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Image analysis is a fundamental task for any application where extracting information from
images is required. The analysis needs numerical and analytical methods that are highly sophisticated,
particularly for those applications in medicine, security, and other fields where the results of the
processing consist of data of vital importance. This fact is evident from all the articles composing
this Special Issue of Entropy in which authors have widely tested methods to verify their results.
On the other hand, being specifically involved in numerous applications, image analysis is producing
a large number of approaches and related algorithms in which the variety is clearly exemplified by the
case studies proposed in this issue. Let us stress that, in its progression, an important stimulus and
cross-fertilization among publications was observed with the editor’s great pleasure.

Let us describe the articles of the issue shortly.
In Reference [1], we can find a problem of medical imaging based on the ultrasound addressed.

It is the analysis of the severity of Duchenne Muscular Dystrophy. Ultrasound imaging enables
routine examinations for which entropy represents a great help in visualizing related changes.
Using small-window entropy, the imaging technique exhibits higher diagnostic performance than
conventional methods. Article [2] is also considering ultrasound imaging. The authors’ aim was that
of discriminating the normal muscles from neuropathic muscles in children affected by Pompe disease.
The method is using a texture-feature parametric imaging that simultaneously considers microstructure
and macrostructure. In Reference [3], a compression method is proposed, which can be very useful in
telemedicine applications. The addressed and solved problem is that of having a lossless compression
of images of malaria-infected red blood cells. In fact, a remote diagnosis of malaria infection could
receive a great benefit from efficient compression of high-resolution images.

In Reference [4], we are again in the field of medical imaging. In the article, a blind image quality
assessment (BIQA) method for evaluating magnetic resonance images is introduced. Images are
first preprocessed to reach acceptable local intensity differences. Quality is expressed by the entropy
coming from a thresholding in sequence. Image Quality Assessment appears in Reference [5] as well.
The authors are approaching the problem of training IQA, using deep neural networks. Since the
image quality is highly sensitive to changes in entropy, a new data expansion method based on this
remarkable quantity is proposed.

A security scheme for medical imaging is the subject of article [6], which is presenting a medical
image stego-hiding scheme, named BOOST by the authors. It uses a pseudorandom byte output
technique based on the nuclear spin generator. The security analyses show that BOOST can be used
for secure medical record communication. An image encryption scheme appears in Reference [7] as
well. The scheme is based on quasi-resonant Rossby/drift wave triads and Mordell elliptic curves.
A dynamic substitution box is employed for the plain image. The security of the proposed scheme was
tested and compared with other popular schemes. Article [8] proposes an algorithm for medical color
images encryption. It uses chaotic systems to protect medical images against attacks. The algorithm

Entropy 2020, 22, 898; doi:10.3390/e22080898 www.mdpi.com/journal/entropy1
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has two main parts: a high-speed permutation process and an adaptive diffusion. Entropy obtained
after experiments tells that the algorithm is suitable for this type of image.

Chaos and hyper-chaos, combined with DNA coding, appears in an image encryption algorithm
proposed in Reference [9]. The first stage involves three rounds of scrambling. Then a diffusion
algorithm is applied to the plaintext image, and the intermediate ciphertext image is partitioned.
The final encrypted image is formed by using DNA operation. Additionally, in Reference [10], we find
an image encryption based on a hyperchaotic system proposed with a pixel-level filtering obtained by
means of variable kernels. A global bit-level scrambling is also conducted to change the values and
positions of pixels simultaneously. At the end of the process, a DNA-level diffusion is used as well.

Another security problem and related analysis of an image chaotic encryption algorithm is given
in Reference [11]. The proposed algorithm generates Latin-bit cubes and uses them for image chaotic
encryption. The algorithm also uses different Latin cube combinations to scramble the diffusion image.
In Reference [12], the encryption scheme is based on double chaotic S-boxes. A compound chaotic
system, Sine-Tent map, is proposed to widen the chaotic range and improve the chaotic performance.
Data hiding is another very crucial research topic in information security [13]. In this article, the authors
are proposing a high-capacity data-hiding scheme for absolute moment block truncation coding
(AMBTC) decompressed images. For the secret data string, a unique encoding and decoding dictionary
is involved, and it is used in embedding and extraction stages.

The issue of image retrieval based on a convolutional neural network (CNN) has been considered
by the authors of Reference [14]. The article is proposing a feature distribution entropy to measure the
difference of regional distribution information in the feature maps from CNNs. Experiments have been
conducted on public datasets. Another application of entropy is available in Reference [15] to improve
the methods of image binarization for automatic text recognition in images acquired in uncontrolled
lighting conditions. The preprocessing of images is made by means of a local entropy filtering.

Computer vision is the subject of Reference [16]. The article is proposing a novel network structure,
which is involving a pipeline guidance strategy for the detection of human key-points. The use of
a pipelined guidance allows one to find a balance between the convolution calculations and the
communication time in order to improve the training speed of the network. In addition to the computer
vision in the issue, we can find neural engineering research. In Reference [17], an application of
the continuous wavelet transform and convolutional neural network for brain-computer interface is
proposed. The article includes a novel motor imagery classification scheme with the aim of capturing
highly informative electroencephalogram images.

Two forms of normalized entropy are used in Reference [18] for evaluating the evolution of
neuro-aesthetic variables, displayed by portrait paintings, from Early Renaissance to Mannerism.
The variables included symmetry, balance, and contrast (chiaroscuro) as well as intensity and spatial
complexities. In Reference [19], the application is an image-based denomination recognition of Pakistani
currency notes. The authors propose a procedure in two steps that extracts a currency note from the
image background via local entropy and range filters. Then, the aspect ratio of the extracted currency
note is calculated to determine its denomination. In Reference [20], a methodology based on weld
segmentation and entropy is proposed such as an evaluation by conventional and convolution neural
networks to assess the quality of welds. Compared to conventional neural networks, the method
does not require image preprocessing. The performed experiments show that the best results are
achieved using convolution neural networks. The image evaluation for engine flame is the subject of
the investigation proposed in article [21]. In it, we find the detectability of the related infrared radiation.
The influence of the earth background interference on plume radiation detection is investigated and
discussed in detail.

Let us conclude with an application that can be very useful for controlling the movements of a
crowd. In Reference [22], we find an article proposing a method for salient crowd motion detection
based on direction entropy and a repulsive force network. This work focuses on the manner by which
it is possible to detect the salient regions effectively. Let us observe that the proposed method could
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be integrated in any crowd check-point, such as during a pandemic, for helping in the control of
disease spread.

Acknowledgments: We express our thanks to the authors of the above contributions, and to the journal Entropy
and MDPI for their support during this work.
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Abstract: Information entropy of ultrasound imaging recently receives much attention in the diagnosis
of Duchenne muscular dystrophy (DMD). DMD is the most common muscular disorder; patients lose
their ambulation in the later stages of the disease. Ultrasound imaging enables routine examinations
and the follow-up of patients with DMD. Conventionally, the probability distribution of the received
backscattered echo signals can be described using statistical models for ultrasound parametric
imaging to characterize muscle tissue. Small-window entropy imaging is an efficient nonmodel-based
approach to analyzing the backscattered statistical properties. This study explored the feasibility
of using ultrasound small-window entropy imaging in evaluating the severity of DMD. A total
of 85 participants were recruited. For each patient, ultrasound scans of the gastrocnemius were
performed to acquire raw image data for B-mode and small-window entropy imaging, which were
compared with clinical diagnoses of DMD by using the receiver operating characteristic curve.
The results indicated that entropy imaging can visualize changes in the information uncertainty of
ultrasound backscattered signals. The median with interquartile range (IQR) of the entropy value
was 4.99 (IQR: 4.98–5.00) for the control group, 5.04 (IQR: 5.01–5.05) for stage 1 patients, 5.07 (IQR:
5.06–5.07) for stage 2 patients, and 5.07 (IQR: 5.06–5.07) for stage 3 patients. The diagnostic accuracies
were 89.41%, 87.06%, and 72.94% for ≥stage 1, ≥stage 2, and ≥stage 3, respectively. Comparisons
with previous studies revealed that the small-window entropy imaging technique exhibits higher
diagnostic performance than conventional methods. Its further development is recommended for
potential use in clinical evaluations and the follow-up of patients with DMD.

Keywords: Duchenne muscular dystrophy; entropy; ultrasound; backscattered signals

Entropy 2020, 22, 715; doi:10.3390/e22070715 www.mdpi.com/journal/entropy5
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1. Introduction

Information entropy of ultrasound imaging recently receives much attention in the diagnosis
of Duchenne muscular dystrophy (DMD). DMD is the most common muscular disorder caused by
mutations in the dystrophin gene [1] and results in absent or insufficient functional dystrophin, which
leads to reduced sarcolemma stability and rendering the muscle fibers vulnerable to mechanical
stretching-induced injury [2]. As a consequence, repeated contraction leads to necrosis and the
regeneration of muscle fibers, which are gradually replaced by fat and fibrous tissue. This disease is
primarily an X-linked condition affecting males; however, some female carriers exhibit symptoms of the
disorder, but usually with a milder phenotype [3]. Because of regional and ethnic differences,
the estimated incidence is approximately 1 in 5000–10,000 live male births [4–6]. Boys with
DMD may exhibit symptoms such as abnormal gait, weakened proximal muscles, and calf muscle
pseudohypertrophy at age 3–5 years [7,8]. Patients with DMD inevitably develop a loss of mobility,
respiratory and cardiac deterioration as a consequence of the dystrophic changes of muscle, and typically
die from respiratory and cardiac complications by the age of 30 [9].

Currently, no curative therapy is available for treating DMD; therefore, early detection and
effective health care, rehabilitation, and psychosocial management are essential [10–12]. However,
considerable progress has been made recently in terms of genetic approaches [13]; some drugs have
also been conditionally approved for the treatment of patients with DMD [14]. This implies that
reliable and noninvasive approaches to evaluating the progression of DMD and treatment efficacy
are required. The North Star Ambulatory Assessment [15] and timed function tests, including the
6-minute walk test, time to climb 4 stairs, time to stand or 10-meter walk [16] are typical assessments
of function during the ambulatory period. Although these outcome measures are clinically meaningful
and valuable, their sensitivity is often limited by the effort and mood of children with DMD without
objective assessment of muscle pathologic change [17].

Ultrasound and magnetic resonance imaging (MRI) are two of the commonest and widely used
noninvasive methods for muscle tissue examination [18,19]. Compared with MRI, ultrasound imaging
enables friendlier and safer routine scans and follow-up for pediatric patients [20]. Studies have
revealed that quantitative muscle ultrasound can detect DMD progression [21,22]. Fat infiltration
and fibrosis formation increase the intensity of the backscattered echo [23], indicating that ultrasound
backscattering may provide useful information associated with changes in muscle microstructures
for DMD diagnosis. Considering the random nature of ultrasound backscattering, the probability
distribution of the backscattered envelope (the echo amplitude) has been explored and demonstrated
to be useful in characterizing tissues [24]. Previously, the Nakagami statistical distribution was applied
to modeling the backscattered statistics as an evaluation method of ambulatory function in patients
with DMD [25]. However, the prerequisite for using the statistical distribution is that the echo data
must follow the model used [26]; it is difficult to satisfy the aforementioned condition in practice,
because the properties of backscattered signals depend on system characteristics, software settings,
and signal/image processing. This limitation has encouraged researchers to pursue a more flexible
solution for describing backscattering information, without considering the distribution nature of the
echo data.

Among all possibilities, Shannon entropy (a measure of information uncertainty [27]) fulfills
the aforementioned requirement. Hughes first introduced the concept of entropy in the field of
ultrasound imaging, indicating that entropy can be used to quantitatively characterize changes in
the microstructures of scattering media [28–30]. Furthermore, entropy has been reported to be a
non-model-based statistical parameter that is proportional to the Nakagami parameter and correlates
with backscattered statistics [31]. In particular, information entropy has been applied to ultrasound
parametric imaging, allowing the use of the small-window technique to visualize the statistical
properties of backscattered signals for tissue characterization with improved image resolution [32,33].
For these reasons, we explored the feasibility of using ultrasound small-window entropy imaging in
evaluating the severity of the dystrophic process in patients with DMD.

6
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2. Materials and Methods

2.1. Study Population

The Institutional Review Board of National Taiwan University Hospital (NTUH) approved
the study and allowed the reuse of the database collected in a previous study [34]. A total of 85
participants (n = 85) aged between 2 and 24 years provided written informed consent, and the
experimental methods were conducted according to the approved guidelines. All DMD patients
(n = 73) were recruited from the joint clinics of neuromuscular disorders in the Department of Pediatrics,
NTUH. The clinical manifestations of each patient were consistent with DMD, and diagnoses had
been confirmed according to muscle biopsies (revealing absent dystrophin) and/or genetic testing.
On the basis of a review report [10], the severity of DMD was classified into three stages: stage 1
(presymptomatic, early ambulatory, and late ambulatory), stage 2 (early non-ambulatory), and stage 3
(late non-ambulatory). Seventy-three patients (n = 73) were recruited (stage 1: n = 41; stage 2: n = 20;
stage 3: n = 12). Twelve children (n = 12) with no history of weakness or neuromuscular disorders were
also recruited as controls. The demographic data of participants and stage definitions are summarized
in our previous study [34].

2.2. Ultrasound Examination

A commercial clinical ultrasound system (Model 3000; Terason, Burlington, MA, USA) equipped
with a linear array transducer (Model 12L5A; Terason) was used for ultrasound scans on the patients
with DMD. The central frequency, pulse length, and beam width of the transducer were 7 MHz, 0.7
mm, and 1.2 mm, respectively. All participants underwent a standard-care ultrasound examination
of the gastrocnemius using the sagittal scanning approach. For each participant, three valid scans
(i.e., no acoustic shadowing artifacts and the exclusion of large vessels in the region of analysis) were
performed by a skilled physician. The focus and depth were set at 2 and 4 cm, respectively. The gain
index of the Terason system was set at 6, corresponding to a signal-to-noise ratio of approximately
30 dB, which was obtained from the calibrations performed in the previous study [35]. Raw image
data obtained from each valid scan, consisting of 128 backscattered radiofrequency (RF) signals at a
sampling rate of 30 MHz, were used for offline data processing in MATLAB, including ultrasound
B-mode and small-window entropy imaging.

2.3. Entropy Imaging Algorithm

The algorithms for ultrasound B-mode and entropy imaging [32] are illustrated in Figure 1. For the
data of each raw image, the absolute values of the Hilbert transform of backscattered RF signals were
calculated to obtain the envelope image. Using the logarithm-compressed envelope, which provides
different grayscales according to its value at a dynamic range of 40 dB, the B-mode image was formed.
The uncompressed envelope data were used for small-window entropy imaging according to the
following steps: (a) a small-square window was set up in the upper-left corner of the data with a side
length of one time the pulse length of the transducer (0.7 mm) to collect uncompressed envelope data;
(b) the envelope data were normalized, and the probability distribution of the envelope data within the
window was constructed using a statistical histogram (bins = 50) for estimating the Shannon entropy,
using the following equation:

HC = −
n∑

i=1

w(yi) log2[w(yi)] (1)

where yi is the discrete random variable of the envelope data, w(yi) represents the probability value,
and n indicates the number of bins; then, the estimated entropy value was assigned as a new pixel
corresponding to the window location; (c) subsequently, the window, with a window overlap ratio
of 50%, to provide a tradeoff between the parametric image resolution and computational time [32],
was slid throughout the entire envelope image to calculate local entropy values (according to the
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step (b)) for generating a parametric map; (d) a two-dimensional linear interpolation was performed
to obtain an entropy parametric map, with the same size as the uncompressed envelope data [36],
which was displayed in a pseudocolor and superimposed onto the B-mode image, to reveal both the
anatomical and backscattering information. Finally, the region of interest (ROI) corresponding to the
gastrocnemius was manually chosen on the image to calculate the average entropy value.

Figure 1. Algorithms for ultrasound B-mode and entropy imaging. The uncompressed envelope data
were processed using the sliding window technique. The side length of the window was set as one time
the pulse length, to acquire local data points for estimating the entropy values. RF: radiofrequency.

The ROI selection was handled by a pediatric neurologist. To reduce the bias in averaging the
entropy values in the ROI, choosing an ROI that satisfies the coverage of the whole gastrocnemius was
used as a basic rule in this study. For each participant, the final entropy value was obtained by the
average of three valid scans.

2.4. Statistical Analysis

The envelope amplitude and entropy values, as a function of DMD stage, are expressed as vertical
box and dotted plots, which exhibit the median, interquartile range (IQR; being equal to the difference
between the third quartile and the first quartile), data distribution, and outliers. The Spearman rank
correlation coefficient r and the probability value p were calculated for evaluating the correlation
between the parameter values (envelope amplitude and entropy) and DMD stage. The receiver
operating characteristic (ROC) curve with a 95% confidence interval (CI) was used to evaluate the
performances for diagnosing different DMD stages. The ROC curve was created by plotting the true
positive rate against the false positive rate at various threshold settings. The optimal cutoff value for
diagnosing each DMD stage was determined by the point maximizing the Youden function, which
is the difference between true positive rate and false positive rate over all possible cutoff values [37].
The area under the ROC curve (AUROC), sensitivity, specificity, accuracy, and other statistical results
were then reported. A p-value of <0.05 was considered statistically significant. All statistical analyses
were performed using SigmaPlot Version 12.0 (Systat Software, Inc., CA, USA).
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3. Results

Typical images representing different DMD stages are depicted in Figure 2. The dotted lines
indicate the ROIs corresponding to the gastrocnemius for ultrasound entropy imaging. Observations
on the entropy values obtained from three valid scans for each individual subject showed that the
proposed rule for ROI selection ensured the maximum difference of entropy between three valid
scans ≤0.02. The image brightness increased from the control group to stage 3, indicating that the
entropy value and the probability distribution of ultrasound backscattered signals vary with the
severity of DMD (Figure 3).

Figure 4a,b exhibits the box plots with dot density, which reveal the positions of each
envelope amplitude and entropy data point. Evidently, the envelope amplitude increased as the
DMD stage advanced (r = 0.49; p < 0.05); the median (IQR) was 102.32 (IQR: 75.90–125.44) for
the control, 178.99 (IQR: 158.22–218.73) for stage 1, 271.08 (IQR: 236.65–363.11) for stage 2, and 204.97
(IQR: 135.08–300.83) for stage 3. Ultrasound entropy also increased as DMD stages progressed (r = 0.76;
p < 0.05); the median (IQR) was 4.99 (IQR: 4.98–5.00) for the control, 5.04 (IQR: 5.01–5.05) for stage 1,
5.07 (IQR: 5.06–5.07) for stage 2, and 5.07 (IQR: 5.06–5.07) for stage 3. The AUROCs (95% CI) for
diagnosing different DMD stages are shown in Figure 4c,d. The AUROCs obtained from using the
B-scan to calculate the envelope amplitude were 0.91 (0.79–1), 0.76 (0.66–0.86), and 0.54 (0.36–0.72)
for ≥stage 1, ≥stage 2, and ≥stage 3, respectively (the diagnostic accuracies were 85.88% for ≥stage 1,
75.29% for ≥stage 2, and 52.94% for ≥stage 3), and those of entropy were 0.96 (0.89–1), 0.91 (0.85–0.97),
and 0.80 (0.68–0.91) for ≥stage 1, ≥stage 2, and ≥stage 3, respectively (the diagnostic accuracies
were 89.41% for ≥stage 1, 87.06% for ≥stage 2, and 72.94% for ≥stage 3). Tables 1 and 2 show the
other statistical results obtained from the ROC analysis, including cutoff value, sensitivity, specificity,
positive likelihood ratio, negative likelihood ratio, positive predictive value, and negative predictive
value, representing that ultrasound entropy imaging outperformed conventional B-scan in evaluating
the severity of DMD.

Figure 2. Typical images measured at different Duchenne muscular dystrophy (DMD) stages.
(a) normal control; (b) stage 1; (c) stage 2; (d) stage 3. The dotted lines indicate the regions of
interest (ROIs) corresponding to the gastrocnemius. Image brightness increased between the control
group and the stage 3 group, representing a corresponding entropy value increase.
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Figure 3. Probability distributions of ultrasound backscattered signals measured in the ROIs for different
DMD stages. The probability distribution was described using a statistical histogram (bins = 50);
it varied with the severity of DMD.

Figure 4. (a,b) Envelope amplitude and entropy values as a function of DMD stage. Data were
expressed by vertical box and dotted plots, which revealed the median, interquartile range (IQR),
data distribution, and outliers. The entropy value increased as the DMD stage advanced (r = 0.76;
p < 0.05), and the envelope amplitude also showed a similar trend (r= 0.49; p< 0.05). (c) and (d) AUROCs
for diagnosing different DMD stages using the B-mode and entropy images. Compared with the B-scan,
ultrasound entropy imaging could detect early stage DMD with improved diagnostic performance;
it also performed well in detecting the difference between ambulatory and non-ambulatory stages.
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Table 1. Clinical performance of ultrasound B-mode imaging (envelope amplitude) in evaluating the
severity of DMD.

Clinical Severity ≥Stage 1 ≥Stage 2 ≥Stage 3

Cutoff value 128.22 212.86 183.04
Sensitivity 83.33 77.36 52.05
Specificity 86.3 71.88 58.33
Accuracy 85.88 75.29 52.94

LR+ 6.08 2.75 1.25
LR- 0 0.32 0.82

PPV, % 50 82 88.37
NPV, % 96.92 65.71 16.67

AUROC (95% CI) 0.91 (0.79–1) 0.76 (0.66–0.86) 0.54 (0.36–0.72)

LR+: positive likelihood ratio, LR−: negative likelihood ratio, PPV: positive predictive value, NPV: negative
predictive value, AUROC: area under the receiver operating characteristics curve.

Table 2. Clinical performance of ultrasound entropy imaging in evaluating the severity of DMD.

Clinical Severity ≥Stage 1 ≥Stage 2 ≥Stage 3

Cutoff value 5.01 5.05 5.05
Sensitivity 100 84.91 68.49
Specificity 87.67 90.63 100
Accuracy 89.41 87.06 72.94

LR+ 8.11 9.06 6.55
LR- 0 0.17 0.32

PPV, % 57.14 93.75 100
NPV, % 100 78.38 34.29

AUROC (95% CI) 0.96 (0.89–1) 0.91 (0.85–0.97) 0.80 (0.68–0.91)

4. Discussion

In DMD, the progression of two critical periods should be noted: the first refers to the period
before amyotrophia occurs and the second is when patients lose their ambulation. However, free-acting
capability is apparently a critical index representing the effect of DMD on patients and their families.
For this reason, the major aim of DMD treatment is the prolongation of walking function [38].
In most cases, neuromuscular specialists assess and characterize each patient’s unique disease trajectory
using validated assessment tools and their clinical experience, aiming to establish a patient’s expected
clinical course [10]. Because of advances in medical technologies, ultrasound imaging has become the
preferred method for clinicians to follow up DMD patients, because it serves as a real-time point-of-care
tool. Ultrasound imaging can also provide further quantitative information associated with the echo
intensity to aid DMD evaluations [39,40]. To satisfy the requirement for evaluating the walking function
of patients with DMD, an emerging research trend involves using statistical distributions to model the
backscattered statistics for characterizing tissue microstructures, which are highly correlated with the
behavior of ultrasound backscattering [24].

As reviewed in the Introduction, ultrasound Nakagami parametric imaging has been applied to
imaging the backscattered statistics measured from the gastrocnemius [25]. Variation in the Nakagami
parameter from 0 to 1 indicates a change in the envelope statistics from a pre-Rayleigh to a Rayleigh
distribution; a Nakagami parameter higher than 1 indicates that the backscattered statistics represent
post-Rayleigh distributions [25]. The Nakagami parameter increased and remained close to 1 when
the DMD progressed to stage 4; the performance of diagnosing the walking function of the patients
with DMD was also acceptable (AUROC: 0.89; accuracy: 85.52%; sensitivity: 76.31%; specificity:
94.73%) [25]. In this study, we used information entropy, a simpler and more effective parameter, as the
non-model-based solution to analyze the uncertainty and complexity of ultrasound backscattered
signals. We also followed the algorithm of ultrasound parametric imaging to construct the entropy
map to image the backscattering information of DMD. According to our findings, the entropy value

11



Entropy 2020, 22, 715

was a monotonically increasing function of the DMD stage, and gradually entered a plateau phase
when DMD was at stages 2 and 3, representing that distinguishing stages 2 and 3 is difficult. However,
clinical treatments and managements of DMD actually need early detection and evaluations of the
walking function (at stages 1 and 2), and ultrasound entropy may be a qualified imaging biomarker
to satisfy the above purposes. Evidently, ultrasound entropy imaging was able to detect early
stage DMD with improved diagnostic performance (AUROC: 0.96; accuracy: 89.41%; sensitivity:
100%; specificity: 87.67%). Moreover, ultrasound entropy values accurately detected the difference
between ambulatory and non-ambulatory stages (AUROC: 0.91; accuracy: 87.06%; sensitivity: 84.91%;
specificity: 90.63%). Several studies have revealed that fatty and connective tissues in the muscles of
patients with DMD cause strong echoes [21,22,40]. This can be regarded as the behavior of constructive
wave interference to induce changes in the backscattered statistics from the pre-Rayleigh to the Rayleigh
distribution, corresponding to the increase in the signal uncertainty [31,33]. This can explain why
the Nakagami and entropy values increase with the severity of DMD. More importantly, ultrasound
entropy imaging exhibited improved diagnostic performance for DMD evaluations compared with the
Nakagami parameter proposed previously.

The improved diagnostic performance of ultrasound entropy imaging may be attributed to the
suppression of boundary artifacts during sliding window processing. Entropy and Nakagami images
differ in that entropy allows the use of a small sliding window for parametric imaging. This advantage
enables an effective reduction in the appearance of boundary artifacts in ultrasound parametric imaging
constructed using the sliding window processing technique, as explained in detail previously [32].
Briefly, as the sliding window moves across the interface, the window acquires not only the backscattered
signals returned from the interface, but also those from the tissue parenchyma. The difference in
the echo amplitude of the interface and tissue parenchyma tends to lead to underestimation of the
parameter, generating a boundary artifact. The simplest approach to suppressing boundary artifacts is
to use a small window for parametric imaging. However, the distribution parameters typically require
a relatively large window for parametric imaging, because a sufficient sample size is necessary for
stable parameter estimation. Unlike the distribution parameters, information entropy is a relative
measure of signal uncertainty, not a model-based parameter or an absolute physical estimate. Therefore,
entropy calculated using fewer data points acquired from a small window for scatterer characterization
is allowed and feasible [32]. On the other hand, the offline processing time for ultrasound entropy
imaging of one image raw data was < 1 sec (operating environment: Windows 10; RAM: 8 GB;
CPU: Intel® CoreTM i3-8100 at 3.6 GHz), implying the possibility of real-time capability if the algorithm
is combined with an ultrasound system.

The limited dynamic range of information entropy is the major limitation in practice, although
this does not affect the statistical significance of the results. The dynamic range of information entropy
must be enlarged to facilitate the color mapping and visualization of parametric imaging as well
as to improve its sensitivity. Probably, using phantoms with different scatterer properties to find a
theoretically dynamic range of entropy as the calibration reference for parameter normalization may
be a feasible method. Moreover, using ultrasound entropy imaging to follow up on patients with
DMD is an area for future research, which could provide possibilities to predict the progression of
walking function in these patients. Prior to using entropy imaging as a reliable follow-up tool of DMD,
a large-scale clinical validation is still necessary. Using different datasets for training and tests are also
needed to investigate the power of prediction through ultrasound entropy imaging.

5. Conclusions

In this study, we investigated the performance of ultrasound small-window entropy imaging in
evaluating the clinical severity of symptoms in patients with DMD. The results revealed that entropy
imaging can visualize changes in the information uncertainty of ultrasound backscattered signals
during the progression of DMD. In particular, entropy value performed well in detecting the early
stages of DMD; entropy values were also highly correlated with walking function in patients with DMD.
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Compared with conventional B-scan and model-based methods, entropy imaging, constructed using
the small-window technique, exhibits great potential, and we recommended its further development
for the clinical evaluations and follow-up of patients with DMD.
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Abstract: Pompe disease is a hereditary neuromuscular disorder attributed to acid α-glucosidase
deficiency, and accurately identifying this disease is essential. Our aim was to discriminate normal
muscles from neuropathic muscles in children affected by Pompe disease using a texture-feature
parametric imaging method that simultaneously considers microstructure and macrostructure.
The study included 22 children aged 0.02–54 months with Pompe disease and six healthy children
aged 2–12 months with normal muscles. For each subject, transverse ultrasound images of the
bilateral rectus femoris and sartorius muscles were obtained. Gray-level co-occurrence matrix-based
Haralick’s features were used for constructing parametric images and identifying neuropathic
muscles: autocorrelation (AUT), contrast, energy (ENE), entropy (ENT), maximum probability
(MAXP), variance (VAR), and cluster prominence (CPR). Stepwise regression was used in feature
selection. The Fisher linear discriminant analysis was used for combination of the selected features to
distinguish between normal and pathological muscles. The VAR and CPR were the optimal feature
set for classifying normal and pathological rectus femoris muscles, whereas the ENE, VAR, and CPR
were the optimal feature set for distinguishing between normal and pathological sartorius muscles.
The two feature sets were combined to discriminate between children with and without neuropathic
muscles affected by Pompe disease, achieving an accuracy of 94.6%, a specificity of 100%, a sensitivity
of 93.2%, and an area under the receiver operating characteristic curve of 0.98 ± 0.02. The CPR for
the rectus femoris muscles and the AUT, ENT, MAXP, and VAR for the sartorius muscles exhibited
statistically significant differences in distinguishing between the infantile-onset Pompe disease and
late-onset Pompe disease groups (p < 0.05). Texture-feature parametric imaging can be used to
quantify and map tissue structures in skeletal muscles and distinguish between pathological and
normal muscles in children or newborns.

Keywords: Pompe disease; children; quantitative muscle ultrasound; texture-feature parametric
imaging

1. Introduction

Pompe disease is a hereditary disorder that affects the neuromuscular system and is attributed to
acid α-glucosidase (GAA) deficiency. The typical manifestations of the disorder involve generalized
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weakness of muscles in addition to cardiomyopathy, which finally end in death [1]. In general, the first
muscles to be affected in this disorder are the proximal lower limb muscles as well as the paraspinal
trunk muscles [2,3]. Because skeletal muscle cells exhibit glycogen granule accumulations and various
degenerative changes, muscle cells are replaced by fibrous tissues and fat cells, thus disrupting the
corresponding muscular architecture [4]. These processes consequently include conditions under
which infants present with floppy baby syndrome. In neuromuscular disorders, some of the regularly
executed diagnostic procedures are as follows: genetic analysis, muscle enzyme activity measurement,
muscle biopsy procedures, and electromyography (EMG) [5,6].

Although EMG is often used for identifying neuromuscular diseases, its accuracy in children
varies between 10% and 98% [7]. Magnetic resonance imaging (MRI) and ultrasound are among the
imaging modalities that facilitate noninvasive illustration of the muscular anatomy; these modalities
are consequently being increasingly integrated into neuromuscular disease diagnosis procedures [8–10].
Compared with MRI, ultrasound is a more child-friendly modality as it is rapid and obviates the
requirement for sedation. By measuring muscle echo intensity as well as muscle thickness, ultrasound
has the ability to detect muscular-disorder-induced structural changes [11–14]. Ultrasound typically
represents normal muscle tissue as a low-echo-intensity structure. In contrast, muscles subjected to fat
infiltration exhibit increased ultrasound beam reflections, and such reflections have a relatively bright
appearance [15]. Typically, Heckmatt’s qualitative criteria based on muscle and bone echogenicities
have been used for evaluating the degree of muscle abnormality in ultrasound [8,9,16]. However, these
criteria have a drawback: as age increases, the echo intensity of muscles increases as well; this trend is
attributable to age-related muscle replacement by fibrous tissues and fat cells [9]. Changes in system
settings can result in muscles appearing as brighter structures, and such structures are likely to be
misconstrued as pathological changes [9].

For detecting muscle pathology severity and identifying structural changes of muscles, quantitative
muscle ultrasound can be used, which is reliable for obtaining such identification [9,12,17–19]. Texture
analysis primarily reflects changes in a muscle’s structural echogenicity. Histograms can be used to
visualize the frequency of occurrence of gray levels; accordingly, in computer programs for analyzing
ultrasound images, the following statistics that constitute typical image texture parameters are
extensively used for identifying abnormalities: first, second, and run-length statistics [20–22]. Shannon
entropy has also been used as a measure of the texture information by analyzing the probability
distribution for ultrasound backscattered signals [23–25]. Previous studies have used some linear and
first-order descriptors to characterize myopathic muscles for identifying Duchenne muscular dystrophy,
a disorder that is typified by homogeneously increased echogenicity levels [26,27]. The feasibility
of using Shannon entropy to characterize tissues has been explored in monitoring the progress of
Duchenne muscular dystrophy [28]. First-order statistics and Shannon entropy only capture the
image’s non-spatial information, so they cannot fully characterize neuropathic muscles in ultrasound
B-mode images [22,29]. Neuropathic processes are often associated with heterogeneous echogenicity
levels in muscles that can be attributed to muscle architecture disruptions induced by the underlying
pathological condition [9,13,30].

Molinari et al. reported higher-order statistics to be superior to first-order features in terms of
classifying muscle images [22]. Gray-level co-occurrence matrix (GLCM) is a second-order statistical
method of texture analysis [31]. GLCM-derived Haralick’s features have been applied to detect
changes in the structures of pathological muscle tissues in ultrasound [19,22,32,33]. To enable the
Shannon entropy to quantify the configurational information of an image, a GLCM has also been
used to characterize the configuration of image pixels and then reflect the characterization in the
computation of Shannon entropy [29,31]. We previously presented a texture-based imaging approach
that involves the application of Haralick’s texture features to simultaneously preserve local and global
texture information [34]. In this study, we probed the diagnostic accuracy of texture-feature parametric
imaging in discriminating normal muscles from neuropathic muscles affected by Pompe disease in
children. Because muscle weakness in Pompe disease is typically noticed first in the lower limbs [2,3],
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each child’s rectus femoris muscle and sartorius muscle were examined in this study. Seven Haralick’s
texture feature parameters with various image spatial information were evaluated and used to establish
corresponding parametric images.

This paper’s remaining sections are structured as follows. In Section 2, the acquired materials
and the executed methods in this study are introduced. A description of the executed clinical tests
is provided in Section 3. Section 4 presents the study’s major findings and the conclusions drawn
regarding the potential applications of our proposed texture-feature parametric imaging approach in
muscle ultrasound.

2. Materials and Methods

2.1. Participants

The Institutional Review Board associated with Taipei Veterans General Hospital granted approval
of the research protocol (approval number 2015-08-008B). We acquired informed consent from the
legal representatives of the children examined in this study. The study included 22 patients aged
0.02–54 months with Pompe disease and 6 healthy children aged 2–12 months with normal muscles.
We separated Pompe disease into two categories: infantile-onset Pompe disease (IOPD; occurring at
the age of <1 year with progressive cardiac hypertrophy, hypotonia, and respiratory distress) and
late-onset Pompe disease (LOPD; occurring between 1 year of age and adulthood or at the age of<1 year
without cardio hypertrophy) [35]. We collected GAA mutation, activity/performance, and pathological
data for the patients. The serum expression levels of the following enzymes were examined for the
patients: creatine kinase (CK), alanine transaminase (ALT), lactate dehydrogenase (LDH), and aspartate
transaminase (AST).

2.2. Ultrasound Examinations

Several ultrasound machines in our radiology department were used to perform muscle ultrasound
examinations including: an Aixplorer system (Supersonic Imagine SA, Aix-en Provence, France), S2000
system (Siemens-Acuson, Mountain View, CA, USA), S3000 system (Siemens-Acuson, Mountain View,
CA, USA), and LOGIQ E9 system (GE, Wauwatosa, WI, USA). These machines were equipped with
linear broadband transducers operating at 5–14, 5–14, 4–9, and 4–15 MHz, respectively. The spatial
resolution of these ultrasound systems ranged from 0.5 to 1 mm. Each subject was examined by the
same examiner using one of these ultrasound machines. The system settings were not fixed but adjusted
individually. For each subject, transverse ultrasound B-mode images of bilateral rectus femoris and
sartorius muscles were obtained. For each muscle, one B-mode image was selected that included as
much of the muscle as possible. Therefore, four muscle ultrasound images were measured for each
subject. A doctor experienced in the analysis of muscle ultrasound images used Adobe Photoshop
software (Adobe Systems, Mountain View, CA, USA) to manually outline the muscle contour, avoiding
the surrounding fascia. The maximum transverse diameter of the rectus femoris and sartorius muscles
in the participants ranged from 2 to 4 cm.

2.3. Texture-Feature Parametric Imaging

The GLCM is a second-order statistics method used for extracting texture features from gray-level
images, which is based on information about gray levels in pairs of pixels [31]. The GLCM between
gray levels i and j is defined as:

Cij|(δ,θ) =
Pij

∣∣∣(δ,θ)
Ng−1∑
i=0

Ng−1∑
j=0

Pij
∣∣∣(δ,θ)

(1)
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where the matrix element Pij|(δ, θ) represents the number of occurrences between gray levels i and j, to
describe the frequency of occurrence of two pixels at a particular distance (δ) and angle (θ). The sum
in the denominator represents the total number of occurrences of gray levels i and j within the window,
and Ng is the quantized number of gray level. The number of rows and columns in the GLCM is equal
to Ng. The ultrasound B-mode images were 8-bit gray-level images (256 gray levels), so we used 8 for
the gray level quantization (Ng) to increase the speed of computation and reduce noise [36]. The means
for the columns and rows of the GLCM are, respectively, defined as:

μx =

Ng−1∑
i=0

Ng−1∑
j=0

i·Cij (2)

and

μy =

Ng−1∑
i=0

Ng−1∑
j=0

j·Cij (3)

We investigated seven texture features to quantitatively evaluate the textural characteristics of the
muscles on ultrasound B-mode images. The seven texture features are defined as follows.

Autocorrelation (AUT) is used for measuring repeating patterns of gray levels in an image.
A higher AUT signifies a greater amount of regularity as well as the fineness/coarseness of texture.

AUT =

Ng−1∑
i=0

Ng−1∑
j=0

(i· j)·Cij (4)

Contrast (CON) is used for measuring the disparity that exists between the highest and lowest
values of a pixel set, with a lower CON value being typical for a block that is locally homogeneous [36].

CON =

Ng−1∑
n=0

n2·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ng−1∑
i=0

Ng−1∑
j=0

Cij
∣∣∣∣∣∣i− j

∣∣∣ = n

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5)

Energy (ENE) measures repetitions of pairs of pixels and is dominated by the frequency of
gray-level transitions to the power of two. ENE, also known as angular second moment, is a measure
of the homogeneity of an image [36]. A homogeneous image results in a higher ENE value, whereas a
heterogeneous region results in a lower ENE value.

ENE =

Ng−1∑
i=0

Ng−1∑
j=0

C2
i j (6)

Entropy (ENT), also defined as GLCM-based improved Shannon entropy, is developed to enable
the Shannon entropy to quantify the spatial information of an image [29]. ENT measures the randomness
of a gray-level distribution. The ENT value is expected to be high if the gray levels are distributed
randomly throughout the image.

ENT = −
Ng−1∑
i=0

Ng−1∑
j=0

Cij· log
(
Cij

)
(7)
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Maximum probability (MAXP) measures the maximum value in a pixel pair. When the occurrence
of the most predominant pixel pair is high, the MAXP is high.

MAXP = max
{
Cij

}
∀(i, j) (8)

Variance (VAR) measures the heterogeneity degree and is associated with the standard deviation
within an image. The VAR value increases as the difference between gray-level values and the
corresponding global means increases [34].

VAR =

Ng−1∑
i=0

Ng−1∑
j=0

(i− μx)
2·Cij +

Ng−1∑
i=0

Ng−1∑
j=0

(
j− μy

)2·Cij (9)

Cluster prominence (CPR) characterizes the tendency of pixels to cluster and is a measure of
asymmetry. When the CPR value is high, the image is asymmetric [36].

CPR =

Ng−1∑
i=0

Ng−1∑
j=0

{
i + j− μx − μy

}4·Cij (10)

We chose a displacement vector of δ = 1 pixel in our analyses. We provided four displacement
operators, which can be used to generate GLCMs along four different directions (i.e., θ = 0◦, 45◦, 90◦,
and 135◦). A total of four GLCMs can be obtained because a GLCM can be generated along four
directions. For constructing a texture-feature parametric image, we applied a 13 × 13 pixel sliding
window to the ultrasound B-mode image to evaluate each local texture feature. The local texture
feature was computed by averaging the four texture feature values obtained from the four GLCMs
within the sliding window. Note that we selected the 13 × 13 pixel sliding window size because it is
larger than the system resolution and could characterize variations in the local muscle structure [37].
When moving the sliding window throughout the ultrasound B-mode image, we used 1 pixel steps; in
each movement step, we considered the new center pixel of the window as the local texture feature.
This approach produced a texture-feature parametric image in the form of a map of texture feature
values. The texture-feature parametric image was smaller than the ultrasound B-mode image because
the pixel values at the borders in the ultrasound B-mode image were ignored. For each texture-feature
parametric image, the muscle region was manually determined on the basis of the corresponding
B-mode image; the relevant texture feature parameter was averaged for the entirety of the internal
region of the contour.

2.4. Statistical Analysis

If a relatively large set of features is used for classification processes, high coefficients of correlation
between two or more features necessitate the selection and integration of multiple feature attributes to
improve classification performance [38]. In general, data optimality, independence, reliability, and
discrimination must be included in the criteria established for the selection of significant features in
classification processes [38]. Accordingly, in this study, we used the Student’s t-test to evaluate the
level of significance of the differences between normal muscles and pathological muscles affected
by Pompe disease. We assumed a derived p-value of <0.05 as signifying a statistically significant
difference. During our comparison of p-values, we adjusted the level of significance by adopting the
Holm–Bonferroni method.

For feature selection, stepwise regression analysis was used to obtain the best candidate final
regression model. Stepwise regression is a systematic approach to build a multilinear model by
including and eliminating individual features, alternating between backward and forward [39].
The backward–forward selection begins with an initial model, and then the explanatory power of
incrementally larger and smaller models is compared through F-statistics of significance. A feature
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to be added or removed from the set of features is chosen based on the estimated p-values of the
F-statistics. The algorithm consists of the following steps [39]:

(1) At the beginning, the initial model is an empty model, and the entrance and exit tolerances for
the p-values of F-statistics are 0.05 and 0.10, respectively.

(2) If any feature is not in the model and the feature has a p-value less than the entrance tolerance,
add the feature with the smallest p-value to the model and repeat this step; otherwise, proceed to
the next step.

(3) If any feature in the model has a p-value greater than the exit tolerance, remove the feature with
the largest p-value and return to step 2; otherwise, end.

The procedure automatically stops when no feature in the model can be removed and all the next
best candidates cannot be retained in the model. Then, a stable set of features is attained. Although the
stepwise model has the possibility of reaching a local optimal solution, it is still widely used because of
its simplicity and efficacy.

We subsequently used Fisher’s linear discriminant analysis (FLDA) to integrate selected texture
feature parameters for classifying normal and pathological muscles. FLDA is a supervised classification
method as it requires a class label, and is used when groups are known a priori [40]. The FLDA process
involves five steps [40]:

(1) The d-dimensional mean vectors for the different classes from the dataset are computed.
(2) The within-class and between-class scatter matrices are calculated.
(3) The eigenvectors and corresponding eigenvalues for the scatter matrices are estimated.

An eigenvalue indicates the length or magnitude of the eigenvector.
(4) The eigenvectors of the corresponding k largest eigenvalues are selected to form a d× k dimensional

matrix W, where the eigenvectors are the columns of this matrix.
(5) The W eigenvector matrix is used to transform the original dimensional dataset into the lower

dimensional dataset. This can be summarized by the matrix multiplication: Y = X × W, where X
is the original n × d-dimensional dataset, and Y is the transformed n × k-dimensional dataset in
the new subspace.

Because the selected features contained more information about our data distribution, we were
interested in retaining only those eigenvectors with the highest eigenvalues to obtain the optimal
feature set. The first feature set (F1) was defined as the combination of selected features for classifying
the rectus femoris muscles. The second feature set (F2) was defined as the combination of selected
features for classifying the sartorius muscles. The third feature set (F3) was defined as the combination
of the parameters in F1 and F2.

We used receiver operating characteristic (ROC) curve analysis to evaluate the performance of
the feature sets in discriminating normal muscles from pathological muscles. Sensitivity and 1 −
specificity pairs typically constitute an ROC curve, with every point along the curve representing a
sensitivity/specificity pair that is related to an established decision threshold [41]. Sensitivity measures
the percentage of pathological muscles that have been correctly classified. Specificity is a measure of
the proportion of normal muscles that have been correctly classified. The area under the ROC curve
(Az) could additionally be considered a potential feature.

3. Results

The characteristics and descriptive statistics of the Pompe disease and normal groups are listed in
Table 1. In the Pompe disease group, five patients were newborns confirmed to have IOPD, and 17
patients were diagnosed as having LOPD.
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Table 1. Characteristics of participants.

Variable Normal (n = 6)
Pompe Disease (n = 22)

LOPD IOPD

Male:Female 4:2 12:5 2:3
Age (Mean) 12.14 months 21.82 months 0.04 months

GAA activity by DBS (Mean ± SD) - 0.40 ± 0.22 μm/L/h 0.08 ± 0.03 μm/L/h
LDH level (Mean ± SD) - 459.1 ± 271.3 U/L 511.2 ± 90.6 U/L
CK level (Mean ± SD) - 314.7 ± 329.7 U/L 661.0 ± 384.9 U/L
ALT level (Mean ± SD) - 51.7 ± 50.4 U/L 41.4 ± 18.1 U/L
AST level (Mean ± SD) - 90.8 ± 88.2 U/L 94.4 ± 17.8 U/L

Note: ALT: alanine transferase; AST: aspartate transferase; CK: creatine kinase; DBS: dried blood spot; GAA:
glucosidase alpha acid; IOPD: infantile-onset Pompe disease; LDH: lactate dehydrogenase; LOPD: late-onset Pompe
disease; U/L: units per liter.

Figure 1a depicts a B-mode image of a normal rectus femoris muscle: clear borders with low echo
intensity. The muscle region, delineated by the dashed white line in Figure 1, was extracted to form
a texture-feature parametric image (Figure 1b); seven parametric images based on the seven texture
features were created (Figure 1c–i). Figure 2 depicts the B-mode image of a pathological rectus femoris
muscle (i.e., the muscle of a patient with Pompe disease); the image has blurry borders and increased
internal echoes (Figure 2a,b). On the basis of this image, we derived seven texture-feature parametric
images (Figure 2c–i). We compared a normal sartorius muscle with the sartorius muscle of a patient
with Pompe disease and found that the pathological sartorius muscle exhibited a higher echo intensity
level (Figures 3a and 4a). Figures 3b and 4b present images depicting the muscle boundaries of the
normal sartorius muscle and the sartorius muscle of the patient with Pompe disease, respectively,
and Figures 3c–i and 4c–i depict the corresponding texture-feature parametric images. The images
displayed in all figures were formed with a dynamic range of 60 dB and composed of shades of gray,
varying from black at the weakest intensity to white at the strongest. The results show that the shading
in the AUT, CON, ENE, ENT, MAXP, and VAR images differed between the normal and pathological
muscles, with a greater amount of white shading for the pathological muscle than for the normal
muscle. The intensity in the CPR image was lower for pathological muscle than for normal muscle.
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Figure 1. Texture-feature parametric imaging of a normal rectus femoris muscle in a 12 month old boy.
(a) Original B-mode image, (b) extracted rectus femoris muscle region (indicated by the white dashed
line) in the B-mode image, (c) autocorrelation image, (d) contrast image, (e) energy image, (f) entropy
image, (g) maximum probability image, (h) variance image, and (i) cluster prominence image. F: femur
bone reflection, VI: vastus intermedius muscle.

Figure 2. Texture-feature parametric imaging of a pathological rectus femoris muscle in a 10 day old
boy with infantile-onset Pompe disease. (a) Original B-mode image, (b) extracted rectus femoris muscle
region (indicated by the white dashed line) in the B-mode image, (c) autocorrelation image, (d) contrast
image, (e) energy image, (f) entropy image, (g) maximum probability image, (h) variance image, and (i)
cluster prominence image.
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Figure 3. Texture-feature parametric imaging of a normal sartorius muscle in a 12 month old boy. (a)
Original B-mode image, (b) extracted sartorius muscle region (indicated by the white dashed line) in
the B-mode image, (c) autocorrelation image, (d) contrast image, (e) energy image, (f) entropy image,
(g) maximum probability image, (h) variance image, and (i) cluster prominence image.

Figure 4. Texture-feature parametric imaging of a pathological sartorius muscle in a five month old
boy with late-onset Pompe disease. (a) Original B-mode image, (b) extracted sartorius muscle region
(indicated by the white dashed line) in the B-mode image, (c) autocorrelation image, (d) contrast image,
(e) energy image, (f) entropy image, (g) maximum probability image, (h) variance image, and (i) cluster
prominence image.
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Box plots were used to represent the CON, AUT, ENE, ENT, MAXP, CPR, and VAR distributions
for normal and pathological rectus femoris muscles (Figure 5), providing a quantitative description of
all texture feature parameters. We found that the AUT, VAR, and CPR estimates were appropriate for
distinguishing normal rectus femoris muscles from pathological rectus femoris muscles. For normal
and pathological rectus femoris muscles, the average AUT, VAR, and CPR estimates were 3.91 ± 1.13
and 5.62 ± 1.78 (p = 0.0004), 9.17 ± 2.30 and 15.60 ± 5.51 (p < 0.0001), and 8.12 ± 2.44 and 4.06 ± 2.53
(p < 0.0001), respectively. However, the average CON, ENE, ENT, and MAXP estimates for normal
and pathological rectus femoris muscles were associated with p-values >0.05.

 
Figure 5. Box plots of the distributions of the seven parameters for normal rectus femoris muscles and
pathological rectus femoris muscles affected by Pompe disease. (a) AUT: autocorrelation; (b) CON:
contrast; (c) ENE: energy; (d) ENT: entropy; (e) MAXP: maximum probability; (f) VAR: variance; (g)
CPR: cluster prominence; *** p < 0.001.

Box plots were also used to represent the CON, AUT, ENE, ENT, MAXP, CPR, and VAR distributions
for normal and pathological sartorius muscles (Figure 6). The AUT, ENE, VAR, and CPR estimates
exhibited statistically significant differences and thus could be used for distinguishing normal sartorius
muscles from pathological sartorius muscles. In contrast, the CON, ENT, and MAXP estimates did not
differ significantly. For normal and pathological sartorius muscles, the average AUT, ENE, VAR, and
CPR estimates were 6.00 ± 2.18 and 8.01 ± 2.64 (p = 0.0133), 0.40 ± 0.07 and 0.48 ± 0.08 (p = 0.0011),
15.04 ± 3.84 and 21.62 ± 7.64 (p = 0.0002), and 6.55 ± 2.29 and 4.25 ± 2.46 (p = 0.0071), respectively.
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Figure 6. Box plots of the distributions of the seven parameters for normal sartorius muscles and
pathological sartorius muscles affected by Pompe disease. (a) AUT: autocorrelation; (b) CON: contrast;
(c) ENE: energy; (d) ENT: entropy; (e) MAXP: maximum probability; (f) VAR: variance; (g) CPR: cluster
prominence; * p < 0.05; ** p < 0.01; and *** p < 0.001.

In stepwise regression, we selected VAR and CPR as the optimal feature set for classifying normal
and pathological rectus femoris muscles, whereas ENE, VAR, and CPR were selected for the optimal
feature set to distinguish between normal and pathological sartorius muscles. The FLDA was used for
searching for a linear combination of the selected features that best distinguished between normal and
pathological muscles. VAR and CPR for the rectus femoris muscles constituted F1; ENE, VAR, and CPR
for the sartorius muscles constituted F2; and a combination of the parameters in F1 and F2 constituted
F3. The classification performances of these feature sets were evaluated using ROC analysis. We found
F3 produced the best performance (Figure 7 and Table 2), with the highest Az (0.98 ± 0.02) and 100%
specificity, whereas F1 and F2 produced 83.3% and 91.7% specificity, respectively.
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Figure 7. Receiver operating characteristic (ROC) curves of each feature set. F1: comprising the
variance and cluster prominence for rectus femoris muscles. F2: comprising the energy, variance, and
cluster prominence for sartorius muscles. F3: constituting a combination of F1 and F2.

Table 2. Individual performance assessed by the area under receiver operating characteristic curve (Az)
values (mean ± standard error and 95% confidence intervals), accuracy, specificity, sensitivity, positive
predictive value (PPV), and negative predictive value (NPV) of each feature set in discriminating
between children with and without neuropathic muscles for Pompe disease.

Feature Sets Performance F1 * F2 F3

Accuracy (%) 94.6 85.7 94.6
Specificity (%) 83.3 91.7 100
Sensitivity (%) 97.7 84.1 93.2

PPV (%) 95.6 97.6 85.7
NPV (%) 90.9 78.6 100

Az (mean ± standard error) 0.95 ± 0.03 0.90 ± 0.04 0.98 ± 0.02
Az (95% CI) 0.88–1.00 0.82–0.98 0.95–1.00

* F1: comprising the variance and cluster prominence for rectus femoris muscles. F2: comprising the energy,
variance, and cluster prominence for sartorius muscles. F3: constituting a combination of F1 and F2.

We observed that the CPR estimates for rectus femoris muscles and the AUT, ENT, MAXP, and
VAR estimates for sartorius muscles were different between the IOPD and LOPD groups (Table 3).
These parameters were associated with p-values <0.05 for the IOPD and LOPD groups.

Table 3. Mean, SD, and p-values derived from Student’s t-test of significant texture feature parameters
for the infantile-onset Pompe disease (IOPD) group and the late-onset Pompe disease (LOPD) group.

Texture Feature Parameters
IOPD LOPD

Mean ± SD p-Value

CPR for rectus femoris muscles * 6.00 ± 2.18 8.01 ± 2.64 <0.0001
AUT for sartorius muscles 5.90 ± 1.49 8.63 ± 2.60 0.0002
ENT for sartorius muscles 0.89 ± 0.16 1.05 ± 0.17 0.0151

MAXP for sartorius muscles 0.69 ± 0.07 0.62 ± 0.06 0.0176
VAR for sartorius muscles 16.52 ± 4.07 23.12 ± 7.84 0.0071

*AUT: autocorrelation; CPR: cluster prominence; ENT: entropy; MAXP: maximum probability; VAR: variance.
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4. Discussion

Muscle ultrasound is a beneficial method for diagnosing patients with suspected muscle diseases
or neuromuscular disorders. Ultrasound changes observed in diseased muscles include increased
echogenicity within muscle substance, atrophic change in muscles, and loss of bone echo. Several
studies have demonstrated that qualitative and quantitative ultrasound methods can be used to assess
the presence and degree of muscle pathology [12–19]. Muscles that are determined to be normal
exhibit a relatively hypoechoic appearance; however, on ultrasound images, different muscles exhibit
distinct appearances (distinct normal ranges of echo intensity), and this is attributed to different
fibrous tissue proportions and muscle fiber orientations [9]. Many conditions affect muscle ultrasound
signal intensity, such as differences in patient age, system settings, and imaging modality. Although
qualitative rating scales can be applied in ultrasound systems, they are subjective as they depend on
the examiner’s expertise [8,9,16]. For these reasons, an adequate quantitative ultrasound method for
evaluating neuromuscular disorders must be able to describe changes in muscle microstructures during
fatty infiltration and be independent of system settings. Studies have confirmed that texture-feature
parametric imaging can be a useful approach for characterizing breast masses or fatty livers [21,34].
Microstructure and macrostructure echo information is considered simultaneously in this approach
to minimize texture analysis errors due to artifact interference. Texture-feature parametric imaging
achieves image dynamic range consistency by applying normalization processes, thus overcoming
dependence on system settings.

In this study that included children with normal muscles and those with muscles affected by
Pompe disease, we used B-mode ultrasound. The resulting B-mode images depicted clearly visible
boundaries of normal muscles. This visibility is attributable to the highly reflective nature of the
epimysia. Normal sartorius muscles were found to be generally more homogeneously hyperechoic
than normal rectus femoris muscles. Consequently, we characterized the sartorius muscles and rectus
femoris muscles in the Pompe disease and normal groups of children separately. The rectus femoris
muscles and sartorius muscles in the children with Pompe disease exhibited increased echogenicity.
Scholten et al. reported that muscle echo intensity levels increase with age in adults; in contrast, age
was found to have no effect on muscle echo intensity in children [4]. Accordingly, connective tissue
and fat infiltration could be the most likely explanation for the observed augmentation of muscle echo
intensity in children. We noted that for both the rectus femoris muscles and sartorius muscles, the
AUT, VAR, and CPR estimates exhibited statistically significant differences in distinguishing normal
muscles from pathological muscles. Compared with normal muscles, pathological muscles had a
higher AUT, reflecting a higher degree of fineness/coarseness; a higher VAR, representing a higher
degree of heterogeneity; and a lower CPR, demonstrating a higher degree of symmetry.

The optimal feature sets were obtained using stepwise regression and FLDA. F1 (i.e., comprising
VAR and CPR for rectus femoris muscles) yielded high sensitivity, which can improve the diagnosis of
rectus femoris muscles affected by Pompe disease. This feature set exhibited weak specificity (less
than 85.0%), which can influence the identification of normal rectus femoris muscles. We additionally
noted a similar phenomenon when F2 (i.e., comprising ENE, VAR, and CPR for sartorius muscles) was
used to classify normal and pathological sartorius muscles. F2 had low sensitivity (84.1%) because
some pathological sartorius muscles resembled normal muscles in terms of echogenicity. A possible
reason for this finding is that normal sartorius muscles exhibit a similar structure: they are divided by
hyperechoic transverse tendinous inscriptions into segments. We subsequently combined F1 and F2
into F3 to improve the detection of Pompe disease, achieving a specificity of 100% and a sensitivity of
93.2%. This implies that the optimal texture feature parameter sets for rectus femoris and sartorius
muscles are independent and complementary; therefore, ensuring their appropriate combination can
enhance Pompe disease classification.

We found that some texture feature parameters for rectus femoris muscles and sartorius muscles
were significantly different between the IOPD and LOPD groups. This result is consistent with
the findings of Hwang et al., who used a muscle ultrasound scoring system based on modified
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Heckmatt’s qualitative criteria to distinguish IOPD from LOPD, achieving 100.0% sensitivity and 84.0%
specificity [42]. They proposed that the echogenicity of muscle tissues in newborns and infants can
increase because newborns and infants have small muscle fibers and a relatively high proportion of
endomysial and perimysial connective tissues. Their findings revealed that the muscle ultrasound score
is correlated with the serum levels of laboratory parameters in the diagnosis of IOPD. However, the
qualitative scores obtained from subjective assessments can vary dramatically and affect the reliability
of the results. Therefore, we suggest that disease severity can be estimated using changes in the
texture feature parameters of muscles in patients with IOPD. Although a fluorometric GAA activity
assay based on dried blood spots is the predominant method for diagnosing Pompe disease, it does
not effectively distinguish between IOPD and LOPD or false-positive cases with pseudodeficiency
mutation [42,43]. In future research, texture-feature parametric imaging will be a useful method for
differentiating IOPD from LOPD and as a correlate of changes in clinical parameters.

Although this study offers valuable insight into Pompe disease identification using quantitative
muscle ultrasound, it has some limitations. The first limitation is the small sample size; the sample
must be increased to improve the effectiveness of identifying Pompe disease severity. Second, although
all texture-feature parametric images have the same dynamic range to ensure consistency among
ultrasound machines, further research on standardization approaches among scanning protocols and
ensuring the reproducibility of measured values is warranted. The sliding window size used for
constructing texture-feature parametric images should be dependent on different ultrasound equipment
and the different ages of subjects. Third, inter- and intra-reader agreement regarding the texture feature
parameters of rectus femoris and sartorius muscles should be considered during data collection.

In conclusion, our study demonstrated that texture-feature parametric imaging can be used to
quantify and map tissue structures in skeletal muscles and to differentiate pathological from normal
muscles in children. Such imaging is therefore a potentially useful diagnostic tool for IOPD.
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Abstract: Malaria is a severe public health problem worldwide, with some developing countries being
most affected. Reliable remote diagnosis of malaria infection will benefit from efficient compression of
high-resolution microscopic images. This paper addresses a lossless compression of malaria-infected
red blood cell images using deep learning. Specifically, we investigate a practical approach where
images are first classified before being compressed using stacked autoencoders. We provide
probabilistic analysis on the impact of misclassification rates on compression performance in terms of
the information-theoretic measure of entropy. We then use malaria infection image datasets to evaluate
the relations between misclassification rates and actually obtainable compressed bit rates using
Golomb–Rice codes. Simulation results show that the joint pattern classification/compression method
provides more efficient compression than several mainstream lossless compression techniques, such as
JPEG2000, JPEG-LS, CALIC, and WebP, by exploiting common features extracted by deep learning on
large datasets. This study provides new insight into the interplay between classification accuracy and
compression bitrates. The proposed compression method can find useful telemedicine applications
where efficient storage and rapid transfer of large image datasets is desirable.

Keywords: lossless compression; pattern classification; machine learning; malaria infection; entropy;
Golomb–Rice codes

1. Introduction

Malaria occurs in nearly 100 countries worldwide, imposing a huge toll on human health
and heavy socioeconomic burdens on developing countries [1]. The agents of malaria are
mosquito-transmitted Plasmodium parasites. Microscopy is the gold standard for diagnosis; however,
manual blood smear evaluation depends on time-consuming, error-prone, and repetitive processes
requiring skilled personnel [2]. Ongoing research has therefore focused on computer-assisted
Plasmodium characterization and classification from digitized blood smear images [3–7]. Traditional
algorithms labeled images using manually designed feature extraction, with drawbacks in both
time-to-solution and accuracy [4]. Newly proposed methods aim to apply automated learning to
large-size wholeslide images. Leveraging high-performance computing, deep machine learning
algorithms could potentially drive true artificial intelligence in malaria research. Concurrently,
the convergence of mobile computing, the Internet, and biomedical instrumentation now allows
the worldwide transfer of biomedical images for telemedicine applications. Consultation or screening
by specialists located in geographically different locations is now possible.

Among recent works on computer-aided diagnosis of malaria infection, two types of images
have found prevalent use: light microscopic images and wholeslide images. Recent advances in
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computing power, improved cloud based services and robust algorithms have enabled the widespread
use of wholeslide images [8–13]. Higher resolutions can help identify the specific species and the
degree of infection. Most of the prior studies utilize light microscopic images [14–24]. While machine
learning algorithms have been applied to light microscopic images with relatively low-resolution
image processing, higher resolutions would be necessary to identify the specific species and the degree
of infection [25].

A notable challenge in such applications is the storage and rapid transfer of massive wholeslide
image datasets. Efficient lossless compression methods will be much sought after for malaria infection
images. Lossless compression for images has the obvious advantage of suffering no quality loss
over lossy methods. Traditional image compression methods seek to minimize the correlation inside
the image. For large image datasets, especially medical images that share lots of commonality,
the inter-image correlation should also be taken into consideration. Deep learning based neural
networks can be trained on samples within the same class to learn the common features shared
by these samples. In our prior work [26], we proposed a coding scheme for red blood cell images
by using stacked autoencoders, where the reconstruction residues were entropy-coded to achieve
lossless compression. Specifically, we trained two separate stacked autoencoders to automatically
learn the discriminating features from input images of infected and non-infected cells. Subsequently,
the residues of these two classes of images were coded by two independent Golomb–Rice encoders.
Simulation results showed that this deep learning approach can provide more efficient compression
than several state-of-the-art methods. However, this work assumes that the class labels for the input
images are known in advance with perfect classification, which is typically not the case in practice.
Hence in this paper, we introduce a more realistic framework where the input images are first classified
before being compressed using autoencoders. We study how the accuracy of the classifiers would
affect the overall compression ratios for two-class image dataset compression. Note that for traditional
lossless compression methods, misclassified samples were not a problem since images were compressed
individually. But for compressors based on deep learning methods such as stacked autoencoders,
misclassified images fed into autoencoders trained for the other class can lead to very large residues,
which could degrade the compression performance. For a more in-depth study, we conduct theoretical
analysis based on probabilistic distributions of the prediction residues, and derive formulas for
compressed bit rates as a function of classification accuracies. We then use synthesized data based
on the models to verify the theoretical results. Next, we use real malaria infection image datasets to
evaluate the relations between classification accuracies and compressed bit rates.

In the following, we provide a literature survey on the existing work on joint data compression
and classification. While most work in the literature studies data compression and pattern classification
separately, some papers [27–29] address joint compression and classification, albeit without an in-depth
treatment of the interplay between classification and compression. An algorithm on discrete cosine
transform (DCT)-based classification scheme was presented in [27] for fractal based image compression,
where three classes of image blocks were defined: smooth class, diagonal/sub-diagonal edge class
and horizontal/vertical edge class. Two lowest horizontal and vertical DCT coefficients of the given
block were used for classification. This reduces the searching space, therefore accelerating the fast
fractal encoding process. The author assumed that the classifier was perfect, so no discussion about
how the classification accuracy would affect the algorithm was given. A lifting based system was
proposed in [28] for Joint Photographic Experts Group (JPEG) 2000 compression to control the trade-off
between compression and classification performance. While the paper claims that good classification
performance was typically obtained at the expense of some compression performance degradation,
no detailed analysis of the interplay between classification and compression was provided. Both [29]
and [30] worked on electrocardiogram (ECG) system. A quad-level vector (QLV) was proposed in [29]
to support both classification flow and compression flow, in order to achieve better performance with
low computational complexity. Wavelet-based features were used in [30] for classification with Support
Vector Machine (SVM), where wavelet transform and run length coding were used for compression.
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Neither of these two papers mentioned the interaction between classification flow and compression
flow. Furthermore, several papers [31–33] address classification of hyperspectral images (HSI) or
multispectral image (MSI) in order to improve the compression performance. Several classification
trees were constructed in [31] to study the relationship between compression rate and classification
accuracy for lossy compression on HSI. The results showed that high compression rates could be
achieved without degrading classification accuracy too much. HSI were also used in [32], where several
lossy compression methods were compared on how they would impact classification using pixel-based
support vector machine (SVM). Compression of MSI was achieved in [33] by segmentation of image
into regions of homogeneous land covers. The classification was conducted via tree-structured vector
quantization, and residues were coded using transform coding techniques. The method proposed
in [34] is similar to that in [32]. Pixel classification and sorting scheme in wavelet domain was used
for image compression. Pixels were classified into several quantized contexts, so as to exploit the
intra-band correlation in wavelet domain. Compression and classification of images were combined
in [35]. The compressed image incorporated implicit classification information, which can be used
directly for low-level classification. Some other researchers [36–38] worked with vector quantizer
based classifiers to improve compression performance. On the other hand, researchers use neural
network [39–42] for joint classification/compression. A classifier based on wavelet and Fourier
descriptor features was employed in [39] to promote lossless image compression. The neural network
in [40] was accelerated by compressing image data with an algorithm based on the discrete cosine
transform. Singular Value Decomposition (SVD) was used in [41] as compression method that can
reduce the size of fingerprint images, while improving the classification accuracy. Two unsupervised
data reduction techniques, Autoencoder and self-organizing maps, were compared in [42] to identify
malaria from blood smear images.

To the best of our knowledge, there is no in-depth study on the interplay between misclassification
rate and compression ratio for lossless image compression methods, in particular, for compression
methods based on deep-learning based pattern classification. In this work, to achieve efficient
compression of red blood cell images, we use autoencoders to learn the correlations of the image pixels,
as well as the correlations among similar images. We train separate autoencoders for images belonging
to different classes. Autoencoders can automatically generate hierarchical feature vectors, which reflect
common features shared by the images from the same class. We can then recover the original images
from the feature vectors. By coding the residues, we can achieve lossless compression on the images.
We study how misclassification rate affects the overall compression efficiency.

2. Materials and Methods

2.1. Construction of the Dataset of Malaria-Infected Red Blood Cell Images

As the result of collaborative research with a group of pathologists from the Medical School
of the University of Alabama at Birmingham, we built a dataset of red blood cell (RBC) images
extracted from a wholeslide image (WSI) with 100× magnification [43]. The images belong to either
one of the following two classes: malaria infected cells and normal cells. Figure 1 shows the glass
slide of thin blood smear and the scanned WSI under its highest resolution. The WSI was divided
into more than 80,000 image tiles, each with 284 × 284 pixels. Image morphological transforms
were applied onto each tile to separate cell samples from the background, as shown in Figure 1 [44].
Some overlapped cells can be separated using Hough circle transform [45]. Finally, all samples were
resized into 50 × 50 images, with some examples shown in Figure 2. The entire dataset can be found
on our website [46]. For simplicity, we only used red channel for training neural network.
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Figure 1. Wholeslide image of malaria-infected RBCs and normal cells. The top left image is the
original glass slide after staining. The rectangle delineated in green was cropped out to be the image on
the right. After zooming in the area with 100× magnification, we can see the normal cells and infected
cells (with the parasites in the ring form) in the leftmost image in the second row. The remaining five
grayscale images are the result of step-by-step processing of the leftmost image in the second row. First,
the color image is converted into a grayscale image. Then a thresholding operation removes irrelevant
info and converts the image into a binary image. The next two steps fills the isolated pixels in both
foreground and background. After filling all the holes, we finally got the binary mask. Applying the
mask onto the color image, we can extract each single cell image as shown in Figure 2.

Figure 2. Some example segmented RBC images. (Upper row) normal cells and (lower row)
infected cells.

2.2. Lossless Compression Using Autoencoders

An autoencoder is an artificial neural network that performs unsupervised learning [47], which
consists of an encoder and a decoder. The encoder converts the high dimensional input data into a low
dimensional feature vector. By reversing this process, the decoder attemps to recover the original data,
typically with loss. Back propagation is used when traing the autoencoder to minimize the loss. A more
complicated network can be built by stacking several autoencoders together, which will generate
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a more hierarchical representations of the input data. A fine-tuned autoencoder is able to perform
data dimensionality reduction, while extracting features shared by the input data. Thus autoencoders
can be used for lossless compression, if the differences between the input data and the reconstructed
version are retained and coded efficiently. The flow chart of using stacked autoencoders (SAE) on
malaria-infected RBC images is shown in Figure 3.

Figure 3. Using autoencoder to compress a 50× 50 image to a 30-point vector, together with the residue.
The residue will be coded using Golomb–Rice Code.

Two separate stacked autoencoders (SAE) were assigned to images belonging to normal and
infected cell classes, respectively, each with 400 samples. Since cell images in the same class share more
common features, higher compression efficiency can be acquired than using one SAE for all samples.
Each SAE consists of an encoder and a decoder. A cell image of 50 × 50 was reshaped into a vector
of 2500 points, and then fed into encoder. The encoder consists of four layers: The input layer takes
in 2500-point vectors, which are reduced by the remaining encoder layers to 1500, 500 and 30 points
respectively. Therefore, the stacked autoencoder reduces the input vector into a very low-dimension
vector of only 30 entries. Then the decoder attempts to reconstruct the original image from the 30-point
vector. The training of the entire autoencoder takes many iterations in order to reduce the difference
between the reconstructed image and the original image to a very small value. The resulting residues,
along with the 30-point vector are coded to ensure the compression is lossless. Specifically, the residues
are compressed efficiently using the Golomb–Rice Code [48].

Unlike most conventional lossless image compression methods such as JPEG2000 [49], which
exploits correlations within a single images to be compressed, the autoencoder based method is able
to extract common features among a group of similar images. This will allow for potentially more
efficient compression on these similarly looking images in a dataset.

2.3. Golomb–Rice Coding

If the autoencoder is well trained on the input dataset, the differences (residues) between the
reconstructed images and original images tend to center around zero. If the residues are converted to
non-negative integers using the following equation:

Output =

{
−2 · Input − 1, if Input < 0;

2 · Input, otherwise,
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then the resulting non-negative values n can be approximated by the geometrical distribution with the
following probability mass function parameterized by p:

Prob(n) = pn(1 − p), (1)

where p is a real number within the range of (0, 1). Golomb–Rice codes are optimal to compress the
geometrically distributed source with pm = 1

2 , where m is a coding parameter.
The entropy H(p), and expected value E[n] of n’s are given below.

H(p) =
−(1 − p) · log2(1 − p)− p · log2 p

p
, (2)

E [n] =
∞

∑
n=0

npn(1 − p) =
p

1 − p
. (3)

Using Equation (3), the parameter p can be estimated from the sample mean as follows:

p ≈ E(n)
1 + E(n)

. (4)

The Golomb–Rice coding procedure can be summarized by the following steps:

1. Each non-negative integer n to be coded is decomposed into two numbers, q and r, where
n = mq + r, q is the quotient of (n/m), and r is the remainder.

2. Unary-coding q by generating q “1”s, followed by a “0”.
3. Coding of r depends on if m is a power of two:

• If m = 2s, r can be simply represented using an s-bit binary code.
• If m is not power of two, the following thresholds should be calculated first:

A = �log2 m�, and B = �log2 m�. (5)

If 0 ≤ r ≤ (2A −m− 1), then r is represented by a B-bit binary code; Otherwise, if (2A −m) ≤
r ≤ (m − 1), then [r + (2A − m)] is represented by a A-bit binary code.

If m = 2s, then s can be estimated from the sample mean of the input data as

s ≈ max
{

0,
⌈

log2
E(n)

2

⌉}
, (6)

and the average codeword length (ACWL) of the Golomb–Rice codes is:

ACWL = E[q] + 1 + s, (7)

where E[q] is the expected value of the quotients q.

2.4. Joint Classification and Compression Framework

Previously, we used autoencoders to exploit the correlations of similar images to achieve high
compression on red blood cell images [26]. For this sake, two separate autoencoders were trained using
images known in advance to belong to one of the two classes (either normal cells, or malaria infected
cells). However, the compression performance suffers if the images fed to the autoencoders actually
come from different classes, which is typically the case, where classifiers are not perfect. Therefore,
in this work, we study a more realistic framework, as shown in Figure 4, where the input images are
first classified before being compressed using autoencoders. So after classification, each class may
have some samples that are incorrectly classified. In the following, we conduct an analysis on how the
accuracy of the classifiers would affect the overall compression ratios.
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Figure 4. A more realistic framework taking into account misclassification of input images.

2.5. Theoretical Analysis

We employ a binary channel model as illustrated in Figure 5 to characterize the four possible
cases of cell image classification, with the meanings of the symbols explained in Table 1. Since there
are only two possible classes of input images, we have the source probabilities summing up to unity:

P(S0) + P(S1) = 1. (8)

Similarly, the misclassification rates (P(C1|S0) and P(C0|S1)) are related to correct classification
rates as:

P(C1|S0) + P(C0|S0) = 1, (9)

P(C1|S1) + P(C0|S1) = 1. (10)

The source probabilities and the conditional probabilities can be estimated from the image datasets
and the pattern classifiers used. We can then derive the joint probabilities of the four possible cases of
image classification as listed in Table 1. For example, the joint probability of a cell being normal and
correctly classified can be calculated as

P(S0, C0) = P(C0|S0) · P(S0). (11)

Figure 5. A binary state transition model for cell image classifications. The symbols “1” and “0”
to the left represent input source images belonging to either one of two possible classes (infected
and normal cells, respectively). The symbols “1” and “0” to the right represent the type of the
images an input image is classified into. Arrows represent transitions, e.g., the transition from “1” to
“1” means an infected cell is correctly classified. In contrast, the transition from “1” to “0” means
an infected cell is incorrectly classified as a normal cell, where the misclassification rate can be
described by the conditional probability P(C0|S1) for each class. See Table 1 for the meanings of
other probabilities involved.
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Table 1. Meanings of the probabilities involved in the binary channel model.

Symbols Meaning

P(S0) Source probability of a normal cell image
P(S1) Source probability of an infected cell image
P(C0|S0) Conditional probability of a normal cell being correctly classified
P(C1|S0) Cond. prob. of a normal cell being incorrectly classified as an infected cell
P(C0|S1) Cond. prob. of an infected cell being incorrectly classified as a normal cell
P(C1|S1) Cond. prob. of an infected cell being correctly classified
P(S0, C0) Joint probability of a cell being normal and correctly classified
P(S0, C1) Joint prob. of a cell being normal but incorrectly classified as an infected cell
P(S1, C0) Joint prob. of a cell being infected but incorrectly classified as a normal cell
P(S1, C1) Joint prob. of a cell being infected and correctly classified

Following the joint image classification/compression framework in Figure 4, subsequent to
image classification, we use stacked autoencoders to generate residues. As shown in Figure 6,
corresponding to different cases of image classifications (Si, Cj), we can distinguish four distinct
probabilistic distributions of residues Rij. where i, j = 0, 1.

Figure 6. Image compression using stacked autoencoders (SAEs) after pattern classification. “SAE0”
and “SAE1” stand for stacked autoencoders trained for normal and infected cells, respectively. Rij,
where i, j = 0, 1, denotes the probability distributions of the residues to be entropy coded using
Golomb–Rice codes.

Given that the input images are either for normal cells or infected cells, the following two
conditional entropies, H0 and H1, can provide estimates of the compressed bitrates. Specifically,

H0 = P(C0|S0)H(R00) + P(C1|S0)H(R01) (12)

= [1 − P(C1|S0)]H(R00) + P(C1|S0)H(R01), (13)

which is a function of the misclassification rate P(C1|S0). Similarly,

H1 = P(C0|S1)H(R10) + P(C1|S1)H(R11) (14)

= P(C0|S1)H(R10) + [1 − P(C0|S1)]H(R11), (15)

which is also a function of the misclassification rate P(C0|S1).
The overall bitrate (BR) in theory can be obtained as follows by probabilistically combining the

individual bitrates for the four cases. The individual bitrates can be represented by the entropies of the
residues H(Rij) since lossless compression is used.

BR =
1

∑
i=0

1

∑
j=0

P(Si, Cj)H(Rij). (16)
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We can see that the overall bitrate can also be obtained by probabilistically combining the conditional
entropies H0 and H1 in Equations (13) and (15) as follows:

BR = H0 · P(S0) + H1 · P(S1), (17)

which shows that the overall bitrate is a function of the misclassification rates.
In practice, the residue sources can be modeled by the geometric distributions with varying

parameters pij (corresponding to one of the four possible cases of image classifications (Si, Cj)). That is,
the probability mass functions of the residue sources are

Prob(n) = pn
ij(1 − pij), (18)

where n denotes the values of residues, and i, j = 0, 1. Therefore, we can use Equation (2) to replace
H(Rij) with the entropy of the geometric source:

H(Rij) =
−(1 − pij) · log2(1 − pij)− pij · log2 pij

1 − pij
. (19)

Furthermore, we can derive the following formula for estimating the average codeword lengths (ACWL
in bits, which is the practically achievable bitrates) over all four cases when we employ Golomb–Rice
codes to compress the residues.

ACWLOverall =
1

∑
i=0

1

∑
j=0

P(Si, Cj) · ACWL(Rij) (20)

=
1

∑
i=0

1

∑
j=0

P(Cj|Si) · P(Si) · ACWL(Rij), (21)

where ACWL(Ri,j) denotes the average codeword length of Golomb–Rice coding the residue source
Rij, which can be estimated by using Equation (7). We can see that the overall average codeword
length is a function of the misclassification rates P(C1|S0) and P(C0|S1).

3. Results and Discussion

For the purpose of visualizing this relation revealed by the foregoing theoretic analysis, we simply
assume that the cells are equally likely to be either normal or infected, i.e., P(S0) = P(S1) = 1

2 .
Note here the theoretical results obtained in the previous section can handle other more general
situations, e.g., the there will be more normal cells than infected cells, or the two misclassification rates
are different. However, making the above simplifying assumptions can allow for 2D plotting of the
relations between compression performance and a single misclassification rate.

We use two image datasets (with 400 images for each class) to estimate the compression
performance. We first train two stacked autoencoders, one for normal cells and the other for infected
cells. Then we vary the misclassification rates from 0.01 to 0.2 with a step size of 0.01. We then
formulate the mixed images datasets according to the misclassification rates. For example, if the
misclassification rate P(C1|S0) = P(C0|S1) = 0.1, then we will feed an image dataset consisting of
360 normal cells and 40 infected cells to the stacked autoencoders trained to compress normal cell
images. Similarly, another image dataset consisting of 360 infected cells and 40 normal cells will be fed
to the other stacked autoencoders trained to compress infected cell images.

3.1. Conditional Entropies Versus Misclassification Rates

We first use Equations (13) and (15) to obtain the empirical entropies of the residues (conditional
upon whether the inputs are normal or infected cells) as an estimate of the compressed bitrates.
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The results are plotted in Figure 7. We can see that the infected cells tend to be “easier” to compress
than the normal cells. This can be attributed to the fact that infected cells share some common features,
e.g., the existence of the ring form characteristic of parasite infection. While the autoencoders have
been trained effectively capture the common features of the input images belonging to the same class,
more and more “wrong” inputs from the other class due to misclassification lead to larger prediction
residues, which translate to larger entropies, or lower compression. Thus for both classes of input
images, we can see the apparent trend of lower and lower compression performance with an increasing
misclassification rate, as expected.

Figure 7. Estimated conditional entropies of the residues as a function of misclassification rates.

3.2. Joint Entropy Versus Misclassification Rates

Here we still assume that the cells are equally likely to be either normal or infected, i.e., P(S0) =
P(S1) = 1

2 , but allow the misclassification rates P(C1|S0), P(C0|S1) to change freely within the range.
Based on Equation (16), we can plot a 3D surface as shown in Figure 8. We can see the general trend
remains the same as the conditional entropies: when misclassification rates increase, the joint entropy
(overall bitrates in theory) also increase.

Figure 8. The joint entropy as a function of misclassification rates.
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3.3. Average Codeword Lengths Versus Misclassification Rates

We use Golomb–Rice codes to compress the residues and use Equation (21) to calculate the
average codeword lengths (ACWL in bits, which is the practically achievable bitrates) over all four
cases (as shown in Figure 6). Figure 9 shows the relation between the overall ACWL (bitrates) and
the misclassification rates. Again, the curve clearly shows the general trend of increased bitrates
(less compression) when the misclassification rate increases, which is what we expected. In the
following, we compare the compression performance of deep learning based method with some
popular lossless image compression methods.

Figure 9. The overall average Golomb–Rice codeword lengths as a function of misclassification rates.

3.4. Comparisons with Mainstream Lossless Compression Methods

We compare with four well known lossless image compression methods. A brief introduction to
these methods is given below.

• JPEG2000 [49] is an image compression standard designed to improve the performance of JPEG
compression standard, albeit at the cost of increased computational complexity. Instead of using
DCT in JPEG, JPEG2000 uses discrete wavelet transform (DWT).

• JPEG-LS is a lossless image compression standard. JPEG-LS improves the compression by using
more context pixels (pixels already encoded) to predict the current pixel [50]. We use the codec
based on the LOCO-I algorithm [51].

• CALIC (Context-based, adaptive, lossless image codec) uses a large number of contexts to
condition a non-linear predictor, which makes it adaptive to varying source statistics [52].

• WebP [53] is an image format currently developed by Google. WebP is based on block prediction,
and a variant of LZ77-Huffman coding is used for entropy coding.

The comparison results are shown in Figure 10. We can see that our method significantly
outperforms other four conventional compression methods, which are not sensitive to the change of the
misclassification rates. This is because these standard methods are designed to be as generic as possible,
without taking advantage of the correlations among images belonging to the same classes, which
can be captured by sufficiently trained autoencoders. Here we take into account practical scenarios
where there will be mismatch between the input images and the autoencoders of the corresponding
class. For example, the autoencoders pre-trained to compress infected cell images would suffer from
degrading performance as more and more normal cell images (due to increasing misclassification
rates) are mixed with the infected cells as the input. However, even at a very low misclassification
rate of 20% (which a reasonably good pattern classifier can easily do better in terms of accuracy),
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the curve Figure 10 shows the deep learning based method still has better performance than the four
other methods.

Figure 10. Comparison of bitrates for varying misclassification rates.

The result highlights the advantage of our data-specific approach of “train once and then compress
many times”, where deep learning seems to be very effective in extracting common features within the
dataset, thereby providing more efficient data compression. Nonetheless, in practical implementations
of an end-to-end compression/decompression system, the parameters of the stack autoencoders
already trained have to be provided as side information to the decoder to ensure lossless decompression.
Fortunately, this one-time cost of bitrates for the side information can be amortized over a large number
of images to be compressed in the dataset. The other side information is the 30-point vector for each
image at the output of the autoencoder at the last stage. Again, the bits needed for coding the vector
is a one-time cost for the entire image, representing an negligible increase in the average bitrates
(in bits/pixel).

It should also be noted that this deep learning based approach has some limitations. First,
the approach is more suitable for achieving good compression on average over an entire dataset, where
images can be grouped into different classes by a reasonably well trained classifier. The images
within the same class share some common features, which can be exploited to achieve higher
compression than would be possible by considering only individual image statistics. Therefore,
this joint classification/compression approach is not intended for compression of individual images,
for which mainstream lossless compression methods are more suitable, since they optimize their
performance based on individual image statistics. Second, training stacked autoencoders on large
dataset tend to be expensive computationally. Therefore, the high computational cost will only justify
the “train once and then compress many times” approach applied on the entire dataset. Finally,
the autoencoder parameters (e.g., the weights and biases of each layer) have to be made available to
the decoder as a side information. Therefore, the advantage of the deep learning based method would
be more pronounced for large datasets, where the impact of the side information overhead on the
overall bitrates will become less noticeable for the entire dataset.

In the literature, existing work on deep learning for image compression is fairly sparse,
mostly with the goal of achieving low bit rates and higher visual quality for lossy compression.
For example, Toderici et al. proposed a general framework for variable-rate image compression based
on convolutional and deconvolutional long short-term memory (LSTM) recurrent networks [54].
They reported better visual quality than JPEG2000 and WebP on 32 × 32 thumbnail images.
Their follow-up work in [55] proposed a hybrid of Gated Recurrent Unit (GRU) and ResNet
as a full-resolution lossy image compression methods. Jiang et al. [56] proposed an end-to-end
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lossy compression framework consisting of two convolutional neural networks (CNNs) for image
compaction, albeit still requiring the main compression engine to be a standard compression method
such as JPEG. Li et al. proposed a CNN-based content-weighted lossy compression method, which
outperforms traditional methods on low bit rate images [57]. Generative Adversarial Networks (GANs)
were used in [58] for lossy image compression, achieving good reconstructed image quality at very
low bit rates (e.g., below 0.1 bit per pixel). In contrast, this work focuses on lossless compression. Our
results shows that autoencoders are capable of capturing inter-image correlations in a large datasets,
which are beneficial to efficient lossless compression of the entire dataset. It would be a good research
direction to study how to integrate autoencoders with other deep learning architectures such as CNNs
and GANs to exploit also local image statistics, as well as recurrent neural networks (RNNs) and LSTM
networks to take advantage of pixel dependence within an image.

4. Conclusions

In this paper, we study how the performance of lossless compression on red blood cell images is
affected by an imperfect classifier in a realistic setting where images are first classified prior to being
compressed using deep learning methods based on stacked autoencoders. We provide an in-depth
analysis on the impact of misclassification rates on the overall image compression performance and
derive formulas for both empirical entropy and average codeword lengths based on Golomb–Rice
codes for residues. These formulas provide new insight into how the overall compression efficiency are
affected by different source probability and misclassification rates. We also use malaria infection image
datasets to evaluate the relations between misclassification rates and actually obtainable compressed
bit rates. The results show the advantage of our data driven approach of “train the neural network
once and then compress the data many times”, where deep learning seems to be very effective in
extracting common features within the dataset, thereby providing more efficient data compression than
conventional methods, even at elevated misclassification rates. This special feature will be useful when
only some important parts (regions of interest) of a large high-resolution (e.g., a wholeslide image) are
required for lossless compression, while the rest (e.g., the background) only need lossy compression,
or can simply be discarded. In the case of computer assisted malaria diagnosis, pathologists are
mainly interested in red blood cell images. So we can classify the infected and normal cells, which
can lead to more efficient compression of an entire image datasets. Thus, the proposed compression
method can find useful applications in telemedicine where efficient storage and rapid transfer of large
image datasets is sought after. As future work, we aim to study the compression performance and
computational efficiencies of an end-to-end classification/compression system, taking into account the
overhead associated with the descriptions of the neural network structure and feature vectors.
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Abstract: An investigation of diseases using magnetic resonance (MR) imaging requires automatic image
quality assessment methods able to exclude low-quality scans. Such methods can be also employed
for an optimization of parameters of imaging systems or evaluation of image processing algorithms.
Therefore, in this paper, a novel blind image quality assessment (BIQA) method for the evaluation of MR
images is introduced. It is observed that the result of filtering using non-maximum suppression (NMS)
strongly depends on the perceptual quality of an input image. Hence, in the method, the image is first
processed by the NMS with various levels of acceptable local intensity difference. Then, the quality is
efficiently expressed by the entropy of a sequence of extrema numbers obtained with the thresholded
NMS. The proposed BIQA approach is compared with ten state-of-the-art techniques on a dataset
containing MR images and subjective scores provided by 31 experienced radiologists. The Pearson,
Spearman, Kendall correlation coefficients and root mean square error for the method assessing images
in the dataset were 0.6741, 0.3540, 0.2428, and 0.5375, respectively. The extensive experimental evaluation
of the BIQA methods reveals that the introduced measure outperforms related techniques by a large
margin as it correlates better with human scores.

Keywords: blind image quality assessment; magnetic resonance images; entropy; non-maximum
suppression

1. Introduction

The ubiquity of advancements in imaging has brought significant attention of medical specialists
due to the role of the quality of displayed content in diagnosis [1–3]. The quality of Magnetic Resonance
(MR) images depends on used hardware parts, software techniques, as well as human errors involving
patient noncompliance or operator mistakes [4–8]. Therefore, the development of automatic image
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quality assessment (IQA) methods for MR scans is particularly important since the contamination of
acquired images may compromise subsequent diagnosis and treatment. Moreover, such methods may
support a selection of algorithms for image processing or parameters of imaging systems. Hopefully,
a time-consuming examination of images by trained medical specialists can be avoided. Furthermore,
the lack of reproducibility of subjective tests and personal quality preferences impeding scores of small
groups encourages the use of automatic and repeatable IQA methods. The IQA measures are divided into
three categories: Full-reference (FR), reduced-reference (RR), and no-reference or blind (BIQA) methods [9].
The full-reference methods compare input images with their non-distorted versions. However, most
medical imaging systems do not produce pristine images, limiting the application range of FR methods [10].
The reduced reference techniques, in turn, require only a part of the information on the pristine image,
and blind IQA methods assess images without any external information. Therefore, the development of
BIQA approaches is desired.

Among the applications of FR-IQA methods to MR images, Baselice et al. [10] compared results of
denoising approaches using Mean Square Error (MSE) with the Structural Similarity Index (SSIM) [11].
Jang et al. [12] employed the SSIM and the Root-Mean-Square Error (RMSE) for an evaluation of BIQA
methods on synthetically distorted MR scans. In the work of Chow and Rajagopal [13], Noise Quality
Measurement (NQM) with Feature SIMilarity (FSIM) were applied to evaluate a BIQA method. Recognition
of a supportive role of FR measures in the assessment of medical images and the need for creating new
datasets are among findings of that work [13]. The reduced-reference techniques are not used for the
assessment of MR images. In the literature, several BIQA methods have been introduced. Interestingly,
as the Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR) are frequently used for the
assessment of medical images [14], they are often criticized due to the need of indication of clearly defined
regions with tissue and background [14–16]. Considering MR images, Chow and Rajagopal [13] adapted
Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) [17] by training it on MR images instead
of natural images. The method fits the Mean Substracted Contrast Normalization (MSCN) of an image to
the Generalized Gaussian Distribution (GGD). Similarly, the GGD was used by Jang et al. [12]. In that
work, the characteristics of MR scans were taken into account by employing a multidirectional-filtering of
images. In the work of Yu et al. [16], four BIQA methods, i.e., BRISQUE, Natural Image Evaluator (NIQE),
Blind Image Integrity Notator using DCT statistics (BLIINDS-II), and Blind Image Quality Index (BIQI),
were trained on the SNR scores. Their correlation with the SNR was investigated by Zhang et al. [18].
The BIQA methods for the assessment of brain MR scans were employed by Sandilya and Nirmala [19]
and Osadebey et al. [20]. In the first work, the reconstructed scans were assessed with BRISQUE, while in
the second approach, binary images of brain scans were evaluated considering noise, lightness, contrast,
sharpness, and texture details.

The literature review reveals that the lack of BIQA approaches designed for MR scans is caused
mainly by the lack of IQA databases of such images with subjective scores. Moreover, natural images differ
from MR images concerning characteristics of used imaging systems for their registration, the complexity
of captured structures, or noise. Considering the popularity of IQA methods designed for natural images,
some of BIQA approaches for MR scans adapted or modified them. However, there exist many concepts in
the IQA of natural images that are not yet utilized for MR images and they should be examined. Therefore,
in this paper, apart from the novel BIQA approach designed for MR scans, a set of representative IQA
methods is evaluated. Furthermore, a dataset with MR scans and subjective scores used in the evaluation
is released.

The introduced method, ENtropy-based Magnetic resonance Image Quality Assessment measure
(ENMIQA), takes into account thresholded local intensity differences obtained by using the non-maximum
suppression (NMS) [21,22] operation and calculates the entropy of a sequence of extrema numbers.
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The extrema represent a set of filtered versions of an input image. Then, entropy is used for quality
prediction.

The major contributions of this work are a novel method for the quality assessment of MR images
and a comprehensive evaluation of the measure against the state-of-the-art IQA techniques on a dataset of
MR images assessed by a large group of experienced radiologists.

The remainder of this paper is organized as follows. In Section 2, the approach is introduced. Then,
in Section 3, it is evaluated against the related BIQA methods. Finally, in Section 4, the paper is concluded.

2. Proposed Image Quality Measure

In the introduced method, ENMIQA, an input image I is filtered to determine pixels that represent
local intensity extrema. To determine which pixels should be selected, the NMS operation [21,22] is
performed. However, to provide a more thorough examination instead of selecting pixels that are of
greater or lesser intensity value than its surrounding neighbors, in this work, a sequence of intensity
thresholds T = [1, 2, . . . , S], S ∈ Z+, is introduced. The NMS uses the threshold t ∈ T to indicate the local
extrema. Consequently, image I for each threshold t is represented by the number of found local extrema
I(t). This can be written as:

I(t) =
M

∑
a=1

N

∑
b=1

T(a, b, t), (1)

where a pair (a, b) denotes the pixel location within an image of the size M × N and T(a, b, t) is a test in
which the NMS is calculated using the proposed threshold t. The test is obtained as follows:

T(a, b, t) =

⎧⎪⎨
⎪⎩

1, if ∀(i,j) I(a, b) > I(a + i, b + j) + t,
1, else if ∀(i,j) I(a, b) < I(a + i, b + j)− t,
0, otherwise,

(2)

where (i, j) ∈ {(0, 1), (0,−1), (1, 0), (−1, 0)}. The pair of indices (i, j) forms the neighborhood of
3 × 3 pixels around the location (a, b). Finally, a sequence of sums I(T) = [I(t = 1), I(t = 2), . . . , I(t = S)]
is obtained. Then, it is divided by the image size to normalize the values. To determine the quality of the
input image I, entropy of I(T) is calculated.

Entropy is the fundamental concept of Shannon information theory [23,24]. It is usually considered in
the framework of measure theory. Assuming that space X with a probabilistic measure μ and a countable
partition P of X are given [25], the entropy h is:

h(μ,P) = ∑
P∈P

s(μ(P)), (3)

where s: [0, 1] → [0, ∞) can be expressed as s(x) = −x log x for 0 < x ≤ 1 and s(0) = 0. Note that
entropy equals zero if and only if there exists such P ∈ P that μ(P) = 1. If X contains R elements,
then P = {P1, ..., PR}. Furthermore, if μ is based on counting measure, then Equation (3) has the
following form:

h(μ,P) = −
R

∑
i=1

ki log ki, (4)

where ki = mi
m , mi and m are the numbers of elements in Pi and X, respectively. Entropy defined

by Equation (4) reaches its maximum for the uniform distribution of the measure μ on the family P.
Such defined entropy refers to the amount of information on (X, μ) introduced by P. Consequently,
the inversely proportional relationship between entropy and information is often applied in practice.
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In this paper, entropy analysis is used for the IQA of two-dimensional MR images. In such a context,
it can be employed for measuring disorders. In MR scans of internal organs, single isolated impulses
with higher or lower intensity concerning a local neighborhood are common in distorted images. Thus,
the greater the value of the threshold t in the NMS, the greater the probability that the detected intensity
irregularities are disorders that decrease the quality of an image. The observed discriminative capabilities
of entropy regarding images of different qualities justify its use for the IQA of MR images. In this work,
Equation (4) is directly used as a quality measure, assuming that a set X is expressed as {(I, t), t ∈ T} and
T determines the partition of X. The main computational steps of the method are shown in Figure 1.

Figure 1. Image processing steps towards the calculation of image quality in ENtropy-based Magnetic
resonance Image Quality Assessment measure (ENMIQA).

Figure 2 presents two MR images of different quality and the influence of t on the local extrema.
As shown, the proposed method determines more extrema in images with more distortions.
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(a) I (b) t = 1 (c) t = 15 (d) t = 30

(e) I (f) t = 1 (g) t = 15 (h) t = 30

Figure 2. Two magnetic resonance (MR) images of different quality and the determined local extrema for
t = 1, 15, 30.

3. Results and Discussion

In this section, a dataset that contains MR images with associated subjective scores is introduced.
Then, the performance of ENMIQA against ten state-of-the-art related methods is evaluated using a
typical methodology and discussed. Finally, the influence of parameters of ENMIQA on its performance is
provided.

3.1. Experimental Data

The introduced ENMIQA and related techniques are evaluated on a dataset that contains MR images
and subjective scores collected in tests with human subjects. The dataset consists of 70 T2-weighted MR
images (T2w) extracted from the lumbar and cervical spine, brain, hip, knee, and wrist sequences in axial,
sagittal, and coronal planes. The sequences were obtained for a group of 51 patients of 27–41 years old
(26 men and 25 women). The study protocol was designed according to the guidelines of the Declaration of
Helsinki and the Good Clinical Practice Declaration Statement. The data safety was ensured by removing
the personal details from images. Written acceptance for conducting the study was obtained from the
Ethics Committee of Jagiellonian University (no. 1072.6120.15.2017). To produce images with different
quality for the IQA purposes, shortened sequences were acquired using Process Analytical Technology
(PAT) I software (Siemens) and employing the GeneRalized Autocalibrating Partially Parallel Acquisitions
(GRAPPA) 3 in which 25% of the echoes were acquired with 60% signal reduction regarding the original
acquisition mode [26,27]. Then, images with distortion types that were not present in all examined body
parts were rejected. The obtained dataset is characterized in Table 1. There are 15, 9, and 11 image pairs
captured in sagittal, axial, and coronal planes, respectively. The size of the images ranges from 192 × 320
to 512 × 512. The subjective scores for images were obtained in a group of 31 experienced radiologists
with more than six years of diagnostic reading residency. Each radiologist assessed two images of the
same part of the body at once, spending a minute on the assessment of the pair. The images were scored
from 1 to 5, with a higher score associated with better quality. The examination was repeated until all
images in the dataset were assessed. Then, scores for images were averaged and the mean opinion score
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(MOS) was obtained. The number of radiologists that took part in the subjective tests was large enough
to ensure that personal quality preferences do not impair the MOS. However, the number of images in
the database depended on the number of medical professionals and the time spent on the examination.
Exemplary images from the dataset can be seen in Figure 3.

Table 1. Summary of images used in experiments.

Body Part No. of Image Pairs Axial Plane Sagittal Plane Coronal Plane

Lumbar and cervical spine 7 2 5 0
Knee 7 2 4 1
Shoulder 8 2 2 4
Wrist 3 0 0 3
Hip 2 1 1 0
Pelvis 2 0 0 2
Elbow 1 1 0 0
Ankle 1 0 1 0
Brain 4 1 2 1
Total pairs 35 9 15 11

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Exemplary MR images used in experiments.

3.2. Evaluation Methodology

According to the popular protocol for the performance evaluation of IQA measures, objective scores
Q for images in a database are compared with subjective scores (i.e., MOS) S collected for them in tests with
human subjects. Typically, the four criteria are used to characterize IQA measure [28]: Pearson correlation
coefficient (PLCC), Spearman Rank order Correlation Coefficient (SRCC), Kendall Rank order Correlation
Coefficient (KRCC), and Root Mean Square Error (RMSE). The PLCC and RMSE are calculated for the vector
Qp obtained via a nonlinear mapping between objective scores Q and subjective scores S using fitted
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parameters of the regression model β = [β1, β2, . . . , β5], i.e., Qp = β1

(
1
2 − 1

1+exp(β2(Q−β3))

)
+ β4Q + β5.

The PLCC is obtained as:

PLCC(Qp,S) =
Q̄p

T
S̄√

Q̄p
TQ̄pS̄

T
S̄

, (5)

where Q̄p and S̄ are mean-removed vectors. The SRCC is calculated as:

SRCC(Q,S) = 1 − 6 ∑m
i=1 d2

i
m(m2 − 1)

, (6)

where di is the difference between i-th image in vectors of scores and m denotes the number of images in
the dataset. The KRCC is obtained as:

KRCC(Q,S) =
mc − md

0.5m(m − 1)
, (7)

where mc, md are the number of concordant and discordant pairs, respectively. The RMSE, in turn, is
obtained as:

RMSE(Qp,S) =

√
(Qp −S)T(Qp −S)

m
. (8)

3.3. Comparative Evaluation

The ENMIQA is compared against the following ten related BIQA measures: SNRTOI [18], BPRI [29],
ILNIQE [30], QENI [31], SISBLIM [32], metricQ [33], SSEQ [34], SINDEX [35], MEON [36], and DEEPIQ [37].
The SNRTOI [18] was implemented by authors of this paper, while other methods were run using their
publicly available Matlab implementations. All compared methods, similarly to ENMIQA, do not require
training. However, MEON and DEEPIQ represent recently introduced deep learning approaches and are
already trained by their authors. The ENMIQA run with S = 30 in experiments and other measures used
their default parameters. In cases in which a method was designed to process color images, three identical
channels were used as an input. The performance of the methods and their approaches to image quality
modeling and prediction are shown in Table 2.

Table 2. Evaluation and characteristics of compared blind image quality assessment (BIQA) measures. The
best value for each performance criterion is written in bold.

Method PLCC SRCC KRCC RMSE Approach to Image Quality Modeling and Prediction

ENMIQA 0.6741 0.3540 0.2428 0.5375 Thresholded NMS and entropy
BPRI 0.3440 0.1515 0.1120 0.6832 Distortion-specific metrics and pseudo-reference image

DEEPIQ 0.4039 0.3030 0.2037 0.6657 RankNet trained on quality-discriminable image pairs
ILNIQE 0.3465 0.1796 0.1162 0.6826 Multivariate Gaussian model of pristine images
MEON 0.0439 0.1247 0.0771 0.7272 End-to-end deep neural network with subtasks
MetricQ 0.3075 0.2300 0.1520 0.6924 Singular value decomposition of local image gradient matrix

QENI 0.2886 0.2385 0.1587 0.6967 Self-similarity of local features and saliency models
SINDEX 0.3307 0.2802 0.1962 0.6869 Global and local phase information
SNRTOI 0.2262 0.1828 0.1245 0.7088 Signal-to-nose ratio

SSEQ 0.2903 0.0855 0.0487 0.6963 Distortion classification using local entropy
SISBLIM 0.5733 0.2885 0.1820 0.5962 Free energy theory based fusion of distortion-specific metrics

As reported, the measure introduced in this paper, ENMIQA, outperforms related techniques by a
large margin in terms of all four performance indices. Depending on the considered index, it is followed
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by SISBLIM (PLCC and RMSE) and DEEPIQ (SRCC and KRCC). To show the performance of the measures
for images of body parts largely represented in the database, the PLCC calculated for their subsets is
reported in Figure 4. Here, ENMIQA obtains greater PLCC than it can be seen for the remaining methods
for images of the lumbar and cervical spine, knee, shoulder, and wrist. It is slightly worse than BPRI for
brain images. Interestingly, it seems that the recently introduced BPRI is suitable for such images, despite
being the second worse technique regarding the entire database and the fourth-best technique in ranking
based on the individual body parts. The worse results of methods designed for the assessment of natural
images, as well as by complex deep learning approaches, can be justified by the specifics of MR images in
which a large portion of the area is covered by organs or tissue while the background is usually dark and
may contain noise. In natural images, such empty or nearly empty spaces are seldom found. Furthermore,
popular BIQA methods are often trained to recognize typical distortion types (e.g., BPRI, ILNIQE, MEON,
SSEQ, or DEEPIQ). Interestingly, methods trained on images contaminated with Gaussian noise can, to
some extent, correctly predict the quality of MR images since Gaussian noise manifests itself in magnitude
images as a Rician distribution of pixel intensities [38]. This is confirmed by weaker performance of the
SNRTOI, which, being an SNR derivative, is often used by radiologists as supporting information on the
captured images. The reported results for other methods seem to justify the need for the development of
measures designed for the IQA of MR images.

Figure 4. Pearson correlation coefficient (PLCC) performance of the BIQA methods for subsets of images of
common body parts.

To evaluate the statistical significance of the obtained errors in the prediction of IQA methods,
hypothesis tests based on the prediction residuals of each IQA measure after non-linear mapping were
conducted using F-statistic [28]. The F-test is based on an assumption of the Gaussianity of residuals
and determines whether the two compared sample sets come from the same distribution, based on the
ratio of their variances. The test is often used for the comparison of IQA measures [28]. Therefore, at
first, the Jarque–Bera (JB) statistic to determine whether residuals come from a normal distribution was
used [39]. In the JB test, the null hypothesis is that the vector of residuals of NR measure follows a normal
distribution while the alternative hypothesis is that it does not follow it. Since for all compared measures
the null hypothesis was not rejected at the 5% significance level, the F-statistic could be reliably employed.
In the F-test, the null hypothesis is that the vectors of residuals of two IQA measures come from the same
distribution with the same variance and are statistically indistinguishable (95% confidence). The alternative
hypothesis is that the vectors are statistically distinguishable and have different variances. Before the
calculation of the F-statistic, a vector of residuals of a measure was used to fit a normal distribution and
1000 samples were drawn from it. The tests revealed that the residual variance of ENMIQA is statistically
smaller than those of all compared IQA methods with confidence greater than 95%. This is also indicated
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by the ratio in all cases. The obtained JB statistics for measures and ratios of the residual variances of
algorithms to the ENMIQA are presented in Table 3.

Table 3. Ratios of residual variances of methods to ENMIQA and the Jarque–Bera (JB) statistics.
Smaller values of JB statistics denote smaller deviations from the Gaussianity. All measures follow a
normal distribution.

Method Ratio JB Statistic

ENMIQA 1.0000 0.8523
BPRI 0.6189 2.8999

DEEPIQ 0.6510 1.3870
ILNIQE 0.6201 3.9911
MEON 0.5462 3.8930
MetricQ 0.6032 2.8356

QENI 0.5952 2.7040
SINDEX 0.6124 3.2580
SNRTOI 0.5751 1.7389

SSEQ 0.5958 3.5343
SISBLIM 0.8128 0.1254

3.4. Computational Complexity

The computational complexity of ENMIQA depends on the size of processed image (N × M),
the length of the sequence of thresholds S, and the size of the neighborhood used for the NMS (k = 3 × 3).
Therefore, its computational complexity is of the order of O(NMSk2).

The introduced dataset was used to analyze the computational complexity of methods in terms of
the average time taken to assess an image. The methods were run on a 2.2 GHz Intel Core CPU with
8 GB RAM using Matlab 2019b environment. Table 4 reports obtained timings. As shown, ENMIQA is
slower than MEON, SINDEX, and SNRTOI, but it is faster than the remaining seven measures. The fastest
methods (i.e., SINDEX and SNRTOI) are characterized by inferior IQA performance, and taking into
account the results for more promising techniques, the introduced ENMIQA is relatively fast and provides
the superior quality prediction of MR images.

Table 4. Time–cost comparison of BIQA measures (in seconds).

Method ENMIQA BPRI DEEPIQ ILNIQE MEON MetricQ QENI SINDEX SNRTOI SSEQ SISBLIM

Runtime 0.2151 0.2524 2.439 9.299 0.1853 0.4813 1.212 0.0479 0.0069 0.9140 1.629

3.5. Influence of Parameters

The ENMIQA is governed by the sequence of thresholds T = [1, 2, . . . , S], S ∈ Z+ used by the
non-maximum suppression. Therefore, it is worth to determine how stable is its performance for various S.
The S is the greatest threshold in the sequence and indicates its length. The PLCC performance of
the method on the entire database, ranging S from 5 to 100 with the step of 5 is shown in Figure 5a.
The previously introduced evaluation methodology was applied on the entire dataset to allow a coherent
comparison with already reported results of other IQA methods (see Section 3.3). Considering the value of
the threshold S, it can be set in between 20 and 60 without a visible drop in the prediction performance.
Since ENMIQA exhibits a stable performance across the values of S, S = 30 used in experiments is justified.
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(a) (b)

Figure 5. Influence of the threshold S (a) and the number of neighboring pixels in the non-maximum
suppression (NMS) (b) on the PLCC performance of ENMIQA.

The non-maximum suppression selects a pixel with the extreme value, taking into account its eight
neighbors and the threshold t. Since a pixel has 8 neighbors, it is reasonable to use its full neighborhood
(the size of 8). However, the suppression can be modified to accept a lesser number of neighboring pixels
that are used to indicate the local extrema (see Equation (2)). Therefore, in Figure 5b, the impact of the
number of neighbors on the PLCC results of ENMIQA is shown. Here, if the number of used neighbors
while determining the local extrema is lower than 8, the performance of the method visibly deteriorates.
Hence, the entire pixel neighborhood should be considered by ENMIQA with the NMS. Interestingly, even
with a smaller neighborhood the approach still offers a promising performance.

4. Conclusions

In this work, a new BIQA measure for the evaluation of MR images is proposed. The method uses the
non-maximum suppression with a sequence of thresholds to detect local intensity extrema in MR images.
A relationship between the number of extrema and entropy is investigated. Consequently, a new measure
is introduced and experimentally validated against ten representative BIQA techniques on a database that
contains MR images assessed by a large group of experienced medical professionals. The experimental
comparison reveals that ENMIQA outperforms the-state-of-the-art measures by a large margin in terms of
four performance criteria, confirming its suitability for the quality prediction of MR images.

To facilitate the replicability of the reported findings, as well as the applicability of the measure,
the Matlab code of ENMIQA and the dataset are available at http://marosz.kia.prz.edu.pl/ENMIQA.html.
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Abstract: Image quality assessment (IQA) is a fundamental technology for image applications that
can help correct low-quality images during the capture process. The ability to expand distorted
images and create human visual system (HVS)-aware labels for training is the key to performing
IQA tasks using deep neural networks (DNNs), and image quality is highly sensitive to changes in
entropy. Therefore, a new data expansion method based on entropy and guided by saliency and
distortion is proposed in this paper. We introduce saliency into a large-scale expansion strategy for
the first time. We regionally add distortion to a set of original images to obtain a distorted image
database and label the distorted images using entropy. The careful design of the distorted images
and the entropy-based labels fully reflects the influences of both saliency and distortion on quality.
The expanded database plays an important role in the application of a DNN for IQA. Experimental
results on IQA databases demonstrate the effectiveness of the expansion method, and the network’s
prediction effect on the IQA databases is found to be improved compared with its predecessor
algorithm. Therefore, we conclude that a data expansion approach that fully reflects HVS-aware
quality factors is beneficial for IQA. This study presents a novel method for incorporating saliency
into IQA, namely, representing it as regional distortion.

Keywords: deep neural network; entropy; data expansion; blind image quality assessment;
saliency and distortion; human visual system; declining quality

1. Introduction

With the current state of development of multimedia technology, a large number of videos and
images are being generated and processed every day, which are often subject to quality degradation.
As a fundamental technology for various image applications, image quality assessment (IQA) has
always been an important issue. The aim of IQA is to automatically estimate image quality to assist
in the handling of low-quality images during the capture process. IQA methods can be divided into
three major classes, namely, full-reference IQA (FR-IQA) [1,2], reduced-reference IQA (RR-IQA) [3],
and no-reference IQA (NR-IQA), based on whether reference images are available. In most cases,
no reference version of a distorted image is available; consequently, it is both more realistic and
increasingly important to develop an NR-IQA model that can be widely applied [4]. NR-IQA models
are also called blind IQA (BIQA) models. Notably, deep neural networks (DNNs) have performed
well in many computer vision tasks [5–8], which encouraged researchers to use the formidable feature
representation power of DNNs to perform end-to-end optimized BIQA, an approach called DNN-based
BIQA. These methods use some prior knowledge from the IQA domain, such as the relationship among
entropy, distortion and image quality, to attempt to solve IQA tasks using the powerful learning ability
of neural networks. Accordingly, there is a strong need for DNN-based BIQA models in various cases
where image quality is crucial.
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However, attempts to use DNNs for the BIQA task were limited due to the conflicting
characteristics of DNNs and IQA [9]. DNNs require massive amounts of training data to
comprehensively learn the relationships between image data and score labels; however, classical
IQA databases are much smaller than the computer vision datasets available for deep learning.
An IQA database is composed of a series of distorted images and corresponding subjective score labels.
Because obtaining a large number of reliable human-subjective labels is a time-consuming process,
the construction of IQA databases requires many volunteers and complex, long-term experiments.
Therefore, expanding the available number of distorted image samples and labels that fully reflect
human visual system (HVS)-aware quality factors for training is a key problem for DNN-based BIQA.

Based on the baseline datasets considered for expansion, the current DNN-based BIQA methods
can be divided into two general approaches. The first approach is to use the images in an existing IQA
dataset as the parent samples; we call this approach small-scale expansion. In this case, the goal of
expansion is achieved by dividing the distorted images from the IQA dataset into small patches and
assigning to each patch a separate quality label that conforms to human visual perception. The second
strategy is to expand the number of distorted images by using another, non-IQA dataset as the parent
dataset; we call this approach large-scale expansion. In this approach, nondistorted images from
outside the IQA dataset are first selected; then, distortion is added to these images based on the types
of distortion present in the IQA dataset to construct new distorted images on a large scale. Then,
the newly generated distorted images are simply labeled with different values that reflect their ranking
in terms of human visual perception quality to achieve the goal of expansion.

The small-scale expansion strategy relies on division. The initial algorithm [10] assigns the score
labels of the parent images to the corresponding small patches and then uses a shallow CNN to perform
end-to-end optimization. The small patches and their labels are input directly to the network during
training, and the predicted scores for all the small patches are averaged to obtain the overall image
score during prediction. However, this type of expansion is not strictly consistent with the principles
of the HVS. Previous studies have shown that saliency exerts a crucial influence on human-perceived
quality; thus, saliency should be considered in IQA together with distortion and content [11–13].
These studies have shown that the human eye tends to focus on certain regions when assessing an
image’s visual quality and that different regions have different influences on the perceived quality of
a distorted image. Therefore, it is not appropriate for all patches from a single image to be assigned
identical quality labels because local perceptual quality is not always consistent with global perceptual
quality [14,15]: the uneven spatial distortion distribution will result in varying local scores for different
image patches. Thus, many works have attempted to consider this aspect of the problem. The saliency
factor was first considered in DNN-based BIQA algorithms. The authors of [16,17] still assigned
identical initial quality labels to the small patches, but the predicted scores for all small patches were
eventually multiplied by different weights based on their saliency to obtain the overall image scores,
thereby weakening the influence of patches with inaccurate labels in nonsalient regions on the overall
image quality. In [18,19], strategies based on proxy quality scores [18] and an objective error map [19]
were used to further improve the accuracy of the labels for different patches. All these strategies further
increased the accuracy of this type of expansion and led to better predictions, confirming that the
joint consideration of the influence of saliency and distortion on image quality more comprehensively
reflects HVS-related perceptual factors. However, division strategies have obvious inherent drawbacks.
First, because expansion is applied only to the existing distorted images in the IQA database (the
expansion parent), the diversity of the training sample contents is not increased. The different levels of
quality influenced by saliency and distortion must already be present in the training dataset, but it is
difficult to claim that a typical small IQA database can comprehensively represent the influence of
HVS factors on quality; hence, such methods are easily susceptible to overfitting. Second, there is a
tradeoff between the extent of expansion achieved and the patch size. When the patch size is too small,
each individual patch will no longer contain sufficient distorted semantic information for IQA, thus
inevitably destroying the correlations between image patches. In contrast, a large patch size results
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in smaller-scale expansion, meaning that only a shallow network can be used for training. Moreover,
the generated saliency-based patch weights will show large deviations from the real salient regions.

To avoid dividing the images in the IQA database while still not requiring human labeling, the
large-scale expansion strategy instead involves creating new distorted images by adding distortion to
a large number of high-definition images obtained from outside the IQA database. Separate values
that reflect the overall quality level are assigned to each distorted image obtained from each original
parent image. Because the labels of the newly generated images are not direct quality scores, the
expanded database is used only to pretrain the DNN, which is then fine-tuned on the IQA database.
This approach alleviates the training pressure placed on the small IQA dataset and successfully avoids
the drawbacks of division encountered in the small-scale strategy because the number of labeled
training images is expanded by a large amount, increasing the diversity of the training sample content.
Such unrestricted, large-scale expansion also makes it possible to use deeper networks; in fact, a
deep model pretrained on an image recognition task could also be used to further enhance the effect.
This large-scale expansion approach was developed over the past two years, and it showed a much
better effect than small-scale expansion algorithms. However, large-scale expansion also has some
significant shortcomings. Although the newly added images with quality-level labels are consistent
with human perception, they reflect only HVS-aware quality factors; distortion and the joint effects
of saliency and distortion are not considered. Moreover, large-scale expanded datasets are typically
prepared to assist in specific IQA tasks. The more similar the extended pretraining dataset is to the
original IQA dataset for the target task, the more effectively it can support the IQA task. In this case, a
“similar” dataset is an expanded dataset that fully reflects the influences of the HVS-related perceptual
factors (saliency and distortion) as embodied in the IQA task of interest. The current algorithms [15,20]
that use this approach mainly follow the lead of RankIQA [20]: they generate a series of distorted
image versions by adding different levels of distortion to each original parent image (with uniform
distortion for each image region) and assign different numerical-valued labels to them to reflect the
overall quality level. Consequently, the quality degradation of each distorted image depends only on
the level of the distortion added to the whole image. As a result, HVS-aware quality factors are not well
embedded into the expanded database. Using this type of extended dataset to pretrain the network
will simply cause it to learn that a greater level of distortion leads to greater quality degradation; the
network will be unable to discern that salient regions are more important than nonsalient regions
and that different regions contribute differently to the overall image quality. Obviously, this type of
expansion does not result in an ideal pretraining dataset for IQA.

In this paper, we introduce saliency into the large-scale expansion method, with the aim of
constructing DNN-based BIQA models that will be effective in various cases where image quality
is crucial. The objective is to be able to automatically estimate image quality to assist in handling
low-quality images during the capture process. Moreover, by virtue of the introduction of saliency,
our proposed model can achieve better prediction accuracy for large-aperture images (with clear
foregrounds and blurred backgrounds), which are currently popular. We propose a new approach
for incorporating saliency into BIQA that is perfectly compatible with the large-scale data expansion
approach to ensure the full consideration of HVS-related factors in the mapping process. Specifically,
we introduce saliency factors through regional distortion, thereby conveniently combining saliency
and distortion factors during the expansion of each image to generate a series of distorted image
versions. Then, we use the information entropy to rank these images based on their quality to
complete the labeling process. By constructing a more efficient pretraining tool for DNN-based
BIQA, we improve the prediction performance of the final model. We use our generated large-scale
dataset to pretrain a DNN (VGG-16) and then use the original small IQA dataset to fine-tune the
pretrained model. Extensive experimental results obtained by applying the final model to four
IQA databases demonstrate that compared with existing BIQA models, our proposed BIQA method
achieves state-of-the-art performance, and it is effective on both synthetic and authentic distorted
images. Therefore, we conclude that a data expansion approach that fully reflects HVS-aware quality
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factors is beneficial for IQA. This study presents a novel method for incorporating saliency into IQA
tasks, namely, representing it as regional distortion.

Our contributions can be summarized as follows: (1) We introduce saliency into the large-scale
expansion method in a manner that fully reflects the influence of HVS-aware factors on image
quality, representing a new means of considering saliency in IQA. With the incorporation of the
saliency factor, the proposed data expansion method overcomes the main drawback of its predecessor
algorithm, RankIQA [20], which enables the learning of only the quality decline caused by the
overall distortion level. Our approach enables the construction of an efficient pretraining dataset
for DNN-based BIQA tasks and results in improved prediction accuracy compared to previous
BIQA methods. (2) We propose a new data expansion method that fully reflects HVS-aware factors
by generating distorted images based on both distortion and saliency and assigning labels based
on entropy. This method successfully embeds the joint influence of saliency and distortion into a
large-scale expanded distorted image dataset.

The remainder of this paper is organized as follows. Section 2 describes the important factors that
affect image quality and explores how those factors affect human judgments of image quality. Section 3
introduces the proposed expansion method and describes its use in IQA in detail. Section 4 reports the
experimental results and presents corresponding discussions. Finally, Section 5 offers conclusions.

2. Exploration of Functional HVS Aspects for Image Quality

As stated above, the main requirement for the expanded dataset is that it should be as similar as
possible to the original IQA dataset. Therefore, to identify some features of good BIQA model design,
we analyzed the influence of the three functional aspects of the HVS on human visual IQA. To improve
the reliability of the results, all images considered below were taken from the IQA dataset, which
consists of distorted images and subjective quality score labels that are often used as criteria based on
the human visual perception mechanism.

2.1. The Influence of Saliency on Image Quality

As previously discussed, saliency is an important factor that influences image quality because
when people observe an image, they tend to focus on the regions that contain the most relevant
information in the visual scene. Previous HVS evaluation experiments with eye trackers [11–13,21]
showed that the visual importance of different local regions varies when humans are estimating the
visual quality of a whole image.

To conduct a detailed analysis of the substantial impact of saliency on quality, we analyzed several
images with different visual quality scores. The images shown in panels (a) and (b) of Figure 1 are
derived from the LIVE Challenge dataset [22], an authentic distortion database in which the labels
represent the mean opinion score (MOS) and take values in the range of [0, 100], with higher values
indicating better quality; in this dataset, multiple nonuniform distortions typically appear in each
image. Images (a) and (b) contain identical levels of blurring in the salient and nonsalient regions,
respectively. However, image (b) has a much better visual quality label in the database than image
(a) does. These examples show that the level of distortion in the salient regions of an image is more
likely to determine the final quality rank than is the level of distortion in nonsalient regions. Humans
can more easily perceive distortions in the salient regions and thus assign lower quality scores to
images with such distortions. When the foreground area of an image is distorted, the visual quality
score of the whole image immediately decreases, regardless of whether the background region is
distorted. Thus, the quality in the salient regions is closely related to the final quality score of the
whole image.
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(a) (b)

Figure 1. Distorted images from the LIVEC dataset: (a) MOS = 50.1882; (b) MOS = 72.4574.

By contrast, the effect in nonsalient regions is the opposite. As shown in Figure 1, the low level of
distortion in the nonsalient regions of image (a) does not prevent the quality degradation caused by
distortions in the salient region. This phenomenon is widespread, especially in synthetic distortion
databases. The images shown in panels (a)–(d) of Figure 2 are from the LIVE [23] dataset, which is a
synthetic distortion database that contains 29 reference images and 779 distorted images derived from
them. The corresponding difference mean opinion score (DMOS) labels for these images, representing
subjective quality scores, lie in the range of [0, 100], with a lower value indicating better visual quality.
Images (a)–(d) contain no distortion in the salient regions and exhibit varying distortion intensities
in the nonsalient regions. However, all of these images have the highest possible DMOS value of 0.
This indicates that distortion in nonsalient regions attracts little attention and has little effect on the
quality of the entire image.

(a) (b) (c) (d)

Figure 2. Reference images (DMOS = 0) from the LIVE database: (a) painthouse; (b) caps; (c) monarch;
(d) stream.

2.2. The Influence of Content on Image Quality

We will now discuss the crucial impact of content on IQA. We present detailed figures for
observation. Among the existing IQA databases, LIVE is the most commonly used. Its 29 reference
images were distorted using five types of distortion: JPEG2000 (JP2K), JPEG, white noise in the RGB
components (WN), Gaussian blur (GB), and transmission errors in the JPEG2000 bit stream using a
fast-fading Rayleigh channel model (FF). Moreover, different levels of distortion were added to each
reference image using the same distortion type to ensure that the quality of the distorted images of the
same distortion type covers the entire quality range. To draw our conclusions, we selected 4 of the
29 reference images (“painthouse”, “caps”, “monarch” and “stream”, as shown in Figure 2) as well
as the distorted images derived from these 4 reference images, as shown in Figure 3. Only 4 of the
distortion types (JP2K, JPEG, WN, and GB), all of which are commonly used in IQA databases, are
considered here. For each distortion type, we observed the distortion parameter and the DMOS label
for each distorted image derived from the 4 reference images. We first generated a scatter plot showing
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the distortion parameters and the corresponding DMOS quality labels. Then, for each reference image,
we artificially fit a smooth curve to these scatter points to observe the trend of variation relating the
image quality and the perceived level of distortion.

(a) (b)

(c) (d)

Figure 3. Relationship between the distortion parameter (x-axis) and the DMOS label (y-axis) for
different distortion types. Each x-axis represents the distortion parameter for the corresponding
distortion type. Each scatter point represents one sample in the LIVE dataset [23]. The scatter points
representing the distorted images derived from the same reference image were separately fitted to a
smooth curve. Different colors indicate different images: (a) GB; (b) JP2K; (c) JPEG; (d) WN.

First, we observe that there are no rating biases associated with the reference image contents; all
of the reference images, each with different contents, are assigned the same quality score (DMOS = 0)
in the public IQA database. This phenomenon is clearly reflected in Figure 3; the starting points
of all curves in the same figure are consistent (because the x-axis of the figure for JPEG distortion
represents the achieved bitrate, this characteristic is not reflected in this figure). Second, we find that
as the level of distortion added to the image increases, images with different contents have different
quality degradation curves. In other words, different image contents have different capacities for
hiding distortion. For example, image (d) in Figure 2 has a dark content, and the slight distortion
in it is unacceptable to the human eye. However, a further increase in the distortion level does not
strongly affect an observer’s understanding of the content of “monarch”; therefore, the rate of quality
degradation is slow.

2.3. The Influence of Distortion on Image Quality

The degree of distortion seriously affects the image quality. This conclusion is obvious and beyond
doubt for all four distortion types displayed in Figure 3. For the same type of distortion, all images
with different contents exhibit the same behavior: when the distortion added to the whole image is
uniform, the higher the level of distortion (distinguishable by the human eye) added to the whole
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image is, the lower the image quality is. This means that a negative correlation exists between the level
of distortion and the image quality. The same conclusion can be drawn from Figure 3.

2.4. Conclusion: The Joint Influence of Saliency and Distortion on Image Quality Given the Same Type of
Distortion for Each Image

The above analysis provides the following inspiration. When a DNN learns a mapping between
distorted images and quality scores, it is actually learning different curves for different image contents.
This suggests that it should be possible to construct an expanded training database to improve the
DNN-based prediction performance on BIQA tasks by simply adding synthetic distortions to a baseline
database containing a large number of original images, exactly as was done to construct the LIVE
database. As discussed above, the original external content is not subject to any rating biases; therefore,
we should find a parent database that consists of multiple types of images with no distortion and then
distort them using several distortion types. For each type of distortion, we could generate a series
of distorted images of different qualities for each original image such that the generated distorted
images would reflect the joint effects of saliency and distortion on image quality. Then, we could
apply a reasonable two-stage training method. First, pairs of images of different qualities from the
expanded dataset would be sent to the DNN to pretrain the network to learn the quality ranking of
distorted images with the same content. Then, the smaller original IQA database could be used to
fine-tune the DNN, which would already be trained to perform quality ranking, to refine the mapping
of distorted images to quality scores for each type of content. Then, the DNN should be able to output
high-precision score prediction results. The authors of the RankIQA algorithm [20] accomplished
this task using four distortion types (JP2K, JPEG, WN, and GB) because these four types can be
implemented by means of MATLAB functions and frequently appear in IQA datasets; they generated
a series of distorted images from the contents of each original image separately. However, in their
expanded dataset, the degradation of image quality with a given distortion type for each parent image
depends only on the overall distortion level; the joint influence of distortion and saliency on image
quality is not reflected. Thus, if we could fully capture the influence of both saliency and distortion in
the expanded dataset, the performance should improve.

3. Proposed Method

As mentioned above, our main goal is to construct a newly expanded dataset to support
DNN-based BIQA tasks. We introduce saliency into the large-scale expansion strategy for the first
time by creating distorted images based on the joint consideration of both saliency and distortion.
Finally, we label the images based on the information entropy. The degradation of image quality in our
new expanded dataset not only is related to the distortion level (as in RankIQA [20]) but also fully
reflects the joint influence of distortion and saliency on image quality. We use this large-scale expanded
dataset to pretrain a DNN and then use the original small IQA dataset to fine-tune the pretrained
DNN. After fine-tuning, we obtain the final BIQA model. The flow chart of our proposed method is
shown in Figure 4.

In this section, we present a detailed description of our method, which is divided into two main
stages: dataset expansion and the use of the expanded dataset. First, we introduce our novel method
of incorporating saliency into the large-scale dataset expansion process for IQA. Then, we describe
the dataset generation process: image expansion based on saliency and distortion and image labeling
guided by the information entropy. Finally, we describe how the expanded dataset is used in the IQA
task, which involves a two-step training process to ensure that the DNN fully learns how HVS-aware
factors influence image quality.

67



Entropy 2020, 22, 60

Figure 4. Pipeline of the proposed data expansion method for IQA. Based on the Waterloo database,
we generate a large-scale expanded dataset, and this expanded dataset is then used to pretrain a
double-branch network. Then, the original IQA dataset is used to fine-tune a single branch of the
network to output quality scores.

3.1. The Usage of Saliency in IQA

The incorporation of saliency into the expansion procedure is a key step because we want to
consciously capture the influences of both saliency and distortion when generating distorted images.
Previous algorithms [16–19] introduced saliency into the IQA task by assigning different weights to
different regions of a distorted image when predicting the final score. Such saliency usage is suitable
for small-scale expansion but cannot be applied in the case of large-scale expansion. Moreover, there is
no opportunity to add saliency factors to the existing distorted image versions generated for RankIQA
(large-scale expansion), for which several images with different distortion intensities were created
and labeled by quality rank. Because each label is a simple number that represents the overall quality
level, using regional saliency weights is insufficient. Moreover, the salient regions in any given image
may shift under different distortion levels; examples of this attentional shift based on distortion are
shown in Figure 5. As the level of distortion increases, the salient areas also shift. Thus, we can see
that differently distorted images with the same content should have different local saliency weight
values. This saliency shift further increases the difficulty of adding saliency into the existing distorted
images generated for RankIQA. Therefore, finding a new way to introduce saliency into the large-scale
expansion process for IQA is crucial.

On the one hand, the characteristics of the large-scale expansion strategy are as follows:
the time-consuming psychometric approach is not employed to obtain subjective score labels, and
each distorted image derived from a given image by applying a given type of distortion has only
a simple numerical label that represents its level of quality. On the other hand, Section 2.1 shows
that the influences of salient and nonsalient regions on quality are quite different. Based on the two
considerations above, we are inspired to introduce saliency into an expanded dataset in the form of
regional distortion. We can generate multiple distorted images by adding distortion to high-resolution
reference images. Among these distorted images, some will be subjected to global distortion of the
original images, some will be distorted only in the salient regions of the reference images, and others
will be distorted only in the nonsalient regions. Because the locality of the distortion (both regional
and global) in the extended set of distorted images will be different, these images will have different
perceptual qualities. Next, instead of asking volunteers to provide subjective scores, we can sort the
distorted images based on their information entropy and assign simple numerical labels that represent
their quality ranking. In this way, the combined effects of both saliency and distortion on quality will
be reflected in the expanded dataset.
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(a) (b)

(c) (d)

Figure 5. Saliency shift caused by different levels of blur. Two images with the same content
but different distortion levels are shown on the left. The corresponding saliency maps are shown
on the right. (a) “painthouse” with low level’s distortion; (b) the saliency map of (a); (c) “painthouse”
with high level’s distortion; (d) the saliency map of (c).

To implement the approach proposed above, we performed two preparatory steps. First,
we needed to choose a saliency model. From among the many possible saliency models, we selected [24]
because it emphasizes the identification of the entire salient area. Second, we needed to establish
a measure of how the impact factor affects the quality (as discussed in Section 2). In addition to
the information entropy, this will be another important measure for guiding the image generation
and labeling processes during our expansion procedure. Based on these two preparatory steps,
we introduce the details of our expansion method below.

3.2. Generating Images for the Expansion Dataset

We selected the Waterloo database [25], which includes a large number of high-resolution images
(4744), as the parent database to be used in the expansion process. Using MATLAB, we added distortion
to these images to construct a large-scale expanded dataset containing a total of 4744 × 4 × 9 distorted
images. Here, the factor of 4 arises from the 4 types of distortion (JP2K, JPEG, WN, and GB) applied to
each parent image; we adopted these four distortion types because they are found in most available
IQA databases. The factor of 9 arises from the fact that for each distortion type, a total of nine distorted
images of different qualities were generated, using a total of five distortion levels for each distortion
type. We summarize this information in Table 1. Please note that because we used MATLAB to simulate
the types of distortion present in the LIVE dataset, the distortion functions and distortion factors used
may be different from those used in LIVE; therefore, the parameters in Table 1 are slightly different
from those in Figure 3. Next, with the help of Figure 6, we will explain how we used the five distortion
levels and different saliency models to generate nine distorted versions of each parent image.
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Table 1. Important indicators and parameters involved in the expansion process. Distortion levels 1–5
are defined based on the distortion parameters used in the expansion procedure. The five distortion
parameters presented for each distortion type are listed in order from level 1 to level 5.

Parent Database Distortion Type Distortion Level of 1–5 Involved Expanded Numbers

Waterloo [25]

GB Gaussian filter factor: 7, 15, 39, 91, 199. 9

WN Gaussian white noise: the mean is 0, and the variance is 9
2−10, 2−7.5, 2−5.5, 2−3.5, 20.

JP2K Quality factor: normalized variance at 43, 12, 7, 4, 0. 9

JPEG compression ratio factors: 0.46, 0.16, 0.07, 0.04, 0.02 9

As an example, we chose one original parent image (“shrimp” from the Waterloo database),
and the image shown in panel (b) is its saliency map, generated as described in [24]. Due to space
constraints, only the nine distorted images generated using GB distortion are shown in Figure 6.
Please note that nine corresponding distorted image versions were also generated for each of the other
three distortion types from each original parent image. As Figure 6 shows, during the expansion
procedure, we used the method introduced in [24] to extract the saliency map of each original parent
image. Then, according to the saliency map, we defined the region with pixel values greater than 30
as the salient region and defined the remaining area as the nonsalient region. Each image was thus
divided into two parts, the salient region and the nonsalient region. Then, we independently added
different levels of distortion to these two regions of the original image and spliced the results to obtain
a distorted image. The distortion levels applied to the salient and nonsalient regions to generate the
nine distorted images are shown in the GB distortion level column (e.g., “level 0 + level 1” for image
(c) means that this image was generated by adding GB distortion of level 0 to the salient region and
GB distortion of level 1 to the nonsalient region of image (a)). The definitions of distortion levels 1–5
for each distortion type can be found in Table 1, and a level of 0 means no distortion.

Our expanded set of distorted images fully reflects the influence of HVS-aware quality factors.
The nine distorted image versions generated from each parent image contain different levels of
distortion across the entire image region, thus representing the influence of the overall distortion
level on quality. In addition, some distorted images have different levels of distortion in the salient
and nonsalient regions, thus representing the joint influence of saliency and distortion on quality.
We ranked the nine distorted images of the same distortion type generated from each original image
separately. The corresponding distorted image versions of decreasing quality can fully reflect the
quality degradation caused by various HVS-aware factors.
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Figure 6. Image examples from our generated database. The first column contains an original image
and its saliency map. The nine distorted images generated using GB distortion are displayed; each
distortion was generated by adding particular levels of distortion to the salient and nonsalient regions
of the original image. These distortion levels are displayed alongside the corresponding distorted
images, and the corresponding image quality labels are given in the last column. Please note that the
definitions of the salient regions and the distortion levels can be found in Section 3.2. Nine distorted
images were generated in this way for all four distortion types, although only the results of GB
expansion are shown in this figure. (a) the original version of “shrimp”; (b) the saliency map of (a);
(c–k) the nine distorted versions of (a) under GB distortion type.
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3.3. Entropy-Based Image Quality Ranking of the Expanded Dataset

After generating the distorted images, we next assigned quality labels to them. We know that each
image in an IQA database will have an assigned quality score generated through a time-consuming
psychometric experiment, an option that is unavailable to us, and is, in fact, unnecessary. Labels that
simply reflect the quality ranking are sufficient to create the needed effect (as discussed in detail in
Section 3.4). We refer to the nine distorted images of the same distortion type generated from the same
parent image as a group; thus, there are a total of 4744 × 4 groups in our expanded dataset. We sorted
the nine distorted images in each group separately by quality using the information entropy defined on
the basis of Shannon’s theorem because the information entropy is a measure that reflects the richness
of the information contained in an image. The larger the information entropy of an image is, the richer
its information and the better its quality. Moreover, the information entropy value is sensitive to image
distortion and quality. Distortion in the salient region will lead to a significant reduction in the entropy
value. Therefore, the information entropy is a suitable basis for our labeling procedure. The formula
is as follows:

H = −
255

∑
i=0

pi ∗ logpi (1)

where H represents the information entropy of the image and pi represents the proportion of pixels
with a grayscale value of i in the grayscale version of the image. The ordering of the information
entropy values reflects the quality ranking of a group of images. We used this formula to calculate the
information entropy of each of the nine distorted images in one group and ranked these nine images
in order of their information entropy values. Accordingly, labels 1–9 were assigned to represent the
image quality ranking. As mentioned above, there are a total of 4744 × 4 groups in our expanded
dataset. We use letters c to k to denote the distorted image versions generated to compose each group
(where c represents the distorted image generated by adding no distortion to the salient region and
level 1 distortion to the nonsalient region of the original image). For each of these nine distorted image
versions, we calculated the average entropy for the corresponding 4744 × 4 images, as shown in Table 2.
The information entropy ranking results for most groups are consistent with the average order listed
in Table 2. For each group, the labels for distorted images c to k range from 1 to 9, representing their
sequentially decreasing quality. For example, for the nine images in Figure 6, their entropy sequentially
decreases in the order in which they are displayed; the labels range from 1 to 9. Some groups also
exist in which the information entropy order is different from the average order displayed in Table 2;
in most such cases, the entropy values of images d (in which only the nonsalient region is distorted at
level 2) and e (in which only the salient region is distorted at level 1) are reversed. However, we still
sort image e below image d in quality to emphasize the importance of the salient region.

Table 2. The average information entropy values for all images corresponding to the same distorted
image version across all groups. Each value is calculated as the average information entropy of the
corresponding image version in each of the 4744 × 4 groups.

Distorted Version c d e f g h i j k

H(entropy) 7.5129 7.5087 7.5079 7.5074 7.4920 7.4850 7.3964 7.1882 6.8059

These information entropy results are consistent with the previous conclusions regarding how
HVS factors affect image quality. Images with only background distortion have higher quality
indices than those with foreground distortion and whole-region distortion because distortion in
only nonsignificant regions leads to only weak quality degradation due to the smaller entropy of
nonsalient regions. Consequently, images with only foreground distortion and with overall distortion
at the same level are of similar quality. In addition, as we discussed in Section 2, the quality of the
salient regions is highly consistent with that of the whole image. Please note that for a few landscape
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images in the Waterloo database, which have no obvious salient regions, we treated the entire image
as the salient region to avoid negative effects. Although no convincing quality score labels could be
extracted for these images, we were still able to use the expanded database for our BIQA task by
adopting a Siamese network and a corresponding training method, as discussed in the next section.

3.4. Using the Expansion Dataset for the IQA Task

Now, we will introduce the use of our new expanded dataset. Our training process consists of
two steps: pretraining on the expanded dataset and fine-tuning on the IQA database. We trained
a model based on VGG-16 [26], with the number of neurons in the output layer modified to 1. In
our expanded database, for each original image, there are nine distorted images with corresponding
labels from 1–9 that represent their quality ranking for each distortion type. We followed the training
setup used by the authors of RankIQA [20]. During pretraining, to train the network on the quality
ranking task, we used a double-branch version of VGG-16 (called a Siamese network) with shared
parameters and a hinge loss. We show a schematic diagram of the pretraining process in Figure 7 and
explain the training process in conjunction with the figure. Each input to the network consists of two
images and two labels: a pair of images of different quality that are randomly selected from among
the nine distorted images in one group. The image with the lower label (indicating higher quality)
is always sent to the x1 branch, and the other image is sent to the x2 branch. When the outputs of
the two branches are consistent with the order of the two labels, meaning that the network correctly
ranks the two images by quality, the loss is 0. Otherwise, the loss is not 0, and the parameters will be
adjusted (by decreasing the gradient of the higher branch and increasing the gradient of the lower
branch) as follows:

∂L
∂θ

=

{
0 if ( f (x2; θ)− f (x1; θ)) ≤ 0,
∂ f (x2;θ)

∂θ − ∂ f (x1;θ)
∂w otherwise.

(2)

where θ represents the network parameters. Thus, the loss function is continuously optimized by
comparing the outputs of the two branches, and eventually, the training of the quality ranking model
is complete. Because any two of the nine distorted images in a group may be paired to form the input,
the network is efficiently forced to learn the joint influence of saliency and distortion on image quality.
After pretraining, either network branch can produce a value for an input image (because the two
branches share parameters), and the quality ranking of different input images will be reflected by the
order of their corresponding output values.

Figure 7. Pretraining process. The left side presents a series of distorted images of decreasing quality
in the same group, and the right side presents a two-branch VGG-16 network where the two branches
share parameters and a loss function.

We have found that this pretrained model is nearly identical to the IQA model and can effectively
judge the effects of saliency and distortion on quality. However, the output of this network is not a
direct image quality score. Only when multiple different images are input to obtain different output
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values does the order of these values reflect the order of the images in terms of quality. Therefore,
to facilitate the comparison of our model with other BIQA models and transform the network output
into a direct quality score, our method includes an IQA-database-based fine-tuning step. From the
pretrained model, we extract one branch to obtain a single VGG-16 network and perform training
on the original IQA dataset to complete the fine-tuning process. In each round of training, the input
to the network is one image, and the corresponding quality score is the label in the IQA database;
thus, the network learns an accurate mapping from distorted images to scores. Again following the
approach of RankIQA, we use the sum of the squared errors as the loss function during fine-tuning.

4. Experiments and Results

4.1. Datasets and Evaluation Protocols

We used two types of datasets in our experiments: a non-IQA dataset used for the generation
of the large-scale expanded pretraining dataset and several IQA datasets for performing fine-tuning.
As the non-IQA dataset that was used to generate new distorted images, we adopted the Waterloo
Exploration Database [25], which includes 4744 high-resolution images. The diversity of the image
scenes and the clarity of the images make this database suitable for our purposes. As the IQA datasets,
we used three synthetic IQA databases (i.e., databases containing synthetic distortions), namely,
LIVE [23], CSIQ [27], and LIVE MD [28], and one authentic IQA database, namely, LIVE Challenge
(LIVEC) [22], in which the distortion present in each image may be a complex combination of multiple
types (such as camera shaking and overexposure) to test our model’s generalization capability and its
scope of application.

As the evaluation measures, we selected two metrics that are commonly used in the BIQA domain,
namely, the Spearman rank order correlation coefficient (SROCC) and the Pearson linear correlation
coefficient (PLCC). Given N input images, the SROCC is calculated as follows:

SROCC = 1 − 6 ∑N
i=0(pi − qi)

2

N(N2 − 1)
(3)

first, the N ground-truth scores and N predicted scores are ranked separately. Accordingly, pi denotes
the i-th value in the ordered list of predicted scores, and qi denotes the i-th value in the ordered list of
ground-truth scores. Therefore, the SROCC measures the monotonicity of the predictions. The PLCC
is calculated as follows:

PLCC =
∑N

i=0(ui − u)(vi − v)√
∑N

i=0(ui − u)2
√

∑N
i=0(vi − v)2

(4)

where ui and vi are the predicted score and ground-truth score, respectively, for the i-th image and u
and v are the averages of the N predicted scores and the N ground-truth scores, respectively. Therefore,
the PLCC measures the accuracy of the predictions. It can be seen from the formulas that the SROCC
and PLCC both lie in the range of [0, 1] and that a larger value indicates a stronger correlation between
the two columns of variables.

4.2. Experimental Setup

In Section 3.4, we introduced some information on the training process. Here, we provide more
details and explain the reason for the selected experimental settings. To evaluate the performance
improvement achieved by our algorithm in comparison with its predecessor algorithm RankIQA [20],
we adopted the same network used in RankIQA—the VGG-16 architecture [26]—and changed the
number of neurons in the output layer to 1 because our objective is not regression but rather a
classification task. During both pretraining and fine-tuning, we randomly cropped a single subimage
with dimensions of 224 × 224 from each training image to be used as the input in each epoch. During
testing, we randomly sampled 30 224 × 224 subimages from one image and adopted the average of the
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corresponding 30 predicted outputs as the final score for this image. The quality ranking of the nine
distorted images in a group was determined on the basis of an overall comparison of the full image
region. Although a size of 224 × 224 is not sufficient to cover the entire image, it does cover more than
1/3 of the full image size; thus, this requirement does not destroy the quality ranking of the input
images. Also for consistency with RankIQA [20], we adopted the Caffe [29] framework for training.
The entire pretraining process consisted of 50,000 iterations, while the fine-tuning process consisted of
20,000 iterations. Additionally, L2 weight decay was used throughout the entire training process.

4.3. Performance Comparison

We compared the performance of our method on several IQA databases with the performance of
various state-of-the-art FR-IQA and NR-IQA methods, including the FR-IQA methods PSNR, SSIM [1]
and FSIMc [2]; the traditional NR-IQA methods BRISQUE [30], CORNIA [31], IL-NIQE [32] and
FRISQUEE [33]; and the DNN-based NR-IQA methods CNN [10], RankIQA [20], BIECON [18], and
DIQA [19]); as well as a DNN-based NR-IQA method that incorporates saliency, DIQaM [16]. We
also compared our method with other well-known DNN models. Three networks (AlexNet [34],
ResNet50 [35] and VGG-16, initialized from ImageNet) were also directly fine-tuned on each IQA
database and treated as baselines. We used the final version of our DNN model, which was pretrained
on the expanded dataset and then fine-tuned on the IQA dataset, to obtain image quality scores.
The SROCC and PLCC were then calculated between the predicted quality scores (the output of our
fine-tuned model) and the quality labels of the distorted images in the IQA database. The results
are shown in Table 3, where the best three performance results are highlighted in bold. We divided
the distorted images and their corresponding score labels into two groups, using 80% for training
and 20% for testing. For all databases, the contents of the training and test sets did not overlap.
This division process was repeated ten times. To avoid the influence of randomness on the evaluation
of the prediction effect, the results of averaging the SROCC and PLCC scores over all ten runs are
reported in Table 3.

Table 3. Comparison of the SROCC and PLCC scores on the four IQA datasets.

Types Algorithms
LIVE CSIQ LIVE MD LIVEC

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

FR
PSNR 0.876 0.872 0.806 0.800 0.725 0.815 N/A N/A
SSIM 0.913 0.945 0.834 0.861 0.845 0.882 N/A N/A
FSIMc 0.963 0.960 0.913 0.919 0.863 0.818 N/A N/A

NR

CORNIA 0.942 0.943 0.714 0.781 0.900 0.915 0.618 0.662
BRISQUE 0.939 0.942 0.775 0.817 0.897 0.921 0.607 0.645
IL-NIQE 0.902 0.908 0.821 0.865 0.902 0.914 0.594 0.589

FRIQUEE 0.948 0.962 0.669 0.704 0.925 0.940 0.720 0.720

AlexNet 0.942 0.933 0.647 0.681 0.881 0.899 0.765 0.788
VGG-16 0.952 0.949 0.762 0.814 0.884 0.900 0.753 0.794
ResNet50 0.950 0.954 0.876 0.905 0.909 0.920 0.809 0.826

CNN 0.956 0.953 0.683 0.754 0.933 0.927 0.516 0.536
RANK 0.981 0.982 0.861 0.893 0.908 0.929 0.641 0.675

BIECON 0.961 0.960 0.815 0.823 0.909 0.933 0.663 0.705
DIQaM 0.960 0.972 0.869 0.894 0.906 0.931 0.606 0.601
DIQA 0.970 0.972 0.844 0.880 0.920 0.933 0.703 0.704
ours 0.978 0.983 0.893 0.916 0.935 0.947 0.818 0.837

Red: the highest. Blue: the second. Green: the third.

First, it can be clearly seen that our proposed model achieves the highest PLCC and SROCC scores
on almost all tested databases, indicating that the proposed data expansion method for DNN-based
BIQA has the best overall effect for both synthetic and authentic distortion databases and is largely
consistent with the subjective judgments made by humans. Moreover, we can see that compared with
its predecessor algorithm, RankIQA, our method achieves better results on all of the datasets listed,
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especially on LIVEC, because the introduction of the saliency factor causes the model to somewhat
depend on the distortion type consistency between the expanded dataset and the original IQA database.
The performance improvement on CSIQ is also considerable, possibly because the reference images in
this dataset include many examples with clear foregrounds but blurred backgrounds.

Table 3 also concisely presents a comparison of the different types of methods that can be applied
to IQA tasks. We can see that our method is superior to any of the classical NR methods due to the
strong autonomous learning capability of CNNs. Among the deep learning methods, many models
performed poorly on the LIVEC dataset because their training process requires reference images, which
do not exist in the LIVEC dataset. By contrast, our fine-tuning process does not require reference
images. Moreover, from the results of the directly fine-tuned baselines listed above, we can see not
only that a good algorithm can perform well but also that the convolutional computing ability of a
relatively deep and large network such as ResNet50, which has a total of 50 layers, is advantageous.
However, our approach of introducing an expanded dataset makes it easy to use a smaller network,
which incurs lower computational costs, to achieve results similar to those of a larger network.

Because the SROCC and PLCC results were averaged over ten runs in our experiment, we also
present the standard deviations of these results to illustrate the stability of our model’s predictive
performance. Table 4 shows the standard deviations of the PLCC and SROCC scores over ten runs
for RankIQA and our method. Because our method uses the same training procedure as RankIQA
but differs in the use of the expanded dataset, RankIQA is a suitable choice for comparison. The other
BIQA methods (whose specific experimental data are unavailable and which are also less suitable
as methods for comparison) are not shown in Table 4. As Table 4 shows, the standard deviations
of the results of our algorithm are smaller than those of RankIQA. This finding indicates that our
algorithm achieves not only better prediction performance but also higher stability. Moreover, it is
interesting to find that the performance on the LIVE MD dataset sometimes fluctuates across different
divisions of the training and test datasets. These fluctuations may occur because some of the images
contained in this dataset have unclear foregrounds, and when these images appear in the training
set, they may induce a reduction in performance. Nevertheless, the average result is high. Therefore,
the standard deviations of the prediction results further reflect the effectiveness of our proposed data
expansion method.

Table 4. Standard deviations of the SROCC and PLCC scores for RankIQA and our method.

Standard Deviation
RankIQA Our Method

SROCC PLCC SROCC PLCC

LIVE 0.0106 0.0152 0.0057 0.0095

CSIQ 0.0131 0.0119 0.0125 0.0093

LIVE MD 0.0584 0.0454 0.0482 0.0303

LIVEC 0.0340 0.0309 0.0073 0.0106

4.4. Scatter Plots

To further visualize the consistency between our method’s final predicted scores and the subjective
human perception scores in the IQA databases, we show scatter plots of the scores predicted by our
model (pretrained on the expanded dataset and fine-tuned on the corresponding IQA database) versus
the ground-truth labels (DMOSs/MOSs) in Figure 8. This is another way of expressing the information
in Table 3 and clearly shows the agreement between the predicted scores and the ground-truth values.
Scatter plots of the results obtained on each of the four IQA databases (LIVE, CSIQ, LIVE MD and
LIVEC) are shown in Figure 8. In these scatter plots, each point represents an image sample, the
x-axis represents the DMOS/MOS scores associated with the samples in the dataset, and the y-axis
represents the predicted quality scores obtained with our method. Because the four databases use
different subjective score labels (i.e., LIVE and LIVE MD use DMOS scores in the range of [0, 100],

76



Entropy 2020, 22, 60

LIVEC uses MOS scores in the range of [0, 100], and CSIQ uses DMOS scores in the range of [0, 1]),
there are two different x-axis ranges in Figure 8. For the CSIQ database, the x- and y-axis scales range
from 0 to 1. For the other three databases, unified scales from 0 to 100 are used.

(a) (b)

(c) (d)

Figure 8. Scatter plots of the quality scores predicted by our method versus the ground-truth subjective
DMOSs/MOSs for four datasets: (a) LIVE; (b) CSIQ; (c) LIVE MD; (d) LIVEC.

Figure 8 shows that the predicted quality scores output by our method have a monotonic
relationship with the ground-truth labels, especially on the LIVE MD and CSIQ datasets. This plot
also explains the high correlation coefficients achieved on these two datasets. For the LIVEC dataset,
the sample points are not tightly clustered around the isopleth, and the correlation is more obvious
when the MOS value is small, which is unexpected due to the multiple distortion types and diversity
of scenes. Nevertheless, the sample points for LIVEC are roughly evenly distributed on both sides
of the isopleth, which represents great progress compared with the other algorithms. Thus, we can
conclude that our expanded dataset provides effective support for IQA and gives the final model the
capability to precisely predict human-perceived image quality over a wide range of datasets.

4.5. Ablation Studies

The output of our pretrained model is not a direct image quality score. Only when multiple
different images are input and their output values are obtained can the order of these values reflect
the quality ranking of the images. To further evaluate the contribution of our expanded dataset and
more accurately evaluate the contribution of the incorporation of saliency during the pretraining
stage, we applied our pretrained model to various images and compared its predicted outputs to
evaluate whether it could precisely rank images by quality. We compared our model with the pretrained
RankIQA model, for which only images with whole-region distortion are considered during pretraining.
Five image examples from the CSIQ database are shown in Figure 9, and in Table 5, we show the
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ground-truth label ranking, the order of the output of the pretrained RankIQA model, and the order of
the output of our pretrained model for these images. We can see that RankIQA can accurately sort
images (d) and (e), which contain whole-region distortion, but fails on images (a) and (c), which have
clear foregrounds but blurred backgrounds accounting for nearly half of the entire image. By contrast,
after only pretraining on the expanded dataset, our model fully reflects the joint influence of saliency
and distortion and thus can perform well on images with both whole-region distortion and only
local-region distortion, as is particularly evident from its performance on (a) and (c). We can see that
the distortion level in the foreground in (c) is larger than that in (a), but the overall distortion of (c) is
less than that of (a) when the entire image is considered. RankIQA [20] will tend to output a better
quality score for (c) because the RankIQA model has only “distortion-level” awareness during training;
it considers all regions equally in the final prediction. However, because our pretrained model has
saliency awareness, it can sort the images correctly, as expected; therefore, our expanded database,
which is based on both saliency and distortion and guided by information entropy, is more “similar”
to the IQA database and can thus provide more effective assistance for the IQA task.

(a) (b) (c) (d) (e)

Figure 9. Distorted images from the CSIQ dataset. Their DMOS values increase from (a–e), representing
a decrease in image quality.

Table 5. The ranking orders for several images as obtained with the pretrained models of RankIQA
and our method. A larger value represents a worse image quality.

Algorithms (a) (b) (c) (d) (e)

label ranking 1 2 3 4 5
ranking of RankIQA[20] 3 1 2 4 5

ranking of ours 1 2 3 4 5

4.6. Discussion

4.6.1. Studies on the Generation of Expanded Datasets from Different Parent Databases

In this section, we study the effects of using different parent databases for expansion. To confirm
the effectiveness of our selected parent database, we performed tests using different databases as
parents for data expansion, including the Waterloo database, which consists of images with rich
scene contents, and MSRA-B [36], another classical database that contains 5000 original high-quality
images and their saliency maps. The results can be seen in Table 6, where better performance
results are highlighted in bold type. When we used MSRA-B as the baseline database to generate
a series of distorted images for pretraining, the performance was reduced to a certain degree.
This result was unexpected; however, it can be attributed to the insufficient richness of the MSRA-B
dataset, which contains only images that are somewhat monotonous and have clear salient regions.
By contrast, the complexity of the image content in the IQA datasets varies widely. Therefore,
the more content-abundant Waterloo dataset was better suited to our requirements and resulted
in higher performance.
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Table 6. Comparison of the SROCC and PLCC scores of fine-tuned models pretrained on different
expanded datasets.

Database
LIVE CSIQ LIVE MD LIVEC

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

Waterloo 0.978 0.983 0.893 0.916 0.935 0.947 0.818 0.837

MSRA-B 0.975 0.972 0.871 0.896 0.907 0.923 0.818 0.841

4.6.2. Studies on Generating Different Numbers of Distorted Images for Each Distortion Type

As mentioned in Section 3, we refer to the nine distorted images of the same distortion type that
are generated from the same original image as a group. Here, we study the influence of generating
different numbers of distorted images per group. We tested three different designs for the distorted
images generated in the expansion process. The number “7” refers to a design in which we removed
the second (no distortion added to the salient region and level 2 distortion added to the nonsalient
region of the original image) and fifth (level 2 distortion added to the salient region and no distortion
added to the nonsalient region of the original image) distorted images in each group, resulting in only
seven distorted images per group. This approach results in the generation of a total of 4744 × 4 × 7
distorted images. The number “9” refers to the group design represented in Figure 6. This approach
results in the generation of a total of 4744 × 4 × 9 distorted images. The number “11” refers to a
design in which we added two further distorted images to each group—a distorted image obtained
by adding no distortion to the salient region and level 3 distortion to the nonsalient region of the
original image—and another distorted image obtained by adding level 3 distortion to the salient region
and no distortion to the nonsalient region. These additional images were inserted after the second
image and after the sixth image, respectively, of the previously described 9-image group. The results
are shown in Table 7, where we highlight the best performance results in bold type. We can see that
when these different expanded databases are used for pretraining, as the number of distorted images
per group increases, the performance initially increases and then decreases. The highest value is
reached in case “9”, possibly because of overfitting induced by the larger database, leading to reduced
performance. When the number of distorted images per group increases past a certain threshold, the
saliency effect becomes invalid and may lead to incorrect sorting. These findings indicate that the
training process reaches saturation with the addition of two pairs of local-region distortions. Therefore,
we elected to use nine distorted images per group, as shown in Figure 6.

Table 7. Performance differences caused by generating different numbers of distorted images per
parent image for each distortion type.

Number
LIVE CSIQ LIVE MD LIVEC

SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

7 0.974 0.971 0.874 0.908 0.931 0.944 0.825 0.795
9 0.978 0.983 0.893 0.916 0.935 0.947 0.818 0.837

11 0.975 0.976 0.868 0.874 0.935 0.923 0.808 0.807

5. Conclusions

In this paper, we have proposed a new approach for considering saliency in IQA. In this approach,
we expand a large-scale distorted image dataset with HVS-aware labels to assist in training a DNN
model to more effectively address IQA tasks. The novel feature of the proposed method is that this
is the first time that a saliency factor was incorporated into the large-scale expansion strategy by
representing saliency the form of a regional distortion. Then, by using the information entropy to rank
the generated images by quality, we ensure that the labels in the newly expanded dataset are highly
consistent with human perception. The ability to fully consider the various factors affecting image
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quality also solves the overfitting problem. Specifically, the introduction of saliency not only improves
the applicability and versatility of the overall model but also overcomes the heavy reliance of the
predecessor to our algorithm on the degree of similarity between the distortion types in the expanded
dataset and the original IQA database. The final experimental results demonstrate the effectiveness of
the proposed method, which outperforms other advanced BIQA methods on several IQA databases.
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1. Introduction

In this century, with the rapid evolution of data processing and information technologies, web
security instruments are becoming more and more relevant. Various health systems are constantly
relocating into the cloud and mobile device space. A body of US national rules for the defence of certain
medical information must be taken into account for secure communication [1,2]. Many technologies
have been introduced in recent years for secure storage and transmission of medical records and
information regarding patient identity, such as digital watermarking [3,4], image encryption [5–9],
and steganography [10,11].

Nevertheless, most of those schemes depend on some form of cryptography. The aim of cryptography
is to create and analyze protocols that prevent individuals or the public from reading private data.
In cryptography, an encryption is the method of encoding data. This method converts the original
representation of the data, known as input text, into an alternative form known as encrypted text. Only
authorized parties can decrypt encrypted data back to input text and access the original data [12]. Unlike
cryptography, steganography is the art and science of hiding in plain sight secret data without being
detected inside an innocent objects, called containers, so that it can be safely transmitted on a public
channel of communication [13,14]. Containers may have the form of video streams, audio records,
and digital images.

Image steganography refers to the hiding of user data in an image file [15]. Medical image
steganographic schemes play a significant function in contemporary therapeutic procedures. The digital
security of medical records and patient data both during communication and at the storage location must
be ensured [16]. For medical images, sensitive patient information is embedded as header details defined
in the Digital Imaging and Communications in Medicine (DICOM) standard in the image files [17] and
should be removed before network transmission.

The efficiency of the steganography methods can be calculated by the three valuable specifications:
security, capacity, and visual undetectability [18,19].

Entropy 2020, 22, 501; doi:10.3390/e22050501 www.mdpi.com/journal/entropy

83



Entropy 2020, 22, 501

Numerous strategies are employed to conceal a variety of input data with respect to medical images.
Because of the resistance of increasing statistical attacks, use of chaotic functions in steganography
algorithms becomes more popular. Satish et al. [20] introduced Logistic map based spread spectrum image
steganography. Jain and Lenka [19] used an asymmetric cryptographic system for secret information
hiding in brain images. Jain and Kumar [21] presented a medical record steganography method based
on Rivest–Shamir–Adleman cryptosystem and decision tree for data inclusion. Jain et al. [22] described
an improved medical image steganographic methodology using a public key cryptosystem and linear
feedback shift register (LFSR), and dynamically picked diagonal blocks. Ambika and Biradar [23]
proposed a novel technique to hide data in medical images. The scheme uses two level discrete wavelet
transformation with a pixel selection by Elephant Herding–Monarch Butterfly algorithm. By using 1D
chaotic function, medical image stego algorithm is presented in [24].

The steganography techniques provide the necessary security and privacy in data transmission. In our
humble opinion, the main contributions of our work can be summarized as follows:

• We present novel algorithm for pseudorandom byte output using nuclear spin generator (NSG),
which has acceptable statistical properties.

• We apply the pseudorandom algorithm to a novel medical image steganography scheme.
• We examine the proposed method, and the data show that it has excellent peak signal-to-noise

ratio, strong collision resistance, and desirable security properties that can withstand most common
theoretical and statistical attacks.

In Section 2, we present a novel pseudorandom byte output method based on two nuclear spin
generators. In Section 3, we introduce the novel medical image steganography algorithm BOOST and
complete steganalysis is given. Finally, the article is concluded in Section 4.

2. Pseudorandom Byte Output Algorithm Using Nuclear Spin Generator

Pseudorandom generators are basic primitives used in cryptography algorithms but in our case we
apply the random properties of pseudorandom byte generator to steganography algorithm. Pseudorandom
generators are software realized methods for extracting sequences of random values.

2.1. Proposed Pseudorandom Byte Output Algorithm

The nuclear spin generator is a high-frequency oscillator which generates and controls the oscillations
of the motion of a nuclear magnetization vector in a magnetic field. This system exhibits a large variety of
regular and dynamic motions [25–29]. The nuclear spin generator was first described by Sherman [30].
The typical NSG is nonlinear three-dimensional dynamical system given by

ẋ(t) = −βx + y

ẏ(t) = −x − βy(1 − kz)

ż(t) = β(α(1 − z)− ky2),

(1)

where x, y, and z are the components of the nuclear magnetization vector in the X, Y, and Z directions,
respectively, and α, β, and k are positive parameters. The nuclear spin generator with initial values
(x, y, z) = (0.12, 0.25, 0.0032) and parameters equal to (α, β, k) = (0.15, 0.75, 21.5) is plotted in Figures 1
and 2.
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Figure 1. Nuclear spin generator in 3D phase space.

Figure 2. Nuclear spin generator time series.

The novel pseudorandom byte output algorithm is based on the next few steps:

1. The seed values x(0), y(0), and z(0) from Equation (1) are determined. The output byte length L is
determined.

2. Equation (1) is iterated for N times.
3. The iteration of the nuclear spin generator continues. As a result, the three floating-point values

x(i), y(i), and z(i) are calculated. They are manipulated as follows: xm(i) = mod(abs(int(x(i) ×
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1013))), 256), ym(i) = mod(abs(int(y(i)× 1013))), 256), and zm(i) = mod(abs(int(z(i)× 1013))), 256),
where abs(a) returns the modulus of a, int(a) returns the the integer part of a, truncating the value
behind the decimal sign, and mod(a, b) returns the reminder after division.

4. Perform XOR operation between xmi, ymi, and zmi to get an output byte.
5. Return to Step 3 until the output byte length L is reached.

2.2. Key Size Analysis

The set of all initial values compose the key size. The key size of the proposed pseudorandom
generator has three secret values x(0), y(0), and z(0). As reported by IEEE floating-point standard [31],
the computational precision of the 64-bit double-precision number is about 10−14. The key size of the
proposed scheme is (1014)

3
= 1042 ≈ 2139 bits. This is high enough against mechanisms of exhaustive

attack [32].

2.3. Statistical Tests

To estimate unpredictability of the novel nuclear spin equation based pseudo-random byte generator,
we used National Institute of Standards and Technology (NIST) statistical software [33] and ENT [34]
statistical application. Using the novel pseudorandom byte generator, 3000 sequences of 125,000 bytes
were produced.

The NIST package contains 15 statistical tests: frequency, block frequency, cumulative sums forward
and reverse, runs, longest run of ones, rank, spectral, non overlapping templates, overlapping templates,
universal, approximate entropy, serial first and second, linear complexity, random excursion, and random
excursion variant. The application calculates the proportion of streams that pass the particular tests.
The range of acceptable proportion is determined using the confidence interval, defined as

p̂ ± 3

√
p̂(1 − p̂)

m
,

where p̂ = 1 − α and m is the number of binary tested sequences. NIST recommends that, for these tests,
the user should have at least 1000 sequences of 1,000,000 bits each. In our setup, m = 3000. Thus, the
confidence interval is

0.99 ± 3

√
0.99(0.01)

3000
= 0.99 ± 0.0054498.

The proportion should lie above 0.9845502 with exception of random excursion and random excursion
variant tests. These two tests only apply whenever the number of cycles in a sequence exceeds 500. Thus,
the sample size and minimum pass rate are dynamically reduced taking into account the tested sequences.

The distribution of p-values is examined to ensure uniformity. The interval between 0 and 1 is divided
into 10 subintervals. The p-values that lie within each subinterval are counted. Uniformity may also be
specified through an application of a χ2 test and the determination of a p-value corresponding to the
goodness-of-fit distributional test on the p-values obtained for an arbitrary statistical test, p-value of the
p-values. This is implemented by calculating

χ2 =
10

∑
i=1

(Fi − s/10)2

s/10
,

where Fi is the number of p-values in subinterval i and s is the sample size. A p-value is computed such
that p-valueT = IGAMC(9/2, χ2/2), where IGAMC is the complemented incomplete gamma statistical
function. If p-valueT ≥ 0.0001, then the sequences can be considered to be uniformly distributed.
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The output values of the first 13 test are in Table 1. The minimum pass rate for each statistical test
with the exception of the random excursion variant test is approximately 2953 for a sample size of 3000
binary sequences. The random excursion test outputs eight p-values, which are tabulated in Table 2. The
random excursion variant test outputs 18 randomness probability values: p-values, as shown in Table 3.
The minimum pass rate for the random excursion variant test is approximately 1788 for a sample size of
1819 binary sequences.

The output results in Tables 1–3 indicate that all p-values are uniformly distributed over the (0, 1)
interval. The total numbers of acceptable streams are within the expected confidence levels for all
performed tests. Based on the results, the novel pseudo-random byte generator passed without error
NIST suite.

The ENT consists of six statistical tests (entropy, optimum compression, χ2 square, arithmetic mean
value, Monte Carlo for π, and serial correlation), which focus on the pseudorandomness of byte sequences.
We tested a stream of 375,000,000 bytes of the proposed generator. The value of entropy is 8.0 byte per byte;
the optimum compression would reduce the byte file by 0%; χ2 square is 238.18 (randomly would exceed
this value 76.79% of the times; the sequence is random); arithmetic mean value is 127.5040 (very close to
127.5, less then 10%); Monte Carlo for π is 3.141616448 (error 0.00%); and serial correlation coefficient is
0.000003 (less then 0.005 for true random generators). The novel pseudorandom byte generator passed
successfully ENT tests.

Based on the excellent test outputs, we can infer that the proposed pseudorandom byte generator has
satisfying statistical properties and provides reasonable level of security.

Table 1. National Institute of Standards and Technology (NIST) test suite results.

NIST Test p-Value Pass Rate Results

Frequency 0.633649 2972/3000 Success
Block frequency 0.014996 2964/3000 Success
Cumulative sums forward 0.928857 2976/3000 Success
Cumulative sums reverse 0.053059 2977/3000 Success
Runs 0.215195 2970/3000 Success
Longest run of ones 0.158133 2974/3000 Success
Rank 0.851939 2971/3000 Success
Spectral 0.552383 2955/3000 Success
Non overlapping templates 0.489210 2970/3000 Success
Overlapping templates 0.117661 2967/3000 Success
Universal 0.800626 2971/3000 Success
Approximate entropy 0.092411 2971/3000 Success
Serial first 0.646836 2963/3000 Success
Serial second 0.410055 2970/3000 Success
Linear complexity 0.370821 2974/3000 Success

Table 2. NIST Random excursion test results.

State p-Value Pass Rate Result

−4 0.042839 1793/1819 Success
−3 0.176043 1792/1819 Success
−2 0.958805 1800/1819 Success
−1 0.821611 1791/1819 Success
+1 0.905874 1801/1819 Success
+2 0.932163 1804/1819 Success
+3 0.395583 1798/1819 Success
+4 0.695564 1793/1819 Success
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Table 3. NIST Random excursion variant test results.

State p-Value Pass Rate Result

−9 0.136979 1804/1819 Success
−8 0.218022 1805/1819 Success
−7 0.458964 1806/1819 Success
−6 0.250128 1805/1819 Success
−5 0.368209 1805/1819 Success
−4 0.210521 1806/1819 Success
−3 0.821611 1805/1819 Success
−2 0.365446 1800/1819 Success
−1 0.475836 1796/1819 Success
+1 0.927657 1804/1819 Success
+2 0.183647 1805/1819 Success
+3 0.457919 1799/1819 Success
+4 0.188110 1795/1819 Success
+5 0.286462 1798/1819 Success
+6 0.750377 1794/1819 Success
+7 0.957844 1793/1819 Success
+8 0.916782 1794/1819 Success
+9 0.542519 1798/1819 Success

3. Medical Image Steganography Using Nuclear Spin Generator

3.1. Embedding Scheme

In this subsection, by using the pseudorandom byte generation algorithm based on the nuclear spin
function in Section 2, we present a medical image steganography algorithm named BOOST.

We consider 16 bits DICOM grayscale input images of n × n size. As input message, we specify the
patient information (text based patient medical records with patient identification data). The information
includes patient name, patient ID/UID, and doctors remarks. Stego image is the input image with
embedded encrypted patient information. The DICOM header data are directly transferred into stego
image, based on [35].

The proposed medical image steganography algorithm BOOST consists of the following steps:

1. Iterate for L times the pseudorandom generator based on the nuclear spin generator in Section 2.
2. Apply XOR operation between the pseudorandom byte sequence and all of the input message to

produce an encrypted bytes C.
3. Specify the input intervals of gray levels [a, b] of non-black pixels, where a and b determine the

boundaries of the container.
4. Index the image pixels by consecutive passing through columns and separate those that fall within

the interval [a, b].
5. Convert encrypted data to binary sequence using ASCII table.
6. Consecutively embed the encrypted data into the last bits of the pixels from the interval [a, b]
7. The list output pixels is checked to see if their new values are in the input interval. For those pixels

that fall outside this range, their value increases by +2 if their new values are below the minimum
value of the interval or decreases by −2 if the maximum value of the range is exceeded.

3.2. Extraction Scheme

1. Retrieve the number L of embedded bytes, input levels interval [a, b], and the secret key space of the
pseudorandom generator based on the nuclear spin generator in Section 2.
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2. Index the image pixels by consecutive passing through columns and separate those that fall within
the interval [a, b].

3. Consecutively extract the embedded data from the last bits of the pixels from the interval [a, b].
4. Iterate for L times the pseudorandom generator based on the nuclear spin generator in Section 2.
5. Apply XOR operation between the output pseudorandom byte sequence and all of the extracted bytes

to produce the input bytes C.

The proposed medical image steganography algorithm was implemented in C++ programming
language. Fifteen 16-bit monochrome DICOM images were used for the experimental analysis. The
test images were selected from the National Electrical Manufacturers Association (NEMA) medical
image database: ftp://medical.nema.org/medical/dicom/DataSets/WG16/Philips/ClassicSingleFrame/.
The folder consists of classical 16 bits DICOM grayscale single frame medical images of brains, knees,
and livers. An example to illustrate the BOOST is presented in Figure 3.

(a) (b) (c)

Figure 3. Illustration of embedding a message using the BOOST method and input levels interval [20, 48]:
(a) the original input image Brain IM_0001; and (b,c) the location of embedded message.

3.3. Steganographic Analysis

An image histogram is an accurate illustration of the tonal value distribution in digital images. This
check compares both input and stego image histograms. Histograms, performed using ImageJ2x 2.1.5.0
(http://www.rawak.de/rs2012/), for three input images and their stego images are also shown in Figure 4.

It is considered that the histograms of the stego images are much the same as those of the input
images with no evidence of hidden messages in stego images.

Peak Signal-to-Noise Ratio (PSNR) is the proportion between the highest possible value of a signal
and the value of distorting noise that affects the accuracy of its representation. It is defined as:

PSNR = 10 log10
(2d − 1)2

MSE
(dB), (2)

where d is the bit depth of the pixel and MSE is the Mean-Square Error between the input and stego images.
MSE is defined as:

MSE =
1

mn

m

∑
i=1

n

∑
j=1

(P[i, j]− S[i, j])2, (3)

where P[i, j] and S[i, j] are the ith row and jth column pixel in the input and stego images, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4. (a,e,i) Input images Brain IM_0001, Knee IM_0001, and Liver IM_0001; (b,f,j) their histograms;
(c,g,k) stego images; and (d,h,l) their histograms.

In Table 4, we provide the computed values for MSE and PSNR for BOOST algorithm. MSE and
PSNR are calculated for images with 1050 bytes (8400 bits), 1042 bytes (8336 bits), and 1119 bytes (8952 bits)
embedded. Maximum payload is calculated as a number of non-black pixels.

From results obtained, as shown in Table 4, the PSNR values are extremely high, above 113 dB,
which suggests an excellent level of security for the proposed BOOST algorithm.

The Bit Error Rate (BER) is computed as the actual number of bit positions which are changed in
the stego image compared with the input image. A value of BER close to 0.0 stands for high efficiency of
the steganography algorithm. The Normalized Cross-Correlation (NCC) calculates the cross-correlation
in the the frequency domain, depending on the size of the images. Then, it computes the local sums
by pre-computing running sums. Use local sums to normalize the cross-correlation to get correlation
coefficients. The output matrix holds the correlation coefficients, which can range between −1.0 and 1.0.
NCC is defined as:

NCC =
∑m

i=1 ∑n
j=1(P[i, j]× S[i, j])

∑m
i=1 ∑n

j=1(P[i, j])2 . (4)

A value of NCC close to 1.0 represents perfect quality of the stego image.
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The Structural SIMilarity (SSIM) index is an algorithm for measuring the similarity between input
and stego images [36]. The output SSIM index is a decimal number between −1 and 1. Value 1 indicates
excellent structural similarity.

Table 4. Mean-Square Error(MSE) and Peak Signal-to-Noise Ratio (PSNR) results.

Input Image Maximum Percent Available Input Message MSE PSNR
Image Size Payload Volume Levels Levels (Bytes) (dB)

Brain IM_0001 336 × 336 83,179 73.68 1083 [50, 146] 1050 0.0191 113.5238
Brain IM_0002 336 × 336 83,362 73.84 851 [50, 146] 1050 0.0192 113.4977
Brain IM_0003 336 × 336 83,557 74.01 823 [50, 146] 1050 0.0191 113.5218
Brain IM_0004 336 × 336 83,341 73.82 875 [50, 146] 1050 0.0190 113.5319
Brain IM_0005 336 × 336 83,883 74.30 834 [50, 146] 1050 0.0191 113.5198
Knee IM_0001 720 × 720 249,148 48.06 449 [30, 56] 1042 0.0041 120.1618
Knee IM_0002 720 × 720 250,531 48.33 426 [30, 56] 1042 0.0043 120.0302
Knee IM_0003 720 × 720 251,867 48.59 461 [30, 56] 1042 0.0043 120.0263
Knee IM_0004 720 × 720 256,834 48.54 453 [30, 56] 1042 0.0042 120.0637
Knee IM_0005 720 × 720 260,969 50.34 444 [30, 56] 1042 0.0042 120.0558
Liver IM_0001 480 × 480 109,631 47.58 481 [20, 68] 1119 0.0098 116.4055
Liver IM_0002 480 × 480 112,992 49.04 581 [20, 68] 1119 0.0100 116.3465
Liver IM_0003 480 × 480 114,107 49.53 626 [20, 68] 1119 0.0103 116.2160
Liver IM_0004 480 × 480 115,670 50.20 643 [20, 68] 1119 0.0098 116.4325
Liver IM_0005 480 × 480 116,373 50.51 624 [20, 68] 1119 0.0098 116.4383

In Table 5, we provide the calculated values for BER, NCC, and SSIM for the presented BOOST
scheme. From the obtained results shown in Table 5, it is clear that the BER are very close to 0.0 and NCC
and SSIM values are almost equal to 1.0. The data indicate that the BOOST scheme provides good quality
and excellent structural similarity.

Table 5. Bit Error Rate (BER), Normalized Cross-Correlation (NCC), and SSIM (Structural SIMilarity) results.

Image BER NCC SSIM

Brain IM_0001 0.0012 0.9999971 0.9999787
Brain IM_0002 0.0012 0.9999950 0.9999757
Brain IM_0003 0.0012 0.9999934 0.9999838
Brain IM_0004 0.0012 0,9999968 0.9999769
Brain IM_0005 0.0012 0.9999955 0.9999809
Knee IM_0001 0.00026 0.9999979 0.9999806
Knee IM_0002 0.00027 0,9999982 0.9999794
Knee IM_0003 0.00027 0.9999979 0.9999720
Knee IM_0004 0.00027 0.9999980 0,9999682
Knee IM_0005 0.00026 0.9999976 0.9999581
Liver IM_0001 0.00061 0.9999982 0.9998838
Liver IM_0002 0.00062 0.9999973 0.9998954
Liver IM_0003 0.00064 0.9999970 0.9999311
Liver IM_0004 0.00061 0.9999983 0.9999308
Liver IM_0005 0.00061 0.9999984 0.9999253

The resistance of the BOOST algorithm against cropping attack [37,38] was tested. Cropping is the
mechanism by which outer parts of the image are cut. Three stego images (Brain IM_0001, Knee IM_0001,
and Liver IM_0001) generated from the BOOST algorithm were subjected to cropping attacks.
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The normalized correlation (NC) values were calculated for the stego image and the corresponding
cropped image [38]. The output NC results varied between 0.8944 and 1, as shown in Table 6. We see from
these results that the proposed BOOST algorithm reasonably resists cropping attack.

Table 6. Normalized correlation (NC) results against cropping attack.

Cropping Attack Brain IM_0001 Knee IM_0001 Liver IM_0001

Percent 10% 0.999 0.9872 0.9858
20% 0.981 0.9729 0.9724
30% 0.8944 0.9455 0.9093

The steganographic analysis undoubtedly shows the good rate of the proposed algorithm. Table 7
summarizes some of the computed values of our proposed scheme with other algorithms.

Table 7. Comparison of our medical image steganography with other techniques.

Algorithm Minimum Capacity Maximum
Calculated PSNR(dB) Bits per Pixel Calculated BER

Proposed 113.50 0.74 0.0012
[16] Mantos 2016 103.68 0.5 -
[37] Thiyagarajan 2013 74.36 - 0.004
[22] Jain 2017 Improved 72.17 0.37 -
[39] Elhoseny 2018 57.02 - 0.0

Using the given test results, we can conclude that the presented algorithm BOOST, based on the
nuclear spin generator, has satisfying statistical properties and provides a proper safety expectation.

4. Conclusions

We introduce a novel medical image steganographic scheme named BOOST. The presented
algorithm uses a novel pseudorandom byte output technique based on the nuclear spin generator.
Our security investigation (mean square error, peak signal-to-noise ratio, normalized cross-correlation,
and structural similarity) shows that the proposed hiding can be used with success for secure medical
record communication.

Author Contributions: B.S. (Bozhidar Stoyanov) and B.S. (Borislav Stoyanov) wrote and edited the manuscript.
Both authors have read and agreed to the published version of the manuscript

Funding: The paper was partially supported by the National Scientific Program “Information and Communication
Technologies for a Single Digital Market in Science, Education and Security (ICTinSES)”, financed by the Ministry of
Education and Science, Bulgaria for Bozhidar Stoyanov and Borislav Stoyanov.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Office for Civil Rights. HIPAA Compliance Assistance. Summary of the HIPAA Privacy Rule. Available online:
https://www.hhs.gov/sites/default/files/privacysummary.pdf (accessed on 12 March 2020).

2. Barrows, R.; Clayton, P. Privacy, Confidentiality, and Electronic Medical Records. J. Am. Med Inform. Assoc. 1996,
3, 139–148. [CrossRef] [PubMed]

3. Niu, X.M.; Lu, Z.M.; Sun, S.H. Digital watermarking of still images with gray-level digital watermarks. IEEE
Trans. Consum. Electron. 2000, 46, 137–145. [CrossRef]

92



Entropy 2020, 22, 501

4. Kutter, M.; Jordan, F.D.; Bossen, F. Digital watermarking of color images using amplitude modulation. J. Electron.
Imaging 1998, 7, 326–332. [CrossRef]

5. Cao, W.; Zhou, Y.; Chen, C.P.; Xia, L. Medical image encryption using edge maps. Signal Process. 2017, 132, 96–109.
[CrossRef]

6. Kanso, A.; Ghebleh, M. An efficient and robust image encryption scheme for medical applications. Commun.
Nonlinear Sci. Numer. Simul. 2015, 24, 98–116. [CrossRef]

7. Abdelfattah, M.; Hegazy, S.F.; Areed, N.F.; Obayya, S.S. Compact optical asymmetric cryptosystem based on
unequal modulus decomposition of multiple color images. Opt. Lasers Eng. 2020, 129, 106063. [CrossRef]

8. Wang, X.; Zhao, H.; Feng, L.; Ye, X.; Zhang, H. High-sensitivity image encryption algorithm with random
diffusion based on dynamic-coupled map lattices. Opt. Lasers Eng. 2019, 122, 225–238. [CrossRef]

9. Chen, H.; Liu, Z.; Zhu, L.; Tanougast, C.; Blondel, W. Asymmetric color cryptosystem using chaotic Ushiki map
and equal modulus decomposition in fractional Fourier transform domains. Opt. Lasers Eng. 2019, 112, 7–15.
[CrossRef]

10. Huang, L.C.; Tseng, L.Y.; Hwang, M.S. A reversible data hiding method by histogram shifting in high quality
medical images. J. Syst. Softw. 2013, 86, 716–727. [CrossRef]

11. Jiang, N.; Zhao, N.; Wang, L. LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 2016,
55, 107–123. [CrossRef]

12. Agrawal, M.; Mishra, P. A comparative survey on symmetric key encryption techniques. Int. J. Comput. Sci. Eng.
2012, 4, 877.
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Abstract: We propose an image encryption scheme based on quasi-resonant Rossby/drift wave
triads (related to elliptic surfaces) and Mordell elliptic curves (MECs). By defining a total order on
quasi-resonant triads, at a first stage we construct quasi-resonant triads using auxiliary parameters of
elliptic surfaces in order to generate pseudo-random numbers. At a second stage, we employ an MEC
to construct a dynamic substitution box (S-box) for the plain image. The generated pseudo-random
numbers and S-box are used to provide diffusion and confusion, respectively, in the tested image.
We test the proposed scheme against well-known attacks by encrypting all gray images taken from
the USC-SIPI image database. Our experimental results indicate the high security of the newly
developed scheme. Finally, via extensive comparisons we show that the new scheme outperforms
other popular schemes.

Keywords: quasi-resonant Rossby/drift wave triads; Mordell elliptic curve; pseudo-random
numbers; substitution box

1. Introduction

The exchange of confidential images via the internet is usual in today’s life, even though the
internet is an open source that is unsafe and unauthorized persons can steal useful or sensitive
information. Therefore it is essential to be able to share images in a secure way. This goal is achieved by
using cryptography. Traditional cryptographic techniques such as data encryption standard (DES) and
advanced encryption standard (AES) are not suitable for image transmission because image pixels are
usually highly correlated [1,2]. By contrast, DES and AES are ideal techniques for text encryption [3],
so researchers are trying to develop such techniques to meet the demand for reliable image delivery.

A number of image encryption schemes have been developed using different approaches [4–14].
Hua et al. [12] developed a highly secure image encryption algorithm, where pixels are shuffled via
the principle of the Josephus problem and diffusion is obtained by a filtering technology. Wu et al. [13]
proposed a novel image encryption scheme by combining a random fractional discrete cosine transform
(RFrDCT) and the chaos-based Game of Life (GoL). In their scheme, the desired level of confusion
and diffusion is achieved by GoL and an XOR operation, respectively. “Confusion” entails hiding the
relation between input image, secret keys and the corresponding cipher image, and “diffusion” is an
alteration of the value of each pixel in an input image [1].

One of the dominant trends in encryption techniques is chaos-based encryption [15–20].
The reason for this dominance is that the chaos-based encryption schemes are highly sensitive to the
initial parameters. However, there are certain chaotic cryptosystems that exhibit a lower security level
due to the usage of chaotic maps with less complex behavior (see [21]). This problem is addressed in [22]
by introducing a cosine-transform-based chaotic system (CTBCS) for encrypting images with higher
security. Xu et al. [23] suggested an image encryption technique based on fractional chaotic systems
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and verified experimentally the higher security of the underlying cryptosystem. Ahmad et al. [24]
highlighted certain defects of the above-mentioned cryptosytem by recovering the plain image without
the secret key. Moreover, they proposed an enhanced scheme to thwart all kinds of attacks.

The chaos-based algorithms also use pseudo-random numbers and substitution boxes (S-boxes)
to create confusion and diffusion [25,26]. Cheng et al. [25] proposed an image encryption algorithm
based on pseudo-random numbers and AES S-box. The pseudo-random numbers are generated
using AES S-box and chaotic tent maps. The scheme is optimized by combining the permutation and
diffusion phases, but the image is encrypted in rounds, which is time consuming. Belazi et al. [26]
suggested an image encryption algorithm using a new chaotic map and logistic map. The new chaotic
map is used to generate a sequence of pseudo-random numbers for masking phase. Then eight
dynamic S-boxes are generated. The masked image is substituted in blocks via aforementioned S-boxes.
The substituted image is again masked by another pseudo-random sequence generated by the logistic
map. Finally, the encrypted image is obtained by permuting the masked image. The permutation
is done by a sequence generated by the map function. This algorithm fulfills the security analysis
but performs slowly due to the four cryptographic phases. In [27], an image encryption method
based on chaotic maps and dynamic S-boxes is proposed. The chaotic maps are used to generate the
pseudo-random sequences and S-boxes. To break the correlation, pixels of an input image are permuted
by the pseudo-random sequences. In a second phase the permuted image is decomposed into blocks.
Then blocks are encrypted by the generated S-boxes to get the cipher image. From histogram analysis
it follows that the suggested technique generates cipher images with a nonuniform distribution.

Similar to the chaotic maps, elliptic curves (ECs) are sensitive to input parameters, but EC-based
cryptosystems are more secure than those of chaos [28]. Toughi et al. [29] developed a hybrid encryption
algorithm using elliptic curve cryptography (ECC) and AES. The points of an EC are used to generate
pseudo-random numbers and keys for encryption are acquired by applying AES to the pseudo-random
numbers. The proposed algorithm gets the promising security but pseudo-random numbers are
generated via the group law, which is time consuming. In [3], a cyclic EC and a chaotic map are
combined to design an encryption algorithm. The developed scheme overcomes the drawbacks of small
key space but is unsafe to the known-plaintext/chosen-plaintext attack [30]. Similarly, Hayat et al. [31]
proposed an EC-based encryption technique. The stated scheme generates pseudo-random numbers
and dynamic S-boxes in two phases, where the construction of S-box is not guaranteed for each
input EC. Therefore, changing of ECs to generate an S-box is a time-consuming work. Furthermore,
the generation of ECs for each input image makes it insufficient.

Based on the above discussion, we propose an improved image encryption algorithm, based on
quasi-resonant Rossby/drift wave triads [32,33] (triads, for short) and Mordell elliptic curves (MECs).
The triads are utilized in the generation of pseudo-random numbers and MECs are employed to create
dynamic S-boxes. The proposed scheme is novel in that it introduces the technique of pseudo-random
numbers generation using triads, which is faster than generating pseudo-random numbers by ECs.
Moreover, the scheme does not require to separately generate triads for each input image of the same
size. In the present scheme, MECs are used opposite to [31], in the sense that now, for each input
image, the generation of a dynamic S-box is guaranteed [34]. Finally, extensive performance analyses
and comparisons reveal the efficiency of the proposed scheme.

This paper is organized as follows. Preliminaries are described in Section 2. In Section 3, the proposed
encryption algorithm is explained in detail. Section 4 provides the experimental results as well as a
comparison between the proposed method and other existing popular schemes. Lastly, conclusions are
presented in Section 5.

2. Preliminaries

Barotropic vorticity equation: The barotropic vorticity equation (in the so-called β-plane
approximation) is one of the simplest two-dimensional models of the large-scale dynamics of a
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shallow layer of fluid on the surface of a rotating sphere. It is described in mathematical terms by the
partial differential equation

∂

∂t
(∇2ψ − Fψ) +

(∂ψ

∂x
∂∇2ψ

∂y
− ∂ψ

∂y
∂∇2ψ

∂x

)
+ γ

∂ψ

∂x
= 0, (1)

where ψ(x, y, t) ∈ R represents the geopotential height, γ is the Coriolis parameter, a real constant
measuring the variation of the Coriolis force with latitude (x represents longitude and y represents
latitude) and F is a non-negative real constant representing the inverse of the square of the deformation
radius. We assume periodic boundary conditions: ψ(x + 2π, y, t) = ψ(x, y + 2π, t) = ψ(x, y, t) for all
x, y, t ∈ R. In the literature Equation (1) is also known as the Charney–Hasegawa–Mima equation
(CHM) [35–39]. This equation accepts harmonic solutions, known as Rossby waves, which are solutions
of both the linearized form and the whole (nonlinear) form of Equation (1). A Rossby wave solution is
given explicitly by the parameterized function ψ(k,l)(x, y, t) = �{A ei(kx+ly−ω(k,l)t)}, where A ∈ C is

an arbitrary constant, ω(k, l) = − γ k
k2+l2+F is the so-called dispersion relation, and (k, l) ∈ Z2 is called

the wave vector. For simplicity, we take γ = −1 and F = 0 in what follows [32,33].
Resonant triads: As Equation (1) is nonlinear, modes with different wave vectors tend to couple

and exchange energy. If the nonlinearity is weak, this exchange happens to be quite slow and is
more efficient amongst groups of modes that are in resonance. To the lowest order of nonlinearity in
Equation (1), approximate solutions known as resonant triad solutions can be constructed via linear
combinations of the form

ψ(x, y, t) = �{A1 ei(k1x+l1y−ω(k1,l1)t) + A2 ei(k2x+l2y−ω(k2,l2)t) + A3 ei(k3x+l3y−ω(k3,l3)t)} ,

where A1, A2, A3 are slow functions of time (they satisfy a closed system of ODEs, not shown here),
and the wave vectors (k1, l1), (k2, l2) and (k3, l3) satisfy the Diophantine system of equations:

k1 + k2 = k3, l1 + l2 = l3 and ω1 + ω2 = ω3, (2)

for ωi = ω(ki, li), i = 1, 2, 3. A set of three wavevectors satisfying Equations (2) is called a resonant
triad. Solutions can be found analytically via a rational transformation to elliptic surfaces (see below).

Quasi-resonant triads and detuning level: If, in (2), the equation ω1 + ω2 = ω3 is replaced
by the inequality |ω1 + ω2 − ω3| ≤ δ−1, for a large positive number δ, then the triad becomes a
quasi-resonant triad and δ−1 is known as the detuning level of the quasi-resonant triad. It is possible
to construct quasi-resonant triads via downscaling of resonant triads that have very large wave
vectors [32]. For simplicity, in what follows we simply call a quasi-resonant triad a triad and denote it
by Δ. Finally, to avoid over-counting of triads we will impose the condition k3 > 0.

Rational transformation: In [32], wave vectors are explicitly expressed in terms of rational
variables X, Y and D as follows:

k1

k3
=

X
Y2 + D2 ,

l1
k3

=
(X

Y

)(
1 − D

Y2 + D2

)
,

l3
k3

=
D − 1

Y
. (3)

In the case F = 0, the rational variables X, Y, D lie on an elliptic surface. The transformation is bijective
and its inverse mapping is given by:

X =
k3(k2

1 + l2
1)

k1(k2
3 + l2

3)
, Y =

k3(k3l1 − k1l3)
k1(k2

3 + l2
3)

, D =
k3(k3k1 − l1l3)

k1(k2
3 + l2

3)
. (4)

New parameterization: In [40], Kopp parameterized the resonant triads and in terms of
parameters u and t it follows by [40] (Equation (1.22)) that:
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k1

k3
=(t2 + u2)(t2 − 2u + u2)/(1 − 2u), (5)

l3
k3

=
(
u(2u − 1) + (t2 + u2)(t2 − 2u + u2)

)
/
(
t(1 − 2u)

)
, (6)

l1
k3

=(t2 + u2)
(
(2u − 1) + u(t2 − 2u + u2)

)
/
(
t(1 − 2u)

)
. (7)

In 2019, Hayat et al. [33] found a new parameterisation of X, Y and D in terms of auxiliary parameters
a, b and hence k1

k3
, l3

k3
and l1

k3
are given by:

k1

k3
=

(
a2 + b(2 − 3b) + 1

)3

(a2 − 3b2 − 2b + 1)
(
2(11 − 3a2)b2 + (a2 + 1)2 − 16ab + 9b4

) , (8)

l3
k3

=
6(a2 + a − 1)b2 − (a + 1)2(a2 + 1) + 4ab − 9b4

(a2 − 3b2 − 1)(a2 − 3b2 − 2b + 1)
, (9)

l1
k3

=

(
a2 + b(2 − 3b) + 1

)
(a2 − 3b2 − 1)(a2 − 3b2 − 2b + 1)

(
2(11 − 2a2)b2 + (a2 + 1)2 − 16ab + 9b4)

×[a6 + 2a5 + a4(−9b2 − 6b + 3)− 4a3(3b2 + 2b − 1) + 3a2(3b2 + 2b − 1)2

+2a(9b4 + 12b3 + 14b2 − 4b + 1)− (3b2 + 1)2(3b2 + 6b − 1)]

. (10)

Elliptic curve (EC): Let Fp be a finite field for any prime p, then an EC Ep over Fp is defined by

y2 ≡ x3 + bx + c (mod p), (11)

where b, c ∈ Fp. The integers b, c and p are called parameters of an EC. The number of all (x, y) ∈ F2
p

satisfying the congruence (11) is denoted by #Ep.
Mordell elliptic curve (MEC): In the special but important case b = 0, the above EC is known as

an MEC and is represented by
y2 ≡ x3 + c (mod p). (12)

For p ≡ 2 (mod 3), there are exactly p + 1 points (x, y) ∈ F2
p satisfying the congruence (12), see [41]

for further details.
If points on Ep are ordered according to some total order ≺ then Ep is said to be an ordered EC.

Recall that total order is a binary relation which possesses the reflexive, antisymmetric and transitive
properties. Azam et al. [42] introduced a total order known as a natural ordering on MECs given by

(x1, y1) ≺ (x2, y2) ⇔
⎧⎨
⎩

either x1 < x2, or

x1 = x2 and y1 < y2,

and generated efficient S-boxes using the aforesaid ordering. We will use natural ordering to generate
S-boxes. Thus from here on Ep stands for a naturally ordered MEC unless it is specified otherwise.

3. The Proposed Encryption Scheme

The proposed encryption scheme is based on pseudo-random numbers and S-boxes.
The pseudo-random numbers are generated using quasi-resonant triads. To get an appropriate
level of diffusion we need to properly order the Δs. For this purpose we define a binary relation �
as follows.

3.1. Ordering on Quasi-Resonant Triads

Let Δ, Δ′ represent the triads (ki, li), (k′i, l′i), i = 1, 2, 3, respectively, then
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Δ � Δ′ ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

either a < a′, or

a = a′ and b < b′, or

a = a′, b = b′ and k3 ≤ k′3,

where a, b and a′, b′ are the corresponding auxiliary parameters of Δ and Δ′, respectively.

Lemma 1. If T denotes the set of Δs in a box of size L, then � is a total order on T.

Proof. The reflexivity of � follows from a = a, b = b and k3 = k3 and hence Δ � Δ. As for
antisymmetry we suppose Δ � Δ′ and Δ′ � Δ. Then, by definition a ≤ a′ and a′ ≤ a, which imply
a = a′. Thus we are left with two results: b ≤ b′ and b′ ≤ b, which imply b = b′. Thus, we obtain the
results k3 ≤ k′3 and k′3 ≤ k3, which ultimately give k3 = k′3. Solving Equations (8)–(10) for the obtained
values, we get k1 = k′1, l3 = l′3 and from Equation (2) it follows that l2 = l′2. Consequently Δ = Δ′ and
� is antisymmetric. As for transitivity, let us assume Δ � Δ′ and Δ′ � Δ′′. Then a ≤ a′ and a′ ≤ a′′,
implying a ≤ a′′. If a < a′′, then transitivity follows. If a = a′′, then a′ = a′′ too. Thus, b ≤ b′ and
b′ ≤ b′′, so b ≤ b′′. If b < b′′, then transitivity follows. If b = b′′, then b′ = b′′ too. Thus, k3 ≤ k′3 and
k′3 ≤ k′′3 , implying k3 ≤ k′′3 and hence transitivity follows: Δ � Δ′′.

Let
∗
T stand for the set of Δs ordered with respect to the order �. The main steps of the proposed

scheme are explained as follows.

3.2. Encryption

A. Public parameters: In order to exchange the useful information the sender and receiver should
agree on the public parameters described as below:

(1) Three sets: choose three sets Ai = [Ai, Bi], i = 1, 2, 3 of consecutive numbers with unknown step
sizes, where the end points Ai, Bi, i = 1, 2, 3 are rational numbers.

(2) A total order: select a total order ≺ so that the triads generated by the above-mentioned sets
may be arranged with respect to that order.

Suppose that P represents an image of size m × n to be encrypted, and the pixels of P are arranged
in column-wise linear ordering. Thus, for positive integer i ≤ mn, P(i) represents the i-th pixel value
in linear ordering. Define SP as the sum of all pixel values of the image P. Then the proposed scheme
chooses the secret keys in the following ways.

B. Secret keys: To generate confusion and diffusion in an image, the sender chooses the secret keys
as follows.

(1) Step size: select positive integers ai, bi to construct the step sizes αi = ai
bi

of Ai, i = 1, 2.
Additionally, choose a non-negative integer a3 as a step size of A3 in such a way that
∏3

i=1 ni ≥ mn, where #Ai = ni represents the number of elements in Ai.
(2) Detuning level: fix some posive integer δ to find the detuning level δ−1 allowed for the triads.
(3) Bound: select a positive integer L such that |ki|, |li| ≤ L for i = 1, 2, 3. This condition is imposed

in order to bound the components of the triad wave vectors. Furthermore, choose an integer t
to find r = �SP/t�, where �·� gives the nearest integer when SP is divided by t. The reason for
choosing such a t is to generate key-dependent S-boxes and the integer r is used to diffuse the
components of triads.

(4) A prime: select a prime p ≥ 257 such that p ≡ 2 (mod 3) as a secret key for computing nonzero
c ≡ SP + t (mod p) to generate an S-box ζEp(p, t, SP) on the Ep. The S-box construction
technique is made clear in Algorithm 1, and the S-box generated for p = 1607, t = 182 and S = 0
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by Algorithm 1 is shown in Table 1. Furthermore, the cryptographic properties of the said S-box
are evaluated in Sections 4.1 and 4.2.

Algorithm 1: Construction of 8 × 8 S-box.

/* B is a set of points (x, y) satisfying Ep, B(i) is i-th point of B and yi
stands for y-component of point B(i). */

Input : A prime p ≡ 2 (mod 3) and two integers t and S such that c = S + t and S + t �≡ 0
(mod p).

Output : An S-box ζEp(p, t, S).
1 B := ∅;
2 Y := [0, (p − 1)/2];
3 i ← 0;
4 for x ∈ [0, p − 1] do

5 for y ∈ Y do

6 if y2 ≡ x3 + c (mod p) then

7 i ← i + 1; B(i) := (x, y);
8 if y �= 0 then

9 i ← i + 1; B(i) := (x, p − y);
10 break;

11 Y = Y − {y};

12 ζEp(p, t, S) = {yi ∈ B(i) : 0 ≤ yi < 256}.

Table 1. The obtained S-box ζE1607 (1607, 182, 0).

220 118 17 158 25 138 33 196 247 252 15 226 135 177 232 83
161 70 107 186 137 236 21 142 131 103 54 58 217 181 201 172
91 84 223 89 29 156 136 14 69 99 164 171 35 188 76 139

153 16 198 227 32 10 115 122 184 61 208 225 213 106 94 56
165 40 245 189 163 239 193 194 129 175 241 141 130 231 215 127
151 199 105 22 148 39 179 173 78 248 81 23 75 55 146 109
195 251 178 170 162 206 228 169 147 28 210 221 80 121 202 77

9 74 197 31 26 154 145 44 47 82 43 60 117 250 88 191
67 8 174 93 1 20 128 53 218 237 96 72 3 65 6 253

150 101 119 87 160 133 108 57 41 64 51 49 185 243 2 249
167 50 205 183 97 114 48 27 246 254 124 92 19 134 159 95
24 224 111 62 116 168 200 86 79 143 126 112 45 71 125 13
5 216 187 222 7 113 238 36 204 52 140 46 240 85 207 4

152 104 235 190 242 68 63 203 230 176 180 59 157 244 66 212
34 90 120 0 30 166 37 255 38 110 211 233 11 155 209 219

192 12 144 73 182 132 98 214 42 102 18 149 123 229 100 234

The positive integers a1, b1, a2, b2, a3, δ, L, SP, t and p are secret keys. Here it is mentioned that the
parameters a1, b1, a2, b2, a3, δ and L are used to generate mn triads in a box of size L. The generation
of triads is explained step by step in Algorithm 2. These triads along with keys SP and t are used to
generate the sequence β ∗

T
(t, SP) of pseudo-random numbers.

100



Entropy 2020, 22, 454

Algorithm 2: Generating quasi-resonant triads.

/* T is a set containing the Quasi-resonant triads, while m and n are the

dimensions of an input image. */

Input : Three sets Ai, i = 1, 2, 3, inverse detuning level δ, bound L, two positive integers m
and n.

Output : Quasi-resonant triads
1 T := ∅;
2 c1 ← 0, c2 ← 1 ;
3 for a ∈ A1 do

4 for b ∈ A2 do

5 c1 ← c1 + 1;
6 Calculate and store the values of k′1(c1), l′3(c1), and l′1(c1) for each pair (a, b) using

Equations (8)–(10).

7 for c2 ∈ [1, c1] do

8 for k3 ∈ A3 do

9 k1 = �(k′1(c2) ∗ k3)�, l3 = �(l′3(c2) ∗ k3)� and l1 = �(l′1(c2) ∗ k3)�;
10 k2 = k3 − k1, l2 = l3 − l1 and ωi = ki/(k2

i + l2
i ), i = 1, 2, 3;

11 ω4 = ω3 − ω2 − ω1;
12 if |ω4| < δ−1 and 0 < |ki|, |li| < L, i = 1, 2, 3 then

13 T := T ∪ {Δ};

14 if #T=mn then

15 break;

16 break;

17 Sort T with respect to the ordering � to get
∗
T.

Thus Δj represents the j-th triad in ordered set
∗
T. Moreover, (kji, lji), i = 1, 2, 3 are the components

of Δj . In Algorithm 3, the generation of β ∗
T
(t, SP) is interpreted.

Algorithm 3: Generating the proposed pseudo-random sequence.

Input : An ordered set
∗
T, an integer t and a plain image P.

Output : Random numbers sequence β ∗
T
(t, SP).

1 Tr(j) := |rkj1|+ |lj1|+ |kj2|;
2 β ∗

T
(t, SP)(j) = (Tr(j) + SP) (mod 256);

The proposed sequence β ∗
T
(t, SP) is cryptographically a good source of pseudo-randomness

because triads are highly sensitive to the auxiliary parameters (a, b) [33] and inverse detuning level δ.
It is shown in [32] that the intricate structure of clusters formed by triads depends on the chosen δ,
and the size of the clusters increases as the inverse detuning level increases. Moreover, the generation
of triads is rapid due to the absence of modular operation.

C. Performing diffusion. To change the statistical properties of an input image, a diffusion process is
performed. While performing the diffusion, the pixel values are changed using the sequence β ∗

T
(t, SP).

Let MP denote the diffused image for a plain image P. The proposed scheme alters the pixels of P
according to:

MP(i) = β ∗
T
(t, SP)(i) + P(i) (mod 256). (13)
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D. Performing confusion. A nonlinear function causes confusion in a cryptosystem, and nonlinear
components are necessary for a secure data encryption scheme. The current scheme uses the dynamic
S-boxes to produce the confusion in an encrypted image. If CP stands for the encrypted image of P,
then confusion is performed as follows:

CP(i) = ζEp(p, t, SP)(MP(i)). (14)

Lemma 2. If #Ai = ni, i = 1, 2, 3 and p is a prime chosen for the generation of an S-box, then the time
complexity of the proposed encryption scheme is max{O(n1n2n3), p2}.

Proof. The computation of all possible values of k′1, l′3 and l′1 in Algorithm 2 takes O(n1n2) time.

Similarly the time complexity for generating
∗
T is O(c1n3) but c1 executes n1n2 times. Thus the

time required by
∗
T and hence by β ∗

T
(t, SP) is O(n1n2n3). Additionally, Algorithm 1 shows that the

proposed S-box can be constructed in O(p2) time. Thus the time complexity of the proposed scheme is
max{O(n1n2n3), p2}.

Example 1. In order to have a clear picture of the proposed cryptosystem, we explain the whole procedure using
the following hypothetical 4 × 4 image. For example, let I represent the plain image of Lena256×256, and let P be
the subimage of I consisting of the intersection of the first four rows and the first four columns of I as shown in
Table 2, whereas the column-wise linearly ordered image P is shown in Table 3.

Table 2. Plain image P.

162 162 162 163
162 162 162 163
162 162 162 163
160 163 160 159

Table 3. Linear ordering of image P.

P(1) P(5) P(9) P(13)
P(2) P(6) P(10) P(14)
P(3) P(7) P(11) P(15)
P(4) P(8) P(12) P(16)

We have SP = 2589 and c = 247 and the values of other parameters are described in Section 4.3.
The corresponding 16 triads are obtained by Algorithm 2 as shown in Table 4.

Table 4. The corresponding set
∗
T for image P.

Δj k1 l1 k2 l2 k3 l3 Δj k1 l1 k2 l2 k3 l3

Δ1 −1128 1152 1529 668 401 1820 Δ9 −1240 1267 1681 735 441 2002
Δ2 −1142 1167 1548 676 406 1843 Δ10 −1254 1282 1700 743 446 2025
Δ3 −1156 1181 1567 685 411 1866 Δ11 −1268 1296 1719 751 451 2047
Δ4 −1170 1195 1586 694 416 1889 Δ12 −1282 1310 1738 760 456 2070
Δ5 −1184 1210 1605 701 421 1911 Δ13 −1296 1325 1757 768 461 2093
Δ6 −1198 1224 1624 710 426 1934 Δ14 −1310 1339 1776 776 466 2115
Δ7 −1212 1238 1643 719 431 1957 Δ15 −1325 1353 1796 785 471 2138
Δ8 −1226 1253 1662 726 436 1979 Δ16 −1339 1368 1815 793 476 2161

From SP = 2589 and t = 2, it follows that r = 1295 and hence by
application of Algorithm 3 the terms of β ∗

T
(2, 2589) are listed in Table 5. Moreover,

the S-box ζE293(293, 2, 2589) is constructed by Algorithm 1, giving the mapping
ζE293(293, 2, 2589) : {0, 1, . . . , 255} → {0, 1, . . . , 255}, which maps the list (0, . . . , 255) to the list
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(80, 213, 29, 113, 180, 2, 119, 174, 10, 103, 190, 120, 173, 99, 194, 126, 167, 42, 251, 78, 215, 84, 209, 93, 200, 130,
163, 32, 17, 117, 176, 62, 231, 110, 183, 56, 237, 75, 218, 127, 166, 73, 220, 13, 91, 202, 28, 129, 164, 118, 175, 69,
224, 50, 243, 100, 193, 137, 156, 89, 204, 12, 63, 230, 74, 219, 4, 131, 162, 134, 159, 123, 170, 90, 203, 70, 223, 87,
206, 59, 234, 145, 148, 58, 235, 57, 236, 65, 228, 15, 112, 181, 52, 241, 76, 217, 60, 233, 121, 172, 68, 225, 51, 242,
135, 158, 41, 252, 21, 142, 151, 26, 25, 40, 253, 96, 197, 136, 157, 9, 116, 177, 122, 171, 45, 248, 115, 178, 102, 191,
67, 226, 95, 198, 143, 150, 133, 160, 98, 195, 3, 94, 199, 30, 104, 189, 132, 161, 8, 64, 229, 144, 149, 140, 153, 14,
85, 208, 20, 6, 109, 184, 125, 168, 92, 201, 19, 53, 240, 31, 66, 227, 35, 82, 211, 108, 185, 139, 154, 33, 16, 86, 207,
128, 165, 5, 71, 222, 38, 255, 23, 0, 81, 212, 1, 141, 152, 111, 182, 138, 155, 49, 244, 22, 106, 187, 105, 188, 36, 54,
239, 46, 247, 43, 250, 97, 196, 27, 11, 24, 44, 249, 83, 210, 61, 232, 39, 254, 7, 72, 221, 77, 216, 47, 246, 107, 186,
48, 245, 55, 238, 124169, 34, 79, 214, 88, 205, 114, 179, 37, 18, 146, 147, 101, 192).

Table 5. Pseudo-random sequence for plain image P.

β ∗
T
(2, 2589)(1) = 188 β ∗

T
(2, 2589)(5) = 126 β ∗

T
(2, 2589)(9) = 65 β ∗

T
(2, 2589)(13) = 3

β ∗
T
(2, 2589)(2) = 108 β ∗

T
(2, 2589)(6) = 47 β ∗

T
(2, 2589)(10) = 241 β ∗

T
(2, 2589)(14) = 180

β ∗
T
(2, 2589)(3) = 29 β ∗

T
(2, 2589)(7) = 224 β ∗

T
(2, 2589)(11) = 162 β ∗

T
(2, 2589)(15) = 115

β ∗
T
(2, 2589)(4) = 206 β ∗

T
(2, 2589)(8) = 144 β ∗

T
(2, 2589)(12) = 83 β ∗

T
(2, 2589)(16) = 35

Hence by the respective application of Equation (13) and the S-box ζE293(293, 2, 2589), the pixel
values of diffused image MP and encrypted image CP are shown in Tables 6 and 7, respectively.

Table 6. Diffused image MP.

94 32 227 166
14 209 147 87

191 130 68 22
110 51 243 194

Table 7. Encrypted image CP.

76 231 254 19
194 54 161 65

0 67 162 209
151 69 34 1

3.3. Decryption

In our scheme the decryption process can take place by reversing the operations of the encryption
process. One should know the inverse S-box ζ−1

Ep
(n, t, SP) and the pseudo-random numbers β ∗

T
(t, SP).

Assume the situation when the secret keys a1, b1, a2, b2, a3, δ, L, SP, t and p are transmitted by a

secure channel, so that the set
∗
T is obtained using keys a1, b1, a2, b2, a3, δ and L, and hence the S-box

ζ−1
Ep

(p, t, SP) and the pseudo-random numbers β ∗
T
(t, SP) can be computed by SP, t and p. Finally,

the receiver gets the original image P by applying the following equations:

MP(i) = ζ−1
Ep

(p, t, SP)(CP(i)), (15)

P(i) = MP(i)− β ∗
T
(t, SP)(i) (mod 256). (16)

4. Security Analysis

In this section the cryptographic strength of both the S-box construction technique and encryption
scheme are analyzed in detail.
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4.1. Evaluation of the Designed S-Box

An S-box with good cryptographic properties ensures the quality of an encryption technique.
Generally, some standard tests such as nonlinearity (NL), linear approximation probability (LAP), strict
avalanche criterion (SAC), bit independence criterion (BIC) and differential approximation probability
(DAP) are used to evaluate the cryptographic strength of an S-box.

The NL [43] and the LAP [44] are outstanding features of an S-box, used to measure the resistance
against linear attacks. The NL measures the level of nonlinearity and the LAP finds the maximum
imbalance value of an S-box. The optimal value of the nonlinearity is 112. A low value of LAP
corresponds to a high resistance. The minimum NL and the LAP values for the displayed S-box are
106 and 0.1484, respectively. This ensures that the proposed S-box is immune to linear attacks. Webster
and Tavares [45] developed the concepts of the SAC and the BIC, which are used to find the confusion
and diffusion creation potential of an S-box. In other words, the SAC criterion measures the change in
output bits when an input bit is altered. Similarly, the BIC criterion explores the correlation in output
bits when change in a single input bit occurs. The average values of the SAC and the BIC for the
constructed S-box are 0.4951 and 0.4988, respectively, which are close to the optimal value 0.5. Thus,
both tests are satisfied by the suggested S-box. The DAP [46] is another important feature used to
analyze the capability of an S-box against differential attacks. The lowest value of DAP for an S-box
implies the highest security to the differential attacks. Our DAP result is 0.0234, which is good enough
to resist differential cryptanalysts.

4.2. Performance Comparison of the S-Box Generation Algorithm

After performing the rigorous analyses, the S-box constructed by the current algorithm is compared
with some cryptographically strong S-boxes developed by recent schemes, as shown in Table 8.

Table 8. Comparison table of the proposed S-box ζE1607 (1607, 182, 0).

S-Boxes NL LAP SAC BIC DAP

(min) (avg) (max) (min) (avg) (max)

Ours 106 0.1484375 0.390625 0.49511719 0.609375 0.47265625 0.49888393 0.52539063 0.0234375
Ref. [31] 104 0.1484375 0.421900 - 0.6094 0.4629 - 0.5430 0.0469
Ref. [47] 104 0.1328125 0.40625 0.49755859 0.625 0.46679688 0.50223214 0.5234375 0.0234375
Ref. [48] 101 0.140625 0.421875 0.49633789 0.578125 0.46679688 0.49379185 0.51953125 0.03125
Ref. [49] 104 0.140625 0.421875 0.50390625 0.59375 0.4765625 0.50585938 0.5390625 0.0234375
Ref. [50] 100 0.140625 0.40625 0.50097656 0.609375 0.44726563 0.50634766 0.53320313 0.03125
Ref. [51] 106 0.140625 0.390625 0.49414063 0.609375 0.47070313 0.50132533 0.53320313 0.0234375
Ref. [52] 102 0.140625 0.421875 0.49804688 0.640625 0.4765625 0.50746373 0.53320313 0.0234375
Ref. [53] 104 0.0391 0.3906 - 0.6250 0.4707 - 0.53125 0.0391
Ref. [54] 104 0.0547000 0.4018 0.4946 0.5781 0.4667969 0.4988839 0.5332031 0.0391
Ref. [55] 108 0.1328 0.40625 0.4985352 0.59375 0.46484375 0.5020229 0.52734375 0.0234375

From Table 8 it follows that the NL of ζE1607(1607, 182, 0) is greater than the S-boxes
in [31,47–50,52–54], equal to that of [51] and less than the S-box developed in [55], which indicates that
ζE1607(1607, 182, 0) is highly nonlinear in comparison to the S-boxes in [31,47–50,52–54]. Additionally,
the LAP of ζE1607(1607, 182, 0) is comparable to all the S-boxes in Table 8. The SAC (average) value of
ζE1607(1607, 182, 0) is greater than the S-boxes in [51,54], and the SAC (max) value is less than or equal to
the S-boxes in [31,47,50–53]. Similarly the BIC (min) value of ζE1607(1607, 182, 0) is closer to the optimal
value 0.5 than that of [31,47,48,50,51,53–55], and the BIC (max) value of the new S-box is better than
that of the S-boxes in [31,49–55]. Thus the confusion/diffusion creation capability of ζE1607(1607, 182, 0)
is better than [31,50–53,55]. The DAP value of our suggested S-box ζE1607(1607, 182, 0) is lower than
the DAP of the S-boxes presented in [31,48,50,53,54] and equal to that of [47,49,51,52,55]. Thus from
the above discussion it follows that the newly designed S-box shows high resistance to linear as well
as differential attacks.
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4.3. Evaluation of the Proposed Encryption Technique

In this section the current scheme is implemented on all gray images of the USC-SIPI Image
Database [56]. The USC-SIPI database contains images of size m × m, m = 256,512,1024. Furthermore,
some security analyses that are explained one by one in the associated subsections are presented.
To validate the quality of the proposed scheme, the experimental results are compared with some other
encryption schemes. The parameters used for the experiments are A1 = A2 = −1.0541, A3 = 401, B1 =

B2 = −0.8514 and B3 = 691, 3036, 5071 for m = 256,512,1024, respectively; a1 = 2, b1 = 1000, a2 =

19, b2 = 1000, a3 = 5, δ = 1000, t = 2, p = 293, L = 90,000 and SP varies for each P. The experiments
were performed using Matlab R2016a on a personal computer with a 1.8 GHz Processor and 6 GB RAM.
All encrypted images of the database along with histograms are available at [57]. Some plain images,
House256×256, Stream512×512, Boat512×512 and Male1024×1024 and their cipher images are displayed in
Figure 1.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 1. (a–d) Plain images House, Stream, Boat and Male; (e–h) cipher images of the plain
images (a–d), respectively.

4.3.1. Statistical Attack

A cryptosystem is said to be secure if it has high resistance against statistical attacks. The strength
of resistance against statistical attacks is measured by entropy, correlation and histogram tests. All of
these tests are applied to evaluate the performance of the discussed scheme.

(1) Histogram. A histogram is a graphical way to display the frequency distribution of pixel values of
an image. A secure cryptosystem generates cipher images with uniform histograms. The histograms
of the encrypted images using the proposed method are available at [57]. However, the respective
histograms for the images in Figure 1 are shown in Figure 2. The histograms of the encrypted images
are almost uniform. Moreover, the histogram of an encrypted image is totally different from that of
the respective plain image, so that it does not allow useful information to the adversaries, and the
proposed algorithm can resist any statistical attack.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 2. (a–d) Histograms of Figure 1a–d; (e–h) histograms of Figure 1e–h.

(2) Entropy. Entropy is a standout feature to measure the disorder. Let I be a source of information
over a set of symbols N. Then the entropy of I is defined by:

H(I) =
#N

∑
i=1

p(Ii)log2
1

p(Ii)
, (17)

where p(Ii) is the probability of occurrence of symbol i. The ideal value of H(I) is log2(#N),
if all symbols of N occur in I with the same probability. Thus, an image I emanating 256 gray
levels is highly random if H(I) is close to 8 (notice, however, that this definition of entropy does
not take into account pixel correlations). The entropy results for all images encrypted by the
suggested technique are shown in Figure 3, where the minimum, average and maximum values
are 7.9966, 7.9986 and 7.9999, respectively. These results are close to 8, and hence the developed
mechanism is secure against entropy attacks.

(3) Pixel correlation. A meaningful image has strong correlation among the adjacent pixels. In fact,
a good cryptosystem has the ability to break the pixel correlation and bring it close to zero.
For any two gray values x and y, the pixel correlation can be computed as:

Cxy =
E
[
(x − E[x])(y − E[y])

]
√

K[x]K[y]
, (18)

where E[x] and K[x] denote expectation and variance of x, respectively. The range of Cxy is
−1 to 1. The gray values x and y are in low correlation if Cxy is close to zero. As the pixels
may be adjacent in horizontal, diagonal and vertical directions, the correlation coefficients of all
encrypted images along all three directions are shown in Figure 3, where the respective ranges
of Cxy are [−0.0078, 0.0131], [−0.0092,0.0080] and [−0.0100,0.0513]. These results show that the
presented method is capable of reducing the pixel correlation near to zero.

In addition, 2000 pairs of adjacent pixels of the plain image and cipher image of Lena512×512 are
randomly selected. Then correlation distributions of the adjacent pixels in all three directions are
shown in Figure 4, which reveals the strong pixel correlation in the plain image but a weak pixel
correlation in the cipher image generated by the current scheme.
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Figure 3. (a–c) The horizontal, diagonal and vertical correlations among pixels of each image in
USC-SIPI database; (d) the entropy of each image in USC-SIPI database.
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Figure 4. (b–d) The distribution of pixels of the plane image (a) in the horizontal, diagonal and vertical
directions; (f–h) the distribution of pixels of the cipher image (e) in the horizontal, diagonal and
vertical directions.

4.3.2. Differential Attack

In differential attacks the opponents try to get the secret keys by studying the relation between
the plain image and cipher image. Normally attackers encrypt two images by applying a small change
to these images, then compare the properties of the corresponding cipher images. If a minor change in
the original image can cause a significant change in the encrypted image, then the cryptosystem has a
high security level. The two tests NPCR (number of pixels change rate) and UACI (unified average
changing intensity) are usually used to describe the security level against differential attacks. For two
plain images P and P

′
different at only one pixel value, let CP and CP′ be the cipher images of P and P

′
,

respectively, then NPCR and UACI are calculated as:

NPCR =
m

∑
u=1

n

∑
v=1

τ(u, v)
m × n

, (19)

UACI =
m

∑
u=1

n

∑
v=1

|CP(u, v)− CP′ (u, v)|
255 × m × n

, (20)

where τ(u, v) = 0 if CP(u, v) = CP′ (u, v) and τ(u, v) = 1, otherwise. The expected values of NPCR and
UACI for 8-bit images are 0.996094 and 0.334635, respectively [13]. We applied the above two tests to each
image of the database by randomly changing the pixel value of each image. The experimental results are
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shown in Figure 5, giving average values of NPCR and UACI of 0.9961 and 0.3334, respectively. It follows
from the obtained results that our scheme is capable of resisting a differential attack.
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Figure 5. (a,b) The NPCR and UACI results for each image in the USC-SIPI database; (c) First
256 pseudo-random numbers and (d) two S-boxes generated for Lena512×512 with a small change
in an input key t.

4.3.3. Key Analysis

For a secure cryptosystem it is essential to perform well against key attacks. A cryptosystem is
highly secure against key attacks if it has key sensitivity and large key space and strongly opposes the
known-plaintext/chosen-plaintext attack. The proposed scheme is analyzed against key attacks as follows.

(1) Key sensitivity. Attackers usually use slightly different keys to encrypt a plain image and then
compare the obtained cipher image with the original cipher image to get the actual keys. Thus,
high key sensitivity is essential for higher security. That is, cipher images of a plain image
generated by two slightly different keys should be entirely different. The difference of the cipher
images is quantified by Equations (19) and (20). In experiments we encrypted the whole database
by changing only one key, while other keys remain unchanged. The key sensitivity results are
shown in Table 9, where the average values of NPCR and UACI are 0.9960 and 0.3341, respectively,
which specify the remarkable difference in the cipher images. Moreover, our cryptosytem is
based on the pseudo-random numbers and S-boxes. The sensitivity of pseudo-random numbers
sequences β ∗

T
(2, SP) and β ∗

T
(1, SP) and S-boxes ζEp(p, 2, SP) and ζEp(p, 1, SP) for Lena512×512 is

shown in Figure 5.

Table 9. Difference between two encrypted images when key t = 2 is changed to t = 1. NPCR: number
of pixels change rate; UACI: unified average changing intensity.

Image NPCR(%) UACI(%) Image NPCR(%) UACI(%) Image NPCR(%) UACI(%)

Female 99.62 33.39 House 99.62 33.23 Couple 99.56 33.30
Tree 99.59 33.35 Beans 99.64 33.23 Splash 99.60 33.97

(2) Key space. In order to resist a brute force attack, key space should be sufficiently large. For any
cryptosystem, key space represents the set of all possible keys required for the encryption process.
Generally, the size of the key space should be greater than 2128. In the present scheme the
parameters a1, b1, a2, b2, a3, δ, L, SP, t and p are used as secret keys, and we store each of them in
28 bits. Thus the key space of the proposed cryptosystem is 2280 which is larger than 2128 and
hence capable to resist a brute force attack.

(3) Known-plaintext/chosen-plaintext attack. In a known-plaintext attack, the attacker has partial
knowledge about the plain image and cipher image, and tries to break the cryptosystem, while in
a chosen-plaintext attack the attacker encrypts an arbitrary image to get the encryption keys.
An all-white/black image is usually encrypted to test the performance of a scheme against these
powerful attacks [29,58]. We analyzed our scheme by encrypting an all-white/black image of
size 256 × 256. The results are shown in Figure 6 and Table 10, revealing that the encrypted
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images are significantly randomized. Thus the proposed system is capable of preventing the
above mentioned attacks.

(a) (b) (c) (d) (e) (f)
Figure 6. (a) All-white; (b) all-black; (c,d) cipher images of (a,b); (e,f) histograms of (c,d).

Table 10. Security analysis of all-white/black encrypted images by the proposed
encryption technique.

Plain Image Entropy
Correlation of Plain Image

NPCR (%) UACI (%)
Hori. Diag. Ver.

All-white 7.9969 0.0027 0.0020 −0.0090 99.60 33.45
All-black 7.9969 −0.0080 0.0035 0.0057 99.62 33.41

4.4. Comparison and Discussion

Apart from security analyses, the proposed scheme is compared with some well-known image
encryption techniques. The gray scale images of Lena256×256 and Lena512×512 are encrypted using the
presented method, and experimental results are listed in Table 11.

Table 11. Comparison of the proposed encryption scheme with several existing cryptosystems for
image Lenam×m, m = 256,512.

Size m Algorithm Entropy
Correlation

NPCR (%) UACI(%)
# Dynamic

Hori. Diag. Ver. S-Boxes S-Boxes

256

Ours 7.9974 0.0001 −0.0007 −0.0001 99.91 33.27 1 Yes
Ref. [31] 7.9993 0.0012 0.0003 0.0010 99.60 33.50 1 Yes
Ref. [3] 7.9973 - - - 99.50 33.30 0 -
Ref. [27] 7.9046 0.0164 −0.0098 0.0324 98.92 32.79 >1<50 Yes
Ref. [26] 7.9963 −0.0048 −0.0045 −0.0112 99.62 33.70 8 Yes
Ref. [59] 7.9912 −0.0001 0.0091 0.0089 100 33.47 0 -
Ref. [60] 7.9974 0.0020 0.0020 0.0105 99.59 33.52 0 -

512
Ours 7.9993 0.0001 0.0042 0.0021 99.61 33.36 1 Yes

Ref. [25] 7.9992 0.0075 0.0016 0.0057 99.61 33.38 1 No
Ref. [29] 7.9993 −0.0004 0.0001 −0.0018 99.60 33.48 1 No

-
Ref. [61] 7.9970 −0.0029 0.0135 0.0126 99.60 33.48 0 -
Ref. [62] 7.9994 0.0018 −0.0012 0.0011 99.62 33.44 >1 Yes
Ref. [2] 7.9993 0.0032 0.0011 −0.0002 99.60 33.47 >1 Yes

It is deduced that our scheme generates cipher images with comparable security. Furthermore,
we remark that the scheme in [29] generates pseudo-random numbers using group law on EC,
while the proposed method generates pseudo-random numbers by constructing triads using
auxiliary parameters of elliptic surfaces. Group law consists of many operations, which makes
the pseudo-random number generation process slower than the one we present here. The scheme
in [26] decomposes an image to eight blocks and uses dynamic S-boxes for encryption purposes.
The computation of multiple S-boxes takes more time than computing only one S-box. Similarly the
techniques in [2,27] use a set of S-boxes and encrypt an image in blocks, while our newly developed
scheme encrypts the whole image using only one dynamic S-box. Thus, our scheme is faster than
the schemes in [2,27]. The security system in [61] uses a chaotic system to encrypt blocks of an
image. The results in Table 11 reveal that our proposed system is cryptographically stronger than
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the scheme in [61]. The algorithms in [3,59] combine chaotic systems and different ECs to encrypt
images. It follows from Table 11 that the security level of our scheme is comparable to that of the
schemes in [3,59]. The technique in [60] uses double chaos along with DNA coding to get good results,
as shown in Table 11, but the results obtained by the new scheme are better than that of [60]. Similarly
the technique in [31] encrypts images using ECs but does not guarantee an S-box for each set of input
parameters, thus making our scheme faster and more robust than the scheme developed in [31].

Furthermore, the following facts put our scheme in a favorable position:

(i) Our scheme uses a dynamic S-box for each input image while the S-box used in [29] is a static
one, which is vulnerable [63] and less secure than a dynamic one [64].

(ii) The presented scheme guarantees an S-box for each image, which is not the case in [31].
(iii) To get random numbers, the described scheme generates triads for all images of the same size,

while in [31] the computation of an EC for each input image is necessary, which is time consuming.
(iv) The scheme in [26] uses eight dynamic S-boxes for a plain image, while the current scheme uses

only one dynamic S-box for each image to get the desired cryptographic security.

5. Conclusions

An image encryption scheme based on quasi-resonant triads and MECs was introduced.
The proposed technique constructs triads to generate pseudo-random numbers and computes an MEC
to construct an S-box for each input image. The pseudo-random numbers and S-box are then used for
altering and scrambling the pixels of the plain image, respectively. As for the advantages of our proposed
method, firstly triads are based on auxiliary parameters of elliptic surfaces, and thus pseudo-random
numbers and S-boxes generated by our method are highly sensitive to the plain image, which prevents
adversaries from initiating any successful attack. Secondly, generation of triads using auxiliary parameters
of elliptic surfaces consumes less time than computing points on ECs (we find a 4x speed increase for
a range of image resolutions m ∈ [128, 512]), which makes the new encryption system relatively faster.
Thirdly, our algorithm generates the cipher images with an appropriate security level.

In summary, all of the above analyses imply that the presented scheme is able to resist all attacks.
It has high encryption efficiency and less time complexity than some of the existing techniques. In the
future, the current scheme will be further optimized by means of new ideas to construct the S-boxes
using the constructed triads, so that we will not need to compute an MEC for each input image.
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Abstract: In this paper, we present a new algorithm based on chaotic systems to protect medical
images against attacks. The proposed algorithm has two main parts: A high-speed permutation
process and adaptive diffusion. After the implementation of the algorithm in the MATLAB software,
it is observed that the algorithm is effective and appropriate. Also, to quantitatively evaluate the
uniformity of the histogram, the chi-square test is done. Key sensitivity analysis demonstrates that
images cannot be decrypted whenever a small change happens in the key, which indicates that the
algorithm is suitable. Clearly, part of special images is selected to test the selected plain-text, like an
all-white image and an all-black image. Entropy results obtained from the implementation of the
algorithm on this type of images show that the proposed method is suitable for this particular type of
images. In addition, the obtained results from noise and occlusion attacks analysis show that the
proposed algorithm can withstand against these types of attacks. Moreover, it can be seen that the
images after encryption and decryption are of good quality; the measures such as the correlation
coefficients, the entropy, the number of pixel change rate (NPCR), and the uniform average change
intensity (UACI) have suitable values; and the method is better than previous methods.

Keywords: image encryption; medical color images; RGB; chaotic system

1. Introduction

The confidentiality of patient information is one of the vital security aspects of electronic health
services. For example, the confidentiality of patients’ medical records is necessary. In addition, the
methods of protection should be improved due to the rapid advancement of technologies for accessing
the personal information of individuals. The security and privacy of medical image transferring is
one of the acute subjects that should be seriously considered in telecare medical information systems
(TMIS). In the past years, medical images were grayscale, but today, color images have entered the
medical arena, and they can show more accurate information about body conditions. Color images
that are acquired by new scanners using the Medipix3RX chip technology are very important in
the medical arena. Image-data transferring from a position to another via an unsafe network are
usually determined in qualifications of privacy, validity, totality, and confidentiality. Therefore, more
significance should be given to the security of the sensitive data that are included in medical images
by DICOM (digital imaging communication in medicine). In this textuality, many problems using
various cryptographic techniques have been proposed in the literature to overcome this problem [1–4].
In their paper, Abdel-Nabi and Al-Haj proposed a hybrid encryption algorithm using watermarking
that offers high embedding capabilities for medical images. The proposed algorithm is a combination
of reversible data-caching techniques with standard encryption techniques for ensuring the security
requirements for transferred and stored medical images [5]. In their paper, Abdmouleh et al. presented
a partial cryptographic approach that was based on the digital wavelet transform (DWT) and was
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JPEG2000 compliant to ensure the safe transfer and storage of medical images [6]. Lakshmi et al.
presented a similar algorithm using a discrete wavelet transform (DWT), with the difference being that
they used a fuzzy chaotic map for the watermarking [7]. In their paper, Cao et al. presented a medical
image encryption algorithm using edge maps that were derived from a source image. The algorithm
consists of three parts: Bit-plane decomposition, a random-sequence generator, and permutation [8].
Ismail et al. presented the double-humped (DH) logistic map to produce pseudorandom numbers
keys (PRNG) in their paper. The generalized parameter that is added to the map provides more
control on the map chaotic range [9]. Jeong et al. proposed a new medical image encrypting method
using a 2D chaotic map and C-MLCA in their article. The 2D chaotic map is a construction with self-
guarding attributes, which moves the location of the pixel and encrypts the image [10]. In their method,
Ke et al. offered an encryption algorithm that was based on reversible data using the MSB-based
prediction [11]. In their study, Nematzadeh et al. proposed an encryption method for medical images
based on a hybrid pattern of the improved genetic algorithm (IGA) and paired map lattices. First, the
assumed way employs a paired map lattice to produce a some of secure cipher-images as a primitive
population of the IGA. Then, it exerts the IGA to both increase the entropy of the cipher images and
reduce the algorithm’s calculations time [12]. In their paper, Singh et al. proposed a medical image
encryption scheme algorithm using the improved ElGamal encryption technique. Their proposed
method made a new contribution since the necessity for separate calculations for encoding plain
messages to elliptic curve coordinates was removed. The algorithm using the improved version of
the ElGamal encryption scheme is designed to encrypt medical images [13]. Suganya and Amudha’s
proposed method uses two encryption algorithms, namely, RC4 and AES, which are the stream cipher
and block cipher algorithms, respectively. The main objective of this method is to provide integrity
control for medical images, although they are encrypted. Experimental security analysis is conducted
using 8-bit ultrasound images and 16-bit positron emission tomography (PET) images [14]. The chaos
systems that have become popular today have been used in many types of research. For example:
Liang and Qi investigated mechanical analysis of generates the Chen chaotic system to the extensile
Kolmogorov system. In Hu et al.’s research, the Chen chaotic system is designed as a pseudorandom
sequence producer. In their research, Wang et al. used the memristor chaotic systems (MCSs). Gong et
al. provided a method for image encryption based on hyper-chaotic system and discrete fractional
random transform. Michail et al.’s research was based on chaotic systems and hash functions to
implement totally self-checking (TSC). James et al., in their research based on chaotic systems and hash
functions, discussed the performance of SHA-3 256- bit core. Ahmad and Das, based on chaos and
hash algorithms, discussed Hardware performance analysis of SHA-256 and SHA-512 algorithms on
FPGAs. In their research, Xu et al. improved chaotic cryptosystem based on circular bit shift and XOR
operations. Pareek and Patidar, in their research, designed medical image protection based on genetic
algorithm and chaotic system. Hua et al., in their study, designed medical image encryption using
hash algorithm high-speed scrambling [15–24]. Also, Chai et al. designed a color image encryption
method based on dynamic DNA encryption and chaotic system [25] and Ma et al. provided a new
method of plaintext-related and chaos-based image encryption [26]. Niyat et al. offered an image
encryption algorithm with the rule of cellular automata (CA). CA is a self- establishing construction
with a group of cells in which any cell is updated based on certain regulation that are to depend on a
limited number of neighboring cells [27]. Chen et al. designed an image encryption method based on
hyperchaotic system in the turner transfigure domain. The RGB ingredients of the main color image
are encrypted into 1D circulation. [28]. The method in [5] focused on the embedding capacity, but no
results are given with respect to other criteria, such as the correlation coefficients entropy, the number
of pixel change rate (NPCR), or the uniform average change intensity (UACI). The methods in [6,7] are
based on the digital wavelet transform (DWT) and allow for safe transport, but they do not provide
suitable results with respect to the correlation coefficients. The results that were obtained in [8] are
only suitable for the NPCR, and other values are not suitable. In the method in [9], the values that are
obtained are appropriate, but they are only suitable for grayscale images. The results of the methods
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in [10–12] are only suitable with respect to their correlation coefficients, but there are no improvements
with respect other criteria. The results that are obtained in [13,14] are only suitable with respect to
entropy. The methods in [27,28] perform well in color images encrypting and can be used to encrypt
medical images. Nevertheless, our method is better in terms of the correlation coefficients, the entropy,
the NPCR, and the UACI.

Our aim in this paper is to provide an algorithm that protects medical color images based on
chaotic systems and SHA-256 systems. The algorithm is composed of two parts: A high-speed
permutation process and adaptive diffusion. For this reason, in Section 2, we will present the basic
concepts of chaotic systems and SHA-256 systems. In Section 3, we will describe the proposed
algorithm’s equations, and in Section 4, the empirical results from the implementation of the proposed
algorithm that is simulated in the MATLAB software will be given. In Section 5, we compare the
results of the proposed method with previous methods, and in Section 6, we will explain the quality
and appropriateness of this method.

2. Preliminary Work

2.1. Chaotic Systems

Chaos theory is a chapter of mathematics centralization on the action of dynamical systems
that are highly sensitive to initial situation. “Chaos” is a notion denoting that within the obvious
accidentalness of chaotic systems, there are basically models, stable feedback rings, iteration, self-
likeness, fractals, self- formation, and dependence on programming at the initial part, which is known
to have sensitive to depend on initial situation.

Little differences in initial situation, like those owing to rounding errors in numerical calculations,
output widely in different outcomes for dynamical systems, thus, generally interpretation of the
long-term oracle of their action impossible. This action is known as certain chaos, or simply chaos.
The theory was tabloid by Edward Lorenz as follows:

Chaos: When the design specifies the future, but the proximate present does not proximately
specify the future.

In 1963, Lorenz studied chaotic systems using a nonlinear differential equation, which is one
of the first examples of algebraic chaotic systems in dissipative systems. Chaotic systems are very
abundant in nature and they are used in many branches of science, such as the physics of dynamics
and photonics, medical sciences, chemistry, and demography. In recent years, much research has been
done on chaotic systems by scientists and more practical systems have been introduced, such as Chen’s
system, Lu’s system, and Qi’s 3D four-wing chaotic system [15–17]. The chaotic system that is used in
this algorithm is the Chen-based hyper-chaotic system. The Chen-based hyper-chaotic system in [18]
is described as follows: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
s = a(t− s)

.
t = ds− su + ct− v

.
u = st− bu

.
v = s + w

(1)

where s, t, u, and v are the fixed variables and a, b, c, d, and w are the controlling parameters of
the system. The dynamical cycle will be hyper-chaotic when a = 36, b = 3, c = 28, d = −16, and
−0.7 <w < 0.7.

2.2. SHA-256 (Secure Hash Algorithm 256)

A cryptographic hash (sometimes called a “digest”) is a type of ‘signature’ for a text or data
file. The SHA-256 products an almost-unique 256-bit (32-byte) signature for a text. The SHA-256 is a
type of the deputy hash functions to the SHA-1 (referential to as SHA-2) and is one of the existing
powerfulness hash functions. The SHA-256 is not much more complicated to code than the SHA-1 and
has not yet been agreement in any path. The 256-bit key makes it a good common-function for the
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AES. It is explained in the NIST (National Institute of Standards and Technology) standard ‘FIPS 180-4’.
The NIST also prepared a number of test vectors to investigate the validity of its execution [19–21].

To the SHA-256, the message is decomposed to n blocks with 512 bits, and at the end of its the
final block, bit ‘1’ is added to be followed by k zero bits, where k is the least nonnegative the answer
path of the equation l + 1 + k = 448mod512. Next, a 64-bit binary block that is equivalent to l is added.
Clearly, a “1” followed by k “0” s that is followed by 64 bits are added at the end of M to generate a
crooked message of length 512 ∗ n bits. For instance, the 8-bit ASCII message “abc” has a length of
l = 8 × 3 = 24. Therefore, the message is padded with a one bit, then 448 − (24 + 1) = 423 zero, and
then the 64 bits of the length of message (11000)2 = (24)10. Then, one message plan carries out on the
blocks of M, generating the Wt amount, any of which is to the corresponding t-th repetition of the
transmutation. The transmutation takes Wt, a fixed value, Kt and the primary amounts H(0) (in the
repetition one) or the values generated in the past repetition; carries out the transmutation procedure;
and produces a series of hash values via a number of repetitions. The last produced hash value is
considered as the message digest, h [19]. The SHA-256 needs 64 repetition to generate its message
digest. The round contains additives and rational functions that are set to generate the round’s output
values. The included NLFs are shown in Equation (2):

Ch(x, y, z) = (x•y) ⊕ (x•y)
Maj(x, y, z) = (x•y) ⊕ (x•z) ⊕ (x•z)

256∑
0
(x) = ROTR2(x) ⊕ROTR13(x) ⊕ROTR22(x)

256∑
1
(x) = ROTR6(x) ⊕ROTR11(x) ⊕ROTR25(x)

(2)

where ⊕, •, and ¯ denote the XOR, AND, and NOT bitwise rational functions, respectively, and x, y,
and z are 32-bit words. ROTRX Shows x right round bit spin. According to the 64 Wt values that are
necessary, the first 16 are organized by the 512-bit input block whereas the remaining 48 Wt amounts
are calculated using Equation (3). The functions σ0 and σ1 are computed using Equation (4).

Wt = σ
{256}
1 (Wt−2) + Wt−7 + σ

{256}
0 (Wt−15) + Wt−1616 ≤ t ≤ 63 (3)

σ{256}
0 = ROTR7(x) ⊕ROTR18(x) ⊕ SHR3(x)
σ{256}

1 = ROTR17(x) ⊕ROTR19(x) ⊕ SHR10(x)
(4)

Here, SHRx stands for the right bit shift. The SHA-256 base transformation rounds are shown in
Figure 1.
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Figure 1. Secure hash algorithm 256 (SHA-256) base transformation rounds.

2.3. SHA-256 Architectures

The performance of the SHA-256 construction’s transformation round is shown in Figure 1.
It takes, as inputs, eight 32-bit characters, (at−1 − ht−1), the value Wt−1, and the stable value Kt−1,
performs the calculations shown in Figure 1, and generates the values (at − ht) after 64 repetitions [19].

3. Proposed Algorithm

The proposed algorithm has two parts: A high-speed permutation process and adaptive diffusion.

3.1. High-Speed Permutation Process

Step 1. First, the plain image P of size M×N ×D is used as the input; it has the initial state values
of a0, b0, c0, and d0; and uses the SHA-256 function, which is constructed according to the plain image.
We consider DM = D ×M and s = sum(sha256)/(64× 256), which reshape matrix P into the 2D
matrix P1. Then, the new values of the chaos system a0, b0, c0, and d0 are generated using Equation (4)
as follows: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a0 = s + a0− s + a0
b0 = s + b0− s + b0
c0 = s + c0− s + c0
d0 = s + d0− s + d0

. (5)

Step 2. Then, the initial values and parameters are used to iterate the chaotic systems to obtain the
vectors a1, a2, a3, and a4 and quantize to generate four different vectors PR1, PC1, PR2, and PC2, which
are as follows: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

PR1 = (|a1| − a1) × 1015 mod N + 1
PC1 = (|a2| − a2) × 1015 mod DM + 1
PR2 = (| a3| − a3) × 1015 mod N + 1

PC2 = (| a4| − a4) × 1015 mod DM + 1

. (6)

Here, we have to use the circshi f t (shift array circularly) rule and its definition is as follows:
If A and B are matrixes, B = circshi f t(A, shi f tsize) circularly shifts the values in the array A using the
shift size elements [22].
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Step 3. We consider PR, PC ∈ NDM×N and for i = 1 to DM, if i is odd, then we get the following:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
PR(:, i) = circshi f t P1(i, :) by step PR1(i)

and else
PR(:, i) = circshi f t P1(i, :)by step− PR2(i)

. (7)

Step 4. For j = 1 to N, if j is odd, then we get the following:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
PC(:, j) = circshi f t IR(:, j) by step IC1( j)

and else
PC(:, j) = circshi f t IR(:, j)by step− IC2( j)

. (8)

Now, P2 = PC is the permutated image.
This Process explained in Algorithm 1 with the title: High-speed Permutation Process.

Algorithm 1 High-speed Permutation Process

Input: Image P of size M × N × D, Initial state: a0, b0, c0, d0, and Sha256 value of P
Output: Permutated Image

1. Let DM = D × M, s = sum (sha256)/(64 × 256), and reshape P to 2-dimension matrix P1.
2. Generate a new initial value of the chaotic system: a0, b0, c0, d0;
3. Use the initial value and parameters to iterate the chaotic system to get the vectors: a1, a2, a3, a4,

and quantize to generate four different vectors: PR1, PC1, PR2, PC2.
4. Set PR, PC ∈NDM×N

5. for i = 1 to DM do
6. if i is odd then
7. PR(:, i) = circshift P1(i,:) by step PR1(i)
8. else
9. PR(:, i) = circshift P1(i,:) by step −PR2(i)
10. end if
11. end for
12. for j = 1 to N do
13. if j is odd then
14. PC(:,j) = circshift PR(:,j) by step PC1(j)
15. else
16. PC(:,j) = circshift PR(:,j) by step −PC2(j)
17. end if
18. end for
19. Let PC be the permutated imagere
20. turn Permutated Image

3.2. Adaptive Diffusion

Step 1. First, the other initial values and parameters are used to iterate the chaotic systems to
obtain the vectors a110, b110, c110, and d110, and they are quantized to generate four different vectors
a11, b11, c11, and d11.

We set N0 as a random number, N00 = N0 + 1 and nn = (DM×N)/2.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a11 = |(a110 + b110) × 1015)|mod23 + 1
b11 = |(b110− a110) × 1015)|mod23 + 1

c11 = |(c110 + d110) × 1015)|mod28

d11 = |(c110 + d110) × 1015)|mod28

(9)
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Step 2. Set A, B ∈ NDM×N and i = 1 to DM. If i ≥ 1 and i ≤ DM/2, then we get the following:

{
A(i, :) = a11(((i− 1) ×N + 1) : (i×N), :)
B(i, :) = c11(((i− 1) ×N + 1) : (i×N), :)

. (10)

Otherwise,

{
A(i, :) = b11(((i− 1− (DM/2)) ×N + 1) : ((i− (DM/2)) ×N), :)
B(i, :) = d11(((i− 1− (DM/2)) ×N + 1) : ((i− (DM/2)) ×N), :)

. (11)

Step 3. Here, we have to apply bitcircshift rule, which is an action that is done on all of the bits of a
binary amount, in which they are transformed by a determined number of locations to the left or right.
Bitcircshift is used when the operand is being used as a series of bits relatively than generally. In other
words, the operand behaves as single bits that show something and are not values [22].

Let P2 = PC, and P3 ∈ NDM×N. If i = 1 to DM and j = 1 to N, then we get the following:

P3(i, j) = bitcircshi f t P2(i, j)by step A(i, j). (12)

Step 4. Let keyr0 = (a110(1 : N) + b110(1 : N))′/2 and keyc0 =

(c110(1 : DM) + d110(1 : DM))/2, and quantize them as keyr and keyc, respectively, in [0, 255].

{
keyr = |keyr0| × 1015mod256
keyc = |keyc0| × 1015mod256

(13)

Step 5. Set P4R, P4C ∈ NDM×N. If i = 1 to DM, r1 = circshi f t(B(i, ;), [0, i]) and i = 1, then we get
the following: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

P4R(i, :) = ((P3(i, :) + r1)mod256) ⊕ keyr

and else
P4R(i, :) = ((P3(i, :) + r1)mod256) ⊕ P4R((i− 1), :)

. (14)

Step 6. If j = 1 to N, c1 = circshi f t(B( j, :), [ j, 0]) and j = 1, then we get the following:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P4C(:, j) = ((P4R(:, j) + c1)mod256) ⊕ keyc

and else
P4C(:, j) = ((P4R(:, j) + c1)mod256) ⊕ P4C(:, ( j− 1))

. (15)

P4C, the final image, is encrypted.
This Process explained in Algorithm 2 with the title: Adaptive diffusion.
Our proposed algorithm is a symmetric algorithm. The decryption procedure is the opposite of

the encryption method and decryption is done using the encryption method’s formulas. This is shown
in Figure 2.

Remark 1. The proposed algorithm is suitable for all color images (RGB). Because medical images are very
important in today’s technological world, we decided to use the proposed algorithm for medical images.
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Algorithm 2 Adaptive diffusion

Input: Input data from permutation procession
Output: Encrypted Image

1: Use other initial values and parameters to iterate the chaotic system again to get the vectors: a110, b110,
c110, d110, and quantize them to generate four different vectors: a11, b11, c11, d11.

2: Set A, B ∈NDM×N

3: for i = 1 to DM do
4: if i ≥ 1 and i ≤ DM/2 then
5: A(i,:) = a11(((i − 1) × N + 1) : (i × N),:)
6: B(i,:) = c11(((i − 1) × N + 1) : (i × N),:)
7: else
8: A(i,:) = b11(((i − 1 − (DM/2)) × N + 1) : ((i − (DM/2)) × N),:) B(i,:) = d11(((i − 1 − (DM/2)) × N +

1) : ((i − (DM/2)) × N),:)
9: end if
10: end for
11: Let P2 = PC, and set P3 ∈NDM×N

12: for i = 1 to DM do
13: for j = 1 to N do
14: P3(i,j) = bitcircshift P2(i,j) by step A(i,j)
15: end for
16: end for
17: Let key_r0 = (a110(1 : N)+b110(1 : N))′/2, key_c0 = (c110(1 : DM)+d110(1 : DM))/2, and quantize them

key_r, key_c, in [0, 255]
18: Set P4R, P4C ∈NDM×N

19: for i = 1 to DM do
20: r1 = circshift (B(i,;),[0,i])
21: if i = 1 then
22: P4R(i,:) = bitxor(mod((P3(i, :)+r1), 256), key_r)
23: else
24: P4R(i,:) = bitxor(mod((P3(i, :)+r1), 256), P4R((i-1), :))
25: end if
26: end for
27: for j = 1 to N do
28: c1 = circshift (B(j,:),[j,0])
29: if j = 1 then
30: P4C(:,j) = bitxor(mod((P4R(:, j)+c1), 256), key_c)
31: else
32: P4C(:,j) = bitxor(mod((P4R(:, j)+c1), 256), P4C(:, (j-1)))
33: end if
34: end for
35: Let P4C be the final encrypted image
36: return Encrypted Image

The decryption process is inverse encryption process.
Input: Input data from permutation procession
Output: Encrypted Image

122



Entropy 2019, 21, 577

(a) 

(b) 

Figure 2. Schematic of the proposed encryption algorithm (a), and schematic of the proposed decryption
algorithm (b).

4. Experiment Result and Security Analysis

In this section, we implemented the proposed algorithm on two medical color images using
the MATLAB 2017a software environment (in personal computer with core i7, 3.4GHz, RAM 16GB).
As we stated in the introduction, the medical color images are obtained using the Medipix3RX chip
technology that is used in today’s imaging devices [1–4].

For example, four color images 256 × 256 in size have been selected as the plain images. In Figure 3,
images b, e, h, and k are images that are encrypted by the proposed algorithm for the plain images a, d,
g, and j, respectively; and images c, f, i, and l are the decrypted images.
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Figure 3. (a,d,g,j): Plain images. (b,e,h,k): Respective encrypted images. (c,f,i,l): Respective
decrypted images. Initial values for all images: (a0 = 0.1314, b0 = 0.5214, c0 = 0.3698, and
d0 = 0.8419). Values of the chaotic system: Image (a): sha256 = ‘9ADBBFB88CFD90C23CE114E4740
2054E6DDC4182510E80980EA7151CD11E6D18’, image (d): sha256 = ‘8BF6A886E4B58D2B530749
EE9BAB54A3C360D406DC5B901CC169D7870FA3CA09’, image (g): sha256 = ‘49A22186DB65786789
CD1391CDE4D9737039E758F39A45C59D8338DE05353337’, and image (j): sha256 = ‘6EB1ADE45F27A
67E09A25265835F05BC11E057255DA81359299631F4724936C8’.
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4.1. Security Analysis

As seen, it is not possible to visually compare the plain images with images that were obtained
from the decryption process, and the measures such as the correlation coefficients of two adjacent
pixels in the plain image and the cipher image, the entropy, the NPCR (number of pixel change rate),
and the UACI (uniform average change intensity) should be mathematically examined. We consider
an example of a baby’s image.

4.2. Histogram Analysis

Color images include three main color channels (red, green, and blue), and these images are
called RGB images. Figure 4 shows the histograms of these three channels that are observed for the
baby’s image.

Figure 4. (a): Plain image baby, and (b–d): R, G, and B histograms, respectively.

In Figure 5, we can see the baby’s decrypted image from the three-channel color histograms.

 
Figure 5. (a): Baby’s decrypted image, and (b–d): R, G, and B histograms, respectively.
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Chi-square Analysis
Statistical analysis is a type of the commonplace cryptology procedures. The monotony of the

histogram of cipher demonstrates the strength of the encryption path to statistical analysis. The ocular
effect of the histogram is not sufficient to verify the accident of a cipher image’s pixel values [26].
To quantitatively measure the monotony of the histogram, we use the chi-square test as a metric.
The description of the chi-square is as follows:

χ2
exp =

Q∑
i=1

(Qi−ei)
2

ei
,

ei =
M×N

Q ,
(16)

where Q = 256 in our method, oi is the observed incidence frequency of each rate on the histogram of
the ciphered image, ei is the envisage incidence frequency of the uniform distribution, and M×N is the
length of an image trail. For an ideal image encryption system, the empirical chi-square value should
be less than the theoretic amount. With the importance level of 0.05, the theoretic chi-square value is
293 [26]. The chi-square test conclusions and transition rates are listed in Tables 1 and 2. All the test
images transition the test, which shows that our plan has a satisfying encryption effect.

Table 1. Chi-square test results (part 1).

Images a d

Channels R G B R G B

x2
test 247.0762 204.9082 220.0742 251.8379 260.2695 256.4063

x2
255.0.05 293 293 293 293 293 293

Pass or not Yes Yes Yes Yes Yes Yes

Table 2. Chi-square test results (part 2).

Images g j

Channels R G B R G B

x2
test 285.8359 261.9980 247.2793 250.0836 210.7622 231.1039

x2
255.0.05 293 293 293 293 293 293

Passor not Yes Yes Yes Yes Yes Yes

4.3. Correlation Analysis

The correlation coefficient of two adjacent pixels in the plain image and the cipher image is one of
the important factors in determining the quality of image encryption algorithms [23]. In Figure 6, we
can see the correlation histograms for the plain image and cipher image, and the correlation histograms
are shown in three directions: Horizontal, vertical, and diagonal.
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Figure 6. Correlation histograms. (a–c): For the plain image; and (d–f): For the cipher image.

In Table 3, the numerical values of the correlation for the plain image and the cipher image are
given, and the values in the table are calculated for three directions: Horizontal, vertical, and diagonal.
We can specifically see that the correlation coefficients of the plain image are near to 1, however the
correlation coefficients of the cipher-image are about equal 0, which may explain why the designed
encrypted algorithm has a powerful resistance to possible statistical attacks. The table specifies that
the proposed algorithm has the required quality. The correlation coefficient of two adjacent pixels in
the plain image and the cipher image is obtained as follows:

rxy =
E((xi − E(x))(yi − E(y))√

D(x)D(y)
(17)

where
E(x) = 1

N
∑n

i=1 xi,
D(x) = 1

N
∑n

i=1(xi − E(x))2 .

E((xi − E(x))(yi − E(y)) = cov(x, y), E(x) = 1
N

∑N
i=1 xi is the expected value, N is the number of image

pixels, and D(x) = 1
N

∑N
i=1(xi − E(x))2 is the variance. x and y are the gray values of two adjacent

pixels, and N is the total number of pixels that are chosen from the image.

Table 3. Correlation coefficients in the plain image and the cipher image.

Image Channel
Plain-Text Cipher-Text

H V D H V D

a
R 0.9952 0.9978 0.9897 –0.0115 0.0048 –0.0026
G 0.9825 0.9881 0.9688 0.0109 0.0097 –0.0161
B 0.9833 0.9803 0.9615 –0.0224 –0.0091 0.0062

d
R 0.9217 0.8673 0.8580 0.0097 –0.0091 –0.0094
G 0.8575 0.7647 0.7328 0.0015 0.0075 –0.0055
B 0.9140 0.8966 0.8626 0.0137 0.0051 0.0065
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Table 3. Cont.

Image Channel
Plain-Text Cipher-Text

H V D H V D

g
R 0.9942 0.9968 0.9887 –0.0125 0.0047 –0.0025
G 0.9815 0.9871 0.9678 0.0109 0.0095 –0.0160
B 0.9823 0.9793 0.9605 –0.0214 –0.0093 0.0063

j
R 0.9217 0.8663 0.8570 0.0095 –0.0092 –0.0093
G 0.8575 0.7637 0.7318 0.0014 0.0073 –0.0056
B 0.9140 0.8956 0.8616 0.0135 0.0052 0.0066

4.4. Entropy Analysis

The entropy randomly measures the data sequence and is defined as follows [24]:

H(S) =
2N−1∑
i=0

P(si) log
(

1
P(si)

)
(18)

where N is the number of grayscale levels in an image, and P(si) is the incidence possibility of grayscale
“I” in the image. The entropy amount will be 8 for images that are wholly accidentally generated.
The nearer the entropy of an encryption method is to 8, the less foreseeable it is, and thus, the more
secure the plan. The entropies for the designed encryption method have been measured for a sample
image and the conclusions are shown in Table 4.

Table 4. Information entropies results for plain and cipher images.

Image Channel Image a Image d Image g Image j

Plain image

R 6.9581 7.7047 6.9571 7.7067
G 6.8945 7.4724 6.8955 7.4734
B 6.1365 7.7502 6.1355 7.7512

RGB 7.2528 7.7604 7.2548 7.7614

Cipher image

R 7.9992 7.9991 7.9982 7.9993
G 7.9993 7.9991 7.9983 7.9995
B 7.9993 7.9991 7.9994 7.9981

RGB 7.9997 7.9996 7.9996 7.9994

4.5. NPCR (Number of Pixel Change Rate) and UACI (Uniform Average Change Intensity)

In a differential attack, a little variation is built to the plain image, and the designed algorithm
is employed to encrypt the plain image before and after this variation. These two encrypted images
have been evaluated to detect any possible connection between the plain image and the cipher image.
The (UACI) and the (NPCR) are two indicator that are regularly used by researchers to test the
differential attack resistor of any image encryption method [12].

Suppose that C1 and C2 are two cipher images that are encrypted from two plain images with
only one-bit difference. The NPCR and UACI are defined as follows:

NPCR(C1, C2) =
∑

i, j

H(i, j)
M

× 100% (19)

and

UACI(C1, C2) =
∑
i, j

|C1(i, j) −C2(i, j)|
(S− 1) ×M

× 100% (20)

where M shows the total number of pixels in any cipher-image, S illustrates the number of allowed
pixels, and H(i, j) demonstrates the difference between C1 and C2, which is specified as follows.

128



Entropy 2019, 21, 577

H(i, j) =
{

0, i f C1(i, j) = C2(i, j)
1, i f C1(i, j) � C2(i, j)

. (21)

The larger the NPCR and UACI are, the better the quality of the algorithm. For four randomly
selected points, the NPCRs and UACIs are listed in Table 5.

Table 5. Number of pixel change rates (NPCRs) and uniform average change intensities (UACIs) of
different positions (%).

Position (12,34) (34,56) (56,78) (78,90)

NPCR 99.6232 99.6215 99.6170 99.5971

UACI 33.4574 33.4952 33.5326 33.4755

4.6. Key Space

The key space for encryption algorithms should be large enough to withstand potential attacks.
The minimum key space should be 2100. The input values of (x0, y0, z0, h0, SHA256) act as a secret key,
and, based on this, the secret key space is 1014 × 1014 × 1014 × 1014 × 2128 = 1056 × 2128. This indicates
that the designed method has good key space.

4.7. Key Sensibility Analysis

A safe encryption system must be sensitive to the key; for example, the little change of encryption
keys can lead to very different cipher image, and a small change of the decryption keys cannot decrypt
the image. Several key sensitivity tests are performed. Figure 7 shows the encrypted images of the baby
(plain image b). Figure 3a shows the encrypted image using user keys with a 1-bit difference. The plain
encrypted image is indicated in Figure 3b. When the keys of the initial state x0, y0, z0, h0, and SHA256
are changed by one bit (i.e., 10−14 for x0, y0, z0, and h0 and 2−128 for SHA256), the five new encrypted
images are obtained and shown in Figure 7a–e. We compare them with the image in Figure 7e, and
the five differential images are shown in Figure 7f–j. This shows that there are very big differences
between the images in Figure 7e,f–j.

In addition, to experience the capability of the designed method to resist the cipher text attack,
the keys x0, y0, z0, and h0 will be modified by 10 −14 and SHA256 will be changed by 2−128 to decrypt
the plain encrypted image. The decrypted images are indicated in Figure 7, which are wholly different
from the plain image. Therefore, it can be seen that the cipher text cannot be suitably decrypted
without the correct keys, which shows that the proposed method can effectively hamper the cipher text
merely attack.
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(a) (b) (c) (d) 

(e) 

(f) (g) (h) (i) 

(j)

Figure 7. Cipher-images within authentic primary keys and the differences between them and the plain
encrypted images: (a–e) Five new encrypted images with the keys x0 + 10−14, y0 + 10−14, z0 + 10−14,
h0 + 10−14, and SHA256+2−128, respectively; and (f–j) differences between the unauthentic encrypted
images and the plain image.

4.8. Known-Plain Image and Chosen-Plain Image Analysis

Clearly, some specific images are selected to test the selected plain-text attack, like a full-white
image in Figure 8a and a full-black image in Figure 8d. The results are shown in Figure 8, which
indicate that the cryptology is appropriate for these specific images and can resist the chosen-plain-text
attack. In Table 6, we can see the entropy values for all-white and all-black images. It can be seen that
all the values that are obtained are close to 8, indicating the suitability of the proposed algorithm.
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(a) (b) 

(c)

Figure 8. Cont.
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(d) (e) 

 
(f)  

Figure 8. Selected plain-image test for white and black images, display (a) the full-white image, (b) the
cipher image of panel (a), (c) the histogram of channel R (b), (d) the full-black image, (e) the cipher
image of panel (d), and (f) the histogram of channel R.

Table 6. Information entropy of the full-black image and full-white image.

Image R G B

Black 7.9993 7.9994 7.9993

White 7.9994 7.9994 7.9993

4.9. Noise Attack and Occlusion Attack

In the digital world, the images will unexpectedly experience noise and occlude attacks in the
transition process, and an effective cryptology must be strong against them. The baby image is used
as the test image. Figure 9 shows the noisy cipher images that are contaminated by Gaussian noise
(GN), salt and pepper noise (SPN), and speckle noise (SN) with different noise compression and their
decrypted images. As seen from Figure 10, the most information of the plain image can be intuitively
identified from the decrypted image’s presentation of the cipher images with different occlusion effects
and their corresponding retrieved images. Specifically, the decrypted images still include most date
of the baby image. The PSNR (peak signal-to-noise-ratio) is employed to compute the condition of
the decrypted image after a possible attack. For a gray image, the PSNR and MSE can be computed
as follows:
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PSNR = 10 × log10

(255× 255
MSE

)
(db) (22)

MSE =
1

mn

m∑
i=1

n∑
j=1

||I1(i, j) − I2(i, j)||2MSE =
1

mn

m∑
i=1

n∑
j=1

||I1(i, j) − I2(i, j)||2 (23)

where MSE shows the mean square error between the cipher image I1(i, j) and the plain image I2(i, j),
and m and n are the width and height, respectively [25]. The results are explained in Tables 7 and 8.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 9. Noise attack test results. (a,b) Gaussian noise (GN); (c,d) salt and pepper noise (SPN);
(e,f) speckle noise (SN).

Table 7. Noise attack test results.

Item PSNR

R G B

Salt and Pepper 34.2863 33.6124 33.3711

Gaussian 30.6104 29.9219 29.7102

Speckle 30.6023 29.8951 29.7059

Figure 10. Cont.
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Figure 10. Occlude attack test results.

Table 8. Occlude attack test results.

Item PSNR

R G B

Salt and pepper 34.0961 33.6237 33.5174

Gaussian 34.0106 33.6064 33.4199

Speckle 31.0996 30.6760 30.4795

5. Comparison

In this section, we will compare the results that were obtained from the proposed algorithm with
previous algorithms. The results that were obtained from the designed method are measured with the
methods in References [10,24] with respect to their correlation, entropy, NPCR, and UACI, and the key
space was compared with references [9,12,24]. The results of the comparison are shown in Tables 9–14.

Table 9. Correlation coefficients results in the original image and the encrypted image for the proposed
method and the two methods that were presented in existing methods.

Image Methods Channel
Plain Image Cipher Image

H V D H V D

Image a

proposed

R 0.9952 0.9978 0.9897 –0.0115 0.0048 –0.0026

G 0.9825 0.9881 0.9688 0.0109 0.0097 –0.0161

B 0.9833 0.9803 0.9615 –0.0224 –0.0091 0.0062

Algorithm [10]

R 0.9952 0.9978 0.9897 –0.0122 –0.0117 –0.0238

G 0.9825 0.9881 0.9688 –0.0113 0.0079 –0.0230

B 0.9833 0.9803 0.9615 –0.0099 0.0149 0.0092

Algorithm [24]

R 0.9952 0.9978 0.9897 –0.0114 –0.0110 –0.0174

G 0.9825 0.9881 0.9688 –0.0206 –0.0071 0.0180

B 0.9833 0.9803 0.9615 –0.0134 –0.0106 –0.00194
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Table 9. Cont.

Image Methods Channel
Plain Image Cipher Image

H V D H V D

Image d

proposed

R 0.9217 0.8673 0.8580 0.0097 –0.0091 –0.0094

G 0.8575 0.7647 0.7328 0.0015 0.0075 –0.0055

B 0.9140 0.8966 0.8626 0.0137 0.0051 0.0065

Algorithm [10]

R 0.9217 0.8673 0.8580 0.0133 –0.0095 –0.0070

G 0.8575 0.7647 0.7328 –0.0182 0.0230 –0.0056

B 0.9140 0.8966 0.8626 –0.0282 –7.3230 × 10–4 –0.0073

Algorithm [24]

R 0.9217 0.8673 0.8580 –0.0154 –0.0242 0.0094

G 0.8575 0.7647 0.7328 –0.0059 0.0109 1.7711 × 10–4

B 0.9140 0.8966 0.8626 –0.0216 –0.0089 0.0077

Image g

proposed

R 0.9942 0.9968 0.9887 –0.0125 0.0047 –0.0025

G 0.9815 0.9871 0.9678 0.0109 0.0095 –0.0160

B 0.9823 0.9793 0.9605 –0.0214 –0.0093 0.0063

Algorithm [10]

R 0.9942 0.9968 0.9887 –0.0136 0.0066 –0.0035

G 0.9815 0.9871 0.9678 0.0113 0.0103 –0.0190

B 0.9823 0.9793 0.9605 –0.0237 –0.0098 0.0073

Algorithm [24]

R 0.9942 0.9968 0.9887 –0.0129 0.0049 –0.0076

G 0.9815 0.9871 0.9678 0.0111 0.0101 –0.0171

B 0.9823 0.9793 0.9605 –0.0231 –0.0156 0.0067

Image j

proposed

R 0.9217 0.8663 0.8570 0.0095 –0.0092 –0.0093

G 0.8575 0.7637 0.7318 0.0014 0.0073 –0.0056

B 0.9140 0.8956 0.8616 0.0135 0.0052 0.0066

Algorithm [10]

R 0.9217 0.8663 0.8570 0.0115 –0.0102 –0.0105

G 0.8575 0.7637 0.7318 0.0084 0.0094 –0.0083

B 0.9140 0.8956 0.8616 0.0196 0.0067 0.0089

Algorithm [24]

R 0.9217 0.8663 0.8570 0.0115 –0.0111 –0.0106

G 0.8575 0.7637 0.7318 0.0082 0.0103 –0.0074

B 0.9140 0.8956 0.8616 0.0161 0.0083 0.0090

Table 10. Information entropies of the cipher images and plain images, part 1.

Image Channel
Proposed

Algorithm
Image a

Method [10]
Image a

Method [24]
Image a

Proposed
Algorithm

Image d

Method [10]
Image d

Method [24]
Image d

Plainimage

R 6.9581 6.9581 6.9581 7.7047 7.7047 7.7047

G 6.8945 6.8945 6.8945 7.4724 7.4724 7.4724

B 6.1365 6.1365 6.1365 7.7502 7.7502 7.7502

RGB 7.2528 7.2528 7.2528 7.7604 7.7604 7.7604

Cipherimage

R 7.9992 7.9991 7.9992 7.9991 7.9991 7.9988

G 7.9993 7.9989 7.9992 7.9991 7.9991 7.9992

B 7.9993 7.9988 7.9993 7.9991 7.9990 7.9989

RGB 7.9997 7.9996 7.9997 7.9996 7.9995 7.9996
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Table 11. Information entropies of the cipher images and plain images, part 2.

Image Channel
Proposed

Algorithm
Image g

Method [10]
Image g

Method [24]
Image g

Proposed
Algorithm

Image j

Method [10]
Image j

Method [24]
Image j

Plainimage

R 6.9571 6.9571 6.9571 7.7067 7.7067 7.7067

G 6.8955 6.8955 6.8955 7.4734 7.4734 7.4734

B 6.1355 6.1355 6.1355 7.7512 7.7512 7.7512

RGB 7.2548 7.2548 7.2548 7.7614 7.7614 7.7614

Cipherimage

R 7.9982 7.9981 7.9982 7.9993 7.9993 7.9989

G 7.9983 7.9979 7.9982 7.9995 7.9995 7.9994

B 7.9994 7.9985 7.9994 7.9981 7.9980 7.9979

RGB 7.9996 7.9995 7.9996 7.9994 7.9993 7.9994

Table 12. NPCRs and UACIs at different positions (%), Part 1.

Position
Proposed

Algorithm
Position (12, 34)

Method [10]
Position (12, 34)

Method [24]
Position (12, 34)

Proposed
Algorithm

Position (34, 56)

Method [10]
Position (34, 56)

Method [24]
Position (34, 56)

NPCR 99.6232 99.6222 99.6218 99.6215 99.5015 99.6187

UACI 33.4574 33.4504 33.4767 33.4952 33.3952 33.4850

Table 13. NPCRs and UACIs at different positions (%), Part 2.

Position
Proposed

Algorithm
Position (56, 78)

Method [10]
Position (56, 78)

Method [24]
Position (56, 78)

Proposed
Algorithm

Position (78, 90)

Method [10]
Position (78, 90)

Method [24]
Position (78, 90)

NPCR 99.6170 99.4170 99.6123 99.5971 99.1971 99.6223

UACI 33.5326 33.2326 33.3979 33.4755 33.3755 33.4759

Table 14. Comparison of the proposed algorithm’s key space with other algorithms.

Algorithm Proposed [9] [12] [24]

Key space 1056 × 2128 2192 2128 2256

6. Conclusions

In this paper, we present a new algorithm based on chaotic systems to protect these images against
attacks. The proposed algorithm has two main parts: A high-speed permutation process and adaptive
diffusion, which lead to a very efficient and reliable approach in this regard. By examining the results
that were obtained from the implementation of the proposed algorithm in the MATLAB software
environment and comparing these results with existing methods, it is observed that the designed
method is better than those algorithms with respect to the important factors that are mentioned. Such
that, to quantitatively evaluate the uniformity of the histogram, the chi-square test is done and the
obtained results are desirable. Also, key sensitivity analysis shows that the image is not decrypted
with a small change in the key, which indicates that the algorithm is suitable. Clearly, particular images
are selected to experiment the selected plain-text, such as a full-white image and a full-black image.
Entropy results obtained from the implementation of the algorithm on this type of images show that
the proposed method is suitable for this particular type of images. In the real world, the images will
inevitably experience noise and occlude attacks while shifting, and an effective cryptosystem must be
powerful versus them. The obtained results from noise and occlusion attacks analyses show that the
proposed algorithm can withstand against these types of attacks. It is also observed that the values that
are obtained with respect to the entropy, NPCR, and UACI are better than those from the methods in
existing papers. As we have already mentioned, the key space should be large enough (at least 2ˆ100).
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Compared to the old methods, we observe that the key space of our method is very large and more
resistant than other methods in dealing with attacks.
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Abstract: In order to obtain chaos with a wider chaotic scope and better chaotic behavior, this paper
combines the several existing one-dimensional chaos and forms a new one-dimensional chaotic
map by using a modular operation which is named by LLS system and abbreviated as LLSS. To
get a better encryption effect, a new image encryption method based on double chaos and DNA
coding technology is proposed in this paper. A new one-dimensional chaotic map is combined with
a hyperchaotic Qi system to encrypt by using DNA coding. The first stage involves three rounds
of scrambling; a diffusion algorithm is applied to the plaintext image, and then the intermediate
ciphertext image is partitioned. The final encrypted image is formed by using DNA operation.
Experimental simulation and security analysis show that this algorithm increases the key space, has
high sensitivity, and can resist several common attacks. At the same time, the algorithm in this paper
can reduce the correlation between adjacent pixels, making it close to 0, and increase the information
entropy, making it close to the ideal value and achieving a good encryption effect.

Keywords: chaotic systems; image encryption; DNA coding; security analysis

1. Introduction

With the rapid development of the Internet, more and more multimedia image information is
transmitted online. Images are widely used because of their vivid and intuitive characteristics. People
can easily access other people’s information through the Internet with the help of an ordinary computer
and network cable. Therefore, the question of how to transfer the information safely and ensure its
security has become an urgent problem to be solved. Image encryption is the primary solution. Due to
high redundancy and correlation between image pixels, large amounts of data, and fidelity, traditional
text encryption technology cannot meet the needs of image encryption [1]. Therefore, the development
of secure and effective image encryption algorithms is still the focus of the communication field [2].

Due to its high sensitivity to initial values and system parameters, excellent ergodicity, and good
pseudo-randomicity, chaotic systems have become the primary choice of cryptographic systems [3,4].
Therefore, many image encryption schemes based on chaos have been proposed [5,6]. Among them,
chaotic image encryption methods are divided into one-dimensional chaotic and multidimensional
chaotic encryption methods. A one-dimensional chaotic system has a simple structure which is easy to
implement. However, they also have some problems: the scope of chaotic behavior is small, and the
Lyapunov index is low [7]. Some improved encryption schemes for one-dimensional chaotic maps
have been proposed. Wu et al. improved the existing one-dimensional chaos and proposed a new
image encryption method [8]. A new method was proposed by Chao et al. who took the output
of tent mapping as the input of Chebyshev mapping, and then applied perturbations to generate
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excellent pseudo-random chaotic sequences for encryption [9]. Hua et al. proposed to combine two
one-dimensional chaotic systems in parallel to form a new one-dimensional chaotic system through
cosine transform to encrypt the image [10], which increased the scope of system chaotic mapping. C P et
al. defined a new one-dimensional chaotic map with the difference of two chaotic output sequences [11].
These methods expand the scope of chaotic mapping and improve chaotic properties to some extent,
but the system parameters are still limited. On the other hand, the multi-dimensional chaotic phase
space is complex, the system parameters have more flexibility, and the dynamic behavior is difficult to
predict. In particular, the hyperchaotic system has two or more positive Lyapunov exponents, and the
characteristics of the chaos are better for this system. A multi-dimensional chaotic system can produce
multiple chaotic sequences at the same time, which can be used in image scrambling and diffusion,
respectively, with high security. Sun adopts a 5-D hyperchaotic system to generate pseudo-random
sequences and decompose permutation images, which can resist statistical attacks and differential
attacks and is suitable for practical application [12].

Since DNA molecules can be processed in parallel on a large scale, with huge storage and ultra-low
power consumption, many image encryption methods are proposed by many researchers who combine
chaotic mapping and DNA coding technology. In 1994, Aldeman proposed DNA computing for the
first time, ushering in a new era of information processing [13]. In 2002, Gehani et al. proposed to
encrypt images one by one with DNA strings [14]. In 2012, an image encryption method based on
piecewise linear mapping of DNA and PWLCM was proposed, which increased the key space [15].
However, these encryption methods cannot resist selective plaintext attacks and known plaintext
attacks. In 2019, Zhang et al. proposed a new image encryption method based on quantum chaos and
DNA coding, which has high security and can resist brute force attacks and statistical attacks [16]. In
2019, a color image encryption algorithm based on dynamic DNA encryption and chaos was proposed,
using the hash function and external parameters to calculate its initial value, which can effectively
resist the selected plaintext attack with better security [17]. Guan et al. proposed a digital image
encryption algorithm based on DNA and frequency domain hyperchaos, which improved security
against differential attacks [18]. Yang et al. proposed an image compression and encryption scheme
based on fractional-order hyperchaotic system combining 2D compressed sensing and DNA coding.
The fractional order and initial value of the fractional hyperchaos system are used as the key of the
encryption scheme, which greatly expands the key space and has a strong ability to resist multiple
attacks [19].

In order to provide a better encryption effect, a new image encryption scheme based on double
chaos (one-dimensional composite chaos and hyperchaos) and DNA coding technology is proposed.
This algorithm has the following advantages: (1) First, Fibonacci transformation and diffusion operation
of modularization are performed on the plaintext image, and the pixel position and value of the plaintext
image are fully changed to reduce the image correlation. (2) The first-round scrambling-diffusion
operation is repeated three times, so that the value of each encrypted pixel is affected by the previous
one, which increases the sensitivity to its clear text. (3) A new one-dimensional complex chaos is
proposed, which has no period window within the chaos scope, that is to say it is a full map, and is
larger than the corresponding one-dimensional chaotic Lyapunov exponents. Combining the new
chaotic sequence with DNA technology, the secondary encryption extends the complexity and improves
its security. (4) Taking the pixel value of the plaintext image as the initial value of the chaotic system
can resist the plaintext attack and increase the key space. In this paper, key space, statistical analysis,
differential attack, and anti-noise attack are analyzed. Experimental results and security analysis also
confirm that the algorithm proposed in this paper increases key space, has high sensitivity, can resist
multiple attacks, and can effectively protect the security of image information.

The rest of this paper is arranged as follows. The second section mainly introduces the theoretical
knowledge required in this paper, such as typical chaotic systems, newly constructed LLS system, and
DNA coding technology. The third section introduces in detail the image encryption scheme based
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on double chaos and DNA coding technology. The fourth section is the experimental simulation and
security analysis. Finally, the fifth section draws the conclusion of this paper.

2. The Basic Principle

2.1. One-Dimensional Chaotic Mapping

2.1.1. Logistic Chaotic Mapping

Logistic chaotic mapping is a classical one-dimensional chaotic mapping with a simple structure
and few control parameters, which is convenient for implementation and generalization involving
other chaos [20]. The expression of Logistic chaotic mapping is shown as Formula (1):

xn+1 = μxn(1− xn), n = 0, 1, 2, 3 · · · (1)

where μ is the system control parameter, and x0 is the initial value of the system 0 < x0 < 1. The
bifurcation diagram and lyapunov exponent of logistic chaotic mapping are shown in Figures 1a and
2a. It can be seen that with the increase of μ and the number of bifurcations of the system, when μ
varies from 3.5699456 to 4, the system enters a chaotic state.

(a) (b) (c)

x n

Figure 1. The Bifurcation diagrams of the (a) Logistic map, (b) Sine map, (c) LLSS map.

(a) (b) (c)

Figure 2. The Lyapunov Exponent of the (a) Logistic map, (b) Sine map, (c) LLSS map.

2.1.2. Sine Chaotic Mapping

Sine chaotic mapping is a mapping derived from the Sine function, which can convert the input
angle in the range from 0 to 1/π to the output angle in a certain range [21]. The expression of Sine
chaotic mapping is shown as Formula (2):

xn+1 = rsin(πxn)/4, (2)

where xn is the input and r is the system control parameter. The bifurcation diagram of Sine’s chaotic
mapping and lyapunov exponent are shown as Figures 1b and 2b.
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2.2. LLSS Chaotic Mapping

A new one-dimensional chaotic system can be obtained by using the existing one-dimensional
chaos as a seed map. In this paper, two logistic maps and Sine map were connected in parallel, and
then a mod operation was used to form a new one-dimensional chaos algorithm named LLSS. The
structure is shown as Figure 3. The system expression is defined by Formula (3):

xn+1 = mod(2ax(n)(1− x(n) + (8− 2a) sin(πx(n))/4, 1). (3)

Figure 3. The new chaotic system of the LLS map.

The bifurcation diagram and Lyapunov exponent of LLSS are shown in Figures 1c and 2c. As can
be seen from the figure, the LLSS is fully mapped within the range of [0,4] and has no period window.
Compared with the classical one-dimensional chaotic map, the Lyapunov exponent also increases.

2.3. Qi Hyperchaotic System

In 2005, Qi et al. discovered and named a new chaos algorithm called the Qi chaotic system [22].
On the basis of the experience of increasing dimensions to obtain hyperchaos, Qi et al. further proposed
the Qi hyperchaos system. In comparison, the dynamic characteristics are more complex and the
motion trajectory traversal range in phase space is larger [23]. The Qi hyperchaotic system is a
four-dimensional hyperchaotic system. The dynamic equation is shown as Formula (4) as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

.
x = a(y− x) + yzw
.
y = b(x + y) − xzw

.
z = −cz + exyw
.

w = −dw + xyz

(4)

When the system parameters a = 50, b = 4, c = 13, d = 20, e = 4, the system is in a hyperchaotic state.
When the initial value [1; 2; 3; 4] is selected, its attractor phase diagram develops as shown in Figure 4.

2.4. DNA Coding Technique

A DNA sequence is a string of molecules that represent the genetic information carried. The
sequence consists of four deoxyribonucleic acids, which are A(adenine), T(thymine), C(cytosine), and
G(guanine) [24]. A and T as well as C and G are complementary pairs. When applying DNA sequences
to binary Numbers, 0 and 1 are complementary. Four deoxyribonucleic acids are represented by two
binary Numbers, so 00 and 11 are complementary, and 01 and 10 are also complementary. There are
eight combinations satisfying the principle of base complementary pairing, that is, there are eight
combinations of coding rules [25].

Plaintext can be thought of as a matrix with a pixel value from 0 to 255, and each plaintext pixel
can be represented by a DNA sequence with a length of 4. For example, this information with a pixel
value of 182 is converted into a binary sequence [10110110], which is encoded according to coding
rule 1 in Table 1. The binary sequence obtained is [10111001], and the corresponding DNA sequence
is CTGC. According to coding rule 2, the binary sequence obtained is [01111001]. DNA operations
include XOR, addition, and subtraction, represented by a ternary number, where 0 represents DNA
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XOR, 1 represents DNA addition, and 2 represents DNA subtraction. These three operation rules
between DNA sequences are set as shown in Table 2.

(a) (b)

(c) (d)

Figure 4. Qi Hyper-chaotic attractor: (a) (x-y) plane; (b) (y-z) plane; (c) (x-w) plane; (d) (x-y-z) plane.

Table 1. DNA coding rules.

Title 1 1 2 3 4 5 6 7 8

A 00 00 01 01 10 10 11 11
T 11 00 10 10 01 01 00 00
C 01 10 00 11 00 11 01 10
G 10 01 11 00 11 00 10 01

Table 2. DNA XOR, Addition and Subtraction.

XOR A G C T + A G C T - C A T G

A A G C T A A G C T C C A T G
G G A T C G G C T A A G C A T
C C T A G C C T A G T T G C A
T T C G A T T A G C G A T G C

3. Proposed Encryption Algorithm

The flow chart of the proposed encryption scheme is shown in Figure 5. Suppose that the size of
the original image I is M × N, and the encryption process is as follows:
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Figure 5. The flow chart of the proposed image encryption algorithm.

Step 1: read in the original image I and use the Fibonacci transform to produce scrambled image F.
Definition: Fibonacci is a scrambling algorithm based on two-dimensional chaotic mapping,

which is a nonlinear transformation in modular form and reduces the correlation by changing the
position relation of image pixels. Its definition is shown in Formula (5):

(
x′
y′

)
=

(
1 1
1 0

)(
x
y

)
mod N. (5)

Step 2: The scrambled image F is diffused with the algorithm of adding and taking modules to
obtain the diffusion image K. The main Formula is shown in Formula (6). This diffusion operation can
make the scrambled image fully diffuse into the ciphertext,

Ki = (Ki−1 + Hi + Fi) mod 256 (6)

where Ki is the diffused image, Fi is the scrambled image, and Hi is the password pixel.
Step 3: Repeat step 1 and step 2 for the three times to fully obtain the middle ciphertext M.
Step 4: Generate an M × M random matrix using LLSS chaotic mapping denoted as R. Given the

initial value and system parameters of LLSS, the chaotic sequence of LLSS is generated by iterating
SUM + 999 times, and the first 1000 points are removed to obtain the sequence P, which is transformed
into an integer from 0 to 255, and then transformed into a random matrix R of M rows and N columns.

Step 5: construct a control sequence with a hyperchaotic Qi system

(1) In order to resist the selective plaintext attack, the relationship between the initial value of the
system and the plaintext is established, and the initial value of the hyperchaotic system X0, Y0, Z0

and W0 is obtained according to the Formula (7) to (10).
(2) In order to obtain better randomness, the first 1500 iterations is removed and four hyperchaotic

sequences X, Y, Z and W are generated. To reconstruct the sequence, X and Y determine the
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encoding mode of DNA, Z determines the operation of DNA, and W represents the decoding
mode of DNA.

X0 = sum(sum(bitand(I, 3)))/(3 ∗ SUM), (7)

Y0 = sum(sum(bitand(I, 12)/4))/(3 ∗ SUM), (8)

Z0 = sum(sum(bitand(I, 48)/16))/(3 ∗ SUM), (9)

W0 = sum(sum(bitand(I, 192)/64))/(3 ∗ SUM), (10)

Step 6: The random matrix R and the middle image M are preprocessed and divided into four
blocks. The middle image M is encoded according to the sequence number corresponding to X to get
D1, and the random matrix R is encoded according to the sequence number corresponding to Y to
get D2. Then the above two encoded blocks are calculated according to Z. Finally, the results of the
operation are calculated with the results of the previous one again. Combine the split blocks to get the
final encrypted image E.

Decryption is the reverse operation of encryption. Decryption is mainly divided into three
modules: DNA decoding and operation, inverse diffusion operation, and inverse operation of
Fibonacci transformation. These modules are shown in the lower part of Figure 5.

4. Simulation Results and Security Analysis

The five images size of are used as the test images 256 × 256 including Lena, Couple, Cameraman,
Baboon, and Lake. Simultaneous, the MatlabR2015a is used as the platform. The original image, the
encrypted image, and the corresponding decrypted image are shown in Figure 6. It can be seen from
the comparison diagram that the encrypted image is a snowflake, in which there is no information of
the original image, and the original image can also be decrypted from the encrypted image, indicating
that the algorithm proposed in this paper has a good encryption effect. In this section, the proposed
algorithm is analyzed for security.

4.1. Key Analysis

4.1.1. Key Space

A good encryption algorithm should have enough key space to resist exhaustive attacks. The key
of the proposed algorithm consists of a total of seven keys: x0, y0, z0, w0, H0, x01, and μ0. According to
the international standard IEEE 754, the index portion is expressed as a positive value to simplify the
comparison. The significant digit of a double-precision floating-point type is 52 bits, the size of the
key space of the control parameter will be greater than 252×7 = 2364 > 2128. The results show that it is
almost impossible to attack the algorithm correctly by brute force, so the encryption algorithm can
resist brute force attacks.

4.1.2. Key Sensitivity

A small change in the decryption key makes a huge difference to the result, and the original image
will not be decrypted correctly, indicating that the algorithm gas has a high sensitivity. First, set the
initial values of the Qi hyperchaos system: x0 = 0.5001, y0 = 0.5130, z0 = 0.5170, w0 = 0.3237; and the
initial values of the LLSS system: x01 = 0.3711, μ0 = 3.9990. Then, make a tiny change to the encryption
key, select one of the key parameters, and add 10−10 so that the results can be compared as shown in
Figure 7. It can be seen that only a slight change can have a huge effect. And the decryption diagram is
completely different from the original image. Therefore, it can be concluded that it is impossible to
decrypt by completely guessing the encryption key.
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(a1) Original Lena (a2) Encrypted Lena (a3) Decrypted Lena

(b1) Original Couple (b2) Encrypted Couple (b3) Decrypted Couple

(c1) Original Cameraman (c2) Encrypted
Cameraman

(c3) Decrypted Cameraman

(d1) Original Baboon (d2) Encrypted Baboon (d3) Decrypted Baboon

(a) Original Lake (b) Encrypted Lake (c) Decrypted Lake

Figure 6. Original (a1)–(e1), encrypted (a2)–(e2), and decrypted of test image (a3)–(e3).
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7. Key sensitivity: (a) Lena (b) x0 = 0.5001 + 10−10, (c) y0 = 0.5130 + 10−10, (d) z0 =

0.5170 + 10−10, (e) w0 = 0.3237 + 10−10, (f) x01 = 0.3711 + 10−10, (g) x0 = 3.9990 + 10−10, (h) corrected
decrypted image.

4.2. Statistic Analysis

4.2.1. Gray Histogram

Gray histogram is more intuitive, and the visibility is good. It can be intuitively seen from
the figure that the frequency or probability of occurrence of the gray value. The more balanced the
histogram, the better the encryption effect [26]. The comparison results are shown in Figure 8. The
gray level histogram represents each gray level and the number of times that gray level occurs. The
x-axis represents grayscale values of 0 to 255, and the y-axis represents the number of pixels in the
corresponding grayscale in the figure. As can be seen from the figure, the histogram of the original
image fluctuates greatly and is not uniform; Ciphertext images are roughly evenly distributed. The
results show that the attacker cannot get information about the original image from the ciphertext,
which indicates that the algorithm proposed in this paper has a good encryption effect.
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(a1) Original Lena (a2) Encrypted Lena

(b1) Original Couple (b2) Encrypted Couple

(c1) Original Cameraman (c2) Encrypted Cameraman

(d1) Original Baboon (d2) Encrypted Baboon

Figure 8. Cont.
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(e1) Original Lake (e2) Encrypted Lake

Figure 8. Gray Histogram of original (a1)–(e1). Gray Histogram of decrypted image (a2)–(e2).

4.2.2. Correlation Analysis of Adjacent Pixels

Two thousand pairs of adjacent pixel values are randomly selected from the horizontal, vertical
and diagonal directions of plaintext and ciphertext images. The following Formulas (11) to (14) are
used to calculate the correlation coefficient of two adjacent pixel values:

ρxy =
cov(x, y)√

D(x)
√

D(y)
, (11)

E(x) =
1
N

N∑
i=1

xi, (12)

D(x) =
1
N

N∑
i=1

(xi − E(x))2, (13)

cov(x, y) =
1
N

N∑
i=1

(xi − E(x))(yi − E(y)), (14)

where x, y is the gray value of two adjacent pixels in the image, N is the total pixel value selected from
the image, E(x) and E(y) are the mean value, D(x) and D(y) are the variance. The smaller the absolute
value of the correlation coefficient is, the lower the correlation is. The correlation coefficient of plaintext
and ciphertext is shown in Table 3. It can be seen from Table 3 that the absolute value of plaintext
image correlation is close to 1, and the absolute value of ciphertext correlation is close to 0, which
indicates that the image correlation after encryption is destroyed. The correlation diagram is shown in
Figure 9, from which it can be seen that the pixels of the plaintext image are highly concentrated and
distributed near the corners, while the pixels of the ciphertext image are evenly distributed.

(a1) Original Lena (a2) Encrypted Lena

Figure 9. Cont.
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(b1) Original Couple (b2) Encrypted Couple

(c1) Original Cameraman (c2) Encrypted Cameraman

(d1) Original Baboon (d2) Encrypted Baboon

(e1) Original Lake (e2) Encrypted Lake

Figure 9. Horizontal correlation of adjacent pixels of original (a1)–(e1), encrypted image (a2)–(e2).

Table 3. Correlation coefficients of adjacent pixels for the test images.

Image Scheme Horizontal Vertical Diagonal

Lena Original image
Cipher image

0.93767
0.0020306

0.97178
0.010543

0.9104
0.0019857

Couple Original image
Cipher image

0.9485
0.0031994

0.93625
0.0044791

0.89823
−0.000148

Cameraman Original image
Cipher image

0.92127
0.0026387

0.9633
0.010641

0.89823
−0.000148

Baboon Original image
Cipher image

0.90552
−0.014249

0.9228
0.0073645

0.8557
0.0068203

Lake Original image
Cipher image

0.93051
0.0012594

0.95735
−0.0014642

0.89664
0.0020329
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4.2.3. Information Entropy

The information entropy of the image is considered from the statistical characteristics and
represents the overall characteristics of the image in the mean sense. It reflects the average amount of
information in the image. The following Formula (15) is used to calculate the information entropy of
the image:

H(x) =
2n−1∑
i=0

p(mi)log2
1

p(mi)
, (15)

where p(mi) represents the probability of signal m. For a 256 × 256 image, the ideal value of entropy
is equal to 8, which means the image is uniform. The closer it gets to 8, the harder the cryptosystem
leaves some information available. When the probability of each gray value is basically equal, the
entropy reaches the maximum value. Table 4 is the information entropy of the algorithm proposed in
this paper. It can be seen from Table 4 that the information entropy of this paper is close to 8, which
indicates that the probability of accidental information leakage is very small.

Table 4. Information entropy.

Image Lena Couple Cameraman Baboon Lake

Original image 7.5534 7.4601 7.0097 7.3649 7.5314
Cipher image 7.9974 7.9971 7.9970 7.9968 7.9973

4.3. Differential Attack

The difference between plaintext and ciphertext can be expressed by NPCR (the number of pixels
change rate) and UACI (the number average changing intensity), where NPCR represents the ratio of
different gray values of different ciphertext images at the same position, while UACI represents the
average change density of different ciphertext images. UACI and NPCR can be used to test the ability
of encryption algorithms to resist differential attacks. The Formulas (16) to (18) are to calculate NPCR
and UACI.

NPCR =

∑
i, j D(i, j)

M×N
× 100%, (16)

UACI =
1

M×N
×

∑
i, j

∣∣∣C1(i, j) −C2(i, j)
∣∣∣

L
× 100%, (17)

D(i, j) =

⎧⎪⎪⎨⎪⎪⎩
0, C1(i, j) = C2(i, j)

1, otherwise
, (18)

where C1(i, j) and C2(i, j) represent the ciphertext image corresponding to two plaintext images with
only one pixel difference. For a 256-level image, the ideal values of UACI and NPCR are 33.4635% and
99.6094%. The test results are shown in Table 5. It can be seen from the table that the average UACI is
99.6130% and NPCR is 33.5211%, which is very close to the ideal value.

Table 5. UACI and NPCR.

Image Lena Couple Cameraman Baboon Lake Average

NPCR (%) 99.5987 99.6276 99.6002 99.6170 99.6216 99.6130
UACI (%) 33.5267 33.5208 33.3921 33.6318 33.5344 33.5211

4.4. Anti-Noise Ability

In order to test the anti-noise ability of the algorithm, add a different intensity of Salt and Pepper
noise and Gaussian noise to the ciphertext image and decrypt it. Then use the peak signal to noise
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ratio (PSNR) to assess it, which is the most widely used image perception quality evaluation method,
and defined by the mean square error (MSE):

MSE = − 1
m× n

m∑
i=1

n∑
j=1

[I(i, j) −D(i, j)]2, (19)

PSNR = 10lg
(

2552

MSE

)
, (20)

where I is the original image and D is the decrypted image. The test results are shown in Table 6. First
increase the noise of the density of 0.001, 0.005 and 0.01 to the cipher images. The noised cipher images
are shown in the first column of Table 6, and then they can be decrypted. The decrypted images are
shown in the third column of Figure 6. The corresponding PSNR is shown in the fourth column. It can
be seen from the figure that in the case of noise, the algorithm in this paper can decrypt the noised
cipher images and obtain the original image information. Even if the noise intensity reaches 0.01,
the decrypted image can still be visually recognized. It can be seen that the encryption scheme can
effectively resist a certain degree of noise attack.

Table 6. PSNR with different noises and intensities.

Noise
Noisy encrypted

images
Noise intensities Decrypted images PSNR(dB)

Salt and Pepper
noise

0.001 41.7268

0.005 34.7189

0.01 33.4257

0.001 35.2165

Gaussian 0.005 33.8192

0.01 32.483
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4.5. Anti-Cropping Ability

To test the ability of the proposed algorithm to resist clipping attacks, set the gray values of some
pixels of the encrypted image to 0, and then decrypt it with the correct key. As shown in Figure 10, it
can be seen that after cutting off a pixel block, the original image can still be decrypted to a certain
extent, indicating that the algorithm proposed in this paper has a certain degree of anti-cropping ability.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Cropping attacks with different areas. (a–d) Partially cut the encrypted image,
(e–h) decrypted images.

4.6. Chosen-Plaintext Attack

In cryptanalysis, there are four typical attacks: ciphertext-only attack, known-plaintext attack,
chosen-plaintext attack, and chosen-ciphertext attack. If it can resist a chosen-ciphertext attack, it has
enough security to resist other attacks. In this paper, two kinds of images, all black and all white, are
used for testing. The encryption diagram and its histogram are shown in Figure 11. At the same time,
the correlation between information entropy and adjacent pixels can be analyzed, as shown in Table 7.

  

(a) All black picture  (b) encrypted all black 
picture  

(c) Gray histogram of encrypted image  

  

(d) All white picture (e) encrypted all white 
picture 

(f) Gray histogram of encrypted image 

Figure 11. Test results with all black and all white.
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Table 7. Information entropy and correlation coefficients of the test images.

Correlation Coefficients

Entropy Horizontal Vertical Diagonal

All black 0 — — —
Cipher with all

black 7.9972 −0.0036 0.0261 0.0033

All white 0 — — —
Cipher with all

white 7.9973 −0.0042 0.0187 −0.0021

4.7. Comparative Analysis with Other Literatures

The algorithm proposed in this paper is compared with other literatures in terms of key space,
information entropy and differential attack. The results are shown in Table 8. It can be seen from the
table that the algorithm proposed in this paper is close to the ideal value, and better than the algorithms
discussed in other literatures in three ways, indicating that this algorithm has a good encryption effect.

Table 8. Comparative analysis.

Algorithm Key space
Information

entropy
UACI (%) NPCR (%)

Ours 3.8× 10109 7.9971 33.5211 99.6130
Ref. [5] 1.2× 1083 7.9951 33.4624 99.4890

Ref. [15] 1.9× 10126 7.9973 30.2375 99.5950
Ref. [16] 1.6× 1079 7.9964 33.4694 99.6105
Ref. [19] 2.9× 10138 7.9845 28.6679 99.6101
Ref. [27] 6.5× 10119 7.9970 33.3443 99.7643

The algorithm proposed in this paper is compared with other literatures on related rows of
adjacent pixels. The results are shown in Table 9. As can be seen from the table, the algorithm proposed
in this paper reduces the pixel correlation from the three directions of horizontal, vertical, and diagonal,
so that its absolute value is close to 0. Compared with other algorithms, the reduction effect of this
algorithm is better.

Table 9. Comparative analysis of the correlation coefficients of adjacent pixels.

Algorithm Vertical Horizontal Diagonal

Ours 0.0020 0.0105 0.0019
Ref. [5] 0.0298 −0.0359 0.0052

Ref. [15] 0.0021 0.0004 −0.0038
Ref. [16] 0.0054 −0.0011 −0.0038
Ref. [19]
Ref. [27]

0.0001
−0.0331

−0.0011
0.0125

−0.0014
−0.0236

4.8. Structural Similarity Index (SSIM)

SSIM is a measure of the similarity of two images. If the two images are before encryption and
after decryption, then SSIM can be used to evaluate the quality of the encrypted image. The value is
from 0 to 1. The larger the value, the smaller the image distortion. Calculated as follows:

μX =
1

m× n

m∑
i=1

n∑
j=1

X(i, j), (21)

σX =
1

m× n− 1

m∑
i=1

n∑
j=1

(X(i, j) − μX)
2)1/2, (22)
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σXY =
1

m× n− 1

m∑
i=1

n∑
j=1

(X(i, j) − μX)(Y(i, j) − μY), (23)

SSIM =
(2μXμY + C1)(2σXY + C2)

(μX
2 + μY

2 + C1)(σX2 + σY2 + C2)
, (24)

where C1 = (0.01× 255)2, C2 = (0.03× 255)2. Calculate the SSIM value is 0.81085 according to the
formula. It can be seen that it is within the range and the value is relatively high. This shows that the
algorithm has less distortion.

4.9. Computational Complexity Analysis

The image encryption algorithm was implemented by Matlab on a personal computer with an
Intel i5-4210U processor and 4.00G RAM. It takes time to record the encryption and decryption of
different image sizes. The results are shown in Figure 12.

Figure 12. