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Preface to “Mathematical and Numerical Analysis of

Nonlinear Evolution Equations”

Nowadays, research activity in mathematics has acquired a new mission. Mathematical methods

have been proposed and employed in an attempt to understand the behavior and evolution of a

particle system, especially those of complex systems. The definition of particle has been expanded to

also include the entities derived from living matter, e.g., human cells, virus, pedestrians, and swarms.

A particle is not a mere entity but is now assumed to be able to perform a strategy, function, or

interaction and thereby acquire the denomination of being ‘active’ or, even less accurate, ‘intelligent’.

Bearing all the above in mind, an important research activity in mathematics addresses the modeling

of complex systems. In particular, an interplay among researchers coming from different fields

has emerged, thus allowing the birth of an applied science termed applied mathematics. Applied

mathematics is based on the derivation and application of mathematical frameworks for the modeling

of a particle system.

The historical frameworks based on ordinary differential equations (ODEs), partial differential

equations (PDEs), kinetic theory (or more in general statistical mechanisms), continuum mechanics,

and statistics have been the first employed in some problems related to biology, epidemics, and

economics. Each historical framework has shown some advantages and some disadvantages in the

study of a complex systems, thus requiring the derivation of further generalized frameworks which

should be adapted to the system under consideration. Accordingly, various new frameworks have

been proposed based on generalized kinetic theories and fractional calculus.

In this context, the term evolution equation can be considered as a general framework whose

solution is a function describing the time evolution of a microscopic, mesoscopic, or macroscopic

quantity related to the system. On the one hand, the mathematical analysis allows obtaining

information on the qualitative behaviors of the system, including the existence of solutions,

asymptotic behaviors, and nonlinear dynamics. On the other hand, numerical and computational

analysis furnishes methods to obtain quantitative information about the solutions and the possibility

to compare the time evolution of the solution of an evolution equation with empirical data (tuning

problem).

This book is a Special Issue reprint. Specifically, it comprises the articles of a Special Issue that

I have recently organized in the journal Mathematics (MDPI). The Special Issue is been devoted to

researchers working in the fields of pure and applied mathematics and physics and, in particular,

to researchers who are involved in the mathematical and numerical analysis of nonlinear evolution

equations and their applications.

The first part of the book deals with new proposed mathematical frameworks and their

mathematical analysis mainly addressed toward the existence of solutions of related initial and

initial-boundary value problems, stability, and asymptotic analysis. Among the new mathematical

frameworks presented in the book, the recent developments of the discrete thermostatted kinetic

theory for far-off-equilibrium complex systems are presented. In the new discrete framework,

the existence and uniqueness of the solution of the related Cauchy problem and of the related

non-equilibrium stationary state are established, the rigorous proof that the solution of the discrete

thermostatted kinetic model catches the stationary solutions as time approaches infinity is also

presented and, finally, the continuous dependence on initial data is also established. In this context,

some methods of nonlinear analysis, such as the fixed-point technique, have an important role

ix



especially in the analysis of solutions of the mathematical frameworks; accordingly, recent fixed-point

results in generalized metric spaces are proposed in the book. Recent mathematical frameworks

coming from fractional calculus theory are also part of the present book. Specifically, fractional

abstract Cauchy frameworks for possibly degenerate equations in Banach spaces are mathematically

analyzed, and some related inverse problems are stated and studied. Applications are also discussed.

The second part of the book is concerned with applications to some complex systems in biology,

epidemics and, also, engineering. In detail, a new mathematical model based on a generalized kinetic

theory is proposed for an autoimmune disease; numerical results are presented and discussed from

a medical viewpoint. The modeling of tumor growth is also taken into account in this book by

stating an optimal control problem of a system of three evolutionary equations involving fractional

powers of three self-adjoint, monotone, unbounded linear operators having compact resolvents; in

particular, the first-order necessary conditions for optimality of a cost function of tracking type are

derived. In the context of the coronavirus pandemic, a new mathematical model is also presented

via a compartmental dynamical system; its equilibria are investigated for local and global stability;

numerical simulations show that contact restrictive measures and an intermittent lockdown policy

are able to delay the epidemic’s outbreak (if taken at a very early stage). Finally, a delayed SEIQRS-V

epidemic model for propagation of malicious codes in a wireless sensor network is presented and

analyzed, local stability and existence of Hopf bifurcation are performed, and numerical simulations

are presented in order to analyze the effects of some parameters on the dynamical behavior.

I am sure that the reader will find the new results, methods, and models to be of great interest.

I hope that you, the reader, will benefit from the contents of this book in the development and pursuit

of your own research activity.

Carlo Bianca

Editor

x



mathematics

Article

Mathematical Analysis of a Thermostatted Equation
with a Discrete Real Activity Variable

Carlo Bianca 1,2 and Marco Menale 1,3,*

1 Laboratoire Quartz EA 7393, École Supérieure d’Ingénieurs en Génie Électrique, Productique et Management
Industriel, 95092 Cergy Pontoise CEDEX, France; c.bianca@ecam-epmi.com

2 Laboratoire de Recherche en Eco-innovation Industrielle et Energétique, École Supérieure d’Ingénieurs en
Génie Électrique, Productique et Management Industriel, 95092 Cergy Pontoise CEDEX, France

3 Dipartimento di Matematica e Fisica, Università degli Studi della Campania “L. Vanvitelli”, Viale Lincoln 5,
I-81100 Caserta, Italy

* Correspondence: marco.menale@unicampania.it

Received: 28 November 2019; Accepted: 17 December 2019; Published: 2 January 2020
��������	
�������

Abstract: This paper deals with the mathematical analysis of a thermostatted kinetic theory equation.
Specifically, the assumption on the domain of the activity variable is relaxed allowing for the discrete
activity to attain real values. The existence and uniqueness of the solution of the related Cauchy problem
and of the related non-equilibrium stationary state are established, generalizing the existing results.

Keywords: real activity variable; thermostat; nonlinearity; complex systems; Cauchy problem

1. Introduction

The mathematical analysis of a differential equation is usually based on the existence and uniqueness
of a positive solution of the related Cauchy problem and on the dependence on the initial data (well-posed
problem) [1,2]. The well-posed problem is analyzed under some (usually strongly) assumptions. However,
if the differential equation is proposed as a general paradigm for the derivation of a mathematical model
for a complex system [3,4], the definition of the assumptions is a delicate issue considering the restrictions
that can be required on the system under consideration.

The present paper aims at generalizing the mathematical analysis of the discrete thermostatted kinetic
theory framework recently proposed in [5,6] and employed in [7] for the modeling of the pedestrian
dynamics into a metro station. The mathematical framework consists of a nonlinear differential equations
system derived considering the balancing into the elementary volume of the microscopic states (space,
velocity, strategy or activity) of the gain and loss particle-flows. The mathematical framework contains also
a dissipative term, called thermostat, for balancing the action of an external force field which acts on the
complex system, thus moving the system out-of-equilibrium [8,9]. The thermostat term allows for the
existence and thus the modeling of the non-equilibrium stationary (possibly steady) states; see, among
others, [10–15].

The mathematical analysis presented in [5] is based on the assumption that the discrete activity
variable is greater than 1. In order to model complex systems, such as social and economical
systems [16–20], the possibility for the activity variable to also attain negative values should be
planned. Accordingly, this paper is devoted to a further generalization of the existence and uniqueness
of the solution and of the non-equilibrium stationary solution for a real activity variable.

The present paper is organized as follows: after this introduction, Section 2 is devoted to the main
definitions of the differential framework and the related non equilibrium stationary states; Section 3
deals with the new mathematical results.

Mathematics 2020, 8, 57; doi:10.3390/math8010057 www.mdpi.com/journal/mathematics1
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2. The Mathematical Framework

Let Ep > 0, Iu = {u1, u2, . . . , un}, ui ∈ R, ηh,k : Iu × Iu → R+, Bi
hk : Iu × Iu × Iu → R+, and

Fi : [0,+∞[→ R+, for i, h, k ∈ {1, 2, . . . , n}.
This paper is devoted to the mathematical analysis of the solutions fi : [0,+∞[→ R+ of the

following system of n nonlinear ordinary differential equations (called discrete thermostatted kinetic
framework):

d fi
dt

(t) = Ji[f](t) + Ti[f](t), i ∈ {1, 2, . . . , n}, (1)

where f(t) = ( f1(t), f2(t), . . . , fn(t)) is the vector solution, and Ji[f](t) := Gi[f](t)− Li[f](t) and Ti[f](t)
are the operators defined as follows:

Gi[f] :=
n

∑
h=1

n

∑
k=1

Bi
hk ηhk fh(t) fk(t);

Li[f] := fi(t)
n

∑
k=1

ηhk fk(t);

Ti[f](t) := Fi −

⎛
⎜⎜⎜⎜⎝

n

∑
j=1

up
j (Jj[f] + Fj)

Ep

⎞
⎟⎟⎟⎟⎠ fi(t).

Let Ep[f](t) be the pth-order moment:

Ep[f](t) =
n

∑
i=1

up
i fi(t), p ∈ N,

andRp the following function space:

Rp :=
{

f ∈ C
(
[0,+∞[; (R+)n) : Ep[f](t) = Ep

}
.

Let f0 ∈ Rp, the Cauchy problem related to Equation (1) reads:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

df(t)
dt

= J[f](t) + T[f](t) t ∈ [0,+∞[

f(0) = f0,

(2)

where J[f] = G[f]− L[f] = (J1[f], J2[f], . . . , Jn[f]) = (G1[f]− L1[f], G2[f]− L2[f], . . . , Gn[f]− Ln[f]) and
T[f] = (T1[f], T2[f], . . . , Tn[f]).

The existence and uniqueness of the solution of the Cauchy problem (2) have been proved in [5],
under the main assumption ui ≥ 1, for i ∈ {1, 2, . . . , n}. This paper aims at generalizing the result
of [5] when ui ∈ R.

A non-equilibrium stationary state of the framework (1) is a constant function fi, for i ∈
{1, 2, . . . , n}, solution of the following problem:

Ji[f]−

⎛
⎜⎜⎜⎜⎝

n

∑
j=1

up
j (Jj[f] + Fj)

Ep

⎞
⎟⎟⎟⎟⎠ fi = 0. (3)

2
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The existence and uniqueness of the non-equilibrium stationary state have been shown in [6]
under the assumption ui ≥ 1, for all i ∈ {1, 2, . . . , n}. This result can be relaxed as stated in Theorem 2.

Remark 1. Nonlinear systems (1) are a mathematical framework proposed in [5] for the modeling of a complex
system C homogeneous with respect to the mechanical variables (space and velocity), where u, called activity,
models the states of the particles. The function fi, for i ∈ {1, 2, . . . , n}, denotes the distribution function of the
ith functional subsystem.

3. The Generalized Results

Let ‖x‖p be the �p-norm on Rn:

‖x‖p :=

(
n

∑
i=1

xp
i

) 1
p

,

and Ēp the following number:

Ēp := sup
t>0

(
n

∑
i=1
|ui|p fi(t)

)
. (4)

It is worth stressing that, if p is even, then Ēp = Ep; if p is odd, then Ep ≤ Ēp.

The main result of the paper follows.

Theorem 1. Let p ∈ N, Ēp < ∞ and f0 ∈ Rp. Assume that

• ui ∈ R \ {0};
•

n

∑
i=1

Bi
hk = 1, for all h, k ∈ {1, 2, . . . , n};

• There exists a constant η > 0 such that ηhk ≤ η, for all h, k ∈ {1, 2, . . . , n};
• There exists a constant F > 0 such that Fi(t) ≤ F, for all i ∈ {1, 2, . . . , n} and t ≥ 0.

Then, there exists a unique positive function f ∈ Rp which is solution of the Cauchy problem (2).

Proof. Let f, g ∈ Rp. Since
n

∑
i=1

Bi
hk = 1, for all h, k ∈ {1, 2, . . . , n}, one has:

‖G[f]−G[g]‖1 =
n

∑
i=1
|Gi[f]− Gi[g]|

=
n

∑
i=1

∣∣∣∣∣
n

∑
h=1

n

∑
k=1

Bi
hk ηhk fh(t) fk(t)−

n

∑
h=1

n

∑
k=1

Bi
hk ηhk gh(t) gk(t)

∣∣∣∣∣
=

n

∑
i=1

∣∣∣∣∣
n

∑
h=1

n

∑
k=1

Bi
hk ηhk ( fh(t) fk(t)− gh(t)gk(t))

∣∣∣∣∣
≤ η

n

∑
h=1

n

∑
k=1
| fh(t) fk(t)− gh(t)gk(t)|

≤ η
n

∑
h=1

n

∑
k=1
| fh(t) fk(t)− fh(t)gk(t) + fh(t)gk(t)− gh(t)gk(t)|

≤ η

∣∣∣∣∣
n

∑
h=1

fh(t) +
n

∑
h=1

gh(t)

∣∣∣∣∣
n

∑
k=1
| fk(t)− gk(t)|

= η (‖f‖1 + ‖g‖1) ‖f− g‖1

= η |E0[f](t) +E0[g](t)| ‖f− g‖1,

(5)

3
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and

‖L[f]− L[g]‖1 =
n

∑
i=1

∣∣∣∣∣ fi(t)
n

∑
k=1

ηik fk(t)− gi(t)
n

∑
k=1

ηik gi(t)

∣∣∣∣∣
≤ η |E0[f](t) +E0[g](t)| ‖f− g‖1.

(6)

Since

|E0[f]| =
∣∣∣∣∣

n

∑
i=1

fi(t)

∣∣∣∣∣ =
∣∣∣∣∣

n

∑
i=1

up
i

up
i

fi(t)

∣∣∣∣∣ , (7)

if L := max
0≤i≤n

{
1
|ui|p

}
, then, by Equation (7), one has:

|E0[f]| ≤ L
n

∑
i=0
|ui|p fi(t) ≤ L Ēp. (8)

By Equations (5), (6) and (8), one has:

‖J[f]− J[g]‖1 ≤ 2 η |E0[f] +E0[g]| ‖f− g‖1

≤ 4 η L Ēp‖f− g‖1.
(9)

Moreover:

‖T[f]− T[g]‖1 =
n

∑
i=1
|Ti[f]− Ti[g]|

=
n

∑
i=1

∣∣∣∣∣
(

∑n
j=1 up

j (Jj[f] + Fj)

Ep

)
fi(t)−

(
∑n

j=1 up
j (Jj[g] + Fj)

Ep

)
gi(t)

∣∣∣∣∣
≤

n

∑
i=1

(
∑n

j=1 up
j Fj

Ep

)
| fi(t)− gi(t)|+

n

∑
i=1

∣∣∣∣∣
(

∑n
j=1 up

j Jj[f]

Ep

)
fi(t)−

(
∑n

j=1 up
j Jj[g]

Ep

)
gi(t)

∣∣∣∣∣
=

(
∑n

j=1 up
j Fj

Ep

)
‖f(t)− g(t)‖1 +

n

∑
i=1

∣∣∣∣∣
(

∑n
j=1 up

j Jj[f]

Ep

)
fi(t)−

(
∑n

j=1 up
j Jj[g]

Ep

)
gi(t)

∣∣∣∣∣ .

(10)

4
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Bearing the expressions of the operator J[f] in mind, one has:

n

∑
i=1

∣∣∣∣∣
(

∑n
j=1 up

j Jj[f]

Ep

)
fi(t)−

(
∑n

j=1 up
j Jj[g]

Ep

)
gi(t)

∣∣∣∣∣
=

n

∑
i=1

∣∣∣∣∣ 1
Ep

n

∑
l=1

up
l Jl [f] fi(t)− 1

Ep

n

∑
l=1

up
l Jl [g] gi(t)

∣∣∣∣∣
=

n

∑
i=1

∣∣∣∣∣ 1
Ep

n

∑
l=1

up
l

n

∑
h=1

n

∑
k=1

Bl
hk ηhk fh(t) fk(t) fi(t)

− 1
Ep

n

∑
l=1

up
l fl(t)

n

∑
k=1

ηlk fk(t) fi(t)

− 1
Ep

n

∑
l=1

up
l

n

∑
h=1

n

∑
k=1

Bl
hk ηhk gh(t)gk(t)gi(t)

+
1
Ep

n

∑
l=1

up
l gl(t)

n

∑
k=1

ηlk gk(t)gi(t)

∣∣∣∣∣
≤

n

∑
i=1

∣∣∣∣∣ 1
Ep

n

∑
l=1

up
l

n

∑
h=1

n

∑
k=1

Bl
hk ηhk ( fh(t) fk(t) fi(t)− gh(t)gk(t)gi(t))

∣∣∣∣∣
+ η

n

∑
i=1

n

∑
k=1
| fk(t) fi(t)− gk(t)gi(t)|

≤
η ∑n

j=1 up
j

Ep

n

∑
i=1

n

∑
h=1

n

∑
k=1
| fh(t) fk(t) fi(t)− gh(t)gk(t)gi(t)|

+ η
n

∑
i=1

n

∑
k=1
| fh(t) fi(t)− gk(t)gi(t)| .

(11)

Since f and g belong to the spaceRp, by Equation (8), one has:

n

∑
i=1

n

∑
h=1

n

∑
k=1
| fh(t) fk(t) fi(t)− gh(t)gk(t)gi(t)|

=
n

∑
i=1

n

∑
h=1

n

∑
k=1

∣∣∣∣∣ fh(t) fk(t) fi(t)− fh(t) fk(t)gi(t) + fh(t) fk(t)gi(t)

− gi(t)gh(t) fk(t) + gi(t)gh(t) fk(t)− gh(t)gk(t)gi(t)

∣∣∣∣∣
=

n

∑
i=1

n

∑
h=1

n

∑
k=1
| fh(t) fk(t)( fi(t)− gi(t)) + gi(t) fk(t)( fh(t)− gh(t)) + gi(t)gh(t)( fk(t)− gk(t))|

≤
n

∑
h=1

fh(t)
n

∑
k=1

fk(t)
n

∑
i=1
| fi(t)− gi(t)|+

n

∑
i=1

gi(t)
n

∑
k=1

fk(t)
n

∑
h=1
| fh(t)− gh(t)|

+
n

∑
i=1

gi(t)
n

∑
h=1

gh(t)
n

∑
k=1
| fk(t)− gk(t)|

≤ ‖f− g‖1

(
E2

0[f] +E0[f]E0[g] +E2
0[g]

)
≤ ‖f− g‖1 (E0[f] +E0[g])

2

≤ ‖f− g‖14 L2 (Ēp
)2 .

(12)

5
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By Equation (8), one has:

n

∑
i=1

n

∑
k=1
| fh(t) fi(t)− gh(t)gi(t)| ≤ (E0[f] +E0[g]) ‖f− g‖1

≤ 2 L Ēp‖f− g‖1.

(13)

By Equations (10)–(13), one has:

‖T[f]− T[g]‖1

≤
[(

∑n
j=1 up

j Fj

Ep

)
+ 4 η

n

∑
j=1

up
j L2

(
Ēp
)2

Ep
+ 2 η L Ēp

]
‖f− g‖1.

(14)

According to Equation (9) and Equation (14), the operators J[f] and T[f] are locally Lipschitz in f,
uniformly in t. Then, there exists a unique local solution of the Cauchy problem (2), and the solution f

belongs to the spaceRp (see Theorem 4.1 of [5]). The global existence of the solution is gained because
f is globally bounded, for all t > 0, i.e., by Equation (7), one has:∣∣∣∣∣

n

∑
i=1

fi(t)

∣∣∣∣∣ ≤ L Ēp < +∞, ∀t > 0.

Then, the proof is gained .

Remark 2. If ui = 0, Theorem 1 holds true if fi is a bounded function, i.e., ∃K > 0 such that

| fi(t)| ≤ K, ∀t > 0.

Indeed, if l is such that ul = 0, the estimates inequalities (8), (9), and (14) rewrite:

|E0[f]| ≤ L
n

∑
i=1|ui 
=0

|ui|p fi(t) + K ≤ L Ēp + K,

|J[f]− J[g]‖1 ≤ 4 M(LĒp + K)2‖f− g‖1,

‖T[f]− T[g]‖1 ≤

≤
[(

∑n
j=1 up

j Fj

Ep

)
+

4 M ∑n
j=1 up

j

Ep
(L Ēp + K)2 + 2 M(L Ēp + K)

]
‖f− g‖1.

Theorem 2. Let p ∈ N. Assume that

• ui ∈ R \ {0};
•

n

∑
i=1

Bi
hk = 1, for all h, k ∈ {1, 2, . . . , n};

• There exists a constant η > 0 such that ηhk ≤ η, for all h, k ∈ {1, 2, . . . , n};
• There exists a constant F > 0 such that Fi ≤ F, for all i ∈ {1, 2, . . . , n};
• The following bound holds true:

F > η

⎡
⎢⎢⎢⎢⎣

2E2
p

n

∑
j=1

up
j

L + 4 L2 E2
p

⎤
⎥⎥⎥⎥⎦ , (15)

6
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where L := max
ui 
=0

{
1
|ui|p

}
.

Then, there exists a unique positive nonequilirbium stationary solution f = ( f1, f2, . . . , fn) ∈ Rp of the (3).

Proof. The non-equilibrium stationary problem (3) can be rewritten, for i ∈ {1, 2, . . . , n}, as the
following fixed point problem (see [6]):

fi = Si[f] :=
η

F

(
Ep

‖Up‖1
− fi

)( n

∑
h=1

n

∑
k=1

Bi
hk fh fk

)
+

Ep

∑n
j=1 up

j
. (16)

By straightforward calculations, one has:

‖S[f]− S[g]‖1 ≤
η

F

(
Ep

∑n
j=1 up

j

n

∑
h=1

n

∑
k=1
| fh fk − ghgk|

)

+
η

F

n

∑
i=1

∣∣∣∣∣( fi − gi)
n

∑
h=1

n

∑
k=1

Bi
hk( fh fk − ghgk)

∣∣∣∣∣ .

(17)

Furthermore, by the same arguments of the Theorem 1, one has:

n

∑
h=1

n

∑
k=1
| fh fk − ghgk| ≤ ‖f− g‖1 (E0[f] +E0[g])

≤ 2‖f− g‖1L Ēp.

(18)

Moreover,

n

∑
i=1

∣∣∣∣∣( fi − gi)
n

∑
h=1

n

∑
k=1

Bi
hk( fh fk − ghgk)

∣∣∣∣∣
≤ ‖f− g‖1

(
E2

0[f] +E2
0[g]

)
≤ 4‖f− g‖1L2 (Ēp

)2 .

(19)

Finally, by Equations (18) and (19), (17) rewrites:

‖S[f]− S[g]‖1 ≤ η

F

[
Ep

∑n
j=1 up

j
2 L Ēp + 4 L2 (Ēp

)2
]
‖f− g‖1, (20)

and, by assumption Equation (15), there exists a unique fixed point of the problem (16) (see [21]). Then,
there exists a unique non-equilibrium stationary state for problem (3).

Remark 3. If ui = 0, the Theorem 2 holds true if the �1-norm of f is bounded, i.e.,

‖f‖1 ≤ K.

Indeed, condition (15) rewrites:

F > η

[
Ep

∑n
j=1 up

j
2(L Ēp + K) + 4(L Ēp + K)2

]
.
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Abstract: The existence and reaching of nonequilibrium stationary states are important issues that
need to be taken into account in the development of mathematical modeling frameworks for far off
equilibrium complex systems. The main result of this paper is the rigorous proof that the solution
of the discrete thermostatted kinetic model catches the stationary solutions as time goes to infinity.
The approach towards nonequilibrium stationary states is ensured by the presence of a dissipative
term (thermostat) that counterbalances the action of an external force field. The main result is obtained
by employing the Discrete Fourier Transform (DFT).

Keywords: thermostat; nonequilibrium stationary states; discrete Fourier transform; discrete kinetic
theory; nonlinearity

1. Introduction

The modeling of a complex living system requires much attention considering the large number
of components or active particles, the multiple nonlinear interactions, and the emerging collective
behaviors [1–3]. The evolution of a complex system and the related global collective behaviors is
usually driven by an external event (a predator for a swarm, an alert for a crowd of pedestrians,
a vaccine for a tumor); see, among others, [4–6] and the references cited therein. Accordingly, a
suitable modeling framework needs to take into account the nonequilibrium conditions under which a
complex living system operates. Different modeling frameworks coming from the applied sciences
have been developed [7–9], and in particular, the tools of nonequilibrium statistical mechanics have
been proposed and employed in an attempt to follow the evolution of a complex system from the
transient state to the stationary state; see [10–12].

Recently, the discrete thermostatted kinetic theory was proposed in [13,14] for the modeling
and analysis of a far from equilibrium complex system; applications to biology [15,16] and crowd
dynamics have been developed [17]. According to this theory, the complex system is divided into
different functional subsystems composed by particles expressing the same task, which is usually
a strategy. The strategy is modeled by introducing a scalar variable called activity; the interactions
among the particles, called active particles, is modeled according to the stochastic game theory [18].
The nonequilibrium condition is modeled by introducing an external force field coupled to a dissipative
term (called a thermostat, in analogy with the nonequilibrium statistical mechanics [19,20]), which
allows the reaching of a nonequilibrium stationary state. Depending on the phenomenon under
consideration, the activity variable can have a continuous or a discrete structure. Consequently,

Mathematics 2019, 7, 673; doi:10.3390/math7080673 www.mdpi.com/journal/mathematics9
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the mathematical structure reduces to a system of nonlinear partial integro-differential equations
(continuous structure [21]) or nonlinear ordinary differential equations (discrete structure [13]).

The present paper is devoted to a further mathematical analysis of the discrete thermostatted
kinetic theory framework proposed in [13]. The conditions of the existence and uniqueness of the
nonequilibrium stationary solution were investigated in [14]. This paper provides the mathematical
proof that the solutions of the discrete thermostatted kinetic theory framework approach the
nonequilibrium stationary solutions when the time goes to infinity. The main result is obtained
by employing the Discrete Fourier Transform (DFT).

It is worth noting that to the best of our knowledge, this is the first time that this proof has
been presented for the discrete thermostatted kinetic theory proposed in [13]. However similar
investigations have been addressed for the thermostatted Kac equation [22–25]. Further applications
can be envisaged for biosystems [26,27], in medicine [28] and for complex systems [29].

The present paper is structured into three sections. In particular, Section 2 is devoted to the
foundations and the main assumptions of the discrete thermostatted kinetic theory. The Discrete
Fourier Transform (DFT) and the statement of the main result, concerning the convergence of the
solutions of the discrete thermostatted kinetic theory to the related nonequilibrium stationary solutions,
are presented in Section 3. The proof of the main result is detailed in Section 4.

2. The Discrete Thermostatted Framework

Let Iu = {u1, u2, . . . , un} be a discrete subset of R, Fi(t) ≥ 0 for i ∈ {1, 2, . . . , n} and t > 0, and
f(t) = ( f1(t), f2(t), . . . , fn(t)), where, for i ∈ {1, 2, . . . , n},

fi(t) := f (t, ui) : [0,+∞[×Iu → R+

is the solution of the following nonlinear ordinary differential equation:

d fi
dt

(t) = Ji[f](t) + Fi(t)−
n

∑
i=1

(
u2

i (Ji[f] + Fi)

E2[f]

)
fi(t). (1)

The operator Ji[f](t), for i ∈ {1, 2, . . . , n}, is given by:

Ji[f](t) = Gi[f](t)− Li[f](t)

=
n

∑
h=1

n

∑
k=1

ηBi
hk fh(t) fk(t)− fi(t)

n

∑
k=1

η fk(t),

where η > 0 and, for i, h, k ∈ {1, 2, . . . , n}, Bi
hk : Iu × Iu × Iu → R+; the function E2[f](t) denotes the

second order moment of f:

E2[f](t) =
n

∑
i=1

u2
i fi(t).

Let E2 ∈ R+ andR2
f denote the function space:

R2
f = R2

f

(
R+;E2

)
=
{

f ∈ C
(
[0,+∞];

(
R+
)n
)

: E2[f] = E2

}
.

The existence and uniqueness of the solution of the related Cauchy problem has been proven in [13]
under the following assumptions:

H1 The function Bi
hk is normalized with respect to i, namely for all h, k ∈ {1, 2, . . . , n}, one has:

n

∑
i=1

Bi
hk = 1;

10
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H2 ui ≥ 1, for all i ∈ {1, 2, . . . , n}.
A nonequilibrium stationary solution of Equation (1) is a function fi, for i ∈ {1, 2, . . . , n}, which is the
solution of the following equation:

Ji[f] + Fi −
n

∑
i=1

(
u2

i (Ji[f] + Fi)

E2

)
fi = 0. (2)

Let R̃2
f be the following function space:

R̃2
f

(
R+;E2

)
=
{

f ∈ (R+
)n : E2[f] = E2

}
.

The existence of nonequilibrium stationary solutions g ∈ R̃2
f was proven in [14], under Assumptions

H1–H2 and:

H3
n

∑
i=1

uiBi
hk = 0, for all h, k ∈ {1, 2, . . . , n};

H4
n

∑
i=1

u2
i Bi

hk = u2
h, for all h, k ∈ {1, 2, . . . , n};

H5 E0[f] :=
n

∑
i=1

fi = E2[f] = 1.

In particular, in [14], it was proven that the nonequilibrium stationary solution is unique if the following
constraint on the force field F(t) = (F, F, . . . , F) holds true:

F ≥ 2ηE2
2

(
1 +

1
‖u‖2

2

)
.

Proposition 1 ([14]). Assume that Assumptions H1–H5 hold true.
Then:

1. The evolution equation of E1[f](t) =
n

∑
i=1

ui fi(t) reads:

E′1[f](t) +
(

η +
n

∑
i=1

u2
i fi

)
E1[f](t)−

n

∑
i=1

uiFi = 0; (3)

2. The first-order moment converges to a constant, which depends on the parameters of the system, as t goes
to infinity, i.e.,

E1[f](t)→ K :=

n

∑
i=1

uiFi

η +
n

∑
i=1

u2
i Fi

; (4)

3. Let f0 be the initial data of the Cauchy problem related to (1), then:

|E1[f](t)− K| ≤ c e
−
(

η +
n

∑
i=1

u2
i Fi

)
t
, (5)

where c is a constant that depends on the system.

Remark 1. Equation (1) was proposed in [13] for the modeling of a complex system, which is assumed to be
composed of n subsystems (called functional subsystems). In particular:

• The function fi(t), for i ∈ {1, 2, . . . , n}, denotes the distribution function of the ith functional subsystem;

11
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• The function F(t) = (F1(t), F2(t), . . . , Fn(t)) is the external force field acting on the whole system;
• The term:

α :=
n

∑
i=1

(
u2

i (Ji[f] + Fi)

E2

)

represents the thermostat term, which allows keeping the quantity E2[f](t) constant;
• The term ηhk is the interaction rate related to the encounters between the functional subsystem h and the

functional subsystem k, for h, k ∈ {1, 2, . . . , n};
• The function Bi

hk denotes the transition probability density that the functional subsystem h falls into i
after interacting with the functional subsystem k, for i, h, k ∈ {1, 2, . . . , n};

• The operator Ji[f](t), for i ∈ {1, 2, . . . , n}, models the net flux related to the ith functional subsystem;
Gi[f](t) denotes the gain term operator and Li[f](t) the loss term operator.

Remark 2. Let p ∈ N. Equation (1) can be further generalized as follows:

d fi
dt

(t) = Ji[f](t) + Fi(t)−
n

∑
j=1

(
up

j
(

Jj[f] + Fj
)

Ep[f]

)
fi(t).

The above framework allows keeping the following pth order moment constant:

Ep[f](t) =
n

∑
i=1

up
i fi(t).

3. Convergence to the Stationary State

The main result of this paper is the proof that the function f(t), the solution of Equation (1),
converges to the nonequilibrium stationary solution g of (2). The proof is based on the Discrete Fourier
Transform (DFT).

Let x = (x1, x2, . . . , xn) ∈ Rn; the DFT is defined as follows:

x̂m =
n

∑
l=1

xle−
2πι
n m(l−1), m ∈ {1, 2, . . . , n},

where ι denotes the imaginary unit.
Let f̂m(t) and ĝm, the DFT of the solution f(t) of (1) and of the solution g of (2), respectively, be

defined as follows:

f̂m(t) =
n

∑
l=1

fl(t)e−
2πι
n m(l−1), ĝm =

n

∑
l=1

gle−
2πι
n m(l−1), (6)

for m ∈ {1, 2, . . . , n}.

Theorem 1. Let f(t) be the solution of Equation (1) and g the solution of Equation (2). If Assumptions H1–H4
hold true, then f(t) converges to g, as t→ +∞.

4. Proof of the Main Result

Proof of Theorem 1. The first step is the derivation of the DFT of the discrete thermostatted
Equation (1).

Multiplying both sides of (1) by e− 2πι
n m(l−1) and summing for l from 1–n, one has:

n

∑
l=1

d fl
dt

(t)e−
2πι
n m(l−1) =

n

∑
l=1

(Jl [f](t) + Fl(t)− α fl(t)) e−
2πι
n m(l−1), (7)

12
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for m ∈ {1, 2, . . . , n}.
The left-hand side of (7) is written as:

n

∑
l=1

d fl
dt

(t)e−
2πι
n m(l−1) =

d
dt

(
n

∑
l=1

fl(t)e−
2πι
n m(l−1)

)

=
d f̂m

dt
(t).

(8)

The first term in the right-hand side of the (7), using the property of operators Gi[f](t) and Li[f](t), is
written as:

n

∑
l=1

Jl [f](t)e−
−2πι

n m(l−1) =
n

∑
l=1

(Gl [f](t)− Ll [f](t)) e−
2πι
n m(l−1)

=
n

∑
l=1

(
n

∑
h=1

n

∑
k=1

ηBl
hk fh(t) fk(t)

)
e−

2πι
n m(l−1)

−
n

∑
l=1

(
fl(t)

n

∑
k=1

η fk(t)

)
e−

2πι
n m(l−1),

(9)

where:

n

∑
l=1

(
n

∑
h=1

n

∑
k=1

ηBl
hk fh(t) fk(t)

)
e−

2πι
n m(l−1)

= η
n

∑
h=1

n

∑
k=1

fh(t) fk(t)

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

)
.

(10)

For Assumption H5, one has:

n

∑
l=1

(
fl(t)

n

∑
k=1

η fk(t)

)
e−

2πι
n m(l−1) = η

n

∑
l=1

fl(t)e−
2πι
n m(l−1)

= η f̂m(t).

(11)

The second term of (7) reads:

n

∑
l=1

Fle−
2πι
n m(l−1) = F̂m. (12)

For Assumptions H1, H3, H4, and H5, the third term of the right-hand side of the (7) is written as:

n

∑
l=1

(
n

∑
l=1

u2
l (Jl [f](t) + Fl)

)
fl(t)e−

2πι
n m(l−1)

=
n

∑
l=1

(
∑
l=1

u2
l Fl

)
fl(t)e−

2πι
n m(l−1)

=

(
n

∑
l=1

u2
l Fl

)
f̂m(t).

(13)

13
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By (8)–(13), (7) is rewritten, for m ∈ {1, 2, . . . , n}, as follows:

d f̂m

dt
(t) + f̂m(t)

(
n

∑
l=1

u2
l Fl

)
+ η f̂m(t)− F̂m

= η
n

∑
h=1

n

∑
k=1

fh(t) fk(t)

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

)
.

(14)

Let f1(t) = ( f1l(t))l and f2(t) = ( f2l(t))l , for l ∈ {1, 2, . . . , n}, two different solutions of the
framework (1), and:

vm(t) :=
(

f̂1m(t)− f̂2m(t)
)
+ m (E1[f1](t)−E1[f2](t)) , m ∈ {1, 2, . . . , n}. (15)

By (15) and (14) and straightforward calculations, one has:

dvm

dt
(t)+ηvm(t) =

d f̂1m
dt

(t)− d f̂2m

dt
(t) + η f̂1m − η f̂2m

+ ηm (E1[f1](t)−E1[f2](t)) + m
(
E′1[f1](t)−E′1[f2](t)

)
= − f̂1m

(
n

∑
l=1

u2
l Fl

)
+ f̂2m

(
n

∑
l=1

u2
l Fl

)

+ η

(
n

∑
h=1

n

∑
k=1

f1h(t) f1k(t)

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

))

− η

(
n

∑
h=1

n

∑
k=1

f2h(t) f2k(t)

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

))

+ ηm (E1[f1](t)−E1[f2](t)) + m
(
E′1[f1](t)−E′1[f2](t)

)
.

(16)

By using the (3), one has:

E′1[f1](t)−E′1[f2](t) = −E1[f1](t)

(
η +

n

∑
l=1

u2
l fl

)
+E1[f2](t)

(
η +

n

∑
l=1

u2
l fl

)

=

(
η +

n

∑
l=1

u2
l Fl

)
(E1[f2](t)−E1[f1](t)) .

(17)

Bearing (17) in mind, Equation (16) reads:

dvm

dt
(t) + ηvm(t) =

(
f̂2m(t)− f̂1m(t)

)( n

∑
l=1

u2
l Fl

)

+ ηm (E1[f1](t)−E1[f2](t))

+

(
η +

n

∑
l=1

u2
l Fl

)
m (E1[f2](t)−E1[f1](t))

+ η

(
n

∑
h=1

n

∑
k=1

f1h(t) f1k(t)

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

))

− η

(
n

∑
h=1

n

∑
k=1

f2h(t) f2k(t)

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

))
.

(18)

14
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By straightforward calculations, (18) is rewritten as:

dvm

dt
(t) + ηvm(t) = −

(
f̂1m(t)− f̂2m(t)

)( n

∑
l=1

u2
l Fl

)

+

(
n

∑
l=1

u2
l Fl

)
m (E1[f1](t)−E1[f2](t))

−
(

n

∑
l=1

u2
l Fl

)
m (E1[f1](t)−E1[f2](t))

+ η m (E1[f1](t)−E2[f2](t))

+

(
η +

n

∑
l=1

u2
l Fl

)
m (E1[f2](t)−E1[f1](t))

+ η

(
n

∑
h=1

n

∑
k=1

f1h(t) f1k(t)

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

))

− η

(
n

∑
h=1

n

∑
k=1

f2h(t) f2k(t)

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

))

= −
(

n

∑
l=1

u2
l Fl

)
vm(t)

+ η

(
n

∑
h=1

n

∑
k=1

f1h(t) f1k(t)

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

))

− η

(
n

∑
h=1

n

∑
k=1

f2h(t) f2k(t)

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

))
.

(19)

By straightforward calculations, the second and the third terms of the right-hand side of (19) are
written as:

η

(
n

∑
h=1

n

∑
k=1

f1h(t) f1k(t)

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

))

− η

(
n

∑
h=1

n

∑
k=1

f2h(t) f2k(t)

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

))

= η
n

∑
h=1

n

∑
k=1

( f1h(t) f1k(t)− f2h(t) f2k(t))

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

)

= η
n

∑
h=1

n

∑
k=1

( f1h(t) f1k(t)− f2h(t) f1k(t) + f2h(t) f1k(t)− f2h(t) f2k(t))

·
(

n

∑
l=1

Bl
hke−

2πι
n m(l−1)

)

= η
n

∑
h=1

n

∑
k=1

( f1k(t) ( f1h(t)− f2h(t)) + f2h(t) ( f1k(t)− f2k(t)))

·
(

n

∑
l=1

Bl
hke−

2πι
n m(l−1)

)
.

(20)

By summing and subtracting m f1k(t) (E1[f1](t)−E1[f2](t)) and m f2h(t) (E1[f1](t)−E1[f2](t)),
one has:

15
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η
n

∑
h=1

n

∑
k=1

( f1h(t)− f2h(t)) f1k(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

− η
n

∑
h=1

n

∑
k=1

( f1k(t)− f2k(t)) f2h(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

= η
n

∑
h=1

n

∑
k=1

(
f1k(t) ( f1h(t)− f2h(t)) + m f1k(t) (E1[f1](t)−E1[f2](t))

−m f1k(t) (E1[f1](t)−E1[f2](t))
) n

∑
l=1

Bl
hke−

2πι
n m(l−1)

+ η
n

∑
h=1

n

∑
k=1

(
f2h(t) ( f1k(t)− f2k(t)) + m f2h(t) (E1[f1](t)−E1[f2](t))

−m f2h(t) (E1[f1](t)−E1[f2](t))
) n

∑
l=1

Bl
hke−

2πι
n m(l−1).

(21)

Rearranging into (21), one has:

η

(
n

∑
h=1

n

∑
k=1

f1h(t) f1k(t)

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

))

− η

(
n

∑
h=1

n

∑
k=1

f2h(t) f2k(t)

(
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

))

= η
n

∑
h=1

n

∑
k=1

(( f1h(t)− f2h(t)) + m (E1[f1](t)−E1[f2](t)))

· f1k(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

− ηm (E1[f1](t)−E1[f2](t))
n

∑
h=1

n

∑
k=1

f1k(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

− η
n

∑
h=1

n

∑
k=1

(( f1k(t)− f2k(t)) + m (E1[f1](t)−E1[f2](t)))

· f2h(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

+ ηm (E1[f1](t)−E1[f2](t))
n

∑
h=1

n

∑
k=1

f2h(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1).

(22)

By (22), the (19) is rewritten, for m ∈ {1, 2, . . . , n}, as follows:

16
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dvm

dt
(t) + ηvm(t) = −vm(t)

(
n

∑
l=1

u2
l Fl

)

− ηm (E1[f1](t)−E1[f2](t))
n

∑
h=1

n

∑
k=1

f1k(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

+ ηm (E1[f1](t)−E1[f2](t))
n

∑
h=1

n

∑
k=1

f2h(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

+ η
n

∑
h=1

n

∑
k=1

(( f1h(t)− f2h(t)) + m (E1[f1](t)−E1[f2](t)))

· f1k(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

− η
n

∑
h=1

n

∑
k=1

(( f1k(t)− f2k(t)) + m (E1[f1](t)−E1[f2](t)))

· f2h(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1).

(23)

Finally, (23) can be written as follows:

dvm

dt
(t) + ηvm(t) +

(
n

∑
i=1

u2
i Fi

)
vm(t) =

(E1[f1](t)−E1[f2](t))
(
− ηm

n

∑
h=1

n

∑
k=1

f1k(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

+ ηm
n

∑
h=1

n

∑
k=1

f2h(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

)

+ η
n

∑
h=1

n

∑
k=1

(( f1h(t)− f2h(t)) + m (E1[f1](t)−E1[f2](t)))

· f1k(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

− η
n

∑
h=1

n

∑
k=1

(( f1k(t)− f2k(t)) + m (E1[f1](t)−E1[f2](t)))

· f2h(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1).

(24)

Let f1(t) = f(t) and f2(t) = g. By (4), (24), for m ∈ {1, 2, . . . , n}, reads:

17
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dvm

dt
(t) + ηvm(t) +

(
n

∑
i=1

u2
i Fi

)
vm(t) =

(E1[f](t)− K)
(
− ηm

n

∑
h=1

n

∑
k=1

fk(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

+ ηm
n

∑
h=1

n

∑
k=1

gh

n

∑
l=1

Bl
hke−

2πι
n m(l−1)

)

+ η
n

∑
h=1

n

∑
k=1

(( fh(t)− gh(t)) + m (E1[f](t)− K))

· fk(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

− η
n

∑
h=1

n

∑
k=1

(( fk(t)− gk) + m (E1[f1](t)− K))

· gh(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1).

(25)

Let vm(t) := eηtvm(t), then:

dvm
dt

(t) = ηeηtvm(t) + eηt dvm

dt
(t). (26)

Bearing (26) in mind and multiplying by eηt both sides of (25), one has:

dvm
dt

(t) +

(
n

∑
i=1

u2
i Fi

)
vm(t) = eηt (E1[f]− K)

·
(
− ηm

n

∑
h=1

n

∑
k=1

fk(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

+ ηm
n

∑
h=1

n

∑
k=1

gh

n

∑
l=1

Bl
hke−

2πι
n m(l−1)

)

+ η
n

∑
h=1

eηt (( fh(t)− gh) + m (E1[f]− K))
n

∑
k=1

fk(t)

·
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

+ η
n

∑
k=1

eηt (( fk(t)− gk) + m (E1[f]− K))
n

∑
h=1

gh

·
n

∑
l=1

Bl
hke−

2πι
n m(l−1).

(27)

By (5) and straightforward calculations, one has:

18
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∣∣∣∣∣eηt (E1[f]− K) ·
(
− ηm

n

∑
h=1

n

∑
k=1

fk(t)
n

∑
l=1

Bl
hke−

2πι
n m(l−1)

+ ηm
n

∑
h=1

n

∑
k=1

gh

n

∑
l=1

Bl
hke−

2πι
n m(l−1)

)∣∣∣∣∣ ≤ ceηte
−
(

η +
n

∑
i=1

u2
i Fi

)
t
,

(28)

where c is a constant that depends on the parameters of the system. By using (27) and (28), one has:

d|v|m(t)
dt

(t) ≤ ceηte
−
(

η +
n

∑
i=1

u2
i Fi

)
t
+ λvm(t), m ∈ {1, 2, . . . , n}.

(29)

By integrating (29) between zero and t and using (29), one has:

|vm(t)| ≤ |vm(0)|+ c

∣∣∣∣∣∣∣∣∣
∫ t

0
eητe
−
(

η +
n

∑
i=1

u2
i Fi

)
τ

dτ

∣∣∣∣∣∣∣∣∣
+ λ

∣∣∣∣
∫ t

0
vm(τ) dτ

∣∣∣∣

≤ |vm(0)|+ c
∫ t

0
e
−

n

∑
i=1

u2
i Fiτ

dτ + λ
∫ t

0
|vm(0)| dτ.

(30)

By the integral Gronwall inequality [30] and (30), one has:

|vm(t)| ≤ |vm(0)| eλt + ce
−

n

∑
i=1

u2
i Fit

. (31)

By dividing (31) by eηt and bearing (26) in mind, one has:

|vm(t)| ≤ |vm(0)| e(λ−η)t + ce
−
(

η +
n

∑
i=1

u2
i Fit

)
. (32)

Finally, by (32) and (15), for m ∈ {1, 2, . . . , n}, one has:

∣∣∣ f̂m(t)− ĝm

∣∣∣ ≤ (c + c0)e
−
(

η +
n

∑
i=1

u2
i Fit

)
, (33)

where c is a constant that depends on the parameters of the system and c0 on the initial data of the
related problem.

It is possible to conclude that:

f̂m(t)
t→+∞−−−−→ ĝm,

for m ∈ {1, 2, . . . , n}. The proof is thus gained.
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Abstract: The paper deals with the problem of continuous dependence on initial data of solutions
to the equation describing the evolution of a complex system in the presence of an external force
acting on the system and of a thermostat, simply identified with the condition that the second
order moment of the activity variable (see Section 1) is a constant. We are able to prove that these
solutions are stable with respect to the initial conditions in the Hadamard’s sense. In this connection,
two remarks spontaneously arise and must be carefully considered: first, one could complain the
lack of information about the “distance” between solutions at any time t ∈ [0,+∞); next, one cannot
expect any more complete information without taking into account the possible distribution of the
transition probabiliy densities and the interaction rates (see Section 1 again). This work must be
viewed as a first step of a research which will require many more steps to give a sufficiently complete
picture of the relations between solutions (see Section 5).

Keywords: kinetic theory; integro-differential equations; complex systems; stability; evolution equations

1. Introduction

The aim of the present paper is to contribute a first result about the stability (and, consequently,
the uniqueness) of the solutions to the equation describing the evolution of a thermostatted complex system.
As is well known, a complex system is a set of a very large number of objects that, in connection with the
physical origin of the notion, can be called “particles”, but—in view of its present applications—should
perhaps be identified by the more general name of “individuals”. These objects, of course, enjoy a number
of empirical properties, that define their “state”: in a purely mechanical framework, these properties are
position and velocity. In principle, the state of the whole system should be considered as completely
known when the states of all of its particles are known. But, since these states are modified by the mutual
interactions of the particles, and these interactions in turn depend on the states of the particles, also in view
of the extremely large number of interactions to be taken into account, it is readily seen that a complete
knowledge of the state of the system is impossible [1] at any time. This gave rise to statistical mechanics
and to Boltzmann’s Kinetic Theory of Gases, that aimed to describe the states of any such system and their
evolution in terms of average states of the particles and of probability of their interactions.

But the “complexity” of a system is more than the large number of its particles. In the mechanical
framework, each interaction between two particles p and q is assumed to be independent of the
presence of the remaining particles of the system, so that the result of simultaneous interactions of
p with q1, q2, . . . , qn is simply the sum of the results of single interaction. When this assumption is
given up, and each particle is allowed to interact—under suitable conditions—not only with other
particles but also with their interactions, then the system is “complex” in the full meaning of the
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term. So, not only the states of a complex systems and their evolution can be described only by
using a statistical (or probabilistic) language and statistical (or probabilistic) methods, but also the
interactions between its particles. Accordingly, all what we may assume to be able to know about
complex systems at each instant are (a) a probability (or relative frequency) distribution f on the set
Du of all possible states of all of its particles; (b) for any pair (u∗, u∗) of possible states, an average
frequency η(u∗, u∗) of interactions between particles that are in the state u∗ and particles that are in
the state u∗; (c) for any pair (u∗, u∗) of possible states, a probability (or relative frequency) distribution
on the possible effects of interactions (see Section 2 below).

This is a generalized form of Boltzmann’s framework [1,2]. As a matter of fact, the introduction
of the notion of “complex systems”, in addition to the methodological choice to work on probability
distributions in the same way as in the Kinetic Theory of Gases, corresponds to the need, hence to the
attempt, to go beyond the limits of purely mechanical applications of the farmework, in order to give
some contributions to a formal statement, and if possible to the solution, of many problems arising
in the life of large sets of individuals of many different kinds (cell populations [3], with particular
respect to the interaction between cancer cells and cells of immune systems [4], animal populations,
social and economic communities like human nations [5,6], problems about vehicular traffic [7] and
about the behaviour of swarms [8], crowds [9,10] and pedestrians [11], opinion formation [12], etc.).
Of course, this attempt started about thirty years ago, was quite succesful and gave origin to a wide
literature, investigating both the mathematical problems posed by the framework and its possible new
applications [5,6,13]. The mathematical scheme provided by the equations proposed in this framework
(see Section 2 below) could perhaps be considered as the most versatile among the ones from time to
time constructed to formulate and solve problems arising in medicine, natural sciences, economics and
even in behavioural sciences.

In this perspective, in order to widen the “world” of applications of the model, the notion of
thermostat was recently introduced [14–17] to describe e.g. a crowd in a place hall compelled to go out
by an emergency (the external force) but calmed down and organized to move in a suitable order by
a security service (the thermostat) [18,19]. Of course, this extended model presents the same mathematical
problems of all the models of the same kind (existence and uniqueness of solutions and their continuous
dependence on initial and boundary conditions). Existence and uniqueness results were given in [18,20]
(for the case in which the variable u representing the state of any particle is continuous) and [21,22]
(for the discrete case). This paper offers a result about contiunous dependence for the continuous model.

The matter of the paper is distributed as follows: in Section 2 a short description of the problem is
given, with the explicit statement of the equation governing the evolution of a general thermostatted
complex system; the statement of our result about the continuous dependence of solutions to the
evolution equation on the initial data is given in Section 3, and its proof in Section 4; finally, Section 5 is
devoted to point out the reasons why the result stated and proved in the previous sections must be just
considered as the first step of a further research, as well as to draw the perspectives of such reasearch.

2. The Framework

Let C be a complex system [13,23–25] composed by a large number of objects, called active
particles [13], which can interact with each other. The system is assumed to be homogeneous with
respect to mechanical variables (position and velocity). The state of each of its particles will be then
described, at any time t ≥ 0, by only one scalar variable u ∈ Du ⊆ R, called activity variable,
which will be denoted by u. According to the statistical (or stochastic) scheme adopted to describe
complex systems (see Introduction), the states of single particles cannot be known at any time, and
only a probability (or relative frequency) distribution on the set Du of all possible states (values of u)
can be considered. This distribution function is

f (t, u) ∈ [0,+∞[×Du → R+.
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Interactions between particles are described by the following two functions:

• a function η(u∗, u∗) : Du × Du → R+, the interaction rate between particles in the state u∗ and
particles in the state u∗;

• a function A(u∗, u∗, u) : Du × Du × Du → R+, the transition probability density that a particle in
the state u∗ falls into the state u after interacting with a particle in the state u∗, such that for all
u∗, u∗ ∈ Du: ∫

Du
A(u∗, u∗, u) du = 1.

Let now p ∈ N. The p-th order moment of the system, a time t > 0, is:

Ep[ f ](t) :=
∫

Du
up f (t, u) du.

We assume that the system C is subject to an external force field acting on it, described by
a function F(u) : Du → R+. Moreover, a thermostat is applied on C, in order to keep the second
order moment

E2[ f ](t) =
∫

Du
u2 f (t, u) du

constant [18].
Accordingly, the evolution equation for the thermostatted framework of the system takes the form

∂t f (t, u) + ∂u (F(u) (1− uE1[ f ](t)) f (t, u)) = J[ f , f ](t, u), (1)

where the operator J[ f , f ](t, u) can be split as follows:

J[ f , f ](t, u) = G[ f , f ](t, u)− L[ f , f ](t, u)

=
∫

Du×Du
η(u∗, u∗)A(u∗, u∗, u) f (t, u∗) f (t, u∗) du∗du∗

− f (t, u)
∫

Du
η(u, u∗) f (t, u∗) du∗.

The term G[ f , f , ](t, u) is called the gain operator, and the term L[ f , f ](t, u) is the loss operator.
Given an initial datum f 0(u), from Equation (1) we obtain the Cauchy problem related to

the thermostatted:⎧⎪⎪⎨
⎪⎪⎩

∂t f (t, u) + ∂u (F(u) (1− uE1[ f ](t)) f (t, u)) = J[ f , f ](t, u) [0,+∞[×Du

f (0, u) = f 0(u) Du

. (2)

Let now

K(Du) :=
{

f (t, u) ∈ [0,+∞[×Du → R+ : E0[ f ](t) = E2[ f ](t) = 1
}

and assume that

Assumption 1 (H1): for all u∗, u∗ ∈ Du:
∫

Du
A(u∗, u∗, u) u2 du = u2∗;

Assumption 2 (H2): the interaction function is constant, i.e., there exists an η > 0 such that η(u∗, u∗) = η,
for all u∗, u∗ ∈ Du;
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Assumption 3 (H3): the distribution function vanishes on the boundary of Du, i.e. f (t, u) = 0 for
u ∈ ∂Du;

Assumption 4 (H4): there exists F > 0 such that F(t) = F, for all t > 0;

Assumption 5 (H5): the initial data verifies the conditions E0[ f 0] = E2[ f 0] = 1.

If assumptions H1–H5 are satisfied, then there exists a unique solution
f (t, u) ∈ C

(
(0,+∞); L1(Du)

) ∩K(Du) to the Cauchy problem (2) [18].

Lemma 1. [18] Under assumptions H1–H5, the relations

1.
G[ f , f ]− G[g, g] = G[ f − g, f ] + G[g, f − g] ,

2. ∫
Du

G[ f , f ](t, u) du = η ,

3. ∫
Du

u G[ f , f ](t, u) du = 0 ,

4. ∫
Du

u2 G[ f , f ](t, u) du = η

are true.

Now, the evolution equation of E1[ f ](t) reads, [18]:

E′1[ f ](t) = F(1− (E1[ f ](t))2)− ηE1[ f ](t).

Lemma 2. [18] Under the assumptions H1–H5:

E1[ f ](t) =
E+

1 (E
−
1 −E0

1)−E−1 (E
+
1 −E0

1)e
−
√

η2+4F2

F t

(E−1 −E0
1)− (E+

1 −E0
1)e
−
√

η2+4F2

F t

,

where E0
1 := E1[ f 0] and E±1 := −η±

√
η2+4F2

2F .

Furthermore, the following result holds.

Lemma 3. If assumptions H1–H5 are satisfied, then

E1[ f ](t)→ E+
1 , as t→ +∞,

and ∣∣E1[ f ](t)−E+
1

∣∣ ≤ Ce−
√

η2+4F2

F t,

where C = C(η, F) is a constant depending on the system.

Remark 1. Assumptions H2 and H4 can be relaxed as follows: there exist η > 0 and F > 0 such that

η(u∗, u∗) ≤ η,

for all u∗, u∗ ∈ Du, and
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F(t) ≤ F,

for all t > 0.

3. Dependence on the Initial Data

The main aim of this paper is to prove a result about the dependence on the initial data of the
continuous thermostatted framework (1) that defines the related Cauchy problem (2).

Let f1(t, u) and f2(t, u) be two solutions to the Cauchy problem (2) corresponding to the
initial data f 0

1 (u) and f 0
2 (u) respectively. If assumptions H1–H5 hold true, then f1(t, u), f2(t, u) ∈

C
(
(0,+∞); L1(Du)

) ∩K(Du). Suppose that f 0
1 (u) and f 0

2 (u) belong to L1(Du).
Theorem 1 obtains an estimate of the norm

‖ f1(t, u)− f2(t, u)‖C((0,+∞);L1(Du))∩K(Du)

= max
t∈[0,T]

(∫
Du
| f1(t, u)− f2(t, u)| du

)
,

when ∥∥∥ f 0
1 (u)− f 0

2 (u)
∥∥∥

L1(Du)
=
∫

Du

∣∣∣ f 0
1 (u)− f 0

2 (u)
∣∣∣ du ≤ δ,

where δ > 0. Precisely,

Theorem 1. Assume that conditions H1–H5 are verified. If
∥∥∥ f 0

1 (u)− f 0
2 (u)

∥∥∥
L1(Du)

≤ δ,

for δ > 0, then, for all T > 0

‖ f1(t, u)− f2(t, u)‖C([0,T];L1(Du))∩K(Du)

≤ δ eC̄ T ,

where C̄ :=
(
3 η + 2 F

(
C(η, F) +E+

1
))

, and C(η, F) is the constant of Lemma 1.

This result ensures that the dependence of solution to the continuous thermostatted framework
(2) on the initial data is continuous, so that any solution to the Cauchy problem (2) is stable in the
Hadamard sense.

4. Proof of the Result

The aim of this section is to give the proof of Theorem 1.

Proof of Theorem 1. Let f1(t, u) and f2(t, u) be two solutions to the Cauchy problem (2) belonging to
the space C

(
[0, T]; L1(Du)

) ∩ K(Du), corresponding to the initial data f 0
1 (u) and f 0

2 (u) in the space
L1(Du), respectively.

Then, Equation (1) can be written:

∂t f (t, u) = J[ f , f ](t, u)− F∂u ((1− uE1[ f ](t)) f (t, u)) . (3)
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Integrating Equation (3) between 0 and t, for t > 0, one has:

∫ t

0
∂t f (τ, u) dτ =

∫ t

0
J[ f , f ](τ, u) dτ

−
∫ t

0
F∂u ((1− uE1[ f ](τ)) f (τ, u)) dτ,

and

f (t, u) = f 0(u) +
∫ t

0
J[ f , f ](τ, u) dτ

− F
∫ t

0
∂u ((1− uE1[ f ](τ)) f (τ, u)) dτ.

(4)

Bearing in mind the initial data f 0
1 (u) and f 0

2 (u) and using relation (4), we obtain

f1(t, u) = f 0
1 (u) +

∫ t

0
J[ f1, f1](τ, u) dτ

− F
∫ t

0
∂u ((1− uE1[ f1](τ)) f1(τ, u)) dτ,

(5)

and

f2(t, u) = f 0
2 (u) +

∫ t

0
J[ f2, f2](τ, u) dτ

− F
∫ t

0
∂u ((1− uE1[ f2](τ)) f2(τ, u)) dτ,

(6)

so that, subtracting the (5) and (6), we find

f1(t, u)− f2(t, u) =
(

f 0
1 (u)− f 0

2 (u)
)

+
∫ t

0
(J[ f1, f1](τ, u)− J[ f2, f2](τ, u)) dτ

+ F
∫ t

0
∂u ((1− uE1[ f2](τ)) f2(τ, u)) dτ

− F
∫ t

0
∂u ((1− uE1[ f1](τ)) f1(τ, u)) , dτ,

(7)

In virtue of Lemma 1:

J[ f1, f1](τ, u)− J[ f2, f2](τ, u) = G[ f1, f1](τ, u)− η f1(τ, u)

− G[ f2, f2](τ, u) + η f2(τ, u)

= G[ f1 − f2, f1](τ, u)

+ G[ f2, f1 − f2](τ, u)

+ η ( f2(τ, u)− f1(τ, u)).

(8)

Furthermore:

∂u

(
(1− uE1[ f2](τ)) f2(τ)− (1− uE1[ f1](τ)) f1(τ)

)
= ∂u

(
( f2(τ, u)− f1(τ, u))− uE1[ f2](τ) f2(τ, u) + uE1[ f1](τ) f1(τ, u)

)
= ∂u

(
f2(τ, u)− f1(τ, u)

)− ∂u
(
u(E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u))

)
.

(9)
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In virtue of relations (8) and (9), Equation (7) may be rewritten in the form

f1(t, u)− f2(t, u) =
(

f 0
1 (u)− f 0

2 (u)
)

+
∫ t

0
(G[ f1 − f2, f1](τ, u) + G[ f2, f1 − f2](τ, u)) dτ

+ η
∫ t

0
( f2(τ, u)− f1(τ, u)) dτ + F

∫ t

0
∂u ( f2(τ, u)− f1(τ, u)) dτ

− F
∫ t

0
∂u

(
u(E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u))

)
dτ,

(10)

and the application of the triangle inequality to Equation (10) and an integration on Du lead to
∫

Du
| f1(t, u)− f2(t, u)| du ≤

∫
Du

∣∣∣ f 0
1 (u)− f 0

2 (u)
∣∣∣ du

+
∫

Du

∣∣∣∣
∫ t

0
G[ f1 − f2, f1](τ, u) + G[ f2, f1 − f2](τ, u) dτ

∣∣∣∣ du

+ η
∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ

+ F
∫

Du

∣∣∣∣
∫ t

0
∂u ( f2(τ, u)− f1(τ, u)) dτ

∣∣∣∣ du

+ F
∫

Du

∣∣∣∣
∫ t

0
∂u
(
u(E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u))

)
dτ

∣∣∣∣ du.

(11)

To conclude the proof, we only need now to estimate the five terms at the right hand side of
Equation (11).

First of all, by the assumptions of the theorem,
∫

Du

∣∣∣ f 0
1 (u)− f 0

2 (u)
∣∣∣ du ≤ δ , (12)

so that, by straightforward calculations, we obtain for the second term at the right hand side of
inequality (11) the following estimate:

∫
Du

∣∣∣∣
∫ t

0
G[ f1 − f2, f1](τ, u) + G[ f2, f1 − f2](τ, u) dτ

∣∣∣∣ du

≤
∫

Du

∫ t

0

∫
Du×Du

|ηA(u∗, u∗, u) ( f1(τ, u∗)− f2(τ, u∗)) f1(τ, u∗)| du∗ du∗ du dτ

+
∫

Du

∫ t

0

∫
Du×Du

|ηA(u∗, u∗, u) ( f1(τ, u∗)− f2(τ, u∗)) f2(τ, u∗)| du∗ du∗ du dτ

≤ 2 η
∫

Du

(∫ t

0
| f1(τ, u)− f2(τ, u)| dτ

)
du

≤ 2 η
∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ.

(13)

Next, since

F
∫

Du

∣∣∣∣
∫ t

0
∂u ( f2(τ, u)− f1(τ, u)) dτ

∣∣∣∣ du

≤ F
∫ t

0

(∫
Du
|∂u( f2(τ, u)− f1(τ, u))| du

)
dτ,

and f (t, u) = 0 for u ∈ ∂Du, the fourth term at the right hand side of inequality (11) vanishes.
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Furthermore, the fifth term at the right hand side of relation (11) is easily estimated as follows:

F
∫

Du

∣∣∣∣
∫ t

0
∂u
(
u(E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u))

)
dτ

∣∣∣∣ du

≤ F
∫

Du

∫ t

0
|E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u)| dτ du

+ F
∫

Du

∫ t

0
|u ∂u (E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u))| dτ du.

(14)

Now, integrating by parts the second term of the right hand side of relation (14) and bearing in
mind that f (t, u) = 0 for u ∈ ∂Du, one has

F
∫

Du

∣∣∣∣
∫ t

0
∂u
(
u(E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u))

)
dτ

∣∣∣∣ du

≤ 2F
∫

Du

∫ t

0
|E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u)| dτ du.

(15)

By adding and subtracting E+
1 f2(τ, u) and E+

1 f1(τ, u) at the right hand side of relation (15) and
using Lemma (2), it follows that

F
∫

Du

∣∣∣∣
∫ t

0
∂u
(
u(E1[ f2](τ) f2(τ, u)−E1[ f1](τ) f1(τ, u))

)
dτ

∣∣∣∣ du

≤ 2F

[ ∫
Du

∫ t

0

∣∣∣ f2(τ, u) (E1[ f2](τ)−E+
1 )

− f1(τ, u) (E1[ f1](τ)−E+
1 )
∣∣∣ dτ du

+E+
1

∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ

]

≤ 2 F

[
C(η, F)

∫
Du

∫ t

0
e−
√

η2+4F2

F t | f2(τ, u)− f1(τ, u)| dτ du

+E+
1

∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ

]

≤ 2F
(
C(η, F) +E+

1
) ∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ.

(16)

By relations (12), (13), (16) and the condition f (t, u) = 0 for u ∈ ∂Du, inequality (11) becomes
∫

Du
| f1(t, u)− f2(t, u)| du ≤ δ

+ 2 η
∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ

+ η
∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ

+ 2F
(
C(η, F) +E+

1
) ∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ,

(17)

and, by reordering the terms of this last relation and using the constant

C̄ :=
(
3 η + 2 F

(
C(η, F) +E+

1
))

,
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we get
∫

Du
| f1(t, u)− f2(t, u)| du

≤ δ + C̄
∫ t

0

(∫
Du
| f2(τ, u)− f1(τ, u)| du

)
dτ.

(18)

Finally, the Gronwall inequality [26] and inequality (15) yield
∫

Du
| f1(t, u)− f2(t, u)| du ≤ δ eC̄ t, (19)

for all t > 0, so that, for T > 0,

max
t∈[0,T]

(∫
Du
| f1(t, u)− f2(t, u)| du

)
≤ δ eC̄ t,

and our claim is proved.

5. Concluding Remarks and Research Perspectives

As already pointed out at the end of Section 3, the result proved in the foregoing section can be
expressed by the statement that the solutions to the Cauchy problem (2) are stable in the Hadamard
sense. As it stands, this result could seem to be not quite satisfactory, and the question spontaneously
arises on whether these solutions can be proved to be stable or unstable in the whole interval (0,+∞),
and whether the answer to such a question could be find by some suitable technical refinements of
the method of proof used in the previous section. Several observations witness for a negative answer
to this last question, but a simple heuristic reasoning—based on the acknowledged versatility of
the scheme expressed by problem (2)—will be sufficient. As said in the Introduction, and shown in
the references quoted there, the scheme applies to many different kinds of systems, in particular to
social and economic systems. Our experience shows that slightly different distributions of wealth
can evolve in time in very similar or very different ways depending on the behaviour of the particles
of each system, i.e. on the terms in J[ f , f ](t, u) describing their interaction rates and the probable
effects of such interactions. The relations between these terms should play an important role in
producing stability or instability: for instance, frequent interactions could produce instability when
joined with strongly asymmetric transition probability distributions, but even uniform stability in the
whole interval (0,+∞) when the transition probabilities are symmetric for any pair of initial states
of interacting individuals. Thus, one of the first goals of subsequent researches about the problem
considered in the present paper should be to check whether different assumptions on the forms of
η(u∗, u∗) and A(u∗, u∗, u) give stronger but different results about stability or instability.

In this connection, a very important step of subsequent research will be the numerical formulation
and some numerical simulations of its solutions. In particular, problem (2) should be formulated in
particular contexts, like the one of socio–economic problems, and the interaction rate η(u∗, u∗) and the
probability distribution A(u∗, u∗, u) on the effects of interactions should be assigned according to the
results of previous statistical researches and the laws of micro-economy.

Furthermore, the choice of the distance

d( f1, f2) =
∫

Du
| f1(t, u)− f2(t, u)| du

in the space of solutions of the Cauchy problem (2) can be improved, as it is not so significant from
a statistical viewpoint. For instance, if f1 is a uniform probability density, it tells us that the deviations
of f2 from uniformity are, in some sense, “small”, but says nothing about the symmetry (or asymmetry)
of these deviations. From a statistical viewpoint, we are interested to know whether such deviations
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are “large” but concentrated in a small subset of Du, or “small” and spread over Du. So, the analysis
must be concentrated on a comparison of the derivatives ∂u f1 and ∂u f2.

Finally, it is of the greatest relevance to study continuous dependence on initial data in the discrete
case, mainly in order to check it also by means of numerical simulations. This must be a preliminary
step to the statistical studies proposed above.
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Abstract: The purpose of this article is to present a new generalized almost (s, q)−Jaggi
F−contraction-type and a generalized almost (s, q)−Jaggi F−Suzuki contraction-type and some
results in related fixed point on it in the context of b−metric-like spaces are discussed. Also, we
support our theoretical results with non-trivial examples. Finally, applications to find a solution
for the electric circuit equation and second-order differential equations are presented and an strong
example is given here to support the first application.
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1. Introduction

Mathematical models can take many forms, including dynamical systems, statistical models,
differential equations and game theoretic models and real world problems. In various branches of
mathematics, The existence of solution for these matters has been checked, for example, differential
equations, integral equations, functional analysis, etc. Fixed point technique is one of these methods
to find the solution of these problems. So this technique has many applications not only is limited to
mathematics but also occurs in various sciences, such that, economics, biology, chemistry, computer
science, physics, etc. More clearly, for example, In economics, this technique is applied to find the
solution of the equilibrium problem in game theory.

Problems in the nonlinear analysis are solved by a popular tool called Banach contraction
principle. This principle appeared in Banach’s thesis [1], where it was used in proving the existence
and uniqueness of solution of integral equations, it stated as: A nonlinear self mapping Γ on a metric
space (Ω, d) is called a Banach contraction if there exists δ ∈ [0, 1) such that

d(Γκ, Γμ) ≤ δd(κ, μ), ∀κ, μ ∈ Ω. (1)

Notice that the contractive condition (1) is satisfied for all κ, μ ∈ Ω which forces the mapping
Γ to be continuous, while it is not applicable in case of discontinuity. In view of the applicability
of contraction principle this is the major draw-back of this principle. Many authors attempted to
overcome this drawback (see, for example [2–4]).
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In 1989, one of the interesting generalizations of this basic principle was given by Bakhtin [5]
(and also Czerwik [6], 1993) by introducing the concept of b−metric spaces. For fixed point results in
b−metric spaces. See [7–14].

In 2010, the concept of a b−metric-like initiated by Alghamdi et al. [9] as an extension of a
b−metric. They studied some related fixed point consequences concerning with this space. Recently,
many contributions on fixed points results via certain contractive conditions in mentioned spaces are
made (for example, see [15–20]).

In 2012, a new contraction called F− contraction-type is presented by Wardowski [21], where
F : R+ → R. By this style, recent fixed point results and strong examples to obtain a different type of
contractions are discussed.

Definition 1 ([21]). A mapping Γ : Ω −→ Ω defined on a metric space (Ω, d), is called an F−contraction if
there is F ∈ Σ and τ > 0 such that

d(Γκ, Γμ) > 0 implies τ + F(d(Γκ, Γμ)) ≤ F(d(κ, μ)), ∀κ, μ ∈ Ω, (2)

where Σ is the set of functions F : (0,+∞)→ R satisfying the following assumptions:
(�1) F is strictly increasing, i.e., for all a, b ∈ R+ such that a < b, F(a) < F(b);
(�2) For every sequence {an}n∈N of positive numbers, limn→∞ an = 0 iff limn→∞ F(an) = −∞;
(�3) There exists μ ∈ (0, 1) such that lima→0+ aμ F(a) = 0.

The following functions Fa : (0,+∞) −→ R for a ∈ {1, 2, 3, 4}, are the elements of Σ. Furthermore,
substituting these functions in (2), Wardowski obtained the following contractions:

(1) F1(θ) = ln(θ), d(Γκ,Γμ)
d(κ,μ) ≤ e−τ ,

(2) F2(θ) = ln(θ) + θ, d(Γκ,Γμ)
d(κ,μ) ≤ e−τ+d(κ,μ)−d(Γκ,Γμ),

(3) F3(θ) =
−1√

θ
, d(Γκ,Γμ)

d(κ,μ) ≤ 1(
1+τ
√

d(κ,μ)
)2

(4) F4(θ) = ln(θ2 + θ), d(Γκ,Γμ)(1+d(Γκ,Γμ))
d(κ,μ)(1+d(κ,μ)) ≤ e−τ .

for all κ, μ ∈ Ω with θ > 0 and Γκ 
= Γμ.

Remark 1. It follows from (2) that

d(Γκ, Γμ) < d(κ, μ), for all κ, μ ∈ Ω,

this means that Γ is contractive with Γκ 
= Γμ. Hence, if the mapping is F−contraction, then it continuous.

Remark 2 ([22]). For p > 1 and θ > 0, the function F(θ) = −1
p√θ

belong to Σ.

In a different way to generalize the Banach contraction principle, Wardowski [21] established the
following theorem:

Theorem 1 ([21]). Suppose that (Ω, d) is a complete metric space and Γ is a self-mapping on it satisfying the
condition (2). Then there exists a unique fixed point κ∗ of Γ. As well as, the sequence {Γnκ◦}n∈N is convergent
to κ∗, for any κ◦ ∈ Ω.
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The Wardowski-contraction is extended by many authors such as Abbas et al. [23] to give certain
fixed point results, Batra et al. [24,25], to generalize it on graphs and alter distances, and Cosentino
and Vetro [26] to introduce some fixed point consequences for Hardy-Rogers-type self-mappings in
ordered and complete metric spaces.

In 2014, some fixed point consequences proved via the notion of an F−Suzuki contraction by Piri
and Kumam [27]. This concept is stated as follows:

Definition 2 ([27]). Let (Ω, d) be a complete metric space and a mapping Γ : Ω → Ω is called F−Suzuki
contraction if there exists F ∈ Σ, and τ > 0 such that

1
2

d(κ, Γκ) < d(κ, μ)⇒ τ + F(d(Γκ, Γμ)) ≤ F(d(κ, μ)), ∀κ, μ ∈ Ω,

with Γκ 
= Γμ.

In 1975, Jaggi [28] defined the concept of a generalized Banach contraction principle as follows:

Definition 3. Let (Ω, d) be a complete metric space. A continuous self-mapping Γ on a set Ω is called Jaggi
contraction-type if

d(Γκ, Γμ) ≤ α
d(κ, Γκ).d(μ, Γμ)

d(κ, μ)
+ βd(κ, μ),

for all κ, μ ∈ Ω, κ 
= μ and for some α, β ∈ [0, 1) with α + β < 1.

Recently, the same author [29], extended his above result on b−metric-like spaces as follows:

Definition 4. Let (Ω, 
) be a b−metric-like space with parameter s ≥ 1. A nonlinear self-mapping Γ on a set
Ω is called (s, q)−Jaggi contraction type if it satisfies the following condition

sq
(Γκ, Γμ) ≤ α

(κ, Γκ).
(μ, Γμ)


(κ, μ)
+ β
(κ, μ),

for all κ, μ ∈ Ω, whenever 
(κ, μ) 
= 0, where α, β ∈ [0, 1) with α + β < 1 and for some q ≥ 1.

In addition, Berinde [30] introduced the notion of almost contraction by generalized the
Zamfirescu fixed point theorem, his result incorporated as follows:

Definition 5. Let Γ be a nonlinear self-mapping on a complete metric space (Ω, d). Then it called Ciric almost
contraction, if there exists δ ∈ [0, 1) and ∃L ≥ 0 such that

d(Γκ, Γμ) ≤ δd(κ, μ) + Ld(μ, Γκ), (3)

for all κ, μ ∈ Ω, κ 
= μ.

After that, the same author [31] extended the contraction (3) and obtained some related fixed
point results on complete metric spaces as follows:

Theorem 2. Let (Ω, d) be a complete metric space and a self-mapping Γ on the set Ω be a Ciric almost
contraction, if there exist α ∈ [0, 1) and ∃L ≥ 0 such that

d(Γκ, Γμ) ≤ αM(κ, μ) + Ld(μ, Γκ) for all κ, μ ∈ Ω,

where M(κ, μ) = max{d(κ, μ), d(κ, Γκ), d(μ, Γμ), d(κ, Γμ), d(μ, Γκ)}. Then,
i. there is a non-empty fixed point of the mapping Γ, i.e., Fix(Γ) 
= ∅;
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ii. for any κ◦ = κ ∈ Ω, n ≥ 0 the Picard iteration κn+1 = Γκn converges to κ∗ ∈ Fix(Γ);
iii. The following estimate holds

d(κn, κ∗) ≤ αn

(1− α)2 d(κ, Γκ),

for all n ≥ 1.

Inspired by Definitions 1, 4 and 5, we introduce a new generalized (s, q)−Jaggi
F−contraction-type on the context of b−metric-like spaces as the following:

Definition 6. Let Γ be a self-mapping on a b−metric-like space (Ω, 
) with parameter s ≥ 1. Then the
mapping Γ is said to be generalized (s, q)−Jaggi F contraction-type if there is F ∈ Σ and τ > 0 such that


(Γκ, Γμ) > 0⇒ τ + F (sq
(Γκ, Γμ)) ≤ F
(

α

(κ, Γκ).
(μ, Γμ)


(κ, μ)
+ β
(κ, μ) + γ
(μ, Γκ)

)
, (4)

for all κ, μ ∈ Ω and α, β, γ ≥ 0 with α + β + 2γs < 1, and for some q > 1.

To support our definition, we state the following example:

Example 1. Let Ω = [0,+∞) and 
(κ, μ) = κ2 + μ2 + |κ − μ|2 ∀κ, μ ∈ Ω. It’s obvious that 
 is a b−metric
like on Ω, with coefficient s = 2. Define a nonlinear self-mapping Γ : Ω → Ω by Γκ = 1

16 ln(1 + κ
2 ), for all

κ ∈ Ω, and the function F(θ) = ln(θ). Consider the constants q = 2, τ = ln(2), α = γ = 0 and β = 1
4 . So

α + β + 2sγ = 1
4 < 1. Since t ≥ ln(1 + t) for each t ∈ [0, ∞), for all κ, μ ∈ Ω, we have

τ + F(sq
(Γκ, Γμ)) = τ + F(s2
(Γκ, Γμ)) = τ + F
(

s2
(

T2κ + T2μ− |Tκ − Tμ|2
))

= ln(2) + F

⎛
⎝4

⎛
⎝( ln(1 + κ

2 )

16

)2

+

(
ln(1 + μ

2 )

16

)2

+

∣∣∣∣∣ ln(1 +
κ
2 )

16
− ln(1 + μ

2 )

16

∣∣∣∣∣
2
⎞
⎠
⎞
⎠

≤ ln(2) + F
(

1
16

(
κ2

4
+

μ2

4
+
∣∣∣κ
4
− μ

4

∣∣∣2))

= ln(2) + ln
(

1
16

(
κ2

4
+

μ2

4
+
∣∣∣κ
4
− μ

4

∣∣∣2))

≤ ln
(

1
4

(
κ2 + μ2 + |κ − μ|2

))

= F
(

α

(κ, Γκ).
(μ, Γμ)


(κ, μ)
+ β
(κ, μ) + γ
(μ, Γκ)

)
.

Therefore the mapping Γ is a generalized almost (s, q)−Jaggi F−contraction-type.

In this article, we present some related fixed point results for a generalized almost (s, q)−Jaggi
F-contraction-type and generalized almost (s, q)−Jaggi F−Suzuki contraction-type on b−metric-like
spaces. Also, we give some examples to illustrate these main results. Moreover, applications to find
solutions of electric circuit equations and second-order differential equations are discussed and we
justify the first application with an example.

2. Preliminaries and Known Results

In the context of this paper, we will use the following notations: N,R, R+ and Q denotes the set
of positive integers, real numbers, nonnegative real numbers and rational numbers, respectively. We
begin this part with backgrounds about metric-like and b−metric-like spaces.
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Definition 7 ([9]). Let Ω be a nonempty set. A mapping ω : Ω×Ω→ R+ is said to be dislocated (metric-like)
if the following three conditions hold for all κ, μ, τ ∈ Ω :
(ω1) ω(κ, μ) = 0⇒ κ = μ;
(ω2) ω(κ, μ) = ω(μ, κ);
(ω3) ω(κ, τ) ≤ ω(κ, μ) + ω(μ, τ).
In this case, the pair (Ω, ω) is called a dislocated (metric-like) space.

Definition 8 ([32]). A b−dislocated on a nonempty set Ω is a function 
 : Ω×Ω → R+ such that for all
κ, μ, τ ∈ Ω and a constant s ≥ 1, the following three conditions are satisfied:
(
1) 
(κ, μ) = 0⇒ κ = μ;
(
2) 
(κ, μ) = 
(μ, κ);
(
3) 
(κ, τ) ≤ s[
(κ, μ) + 
(μ, τ)].

In this case, the pair (Ω, 
) is called a b−dislocated (metric-like) space (with constant s).

It should be noted that the class of b−metric-like spaces is larger than the class of metric-like
spaces, since a b−metric-like is a metric-like with s = 1.

For new examples in metric-like and b−metric-like spaces (see [33,34]).
A b−metric-like on Ω satisfies all of the conditions of a metric except that 
(κ, μ) may be positive

for κ ∈ Ω, so each b−metric-like 
 on Ω generates a topology �
 on Ω whose base is the family of
open 
−balls

�
(κ, ε) = {μ ∈ Ω : |
(κ, μ)−
(κ, κ)| < ε

s
},

for all κ ∈ Ω, s ≥ 1 and ε > 0.
According to a topology �
, we can present the following results:

Definition 9. Let (Ω, 
) be a b−metric-like space and χ be a subset of Ω. We say that χ is a 
−open subset
of Ω, if for all κ ∈ Ω there exists ε > 0 such that �
(κ, ε) ⊆ χ. Also σ ⊆ Ω is a 
−closed subset of Ω if Ω\χ
is a 
−open subset in Ω.

Lemma 1. Let (Ω, 
) be a b−metric-like space and σ be a 
−closed subset of Ω. Let {κn} be a sequence in σ

such that limn→∞ κn = κ. Then κ ∈ σ.

Proof. Let κ /∈ σ by Definition 9, (Ω\σ) is a 
−open set. Then there exists ε > 0 such that �
(κ, ε) ⊆
Ω\σ. On the other hand, we have limn→∞ |
(κn, κ)−
(κ, κ)| = 0 since limn→∞ κn = κ. Hence, there
exists ι◦ ∈ N such that

|
(κn, κ)−
(κ, κ)| < ε

s
,

for all ι ≥ ι◦. So, we conclude that {κn} ⊆ �
(κ, ε) ⊆ Ω\σ for all ι ≥ ι◦. This is a contradiction since
{κn} ⊆ σ for all ι◦ ∈ N.

In a b−metric-like space (Ω, 
), if κ, μ ∈ Ω and 
(κ, μ) = 0, then κ = μ, but the converse is not
true in general.

Example 2. Let Ω = {0, 1, 2, 3, 4} and let


(κ, μ) =

{
5, κ = μ = 0,
1
5 , otherwise.

Then (Ω, 
) is a b−metric-like space with the constant s = 5.
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Definition 10. Let {κn} be a sequence on a b−metric-like space (Ω, 
) with a coefficient s. Then
1. If limm,n→∞ 
(κn, κ) = 
(κ, κ), then the sequence {κn} is said to be convergent to κ. {κn} is said to
be a Cauchy sequence if limm,n→∞ 
(κm, κn) exists and is finite. The pair (Ω, 
) is said to be a complete
b−metric-like space if for every Cauchy sequence {κn} in Ω, there exists a κ ∈ Ω, such that

lim
m,n→∞


(κm, κn) = 
(κ, κ) = lim
n→∞


(κn, κ).

2. {κn} in Ω is called a 0−
−Cauchy sequence if limm,n→∞ 
(κm, κn) = 0. The space (Ω, 
) is said to be
0−
−complete if every 0−
−Cauchy sequence in Ω converges with respect to �
 to a point κ ∈ Ω such
that 
(κ, κ) = 0.
3. A nonlinear mapping Γ is continuous on the set Ω, if the following limits

lim
n→∞


(κn, κ), lim
n→∞


(Γκn, Γκ).

Existing and equal.

The following example elucidates every 
−complete b−metric-like space is 0−
−complete but
the converse is not true.

Example 3. Let Ω = [0, 1) ∩Q and 
 : Ω×Ω→ [0,+∞) be a function defined by


(κ, μ) =

{
2κ if κ = μ,

(max{κ, μ})2 otherwise.

∀κ, μ ∈ Ω. Then (Ω, 
) is a b−metric like spaces with a coefficient s = 2. Also, if we take a Cauchy sequence
{κn} =

(
1
n

)
n∈N

, then limm,n→∞ 
(κm, κn) = 0. So {κn} is a 0 − 
−Cauchy sequence converges to a

point 0 ∈ Ω. Therefore the pair (Ω, 
) is a 0 − 
−complete b−metric-like space, while, if we consider
{κn} =

( n
n+1

)
n∈N

, then limm,n→∞ 
(κm, κn) exists and is finite but converges to a point 2 /∈ Ω, so, the pair
(Ω, 
) is not a 
−complete b−metric-like space.

Remark 3. In a b−metric-like space the limit of a sequence need not be unique and a convergent sequence need
not be a Cauchy sequence.

To show this remark, we gave the following example:

Example 4. Let Ω = [0,+∞). Define a function 
 : [0,+∞) × [0,+∞) → [0,+∞) by 
(κ, μ) =

(max{κ, μ})2. Then (Ω, 
) is a b−metric-like space with a coefficient s = 2. Suppose that

{κn} =
{

0 when n is odd
1 when n is even

.

For κ ∈ Ω, limn→∞ 
(κn, κ) = limn→∞ (max{κn, κ})2 = κ2 = 
(κ, κ). Therefore, it is a convergent
sequence and κn → κ. Now if we take κ = 0, therefore,
if n is an odd number, we have limn→∞ 
(κn, κ) = limn→∞ (max{0, 0})2 = 0,
if n is an even number, we get limn→∞ 
(κn, κ) = limn→∞ (max{1, 0})2 = 1.
That is, the sequence has not limit although it has two subsequences (for odd n and for even n) both having a
limit with both limits being distinct.
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3. New Fixed Point Results

This section is devoted to present some new fixed point results for a generalized almost
(s, q)−Jaggi F−contraction-type and almost (s, q)−Jaggi F−Suzuki-type contraction on the context of
b−metric-like spaces.

We begin with the first main result.

Theorem 3. Let (Ω, 
) be a 0− 
−complete b−metric-like space with a coefficient s ≥ 1 and Γ be a self
mapping satisfying a generalized almost (s, q)−Jaggi F−contraction-type (4). Then, Γ has a unique fixed point
whenever F or Γ is continuous.

Proof. Let κ◦ be an arbitrary point of Ω. Define a sequence {κn}n∈N by κn+1 = Γκn. If Γκ◦ = κ◦, then
the proof is finished. Again, if there exists i◦ ∈ {1, 2, ..} the right hand side of (4) is 0 for κ = κi◦−1 and
μ = κi◦ so the proof is stopped. So, without loss of generality we may assume that κn+1 
= κn for all
n ≥ 1 and 
n = 
(κn+1, κn). Then 
n > 0. On the other hand, Γ is a generalized almost (s, q)−Jaggi
F−contraction-type, hence we get

τ + F(
n) ≤ τ + F(sq
n) = τ + F(sq
(κn+1, κn))

= τ + F(sq
(Γκn, Γκn−1))

≤ F
(

α

(κn, Γκn).
(κn−1, Γκn−1)


(κn, κn−1)
+ β
(κn, κn−1) + γ
(κn−1, Γκn)

)
= F (α
(κn, κn+1) + β
(κn, κn−1) + γ
(κn−1, κn+1)) . (5)

By condition (
3), we have


(κn−1, κn+1) ≤ s[
(κn−1, κn) + 
(κn, κn+1)]. (6)

Applying (6) in (5), one can write

τ + F(
n) ≤ F (α
(κn, κn+1) + β
(κn, κn−1) + γs
(κn−1, κn) + γs
(κn, κn+1)) .

Since F is strictly increasing, then


n < α
n + β
n−1 + γs
n−1 + γs
n,

this leads to
(1− α− γs)
n < (β + γs)
n−1 for all n ≥ 1.

Since α + β + 2γs < 1, we deduce that 1− α− γs > 0, and thus


n <
β + γs

1− α− γs

n−1 < 
n−1.

Consequently,
τ + F(
n) ≤ F(
n−1).

By the same method, we can prove that

F(
n) ≤ F(
n−1)− τ

≤ F(
n−2)− 2τ

.

.

≤ F(
◦)− nτ for all n ≥ 1. (7)
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Passing the limit as n→ ∞ in (7), we can get

lim
n→∞

F(
n) = −∞.

So, by (�2), we obtain
lim

n→∞

n = 0. (8)

Apply (�3), there exists λ ∈ (0, 1) such that

lim
n→∞


λ
n F(
n) = 0. (9)

By (7), for all n ≥ 1, yields


λ
n (F(
n)− F(
◦)) ≤ −nτ
λ

n ≤ 0. (10)

Considering (8), (9) and passing n→ ∞ in (10), we get

lim
n→∞

n
λ
n = 0. (11)

By (11), there exists n1 ∈ N such that n
λ
n ≤ 1 for all n ≥ n1, or


n ≤ 1

n
1
λ

∀n ≥ n1. (12)

Now, we shall prove that {κn} is 0− 
−Cauchy sequence, let m, n ∈ N such that m > n ≥ n1.
By (12) and the assumption (
3), we have


(κn, κm) ≤ s
(κn, κn+1) + s
(κn+1, κm)

≤ s
(κn, κn+1) + s2
(κn+1, κn+2) + s2
(κn+2, κm)

.

.

≤ s
(κn, κn+1) + s2
(κn+1, κn+2) + s3
(κn+2, κn+3) + ...

+sm−n−1
(κm−2, κm−1) + sm−n
(κm−1, κm)

=
m−1

∑
i=n

si−n+1
i

≤
∞

∑
i=n

si−n+1
(

1

i
1
λ

)
.

Since the series
∞
∑

i=n

1

i
1
λ

is converges, as i→ ∞ and since multiply a scalar number in a convergent

series gives a convergent series, so, 
(κn, κm) → 0. Therefore {κn} is 0− 
− Cauchy sequence in
(Ω, 
). Since Ω is 0− 
−complete b−metric-like space, there exists κ∗ ∈ Ω such that κn → κ∗ or
equivalently,

lim
n,m→∞


(κn, κm) = lim
n→∞


(κn, κ∗) = 
(κ∗, κ∗) = 0. (13)

If Γ is 
 continuous, it follows from (12) that

lim
n→∞


(Γκn, Γκ∗) = lim
n→∞


(κn+1, Γκ∗) = 
(κ∗, Γκ∗) = 0.

this implies that
κ∗ = Γκ∗.
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Furthermore, suppose that F is continuous, we prove that κ∗ is a fixed point of Γ by contrary,
suppose κ∗ 
= Γκ∗, so there exist an n◦ ∈ N and a subsequence {κni} of {κn} such that 
(κni+1, Γκ∗) > 0
for all ni ≥ n◦ (otherwise, there exists n1 ∈ N such that κn = Γκ∗ ∀n ≥ n1, which implies that κn → κ∗.
That is a contradiction, with κ∗ 
= Γκ∗). Since 
(κni+1, Γκ∗) > 0 ∀ni ≥ n◦, then by (4), we have

τ + F(sq
(κni+1, Γκ∗))
= τ + F(sq
(Γκni , Γκ∗))

≤ F
(

α

(κni , Γκni ).
(κ∗, Γκ∗)


(κni , κ∗) + β
(κni , κ∗) + γ
(κ∗, Γκni )

)

= F
(

α

(κni , κni+1).
(κ∗, Γκ∗)


(κni , κ∗) + β
(κni , κ∗) + γ
(κ∗, κni+1)

)
. (14)

Letting n→ ∞ in (14) and since F is continuous, we can get

τ + F(sq
(κ∗, Γκ∗)) ≤ F (α
(κ∗, Γκ∗))
< F(
(κ∗, Γκ∗)),

the above inequality say that sq < 1 for some q > 1. This a contradiction. Hence κ∗ = Γκ∗.

For uniqueness. Suppose that κ∗1 and κ∗2 are two distinct fixed points of a mapping Γ, hence
F(
(Γκ∗1 , Γκ∗2)) = 
(κ∗1 , κ∗2) > 0, which implies by (4) that

F(sq
(κ∗1 , κ∗2)) = F(sq
(Γκ∗1 , Γκ∗2))
< τ + F(sq
(Γκ∗1 , Γκ∗2))

≤ F
(

α

(κ∗1 , Γκ∗1).
(κ∗2 , Γκ∗2)


(κ∗1 , κ∗2)
+ β
(κ∗1 , κ∗2) + γ
(κ∗2 , Γκ∗1)

)
= F((β + γ)
(κ∗1 , κ∗2))
< F(
(κ∗1 , κ∗2)),

a contradiction again. Hence, the fixed point is unique. The proof is finished.

Remark 4. In the real, we can obtain some classical results of our new contraction (4) if we take the following
considerations on a complete metric space (Ω, d).

• Put α = γ = 0 and β = 1, we have Wardowski contraction [21].
• Take α = γ = 0, β ∈ [0, 1), F(θ) = ln(θ) with θ > 0, we get Banach contraction [1].
• Consider γ = 0 and F(θ) = ln(θ) with θ > 0, we have Jaggi-contraction [29].
• Let γ = 0, F(θ) = ln(θ) with θ > 0, we have Jaggi-contraction [28].
• Set α = 0, β ∈ [0, 1), γ ≥ 0, F(θ) = ln(θ) with θ > 0, we get Ciric almost contraction [30].

Now, we present the following example to discuss the validity results of Theorem 3.

Example 5. Let Ω = [0, 1) ∩Q and 
 : Ω×Ω→ R+be a function defined by


(κ, μ) =

⎧⎪⎨
⎪⎩

2 3
√

κ, if κ = μ

(
max{2 3

√
κ, 2 3
√

μ})2 otherwise
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for all κ, μ ∈ Ω. Suppose that {κn} ∈ Ω. If limn→∞ 
(κn, κ) = (κ, κ) = 0, then limn→∞ 
(κn, μ) = (κ, μ)

for all μ ∈ Ω. By the condition (
3), we can write


(κn, κm) ≤ 2(
(κn, κ) + 
(κ, κm)). (15)

Passing limit as n, m→ ∞ in (15), we obtain limn,m→∞ 
(κn, κm) = 0. Thus (Ω, 
) is 0−ω−complete
b−metric-like space with a coefficient s = 2. Note, here (Ω, 
) is not a complete b− metric like space. Indeed,
consider the sequence {κn} = 1

n for n ∈ N in Ω. then limn→∞ κn = 0. Let limn→∞ 
(κn, κ) = 
(0, κ) for all
κ ∈ Ω.

If κ = 0, then 
(0, κ) = 0. So limn,m→∞ 
(κn, κm) = 
(0, κ) = 
(κn, κ).
If κ 
= 0, then 
(0, κ) = 2 3

√
κ. So limn,m→∞ 
(κn, κm) 
= 
(0, κ) = 
(κn, κ).

Therefore, (Ω, 
) is a 0− 
−complete b−metric-like space, which is not a 
−complete b−metric-like
space. Define a nonlinear mapping Γ by Γκ = κ

512 . Take F(θ) = ln(θ) + θ, q = 3 and τ = ln(2). We shall
prove that Γ satisfy the condition (4) with α = γ = 0 and β = 1

4 . So α + β + 2γs = 1
4 < 1. Then for κ < μ,


(Γκ, Γμ) = 
(
κ

512
,

μ

512
) =

(
2 3
√

μ

8

)2

=

(
3
√

μ
)2

16
> 0,

by simple calculations, we can get


(κ, Γκ) = 
(κ, κ
512 ) = 4

(
3
√

κ
)2 , 
(μ, Γμ) = 
(μ, μ

512 ) = 4
(

3
√

μ
)2 ,


(κ, μ) = 4
(

3
√

μ
)2 , 
(μ, Γκ) = 
(μ, κ

512 ) = 4
(

3
√

μ
)2 ,

and

α

(κ, Γκ).
(μ, Γμ)


(κ, μ)
+ β
(κ, μ) + γ
(μ, Γκ)

=
(

α× 4
(

3
√

κ
)2
)
+
(

β× 4 ( 3
√

μ)2
)
+
(

γ× 4 ( 3
√

μ)2
)
= ( 3
√

μ)2 .

Hence

τ + F(sq(
(Γκ, Γμ)) = ln(2) + F(8×
(

3
√

μ
)2

16
)

= ln(2) + F

((
3
√

μ
)2

2

)

≤ ln(2) + ln

((
3
√

μ
)2

2

)
+

(
3
√

μ
)2

2

≤ ln
(
( 3
√

μ)2
)
+ ( 3
√

μ)2

= F
(
( 3
√

μ)2
)

= F(α

(κ, Γκ)×
(μ, Γμ)


(κ, μ)
+ β
(κ, μ) + γ
(μ, Γκ)).
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By the same manner, for κ = μ 
= 0, one gets that

τ + F(sq(
(Γκ, Γμ)) = ln(2) + F(8×
(

3
√

κ
)2

16
)

= ln(2) + F

((
3
√

κ
)2

2

)

≤ ln(2) + ln

((
3
√

κ
)2

2

)
+

(
3
√

κ
)2

2

≤ ln
((

3
√

κ
)2
)
+
(

3
√

κ
)2

= F
((

3
√

κ
)2
)

= F(α

(κ, Γκ).
(μ, Γμ)


(κ, μ)
+ β
(κ, μ) + γ
(μ, Γκ)).

So, all required hypotheses of Theorem 3 are verified and the point 0 ∈ Ω is a unique fixed point of Γ.

The second result of this section is to introduce the notion of a generalized almost (s, q)−Jaggi
F−Suzuki contraction-type in the context of b−metric-like spaces and study some related fixed point
results in this direction.

Definition 11. Let Γ be a self-mapping on a b−metric-like space (Ω, 
) with parameter s ≥ 1. Then the
mapping Γ is said to be a generalized almost (s, q)−Jaggi F−Suzuki contraction-type if there exists F ∈ Σ and
τ ∈ (0,+∞) such that

1
2s 
(κ, Γκ) < 
(κ, μ)⇒ τ + F (sq
(Γκ, Γμ)) ≤ F

(
α


(κ,Γκ).
(μ,Γμ)

(κ,μ) + β
(κ, μ) + γ
(μ, Γκ)

)
, (16)

for all κ, μ ∈ Ω and α, β, γ ≥ 0 with α + β + 2γs < 1, for some q > 1 and satisfying 
(Γκ, Γμ) > 0.

Theorem 4. Let (Ω, 
) be a 0− 
−complete b−metric-like space with a coefficient s ≥ 1 and Γ be a self
mapping satisfying a generalized almost (s, q)−Jaggi-type F−Suzuki contraction (16).Then, Γ has a unique
fixed point whenever F or Γ is continuous.

Proof. Let κ◦ ∈ Ω and {κn}∞
n=1 defined by κn+1 = Γκn = Γn+1κ◦. If there exists n ∈ N such that


(κn, Γκn) = 0, thus the proof is completed. So, suppose that 0 < 
(κn, Γκn) = 
(κn, κn+1) = 
n,
therefore for all n ∈ N

1
2s


(κn, Γκn) < 
(κn, Γκn),

yields

τ + F
(


(Γκn, Γ2κn)
)
≤ τ + F

(
sq
(Γκn, Γ2κn)

)
= τ + F (sq
(Γκn, Γ(Γκn)))

≤ F
(

α

(κn, Γκn).
(Γκn, Γ2κn)


(κn, Γκn)
+ β
(κn, Γκn) + γ
(Γκn, Γκn)

)

= F
(

α
(Γκn, Γ2κn) + β
(κn, Γκn) + γ
(Γκn, Γκn)
)

≤ F
(

α
(Γκn, Γ2κn) + β
(κn, Γκn) + 2sγ
(κn, Γκn)
)

.

Since F is strictly increasing, then


(Γκn, Γ2κn) < α
(Γκn, Γ2κn) + β
(κn, Γκn) + 2sγ
(κn, Γκn). (17)
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Since 1− α > 0, and α + β + 2γs < 1 then we can write


(Γκn, Γ2κn) <

(
β + 2sγ

1− α

)

(κn, Γκn) < 
(κn, Γκn). (18)

Consequently,
τ + F(
(Γκn, Γ2κn)) ≤ F(
(κn, Γκn)),

or,
F(
(Γκn, Γ2κn)) ≤ F(
(κn, Γκn))− τ,

By the same method, we can deduce that

F(
n) = F(
(κn, Γκn)) = F(
(Γκn−1, Γ2κn−1))

≤ F(
(κn−1, Γκn−1))− τ

≤ F(
(κn−2, Γκn−2))− 2τ

.

.

≤ F(
(κ◦, Γκ◦))− nτ for all n ≥ 1.

By the same manner of Theorem 3, we deduce that {κn} is 0− 
−Cauchy sequence in (Ω, 
).
Since Ω is 0− 
−complete b−metric-like space, there exists κ∗ ∈ Ω such that κn → κ∗ or equivalently,

lim
n,m→∞


(κn, κm) = lim
n→∞


(κn, κ∗) = 
(κ∗, κ∗) = 0. (19)

Now, we shall prove that

1
2s


(κn, Γκn) < 
(κn, κ∗) or
1
2s


(Γκn, Γ2κn) < 
(Γκn, κ∗). (20)

Assuming the opposite, that there is m ∈ N such that

1
2s


(κm, Γκm) ≥ 
(κm, κ∗) or
1
2s


(Γκm, Γ2κm) ≥ 
(Γκm, κ∗). (21)

Hence
2s
(κm, κ∗) ≤ 
(κm, Γκm) ≤ s[
(κm, κ∗) + 
(κ∗, Γκm)],

which leads to
s
(κm, κ∗) ≤ s
(κ∗, Γκm),

or

(κm, κ∗) ≤ 
(κ∗, Γκm), (22)

From (21) and (22), we have


(κm, κ∗) ≤ 
(κ∗, Γκm) ≤ 1
2s


(Γκm, Γ2κm).
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Since 1
2s 
(κm, Γκm) < 
(κm, Γκm) and using (16), we can get

τ + F
(


(Γκm, Γ2κm)
)
≤ τ + F

(
sq
(Γκm, Γ2κm)

)
≤ F

(
α


(κm, Γκm)


(κm, Γκm)
+ β
(κm, Γκm) + γ
(Γκm, Γκm)

)

= F
(

α
(Γκm, Γ2κm) + β
(κm, Γκm) + γ
(Γκm, Γκm)
)

≤ F
(

α
(Γκm, Γ2κm) + β
(κm, Γκm) + 2sγ
(κm, Γκm)
)

.

Replace n with m in the inequalities (17) and (18) and apply the same above steps, we can write


(Γκm, Γ2κm) < 
(κm, Γκm).

It follows from (21) and (22), that


(Γκm, Γ2κm) < 
(κm, Γκm)

≤ s[
(κm, κ∗) + 
(κ∗, Γκm)]

≤ s[
(κ∗, Γκm) +
1
2s


(Γκm, Γ2κm)]

≤ s[
1
2s


(Γκm, Γ2κm) +
1
2s


(Γκm, Γ2κm)]

= 
(Γκm, Γ2κm).

A contradiction, so (20) holds for all n ∈ N, this leads to

τ + F
(

2s2
(Γκn, Γκ∗)
)
≤ τ + F (2sq
(Γκn, Γκ∗))

≤ F
(

α

(κn, Γκn).
(κ∗, Γκ∗)


(κn, κ∗) + β
(κn, κ∗) + γ
(κ∗, Γκn)

)

< F
(

α
2s
(κn, κ∗).
(κ∗, Γκ∗)


(κn, κ∗) + β
(κn, κ∗) + γ
(κ∗, Γκn)

)
= F (2sα
(κ∗, Γκ∗) + β
(κn, κ∗) + γ
(κ∗, Γκn))

≤ F

(
2s2α
(κ∗, κn) + 2s3α
(κn, Γκn) + 2s3α
(Γκn, Γκ∗)

+β
(κn, κ∗) + γs
(κ∗, κn) + γs
(κn, Γκn)

)
,

a gain, since 
(κn, Γκn) < 2s
(κn, κ∗), τ > 0 and F is strictly increasing, this yields,

2s2
(Γκn, Γκ∗) < (2s2α + 4s4α + β + γs + 2s2γ)
(κn, κ∗) + 2s3α
(Γκn, Γκ∗),

or,
(1− 2αs)
(Γκn, Γκ∗) < (α + 2s2α + β + 2γ)
(κn, κ∗),

Thus,

τ + F((1− 2αs)
(Γκn, Γκ∗)) ≤ F((α + 2s2α + β + 2γ)
(κn, κ∗))
= F(α + 2s2α + β + 2γ)
(Γκn+1, κ∗)). (23)

Passing the limit as n→ ∞ in (23), using (�2) and (19) we can get

lim
n→∞


(Γκn, Γκ∗) = 0.

Therefore, 
(κ∗, Γκ∗) = limn→∞ 
(κn, Γκ∗) = limn→∞ 
(Γκn+1, Γκ∗) = 0.

47



Mathematics 2020, 8, 63

Similarly, by (20) for all n ∈ N, one can write

τ + F
(

2s2
(Γ2κn, Γκ∗)
)
≤ τ + F

(
2sq
(Γ2κn, Γκ∗)

)
≤ F

(
α


(Γκn, Γ2κn).
(κ∗, Γκ∗)

(Γκn, κ∗) + β
(Γκn, κ∗) + γ
(κ∗, Γ2κn)

)

< F
(

α
2s
(Γκn, κ∗).
(κ∗, Γκ∗)


(Γκn, κ∗) + β
(Γκn, κ∗) + γ
(κ∗, Γ2κn)

)

= F
(

2sα
(κ∗, Γκ∗) + β
(Γκn, κ∗) + γ
(κ∗, Γ2κn)
)

≤ F

(
2s2α
(κ∗, Γκn) + 2s3α
(Γκn, Γ2κn) + 2s3α
(Γ2κn, Γκ∗)

+β
(Γκn, κ∗) + γs
(κ∗, Γκn) + γs
(Γκn, Γ2κn)

)
,

since 
(Γκn, Γ2κn) < 2s
(Γκn, κ∗), τ > 0 and F is strictly increasing, this leads to

2s2
(Γ2κn, Γκ∗) < (2s2α + 4s4α + β + γs + 2γs2)
(κ∗, Γκn) + 2s3α
(Γ2κn, Γκ∗),

or,
(1− 2αs)
(Γ2κn, Γκ∗) < (α + 2s2α + β + 2γ)
(κ∗, Γκn).

Thus,

τ + F((1− 2αs)
(Γ2κn, Γκ∗)) ≤ F((α + 2s2α + β + 2γ)
(κ∗, Γκn))

= F(α + 2s2α + β + 2γ)
(κn+1, κ∗)). (24)

Taking the limit as n→ ∞ in (24), using (�2) and (19) we can get

lim
n→∞


(Γ2κn, Γκ∗) = 0.

Therefore, 
(κ∗, Γκ∗) = limn→∞ 
(κn+2, Γκ∗) = limn→∞ 
(Γ2κn, Γκ∗) = 0. Hence, κ∗ = Γκ∗.
The uniqueness follows immediately from the proof of Theorem 3, and this completes

the proof.

Example 6. By taking all assumptions of Example 5, if κ < μ, we have

1
2s


(κ, Γκ) =
1
4
× 4

(
3
√

κ
)2

=
(

3
√

κ
)2

< 4 ( 3
√

μ)2 = 
(κ, μ),

also, if κ = μ 
= 0, we deduce that

1
2s


(κ, Γκ) =
1
4
× 4

(
3
√

κ
)2

=
(

3
√

κ
)2

< 4
(

3
√

κ
)2

= 
(κ, μ).

Therefore all required hypotheses of Theorem 4 are satisfied and a mapping Γ has a unique fixed point
0 ∈ Ω.

4. Solution of Electric Circuit Equation

Fixed point theory is involved in physical applications especially the solution of the the electric
circuit equation, which was presented in [35,36]. The authors applied their theorems obtained to
solve this equation under F−contraction mapping. In this part, we present the solution of electric
circuit equation, which is in the form of second-order differential equation. It contains a resistor R, an
electromotive force E, a capacitor C, an inductor L and a voltage V in series as Figure 1.

If the rate of change of charge q with respect to time t denoted by the current I, i.e., I = dq
dt . We

get the following relations:
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• V = IR;
• V = q

C ;
• V = L dI

dt .
The sum of these voltage drops is equal to the supplied voltage (law of Kirchhoff voltage), i.e.,

IR +
q
C
+ L

dI
dt

= V(t),

or

L
d2q
dt2 + R

dq
dt

+
q
C

= V(t), q(0) = 0, q′(0) = 0, (25)

where C = 4L
R2 and τ = R

2L , this case is said to be the resonance solution in a Physics context. Then, the
Green function associated with (25) is given by

Λ(t, �) =

{
−�e−τ(�−t) if 0 ≤ � ≤ t ≤ 1
−te−τ(�−t) if 0 ≤ t ≤ � ≤ 1

.

Using Green function, problem (25) is equivalent to the following nonlinear integral equation

κ(t) =
t∫

0

Λ(t, �)χ(�, κ(�))d�, (26)

where t ∈ [0, 1].
Let Ω = C([0, 1]) be the set of all continuous functions defined on [0, 1], endowed with


(κ, μ) = (‖κ‖∞ + ‖μ‖∞)m for all κ, μ ∈ Ω,

where ‖κ‖∞ = supt∈[0,1]{|κ(t)| e−2tτm} and m > 1. It is clear that (Ω, 
) is a complete b−metric-like
space with parameter s = 2m−1.

Figure 1. Electric circuit.

Now, we state and prove the main theorem of this section.

Theorem 5. Let Γ be a nonlinear self mapping on Ω of a b−metric-like space (Ω, 
), such that the following
conditions hold
(i) Λ : [0, 1]× [0, 1]→ [0, ∞) is a continuous function;
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(ii) χ : [0, 1]×R→ R, where χ(�, .) is monotone nondecreasing mapping for all � ∈ [0, 1];
(iii) there exists a constant τ ∈ R+ such that for all (t, �) ∈ [0, 1]2 and κ, μ ∈ R+,

|χ(t, κ) + χ(t, μ)| ≤ τ2
(

e−τ

s2

) 1
m

B
1
m (κ, μ),

where

B(κ, μ) = α

(κ, Γκ).
(μ, Γμ)


(κ, μ)
+ β
(κ, μ) + γ
(μ, Γκ),

for all, t ∈ [0, 1] and α, β, γ ≥ 0 such that α + β + 2γs < 1. Then the Equation (25) has a unique solution.

Proof. Define a nonlinear self-mapping Γ : Ω→ Ω by

Γκ(t) =
t∫

0

Λ(t, �)χ(�, κ(�))d�.

It is clear that if κ∗ is a fixed point of the mapping Γ, then it a solution of the problem (26). Suppose
that κ, μ ∈ Ω, we can get 
(Γκ(t), Γμ(t)) > 0,

s2 (|Γκ(t)|+ |Γμ(t)|)m

= s2

⎛
⎝
∣∣∣∣∣∣

t∫
0

Λ(t, �)χ(�, κ(�))d�

∣∣∣∣∣∣+
∣∣∣∣∣∣

t∫
0

Λ(t, �)χ(�, μ(�))d�

∣∣∣∣∣∣
⎞
⎠

m

≤ s2

⎛
⎝ t∫

0

|Λ(t, �)χ(�, κ(�))| d� +

t∫
0

|Λ(t, �)χ(�, μ(�))d�|
⎞
⎠

m

= s2

⎛
⎝ t∫

0

Λ(t, �) (|χ(�, κ(�))|+ |χ(�, μ(�))|) d�

⎞
⎠

m

≤ s2

⎛
⎝ t∫

0

Λ(t, �)τ2
(

e−τ

s2

) 1
m

B
1
m (κ, μ)d�

⎞
⎠

m

= s2

⎛
⎝ t∫

0

Λ(t, �)τ2e2τ�e−2τ�

(
e−τ

s2

) 1
m

B
1
m (κ, μ)d�

⎞
⎠

m

≤ e−τ ‖B(κ, μ)‖∞

⎛
⎝τ2

t∫
0

e2τ�Λ(t, �)d�

⎞
⎠

m

≤ e−τ ‖B(κ, μ)‖∞

(
e2τt [1− 2τt + τte−τt − e−τt])m

,

so we have

s2 (|Γκ(t)|+ |Γμ(t)|)m .e−2tτm ≤ e−τ ‖B(κ, μ)‖∞
[
1− 2τt + τte−τt − e−τt]m ,

which leads to,

s2 (‖Γκ(t)‖∞ + ‖Γμ(t)‖∞)m ≤ e−τ ‖B(κ, μ)‖∞
[
1− 2τt + τte−τt − e−τt]m ,

since 1− 2τt + τte−τt − e−τt ≤ 1, we obtain that

s2
(Γκ(t), Γμ(t)) ≤ e−τ ‖B(κ, μ)‖∞ .
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Taking F(θ) = ln(θ), for all θ > 0, which is F ∈ Σ, we obtain

ln(s2
(Γκ(t), Γμ(t))) ≤ ln(e−τ ‖B(κ, μ)‖∞),

or
τ + ln(s2
(Γκ(t), Γμ(t))) ≤ ln(‖B(κ, μ)‖∞).

Equivalently

τ + F(sq
(Γκ(ρ), Γμ(ρ))) ≤ F(α

(κ, Γκ).
(μ, Γμ)


(κ, μ)
+ β
(κ, μ) + γ
(μ, Γκ)).

By Theorem 3 and taking the coefficient q = 2, we deduce that Γ has a fixed point, which is a
solution of the differential equation arising in the electric circuit equation. This finished the proof.

The following example satisfy all required hypotheses of Theorem 5.

Example 7. Consider the following nonlinear integral equation

κ(t) =
τ2e−4tτ

50s3

1∫
0

�3κ(�)d�, � ∈ [0, 1]. (27)

Then it has a solution in Ω.

Proof. Let Γ : Ω→ Ω be defined by Γκ(t) = τ2e−4tτ

50s3

1∫
0

�3κ(�)d�. By specifying Λ(t, �) = �3

5 , χ(t, κ) =

τ2e−4tτκ(�)
10s3 in Theorem 5, it follows that:

(i) the function Λ(t, �) is continuous on [0, 1]× [0, 1],
(ii) χ(�, κ(�)) is monotone increasing on [0, 1]×R for all � ∈ [0, 1],
(iii) By taking m = 2 and τ = ln(4), hence s = 2, so, for all (t, �) ∈ [0, 1]× [0, 1] and κ, μ ∈ R+, we
obtain that

|χ(t, κ) + χ(t, μ)| =
τ2e−4tτ

10s3 |κ(�) + μ(�)| ≤ τ2e−4tτ

20s2 (|κ(�)|+ |μ(�)|)

≤ τ2e−4tτ

4s2 (|κ(�)|+ |μ(�)|)2

=
(τ

s

)2
(

1
eln 4.22 )

1
2

(
[|κ(�)|+ |μ(�)|] e−4tτ

)2

=
(τ

s

)2
(

1
eτ .s2 )

1
m

(
[|κ(�)|+ |μ(�)|] e−2tτm

)m

=
(τ

s

)2
(

1
eτ .s2 )

1
m (‖κ(�)‖∞ + ‖μ(�)‖∞)m

=
(τ

s

)2
(

1
eτ .s2 )

1
m 
(κ, μ)

≤ τ2
(

e−τ

s2

) 1
m

B
1
m (κ, μ).

Finally

sup
t,�∈[0,1]

1∫
0

Λ(t, �)d� = sup
t∈[0,1]

1∫
0

�3

5
d� ≤ sup

ρ∈[0,1]

1
20

=
1
20

< 1.

Therefore, all conditions of Theorem 5 are satisfied, therefore a mapping Γ has a fixed point in Ω,
which is a solution to the problem (27).
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5. Solution of Second-Order Differential Equations

In this part, we shall apply the previous theoretical results of Theorem 3 to study the existence
and uniqueness of solutions for the following second-order differential equation:

{
κ′′(t) = −χ(t, κ(t)), t ∈ [0, 1]

κ(0) = κ(1) = 0
, (28)

where χ : [0, 1]× [0, 1]→ R is a continuous functions.
The problem (28) is equivalent to the following integral equation:

κ(t) =
1∫

0

Λ(t, �)χ(t, κ(�))d�, ∀t ∈ [0, 1] (29)

where Λ is the Green function defined by

Λ(ρ, �) =

{
t(1− �) if 0 ≤ t ≤ � ≤ 1
�(1− t) if 0 ≤ � ≤ t ≤ 1

,

and χ be a function as in Theorem 5. Hence if κ ∈ C2([0, 1],R), then κ is a solution of (28) if and only if
κ is a solution of (29).

Let Ω = C([0, 1],R) be the set of all continuous functions defined on [0, 1], endowed with the
same distance of the above section. Then (Ω, 
) is a complete b−metric-like space with parameter
s = 2m−1.

Now, we introduce the main theorem of this part.

Theorem 6. Let Γ be a nonlinear self mapping on Ω of a b−metric-like space (Ω, 
), such that there exists
monotone nondecreasing mapping χ : [0, 1]×R→ R such that

|χ(�, κ) + χ(�, μ)| ≤
(

7βe−τ

s2

) 1
m

(|κ|+ |μ|) ,

for all � ∈ [0, 1], κ, μ ∈ R, 0 ≤ β < 1
8 and for m > 1.

Then the problem (28) has a unique solution κ ∈ C([0, 1],R), provided that the conditions (i) and (ii) of
Theorem 5 are satisfied.

Proof. Let us define a nonlinear self-mapping Γ on a set Ω by

Γκ(t) =
1∫

0

Λ(t, �)χ(t, κ(�))d�,

for all t ∈ [0, 1] and κ ∈ Ω. The solution of the problem (28) is equivalent to find a fixed point κ of Γ on
Ω. Suppose that κ, μ ∈ Ω, we have 
(Γκ, Γμ) > 0,
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s2 (|Γκ(t)|+ |Γμ(t)|)m = s2

⎛
⎝
∣∣∣∣∣∣

1∫
0

Λ(t, �)χ(t, κ(�))d�

∣∣∣∣∣∣+
∣∣∣∣∣∣

1∫
0

Λ(t, �)χ(t, μ(�))d�

∣∣∣∣∣∣
⎞
⎠

m

≤ s2

⎛
⎝ 1∫

0

|Λ(t, �)χ(t, κ(�))| d� +

∣∣∣∣∣∣
1∫

0

|Λ(t, �)χ(t, μ(�))| d�

∣∣∣∣∣∣
⎞
⎠

m

= s2

⎛
⎝ 1∫

0

Λ(t, �) |χ(t, κ(�)) + χ(t, μ(�))| d�

⎞
⎠

m

≤ s2

⎛
⎝ 1∫

0

Λ(t, �)

(
7βe−τ

s2

) 1
m

(|κ|+ |μ|)d�

⎞
⎠

m

= 7βe−τ

⎛
⎝ 1∫

0

Λ(t, �)e2tτe−2tτ (|κ|+ |μ|) d�

⎞
⎠

m

≤ 7βe−τ (‖κ‖∞ + ‖μ‖∞)m e2tτm

⎛
⎝ 1∫

0

Λ(t, �)d�

⎞
⎠

m

=
7

7m βe−τe2tτm (‖κ‖∞ + ‖μ‖∞)m

≤ βe−τe2tτm (‖κ‖∞ + ‖μ‖∞)m .

For instance above, for all t ∈ [0, 1], we can get
1∫

0
Λ(t, �)d� = 1

2 (1− t) and thus, we choose

sup�∈[0,1]

1∫
0

Λ(t, �)d� = 1
7 . Hence

s2 (Γκ(t) + |Γμ(t)|)m .e−2tτm ≤ e−τ β (‖κ‖∞ + ‖μ‖∞)m ,

or
s2 (‖Γκ‖∞ + ‖Γμ‖∞)m ≤ e−τ β (‖κ‖∞ + ‖μ‖∞)m , (30)

Let α = γ = 0, hence α + β + 2sγ < 1
8 . It follows from (30) that

s2
(Γκ, Γμ) ≤ (e−τ
)
[β
(κ, μ)]. (31)

Taking the function F(θ) = ln(θ) in (31), such that F ∈ Σ, we can obtain

τ + F(s2
(Γκ, Γμ)) ≤ F(β
(κ, μ))

= F(α

(κ, Γκ).
(μ, Γμ)


(κ, μ)
+ β
(κ, μ) + γ
(μ, Γκ)).

Hence all requirements of Theorem 3 are holds by taking the coefficient q = 2, therefore Γ has a
fixed point κ ∈ Ω, that is, (28) has a unique solution κ ∈ C2([0, 1],R).

6. Question

It was proved in [22] that if F(θ) = −1
p√θ

, where p > 1 and θ > 0, then F ∈ Σ. The question that
arises here, what are the properties of the contraction mapping under this function?
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7. Conclusions

The paper generalizes known contraction conditions and the obtained fixed point results,
generalized several results known before such as Banach contraction [1], Jaggi-contraction [28], [29],
and Ciric almost contraction [30]. Furthermore, as it has been observed in studies, fixed point results
in b−metric-like spaces can be derived from the results of ordinary and b−metric spaces under some
suitable conditions. We have applied our results to get the existence of a solution for electric circuit
equation and second-order differential equation.
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Abstract: We are concerned with a fractional abstract Cauchy problem for possibly degenerate
equations in Banach spaces. This form of degeneration may be strong and some convenient
assumptions about the involved operators are required to handle the direct problem. Moreover,
we succeeded in handling related inverse problems, extending the treatment given by Alfredo Lorenzi.
Some basic assumptions on the involved operators are also introduced allowing application of the
real interpolation theory of Lions and Peetre. Our abstract approach improves previous results given
by Favini–Yagi by using more general real interpolation spaces with indices θ, p, p ∈ (0, ∞] instead
of the indices θ, ∞. As a possible application of the abstract theorems, some examples of partial
differential equations are given.

Keywords: fractional derivative; abstract Cauchy problem; C0−semigroup; inverse problem

1. Introduction

Consider the abstract equation
BMu− Lu = f (1)

where B, M, L are closed linear operators on the complex Banach space E, the domain of L is
contained in domain of M, i.e., D(L) ⊆ D(M), 0 ∈ ρ(L), the resolvent set of L, f ∈ E and u is the
unknown. The first approach to handle existence and uniqueness of the solution u to (1) was given
by Favini–Yagi [1], see in particular the monograph [2]. By using real interpolation spaces, see [3,4],
suitable assumptions on the operators B, M, L guarantee that (1) has a unique solution. Such a result
was improved by Favini, Lorenzi and Tanabe in [5], see also [6–8]. In order to describe the results,
we list the basic assumptions:

(H1) Operator B has a resolvent (z− B)−1 for any z ∈ C, Re z < a, a > 0 satisfying

‖(z− B)−1‖L(E) ≤
c

|Re z|+ 1
, Re z < a , (2)

where L(E) denotes the space of all continuous linear operators from E into E.

(H2) Operators L, M satisfy

‖M(λM− L)−1‖L(E) ≤
c

(|λ|+ 1)β
(3)

for any λ ∈ Σα :=
{

z ∈ C : Re z ≥ −c(1 + |Im z|)α, c > 0, 0 < β ≤ α ≤ 1
}

.

Mathematics 2019, 7, 1016; doi:10.3390/math7111016 www.mdpi.com/journal/mathematics57
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(H3) Let A be the possibly multivalued linear operator A = LM−1, D(A) = M(D(L)). Then A and B
commute in the resolvent sense:

B−1 A−1 = A−1B−1 .

Let (E, D(B))θ,∞, 0 < θ < 1, denote the real interpolation space between E and D(B). The main
result holds

Theorem 1. Let α + β > 1, 2 − α − β < θ < 1. Then under hypotheses (H1)–(H3), Equation (1)
admits a unique strict solution u such that Lu, BMu ∈ (E, D(B))ω,∞, ω = θ − 2 + α + β, provided
that f ∈ (E, D(B))θ,∞.

It is straightforward to verify that if B generates a bounded c0−group in E, then assumption
(H1) holds for B. Analogously, if −B generates a bounded c0−semigroup in E, then assumption (H1)
holds for B. It was also shown, in a previous paper, that Theorem 1 works well for solving degenerate
equations on the real axis, too, see [9].

The first aim of this paper is to extend Theorem 1 to the interpolation spaces (E, D(B))θ,p,
1 < p < ∞. This affirmation is not immediate. Section 2 is devoted to this proof. In Section 3,

we apply the abstract results to solve concrete differential equations. In Section 4, we handle related
inverse problems. In Section 5, we study abstract equations generalizing second-order equations in
time. In Section 6, we present our conclusions and remarks. For some related results, we refer to
Guidetti [10] and Bazhlekova [11].

2. Fundamental Results

To begin with, we recall, from Favini–Yagi [2], p. 16, that if E0, E1 are two Banach spaces such
that (E0, E1) is an interpolation couple, i.e., there exists a locally convex topological space X such that
Ei ⊂ X, i = 0, 1, continuously, then the following injections

E0 ∩ E1 ⊂d (E0, E1)ζ, q ⊂d (E0, E1)η, 1 ⊂d (E0, E1)η, ∞ ⊂d (E0, E1)ξ, q ⊂ E0 + E1

are true for 1 ≤ q < ∞, 0 < ξ < η < ζ < 1, where ⊂d denotes continuous and dense
embedding. Moreover,

(E0, E1)θ, q ⊂d (E0, E1)θ, r for 1 ≤ q < r < ∞, 0 < θ < 1 .

Taking into account the previous embedding and Theorem 1, we easily deduce that if ε, ε1 are
suitable small positive numbers, since (E, D(B))θ+ε, q ⊂ (E, D(B))θ, ∞, then Equation (1) admits a
unique solution u with Lu, BMu ∈ (E, D(B))θ−2+α+β, ∞ and Lu, BMu ∈ (E, D(B))θ−2+α+β−ε1, q ,
that is a weaker result than case q = ∞.

Our aim is to extend Theorem 1 to 1 < p < ∞. In order to establish the corresponding result,
we need the following lemma concerning multiplicative convolution. We recall that Lp

∗(R+) =

Lp (R+; t−1dt
)

and that the multiplicative convolution of two (measurable) functions f , g : R+ → C is
defined by

( f ∗ g)(x) =
∫ ∞

0
f (xt−1)g(t)t−1 dt

where the integral exists a.e. for x ∈ R+.

Lemma 1. For any f1 ∈ Lp
∗(R+) and g ∈ L1∗(R+), the multiplicative convolution f1 ∗ g ∈ Lp

∗(R+)

and satisfies
‖ f1 ∗ g‖Lp

∗ ≤ ‖ f1‖Lp
∗ ‖g‖L1∗
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Consider now the chain of estimates

tθ+α+β−2‖B(B + t)−1v‖ ≤ tθ+α+β−2
∫ ∞

0

(1 + y)3−α−β−θ

(1 + y + t)
(1 + y)θ‖B(B + 1 + y)−1 f ‖ dy

1 + y

≤ tθ+α+β−2
∫ ∞

0

y3−α−β−θ

y + t
yθ ‖B(B + y)−1 f ‖ dy

y

= tθ+α+β−2
∫ ∞

0

y3−α−β−θ

y(1 + ty−1)
yθ ‖B(B + y)−1 f ‖ dy

y

=
∫ ∞

0

(ty−1)θ+α+β−2

1 + ty−1 yθ ‖B(B + y)−1 f ‖ dy
y

where
v = (2πi)−1

∫
Γ

z−1(zT − 1)−1B(B− z)−1 f dz, T = ML−1 ,

Γ = Γα being the oriented contour

Γ = {z = a− c(1 + |y|)α + iy, −∞ < y < ∞} ,

with a ∈ (c, c + a0). Such a function v is the unique solution to BTv− v = f , that is, u with v = Lu
satisfies (1).

Let f1(y) = yθ ‖B(B + y)−1 f ‖ , g(y) =
yθ+α+β−2

1 + y
, y ∈ R+, and note that f ∈ (E, D(B))θ, p if

and only if f1 ∈ Lp
∗(R+). Moreover, g ∈ Lp

∗(R+) since θ > 2− α− β and obviously θ < 3− α− β.
Therefore, from Lemma 1, we deduce that f ∈ (E, D(B))ω, p, where ω = θ + α + β− 2. Thus, we can
establish the fundamental result concerning Equation (1) .

Theorem 2. Let B, M, L be three closed linear operators on the Banach space E satisfying (H1)–(H3), 0 < β ≤
α ≤ 1. Then for all f ∈ (E, D(B))θ, p, 2− α− β < θ < 1, 1 < p < ∞, Equation (1) admits a unique solution
u. Moreover, Lu, BMu ∈ (E, D(B))ω, p, ω = θ + α + β− 2.

3. Fractional Derivative

Let α̃ > 0, m = �α̃� is the smallest integer greater or equal to α̃, I = (0, T) for some T > 0. Define

gβ(t) =

{
1

Γ(β)
tβ−1 t > 0,

0 t ≤ 0,
β ≥ 0 ,

where Γ(β) is the Gamma function. Note that g0(t) = 0 because Γ(0)−1 = 0. The Riemann–Liouville
fractional derivative of order α̃, or, more precisely, the so-called left handed Riemann–Liouville
fractional derivative of order α̃, is defined for all f ∈ L1(I), gm−α̃ ∗ f ∈Wm,1(I) by

Dα̃
t f (t) = Dm

t (gm−α̃ ∗ f )(t) = Dm
t Jm−α̃

t f (t)

where Dm
t :=

dm

dtm , m ∈ N. Dα̃
t is a left inverse of Jα̃

t , but in general it is not a right inverse.
The Riemann–Liouville fractional integral of order α̃ > 0 is defined as:

Jα̃
t f (t) := (gα̃ ∗ f )(t), f ∈ L1(I), t > 0, J0

t f (t) := f (t) .

If X is a complex Banach space, α̃ > 0, then we define the operator Jα̃ as:

D (Jα̃) := Lp(I; X), Jα̃u = gα̃ ∗ u, p ∈ [1, ∞) .
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Define the spaces Rα̃,p(I; X) and Rα̃,p
0 (I; X) as follows. If α̃ 
∈ N, set

Rα̃,p(I; X) := {u ∈ Lp(I; X) : gm−α̃ ∗ u ∈Wm,p(I; X)} ,

Rα̃,p
0 (I; X) :=

{
u ∈ Lp(I; X) : gm−α̃ ∗ u ∈Wm,p

0 (I; X)
}

,

where
Wm,p

0 (I; X) =
{

y ∈Wm,p(I; X), y(k)(0) = 0, k = 0, 1, ..., m− 1
}

.

For the Sobolev space Wβ,p(I; X) of fractional order β > 0, we define

Wβ,p
0 (I; X) =

{
y ∈Wβ,p(I; X), y(k)(0) = 0, k = 0, 1, ..., �β− 1/p�

}
,

β− 1/p /∈ N0 = N∪ {0} , and �β− 1/p� is the greatest integer less or equal to β− 1/p.
If α̃ ∈ N, we take

Rα̃,p(I; X) := W α̃,p(I; X), Rα̃,p
0 (I; X) := W α̃,p

0 (I; X) .

Denote the extensions of the operators of fractional differentiation in Lp(I; X) by Lα̃, i.e.,

D(Lα̃) := Rα̃,p
0 (I; X) , Lα̃u := Dα̃

t u ,

where Dα̃
t is the Riemann–Liouville fractional derivative. Notice that if α̃ ∈ (0, 1), u ∈ D(Lα̃), then

(g1−α̃ ∗ u)(0) = 0.
We illustrate the previous abstract concepts in the following example

Example 1. For u ∈ Lp(I, X) = Lp(0, T; X) set u(t) = 0 for t < 0. Then, if u ∈ W1,p
0 (I, X), we have

u ∈W1,p(−∞, T; X). Let U(τ), τ ≥ 0, be the semigroup in Lp(0, T; X) defined by

(U(τ)u)(t) = u(t− τ), t ∈ I.

Clearly U(τ) = 0 if τ > T. For Reλ > 0, t > 0

(∫ ∞

0
e−λτU(τ)udτ

)
(t) =

∫ ∞

0
e−λτ(U(τ)u)(t)dτ =

∫ ∞

0
e−λτu(t− τ)dτ

=
∫ t

0
e−λτu(t− τ)dτ =

∫ t

0
e−λ(t−s)u(s)ds. (4)

Since D(Dt) = W1,p
0 (I, X), Dt = d/dt, equation (λ + Dt)u = f is

{
λu(t) + u′(t) = f (t), 0 < t < T,

u(0) = 0.

The solution is

u(t) =
∫ t

0
e−λ(t−s) f (s)ds,

i.e.,

((λ + Dt)
−1 f )(t) =

∫ t

0
e−λ(t−s) f (s)ds, λ > 0. (5)

From (4) and (5) it follows that

(λ + Dt)
−1 =

∫ ∞

0
e−λτU(τ)dτ, λ > 0.
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Therefore −Dt is the infinitesimal generator of the semigroup U(τ), τ ≥ 0. Let α̃ > 0. Then for
f ∈ Lp(I, X)

(D−α̃
t f )(t) =

1
Γ(α̃)

∫ ∞

0
τα̃−1(U(τ) f )(t)dτ =

1
Γ(α̃)

∫ t

0
τα̃−1 f (t− τ)dτ

=
1

Γ(α̃)

∫ t

0
(t− s)α̃−1 f (s)ds, 0 ≤ t ≤ T.

If m ∈ N, m− 1 < α̃ < m,

(D−α̃
t f )(t) = 0 ∀t ∈ [0, T]⇐⇒

∫ t

0
(t− s)α̃−1 f (s)ds = 0 ∀t ∈ [0, T]

=⇒
∫ τ

0
(τ − t)m−α̃−1

∫ t

0
(t− s)α̃−1 f (s)dsdt = 0 ∀τ ∈ [0, T]

=⇒
∫ τ

0

∫ τ

s
(τ − t)m−α̃−1(t− s)α̃−1dt f (s)ds = 0 ∀τ ∈ [0, T]

=⇒ Γ(m− α̃)Γ(α̃)
Γ(m)

∫ τ

0
(τ − s)m−1 f (s)ds = 0 ∀τ ∈ [0, T] =⇒ f (τ) = 0 ∀τ ∈ [0, T].

If α̃ = m ∈ N and

(D−α̃
t f )(t) = (D−m

t f )(t) =
1

(m− 1)!

∫ t

0
(t− s)m−1 f (s)ds = 0 ∀t ∈ [0, T] =⇒ f (t) = 0 ∀t ∈ [0, T].

Therefore D−α̃
t has an inverse which is denoted by Dα̃

t .We have

Dα̃+β
t = Dα̃

t Dβ
t ∀α̃, β ∈ R.

Therefore, if m ∈ N, m− 1 < α̃ < m,

Dα̃
t = Dm

t Dα̃−m
t = Dm

t gm−α̃∗, D(Dα̃
t ) = {u; gm−α̃ ∗ u ∈ D(Dm

t ) = Wm,p
0 (I; X)} = Rα̃,p

0 (I; X).

Let us now list the main properties of Lα̃, see [11], Lemma 1.8, p. 15.

Lemma 2. Let α̃ > 0, 1 < p < ∞, X a complex Banach space, and Lα̃ be the operator introduced above. Then
(a) Lα̃ is closed, linear and densely defined
(b) Lα̃ = J −1

α̃

(c) Lα̃ = Lα̃
1 , the α̃−th power of the operator L1

(d) if α̃ ∈ (0, 2), operator Lα̃ is positive with spectral angle ωLα̃
= α̃π/2

(e) if α̃ ∈ (0, 1], then Lα̃ is m-accretive
(f) Rα̃,p

0 (I; X) ↪→ Cα̃−1/p(I; X), α̃ > 1/p, α̃− 1/p 
∈ N, see [11], Theorem 1.10, p. 17
(g) if α̃γ− 1/p 
∈ N0, (

Lp(I; X), Rα̃,p
0 (I; X)

)
γ,p

= W α̃γ,p
0 (I; X) ,

see [11], Proposition 11, p. 18 .

Statement (e) implies that if α̃ ∈ (0, 1],

‖λ(λ + Lα̃)
−1‖Lp(I;X) ≤ C, |arg λ| < π(1− α̃

2
) .
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However, this reads equivalently ‖(λ − Lα̃)
−1‖ ≤ C/|λ| provided that λ is in a sector of the

complex plane containing Re λ ≤ 0. Therefore, if α̃ ≤ 1, operator Lα̃ =
d

dtα̃
= Dα̃

t satisfies assumption
(H1) in Theorem 1. Therefore, we can handle abstract equations of the type

Dα̃
t (My(t)) = Ly(t) + f (t), 0 ≤ t ≤ T ,

in a Banach space X with an initial condition
(

g1−α̃ ∗ u
)
(0) = 0. Then the results follow easily from

the abstract model.

Example 2. Let M be the multiplication operator in Lp(Ω), Ω a bounded open set in Rn with a Cn boundary
∂Ω, 1 < p < ∞, by m(x), m is continuous and bounded, and take L = Δ− c, D(L) = W2,p(Ω) ∩W1,p

0 (Ω),
c > 0. Then it is seen in Favini–Yagi [2], pp. 79–80,

‖M(zM− L)−1 f ‖Lp(Ω) ≤
c

(1 + |z|)1/p ‖ f ‖Lp(Ω)

for all z in a sector containing Re z ≥ 0.
In order to solve our problem, 0 < α̃ ≤ 1,

Dα̃
t (My(t)) = Ly(t) + f (t), 0 ≤ t ≤ T ,

we must recall, see (g) in Lemma 2, that if α̃γ− 1/p 
∈ N, the interpolation space
(

Lp(I; X), Rα̃,p
0 (I; X)

)
γ,p

= W α̃γ,p
0 (I; X) .

Therefore, using Theorem 2, for any f ∈ W α̃θ,p
0 (I; X), 1− 1

p < θ < 1, 1 < p < ∞, α̃θ − 1
p 
∈ N0,

the problem above admits a unique strict solution y such that

Δy, Dα̃
t m(·)y ∈W

α̃(θ+ 1
p−1),p

0 (I; X) .

Remark 1. Since −1
p < α̃θ − 1

p < 1, then the only integer that α̃θ − 1
p can take is the zero integer.

We refer to to the monograph [2] for many further examples of concrete degenerate partial
differential equations to which Theorem 2 applies.

4. Inverse Problems

Given the problem

Dα̃
t (My(t)) = Ly(t) + f (t)z + h(t), 0 ≤ t ≤ T , (6)

then corresponding to an initial condition and following the strategy in various previous papers,
see in particular Lorenzi [12], we could study existence and regularity of solutions (y, f ) to the above
problem such that Φ[My(t)] = g(t), where g is a complex-valued function on [0, T]. This is, of course,
an inverse problem. Applying Φ to both sides of Equation (6) we get

Dα̃
t g(t) = Φ[Ly(t)] + Φ[h(t)] + f (t)Φ[z] .

If Φ[z] 
= 0, we obtain necessarily

f (t) =
Dα̃

t g(t)−Φ[Ly(t)]−Φ[h(t)]
Φ[z]

.
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Therefore,

Dα̃
t (My(t)) = Ly(t) + h(t)− Φ[Ly(t)]

Φ[z]
z− Φ[h(t)]

Φ[z]
z +

Dα̃
t g(t)
Φ[z]

z .

If L1 is defined by

D(L1) = D(L), L1y = −Φ[Ly(t)]
Φ[z]

z ,

one can introduce assumptions on the given operators ensuring that the direct problem

Dα̃
t (My(t)) = Ly(t) + L1y + h(t)− Φ[h(t)]

Φ[z]
z +

Dα̃
t g(t)
Φ[z]

z

has a unique strict solution, see [13]. The main step is to verify that assumption (H2) holds for the
operators L + L1 and M.

Introduce the multivalued linear operator A := LM−1, D(A) = M(D(L)) such that (H2) holds.

This means that ‖(λI − A)−1‖L(X) ≤
c

(|λ|+ 1)β
, λ ∈ Σα. Theorem 1 in [13], pp. 148–149, affirms that

if L, L1, M are closed linear operators on X, D(L) ⊆ D(L1) ⊆ D(M), 0 ∈ ρ(L), such that (H2) holds
and L1 ∈ L

(
D(L), Xθ1

A

)
, 1− β < θ1 < 1, where

Xθ1
A =

{
u ∈ X, sup

t>0
tθ1‖A0(t− A)−1u‖X < ∞

}
,

with A0(t− A)−1 = −I + t(t− A)−1, then

‖M(λM− L− L1)
−1‖L(X) ≤ c(1 + |λ|)−β, ∀ λ ∈ Σα , |λ| large .

In order to apply this theorem in our case, we must suppose that z belongs to Xθ1
A for some

θ1 ∈ (1− β, 1). Then

Dα̃
t (My(t)) = Ly(t) + L1y + h(t)− Φ[h(t)]

Φ[z]
z +

Dα̃
t g(t)
Φ[z]

z(
g1−α̃ ∗My

)
(0) = 0

will admit a unique strict solution y provided that

h(t)− Φ[h(t)]
Φ[z]

z +
Dα̃

t g(t)
Φ[z]

z ∈W α̃θ,p
0 (I; X)

with α̃θ − 1/p 
∈ N and then Dα̃
t (My(t)) and Ly(t) ∈ W α̃(θ+α+β−2),p

0 (I; X), α̃(θ + α + β − 2) 
∈ N.
Notice that if α̃θ − 1/p 
∈ N, then α̃(θ + α + β− 2)− 1/p = α̃θ − 1

p + α̃(α + β− 2) 
∈ N.

5. Application: Generalized Second-Order Abstract Equation

Let us consider the abstract equation, generalizing second-order equation in time,

B2CB1u + BB1u + Au = f

where A, B, C are some closed linear operators in the complex Banach space X, B1, B2 are suitable
operators defined on suitable Banach spaces. The change of variables B1u = v transforms the given
equation to the system
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B1u = v ,

B2Cv + Bv + Au = f ,

which can be written in the matrix form[
B1 0
0 B2

] [
I 0
0 C

] [
u
v

]
+

[
0 −I
A B

] [
u
v

]
=

[
0
f

]
.

The basic idea is to use a convenient space and a domain of operator matrices. Noting

B =

[
B1 0
0 B2

]
, M =

[
I 0
0 C

]
, L =

[
0 I
−A −B

]
, F =

[
0
f

]
,

it assumes the form
(BM− L)U = F , U = (u, v)T .

In order to simplify the argument, we take D(B) ⊆ D(A) ∩ D(C). Moreover, we assume that for
all z ∈ Σα, where

Σα :=
{

z ∈ C : Re z ≥ −c(1 + |Im z|)α, c > 0, 0 < β ≤ α ≤ 1 , α + β > 1
}

,

the involved operators satisfy

‖C(zC + B)−1‖L(X) ≤
c1

(1 + |z|)β
, (7)

which guarantees that the problem is of parabolic type. Take Y = D(B)× X with the usual product
norm. Then it is shown in Favini–Yagi [2], page 184, that the resolvent estimate

‖M(zM− L)−1‖L(Y) ≤
c

(1 + |z|)β
, ∀z ∈ Σα

holds. Therefore assumption (H2) is satisfied.
Take B1 the Riemann–Liouville fractional derivative of order α̃, 0 < α̃ ≤ 1, in Lp(0, T; D(B)),

1 < p < ∞; similarly, take B2 the Riemann–Liouville fractional derivative of order β̃, 0 < β̃ ≤ 1,
in Lp(0, T; X), 1 < p < ∞. Then assumptions (H1) and (H2) hold. Therefore, according to Theorem 2,
see also Bazhlekova [11], problem

Dα̃
t u = v ,

Dβ̃
t Cv + Bv + Au = f (t) , 0 ≤ t ≤ T ,(

g1−α̃ ∗ u
)
(0) = 0 ,

(
g1−β̃ ∗ Cv

)
(0) = 0

admits a unique strict solution (u, v) in Lp(0, T; D(B))× Lp(0, T; X), provided that D(B) ⊆ D(A) ∩
D(C), f ∈ W β̃θ,p

0 (I; X), 2− α− β < θ < 1, 0 < β ≤ α ≤ 1, α + β > 1, β̃θ − 1/p 
= 0. Moreover,

Dα̃
t u = v ∈ W α̃ω,p

0 (I; D(B)), Dβ̃
t Cv ∈ W β̃ω,p

0 (I; X), Au + Bv ∈ W β̃ω,p
0 (I; X), ω = θ + α + β − 2,

α̃ω = α̃θ + α̃(α + β− 2)− 1
p 
∈ N0, β̃ω = β̃θ + β̃(α + β− 2)− 1

p 
∈ N0.

Example 3. Consider the problem

Dβ̃
t
(
m(x)Dα̃

t u
)− ΔDα̃

t u + A(x; D)u = f (x, t) , (x, t) ∈ Ω× [0, T] ,

u(x, 0) = 0 , x ∈ Ω ,

m(x)Dα̃
t u(x, 0) = 0 , x ∈ Ω ,
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where Ω is a bounded open set in Rn, n ≥ 1, with a smooth boundary ∂Ω, m ∈ L∞, m(x) ≥ 0 in Ω,
A(x; D) is a second order linear differential operator on Ω with continuous coefficients in Ω, f (x, t) is a
scalar valued continuous function on Ω × [0, T], then we take B = −Δ1, the Laplacian with respect to x,
D(B) = H1

0(Ω) ∩ H2(Ω), X = L2(Ω). Therefore, (H2) holds with α = 1, β = 1/2.

6. Conclusions

It was shown that the degenerate problem including Riemann–Liouville fractional derivative can
be handled by means of a general abstract equation. Applications to degenerate fractional differential
equations with some related inverse problems were studied. Moreover, generalized second-order
abstract equations were well-treated.
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Abstract: We consider fractional abstract Cauchy problems on infinite intervals. A fractional abstract
Cauchy problem for possibly degenerate equations in Banach spaces is considered. This form of
degeneration may be strong and some convenient assumptions about the involved operators are
required to handle the direct problem. Required conditions on spaces are also given, guaranteeing
the existence and uniqueness of solutions. The fractional powers of the involved operator BX have
been investigated in the space which consists of continuous functions u on [0, ∞) without assuming
u(0) = 0. This enables us to refine some previous results and obtain the required abstract results
when the operator BX is not necessarily densely defined.
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1. Introduction

In recent years, many studies were devoted to the problem of recovering the solution u to

BMu− Lu = f (1)

where B, M, and L are closed linear operators on the complex Banach space E with D(L) ⊆ D(M),
0 ∈ ρ(L), f ∈ E and u is unknown. The first approach to handle existence and uniqueness of the
solution u to Equation (1) was given by Favini-Yagi [1] (see in particular the monograph [2]). By using
the real interpolation space (E, D(B))θ,∞, 0 < θ < 1 (see [3,4]), suitable assumptions on the operators B,
M, L guarantee that Equation (1) has a unique solution. This result was improved by Favini, Lorenzi,
and Tanabe [5] (see also [6–8]).

In all cases, the basic assumptions read as follows:

(H1) Operator B has a resolvent (z− B)−1 for any z ∈ C, Re z < a, a > 0 satisfying

‖(z− B)−1‖L(E) ≤
c

|Re z|+ 1
, Re z < a . (2)

(H2) Operators L, M satisfy

‖M(zM− L)−1‖L(E) ≤
c

(|z|+ 1)β
(3)

for any z ∈ Σα :=
{

z ∈ C : Re z ≥ −c(1 + |Im z|)α, c > 0, 0 < β ≤ α ≤ 1
}

.
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(H3) Let A be the possibly multivalued linear operator A = LM−1, D(A) = M(D(L)). Then,
A and B commute in the resolvent sense:

B−1 A−1 = A−1B−1 .

Very recently, Al Horani et al. [9], see also [10], generalized the previous results to the interpolation
space (E, D(B))θ, p , 1 < p ≤ ∞, i.e.,

Lemma 1. Let B, M, L be three closed linear operators on the complex Banach space E satisfying (H1)–(H3),
0 < β ≤ α ≤ 1, α + β > 1. Then, for all f ∈ (E, D(B))θ, p, 2− α− β < θ < 1, 1 < p ≤ ∞, Equation (1)
admits a unique solution u such that Lu, BMu ∈ (E, D(B))θ, p.

There are many choices of the operator B verifying Assumption (H1). In [9], the authors handled
the abstract equation of the form

Dα̃
t (Mu(t))− Lu(t) = f (t), 0 ≤ t ≤ T < ∞ (4)

in the Banach space X with initial condition
(

g1−α̃ ∗My
)
(0) = 0, where

gβ(t) =

{
1

Γ(β)
tβ−1 t > 0,

0 t ≤ 0,
β ≥ 0 ,

and Γ(β) is the Gamma function.
For Riemann–Liouville derivative Dα̃

t of order α̃, we address the monograph [11] (see also [12,13]).
Very recent applications concerning Caputo fractional derivative operator are also discussed in [14]
by the same authors using a completely different method than Sviridyuk’s group (see [15,16]). Some
related topics can be found in [17–19].

In [20], the authors extended the results of direct and inverse problems, given in [9], to degenerate
differential equations on the half line [0, ∞). Precisely, let X be a complex Banach space and

E = {u ∈ C([0, ∞); X); u is uniformly continuous and bounded in [0, ∞), u(0) = 0}

endowed with the sup norm. If BX is the operator defined by

D(BX) = {u ∈ C1([0, ∞); X); u and u′ are uniformly continuous and bounded in [0, ∞), u(0) = 0 = u′(0)},
BXu = u′ for u ∈ D(BX) ,

and M, L are two closed linear operators in the complex Banach space E satisfying

‖M(λM− L)−1‖ ≤ c̃
(|λ|+ 1)β

∀ λ ∈ Σα = {λ; Reλ ≥ −c(1 + |Imλ|)α}, c > 0, c̃ > 0 ,

0 < β ≤ α ≤ 1, 0 < α̃ < 1, then for all f ∈ (E, D(Bα̃
X))θ,p, 2− α− β < θ < 1, 1 < p ≤ ∞, equation

Bα̃
X Mu− Lu = f

admits a unique solution u. Moreover, Lu, Bα̃
X Mu ∈ (E, D(Bα̃

X))ω,p, ω = θ + α + β− 2.
In this paper, we refine our results in [20] by investigating the fractional power of the operator BX

in the space of continuous functions u defined on [0, ∞) without assuming u(0) = 0, i.e.,
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E = {u ∈ C([0, ∞); X); u is uniformly continuous and bounded in [0, ∞)},
‖u‖E = sup

0≤t<∞
‖u(t)‖X ,

where X is a complex Banach space. In this case, BX is not densely defined. In such a case, it is not
known whether Bα

X Bβ
X = Bα+β

X is true or not, since in the proof of Lemma A2 of T. Kato [21] it seems it
is essentially used that A is densely defined. To obtain our results on such a new space E, we should
investigate the previous fractional power problem in case A = BX .

The interpolation space (E, D(Bα̃
X))θ,p, 0 < θ < 1, p ∈ (1, ∞] could be characterized by using

the famous results of P. Grisvard. Since the operator BX is of type (π/2, 1) and α̃ ∈ (0, 1), −Bα̃
X is

the infinitesimal generator of an analytic semigroup
{

e−tBα̃
X
}

t>0 (see [2], Proposition 0.9, p. 19), the
interpolation space (E, D(Bα̃

X))θ,p could be characterized by

(E, D(Bα̃
X))θ,p =

{
u ∈ E; ‖t1−θ Bα̃

X e−tBα̃
X u‖L∗p(E) + ‖u‖E < ∞

}
=
{

u ∈ E; ‖ξθ Bα̃
X (ξ + Bα̃

X)
−1 u‖L∗p(E) < ∞

}
,

where L∗p(E) denotes the space of all strongly measurable E−valued functions f on (0, ∞) such that

∫ ∞

0
‖ f (t)‖p

E
dt
t
< ∞, 1 ≤ p < ∞,

‖ f (t)‖L∗∞(E) = sup
0<t<∞

‖ f (t)‖E, p = ∞ .

The following lemma is also needed:

Lemma 2. ‖ f ∗ g‖Lp
∗ ≤ ‖ f ‖Lp

∗ ‖g‖L1∗ ∀ f ∈ Lp
∗(R+), ∀g ∈ L1∗(R+)

Section 2 is devoted to our main results. In Section 3, we present our conclusions and remarks.

2. Main Results

Let X be a complex Banach space and

E = {u ∈ C([0, ∞); X); u is uniformly continuous and bounded in [0, ∞)}, (5)

‖u‖E = sup
0≤t<∞

‖u(t)‖X . (6)

Let BX be an operator defined by

D(BX) = {u ∈ C1([0, ∞); X); u, u′ ∈ E, u(0) = 0}
= {u ∈ C1([0, ∞); X); u and u′ are uniformly continuous and bounded in [0, ∞)

and u(0)=0}

= {u ∈ C1([0, ∞); X); u and u′ are bounded and u′ is uniformly continuous in [0, ∞)

and u(0) = 0},

(7)

BXu = u′ for u ∈ D(BX). (8)

69



Mathematics 2019, 7, 1165

Let f ∈ E, Reλ > 0. Consider the problem

d
dt

u(t) + λu(t) = f (t), 0 < t < ∞,

u(0) = 0.
(9)

The solution is

u(t) =
∫ t

0
e−λ(t−s) f (s)ds, (10)

and

‖u(t)‖ =
∥∥∥∥
∫ t

0
e−λ(t−s) f (s)ds

∥∥∥∥ ≤
∫ t

0
e−Reλ(t−s)ds‖ f ‖E =

1− e−Reλt

Reλ
‖ f ‖E ≤ 1

Reλ
‖ f ‖E.

Hence, u is bounded in [0, ∞), and so is u′ = f −λu. This implies that u is uniformly continuous in
[0, ∞). Furthermore, u′ = f − λu is uniformly continuous. Therefore, u ∈ D(BX) and (BX + λ)u = f .
Since f ∈ E is arbitrary, one concludes that R(BX + λ) = E and

(
(BX + λ)−1 f

)
(t) =

∫ t

0
e−λ(t−s) f (s)ds, (11)

‖(BX + λ)−1‖L(E) ≤
1

Reλ
∀λ : Reλ > 0. (12)

Here, we make some preparations. Suppose that A is a not necessarily densely defined closed
linear operator in a Banach space X satisfying

(i) ρ(−A) ⊃ {λ; |argλ| < π −ω}, 0 < ω < π;
(ii) λ(λ + A)−1 is uniformly bounded in each smaller sector {λ; |argλ| < π−ω− ε}, 0 < ε < π−ω;

and
(iii) ‖λ(λ + A)−1‖L(X) ≤ M for λ > 0 with some M > 0.

The first Assumption (i) is equivalent to ρ(A) ⊃ {λ; ω < |argλ| ≤ π}.
CASE 0 ∈ ρ(A). Set for α > 0

Rα(λ) = − 1
2πi

∫
C
(λ + zα)−1(z− A)−1dz, λ ≥ 0, (13)

where C runs in the resolvent set of A from +∞e−iθ to +∞eiθ , ω < θ ≤ π, avoiding the negative real
axis and 0, where +∞ e±i∞ = lim

r→∞
re±i∞. Let λ, μ ≥ 0. Let C′ be another contour which has the same

property as C and is located to the right of C without intersecting C. Then,

Rα(λ)Rα(μ) =
1

2πi

∫
C
(λ + zα)−1(z− A)−1dz

1
2πi

∫
C′
(μ + ζα)−1(ζ − A)−1dζ

=

(
1

2πi

)2 ∫
C′

∫
C
(λ + zα)−1(μ + ζα)−1(z− A)−1(ζ − A)−1dzdζ.
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Rα(λ)Rα(μ) =

(
1

2πi

)2 ∫
C′

∫
C
(λ + zα)−1(μ + ζα)−1 (z− A)−1 − (ζ − A)−1

ζ − z
dzdζ

=

(
1

2πi

)2 ∫
C′

∫
C
(λ + zα)−1(μ + ζα)−1 (z− A)−1

ζ − z
dzdζ

−
(

1
2πi

)2 ∫
C′

∫
C
(λ + zα)−1(μ + ζα)−1 (ζ − A)−1

ζ − z
dzdζ

=
1

2πi

∫
C
(λ + zα)−1 1

2πi

∫
C′

(μ + ζα)−1

ζ − z
dζ(z− A)−1dz

− 1
2πi

∫
C′

1
2πi

∫
C

(λ + zα)−1

ζ − z
dz(μ + ζα)−1(ζ − A)−1dζ

= − 1
2πi

∫
C′
(λ + ζα)−1(μ + ζα)−1(ζ − A)−1dζ

= − 1
2πi

∫
C′

[
(λ + ζα)−1 − (μ + ζα)−1]

μ− λ
(ζ − A)−1dζ.

This yields

(μ− λ)Rα(λ)Rα(μ) = − 1
2πi

∫
C′
(λ + ζα)−1(ζ − A)−1dζ +

1
2πi

∫
C′
(μ + ζα)−1(ζ − A)−1dζ

= Rα(λ)− Rα(μ).

Hence, {Rα(λ), λ ≥ 0} is a pseudo resolvent:

Rα(λ)− Rα(μ) = (μ− λ)Rα(λ)Rα(μ), (14)

and
Rα(0) = − 1

2πi

∫
C

z−α(z− A)−1dz. (15)

For α > 0, β > 0,

Rα(0)Rβ(0) =
(

1
2πi

)2 ∫
C′

∫
C

z−αζ−β(z− A)−1(ζ − A)−1dzdζ

=

(
1

2πi

)2 ∫
C′

∫
C

z−αζ−β (z− A)−1 − (ζ − A)−1

ζ − z
dzdζ

=

(
1

2πi

)2 ∫
C′

∫
C

z−αζ−β (z− A)−1

ζ − z
dzdζ −

(
1

2πi

)2 ∫
C′

∫
C

z−αζ−β (ζ − A)−1

ζ − z
dzdζ.

The first term of the last side vanishes, and the second term is equal to

− 1
2πi

∫
C′

1
2πi

∫
C

z−α

ζ − z
dzζ−β(ζ − A)−1dζ = − 1

2πi

∫
C′

ζ−α−β(ζ − A)−1dζ = Rα+β(0).

Therefore, the following formula is obtained:

Rα(0)Rβ(0) = Rα+β(0), α > 0, β > 0. (16)

By virtue of Cauchy’s representation formula of holomorphic functions, one has

R1(0) = − 1
2πi

∫
C

z−1(z− A)−1dz = A−1. (17)
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Let 0 < α < 1. Then,

R1−α(0)Rα(0) = Rα(0)R1−α(0) = R1(0) = A−1.

Therefore, if Rα(0)u = 0, then A−1u = R1−α(0)Rα(0)u = 0. This implies u = 0. Hence, Rα(0) has
an inverse. Since

Rα(0)u− Rα(λ)u = λRα(0)Rα(λ)u,

Rα(λ)u = 0 implies Rα(0)u = 0, and hence u = 0, Rα(λ) has an inverse ∀λ ≥ 0. Since ∀u ∈ X

Rα(λ)u− Rα(μ)u = (μ− λ)Rα(λ)Rα(μ)u,

one observes Rα(μ)u ∈ R(Rα(λ)) = D(Rα(λ)−1), and

u− Rα(λ)
−1Rα(μ)u = (μ− λ)Rα(μ)u.

Let v ∈ D(Rα(μ)−1) = R(Rα(μ)) and v = Rα(μ)u. Then, u = Rα(μ)−1v, v ∈ D(Rα(λ)−1) and

Rα(μ)
−1v− Rα(λ)

−1v = (μ− λ)v.

This yields

Rα(μ)
−1v− μv = Rα(λ)

−1v− λv, ∀v ∈ D(Rα(λ)
−1) = D(Rα(μ)

−1).

Set Aα = Rα(λ)−1 − λ for some λ ≥ 0.
Then, Aα = Rα(λ)−1 − λ ∀λ ≥ 0, and Rα(λ)−1 = Aα + λ.
This implies

Rα(λ) = (λ + Aα)−1.

Furthermore, Aα = Rα(0)−1 and

(Aα)−1 = Rα(0) = − 1
2πi

∫
C

z−α(z− A)−1dz.

Letting α = 1, one gets (A1)−1 = R1(0) = A−1. Hence, A1 = A. Thus, writing (Aα)−1 = A−α

A−α = Rα(0) = − 1
2πi

∫
C

z−α(z− A)−1dz, α > 0,

A−α A−β = Rα(0)Rβ(0) = Rα+β(0) = A−α−β, α > 0, β > 0.

It is not difficult to show that the following relation holds if 0 < α < 1:

(λ + Aα)−1 =
sin πα

π

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α
(μ + A)−1dμ, λ ≥ 0. (18)

Proposition 1. Let A be a not necessarily densely defined closed linear operator in a Banach space X satisfying
(i)–(iii) and 0 ∈ ρ(A). Then, the fractional power Aα of A is defined for α > 0, and the followings hold :

Aα Aβ = Aα+β, α > 0, β > 0, A1 = A, A−α = (Aα)−1 is bounded

and Equation (10) holds.

GENERAL CASE In what follows, we assume (i)–(iii). Let 0 < α < 1. Set for λ > 0

Rα(λ) =
sin πα

π

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α
(μ + A)−1dμ. (19)
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If ε > 0, Aε = A + ε satisfies (i)–(iii), and 0 ∈ ρ(Aε). Hence, Aα
ε is defined, and

(λ + Aα
ε)
−1 =

sin πα

π

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α
(μ + Aε)

−1dμ, (20)

(λ + Aα
ε)
−1 − (μ + Aα

ε)
−1 = (μ− λ)(λ + Aα

ε)
−1(μ + Aα

ε)
−1, λ > 0, μ > 0. (21)

In view of (iii)

‖(μ + Aε)
−1 − (μ + A)−1‖X = ‖ − ε(μ + ε + A)−1(μ + A)−1‖X ≤ ε

M
μ + ε

M
μ

.

Therefore, with the aid of the dominated convergence theorem one obtains from Equations (17)
and (18)

(λ + Aα
ε)
−1 → Rα(λ), λ > 0 as ε→ 0. (22)

Thus, we have obtained:

Proposition 2. Let A be a not necessarily densely defined closed linear operator in a Banach space X satisfying
(i)–(iii). Then, the bounded operator valued function {Rα(λ), λ > 0} defined by Equation (19) is a
pseudo resolvent:

Rα(λ)− Rα(μ) = (μ− λ)Rα(λ)Rα(μ), λ > 0, μ > 0. (23)

CASE A = BX . Let ε > 0. Then, BX + ε > 0 has a bounded inverse and

‖(BX + ε + λ)−1‖L(E) ≤
1

Reλ + ε
<

1
Reλ

∀λ : Reλ ≥ 0. (24)

By virtue of Proposition 1, the fractional power (BX + ε)α of BX + ε is defined for α > 0, and the
followings hold:

(BX + ε)α(BX + ε)β = (BX + ε)α+β, α > 0, β > 0, (BX + ε)1 = BX + ε,

(BX + ε)−α = ((BX + ε)α)−1 is bounded,
(25)

and for 0 < α < 1

(λ + (BX + ε)α)−1 =
sin πα

π

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α
(μ + BX + ε)−1dμ, λ ≥ 0. (26)

Especially,

(BX + ε)−α =
sin πα

π

∫ ∞

0
μ−α(μ + BX + ε)−1dμ. (27)

Therefore,

(
(λ + (BX + ε)α)−1 f

)
(t)

=
sin πα

π

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α

(
(μ + BX + ε)−1 f

)
(t)dμ

=
sin πα

π

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α

∫ t

0
e−(μ+ε)(t−s) f (s)dsdμ

=
sin πα

π

∫ t

0

∫ ∞

0

μαe−(μ+ε)(t−s)

λ2 + 2λμα cos πα + μ2α
dμ f (s)ds (28)

and (
(BX + ε)−α f

)
(t) =

sin πα

π

∫ t

0

∫ ∞

0
μ−αe−(μ+ε)(t−s)dμ f (s)ds. (29)
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By the change of the independent variable μ(t− s) = τ,

∫ ∞

0
μ−αe−(μ+ε)(t−s)dμ = e−ε(t−s)

∫ ∞

0
μ−αe−μ(t−s)dμ

= e−ε(t−s)
∫ ∞

0
(t− s)ατ−αe−τ(t− s)−1dτ = (t− s)α−1e−ε(t−s)

∫ ∞

0
τ−αe−τdτ

= (t− s)α−1e−ε(t−s)Γ(1− α).

Hence, using Γ(α)Γ(1− α) = π/ sin πα, one observes

(
(BX + ε)−α f

)
(t) =

1
Γ(α)

∫ t

0
(t− s)α−1e−ε(t−s) f (s)ds. (30)

Set for λ > 0,

R(λ) =
sin πα

π

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α
(μ + BX)

−1dμ. (31)

Then, in view of Equation (23),

R(λ)− R(μ) = (μ− λ)R(λ)R(μ), λ > 0, μ > 0. (32)

From Equations (12) and (31), it follows that

‖R(λ)‖L(E) ≤
sin πα

π

∫ ∞

0

μα−1

(λ + μα cos πα)2 + (μ sin πα)2 dμ. (33)

For f ∈ E, in view of Equations (11) and (31),

(
R(λ) f

)
(t) =

sin πα

π

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α

(
(μ + BX)

−1 f
)
(t)dμ

=
sin πα

π

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α

∫ t

0
e−μ(t−s) f (s)dsdμ

=
sin πα

π

∫ t

0

∫ ∞

0

μαe−μ(t−s)

λ2 + 2λμα cos πα + μ2α
dμ f (s)ds. (34)

Using

Γ(α)Γ(1− α) =
π

sin πα
,

∫ ∞

0
μ−αe−(t−s)μdμ = Γ(1− α)(t− s)α−1 , (35)

one deduces from Equation (34)

(
R(λ) f

)
(t)− 1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds

=
sin πα

π

∫ t

0

∫ ∞

0

μαe−μ(t−s)

λ2 + 2λμα cos πα + μ2α
dμ f (s)ds− sin πα

π

∫ t

0

∫ ∞

0
μ−αe−μ(t−s)dμ f (s)ds

=
sin πα

π

∫ t

0

∫ ∞

0

(
μα

λ2 + 2λμα cos πα + μ2α
− μ−α

)
e−μ(t−s)dμ f (s)ds.
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One has ∥∥∥∥
∫ t

0

∫ ∞

0

(
μα

λ2 + 2λμα cos πα + μ2α
− μ−α

)
e−μ(t−s)dμ f (s)ds

∥∥∥∥
X

≤
∫ t

0

∣∣∣∣
∫ ∞

0

(
μα

λ2 + 2λμα cos πα + μ2α
− μ−α

)
e−μ(t−s)dμ

∣∣∣∣ ‖ f (s)‖Xds

≤
∫ t

0

∫ ∞

0

∣∣∣∣ μα

(λ + μα cos πα)2 + (μα sin πα)2 − μ−α

∣∣∣∣ e−μ(t−s)dμds‖ f ‖E. (36)

Since∣∣∣∣ μα

(λ + μα cos πα)2 + (μα sin πα)2 − μ−α

∣∣∣∣ e−μ(t−s)

≤
(

μα

(λ + μα cos πα)2 + (μα sin πα)2 + μ−α

)
e−μ(t−s) ≤

(
1

(sin πα)2 + 1
)

μ−αe−μ(t−s),

∫ t

0

∫ ∞

0
μ−αe−μ(t−s)dμds = Γ(1− α)

∫ t

0
(t− s)α−1ds = Γ(1− α)

tα

α
< ∞

and ∣∣∣∣ μα

(λ + μα cos πα)2 + (μα sin πα)2 − μ−α

∣∣∣∣ e−μ(t−s) → 0 as λ→ 0, ∀(μ, s) ∈ (0, ∞)× (0, t),

the last right hand-side of Inequality (36) tends to 0 as λ→ 0. Therefore,

(
R(λ) f

)
(t)→ 1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds as λ→ 0, ∀t ∈ (0, ∞). (37)

Suppose R(λ) f = 0 ∃λ > 0. Then, R(λ) f = 0 ∀λ > 0, i.e.,
(

R(λ) f
)
(t) ≡ 0 ∀λ > 0. Hence, by

virtue of Equation (37),
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds ≡ 0.

This yields

0 ≡
∫ t

0
(t− τ)−α

∫ τ

0
(τ − s)α−1 f (s)dsdτ =

∫ t

0

∫ t

s
(t− τ)−α(τ − s)α−1dτ f (s)ds

= B(1− α, α)
∫ t

0
f (s)ds =⇒ f (t) ≡ 0.

Therefore, R(λ) has an inverse ∀λ > 0. Set Bα
X = R(λ)−1 − λ for some λ > 0. Then, Bα

X =

R(λ)−1 − λ, ∀λ > 0, and R(λ) = (λ + Bα
X)
−1, ∀λ > 0. Hence, in view of Equation (31),

(λ + Bα
X)
−1 =

sin πα

π

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α
(μ + BX)

−1dμ, λ > 0. (38)

By virtue of Equations (34) and (38), one observes that, for λ > 0 and f ∈ E,

(
(λ + Bα

X)
−1 f

)
(t) =

sin πα

π

∫ t

0

∫ ∞

0

μαe−μ(t−s)

λ2 + 2λμα cos πα + μ2α
dμ f (s)ds, 0 < t < ∞. (39)

75



Mathematics 2019, 7, 1165

Since∥∥∥∥∥
∫ t

0

∫ ∞

0

μαe−(μ+ε)(t−s)

λ2 + 2λμα cos πα + μ2α
dμ f (s)ds−

∫ t

0

∫ ∞

0

μαe−μ(t−s)

λ2 + 2λμα cos πα + μ2α
dμ f (s)ds

∥∥∥∥∥
X

=

∥∥∥∥∥
∫ t

0

(
e−ε(t−s) − 1

) ∫ ∞

0

μαe−μ(t−s)

λ2 + 2λμα cos πα + μ2α
dμ f (s)ds

∥∥∥∥∥
X

≤
∫ t

0

(
1− e−ε(t−s)) ∫ ∞

0

μαe−μ(t−s)

λ2 + 2λμα cos πα + μ2α
dμ‖ f (s)‖Xds

≤
∫ t

0

(
1− e−ε(t−s)) ∫ ∞

0

μαe−μ(t−s)

(μα sin πα)2 dμds‖ f ‖E

=
1

(sin πα)2

∫ t

0

(
1− e−ε(t−s)) ∫ ∞

0
μ−αe−μ(t−s)dμds‖ f ‖E

=
Γ(1− α)

(sin πα)2

∫ t

0

(
1− e−ε(t−s))(t− s)α−1ds‖ f ‖E

=
Γ(1− α)

(sin πα)2

∫ t

0

(
1− e−εs)sα−1ds‖ f ‖E → 0 uniformly in [0, T], 0 < T < ∞, as ε→ 0,

noting Equations (28) and (39), one observes that, if λ > 0,

(
(λ + (BX + ε)α)−1 f

)
(t)→ (

(λ + Bα
X)
−1 f

)
(t)

uniformly in [0, T], 0 < T < ∞ as ε→ 0. By virtue of Equations (12) and (38), one deduces

‖(λ + Bα
X)
−1‖L(E) ≤

sin πα

π

∫ ∞

0

μα−1

λ2 + 2λμα cos πα + μ2α
dμ

=
sin πα

π

∫ ∞

0

rα−1

1 + 2rα cos πα + r2α
dr

1
λ
=

1
λ

, λ > 0.

For an arbitrary λ with Reλ > 0 , let μ be so large that μ > |λ|2/(2 Re λ). Then, μ > |μ− λ|.
One has

(λ + Bα
X)
−1 = (μ + Bα

X + λ− μ)−1 =
((

I + (λ− μ)(μ + Bα
X)
−1
)
(μ + Bα

X)
)−1

= (μ + Bα
X)
−1
(

I + (λ− μ)(μ + Bα
X)
−1
)−1

= (μ + Bα
X)
−1

∞

∑
n=0

(−1)n(λ− μ)n(μ + Bα
X)
−n .

Hence,

∥∥∥(λ + Bα
X)
−1
∥∥∥L(E)

≤
∥∥∥(μ + Bα

X)
−1
∥∥∥L(E)

∞

∑
n=0
|λ− μ|n

∥∥∥(μ + Bα
X)
−1
∥∥∥n

L(E)

=
1
μ

∞

∑
n=0

( |λ− μ|
μ

)n
=

1
μ

1
1− |λ− μ|/μ

=
1

μ− |λ− μ| .

Since

1
μ− |λ− μ| =

μ + |λ− μ|
μ2 − |λ− μ|2 =

μ + |λ− μ|
μ2 − (μ2 − 2μRe λ + |λ|2) =

μ + |λ− μ|
2μRe λ− |λ|2

=
1 + |λ/μ− 1|

2Re λ− |λ|2/μ
−→ 1

Re λ
as μ −→ ∞ ,
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one concludes

ρ(Bα
X) ⊃ {λ; Re λ < 0} and ‖(λ + Bα

X)
−1‖L(E) ≤

1
Re λ

, Re λ > 0. (40)

One has ∀λ > 0, ∀ f ∈ D(Bα
X)

R(λ)−1 f = λ f + Bα
X f =⇒ λR(λ) f + R(λ)Bα

X f = f .

Hence, (
R(λ)Bα

X f
)
(t) = f (t)− λ

(
R(λ) f

)
(t), t > 0.

Since Equation (37) holds for any f ∈ E, one has

(
R(λ)Bα

X f
)
(t) −→ 1

Γ(α)

∫ t

0
(t− s)α−1(Bα

X f
)
(s)ds , ∀ t ∈ (0, ∞) ,

λ
(

R(λ) f
)
(t) −→ 0 , ∀ t ∈ (0, ∞) .

Therefore, one obtains

1
Γ(α)

∫ t

0
(t− s)α−1(Bα

X f
)
(s)ds = f (t).

This implies

1
Γ(α)

∫ t

0
(t− τ)−α

∫ τ

0
(τ − s)α−1(Bα

X f
)
(s)dsdτ =

∫ t

0
(t− τ)−α f (τ)dτ.

The left hand side is equal to

1
Γ(α)

∫ t

0

∫ t

s
(t− τ)−α(τ − s)α−1dτ

(
Bα

X f
)
(s)ds = Γ(1− α)

∫ t

0

(
Bα

X f
)
(s)ds.

Hence, ∫ t

0

(
Bα

X f
)
(s)ds =

1
Γ(1− α)

∫ t

0
(t− s)−α f (s)ds.

From this, it follows that

∫ t

0
(t− τ)α−1

∫ τ

0

(
Bα

X f
)
(s)dsdτ =

1
Γ(1− α)

∫ t

0
(t− τ)α−1

∫ τ

0
(τ − s)−α f (s)dsdτ.

By the change of the order of the integration

1
α

∫ t

0
(t− s)α

(
Bα

X f
)
(s)ds = Γ(α)

∫ t

0
f (s)ds.

By the differentiation of both sides

∫ t

0
(t− s)α−1(Bα

X f
)
(s)ds = Γ(α) f (t).

Therefore, Bα
X has an inverse B−α

X , and for f ∈ D(B−α
X )

(
B−α

X f
)
(t) =

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, 0 < t < ∞. (41)

Consequently, the following proposition is established:
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Proposition 3. Let BX be the operator defined by Equations (7) and (8).
Then, BX satisfies ρ(BX) ⊃ {λ; Reλ < 0} and Equations (11) and (12) hold. The fractional power

Bα
X , 0 < α < 1, of BX is defined implicitly by Equation (38) or Equation (39). Bα

X has an inverse B−α
X and for

f ∈ D(B−α
X ) Equation (41) holds.

Especially if f ∈ D(B−α
X ), then the function

∫ t

0
(t− s)α−1 f (s)ds belongs to E. The converse is

given in the next proposition.

Proposition 4. Suppose that both functions f and
1

Γ(α)

∫ ·
0
(· − s)α−1 f (s)ds, 0 < α < 1, belong to E. Then,

f ∈ D(B−α
X ) and Equation (41) holds.

Proof. As a preparation, we first consider the case of a finite interval. Let 0 < T < ∞. Let

D(BX) = {u ∈ C1([0, T]; X); u(0) = 0}, BXu = u′.

Then, ∀λ ∈ C

(
(λ + BX)

−1 f
)
(t) =

∫ t

0
e−λ(t−s) f (s)ds, especially

(
B−1

X f
)
(t) =

∫ t

0
f (s)ds, 0 ≤ t ≤ T. (42)

Therefore, BX satisfies the assumptions of Proposition 1 with ω = π/2 , and hence its fractional
power Bα

X is defined for 0 < α < 1, and we have:

(λ + Bα
X)
−1 =

sin πα

π

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α
(μ + BX)

−1dμ, λ ≥ 0. (43)

Analogously to Equation (40), the following statement is established:

ρ(Bα
X) ⊃ {λ; Re λ < 0} and ‖(λ + Bα

X)
−1‖L(C([0,T];X)) ≤

1
Re λ

, Re λ > 0. (44)

It follows from Equations (42) and (43) that for f ∈ C([0, T]; X), λ ≥ 0

(
(λ + Bα

X)
−1 f

)
(t) =

sin πα

π

∫ t

0

∫ ∞

0

μαe−μ(t−s)

λ2 + 2λμα cos πα + μ2α
dμ f (s)ds, 0 ≤ t ≤ T. (45)

Especially if λ = 0,

(
B−α

X f
)
(t) =

sin πα

π

∫ t

0

∫ ∞

0
μ−αe−μ(t−s)dμ f (s)ds =

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, 0 ≤ t ≤ T. (46)

For f ∈ C([0, T]; X) and λ > 0,

(λ + Bα
X)
−1(λB−α

X + 1) f = (λ + Bα
X)
−1(λ + Bα

X)B−α
X f = B−α

X f . (47)
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From Equation (45) with f replaced by (λB−α
X + 1) f and Equation (46), it follows that

(
(λ + Bα

X)
−1(λB−α

X + 1) f
)
(t)

=
sin πα

π

∫ t

0

∫ ∞

0

μαe−μ(t−s)

λ2 + 2λμα cos πα + μ2α
dμ
(
(λB−α

X + 1) f
)
(s)ds

=
sin πα

π

∫ t

0

∫ ∞

0

μαe−μ(t−s)

λ2 + 2λμα cos πα + μ2α
dμ

(
λ

Γ(α)

∫ s

0
(s− σ)α−1 f (σ)dσ + f (s)

)
ds

=
sin πα

π

λ

Γ(α)

∫ t

0

(∫ ∞

0

μαe−μ(t−s)

λ2 + 2λμα cos πα + μ2α
dμ

)∫ s

0
(s− σ)α−1 f (σ)dσds

+
sin πα

π

∫ t

0

∫ ∞

0

μαe−μ(t−s)

λ2 + 2λμα cos πα + μ2α
dμ f (s)ds. (48)

By the changes of the order of integration,

∫ t

0

(∫ ∞

0

μαe−μ(t−s)

λ2 + 2λμα cos πα + μ2α
dμ

)∫ s

0
(s− σ)α−1 f (σ)dσds

=
∫ t

0

∫ t

σ

(∫ ∞

0

μαe−μ(t−s)(s− σ)α−1

λ2 + 2λμα cos πα + μ2α
dμ

)
ds f (σ)dσ

=
∫ t

0

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α

∫ t

σ
e−μ(t−s)(s− σ)α−1dsdμ f (σ)dσ. (49)

Substituting Equation (49) (with s and σ interchanged) into Equation (48), one deduces

(
(λ + Bα

X)
−1(λB−α

X + 1) f
)
(t)

=
sin πα

π

λ

Γ(α)

∫ t

0

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α

∫ t

s
e−μ(t−σ)(σ− s)α−1dσdμ f (s)ds ∗

+
sin πα

π

∫ t

0

∫ ∞

0

μαe−μ(t−s)

λ2 + 2λμα cos πα + μ2α
dμ f (s)ds

=
sin πα

π

∫ t

0

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α

×
[

λ

Γ(α)

∫ t

s
e−μ(t−σ)(σ− s)α−1dσ + e−μ(t−s)

]
dμ f (s)ds. (50)

From Equations (46), (47), and (50), it follows that the following equality holds ∀ f ∈ C([0, T]; X):

sin πα

π

∫ t

0

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α

[
λ

Γ(α)

∫ t

s
e−μ(t−σ)(σ− s)α−1dσ + e−μ(t−s)

]
dμ f (s)ds

=
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, 0 ≤ t ≤ T.

This yields that, for < t ≤ T:

sin πα

π

∫ ∞

0

μα

λ2 + 2λμα cos πα + μ2α

[
λ

Γ(α)

∫ t

0
e−μ(t−σ)σα−1dσ + e−μt

]
dμ =

tα−1

Γ(α)
. (51)

Since T > 0 is arbitrary, one concludes that Equation (51) holds for 0 < t < ∞.
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We return to the case of the infinite interval (0, ∞). Suppose that both functions f and

u(t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds belong to E. One has by virtue of Equation (39) with λ = 1

(
(1 + Bα

X)
−1u

)
(t) =

sin πα

π

∫ t

0

∫ ∞

0

μαe−μ(t−s)

1 + 2μα cos πα + μ2α
dμu(s)ds

=
sin πα

π

∫ t

0

(∫ ∞

0

μαe−μ(t−s)

1 + 2μα cos πα + μ2α
dμ

)
1

Γ(α)

∫ s

0
(s− σ)α−1 f (σ)dσds

=
sin πα

πΓ(α)

∫ t

0

∫ t

σ

(∫ ∞

0

μαe−μ(t−s)

1 + 2μα cos πα + μ2α
dμ

)
(s− σ)α−1ds f (σ)dσ

=
sin πα

π

∫ t

0

∫ ∞

0

μα

1 + 2μα cos πα + μ2α

1
Γ(α)

∫ t

σ
e−μ(t−s)(s− σ)α−1dsdμ f (σ)dσ, (52)

and (
(1 + Bα

X)
−1 f

)
(t) =

sin πα

π

∫ t

0

∫ ∞

0

μαe−μ(t−s)

1 + 2μα cos πα + μ2α
dμ f (s)ds. (53)

Adding Equations (52) and (53), and using Equation (51) with λ = 1, one observes

(
(1 + Bα

X)
−1(u + f )

)
(t)

=
sin πα

π

∫ t

0

∫ ∞

0

μα

1 + 2μα cos πα + μ2α

[
1

Γ(α)

∫ t

s
e−μ(t−σ)(σ− s)α−1dσ + e−μ(t−s)

]
dμ f (s)ds

=
1

Γ(α)

∫ t

0
(t− s)α−1 f (s)ds = u(t).

This yields that u ∈ D(Bα
X) and u + f = (I + Bα

X)u = u + Bα
Xu. Consequently, f ∈ D(B−α

X ) and
B−α

X f = u.

In view of Propositions 3 and 4, the following statement is obtained:

Corollary 1. Let f ∈ E. Then, f ∈ D(B−α
X ) if and only if

∫ ·
0
(· − s)α−1 f (s)ds ∈ E. For f ∈ D(B−α

X ),

Equation (41) holds.

For f ∈ E, α > 0, β > 0,

1
Γ(α)

∫ t

0
(t− s)α−1 1

Γ(β)

∫ s

0
(s− σ)β−1 f (σ)dσds

=
1

Γ(α)Γ(β)

∫ t

0

∫ t

σ
(t− s)α−1(s− σ)β−1ds f (σ)dσ =

1
Γ(α + β)

∫ t

0
(t− σ)α+β−1 f (σ)dσ.

Suppose f ∈ D(B−β
X ), 0 < β < 1. Then, in view of Corollary 1 ,

∫ ·
0
(· − s)β−1 f (s)ds ∈ E. Hence,

1
Γ(α)

∫ t

0
(t− s)α−1(B−β

X f )(s)dσds =
1

Γ(α + β)

∫ t

0
(t− σ)α+β−1 f (σ)dσ.

Therefore, under the assumption f ∈ D(B−β
X ) B−β

X f ∈ D(B−α
X ) if and only if f ∈ D(B−α−β

X ), and

in this case B−α
X B−β

X f = B−α−β
X f holds. In particular, it is obtained that

B−α
X B−β

X ⊂ B−α−β
X . (54)

PROBLEM β > α =⇒ D(B−β
X ) ⊂ D(B−α

X ) ?
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Let 0 < α̃ < 1, 0 < β ≤ α ≤ 1. Let L and M be densely defined closed linear operators in X such
that 0 ∈ ρ(L), D(L) ⊂ D(M) and

(H)
‖M(λM− L)−1‖L(X) ≤

c̃
(|λ|+ 1)β

, c̃ > 0,

∀λ ∈ Σα = {λ; Reλ ≥ −c(1 + |Imλ|)α}, c > 0.
(55)

Consider the equation
Bα̃

X Mu− Lu = f . (56)

Let a0 and a be such that

0 < a0 < min{c, 1}, c < a < c + a0. (57)

Equation (56) is equivalent to

(Bα̃
X + a0)Mu− (L + a0M)u = f . (58)

Since −a0 > −c, in view of (H) M(L + a0M)−1 ∈ L(X) and if Re(λ − a0) ≥ −c(1 + |Im(λ −
a0)|)α,

‖M((λ− a0)M− L)−1‖L(X) ≤
c̃

(|λ− a0|+ 1)β
,

i.e., if Reλ ≥ a0 − c(1 + |Imλ|)α,

‖M(λM− (L + a0M))−1‖L(X) ≤
c̃

(|λ− a0|+ 1)β
. (59)

Since |λ− a0|+ 1 ≥ |λ| − a0 + 1 = |λ|+ (1− a0) ≥ (1− a0)(|λ|+ 1),

c̃
(|λ− a0|+ 1)β

≤ c̃
(1− a0)β(|λ|+ 1)β

=
c1

(|λ|+ 1)β
, c1 = c̃(1− a0)

−β .

Therefore,

‖M(λM− (L + a0M))−1‖L(X) ≤
c1

(|λ|+ 1)β
∀λ : Reλ ≥ a0 − c(1 + |Imλ|)α. (60)

The inequality in Equation (40) implies

‖(Bα̃
X + a0 − λ)−1‖L(E) ≤

1
a0 − Reλ

∀λ : Reλ < a0. (61)

By virtue of Equation (38),

(Bα̃
X + a0)

−1 =
sin πα̃

π

∫ ∞

0

μα̃

a2
0 + 2a0μα̃ cos πα̃ + μ2α̃

(BX + μ)−1dμ. (62)

Let f ∈ Lp(0, ∞; X) and T ∈ L(X). Since

(T(BX + μ)−1 f )(t) = T · ((BX + μ)−1 f )(t) = T
∫ t

0
e−μ(t−s) f (s)ds =

∫ t

0
e−μ(t−s)T f (s)ds

=
∫ t

0
e−μ(t−s)(T f )(s)ds = ((BX + μ)−1T f )(t),
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one observes T(BX + μ)−1 f = (BX + μ)−1T f , i.e., T(BX + μ)−1 = (BX + μ)−1T. Therefore, with the
aid of Equation (62), one obtains

T(Bα̃
X + a0)

−1 = (Bα̃
X + a0)

−1T. (63)

Applying this to T = M(L + a0M)−1, one obtains

(Bα̃
X + a0)

−1M(L + a0M)−1 = M(L + a0M)−1(Bα̃
X + a0)

−1. (64)

Let Γ be the curve
Γ = {z = a− c(1 + |y|)α + iy, y ∈ R}.

In view of Equation (57), one has a0 < c < a, a− c < a0. Hence, if λ = a− c(1 + |y|)α + iy ∈ Γ
with y ∈ R, one has

a0 − c(1 + |Imλ|)α = a0 − c(1 + |y|)α < a− c(1 + |y|)α = Reλ ≤ a− c < a0.

Therefore, Equations (60) and (61) hold on Γ.
We verify

‖(Bα̃
X + a0 − λ)−1‖L(E) ≤

c2

1 + |Reλ| ∀λ ∈ Γ, c2 =
a− c + 1
a0 − a + c

. (65)

We show that, if λ ∈ Γ, the following inequality holds:

a0 − Reλ ≥ a0 − a + c
a− c + 1

(1 + |Reλ|). (66)

Note here a0 − a + c > 0 and a− c + 1 > a− c > 0 in view of Equation (57). Hence,

a0 − a0 − a + c
a− c + 1

=
a0a− a0c + a− c

a− c + 1
=

(a0 + 1)(a− c)
a− c + 1

> 0. (67)

This yields that

a0 − Reλ− a0 − a + c
a− c + 1

(1 + Reλ) = a0 − Reλ− a0 − a + c
a− c + 1

− a0 − a + c
a− c + 1

Reλ

=
(a0 + 1)(a− c)

a− c + 1
− a0 + 1

a− c + 1
Reλ =

a0 + 1
a− c + 1

(a− c− Reλ) ≥ 0

if λ ∈ Γ. Therefore, Equation (66) holds if λ ∈ Γ and Reλ ≥ 0. Recalling that a0 < 1 we see if Reλ ≤ 0,

a0 − Reλ = a0 + |Reλ| ≥ a0(1 + |Reλ|).

Therefore, recalling Equation (67) one observes that Equation (66) holds also in the case Reλ ≤ 0.
Since Reλ ≤ a− c < a0 if λ ∈ Γ, it follows from Equations (61) and (66) that Equation (65) holds.
Set B = Bα̃

X + a0, T = M(L + a0M)−1. Then, Equations (61) and (64) are expressed as

B−1T = TB−1, (68)

‖(B− λ)−1‖L(E) ≤
1

a0 − Reλ
∀λ : Reλ < a0 , (69)

respectively. Let v = (L + a0M)u be the new unknown variable. Then, Mu = M(L + a0M)−1v = Tv
and Equation (58) is expressed as

BTv− v = f . (70)
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Our candidate of the solution to Equation (70) is

v = (2πi)−1
∫

Γ
z−1(zT − 1)−1B(B− z)−1 f dz. (71)

We have
zT − 1 = zM(L + a0M)−1 − 1 = [zM− (L + a0M)](L + a0M)−1.

If z = a− c(1 + |y|)α + iy ∈ Γ, then Re z = a− c(1 + |Im z|)α > a0 − c(1 + |Im z|)α. Hence, in
view of Equation (60)

‖M(zM− (L + a0M))−1‖L(X) ≤
c1

(|z|+ 1)β
.

Therefore, if z ∈ Γ,

‖(zT − 1)−1‖L(E) = ‖(zT − 1)−1‖L(X) = ‖(L + a0M)(zM− (L + a0M))−1‖L(X)

= ‖{zM− (zM− (L + a0M))}(zM− (L + a0M))−1‖L(X)

= ‖zM(zM− (L + a0M))−1 − I‖L(X) ≤ ‖zM(zM− (L + a0M))−1‖L(X) + 1

≤ c1|z|
(|z|+ 1)β

+ 1 ≤ c1(|z|+ 1)1−β + 1 ≤ c2(|z|+ 1)1−β, c2 = c1 + 1. (72)

This yields

‖v‖E ≤ c2

2π

∫
Γ
|z|−(1+θ)(1 + |z|)1−β|z|θ‖B(B− z)−1 f ‖E|dz|. (73)

Let z = a− c(1 + |y|)α + iy ∈ Γ. From

B(B− z)−1 = B(B + 1 + |y|)−1 + (1 + |y|+ z)(B− z)−1B(B + 1 + |y|)−1

=
[
1 + (1 + |y|+ z)(B− z)−1]B(B + 1 + |y|)−1,

it follows that

‖B(B− z)−1 f ‖E = ‖[1 + (1 + |y|+ z)(B− z)−1]B(B + 1 + |y|)−1 f ‖E

≤ ‖1 + (1 + |y|+ z)(B− z)−1‖L(E)‖B(B + 1 + |y|)−1 f ‖E

≤
(

1 +
1 + |y|+ |z|

a0 − Rez

)
‖B(B + 1 + |y|)−1 f ‖E. (74)

Since

1 + |y|+ |z| = 1 + |y|+ |a− c(1 + |y|)α + iy| ≤ 1 + |y|+ a + c(1 + |y|)α + |y|
= 1 + 2|y|+ a + c(1 + |y|)α,

one has

1 +
1 + |y|+ |z|

a0 − Rez
≤ 1 +

1 + 2|y|+ a + c(1 + |y|)α

a0 − a + c(1 + |y|)α
=

a0 + 1 + 2|y|+ 2c(1 + |y|)α

a0 − a + c(1 + |y|)α
,

and

a0 + 1 + 2|y|+ 2c(1 + |y|)α ≤ (a0 + 1)(1 + |y|) + 2(1 + |y|) + 2c(1 + |y|)
= (a0 + 3 + 2c)(1 + |y|).

Since a0 < a,

a0 − a + c(1 + |y|)α ≥ c(1 + |y|)α − (a− a0)(1 + |y|)α = (c− a + a0)(1 + |y|)α.
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Note here that c− a + a0 > 0 (cf. Equation (57)). Hence,

1 +
1 + |y|+ |z|

a0 − Rez
≤ (a0 + 3 + 2c)(1 + |y|)

(c− a + a0)(1 + |y|)α
= c3(1 + |y|)1−α, c3 =

a0 + 3 + 2c
c− a + a0

. (75)

From Equations (74) and (75), it follows that

‖B(B− z)−1 f ‖E ≤ c3(1 + |y|)1−α‖B(B + 1 + |y|)−1 f ‖E. (76)

For z = a− c(1 + |y|)α + iy ∈ Γ, y ∈ R, one has

|z| = |a− c(1 + |y|)α + iy| ≤ a + c(1 + |y|)α + |y| ≤ a + c(1 + |y|) + |y|
= a + c + (c + 1)|y| ≤ c4(1 + |y|), c4 = max{a, 1}+ c, (77)

(1 + |z|)1−β ≤ (1 + c4(1 + |y|))1−β ≤ (1 + |y|+ c4(1 + |y|))1−β = c5(1 + |y|)1−β,

c5 = (1 + c4)
1−β, (78)

|1 + |y|+ z| ≤ 1 + |y|+ |z| ≤ 1 + |y|+ c4(1 + |y|) = (1 + c4)(1 + |y|) = c6(1 + |y|),
c6 = 1 + c4 = 1 + max{a, 1}+ c. (79)

Here, we show that ∃c7 such that

|z| ≥ c7(1 + |y|) ∀z ∈ Γ : z = a− c(1 + |y|)α + iy, y ∈ R. (80)

Proof. Let 0 < b < a− c(⇐⇒ c− b < c < a− b).

(i) Case |a− c(1 + |y|)α| ≤ b. In this case,

|a− c(1 + |y|)α| ≤ b⇐⇒ −b ≤ a− c(1 + |y|)α ≤ b =⇒ a− b ≤ c(1 + |y|)α

⇐⇒ a− b
c
≤ (1 + |y|)α ⇐⇒

(
a− b

c

)1/α

≤ 1 + |y| =⇒ |y| ≥
(

a− b
c

)1/α

− 1 ≡ δ > 0.

Hence,

δ

1 + δ
(1 + |y|) = δ

1 + δ
+

δ|y|
1 + δ

≤ |y|
1 + δ

+
δ|y|

1 + δ
= |y|.

Therefore,

|z| = |a− c(1 + |y|)α + iy| ≥ |y| ≥ δ

1 + δ
(1 + |y|).

(ii) Case a− c(1 + |y|)α > b. In this case

|z| ≥ |a− c(1 + |y|)α| = a− c(1 + |y|)α > b,

and

a− c(1 + |y|)α > b⇐⇒ (1 + |y|)α <
a− b

c
⇐⇒ 1 + |y| <

(
a− b

c

)1/α

⇐⇒
(

c
a− b

)1/α

(1 + |y|) < 1.

Therefore,

|z| > b > b
(

c
a− b

)1/α

(1 + |y|).
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(iii) Case c(1 + |y|)α − a > b. In this case

c(1 + |y|)α > a + b⇐⇒ (1 + |y|)α >
a + b

c
⇐⇒ |y| >

(
a + b

c

)1/α

− 1 ≡ γ > 0.

Hence,
γ

γ + 1
(1 + |y|) = γ

γ + 1
+

γ

γ + 1
|y| < |y|

γ + 1
+

γ

γ + 1
|y| = |y| ≤ |z|.

Thus Equation (80) holds with c7 = min

{
δ

1 + δ
, b
(

c
a− b

)1/α

,
γ

γ + 1

}
.

Hence, from Equations (73) and (76)–(80), it follows that

‖v‖E ≤ c8

∫
Γ
(1 + |y|)1−α−β−θ(1 + |y|)θ‖B(B + 1 + |y|)−1 f ‖E|dz|,

where c8 = c2c−(1+θ)
7 c5cθ

4c3/2π. For z = a− c(1 + |y|)α + iy, y ≥ 0

|dz| = | − cα(1 + y)α−1dy + idy| = {(cα)2(1 + y)2(α−1) + 1}1/2dy ≤ ((cα)2 + 1)1/2dy.

Therefore,

‖v‖E ≤ 2((cα)2 + 1)1/2c8

∫ ∞

0
(1 + y)1−α−β−θ(1 + y)θ‖B(B + 1 + y)−1 f ‖Edy

= 2((cα)2 + 1)1/2c8

∫ ∞

1
y2−α−β−θyθ‖B(B + y)−1 f ‖E

dy
y

≤ 2((cα)2 + 1)1/2c8

(
p− 1

(θ + α + β− 2)p

)(p−1)/p (∫ ∞

1
yθp‖B(B + y)−1 f ‖p

E
dy
y

)1/p

≤ 2((cα)2 + 1)1/2c8

(
p− 1

(θ + α + β− 2)p

)(p−1)/p
‖ f ‖(E,D(B))θ,p

.

Thus, it has been shown that v is well defined by Equation (71) if f ∈ (E, D(B))θ,p.
Next, we show that v satisfies Equation (70). We show that the following inequality holds with

some constant c9:
1 + |a− c(1 + |y|)α| ≥ c9(1 + |y|)α ∀y ∈ R. (81)

Proof. (i) Case |a− c(1 + |y|)α| ≤ 1/2. Since

|a− c(1 + |y|)α| ≤ 1
2
⇐⇒ −1

2
≤ a− c(1 + |y|)α ≤ 1

2
=⇒ −1 ≤ 2a− 2c(1 + |y|)α

⇐⇒ 2c(1 + |y|)α ≤ 2a + 1⇐⇒ 2c
2a + 1

(1 + |y|)α ≤ 1,

one observes
1 + |a− c(1 + |y|)α| ≥ 1 ≥ 2c

2a + 1
(1 + |y|)α. (82)

(ii) Case a− c(1 + |y|)α > 1/2 (this can occur only in case a− c > 1/2). Since

a− c(1 + |y|)α >
1
2
⇐⇒ a− 1

2
> c(1 + |y|)α

(
multiplying both sides by

1 + a
a− 1/2

)
=⇒ 1 + a >

c(1 + a)(1 + |y|)α

a− 1/2
,
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one has

1 + a− c(1 + |y|)α >
c(1 + a)(1 + |y|)α

a− 1/2
− c(1 + |y|)α

=

(
1 + a

a− 1/2
− 1

)
c(1 + |y|)α =

3/2
a− 1/2

c(1 + |y|)α =
3c

2a− 1
(1 + |y|)α.

Therefore,

1 + |a− c(1 + |y|)α| = 1 + a− c(1 + |y|)α ≥ 3c
2a− 1

(1 + |y|)α. (83)

(iii) Case c(1 + |y|)α − a > 1/2. In this case,

1 + |a− c(1 + |y|)α| = 1 + c(1 + |y|)α − a.

If a ≤ 1,
1 + c(1 + |y|)α − a ≥ c(1 + |y|)α. (84)

If a > 1,

1 + c(1 + |y|)α − a = c(1 + |y|)α − (a− 1) ≥ c(1 + |y|)α − (a− 1)(1 + |y|)α

= (c− a + 1)(1 + |y|)α. (note that a < c + a0 < c + 1) (85)

From Equations (84) and (85), it follows that

1 + |a− c(1 + |y|)α| = 1 + c(1 + |y|)α − a ≥ min{c, c− a + 1}(1 + |y|)α. (86)

Note that c− a + 1 > 0 since a < c + a0 < c + 1.
Consequently, it has been proved that Equation (81) holds with

c9 =

⎧⎪⎪⎨
⎪⎪⎩

min
{

2c
2a + 1

,
3c

2a− 1
, min{c, c− a + 1}

}
if a− c > 1/2,

min
{

2c
2a + 1

, min{c, c− a + 1}
}

if a− c ≤ 1/2.

Next, we show that v satisfies Equation (70). Since

z−1T(zT − 1)−1B(B− z)−1 = z−2(zT − 1 + 1)(zT − 1)−1(B− z + z)(B− z)−1

= z−2{1 + (zT − 1)−1}{1 + z(B− z)−1}
= z−2 + z−1(B− z)−1 + z−2(zT − 1)−1 + z−1(zT − 1)−1(B− z)−1,

we have

Tv = (2πi)−1
∫

Γ
z−1T(zT − 1)−1B(B− z)−1 f dz

= (2πi)−1
∫

Γ
z−2 f dz + (2πi)−1

∫
Γ

z−1(B− z)−1 f dz

+(2πi)−1
∫

Γ
z−2(zT − 1)−1 f dz + (2πi)−1

∫
Γ

z−1(zT − 1)−1(B− z)−1 f dz. (87)

Clearly, (2πi)−1
∫

Γ
z−2 f dz = 0. By assumption M{(z − a0)M − L}−1 is holomorphc in

Rez ≥ a0 − c(1 + |Imz|)α. Since
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zT − 1 = zM(L + a0M)−1 − 1 = {zM− (L + a0M)}(L + a0M)−1

= (zM− L− a0M)(L + a0M)−1,

(zT − 1)−1 = (L + a0M)(zM− L− a0M)−1 = (L− (z− a0)M + zM){(z− a0)M− L}−1

= {zM− ((z− a0)M− L)}{(z− a0)M− L}−1 = zM{(z− a0)M− L}−1 − 1,

(zT − 1)−1 is also holomorphic in Rez ≥ a0 − c(1 + |Imz|)α. If z ∈ Γ, then

Rez = a− c(1 + |Imz|)α > a0 − c(1 + |Imz|)α.

Hence, Γ lies in the region where (zT − 1)−1 is holomorphc. If

Rez ≥ a0 − c(1 + |Imz|)α
(⇐⇒ Re(z− a0) ≥ −c(1 + |Im(z− a0)|)α

)
,

then
‖M{(z− a0)M− L}−1‖L(X) ≤

c̃
(|z− a0|+ 1)β

.

Hence,

‖(zT − 1)−1‖L(X) = ‖zM{(z− a0)M− L}−1 − 1‖L(X) ≤ |z|‖M{(z− a0)M− L}−1‖L(X) + 1

≤ c̃|z|
(|z− a0|+ 1)β

+ 1 = O(|z|1−β) as |z| → ∞ in Rez > a0 − c(1 + |Imz|)α. (88)

Therefore,

‖z−2(zT − 1)−1‖L(X) = O(|z|−1−β) as |z| → ∞ in Rez > a0 − c(1 + |Imz|)α.

Hence, one observes ∫
Γ

z−2(zT − 1)−1dz = 0. (89)

Let R be a large positive number. The set Γ ∩ {|z| = R} consists of two points z1, z2. Let ΓR be
the closed curve which consists of the part of Γ in the disk |z| ≤ R and the part of the circle |z| = R in
Rez ≤ Rez1 = Rez2. Since (B− z)−1 is holomorphic in the region Rez < a0, which contains the closed
set surrounded by ΓR,

(2πi)−1
∫

ΓR

z−1(B− z)−1dz = B−1. (90)

Since zk = a− c(1 + |Imzk|)α + iImzk and |zk| = R, k = 1, 2, one has

(
a− c(1 + |Imzk|)α

)2
+ (Imzk)

2 = R2, k = 1, 2.

This implies |Imzk| = O(R) as R→ ∞, and hence |Rezk| = O(Rα) as R→ ∞, k = 1, 2. Therefore,
by virtue of Equation (69) for z ∈ ΓR ∩ {|z| = R}

‖(B− z)−1‖L(E) ≤
1

a0 − Rez
=

1
a0 + |Rez| ≤

1
a0 + |Rezk| = O(R−α) (k = 1, 2),

as R→ ∞. Letting R→ ∞ in Equation (90), one observes

(2πi)−1
∫

Γ
z−1(B− z)−1dz = B−1. (91)
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From Equations (87), (89), and (91), one obtains

Tv = B−1 f + (2πi)−1
∫

Γ
z−1(zT − 1)−1(B− z)−1 f dz,

and hence
BTv = f + (2πi)−1

∫
Γ

z−1(zT − 1)−1B(B− z)−1 f dz = f + v. (92)

Thus, we have established Equation (70).

Our next step is to establish the maximal regularity of solutions to Equation (56) or, equivalently,
to Equation (58). By observing the resolvent identity

(B + t)−1(B− z)−1 = −(t + z)−1{(B + t)−1 − (B− z)−1}
= −(t + z)−1(B + t)−1 + (t + z)−1(B− z)−1,

we get, for t > 0,

B(B + t)−1(B− z)−1 = [I − t(B + t)−1](B− z)−1 = (B− z)−1 − t(B + t)−1(B− z)−1

= (B− z)−1 − t[−(t + z)−1(B + t)−1 + (t + z)−1(B− z)−1]

= (B− z)−1 + t(t + z)−1(B + t)−1 − t(t + z)−1(B− z)−1.

Hence,

(B + t)−1v = (2πi)−1
∫

Γ
z−1(zT − 1)−1B(B + t)−1(B− z)−1 f dz

= (2πi)−1
∫

Γ
z−1(zT − 1)−1[(B− z)−1 + t(t + z)−1(B + t)−1 − t(t + z)−1(B− z)−1] f dz

= (2πi)−1
∫

Γ
z−1(zT − 1)−1(B− z)−1 f dz + (2πi)−1

∫
Γ

z−1(zT − 1)−1t(t + z)−1(B + t)−1 f dz

−(2πi)−1
∫

Γ
z−1(zT − 1)−1t(t + z)−1(B− z)−1 f dz.

Therefore, we deduce

B(B + t)−1v = v + (2πi)−1
∫

Γ
z−1(t + z)−1(zT − 1)−1dz tB(B + t)−1 f

−(2πi)−1
∫

Γ
z−1t(t + z)−1(zT − 1)−1B(B− z)−1 f dz

= v + J1( f , t) + J2( f , t), t ∈ R+.

One observes that (zT− 1)−1 = zM((z− a0)M− L)−1 − I is holomorphic in {z; Rez ≥ a0 − c(1 +
|Imz|α)}. Hence, the integrand of J1( f , t) is holomorphic in {z; Rez ≥ a− c(1 + |Imz|α)} and its norm
is O(|z|−1−β) as |z| → ∞ in view of Equation (88). Therefore, J1( f , t) = 0 for any (t, f ) ∈ (R+, E).

Moreover, J2( f , t) satisfies

J2( f , t) = −(2πi)−1
∫

Γ
z−1(t + z− z)(t + z)−1(zT − 1)−1B(B− z)−1 f dz

= −(2πi)−1
∫

Γ
z−1(zT − 1)−1B(B− z)−1 f dz + (2πi)−1

∫
Γ
(t + z)−1(zT − 1)−1B(B− z)−1 f dz

= −v + (2πi)−1
∫

Γ
(t + z)−1(zT − 1)−1B(B− z)−1 f dz.

Thus, we have obtained

B(B + t)−1v = (2πi)−1
∫

Γ
(t + z)−1(zT − 1)−1B(B− z)−1 f dz. (93)
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Setting ω = θ + α + β− 2, we can estimate tω‖B(B + t)−1v‖ taking into account the identity

B(B− z)−1 = B(B + 1 + |y|)−1 + (1 + |y|+ z)(B− z)−1B(B + 1 + |y|)−1

=
[
1 + (1 + |y|+ z)(B− z)−1]B(B + 1 + |y|)−1,

z ∈ Γ : z = a− c(1 + |y|)α + iy, y ∈ R .

Here, we show that the following inequality holds for t > 0, y ∈ R:

|t + a− c(1 + |y|)α + iy| ≥ c10(t + 1 + |y|), c10 =
min{1, a− c}

max{2√2, 2c + 1} . (94)

Proof. (i) Case |t + a− c(1 + |y|)α| < (t + a− c)/2. Recalling a > c, 0 < α ≤ 1, we deduce

|t + a− c(1 + |y|)α| < (t + a− c)/2 =⇒ t + a− c(1 + |y|)α < (t + a− c)/2

=⇒ (t + a + c)/2 < c(1 + |y|)α ≤ c(1 + |y|) =⇒ (t + a− c)/2 < c|y| =⇒ t + a− c < 2c|y|.

Hence,
min{1, a− c}(t + 1) ≤ t + a− c < 2c|y|.

This implies
min{1, a− c}(t + 1 + |y|) < 2c|y|+ |y| = (2c + 1)|y|.

Therefore,

|t + a− c(1 + |y|)α + iy| ≥ |y| > min{1, a− c}
2c + 1

(t + 1 + |y|).

(ii) Case |t + a− c(1 + |y|)α| ≥ (t + a− c)/2. From

|t + a− c(1 + |y|)α + iy|2 = (t + a− c(1 + |y|)α)2 + y2 ≥ (t + a− c)2/4 + y2

>
1
8
(2(t + a− c)2 + 2y2) ≥ 1

8
(t + a− c + |y|)2 ≥ 1

8
(

min{1, a− c}(t + 1 + |y|))2

it follows that

|t + a− c(1 + |y|)α + iy| ≥ min{1, a− c}
2
√

2
(t + 1 + |y|).

From Equations (72), (76), (78), (93), and (94), it follows that

tω‖B(B + t)−1v‖E = tω

∥∥∥∥(2πi)−1
∫

Γ
(t + z)−1(zT − 1)−1B(B− z)−1 f dz

∥∥∥∥
E

≤ tω

2π

∫
Γ

c2c5(1 + |y|)1−βc3(1 + |y|)1−α

c10(t + 1 + |y|) ‖B(B + 1 + |y|)−1 f ‖E|dz|

=
tω

2π

c2c5c3

c10

∫
Γ

(1 + |y|)2−α−β

t + 1 + |y| ‖B(B + 1 + |y|)−1 f ‖E|dz|

≤ c11tω
∫ ∞

0

(1 + y)2−α−β

t + 1 + y
‖B(B + 1 + y)−1 f ‖Edy, (95)

where
c11 =

1
π

c2c5c3

c10
((cα)2 + 1)1/2.
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One has

tω
∫ ∞

0

(1 + y)2−α−β

t + 1 + y
‖B(B + 1 + y)−1 f ‖Edy = tω

∫ ∞

1

y3−α−β−θ

t + y
yθ‖B(B + y)−1 f ‖E

dy
y

=
∫ ∞

1

(ty−1)α+β+θ−2

ty−1 + 1
yθ‖B(B + y)−1 f ‖E

dy
y

=
∫ ∞

1
g(ty−1) f1(y)

dy
y

, (96)

where f1(y) = yθ‖B(B + y)−1 f ‖E, g(y) =
yθ+α+β−2

1 + y
. Applying Lemma 2 and using Equation (96)

one obtains

(∫ ∞

0

(
tω
∫ ∞

0

(1 + y)2−α−β

t + 1 + y
‖B(B + 1 + y)−1 f ‖Edy

)p dt
t

)1/p

≤
(∫ ∞

0

(∫ ∞

0
g(ty−1) f1(y)

dy
y

)p dt
t

)1/p

≤
∫ ∞

0
g(t)

dt
t

(∫ ∞

0
f1(y)p dy

y

)1/p
. (97)

With the aid of the change of the independent variable s = (1 + t)−1, one observes

∫ ∞

0
g(t)

dt
t
=
∫ ∞

0

tθ+α+β−2

1 + t
dt
t
=
∫ 1

0
(1− s)θ+α+β−3s−θ−α−β+2ds

= Γ(θ + α + β− 2)Γ(3− θ − α− β) = Γ(ω)Γ(1−ω),

and ∫ ∞

0
f1(y)p dy

y
=
∫ ∞

0
yθp‖B(B + y)−1 f ‖p

E
dy
y

.

Hence, one obtains from Equation (97)

(∫ ∞

0

(
tω
∫ ∞

0

(1 + y)2−α−β

t + 1 + y
‖B(B + 1 + y)−1 f ‖Edy

)p dt
t

)1/p

≤ Γ(ω)Γ(1−ω)

(∫ ∞

0
yθp‖B(B + y)−1 f ‖p

E
dy
y

)1/p
. (98)

It follows from Equations (95) and (98) that

(∫ ∞

0

(
tω‖B(B + t)−1v‖E

)p dt
t

)1/p

≤
(∫ ∞

0

(
c11tω

∫ ∞

0

(1 + y)2−α−β

t + 1 + y
‖B(B + 1 + y)−1 f ‖Edy

)p dt
t

)1/p

= c11

(∫ ∞

0

(
tω
∫ ∞

0

(1 + y)2−α−β

t + 1 + y
‖B(B + 1 + y)−1 f ‖Edy

)p dt
t

)1/p

≤ c11Γ(ω)Γ(1−ω)

(∫ ∞

0
yθp‖B(B + y)−1 f ‖p

E
dy
y

)1/p
.

Hence, v = (L + a0M)u ∈ (E, D(B))ω,p. This implies BTv = f + v ∈ (E, D(B))ω,p. Since
BTv = BM(L + a0M)−1v = BMu, one has BMu ∈ (E, D(B))ω,p :

∫ ∞

0
tωp‖B(B + t)−1BMu‖p dt

t
< ∞.
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Hence,

∫ ∞

0
tωp‖B(B + t)−1Mu‖p dt

t
=
∫ ∞

0
tωp‖B−1B(B + t)−1BMu‖p dt

t

≤ ‖B−1‖p
∫ ∞

0
tωp‖B(B + t)−1BMu‖p dt

t
< ∞,

i.e., Mu ∈ (E, D(B))ω,p. In view of v = (L + a0M)u ∈ (E, D(B))ω,p it follows that Lu ∈ (E, D(B))ω,p.
Therefore, Bα̃

X Mu = Lu + f ∈ (E, D(B))ω,p. Thus, the following result is established:

Theorem 1. Let M, L be two closed linear operators in the complex Banach space E satisfying (H), and let
0 < β ≤ α ≤ 1. Let BX be the operator defined by Equations (7) and (8) and 0 < α̃ < 1. Then, for all
f ∈ (E, D(Bα̃

X))θ,p, 2− α− β < θ < 1, 1 < p ≤ ∞ equation Bα̃
X Mu + Lu = f admits a unique solution u.

Moreover, Lu, Bα̃
X Mu ∈ (E, D(Bα̃

X))ω,p, ω = θ + α + β− 2.

3. Conclusions

The fractional powers of the involved operator BX are investigated in the space of continuous
functions which do not necessarily vanish at the origin. This enables us to prove some previous results
in the case where the involved operator BX is not necessarily densely defined. Precisely, a fractional
abstract Cauchy problem for possibly degenerate equations in Banach spaces is considered and refined.
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Abstract: The aim of this paper was to propose a systematic study of a (1 + 1)-dimensional higher order
nonlinear Schrödinger equation, arising in two different contexts regarding the biological science and the
nonlinear optics. We performed a Lie symmetry analysis and here present exact solutions of the equation.

Keywords: Schrödinger equation; Davydov’s model; partial differential equations; exact solutions

1. Introduction

In the framework of biological phenomena, the Davydov model has been a theme of intensive studies
and has attracted the attention of many researchers [1–8]. The nonlinear dynamics of DNA molecule
has been investigated by several authors [9,10]; an interesting study concerning the Davydov’s model of
α-helical proteins can be found in [11,12]. Motivated by all these applications, the purpose of this paper is
to make a complete study of a generalized Davydov model arising in literature in two different contexts
regarding the biological science and the nonlinear optics. Working with the systematic analysis of Lie’s
theory and without the restriction of the solitary wave ansatz, we showed that it admits some beautiful
and most interesting reductions to ordinary differential equations; our results confirm that the equation
can, in general, support periodic wave solutions, soliton solutions and interesting solutions expressed in
terms of Bessel functions.

We consider the following higher order nonlinear Schrödinger equation:

i
∂w
∂t

+
∂2w
∂x2 + |w|2 w + i ε

(
∂3w
∂x3 + k1 |w|2 ∂w

∂x
+ k2 w2 ∂w∗

∂x

)
= 0, (1)

where w(t, x) is a complex functions of x and t, w∗(t, x) is the complex conjugate of w(t, x). In what
follows, subscripts denote partial derivatives with respect to space and time coordinates.

When ε = 0, the Equation (1) reduces to the completely integrable cubic nonlinear Schrödinger (NLS)
equation, well studied in [13] and therefore we will not consider it further. Several interesting studies
concerning NLS can be found in [14–17]; when k2 = 0 it becomes the Hirota equation [16], while for
k1 = 3k2 the equation is referred to as the Sasa–Satsuma equation (see, e.g., [18] and references therein).
The hyperbolic secant and hyperbolic tangent solutions of (1) have been studied in [19], while in [20] it
is also shown that a higher-order nonlinear Schrödinger equation is solvable by means of the inverse
scattering transform.
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In the context of biological sciences, the Equation (1) was proposed in [9] as a generalized Davydov
model. In this interpretation, the variable w represents the vibrational coordinate of the amide-I vibrations,
the coefficient k1 is a contribution related to self-steepening (also known as Kerr dispersion) and k2 is linked
to stimulated Raman scattering effects, while ε represents the lattice parameter. In addition, the second
term represents a dispersion term linked to dipole-dipole coupling, the third term appears as the nonlinear
coupling to hydrogen bonds, while the last term represents a term related to a global interaction due to
molecular excitations.

In the framework of nonlinear optics, with a interchange of independent variables (t ↔ x),
the equation characterizes the propagation of femtosecond pulses in nonlinear fibres, where w is
the slowly-varying envelope of the electromagnetic field, the parameters ε, k1, k2 are real coefficients
linked to group velocity dispersion, self phase modulation, third-order dispersion, self steepening, and
self-frequency shift due to stimulated Raman scattering, respectively.

We would like to point out that, today, a lot of problems related to regularity of solutions to
Schrödinger equation in the framework of Morrey-type spaces (see, for instance, [21,22]) are studied. For an
overview on Morrey spaces related on nonnegative potential, we refer the reader to [23] (and the references
given there), where Guliyev collects some recently obtained results on Morrey classes and integral operators
associated to Schrödinger operators and examines various versions of these spaces and the boundedness
of some Schrödinger type operators on these spaces related to certain nonnegative potentials belonging
to the reverse Hölder class. Furthermore, under the assumption that Ω ⊆ Rn is an open set, in [23] are
discussed some qualitative properties of solutions to the following Schrödinger equation:

(−Δ + V)u = f (x), a.e. x ∈ Ω,

where

• V is a nonnegative potential belonging to the reverse Hölder class Bn, that is, the class of all
nonnegative locally Ln integrable functions V(x) on Rn, for which there exists C > 0 such that
the reverse Hölder inequality;

(
1

|B(x, r)|
∫

B(x,r)
Vn(y)dy

)1/n
≤ C
|B(x, r)|

∫
B(x,r)

V(y)dy

holds for every x ∈ Rn, r ∈ (0, ∞), B(x, r) denotes the ball centered at x with radius r and |B(x, r)|
stands for the Lebesgue measure of the ball B(x, r);

• the source term f belongs to some suitable Morrey spaces associated to nonnegative potential V.

We mention [24], where the authors recently studied fractional integrals associated with Schrödinger
operators in the framework of vanishing generalized Morrey spaces and [25], where the authors
investigated the action of commutator of fractional integral with Lipschitz functions with Schrödinger
operator on local generalized Morrey space.

Despite to the general euclidean context in which the interesting regularity theory is currently studied,
up to now, at our knowledge, in literature there are not regularity results, in the context of Morrey spaces,
for higher order Schrödinger equation. For this reason, this paper seems to provide some basis for a
potential subsequent study of qualitative properties of solutions to higher order Schrödinger equation in
the context of Morrey spaces.

2. Main Results

It is convenient to rewrite the equation and after introducing w(t, x) = u(t, x) + i v(t, x), being u(t, x)
and v(t, x) real smooth functions, we substitute the complex-valued function w(t, x) into (1) and then
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decomposing into real and imaginary parts yields two relations. The real and the imaginary parts gives
the following system of real partial differential equations (PDEs):

ut + vxx + (u2 + v2) v + ε
{

uxxx + k1(u2 + v2)ux + k2

[
(u2 − v2)ux + 2 u v vx

]}
= 0, (2)

vt − uxx − (u2 + v2) u + ε
{

vxxx + k1(u2 + v2)vx + k2

[
(v2 − u2)vx + 2 u v ux

]}
= 0. (3)

The required theory, as well as the description of the method, can be found in the papers [26,27]; the
symmetries of the system (2) and (3) will be generated by applying the third prolongation [26,27] of the
infinitesimal operator, or generator Ξ

Ξ = ξ1(t, x, u, v)∂t + ξ2(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v (4)

to Equations (2) and (3), by which we obtain the following results:

ξ1 = a1 + 9 ε a2 t, (5)

ξ2 = a3 + a2 (2 t + 3 ε x) , (6)

η1 = −3 ε a2 u− (a2 x− a4) v, (7)

η2 = (a2 x− a4) u− 3 ε a2 v, (8)

a2(k2 − k1 + 3) = 0, (9)

where ai (i = 1, 2, 3, 4) are constants; from relation (9), we have the following two cases:

Case I: a2 = 0

In this case, the Lie algebra is three-dimensional:

Ξ1 = ∂t, Ξ2 = ∂x, Ξ3 = v ∂u − u ∂v. (10)

Case II: k2 = k1 − 3.

