
﻿Rem
ote Sensing for Land Adm

inistration   •   Rohan Bennett, Peter van O
osterom

, Christiaan Lem
m

en and M
ila Koeva

Remote Sensing 
for Land 
Administration

Printed Edition of the Special Issue Published in Remote Sensing

www.mdpi.com/journal/remotesensing

Rohan Bennett, Peter van Oosterom, 
Christiaan Lemmen and Mila Koeva

Edited by



Sensing forRemote
Land Administration





Sensing forRemote 
Land Administration

Editors

Rohan Bennett

Peter van Oosterom

Christiaan Lemmen

Mila Koeva

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Peter van Oosterom

TU Delft

The Netherlands

Christiaan Lemmen

University of Twente

The Netherlands

Editors
Rohan Bennett 
Swinburne University 
of Technology

Australia

Mila Koeva

University of Twente 
The Netherlands

Editorial Office

MDPI
St. Alban-Anlage 66 
4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Remote Sensing (ISSN 2072-4292) (available at: https://www.mdpi.com/journal/remotesensing/

special issues/Land Administration).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03943-054-3 (Hbk) 
ISBN 978-3-03943-055-0 (PDF)

Cover image courtesy of Paula Dijkstra.

c© 2020 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Rohan Bennett, Peter van Oosterom, Christiaan Lemmen and Mila Koeva

Remote Sensing for Land Administration
Reprinted from: Remote Sens. 2020, 12, 2497, doi:10.3390/rs12152497 . . . . . . . . . . . . . . . . . 1

Seula Park and Ahram Song

Discrepancy Analysis for Detecting Candidate Parcels Requiring Update of Land Category in
Cadastral Map Using Hyperspectral UAV Images: A Case Study in Jeonju, South Korea
Reprinted from: Remote Sens. 2020, 12, 354, doi:10.3390/rs12030354 . . . . . . . . . . . . . . . . . 9
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Abstract: Land administration constitutes the socio-technical systems that govern land tenure, use,
value and development within a jurisdiction. The land parcel is the fundamental unit of analysis.
Each parcel has identifiable boundaries, associated rights, and linked parties. Spatial information is
fundamental. It represents the boundaries between land parcels and is embedded in cadastral sketches,
plans, maps and databases. The boundaries are expressed in these records using mathematical or
graphical descriptions. They are also expressed physically with monuments or natural features.
Ideally, the recorded and physical expressions should align, however, in practice, this may not
occur. This means some boundaries may be physically invisible, lacking accurate documentation,
or potentially both. Emerging remote sensing tools and techniques offers great potential. Historically,
the measurements used to produce recorded boundary representations were generated from
ground-based surveying techniques. The approach was, and remains, entirely appropriate in many
circumstances, although it can be timely, costly, and may only capture very limited contextual
boundary information. Meanwhile, advances in remote sensing and photogrammetry offer improved
measurement speeds, reduced costs, higher image resolutions, and enhanced sampling granularity.
Applications of unmanned aerial vehicles (UAV), laser scanning, both airborne and terrestrial (LiDAR),
radar interferometry, machine learning, and artificial intelligence techniques, all provide examples.
Coupled with emergent societal challenges relating to poverty reduction, rapid urbanisation, vertical
development, and complex infrastructure management, the contemporary motivation to use these new
techniques is high. Fundamentally, they enable more rapid, cost-effective, and tailored approaches to
2D and 3D land data creation, analysis, and maintenance. This Special Issue hosts papers focusing
on this intersection of emergent remote sensing tools and techniques, applied to the domain of
land administration.

Keywords: UAV; LiDAR; automated feature extraction; cadaster; land registration; land use
planning; SDGs

1. Introduction

Land administration is the process of recording, securing, and disseminating information about
land tenure, value, use, and development, within a jurisdiction [1]. As a study area, soft systems
methodology, socio-technical systems, and geo-information science provide contemporary theoretical
foundations [2]. Conventionally, the primary unit of concern is the land parcel-a multi-dimensional
spatial extent, with associated rights, and a party who is said to hold those rights [3]. In practice,
land administration aggregates all the land parcel information into a system, enabled through the
mandate of prescribed administrative roles, processes, and supportive technologies [4]. The functioning

Remote Sens. 2020, 12, 2497; doi:10.3390/rs12152497 www.mdpi.com/journal/remotesensing1
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system enables land dispute resolution, transaction controls, credit access, land transfer, land valuation,
land taxation, changes in land use, and development decisions [5]. Modern land administration
systems utilize information technology: existing paper records are digitized, manual recording and
dissemination processes digitalized, with all aspects being constituted into a publicly accessible land
information system [6].

In more developed contexts, land administration systems have generally developed, over the
centuries, from narrowly purposed land registries and cadastres, into whole-of-jurisdiction
multi-purpose systems, to support the contemporary policy objectives of good governance and
sustainable development [7,8]. In developing contexts, much effort is afforded in establishing or
renewing systems. Challenges stemming from anachronous colonial-era systems; limited techniques
for recording customary forms of tenure; the lack land rights records of women; the want of legal
documentation for the legitmate rights of the poor and vulnerable; and scarce technical skills and
capacity—all conspire to impede responsible land administration development [9–11]. Meanwhile,
all systems, regardless of the country context, are challenged by the emergent demands of rapid
urbanization, climate-change response, digital transformation (and e-services), gender equality,
and demands for openness and transparency [12,13]. In practical terms, this results in research,
development and implementations relating to 3D (and 4D) cadastres [14,15], domain standardization
and interoperability [3,16,17] (e.g., ISO 19152 Land Administration Domain Model LADM and
ISO TC211), land rights fractionalization and new database structures [18] (e.g., big data analytics,
NoSQL, and blockchain), fit-for-purpose land administration [19], and novel land data collection
approaches [20–22].

The abovementioned developments confirm spatial information is a central concern of land
administration systems. Spatial information delineates the boundaries between lands parcels.
These boundaries can be ‘general’ or ‘fixed’ in nature [1]. To be recognized, the boundaries require
‘perception’ of existence by a community; an explicitly defined ‘purpose’; an actual or physical field
‘presence’, a defined ‘period-in-time’ of application, and a ‘presentation’ or documented representation
(which may be digital) [23]. More recently, clarification of the interrelationship between the physical,
documented, and digital aspects is provided [24,25].

Conventionally, ground-based survey methods, often underpinned by local or national geodetic
networks, support making observations, demarcating boundaries, and surveying boundary information.
This in turn enables the derivation of boundary coordinates [24]. These coordinates enable a parcel to be
recorded and represented on survey sketches, cadastral plans, cadastral maps, and in the contemporary
era, cadastral databases. Over time, surveying tools and techniques have improved: rudimentary
rope surveys, plane table usage, theodolite application, and electronic distance measurement (EDM),
have given way to total stations and high-precision global navigation satellite systems (GNSS) (Note:
whilst the survey and receiver are ground-based, the space segment (i.e. GNSS satellites) are not) [1,8].
These approaches have been argued to deliver the prescribed coordinate accuracies, often set, it must
be said, overly bluntly, at centimeter-level in surveying laws and regulations [19].

More recently, increasing attention is afforded to applying advances in photogrammetry and remote
sensing to the domain land administration. In the context of land administration, these approaches
are considered ‘indirect’ surveying techniques, in contrast to ‘direct’ or ground-based methods [26].
Photogrammetry is the techniques and tools for extracting multi-dimensional geospatial information
from images, needed for mapping activities [27]. Remote sensing is the process of scanning or
monitoring the physical characteristics of the surface of the earth, measuring the emitted radiation at a
distance. For this purpose, cameras, sensors or scanners with RGB (red, green, blue), hyperspectral,
LiDAR (light detection and ranging), or RADAR (radio detection and ranging) capabilities are used.
These sensors can be mounted on conventional aerial vehicles (i.e., airplanes), space-borne satellites
(i.e., enabling high and very-high resolution satellite imagery (HRSI and VHRSI), unmanned aerial
vehicles (UAVs), amongst others [28]. It is worth noting that whilst application of photogrammetry and
remote sensing to land administration has a lengthy history [29], it is the novel tools and techniques
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emerging in those fields that drive renewed and increased interest. These are specifically focused on
the transfer of ‘cadastral intelligence’ from human actors to machines [30], and make use of enhanced
image processing tools, artificial intelligence, and machine learning techniques [31].

The abovementioned developments in remote sensing and photogrammetry, applied to land
administration, are the focus of this special issue. The aim is to provide a snapshot of contemporary
experimentations, demonstrations, implementations, and impacts from a diverse range of case contexts.
From a broad perspective, the special issue presents: (i) comparisons of alternate remote sensing
techniques for 2D and 3D data capture relevant to land administration (including UAV imagery,
VHRSI, RADAR, LiDAR, and multi-spectral approaches); (ii) design and testing of techniques for 2D
and 3D cadastral feature extraction from remotely-sensed data sources (including machine learning,
pattern recognition, neural networks, semi-automated methods, algorithm design, and object-based
approaches); (iii) modelling of data production workflows for scaled 2D and 3D cadastral production
(including segmentation techniques, line extraction, contour generation, and pre/post-processing
requirements); and (iv) observations from illustrative cases highlighting leading practices in data
integration and utilization for 2D and 3D land administration (including both city, provincial,
and national level examples). More specifically, the special issue consists of nine (9) individual
works; developed by multi-disciplined research and practitioner teams; across Europe, Asia, and Africa;
variously using qualitative and quantitative research methods with a diversity of daya sources; all with
reference back to land administration applications (Table 1). The next section outlines each work and
synthesizes the overarching contribution of the special issue.

Table 1. Remote sensing applications for land administration presented in this issue.

Source Title Country Applications Techniques Data

Park and
Song

Discrepancy Analysis for
Detecting Candidate Parcels
Requiring Update of Land
Category in Cadastral Map
Using Hyperspectral UAV

Images: A Case Study in Jeonju,
South Korea

South Korea

Automated land
use classification;
land tenure and

cadastral
updating; land

value

Convolutional neural
network (CNN);

Inconsistency
comparison

UAV
hyperspectral;
cadastral map

Koeva et al.
Innovative Remote Sensing

Methodologies for Kenyan Land
Tenure Mapping

Kenya
Land tenure and

cadastral
mapping

UAV survey; Machine
learning; Nominal

Group Technique (NGT);
Semi-Structured

Interviews;
Questionnaires; Group

Discussion

UAV RGB; sketch
maps; human
perceptions

Lee and De
Vries

Bridging the Semantic Gap
between Land Tenure and EO

Data: Conceptual and
Methodological Underpinnings

for a Geospatially Informed
Analysis

North Korea
Land tenure and

cadastral
mapping; land

use change

Research synthesis;
Manual image
interpretation

HRSI and aerial
RGB (Google

Earth); Landsat7;
academic
literature

Crommelinck
et al.

Application of Deep Learning
for Delineation of Visible

Cadastral Boundaries from
Remote Sensing Imagery

Ethiopia,
Kenya,

Rwanda

Land tenure and
cadastral
mapping

Image segmentation
(MCG); machine

learning (RF and CNN)

Aerial RGB UAV
RGB; cadastral

map

Koeva et al.
Towards 3D Indoor Cadastre

Based on Change Detection from
Point Clouds

The
Netherlands

Land tenure and
cadastral
updating

Point cloud change
detection techniques

Point clouds
(mobile mapping

system,
Zeb-Revo); Riegl;

architectural
plans

Yan et al.
Towards an Underground

Utilities 3D Data Model for
Land Administration

Singapore

Land tenure and
cadastral

mapping; land
use and

development

3D modelling and
visualisation

Stream EM GPR
and Leica

Pegasus Two
photo and laser
scanning data;
cadastral data

Xia et al.
Deep Fully Convolutional

Networks for Cadastral
Boundary Detection from UAV

Images

Rwanda
Land tenure and

cadastral
mapping and

updating

Machine learning; Fully
Convolutional Network
(FCN); Multi-Resolution

Segementation (MRS);
Globalized Probability

of Boundary (gPb)

UAV RGB;
cadastral map
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Table 1. Cont.

Source Title Country Applications Techniques Data

Fetai et al.
Extraction of Visible Boundaries
for Cadastral Mapping Based on

UAV Imagery
Slovenia

Land tenure and
cadastral

updating and
mapping

Exelis Visual
Information Solutions

(ENVI) feature
extraction

UAV RGB; GNSS;
cadastral map

Claudia
Stöcker et al.

Unmanned Aerial System
Imagery, Land Data and User

Needs: A Socio-Technical
Assessment in Rwanda

Rwanda

Land Use; Land
Tenure; Land
Development

Cadastral
Updating

NGT; interviews;
workshop; UAV survey

UAV RGB; GNSS;
cadastral map

2. Overview of Contributions

The works making up this Special Issue are presented in reverse chronological order of acceptance.
This was considered the most straight forward approach to administer and was also deemed to be the
most unbiased. Further justification lies in the fact that whilst there are demonstratable clusters of
like-contributions in terms of geographic focus, applications, techniques, and data used, the number of
contributions (9) is not considered onerous to comprehend, and each individual work brings its own
unique contribution.

First, inspired to deliver an alternative to ground-based surveying for the collection of
non-boundary cadastral information, Park and Song [32] present a study aimed at remote identification
of the discrepancy between existing cadastral maps (which include use information), and current
on-ground land uses. The proposed method involves updating the existing land cover attributes of
a land parcel maps using UAV hyperspectral imagery classified using CNN, and then composing a
discrepancy map showing land use differences. The experimental results out of South Korea demonstrate
performance relies heavily on the classification. An advantage of the approach is suggested to be
its flexibility regarding modification of the matching criteria between land use categories and land
coverage. The authors argue the method could be applied in other contexts and could significantly
reduce the time and effort for land use monitoring and field surveying.

Second, Koeva et al. [33] introduce a suite remote sensing approaches, developed, adapted,
applied, and tested for the case of land tenure recording in Kenya. These include a unique ontological
analysis approach using smart sketch maps (SmartSkeMa); UAV application; and automatic boundary
extraction techniques, based based on the acquired UAV images. To ensure applicability of the proposed
methodologies, local community needs and the broader governance implications are examined. For the
case location of Kajiado, the results show that SmartSkeMa requires little expertise for immediate
use, UAVs have high potential for creating up-to-date base maps, and automatic boundary extraction
appears an effective method for demarcation of visible tenure boundaries, even compared to traditional
methodologies and manual delineation.

Third, Lee and de Vries [34] seek to bridge the semantic gap between land tenure concepts
and remotely sensed or earth observation (EO) data. Specifically, they investigate the circumstances
where it is possible to rely on EO data to inform land administration applications, such as cadastral
mapping and land use change monitoring. Based on reviews of available EO data sources and
techniques, they hypothesize that it is possible to both qualify and quantify specific types of land tenure.
Furthermore, Lee and de Vries aim to standardize the identification and categorization of certain
objects, environments, and semantics visible in EO data that can support (re-)interpretation of land
tenure relations. Using North Korean as a case location, they illustrate that land tenure information,
in conjunction with EO data and image interpretation, support land administration practice.

Fourth, in a continuation of earlier work, Crommelinck et al. [35] present results from a semi-automatic
boundary delineation workflow, comprising image segmentation, boundary classification and an
interactive delineation based on UAV data. The application of CNN for boundary line classification is
shown to eliminate the previous need for Random Forest (RF) feature generation, and delivers a 71%
accuracy result. For the interactive delineation component, more intuitive delineation functionalities,
covering more application cases, are presented for large data sets in Kenya, Rwanda, and Ethiopia.
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The results show that the new approach is more effective in terms of minimizing clicks and time
requirements, compared to manual delineation of visible parcels boundaries. The most significant
advantages are observed for rural areas, where the delineation effort per parcel requires 38% less time
and 80% fewer clicks, compared to manual delineation.

Fifth, Koeva et al. [36] investigate the emerging areas of 3D cadastres and indoor boundary
recording. They demonstrate that most 3D cadastre research has focused on interrelations at the level of
buildings and infrastructures: analysis of interrelations in terms of indoor spaces has yet to be adequately
explored. The promising research illustrates the opportunity to use 3D point clouds to establish 3D
cadastral boundary data in indoor environments. The internal geometry changes of a building,
temporally speaking, can be automatically detected from point clouds. The geometry changes can be
linked with a data model such as LADM and included in a 3D spatial database, to support updating a
3D cadastre. The permanent changes (e.g., to walls and rooms) are automatically distinguished from
dynamic changes (e.g., human, furniture) and are able to be linked to the space subdivisions.

Sixth, Yan et al. [37] head below the surface to tackle the issue of underground land tenure mapping
and land use recordation. Increasing urban density and activity is resulting in public infrastructures
moving underground. However, precise and detailed spatial information of underground infrastructure,
the ownership of those underground objects, and knowledge on the interdependence of infrastructures
below and above the ground is still often missing. The research explores how to create reliable 3D
underground utility network maps for use in land administration. They investigate current issues
pertaining to existing underground utility databases, using Singapore as a case study. A framework
for underground utility data governance is proposed to manage the work process from data capture to
data usage. An initial design of the 3D underground utility data model is introduced. It describes 3D
geometric and spatial information about underground utilities data, and connects it to the cadastral
parcel for land administration. Additionally, data from mobile Ground Penetrating Radar is integrated
with the existing utility data in a 3D model in support of land administration of underground utilities.

Seventh, Xia et al. [38] explore the potential of deep FCNs for the novel application of cadastral
boundary detection in urban and semi-urban areas, based on UAV images. They test the performance
of FCNs against other state-of-the-art machine learning techniques, including MRS and gPb, in two
case study sites in Rwanda. Experimental results show that FCNs outperformed MRS and gPb in both
study areas and achieved an average accuracy of 0.79 in precision, 0.37 in recall and 0.50 in F-score.
Therefore, they are able to effectively extract cadastral boundaries, especially when a large proportion
of cadastral boundaries are visible. This automated method could minimize manual digitization and
reduce fieldwork, thus facilitating the current cadastral mapping and updating practices.

Eigth, Fetai et al. [39] seek to further developments on automated boundary extraction, based on
the use of high-resolution optical sensors mounted on UAV platforms. They investigate the potential
of the ENVI feature extraction (FX) module for data processing using Slovenia as a case location.
The results of the accuracy assessment showed that almost 80% of the extracted boundaries are correct,
when compared to the reference data. Fetai et al. argue the proposed workflow has the potential to
accelerate and facilitate the creation of cadastral maps, especially for developing countries. However,
they caution that the boundaries must be validated by landowners and other beneficiaries after
being extracted.

Finally, in a detailed socio-technical study for Rwanda, Stöcker et al. [40] determine the overarching
alignment between land administration stakeholder perceptions, the characteristics of the UAV data
acquisition workflows, and the final spatial data products obtainable. Additionally, three different
UAVs are tested for the quality of data obtainable and the possibilities for using of the technology within
the current institutional setting. A priority list of needs for cadastral and non-cadastral information,
as well as insights into operational challenges, and data quality measures, of UAV-based data products
is presented. It is concluded from the results that UAVs match most of the prioritized needs in Rwanda.
However, it is also revealed that institutional and capacity conditions undermine the potential.
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Overall, the selected works in this Special Issue demonstrate the growing opportunities for
applying innovations in remote sensing and photogrammetry (including laser scanning) to the domain
of land administration. This applies to outdoor, indoor, underground, and above ground environments.
The opportunities highlighted cover a wide range of land administration applications, from 2D land
tenure data capture, cadastral updating, land use classification in developing contexts, through to
underground utilities administration, 3D cadastral development, and indoor boundary identification
in more developed contexts. The range of available and applicable remotely sensed data types and
techniques is shown to be highly relevant to the land sector, and this should encourage further fusion
of the disciplines into the future.
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Abstract: The non-spatial information of cadastral maps must be repeatedly updated to monitor recent
changes in land property and to detect illegal land registrations by tax evaders. Since non-spatial
information, such as land category, is usually updated by field-based surveys, it is time-consuming
and only a limited area can be updated at a time. Although land categories can be updated by remote
sensing techniques, the update is typically performed through manual analysis, namely through
a visually interpreted comparison between the newly generated land information and the existing
cadastral maps. A cost-effective, fast alternative to the current surveying methods would improve
the efficiency of land management. For this purpose, the present study analyzes the discrepancy
between the existing cadastral map and the actual land use. Our proposed method operates in
two steps. First, an up-to-date land cover map is generated from hyperspectral unmanned aerial
vehicle (UAV) images. These images are effectively classified by a hybrid two- and three-dimensional
convolutional neural network. Second, a discrepancy map, which contains the ratio of the area
that is being used differently from the registered land use in each parcel, is constructed through a
three-stage inconsistency comparison. As a case study, the proposed method was evaluated using
hyperspectral UAV images acquired at two sites of Jeonju in South Korea. The overall classification
accuracies of six land classes at Sites 1 and 2 were 99.93% and 99.75% and those at Sites 1 and 2 are
39.4% and 34.4%, respectively, which had discrepancy ratios of 50% or higher. Finally, discrepancy
maps between the land cover maps and existing cadastral maps were generated and visualized.
The method automatically reveals the inconsistent parcels requiring updates of their land category.
Although the performance of the proposed method depends on the classification results obtained
from UAV imagery, the method allows a flexible modification of the matching criteria between the
land categories and land coverage. Therefore, it is generalizable to various cadastral systems and the
discrepancy ratios will provide practical information and significantly reduce the time and effort for
land monitoring and field surveying.

Keywords: Cadastral map; hyperspectral UAV; land category; land cover; land use; deep learning

1. Introduction

Cadastral maps show the boundaries and ownership of land parcels that separate adjacent land
plots. These maps contain spatial information, such as shape, size, boundary, and location, as well as
non-spatial information, such as land use, value, and tenure, which are uniquely encoded in textural
or attribute files [1]. Moreover, cadastral maps are available as large-scale base maps with micro-level
mapping [2]. As cadastral maps are related to personal properties, accurate cadastral mapping can
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improve agricultural productivity and support the national development policy [3]. Moreover, a
well-structured cadastral map is a prerequisite for improved land management services [4].

A cadastral map is updated by modifying the spatial and non-spatial data of the existing cadastral
maps to reflect the latest land information. High-quality cadastral mapping requires updating the
changes in land use information and the spatial division of property units [5]. The land use type,
which indicates the purpose of use, is registered and managed as an attribute of “land category” in a
cadastral system. Therefore, the items of land category can be assigned according to their land use
type, such as “Building site,” “Parking lot,” and “Road.” Cadastral map updates are essential for not
only recording the most recent land ownership and property division changes in a timely manner but
also effectively managing the land information. For example, updating is necessary when the land is
suddenly changed by new sub-divisions, transfer of land use, and natural disasters [6]. Furthermore,
from the aspect of tax imposition, which is a main purpose of land use management by cadastral
mapping [7], updating cadastral maps is crucial because the tax imposed on land owners depends
on their land use type. Frequent updates of cadastral information can better manage illegal land use,
whereby landowners register false land uses to reduce their taxes.

The procedure of updating cadastral maps can be divided into three steps: (1) extracting
meaningful features and generating new data, (2) comparing new data with the existing base map and
detecting changes, and (3) updating the base map with those changes and verifying the consistency
of the updated map and actual information [8–10]. As the step of extracting relevant features,
both up-to-date spatial and non-spatial information, such as parcel boundaries and land category,
can be generated. Traditionally, cadastral surveying is performed by field work, aerial monitoring,
and satellite data acquisition [5]. Although field surveying acquires accurate land information, it is
extremely time-consuming and requires well-trained manpower for wide-area implementation. Remote
sensing (RS) can be an effective alternative to field work because it is cheaper and faster compared
to conventional cadastral surveys [3], and it is a useful data source for many base map-updating
activities [8]. Cadastral boundaries set by roads, building, and water are visible in RS images and can
be mapped from them.

To consider both generation of cadastral information and the further step of updating, which
include a comparison between the generated information and existing cadastral maps, an integrated
method that improves the efficiency of cadastral mapping and updating was proposed [5]. Using three
bands of QuickBird satellite data, a digital and elevation model, and global navigation satellite system
(GNSS) data, this method registers fused images to the existing cadastral map. After superimposing the
boundaries of the cadastral map on the fused images, the map is updated by visual interpretation using
a participatory geographic information system. Furthermore, the cadastral image was updated using
CARTOSAT-2 panchromatic satellite images with 1.0 m resolution and Geo-eye multispectral images
with GNSS data and 0.5 m resolution [6]. In this study, cadastral maps were updated by extracting
the parcels from those images, along with three parameters (area, perimeter, and position) related
to spatial elements, while non-spatial elements were not considered. Wassie et al. [11] proposed a
procedure for extracting cadastral boundary information by semi-automatically using the WorldView-2
satellite data. In this study, the procedure of comparing the extracted information with the existing one,
which is reference digital parcel boundaries, was performed in two ways: visual interpretation and
quantitative analysis. The recentness of the information was not considered during the comparison,
because this study aimed at verifying the accuracy of the extracted information rather than change
detection for updating. Furthermore, the proposed procedure only focused on the parcel boundary,
which comprises spatial elements.

Several previous studies on cadastral mapping and updating dealt with non-spatial updates,
but focused only on extracting up-to-date information from the source date. The comparing and
detecting changes step of updates were dependent on visual interpretation or performed in a limited
range [2,9,10,12–14]. Specifically, Khadanga et al. [14] classified land use in cadastral parcels extracted
from high-resolution satellite imagery through object-based image analysis (OBIA). The result layer of
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OBIA was written into a shapefile and compared with a digitized map of the cadastral parcels. The
digitizing was manually performed and the comparisons were visually analyzed. Avramović et al. [12]
updated the status of rural land use only from digital cadastral maps. Although they compared the
land category items in the cadastral map with those in the real estate cadaster, they did not provide the
details of the comparison.

To automate the comparison between the newly generated and existing cadastral information,
the authors of [15] suggested a map-query-based comparison between the cadastral map and the
land-cover map from satellite images. They generated the land cover map from Landsat TM satellite
images and matched the land cover classes with the land category items in South Korea [15]. However,
the spatial resolution of satellite images is relatively high (30 m) and obtaining images at the desired
time is hindered by the time resolution and noise, such as cloud. After generating the land cover map,
the authors performed a binary analysis of the pixel-level inconsistency between the land cover and
cadastral maps. Although they analyzed heterogeneous data at the pixel-level, they calculated only
the ratio of inconsistent area to the entire test area without considering the inconsistency by parcels or
land category items. In conclusion, to improve the efficiency of the overall update process, it is vital to
automate the comparison of up-to-date information with existing cadastral maps and the detection of
parcel discrepancies.

When improving the efficiency of updating cadastral maps, one must consider the elaborateness
of the latest cadastral information generated through various cadastral surveys. Although aerial and
satellite surveying techniques acquire data over large-scale regions with superior spatial resolution,
they are influenced by weather conditions, old acquisition time, and military security problems [3,5].
Therefore, unmanned aerial vehicles (UAVs) have recently been deployed for extracting up-to-date
cadastral information. UAVs are cost-effective, especially in local applications, and acquire real-time
data at high spatial resolution [10,16,17]. Manyoky et al. [18] noted that UAVs collect detailed
information. Moreover, UAV-based methods enable an efficient documentation of the non-spatial
information in cadastral maps, such as land use and vegetation. Relevant features are often extracted
from orthophotos generated from UAV images using various feature-extraction methods such as
image classification, segmentations, and line extraction [9]. As an example of cadastral mapping
and updating with UAV imagery, areas subjected to landslides, which manifest as a sudden change
in land use, were automatically detected from UAV images [19]. The detected changes in land use
provided the basis information for synchronizing the cadastral information. However, the target
area was manually extracted through an overlay analysis between the information extracted from
the UAV and the cadastral map. Moreover, the updates were performed on limited target parcels
(landslide areas) rather than the whole area. Manyoky et al. [18] compared the use of UAVs with the
tachymeter–GNSS combined method in cadastral mapping and updating. The acquired points for
generating and updating the cadastral maps were classified by land cover, such as vegetation types,
buildings, and streets. However, the authors did not thoroughly describe the data processing steps for
generating and updating the cadastral information.

As mentioned earlier, the land category as non-spatial data directly affects land value estimation
and thus needs to be up-to-date in a short cycle. The inconsistency between the registered land
category and actual land use when updating cadastral maps is a well-reported problem in cadastral
mapping [12,13,17,20]. In South Korea, items of land category are determined based on the primary
use of each parcel [21], which is directly related to the assessment value of the land [15]. Therefore, it is
a legal obligation to correct the registration if the registered land information differs from the actual
land use information [21]. New information can be updated by the land owner’s registration. Fines or
imprisonment may be imposed for those who do not inform about a change in land category or a false
notification [21,22].

As the accuracy of an update is associated with ownership of property, the update must be verified
through a field survey. This is especially important for updates of cadastral systems (including maps).
Detecting the areas requiring update is crucial for reducing the target area of the field survey and
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improving the effectiveness of the field work. An automatic process would facilitate cadastral mapping
and updating. To this end, the present study proposes a new discrepancy analysis method that
automatically detects candidate parcels requiring an update of their land category information. The
proposed method is implemented in two stages: generating up-to-date land category information and
comparing the new information with the existing cadastral information. To effectively extract the land
cover, we use hyperspectral UAV images and a deep learning approach. Hyperspectral UAV images
can spectrally discriminate similar materials that cannot be identified in RGB or multi-spectral images
captured at specific times. In the latter stage, the land category information generated from a UAV
is compared with the existing cadastral map managed by the government. The comparison process
generates a discrepancy map representing the parcels requiring update. The major contributions of the
proposed method are stated below.

• For generating up-to-date land category information, we combine two-dimensional (2D) and
three-dimensional (3D) convolutional neural networks (CNNs) to classify hyperspectral UAV
images, and hence, generate the latest land category information at specific times and intervals.
Furthermore, the environmental settings for learning are demonstrated and the classification
results are analyzed to understand when the proposed network was applied to hyperspectral
UAV images.

• For detecting discrepancies between the new information and the existing cadastral information,
the efficiency of updating the registered land category is improved by a new technique that
automatically compares two sets of non-spatial information under different criteria and structures.

The remainder of this paper is organized as follows. Section 2 proposes our discrepancy analysis
method, and Section 3 describes the datasets, environmental conditions of the experiments, and the
results of a case study in South Korea. Finally, the conclusions are provided in Section 4.

2. Methods

As shown in Figure 1, the proposed method of discrepancy analysis comprises two main parts: (i)
classifying hyperspectral UAV images using the hybrid CNN for generating the land cover map and (ii)
comparing the consistency between the cadastral map and land cover map for detecting inconsistent
parcels through a query-based approach.

(1) The hybrid CNN with 2D and 3D kernels extracts the spatial–spectral features from hyperspectral
UAV images and obtains a land cover map depicting the regions covered by forests, crops, bare
soils, water, roads, and buildings. The images input to the hybrid CNN are pre-processed by
principle component analysis (PCA) to reduce the number of redundant spectral bands and the
computational cost. The hybrid CNN then classifies images by extracting various meaningful
feature maps. The resulting land cover map provides the latest land information on sites.

(2) To the procedure that automatically detects inconsistent parcels, two maps are input: the existing
cadastral map, which is managed by the government, and the land cover map, which is generated
from hyperspectral UAV image classification. To compare the heterogeneous datasets with
vector and raster structured data, the procedure adopts an encoding–decoding approach. The
final output is a discrepancy map generated through query-based comparison of the mapping
information in the land category items and the land cover classes in different frameworks.
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Figure 1. Proposed process of discrepancy analysis. UAV: unmanned aerial vehicle.

2.1. Step 1: Hyperpsectral UAV Image Classification For Generating the Land Cover Map

Hyperspectral images (HSIs) contain hundreds of narrow continuous bands over a wide range
of the electromagnetic spectrum. Therefore, they provide more detailed spectral information than
multispectral images and can spectrally discriminate similar materials. A land cover map derived
from HSIs distinguishes distinct classes, such as forest and crop land, which are included in the land
category framework. Level-I classes of land cover can be regarded as the usage information. In this
sense, the land cover information from HSIs contains not only the land surface materials but also the
land use. Furthermore, the latest land surface information of the target area can be extracted from UAV
images taken at the desired time point in the desired interval.

HSI classification methods should consider the high dimensionality of the dataset. Traditionally,
HSIs have been classified by pattern recognition algorithms, such as nearest neighbor, decision trees,
and linear functions [23]. k-nearest neighbor (k-NN) clustering is a representative simple method
that measures the similarities between the training and test data by using their Euclidean distances.
Support vector machines remove the curse of dimensionality by determining the boundaries in a
high-dimensional space, using the kernel method [23].

More recently, HSI classification has been performed by deep learning approaches. Deep learning
replaces the hand-crafted feature-engineering process, which requires expert experience and careful
parameter settings, with automatic extraction of the meaningful features contained in high-dimensional
bands [24]. CNNs have been widely applied to HSI classification tasks [25–28]. Many studies have
successively classified the items in hyperspectral images using 2D-CNNs, which extract features
from spatial domains [25,26]. Efficient feature extraction by 2D-CNNs requires a data transformation
process, such as data reduction, to convolute all bands of the input image. As HSIs include hundreds
of spectral bands, the convolutions require several kernels, which introduces the over-fitting problem
and increases the computational cost. 2D convolution is computed as follows:

vx,y
l, j = φ

⎛⎜⎜⎜⎜⎜⎝
∑

n

H−1∑

h=0

W−1∑

w=0

whw
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(l−1)n
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⎞⎟⎟⎟⎟⎟⎠, (1)

where vx,y
l, j is the pixel value of position (x, y) on the jth feature map in layer l (the layer of the current

operation); φ is the activation function; b is a bias parameter; and whw
ljn is the weight value at position

(h, w) in the nth shared H ×W kernel, where n is the number of feature maps in the (l− 1)th layer.

o(x+h)(y+w)

(l−1)n
is the input at position (x + h)(y + w) and (h, w) denotes its offset to (x, y).

3D-CNNs simultaneously extract the spatial and spectral features [27,28]. A 3D-CNN preserves
the original input data by avoiding complex data reconstruction and considers the relationships among
channels; however, 3D-CNNs are more computationally complex than 2D-CNNs. In classes with
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similar textures over many spectral bands, they can perform worse than 2D-CNNs [29]. The pixel
value at position (x, y, z) in the jth 3D feature cube of the lth layer is given as follows:

vx,y,z
l, j = φ

⎛⎜⎜⎜⎜⎜⎝
∑

n
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where R is the spectral dimension of the 3D kernel and whwr
ljn is the weight value at position (h, w, r),

connected to the nth feature in the (l− 1)th layer. o(x+h)(y+w)(z+r)
(l−1)n

represents the input at position

(x + h)(y + w)(z + r) and (h, w, r) denotes its offset to (x, y, z).
The abovementioned limitations can be resolved by hybridizing 2D- and 3D-CNNs [29]. In the

hybrid spectral CNN (HybridSN), the output of a 3D-CNN is input to a 2D-CNN. This configuration
learns the spatial representation at a more abstract level, with lower model complexity, compared to
the 3D-CNN alone. The present study proposes a new hybrid 2D-CNN and 3D-CNN for effectively
classifying hyperspectral UAV images (Figure 2). The network comprises 2D- and 3D-CNN branches
in convolutional layers, which generate various meaningful feature maps from the input. First, spectral
redundancy is removed by PCA along the spectral bands of the original HSI. The PCA image is then
processed through the convolutional layers with 2D and 3D kernels. The first convolutional layers of
both branches have eight filters, and the subsequent convolutional layers of the 2D and 3D branches
have 16 and 32 kernels, respectively. The outputs of the 3D convolutional layers are converted to a 2D
shape and the feature maps obtained from both branches are combined to form the spectral and spatial
feature maps. These maps are input to the fully connected layers. Finally, the pixels are classified into
land cover classes. In the next process, these land cover classes are mapped to the land category items
in the cadastral map. To reduce the complexity of the mapping and to generalize the model, we adopt
level-I types of land cover, namely forests, crop lands, roads, buildings, bare soil, and water bodies.

Figure 2. Process of step1 in discrepancy analysis: hyperspectral UAV image classification for generating
the land cover map. PCA: principle component analysis.

2.2. Step 2: Inonsistency Comparison Between the Cadastral Map and Land Cover Map

Our proposed pixel-level inconsistency comparison automatically detects the areas of inconsistent
land use between the registered and actual land information. In a previous study [30], a restructured
land use map was generated in vector format, which assigned the actual land cover classes from the
imagery as attributes and the cadastral boundary as the geometry. Although this map compares the
registered land categories in cadastral maps with the actual land use, it is limited to the primary land
use, which occupies the maximum area in each parcel. An elaborate comparison must consider all
land uses in each parcel. Figure 3 shows the process of comparing the actual land cover and cadastral
map at the pixel-level, which considers both minor and primary uses.
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Figure 3. Process of step 2 in discrepancy analysis: inconsistency comparison between cadastral and
land cover maps.

The proposed automatic comparison technique is then divided into three stages: “Encoding,”
“Decoding,” and “Query-based comparison” (Figure 3). Because the cadastral map and land cover
map are constructed in vector and raster formats, respectively, the automatic inconsistency comparison
must convert the heterogeneous datasets into the same structure prior to the overlay analysis [15]. The
first encoding step performs raster conversion using the cadastral map attributes. For this purpose,
the land category and parcel ID are assigned to each pixel of the rasterized cadastral maps, which have
the same pixel size as that of the land cover map. A combined raster map is then generated with coded
values Vij combining the land cover Cij, land category Uij, and parcel ID Pij values. An encoding
query is expressed as follows:

Vij = Pij × 104 + Uij × 102 + Cij ∀ (i, j). (3)

The second decoding stage vectorizes the combined raster map, which results in a vector map
combining the land cover and land category information. The attributes of the vector map include the
parcel ID, land cover, and land category, and their values are assigned by decoding the pixel values.

The combined vector map includes both the land category values and land cover values in a
unit area. Therefore, the inconsistent area can be automatically extracted through a query-based
comparison between the corresponding values in the previous stage. The land category items are
defined in terms of land use, and each item can contain multiple usages. For example, a “building
site” may include buildings and bare land, and a “school site” may include buildings, bare land, trees,
and grass. However, when extracting the land cover information from the imagery, the materials
and/or objects covering the land are extracted from the spectral characteristics of the image. When
constructing a query for comparing these two maps, we must define mapping rules that determine
the discrepancy between the land category items and land cover classes, which are classified under
different criteria. However, establishing an absolute standard for mapping land category items to
land cover classes is restricted because the land category items differ among country-specific cadastral
systems and the number of available classification classes depends on the quality of the imagery. In the
case study (Section 4.1), the mapping between land cover classes and land category items is performed
under the Korean Cadastral System as a guideline. An automatic comparison can be queried based on
the corresponding mapping information; the query result can automatically determine the discrepancy
between the land category and land cover. The discrepancy map can be generated by dissolving the
area based on parcel IDs. From the discrepancy map, we can calculate the portions of inconsistent
areas where the registered land category is different from the actual land cover in each parcel. Because
the discrepancy map is generated by comparing both the primary and minor land uses, it provides
reference data for the automatic detection of parcels that must be divided. Table 1 shows the proposed
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algorithm of a pixel-level comparison for detecting inconsistent areas; moreover, this algorithm can be
automated in the model builder of ArcGIS 10.1 [31] (Figure 4).

Table 1. Proposed algorithm of pixel-level inconsistency comparison.

Input: Land Cover Map (LC, Rraster)
Cadastral Map (CM, Vector)

1: # Encoding

2: R_Cate = rasterized CM by assigning values with “land
category”

3: R_PI = rasterized CM by assigning values with “Parcel ID”
4: w, h =width, height (image extent) of LC
5: CRM (Combined Raster Map) = empty raster layer with w × h
6: For each pixel (i,j) on CRM:
7: P(i, j) = assigned value of pixel (i,j) on R_PI
8: U(i, j) = assigned value of pixel (i,j) on R_Cate
9: C(i, j) = assigned value of pixel (i,j) on LC
10: Combined(i,j) = P(i, j) × 104 + U(i, j) × 102 + C(i, j)
11: assign value of Combined(i,j) on pixel (i,j) to generate CRM
12: end

Intermediate Output: Combined Raster Map (CRM, Raster)

13: # Decoding
14: CVM (Combined Vector Map) = Raster to Polygon (CRM)
15: For each polygon i on CVM:
16: PV(i) = pixel value of polygon i
17: CVM(i).p_id = PV(i)/104

18: CVM(i).category =
(
PV(i)%104 − PV(i)%102

)
/102

19: CVM(i).cover = PV(i)%102

20: CVM(i).area_ia, CVM(i).area_ca = 0
21: end

Intermediate Output: Combined Vector Map (CVM, Vector)

22: # Query-based comparison

23: Make query Q using mapping information between land
category and land cover

24: TF = Execute query Q on CVM
25: If TF == true:
26: CVM(i).area_ia = calculate area of polygon i
27: else:
28: CVM(i).area_ca = calculate area of polygon i
29: end

30: DM (Discrepancy Map) = Dissolve (CVM) based on p_id with
summation of area_ia and area_ca

31: For each polygon i on MDA:
32: DM (i).ic_ratio= area_ia(i)/area(i)
33: end

Output: Discrepancy Map (DM, vector)

Figure 4. Automated model for detecting inconsistent area.
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The generated discrepancy map can be utilized for another purpose: detecting parcels requiring
division. Specifically, because the cadastral map was created by assigning one land category value
(based on the primary use) per parcel, parcels with a high ratio of minor-use area must be divided
for efficient land management [21]. The proposed process reflects all uses of the land. Therefore, it
automatically detects inconsistent areas while detecting the parcels that must be divided into different
land use statuses.

3. Dataset

The dataset contained the hyperspectral UAV images acquired at two sites of Jeonju City in South
Korea. The hyperspectral UAV images were acquired on September 19, 2019, by a DJI Matrice 200 UAV
equipped with hyperspectral sensors (Corning microHSI SHARK 410). This platform had accurate
flight controls and inherent stability. Its spatial resolution was 15 cm and spectral resolution was 4
nm over 150 bands ranging from 398.78 to 996.74 nm. The flight path of the UAV was selected to
follow the waypoint at a flight height of 200 m. The whole study area (890 m× 730 m) was covered in
15 courses. Study sites of area 600 m× 600 m, where the errors associated with camera shaking and
gematric problems were few, were selected from the whole area. The images were registered using
the geographic map projection WGS-84. The center coordinates of Sites 1 and 2 were (35◦48′19” N,
127◦05′45” E) and (35◦47′16” N, 127◦07′14” E), respectively (Figure 5). These sites included crop lands,
forests, and building areas. Owing to the high spatial resolution of the hyperspectral UAV images,
objects such as vehicles, the centerlines of roads, and shadows, besides buildings and trees, could be
identified. As such information was unnecessary for updating the cadastral map, the spatial resolution
of the images was reduced to 60 cm to limit the number of classification classes and reduce the memory
requirements of deep learning. Prior to the classification, the images were pre-processed by geometric
and radiometric corrections based on GNSS and field spectrometry data.

 

Figure 5. Locations of the two study sites in South Korea, along with their UAV hyperspectral images.
The background map was obtained from ArcGIS (a geographic information system (GIS) for working
with maps and geographic information maintained by Esri) world map [32]. The hyperspectral UAV
images were obtained on 19 September 2019.

Figure 6 shows the cadastral maps of the study sites. There were 284 and 250 parcels in the
cadastral maps of Sites 1 and 2, respectively. We obtained the most recently updated serial cadastral
map taken in January 2018. In Korea, land categories of cadastral maps can be divided into 28 items,
and a cadastral map can be divided into 28 main land categories. The study sites included 17 land
category items: building sites, paddy fields, fields, park sites, school sites, roads, forests, reservoirs,
miscellaneous land, sites for religious use, parking lots, ditches, factory sites, cemeteries, gas station
sites, sports areas, and ranches.
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(a)                                  (b) 

Figure 6. Cadastral map of the study sites in South Korea: (a) Site 1, (b) Site 2.

4. Results

4.1. Classification Results

The hyperspectral UAV images were classified by the proposed hybrid CNN. The network was
optimized in 30 epochs of Adam with a learning rate of 10−3 and a batch size of 256. The Adam
optimizer is a combination of the stochastic gradient descent with momentum and RMSprop, and has
relatively low memory requirements and is quite computationally efficient [33]. At the start of each
iteration, the network was randomly initialized. The ground-truth data were manually defined from
the field data. The field work acquired the spectral libraries and types of surface materials. The ground
truth was composed of 88,567 pixels and contained six classes: crops, forests, roads, buildings, bare soil,
and water. The classes that could be mapped to the land category items were then defined. The various
crop lands and grass covers were combined into “crop land,” and relatively high trees were classified
as “forest.” Colored roofs, such as blue, brown, and white, were all classified as “buildings.” “Bare soil”
represented ground without buildings and vegetation, and “road” encompassed asphalt roadways.
The ground-truth data were randomly divided into training, validation, and test samples. Sixty percent
of the ground-truth data (53,140 pixels) were used as training samples, which were subdivided into
validation and training data at a ratio of 7:3 to avoid overfitting problems. The remaining 40% of the
ground-truth data (35,427 pixels) were reserved as the test samples. The performance of the proposed
network was estimated from the classification accuracy of the test data.

To confirm the effectiveness of the hybrid network, the classification accuracies of the 2D and
3D-CNNs were compared. Both networks were composed of three convolutional layers and used the
same variables as those used by the hybrid CNN. In each experiment, the performance of the network
was evaluated by the F1 scores of the six classes and the overall accuracy (OA). The F1 score measured
the classification accuracy in terms of the precision and recall scores (Equation (4)). Precision defines
the fraction of correctly retrieved instances among all instances, and recall is the fraction of correctly
retrieved instances among all correct instances.

F1 score = 2× Precision × Recall
Precision + Recall

. (4)

Figure 7 shows the classification losses and accuracies in each epoch for the training and validation
samples of Sites 1 and 2. The hybrid CNN achieved lower classification loss and higher accuracy
compared to 2D-CNN and 3D-CNN. Relative to 2D-CNN, the loss reduction and accuracy improvement
in the hybrid CNN became more noticeable with increasing epoch number. Although 3D-CNN also
achieved higher accuracy than 2D-CNN, it was less accurate and incurred higher losses than the hybrid
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CNN at Site 1. According to the results, 3D-CNN was more useful for classifying hyperspectral images
than 2D-CNN but combining the 2D and 3D CNNs improved the classification performance.

  
(a)                                    (b) 

   
(c)                                    (d) 

Figure 7. Classification losses and accuracies in each epoch on (a) training samples, (b) validation
samples at Site 1, (c) training samples, (d) validation samples at Site 2.

Figure 8 shows the classification results of the hyperspectral UAV images using the hybrid CNN.
The F1 scores and overall accuracies of the six classes are listed in Table 2. The OAs of the land cover
classifications at Sites 1 and 2 were 99.93% and 99.75%, respectively. Because the ground-truth data did
not cover the entire study area, it was not the classification accuracy of the entire image but rather that
of a randomly selected test sample location. According to Table 2, all six classes were well classified.
As there was no water at Site 2, the results of this site were divided into five classes. Forests and roads
obtained a lower F1 score than the other classes, because the spectral characteristics of crop land and
forest were very similar. Furthermore, roads, parking lots, and car were classified into the “road” class
and various colored rooves were classified into the “building” class. Moreover, areas that appeared to
be farmland with low vegetation were classified as “bare soil.” Pixel-level classification errors in the
results can be considered as insignificant because an inconsistency comparison will be conducted at
the parcel level.

Table 2. Classification results of the South Korean sites: F1 score and overall accuracy.

F1 Score
OA (%)

Crop Land Forest Road Building Water Bare Soil

Site1 0.9998 0.9990 0.9993 0.9994 1.0000 0.9984 99.93 ± 0.1

Site2 0.9999 0.9935 1.0000 0.9984 - 0.9705 99.75 ± 0.1
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              (a)                                 (b) 

Figure 8. Classification results of hyperspectral UAV images at the two South Korea sites: (a) Site 1,
(b) Site 2.

4.2. Detecting Inconsistent Parcels

According to the relevant regulations in South Korea [21], “cadastral inconsistent parcels” that
need to be updated cover the following situations: (1) when the geometric information, such as parcel
boundary and area, differs from the actual geometry; (2) when the parcel information is registered
incorrectly in the cadastral system; (3) when the parcel information is registered differently from the
land survey results; and (4) when the land owner requests an information change. Therefore, we
detected the inconsistent parcels requiring update on discrepancies in the land category information.

For the inconsistency comparison, the cadastral maps were converted into a raster structure
and compared with the land cover maps generated as the classification results in raster format. The
rasterized cadastral map at each site was created by assigning the land category and parcel ID, as shown
in Figure 9. The cadastral map comprised polygons containing the parcel boundary information;
however, the geometric information representing the parcel boundary was lost during the rasterization
process. As a parcel-wise comparison was required for detecting the inconsistent areas between two
maps, the cadastral map was rasterized with the parcel ID, as shown in Figure 9b,d. Figure 9 shows the
rasterized cadastral map with land category with the same color palette as that of the land cover map,
whereas randomly selected colors were used to represent a rasterized cadastral map with parcel ID.

Site 1 Site 2 

    
(a) (b) (c) (d) 

Figure 9. Cadastral maps rasterized with (a) land category at Site 1, (b) parcel ID at Site 1, (c) land
category at Site 2, and (d) parcel ID at Site 2.

The query-based comparison could be automated because each polygon contained the land cover
information from the HSI along with the land category information from the cadastral map. Classifying
the actual land cover information from images in response to the cadastral map system, specifically to
the land category framework, is a technically difficult problem [15]; the criteria for defining the land
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cover classes that can be extracted from HSIs are difficult to reconcile with the land category items in
the cadastral map. Therefore, before identifying the inconsistent areas in the cadastral map and the
actual land cover map, we must establish a mapping rule between the matched classes under each
framework. Then, the consistency of the land cover and land category can be determined from the
mapping rule. Because the land category items and land cover classes were classified by different
criteria, they could not be matched one-to-one. Based on empirical investigations of the test sites,
this study defines M:N matching pairs of land category items and land cover classes (Figure 10). Finally,
a query for inconsistency comparison could be made using the mapping rule shown in Figure 10.

 
Figure 10. Mapping rule between land category and land cover.

Land cover was classified into crops, forests, buildings, roads, water, and bare soil, which can be
distinguished in HSIs. Figure 10 is constructed from the 28 land category items used in the Korean
cadastral system. These items and their rules can be adjusted to other cadastral systems, providing
source information for other countries. Furthermore, because the query can be modified according to
the mapping information, the proposed technique is applicable to the discrepancy analyses of other
cadastral systems.

Panels (a) and (d) of Figure 11 present the combined raster maps of Sites 1 and 2, respectively.
In these maps, the land cover, land category, and parcel boundary information were combined by
encoding with the rasterized cadastral maps and the generated land cover map. The combined raster
map was restructured in vector format, and the parcel boundary with the land cover and land category
attributes was retrieved by decoding the assigned values (Figure 11b,e; note that each parcel contains
many polygons). Finally, the discrepancy map was generated by dissolving the combined vector map
based on the parcel ID, leaving only the parcel boundaries, as shown in Figure 11c,f.
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Figure 11. Result of the proposed process: (a) combined raster map of Site 1, (b) combined vector map
with attributes of Site 1, (c) discrepancy map of Site 1, (d) combined raster map of Site 2, (e) combined
vector map with attributes of Site 2, and (f) discrepancy map of Site 2.

As mentioned earlier, land categories in Korea’s cadastral system should be registered based on
the primary use of each parcel. The regulations [21] state that if the proportion of parcels used for
purposes other than the primary use exceeds a certain level, the parcels must be divided. The polygons
in each parcel in the vector layer (Figure 11b,e), which is the intermediate result of the current study,
contained the detailed land cover information extracted from the HSI. Therefore, the potential areas to
be divided could be concurrently investigated by calculating the polygon area per usage.

The discrepancy maps included the sum of the inconsistent areas as an attribute of each parcel.
Therefore, the ratio of the inconsistent area to the total area of each parcel could be calculated. This
discrepancy ratio represents the degree of discrepancy (in parcel units) between the land category
information registered in the cadastral system and the actual land cover information. Parcels requiring
an update of their land category were then identified as those with a large discrepancy ratio. Figure 12
shows the visualization result of the discrepancy ratios between the registered land category information
and the actual land cover information extracted from the hyperspectral UAV imagery. If the discrepancy
ratio in a parcel exceeds a certain ratio, and the land use of the parcel differs from the registered land
category information, this parcel must be separately managed through a site survey. In Figure 12,
the discrepancy degree is indicated by a red scale that ranges from white (no discrepancy) to deep red
(high discrepancy). In this visualization, the target parcels to be managed can be clearly identified.
However, because the threshold discrepancy ratio is not systematically defined, Figure 12 presents
three maps of each site with different intervals of discrepancy ratio. More specifically, the inconsistent
land parcels in Figure 12c,f are extracted under more rigid criteria than those shown in Figure 12a,d.
The deep red regions are the areas that need updating.
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Site1 

(a) (b) (c) 

Site2 

(d) (e) (f) 

Figure 12. Visualization result of discrepancy ratios (the intensity of the red polygons directly relates to
the discrepancy ratio): (a), (d) with five classes, (b), (e) with four classes, and (c), (f) with two classes.

Table 3 lists the numbers and land types of parcels with discrepancy ratios of 50% or higher.
School sites, cemeteries, and factory sites have relatively low inconsistency probabilities because these
land categories were mapped in a 1:N relationship over various land covers. However, paddy fields
and bare fields encompass several inconsistent parcels, because many parcels classified as bare soil are
actually crop lands that did not bear any crop at the image acquisition time. In particular, significantly
fewer discrepancies of building sites and roads were found at Site 2 than at Site 1, because Site 2 covers
many fields, paddy fields, and forests, and fewer urban areas such as building sites and roads.

Table 3. Numbers of parcels with discrepancy ratios of 50% or higher.

Land Category Land Cover Site 1 Site 2

Building site Road, Building, Bare soil 17 0
Paddy Field Crop land 24 44

Park site Forest, Water, Bare soil 0 0
School site Road, Building, Bare soil 0 0

Road Road 15 2
Field Crop land 22 25
Forest Forest 9 7

Cemetery Road, Building, Bare soil,
Crop land, Forest 0 0

Reservoir Water 18 0
Miscellaneous land Bare soil 2 0

Site for Religious use Road, Building, Bare soil 0 0
Gas station site Road, Building, Bare soil 0 0

Parking lot Road, Bare soil 1 1
Sport area Building, Bare soil 1 0

Ditch Water 2 7
Factory site Road, Building, Bare soil 0 0

Ranch Crop land, Forest, Bare soil 1 0
Total 112 86
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5. Discussion

5.1. Analysis of Inconsistent Parcels

Figures 13 and 14 show the detailed results in two enlarged zones of Site 1 and Site 2, respectively.
Some land parcels registered as “building site” on the cadastral system (i.e., designated for building
construction) contained no buildings in the real dataset. These parcels often remained as a ground
covered only by low vegetation. Thus, the discrepancy ratio was high in parcels of building sites in the
cadastral map, but which were classified as crop land or bare soil in subset-1 of Site 1 (Figure 13a).
Moreover, it was high in parcels of parking lots in the cadastral map, but identified as buildings in
the land cover map. On “road,” where the item of the cadastral map exactly matched the class of the
land cover, the discrepancy ratios were increased to moderate because the boundaries were sharp
on the cadastral map but fuzzy on the land cover map (the roadside trees were included in the road
parcels). Although some parcels with more than 50% of discrepancy ratio were detected as candidates
of updating, because of misclassified pixels, they showed a relatively low discrepancy ratio compared
to other inconsistent parcels. In subset 2 of Site 1, the discrepancy ratio was high in the central part of
the image because many parcels were registered as “reservoir” in the cadastral map but were actually
crop land in the land cover map (Figure 13b).

 

Entire Image 
Enlarged Image 
Overlaid with 
Cadastral Map  

Cadastral Map Land Cover Map Discrepancy Map 

     
(a) 

     
(b)

Figure 13. Enlarged hyperspectral UAV images, cadastral maps, land cover maps, and discrepancy
maps in two zones of Site 1: (a) subset-1 and (b) subset-2.

In subset 2 of Site 2, some parcels were moderately inconsistent, identified as “paddy field” in
the cadastral map, but as bare soil in the land cover map (Figure 14b). In a similar case of subset 1
of Site 2, the discrepancy ratio was high in areas identified as “paddy field” in the cadastral map,
but classified as not only bare soil but also buildings in the land cover map. It seems that buildings were
constructed on this site (Figure 14a). Moreover, if the vegetation index is low at the image acquisition
time, paddy fields can be classified as bare soil.
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Figure 14. Enlarged hyperspectral UAV images, cadastral maps, land cover maps, and discrepancy
maps in two zones of Site 2: (a) subset-1 and (b) subset-2.

5.2. Limitation and Future Work

Although the proposed method efficiently extracts inconsistent parcels by an automatic process,
its performance depends on the acquisition time of the hyperspectral UAV image, which is input to the
discrepancy analysis. For example, some crop parcels are erroneously classified as bare soil because
the vegetation vitality is low when the image is captured. The results of the discrepancy analysis
may depend on the matching criteria of the land category items and land cover classes, because no
absolute rules for defining inconsistency can be established. In conclusion, changing queries for the
comparison must be preceded according to the mapping criteria. On the plus side, the proposed
method is generalizable to various cadastral systems through flexible modification of the matching
criteria between the land categories and land coverage.

In a future, we will develop a classification network that distinguishes finer classes in hyperspectral
UAV images with higher classification accuracy. For example, crop land can be divided into rice fields
and other fields for finding complex matching relationships between land use and the land categories
of cadastral maps.

6. Conclusions

Non-spatial data in cadastral maps, such as land use and land ownership is generally updated
by field survey and updated manually after visual interpretation of source data, such as RS imagery.
This study proposed an approach for analyzing the inconsistent areas between cadastral maps and
hyperspectral UAV images. The proposed methods focus on the update of land category which is the
attribute data that explain the characteristics of the parcel.

As a case study, the proposed discrepancy analysis was applied to the South Korea cadastral
map, which includes 28 land categories. Land cover maps were generated from hyperspectral UAV
images by using a hybrid CNN. The hybrid CNN outperformed previous 2D-CNN and 3D-CNN.
The OAs of the land cover map using the hybrid CNN at Sites 1 and 2 were 99.93% and 99.75%,
respectively. For comparing the two heterogeneous datasets, the existing cadastral map and the land
cover map were encoded. After vectorization, the attributes of the combined vector map were decoded
to recover the information of land categories and their coverage. The final discrepancy maps with
different discrepancy ratios were generated through a query-based comparison. The discrepancy
map reveals the inconsistent parcels, which are used illegally or which need to be subdivided. The
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discrepancy ratios of 39.4% and 34.4% of the parcels at Sites 1 and 2, respectively, were 50% or higher.
The discrepancy was high in parcels containing building sites or newly constructed buildings on the
cadastral map, but were being used as crop land. As our approach can automate the detection of
inconsistent land parcels, it is expected to be applied to large areas and various scenarios. Therefore,
they are time- and cost-effective alternatives to field surveys for cadastral map updates and the update
cycle can be shortened because the required imagery is taken by UAVs.
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4. Pržulj, D.; Radaković, N.; Sladić, D.; Radulović, A.; Govedarica, M. Domain model for cadastral systems
with land use component. Surv. Rev. 2019, 51, 135–146. [CrossRef]

5. Ali, Z.; Tuladhar, A.; Zevenbergen, J. An integrated approach for updating cadastral maps in Pakistan using
satellite remote sensing data. Int. J. Appl. Earth Obs. 2012, 18, 386–398. [CrossRef]

6. Rao, S.; Sharma, J.; Rajasekhar, S.; Rao, D.; Arepalli, A.; Arora, V.; Kuldeep, C.; Singh, R.; Kanaparthi, M.
Assessing usefulness of high-resolution satellite imagery (HRSI) for re-survey of cadastral maps.
In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, Hyderabad, India, 9–12 December 2014; Volume 2, pp. 133–143.
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Abstract: There exists a demand for effective land administration systems that can support the
protection of unrecorded land rights, thereby assisting to reduce poverty and support national
development—in alignment with target 1.4 of UN Sustainable Development Goals (SDGs). It is
estimated that only 30% of the world’s population has documented land rights recorded within
a formal land administration system. In response, we developed, adapted, applied, and tested
innovative remote sensing methodologies to support land rights mapping, including (1) a unique
ontological analysis approach using smart sketch maps (SmartSkeMa); (2) unmanned aerial vehicle
application (UAV); and (3) automatic boundary extraction (ABE) techniques, based on the acquired
UAV images. To assess the applicability of the remote sensing methodologies several aspects were
studied: (1) user needs, (2) the proposed methodologies responses to those needs, and (3) examine
broader governance implications related to scaling the suggested approaches. The case location
of Kajiado, Kenya is selected. A combination of quantitative and qualitative results resulted from
fieldwork and workshops, taking into account both social and technical aspects. The results show
that SmartSkeMa was potentially a versatile and community-responsive land data acquisition tool
requiring little expertise to be used, UAVs were identified as having a high potential for creating
up-to-date base maps able to support the current land administration system, and automatic boundary
extraction is an effective method to demarcate physical and visible boundaries compared to traditional
methodologies and manual delineation for land tenure mapping activities.

Keywords: fit-for-purpose; land tenure; land administration; cadastre; UAV; feature extraction;
needs assessment
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1. Introduction

The first goal of the sustainable development goals (SDGs)—target 1.4—set by the United
Nations (UN) aims to deliver tenure security for all [1]. Strategies to support this goal rely in part
on the development of land administration systems (LAS) that formalize land rights that support
secure land markets, facilitate poverty reduction and support national development [2]. Broadly
speaking, LAS can provide the infrastructure for implementing land-related policies and management
strategies and maintain information about people and land involving different organizations, processes,
and technologies [3].

Contemporary land administration incorporates the concept of cadastre and land registration,
often with a specific focus on the security of land rights [4]. It conceptually fits within the broader
land management paradigm [5] with its four land administration functions (land tenure, land value,
land use, and land development), ultimately seeking to deliver sustainable development. These
functions utilize an underlying land information infrastructure including reliable remote sensing data.
It should be noted that in this paper cadastre is considered synonymous with land registry and land
administration system.

In sub-Saharan Africa, and in the other developing regions, numerous activities for land tenure
recording have been, and continue to be, initiated. For example, in alignment with the SDGs, the Global
Land Tool Network (GLTN), an international network of partners setting a global agenda for the
improvement of land management and tenure security, develops the so called Social Tenure Domain
Model (STDM), a tool for registering formal, informal, group, or individual rights [6].

However, it is estimated that only 30% of the world’s population has documented land rights and
has access to a formal cadastral system [7,8]. Cadastral mapping is proven as the most expensive part
of the land administration system [5]; therefore, there is a clear need for innovation for fast, accurate,
and cost-effective land rights mapping. Existing approaches using traditional methods including field
surveys often prove to be time-consuming, costly, and labor-intensive.

In response, fit-for-purpose (FFP) land administration suggests technologies should be developed,
adapted, selected, and applied to match the capacity and cost constraints of a specific context [4].
The main idea of the FFP approach is to ensure land tenure recording is delivered at scale on a
regional and national level, rather than focusing on highly accurate solutions, with less coverage.
Three main FFP characteristics are that the land administration systems should focus on the purpose,
flexibility and upgradability. The concepts of FFP include principles that cover spatial, legal and
institutional aspects on a country level. One of the key principles of the FFP approach is using “general”
boundaries extracted by visual interpretation based on aerial images rather than “fixed” boundaries
demarcated in the field and measured by a high precision Global Navigation Satellite System (GNSS)
technology [9]. Some successful examples where the FFP approach was applied are Rwanda where a
Land Tenure Regularisation Program (LTRP) was implemented, and Namibia and Ethiopia with their
communal land registration and cadastral mapping [4]. To apply these principles of obtaining general
boundaries cheaper and faster, there is a clear need for a new generation of tools and applications that
are transparent and scalable [10].

In response, we are developing innovative, scalable methodologies, using remote sensing data
and cadastral intelligence, based on fit-for purpose principles to respond to the continuum of land
rights [11,12]. The aim of this paper is to assess user needs (in terms of land administration functions),
and how the three remote sensing methodologies under development can meet these needs. It also
considers how the adoption of these technologies may have governance implications. For the
assessment we take into account the above mentioned land management paradigm [5] and FFP spatial
and scalability requirements [4] for a case study located in Kenya. The combination of quantitative
and qualitative results collected from fieldwork and workshops, taking into account both social (needs
assessment and governance) and technical aspects (developed technologies), makes this paper a
significant contribution.
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The developed remote sensing methodologies for this study include (1) a unique ontological
analysis approach using smart sketch maps, (2) unmanned aerial vehicles (UAV) for mapping
procedures, and (3) Automatic Boundary Extraction (ABE), based on the acquired UAV images.
The sketch maps mentioned above are hand-drawn either on a blank piece of paper or as annotations
over existing spatial information, such as cartographic maps, aerial images, or other maps produced
via community mapping. As people draw sketch maps based on observations and not based
on measurements, the information is not georeferenced, but qualitative relations of the sketched
information can usually be considered as correct (with respect to the background information) [13].
The usage of UAVs as cheap, affordable, and easy to use acquisition technology for obtaining
high-resolution imagery is emerging for many applications [14,15]. Their applicability in the domain
of land mapping was also explored extensively in a different contexts [16–21]. However, there is a
lack of studies that evaluate the appropriateness of UAV technology considering the local context and
the fit-for-purpose approach. The high-resolution images are usually used for manual delineation of
visual boundaries with additional information attached including the ownership and value of the
land [22]. However, manual delineation is time-consuming. To register unrecorded land rights more
effective in terms of cost and time, innovative and scalable solutions were explored [23–25]. There are
clear advantages in using ABE methodologies, therefore, new tools and techniques were developed
for scaling up the mapping procedures in support of indirect cadastral surveying based on remotely
sensed data [26,27].

The multidisciplinary nature of the current work, using different integrated approaches,
and emerging remote sensing technologies, is novel and innovative to the land administration domain.
The paper reports on the findings after fieldworks and workshops organized in Kenya, with the
purpose of assessing the needs and end users’ readiness, the applicability of the developed remote
sensing methodologies, considering the needs and how they may affect the governance aspects. In the
background section information related to the previous and current land administration system is
explained and the study area is described. The overall methodology of the paper is explained in
Section 3 and the concrete methods used for each of the assessed remote sensing methodologies are
presented. The results are presented in section four, followed by critical discussion, conclusions,
and suggested further steps.

2. Case Background and Study Area

Kenyan urbanization to date has been one of imbalanced growth due to ad hoc identification of
urban areas, resulting in skewed distribution and inequality in development [28]. This challenge of land
governance has been found to be a significant factor in constraining inclusive prosperity more generally
across Africa’s urbanization phenomenon [29]. It is particularly evident in contested peri-urban
lands emerging as a result of metropolitan sprawl across sub-Saharan Africa [30,31]. In response,
one of the key strategies consistently advocated by the international development community is the
establishment (or improvement) of a formal land market. Such a techno-economic orientation and
focus on market-driven urbanization is evident in many contemporary studies of land tenure that
continues to pay limited attention to underlying political aspects of tenure regimes [32]. Land tenure is
inherently social and political, and in Kenya, land is also overtly cultural. Attention to the cultural
aspects of land is particularly relevant in urbanization in Kenya as, first, a majority of Kenya’s land
resources are held under customary tenure systems, and second, having remained unrecognized by
formal systems since colonial rule, indigenous groups have long borne the burden of Kenya’s structural
adjustments, which have resulted in dispossession and longstanding tenure insecurity [33].

Situated in East Africa, Kenya covers almost 600,000 km2 constituted of 47 counties with a
population of almost 45 million [34]. Approximately 80% of Kenya’s land is categorized as arid or
semi-arid, with only 15% of this suitable—and fully used—for agricultural production [35]. Since 1963,
the land administration in Kenya is under the Ministry of Lands, Housing and Urban Development.
The organization structure is presented in [36]. Under colonial and post-independence governments,
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Kenya has operated two land tenure systems simultaneously: statutory (based on English property
law) and customary. The 2010 Constitution now recognizes customary tenure systems as Kenya’s
third type of legal tenure, but administrative implementation of this recognition remains in its infancy.
The National Land Commission (NLC) is tasked with oversight for all planning processes in Kenya.
In relation to FFP, Kenya is one of the countries that first introduced this approach in 1954. Under this
major land reform program, land consolidation and systematic adjudication methods were used to
determine the parcel boundaries in the rural parts of Kenya. These boundaries were identified, walked,
and demarcated by the local inhabitants, based on aerial images, thus it was a participatory approach.
As a result so called Preliminary Index Diagrams (PIDs) were produced, which were used to register the
rural land parcels in Kenya for many years [37]. Generally, Kenyan cadaster consists of different types
of maps, such as survey plans, field notes, registry index maps, aerial photographs, topo-cadastral
maps, deed plans, and title deeds, sometimes with variety of names and accuracy [38]. However,
most of them are in paper format and are kept in archives (Figure 1). There has been a research also
on integrating the buildings into databased and adapting the existing land administration system
according to the international ISO: 19152 Land Administration Domain (LADM) standard [36].

  
(a) (b) 

Figure 1. (a) Cadastral map of part of Kajiado; (b) archive of land titles.

Kajiado is selected as the case study site for this study as it is part of the Nairobi metropolitan region
and is the site of multiple contests for land (Figure 2). Its proximity to Nairobi and Amboseli national
parks has also led to increasing human–wildlife conflict being experienced in Kajiado. Currently,
approximately 25% of the county’s population (of more than 800,000) is urban, almost 50% live below
the poverty line, and the population growth rate of 5.5% is higher than the national average [39].

The current land registry map is riddled with information errors stemming from inappropriately
scaled maps (resulting in scale errors and boundary overlaps)—the continued use of which introduces
further errors in the land registry—which makes it now difficult or impossible to fit new development
plans on the original map base [35]. These information issues have resulted in administrative challenges.
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Figure 2. Location of Kajiado County and neighboring counties.

3. Materials and Methods

Land management activities rely upon three main components [5]: (1) land policy, (2) land
administration functions, and (3) land information infrastructure. In the current research, the major
focus is the land administration functions including (1) land tenure, (2) land value, (3) land use, and (4)
land development. Specifically, this research is mainly seeking to contribute to improving land tenure
including cadastral surveys of determining spatial information on parcel boundaries.

First, user needs were identified. Second, the identified needs were incorporated into a broader
assessment of the three remote sensing methodologies, made up of 10 criteria, taken selectively from
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the land management paradigm [5] and FFP requirements [4]. Third, the governance aspects in relation
to the new developments are also analyzed. The entire evaluation methodology is visualized as a
conceptual framework in the following Figure 3.

 
Figure 3. Conceptual evaluation framework.

3.1. Method for User Needs Assessment

First, for the user needs assessment, assessment was conducted using a behavioral-science-based
method called the Nominal Group Technique (NGT). It was developed as a group process model
to support the identification and prioritization of problems and/or solutions amongst groups of
stakeholders by facilitating equal participation [40,41]. NGT was selected as it draws on individuals’
knowledge and expertise while mitigating power dynamics in group-based data collection scenarios [42].
It also produces outcomes that have been found to be robust and meaningful while still being time-
and resource-efficient process [43]. A more detailed explanation is provided in [44]. The assessment of
the needs was completed prior to other fieldwork: Data was collected from representatives from a
range of county government office functions (surveying, registration, planning), as well as county-level
officials. Additional data was obtained from local communities with 35 community members from
various Maasai families participating (25 men, 10 women).

3.2. Remote Sensing Methodologies

Second, fieldworks, workshops, semistructured interviews, and focus group discussions regarding
the three remote sensing methodologies were then conducted. This primarily took place in Kajiado
from 22th of September to 5th of October 2018. All the workshops were held at the Regional Centre
for Mapping Resources in Kajiado. Overall, three one-day workshops with 58 land administration
stakeholders from local government institutions, non-governmental organizations (NGOs), private
companies, and national government institutions were organized. Each workshop followed the
same structure: the project context was presented, participants were split into groups; activities,
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demonstrations, and discussions for the SmartSkema, UAVs, ABE, and governance aspects followed
as shown on Figure 4 below. A follow-up discussion was held in plenary to produce a strengths,
weaknesses, opportunities and threats SWOT analysis of each suggested methodology. Pictures from
the workshops assessing the remote sensing methodologies are shown in Figure 4 below.

 

Figure 4. Workshops assessing the remote sensing methodologies.

3.2.1. SmartSkeMa—Sketch Map Data Collection Software

SmartSkeMa is a software application that we developed to support the documentation of land
tenure information for communities with a focus on the actual land practices in the communities.
SmartSkeMa supports land recording processes in two main ways [13]. First, it provides a means to
document land related concepts as expressed within the local culture or context in a structured domain
model [45]. Second, it supports sketch-based community mapping processes by providing a means to
digitize, annotate, and geolocalize hand-drawn objects in a sketch map [46]. The method uses both
qualitative and quantitative representations of a digitized sketch map and aligns features from the
sketch map with corresponding features in the base map. For qualitative representations alignment
of qualitative spatial configurations is done. In the case of quantitative (cartesian) representations,
the alignment is performed by a coordinate transformation using predetermined control points.
The latter approach allows SmartSkeMa to be used as a digitizer over aerial imagery (Figure 5).

 
Figure 5. Screencast of a SmartSkeMa live demonstration of processing the spatial information drawing
on top of a satellite image, the vector representation of drawn features as a SmartSkeMa response,
and georeferencing drawn features (web-link: www.smartskema.eu).
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Sketch maps are uploaded into SmartSkeMa as raster images. SmartSkeMa then converts these
images into vector form in two steps. First any symbols in an image are detected and recognized
using a Convolutional Neural Networks (CNN) trained on a set of predefined hand-drawn symbols.
The symbols form a visual language for representing land use concepts and land features. After symbol
detection the system performs a stroke-based image segmentation wherein boundaries of sketched
objects are traced and extracted. Finally, the concepts corresponding to the detected symbols are
applied to the image segments based on distance and a fixed set of rules specifying spatial constraints
on configurations of different types of features.

The data collection used for the current study needed for the SmartSkeMa system was completed
during a series of fieldworks and workshops with male and female members of the Massai community
starting from 2017 in Kajiado county and Nairobi, Kenya and running through to October 2018.
The sessions included demonstrations of the three main functional parts of the SmartSkeMa (Figure 6),
followed by discussions about the applicability of SmartSkeMa. Questions were posed through
questionnaires to evaluate the applicability of SmartSkeMa in (1) standard (official) land information
recording processes, (2) documenting local land tenure systems, and (3) other land administration tasks.

 

Figure 6. Workflow of SmartSkeMa: Right side: local communities provide spatial and nonspatial
information via sketch maps. Nonspatial information is processed via local domain model (LDM) and
connected via the adapter model to land administration domain model (LADM). Spatial information is
recognized via the object detection technique, captured qualitatively via the qualitative representations,
and aligned with existing dataset such as feature extracted from UAV data.
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3.2.2. UAV Data Collection Methods

To prove the concept of UAV data capture as a remote sensing technology for land rights mapping
in Kenya, an exploratory research investigation was undertaken. This included the entire UAV-based
workflow, starting from the choice of UAV equipment, pilot and flight training, flight authorization,
and the final data collection in the field which was carried out in two different sites in Kajiado County:
a rural area in Mailua and the township of Kajiado. To accommodate the different characteristics of the
flight locations, two different UAVs were chosen (see Figure 7) both with RGB sensors on board.

 

Figure 7. UAV data collection with the DT18 in Mailua and the Phantom 4 in Kajiado.

In Mailua, the DT18, a fixed-wing UAV with a long endurance and a large range was selected.
In contrast, the vertical take-off and landing UAV DJI Phantom 4 was the preferred equipment to
capture data of Kajiado, as the urban area did not provide large spaces for take-off and landing.
Both study sites, were captured with indirect georeferencing (Figure 8), i.e., Ground Control Points
(GCPs) were distributed within the field and measured with a Global Navigation Satellite System
(GNSS) achieving a final accuracy of less than 2 cm. RGB orthomosaics and digital surface models
(DSM) of approximately 6 cm Ground Sample Distance (GSD) were generated with Pix4DMapper.
Three tiles of 300 × 300 m were selected to demonstrate the boundary mapping approach.

 

Figure 8. Areas of investigation of 300 × 300 m and a 6 cm GSD of Kajiado, Kenya.
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The evaluation of the UAV workflow was based on the case study results from Kenya, as well
as statistics of the UAV image processing, and resulted in a SWOT analysis. Further insights were
gained from a stakeholder assessment of the potential of UAV-based technology to capture land rights
in Kenya [47].

3.2.3. Automatic Boundary Extraction Methods

The method used for the current study is based on the work in [48] and shown in Figure 9.
It supports the delineation of boundaries by automatically retrieving information from RGB data that
is then used to guide an interactive delineation. It consists of three parts: (a) image segmentation,
(b) boundary classification, and (c) interactive delineation. The source code is publically available [49].

(a) Image segmentation delivers closed contours capturing the outlines of visible objects in the image.
Multiresolution combinatorial grouping (MCG) [50] has shown to be applicable on high-resolution
UAV data and to deliver accurate closed contours of visible objects [48].

(b) Boundary classification requires labeling the contours from (i) into “boundary” and “not boundary”
to generate training data. A set of features is calculated per line capturing its geometry (i.e.,
length, number of vertices, azimuth, and sinuosity) and its spatial context (i.e., gradients of RGB
and DSM underlying the line). These features together with the labels are used to train a Random
Forest (RF) classifier [51]. The trained classifier predicts boundary likelihoods for unseen testing
data for which the same features have been calculated, as indicated with training and testing.
An open-source RF implementation [52] is used.

(c) Interactive delineation allows a user to start the actual delineation process: the RGB orthomosaic
is displayed to the user, who is asked to interactively delineate final parcels based on the
automatically generated lines and their boundary likelihoods. A user can make use of four
functionalities that simplify, vary and speed up the delineation process. We implemented (c) as
publically available plugin [49] for the open-source geographic information system QGIS [53].

(a)              (b)                (c) 

Figure 9. Boundary mapping method: (a) Multiresolution combinatorial grouping (MCG) image
segmentation. (b) boundary classification that requires line labeling into “boundary” and “not
boundary” for training. The labeled lines are used together with line-based features to train a Random
Forest classifier that generates boundary likelihoods for testing. (c) interactive delineation guided by a
QGIS plugin.

An analysis on our study area in Kajiado assessed the ABE application for extracting visible
cadastral boundaries using the acquired UAV images [24]. During the workshops, we used the
three tiles of 300 × 300 m shown in Figure 7 to demonstrate the boundary mapping method. In this
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way, we related the method to our conceptual framework (Figure 2). This allowed identifying and
understanding bottlenecks: (i) the operational analysis questions when and why the method works
better or worse compared to manual delineation and (ii) the feedback analysis investigates the method
based on surveying stakeholders responses. The feedback analysis was based on discussing the
strengths, weaknesses, opportunities, and threats (SWOT) of our proposed method compared to
manual delineation as identified by the workshop participants.

3.3. Governance Aspects

To get an overview of the governance requirements to support the adoption and use of the
above-mentioned remote sensing methodologies, in-depth semistructured interviews were conducted
and focus group discussions were organized. The assessed governance aspects are strongly based on
FFP demands [4] and dimensions of the governance assessment tool [54]. Three focus group discussions
were organized. The first group focused on local government (with 18 participants), the second on
private companies and NGOs (with 32 participants), and the third on national government (with
three participants). During the focus groups, participants were able to map the different governance
requirements (responsible actors, partners, levels, instruments, resources, organizational characteristics,
capacity development characteristics, and cultural characteristics) needed to successfully adopt the
technical applications. Besides these focus group discussions, we were also able to do 18 in-depth
semistructured interviews in Kenya. For these interviews, we were making use of a guiding topic
list to facilitate the extensive data collection to support the development of multi-sectoral profiles
(e.g., socioeconomic characteristics, geospatial innovation trends, etc.) of the identified case areas
pertaining to land tenure information. The topic list that guided the interviews was a compilation
from an extensive literature reviews on governance and capacity development. The questions of the
semistructured interviews were not only structured by the specific topics, but also open enough to
allow for clarifications, new insights and deepening of the subjects by new, unexpected responses
during the interviews.

4. Results

4.1. Results of Needs Assessment

A range of land administration needs were identified (Table 1) for Kajiado county stakeholders,
categorized along the main land administration functions of tenure, value, use, and development
(Figure 2); however, other needs (such as governance) also emerged.

Table 1. Assessing the needs.

Land Admin Needs County Government Needs Community Needs

Tenure

- Georeferenced land information
connected to the registry
index map

- Land subdivision data
- Updated land information
- Resurvey of adjudicated areas of

public utilities
- Good practices related to

surveying and mapping

- Updated land
subdivision information

- Right-of-way information about
government wayleaves

- Reduce fencing around
properties owned by non-Maasai

Value
- No of properties (and its

attributes) in the county

- Locate and protect culturally
significant resources (e.g.,
important waterways)

- Map areas of cultural value and
culturally significant objects
(e.g., trees).
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Table 1. Cont.

Land Admin Needs County Government Needs Community Needs

Use

- Approval and placement of
private boreholes

- Environmental degradation
- Documentation about the location

of public utilities
- Information about cottage

industries (as these are
damaging properties)

- Understand and respect Maasai
land use practices

- Improve poor animal
husbandry practices

- Manage overgrazing
- Improve wildlife corridors to

reduce loss of land
- Information about wild animal

infestations needed due to
damage infrastructure and
spread diseases

Development

- County spatial plan
- Land use zoning and development

controls need to be defined
- Land fragmentation (subdivisions

too small)
- Map and demarcate roads to

avoid informal development
- Clearly mark ecologically

fragile areas

- Define migratory corridors and
restrict sale or give right-of-way
to Maasai

- Identify and document fertile
grazing areas at waterways that
need to be mapped
and preserved

- Improve drought mitigation
- Mitigate deforestation

Governance

- Relationship between land laws
- National vs. county land policy
- Improving data management for

multipurpose use
- Community understanding of

women’s rights in
land transactions

- Improve understanding of
community’s land needs and
improve engagement around
land policy

- Need to integrate community
knowledge with formal and/or
statutory information.

- Legal aspects of land conflict not
well understood by community

Land tenure security is identified as a fundamental need in Kajiado, and is being challenged by
urbanization. In interviews, the county estimated that almost 80% of its registry’s resources were
directed towards resolving land disputes (e.g., in ground truthing and reporting). Unsurprisingly,
the needs assessment reflects this: land tenure needs identified included improving the quality
of registry information, especially spatial information; associated with this is the need to improve
subdivision data in general—both in terms of data and processes—and more generally, the need for
updated information. Other tenure needs related to spatial and administrative information pertaining
to public utilities. Similarly, communities identified the need for better information about subdivisions
(especially within group ranches) and the spatial extent of government wayleaves and associated
rights. This was important to support understanding how land is acquired to protect right-of-way for
maintaining public infrastructure and compensation, provided around reduced use rights.

The information needs identified around land value, use and development were not as easy to
differentiate: all three functions of land are interlinked. From the government’s perspective, identified
needs with direct implications for land value were around better-quality information about the number
of properties in the county. For the community, the identified needs reflected the need for preservation
of culturally significant areas (e.g., important waterways) and objects (e.g., trees).

There were greater needs identified around land use, and these related to lack of knowledge around
where boreholes were being placed and used (which is draining the local water table), the increasing
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impact of drought, and mitigating general environmental degradation, especially resulting from
unregulated cottage industries, such as charcoal production (where burning of trees also impacts the
value of private properties). Similarly, for communities, needs identified were around mitigating
unsustainable land use practices that were either impacting the Maasai way of life, or draining
environmental resources that impacted on their ability to rear livestock. While not directly referencing
land information, most of the needs certainly infer some type of spatially-enabled decision-making,
e.g., knowing where overgrazing occurs, and knowing where existing wildlife corridors are, or where
to situate new ones.

The broader issues implicated in the identified land use needs are also reflected in the land
development needs. Kajiado is rapidly urbanizing; consequently, the county government would
like to better understand how to plan and manage development. This included the need for better
spatial planning (through production of a county spatial plan), better planning controls (through
zoning) (especially as land fragmentation is becoming an issue), and defining ecologically fragile
areas. For the Maasai, land information needs around migratory corridors (e.g., restrict sale or give
right-of-way encumbrances in favor of Maasai) and fertile waterways reinforce their desire for land
use practices that enable them to flourish culturally. Considering the rapid influx of “outsiders”, i.e.,
non-Maasai, into Kajiado, the community emphasized the importance of understanding and respecting
Maasai communal-based practices of resource sharing and the implications this will have on property
boundaries. However, there are also needs around broader environmental issues caused by over and
unmanaged development, such as drought and deforestation, and wild animal infestations which
damage property (e.g., water pipes) and spread disease amongst herds.

Finally, the whole range of governance needs emerged, which reflected the disconnect in land
information and land policies at national and county levels and the disconnect between government
and communities (despite the Constitution enshrining participatory action in land development)
around rights (e.g., women’s land rights) and responsibilities (e.g., improving community engagement).
For the Maasai, additional elements reflected the disconnect between formal and customary knowledge
systems (and relevant data), but reinforced the fact that communities do not have a good understanding
of legal and policy frameworks pertaining to land (e.g., land conflict), which leaves them vulnerable to
poor decision-making.

4.2. Results from SmartSkeMa

Stakeholder impressions of the SmartSkeMa application were sought along three main dimensions:
(1) ability to support conventional land tenure recording activities, (2) ability to facilitate community
driven land tenure recording systems, and (3) applicability in other land administration functions.
SmartSkeMa was generally judged to have the necessary functionality to support standard land tenure
recording activities. Among 21 participants, 16 considered SmartSkeMa to be usable together with
standard land administration systems, while two considered this to not be the case and three were
ambivalent (they neither agreed nor disagreed to the statement). In addition, of the 21 participants,
18 agreed that the functionality of SmartSkeMa is useful for recording land tenure information while
three mentioned that it was only partly useful for that purpose. The participants also indicated the
reasons for their judgements or choice. Table 2 shows a summary of these data coded into themes as
presented by the participants.
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Table 2. Summary of participants perceptions in the usefulness of SmartSkeMa for land tenure recording.

Usefulness for Land
Tenure Recording

Reasons Comments

Partly useful Poor geometric accuracy or poor precision
Poor accuracy or precision will lead to
legal impediments. May not work in
densely populated areas.

Very useful

Can be used to delimit communal land rights;
physical planning; updating official maps;
delimiting communal land rights;
consultation and public participation; reach
consensus when recording land rights; record
information from community perspective.

Requires interoperability with
government systems, government
buy-in, and may face legal
impediments.

In terms of facilitating community driven land tenure recording systems SmartSkeMa was
considered more favorably. Of the 21 participants, 18 believed that SmartSkeMa could support
communities to register and govern their lands according to local customs. There was no clear
agreement on which other land administration tasks the SmartSkeMa application could be applied
to. Several tasks stood out with land use documentation and land use planning mentioned by six
participants; recording of historical and inaccessible information was mentioned by four participants;
and aiding surveying and other traditional land information collection was mentioned by three
participants. Finally, we asked the participants to perform a SWOT analysis of the tool based only
on the functionalities that have been presented to them during the demonstration. The results of this
analysis are shown in Table 3 below.

Table 3. SWOT results on SmartSkeMa.

Strengths Weaknesses

- Has multiple applications (incl. collecting
historical information; creating land use plans;
documenting land rights)

- Has low barrier to entry
- Is participatory
- May create trust among community participants
- Can help reduce conflicts after parceling
- Can produce preliminary data for land surveys

- Time-consuming in the field and
during preparation

- Cannot yet associate attributes to boundaries
- Difficult to get community engaged
- Requires background knowledge
- Collected data may not be accepted as meeting

legal standards for land adjudication due to
poor accuracy

Opportunities Threats

- Use in implementation of the Community Land
Act’s community land registers [55].

- Incorporation of Satellite imagery to prepare the
base map data and sketches

- Difficult to get community engaged
- Misalignment with official records or

existing systems

The feedback obtained from the workshops laid the foundation for the development of the second
method: use an aerial image as the background for a sketching exercise. This is expected to increase the
precision and provide measurable accuracy. The alignment of a sketch traced on top of an aerial image
is done by a 6-parameter affine transformation. The parameters for the transformation are estimated
by ordinary least squares linear regression quadratic features.

The new method was tested on a small sample of parcels and three metrics were taken as shown
in Table 4. The time for delineation cannot be compared with traditional method since the time to
produce the parcels is mostly consumed by the field work. As field work is required to collect parcel
information in other approaches as well, we conclude that the automatic delineation of sketch maps
results in a faster process.
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Table 4. Performance metrics of parcel delineation using SmartSkeMa’s sketch-on-map.

Manual Delineation

Number of parcels in the sample Sketching time per parcel Mean Deviation from cadastral
boundaries in meters (sampled)

9 6 min 1.29

4.3. Results from UAVs

The case study revealed many opportunities but also a number of challenges for UAV data capture
as a technical solution to provide a spatial database for capturing land rights and cadastral boundaries
in Kenya. In most countries, before commencing a UAV flight mission, regulatory clearance has to be
in place to ensure the safety of airspace users, people, and property on the ground [56]. In that regard,
Kenyan UAV legislation underwent changes during the case study. Before the official regulations were
gazetted [57], the use of UAVs was heavily restricted, with a mandate to seek flight permission from
Ministry of Defense and Kenya Civil Aviation Authority. At the time the regulations were passed,
processes for flight authorizations seemed to be straight forward. However, a reality of a too costly and
restrictive procedure largely impeded the rise of UAV technology in Kenya. Soon after release in June
2018, the regulations were nullified by the Government, leaving a regulatory vacuum in the country.
Both data acquisition flights were carried out with a temporal flight authorization and awareness of
the local government.

After an extensive sensitization of the local government and community, the UAV data, as well as
GNSS measurements, were completed in March 2018 (Mailua) and September 2018 (Kajiado). The RGB
pictures were processed with Pix4D to create an orthophoto (Figure 10). Flight specifications and
information on geometric accuracy are summarized in Table 5.

Figure 10. Overview of UAV datasets.
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Table 5. Flight characteristics and geometric accuracy of Kajiado and Mailua dataset.

Mailua Kajiado

UAV equipment/sensor DT18 PPK/ DT18 3bands DJI Phantom 4/inbuilt sensor
UAV Type Fixed-wing Fixed-wing

UAV Sensor [mm] 8.45 × 7.07 8.45 × 7.07
Resolution 5 MP 5 MP
Flight time 4 flights á 45 min 15 flights á 10–15 min

Area captured 3.32 km2 8.28 km2

Flight height 200 m 200 m
Overlap forward/side [%] 80/70 80/70

Ground Sampling Distance 5.72 cm 5.8 cm
Ground Control Points (GCPs)/ 8 16

RMS Error (X/Y) 0.022 cm/0.024 cm 0.040 cm/0.042 cm

However, our case study showed that UAV workflows are easy to transfer to different contexts: data
acquisition always follows a standard procedure following the steps of flight planning, data collection
and postprocessing. Prices of UAV equipment vary largely, offering technical platforms for almost
every budget without compromising too much on data quality. Nevertheless, the purchasing costs
might give an indication of the longevity and the reliability of the UAV components, which is beyond
the results that the case study currently provides. Similar to the price for UAVs, the accuracy of the
final orthomosaic can differ from several centimeters to meters, as it depends on the GNSS sensor of
the UAV, the availability of a geodetic network, the visibility of satellites during data acquisition, and
the strategy of ground control measurement. The insights from the workshop can be concluded in a
SWOT analysis (Table 6).

Table 6. SWOT results on UAV data acquisition.

Strengths Weaknesses

- Provides reliable data products (orthophoto, 3D
point cloud, and digital surface model) for
multiple purposes in land administration

- Various UAV platforms and sensors can be
utilized depending on the context and
geographical conditions

- Immediate data collection to gather up-to-date
base data, if flight permission is granted by
the authority

- Automated flight planning and image
processing reduces training effort

- High spatial resolution and geometric accuracy

- Dependent on weather conditions
- Limited to small to medium scales
- Real-Time Kinematic (RTK) or Post-Processed

Kinematic (PPK) workflows require
professional GNSS equipment for
static observations

- Time-consuming measurement of Ground
Control Points to reach a high level of geometric
accuracy if RTK or PPK workflow is not
supported by the UAV equipment

Opportunities Threats

- Community engagement as data is being
collected directly in the field

- Ease of use allows capacity development at the
local level (e.g., for bottom-up initiatives)

- High-resolution orthorectified images for
cadastral mapping in urban contexts

- Low investment costs for decent
UAV equipment

- The unclear legal situation that potentially
prohibits or restricts UAV flights

- Maintenance services of UAV equipment not
available in the country

- UAV technology not included in current
surveying act—a high barrier to adopt
the technology

4.4. Results from ABE

Delineating boundaries with indirect surveying from the remote sensing imagery requires
knowledge about the boundaries. To recognize boundaries in an image, it helps to be familiar with
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their appearance on the ground. We, therefore, went to the area for which UAV data was captured
and took images of example boundaries. A team of village elders and a local researcher joined us to
communicate with land owners when passing and capturing their boundaries. The team explained
which objects were typically used to demarcate boundaries and provided insights on local boundary
demarcation challenges.

During fieldwork in Kajiado, we obtained an understanding of local boundary characteristics and
demarcation challenges. The letters used in the following refer to Figure 11.

Figure 11. (a–d) Examples of visible boundaries in Kajiado. (e–h) Boundary demarcations challenging
to identify correctly from remote sensing imagery collected during the field survey.

A majority of boundaries are demarcated by visible objects such as (a) stone walls, (b) corrugated
metal fences, (c) vegetation, or (d) ditches. The following examples are extractable from remote
sensing imagery though require local knowledge or context for a correct identification: (h) ditches
can be confused with soil erosion when extracted from imagery alone. (d) Some fences demarcating
boundaries are challenging to differentiate from its surrounding. High-resolution digital surface
models (DSMs) can support the identification of such fences. (f) Beacons demarcate boundary corner
points and (g) can be used in parallel with linear boundary demarcations, or as control points for
hosting measurements.

The cadastral boundary has often remained on the connection of the beacons, instead of on the
visible boundary. Based on the local knowledge obtained during fieldwork, and the large portion of
cadastral boundaries in Kajiado being visible following the FFP principles, the boundary mapping
approach could be applied to the captured UAV data (Figure 12).

 
Figure 12. (a,b) Cadastral boundaries delineated from UAV data.

Some challenges that we observed during delineation are shown on Figure 13 below.
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Figure 13. Challenges observed during delineation: (a) undersegmentation, (b) oversegmentation,
(c) fragmented segmentation, (d) redundancy of least-cost-path calculation, (e) visible boundary not
demarcated by objects, but by context, and (f) identification of delineation areas through boundary
mapping approach.

Existing reference maps for our area would mostly consist of Registry Index Maps (RIMs).
RIMs show the outline of land parcels within a given jurisdiction using general boundaries along
visible features. The boundaries’ position is only indicative and not legally binding. RIMs and survey
plans for urban areas have the highest accuracy specifications of 30 cm nominal positional accuracy [38].
Different types of RIMs exist that partly allow positional errors of up to 200 cm [58,59]. As the digital
cadaster coverage in country is low the local experts shared that even meter level accuracy can be
acceptable for certain areas. However, we observed how time-consuming and tiring this procedure is.
The expert should zoom in and out continuously in searching for visible boundaries. Then, the accuracy
for delineation of each parcel will be different depending on the skills and precision of the operator.
The automatic approach that was proposed speeded this process. The automatically detected and
suggested boundaries just have to be checked by the operator and with several clicks to be adjusted
and approved. It was observed that for long curved objects manual delineations is much slower
and requires continuous clicking and the automatic one requires to click only on the starting and
ending point. For a small rectangular object it is required to click only inside of the object and the
boundary will be automatically delineated. Using the new proposed method, we reduced the number
of clicks with 80%, saved 38% of the time and achieved 71% accuracy compared to manual delineated
boundaries [48].

The operational analysis showed that the approach is most suited for the delineation of visible
cadastral boundaries demarcated through physical objects. In our study side area, walls and fences
were partly covered by vegetation and not built consistently. From 211 parcels, 21 could be delineated
without further editing, 24 required minor editing on <20% of the outline length, and the remaining
parcels were digitized through snapping to the automatically generated lines and generating new ones.
In general, the approach obtains the highest time savings for areas in which boundaries are visible,
long and curved, whereas boundaries in our study side are often covered, short, and straight.

The feedback analysis investigated the strengths, weaknesses, opportunities, and threats (SWOT)
of the approach. Feedback is derived from three one-day workshops for 57 land administration
stakeholders from local government institutions, NGOs, private companies, and national government
institutions. The SWOT feedback from the three workshops is shown on Table 7.

46



Remote Sens. 2020, 12, 273

Table 7. SWOT results on automated boundary extraction approach.

Strengths Weaknesses

- Image-based delineation facilitates
participatory mapping

- Allows accurate delineation of georeferenced
boundaries without fieldwork

- Adaptable per area and its characteristics
- Fast data processing and clear visualization
- Intuitive usability
- Less zooming and clicking
- Open-source implementation
- Less monotonous delineation work
- Easy to implement for existing workforce with

surveying background
- Strong match with Kenyan land challenges

(subdivision, digitization, transformation from
general to fixed boundaries, correction of
overlapping boundaries, mapping of
unrecorded boundaries)

- Dependence on visible boundaries
- Time-consuming for large areas
- Dependence on knowledge, interpretation and

skills of delineator
- Superiority over manual delineation depends

on image segmentation and its match with
cadastral boundaries

- Varying data quality due to lack of
standardized image capture/processing

- Interactive design limits reproducibility
- High initial costs (set up of digital

infrastructure, capacity development)
- Image acquisition requires equipment, training

and permissions
- Open-source solution requires acceptance
- Update of Registry Index Maps (RIM)

not included

Opportunities Threats

- Potential to increase superiority over manual
delineation by adding functionalities (geometric
checks for output lines, creation of
polygons/attributes and change protocols)

- Modular workflow can be updated in case of
future innovations (e.g., on image segmentation
or classification)

- Applicable in further object delineation
applications (e.g., land use mapping)

- Implementable in existing systems due to
modular design

- Potential to reduce land-related disputes
through clear visualization and identification
of boundaries

- Possible inability to cope with rapid technology
changes despite modular design

- Superiority over manual delineation too small
(reduced efficiency when object outlines do not
match with cadastral boundaries, high
percentage of invisible boundaries, or
beacon demarcation)

- Possible non-acceptance of open-source
solution (no guarantee for long-term
source-code maintenance) and threat from
commercial solutions

- Resistance to innovative approaches (fear of job
loss due to automation)

- Uncertain legal allowance to capture/use
aerial imagery

- Unstable Kenyan digital infrastructure

The methodology was tested and works also for remote sensing data with different resolutions
(0.02–0.25 m) acquired from other platforms such as satellite and aerial cameras on board of an airplane.
Advantages are strongest when delineating in rural areas due to the continuous visibility of monotonic
boundaries. Manual delineation remains superior in cases where the boundary is not fully visible,
i.e., covered by shadow or vegetation. Although our methodology has been developed for cadastral
mapping, it can also be used to delineate objects in other application fields, such as land use mapping,
agricultural monitoring, topographical mapping, road tracking, or building extraction.

4.5. Results from Analysis of Governance Aspects

In the focus group discussions and individual semi-structured interviews held around each remote
sensing application, several governance aspects were raised. As most of these apply to two or all three
remote sensing methodologies, and are discussed here jointly along the lines of six aspects derived
from the discussions: (1) legal versus informal rights, (2) government versus non-governmental actors,
(3) the national versus regional/local government, (4) digital versus paper way of working, (5) use of
open source software, and (6) lack of clear legislation for specific new tools and applications esp. UAVs.

Many different definitions of the term “governance” exist, but most important is that it stands for
a broader concept than government, and also includes the influence of other actors on processes that
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affect all. Within the context of the research, a definition was developed where governance is “the
process of interactively steering the land tenure society to sustain the use of the its4land tools” [60].

In Kenya the 2010 Constitution brought a number of changes that affect the governance aspects
of our remote sensing methodologies. As mentioned earlier, customary tenures are now explicitly
recognized in the Constitution, although the attention to them in specific laws and regulations is still
lagging, and in peri-urban (and informal) areas, other forms of non-statutory tenure rights exist that
are not specifically mentioned. The formal systems for land administration, that tend to only serve
statutory rights, are embedded in laws and regulations, but also in the way the different formal land
sector actors operate in practice; which tends not to focus on innovation or broadening of the beneficiary
group. There is, currently, a lack of participatory mechanisms that can support the collaboration
between the different governmental levels and the non-governmental actors. Political interests or
corrupt practices were mentioned during the workshops and interviews. These practices happen due
to both the lack of transparency in the decision making process and lack of an enforcing institutional
environment. Further, there is no specific legislative framework that supports innovative approaches
as the ones offered via our developed applications.

Allowing non-governmental organizations (such as private companies, NGOs and professional
network associations) to take the lead in implementing the more participatory and innovative technical
applications is also difficult. There is not really a tradition to do so, which is partly due to lack of
resources: financial, human and technological. Further, the fear of losing jobs due to introduction
of new ways of work make the street level bureaucrats wary, whereas the higher level workers fear
of loss of the control of the currently used methods which involve political interests and corruption
practices. As most of the national government and counties lack basic infrastructure, one way the
national government could support the implementation of technical applications is by providing
financial or legal incentives to non-governmental actors, as in many cases there are consultancies who
have the expertise and could support the adoption of technical applications within a short time frame.
However, neither governmental actors nor private companies are used to this type of participatory
approaches. Until now, according to the different actors who participated in the workshops, there have
not been real participatory approaches that could support their implementation. The capacity of the
local levels to implement technical applications like ABE and SmartSkeMa face the challenge of variety
in capacity among the counties, and some cases were reported where governmental employees need to
use their personal computers to carry out their daily job activities.

The 2010 Constitution brought the devolution of powers to the 47 counties. There is still lack
of clarity relating to the division of responsibilities between the county and national government
level, and the different governmental levels currently often lack resources to implement, maintain
or upgrade the use of innovative technical applications, especially when those require the specific
IT knowledge that comes with geospatial techniques. The current governance structure favors a
top-down implementation process where the national government is the main actor. While some
counties have the capacity to support the implementation of the technical applications, others clearly
lack infrastructure, financial resources or knowledge.

In addition to the limited capacity, it also became clear that only some governmental actors see the
transition from paper-based data to digital based data as a priority. The transition from paper-based
data to digital data is already set in some counties, but is not always perceived as a priority by all
governmental actors. Due to the lack of political will, the implementation of our technical applications
cannot be expected to occur in the short-term. Political interests or corruption practices around the
possible implementation of the technical applications were also mentioned by the different interviewed
actors. This situation is due to the lack of legislation for digital data and the current prioritization of
paper-based data.
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5. Discussion

This paper was designed to assess user needs (in terms of land administration functions), how the
three remote sensing methodologies under development meet these needs, and finally what governance
aspects would be critical in widespread update. As a result of the workshops in Kenya, a SWOT
analysis was created for each developed application. The results of those SWOT analyses as well
as from the fieldwork are summarized and visualized in Table 8: the adherence to 10 aspects of the
assessment criteria, derived from the user needs assessment, land management paradigm [5], and FFP
requirements [4] is shown.

Table 8. Assessment of remote sensing methodologies with regard to fit-for-purpose land rights
mapping in Kenya. Green indicates compliance with an aspect, yellow indicates that the application
partially complies with an aspect.

Sketch Maps
(SmartSkeMa)

UAV-Based Data
Collection

Automated Boundary
Delineation

1. Land Tenure
2. Land Value
3. Land Use
4. Visible boundaries rather than fixed boundaries
5. Aerial imagery rather than field surveys
6. Accuracy relates to the purpose
7. Updating and ongoing improvement
8. Cheap
9. Fast
10. Accurate

With regards to SmartSkeMa, is seems clear that this is not a methodology aiming to replace data
collection via aerial images or other surveying techniques, but sketch maps can be used to complement
and support collecting data about the relationship of people with respect to land. When SmartSkeMa
is considered as methodology for documenting community land tenure in Kenya, its ease of use makes
it a cheap option as, once set up, it allows communities to document their land with little additional
cost. Its level of accuracy can also be tailored to the task at hand since communities can sketch on
top of an aerial image allowing higher precision than is obtained using a plain sketch map. Finally,
because a community can use SmartSkeMa with relative independence it may produce data faster
than would be possible using traditional land survey methods where the skilled personnel in Kenya
are scarce. From the results obtained, SmartSkeMa’s functionalities contribute to meeting most of the
10 aspects. The wide range of spatial precision covered by SmartSkeMa presents a great opportunity
for incremental and progressive land data acquisition. However, data produced by SmartSkeMa is not
very well suited for land valuation in the sense of calculating objective monetary equivalents. The data
however may include information about relative values as perceived by land users within a cultural
context. More work is needed to determine the extent to which these land values can be captured in
the data and how they can be interpreted.

For UAVs, during the workshop most interest was conveyed in the provision of an up-to-date map.
Various local government entities such as the department of urban planning and spatial development
identified the potential of UAV data to derive information on the current land use and for monitoring
urban developments. Furthermore, the immediateness of the data provision was seen to be very
beneficial to investigate and solve land disputes within group ranches. However, since the registry
index maps are paper-based, the entry barrier to adopt UAV technology is very high. Good visibility
of rooftops and information on the height of buildings was found to support land valuation processes.
The exploratory case study in Kenya showed that most of the 10 aspects can be met. As an indirect
surveying technique, the concept of using UAV technology in cadastral mapping is based on the
existence of visible boundaries which can either be extracted by automated image analysis or manual
delineation. However, it was also found that a precise and accurate generated orthophoto allows
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extraction of boundaries that are not necessarily visible, such as combining features that demarcate
the corner point of the parcel even though the line in between is not visible. The ease of use and the
flexible setup in terms of the technical standards of the sensor and platform allows covering a large
range of different purposes. In terms of scalability, UAV technology only serves a limited range of
different scales as costly and lengthy flight authorization procedures hinder an efficient application.
Furthermore, in many countries current regulations require to fly missions which are in visual line
of sight, allowing only some hundred meters of a possible flight trajectory. According to Kenyan
stakeholders, limited battery capacity was found to be the second bottleneck currently impeding large
scale implementation.

For ABE, the results from the workshop proved that our proposed automatic boundary extraction
approach facilitating the delineation of visible objects and cadastral boundaries can be used to collect
information on land tenure, land value, and land use. It further aligns well with the FFP spatial and
scalability requirements: it allows a cheap, fast, and accurate delineation of visible boundaries from
aerial imagery. However, costs, speed, and accuracy can vary depending on the capture and processing
of the aerial imagery and the implementation of the automated boundary extraction: the approach
is currently open source, which seems low-cost, but might require more time in acceptance as the
SWOT analysis revealed. Given the complexity of cadastral boundaries, automating their delineation
remains challenging: the variability of objects and extraction methods reflect the problem’s complexity,
consisting of extracting different objects with varying characteristics. These circumstances impede the
compilation of a generic model for a cadastral boundary and thus the development of a generic method.
These remarks come back to the limitations of general boundaries: no standardized specifications exist
for boundary features, boundaries are often not marked continuously and maintained poorly [59].
To further develop automated boundary extraction in indirect surveying, we suggest considering the
extractable boundary rather than the visible boundary alone (Figure 14): instead of focusing on the
visible boundary comprising of outlines of physical objects, automated boundary extraction should
focus on the extractable boundary that incorporates local knowledge and context. This information is
not inherent in the concept of the visible boundary, but it is extractable from remote sensing imagery.

Figure 14. From physical object to cadastral boundary: reformulated boundary concepts for indirect
surveying.

Overall, our approach that couples a machine-based automatic feature extraction with a
delineator-based interactive delineation can be used to map extractable boundaries. The delineation
cannot be fully automated at the current state since the extracted outlines require (legal) adjudication
and incorporation of local knowledge from human operators to create final cadastral boundaries.
Image-based approaches bear potential to automatically extract use rights, which do not necessarily
represent legal rights. These circumstances limit the scope of automated approaches. We observed that
automating boundary extraction dealing with sensitive land rights can only be successful, when the
interactive part that bridges the gap between automatically generated results and the final cadastral
boundary is designed and implemented in correspondence to user needs. Our work revealed limitations
of the current approach and ideas for improvements to be addressed in future work, in order to
advance the current approach regarding efficiency and acceptance. This would promote the paradigm
shift towards cadastral intelligence that integrates human-based expert knowledge with automatically
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generated machine-based knowledge. Additionally, future studies should provide approaches to
capture requirements from existing technical, legal, financial, and institutional frameworks to be
considered when aiming to implement innovative cadastral mapping procedures successfully.

Finally, for governance aspects, further notes on legislative and financial aspects are worth
expanding upon. Implementing any of the remote sensing methodologies at any scale, without an
appropriate legislative framework, appears fraught. This partly relates to modernizing existing laws
and regulations to open up to innovative approaches, and partly to new rules for new challenges.
Especially when this new legislation would give clarity on the responsibilities of the different actors,
prioritize cheap and open source technologies and stimulate and facilitate partnerships between the
governmental and non-governmental actors that would make the uptake and upscaling of the remote
sensing methodologies much more likely. Without this an occasional “pilot” might continue and
show what can and cannot be achieved within a certain setting, but for true upscaling, a supportive
environment will be needed; appropriate laws and regulations and a collaborative attitude among
national and local government, as well as with non-government actors. As Kenya has a long land
administration history, there is the human capacity in the field, however it seems this country is lacking
the political will to introduce that supportive environment to a large extent. Focusing specifically on
UAV legislation, getting to balanced legislation that allows a responsible use of UAVs without truly
compromising the other issues is not easy. This can be seen worldwide, but even more in countries like
Kenya, which struggle to get political will to make clear instructions for UAVs. The implementation of
the UAVs could be improved by increasing collaboration between the national and local governments
with the non-governmental actors. This collaboration could help to solve the lack of important financial
resources. Resources are needed to hire new staff, training, certification, among others. In this sense,
the national level can also play an important role as a facilitator to allow private companies to participate.
Some non-governmental actors such as private companies could have the resources to use the UAVs;
however, they require certain governmental support such as the issuing of the permits or incentives to
invest. Meanwhile, on the financial aspect, both proprietary and open source options present challenges:
actors payments for software, licenses, and the required updates prohibitive; however, even with open
source software, the lack of IT infrastructure and internet access still impacts negatively on scaled
uptake. In Kenya, the current resources are not enough to establish a sustainable implementation.

6. Conclusions

The paper has described challenges around land tenure mapping in Kenya and presented potential
remote sensing methodologies that respond to current end user needs and that are furthermore
investigated from a governance perspective. Although the 2010 Constitution resulted in a land
policy reform setting out a framework to better respond to the needs of large customary groups in
Kenya, actual implementation is slow and both county governments and communities themselves
continue to grapple with a multitude of issues relating to rapid urbanization, unmanaged development,
and unregulated land activities. Communities are not engaged with land policies, and spatial planning
and needs are not being met. For counties like Kajiado, these challenges are further exacerbated by
issues of scale, high levels of corruption and poor-quality of existing land data. In future, since the
needs are changing with time the new technologies in support of land administration should definitely
be adapted accordingly.

With regards to the demonstrated remote sensing methodologies, SmartSkeMa was revealed as a
versatile land data acquisition tool that requires little expertise to be used and is based on community
participation; UAVs were identified as having a high potential for creating up-to-date base maps
to support the current land administration system; the automatic boundary extraction approaches
designed for areas demarcated by physical objects and are thus visible were found to be useful for
collecting information on land tenure, land value, as well as land use (aligned with the 10 aspects).

Finally, with regards to ensuring responsible governance related to the scaled implementation
of the remote sensing methodologies, as there is no appropriate legal framework for applying them,
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the viability and medium timeframe for increased usage in the sector remains unclear. A more robust
legal framework could strengthen authority; operationalize in administrative orders, rules and planning;
and serve as the basic control system (for possible sanctions). After establishing the framework, if not
during, serious attention needs to be given to the cooperation between all relevant actors, where
interorganizational relations are ruled by the acknowledgement of mutual interdependencies, trust and
the responsibilities of each actor.
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Abstract: When spatial land tenure relations are not available, the only effective alternative data
method is to rely on the agricultural census at the regional or national scale, based on household
surveys and a participatory mapping at the local scale. However, what if even these are not available,
which is typical for conflict-affected countries, administrations suffering from a lack of data and
resources, or agencies that produce a sub-standard quality. Would it, under such circumstances, be
possible to rely on remotely sensed Earth Observation (EO) data? We hypothesize that it is possible
to qualify and quantify certain types of unknown land tenure relations based on EO data. Therefore,
this study aims to standardize the identification and categorization of certain objects, environments,
and semantics visible in EO data that can (re-)interpret land tenure relations. The context of this
study is the opportunity to mine data on North Korean land tenure, which would be needed in case
of a Korean (re-)unification. Synthesizing land tenure data in conjunction with EO data would align
land administration practices in the respective parts and could also derive reliable land tenure and
governance variables. There are still many unanswered questions about workable EO data proxies,
which can derive information about land tenure relations. However, this first exploration provides a
relevant contribution to bridging the semantic gap between land tenure and EO data.

Keywords: land administration; geospatially informed analysis; land tenure; land tenure relations;
remote sensing; earth observation (EO) data

1. Introduction

Land tenure data contain geospatial, anthropological and socioeconomic attributes since it
builds on both the physical delineation of land and the identification of social relations governing
land use, land access and land ownership [1,2]. Collecting land tenure data is, however, neither
administratively straightforward nor always technically feasible or financially affordable. There are
even many challenges which make collecting land tenure data complex, such as data availability
and data accessibility [3,4]. However, new data collection technologies, including, amongst others,
voluntary geographic information in connection to social media technologies, Unmanned Aerial
Vehicles (UAVs) and big data mining may overcome some of these barriers. Yet, there is a dearth of
the methodological reflections in how such geospatial technologies can identify and formalize land
tenure relations. What these technologies are currently able to do includes: (1) underpinning land
tenure-enabling environments; (2) mining land tenure data; (3) transforming land tenure relations [5].
However, the quality of all these heavily depends on the completeness and full access of the terrain
and the data sources. In many cases these basic criteria cannot be guaranteed, leaving the land tenure
information scarce [1].
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A promising and yet unexplored technology to derive socio-legal land tenure information is Earth
Observation technology. The utilization of Earth Observation (EO) data has increased significantly in
many disciplines. Literature shows applications ranging from environmental and regional studies to
economics, and peace and conflict research, for example [6–9]. More specific to the interest of this paper,
there is growing body of literature on methods to extract and map cadastral boundaries using EO
data [10–19]. However, this literature rarely effectively bridges the knowledge gap between social land
tenure and spatial descriptions of boundaries. In other words, the (even automated/machine-learning
based) spatial descriptions do not identify the underlying social or legal relations to land, such as
effective land ownership, private or communal land use or land access rights or presumed land claims.

The methods in detecting, extracting and identifying land tenure relations always require both
geometric or topographic characteristics and ground-truth information of land tenure. However,
spatially explicit land tenure relations through EO data remains one of the foremost challenges.
As a societal institution, land tenure has a great influence on how people decide on land use. Such
decisions are observable in land cover changes and spatio-temporal patterns of land use (inducted
from similarities, differences, repetitions or sudden changes in space and time). The dynamics of
landscape changes are intrinsically linked to land tenure relations and decisions [20–22]. Detecting and
extracting physical features is possible by connecting spectral reflectance values, shapes, and texture
features of ground components to be pre-defined. By sampling and generalizing these connections,
one can construct algorithms, which detect and predict spatio-temporal patterns with EO data,
such as the (rate of) land fragmentation, land ceiling and urban encroachment [16,23,24]. Such
spatio-temporal processes could be connected to land tenure information if these are aligned with
automated identification and reconstruction of cadastral boundaries. For example, the morphology of
a cadastral boundary is associated with the spatial nature of land tenure on the aspects of, physical
realm of land interests, temporal practices of land use rights and the legal nature of boundaries [25].

Then, how do we derive the features or characteristics of land tenure if we only have access to the
physical objects or spectral changes in objects in time and in space? According to [26], land tenure
aspects may cross multiple spatially observable boundaries in a given landscape. Additionally, tenure
and land right boundaries are also not always visible through specific elements in the landscape or
through specific spectral reflectance values. One still needs to combine the location of specific landscape
elements to alternative data source, such as agricultural census data at the regional or national scale,
and/or household surveys and a participatory mapping at the local scale [1,27]. Nevertheless, what if
these locally collated datasets are not available? Is it in such cases still possible to rely on EO data only,
combined with a set of basic assumptions about the spatial nature of land tenure? We hypothesize that
this is possible; however, this requires a set of fundamental proxies connected to specific documented
knowledge on land tenure. This article will describe how this is possible and under which conditions
this is possible.

The first challenge to overcome this problem is to address the degree of semantic information
connected to spatial information. When it comes to extracting socio-spatial aspects of land tenure using
EO data, the formalized and proven semantic rules do not yet exist. Or more precisely, the rules and
assumptions, which induce a land tenure relation type, do not yet exist. EO data only distinguishes
“low-level semantic features” of land cover information such as physical features, spatial objects and
configuration of ground components. In contrast, land tenure information requires “high-level semantic
features” connected to knowledge-based information, and reflecting institutionalized human-land
relationships and based upon the varying human socio-economic activities on land such as land use
and ownership trajectories. In other words, the low-level semantic features provided by direct EO data
acquisition methods are insufficient for the derivation of land tenure relations. One needs some sort of
socialization of the pixels, i.e., a high-level semantic data collection and interpretation procedure which
represents knowledge epitomized by indirect access to EO data. In practice, there is a discrepancy
between the levels of detected low and high-level semantic features and it is labelled as the “semantic
gap” [24,28,29]. Therefore, it is important see how the process of socialization of pixels can take
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place and how EO data can be (re-)interpreted into semantic land tenure relations with a rational and
rigorous methodology. Only then, it is possible to identify, bridge and close the semantic gap.

Hence, this paper makes a review of the challenges posed by the identification of land tenure
relations from Earth Observation data. In order to overcome some of these challenges, we propose to
use a mix of methods and information fusion to identify proxies that may help derive unknown land
tenure relations. This illustrates our approach by constructing proxies for land tenure relations over
North Korea. The research questions are:

• Which kind of land tenure-related data can one derive and acquire when information access
is limited?

• Which proxies can help to derive currently unknown land tenure relations in conjunction with
EO data?

We first present the conceptual foundations of EO data applications for identifying land tenure
relations. The next section addresses substantive and methodological considerations. Then, we explore
a set of proxies in relation to five land tenure related questions. Finally, the conclusion gives brief
summary and provides recommendation on how to proceed with this research.

2. Fundamentals of EO data Applications for Identifying Land Tenure Relations

2.1. The Conceptual Models of Semantic Land Tenure Relations

The lists in Table 1 are a number of key models and concepts capturing land tenure
relations. Henssen [30] depicts land tenure as institutionalized people-to-land relationships with his
“Subject-Right-Object model” [31]. This basic model of land administration has been further modified
by for example highlighting the dynamics of land tenure [32]. The “Land Administration Domain
Model (LADM)” is to a large degree an extended and more sophisticated model of the basic model,
and has become both a conceptual and descriptive standard (ISO 19152). The LADM covers all land
tenure-related data components including parties, legal/administrative units, spatial objects, and data
on surveying and spatial representation. The LADM can bridge the gap between land policies and
information management opportunities and is adaptable to local situations [33,34].

Table 1. The conceptual models of semantic land tenure relations.

Semantic Land Tenure
Relations

Land Tenure Data Specification EO Data Application

Subject-Right-Object
Model [30]

The model only distinct three categories:
“subject-rights-objects”. Subjects are persons,
groups, firms or States. Rights are ownership,

use, control, access and transfer rights. Objects
are physical features. The model puts in principle
the accent on the relation “subject-right (who and

how)”, and on the relation on “right-object
(where and how much)”.

Scalability: currently EO data only looks at
physical objects. This includes identifying

cadastral (parcel and building)
boundary-mapping approaches and land use
attributes. However, other attributes can be
derived using technical advances of Earth

Observation (EO).

Land Administration
Domain Model
(LADM) [33]

The Land Administration Domain Model
(LADM) facilitates the management of different
tenures in “one environment”; it covers all land

tenure-related data components including parties
(person or organization), legal/administrative

units (right, responsibility and restrictions),
spatial objects (parcel, buildings and utility

networks), and data on surveying and spatial
representation (geometric/topological data).

Inter-operability: to capture semantics of the land
administration and data-related components,

a range of data acquisition methods is
emphasized (e.g., satellite images, Unmanned

Aerial Vehicles (UAVs) and automatic
feature extraction).

Continuum of Land
Rights [35]

It refers to recognizing, recording, administering
a variety of appropriate and legitimate land
tenure data. It, thus, focuses on the “tenurial
pluralism” (diversity of tenure arrangements)

and duality in subjects.

Flexibility: underlining importance of data
robustness and accuracies using more

sophisticated technologies to systemically
accumulate land tenure data
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Table 1. Cont.

Semantic Land Tenure
Relations

Land Tenure Data Specification EO Data Application

Fit-For-Purpose Land
Administration [36]

Capturing spatial land tenure data should be
“flexible and participatory” that covers all tenure

data in scope. Moreover, acquired land tenure
data is used affordable technologies and needs to
provide adequate reliability within a limited time

and resources. All land tenure data should be
kept up-to-date.

Accuracy: application of general boundary
mapping (rural); the use of high resolution
satellite imagery (urban); high accuracy of
information; on-going updating, sporadic
upgrading and incremental improvement

Responsible Land
Administration [37]

It addresses changes in people to land relations
based on “socio-technical and institutional

advances”. New geoICT-driven and
thought-restructuring land data capture,

visualization, and sharing techniques with a clear
understanding of a legal, organizational,

and governance context can acquire specific
characteristics of land tenure.

Legitimacy: emerging geospatial technologies
including high-resolution satellite imagery for

data collection and management offers new
insights on legitimizing land rights and

documentation as well as acknowledging
different forms of land tenure.

Furthermore, the “Continuum of Land Rights” approach emphasizes that land tenure arrangements
vary along a continuum of land rights. Not only documented formal land rights are legitimate, but
also undocumented informal land rights may exist, and society may accept or condone these alongside
formal rights. The continuum of land rights approach is useful in describing de facto land tenure,
which is much more fluid and flexible than the static and unchanging (spatio-temporal) description of
land rights. It allows more flexibility to define and recognize land tenure based on evidence from the
field [35].

The “Fit-For-Purpose land administration” approach mainly focuses on building geospatial data
framework of large-scale mapping that can address emerging land tenure issues where no reliable land
information exists. This framework highlights following constituent principles in order to not only
improve recognition of “value-of information” and maximize “cost-effectiveness”, but also decrease
“capacity-demanding”: (1) general boundaries rather than fixed boundaries; (2) aerial imageries
rather than field surveys; (3) accuracy relates to the purpose rather than technical standards and;
(4) opportunities for upgrading and improvement [36].

“Responsible land administration” expands the conventional notions of land administration with
a normative framework. What is distinctive about this concept is that it takes the following aspects
into account: the requirement for any land administration system to ensure the representation of
multi-stakeholders in order to foster institutional innovation and inclusion; the incorporation of a
broad array of scholarly disciplines into the methodological repertoire, in particular, connecting from
technical and information sciences to the social sciences and humanities; the need for a proactive
stance in laying the foundation of cutting-edge land administration systems design; connecting the
global context to the local and vice versa; the continued need to transfer knowledge into the practice,
and vice versa [37]. Technical and operational designs of land information systems can only be
innovative if particular societal needs embedded in the design process and in the manner in which
land administration is based on shared responsibilities.

2.2. Advancement of EO and AI Applications in Identifying Land Tenure Relations

One of the significant discussion in EO applications for land tenure relations is to provide the
institutional and spatial aspects of cadastral boundaries by identifying relationships between physical
objects and visual boundaries based on the notion of cadastral morphology [15,16] and cadastral
intelligence [17]. The early experiment demonstrates that over 80% of cadastral boundaries coincide
with visible physical objects [15]. In line with a previous endeavor, more tailored object-based
workflows using extraction algorithms delineate about 50% of parcel boundaries successfully [16].
Investigating technically transferable workflows is a continuing concern within UAV-based cadastral
mapping. For instance, both the gPb contour detection method and the ENVI feature extraction
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(FX) module has proven accurate results of visible object delineation that coincide with cadastral
boundaries at completeness and correctness of up to 80% [11,13]. To extract visible cadastral boundaries
within Object-Based Image Analysis (OBIA) environment from High Resolution Satellite Imagery
(HRSI), the (semi-)automatic feature extraction methods have been employed and tested in rural areas:
mean-shift segmentation with the buffer overlay method [18], and both multi-resolution segmentation
(MRS) and estimation of scale parameter (ESP) (only able to automatically extract 47.4%) [17].

In light of state-of-the-art methods in land administration, a deep-learning is becoming highly
prominent for the detection of cadastral boundaries [12,19]. Recent evidence suggests that deep fully
convolutional networks (FCNs) ensures the high accuracy rather than gPb and MRS, with results of
0.79 in precision, 0.37 in recall and 0.50 in F-score [19]. For optimizing image segmentation, one study
by [12] not only introduced the interactive boundary delineation workflow, but also examined the
better suitability of the deep learning in cadastral mapping with convolutional neural networks (CNNs)
by comparing random forest (RF) in machine learning: RF-derived boundary likelihoods (accuracy:
41%, precision: 49%), CNN-derived boundary likelihoods (accuracy: 52%, precision: 76%).

Several attempts make to extract, classify and quantify cadastral boundaries using EO data in
association with AI technologies (see Table 2). Along with these varying workflows and its image
segmentation techniques that employed, however, there is increasing concern over further investigating
deep-learning driven image analysis in land administration including image fusion, image registration,
scene classification and retrieval and object detection. For remote-sensing image interpretation,
the most applicable deep-learning models in remote sensing are: supervised CNN, recurrent neural
network (RNN), unsupervised authencoders (AE), deep belief networks (DBN), and generative
adversarial networks (GAN) [38]. Although research on effective use of spatial contextual information
in remote sensing for land administration is still in infancy, it can substitute the interpreter to a
certain extent (not completely) by delving deeply into AI technologies with computer-vision and
deep-learning algorithms.

Table 2. Earth Observation (EO) data and Artificial Intelligence (AI) delves deeper into the future
of land administration and the advanced techniques substitute to a certain extent the feature and
boundary extraction for cadastral mapping. However, a number of critical questions remain about the
interpretation of semantic land tenure relations using both EO and AI.

Technologies
Techniques Sources

EO
AI

CV DL

Aerial imagery
(Orthophoto) No No

Cadastral morphology investigation: visual interpretation
from the overlay of the cadastral map over orthophotos [15]

Airborne Laser Scanning
(ALS)

√ Semi-automatic boundary extraction: Alpha shape
(α-shapes), Canny, and Skeleton algorithm [16]

Unmanned Aerial
Vehicles (UAVs)

√ Automatic feature extraction: Globalized Probability of
Boundary (gPb) contour detections [11]

High Resolution Satellite
Imagery (HRSI)

√ Semi-automatic boundary feature extraction: mean-shift
segmentation plug-in QGIS, the buffer overlay methods [18]

Unmanned Aerial
Vehicles (UAVs)

√ Automatic boundary extraction: ENVI feature extraction
(FX) module [13]

High Resolution Satellite
Imagery (HRSI)

√ Automatic boundary extraction: Multi-Resolution
Segmentation (MRS), estimation of scale parameter (ESP) [17]

Unmanned Aerial
Vehicles (UAVs)

√ Automatic cadastral boundary detection: deep Fully
Convolutional Networks (FCNs) [19]

Aerial imagery and
UAVs

√ Automatic boundary classification: Random Forest (RF),
Convolutional Neural Networks (CNN) [12]
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3. Methodological considerations

3.1. A Difficult-to-Access Region: North Korea in the Contexts of Fragile and Conflict-Affected Areas

There is increasing concern that remotely obtained data using disruptive technologies in fragile and
conflict-affected areas (See Figure 1), where has been named hard-to-reach areas, is more worthwhile
in optimal decision-making rather than a limited groundtruthing provided by direct observation
(for example, [39–41]). According to [42], some countries such as Somalia, North Korea, and some
Caribbean and Pacific island economies do not consistently render an account of internal data owing
to conflict, lack of data capacity, or other reasons including quality of sources. An additional encounter
with data scarcity and reliability is associated with national security issues in any contexts of fragile
and conflict-affected regions worldwide.

 
Figure 1. Contextualization of Area of Interest (left: Fragile States Index 2019 (https://fragilestatesindex.org),
right: background information of South and North Korea based on Major Statistics Indicators of North
Korea 2019 (https://kosis.kr/bukhan/index/index.do) (devised by authors).

Gathering and establishing reliable information for policy-making in pursuing Korean
(re-)unification is more significant than ever during a peace-building process. In this process, re-shaping
land governance are a fundamental question focusing on land tenure security, transferability, legitimacy
and identity in (re-)unification setting [43,44]. Despite the passive attitude of the North Korean
government to disclose information, it is possible to obtain data in a direct or indirect manner, such
as [45]: official government reports (e.g., Korean Central News Agency: KCNA and Rodong Sinmun);
materials from international organizations dealing with humanitarian aid (e.g., FAO, UNDP, UNFPA,
WFP, WHO, UNICEF (For the resources, [46] etc.); information from external agencies or observers in
cooperation with local authorities or residents (e.g., Hanns Seidel Foundation for EU-funded project
on sustainable forestry in North Korea etc.); data acquired through the joint projects (e.g., the North
Korean Ministry of Land and Environment Protection: MoLEP, Swiss Agency of Development and
Cooperation: SDC, World Agroforestry Centre’s East and Central Asia Office for the Sloping Land
Management Program (See further details for the project, [47] etc.).

However, there are still great difficulties in collecting land tenure-related information in North
Korea since the government rarely discloses or distributes any policy-related documents, data and
statistics. The scope of current research on mapping land tenure relations has been very limited such as
restoring historical cadastral maps [48–50] that include both geographical and textual land information.
However, most research is still highly dependent on secondary data sources. Many studies using EO
data for North Korea have been proposed for monitoring land use and land cover (LULC) over the
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past several decades (for example, [51–55]). Furthermore, a number of government institutes and
think-tanks have already established different types of thematic maps in North Korea using EO data
(e.g., agricultural maps; deforestation maps; land cover maps, etc.). More internationally, a platform
called 38 NORTH (https://www.38north.org), provides informed analysis of events in and around
North Korea using HRSI, as well as develops the digital atlas that was built in the Google Earth
platform. Nevertheless, researchers and policy-makers still have faced with difficulties in incorporating
land tenure-related data with EO data due to: (1) levels of accessibility: the limited access to North
Korean data; (2) methodological levels: complexity of integrating land tenure attributes with EO data;
(3) analytical levels: its lower reliability and validity of acquired information.

3.2. Existing Rules for Defining Land Tenure Relations and LULC classifications

This section provides an overview of the existing rules for land tenure relations in South and
North Korea that can identify the data gap between them. The classification methods of land tenure
relations are based on diverse land trajectories: by land ownership, land (use) categories, 3Rs, land
characteristics and urban planning facilities (See Table 3).

In South Korea (SK), land is divided into private land, government-owned land including State,
province and county land, land owned by corporation or judicial person and land owned by non-judicial
person, according to the land ownership trajectories. Contrastingly, the Constitution and the Land
Law in North Korea (NK) does not tolerate private transactions with land. The State, collective farms,
institutions, enterprises and organizations only govern land and local residents have land use rights
(LURs). According to the Constitution (Article 21; 22) and the Civil Law (Article 45; 53) in NK, there is
no restrictions on the subject of State ownership and only the State can own land. The cooperative
entity refers to the form of collective ownership in which cooperatives assume the ultimate authorities
for the land that are restricted by the State.

According to the Act on the Establishment and Management of Spatial data in SK (Article 2),
a land category means a type of land that is classified under its primary use, and registered in the
cadastral record. Land is currently classified into 28 categories to represent the nature, purpose and
status of the land. Meanwhile, in NK the Land Law (Article 7) distinguishes six categories of land use
classes: agricultural-purpose land; settlement land; forestry land; industry land; waterstock land; and
special-purpose land. However, it is not yet clear whether these land use categories correspond to the
zoning system or land category system in SK [56]. Based upon the Civil Law and LADM (focusing on
3Rs), the right type in SK includes co-ownership, servitude, lease, ownership, partitioned ownership,
superficies, sectional superficies, tenancy, usufruct, and fishing. The responsibility types include
keeping a snow free pavement and cleaning a ditch, and the restriction type includes servitude and
servitude partly [57]. For NK, we assume that there is no land use regulation through the restriction of
private rights (3Rs), since NK does not recognize private land ownership.

A land characteristics survey investigates land-related data from physical, spatial and
socio-economic conditions in SK [58]. The 45 types of land use indicators are basic data for the
land classification aforementioned. Moreover, land infrastructure (urban planning facilities) refers
to facilities determined by urban management plan among infrastructures. The legal grounds is the
National Land Planning and Utilization Act (Article 2) [59]. In NK, land use classifications are different.
It follows the land characteristics in the same way as the six types of land prescribed in the Land
Law. The diversity of land use appears to be very simple when compared to that in SK, although the
Urban Management Law in NK does not explicitly stipulate land infrastructure, it identifies buildings
and facilities, which need to be managed. These include residential and factory buildings, water
and sewage and heating operation, urban roads and river arrangements, landscaping and urban
beautification. Roughly, one can distinct 29 types of land infrastructure elements in NK.

Earth observation (EO) is one of the most essential methods for monitoring the earth’s surface
and its dynamics at regional to global scales [29]. The term land use defines how a certain portion
of the surface is being utilized. In other words, a particular land use label identifies the purpose for
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which humans exploit the land cover [60,61]. The land cover denotes to the biophysical appearance on
the land and determined by the elements of the Earth’s (sub) surface. For example, a State park may be
used for recreation but have a deciduous forest cover [60,61]. In some countries, a formal/ government
LULC classification system exists which can easily describe the actual condition and changes of spatial
structures of the land and its attached attributes: the U.S. National Land Cover Database (NLCD,
USA [62]), the national Dynamic Land Cover Dataset (DLCD, Australia [63]), the European CORINE
land cover (CLC, EU [64]), the Land Cover Map (LCM, Korea), and the National Land Use/Cover
Database of China (NLUD-C, China [65]). Although these datasets have been developed with different
mapping methodologies and criteria (e.g., variations in the classes and thresholds applied, time of data
collection, sensor types, classification techniques, use of in situ data etc.) [65], one can utilize it as basic
spatial data to support the design of scientific and efficient policies.

Table 3. Existing rules for defining land tenure relations in the context of Korean (re-)unification
(functional classifications).

Categories
Existing Rules for Identifying Land Tenure

Relations in SK
Existing Rules for Identifying Land

Tenure Relations in NK
Legal Grounds

3Rs (rights,
responsibility and

restrictions)

Private land; State land; province land; county
land; land owned by corporation (judicial

person); land owned by a clan; land owned by
a religious group; land owned by other groups;

others (9 types)Common ownership; lease;
ownership; partitioned ownership; tenancy;
superficies; partitioned superficies; usufruct;

easement; fishing; keeping a snow-free
pavement; cleaning a ditch; servitude;

servitude partly (14 types)

State land; collective farmland (2 types)(cf.
Since North Korea does not recognize

private ownership; there is no land use
regulation through the restriction of private

rights. Although all land belongs to the
State, both the State and the individual or
collective can restrict the use by restricting
the access. Nature reserves, military sites,

public heritage are typically locations
where the State wants to restrict access, use

and control through such restrictions.)

The Constitution (NK)
The Civil Law (NK)
The Civil Act (SK)

LADM (SK);

Land (use)
categories

Building site; dry paddy-field; paddy-field;
orchard; forestry; pasture site; mineral spring

site; saltern; factory site; school site; parking lot;
gas station site; warehouse site; road; railway
site; water supply site; river; ditch; fish-farm;
park; historic site; gymnasium site; recreation
area; religious site; graveyard; miscellaneous

land (28 types)

Agricultural-purpose land (arable land);
settlement land (construction land and its

attached land in local labor areas as well as
public land); forestry land (land used in the

hills and fields); industry land (sites of
industrial facilities such as mine, factories,
and the land pertaining to it); waterstock

land (land for coast, territorial waters, river
and streams, lake, reservoir and irrigation

ditch); special-purpose land (cultural
heritage sites, historical landmarks,

sanctuary and military) (6 types)

The Act on the
Establishment,

Management, etc. of
Spatial data (SK);

The Land Law (NK)

Land (use)
characteristics

detached-house lot, row-house lot,
multiplex-house lot, apartment lot, residential
vacant lot, other residential lots; commercial lot,

office lot, commercial/office lot, other
commercial/office lots; mixed-use lot,

mixed-use vacant lot, other mixed-used lots;
industrial lot, industrial vacant lot, other

industrial lots; dry paddy-field, orchard, other
dry paddy-fields; paddy-field, other

paddy-fields; afforestation, natural forest, forest
land, pasture, other forestry; mineral spring
site, mining site, saltern site, recreation area,

cemetery park, golf course, racecourse,
passenger transport terminal, condominium,
other special-purpose lands; roads etc., rivers
etc., parks etc., playgrounds etc., parking lot

etc., high-risk establishments, obnoxious
facilities and Others (45 types)

Agricultural-purpose land (arable land);
settlement land (construction land and its

attached land in local labor areas as well as
public land); forestry land (land used in the

hills and fields); industry land (sites of
industrial facilities such as mine, factories,
and the land pertaining to it); waterstock

land (land for coast, territorial waters, river
and streams, lake, reservoir and irrigation

ditch); special-purpose land (cultural
heritage sites, historical landmarks,

sanctuary and military) (6 types)

The Act on the Public
Announcement of Values

and Appraisal of Real
Estate (SK);

The Land Law (NK)

Land (use)
infrastructure

Road; park; railway; (public) open space; waste
treatment facilities and water-pollution

preventive facilities; heat/gas/oil supplying and
storing installations; electric supplying

installations; slaughterhouse; graveyards;
markets and distribution facilities; recreation

area; parking lot; car stations; square;
playground and sport facilities; water

supplying instalments; public buildings (e.g.,
school and library); communication facilities;

cultural, research, social welfare, public
vocational training, youth training facilities,

others (21 types)

Dwelling house; public buildings;
production buildings; water supplying

instalments; heat/gas/oil supplying
facilities; road; street green; footpath;

streetlight; bridge; tunnel; underground
passage; road safety facilities; road

markings; bus/tram station; car washing
facilities; river (stream); park; recreation
area; open space; urban forest; protection
forest; zoo/botanical gardens; greenhouse;

tree nursery; flower garden; cultural
facilities; sanitation facilities; cremation

facilities (assumed 29 types)

The National Land
Planning And Utilization

Act (SK);
The Urban Management

Law (NK)
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3.3. Adopting a New Methodology: Mixed Methods Design and Information Fusion Approach

A number of image segmentation techniques and workflows have been developed to detect
visible land tenure relations with EO data. Each has its advantages (e.g., automation, coverage,
up-to-date, cost-effective etc.) and drawbacks (e.g., technological bias, methodological rationale,
lack of social sensing etc.). To especially overcome these constraints, a further advancement with
more focus on the idea of ‘triangulation’ is therefore considered which is particularly associated
with methods of investigation and sources of data [66]. A triangulation logic is chosen because land
tenure relations are unknown in a given context and monoscopic EO data interpretation without
valid inferences would misguide to identify transferrable and applicable proxies. Data integration
is at the heart of discerning epistemological assumptions from multiple sources to attain narrative
illustration, convergent validation and analytic density [67]. In this regard, this study makes an original
contribution to when land tenure and EO data integration occurs, what types of EO data are integrated
and how we integrate them.

In aiming to derive informative land tenure relations from EO data, one has to rely on both the
characteristics of tenure itself and a number of proxies derived from EO data and spatio-temporal
combinations of EO that may capture a particular land tenure characteristic. Our research started by
adopting the subjects (e.g., who is the right holder?), rights (e.g., what is included in a certain right?),
and objects (what physical extension of a right has?) model of land administration [68]. In parallel with
ownership, rights may embrace complex set of rules related to the access, use, develop or transfer [69].
In other words, a household can be associated with a particular land parcel where people can live,
own, rent or have the right to use [70]. Thus, the analytical premise has been questioned on the basis of
underlying assumptions: (1) is it possible to distinguish collective farmland from State land?; (2) can
one see land use rights (LURs)?; (3) is there a use right that can be linked to an individual or group?;
(4) are there land transfer rights (LTRs)?; (5) are there land access rights (LARs) and restrictions?

However, methodological difficulties, using EO data in accurately conjoining a household and
physical extension of a right over land parcels and measuring the quality of linking information,
have existed. There have been only few empirical investigations into decision-making what proxies
shall be operationalized based on both theoretical and practical grounds. In terms of using terms
‘proxy’ rather than similar terminologies such as ‘interpretation key’, ‘index’, ‘indicator’ or ‘variable’,
we follow a definition labelled by [71] that refers to “use of observable physical features or directly
measurable variables to understand and extract what actually exists on the ground, but what is not
directly observable or measurable from remote sensing data.”

Our approach comes from multiple sources, namely EO data, especially focusing on LULC
information, prior (expert) and contextual knowledge on land tenure relations acquired through
previous experiences and perceptions. In view of all that has been mentioned so far, one may
suppose that ‘information fusion’ approach must be considered in order to extract and conciliate
significant elements for the semantic (re-)interpretation and, subsequently, for decision-making [72].
Generally accepted disciplines for the notion of information fusion include: psychology, human factors,
knowledge representation, artificial intelligence, mathematical logic, and signal processing [73]. It has
been noted that transforming data into knowledge is most striking feature of information fusion
and must be converted into a certain language or presented by other means such as visualization
techniques [73]. Moreover, this method emphasizes that a wide range of structured/unstructured or
primary/secondary data sources address semantic relationships and co-occurrence between them [74].

According to [75], an information element is regarded as “an entity composed of a definition set
and a content set linked by a functional relationship called informative relation, associated with internal
and external contexts”. This highlights that one given single data set do not qualify or quantify to
make it informative. When answering the research questions or testing relationship between proposed
proxies and ground-truth, it is important to quantify recurring spatial attributes and uniformity or
distinctiveness in qualitative data allowing rigorous analysis and to determine rational and optimal
proxies. It is therefore considered that triangulation logic and information fusion approach would
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usefully supplement and extend the methodological and epistemological assumptions of semantic
land tenure relations through EO data interpretation. Having defined what EO data proxies and
information element meant, different types of information element, thus, should be included that
enable the EO data proxies to identify land tenure relations logically. Figure 2 depicts the workflow
and the main components of the information acquisition and interpretation process of the semantic
land tenure relations.

 
Figure 2. The general structure of an information element and its processes for the interpretation of the
semantic land tenure relations (devised by authors).

4. Deriving Workable EO Data Proxies for Interpreting Land Tenure Relations

This section explores a number of workable proxies based on the land related categories defined
in Table 2, whereby the proxies are derived from the existing EO data. We, then, discuss hereunder
how one can evaluate the five key land tenure-related questions defined in Section 3.3. The exact
spatial information and point of interest (POI) in this section were pre-identified from the openly
accessible platform.
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4.1. Is It Possible to Distinguish Collective Farmland from State Land?

A characteristic and distinctive feature of collective land (as compared to State land) is both
the type and number of buildings/dwellings adjacent to the land and the spatial distribution of
buildings/dwellings. Another characteristic is the state and density of infrastructure. Clusters of
buildings suggest the presence of a collective only if: buildings look similar and simultaneous changes
in structures occur. If spatial patterns of buildings and farm sizes and shapes re-occur in different
places, it is probably part of a joint collective spatial planning strategy, so it is more likely collective
land than State land. (See Figure 3b,c).

 
Figure 3. Spatial characteristics of cooperative farmlands extracted from high-resolution EO data.
(a) stands for the Unha collective farmlands surrounded by (dry) paddy-fields (georeferenced: Onchon
county, South Pyeongan); (b) represents planned spatial arrangements and a centralized cluster of
buildings and dwellings; (c) highlights buildings and houses utilize homogeneous materials and retains
its similar physical shapes and simple roof structures; (d) includes textures of irrigation channels and
features of rice (dry) paddy-fields. (Image sources: Google Earth, date of access: 9 October 2019).

It has commonly been stated that North Korea (NK) collective farmland plays a pivotal role
in major food production (approximately 85%~90% of total production), such as rice, corn, beans,
and potatoes [76]. In this regard, most collective farmlands are utilized as a (dry) paddy-field, so
it can therefore be assumed that the collective farmland can be confirmed through the presence of
(dry) paddy-fields. An area linked to or surrounded by a substantial portion of (dry) paddy-fields
can be considered as a collective farmland, which is following the association element of the image
interpretation (See Figure 3a). According to [77], rice fields include periodically flooded flat surfaces
with the rice plant, open water surfaces on fields, stubble or rice, irrigation channels between land
parcels and embankments between rice fields. These can be interpreted with the rough (or coarse)
image texture caused by variation in tonal values of an image that helps to identify single objects
(See Figure 3d).

The collective farmlands include ranging between 80 and 300 households and operates on
a large-scale from approximately 1,300,000 to 5,000,000 m2 [76]. Thus, the relative size and high
density or compactness of the settlement helps to distinguish when compared with State (farm) lands.
Collective farmlands accompany a farming equipment, materials, and production facilities from the
State and benefit from all the new building construction including rural dwellings (See Figure 3c).
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The characteristics of rural dwellings in collective farmlands are homogenous building colors in grey
scales, a signature line of the tiled roof, and densely built-up block structure with single-story detached
houses. This indicates a need to understand physically detectable proxies that the farming-related objects
will be more captured on the ground (in spring/summer) or stored in warehouses (autumn/winter)
rather than State farmlands. In addition, since agricultural production is mainly concentrated in the
springtime, changes of agricultural activities and its densification, which implies collective farmlands,
may be compared using time-series analysis. However, these proxies tend to be unreliable unless used
with other complementary sets of proxies. It therefore requires a rigorous image interpretation of EO
data in combination with other interpretation elements as well as secondary data.

On the other hand, State-owned (farm)land in NK refers to nationalized (farm)land in the process
of land reforms in the past, consisting of agricultural testbed, farms for the seed-production and
livestock [76]. As far as this assumption is concerned, the combination of the geometric properties of
an object such as shape and (building and roof) size, orientation, density, height as well as (building
and roof) colors/tones that identifies agriculture-based patches or infrastructures can be considered as
workable proxies. These include small dot-shaped (for orchards) and smooth (for pastures) textures,
out-buildings (sheds), dispersion value (low building density), irregularly shaped object boundaries,
complex, elongated or irregular building shapes, and distinctive roof colors (e.g., blue, green, yellow and
red as well as brightness etc.) and the association with agriculture-based infrastructures, monumental
buildings, and welfare facilities (See Figure 4). However, the association elements should be synthesized
with documented or local knowledge as the exact points of information has not yet clarified.

 
Figure 4. Spatial characteristics of State farmlands extracted from high-resolution EO data; (a) describes
whole region of the No. 5 State farmland in Taehongdan county in Ryanggang; (b) shows key spatial
arrangements of State farmlands embracing: agriculture-based infrastructures (e.g., fertilizer and
processing factories and colleges and research institutes etc.); monumental buildings (e.g., revolutionary
museums etc.); welfare facilities (e.g., house of culture, markets and shop, and kindergarten etc.); (c) is a
site of microbial compound fertilizer factory (upper) and agricultural testbed or greenhouses (middle);
(d) a site for potato processing factory (image sources: Google Earth, date of access: 9 October 2019).

4.2. Can One See Land Use Rights (LURs)?

A typical feature of LURs is that it usually relates to consistent patterns in space and there exists
regularity in time such as seasons. The right itself must be inducted or assumed if such patterns and
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consistencies exist. Reversely, finding such consistencies is an indication of the right. This implies
that from EO data over a number of years one can see similarities each similar season. If all indicate
the same type of land use, at the same points in time over a number of years, then one may assume
consistent land use, and LURs. If conversely there is a large variation in this, one has to assume that
the LURs are not consistent, or do not belong to a single person or group. The variations in land use
itself suggests an allocation of what the land may be used for over a longer period of time, yet in a
specific time of the year. This suggest the presence of a consistent LUR of single land user. Any land
use which is not observed suggests a restriction in land use or a specific allocation of land use.

The LULC in most areas between 1990 and 2000 remains unchanged, assuming existing consistent
LURs due to strict land use restrictions for nature reserves, military sites, and public heritages, or
unplanned and poor land management (see Figure 5). However, Figure 5a reveals more intensely
developed lands (red color) are shown in POI and we note that the development is mostly associated
with constructing new dwellings (with LURs) in fallow land. Moreover, Figure 5b highlights that land
for agricultural use (yellow color) has significantly increased in POI. This is due to the increase of
farmlands to cultivate, especially with collective farmlands, and hence the State provide new houses
for the farmer households that grants LURs. In addition, Figure 5c shows more intense LULC changes
in an urban area with the development of water bodies (blue color) and these provide additional
evidence with respect to LURs. It demands sufficient quantity and quality of water resources for
increasing urban households, and it can be inferred that developing water bodies are correlated with
LURs since the increased number of urban households represents an increase in granting LURs. Lastly,
Figure 5d underlines that LULC changes have occurred more in a border region than inland areas.
This, we assume, is because the border in NK started allowing LURs to be sold, transferred, and leased
to foreign corporations in Special Economic Zones (SEZs) by modifying socialist land tenure system
for economic recovery.

 

Figure 5. The example of land use and cover changes in Ryanggang between 1990 (upper) and 2000
(lower) with the currently available data set produced by the Ministry of Environment (MoE) using
Landsat TM imagery (1991–1999) and Landsat 7 ETM+ imagery (2008–2010) (image sources: [78] and
revised by authors).

All the means of production and socio-cultural facilities, including land, are jointly used in NK.
Meanwhile, housing and the allotment with an average size from 60 to 130 m2 are owned by the
State [79], but LURs are granted to individuals, and the product is allowed to belong to them. We
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therefore assume that the presence of all types of houses and their accompanying allotments can be
chosen to confirm the existence of LURs. To identify the (semi-) detached houses, it includes the
following proxies: low building density, 1 or 2 storied houses, uniformly shaped settlement, proximity
to roads, and low to intermediate imperviousness. In terms of condominium-related proxies, we
consider large rectangular simple form buildings, regular alignment, more than three stories, and low
to intermediate imperviousness and shadow silhouettes (see Figure 6). When it comes to the workable
proxies for allotments, the following “if” statements are considered: if the land (or site) has detached
small-sized buildings, if it is low built-up land, if it is low imperviousness, if it has plants or vegetation,
and if it is used as buffer between houses (see Figure 6b, Figure 7, and Figure 8b).

 

Figure 6. Different types of housing and their morphological features. (a) Condominium or residential
block buildings; (b) detached houses; (c) (semi-)detached houses; (d) showing different forms of
housing shapes (e.g., linear, curved, rectangular patterns and different colors of roofs etc.) (Image
sources: Google Earth, date of access: 16 October 2019).

Before 1998, a new housing reverted to the State, and only the right to use was given to individual
households by permission. However, after the amendment of the Constitution, the building was
excluded from collective ownership, enabling the possession of new housing. For the sake of legal
certainty, the form of housing is divided into State-owned, cooperative-owned and individual-owned,
but its ownership is very limited regarding use and transaction. According to [80], three types of
housing have been investigated, with a semidetached house (or row house) being the highest proportion
at 43.9%, a detached house (or single-family house) has been estimated as 33.8%, and apartments (or
condominium) account for nearly one-fifth (21.4%) of housing [81].

More specifically, in the rural areas of North Korea, the ‘harmonica houses’ have often been
observed where two or three households, and even five to six or more households, live together in a
detached house. A variety of identifiable proxies such as a small roof with slate materials, chimneys on
rooftops (small dot-shaped objects or a light shadow Silhouette) and a fence (with line-shaped objects)
installed to distinguish garden plots have been detected in the images. The evidence reviewed here
seems to suggest that the physical attributes of varying forms of dwellings through EO data acquisition
have significant correlations with granting LURs. Moreover, the growing new construction/extension
of residential buildings and expansion of construction activities in certain regions over time may
confirm the significant increases in authorities’ awareness on LURs. As shown in Figure 6, (a) shows
varying geometrical attributes of apartments along Ryomyong Street in Pyeongyang in 2019, while (b)
provides a typical example of detached houses that displays the roofing, chimneys and a fence for
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defining spatial boundaries between neighborhoods. Furthermore, (c) presents a normative sample
of semidetached houses and the building shadows that determine building heights. In addition,
(d) demonstrates different forms of residential building shapes such as linear, curved, rectangular fit
and different colors of roofing.

 
Figure 7. Morphology and urban structures of the Socialist lifestyle are discovered in the cooperative
farmland in 2002 (a) and 2018 (b). (c) Changes in land use from farmland to residential areas; (d) changes
in land use with more community-oriented development; (e) showing newly-built agricultural facilities;
(f) changes of residential development at higher densities (image sources: Google Earth, date of access:
17 October 2019).

 
Figure 8. Spatial characteristics of the ‘sotoji’. (a): between Onsong and Sambong, North Hamgyong;
(b) the Sambong cooperative farm, Phyeongwon; (c) Hyesan, Ryanggang (Image sources: Google Earth,
date of access: 17 October 2019).

4.3. Is There a Use Right that Can be Linked to an Individual or Group?

Another possible explanation for the linkage of individual or group-based LURs might be that
land use is homogenous between adjacent land parcels and buildings. A characteristic feature of
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an individual right as compared to a group right is that there is a large variety in land use between
neighboring parcels. In a group land tenure, people tend to converge to similar crops or building and
housing types. The observed land use can be connected to an observed set of combined proxies on
the land rights: similarity or dissimilarity of neighboring land use in space and over time; changes
in the adjacent buildings or houses; changes in the road infrastructure; number of buildings in a
certain vicinity.

Cooperative farms in NK are based on collective ownership. Along with economic activities,
cooperative farms function as rural communities that manage collective socio-cultural activities.
However, property rights are exercised by the State, and households only have exclusive LURs.
Therefore, all the means of production and socio-cultural facilities, including land, are entitled to
group-based LURs. The multiple objects of socio-cultural facilities incorporate ‘cultural houses’ (rural
houses with welfare facilities), various community amenities, and nurseries and kindergartens. These
possible proxies could define multiple LURs of groups over the same piece of land with specific
characteristics such as building geometry, arrangement pattern, roofing color, and site characteristics
with EO data.

Figure 7 presents an amalgamation of diverse community amenities: government offices
(e.g., a cooperative farm management committee and a party committee), educational institutions
(e.g., a middle school and a kindergarten), medical facilities (e.g., hospital), and socio-cultural facilities
(e.g., station, a park, a skate park, a restaurant and hotel, revolutionary museum, monuments—see
Figure 7a,b). These regular arrangement patterns of building objects are a common feature that appears
in collective farms, thus representing group-based LURs. As (c) indicated, we found that significant
land use changes from the cultivated farmlands to residential areas (confirmed by the presence of
multiple building objects with similar looks, a high density of settlement, simple rectangular forms
and same roof colors in red scales) occurred. The objects with a similar appearance are perceived as
a group figure or shape, and thus the similarity/dissimilarity of neighboring land use in space and
over time with other contextual knowledge (such as relationship, adjacency, inclusion, composition,
and neighborhood) can be regarded as workable proxies for defining group LURs.

Indeed, the site, situation and structure of objects in the urban/rural landscape on the image helps
identify their significance and (d) depicts changes of former settlements as a newly built community
asset (for a skate park) in line with improved access to road (types: paved road and wider widths)
surrounded areas. Therefore, the (re-)construction/extension of community buildings or infrastructure
by the existing building removal could become proxies for LURs linked to group tenure. In the same
vein, (e) indicates that agriculture infrastructure is not newly located where it was fallow or barren
land, but also adjacent to the residential dwellings. With the acquired EO data, (vinyl) greenhouses
as a particular form of non-irrigated arable land have been identified with some elements of image
interpretation: building materials (plastic or glass), roof colors (white or grey), brightness (light),
and texture (rough). Hence, the changes of association elements with the close proximity or adjacency
to the agriculture-related objects or neighborhood and specific characteristics of the objects might
quantify group-based LURs. Then, (f) interprets the increase of the number of houses (high building
density) in a certain vicinity over time. While this phenomenon can be seen as an increase in an
individuals’ LUR, it can also be regarded as an increase in the group-based LUR, as NK’s housing
supply is mainly carried out on cooperative farms to improve agricultural productivity. Therefore,
there have to be more proxies to make this argument complete.

The existence of undivided shared areas of the common property or public infrastructures between
the roads or buildings can be regarded as a proxy that can be related to the collective LURs. Under
the socialist urban planning system in NK, the arrangement standards for housing and neighboring
residential structures are based on the sub-district plan that housing and production facilities should be
located adjacent and in the vicinity of the planned area. Within the sub-district, diverse socio-cultural
facilities are located and observed with relatively low building density in scope. This is a proxy that
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emphasizes the straightforward approach and characterizes the socialist lifestyle based on a community
unit rather than the individual [81].

4.4. Are There Land Transfer Rights (LTRs)?

When selling, mortgaging, or conveying the land to others, it exhibits a considerable variation in
transfer of land. However, what is actually transferred is not the land or building, but rather a bundle of
rights pertaining to it [82], and this could be interpreted as land transfer rights (LTRs). A characteristic
feature of when land or houses are being bought or sold is that the LTRs are accompanied by changes
in the objects, which are not occurring in the neighboring objects. One can think of constructing a new
roof, painting the house, construction of fences, construction of new objects or infrastructural works on
the land. Moreover, the changes in structure, type and shape of the object are occurring in a relatively
short time span. We would then assume that there might have been an LTR related to these objects.

According to [83], there is a tendency for households or farmers, those who suffered from tenure
insecurity, to utilize tools of land conversion or reclamation as a way of building informal LTRs.
In the same vein, in the mid-1990s, as a result of the massive food insecurity in the NK, unauthorized
households reclaimed and cultivated vacant land as well as cleared the forests and occupied so-called
‘small-land (sotoji)’. ‘Sotoji’ is located in the mountain slope and its transactions are being made
publicly among the households. Three types of ‘sotoji’ existed: garden plot (GP); side-job plot (SJP);
and tiny patch of land (TPL) [84]. In principle, the law prohibits the sale of land in NK. In reality, GP,
having a large share to produce their foods, is explicitly recognized by the Constitution, the Civil Law
and the Land Law (Article 13). GP was originally allowed to use in individual households within the
collective farmlands and it was common to situate at the front yard of houses or on an empty space
between them. The size of GP is approximately 66 to 100 m2, but, in fact, it covers about 100 to 165 m2.
In addition, if the house is sparse and the vacant land is immense in size, it is reported that an even
larger-sized GP is allowed. Likewise, since the mid-1990s, the GP was built in a vacant land attached
to a detached house or a balcony of an apartment in urban areas.

SJP was developed from the early 1980s to cultivate the barren land, which has not cultivated
by the farmers of collective farmlands. If the GP is individual farming units, the SJP is a group units
(cf. the scale is approximately 3000 to 6600 m2). Unlike the SJP, TPL is illegally cultivated private
land. This originally refers to a small-scale farmland rather than linking the subject or illegality
of cultivation. TPL is deemed an object of their own since households put considerable effort into
cultivation. The authorities, however, investigate the TPL and impose land use fees to place it under
the State control. In this process, land transaction has actually occurred and there are also certain cases
where it is handed over to the neighboring landowner, or it is exchanged with other corresponding
goods or cash. Although it is different from SK’s land transaction that transfers ownership through
such transaction processes, it can be assumed that land transaction of TPL would inevitably occur.

Figure 8 reveals that (a) describes the major feature of TPL located in the mountain slope with the
evidence of forest farming. TPL may be located in a relatively lower elevation and land parcels where
slopes have gentle or stable slopes. As the population grows in areas where arable land is scarce, people
tend to take advantage of reclaiming land in fallow on the terraced hillsides that are easily accessible.
Therefore, the proxies for TPL include: lower elevation using a digital elevation model (DEM) and
slopes have a gradient less than 15%. With HRSI, the small patches of vegetation cover between
neighboring lands on the mountain can be considered as a proxy to detect and identify TPL. Meanwhile,
(b) illustrates GP where individual households officially are allowed to cultivate and produce SJP in
their front yard or at the rear of a house. Other indicators of SJP in the cooperative farmlands where a
group of farmers can cultivate the barren land are the length or width of image features (small parcel
size for GP and large parcel size for SJP), location-specific features (front/back yard or attached to
each other), and natural colors of features (GP and SJP are often depicted in green on the imagery).
In addition, (c) is an exemplary attribute of TPL where individual households cultivate vacant lands
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along the streams, so adjacency to the streams or ditches and the small and regular/irregular patches of
vegetation cover along the streams or ditches can be interpreted as transferrable and applicable proxies.

To sum, the authorities in NK drag ‘sotoji’ within the public land management sphere to restrict
(illegal) land use. On the other hand, households generate more income out of the management area
with the sense of personal land tenure. Therefore, ‘sotoji’ can be important proxies that prove the
existence of LTRs with some of the aforementioned elements of image interpretation.

4.5. Are There a Land Access Rights (LARs) and Restrictions?

What is known about LARs is largely derived from a private land tenure system that gives
priority to the rights of individuals. The main segment of LARs frequently addressed are: an easement
(servitude) and rights of way. A characteristic of LARs is that multiple objects are connected to single or
multiple types of objects. An easement generally places an emphasis on allowing for separate usage of
land which could refer to the right to use another household’s land for different purposes. There may
be varying activities over the single parcel of land or an entire property over the land that represents
LARs. For instance, one of the best known is installing public utilities into a certain land parcels [85].
Another major illustration is reaching inaccessible properties or linking two separated objects through
road-related infrastructure.

Turning now to the LARs in the given context of this paper, it is important to bear in mind that we
may accompany a possible bias in describing unknown land tenure relations since private land tenure
is not recognized in NK and there is no land use regulation through the restriction of private rights.
Although all land belongs to the State, we assume that both the State and collectives can restrict the
use by restricting access for public purpose. We thus, for the purpose of analysis, assume that the State,
collectives and the households in NK may acknowledge LARs.

If our assumptions are to be accepted, they enable us to provide a number of available proxies (see
Figure 9). We also need to derive whether the object under consideration is connected to any form of
infrastructure or not, as well as if other objects (such as silos) are connected to infrastructure. In this
regard, identifying several utility networks offer an effective way of confirming the presence of LARs in
NK. Moreover, when newly creating a parcel (called “division”) and two or more parcels of land from the
existing one (called “subdivision”) for the commercial or residential purpose, these properties commonly
generate different types of easements under certain physical characteristics of the objects. Therefore,
the subdivision of land parcels or (in)consistent land use may implicate whether LARs exist or not.

As shown in Figure 9, we were able to detect and label what objects are especially linked to
the public rights of way and servitude (focusing on restrictions on the use of land) rather than
individual rights of way. These include: solar panels, railroads, drinking water production facilities,
a transmission tower, pipelines, footpaths, military site, and reservoir. We noted that there are some
site characteristics near public utility networks, nature reserves, and a public heritage site. However,
defining which proxies are workable for LARs is highly context-dependent due to the lack of formalized
and proven rules as well as its application in different contexts. It also requires forming an ensemble
with other types of proxies to describe the socio-legal status of the objects. Among the elements of
image interpretation, only site or situation elements are valid and reliable in detecting the public rights
of way. We then produced only few proxies by deriving similar site and situational features from
nine images as follows: proximity to hazardous or isolated locations, poor accessibility (lack of access
roads), elongated object shapes, and less green and open spaces.
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Figure 9. Multiple examples of urban structures on certain land parcels: (a) solar panels (in Kumsanpho
solar power station), (b) railroads (in Rajin), (c) drinking water production facilities (in Kaesong), (d) a
transmission tower (in Electric power transmission office in Sepho), (e) pipelines (in Seungri chemical
complex refinery in Rason), (f) footpaths (in Pyeongyang), (g) public heritage (in Hyesan), (h) military
site (in Pukchang), (i) reservoir (in Ryongrim) (image sources: Google Earth, date of access: 17 October
2019).

4.6. Summary of Discussion

This section summarizes the findings to identify proxies to derive unknown land tenure relations
over North Korea (see Table 4). The first set of questions aimed to address that whether the observed
land is State or collective farmlands. There was no significant difference between two groups in both
the general spatial arrangements in scope. However, we found that the location-specific features in
line with physical and temporal characteristics helps to identify single objects on (dry) paddy fields.
This is one of the most significant characteristics for detecting visually analogues arrangements of
collective farmlands. On the other hand, what stands out in the State (farm) land is the combination
of the geometric properties of objects characterizes a common feature of agriculture-based patches
and infrastructures.

In order to assess the feasible proxies of LURs without having access to the ground, the different
EO data sources have been utilized to not only detect LULC changes, but also ascertain a variety of
dwellings and its morphological features. These EO datasets present a plausible interpretation with
the association element that addresses the probable occurrence among different sets of entities as well
as socio-legally documented local knowledge that leads to confirmation of LURs.

The cooperative farms under the collective ownership regime typically accompany a socialist
morphology, with the unification of forms and construction to distinguish whether individual or
group-based LURs, proxies such as building geometry, arrangement pattern, and site characteristics
could define multiple LURs of a group over the same piece of land. The regular arrangement patterns
of sites and building objects with other contextual knowledge is a common feature, thus representing
group-based LURs that can be jointly used by the multiple groups of people.

Another question sought to determine whether there are LTRs or not. With respect to this subject,
it was hypothesized that households reclaimed and cultivated vacant land as well as cleared the
forests, and made transactions between households after illegal occupation. Based upon the normative
concept of ‘small-land (Sotoji)’, the discernable proxies that prove the existence of LTRs with following
elements of image interpretation are: the low elevation, slopes have gentle slopes less than 15%, small
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and regular/irregular patches of vegetation cover, the length or width, location, colors and adjacency to
the specific objects.

Table 4. Identifying proxies to derive unknown land tenure relations over North Korea in conjunction
with EO data (devised by authors).

No.
Land Tenure

Relations
Proposed Proxies Elements of EO Data Interpretation

4.1

Collective (farm) land

Presence of (dry) paddy fields

Area linked to or surrounded by (dry) paddy fields
(Dry) paddy fields: rough (or coarse) image texture

Settlements: high density or compactness
Rural dwellings: object colors in grey scales, a signature line of the

tiled roof, densely built-up block structure with single-story
detached houses

Presence of portable farming-related objects on the ground
Seasonal changes of agricultural activities

State (farm) land

Orchards: small dot-shaped patch
Pastures: smooth textures

Warehouses (or sheds): out-buildings
Building sites: low building density

Buildings: complex, elongated or irregular object boundaries
Roofs: blue, green, yellow and red and light (brightness)

Agriculture-based infrastructures, monumental buildings,
and welfare facilities

4.2 LURs

Land uses: intense land development
Land uses: an increase of agricultural land

LULC changes: urban areas with the development of water bodies
LULC changes: in border regions than inland areas

Presence of different types of houses (and allotments)
(Semi-)detached houses: low building density, 1 or 2 storied houses,

uniformly shaped settlement, in close proximity to roads, low to
intermediate imperviousness

Apartments: large rectangular simple form, regular alignment, more
than three stories, and low to intermediate imperviousness and

shadow silhouettes
Allotments: detached small-sized buildings, low built-up land, low

imperviousness, buffer between houses
Harmonica houses (in rural areas): small roof with slate materials,
chimneys on rooftops (small dot-shaped objects or a light shadow

Silhouette) and fences (line-shaped objects)
New construction or extension of residential building and expansion

of construction activities

4.3 Group LURs

Amalgamation of diverse community amenities
Conversion: presence of multiple building objects with similar
patterns, high density of settlement, simple rectangular forms,

and same roof colors
Adjacent land uses: similarity or dissimilarity

Construction/extension of community buildings or infrastructure by
the existing building removal

Accessibility: improved access to roads (paved road and wider
widths)

Greenhouses: new construction in a barren land and adjacency to
dwellings (materials: plastic or glass, roof colors: white or grey,

brightness: light, and texture: rough)
Increase of the number of houses in a certain vicinity (high density)

Existence of undivided shared areas of the common property or
public infrastructure

4.4 LTRs

Presence of small land (sotoji): garden plot (GP), side-job plot (SJP),
and tiny patch of land (TPL)

Garden plot (GP): small parcel size, in front/back yards or attached
to each other, green color

Side-job plot (SJP): large parcel size, in front/back yards or attached
to each other, green color

Tiny patch of land (TPL): lower elevation, gentle slope less than 15%,
the small patches of vegetation cover between neighboring lands on

the mountain (hillsides) or along the streams or ditches

4.5 LARs

Public utility networks, nature reserves, and heritage sites: in close
proximity to hazardous or isolated locations, poor accessibility (lack

of access roads; low to intermediate imperviousness), elongated
object shapes, and less green and open spaces (fewer green colors

and rough textures)
Subdivision of land parcels

Note.
Color Shape Size Texture Pattern Shadow Height Site Association Density

The combination of multiple man-made structures over a single parcel of land or entire property
over the land provides some support for the conceptual premise. Although all land belongs to the
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State, both the State and the collectives can restrict the use by restricting access for public purpose.
Among the elements of image interpretation, only site or situational elements are valid and reliable in
detecting the public rights of way. We then produced only few proxies by deriving similar site and
situational features from nine images as shown in Table 4.

While some progress has been made for cadastral mapping, very little was found on the question of
how we bridge the semantic gap between land tenure and EO data. Thus, this account, in methodological
terms, seeks to propose a new notion of remote-sensing based proxies for interpreting land tenure
relations that could be transferable and applicable in land administration domain at a semantic level.
With regard to the research findings, some limitations need to be acknowledged. A first limitation
is that since this study was only conducted from steps 1 to 3, validating was beyond the scope of
this work (see Figure 2). However, the preliminary investigations indicated that the subsequent
steps for validation (steps 4 to 6) will further move us closer to developing a full picture of the
identification of transferrable and applicable proxies for geospatially informed analysis. In other
words, it is possible that these results are only valid when a holistic methodological approach takes
place. This experiment also has not suggested any technological advancements yet and the proposed
proxies require a rigorous AI-based (semi-)automated image interpretation of EO data with other
complementary sets of proxies. One possible implication of this is that algorithmic approaches and
methodologies concerning deep-learning networks will be able to mine land tenure relations from EO
data and these are divided into: supervised learning approaches trained from scratch, pre-training
and fine-tuning approaches, advanced learning techniques, and novel technologies developed by the
remote-sensing community [86].

5. Concluding Remarks

Land tenure relations, which are relevant in the Korean (unification) context, include the difference
between private, State and collective land, the type and location of land use rights, the spatial
allocation of rights and restrictions, the ability and spatio-temporal changes of transferring land rights,
and the spatial restrictions in access and use. So far, such land tenure relations could only be derived
when combining topographic data with agricultural census data at the regional or national scale,
and household surveys and a participatory mapping at the local scale. However, given documented
insights into the nature of spatial arrangements and the similarities and patterns when observing in
features of typical land use structures in North Korea, it was possible to derive proxies for particular
types of land tenure from openly accessible EO data.

The proxies consist of specific combinations and patterns of shapes, colors, textures related to
physical structures such as roofs, types of buildings, infrastructures, types of land use and vicinity of
comparable features. The assumptions connected to these proxies relate to fundamental notions of
tenure claims and interests such as collective ownership, land lease and use, occupation (reclamation),
transaction (sell and convey) and land access (servitude and rights of way). Overall, this study
strengthens the idea that data mining for North Korea related land (tenure) information in the context
of Korean (re-)unification is possible and feasible.

The application of EO data involves image processing and data mining technologies which can
help to generate a better insight in current land and property interests (such as land tenure, land
rights, land responsibilities and duties related to land and properties), and to better prepare, execute,
enforce, assess and monitor land interventions. In the context of (re-)unification, the sample tests are
particularly relevant for re-uniting countries where different land tenure systems exist and where the
data are not coherent. For example, prior to the (re-)unification in Germany, there were two different
systems of land tenure, which co-existed next to each other. Unifying the system in Germany was
difficult at first partly because each of the previous countries had recorded and administrated in a
significantly different manner. A similar situation exists in anticipation of a unified Korea, especially
considering that little information is available about the varieties of land tenure and the missing links
to individual people in North Korea.
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One way to overcome this challenge is to detect land tenure with the use of remote sensing and
open access aerial and satellite images. Normally, this technique is possible when having access to
ground control points, civil registers and semantic interpretation of both the tenure and the people’s
components. When this information is however missing or this data source is unreliable—as is the case
in North Korea—one has to rely on a number of assumptions and a set of test trials, which if proven
right, can be generalized with artificial intelligence connected to image processing. In other words,
one has to understand the socio-legal relations to land with pixel. This socio-legalizing the pixel is
still largely an idea rather than an available set of techniques. In order to develop such techniques,
which will ultimately facilitate the land tenure unification process in Korea, and possibly also improve
existing land tenure records (including both public/private land rights, restrictions and responsibilities),
one needs a collaborative research development.

The next step is to enrich and test the information quality of the above assumptions and proxies
with empirical data tests, inclusion and reflections of local knowledge on the ground (focusing on North
Korean defectors’ perspectives) and expert knowledge in EO and land administration sciences in North
and South Korea. The findings in Section 4 could also help for creating more machine-learning and
deep-learning algorithms that provide reference to other papers. The construction of these algorithms
was, however, beyond the scope of this paper.
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Abstract: Cadastral boundaries are often demarcated by objects that are visible in remote sensing
imagery. Indirect surveying relies on the delineation of visible parcel boundaries from such images.
Despite advances in automated detection and localization of objects from images, indirect surveying
is rarely automated and relies on manual on-screen delineation. We have previously introduced
a boundary delineation workflow, comprising image segmentation, boundary classification and
interactive delineation that we applied on Unmanned Aerial Vehicle (UAV) data to delineate roads.
In this study, we improve each of these steps. For image segmentation, we remove the need to
reduce the image resolution and we limit over-segmentation by reducing the number of segment
lines by 80% through filtering. For boundary classification, we show how Convolutional Neural
Networks (CNN) can be used for boundary line classification, thereby eliminating the previous
need for Random Forest (RF) feature generation and thus achieving 71% accuracy. For interactive
delineation, we develop additional and more intuitive delineation functionalities that cover more
application cases. We test our approach on more varied and larger data sets by applying it to UAV
and aerial imagery of 0.02–0.25 m resolution from Kenya, Rwanda and Ethiopia. We show that it is
more effective in terms of clicks and time compared to manual delineation for parcels surrounded by
visible boundaries. Strongest advantages are obtained for rural scenes delineated from aerial imagery,
where the delineation effort per parcel requires 38% less time and 80% fewer clicks compared to
manual delineation.

Keywords: cadastral mapping; indirect surveying; boundary extraction; boundary delineation;
machine learning; deep learning; image analysis; CNN; RF

1. Introduction

Recording land rights provides land owners tenure security, a sustainable livelihood and increases
financial opportunities. Estimates suggest that about 75% of the world population does not have access
to a formal system to register and safeguard their land rights [1]. This lack of recorded land rights
increases insecure land tenure and fosters existence-threatening conflicts, particularly in developing
countries. Recording land rights spatially, i.e., cadastral mapping, is considered the most expensive
part of a land administration system [2]. Recent developments in technology allow us to rethink
contemporary cadastral mapping. The aim of this study is to make use of technological developments
to create automated and thus more efficient approaches for cadastral mapping.

Automated cadastral boundary delineation based on remote sensing data has been rarely
investigated, even though physical objects, which can be extracted using image analysis, often define
visible cadastral boundaries [3].
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Visible cadastral boundaries demarcated by physical objects such as hedges, fences, walls, bushes,
roads, or rivers, can make up a large portion of all cadastral boundaries [4,5]. Indirect surveying relies
on the delineation of such visible parcel boundaries from remote sensing imagery.

Automatically extracting visible cadastral boundaries combined with (legal) adjudication and
an incorporation of local knowledge from human operators offers the potential to improve current
cadastral mapping approaches in terms of time, cost, accuracy and acceptance [6]. High-resolution
remote sensing imagery, increasingly captured with Unmanned Aerial Vehicles (UAVs) in land
administration [7–11], provides the basis for such a semi-automated delineation of visible boundaries.

1.1. CNN Deep Learning for Cadastral Mapping

CNNs are one of the most popular and successful deep networks for image interpretation tasks.
They are proven to work efficiently to identify various objects in remote sensing imagery [12–16].
Comprehensive overviews contextualizing the evolution of deep learning and CNNs in geoscience
and remote sensing are provided by Bergen et al. and Zhu et al. [17,18]. In essence, CNNs are
neural networks that incorporate the convolution and pooling operation as a layer. CNNs have been
characterized by five concepts [19]:

• Convolution operation increases the network’s simplicity, which makes training more efficient.
• Representation learning through filters requires the user to engineer the architecture rather than

the features.
• Location invariance through pooling layers allows filters to detect features dissociated from

their location.
• Hierarchy of layers allows the learning of abstract concepts based on simpler concepts.
• Feature extraction and classification are included in training, which eliminates the traditional machine

learning need for hand-crafted features, and distinguishes CNN as a deep learning approach.

In deep learning, there are two approaches to train a CNN: From scratch or via transfer learning [20].
When trained from scratch, all features are learned from data to be provided, which demands large
amounts of data and comes with a higher risk of overfitting. An over-fitted network can make
accurate predictions for a certain dataset, but fails to generalize its learning capacity for another
dataset. With transfer learning, part of the features are learned from a different, typically large dataset.
These low-level features are more general and abstract. The network has proven excellence for a specific
application. Its core architecture is kept and applied to a new application. Only the last convolution
block is trained on specific data of the new application, resulting in specialized high-level features.
Transfer learning requires learning fewer features, and thus fewer data. In our study, we investigate
transfer learning as an existing CNN for cadastral mapping.

1.2. Study Objective

The main goal of our research is to develop an approach that simplifies image-based cadastral
mapping to support the automated mapping of land tenure. We pursue this goal by developing an
automated cadastral boundary delineation approach applicable to remote sensing imagery. In this
study, we describe our approach in detail, optimize its components, apply it to more varied and larger
remote sensing imagery from Kenya, Rwanda and Ethiopia, test its applicability to cadastral mapping,
and assess its effectiveness compared to manual delineation.

We previously proposed a semi-automated indirect surveying approach for cadastral mapping
from remote sensing data. To delineate roads from UAV imagery with that workflow, the number
of clicks per 100 m compared to manual delineation was reduced by up to 86%, while obtaining a
similar localization quality [21]. The workflow consists of: (i) Image segmentation to extract visible
object outlines, (ii) boundary classification to predict boundary likelihoods for extracted segment lines,
and (iii) interactive delineation to connect these lines based on the predicted boundary likelihood.
In this study, we investigate improvements in all three steps (Figure 1). First, for step (i), we filter out
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small segments to reduce over-segmentation. Second, for step (ii), we replace hand-crafted features
and line classification based on Random Forest (RF) by Convolutional Neural Networks (CNNs).

Figure 1. Boundary Delineation workflow proposed to improve indirect surveying. This study optimizes
image segmentation, questions whether Random Forest (RF) or Convolutional Neural Networks (CNNs)
are better suited to derive boundary likelihoods for visible object outlines, and introduces additional
functionalities for the interactive delineation.

Finally, for step (iii), we introduce more intuitive and comprehensive delineation functionalities.
While we tested the previous workflow on two UAV ortho-images in Germany, and delineated road
outlines, we now test our workflow on imagery covering much larger extents and compare the results
to cadastral boundaries. In this study, we test our workflow on UAV and aerial imagery of 0.02–0.25 m
resolution from Kenya, Rwanda and Ethiopia covering 722 visible parcels.

Our new functionalities for the interactive delineation address cases for which the boundary
classification fails, or is not necessary. Boundary classification comes into play in cases of
over-segmentation, when many object outlines exist. Then, the delineator has to choose which
lines demarcate the cadastral boundary. Support comes from the lines’ boundary likelihood predicted
by RF or CNN. In this study, we introduce functionalities that allow connecting image segmentation
lines to cadastral boundaries, regardless of their boundary likelihood.

2. Materials and Methods

2.1. Image Data

An aerial image of 0.25 m Ground Sample Distance (GSD) of a rural scene in Ethiopia is used
(Figure 2a,b). The local agricultural practice consists mostly of smallholder farming. The image was
captured during the dry season around March. The crops within our study area consist mostly of
millet, corn, and a local grain called teff. Since the crops are in the beginning of an agricultural cycle,
they do not cover the visible cover parcel boundaries. The cadastral reference data cover 33 km2

containing 9,454 plots with a median size of 2500 m2. The cadastral reference data is derived through
on-screen manual delineation from the aerial image. In case of uncertainty or invisible boundaries,
the boundary is captured together with land owners in the field using high-resolution total stations.
For a later assessment, in which we compare our approach to on-screen manual delineation, additional
Unmanned Aerial Vehicle (UAV) data from Kenya and Rwanda is used (Figure 2c,d). The UAV data in
Rwanda have a GSD of 0.02 m, and were captured with a rotary-wing Inspire 2 (SZ DJI Technology
Co., Ltd., Shenzhen, Guangdong, People’s Republic of China). The UAV data in Kenya have a GSD of
0.06 and were captured with a fixed-wing DT18 (Delair-Tech, Delair, Toulouse, France).

85



Remote Sens. 2019, 11, 2505

Figure 2. (a) Aerial image of 0.25 m Ground Sample Distance (GSD) for a rural scene in Ethiopia,
divided into areas for training and testing our approach before comparing results to (b) the cadastral
reference. Unmanned Aerial Vehicle (UAV) images for peri-urban scenes in (c) Rwanda (0.02 m GSD),
and (d) Kenya (0.06 m GSD) to compare automated to manual delineation.

2.2. Boundary Mapping Approach

The boundary mapping approach refers to the one we previously described [22]. In the following,
modifications and the data-dependent implementation of the three workflow steps are described.
The source code is publically available [23].

Image segmentation is based on Multiresolution Combinatorial Grouping (MCG) [24],
which delivers closed contours, capturing the outlines of visible objects. To run the original MCG
implementation, the Ethiopian aerial image is tiled to 20 tiles of 8000 × 8000 pixels. The parameter k
regulating over- and under-segmentation is set to produce over-segmentation (k = 0.1). This setting
creates outlines around the majority of visible objects. Tests with parameters (k = 0.3 and k = 0.5)
resulting in less over-segmentation show that visible object outlines are partly missed, while irrelevant
lines around small objects are still produced. To reduce the number of irrelevant lines produced
through over-segmentation, the lines are simplified through filtering (Figure 3): Lines around areas
smaller than 30 m2 are merged to the neighboring segments, which reduces the line count by 80% to
600,000 lines.
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Figure 3. Multiresolution Combinatorial Grouping (MCG) image segmentation lines around visible
objects (a) before and (b) after simplification reducing the line count by 80%.

According to our visual inspections, this post-processing removes artefacts in the segmentation
results and keeps outlines of large objects being more relevant for cadastral mapping. For the
high-resolution data from Rwanda and Kenya, we proceed similarly by tiling the data and setting
k = 0.4 and k = 0.3, respectively.

Boundary classification is applied to the post-processed 600,000 MCG lines. We investigate two
machine learning approaches to derive the boundary likelihood per MCG line: Random Forest (RF)
and Convolutional Neural Networks (CNN). Both require the labeling of training data as ‘boundary’
and ‘not boundary’. The training data for RF consist of lines, that for CNN of image tiles. For both
approaches, the cadastral reference is buffered by a radius of 0.4 m. This size accounts for inaccuracies
in the cadastral reference and the ortho-image, enlarges the number of ‘boundary’ samples, and is
identical to the one applied to derive hand-crafted RF features. For both approaches, the ratio between
training and testing data is set to 50%. The number of ‘boundary’ and ‘not boundary’ training samples
is balanced to 1:1 by randomly under-sampling ‘not boundary’ tiles (Table 1). The areas for training
and testing are randomly selected and large to minimize the number of lines at the borders of each area
that are clipped and of limited use for further analysis (Figure 2). The boundary likelihood predicted
by both approaches represents the probability (ŷ) of a line being ‘boundary’:

boundary likelihood [0; 1] = ŷboundary (1)

Table 1. Distribution of training and testing data for boundary classification based on Random Forest
(RF) and Convolutional Neural Networks (CNN).

RF Classification CNN Classification

Number of Lines Number of Tiles

Label Training Testing Training Testing

‘boundary’ 12,280 (50%) 9,742 (3%) 35,643 (50%) 34,721 (4%)
‘not boundary’ 12,280 (50%) 280,108 (97%) 34,665 (50%) 746,349 (96%)∑

24,560 289,850 70,308 781,070

RF classification is applied as shown in Figure 4 [22]. Instead of manually labeling lines for
training, a line is now automatically labeled as ‘boundary’ when it overlaps with the cadastral reference
buffer of 0.4 m by more than 50%. This value aligns with the threshold at which a CNN-derived result
is labeled as ‘boundary’ or ‘not boundary’. Since no DSM information is available for the study area,
the feature dsm grad is not calculated.
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Figure 4. Boundary line classification based on Random Forest (RF) to derive boundary likelihoods for
MCG lines.

CNN classification is investigated by training state-of-the-art tile-based CNNs (Figure 5).
We reformulate our problem of generating boundary likelihoods for MCG lines to be solvable
by a tile-based CNN as follows: At first, image tiles of 224 × 224 pixels centered on an MCG line
are cropped from the ortho-image. 224 × 224 × 3 is the standard size of images required by the
used CNN. A tile is labeled as ‘boundary’ if the center pixel covering an MCG line overlaps with the
cadastral reference buffer. A tile is created every 5 m along an MCG line. Decreasing this distance
would increase the overlap, and thus the redundancy, of the image content per tile. Increasing this
distance would reduce the number of tiles and thus the number of training data. With these settings,
we generate 1.5 million tiles surrounding MCG pixels of which 5% are labeled as ‘boundary’ and
95% as ‘not boundary’. After training, the CNN predicts boundary likelihoods for unseen testing
areas (Figure 2a). The likelihoods of all tiles per MCG line are averaged based on the 97th percentile.
This value aligns with the distribution of ‘boundary’ and ‘not boundary’ lines in the training data
(Table 1). We use a pre-trained CNN architecture. We apply transfer learning by adding additional
trainable layers: A global spatial average pooling layer, a fully connected layer with rectified linear
unit (ReLU) activation, a dropout layer and a logistic layer with softmax activation. Only these last
layers are trainable. We investigate using different pre-trained CNN architectures, including the
Visual Geometry Group (VGG) [25], ResNet [26], Inception [27], Xception [28], MobileNet [29] and
DenseNet [30], as well as different hyper-parameter settings on the learning optimizer, the depth of the
fully connected layer and the dropout rate.

Figure 5. Boundary line classification based on Convolutional Neural Networks (CNNs) to derive
boundary likelihoods for MCG lines.

Interactive delineation supports the creation of final cadastral boundaries. In comparison to our
previous study [22], we now include more functionalities to delineate parcels (Table 2) and redesigned
the Graphical User Interface (GUI). The interactive delineation is implemented in the open source
geographic information system QGIS [31] as BoundaryDelineation plugin [32]:
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Table 2. Delineation functionalities of BoundaryDelineation QGIS plugin.

Functionality Description

Connect around selection Connect lines surrounding a click or selection of lines (Figure 6a,b)

Connect lines’ endpoints Connect endpoints of selected lines to a polygon, regardless of MCG
lines (Figure 6c)

Connect along optimal path Connect vertices along least-cost-path based on a selected attribute, e.g.,
boundary likelihood (Figure 6d)

Connect manual clicks Manual delineation with the option to snap to input lines and vertices
Update edits Update input lines based on manual edits

Polygonize results Convert created boundary lines to polygons

Figure 6. Interactive delineation functionalities: (a) Connect lines surrounding a click, or (b) a selection
of lines. (c) Close endpoints of selected lines to a polygon. (d) Connect lines along least-cost-path.

2.3. Accuracy Assessment

The accuracy assessment investigates multiple aspects of our workflow, each requiring a
different analysis:

CNN Architecture: This analysis aims to optimize the CNN architecture by considering loss and
accuracy for training and validation data per epoch. The curves for training loss and validation loss,
as well as for training accuracy and validation accuracy, are expected to converge with incremental epochs.
Loss is the summation of errors made for each example in training, and should be minimized. We use
cross-entropy loss that increases as the predicted probability (ŷi) diverges from the actual label (yi):

cross− entropy loss = −(yi log(ŷi) + (1− yi) log(1− ŷi) (2)

All predictions < 0.5 are considered as ‘not boundary’, those ≥ 0.5 as ‘boundary’. This results
in a confusion matrix showing the number of tiles being False Positive (FP), True Positive (TP),
False Negative (FN) and True Negative (TN). From this matrix, the accuracy is derived as the sum of
correctly classified tiles divided by all tiles:

accuracy [0; 1] =
TP + TN

TP + FP + FN + TN
(3)
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RF vs. CNN Classification: This analysis compares the boundary likelihood obtained through
RF and CNN to the percentage to which an MCG line overlaps with the cadastral reference. Both are
buffered with a radius of 0.4 m. The area of their overlap in relation to the entire MCG buffer area
represents the percentage of overlap:

overlap [0; 1] =
areaMCG−bu f f er ∩ areacadastral−bu f f er

areaMCG−bu f f er
(4)

We investigate whether lines that should get a boundary likelihood > 0, i.e., those that fall within
the cadastral reference buffer, are assigned a boundary likelihood > 0:

recall [0; 1] =
TP

TP + FN
(5)

Then, we check whether the assigned boundary likelihood is valid, i.e., whether it is equal to the
line’s overlap with the cadastral reference buffer. This is indicated by the precision that captures the
ratio of lines having a boundary likelihood that aligns with overlap to the sum of lines having a correct
or too positive boundary likelihood:

precision [0; 1] =
TP

TP + FP
(6)

Since the boundary likelihood captures the probability of a line being a ‘boundary’ line,
a high boundary likelihood should go along with a high overlap between the MCG and cadastral
reference buffer:

overlap [0; 1]boundary likelihood [0; 1] (7)

Both values are not expected to be identical, which can be influenced by altering the buffer size.
Our focus is on comparing RF to CNN, and secondarily on the boundary likelihood itself. Results are
considered only in areas for testing in which we have cadastral reference data (Figure 2).

Manual vs. Automated Delineation: This analysis compares the time and number of clicks
required to delineate visible boundaries, once manually, and once with the automated approach.
Manual delineation refers to delineating parcels based on the ortho-image without further guidance.
Automated delineation refers to our approach, including RF or CNN classification depending on
which approach shows superior results in this study. All delineations should fall within the cadastral
reference buffer of the 0.4 m radius. The buffer size represents the local accepted accuracy for cadastral
delineation and falls within the 2.4 m proposed for rural areas by the International Association of
Assessing Officers (IAAO) [33].

The comparison is conducted for a rural area in Ethiopia and two peri-urban areas in Rwanda
and Kenya (Figure 2). No urban area is selected, as indirect surveying relies on the existence of visible
boundaries, which are rare in densely populated areas. Furthermore, indirect surveying in urban
areas saves less logistics for field surveys, due to smaller parcel sizes. Only parcels for which all
boundaries are visible, and thus detectable from the ortho-image, are kept for this analysis. Since no
digital up-to-date cadastral reference exists for our areas in Kenya and Rwanda, cadastral reference
data are created based on local knowledge in alignment with visible boundaries.

3. Results

3.1. CNN Architecture

We first tested different pre-trained base CNNs (VGG, ResNet, Inception, Xception, MobileNet
and DenseNet) to which we added trainable layers. The combined CNN model was trained with a
batch size of 32 for 100 epochs. In the case of no learning, the training stopped earlier. Out of the
50% of balanced data used for training, we used 10% for validation. These data were not seen by the
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network, but were used only to calculate loss and accuracy per epoch. These metrics and their curves
looked most promising for VGG19 [25]. Then we applied the trained network to the remaining 50% of
testing data. VGG19 is a 19 layer deep CNN developed by the Visual Geometry Group (VGG) from
the University of Oxford (Oxford, Oxfordshire, UK). It is trained to classify images into 1000 object
categories, such as keyboard, mouse pencil and many animals. It has learned high-level features
for a wide range of images from ImageNet [34]. ImageNet is a dataset of over 15 million labeled
high-resolution images with around 22,000 categories. Compared to other CNNs, VGG has shown to
generalize well, compared to more complex and less deep CNN architectures [25].

We used VGG19 layers pre-trained for 20,024,384 parameters as a base model. Next, we modified
hyper-parameters for VGG19 on the learning optimizer, the depth of the fully connected layer, and the
dropout rate to optimize accuracy and loss. We used softmax as an activation function to retrieve
predictions for tiles being ‘not boundary’ in the range [0, 1]. These values represent the weights
for the later least-cost-path calculation. Sigmoid activation, which is a type of softmax for a binary
classification problem, provided similar results in terms of accuracy and loss. However, it required
more post-processing, as the resulting value in the range [0, 1] cannot be understood as described for
softmax activation.

The aim was to maximize the accuracy for training and validation data, while minimizing loss.
To avoid over-fitting, the curves for training and validation accuracy should not diverge, which was
achieved by increasing the dropout rate from 0.5 to 0.8. To avoid under-fitting, the curve for training
accuracy should not be below that of the validation accuracy, which was avoided by increasing the
depth of the fully connected layer from 16 to 1,024. To avoid oscillations in loss, the learning rate
was lowered from 0.01 to 0.001. Learning was stopped once the validation accuracy did not further
improve. Results and observations derived from different hyper-parameter settings and different
pre-trained base CNNs are provided in the Appendix A (Table A1).

We achieved the best results after training 8,242 parameters on four trainable layers added to
22 pre-trained VGG19 layers (Table 3). This led to a validation accuracy of 71% and a validation
loss of 0.598 after 200 epochs (Figure 7). The accuracy could be increased by 1% after 300 epochs,
with validation loss restarting to increase to 0.623. We conclude that optimal results are achieved after
200 epochs. 100 epochs halve the training time to 11 hours, whilst obtaining 1% less accuracy and a
loss of 0.588. The implementation relies on the open source library Keras [35], and this is publically
available [23]. All experiments are conducted on a machine having a NVIDIA GM200 (GeForce GTX
TITAN X) GPU with 128 GB RAM (Nvidia Corporation, Santa Clara, CA, US).

Table 3. Settings for our fine-tuned CNN based on Visual Geometry Group 19 (VGG19).

Settings Parameters

untrainable
layers VGG19 pre-trained on ImageNet exclusion of final pooling and fully

connected layer

trainable layers

pooling layer global average pooling 2D
fully connected layer Depth = 1024, activation = ReLu

dropout layer dropout rate = 0.8
logistic layer Activation = softmax

learning
optimizer

stochastic gradient descent (SGD)
optimizer

learning rate = 0.001
momentum = 0.9

decay = learning rate/epochs

training shuffled training tiles and un-shuffled
validation tiles

Epochs =max. 200
batch size = 32
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Figure 7. Accuracy and loss for our fine-tuned VGG19.

3.2. RF vs. CNN Classification

Of those lines that should get a boundary likelihood > 0, i.e., those that fall within the cadastral
reference buffer, 100% for RF and 98% for CNN are assigned a boundary likelihood > 0 (Table 4).
This means that both classifiers predict a boundary likelihood in the range [0, 1] when there is some
overlap with the cadastral reference buffer.

Table 4. Is the boundary likelihood predicted for the correct lines?

Overlap

boundary
likelihood

0 ]0; 1]
∑ ∑

%

RF

0 535 265 800 0

]0; 1] 150,583 59,123 209,706 100
∑

151,118 59,388 210,506
∑

% 72 28 100

CNN

0 7,560 1,794 9,354 4

]0; 1] 145,558 57,594 201,152 96
∑

151,118 59,388 210,506
∑

% 72 28 100

Next, we looked at how valid the boundary likelihood is, i.e., whether its value is equal to the
line’s overlap with the cadastral reference buffer. For this we excluded lines having no overlap with
the cadastral reference buffer, i.e., those having an overlap = 0. We grouped the remaining lines to
compare boundary likelihood and overlap values (Table 5). For RF-derived boundary likelihoods,
we obtained an accuracy of 41% and a precision of 49%. For CNN-derived boundary likelihoods,
we obtained an accuracy of 52% and a precision of 76%. The percentage of lines per value interval of
0.25 for the same boundary likelihood and overlap value deviated on average by 15% for RF and by 7%
for CNN (Table 5).

Overall, CNN-derived boundary likelihoods obtained a similar recall, a higher accuracy, and
a higher precision (Table 4). The percentage of lines for different ranges of boundary likelihoods
represented the distribution of overlap values more accurately (Table 5). Even though the values of
overlap and boundary likelihood do not express the same, they provide a valid comparison between
RF- and CNN-derived boundary likelihoods. We consider CNN-derived boundary likelihoods a better
input for the interactive delineation, and continue the accuracy assessment for a boundary classification
based on CNN.
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Table 5. How correct is the predicted boundary likelihood?

overlap

0 ]0; 0.25] ]0.25; 0.5] ]0.5; 0.75] ]0.75; 1]
∑ ∑

%

boundary
likelihood

RF

]0; 0.25]

151,118

15,176 3,633 481 95 19,385 32

]0.25; 0.5] 11,553 5633 2178 730 20,094 34

]0.5; 0.75] 6827 4849 3120 1617 16,413 28

]0.75; 1] 973 1002 813 708 3496 6
∑

34,529 15,117 6592 3150 59,388
∑

% / 58 26 11 5 100

CNN

]0; 0.25]

151,118

26,546 10,472 4305 1981 43,304 73

]0.25; 0.5] 5974 3307 1534 765 11,580 19

]0.5; 0.75] 1751 1177 655 328 3,911 7

]0.75; 1] 258 161 97 77 593 1
∑

34,529 15,117 6591 3151 59,388
∑

% / 58 26 11 5 100

3.3. Manual vs. Automated Delineation

Indirect surveying, comprising of manual or automated delineation, both rely on visible boundaries.
Before comparing manual to automated delineation, we filtered the cadastral reference data for Ethiopia
(Figure 2b) to contain visible parcels only. We kept only those parcels for which all boundary parts
were visually demarcated. As in Kohli et al. [4], we consider only fully closed polygons that are entirely
visible in the image. From the original cadastral reference data, we kept 38% of all parcels for which all
boundaries were visible. In Kohli et al. [4], the portion of fully visible parcels has been reported to
average around 71% of all cadastral parcels in rural Ethiopian areas. We can confirm 71% for parts of
our study area that cover smallholder farms. Cadastral data for Rwanda and Kenya were delineated
based on local knowledge in alignment with visible boundaries. As for Ethiopia, only fully closed and
visible parcels were considered. The mean size of our visible parcels amounts to 2,725 m2 for Ethiopia,
656 m2 for Rwanda, and 730 m2 for Kenya.

When manually delineating visible boundaries, we observed how tiring a task this manual
delineation is: The delineator has to continuously scan the image for visible boundaries to then click
precisely and repeatedly along the boundary to be delineated. Apart from the visual observation of the
ortho-image, the delineator has no further guidance on where to click. Each parcel is delineated the
same way, which makes it a highly repetitive task that exhausts the eyes and fingers in no time.

When comparing manual to automated delineation, this impression changes: The delineator
now has lines and vertices to choose from, which can be connected automatically using multiple
functionalities (Table 2, Figure 6). Complex, as well as simple, parcels require fewer clicking when
delineating with the automated approach: To follow a curved outline, manual delineation requires
frequent and accurate clicking while zooming in and out. Automated delineation requires clicking
on vertices covering the start and endpoint once, before they are automatically connected precisely
following object outlines (Figure 6d). Similarly, the automated delineation is superior for simple
rectangular parcels: While manual delineation requires accurate clicking on each of the at least four
corners of a rectangle, automated delineation allows clicking once somewhere inside the rectangle to
retrieve its outline (Figure 8a).

However, choosing the optimal functionality can be time-consuming, especially in cases of
fragmented MCG lines obtained from high-resolution UAV data. We assume that the time for
automated delineation can be reduced through increased familiarity with all functionalities and by
further developing their usability, e.g., by keyboard shortcuts.
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Figure 8. (a) Automated delineation requires clicking once somewhere in the parcel, while manual
delineation requires precise clicking at least four times on each corner. (b) Boundaries partly covered
or delineated by vegetation impede indirect surveying and limit the effectiveness of our automated
delineation compared to manual delineation.

Automated delineation required fewer clicks for our rural and peri-urban study areas (Table 6).
Only those parcels for which one of our functionalities was more effective than manual delineation are
considered for the automated delineation, amounting to 40–58% of all visible parcels. The effectiveness
of manual delineation is considered for all 100% of the visible parcels. By maximizing the number of
delineated parcels, we aimed to minimize the effect of unusual parcels that required much effort to
delineate manually. We expect the measures that we obtained for the manual delineation to be similar for
the 40–58% of parcels considered for the automated delineation. For the remaining parcels, MCG lines
were either not available, or not aligning enough with the reference data. Manually delineating
these parcels with the plugin requires the same number of clicks and time as conventional manual
delineation, but is partly less tiring, as the delineation can be snapped to the MCG lines and vertices.

Table 6. Does automated delineation cost less effort?

Manual Delineation Automated Dlineation

Parcel
Count

time
parcel [s]

clicks
parcel

Parcel
Count

time
parcel [s]

clicks
parcel

Ethiopia (rural) 350 13 10 181 (52%) 8 2
Rwanda (peri-urban) 100 12 7 40 (40%) 25 5
Kenya (peri-urban) 272 11 5 157 (58%) 10 4

Nevertheless, the lines and vertices can also impede the visibility: For our data from Rwanda
and Kenya, the boundaries are not continuously visible. The partly vegetation-covered boundaries
result in zigzagged and fragmented MCG lines (Figure 8b). Additionally, visible boundaries with low
contrast were partly missed by MCG image segmentation. In both cases, the advantages of automated
delineation are limited.

We claimed that the least-cost-path based on the boundary likelihood is beneficial to delineate
long and curved outlines [21,22]. For the Ethiopian data, we now barely made use of the boundary
likelihood: For the often small and rectangular parcels, connecting all lines surrounding a click or
a selection of lines was more efficient. For areas with few fragmented, long or curved outlines,
the workflow is assumed to be of similar effectiveness when leaving out the boundary classification.
To include the boundary classification is beneficial when boundaries are demarcated, e.g., by long and
curved boundaries, such as roads, waterbodies, or vegetation.

For our data from Kenya and Rwanda, we omitted the boundary classification, since we hardly
used it for the Ethiopian data. The least-cost-path, for which a weight attribute can be selected in the
plugin interface, used line length instead of boundary likelihood. Since the boundaries differ from
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the boundaries in the Ethiopian scene, the CNN would need to be retrained or fine-tuned for the new
boundary types. Retrieving CNN-derived boundary likelihoods for these UAV data would require
further experiments on whether and how to rescale tiles to 224 × 224 pixels, while providing context
comparable to our aerial tiles (Figure 5).

Overall, the automated delineation provided diverse functionalities for different boundary
types (Table 7), which made delineation less tiring and more effective (Table 6). Improvements to
manual delineation were the strongest for parcels fully surrounded by MCG lines. Such parcels
were mostly found in the Ethiopian rural scene, where boundaries aligned with agricultural fields.
In the Rwandan scene, automated delineation was time-consuming, since the boundaries were not
demarcated consistently. Selecting and joining fragmented MCG lines required more careful visual
inspection compared to the rural Ethiopian scene. In the Kenyan scene, the boundaries were less
often covered by vegetation, and thus were in general better visible. Compared to the rural Ethiopian
scene, the automated delineation still required more zooming, as boundaries were demarcated by
more diverse objects.

Table 7. Which plugin functionality to use for which boundary type?

Functionality Boundary Type
Boundary =̂

Segmentation
Example Boundary

Connect around selection complex or rectangular yes agricultural field

Connect lines’ endpoints small or rectangular partly vegetation-covered

Connect along optimal path long or curved yes curved river

Connect manual clicks fragmented or partly invisible no or partly low-contrast

4. Discussion

4.1. Working Hypothesis: Improving Boundary Mapping Approach

Compared to our previous workflow [21], we improved each of the three workflow steps.
For image segmentation, we remove the previous need to reduce the image resolution for images larger
than 1000 × 1000 pixels, and we introduce a filtering step that allows us to limit over-segmentation by
reducing the number of segment lines by 80%. For boundary classification, we implement Convolutional
Neural Networks (CNNs) and thereby eliminate the previous need for Random Forest (RF) hand-crafted
feature generation. For interactive delineation, we develop two additional delineation functionalities
(‘Connect around selection’, ‘Connect lines’ endpoints’), we develop an attribute selection for the
least-cost-path functionality (‘Connect along optimal path’) and redesign the GUI to be more intuitive.
While we previously tested our approach on road outlines only, we now show advantages compared to
manual delineation for cadastral mapping, which includes various object types. The number of clicks
per 100 m compared to manual delineation was previously reduced by 76% and 86%, respectively,
when delineating roads from two UAV images. Now we applied our approach to delineate 378 visible
cadastral boundaries from UAV and aerial imagery of larger extents, while requiring on average 80%
fewer clicks compared to manual delineation.

4.2. Working Hypothesis: CNN vs. RF

By reformulating our problem to be solvable by a CNN, we have investigated integrating a more
state-of-the-art approach in our previously proposed boundary delineation workflow [21]. A deep
learning CNN was assumed to be superior to a machine learning RF, as CNNs require no hand-crafted
features, and can be trained incrementally. This starting hypothesis holds true: Even though pre-trained
on images from computer vision, transfer-learning a CNN on remote sensing data provided more
accurate predictions for boundary likelihoods compared to RF. Our successful integration reduces the
effect of possibly meaningless or biased hand-crafted features, and increases the degree of automation
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of our approach. However, when conducting the final workflow step, i.e., interactive delineation,
we found that we seldom made use of the boundary likelihood. We reduced over-segmentation,
due to post-processing the image segmentation. This, in combination with new interactive delineation
functionalities, is more effective than manual delineation for regular-shaped parcels surrounded by
visible boundaries. The delineation functionality that uses boundary likelihood is beneficial for long or
curved boundaries, which was rare in our study areas.

4.3. Limitations & Future Work

When training a network to predict boundary likelihoods for visible object outlines, our training
data based on cadastral reference are beneficial, as it is available without further processing. The data
have little bias, as no human annotator with domain knowledge is required [36]. However, the data
could be improved: Cadastral data contain invisible boundaries not detectable by MCG. To limit
training data to visible boundaries would match better with what the network is expected to learn,
and thus increase achievable accuracy metrics. When deciding whether to use RF or CNN for
boundary classification, one needs to balance feature extraction for RF [37] against training data
preparation and computational requirements for CNN [18]. In cases of limited training data for CNN,
our CNN-based boundary classification may be adopted by data augmentation and re-balancing
class weights. One advantage of our RF-based boundary classification is that it contains a feature
capturing 3D information from a Digital Surface Model (DSM) [21]. 3D information still needs to be
included in the CNN-based boundary classification. Compared to computer vision, the amount and
size of benchmark image data are marginal: Existing benchmarks cover aerial data for urban object
classification [38] and building extraction [39], satellite imagery for road extraction, building extraction
and land cover classification [40], as well as satellite and aerial imagery for road extraction [41].
Such benchmarks in combination with open data initiatives for governmental cadastral data [42],
aerial imagery [43] and crowdsourced labeling [44–46] may propel deep learning frameworks for
cadastral boundary delineation, i.e., cadastral intelligence. Instead of using a VGG pre-trained on
ImageNet, our approach could then be trained on diverse remote sensing and cadastral data, resulting
in a possibly more effective and scalable network.

Despite the shown advances, automating cadastral boundary delineation is not at its end.
Identifying areas in which a large portion of cadastral boundaries is visible, and for which
high-resolution remote sensing and up-to-date cadastral data are available in digital form, still impedes
methodological development. Future work could investigate the approach’s applicability for invisible
boundaries, that are marked before UAV data capture, e.g., with paint or other temporary boundary
markers. In this context, the degree to which the approach can support participatory mapping could
also be investigated. Furthermore, research needs to be done on how to align innovative approaches
with existing technical, social, legal and institutional frameworks in land administration [47–49]. We are
currently pursuing this by developing documentation and testing material [50] that enables surveyors
and policy makers in land administration to easily understand, test and adapt our approach.

4.4. Comparison to Previous Studies

How we reformulated our problem to be solvable by a tile-based CNN has been similarly proposed
in biomedical optics [51]. Fang et al. crop tiles centered on retinal boundary pixels and train a CNN
to predict nine different boundary labels. Correspondingly labeled pixels are connected with a
graph-based approach. To transfer the latter to our case, we may investigate whether connecting
tiles of similar boundary likelihood can omit the need for an initial MCG image segmentation: By
using Fully Convolutional Networks (FCNs) [52] each pixel of the input image would be assigned a
boundary likelihood, which can be connected using Ultrametric Contour Maps (UCMs) [53] included
in MCG [54]. Connecting pixels of corresponding boundary likelihoods could also be realized by using
MCG-based contour closure [55], line integral convolution [56], or template matching [57].
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Alternatively, the topology of MCG lines can be used to sort out false boundary likelihoods before
aggregating them per line: This could be realized by not shuffling training data, and thus maintaining
more context information per batch, or by using graph-based approaches such as active contour
models [58] suggested for road detection [59,60], or region-growing models suggested for RF-based
identification of linear vegetation [61].

Predicting the optimal MCG parameter k per image may also be achieved with CNNs. Depending
on whether an area is, e.g., rural or urban, cadastral parcels vary in size and shape. Larger parcels
demand less over-segmentation and a higher k. Similarly, our high-resolution UAV data required a
higher k, i.e., 0.3 and 0.4 as compared to 0.1 for the aerial data. Challenges to be addressed are training
with data from multiple sensors, varying parcel sizes in training and automatically labeling data with
the optimal segmentation parameter k.

5. Conclusions

We have introduced a workflow that simplifies the image-based delineation of visible boundaries
to support the automated mapping of land tenure from various sources’ remote sensing imagery.
In comparison to our previous work [21], the approach is now more automated and more accurate due
to the integration of CNN deep learning, compared to RF machine learning. For RF-derived boundary
likelihoods, we obtained an accuracy of 41% and a precision of 49%. For CNN-derived boundary
likelihoods, we obtained an accuracy of 52% and a precision of 76%. CNNs eliminate the need to
generate hand-crafted features required for RF. Furthermore, our approach has proven to be less tiring
and more effective compared to manual delineation, due to the decreased over-segmentation and our
new delineation functionalities. We limit over-segmentation by reducing the number of segment lines
by 80% through filtering. Through the new delineation functionalities, the delineation effort per parcel
requires 38% less time and 80% fewer clicks compared to manual delineation. The approach works on
data from different sensors (aerial and UAV) of different resolutions (0.02–0.25 m). Advantages are
strongest when delineating in rural areas due to the continuous visibility of monotonic boundaries.
Manual delineation remains superior in cases where the boundary is not fully visible, i.e., covered by
shadow or vegetation. While our approach has been developed for cadastral mapping, it can also be
used to delineate objects in other application fields, such as land use mapping, agricultural monitoring,
topographical mapping, road tracking, or building extraction.
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Appendix A

Table A1. Results obtained on validation data for different fine-tuned CNNs. The one used for further
analysis in our study is outlined in green. The legend text corresponds to that of Figure 7.

Parameter Value Acc. Loss Plot

base model VGG19

0.607 0.654
dense layer depth /

dense layer depth 16

dropout rate 0.5

learning rate 0.01

base model VGG19

0.705 0.66
dense layer depth /

dense layer depth 1024

dropout rate 0.5

learning rate 0.01

base model VGG19

0.693 1.632
dense layer depth 512

dense layer depth 16

dropout rate 0.5

learning rate 0.01

base model VGG19

0.613 0.643
dense layer depth /

dense layer depth 16

dropout rate 0.5

learning rate 0.001

base model VGG19

0.615 0.646
dense layer depth /

dense layer depth 16

dropout rate 0.2

learning rate 0.01

base model VGG19

0.6 0.656
dense layer depth 16

dense layer depth 16

dropout rate 0.8

learning rate 0.001

base model VGG16

0.667 0.608
dense layer depth /

dense layer depth 1024

dropout rate 0.8
learning rate 0.001
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Table A1. Cont.

Parameter Value Acc. Loss Plot

base model VGG19

0.692 0.586
dense layer depth /

dense layer depth 1024
dropout rate 0.8
learning rate 0.001

base model VGG19

0.733 1.205
dense layer depth /

dense layer depth 1024

dropout rate 0.8

learning rate 0.001

base model ResNet50

0.571 0.742
dense layer depth /

dense layer depth 16

dropout rate 0.5

learning rate 0.01

base model ResNet50

0.561 2.367
dense layer depth /

dense layer depth 1024

dropout rate 0.5

learning rate 0.01

base model ResNet50

0.546 3.86
dense layer depth 512

dense layer depth 16

dropout rate 0.5

learning rate 0.01

base model ResNet50

0.577 0.787
dense layer depth /

dense layer depth 16

dropout rate 0.5

learning rate 0.001

base model ResNet50

0.578 0.838
dense layer depth /

dense layer depth 16

dropout rate 0.2

learning rate 0.01

base model InceptionV3

0.543 0.792
dense layer depth /

dense layer depth 1024

dropout rate 0.8

learning rate 0.001
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Table A1. Cont.

Parameter Value Acc. Loss Plot

base model Xception

0.559 0.777
dense layer depth /

dense layer depth 1024

dropout rate 0.8

learning rate 0.001

base model MobileNet

0.612 0.775
dense layer depth /

dense layer depth 1024

dropout rate 0.8

learning rate 0.001

base model DenseNet201

0.569 0.895
dense layer depth /

dense layer depth 1024

dropout rate 0.8

learning rate 0.001
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Abstract: 3D Cadastre models capture both the complex interrelations between physical objects and
their corresponding legal rights, restrictions, and responsibilities. Most of the ongoing research on 3D
Cadastre worldwide is focused on interrelations at the level of buildings and infrastructures. So far,
the analysis of such interrelations in terms of indoor spaces, considering the time aspect, has not
been explored yet. In The Netherlands, there are many examples of changes in the functionality of
buildings over time. Tracking these changes is challenging, especially when the geometry of the
spaces changes as well; for example, a change in functionality, from administrative to residential use of
the space or a change in the geometry when merging two spaces in a building without modifying the
functionality. To record the changes, a common practice is to use 2D plans for subdivisions and assign
new rights, restrictions, and responsibilities to the changed spaces in a building. In the meantime,
with the advances of 3D data collection techniques, the benefits of 3D models in various forms are
increasingly being researched. This work explores the opportunities for using 3D point clouds to
establish a platform for 3D Cadastre studies in indoor environments. We investigate the changes in
time of the geometry of the building that can be automatically detected from point clouds, and how
they can be linked with a Land Administration Model (LADM) and included in a 3D spatial database,
to update the 3D indoor Cadastre. The results we have obtained are promising. The permanent
changes (e.g., walls, rooms) are automatically distinguished from dynamic changes (e.g., human,
furniture) and are linked to the space subdivisions.

Keywords: point clouds; indoor change detection; laser scanning; 3D indoor modelling; Cadastre

1. Introduction

With the increasing complexity of the buildings in highly urban areas since the late 90s, 3D Cadastre
has been a subject of interest. 3D Cadastre is beneficial for land registries, architects, surveyors, urban
planners, engineers, real estate agencies, etc. [1]. On one hand, it shows the spatial extent of the
ownership and, on the other, it facilitates 3D property rights, restrictions, and responsibilities [2,3].
However, for realization of the 3D Cadastre concept, there is no one single solution. User needs,
the national political and legal situation, and technical possibilities should be taken into account.
This was also clear from the International Federation of Surveyors (FIG) questionnaire completed by
many countries in 2010 [4,5]. In recent years, many 3D Cadastre activities have been initiated worldwide,
since 3D information is essential for efficient land and property management [6–9]. An investigation
into the legal foundation has been done for 15 countries covering Europe, North and Latin America,
the Middle East, and Australia [10], not only overground, but also underground [11]. However, there is
still no fully implemented 3D Cadastre in the world [4] due to a lack of integration between legal,
institutional, and technical parties involved. With the technical developments, physical and legal
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representation for the purposes of 3D Cadastre are being actively researched; however, considering
the dynamics of the complex relationships between people and their properties, we must take into
account the time aspect, which needs more attention [12]. Most of the ongoing research on 3D Cadastre
worldwide is focused on interrelations at the level of buildings and infrastructures. So far, the analysis
of such interrelations in terms of indoor spaces, considering the time aspect, has not yet been explored.
Therefore, the current paper aims to investigate the opportunities provided by automatic techniques
for detecting changes based on point clouds in support of 3D indoor Cadastre. When using the term
“automatic”, we mean that the process of change detection and separation of permanent changes from
temporary changes are automatic. However, setting relevant parameters for each step is required by
an expert. Moreover, Cadastral expert intervention is required to connect the land administration
database, if it exists, to the physical space subdivision extracted from point clouds. The remainder of
this section includes the relevance of our research, showing a real example in The Nederlands and
related scientific work in the field.

In recent years, many examples can be found of changes in the functionality of buildings.
According to the statistics shared by Rijksolverheid [13] in The Netherlands, 17% of the commercial
real estate is empty. The Ministry of Interior and Kingdom Relations (BZK) and the Association of
Dutch Municipalities (VNG) set up an expert team to support municipalities in the transformation of
empty buildings from commercial to residential use. One of the examples is a nursing home located in
the city of Hoorn (Figure 1a), 40% of which was owned by housing associations and 60% by health care
organizations and was changed in 2015 into student accommodation and privately owned apartments
(Figure 1b).

 

(a) 

(b) 

Figure 1. (a) Changing from a nursing house (top) to student accommodation (middle) and (b) privately
owned apartments (bottom) [13].

From the recent research in the field, it was observed that point clouds are a valuable source
for decision makers in the domain of urban planning and land administration. Laser scanner data
acquired with aerial laser scanners (ALS), mobile laser scanners (MLS), and terrestrial laser scanners
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(TLS) have been used for reconstruction of 3D cities, building facades, roof reconstruction [14–16],
and damage assessment of the buildings before and after a disaster [17]. In the domain of forestry, point
clouds are used for monitoring the growth of trees and changes in the forest canopy. Xiao et al. [18]
used point clouds to monitor the changes of trees in urban canopies. Regarding buildings, some
methods combine images with laser scanner data for facade reconstruction [19–21]. There has been
incredible progress in recent years in the automation of 3D modeling based on point clouds [22–24]
and more specifically in subdividing the space to semantic subdivisions, such as offices, corridors,
staircases, and so forth [25–27]. Challenges for detecting changes for updating 3D Cadastre in an
urban environment using ALS and image-based point clouds for 3D Cadastre were also explored [28].
Regarding indoor spaces, geometric changes during the lifetime of a building were analyzed for the
Technical University of Munich (TUM) [29], as shown in Figure 2; however, they were not related to
Cadastre. This fact motivates us to use point clouds and monitor changes for updating 3D Cadastre.

 
Figure 2. Geometric changes of indoor spaces during the lifetime of a building for complex buildings
for the Technical University of Munich (TUM). Campus 3D map-rendered corridors [29].
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From a technical point of view, the three possibilities to detect geometric changes over time are:

1. Comparing two 3D models from two different epochs;
2. Comparing a 3D model with an external data source, e.g., point clouds, floor plans;
3. Comparing two point cloud datasets from two epochs to extract changes.

In the current paper, we are using the third option becausepoint clouds are used for change
detection and representation of the 3D Cadastre because they reflect more detail of the environment
and they are close to the current state of the building. Furthermore, it is easy to convert the point clouds
to other data representation forms, such as vector and voxel, for usage in 3D Cadastre models [30].
Having more than one point cloud dataset as an input information change detection can be done either
in a low level of detail and just based on the geometry, or in a higher level of detail by interpretation
of the geometry to semantics. The changes between two epochs could be due to differences in the
furniture and not the permanent structure, which needs a higher level of interpretation from point
clouds. However, only comparing the geometry of two point clouds is not sufficient to interpret 3D
Cadastre related changes. Additionally, we need to have an understanding of the spaces inside the
buildings to relate them to 3D spatial units in a 3D Cadastre model and properly register them in
a database.

In the domain of Cadastre, there is a need to subdivide the spatial units vertically and have a 3D
representation in 3D spatial databases. Van Oosterom discusses different types of data representation
for 3D model storage. including voxels, vectors, and point clouds [30]. The flexibility of point clouds
in conversion to voxel or vector formats makes it easier to use point clouds in Cadastre. Additionally,
point clouds can represent the 3D details of the buildings from inside and outside. From the standards
and modelling aspects, researchers have developed models to provide a common framework for 3D
Cadastre. The main international framework for 3D Cadastre is the Land Administration Model
(LADM) [31]. However, in LADM there is a lack of connection between spatial models, such as
Building Information Models (BIM) and IndoorGML. Oldfield et al. [32] try to fill this gap by enabling
the registration of spatial units extracted from BIM into a land administration database. Aien et al. [1]
study the 3D Cadastre in relation to legal issues and their physical counterparts. The authors introduce
a 3D Cadastral Data Model (3DCDM) to support the integration of physical objects linked with the
legal objects into a 3D Cadastre. Another application of LADM is for using the access rights for indoor
navigation purposes. The access rights of spatial units is defined in the LADM and could be connected
to IndoorGML for customized navigation in the spatial units [33]. Another model that builds on
LADM for supporting the 3D spatial databases in terms of land administration was developed by
Kalantari et al. [34]. The authors propose strategies for the implementation of the 3D National Digital
Cadastral Database (3D-NDCDB) in Malaysia. The proposed database gives instructions for cadastral
data collection, updating the data and storage. Their database is a one-source 3D database which is
compliant with the LADM. Other researchers discuss the need for new spatial representations and
profiles (e.g., a point clouds profile for non-topological 3D parcels) [35,36]. Atazadeh et al. investigate
the integration of legal and physical information based on international standards [37].

It is challenging to automatically link the right spaces to the 3D Cadastre and database. For this
task, each space subdivision can represent a spatial unit or a group of spatial units in a building.
These spatial units, to some extent, are supported in LADM through four main classes: LA_Party,
LA_RRR, LA_BAUnit, and LA_SpatialUnit [38]. From the point of view of changes in indoor spaces
LA_SpatialUnit, which represents legal objects, and LA_RRR, which represents rights, restrictions,
and responsibilities, are the interesting classes. The reason that we decided to use the LADM for
our experiments is that it is more complete and recent than other cadastral data models, such as the
Federal Geographic Data Committee (FGDC) (Cadastral Data Content Standard—Federal Geographic
Data Committee) [39], DM01 [40], and The Legal Property Object Model [41]. Additionally, unlike
other cadastral data models that are based on 2D land parcels, LADM suggests modeling classes for
3D objects [1]. However, there is a lack of support for 3D Cadastre in terms of data representation
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and spatial operations in the current 3D Cadastre models, such as LADM. For example, Cadastre
parcels are mainly represented as 2D parcels, while, in a multi-storey building, there is a need to
show the property as a volumetric object. The only class for supporting 3D spatial units in the LADM
is the Class LA_BoundaryFace, which uses GM_MultiSurface to model 3D objects. The problem of
GM_MultiSurface is that it is not sufficient for 3D spatial analysis and representation [1]. To compensate
for this shortage in our workflow, enriched point clouds were used as an external database to store
and represent the 3D objects. Using attributed point clouds enabled us to calculate necessary spatial
attributes for 3D Cadastre.

Currently, there is no framework or standard for connecting point clouds, 3D models, and the
LADM. Therefore, in this paper, we propose such workflow based on experiments on two different
datasets. One example is of a commercial building, of which the point clouds are acquired using
two different MLS systems before and after renovation. In addition, one more example of a building
captured at different moments with TLS will be shown. This research shows the usage of point clouds
as a primary and final format of data representation to enrich the 3D Cadastre. The remainder of this
article explains the used methodology and the obtained results, followed by critical discussion and
conclusions with a shared view on the way forward.

2. Materials and Methods

In the current section, the methods for detecting changes from point clouds and their possible links
with LADM and the 3D database will be explained (Figure 3). We set an external model between the
attributed point clouds and LADM to execute 3D operations (e.g., to check the topology and calculate
the area) on the point clouds and fed into the LADM. For understanding the changes, first, we classified
the point clouds of each epoch to permanent (e.g., walls, floors, ceilings) and temporary structures (e.g.,
furniture, outliers) using the methods in [42] (Step 1, Figure 3). Second, space subdivisions, such as
rooms, corridors, staircases, were extracted from the point clouds of each epoch (Step 2, Figure 3).
Two epochs were then co-registered and the geometric differences were extracted. The changes were
classified as important changes, such as permanent structure and temporary changes, such as changes in
the furniture (Step 3, Figure 3). Furthermore, the relevant changes for 3D Cadastre were distinguished
from other changes (Step 4, Figure 3) and were connected to the space subdivisions. Each space
subdivision represented a semantic space that was associated with the 3D Cadastre attributes (Step 5,
Figure 3). Finally, the related 3D Cadastre changes were queried from the database and a Cadastre
expert decided the updating of the Cadastre records (Figure 3).
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Figure 3. Methodology.

2.1. Case Studies

For the current research, two case study examples are used. The first case study is the building of
the Technical University in Braunschweig (TUB) and the second is the University of Twente Faculty of
Geo-Information Science and Earth Observation (ITC) building. The floor plans of these buildings are
shown in Figure 4. In Figure 4a, the highlighted area shows that a wall was removed and rooms were
merged into one, and Figure 4b shows the two rooms before removing the walls.
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(a) 

(b) 

Figure 4. The floor plans for our two case studies. (a) (top) TU Braunschweig after the change (floor2),
(b) (bottom) University of Twente ITC building (floor 1) before the change. The highlighted areas show
the rooms where the changes happened.

Point cloud data for the two case studies were collected with different scanners (Figure 5). The data
for the Braunschweig building were collected with an ITC Indoor Mobile Mapping System (ITC-IMMS)
(epoch1) [43] and a Zeb-Revo (epoch2) [44]. For the ITC building, we used the Riegl [45] terrestrial
laser scanning system and a Viametris device. The accuracy of the point clouds varied from 0.01 to
0.06 m depending on the laser scanner system. While the noise in mobile mapping systems was louder
than the terrestrial laser scanner (TLS), the scene coverage of a mobile mapping system was more than
a TLS. The noise in the data could have been caused by sensors, data acquisition algorithms, and the
reflective surfaces. For more information on the comparison of scanning systems, refer to the study by
Lehtola et al. [46].
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Figure 5. The datasets for two different epochs. The first row is the dataset which belongs to the
Braunschweig building and the second row is from the ITC building and is a more complex dataset,
with furniture and large glass windows.

In the following subsections, the detailed methodology is explained based on the first case study.

2.2. Indoor Change Detection from Point Clouds

Differences in two epochs of point clouds inside the buildings can be categorized as:

1. Changes in the dynamic objects (e.g., furniture);
2. Changes in the permanent structure (walls, floors, rooms).

There are some other differences between two epochs of point clouds that are interpreted as:

3. Differences because of the acquisition coverage;
4. Differences because of the difference in the sensors.

In our approach, categories number 1 and 2 were dealt with as important changes for 3D Cadastre,
and categories 3 and 4 were just inevitable differences in two epochs that occurred because of data
acquisition systems and were not relevant to the 3D Cadastre. We acquired two point clouds of two
time periods with two different laser scanners, one a Zeb-Revo [44] handheld MLS and the other an
ITC-IMMS [43]. The motivation to use different sensors is to explore all realistic possible causes of
differences between epochs. The process of change detection starts with the co-registration of two point
clouds (Step 3 from Figure 3). The co-registration of two point cloud datasets was a straightforward
approach, such as using the iterative closest point (ICP) [47–49]. After the registration, two point clouds
were compared based on the distance threshold to detect the differences caused by the registration
error and sensors differences (4th category; Step 4 from Figure 3). The distance threshold was chosen
by summing the registration error and sensor noise. The registration error and sensor noise already
introduced some differences between the two datasets. The registration errors were the residuals of
each co-registration process (less than 10 cm). The sensor noise was specified in the specification of the
systems. This threshold, d, described points from two datasets with the distance less than the threshold.
They were not considered as changes and they were in the 4th category because of the differences in
the sensors. Points that had distances more than the threshold were in one of the other three categories.
In our experiment, we defined the distance threshold of less than 0.10 m.
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Let the point clouds (PC) from epoch one (acquired by a backpack) be PC1 and the point clouds
from the second epoch (acquired by Zeb-Revo) be PC2. The point to point comparison was based on
the reconstruction of a Kd-tree [50,51] and a comparison of the distance of the points in PC1 from
PC2 and was stored in PC1. Using this method, the differences caused by the acquisition system and
registration errors were excluded from the real changes.

In the next Step 5 from Figure 3, the differences were further analyzed to detect and exclude
the acquisition coverage (3rd category). Our change detection method was based on analyzing two
geometric differences between two point clouds. This was done in two steps: (1) The distinction was
made between object changes and coverage differences and (2) the object changes were separated into
changes on permanent structures and dynamic objects, such as persons and furniture (Section 2.2).

The geometric differences were calculated by determining the nearest 2D point and the nearest 3D
point in the other epoch. The first nearest point was based on the X, Y coordinates and the second on X,
Y, Z coordinates. Figure 6 shows both geometric distances as a point attribute categorized in three
colors: Green <20 cm, yellow >20 cm and <50 cm, red >50 cm to the nearest.

Figure 6. The distance (green <20 cm, yellow <50 cm, red >50 cm) to the nearest point in (a) 2D and
(b) 3D.

For both object changes and coverage differences, it was expected that the nearest 3D point was
further than a certain threshold. However, the nearest 2D point may have been close to a changed
object, but not in case of coverage differences. Points were temporarily labeled as part of changed
objects if the distance to the nearest point in 3D was larger than 20 cm, but the nearest point in 2D
was less than 20 cm. Threshold values were chosen such that they were larger than the expected
registration errors but small enough to detect changes larger than 20 cm. Next, the whole point cloud
was segmented into planar segments and only the vertical segments with a majority (more than 50%)
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of points labeled as potentially changed were considered to be changed. The planar segmentation was
performed by a region growing algorithm presented by Vosselman et al., [52]. Note that, in this way,
the points on a newly built wall near the ground or ceiling, with a small 3D distance to the nearest
point in the other epoch, were included in the changed objects as they belonged to a segment with more
than 50% points with a large perpendicular distance to the plane in the other epoch. By using planar
segments and calculating perpendicular distances from a point in one epoch to a plane in the other
epoch, we avoided the influence of differences in point densities between the point clouds. The vertical
segments labeled as changed objects included permanent structures, such as walls, but also dynamic
objects, such as persons. In the second step, the aim was to separate permanent from temporary
changes by looking at a method described in [23] and [42].

2.2.1. Classify Changes to Permanent and Non-Permanent

The next step was to separate the changes that were part of the permanent structure from dynamic
objects. This involved classifying the point clouds in each epoch to a permanent structure (e.g., walls,
floors, ceilings) and a non-permanent structure (e.g., furniture, clutter and outliers).

In Figure 7c, the blue color represents the areas captured by Zeb-Revo and the red areas show
the differences in the coverage where PC1 is not covered by PC2. In Figure 7d, the point clouds of
epoch1 after the comparison with the epoch2 are shown and the blue points show the points in which
their distance differences are less than the threshold and are not changed. The green points show
the changes, because of coverage or furniture, or a permanent change, and the ceiling is removed
for better visualization. We applied a method from [23] to classify the permanent structures in each
epoch (see Figure 8). Four main classes were important for our change detection process. Walls,
floors, and ceilings were three classes that belonged to the permanent structures. The non-permanent
structures were, for example, furniture, outliers, and unknown points, which were classified as the
clutter. The classification started with surface growing segmentation and generating an adjacency
graph from the connected segments. By analyzing the adjacency graph, it was possible to separate
permanent structures, such as walls, because of their connection to the floor and ceiling. The normal
angle of the planes was important in this decision because walls in most indoor environments have
an angle of more than 45 degrees with the positive direction of the z-axis. Figure 8c shows that the
permanent structure (walls and floor) was separated from the clutter.

After the classification of points in each epoch, by comparing the changes with the semantic labels
(walls, floors, and ceilings), it is possible to distinguish relevant changes for 3D Cadastre. Each point in
the set of changes is a possible change for 3D Cadastre if is labeled as a wall, floor, or ceiling, otherwise
it is a change only because of furniture or dynamic objects or outliers. Table 1 shows how we identified
changes with labels per point, respecting the permanent structure. According to the table, points with
label 1 are important for change detection in 3D Cadastre because they represent a permanent change
in the building. Figure 5 represents the changes with different colors according to their label.

Table 1. The table shows how the point clouds are labeled regarding the changes and their role in the
building structure. The points with label 1 are interesting for change detection of the 3D Cadastre.

Labels of Points in the Data Non-Permanent Structure Permanent Structure

Change 0 1
No change 2 3
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Figure 7. (a) Point clouds from a backpack system from the first epoch. (b) Point clouds from a
Zeb-Revo system from the second epoch. (c) Co-registered point clouds. (d) Point clouds of epoch1
after the comparison with epoch2.

Figure 8. (a) PC1 acquired by a backpack and (b) PC2 is acquired by Zeb-Revo, walls (orange),
floor (yellow), clutter (blue). (c) The changes are detected in PC1 and classified to permanent structure
changes (yellow) and non-permanent changes (red). The red rectangle shows the wall that is showing a
permanent change.
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2.2.2. Changes in Relation to Indoor Space Subdivisions

The process of detection of permanent changes is continued by linking detected changes to the
volumetric space or space subdivisions. Space subdivisions represent the semantic space in an indoor
environment, such as offices, corridors, parking areas, staircases, and so forth. Each space subdivision
is connected to space in a spatial unit in the 3D Cadastre model and all laser points in the space
subdivisions carry the attributes of the corresponding Cadastre administration. In this step, we explain
how these space subdivisions were extracted from the point clouds and linked to the previously
detected changes. Note that an apartment may consist of one or more spatial units, a spatial unit
may consist of one or more spaces, and a spatial unit may have invisible boundaries and needs to be
checked by a Cadastre expert.

Following the method in [23], after the extraction of the permanent structures in each epoch,
a voxel grid was reconstructed from the point clouds, including walls, floors, and ceilings. Using a
3D morphology operation on the voxel grid, space was then subdivided into rooms and corridors.
Each space subdivision was represented with the center of voxels as a point cloud segment. To find
out which changes occured in which space subdivisions, we intersected the space subdivisions of each
epoch with the permanent changes detected earlier (see Figure 9). For example, in Figure 8, we can see
that in the second epoch (Figure 8b) a wall was removed and two spaces were merged. Since this wall
was detected as a change during the previous step (Figure 8c) by the intersection of changed objects
with subdivisions, the changes in the two epochs were extracted (Figure 9). These changes were linked
to a space subdivision, and each space subdivision or a group of them (e.g., a building level) may
represent a spatial unit in the 3D Cadastre model.

Figure 9. The space subdivisions of PC2 (second epoch) after the change. The purple wall in the right
image shows the intersection of a detected change with a space subdivision.

2.2.3. Changes in Relation to the 3D Cadastre Model

To link the Cadastre to the detected changes, we assumed that every space subdivision in the
point clouds was represented in the object description of the spatial unit in the LADM, considering that
an interactive refinement on the space subdivision from the previous step was necessary to group some
of the subdivisions, according to the 3D Cadastre legal spatial units. For example, a group of offices
that belonged to the same owner had an invisible boundary that should be interactively corrected.
LADM represents legal spaces in spatial units. Spatial units were refined into two specializations [38].

(1) Building units, as instances of class:

LA_LegalSpaceBuildingUnit. A building unit concerns the legal space, which does not necessarily
coincide with the physical space of a building. A building unit is a component of the building (the
legal, recorded, or informal space of the physical entity). A building unit may be used for different
purposes (e.g., living or commercial) or it can be under construction. An example of a building unit is
a space in a building, an apartment, a garage, a parking space, or a laundry space.

(2) Utility networks, as instances of a class:

LA_LegalSpaceUtilityNetwork. A utility network concerns legal space, which does not necessarily
coincide with the physical space of a utility network.
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The LADM class LA_BAUnit (Figure 10) allowed the association of one right to a combination of
spatial units (e.g., an apartment and a parking place).

 
Figure 10. Basic classes of the LADM [38].

A basic administrative unit (LA_BAUnit) in LADM is an administrative entity, subject to
registration, consisting of 0 or more spatial units, against which (one or more) homogeneous and
unique rights (e.g., ownership right or land use right), responsibilities, or restrictions are associated to
the whole entity, as included in a land administration system. In LADM, each space is represented as a
spatial unit and then uses a LADM class LA_BAUnit to associate those spatial units to a legal unit.
The type of building units were individual or shared. An individual building unit is an apartment
and represents a legal space. A building contains individual units (apartments), a shared unit with a
common threshold (entrance), and a ground parcel. Each unit owner holds a share in the shared unit
and the ground parcel.

Every spatial unit in LADM was modelled with GM_MultiSurface. 2D parcels were modelled
by boundary face string (LA_BoundaryFace). The representation of 3D spatial units was done by
boundary face (LA_BoundaryFace), and for the storage a GM_Surface was used (see Figure 11).
However, in our approach, we are aiming to keep the point clouds until the last step for spatial
analysis. Therefore, we just used the calculated features, such as volume, area, and neighboring units,
to insert them as classes in the LADM. All spatial attributes and legal issues, such as rights, restrictions,
and responsibilities, could be associated between point clouds and LADM. The measured spaces
were important because, apart from the floor space, the volumes are also known. This is relevant for
valuation purposes of the individual spaces in apartments.

Figure 12 illustrates the LADM representation of an apartment—in this case, owned by a party
(right holder) named Frank. This party has an individual space and a share (1/100) in the common or
shared space. Individual and shared spaces (including the ground parcel) compose the building as
a whole.

Figure 11. Mixed use of boundary face strings and boundary faces defining both bounded and
unbounded 3D volumes: Annex B in [38].
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Figure 12. An apartment building in Land Administration Model (LADM) and its legal space [38].

The limiting factor of associating detected space changes to the LADM is that the LADM only
provides an abstract representation of 3D objects with no direct mapping to an implementation.
There are also specialized data structures, such as CityGML or IndoorGML, which can be used to store
3D data as specified in the LADM model. The issue here is that these data structures are primarily
designed for visualization and indoor navigation and not for the management of rights of legal spaces.
This becomes more apparent when looking at the definition of primal and dual spaces. The primal
space is used to represent semantic subdivisions (e.g., a room, a corridor) and the dual space is used to
represent the navigability of the primal space. For the proper management of legal space in a database
and to properly determine which changes in the layout of a building affect legal spaces, additional
information is needed to be stored in the database, namely, a direct relationship between visible and
invisible subdivisions of space and the legal objects in the 3D Cadastre.

Given today’s database technology, the available option for the implementation of 3D legal spaces
and their corresponding topological relationships is a GM_PolyhedralSurface [53]. A PolyhedralSurface
datatype is defined as a collection of polygons connected by edges which may enclose a solid.
When using such a data structure, it is possible to define a subdivision in a building as the primal space
and a legal object as the dual space. This way, properties can be assigned to, for example, walls to define
whether it corresponds to a legal boundary or not (or where in the wall the boundary is). Similarly,
properties can be assigned to invisible space subdivisions that define a change in the rights of the
spaces. In this scenario, the dual of an edge is a face and the dual of a face is solid, which will represent
a LA_BAUnit. A database implementation of the topological relationships of a PolyhedralSurface as
required by a 3D Cadastre can be based on dual half-edges [54,55]. With this approach, each face is
stored as an array of half-edges and can be associated with a set of attributes. These attributes can be
defined as a result of the face detection from the point-cloud analysis. Since each face is associated to
a legal object, it is possible to support the update of the 3D Cadastre by directly updating changes
detected in the latest point cloud epoch on the database structure of the 3D Cadastre. This has to be
followed by an update on the rights of the legal objects which will require the intervention of the
cadastral expert responsible for mutations and transaction in the land administration system.

3. Results and Discussion

The proposed method is tested on two datasets. One dataset has a smaller amount of clutter
and the shape of the building has a regular structure. Therefore, the separation of walls is easier.
To challenge the robustness of our method with a complex structure and more furniture, a dataset
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with arbitrary wall layout and glass surfaces is selected (ITC restaurant, Figure 12). The details of the
datasets for each epoch are in Table 2.

Table 2. The details of the datasets and two case studies. The first and second rows belong to the first
case study. The table shows the number of points and scanning device per dataset. The fourth column
shows the number of changed rooms before and after the renovation of the building. The fifth column
shows the items which are identified as changes.

Dataset # Points Scanner
# of Changed

Rooms
Changed Items Figures

TU Braunschweig
(epoch 1) 1.7 M ITC-IMMS 2 Clutter, walls 4, 5, 6, 8, 8, 14

TU Braunschweig
(epoch 2) 1.8 M Zeb-Revo 1 Wall is

removed.
4, 5, 6, 8, 9, 10,

14, 16
ITC Restaurant

(epoch 1) 2.8 M Viametris, Riegl 3 Clutter, walls,
curtains 4, 5, 13, 15

ITC Restaurant
(epoch 2) 1.0 M Viametris 1 Two walls are

removed. 4, 5, 13, 15

First, the datasets from two different epochs were co-registered using the iterative closest point ICP
algorithm (Figure 13). Then the changes between two epochs were identified in 2D and 3D, as explained
in the methodology (Section 2.2). The classification algorithm separated the permanent changes from
non-permanent changes and then we intersected the permanent changes with the reconstructed spaces
from two epochs (Figures 14 and 15). In this way, the changes in the rooms in the second epoch of
both datasets can automatically be identified. To identify the relation of physical changes with the
3D Cadastre, a user adds the ownership of the spaces as an attribute to each space. For example,
the spaces which have the same rights and ownership obtain the same label and form a new physical
space (Figure 16). Then it is possible to connect them to the basic class of the LA_Spatial Unit in the
LADM and update the spatial unit class in the LADM.

In dataset 2 (ITC restaurant), part of the curtain was identified as the permanent change because
the curtains were covering the walls and they were detected as a permanent structure. However,
this can be the inaccuracy of the classification method, for identifying the changes in the space is not
problematic because it has a slight change in the space partitioning.

Figure 13. The figure shows the top view of two epochs of our use case. The floor and ceiling are
removed for a clear visualization. (a) The data is collected by a Riegl terrestrial laser scanners (TLS) [45]
(rooms A and B in yellow) and is co-registered with the data collected by the Viametris system [56].
(b) The second epoch is also collected by the Viametris system and the walls in the red rectangles
are removed.
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(a) (b)

(c) (d)

Figure 14. The figure represents the changes in the detected permanent structure and then the spaces.
(a) and (b) show the changes in the walls (black rectangles). The red transparent rectangle is for the
orientation between two images. (c) and (d) show the detected walls in orange and space partitions in
random colors. The black rectangles show how the room changed after removing a wall.

(a) (b)

(c) (d)

Figure 15. The top view of the spaces and permanent changes. (a) Epoch one, walls are in green and
four spaces in random colors. (b) After removing walls, two rooms in epoch one are merged with the
large space in brown color, and, in total, it forms two spaces with the rest of the interiors. (c) Detected
permanent changes are shown in red. (d) The spaces from the second epoch are intersected with the
permeant changes to identify the changes in the space.

The important parameter for the detection of changes is the distance threshold (d) to identify the
changes from the differences caused by noise and registration errors. We set this parameter slightly larger
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than the sum up of the sensor noise coming from the scanning device and the residuals coming from
the ICP algorithm (less than 10 cm). In our experiments, we set this threshold on 20 cm, which implies
that we cannot detect changes which are smaller than 20 cm. For planar segmentation of the point
clouds, the smoothness parameter for a surface growing algorithm is important, which depends on
the noise and point spacing in the data. We set the smoothness threshold to 8 cm because the noise
from MLS systems (Viametris and Zeb-Revo) is around 5 cm. The smoothness parameter was set
slightly larger than the sensor noise and point spacing. The point spacing was 5 cm, which meant
we could subsample point clouds to reach 5 cm point spacing. The parameters for detecting the
permanent structure were chosen according to [23]. Segments with more than 500 supporting points
were selected for creating the adjacency graph and smaller segments were discarded. The voxel size
for space partitioning was 10 cm, which is an apppriate voxel size to have enough precision to identify
changes and avoid expensive computations.

Figure 16. New spaces with the same rights and ownership obtain the same label and color and form a
new physical space that can be linked to the LA_SpatialUnit.

The running time for surface growing segmentation, identifying the permanent structure,
and detecting the changes for the first dataset with 1.7 million points took 2.4 min, 5.6 min, and 7 min,
respectively. The space partitioning was computationally more expensive than other processes and it
took 10 min for dataset 1 with the voxel size of 10 cm, and it depended on the volume of the building.
Larger volumes required more voxels for morphological space partitioning.

In our workflow, the challenge was detecting the permanent changes from the dynamic changes,
which were not important for the Cadastre. According to [23], this process can have an average
accuracy of 93% for permanent structures and 90% for spaces [57]. Furthermore, the extraction of
spaces are really crucial in the process, because the volume and area is calculated from the space
subdivision result. Therefore, an expert should check the results of space subdivision and merge or
split some of the spaces that are extracted from the point clouds. The interactive corrections are less
than 10% of the whole process and, for a building of three floors as large as our case study, it does not
take more than 10 min.

The process of linking the spatial units to the 3D Cadastre model was not automated in our
approach. This was because of the lack of possibilities for representation and visualization of 3D
objects in the 3D Cadastre models. Therefore, our method was limited when it comes to the storage of
3D spatial objects in the Cadastre databases. As future work, linking the 3D objects and 3D Cadastre
models, one solution we intend to investigate is using the point clouds as external classes and trying to
keep the 3D objects as point clouds for all steps. The extraction of vector boundaries for the Cadastre
models can be done with functions from the point clouds.

4. Conclusions

In this paper, we have shown that permanent changes in buildings can be found automatically
using multi-epoch mobile laser data. The detection is based on the selection of planar segments with a
majority (i.e., more than 50%) of points in one epoch with a distance larger than 20 cm to the nearest
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points in the other epoch. In our approach, changes are detected as dynamic changes (e.g., human,
furniture) and permanent changes (e.g., walls, rooms). The permanent changes are then linked to the
space subdivisions, which are extracted from the point clouds of each epoch (Section 2.2). A Cadastre
expert will need to interactively group some of the space subdivision according to their legal attributes.
The spaces that are changed and identified during the process will then be further analyzed to extract
spatial attributes, such as boundary, area, and volume. This process can be done on point clouds
where changes have occurred. Extracted spatial attributes can be exchanged between a Cadastre
model, such as LADM, and the point clouds. A Cadastre expert should make decisions on updating
the model according to the spatial changes. In the future, we plan to investigate the link between
designed space by the architect or civil engineer and the real constructed space as measured with
point clouds. This measurement is relevant for the composition of legal space in LADM, but also for
building and other permits (e.g., for shops, companies, etc.). It was proved that it is also relevant
for crisis management using smart indoor models in 3D [58]. Moreover, the latest updates in 3D
mapping using multi-acquisition capabilities, virtual reality, and augmented reality in combination
with precise architectural plans and BIM provide immense opportunities. Apart from the technical
advances, our future research will be aligned with the second edition of LADM, which is currently
under development and includes extensions incorporating the usage of point clouds, BIM, etc. [59].

The process of representing and linking 3D objects to the 3D Cadastre, especially for indoor use,
is ongoing research. The authors of this paper hope that this work will introduce a new research
avenue regarding the connection between point clouds and indoor Cadastre models.
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Abstract: With the pressure of the increasing density of urban areas, some public infrastructures
are moving to the underground to free up space above, such as utility lines, rail lines and roads.
In the big data era, the three-dimensional (3D) data can be beneficial to understand the complex
urban area. Comparing to spatial data and information of the above ground, we lack the precise
and detailed information about underground infrastructures, such as the spatial information of
underground infrastructure, the ownership of underground objects and the interdependence of
infrastructures in the above and below ground. How can we map reliable 3D underground utility
networks and use them in the land administration? First, to explain the importance of this work and
find a possible solution, this paper observes the current issues of the existing underground utility
database in Singapore. A framework for utility data governance is proposed to manage the work
process from the underground utility data capture to data usage. This is the backbone to support the
coordination of different roles in the utility data governance and usage. Then, an initial design of the
3D underground utility data model is introduced to describe the 3D geometric and spatial information
about underground utility data and connect it to the cadastral parcel for land administration. In the
case study, the newly collected data from mobile Ground Penetrating Radar is integrated with the
existing utility data for 3D modelling. It is expected to explore the integration of new collected 3D
data, the existing 2D data and cadastral information for land administration of underground utilities.

Keywords: 3D data model; data governance; underground utility networks; underground mapping;
utility cadastre; land administration

1. Introduction

Rapid urbanization creates a strong need to optimize land use in densely populated cities.
Attention is thus shifting from the very limited available space above ground to generation and
increased use of underground spaces. Comparing to the above ground, underground is an unseen
space. The trench for the building and maintenance of underground infrastructure costs a lot of money,
as well as faces high risks. A prerequisite for including the underground in urban planning is the
availability of sufficiently complete, accurate and up-to-date 3D maps of the underground. However,
such maps are not yet widely available, if at all, and the required data acquisition is much more
challenging than for spaces above ground.
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With a population of more than five million living in an area of 720 square kilometres, Singapore
has revealed a plan for placing infrastructure underground [1]. Currently, a data sharing platform,
which is called GeoSpace, is maintained by the Singapore Land Authority (SLA) and used by
government agencies (e.g., utility owners, land developers, and land owners) to establish a 2D map of
Singapore underground including utility services. Figure 1 shows an example in the Marina Bay region
of Singapore includes water supply, sewage, drainage, telecommunication and power grid networks.
All the existing data are the 2D format. The 2D visualization with overlap pipelines has limitation to
provide accurate and reliable information about underground utilities to various applications.

Figure 1. An example of utility data in the Marina Bay region of Singapore (source: Singapore Land
Authority, 2018).

To observe the existing data, we zoom in to a corner of the Marina Bay region. Figure 2a presents
five layers of different power grid networks. In the real world, the five different power grid networks
may be located at the same place and different depths. However, these data have the same x, y value
in the database, which makes them impossible to identify in the vertical space and distinguish them in
2D. All of the existing data are as-build data. We can not trust them to present the real situation of
underground utility networks. From Figure 2b, the limited attributes are provided from the current
database. Only the main water pipes have a diameter. Most of them have 2D geospatial information.
In addition, data owners have more details of existing utility data. However, most of them are 2D data
as well. Depending on the requirement of the application, some data owners try to collect 3D data.
There are some issues during the data capture to usage. Without the utility survey standard, some of
them only use the traditional survey method to get the 3D points data of pipelines and overlay on the
existing data. Nobody can guarantee the quality of these data. Meanwhile, because of the limitation of
the existing data model, it is difficult to integrate 3D data with the existing 2D data. Update cycles were
observed to be infrequent and slow, which is once per six months. We not only need time information
in the data model to maintain utility database frequently, but also should improve data governance
procedures for updating. In general, some issues prevent these data from being sufficient for urban
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planning, land administration, and on-site work. In fact, many existing databases, not only the ones in
Singapore, contribute incompletely to the spatial understanding of the underground because of similar
restrictions. In particular:

(a) An example of power grid data

(b) The attributes of existing utility data

Figure 2. The issues of existing utility data (Source: Singapore Land Authority, 2018).

• The data are often only 2D i.e., lacking depth information entirely, or 2.5D (i.e., featuring depth
as an attribute to a horizontal position rather than as an independent coordinate. Furthermore,
the depth information may be sparse with depths measured at few locations only, e.g., at accessible
manholes, and it may be ambiguous because it is not always clear whether the values represent
depth relative to a specific surface with unknown elevation or height relative to an established
height datum.

• It is unknown whether the data represent the current situation, the possibly different as-built state,
or just the as-designed state. Furthermore, the geometric accuracy and the completeness of the
area often unknown.

• Much of the attribute information (e.g., diameter, material, installation date) required to support
specific applications is not available or does not represent the appropriate level of detail.

• There is a lack of standards for organizing the data and semantic information of underground
utilities, impairing data sharing and use of the shared data.

Overall, the reliable and accurate 3D data of utility networks are sorely demanded. Therefore,
the Singapore-ETH Centre together with the SLA and the Geomatics Department of the City of Zürich
have started a related project under the name “Digital Underground” [2]. The initial goals of this
project are to develop a road map, a data model and a concept for deriving a unified and complete
3D map of the relevant underground structures (in particular of utilities and spaces like corridors or
tunnels). Collecting best practices for underground utility mapping is a special focus within the project.
Figure 3 describes the workflow of data governance for 3D underground utility mapping. In the
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data capture, different types of survey techniques (e.g., Ground Penetrating Radar (GPR), Gyro-based
system) are explored and compared to find the optimal underground utility survey approach. After the
data processing, the newly collected data should be integrated into the existing database aiming to
improve the information of underground utility. As the backbone of the 3D underground utility
map, the 3D consolidated database of underground utilities should be developed for data storage.
This is a loop workflow. The data capture could improve and update the database. At the same time,
the underground utility database should provide information to support data capture. In order to
organize these four steps, we need two main components in the data governance. One is the framework
to manage different roles and communication between them in data governance. The other is the
underground utility data model, which is a conceptual model to describe the structure and content
of geodata independent from the used hard- and software systems. It will provide the standard
for the presentation of geometrical information, data quality management and various applications.
This paper focuses on the design of the framework of data governance and underground utility data
model. To ensure legal compliance, efficiency, and resilience of these utility networks, the reliable 3D
underground utility data could shed light on their ownership and operation [3]. Then, the underground
utility data can be used in various applications. To provide sufficiently and consistently accurate
information about underground utilities, it is necessary to fill the gap between engineering practices
and mapping disciplines. Meanwhile, we need to find the solution for how to use the existing data
and integrate it with newly collected data.

Figure 3. Workflow of underground utility mapping.

Here, we focus on underground utilities, ignoring other underground structures that eventually
need to be represented in the same 3D database as the utilities. This work aims at bridging the gap
between underground utility surveying and data governance for land administration. Our proposal
addresses the following:
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• The organization of different phases and roles from data capture to usage. It is necessary to
make a clear definition of different roles. During this work process, the communication between
different roles (e.g., data producers, owners and users) is very important.

• Different roles have different rights to access, change, delete or add data. These permissions must
be defined and maintained administratively.

• Building and updating the 3D map of the underground requires integration of datasets of
a different type, quality and source. Data may originate from recent surveying e.g., using GPR
or self-contained sensors tracking their movement through a pipe. Data for building a map may
also be derived from other databases. This integration requires handling various data formats,
and quantifying and properly taking into account the respective data quality.

• The underground data need to be convertible into the data formats required by a variety of
different applications and end users without loss of relevant information.

Subsequently, we first introduce related works on 3D underground utility data acquisition and
review the underground utility data governance for land administration in some countries or regions.
In Section 3, we propose a framework to resolve the above issues about data governance and explain
the design of a 3D underground utility data model. In Section 4, we briefly summarize a Singapore
case study covering the work process from large scale GPR-based data acquisition to 3D visualization.
We conclude with a summary and an outlook on future work.

2. Related Works

2.1. The technologies for 3D underground utility data acquisition

Information about the buried utility networks can be retrieved without any excavation
underground utility mapping using non-destructive technologies. However, this is more challenging
than above ground mapping. Established approaches for surveying (e.g., photogrammetry,
laser scanning, total station measurements or global positioning system) require clear line-of-sight
between the instrument and the points to be measured, or between these points and the satellites.
They are applicable to (parts of) utility networks while those are exposed in an open pit, e.g., during
construction. In some special cases, and with considerable effort, it may even be possible to use such
technologies inside buried utilities. However, underground utility mapping comprising detection,
location and identification of buried utilities requires approaches without excavation [4,5]. Subsurface
geophysical technologies [6,7], such as Ground Penetrating Radar or Electromagnetic Locators, can be
used for this purpose [5,8]. In addition, a gyroscope-based system [9] is available for measuring
the trajectory of certain utilities (newly laid pipelines with a suitable radius through which the
measurement system can travel). Table 1 lists the technologies used for utility mapping with a general
review of their accuracy. As positioning using a GPR requires manual processing, manufacturers
typically do not mention any type of horizontal or depth measurement accuracy. However, surveying
standards such as PAS128 [10] provide some accuracy indications for GPR. According to PAS128,
a horizontal accuracy of 250 mm or + 40% of detected depth (whichever is greater) can be achieved
when using one of Pipe and Cable Locator (PCL) and GPR, and a horizontal accuracy of 150 mm or +
15% of detected depth (whichever is greater) when using both. Additionally, PAS128 indicates that
a depth measurement accuracy of 40% of buried depth can be achieved when using one of PCL and
GPR, and 15% of buried depth when both are used. However, PAS128 does not elaborate on how these
numbers have been established. In this paper, we focus on GPR due to its popularity in underground
utility mapping [5] and on a gyroscope-based system as it is not limited by the depth of the pipeline,
by other utilities nearby or by electromagnetic disturbances [9].
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Table 1. Data capture methods for underground utility services.

Method Technology Use Case
Typical
(Primary) Data

Accuracy

Conventional
surveying

Total Station Open pit
Sparse point
trajectory

Measure distance up to 1500 m;
accuracy about 1.5 mm + 2 parts
per million.

Laser scanning
photogrammetry Open pit

Dense point
cloud

Handheld: depends on the distance
to the subject and the quality
of scan reconstruction;
Desktop: consistent accuracy within
the constrained scan volume.

Geophysical GPR Buried Radargram
Horizontal: 250 mm or +40%
of detected depth

Electromagnetic PCL Buried Set of points
3% for <3 m;
5% for 3–5 m

Gyro-based
IMU-based
system

Buried
newly laid

Dense point
trajectory

XY - 0.25%;
Z - 0.1%

Electromagnetic
RFID Marker tagging Buried

Sparse set
of points

X, Y, Z axes: ±10 cm;
max. depth: 1.5 m

2.1.1. Ground Penetrating Radar (GPR)

GPR is a widely used technology for characterizing structures in the underground. It is based on
recording the delay and power of electromagnetic (EM) signals scattered and reflected at discontinuities
of the permittivity. Such discontinuities are associated with differences in materials or differences
in material properties allowing for detecting, e.g., man-made objects, holes, and layers of different
composition or water content in the underground [11,12]. GPR is used for a variety of applications,
among them geophysical exploration, archaeology, and inspection of buried utility networks [13,14].
Depending on the type of transmitted signals, impulse radar systems and continuous wave radar
systems that are distinguished, with the former being more common [15]. The penetration depth,
i.e., the maximum depth at which discontinuities can be detected using GPR is on the order of
a few centimeters to a few tens of meters, depending on the soil characteristics, transmission power,
signal stacking time and the frequency, which typically ranges from 10 MHz to 4 GHz. Lower
frequencies require bigger antennas but facilitate higher penetration depths. Higher frequencies,
on the other hand, yield better spatial resolution and thus allow for correctly locating smaller objects
or distinguishing objects at smaller distances [13]. 3D information is obtained by moving the radar
antennas along the ground surface, recording data quasi-continuously, and subsequently analyzing
the data tomographically. Figure 4a shows two examples of GPR instruments, one being integrated
with a mobile mapping trailer, and the other one a manually pushed cart.

Although GPR measurement can be very accurate, the responses may vary according to the
measurement. A so-called B-scan (i.e., a 2D distance-depth representation of the underground) (see
Figure 4b for an example) can be very challenging and is normally done by an experienced radargram
analyst. The experience can be generated from a series of signal traces along a trajectory. B-scan
normally represented by black and white colours indicative of the different signal strengths and
polarities of the objects. These signals are analyzed for anomalous responses. If the positions of these
anomalies form a linear line, it is interpreted as a utility feature. The interpretation of B-scan is subjected
to the expertise of the radargram analyst or GPR specialist. Such interpretation experience can be
gained from a regularly used system of proper training provided by the manufacturer or consultant.
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(a) (b)

Figure 4. Examples of GPR instruments (a) and GPR data (b); the data show a radargram of
a longitudinal cross section of the top-most about 2.85 m along an asphalt paved road (bottom),
a perpendicular cross section of one lane (top right) and the top view of the scanning tracks covered by
GPR measurements (top left).

2.1.2. Gyroscope-Based Systems

Utilities with a diameter of more than about 5 cm through which a probe can travel may be
accessible to mapping with an inertial measurement unit (IMU). The IMU measures the 3-axis
acceleration and 3-axis rotation rates that can be integrated over time yielding position and orientation
changes of the unit. If the unit is mounted within a probe and the probe travels through the utility
(typically a pipe), it can record the trajectory of the probe—and thus the 3D coordinates of points along
the axis of the utility [9].

The potential benefits of such a measurement system are that (i) it can acquire the as-built
information of the suitable utilities even if they are buried at a depth exceeding the penetration depth
of GPR, (ii) the location can be geometrically more accurate than using above-ground measuring
technologies for the location of underground structures, (iii) it can acquire data irrespective of
the properties of the surrounding underground (e.g., soil composition, water content) and of
electromagnetic fields, and (iv) that the probe can be equipped with additional sensors capturing
more information than just the coordinates (e.g., diameter, the radius of curvature, corrosion). Major
disadvantages are that (i) only pipes with sufficient diameter, sufficient minimum radius or curvature
and accessibility can be measured, (ii) depending on the measurement system, the pipe needs to
be empty during the measurement i.e., the service of the utility is interrupted, (iii) the accuracy of
the 3D coordinates degrades rapidly with time such that only short parts of the utility, with known
coordinates of the start and end point, can be measured if high accuracy is needed, and (iv) additional
provisions may be required, e.g., short periods through which the probe remains stationary while
moving fast at others. Figure 5b shows an example of such a probe and a 3D map of utilities mapped
using it.

(a) (b)

Figure 5. An example of a gyroscope-based pipeline measurement system (a) and the 3D map of the
measured pipes (b).
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At present, GPR seems to be of paramount importance for mapping the underground utilities.
However, there are others’ current technology that overcomes the shortcoming of GPR available on
the market, such as laser scanning or gyro-based system. No single detection technique can detect
the entire type of utilities in every location. Hence, GPR is not the only solution for underground
utility mapping, as using more technologies increases the detection capability, coverage, efficiency
and accuracy. Irrespective of the data acquisition technologies chosen, the information extracted from
the measurements, in particular 3D locations, needs to be integrated with attributes of the respective
utilities, e.g., type and dimension, in a geospatial database to support 3D visualization, urban planning
and other applications.

2.2. The Review of Underground Utility Data Governance

Some utility data models have been developed for storage, visualization, exchange, and analysis
in the geospatial domain. Obviously, the general data model is not enough to reach all the requirements
from different users. In order to develop the 3D data model for the land administration of underground
utilities, this work reviews the underground utility data governance in land administration from
some countries and the existing data models that are related to underground utility networks and
land administration.

2.2.1. Underground Utility Data Governance for Land Administration

The rapid urbanization and increasing complexity of urban spaces worldwide present an urgent
need to provide much more and precise information for land usage. Obviously, 2D cadastral
information and visualization are not enough for current land administration. During the past
decade, a number of works have been conducted to study on the 3D cadastre from various
aspects, such as legal, organization and technique [16–18]. The Land Administration Domain
Model (LADM) [19] is an important legal framework to define and integrate concepts and
terminology of Land Administration for 3D representations. As an international standard, the LADM
provides a flexible conceptual schema from three main aspects: organizations, rights and spatial in
formations [17]. The integration of 2D and 3D information in the LADM can provide solutions for
3D cadastre. The LADM has two classes (LA_LegalSpaceutilityNetworke and ExPhysicalUtilityNetwork)
specifically describe information about the underground utility, which is not enough to define the 3D
geometric and topological characteristics and support to land administration of underground utility.

In recent years, some researchers or government agencies have begun to consider the cadastre for
underground infrastructures. To analyze the impact of 4D cadastres in the registration of underground
utilities, Döner et al. [20] compared the physical and legal registration of utilities in three countries
(Turkey, the Netherlands and Queensland, Australia). Obviously, all of them are supported by a
4D cadastral registration. Pouliot and Girard [18] provided a discussion about the integration of
underground utility networks in the land administration system. Based on the case study of Quebec,
they discussed three key questions in the following:

• Do we need to register underground objects?
• Should underground networks be registered in the Land Register, with the same specifications as

land parcels?
• Which information should be part of the registration process?

Some countries and institutions have implemented or at least conceptualized the 3D mapping of
underground utility network and their management in a related cadastral system. Until now, a few
countries have utility data with cadastral information and related legislation, includes Switzerland,
The Netherlands, Turkey, United Kingdom, Serbia, Sweden, Croatia [21,22].

In Switzerland, the Canton of Zürich started to establish a comprehensive Canton-wide
utility cadastre map based on the Cantonal Act on Geoinformation of 2011 [23], derived from the
Federal Act on Geoinformation of 2007 [24] and the Cantonal Regulation on Utility Cadastre of
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2012 [25]. The regulation sets a deadline for each municipality to deliver and maintain a digital
utility map latest until 2021. The City of Zürich has its own utility cadastre since 1999 and set up
a governance framework with the corresponding utility providers [26]. Figure 6 shows an example of
the utility map of the City of Zürich. The utility cadastre is a subset of the utility documentation of the
utility owners. The most important media are included: gas, water, sewage, district heating, power,
and telecommunications. SIA 405 [27] is a well-defined standard by the SIA (Swiss society of engineers
and architects) for the exchange and publication of utility data. The data model LKMap, part of SIA
405, was introduced to define a unified visualisation/presentation of the utility map. The data are
automatically delivered through well defined interfaces at least once a week by the utility owners to
the cadastre operator (GeoZ) (central data storage). The utility owners are surveying and using partly
3D coordinates. During the exchange of information between owners and the operator, the information
is not yet considered.

Figure 6. Utility map of City of Zürich (Source: Geomatik + Vermessung Stadt Zürich).

A number of laws related to the exchange of information on utility location exist in the
Netherlands. In 2018, the law for storage and exchange of underground utility information was
amended. To accommodate the changes introduced by that law as well as the EU INSPIRE guidelines,
the KLIC-WIN program was launched. KLIC-WIN is a program (initiated by the digging sector in
the Netherlands) that guides, develops and implements changes triggered by the introduction of both
the WIBON, which is the law on information exchange of above ground and underground networks,
and the new EU INSPIRE guidelines for utility network information retrieval. KLIC-WIN aims to
introduce some changes that are required to comply with the new WIBON law and INSPIRE guidelines:

• Representation of utility information according to a new information model,
• The ability to (optionally) centrally store utility information at Kadaster,
• The gradual change of utility data formats for delivery to end users (from raster now to vector

data in 2019 and/or beyond).

Furthermore, Serbia extends its LADM based country profile to include utility information
for utility network cadastre [28]. Based on this data model, they will develop a system to register
and maintain the ownership of the underground utility network. The United Kingdom began the
registry of underground utilities and created a national underground assets mapping platform in
2018. The register aims to show where electricity and telecom cables, and gas and water pipes are
buried and is intended to prevent both accidents and disruption to the economy. In Croatia, the utility
cadastre information contains the type, purpose, basic technical features, and location of built utility
lines, and lists the names and addresses of their managers [29]. The Croatia changed the law to
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organize the physical registration of utilities at a national level since 2016 [30]. Moreover, Canada has
developed 3D maps of underground utility networks as well [18,31]. In general, some countries have
2D visualization of utility networks on cadastral map, legal document about utility data governance,
registration of legal ownership of utility networks by law. Most of them begin to develop the 3D/4D
utility cadastre. All of the current work is just beginning and ongoing. This has been a new challenging
topic in recent years.

2.2.2. The 3D Data Model for Underground Utility Networks

The CityGML utility network Application Domain Extension (ADE) [32] focuses mainly on three
aspects: (i) the general 3D geometric of network components; (ii) the 3D topographical structure of
the entire utility network; and (iii) the functional information of different types of the network [32,33].
Based on the general concepts of the utility network, different types of utility networks can be
implemented with their specific function [32]. Moreover, the interdependence between utility network
features and city objects can be presented in 3D space [34]. Because this data model is an extension
of CityGML [35], which is the popular standard for 3D city modelling (e.g., building), it is beneficial
to integrate information of utility networks to the infrastructures to support urban planning and the
other city studies. However, it does not consider the accuracy of the data. Some works begin to extend
the existing data model to consider many more details about utility networks, such as [36], represent
geographical uncertainties of utility locations based on CityGML Utility Network ADE.

The Industry Foundation Classes (IFC) utility model [37] is an ISO standard for data exchange
of buildings in the architecture and civil engineering domain [32]. In the utility part, it describes 2D
and 3D geometries of utility elements. Meanwhile, two different ways of connection are defined to
describe the relationship between supply service components within the building, which is a logical
and physical connection. In addition, it has a comprehensive semantic definition of utility network
objects. However, this standard only focuses on the building level and lacks spatial information.

The INSPIRE Data Specification on Utility and Government Services—Technical Guidelines [38]
organize the basic information of utility networks and administrative services of utility networks
in a city or country range. It is a part of INSPIRE, which is a standard of the European Union to
describe the spatial information of infrastructures. However, the INSPIRE Utility networks are lacking
a definition of 3D geometric information of utility networks.

ESRI Utility Network model [39] provides a GIS-based utility solution to represent the basic logical
and physical structure of all types of utility networks, which is composed of edges and junctions.
This model is a general utility data model to represent the 2D geometric information and connections
of the utility networks.

Until now, there has not been an international standard that has been widely used for 3D modelling
of underground utility [40]. Although some existing standardized data models have been developed
to integrate multi-utility networks, they can not guarantee the information to be reliable [3]. In order to
develop a comprehensive utility database, we have the challenge to integrate different types of utility
datasets from multiple surveying techniques, as well as the existing 2D data. Table 2 compares four
popular utility data models relevant to the objectives of this work. Obviously, most of the existing
utility data models are to focus on the 3D representation, and include 3D geometric and topological
information. The existing data models provide a good reference to describe the geometric and spatial
information of utility networks in 3D. Nevertheless, none of them considers the accuracy of data
of underground utility networks. On the one side, the survey technique directly impacts the data
accuracy. However, industry service providers are not usually aware of these extensive standards [3].
On the other side, different applications might use data at different levels of accuracy. Hence, we need
an ideally 3D utility data model to support mapping procedures and control accuracy of underground
utility network data.
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Table 2. Comparison of model characteristics.

CityGML Utility
Network ADE

ArcGIS Utility
Networks

INSPIRE Utility
Networks

IFC

3D representation modelling
-3D geometries + - - ++
-Topological aspects ++ ++ ++ ++
-Hierarchical modelling ++ . ++ +
Land Administration - - - -
Data quality management - - - -

-: no support, .: basic support, +: sophisticated support, ++: comprehensive support.

On the basis of their discussion and the situation of Singapore, it is necessary to register the
utility segments as the legal objects in the land administration system, which helps to identify the
ownership of underground utility. An integral approach needs to be developed based on legislative
and technology solutions. It is essential to establish a degree of reliability and consistency between
data produced by different service providers. It is essential to standardize the practices regarding the
use of those techniques and various information management. In the underground utility data model,
land parcel, as an important role in the land administration, should be connected to the underground
utility networks [18,21].

3. Design of the 3D Data Model for Underground Utility Networks

3.1. A Framework for Utility Data Governance

From data capture to usage, the whole work process includes several participants in different
stages. Hence, in order to improve the communication between different organizations at each phase,
our previous work [3] proposed a framework for underground utility data governance. After observing
the current work process in Singapore, this framework has been improved to organize the entire work
process (Figure 7). This framework consists of five roles that are listed in the following:

• The data producer is the surveying constructor and/or surveyor in the data regulatory bodies’
organization. In the utility survey phase, the data producer captures data in the field work and
submits data to the utility network database.

• The data owner manages their collected data. This role could be companies or data
regulatory bodies.

• Data regulatory bodies are government agencies, such as SLA or Public Utilities Board (PUB) of
Singapore. They manage their utility data based on their utility network data model. The data
regulatory bodies should provide clear permission for data integrator to use and the predefined
subset of utility data.

• The data integrator integrates all kinds of utility network data and manages the utility cadastre
information in a city or country. In the phase of utility cadastre management, the data integrator
should provide the required information for the application to users. This role builds a bridge
between the data regulatory bodies and users.

• Data users can use utility data for utility cadastre management applications.
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Figure 7. The framework of underground utility network data governance.

In this work process, the surveyor as data producer captures data during the field work. After that,
the data will be submitted to data owner (e.g., PUB) who needs to manage their own utility networks
data. According to the requirements of government, the utility data will be submitted to data regulatory
bodies (e.g., PUB and SLA). There are two options for data submission. A general utility network data
model will be designed as a standard to manage underground utility data for data regulatory bodies.
If the data regulatory body does not have any utility data model, they can use this standard data model.
If they have their utility data model, they can continue to use it or change to use the standard one.
A consolidated 3D utility data model will be designed to support utility cadastre management. The data
integrator (e.g., SLA) needs to integrate data of different kinds of utility networks. The LADM plays as
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a connection component to build a relationship between the general utility network data model and
utility cadastre data model in the utility cadastre management. Meanwhile, the LADM will connect
the underground utility network to the land administration of above ground. Finally, the underground
utility data model should support applications in land administrative management.

3.2. 3D Underground Utility Data Model for Land Administration

Current work focuses on the conceptual design of a 3D underground utility data model and
connects it to land administration. In order to understand the demands of underground utility data
users, a workshop was organized to learn the work process and needs of land administration in
Singapore. This studying includes four application domains: land acquisition and purchase, planning
and coordination, land transfer and sale, and land leasing. Currently, the existing data sources are the
hardcopy of the utility network, 2D CAD and 2D geospatial information. There is an urgent demand
of 3D geospatial information of underground utility and space to evaluate underground environment
and support reallocation, land sales and the other applications. Therefore, the 3D underground utility
data model includes three packages to organize the basic information and structure of utility networks,
utility survey information, and the land administration information (Figure 8). In order to connect the
3D underground utility data model to the information of land administration, these three packages
inherit from the Singapore cadastral data model and LADM (ISO 19152). Meanwhile, the geometric
and spatial definition are inherited from the spatial schema data model ([41]).

Figure 8. The overview of packages of the 3D underground utility data model.

The Utility Networks package describes the basic information of utility networks, which includes
geometric, spatial and physical information. Based on the partonomy (part–whole) relationships,
this work defines the hierarchy of utility networks in three levels (Figure 9). The macro-level is the
whole utility networks, which is described by the UtilityNetwork class with the basic information
of utility networks, such as the type, and material of utility networks. The meso-level is the
surface of the utility networks, which is the part of the utility networks. The surface could be the
tunnel, duck, manhole and the other types of space in the utility networks. Hence, the aims of
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UtilityNetworkSurface class are to describe the types and 3D geometric information (e.g., diameter) of
surface. The micro-level is the basic elements of utility networks, which includes nodes and segments
of utilities. The node is a connection point in the network, which is defined by the UtilityNetworkNode
class. The segment is the line segment of the utility, which is defined by the UtilityNetworkSegment
class. The relationship between micro and meso level helps to transform 2D to 3D data as well.
Figure 10 shows the relationships of different classes in the Utility Network package and basic attributes
of each class. The values of utility networks type inherit from LA_LegalSpaceUtilityNetwork in the
LADM (ISO 19152) [19].

The LA_UtilityNetworks class aims to describe the land administration information of utilities.
On one side, it connects to the utility network surface in order to identify the land administration
information of different parts of utility networks. On the other side, it connects to the cadastral parcel
from the Singapore cadastral data model and LADM [19]. The spatial relationship is used to describe
the relationship of cadastral parcels and utilities, which includes contain, cross and touch. This class
could support ownership management of utilities and land administration management.

The Utility Survey class aims to organize utility survey information. It could help to manage
survey status and accuracy of data. The Utility Survey class inherits attributes of the survey from the
Singapore cadastral data model. Furthermore, the ground conditions and survey methods are related
to the accuracy of data directly. Hence, the Utility Survey class integrates information from Standard
and Specification for Utility Survey in Singapore [42]. Meanwhile, the Utility Survey class builds
the connection between utility networks and LA_Point, LA_BoundaryFace and LA_SpatialSource in the
Surveying and Representation package. The Evaluate attribute describes the method to check the accuracy
of surveying data. If the accuracy of the data is unknown, the value of Evaluate is null. In future work,
the accuracy level should be defined to be based on the depth level, soil condition and survey method.

Figure 9. Multilevel structure of utility networks.
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Figure 10. The classes diagram of utility networks.

4. Case Study

This initial study aims to integrate of GPR data and the existing underground utility data and
land cadastral data in the form of the geospatial database. It aims to find a reasonable work process
to bridge the gap between data capture and application. Moreover, this implementation can help to
improve the design of a 3D data model for underground utility.

4.1. Study Area and Datasets

This initial study was conducted at around Lorong 2, 3 and 4 at Toa Payoh, which is located in
the northern part of Singapore. This is one of the pilot study sites in our project to deploy a mobile
mapping platform, namely Pegasus: Stream (https://idsgeoradar.com/products/ground-penetrating-
radar/pegasus-stream) combines a Stream EM GPR (IDS Georadar, part of Hexagon, Switzerland) and
Leica Pegasus Two (Leica geosystem AG, part of Hexagon, Switzerland) photo and laser scanner for
massive 3D mapping of above and underground features. The data captured by the Pegasus: Stream is
geo-referenced using an on-board GNSS receiver and IMU and a distance measurement instrument
(DMI). The Stream EM GPR contains a large number of array antennae, with dual frequencies (200 MHz
and 600 MHz). The antennae transmit and receive in two distinct polarizations (HH and VV), allowing
the reconstruction of a 3D underground utility network with a single pass of the GPR. Table 3 shows
the technical specification of the Stream EM GPR.

The scanning site is a 1.8 km long bi-directional 4-lane asphalt road in an inland area of Singapore
that has seen development since the 1960s. This study was conducted to investigate the feasibility
of GPR for large scale underground utility mapping for the purpose of improving the quality of
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existing utility map information. The data were collected at a driving speed of about 15 km/h. All of
the acquired data were post-processed and interpreted to detect and extract underground utilities
using a commercial off-the-shelf processing software along with the GPR system. At the current stage,
we do not use point cloud data of the above ground. The identified utilities were then transferred to
CAD/GIS format with x, y, z values as points and lines for 3D data modelling and visualization using
the same processing software. Figure 11 shows an example of GPR data in CAD (Figure 11a) and GIS
(Figure 11b) format.

Table 3. Technical specifications of the Stream EM GPR.

Overall weight 228 kg (500 lbs)
Max. acquisition speed 15 kph (9mph)
Positioning Survey wheel and/or GPS or Total Station
Scan Rate per Channel
(@512 samples/scan) 87 scans/sec

Scan Interval
17 scans/m @ 200 MHz
33 scans/m @ 600 MHz

Antenna Footprint Width 1.84 m
Number of Channel 38
Antenna Central

Frequencies
200 MHz (34 channels)
600 MHz (4 channels)

Antenna Spacing 6 cm
Antenna Polarization Horizontal (HH) and Vertical (VV)

(a) CAD (b) GIS

Figure 11. GPR data in CAD and GIS format.

The existing datasets from Geospace and cadastral data from Singapore Land Authority were
used as secondary data to obtain or improve the attributes of utilities that were extracted from the
radargram and to explore the relationship between the above land administration information and
underground utilities. These existing utility data are as-build data from utility services (e.g., power,
water, gas, telecommunication and sewerage) and cadastral information in 2D form. Of these datasets,
it contains only a small portion of the information that has a diameter with updated time and type.
It possesses challenges for land planning with such limited information.

4.2. 3D Visualisation

To develop the 3D utility data model for land administration, the underground utilities need to be
connected to the land parcels. Figure 12 explains the work process in this case study. The data model is
designed in UML and exported to XML format, which can be imported into ArcGIS as a geodatabase
schema. Based on the database schema, the GPR data can be loaded as utility network components
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in polyline and point. According to the information from the existing utility data and GPR data,
the utilities can be modelled in 3D (multipath). The 3D modelling is realized manually in the ArcSence
and CityEngine.

Figure 12. Implementation process.

In order to get the related land administration information, the utility networks data can be
integrated with a cadastral parcel through their spatial relationships. Because the existing cadastral
data are in 2D, the current work only considers the pipeline within the cadastral parcel in 2D. In order
to improve the accuracy of data in 3D, the current cadastral data have to be extended to 3D so as
to support more spatial relationships (e.g., cross and touch). Figure 13 shows an example of 3D
visualization of utilities with objects above ground. As shown in the figure, the selected pipeline is
highlighted in pink. The information shown in the pop window includes spatial data from GPR and
other attributes about the underground utility survey and land cadastral information above ground.

Figure 13. A result example of 3D visualization with land administration information.

143



Remote Sens. 2019, 11, 1957

4.3. Discussion

This is a simple implementation to explore the work process of 3D modelling of underground
utility from the GPR data and existing 2D data. Because GPR cannot capture the diameters, material
and some attributes of utilities, it is necessary to extract these information from the GeoSpace database
for 3D modelling. Depending on the spatial relationship (e.g., overlap, within) of the GPR data and
existing utility data, some of the utilities from GPR data can be connected to the existing utility data.
Because of two main limitations, there is a big challenge to improve the accuracy of data during the
manual integration of the GPR and existing data. First, the existing utility data are as-build data which
may not be reliable enough for updating work. Second, the existing utility data are in 2D data, which is
difficult to identify utilities accurately. Hence, the future work needs to find the solution to detect much
more attributes of utilities from GPR data. In addition, the tentative integration of underground utility
and land cadastral data helps to improve the development of the data model for land administration.

5. Conclusions

This paper proposes to develop a consolidated 3D data model of underground utilities for land
administration. The work includes two parts. On the one hand, a framework for data governance is
designed to organize the workflow of utility data survey, management and application through five
roles. Through the understanding of current workflow in the utility data usage, this work needs to
clearly define the operations and rights of each role in the work process of 3D underground utility
mapping. On the other hand, a 3D data model of underground utilities is designed with 3D spatial
information, i.e., utility survey information, and land administration information of underground
utilities. In order to fill the gap between data capture and usage, this data model has the following
main tasks:

• Integrating utility networks data from varying non-destructive surveying technologies. Moreover,
it proposes an idea to manage the data accuracy based on the parameters, ground condition and
other information during the field survey. This is a first step towards bridging the gap between
data acquisition and data management for 3D underground utility mapping.

• Integrating the existing data and GPR data. As mentioned earlier, GPR data cannot get the
diameters and types of utilities. This way helps to improve the attributes of utilities from GPR
data. Moreover, it is also a process to transform utility data from 2D to 3D.

• In the data integration, the key step is to connect the utility network data model with the LADM for
3D cadastral management of underground utility in Singapore. It is useful to support ownership
management applications and build the relationship between utilities and land parcels. Such
a reliable and consolidated centralized repository of underground utility data will provide a crucial
basis for land administration of underground infrastructures.

A case study is implemented based on the GPR data from the large scale mobile underground
utility mapping. The initial implementation transform GPR data from CAD to GIS format and 3D
visualization of utilities based on the 3D utility data model. In order to get land administration
information, the utility networks have been connecting to the cadastral parcel. The accuracy and
details of utility networks need to be improved in future work, such as the spatial relationship
between utilities and cadastral parcels. To fully support the land administration of underground space,
the 3D utility data model should eventually be extended to include other underground objects and
infrastructures in the future, such as underground substations, pedestrian links, common services
tunnels, road and rail networks, etc.

This is an ongoing work and in the initial stage. Two main aspects of limitations need to be
improved in future work. First, for the accuracy of utility data. Obviously, the GPR data are not enough
to provide comprehensive 3D underground utility networks. The other kinds of data (e.g., Gyroscope)
should be integrated to provide more precise attributes for underground utilities. Moreover, the details
of the shapes and structures of utilities need to be improved. Second, the next step of the data
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model development will improve the definition of land administration for underground utilities.
Additionally, in order to develop a comprehensive underground utility database, it is necessary to
explore the methods to use the existing data and integrate it with newly collected data. The 3D
data model should be extended to be 4D (3D + time) to support data updating. A showcase will be
developed to realize land administration of underground utility based on a 3D underground utility
data model. This will work with a selected agency as data regulatory body and the preferred data
integrator. They will help us to evaluate and improve the framework and definition of the data model.
After that, recommendations from this showcase will be used to extend the data model include other
underground infrastructures and develop the platform of underground space management to support
various applications in Singapore.
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Abstract: There is a growing demand for cheap and fast cadastral mapping methods to face
the challenge of 70% global unregistered land rights. As traditional on-site field surveying is
time-consuming and labor intensive, imagery-based cadastral mapping has in recent years been
advocated by fit-for-purpose (FFP) land administration. However, owing to the semantic gap between
the high-level cadastral boundary concept and low-level visual cues in the imagery, improving the
accuracy of automatic boundary delineation remains a major challenge. In this research, we use
imageries acquired by Unmanned Aerial Vehicles (UAV) to explore the potential of deep Fully
Convolutional Networks (FCNs) for cadastral boundary detection in urban and semi-urban areas.
We test the performance of FCNs against other state-of-the-art techniques, including Multi-Resolution
Segmentation (MRS) and Globalized Probability of Boundary (gPb) in two case study sites in Rwanda.
Experimental results show that FCNs outperformed MRS and gPb in both study areas and achieved
an average accuracy of 0.79 in precision, 0.37 in recall and 0.50 in F-score. In conclusion, FCNs
are able to effectively extract cadastral boundaries, especially when a large proportion of cadastral
boundaries are visible. This automated method could minimize manual digitization and reduce field
work, thus facilitating the current cadastral mapping and updating practices.

Keywords: deep learning; fully convolutional networks; cadaster boundaries; contour detection;
unmanned aerial vehicles

1. Introduction

Cadasters, which record the physical location and ownership of the real properties, are the basis
of land administration systems [1]. Nowadays, cadastral mapping has received considerable critical
attention. An effective cadastral system formalizes private property rights, which is very important to
promote agricultural productivity, secure effective land market, reduce poverty and support national
development in the broadest sense [2]. However, it is estimated that over 70% of the world population
does not have access to a formal cadastral system [3]. Traditional field surveying approaches to record
land parcels are often claimed to be time-consuming, costly and labor intensive. Therefore, there is a
clear need for innovative tools to speed up this process.

Since the availability of very high resolution (VHR) satellite or aerial images, remote sensing
has been used for mapping cadastral boundaries instead of field surveying, and is advocated by
fit-for-purpose (FFP) land administration [4]. In practice, cadastral boundaries are often marked
by physical objects, such as roads, building walls, fences, water drainages, ditches, rivers, clusters
of stones, strips of uncultivated land, etc. [1]. Such boundaries are visible in remotely sensed
images and bear the potential to be automatically extracted through image analysis algorithms,
hence avoiding huge fieldwork surveying tasks. According to FFP, boundaries measured through
on-site cadastral surveys using total station or the Global Navigation Satellite System (GNSS) with a
precise location are considered as fixed, while boundaries delineated from high-resolution imagery are

Remote Sens. 2019, 11, 1725; doi:10.3390/rs11141725 www.mdpi.com/journal/remotesensing149



Remote Sens. 2019, 11, 1725

called general [4]. Although less spatially precise, general boundary approaches are much cheaper and
faster than conventional cadastral surveys. Typically, high-resolution satellite images (HRSI) have
been used for interpreting cadastral boundaries, but there are still obstacles such as high cost, cloudy
or dated imagery [5]. Therefore, Unmanned Aerial Vehicles (UAV), renowned for low-cost and high
spatial–temporal resolution, as well as being able to fly under clouds, are chosen as the data source for
cadastral boundary extraction in this research.

The detection of cadastral boundaries from remotely sensed images is a difficult task. Above
all, only visible cadastral boundaries coinciding with physical objects are detectable in the image.
Moreover, as visible cadastral boundaries can be marked by different objects, spectral information
alone is insufficient for the detection. In other words, there exists a sematic gap between the high-level
boundary concept and low-level visual cues in the image. More reliable and informative features
should be constructed to bridge the semantic gap, thus more advanced feature extraction techniques
are needed.

State-of-the-art methods are mostly based on image segmentation and edge detection [6].
Segmentation refers to partitioning images into disjoint regions, inside which the pixels are similar to
each other with regard to spectral characteristics [7]. Researchers claimed that segmentation-based
approaches have two general drawbacks: Sensitive to intra-parcel variability and dependent on
parameter selection. The latter often requires prior knowledge or trial and error [8]. Multi-Resolution
Segmentation (MRS) is one of the most popular segmentation algorithms [9]. Classical edge detection
aims to detect sharp changes in image brightness through local measurements, including first-order
(e.g., Prewitt or Sobel) and second-order (e.g., Laplacian or Gaussian) derivative-based detection [10].
Derivative-based edge detection is simple but noise sensitive. Amongst others, the Canny detector
is justified by many researchers as a predominant one, for its better performance and capacity to
reduce noise [6]. More recently, learning-based edge detection stands out as remarkable progress,
which combines multiple low-level image cues into statistical learning algorithms for edge response
prediction [10]. Globalized Probability of Boundary (gPb) is considered as one of the state-of-the-art
methods. It involves brightness, color and texture cues into a globalization framework using spectral
clustering [11]. Both MRS and gPb are unsupervised techniques, hence the high-level cadastral
boundary is still hard to distinguish from all the detected edges.

Recent studies indicate that deep learning methods such as Convolutional Neural Networks
(CNNs) are highly effective for the extraction of higher-level representations needed for detection or
classification from raw input [12], which brings in new opportunities in cadastral boundary detection.
Traditional CNNs are usually made up of two main components, namely convolutional layers for
extracting spatial-contextual features and fully connected feedforward networks for learning the
classification rule [13]. CNNs follow a supervised learning algorithm. Large amounts of labeled
examples are needed to train the network to minimize the cost function which measures the error
between the output scores and the desired scores [14]. Fully Convolutional Networks (FCNs) are a
more recent deep learning method. In an FCN architecture, the fully connected layers of traditional
CNNs are replaced by transposed convolutions. This is the reason why these networks are called
fully convolutional. As compared to CNNs, FCNs are able to perform pixel-wise predictions and
accept arbitrary-sized input, thus largely reducing computational cost and processing time [15].
The superiority of FCNs in feature learning and computational efficiency makes them promising for
the detection of visible cadastral boundaries, which provides the predominant motivation of this
research. To the best of the authors’ knowledge, this is the first study investigating FCNs for cadastral
boundary extraction.

In the remainder of this article, we apply deep FCNs for cadastral boundary detection based
on UAV images acquired over one urban and one semi-urban area in Rwanda. We compare the
results of FCNs with two other state-of-the-art image segmentation and edge detection techniques,
namely MRS and gPb [9,11]. The performance of these methods is evaluated using the precision-recall
framework. Specifically, to provide better insights into the detection results, we provide a separate
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accuracy assessment for visible and invisible cadastral boundaries, and an overall accuracy assessment
for all cadastral boundaries.

2. Study Area

For the purpose of the study two sites within the Musanze district, Amajyaruguru Province
of Rwanda, representing an urban and sub-urban setting, respectively, were selected as case-study
locations. The selection is based on the availability of UAV images and the morphology of cadastral
boundaries. The urban site is located in the Muhoza sector and the sub-urban site is in the Busogo
sector. Figure 1 gives an overall view of the study area.

 
Figure 1. Study areas. Two case study sites in Rwanda were selected, namely Busogo and Muhoza,
representing a sub-urban and urban setting, respectively.

In 1962, land ownership in Rwanda had changed from customary law to a system of state
ownership. In 2005, a new policy was accepted called Organic Land Law (OLL) with the aim to
improve land tenure security. Rwanda is one of the countries which first tested the FFP approach.
Since 2008, the country has been fully covered by aerial images acquired and processed by a Dutch
company [16]. Even compromising with accuracy, Rwanda generated its national cadastral map based
on these aerial images using a participatory mapping approach. However, due to the continuously
changing environment, the data is currently outdated. New technologies supporting cheap, efficient
and fit-for-purpose accurate cadastral mapping will largely facilitate the data updating practices in
Rwanda. Therefore, the selection of the study area has been led by the impending local demand for
data update.
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3. Materials and Methods

The workflow of this research includes three major parts, namely data preparation, boundary
detection and accuracy evaluation. In the first part, we selected three training tiles and one testing
tile from each study area and prepared the RGB layer and boundary reference for each tile. In the
second part, we applied FCNs, MRS and gPb for cadastral boundary detection and validated their
performance based on the testing tiles. For the last part, we employed precision-recall measures for
accuracy assessment, with a 0.4 m tolerance from reference data.

3.1. Data Preparation

The UAV images used in this research were acquired for the its4land (https://its4land.com/) project
in Rwanda in 2018. All data collection flights were carried out by Charis UAS Ltd. The drone used for
data collection in Busogo was a DJI Inspire 2, equipped with Zenmuse X5S sensor. The drone used in
Muhoza was a FireFLY6 from BIRDSEYEVIEW, with a SONY A6000 sensor. Both sensors acquire three
bands (RGB) and capture nadir images. The flight height above the ground for Busogo was 100 m and
for Muhoza 90 m. The final Ground Sampling Distance (GSD) was 2.18 cm in Busogo and 2.15 cm in
Muhoza. For more detailed information about flight planning and image acquisition refer to [17].

In this research, the spatial resolution of the UAV images was resampled from 0.02 m to 0.1 m
considering the balance between accuracy and computational time. Four tiles of 2000 × 2000 pixels
were selected from each study site for the experimental analysis. Among them, three tiles were used
for training and one for testing the algorithm. The training and testing tiles in Busogo are named TR1,
TR2, TR3 and TS1, and those in Muhoza are named TR4, TR5, TR6 and TS2 (Figure 2).

 

Figure 2. The Unmanned Aerial Vehicle (UAV) images and boundary reference for selected tiles.
TR1, TR2, TR3 and TS1 are selected tiles from Busogo; TR4, TR5, TR6 and TS2 are selected tiles from
Muhoza. For each area, the former three were used for training and the last one was used for testing the
algorithms. The boundary references in TR1~TR6 are the yellow lines. In TS1 and TS2, we separated
the boundary references as visible (green lines) and invisible (red lines).

For each tile, RGB images and the boundary reference were prepared as input for the classification
task. The reference data was acquired by merging the 2008 national cadaster and Rwandan experts’
digitization. The 2008 national cadaster is currently outdated, hence the experts’ digitization is provided
as supplements. This acquired reference was presented as polygons in a shapefile format showing the
land parcels. However, to feed the FCN, the boundary reference has to be in a raster format with the
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same spatial resolution as RGB images. Therefore, we first converted the polygons into borderlines
and then rasterized the boundary lines with a spatial resolution of 0.1 m. Figure 2 visualizes the
RGB images and boundary reference for the selected tiles in Busogo and Muhoza. To have a better
understanding of the detection results on the testing tiles, we separated the boundary reference as
visible and invisible in TS1 and TS2, which are marked as green and red in the above maps, respectively.
We extracted visible cadastral boundaries by following clearly visible features, including strips of
stones, fences, edge of the rooftop, road ridges, change in textural pattern and water drainage. Table 1
shows the rules that we followed for extracting visible boundaries in an extraction guide. The rest are
considered invisible cadastral boundaries.

Table 1. Extraction guide for visible cadastral boundaries.

Object class Visible Cadastral Boundary

Input data 0.1 m × 0.1 m UAV image

Reference frame

Coordinate System: WGS 1984 UTM zone 35S
Projection: Transverse Mercator
False Easting: 500,000
False Northing: 10,000,000
Central Meridian: 27
Scale factor: 0.9996
Latitude of origin: 0.000
Units: Meter

Definition
A visible cadastral boundary is a line of geographical features representing limits of an entity
considered to be a single area under homogeneous real property rights and unique ownership.

Identifying visible
cadastral boundaries

(a) 

(b) 

(c) 

(d) 

(e) 

(f)

(a) Strip of stone
(b) Water drainage
(c) Road ridges
(d) Fences(e) Textural pattern
transition
(f) Edge of rooftop

Extraction

• Hypothesize and digitize cadastral boundary by applying expert and
contextual knowledge

• Digitize the middle of the line features
• Use line features for digitization

3.2. Boundary Detection

3.2.1. Fully Convolutional Networks

We address boundary detection as a supervised pixel-wise image classification problem to
discriminate between boundary and non-boundary pixels. The network used in this research is
modified from the FCN with dilated kernel (FCN-DK) as described in [18]. We mainly did three
modifications: (1) discarding the max-pooling layers; (2) using smaller-size filters; and (3) constructing
deeper networks. A typical max-pooling layer computes the local maximum within the pooling filter,
thereby merging the information of nearby pixels and reducing the dimension of the feature map [14].
In most cases, down-sampling is performed using pooling layers to capture large spatial patterns in the
image, and then the coarse feature maps extracted through this process are up-sampled back to produce
pixel-wise prediction at the resolution of the input image. However, in the structure of FCN-DK,
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max-pooling layers are designed not to down-sample the input feature map by using a stride of one,
therefore avoiding the need for up-sampling in the later stage. Nevertheless, the max-pooling results
in a smoothing effect which is reducing the accuracy of boundaries. We therefore discarded it in the
proposed network. In [18], Persello and Stein also demonstrated a case study based on FCN-DK using
six convolutional layers with a filter size of 5 × 5 pixels. We modified it into 12 convolutional layers
with 3 × 3 filters, as two 3 × 3 filters have the same receptive field as one 5 × 5 filter but less learnable
parameters. Moreover, compared to single larger-sized filters, multiple small filters are interleaved by
activation functions, resulting in better abstraction ability. Therefore, with less learnable parameters
and better feature abstraction ability, smaller filters along with deeper networks are preferred.

Figure 3 shows the architecture of the proposed FCN. It consists of 12 convolutional layers
interleaved by batch normalization and Leaky Rectified Linear Units (Leaky ReLU). Batch normalization
layer is used to normalize each input mini-batch [19], and Leaky ReLU is the activation function of the
network [20]. The classification is performed by the final SoftMax layer.

The core components of our network are the convolutional layers. They can extract spatial features
hierarchically at different layers corresponding to different levels of abstraction. The 3 × 3 kernels
used in the convolutional layers are dilated increasingly from 1 to 12 to capture larger contextual
information. As a result, a receptive field of up to 157 × 157 pixels was achieved in the final layer.
In each convolutional layer, zero paddings were used to keep the output feature maps at the same
spatial dimension as the input. Therefore, the proposed FCN can be used to classify arbitrarily sized
images directly and obtain correspondingly sized outputs.

Figure 3. Architecture of the proposed FCN.

To train the FCN, we randomly extracted 500 patches for training and 500 patches for validation
from each training tile. All the patches were fully labeled with a patch size of 145× 145 pixels. Stochastic
gradient descent with a momentum of 0.9 was used to optimize the loss function. The training is
performed in multiple stages using a different learning rate. We use a learning rate of 10−5 for the first
180 epochs and a learning rate of 10−6 for another 20 epochs. A sudden decrease can be observed in the
learning curves when the learning rate changes (Figure 4). The implementation of the network is based
on the MatConvNet (http://www.vlfeat.org/matconvnet/) library. All experiments were performed
on a desktop workstation with an Intel Core CPU i7-8750H at 2.2 GHz, 16 GB of RAM, and a Nvidia
Quadro P1000 GPU. The training time for the FCN was 6 h for each study area.

3.2.2. Globalized Probability of Boundary (gPb)

Globalized Probability of Boundary (gPb) was proposed by Arbeláez et al. in 2011 [11]. gPb (global
Pb) is a linear combination of mPb (multiscale Pb) and sPb (spectral Pb). The former conveys local
multiscale Pb signals and the latter introduces global information. Multiscale Pb is an extension of the
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Pb detector advanced by Martin, Fowlkes and Malik [21]. The core block of Pb detector is calculating the
oriented gradient signal (x,y,θ) from the intensity images. By placing a circular disc at the pixel location
(x,) and dividing it into two half-discs at angle θ, we can obtain two histograms of pixel intensity values
within each half-disc. (x,y,θ) is defined by the χ2 distance between the two histograms. For each input
image, the Pb detector divides it into four intensity images, including brightness, color a, color b and
texture channel. The oriented gradient signals are calculated separately for each channel. Multiscale
Pb modifies the Pb detector by considering the gradients at three different scales, which means we give
the discs three different diameters. Therefore, we can obtain local cues at different scales, from fine to
coarse structures. For each pixel, the final mPb is obtained by combining the gradients of brightness,
color a, color b and texture channel on three scales. Spectral Pb combines the multiscale image cues
into an affinity matrix which defines the similarity between pixels. The eigenvectors of the affinity
matrix which carry contour information are computed. They are treated as an image and convolved
with Gaussian directional derivative filters. The sPb is calculated by combing the information from
different eigenvectors.

Generally speaking, mPb detects all the edges while sPb extracts only the most salient one from
the whole image. gPb combines the two and provides uniformly better performance. After detecting
the boundary probability of each pixel using gPb, we also applied a grouping algorithm using the
Oriented Watershed Transform and Ultrametric Contour Map (gPb–owt–ucm) to extract connected
contours [11].

 
Figure 4. Learning curves of the FCNs in Busogo (left) and Muhoza (right).

3.2.3. Multi-Resolution Segmentation (MRS)

We conducted MRS in eCognition software (version 9.4). MRS is a region-merging technique
starting from each pixel forming one image object or region [22,23]. The merging criteria is local
homogeneity, which describes the similarity between adjacent image objects. The merging procedure
stops when all the possible merges exceed the homogeneity criteria.

MRS relies on several parameters, which are image layer weights, scale parameter (SP), shape and
compactness. Image layer weights define the importance of each image layer to the segmentation
process. In this research, we had three layers (RGB) in the input image. We gave them equal weights.
Scale parameter is the most important parameter, which controls the average image object size [9].
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A larger scale parameter allows higher spectral heterogeneity within the image objects, hence allowing
more pixels within one object. Defining the proper SP is critical for MRS. In our research, we selected
the SP resorting to the automatic Estimation of Scale Parameters 2 (ESP2) tool, which was advanced
in [9]. Shape parameter ranges from 0 to 1. It indicates a weighting between the object’s shape and its
spectral color. A high value in shape parameter means less importance is put on spectral information.
We set a shape parameter of 0.3 in our research. Compactness defines how compact the segmented
objects are. The higher the value, the more compact the image objects may be. It was set to 0.5 in
this research.

3.3. Accuracy Assessment

The results in this research were evaluated considering the detection accuracy on the testing tiles.
While validating the predicted results with reference data, a certain tolerance is often used in cadastral
mapping. According to the International Association of Assessing Officers (IAAO), the horizontal
spatial accuracy for cadastral maps in urban environments is usually 0.3 m or less, and in rural areas
an accuracy of 2.4 m is sufficient [24]. Besides, FFP approaches advocates the flexibility in terms of
accuracy to best accommodate social needs [3]. Complying with FFP land administration, we chose
a 0.4 m tolerance for urban and peri-urban environments in this research. When adopted for other
applications, this number can be adjusted correspondingly and according to the demands.

The accuracy assessment resorted to precision-recall measures, which are a standard evaluation
technique especially for boundary detection in computer vision fields [21]. Precision (P), also called
correctness, measures the ratio of correctly detected boundary pixels to the total detected boundary
pixels. Recall (R), also called completeness, indicates the percentage of correctly detected boundaries
to the total boundaries in the reference. The F measure (F) represents the harmonic mean between
precision and recall [25]. As F combines both precision and recall, it can be regarded as an overall
quality measure. The range of these three measures is between 0 and 1. Larger values represent
higher accuracy.

Specifically, the accuracy assessment was done by overlapping the detected boundary with
buffered reference data (0.4 m buffer). With the following table and formulas, we indicated how to
calculate precision, recall and the F-score. Pixels labelled as boundary class in both detection and
the buffered reference are called True Positive (TP), while pixels labelled as boundary in detection
but non-boundary in the buffered reference are called False Positive (FP). The term False Negative
(FN) and True Negative (TN) are defined similarly (Table 2). By overlaying the detection result with
the buffered reference, we can obtain the value of TP, FP, TN and FN, respectively. TP stands for the
number of correctly detected boundary pixels, and the sum of TP and FP indicates the number of total
detected boundary pixels. Hence, we can calculate the value of precision through Formula 1. However,
the sum of TP and FN stands for the number of total boundaries in the buffered reference, rather than
the original reference. Therefore, we need to divide the sum of TP and FN by 8, which is the width of
the buffered reference, to get the number of total boundaries in the original reference. This is because
the buffered reference has a uniform width of 8 pixels, while the original reference is only single-pixel
wide. Equations (2) and (3) show how to calculate recall and the F-score.

Table 2. Confusion matrix for binary classification.

Positive Prediction Negative Prediction

Positive Class True Positive (TP) False Negative (FN)
Negative Class False Positive (FP) True Negative (TN)

In order to know the capability of different methods in detecting visible and invisible cadastral
boundaries, we calculated the classification accuracy for the visible cadastral boundary, invisible
cadastral boundary and all cadastral boundaries, separately. By overlapping the detected boundary
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with the buffered reference of only visible, invisible or all cadastral boundaries, we obtain three sets of
accuracy assessment results for each algorithm on every testing tile.

P = TP/(TP + FP), (1)

R = 8 · TP/(TP + FN), (2)

F = 2 · P ·R/(P + R). (3)

4. Results

The proposed method along with the competing methods were implemented on both study
sites, Busogo and Muhoza, to test their generalization ability. The results are evaluated considering
the classification accuracy on the testing tiles using the precision-recall framework. The visual and
numerical results of the testing tiles are demonstrated in the following table and figures.

Table 3 presents the separate accuracy for visible and invisible boundaries, as well as the overall
accuracy for all cadastral boundaries of each algorithm on TS1 and TS2. Taking the classification
accuracy of FCN on visible cadastral boundaries in TS1 as an example, FCN achieves 0.75 in precision,
which means the ratio of truly detected visible boundaries to the total detected boundaries is 75%.
The value of recall is 0.65, indicating 65% of visible cadastral boundaries among all the visible
boundaries in the reference are detected. The final F-score of FCN is 0.70, which can be regarded as an
overall measure of quality performance. Other results from Table 3 could be interpreted in the same
way. Interestingly, according to the mathematical implications of precision, the sum of the P value on
visible and invisible boundaries should be equal to the P value on all cadastral boundaries. We can
easily verify this through the six sets of data in Table 3, with a small tolerance of ±0.03.

Table 3. Classification accuracies of the Fully Convolutional Network (FCN), Globalized
Probability of Boundary–Oriented Watershed Transform–Ultrametric Contour Map (gPb–owt–ucm)
and Multi-Resolution Segmentation (MRS) on TS1 and TS2. Three kinds of accuracies are calculated by
comparing the detected boundary to the reference of visible, invisible and all cadastral boundaries.

Algorithm Reference
TS1 TS2

P R F P R F

FCN

visible 0.75 0.65 0.70 0.74 0.45 0.56
invisible 0.06 0.07 0.06 0.06 0.09 0.07

all 0.78 0.39 0.52 0.79 0.35 0.48

gPb-owt-ucm
visible 0.21 0.87 0.34 0.23 0.93 0.37

invisible 0.03 0.19 0.06 0.04 0.39 0.07
all 0.24 0.57 0.33 0.26 0.78 0.39

MRS

visible 0.19 0.82 0.31 0.18 0.90 0.30
invisible 0.05 0.27 0.08 0.04 0.56 0.08

all 0.23 0.57 0.33 0.22 0.80 0.35

According to Table 3, FCN achieves an F-score of 0.70 on visible boundaries and 0.06 on invisible
boundaries in TS1. The score of the former is much higher than the latter. A similar situation can
also be witnessed in TS2, which indicates that FCN detects mainly visible cadastral boundaries.
The F-score of FCN on all boundaries in TS1 is 0.52, larger than that in TS2 (0.48). We can interpret this
result considering the proportion of visible cadastral boundaries (The proportion of visible cadastral
boundaries in each tile are calculated by computing the ratio of the total length of visible cadastral
boundaries to that of all cadastral boundaries) in each tile, which is 57% in TS1 and 72% in TS2.
Surprisingly, with more visible cadastral boundaries, TS2 get poorer detection results. According to the
R value of visible boundaries, 65% of visible cadastral boundaries are detected in TS1 and the number
is only 45% in TS2. It means that although TS2 has more visible cadastral boundaries, less of them
are detected. The main difference in detection ability of the FCN in TS1 and TS2 can be understood
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by considering the various types of visible cadastral boundaries. TS1 is located in a sub-urban area,
with fences and strips of stones being the most predominant visible boundaries, whereas TS2 is in an
urban area, where building walls and fences play the leading role. The better performance of FCN
in TS1 indicates that FCN is good in detecting visible boundaries like fences and strips of stones,
while cadastral boundaries that coincide with building walls are more difficult for FCN to recognize.
Based on the above analysis we can conclude that FCN detects mainly visible cadastral boundaries,
especially those demarcated by fences or strips of stones.

Comparing FCN to gPb–owt–ucm and MRS, the most salient finding is that under the same
situation, like the detection accuracy for visible boundary in TS1 or all boundaries in TS2, the P value
of FCN is always larger than that of gPb–owt–ucm and MRS, while the R value of FCN is always
smaller. FCN always achieves the highest F-score. These results show that gPb–owt–ucm and MRS
can detect large proportion of cadastral boundaries, but also many false boundaries. FCN has a very
high precision rate, leading to the best overall performance.

Figure 5 shows the visible and invisible boundary references and the detected results of the
investigated algorithms. According to Figure 5, the missing boundary fragments in the FCN
classification output are mainly invisible boundaries. Besides, FCN has a more regular and cleaner
output than gPb–owt–ucm and MRS. Although the outlines of buildings and trees correspond to strong
edges, they are not confused by FCN with cadastral boundaries.

 

Figure 5. Reference and classification maps obtained by the investigated techniques. The visible
boundary references are the green lines; the invisible are the red lines; and the detected boundaries are
the yellow lines.

Figure 6 presents the error map of the detection results. By overlapping the detection map with
the boundary reference, the correctly detected boundaries are marked as yellow; the false detection rea
marked as red; and the missing boundaries are marked as green. Figure 6 supplies a better intuition of
the detection results. Fewer red lines can be observed in the FCN output as compared to the other two
algorithms, once again proving that FCN has higher precision.

The difference in computational cost between these methods is also worth highlighting.
As mentioned earlier, it takes 6 h to train the FCN. However, once trained well, one tile is classified in
1 min with the proposed FCN, whereas it takes 38 min for MRS and 1.5 h for gPb–owt–ucm, respectively.
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Figure 6. The error map of the investigated techniques. Yellow lines are TP; red lines are FP; and green
lines are FN.

5. Discussion

Considering the constraints of the invisible cadastral boundaries, land administration professionals
perceived that a 40 to 50 percent automatic delineation would be very significant in reducing time and
labor involved in cadastral mapping practices [26]. This goal is reached by FCN with a 0.4 m tolerance
in both Busogo and Muhoza, indicating good generalization and transferability of the proposed
approach in cadastral boundary mapping. From Section 4, the numerical results and visual results
proves and supplements each other, suggesting two main findings: (1) The true positives detected by
the FCN are mainly visible boundaries like fences and strips of stones; and (2) gPb–owt–ucm and MRS
have high recall, while FCN has high precision and better overall performance.

Compared with alternative edge detection and image segmentation approaches, FCN achieved
better overall performance. The reason lies in the strong feature learning and abstraction ability of
FCN. Lacking abstraction ability, standard edge detection and image segmentation cannot fill the
semantic gap between the high-level cadastral boundary concept and low-level image features. As a
result, gPb–owt–ucm and MRS achieved high recall but low precision. In other words, gPb–owt–ucm
cannot determine cadastral boundaries from all the detected contours, while MRS cannot eliminate
over-segmentation caused by the spectral differences within one cadastral parcel. It is also worth
noticing that FCN performs supervised boundary detection, while MRS and gPb–owt–ucm are both
unsupervised techniques. This may explain their differences in the abstraction ability. Being supervised,
the proposed FCN-based detector is trained to detect cadastral boundaries and to disregard other
irrelevant edges like building outlines.

FCN can supply high precision, while gPb–owt–ucm and MRS can supply high recall. Therefore,
for further study, we can consider a combination of these methods. We can combine them in two ways.
The first one is to involve the output of gPb or MRS along with UAV images as input for FCN. FCN has
a strong feature learning ability. It is possible that FCN can determine cadastral boundaries from the
outputs of gPb or MRS, hence increasing both precision and recall. The second way is to apply an
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approach similar to [27], where the boundary map of FCN and the probability map of gPb are linearly
combined and followed by the owt–ucm procedure to extract connected boundaries.

6. Conclusions

The deep FCN proposed in this research is capable of extracting visible cadastral boundaries
from raw UAV images. Experiments carried out on both study sites achieved an F-score around
0.5. Very clean and clear boundaries were extracted by the proposed method, avoiding the effect of
messy building contours. In both study sites, the proposed method performed better than contending
algorithms. The knowledge of the local experts is needed to correct the extracted boundaries and
include them in a final cadastral system. We conclude that the proposed automated method followed
by experts’ final correction and verification can reduce the processing time and labor force of the
current cadastral mapping and data updating practices.

So far, the proposed technique is mainly suitable when a large proportion of boundaries are
visible. Detecting invisible boundaries, i.e., not demarcated by physical objects, from remotely sensed
images is obviously extremely challenging. In other researches, invisible boundaries are identified
by manual digitization via post-processing steps. The its4land project proposed a QGIS plugin
(https://its4land.com/automate-it-wp5/) which supports an interactive, semi-automatic delineation to
expedite the process. In the beginning of this research, the authors also attempted to fill this research
gap by considering the fact that a cadastral boundary often lies in between two buildings. We tried to
introduce building information as an additional input to train the FCNs for identifying the invisible
boundaries. However, our experimental results obtained so far showed that there was no obvious
improvement by adding building information in cadastral boundary detection. Further research is
required in this direction. In future research, we will consider to improve the capability to detect
cadastral boundaries (visible and invisible) using Generative Adversarial Networks (GANs) [28].
Within this framework, the generative model and discriminative model form an adversarial training,
which is sharpening the training process by focusing on the most critical samples to learn. This approach
is expected to improve the accuracy in boundary detection tasks which are often characterized by
scarce training data.
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Abstract: In order to transcend the challenge of accelerating the establishment of cadastres and to
efficiently maintain them once established, innovative, and automated cadastral mapping techniques
are needed. The focus of the research is on the use of high-resolution optical sensors on unmanned
aerial vehicle (UAV) platforms. More specifically, this study investigates the potential of UAV-based
cadastral mapping, where the ENVI feature extraction (FX) module has been used for data processing.
The paper describes the workflow, which encompasses image pre-processing, automatic extraction
of visible boundaries on the UAV imagery, and data post-processing. It shows that this approach
should be applied when the UAV orthoimage is resampled to a larger ground sample distance (GSD).
In addition, the findings show that it is important to filter the extracted boundary maps to improve
the results. The results of the accuracy assessment showed that almost 80% of the extracted visible
boundaries were correct. Based on the automatic extraction method, the proposed workflow has
the potential to accelerate and facilitate the creation of cadastral maps, especially for developing
countries. In developed countries, the extracted visible boundaries might be used for the revision of
existing cadastral maps. However, in both cases, the extracted visible boundaries must be validated
by landowners and other beneficiaries.

Keywords: land plot; land cadastre; cadastral boundaries; cadastral maps; UAV; image processing;
image segmentation; feature extraction

1. Introduction

Establishing a complete land cadastre and keeping it up-to-date is a contemporary challenge
for many developing and developed countries, respectively [1,2]. In this research, the distinction
between ‘developing’ and ‘developed’ countries is considered from a land administration perspective.
A developing country refers to a country with low cadastral coverage. A developed country refers to full
coverage of a country’s territory with defined cadastral land plot boundaries and associated land rights.
According to the International Federation of Surveyors (FIG) and the World Bank, only one-quarter of
people’s land rights across the world are formally recognized by cadastral or other land recording
systems [1]. Thus, in developing countries, initial efforts are directed to accelerating cadastral mapping
as a basis for defining and recording land rights boundaries and formalizing land-related rights aiming
to guarantee land tenure security [3,4]. In developed countries, beyond the initial adjudication stage
or establishment of a cadastre, another challenge is the maintenance of person-right-land relation
attributes and keeping the cadastral systems up-to-date [5,6]. In countries with a tradition and long
history of developing a cadastral system, conventional ground-based cadastral surveying techniques
and high positional accuracy of boundary surveying were required. Decades were needed to complete
the process of cadastral surveying/mapping and registration [1,6]. Although land cadastres were
established, some of the cadastral systems could not be maintained, which led to outdated cadastral
maps. Person-right-land relationship is complex and dynamic. Keeping the cadastral system up-to-date
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(continuous recording of person-right-land relation attributes, in any land related event, as close as
possible to real-time) also requires a flexible and dynamic cadastral system [2,7]. Proposed cadastral
surveying techniques are mostly indirect ones rather than ground-based. Ground-based techniques
are often argued as being time-consuming and labor intensive [1,5,8].

Emerging tools are mapping techniques based on remote sensing data, in particular, data acquired
with sensors on Unmanned Aerial Vehicles (UAVs) [9–18]. Cadastral maps are usually defined as
a spatial representation of recorded land plot boundaries or other spatial units that the land rights
concern [19]. In general, sensors on UAVs provide low-cost, efficient, and flexible high-resolution
spatial data acquisition systems enabling the production of point clouds, Digital Surface Models (DSM)
and orthoimages [20,21]. In cadastral applications, UAVs have gained increasing popularity due to the
high cadastral mapping potential in a different setting, in rural and urban areas, for developing and
developed countries [22]. In addition, UAVs are used for both the creation and updating of cadastral
maps [22]. In developing countries, UAV-based cadastral mapping usually serves as a tool for the
creation of a formal cadastral system [11–13]. In developed countries, the case studies focus on the
assessment of UAVs’ data positional accuracy estimation and its conformity with local positional
accuracy requirements aiming to use the UAV data for updating existing cadastral maps [14–18]. Here,
updating in most cases refers to the comparison of two cadastral maps—one representing the database
state, the other recently acquired data. The term updating can be used as a synonym for a “revision” of
existing cadastral maps [23]. However, in all case studies reported in [22], cadastral boundaries are
manually delineated.

It is argued that a large number of cadastral boundaries are visible and coincide with natural or
manmade physical object boundaries [2,24,25]. In the land administration domain, automatic extractions
of visible cadastral boundaries have been a recent topic of investigation. The latest studies, though
limited in number, assert that visible boundaries, such as hedges, land cover boundaries, etc., which
might indicate cadastral boundaries, could be automatically extracted using methods such as algorithms
that detect object boundaries in images [22,26–29]. In fact, not all visible cadastral boundaries can be
automatically detected—certain boundaries would require a semi-automatic approach, especially in
urban areas where the morphology of cadastral boundaries is complex [7]. Nevertheless, the potential
of computer vision methods for automatic detection and extraction of visible objects in the images
is promising for cadastral applications, especially due to the urgent global need for accelerating and
facilitating cadastral mapping as a basis for registration of land rights and following the dynamics of
land tenure and land use.

1.1. Visible Boundary Detection and Extraction for Cadastral Mapping

Automatic feature extraction methods from images acquired with high-resolution optical sensors
have already proved to be useful for the extraction of boundaries of linear features such as roads
and rivers [30–34], and to a much lesser degree, they have also been explored for the purpose of
cadastral boundary delineation. A recent study from Crommelinck et al. [22] provides an overview of
computer vision methods that might be applicable in the land administration domain for automatic
detection and extraction of object boundaries from images acquired with high-resolution optical sensors.
Additionally, the general workflow for automatic detection and extraction of visible object boundaries
for UAV-based cadastral mapping is provided [22]. The general workflow consists of (i) image
pre-processing, (ii) image segmentation, (iii) line extraction, (iv) contour or boundary generation, and
(v) image and/or boundary post-processing. Image pre-processing usually includes image conversions,
such as resampling or tiling, in order to fit the requirements of a chosen computer vision method. Image
segmentation refers to the process of dividing a digital image into non-overlapping objects, which
represent homogeneous areas [35]. The third workflow step is the extraction of lines or edges from the
segmented images [36]. The next step, contour generation, refers to the extraction of a closed object
outlines in the image. In computer vision, they are usually defined as object boundaries, which are
derived from connecting edges or lines. An ‘object boundary’ should encompass an ‘object’ in an image,
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and due to this, both terms are used synonymously in this study. In cadastral applications, objects are
usually defined as polygon-based spatial units. The final step, post-processing, includes interventions
on the image such as vectorization and/or simplification of automated extraction of objects [26,37].
However, only a limited number of studies have investigated the automatic extraction of objects from
images acquired with high-resolution optical sensors for cadastral boundary delineation.

The work by Babawuro and Zou [38] tested Canny and Sobel edge-detection algorithms for the
extraction of visible cadastral boundaries from high-resolution satellite imagery (HRSI). In addition,
the Hough Transform feature extraction method was used to connect edges and to identify straight lines.
The visual presentation of the results showed that the proposed approach can detect agricultural land
boundaries, but there were no quantity measures on quality assessment. Kohli et al. [28,29] investigated
the use of an object-based approach, namely the multi-resolution segmentation (MRS) and estimation
of scale parameter (ESP) to extract visible cadastral boundaries from HRSI. An object-based approach
refers to the extraction of object outlines based on a grouping of pixels with similar characteristics and
is applied to high-level features which represent shapes in an image [22]. The accuracy assessment
in Kohli et al. [28] was pixel-based, and the detection quality in terms of error of commission and
omission for MRS were 75% and 38%, respectively. For ESP, the error of commission was 66% and
the error of omission 58%. The localization quality for MRS was 71%, whereas it was 73% for ESP,
within a 41–200 cm distance from the reference boundaries. Another case of the automatic extraction of
visible boundaries based on HRSI is described in Wassie et al. [27]. The study explored the potential of
mean-shift segmentation for the extraction of visible cadastral boundaries. The mean-shift segmentation
algorithm is a QGIS open source plugin [27]. The object-based measures were applied for the accuracy
assessment. Within a buffer distance of 2 m, the percentage indicated the correctness was 34%, while
for the completeness it was 83% [27]. The extractions with mean-shift segmentation were closed object
boundaries (polygon-based) in vector format and topologically correct. The mean-shift segmentation
was applied to a full extent of satellite images. Accordingly, some of the automatic object extraction
methods were applied also using UAV images.

The study from Crommelinck et al. [26] outlines the potential of the Global Probability of Boundary
(gPb) contour detection method for an automatic boundary delineation based on UAV imagery. gPb is
open-source and available as pre-compiled Matlab package. The method was found to be applicable
only for processing images of fewer than 1000 x 1000 pixels due to the demanding computing
process [26]. The contour map or detected objects were in raster format and required vectorization.
Furthermore, Crommelinck et al. [37] discuss the interactive method of visible boundary extractions.
The interactive method combines the gPb contour detection, simple linear iterative clustering (SLIC)
super pixels and random forest classifier, which allow a semi-automatic approach for the delineation of
visible boundaries. The interactive method was tested on visible road outlines based on UAV datasets.
The results show that the approach is much more efficient than manual boundary delineation, and all
road boundaries were delineated comprehensively.

All the case studies reviewed, both automatic boundary extractions from HRSI and UAV images,
have been tested in rural areas since it is argued that most of the cadastral boundaries are visible in
such areas [26]. However, not all computer vision automatic feature extraction methods suitable for
visible cadastral boundary delineation have already been tested.

Another tool that is also referred to as the ‘state-of-the-art’ for automatic detection and extraction
of features from images is the ENVI feature extraction (FX) module [39,40]. ENVI FX is an object-based
module for detecting and extracting multiple object outlines from high-resolution multispectral or
panchromatic digital images. The extraction is based on spectral (brightness and color), texture,
and spatial characteristics [41]. To the best of the authors’ knowledge, there have been no previous
publications, nor evidence, that the ENVI FX module has been applied for detecting and extracting
visible cadastral boundaries on UAV images.

The justification for using this method is based on Crommelinck et al. [22], in which general
workflow and feature extraction methods appropriate for cadastral mapping are provided. The main aim
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of this study is not to compare automatic feature extraction methods already used for cadastral mapping.
Instead, the study focuses on the potential of a feature extraction method which has not been tested yet
in cadastral applications. The study can be seen as an important contribution to land administration
discussions focusing on cadastral mapping, as there have been a limited number of studies for automatic
visible cadastral boundary delineation from imageries acquired using high-resolution optical sensors.

1.2. Objective of the Study

The study is based on the assumption that many cadastral boundaries are visible [2]. The study’s
main objective is to outline the potential of the ENVI FX module as well as its limitations for the
automatic delineation of visible object boundaries for UAV-based cadastral mapping. It investigates
which processing steps (scale level and merge level) using the ENVI FX module need to be applied for
UAV-based cadastral mapping. The automatic delineated visible boundaries on UAV images, similarly
as manual delineations, can be used for both the creation and updating/revision of cadastral maps.

Overall, the study addresses the whole of the UAV-based cadastral mapping workflow steps,
which include image pre-processing, automatic detection and extraction of visible object boundaries
on the UAV image, and post-processing of extracted boundaries to more closely approximate
cadastral boundaries.

2. Materials and Methods

2.1. UAV Data

To achieve the objective of the study, a rural area in Slovenia was selected as the number of visible
(cadastral) boundaries in such areas is higher compared to dense urban ones. In addition, the selected
rural area includes roads, agricultural field outlines, fences, hedges, and tree groups, which are assumed to
indicate cadastral boundaries [22]. The UAV images of the case study area were indirectly geo-referenced,
using an even distribution of ground control points (GCP) within the field as criteria. The GCPs were
surveyed with real-time kinematic (RTK) by using Global Navigation Satellite System (GNSS) receiver,
Leica Viva, connected in the Slovenian GNSS network, SIGNAL. The signals were received from satellite
constellations of GPS and GLONASS. The total number of GCPs was 12. The Position dilution of
precision (PDOP) values ranged from 1.2 to 1.7. The flight altitude was 80 m and 354 images were taken
to cover the study area. The images were captured on October 19th, 2018 in the noon time (good weather
conditions, clear sky) at solar zenith angle of approximately 35 degrees. The study site had a coverage
area of 25 ha. The planimetric accuracy assessment of the UAV orthoimage was based on comparison
between GCPs coordinates surveyed with the GNSS receiver and the coordinates of GCPs on the UAV
orthoimage. The estimated root-mean-square-error (RMSE) was 2.5 cm. Table 1 shows the specifications
of data capture and Figure 1 shows the UAV orthoimage of the study area.

Table 1. Specification of unmanned aerial vehicle (UAV) dataset for the selected study area in Slovenia.

Location UAV Model
Camera/Focal

Length
[mm]

Overlap
Forward/Sideward

[%]

Flight
altitude [m]

GSD
[cm]

Pixels

Ponova vas,
Slovenia

DJI Phantom
4 Pro

1” CMOS
20mp/24 80/70 80 2.0 35,551 × 31,098
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(a) (b) 

Figure 1. (a) Cadastral map and ground control points (GCPs). (b) Manually delineated object visible
boundaries used as reference data to determine the detection/extraction quality. (a,b) Overlaid on UAV
orthoimage of Ponova vas, Slovenia (EPSG 3794).

2.2. Reference data

The current cadastral map for the selected area was retrieved from the e-portal of the Slovenian
Surveying and Mapping Authority, which is an online platform for requesting official cadastral data [42].
The cadastral map was overlaid on the UAV orthoimage (Figure 1a). The visual interpretation of the
combined dataset showed immediately that the cadastral map does not correspond with the visible
objects that indicate land possession (land cover) boundaries (roads, agricultural field outlines) on
the UAV orthoimage. From the initial analyses, it appeared that only 8% of cadastral boundaries
correspond with the manually digitized visible boundaries (at 25 cm tolerance). This is because the
current official cadastral map was created by digitizing previous analog cadastral maps whose origin
goes back in the first half of 19th century. Due to the underestimated need for cadastral map updating
as well as due to the land reforms in the 20th century (i.e., land nationalization and denationalization)
the current possession land boundaries do not correspond with cadastral boundaries. Considering
this, as reference data, manually digitized boundaries were used instead of the official cadastral
data, as the aim of this research is to automatically delineate visible object boundaries from a UAV
orthoimage and, at the same time, study the potential of the ENVI FX solution for the automatic
detection of visible boundaries. Moreover, during the manual digitization of reference boundaries,
some white stones considered as possession boundary signs were used as a guide for proper digitization
(Figure 1b). The placement of white stones is a common practice in the selected study area, and for
this reason, they were considered as reliable information during the manual digitization. In addition,
the confidence in white stones as boundary signs is based on the authors’ experiences in professional
cadastral surveying.

2.3. Visible Boundary Delineation Method and Workflow

2.3.1. ENVI Feature Extraction (FX)

The investigated tool, ENVI FX, is a combined process of image segmentation and classification.
The focus of this study is only at image segmentation and calculating spatial attributes for each
segmented object [41]. In addition to spatial attributes, spectral and textural attributes are often used
by users for further image classification analysis.

The first step, image segmentation, is based on the technique developed by Jin [43] and involves
calculating a gradient map, calculating cumulative distribution function, modification of the gradient
map by defining a scale level, and segmentation of a modified gradient map by using the Watershed
Transform [44]. A gradient is calculated for each band of the image. The ENVI FX module uses two
approaches: edge method and intensity. The edge method calculates a gradient map using the Sobel

167



Remote Sens. 2019, 11, 1510

edge detection algorithm [44]. The Intensity method converts each pixel to a spectral intensity value by
averaging it across the selected image bands [44]. The edge method is used for detecting features with
distinct boundaries and is considered in this study. In contrast, the Intensity method is suitable for digital
elevation models, images of gravitational potential and images of electromagnetic fields [44]. After
a gradient map is calculated, a density function of gradients over the whole map is calculated in the form
of a cumulative relative histogram [43]. Once the cumulative distribution function has been calculated,
it can be used along with the gradient map to calculate the gradient scale space [43]. The gradient
map can be modified by changing the scale level. The scale level is the relative threshold on the
cumulative relative histogram from which the corresponding gradient magnitude can be determined [43].
For example, at a scale level of 50, the lowest 50 percent of gradient magnitude values are discarded
from the gradient image [44]. Increasing the scale level results in fewer segments and keeps objects with
the most distinct boundaries [41]. Once the scale level is selected the Watershed Transform algorithm is
applied to the modified gradient map. The Watershed Transform is based on the concept of hydrologic
watersheds [22,35]. In digital imagery, the same process can be similarly explained as the darker a pixel,
the lower its "elevation" (minimum pixel). The algorithm categorizes a pixel by increasing the greyscale
value, then begins with the minimum pixels and "floods" the image, dividing the image into objects with
similar pixel intensities. The result is a segmented image and each segmented object is assigned with
a mean spectral value of all the pixels that belong to that object [44].

The second step is merging. This step aggregates over-segmented areas by using the ENVI
FX default full Lambda schedule algorithm. The algorithm is meant to aggregate object outlines
within larger, textured areas, such as trees and, fields, based on a combination of spectral and spatial
information [41,45]. The merge level represents the threshold Lambda value. Merging occurs when
the algorithm finds a pair of adjacent objects such that the merging cost is less than a defined threshold
Lambda value—if the merge level is set to 20, it will merge adjacent objects with the lowest 20 percent
of Lambda values [45]. When a merge level of 0 is selected no merging will be performed. In this step,
the selection of Texture Kernel Size is optional, i.e., the size of a moving box centered over each pixel
value. The ENVI FX default Texture Kernel Size is 3, and the maximum is 19 [45].

The final step is the export of object boundaries in a vector format and a segmented image in
a raster format. Moreover, each extracted object consists of spatial, spectral, and texture information in
the attribute table [41].

2.3.2. Visible Boundary Delineation Workflow

The visible boundary delineation workflow (Figure 2) consists of four main steps. In the following,
each workflow step is described in detail with additional comments based on our own preliminary
studies aiming to understand and justify the selection of the parameters and algorithms used. The first
and second steps were implemented in ENVI 5.5 image analysis software [46] by using the ENVI
FX [47] tool. The other steps were implemented using QGIS [48] and GRASS [49] functions.

1. Image pre-processing: The first step is resampling the UAV orthoimage. The UAV orthoimage was
resampled from 2 cm to lower spatial resolutions—25 cm, 50 cm and 100 cm ground sample
distances (GSD). The selected GSDs allowed the identification of the impact of different GSDs on
the results of automatic boundary extractions. The pixel average method was used for resampling
the UAV orthoimage as it provides a smoother image. In addition, further resampling methods
(nearest neighbor and bilinear) were tested and did not provide significant differences in the
number of automatic object boundary extractions—at higher scale and merge levels of the ENVI
FX algorithm. The resampling step was also applied in [26], to make transferable the investigated
method to a UAV orthoimage for cadastral mapping purposes. In addition, extracting objects
from a UAV orthoimage of lower spatial resolution is computationally less expensive.

2. Boundary detection and extraction: The ENVI FX module was applied to each down-sampled UAV
orthoimage. The detection and extraction of visible boundaries from the UAV orthoimage was
based on the ENVI FX scale and merge level values. The texture kernel size was set to default,
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i.e., 3. In addition, further object extractions were tested at the highest texture kernel size and no
differences in the number and locations of extracted objects were identified. Scale level values
ranged from 50 to 80 and merge level values from 50 to 99. The initial incremental value for both
scale and merge levels was 10. In cases where a jump in the total number of extracted objects was
detected the incremental value was dropped for both scale and merge levels. In order to identify
the optimal scale and merge values for the detection and extraction of visible objects for cadastral
mapping, all possible range values of scale and merge combinations were tested. For each
extraction information about the total number of extracted objects and processing time was stored.
This resulted in 50 boundary maps for each resampled UAV orthoimage. The boundary map
consisted of extracted objects (polygon-based), which were in digital vector format.

3. Data post-processing: The process included two steps: (i) the filtering of extracted objects, and
(ii) the simplification of extracted objects. (i) The minimum object area and the total number of
objects identified in the reference data (Figure 1b) were used to determine optimal scale and
merge levels. The minimum reference object area was 204 m2, and the total number of objects
was 68. All extracted objects that were smaller than the minimum object area from reference
data were filtered out (removed). The total number of remaining objects was compared with the
total number of objects from the reference data and the tolerance of +/- 10 objects was set—those
parameters that produced numbers of objects that were closest to those found in the reference data,
i.e., within defined tolerance, were deemed optimal. The boundary maps from which smaller
objects were removed were labeled as filtered objects. The output of filtered objects consisted of
holes, i.e., due to polygon-based geometry of objects, which were mostly present either in the
forest or individual trees and are of less relevance for cadastral applications—a boundary between
adjacent objects belongs to both. (ii) Extracted and filtered object boundaries were smoothed
and simplified to be used for the interpretation of possession boundaries aiming to support
a cadastral mapping (i.e., land plot restructuring in this case, as the situation requires a new
cadastral survey or land consolidation). The smoothing of extracted/filtered object boundaries
was done by using the Snakes algorithm [49]. The Douglas–Peucker algorithm was applied to
the smoothed object boundaries in order to further simplify the object boundaries [22,49]. These
objects both smoothed and simplified were labeled as simplified extracted/filtered objects.

4. Accuracy assessment: The accuracy assessment was object-based since the results were in vector
format. The buffer overlay method was used for accuracy assessment. The method is described
in detail in Heipke et al. [50]. The accuracy assessment was based on computing the percentages
of extracted (or reference) boundary lengths which overlapped within a buffer polygon area
generated around the reference (or extracted) boundaries (Figure 3) [50]. To determine the
completeness, correctness, and quality of extracted boundaries, calculated boundary lengths of
true positives (TP), false positives (FP), and false negatives (FN) were used. The completeness
refers to the percentage of reference boundaries which lie within the buffer around the extracted
boundaries (matched reference). The correctness refers to the percentage of extracted boundaries,
which lie within the buffer around the reference boundaries (matched extraction). The accuracy
assessment was performed on buffer widths of 25 cm, 50 cm, 100 cm, and 200 cm. The selection of
buffer widths is in line with other studies and was based on the most common tolerances regarding
boundary positions in land administration, especially for rural areas [26,27]. The percentage
indicating the overall quality was generated from the previous two by dividing the length of the
matched extractions with the sum of the length of extracted data and the length of unmatched
reference [50]. The accuracy assessment was applied to automatic extracted objects, simplified
extracted objects, filtered objects, and simplified filtered objects (Figure 2).
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Figure 2. Cadastral mapping workflow based on the automatic detection and extraction of visible
boundaries from UAV imagery.

(a) (b) 

Figure 3. Object-based accuracy assessment method—buffer overlaying method. (a) Matched reference.
(b) Matched extraction. (a,b) Calculation of boundary lengths of true positives (TP), false positives (FP)
and false negatives (FN) (Adapted from [50]).

3. Results

Resampling the UAV orthoimage to a lower spatial resolution, i.e., a larger value of GSD, resulted in
fewer and faster extractions of object boundaries compared to the number of extracted object boundaries
generated at the original size of the UAV orthoimage. The processing time for one boundary map was
1–2 min. A larger GSD, at the same scale and merge values, resulted in fewer boundary extractions
(Table 2, Figures 4 and 5).

Table 2. Ground sample distance (GSD) and number of pixels after image pre-processing.

GSD [cm] Pixels Resampling Method

25 2856 × 2498 Pixel average
50 1428 × 1249 Pixel average
100 714 × 625 Pixel average
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(a) 

 

(b) 

 

(c) 

Figure 4. Scale/merge level and number of extracted objects from the resampled UAV orthoimages (a)
ground sample distance (GSD) 25 cm, (b) GSD 50 c, and (c) GSD 100 cm. (a–c) Grey labels—number of
extracted objects outside the range, black labels—the lowest number of extracted objects per scale and
merge parameter value.
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 5. (a–i) Examples of extracted boundary maps. (a–c) GSD 25 cm; (d–f) GSD 50 cm, and (g–i)
GSD 100 cm. (a,d,g) Extracted objects at scale 70 and merge 99. (b,e,h) Extracted objects at scale 75 and
merge 99. (c,f,i) Extracted objects at scale 80 and merge 99.

A lower scale level and merge level resulted in a higher number of extracted object boundaries for
each resampled UAV image. A higher scale and merge level resulted in fewer extracted boundaries
(Figure 4). In general, for all resampling, the biggest drop in the number of extracted object boundaries
was at scale level values within the range from 70 to 80, and merge level values within the range from
95 to 99 (Figure 4). The incremental value of 1, for merge level 95–99, turned out to be very sensitive in
dropping the number of extracted object boundaries (Figure 4a–c).

The optimal scale and merge levels for an automatic boundary delineation were investigated by
filtering out the total number of extracted objects with the minimum area of objects from the reference
data. The results of this filtering approach are presented in Figure 6. The results showed that for the
UAV orthoimages of higher spatial resolutions, namely a GSD of 25 cm, the optimal algorithm values
for cadastral mapping resulted in 80 for scaling and from 95 to 99 for merging. In contrast, for the UAV
orthoimages having a GSD of 50 cm and a GSD of 100 cm, the common optimal scale level values were
70–80 and merge level 95–98 (Figure 6). Some exceptions were observed for a GSD of 50 cm, where the
scale level was 50, 60, and merge level to its maximum. In general, the results showed that the optimal
scale and merge level values suitable for cadastral mapping range from 70 to 80 and from 95 to 99,
respectively (examples in Figure 5). The optimal scale and merge level values appeared similar as in
the investigation of the influence of different GSDs in extracting objects.
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Figure 6. Comparison in the number of extracted and filtered objects using different scale and merge
parameter values, to the number of objects identified in the reference data set.

For further analysis, optimal extracted objects with scale level 80 and merge level 95 for three
GSDs of UAV orthoimages were selected (Figure 7a,c,e). The selection was based on common scale
and merge levels for three GSDs as well on the highest number of filtered objects per GSD (Figure 6).
The filtering approach was additionally applied to the selected optimal extracted objects, i.e., with scale
level 80 and merge level 95, to remove objects under the minimum reference object area (Figure 7b,d,f).

  
(a) (b) 

  
(c) (d) 

Figure 7. Cont.
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(e) (f) 

Figure 7. (a,c,e) Extracted objects at scale level 80 and merge level 95 for (a) GSD 25 cm, (c) GSD 50 cm,
and (e) GSD 100 cm. (b,d,f) Filtered objects of scale level 80 and merge level 95 based on minimum
object area from the reference data.

A simplification algorithm was applied to both extracted objects and filtered objects. The results
showed that if extracted objects are smoothed and smoothed objects are later simplified, the localization
of simplified objects is almost equal to that of the extracted ones (Figure 8). The initial tests show that
possible shifts in location are possible when a direct implementation of the simplification algorithm to
extracted visible objects is used.

  
(a) (b) 

 
(c) 

Figure 8. (a) Extracted objects smoothed by making use of the Snakes algorithm. (b) Simplification of
extracted objects by making use of the Snakes smoothing algorithm and Douglas–Peucker simplification
algorithm. (c) Extracted objects simplified with Douglas–Peucker algorithm (in black) and compared to
object simplifications on (b).
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The buffer overlay method was used for the accuracy assessment. The accuracy assessment method
was applied to the extracted objects, simplified extracted objects, filtered objects and simplified filtered
objects. The results show that there is no significant difference in accuracy assessment results when
comparing extracted and simplified objects (Table 3, Table 4, and Table 5). At a buffer width of 2 m, a GSD
of 50 cm and a GSD of 100 cm provide a higher percentage of correctly extracted objects compared to
a GSD of 25 cm. The percentage of correctly extracted objects was 66% for both a GSD of 50 cm and a GSD
of 100 cm (Tables 4 and 5). However, the filtering approach contributed to the increased correctness
(decreased completeness) and overall quality, for all GSDs. From the filtered objects, the best results for
correctness were recorded at a GSD of 50 cm (Figure 9). The percentage indicated the correctness was
77%, while for the completeness it was 67%.

Table 3. Accuracy assessment of boundary extractions for a GSD of 25 cm, scale 80, merge 95.

Buffer width
[cm]

Completeness
[%]

Correctness
[%]

Quality
[%]

Extracted Filtered Extracted Filtered Extracted Filtered
25 58 37 18 26 16 20
50 73 48 28 39 26 31
100 78 56 38 50 36 41
200 81 (81) 1 61 (62) 1 48 (49) 1 59 (61) 1 46 (46) 1 50 (48) 1

1 Percentages of simplified boundaries.

Table 4. Accuracy assessment of boundary extractions for a GSD of 50 cm, scale 80, merge 95.

Buffer width
[cm]

Completeness
[%]

Correctness
[%]

Quality
[%]

Extracted Filtered Extracted Filtered Extracted Filtered
25 45 40 28 35 21 23
50 64 55 46 56 38 41
100 71 61 57 68 48 52
200 75 (74) 1 65 (67) 1 65 (66) 1 76 (77) 1 56 (53) 1 59 (56) 1

1 Percentages of simplified boundaries.

Table 5. Accuracy assessment of boundary extractions for a GSD of 100 cm, scale 80, merge 95.

Buffer Width
[cm]

Completeness
[%]

Correctness
[%]

Quality
[%]

Extracted Filtered Extracted Filtered Extracted Filtered
25 31 27 21 24 14 15
50 53 47 39 43 29 30
100 67 59 58 64 47 47
200 73 (71) 1 63 (67) 1 66 (66) 1 72 (73) 1 55 (52) 1 55 (52) 1

1 Percentages of simplified boundaries.

  
(a) (b) 

Figure 9. (a,b) Filtered objects of scale level 80 and merge level 95—simplified, compared with (a)
cadastral map and (b) manually delineated visual object boundaries used as reference data.
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4. Discussion

4.1. The Developed Workflow

The developed workflow aimed to provide a solution for UAV-based cadastral mapping using
automatic visible boundary extraction with the ENVI FX module (Figure 2). The developed workflow
consisted of four steps: (i) image pre-processing, (ii) boundary detection and extraction, (iii) data
post-processing, and (iv) accuracy assessment.

The first workflow step includes resampling of a UAV orthoimage. Here, the results of our case
study showed that larger GSDs provided faster and fewer extractions of visible object boundaries
compared to the original GSD of a UAV orthoimage. For higher spatial resolutions, i.e., smaller GSDs,
considering the selected Scale level and Merge level values, the total number of extracted objects
was higher.

The second step, which includes object boundary detection and extraction, is dependent on the
scale and merge level. The results, presented in Figure 4, showed that lower values of scale and merge
levels resulted in a higher number of extracted objects, which led to over-segmentation by reaching
thousands of extracted objects. Considering the total number of the reference objects, it is important to
note that a scale and a merge level that provide object extractions close to the total number of objects
from reference data are important for automatic delineation of visible cadastral boundaries.

The following step, data post-processing, aimed to investigate optimal scale and merge levels and
to simplify the extracted objects. The optimal values based on a filtering approach showed that for
all tested GSDs in this study, most suitable scale and merge level values for automatic delineation of
visible cadastral boundaries were 70–80 and 95–99, respectively. These values can be considered as
optimal scale and merge levels for rural areas in general or areas with characteristics similar to the
study area of this research. However, to validate the proposed workflow and optimal Scale and Merge
levels in areas with different characteristics, such as areas with a larger number of buildings or areas
with trees covering parts of boundaries, further experiments are needed. Hence, the scale and merging
levels appropriate for cadastral mapping have been determined and this step can be skipped from
the workflow step of data post-processing (Figure 2). The use of the Snakes algorithm for smoothing
and the Douglas–Peucker algorithm for simplifying has been shown to be very effective (Figure 8a,b).
This approach, when combining both smoothing and simplification algorithms, gives better results
in terms of a simplified boundary position compared to directly implementing the Douglas–Peucker
simplification algorithm, where undesired shifting in boundary position was observed (Figure 8c).
In [22], it was reported that the direct implementation of the Douglas–Peucker algorithm was used as
a post-processing method in many papers to improve the output by optimizing the shape of objects.
However, the simplification approach applied in this study was not examined in the previous papers.

The final step of the workflow was accuracy assessment (see also Section 4.2). The accuracy
assessment was based on the buffer overlay method. By increasing the width of the buffer, more extracted
boundaries appear to be within the buffer area, which impacts the completeness, correctness, and the
overall quality—larger the buffer, the better the results. To have a uniform assessment for all tested
GSDs the results were compared at a buffer distance of 2 m. From the reviewed publications presented
in Section 1.2, a buffer width of 2 m was also applied in [26–28] as most suitable for the presentation of
accuracy assessment results and to avoid uncertainties from resampling effects. However, for comparison
to cadastral data, buffer widths should be based on local accuracy requirements [26].

The workflow developed, overall, is in accordance with the general workflow for the cadastral
mapping based on suitable computer vision methods for automatic visible boundary extraction
provided in [22]. In addition, it provides an additional step and method in data post-processing,
such as filtering out irrelevant and small objects from the boundary map, which improves overall
quality assessment. Furthermore, it suggests a combined approach for the simplification of extracted
object boundaries.
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4.2. Quality Assessment

Bringing the scale and merge levels to the maximum resulted in some unextracted and fewer visible
objects for the whole extent of the image. Although some of the visible objects were left unextracted,
the maximum scale and merge level enabled the detection of a group of objects such as a group of tree
boundaries, especially at GSDs of 50 cm and 100 cm (Figure 5f,i). In both cases, the balance between
completeness and correctness was hard to achieve. This issue was also reported in [26,28]. For this
reason, the filtering approach was applied. It was based on the minimum object size as well as on the
total number of the objects, both defined based on the reference data. This allowed us to reduce the
risk that some of the visible object boundaries remained unextracted as well as over-segmented.

The optimal scale level of 80 and a merge level of 95, were chosen for all three GSDs, to investigate
the impact of the same scale and merge level in different resampling. The selection was based on common
scale and merge levels per GSD (Figure 6). However, this does not mean that the chosen scale and merge
level provided the best object boundary extraction for each of the GSDs. For instance, for small GSDs,
the correctness of extracted boundaries is higher at the maximum scale and merge levels (e.g., Figure 5c).
For the same scale and merge level, the correctness grows significantly from a GSD of 25 cm to a GSD of
50 cm. The correctness for a GSD of 100 cm was almost equal to the one for a GSD of 50 cm. Considering
that more optimal scale and merge levels were applicable for a GSD of 50 cm (Figure 6) and the difference
insignificant when compared to the results obtained for a GSD of 100 cm, a GSD of 50 cm appeared to be
better in detecting visible boundaries compared to the other two GSDs.

The quantitative method applied for accuracy assessment to automatically extracted objects,
filtered objects and to their simplifications, showed that there was no significant difference between
extracted objects and simplified objects. This result indicates that the method applied for simplification
can be considered appropriate, i.e., the original location of extracted objects was maximally maintained.
Although there was no difference in accuracy assessment, the simplification of extracted (or filtered)
objects is significant for proper cadastral mapping. Cadastral boundaries usually are defined by
straight lines with fewer vertices.

The percentage of suitable extracted boundaries (compared to reference data), for a scale level of
80 and a merge level of 95, resulted in 74% for the assessment of the completeness and 66% for the
assessment of the correctness for the extracted object boundaries having a GSD of 50 cm. However,
the filtering approach strongly influenced the accuracy assessment. For filtered extractions, the level of
completeness was 67%, and the level of correctness was 77%. These results show that the filtering
approach increased the correctness of automatically extracted boundaries, and it reaches almost 80%
(Table 4). This was due to filtering out small object boundaries from the boundary map. The excluded
small objects were mostly present in tree and built-up areas on the UAV orthoimage, i.e., only outlines
of group objects were retained (Figure 7c,d). In road extractions, the achieved values for extractions are
around 85% for correctness and around 70% for completeness to be of real practical importance [26,34].
Such percentages can hardly be achieved by the workflow developed for automatic delineation of all
visible boundaries since the morphology of cadastral boundaries is usually more complex and not all
cadastral boundaries are visible, unlike road boundaries.

The accuracy assessment was based on the manually delineated boundaries, which were defined
as reference data (Figure 1b). The visible boundaries were manually delineated on the ground truth
UAV orthoimage. It is argued that manually delineated boundaries influence the overall results of
the accuracy assessment since different human operators might digitize differently [26]. However,
in the selected case study, most of the object boundaries were sharp and the presence of white stones at
outlines of the agricultural field contributed to the objectivity of manual digitalization. In addition,
the real cadastral data could not be used since they did not correspond with the object boundaries
on the image (Figure 1a) and it would not have been possible to outline the potential of the ENVI FX.
However, the approach of automatic extraction of visible boundaries is case dependent. To reliably
avoid the influence of manually digitized reference data, the following studies should consider a case
study where the cadastral map is up to date.
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4.3. Strengths and Limitations of the Automatic Extraction Method Used

The ENVI FX module handled the full extent of the resampled UAV orthoimages, and no additional
image tiling or image conversions were required. ENVI FX provided closed object boundaries directly
in vector format, topologically correct polygons. Therefore, no additional image post-processing step,
such as vectorization of detected object boundaries, was needed (Figure 5). Thus, the visible object
boundaries generated can be directly used for further processing and analysis within geographic
information systems (GIS). Additionally, the final output consists of spatial, spectral and textural
attributes which are assigned automatically to each extracted object and saved in the attribute table.
The vectorized and geo-referenced visible object boundaries, as interpreted in this research, are crucial
in cadastral applications especially for the purposes of land plot boundary delineations. Overall, ENVI
FX has the potential to automatically delineate visible cadastral boundaries, especially in rural areas.

A comparison of the results regarding the accuracy assessment obtained in this study and the
accuracies obtained in the studies [26–28] cannot be done at this time for a number of reasons. First, not all
the reviewed feature extraction methods have been applied to UAV imagery. Second, different UAVs
may provide different quality of orthoimages. Third, the nature, size, location, and the characteristics of
the study objects are far too different. In order to make a reliable comparison on accuracy assessments of
different feature extraction methods, first of all, each method has to be studied individually and later
tested at the same study area(s). However, the image processing approach of different feature extractions
methods may be comparable.

From the reviewed feature extraction methods that have already been applied for detection of
visible cadastral boundaries, it can be seen that the MRS method, ESP method, and mean-segmentation
method also do not require further image tiling and the final output of the boundary map was in vector
format [27,28]. In contrast, vectorization of detected object boundaries was needed for the gPb contour
detection method. In addition, it was reported that the method is inapplicable when processing UAV
images of more than 1000 pixels in width and height [26]. Similar issues regarding the vectorization of
detected object boundaries were reported in [38], where Canny and Sobel edge detection algorithms
were used. In order to obtain topologically correct polygons, an additional feature extraction method
was used aiming to connect the edges.

ENVI FX allowed some shadow areas in the UAV orthoimage to be extracted as boundaries;
however, these do not represent real boundaries in the field. In order to minimize the influence
of shadows on feature extraction, it is recommended to capture images in the local time where the
solar zenith angle has the smallest possible value. However, the solar zenith angle depends on the
geographic location of the study area. Additionally, some other factors such as weather conditions
also influence the quality of captured images. To avoid such issues, it is preferable to capture images
on a cloudy day without wind. Although ENVI FX has proved to be efficient, one of its limitations
is that it is not an open-source tool like mean-shift segmentation, gPb contour detection, Canny, and
Sobel, which might be a reason why it is not often used in the land surveyor community. In addition,
the extracted objects from the resampled UAV orthoimages were following the pixel borders and further
shape simplification was required to make them comparable to spatial units in cadastral applications.

Considering that the morphology of cadastral boundaries is complex [7], compared to physical
boundaries, such as boundaries of roads or rivers, delineation of cadastral boundaries cannot be
fully automated at this time, and additionally, the verification of the results has to be done with the
participation of landowners and other land rights holders. The limitations on extracting only visible
object boundaries lie in the fact that not all visible boundaries (land cover boundaries) represent
cadastral boundaries (land right boundaries). For instance, when two agricultural cadastral units leased
to the same farmer are farmed as one unit, and vice versa. However, visible object boundaries which
coincide with the land right boundaries can be automatically detected and used in cadastral applications.
In addition, the UAV-based spatial data acquisition is usually affected by special operational regulations
that restrict the use of this technology, in particular in urban areas [18].
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4.4. Applicability of the Developed Workflow

The developed workflow provided geo-referenced boundary maps in a format compliant with
the formats that are used in GIS environments. This shows that the extracted objects can be easily
transferable, and applicable in GIS for cadastral purposes. In cases where cadastral maps are rarely
present and the concept of fit-for-purpose cadastre is in place, the workflow, with the selected method
for automatic extraction of visible boundaries, shows the potential for the automation of the visible
cadastral boundary delineation procedure [1]. Thus, the approach developed generally contributes to
the acceleration and facilitation of the creation of cadastral maps (Figure 9b), especially in developing
countries, where general boundaries are accepted, and positional accuracy is of lesser importance [25].
However, the approach is suitable for the areas where the boundaries of physical objects are visibly
detectable on a UAV orthoimage, for instance, in rural areas. The workflow might be applicable
for both the creation and updating/revision of cadastral maps, similar to the manual delineations of
cadastral boundaries on a UAV orthoimage. In addition, the workflow developed might lower the costs
and time compared to the manual delineation of cadastral boundaries, especially in rural areas [26].

Furthermore, in developed countries, the approach based on automatic extraction of visible
boundaries might be used for a revision of current cadastral maps (Figure 9a). In this case, the extracted
visible boundaries can be used as a basis for a new cadastral survey or land rearrangements, depending
on the discrepancy between cadastral maps and land possession (as shown in the case study).
Although the beneficiaries agree with the visible boundaries, if higher accuracy is required, the revised
objects (spatial units) can later be manually delineated from a UAV orthoimage or re-surveyed with
ground-based surveying techniques. It must be emphasized that the extracted visible boundaries, both
for the creation of cadastral maps and updating, should be inspected by the local community and all
beneficiaries (landowners, other land rights holders) in order to be legally validated.

5. Conclusions

The overall aim of this study was to provide an UAV-based cadastral mapping workflow based on
the ENVI FX module for automatic detection of visible boundaries. The study first investigated, which
processing steps are required for a cadastral mapping workflow following the potential and limitations
of the ENVI FX for automatic visible boundary detection and extraction.

The results showed that more correct visible object boundaries, suitable for the interpretation of
land cover (cadastral) boundaries, were extracted at larger values of GSD. In addition, the identified
optimal scale and merge levels for detection and extraction of visible cadastral boundaries were between
70 and 80 and 95 and 99, respectively. The identification of the optimal parameters for cadastral mapping
was based on the defined minimum object area and the total number of objects from the reference data
using the so-called filtering approach. The filtering approach contributed to the increased correctness of
automatically extracted boundaries. The best results were recorded at the resampled UAV orthoimage
with a GSD of 50 cm, and the percentage of correctness indicated was 77%, while for the completeness it
was 67%. It must be emphasized that the workflow developed is applicable mostly for rural areas where
the number of visible boundaries is higher compared to complex urban areas.

The workflow can be used in developing countries to accelerate and facilitate the creation of
cadastral maps aiming to formalize a land tenure system and guarantee legal security to land rights
holders. In developed countries, the extracted visible boundaries based on this workflow might be
used for efficient revision of existing cadastral maps. However, in both cases, the extracted visible
boundaries have to be validated by landowners and other beneficiaries. The extraction of visible objects
can be considered as only one step in the facilitation of cadastral mapping, as extracting these is not
enough for complete and correct cadastral mapping. It is worth highlighting that cadastral boundaries
may, in fact, be completely inside the property and that some boundaries between properties may
not be clearly visible. In order to use the proposed workflow in the cadastral domain, the approach
can be expanded. Additional steps should focus on methods for the possible involvement of current
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landowners in the process of cadastral mapping. The extension of the current workflow is one of the
aims of the authors’ further research.
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Abbreviations

The following abbreviations are used in this article:

DSM Digital Surface Model
ESP Estimation of Scale Parameter
FIG International Federation of Surveyors
FN False Negative
FP False Positive
FX ENVI Feature Extraction
GCP Ground Control Point
GIS Geographic Information System
GNSS Global Navigation Satellite System
gPb Global Probability of Boundary
GSD Ground Sample Distance
HRSI High-Resolution Satellite Imagery
MRS Multi-Resolution Segmentation
PDOP Position Dilution of Precision
RMSE Root-Mean-Square-Error
RTK Real-Time Kinematic
SLIC Simple Linear Iterative Clustering
TP True Positive
UAV Unmanned Aerial Vehicle
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Abstract: Unmanned Aerial Systems (UAS) are emerging as a tool for alternative land tenure data
acquisition. Even though UAS appear to represent a promising technology, it remains unclear to
what extent they match the needs of communities and governments in the land sector. This paper
responds to this question by undertaking a socio-technical study in Rwanda, aiming to determine the
match between stakeholders’ needs and the characteristics of the UAS data acquisition workflow
and its final products as valuable spatial data for land administration and spatial planning. A needs
assessment enabled the expression of a range of land information needs across multiple levels and
stakeholder sectors. Next to the social study, three different UAS were flown to test not only the
quality of data but the possibilities of the use of this technology within the current institutional
environment. A priority list of needs for cadastral and non-cadastral information as well as insights
into operational challenges and data quality measures of UAS-based data products are presented.
It can be concluded that UAS can have a significant contribution to match most of the prioritized
needs in Rwanda. However, the results also reveal that structural and capacity conditions currently
undermine this potential.

Keywords: UAS; UAV; needs assessment; cadastre; aerial photogrammetry; land administration;
fit-for-purpose

1. Introduction

Since the early 2000s, Unmanned Aerial Systems (UAS) have become increasingly significant
for both scientific as well as commercial applications [1,2]. The advent of this low cost, reliable,
and user-friendly platform, as well as recent developments in digital photogrammetry and structure
from motion (SfM) image processing software solutions, create new opportunities for collecting
timely, tailored, detailed, and high-quality geospatial information. Studies on the various surveying
technologies provide evidence that UAS can fill the data acquisition gap between time-consuming
but highly accurate ground surveys, and faster yet relatively expensive classical aerial surveys [3].
Evidence of numerous UAS-based data acquisition missions across the globe prove the capabilities of
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this innovative technique. The platform has been applied to various domains such as agriculture [4,5],
geosciences [6–10], and disaster risk management [11,12]. [13] provides a detailed review of remote
sensing applications based on UAS. General advantages of UAS as remote sensing platform are the
flexibility regarding application and usage, the high resolution of images, the ease-of-use and the
immediateness of the results. Common drawbacks are regulatory uncertainties [14] and time-consuming
ground control measurements if real-time kinematic (RTK) or post-processing kinematic (PPK) based
workflows are not an option. Resulting data products include true orthoimages, digital elevation
models and 3D point clouds, which are increasingly harnessed as a spatial framework to accomplish
land administration processes. The applicability of UAS for various cadastral purposes has been tested
in various pilots, e.g., meeting juridical boundary requirements in western Europe [15–17], mapping
customary land rights in Namibia [18], and boundary mapping in Indonesia [19]. All pilot studies
remained at a small-scale, reaching from several households to entire neighbourhoods.

Compared to other remote sensing techniques such as satellite images or classical aerial images,
UAS data has clear advantages in the resolution, which is often below 10 cm and provides a high level
of detail. To reach low ground sampling distances, flight height is usually set to less than 100 m–a
limitation which is mostly also given by the national UAS regulations. Thus, the scale of one UAS
missions is very low, reaching from a few hectares up to hundreds of hectares, depending on the
platform, the field of view of the sensor, image overlap and flight pattern. Thus, aerial/satellite images
are more suitable for large-scale mapping. With a particular focus on land rights recording, [20]
concluded additional advantages of UAS data collection workflows: reliability of the data, open and
transparent data collection procedure and the ease of implementation. The latter parameters are of
particular importance to the implementation of fit-for-purpose land administration tool with a strong
focus on developing countries.

While UAS appear to be a promising technology, there has been little discussion in the literature as
to what extent this technology can match the needs of communities and governments especially when
land administration is absent, incomplete, or in a state of decay. A flexible and pragmatic approach
to meet the needs of people and their relationship to land refers to the key principle of recent land
administration approaches [21–23]. Unlike leveraging technical standards, these approaches advocate
that the data acquisition method of the underlying spatial framework should have a strong focus
on managing current land issues in a specific context. Little has been done to study how different
innovative geospatial technologies fit different needs.

Therefore, this paper aims to critically examine the match between stakeholders’ needs and
the characteristics of the UAS data acquisition workflow and its final products as valuable spatial
information for land administration. This was achieved through undertaking a case study in Rwanda
where a mixed methods approach was applied. First, the needs of potential end-users were investigated;
second, the UAS technology was trialled in Rwanda and third, the performance of the entire UAS-based
data acquisition workflow and its ability to match end-user requirements was assessed. A combined
analysis of qualitative, as well as quantitative results, provides the empirical basis for discussing the
degree of fitness of UAS technology for matching users’ needs. The integration of the results in a
socio-technical discussion [24] makes this paper a significant contribution as it reveals the opportunities
and limitations of UAS technology in the context of current discourses in land administration.

The remainder of this article is organized as follows. After a short overview of the study area in
Rwanda, the third section describes the research methodology. The fourth section presents the results
focusing on the needs assessment, the UAS test flight missions, and a synthesis, which ultimately
debates the fitness of use of UAS technology to attain land administration and spatial planning
processes. The discussion relates the results of this study to existing scientific investigations and further
reflects on the significance of the work. The conclusion with opportunities and remaining challenges
as well as a future outlook complete the article.
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2. Study Area

Rwanda, with an area of over 26,000 km2 and a population of almost 12 million people, is the most
densely populated country in Africa (467 per km2) [25]. The population of Rwanda is still mostly rural,
with 83% living in rural areas [25] with the majority depending on subsistence farming although less
than half the population own less than 0,5 ha of land or none at all [26]. Despite its land scarcity and
prevalence of hilly landscapes, the country continues to be highly reliant on agriculture as a form of
employment and subsistence, and an increasing population exerts a growing demand for housing and
infrastructure. After independence in 1962, land ownership in the country has evolved from customary
law to a system of state ownership. This shift was formalized with the implementation of a new land
policy in 2004 and the Organic Land Law (OLL) in 2005, which aimed to improve tenure security
through land registration, facilitate the development of an equitable land market in Rwanda and
promote the sustainable use of land. In approximately 2013, a country-wide land tenure regularization
program (LTRP) was completed where more than 11 million parcels were demarcated and almost
9 million parcels titled to offer Rwandan citizens a range of perceived social, legal and economic
benefits. The LTRP used 96% aerial images captured in 2008 and 2009 and 4% satellite imagery as
base data to demarcate and adjudicate parcel boundaries in a community-mapping exercise [27].
Geo-information derived from the LTRP has also enabled the development of a national cadastral map
(title-based land administration system), which now underpins a range of purposes [28]. However,
base data has not been updated since and geo-information is still based on orthoimages from 2008/2009.

When it comes to the organized use of UAS, Rwanda can be considered as progressive
in comparison to other East African countries. At the 2017 World Economic Forum in Davos,
high-level delegates from the Government of Rwanda promoted Rwanda as the first country to adopt
performance-based UAS regulations. They further outline that development of infrastructure and
policy frameworks will spur business growth and social impact. In October of 2016, Zipline and the
Government of Rwanda launched the world’s first national drone delivery service to make on-demand
emergency blood deliveries to transfusion clinics across the country. After initial difficulties to receive
the permission to operate beyond visual line of sight, the business experienced constant growth.
In addition to introducing new products, Zipline plans to build a second distribution centre in the
country’s east [29]. Besides foreign businesses, local UAS companies such as Charis UAS Ltd. provide
professional services in various UAS industries including mapping, crop monitoring, surveying and
aerial photography.

3. Material and Methods

This paper employs a mixed methods approach including qualitative and quantitative data
to assess the potential of UAS-technology to meet land administration requirements in developing
countries. The research framework addresses both the social/institutional as well as the spatial/technical
perspective (Figure 1). On the one hand, land information needs of various stakeholder groups are
identified through a needs assessment process. On the other hand, case studies of multiple test flights
provide input to evaluate the institutional environment and data quality of UAS-based orthoimages.
Results are synthesized and jointly discussed to give a better understanding of UAS-technology as a
fit-for-purpose tool in the context of land administration [21] and how policies can build on this.
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Figure 1. Conceptual framework of the multi-disciplinary approach.

3.1. Needs Assessment

Land information needs assessment for Rwanda was conducted using a form of group interview
known as the Nominal Group Technique (NGT). NGT was selected as it facilitates a balanced input
from all participants, taking advantage of individuals’ knowledge and experience to provide deep and
meaningful results ranked by importance to the topic of interest [30]. NGT is an effective approach
when an identified problem requires a group’s ideas and evaluation and therefore well-suited for
conducting a needs assessment [31–33]. During the session, only one to two questions are posed to the
group as each question takes around two hours to complete. A response to the question in terms of
ideas are generated individually then gathered and combined as a group. Group consensus is reached
through two rounds of individual voting, a process which prioritizes ideas and provides insight into
the extent individual participants agree or disagree with the consensus vote. This structured process
has been proven to be effective in addressing power imbalances or dominant behaviour in group data
collection like some participants being more vocal than others [34–36].

Validity in the method is accounted for by recruiting participants who are considered experts
on the topic [37]. Hence participants were identified by local land administration experts using
purposive and snowball sampling. Thirty-eight organizations were contacted; of these, 22 participated
(58% response rate). Three workshops were held at local and national levels. Invited organisations
included national and local (district, sector and cell levels) public sector organisations associated with
land (e.g., planning, housing, registration, infrastructure, development), non-statutory organisations,
private sector organisations (e.g., leading geospatial consultancies), and several universities (Table 1).
Invitations were sent to senior executives within organizations and it was left to the organization
to send the most appropriate representative to the workshops. For national workshops, attending
participants tended to be middle- or senior-level managers; at the local level, attending participants
tended to be frontline operational staff.

At each workshop, one nominal question was posed (due to time limitations): “What land tenure
and land-related information are still needed for sustainable urbanization?”. This was followed by
a discussion on how UAS might meet these needs. Cell (smallest administrative entity in Rwanda)
officials who could not attend the workshops were interviewed individually using an adapted version
of the NGT. Data collection ceased after six interviews when no significantly different insights were
gained after four interviews.
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Table 1. Types of stakeholders participating in data collection workshops.

Stakeholder Class
Organisations

Contacted Participated

Public sector organizations specific to land administration (national,
province, district, sector, cell levels) 12 12

Public sector organizations (adjacent domains to land) 12 3
Non-statutory organizations 1 1
Private sector organizations 3 3

NGOs, Not-for-profit/Donors and Development partners; 6 0
Research & Development (R&D) 4 3

3.2. UAS Data Collection

In general, the UAS-based data acquisition workflow includes both technical and non-technical
aspects. As shown in Figure 2, the UAS itself, the UAS pilots as well as the legal permission to conduct
UAS flights refer to the main requirements to proceed with the data acquisition. In this research
investigation, the UAS data collection aimed to provide an accurate orthophoto of the study area.
Flight planning, data acquisition, and data processing were executed accordingly.

Figure 2. Unmanned Aerial Systems (UAS) data collection–requirements and data acquisition workflow.
(a) UAS equipment, payload and the ground control station; (b) trained staff to pilot and operate
the UAS; (c) legal permission to conduct the UAS flight mission which can set its own requirements
according to the national jurisdiction; (d) flight planning with an appropriate software and definition
of flight characteristics; (e) acquisition of UAS images in the area of interest; (f) data cleansing and
photogrammetric processing including quality assessment.

3.2.1. UAS Regulations in Rwanda

UAS related regulations are a vital requirement in the safe and successful use of UAS technology.
In May 2016, the Ministerial Regulations N◦01/MOS/Trans/016 relating to the use of UAS in Rwanda
were officially gazetted [38]. Respective regulations are very prescriptive and contain subparts dealing
with UAS registration and marking, privacy and safety, airworthiness certification, operating rules and
pilot licensing [14]. Before any commencement of activities, the UAS needs to be registered and marked
with a unique identifier. Furthermore, pilots, as well as operating agencies, need to hold specific
licenses issued by Rwanda Civil Aviation Authority. These requirements demand a high standard
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of UAS professionality and make it a challenge for external companies and institutions to obtain
legal flight permissions. At the time of writing, the authors were yet to complete the administrative
procedure required (despite commencing the process in 2017) to operate UAS in Rwanda. Therefore
all data collection flights were carried out by Charis UAS Ltd., a Rwandan company specialized in
UAS services and the first UAS certified company in Rwanda. The experiences of the authors with the
UAS regulations and respective governmental institutions point at very high institutional barriers for
market entry. There is only one company which is a certified UAS operator (for land-related mapping)
and arguably has a monopoly position. For the specific case related to the work at hand, processes
were not transparent and slow with limited access and availability of authoritative, unambiguous and
assured information. Although UAS regulations are in place, gaps and lack of capacity can be seen
when it comes to both enforcement and implementation.

Besides requirements towards pilot certification, UAS registration, and operator certification,
Rwandan UAS regulations outline several operational limitations that have to be taken into account
during all UAS flight missions (Table 2). In general, most specifications reflect common restrictions [39]
except for the lateral distance between the pilot and the UAS. Even though the visual line of sight
remains undefined, the maximum lateral distance of the pilot to the UAS in operation was set to
300 m in 2016. This imposed a substantial constraint to UAS mapping projects. However, in the
course of 2018, UAS regulations were revised, and the maximum lateral distance disappeared from
the restrictions and the flight height was lifted to 120 m [40]. Specifications of restricted areas and
requirements towards distances to structures and people are comparable to standard practice.

Table 2. Operational limitations for UAS flight missions in Rwanda according to Rwandan
regulations [38,40].

Operational Limitation Specification

Maximum take-offweight 25 kg
Time for UAS operation Only daylight operation

Minimum distance to aerodrome 10 km
Maximum flight height 100 m (increased to 120 m in 2018)

Visual Line Of Sight Required but undefined
Maximum lateral distance pilot to UAS 300 m (abolished in 2018)

Minimum lateral distance to people, vessels, animals,
building and structures 30 m (increased to 100 m in 2018)

Restricted areas Congested areas of cities, towns or settlements

Ethics and privacy Respect privacy of oth ers, surveillance of peo ple and
property with out their consent is pro hibited

3.2.2. UAS Equipment

Three different types of UAS were tested in this study to assess the variety of UAS as a platform:
one rotary-wing UAS (Inspire 2), one hybrid UAS (FireFLY 6) and one fixed-wing UAS (DT18).
The consciously chosen platforms have different specifications in terms of operability, coverage, price,
and necessity of ground control measurements. This study set-up reflected the broad spectrum of
commonly used UAS and allowed to acknowledge these varieties within the assessment of the fitness
of use. All platforms were equipped with an RGB sensor to capture nadir images (Table 3). The Inspire2
from DJI refers to semi-professional UAS with a focus for filmmaking. Both, the FireFLY6 and the DT18
PPK are survey-grade UAS of which the FireFLY6 presents a lower cost solution, and the DT18 PPK
refers to a professional UAS with high-end components. The DT18 PPK is equipped with a combined
Inertial Measurement Unit/ GNSS solution from Applanix (APX15) which allows direct georeferencing
and minimizes the need for ground control measurements.
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Table 3. Specifications of UAS used in this study.

Name Inspire 2 (DJI) FireFLY6 (BIRDSEYEVIEW) DT18 PPK (Delair Tech)

Type Rotary wing UAS Hybrid UAS Fixed-wing UAS
Sensor Zenmuse X5S SONY A6000 DT18 3Bands PPK

Sensor size 13 x 17.3 mm 23.5 x 15.6 mm 8.45 x 7.07 mm
Pixel pitch 2.48 μm 3.92 μm 3.45 μm

Sensor resolution 5280 x 3956 (20.1MP) 6000 x 4000 (24 MP) 2448 x 2048 (5MP)
Area Busogo (50 ha)–3 flights Muhoza (94 ha)–2 flights Gahanga (14 ha)–1 flight

Data collection
497 nadir images (total flight

time: 45 min)
991 nadir images

(total flight time: 60 min)
372 nadir images (total flight

time: 20 min)

Main features
Versality

Requires only small space for
landing

Flight stability
Requires only small space for

landing
Long endurance

Long flight endurance
PPK-capable

Automatic flight and landing
mode

During flight planning, the first step for the UAS data collection, areas for take-off and landing,
the UAS trajectory and the flying height are specified. A typical procedure to create the flight trajectory
with strips is 80% forward overlap and 40–80% side overlap [1] since redundancy can compensate for
aircraft instabilities. The flight planning configurations in this study were constraint by the regulations
(operational limitations), requirements for accurate data in an urban environment and external flight
conditions such as wind and illumination. Therefore, taking all these factors into account, the flight
missions were carried out with 80% forward and 70% side overlap. According to the regulations, flight
height was set to 100m above the surface. All UAS were equipped with a RGB sensor and resulting
ground sampling distances varied between 2–3cm depending on the specification of the camera.

To emphasize the diversity of possible flight configurations, data collection included three different
contexts–one urban study area, one peri-urban and one rural study area. The location of the study
sites is visualized in Figure 3.

Figure 3. Overview of UAS data collection sites in Rwanda.
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Due to the limited availability of open spaces, a hybrid UAS for the data collection of the densely
populated urban environment in Muhoza Sector was chosen. In contrast, the rotary wing UAS was
used to collect the images of the peri-urban area in Busogo Sector, as it is located on volcano slopes and
highly affected by local wind systems which strongly influences the stability of fixed-wing UAS. Due to
the regulatory restrictions and the difficulty to find sufficient large landing sites, the fixed-wing flight
was conducted from a cricket stadium 20 km south of the City of Kigali. At the time of data acquisition,
the maximum lateral distance of the pilot to the UAS was limited to 300m. Since only one area provided
sufficient space for landing, the DT18 could only capture images over the cricket stadium which is
embedded in a rural area in Gahanga Sector. Both, the Inspire 2 and the FireFLY6 were equipped with
a consumer-grade GNSS antenna allowing geotagging of all images. However, the measurements
of additional Ground Control Points (GCPs) indispensable. In contrast, the DT18 stood out for its
high-quality navigation sensor that records precise attitude logs including both, angular observations
(< 10 arcmins) as well as camera positions (<2.3 cm) [41]. However, former test flights showed, that the
DT18 requires additional GCPs to correct for (minor) systematic errors [41], particularly when no
GNSS corrections are applied.

3.2.3. Ground Control Measurements

Reference points were deployed and measured in all three case locations to include known
point coordinates for georeferencing as well as a means for quality control. Clearly visible ground
marker had a quadratic shape with an edge length of 30 cm showing a black and white chess pattern
(cf. Figure 4) which were evenly distributed in the area of interest. As specified in Table 4, ground
truth measurements were carried out with two different GNSS devices. The first was a pair of Leica
CS10 stations used in a base and rover set with a final RTK measurement accuracy of 2 cm. The second
device used was a handheld Trimble GeoXH receiving RTK corrections via the Rwandan Continuously
Operating Reference Station (CORS) GeoNet with a final measurement accuracy of 10 cm. Whereas
GCPs were included as a weighted observation during the photogrammetric image processing [42],
checkpoints were not taken into account during image processing and present as a classical way to
evaluate the geometric accuracy. The georeferenced orthomosaic has been generated following two
different block orientation methods. The Gahanga dataset was processed by means of an integrated
sensor orientation method [43] that uses the information of camera positions and attitude as well as
object coordinates of GCPs for the Bundle Block Adjustment. Since no attitude measurements were
available for the FireFLY6 and for the Inspire 2, the block orientation of the Muhoza and Busogo dataset
followed the GNSS-supported Aerial Triangulation method based on information on camera positions
and object coordinates of GCPs [cf. 43].

 
Figure 4. Measurement of reference points.
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Table 4. Block orientation method and ground truthing information of all datasets.

Dataset Block Orientation Method
GNSS Device for
Ground Truthing

Measurements
Count GCPs

Count
Checkpoints

Muhoza GNSS-supported Aerial
Triangulation (GNSS-AT)

Leica CS10 and
Trimble GeoXH 9 20

Busogo GNSS-supported Aerial
Triangulation (GNSS-AT) Leica CS10 9 9

Gahanga Integrated Sensor Orientation Trimble GeoXH 5 8

Although less than ten reference points are sufficient to achieve high geometric accuracies,
redundancy in deployed points has proven to be the preferable option as ground marker might get
vanished or destroyed. Due to unforeseen administrative problems, the time between the deployment
of the ground marker and the UAS flight itself was almost 5h. This can explain the fact that nearly
25% of all deployed points in the area of Muhoza were taken away. As summarised in Table 5, in the
peri-urban and rural areas of Busogo and Gahanga the authors experienced less time delay as well as
fewer losses of ground marker.

Table 5. Number of deployed reference points - count before and after the UAS flight.

Area Teams Deployed
Reference Points

Measured
Pre-Flight

Reference Points
Remained
Post-Flight

Time between Measurement
and Final Collection of

Ground Marker

Muhoza 2 39 30 5 h
Busogo 1 22 18 3 h

Gahanga 1 13 13 2 h

3.2.4. Software and Hardware Requirements

UAS data has been processed with the commercially available software Pix4D (www.pix4d.com)
which refers to a well-established professional photogrammetric software. Next to commercially
available software, freely available software for UAS image processing, such as Open Drone Map
(www.opendronemap.org), offer viable alternatives. Open Drone Map follows a structure-from-motion
pipeline which is based on Open SFM. Whereas previous open source software most often had the
deficiency to not provide an intuitive, user-friendly user interface, Open Drone Map can be used
as a command line tool, with a live USB or via a user-friendly Web-based graphical user interface.
Recommended system requirements are similar for Pix4D and Open Drone Map, and refer to 16GB
RAM for small projects over with 100–500 images, 32 GB RAM for projects over 500 images and 64 GB
RAM for very large projects with over 2000 images. The photogrammetric processing in this paper
was completed with Pix4D and took several hours for the Gahanga and Busogo dataset and more than
a day for the Muhoza dataset.

4. Results

4.1. What Land Information do Rwandan Stakeholders Need?

The results of the needs assessment revealed that land information needs were not merely
about data, but also other enabling requirements such as access, functionality and tool types.
Tables 6 and 7 show the outcomes of workshops with government and non-government stakeholders,
and how final decisions around land information needs were prioritised. The column, ‘relative
importance’ reflects the proportion of votes awarded to a specific need, while ‘popularity’ reflects the
proportion of participants who voted for that need.
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Table 6. Land information needs as identified by government stakeholders.

National Level Government Relative Importance Popularity

High accuracy satellite/aerial imagery 18.7 0.8
To know who owns what spatial data 14.7 0.8

Current land use information 9.3 0.4
3D cadastral data 8.0 0.4

Utility supply data 6.7 0.6
Convert existing web-based system to opensource 6.7 0.2

Match land parcel to admin boundary 6.7 0.2
Monitor operation of utilities and projects 6.7 0.4

Integration of utility supply data 6.7 0.4
Existing development at parcel level 4.0 0.2

Sub-national level Government (District)

Highly accurate spatial data (incl. imagery) 29.63 1.00
More mobile tools 11.85 0.56

Physical characteristics of land 11.85 0.44
Access to information 10.37 0.56

Geological data 8.15 0.33
Land use 5.93 0.56

Implementation of masterplan and DLUP in an efficient way 4.44 0.22
Parcel boundaries 2.96 0.22

Location of underground infrastructure 2.96 0.22
All transactions made on parcel 1.48 0.11

Information to stakeholders 0.74 0.11
Wireless infrastructure 0.74 0.11

Local level Government (Cell)

Spatial dataset of master plan and land parcels 0.67
GIS software 0.67

Soft copy of master plan 0.5
Soft copy of the DLUP 0.33

Integration of land use map with land information database 0.33
Information about planned infrastructure 0.17

Table 7. Land information needs identified by non-government stakeholders.

Non-Government Relative Importance Popularity

Value of land (valuation process) 22.67 0.8
Accessible open data 18.67 0.6

Consultative process around land use planning 12.00 0.4
More detailed (sub-use) land use planning in Master Plan 10.67 0.6

Actual land use information 9.33 0.6
History of land Information to resolve conflict between

infrastructure development and arable land 9.33 0.6

Integrated demographic information 6.67 0.6
Sub-meter accuracy of parcel boundaries (urban/peri-urban) 6.67 0.4
Information about proposed infrastructure development and

potential risks 4.00 0.4

Maintained web-based Master Plans 2.67 0.2

4.1.1. Government Stakeholders’ Needs

Spatial data with a high accuracy (although this was not quantified by participants) related to
land tenure and other land information was a priority for both national and sub-national government
stakeholders, attracting almost 20 and 30 percent of the total votes respectively. At both national and
sub-national levels, the emphasis was less on land tenure information and more on other types of
land information such as utilities, existing developments and land use, climatic and topographic data.
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Additionally, there was an emphasis on capacity needs (usability and accessibility), indicated in needs
such as integration of land parcel other types of land information (e.g., utilities and administrative
boundaries), the desire to transition to open source systems and have greater transparency around
data custodianship and access rights, and implementation of the District Land Use Plan (DLUP)
and masterplan.

4.1.2. Local Government and Communities’ Needs

Similar needs were identified by local government, who prioritized needs around digital data and
supporting software, and a related desire for land tenure information to be more readily integrated
with existing or planned land use and infrastructure. In general, land use tended to accord with the
use defined on the title, but inconsistency is starting to be an issue in areas transitioning to more urban
land use types. Here, it is common for the community to be found not using their land as zoned, or in
some instances, attributed to the information on the title not being updated. For example, in one Cell,
despite being rezoned for urban land use (residential), some land titles still reflected the previously
planned agricultural land use. In these instances, it appeared that land records were only updated if
the landowner formally seeks a building permit or other land-related services; otherwise, the land
title remains unharmonised with the Master Plan. Also, although most of the land in Rwanda has
been demarcated and titled during the LTRP, some plots (or owners who occupy the plots) remain
untitled due to information gaps at the time of the LTRP, e.g.„ lack of identification, family disputes, etc.
The use of general boundaries during the LTRP for demarcation for titling has also not been updated
accurately due to the resolution of GPS receivers (3 meters) or lack of GPS receivers, leading to the
on-ground practices like pacing by foot to resolve conflicts.

Lack of information, or lack of access to information, about the Master Plan (i.e., information
about proposed new development) was identified. This inhibits the ability of local government to play
a role in plan implementation. Additionally, given that the Master Plan plays a crucial role in setting
out future development, it appears that local community consultation is ad hoc. For example, in some
villages, local communities do not participate in the establishment of the master plan/LUP: in some
others, only Cell officers are contacted, whereby it then falls onto them to inform the community; in yet
others, local consultation has been undertaken.

In summary, it appears that at the Cell level, land information needs can be generalised as lack of
access to development information (which affects land use practices and enforcement of intended land
use types) and lack of up-to-date spatial and administrative information about individual parcels or
persistent gaps in information.

4.1.3. Non-Government Stakeholders’ Needs

In contrast, non-government stakeholders’ needs were less focused on land tenure information
and more on other information needs. Information needs like land value, land use, history of land,
and proposed infrastructure were identified; the only tenure-related information was sub-meter
accuracy of parcel boundaries in urban and peri-urban areas. It is no surprise that capacity needs
around data accessibility, stakeholder engagement (e.g., consultation) and up-to-data web-based
masterplans were all identified and prioritized.

4.2. What Data Quality can be Achieved with UAS-Technology?

The data quality can be derived from checkpoint residuals and a visual evaluation of the final
orthomosaic. Final checkpoint residuals are outlined in Table 8. Almost pixel-level geometric accuracy
was achieved with the Busogo dataset. Both Gahanga and Busogo show more than 10cm RMS error
of horizontal residuals. Differences regarding final geometric accuracy can be attributed to the UAS
equipment and sensor as well as to the device and conditions for the measurements of reference points.
Nonetheless, obtained orthomosaics are of high geometric accuracy and comparable to results in other
scientific contributions [44,45].
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Table 8. Specifications of final results.

Area Ground Sampling Distance RMS Error of CP Residuals (X/Y/Z)

Muhoza 2.16 cm 0.122m/0.086m/0.467m

Busogo 2.18 cm 0.033m/0.031m/0.349m

Gahanga 2.63 cm 0.127m/0.170m/0.244m

The visual evaluation revealed commonalities but also some differences in the datasets. Figure 5
presents the final orthomosaics of all three datasets. It is evident that sufficient overlap was considered
during the flight missions as no gaps were present and the area of interest was entirely covered by
the reconstructed scene. Differences of the visual quality are evident in the close-up views. Here,
the image quality was best for the Muhoza dataset, as most features including rooftops, as well as
vegetation, were well exposed in the orthomosaic. In contrast, the Busogo dataset showed a lower
image quality, visible in over-exposed roofs and problems to fulfil a proper histogram matching
during image processing. This can be attributed to the adverse lighting conditions during data
capture. Even though meteorological conditions were perfect for flying during data capture of the
Gahanga dataset, the sensor showed substantial difficulties to deal with bright and dark image features.
Especially a large part of the parking area is very overexposed, even though the surface was covered
with reddish gravel.

Figure 5. Overview of the generated orthomosaics and GCP/checkpoint distribution.

4.3. Can UAS Respond to the Needs Expressed by Different Stakeholders?

To draw conclusions on the ability of UAS data and UAS-based workflows to satisfy prioritized
needs, the results of Tables 6 and 7 were categorised and integrated in a matrix which distinguishes
between (a) needs where UAS data has no significant contribution toward the achievement and (b)
needs that can be matched with UAS data (Figure 6). The latter category was further associated to
one of the four key characteristics of UAS data: high geometric accuracy, provision of up-to-date data,
high spatial and/or temporal resolution, and high level of interpretability.
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Figure 6. Prioritized needs classified by the ability of UAS data to match stated needs with
further association to key characteristics of UAS data and ranking according to the significance
of the contribution.

Figure 6 reveals that UAS data can have a significant contribution to match 27 out of 41
prioritised needs. The remaining 14 needs mainly refer to access to data, information, and software.
A high and medium significance of UAS data was found mostly among national-level stakeholders,
both governmental (eight needs) and non-governmental (seven needs) organisations. The needs of the
local government could be met with medium (one need) or low (two needs) significant contributions of
UAS data. Most of the prioritised needs of the sub-national government can only partially be fulfilled
by UAS data (i.e., medium or low significance). A comparison of the four different characteristics
shows that the provision of up to date data and the high level of interpretability are key in contributing
to matching the stated needs. However, both aspects are highly interrelated to high geometric accuracy
as well as high spatial resolution–otherwise, the data would not show such high level of detail which
itself leads to high interpretability and its significant contribution to derive land use and topographic
information. Although the quadrants in Figure 6 feature unique characteristics, all are interrelated and
are therefore considered overlapping as well.

UAS regulations were found to have considerable impact on the scale of the utilisation of UAS in
the context of land administration. Especially flight height and line of sight restrictions limit one data
collection to several tens of hectares. Mapping larger areas would thus require constant moving of
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the ground control station with an adverse impact on the mapping efficiency. Geometric accuracy,
was found to be less affected by UAS regulations. In contrast, the high level of interpretability and high
spatial resolutions could be an issue when it comes to privacy and ethical constraints. Even though not
the case in Rwanda, some countries demand public consent for the data collection of private property.
A condition that requires sound data collection preparations and might put large restrictions on the
UAS missions, particularly in urban and peri-urban areas.

4.3.1. High Geometric Accuracy

More specifically, the expressed need by government stakeholders for highly accurate spatial data
can entirely be met by UAS imagery as shown by the low RMSE of checkpoint residuals in this study.
Even though the national CORS in Rwanda cannot be considered as a source of GNSS corrections for
PPK workflows, different means of georeferencing have proven to hit similar accuracies. This data
characteristic facilitates the manual or digital delineation of parcel boundaries and support valuation
and taxation processes–two needs which were prioritised by non-government stakeholders. The current
cadastral map is based on the LTR programme which followed a general boundary approach which
sometimes shows several meters offset to the correct location of the boundary. Most disputes arose
during land transactions in densely populated areas, where plot sizes are small, and people depend
on their land for subsistence farming. In those cases, UAS data ultimately facilitates a reliable and
geometrically correct database to correct existing cadastral data.

4.3.2. Provision of up-to-Date Data

A comparison of the obtained UAS-based orthomosaic of Muhoza and the corresponding
orthomosaic which is based on classical aerial photos from 2009 shows a high number of clearly
visible changes (Figure 7), where 13 large buildings and 28 small buildings/annexes were newly
constructed, 5 buildings were demolished, and 28 large buildings and 10 small buildings/annexes
remained. Especially urban and peri-urban areas face numerous changes with regard to development
and urbanization. The high level of detail and the immediate availability of aerial photos provide
the geospatial basis to extract up-to-date land use, land development, and topographic information
of small scale areas which is crucial to implement current urban development plans efficiently.
Similarly, the timely provision of UAS data could support the delineation of parcel boundaries based
on orthomosaics or regular base map updating activities. Especially up-to-date 3D point cloud data
obtained from UAS images was identified as input for 3D cadastre. A data type, which can neither be
provided by satellite images nor by aerial images.

Figure 7. Left: Orthomosaic based on aerial images from 2009; centre: Orthomosaic based on UAS
images from 2018; right: Change detection of buildings (orange: buildings remained the same, red:
buildings got demolished, blue: new building constructions).

A low significant contribution of UAS data can be seen in contributing to a multi-purpose spatial
data infrastructure which enables the integration of different data, which can further support the
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implementation of spatial development plans. In general, UAS-based data acquisition workflows
allow stakeholders to gradually upgrade existing base-maps at a small scale, without the need for
significant financial outlay upfront–two fundamental aspects of fit-for-purpose approaches.

4.3.3. High Spatial and/or Temporal Resolution

The proven flexibility of UAS data acquisition supports the collection of a multi-temporal base
data for on-going and current tasks such as the revision of the National Development Plans (i.e.,
Master Plans) for Secondary Cities or development plans for towns and villages. Frequent changes
in land use projects can be tracked and monitored using repetitive UAS data collections, especially
since plot sizes and administrative areas in Rwanda tend to be small and lend themselves well to UAS
data capture. Additionally, disputes about former land ownership and land use can be solved more
efficiently with evidence from a multi-temporal database (i.e., history of land information). Next to the
temporal aspect, the high spatial resolution of UAS data allows users to extract information about
developments at parcel level or a more detailed land use planning which also includes sub-uses in
urban and peri-urban areas.

4.3.4. High Level of Interpretability

This fundamental characteristic is attributed to the high level of detail in the generated UAS
products which itself allows for a straightforward interpretation of the aerial dataset. People are more
likely to correctly interpret the orthophoto as they recognise specific textures of the surface or physical
features such as bushes, hedges or particular buildings. This allows UAS data to have a significant
contribution in providing the database for visualising land tenure data or planned infrastructure–an
asset which supports participatory mapping activities for land administration or urban planning.
The authors observed, that in many cases, de-jure land rights do not represent de-facto land rights
as the cadastral maps show little details on the physical extent (except for the parcel boundary).
The integration of an orthophoto in the cadastral map would support the alignment of de-facto and
de-jure land rights as it would spatially outline adjudicated land rights that are easy to interpret even
for laymen. Furthermore, UAS data could aid consultative processes of land use planning with clear
and understandable background data. A profound significance of UAS data was found in support
of maintaining a web-based spatial plan, promoting more mobile tools, and sharing information
with stakeholders.

5. Discussion

This study was designed to determine the match between stakeholders’ needs and the
characteristics of the UAS data acquisition workflow and its final products as useful spatial base data
for land administration and spatial planning, particularly within the discourse of a more fit-for-purpose
land administration.

5.1. Opportunities of UAS Data Collection to Match Land Information Needs

The socio-technical assessment revealed that the technical capabilities of UAS-based data are
well-placed to match most of the prioritised needs in Rwanda. These needs did not only reflect the
type of data (e.g., land use data, geological data, utility supply data, etc.) but also on characteristics of
data and processes (e.g., geometric accuracy, spatial resolution, custodian of data, data integration,
accessibility, etc.). This enabled the matching of the characteristics of UAS data to a particular type of
data as well as the specific requirements of the data such as temporal resolution or geometric accuracy.
The synthesis as shown in Figure 6 demonstrates that there is a high number of needs where UAS data
could potentially have a significant contribution. The results suggest that UAS as a data acquisition
device could most likely be adopted by national-level stakeholders or sub-national government
stakeholders, which can be attributed to the system in Rwanda where the national government is
the main provider of geospatial data. However, with UAS as a low-cost and flexible data acquisition
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platform, sub-national or local government stakeholders could increase their share of data provision,
especially with regard to small scale mapping or multi-temporal flight missions in a local context.
This would facilitate the co-production of land information in a decentralized way, a finding that is also
reflected by [19]. The opportunity of using UAS-based images to delineate or enhance the accuracy of
parcel boundaries is in line with the guiding principles for building fit-for-purpose land administration
systems in developing countries [46]. Here, UAS were specifically outlined to provide the large scale
image maps to map spatial units in densely populated areas (urban central, informal settlements and
small towns). Results further suggest that UAS data can fulfil multiple needs across different domains
such as planning and surveying. This is contrary to conventional ground surveying with GNSS or total
station, where acquired data only serves a single purpose. Although not explicitly prioritised as a need,
the UAS test flights showed that the (nearly) immediate availability of orthophotos could promote
citizen participation in the adjudication process, a critical result which was also outlined by [19,47].
Even though the Rwandan land administration information system is very advanced in comparison to
other African countries, it was found that the digital nature of a generated UAS-based orthomosaic can
easily be integrated in existing spatial data infrastructures to be used by numerous GIS applications,
or if absent, support the modernization of current paper-based land registration systems.

5.2. Challenges of UAS Data Collection to Match Land Information Needs

Aside from those advantages, the UAS test flights in Rwanda also reveal four main challenges
with regard to the implementation of UAS as a data acquisition tool to match land information needs.

Firstly, it needs to be noted that the terrain in Rwanda–the country of the thousand hills–is a very
challenging testbed. Fixed wing drones have only limited climbing rates, and flight planning must
be aligned with the physical environment. The availability of sufficient open space for appropriate
landing strips is an essential precondition which was found to be challenging to fulfil. Hybrid UAS
and rotary wing UAS are likely a more suitable instrument for small scale mapping activities. Current
limitations with regard to battery capacity and flight time make hybrid UAS more effective for mapping
tasks as they have aFRTK better flight endurance. In contrast, rotary wing UAS should be preferred to
monitor the operation of utilities.

The second hurdle refers to the UAS regulations in Rwanda. With an operational limitation
to fly only in visual line of sight, scaled application of UAS-mapping activities remain aspirational.
Acknowledging the plans of the Government of Rwanda, legislation with a more performance-based
orientation may soon be drafted and implemented more effectively. This development could pave the
way for broader use of UAS-based data acquisition that supports land tenure recording, as well as
extensive land information collection for development purposes, as envisaged in [48].

The third hurdle includes the topic of ground truthing. It has been shown that especially in an
urban environment, the collection and measurement of reference points are challenging and means of
ground marking should be context-specific. PPK and RTK capable UAS can provide an answer to this
challenge as they minimise or even eliminate the need for ground control measurements. However,
the availability of professional GNSS equipment or a national network of existing GNSS reference
stations is an essential precondition for RTK or PPK-based workflows. If the national CORS is not
reliable or not existing, other means of accurate GNSS measurements such as Precise Point Positioning
should be taken into consideration.

The fourth challenge refers to soft- and hardware requirements for data processing. Experiences
of the authors in Rwanda revealed that the majority of employees of the Rwanda Land Management
and Use Authority have a machine which could be able to process smaller datasets up to 500 images.
However, to facilitate the processing of the data of an entire township, machines with more RAM and
disk space would be needed–ideally a server environment. Cloud-based processing is seen very critical,
as internet connections are very often subject to outages. Financial barriers to purchase the required
hardware and a commercial software such as Pix4D or similar were perceived as very high–costs that
are likely to exceed the procurement costs of the UAS equipment. At the same time, current open
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source software cannot reproduce the same data quality as commercially available software. However,
given the rapid development of Open Drone Map, and the increasing number of users, the software
algorithm is likely to mature in the close future.

5.3. Limitations of this Research and Future Work

The scope of this study was limited regarding the validation of the UAS technology in a relevant
environment but not in an operational environment as the UAS flights were only trialled without the
direct implementation of the data. Thus, this study did not address gaps and challenges on how the
expressed stakeholder needs were actually met in the context of Rwanda. Future work could address
this with a strong focus on implementation to evaluate the fitness-of-use of UAS workflows with due
consideration of the entire innovation chain including GIS applications. This could be coupled with the
design and evaluation of appropriate governance and capacity building models to allow the prototype
demonstration of UAS-based workflows in an operational environment. Additionally, further research
will be needed to explore the role of UAS compared to other geospatial technologies such as satellite
data and classical aerial photographs in providing base data that serves as a spatial framework for the
various land administration functions [49].

6. Conclusions

The presented work highlights the capabilities of UAS technology to match the needs of land
professionals in Rwanda. Results of a sound needs assessment across different stakeholder groups
demonstrate prioritised demands of respective respondents. Although ranked differently, the need
for high-resolution, up-to-date land information is consistently identified in the final lists of all group
discussions. Across the globe, UAS have become an attractive technology and only the upcoming years
will show whether multiple governmental and non-governmental stakeholders can capitalise on the
numerous benefits of this data acquisition method. The flight missions in Rwanda showed that UAS as
a platform to remotely capture images have clear advantages in terms of fit-for-purpose data provision
by facilitating accurate, up-to-date data with a potentially high spatial as well as temporal resolution.
However, the integration of the needs assessment and the UAS test flights indicates that structural
and capacity conditions currently undermine the vast potential of the UAS data acquisition method.
Therefore, a key policy priority should be to implement country-specific capacity development and
governance strategies; otherwise, scaled implementation and increasing technology uptake might
remain wishful thinking. Notwithstanding the outlined challenges, the results of this study show that
UAS technology has the potential to be an appropriate land tool with a significant contribution in
catering the base data for most of the prioritized land information needs in Rwanda.
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