∑
j=1

aij

(
ρjλj +

√
1 − ρ2

j λ⊥
j

)
, c̃i = ρ̃iλ̃i +

√
1 − ρ̃2

i λ̃⊥
i

For the most general case (βij �= 0 for some i or j), the second step should be adapted to any
particular prescribed drift structure under the Q-measure.

The third step is to ensure the drift-less asset price process is a true Q-martingale and not just a
local Q-martingale:

dXi(t)
Xi(t)

= (.) dt +
n

∑
j=1

aij

⎛⎝√vj(t) +
bj√
vj(t)

⎞⎠ dWQ
j (t) +

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dW̃Q

i (t)

Here, we test the martingale property using the Feller nonexplosion test for volatilities, hence
considering the following n2 + n changes of Brownian motion for the volatility processes and checking
the processes do not reach zero under the various measures:

dBQ
ij (t) = aijρj

⎛⎝√vj(t) +
bj√
vj(t)

⎞⎠ dt + dBP
j (t), dB̃Q

i (t) = ρ̃i

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dt + dB̃P

i (t)

This leads to the following conditions:

ξ2
j ≤ 2αjθj − 2

∣∣aijρjbj
∣∣ ξ j, i, j = 1, . . . , n (A7)

ξ̃2
i ≤ 2α̃i θ̃i − 2

∣∣∣λ̃i ρ̃i b̃i

∣∣∣ ξ̃i, i = 1, . . . , n (A8)

We can combine the first and third steps in Equations (A3), (A7), (A4) and (2) into the final
conditions.
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Proof. Proof of Proposition 2.
We start by defining new processes dSik,t and dSij

t with i, j, k = 1, 2, . . . , n and t ≥ 0.

dZi(t) =
n

∑
j=1

(
eβt
)

ij

⎡⎣(c̃j −
1
2

)⎛⎝√ṽj(t) +
b̃j√
ṽj(t)

⎞⎠ dt +

⎛⎝√ṽj(t) +
b̃j√
ṽj(t)

⎞⎠ dW̃j

⎤⎦
+

n

∑
k=1

⎡⎣( n

∑
j=1

(
eβt
)

ij

Lj

n

)
dt +

(
n

∑
j=1

(
eβt
)

ij

(
ck −

1
2

)
a2

jk

)(√
vk(t) +

bk√
vk(t)

)2

dt

⎤⎦
+

n

∑
k=1

(
n

∑
j=1

(
eβt
)

ij
ajk

)(√
vk(t) +

bk√
vk(t)

)
dWk

=
n

∑
j=1

dSij
t +

n

∑
k=1

dSik,t

By the dependence structure implied by the model, it follows that all S are independent for a fix i,
hence we can transform the characteristic function using the processes S as follows:

ΦZ(t),v(t)(T, ω) =
n

∏
k=1

E
[
exp{iω′ (S·k,T − S·k,t)} | St, v(t)

] n

∏
j=1

E
[
exp{iωi

(
S.j

T − S.j
t

)
} | St, v(t)

]
For each factor j = 1, 2, . . . , n we define S∗

k,t = ω′S·k,t = ∑n
i=1 ωiSik,t; the dynamics of S∗

k,t can be
expressed as

dS∗
k,t = ω′dS·k,t

=

⎡⎣L(ω, t) + hk(ω, t)

(√
vk(t) +

bk√
vk(t)

)2
⎤⎦ dt + gk (ω, t)

(√
vk(t) +

bk√
vk(t)

)
dWk,t

where hk(ω, t) = ∑n
j=1

(
ck − 1

2

)
a2

jk f j(ω, t), L(ω, t) = ∑n
j=1

Lj
n fj(ω, t) and gk (ω, t) = ∑n

j=1 ajk fj(ω, t)

and f j(ω, t) = ∑n
i=1 ωi

(
eβt)

ij. These three functions are deterministic, linear combinations of fj(ω, t).
Next, we find the characteristic function for the increments of S∗

k,t:

E
[
exp{iφ

(
S∗

k,T − S∗
k,t

)
} | S∗

k,t, vk(t) = vk,t

]
= ΦGG

(
T, φ; L(ω), hk(ω), gk(ω), κk, θk, ξk, ρk, bk, ck, vk,t, S∗

k,t

)
.

The generic function ΦGG is provided in Lemma A1.
It follows similarly for idiosyncratic factors:

dS∗j
t = ω′dS·j

t

=

(
n

∑
i=1

ωi

(
n

∑
j=1

(
eβt
)

ij

(
c̃j −

1
2

)))⎛⎝√ṽj(t) +
b̃j√
ṽj(t)

⎞⎠ dt

+

(
n

∑
i=1

ωi

n

∑
j=1

(
eβt
)

ij

)⎛⎝√ṽj(t) +
b̃j√
ṽj(t)

⎞⎠ dW̃j,t

= hj(ω, t)

⎛⎝√ṽj(t) +
b̃j√
ṽj(t)

⎞⎠2

dt + gj (ω, t)

⎛⎝√ṽj(t) +
b̃j√
ṽj(t)

⎞⎠ dW̃j,t

where hj(ω, t) = ∑n
i=1 ωi

(
∑n

j=1
(
eβt)

ij

(
c̃j − 1

2

))
and gj (ω, t) = ∑n

i=1 ωi ∑n
j=1
(
eβt)

ij.
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Combining all pieces together, we obtain:

ΦZ(t),v(t)(T, ω) =
n

∏
k=1

E
[
exp{iω′ (S·k,T − S·k,t)} | St, v(t)

] n

∏
j=1

E
[
exp{iω′

(
S·j

T − S·j
t

)
} | St, v(t)

]
=

n

∏
k=1

ΦGG

(
T, 1; Lk(ω), hk(ω), gk(ω), κk, θk, ξk, ρk, bk, ck, vk,t, S∗

k,t

)
×

n

∏
j=1

ΦGG

(
T, 1; 0, hj(ω), gj(ω), κ̃j, θ̃j, ξ̃ j, ρ̃j, b̃j, c̃j, ṽj,t, S∗j

t

)

Lemma A1. Let the generic process be:

dZ(t) =

⎡⎣L(t) + h(t)

(√
v(t) +

b√
v(t)

)2
⎤⎦ dt + g (t)

(√
v(t) +

b√
v(t)

)
dWt

dv(t) = α(θ − v(t))dt + ξ
√

v(t)dB(t)

〈dB(t), dW(t)〉 = ρdt

with g (t) differentiable, then

ΦGG (T, φ; L, h, g, κ, θ, ξ, ρ, b, c, vt, Zt) = exp
{

u
∫ T

t
A (s) ds

}
ν(t)u bρ

ξ g(t) exp
{
−uρ

g (t) ν(t)
ξ

}
×E

[
ν(T)u bρ

ξ g(T) exp
{

u
(∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +
∫ T

t
D(s) ln(ν(s))ds + ρ

g (T) ν(T)
ξ

)}
| Ft

]

where A, B, C and D are provided in the proof.

Proof. Proof of Lemma A1.
Let the generic process be:

dZ(t) =

⎡⎣L(t) + h(t)

(√
v(t) +

b√
v(t)

)2
⎤⎦ dt + g (t)

(√
v(t) +

b√
v(t)

)
dWt

dv(t) = α(θ − v(t))dt + ξ
√

v(t)dB(t)

〈dB(t), dW(t)〉 = ρdt

We want to find

E
[
euZ(T)|Ft

]
= euZ(t)ΦGG (T, φ; L, h, g, κ, θ, ξ, ρ, b, c, vt, Zt)

Letting ν̃(t) = g (t) ν(t) and ν̂(t) = g (t) ln(ν(t)), we have following:

dν̃(t) = αθg (t) dt +
(

g′ (t)− αg (t)
)

ν(t)dt + g (t) ξ
√

ν(t)dB(t), (A9)

and

dν̂(t) =
g′ (t)
g (t)

ν̂(t)dt +
∂ν̂(t)

∂ ln(ν(t))
d ln(ν(t)) +

1
2

∂2ν̂(t)
∂ ln(ν(t))2 < d ln(ν(t)) > (A10)

=
g′ (t)
g (t)

ν̂(t)dt +
g (t) ξ√

ν(t)
dB(t) + g (t) (

αθ

ν(t)
− α)dt − g (t)

ξ2

2ν(t)
dt
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From Equations (A9) and (A10), we solve for
∫ T

t g (s)
√

ν(s)dB(s) and
∫ T

t
g(s)√

ν(s)
dB(s):

∫ T
t g (s)

√
ν(s)dB(s) = g(T)ν(T)−g(t)ν(t)

ξ − αθ
ξ

∫ T
t g (s) ds − 1

ξ

∫ T
t (g′ (s)− αg (s)) ν(s)ds, (A11)

∫ T
t

g(s)√
ν(s)

dB(s) = 1
ξ ln ν(T)g(T)

ν(t)g(t) + α
ξ

∫ T
t g (s) ds + 1

ξ

(
ξ2

2 − αθ
) ∫ T

t
g(s)
ν(s) ds − 1

ξ

∫ T
t g′ (s) ln(ν(s))ds. (A12)

Split W(t) into B(t) and its orthogonal part B(t)⊥:

Z(T) = Z(t) +
∫ T

t
L (s) ds +

∫ T

t
h(s)

(√
ν(s) +

b√
ν(s)

)2

ds

+
∫ T

t
g (s)

(√
ν(s) +

b√
ν(s)

)
(ρdB(s) +

√
1 − ρ2dB(s)⊥),

then substitute Equation (A11) and (A12) to eliminate dB(t). Z(t) can be rewritten now as:

Z(T) = Z(t) +
∫ T

t
L (s) ds +

∫ T

t
h(s)

(
ν(s) + 2b +

b2

ν(s)

)
ds +

√
1 − ρ2

∫ T

t
g(s)

(
a
√

ν(s) +
b√
ν(s)

)
dB(s)⊥

+ ρ
g (T) ν(T)− g (t) ν(t)

ξ
− αθρ

ξ

∫ T

t
g (s) ds − ρ

ξ

∫ T

t

(
g′ (s)− αg (s)

)
ν(s)ds

+
bρ

ξ
ln

ν(T)g(T)

ν(t)g(t)
+

αbρ

ξ

∫ T

t
g (s) ds +

bρ

ξ

(
ξ2

2
− αθ

) ∫ T

t

g (s)
ν(s)

ds − bρ

ξ

∫ T

t
g′ (s) ln(ν(s))ds

Grouping conveniently, we obtain:

Z(T) = Z(t) +
∫ T

t
A (s) ds +

∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +
∫ T

t
D(s) ln(ν(s))ds

+
bρ

ξ
ln

ν(T)g(T)

ν(t)g(t)
+ ρ

g (T) ν(T)− g (t) ν(t)
ξ

+
√

1 − ρ2
∫ T

t
g(s)

(
a
√

ν(s) +
b√
ν(s)

)
dB(s)⊥

where

A (s) = L (s) + 2bh(s) +
(

αbρ

ξ
− αθρ

ξ

)
g (s)

B(s) = h(s)− ρ

ξ

(
g′ (s)− αg (s)

)
C(s) = b2h(s) +

bρ

ξ

(
ξ2

2
− αθ

)
g(s)

D(s) = − bρ

ξ
g′ (s)

Let (Gt)t≥0 denote the filtration generated by ν(t), t ≥ 0. Using iterated expectation and
independence, we can write the conditional moment generating function of Z(T) as:

E
[
euZ(T)|Ft

]
= E

[
E
[
euZ(T) | Ft

⋃
Gt

]
| Ft

]
= exp

{
u
(

Z(t) +
∫ T

t
A (s) ds

)}
ν(t)u bρ

ξ g(t) exp
{
−uρ

g (t) ν(t)
ξ

}
×E[ exp

{
u
(∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +
∫ T

t
D(s) ln(ν(s))ds +

bρ

ξ
ln ν(T)g(T) + ρ

g (T) ν(T)
ξ

)}
×E

[
exp

{
u
√

1 − ρ2
∫ T

t
g(s)

(√
ν(s) +

b√
ν(s)

)
dB(s)⊥

}
| Ft

⋃
Gt

]
| Ft]
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The inner expectation, conditioned on Ft
⋃ Gt, leads to a normal random variable with mean 0

and variance (Ito’s Isometry) u2(1 − ρ2)
∫ T

t g2(s)(ν(s) + b2

ν(s) + 2b)ds. Putting all together:

E
[
euZ(T)|Ft

]
= exp

{
u
(

Z(t) +
∫ T

t
A (s) ds

)}
ν(t)u bρ

ξ g(t) exp
{
−uρ

g (t) ν(t)
ξ

}
×E

[
ν(T)u bρ

ξ g(T) exp
{

u
(∫ T

t
B(s)ν(s)ds +

∫ T

t
C(s)

1
ν(s)

ds +
∫ T

t
D(s) ln(ν(s))ds + ρ

g (T) ν(T)
ξ

)}
| Ft

]
where

A(s) = A(s) + u(1 − ρ2)bg2(s)

B(s) = B(s) +
1
2

u2(1 − ρ2)g2(s)

C(s) = C(s) +
1
2

u2(1 − ρ2)b2g2(s)

Proof. Proof of Corollary 1.
The proof starts similarly to Proposition 2. We start by defining new processes dSij,t and dSi

t with
i, j = 1, 2, . . . , n and t ≥ 0.

dZi(t) =

[(
c̃i −

1
2

)(√
ṽi(t) +

b̃i√
ṽi(t)

)
dt +

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dW̃i

]

+
n

∑
j=1

⎡⎢⎣ Li
n

dt +
(

cj −
1
2

)
a2

ij

⎛⎝√vj(t) +
bj√
vj(t)

⎞⎠2

dt + aij

⎛⎝√vj(t) +
bj√
vj(t)

⎞⎠ dWj

⎤⎥⎦
= dSi

t +
n

∑
j=1

dSij,t

By the dependence structure implied by the model, it follows that all S are independent for a fix i,
hence we can transform the characteristic function using the processes S as follows:

ΦZ(t),v(t)(T, ω) =
n

∏
j=1

E
[
exp{iω′ (S·j,T − S·j,t

)
} | St, v(t)

] n

∏
i=1

E
[
exp{iωi

(
Si

T − Si
t

)
} | St, v(t)

]
For each factor j = 1, 2, . . . , n we define S∗

j,t = ω′S·j,t = ∑n
i=1 ωiSij,t, the dynamics of S∗

j,t can be
expressed as

dS∗
j,t = ω′dS·j,t

=

⎡⎢⎣L(ω) + hj(ω)

⎛⎝√vj(t) +
bj√
vj(t)

⎞⎠2
⎤⎥⎦ dt + gj (ω)

⎛⎝√vj(t) +
bk√
vj(t)

⎞⎠ dWj,t

where hj(ω) = ∑n
i=1 ωi

(
ci − 1

2

)
a2

ij, L(ω) = ∑n
i=1 ωi

Li
n and gj (ω) = ∑n

i=1 ωiaij. Next, we find the
characteristic function for the increments of S∗

j,t:

E
[
exp{iφ

(
S∗

j,T − S∗
j,t

)
} | S∗

j,t, vj(t) = vj,t

]
= ΦG

(
T, φ; L, hj, gj, κj, θj, ξ j, ρj, bj, cj, vj,t, S∗

j,t

)
.

The generic function ΦG is provided in the Appendix B.
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Similarly for the idiosyncratic factors dSi
t with i = 1, 2, . . . , n:

dS∗i
t = ωidSi

t = hi(ω)

(√
ṽi(t) +

b̃i√
ṽi(t)

)2

dt + gi (ω)

(√
ṽi(t) +

b̃i√
ṽi(t)

)
dW̃i,t

where hi(ω) = ωi

(
c̃i − 1

2

)
and gi (ω) = ωi.

Combining all pieces together, we obtain:

ΦZ(t),v(t)(T, ω) =
n

∏
j=1

E
[
exp{iω′ (S·j,T − S·j,t

)
} | St, v(t)

] n

∏
i=1

E
[
exp{iωi

(
Si

T − Si
t

)
} | St, v(t)

]
=

n

∏
j=1

ΦG

(
T, φ; L, hj, gj, κj, θj, ξ j, ρj, bj, cj, vj,t, S∗

j,t

)
×

n

∏
i=1

ΦG

(
T, 1; 0, hi, gi, κ̃i, θ̃i, ξ̃i, ρ̃i, b̃i, c̃i, ṽi,t, S∗i

t

)

Proof. Proof of Corollary 2.
The proof uses Corollary 1, where we express the joint c.f. as the product of one dimensional c.f.s

of 4/2 type.

ΦZ(t),v(t)(T, ω) =
n

∏
j=1

E
[
exp{iω′ (S·j,T − S·j,t

)
} | St, v(t)

] n

∏
i=1

E
[
exp{iωi

(
Si

T − Si
t

)
} | St, v(t)

]
=

n

∏
j=1

ΦG

(
T, φ; L, hj, gj, κj, θj, ξ j, ρj, bj, cj, vj,t, S∗

j,t

)
×

n

∏
i=1

ΦG

(
T, 1; 0, hi, gi, κ̃i, θ̃i, ξ̃i, ρ̃i, b̃i, c̃i, ṽi,t, S∗i

t

)

Hence, every one of these functions (ΦG (T, φ; L, h, g, κ, θ, ξ, ρ, b, c, vt, Zt) = E
[
euZ(T) | Ft

]
)

capture the c.f. of a process of the type:

dZ(t) =

⎡⎣L + h

(√
v(t) +

b√
v(t)

)2
⎤⎦ dt + g

(√
v(t) +

b√
v(t)

)
dWt

dv(t) = α(θ − v(t))dt + ξ
√

v(t)dB(t)

〈dB(t), dW(t)〉 = ρdt

It is not difficult to realize therefore that the c.f. given v(T) can be similarly computed for every
one of those processes, hence one can infer:

ΦZ(t),v(T)(T, ω) =
n

∏
j=1

ΦG,T

(
T, φ; L, hj, gj, κj, θj, ξ j, ρj, bj, cj, vj,T , S∗

j,t

)
×

n

∏
i=1

ΦG,T

(
T, 1; 0, hi, gi, κ̃i, θ̃i, ξ̃i, ρ̃i, b̃i, c̃i, ṽi,T , S∗i

t

)

where ΦG,T (T, φ; L, h, g, κ, θ, ξ, ρ, b, c, vT, Zt) = E
[
euZ(T) | Ft ∪ v(T)

]
is provided next in Appendix B.
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Appendix B. Helpful Results

Given the 4/2 process, the following c.f. are used in this paper:

dZ(t) =

⎡⎣L + h

(√
v(t) +

b√
v(t)

)2
⎤⎦ dt + g

(√
v(t) +

b√
v(t)

)
dWt

dv(t) = α(θ − v(t))dt + ξ
√

v(t)dB(t)

〈dB(t), dW(t)〉 = ρdt

•

ΦG (T, u; L, h, g, α, θ, ξ, ρ, b, c, vt, Zt) = E
[
euZ(T)|Ft

]
= exp

{
uZ(t) +

α2θ

ξ2 (T − t) + u
(

r + 2(h − 1
2
)g2b − gραθ

ξ
+

gbρα

ξ

)
(T − t) + u2(1 − ρ2)g2b(T − t)

}

×

⎛⎝ √
Au

ξ2sinh
(√Au

2 t
)
⎞⎠mu+1

ν(t)
1
2 +

mu
2 − αθ

ξ2 −
ugbρ

ξ

(
Ku(T)−

ugρ

ξ

)−
(

1
2 +

mu
2 + αθ

ξ2 +
ugbρ

ξ

)

× exp
{

ν(t)
ξ2

(
−
√

Au coth
(√

Au(T − t)
2

)
+ α − ugρξ

)} Γ
(

1
2 + mu

2 + αθ
ξ2 +

ugbρ
ξ

)
Γ(mu + 1)

×1 F1

⎛⎝1
2
+

mu

2
+

αθ

ξ2 +
ugbρ

ξ
, mu + 1,

Auν(t)

ξ4(Ku(T)− ugρ
ξ ) sinh2

(√
Au(T−t)

2

)
⎞⎠ ,

with

Au = α2 − 2ξ2
(

u
(

gρα

ξ
+ (h − 1

2
)g2
)
+

1
2

u2(1 − ρ2)g2
)

,

mu =
2
ξ2

√(
αθ − ξ2

2

)2

− 2ξ2
(

u
(

gbρ

ξ

(
ξ2

2
− αθ

)
+ (h − 1

2
)g2b2

)
+

1
2

u2(1 − ρ2)g2b2
)

,

Ku(T) =
1
ξ2

(√
Au coth

(√
Au(T − t)

2

)
+ α

)
•

ΦG,T (T, u; L, h, g, κ, θ, ξ, ρ, b, c, vt, Zt) = E
[
euZ(T)|Ft ∪ v(T)

]
= exp

{
uZ(t) + u

(
r + 2(h − 1

2
)g2b − aραθ

ξ
+

bρα

ξ

)
(T − t) + u2(1 − ρ2)g2b(T − t)

}
× exp

{
ugρ

ξ
(ν(T)− ν(t)) +

ugbρ

ξ
log

ν(T)
ν(t)

}

×
√

Au sinh
(

α(T−t)
2

)
α sinh

(√
Au(T−t)

2

) exp
(

ν(T) + ν(t)
ξ2

(
α coth

(
α(T − t)

2

)
−
√

Au coth
(√

Au(T − t)
2

)))

×
I

2
ξ2

√(
αθ− ξ2

2

)2
+2ξ2Bu

(
2
√

Auν(T)ν(t)

ξ2sinh
(√

Au(T−t)
2

))

I 2αθ
ξ2 −1

(
2α
√

ν(T)ν(t)

ξ2sinh
(

α(T−t)
2

)) ,

with

Bu = u
(

gbρ

ξ

(
ξ2

2
− αθ

)
+ (h − 1

2
)g2b2

)
+

1
2

u2(1 − ρ2)g2b2,
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Abstract: The trend towards eliminating defined benefit (DB) pension plans in favour of defined
contribution (DC) plans implies that increasing numbers of pension plan participants will bear
the risk that final realized portfolio values may be insufficient to fund desired retirement cash
flows. We compare the outcomes of various asset allocation strategies for a typical DC plan investor.
The strategies considered include constant proportion, linear glide path, and optimal dynamic
(multi-period) time consistent quadratic shortfall approaches. The last of these is based on a double
exponential jump diffusion model. We determine the parameters of the model using monthly US data
over a 90-year sample period. We carry out tests in a synthetic market which is based on the same
jump diffusion model and also using bootstrap resampling of historical data. The probability that
portfolio values at retirement will be insufficient to provide adequate retirement incomes is relatively
high, unless DC investors adopt optimal allocation strategies and raise typical contribution rates.
This suggests there is a looming crisis in DC plans, which requires educating DC plan holders in
terms of realistic expectations, required contributions, and optimal asset allocation strategies.

Keywords: defined contribution plan; probability of shortfall; quadratic shortfall; dynamic asset
allocation; resampled backtests

JEL Classification: G11

1. Introduction

Defined benefit (DB) pension plans can be high risk liabilities for both private and public sector
organizations. To de-risk balance sheets, many employers have been gradually converting to defined
contribution (DC) plans. This trend has been particularly strong in Australia and the US: as of 2017,
87% of pension assets in Australia were in DC plans, while the corresponding figure for the US was
60%. In contrast, in countries such as the UK, Canada, and Japan, pension plan assets were still
predominantly in DB plans.1 Of course, considering just the percentage of assets in DC plans at a point
in time can hide the underlying trend. For example, about 95% of Canadian pension assets were in
DB plans as of 2017. However, Gougeon (2009) points out that the number of DC plan participants in
Canada almost doubled between 1991 and 2006, while the number of DB plan participants shrank by
about 4% over the same period.

1 Statistics from the Thinking Ahead Institute’s “Global Pension Assets Study 2018”. Available online: www.
thinkingaheadinstitute.org/-/media/Pdf/TAI/Research-Ideas/GPAS-2018.pdf.
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Under a DC plan, the employee and employer contribute to a retirement savings account, which
is usually tax-advantaged. In some cases, the employee is able to select from a list of investments
(e.g., stock and bond index funds) which have been approved by the employer. However, in terms of
the important decisions about asset allocation, the employee is typically left up to her own devices.

Although DC plans are desirable from the employers’ point of view, the retirement savings risk has
simply been transferred to those who are perhaps least able to manage it. Many studies have confirmed
that the average retail investor is very poor at managing investment portfolios (e.g., Barber and Odean
(2013)). A typical DC plan investor will accumulate savings for thirty or more years, followed by
a decumulation phase of perhaps twenty years. As a result, inefficiencies in asset allocation, even if
small in annual terms, can have very large cumulative effects over a typical long-term retirement
savings investment horizon.

Target date funds (TDFs) have become a popular means of providing an autopilot asset allocation
strategy. The prototypical TDF uses a high allocation to equities during the early years of DC savings.
The stock allocation is decreased, and the portfolio becomes more weighted towards bonds, as the
retirement date nears. The transition from high to low equity allocations is pre-determined by means
of a glide path strategy. In the US, TDFs are Qualified Default Investment Alternatives, implying that
the assets of employees enrolled in an employer-managed DC plan can be invested in a TDF by
default.2 Holt (2018) indicates that total assets in US TDFs at the end of September 2018 were almost
$1.19 trillion, and notes that “given their role as the default investment in many defined contribution
retirement plans, investors can expect to see assets in target-date funds continue to rise over the long
run”.3 This reflects the tendency of many DC plan participants to stick with the default option that is
presented to them. This has been noted in the US context by Madrian and Shea (2001) and Choi et al.
(2002) amongst several others, and by other authors in various other countries as well.4 An implication
of investors’ choosing default options is that default asset allocations will have a strong effect on the
accumulation of savings over time (Dobrescu et al., 2018). Choi et al. (2002) note that

Sophisticated employers should choose their plan defaults carefully, since these defaults
will strongly influence the retirement preparation of their employees. Policymakers should
also recognize the role of defaults, since policymakers can facilitate, with laws and
regulations, the socially optimal use of defaults (Choi et al. 2002, p. 104).

However, several studies have reported that TDFs do not appear to outperform simpler constant
proportion strategies (Arnott et al., 2013; Basu et al., 2011; Esch and Michaud, 2014; Estrada, 2014;
Forsyth and Vetzal, 2019). Clearly, constant proportion strategies which have a significant allocation
to equities could result in a wide range of terminal wealth at the end of the accumulation period.
The fact that TDFs are not superior to such strategies indicates that TDFs are not a panacea for DC
plan investors.

Our objective in this article is to describe realistic outcomes for a typical DC plan investor who
contributes a fixed (real) amount per year to an account containing two possible assets, a low risk
bond fund and an equity index fund, over a lengthy (30 year) accumulation period, and who follows
one of three different asset allocation strategies. The first two of these strategies are often available as
default options in US DC plans, these being a constant proportion strategy and a linear glide path,
which approximately mimics a prototypical TDF. These strategies are both deterministic since the
asset allocation between the bond and equity funds is pre-specified and does not change as a result
of realized investment returns. The third strategy is an optimal dynamic (multi-period) quadratic

2 In other words, the employee must explicitly decide to opt out of a TDF if she desires a different asset allocation strategy.
3 Although our focus in this article is on the US setting, we note that TDFs are now being marketed in various parts of Europe,

in part due to regulatory developments (Pielichata, 2018). Major US vendors such as Vanguard and Fidelity have launched
TDFs in Canada in recent years. In addition, some life-cycle products such as Time Pension which has been popular in
Denmark are similar in some respects to TDFs.

4 See, for example, Hedesström et al. (2004) (Sweden), O’Connell (2009) (New Zealand), and Dobrescu et al. (2018) (Australia).
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shortfall (QS) strategy. While such a strategy is not (to our knowledge) currently available for DC
plan investors, it is an interesting extension to consider since it is adaptive, i.e., the asset allocation is
a function of the prevailing state of the investment portfolio and the time remaining until anticipated
retirement. Our investigation of this strategy allows us to draw conclusions about the extent to
which adaptive strategies could potentially improve savings outcomes compared to the types of
strategies that are currently popular default options. Unlike the constant proportion and glide path
strategies, the QS strategy relies on a parametric model for the equity index. Our implementation
models the real (inflation-adjusted) stock index as following a double exponential jump diffusion
model (Kou and Wang, 2004), which incorporates the risk of sudden market crashes.5 The parameters
of the jump diffusion model are estimated by fitting to nine decades of US market data.

The QS strategy is computed by numerically solving a Hamilton–Jacobi–Bellman (HJB) equation
(Dang and Forsyth, 2014). It is interesting to note that the QS strategy, which is naturally time
consistent, is equivalent to the pre-commitment multi-period mean-variance (MV) strategy, in the
sense that both objective functions lead to the same optimal controls. This can be proven based on
the embedding technique (Li and Ng, 2000; Zhou and Li, 2000). Our numerical approach allows
us to impose realistic no-leverage constraints. This avoids the impractical situation of a highly
leveraged portfolio, which often results for unconstrained pre-commitment MV optimal strategies
(Lioui and Poncet, 2016)6.

As a benchmark case, we consider a constant proportion strategy involving the two assets listed
above: a risk-free bond index and a risky stock index. The portfolio is annually rebalanced. The weights
on the two assets are chosen to achieve a target expected level of real wealth at the end of the savings
period. We then compare this strategy with a glide path and an optimal QS strategy, both of which
are constrained to have the same expected value of final wealth as the constant proportion strategy.
The glide path and constant proportion asset allocation strategies can be considered to be typical of
many DC plan holders. The optimal QS strategy is effectively a best case scenario, in terms of reducing
the probability of shortfall (over a wide range of the terminal wealth distribution) compared to glide
path or constant proportion strategies (Forsyth and Vetzal, 2017b); Forsyth and Vetzal (2019).

We compare these strategies in a synthetic market, in which the equity price process is assumed to
follow a jump diffusion with constant parameters (i.e., the average historical parameters). We also
carry out tests using bootstrap resampling with actual historical data (Cogneau and Zakalmouline,
2013; Dichtl et al., 2016).

We make several assumptions which allow us to convert a desired final salary replacement ratio
into a target real portfolio value after a 30-year contribution period. Our base case example assumes
a target real final salary replacement ratio of 50%, a combined annual employee-employer contribution
of 20% of real salary, and investments in short-term risk-free government bonds and a value-weighted
equity index.

Our two main findings are as follows:

1. With typical glide path or constant proportion strategies, there is an unacceptably large probability
of shortfall in terms of meeting the target final wealth goal.

2. Even with an optimal dynamic QS asset allocation strategy, there is still a fairly high probability
of shortfall. This shortfall probability can be reduced to what we view as a reasonable level by
increasing the total contribution rate or reducing the replacement ratio, compared to the base case.
Another possibility is to substitute an equal-weighted equity index for the value-weighted index,

5 An obvious extension would be a GARCH/stochastic volatility model. However, Ma and Forsyth (2016) document that
mean-reverting stochastic volatility effects for Heston-type stochastic volatility models are negligible for long-term investors.
Since multivariate GARCH/stochastic volatility models are typically mean-reverting, this suggests that stochastic volatility
may be unimportant for long-term investors under these models as well, but this has not been proven.

6 Recall the time consistent QS strategy has the same controls as the pre-commitment MV strategy.
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but this may not work in practice due to higher costs associated with equal-weighted indexes,
which are not recognized in our model.

Our results suggest that most DC plan holders are unlikely to be able to maintain their desired
standard of living upon retirement. In our opinion, the true risks of DC plans have not been
communicated in realistic terms to plan participants. It seems that this situation can be improved only
by simultaneously lowering expectations, increasing savings rates, and improving asset allocation
strategies. We emphasize that while, in principle, an optimal QS strategy could be offered as an option
to DC plan members by a financial intermediary, and this would give those who selected it improved
odds of achieving sufficient levels of retirement savings to maintain their desired living standards in
retirement, by itself this is unlikely to be enough. It will also be necessary to raise savings rates and
reduce expectations about living standards during retirement.

A possible criticism of our findings is based on the fact that our computations use the past 90 years
of US market data. Some would argue that real market returns going forward will be lower than
historically observed values. However, this would only lead to worse results, so it could be argued
that our conclusions should be even more pessimistic.

2. Formulation

We focus exclusively on a simple context with just two assets available in the financial market,
namely a risky asset and a risk-free asset. In practice, the risky asset would be a broad market index
fund. An investor saves for retirement at time T. The amounts that this investor’s portfolio contains
of the risky and risk-free assets at time t are denoted by St and Bt, respectively. The investor’s total
wealth from the portfolio (i.e., the total value of the portfolio) at t is Wt = St + Bt. The fraction of total
wealth invested in the risky asset is pt = St/Wt. The investment period runs from the inception time
t = 0 to the horizon date t = T. There is a set of M + 1 pre-determined action times denoted by T ,

T ≡ {t0 = 0 ≤ t1 ≤ · · · ≤ tM = T} . (1)

At the horizon date tM = T, the portfolio is liquidated. At each action time ti ∈ T1 = T \ {tM}
(i.e., each action time prior to T), (i) an amount of cash qi is contributed to the portfolio and then (ii) the
portfolio is rebalanced.7

Let the instant before action time ti be t−i = ti − ε, where ε → 0+. Similarly, the instant after ti is
denoted by t+i = ti + ε. To simplify notation, let S+

i = St+i
, S−

i = St−i
, B+

i = Bt+i
, B−

i = Bt−i
, W+

i = Wt+i
,

and W−
i = Wt−i

. Similarly, let pt+i
= pi.

Between action times (i.e., t /∈ T ), the value of the investor’s portfolio will fluctuate in accordance
with changes in the unit prices of the two assets. We assume a constant risk-free rate r, so that the
evolution of the amount invested in the risk-free asset is

dBt = rBt dt, t /∈ T . (2)

The dynamics of the changes in the amount invested in the risky asset between action times are
given by the jump diffusion process

dSt

St−
= (μ − λκ) dt + σ dZ + d

(
πt

∑
i=1

(ξi − 1)

)
, t /∈ T , (3)

where μ is the (uncompensated) drift rate, σ is the volatility, dZ is the increment of a Wiener process,
πt is a Poisson process with intensity λ, and ξ denotes the random jump multiplier. When a jump

7 As discussed below, in the case of an optimal QS strategy, the investor may also withdraw cash from the portfolio at an
action time.
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occurs, St = ξSt− , and κ = E[ξ − 1] where E[·] is the expectation operator. We assume that ξi are i.i.d.
positive random variables characterized by a double exponential distribution (Kou and Wang, 2004).
Given that a jump occurs, pup is the probability of an upward jump and

(
1 − pup

)
is the probability of

a downward jump. The density function f (y = log ξ) is then

f (y) = pupη1e−η1y1y≥0 + (1 − pup)η2eη2y1y<0. (4)

We do not permit short sales of the risky asset, and we impose an upper bound on the use of
leverage, i.e., borrowed funds obtained through short sales of the risk-free asset. This means that there
is an upper bound on the weight that the investor can place on the risky asset, which we denote by Lmax.
In other words, 0 ≤ pi ≤ Lmax for all action times ti ∈ T1. Generally, with a DC account, it is reasonable
to specify Lmax = 1, ruling out the use of any leverage. Since the value of the risky asset follows
the jump diffusion (3), if we allow leverage by setting Lmax > 1, the investor can become insolvent.8

We add the further constraint that, if the investor becomes insolvent at any time, then trading stops
and all positions in the risky asset are liquidated.9 In insolvency, debt accumulates until it is (possibly)
eliminated by cash contributions. We emphasize that insolvency can only occur if leverage is allowed,
i.e., Lmax > 1.

2.1. Deterministic Glide Paths

TDFs generally use a deterministic glide path, where the asset allocation depends only on time.
In our case, this would imply pi = p(t). One case is a linear glide path, with

pi = pmax +
ti × (pmin − pmax)

T
, (5)

where pmax and pmin are parameters. Note also that a constant proportion strategy can be viewed as
a deterministic glide path with p = const. for all action times ti ∈ T1.

Between action times, the amounts the investor has in the risk-free and risky assets follow the
processes (2) and (3), respectively. Recalling that qi is a cash contribution, at action times prior to the
horizon date (i.e., ti ∈ T1), we have

W+
i = S−

i + B−
i + qi,

S+
i = piW+

i ,

B+
i = (1 − pi)W+

i . (6)

In the case of deterministic glide paths, closed form recursive expressions for the mean and
variance of terminal wealth WT are developed in Forsyth and Vetzal (2019). The cumulative distribution
function (CDF) for WT is computed using a Monte Carlo method. In our numerical tests below,
we compare all strategies by fixing expected terminal wealth. Since we have closed form expressions
for the mean, we determine the glide path parameters using a Newton iteration in order to enforce
this condition.10

8 Since the investor rebalances her portfolio discretely, insolvency could also occur if Lmax > 1 in the special case of the model
where jumps are ruled out (λ = 0), i.e., the value of the risky asset follows geometric Brownian motion.

9 More precisely, suppose that insolvency occurs at time t, i.e., St + Bt < 0. Letting t+ be the instant after t, then Bt+ = St + Bt
and St+ = 0.

10 For example, we can exogenously specify pmin and find the value of pmax which generates the desired expected terminal
wealth via Newton iteration. Alternatively, we can exogenously set pmax and numerically find the appropriate value of pmin.
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2.2. Adaptive Strategies

In contrast to deterministic strategies where the asset allocation depends only on time, adaptive
strategies allow the asset allocation to depend on the prevailing state of the investment portfolio.
Since we search for the optimal controls over all portfolios with the same wealth after cash injection
(W+

i ), this means that pi = pi(W+
i , t+i ). With an adaptive strategy, it can be optimal to withdraw cash

from the portfolio (Cui et al., 2014; Dang and Forsyth, 2016). We denote this optimal cash withdrawal
as ci ≡ c(W−

i + qi, ti). Since we only allow cash withdrawals, ci ≥ 0. The control at action time ti now
consists of the pair (pi, ci), i.e., after withdrawing ci from the portfolio, rebalance so that the fraction
invested in the risky asset is pi.

For explanatory purposes, let us consider first consider a dynamic (multi-period) MV criterion
with a specified desired value of E[WT ] = Wd. The problem to be solved can be stated as

min
{(p0, c0), ... , (pM−1, cM−1)}

Var [WT ] = E
[
W2

T

]
− W2

d ,

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

At horizon T: E [WT = ST + BT ] = Wd,

Between action times t /∈ T : (Bt, St) follow processes (2), (3),

At action times t ∈ T1:

W+
i = S−

i + B−
i + qi − ci,

S+
i = piW+

i , B+
i = W+

i − S+
i ,

pi = pi
(
W+

i , t
)

, 0 ≤ pi ≤ Lmax,

ci = ci
(
W−

i + qi, t
)

ci ≥ 0.

. (7)

A criticism of the pre-commitment MV problem (7) is that it is time inconsistent. In other words,
the investor has an incentive to deviate from the strategy computed at time zero (Basak and Chabakauri,
2010). However, in order to solve problem (7), we can use the embedding technique (Li and Ng, 2000;
Zhou and Li, 2000). Consider a control set

P =
{(

pi
(
W+

i , t+i
)

, ci
(
W−

i + qi,ti
))

, i = 0, . . . ,M − 1
}

.

Informally, if P∗ is an optimal control for problem (7), then there exists a W∗ such that P∗ is also
the optimal control for the following problem:

min
{(p0, c0), ... , (pM−1, cM−1)}

E
[
(W∗ − WT)

2
]

,

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

At horizon T: E [WT = ST + BT ] = Wd,

Between action times t /∈ T : (Bt, St) follow processes (2), (3),

At action times t ∈ T1:

W+
i = S−

i + B−
i + qi − ci,

S+
i = piW+

i , B+
i = W+

i − S+
i ,

pi = pi
(
W+

i , t
)

, 0 ≤ pi ≤ Lmax,

ci = ci
(
W−

i + qi, t
)

ci ≥ 0.

. (8)

Problem (8) can be solved using dynamic programming methods.11

11 If problem (7) is not convex, there may be solutions to problem (8) that are not solutions to problem (7). However,
these spurious solutions can be eliminated in a straightforward way (Dang et al., 2016; Tse et al., 2014).
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As noted above, it is optimal to withdraw cash from the portfolio under some conditions
(Cui et al., 2012; Dang and Forsyth, 2016). Let

Q� =
j=M−1

∑
j=�+1

e−r(tj−t�)qj (9)

be the discounted planned future contributions to the DC account at time t�. If(
W−

i + qi
)
> W∗e−r(T−ti) − Qi, (10)

then the optimal strategy is to

(i) withdraw cash ci = W−
i + qi −

(
W∗e−r(T−ti) − Qi

)
from the portfolio; and

(ii) invest the remainder
(

W∗e−r(T−ti) − Qi

)
in the risk-free asset.

This is optimal because in this case E
[
(W∗ − WT)

2
]
= 0, which is the minimum of problem (8).

We refer to any cash withdrawn from the portfolio as surplus cash in the following. For the sake of
discussion, we will assume that surplus cash is invested in the risk-free asset, but does not contribute
to the calculation of the mean and variance of terminal wealth.

Allowing cash withdrawals prevents penalization of wealth paths such that WT > W∗, which can
result in forcing the optimal strategy to lose money if market gains are good, which is clearly
an undesirable outcome (Cui et al., 2012; Dang and Forsyth, 2016). We remark that in practice,
this withdrawal can be virtual, i.e., any amount of wealth satisfying equation (10) is simply invested
in the risk-free asset, and and the surplus cash is not taken into account when computing the
optimal fraction to invest in equities. See Dang and Forsyth (2016) for more detail on this. In fact,
if we use continuous rebalancing, then the optimal strategy is such that Equation (10) is never
satisfied (Vigna, 2014). In the discrete rebalancing case, the generation of surplus cash is a low
probability event.

This target-based approach of problem (8) provides a reasonable objective on its own
(Menoncin and Vigna, 2017; Vigna, 2014, 2017). Solving (8) minimizes quadratic shortfall (QS) with
respect to W∗, so we will refer to the resulting strategy as the QS optimal strategy below. However,
this becomes even more compelling when we recall that the solution is also pre-commitment MV
efficient. The solution then simultaneously minimizes two risk measures: variance around the desired
E [WT ] and QS with respect to W∗, as seen at time zero.

We emphasize that the fact that the pre-commitment MV policy is time inconsistent is irrelevant
since we take the point of view that we are seeking the QS optimal control, from problem (8). Since the
QS problem (8) can be solved using dynamic programming, the controls are trivially time consistent.
The fact that the QS problem gives rise to time consistent controls, whereas the MV problem (7) is time
inconsistent, is due to the fact that we fix W∗ for the QS problem, for all time. At time zero, the MV
problem controls and the QS problem controls are the same for W∗ computed at time zero. At later times,
this correspondence holds only if we allow W∗ to change as a function of time. However, using a fixed
W∗ is intuitively reasonable for DC pension plan saving (Menoncin and Vigna, 2017; Vigna, 2014).

We note that there are techniques for forcing a time consistent constraint for the MV problem (7)
(Bjork and Murgoci, 2010, 2014; Bjork et al., 2014; Wang and Forsyth, 2011). However, we prefer
the target based QS approach since it is relatively easy to communicate to end user investors
(Menoncin and Vigna, 2017; Vigna, 2014). In addition, forcing the time consistent constraint can have
result in non-intuitive strategies with strange features (Bensoussan et al., 2019; Wang and Forsyth, 2011).

We formulate problem (8) as the solution of a nonlinear Hamilton–Jacobi–Bellman (HJB) partial
integro differential equation. See Dang and Forsyth (2014) for details concerning the numerical solution.
Given an arbitrary value of W∗, we can solve problem (8) for the optimal control, which we denote by
P∗(W∗). Given the optimal control, cumulative distribution functions are easily found using Monte
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Carlo simulation. However, we seek the solution to problem (7), which is expressed in terms of
a specified expected value E[WT ] = Wd. We determine the value of W∗ for problem (8) which satisfies
the constraint E[WT ] = Wd. We enforce this by a Newton iteration, whereby each function evaluation
requires a solution of an HJB equation.

3. Data and Parameter Estimates

The underlying stochastic model outlined above in Equations (2), (3), and (4) involved a constant
risk-free rate r for the bond component and a double exponential jump-diffusion for the equity
component. Estimation of the parameters of these equations follows the methods described in
Forsyth and Vetzal (2019). These procedures are summarized briefly here for convenience. Readers
interested in additional details are referred to Forsyth and Vetzal (2019).

We use monthly US data obtained from the Center for Research in Security Prices (CRSP) for
the period 1926:1 through 2015:12.12 Our base case uses the CRSP value-weighted total return index
(which includes all distributions for all domestic equities trading on major US exchanges), along with
the CRSP 3-month Treasury bill (T-bill) index. The original data are in nominal terms, but we convert
them to real terms using the US CPI, also obtained from CRSP. We use real indexes since investors
with long-term savings objectives such as funding retirement should concentrate on real (not nominal)
wealth goals. For some tests, we use alternative underlying assets: the CRSP equal-weighted total
return index (which invests the same amount in each component security, rather than weighting by
market capitalization) and a 10-year US Treasury bond (T-bond) index.

Figure 1 provides plots of monthly real returns for the 3-month T-bill, 10-year T-bond, value-weighted
total return, and equal-weighted total return indexes. For comparability, all four indexes are plotted
with the same vertical axis scale. As expected, the two equity indexes exhibit much higher volatility,
with occasional months having returns of large magnitude. This provides a measure of support to our
modelling assumptions which assume a constant interest rate but a jump diffusion specification for
the equity index. It is also interesting to observe that there was extremely high equity market volatility
during the 1930s. By contrast, volatility during the period following the financial crisis that began in
2007 was comparatively mild.

Figure 2 graphs cumulative real returns for the four investment indexes. The vertical axis uses
a logarithmic scale. This enhances visibility over time, as otherwise the dramatic growth in the equity
indexes over the latter part of the sample obscures the behaviour of those indexes during the earlier
periods and renders the behaviour of the two Treasury indexes all but invisible. All four indexes
begin at a value of 100 at the start of 1926. The equal-weighted index ends up with the highest value.
The historical outperformance of equal-weighting has been attributed to such portfolios having higher
exposure to value, size, and market factors (Plyakha et al., 2014). It is also interesting to observe
that the 10-year T-bond index had higher cumulative returns than the 3-month T-bill index, but that
was entirely due to the post-1980 period: prior to then, the longer maturity T-bond index offered no
cumulative advantage over the T-bill index.

Table 1 presents parameter estimates. A threshold method (Cont and Mancini, 2011) was used for
the jump diffusion model. These parameter estimates were originally provided in Forsyth and Vetzal
(2019), and are reproduced here for convenience. The estimates using the value-weighted equity market
index imply an expected real annual return of close to 9%, about 3% lower than the corresponding
value for the equal-weighted index. Of course, the price to be paid for this difference is higher risk.
The equal-weighted index shows higher diffusive volatility (σ). Since jumps are expected to occur on
average every 1/λ years, the equal-weighted index tends to have jumps a bit more often. Conditional

12 More precisely, our calculations are based on data from Historical Indexes, c©2015 Center for Research in Security Prices
(CSRP), The University of Chicago Booth School of Business. Wharton Research Data Services (WRDS) was used in preparing
this work. This service and the data available thereon constitute valuable intellectual property and trade secrets of WRDS
and/or its third-party suppliers.
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on a jump occurring, it is much more likely to be a downward jump in each case. Average jump
magnitudes are 1/η1 for upward jumps and 1/η2 for downward jumps, and these are both larger for
the equal-weighted index. A similar comment applies to the standard deviation of the jump size since
this is equal to the mean for the exponential distribution. Turning to the bond market indexes, Table 1
shows that the long run average real annual return for the 10-year T-bond index was just over 2%,
while that for the shorter maturity index was around 80 basis points. Of course, these higher returns
are accompanied by higher volatility, as indicated by the top two plots of Figure 1.
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Figure 1. Monthly real returns for US investment indexes, 1926–2015.
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Figure 2. Cumulative real returns for US investment indexes, 1926–2015.
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Table 1. Annualized parameter estimates based on real monthly data from 1926:1 to 2015:12.
These values originally appeared in Forsyth and Vetzal (2019) and are reproduced here for
convenience. Parameters for the equity market indexes were estimated using the threshold
technique of Cont and Mancini (2011). The average returns for the bond indexes were calculated
as log[B(T)/B(0)]/T, where B(t) denotes the index level at the time t.

Equity Market Index μ σ λ pup η1 η2

Value-weighted 0.0889 0.1477 0.3222 0.2759 4.4273 5.2613
Equal-weighted 0.1183 0.1663 0.4000 0.3333 3.6912 4.5409

Bond Market Index Average Return

3-month T-bill 0.00827
10-year T-bond 0.02160

3.1. Robustness to Parameter Estimation

Our main purpose for calibrating the parameters for the stochastic processes (3) is to determine
a control strategy (i.e., fraction in risky asset at rebalancing dates). Consequently, our concern is
with the effect of calibration errors on the computed strategy, rather than minimizing fit errors in an
econometric sense. In Forsyth and Vetzal (2017a) and in Dang and Forsyth (2016), an extensive study of
the effect of parameter ambiguity is carried out. In particular, the parameters for stochastic process (3)
were determined using maximum likelihood, and threshold techniques with various parameters.
Robustness of the strategy (in the synthetic market) was tested by using Monte Carlo simulations with
different parameters than were used in computing the optimal strategy. For example, the strategy was
computed and stored, assuming parameters determined from the threshold strategy. Then, this strategy
was tested using Monte Carlo simulations, in a synthetic market driven by a stochastic process with
parameters determined using maximum likelihood. In other words, the parameters used to compute
the strategy were misspecified. In all combinations of methods, the results were robust to this type of
parameter misspecification.

However, the real test of our strategies is their performance on bootstrapped resampled tests.
In the bootstrap tests, we make no assumptions about the stochastic process followed in the historical
market. However, in all our bootstrap tests, the adaptive quadratic shortfall strategy (computed using
the estimated market parameters) outperforms the glide path and constant proportion strategies.

4. Base Case Scenario

We consider an example where a DC plan member wants to generate retirement income (in real
terms) of a specified fraction R of final salary. Studies have shown that earnings for a typical
employee increase rapidly until the age of 35, then increase slowly thereafter, until a few years
before retirement, and then decrease as fewer hours are worked in the transition to retirement
(Cocco et al., 2005; Ruppert and Zanella, 2015). Given an initial real annual salary I0, we assume that
real annual income in year t before retirement is given by It = eμI t I0. In other words, salary is expected
to grow in real terms at a constant annual rate μI . Upon retirement at time T, real annual salary
is eμI T I0. Our assumptions would be relevant to a 35 year old employee with stable employment,
who intends to work full-time until the age of 65.

To determine the amount of real wealth required to fund this replacement income during
retirement, we use the well-known 4% rule of Bengen (1994). Bengen examined historical data to
determine the maximum real withdrawal rate that a retiree could safely use without exhausting her
assets over a 35 year period. Bengen assumed that accumulated pension wealth was invested in
a portfolio having half invested in stocks and half invested in intermediate-term US Treasury securities,
and concluded that a 4% withdrawal rate (escalated by the rate of inflation) was quite safe.

Dang et al. (2017) recently revisited this rule. The problem was posed somewhat differently:
the idea was to determine a real withdrawal rate such that half of the real wealth at the start of
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retirement remained after 20 years, with high probability. Rather than using fixed portfolio weights as
in Bengen (1994), the portfolio was invested in stocks and bonds according to the QS optimal strategy
described above. Dang et al. concluded that the 4% rule still held up well under the revised assumptions.

An obvious alternative way to generate retirement cash flows is to buy a lifetime annuity. However,
in practice most retirees are not willing to do this, for a variety of reasons (MacDonald et al., 2013).
In the current environment of low real interest rates, annuities provide rather low income, so the
reluctance of retirees to use them is particularly unsurprising.

Consequently, we pose the pension accumulation problem as follows. The desired expected
accumulated real wealth at retirement Wd is

E[WT ] = Wd =
ReμI T I0

wr
, (11)

where R is the replacement ratio, I0 is the initial salary, μI is the real salary escalation rate, T is the
end of the accumulation period, and wr is the safe withdrawal rate. Recall that above we denoted
the set of action times prior to T as T1. We assume that cash is contributed into the portfolio at
time ti ∈ T1. The initial cash contribution at t0 is Fc I0, where Fc is the real contribution fraction.
This contribution fraction represents the total amount contributed by both the employee and the
employer to all retirement savings accounts, but excludes any government sponsored universal
schemes (e.g., CPP in Canada, Social Security in the US). We also assume that these accounts are
tax-advantaged, i.e., no tax is paid during the accumulation phase. At subsequent action times ti ∈ T1

(i.e., after the initial contribution), the amount contributed is assumed to be Fc I0eμi ti .
Table 2 summarizes the data for this base case scenario. As indicated in the table, we assume

a replacement fraction of 50%, an initial salary of $50,000, and a real escalation rate of 1.27%.13

Combined contributions by the employee and employer to the retirement savings portfolio are 20% of
real salary each year. For simplicity, these contributions are assumed to be made at the start of each
year during a 30 year accumulation period. The safe withdrawal rate is assumed to be 4%, in line with
Bengen (1994) and Dang et al. (2017). Applying these parameters to Equation (11), we find that the
expected (real) desired terminal wealth Wd is

E[WT ] = Wd =
0.50
0.04

× $50,000e.0127×30 � $915,000. (12)

Note that the specification given in Equation (11) implies that decreasing the withdrawal rate wr

has the same effect as increasing the replacement fraction R or the salary escalation rate μI .

Table 2. Data for base case scenario. Cash is injected into the portfolio at times t = 0, 1, . . . , 29. Market
parameters for the equity and bond indexes are provided in Table 1.

Initial salary I0 $50,000
Salary escalation rate μI 0.0127 (Bloom et al., 2014)
Contribution fraction Fc 0.20
Accumulation period T 30 years
Safe withdrawal rate wr 0.04
Equity index Value-weighted
Bond index 3-month T-bill
Investment strategies Constant proportion, glide path, QS optimal
Rebalancing interval 1 year
Maximum leverage indicator Lmax 1.0
If insolvent Trading stops

13 As noted by Bloom et al. (2014), this rate has been used by the US Congressional Budget Office in its long-term projections.
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As indicated in Table 2, the retirement savings portfolio is invested in the value-weighted index
and the 3-month T-bill index. Relevant parameters for these indexes are given in Table 1. We consider
three alternative investment strategies:

• Constant proportion, i.e., p = const.
• Linear glide path, as in Equation (5).
• Time consistent QS optimal strategy, as described in Section 2.2. Recall that this strategy is also

multi-period pre-commitment MV optimal.