It is worthwhile noticing that the assumption k2 = k1− 3 is a structural condition of the Equation (1).
In this case the Lie algebra is four-dimensional and is spanned by the three operators (10) plus
the following fourth operator:

Ξ4 = 9 ε t∂t + (2 t + 3 ε x) ∂x − (3 ε u + x v) ∂u + (x u− 3 ε v) ∂v. (11)

3. Exact Solutions

The study of exact solutions to nonlinear PDEs is an important point in the applied science. Many
interesting methods have been elaborated, such as ansatz method, Hirota bilinear method, inverse
scattering method, Darboux method, multiple-exp function method, etc. [28–31]. Lie theory gives
an important contribution in almost all the scientific fields; Sophus Lie proved that a differential equation
can be invariant with respect to the so-called “continuous transformation groups”. For the details, we
suggest to the reader to see [26,27,32–34].

In this section, we use the symmetry group obtained in the Cases I and I I of Section 2 in order to
determine the reductions of (2) and (3) from which we are able to construct exact solutions which carry
important physical meanings. In the study we performed, we consider the case ε 
= 0 since, as already
stated in the introduction of the paper, the case ε = 0 has been well studied in the literature [13].
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Reduction I: a2 = 0

In this case we consider the operator Ξ as a linear combination of the operators (10), namely:

Ξ = ∂t + c1∂x + c2 (v ∂u − u ∂v) , (12)

where c1 and c2 are real constants, which give the following similarity variable:

z = x− c1 t (13)

and similarity solutions:

u = φ(z) sin (c2 t) + ψ(z) cos (c2 t) (14)

v = φ(z) cos (c2 t)− ψ(z) sin (c2 t), (15)

where φ and ψ satisfy the ODEs to which (2) and (3) are reduced by means of the operator (12):

c1 φ′ + c2 ψ + ψ′′ +
(

φ2 + ψ2
)

ψ

−ε
{

φ′′′ +
[
(k1 + k2) φ2 + (k1 − k2) ψ2

]
φ′ + 2 k2 φ ψ ψ′

}
= 0, (16)

c1 ψ′ − c2 φ− φ′′ −
(

φ2 + ψ2
)

φ

−ε
{

ψ′′′ +
[
(k1 − k2) φ2 + (k1 + k2) ψ2

]
ψ′ + 2 k2 φ ψ φ′

}
= 0. (17)

A solution to (16) and (17) is
φ = cos z, ψ = sin z, (18)

under the condition c2 = c1 + ε [(k2 − k1) + 1] , with the constant of integration normalized
to one. When we return to the original variables, we obtain that the system (2) and (3) of
PDEs admits a periodic wave solution:

u = cos (x− c1 t) sin (c2 t) + sin (x− c1 t) cos (c2 t), (19)

v = cos (x− c1 t) cos (c2 t)− sin (x− c1 t) sin (c2 t). (20)

If, in particular, in (16) and (17), we have also the validity of the structural condition
k2 = k1 − 3, the solution reads as:

φ = sech( z), ψ = sech( z). (21)

When c2 = −1 and c1 = ε, the system admits a soliton solution of the form:

u = sech (x− ε t) cos ( t)− sech (x− ε t) sin ( t), (22)

v = sech (x− ε t) sin ( t) + sech (x− ε t) cos ( t). (23)

Reduction II: k2 = k1 − 3

Proceeding as in the previous case, through the operator (11)

Ξ4 = 9 ε t∂t + (2 t + 3 ε x) ∂x − (3 ε u + x v) ∂u + (x u− 3 ε v) ∂v
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we obtain the similarity variable and solutions, respectively:

z =

(
x− 1

3 ε
t
)

t−
1
3 ,

u =

[
φ(z) cos

(
x

3 ε
− 2 t

27 ε2

)
− ψ(z) sin

(
x

3 ε
− 2 t

27 ε2

)]
t−

1
3 ,

v =

[
φ(z) sin

(
x

3 ε
− 2 t

27 ε2

)
+ ψ(z) cos

(
x

3 ε
− 2 t

27 ε2

)]
t−

1
3 . (24)

Additionally, here, φ and ψ satisfy the ODEs to which (2) and (3) are reduced by means of
the operator (11), i.e.,

3 ε
{

φ′′′ +
[
(2 k1 − 3)φ2 + 3 ψ2

]
φ′ + 2 (k1 − 3)φ ψ ψ′

}
− z φ′ − φ = 0, (25)

3 ε
{

ψ′′′ +
[
(2 k1 − 3)ψ2 + 3 φ2

]
ψ′ + 2 (k1 − 3)φ ψ φ′

}
− z ψ′ − ψ = 0. (26)

In this case, we obtain a rational solution of (25) and (26) which reads as:

φ = ψ = H z−1, H = ±
√

3
3− 2 k1

under the condition k1 
= 3
2 .

If, on the contrary, k1 = 3
2 , a solution of (25) and (26) can be expressed in terms of Bessel

functions:

φ = ψ =
√

z

⎧⎨
⎩h1

⎡
⎣J 1

3

∫ √
z J− 1

3

i z
√

3 ε z
(

J− 4
3

J 1
3
− J− 2

3
J− 1

3

)
+ 3 ε J− 1

3
J 1

3

dz

−J− 1
3

∫ √
z J 1

3

i z
√

3 ε z
(

J− 4
3

J 1
3
− J− 2

3
J− 1

3

)
+ 3 ε J− 1

3
J 1

3

dz

⎤
⎦+ h2 J 1

3
+ h3 J− 1

3

⎫⎬
⎭ , (27)

where we have set the Bessel functions as: Jα = Jα

(
2 i z

3
2

3
√

3 ε

)
,
(

α = ± 1
3 , − 2

3 , − 4
3

)
, and

h1, h2, h3 are arbitrary constants.

4. Discussion and Conclusions

Usually, the nonlinear Schrödinger equation characterizes physical processes in which nonlinearity
and dispersion cancel producing to solitons. The literature shows that the higher order nonlinear
Schrödinger equation can, in general, support both soliton and periodic wave solutions. In this paper, we
considered higher order nonlinear Schrödinger equation by using the Lie symmetry analysis in order to
reduce it to ODEs; for each reduction exact solutions are obtained.

It is worth pointing out some details regarding the dimensionality of the parameters ε, k1 and k2,
which appear in the model. It is interesting to observe the meaning of parameter ε in two different contexts;
in the framework of biological sciences, ε represents the lattice parameter and in the context of nonlinear
optics can be interpreted as a dispersion parameter. Usually, in the applications, it expresses the size of
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atoms and molecules, the length of chemical bonds and the arrangement of atoms in crystals; commonly it
is expressed in Ångström (Å). The coefficient k1 is related to the Kerr effect that is a change in the refractive
index of a given material in response to an applied electric field. Precisely, the induced index change by the
Kerr effect is directly proportional to the square of the electric field. Finally, the parameter k2 is related to
the Raman scattering. Several optical processes involve the simultaneous (instantaneous) absorption of an
incident photon and emission of another photon. These processes are usually called scattering processes and
the emitted photon is called the scattered photon. Scattering process can be classified into two main classes:
elastic scattering and inelastic scattering. In the case of elastic scattering, the incident and scattered photons
have the same energy, but they could have different direction and/or polarization. In the case of inelastic
scattering, the scattered photon is at a different energy from that of the incident photon. The Raman
scattering is an inelastic scattering which involves transitions between the vibrational/rotational levels.
Then, when we regard to the solution (22) and (23) without losing the generality, we have posed in Figure 1
the value ε = 1.

Figure 1. Snapshots of 3D view of the solution (22) and (23), with a interchange of independent variables
(t↔ x) and ε = 1.

Remark 1. In biological interpretation, as confirmed by Daniel [9], it turns out that the Equation (1), as well as
variants of it, characterizes a protein chain where the nonlinear coupling, being liable to the development of solitons,
derives from lightly different interaction. Futhermore, in two recent papers [5,6] the effects of anisotropy of left and
right coupling between neighbouring peptide groups in proteins are studied in great details, and also moving solitons
were illustrated.

On the other hand, looking solutions (22) and (23) from the point of view of nonlinear optics, as predicted by
Trippenbach et al. [35], the higher order nonlinearities definitively influences the dynamics.

Looking at the class of solutions (24), we observe that it is obtained for ε 
= 0 then it is no longer valid
in the limit of cubic nonlinear Schrödinger equation. This fact is perfectly justified by the dimensionality
of the constant ε that we have clarified at the beginning of this section. From Figure 2, we see a plot of the
solution (24) under the structural condition for the equation k2 = k1 − 3, when k1 
= 3

2 .
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Figure 2. Snapshot of 3D view of the solution (24), when φ = ψ = H z−1, H =
√

3
3−2 k1

with k1 = 1 and
ε = 1.

The novelty of this work lies in the fact that the application of Lie symmetry analysis is being made for
the first time, to the best of our knowledge, in such systems that lend themselves to a double interpretation
in two different contexts of the applied sciences. Moreover, our future aim is to study qualitative properties
of solutions to differential problems driven by nonlinear Schrödinger equations as (1) in the context of
suitable Morrey-type spaces. The results contained in this paper provide a satisfactory background because
they give us a precise shape of the solutions. On the other hand, an a priori analysis in some new function
spaces allows us to overcome the computational difficulties that arise directly using the representation
formulae for the solutions.
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Abstract: A new mathematical model of a general autoimmune disease is presented.
Basic information about autoimmune diseases is given and illustrated with examples. The model is
developed by using ideas from the kinetic theory describing individuals expressing certain functions.
The modeled problem is formulated by ordinary and partial equations involving a variable for a
functional state. Numerical results are presented and discussed from a medical view point.
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1. Introduction

Among the tasks of the human immune system is the defence and protection of the organism from
the invasion of foreign pathogens (viruses, bacteria, helminths, fungi, protozoa, etc.), the neutralization
of extracellular invaders, the destruction of infected and degenerated own cells and so forth. In order
to function properly, the immunological system should discriminate between own cells and foreign
agents. The defend system must not attack healthy own cells, tissues and organs. This feature is known
as “immune tolerance” [1,2].

However sometimes the mechanisms of immunological tolerance fail. Then the defence system
attacks and destroys some of its own healthy cells and other structures. This can result in a disorder
called autoimmune disease. Depending on the organs attacked by the immune system, more than
80 autoimmune diseases are known. Among them are insulin-dependent diabetes, rheumatoid
arthritis (RA) and psoriatic arthritis, disseminated sclerosis (known also as multiple sclerosis
(MS)), myocarditis, autoimmune hemolytic anemia, psoriasis, pancreatitis, lupus (known also as
systemic lupus erythematosus (SLE)), Crohn’s disease, ulcerative colitis, celiac sprue (gluten-sensitive
enteropathy), autoimmune thyroid diseases—Graves’ disease (thyroid overactivity), Hashimoto’s
thyroiditis (thyroid underactivity) and many others [2,3].

The opinion of the contemporary medicine concerning the causes of the autoimmune diseases is
that they are multifactorial. It is believed that the autoimmune diseases are determined by multifaceted
factors. They include environmental triggers (chemicals, heavy metals, bacterial and viral infections,
mold etc.), genetic predispositions, sedentary habits, socioeconomic and emotional stress, drugs and so
forth [3–5]. Many authors mention also the possible role of diet (the food quality, gluten consumption,
vitamin D deficiency etc.) and gut dysbiosis for the development of autoimmune disorders [3,6–9].

Numerous immunological studies have been devoted to clarification of the role of infections
in processes related to the failure of the self-tolerance of the immune system. Various pathogenic
agents such as viruses, bacteria, fungi, parasites and so forth have been shown to participate in
the development of autoimmunity [3,10]. For example, Streptococcus pyogenes bacteria has been
associated with rheumatic fever [11,12], enteroviruses—with insulin-dependent diabetes [11,13],
the hepatitis C virus has been shown to be able to trigger chronic liver disease and mixed
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cryoglobulinemia [14–16], the Epstein–Barr virus—to induce SLE, RA, juvenile idiopathic arthritis,
type 1 diabetes, MS, celiac disease and inflammatory bowel disease [14,17–19].

Over the last decades a rapid growth of autoimmune diseases was observed in the developed
countries. This led D. Strachan to a controversial idea called the “hygiene hypothesis” [11,14,20,21].
The idea consists in associating the rise of autoimmune disease incidence with the following from
the better personal cleanliness lower rates of childhood infections. The hypothesis states that the
immune system needs to be trained by multiple interactions with pathogenic agents in order to
function correctly.

There is evidence that various natural and acquired immune components and mechanisms
are involved in the processes of autoimmune diseases. For example, the infiltration of non-specific
monocytes and macrophages in diseased tissues is often observed in the course of autoimmune
diseases as well as the participation of specific antibodies, B and T cells and so forth [22–24].

This paper presents a new model of a general autoimmune disease for studying some mechanisms
of autoimmune diseases, particularly the pathogenic role of viruses. The proposed model is a nonlinear
system of Boltzmann-type equations.

During the last decades many mathematical models have been proposed for studying the
mechanisms of the interactions between immune system and infectious agents. Some of them
are related to autoimmune disorders, see among others the models in References [25–30] and
references therein. The model presented in Reference [29] is developed within the framework of
idiotypic networks. Most of the remaining deterministic models use ordinary differential equations
describing populations which are assumed to be homogeneous. Taking into account immunological
evidence that often the populations involved in interactions during the autoimmune reactions
are heterogeneous [11,21,23,31], in the presented model the activity of interacting individuals is
also considered.

The organisation of the paper is as follows. Section 2 is devoted to the the mathematical models
of kinetic type. Further, the new model of autoimmune disease is described. Results of numerical
experiments are given in Section 3. In the concluding Section 4 some remarks are presented.

2. Mathematical Model

2.1. Kinetic-Type Models

2.1.1. General Description

The presented model of a general autoimmune disease is developed by the use of ideas from the
kinetic theory of active particles (in short KTAP)). It uses mathematical structures similar to statistical
mechanics and phenomenological theory of gases, in particular Boltzmann-type equations. Within this
framework a system of one or several large populations of interacting individuals characterized
by an additional continuous or discrete variable describing their functional state, is considered.
The introduction of this inner characteristic of the interacting entities makes this approach very
suitable for describing the non-homogeneity often observed in complex living systems, see for
example References [32–36] and references cited therein. In many cases the space and velocity
variables of the modeled systems are homogeneously distributed or have no relevant meaning for the
interactions [32,33,36].

Often it is possible to divide the system under consideration into several subsystems where the
individuals have the same functional state [37,38].

2.1.2. Examples

The KTAP has been actively used for modeling phenomena not only in physics (see
e.g., Reference [39,40]) but also in many other areas of applied and life sciences, for example in
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the political [41], economic and social [42–47] systems, psychological interactions [48], the dynamics of
crowds [49–54] and swarms [55–61], traffic flow [62–68] and so forth.

Examples of applications of KTAP in biology are modeling of wound healing and disease [69–74],
cancer dynamics [75–79] and multi-cellular dynamics [80,81].

Some of these models are formulated within the so-called thermostatted KTAP developed recently
in a series of papers, see for example, References [36,82–90] and the references therein.

2.1.3. Functional State of Active Particles

The variable describing the inner functional states of the interacting individuals represents
the function, strategy, type of behaviour, purpose or activity expressed by the interacting entities
(particles). Often it is named “state of activity” (or “activation state”), which explains the term
KTAP. The introduction of the microscopic functional states allows to account for heterogeneity of the
corresponding subsystems. The functional states describe specific characteristics of the system (or its
subsystems) under study.

For example, in models describing pedestrian/crowd dynamics, the functional (activation) state
can be related to walking ability or walking strategy of pedestrians [50,51,53,67] depending on such
characteristics of the environment as the quality of the road, light, interactions with other pedestrians,
possible danger and so forth and their own emotional and physical state (including stress, panic, etc).

One of the first applications of KTAP to biology was the model by Jäger and Segel [91] describing
the interactions between a general population of insects. The functional state there is the dominance
governing their social dynamics and depending on the results of their encounters.

As an example of a decomposition of a complex system into several interacting functional
subsystems can be considered can be considered. The model [69] describing fibrosis disease and in
particular the process of keloid formation represents an example how a decomposition of a system
into several interacting functional subsystems can be performed. In this model, the activity of
normal-fibroblast cells and keloid fibroblast cells describes their ability to proliferate. The functional
state of activated viruses refers to the value of their aggressiveness in regard to their proliferative
capability. The functional state of immune cells describes their degree of activity and of responsiveness
to pathogens. The activity of malignant cells refers to the magnitude of their progression capability.

Another example of a decomposition of a complex system into several interacting functional
subsystems is the model [28] describing the development of autoimmune diseases. The model describes
the competition between host cells, foreign cells, antigen presenting cells (APC) that do not expose
any antigen on their surface, APC that expose a certain antigen on their surface, naive and active T
cells. It is assumed that the population of APC that are not exposing any antigen are homogeneous
with respect to their activation state. The functional state of the host cells and of the foreign cells refers
to their antigenic expression. The activity of the structured population of APC denotes the antigen
exposed by them. The functional state of the non-active T lymphocytes identifies their cognate antigen.
The activity of the activated T cells stands for their target antigens.

2.2. Kinetic-Type Model of Autoimmune Disease

2.2.1. The Main Biological Assumptions

The main goal of the proposed mathematical model is to investigate the pathogenic impact of
viruses and damaged cells for the autoimmune disorders.

One of the main mechanisms leading to such autoimmune diseases as type 1 diabetes, MS,
primary biliary cirrhosis, SLE and so forth is the so-called molecular (or antigenic or epitopic) mimicry
due to viral infection [12,25,26].

This phenomenon may occur when the peptides of foreign pathogens are similar to those of the
host peptides. Such similarity can trigger an immune response not only to the pathogens but also
to the host constituents with similar protein structure or shape. Thus we observe a cross-reaction of
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the immune system with self-antigens which can lead to damaging of self cells. The damaged cells
can release other sequestered antigens that can be attacked by immune cells. Thus the autoimmune
response can be enhanced leading to a prolonged disorder due to the continuous production of
self-antigens becoming targets for the immune cells.

In order to analyse some pathogenic properties of viral infections for autoimmunity, the presented
model describes the interactions between the following three populations:

1. host cells, denoted by the subscript h;
2. immune cells, denoted by the subscript i;
3. viral particles with molecular mimicry, denoted by the subscript v.

In the model it is supposed that certain viral infection leads to damage of some healthy host cells.
This triggers a cross-reactive immune response. Specific immune cells are produced and activated,
which can attack and destroy healthy cells possessing an antigen similar to the antigen presented by
the viruses. In the model it is assumed that the healthy host cells can be produced from sources within
the organism, for example in the thymus as well as due to the proliferation of existing healthy cells.
It is supposed that the proliferation of existing healthy host cells is described by a logistic-like gain
term. Immune cells are able to damage healthy cells, which also decay due to their natural death.

The immune cells can be produced due to self-antigens presented by damaged host cells as well
as due to the presence of viral agents. It is assumed that it is more probably that the newly produced
immune cells are with low activation states and they need some time in order to be activated. Immune
cells are supposed also to be able to destroy virus particles.

2.2.2. Description of the Kinetic Model of Autoimmune Disease

It is assumed, that the general process of autoimmunity is modeled by a system consisting of three
functional subsystems interacting with each other. They correspond to the populations described in the
previous subsection. Due to the observations that the particular viral populations are homogeneous
with respect to their ability to trigger an immune response, in the model it is supposed that the
functional subsystem of the viruses is unstructured.

The remaining two functional subsystems of the host cells and of the immune cells are assumed
to be structured, that is, to be able to express a specific biological function. The functional state of the
population of the host cells is represented by the discrete variable uh, whose value is equal to 1 if the
corresponding host cell is healthy and is equal to 0 if the corresponding host cell is damaged.

The functional state of the population of immune cells is represented by the continuous variable ui
that spans the interval [0; 1]. The activation states of the immune cells refer to their capability to damage
healthy host cells. Increasing values of the activity denote the capability to damage more healthy cells.
The assumption the activities of the immune cells to be represented by a continuous variable is due
to the large number of active individuals participated in the functional subsystem of immune cells.
The macroscopic state of the unstructured population of the viral particles is characterized, at time t,
by their concentration nv(t).

The states of the structured populations are modeled, at time t, by their probability density
functions fh(t, u) and fi(t, u).

The concentrations of the structured populations can be determined from the relations

fh(t, 0) + fh(t, 1)
2

, ni(t) =
1∫

0

fi(t, ui)dui. (1)

The present model is a modification of the kinetic model of autoimmune diseases proposed in
Reference [92]. Here, the populations of target cells and damaged cells are described as only one
population of host cells. The functional state of host cells may either be healthy or damaged.
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Following the general suggestions for creating models within the KTAP [33], the dynamics of the
system under consideration is modeled through derivation of evolution equations for the probability
density functions of the structured subsystems as well as for the density of the unstructured subsystem.

To model the interactions between active particles belonging to the subsystems one can equate
the variation rates of the numbers of active particles with the sums of inlet flux rates due to the
proliferative interactions and outlet flow rates due to the destructive interactions described in the
previous subsection. In addition, conservative interactions allowing the time change of the variable ui
should be taken into account.

As a result, the following system of ordinary and partial integro-differential equations is obtained
for the present model:

∂ fh
∂t (t, uh) = uh

[
Sh(t)− dht fh(t, 1) + fh(t, 1)

(
ph − ph

HMax
fh(t, 1)

)

−dhi fh(t, 1)
1∫

0

ui fi(t, ui)dui

]

+(1− uh)

[
dhi fh(t, 1)

1∫
0

ui fi(t, ui)dui − dhd fh(t, 0)

]
,

(2)

∂ fi
∂t (t, ui) = (1− ui)

[
pid fh(t, 0) + pivnv(t)

]
− di fi(t, ui)

+ci

[
2

ui∫
0

(ui − v) fi(t, v)dv− (1− ui)
2 fi(t, ui)

]
,

(3)

d
dt nv(t) = pv fh(t, 1)nv(t)− dvvnv(t)− dvinv(t)

1∫
0

fi(t, ui)dui, (4)

with non-negative initial conditions

fh(0, uh) = f (0)h (uh), fi(0, ui) = f (0)i (ui), nv(0) = n(0)
v .

Naturally, the parameters in the system (2)–(4) should be non-negative.
Equation (2) describes the time change of the distribution density fh(t, uh) of the host cells.

The participating parameters have the following meaning:

• Sh(t)− dht fh(t, 1) models the birth rate of healthy host cells from sources within the organism: it
is assumed that their production is limited by the amount fh(t, 1) of healthy cells present in the
organism;

• ph characterizes the proliferation rate of the healthy host cells;
• HMax refers to the concentration of the healthy cells at which their proliferation turns off;
• dht describes the natural mortality rate of the healthy cells;
• dhi describes the rate of damaging of the healthy cells by the immune cells;
• dhd is the natural mortality rate of the damaged host cells.

Equation (3) describes the evolution of the distribution density fi(t, ui) of the immune cells.
The participating parameters have the following meaning:

• pid is the birth rate of immune cells due to the presence of self-antigens presented by damaged
host cells;

• piv is the birth rate of immune cells due to the presence of viruses;
• di is the natural mortality rate of the immune cells;
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• the factor 1− ui is related to the assumption that the state of activity of the newly produced
immune cells is low and they need time for activation;

• Due to the viral infection and certain cytokines and chemokines released by the damaged cells
the activity of the immune cells can increase. The raising of the functional state of the immune

cells is described by the conservative term ci

[
2

ui∫
0

(ui − v) fi(t, v)dv− (1− ui)
2 fi(t, ui)

]
, which do

not change the concentration of the immune cells.

Equation (4) describes the evolution of the the concentration nv(t) of the viral particles.
The participating parameters have the following meaning:

• pv is the rate of replication of viruses;
• dvi is the rate of destruction of the viruses due to the immune response;
• dvv is the natural mortality rate of the viruses.

Consider the following spaces:

X = { f = ( fh, fi, nv) : | fh| < ∞, |nv| < ∞, fi ∈ L1(0, 1)},

X+ = { f = ( fh, fi, nv) ∈ X : fh ≥ 0, fi ≥ 0, nv ≥ 0, a.e.}.
By the use of standard arguments it is easy to verify the validity of the following statement:

Theorem 1. Let S1 ∈ C0([0, ∞); R1
+). For each T > 0,

the system (2)–(4) with initial datum f (0) =
(

f (0)h , f (0)i , n(0)
v
)
, f (0) ∈ X+,

possesses a unique solution

f ∈ C0([0, T]; X) ∩ C1((0, T); X).

The solution possesses the property:
f (t) ∈ X+, ∀t ∈ [0, T].

3. Results of Simulations

The computational algorithm for solving the Cauchy problem corresponding to (2)–(4) includes the
discretization of Equation (3) regarding the activation state ui ∈ [0, 1] by uniform mesh. The included
integrals are calculated by using the Simpson’s rule.

The corresponding system of ordinary differential equations has been solved for various parameter
sets by the use of the Matlab ODE suite [93].

The assumption for the initial conditions has been that there is a certain amount of healthy host
cells and small amounts of immune cells with equally distributed states of activity:

fh(0, 1) = 100,

fi(0, u) = 0.1, ∀u ∈ [0, 1].

The following values of parameters have been used:

Sh(t) = 10, ∀t ≥ 0, HMax = 100000,

ph = 0.5, dht = 0.2, dhi = 0.1, dhd = 0.8,
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piv = 0.5, di = 0.1, ci = 0.1,

pv = 10.0, dvi = 4.0, dvv = 4.0,

and various values of parameter pid describing the rate of production of immune cells due to
damaged cells.

The numerical experiments have been aimed at studying the effects of damaging ability of the
immune cells activated against healthy self-cells by viral infection.

First, the case without virus infection is considered setting nv(0) = 0 and assuming that there is
no damaged cells before the infection fh(0, 0) = 0 and pid = 0. The dynamics of the concentrations of
the healthy cells is shown in Figure 1. After initial growth, the healthy cells remains at high levels due
to the absence of autoimmune reaction in this case.

In the further considerations it is assumed that initially small amounts of damaged host cells and
viruses are present in the organism, by setting:

fh(0, 0) = 0.5, nv(0) = 0.1.

The results of numerical experiments show that for low values of the rate of production of immune
cells due to damaged cells pid the autoimmune reaction is weak and the concentration of healthy cells
remains at high levels, see Figure 2 where pid = 0.00006. In such cases autoimmune disorders are not
observed or are very mild.

The results of numerical experiments show that for higher values of parameter pid the
cross-reaction of the immune system with self-antigens becomes very strong and damages a large
amount of healthy cells. The result for pid = 0.00010 is shown in Figure 3. One can see that in this case
almost the half of the population of healthy cells is damaged. Such situation corresponds to a very
severe autoimmune disease with possible lethal effect.

The performed numerical experiments show that pid is a bifurcation parameter. It separates two
different dynamics of the solutions. When the value of pid is lower or equal to pid = 0.00016, the
solution is stable and tends to equilibrium while when it is greater than the value pid = 0.00016, the
solution is oscillating. In Figures 4 and 5 the concentrations of healthy cells for values pid = 0.00016
and pid = 0.00040 are shown for illustration.
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Figure 1. Concentrations of healthy cells for nv(0) = 0, fh(0, 0) = 0 and pid = 0.
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Figure 2. Concentrations of healthy cells for pid = 0.00006.
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Figure 3. Concentrations of healthy cells for pid = 0.00010.

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Time

C
on

ce
nt

ra
tio

n

Healthy cells

Figure 4. Concentrations of healthy cells for pid = 0.00016.
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Figure 5. Concentrations of healthy cells for pid = 0.00040.

The cases with periodic flare ups can be considered autoimmune diseases characterized with
repeated periods of dormancy of the autoaggressive immune cells and their flare ups triggered by
spreading pathogenic proteins, possible failure of regulatory immune cells to control the destructive
reaction of effector immune cells against host constituents and so forth. An example of repeated
flare ups is the MS [25,94]. The numerous repeated periods when large amounts of healthy cells are
damaged can lead to serious tissue or organ destruction and even lethal result for the patients.

4. Concluding Remarks

In this paper, a kinetic type model of general autoimmune disease is presented. The modeled
problem is solved numerically. The numerical solutions represent several typical dynamics of
autoimmune diseases resulting from viral infection (absence of disease, mild symptoms, chronic
disease, flare ups and severe autoimmune disease).

The presented results and further development of the model can be useful for the better
understanding of the group of autoimmune diseases. The results confirm the evidence that the
viral infections and damaged cells can be very potent pro-inflammatory triggers and sources for
self-antigens for specific immune cells thus leading to chronic or severe autoimmune diseases [25,94].
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Abstract: In this paper, we study the distributed optimal control of a system of three evolutionary
equations involving fractional powers of three self-adjoint, monotone, unbounded linear operators
having compact resolvents. The system is a generalization of a Cahn–Hilliard type phase field
system modeling tumor growth that has been proposed by Hawkins–Daarud, van der Zee and
Oden. The aim of the control process, which could be realized by either administering a drug or
monitoring the nutrition, is to keep the tumor cell fraction under control while avoiding possible
harm for the patient. In contrast to previous studies, in which the occurring unbounded operators
governing the diffusional regimes were all given by the Laplacian with zero Neumann boundary
conditions, the operators may in our case be different; more generally, we consider systems with
fractional powers of the type that were studied in a recent work by the present authors. In our
analysis, we show the Fréchet differentiability of the associated control-to-state operator, establish the
existence of solutions to the associated adjoint system, and derive the first-order necessary conditions
of optimality for a cost functional of tracking type.

Keywords: fractional operators; Cahn–Hilliard systems; well-posedness; regularity; optimal control;
necessary optimality conditions
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1. Introduction

The recent paper [1] investigates the evolutionary system

α ∂tμ + ∂t ϕ + A2ρμ = P(ϕ)(S− μ), (1)

β ∂t ϕ + B2σ ϕ + f (ϕ) = μ, (2)

∂tS + C2τS = −P(ϕ)(S− μ) + u, (3)

where the equations are understood to hold in Ω, a bounded, connected and smooth domain in R3,
and in the time interval (0, T). In the above system, A2ρ, B2σ, and C2τ , with r > 0, σ > 0, ρ > 0,
denote fractional powers of the self-adjoint, monotone, and unbounded, linear operators A, B and C,
respectively, which are supposed to be densely defined in H := L2(Ω) and to have compact resolvents.
Moreover, α and β are positive real parameters.

System (1)–(3) is a generalization of a diffuse interface model for tumor growth. Such models,
which are usually established in the framework of the Cahn–Hilliard model originating from the
theory of phase transitions, have drawn increasing attention in the past years among mathematicians
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and applied scientists. We cite here just [2–8] as a sample of pioneering papers in this direction.
In this connection, ϕ stands for an order parameter that should attain its values in the interval [−1, 1],
where the values −1 and +1 indicate the healthy cell and tumor cell cases, respectively. The variable
S represents the nutrient extra-cellular water concentration, u stands for a source term that acts as
a control to monitor the evolution of the tumor cell fraction ϕ, and the nonlinearity P occurring in
Equations (1) and (3) is a nonnegative and smooth function modeling a proliferation rate. Finally, μ

represents the chemical potential, which acts as the driving thermodynamic force of the evolution
and is obtained as the variational derivative with respect to the order parameter ϕ of a suitable free
energy functional. In this connection, the nonlinearity f denotes the derivative of a double-well
potential F which plays the role of a specific local free energy and yields the main contribution to
the total free energy. Important examples for F are the so-called classical regular potential and the
logarithmic double-well potential, given by the formulas

Freg(r) :=
1
4
(r2 − 1)2 r ∈ R, and (4)

Flog(r) :=
(
(1 + r) ln(1 + r) + (1− r) ln(1− r)

)− c1r2 r ∈ (−1, 1), (5)

respectively. In definition (5), the constant c1 is larger than 1, so that Flog is nonconvex. Furthermore,
the function P in (1) and (3) is nonnegative and smooth. Finally, the datum u appearing in (3) is given.

In the literature, the diffusional developments in the system have usually been modeled by
the Laplacian, that is, the case A2ρ = B2σ = C2τ = −Δ, accompanied by zero Neumann boundary
conditions, was assumed, where two main classes of models were considered. The first class of models
regards the tumor and healthy cells as inertialess fluids; in such models, special fluid effects can be
incorporated by postulating a Darcy or Stokes–Brinkman law, see, e.g., the works [7,9–18], where we
also refer to [19,20]. The other class of models, to which the model considered here belongs, neglects the
velocity. Typical contributions in this direction were given in [21–27], to name just a few.

While the occurrence of more general diffusional regimes of fractional type has been studied
for a long time in the mathematical literature, it was only recently (see, e.g., [28–36]) that fractional
operators have been investigated in the framework of Cahn–Hilliard systems (for phase field systems of
Caginalp type, see also [37]), and the only investigations of tumor growth models involving fractional
diffusive regimes such as in the system (1)–(3) seem to be the recent papers [1,38] by the present
authors. Concerning the motivation and biological meaningfulness of the systems (1)–(3), we point
out that, in our approach, the three fractional operators, which may be considerably different one
from the other, are used as major dynamics for the tumor growth and for the diffusion processes.
These operators may be related and close to fractional Laplacians, but also to other elliptic operators,
and can present different orders. Indeed, some components in tumor development, such as immune
cells, do have anomalous diffusion dynamics observed by experiments [39], but other components,
like chemical potential and nutrient concentration may be ruled by other fractional or non-fractional
flows. However, taking all this into consideration, it is the case of emphasizing that fractional operators
are more and more utilized in the world of biological applications. In this direction, let us mention
some recent and related work: we quote [40] for growth of species and their movements; we quote [41]
for the numerical study of a super-diffusive model for a benign brain tumor; we quote [39] for
the application to cell movements, in particular for T cells migrating through chronically-infected
brain tissue; we quote the monography [42] concerned with fractional diffusion processes in applied
sciences; we quote [43] for a hyperbolic-parabolic model of chemotaxis related to tumor angiogenesis;
we quote [44] for the study of the dynamics of growth bacteria; we quote [45] for the study of a space
time fractional reaction–diffusion equation in Parkinson’s disease; we quote [46] for the study of a
model for collective cell movement due to chemical sensing; we quote [47] for applications to biological
populations in competition; we quote [48] for the investigation of a fractional order tumor model;
we quote [49] for the optimal control for a nonlinear mathematical model of tumor under immune
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suppression; we quote [50] for the study of a fractional reaction–diffusion equation with a nonlocal
boundary condition modeling the invasion of a tumor and its growth.

Now, coming back to our system (1)–(3) and referring to the paper [1], it turns out that,
under rather general assumptions on the operators and the potentials, well-posedness and regularity
results for the initial value problem for (1)–(3) were established in the case u = 0, under the assumption
that α > 0 and β > 0. However, some remarks on more general cases including u ∈ L2(Q),
where Q := Ω× (0, T), have been given in [1]. In particular, under suitable assumptions on the initial
data, for every u ∈ L2(Q), there exists at least a solution (μ, ϕ, S) in a proper functional space to a weak
version of (1)–(3) (namely, Equation (2) is replaced by a variational inequality involving the convex
part F1 of F rather than f , since F1 is not supposed to be differentiable). Moreover, the solution is
unique if the domains of the fractional operators Aρ and Cτ satisfy suitable embeddings of Sobolev
type. Finally, if B2σ behaves like the Laplace operator with either Dirichlet or Neumann zero boundary
conditions and f is single valued (like (4) and (5)), then the solution solves Equation (2) in a stronger
sense, and it is even smoother under more restrictive assumptions on the initial data.

In this paper, we first establish similar results for system (1)–(3) by assuming α = 0 and β > 0
(in fact, we take β = 1 without loss of generality). In particular, we extend some results shown for
this case in the recent paper [38]. Then, we discuss a distributed control problem for the modified
system. Namely, given nonnegative constants κi, i = 1, . . . , 5, and functions ϕQ, SQ ∈ L2(Q) and
ϕΩ, SΩ ∈ L2(Ω), we consider the problem of minimizing the cost functional

J (u, ϕ, S) :=
κ1

2

∫
Q
|ϕ− ϕQ|2 + κ2

2

∫
Ω
|ϕ(T)− ϕΩ|2

+
κ3

2

∫
Q
|S− SQ|2 + κ4

2

∫
Ω
|S(T)− SΩ|2 + κ5

2

∫
Q
|u|2,

where ϕ and S are the components of the solution (μ, ϕ, S) corresponding to the control u, which is
supposed to vary under restrictions of the type umin ≤ u ≤ umax.

The choice of this tracking-type cost functional reflects the plan of a medical treatment via the
application of drugs over some finite time interval (0, T) with the aim of monitoring the evolution
of the tumor fraction ϕ under the restriction that no harm be inflicted on the patient. We remark
at this place that it would be desirable to minimize the duration, i.e., the time T > 0, of the
medical treatment as well, in order to prevent that the tumor cells develop a resistance against
the drug. However, such an approach, which was possible (see, e.g., [21]) in the special case when
A2ρ = B2σ = C2τ = −Δ, becomes very complicated in the situation considered here and was therefore
not included.

The literature on optimal control problems for Cahn–Hilliard systems is still scarce. In this
connection, we refer the reader to [31,51], where a number of references is given. Even less
investigations have been made on optimal control problems for tumor growth models. About that,
let us refer to the works [18,21,24,52–59], for various models involving the Laplacian. Concerning the
optimal control of Cahn–Hilliard systems with fractional operators, we just can cite [31,32], and, to the
authors’ best knowledge, the present paper is the first contribution on the optimal control of the tumor
growth model with fractional operators.

The remainder of the paper is organized as follows. In the next section, we list our assumptions
and notations and present our results on the state system. Section 3 is devoted to the study of the
control-to-state mapping and of its Fréchet differentiability. In the last section, we deal with the control
problem. Namely, the existence of an optimal control is proved and the first order necessary conditions
involving a proper adjoint system are derived.

2. The State System

In this section, we first introduce the notations and the assumptions needed for the analysis of
the state system. Then, we present our results. We closely follow [1]. First, of all, the set Ω ⊂ R3 is
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assumed to be bounded, connected and smooth, with volume |Ω| and outward unit normal vector
field ν on Γ := ∂Ω. Moreover, ∂ν stands for the corresponding normal derivative. We set

H := L2(Ω) (6)

and denote by ‖ · ‖ and ( · , · ) the standard norm and inner product of H. As for the operators, we first
postulate that

A : D(A) ⊂ H → H, B : D(B) ⊂ H → H and C : D(C) ⊂ H → H are

unbounded monotone self-adjoint linear operators with compact resolvents. (7)

Therefore, there are sequences {λj}, {λ′j}, {λ′′j } and {ej}, {e′j}, {e′′j } of eigenvalues and of
corresponding eigenvectors satisfying

Aej = λjej, Be′j = λ′je
′
j, and Ce′′j = λ′′j e′′j ,

with (ei, ej) = (e′i , e′j) = (e′′i , e′′j ) = δij for i, j = 1, 2, . . . , (8)

0 ≤ λ1 ≤ λ2 ≤ . . . , 0 ≤ λ′1 ≤ λ′2 ≤ . . . and 0 ≤ λ′′1 ≤ λ′′2 ≤ . . . ,

with lim
j→∞

λj = lim
j→∞

λ′j = lim
j→∞

λ′′j = +∞, (9)

{ej}, {e′j} and {e′′j } are complete systems in H. (10)

As a consequence, we can define the powers of the above operators with arbitrary positive real
exponents. As far as the first one is concerned, we have, for ρ > 0,

Vρ
A := D(Aρ) =

{
v ∈ H :

∞

∑
j=1
|λρ

j (v, ej)|2 < +∞
}

and (11)

Aρv =
∞

∑
j=1

λ
ρ
j (v, ej)ej for v ∈ Vρ

A, (12)

and we endow Vρ
A with the graph norm

‖v‖A, ρ :=
(‖v‖2 + ‖Aρv‖2)1/2 for every v ∈ Vρ

A. (13)

Similarly, we set
Vσ

B := D(Bσ) and Vτ
C := D(Cτ), (14)

with the graph norms

‖v‖B, σ :=
(‖v‖2 + ‖Bσv‖2)1/2 and ‖v‖C, τ :=

(‖v‖2 + ‖Cτv‖2)1/2,

for v ∈ Vσ
B and v ∈ Vτ

C , respectively. (15)

From now on, we assume:

ρ, σ and τ are fixed positive real numbers. (16)
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However, we need the further assumptions we list at once. It is understood that all of the
embeddings below are assumed to be continuous.

The first eigenvalue λ1 of A is strictly positive. (17)

V2ρ
A ⊂ L∞(Ω), Vρ

A ⊂ L4(Ω), Vσ
B ⊂ L4(Ω), and Vτ

C ⊂ L4(Ω). (18)

ψ(v) ∈ H and
(

B2σv, ψ(v)
) ≥ 0, for every v ∈ V2σ

B and every monotone

and Lipschitz continuous function ψ : R→ R vanishing at the origin. (19)

Due to the continuus embeddings (18), there exists a constant C∗ > 0 such that

‖v‖∞ ≤ C∗‖v‖A,2ρ ‖v‖4 ≤ C∗‖v‖A, ρ ‖v‖4 ≤ C∗‖v‖B, σ and ‖v‖4 ≤ C∗‖v‖C, τ

for every v ∈ V2ρ
A , v ∈ Vρ

A, v ∈ Vσ
B , and v ∈ Vτ

C , respectively, (20)

where, for p ∈ [1,+∞], the symbol ‖ · ‖p denotes the norm in Lp(Ω). The same symbol will also be
used for the norm in Lp(Q) provided that no confusion can arise.

Remark 1. We have to make some comments on (17)–(19). The first of these assumptions is satisfied if A
is, e.g., the Laplace operator −Δ with zero Dirichlet (or Robin) boundary conditions, while the case of zero
Neumann boundary conditions is excluded unless one adds to the Laplace operator, e.g., some zero-order term
ensuring coerciveness. However, it is clear that A could be a much more general operator. By still considering
the Laplace operator with (zero) Dirichlet boundary conditions as A, we can also discuss the first two embeddings
in (18). By noting that D(A) = H2(Ω) ∩ H1

0(Ω) and Ω is smooth, it results that D(A2ρ) ⊂ H4ρ(Ω)

and D(Aρ) ⊂ H2ρ(Ω). Hence, both embeddings hold true if ρ ≥ 3/8, since Ω is three-dimensional.
Finally, we make a comment on (19). Assume, for instance, that B2σ = −Δ with zero Neumann boundary
conditions. Then, V2σ

B = {v ∈ H2(Ω) : ∂νv = 0 on Γ} and, for every v ∈ V2σ
B and ψ as in (19), we have

that ψ(v) ∈ H1(Ω) (since v ∈ H1(Ω)) and

(
B2σv, ψ(v)

)
=
∫

Ω
(−Δv)ψ(v) =

∫
Ω
∇v · ∇ψ(v) =

∫
Ω

ψ′(v)|∇v|2 ≥ 0.

The same argument works if we take the Dirichlet boundary conditions instead of the Neumann ones,
since the functions ψ considered in (19) vanish at the origin. More generally, B2σ can be the principal part of
an elliptic operator in divergence form with smooth coefficients. In particular, even though some restrictions
on A, B, and C have to be imposed in order to fulfill the properties (17)–(19), no relationship between them is
needed, and the three operators can be completely independent from each other.

Remark 2. Assumption (17) allows us to consider an equivalent norm in Vρ
A. Indeed, for every v ∈ Vρ

A we
have that

‖Aρv‖2 =
∞

∑
j=1
|λρ

j (v, ej)|2 ≥ λ
2ρ
1

∞

∑
j=1
|(v, ej)|2 = λ

2ρ
1 ‖v‖2. (21)

Hence, since λ1 > 0, we deduce that

‖v‖ ≤ λ
−ρ
1 ‖Aρv‖ for every v ∈ Vρ

A, (22)

so that the function v �→ ‖Aρv‖ defines a norm in Vρ
A that is equivalent to the graph norm (13).
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For the nonlinear functions entering our system, we postulate the following properties:

D(F) is an open interval (a, b) of the real line with 0 ∈ (a, b). (23)

F := D(F)→ R is a C3 function. (24)

F(s) ≥ C1s2 − C2 and F′′(s) ≥ −C3

for some constants Ci > 0 and every s ∈ D(F). (25)

f := F′ satisfies lim
s↘a

f (s) = −∞ and lim
s↗b

f (s) = +∞ . (26)

P : R→ [0,+∞) is bounded and Lipschitz continuous on R

and of class C2 in D(F). (27)

Clearly, (23)–(26) are fulfilled by the significant potentials (4) and (5).

Remark 3. The hypotheses (23)–(26) on F ensure that the conditions required in [1], i.e., F =
(

F̃1 + F̃2
)|(a,b), where

F̃1 : R→ [0,+∞] is convex, proper, and l.s.c., with F̃1(0) = 0, (28)

F̃2 : R→ R is of class C1 with a Lipschitz continuous first derivative, (29)

F̃λ
1 (s) + F̃2(s) ≥ −C0 for some constant C0 and every s ∈ R, (30)

are satisfied, as we show at once. We first split F by defining, for s ∈ (a, b),

f1(s) :=
∫ s

0
( f ′(s′))+ ds′, F1(s) :=

∫ s

0
f1(s′) ds′,

f2(s) := F′(0)−
∫ s

0
( f ′(s′))− ds′ and F2(s) = F(0) +

∫ s

0
f2(s′) ds′ .

Notice that F1 is nonnegative and convex and that F1(0) = 0. If (a, b) 
= R, we properly extend these
functions Fi to functions F̃i defined in the whole of R. One can preserve the mentioned properties of F1,
including its lower semicontinuity, by setting

F̃1(a) := lim
s↘a

F1(s), F̃1(b) := lim
s↗b

F1(s) and F̃1(s) := +∞ for s 
∈ [a, b].

Moreover, one can ensure that the derivative of the extension F̃2 is Lipschitz continuous, by noting
that F′2 = f2 already is Lipschitz continuous in (a, b) since its derivative f ′2 = −( f ′)− is bounded by the
assumption (25) on F′′. The last condition that we have to check is (30), where F̃λ

1 is the Moreau–Yosida
approximation of F̃1 at the level λ. We notice that this condition is not equivalent to an inequality of type
F(s) ≥ −C2, which follows from (25) and looks rather natural in performing formal a priori estimates. On the
other hand, one can prove that the inequality we need is implied by the full quadratic growth condition given
in (25) (see (formula (3.1) [33] for some explanation). For this reason, we have postulated the latter.

Although some of the results to be presented will not require the whole set of hypotheses made so
far, the statements will be greatly simplified if we do not each time recall the properties of the involved
operators, spaces, and nonlinearities; we therefore make the following general assumption:

All of the assumptions made above on the structure are in force from now on. (31)

122



Mathematics 2019, 7, 792

As mentioned in the Introduction, we only deal with the case α = 0 and β > 0 of system (1)–(3).
Clearly, we can take β = 1 without loss of generality. Hence, the Cauchy problem forming the state
system under investigation reads as follows:

∂t ϕ + A2ρμ = P(ϕ)(S− μ), (32)

∂t ϕ + B2σ ϕ + f (ϕ) = μ, (33)

∂tS + C2τS = −P(ϕ)(S− μ) + u, (34)

ϕ(0) = ϕ0 and S(0) = S0, (35)

where ϕ0 and S0 are prescribed initial data that are supposed to satisfy

ϕ0 ∈ V2σ
B , S0 ∈ Vτ

C , and a0 ≤ ϕ0 ≤ b0 a.e. in Ω

for some compact interval [a0 b0] ⊂ (a, b). (36)

In fact, we could solve a weak form of the above problem under milder assumption on the initial
data; however, in order to guarantee a sufficient regularity level of the solution, we need the whole
of (36). Given a final time T ∈ (0,+∞), the regularity we can ensure (besides some boundedness to be
discussed later on) is the following:

μ ∈ L∞(0, T; V2ρ
A ), (37)

ϕ ∈W1,∞(0, T; H) ∩ H1(0, T; Vσ
B ) ∩ L∞(0, T; V2σ

B ), (38)

f (ϕ) ∈ L∞(0, T; H), (39)

S ∈ H1(0, T; H) ∩ L∞(0, T; Vτ
C ) ∩ L2(0, T; V2τ

C ), (40)

so that Equations (32)–(34) are satisfied a.e. in Q, where we recall that

Q := Ω× (0, T). (41)

We notice at once that the first embedding in (18) yields that

μ ∈ L∞(0, T; V2ρ
A ) implies that μ ∈ L∞(Q). (42)

At this point, we are ready to present our results. To this end, it is convenient to introduce the
following variational formulation of (32)–(34):

(
∂t ϕ(t), v

)
+ (Aρμ(t), Aρv) =

(
P(ϕ(t))(S(t)− μ(t)), v

)
for every v ∈ Vρ

A and for a.a. t ∈ (0, T), (43)(
∂t ϕ(t), v

)
+
(

Bσ ϕ(t), Bσv
)
+
(

f (ϕ(t)), v
)
=
(
μ(t), v

)
for every v ∈ Vσ

B and for a.a. t ∈ (0, T), (44)(
∂tS(t), v

)
+ (CτS(t), Cτv) = −(P(ϕ(t))(S(t)− μ(t)), v

)
+ (u(t), v)

for every v ∈ Vτ
C and for a.a. t ∈ (0, T). (45)

This is based on obvious properties of the powers of the operators A, B and C, like the Green type
formula (A2ρv, w) = (Aρv, Aρw) for every v ∈ V2ρ

A and w ∈ Vρ
A.

Before stating our well-posedness theorem, we prove some auxiliary results. The first one is
a separation property enjoyed by any solution under our assumptions on the data.
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Theorem 1. Assume (36) and u ∈ L2(0, T; H), and let (μ, ϕ, S) be a solution to problem (32)–(35)
satisfying (37)–(40). Then, it holds for every M > 0 that, if ‖μ‖∞ < M, then there exists a compact
interval [aM, bM] ⊂ (a, b) such that

aM ≤ ϕ ≤ bM a.e. in Q. (46)

This interval depends only on f , the initial datum ϕ0, and M.

Proof. Notice that μ is bounded thanks to (42). Thus, we fix a constant M and assume that ‖μ‖∞ < M.
By the assumptions (26) on f and (36) on ϕ0, we can choose aM ∈ (a, a0] and bM ∈ [b0, b) such that

f (z) < −M for all z ∈ (a, aM) and f (z) > M for all z ∈ (bM, b).

Now, we notice that, for a.a. s ∈ (0, T), the value ϕ(s) belongs to V2σ
B by (38). Moreover,

the function z �→ ψ(z) := (z − bM)+ is monotone and Lipschitz continuous on R and vanishes
at the origin. Hence, we have that ψ(ϕ(s)) ∈ H by (19). Thus, we can multiply (33), written at
the time s, by ψ(ϕ(s)) and integrate over (0, t) with respect to s. By noting that ψ(ϕ0) = 0 (since
ϕ0 ≤ b0 ≤ bM a.e. in Ω), we obtain that

1
2
‖ψ(ϕ(t))‖2 +

∫ t

0

(
B2σ ϕ(s), ψ(ϕ(s))

)
ds =

∫ t

0

(
μ(s)− f (ϕ(s)), ψ(ϕ(s))

)
ds .

Thanks to the inequality (19), the second term on the left-hand side is nonnegative.
Moreover, the right-hand side is nonpositive since ψ(ϕ) = 0, where ϕ ≤ bM, and f (ϕ) ≥ μ whenever
ϕ > bM. Hence, we conclude that ψ(ϕ) = 0 a.e. in Q, i.e., that ϕ ≤ bM a.e. in Q. By the same argument,
with ψ(z) := −(z + aM)−, one obtains that ϕ ≥ aM a.e. in Q.

Theorem 2. Under the assumptions (36) on the initial data, problem (32)–(35) has at most one solution
satisfying (37)–(40). Moreover, if M > 0, ui ∈ L2(0, T; H), i = 1, 2, and (μi, ϕi, Si) are two corresponding
solutions to (32)–(35) satisfying (37)–(40) and ‖μi‖∞ < M for i = 1, 2, then the estimate

‖μ1 − μ2‖L2(0,T;Vρ
A)

+ ‖ϕ1 − ϕ2‖H1(0,T;H)∩L∞(0,T;Vσ
B )

+ ‖S1 − S2‖L∞(0,T;H)∩L2(0,T;Vτ
C )
≤ KM ‖u1 − u2‖L2(0,T;H) (47)

holds true with a constant KM that depends only on the structure of the system, the initial data, T and M.

Proof. We show the uniqueness at the end and first prove the estimate (47), noting that the assumption
‖μi‖∞ < M is meaningful since the functions μi are bounded due to (42). We apply Theorem 1 and
find a compact interval [aM, bM] contained in (a, b) such that

aM ≤ ϕi ≤ bM a.e. in Q, for i = 1, 2.

Since f is (at least) a C1 function on (a, b), it is Lipschitz continuous on [aM, bM]. Let L be the
corresponding Lipschitz constant. After this preparation, we can start the proof. We set, for convenience,
u := u1 − u2, μ := μ1 − μ2, ϕ := ϕ1 − ϕ2, and S := S1 − S2, writing (32)–(34) for both solutions and
multiplying the differences by μ, ∂t ϕ, and S, respectively, in the inner product of H. Then, we sum
up and integrate with respect to time over (0, t). By noting that the terms involving (μ, ∂t ϕ) cancel
each other, and adding the same contributions (1/2)‖ϕ(t)‖2 =

∫ t
0 (ϕ(s), ∂t ϕ(s)) ds and

∫ t
0 ‖S(s)‖2 ds

to both sides, we obtain the equation

∫ t

0
‖Aρμ(s)‖2 ds +

∫ t

0
‖∂t ϕ(s)‖2 +

1
2
‖ϕ(t)‖2 +

1
2
‖Bσ ϕ(t)‖2

+
1
2
‖S(t)‖2 +

∫ t

0
‖S(s)‖2 ds +

∫ t

0
‖CτS(s)‖2 ds
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=
∫ t

0

(
P(ϕ1(s))(S1(s)− μ1(s))− P(ϕ2(s))(S2(s)− μ2(s)), μ(s)− S(s)

)
ds

−
∫ t

0

(
f (ϕ1(s))− f (ϕ2(s)), ∂t ϕ(s)

)
ds

+
∫ t

0

(
ϕ(s), ∂t ϕ(s)

)
ds +

∫ t

0

(
u(s), S(s)

)
ds +

∫ t

0
‖S(s)‖2 ds .

If we term I the first integral on the right-hand side, apply the Young inequality to the next three
terms, use the Lipschitz continuity of f , and rearrange, we deduce that

∫ t

0
‖Aρμ(s)‖2 ds +

1
2

∫ t

0
‖∂t ϕ(s)‖2 +

1
2
‖ϕ(t)‖2

B, σ +
1
2
‖S(t)‖2 +

∫ t

0
‖S(s)‖2

C, τ ds

≤ I + (L2 + 1)
∫ t

0
‖ϕ(s)‖2 ds +

1
2

∫ t

0
‖u(s)‖2 +

3
2

∫ t

0
‖S(s)‖2 ds .

Now, we rewrite I as the sum of two terms. The first of these is nonpositive, since P is
nonnegative, and we estimate the other one recalling that P′ is bounded because P is Lipschitz
continuous. By applying the Hölder inequality, and recalling (20), we have for every δ > 0 that

I =
∫ t

0

(
P(ϕ1(s))(S(s)− μ(s)), μ(s)− S(s)

)
ds

+
∫ t

0

(
(P(ϕ1(s)))− P(ϕ2(s)))(S2(s)− μ2(s)), μ(s)− S(s)

)
ds

≤ sup |P′|
∫ t

0
‖ϕ(s)‖4 ‖S2(s)− μ2(s)‖4 ‖S(s)− μ(s)‖ ds

≤ δ
∫ t

0

(‖S(s)‖+ ‖μ(s)‖)2 ds

+
sup |P′|2 C4∗

4δ

∫ t

0

(‖S2(s)‖C, τ + ‖μ2(s)‖A, ρ

)2‖ϕ(s)‖2
B, σ ds .

We notice that the function s �→ (‖S2(s)‖C, τ + ‖μ2(s)‖A, ρ

)2 belongs to L∞(0, T), thanks to the
regularity (37) and (40) of μ2 and S2, respectively. Therefore, by choosing δ > 0 small enough,
and applying the Gronwall lemma, we obtain the estimate (47) with a constant KM whose dependence
on the data agrees with that specified in the statement.

We now come back to uniqueness. As both ui ∈ L2(0, T; H) and the corresponding solutions
(μi, ϕi, Si) are arbitrary in the above argument (since no restriction on M is made), we conclude that
(μ1, ϕ1, S1) = (μ2, ϕ2, S2) if u1 = u2, which shows the uniqueness for the solution to problem (32)–(35).
With this, the proof is complete.

Finally, we can state our well-posedness and stability result. Here, and later on in this paper,
we use the notation

BR := {u ∈ L2(0, T; H) : ‖u‖L2(0,T;H) < R}, (48)

where R is a positive real parameter.

Theorem 3. Under the assumptions (36) on the initial data ϕ0 and S0, problem (32)–(35) has,
for every u ∈ L2(0, T; H), a unique solution (μ, ϕ, S) that satisfies (37)–(40). In particular, μ is bounded.
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Moreover, for every R > 0, there exist a constant K1(R) and a compact interval [aR, bR] ⊂ (a, b), which depend
only on the structure of the system, the initial data, T and R, such that both the estimate

‖μ‖
L∞(0,T;V2ρ

A )
+ ‖μ‖∞ + ‖P(ϕ)(S− μ)‖L2(0,T;H)

+ ‖ϕ‖W1,∞(0,T;H)∩H1(0,T;Vσ
B )∩L2(0,T;V2σ

B ) + ‖ f (ϕ)‖L∞(0,T;H)

+ ‖S‖H1(0,T;H)∩L∞(0,T;Vτ
C )∩L2(0,T;V2τ

C )

≤ K1(R) (49)

and the separation property
aR ≤ ϕ ≤ bR a.e. in Q (50)

hold true for every u ∈ BR and the corresponding solution (μ, ϕ, S). Finally, if R > 0, ui ∈ BR, i = 1, 2,
and (μi, ϕi, Si) are the corresponding solutions, then the estimate

‖μ1 − μ2‖L2(0,T;Vρ
A)

+ ‖ϕ1 − ϕ2‖H1(0,T;H)∩L∞(0,T;Vσ
B )

+ ‖S1 − S2‖L∞(0,T;H)∩L2(0,T;Vτ
C )
≤ K2(R) ‖u1 − u2‖L2(0,T;H) (51)

holds true with a constant K2(R) that depends only on the structure of the system, the initial data, T, and R.

Proof. Uniqueness follows from Theorem 2. Let us come to the existence of a solution and to the
estimates (49) and (51). However, we do not give a complete proof. Indeed, one can adapt the
arguments of [1] on account of Remark 3, and we briefly explain the reason for this. The procedure
used there is based on the Yosida regularization of the nonlinearity f , a time discretization of the
regularized system, and the derivation of suitable a priori estimates, and the same line of argumentation
can be followed in our situation. Here, is the main remark: in [1], some estimates for μ have been
derived from estimates of ∂tμ, and this term is missing in (32), in contrast to (1). In the present case,
an estimate of the norm of μ, e.g., in L2(0, T; H), can be deduced from an estimate of Aρμ in the
same space as shown in Remark 2, by using the assumption (17) on the first eigenvalue λ1 of A.
Hence, we do not repeat the arguments of [1] with the corresponding modifications. However, for the
reader’s convenience, we sketch the formal proofs of the estimates that would be obtained step by step
in the rigorous procedure in order to prove the existence of a solution. We assume u ∈ BR from the
very beginning, so that these estimates eventually lead to (49) as well.

In order to simplify notation, we use the same symbol c without any subscript for possibly
different constants that depend only on the structure of our system, the initial data and T, but neither
on u nor on R. Moreover, the symbol cR stands for (possibly different) constants that depend on the
constant R, in addition, but still not on u. Thus, it is understood that the actual values of such constants
may vary from line to line and even in the same chain of inequalities. Notice that the notations used
for constants we want to refer to (like, e.g., those used in (25)) are different.

First a priori estimate. We test (43), (44) and (45), written at the time s, by μ(s), ∂t ϕ(s), and S(s),
respectively, in the scalar product of H. Then, we sum up and integrate over (0, t), where t ∈ (0, T) is
arbitrary, noting that the terms involving the product μ ∂t ϕ cancel each other. By also adding |Ω|C2 to
both sides (see (25)), we obtain the identity

∫ t

0
‖Aρμ(s)‖2 ds +

∫ t

0
‖∂t ϕ(s)‖2 ds +

1
2
‖Bσ ϕ(t)‖2 +

∫
Ω
(F(ϕ(t)) + C2)

+
1
2
‖S(t)‖2 +

∫ t

0
‖CτS(s)‖2 ds +

∫
Qt

P(ϕ)(S− μ)2

=
1
2
‖Bσ ϕ0‖2 +

∫
Ω
(F(ϕ0) + C2) +

1
2
‖S0‖2 +

∫ t

0

(
u(s), S(s)

)
ds .
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Recalling the consequence (22) of (17), taking (25) into account and applying the Gronwall lemma,
we conclude that

‖μ‖L2(0,T;Vρ
A)

+ ‖ϕ‖H1(0,T;H)∩L∞(0,T;Vσ
B )

+ ‖S‖L∞(0,T;H)∩L2(0,T;Vτ
C )

+ ‖P1/2(ϕ)(S− μ)‖L2(0,T;H) ≤ cR . (52)

Consequence. We can also infer that

‖P(ϕ)(S− μ)‖2
L2(0,T;H) + ‖F(ϕ)‖L∞(0,T;L1(Ω)) ≤ cR .

Indeed, the estimate is right for the first term, since P is bounded by (27); for the bound of the
second term, we can argue as in (Section 4.4 [1]).

Second a priori estimate. We would like to test (43) by ∂tμ even though ∂tμ does not appear in
the equation (in contrast to (1)). In fact, the estimate we derive here by a formal procedure should
be performed rigorously at the level of the discete scheme, which can contain that time derivative
multiplied by a viscosity coefficient that tends to zero at some point of the procedure. Thus, we test (32)
and (34) formally by ∂tμ and ∂tS, respectively. At the same time, we formally differentiate (33) with
respect to time and test the resulting equality by ∂t ϕ. Then, we sum up and integrate with respect to
time, as usual. Since the terms involving the product ∂tμ ∂t ϕ cancel each other, we obtain the identity

1
2
‖Aρμ(t)‖2 +

1
2
‖∂t ϕ(t)‖2 +

∫ t

0
‖Bσ∂t ϕ(s)‖2 ds

+
∫ t

0
‖∂tS(s)‖2 ds +

1
2
‖CτS(t)‖2

=
1
2
‖Aρμ(0)‖2 +

1
2
‖∂t ϕ(0)‖2 +

1
2
‖CτS0‖2

+
∫ t

0

(
u(s), ∂tS(s)

)
ds−

∫ t

0

(
f ′(s)∂t ϕ(s), ∂t ϕ(s)

)
ds

+
∫ t

0

(
P(ϕ(s))(S(s)− μ(s)), ∂tμ(s)− ∂tS(s)

)
ds . (53)

The integral containing u can be handled using Young’s inequality, and the one involving f ′ is
easily treated using the second inequality in (25) and (52). We postpone the estimate of the last integral
and first deal with the initial values appearing on the right-hand side of (53). By using the initial
conditions for ϕ and S, we write (32) and (33) at the time t = 0 in the following way:

(
A2ρ + P(ϕ0)

)
μ(0) = P(ϕ0)S0 and ∂t ϕ(0) = μ(0)− B2σ ϕ0 − f (ϕ0) . (54)

Since P is nonnegative, by multiplying the first identity in (54) by μ(0), we have that (see (22))

(
P(ϕ0)S0, μ(0)

)
=
(
(A2ρ + P(ϕ0))μ(0), μ(0)

) ≥ ‖Aρμ(0)‖2 ≥ λ
2ρ
1 ‖μ(0)‖2

whence
‖μ(0)‖ ≤ λ

−2ρ
1 ‖P(ϕ0)S0‖ ≤ c, ‖Aρμ(0)‖2 ≤ ‖μ(0)‖ ‖P(ϕ0)S0‖ ≤ c (55)

and, on account of (36), we also deduce from the second identity in (54) that

‖∂t ϕ(0)‖ ≤ c + ‖B2σ ϕ0‖+ ‖ f (ϕ0)‖ ≤ c .
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Finally, we deal with the last integral on the right-hand side of (53), which we term I for
brevity. We perform an integration by parts in time, recall that P′ is bounded by (27), and invoke (55).
By recalling that ‖ · ‖p denotes the norm in Lp(Ω), we then have

I = −
∫ t

0

∫
Ω

P(ϕ)(S− μ)∂t(S− μ)

= −1
2

∫
Ω

P(ϕ(t))
(
S(t)− μ(t)

)2
+

1
2

∫
Ω

P(ϕ0)
(
S0 − μ(0)

)2

+
1
2

∫ t

0

∫
Ω

P′(ϕ)∂t ϕ(S− μ)2

≤ c + c
∫ t

0
‖∂t ϕ(s)‖2

(‖S(s)‖2
4 + ‖μ(s)‖2

4
)

ds .

Finally, we notice that ∫ T

0

(‖S(s)‖2
4 + ‖μ(s)‖2

4
)

ds ≤ cR

by (52) and some of the embeddings in (18). This allows us to apply Gronwall’s lemma, whence we
conclude that

‖μ‖L∞(0,T;Vρ
A)

+ ‖∂t ϕ‖L∞(0,T;H)∩L2(0,T;Vσ
B )

+ ‖S‖H1(0,T;H)∩L∞(0,T;Vτ
C )
≤ cR . (56)

Third a priori estimate. By taking v = μ(t) in (43) and recalling that P is nonnegative and
bounded, we obtain the following inequality for a.a. t ∈ (0, T)

‖Aρμ(t)‖2 ≤ (P(ϕ(t))S(t)− ∂t ϕ(t), μ(t)
) ≤ c

(‖S‖L∞(0,T;H) + ‖∂t ϕ‖L∞(0,T;H)

)‖μ(t)‖ .

By accounting for Remark 2, we deduce that

‖μ‖L∞(0,T;Vρ
A)
≤ cR . (57)

In particular, the norm of μ in L∞(0, T; H) is bounded by some constant cR. Since the same holds
for S due to (52), we infer that

‖P(ϕ)(S− μ)‖L∞(0,T;H) ≤ cR . (58)

Consequence. By comparison in (32), we deduce that

‖A2ρμ‖L∞(0,T;H) ≤ ‖P(ϕ)(S− μ)‖L∞(0,T;H) + ‖∂t ϕ‖L∞(0,T;H).

Combining this with (58) and (56), we conclude that

‖μ‖
L∞(0,T;V2ρ

A )
≤ cR . (59)

Then, the first embedding in (18) yields that μ is bounded (as claimed in the statement) and that

‖μ‖∞ ≤ cR . (60)

By comparison in (34), we also deduce that

‖S‖L2(0,T;V2τ
C ) ≤ cR . (61)

No better estimate for S is available, since u ∈ L2(0, T; H) only.
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Fourth a priori estimate. We recall that Remark 3 provides a splitting of f as f1 + f2, with f1

monotone and vanishing at the origin and f2 Lipschitz continuous. Thus, we can write (33)
for a.a. t ∈ (0, T) in the form

B2σ ϕ(t) + f1(ϕ(t)) = μ(t)− ∂t ϕ(t)− f2(ϕ(t)),

and test this identity by f1(ϕ(t)). More precisely, in the correct argument, f1 is replaced by its Yosida
regularization, which is monotone and Lipschitz continuous and vanishes at the origin, and the
equation itself is replaced by a scheme, which is obtained by discretizing time differentiation and
for which the analogue of ϕ(t) belongs to V2σ

B . Hence, assumption (19) can actually be applied.
Here, we formally apply it to the above identity with v = ϕ(t) and ψ = f1. We obtain that

‖ f1(ϕ(t))‖2 ≤ (
B2σ ϕ(t) + f1(ϕ(t)), f1(ϕ(t))

)
=
(
μ(t)− ∂t ϕ(t)− f2(ϕ(t)), f1(ϕ(t))

)
≤ ‖μ− ∂t ϕ− f2(ϕ)‖L∞(0,T;H) ‖ f1(ϕ(t))‖ .

On account of the previous estimates, and by a comparison in (33), we conclude that

‖ f1(ϕ)‖L∞(0,T;H) + ‖ϕ‖L∞(0,T;V2σ
B ) ≤ cR . (62)

Conclusion. This concludes the formal proof of the existence part of Theorem 3 and of
estimate (49). As already said, in the rigorous argument, the above bounds are established for the
solution to an approximating problem, and one has to perform some limiting procedure. The estimates
provide convergence of weak and weak-star type. However, even strong convergence in L2(0, T; H)

for the approximations of ϕ and S is obtained. Indeed, the embeddings Vσ
B ⊂ H and Vτ

C ⊂ H are
compact due to (7), so that one can apply the Aubin–Lions lemma (see, e.g., (Thm. 5.1, p. 58 [60])).
Therefore, the nonlinear terms can be correctly managed.

Separation. Let us come to estimate (50). This is a trivial consequence of the above estimate
and Theorem 1. Indeed, this theorem can be applied with M := cR + 1, where cR is the constant
that appears in (60). The corresponding compact interval [aR, bR] of the statement is nothing but the
interval [aM, bM] considered in (46), which depends only on the structure of the system, the initial data,
T, and R.

Continuous dependence. In addition, (51) is a trivial consequence of a fact already proved,
namely, of Theorem 2. Indeed, if ui ∈ BR, i = 1, 2, then the L∞ bound for the corresponding μi is
ensured by (49), and Theorem 2 can be applied with M = K1(R) + 1. Hence, we can take as K2(R)
the constant KM that appears in (47). In addition, this constant depends only on the structure of the
system, the initial data, T and R.

Remark 4. The existence part of Theorem 2.6 is closely connected to the existence result proved in
(Theorem 3.4 [38]), where, however, no statement concerning separation or uniqueness was proved. For purposes
of control theory, however, it is indispensable to have uniqueness, since otherwise no control-to-state operator
can be defined, and this seems to be available only under the assumptions made here.

3. The Control-to-State Mapping

The results of the previous section ensure that we can correctly define a control-to-state mapping
to be used in the control problem under investigation. Taking into account that the cost functional to
be minimized depends only on the components ϕ and S of the solution corresponding to a given u,
we set

Y1 := L2(0, T; Vρ
A), Y2 := H1(0, T; H) ∩ L∞(0, T; Vσ

B ),

Y3 := C0([0, T]; H) ∩ L2(0, T; Vτ
C ), and Y := Y2 ×Y3, (63)
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and define
Si : L2(0, T; H)→ Yi i = 1, 2, 3, and S : L2(0, T; H)→ Y ,

by setting, for u ∈ L2(0, T; H),

S1(u) := μ, S2(u) := ϕ, S3(u) := S, and S(u) := (ϕ, S),

where (μ, ϕ, S) is the solution to (32)–(35) corresponding to u. (64)

More precisely, we need to consider the restriction of these maps to BR for any given radius R > 0.
The choice of the space Y mainly is due to the following fact: the inequality (51) implies that

‖S(u1)− S(u2)‖Y ≤ K2(R) ‖u1 − u2‖L2(0,T;H) for every u1 u2 ∈ BR . (65)

A very important consequence of the separation property (50) and of the regularity of f ensured
by (24) is the following global boundedness condition:

‖ f (k)(S2(u))‖∞ ≤ K3(R) for k = 0, 1, 2, and every u ∈ BR, (66)

where K3(R) depends only on the structure of the system, the initial data, T, and R.
The Fréchet differentiability of the maps S is strictly related to the properties of the linearized

problem we introduce now. To this end, we fix u ∈ L2(0, T; H). The linearized system associated with
u and the variation h ∈ L2(0, T; H) is the following:

∂tξ + A2ρη = P(ϕ)(ζ − η) + P′(ϕ) ξ (S− μ), (67)

∂tξ + B2σξ + f ′(ϕ) ξ = η, (68)

∂tζ + C2τζ = −P(ϕ)(ζ − η)− P′(ϕ) ξ (S− μ) + h, (69)

ξ(0) = 0 and ζ(0) = 0, (70)

where μ := S1(u), ϕ := S2(u), and S := S3(u). We also write the weak formulation of (67)–(69):
the identities

(
∂tξ(t), v

)
+
(

Aρη(t), Aρv
)

=
(

P(ϕ(t))(ζ(t)− η(t)), v
)
+
(

P′(ϕ(t)) ξ(t) (S(t)− μ(t)), v
)

(71)(
∂tξ(t), v

)
+
(

Bσξ(t), Bσv
)
+
(

f ′(ϕ(t)) ξ(t), v
)

=
(
η(t), v

)
(72)(

∂tζ(t), v
)
+
(
Cτζ(t), Cτv

)
= −(P(ϕ(t))(ζ(t)− η(t)), v

)
− (P′(ϕ(t)) ξ(t) (S(t)− μ(t)), v

)
+
(
h(t), v

)
(73)

have to hold true for every v ∈ Vρ
A, v ∈ Vσ

B , and v ∈ Vτ
C , respectively, and for a.a. t ∈ (0, T). We have

the following results.
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Theorem 4. Suppose that the assumptions (36) on the initial data of problem (32)–(35) are fulfilled, and let
u ∈ L2(0, T; H) and h ∈ L2(0, T; H). Then, the linearized problem (67)–(70) has a unique solution (η, ξ, ζ)

satisfying the regularity requirements

η ∈ L2(0, T; V2ρ
A ), (74)

ξ ∈ H1(0, T; H) ∩ L∞(0, T; Vσ
B ) ∩ L2(0, T; V2σ

B ), (75)

ζ ∈ H1(0, T; H) ∩ L∞(0, T; Vτ
C ) ∩ L2(0, T; V2τ

C ). (76)

Moreover, if R > 0 and u ∈ BR, then this solution satisfies the estimate

‖(ξ, ζ)‖Y ≤ K4(R) ‖h‖L2(0,T;H), (77)

where the constant K4(R) depends only on the structure of the system (32)–(34), the initial data ϕ0 and S0, T,
and R.

Proof. We notice that the coefficients P(ϕ), P′(ϕ), f ′(ϕ), as well as μ, are bounded functions. Moreover,
if u belongs to some BR, then the L∞ bounds are uniform, i.e., they just depend on R and not on u.
On the contrary, S might be unbounded. However, as stated in Theorem 3, it is smooth. Thus, the linear
system is not worse than the nonlinear one and can be solved by the same argument (which we do
not repeat here) based on time discretization that has been used in [1] (see also [31] for the linearized
system associated with the Cahn–Hilliard equations). This first leads to a solution to the variational
problem (71)–(73) and then to the strong formulation (67)–(69). However, we perform at least some
formal estimates that can justify both the regularity asserted in the statement and the validity of
estimate (77). To this end, we fix R > 0 and assume that u ∈ BR at once.

In addition, in this section, i.e., in this proof and later on, we adopt a convention on the constants
similar to the one used in the previous section: c stands for possibly different constants depending
only on the structure, the data, and T, while the notation cR indicates an additional dependence on R.

First a priori estimate. We formally test (71)–(73) by η, ∂tξ, and ζ, respectively, sum up and
integrate over (0, t). Moreover, we add the same quantities (1/2)‖ξ(t)‖2 =

∫ t
0 (ξ(s), ∂tξ(s)) ds and∫ t

0 ‖ζ(s)‖2 to both sides of the resulting identity, in order to recover the full norms in Vσ
B and Vτ

C on the
left-hand side. In addition, in this case, a cancellation occurs, and we have that

∫ t

0
‖Aρη(s)‖2 ds +

∫ t

0
‖∂tξ(s)‖2 ds +

1
2
‖ξ(t)‖2

B, σ +
1
2
‖ζ(t)‖2 +

∫ t

0
‖ζ(s)‖2

C, τ ds

=
∫ t

0

(
P(ϕ(s))(ζ(s)− η(s)), η(s)− ζ(s)

)
ds

+
∫ t

0

(
P′(ϕ(s)) ξ(s) (S(s)− μ(s)), η(s)− ζ(s)

)
ds

+
∫ t

0

(
ξ(s)− f ′(ϕ(s)) ξ(s), ∂tξ(s)

)
ds +

∫ t

0

(
h(s) + ζ(s), ζ(s)

)
ds . (78)

The first integral on the right-hand side is nonpositive, while the next one, which we term I,
needs some treatment. By using the Hölder inequality, two of the inequalities (20), Remark 2, and the
Young inequality, we obtain that

I ≤ c
∫ t

0
‖ξ(s)‖2 ‖S(s)− μ(s)‖4 ‖η(s)− ζ(s)‖4 ds

≤ c
∫ t

0
‖ξ(s)‖ (‖S(s)‖C, τ + ‖μ(s)‖A, ρ

) (‖η(s)‖A, ρ + ‖ζ(s)‖C, τ

)
ds

≤ 1
2

∫ t

0
‖Aρη(s)‖2 ds +

1
2

∫ t

0
‖ζ(s)‖2

C, τ ds + c
∫ t

0

(‖S(s)‖2
C, τ + ‖μ(s)‖2

A, ρ

)‖ξ(s)‖2 ds,
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where we notice that the function s �→ ‖S(s)‖2
C, τ + ‖μ(s)‖2

A, ρ belongs to L∞(0, T) and that its norm is
bounded by a constant like in (49), due to Theorem 3 applied to u. By treating the last terms of (78)
using the Schwarz and Young inequalities, and applying Gronwall’s lemma, we conclude that

‖η‖L2(0,T;Vρ
A)

+ ‖ξ‖H1(0,T;H)∩L∞(0,T;Vσ
B )

+ ‖ζ‖L∞(0,T;H)∩L2(0,T;Vτ
C )

≤ cR ‖h‖L2(0,T;H) . (79)

Second a priori estimate. We estimate the right-hand side of (67). On account of the
embeddings (18), we have a.e. in (0, T) that

‖P(ϕ)(ζ − η) + P′(ϕ) ξ (S− μ)‖ ≤ c
(‖ζ‖+ ‖η‖)+ c ‖ξ‖4 ‖S− μ‖4

≤ c
(‖ζ‖+ ‖η‖)+ c ‖ξ‖B, σ

(‖S‖C, τ + ‖μ‖A, ρ

)
.

On account of (79), we conclude that

‖P(ϕ)(ζ − η) + P′(ϕ) ξ (S− μ)‖L2(0,T;H) ≤ cR ‖h‖L2(0,T;H) . (80)

Since (79) also yields an estimate for ∂tξ, a (formal) comparison in (67) allows us to conclude that

‖A2ρη‖L2(0,T;H) ≤ cR ‖h‖L2(0,T;H) i.e., ‖η‖
L2(0,T;V2ρ

A )
≤ cR ‖h‖L2(0,T;H) . (81)

Third a priori estimate. We test (69) by ∂tζ and integrate in time, as usual. On account of (80)
and the Young inequality, we obtain that

∫ t

0
‖∂tζ(s)‖2 ds +

1
2
‖Cτζ(t)‖2 ≤ 1

2

∫ t

0
‖∂tζ(s)‖2 ds + cR ‖h‖2

L2(0,T;H) .

We thus deduce that

‖∂tζ‖L2(0,T;H) + ‖ζ‖L∞(0,T;Vτ
C )
≤ cR ‖h‖L2(0,T;H) . (82)

Now that ∂tζ is estimated, a comparison in (69) provides a bound for C2τζ. Hence, we conclude that

‖ζ‖H1(0,T;H)∩L∞(0,T;Vτ
C )∩L2(0,T;V2τ

C ) ≤ cR ‖h‖L2(0,T;H) . (83)

This ends the list of the formal estimates and formally leads to a strong solution satisfying (77).
Even though uniqueness formally follows by taking h = 0, we remark that it can be proved rigorously.
Indeed, by assuming the regularity (74)–(76), the procedure used to obtain the above estimates
is justified.

Theorem 5. Assume (36) for the initial data of problem (32)–(35). Then, the control-to-state mapping S
defined in (64) is Fréchet differentiable at every point in L2(0, T; H). More precisely, if u ∈ L2(0, T; H) and
h ∈ L2(0, T; H), then the value (DS)(u)[h] of the Fréchet derivative (DS)(u) in the direction h is given by
the pair (ξ, ζ), where (η, ξ, ζ) is the solution to the linearized problem (67)–(70) associated with u and h.

Proof. Fix any u ∈ L2(0, T; H), and let (μ, ϕ, S) be the corresponding state. For every h ∈ L2(0, T; H),
let (μh, ϕh, Sh) be the state corresponding to u + h. Finally, let (η, ξ, ζ) be the solution to the linearized
problem (67)–(70) associated with u and h. We set, for convenience,

ηh := μh − μ− η, ξh := ϕh − ϕ− ξ, ζh := Sh − S− ζ . (84)
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According to the definitions of differentiability and derivative in the sense of Fréchet, we have to
prove that the (linear) map h �→ (ξ, ζ) is continuous from L2(0, T; H) into Y and that there exist a real
number h > 0 and a function Λ : (0, h)→ R satisfying

‖(ξh, ζh)‖Y ≤ Λ(‖h‖L2(0,T;H)) and lim
s↘0

Λ(s)
s

= 0 . (85)

The first fact is ensured by (77) once R is chosen larger than ‖u‖L∞(0,T;H). Hence, we fix
R > ‖u‖L2(0,T;H) once and for all. As for the construction of Λ, we set h := R− ‖u‖L2(0,T;H), and we
assume that ‖h‖L2(0,T;H) < h. This implies that u and u + h belong to BR, so that Theorem 3
can be applied to both of them. We thus derive uniform estimates for the corresponding states,
hence for the coefficients of the corresponding linearized systems. This entails uniform estimates
for the corresponding solutions. In order to establish (85), we observe that (ηh, ξh, ζh) satisfies the
regularity properties

ηh ∈ L∞(0, T; V2ρ
A ),

ξh ∈ H1(0, T; H) ∩ L∞(0, T; Vσ
B ) ∩ L2(0, T; V2σ

B ),

ζh ∈ H1(0, T; H) ∩ L∞(0, T; Vτ
C ) ∩ L2(0, T; V2τ

C )

and solves the problem (in a strong form, i.e., the equations are satisfied a.e. in Q, since all the
contributions are L2 functions)

∂tξ
h + A2ρηh = Qh

1, (86)

∂tξ
h + B2σξh + Qh

2 = ηh, (87)

∂tζ
h + C2τζh = −Qh

1, (88)

ηh(0) = 0 , ξh(0) = 0 and ζh(0) = 0, (89)

where Qh
1 and Qh

2 are defined by

Qh
1 := P(ϕh)(Sh − μh)− P(ϕ)(S− μ)− P(ϕ)(ζ − η)− P′(ϕ) ξ (S− μ),

Qh
2 := f (ϕh)− f (ϕ)− f ′(ϕ) ξ.

It is convenient to rewrite the functions Qh
i by accounting for the Taylor expansions of P and f .

Using the formula with integral remainder, it is immediately checked that

Qh
2 = f ′(ϕ)ξh + Rh

2 (ϕh − ϕ)2, where Rh
2 :=

∫ 1

0
(1− θ) f ′′(ϕ + θ(ϕh − ϕ)) dθ (90)

while it is more complicated to find a convenient representation of Qh
1. However, simple algebraic

manipulations show that

Qh
1 = P(ϕ)(ζh − ηh) + (P(ϕh)− P(ϕ))[(Sh − S)− (μh − μ)]

+ P′(ϕ)(S− μ) ξh + (S− μ) Rh
1 (ϕh − ϕ)2, (91)

where

Rh
1 :=

∫ 1

0
(1− θ)P′′(ϕ + θ(ϕh − ϕ)) dθ .

Notice that, by (66), both Rh
1 and Rh

2 are bounded uniformly with respect to h:

‖Rh
1‖∞ + ‖Rh

2‖∞ ≤ cR . (92)
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After this preparation, we start estimating. To this end, we test (86), (87), and (88), by ηh,
∂tξ

h, and ζh, respectively. Then, we sum up and integrate in time. There is a usual cancellation.
By adding the same contributions to both sides similarly as in the previous proof, we obtain

∫ t

0
‖Aρηh(s)‖2 ds +

∫ t

0
‖∂tξ

h(s)‖2 ds +
1
2
‖ξh(t)‖2

B, σ

+
1
2
‖ζh(t)‖2 +

∫ t

0
‖ζh(s)‖2

C, τ ds

=
∫ t

0

(
Qh

1(s), ηh(s)− ζh(s)
)

ds−
∫ t

0

(
Qh

2(s), ∂tξ
h(s)

)
ds

+
∫ t

0

(
ξh(s), ∂tξ

h(s)
)

ds +
∫ t

0
‖ζh(s)‖2 ds . (93)

We have to estimate only the integrals involving Qh
1 and Qh

2. The first term produces four integrals,
termed Ij for j = 1, . . . , 4 for brevity, which correspond to the four summands, in that order, of (91).
Clearly, I1 is nonpositive. As for I2, we use the Hölder inequality and the embeddings (18) as well as
the estimate (51) applied with u1 = u + h and u2 = u. Hence, by omitting the integration variable s to
shorten the lines, we have, for every δ > 0,

I2 ≤ c
∫ t

0
‖ϕh − ϕ‖4

(‖Sh − S‖+ ‖μh − μ‖) (‖ηh‖4 + ‖ζh‖4
)

ds

≤ c
∫ t

0
‖ϕh − ϕ‖B, σ

(‖Sh − S‖+ ‖μh − μ‖) (‖ηh‖A, ρ + ‖ζh‖C, τ

)
ds

≤ δ
∫ t

0

(‖ηh‖2
A, ρ + ‖ζh‖2

C, τ

)
ds

+
c
δ
‖ϕh − ϕ‖2

L∞(0,T;Vσ
B )

(‖Sh − S‖2
L2(0,T;H) + ‖μh − μ‖2

L2(0,T;H)

)
≤ δ

∫ t

0

(‖ηh‖2
A, ρ + ‖ζh)‖2

C, τ

)
ds +

cR
δ
‖h‖4

L2(0,T;H) .

Next, by also accounting for (49) applied to μ and S, we similarly have that

I3 ≤ c
∫ t

0
‖S− μ‖4 ‖ξh‖4

(‖ηh‖+ ‖ζh‖) ds

≤ c
∫ t

0

(‖S‖C, τ + ‖μ‖A, ρ

)‖ξh‖B, σ

(‖ηh‖+ ‖ζh‖) ds

≤ δ
∫ t

0
‖ηh‖2 ds + cR

(
1 + δ−1) ∫ t

0

(‖ξh‖2
B,σ + ‖ζh‖2) ds

and for the fourth contribution, thanks to (92), we obtain that

I4 ≤ cR

∫ t

0
‖S− μ‖4 ‖ϕh − ϕ‖2

4 ‖ηh − ζh‖4 ds

≤ cR

∫ t

0

(‖S‖C, τ + ‖μ‖A, ρ

) ‖ϕh − ϕ‖2
B, σ

(‖ηh‖A, ρ + ‖ζh‖C, τ

)
ds

≤ δ
∫ t

0

(‖ηh‖2
A, ρ + ‖ζh‖2

C, τ

)
ds +

cR
δ
‖h‖4

L2(0,T;H) .
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Finally, we estimate the term involving Qh
2 by accounting for (90) and (92) in this way:

−
∫ t

0
(Qh

2, ∂tξ
h) ds = −

∫ t

0

(
f ′(ϕ)ξh + Rh

2 (ϕh − ϕ)2, ∂tξ
h) ds

≤ cR

∫ t

0
‖ξh‖ ‖∂tξ

h‖ ds + cR

∫ t

0
‖ϕh − ϕ‖2

4 ‖∂tξ
h‖ ds

≤ δ
∫ t

0
‖∂tξ

h‖2 ds +
cR
δ

∫ t

0
‖ξh‖2 ds +

cR
δ
‖h‖4

L2(0,T;H) .

By treating the last two terms of (93) in a trivial way, recalling all the inequalities derived above,
choosing δ > 0 small enough, and applying the Gronwall lemma, we conclude that

‖ηh‖L2(0,T;Vρ
A)

+ ‖ξh‖H1(0,T;H)∩L∞(0,T;Vσ
B )

+ ‖ζh‖L∞(0,T;H)∩L2(0,T;Vτ
C )
≤ cR ‖h‖2

L2(0,T;H) .

If we term CR the value of the constant cR of the last inequality, then we obtain (85) with Λ defined
on (0, h) by Λ(s) := CR s2. This completes the proof.

4. The Control Problem

As announced in the Introduction, the main aim of this paper is the discussion of a control
problem for the state system studied in the previous sections. For this problem, we assume that

κi ≥ 0, for i = 1, . . . , 5, ϕQ , SQ ∈ L2(Q), and ϕΩ , SΩ ∈ L2(Ω), (94)

umin , umax ∈ L∞(Q), and umin ≤ umax a.e. in Q. (95)

Then, the cost functional J and the set Uad of the admissible controls are defined by

J (u, ϕ, S) :=
κ1

2

∫
Q
|ϕ− ϕQ|2 + κ2

2

∫
Ω
|ϕ(T)− ϕΩ|2

+
κ3

2

∫
Q
|S− SQ|2 + κ4

2

∫
Ω
|S(T)− SΩ|2 + κ5

2

∫
Q
|u|2 (96)

Uad := {u ∈ L2(0, T; H) : umin ≤ u ≤ umax a.e. in Q} (97)

and the control problem is the following:

Minimize J (u, ϕ, S) under the constraints that u ∈ Uad and

(μ, ϕ, S) is the solution to (32)–(35) corresponding to u. (98)

For the above problem, we prove the existence of an optimal control, and we derive the
first-order necessary conditions for optimality. This involves an adjoint problem for which we prove
a well-posedness result. We recall that the control-to-state mapping S is defined in (64) and state our
first result.

Theorem 6. Under the assumptions (94)–(95), the control problem has at least one solution, that is, there is
some u ∈ Uad satisfying the following condition: for every v ∈ Uad we have that J (u, ϕ, S) ≤ J (v, ϕ, S),
where (ϕ, S) = S(u) and (ϕ, S) = S(v).

Proof. Since Uad is nonempty, the infimum of J under the constraints given in (98) is a well-defined
real number d ≥ 0, and we can pick a minimizing sequence {un} ⊂ Uad. Hence, denoting by
(μn, ϕn, Sn) the state corresponding to un for n ∈ N, we have that J (un, ϕn, Sn) → d as n → ∞.
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Since Uad is bounded and closed in L2(0, T; H) (in fact, it is even bounded and closed in L∞(Q)),
we can assume that

un → u weakly in L2(0, T; H) (99)

for some u ∈ Uad. Moreover, we can choose some R > 0 such that Uad ⊂ BR. Therefore, we can apply
Theorem 3 to un and deduce that (μn, ϕn, Sn) satisfies the estimate (49), as well as the separation and
global boundedness properties (50) and (66), for all n ∈ N. Hence, for a subsequence indexed again by
n, we have that

μn → μ weakly star in L∞(0, T; V2ρ
A ), (100)

ϕn → ϕ weakly star in W1,∞(0, T; H) ∩ H1(0, T; Vσ
B ) ∩ L2(0, T; V2σ

B ), (101)

Sn → S weakly star in H1(0, T; H) ∩ L∞(0, T; Vτ
C ) ∩ L2(0, T; V2τ

C ) . (102)

It follows that the initial conditions (35) are satisfied by the limiting pair (ϕ, S).
Moreover, thanks to the compact embedding Vσ

B ⊂ H ensured by (7), and consequently of H1(0, T; Vσ
B )

into L2(0, T; H), we deduce that

ϕn → ϕ strongly in L2(0, T; H).

Since f and P are Lipschitz continuous in [aR, bR], we also infer that

f (ϕn)→ f (ϕ) and P(ϕn)→ P(ϕ), strongly in L2(0, T; H).

It follows that (μ, ϕ) solves (33). From the above strong convergence and the weak convergence
of {μn} and {Sn} at least in L2(0, T; H), we deduce that {P(ϕn)(Sn − μn)} converges to P(ϕ)(S− μ)

weakly in L1(Q). Hence, the limiting triplet (μ, ϕ, S) satisfies Equations (32) and (34) as well,
i.e., (μ, ϕ, S) is the state corresponding to the control u. On the other hand, we have that

J (u, ϕ, S) ≤ lim inf
n↗∞

J (un, ϕn, Sn) = d

by semicontinuity. We conclude that u is an optimal control.

The rest of the section is devoted to the derivation of the first-order necessary conditions for
optimality. Hence, we fix an optimal control u ∈ Uad and the corresponding (μ, ϕ, S) once and for all.
If we introduce the so-called reduced cost functional J̃ by setting

J̃ (u) := J (u,S2(u),S3(u)) for u ∈ L2(0, T; H),

we immediately find from the convexity of Uad that the Fréchet derivative (DJ̃ )(u) ∈ L(L2(0, T; H);R)
must satisfy

(DJ̃ )(u)[v− u] ≥ 0 for every v ∈ Uad,

provided that it exists. However, this is the case due to the obvious differentiability of the quadratic
functional J and the differentiability of the operator S , which takes its values in Y ⊂ (C0([0, T]; H))2.
Hence, by accounting for the full statement of Theorem 5, we can even apply the chain rule and rewrite
the above inequality as

κ1

∫
Q
(ϕ− ϕQ)ξ + κ2

∫
Ω
(ϕ(T)− ϕΩ)ξ(T) + κ3

∫
Q
(S− SQ)ζ

+ κ4

∫
Ω
(S(T)− SΩ)ζ(T) + κ5

∫
Q

u(v− u) ≥ 0 for every v ∈ Uad, (103)
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where ξ and ζ are the components of the solution (η, ξ, ζ) to the linearized system (67)–(70) associated
with u and h = v− u.

As usual in control problems, a condition of this sort is not satisfactory, since it requires solving
the linearized problem for infinitely many choices of h ∈ L2(0, T; H) because v is arbitrary in Uad.
Therefore, we have to eliminate ξ and ζ from (103), which can be done by introducing and solving
a proper adjoint problem. This is a backward-in-time problem for the adjoint state variables (q, p, r)
that formally reads as follows:

A2ρq− p + P(ϕ)(q− r) = 0, (104)

− ∂t(q + p) + B2σ p + f ′(ϕ) p− P′(ϕ)(S− μ)(q− r) = κ1(ϕ− ϕQ), (105)

− ∂tr + C2τr− P(ϕ)(q− r) = κ3(S− SQ), (106)

(q + p)(T) = κ2(ϕ(T)− ϕΩ) and r(T) = κ4(S(T)− SΩ). (107)

However, in order to give this system a proper meaning according to the regularity that we will
prove, we need some preliminaries. First, due to the density of Vσ

B in H, we can identify H with
a subspace of the dual space V−σ

B := (Vσ
B )
∗ of Vσ

B in such a way that 〈v, w〉 = (v, w) for every v ∈ H
and w ∈ Vσ

B , where 〈 · , · 〉 denotes the duality pairing between V−σ
B and Vσ

B . Now, thanks to the
obvious formula (B2σv, w) = (Bσv, Bσw), which holds for every v ∈ V2σ

B and w ∈ Vσ
B and, owing

to the above identification, can also be read in the form 〈B2σv, w〉 = (Bσv, Bσw), one can extend the
operator B2σ : V2σ

B → H to a continuous linear operator, still termed B2σ, from Vσ
B to V−σ

B by means of
the above formula, namely,

〈B2σv, w〉 = (Bσv, Bσw) for every v, w ∈ Vσ
B . (108)

At this point, it is meaningful to postulate the following regularity for the adjoint variables:

q ∈ L∞(0, T; V2ρ
A ), (109)

p ∈ L2(0, T; Vσ
B ) and ∂t(q + p) ∈ L2(0, T; V−σ

B ), (110)

r ∈ H1(0, T; H) ∩ L∞(0, T; Vτ
C ) ∩ L2(0, T; V2τ

C ). (111)

Indeed, then all of the equations, as well as the final conditions, have a precise meaning, by also
accounting for the properties of the other ingredients which we recall for the reader’s convenience:
P(ϕ), P′(ϕ), f ′(ϕ), and μ are bounded, and S ∈ H1(0, T; H) ∩ L∞(0, T; Vσ

B ), whence, in particular,
S ∈ L∞(0, T; L4(Ω)). However, we also consider a variational formulation of the adjoint system,
which makes sense in a much weaker regularity setting for (q, p, r), namely,

q ∈ L∞(0, T; Vρ
A), p ∈ L2(0, T; Vσ

B ), and r ∈ H1(0, T; H) ∩ L2(0, T; Vτ
C ). (112)
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We require that

∫ T

0

{(
Aρq, Aρv

)− (p, v) +
(

P(ϕ)(q− r), v)
}

ds = 0

for every v ∈ L2(0, T; Vρ
A), (113)∫ T

0

{
(q + p, ∂tv) + (Bσ p, Bσv) +

(
f ′(ϕ) p− P′(ϕ)(S− μ)(q− r), v

)}
ds

=
∫ T

0
(g1, v) ds +

(
g2, v(T)

)
for every v ∈ H1(0, T; H) ∩ L2(0, T; Vσ

B ) vanishing at t = 0, (114)∫ T

0

{
(−∂tr, v) + (Cτr, Cτv)− (P(ϕ)(q− r), v

)}
ds

=
∫ T

0
(g3, v) ds for every v ∈ L2(0, T; Vτ

C ), (115)

r(T) = g4, (116)

where we have introduced the abbreviating notation

g1 := κ1(ϕ− ϕQ), g2 := κ2(ϕ(T)− ϕΩ), g3 := κ3(S− SQ), g4 := κ4(S(T)− SΩ). (117)

In addition, for brevity, and in order to shorten the exposition, we have omitted the integration
time variable termed s. We will do the same in the following.

Clearly, (109)–(111) and (104)–(107) imply (112) and (113)–(116). In fact, these problems are
equivalent. The proof given below makes use of the Leibniz rule proved in (Lem. 4.5 [30]) (and well
known under slightly different assumptions), which we here state as a lemma.

Lemma 1. Let (V ,H,V∗) be a Hilbert triplet, and assume that

y ∈ H1(0, T;H) ∩ L2(0, T;V) and z ∈ H1(0, T;V∗) ∩ L2(0, T;H) . (118)

Then, the function t �→ (y(t), z(t))H is absolutely continuous on [0, T], and its derivative is given by

d
dt

(y, z)H = (y′, z)H + V∗〈z′, y〉V a.e. in (0, T), (119)

where ( · · )H and V∗〈 · · 〉V denote the inner product inH and the dual pairing between V∗ and V , respectively.

Lemma 2. Assume that (112) and (113)–(116) are valid. Then, (109)–(111) and (104)–(107) hold true as well.

Proof. We first notice that (113) implies the pointwise variational inequality

(
Aρq, Aρv

)
=
(

p− P(ϕ)(q− r), v
)

for every v ∈ Vρ
A and a.e. in (0, T).

On the other hand, the conditions w ∈ Vρ
A, g ∈ H, and (Aρw, Aρv) = (g, v) for every v ∈ Vρ

A,
imply that w ∈ V2ρ

A and A2ρw = g, as one immediately sees by using the spectral representation.
Hence, we obtain (109) and (104). The same argument can be used to deduce that r belongs to
L2(0, T; V2τ

C ) and solves (106), since even ∂tr belongs to L2(0, T; H) by assumption. The last condition
r ∈ L∞(0, T; Vτ

C ) in (111) then follows from interpolation.
Much more work has to be done for the second equations. First, for the same test functions v as

in (114), we deduce that

∫ T

0

{
(q + p, ∂tv) + 〈B2σ p, v〉} ds =

∫ T

0
(g, v) ds +

(
g2, v(T)

)
, (120)
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where, for brevity, we have set

g := g1 − f ′(ϕ) p + P′(ϕ)(S− μ)(q− r) .

We immediately infer that

∣∣∣∣
∫ T

0

(
q + p, ∂tv

)
ds
∣∣∣∣ ≤ ‖p‖L2(0,T;Vσ

B )
‖v‖L2(0,T;Vσ

B )

+ ‖g‖L2(0,T;H) ‖v‖L2(0,T;H) + ‖g2‖ ‖v(T)‖ .

In particular, we have for some constant c > 0 that

∣∣∣∣
∫ T

0

(
q + p, ∂tv

)
ds
∣∣∣∣ ≤ c ‖v‖L2(0,T;Vσ

B )
for every v ∈ C∞

c (0, T; Vσ
B ).

This exactly means that ∂t(q + p) ∈ (L2(0, T; Vσ
B ))
∗ = L2(0, T; V−σ

B ). Thus, we can replace the
expression (q + p, ∂tv) by −〈∂t(q + p), v〉 in (120), provided that v ∈ C∞

c (0, T; Vσ
B ). The variational

equation we obtain is just (105) understood in the sense of V−σ
B .

It remains to derive the first of the final conditions (107). To this end, we also assume that
v(0) = 0 and exploit (120) once more. Moreover, we can apply Lemma 1 with V = Vσ

B , H = H,
y = v, and z = q + p, since v ∈ H1(0, T; H) ∩ L2(0, T; Vσ

B ) and q + p ∈ H1(0, T; V−σ
B ) ∩ L2(0, T; H).

Finally, we account for the already proved Equation (105). We then obtain that

∫ T

0
(g, v) ds +

(
g2, v(T)

)
=
∫ T

0
(q + p, ∂tv) ds +

∫ T

0
(Bσ p, Bσv) ds

=
∫ T

0

{−〈∂t(q + p), v〉+ 〈B2σ p, v〉} ds + 〈(q + p)(T), v(T)〉

=
∫ T

0
(g, v) ds + 〈(q + p)(T), v(T)〉 .

Therefore, we have that
(
(q + p)(T), v(T)

)
=
(

g2, v(T)
)

for every v with the required properties,
and the desired final condition obviously follows.

Thus, we can choose between the strong form (104)–(107) and the weak formulation (113)–(116),
according to our convenience, in proving a well-posedness result, which is our next goal.
We prepare the existence part by introducing a Faedo–Galerkin scheme with viscosity that looks
like an approximation of (104)–(107). We recall (8) on the eigenvalues and the eigenvectors of the
operators and set, for every integer n > 1,

V(n)
A := span{e1, . . . , en}, V(n)

B := span{e′1, . . . , e′n}, and V(n)
C := span{e′′1 , . . . , e′′n} .

Then, we look for a triplet (qn, pn, rn) satisfying

qn ∈ H1(0, T; V(n)
A ), pn ∈ H1(0, T; V(n)

B ), and rn ∈ H1(0, T; V(n)
C ), (121)

and solving the system

(− 1
n ∂tqn + A2ρqn − pn + P(ϕ)(qn − rn), v

)
= 0 for every v ∈ V(n)

A and a.e. in (0, T), (122)(−∂t(qn + pn) +
(

B2σ pn + f ′(ϕ)pn − P′(ϕ)(S− μ)(qn − rn), v
)

= (g1, v) for every v ∈ V(n)
B and a.e. in (0, T), (123)
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(−∂trn + C2τrn − P(ϕ)(qn − rn), v
)

= (g3, v) for every v ∈ V(n)
C and a.e. in (0, T), (124)

as well as the final conditions

(
qn(T), v

)
= 0,

(
(qn + pn)(T), v

)
=
(

g2, v
)
, and

(
rn(T), v

)
=
(

g4, v
)
,

for every v ∈ V(n)
A , v ∈ V(n)

B , and v ∈ V(n)
C , respectively. (125)

The following result holds true.

Proposition 1. System (122)–(125) has a unique solution (qn, pn, rn) satisfying the conditions (121).

Proof. The requirements (121) mean that

qn(t) =
n

∑
j=1

qn
j (t) ej pn(t) =

n

∑
j=1

pn
j (t) e′j and rn(t) =

n

∑
j=1

rn
j (t) e′′j

for a.a. t ∈ (0, T) and some functions qn
j , pn

j , rn
j ∈ H1(0, T). Moreover, an equivalent system is

obtained by taking for i = 1, . . . , n just v = ei , v = e′i , and v = e′′i , in the three variational equations,
respectively. Hence, (122)–(124) become an ODE system having the column vectors qn := (qn

j ),
pn := (pn

j ), and rn := (rn
j ), as unknowns. This system reads as follows:

n

∑
j=1

{
− 1

n
(ej, ei)

d
dt

qn
j + λ

2ρ
j (ej, ei)qn

j − (e′j, ei)pn
j

+
(

P(ϕ)ej, ei
)
qn

j −
(

P(ϕ)e′′j , ei
)
rn

j

}
= 0

n

∑
j=1

{
−(ej, e′i)

d
dt

qn
j − (e′j, e′i)

d
dt

pn
j + (λ′j)

2σ(e′j, e′i)pn
j +

(
f ′(ϕ)e′j, e′i

)
pn

j

− (P′(ϕ)(S− μ)ej, e′i
)
qn

j +
(

P′(ϕ)(S− μ)e′′j , e′i
)
rn

j

}
= (g1, e′i)

n

∑
j=1

{
−(e′′j , e′′i )

d
dt

rn
j + (λ′′j )

2τ(e′′j , e′′i )r
n
j

− (P(ϕ)ej, e′′i
)
qn

j +
(

P(ϕ)e′′j , e′′i
)
rn

j

}
= (g3, e′′i ),

where the index i runs over {1, . . . , n} in all of the equations, which are understood to hold a.e. in (0, T).
Thus, thanks to the orthogonality conditions in (8), it takes the form

− 1
n

q′n + M1 qn + M2 pn + M3 rn = 0

M4 q′n − p′n + M5 qn + M6 pn + M7 rn = b′n
− r′n + M8 qn + M9 rn = b′′n

for some (possibly time dependent, but bounded) (n × n) matrices Mk, k = 1, . . . , 9, and column
vectors b′n b′′n ∈ L2(0, T;Rn). Therefore, one can solve the first equation for q′n and replace q′n in
the second one by the resulting expression. At the same time, one multiplies the first equation
by n and keeps the third one as it is. This procedure leads to an equivalent system of the form
−y′ + My = b for some matrix M ∈ L∞(0, T;R3n×3n) and some vector b ∈ L2(0, T;R3n) in the
unknown y ∈ H1(0, T;R3n) obtained by rearranging the triplet (qn pn rn) as a 3n-column vector.
On the other hand, the final conditions (125) provide a final condition for y. Hence, standard results
for ODEs show the unique solvability.
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At this point, we are ready to solve the adjoint problem. We need, however, the following
additional compatibility condition:

It holds κ4 SΩ ∈ Vτ
C . (126)

Remark 5. The compatibility condition (126) is satisfied if either κ4 = 0 or SΩ ∈ Vτ
C . Obviously, κ4 = 0

means that we do not have a tracking of the solution variable S at the final time T; while this is not desirable,
it is not too much of a restriction, since one is rather interested in monitoring the final tumor fraction ϕ(T)
than S(T). On the other hand, the assumption SΩ ∈ Vτ

C is not overly restrictive in view of the fact that
S ∈ H1(0, T; H) ∩ L2(0, T; V2τ

C ), whence it follows that S ∈ C0([0, T]; Vτ
C ) by continuous embedding,

and thus S(T) ∈ Vτ
C . To assume the same regularity for SΩ is certainly not unreasonable.

We have the following result.

Theorem 7. Suppose that also (126) is fulfilled. Then, the adjoint system (104)–(107) has a unique solution
satisfying the regularity conditions (109)–(111).

Proof. In order to prove the existence of a solution, we start from the finite-dimensional problem
(122)–(125), perform an a priori estimate, and let n tend to infinity. In addition, in this section,
we simplify the notation as far as constants are concerned and use the same symbol c for different
constants that can depend only on the structure, the data, T, the optimal control u, and the
corresponding state (μ, ϕ, S).

A priori estimate. We write the Equations (122)–(124) at the time s and test them by −∂tqn(s),
pn(s), and −∂trn(s), respectively. Then, we sum up, integrate over (t, T) with respect to s, and notice
that the terms involving the product pn∂tqn cancel each other. Moreover, we add the same quantities∫ T

t ‖pn‖2 ds and (1/2)‖rn(t)‖2 =
∫ T

t (rn, ∂trn) ds to both sides in order to recover the full norms in the
spaces Vσ

B and Vτ
C . We then obtain the identity

1
n

∫ T

t
‖∂tqn‖2 ds +

1
2
‖Aρqn(t)‖2 +

1
2
‖pn(t)‖2 +

∫ T

t
‖pn‖2

B, σ ds

+
∫ T

t
‖∂trn‖2 ds +

1
2
‖rn(t)‖2

C, τ

=
∫ T

t

(
P(ϕ)(qn − rn)∂t(qn − rn)

)
ds +

∫ T

t

(
P′(ϕ)(S− μ)(qn − rn), pn) ds

−
∫ T

t

(
f ′(ϕ)pn, pn) ds +

∫ T

t
(g1, pn) ds−

∫ T

t
(g3, ∂trn) ds

+
1
2
‖Aρqn(T)‖2 +

1
2
‖pn(T)‖2 +

1
2
‖rn(T)‖2

C, τ

+
∫ T

t
‖pn‖2 ds +

∫ T

t
(rn, ∂trn) ds. (127)

At first, we exploit the endpoint conditions (125). Obviously, qn(T) = 0, which entails that
Aρqn(T) = 0, as well as (pn(T), v) = (g2, v) for all v ∈ V(n)

B . The latter identity just means that

pn(T) is the H-orthogonal projection of g2 onto V(n)
B , which implies that ‖pn(T)‖ ≤ ‖g2‖ for all

n ∈ N. By the same token, we can infer that ‖rn(T)‖ ≤ ‖g4‖ for all n ∈ N. Finally, we insert
v = C2τrn(T) ∈ V(n)

C in the last identity in (125). Recalling that S ∈ C0([0, T]; Vτ
C ), and by virtue

of (126), we infer that g4 ∈ Vτ
C . We thus find that

∥∥Cτrn(T)
∥∥2

=
(
rn(T), C2τrn(T)

)
=
(

g4, C2τrn(T)
)
=
(
Cτ g4, Cτrn(T)

)
,
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whence we infer that ‖Cτrn(T)‖ ≤ ‖Cτ g4‖. In conclusion, we have shown the estimate
‖rn(T)‖C,τ ≤ ‖g4‖C,τ for all n ∈ N.

Next, we consider the first two terms on the right-hand side, which we denote by Y1 and Y2.
We only need to estimate these terms, since the remaining other ones can easily be handled using
Young’s inequality and, eventually, Gronwall’s lemma. As for Y1, we first integrate by parts, and one of
the important terms we obtain is nonpositive. Then, we account for the Hölder and Young inequalities,
the equivalence of norms in Vρ

A related to (22), and the embeddings (18) as follows:

Y1 =
1
2

∫ T

t

∫
Ω

P(ϕ) ∂t|qn − rn|2 dx ds =
1
2

∫
Ω

P(ϕ(T)) |qn(T)− rn(T)|2

− 1
2

∫
Ω

P(ϕ(t)) |qn(t)− rn(t)|2 −
∫ T

t

∫
Ω

P′(ϕ) ∂t ϕ |qn − rn|2

≤ c + c
∫ T

t
‖∂t ϕ‖4 (‖qn‖4 + ‖rn‖4)

2 ds ≤ c + c
∫ T

t

(‖Aρqn‖2 + ‖rn‖2
C, τ

)
ds .

Concerning Y2, we have that

Y2 ≤ c
∫ T

t
‖S− μ‖4 ‖qn − rn‖4 ‖pn‖4 ds

≤ 1
2

∫ T

t
‖pn‖2

B, σ ds + c
∫ T

t

(‖Aρqn‖2 + ‖rn‖2
C, τ

)
ds .

By treating the remaining terms on the right-hand side of (127) as announced before, and applying
the Gronwall lemma, we conclude that

1√
n
‖∂tqn‖2

L2(0,T;H) + ‖qn‖L∞(0,T;Vρ
A)

+ ‖pn‖L∞(0,T;H)∩L2(0,T;Vσ
B )

+ ‖rn‖H1(0,T;H)∩L∞(0,T;Vτ
C )
≤ c . (128)

Existence. The above estimate ensures that, for a subsequence again indexed by n,

1
n

∂tqn → 0 strongly in L2(0, T; H), (129)

qn → q weakly star in L∞(0, T; Vρ
A), (130)

pn → p weakly star in L∞(0, T; H) ∩ L2(0, T; Vσ
B ), (131)

rn → r weakly star in H1(0, T; H) ∩ L∞(0, T; Vτ
C ). (132)

We aim at proving that (q, p, r) is the desired solution to the weak form (113)–(116) of the
adjoint problem. Clearly, (116) is satisfied, and we have to prove that the variational equations
are satisfied as well. We confine ourselves to the second equation, which is the most complicated
one. To this end, we write an integrated version of (123). We fix any integer m > 1, take any
v ∈ H1(0, T; H)∩ L2(0, T; V(m)

B ) vanishing at t = 0, and assume that n ≥ m. Then V(m)
A ⊂ V(n)

A , so that
v(s) is admissible in (123) written at the time s, and we can test the equation in the inner product
of H. Moreover, we replace (B2σ pn(s), v(s)) by (Bσ pn(s), Bσv(s)). Then, we integrate over (0, T) with
respect to s. Now, we observe that v(T) is admissible in the second identity of (125). Thus, by an
integration by parts, we obtain that

∫ T

0

{
(qn + pn, ∂tv) + (Bσ pn, Bσv) +

(
f ′(ϕ) pn − P′(ϕ)(S− μ)(qn − rn), v

)}
ds

=
∫ T

0
(g1, v) ds +

(
g2, v(T)

)
.
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Since n ≥ m is arbitrary, we can let n tend to infinity by using (130)–(132). Concerning, e.g.,
the worst term, we recall that S and μ belong to L∞(0, T; L4(Ω)) and observe that qn and rn converge
to q and r, respectively, also weakly in L2(0, T; L4(Ω)). Hence, we have that

P′(ϕ)(S− μ)(qn − rn)→ P′(ϕ)(S− μ)(q− r) weakly in L2(0, T; H).

As the other terms are easier, we conclude that (114) holds for such a function v. At this point,
we fix any v ∈ H1(0, T; H) ∩ L2(0, T; Vσ

B ) vanishing at t = 0 and define vm by setting

vm(t) :=
m

∑
j=1

(v(t), e′j)e
′
j for t ∈ [0, T].

Then, vm belongs to H1(0, T; H) ∩ L2(0, T; V(m)
B ) and vanishes at t = 0. Hence, we can use it

in the equality just obtained. As m is arbitrary, we can take the limit as m → ∞. By noting that vm

converges even strongly to v in H1(0, T; H) ∩ L2(0, T; Vσ
B ), we conclude that (114) is satisfied for such

a v. By similarly reasoning for the other equations, we can conclude. Hence, the existence part of the
statement is proved.

Uniqueness. By linearity, we can assume that all the right-hand sides of the strong
formulation (104)–(107) vanish, so that the problem becomes

A2ρq− p + P(ϕ)(q− r) = 0, (133)

− ∂t(q + p) + B2σ p + f ′(ϕ) p− P′(ϕ)(S− μ)(q− r) = 0, (134)

− ∂tr + C2τr− P(ϕ)(q− r) = 0, (135)

(q + p)(T) = 0 and r(T) = 0. (136)

We cannot adapt the argument used to arrive at (128), since no information for ∂tq is available
now. Thus, we proceed in a different way. With the notation

(1 ∗ v)(t) :=
∫ T

t
v(s) ds for a.a. t ∈ (0, T) and every v ∈ L1(0, T; H),

we integrate (for a.a. t ∈ (0, T)) (134) over (t, T) and obtain a.e. in (0, T)

q + p + B2σ(1 ∗ p) = 1 ∗ (P′(ϕ)(S− μ)(q− r)
)− 1 ∗ ( f ′(ϕ) p

)
. (137)

At this point, we test (133) by q, (137) by p, and (135) by r, sum up, and integrate
over (t, T). The terms involving the product p q cancel each other. We also add the same quantities
(1/2)‖(1 ∗ p)(t)‖2 =

∫ T
t p(1 ∗ p) ds and

∫ T
t ‖r‖2 ds to both sides and obtain

∫ T

t
‖Aρq‖2 ds +

∫ T

t

(
P(ϕ)(q− r), q− r

)
ds +

∫ T

t
‖p‖2 ds +

1
2
‖(1 ∗ p)(t)‖2

B, σ

+
1
2
‖r(t)‖2 +

∫ T

t
‖r‖2

C, τ ds

=
∫ T

t

(
1 ∗ (P′(ϕ)(S− μ)(q− r)− f ′(ϕ) p

)
, p
)

ds

+
∫ T

t
p(1 ∗ p) ds +

∫ T

t
‖r‖2 ds . (138)

All of the terms on the left-hand side are nonnegative. Now, we treat the first integral on the
right-hand side, which we term Y. We first integrate by parts. Then, we owe to Young’s inequality and
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to the obvious inequality ‖(1 ∗ v)(t)‖2 ≤ T
∫ T

t ‖v(s)‖2 ds, which holds true for every t ∈ [0, T] and
every v ∈ L2(0, T; H). We set, for brevity, w := P′(ϕ)(S− μ)(q− r)− f ′(ϕ)p and observe that

Y ≤ 1
4

∫ T

t
‖p‖2 ds +

∫ T

t
‖1 ∗ w‖2 ds

≤ 1
4

∫ T

t
‖p‖2 ds +

∫ T

t
T
∫ T

s
‖w‖2ds′ ds.

On the other hand, we recall (18), (22) and the regularity L∞(0, T; L4(Ω)) of S and μ. We thus
deduce that

∫ T

s
‖w‖2ds′ ≤ ‖P′(ϕ)‖2

∞

∫ T

s
‖S− μ‖2

4 ‖q− r‖2
4ds′ + ‖ f ′(ϕ)‖2

∞

∫ T

s
‖p‖2ds′

≤ c
∫ T

s

(
‖Aρq‖2 + ‖r‖2

C, τ + ‖p‖2
)

ds′,

whence

Y ≤ 1
4

∫ T

t
‖p‖2 ds +

∫ T

t
c
(∫ T

s

(
‖Aρq‖2 + ‖p‖2 + ‖r‖2

C, τ

)
ds′
)

ds. (139)

Therefore, coming back to (138) and estimating the second integral on the right-hand side as

∫ T

t
p(1 ∗ p) ds ≤ 1

4

∫ T

t
‖p‖2 ds +

∫ T

t
‖1 ∗ p‖2 ds

and then applying the Gronwall lemma, we easily conclude that (q, p, r) = (0, 0, 0).

Now that the adjoint problem is solved, we can rewrite the variational inequality (103) in a much
better form. Indeed, we have the following result.

Theorem 8. Under the assumptions (94)–(95) and (126), let u ∈ Uad be an optimal control, and let (q, p, r) be
the solution to the associated adjoint problem (104)–(107). Then, it holds

∫
Q
(r + κ5u)(v− u) ≥ 0 for every v ∈ Uad. (140)

In particular, if κ5 > 0, then u is the projection of −r/κ5 on Uad in the sense of the space L2(Q) with its
standard inner product. That is, it is given by

u = min{umax, max{umin,−r/κ5}} a.e. in Q .

Proof. We fix v ∈ Uad and consider the linearized system with h = v− u. Now, we observe that the
regularity (109)–(111) is suitable for integrating over (0, T) the equations (67), (68), and (69), tested by
q(t), p(t), and r(t), respectively. By doing this, rearranging and summing up, we obtain (as before in
this section, we omit the integration variable, which we term s for uniformity)

∫ T

0

{(
∂tξ, q

)
+
(

Aρη, Aρq
)− (P(ϕ)(ζ − η), q

)− (P′(ϕ) ξ (S− μ), q
)}

ds

+
∫ T

0

{(
∂tξ, p

)
+
(

Bσξ, Bσ p
)
+
(

f ′(ϕ) ξ, p
)− (η, p

)}
ds

+
∫ T

0

{(
∂tζ, r

)
+
(
Cτζ, Cτr

)
+
(

P(ϕ)(ζ − η), r
)
+
(

P′(ϕ) ξ (S− μ), r
)}

ds

=
∫ T

0

(
v− u, r

)
ds .
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At the same time, we take v = −η in (113), v = −ξ in (114), v = −ζ in (115), respectively, and note
that all the three test functions are admissible in their equations. Then, we sum up, rearrange, and get

∫ T

0

{−(Aρq, Aρη
)
+ (p, η)− (P(ϕ)(q− r), η)

}
ds

+
∫ T

0

{−(q + p, ∂tξ)− (Bσ p, Bσξ)− ( f ′(ϕ) p− P′(ϕ)(S− μ)(q− r), ξ
)}

ds

+
∫ T

0

{
(∂tr, ζ)− (Cτr, Cτζ) +

(
P(ϕ)(q− r), ζ

)}
ds

= −
∫ T

0
(g1, ξ) ds− (g2, ξ(T)

)− ∫ T

0
(g3, ζ) ds .

Next, we add the identities just obtained to each other. Several cancellations occur, and what
remains is just the following identity:

∫ T

0
{(∂tζ, r) + (∂tr, ζ)} ds =

∫ T

0

(
v− u, r

)
ds−

∫ T

0
(g1, ξ) ds− (g2, ξ(T)

)− ∫ T

0
(g3, ζ) ds .

At this point, we observe that the left-hand side equals (g4, ζ(T)) by (116), so that the above
identity becomes

∫ T

0
(g1, ξ) ds +

(
g2, ξ(T)

)
+
∫ T

0
(g3, ζ) ds +

(
g4, ζ(T)

)
=
∫ T

0

(
v− u, r

)
ds .

Hence, by recalling the notation (117), and comparing with (103), we obtain (140).

5. Conclusions

In this paper, we analyzed a system of three evolution equations involving fractional operators
and nonlinearities. This system turns out to be a generalization of a Cahn–Hilliard type phase field
system modeling tumor growth. Actually, we considered the distributed control problem in terms
of the control in the third equation, by dealing with a tracking-type cost functional. We discussed
separation properties, continuous dependence with respect to the control, and well-posedness results
for the state system (cf. Theorems 1–3). Then, we introduced the linearized problem and showed its
solvability by Theorem 4. The Fréchet differentiability of the control-to-state operator, with the Fréchet
derivative mapping the increment into the solution of the linearized problem, has been established by
Theorem 5. The existence of solutions to the optimal control problem has been the subject of Theorem 6.
Finally, the associated adjoint system has been introduced and its well-posedness has been proved (see
Theorem-7), then the first-order necessary conditions of optimality have been derived in a simple and
clear form, as stated in Theorem 8.

Author Contributions: Conceptualization, P.C., G.G. and J.S.; Methodology, P.C., G.G. and J.S.; Software, P.C.,
G.G. and J.S.; Validation, P.C., G.G. and J.S.; Formal Analysis, P.C., G.G. and J.S.; Investigation, P.C., G.G. and J.S.;
Resources, P.C., G.G. and J.S.; Data Curation, P.C., G.G. and J.S.; Writing—Original Draft Preparation, P.C., G.G.
and J.S.; Writing—Review & Editing, P.C., G.G. and J.S.; Visualization, P.C., G.G. and J.S.; Supervision, P.C., G.G.
and J.S.; Project Administration, P.C., G.G. and J.S.; Funding Acquisition, P.C., G.G. and J.S.

Funding: This research received no external funding.

Acknowledgments: This research was partly supported by the Italian Ministry of Education, University
and Research (MIUR): Dipartimenti di Eccellenza Program (2018–2022)—Dept. of Mathematics “F. Casorati”,
University of Pavia. In addition, P.C. and C.G. gratefully acknowledge some other support from the GNAMPA
(Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale
di Alta Matematica).

Conflicts of Interest: The authors declare no conflict of interest.

145



Mathematics 2019, 7, 792

References

1. Colli, P.; Gilardi, G.; Sprekels, J. Well-posedness and regularity for a fractional tumor growth model.
Adv. Math. Sci. Appl. 2019, 28, 343–375.

2. Cristini, V.; Li, X.; Lowengrub, J.S.; Wise, S.M. Nonlinear simulations of solid tumor growth using a mixture
model: Invasion and branching. J. Math. Biol. 2009, 58, 723–763. [CrossRef] [PubMed]

3. Cristini, V.; Lowengrub, J.S. Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical
Modeling Approach; Cambridge University Press: Leiden, The Netherlands, 2010.

4. Hawkins-Daarud, A.; Prudhomme, S.; van der Zee, K.G.; Oden, J.T. Bayesian calibration,
validation, and uncertainty quantification of diffuse interface models of tumor growth. J. Math. Biol.
2013, 67, 1457–1485. [CrossRef] [PubMed]

5. Hawkins-Daruud, A.; van der Zee, K.G.; Oden, J.T. Numerical simulation of a thermodynamically consistent
four-species tumor growth model. Int. J. Numer. Math. Biomed. Eng. 2012, 28, 3–24. [CrossRef]

6. Oden, J.T.; Hawkins, A.; Prudhomme, S. General diffuse-interface theories and an approach to predictive
tumor growth modeling. Math. Models Methods Appl. Sci. 2010, 20, 477–517. [CrossRef]

7. Wise, S.M.; Lowengrub, J.S.; Frieboes, H.B.; Cristini, V. Three-dimensional multispecies nonlinear tumor
growth-I: Model and numerical method. J. Theor. Biol. 2008, 253, 524–543. [CrossRef]

8. Wu, X.; van Zwieten, G.J.; van der Zee, K.G. Stabilized second-order splitting schemes for Cahn–Hilliard
models with applications to diffuse-interface tumor-growth models, Int. J. Numer. Meth. Biomed. Eng. 2014,
30, 180–203. [CrossRef]

9. Dai, M.; Feireisl, E.; Rocca, E.; Schimperna, G.; Schonbek, M. Analysis of a diffuse interface model of
multi-species tumor growth. Nonlinearity 2017, 30, 1639–1658. [CrossRef]

10. Ebenbeck, M.; Garcke, H. Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis.
J. Differ. Equ. 2019, 266, 5998–6036. [CrossRef]

11. Frigeri, S.; Lam, K.F.; Rocca, E.; Schimperna, G. On a multi-species Cahn–Hilliard–Darcy tumor growth
model with singular potentials. Commun. Math. Sci. 2018, 16, 821–856. [CrossRef]

12. Garcke, H.; Lam, K.F. Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system
modelling tumour growth. AIMS Math. 2016, 1, 318–360. [CrossRef]

13. Garcke, H.; Lam, K.F. Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis
and active transport. Eur. J. Appl. Math. 2017, 28, 284–316. [CrossRef]

14. Garcke, H.; Lam, K.F. Analysis of a Cahn–Hilliard system with non–zero Dirichlet conditions modeling
tumor growth with chemotaxis. Discret. Contin. Dyn. Syst. 2017, 37, 4277–4308. [CrossRef]

15. Garcke, H.; Lam, K.F. On a Cahn–Hilliard–Darcy system for tumour growth with solution dependent
source terms. In Trends on Applications of Mathematics to Mechanics; Rocca, E., Stefanelli, U., Truskinovski, L.,
Visintin, A., Eds.; Springer INdAM Series; Springer: Cham, Switzerland, 2018; Volume 27, pp. 243–264.

16. Garcke, H.; Lam, K.F.; Nürnberg, R.; Sitka, E. A multiphase Cahn–Hilliard–Darcy model for tumour growth
with necrosis. Math. Models Methods Appl. Sci. 2018, 28, 525–577. [CrossRef]

17. Garcke, H.; Lam, K.F.; Sitka, E.; Styles, V. A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis
and active transport. Math. Models Methods Appl. Sci. 2016, 26, 1095–1148. [CrossRef]

18. Sprekels, J.; Wu, H. Optimal distributed control of a Cahn–Hilliard–Darcy system with mass sources.
Appl. Math. Optim. 2019, 1–42. [CrossRef]

19. Conti, M.; Giorgini, A. The three-dimensional Cahn–Hilliard–Brinkman system with unmatched densities.
HAL 2018, 1–34.

20. della Porta, F.; Giorgini, A.; Grasselli, M. The nonlocal Cahn–Hilliard–Hele–Shaw system with logarithmic
potential. Nonlinearity 2018, 31, 4851–4881. [CrossRef]

21. Cavaterra, C.; Rocca, E.; Wu, H. Long-time dynamics and optimal control of a diffuse interface model for
tumor growth. Appl. Math. Optim. 2019, 1–49. [CrossRef]

22. Colli, P.; Gilardi, G.; Hilhorst, D. On a Cahn–Hilliard type phase field system related to tumor growth.
Discret. Contin. Dyn. Syst. 2015, 35, 2423–2442. [CrossRef]

23. Colli, P.; Gilardi, G.; Rocca, E.; Sprekels, J. Vanishing viscosities and error estimate for a Cahn–Hilliard type
phase field system related to tumor growth. Nonlinear Anal. Real World Appl. 2015, 26, 93–108. [CrossRef]

24. Colli, P.; Gilardi, G.; Rocca, E.; Sprekels, J. Optimal distributed control of a diffuse interface model of tumor
growth. Nonlinearity 2017, 30, 2518–2546. [CrossRef]

146



Mathematics 2019, 7, 792

25. Colli, P.; Gilardi, G.; Rocca, E.; Sprekels, J. Asymptotic analyses and error estimates for a Cahn–Hilliard type
phase field system modelling tumor growth. Discret. Contin. Dyn. Syst. Ser. S 2017, 10, 37–54. [CrossRef]

26. Frigeri, S.; Grasselli, M.; Rocca, E. On a diffuse interface model of tumor growth. Eur. J. Appl. Math. 2015, 26,
215–243. [CrossRef]

27. Miranville, A.; Rocca, E.; Schimperna, G. On the long time behavior of a tumor growth model. J. Differ. Equ.
2019, 267, 2616–2642. [CrossRef]

28. Ainsworth, M.; Mao, Z. Analysis and approximation of a fractional Cahn–Hilliard equation. SIAM J.
Numer. Anal. 2017, 55, 1689–1718. [CrossRef]

29. Akagi, G.; Schimperna, G.; Segatti, A. Fractional Cahn–Hilliard, Allen–Cahnn, and porous medium equations.
J. Differ. Equ. 2016, 261, 2935–2985. [CrossRef]

30. Colli, P.; Gilardi, G.; Sprekels, J. Well-posedness and regularity for a generalized fractional Cahn–Hilliard
system. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 2019, 30, 437–478.

31. Colli, P.; Gilardi, G.; Sprekels, J. Optimal distributed control of a generalized fractional Cahn–Hilliard system,
Appl. Math. Optim. 2019, 1–39. [CrossRef]

32. Colli, P.; Gilardi, G.; Sprekels, J. Deep quench approximation and optimal control of general Cahn–Hilliard
systems with fractional operators and double-obstacle potentials, arXiv 2018, arXiv:1812.01675.

33. Colli, P.; Gilardi, G.; Sprekels, J. Longtime behavior for a generalized Cahn–Hilliard system with fractional
operators. arXiv 2019, arXiv:1904.00931.

34. Gal, C.G. On the strong-to-strong interaction case for doubly nonlinear Cahn–Hilliard equations.
Discret. Contin. Dyn. Syst. 2017, 37, 131–167. [CrossRef]

35. Gal, C.G. Non-local Cahn–Hilliard equations with fractional dynamic boundary conditions. Eur. J. Appl. Math.
2017, 28, 736–788. [CrossRef]

36. Gal, C.G. Doubly nonlinear Cahn–Hilliard equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 2018, 35,
357–392. [CrossRef]

37. Colli, P.; Gilardi, G. Well-posedness, regularity and asymptotic analyses for a fractional phase field system.
Asymptot. Anal. 2019, 114, 93–128. [CrossRef]

38. Colli, P.; Gilardi, G.; Sprekels, J. Asymptotic analysis of a tumor growth model with fractional operators.
arXiv 2019, arXiv:1908.10651.

39. Estrada-Rodriguez, G.; Gimperlein, H.; Painter, K.J.; Stocek, J. Space-time fractional diffusion in cell
movement models with delay. Math. Models Methods Appl. Sci. 2019, 29, 65–88. [CrossRef]

40. Baeumer, B.; Kovács, M.; Meerschaert, M.M. Numerical solutions for fractional reaction-diffusion equations.
Comput. Math. Appl. 2008, 55, 2212–2226. [CrossRef]

41. Chandra, S.K.; Bajpai, M.K. Mesh free alternate directional implicit method based three-dimensional
super-diffusive model for benign brain tumor segmentation. Comput. Math. Appl. 2019, 77, 3212–3223.
[CrossRef]

42. Evangelista, L.R.; Lenzi, E.K. Fractional Diffusion Equations and Anomalous Diffusion; Cambridge University
Press: Cambridge, UK, 2018.

43. Granero-Belinchón, R. Global solutions for a hyperbolic-parabolic system of chemotaxis. J. Math. Anal. Appl.
2017, 449, 872–883. [CrossRef]

44. Ibrahim, R.W.; Nashine, H.K.; Kamaruddin, N. Hybrid time-space dynamical systems of growth bacteria
with applications in segmentation. Math. Biosci. 2017, 292, 10–17. [CrossRef] [PubMed]

45. Joshi, H.; Jha, B.K. Fractionally delineate the neuroprotective function of calbindin-D28k in Parkinson’s
disease. Int. J. Biomath. 2018, 11, 1850103. [CrossRef]

46. Karlsen, K.H.; Ulusoy, S. On a hyperbolic Keller–Segel system with degenerate nonlinear fractional diffusion.
Netw. Heterog. Media 2016, 11, 181–201. [CrossRef]

47. Massaccesi, A.; Valdinoci, E. Is a nonlocal diffusion strategy convenient for biological populations in
competition? J. Math. Biol. 2017, 74, 113–147. [CrossRef] [PubMed]

48. Sohail, A.; Arshad, S.; Javed, S.; Maqbool, K. Numerical analysis of fractional-order tumor model.
Int. J. Biomath. 2015, 8, 1550069. [CrossRef]

49. Sweilam, N.H.; Al-Mekhlafi, S.M. Optimal control for a nonlinear mathematical model of tumor under
immune suppression: A numerical approach. Optim. Control Appl. Methods 2018, 39, 1581–1596. [CrossRef]

50. Zhou, Y.; Shangerganesh, L.; Manimaran, J.; Debbouche, A. A class of time-fractional reaction-diffusion
equation with nonlocal boundary condition. Math. Methods Appl. Sci. 2018, 41, 2987–2999. [CrossRef]

147



Mathematics 2019, 7, 792

51. Colli, P.; Gilardi, G.; Sprekels, J. Optimal velocity control of a viscous Cahn–Hilliard system with convection
and dynamic boundary conditions, SIAM J. Control Optim. 2018, 56, 1665–1691. [CrossRef]

52. Colli, P.; Gilardi, G.; Marinoschi, G.; Rocca, E. Sliding mode control for a phase field system related to tumor
growth. Appl. Math. Optim. 2019, 79, 647–670. [CrossRef]

53. Ebenbeck, M.; Knopf, P. Optimal medication for tumors modeled by a Cahn–Hilliard–Brinkman equation.
arXiv 2018, arXiv:1811.07783.

54. Ebenbeck, M.; Knopf, P. Optimal control theory and advanced optimality conditions for a diffuse interface
model of tumor growth. arXiv 2019, arXiv:1903.00333.

55. Garcke, H.; Lam, K.F.; Rocca, E. Optimal control of treatment time in a diffuse interface model of tumor
growth. Appl. Math. Optim. 2018, 78, 495–544. [CrossRef]

56. Signori, A. Optimal distributed control of an extended model of tumor growth with logarithmic potential.
Appl. Math. Optim. 2019, 1–33. [CrossRef]

57. Signori, A. Optimality conditions for an extended tumor growth model with double obstacle potential via
deep quench approach. arXiv 2018, arXiv:1811.08626.

58. Signori, A. Optimal treatment for a phase field system of Cahn–Hilliard type modeling tumor growth by
asymptotic scheme. arXiv 2019, arXiv:1902.01079.

59. Signori, A. Vanishing parameter for an optimal control problem modeling tumor growth. arXiv 2019,
arXiv:1903.04930.

60. Lions, J.-L. Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires; Gauthier-Villars:
Paris, France, 1969.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

148



mathematics

Article

Analysis of a Model for Coronavirus Spread

Youcef Belgaid 1, Mohamed Helal 1 and Ezio Venturino 2,*,†

1 Laboratory of Biomathematics, Univ. Sidi Bel Abbes, P.B. 89, Sidi Bel Abbes 22000, Algeria;
youcef.belgaid@univ-sba.dz (Y.B.); mohamed.helal@univ-sba.dz (M.H.)

2 Dipartimento di Matematica “Giuseppe Peano”, Università di Torino, via Carlo Alberto 10,
10123 Torino, Italy

* Correspondence: ezio.venturino@unito.it; Tel.: +39-011-670-2833
† Member of the INdAM research group GNCS.

Received: 3 April 2020; Accepted: 15 May 2020; Published: 19 May 2020
��������	
�������

Abstract: The spread of epidemics has always threatened humanity. In the present circumstance of
the Coronavirus pandemic, a mathematical model is considered. It is formulated via a compartmental
dynamical system. Its equilibria are investigated for local stability. Global stability is established
for the disease-free point. The allowed steady states are an unlikely symptomatic-infected-free
point, which must still be considered endemic due to the presence of asymptomatic individuals;
and the disease-free and the full endemic equilibria. A transcritical bifurcation is shown to exist
among them, preventing bistability. The disease basic reproduction number is calculated. Simulations
show that contact restrictive measures are able to delay the epidemic’s outbreak, if taken at a very
early stage. However, if lifted too early, they could become ineffective. In particular, an intermittent
lock-down policy could be implemented, with the advantage of spreading the epidemics over a
longer timespan, thereby reducing the sudden burden on hospitals.

Keywords: dynamical systems; compartment model; epidemics; basic reproduction number; stability

MSC: 92D30; 92D25

1. Introduction

The coronavirus infection has been spreading for a few months. Authorities in several countries
have relied on scientific tools for fighting the epidemics. With the lack of a vaccine, distancing
methods have been forced on populations to avoid the transmission by direct contact. In laboratories,
possible vaccines are being developed, but at the moment they are still at the experimental stage [1].
Meanwhile several models, mathematical, statistical and computer-science-based, are being developed
to study the disease and contribute to fighting it.

Models for the spread of epidemics are classic, and an excellent presentation is [2]. In general,
the total population is partitioned into at least two classes, susceptibles and infectives, with migrations
from the former to the latter by disease propagation through direct or indirect contact, if the
disease is transmissible. Additionally, if it can be overcome but causes relapses, the infected can
become susceptible again, after maybe going through an intermediate class of being recovered.
More sophisticated versions include quarantined and exposed individuals. Some of these classes will
be considered also in the present study and illustrated in detail before the model formulation process.

In [3] the disease evolution forecast in several of the most affected countries is attempted, using
for that purpose, parameter estimation techniques to calibrate the model. The involved compartments
are susceptibles, asymptomatic individuals and symptomatic ones, which in turn are partitioned into
reported and unreported cases. In [4] a simple SIRI model is considered, in which the recovered could
still contribute to the disease spreading. The model is then extended to account for a possible vaccine,

Mathematics 2020, 8, 820; doi:10.3390/math8050820 www.mdpi.com/journal/mathematics149



Mathematics 2020, 8, 820

which, unfortunately, at present is not yet available, although several laboratories worldwide are trying
to develop and test it, as mentioned above. In [5] a dynamic model for the diffusion of Covid-19 has
been proposed. The transmission network is made by the bats–hosts–reservoir–people compartments;
compare also [1]. As it amounts to about 14 differential equations and 25 parameters, it is rather
complex. From it, the authors have obtained a simplified version, consisting of six compartments and
13 parameters. Then, the disease basic reproduction number has been calculated.

Our aim here is the mathematical analysis of a slightly modified version of the simpler model in [5].
The most important change accounts for the fact that asymptomatic people may indeed turn into fully
symptomatic and infectious individuals. This feature also distinguishes the system introduced here
from the one studied in [6], which, however, contains more compartments. The main aim of that study
is the forecast of the epidemic spread in various cities in China, considering, additionally, weather
data, which finally indicate that higher humidity favors the containment of a coronavirus epidemic.
Our focus in the first part of this investigation is the theoretical analysis of the proposed system,
and then we perform some preliminary simulations with realistic parameter values. More extended
simulations will be devoted to a subsequent study.

The analysis of dynamical systems usually considers the possible equilibria that can be attained,
assessing their feasibility and stability, and possible connections between them. For more details on
these issues we refer the reader to classical texts, such as [7–9].

The paper is organized as follows. The main findings are outlined in the next section, which also
discusses the results of numerical simulations. Section 3 contains an evaluation of their implications
under various distancing policies. We formulate the model in Section 4, where we also analyze it
mathematically, showing boundedness of the trajectories, establishing an expression for the disease
basic reproduction number, finding its equilibria and assessing their local stability, and global
stability is established just for the disease-free equilibrium. The section ends with the details on
the numerical simulations.

2. Results

2.1. Theoretical Findings

The main analytical findings of this investigation are summarized in Tables 1 and 2. The expressions
of BT, CT,HT, DT and R0 are given by Equations (3) and (6).

The model (1) allows only three possible equilibria; the disease-free state C0, where only susceptibles
thrive; an equilibrium without symptomatic infected, which occurs only for a very particular case,
when the exposed individuals become all asymptomatic infected; and finally, the endemic equilibrium
C∗. All these equilibria are locally asymptotically stable, if suitable, rather complicated conditions, hold.
Among the endemic and the disease-free equilibrium bistability is impossible, since they are related via
a transcritical bifurcation.

Table 1. Equilibria of the model (1) and their feasibility conditions.

Equilibrium Populations Feasibility

C0 = (S0, 0, 0, 0, 0, 0) S0 =
Λ
dp

–

CI = (SI , EI , 0, AI , RI) SI =
Λ− BT EI

dp

EI =
1

BT

(
Λ− dpBTCT HT

β Iω′pDT

)
Λ >

dpBTCT HT

β Iω′pDT

AI =

(
ω′p
HT

)
EI (resp. R0 > 1)

RI =
γ′p
dp

(
ω′p
HT

)
EI α = 1 and ξ = 0
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Table 1. Cont.

Equilibrium Populations Feasibility

C∗ = (S∗, E∗, I∗, A∗, R∗) S∗ = Λ− BT E∗
dp

Λ >
dpBTCT HT

β I
[
(1− α)ωp HT + αω′pDT

]
E∗ = 1

BT

(
Λ− dpBTCT HT

β I
[
(1− α)ωp HT + αω′pDT

]
)

(resp. R0 > 1)

I∗ =
(
(1− α)ωp HT + αω′pξ

CT HT

)
E∗ α 
= 1 or ξ 
= 0

A∗ =
(

αω′p
HT

)
E∗

R∗ =
[

γp

dp

(
(1− α)ωp HT + αω′pξ

CT HT

)
+

γ′p
dp

(
αω′p
HT

)]
E∗

Table 2. Stability conditions of the equilibria of the model (1).

Point Coefficients Stability

C0 a2 = BT + CT + HT

a1 = HT [BT + CT ] + BTCT − β IS0((1− α)ωp + kαω′p) Λ <
dpBTCT HT

β I
[
(1− α)ωp HT + αω′pDT

]
a0 = BTCT HT − β IS0

(
(1− α)ωp HT + αω′pDT

)
(resp. R0 < 1)

CI b3 = β I kAI + dp + HT + BT + CT ,

b2 = [β I kAI + dp](HT + BT + CT) Λ >
dpBTCT HT

β Iω′pDT
+BTCT + HT(BT + CT)−ω′pkβ ISI

b1 = [β I kAI + dp][BTCT + HT(BT + CT)] (resp. R0 > 1)
+HT BTCT −ω′p(kdp + DT)β ISI

b0 = [β I kAI + dp]HT BTCT − dpω′pDT β IS∗ α = 1 and ξ = 0

C∗ c3 = β I(I∗ + kA∗) + dp + HT + BT + CT ,

c2 = [β I(I∗ + kA∗) + dp](HT + BT + CT) Λ >
dpBTCT HT

β I
[
(1− α)ωp HT + αω′pDT

]
+BTCT + HT(BT + CT)− [αω′pk + (1− α)ωp]β IS∗ (resp. R0 > 1)

c1 = [β I(I∗ + kA∗) + dp][BTCT + HT(BT + CT)] + HT BTCT α 
= 1 or ξ 
= 0
−[αω′p(kdp + DT) + (1− α)ωp(dp + HT)]β IS∗

c0 = [β I(I∗ + kA∗) + dp]HT BTCT
−dp[αω′pDT + (1− α)ωp HT ]β IS∗

2.2. Simulations Results

We have performed some simulations with the parameter values listed in Table 3, to simulate
various implementations of the distancing policy, which actually is in current use in several countries.
The simulations may not be fully realistic, but our point is to investigate their qualitative behavior,
not to give quantitative forecasts.

Table 3. Parameters values.

Parameter Value Parameter Value

Λ 500 dp 8.2× 10−6

γp 1.764 γ′p 0.6024
ξ 0.1 k 0.1 ∈ [0:005; 0:2]
μ 0.001 α 0.15 ∈ [0.01, 0.3]

ωp 0.1 ω′p 0.1
ν 0
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We look at the influence that the time of starting the restrictive measures has on the disease spread,
while keeping fixed the time of their lifting. We next investigate the effect of the time at which the
restricting measures are lifted.

Now comparing the results for the start of implementation at t1 = 1 and t1 = 10, and ending them
at the same time, it is seen that the earlier the measures are taken, the better it is, because the epidemic’s
outbreak is kept in check. In Figure 1 the epidemic outbreak starts around time 30, immediately after
lifting the restrictions, while in Figure 2 the initial surge before the measures are implemented is
damped by their implementation, and after their lifting the outbreak occurs. Both figures use t2 = 30.
The same result is seen using t2 = 90 as the time for removing the restrictions; compare Figures 3 and 4.
In Figure 3 nothing apparently happens until time 100 because of the restrictions. When they are lifted,
the epidemic spreads. In Figure 4 there is a small peak at the onset of the contagion, immediately curbed
by the containment measures, lasting as long as they are in use. In spite of their longer implementation,
the outbreak occurs nevertheless with the peak at the same time as in Figure 3.

The investigation of different timings for introducing and relaxing the distancing measures shows
that a late implementation has no effect, as the peak of the epidemic occurs and then these measures
are ineffective, independently of how long they are implemented. An earlier implementation followed
by their subsequent lifting leads to a secondary peak at some time later, the occurrence of which seems
to be related to the time for which the measures are implemented; the longer the latter, the longer the
delay in the secondary outbreak. However, the number of affected people remains the same.

Unfortunately, the result of the simulations indicates that essentially the whole population gets
affected by the disease. Only the timings differ, if distancing measures are taken.
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Figure 1. Using a semilogarithmic scale for the vertical axis, we show the results of starting the
restrictions at time t1 = 1, using β I = 10−10 and lifting them at time t2 = 30, returning to β I = 10−7

one month later, over a one year timespan for the model with demographics (1). Left to right and top
to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 2. Using a semilogarithmic scale for the vertical axis, we show the results of starting the
restrictions at time t1 = 10, using β I = 10−10 and lifting them at time t2 = 30, returning to β I = 10−7

one month later, over a one year timespan for the model with demographics (1). Left to right and top
to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.

0 200 400
10

6

10
7

10
8

S

0 200 400
10

−5

10
0

10
5

10
10

E

0 200 400
10

−10

10
0

10
10

I

0 200 400
10

−10

10
0

10
10

A

0 200 400
10

−5

10
0

10
5

10
10

R

0 200 400
10

−10

10
−5

10
0

10
5

D

Figure 3. Using a semilogarithmic scale for the vertical axis, we show the results of starting the
restrictions at time t1 = 1, using β I = 10−10 and lifting them at time t2 = 90, returning to β I = 10−7

three months later, over a one year timespan for the model with demographics (1). Left to right and top
to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.

Thus, if the measures are implemented too late, independently of the time at which they are
removed, the outbreak occurs and their subsequent application becomes, therefore, irrelevant, as it
cannot be kept in check any longer; compare Figures 2 and 4. On the other hand, by implementing them
at the early stages of the contagion process, the outbreak can be delayed, as long as these measures are
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implemented, as can be seen from Figures 1 and 3. If they are lifted, the final results of the epidemic’s
outbreak are essentially the same as if they were not at all implemented, in terms of the number of
people being affected by the disease and with possible ultimate fatal consequences; compare the peaks
of all the infected classes in Figures 1–5 also with the results in Figure 6 where no measures are taken
to prevent the epidemic from spreading.
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Figure 4. Using a semilogarithmic scale for the vertical axis, we show the results of starting the
restrictions at time t1 = 10, using β I = 10−10 and lifting them at time t2 = 90, returning to β I = 10−7

three months later, over a one year timespan for the model with demographics (1). Left to right and top
to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.

0 200 400
10

6

10
7

10
8

S

0 200 400
10

−5

10
0

10
5

10
10

E

0 200 400
10

−5

10
0

10
5

10
10

I

0 200 400
10

−5

10
0

10
5

10
10

A

0 200 400
10

−5

10
0

10
5

10
10

R

0 200 400
10

−10

10
−5

10
0

10
5

D

Figure 5. Using a semilogarithmic scale for the vertical axis, we show the results of absolute isolation,
starting at time t1 = 1 setting β I = 0 and lifting it at time t2 = 30, returning to β I = 10−7 one month
later, over a one year timespan for the model with demographics (1). Left to right and top to bottom,
the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 6. The epidemic’s effect on the population in the absence of measures for β I = 10−7, on a
semilogarithmic scale, over a period of one year. Left to right and top to bottom: S, E, I, A, R and D,
the disease-related deceased class.

An intermittent lock-down policy, simulated as an alternative way of coping with the outbreak,
might be important to render the burden on hospitalizations smaller, as it tends to spread the epidemic
over a longer timespan.

For the particular situation in Italy, note that patient number 1 was diagnosed on 21 February,
and the distancing measures in the area were in place starting the following days up to about two
weeks later, and then extended to the whole country. Incidentally, patient number 0, the initial carrier
of the disease, has never been identified, although there are some speculations. However, in the current
news, it is reported that the virus was already circulating yet not known of in Northern Italy in January,
which means that additional time had elapsed before the restrictions were applied.

Thus, apparently, these results are negative as for the possibility of containing the spread in the long
run, in line with what is hinted in [10], with the exception of the intermittent distancing measures policy,
which may spread the epidemic’s effects over longer timespans. However, there are some assumptions
in the model that make it too crude, so that we plan a deeper subsequent study. In particular, here the
results depend on homogeneous mixing, which for a large country is hardly the case. Secondly, this is a
continuous model, for which the compartments are depleted only asymptotically. Thus it is not possible
to prevent the class of infectives from vanishing in finite time, so that even a small residual in it would
start the epidemic’s outbreak again. Therefore the somewhat negative results obtained might hopefully
be better off in practice. Suitable modifications of the model along these lines will be the subject of a
further investigation.

3. Discussion

We have investigated a simple model for the coronavirus pandemic. The steady states, apart from
a symptomatic-infected-free point, which is unlikely to exist, are the disease-free equilibrium and the
endemic state. The model differs from other current models that are being studied for a few features.
From the simplified model that appears in [5], because our formulation contains less equations,
it does not consider the viruses compartment, and above all, we allow disease-related mortality,
which apparently is missing in the cited paper. Furthermore, we allow the progression of asymptomatic
individuals to the class of fully symptomatic. This feature certainly distinguishes it also from [6],
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where asymptomatics recover or become diagnosed with the disease, but do not spread it any longer.
In the present situation in Italy our assumption is very realistic.

There is no possibility of bistability in our situation, as the two fully meaningful equilibria are
related to each other via a transcritical bifurcation. The disease-free equilibrium is also globally
asymptotically stable, if it is locally asymptotically stable. An expression for the basic reproduction
number is established, with a possibly realistic numerical value [11,12].

The simulations show that containment measures could be effective in delaying the epidemic’s
outbreaks if taken at a very early stage, but when lifted the outbreaks would occur anyway and affect
almost the whole population. However, this last statement should be mitigated by the drawbacks
inherent in the model’s assumptions, as mentioned in the previous section, thereby leaving hope that
in practice it will not occur, if the measures are properly implemented.

We next discuss in detail the various different restriction policies that we have simulated.

3.1. Epidemic with a Lock-Down

In this case, in particular, assuming for the disease transmission coefficient the reference value
β I = 10−7, we reduce it to β I = 10−10 during the interval [t1, t1 + t2] and reinstate the standard value
afterwards; we monitor the epidemic’s evolution over six months. Figures 1–5 show the results of
different choices for t1 and t2. Containment measures are effective as long as they are implemented,
if they are taken early enough, before the epidemic attains its peak.

Since reducing the transmission by one order of magnitude means that to infect a susceptible with
rate β I , it is necessary for only one infected; with β I/10, 10 infected would be necessary. Thus since
the lock-down is not perfect, as for instance, some essential activities like food production are still
going on, a hypothetical reasonable estimate for the contact reduction is three orders of magnitude.
A comparison with a different, milder reduction, β I = 10−8 is made, showing essentially no difference
in the results, see Figure 7.
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Figure 7. On a semilogarithmic scale, the total populations with the lock-down policy, implemented
from time 1 up to time 30, with the milder reduced contact rate β I = 10−8, after which β I = 10−7

resumes. The simulation runs over a one year timespan for the simplified model (1). Left to right and
top to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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3.2. Epidemic with Total Isolation

We changed also the policy to an improbable absolute confinement of every individual in the
population, reducing the transmission to exactly zero. The results show no change with respect to
those of the lock-down policy. We report only Figure 5, which is identical to Figure 1. The same occurs
in the cases contemplated by Figures 2–4.

3.3. The Simplified No-Demographics Model

We repeated the simulations for the model (1) in which we set Λ = dp = 0. In the simulations we
observed some small changes in the susceptibles behavior, with respect to the full model with vital
dynamics. Figures 8 and 9 are the counterparts of the Figures 1 and 2. The ultimate impact of the
epidemic is essentially the same; compare in particular, the curves of recovered and deceased. For the
total isolation case, Figure 10 shows the same features; compare it with Figure 5. Similar considerations
hold for the various remaining cases, and therefore, the pictures are not reported.
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Figure 8. Using a semilogarithmic scale for the vertical axis, we show the results of starting the
restrictions at time t1 = 1, setting β I = 10−10 and lifting them at time t2 = 30, returning to β I = 10−7

one month later, over a one year timespan for the simplified model with no demographics (1) where
we take Λ = 0, dp = 0. Left to right and top to bottom, the subpopulations are: S, E, I, A, R and D,
the disease-related deceased class.
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Figure 9. Using a semilogarithmic scale for the vertical axis, we show the results of starting the
restrictions at time t1 = 10, setting β I = 10−10 and lifting them at time t2 = 30, returning to β I = 10−7

one months later, over a one year timespan for the simplified model with no demographics (1) where
we take Λ = 0, dp = 0. Left to right and top to bottom, the subpopulations are: S, E, I, A, R and D,
the disease-related deceased class.
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Figure 10. Using a semilogarithmic scale for the vertical axis, we show the results of absolute isolation,
β I = 0 starting at time t1 = 10, setting β I = 0 and lifting it at time t2 = 90, returning to β I = 10−7 three
months later, over a one year timespan for the model with no demographics (1) where Λ = dp = 0.
Left to right and top to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related
deceased class.
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3.4. Investigation of Different Timings for Restrictions’ Introduction and Lifting

A further study has been carried out to assess the impact of the time until taking action on the
containment measures. All the possible different combinations of simple restriction or total isolation as
well as the presence or the absence of demographic effects give essentially the same results. Therefore
we present only the results for some selected alternatives, giving the plots in semilogarithmic or total
population values, but stressing that for the options not considered, the figures would be the same.

In case the first restriction measure is taken too late, specifically at time t = 120, and followed by
lifting it either one month or three months later, the epidemic occurs and the measures have no effect
whatsoever; see Figure 11, where measures are kept for three months.

0 200 400
0

2

4

6

8
x 10

7

S

0 200 400
0

0.5

1

1.5

2
x 10

7

E

0 200 400
0

2

4

6

8

10
x 10

5

I

0 200 400
0

1

2

3

4
x 10

5

A

0 200 400
0

2

4

6
x 10

7

R

0 200 400
0

1

2

3
x 10

4

D

Figure 11. The total populations with the lock-down policy, implemented from time 120 up to time 210,
with the reduced contact rate β I = 10−10, after which β I = 10−7 resumes. The simulation runs over a
one year timespan for the model (1). Left to right and top to bottom, the subpopulations are: S, E, I, A,
R and D, the disease-related deceased class.

Beginning the restrictions after three months from the start of the epidemic and removing them
one month afterwards, causes a second peak about two months later; i.e., six months after the onset
of the disease spreading (Figure 12), with a higher number of affected individuals. If instead the
lock-down is implemented for three months, the second peak is delayed further, occurring about three
months later, Figure 13. Although the pictures are shown on different population scales, absolute
values and semilogarithmic, a comparison of the heights of the peaks for the various types of infected
subpopulations indicates no difference. Hence, these policies cannot significantly influence the number
of people ultimately affected by the disease.
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Figure 12. The total populations with the lock-down policy, implemented from time 90 up to time 120,
with the total isolation policy β I = 0, after which β I = 10−7 resumes. The simulation runs over a one
year timespan for the simplified model (1) with no demographics, Λ = dp = 0. Left to right and top to
bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 13. The semilogarithmic plot of the epidemic’s spread with the lock-down policy, implemented
from time 90 up to time 180, with the reduced contact rate β I = 10−10, after which β I = 10−7 resumes.
The simulation runs over a one year timespan for the model (1) with demographics. Left to right and
top to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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3.5. The Intermittent Lock-Down Policy

We finally simulated a policy that attempts to assess the number of infectives at regular times,
with a of period one week. If they exceed a threshold, taken to be 10, the lock-down is implemented
for a week, and then lifted. Figures 14 and 15 show the results for the case with vital dynamics and in
the case of Λ = dp = 0. Note that susceptibles in both cases are at a constant value, the vertical scale
being extremely small. The infected are kept below the threshold, and the periodic recurrences of the
epidemic somewhat change its final impact, as the curves of recovered are reduced by about two orders
of magnitude, and above all, the ones of the deceased decrease by about four orders, with respect
to the ones found with the one-time lock-down policy. The other relevant change is that here the
phenomenon is observed over a longer timespan. Thus the cumulative effects are spread out over a
much longer time. This will have some importance to lessening the burden on hospitals. Figure 16
shows the results if the check policy starts immediately at time 1 rather than after a week.

Comparing the population values with the intermittent policy with the one time lock-down,
done early enough and implemented for one month, the final outcomes are milder than the latter.
Thus the intermittency allows the control of the outbreaks. Susceptibles are almost depleted in the
one-time policy; with the intermittent one, however, they are essentially spared from getting the
disease; compare Figures 17 and 18.

The intermittency has also been checked with different time intervals. Comparing Figures 19–22,
it is seen that the more frequent the checks are implemented, the lower are the peaks in the exposed
class, which in turn leads to a smaller cumulative number of recovered and fatalities, at least comparing
the policies for the one- and two-weeks alternatives, Figures 19 and 20. For the longer intervals between
the checks, again the peaks are higher, the longer the timespan, but it is observed that as time elapses,
their heights tend to decrease; see Figures 21 and 22.
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Figure 14. Using a semilogarithmic scale for the vertical axis, we show the results of the intermittent
lock-down policy. Here the population is checked every week, starting after a week. If the number of
infected is above a small threshold (here taken to be 10) the reduced contact rate β I = 10−10 is resumed
for a week. The simulation runs over two years timespan for the model with demographics (1). Left to
right and top to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 15. Using a semilogarithmic scale for the vertical axis, we show the results of the intermittent
lock-down policy. Here the population is checked every week, starting after a week. If the number
of infected is above a small threshold (here taken to be 10) the reduced contact rate β I = 10−10 is
resumed for a week. The simulation runs over two years timespan for the simplified model with no
demographics (1) where we take Λ = 0, dp = 0. Left to right and top to bottom, the subpopulations
are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 16. Using a semilogarithmic scale for the vertical axis, we show the results of the intermittent
lock-down policy, implemented from time 1. Here the population is checked every week. If the number
of infected is above a small threshold (here taken to be 10) the reduced contact rate β I = 10−10 is
resumed for a week. The simulation runs over two years timespan for the simplified model with no
demographics (1) where we take Λ = 0, dp = 0. Left to right and top to bottom, the subpopulations
are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 17. The total populations with the intermittent lock-down policy, implemented from time 1.
Here the population is checked every week. If the number of infected is above a small threshold
(here taken to be 10) the reduced contact rate β I = 10−10 is resumed for a week. The simulation runs
over two years timespan for the simplified model with no demographics (1) where we take Λ = 0,
dp = 0. Left to right and top to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related
deceased class.
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Figure 18. The total populations with the lock-down policy, implemented from time 1 up to time
30, with the reduced contact rate β I = 10−10, after which β I = 10−7 resumes. The simulation runs
over a one year timespan for the simplified model with no demographics (1) where we take Λ = 0,
dp = 0. Left to right and top to bottom, the subpopulations are: S, E, I, A, R and D, the disease-related
deceased class.
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Figure 19. The population values with the lock-down policy, implemented after the first week
with the reduced contact rate β I = 10−10, after which β I = 10−7 resumes. The check for possible
repeated implementation is implemented every week afterwards. The simulation runs over a two year
timespan for the model (1) with no demographics, i.e., Λ = dp = 0. Left to right and top to bottom,
the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 20. The population values with the lock-down policy, implemented after the first two weeks
with the reduced contact rate β I = 10−10, after which β I = 10−7 resumes. The check for possible
repeated implementation is implemented every two weeks afterwards. The simulation runs over a
two year timespan for the model (1) with no demographics, i.e., Λ = dp = 0. Left to right and top to
bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 21. The population values with the lock-down policy, implemented after the first thee weeks
with the reduced contact rate β I = 10−10, after which β I = 10−7 resumes. The check for possible
repeated implementation is implemented every three weeks afterwards. The simulation runs over a
two year timespan for the model (1) with no demographics, i.e., Λ = dp = 0. Left to right and top to
bottom, the subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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Figure 22. The population values with the lock-down policy, implemented after the first month with
the reduced contact rate β I = 10−10, after which β I = 10−7 resumes. The check for possible repeated
implementation is implemented every month afterwards. The simulation runs over a two years
timespan for the model (1) with no demographics, i.e., Λ = dp = 0. Left to right and top to bottom, the
subpopulations are: S, E, I, A, R and D, the disease-related deceased class.
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4. Materials and Methods

Here we develop a mathematical model of coronavirus, which is a zoonotic disease. Its biological
characteristics indicate that the virus transmission occurred first from infected animals to humans [5],
and then spread among populations worldwide by contact with infected individuals, to make it
a pandemic.

Let N(t) denote the total population. It is partitioned into the following five disjoint classes of
individuals:

S(t): The susceptible class, the individuals who have not yet been exposed to the virus.
E(t): The exposed class, describing people who have become in contact with the virus, but are

in incubation period and not yet able to spread the disease; possible presymptomatic individuals
that can transmit the infection [13–15] are assumed to have already moved to the asymptomatic class
defined below.

I(t): The symptomatic infectious class, individuals that manifest symptoms and can spread
the disease.

A(t): The asymptomatic infectious class; those persons that can spread the disease even without
having explicit symptoms.

R(t): The removed class, that includes the people that recovered from the disease.
Thus, N(t) = S(t) + E(t) + I(t) + A(t) + R(t).
The basic mechanisms underlying the model are shown in Figure 23. The model is formulated

taking into account all the possible interactions among the compartments that were described above.

Figure 23. The basic interactions among the compartments.

Under the quasi-steady-state assumption of the total human population, we impose that
susceptible individuals are recruited at the constant rate Λ, become infected by direct contact with an
infectious individual at rate β I , which is scaled by a factor k to account for the possibility that the latter is
asymptomatic. Finally, all human individuals are subject to natural mortality dp. These considerations
are incorporated in the first equation of the system (1).

Individuals that contract the disease are accounted for in the second equation of (1). They become
exposed, i.e., they cannot yet spread the virus, which needs an incubation period within the body of its
hosts. In this class enter the susceptibles that were contaminated in the two ways described earlier.
People leave it by becoming infectious, and either showing symptoms, thereby migrating into class
I, or not, therefore, finding themselves in class A. The progression rates into these two classes are
ωp and ω′p. Furthermore, we assume that a fraction α becomes asymptomatic and 1− α instead will
manifest symptoms.

The third equation models the symptomatic infectious, recruited from the exposed class at rate
(1− α)ω as described above. Furthermore, there could be asymptomatic individuals that become
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symptomatic at rate ξ. They leave this class by either progressing to the recovered class at rate γp,
or dying, naturally or by causes related to the disease at rate μ.

The asymptomatic individuals modeled in the fourth equation appear from the exposed ones,
and leave the class by overcoming the disease at rate γ′p, dying naturally or by disease-related causes
at rate ν, or eventually showing the symptoms, for which they migrate into class I.

Recovered individuals are those that have healed from the disease. They are subject only to
natural mortality. We assume that they have also become immune so that they are unaffected if become
in contact with the infectious.

Note that in the simulations also the cumulative class of disease-related deceased people is shown,
although the dead are not explicitly accounted for in the model. They indeed represent a sink, and thus
do not contribute to the disease propagation. Incidentally, instead, in cultures where the deceased
are kept for a while before burial and become in contact with the relatives, it may be necessary to
introduce this class in the model, as another potential source of infection.

Taking into account the above considerations, the model dynamics is regulated by the following
system of nonlinear ordinary differential equations:

dS
dt

= Λ− β IS(I + kA)− dpS, (1)

dE
dt

= β IS(I + kA)− (1− α)ωpE− αω′pE− dpE,

dI
dt

= (1− α)ωpE− (γp + dp + μ)I + ξA,

dA
dt

= αω′pE− (γ′p + dp + ν)A− ξA,

dR
dt

= γp I + γ′p A− dpR,

or alternatively, excluding completely the demographic features, by setting Λ = 0 and dp = 0 in (1).
All the parameters are nonnegative and their meaning is summarized in Table 4. Note that in view of
the definitions,

1
ωp

,
1

ω′p
1

γp
,

1
γ′p

,

represent respectively the incubation period before manifesting symptoms, the latent period before
becoming asymptomatic infectious, the infectious period for symptomatic infection and the infectious
period for asymptomatic infection.

Table 4. Model parameters and their meaning.

Λ susceptibles recruitment rate
dp natural mortality
β I disease transmission rate
k transmissibility ratio between asymptomatics and symptomatics
μ disease-related mortality for infected
ν disease-related mortality for asymptomatics

ωp progression rate from exposed to symptomatic
ω′p progression rate from exposed to asymptomatic
α fraction of exposed that turn asymptomatic
ξ progression rate from asymptomatic to symptomatic

γp recovery rate from symptomatic infection
γ′p recovery rate from asymptomatic infection
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Theorem 1. The system trajectories are bounded. Letting

M = max
{

N(0),
Λ
dp

}

the set

Γ = {(S, E, I, A, R) : S + E + I + A + R ≤ M, S > 0, E ≥ 0, I ≥ 0, A ≥ 0, R ≥ 0}. (2)

represents their ultimate attractor. In particular, if N(0) < Λd−1
p , M = Λd−1

p .

Proof. From the system (1) it follows that the total population evolves as follows:

dN
dt

+ dpN = Λ− νA− μI ≤ Λ.

Solving the differential inequality easily gives

N(t) ≤ N(0) exp(−dpt) +
Λ
dp

[1− exp(−dpt)] ≤ M,

so that all subpopulations, being nonnegative, are bounded as well.

Note that Γ is positively invariant since all solutions of system (1) originating in Γ remain there
for all t > 0, in view of the existence and uniqueness of its solutions.

4.1. System’s Equilibria Assessment

The equilibrium points of the model are obtained by equating the right hand side of
system (1) to zero. The solution of the so-obtained algebraic system gives three equilibrium points:
the coronavirus-free equilibrium C0 = (S0, 0, 0, 0, 0, ), the coronavirus-symptomatic-infected-free
equilibrium CI = (SI , EI , 0, AI , RI) with conditions α = 1 and ξ = 0, and the fully coronavirus
endemic equilibrium C∗ = (S∗, E∗, I∗, A∗, R∗) when either α 
= 1 or ξ 
= 0. Specifically, for the former
two we have:

S0 =
Λ
dp

, EI =
1

BT

(
Λ− dpBTCT HT

β Iω′pDT

)
, SI =

Λ− BTE∗

dp
, AI =

(
ω′p
HT

)
EI , RI =

(
γ′p
dp

ω′p
HT

)
EI ,

where

BT = (1− α)ωp + αω′p + dp, CT = γp + μ + dp, DT = ξ + k(γp + μ + dp), HT = γ′p + ν + ξ + dp. (3)

The feasibility conditions for CI are

Λ >
dpBTCT HT

β Iω′pDT
, α = 1 and ξ = 0. (4)

For the fully endemic equilibrium we find
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E∗ = 1
BT

⎛
⎝Λ− dpBTCT HT

β I

[
(1− α)ωp HT + αω′pDT

]
⎞
⎠ , S∗ = Λ− BTE∗

dp
,

I∗ =
(
(1− α)ωpHT + αω′pξ

CT HT

)
E∗, A∗ =

(
αω′p
HT

)
E∗

and R∗ =
(

γp

dp

(
(1− α)ωp HT + αω′pξ

CT HT

)
+

γ′p
dp

(
αω′p
HT

))
E∗,

with feasibility condition

Λ >
dpBTCT HT

β I

[
(1− α)ωp HT + αω′pDT

] , and either α 
= 1 or ξ 
= 0. (5)

4.2. The Basic Reproduction Number

The basic reproduction number R0 for system (1) is found using the next generation matrix
method [16]. The reduced system of (1) may be written in compact form as: X′ = F(X)−V(X) where
X = (E, I, A)

F(E, I, A) =

⎛
⎜⎝ β IS(I + kA)

0
0

⎞
⎟⎠ , V(E, I, A) =

⎛
⎜⎝ −(1− α)ωpE− αω′pE− dpE

(1− α)ωpE− (γp + dp + μ)I + ξA
αω′pE− (γ′p + dp + ν)A− ξA

⎞
⎟⎠ .

The Jacobian matrices of F(X) and V(X) at the disease-free equilibrium point C0 are

JF(C0) =

⎛
⎜⎝ 0 β IS0 β IS0k

0 0 0
0 0 0

⎞
⎟⎠

and

JV(C0) =

⎛
⎜⎝ −BT 0 0

(1− α)ωp −CT ξ

αω′p 0 −HT

⎞
⎟⎠ .

We find that

J−1
V (C0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
BT

0 0

−[(1− α)ωpHT + αω′pξ]

CT BT HT

−1
CT

−ξ

CT HT−αω′p
BT HT

0
−1
HT

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The next generation matrix is

−JF(C0)J−1
V (C0) =

⎛
⎜⎜⎝

β IS0
(1− α)ωp HT + αω′pDT

CT BT HT

β IS0

CT

β IS0DT
CT HT

0 0 0
0 0 0

⎞
⎟⎟⎠ .

Thus

R0 = ρ(−JF(C0)J−1
V (C0)) = β IS0

(1− α)ωpHT + αω′pDT

CT BT HT
. (6)
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The conditions (4) (resp. (5)) are equivalent to R0 > 1 for α = 1 and ξ = 0 (resp.R0 > 1 for either
α 
= 1 or ξ 
= 0).

We have the following theorem

Theorem 2. System (1) has the following equilibria:

1. The coronavirus-free equilibrium C0 = (S0, 0, 0, 0, 0) =
(

Λ
dp

, 0, 0, 0, 0
)

which exists always.

2. In addition, if R0 > 0 then system (1) admits another nontrivial equilibrium, in fact:
When α = 1 and ξ = 0, it is the coronavirus-symptomatic-infected-free equilibrium CI = (SI, EI, II, AI, RI).
When either α 
= 1 or ξ 
= 0, it is the fully coronavirus endemic equilibrium C∗ = (S∗, E∗, I∗, A∗, R∗).

4.3. System’s Equilibria Stability

4.3.1. Local Stability

In this subsection we investigate the local stability of the system’s equilibria.

Theorem 3. Letting

a2 = BT + CT + HT , (7)

a1 = HT [BT + CT ] + BTCT − β IS0((1− α)ωp + kαω′p)

a0 = BTCT HT − β IS0

(
(1− α)ωpHT + αω′pDT

)
.

1. The coronavirus-free equilibrium C0 = (S0, 0, 0, 0, 0) of the system (1) is locally asymptotically stable if

Λ <
dp

β I

BTCT HT
(1− α)ωp HT + αω′pDT

, ( resp. R0 < 1). (8)

2. If Λ >
dp

β I

BTCT HT
(1− α)ωpHT + αω′pDT

, ( resp. R0 > 1), then the coronavirus-free equilibrium C0 of the

system (1) is unstable.

Proof. The Jacobian matrix of system (1) at the coronavirus-free equilibrium C0 is:

J(C0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−dp 0 − β IΛ
dp

− kβ IΛ
dp

0

0 −BT
β IΛ
dp

kβ IΛ
dp

0

0 (1− α)ωp −CT ξ 0
0 αω′p 0 −HT 0
0 0 γp γ′p −dp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

At point C0, the eigenvalues of J are −dp of multiplicity order two and the roots of the following
characteristic polynomial of a three by three submatrix of J whose coefficients ai, i = 0, . . . , 2 are given
in (7):

λ3 + a2λ2 + a1λ + a0 = 0. (9)

It is evident that a2 > 0. From condition (8) the following inequalities are also satisfied

a0 = BTCT HT − β IS0

[
(1− α)ωpHT + αω′pDT

]

=
β I
dp

[
(1− α)ωpHT + αω′pDT

]⎛⎝dp

β I

BTCT HT[
(1− α)ωp HT + αω′pDT

] −Λ

⎞
⎠ > 0,
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[
(1− α)ωp HT + αω′pDT

]
a1 = [HT(BT + CT) + BTCT ]

[
(1− α)ωpHT + αω′pDT

]
−β IS0

[
(1− α)ωp HT + αω′pDT

]
[(1− α)ωp + kαω′p]

= [HT(BT + CT) + BTCT ]
[
(1− α)ωp HT + αω′pDT

]
+[a0 − BTCT HT ][(1− α)ωp + kαω′p]

= HT(BT + CT)(1− α)ωp HT + (HTCT + BTCT)αω′pξ

+a0[(1− α)ωp + kαω′p] > 0

and[
(1− α)ωp HT + αω′pDT

]
a1a2 = HT(BT + CT)(1− α)ωp HTa2 + (HTCT + BTCT)αω′pξ a2

+a0[(1− α)ωp + kαω′p]a2

= HT(BT + CT)(1− α)ωp HTa2 + (HTCT + BTCT)αω′pξ a2

+a0(1− α)ωp(BT + CT + HT) + a0kαω′p(BT + CT + HT)

> BTCTαω′pξa2 + a0(1− α)ωpHT + a0αω′p(kCT + ξ)− a0αω′pξ

> BTCT HTαω′pξ + a0[(1− α)ωp HT + αω′pDT ]− BTCT HTαω′pξ

= a0[(1− α)ωp HT + αω′pDT ].

Thus, ai > 0, i = 0, . . . , 2 and a2a1 > a0.
Then, according to the Routh–Hurwitz criterion, all the roots of the characteristic Equation (9)

have negative real parts. Therefore, the coronavirus-free equilibrium point C0 is locally asymptotically
stable under condition (8).

Since we can deduce the stability of the coronavirus symptomatic infected-free equilibrium CI
from the stability of the coronavirus endemic equilibrium C∗ simply by taking α = 1 and ξ = 0 in the
latter, we now just analyze the coronavirus endemic equilibrium C∗.

Theorem 4. Let⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c3 = β I(I∗ + kA∗) + dp + HT + BT + CT > 0,
c2 = [β I(I∗ + kA∗) + dp](HT + BT + CT) + BTCT + HT(BT + CT)

−[αω′pk + (1− α)ωp]β IS∗,
c1 = [β I(I∗ + kA∗) + dp][BTCT + HT(BT + CT)] + HT BTCT

−[αω′p(kdp + DT) + (1− α)ωp(dp + HT)]β IS∗,
c0 = [β I(I∗ + kA∗) + dp]HT BTCT − dp[αω′pDT + (1− α)ωp HT ]β IS∗.

(10)

The coronavirus endemic equilibrium C∗ is locally asymptotically stable if

Λ >
dp

β I

BTCT HT
(1− α)ωp HT + αω′pDT

, ( resp. R0 > 1). (11)

Proof. The Jacobian matrix of system (1) at the coronavirus endemic equilibrium C∗ is:

J(C∗) =

⎛
⎜⎜⎜⎜⎜⎝

−β I(I∗ + kA∗)− dp 0 −β IS∗ −β IS∗k 0
β I(I∗ + kA∗) −BT β IS∗ β IS∗k 0

0 (1− α)ωp −CT ξ 0
0 αω′p 0 −HT 0
0 0 γp γ′p −dp

⎞
⎟⎟⎟⎟⎟⎠ .
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At point C∗, the eigenvalues of J are −dp and the roots of the characteristic polynomial of a three
by three submatrix of J. The characteristic equation, in which the coefficients ci, i = 0, . . . , 3 are given
in (10), is:

λ4 + c3λ3 + c2λ2 + c1λ + c0 = 0. (12)

It is evident that c3 > 0. From condition (11) the following inequalities are also satisfied.

c0 = [β I(I∗ + kA∗) + dp]HT BTCT − β I [(1− α)ωp HT + αω′pDT ]dpS∗

= β I

[
(1− α)ωp HT + αω′p(ξ + kCT)

]
BTE∗ + dpHTCT BT

−β I [(1− α)ωp HT + αω′pDT ](Λ− BTE∗)

= β I

[
(1− α)ωp HT + αω′pDT

] (
2BTE∗ +

dpHTCT BT

β I [(1− α)ωp HT + αω′pDT ]
−Λ

)

= β I

[
(1− α)ωp HT + αω′pDT

]
BTE∗ > 0,

c1 = [β I(I∗ + kA∗) + dp][BTCT + HT(BT + CT)] + HT BTCT

−[(1− α)ωp(dp + HT) + αω′p(kdp + DT)]β IS∗

=

[
β I

(
(1− α)ωpHT + αω′pDT

CT HT

)
E∗ + dp

]
[BTCT + HT(BT + CT)]

−β I [(1− α)ωp + αω′pk](Λ− BTE∗)

= β I

(
(1− α)ωp HT(BT + CT)

CT
+

αω′pξBT

CT
+

αω′pDT(BT + HT)

HT

)
E∗

+dp[BTCT + HT(BT + CT)]− β I [(1− α)ωp + αω′pk](Λ− 2BTE∗)

= β I

(
(1− α)ωp HT(BT + CT)

CT
+

αω′pξBT

CT
+

αω′pDT(BT + HT)

HT

)
E∗

+dp[BTCT + HT(BT + CT)]− β I [(1− α)ωp + αω′pk]

⎛
⎝ 2dpBTCT HT

β I

[
(1− α)ωp HT + αω′pDT

] −Λ

⎞
⎠

= β I [(1− α)ωp HT + αω′pDT ]

(
CT HT + BT(CT + HT)

CT HT

)
E∗

+dp

⎛
⎝ (BT + CT)H2

T(1− α)ωp + HT BTαω′pξ + CT(BT + HT)αω′pDT[
(1− α)ωp HT + αω′pDT

]
⎞
⎠ > 0,
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c2 = [β I(I∗ + kA∗) + dp](HT + BT + CT) + BTCT + HT(BT + CT)

−[αω′pk + (1− α)ωp]β IS∗

=

[
β I

(
(1− α)ωp HT + αω′pDT

CT HT

)
E∗ + dp

]
(HT + BT + CT) + BTCT + HT(BT + CT)

−[αω′pk + (1− α)ωp]β I
Λ− BTE∗

dp

= β I

(
(1− α)ωp(HT + BT)

CT
+

αω′pξ(HT + BT + CT)

CT HT
+

αω′pk(BT + CT)

HT

)
E∗

+dp(HT + BT + CT) + BTCT + HT(BT + CT)

+β I [(1− α)ωp + αω′pk]
(
(dp + BT)E∗ −Λ

dp

)

= β I

(
(1− α)ωp(HT + BT)

CT
+

αω′pξ(HT + BT + CT)

CT HT
+

αω′pk(BT + CT)

HT

)
E∗

+dp(HT + BT + CT) + BTCT + HT(BT + CT)

+
β I [(1− α)ωp + αω′pk]

BT

⎛
⎝Λ− (dp + BT)BTCT HT

β I

[
(1− α)ωpHT + αω′pDT

]
⎞
⎠

= β I(BT + CT + HT)

(
(1− α)ωp HT + αω′pDT

CT HT

)
E∗

+dp(HT + BT + CT) + CT HT + BT

⎛
⎝ (1− α)ωp H2

T + HTαω′pξ + αω′pCT DT[
(1− α)ωp HT + αω′pDT

]
⎞
⎠ > 0

and

c1(c3c2 − c1) = β I

(
(1− α)ωp HT + αω′pDT

CT HT

)
E∗c1c2

+β I
[
(HT + CT + dp)HT + CT(CT + dp)

]⎛⎝
[
(1− α)ωp HT + αω′pDT

]
CT HT

⎞
⎠ E∗c1

+β I(HT + BT + CT + dp)BT

(
(1− α)ωp HT + αω′pDT

CT HT

)
E∗c1

+(HT + BT + CT)(HT + BT + CT + dp)dpc1 + CT HT(CT + HT + BT)c1

+BT(BT + CT + HT)

⎛
⎝ [(1− α)ωp H2

T + αω′pCT DT ] + αω′pξHT[
(1− α)ωp HT + αω′pDT

]
⎞
⎠ c1

> β2
I BTE∗2

⎧⎨
⎩β I

[
(1− α)ωp HT + αω′pDT

] ( (1− α)ωp HT + αω′pDT

CT HT

)2

E∗

+2(dp + HT + BT + CT)
[
(1− α)ωpHT + αω′pDT

] ( (1− α)ωp HT + αω′pDT

CT HT

)}

+β I BT(dp + HT + BT + CT)
2
[
(1− α)ωp HT + αω′pDT

]
E∗

= c0c2
3.
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Thus, ci > 0, i = 0, . . . , 3 and c1(c3c2− c1) > c0c2
3. Then, according to the Routh–Hurwitz criterion,

all the roots of the characteristic Equation (12) have negative real parts. Therefore, the coronavirus
endemic equilibrium point C∗ is locally asymptotically stable under condition (11).

From Theorem 4 the following result is reached.

Theorem 5. Let ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

b3 = β IkAI + dp + HT + BT + CT > 0,
b2 = [β IkAI + dp](HT + BT + CT) + BTCT + HT(BT + CT)

−ω′pkβ ISI ,
b1 = [β IkAI + dp][BTCT + HT(BT + CT)] + HT BTCT

−ω′p(kdp + DT)β ISI ,
b0 = [β IkAI + dp]HT BTCT − dpω′pDT β IS∗.

(13)

The coronavirus symptomatic-infected-free equilibrium CI of the system (1) is locally asymptotically
stable if

Λ >
dp

β I

BTCT HT
ω′pDT

, ( resp. R0 > 1). (14)

Proof. The result can easily obtained from Theorem 4 by taking α = 1 and ξ = 0.

Additionally, from the previous discussion, we can claim the following result:

Theorem 6. There is a transcritical bifurcation between C0 and C∗.

4.3.2. Global Stability

Next, we address the issue of global stability of the coronavirus–free equilibrium, employing as a
tool a suitably constructed Lyapunov function and La Salle’s Invariance Principle.

Theorem 7. The coronavirus-free equilibrium C0 of model (1) is globally asymptotically stable if

Λ <
dpBTCT HT

β I [(1− α)ωp HT + DTαω′p]
, ( resp. R0 < 1). (15)

Proof. First, the four equations of (1) are independent of R, therefore, the last equation of (1) can be
omitted without loss of generality. Hence, let us consider the following function:

P =
1

2S0
(S− S0)

2 + E +
BT

[(1− α)ωp HT + DTαω′p]
(HT I + DT A) (16)

It is easily seen that the above function is nonnegative and also P = 0 if and only if S = S0, E = 0,
I = 0 and A = 0. Further, calculating the time derivative of P along the positive solutions of (1),
we find:
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dP
dt

=
1
S0

(S− S0)(−β IS(I + kA)− dp(S− S0)) + β IS(I + kA)− BTE

+
BT HT((1− α)ωpE− CT I + ξA)

[(1− α)ωp HT + DTαω′p]
+

BT DT(αω′pE− HT A)

[(1− α)ωp HT + DTαω′p]

= −dp

S0
(S− S0)

2 + β I [2S− S2

S0
− S0](I + kA) + β IS0(I + kA)

− BTCT HT I
[(1− α)ωpHT + DTαω′p]

− BT(−ξ + DT)HT A
[(1− α)ωpHT + DTαω′p]

= −dp

S0
(S− S0)

2 + β I [2S− S2

S0
− S0](I + kA)

+

(
β IS0 − BTCT HT

[(1− α)ωp HT + DTαω′p]

)
(I + kA)

= −dp

S0
(S− S0)

2 + β I [2S− S2

S0
− S0](I + kA)

+
β I
dp

(
Λ− dpBTCT HT

β I [(1− α)ωpHT + DTαω′p]

)
(I + kA).

From condition (15) we can show that the coefficients of the term I + kA in the last equality are

negative. Further, we have 2S− S2

S0
− S0 = − S2−2SS0+S2

0
S0

= − (S−S0)
2

S0
≤ 0 for all S ≥ 0. Thus, we have

dP
dt ≤ 0 for all (S, E, I, A) ∈ R4

+ and dP
dt = 0 if and only if (S, E, I, A) = (S0, 0, 0, 0). Thus, the only

invariant set contained in R4
+ is {(S0, 0, 0, 0)}. Hence, La Salle’s theorem implies convergence of the

solutions (S, E, I, A) to (S0, 0, 0, 0). From the last equation if (1) we can show obviously that R converge
also to 0. Therefore C0 is globally asymptotically stable if R0 < 1.

4.4. Numerical Simulations

The calculation of the value of R0 according to (6) with the parameter values used in the numerical
simulations gives R0 = 3.1402, in line with the current estimates [11,12].

4.4.1. Simulations Methodology

We use a simple own-developed driver code calling the Matlab intrinsic routine ode45,
implementing the classical Runge–Kutta 45 integration method for ordinary differential equations.

At first, we consider only the demographic simulation and show that the population is essentially
at the same level during a year. This fact is substantiated also by the simulation results, for which there
is scant difference between those of the model (1) and the ones obtained by using its no-demographic
counterpart, where Λ and dp are both set to zero.

We then perform three sets of simulations describing different possible scenarios. The first
one considers lock-down, i.e., decreasing the contact rate significantly, but not to zero, as some
essential activities are still open. Then the total isolation policy, for which the contact rate is set to
zero. Finally an intermittent closure policy, for which when infectives reappear in a significant way,
temporary lock-down measures resume again.

4.4.2. Data Acquisition

We use data published on official websites about the epidemic’s spread in Italy collected
between 29 January and 28 March 2020, a period that spans 61 days, incremented by more recent
information [17].
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Using the day as the base time unit, we assume that the average incubation period lies in the
interval between two and 14 days, with a mean of 8 days. Based on the percentage of the reported
symptomatic infected patients, the proportion of symptomatic in the infected class α is estimated to
be in the interval [0.01, 0.3]. The correction k for asymptomatics to diffuse the disease is set in the
range k ∈ [0 : 005; 0 : 2]. There have been 27,359 deaths between 15 February and 29 April [17],
with changes in the number of fatalities every day. Dividing the fatal cases by the timespan, one gets
370 daily fatalities, which gives a rate 0.0027. Using this value in the simulation, puts the total losses to
about 105. But we observed that apparently children hardly get the disease, the younger and adult
people have it generally in a mild form and fatalities occur mainly for the elderly people, compare
with Figure 3 of [18]. In view of the fact that there is no age structure in this model, we corrected this
value by taking a third of the above result to set the disease mortality rate at the final value μ = 0.001,
which gives a reasonable estimate for the losses in the timespan, in rough agreement with the actual
tallies. We neglect altogether mortality for the asymptomatics, setting ν = 0. Based on the officially
published data we estimate γp = 0.1764, γ′p = 0.6024. For the initial values, the total population is
obtained from the report published by the official cite of worldometers [19], S = 60461826. To avoid
demographic effects, we set the susceptible recruitment rate Λ in order that on the timespan of the
simulation the total population N does not change much.

4.4.3. The Pure Demographic Case

We simulate first the population model without disease. In so doing, we varied the parameter
Λ until a satisfactory behavior of N, the total population was found. With Λ = 500 there is little
variation of N during a whole year, the population remains roughly stable around the level 60, 400, 000,
see Figure 24. In this way the demographic effects are sort of removed, and we can concentrate mainly
on the epidemics. Actually, the number of newborns per day in Italy would be about four times higher,
but as mentioned, we just would like here to hide the demographics from the simulations and not
have a picture more adherent to reality.

0 20 40 60 80 100 120 140 160 180
6.0461

6.0461

6.0462

6.0462

6.0463

6.0464

6.0464
x 10

7

Figure 24. The susceptible population behavior over a year, without disease. It does not vary much
as the vertical scale is rather small, the range of variation being around 3000, over a population of
60× 106.

4.4.4. Epidemics Spread in the Absence of Measures

Here we introduced the disease, with incidence β I = 10−7. The result is shown in Figure 25 for
absolute numbers, and in Figure 6 in semilogarithmic scale. In this case no measures are assumed
to be taken to counteract the epidemics. These results are reported in order be able to compare the
simulations with restrictions to what would happen if the containment measures were not taken.
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Figure 25. The epidemic’s effect on the population in the absence of measures for β I = 10−7, over
a period of one year. Left to right and top to bottom, the total population sizes: S, E, I, A, R and D,
the disease-related deceased class.

4.4.5. Containment Measures for the Epidemics

Finally, we considered the introduction of the distancing policy. It is assumed to start at time t1

and end at time t1 + t2. Two forms of containment measures are considered, substantially reducing the
contact rate, or even setting it equal to zero, meaning the extreme measure of total individuals isolation.

In particular, we present the experience of using the reference value of the contact rate β I = 10−7,
then reducing it to β I = 10−10 during the interval [t1, t1 + t2]. We then reset it to its previous reference
value after time t1 + t2. We monitored the epidemics evolution over six months.

The alternative, milder choice β I = 10−8 is also used, for comparison.
The simulations are then repeated with total isolation, setting β I = 0 during the implementation

of the restrictions.
A comparison of the results with the model obtained by disregarding the demographic parameters,

i.e., setting Λ = dp = 0 is also performed in the same way as done for the model (1).
Different timings for taking both the first restriction measure and for lifting it are then investigated,

using all the above alternatives.
Finally an intermittent restrictive policy is examined, for which when the infected are observed to

trespass a threshold, distancing measures are taken. Here again lock-down or total isolation produce
essentially the same results. The use of different timings for the introduction of the restrictions is
also scrutinized.
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Abstract: In this paper, we investigate a delayed SEIQRS-V epidemic model for propagation of malicious
codes in a wireless sensor network. The communication radius and distributed density of nodes is
considered in the proposed model. With this model, first we find a feasible region which is invariant and
where the solutions of our model are positive. To show that the system is locally asymptotically stable,
a Lyapunov function is constructed. After that, sufficient conditions for local stability and existence of
Hopf bifurcation are derived by analyzing the distribution of the roots of the corresponding characteristic
equation. Finally, numerical simulations are presented to verify the obtained theoretical results and to
analyze the effects of some parameters on the dynamical behavior of the proposed model in the paper.

Keywords: boundedness; delay; Hopf bifurcation; Lyapunov functional; stability; SEIQRS-V model

1. Introduction

Malicious codes are harmful programs which reproduce themselves from one computer to others
without any user interaction [1–3]. Specially, they have the ability to transmit directly from device to device
through wireless technology such as Bluetooth or Wi-Fi. With the increasing rapid advent of wireless
technology and the Internet of Things, the threat from malicious codes have become increasingly serious.
According to 2017 Cybercrime Report [4], hundreds of thousands—and possibly millions—of people can
be hacked via their wirelessly connected and ‘The Big Data Bang’ is an IoT (Internet of Things) world that
will explode from 2 billion objects (smart devices which communicate wirelessly) in 2006 to a projected
200 billion by 2020 according to Intel. Thus, there has been an urgent need to investigate the malicious
propagation dynamics in wireless sensor networks especially in the aftermath of the Yahoo hack and
Equifax breach. In the past decades, some mathematical models describing malicious codes propagation
are proposed to study viruses’ behavior. For example, the classic epidemic models [5–9], the models with
graded infection rate [10–18], the stochastic models [19–23] and some other models [2,24–26].

Mathematics 2019, 7, 396; doi:10.3390/math7050396 www.mdpi.com/journal/mathematics
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The common problem of the above models is that the characteristics of networks like communication
radius, and distributed density of nodes are not considered in models. Thus, computer virus models
considering the characteristics of networks have drawn the attention of scholars both at home and abroad.
In [27], Feng et al. formulated an improved SIRS epidemic model considering communication radius and
distributed density of nodes in wireless sensor network. In [28], Srivastava et al. proposed an SIDR model
for worm propagation in wireless sensor network and they considered the dead nodes, the communication
radius and node density in the proposed model. Nwokoye et al. [29,30] investigated an SEIRS-V worm
model with different forms. Ojha et al. [31] proposed a modified SIQRS worm propagation model by
introducing quarantined compartment into the model proposed by Feng et al. in [27]. Very recently,
based on the model proposed in [29,30,32], Nwokoye and Umeh [33] formulated the following modified
SEIQRS-V epidemic model for propagation of malicious codes in wireless sensor network:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A− βσπr2

L2 S(t)I(t)− (d1 + ρ)S(t)

+ϕR(t) + εV(t),

dE(t)
dt = βσπr2

L2 S(t)I(t)− d1E(t)− θE(t),

dI(t)
dt = θE(t)− (d1 + d2 + η1 + α)I(t),

dQ(t)
dt = αI(t)− (d1 + d2 + η2)Q(t),

dR(t)
dt = η1 I(t) + η2Q(t)− (d1 + ϕ)R(t),

dV(t)
dt = ρS(t)− (d1 + ε)V(t),

(1)

where S(t), E(t), I(t), Q(t), R(t) and V(t) denote the numbers of the susceptible, exposed, infectious,
quarantined, recovered, and vaccinated nodes at time t, respectively. A is the entering rate of nodes into
the sensor network; d1 is the death rate of the nodes due to hardware or software failure; d2 is the death
rate due to attack of of malicious codes; r is the communication radius of the nodes; L× L is the area in
which the nodes distributed; β is the contact rate of the infectious nodes; σ is the distribution density of
nodes; ρ, ϕ, ε, θ, η1 and η2 are the state transition rates.

When malicious codes spread in networks, there are different forms of delay, including immunity
period delay, latent period delay, cleaning-virus period delay etc. In [34], Keshri and Mishra considered a
dynamic model on the transmission of malicious signals in wireless sensor network with latent period
delay and the temporary immunity period delay. They showed that the two delays play a positive role
in controlling a malicious attack. In [35], Zhang and Bi investigated the Hopf bifurcation of a delayed
computer virus model with the effect of external computers by using the latent period delay as the
bifurcation parameter. Zhao and Bi studied a delayed SEIR computer virus spreading model with limited
anti-virus ability and analyzed the effect of the cleaning-virus period delay on the model [36]. In [37], Chai
and Wang analyzed the Hopf bifurcation of a delayed SEIRS epidemic model with vertical transmission in
network by taking the different combinations of the latent period delay and the temporary immunity period
delay as the bifurcation parameter. In [38], Dai et al. proposed a delayed computer virus propagation
model with saturation incidence rate and temporary immunity period delay and studied stability and
Hopf bifurcation.

Motivated by the work about delayed computer virus models in [34–38], we incorporate the latent
period delay into system (1) and obtain the following delayed SEIQRS-V epidemic model for propagation
of malicious codes in wireless sensor network:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A− βσπr2

L2 S(t)I(t)− (d1 + ρ)S(t),

+ϕR(t) + εV(t),

dE(t)
dt = βσπr2

L2 S(t)I(t)− d1E(t)− θE(t− τ),

dI(t)
dt = θE(t− τ)− (d1 + d2 + η1 + α)I(t),

dQ(t)
dt = αI(t)− (d1 + d2 + η2)Q(t),

dR(t)
dt = η1 I(t) + η2Q(t)− (d1 + ϕ)R(t),

dV(t)
dt = ρS(t)− (d1 + ε)V(t),

(2)

subject to the initial conditions S(θ) = φ1(θ) > 0, E(θ) = φ2(θ) > 0, I(θ) = φ3(θ) > 0, Q(θ) = φ4(θ) > 0,
R(θ) = φ5(θ) > 0, V(θ) = φ6(θ) > 0, θ ∈ [−τ, 0), φi(0) > 0, i = 1, 2, 3, 4, 5, 6, and τ is the latent period
delay of malicious codes.

The structure of this paper is as follows. In the next section, it is shown that the solution of system (2)
is positive and bounded in a feasible region R̄, which is invariant. In Section 3, the condition for local
asymptotical stability is examined by constructing a suitable Lyapunov functional. Section 4 deals with
local stability and existence of Hopf bifurcation. Some numerical simulations are carried out to illustrate
the obtained theoretical results and effect of some parameters on behaviors of the model in Section 5.
The paper finally ends with conclusion in Section 6.

2. Positivity and Boundedness

In this section we shall discuss about the positivity and boundedness of solution of the system (2).
For this we assume the function V̄ as:

V̄(t) = S(t) + E(t) + I(t) + Q(t) + R(t) + V(t). (3)

Taking the derivative of (3) and using (2) we get,

˙̄V(t) = A− d1S(t)− d1E(t)− (d1 + d2)(I(t) + Q(t))− d1R(t)− d1V(t), (4)

where S(t), E(t), I(t), Q(t), R(t), V(t) ≥ 0.
If E(t) = 0, I(t) = 0, Q(t) = 0, R(t) = 0 and V(t) = 0 from (4) we get

lim
t→∞

sup V̄(t) ≤ A
d1

. (5)

Also, if V̄(t) > A
d1

then ˙̄V(t) < 0. Therefore, we get 0 < V̄ ≤ A
d1

, i.e., we get a feasible region R̄ as

R̄ = {(S(t), E(t), I(t), Q(t), R(t), V(t)) ∈ R6 : 0 < S(t) + E(t) + I(t) + Q(t) + R(t) + V(t) ≤ A
d1
}.

Thus we see that the solution of system (2) is bounded and independent of the initial condition. So
the feasible region R̄ is an invariant set. Also, as A > 0, d1 > 0, A

d1
> 0, i.e., the feasible region R̄ is positive.

Hence all solutions of system (2) will come to the field R̄ or will remain in R̄.
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3. Lyapunov Stability Analysis

In this section the linear stability of the system (2) has been discussed by constructing a suitable
Lyapunov functional given in Equation (7). By direct computation, it can be concluded that if the basic
reproduction number

R0 =
Aπr2βθσ(d1 + ε)

L2d1(d1 + θ)(d1 + ε + ρ)(d1 + d2 + α + η1)
> 1,

then, system (2) has a unique endemic equilibrium P∗(S∗, E∗, I∗, Q∗, R∗, V∗), where

S∗ =
L2(d1 + θ)(d1 + d2 + α + η1)

βθσπr2 ,

E∗ =
(d1 + ϕ)(d1 + d2 + η2)(d1 + d2 + α + η1)[A− S∗d1(d1 + ε + ρ)/(d1 + ε)]

αη2 ϕθ + (d1 + d2 + η2)[(d1 + θ)(d1 + ϕ)(d1 + d2 + α + η1)− θϕη1]
,

I∗ =
θE∗

d1 + d2 + α + η1
, Q∗ =

αI∗
d1 + d2 + η2

, R∗ =
η1 I∗ + η2Q∗

d1 + ϕ
, V∗ =

ρS∗
d1 + ε

.

For this let u1(t) = S(t) − S∗, u2(t) = E(t) − E∗, u3(t) = I(t) − I∗, u4(t) = Q(t) − Q∗, u5(t) =

R(t)− R∗ and u6(t) = V(t)−V∗, then the system (2) transform into
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du1(t)
dt = −α11u1 − α12u3 + φu5 + εu6,

dp1(t)
dt = α21u1 − (d1 + θ)u2 + α12u3,

dp2(t)
dt = θu2 − (d1 + d2 + η1 + α)u3,

du4(t)
dt = αu3 − (d1 + d2 + η2)u4,

du5(t)
dt = η1u3 + η2u4 − (d1 + φ)u5,

du6(t)
dt = ρu1 − (d1 + ε)u6,

(6)

where p1(t) = u2 − θ
∫ t

t−τ u2(s)ds, p2(t) = u3 + θ
∫ t

t−τ u2(s)ds, α11 = d1 + ρ + α21, α12 = βσπr2S∗
L2 ,

α21 = βσπr2 I∗
L2 .

Now, following the steps as in [39], we shall check the stability of the system by assuming a suitable
Lyapunov function w(u)(t) as follows:

w(u)(t) = ∑(kiwj(u)(t)), (7)

where ki, i = 1, · · · , 21 are given in Appendix A and wj(u)(t), j = 1, · · · , 21 are given in Appendix B.
As all the parameters are assumed positive and chosen in such a way that ki > 0, i = 1, · · · , 21 and

w(u)(t) > 0. Taking the derivative of Equation (7), and using Equation (6) we get

d
dt

w(u)(t) ≤ (∑ Λiu2
j ), i = 1, · · · , 6; j = 1, · · · , 6. (8)

where expression for Λi, i = 1, · · · , 6 are given in Appendix C.
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Theorem 1. If the value of the delays τ satisfy the conditions Λi < 0, i = 1, · · · , 6 then the endemic equilibrium
point P∗(S∗, E∗, I∗, Q∗, R∗, V∗) of system (2) is locally asymptotically stable. Otherwise if any one of
Λ′is(i = 1, 2, · · · , 6.) becomes positive then the system will be unstable.

Proof of Theorem 1. Let Λ = max{Λi, i = 1, · · · , 6}. Then for t > T, from Equation (8) we get w(u)(t) +
Λ
∫ t

T(∑ u2
i (s))ds ≤ w(u)(T), i = 1, · · · , 6 for t ≥ T, implies ∑ u2

i ∈ L1[T, ∞], i = 1, · · · , 6. It is easy to
conclude from (6) and the boundedness of u(t) that ∑ u2

i (t)(i = 1, · · · , 6) is uniformly continuous. Using
Barbalat’s lemma in [38], we can say that

lim
t→∞
{∑ u2

i , i = 1, · · · , 6} = 0. (9)

So the internal solution of Equation (6) as well as solutions of system (2) is asymptotically stable,
i.e., the endemic equilibrium P∗ of system (2) is locally asymptotically stable. Hence, this completes
the proof.

We remark that as Λi, i = 1, · · · , 6 depends on the delay τ and the local stability condition for P∗ of
the system (2) is preserved for small τ satisfying Λi < 0, i = 1, · · · , 6.

4. Existence of Hopf Bifurcation

The characteristic equation at the endemic equilibrium P∗ can be obtained as follows

λ6 + U5λ5 + U4λ4 + U3λ3 + U2λ2 + U1λ + U0

+ (V5λ5 + V4λ4 + V3λ3 + V2λ2 + V1λ + V0)e−λτ = 0, (10)

with

U0 = α22α33α44α55(α11α66 + α16α61),

U1 = −[α16α61(α22α33(α44 + α55) + α44α55(α22 + α33))

+α11α22α33(α44α55 + α44α66 + α55α66)

+α44α55α66(α11α22 + α11α33 + α22α33)],

U2 = (α11α22 + α11α33 + α22α33)(α44α55 + α44α66 + α55α66)

+α11α22α33(α44 + α55 + α66) + α44α55α66(α11 + α22 + α33)

+α16α61(α22α33 + α44α55 + (α22 + α33)(α44 + α55)),

U3 = −[α16α61(α22 + α33 + α44 + α55) + α11α22α33 + α44α55α66

+(α11 + α22 + α33)(α44α55 + α44α66 + α55α66)

+(α44 + α55 + α66)(α11α22 + α11α33 + α22α33)],

U4 = α16α61 + α11α22 + α11α33 + α22α33

+α44α55 + α44α66 + α55α66

+(α11 + α22 + α33)(α44 + α55 + α66),

U5 = −(α11 + α22 + α33 + α44 + α55 + α66),

V0 = α21α66β32(α16 − α15)(α43α54 + α44α53)

+α44α55(α16α33α61β22 + α13α21α66β32 + α11α33α66β22),
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V1 = α21β32(α16 − α15)(α43α54 + α44α53)

−α21α53β32(α44 + α66)(α15 − α16)

−α16α61β22(α33α44 + α33α55 + α44α55)

−α13α21β32(α44α55 + α44α66 + α55α66),

−β22[α11α33α44(α55 + α66) + α11α55α66(α33 + α44) + α33α44α55α66],

V2 = (α16α61β22(α33 + α44 + α55) + α13α21β32(α44 + α55 + α66))

+α21α53β32(α16 − α15)

+β22[α33α44(α55 + α66) + α55α66(α33 + α44)]

+α11β22[α33α44 + α55α66 + (α33 + α44)(α55 + α66)],

V3 = −[α11β22(α33 + α44 + α55 + α66) + α13α21β32 + α16α61β22

+β22(α33α44 + α55α66 + (α33 + α44)(α55 + α66))],

V4 = β22(α11 + β22 + α33 + α44 + α55 + α66), V5 = −β22,

α11 = −( βσπr2

L2 I∗ + d1 + ρ),

α13 = − βσπr2

L2 S∗, α15 = ϕ, α16 = ε,

α21 =
βσπr2

L2 I∗, α22 = −d1,

α23 =
βσπr2

L2 S∗, β22 = −θ,

α33 = −(d1 + d2 + η1 + α), β32 = θ,

α43 = α, α44 = −(d1 + d2 + η2),

α53 = η1, α54 = η2,

α55 = −(d1 + ϕ), α61 = ρ,

α66 = −(d1 + ε).

To guarantee the existence of Hopf bifurcation of system (2), we need some assumptions and they are
listed in the following for clarity.

Assumption (H1):

D1 = U00 > 0, (11)

D2 =

∣∣∣∣∣ U05 1
U0 U04

∣∣∣∣∣ > 0 (12)

D3 =

∣∣∣∣∣∣∣
U05 1 0
U03 U04 U05

U01 U02 U03

∣∣∣∣∣∣∣ > 0, (13)

D4 =

∣∣∣∣∣∣∣∣∣

U05 1 0 0
U03 U04 U05 1
U01 U02 U03 U04

0 U00 U01 U02

∣∣∣∣∣∣∣∣∣
> 0, (14)

184



Mathematics 2019, 7, 396

D5 =

∣∣∣∣∣∣∣∣∣∣∣

U05 1 0 0 0
U03 U04 U05 1 0
U01 U02 U03 U04 U05

0 U00 U01 U02 U03

0 0 0 U00 U01

∣∣∣∣∣∣∣∣∣∣∣
> 0, (15)

where

U00 = U0 + V0, U01 = U1 + V1,

U02 = U2 + V2, U03 = U3 + V3,

U04 = U4 + V4, U05 = U5 + V5.

Assumption (H2):
Equation (16) has at least one positive root ν0,

ν6 + U15ν5 + U14ν4 + U13ν3 + U12ν2 + U11ν + U10 = 0, (16)

where

U10 = U2
0 −V2

0 ,

U11 = U2
1 − 2U0U2 + 2V0V2 −V2

1 ,

U12 = U2
2 + 2U0U4 + 2U1U3 + 2V1V3 −V2

2 − 2V0V4,

U13 = U2
3 + 2U1U5 − 2U0 − 2U2U4 + 2V1V5 + 2V2V4 −V2

3 ,

U14 = U2
4 + 2U2 − 2U3U5 + 2V3V5 −V2

4 ,

U15 = U2
5 − 2U4 −V2

5 .

Assumption (H3):
g′(ν0) 
= 0, where g(ν) = ν6 + U15ν5 + U14ν4 + U13ν3 + U12ν2 + U11ν + U10.

Theorem 2. For system (2), if the conditions (H1)-(H3) hold, then P∗(S∗, E∗, I∗, Q∗, R∗, V∗) is locally
asymptotically stable when τ ∈ [0, τ0); system (2) undergoes a Hopf bifurcation at P∗(S∗, E∗, I∗, Q∗, R∗, V∗)
when τ = τ0 and τ0 is defined as in Equation (21).

Proof of Theorem 2. When τ = 0, Equation (10) becomes

λ6 + U05λ4 + U04λ4 + U03λ3 + U02λ2 + U01λ + U00 = 0, (17)

Obviously, U05 = U5 + V5 = βσπr2

L2 I∗ + α + ϕ + ε + θ + ρ + η1 + η2 > 0. Thus, according to the
Hurwitz criterion, it can be concluded that system (2) is locally asymptotically stable when τ = 0, if the
following the condition (H1) holds.

For τ > 0, let λ = iω(ω > 0) be a root of Equation (10). Then,

{
(V5ω5 −V3ω3 + V1ω) sin τω + (V4ω4 −V2ω2 + V0) cos τω = ω6 −U4ω4 + U2ω2 −U0,

(V5ω5 −V3ω3 + V1ω) cos τω− (V4ω4 −V2ω2 + V0) sin τω = U3ω3 −U5ω5 −U1ω.
(18)
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Thus, one can obtain

ω12 + U15ω10 + U14ω8 + U13ω6 + U12ω4 + U11ω2 + U10 = 0, (19)

Let ω2 = ν, then, Equation (19) becomes

ν6 + U15ν5 + U14ν4 + U13ν3 + U12ν2 + U11ν + U10 = 0. (20)

If the condition (H2) holds, then, Equation (19) has one positive root ω0 =
√

ν0 such that Equation (10)
has a pair of purely imaginary roots ±iω0. From Equation (21), we obtain

τ0 =
1

ω0
× arccos

{
G1(ω0)

G2(ω0)

}
, (21)

with

G1(ω0) = (V4 −U5V5)ω
10
0 + (U5V3 −U3V5 −U4V4 −V2)ω

8
0

+(U2V4 + U4V2 −U1V5 −U3V3 −U5V1 + V0)ω
6
0

+(U1V3 + U3V1 −U0V4 −U2V2 −U4V0)ω
4
0

+(U0V2 + U2V0 −U1V1)ω
2
0 −U0V0,

G2(ω0) = V5ω10
0 + (V2

4 − 2V3V5)ω
8
0 + (V2

3 + 2V1V5 − 2V2V4)ω
6
0

+(V2
2 + 2V0V4 + 2V1V3)ω

4
0 + (V2

1 − 2V0V2)ω
2
0 + V2

0 .

Differentiating both sides of Equation (10) with respect to τ yields

[
dλ

dτ

]−1

= − (6λ5 + 5U5λ4 + 4U4λ3 + 3U3λ2 + 2U2λ + U1)

λ(λ6 + U5λ5 + U4λ4 + U3λ3 + U2λ2 + U1λ + U0)

+
5V5λ4 + 4V4λ3 + 3V3λ2 + 2V2λ + V1

λ(V5λ5 + V4λ4 + V3λ3 + V2λ2 + V1λ + V0)
− τ

λ
.

Further,

Re
[

dλ

dτ

]−1

τ=τ0

=
g′(ν0)

G2(ω0)
.

Obviously, if the condition (H3) is satisfied, then Re[ dλ
dτ ]
−1
τ=τ0


= 0. Based on the discussion above and
the Hopf bifurcation theorem in [40], Theorem 2 can be proved.

5. Numerical Simulations

In this section, we present some numerical simulations to support our obtained theoretical results.
Choosing A = 1000, β = 0.009, σ = 0.5, r = 1, L = 10, d1 = 0.05, ρ = 0.65, ϕ = 0.05, ε = 0.55, θ = 0.45,
d2 = 0.035, η1 = 0.35, α = 0.1 and η2 = 0.07, then Equation (2) becomes
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = 1000− 1.4130e− 004S(t)I(t)

−0.7S(t) + 0.05R(t) + 0.55V(t),

dE(t)
dt = 1.4130e− 004S(t)I(t)− 0.05E(t)− 0.45E(t− τ),

dI(t)
dt = 0.45E(t− τ)− 0.535I(t),

dQ(t)
dt = 0.1I(t)− 0.155Q(t),

dR(t)
dt = 0.35I(t) + 0.07Q(t)− 0.1R(t),

dV(t)
dt = 0.65S(t)− 0.6V(t),

(22)

from which one can obtain R0 = 2.2819 > 1 and the unique endemic equilibrium P∗(4207, 1663.8,
1399.5, 902.9032, 5530.3, 4557.6). It can be verified that system (22) is locally asymptotically stable
when τ = 0.

For τ = 0, by some computations with the aid of Matlab software package, we obtain ω0 = 0.0558,
τ0 = 13.1047 and g′(ν0) = 0.0029 > 0. Thus, the conditions for existence of Hopf bifurcation are
satisfied. Based on Theorem 1, we can see that P∗(4207, 1663.8, 1399.5, 902.9032, 5530.3, 4557.6) is locally
asymptotically stable when τ ∈ [0, τ0 = 13.1047). This can be shown as in Figure 1. However, P∗(4207,
1663.8, 1399.5, 902.9032, 5530.3, 4557.6) will lose its stability when the value of τ passes through the critical
threshold τ0, a Hopf bifurcation occurs, which can be seen from Figure 2. The bifurcation phenomenon
can be also illustrated by the bifurcation diagrams in Figure 3. In what follows, we are interested to study
the effect of some other parameters on the dynamics of system (22).

(i) Effect of η1 and η2: In Figure 4, we can see that the number of infectious nodes decreases when the
values of η1 and η2 increase. And the system changes its behavior from limit cycle to stable focus as we
increase the value of η1 and η2, which can be shown as in Figure 5.

(ii) Effect of ϕ and ε: In the same manner, we can see from Figures 6 and 7 that the number of infectious
nodes increases when the values of ϕ and ε increase. Also, we observe that system changes its behavior
from stale focus to limit cycle as we increase the value of ϕ and ε.

(iii) Effect of r and L: As is shown in Figures 8 and 9, the number of infectious nodes increases
when the value of r increases and the value of L decreases. In other words, as the density of sensor node
increases, the number of infectious nodes increases. In addition, r and L effect the dynamic behavior of
system (22) when their value changes. That is, system changes its behavior from stable focus to limit cycle
as we increase the value of r and decrease the value of L.

In addition, in the presence of delay, the Lyapunov exponents (LE) have been derived numerically.
For a non zero value of τ, LE for different species have been plotted in Figure 10. As all LEs are negative,
then the system is stable.
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Figure 1. Time plots of S, E, I, Q, R and V with τ = 12.85 < τ0 = 13.1047.
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Figure 2. Time plots of S, E, I, Q, R and V with τ = 13.75 > τ0 = 13.1047.
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Figure 3. Cont.
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(c) (d)

(e) (f)

Figure 3. Bifurcation diagram with respect to time delay of system (22): (a) S − τ, (b) E − τ, (c) I − τ,
(d) Q− τ, (e) R− τ, (f) V − τ.
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Figure 4. Time plots of I for different η1 and η2 at τ = 12.85.
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Figure 5. Dynamic behavior of system (22): projection on I-Q-R for different η1 and η2 at τ = 13.75.
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Figure 7. Dynamic behavior of system (22): projection on I-Q-R for different ϕ and ε at τ = 12.85.
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Figure 9. Dynamic behavior of system (22): projection on I-Q-R for different ϕ and ε at τ = 9.25.
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6. Discussion and Conclusions

In this paper, we present a delayed SEIQRS-V epidemic model for propagation of malicious codes in
wireless sensor network based on the work in [32] by incorporating the latent period delay of malicious
codes. As stated in [41], one of the significant features of malicious codes is their latent characteristics,
which implies that the nodes are infected at time t− τ and they are surviving in the latent period τ and
then become infective at time t. In addition, too large time delay may lead to large number of infected
nodes, because of which malicious codes propagation persists in the system. Therefore, compared with the
model proposed in [33], the delayed model in our paper is more general. It should be also pointed out that
there are some proposed epidemic models for propagation of malicious code in a wireless sensor network
such as the models in [5,6,9,42,43], but the authors did not consider the characteristics of networks like
communication radius and distributed density of nodes in wireless sensor network.

We first find a feasible region which is invariant and where the solutions of our model are positive
and the Lyapunov exponent stability is analyzed by constructing a Lyapunov functional. Then, the critical
value of time delay τ0 at which a Hopf bifurcation occurs is obtained by choosing the delay as the
bifurcating parameter. It is found that when the time delay is suitably small (τ ∈ [0, τ0)), system (2) is
locally asymptotically stable. In this case, the propagation of malicious codes can be controlled easily.
However, once the value of the time delay passes through the critical value τ0, system (2) loses its stability
and a family of periodic solutions bifurcate from the endemic equilibrium of system (2). In this case,
the propagation of malicious codes will be out of control.

Also, the effects of some crucial parameters on dynamics of system (2) are studied by numerical
simulations. As the values of η1 and η2 increase, the number of infectious nodes decreases and system (22)
changes its behavior from limit cycle to stable focus as we increase the value of η1 and η2, it is strongly
recommended that users of the wireless sensor network should periodically run antivirus software of the
newest version, so that the propagation of malicious codes can be controlled. This phenomenon can also
be illustrated by the effects of ϕ and ε on dynamics of the system. In addition, the number of infectious
nodes increases when the density of the sensor node increases. Thus, it can be concluded that the manager
of the wireless sensor network should control the number of nodes connected to the network properly.
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Appendix A

k1 = k4 = 2k5 = 3k6 =
τ

2
(−α12 + 4α21 − 2α11 − 3d1 − 2d2 + α12 + 2ρ) ,

k2 = k3 = 2k8 = k7 = k10 =
3τ

2
(φ + ε + α12 + 3ρ− 3α11 − 6d1 + α− d2 − α21 + η1 − θ) ,

k9 = k11 = 2k12 = τ (2α + 2ε− α12 − 4d1 − d2 − 2η2) ,

k13 = 3k14 = 2k15 = k19 = 2k20 = 2η1 + φ + ε− 2α12 − d1

k16 = k17 = 2k18 = k21 = 2η2 + 2ε + 3φ.

192



Mathematics 2019, 7, 396

Appendix B

w1(u)(t) = u2
1(t),

w2(u)(t) = p2
1(t) + θ(d1 + θ − 2α12)

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w3(u)(t) = p2
2(t) + θ(θ − d1 − d2 − η1 − α)

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w4(u)(t) = u2
4(t), w5(u)(t) = u2

5(t), w6(u)(t) = u2
6(t),

w7(u)(t) = u1(t)p1(t) +
θ(α11 + α12 − φ− ε)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w8(u)(t) = u1(t)p2(t) +
θ(ε + φ− α12 − α11)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w9(u)(t) = u1(t)u4(t), w10(u)(t) = u1(t)u5(t), w11(u)(t) = u1(t)u6(t),

w12(u)(t) = p1(t)p2(t) +
θ(α12 + α21 + α− 2θ + d2 + η1)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w13(u)(t) = p1(t)u4(t) +
θ(d1 + d2 + η2 − α)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w14(u)(t) = p1(t)u5(t) +
θ(d1 + φ− η2 − η1)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w15(u)(t) = p1(t)u6(t) +
θ(d1 + ε− ρ)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w16(u)(t) = p2(t)u4 +
θ(α− d1 − d2 − η2)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w17(u)(t) = p2(t)u5 +
θ(η1 + η2 − d1 − φ)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w18(u)(t) = p2(t)u6 +
θ(ρ− d1 − ε)

2

∫ t

t−τ

∫ t

s
u2

2(l)dlds,

w19(u)(t) = u4(t)u5(t), w20(u)(t) = u4(t)u6(t), w21(u)(t) = u5(t)u6(t).

Appendix C

Λ1 = −2α11k1 − θα21τk2 + k7

(
α21 +

θα11τ

2

)
− α11θτ

2
k8 + ρk11 +

α21θτ

2
k12 − ρθτ

2
k15 +

ρθτ

2
k18,

Λ2 = k2(2θ(d1 + θ)τ − 2d1 − 2θ − 2θα12τ) + k3(2θ2τ − θτ(d1 + d2 + η1 + α))

+k7
τθ(α11 + α12 − φ− ε)

2
+ k8

τθ(−α11 − α12 + φ + ε)

2

+k12{θ + τθ(α12 + α21 + α− 4θ + d2 + η1 − d1)

2
}+ k13

τθ(d1 + d2 + η2 − α)

2

+k14
τθ(d1 + φ− η1 − η2)

2
+ k15

τθ(d1 + ε− ρ)

2
+ k16

τθ(α− d1 − d2 − η2)

2

+k17
τθ(η1 + η2 − d1 − φ)

2
+ k18

τθ(ρ− d1 − ε)

2
,
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Λ3 = −θτα12k2 − (2 + τθ)(d1 + d2 + α + η1)k3 + k7
τθα12

2
− k8

(
α12 +

α12τθ

2

)

+k12

(
α12 +

τθ(d1 + d2 + η1 + α + α12)

2

)
− αθτk13 − η1θτ

2
k14

+k16

(
α +

αθτ

2

)
+ k17

(
η1 +

η1θτ

2

)
,

Λ4 = −2(d1 + d2 + η2)k4 − τθη2

2
k14 − (d1 + d2 + η2)τθ

2
k16 +

τθη2

2
k17 + η2k19,

Λ5 = −2(d1 + φ)k5 − τθφ

2
k7 +

τθφ

2
k8 +

τθ(d1 + φ)

2
k14 − τθ(d1 + φ)

2
k17,

Λ6 = −2(d1 + ε)k6 − τθφ

2
k7 +

τθε

2
k8 + εk11 + k15

(
ε +

τθ(d1 + ε)

2

)
− τθ(d1 + ε)

2
k18.
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