Each of these strategies is rebalanced annually. We start with the constant proportion strategy, and
determine the equity weight such that E[WT ] = $915,000, assuming the market parameters given in
Table 1 for the value-weighted equity index and the 3-month T-bill index. This turns out to be 0.5788.14

We then turn to the linear glide path strategy. In this case, we specify pmax = 1.0, and then determine
that the value of pmin = 0.3066 is needed to have E[WT ] = $915,000. We proceed similarly for the QS
optimal strategy given by the solution to problem (8). Imposing the leverage constraint Lmax = 1.0,
we find by Newton iteration that the value of W∗ which results in E[WT ] = $915,000 is $1,106,200.
We compute and store the optimal control associated with this value of W∗ in order to test this strategy.
Note that:

• When we change input parameters (e.g., invest in different assets, allow Lmax > 1, etc.), we may
need to recompute the expected wealth target E[WT ] = Wd, the equity weight for the constant
proportion strategy, the glide path parameters (pmax, pmin), and the quadratic wealth target W∗

(along with the associated optimal control) in order to meet this target.
• The quadratic wealth target W∗ exceeds the target expected real terminal wealth Wd = E[WT ].

This is because the QS optimal strategy will de-risk if W∗ is attainable by investing only in the
risk-free asset, so there is not much chance of exceeding this quadratic target by a significant
amount. This implies that the average terminal wealth, factoring in paths where the accumulated
savings does not ever reach W∗, must be lower than W∗.

We compare these three strategies using two different types of simulation tests. As an initial
test, we assume that the stochastic environment described in Table 1 holds exactly. In other words,
the level of the equity market index follows a double exponential jump diffusion with the parameters
given in Table 1 and the bond market index is non-stochastic, with a constant risk-free interest rate as
indicated in that table. We refer to this as a synthetic market. In such a market, we draw 160,000 Monte
Carlo simulated paths and compute performance statistics. Note that these comparisons are based
on a simulated environment that corresponds exactly to the environment used to formulate the
strategies. As a second and more stringent test, we draw simulated paths by bootstrap resampling
of the historical return data and compute the same performance statistics. We refer to this type of
backtest as a historical market. This is a stricter test since it does not assume that the equity market
follows a jump diffusion process or that the risk-free interest rate is constant over time, although
those assumptions are still used to generate the strategies that are followed. A single resampled
path is constructed by pasting together enough blocks of monthly historical return data to cover
the investment horizon of 30 years. The sampling is done in blocks to account for possible serial
dependence. The blocks are selected simultaneously from both the historical stock and bond market
indexes, to incorporate possible correlations. The blocks are chosen randomly, with replacement.
To avoid end issues, the historical data is wrapped around.15 To reduce the impact of a fixed blocksize
and mitigate edge effects at each block end, we use the stationary block bootstrap (Patton et al., 2009;

14 This is a bit more aggressive in terms of taking on equity market risk than the strategy considered by Bengen (1994) which
involved equal weights between the equity and bond markets. Keep in mind that here we are investing in a 3-month T-bill
index, whereas Bengen used intermediate maturity Treasury bonds which offer somewhat higher average returns.

15 In other words, if the size of a block extends past the end of the sample in 2015:12, the return data resumes at the start of the
sample in 1926:1 for the duration of the block.
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Politis and White, 2004) where the blocksize is sampled randomly from a geometric distribution
with an expected value of b̂. In principle, the optimal expected blocksize can be estimated using
an algorithm provided by Patton et al. (2009). As discussed in Forsyth and Vetzal (2019), this approach
is not easily applied in our context. This is because the estimated optimal blocksizes for the different
market indexes we consider (i.e., the value-weighted and equal-weighted US equity market indexes
and the 3-month T-bill and 10-year T-bond indexes) vary considerably, ranging from about two months
for the value-weighted stock index to more than four years for the T-bill index. Recall that we sample
simultaneously from both a stock index and a bond index, so we must use the same blocksize for both
indexes, and our strategies involve weighted combinations of two of these indexes that can change
deterministically (glide path) and also randomly (QS optimal) along a simulation path. As a result,
we report results for a range of expected blocksizes b̂, acknowledging that the choice of b̂ for our
application is open to debate.

Table 3 gives the results for the base case input data from Table 2. Consider first the synthetic
market. By construction, all three strategies have the same expected value of real terminal wealth at
the retirement date of 915 (units in the table are in thousands of dollars). The constant proportion and
glide path strategies are effectively indistinguishable, having the same standard deviation of terminal
wealth and the same probability of ending up with wealth below 700 or below 800. By contrast,
the QS optimal strategy has much lower standard deviation or shortfall probability for those two levels
of terminal wealth, by a factor of around two in each case. In addition, this strategy offers a small
amount of expected surplus cash (this surplus is not applicable for the other two strategies). Turning
to the historical market results for expected blocksizes of 1, 2, and 5 years, we reach generally similar
conclusions. Of course, the expected values no longer are exactly equal to the target of 915, but the
difference from this target is much lower for the QS optimal strategy. The constant proportion and
glide path strategies are again quite comparable to each other, with the glide path having slightly
lower expected value and standard deviation, but a bit higher shortfall probability (for the two values
of WT considered). In all cases, the QS optimal strategy offers the best performance, with higher mean,
lower standard deviation, and lower shortfall probability, as well as a modest amount of expected
surplus cash.

Table 3. Base case scenario results. Wealth units: thousands of dollars. Input data provided in Tables 1
and 2. Synthetic market results computed using Monte Carlo simulations with 160,000 sample paths.
Historical market results based on 10,000 bootstrap resampled paths using data from 1926:1 to 2015:12.

Strategy
Expected Standard Pr(WT < 700) Pr(WT < 800)

Expected
Value Deviation Surplus Cash

Synthetic Market
Constant proportion 915 519 0.39 0.51 NA
Glide path 915 519 0.39 0.51 NA
QS optimal 915 244 0.19 0 .24 21

Historical Market (Expected blocksize b̂ = 1 year)
Constant proportion 876 402 0.38 0.51 NA
Glide path 872 398 0.39 0.52 NA
QS optimal 904 232 0.18 0.24 26

Historical Market (Expected blocksize b̂ = 2 years)
Constant proportion 869 376 0.38 0.51 NA
Glide path 866 372 0.39 0.52 NA
QS optimal 911 221 0.17 0.23 31

Historical Market (Expected blocksize b̂ = 5 years)
Constant proportion 862 349 0.37 0.50 NA
Glide path 861 347 0.38 0.51 NA
QS optimal 924 213 0.16 0.21 38
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Figure 3a shows the cumulative distributions for all three strategies in the historical market
(expected blocksize of two years). The distributions for the constant proportion and glide path strategies
are practically identical. Over the bulk of the distribution, the QS optimal strategy exhibits clearly
better performance than the others. However, the QS optimal strategy performs a little worse than the
alternatives in the extreme left tail.16 This happens because there can be paths where the equity market
trends downward for a very large portion of the investment horizon. In such cases, all strategies do
poorly, but the QS optimal strategy will remain fully invested in the equity market in an attempt to
recover and meet the quadratic wealth target. The QS optimal strategy also underperforms in the
extreme right tail of the distribution. This is because there are paths where the equity market trends
strongly upward over most of the investment period. Once the quadratic wealth target is reached,
however, the QS optimal strategy de-risks, shifting all investment into the low return bond market.
It does not capitalize on the continued strong equity market performance. The other two strategies,
by comparison, retain a large equity market exposure, leading to higher terminal wealth. However,
we reiterate that, over most of the distribution, the QS optimal strategy provides better results.

Figure 3b depicts properties of the optimal control for the QS optimal strategy. This strategy
invests entirely in the equity market for the first several years. The percentage invested in the risky
asset subsequently trends downward on average over time. However, there is considerable variation:
the standard deviation of the optimal control rises strongly over time, indicating that the allocation to
equities is quite sensitive to realized investment returns.17
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Figure 3. Base case scenario results in the historical market. Input data provided in Tables 1 and 2.
Results based on 10,000 bootstrap resampled paths using data from 1926:1 to 2015:12 with expected
blocksize b̂ = 2 years. (a) cumulative distributions of real terminal wealth for various strategies. Wealth
units: thousands of dollars; surplus cash included for the QS optimal case; (b) mean and standard
deviation of the fraction allocated to the equity market for the QS optimal strategy.

The historical market results given in Table 3 are somewhat encouraging for the QS optimal
strategy. To formulate this strategy, recall that we assumed a double exponential jump diffusion model
with known parameters for the equity market index and a constant risk-free interest rate. Our bootstrap
resampled historical market tests make no such assumptions, yet deliver results that are fairly close to

16 In other words, the QS optimal strategy will appear riskier than the constant proportion or glide path strategies according
to tail risk measures such as value-at-risk or conditional value-at-risk, provided that the risk measure is calculated using
sufficiently low cumulative probabilities.

17 Of course, the equity allocation for the constant proportion and glide path cases is fixed in advance, being at most
time-dependent and not varying at all in response to realized returns.
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those observed in the synthetic market tests which maintain these assumptions. This indicates that the
QS optimal strategy is quite robust to departures from these assumptions.

As an additional test of the robustness of the QS optimal strategy, we explore the effect of
computing and storing the optimal control based on constant parameters from Table 1 but then
allowing the synthetic equity market parameters to vary randomly in simulation tests. To be specific,
we carry out Monte Carlo simulations where at each action time ti ∈ T1 and along each stochastic
path we select (μ, σ) from a uniform distribution having mean equal to the corresponding values from
Table 1. This set of (μ, σ) is then used for the interval (ti, ti+1).

Table 4 shows the results. The first row reproduces the values reported in Table 3 for this strategy in
the synthetic market, while the remaining two rows provide results when μ and σ are varied randomly
within the given range. Table 4 indicates that only an estimate of the mean of the distribution of the
market parameters μ and σ is needed to compute an effective control strategy. This is consistent with
the results in Ma and Forsyth (2016), where it is shown that including stochastic volatility effects results
in negligible improvements in results for long-term (i.e., greater than ten years) investors.

Table 4. Base case scenario results for the QS optimal strategy with random variation of market
parameters μ and σ, Wealth units: thousands of dollars. Input data provided in Tables 1 and 2, except
as noted. Monte Carlo simulations with (μ, σ) drawn from a uniform distribution with the indicated
limits along each of 160,000 paths.

Market Parameters
Expected Standard Pr(WT < 700) Pr(WT < 800)

Expected
Value Deviation Surplus Cash

Synthetic market 915 244 0.19 0.24 21
μ ∈ [0.04889, 0.01289] 916 245 0.19 0.24 21
σ ∈ [0.1077, 0.1877] 915 245 0.19 0.24 21

Overall, then, for the base case data in Table 2, the QS optimal strategy appears to be fairly robust
to parameter and model mis-specification. Moreover, this strategy clearly outperforms the constant
proportion and glide path alternatives over most of the terminal wealth distribution. It provides
about the same mean terminal wealth, but has considerably lower standard deviation and shortfall
probability (for the two wealth levels considered in Table 3). However, even the QS optimal strategy
delivers somewhat disappointing results in absolute terms. Recall that we are trying to achieve average
real terminal wealth of $915,000. In the idealized synthetic market which conforms exactly to the
modelling assumptions used to generate the controls for the QS optimal strategy, Table 3 shows that
there is almost a 20% chance of ending up with real terminal wealth below $700,000, and about a 25%
chance of ending up with less than $800,000. These shortfall probabilities do not change much under
the conditions of the historical market backtests. Of course, these rather pessimistic results so far have
only considered the base case data. In the following section, we investigate whether more promising
results can be achieved under different assumptions.

5. Alternative Assumptions

The base case results in Section 4 relied on the input parameters given in Tables 1 and 2, for the
value-weighted equity and 3-month T-bill indexes. We now explore the effects of altering our
assumptions about factors such as the contribution fraction, the salary escalation rate, the maximum
amount of leverage permitted, the underlying indexes to be used, and the salary replacement ratio.
We consider each of these in turn. For the most part, we only use the QS optimal strategy since it has
been shown above to be generally superior to the constant proportion and glide path strategies.

5.1. Effect of Contribution Fraction

Our base case described by Table 2 assumed a total combined contribution by the employee and
employer of Fc = 20% of salary. Table 5 reports the effects of dropping this to 15% or increasing it to 25%
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for the QS optimal strategy. As is to be expected, the table shows that risk (measured either in terms of
standard deviation or the reported shortfall probabilities) decreases significantly as Fc rises. However,
even in the case where 25% of the employee’s salary is contributed to the retirement savings plan,
there is still almost a 15% chance that real terminal wealth is less than $800,000, considerably lower
than the target of $915,000. A broader comparison of these cases is provided in Figure 4, which depicts
the cumulative distributions of real terminal wealth. The cases where Fc = 20% and Fc = 25% appear
quite comparable for values of WT ≥ $915,000 over the plotted range, but the higher contribution
fraction case appears to be much safer over a wide range below the target. The high savings rate
leads to a notably increased amount of expected surplus cash. Along paths with strong equity market
returns, the target can be reached relatively early, but the model assumes that savings continue each
year (in this case at a high rate), so surplus cash can build up. The case where Fc = 15% exhibits poor
performance on the downside, but is somewhat better on the upside. With a low amount of money
saved, more risk must be taken on in order to reach the target. Doing so works out very well if realized
returns are strong, and quite poorly if they are not.

Table 5. Effect of varying contribution fraction Fc for the QS optimal strategy. Wealth units: thousands
of dollars. Input data provided in Tables 1 and 2, except as noted. Synthetic market results computed
using Monte Carlo simulations with 160,000 sample paths. Historical market results based on 10,000
bootstrap resampled paths using data from 1926:1 to 2015:12.

Fc
Expected Standard Pr(WT < 700) Pr(WT < 800)

Expected
Value Deviation Surplus Cash

Synthetic Market
0.15 915 440 0.36 0.42 18
0.20 915 244 0.19 0.24 21
0.25 915 150 0.09 0.13 21

Historical Market (Expected blocksize b̂ = 2 years)
0.15 916 380 0.34 0.41 12
0.20 911 221 0.17 0.23 31
0.25 909 126 0.07 0.14 67
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Figure 4. Cumulative distributions of real terminal wealth for various contribution fractions Fc for the
QS optimal strategy. Wealth units: thousands of dollars. Input data provided in Tables 1 and 2, except
as noted. Historical market results based on 10,000 bootstrap resampled paths using data from 1926:1
to 2015:12 with expected blocksize b̂ = 2 years; surplus cash included.

92



J. Risk Financial Manag. 2019, 12, 70

5.2. Effect of Salary Escalation Rate

We now examine the effect of changing the salary escalation rate μI from the base case value of
1.27% given in Table 2. Note that this will result in a different expected real wealth target Wd, based on
Equation (11). Table 6 summarizes the results for both the synthetic market and the historical market,
using the QS optimal control. For comparability, the table expresses the results in terms of WT/Wd,
i.e., real terminal wealth as a fraction of the expected wealth target. Obviously, a higher escalation
rate leads to a higher final salary. Given a fixed salary replacement ratio, this translates into a higher
expected value of terminal wealth Wd. For example, with μI = 1.75%, we have Wd = $1,056,000 instead
of $915,000 as in the base case. The results in Table 6 are quite similar in the synthetic and historical
markets, on a case by case basis. For each set of tests, the standard deviation and shortfall probabilities
show an increase with μI . With a higher salary and a fixed contribution fraction, there will obviously
be a higher amount of saving. Despite this, the associated higher real terminal wealth target results in
a higher level of risk. This is borne out in Figure 5, which plots the cumulative distribution functions of
normalized real terminal wealth WT/Wd for the various values of μI . The highest salary escalation rate
has the worst performance for low WT/Wd, and the best performance for high WT/Wd. Taking on more
risk to reach the higher wealth target works out well if investment returns are favourable, and poorly
if they are not. Conversely, the lowest value of μI results in the best performance if investment returns
are weak, and the worst performance if they are not.

Table 6. Effect of varying salary escalation rate μI for the QS optimal strategy. Units for Wd: thousands
of dollars. Remaining wealth values are normalized by Wd for each case. Input data provided in
Tables 1 and 2, except as noted. Synthetic market results computed using Monte Carlo simulations
with 160,000 sample paths. Historical market results based on 10,000 bootstrap resampled paths using
data from 1926:1 to 2015:12.

μI

Wealth Expected Standard
Pr(WT /Wd < 0.8) Pr(WT /Wd < 0.9)

Expected
Target Value Deviation Surplus Cash

Wd (WT /Wd) (WT /Wd) (/Wd)

Synthetic Market
0.0175 1056 1.0 0.31 0.25 0.30 0.02
0.0127 915 1.0 0.27 0.20 0.25 0.02
0.0075 783 1.0 0.22 0.15 0.21 0.02

Historical Market (Expected blocksize b̂ = 2 years)
0.0175 1056 0.99 0.29 0.23 0.29 0.03
0.0127 915 0.97 0.24 0.18 0.25 0.03
0.0075 783 0.99 0.19 0.14 0.21 0.04

5.3. Effect of Leverage

All of the results presented thus far have specified Lmax = 1, as indicated in Table 2. We now
consider increasing this to Lmax = 1.5, thereby allowing the use of 50% leverage. Table 7 documents the
results for the QS optimal strategy. It is interesting to observe that the risk measures shown (standard
deviation of WT and the two shortfall probabilities) each indicate somewhat lower risk when the use
of leverage is permitted. In one sense, this is obvious: relaxing a constraint cannot lead to worse
performance. On the other hand, leverage is often not allowed since it is perceived to be “risky”.
The issue here is what is meant by risk. We have defined it on the basis of the value of terminal wealth.
Leverage constraints, however, are typically motivated by concerns that portfolio values during the
accumulation period (not at the end of the period) will fluctuate excessively.
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Figure 5. Cumulative distributions of normalized real terminal wealth for various salary escalation
rates μI for the QS optimal strategy. Input data provided in Tables 1 and 2, except as noted. Historical
market results based on 10,000 bootstrap resampled paths using data from 1926:1 to 2015:12 with
expected blocksize b̂ = 2 years; surplus cash included.

Table 7. Effect of varying maximum leverage indicator Lmax for the QS optimal strategy. Wealth units:
thousands of dollars. Input data provided in Tables 1 and 2, except as noted. Synthetic market results
computed using Monte Carlo simulations with 160,000 sample paths. Historical market results based
on 10,000 bootstrap resampled paths using data from 1926:1 to 2015:12.

Lmax
Expected Standard Pr(WT < 700) Pr(WT < 800)

Expected
Value Deviation Surplus Cash

Synthetic Market
1.0 915 244 0.19 0.24 21
1.5 915 205 0.12 0.17 24

Historical Market (Expected blocksize b̂ = 2 years)
1.0 911 221 0.17 0.23 31
1.5 904 186 0.11 0.18 46

Figure 6a shows the cumulative distributions of real terminal wealth when leverage is allowed
and when it is not. The cumulative distributions are fairly similar for high levels of terminal wealth.
Over a wide range of wealth levels below the target of $915,000, the strategy which permits leverage
performs better. However, in the extreme left tail of the distribution, it turns out to be worse to allow
leverage. These very low wealth levels occur as a result of very poor equity market returns over most
of the investment horizon. The QS optimal strategy continues to try to reach the quadratic wealth
target, so it invests completely in the equity market to the extent possible. With continued poor returns,
leverage in this case amounts to doubling down on a losing bet.
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Figure 6. Results for cases allowing and excluding leverage. Input data provided in Tables 1 and 2,
except as noted. Historical market results based on 10,000 bootstrap resampled paths using data from
1926:1 to 2015:12 with expected blocksize b̂ = 2 years. (a) cumulative distribution function of real
terminal wealth for cases allowing leverage (Lmax = 1.5) and excluding it (Lmax = 1). Wealth units:
thousands of dollars; surplus cash included; (b) mean and standard deviation of the fraction allocated
to the equity market for the case where leverage (Lmax = 1.5) is allowed.

5.4. Long-Term Bond Index

All of the results presented thus far were based on the value-weighted equity index and the
3-month T-bill index. In this section, we explore the effects of substituting the 10-year T-bond index
for the T-bill index. Recall from Table 1 that the long-term bond index had average annual real
returns of 2.16%, about 1.3% higher than the T-bill index. Of course, these higher average returns are
accompanied by higher volatility (Figure 1), but that is ignored when we formulate the QS optimal
strategy since we assume constant interest rates. Table 8 shows results for the constant proportion,
linear glide path, and QS optimal strategies when the 10-year T-bond index is used in lieu of the
3-month T-bill index. The general pattern in Table 8 is similar to that seen earlier in Table 3. The QS
optimal approach achieves roughly the same expected real terminal wealth, but takes on considerably
lower risk compared to the other two strategies, as measured by standard deviation of WT or either of
the two shortfall probabilities considered. Comparing the results from Tables 3 and 8, we observe that
the standard deviation and shortfall probabilities for each strategy are a little lower in the synthetic
market when the 10-year T-bond index is used. This also holds in the historical market for the constant
proportion and glide path strategies, but is not the case for the QS optimal strategy in terms of the
shortfall probabilities. For example, the probability of real terminal wealth being lower than $800,000
is 23% if the 3-month T-bill index is used, but 26% when the 10-year T-bond index is used. The overall
conclusion, however, is that replacing the 3-month T-bill index by the 10-year T-bond index does not
make much difference. This picture is reinforced by comparing the cumulative distributions of real
terminal wealth shown in Figure 7 based on the 10-year T-bond index with those shown previously in
Figure 3a for the 3-month T-bill index.
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Table 8. Results for the optimal QS strategy when the 10-year T-bond index is used instead of the
3-month T-bill index. Wealth units: thousands of dollars. Input data provided in Tables 1 and 2, except
as noted. Synthetic market results computed using Monte Carlo simulations with 160,000 sample paths.
Historical market results based on 10,000 bootstrap resampled paths using data from 1926:1 to 2015:12.

Strategy
Expected Standard Pr(WT < 700) Pr(WT < 800)

Expected
Value Deviation Surplus Cash

Synthetic Market
Constant proportion 915 437 0.34 0.47 NA
Glide path 915 438 0.34 0.48 NA
QS optimal 915 222 0.16 0.21 19

Historical Market (Expected blocksize b̂ = 2 years)
Constant proportion 900 374 0.34 0.47 NA
Glide path 897 376 0.34 0.48 NA
QS optimal 881 201 0.17 0.26 67
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Figure 7. Cumulative distribution of real terminal wealth for QS optimal, glide path, and constant
proportion strategies when the 10-year T-bond index is used. Wealth units: thousands of dollars.
Input data provided in Tables 1 and 2, except as noted; surplus cash included for the QS optimal
strategy. Historical market results based on 10,000 bootstrap resampled paths using data from 1926:1
to 2015:12. Expected blocksize b̂ = 2 years.

5.5. Equal-Weighted Equity Index

As shown above in Figure 2, an equal-weighted equity index has historically outperformed the
value-weighted equity index that has been used for all results to this point. We now consider the impact
of replacing the value-weighted index by its equal-weighted counterpart. Note that the bond index
used here is the 3-month T-bill index. Table 9 provides the results. Whether in the idealized synthetic
market or the backtest historical market, the QS optimal strategy clearly outperforms the constant
proportion and glide path alternatives by the criteria given in the table. In the synthetic market, the QS
optimal strategy achieves the same E[WT ] with dramatically lower standard deviation of WT and
shortfall probability, along with the possibility of a modest amount of surplus cash. The same general
conclusions apply in the historical market, although it is worth noting that the average real terminal
wealth for the other strategies is somewhat lower for all expected blocksizes considered. Comparing
the results in Table 9 for the equal-weighted equity index with those reported above in Table 3 for the
value-weighted index, it can be seen that the shortfall probabilities are now considerably lower for
the QS optimal strategy, but almost unchanged for the other strategies. The standard deviation of WT ,
however, is substantially lower for all of the strategies.
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Table 9. Results when the equal-weighted equity index is used instead of the value-weighted equity
index. Wealth units: thousands of dollars. Input data provided in Tables 1 and 2, except as noted.
Synthetic market results computed using Monte Carlo simulations with 160,000 sample paths. Historical
market results based on 10,000 bootstrap resampled paths using data from 1926:1 to 2015:12.

Strategy
Expected Standard Pr(WT < 700) Pr(WT < 800)

Expected
Value Deviation Surplus Cash

Synthetic Market
Constant proportion 915 546 0.38 0.51 NA
Glide path 915 553 0.39 0.52 NA
QS optimal 915 185 0.11 0.16 44

Historical Market (Expected blocksize b̂ = 1 year)
Constant proportion 837 327 0.39 0.54 NA
Glide path 831 319 0.39 0.55 NA
QS optimal 904 162 0.10 0.16 49

Historical Market (Expected blocksize b̂ = 2 years)
Constant proportion 827 293 0.38 .54 NA
Glide path 820 283 0.38 0.55 NA
QS optimal 915 139 0.07 0.13 51

Historical Market (Expected blocksize b̂ = 5 years)
Constant proportion 815 248 0.36 0.53 NA
Glide path 808 242 0.37 0.55 NA
QS optimal 932 115 0.04 0.10 54

Figure 8 plots the cumulative distributions of real terminal wealth in both the synthetic and
the historical markets. In both cases, the distributions for the glide path and constant proportion
strategies are virtually indistinguishable. Figure 8a indicates that the QS optimal strategy outperforms
over a wide range of terminal wealth values in the synthetic market, although it does perform worse
in the tails of the distribution. As mentioned earlier, this is due to two features of the strategy:
(i) it automatically de-risks once the quadratic wealth target is achievable by investing only in the bond
index (so it does not take advantage of continued strong equity market performance afterwards on
paths where that happens); and (ii) it continually tries to reach the quadratic wealth target by using
maximum equity market exposure (and this gamble for resurrection fails on paths where the equity
market has persistently poor performance). The same comments apply to the historical market shown
in Figure 8b, but it is worth noting that the underperformance of the QS optimal strategy in the tails is
considerably reduced here compared to the synthetic market.

5.6. Effect of Replacement Ratio

All of the results provided to here assume a replacement ratio R = 50% of final real salary,
in accordance with Table 2. We now explore the effects of lowering this to 40% and increasing it to
60%. For each case, we determine the desired expected real wealth target by using Equation (11).
Table 10 shows the results. Decreasing R to 40% reduces the expected wealth target Wd to $732,000
from $915,000, while raising R to 60% increases Wd to $1,098,000. The remaining wealth values in the
table are normalized by Wd. Whether we consider the synthetic or the historical market, it is clear that
increasing R requires taking on more risk, as measured by either the standard deviation or the shortfall
probabilities. This is borne out in the cumulative distribution plots of normalized terminal real wealth
provided in Figure 9. The synthetic market results in Figure 9a clearly indicate that the QS optimal
strategy performs better for the lowest value of R. Recall that the strategy attempts to come as close as
possible to Wd (normalized to 1 for this plot), and the cumulative distribution when R = 40% shows
relatively low probability of normalized real wealth being much above or below 1. For the highest
replacement ratio (R = 60%), there is a substantial chance of being either significantly below or above
1. This is because the strategy must take on more risk in order to attain the higher expected wealth
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target. Of course, the base case with R = 50% lies in between these other two cases. The results for the
historical market shown in Figure 9b are generally similar, though the differences across the range of
values of R are somewhat less pronounced.
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Figure 8. Cumulative distribution of real terminal wealth when the equal-weighted equity index is used.
Wealth units: thousands of dollars. Input data provided in Tables 1 and 2, except as noted. Synthetic
market results computed using Monte Carlo simulations with 160,000 sample paths. Historical market
results based on 10,000 bootstrap resampled paths using data from 1926:1 to 2015:12 with expected
blocksize b̂ = 2 years; surplus cash flow included for the QS optimal strategy. (a) synthetic market;
(b) historical market.

Table 10. QS optimal results with varying salary replacement ratios R. Units for Wd: thousands of
dollars. Remaining wealth values are normalized by Wd for each case. Input data provided in Tables 1
and 2, except as noted. Synthetic market results computed using Monte Carlo simulations with 160,000
sample paths. Historical market results based on 10,000 bootstrap resampled paths using data from
1926:1 to 2015:12.

R
Wealth Expected Standard

Pr(WT /Wd < 0.8) Pr(WT /Wd < 0.9)
Expected

Target Value Deviation Surplus Cash
Wd (WT /Wd) (WT /Wd) (/Wd)

Synthetic Market
0.4 732 1.0 0.16 0.10 0.15 0.02
0.5 915 1.0 0.27 0.20 0.25 0.02
0.6 1098 1.0 0.37 0.31 0.36 0.02

Historical Market (Expected blocksize b̂ = 2 years)
0.4 732 .99 0.15 0.09 0.17 0.0
0.5 915 .97 0.24 0.18 0.25 0.03
0.6 1098 1.0 0.35 0.30 0.35 0.02
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Figure 9. Cumulative distributions of real terminal wealth with different salary replacement ratios R
for the QS optimal strategy. Input data provided in Tables 1 and 2, except as noted. Synthetic market
results computed using Monte Carlo simulations with 160,000 sample paths. Historical market results
based on 10,000 bootstrap resampled paths using historical data from 1926:1 to 2015:12 with expected
blocksize b̂ = 2 years; surplus cash included. (a) synthetic market; b) historical market.

5.7. Summary Regarding Alternative Assumptions

Sections 5.1–5.6 above provided detailed results concerning the effects of

• varying the accumulation fraction Fc, i.e., the investor saves Fc I0eμI ti at each rebalancing date;
• varying the real salary escalation rate μI ;
• use of leverage;
• alternative bond index: use of a 10 year T-bond index instead of a 3 month T-bill index;
• alternative stock index: use of an equal-weighted equity index instead of a value-weighted index; and
• varying the replacement ratio R.

Table 11 summarizes the results of various strategies in terms of probability of shortfall with
respect to the desired wealth goal Wd. These results were all obtained using bootstrap resampling
(i.e., for the historical market) with an expected blocksize of two years.

It is interesting to note that the results for the Base Case, constant proportion strategy (contribution
rate 20%) are worse than the results for the QS optimal strategy, Fc = 0.15 (contribution rate 15%),
at least in terms of the two points of the cumulative distribution function listed in the table. In other
words, the shortfall increase with a constant proportion strategy compared to the quadratic shortfall
strategy can be interpreted as losing 5% of lifetime salary, which is very significant. However, this
comparison does not take into account the entire cumulative distribution function. In general,
constant proportion strategies are superior to quadratic shortfall policies in the extreme left tail
of the distribution. However, the improvement over quadratic shortfall is very small, with a very
low probability.

As a filter to determine an acceptable combination of DC plan parameters and investment
strategies, suppose we specify that there should be at least a 90% probability of achieving at least 80%
of the desired expected wealth goal Wd. Based on attempting to achieve the final target expected real
wealth for the base case (see Table 2) and applying this filter, we can see that the shortfall probabilities
using standard strategies (constant proportion or glide path) are unacceptably high. Using the QS
optimal strategy leads to a substantial reduction in these shortfall probabilities, but still not to the
desirable range of less than 10%.

From Equation (11), it is clear that the case with R = 0.6 and wr = 4% leads to the same expected
wealth target as specifying R = 0.5 and wr = 3.3%. Table 11 therefore indicates that, if we assume that
the safe (real) withdrawal rate is 3.3% and the replacement ratio is 50%, the probability of shortfall is
quite high even if the QS optimal strategy is followed.
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Table 11. Comparison of shortfall probabilities. Results are normalized by Wd for each case. Input
data provided in Tables 1 and 2, except as noted. Historical market results based on 10,000 bootstrap
resampled paths using data from 1926:1 to 2015:12 with expected blocksize b̂ = 2 years.

Case Pr(WT /Wd < 0.8) Pr(WT /Wd < 0.9)

Base Case, Table 2

Constant proportion 0.43 0.54
Glide path 0.43 0.54
QS optimal 0.18 0.25

QS Optimal

Contribution Fraction
Fc = 0.25 0.09 0.17
Fc = 0.15 0.37 0.43

Salary Escalation Rate
μI = 0.0175 0.23 0.29
μI = 0.0075 0.14 0.21

Leverage
Lmax = 1.5 0.13 0.19

Alternative Bond Index
10-year T-bond 0.19 0.28

Alternative Stock Index
Equal-weighted 0.09 0.16

Replacement Ratio
R = 0.4 0.09 0.17
R = 0.6 0.30 0.35

Assuming we use the QS optimal allocation strategy, we are then forced to take other actions to
attempt to reduce the shortfall probability. Increasing the contribution rate to 25% of annual salary
meets our criterion, but this might be difficult to implement in terms of agreement from employees
and employers. Decreasing the replacement ratio (40% of final salary) also achieves the shortfall
objective. We note that many institutions effectively do this by targeting a final career average salary
replacement ratio (instead of a final salary replacement ratio).

Finally, the use of the alternative equal-weighted equity index also achieves the shortfall
probability target. As noted earlier, this type of index has historically outperformed its value-weighted
counterpart owing to higher exposure to value, size, and market factors (Plyakha et al., 2014). In effect,
the equal-weighted portfolio is a smart beta portfolio, with a long track record. However, equal-weighted
portfolios have higher costs, which have not been factored in to our analysis. This suggests that there
may be a market opportunity for a low cost synthetic ETF which tracks the equal-weighted index.

6. Conclusions

Typical default strategies available to DC plan members include target date funds (i.e., glide path)
and balanced funds (constant proportion). Both of these strategies have high probabilities of shortfall
and large standard deviations of real terminal wealth.

We define an acceptable probability of success as a 90% probability of achieving 80% of
the real desired terminal wealth goal. QS optimal strategies reduce the probability of shortfall
significantly, compared to the ubiquitous glide path and balanced portfolio strategies, but not to
within an acceptable range.

Assuming an optimal QS strategy, acceptable probabilities of shortfall can be obtained by

• reducing the final salary target replacement ratio (40% or less);
• increasing the total (employee and employer) contribution rate to 25% per year;
• using alternative stock investment indices, such as an equal-weighted index. The backtests of

an equal-weighted index perform well, but it is not clear that this will persist in the future.
In addition, we have not factored in the additional costs of this type of index.
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Our main conclusion is that current practices in DC plans with typical target benefits and default
investment strategies have unacceptably high probabilities of shortfall. This has major ramifications
for the many organizations which are shifting to DC plans.

Our results are based on the past 90 years of US market data. It is possible to argue that future
market returns will be lower than observed in the past. The implication of such an assumption is that
the probability of success for a DC investor would be even lower than we have reported here. In this
case, the situation for DC plan investors would be even more dire than we suggest.
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Abstract: In this work we simulate algorithmic trading (AT) in asset markets to clarify its impact.
Our markets consist of human and algorithmic counterparts of traders that trade based on technical
and fundamental analysis, and statistical arbitrage strategies. Our specific contributions are: (1)
directly analyze AT behavior to connect AT trading strategies to specific outcomes in the market; (2)
measure the impact of AT on market quality; and (3) test the sensitivity of our findings to variations
in market conditions and possible future events of interest. Examples of such variations and future
events are the level of market uncertainty and the degree of algorithmic versus human trading.
Our results show that liquidity increases initially as AT rises to about 10% share of the market; beyond
this point, liquidity increases only marginally. Statistical arbitrage appears to lead to significant
deviation from fundamentals. Our results can facilitate market oversight and provide hypotheses for
future empirical work charting the path for developing countries where AT is still at a nascent stage.

Keywords: algorithmic trading; market quality; liquidity; statistical arbitrage

1. Introduction

Algorithmic trading (AT) in US stock markets has grown at a blistering pace, starting from the
mid-1990s when it accounted for only 3 percent of the market, to recent times when it has reached
almost 85% of dollar trade volumes (Zhang 2010). What we learn from markets like the US where AT
has progressed very far, can be practically useful in charting the path ahead for developing countries,
where AT is still at a nascent stage (Sherry 2017).

The aim of this paper is to bridge the gap between researchers’ empirical results and the real-world
attempts (e.g., by regulators) to understand how each algorithmic trading strategy works. We do this
by using simulations to systematically demonstrate how the behavior of various algorithms result
in the observed impact on market quality (liquidity, price spreads, trade-related price discovery, and
correlation of asset prices).

Specifically, our simulated markets give us the flexibility to start from the AT strategies of our
choosing and simulate the resulting market outcomes. In this way, our work attempts to evaluate if AT
strategies can indeed lead to the market outcomes that empirical studies have deduced from market
data. Our line of research can also aid market regulators by providing a platform capable of isolating
and testing the market impact of specific AT strategies.

Empirical analysis of algorithmic trading have estimated its impact on various aspects of market quality
(see for example, Brogaard 2010; Brogaard et al. 2014; Chaboud et al. 2014; Hasbrouck and Saar 2013;
Hendershott et al. 2011; Hendershott and Riordan 2011; Kelejian and Mukerji 2016; Menkveld 2013;
Riordan and Storkenmaier 2011; Zhang 2010). However, many of the findings are contradictory. These
contradictions in the empirical literature may be the result of differences in methodologies, time periods,
and samples of assets analyzed. Even in the same work, there are often differences in the degree to which
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the impact of algorithmic trading is felt in among different types of assets, and transactions. In addition,
for each empirical finding there are different explanations that could produce the observed impact of
algorithmic trading.

In its actual work in the practical world, algorithmic trading has made rapid progress in
technology, and this has led to an arms-race among participants for acquiring the fastest and most
efficient algorithms and machines (Hasbrouck and Saar 2013). As a side effect, increased competition
has eroded profits. Regulators have also clamped down on algorithmic trading, following accusations
of market manipulation (McCrank 2015). Market manipulation, once thought of as a predominantly
developing market issue (Sohel Azad et al. 2014), has now featured quite prominently in developed
countries via AT. One of the outcomes of this scenario is that AT is resorting to high risk strategies in
hopes of making profits (Philips 2013).

These factors indicate that it would be useful to go a step beyond measuring AT’s impact and
attempt to unravel how this impact is actually created by the operation of different strategies in
AT. Toward this ultimate goal, in this work, we create a computer simulation of the asset market.
Our computer simulation gives us the capability to characterize the impact of AT on market quality
and test its sensitivity to changing situations such as the volume of algorithmic versus human trading.
Since proprietary trading algorithms are not public information, we make simplifying assumptions
about the traders that allow us to approximate their behavior. Naturally, the algorithms that actually
operate in the marketplace have developed nuances that this exercise does not capture. However, we
expect that our results still provide a useful estimation of overarching and longer-term market outcomes.

We model two trader types: fundamental analysts and technical analysts. Both types of traders
can be either human or algorithmic. We simulate the behavior of traders to test the liquidity and price
discovery in the market as the percentage of algorithmic traders’ increases. As a measure of liquidity,
we use effective half-spread (e.g., Hendershott and Riordan 2011). Our results indicate that liquidity
improves as the proportion of algorithmic traders increase, although most of the liquidity increase is
achieved at very low levels of AT. We also investigate statistical arbitrage, which is a commonly used
AT strategy, where algorithmic traders use short-term price correlations to predict price movements,
and trade to profit from them. Our simulations measure the extent to which this may lead to price
movements unrelated to fundamentals. Our findings indicate a significant movement away from
fundamentals, with the rise of AT.

Thus, our findings match the real world where AT has changed the landscape
of market transactions and has had profound implications for market participants
(e.g., Kelejian and Mukerji 2016), and for those charged with market oversight (e.g.,
U.S. Commodities Futures Trading Commission and U.S. Securities and Exchange Commission 2010).
The reason for the changes being experienced is the important differences that set human and
algorithmic traders apart, even though their strategies might seem similar. First, AT can make decisions
based on much more information and much faster than human traders (Hasbrouck and Saar 2013).
Second, human traders use their judgement in addition to trading strategies. AT, on the other
hand, makes decisions mechanically. This mechanical decision making may sometimes lead to
absurd and undesirable outcomes (Zweig 2010). Recognizing this shortcoming in AT, firms designed
safeguards where, under defined conditions, there is a trigger that makes the AT stop for human input
(U.S. Commodities Futures Trading Commission and U.S. Securities and Exchange Commission 2010).
However, the system is far from perfect and has led to occasional turmoil in the markets. For example,
investigation into the “flash crash” of 2010 revealed that a set of algorithmic trades had led to a
cascading of prices and extreme volatility. This triggered a practical shut down of markets as ATs
paused for human input (U.S. Commodities Futures Trading Commission and U.S. Securities and
Exchange Commission 2010).

By providing a clear focus on how AT strategies lead to market outcomes, our findings deepen
our understanding of the real-world workings of the asset market, as the participation of AT increases.
They serve to clarify existing empirical results in the literature, as well as to suggest future avenues
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of empirical research. Specifically, our findings in both experiments provide some support for the
existing empirical results in the literature. In each case, they also provide practical nuances in the
results, which can be used to form new hypotheses for future empirical work.

The rest of the paper is laid out as follows. Section 2 presents the literature review. Section 3 lays
out our simulated market model, while Section 4 presents the experiments based on varying the degree
of AT participation and evaluating the impact of AT strategies. Section 5 concludes the paper.

2. Related Literature

The literature in the area of algorithmic trading is vast, relative to its recent vintage (for example,
see (Biais and Woolley 2011), for background and literature survey). In this section we briefly discuss
some studies that are most closely related to ours.

In the finance literature there are a number of studies into market quality resulting from AT.
Here are some that help to illustrate the diversity of data used and the existence of sometimes
contradictory results. Hendershott and Riordan (2011) using 13 trading days data in January 2008 on
AT orders submitted in the Deutsche Boerse, and Hendershott et al. (2011) using NYSE (New York Stock
Exchange) electronic message traffic data over 2001–2005 concluded that as AT grows, liquidity improves.
They also found that the initial price impact of an algorithmic trade is larger than that of human orders.
Brogaard (2010) analyzed data from the financial crisis in 2008–2009 and concluded that AT reduces
volatility and contributes significantly to the price discovery process. Kelejian and Mukerji (2016)
analyzed the long-term impact of AT on non-AT traders with data from before the advent of AT to
recent times (1985–2012) and found that AT transmits volatility based on short-term price correlations,
moving the market away from fundamentals. In a study of minute-by-minute exchange rate trading
data over the two years 2006–2007, Chaboud et al. (2014) concluded that non algorithmic traders cause
most of the long run variance in the price of currencies, thus proving themselves to be better informed
than algorithmic traders. They also found that AT is associated with lower liquidity immediately
following important macroeconomic data releases. The research by Foucault and Menkveld (2008) is
an example of a study of how upgrades to the trading system lead to different impacts on the market
outcomes such as liquidity.

As stated in the introduction, our paper’s contribution is in seeking to bridge the gap between
the empirical studies such as those we just outlined above and the actual working of AT. As our
simulations of AT strategies reveal the associated market outcomes, we provide a cross-check for the
conclusions that empirical studies have drawn from market data.

Our work also relates to asset market simulation studies; for example, Kearns et al. (2010) studied
the profitability of AT. Using stock market data from 2008, they simulated an “omniscient” AT trader
that effectively overestimates the maximum possible profit that could be earned from AT traders that
year. They concluded that the total profit derived from AT trading is in general quite modest relative to
the total trading volume. Arthur et al. (1996) created a stock market simulation environment called the
Santa Fe Artificial Stock Market, which is an example of an agent-based financial market. Autonomous
agents in this market learn and adapt their strategies over time. The focus is on the performance of the
agents and their strategies and not on the market outcomes.

In contrast to these existing works that simulate asset markets, our novel contribution is that we
study the impact of AT on market quality, while the existing literature is geared towards working out
the profitability and performance of AT and market agents who use it. Thus, our line of research can
ultimately aid regulatory interventions into market manipulations, by providing a platform capable of
isolating and testing the market impact of specific strategies.

3. Experimental Method

Real data, from traders and trading outcomes, is used at every stage of our analysis. Each trader’s
strategy is based on real world strategies employed by actual traders. The market composition of
algorithmic versus human traders is set up to simulate the growth of actual algorithmic trading over
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time, which researchers in the field have quantified. Finally, each experiment’s findings have been
carefully compared to real data based empirical findings from the literature.

In this section we present the settings of our simulation environment: the trader types and
parameter settings for each, the strategies that each of our traders uses, and the rules for deciding the
volume of shares and the price at which to trade. Table 1 summarizes this information.

Table 1. Simulation details of each experiment.

Simulation Components Experiment 1 Experiment 2

Number of runs at each level of
algorithmic trading presence 50 10

Number of trading days per run 30 days 30 days

Number of price points recorded
in each run 800 (equally spaced) 800 (equally spaced)

Number of traders 2000 200

Types of traders Technical and fundamental, human,
and algorithmic trading (AT)

Pairs traders (AT) and
fundamental (human)

3.1. Initial Settings

We generate a stock price history by simulating a random initial price between $5 and $400.
The series of daily prices is generated by drawing from a normal distribution whose mean is the
previous day’s price. The final price in the 20-day price history is the initial price of the stock for the
simulation. We also randomly generate the fundamental value of the stock, or how much the stock
should actually be worth given the value of the company. The fundamental value of the stock on the
first day of our simulation is a price uniformly chosen at random within ±8% of the initial price in the
market. Then each day after that, the fundamental value is a random value within ±8% of the value
the day before.

3.2. Traders’ Parameters

We model three trader strategies: fundamental analysis, technical analysis, and statistical
arbitrage/pairs trading. All fundamental traders have the same strategy whether they are algorithmic
traders or humans. The same is true for technical traders. Pairs traders are only simulated as
algorithmic traders.

The difference between human traders and algorithmic traders is that algorithmic traders trade
with higher frequency and lower latency than human traders. Frequency refers to how long it takes
the trader to make a decision after the last decision. Latency refers to the time after a decision has been
made and before the trade is executed. Therefore, the algorithmic traders can both make trade decisions
more often and can execute their trades faster. In addition, algorithmic traders lack human judgement.
An example is algorithmic pairs traders, who use no judgment regarding the true association between
stocks and trade based solely on short-term price correlations.

Trader parameters are as follows. Human traders make their first decision in the fifth second of
the simulation. They can execute their first trade at 10 s. Human trading frequency is between 95
and 105 s, i.e., after their last decision they wait a random value between 95 and 105 s before they
make the next decision. Human latency is between 35 and 45 s. Algorithmic traders are much faster.
They make their first decision within the first second and can execute in the next second. Then, latency
and frequency are both one second so they can make a decision every second and always trade the
second after that.

Finally, a risk parameter measures risk tolerance of traders; each trader starts with a budget that
gets updated as traders execute trades and the random parameter measures the conditions prevailing
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in the market at the time of trade such as investor sentiment, etc. All parameters are summarized in
Table 2.

Table 2. Simulation Parameters.

Parameter and Basis for Setting the Value Value

20-day history generated per day by drawing from a normal
distribution with mean as the previous day price and with

daily standard deviation of the S&P in 2006. Stock price history
initial point, randomly generated:

$5–$400

Fundamental value of the stock Within 8% of the price initially, thereafter it is within
8% of the fundamental value the day before

One trading day 12 h

Frequency, humans are slower to make a trade decision.

Start decision at 5th second after start of simulation
for human trader; start decision at 0 s after simulation

starts for AT. Thereafter humans decide to trade
between every 95 to 105 s and AT every second.

Latency, humans take longer to execute trade once they make
the decision to trade.

1st trade is executed at 10 s for humans and at 2 s for
AT. Thereafter every trade is executed after 35–45 s of

trade decision for humans and every second after
trade decision for AT.

Risk, higher number indicates the capacity to take greater risk. Set randomly for each buyer between 1 and 10 and
for each seller between 0.5 and 1.5.

Initial budget for each trader $360

Percentage change in stock price that triggers a trade in the
paired stock One percent or more in the past 20 s

Perceived value

• 20-day moving average for technical traders
• Within 30% of fundamental value for

fundamental traders,
• Max price (if price is falling), or min price (if

price is rising) over past 20 s for pairs traders

Base volume bought (Budget/Current Price)/5

Random Set for each buy trade between 1 and 2 and set for
each sell trade between 0.85 and 1.15

3.3. The Strategies

To approximate the behavior of traders in real markets, we implemented trading strategies based
on commonly understood behaviors of traders in the market.

Fundamental traders trade based on what they believe to be the fundamental value of a stock.
In our simulation at any given time, each fundamental trader is endowed with a random perceived
fundamental value that is within 30% of the actual fundamental value. Differences between the
perceived value and current price, drive trade decisions. If current price is greater than value, the
trader sells the stock, and if current price is lower, she buys.

Our simulations are based on practically used fundamental trading strategies from the market.
A few examples will help illustrate that fundamental traders’ decision-making process is in fact very
similar to the simulations in our paper. The basic strategy in the paper consists of two steps: (1)
arriving at a perceived value for the asset; and (2) trading when the asset deviates from this perceived
value. This is paralleled in the real world by common strategies used by fundamental traders, for
example, the commonly employed fundamental strategy of buying shares when they fall below a
certain percentage of the perceived value, or when the stock is sold once it reaches its perceived value
(Regan 2019). Another example is when fundamental traders employ “trailing stops”, where they sell
any stock that falls by a certain percentage.

Note that fundamentals changing news may arrive only sporadically. However, actual fundamental
trading frequency depends on how often, and in which direction, the price deviates from the trader
determined perceived value. Price deviations away from perceived value are determined by the actual
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trades in the market, by all types of traders. Therefore, a fundamental trader actually trades based on
the number of times the price changes in a significant way with respect to the perceived value, and
not necessarily based on the frequency of fundamental news arrival. For example, some news may
not even result in any trade, if the change of the perceived value is such that there is no incentive for
the trader to change their position in the market. On the other hand, even without any news arrival,
movement in market prices, due to other traders’ activities, may lead the fundamental trader to trade.

Technical traders’ strategy is to consider the difference between their perceived value and the
current price of the stock. They use the 20-day moving average (MA) price of the stock, which
updates at every second based on the last 20 days’ worth of seconds, as their perceived value for
the stock. Trading decision is based on the difference between this perceived value and the current
price. Specifically, a rise in current price above the MA triggers a buy order and the opposite triggers a
sell order.

Following a statistical arbitrage strategy, a pairs trader trades one stock based on the movements of
the correlated stock. Our goal is to determine the impact on the market when a pairs trader mistakenly
believes two stocks are positively correlated, and begins trading them as though they are paired, even
though they are fundamentally unrelated. So, our pairs trader will assume two unrelated stocks are
positively and closely correlated. Then, if one stock moves a significant amount (±1%) since the trader
checked last (20 s ago) the trader will buy if there was a rise and sell if there was a fall, the other stock
at an appropriate price and volume.

Our simulations therefore mimic one of the most common algorithmic trading strategies: statistical
arbitrage (Brogaard 2010; Zhang 2010; Froot et al. 1992). Statistical arbitrage strategies use short-term
correlations among security prices to make short-term price predictions and trade to profit from
these predictions.

3.4. Trading

Once each trader in our simulation makes the decision to trade, they all share a similar framework
for deciding volume and price of trade. We use trade price to refer to the dollar value at which a trader
wishes to trade the stock, and trade volume to refer to the number of shares that the trader wants to
trade. The decision to trade begins with the consideration of each trader’s estimate of the movement of
the current price away from the perceived value. We define movement as the absolute value of the
following ratio:

movement =
∣
∣
∣
∣
∣

perceived value − current price
current price

∣
∣
∣
∣
∣
, (1)

where the perceived value for the fundamental trader is the perceived fundamental value, for the
technical trader is the 20-day MA, and for the statistical arbitrage/pairs trader is a maximum (if price is
falling) or minimum price (if price is rising) of the related stock within the past 20 s. Thus, movement
measures how far the stock is mispriced from the point of view of the individual trader (where the
mispriced stock is the paired stock for the Pairs trader).

For a buy order, the volume is determined as follows:

buy volume = base volume × movement × random × risk, (2)

and the price at which a buy order is executed is as follows:

buy price = current price + movement × random × risk, (3)

where base volume is an initial trade volume, and the parameter random accounts for unpredictable
elements that may change from one trade to the next, like investor mood. Buy volume is subject to the
trader’s budget. If their budget is less than the cost of the volume of shares they wish to buy, then
the volume is automatically truncated as needed. Random and risk considerations will determine the
exact trade price in any given transaction.
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For a sell order, the volume is determined as follows:

sell volume = volume held × movement × random × risk, (4)

and the price at which a buy order is executed is as follows:

sell price = current price − movement × random × risk, (5)

where volume held is the number of shares of the stock that the trader currently owns. If the sell
volume is greater than the amount currently held, then all the held shares are sold. Again, in this case
as well, random and risk considerations will determine the exact trade price in any given transaction.

3.5. Evolution of the Price

We implement a standard order book. Our order book is made up of two ordered lists, one
for buy orders, and one for sell orders. The sell order list is ordered from low to high and the buy
ordered list is ordered from high to low. When an order is placed it gets put into one of these two lists.
All experiments start with the randomly generated start price as outlined in Section 3.1. Once a trade
occurs, the price in the market is updated to the latest price at which the trade occurred.

4. Experiments and Results

We use our simulated asset market to conduct two separate experiments to evaluate the impact of
AT on (1) market liquidity; and (2) in the presence of statistical arbitrage/pairs trading, the relations
between the price and the fundamental value of the stock. In each experiment, our strategy is to
gradually increase the market presence of AT starting from 0% of the market where there are no AT to
100%, where all trade is conducted exclusively by AT. We evaluate the market quality of interest at
each level of market presence of AT, thus studying how the market quality might change with the
advent and progression of AT.

For each experiment, the results reported represent an average of a number of runs of the
experiment, where each run comprises a fixed numbers of trading days. The market outcome of
interest is recorded a number of times during each run, this outcome is then averaged for each run and
presented in the results. The number of traders in each experiment remains constant while the mix of
the types of traders is varied to evaluate changes to the market outcome.

The number of each type of trade, in our simulations, is proportional to the trading latency and
the proportion of traders in each run. These differ in each set as algorithmic trading is increased as
a proportion of the market (Table 1). The number of fundamental human trades is always smaller
than algorithmic trades of all varieties due to two factors. First, this is because of longer latency of
human fundamental traders. Second, as the number of fundamental human traders is progressively
reduced in each experiment, the numbers of their trades fall. Third, the number of trades vary, due
to the randomness of each run in terms of the initial price and the evolution of the price through
subsequent trade.

4.1. Experiment 1: Liquidity

We use effective half-spread as our measure of liquidity (e.g., Hendershott and Riordan 2011). As
half-spread decreases, liquidity increases. Half-spread is calculated as:

Half spread = (sign)
(trade price − midpoint)

midpoint
; (6)

where trade price is the price at which trade occurred, midpoint is the price halfway between the
transacting bid and ask price, and sign is determined by how the trade was initiated. If a seller initiated
the trade then sign = 1, if a buyer initiated the trade then sign = −1. We compute the half spread at
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800 evenly distributed points in time over the course of every single 30-day run (see Table 1). At the
end of each run, we compute the average half-spread over the recorded 800 values. Each point on the
curve in Figure 1 is thus the average of 50 average half spreads (Table 1). We present the results with
95% confidence intervals. For the first point on the graph, our simulation has 1000 human technical
traders and 1000 human fundamental traders, with no algorithmic traders. In each successive point of
the graph, the proportion of algorithmic traders increases. The number of technical and fundamental
traders is equal at all points.

Figure 1. Impact of AT on market liquidity measured by the half-spread.

Results indicate that AT has a dramatic liquidity increasing effect early in its adoption. By the
time AT reaches 10%, most of the benefit has already been gained. Further increase in the share of AT
contributes very little to liquidity. This result indicates an interesting new hypothesis for the empirical
literature: as AT presence increases in developing countries, where it is still only a fraction of the total
market, empirical studies could estimate if there is a threshold where most of the benefit of AT already
accrues to the country. This would provide practical insight into the timeline of AT impact on market
quality in developing countries where AT adoption is still at a nascent stage.

4.2. Experiment 2: Statistical Arbitrage/Pairs Trading

Our goal is to determine the impact of statistical arbitrage/pairs trading. Statistical arbitrage is a
strategy to profit by trading based on short-term correlations, while assuming that these correlations
will persist. We simulate two fundamentally unrelated (low positive correlation) stocks. We introduce
fundamental traders and pairs traders and measure the correlation of the prices and the correlation of
the fundamental values of the stocks as the proportion of pairs traders increases.

The results in the form of the correlations between the two paired stocks are shown below in
Figure 2. All details of the simulation are given in Table 1. The set-up is similar to Experiment 1
except for the types of traders. Figure 2 shows that the correlation of prices is significantly higher
than the correlation in fundamental values of the two stocks. This is in line with empirical findings
and anecdotal evidence that indicate AT leading to co-movements in market prices of assets (e.g.,
Zweig 2010), and price spillovers across assets (e.g., Kelejian and Mukerji 2016), which are above and
beyond what fundamentals alone can explain.
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Figure 2. Impact of AT on relation between price and fundamentals.

To take a closer look at what unfolds over the course of a typical run, we present Figure 3, which
shows what the market looks like when no Pairs traders are present.

Figure 3. Single run of the simulation with no algorithmic traders in the market.

In this run, we control the fundamental values rather than randomly generating them. The first
stock’s fundamental value is a step function that increases and then decreases. The second stock’s
fundamental value line is the flat line. We see that when there are no Pairs traders, the prices stay
near their corresponding fundamental values. In contrast, in Figure 4 we show the same simulation
run now with the market comprising 50% algorithmic Pairs traders that trade on the assumption of
positive price correlation. The prices in this case are far from their fundamental values and are highly
correlated with one another.

Figure 4. Single run of the simulation with 50% algorithmic pairs traders in the market.
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This strong impact of AT on prices lends support to findings such as that the initial price
impact of an algorithmic trade is larger than that of human orders (Hendershott and Riordan 2011;
Hendershott et al. 2011) or that AT contribute significantly to the price discovery process
(Brogaard 2010). Our contribution is to show the possibility that the price discovery process might be
led astray, due to the strategy combined with the speed of the AT, as we see in Experiment 2.

5. Conclusions

In this paper, we have created a simulated asset market and modeled common AT strategies.
We conducted two experiments in this market. Our contribution is the creation of a platform capable
of studying the impact of AT trading on market quality directly. This expands our capability of
evaluating AT beyond conventional empirical studies. It provides a method of cross-checking empirical
findings, gaining deeper insights into them, and also potentially forming new hypotheses for further
empirical research.

In Experiment 1, we investigated the impact of AT on market liquidity. We simulated a gradual
rise in the participation of AT in a market with fundamental and technical traders of both AT and
human types. We found that liquidity rose sharply as AT was introduced with most of the liquidity
rise realized at just 10% AT participation. This leads to an interesting hypothesis for future empirical
work to see if there is such an early threshold for reaping the liquidity benefits of AT. This could hold
important implications for developing countries with nascent AT participation.

In Experiment 2 we investigated the impact of AT on price discovery. We simulated a rise in
algorithmic pairs trading that apply statistical arbitrage to make profits based on short-term price
correlations. In this experiment, we found high price correlations between the pair traded, even when
fundamental values had very little correlation. This supports some findings in the empirical literature
that indicate AT leading to price movements away from fundamentals.
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Abstract: This paper demonstrates that it is possible to improve significantly on the estimated call
prices obtained with the regression and simulation-based least-squares Monte Carlo method by
using put-call symmetry. The results show that, for a large sample of options with characteristics of
relevance in real-life applications, the symmetric method performs much better on average than the
regular pricing method, is the best method for most of the options, never performs poorly and, as a
result, is extremely efficient compared to the optimal, but unfeasible method that picks the method
with the smallest Root Mean Squared Error (RMSE). A simple classification method is proposed that,
by optimally selecting among estimates from the symmetric method with a reasonably small order
used in the polynomial approximation, achieves a relative efficiency of more than 98%. The relative
importance of using the symmetric method increases with option maturity and with asset volatility.
Using the symmetric method to price, for example, real options, many of which are call options
with long maturities on volatile assets, for example energy, could therefore improve the estimates
significantly by decreasing their bias and RMSE by orders of magnitude.
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1. Introduction

In a paper published some 20 years ago, McDonald and Schroder (1998) demonstrated that when
the price of the underlying asset is governed by a Geometric Brownian Motion (GBM), the price of a
call option with underlying asset price S, strike price K, interest rate r and dividend yield d is equal
to the price of an otherwise identical put option with asset price K, strike price S, interest rate d and
dividend yield r. The result for the GBM case has since been generalized to more realistic dynamics
in (Schroder 1999), among others, and essentially, some version of this Put-Call Symmetry (PCS),
potentially with other fundamental parameters changed accordingly, will hold for virtually all the
models that have been considered in the existing literature on option pricing, for options with several
different payoffs and which are written on multiple assets.1

In this paper, we show that this simple result can be used to improve on one of today’s
state-of-the-art numerical option pricing methods, the well-known Least-Squares Monte-Carlo (LSMC)

1 For example, PCS also holds in the stochastic volatility model of Heston (1993) when the parameters of the volatility process
and the correlation are changed appropriately. See, e.g., Battauz et al. (2014) for the exact specification, Grabbe (1983) for
an intuitive explanation of how to derive the relationship using options on foreign exchange and Detemple (2001) for
extensions to derivatives on multiple assets.
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method proposed by Longstaff and Schwartz (2001). In particular, we show that using PCS with LSMC
results in estimates that are much less biased and have significantly lower Root Mean Squared Error
(RMSE) when pricing American call options for the set of options used in (Longstaff and Schwartz
2001) and for a very large sample of options with realistic characteristics. Using standard choices for
the LSMC method, which we implement with N = 100,000 paths and a polynomial of order L = 3, we
price options with different strike prices and maturities in a world with different values for the interest
rate, dividend yield and volatility. For a large sample of 3125 different options, the average RMSE of
the estimates obtained with the symmetric method is only 17% of the RMSE of the estimates from the
regular method, and the symmetric estimates have smaller RMSEs for 88% of the options in the sample.

Our results show that the relative performance of the symmetric method, i.e., when call options
are priced as put options using PCS, improves as the time to maturity and volatility increase. Moreover,
using the symmetric method is most effective for options that are out of the money. The simple intuition
for this results is that when option maturity is long and volatility is high, asset values along simulated
paths may become “very” large and be spread out over a large interval. Large and widely-spread out
asset values lead to poorly-conditioned cross-sectional regressions and this in terms results in poor
approximations of the optimal early exercise strategy and precisely determining this strategy is most
important for out of the money options. Widely-dispersed asset values also lead to estimates that have
higher variance because of the spread out payoffs being discounted back to estimate the price.

The magnitude of the relative improvement obtained with the symmetric method depends on the
choice of parameters used in the LSMC algorithm, that is the number of simulated paths, N, and the
number of regressors used in the cross-sectional regression, L, in a non-trivial way. In particular, while
it is well known (see for example Stentoft (2004b)) that the option price estimated with the LSMC
converges to the true value when the number of paths and the number of regressors tend to infinity,
this is of little use with finite choices of the number of paths, N, and the order of the polynomial used
in the regression, L. However, even with the “worst possible” configuration for the symmetric method,
which occurs when N = 100,000 and L = 5 where the symmetric method only performs the best for
roughly 39% of the individual options, the average RMSE is much smaller than for the regular method
and only 18% larger than what could have been obtained with an infeasible method that picks from
the regular and symmetric method the one with the smallest RMSE.

One reason that the choice of polynomial is important is that the LSMC method mixes two types
of biases: a low bias due to having to approximate the optimal stopping time with a finite degree
polynomial and a high bias coming from using the same paths to determine the optimal early exercise
strategy and to price the option, potentially leading to over fitting to the simulated paths. For example,
the bias just happens to be somewhat smaller without symmetry, a value of −0.006, than when using
symmetry, a value of 0.010 when using L = 5 regressors with N = 100,000 paths. For all other choices
of the number of paths with this number of regressors and when using other numbers of regressors
with this number of simulated paths, the symmetric estimates are less biased. An easy way to control
the bias is to conduct so-called out-of-sample pricing in which a new set of simulated paths is used
to price the option instead of using the same set of paths used for determining the optimal early
exercise strategy.

When using out-of-sample pricing, the relative importance of the symmetric method is even more
striking. In particular, the symmetric method almost always, and in some cases for more than 99% of
the individual options, has the lowest RMSE, and the average RMSE for the large sample of options is
around 20% or less of what is obtained with the regular method for most configurations. The efficiency
of the symmetric method, when compared to the infeasible optimal method, is extraordinary and in
most cases above 99% across various values of the number of paths, N, and number of regressors, L,
whereas the regular method only achieves an efficiency of around 25%. Finally, while it is difficult
to pick the best method in general, in the case of out of sampling pricing, we propose a simple
classification algorithm that, by optimally selecting among estimates from the symmetric method with
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a reasonably small order used in the polynomial approximation, achieves a relative efficiency of more
than 98% compared to the infeasible method that minimizes the RMSE across all estimates.

As noted by Detemple (2001), PCS is a useful property of many option pricing models since
it reduces the computational burden when implementing these model. Indeed, a consequence of
the property is that the same numerical algorithm can be used to price put and call options and to
determine their associated optimal exercise policy. Another benefit is that it reduces the dimensionality
of the pricing problem for some payoff functions. Examples include exchange options or quanto
options. PCS also provides useful insights about the economic relationship between derivatives
contracts. Puts and calls, forward prices and discount bonds and exchange options and standard
options are simple examples of derivatives that are theoretically closely connected by symmetry
relations. Compared to this literature, our objective is somewhat different. In particular, though PCS
can be used to demonstrate theoretically the convergence of a particular numerical scheme for call
option pricing using results for put options, our interest here is primarily of a numerical nature, and
the objective is to show that PCS can be used to improve significantly on the estimated call option
prices obtained with a particular numerical scheme.2

Our findings and proposed method for selecting optimally the configuration to use for option
pricing should have broad implications. In particular, we show that improvements are found for a
very large sample of options with reasonable characteristics, and since the symmetric method never
performs very poorly and simple classification methods can be used to achieve very high relative
efficiency, there are strong arguments for always using the symmetric method to price call options.
Moreover, our results show that the relative importance of using the symmetric method increases with
option maturity and asset volatility, and using symmetry to price long-term options in high volatility
situations thus improves massively on the price estimates. The LSMC method is routinely used to price
real options, most of which are call options with long maturities on volatile assets, for example energy.
We conjecture that pricing such options using the symmetric method could improve significantly on
the estimates by decreasing their bias and RMSE by orders of magnitude.

The rest of this paper is organized as follows: In Section 2, we provide motivating results for
the small sample of simple vanilla options from Longstaff and Schwartz (2001). In Section 3, we
briefly introduce the use of simulation methods for American option pricing in general and discuss
the implementation of the method proposed by Longstaff and Schwartz (2001) when combined with
PCS. In Section 4, we perform a large-scale study on 3125 options, showing that our proposed method
works extremely well. In Section 5, we conduct several robustness checks, and in Section 6, we propose
a new metric for efficiency and suggest a method for choosing the optimal specification to use for
option pricing. Section 7 offers concluding remarks.

2. Motivation

In this section, we present results for a set of options similar to those used in Longstaff and
Schwartz (2001), but to illustrate the effect of PCS, we consider pricing call options instead of put
options. In all cases, we use a current value of the stock of 40 and an interest rate and dividend
rate of 6%. A non-zero dividend is needed to make the American call option pricing non-trivial
and to have positive early exercise premia. Options range between being 10% In The Money
(ITM) and Out Of The Money (OTM), have maturities of T = 1 or T = 2 years and have J = 50
early exercise possibilities per year. We also consider two levels of the volatility and set σ = 20%
or σ = 40%. The reported estimates are based on I = 100 independent simulations, each of

2 The main parts of the paper present results for the simple Black–Scholes–Merton setup. The reason for this is obvious:
we want to have fast and precise benchmark results available. Without these, it makes no sense to talk about one method
being more efficient than another. Section 5, though, shows that these conclusions extend to other asset dynamics, like the
stochastic volatility model of Heston (1993), and to options with other payoff functions, like options written on multivariate
underlying assets.
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which uses N = 100,000 paths and the first L = 3 weighted Laguerre polynomials and a constant
term as regressors in the cross-sectional regressions. We assess model performance using Bias =

I−1 ∑I
i=1
(

P̂i − P
)
, StDev =

√
I−1 ∑I

i=1
(

P̂i − P̄i
)2 and RMSE =

√
I−1 ∑I

i=1
(

P̂i − P
)2, respectively,

where P is the true option price, P̂i is the ith simulated price and P̄i the average model price.

2.1. Regular Call Option Prices

Table 1 shows the pricing results for the sample of call options. The first thing to notice is that the
majority of the estimated prices, shown in Column 5, are close to the benchmark values provided by
the binomial model, shown in Column 4, and the bias, shown in Column 6, is in most cases less than
one cent. However, for the longer term options with high volatility, shown in the last five rows, biases
are large and significant at all reasonable levels. The size of the bias increases with moneyness, and the
ITM option has a bias of 15 cents. Moreover, for these options, the estimated price also has a very large
standard deviation, StDev, shown in Column 7, and as a result, the RMSE, shown in Column 8, is very
large. For example, the RMSE of the option with K = 36, T = 2 and σ = 0.40 is almost 40-times larger
than the RMSE of any of the other deep ITM options.

The results in Table 1 may hint at why often only put options are studied: it is potentially difficult
to price long maturity call options in high volatility settings using the LSMC method. However, in many
situations where the LSMC method is used, e.g., for real option pricing, the options considered are
exactly long maturity call options. Therefore, what could (and does) go wrong? The fact that the
standard deviation of these estimates is larger by (almost) an order of magnitude than that of any
of the shorter term options indicates that this is likely caused by numerical issues. This conjecture
is further supported by the fact that the skewness and kurtosis of the independent simulations are
very far away from what we would expect, i.e., zero skewness and no excess kurtosis, when using
independent simulations.3

Therefore, why then would you have numerical issues? The LSMC method estimates the early
exercise strategy by performing a series of cross-sectional regressions of future path-wise payoffs on
transformations of the current values of the stock price for the paths that are in the money, and the
most obvious explanation for the numerical issues arising is that these regressions “break down” in
one way or another. In particular, the properties of the input to the regression are very different when
pricing calls, where regressors are unbounded, compared to when pricing puts, where regressors are
bounded above by the strike price. Thus, one may end up performing regressions with regressors that
have very large numerical values, and the probability of this happening increases with maturity and
volatility. Note that this issue does not vanish when increasing the number of simulated paths, N.

2.2. Call Options Priced by Symmetry

When pricing call options using the “symmetric” method, the regressions carried out to price the,
now, put option may be expected to be better behaved. In particular, the independent variable and
the regressors are now bounded above by the strike price when using only the paths that are in the
money. Columns 10–13 of Table 1 show the resulting price estimates, which may be compared directly
to the estimates from the “regular” method in Columns 5–8. The first thing to notice is that with this
approach, the estimated prices for the long-term high volatility options are now much closer to the
benchmark values, and in fact, none of them are statistically different from the benchmark values
provided by the binomial model. Note that some of the biases, five to be precise, are slightly larger for
the symmetric method than for the regular method, yet in all cases, they are very small.

3 Although the path-wise payoffs obtained with the LSMC method for a given Monte Carlo simulation are dependent and
could be very far from normally distributed, the price estimates we report in the table are averages of I = 100 independent
simulations and should therefore be normally distributed by a central limit theorem. The actual values for the skewness and
excess kurtosis are not shown in the table, but are available upon request.
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However, not only is the bias of these estimates comparable across options, the standard deviation
of the estimates is also similar across options. More importantly, the standard errors of the estimates
are always lower than what is obtained with the regular method, and this is so even for the short-term
options with low volatility in the first five rows. Across the 20 options, the regular method yields
estimates with a standard error that is on average three-times larger, with the best case being roughly
26% worse (the option with K = 36, T = 1 and σ = 0.20), and the worst case having a standard
deviation almost nine-times larger.

Because of the low bias and the much lower standard deviation, the RMSE of the call price
estimates obtained using symmetry is much lower than that obtained when pricing the option with
the regular method across the benchmark sample. For half of the options, the RMSE is less than half
that obtained with the regular method when using the symmetric method. In the best case across the
20 options, the regular method is only 9% worse than the symmetry method; however, one would
never do worse when pricing this set of call options using symmetry than with the regular method.
This is a very strong argument for using symmetry to price call options.

3. Implementation

The first step in implementing any type of numerical algorithm to price American options is to
assume that time can be discretized. Thus, we assume that the derivative considered may be exercised at
J points in time. We specify the potential exercise points as t0 = 0 < t1 ≤ t2 ≤ . . . ≤ tJ = T, with t0 and
T corresponding to the current time and maturity of the option, respectively. An American option can
be approximated by increasing the number of exercise points J, and a European option can be valued
by setting J = 1. We assume a complete probability space (Ω,F ,P) equipped with a discrete filtration(
F
(
tj
))J

j=0. The derivative’s value depends on one or more underlying assets, which are modelled using

a Markovian process, with state variables
(
X
(
tj
))J

j=0 adapted to the filtration and with X (0) = x known.

We denote by
(
Z
(
tj
))J

j=0 an adapted payoff process for the derivative satisfying Z
(
tj
)
= π

(
X
(
tj
)

, tj
)

for a suitable function π (·, ·), which is assumed to be square integrable. Following, e.g., Karatzas (1988)
and Duffie (1996), in the absence of arbitrage, we can specify the American option price as:

P (X (0) = x) = max
τ(t1)∈T (t1)

E [Z (τ) |X (0)] , (1)

where T
(
tj
)

denotes the set of all stopping times with values in {tj, . . . , tJ} and where it is therefore
implicitly assumed that the option cannot be exercised at time t0.

In the literature, the problem of calculating the American option price in Equation (1),
i.e., with J > 1, is referred to as a discrete time optimal stopping time problem. The preferred way to
solve such problems is to use the dynamic programming principle. Intuitively, this procedure can be
motivated by considering the choice faced by the option holder at time tj: either to exercise the option
immediately or to continue to hold the option until the next period. Obviously, at any time, the optimal
choice will be to exercise immediately if the value of this is positive and larger than the expected payoff
from holding the option until the next period and behaving optimally from there on forward. To fix
notation, in the following, we let V

(
X
(
tj
))

denote the value of the option for state variables X at a
time tj prior to expiration. We define F

(
X
(
tj
))

≡ E[Z
(
τ
(
tj+1
))

|X
(
tj
)
] as the expected conditional

payoff, where τ
(
tj+1
)

is the optimal stopping time. It follows that:

V
(
X
(
tj
))

= max
(
Z
(
tj
)

, F
(
X
(
tj
)))

, (2)

and it is easily seen that it is possible to derive the optimal stopping time iteratively using the
following algorithm:
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⎧⎨⎩τ
(
tJ
)
= T

τ
(
tj
)
= tj1{Z(tj)≥F(X(tj))} + τ (tk+1) 1{Z(tj)<F(X(tj))}, 1 < j ≤ J − 1.

(3)

Based on this, the value of the option in Equation (1) can be calculated as:

P (X (0) = x) = E [Z (τ (t1)) |X (0)] . (4)

The backward induction theorem of Chow et al. (1971) (Theorem 3.2) provides the theoretical
foundation for the algorithm in Equation (3) and establishes the optimality of the derived stopping
time and the resulting price estimate in Equation (4).

3.1. Simulation and Regression Methods

The idea behind using simulation for option pricing is quite simple and involves estimating
expected values and therefore option prices by an average of a number of random draws. However,
when the option is American, one needs to determine simultaneously the optimal early exercise
strategy, and this complicates matters. In particular, it is generally not possible to implement the
exact algorithm in Equation (3) because the conditional expectations are unknown, and therefore, the
price estimate in Equation (4) is infeasible. Instead, an approximate algorithm is needed. Because
conditional expectations can be represented as a countable linear combination of basis functions, we
may write F

(
X
(
tj
))

= ∑∞
l=0 φl

(
X
(
tj
))

cl
(
tj
)
, where {φl (·)}∞

l=0 form a basis.4 In order to make this
operational, we further assume that it is possible to approximate well the conditional expectation
function by using the first L + 1 terms such that F

(
X
(
tj
))

≈ FL
(
X
(
tj
))

= ∑L
l=0 φl

(
X
(
tj
))

cl
(
tj
)

and
that we can obtain an estimate of this function by:

F̂N
L
(
X
(
tj
))

=
L

∑
l=0

φl
(
X
(
tj
))

ĉN
l
(
tj
)

, (5)

where ĉN
l
(
tj
)

are approximated or estimated using N ≥ L simulated paths. Based on the estimate in
Equation (5), we can derive an estimate of the optimal stopping time from:⎧⎨⎩τ̂N

L
(
tJ
)
= T

τ̂N
L
(
tj
)
= tj1{Z(tj)≥F̂N

L (X(tj))} + τ̂N
L 1{Z(tj)<F̂N

L (X(tj))}, 1 < j ≤ J − 1.
(6)

From the algorithm in Equation (6), a natural estimate of the option value in Equation (4) is given by:

P̂N
L (X (0) = x) =

1
N

N

∑
n=1

Z
(

n, τ̂N
L (1, n)

)
, (7)

where Z
(
n, τ̂N

L (1, n)
)

is the payoff from exercising the option at the optimal stopping time τ̂N
L (1, n)

determined for path n according to Equation (6).

3.2. Implementation of the LSMC Method

When implementing the method outlined above, one has to choose at least two things: how to
generate the data, the simulated state variables, and how to approximate the value function, that

4 This is justified when approximating elements of the L2 space of square-integrable functions relative to some measure. Since
L2 is a Hilbert space, it has a countable orthonormal basis (see, e.g., Royden 1988).
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is how to estimate the parameters in the approximation. The key contribution of Longstaff and
Schwartz (2001) is to suggest that the coefficients in the approximation of the continuation value,
ĉN

l
(
tj
)
, can be estimated in a simple cross-sectional ordinary linear (OLS) regression, where the

independent variable is the discounted path-wise future payoff and the dependent variables are
functions of the current state variables. In this paper, we propose to merge the LSMC method with
PCS and use the symmetric method when pricing call options. Thus, instead of simulating paths
from a dynamic model with a risk-free rate of r and dividend yield of d, we simulate from the same
dynamic model, but with a risk-free rate of d and dividend yield of r, and instead of pricing the
option as a call option with a strike price of K and a current value of the underlying asset of S,
we price the option as if it had been a put option with a strike price of S and a current value of
the underlying asset of K.5 These changes are simple to make and involve no extra computational
complexity or changes to the numerical procedure. In fact, for consistency, it is important to note
that we use the exact same numerical procedures for simulating the paths and to implement the
cross-sectional regression.6

There are two very intuitive reasons why using the symmetric method to price call options
may work better than when pricing the call option using the regular method. First, as explained
above, in simulation-based methods, the option price, an expectation under the risk neutral measure,
is approximated by the average of a number of random realizations of future payoffs, obtained from
simulated values of the appropriate state variables. This mean obviously behaves better, and the
estimator will have a smaller variance when the possible realizations are bounded, as they are in the
case of the payoff of a put option, than when they are unbounded, as they are in the case of the payoff
of a call option. Our numerical results for the benchmark options in Section 2 indeed showed that the
standard deviation of the estimates is always lower when using the symmetric method than when
using the regular method.7

Second, it is easier to approximate the continuation value when this is a bounded function on
a bounded interval than when this is an unbounded function on an unbounded interval. In particular,
theoretically, it is straightforward to design a robust approximation scheme for the continuation
value of a put option using only the simulated paths that are in the money.8 For call options, on the
other hand, no general theoretical results exist to justify that this is in fact feasible, and though
numerical schemes are available and polynomial families that have nice properties can be used,
approximating the continuation value is likely much more complicated. A further complication with
the continuation value of a call option is that this is bounded below by the exercise value for large
values of the underlying asset and thus asymptotically linear in the stock value. It is obviously difficult
to approximate a function with these characteristics.

4. Results

The motivating example in Section 2 clearly demonstrated that there might be significant
value to pricing call options as put options using symmetry properties when using the LSMC
algorithm. To test this further, we now price a large sample of call options with five different
strike prices, K = [90, 95, 100, 105, 110], maturities, T = [0.5, 1, 2, 3, 5] years, interest rates,
r = [0.0%, 2.5%, 5.0%, 7.5%, 10%], dividend yields, d = [0.0%, 2.5%, 5.0%, 7.5%, 10%], and volatilities,
σ = [10%, 20%, 30%, 40%, 50%], for a total of 5 × 5 × 5 × 5 × 5 = 3, 125 options. This sample arguably

5 For now, we maintain the assumption that dynamics are governed by simple geometric Brownian motion. However, our
results generalize to other models for which PCS holds, as we demonstrate in Section 5.

6 We deal with the difference in, for example, the payoff when exercising the option by using negative values for the strike
price and the stock prices for put options since ZCall(S, K) = max(S − K, 0) = max((−K)− (−S), 0) = ZPut(−S,−K).

7 Unreported results, available upon request, show that this generalizes to the much larger sample of options we consider in
Section 4.

8 This follows from the Weierstrass approximation theorem, which states that every continuous function defined on a closed
interval can be uniformly approximated as closely as desired by a polynomial function.
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spans most of the important cases one would come across in real-life applications of option pricing.
We first consider performance for various numbers of exercise possibilities J and across option
characteristics, i.e., K and T. Next, we consider performance across model parameters, i.e., r, d
and σ. Benchmark values are from the Cox et al. (1979) binomial model with 25,000 steps and J early
exercise possibilities.

In this section, we use a slightly different setup for the LSMC algorithm in that we use monomials
as regressors and we use simple “plain vanilla” Monte Carlo simulation. We choose monomials
instead of Laguerre polynomials because they are simpler and faster to use. We choose a plain Monte
Carlo simulation without any variance reduction techniques such that our results are not potentially
dependent on a particular variance reduction method. We again report results with the LSMC method
using I = 100 independent simulations with N = 100,000 paths and L = 3 regressors. We assess model

performance using the Bias = I−1 ∑I
i=1
(

P̂i − P
)

and RMSE =
√

I−1 ∑I
i=1
(

P̂i − P
)2 error metrics

where P̂i is the ith simulated estimate of the price P. Since we cannot report all the individual errors,
we report average errors instead. We also consider the fraction of options for which the regular and
symmetric method have the highest bias and RMSE, respectively.9

4.1. Performance across Option Characteristics

Table 2 reports results for our benchmark implementation of the LSMC method for the large
sample of call options considering different numbers of total early exercises, J, constant across the
maturity, from J = 10 to J = 200 (a close approximation to the continuously-exercisable American
option) and across different strike prices, K, and different maturities, T, for options with J = 50 early
exercises. Figure 1 plots the relative performance of the symmetric method compared to the regular
method for the four aggregate error metrics across these three dimensions.

Panel A of Table 2 first of all shows that using the regular method for this sample of options
leads to significantly low biased price estimates. For example, when considering the case with J = 50
exercise times, the average bias is almost six cents with this method, whereas it is less than a cent if the
symmetric method is used leading to an average improvement of 1 − |−0.0574/ − 0.0022| = 96.22%.
The improvement in performance with the symmetric approach is large also for the RMSE. Moreover,
the improvement in performance is not only large on average, but also across most of the options, as
the counting metrics show. In particular, improvements occur for 83.90% and 88.19% of the options in
terms of bias and the RMSE, respectively. Figure 1a shows that the improved performance is not limited
to a particular choice of the number of early exercise possibilities, J, and improvements are found for all
the reported values of J. Across the number of early exercises, the figure does indicate that the relative
performance improves rapidly with J when there are only a small number of exercise possibilities.
Once J reaches 50 or 100, the effect in terms or RMSE tapers off, and the relative improvement in
performance does not change much when increasing the number of early exercise points further.10

Panel B of Table 2 shows the results across moneyness and demonstrates that the absolute errors
of both methods decrease when the strike price increases. In terms of the counting metrics the panel
shows that the symmetric method has the smallest errors for 98.4% of the out of the money options.
For in the money options, where determining the early exercise strategy is of less importance, the
improvement is relatively smaller, though the symmetric method continues to yield more precise
price estimates on average and for the majority of the options. In relative terms, Figure 1b shows that
the symmetric method performs better than the regular method across all strike prices. The relative

9 Using the fraction of times a given method has the highest error metric ensures, as is the case with the bias and RMSE error
metrics, that lower numbers are better.

10 Note, though, that, e.g., the bias of both the regular and symmetric method increases in absolute terms when increasing the
number of exercise points. This is likely related to the fact that dependence is introduced between the paths in the LSMC
method because of the cross-sectional regression, and this dependence “accumulates” as we go backwards in time in the
algorithm and becomes more and more important as the number of early exercise possibilities increases.
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performance is best for options with low strike prices, i.e., call options that are out of the money, and
for these options, the relative performance in terms of the counting metrics is quite extraordinary.

Finally, Panel C of Table 2 shows the results across maturity and documents clear and significant
improvements in the relative performance of the symmetric method for all metrics when maturity
increases. It is noteworthy that the symmetric method actually leads to more precise, in terms of
RMSE, estimates for all subcategories. In terms of the counting metrics, the symmetric method also
largely outperforms the regular method and leads to prices estimated with smaller errors in at least
72.16% of the cases, the worst relative performance being for the shortest maturity options. In relative
terms, Figure 1c shows that the symmetric method performs better than the regular method across all
maturities and error metrics. In fact, for the majority of the categories, that is for options with maturity
of T = 2 years or more, the symmetric method leads to lower RMSE for at least nine out of 10 of the
options. Thus, the results from Section 2 hold true in general for a much larger sample of options.

Table 2. Pricing errors across option characteristics.

Panel A: Across Early Exercise Points J

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
J Bias RMSE Bias RMSE Bias RMSE Bias RMSE

10 −0.0066 0.0169 0.0022 0.0063 0.6525 0.7878 0.3475 0.2122
25 −0.0310 0.0351 0.0038 0.0086 0.7251 0.7894 0.2749 0.2106
50 −0.0574 0.0602 −0.0022 0.0104 0.8390 0.8819 0.1610 0.1181

100 −0.0639 0.0660 −0.0090 0.0138 0.9222 0.9683 0.0778 0.0317
200 −0.0922 0.0963 −0.0207 0.0222 0.8829 0.9014 0.1171 0.0986

Panel B: Across Strike Prices K

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
K Bias RMSE Bias RMSE Bias RMSE Bias RMSE

90 −0.0682 0.0707 −0.0055 0.0112 0.9680 0.9840 0.0320 0.0160
95 −0.0631 0.0657 −0.0037 0.0109 0.9680 0.9936 0.0320 0.0064

100 −0.0574 0.0602 −0.0019 0.0104 0.8560 0.9232 0.1440 0.0768
105 −0.0521 0.0550 −0.0005 0.0100 0.7520 0.8128 0.2480 0.1872
110 −0.0464 0.0495 0.0007 0.0096 0.6512 0.6960 0.3488 0.3040

Panel C: Across Maturity T

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
T Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0.5 −0.0211 0.0220 −0.0050 0.0107 0.7216 0.7504 0.2784 0.2496
1 −0.0279 0.0293 −0.0032 0.0115 0.7936 0.8432 0.2064 0.1568
2 −0.0392 0.0414 −0.0011 0.0110 0.8560 0.9056 0.1440 0.0944
3 −0.0525 0.0553 −0.0004 0.0100 0.9008 0.9472 0.0992 0.0528
5 −0.1462 0.1531 −0.0011 0.0089 0.9232 0.9632 0.0768 0.0368

This table shows pricing errors for the regular and symmetric method for various numbers of exercise
possibilities, J, strike prices, K, and maturities, T. Results are based on I = 100 independent simulations with
N = 100,000 paths and L = 3 regressors. In each panel, we report results for the bias and RMSE in terms
of the average metrics and counting metrics, i.e., the fraction of times a given method has the highest error
metric. Panels B and C use results for J = 50 early exercise points only.
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(a) Relative performance across J (b) Relative performance across K

(c) Relative performance across T

Figure 1. Relative pricing performance across option characteristics. This figure plots the relative
performance of the symmetric method compared to the regular method across the number of early
exercises, J, strike price, K, and maturity, T. Panels B and C use results for J = 50 early exercise points only.

4.2. Performance across Model Parameters

We now consider the relative performance of the two methods for some interesting subgroups of
model parameters like the interest rate r, the dividend yield d and the volatility of the underlying asset
σ. Table 3 shows the results across interest rate, r, dividend yield, d, and volatility, σ, for our large
sample of options. Figure 2 plots the relative performance of the symmetric method compared to the
regular method across these three dimensions.

Table 3. Pricing errors across model characteristics.

Panel A: Across Interest Rates r

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
r bias RMSE Bias RMSE Bias RMSE Bias RMSE

0% −0.0560 0.0574 0.0025 0.0065 0.8752 0.8992 0.1248 0.1008
2.5% −0.0656 0.0673 −0.0018 0.0108 0.8608 0.8784 0.1392 0.1216
5.0% −0.0618 0.0643 −0.0038 0.0119 0.8304 0.8656 0.1696 0.1344
7.5% −0.0553 0.0590 −0.0040 0.0118 0.8112 0.8688 0.1888 0.1312
10% −0.0484 0.0530 −0.0038 0.0110 0.8176 0.8976 0.1824 0.1024
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Table 3. Cont.

Panel B: Across Dividend Yields d

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
d Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0% −0.0730 0.0789 −0.0093 0.0142 0.8368 0.9360 0.1632 0.0640
2.5% −0.0555 0.0591 −0.0064 0.0147 0.8272 0.8864 0.1728 0.1136
5.0% −0.0487 0.0509 −0.0009 0.0106 0.8432 0.8720 0.1568 0.1280
7.5% −0.0527 0.0542 0.0030 0.0069 0.8496 0.8640 0.1504 0.1360
10% −0.0571 0.0580 0.0027 0.0058 0.8384 0.8512 0.1616 0.1488

Panel C: Across Volatility Levels σ

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
σ Bias RMSE Bias RMSE Bias RMSE Bias RMSE

10% −0.0034 0.0046 0.0010 0.0026 0.6464 0.7104 0.3536 0.2896
20% −0.0162 0.0186 −0.0010 0.0075 0.7584 0.8512 0.2416 0.1488
30% −0.0382 0.0411 −0.0025 0.0114 0.8848 0.9152 0.1152 0.0848
40% −0.0694 0.0716 −0.0037 0.0143 0.9328 0.9552 0.0672 0.0448
50% −0.1598 0.1652 −0.0047 0.0161 0.9728 0.9776 0.0272 0.0224

This table shows pricing errors for the regular and symmetric method for various numbers of interest rates
r, dividend yields, d, and volatility level, σ. Results are based on I = 100 independent simulations with
N = 100,000 paths and L = 3 regressors. In each panel, we report results for the bias and RMSE in terms of the
average metrics and counting metrics, i.e., the fraction of times a given method has the highest error metric.

Figure 2a,b along with Panels A and B of Table 3 show that the relative improvement from using
the symmetric method is large across all the possible values of interest rates and dividend yields.
This holds both in terms of the average metrics and in terms of the number of options for which the
symmetric method has the smallest error. In terms of absolute errors, the relative performance of the
symmetric method decreases slightly when the interest rate increases, though the method produces
estimates with errors that are very small and never above one third of the errors obtained with the
regular method. When the dividend yield increases, the relative performance of the symmetric method
increases somewhat. Note that the case with d = 0 is special since in this situation, the American call
option should never be exercised early.

Figure 2c and Panel C of Table 3 document clear and significant improvements in the relative
performance of the symmetric method for all metrics in absolute, as well as relative terms when
volatility increases. It is noteworthy that the symmetric method actually leads to more precise, in terms
of RMSE, estimates for all subcategories. In terms of the counting metrics, the symmetric method also
largely outperforms the regular method and leads to price estimates with smaller errors in at least
64.64% of the cases, the worst relative performance being for the lowest volatility options. For the
majority of the categories, that is for options with volatility of σ = 0.30 or more, the symmetric method
leads to lower RMSE for at least nine out of 10 of the options. Thus, the results from Section 2 hold
true in general for a much larger sample of options.
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(a) Relative performance across R (b) Relative performance across D

(c) Relative performance across σ

Figure 2. Relative pricing performance across model characteristics. This figure plots the relative
performance of the symmetric method compared to the regular method across interest rates, r, dividend
yields, d, and volatility levels, σ.

5. Robustness

The previous section provides strong evidence in favour of using symmetric pricing for call
options. In this section, we examine the robustness of these results along two dimensions. We first
examine the importance of the choice of the number of paths, N, and the number of regressors, L, used
in the Monte Carlo simulation and whether or not our reported results are robust to using so-called
out-of-sample pricing. Next, we examine the robustness of our results to using alternative option
pricing models. Here, we consider the case with multiple underlying assets and the case in which the
underlying asset follows the stochastic volatility model of Heston (1993).

5.1. Alternative Choices for the Number of Paths and Regressors

When implementing the LSMC method, one needs to choose the number of paths to simulate, N,
and the number of regressors, L, to use in the cross-sectional regressions. While it is well known that
the estimated prices converge to the true price when both N and L tend to infinity (see, e.g., Stentoft
(2004b)), any real application involves choosing a finite number of paths and regressors. Table 4 shows
the results across the number of simulated paths, N, and the number of regressors, L, for our large
sample of options. Figure 3 plots the relative performance of the symmetric method compared to the
regular method across these two dimensions.
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Table 4. Pricing errors across algorithm characteristics.

Panel A: Across Number of Simulated Paths N

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
N Bias RMSE Bias RMSE Bias RMSE Bias RMSE

20,000 −0.0112 0.0426 0.0089 0.0178 0.5498 0.6915 0.4502 0.3085
50,000 −0.0428 0.0480 0.0038 0.0131 0.7130 0.8000 0.2870 0.2000

100,000 −0.0574 0.0602 −0.0022 0.0104 0.8390 0.8819 0.1610 0.1181
200,000 −0.0526 0.0540 −0.0080 0.0100 0.9322 0.9766 0.0678 0.0234
500,000 −0.0549 0.0556 −0.0120 0.0124 0.8749 0.8835 0.1251 0.1165

Panel B: Across Number of Regressors L

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
L Bias RMSE Bias RMSE Bias RMSE Bias RMSE

2 −0.0819 0.0832 −0.0330 0.0351 0.8608 0.8986 0.1392 0.1014
3 −0.0574 0.0602 −0.0022 0.0104 0.8390 0.8819 0.1610 0.1181
5 −0.0061 0.0201 0.0104 0.0117 0.2848 0.3901 0.7152 0.6099
9 0.0296 0.0328 0.0144 0.0154 0.6611 0.7123 0.3389 0.2877

15 0.0614 0.0625 0.0178 0.0187 0.7261 0.7555 0.2739 0.2445

This table shows pricing errors for the regular and symmetric method for various numbers of simulated paths
N and number of regressors L. Results are based on I = 100 independent simulations. In each panel, we
report results for the bias and RMSE in terms of the average metrics and counting metrics, i.e., the fraction of
times a given method has the highest error metric.

(a) Relative performance across N (b) Relative performance across L

Figure 3. Relative pricing performance across algorithm characteristics. This figure plots the relative
performance of the symmetric method compared to the regular method across the number of simulated
paths, N, and number of regressors, L.

Panel A of Table 4 shows the results when increasing the number of simulated paths from
N = 20,000 to N = 500,000, while keeping the number of regressors fixed at L = 3. In this case, we
know that the methods converge to a low estimate of the true value, one that is based on using a
rather rough approximation of the conditional expectation function used to determine the optimal
early exercise. The table confirms this numerically in that the bias for both methods, regular as well as
symmetric, becomes more negative with increasing N. Note also that the regular method always yields
price estimates with a low bias on average even when using as low as N = 20,000 paths, whereas the
symmetric method yields high biased estimates for low N.
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When comparing the two methods, it is noteworthy, though, that in all cases, the absolute bias
and the RMSE is lowest with the symmetric method, and this method consistently outperforms the
regular method across all choices of N, as can be seen from Figure 3a. When it comes to the number of
times the symmetric method has lower errors, a pattern very similar to what was seen when increasing
T or σ is found.

Panel B of Table 4 shows the results when increasing the number of regressors from L = 2 to
L = 15, while keeping the number of simulated paths fixed at N = 100,000. In this case, we know
that, everything else equal, the estimated prices should increase as the approximation gets better and
better, although this may eventually result in a high bias because of over fitting the function on a finite
number of simulated paths. The table confirms this numerically in that the bias for both methods,
regular as well as symmetric, becomes more positive with increasing L. The change is most dramatic
for the regular method, which goes from having an average negative bias of close to eight cents to
having an average positive bias of more than six cents.

When comparing the two methods, the table shows that the symmetric method almost always
provides estimates with smaller errors than does the regular method across the choice of L.
The exception to this is when using L = 5 and looking at the average bias, where the absolute
value from using the regular method is half that of using the symmetric method. When it comes to the
number of times the symmetric method has lower errors, a pattern very similar to what was observed
previously is found. The main difference is that, for the first configuration of all the ones considered
up to this point, a case occurs where the regular method on average provides estimates that are better
in terms of the RMSE. Unsurprisingly, this happens when L = 5 for which 60.99% of the estimated
regular prices have smaller errors.

When looking at Panel B of the table, it is noteworthy that the performance of the symmetric
method is better for a small, i.e., L ≤ 3, or a large, i.e., L ≥ 9, choice of regressors. A similar, though less
pronounced, non-linear relationship is found in Panel A of the table when the number of simulated
paths is increased. Given this concave relationship, as a function of L, and convex relationship,
as a function of N, in the relative performance, it is indeed possible that one could find a combination
of L and N for which the regular method would outperform the symmetric method for our large
sample of options. This though would be largely due to luck (or would require one to consider a large
number of possible combinations) and as such is not of much help or relevance.

One reason that the choice of polynomial is important is that the LSMC method mixes two
types of biases: a low bias due to having to approximate the optimal stopping time with a finite
degree polynomial and a high bias stemming from using the same paths to determine the optimal
early exercise strategy and to price the option, potentially leading to over fitting to the simulated
paths. As a result of this, the bias just happens to be somewhat smaller without symmetry, a value of
−0.006, then when using symmetry, a value of 0.010 when using L = 5 regressors with N = 100,000
paths.11 One easy way to control the sign of the bias is to conduct so-called out-of-sample pricing in
which a new set of simulated paths is used to price the option instead of using the same set of paths
that were used for determining the optimal early exercise strategy. Table 5 shows the results for the
different configurations of N and L and, as expected and in line with the theory, shows that the bias
of the estimates from the regular, as well as the symmetric method is negative, i.e., the estimates are
low biased.

Compared to Table 4, Panel A of Table 5 shows that when using out-of-sample pricing, the
estimated prices with the regular method improve significantly when the number of simulated paths,
N, increases. The estimates from the symmetric method, however, are much less affected by the
number of paths used. The reason for this is related to the over fitting and large variance in the

11 Again, for all other values of the number of simulated paths with this number of regressors and when using other numbers
of regressors with this number of simulated paths, the symmetric estimates are less biased.
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estimates in the cross-sectional regressions with the regular method, which for a given choice of L,
becomes less of an issue with increasing N. When using symmetric pricing, this is much less of an issue
since the regressors are bounded. Compared to Figure 3, Figure 4 shows that when using out-of-sample
pricing, the relative performance of the symmetric method is much less dependent on the choice of
N and L. In particular, the symmetric method now improves significantly on the regular method
irrespective of the choice of L. Panel B of Table 5 shows that once L = 3 or more regressors are used,
the RMSE of the symmetric method is around 20% of the RMSE of the regular method. In terms of the
number of times the symmetric method leads to the smallest RMSE, this is around 90% or more for all
values of L.

Table 5. Pricing errors across algorithm characteristics using out-of-sample pricing.

Panel A: Across Number of Simulated Paths N

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
N Bias RMSE Bias RMSE Bias RMSE Bias RMSE

20,000 −0.1286 0.1303 −0.0070 0.0163 0.9997 0.9997 0.0003 0.0003
50,000 −0.0974 0.0986 −0.0145 0.0166 0.9984 0.9978 0.0016 0.0022

100,000 −0.0837 0.0851 −0.0147 0.0157 0.9040 0.9472 0.0960 0.0528
200,000 −0.0565 0.0590 −0.0185 0.0190 0.7792 0.7878 0.2208 0.2122
500,000 −0.0706 0.0708 −0.0094 0.0106 0.9939 0.9942 0.0061 0.0058

Panel B: Across Number of Regressors L

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
L Bias RMSE Bias RMSE Bias RMSE Bias RMSE

2 −0.0974 0.0983 −0.0431 0.0438 0.9130 0.9322 0.0870 0.0678
3 −0.0837 0.0851 −0.0147 0.0157 0.9040 0.9472 0.0960 0.0528
5 −0.0488 0.0498 −0.0063 0.0079 0.8797 0.9203 0.1203 0.0797
9 −0.0418 0.0427 −0.0077 0.0091 0.8662 0.8890 0.1338 0.1110

15 −0.0450 0.0458 −0.0106 0.0117 0.9133 0.9210 0.0867 0.0790

This table shows pricing errors for the regular and symmetric method using out-of-sample pricing for various
numbers of simulated paths N and number of regressors L. Results are based on I = 100 independent
simulations. In each panel, we report results for the bias and RMSE in terms of the average metrics and
counting metrics, i.e., the fraction of times a given method has the highest error metric.

(a) Relative performance across N using out-of-sample pricing (b) Relative performance across L using out-of-sample pricing

Figure 4. Relative pricing performance across algorithm characteristics using out-of-sample pricing.
This figure plots the relative performance of the symmetric method compared to the regular method
using out-of-sample pricing across the number of simulated paths, N, and number of regressors, L.
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5.2. Extensions to Other Option Pricing Models

Until now, we have presented results for the simple Black–Scholes–Merton setup. The reason for
this was obvious: we wanted to have fast and precise benchmark results available. Without these, it
makes no sense to talk about one method being more efficient than another since we measure efficiency
by loss functions such as the RMSE for which a benchmark is required. However, we have argued that
since our results rely on nothing but simulation and regression, our conclusions should be valid for
other settings in terms of asset dynamics and option payoffs for which PCS holds. We now consider
two obvious alternatives and demonstrate that our previous conclusions indeed continue to hold. We
first provide results when the option payoffs depend on the average of several assets in a multivariate
model, and second, we consider the case where the asset dynamics are instead given by the stochastic
volatility (SV) model of Heston (1993).

The case with options written on multiple assets is the most obvious generalization of the
standard constant volatility case. Options can be written on the maximum, minimum or average
of multiple assets. These types of payoff functions have been used widely in the literature, and the
work in Boyle and Tse (1990) gave examples on where these types of options are traded. The work
in Stentoft (2004a) demonstrated that as the dimension of the problem increases, simulation-based
methods like the LSMC are the most efficient methods to use for pricing. While put-call symmetry
properties have been established in several cases (see for example Detemple (2001)), the most
clean-cut case occurs with options written on the geometric average, i.e., options for which the
payoff is given by:

G = max

⎛⎝0,

(
M

∏
l=m

Sm

) 1
M

− K

⎞⎠ , (8)

where Sm, m = 1, .., M are the prices of the underlying assets, M being the dimension, and K is the
strike price as before. The reason that this case is a “clean-cut” example is that since the product of
lognormals is lognormal, the pricing problem essentially reduces to that of pricing single asset options
on an asset that follows a (particular and slightly non-standard) GBM.12

In the LSMC method, we again consider the complete set of polynomials of order L = 3 or less
and therefore use a total of 10, 20 and 56 regressors when the dimension of the problem, M, is 2, 3
and 5, respectively. In all cases, we use I = 100 independent simulations with N = 100,000 simulated
paths. We consider options with different features and different asset dynamics. In particular, we
consider three values of the strike price, K = [95, 100, 105], the time to maturity, T = [0.5, 1, 2] years, the
volatility, σ = [10%, 20%, 40%], the correlation between the assets, ρ = [0.25, 0.50, 0.75], and the number
of assets, M = [2, 3, 5], for a total of 35 = 243 options. Pricing options in multiple dimensions quickly
become computationally complex, and for this reason, we consider a smaller sample of options than in
the benchmark case. Overall, our results show that the average RMSE obtained with the symmetric
method is 36% smaller than that obtained with the regular method, and the RMSE is smallest for 87%
of the individual options when using the symmetric method. These results clearly show that symmetry
is valuable also for more advanced multivariate models.

Figure 5a and Panel A of Table 6 show the results across the number of assets, M, and demonstrate
clearly that our suggestion of pricing call options as put options becomes more important as the
dimension, and hence the computational complexity, of the option increases. In particular, the relative
error of the symmetric method in terms of RMSE in Figure 5a goes from 0.890–0.545 as the dimension
increases from 2–5. Moreover, when the dimension of the problem is high, the symmetric method
almost always, in 96.3% of the cases, has the lowest RMSE, as shown in Panel A of Table 6.

12 The working version of this paper contains the full details on how to derive these dynamics.
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(a) Relative performance across number of assets (b) Relative performance across correlation ρ

Figure 5. Relative pricing performance in a multivariate model. This figure plots the relative
performance of the symmetric method compared to the regular method across the mean reversion rate
κ, long-term variance, θ, initial volatility, V0, and correlation, ρ.

Table 6. Pricing errors across model characteristics in a multivariate model.

Panel A: Across Number of Assets M

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
M Bias RMSE Bias RMSE Bias RMSE Bias RMSE

2 0.0021 0.0054 0.0012 0.0048 0.6420 0.7654 0.3580 0.2346
3 0.0099 0.0123 0.0038 0.0097 0.9012 0.9012 0.0988 0.0988
5 0.0319 0.0329 0.0125 0.0180 0.9630 0.9630 0.0370 0.0370

Panel B: Across Correlation ρ

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
ρ Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0.25 0.0073 0.0111 −0.0001 0.0115 0.7160 0.7654 0.2840 0.2346
0.5 0.0143 0.0161 0.0069 0.0096 0.8765 0.9136 0.1235 0.0864

0.75 0.0223 0.0234 0.0107 0.0114 0.9136 0.9506 0.0864 0.0494

This table shows pricing errors for the regular and symmetric method in a multivariate model for various
values of the number of stocks M and correlation ρ. Results are based on I = 100 independent simulations
with N = 100,000 paths. In each panel, we report results for the bias and RMSE in terms of the average metrics
and counting metrics, i.e., the fraction of times a given method has the highest error metric.

Figure 5b and Panel B of Table 6 show the results across the correlation between the assets, ρ.
From the figure, it is seen that symmetry becomes more important when correlations between assets
increase. In particular, in terms of the absolute metrics, the regular method performs on par with
the symmetric method when the correlation is low and ρ = 0.25, but when the correlation is high
and ρ = 0.75, the error in pricing of the symmetric method is only around half that of the regular
method, as shown in Figure 5b. Moreover, the symmetric method is always the method that yields the
smallest errors for the largest fraction of the options. For example, when correlations are high among
the underlying assets, the symmetric method has larger RMSE for only 4.94% of the options as shown
in Panel B of Table 6.
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The SV model of Heston (1993) is one of the most famous extensions to the constant volatility model.
While it may not have been the first SV model, e.g., earlier examples include Hull and White (1987),
Scott (1987) and Wiggins (1987), this particular model has emerged as the most important one and now
serves as a benchmark against which many other SV models are compared. In the model of Heston
(1993), the variance followed a Cox et al. (1985) process specified as:

dvt = κ(θ − vt)dt + σ
√

vtdWQ
2,t. (9)

Here, κ represents the mean reversion rate of the variance, θ is the long-term variance, σ is the
volatility of volatility (vol of vol) and the stock dynamics and variance are allowed to be correlated
with correlation coefficient ρ. Put-call symmetry also holds in this model as demonstrated by,
e.g., Battauz et al. (2014), which also listed the appropriate changes of parameters. In particular,
the paper shows that in the model of Heston (1993), the following parity holds between a call option
and a put option:

C(S, r, q, K, V0, θ, κ, σ, ρ) = P(K, q, r, S, V0, κθ/(κ − σρ), κ − σρ, σ,−ρ). (10)

In other words, a call option can be priced as a put option in which the stock price and the strike price
and the interest rate and the dividend yield are interchanged, as was the case in the constant volatility
setting, and in which the mean reversion, κ′, the long-term variance, θ′, and the correlation, ρ′, for the
symmetric put option are changed to:

κ′ = κ − σρ, θ′ = θκ/κ′, and ρ′ = −ρ, (11)

where κ, θ and ρ are the actual mean reversion, long-term variance and correlation.
We again price each of the individual options I = 100-times with independently-simulated

state variables used in the LSMC method, which we implemented using N = 100,000 paths. In the
cross-sectional regressions, we use the complete set of polynomials in two dimensions of order L = 3
or less as regressors for a total of 10 regressors including the constant term. We consider three different
values of the strike price, K = [90, 100, 110], the time to maturity, T = [0.5, 1, 2] years, the mean
reversion rate, κ = [1, 3, 5], the long-term variance, θ = [0.01, 0.04, 0.16], the initial level of the variance,
V0 = [0.01, 0.04, 0.16], the volatility of volatility, σ = [0.05, 0.1, 0.2], and the correlation between the two
Brownian motions, ρ = [−0.5, 0, 0.5], for a total of 37 = 2187 options. Overall, our results show that
the average RMSE obtained with the symmetric method is 14% smaller than that obtained with the
regular method, and the RMSE is smallest for 61% of the individual options when using the symmetric
method. These results clearly show that symmetry is valuable also for more advanced models, and
though the results are somewhat closer to each other than with our benchmark model, this is to be
expected since we are considering options here that have on average shorter maturities.

Figure 6 and Table 7 show the results across the various values of the mean reversion rate,
κ, the long-term variance, θ, the initial level of the variance, V0, and the correlation, ρ. The first thing to
notice from the table is that across all these interesting parameters and parameter values, the symmetric
method most of the time outperforms the regular approach. The two exceptions to this are options
with very low long-term variance and θ = 0.01 and when the initial level of the variance is very high
and V0 = 0.16, where the RMSE is slightly lower with the regular method than with the symmetric
method. In both of these cases, the symmetric method also has larger RMSE for more options than
does the regular method, whereas in all the other cases, the symmetric method most often has the
smallest RMSE.
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In terms of performance across parameters, Figure 6 and Table 7 show that the symmetric method
performs relatively better the faster the volatility mean reverts, i.e., the larger the value of κ in Figure 6a,
and the larger the value of the long-term variance, i.e., the larger the value of θ in Figure 6b. The last
of these findings is completely in line with the results from our benchmark model where symmetric
pricing was most important for high values of the asset volatility. Figure 6d shows that the symmetric
method performs relatively better when correlations are negative, which is indeed the empirically most
relevant case in the stochastic volatility model of Heston (1993). When the correlation is highly negative
and ρ = −0.5, the symmetric method has errors in terms of bias and RMSE that are around 25% lower
than the regular method and has the largest errors for only around one third of the individual options.
The effect on the relative performance of the initial variance, V0, is less clear cut though Figure 6c
does indicate that the symmetric method performs relatively better when V0 is not too extreme, and in
particular not too high.

Table 7. Pricing errors across model characteristics in a stochastic volatility model.

Panel A: Across Mean Reversion κ

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
κ Bias RMSE Bias RMSE Bias RMSE Bias RMSE

1 0.0084 0.0139 0.0102 0.0128 0.5089 0.5638 0.4911 0.4362
3 0.0055 0.0099 0.0066 0.0082 0.5446 0.6063 0.4554 0.3937
5 0.0053 0.0093 0.0058 0.0074 0.5706 0.6516 0.4294 0.3484

Panel B: Across Long-Term Variance θ

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
θ Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0.01 0.0028 0.0077 0.0061 0.0081 0.4486 0.4938 0.5514 0.5062
0.04 0.0045 0.0084 0.0057 0.0072 0.5748 0.6241 0.4252 0.3759
0.16 0.0119 0.0170 0.0108 0.0130 0.6008 0.7037 0.3992 0.2963

Panel C: Across Initial Variance V0

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
V0 Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0.01 0.0081 0.0115 0.0068 0.0090 0.6296 0.6818 0.3704 0.3182
0.04 0.0035 0.0088 0.0035 0.0062 0.6337 0.7051 0.3663 0.2949
0.16 0.0076 0.0128 0.0122 0.0131 0.3608 0.4348 0.6392 0.5652

Panel D: Across Correlation ρ

Absolute Metrics Counting Metrics

Regular Call Symmetric Call Regular Call Symmetric Call
ρ Bias RMSE Bias RMSE Bias RMSE Bias RMSE

−0.5 0.0096 0.0120 0.0074 0.0092 0.6488 0.6927 0.3512 0.3073
0 0.0060 0.0105 0.0070 0.0092 0.5075 0.6008 0.4925 0.3992

0.5 0.0036 0.0105 0.0081 0.0100 0.4678 0.5281 0.5322 0.4719

This table shows pricing errors for the regular and symmetric method in a stochastic volatility model for
various values of the mean reversion rate, κ, long-term variance, θ, initial volatility, V0, and correlation, ρ.
Results are based on I = 100 independent simulations with N = 100,000 paths. In each panel, we report
results for the bias and RMSE in terms of the average metrics and counting metrics, i.e., the fraction of times a
given method has the highest error metric.
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(a) Relative performance across κ (b) Relative performance across θ

(c) Relative performance across V0 (d) Relative performance across ρ

Figure 6. Relative pricing performance in a stochastic volatility model. This figure plots the relative
performance of the symmetric method compared to the regular method across the mean reversion rate
κ, long-term variance, θ, initial volatility, V0, and correlation, ρ.

6. Discussion

The fact that pricing call options using the symmetry method works best for most and along some
dimensions almost all of the options considered is great news. However, since it does not perform
the best for all the options, it leaves the obvious question of when to choose one method over the
other. As it is, the only solid recommendations that arise from Sections 4 and 5 are that using the
symmetric method with standard choices of the number of paths and number of regressors used in
the LSMC method is relatively better the longer the maturity and the larger the volatility and that the
methods become more similar when simulating a very large number of paths, e.g., when N is as large
as 500,000, and that they diverge when using a large number of regressors, e.g., when L is as large as
15. In this section, we first examine the performance of the individual methods in terms of a relative
efficiency measure, which compares the performance of a method to what could have been obtained
optimally. Then, using properties of the out-of-sample method for pricing, we propose a method for
selecting which specification to use across the methods and the number of regressors, which is simple
to implement and achieves a very high degree of efficiency.
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6.1. Efficiency as an Alternative Metric

Until know, we have compared performance metrics, i.e., the RMSE or the number of times
a method works the best or worst, for the regular and symmetric pricing methods, respectively.
An alternative and perhaps more interesting metric for “practitioners” is what one stands to lose in
terms of increased pricing errors by picking and sticking to one particular method instead of using
the optimal method for a given individual option in our sample. To examine this, we now consider
a metric, which we will refer to as the “efficiency” given by the ratio of a specific method’s RMSE to
the optimal and infeasible RMSE that could be obtained if one knew which method to use for each of
the individual options.

Table 8 shows the efficiency of the two methods using in-sample pricing for various values of N
and L in Columns 5 and 6. For comparison, the fraction of the options for which a particular model
performs the best in terms of having the lowest RMSE is also reported in Columns 7 and 8.13 Panel A
of Table 8 clearly shows that the symmetric method performs extremely well across the number of
simulated paths, and one would never lose more than 7% from using this method. In fact, for most
realistic specifications, i.e., when N ≥ 100,000, the loss is less than 2%. The regular method, on the
other hand, often has an efficiency of just around 20%, meaning that if this method was used to price
the sample of options, one would lose around 80% compared to what could optimally be obtained.

Table 8. Efficiency across the number of paths N and regressors L.

Panel A: Results across Number of Paths N

RMSE Efficiency Count
N Call SCall Optimal Call SCall Call SCall

20,000 0.0426 0.0178 0.0166 38.91% 92.98% 30.85% 69.15%
50,000 0.0480 0.0131 0.0125 26.00% 95.56% 20.00% 80.00%

100,000 0.0602 0.0104 0.0102 16.99% 98.33% 11.81% 88.19%
200,000 0.0540 0.0100 0.0100 18.49% 99.95% 2.34% 97.66%
500,000 0.0556 0.0124 0.0123 22.04% 98.83% 11.65% 88.35%

Panel B: Results across Number of Regressors L

RMSE Efficiency Count
L Call SCall Optimal Call SCall Call SCall

2 0.0832 0.0351 0.0345 41.41% 98.17% 10.14% 89.86%
3 0.0602 0.0104 0.0102 16.99% 98.33% 11.81% 88.19%
5 0.0201 0.0117 0.0099 49.34% 84.48% 60.99% 39.01%
9 0.0328 0.0154 0.0150 45.78% 97.21% 28.77% 71.23%

15 0.0625 0.0187 0.0184 29.39% 98.00% 24.45% 75.55%

This table shows the efficiency across the number of paths, N, and regressors, L. Efficiency is measured as the
optimal RMSE, conditional on knowing which of the two methods yields the lowest RMSE, as a fraction of
the RMSE of the regular or symmetric method, respectively. Panel A reports results for different values of the
number of simulated paths, N, and Panel B reports results for different values of the number of regressors, L.
In addition to the efficiency, the table also reports the fraction of times for which the regular and symmetric
method provide the lowest RMSE, respectively.

Panel B of the table is, given the results in the previous section on robustness, even more interesting.
In particular, the previous results showed that for some specification, i.e., when picking L = 5,
the symmetric method actually has larger RMSE than the regular method for most options. The row
labelled L = 5 in Table 8, however, shows that even in this case where the symmetric RMSE is the
lowest for only 39% of the options, the method’s efficiency is above 84%. That is, even for settings
when the regular method is the best, measured by minimizing the RMSE, for 61% of the options when

13 These numbers are the “inverse” of the counting metrics used in previous tables.
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using the symmetric method, you would not lose more than 16% compared to what could be optimally
obtained had you known what would be the best method to use for the individual options. It is also
striking that if you, on the other hand, would use the regular method for all options, the efficiency
is only around 49% in spite of the fact that this is the method that has the lowest RMSE for most of
the options.

Table 9 shows the efficiency of the two methods using out-of-sample pricing for various values of
N and L in Columns 5 and 6. The first thing to notice form this table is that when using out-of-sample
pricing, i.e., when a new set of paths is used for pricing, the efficiency of the symmetric method is
extremely high, and often above 99%, across both the choice of the number of paths, N, and the number
of regressors, L. Compared to the in-sample results in Table 8, the efficiency of the symmetric method
is most of the time improved, the exception being when using N = 200,000 paths in the simulation.
For the regular method, on the other hand, efficiency is generally much lower, as low as 15%, and does
not improve in any systematic way when using out-of-sample pricing. In conclusion, although the
symmetric method is not always the model that has the smallest RMSE, the efficiency of this method
is generally very high, always significantly higher than that of the corresponding regular method,
and therefore, the costs of using this method are always reasonably low. Our suggestion is therefore
very naturally to use the symmetric method for call option pricing.

Table 9. Efficiency across number of paths N and regressors L using OSpricing.

Panel A: Results across Number of Paths N

RMSE Efficiency Count
N Call SCall Optimal Call SCall Call SCall

20,000 0.1303 0.0163 0.0163 12.54% 100.00% 0.03% 99.97%
50,000 0.0986 0.0166 0.0166 16.81% 100.00% 0.22% 99.78%

100,000 0.0851 0.0157 0.0156 18.38% 99.86% 5.28% 94.72%
200,000 0.0590 0.0190 0.0185 31.36% 97.52% 21.22% 78.78%
500,000 0.0708 0.0106 0.0106 14.93% 99.99% 0.58% 99.42%

Panel B: Results across Number of Regressors L

RMSE Efficiency Count
L Call SCall Optimal Call SCall Call SCall

2 0.0983 0.0438 0.0437 44.42% 99.63% 6.78% 93.22%
3 0.0851 0.0157 0.0156 18.38% 99.86% 5.28% 94.72%
5 0.0498 0.0079 0.0079 15.79% 99.03% 7.97% 92.03%
9 0.0427 0.0091 0.0090 21.01% 98.49% 11.10% 88.90%

15 0.0458 0.0117 0.0116 25.36% 99.36% 7.90% 92.10%

This table shows the efficiency across the number of paths, N, and regressors, L, using out-of-sample pricing.
Efficiency is measured as the optimal RMSE, conditional on knowing which of the two methods yields the
lowest RMSE, as a fraction of the RMSE of the regular or symmetric method, respectively. Panel A reports
results for different values of the number of simulated paths, N, and Panel B reports results for different
values of the number of regressors, L. In addition to the efficiency, we also report the fraction of times for
which the regular and symmetric method provide the lowest RMSE, respectively.

6.2. Picking the Best Configuration

Although we recommend to always use the symmetric method for call option pricing, you may
still wonder if it is possible to improve on this recommendation, i.e., if it is possible to pick the “right”
model using some “observables”. This is essentially a question of classification. A straightforward
classification variable is the estimated price. In particular, we know that when using the out-of-sample
pricing technique, estimates are in expectation low biased. Moreover, while we expect the estimates
to increase when increasing the number of regressors, L, initially, as this improves the polynomial
approximation, when L becomes very large and over fitting to the paths used to determine the
optimal exercise strategy becomes a problem, the estimated out-of-sample price could decrease. When
comparing results for several different values of L and different methods, i.e., regular versus symmetric,
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one could therefore propose to choose the method that maximizes the out-of-sample price. In particular,
this should result in picking the method that has the smallest bias, and this would potentially also be
the method with a small RMSE. The results from implementing this classification strategy are shown
in Table 10.

Table 10. Efficiency across the number of regressors L using OS pricing.

Panel A: Results for Individual Values of L

RMSE Classified Local Efficiency Global Efficiency

L Call SCall Optimal RMSE Picked Efficiency Call SCall Call SCall

2 0.0983 0.0438 0.0437 0.0437 93.34% 99.83% 44.42% 99.63% 7.45% 16.72%
3 0.0851 0.0157 0.0156 0.0157 95.36% 99.65% 18.38% 99.86% 8.61% 46.79%
5 0.0498 0.0079 0.0079 0.0079 95.74% 99.66% 15.79% 99.03% 14.72% 92.27%
7 0.0440 0.0082 0.0081 0.0081 96.77% 99.78% 18.36% 98.31% 16.65% 89.17%
9 0.0427 0.0091 0.0090 0.0090 97.44% 99.90% 21.01% 98.49% 17.15% 80.41%

11 0.0430 0.0100 0.0099 0.0099 97.89% 99.96% 22.92% 98.85% 17.02% 73.40%
15 0.0458 0.0117 0.0116 0.0116 99.17% 99.99% 25.36% 99.36% 16.01% 62.75%

Panel B: Results for Multiple Values of L

RMSE Classified Local Efficiency Global Efficiency

L Call SCall Optimal RMSE Picked Efficiency Call SCall Call SCall

All 0.0379 0.0074 0.0073 0.0074 90.43% 98.98% 99.99% 99.99% 19.33% 98.36%

This table shows the relative efficiency of the two methods using out-of-sample pricing across the number of
regressors, L. Efficiency is measured as the optimal RMSE, conditional on knowing which of the methods
yields the lowest RMSE for a given individual option in our large sample of 3125 options, as a fraction of
the RMSE of the regular and symmetric method, respectively. Panel A report results for different values of
the number of regressors used in the cross-section regression, L, and Panel B reports results across all the
values of L in Panel A. The result in the column headed “Optimal” corresponds to selecting the method with
the minimum RMSE either for a given L, in Panel A, or across all values of L, in Panel B. The results in the
column headed “Classified” correspond to what would be obtained if the method with the highest price is
used, either for a given L or across all values of L and reports the resulting RMSE, the fraction of options for
which the method with the lowest RMSE was actually picked and the efficiency of this method compared to
the corresponding optimal method. In Panel A, “Local Efficiency” is measured relative to the optimal RMSE
for a given value of L. In Panel B, “Local Efficiency” is measured relative to the minimum RMSE obtained for
the regular and symmetric method, respectively, across all values of L. In both panels, results in the column
headed “Global Efficiency” report the efficiency of the two methods compared to the best possible RMSE of
0.0073 reported in Panel B.

Panel A in Table 10 reports results for individual values of L, i.e., when the method, regular or
symmetric, that has the highest price for a given value of L is picked. The first thing to notice from this
panel is that the right method for a given option is picked at least 93% of the time, and the efficiency of
this method is always above 99%. The symmetric method clearly performs the best on average for all
values of L, and this method does have a very high “local” efficiency, that is compared to the optimal
RMSE for a particular value of L. The regular method, on the other hand, has a much lower efficiency.
Compared to the efficiency of the individual methods, the panel shows that classification according to
maximum price does improve on the RMSE in all but one case. In terms of “global” efficiency though,
the performance of the methods varies greatly across L.

Panel B in Table 10 reports results across all the values of L used in Panel A, i.e., in this panel,
the optimal RMSE is picked across both methods and the values of L. The first thing to notice from
this panel is that the classification method performs very well and picks the right method more than
90% of the time and has a very high efficiency of close to 99%. Picking the symmetric method that has
the highest price across L also results in estimates that are very efficient, although the optimal RMSE
is slightly lower. The efficiency of the regular method is below 20% when compared to the globally
optimal method, although measured locally across L picking the method with the highest price results
in estimates with an RMSE very close to the minimum RMSE for this method.

The results above show that when using out-of-sample pricing, it is possible to derive a simple
classification algorithm that achieves very high efficiency. In reality, the algorithm ends up picking the
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symmetric method most of the time, and if you only pick within this method, the loss in efficiency is
very small, i.e., it decreases from 98.98–98.36%. Thus, it is possible to save on the computational time
by only considering this method. Moreover, for most of the options, the highest price is achieved with
L = 5 when using the symmetric method, and if, instead of picking among all the possible values of
L in the table, you only consider L ≤ 7, the global efficiency decreases only marginally to 98.24%.14

This approach thus yields very good estimates across our large sample of options, and it is easy to
implement. It is not possible to come up with a similar approach when using in-sample pricing though.

7. Conclusions

This paper shows that it is possible to improve significantly on the estimated call prices obtained
with a state-of-the-art algorithm, the Least Squares Monte Carlo (LSMC) method of Longstaff and
Schwartz (2001), for option pricing using regression and Monte Carlo simulation by using Put-Call
Symmetry (PCS). PCS holds widely and in the classical Black–Scholes–Merton case, for example,
implies that a call option has the same price as an otherwise similar put option where strike price and
stock level and where interest rate and dividend yield are interchanged, respectively. The immediate
implication is that path-wise payoffs in simulations are bounded above by the strike price instead of
being unbounded, and for methods that use regression to determine the optimal early exercise strategy,
this leads to much improved estimates of the stopping time and more precise option price estimates as
measured by, for example, the Root Mean Squared Error (RMSE). Our results show that, for a large
sample of options with characteristics of relevance in real-life applications, the symmetric method
on average performs much better than the regular pricing method, is the best method for most of
the options, never performs very poorly and as a result is very efficient compared to an optimal, but
unfeasible method that picks the method with the smallest RMSE. When using out-of-sample pricing,
a simple classification algorithm is proposed that, by optimally selecting among estimates from the
symmetric method with a reasonably small order used in the polynomial approximation, achieves a
relative efficiency of more than 98% compared to the infeasible, but optimal method that minimizes the
RMSE across all estimates. Our results also show that the relative importance of using the symmetric
method increases with option maturity and with asset volatility and using symmetry methods to price
long-term options in high volatility situations improves massively on the price estimates. The LSMC
method is routinely used to price real options, many of which are call options with long maturity
on volatile assets, for example energy. We therefore conjecture that pricing such options using the
symmetric method could improve the estimates significantly by decreasing their bias and RMSE by
orders of magnitude.
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Abstract: This paper contributes to the debate concerning the benefits and disadvantages of
introducing a European Sovereign Bond-Backed Securitisation (SBBS) to address the need for a
common safe asset that would break destabilising bank-sovereign linkages. The analysis focuses
on assessing the effectiveness of hedges incurred while making markets in individual euro area
sovereign bonds by taking offsetting positions in one or more of the SBBS tranches. Tranche yields
are estimated using a simulation approach. This involves the generation of sovereign defaults and
allocation of the combined credit risk premium of all the sovereigns, at the end of each day, to the SBBS
tranches according to the seniority of claims under the proposed securitisation. Optimal hedging
with SBBS is found to reduce risk exposures substantially in normal market conditions. In volatile
conditions, hedging is not very effective but leaves dealers exposed to mostly idiosyncratic risks.
These remaining risks largely disappear if dealers are diversified in providing liquidity across
country-specific secondary markets and SBBS tranches. Hedging each of the long positions in a
portfolio of individual sovereigns results in a risk exposure as low as that borne by holding the safest
individual sovereign bond (the Bund).

Keywords: safe assets; securitisation; dealer behaviour; liquidity; bid–ask spread

1. Introduction

Considerable ambiguity exists regarding the likely liquidity effects of introducing Sovereign
Bond-Backed Securities, as proposed by Brunnermeier et al. (2017). The competing forces are (i) a
reduced supply of the underlying asset and (ii) improved prospects for the more efficient management
of inventory risks. This paper argues that trading costs in country-specific European sovereign bond
markets would be constrained by an arbitrage relation as a result of the existence of liquid Sovereign
Bond-Backed Securities (SBBS) and this would dominate any negative supply effects.1 This outcome
relies on sufficient diversification and hedging by dealers in a truly European-wide context. In this
sense, and in some other respects to be discussed below, the outcome envisaged is a deeply integrated
market in which SBBS become the primary focus for price discovery while trading costs in most
national markets shrink to within tight bounds of those in SBBS markets.

Brunnermeier et al. (2016) and Brunnermeier et al. (2017) propose the issuance of sovereign
bond-backed securities (SBBS) in the euro area with tranches that would be sequentially exposed to
losses arising from defaults on any of the underlying individual sovereign securities. The senior tranche
would make up the majority of the securitisation and be extremely low risk. The junior tranches would
be more sensitive to early signs of defaults, but, at the same time, maintain some of the risk reducing
benefits of diversification. In theory, this proposal has the potential to induce bond holders to diversify
beyond their national sovereign markets and this could substantially weaken the sovereign-bank

1 A wider range of potential effects are considered in the report by the ESRB High-Level Task Force on Safe Assets (2018).
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doom-loop that was prevalent during the Sovereign Debt Crisis in Europe. The question remains
whether it would work in practice.

Traditionally, banks hold sovereign bonds as collateral for use in short-term treasury management
and in official monetary policy operations. This is encouraged by the fact that such assets are zero
risk weighted for capital adequacy purposes. During the Great Recession and euro area Sovereign
Debt Crisis, many European banks experienced widespread defaults on their loan portfolios and
they required recapitalisation from their governments. Sovereigns simultaneously experienced severe
current account deficits and expected imminent high bank bail-out costs which drove their yields to
record levels. The higher risk of sovereign default fed back into credit and counter-party risks for
the linked banks and this exacerbated the expected bail-out costs for sovereigns. These linked risk
exposures generated what was referred to as a “vicious circle” at a euro area summit of heads of
governments in 2012. It was also referred to as the “doom loop” by Farhi and Tirole (2018) or as the
“diabolic loop” by Brunnermeier et al. (2016).

Proposals to break the bank-sovereign vicious circle have been debated as part of a two-year
reassessment by the Basel Committee on Banking Supervision of the Regulatory Treatment of Sovereign
Exposures (RTSE) (see Basel Committee on Banking Supervision 2017). The Committee decided to
retain zero risk weights on domestic sovereign exposures acknowledging that there was no consensus
among supervisors, experts, and economists on alternative policy options to amend the framework.
Alternative approaches to breaking the doom loop have therefore appeared and the Sovereign Bond
Backed Securitisation proposal by Brunnermeier et al. (2016) is just one of these. Several related
proposals are assessed by Leandro and Zettelmeyer (2018) and the analysis below would have some
relevance for the ’Blue bond’ proposal discussed there since that proposal gives rise to a similarly
liquid low risk bond that could be used in hedging by dealers.

An apparent drawback of the SBBS proposal is that it would leave already small and illiquid
sovereign bond markets with reduced free float and this would do further harm to liquidity and raise
issuance costs. If orders arrive infrequently in smaller sovereign bond markets—and if orders of a type
needed to reduce inventories are inelastic with respect to dealer pricing—then inventory positions will
be held for longer and providing continuous liquidity would be costly. It is frequently argued that
such costs would rise if the national free float is reduced by absorption into a securitisation.

The analysis below suggests that such a conclusion arises only when national markets are
considered in isolation. A wider perspective introduces the potential for liquidity spillovers due
to hedging and diversification in market making. Rather than reducing liquidity, the effects of
SBBS on sovereign bond markets should have more in common with how opportunities to trade
‘To-Be-Announced’ US Agency Mortgage Backed Securities contracts (TBA-MBS) affect trading costs
in Specific-Pools of Mortgage Backed Securities, even those that are not cheapest to deliver.2

If SBBS are very liquid, they present dealers with instantaneous access to offsetting positions
following trades in any given sovereign market and this would established a valid arbitrage relation to
constrain trading costs in those markets. SBBS markets (particularly for the senior tranche) are likely
to be deeper and more liquid than smaller euro area sovereign bond markets due mainly to the greater
amounts of SBBS in issue relative to what is typical for any individual sovereign. However, this is also
thought likely because SBBS markets (having factor-like properties) would acquire benchmark status.
Yuan (2005) shows that the presence of benchmarks gives rise to liquidity in related markets.3

2 Gao et al. (2017) describe how, in that market, dealers typically hedge inventory risk in their Specific-Pool exposures with
offsetting TBA trades and they show that impediments to hedging can reduce such liquidity. More interestingly, they
conclude that the presence of TBA markets has very widespread beneficial effects on liquidity significantly beyond the
mortgage pools that are cheapest to deliver. This is also traced to the ability to hedge inventory holding risk.

3 In a related paper, the acquisition of benchmark status in pre-crisis European sovereign bond markets is examined in
Dunne et al. (2007). Benchmarks tend to become liquid as they are the location for discovery of the systematic component
of the risk premium (in this case, it is envisaged that the different tranches of SBBS would be benchmarks for credit risks
within different categories of the market).
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An important difference between the SBBS proposal and the situation discussed in Yuan (2005)
is that increased supply of SBBS directly implies a reduction in the supply of individual sovereign
bonds outstanding. Yuan assumes, in contrast, that benchmarks enhance the likelihood of issuance of
corporate bonds and more issuance improves liquidity. However, a positive externality that Yuan’s
analysis does not take into account is the hedging benefits that dealers can avail of in the presence
of liquid benchmarks. It also leaves out post-hedging diversification benefits. These externalities are
worthy of further examination.

Although we lack actual evidence of the characteristics of SBBS, it is possible to assess their
likely behaviour (or how they would have behaved in the past) through a simulation approach.
The present analysis derives SBBS yield estimates using the simulation approach of Schönbucher (2003).
This permits an assessment of hedge effectiveness and it shows that dealer inventory positions in
most national markets can be, to some extent, hedged by using one or more of the tranches of the
sovereign bond-backed securitisation. More importantly, it turns out that what cannot be hedged is
largely idiosyncratic and diversifiable by dealers who are active in many markets. Since inventory risk
only requires compensation for its systematic component, the liquidity benefits of SBBS are enhanced
by diversification.

Hedge effectiveness is assessed by measuring the risk of the optimally-hedged position relative to
the unhedged portfolio, as in Bessler et al. (2016). The additional diversification benefits are assessed by
assuming that dealers typically have positions in all sovereigns (with both equal weights on individual
sovereigns and market-size based weights). A core result from the analysis is that trading costs in
SBBS markets would determine limits on the size of trading costs in national sovereign bonds.4

The following section outlines the type of hedging behaviour by dealers that is deemed likely
when sovereign bond-backed securities exist. The relevant literature is then surveyed. Methodologies
used to estimate SBBS yields, to measure time-varying hedge ratios and to assess diversification
benefits, are then explained. The discussion of results from the application of these methods follows.
The conclusion gives some indication of overall liquidity benefits that would flow from the existence
of SBBS based on the recent history.

2. Hedging, Arbitrage and Diversification

The benefit of hedging with a highly-liquid, contemporaneously correlated, asset is clear-cut in
the extreme case of perfect correlation. Let ask and bid prices in the bond market be denoted (a) and
(b) and those in the SBBS market be (A) and (B), respectively. Assuming no frictions (i.e., no basis,
coordination, execution or timing risks and no variability in market making risks or risk aversion),
then arbitrage and competition between dealers should keep the two bid–ask spreads close to each
other.5 Perfect correlation in the underlying values of the two securities and the assumption of
instantaneous availability of trading opportunities in the highly liquid asset allow us to subtract the
common underlying value changes, V(t), from all bid and ask prices in each period t, leaving a*, A*,

b* and B* as timeless (where starred variables are deviations from the relevant common V(t)).
A dealer who acquires a long position at a price (b) can immediately sell an equal amount in

the SBBS market at price (B). This leaves the position hedged against movements in V until the bond
is sold again at a price (a) and the SBBS is simultaneously bought at (A). Regardless of common
movements in V, there is a profit for the dealer of B* − b* + a* − A*. This profit is trivially increasing
in the difference between the spreads s-S. In a competitive market, we would expect such differences
in spreads to be competed away (excluding any extra costs associated with operating in the more

4 Whether these bounds are sufficient to improve on current trading costs is moot. Even if the costs of hedging with SBBS
were to exceed current trading costs in national markets, their use in this way would still be relevant in minimising the
extent of any deterioration in trading costs due directly to reductions in the free float as a result of the securitisation.

5 This also relies, for simplicity, on the assumption that there is symmetry in the positioning of spreads relative to the
underlying value. If not, then the proposition that follows applies on average across many trades.
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general environment). The spread in the bond market will, in this case, be primarily determined by
the required bid–ask spread in the SBBS market.

If there is only a partial correlation between the value of the SBBS and that of the bond then the
remaining risk must be managed somehow. In this case, a diversification strategy should be very effective
since remaining risks would largely be idiosyncratic. The finding of a substantial reduction in risk due to
diversification can be regarded as indirect evidence that SBBS behave like systematic risk factors.

Since only the non-diversifiable component of the unhedged risk will require compensation,
the link between the size of the spread in the hedge instrument and that in the asset being hedged
is relatively unaffected relative to the case of a perfectly correlated hedge. Standard diversification
arithmetic implies that, increasing the extent of diversification from one sovereign market to 11
uncorrelated markets with similar-sized risks and activity, would produce more than a 70% reduction
in risk exposure. Hence, if dealers are active in providing liquidity across all European sovereign
markets that contribute to the securitisation, then any unhedged risks will largely average-out in their
trading portfolios.6

It is important to draw a distinction between hedging with offsetting positions in an asset
possessing highly correlated contemporaneous price movements and the alternative of hedging with
a futures contract on the underlying. Futures contracts involve risk premiums that impose direct
cost on dealers. There is also a considerable difficulty in correctly matching the expected duration of
inventory holding with the expiry time of the associated futures contract.7 Matching the size of an
inventory position with standardized sizes in the futures market may also be an issue. Hedging with
CDS contracts is similar to the use of a correlated asset but this analogy is also incomplete. The CDS
premium will only be highly correlated with the credit risk of the underlying security. The disadvantage
of the CDS when compared with a factor-like hedge is that it does not hedge systematic interest rate
risk. CDS trading also tends to be less liquid than the underlying.

3. Microstructure Literature

Standard models of market making behaviour assume that bid and offer quotes involve a fixed
component to cover order processing costs, an inventory management component (e.g., Amihud
and Mendelson 1980; Demsetz 1968; Tinic and West 1972; Ho and Stoll 1981; Ho and Stoll 1983 and
Stoll 1978) and an adverse selection component to protect the dealer from losses to more informed
traders (e.g., Copeland and Galai 1983; Easley and O’Hara 1987 and Glosten and Milgrom 1985). In the
case of sovereign bonds, however, the adverse selection component is regarded as small since nearly
all information about underlying value of such bonds is public.8

In respect of the inventory imbalance component, Stoll (1978) was one of the first to empirically
assess the differential effects of systematic and idiosyncratic risk on dealer pricing. Huang and
Stoll (1997) simply assert that the inventory component is mainly related to dealers’ portfolio-wide
inventory imbalances rather than stock-specific imbalances. They use this fact to separate the inventory
component of the spread from the adverse selection component. More recently, Hagströmer et al.
(2016) develops a structural model for price formation and liquidity supply explaining how inventory

6 It may also be supposed that this benign outcome would be compromised if the SBBS has a difficult-to-forecast correlation
with the bond (i.e., if out of sample hedge ratios turn out to be less efficient than they could have been). This is really a type
of operational risk and (assuming forecasts are as efficient as possible ex ante) this also gives rise to mostly idiosyncratic and
diversifiable risks.

7 Bessler et al. (2016) point out that several futures markets for individual sovereign bonds existed pre-EMU and that the
alignment of yields during the years of the Great Moderation was largely responsible for the disappearance of all but the
German Bund futures. The Great Financial Crisis and the Sovereign Debt Crisis in Europe ultimately led to the reintroduction
of futures on Italian BTPs and French OATs. Futures on Spanish Bonos only reappeared in 2015. Naik and Yadav (2003)
examine the use of futures to hedge interest rate risk (undesirable duration) in sovereign bond portfolios of dealers and they
find support for the propositions about hedging behaviour by Froot and Stein (1998).

8 For example, Naik and Yadav (2003) strongly reject the notion that dealers benefit from their information about orderflow
even in the relatively concentrated UK Gilts market.
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pressure and price discovery is influenced by joint trading of the same or a similar asset in a parallel
market. This shows that where hedging opportunities exist trading costs are partially determined by
characteristics of the hedge instrument rather than the specific asset.

Naik and Yadav (2003) provide extensive evidence of the use of futures by dealers in the UK Gilts
market to hedge duration (they do not discuss credit risk hedging). They measure risk exposure in
two ways; using value-weighted average duration of the whole portfolio of spot and futures bond
positions of 15 dealers and alternatively, a value-weighted average of the duration-weighted hedge
ratios (where hedge ratios are betas from regressions of returns on individual bonds on the long-gilt
futures return). The two measures are very highly correlated (0.92). They show that dealers maintain a
short position on average, but the spot and futures positions diverge in opposite directions from their
means. They conclude that dealers actively use the futures contract to hedge their spot exposures in
order to maintain a target level of interest rate exposure.

This hedging behaviour is consistent with theoretical predictions of Amihud and Mendelson
(1980). The evidence of partial hedging supports the findings of Stulz (1996) and suggests that what is
not hedged is idiosyncratic (only interest rate risk is being hedged in this case as the sample did not
involve significant fluctuations in UK sovereign credit risk). The Naik and Yadav study goes on to
show that hedging varies with the costs of hedging, volatility of holding returns, risk aversion and
capital shortage. They also show that bigger dealing banks hedge less but do not seem to make profits
from this—implying that their knowledge of a significant fraction of orderflow does not translate into
an economic advantage.

4. Methodology

4.1. Derivation of SBBS Yields

Since sovereign bond-backed securities did not exist in the past we rely on estimates of yields on
such instruments based on a simulation approach proposed by Schönbucher (2003)—this approach
has already been implemented for the case of the SBBS proposal by De Sola Perea et al. (2017) and the
ESRB High-Level Task Force on Safe Assets (2018). It is important to state that a motivating principle
for the Schönbucher (2003) method is to retain the properties of the underlying relationship between
yields and what they imply for default probabilities—including changing correlations and dynamic
dependencies. Hence, the estimated SBBS yields in this case are not just some linear combination of
the underlying securities (those used as backing for the securitisation). If that were the case, the linear
relation would exactly determine the correlations that we rely on for hedge selection. The Schönbucher
approach retains the variable probabilities of default in the underlying securities as well as their
time-varying interdependencies.

The simulations that produce the SBBS yields are conducted on a daily basis over the period from
soon after the introduction of the euro to the end of 2017. The simulations involve draws from 11 of
the main sovereign bond yield-spreads (according to the report of the ESRB Task Force on Safe Assets,
this group of sovereigns covers approximately 97.5% of outstanding sovereign debt in the euro area).
The time period covered contains a lot of variability in circumstances including; the pre-2008 Great
Moderation period, the period of the financial crisis in the wake of the Lehman Brothers default, the
euro area sovereign debt crisis of 2009–2012 and the subsequent gradual improvement in euro area
sovereign bond markets—particularly those of peripheral member states. The latter part of the sample
also overlaps with implementation of unconventional monetary policy in the form of largescale bond
purchases when these markets became less liquid and harder to hedge. Figure 1 provides a view of the
data for the individual sovereign yield changes that was used in the SBBS yield simulation analysis.
The negative of yield changes multiplied by 100 is shown. In each case, the conditional volatility and
1% Value-at-Risk are also provided (where the volatility is estimated using a GJR-GARCH(1,1) and the
latter is implied by the conditional volatility under normality). It is important to note that the scale of
the y-axis is not constant across the panels of this figure.
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Figure 1. Daily Yield-Change Data 11 Sovereigns (bps). This panel of figures displays the daily data
of the individual sovereigns that was used in the simulation analysis that generated the Sovereign
Bond-Backed Security yields. Each panel contains data for two sovereigns. The negative of the daily
yield changes multiplied by 100 are displayed as dots. In each case, the conditional volatility and 1%
Value-at-Risk (VaR) are provided (the conditional volatility is estimated using a GJR-GARCH(1,1) and
the VaR is the Value-at-Risk implied using the conditional volatility combined with an assumption
of normality). It is important to note that the scale of the y-axis is not constant across the panels of
this figure.

More precisely, the SBBS yield estimation method relies on a simulated default-triggering
mechanism interacting with an observable market-based proxy for default probability in the underlying
securities (in this case, the default probability proxy is simply the yield premium in excess of the lowest
yield among the sovereigns). The triggering device generates uniformly-distributed triggers on the
unit-interval (where all trigger combinations have cross-correlations of 0.6). Whenever these simulated
unit-interval triggers exceed the non-default/survival probability, (1 minus the yield premium), losses
are calculated as though defaults have occurred.

Each simulation produces simulated default losses among the underlying bonds. These are
summed and allocated sequentially to the SBBS securities according to their level of subordination
(only spilling over to a more senior tranche if simulated losses have exceeded the total par value of
all subordinates). The sum of the yield premiums of the national bonds, for each simulated day, is
then allocated to the yield premiums of SBBS according to their proportional allocation of simulated
default losses. Hence, the likelihood of triggering a simulated default is determined by the size of
yield premiums and by how correlated the triggers are. However, risk aversion also has some role in
determining the premium.9

9 The implied risk premium (i.e., yield above the risk-free rate) reflects the risk aversion of the representative market investor
on any given day and, hence, may exceed the expected loss anticipated by a risk-neutral investor. This degree of risk
aversion enters the simulation and is consequently also reflected consistently in the resulting estimated yields of senior,
mezzanine and junior SBBS.
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In this way, the probable daily yields on the SBBS components are generated for two
different securitisation structures over roughly a 17-year historical period without the need for
a structural modelling of the complex dependencies among the underlying sovereigns (e.g., as
in Lucas et al. (2017)). This then enables estimation of optimal hedge ratios, hedge effectiveness
measures and assessments of the diversification benefits. For reasons of data availability, the simulation
is based on yield data for two-, five- and ten-year government bonds of Austria, Belgium, Germany,
Spain, Finland, France, Greece, Ireland, Italy, the Netherlands and Portugal, following a weighting
scheme based on GDP (averaged over 2006–2015). This basket covers approximately 97.5% of the SBBS
volume. As a robustness check, the SBBS yield estimations are re-done using a t-copula instead of the
Gaussian copula.

Panels A and B of Figure 2, respectively, depict the time series behaviour of yields on SBBS
securities (the derivation of which is discussed above) under two alternative tranching assumptions
(70:30 and 70:20:10) while panel C shows yields of a selection of individual sovereigns. The period of
the European sovereign debt crisis is highlighted and extends from November 2009, when the Greek
government indicated its 2009 deficit projection was being revised upward from 5% to 12.7%, until just
after Mario Draghi’s speech making a commitment to ‘do whatever it takes’ to prevent the break-up
of the euro in late July 2012. All of the 10-year yield data used in the hedge selection and assessment
analysis discussed in the results section has been converted to price and then daily holding period
returns assuming a duration of nine years.

(a) 70:30 SBBS Yields

(b) 70:20:10 SBBS Yields

Figure 2. Cont.
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(c) Yields of DE, IT, GR & PT

Figure 2. Estimated yields on SBBS tranches & selected sovereigns (%). Note: This panel of figures
indicates how SBBS yields are likely to have changed over the sample period. These can be compared
with a selection of sovereign yields. The shaded area is the euro area Sovereign Debt Crisis period
(November 2009–August 2012).

4.2. Methodology for Optimal Hedge Selection

There is a well developed literature dealing with the selection of optimal hedge ratios.
Chen et al. (2003) and Lien and Tse (2011) provide extensive reviews of different theoretical approaches
to determining optimal hedge ratios. A prominent approach to optimising a hedge position is based
on minimising the variance of the returns on the hedged portfolio without regard to optimising the
expected returns in some way. This is a particularly suitable approach in the case of hedging to
facilitate market making in sovereigns since the objective is to minimise risk for the reward of earning
the bid–ask spread (less costs) rather than to improve returns from the underlying investment.

In the single hedge case, the optimal hedge ratio (see Ederington 1979 and Baillie and Myers 1991)
is simply the negative of the slope coefficient in a regression of the asset return on the hedge instrument
return. Composite hedging has sometimes been found to be more effective than relying on a single
hedge instrument. This has been claimed in the extant literature for the case of hedging positions
in corporate bonds using a combination of the relevant sovereign bond and a futures position in the
relevant equity (e.g., Marcus and Ors 1996), using bonds at particular maturities with futures on a
variety of other maturities (e.g., Morgan 2008) and hedging mortgage backed securities with Treasuries
at 2-, 5- and 10-year tenors (e.g., Koutmos and Pericli 2000). Garbade (1999) also provides an interesting
application of a two-asset hedge for a bond. This is similar to the case of hedging with both the Senior
and Mezzanine (or Junior) SBBS.

4.3. Measuring Out-Of-Sample Hedge Effectiveness

The hedge selection and measurement carried out in this paper follows Bessler et al. (2016)
who conduct a similar analysis in a European sovereign bond context. In that analysis, hedge ratios
and effectiveness were estimated using rolling OLS, constant conditional correlation (CCC), dynamic
conditional correlation (DCC-GARCH) and a Bayesian based mixture of models. In the current analysis,
hedge ratios and hedge effectiveness (using single or multiple SBBS as hedges) are estimated for each
of the 11 individual sovereign bonds. Hedge effectiveness in each case is measured by the percentage
change in risk achieved through hedging. This is done using two different risk metrics for the hedged
and unhedged positions. The first metric is the rolling standard deviations of returns. The second
metric is based on Values-at-Risk bounds for the hedged and unhedged positions (i.e., the percentage
change in the range between the 5% and 95% Value-at-Risks for hedged and unhedged cases).

Hedge effectiveness is therefore measured by the size of the reduction in risk exposure achieved
by hedging (essentially, the risk of the hedged position relative to that of the unhedged position).
The optimal hedge ratio and the hedge effectiveness measure typically change through time so hedge
effectiveness is assessed on a rolling basis across various sub-samples. Engle (2009) applies a pre-crisis
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model of time varying covariance to the problem of hedge selection during the Great Financial
Crisis and shows that this improves on static approaches that were the industry norm at that time.
The rolling linear regression results discussed below are therefore unlikely to overstate the achievable
hedge effectiveness.

To keep the exposition tractable, the results obtained using the rolling linear regressions represent
a base case (and arguably a lower bound on effectiveness) and are the main focus of the results
presented below.10 The optimal hedge for each of the 11 sovereigns (with 10 years to maturity) was
estimated on a rolling basis for the case of the following seven hedge instruments/combinations:
{Senior, Mezzanine, Junior, (Senior and Mezzanine), (Senior and Junior), (Mezzanine and Junior),
(Senior, Mezzanine and Junior) }. In line with previous literature, the optimal hedge is derived by
applying the chosen hedge selection method (e.g., linear regression) over a prior 250 day window and
rolling the estimation window forward at regular intervals. The hedge ratio is therefore used in an
out-of-sample context for the entire interval between the estimation sub-samples. To keep the exposition
tractable, hedge ratio results are presented based on a rolling regression at intervals of 25 days.

5. Results

5.1. Effectiveness of Hedging without Diversification

The hedge effectiveness results, in terms of the percentage change in risk (usually reduction in
risk), are shown for each of three sub-sample periods in Tables 1–3 and the daily returns on the hedged
and unhedged positions, for the case of hedging with just the senior and for the case of hedging with a
mixture of the senior and mezzanine, are shown in Figures 3–5.11

The visual evidence indicates that hedging is generally effective in the pre-Sovereign Debt Crisis
period in reducing the volatility of returns (with some isolated exceptions). Hedging is not effective for
high-risk sovereigns during the height of the SDC but effectiveness returns to some extent during the
recovery. In general, the combined hedge works better than the single hedge in the crises and recovery
periods. Figure 3 reveals that hedging is quite consistently effective for three countries (Germany (DE),
France (FR) and the Netherlands (NL)). In these cases, the composite hedge seems to eliminate the
occasional blips present in the single hedge case. Similarly consistent levels of effectiveness are found
for AT and FI (not displayed).

Figure 4 shows the cases of (BE, ES and IT). This clearly reveals how idiosyncratic the experiences
of each of the high-risk periphery countries was during the crisis (making them difficult to hedge using
SBBS). It is interesting that the composite hedge (senior and mezzanine) works better than the single
hedge during the crisis and recovery (apart from one particular day). This tends to improve further
with the inclusion of the junior SBBS as a hedge instrument (this more general case is not displayed in
the figure but can be seen from the tabulated results discussed below).

Figure 5 shows the more volatile cases of (GR, IE and PT). Here again, there is evidence of hedge
ineffectiveness during the crisis with improvement only obvious during the recovery for IE and PT.
Again, the composite hedge is better than the single hedge during the recovery for these countries
and is particularly good in protecting from the more extreme movements. Although hedging is least
effective in reducing risk in the case of the smaller markets, their idiosyncratic risk is more amenable
to control using diversification strategies (this is addressed below).

10 A similar analysis employing dynamic conditional correlation methods, compiling hedge ratios using conditional variances
and covariances in line with the relations presented in Appendix A, did not in fact lead to significantly different hedge
effectiveness ratios. In addition, the combined use of the methods of Gibson et al. (2017) and a stochastic volatility modelling
approach designed to address the presence of isolated outliers, due to Chan and Grant (2016), also failed to change the
conclusions drawn from the more straightforward application of a rolling linear regression approach. These alternative
methods may however lead to improvements when used at higher frequency with regular updating. Extending the analysis
to such a frequency is beyond the scope or needs of the present study.

11 The cases of Austria (AT) and Finland (FI) are not shown above but are quite similar to the case of NL.
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Table 1. Hedge effectiveness: Previous to the Sovereign Debt Crisis.

1 SBBS 2-SBBS 3-SBBS
Hedge = Snr Mezz Jnr Snr-Mezz Snr-Jnr Mezz-Jnr Snr-Mezz-Jnr

AT(i) −62 −61 −35 −67 −70 −50 −72
AT(ii) −73 −72 −35 −77 −82 −57 −84
BE(i) −65 −63 −36 −72 −75 −52 −77
BE(ii) −71 −70 −37 −76 −80 −58 −83
DE(i) −79 −78 −32 −84 −84 −46 −87
DE(ii) −85 −81 −31 −86 −88 −49 −89
ES(i) −55 −55 −36 −62 −66 −53 −69
ES(ii) −62 −61 −36 −69 −73 −58 −75
FI(i) −70 −69 −35 −72 −75 −46 −76
FI(ii) −79 −77 −36 −81 −84 −53 −84
FR(i) −72 −71 −37 −78 −80 −53 −83
FR(ii) −76 −75 −37 −81 −84 −59 −88
GR(i) −36 −33 −27 −46 −51 −49 −55
GR(ii) −46 −44 −33 −60 −60 −58 −67
IE(i) −42 −40 −26 −47 −51 −39 −52
IE(ii) −66 −62 −33 −70 −72 −52 −72
IT(i) −50 −47 −35 −63 −65 −59 −72
IT(ii) −56 −50 −37 −69 −70 −64 −77
NL(i) −69 −68 −37 −75 −78 −54 −81
NL(ii) −77 −75 −36 −80 −83 −58 −86
PT(i) −50 −48 −34 −59 −63 −54 −67
PT(ii) −62 −60 −38 −69 −73 −61 −77

Note: Using two different metrics, this table shows the percentage change in risk exposures
achieved by hedging a position in a particular sovereign bond using a position in one or more
tranches of a 70:20:10 Sovereign Bond Backed Securitisation in the pre-SDC period (this is used as
an indicator of hedge effectiveness in the text). Issuers of the bonds are indicated at the beginning
of each row as follows; AT (Austria), BE (Belgium), DE (Germany), ES (Spain), FI (Finland), FR
(France), GR (Greece), IE (Ireland), IT (Italy), NL (Netherlands) and PT (Portugal). The first row
for each case contains the percentage change in risk due to hedging where risk is measured as
standard deviation. The second row for each case contains the percentage change in risk achieved
through hedging where risk is measured as the range between the 5th and 95th quantiles of the
returns distribution (implying VaR bounds). Columns of results are arranged in three broad
categories. The first category concerns the use of a single SBBS tranche in the hedge. The second
category concerns the use of a pair of SBBS in hedging. The last category involves the use of all
three SBBS in the hedge. The most effective hedge instrument/combination within the first two
categories is highlighted with colour.

Table 2. Hedge effectiveness Sov-debt-crisis.

1 SBBS 2-SBBS 3-SBBS
Hedge = Snr Mezz Jnr Snr-Mezz Snr-Jnr Mezz-Jnr Snr-Mezz-Jnr

AT(i) −24 −11 0 −32 −16 4 −26
AT(ii) −32 −19 −2 −41 −39 −5 −41
BE(i) −3 −4 −2 −27 10 −16 −20
BE(ii) −2 −2 0 −27 −10 −17 −29
DE(i) −68 0 7 −72 −67 4 −71
DE(ii) −69 4 5 −73 −69 −5 −73
ES(i) 1 10 1 −33 10 −31 −28
ES(ii) −3 15 5 −29 −13 −34 −35
FI(i) −52 −7 3 −52 −49 6 −47
FI(ii) −54 −4 2 −54 −54 4 −55
FR(i) −23 −12 0 −35 −15 0 −31
FR(ii) −30 −12 2 −38 −32 2 −38
GR(i) 0 1 0 0 −15 −15 −17
GR(ii) −4 13 11 2 26 28 23
IE(i) 2 7 2 −3 1 −2 1
IE(ii) −1 6 3 −5 −8 −7 −6
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Table 2. Cont.

1 SBBS 2-SBBS 3-SBBS
Hedge = Snr Mezz Jnr Snr-Mezz Snr-Jnr Mezz-Jnr Snr-Mezz-Jnr

IT(i) 0 10 1 −44 18 −39 −37
IT(ii) 2 13 3 −40 −9 −43 −44
NL(i) −49 −9 2 −48 −46 7 −43
NL(ii) −53 −6 5 −52 −52 3 −51
PT(i) 1 5 1 −1 1 −2 0
PT(ii) 1 2 1 −5 −10 −8 −9

Note: Using two different metrics, this table shows the percentage change in risk exposures achieved by
hedging a position in a particular sovereign bond using a position in one or more tranches of a 70:20:10
Sovereign Bond Backed Securitisation during the SDC period (this is used as an indicator of hedge effectiveness
in the text). Issuers of the bonds are indicated at the beginning of each row as follows; AT (Austria), BE
(Belgium), DE (Germany), ES (Spain), FI (Finland), FR (France), GR (Greece), IE (Ireland), IT (Italy), NL
(Netherlands) and PT (Portugal). The first row for each case contains the percentage change in risk due to
hedging where risk is measured as standard deviation. The second row for each case contains the percentage
change in risk achieved through hedging where risk is measured as the range between the 5th and 95th
quantiles of the returns distribution (implying VaR bounds). Columns of results are arranged in three broad
categories. The first category concerns the use of a single SBBS tranche in the hedge. The second category
concerns the use of a pair of SBBS in hedging. The last category involves the use of all three SBBS in the hedge.
The most effective hedge instrument/combination within the first two categories is highlighted with colour.

Table 3. Hedge effectiveness Post-Sov-debt-crisis.

1 SBBS 2-SBBS 3-SBBS
Hedge = Snr Mezz Jnr Snr-Mezz Snr-Jnr Mezz-Jnr Snr-Mezz-Jnr

AT(i) −45 −22 0 −47 −49 −10 −49
AT(ii) −51 −25 0 −53 −57 −14 −56
BE(i) −44 −26 −2 −48 −53 −13 −52
BE(ii) −50 −28 −3 −53 −57 −15 −57
DE(i) −73 −13 4 −74 −73 −8 −75
DE(ii) −72 −10 4 −73 −73 −7 −74
ES(i) −2 2 −3 −32 −26 −42 −43
ES(ii) −4 −6 −4 −29 −28 −41 −43
FI(i) −52 −16 1 −53 −55 −9 −55
FI(ii) −59 −18 1 −60 −62 −11 −62
FR(i) −50 −27 −2 −55 −58 −15 −59
FR(ii) −54 −28 −2 −56 −61 −16 −61
GR(i) 0 7 7 −8 −8 2 −8
GR(ii) 5 6 8 3 11 17 12
IE(i) −10 −11 −3 −21 −22 −19 −27
IE(ii) −14 −17 −5 −29 −28 −23 −35
IT(i) −3 1 −4 −41 −28 −50 −53
IT(ii) −7 −5 −4 −41 −34 −52 −54
NL(i) −53 −18 1 −54 −56 −9 −56
NL(ii) −60 −18 0 −61 −64 −11 −65
PT(i) 0 2 0 −13 −15 −21 −21
PT(ii) −1 2 0 −13 −17 −25 −26

Note: Using two different metrics, this table shows the percentage change in risk exposures achieved by
hedging a position in a particular sovereign bond using a position in one or more tranches of a 70:20:10
Sovereign Bond Backed Securitisation in the post-SDC period (this is used as an indicator of hedge effectiveness
in the text). Issuers of the bonds are indicated at the beginning of each row as follows; AT (Austria), BE
(Belgium), DE (Germany), ES (Spain), FI (Finland), FR (France), GR (Greece), IE (Ireland), IT (Italy), NL
(Netherlands) and PT (Portugal). The first row for each case contains the percentage change in risk due to
hedging where risk is measured as standard deviation. The second row for each case contains the percentage
change in risk achieved through hedging where risk is measured as the range between the 5th and 95th
quantiles of the returns distribution (implying VaR bounds). Columns of results are arranged in three broad
categories. The first category concerns the use of a single SBBS tranche in the hedge. The second category
concerns the use of a pair of SBBS in hedging. The last category involves the use of all three SBBS in the hedge.
The most effective hedge instrument/combination within the first two categories is highlighted with colour.
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(a) DE: Single Hedge (b) DE: Composite Hedge

(c) FR: Single Hedge (d) FR: Composite Hedge

(e) NL: Single Hedge (f) NL: Composite Hedge

Figure 3. Single and Composite Hedging (DE, FR, NL). Note: This figure facilitates a comparison of
the dispersion of returns on hedged long positions in German, French and Dutch sovereign bonds
respectively with the dispersion of returns on the same sovereign bonds without hedging. The first
column of figures concern the case of hedging the long positions using only the senior SBBS. The second
column of figures concerns the case of hedging the individual bond positions with both the senior and
mezzanine SBBS. The returns are measured in basis points (left axis) and the bonds considered are
those with a 10 year term-to-maturity. The cases of Austria (AT) and Finland (FI) are not shown above
but are quite similar to the case of NL.
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(a) BE: Single Hedge (b) BE: Composite Hedge

(c) ES: Single Hedge (d) ES: Composite Hedge

(e) IT: Single Hedge (f) IT: Composite Hedge

Figure 4. Single and Composite Hedging (BE, ES, IT). Note: This figure facilitates a comparison of
the dispersion of returns on hedged long positions in Belgian, Spanish and Italian sovereign bonds
respectively with the dispersion of returns on the same sovereign bonds without hedging. The first
column of figures concern the case of hedging the long positions using only the senior SBBS. The second
column of figures concerns the case of hedging the individual bond positions with both the senior and
mezzanine SBBS. The returns are measured in basis points (left axis) and the bonds considered are
those with a 10 year term-to-maturity.

155



J. Risk Financial Manag. 2019, 12, 58

(a) GR: Single Hedge (b) GR: Composite Hedge

(c) IE: Single Hedge (d) IE: Composite Hedge

(e) PT: Single Hedge (f) PT: Composite Hedge

Figure 5. Single and Composite Hedging (GR, IE, PT). Note: This figure facilitates a comparison of
the dispersion of returns on hedged long positions in Greek, Irish and Portuguese sovereign bonds
respectively with the dispersion of returns on the same sovereign bonds without hedging. The first
column of figures concern the case of hedging the long positions using only the senior SBBS. The second
column of figures concerns the case of hedging the individual bond positions with both the senior and
mezzanine SBBS. The returns are measured in basis points (left axis) and the bonds considered are
those with a 10 year term-to-maturity.
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The tabulations of risk reductions can provide some more depth to the graphical analysis.
The pre-Sovereign Debt Crisis period comparisons are in Table 1 and this is clearly a period where
hedge effectiveness is high for all countries (at least for some of the seven hedges). The best hedges for
each sovereign are highlighted in colour for the cases of 1-SBBS and 2-SBBS as hedges. In the case of
the single hedge, it is the senior-SBBS that gives the best protection (the percentage reduction for the
best single hedges—based on standard deviation of daily returns—ranges from 79% for DE to 36% for
GR). In almost all cases, the 2-SBBS hedge provides some marginal improvement in hedge effectiveness
over the 1-SBBS hedge case (all percentage reductions above 50%). In many cases the 3-SBBS hedge is
best overall but this may not always be worthwhile from a cost and operational perspective.

Table 2 shows summary statistics for comparisons of risk changes through hedging during the
sovereign debt crisis period. For the 1-SBBS hedge, only DE remains well hedged using the senior
SBBS (reducing risk by 68%). Roughly half of the risk is avoided by single-SBBS hedging for the case
of FI and NL while the remaining sovereigns are clearly not amenable to single-SBBS hedging in this
crisis period. Moving to 2-SBBS or 3-SBBS hedging generally gives rise to some small risk reduction
for most sovereigns relative to the single-SBBS case. Table 3 covers the recovery period (from Mario
Draghi’s London Speech until the end of the last quarter of 2016). By use of composite hedging, it is
usually possible to reduce risks by half or more. The exceptions remain GR and PT.

5.2. Post-Hedging Diversification of Risks

Once risks have been hedged, there is potential for dealers to diversify remaining risks by
operating simultaneously across many of the sovereign markets. At each moment of a trading day (and
at the end of each day), it is likely that a dealer will have a portfolio of outstanding positions in many
markets. The individual net hedged-positions are likely to be much smaller than unhedged positions
(e.g., if the hedge-ratio is close to 1 then the individual net hedged-positions will be minor). These
net positions in individual sovereigns could be subject to further netting (i.e., if some are net-long
and others are net-short). Risk reduction from this additional type of netting is not included in the
following analysis (i.e., portfolios will be restricted to be hedged long-positions in the components).
This most probably implies a significant underestimate of the risk reduction that could be achieved
by diversification.

The upper panel of Figure 6 compares returns on a cross-country portfolio of hedged and
unhedged positions for the pre-SDC period. In this case, it is assumed that the portfolio results
from an equal weighting on the underlying sovereigns. Firstly, it is clear that the portfolio of hedged
positions has a much smaller dispersion than the portfolio of unhedged components. Despite the equal
weighting of components and the equal capital exposure assumption, diversification reduces risks
much more for the portfolio with hedged positions and this is due to the fact that there are mostly
idiosyncratic risks surviving in the hedged case while the unhedged case will involve considerable
systematic risk.

The lower panel of Figure 6 concerns the more volatile conditions of the SDC and the recovery.
In this case, there is not much benefit from the hedging because most risk is actually idiosyncratic.
This means that diversification is equally effective in the case of the unhedged portfolio. In general,
the risks are much lower than risks for typical single sovereigns during this period. Hedging starts to
matter again during the recovery.
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(a) Pre-SDC (Hedge=Senior) (b) Pre-SDC (Hedge=Snr & Mezz)

(c) SDC & Recovery (Hedge=Senior) (d) SDC & Recovery (Hedge=Snr & Mezz)

Figure 6. Portfolio returns with and without hedged components. Note: This figure facilitates a
comparison of the dispersion of returns on a portfolio of hedged long positions in 11 sovereigns with
the dispersion of returns on the same portfolio of long positions without hedging. The first column of
figures concern the case of hedging the components of the portfolio of long positions using only the
senior SBBS. The second column of figures concerns the case of hedging the individual bond positions
with both the senior and mezzanine SBBS. The returns are measured in basis points (left axis) and the
bonds considered are those with a 10 year term-to-maturity. The returns are measured in basis points
(left axis).

A related comparison is that of the dispersion of returns on the safest single sovereign asset and
those of the portfolio of hedged sovereign positions (the German 10 year Bund returns are used for
this discussion, but these are almost indistinguishable from the returns on the similarly safe senior
SBBS). Figure 7 displays these returns through time for the pre-SDC period and the sample from the
start of the SDC through to the more recent recovery. It is very obvious that the portfolio of hedged
sovereigns has an extremely low risk level when compared with the most safe sovereign (especially in
the pre-SDC period). This demonstrates the effectiveness of diversification in reducing risks when
risks are idiosyncratic and not too extreme. The effectiveness of diversification is compromised from
the start of the SDC, but there is still some significant reduction in risk for the majority of the sample
(with a small number of extreme outliers). For normal risk levels, diversification is a strong driver of
risk reduction.
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(a) Pre-SDC (b) SDC & Recovery

Figure 7. German 10-year returns compared with those from an 11-country portfolio of sovereigns
hedged with SBBS. Note: This figure facilitates a comparison of the dispersion of returns on a portfolio
of hedged long positions in 11 sovereigns with the dispersion of returns on a single sovereign bond
that is widely considered to be the safest sovereign bond investment in the euro area (namely the
German Bund). The long positions are hedged using the senior SBBS. The returns are measured in
basis points (left axis) and the bonds considered are those with a 10 year term-to-maturity. (a) shows
the comparison for the period previous to the Sovereign Debt Crisis while (b) covers the period of the
Sovereign Debt Crisis and recovery. The hedged portfolio has returns with a dispersion which is much
lower than the safe haven asset in the non-crisis sub-sample. Even in the crisis and recover periods, the
hedged portfolio compares favourably with the safe asset investment in terms of dispersion of returns.

Table 4 broadens the analysis of the relative risks following diversification to the case of a
size-weighted portfolio and to other maturities. These results pertain to the case where the senior
SBBS is used as the hedge instrument.12 The tabulated results for the 10-year bonds confirm what
was clear from the graphical analysis. In the pre-SDC period, most risk measures indicate a reduction
of around 70% in risk due to a combination of diversification and hedging relative to diversification
on its own. It also confirms that risks after hedging and diversifying are less than a third of those
faced by investing in the lowest risk sovereign (close to what is the maximum reduction possible when
investing the same capital in 11 assets with similar idiosyncratic risks rather than 1). In this period
(for the 10 year term), there is little difference between the equal and size-weighted portfolio results.

For the 10 year term, there is little benefit from hedging before diversifying during the Sovereign
Debt Crisis period (the ratio of the risks on portfolio returns when components are hedged is roughly
equal to the risks with unhedged components which is tantamount to saying that almost all risks are
idiosyncratic). Diversification reduces risks again in the Recovery period and this is particularly true
for the size-weighted portfolio. Risk is relatively high for the equally-weighted portfolio compared
with the German bond for the Sovereign Debt Crisis period, but otherwise risk is similar to or less than
that of the German for the SDC and Recovery, respectively.

In the case of the 5-year term, risks are reduced by around 45% in the pre-SDC period via a
combination of hedging and diversification relative to just diversification (the extra risk reduction
achieved in the 2 year case is similar to that of the 10 year). As with the 10 year case, hedging does
not achieve significant extra benefit in terms of risk reduction for the 5-year bonds during the SDC
(and this is also true of the two year term-to-maturity). There is about a ten percentage point difference
in the risk reduction due to hedging during the Recovery between the 2 and 5 year terms with more

12 The weights used in the analysis are related to the size of the individual sovereign float relative to that of the total of 11
sovereigns in the euro area market (weights are provided in the notes for Table 4).
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reduction achieved in the 5 year category. As for comparison with the German sovereign, an equally
weighted portfolio of sovereigns has risk of 1.52 and 3.52 times the volatility of the German bond
(for the 5 and 2 year case, respectively) during the SDC (the associated relative VaR measures and
the size-weighted comparisons show a smaller difference in these risks, but, in all cases, risks are
greater than holding just the German). The Recovery period does not appear to be as positive for
risk reduction through the combination of hedging and diversification for the 2 year term. However,
portfolio risks remain low and are not much greater than those of the lowest risk sovereign.

Table 4. Diversification and hedge effectiveness.

Pre-Crisis Sov Debt Crisis Recovery
Weighting = Equal Size Equal Size Equal Size

10-Year
EA(Hedged)/EA (i) −68 −71 0 −3 −12 −24
EA(Hedged)/EA (ii) −73 −74 −4 −7 −18 −31
EA(Hedged)/DE (i) −71 −73 8 −1 −4 −24
EA(Hedged)/DE (ii) −76 −76 −2 −14 −11 −29
5-Year
EA(Hedged)/EA (i) −47 −43 1 −1 −17 −15
EA(Hedged)/EA (ii) −46 −44 0 1 −20 −21
EA(Hedged)/DE (i) −50 −46 52 25 −21 −3
EA(Hedged)/DE (ii) −50 −46 34 12 −27 −10
2-Year
EA(Hedged)/EA (i) −62 −64 1 −1 −5 −5
EA(Hedged)/EA (ii) −69 −72 1 4 −7 −10
EA(Hedged)/DE (i) −70 −67 252 81 21 47
EA(Hedged)/DE (ii) −76 −74 186 64 15 38

Note: Using two different metrics, this table shows the percentage change in risk exposures achieved by
hedging and diversifying (using the optimal hedge position in one or more tranches of a 70:20:10 Sovereign
Bond Backed Securitisation). The portfolio of assets being hedged and diversified involves the 10 year bonds
issued by; AT (Austria), BE (Belgium), DE (Germany), ES (Spain), FI (Finland), FR (France), GR (Greece), IE
(Ireland), IT (Italy), NL (Netherlands) and PT (Portugal). The first row for each case contains the percentage
change in risk due to hedging where risk is measured as standard deviation. The second row for each case
contains the percentage change in risk achieved through hedging where risk is measured as the range between
the 5th and 95th quantiles of the returns distribution (implying VaR bounds). The risk reduction is measured
relative to the unhedged portfolio and relative to an investment in just the German Bund which is considered
the safe haven asset. Columns of results permit a comparison across three sub-sample periods and for risk
reductions achieved by diversifying across an equally-weighted and size-weighted portfolio, respectively.

5.3. Summary of Results for Extensions

The possibility that similar hedge (and diversification) strategies might be just as good as SBBS
has been ignored. The effectiveness of hedging using futures (in particular, German Bund and Italian
BTP bond futures) is addressed in Appendix B. The principal finding here is that the senior SBBS is
a much better hedge than Bund futures (even ignoring the fact that hedging with futures involves
other additional costs and basis risks). Additionally, where SBBS are ineffective as hedges for smaller
sovereigns (such as IE and PT), the futures are also very ineffective so there is no clear superiority in
terms of hedge effectiveness using futures rather than SBBS.

Appendix B also contains details of the generalisation of the analysis to other maturities and to the
case where SBBS yields are generated using a multivariate t-copula to trigger defaults. The outcome
of these extensions is straightforward to summarise. Firstly, extending to shorter maturities leads to
a general reduction in hedge effectiveness on average in the pre-crisis period and a less pervasive
reduction in hedge effectiveness for the two-year maturity in the recovery period. Ultimately, this does
not impact greatly on the risks that remain after diversification. Secondly, since the t-copula produces a
higher incidence of extreme losses that more often spillover to mezzanine and senior tranches, the yield
movements that result are less correlated with those of the German sovereign bonds than is the case
with the Gaussian copula. The senior tranche therefore becomes less effective as a hedge for German
bonds. Otherwise, the changes in hedge effectiveness due to use of the t-copula are insignificant.
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6. Conclusions

This paper assesses how the existence of sovereign bond-backed securities affects dealer
intermediation in individual euro area sovereigns. An arbitrage relation is used to demonstrate that the
hedging of inventory risks with SBBS eliminates most systematic inventory holding risks. Furthermore,
it is asserted that diversification of intermediation activities across countries, in combination with
hedging, then produces further reductions in exposures. These assertions are tested using estimated
SBBS yields and the findings are generally positive. Even if one assumes a similar capital exposure
under hedging and not-hedging, there is still a marked reduction in risks through hedging and
diversification. Overall, assuming regulation does not excessively penalise netting of inventory
positions in different sovereign and SBBS, and if SBBS are sufficiently liquid, a significant improvement
in trading costs across all European sovereign debt markets seems plausible.

Risk reduction through diversification (after hedging) was assessed using equal-weighted and
size-weighted portfolios of long positions in the bonds from the underlying sovereigns. This could
be misleading since it is quite likely that actual inventories would be some mixture of long and short
positions. This simplification will tend to underestimate the risk-reducing benefits of diversification.
Since holding period investment returns in sovereign markets are predominantly positively correlated
(except when there is a pronounced flight to safety), a combination of long and short positions will lead
to more netting of valuation changes and this will most likely reduce risk relative to what is reported
for the present analysis. This represents a fruitful avenue for future investigation.

A further useful extension of the above analysis would be to assess whether there are liquidity
spillovers among the SBBS tranches. In fact, these spillovers have already been identified in terms of
the incremental hedge effectiveness that was achieved when portfolios that included all three SBBS
were analysed. However, in the developmental phase of the SBBS market, liquidity spillovers between
the SBBS themselves could be important for liquidity of the junior tranche which will have the smallest
issuance volume among the three. It seems likely that the senior SBBS would be helpful to dealers
in providing quotes in the mezzanine market (purely via hedging). A spillover from the mezzanine
to the junior is then possible. Preliminary analysis of the correlations between the tranches under
most circumstances suggests that these hedging avenues for liquidity spillovers would be positive.
Of course, in crisis circumstances, flight to safety could disrupt correlations more dramatically than
can be anticipated by dealers and this would undermine the reliability of risk reduction strategies
based purely on hedging one SBBS with another. This is worthy of further investigation.

It is important to acknowledge that providing liquidity by relying on a parallel market for hedging
requires adequate funding liquidity, regulation that permits the netting of inventory positions and
broad-based diversification by dealers. Any systemic contraction in availability of funding liquidity is
likely to disproportionately affect liquidity in markets that depend on hedging (see Brunnermeier and
Pedersen 2009). It is important therefore that dealers have adequate capital to withstand relatively
large shocks.13 Regulation that prevents netting of positions of intermediaries would constrain positive
liquidity spillover effects. Similarly, large changes in correlations can magnify risks during a crisis so
trading systems need to be dynamically flexible and capable of managing such complexity. This may
increase operational costs.

One important policy implication of the analysis above is that primary dealers will seek to have
a presence in more markets. This follows from the fact that much of the risk at local level cannot be
hedged using SBBS but is easily diversified. Dealers with, on average, a more diversified portfolio will
face lower risks and will be able to out-price non-diversified dealers. Most markets in Europe have a
majority of dealers with diversified market making activities, but some additional diversification is

13 It has been shown by Baranova et al. (2017) that recent tightening of capital and leverage requirements of financial
intermediaries has damaged liquidity provision during calm markets’ conditions, but it has helped to protect liquidity
during crises’ circumstances. Getting the balance right is therefore crucial.
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likely to occur. There is obviously a trade-off here between specialisation, which helps to make price
discovery more efficient, and diversification for risk management purposes.

Funding: This research received no external funding.

Acknowledgments: I am grateful to Sam Langfield, Marco Pagano, Richard Portes, Philip Lane, Javier Suárez,
Kitty Moloney, Patrick Haran, Angelo Ranaldo, Thomas Reininger, Martin Phul and members of the ESRB
High-Level Task Force on Safe Assets for helpful comments. Views expressed are those of the author and do
not necessarily represent the views of the task force. Technical assistance from Paul Huxley at Matlab is also
gratefully acknowledged.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Optimal Hedging

The optimal hedge ratio is the one that minimises the variance of the hedged portfolio’s return.
To hedge quantity Q1 of an asset using quantities of representative combinations of hedge instruments
denoted Q2, Q3 and Q4 gives the following hedge ratios (where ρij is the correlation between returns
on assets i and j, and σi is the standard deviation of returns on asset i).

One hedge instrument: Q2
Q1

= − ρ12σR1 σR2
σ2

R2

,

Two hedge instruments: Q2
Q1

= − (ρ12−ρ13ρ23)σ1σ2
(1−ρ2

23)σ2
2

and Q3
Q1

= − (ρ13−ρ12ρ23)σ1σ3
(1−ρ2

23)σ2
3

,

Three hedge instruments:

Q2

Q1
= − (1 − ρ2

34)ρ12 − (ρ23 − ρ24ρ34)ρ13 + (ρ23ρ34 − ρ24)ρ14

(1 − ρ2
23 − ρ2

24 − ρ2
34 + 2ρ23ρ24ρ34)σ2

,

Q3

Q1
= − (1 − ρ2

24)ρ13 − (ρ23 − ρ24ρ34)ρ12 + (ρ23ρ24 − ρ34)ρ14

(1 − ρ2
23 − ρ2

24 − ρ2
34 + 2ρ23ρ24ρ34)σ3

,

Q4

Q1
= − (1 − ρ2

23)ρ14 − (ρ34 − ρ24ρ23)ρ13 + (ρ23ρ34 − ρ24)ρ12

(1 − ρ2
23 − ρ2

24 − ρ2
34 + 2ρ23ρ24ρ34)σ4

.

Correlations used in the the above calculations can be derived from dynamic estimates of variances
as described in Gibson et al. (2017). For example, since the variance of (X + Y) = variance(X) +
Variance(Y) + 2 Covariance(X,Y) the Covariance can be constructed from a rearrangement of estimates
of variance(X + Y), variance(X) and Variance(Y).

Appendix B. Robustness

Appendix B.1. Comparing with Futures as Hedge

The comparison of hedge effectiveness using SBBS versus BTP and/or Bund futures can be
considered by reference to Table A1. The first notable outcome is that the senior SBBS is better than
the Bund future even in the case of hedging German 10-year bond risk. The returns on a portfolio
of Bund and an optimal hedge position in Bund futures has a standard deviation of around 67%
and 64% respectively of the unhedged position in the SDC period and the recovery, respectively.
The portfolio involving the senior SBBS by comparison has a relative standard deviation of 32% and
27% in these periods (the relative VaR in both periods is also much lower when the SBBS is used
to hedge). Interestingly, the BTP future is a better hedge for the Italian bond than any of the SBBS
individually, but a combination of SBBS achieves similar hedge effectiveness.

Overall, the Bund futures contract is a weaker hedge for most sovereign bond positions compared
with SBBS. Where SBBS are ineffective as hedges for smaller sovereigns (such as IE and PT), the futures
are also very ineffective. These sovereigns have a lot of idiosyncratic unhedgable risk, but their risks
are significantly reduced through diversification.
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Table A1. Futures-based hedge effectiveness SDC and Recovery.

Sov Debt Crisis Recovery
Hedge = BUND BTP BUND+BTP BUND BTP BUND+BTP

AT(i) −28 7 −27 −17 −3 −19
AT(ii) −26 13 −24 −23 −7 −29
BE(i) −1 −11 −19 −10 −6 −16
BE(ii) 10 2 −12 −16 −5 −22
DE(i) −33 3 −33 −36 −3 −35
DE(ii) −32 6 −32 −44 −4 −44
ES(i) 2 −36 −33 −2 −24 −23
ES(ii) −2 −33 −35 −4 −26 −26
FI(i) −34 5 −33 −32 −3 −32
FI(ii) −38 0 −38 −41 −7 −44
FR(i) −22 6 −21 −16 −4 −19
FR(ii) −18 12 −22 −20 −8 −27
GR(i) 3 13 17 0 0 0
GR(ii) 3 18 19 3 0 2
IE(i) 0 −5 −6 −1 0 −1
IE(ii) −4 −2 −5 −4 −1 −3
IT(i) 3 −52 −49 −3 −46 −45
IT(ii) 7 −57 −59 −5 −59 −58
NL(i) −33 5 −32 −29 −2 −29
NL(ii) −29 3 −31 −37 −3 −38
PT(i) 0 −4 −5 0 −3 −2
PT(ii) 3 −8 −5 1 −5 −6

Note: Using two different metrics, this table shows the percentage change in risk exposures achieved by
hedging a position in a particular sovereign bond using a position in futures on Bunds, BTPs and a combination
of both. Issuers of the bonds are indicated at the beginning of each row as follows; AT (Austria), BE (Belgium),
DE (Germany), ES (Spain), FI (Finland), FR (France), GR (Greece), IE (Ireland), IT (Italy), NL (Netherlands)
and PT (Portugal). The first row for each case contains the percentage change in risk due to hedging where
risk is measured as standard deviation. The second row for each case contains the percentage change in risk
achieved through hedging where risk is measured as the range between the 5th and 95th quantiles of the
returns distribution (implying VaR bounds). Columns of results permit a comparison of the risk reductions
for the different hedges across two sub-sample periods.

Appendix B.2. Hedge Effectiveness at Other Maturities

Table A2 presents a comparison of hedge effectiveness at the 10-year term-to-maturity with those
at five and two years to maturity (for conciseness only the results for hedging with all three SBBS are
shown). In the pre-crisis period hedge effectiveness tends to decline as term shortens. The standard
deviation of returns on the hedged positions relative to that of the unhedged positions (Rows (i))
increases on average from 0.28 at the 10 year term to 0.36 and 0.49 at the 5- and 2-year terms respectively.
The relative value-at-risk comparison (Rows (ii)) increase on average less dramatically than the relative
standard deviations (from 0.20 to 0.25 and 0.36, respectively). The average increase in these ratios in
the pre-crisis period is a reasonably good indication of what happens at the individual sovereign level
(the case of Finland is somewhat of an outlier).

The middle segment of Table A2 depicts the hedge effectiveness measures across terms-to-maturity
for the period of the Sovereign Debt Crisis. Here, it is not so clear that any significant change occurs
across the different terms on average, but there is more heterogeneity across sovereigns. The average
of the ratio of standard deviations of returns on the hedged position relative to the unhedged, shown
in the second last row of the table, move from 0.71 to 0.67 and then to 0.72. Relative VaRs also
remain quite flat, moving from 0.67 at the 10-year term to 0.68 and 0.73 at the 5- and 2-year terms,
respectively. The declines in these ratios tend to be more acute for ES, IT and PT. Significant increases
occur (particularly for the 2-year term) for BE, DE, FI and NL. The hedge effectiveness results for
the Recovery period show similar levels on average of the two main risk ratios between the 5- and
10-year maturities. A slightly sharper rise occurs in these ratios for the 2-year term and this is mainly
explained by the FR case and two of the smaller sovereign markets (BE and FI).
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Table A2. Hedge effectiveness: 10-, 5- & 2-year terms-to-maturity

Pre-Crisis Sov Debt Crisis Recovery
Term = 10 Year 5 Year 2 Year 10 Year 5 Year 2 Year 10 Year 5 Year 2 Year

AT(i) −72 −65 −47 −26 −29 −23 −49 −44 −24
AT(ii) −84 −80 −58 −41 −40 −30 −56 −51 −24
BE(i) −77 −67 −56 −20 −23 −15 −52 −35 −15
BE(ii) −83 −81 −76 −29 −26 −20 −57 −45 −10
DE(i) −87 −85 −75 −71 −69 −48 −75 −72 −68
DE(ii) −89 −88 −82 −73 −69 −55 −74 −73 −67
ES(i) −69 −67 −62 −28 −44 −42 −43 −50 −43
ES(ii) −75 −80 −77 −35 −38 −36 −43 −48 −37
FI(i) −76 −55 −26 −47 −45 −20 −55 −41 −27
FI(ii) −84 −80 −30 −55 −56 −26 −62 −56 −24
FR(i) −83 −81 −75 −31 −33 −29 −59 −49 −31
FR(ii) −88 −86 −82 −38 −38 −35 −61 −52 −27
GR(i) −55 −45 −34 −17 0 1 −8
GR(ii) −67 −60 −61 23 31 42 12
IE(i) −52 −40 −17 1 −13 −27 −14
IE(ii) −72 −40 −27 −6 −10 −35 −19
IT(i) −72 −64 −59 −37 −59 −62 −53 −54 −60
IT(ii) −77 −70 −73 −44 −51 −61 −54 −55 −57
NL(i) −81 −71 −54 −43 −42 −25 −56 −47 −39
NL(ii) −86 −84 −72 −51 −53 −42 −65 −57 −36
PT(i) −67 −59 −58 0 −9 −17 −21 −13 −8
PT(ii) −77 −76 −69 −9 −5 −3 −26 −11 1
Avg(i) −72 −64 −51 −29 −33 −28 −45 −42 −35
Avg(ii) −80 −75 −64 −33 −32 −27 −47 −47 −31

Note: Using two different metrics, this table shows the percentage change in risk exposures achieved by
hedging a position in a particular sovereign bond using a position in one or more tranches of a 70:20:10
Sovereign Bond Backed Securitisation (three maturities are considered; 2-year, 5-year and 10-year). Issuers of
the bonds are indicated at the beginning of each row as follows; AT (Austria), BE (Belgium), DE (Germany), ES
(Spain), FI (Finland), FR (France), GR (Greece), IE (Ireland), IT (Italy), NL (Netherlands) and PT (Portugal). The
first row for each case contains the percentage change in risk due to hedging where risk is measured as standard
deviation. The second row for each case contains the percentage change in risk achieved through hedging
where risk is measured as the range between the 5th and 95th quantiles of the returns distribution (implying
VaR bounds). Columns of results permit a comparison of the risk reduction for three bond maturities and
across three sub-sample periods.

Appendix B.3. Hedge Effectiveness under Higher Incidence of Extreme Losses

Table A3 compares hedge effectiveness using a t-copula rather than a Gaussian copula to trigger
defaults. There is almost no difference for any sovereign (or on average) in the hedge effectiveness
measures over the pre-crisis sample. The largest increase in the ratio of risks occurs for the case
of GR (showing a very minor 4-point rise). For the Sovereign Debt Crisis and Recovery periods, a
similar small change is apparent for all sovereign bonds except those of Germany (and Finland for the
SDC period).
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Table A3. Hedge effectiveness: Gaussian versus T-copula default trigger.

Pre-Crisis Sov Debt Crisis Recovery
Gaussian T-Dist Gaussian T-Dist Gaussian T-Dist

AT(i) −72 −72 −26 −24 −49 −46
AT(ii) −84 −83 −41 −38 −56 −52
BE(i) −77 −77 −20 −19 −52 −49
BE(ii) −83 −82 −29 −26 −57 −54
DE(i) −87 −81 −71 −45 −75 −56
DE(ii) −89 −83 −73 −48 −74 −53
ES(i) −69 −68 −28 −34 −43 −40
ES(ii) −75 −76 −35 −38 −43 −40
FI(i) −76 −75 −47 −38 −55 −48
FI(ii) −84 −83 −55 −44 −62 −55
FR(i) −83 −84 −31 −26 −59 −57
FR(ii) −88 −88 −38 −44 −61 −59
GR(i) −55 −51 −17 −17 −8 0
GR(ii) −67 −63 23 29 12 27
IE(i) −52 −50 1 0 −27 −26
IE(ii) −72 −73 −6 −9 −35 −34
IT(i) −72 −70 −37 −40 −53 −51
IT(ii) −77 −71 −44 −40 −54 −55
NL(i) −81 −81 −43 −37 −56 −51
NL(ii) −86 −87 −51 −46 −65 −57
PT(i) −67 −65 0 2 −21 −18
PT(ii) −77 −76 −9 −14 −26 −21
Avg(i) −72 −70 −29 −25 −45 −40
Avg(ii) −80 −79 −33 −29 −47 −41

Note: Using two different metrics, this table shows the percentage change in risk exposures achieved by
hedging a position in a particular sovereign bond using a position in one or more tranches of a 70:20:10
Sovereign Bond Backed Securitisation where the tranche yields have been estimated with a Gaussian and a
t-Copula simulator. Issuers of the bonds are indicated at the beginning of each row as follows; AT (Austria),
BE (Belgium), DE (Germany), ES (Spain), FI (Finland), FR (France), GR (Greece), IE (Ireland), IT (Italy), NL
(Netherlands) and PT (Portugal). The first row for each case contains the percentage change in risk due to
hedging where risk is measured as standard deviation. The second row for each case contains the percentage
change in risk achieved through hedging where risk is measured as the range between the 5th and 95th
quantiles of the returns distribution (implying VaR bounds). Columns of results permit a comparison of the
risk reduction using two ways of estimating the tranche yields and across three sub-sample periods.
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Abstract: We propose a novel intraday instantaneous volatility measure which utilises sequences of
drawdowns and drawups non-equidistantly spaced in physical time as indicators of high-frequency
activity of financial markets. The sequences are re-expressed in terms of directional-change intrinsic
time which ticks only when the price curve changes the direction of its trend by a given relative value.
We employ the proposed measure to uncover weekly volatility seasonality patterns of three Forex
and one Bitcoin exchange rates, as well as a stock market index. We demonstrate the long memory
of instantaneous volatility computed in directional-change intrinsic time. The provided volatility
estimation method can be adapted as a universal multiscale risk-management tool independent of
the discreteness and the type of analysed high-frequency data.

Keywords: instantaneous volatility; directional-change; seasonality; forex; bitcoin; S&P500;
risk management; drawdown

1. Introduction

All events relevant to the performance of the financial system such as political decisions, natural
disasters, or economic reports rarely happen synchronously and are typically not equally spaced
in time. A sequence of them has a non-homogeneous nature and is not characterised by any vital
autocorrelation function. Ultimately, the change of days and nights, as well as seasons, is dictated by
the natural structure of the physical world which is barely connected to the flow of financial activity.
Human minds, with the whole diversity of peculiar and indescribable characteristics, are primal
engines of all market’s evolutionary shifts. The global market, where the majority of transactions
happen online and where traders, dealers, and market makers are distributed all around the world,
is completely blind and deaf to the periodicity of days and nights, as well as to the climate factors of
any standalone region of the Earth. New statistical tools, agnostic to the flow of the physical time,
should be employed in order to handle the inner periodicity of the financial activity efficiently. In this
work, we explore a concept of the endogenously defined time in finance applied to evaluate seasonality
in markets’ activity.

Probabilities of price drops and price rises between the running price maxima and running
price minima are one of the most well-known risk-factors in finance. These probabilities are also
called drawups and drawdowns. Numerous research works have focused on the analysis of the size,
periodicity, and the time of recovery associated with drawups and drawdowns in traditional markets.
The joint Laplace transform was utilised by Taylor (1975) for deriving the expected time until a new
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drawup in a drifted Brownian motion occured (traditionally considered as the model for historical
price returns). The joint probability of observing a drawup of a given size after a drawdown, during a
given term, was analysed as a homogeneous diffusion process in Pospisil et al. (2009). Zhang (2015)
derived the joint probability in the context of exponential time horizons (the horizons are exponentially
distributed random variables). The authors also described the law of occupation times for both drawup
and drawdown processes. These and other theoretical findings connected to the price trend reversals
were successfully applied to real financial problems such as studding market crashes.

Market crashes, pronounced in the abnormal price decreases, might severely impact the long-term
stability of markets. It is especially important to estimate the probability of the next crash occurrence
within a given period of time. Many research works were done on studying the crash probabilities
using the normal distribution of price returns as the proxy for the real process. However, extreme
price drops occur more often in the real world than what should happen when the distribution
of returns coincides with the normal one. Fat-tailed distributions of returns ground the observed
phenomenon. The distributions were discovered in the stock market (Jondeau and Rockinger 2003;
Koning et al. 2018; Rachev et al. 2005), in the Forex (FX) (Cotter 2005; Dacorogna et al. 2001), as well
as in Bitcoin, prices (Begušić et al. 2018; Liu et al. 2017). The fat tails, accompanied by the extensive
discontinuity of the price curve (jumps), make the equally spaced time intervals inconvenient for
high-frequency market analysis. Research tools, capable of working independently to the price
distribution, should be called to deal with the erratic price evolution. Prices, at which drawdowns
and drawups of the given size are registered, are independent of the time component of the price
progression. Thus, the drawdown and drawups are the concepts especially useful of handling the
dynamics of high-frequency markets. A sequence of drawdowns and drawups, following each other,
can describe the evolution of a time series purely from the price point of view. The efficient set of
forecasting techniques aimed at identifying appropriate conditions for future market crashes should
inevitably be supplied by risk-management tools managing sequences of drawdowns and drawups.

In this research work, we investigate the connection between the observed number of alternating
drawdowns and drawups (directional-change intrinsic time measure) and the instantaneous volatility.
Non-parametric estimation of instantaneous volatility is still a relatively new topic which, to the
extent of our knowledge, has not been studied before from the point of view of directional-change
intrinsic time. Obtained in the work, analytical expressions are employed to reveal the seasonality
structure of instantaneous volatility typical for high-frequency exchange rates. The described tools and
experiments contribute to the collection of existing literature on directional-change intrinsic time and
the seasonality properties of high-frequency markets. The tools will benefit high-frequency traders
whose computer algorithms primarily operate on ultra-short time intervals where the short-term
properties dominate over the long-term statistical characteristics (Gençay et al. 2001; Hasbrouck 2018).

Three distinctive markets were considered in the work: FX (EUR/USD, EUR/JPY, and EUR/GBP),
stocks (S&P500), and crypto (BTC/USD). All experiments are performed on the time series of the
highest granularity: tick-by-tick data. That high granularity is essential considering the substantially
growing interest in high-frequency trading after the 2008 financial crisis (Kaya et al. 2016). The data
corresponds to the recent time period from 2011 to 2018 and is obtained from the largest trading venues
(JForex and Kraken) opened for traders of any size. Each of the time series used in the empirical analysis
is at least four years long. Such an extended length allows us to claim that properties specific for any
particular period of time should not be pronounced in the obtained results.

The outline of the remaining paper is as follows. Section 2 provides a brief overview of research
works on the properties of drawups and drawdowns. Section 3 gives detailed reasoning on the need for
directional-change intrinsic time and describes a set of literature where the concept was successfully
applied. Existing studies on the volatility seasonality of high-frequency markets is provided in
Section 4. Section 5 describes the data used in the experiments and Section 6 outlines how the number
of directional changes is connected to the instantaneous volatility. In Section 7 we present all results
obtained by the traditional, as well as the novel, volatility measurement techniques and also describe

170



J. Risk Financial Manag. 2019, 12, 54

the application of theta time concept aimed to minimise the seasonality pattern. Section 8 concludes
the main body of the paper and proposes the potential use of the developed technique. Appendix A
concludes the paper by presenting a set of experiments where the comparison of considered markets
seasonality patterns is presented.

2. Drawdowns and Drawups: An Introduction

Probabilities of financial drawdowns and drawups were extensively studied and presented in
multiple seminal research works. Drawdowns of extensive size are usually associated with market
crashes. Carr et al. (2011) proposed a new insurance technique aimed to protect investors against
unexpected price moves. The authors also covered a novel way of hedging liabilities associated with
these risks. Zhang and Hadjiliadis (2012) employed statistical properties of drawdowns as an estimate
of the stock default risk and also provided a risk-management mechanism affecting the investor’s
optimal cancellation timing. In Schuhmacher and Eling (2011) drawdowns are considered as one of
14 reward-to-risk ratios alternative to the widely known performance measures such as the Sharpe
ratio. In Grossman and Zhou (1993) and Chekhlov et al. (2005) the properties of drawdowns were
also applied as an estimate of the portfolio optimisation problem. The latter can be personalised
to match traders’ or investors’ expectations and their tolerance to the size and the length of the
market disruption.

Drawdowns Dt and drawups Ut, also called rallies in Hadjiliadis and Večeř (2006), registered
by the moment of time t, depend on the running price maxima St and the running price minima St

(Dassios and Lim 2018; Landriault et al. 2015; Mijatović and Pistorius 2012; Zhang and Hadjiliadis
2012). These reference points hinge on the set of historical prices Ss and are mathematically defined in
the following way:

St = sup{Ss : 0 ≤ s ≤ t} and St = inf{Ss : 0 ≤ s ≤ t}, (1)

where t ≥ 0 and the interval [0, t] is fixed. Drawdowns and drawups are the differences between the
final price of the given time interval St and the registered local maxima and minima:

Dt = St − St and Ut = St − St. (2)

The waiting time τD
a becomes measured once a price curve experiences a drawdown Dt of the

size a. Similarly, τU
a is the waiting time associated with a drawup of the size a. In details:

τD
a = inf{t ≥ 0 : Dt ≥ a} and τU

a = inf{t ≥ 0 : Ut ≥ a}. (3)

The waiting time τa measures the period of physical time which elapses before the first drawdown
(potentially interpreted as a market crash) becomes registered.

3. Directional-Change Intrinsic Time

The existing literature on risk-management techniques primarily relies on physical time as a
measure of the length and periodicity of financial events. In other words, the existence of a universal
clock dictating the evolution of the market prices is assumed. However, the volatilities of different
time resolutions behave differently (Müller et al. 1997). The volatility size depends on the scale of the
entire time series as well as on the moment when the price activity started to be observed. More robust
techniques which are beyond the limits of physical time are needed to handle this stochasticity.

The concept of directional-change intrinsic time (Guillaume et al. 1997) is one of the methods
capable of replacing the universal physical clock with intrinsic one. This is an event-based framework
which considers the activity of market prices as the indicator of the transition between its different
states. The framework dissects a price curve into a collection of sections characterised by alternating
trends of the arbitrary defined size. The essence of the concept is closely related to the meaning of
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drawdowns and drawups: the collection of directional changes following each other can be interpreted
as the alternating sequence of drawdowns and drawups. The frequency of price changes in physical
time does not play any role in the directional change dissection procedure.

The concept of trend directional changes provided by Guillaume et al. (1997) is capable of
connecting the continuous flow of physical time with the endogenous evolution of price returns.
According to the event-based space proposed by Guillaume, only a sequence of price trends
continuously alternating in direction has to be considered. The price curve gets dissected into a
collection of alternating drawups and drawdowns or trend rises and trend falls correspondingly.
Each elementary trend ends once a new price curve reversal is observed. Continuous price moves
towards the direction of the latest trend change are called overshoots. The current state of the system
changes only at the moments when the trend of the given size reverses its direction. Thus, the set
of intrinsic events is decoupled from the flow of physical time. Instead, it depends only on the size
of considered drawups and drawdowns labelled by the threshold δ. An example of a price curve
dissected into a collection of directional changes is provided in Figure 1.

( ) ( ) ( ) ( )( ) ( )
Figure 1. A part of EUR/USD price curve (grey) dissected into a set of directional-changes (grey
squares) using a directional-change threshold δ. The size of the arbitrary chosen threshold is presented
in the middle of the figure. Grey circles mark local extremes between two consecutive directional
changes. The vertical distance between each directional-change and preceding extreme price is bigger
or equal to the size of the threshold δ. Vertical dashed lines indicate the end of each trend section
(identified only after the next event becomes observed) and go through the local extremes (circles).
The timeline below the plot contains equal time intervals T1, T2, T3 and length of each directional-change
section T1(δ), . . . , T6(δ).

The density of directional-change intrinsic events depends only on the price curve evolution and
the considered trend size. The stochastic nature of price evolution results in the phenomenon depicted
in Figure 1: non-equal number of intrinsic events (empty squares) correspond to the equal periods of
physical time. The physical interval T1 contains only the end of the Section 1 (sections coincide with
the intrinsic events and are separated by the dashed vertical lines) while the equal interval T2 hosts
three segments, namely 2, 3, 4. This property of directional-change intrinsic time can be engaged as the
efficient noise filtering technique: the intrinsic time ignores price changes between directional change.
At the same time, it allows us to efficiently capture the most relevant to risk management information:
precise moments of all trend changes. The equally spaced time intervals typically employed in the
financial analysis are not capable of doing anything of the above: price timestamps, evenly spaced
through periods T1, T2, and T3, do not contain information on the extreme price curve activity located
in the period T2. This disability of the traditional price analysis techniques over stochasticity of the
market’s activity develops into volatility estimators that are too stiff and biased.
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The concept of directional-change intrinsic time, applied for studying historical price, returns
reveals multiple statistical properties of high-frequency markets. Guillaume et al. (1997) were the
first researchers to uncover a scaling law1 relating the expected number of directional-changes N(δ)

observed over the fixed period to the size of the threshold δ. Mathematically:

N(δ) =

(
δ

CN,DC

)EN,DC

, (4)

where CN,DC and EN,DC are the scaling law coefficients. Glattfelder et al. (2011) employed the
directional-change framework to discover 12 independent scaling laws which hold across three orders
of magnitude and are present in 13 currency exchange rates. Later Golub et al. (2017) described a
successful trading strategy exploiting a collection of tools build upon directional-change intrinsic time.
The proposed strategy is characterised by the annual Sharpe ratio greater than 3.0. The persistence of
revealed scaling laws became the base elements for the tools designed to monitor market’s liquidity at
multiple scales (Golub et al. 2014).

4. Seasonality

4.1. Traditional Markets

The returns seasonality is the well-known statistical characteristic of developed markets such
as FX and stocks. Rozeff and Kinney (1976) studied the comprehensive set of historical stock data
which spans from 1904 to 1974 and found a higher mean of return in the January distribution of
returns compared with most other months. They also underline noticeably high mean returns in July,
November, and December, and low mean returns in February and June. Gultekin and Gultekin (1983)
empirically examined stock market seasonality in major industrialised countries. They aimed at
investigating the existence and the shape of the stock market seasonality pattern in foreign securities
markets. The confirmed seasonal patterns in the stock returns supplied the further understanding of the
seasonality anomaly. Seif et al. (2017) studied seasonal anomalies in advanced emerging stock markets
and provides re-examination of the markets efficiency. The authors did not find the confirmation of the
January effect but confirmed the month of the years, the day of the week, the holiday, and the week
of the year effects. The recent work Fang et al. (2018) presents a strong link between school holidays
and market returns across 47 countries. The authors demonstrate that the returns in the month after
major school holidays are 0.6% to 1% lower than at other times. The provided evidence states that
post-school holiday small returns are explained by the investors’ inattention during these periods.
The reduced attention results in news effects being incorporated noticeably slower into prices than
within the active trading periods. We also underline the relevance of other research works on the stock
market seasonality: De Bondt and Thaler (1987); Keim (1983); Zarowin (1990), among others.

Daily, weekly, and annually seasonality patterns are also inevitable components of the set of FX
stylised facts. Müller et al. (1990) analysed four foreign exchange spot rates against the USD over
three years. Authors’ intra-day and intra-week analysis show that there are systematic variations of
volatility present even within business hours. They also discovered daily and weekly patterns for
the average bid-ask spread. Dacorogna et al. (1993) studied daily and weekly FX seasonality patterns
from the geographically distributed trading point of view. The trading activity divided in three
general components (East Asia, Europe, and America) was approximated by a polynomial activity
function during business hours. The combined model was closely fitted into the empirical volatility
(activity) seasonality data. The authors found that strongly seasonal activity autocorrelation can be
approximated by the hyperbolic function. Bollerslev and Domowitz (1993) examined behaviour of
quote arrivals and bid-ask spreads for continuously recorded deutsche mark-dollar exchange rate data

1 A basic polynomial functional relationship where a change in input results in a proportional change in output.
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over time, across locations, and by market participant. The authors find the relation of the considered
information to the seasonality patterns typically observed in the deutsche mark-dollar exchange rate.
Ito and Hashimoto (2006) showed U-shaped intra-day activities of deals and price changes as well as
return volatility for Tokyo and London participants of USD/JPY and EUR/USD markets. The authors
also note that the U-shape was not found for New York participants. A set of well-known seasonality
factors was confirmed: the high activities at the opening of the markets, high correlations between
quote entries and deals, and higher trading activities associated with narrow spreads.

The seasonality of the rapidly evolving cryptocurrency domain is still insufficiently studied in
the financial world. The next section unwraps some of the facts about cryptocurrencies and presents
outcomes of the previous studies which have to be considered in the current work.

4.2. Bitcoin Seasonality

Bitcoin is the first successful pioneer in the crypto domain. It is also the most famous representative
of the cryptocurrency markets. Bitcoin was described by Nakamoto (2008) and created in 2008 as an
alternative to the classical financial system. The cryptocurrency was rapidly tagged as the “peer-to-peer
version of electronic cash”. Bitcoin and its underlying technology, blockchain2, swiftly gained attention
from the technologically savvy community and media. The peer-to-peer payment systems soon
became one of the most debatable topics at all levels of modern society. Over a thousand alternative
cryptocurrencies, based on the similar cryptography concept (Roy and Venkateswaran 2014), emerged
since the time Bitcoin was invented. Some part of them became accessible for trading at various
electronic venues also known as crypto-exchanges3.

In contrast to the traditional FX market, cryptocurrency trades happen 24 h per day and seven days
per week, independently of the holidays and seasons. Additionally, cryptocurrency trading activity
is more uniformly distributed across the globe. There are not many big geographically segregated
financial institutions where trades happen according to the working schedule (in contrast to the global
FX trading centres described in Dacorogna et al. (1993)). There is still the limited acceptance of this
new financial instrument by international organisations with access to sizable funds4. As result, the
seasonality patterns prevalent in the world of cryptocurrencies could be incomparable with the ones
typical for the FX or stock markets. High volatility has been one of the most pronounced characteristics
of the Bitcoin markets (see, for example, Dyhrberg (2016)). Bitcoin’s trend drastically changes and
their persistence indicates the aggregated expectations and trading actions of all market participants.
Unstable trends also reveals the Bitcoin price sensitivity to exogenous stress factors. The high scale
of Bitcoin trend changes attracts researchers to employ modern technologies in order to foresee the
future price dynamics (Shintate and Pichl 2019).

There are a few research works concerned with the statistical properties of cryptocurrency markets.
Sapuric and Kokkinaki (2014) analysed realised volatility of Bitcoin returns within a 4-year time interval
to understand what the prime characteristics of its price activity are. They confirmed Bitcoin’s high
volatility, but emphasised that traded volume should be taken into account when computing the
precise value5. The authors compared Bitcoin with conventional financial instruments, including
gold, and several national currencies. They demonstrated that the calculated volatility significantly
decreases when the traded volumes are included in the model.

Haferkorn and Diaz (2014) studied seasonality patterns of the number of payments performed
in three cryptocurrencies: Bitcoin (classified as a worldwide payment system), Litecoin (open source

2 A growing list of records containing information on the ownership of all existing Bitcoins.
3 Information on all cryptocurrencies and trading venues can be found at Coinmarketcap.com.
4 At the moment of writing the paper, Wall Street and other big financial hubs are considering trading cryptocurrencies, which

will potentially result in the higher segregation level.
5 According to the Bank for International Settlements the daily average FX trading volume in April 2016 was $5.1 trillion (BIS

2016) when the highest registered volume in the crypto market is to the date only $45.8 billion (https://coinmarketcap.com/
charts/).
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software project), and Namecoin (decentralised name system). Their research confirmed that the
monthly or yearly seasonality is not typical for the crypto market. The only robust weekly pattern
was found in Bitcoin prices. Litecoin and Namecoin had weak or no patterns at all. The authors
state that there is also no significant correlation between the returns of observed exchange rates.
Authors speculate about the reason of this phenomenon. They say that these cryptocurrencies have
similar core architecture, but they all have been created to serve specific needs.

de Vries and Aalborg (2017) made another attempt to discover Bitcoin seasonality patterns.
They analysed daily traded volume, daily transaction volume, and Google trends (the number
of searches for the word “bitcoin”). The author also inspected the seasonality of the number of
transactions performed from individual blockchain accounts. All of the measurements demonstrated
no particular periodicity.

Eross et al. (2017) gave a more positive answer on the existence of the most famous cryptocurrency
intraday seasonality. The authors investigated Bitcoin returns, volume, realised volatility, and bid-ask
spreads to reveal several intraday stylised facts. A significant negative correlation was found between
returns and volatility. Volume and volatility were shown to have a considerably positive correlation.
The authors attribute such patterns to the European and North American traders, as well as the
insufficient number of market makers in the whole crypto space.

The seasonal heteroscedasticity affects the results of statistical studies of intraday and intra-week
price properties. The rapidly evolving electronic high-frequency trading is highly affected by the
exchange rate seasonality properties too (Cont 2011b). Therefore, the returns’ seasonality has to be
treated at the first priority.

More information on order patterns in time series can be found in the work Bandt and Shiha (2007).
The authors determine probabilities of order patterns in Gaussian and autoregressive moving-average
processes, which can be directly applied to the financial time series analysis.

5. Data

Three FX exchange rates were used in the work: EUR/USD, EUR/JPY, and EUR/GBP.
The covered time interval is from January 2011 to January 2016 and includes 109,069,357, 134,737,397,
and 88,704,676 ticks correspondingly. The source of the data is the JForex trading platform developed
by the Swiss bank and marketplace Ducascopy, which provides various types of market data in the
highest resolution6.

Bitcoin price changes observed at the Kraken crypto-exchange were downloaded from the
Bitcoincharts online platform supplying financial and technical data related to the Bitcoin network7.
The studied time interval is from January 2014 to April 2018 and includes 4,778,429 ticks.

The stocks market is represented in this work by the index that currently comprises 505 common
stocks listed by 500 large-cap companies on the US stock market: S&P 500 (with the ticker SPX500).
The high-frequency data has been downloaded from the JForex platform too. The selected dataset
spans from January 2012 to January 2017. The total number of ticks is 38,931,943.

There is a substantial difference in the number of ticks in time series used in the
work. The difference reflects the distinct activity in the selected traditional and novel markets.
That discrepancy does not undermine the further results since our goal is to apply the novel volatility
measurement techniques, which is agnostic to the number of ticks per period of time (see Section 3).
Moreover, the discrete price impact on the instantaneous volatility will be described in Section 7.3.
The same is correct for the slight time-span shifts. The compatibility of the results is not affected: the
designed experiments aim to depict the statistical properties of the volatility seasonality and not to
compare price behaviour at any particular historical moment of time.

6 https://www.dukascopy.com/swiss/english/forex/jforex/.
7 http://api.bitcoincharts.com/v1/csv/.
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The fully functional code used in the project can be downloaded from the author’s
GitHub repository8.

Inner Price

Any collection of historical prices typically assumes two values: the best bid (buy) and the best
ask (sell). These prices are collected from the complete order books specific for the given exchange.
The order books contain all clients orders submitted in the market at the given moment. The non-zero
price difference between the best offers on the sell and buy sides, called spread, indicates the level of a
market’s liquidity (Bessembinder 1994; Dyhrberg et al. 2018; Menkhoff et al. 2012). It also has a direct
connection to realised volatility (Bollerslev and Melvin 1994), and is an indicator of the transaction cost
(Hartmann 1999). Another role of the spread is to show the extent of uncertainty the market has on the
fair price of the traded asset. The size of the spread constantly changes over time, together with the
level of uncertainty. This fact does not allow us to employ only bid or ask prices to study properties of
the whole market at the micro level since some part of the information is in the risk to be lost while
analysing intraday data. The average of these two values (mid-price) is also not the best alternative
since it does not keep the knowledge on the size of the current spread. Therefore, an alternative
measure should be chosen to apply the directional-change algorithm to the real data analysis.

The trend-dependent concept of inner price was selected to resolve the spread issue. Inner price,
specific for the given moment of time, is defined as the bid or the ask price depending on the direction
of the current trend. In other words, it is the price where the spread is deduced. The following example
demonstrates details of the concept. According to the directional-change algorithm, one should wait
for the price increase by δ percents from the local price minimum to register a new directional change
if the current trend is downward. In this case, the value of the inner price coincides with the best
price on the offer side of the order book, that is, the ask price. A new intrinsic event will tick only
when the distance between the latest bid price and the inner price reaches the size of the chosen
directional-change threshold δ. Alternatively, the inner price takes the value of the best bid price,
and the distance is measured between the newest ask and the extreme if the current mode is upward.

6. Methods

Theoretical researchers mostly rely on the Brownian motion as the proxy for price returns of
real financial markets (one of the most famous examples is the work of Black and Scholes (1973)).
The analogy between historical price moves and changing coordinates of an ensemble of molecules in
thermodynamics is the motive behind this common approach. Osborne (1959) shows in the classical
work that the steady-state distribution of log-returns in the stock market is the probability distribution
for a particle in Brownian motion. It is important to emphasise that at the telegraph-driven time of
Osborne’s publication (1959) the structure and the dynamic of the market was very different from the
ones typical for our modern digital world. The present-day trading has almost completely moved
to the digital online space instead of the physical trading floors where all deals happened more than
a half a century ago (see Harris (2003) for the historical endeavour on the evolution of trading and
exchanges). In this space, a signal can easily propagate through international borders with the speed of
light. It stipulated the majority of trades to happen in a fully automated way. The significantly bigger
diversity of the market participants and the ability of the high-frequency trading made the financial
stylised facts more important today than ever. The stylised facts describe the deviations of real price
returns from the theoretical Brownian motion (see Cont (2001a) for the set of stylised empirical facts).
Nevertheless, in our work, we will operate with Brownian motion as the core for the analytical part of
the research.

8 https://github.com/VladUZH/VlPetrov.
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The choice of Brownian motion, employed in this work, is justified by two reasons.
First, the statistical properties of the number of directional-change intrinsic events, studied in this
work, is agnostic to the flow of physical time. Second, the divergence of empirical results from the
properties of the selected model, if any, helps in understanding the features of the real markets better.

6.1. Waiting Time

We model the set of prices {St : t ≥ 0} as an arithmetic Brownian motion with trend μ and
volatility σ:

dSt = μdt + σdBt. (5)

In terms of the directional-change intrinsic time framework, Tup(δup) denotes the time for an
upward directional change of the size δup > 0 to unfold. In other words, it is the time interval which
passes until the price increases by δup percents from the local minimum mt. Technically:

Tup(δup) = inf{t > 0 :
St − mt

mt
≥ δup}, (6)

where
mt := inf

ε∈[0,t ]
Sε. (7)

Similarly, Tdown(δdown) is the time of a downward directional change of the size δdown > 0:

Tdown(δdown) = inf{t > 0 :
Mt − St

Mt
≥ δdown}, (8)

where
Mt := sup

ε∈[0,t ]
Sε. (9)

Both of these equations are also known in the literature as waiting times of drawups and
drawdowns (see Section 1). It is shown in Landriault et al. (2015) that expected times of a drawup δup

and a drawdown δdown depend on the volatility and the trend of the drifted Brownian motion. It can
be mathematically expressed as

E[Tup(δup)] =
e−

2μ

σ2 δup + 2μ

σ2 δup − 1
2μ2

σ2

, (10)

and

E[Tdown(δdown)] =
e

2μ

σ2 δdown − 2μ

σ2 δdown − 1
2μ2

σ2

. (11)

Using the Taylor expansion e±
2μ

σ2 δ
= 1 ± 2μ

σ2 δ +
(

2μ

σ2 δ)2

2! +O(μ3) and letting μ → 0, one can recover
that in the case with no trend the equation simplifies to

E[Tup(δ)] = E[Tdown(δ)] =
δ2

σ2 . (12)

These equations establish a scaling law dependence between waiting times of a directional
change, volatility, and the selected size of the directional-change threshold. Indeed, in the analysis
of Glattfelder et al. (2011) it was empirically found that in the FX market the average waiting
time is proportional to the second power of the directional-change threshold δ used to identify
alternating trends:

〈T(δ)〉 ∼ δ2. (13)
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The closeness of Equations (12) and (13) confirms the assumption that the evolution of
high-frequency prices expressed in terms of the directional-change intrinsic time has similar properties
to the random walk.

6.2. Number of Directional Changes

Let N(δdown; σ, μ, [0, T]) denote the number of drawdowns of the size δdown observed within
the time interval [0, T] in Brownian motion process with parameters μ and σ. Since the sequence
Tdown(δdown)1, Tdown(δdown)2,. . . is the sequence of non-negative, independent, and identically
distributed random variables, the sequence {ψn; n ∈ N} where ψn = Tdown(δdown)1 + . . . +
Tdown(δdown)n + . . . is the renewal point process. Thus, N(δdown; σ, μ, [0, T]) can be considered as the
renewal counting process and its values can be found applying the Theorem 6.1.1 of Rolski et al. (2009)
(Landriault et al. 2015) to the waiting time Equation (11):

lim
T→∞

N(δdown; σ, μ, [0, T]) = E[Tdown(δdown)]
−1T =

T 2μ2

σ2

e
2μ

σ2 δdown − 2μ

σ2 δdown − 1
. (14)

Correspondingly, the expected number of drawups N(δup; σ, μ, [0, T]) takes the form

lim
T→∞

N(δup; σ, μ, [0, T]) = E[Tup(δup)]
−1T =

T 2μ2

σ2

e−
2μ

σ2 δup + 2μ

σ2 δup − 1
. (15)

Equations (14) and (15), combined together, give the estimate of the number of directional changes
consequently following each other:

E[N(δup, δdown; μ, σ, [0, T])] =
2T 2μ2

σ2

e−
2μ

σ2 δup + e
2μ

σ2 δdown + 2μ

σ2 (δup − δdown)− 2
. (16)

The expression is simplified in the trend-less case (μ → 0) to the following form:

E[N(δup, δdown; σ, [0, T])] =
2Tσ2

δ2
up + δ2

down
. (17)

The theoretical dependence of the number of directional changes and the properties of underlying
process resemble the empirical observations of Guillaume et al. (1997). The authors mention there that
N(δ) ∼ δ−2 (for δ = δup = δdown).

Monte Carlo statistical tests were performed to numerically verify the accuracy of
Equations (10), (11) and (16). Results of the tests are provided in Table 1. We selected only positive
trend values μ since the equations are symmetrical with respect to the direction of the trend. Values in
Table 1 exhibit high similarity of both empirical and theoretical results.

The meaning behind the provided equations is that the absolute size and the ratio of
directional-change thresholds used to dissect a price curve into a sequence of upward and downward
trends affect the frequency and the total number of events registered within a given time interval.
It follows from Equations (14) and (15) that the combination γ = μ

σ2 is the crucial factor affecting the
expected number of intrinsic events9. We check the number of directional changes registered by a
couple of thresholds in three extreme scenarios: μ

σ2 = 0 (Figure 2a), μ

σ2  0 (Figure 2b), and μ

σ2 � 0

9 The expression γ is known in the insurance industry as “adjustment coefficient” or “the Lundberg exponent”
(Asmussen and Albrecher 2010). It finds its application in the ruin theory dating back to 1909 (Lundberg 1909). It is
also described as the optimal information theoretical betting size called Kelly Criterion (Kelly 2011).
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(Figure 2c). A diverse set of dissection procedures was applied to the randomly generated time series
defined by the parameters γ. All results were composed as a heatmap where each point corresponds
to the number of directional changes observed by a pair of thresholds {δup, δdown} (Y- and X-axis of the
plots) in a time series of the given length (Figure 2).

Table 1. Waiting times and number of directional changes in a Monte Carlo simulation. μ and σ

are parameters of the Brownian motion used for the test. There are 109 ticks in the simulated time
series. NMC

DC , 〈TMC
up 〉, and 〈TMC

down〉 are the numbers of directional changes and the average waiting times
registered in the Monte Carlo simulation. E[NDC], E[Tup], and E[Tdown] are theoretical values dictated
by Equations (16), (10) and (11) correspondingly. Values σ−

TMC
up

and σ−
TMC

down
are standard deviations of

empirical and theoretical waiting times.

μ, % σ, % N MC
DC /E[NDC] 〈T MC

up 〉/E[Tup] σ−
T MC

up
〈T MC

down〉/E[Tdown] σ−
T MC

down

1
10 1.028 0.968 2.54 × 10−5 1.019 2.53 × 10−6

20 1.009 0.989 2.78 × 10−6 1.012 3.32 × 10−7

30 1.001 0.995 8.79 × 10−7 1.033 9.58 × 10−8

6
10 1.021 0.971 2.29 × 10−5 1.043 2.59 × 10−6

20 1.005 0.993 2.94 × 10−6 1.019 3.29 × 10−7

30 0.987 1.011 8.84 × 10−7 1.034 9.98 × 10−8

11
10 1.029 0.968 2.20 × 10−5 1.011 2.78 × 10−6

20 0.994 1.006 2.72 × 10−6 0.997 3.30 × 10−7

30 0.986 1.014 8.82 × 10−7 1.017 1.02 × 10−7
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Figure 2. Heatmaps of the number of directional changes observed by the pair of directional-change
thresholds {δup, δdown} (Y- and X-axis of the plots) in a timeseries of the given length (Geometrical
Brownian Motion (GBM), 109 steps in each simulation). Selected trend and volatility values: (a) μ = 0,
σ = 0.15; (b) μ = −3, σ = 0.15; (c) μ = 3, σ = 0.15. The values on the plots coincide with the ones
computed using Equation (17).

Panel 2a in Figure 2 corresponds to the set of experiments where the Brownian Motion trend is
equal to zero. It follows from Equation (17) that in such conditions the value E[N(δup, δdown; σ, [0, T])]
should be constant along circular contours δ2

up + δ2
down = δ2 for δ > 0. The colour gradient in the

provided picture confirms the noted dependence. It is shown in panels 2b and 2c of Figure 2 that
the circular contours transform into ellipses when the “adjustment coefficient” γ is significantly
smaller or significantly bigger than zero. This phenomenon can be interpreted in the following way:
if E[N(δup = δdown; γ = 0, [0, T])] is the expected number of directional changes registered in the
drift-less time series of given length and characterised by the fixed σ then for any γ greater or smaller
than zero there is always such a couple of non equal thresholds {δup, δdown|δup �= δdown)} that

E[N(δup, δdown | δup �= δdown; γ �= 0, [0, T])] = E[N(δup, δdown | δup = δdown; γ = 0, [0, T])]. (18)
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In other words, any process characterised by a certain degree of persistent trend could be treated
as the one without the trend by tuning the size and the ratio of selected directional-change thresholds.
The property is essential for risk management techniques constructed on top of directional-change
intrinsic time approach. An example of real application of this fact is provided in Golub et al. (2017).
The authors employed asymmetric thresholds to design an optimal inventory control function sensitive
to the significant price trend changes.

6.3. Instantaneous Volatility

The volatility size of the financial time series is an inevitable component of any financial risk
analysis. Therefore, a clear understanding of the way how volatility changes over time is particularly
important for risk management and inventory control problems. Classical volatility estimation
methods, also called “natural” or “traditional” estimators (Cho and Frees 1988)10, primarily rely
on physical time as the persistent measure of the intervals when the price returns should be computed.
The fact that the variance of returns on assets tends to change over time creates obstacles on the
way of employing the “traditional” volatility estimators. The changing variance, also known as the
stochastic volatility, became a cornerstone for multiple research works (for example, Aı and Kimmel
(2007); Andersen and Lund (1997); Barndorff-Nielsen and Shephard (2002); Campbell et al. (2018) and
many others).

Values, computed by “natural” estimators, dominantly correspond to the integrated volatility
of the studied process. The integrated volatility describes the averaged price activity over non-zero
time intervals. Alternative estimators, designed to reveal the size of the volatility as the time interval
approaches zero (instantaneous volatility), are mostly based on Fourier analysis11 and require extensive
computation efforts (see Chapter 3 in Mancino et al. (2017)). Therefore, new methods, capable of
describing the price evolution independently of the flow of the price in physical time, should be
employed to overcome the existing volatility estimation difficulties.

The directional-change intrinsic time concept is by design agnostic to the speed of the price
change. Risk-management tools, based on top of the concept, automatically adapt their performance
to treat the changing price activity better. This property of directional-change intrinsic time, together
with analytical Equations (16) and (17), bring the idea of a new volatility estimator devoid of the
shortcomings of the equidistant time in finance. It follows from Equation (17) that the volatility can be
estimated for a trendless time series by counting the number of directional changes within the time
interval [0, T]:

σDC = δ

√
N(δ)

T
. (19)

We use the superscript DC to distinguish the volatility computed through the directional-change
intrinsic time from volatility computed by the traditional estimators. The latter we will mark by σtrad.

Equation (19) solely computes the volatility part σ of the Brownian proces. That contrasts
the “natural” volatility estimation techniques where the entire stochastic σdWt part is typically
measured. That stochastic factor includes the noise component dWt. Therefore, the directional
change approach employed for volatility measurements can be classified as the true estimator of
the instantaneous volatility. Further, we apply Equation (19) to study changing dynamic of financial
time series throughout one week. We reveal volatility seasonality patterns of three FX exchange rates,
crypto market BTC/USD, and the stock index S&P500.

10 The work Cho and Frees (1988) is particularly interesting due to the analysis the authors did to compare volatilities computed
by “natural” and “temporal” estimators. The latter employs time intervals measured between consequent and alternating
price moves of fixed relative size and thus is very close to the approach presented in the current paper.

11 The type of mathematical analysis applied to identify patterns or cycles in a normalised time series data.
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7. Results

Empirical properties of three distinct markets will be discussed in this section. We omit the
EUR/JPY, and EUR/GBP exchange rates in some of our experiments due to the fact that their properties
are greatly similar to the properties of the most traded FX rate EUR/USD. In this case, EUR/USD is
selected as the representative exchange rate of the entire FX domain.

7.1. Number of Directional Changes

Equations (16) and (17) connect the expected number of directional changes with parameters
of the underlying Brownian motion process. The evolution of real historical returns have properties
similar to the Brownian motion. The evolution sometimes compared to the sequence of the free particle
moves (see Section 6). Thus, similar counters shown in Figure 2 should be found in heatmaps depicting
the number of directional changes empirically registered in real data conditional that the assumption
of the normal distribution of real returns is true. EUR/USD, BTC/USD, and SPX500 exchange rates
were taken to verify the statement by replicating the same experiment done with the Brownian
motion before (Figure 3). A collection of 40 directional-change thresholds ranging from 0.1% to
4.1% defines the scale of the heatmap grid. Colour schemes, used for the plots, have different scales
due to the significantly bigger number of directional changes per a period of time in the BTC/USD
case. Yellow solid lines indicate the examples of the areas where the number of direction changes
is constant. The selected for the examples deltas are δup = δdown = {1.15%, 2.8%} (EUR/USD,
Figure 3a), δup = δdown = {1.4%, 3.0%} (BTC/USD, Figure 3b), and δup = δdown = {1.1%, 2.9%}
(SPX500, Figure 3c).

(a) (b) (c)
Figure 3. Heat map of the number of directional changes calculated in (a) EUR/USD, (b) BTC/USD,
and (c) SPX500 time series. Each point on the grid represents the number of directional changes
registered by a unique pair of thresholds {δup, δdown}. Heatmaps have different scales. Yellow solid
lines, specific for each heatmap, label the examples of the areas along which the number of intrinsic
events is constant. The dashed lines represent the theoretical areas of the equal number of intrinsic
events observed in case of the trend-less time series. White dashed lines are parts of circles centred
around the left bottom corner of each picture. The lines go through the intersection of the solid yellow
lines and the diagonal of each picture.

Curves in Figure 3a have an almost circular shape and are only slightly shifted towards the bigger
δdown values. This shift is present due to the downward trend experienced by the exchange rate from
2011 to 2016 (from $1.4 to $1.1 per EUR). BTC/USD exchange rate was much more unstable considering
that the EUR/USD time series exhibited relative stability with no noticeable regime switches apart
from the slow constant price depreciation. The price of Bitcoin grew with accelerating pace by more
than 20 times in the second half of 2017 and then lost nearly 70% of its value at the beginning of 201812.

12 It had a minimum at $230 per Bitcoin, temporary maximum at about $20,000, and then a drop to $6000.
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These significant trend changes are pronounced in Figure 3b by yellow contours notably deviated from
the circular shape. The price roller-coaster caused considerable disparity of the number of registered
directional changes and the ones predicted by Equation (17) (relevant to the trend-less case). As result,
the solid price curves can be decomposed into two parts of independent ellipses similar to the ones
observed for Brownian motion with non-zero “adjustment coefficient” γ (Figure 2b,c).

7.2. Realised versus Instantaneous Volatility

In the second experiment, we compared the annualised volatility computed by the traditional
method (Equation (20)) and the volatility based on the observed number of directional changes
(Equation (19)).

Returns Rt are defined as logarithms of the price change between St and St−1 measured over
equal periods of time. The number of returns n depends on the selected time interval Δt and equal to
n = T/Δt where T is the length of the entire tick-by-tick sample. Thus, the length of a sample can be
computed ex-ante.

The whole set of returns was used to find the standard deviation of the time series. The measure
is also known as realised volatility σtrad:

Rt = ln (St/St−1), Ravg =
∑n

t=1 Rt

n
, σtrad =

√
∑n

t=1(Rt − Ravg)2

n − 1
. (20)

The directional-change method does not define the number of observations ex-ante in contrast to
the traditional approach. According to Equation (19), the size of the directional-change threshold δ

determines only the expected number of measures (or timestamps) in the data sample of the given
length. It is also worth saying that the price moves of the highest frequency, tick-by-tick, do not appear
over any predefined period. They occur together with the flow of new orders in the market. The flow,
initiated by thousands of independent traders’ demands, not synchronised with any periodical process.
Thus, the time distance between two consecutive ticks can be represented by a fraction of a second as
well as by several minutes. The equally spaced timestamps used to calculate returns for the “natural”
estimators have a high chance to happen not at the moment of a new price change. The additional
decision should be made on whether the historical price located before the timestamp or right after it
should be selected to compute the corresponding return. The directional-change intrinsic time, in turn,
directly reacts to the changes of the price levels. This flexibility of the intrinsic time makes it possible
to use the data of the highest frequency: tick-by-tick prices.

Specifications of tools used to estimate volatility can affect the experiments results
(Müller et al. 1997). Four increasing time intervals Δtk, where k = {1, 2, 3, 4}, were selected to define
the distance between each pair of consecutive prices St and St−1 used for the “natural estimator”:
Δt1 = 1 min, Δt2 = 10 min, Δt3 = 1 h, and Δt4 = 1 day. The set of thresholds employed to investigate
the directional-change approach can also be arbitrarily chosen. However, we selected them with the
intent to compare the results of both experiments. For this reason, we used the number of returns in
the data sample corresponding to each time interval Δtk as the target for the number of directional
changes registered in the same data set. That is, the collection of four thresholds δk was selected in
such a way that in the given time series the number of directional changes is approximately equal to
the number of time intervals nk of the length Δtk. We utilised one of the scaling properties described in
Glattfelder et al. (2011) to find the precise thresholds size. The scaling property has the name “time
of total-move” scaling law (law 10 in the article). The total-move is composed as the sum of the
directional-change (DC) and overshoot (OS) parts. The law connects the size of the threshold δ with
the waiting time TTM(δ) between two consecutive intrinsic events:

TTM(δ) =

(
δ

Ct,TM

)Et,TM

, (21)
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where Ct,TM and Et,TM are the scaling coefficients. Equation (21) can be used to express the threshold δ

in terms of the waiting time TTM:
δ(TTM) = T1/Et,TM

TM Ct,TM. (22)

The currency average scaling parameters Et,TM and Ct,TM computed in Glattfelder et al. (2011)
are 2.02 and 1.65 × 10−3, correspondingly. Putting these coefficients into Equation (21), one can
calculate that thresholds reciprocal to the selected time intervals Δt1, . . . , Δt4 are: δ(Δt1) = 0.013%,
δ(Δt2) = 0.039%, δ(Δt3) = 0.095%, and δ(Δt4) = 0.458%. It is worth mentioning that applied
scaling parameters are relevant only to the FX market which was the object of the research in
Glattfelder et al. (2011). To the extent of our knowledge, parameters specific to Bitcoin prices, as well
as to the S&P500 index, were not mentioned in the scientific literature before. Therefore, as the first
step, we obtained the parameters by studying the “time of total-move” scaling law of historical Bitcoin,
and SPX500 returns. The log-log plot of waiting times TTM(δ) versus the directional-change threshold
size δ is provided in Figure 4. The red line marks BTC/USD scaling law and is shown together with
black, yellow, and green lines computed for EUR/USD, SPX500, and Geometrical Brownian Motion
(GBM) correspondingly. Settings of the latter are chosen to mimic returns typical for the FX market.
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Figure 4. Time of total-move scaling laws computed for BTC/USD, EUR/USD, SPX500,
and Geometrical Brownian Motion (GBM). GBM’s parameters are S0 = 1.3367, μ = 0, σ = 20%,
T = 1 year, and 10 million ticks in total. Scaling parameters C and E correspond to the coefficients of
Equation (21).

Total-move scaling law parameters, obtained in the experiment, exhibit distinct resemblance of
the stylised properties of the traditional FX and SPX500, as well as the emerging Bitcoin markets.
Scaling factors Et,TM of EUR/USD, BTC/USD, and SPX500 are 1.827, 1.818, and 1.604, correspondingly.
The coefficient specific for the BTC/USD pair is approximately 0.5% smaller than the one of EUR/USD.
The coefficient of the SPX500 index is, in turn, is substantially smaller: by 9.9%. The same scaling factor
of the GBM is the biggest among others: 1.920 (≈ 5.6% difference with EUR/USD). The parameter is
noticeably distant from the parameters of the analysed exchange rates. We account the divergence
to the non-normal distribution of real returns at ultra-short timescales (fat tails). The fat tails effect
is pronounced in Figure 4 as the upward bend of the curves towards the beginning of the X-axis.
The bends are read as the longer time needed for a total-move to unwrap than it is predicted by
the linear part of the plot in the range of higher thresholds values. Linear regressions, built in
the range of straight parts of the curves, are characterised by the scaling coefficients Et,TM, which
are close to the ones observed in GBM. The observed evidence is an additional confirmation of
the “Aggregational Gaussianity” stylised fact13 typical for high-frequency markets (Cont 2001a).
Scaling parameters Ct,TM of EUR/USD, BTC/USD, and SPX500 are 9.07 × 10−4, 9.94 × 10−3,

13 The evidence that the distribution of returns approaches the normal one measured over longer timescales.
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and 4.60 × 10−4, correspondingly. These values are significantly different due to the unlike scale of
the corresponding volatility. This volatility dependent scaling parameter is not critical for the current
analysis and will be discussed in the future research works.

The goal of the experiment is to compare the volatility computed using the ”traditional” approach
to the volatility based on the directional-change intrinsic time concept. Scaling law parameters
Et,TM and Ct,TM of historical BTC/USD returns were used to find the size of the directional-change
thresholds, which would result in the average number of registered intrinsic events in the entire
data-sample equal to the number of evenly spaced periods nk. Expressing the parameter δk from
the Equation (21) we find that for BTC/USD the thresholds are: δ(Δt1) = 0.09%, δ(Δt2) = 0.33%,
δ(Δt3) = 0.89%, δ(Δt4) = 5.13%. The values are about ten times bigger than the ones related to the FX
market (mentioned above) because of the proportionally larger realised volatility.

The same procedure, described in the previous paragraph, was performed in order to find
the corresponding thresholds for the SPX500 time series. The obtained values: δ(Δt1) = 0.006%,
δ(Δt2) = 0.025%, δ(Δt3) = 0.076%, δ(Δt4) = 0.55%.

The set of selected time intervals Δtk={1,...,4} and the complementary thresholds δΔt1 , . . . , δΔt4

specific for each considered market were used to calculate realised and instantaneous volatility by
traditional and the novel approach. We present in Table 2: average value of the realised volatility
〈σtrad〉 computed as the sum of all four measurements (k = {1, 2, 3, 4}) divided by the number of
experiments; its standard deviation σ−

trad; average value of the instantaneous volatility computed
by the novel approach 〈σDC〉; the corresponding standard deviation σ−

DC; ratios of both measures
〈σtrad〉/〈σDC〉 and σ−

trad/σ−
DC. The last column of the table demonstrates the difference in the stability

of results obtained by two measures.
The size difference of the realised and the instantaneous volatility is significant and is pronounced

across all tested exchange rates (column 〈σtrad〉/〈σDC〉). The realised volatility computed in the
“natural” way persistently exceeds the instantaneous volatility discovered via the novel approach.
Only the two types of Bitcoin’s volatility appear to be 5% different whenever the divergence grows up
to 99% in the case of SPX500. The striking difference is partially explained by the various discreteness of
the employed data (which will be elaborated in the next section), and partially by the phenomenological
properties of the selected markets (more on it in Section 7.4). This phenomenon is captivating especially
taking into account that Bitcoin is particularly famous due to its oversized price activity. Its activity is
clearly pronounced as the large standard deviation of the instantaneous volatility of BTC/USD pair
(column σ−

DC). Three FX exchange rates, having noticeably smaller realised volatility, are characterised
by the wider range of the standard deviation values (column σ−

trad). The ratio σ−
trad/σ−

DC reaches
the 0.02 level computed for EUR/USD. In other words, the standard deviation of the EUR/USD
instantaneous volatility is 50 times bigger than the realised volatility value.

Table 2. Volatility of the considered time series computed using the “traditional” (Equation (20))
and the directional-change (Equation (19)) approaches. Provided values 〈σtrad〉 and 〈σDC〉 are
the average of four measurements performed with specific parameters: in the “traditional” case
time intervals between observations Sn and Sn−1 are Δt1 = 1 min, Δt2 = 10 min, Δt3 = 1 h,
and Δt4 = 1 day. In the case of the directional-change intrinsic time approach, the thresholds δ

are δ(Δt1) = 0.013%, δ(Δt2) = 0.039%, δ(Δt3) = 0.095%, δ(Δt4) = 0.458% (FX prices), δ(Δt1) = 0.09%,
δ(Δt2) = 0.33%, δ(Δt3) = 0.89%, δ(Δt4) = 5.13% (BTC prices), and δ(Δt1) = 0.006%, δ(Δt2) = 0.025%,
δ(Δt3) = 0.075%, δ(Δt4) = 0.545% (SPX500).

Name 〈σtrad〉, % σ−
trad 〈σDC〉, % σ−

DC 〈σtrad〉/〈σDC〉 σ−
trad/σ−

DC

EUR/USD 9.72 0.03 7.53 1.38 1.29 0.02
EUR/JPY 11.93 0.12 8.55 2.07 1.40 0.06
EUR/GBP 8.04 0.23 5.81 1.43 1.38 0.16
BTC/USD 84.76 8.67 80.87 22.21 1.05 0.39
SPX500 13.19 0.67 6.63 3.24 1.99 0.21
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7.3. Discrete Price Effect

The instantaneous volatility standard deviation computed for four different directional-change
thresholds has an extremely high value (column σ−

DC in Table 2). This indicates that in contrast to the
realised volatility capable of the scaling, together with the time interval Δt, the instantaneous one does
not scale together with the threshold size δ.

The price discontinuity typical for all real markets is the cause of the high standard deviation of
the instantaneous volatility computed by the directional-change approach. Conventional exchange
architecture restricts the price quotations to be a multiple of some constant, for example, 0.001 of a USD.
This discreteness caused substantial debates in the scientific literature with regards to the accuracy
of the ”natural” estimators and on the extent to which they overestimate the actual volatility of the
studied process (French and Roll 1986; Gottlieb and Kalay 1985). Equation (19) connects the number
of directional changes observed per period of time and the instantaneous volatility and is built on
the assumption of the continuous Brownian process. It has no adjustment factors to the discreteness
of the analysed data. In reality, the directional-change intrinsic time does not precisely tick at the
level where the size of the return is equal to the size of the threshold δ. Instead, in most cases, a new
directional-change event becomes registered when the price has already jumped over the expected
level. This discreteness effect becomes more pronounced when the size of the elementary price move
(tick) is relatively big. That is, two factors contribute to the size of the instantaneous volatility of the
discrete data-sample computed by the novel approach: the scale of the selected threshold δ and the
tick size in the given sample (discreteness). Further, we provide results of a set of experiments where
the impact of the price discreteness and the threshold size δ on the computed instantaneous volatility
is observed.

Three time series were generated by GBM with the various density of ticks per period of time.
Variation of the number of price changes in the simulation is equivalent to changing the simulated
tick size having fixed a one-year time interval and volatility of the generated process fixed to be
15%. Forty gradually increasing directional-change thresholds were applied to all three GBMs.
The thresholds range from 0.01% to 0.29%. We provide the plot of the computed instantaneous volatility
of simulated time series in Figure 5. Two particular properties can be noticed. First, one brings the
generated time series closer to the continuous process by making the size of a tick smaller (increasing
the number of price changes per period in the sample). In this case, the values of the estimated
instantaneous volatility σDC become closer to the volatility σ embedded in the model. Second, bigger
thresholds are less sensitive to the discreetness of the given set of prices. The slippage effect of the
price jump over the expected intrinsic time level becomes less pronounced, and the obtained result
also approaches the value σ when the tick size represents a small fraction of the directional-change
thresholds. A more comprehensive analysis should be performed in further research works to bridge
the gap between the realised and instantaneous volatilities.
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Figure 5. Instantaneous volatility of three time series generated by GBM with various tick frequencies
and fixed volatility (15%). The volatility is computed by the directional-change approach (Equation (19)).
Sizes of the directional change thresholds, used to calculate the volatility values, are put on the X-axis.
Red dashed line marks the 15% level.

7.4. Volatility Seasonality

Dacorogna et al. (1993) presented a weekly seasonality pattern of price activity in the FX market.
The authors’ analysis is based on the assumption that worldwide trading happens at strictly separated
time zones with several dominated cores and operates within specific trading hours. Such a physical
distribution of traders is embodied in geographical components of the market activity and eventually
becomes pronounced as the weekly volatility seasonality. We do not build a similar assumption in our
work. Instead, the collection of observed historical returns is treated as the only source of information
available for the analysis. Further, we discover and describe the seasonality pattern of instantaneous
volatility typical for FX exchange rates, Bitcoin prices, and S&P500 index.

We divide a whole week into a set of 10-min time intervals (bins). There are 1008 equally spaced
points located at the fixed distance from the beginning of each week. This is a significantly larger
number than the one used in the work Dacorogna et al. (1993) (168 points spaced by one hour intervals).
We can afford this decreased granularity thanks to the more detailed historical time series employed for
the experiment: instead of 12 million ticks for 26 exchange rates, we have on average 100 million ticks
for each of the FX pairs. For each bin, the average number of directional changes will be computed.

The following series of steps allowed to construct the seasonality pattern. First, we run all
historical tick-by-tick prices through the directional-change algorithm with the specified threshold δ.
As soon as a new intrinsic event becomes registered, we check within which out of 1008 bins it
happened. We add +1 to the number of directional changes corresponding to that time interval.
When there are no prices left in the historical time series, we find the average number of intrinsic
events per each bin. Equation (19) is then applied to compute the corresponding instantaneous
volatility. Considering the five-year-long historical data, the obtained average is based on nearly
250 observations. Calculated instantaneous volatility values should be later normalised by the number
of years and the length of a bin to get the annualised volatility specific for each bin of the week.

We select the threshold δ = 0.01% for the first experiment with FX exchange rates. The average
number of directional changes in a week registered by a threshold of this size is approximately equal
to the number of 10-min long bins in it (1008). The reconstructed instantaneous volatility seasonality
pattern of the FX pairs is shown in Figure 6. The pattern is notably stable across all tested exchange
rates and is similar to the one demonstrated in Dacorogna et al. (1993).
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Figure 6. Instantaneous volatility seasonality of three Forex (FX) exchange rates computed using
the directional-change approach (Equation (19)). Applied directional-change threshold δ = 0.01%.
The whole week is divided by equally spaced time intervals T = 10 min (1008 bins in total).

We provide results of the same experiment where the “traditional” volatility estimator
(Equation (20)) was employed to reveal the seasonality patterns of the FX exchange rates in Figure 7
and of BTC/USD in Figure 8. In contrast to the volatility seasonality pattern computed using the
directional-change approach (Figure 6), the “traditional” pattern is less affected by the frequency of
ticks per period of time specific for each studied time series. The difference between the average
realised volatility across a week of the most active pair (EUR/JPY) and the least active (EUR/GBP)14

is equal to 46%. The same difference of the instantaneous seasonality (Figure 6) is 10% bigger and
equal to 56%. The “traditional” estimator of the realised volatility seasonality demonstrates more
rapid changes in the consecutive bins values. Local maximums at the beginning and the end of a day
are considerably abrupt. The reason for this is that the directional-change intrinsic time captures the
part of the volatility of the underlying process free of the noise component by ignoring the overshoot
part of each trend move. The exact form and scale of the noise component and its connection to the
overshoot section of the directional-change intrinsic time is a topic for future research work.

Assets traded in the crypto market have several specific properties which make them noticeably
different compared to the traditional financial instruments such as FX exchange rates. Among the
characteristics are: open trading within weekends and holidays; the absence of isolated physical
trading centres where working hours are fixed; still low acceptance of the emerging market among
professional traders. The outlined differences are endorsed by the history of technologies employed
in the traditional FX and the emerging crypto worlds. The first one has originated in times when
the trading happened in person and the settlement assumed the actual physical assets delivery.
The trading organically evolved over time and became digital thanks to the internet expansion.
Nevertheless, old properties, such as the governmental and the middle-man controls, have never been
removed from the list of the accompanying FX markets design features. Bitcoin, in turn, has been
designed as the alternative of the traditional financial system. It benefits from the blockchain technology
by endorsing the principles of equality, openness, and accountability. We studied the historical prices
of Bitcoin to investigate whether these specialities have any considerable impact on the BTC/USD
instantaneous volatility seasonality pattern.

14 According to the Table 2.
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Figure 7. Realised volatility seasonality patterns of three FX exchange rates computed using the
traditional approach (Equation (20)). Time intervals of 1-min have been used to calculate returns.
The size of each bin is 10 min, 1008 bins in total.
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Figure 8. Realised volatility seasonality patterns of BTC/USD and EUR/USD exchange rates computed
using the traditional approach (Equation (20)). Time intervals of 1-min have been used to calculate
returns. The size of each bin is 10 min, there are 1008 bins in total.

We apply the same threshold size δ = 0.01% used in the FX experiment to compare the seasonality
patterns of Bitcoin and EUR. The obtained seasonality pattern put on top of the EUR/USD seasonality
is presented in Figure 9. As can be seen from Figure 9, the periodical shape of Bitcoin’s curve is
much less pronounced in contrast to EUR/USD. Its standard deviation computed within a week
is 0.5%. It is roughly four times smaller than the standard deviation of the EUR/USD pattern
(equal to 1.9%). Surprisingly, the intra-day maximums and minimums of Bitcoin seasonality do
not precisely coincide with those observed in the traditional market. They are shifted towards the time
intervals where European and American markets contribute the most to the geographical pattern (as
disclosed in Dacorogna et al. (1993)). This observation confirms the one provided in Eross et al. (2017).
That is particularly interesting since Asian markets are known for their substantial contribution to
the cryptocurrency trading volumes. The fact that China has ruled that financial institutions cannot
handle any Bitcoin transactions could be the reason of the observed phenomenon (Ponsford 2015).
Instantaneous volatility over weekends is slightly lower than within the middle part of the week and
is practically equal to Monday’s activity. We attribute the observed facts to the mentioned above
non-traditional characteristic of the cryptocurrency market.
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Figure 9. Instantaneous volatility seasonality of BTC/USD compared to the seasonality pattern of
EUR/USD computed using the directional-change approach (Equation (19)). The dark-red curve
approximates the Bitcoin seasonality pattern using the Savitzky–Golay filter (number of points in the
window is 101, the order of the polynomial is 2). The directional-change threshold δ = 0.01% was used
in both experiments. Each discrete time interval (bin) is T = 10 min. There are 1008 bins in total.

As it was shown before, the instantaneous volatility computed by the novel approach directly
depends on the size of the selected directional-change threshold δ (Figure 5). To examine the
threshold size impact on the seasonality pattern of the real data, we arbitrarily selected the following
set of values: δ = {0.01%, 0.04%, 0.10%}. The same algorithm described above was applied to
reconstruct the volatility seasonality pattern for the FX pair EUR/USD (Figure 10) and SPX500
(Figure 11). The seasonality patterns shift toward higher volatility values when the size of the
threshold is bigger. The observation is in line with the results of the experiments on GBM (Figure 5).
Average values of EUR/USD seasonality curves computed with thresholds δ equal to 0.10% and
0.04% are correspondingly 1.71 and 1.57 times higher than the values computed with δ = 0.01%.
The dependence of the seasonality smoothness on the size of the directional-change threshold become
vividly pronounced: the seasonality curve constructed with the smallest threshold in the set is much
sleeker (less wander) than the rest of the curves. This phenomenon should urge researchers and
practitioners to select directional-change thresholds according to their needs very carefully while
employing the directional-change technique.
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Figure 10. Volatility seasonality of EUR/USD computed using the novel approach (Equation (19)) and
three different thresholds: δ = {0.01%, 0.04%, 0.10%}. The size of a bin is 10 min, there are 1008 bins in
a week.
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Figure 11. Volatility seasonality of SPX500 computed using the novel approach (Equation (19)) and
three different thresholds: δ = {0.01%, 0.04%, 0.10%}. The size of a bin is 10 min, there are 1008 bins in
a week.

According to Table 2, realised volatility of Bitcoin returns computed in the “traditional” way
is about nine and six times bigger than the analogous volatility of the FX and SPX500 exchange
rates (column 〈σtrad〉). Besides, the retrieved sample of historical BTC/USD prices has 1.2 million
ticks per year, which is 16.7 times smaller than the number of ticks per year in the EUR/USD case
(about 20 million). As a result, the choice of the directional-change threshold δ has a much more
significant effect on the average BTC/USD instantaneous volatility. We demonstrate results of four
experiments where different threshold sizes were employed to reveal the seasonality patterns in
Figure 12. The same δ = 0.01% was used as the reference for the set of all arbitrary selected thresholds:
δ = {0.01%, 0.03%, 0.10%, 0.20%}. As it can be seen from Figure 12, the increase in the size of δ

causes the corresponding increase in the volatility level around which the seasonality patterns oscillate.
The levels of the seasonality distribution for δ = {0.03%, 0.10%, 0.20%} are 1.5, 4.0, and 11.1 times
bigger than the value corresponding to the smallest threshold δ = 0.01%. The biggest δ = 0.20% lifts
the value up to the level of σannual = 68.5% (which is still smaller than the realised volatility presented
in Table 2 (σannual = 84.76%)).
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Figure 12. Instantaneous volatility seasonality of BTC/USD exchange rate computed using the
directional-change approach (Equation (19)) and four different thresholds. Applied thresholds, from
top to bottom: δ = {0.20%, 0.10%, 0.03%, 0.01%}. The dark solid curves approximate the Bitcoin
seasonality patterns using the Savitzky–Golay filter (number of points in the window is 101, order of
the polynomial is 2). Bin size T = 10 min was chosen in all cases (1008 bins in a week). Dashed lines
and the numbers over them represent the average level of each seasonality pattern across a week.
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More information on the daily instantaneous and realised volatility seasonality ratio is provided
in Figures A1–A4 and Table A1 in Appendix A.

7.5. Volatility Autocorrelation and Theta Time

The shape of the persistent instantaneous volatility seasonality patterns computed for the FX and
SPX500 exchange rates changes with clear daily periodicity. This observation suggests that there should
be a strong autocorrelation of the instantaneous volatility over time. The connection of the number
of directional changes and the volatility value (Equation (19)) translates into the autocorrelation of
the number of directional changes. We examined the autocorrelation function (ACF) of the number
of directional changes observed within each bin of a week to check the assumption. The results
of the experiment made for the FX exchange rates are provided in Figure 13. The same size of the
directional-change threshold used to reveal the seasonality distribution δ = 0.01% was employed.
A remarkably stable pattern was found where daily and weekly seasonality is easily recognisable.
The ACF function of FX exchange rates discovered in our work is highly similar to the results provided
by Dacorogna et al. (1993). Nevertheless, there are clear differences between the FX autocorrelation
patterns in our work and in the work of Dacorogna et al. (1993). The ACF of the number of directional
changes computed through time lags defined in physical time does not cross the zero level for a much
more extended period. It is consistently positive with lags even greater than several weeks. The curve
representing the ACF of EUR/JPY has the smallest amplitude (smallest variability). In contrast, curves
of EUR/USD together with EUR/GBP invariably follow the same pattern shifted up in the case
of EUR/USD.
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Figure 13. Autocorrelation function of the number of directional changes per 10-min long bins
computed in physical time. Vertical dashed lines label weekly intervals. Applied threshold δ = 0.01%.

The SPX500 time series ACF has a similar shape to the shape of the FX market ACF. Two distinct
properties can be noticed: the higher ACF amplitude and the faster decay. The exact level of decline of
all exchange rates will be discussed a few paragraphs later.

The BTC/USD exchange rate seasonality pattern, characterised by much less pronounced
instantaneous volatility, has also been tested in order to get the shape of the autocorrelation function.
The results are presented in Figure 13. The amplitude of the ACF curves is the main difference in
the values computed for the traditional FX and the emerging BTC/USD markets: the variability
of the BTC/USD curve is 10 times lower than the variability of the EUR/USD one. We note that
significantly bigger thresholds than the one used in the experiment (δ = 0.01%) have also been tested.
All results confirmed that they reveal less accurate patterns due to the data insufficiently frequent for
the statistical analysis.
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A certain level of decline characterises the ACFs of all exchange rates as it can be seen from
Figure 13. Large seasonal peaks of the autocorrelation functions drawn against of physical time do
not allow to measure the level of decline precisely. A measure capable of converting the stochastic
price evolution process to the stationary one should be applied to estimate the level of the downturn
better. We minimise the seasonality pattern by employing the concept of theta time (Θ-time) proposed
by Dacorogna et al. (1993). Θ-time is designed to eliminate the periodicity pattern by defining a set
of non-equal time intervals within which the measure should be performed. The length of each Θ
interval in physical time depends on the historical activity of the market. The theta time concept states
that the average cumulative price activity (or volatility) between each consecutive couple of Θ steps is
constant. Therefore, the distance between Θ timestamps, measured in physical time, is dictated by the
shape of the volatility seasonality pattern. The periods of high price curve activity are equivalent to
increasing the speed of physical time. The frequency of Θ stamps increases when the volatility rises
too. In contrast, periods of low activity are identical to stretching the flow of the physical time, and the
lower number of Θ intervals appears. As a result, active parts of the seasonality pattern, coinciding
with the middle of the trading day, have the higher density of Θ timestamps per a unite of the physical
time than the standstill sections overnights. Mathematically:

Θ(t) =
∫ t

t0

σ(t′)dt′, (23)

where t0 and t are the beginning and the end of the considered period of physical time and σ(t′) is
the value of the instantaneous volatility corresponding to each moment of the interval. Equation (23)
can be transformed into the sum of elements σΔt′ between the beginning and the end of the observed
interval Δtn in the case of a non-continuous seasonality pattern where the values are discretely defined
in periods Δt (as in our experiment):

Θ(t) =
Δt

∑
Δt0

σΔtn . (24)

It should be noted that the number of bins in a week is always constant in both physical and Θ
times. This is achieved through the assumption that the integral (or the sum) of the weekly activity is
the constant value.

The autocorrelation function of the number of directional changes computed in Θ-time is
shown in Figure 14. Curves are approximated by the logarithmic function y = AACF log x + BACF.
The logarithmic coefficients AACF and BACF are presented on Figure 14 and in Table 3.

Major weekly fluctuations of the volatility seasonality pattern have been successfully eliminated
for all three FX and BTC/USD exchange rates. Nevertheless, Θ-time does not completely remove
the seasonality shape of ACF in the same way it happened in the work Dacorogna et al. (1993):
noticeable peaks are still present in the final part of each business day. Moreover, the SPX500 curve is
characterised by vividly pronounced daily seasonality pattern despite being run through the theta time
algorithm. The phenomenon, observed in the original paper (Dacorogna et al. 1993), was explained
by the non-optimal setup of the chosen model. The assumed same activity for all working days is
indeed not fully correct (see Figure 6). However, we do not use any analytical expression postulating
equal daily activity to describe the seasonality pattern. Instead, components σΔt′ of real empirically
found volatility seasonality patterns depicted in Figures 6 and 9 were utilised to define the timestamps
in Θ-time. Therefore, we eliminate the inefficiency connected to the assumption mentioned above.
Thus, the alternative interpretation for the remained seasonality should be provided.
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Figure 14. Autocorrelation function (ACF) of the number of directional changes per a bin in Θ-time.
Vertical dashed line labels one week interval. There are 1008 bins in a week.

Table 3. Parameters of the logarithmic decay y = AACF log x + BACF used to fit the autocorrelation
function (ACF) of the number of directional changes in Θ-time (Figure 14).

Name AACF BACF

BTC/USD −0.029 0.84
EUR/USD −0.021 0.75
EUR/JPY −0.018 0.65
EUR/GBP −0.015 0.59
SPX500 −0.054 0.69

We attribute the remaining fluctuations to the selected directional-change algorithm, which
dissects the price curve into a collection of alternating trends. We also claim that the choice of the
frequency of bins in a week used for the experiments affects the shape of the autocorrelation function in
theta time. According to the directional-change algorithm (see Section 1), the dissection procedure has
to be initialised only once and then it performs unsupervised. The evolution of the price curve dictates
the sequence of intrinsic events. This fact leads to a certain dilemma: once registered, to which bin of
a week should the intrinsic event be assigned? The following example illustrates the preditacament.
A couple of prices, at which two subsequent directional changes become registered, could belong to
different bins. Let us say these are the intervals Δtn−1 and Δtn. This means that the beginning of the
price move that triggered the latest intrinsic event had started within Δtn−1. But the end of this price
trajectory finishes within the interval Δtn. The crucial point is at what part of the Δt are the beginning
and the end located. In the extreme case, the whole price trajectory before the directional change
could be fully placed inside of the interval Δtn−1. The latest tick that eventually triggered the new
directional-change event can be at the very beginning of Δtn. Should such an event be assigned to
the bin Δtn−1 or to Δtn? The answer to this question is particularly important considering the effect
the threshold size has on the seasonality patterns (Figures 10 and 11). The patterns constructed by
using different thresholds have not only different average value over a week but also characterised by
slightly shifted regions of local maximums and minimums (see, for example, the curves for δ = 0.01%
and δ = 0.10%).

A better way of associating locations of intrinsic events with bins of a week is another question
related to the transition from the physical to intrinsic time and vice versa. This topic should be
discussed in more details in further research works. Until then, the use of smaller thresholds and
bigger time intervals is the strategy capable to impact the localisation problem positively.
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8. Concluding Remarks

The language of traditionally considered drawdowns and drawups has been translated into the
language of the directional-change intrinsic time. This translation made it possible to interpret the
evolution of a price curve as a sequence of alternating trends of the given scale. The observed number
of directional changes per period of time has been connected to the properties of the studied time series
characterised by the instantaneous volatility σDC and the trend μ. The choice of directional-change
thresholds δup and δdown used to dissect the historical price curve is arbitrary but affects the results of
the experiment. Bigger thresholds tend to register higher instantaneous volatility than the smaller ones.
Equations (10), (11) and (16), connecting the observed number of directional changes to the properties
of the studied process, have been validated by a Monte Carlo simulation. The simulation confirmed
the robustness and accuracy of the obtained analytical expressions.

We extended the work of Dacorogna et al. (1993) by discovering the instantaneous volatility weekly
seasonality pattern. One representative of the emerging cryptocurrency markets, Bitcoin, as well as
of the traditional and widely accepted FX (EUR/USD, EUR/GBP, EUR/JPY) and stock (S&P500)
markets, were considered. The connection of the number of directional-change intrinsic events to
the instantaneous volatility has been employed to perform the computation. BTC/USD and SPX500
“total-move scaling laws” were computed for the first time to facilitate the seasonality discovery.

Similar patterns of the realised and the instantaneous volatility were obtained. Several noticeable
differences between the results demonstrated in the work Dacorogna et al. (1993) and the ones
presented in the current paper have been highlighted. First, the method based on the directional-change
intrinsic time concept significantly simplifies the construction of the instantaneous volatility
seasonality pattern operating with the information of the highest resolution (tick-by-tick prices).
Second, the autocorrelation function of the number of directional changes computed in physical time
stays positive for a notably long period of time. Third, the beginning of the volatility autocorrelation
function computed in Θ-time can be approximated by the logarithmic function. The part of the
autocorrelation plot after the lag bigger than one week declines linearly.

The difference between the instantaneous volatility seasonality patterns of the traditional FX and
emerging Bitcoin markets demonstrates the currency digitisation and globalisation effect. The effect
can be considered as the template for the future analogous markets to come.

The insights provided within this paper underline the relevance of the proposed directional-change
framework as a valuable alternative to the traditional time-series analysis tools. The independence of
directional-change intrinsic time on the frequency of price changes over a period of time makes it an
effective tool for capturing periods of changing price activity. Results of the provided research can be
used to extend the set of risk management tools constructed to evaluate the statistical properties of
traditional and emerging financial markets.
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Appendix A. Daily Seasonality
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Figure A1. Daily realised volatility ratio of BTC/USD measured over 10-min time intervals dissecting
the entire week into 1008 bins. The volatility is computed according to the “traditional” approach
(Equation (20)).
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Figure A2. Daily realised volatility ratio of the given exchange rates (labelled by ***) and EUR/USD.
The volatility is computed according to the “traditional” approach (Equation (20)).

0 50 100 150

1

2

Mon

150 200 250

1

2

Tue

300 350 400

1.0

1.5

2.0

Wed

450 500 550

1

2

Thu

600 650 700

1

2

3

4
Fri

Intra-week interval index (in the number of bins)

σ
B

T
C

/
U

SD
/

σ
EU

R
/

U
SD

BTC/USD

Figure A3. Daily instantaneous volatility ratio of BTC/USD measured over 10-min time intervals
dissecting the entire week into 1008 bins. The volatility is computed according to the novel approach
(Equation (19)).
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Figure A4. Daily instantaneous volatility ratio of the given exchange rates (labelled by ***) and
EUR/USD. The volatility is computed according to the novel approach (Equation (19)).

Table A1. Daily instantaneous volatility ratio and the weekly standard deviation of two FX (EUR/JPY
and EUR/GBP), one crypto (BTC/USD), and one stock (SPX500) exchange rates to EUR/USD. Columns
Ratio∗ stands for the ratio of the average daily volatility of the corresponding exchange rate and one of
EUR/USD. The average value computed over 10-min intervals. Columns std∗ contain the standard
deviation values of the volatility ratio over the set of 10-min intervals. The subscripts trad and
DC label the measures made using the traditional volatility estimator (Equation (20)) and the novel
approach (Equation (19)) correspondingly. The daily volatility ratios are graphically presented in
Figures A2 and A3.

Ratiotrad stdtrad RatioDC stdDC Ratiotrad/RatioDC stdtrad/stdDC

Monday

EUR/JPY 1.35 0.27 1.03 0.12 1.31 2.25
EUR/GBP 0.89 0.1 0.64 0.04 1.39 2.50
BTC/USD 11.75 3.99 1.35 0.51 8.70 7.82
SPX500 0.97 0.51 0.57 0.29 1.70 1.76

Tuesday

EUR/JPY 1.35 0.23 1.02 0.11 1.32 2.09
EUR/GBP 0.88 0.13 0.63 0.05 1.40 2.60
BTC/USD 11.7 4.53 1.35 0.52 8.67 8.71
SPX500 0.95 0.47 0.57 0.3 1.67 1.57

Wednesday

EUR/JPY 1.31 0.3 1.02 0.12 1.28 2.50
EUR/GBP 0.88 0.19 0.64 0.05 1.38 3.80
BTC/USD 10.83 3.74 1.29 0.46 8.40 8.13
SPX500 0.93 0.42 0.53 0.26 1.75 1.62

Thursday

EUR/JPY 1.34 0.22 1.03 0.12 1.30 1.83
EUR/GBP 0.89 0.18 0.64 0.05 1.39 3.60
BTC/USD 11.42 4.42 1.29 0.5 8.85 8.84
SPX500 0.93 0.49 0.57 0.28 1.63 1.75

Friday

EUR/JPY 1.35 0.28 1.03 0.12 1.31 2.33
EUR/GBP 0.9 0.17 0.64 0.06 1.41 2.83
BTC/USD 11.81 4.93 1.3 0.54 9.08 9.13
SPX500 0.98 0.46 0.61 0.31 1.61 1.48
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Mijatović, Aleksandar, and Martijn R. Pistorius. 2012. On the drawdown of completely asymmetric lévy processes.
Stochastic Processes and their Applications 122: 3812–36. [CrossRef]

198



J. Risk Financial Manag. 2019, 12, 54

Müller, Ulrich A., Michel M. Dacorogna, Rakhal D. Davé, Richard B. Olsen, Olivier V. Pictet,
and Jacob E. von Weizsäcker. 1997. Volatilities of different time resolutions—Analyzing the dynamics of
market components. Journal of Empirical Finance 4: 213–39. [CrossRef]

Müller, Ulrich A., Michel M. Dacorogna, Richard B. Olsen, Olivier V. Pictet, Matthias Schwarz,
and Claude Morgenegg. 1990. Statistical study of foreign exchange rates, empirical evidence of a price
change scaling law, and intraday analysis. Journal of Banking & Finance 14: 1189–208.

Nakamoto, Satoshi. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online: http://bitcoin.org/
bitcoin.pdf (accessed on 23 October 2018).

Osborne, Maury F. M. 1959. Brownian motion in the stock market. Operations Research 7: 145–73. [CrossRef]
Ponsford, Matthew P. 2015. A comparative analysis of bitcoin and other decentralised virtual currencies: Legal

regulation in the people’s republic of china, canada, and the united states. HKJ Legal Studies 9: 29.
Pospisil, Libor, Jan Vecer, and Olympia Hadjiliadis. 2009. Formulas for stopped diffusion processes with stopping

times based on drawdowns and drawups. Stochastic Processes and their Applications 119: 2563–78. [CrossRef]
Rachev, Svetlozar T., Christian Menn, and Frank J. Fabozzi. 2005. Fat-Tailed and Skewed Asset Return Distributions:

Implications for Risk Management, Portfolio Selection, and Option Pricing. Hoboken: John Wiley & Sons, vol. 139.
Rolski, Tomasz, Hanspeter Schmidli, Volker Schmidt, and Jozef L. Teugels. 2009. Stochastic Processes for Insurance

and Finance. Hoboken: John Wiley & Sons, vol. 505.
Roy, Souvik, and P. Venkateswaran. 2014. Online payment system using steganography and visual cryptography.

Paper presented at 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, Bhopal,
India, March 1–2. Lakes-Bhopal: IEEE, pp. 1–5.

Rozeff, Michael S., and William R. Kinney, Jr. 1976. Capital market seasonality: The case of stock returns. Journal of
Financial Economics 3: 379–402. [CrossRef]

Sapuric, Svetlana, and Angelika Kokkinaki. 2014. Bitcoin is volatile! Isn’t that right? Paper presented at
International Conference on Business Information Systems, Larnaca, Cyprus, May 22–23. Cham: Springer,
pp. 255–65.

Schuhmacher, Frank, and Martin Eling. 2011. Sufficient conditions for expected utility to imply drawdown-based
performance rankings. Journal of Banking & Finance 35: 2311–18.

Seif, Mostafa, Paul Docherty, and Abul Shamsuddin. 2017. Seasonal anomalies in advanced emerging stock
markets. The Quarterly Review of Economics and Finance 66: 169–81. [CrossRef]

Shintate, Takuya, and Lukáš Pichl. 2019. Trend prediction classification for high frequency bitcoin time series
with deep learning. Journal of Risk and Financial Management 12: 17. [CrossRef]

Taylor, Howard M. 1975. A stopped brownian motion formula. The Annals of Probability 3: 234–46. [CrossRef]
Zarowin, Paul. 1990. Size, seasonality, and stock market overreaction. Journal of Financial and Quantitative Analysis

25: 113–25. [CrossRef]
Zhang, Hongzhong. 2015. Occupation times, drawdowns, and drawups for one-dimensional regular diffusions.

Advances in Applied Probability 47: 210–30. [CrossRef]
Zhang, Hongzhong, and Olympia Hadjiliadis. 2012. Drawdowns and the speed of market crash. Methodology and

Computing in Applied Probability 14: 739–52. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

199





Journal of

Risk and Financial
Management

Article

Statistical Arbitrage with Mean-Reverting Overnight
Price Gaps on High-Frequency Data of the S&P 500

Johannes Stübinger * and Lucas Schneider

Department of Statistics and Econometrics, University of Erlangen-Nürnberg, Lange Gasse 20,
90403 Nürnberg, Germany; lucas.schneider@fau.de
* Correspondence: johannes.stuebinger@fau.de

Received: 27 February 2019; Accepted: 26 March 2019; Published: 1 April 2019

Abstract: This paper develops a fully-fledged statistical arbitrage strategy based on a mean-reverting
jump–diffusion model and applies it to high-frequency data of the S&P 500 constituents from January
1998–December 2015. In particular, the established stock selection and trading framework identifies
overnight price gaps based on an advanced jump test procedure and exploits temporary market
anomalies during the first minutes of a trading day. The existence of the assumed mean-reverting
property is confirmed by a preliminary analysis of the S&P 500 index; this characteristic is particularly
significant 120 min after market opening. In the empirical back-testing study, the strategy delivers
statistically- and economically-significant returns of 51.47 percent p.a.and an annualized Sharpe ratio
of 2.38 after transaction costs. We benchmarked our trading algorithm against existing quantitative
strategies from the same research area and found its performance superior in a multitude of risk-return
characteristics. Finally, a deep dive analysis shows that our results are consistently profitable and
robust against drawdowns, even in recent years.

Keywords: computational finance; asset pricing models; overnight price gaps; financial econometrics;
mean-reversion; statistical arbitrage; high-frequency data; jump-diffusion model

1. Introduction

Statistical arbitrage is a market-neutral strategy developed by a quantitative group at Morgan
Stanley in the mid-1980s (Pole 2011). Following Hogan et al. (2004), the self-financing strategy describes
a long-term trading opportunity that exploits persistent capital market anomalies to draw positive
expected profits with a Sharpe ratio that increases steadily over time. Arbitrage situations are identified
with the aid of data-driven techniques ranging from plain vanilla approaches to state-of-the-art models.
In the event of a temporary anomaly, an arbitrageur goes long in the undervalued stock and short
in the overvalued stock (see Vidyamurthy (2004), Gatev et al. (2006)). If history repeats itself, prices
converge to their long-term equilibrium and an investor makes a profit. Key contributions are provided
by Vidyamurthy (2004), Gatev et al. (2006), Avellaneda and Lee (2010), Bertram (2010), Do and Faff
(2012), and Chen et al. (2017).

The available literature divides statistical arbitrage into five sub-streams, including the time-series
approach, which concentrates on mean-reverting price dynamics. Since financial data are exposed to
more than one source of uncertainty, it is surprising that there exist only a few academic studies that use
a jump-diffusion model (see Larsson et al. (2013), Göncü and Akyildirim (2016), Stübinger and Endres
(2018), Endres and Stübinger (2019ab)). In addition to mean-reversion, volatility clusters, and drifts,
this general and flexible stochastic model is able to capture jumps and fat tails. First, Larsson et al.
(2013) used jump-diffusion models to formulate an optimal stopping theory. Göncü and Akyildirim
(2016) presented a stochastic model for the daily trading of commodity pairs in which the noise-term is
driven by a Lévy process. Stübinger and Endres (2018) introduce a holistic pair selection and trading
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strategy based on a jump-diffusion model. Recently, Endres and Stübinger (2019ab) derived an optimal
pairs trading framework based on a flexible Lévy-driven Ornstein–Uhlenbeck process and applied it
to high-frequency data. All these studies deal with intraday price dynamics and are therefore not in a
position to take into account the impact of overnight price changes, an apparent deficit as information
is published in media platforms 24 h a day, seven days a week.

This paper enhances the existing research in several aspects. First, our manuscript contributes to
the literature by developing a fully-fledged statistical arbitrage framework based on a jump–diffusion
model, which is able to capture intraday and overnight high-frequency price dynamics. Specifically,
we detect overnight price gaps based on the jump test of Barndorff-Nielsen and Shephard (2004) and
Andersen et al. (2010) and exploit temporary market anomalies during the first minutes of a trading
day. The existence of the assumed mean-reverting property is confirmed by a preliminary analysis
on the S&P 500 index; this characteristic is particularly significant 120 min after market opening.
Second, the value-add of the proposed trading framework is evaluated by benchmarking it against
well-known quantitative strategies in the same research area. In particular, we consider the naive
S&P 500 buy-and-hold strategy, fixed threshold strategy, general volatility strategy, as well as reverting
volatility strategy. Third, we perform a large-scale empirical study on the sophisticated back-testing
framework of high-frequency data of the S&P 500 constituents from January 1998–December 2015. Our
jump-based strategy produces statistically- and economically-significant returns of 51.47 percent p.a.
appropriate after transaction costs. The results outperform the benchmarks ranging from −6.56 percent
for the fixed threshold strategy to 38.85 percent for the reverting volatility strategy; complexity
pays off. Fourth, a deep-dive analysis shows that our results are consistently profitable and robust
against drawdowns even in the last part of our sample period, which is noteworthy as almost all
statistical arbitrage strategies have suffered from negative returns in recent years (see Do and Faff
(2010), Stübinger and Endres (2018)). The results pose a major challenge to the semi-strong form of
market efficiency.

The remainder of this research study is structured as follows. Section 2 provides the theoretical
framework applied in this study. In Section 3, we discuss the event study of the S&P 500 index. After
describing the empirical back-testing framework in Section 4, we analyze our results and present key
findings in Section 5. Finally, Section 6 gives final remarks and an outlook on future work.

2. Methodology

This section provides the theoretical construct of our statistical arbitrage strategy. Therefore,
Section 2.1 describes the Barndorff–Nielsen and Shephard jump test (BNS jump test), which helps us
to recognize jumps in our time series. The identification of overnight gaps is presented in Section 2.2.

2.1. Barndorff–Nielsen and Shephard Jump Test

We follow the theoretical framework of Barndorff-Nielsen and Shephard (2004) to detect overnight
gaps. First, let us denote low-frequency returns as:

yi = y∗(ih̄) + y∗((i − 1)h̄), i = 1, 2, ..., (1)

where y∗(t) denotes the log price of an asset after time interval {t}t≥0 and h̄ represents a fixed
time period, e.g., trading days. These low-frequency returns can be split up into M equally-spaced
high-frequency returns of the following form:

yj,i = y∗((i − 1)h̄ + h̄jM−1) + y∗((i − 1)h̄ + h̄(j − 1)M−1), j = 1, 2, ..., M. (2)

If i denotes the ith day, the jth intra-h̄ return is expressed as yj,i. Therefore, the daily return can be
written as:

yi =
M

∑
j=1

yj,i. (3)
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The BNS jump test of Barndorff-Nielsen and Shephard (2004) underlies the assumptions that prices
follow a semi-martingale to ensure the condition of no-arbitrage and are generated by a jump-diffusion
process of the following form and properties:

y∗(t) = y(1)∗(t) + y(2)∗(t), (4)

where y∗(t) describes the log price and y(1)∗(t) represents the stochastic volatility
semi-martingale process:

y∗ = α∗ + m∗, (5)

with α∗ describing the trend term with locally-finite variation paths, following a continuous mean
process of the security. The stochastic volatility process is represented through m∗, which is a local
martingale and defined as:

m∗ =
∫ t

0
σ(u)dW(u), (6)

where W describes the Wiener process. The spot volatility process σ2(t) is locally restricted away from
zero and specified as càdlàg, meaning that the process is limited on the left side, while it is everywhere
right continuous. Furthermore, σ(t) > 0, and the integrated variance (IV) process:

σ2∗(t) =
∫ t

0
σ2(u)du (7)

satisfies σ2∗(t) < ∞, ∀ t < ∞. Moreover, y(2)∗(t) defines the discontinuous jump component as:

y(2)∗(t) =
N(t)

∑
i=1

ci, (8)

with N representing a finite counting process, so that N(t) < ∞, ∀ t > 0 and ci denoting nonzero
random variables. Putting all together, the process can be written as:

y∗(t) = α∗ +
∫ t

0
σ(u)dW(u) +

N(t)

∑
i=1

ci (9)

consisting of a stochastic volatility component that models continuous price motions and a jump term
that accounts for sudden price shifts and discontinuous price changes. It is assumed that σ and α∗

are independent of W. From an economic point of view, Rombouts and Stentoft (2011) showed that
neglecting the non-Gaussian features of the data, prices are estimated with large errors.

To conduct the BNS jump test, three volatility metrics need to be specified: The quadratic
variation (QV), realized variance (RV), and bipower variation (BPV). QV is defined as:

[y∗](t) = σ2∗(t) +
N(t)

∑
i=1

c2
i , (10)

with σ2∗(t) denoting the integrated variance, presenting the quadratic variation of the continuous
part of the semi-martingale process, while ∑

N(t)
i=1 c2

i determines the quadratic variation of the jump
component (see Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002), Andersen et al. (2003),
Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen and Shephard (2006)). Hence, this volatility
measurement takes into account the total variation of the underlying jump-diffusion process.

The realized variance:

[y∗M]2i =
M

∑
j=1

y2
j,i (11)
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functions as a consistent estimator of QV, where M determines the number of intraday returns for
day i. This volatility measure sums up all squared intraday returns for any considered period.

Andersen and Bollerslev (1998), Andersen et al. (2001), and Barndorff-Nielsen and Shephard
(2002) showed that RV equals QV for large M, yielding to the equation:

plim
M→∞

RVt = QVt = σ2∗(t) +
N(t)

∑
i=1

c2
i . (12)

BPV was introduced by Barndorff-Nielsen and Shephard (2004) as:

{y∗}[r,s](t) = plim
δ→0

δ1−(r+s)/2
�t/δ�−1

∑
j=1

|yj|r|yj+1|s, r, s ≥ 0, (13)

where every {δ}δ>0 periods of time observations exist in interval t. BPV is a consistent estimator
of IV under the assumption of a semi-martingale stochastic volatility process with a jump component
described by Equation (4). Under those assumptions and for r > 0 and s > 0 applies:

μ−1
r μ−1

s {y∗}[r,s](t) =

⎧⎪⎪⎨⎪⎪⎩
∫ t

0 σr+s(u)d(u), max(r, s) < 2,

x∗(t), max(r, s) = 2,

∞, max(r, s) > 2,

(14)

where x∗(t) is a stochastic process, and μ is defined as:

μx = E|u|x = 2x/2
Γ
(

1
2 (x + 1)

)
Γ
(

1
2

) , (15)

with x > 0, u following a standard normal distribution, while Γ denotes the complete gamma function.
Barndorff-Nielsen and Shephard (2004) focused on the special case of r = s = 1 leading to the

following equation:

μ−2
1 {y∗M}[1,1]

i = μ−2
1

M−1

∑
j=1

|yj,1|1|yj+1,1|1
p→
∫ h̄i

h̄(i−1)
σ2(u)du. (16)

Hence, BPV is for r = s = 1 a consistent estimator of the integrated volatility for the ith period. Based
on this case, the variation of the jump term can be isolated by subtracting BPV from RV:

[y∗M]2i − μ−2
1 {y∗M}[1,1]

i
p→

N(h̄i)

∑
j=N(h̄(i−1))+1

c2
j . (17)

By calculating the difference between RV and BPV, we can separate the jump contribution to
the variation of the asset price from the QV. Therefore, the volatility can be decomposed into its
continuous and discontinuous components.

To identify jumps, we use the basic principles of the non-parametric BNS jump test and apply the
ratio z-statistic from Huang and Tauchen (2005). This test statistic is adjusted for market noise and
provides useful properties such as an appropriate size and a reasonable power. The evidence from the
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Monte Carlo simulation also suggests that this z-test is fairly accurate in detecting real jumps and not
easily fooled by market micro structure noises. The ratio test statistic:

Zt =

RVt − BPVt

RVt√((π

2

)2
+ π − 5

)
1
M

max
(

1,
TPt

BV2
t

) d→ N(0, 1) as M → ∞ (18)

is asymptotic standard normally distributed under the null hypothesis of no jumps. Following Huang
and Tauchen (2005), the tripower quarticity statistic is calculated by the following equation:

TPt = Mμ−3
4/3

(
M

M − 2

) M

∑
j=3

|rt,j|4/3|rt,j−1|4/3|rt,j−2|4/3 →
∫ t

0
σ4(u)du. (19)

To determine if at least one jump occurred in an asset, a right-sided hypothesis test with the null
hypothesis of no jumps was conducted. A commonly-used level of significance is 0.1 percent (see
Barndorff-Nielsen and Shephard (2006), Evans (2011), Frömmel et al. (2015)). If the null hypothesis
was rejected, at least one jump emerged in the underlying security during the considered period.

2.2. Jump Detection Scheme

The timing of jumps has an essential meaning for examining anomalous behavior around jumps.
To identify overnight gaps via jump tests, the precise time must be known. For this purpose, we
rely on the jump detection scheme introduced by Andersen et al. (2010). This jump identification
procedure is designed on the premise that jumps are rare events. If it is assumed that t equals one day
and at most one jump can emerge during the corresponding period, the only intraday jump can be
determined with:

RVt − BPVt
p→ c2

t , (20)

where c2
t represents the jump variation in period t. The intuitive idea is that the jump must be

incorporated in the highest absolute return on that specific day. Hence, the timing of the jump can be
determined by seeking the highest absolute return of the period. Furthermore, the precise jump size
can be calculated in the following way:

∼
c t = sgn

(
{rt,c : |rt,c| = max

j∈{1,...,M}
|rt,j|}

)
c2

t , (21)

where rt,c denotes the intraday return that contains the jump contribution, while sgn(·) is equal to 1 or
−1, depending on the sign of the argument.

3. Event Study of the S&P 500 Index

This section uses the outlined methodology of Section 2 to identify and analyze overnight price
gaps in the S&P 500 index. Following the approaches of Fung et al. (2000) and Grant et al. (2005), we
conducted the following four steps.

At first, the data were filtered according to the event of interest, the presence of overnight gaps.
To identify overnight gaps, we conducted daily the BNS jump tests, as introduced in Section 2.1. For
the test, we used high-frequency intraday returns of the previous day and the overnight return and a
significance level of 0.1 percent. The timing of jumps was determined by the jump detection procedure
of Andersen et al. (2010) (see Section 2.2). If the timing of the jump corresponded with the overnight
return, the day was marked as an event day and included in our study.
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Second, for every event day, the cumulative return of the S&P 500 index at minute t after the
market opening was computed by:

CRi,t =
Pi,t

Pi,0
− 1, (22)

where Pi,t denotes the index price on event day i at minute t after the beginning of the trading day.
Respectively, t = 0 represents the market opening.

Third, the average cumulative return (ACR) at time t:

ACRt =
1
N

N

∑
i=1

CRi,t, (23)

was computed for all event days. This figure is available for any minute t after the start of the trading
day. N is defined as the total number of days fulfilling the event day properties.

Fourth, t-tests were conducted to determine whether a given price movement after a specified
event was significant. Specifically, we calculated the corresponding test statistic to examine if the ACRt

at time t was significantly distinct from zero. The test statistic had the following form:

tACRt =
√

N
(ACRt − 0)

SACRt

∼ t(N − 1), (24)

where 0 < t ≤ T and ACRt denotes the mean of the sample. Furthermore, SACRt represents its
standard deviation, and N defines the total numbers of days in the filtered dataset. Under the null
hypothesis of no distinction from zero, the test statistic follows a t-distribution with N − 1 degrees
of freedom.

Table 1 shows the characteristics of the overnight price gaps detected by our jump test procedure.
In total, we observed 2128 overnight gaps during the sample period: 1154 of those gaps were positive,
while 974 were negative. On average, the S&P 500 index faced positive (negative) overnight gaps of
0.60 percent (−0.67 percent). The largest overnight gaps occurred during the global financial crisis
with 6.02 percent and −7.64 percent. The fact that both the range and the standard deviation of
negative gaps were higher than those of positive overnight movements confirms the existing literature:
market participants tend to react stronger to bad news rather than to good headlines (Suleman 2012).
Concluding, Table 1 shows that there was a sufficient number of overnight price gaps leading to
temporary market inefficiencies. As a result, this jump behavior generated high-frequency stock price
dynamics that created major trading opportunities. In stark contrast to the approach of Fung et al.
(2000) and Grant et al. (2005), the gaps identified by our jump-test scheme were both flexible and
data-driven.

Table 1. Characteristics of positive and negative overnight gaps, which are identified by the
Barndorff–Nielsen and Shephard (BNS) jump test, from January 1998–December 2015.

Positive Gap Negative Gap

Number of gaps 1154 974
Mean 0.0060 −0.0067

Minimum 0.0003 −0.0764
Quartile 1 0.0029 −0.0085

Median 0.0045 −0.0049
Quartile 3 0.0072 −0.0029
Maximum 0.0602 −0.0005

Standard deviation 0.0053 0.0063
Skewness 3.2771 −3.8289
Kurtosis 20.8453 29.3100
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Figure 1 illustrates the detected jumps in a more detailed way. We observe a higher variation of
negative overnight gaps, which is not surprising since financial data possess an asymmetric distribution
(Cont 2001). Interestingly, the interval with the highest number of observations for both positive and
negative overnight gaps was about ±0.15.

Figure 1. Histogram of positive and negative overnight gaps, which were identified by the BNS jump
test, from January 1998–December 2015.

Figure 2 presents the number of detected overnight gaps over time. With rising volatility in
financial markets, the number of overnight gaps also increased; fluctuations in the market imply jumps.
Thus, it is not surprising that we observed almost no jumps in the first years of our sample period.
In stark contrast, the number of overnight price gaps increased in times of high market turmoil. In
general, more positive than negative gaps affect the S&P 500 index. As expected, this pattern changes
during crises such as the dot-com crash in the early 2000s and the financial crisis in 2008. This also
demonstrates the flexibility of the approach used to identify overnight gaps.

Figure 2. Development of positive and negative overnight gaps, which were identified by the BNS
jump test, from 1998–2015.

Figure 3 depicts the average cumulative returns after overnight gaps identified by the BNS jump
test. The detailed development of the ACR for positive and negative price gaps is reported in Table A1.
The typical price pattern after overnight gaps is still persistent in modern financial markets, despite
that markets should become more efficient in the course of digitalization and improved information
flow (see Fung et al. (2000) and Grant et al. (2005)). In the case of a positive overnight gap, the
average cumulative returns rose for a brief period before reverting to the minimum at −0.0316 percent.
After reaching the lowest ACR 105 min after market opening, it began to rise until it crossed the
zero percent line. From this point, the returns almost fell close to the minimum before increasing
again. The upswing accelerated towards market closing, reaching 0.0236 percent at the end of the
trading day. Following a negative overnight gap, the ACR move inverted. Starting with a brief
continuation of the initial overnight movement, which marked the minimum of −0.0093 percent two
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minutes after the stock exchange opens, the ACR began to reverse to its maximum of 0.0463 percent
after approximately one and a half hours. The ACR remained relatively stable between 0.0200 and
0.0400 percent subsequent to hitting the upper limit. During the last ten minutes, the ACR rapidly
decreased until the end of the trading day. Noticeable is that the magnitude of the variation of the
ACR was stronger after negative price gaps. This is in line with stronger expected reactions of market
participants to bad information that was also observable in the represented gap characteristics (Table 1).
The p-values for both ACR realizations indicated that the returns were statistically different from zero
on a 10 percent significance level for most of the time before the 115-min mark. After that threshold
has passed, p-values well exceeded 10 percent; this fact is not surprising since many professional
day traders stop trading after two trading hours because volatility and volume tend to decrease (see
Balance (2019)). Furthermore, we recognized that the ACR for positive overnight gaps were not
significant for a target time of 5, 35, 65, and 95 min based on a 10% significance level; it seems that
the pattern is systematically repeated at 30-min intervals. This statement is confirmed by Business
Insider (2015), which shows that the trading volume increases in the first minutes of every trading hour.
Furthermore, Bedowska-Sojka (2013) demonstrated that this volatility is influenced by macroeconomic
releases, which are typically published at 9:30, 10:00, 10:30, and 11:00. As a result, the test-statistic
decreased, leading to non-significant p-values.

Concluding, our event study confirms the overreaction hypothesis and supports the results of
Fung et al. (2000) and Grant et al. (2005). The findings of the event study further suggest that we are in
a position to develop a statistical arbitrage strategy that exploits the mean-reversion characteristic of
stocks after statistically-significant overnight price gaps (see Poterba and Summers (1988), Leung and
Li (2015), Lubnau and Todorova (2015)). Specifically, it seems profitable to open trades after overnight
gaps and close them after 2 h, i.e., we should set a target time of 120 min.

Figure 3. Average cumulative returns (%) after positive and negative overnight gaps, which were
identified by the BNS jump test, from January 1998–December 2015.

4. Back-Testing Framework

The empirical back-testing study was performed from January 1998–December 2015 at intraday
prices for the S&P 500 index components (see Section 4.1). According to Gatev et al. (2006) and
Nakajima (2019), we divided the dataset into overlapping study periods, which were shifted by one
day each. Each study period consisted of two consecutive phases. In the formation period (Section 4.2),
the most appropriate stocks were selected using predefined models and criteria. In the subsequent
out-of-sample trading period (Section 4.3), the top stocks were traded using rule-based entry and
exit signals; this procedure avoids any look-ahead bias. Summarizing, we developed a full-fledged
statistical arbitrage framework based on a jump–diffusion model (JDS), which is able to capture
intraday and overnight high-frequency price dynamics.
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4.1. Data and Software

The empirical back-testing was based on intraday data from the S&P 500 from
January 1998–December 2015. This highly liquid stock market includes the stocks of the 500 leading
blue chip companies that offer high-quality commodities and generally-accepted services. Since the
S&P 500 index captures 80 percent of the total U.S. market capitalization (S&P Dow Jones Indices
2015), this dataset represents a fundamental test for any potential capital market anomaly. To be in line
with Stübinger and Endres (2018), we applied a two-step process with the objective of removing any
survivor bias from the database. First, we used the information list from QuantQuote (2016) to build
a binary constituent matrix for S&P 500 shares from January 1998–December 2015. The 4527 rows
characterize the trading days considered, and the 984 columns show the stocks that were ever in
the S&P 500. Each element of this matrix displays a “1” if the corresponding company is part of the
S&P 500 index on the corresponding day, otherwise a “0”. The sum of each row is about 500 because
on each trading day, there are approximately 500 stocks in the index. Second, the complete archive
of minute-by-minute prices from January 1998–December 2015 was downloaded from QuantQuote
(2016). The corresponding stock exchange was open from Monday to Friday from 9:30–16:00 Eastern
time. Consequently, the price time series of a share includes 391 data points per day. We followed
Stübinger and Endres (2018) and adjusted the data by stock splits, dividends, and other corporate
actions. By performing these two steps, our study design is in a position to map the constituents of the
S&P 500 and the corresponding price time series completely.

The presented methodology and all relevant evaluations were implemented in the statistical
programming language R (R Core Team 2019). For computation-intensive calculations, we used both
the general-purpose programming language C++ and on-demand cloud computing platforms with
virtual computer clusters that are available 24/7 via the Internet.

4.2. Formation Period

In the formation period, we considered all S&P 500 stock constituents. Therefore, we (i) conducted
the BNS jump test based on past returns (ii) applied the jump detection scheme in the case of rejecting
the null hypothesis, and (iii) selected the top stocks for the subsequent trading period. This subsection
describes the outlined three-step logic.

In the first step, we executed the BNS jump test based on both the 390 intraday returns of the
last trading day and the overnight return, i.e., the percentage change of the price from 16:00 of the
last day to 9:30 of the current trading day. Specifically, we determined the z-statistic of Huang and
Tauchen (2005) (see Equation (18)). If the null hypothesis was rejected, at least one jump emerged in
the underlying security during the considered period. If the null hypothesis was not rejected, no jump
emerged in the underlying security during the considered period. Consequently, we did not consider
this stock in our back-testing framework.

In the second step, we applied the jump identification method of Andersen et al. (2010) to ensure
that we only selected stocks possessing overnight gaps (see Section 2.2). Therefore, we considered only
stocks that incorporate a significant overnight gap.

In the third step, we followed Miao (2014) and Stübinger and Endres (2018) and selected the
most suitable shares for the out-of-sample trading period. Our algorithm attempted to find stocks
possessing the most meaningful jump last night. For this purpose, we selected the top stocks, that
possesses overnight gaps in the sense of Andersen et al. (2010), with the highest z-statistic of Huang
and Tauchen (2005). The top 10 stocks were transferred to the trading period (see Section 4.3)1.

1 If less than 10 shares satisfied the condition of Andersen et al. (2010), we traded accordingly less. However, this case is
extremely rare.
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4.3. Trading Period

The top 10 stocks with the highest z-statistic were considered in the one-day trading period. For
every top stock, we applied the following trading rules:

• We observe a negative price gap during the night, i.e., the stock is undervalued. Consequently,
we go long in the stock.

• We observe a positive price gap during the night, i.e., the stock is overvalued. Consequently, we
go short in the stock.

Motivated by Section 3, the trade was reversed 120 min later. Our strategy was based on a
two-stage logic. First, we identified significant overnight price changes that had a substantial impact
on future stock prices. Second, the top stocks possessed mean-reverting price dynamics, so that we
could take advantage of these temporary market inefficiencies. If our assumption was correct, we were
in a position to capture transient mispricings and generate profits. Concluding, we created a statistical
arbitrage strategy based on a mean-reverting jump-diffusion model, the individual jump threshold
depends on the underlying volatility.

As we aim for a classic long-short investment strategy in the sense of Gatev et al. (2006), we
followed the principles of Avellaneda and Lee (2010) and Stübinger et al. (2018) and secured the
market exposure with appropriate capital investments in the S&P 500 index. Every activity carried
out on the market involves transaction costs. Therefore, it would be naive to ignore these fees as
our high-frequency framework is based on permanent trading. According to Prager et al. (2012)
and Stübinger and Bredthauer (2017), estimating exact values is not possible, but the bid-ask spread
had abated to lower than one percent for stocks of the S&P 500 index, i.e., two basis points for an
average stock price of 50 USD. In the same vein, Voya Investment Management (2016) accounted for a
bid-ask spread of 3.5 basis points for the S&P 500, which was caused by increased use of algorithmic
trading, decimalization, and changes in the stock market landscape. To be in line with Stübinger and
Endres (2018), we assumed transaction costs of five basis points per share per half-turn. Consequently,
transaction costs per complete round-trip corresponded to 20 basis points. This assumption appears
realistic in light of our high-turnover strategy in a highly-liquid equity market.

In order to evaluate the value-add of our strategy, we benchmarked it against strategies from
the same research field, but less flexible. More specifically, we considered the S&P 500 buy-and-hold
strategy (BHS), fixed threshold strategy (FTS), general volatility strategy (GVS), and reverting volatility
strategy (RVS) (see Table 2). The characteristic “individual” implies that the trading behavior depends
on the underlying variable. If the model captured the behavior of fluctuations of stock price dynamics,
we assigned the “volatility” property. The feature “mean-reverting” was fulfilled for statistical
approaches that were able to model convergence to equilibrium after divergence. Finally, the explicit
inclusion of a jump term led to the characteristic “jump-diffusion”. Data and the general frame were
set identically to the JDS in order to ensure a fair comparison. Especially, we transferred the top 10
stocks to the trading period for each day across all strategies. Details of the four benchmark strategies
are presented in the following paragraphs.

Table 2. Overview of the characteristics of the S&P 500 buy-and-hold strategy (BHS), fixed
threshold strategy (FTS), generalized volatility strategy (GVS), reverting volatility strategy (RVS),
and jump-diffusion strategy (JDS).

Characteristic BHS FTS GVS RVS JDS

Individual No Yes Yes Yes Yes
Volatility No No Yes Yes Yes

Mean-reverting No No No Yes Yes
Jump-diffusion No No No No Yes
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S&P 500 Buy-and-Hold Strategy (BHS)

First, we compared JDS to a naive S&P 500 buy-and-hold strategy (BHS). To be more specific, the
index was bought in January 1998 and held during the complete time period. This passive investment
neglected all the characteristics required for a successful strategy, namely, “individual”, “volatility”,
“mean-reverting”, and “jump-diffusion”.

Fixed Threshold Strategy (FTS)

According to Fung et al. (2000), Grant et al. (2005), and Caporale and Plastun (2017), the fixed
threshold strategy (FTS) detects abnormal overnight changes using a fixed threshold of ±0.20 percent.
This benchmark strategy obtains an individual trading limit for each stock. In our framework, the top
10 stocks with the highest absolute changes were opened at 9:30 of the trading day. We went long in
the undervalued stocks and went short in the overvalued stocks. Identical to JDS, the positions were
reversed 120 min after market opening. This approach was not in a position to distinguish stocks on
the basis of their fluctuation behavior.

General Volatility Strategy (GVS)

The general volatility strategy (GVS) is based on the assumption that equities with high volatility
exhibit temporary market inefficiencies (see Banerjee et al. (2007), Bariviera (2017)). Following
Stübinger and Endres (2018), we calculated the standard deviation of the overnight returns of the
last 40 days and transferred the top 10 stocks with the highest volatility to the trading period. Again,
undervalued (overvalued) stocks were bought (sold), and trades were reversed after 120 min.

Reverting Volatility Strategy (RVS)

Last but not least, the reverting volatility strategy (RVS) adds the mean-reversion component to
GVS, i.e., we measured the degree of reversion to the equilibrium level after divergences. According to
Do and Faff (2010), we determined the mean-reversion speed by the number of zero-crossings, which is
defined as the number of times prices cross the zero line. Stocks were ranked separately by standard
deviation and zero crossings; the stock with the highest value was assigned the highest rank for each
measurement. Next, we formed a combined rank by the sum of the two separate ranks. The top 10 stocks
were received by selecting stocks with the highest overall rank. The main disadvantage of this approach
was the lack of a jump term, which reflects uncertainty in addition to the volatility component (Cartea
et al. 2015).

5. Results

Following the high-frequency research studies of Mitchell (2010) and Knoll et al. (2018),
we conducted a fully-fledged performance evaluation for the top 10 stocks of JDS from
January 1998–December 2015 compared to the benchmarks BHS, FTS, GVS, and RVS. In particular,
we evaluated the return characteristics and risk metrics (Section 5.1), examined the performance over
time (Section 5.2), and analyzed the robustness of the strategies (Section 5.3). According to Gatev
et al. (2006) and Avellaneda and Lee (2010), this paper calculated the total return based on committed
capital, i.e., we divided the sum of daily net profits at the current day by the deployed capital.

5.1. Risk-Return Characteristics

Table 3 shows the daily return characteristics and risk metrics before and after transaction costs for
the top 10 stocks per strategy from January 1998–December 2015. We observed statistically-significant
returns for FTS, GVS, RVS, and JDS with Newey–West (NW) t-statistics above 15 prior to transaction
costs. From an economical point of view, daily returns ranged between 0.17 percent for FTS and
0.36 percent for JDS. If we considered transaction costs, only the mean-reverting strategies RVS and
JDS produced positively significant daily returns of 0.13 percent (RVS) and 0.17 percent (JDS). As
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expected, BHS generated statistically non-significant returns of 0.02 percent per day (see Endres and
Stübinger (2019b)). The range, i.e., the difference of the maximum and minimum, was vastly different
for JDS (approximately 0.30 percentage points), compared to BHS, FTS, GVS, and RVS (approximately
0.15 percentage points); this dissimilarity is potentially driven by the jump-diffusion term. The
same argument explains the increased standard deviation of JDS. All individual strategy variants
depicted favorable characteristics for any potential investor due to the fact that the underlying returns
showed right skewness and followed a leptokurtic distribution (Cont 2001). We found that the
maximum drawdown was quite different for FTS (87.84 percent) and GVS (89.47 percent), in contrast to
RVS (55.91 percent), BHS (64.33 percent), and JDS (68.17 percent); the difference between non-reverting
and reverting top stocks is clearly pointed out. The hit rate of JDS, i.e., the percentage of days with
non-negative returns, outperformed with 58.41 percent after transactions costs, compared to the
benchmarks, ranging between 41.79 percent for FTS and 55.92 percent for RVS.

Table 3. Daily return characteristics and risk metrics for BHS, FTS, GVS, RVS, and JDS from
January 1998–December 2015. NW denotes Newey–West standard errors with 1-lag correction and
CVaR the conditional value at risk.

Before Transaction Costs After Transaction Costs

BHS FTS GVS RVS JDS FTS GVS RVS JDS

Mean return 0.0002 0.0017 0.0019 0.0033 0.0036 −0.0003 −0.0001 0.0013 0.0017
Standard error (NW) 0.0002 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0001 0.0002
t-Statistic (NW) 0.8617 17.9433 15.8454 23.0251 16.4912 −2.5816 −1.1504 9.2534 7.8870
Minimum −0.0947 −0.0410 −0.0521 −0.0544 −0.1169 −0.0430 −0.0541 −0.0564 −0.1187
Quartile 1 −0.0056 −0.0012 −0.0016 −0.0013 −0.0021 −0.0032 −0.0036 −0.0033 −0.0041
Median 0.0005 0.0012 0.0013 0.0030 0.0028 −0.0008 −0.0007 0.0010 0.0008
Quartile 3 0.0061 0.0040 0.0046 0.0076 0.0085 0.0020 0.0026 0.0056 0.0065
Maximum 0.1096 0.0604 0.0776 0.0889 0.1947 0.0584 0.0756 0.0869 0.1923
Standard deviation 0.0126 0.0062 0.0077 0.0090 0.0129 0.0062 0.0077 0.0090 0.0128
Skewness −0.1987 1.2552 1.2987 0.9082 2.7078 1.2552 1.2987 0.9082 2.6990
Kurtosis 7.5278 9.5525 11.7337 8.3119 29.7136 9.5525 11.7337 8.3119 29.8425
Historical VaR 1% −0.0350 −0.0136 −0.0178 −0.0187 −0.0255 −0.0156 −0.0198 −0.0207 −0.0275
Historical CVaR 1% −0.0506 −0.0186 −0.0249 −0.0263 −0.0346 −0.0206 −0.0269 −0.0283 −0.0365
Historical VaR 5% −0.0197 −0.0068 −0.0078 −0.0093 −0.0129 −0.0088 −0.0098 −0.0113 −0.0149
Historical CVaR 5% −0.0302 −0.0110 −0.0141 −0.0155 −0.0209 −0.0130 −0.0161 −0.0175 −0.0228
Maximum drawdown 0.6433 0.0667 0.0860 0.1012 0.2707 0.8784 0.8947 0.5991 0.6817
Share with return ≥ 0 0.5313 0.6327 0.6200 0.6782 0.6715 0.4179 0.4288 0.5592 0.5841

In Table 4, we depict annualized risk-return measures before transaction costs (left side) and
after transaction costs (right side). After transaction costs, JDS produced returns of 51.47 percent p.a.,
compared to 38.85 percent for RVS, −4.07 percent for GVS, and −6.59 percent for FTS. Thus, the first
two strategies achieved meaningfully better results than the naive buy-and-hold strategy (BHS) with an
average return of 1.81 percent p.a. Across all strategies, the mean excess return was similar to the mean
return because the risk-free rate was very close to zero, especially in the last years. Our jump-based
strategy JDS generated approximately the standard deviation of the market, resulting in a Sharpe ratio
of 2.38 after transaction costs. This value confirmed the results of the high-frequency studies of Knoll
et al. (2018) and Stübinger (2018). The lower partial moment risk of JDS led to a Sortino ratio of 4.76,
compared to the benchmarks ranging between −1.03 (FTS) and 4.67 (RVS). We summarized that JDS
outperformed the classic approaches in a large number of comparisons; complexity pays off. Our task
was still to evaluate the performance over time, as well as the robustness of the strategies.
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Table 4. Annualized risk-return measures for BHS, FTS, GVS, RVS, and JDS from
January 1998–December 2015.

Before Transaction Costs After Transaction Costs

BHS FTS GVS RVS JDS FTS GVS RVS JDS

Mean return 0.0181 0.5456 0.5874 1.2959 1.4472 −0.0659 −0.0407 0.3885 0.5147
Mean excess return −0.0022 0.5149 0.5558 1.2503 1.3985 −0.0846 −0.0598 0.3609 0.4845
Standard deviation 0.2005 0.0984 0.1219 0.1432 0.2045 0.0984 0.1219 0.1432 0.2037
Downside deviation 0.1441 0.0490 0.0633 0.0696 0.0950 0.0639 0.0777 0.0832 0.1082
Sharpe ratio −0.0110 5.2312 4.5598 8.7339 6.8392 −0.8592 −0.4904 2.5211 2.3781
Sortino ratio 0.1256 11.1380 9.2757 18.6058 15.2388 −1.0315 −0.5229 4.6719 4.7587

5.2. Sub-Period Analysis

Motivated by the time-varying returns of Liu et al. (2017) and Stübinger and Knoll (2018), we
analyzed the stability and potential of the strategies over time. Figure 4, therefore, presents the
development of an investment of USD 1 after transaction costs for FTS, GVS, RVS, JDS (first column),
and the S&P 500 buy-and-hold strategy BHS (second column) over three partial periods. Table A2
provides a detailed overview of the corresponding annualized risk-return ratios for sub-periods of
three years.

The first sub-period ran from 1998–2006 and described the bursting of the Internet bubble and
the start of the Iraq war, as well as the subsequent bull market. We observed meaningful differences
in performance between the mean-reverting and non-mean-reverting strategies: the average annual
returns after transaction costs of up to 73.76 percent for RVS and up to 64.08 percent for JDS were well
above those of BHS (7.87 percent), FTS (27.31 percent), and GVS (42.26 percent). As a typical feature in
the financial context, the baseline methods were nevertheless successful in this period due to market
inefficiencies and a lack of transparency.

The second sub-period ranged from 2007–2009 and was characterized by the global financial
crisis and its consequences. In the course of the sub-prime crisis, the overall market showed strong
fluctuations and substantial declines. In contrast, the other strategies generated positive returns,
ranging from 27.35 percent for FTS to 315.02 percent for JDS. This strong performance was not
astonishing as Avellaneda and Lee (2010) and Rad et al. (2016) demonstrated that statistical arbitrage
trading strategies achieved abnormal returns during bear markets.

The third sub-period extends from 2010–2015 and covered a period of comebacks and restarts.
The benchmarks FTS and GVS showed declining trends compared to the overall market, caused by the
increasing public availability of these methods. RVS achieved an almost constant cumulative return
of one, i.e., this strategy generated exactly the costs that were incurred. For JDS, we observed that
1 USD invested in January 2010 grew to 5 USD after transaction costs; performance did not decline
across time and seemed to be robust against drawdowns.

5.3. Robustness Check

As mentioned above, we motivated the target time of 120 min based both on the available
literature and the results of our event study; see Section 3. Since data snooping is a major problem in
many financial applications, this subsection examines the sensitivity of our strategies to deviations
from their parameter value. In Table 5, we vary the target time in two directions and report the
annualized returns before and after transaction costs for BHS, FTS, GVS, RVS, and JDS.

First of all, we see that our results were robust in the face of parameter variations and always
led to statements similar to those in Section 5.1. As expected, the results of a target time of 120 were
identical to those of Table 3. Furthermore, the annualized returns for each strategy converged as the
relative change decreased with increasing target time. The naive S&P 500 buy-and-hold strategy (BHS)
always led to an annualized return of 1.81 percent, which is not surprising, since this approach is
completely independent of the target time (Section 4). Furthermore, the performance of FTS increased
slightly with ascending target time, e.g., the annualized return after transaction costs was −9.37 percent
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if we closed the trade at 9:50 and −8.36 percent if we closed it at 13:10. The same statement applies to
GVS (−9.70 percent vs. −4.28 percent). Due to their mean-reverting component, RVS and JDS showed
a slightly declining performance. For each target time, JDS remained the best variant with annualized
returns between 49.65 percent and 62.61 percent, after transaction costs. Obviously, we were not on an
optimum, but we found robust trading results, regardless of fluctuations in our parameter setting.

Figure 4. Development of an investment of 1 USD after transaction costs for FTS, GVS, RVS, and JDS
(first column) compared to the S&P 500 buy-and-hold-strategy (BHS) (second column). The time period
from January 1998–December 2015 is divided into three sub-periods (March 1998/December 2006,
January 2007/December 2009, January 2010/December 2015).

Table 5. Yearly returns for BHS, FTS, GVS, RVS, and JDS for a varying target time from
January 1998–December 2015.

Before Transaction Costs After Transaction Costs

Target Time BHS FTS GVS RVS JDS FTS GVS RVS JDS

20 min 0.0181 0.4997 0.4944 1.4201 1.6941 −0.0937 −0.0970 0.4638 0.6261
40 min 0.0181 0.5030 0.5382 1.4120 1.6685 −0.0918 −0.0704 0.4589 0.6104
60 min 0.0181 0.5214 0.5525 1.3706 1.6624 −0.0806 −0.0618 0.4338 0.6068
80 min 0.0181 0.5088 0.5483 1.3132 1.5883 −0.0882 −0.0643 0.3990 0.5628
100 min 0.0181 0.5065 0.5583 1.3107 1.5893 −0.0896 −0.0583 0.3975 0.5634
120 min 0.0181 0.5456 0.5874 1.2959 1.4472 −0.0659 −0.0407 0.3885 0.5147
140 min 0.0181 0.5346 0.5748 1.2748 1.5233 −0.0726 −0.0483 0.3757 0.5241
160 min 0.0181 0.5384 0.5897 1.2653 1.5226 −0.0703 −0.0392 0.3700 0.5229
180 min 0.0181 0.5699 0.5848 1.2510 1.4946 −0.0512 −0.0422 0.3613 0.5061
200 min 0.0181 0.5268 0.5764 1.2255 1.4783 −0.0773 −0.0473 0.3459 0.4965
220 min 0.0181 0.5165 0.5838 1.2358 1.4865 −0.0836 −0.0428 0.3521 0.5014
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Motivated by the findings in Section 3, Table 6 examines the annualized returns for a target time
of 5, 35, 65, and 95 min. Most interestingly, annual returns were substantially lower for a target time of
5 min for FTS, GVS, RVS, and JDS because high market turmoil during the opening minutes reduced
the results. For a target time of 35, 65, and 95 min, increasing market efficiency during the first minutes
of each trading hour did not affect yearly returns before and after transaction costs; our strategies seem
to be robust against this effect.

Table 6. Yearly returns for BHS, FTS, GVS, RVS, and JDS for a target time of 5, 35, 65, and 95 min from
January 1998–December 2015.

Before Transaction Costs After Transaction Costs

Target Time BHS FTS GVS RVS JDS FTS GVS RVS JDS

5 min 0.0181 0.3217 0.2529 1.0387 1.1842 −0.2015 −0.2432 0.2327 0.3174
35 min 0.0181 0.5233 0.5349 1.4023 1.6719 −0.0795 −0.0725 0.4531 0.6134
65 min 0.0181 0.5232 0.5515 1.3793 1.6431 −0.0795 −0.0624 0.4391 0.5956
95 min 0.0181 0.5118 0.5601 1.3102 1.5824 −0.0864 −0.0572 0.3972 0.5589

Next, we take a closer look at our S&P 500 buy-and-hold strategy (BHS). The S&P 500 index
was purchased in January 1998 and was held for the entire sample period. Of course, BHS is only a
baseline approach for betting on the market. Therefore, we followed Endres and Stübinger (2019b)
and developed a more realistic benchmark: The S&P 500 strategy buys the index at 9:30 and reverses
it after 120 min. We observed an annualized return of 1.03% compared to 1.81% for BHS (see also
Table 4). This insufficient performance is not surprising, as it is a baseline approach without modeling.

Finally, this manuscript supposed a high-turnover strategy of an institutional trader on
high-frequency prices. Motivated by the literature, our back-testing framework assumed transaction
costs of five basis points per share per half-turn, resulting in 20 basis points per round-trip per pair.
However, other traders may be less aggressive in implementing this strategy. Therefore, we analyzed
the breakeven point of the statistical arbitrage strategy since investors are exposed to different market
conditions. We found that the breakeven point of JDS was between 35 basis points and 40 basis points.
Concluding, this strategy generated promising results, even for investors that are exposed to different
market conditions and thus higher transaction costs.

6. Conclusions

In this paper, we presented an integrated statistical arbitrage strategy based on overnight
price gaps and implemented it on high-frequency data of the S&P 500 stocks from
January 1998–December 2015. In this context, we made four contributions to the literature. The
first contribution relates to the developed trading framework based on a jump-diffusion model: we
are in a position to capture jumps, mean-reversion, volatility clusters, and drifts. Our approach
identifies overnight price gaps based on the jump test of Barndorff-Nielsen and Shephard (2004)
and exploits temporary market anomalies by corresponding investments. In a preliminary study,
we confirmed the assumption of mean-reverting overnight gaps with the aid of the S&P 500 index.
The second contribution focuses on the value-add of our strategy. Therefore, we benchmarked
it against well-known quantitative strategies from the same research area, namely the naive
S&P 500 buy-and-hold strategy, fixed threshold strategy, general volatility strategy, and reverting
volatility strategy. The third contribution is based on our large-scale empirical study on a sophisticated
back-testing framework. Our strategy produced statistically- and economically-significant returns of
51.47 percent p.a. after transaction costs; the benchmarks were outperformed. The fourth contribution
focuses on the profitable and robust performance results also in the last part of our sample period. Our
findings posited a severe challenge to the semi-strong form of market efficiency even in recent times.

We identified three possible directions for further research: First, the event study and the
back-testing framework should be conducted in other equity universes. Second, the exit signal
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of the strategy should be determined for each stock individually. Third, a multivariate model could be
developed that takes into account the common interactions between stocks.
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Appendix A

Table A1. Detailed development of the ACR with p-values of the two-sided t-test from
January 1998–December 2015. ACR denotes the average cumulative returns.

Positive Gap Negative Gap

Target Time ACR in % p-Value ACR in % p-Value

5 min 0.0056 0.1180 0.0013 0.8140
10 min −0.0037 0.4690 0.0178 0.0180
15 min −0.0155 0.0160 0.0334 0.0000
20 min −0.0229 0.0020 0.0293 0.0060
25 min −0.0248 0.0030 0.0355 0.0030
30 min −0.0207 0.0260 0.0310 0.0160
35 min −0.0150 0.1580 0.0327 0.0320
40 min −0.0193 0.0850 0.0284 0.0670
45 min −0.0245 0.0400 0.0314 0.0480
50 min −0.0227 0.0670 0.0318 0.0560
55 min −0.0236 0.0610 0.0415 0.0160
60 min −0.0255 0.0490 0.0420 0.0150
65 min −0.0209 0.1230 0.0346 0.0490
70 min −0.0231 0.1000 0.0333 0.0690
75 min −0.0257 0.0810 0.0387 0.0470
80 min −0.0287 0.0600 0.0417 0.0310
85 min −0.0301 0.0490 0.0432 0.0280
90 min −0.0256 0.1030 0.0415 0.0360
95 min −0.0230 0.1540 0.0373 0.0690

100 min −0.0286 0.0810 0.0338 0.0990
105 min −0.0316 0.0550 0.0334 0.1060
110 min −0.0288 0.0820 0.0334 0.1070
115 min −0.0294 0.0780 0.0382 0.0740
120 min −0.0248 0.1360 0.0328 0.1260
130 min −0.0189 0.2620 0.0307 0.1670
140 min −0.0207 0.2290 0.0256 0.2660
150 min −0.0224 0.2150 0.0343 0.1430
160 min −0.0177 0.3300 0.0313 0.1920
170 min −0.0156 0.3940 0.0295 0.2230
180 min −0.0091 0.6250 0.0248 0.3160
190 min −0.0066 0.7270 0.0276 0.2620
200 min −0.0069 0.7180 0.0296 0.2320
210 min −0.0111 0.5700 0.0340 0.1770
220 min −0.0070 0.7210 0.0304 0.2370
230 min −0.0027 0.8880 0.0258 0.3260
240 min −0.0038 0.8450 0.0288 0.2650
250 min −0.0068 0.7300 0.0254 0.3340
260 min −0.0121 0.5460 0.0302 0.2640
270 min −0.0175 0.3850 0.0314 0.2470
280 min −0.0218 0.2890 0.0275 0.3260
290 min −0.0212 0.3130 0.0241 0.3960
310 min −0.0189 0.3880 0.0347 0.2390
330 min −0.0131 0.5740 0.0309 0.3140
350 min −0.0115 0.6360 0.0344 0.2820
370 min −0.0073 0.7720 0.0276 0.4320
390 min 0.0229 0.4070 −0.0052 0.8900
391 min 0.0236 0.3900 −0.0052 0.8870
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Table A2. Annualized risk-return measures for BHS, FTS, GVS, RVS, and JDS for sub-periods of 3 years
from January 1998–December 2015.

Before Transaction Costs After Transaction Costs

BHS FTS GVS RVS JDS FTS GVS RVS JDS

1998–2000

Mean return 0.0624 1.1054 1.3520 1.8718 0.1674 0.2731 0.4226 0.7376 −0.2956
Mean excess return 0.0106 1.0030 1.2378 1.7324 0.1105 0.2111 0.3534 0.6531 −0.3300
Standard deviation 0.2055 0.1037 0.1172 0.1193 0.1439 0.1037 0.1172 0.1193 0.1435

Downside deviation 0.1442 0.0449 0.0546 0.0515 0.1035 0.0591 0.0687 0.0641 0.1191
Sharpe ratio 0.0516 9.6750 10.5590 14.5236 0.7682 2.0364 3.0143 5.4756 −2.2991
Sortino ratio 0.4324 24.6231 24.7455 36.3203 1.6165 4.6206 6.1472 11.5012 −2.4817

2001–2003

Mean return −0.0781 0.5919 0.7374 1.7218 1.5412 −0.0379 0.0502 0.6467 0.6408
Mean excess return −0.0978 0.5580 0.7005 1.6640 1.4872 −0.0584 0.0278 0.6116 0.6058
Standard deviation 0.2184 0.1214 0.1463 0.1636 0.2037 0.1214 0.1463 0.1636 0.2024

Downside deviation 0.1538 0.0685 0.0827 0.0823 0.1057 0.0849 0.0981 0.0966 0.1187
Sharpe ratio −0.4478 4.5978 4.7880 10.1681 7.2995 −0.4816 0.1902 3.7375 2.9939
Sortino ratio −0.5080 8.6396 8.9161 20.9326 14.5766 −0.4467 0.5116 6.6958 5.3993

2004–2006

Mean return 0.0787 0.4021 0.2554 0.9144 1.3252 −0.1529 −0.2417 0.1574 0.4035
Mean excess return 0.0475 0.3616 0.2191 0.8592 1.2582 −0.1774 −0.2636 0.1240 0.3630
Standard deviation 0.1046 0.0601 0.0656 0.1019 0.1278 0.0601 0.0656 0.1019 0.1276

Downside deviation 0.0720 0.0323 0.0396 0.0499 0.0613 0.0483 0.0562 0.0650 0.0758
Sharpe ratio 0.4542 6.0149 3.3407 8.4349 9.8430 −2.9506 −4.0187 1.2171 2.8453
Sortino ratio 1.0935 12.4580 6.4486 18.3127 21.6319 −3.1672 −4.2977 2.4206 5.3199

2007–2009

Mean return −0.1177 1.1060 1.2654 2.5881 5.8734 0.2735 0.3701 1.1720 3.1502
Mean excess return −0.1358 1.0628 1.2189 2.5147 5.7331 0.2473 0.3419 1.1274 3.0653
Standard deviation 0.2995 0.1500 0.1991 0.2193 0.3477 0.1500 0.1991 0.2193 0.3470

Downside deviation 0.2209 0.0687 0.0977 0.1009 0.1323 0.0823 0.1111 0.1134 0.1437
Sharpe ratio −0.4534 7.0874 6.1215 11.4693 16.4905 1.6491 1.7170 5.1421 8.8346
Sortino ratio −0.5328 16.0953 12.9488 25.6392 44.4096 3.3231 3.3318 10.3376 21.9222

2010–2012

Mean return 0.0671 0.1413 0.1445 0.3591 0.6918 −0.3107 −0.3088 −0.1789 0.0215
Mean excess return 0.0663 0.1404 0.1436 0.3581 0.6905 −0.3112 −0.3093 −0.1795 0.0207
Standard deviation 0.1856 0.0538 0.0651 0.1017 0.1543 0.0538 0.0651 0.1017 0.1540

Downside deviation 0.1341 0.0328 0.0415 0.0658 0.0905 0.0512 0.0590 0.0815 0.1061
Sharpe ratio 0.3572 2.6115 2.2080 3.5202 4.4759 −5.7880 −4.7542 −1.7647 0.1348
Sortino ratio 0.5004 4.3142 3.4861 5.4583 7.6420 −6.0655 −5.2322 −2.1942 0.2029

2013–2015

Mean return 0.1219 0.2262 0.2275 1.0296 1.5703 −0.2593 −0.2585 0.2272 0.6838
Mean excess return 0.1219 0.2262 0.2275 1.0296 1.5703 −0.2593 −0.2585 0.2272 0.6838
Standard deviation 0.1281 0.0487 0.0611 0.1022 0.1392 0.0487 0.0611 0.1022 0.1372

Downside deviation 0.0904 0.0289 0.0367 0.0506 0.0535 0.0455 0.0535 0.0647 0.0662
Sharpe ratio 0.9516 4.6472 3.7216 10.0702 11.2826 −5.3274 −4.2295 2.2221 4.9853
Sortino ratio 1.3484 7.8150 6.2034 20.3644 29.3617 −5.7035 −4.8294 3.5130 10.3278
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Abstract: Insurance companies issue guarantees that need to be valued according to the market
expectations. By calibrating option pricing models to the available implied volatility surfaces, one
deals with the so-called risk-neutral measure Q, which can be used to generate market consistent
values for these guarantees. For asset liability management, insurers also need future values of these
guarantees. Next to that, new regulations require insurance companies to value their positions on a
one-year horizon. As the option prices at t = 1 are unknown, it is common practice to assume that the
parameters of these option pricing models are constant, i.e., the calibrated parameters from time t = 0
are also used to value the guarantees at t = 1. However, it is well-known that the parameters are not
constant and may depend on the state of the market which evolves under the real-world measure
P. In this paper, we propose improved regression models that, given a set of market variables such
as the VIX index and risk-free interest rates, estimate the calibrated parameters. When the market
variables are included in a real-world simulation, one is able to assess the calibrated parameters
(and consequently the implied volatility surface) in line with the simulated state of the market. By
performing a regression, we are able to predict out-of-sample implied volatility surfaces accurately.
Moreover, the impact on the Solvency Capital Requirement has been evaluated for different points in
time. The impact depends on the initial state of the market and may vary between −46% and +52%.

Keywords: insurance; Solvency II; risk-neutral models

1. Introduction

Liabilities of insurance companies depend on the fair value of the outstanding claims that typically
involve guarantees (that are also called embedded options). The market consistent value of these
guarantees is defined under the risk-neutral measure Q, i.e., they are then computed with pricing
formulas that agree on the current implied volatility surfaces. To hedge against the risks involved in
these claims, insurers often acquire (complex) option portfolios that also require market consistent
risk-neutral valuation themselves. Furthermore, on 1 January 2016 the so-called Solvency II directive
came into effect which introduced the Solvency Capital Requirement (SCR). The SCR is defined as the
minimum amount of capital which should be held by an insurer, such that the insurer is able to pay its
claims over a one-year horizon with a 99.5% probability. The regulator demands that the insurer’s
available capital should be greater than, or equal to, the SCR. Because the claims typically depend on
future market consistent valuation, computing the SCR, and, more generally performing proper Asset
Liability Management (ALM), is a challenging task.

To compute these future market consistent values of the embedded options, insurers require the
probability distribution of the values of these embedded options. Typically, this is done by simulating
a large number of random future states of the market and, after that, the different states are valued
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under the market consistent risk-neutral measure. From the simulated embedded option values, the
desired statistics can then be extracted. The future states of the market can be computed by means of
risk-neutral models (Q in Q), or real-world models (Q in P). Risk-neutral simulations are, for example,
used to calculate the Credit Value Adjustment (CVA) (see, e.g., Pykhtin (2012)), which is a traded
quantity and should therefore be computed using no-arbitrage arguments. For quantities that are not
traded (or hedged), the Q in Q approach appears to be incorrect (see, e.g., Stein (2016)) and the future
state of the market should be modelled using the real-world measure (Q in P). Real-world models
are calibrated to the observed historical time-series and are typically used to compute non-traded
quantities such as Value-at-Risk (VaR).

The risk-neutral measure at t = 0 is connected to the observed implied volatility surface and
is therefore well-defined. However, the definition of the risk-neutral measure at future time t = 1
is debatable. Despite some relevant research on predicting the implied volatility surfaces (see, e.g.,
Cont et al. (2002), Mixon (2002) and Audrino and Colangelo (2010)), it is common practice to use
option pricing models that are only calibrated at time t = 0, thereby assuming that the risk-neutral
measure is independent of the state of the market (see, for example, Bauer et al. (2010) and Devineau
and Loisel (2009)). This is however not in line with historical observations, where we see that the
implied volatility surface does depend on the state of the market. Another drawback of this approach
is that the resulting SCR is pro-cyclical, i.e., the SCR is relatively high when the market is in crisis and
relatively low when the market is stable. The undesired effect of pro-cyclicality is that it can aggravate
a downturn Bikker and Hu (2015).

In this paper, we investigate the impact of relaxing the assumption that the risk-neutral measure
is considered to be independent of the state of the market and develop the so-called VIX Heston model,
which depends on the current and also on simulated implied volatilities. This approach, which we
have named here the PQ approach, takes into account the Q measure information at time t = 0 and
simulates risk-neutral model parameters (thus, future implied volatility surfaces are obtained by means
of simulation) based on historically observed relations with some relevant market variables such as
the VIX index.

As is well-known, the VIX index is a volatility measure for the S&P-500 index, which is calculated
by the Chicago Board Options Exchange (CBOE) (see CBOE (2015)), and it is therefore directly linked
to the implied volatility surface. Consequently, extracting information from the VIX index is frequently
studied (see, e.g., Duan and Yeh (2012)) and our approach in this paper is based on the methodology
presented in Singor et al. (2017), where the development of the Heston model parameters for the
S&P-500 index options and the VIX index have been analysed.

The contribution of our present research is two-fold. First, we discuss the justification of using a
risk-neutral model with time-dependent parameters. By means of a hedge test, we show that hedging
strategies that take into account the changes in the implied volatility surface significantly outperform
those strategies that do not, both in simulation and with empirical tests. This leads to the conclusion
that the time-dependent risk-neutral measure can be used for the evaluation of future embedded
option prices. Secondly, we show the impact of our new approach. For that, we use real data from
2007 to 2016 and compute the SCR on a monthly basis with a constant Q measure and also with the
VIX Heston model where this assumption is relaxed. We conclude that the VIX Heston model predicts
out-of-sample implied volatility surfaces accurately and computes more conservative and stable SCRs.
The impact of using the new approach on the SCR depends on the initial state of the market and may
vary from −46% to +52% in our experiments. Moreover, we see that the SCR that is computed with
the VIX Heston model is significantly less pro-cyclical, for example, it is lower in the wake of the 2008
credit crisis, as it incorporates the likely normalisation.

The outline of this paper is as follows. In Section 2, we give the definition of the SCR. In Section 3,
we explain the dynamic VIX Heston model. In Section 4, we present the hedge tests with the
corresponding results, followed by Section 5 where we present the numerical VIX Heston results and
the impact of the using PQ dynamics on the SCR. Section 6 concludes.
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2. Solvency Capital Requirement

Let us denote the policy’s net income in the interval [0, t] by At, which is defined as the cash flows
up to time t that are generated under the real-world market. The mathematical definition is given by

At =
∫ t

0
eμ(t−s)cashflow(s, Δs)ds, (1)

where μ is the expected return and “cashflow(s, Δs)” denotes the generated cash flow over the interval
[s, s + Δs]. Similarly, we define the policy’s liabilities by Lt and they are given by the discounted
expected cash flows under the risk-neutral measure in the interval [t, T]:

Lt = EQt

[∫ T

t
e−r(s−t)cashflow(s, Δs)ds

∣∣∣∣Ft

]
, (2)

with risk-free rate r. Note that a positive/negative cash flow corresponds to an income/liability for the
insurer. We define

Nt := At − Lt, (3)

which can be thought of as the policy’s net value at time t. The Solvency Capital Requirement is now
defined as the 99.5% Value-at-Risk (i.e., the 99.5% quantile) of the one-year loss distribution under the
real-world measure, i.e.,

SCR = VaR0.995
(

N0 − Ñ1
)

:= inf
{

x
∣∣P (N0 − Ñ1 < x

)
> 0.995

}
. (4)

Here, Ñ1 is defined as the discounted value of N1.

Guaranteed Minimum Accumulation Benefit

This section is dedicated to deriving the fund dynamics and the SCR of a frequently used
guarantee in the insurance industry, namely the Guaranteed Minimum Accumulation Benefit (GMAB)
variable annuity rider.

We assume that the fund only contains stocks, but the derivation is similar when different assets
are combined. We denote the stock and fund value by St and Ft, respectively, and define the initial
premium by G. We assume the payout at maturity T is at least equal to the initial premium, in
other words,

PayoutT = max (FT , G). (5)

The dynamics of the fund are very similar to the stock dynamics, except for a fee α which is
deducted from the fund as a payment to the insurer. This fee can be thought of as a dividend yield.
Following Milevsky and Salisbury (2001), we obtain

dFt = dSt
Ft

St
e−αt, F0 = G. (6)

The specific dynamics depend on the assumptions regarding stock price St. Here, we assume
the Black–Scholes model (geometric Brownian motion, GBM) under the observed real-world measure P,
which yields:

dFP
t = (μ − α)FP

t dt + σFP
t dWP

t , F0 = G. (7)

Moreover, for the valuation, a risk-neutral Heston model is implemented, leading to⎧⎪⎨⎪⎩
dFt = (r − α)Ftdt +

√
vtFtdWF

t , F0 = G,
dvt = κ(v̄ − vt)dt + γ

√
vtdWv

t ,〈
dWS

t , dWv
t
〉
= ρdt.

(8)
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The income is generated by the accumulated fees, hence

At =
∫ t

0
αFP

s eμ(t−s)ds. (9)

The liabilities, on the other hand, depend on the final value of the fund, as follows,

• If FT ≥ G, the policyholder receives FT and the insurer has no liabilities.
• If FT < G, the policyholder receives G and the liabilities of the insurer are equal to G − FT .

Moreover, the insurer continues to claim future fees, hence, according to Equation (2), we can
write the liabilities as

Lt = EQt

[
e−r(T−t) max (G − FT , 0)−

∫ T

t
e−r(s−t)αFsds

∣∣∣∣Ft

]
= Put(Ft, G) + Ft

(
e−α(T−t) − 1

)
, (10)

where Put(Ft, G) denotes the value of a European put option on the fund at time t with strike price G
and dividend yield α. We can substitute these definitions into Equation (4) to obtain

SCR = VaR0.995
(

N0 − e−r N1
)

(11)

= VaR0.995
(

A0 − L0 − e−r(A1 − L1)
)

= e−rVaR0.995 (Put(F1, G)− g(F1, 1))− Put(F0, G) + g(F0, 0),

with

g(Ft, t) =
∫ t

0
αFseμ(t−s)ds + Ft

(
1 − e−α(T−t)

)
, (12)

which can be thought of as the sum of the realized and expected fees. In this case, the SCR depends
on the real-world distribution of F1, which determines g(F1, 1) and also influences the risk-neutral
valuation of Put(F1, G).

Variable annuity riders require a risk-neutral valuation at (future) time t = 1, as the liabilities
are, by definition, conditional expectations under the risk-neutral measure. In the case of a GMAB
rider, there is an analytic expression available, but often there is no such expression for Lt. Hence,
the evaluation of the conditional expectation typically requires an approximation. In that case, often the
Least-Squares Monte Carlo algorithm is used to approximate the conditional expectations at t = 1. The
experiments presented in this paper were also performed for the Guaranteed Minimum Withdrawal
Benefit (GMWB) variable annuity rider. As the results and conclusions were very similar as for the
GMAB, in this paper, we restrict ourselves to the GMAB variable annuity.

The distributions of g(F1, 1) and Put(F1, G) in Equation (12) can be obtained by means of a
Monte Carlo simulation,

• First, the net policy value N0 is determined, according to definition Equation (3).
• Thereafter, the fund value Ft along with other explanatory variables is simulated according to the

real-world measure up to time t = 1.
• Subsequently, the values of Put(F1, G) and g(F1, 1) are evaluated for each trajectory. The value

of g(F1, 1) can be obtained directly from the trajectory of Ft, however, Put(F1, G) requires a
risk-neutral valuation for which the risk-neutral measure at time t = 1 is required.

• Finally, the simulated values are combined to construct the loss distribution. The SCR corresponds
to the 99.5% quantile of this distribution.

Some more detail about the Monte Carlo simulation is provided in Appendix A.
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3. Dynamic Stochastic Volatility Model

When valuing options, one typically wishes to calibrate a risk-neutral model according to the
market’s expectations, which are quantified by the implied volatility surface. This implied volatility
surface can be used to extract European option prices for a wide range of maturities and strikes.
The market expectation (and so the volatility surface), is however unknown at t = 1 and therefore
practitioners typically use the implied volatility surface at t = 0 to calibrate the risk-neutral model
parameters. In this standard Q in P approach, these parameters are assumed to be constant over time,
i.e., the risk-neutral measure is independent of the real-world measure. Note that this approach is
also used to compute risk measures from the Basel accords, such as credit value adjustment (CVA),
capital valuation adjustment (KVA) and potential future exposure (PFE) (see Kenyon et al. (2015);
Jain et al. (2016); Ruiz (2014)). However, regarding the computation of CVA, this quantity is typically
hedged, and so using only the market expectation at t = 0 is sufficient.

In the PQ approach, we relax the assumption of independence. The calibrated risk-neutral model
parameters are related to the simulated real-world scenarios.

3.1. Heston Model

We assume the Heston model as a benchmark. The Heston stochastic volatility
model (Heston 1993) assumes the volatility of the stock price process to be driven by a CIR model, i.e.,
under the Q measure, ⎧⎪⎨⎪⎩

dSt = rStdt +
√

vtStdW1
t , S(0) = S0,

dvt = κ(v̄ − vt) + γ
√

vtdW2
t , v(0) = v0〈

dW1
t , dW2

t
〉
= ρdt.

(13)

where r denotes the risk-free rate, κ the speed of mean-reversion, v̄ the long-term variance, γ the
volatility of variance and ρ the correlation between asset price and variance. The risk-free rate is
assumed to be constant throughout this research. To calibrate these parameters according to the
market’s expectations, one wishes to minimize the distance between the model’s and market’s implied
volatilities. For the Heston model, consider the following search space for the parameters

ΩSearch = Dκ × Dv0 × Dv̄ × Dγ × Dρ

= [0, 10]× [0, 1]× [0, 1]× [0, 2]× [−1, 1], (14)

where Dp denotes the search domain for parameter p. Using this search space, one is able to find the
calibrated parameters at time t by minimizing the sum of squared errors:

ΩHeston
t = arg min

Ω∈ΩSearch

(
∑
K

∑
T

(
σMarket(t, K, T)− σHeston(t, Ω, K, T)

)2
)

. (15)

The set of parameters ΩHeston
t = {κ, v0, v̄, γ, ρ} minimizing this expression is considered

risk-neutral and reflects the market’s expectations.
When the market is subject to changes, its expectations will change accordingly. Hence,

the implied volatility surface will evolve dynamically over time. Consequently, the Heston parameters
may change over time. Figure 1 shows the monthly evolution of the Heston parameters from January
2006 to February 2017.
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Figure 1. Evolution of the Heston parameters over time.

During this calibration procedure, we assumed κ to be constant; an unrestricted κ led to unstable
results and did not significantly improve the accuracy. The other parameters, however, do not appear
constant over time. This may give rise to issues in risk-management applications, where one simulates
many real-world paths to assess the sensitivity to the market of a portfolio, balance sheet, etc. In many
cases, a risk-neutral valuation is required, which is nested inside the real-world simulation, for example,
when the portfolio or balance sheet contains options. Consequently, the future implied volatility surface
for each trajectory needs to be known, such that the Heston parameters can be calibrated accordingly.
Modelling the implied volatility surface over time is a challenging task (see, e.g., Cont et al. (2002);
Mixon (2002); Audrino and Colangelo (2010)), as it quantifies the market’s expectations that depend
on many factors. Moreover, even if the implied volatility surface is modelled, one would still need to
perform a costly calibration procedure. Performing this calibration for each of the simulated trajectories
would require a significant computational effort. As the Heston model is a parameterization of the
implied volatility surface, an attractive alternative is to simulate the Heston parameters directly.

Figure 1 clearly shows that the parameters are time-dependent, which is in contrast with the
assumptions of the plain Heston model. In this research we first search for relations between the
risk-neutral parameters and observe real-world market indices, such as the VIX index. When a relation
is found, the future risk-neutral parameters can be extracted from a real-world simulation. In this way,
by performing a real-world simulation, we can directly forecast the set of Heston parameters within
each simulated trajectory. The risk-neutral measure is then conditioned on the simulated state of the
market, without the need of a simulated implied volatility surface.

3.2. VIX Heston Model

We have already described the difficulties of modelling the implied volatility surface, or
equivalently, the option prices. A different approach is therefore required to calibrate the Heston
parameters in simulated markets. The simulated parameter sets should accurately reflect the
expectations of the simulated market, for example by linking the dynamics of the Heston parameters
to the dynamics of the market. In Singor et al. (2017), an approach is considered which is based on the
assumptions of a linear relationship between the VIX index and the Heston parameters. After analysis,
it was concluded that:
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• The initial volatility
√v0,t and the volatility of the volatility γt are highly correlated to the VIX

index, with correlation coefficients of 0.99 and 0.76, respectively.
• The long term volatility

√
v̄t appears to be correlated to the VIX index trend line (estimated by a

Kalman filter) with a correlation coefficient of 0.74.

To this end, the following restrictions are imposed on the Heston model parameters:

ΩHeston
t (X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κt = κ, κ ∈ R+,
v0,t = (av0 · VIXt + bv0)

2 , av0 , bv0 ∈ R,
v̄t =

(
av̄ · VIXfiltert + bv̄

)2 , av̄, bv̄ ∈ R,
γt = aγ · VIXt + bγ, aγ, bγ ∈ R,
ρt = ρ, ρ ∈ [−1, 1],

(16)

where both the speed of mean reversion κt and the correlation coefficient ρt are assumed to be constant
over time. The constant ρ assumption is justified by the fact that ρ displays a mean reverting pattern
and it can therefore be approximated by its long-term mean. The constant κ assumption is justified
by observations in Gauthier and Rivaille (2009). They argued that the effect on the implied volatility
surface of increasing κ is similar to decreasing γ. Thus, allowing κ to change over time unnecessarily
overcomplicates the model. Moreover, numerical experiments show that an unrestricted κ sometimes
leads to unstable results.

The purpose of the restrictions is to accurately reflect the market’s expectations. To this
end, we wish to minimize the distance between the observed and predicted implied volatility
surfaces. Therefore, we calibrate the constraint parameters with a procedure similar to Equation (15).
By changing the parameter set from ΩHeston

t to X = {κ, αv0 , bv0 , av̄, bv̄, aγ, bγ, ρ} and summing over all
points in time one obtains

X = arg min
XS∈XSearch

(
∑

t,K,T

(
σMarket(t, K, T)− σHeston(t, ΩHeston

t (XS), K, T)
)2
)

, (17)

with,

XSearch = Dκ × Dav0
× Dbv0

× Dav̄ × Dbv̄ × Daγ × Dbγ
× Dρ

= {1} ×R6 × [−1, 1]. (18)

By including the VIX-index in the real-world simulation, one is able to efficiently evaluate the set
of Heston parameters in line with the simulated state of the market. For more information regarding
the derivation and properties of the VIX Heston model, we refer the reader to Singor et al. (2017).

It is, however, important to stress the different assumptions in the real-world and risk-neutral
markets. Risk-neutral valuations are performed under the Heston model, which assumes constant
parameters. However, in real-world simulations, we assume the Heston parameters to change over
time, according to the simulated state of the market, similar to Figure 1. One could argue that
this approach is invalid, since we are violating the assumptions of the risk-neutral market. To this
end, we discuss a justification of this approach, by means of a hedge test. Moreover, to assess the
impact of time-dependent Heston parameters, we implement the VIX Heston model as proposed in
Singor et al. (2017) in a risk-management application: the Solvency Capital Requirement.

4. Hedge Test

Before implementing the dynamic risk-neutral measure (the VIX Heston model) in a
risk-management application, we first test its applicability from a theoretical point of view. For example,
in theory, one should be able to hedge against future positions using today’s implied volatility surface.
This no longer applies when one assumes a risk-neutral measure that changes over time. To this end,
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we perform an experimental hedge test that determines which approach is more accurate in terms of
future option prices, a dynamic or constant risk-neutral measure.

The plain Heston model assumes v̄ and γ to be constant, hence, from a theoretical point of view,
it would be redundant to hedge against changes of these parameters. However, due to the dynamic
behaviour of the implied volatility surface, v̄ and γ will change over time (see Figure 1). Thus, from
an empirical point of view, the option price dynamics are subject to changes of these parameters.
To support this claim, we compare three different hedging strategies. The first strategy is the classical
Delta-Vega hedge, which does not take any changes of v̄ and γ into account. The replicating portfolio
aims at hedging an option “A”, with value Ct, by holding a certain amount of stocks and a different
option with value C̃t (which is called option “B” from this point onwards), i.e.,{

Πt = −Ct + Δ(1)(t)St + Δ(2)(t)C̃t + Bt,
Π0 = 0,

(19)

where Bt denotes the risk-free asset (for example, a bank account or a government bond), which grows
with constant risk-free rate r. Note that Option B depends on the same underlying market factors as
Option A. Following Bakshi et al. (1997), we impose the so-called minimized variance constraints,{

〈dΠt, dSt〉 = 0,
〈dΠt, dWv

t 〉 = 0,
(20)

where 〈·, ·〉 refers to the covariation between the two processes and Wv
t is the Brownian motion which

is independent from St, driving random changes in the volatility. By imposing these constraints, one
obtains a portfolio that has no covariation with the underlying asset and its volatility. In other words,
changes in the asset’s value and changes in the asset’s volatility will have neither direct nor indirect
(through correlations) effect on the portfolio. These constraints give us the following hedge ratios,⎧⎪⎨⎪⎩

Δ(1)(t) = ∂C
∂St

− Δ(2)(t) ∂C̃
∂St

,

Δ(2)(t) = ∂C/∂vt
∂C̃/∂vt

.
(21)

Under the assumptions of the Heston model, the portfolio dynamics are given by,

dΠt = dt
(
−∂C

∂t
− 1

2
vtS2

t
∂2C
∂S2

t
− 1

2
γ2vt

∂2C
∂v2

t
− ργvtSt

∂2C
∂St∂vt

+ rBt

+ Δ(2)(t)
(

∂C
∂t

+
1
2

vtS2
t

∂2C
∂S2

t
+

1
2

γ2vt
∂2C
∂v2

t
+ ργvtSt

∂2C
∂St∂vt

))
, (22)

Note that the random components have disappeared from the portfolio. Thus, the portfolio
should be insensitive to changes in the market, if it respects the assumptions of the Heston model.

Secondly, we assume a model which is similar to the classical Delta-Vega hedge, but with adjusted
hedge ratios. We call this strategy the adjusted Delta-Vega hedge. Assuming a dynamic model (see
Appendix B for more details), we can apply Ito’s lemma to obtain

dCDynamic
t =

∂C
∂t

dt + ∑
pt

∂C
∂pt

dpt +
1
2 ∑

pt
∑
qt

∂2C
∂pt∂qt

〈dpt, dqt〉 , (23)

with pt, qt ∈ {St, vt, v̄t, γt}. For notational purposes, we rewrite this expression as

dCDynamic
t = c1dt + c2dWS

t + c3dWv
t + c4dWv̄

t + c5dWγ
t , (24)
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where the coefficients are defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 = ∂C
∂t + rSt

∂C
∂St

+ κ(v̄t − vt)
∂C
∂vt

+ κv̄(v̄Mean − v̄t)
∂C
∂v̄t

+κγ(γMean − γt)
∂C
∂γt

+ 1
2 ∑pt ∑qt

∂2C
∂pt∂qt

〈dpt, dqt〉 ,

c2 =
√

vtSt
∂C
∂St

+ ργt
√

vt
∂C
∂vt

+ ρρv̄av̄v̄t
∂C
∂v̄t

+ ρργaγγt
∂C
∂γt

,

c3 = γt
√

vt(1 − ρ2) ∂C
∂vt

+ ρv̄av̄v̄t
√

1 − ρ2 ∂C
∂v̄t

+ ργaγγt
√

1 − ρ2 ∂C
∂γt

,

c4 = av̄v̄t

√
1 − ρ2

v̄
∂C
∂v̄t

,

c5 = aγγt

√
1 − ρ2

γ
∂C
∂γt

.

(25)

The hedge ratios now take the correlated components of v̄ and γ into account, due to the
minimized variance constraints of Equation (20). Using Equation (24), the hedge ratios can be
derived, giving ⎧⎪⎨⎪⎩Δ(1)

Adjusted(t) =
c2√
vtSt

− c̃2c3√
vtSt c̃3

,

Δ(2)
Adjusted(t) =

c3
c̃3

,
(26)

where c̃2 and c̃3 are defined as in Equation (25) for Option B. The additional stochastic variables v̄t

and γt follow mean reverting processes (see Equation (A1) in Appendix B), such that the portfolio
dynamics are found to be,

dΠt =

(
−c1 +

c3

c̃3
c̃1 +

c̃2r√
vt

− c̃2c3r√
vtc̃3

+ rBt

)
dt

+

(
c3

c̃3
c̃4 − c4

)
dWv̄

t +

(
c3

c̃3
c̃5 − c5

)
dWγ

t . (27)

The portfolio still depends on the randomness associated with v̄ and γ. However, the randomness
associated with St and vt have disappeared, including the random components of v̄ and γ that are
correlated to St and vt.

We also consider a strategy that aims at completely hedging against any changes of v̄ and γ, by
introducing two additional options,{

Πt = −Ct + Δ(1)
Full(t)St + Δ(2)

Full(t)C̃t + Δ(3)
Full(t)C̄t + Δ(4)

Full(t)Ĉt.
Π0 = 0.

(28)

Again, all options depend on the same underlying market factors, but they have different contract
details. In this case, we require to be protected against any changes of St, vt, v̄t and γt, hence we impose⎧⎪⎪⎪⎨⎪⎪⎪⎩

〈dΠt, dSt〉 = 0,
〈dΠt, dWv

t 〉 = 0,
〈dΠt, dWv̄

t 〉 = 0,〈
dΠt, dWγ

t
〉
= 0.

(29)

Substituting these constraints leads to a system of equations, which is solved by⎡⎢⎢⎢⎢⎣
Δ(1)

Full(t)
Δ(2)

Full(t)
Δ(3)

Full(t)
Δ(4)

Full(t)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
√

vtSt c̃2 c̄2 ĉ2

0 c̃3 c̄3 ĉ3

0 c̃4 c̄4 ĉ4

0 c̃5 c̄5 ĉ5

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

c2

c3

c4

c5

⎤⎥⎥⎥⎦ . (30)
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By imposing Equation (29), one removes all randomness associated with St, vt, v̄t and γt. Hence,
the portfolio dynamics only depend on deterministic changes under the assumed market dynamics.
From this point onwards, we refer to this strategy as the full hedge strategy.

4.1. Hedge Test Experiments

In this section, we discuss the results of the hedge test which was explained above. This test
experiment indicates which approach is more accurate when evaluating future option prices, a measure
which assumes v̄ and γ to be constant or a measure which assumes v̄ and γ to change over time. We thus
consider the classical approach, with constant v̄ and γ, and two approaches that assume v̄ and γ to
change over time. The different hedging strategies are tested in a simulated market as well as in an
empirical market.

The empirical hedge test is based on daily implied volatility surfaces of the S&P-500 European
put and call options from January 2006 to February 2014.

4.1.1. Simulated Market

First, we evaluate the hedging strategies in a controlled environment. In this test, we assume St

and vt to follow the Heston model, with the key difference that v̄ and γ are time-dependent mean
reverting processes (as in Equation (A1) in Appendix B). This set-up will be informative, as it is in line
with historical observations. The processes of St and vt are discretized by the Quadratic Exponential
(QE) scheme, as proposed in Andersen (2008). Furthermore, the processes of v̄ and γ are discretized
by the Milstein scheme, while also taking the correlations with vt into account. The details of this
simulation scheme can be found in Appendix B.

The performance of the classical Heston Delta-Vega, the adjusted Heston Delta-Vega and the
full hedge is compared under the dynamics of this market. The strategies all aim at hedging a short
position in a European call option with maturity T = 1.0 years and strike K = 50. Moreover, at the
start date of the option, t = 0, we assume{

S0 = 49, v0 = 0.05, v̄0 = 0.1, γ0 = 0.7,
κ = 1.0, ρ = −0.75, r = 0.01.

(31)

The adjusted Delta-Vega and full hedge involve additional options. These options depend on the
same stock as Option A, but the contract details are different, i.e.,⎧⎪⎨⎪⎩

K̃ = 50.0, T̃ = 2.0,
K̄ = 50.0, T̄ = 3.0,
K̂ = 50.0, T̂ = 4.0.

(32)

Moreover, we assume the following parameters in the dynamics of the v̄ and γ processes,{
κv̄ = 1.4, v̄Mean = 0.1, av̄ = 0.8, ρv̄ = 0.9,
κγ = 2.1, γMean = 0.7, aγ = 1.0, ργ = 0.9.

(33)

In reality, these parameters cannot be freely chosen, as they are implied by the market.
By analysing the historical behaviour of v̄t and γt, one is able to estimate these SDE parameters.
In this case, however, we assume to know these parameters and use them when determining the
hedge strategy.

Ideally, the portfolio value should be equal to zero for each point in time, because the initial
portfolio value is equal to zero. Every deviation from zero is thought of as a hedge error. Over the
entire life of the option we desire the mean and standard deviation of this error to be as close as
possible to zero. To this end, we introduce the following error measures for simulation j,
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E(j)
Mean =

1
N + 1

N

∑
i=0

Π(j)
i
N T

, E(j)
Std =

√√√√ 1
N

N

∑
i=0

(
Π(j)

i
N T

− E(j)
Mean

)2
. (34)

The overall hedging performance of the M simulations can be judged by⎧⎨⎩ ĒMean = 1
M ∑M

j=1 E(j)
Mean,

ĒStd = 1
M ∑M

j=1 E(j)
Std.

(35)

In the current set-up, these error measures are random variables, as they are determined by means
of Monte Carlo simulations. To this end, we analyse the stability of the error measures across the
simulated trajectories by the standard error,

SE(E) =

√
1

M−1

M
∑

j=1

(
Ē − E(j)

)2

√
M

, (36)

with error measure E, its mean Ē and the simulated trajectories E(j).
The performance of the strategies under these assumptions based on M = 200 simulations is

given in Table 1.

Table 1. Hedge errors of the different hedging strategies. The standard errors of the estimates are given
in parentheses.

Frequency ĒMean ĒStd

classical Delta-Vega:
Once per week −0.339 (0.0207) 0.228 (0.0084)
Once per day −0.354 (0.0227) 0.210 (0.0080)

Adjusted Delta-Vega:
Once per week −0.204 (0.0097) 0.137 (0.0072)
Once per day −0.220 (0.0071) 0.114 (0.0047)

Full hedge:
Once per week −0.044 (0.0040) 0.068 (0.0042)
Once per day −0.051 (0.0030) 0.045 (0.0022)

These results show that, in this experiment, it is beneficial to take parameter correlations into
account when hedging, in terms of both the mean error and the standard deviation. While still not
perfect, the dynamic Heston Delta-Vega hedge is better able to remain risk-neutral on average and
it deviates less from this average. The full hedge performs even better with a mean approximately
equal to zero and a standard deviation equal to or lower than any of the previous strategies, despite
the dynamic behaviour of the market.

The purpose of these hedging strategies is to replicate the value of an option. In the case of the
classical Delta-Vega hedge, only St and vt are allowed to change. By respecting the assumptions of
the Heston model, we are not fully able to replicate the future option values. On the other hand,
when assuming the adjusted Heston model, v̄t and γt are allowed to change as well. Hedging strategies
considering this dynamic behaviour, produce more accurate future option price estimates in the current
set-up. This indicates the importance of taking dynamic parameters into account when determining
future option prices, even when the assumptions of the underlying model are violated. However,
note that the comparison is not completely fair, since we specifically assume a Heston market with
time-dependent v̄ and γ. It can therefore be expected that a strategy taking these assumptions into
account outperforms one that does not. Therefore, to better assess the true performance of these
strategies, we also perform an empirical test.
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4.1.2. Empirical Market

When hedging in practice, the underlying assumptions are not always respected and the true
parameters are, of course, unknown. To quantify the effect of these difficulties, we test the hedging
strategies on historical data in this section. All hedging ratios depend on the dynamic risk-neutral
parameters, hence vt, v̄, γ and ρ vary over time, according to the changes in the historically observed
implied volatility surfaces. Moreover, the adjusted Heston Delta-Vega hedge depends on the correlation
and volatility of v̄ and γ, which we define as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρv̄ = ργ = 0.95,

av̄ =

√√√√ 1
N ∑−1

i=−N log

(
v̄ti+1
v̄ti

)2

Δt ,

aγ =

√
1
N ∑−1

i=−N log
(γti+1

γti

)2

Δt .

(37)

It can be quite challenging to determine the correlation between the Brownian motions driving the
parameters, hence we assume it to be equal for each time-interval. Moreover, the volatility estimator
only depends on past observations; the sum indices vary from −N to −1 with t−N = −1 year,
where t0 = 0 indicates the starting date of the option.

In this test, we hedge an at-the-money European call option with one year maturity on the S&P-500
index. All hedging strategies are subjected to daily rebalances that are based on the parameters as seen
on that date. The transaction costs are excluded from this test, as we are interested in the performance
of the hedging strategies with respect to changes in v̄ and γ. Including transaction costs would increase
the costs of the full dynamic Heston hedging strategy, as it involves more financial assets. This would
bias the results and it is therefore best to exclude the transaction costs from the present test.

The test is repeated on a monthly basis from July 2006 to February 2013 and the performance is
assessed by the mean error and mean squared error during the life of the option,

E(j)
Mean =

1
N + 1

N

∑
i=0
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i
N T

, E(j)
MSE =

1
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∑
i=0

(
Π(j)

i
N T

)2
. (38)

The time intervals of the hedging portfolios overlap in this set-up, since the test is repeated on a
monthly basis and the option maturity is one year. However, all strategies depend on different initial
conditions and therefore perform differently, despite the overlapping time-intervals. The results of this
test are graphically presented in Figure 2.

The hedging performances are similar to the simulation results:

• The classical Delta-Vega hedge does not take changes of the parameters into account and appears
to be the most unstable method. This strategy has the most and highest error “peaks” and is
therefore most unreliable.

• The adjusted Delta-Vega hedge is still not perfect but appears to be more stable than the classical
Delta-Vega hedge, the error “peaks” happen less frequently and are less pronounced. The error
can be minimized by optimizing the correlation and volatility of v̄t and γt, but the optimization
can only be performed afterwards, which is not the objective of this test.

• The full hedge is the most stable out of the three strategies. It does not have any error “peaks”
and outperforms the other two strategies in most cases. Moreover, this strategy does not depend
on additional parameters which may introduce an error if chosen poorly, such as in the dynamic
Heston Delta-Vega hedge.
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Figure 2. Mean error and mean squared error for different hedging strategies performed on monthly
historical data.

We can conclude that respecting the assumptions of the underlying model (in this case, the Heston
model) does not necessarily lead to more accurate future option prices. By taking changes of the v̄ and
γ parameters into account, we are able to replicate option values more accurately both in a controlled
(simulation) and uncontrolled (empirical) environment.

5. VIX Heston Model Results

5.1. Data and Calibration

The dataset contains monthly implied volatility surfaces of the S&P-500 European put and call
options from January 2006 to February 2017. Each implied volatility surface contains five different
strike levels (80%, 90%, 100%, 110% and 120% of S0) and maturities (0.25, 0.5, 1, 1.5 and 2 years).
We split the dataset into a training set and a test set. The training set consists of implied volatility
surfaces from January 2006 to February 2014 and is only used to identify the optimal regression
components. The test set contains monthly implied volatility surfaces from March 2014 to February
2017 and is used to assess the accuracy of the VIX Heston model.

Furthermore, to assess the robustness of the VIX Heston model, we apply it to monthly implied
volatility surfaces of the FTSE-100 (United Kingdom) and STOXX-50 (Europe) as well. The training
set includes data from October 2010 to June 2015 and the test set contains data from July 2015 to
February 2017.

To assess the accuracy of the VIX Heston model, one must first calibrate the model according to
Equation (17). Using the US training set described above, we obtain

ΩHeston
t (X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κt = 1.0,
v0,t = (0.0140 + 0.0090 · VIXt)

2 ,
v̄t =

(
0.0957 + 0.0087 · VIXfiltert

)2 ,
γt = 9.6479 · 10−5 + 0.0270 · VIXt,
ρt = −0.7294.

(39)
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The calibrated parameters of the UK and Europe datasets can be found in Appendix C.
The accuracy is assessed by comparing the predicted to the observed implied volatility surfaces
of the test set, according to the following error measures,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SSE = ∑
t,K,T

(
σMarket(t, K, T)− σHeston(t, ΩHeston

t , K, T)
)2

,

MAE = 1
Nσ

∑
t,K,T

∣∣∣σMarket(t, K, T)− σHeston(t, ΩHeston
t , K, T)

∣∣∣ ,
R2 = 1 − SSE

∑
t,K,T

(σMarket(t,K,T)−σMarket)
2 ,

R2
Min = min

t

{
R2

t : t ∈ [tmin, tmax]
}

,

(40)

where ΩHeston
t is defined as the predicted parameter set, Nσ as the total number of observed implied

volatilities and σMarket as the average of all observed implied volatilities. The corresponding results are
displayed in Table 2. The predicted paths for the Heston parameters of the US dataset can be found in
Figure 3. The predicted paths of the Heston parameters of the UK and Europe dataset are graphically
presented in Appendix C.

Table 2. Out-of-sample accuracy of the regression models according to the error measures defined
in Equation (40).

SSE MAE R2 R2
Min

US
VIX Heston 0.2286 0.0124 0.8948 0.8159
Unrestricted 0.0185 0.0034 0.9915 0.9798

UK
VIX Heston 0.0577 0.0093 0.9340 0.7401
Unrestricted 0.0126 0.0045 0.9855 0.9690

Europe
VIX Heston 0.0433 0.0078 0.9389 0.7693
Unrestricted 0.0154 0.0051 0.9783 0.9190

Figure 3. Prediction results Heston parameters of the US dataset.
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The regression model loses some accuracy compared to the unrestricted model. On average, there
is an error of 0.003 between the implied volatility and the unrestricted Heston model in the US dataset,
which is approximately equal to an error of 2.2%. The VIX Heston model has an average absolute
error of 0.012, which corresponds to a 7.7% error. Thus, by implementing the regression models, we
introduce an additional error of 5.5%, on average. The accuracy of the VIX Heston model in the UK
and Europe datasets is even higher, where the accuracy loss is equal to 2.9% and 1.2%, respectively.

Finally, we discuss the predictions obtained in dependence of parameter γ. In the US dataset,
the prediction of γ is relatively inaccurate (see Figure 3), as the out-of-sample correlation to the
VIX index is much lower than the in-sample correlation (0.86 in-sample versus 0.32 out-of-sample).
In the UK and Europe datasets, this phenomenon does not seem to be present and consequently the
predictions of γ are much more accurate (see Figures A1 and A2 in Appendix C). This also explains
why the implied volatility surface predictions in the UK and Europe datasets are more accurate than
the US predictions, as can be seen in Table 2. Thus, there appears to be another, yet unknown, factor
driving γ in the US dataset, which is absent in the UK and Europe datasets. Analysis of the cause of
this phenomenon might be a topic for future study. However, in this research, we assume that the VIX
Heston model is sufficiently accurate to describe the dynamic behaviour of the Heston parameters,
as γ only has a minor effect on the implied volatility surface.

5.2. SCR Impact Study

In this test, we assess the impact of assuming time-dependent risk-neutral parameters, according
to three scenarios. Each scenario corresponds to a different initial market and consequently the initial
expected liabilities, L0, will differ. We assume a no-arbitrage fee, i.e., a fee for which L0 is equal to zero.
The general contract details of the variable annuity can be found in Table 3 and the initial values of the
different scenarios accompanied with the fair premiums are presented in Table 4.

Table 3. General contract details of the GMAB rider.

Parameter Value

F0 1000
G 1000

TGMAB 10
r 0.04

Table 4. Initial values and fair premiums of the GMAB rider.

Parameter Scenario 1 Scenario 2 Scenario 3

v0 0.04 0.01 0.27
v̄0 0.08 0.025 0.24
γ0 0.55 0.05 1.4

αGMAB 0.0174 0.0057 0.0345

We assume the fund value to follow a GBM with initial value F0 = 1000, so the fund value follows
Equation (7). The VIX index is modelled simultaneously, following a mean-reverting path{

dvixt = κvix(vixMean − vixt) + γvixvixλvix
t

(
ρvixdWS

t +
√

1 − ρ2
vixdWvix

t

)
,

VIX = 100 · vix.
(41)

The process parameters are estimated with the generalized Method of Moments (see Hansen (1982)),{
σ = 0.21, μ = 0.05, κvix = 4.964, vixMean = 0.207,
γvix = 1.859, λvix = 1.271.

(42)
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Moreover, we set ρvix = −0.75, which is in line with observations in the risk-neutral market.
The SDEs are discretized by the Milstein scheme.

5.2.1. Guaranteed Minimum Accumulation Benefit

We have simulated 100,000 real-world trajectories and evaluated the loss function as defined in
Equation (4) under the two risk-neutral measures (with either constant or time-dependent parameters).
This way, we are able to construct and compare the probability density functions under these measures.
This process is repeated for the three different scenarios that are presented in Table 3. In Figure 4,
we have graphically represented the impact on the probability density function of the loss distribution
for the different scenarios. Moreover, the Solvency Capital Requirements associated with these
distributions can be found in Table 5.

Table 5. Solvency Capital Requirement of the scenarios for the original and time-dependent
risk-neutral measure.

Original Time-Dependent

Scenario 1 170.1 195.5
Scenario 2 166.9 237.5
Scenario 3 178.8 150.8

Figure 4. Probability density functions of the one-year loss distribution for a variable annuity with the
GMAB rider, under the original and time-dependent risk-neutral measure. Scenario 1 = average initial
volatility; Scenario 2 = low initial volatility; and Scenario 3 = high initial volatility.

The impact on the probability density functions and the Solvency Capital Requirements is
substantial and we wish to highlight a few noteworthy features.

The loss distribution under the original risk-neutral measure appears to be centred around 0,
independent of the initial conditions. The one-year loss is defined as the difference between the policy
value at the times t = 0 and t = 1. On average, the policy value will not change significantly if the
risk-neutral parameters stay the same. Therefore, the loss distribution must be centred around 0, as long
as the initial risk-neutral parameters do not change. The loss distribution under the time-dependent
risk-neutral measure, on the other hand, heavily depends on the risk-neutral parameters at t = 0.
Consider Scenario 2 for example. Initially, the volatility, v̄ and γ are relatively low, resulting in low
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initial expected liabilities. However, according to the mean-reverting VIX index, these parameters
are more likely to increase over time and with them, the expected liabilities. Consequently, the
one-year losses are much higher compared to those under the original risk-neutral measure, which still
assumes the relatively low initial parameters at t = 1. In Figure 4, this effect is clearly visible where
the loss function is shifted to the right. Conversely, the one-year losses under the time-dependent
risk-neutral measure in Scenario 3 are much lower, as the expected liabilities are more likely to decrease.
In conclusion, when the initial volatility is low (high), we can expect a higher (lower) SCR under the
time-dependent risk-neutral measure. In the 2008 credit crisis, this resulted in a higher SCR before the
crisis and a lower SCR during the crisis.

Besides the shifted mean, the loss distribution under the time-dependent risk-neutral measure also
tends to have heavier tails, which is especially visible in Scenario 1. This is caused by the fact that v̄ and
γ depend on the state of the market, which results in more extreme losses (or gains). If, for example,
the market crashes, v̄ and γ are likely to increase. This will generate even higher expected liabilities,
resulting in even higher losses. However, if the market flourishes, v̄ and γ tend to be much lower,
leading to lower expected liabilities and lower losses (or higher gains). This feature is present in all
scenarios of Figure 4, but is best visible in Scenario 1, where the probability of an extreme loss as
well as the probability of an extreme gain is higher under the time-dependent risk-neutral measure.
Consequently, the SCRs under the two risk-neutral measures are not necessarily equal, not even when
the initial conditions are equal to the average market conditions (such as in Scenario 1).

To give a broad overview of the impact, we determine the SCR of a variable annuity with the
GMAB rider for multiple points in time. The contract details presented in Table 3 remain unchanged,
but the initial parameters depend on historical data. For computational purposes, the parameter α is
assumed to be constant and equal to 0.01. In this test, we compare four different risk-neutral measures:

1. A time-dependent risk-neutral measure where all parameters depend on the simulated state of
the market.

2. A risk-neutral measure where F1 and v1 depend on the simulated market and the risk-neutral
parameters are equal to the parameters as observed on t = 0. This measure is equivalent to the
original risk-neutral measure that we have previously defined.

3. A risk-neutral measure where F1 and v1 depend on the simulated market and the risk-neutral
parameters are equal to the parameters as observed on t = 1. We refer to this measure as the
future risk-neutral measure.

4. A risk-neutral measure where F1 and v1 depend on the simulated market and the risk-neutral
parameters are equal to the realized regression model predictions at t = 1 of Figure 3. This measure
is different from the time-dependent risk-neutral measure, as it depends on the realized state VIX,
instead of the simulated VIX. We refer to this measure as the future VIX risk-neutral measure.

Thus far, we have applied the first two risk-neutral measures in our analysis. The latter two
measures can only be applied on historical data (otherwise, the observed parameters at t = 1 are
undefined) and are merely added for explanatory purposes. Ideally, the SCRs under the future and
the future VIX risk-neutral measure are equal. The difference between these measures is caused
by prediction errors of the regression model. Hence, the difference between the SCRs under these
measures be is indication for the accuracy of the regression models.

In Figure 5, the results under the different risk-neutral measures are displayed. The difference
between the original and time-dependent risk-neutral measure is also summarized in Table 6.
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Figure 5. SCR over time under the different risk-neutral measures.

Table 6. Difference in SCR between original and time-dependent risk-neutral measure.

Value %

Mean absolute difference 41.1 28.7%
Maximum absolute difference 85.3 52.0%

5.2.2. Discussion on Impact

The impact on the SCR is significant, with a maximum absolute difference of over 50%. Moreover,
the difference appears to be structural over time, with a mean absolute difference of almost 30%.
The results in Figure 5 also contain some stylized facts that we have already seen in Figure 4 and we
discuss them by distinguishing different time periods:

• 2005–2007: The volatility in these years was relatively low and this translates to a somewhat higher
SCR under the original measure and an even higher SCR under the time-dependent measure,
which is similar to Scenario 2. The SCR under the future measure is rising, due to higher expected
liabilities at t = 1, indicating that more volatile times are coming.

• Early 2008: The market has not crashed yet, but volatility is starting to increase, resulting in a
smaller difference between the time-dependent and original measures, which is comparable to
Scenario 1. The future measure, however, takes the fact that the market will crash into account.
Hence, the SCR is the highest under the future measure.

• Late 2008–2012: During these years, several spikes occurred in the implied volatility surface, which
will increase the initial liabilities and therefore the expected losses will decrease, analogously to
Scenario 3. This results in lower SCRs during this period. Moreover, we see that the SCRs under
the future risk-neutral measure are lowest during these highly volatile periods, since this measure
depends on the realized market at t = 1, which has returned to its less volatile state. Consequently,
the expected liabilities at t = 1 and the SCR are the lowest under the future risk-neutral measure.

• 2013–2017: This period is comparable to 2005–2007, apart from the fact that the volatility is
approximately constant throughout these years. This translates into an almost equal SCR
prediction under the original and future risk-neutral measures.

The difference between the future and future VIX measures is small. This means that the expected
liabilities at t = 1 are almost equal under both measures, indicating the accuracy of the regression
model, at least for the realized states of the market. Under the assumption that the simulated markets
behave similar to historical observations, this means that expected liabilities at t = 1 under the
time-dependent measure will be in line with the simulated states of the market.

Finally, we also mention that we performed a very similar study for the GMWB product.
Essentially, the same results were obtained in that case, however, the impact was somewhat less severe.
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6. Conclusions

The research in this paper was motivated by the open question of how to value future guarantees
that are issued by insurance companies. The future value of these guarantees is essential for regulatory
and Asset Liability Management purposes. The complexity of the valuation is found in the fact that,
first, these guarantees involve optionalities and thus need to be valued using the risk-neutral measure;
and, second, whereas this measure is well-defined at t = 0, the future risk-neutral measure, at future
time t = 1, is debatable.

For a large part, the liabilities evolve according to real-world models and, therefore, the future
values of these guarantees need to be computed conditionally on the real-world scenarios. In this
paper, we demonstrate the benefits of option valuation under a new, so-called PQ measure in Asset
Liability Management. This is done by modelling the Heston model parameters, which form the
parameterization of the implied volatility surface, conditional on the real-world scenarios.

Basically, we advocate the use of dynamic risk-neutral parameters in the cases in which we need
to evaluate asset prices under the P measure, before an option value is required at a future time point.
It means that the development of the real-world asset paths in the future are taken into account in the
option valuation.

A hedge test was implemented for an academic test case, where the dynamic strategy
outperformed the strategy with static parameters. Importantly, the results from this hedge test
case were confirmed by a hedge test based on 12 years of empirical, historical data. Several conclusions
have already been given after each of the structured test experiments is presented.

The results obtained by the strategy for the Solvency Capital Requirement of the variable annuities
exhibited differences of even 50%, as compared to the conventional risk-neutral pricing of these
annuities. Next to that, we saw that the SCR was significantly less pro-cyclical under the new approach,
which is a highly desired feature.
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Appendix A. Least-Squares Monte Carlo Method

In this section, we briefly describe the numerical techniques employed, which are based on the
well-known least-squares Monte Carlo method.

The Least-Squares Monte Carlo method was first proposed by Longstaff and Schwartz (2001)
for the valuation of American options. However, Bauer et al. (2010) were the first to implement it
in an SCR context, to the best of our knowledge. The main purpose of the Least-Squares Monte
Carlo algorithm is to reduce the number of inner simulations, possibly even to one path. In the first
phase, a regression function is constructed using these inner estimates. The accuracy of the inner
estimates is drastically reduced by reducing the number of inner simulations, but, by combining the
results of all outer simulations, the inner errors cancel out. In the second phase of the algorithm, this
regression function is used to evaluate the conditional expectation at t = 1, without the need for inner
simulations. For more details regarding the Least-Squares Monte Carlo algorithm, we refer the reader
to Bauer et al. (2010).
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Appendix B. Dynamic Heston Model

Based on the methodologies of Alexander et al. (2009), we assume v̄ and γ in Equation (13) to be
stochastic in the hedge test, i.e.,⎧⎪⎨⎪⎩

dv̄t = κv̄(v̄Mean − v̄t)dt + av̄v̄t

(
ρv̄dW2

t +
√

1 − ρ2
v̄dWv̄

t

)
,

dγt = κγ(γMean − γt)dt + aγγt

(
ργdW2

t +
√

1 − ρ2
γdWγ

t

)
,

(A1)

with the speed of mean reversion parameters κv̄ and κγ, long-run averages v̄Mean and γMean, volatilities
av̄ and aγ and correlations ρv̄ and ργ. Moreover, Wv̄

t and Wγ
t are defined as independent Brownian

motions. Note that, with the parameters ρv̄ and ργ close to 1, a high correlation with the volatility
process is indicated, which is expected based on historical data. Under these assumptions, the option
price is driven by the changes in v̄ and γ as well, giving

CDynamic
t ≡ C (t, St, vt, r, v̄t, γt, κ, ρ, K, T) . (A2)

Next, we give details about the discretization of the dynamic Heston model. We can rewrite the
dynamic Heston model with time-dependent v̄ and γ as follows⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dXt = (r − 1
2 vt)dt +

√
vt

(
ρdWv

t +
√

1 − ρ2dWS
t

)
,

dvt = κ(v̄t − vt)dt + γt
√

vtdWv
t ,

dv̄t = κv̄(v̄Mean − v̄t)dt + av̄v̄t

(
ρv̄dWv

t +
√

1 − ρ2
v̄dWv̄

t

)
,

dγt = κγ(γMean − γt)dt + aγγt

(
ργdWv

t +
√

1 − ρ2
γdWγ

t

)
,

(A3)

with Xt = log(St). We can simulate vt and St with the Quadratic Exponential scheme proposed in
Andersen (2008), with as minor difference that v̄ and γ are different in each time-step. The next step is
to simulate v̄t and γt, such that they are correlated to vt. First, we discretize the processes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt+Δt ≈ vt + κ
(

v̄t − vt+vtΔt
2

)
Δt + γt

√
vt+vtΔt

2 ΔtZv,

v̄t+Δt ≈ v̄t + κ(v̄Mean − v̄t)Δt + av̄ρv̄ v̄t
√

ΔtZv + av̄v̄t

√
Δt(1 − ρ2

v̄)Z
v̄

+ 1
2 a2

v̄ v̄t
(
(Zv̄)2 − dt

)
,

γt+Δt ≈ γt + κ(γMean − γt)Δt + aγργγt
√

ΔtZv + aγγt

√
Δt(1 − ρ2

γ)Zγ

+ 1
2 a2

γγt
(
(Zγ)2 − dt

)
,

(A4)

where Zv, Zv̄ and Zγ are independent standard normal distributed random variables. Now, we are
able to derive an approximation for Zv, given vt+Δt,

√
ΔtZv ≈ 1

γt

√
vt+vt+Δt

2

(
vt+Δt − vt − κ

(
v̄t −

vt + vt+Δt
2

)
Δt
)

. (A5)

This approximation can be substituted into Equation (A4), which ensures the correlation between
vt, v̄t and γt.
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Appendix C. VIX Heston: UK and Europe

Appendix C.1. Calibrated Parameters

Appendix C.1.1. Parameters obtained from UK data

ΩHeston
t (X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κt = 1.0,
v0,t = (−0.0014 + 0.0096 · VFTSEt)

2 ,
v̄t =

(
0.0590 + 0.0110 · VFTSEfiltert

)2 ,
γt = 0.2556 + 0.0206 · VFTSEt,
ρt = −0.6858.

(A6)

Appendix C.1.2. Parameters obtained from Europe data

ΩHeston
t (X) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κt = 1.0,
v0,t = (0.0013 + 0.0094 · VIXt)

2 ,
v̄t =

(
0.0518 + 0.0100 · VIXfiltert

)2 ,
γt = 0.0571 + 0.0252 · VIXt,
ρt = −0.6471.

(A7)

Appendix C.2. Predicted Parameters

Appendix C.2.1. Parameters predicted for UK

Figure A1. Prediction results Heston parameters of the UK dataset.

241



J. Risk Financial Manag. 2018, 11, 67

Appendix C.2.2. Parameters predicted for Europe

Figure A2. Prediction results Heston parameters of the Europe dataset.
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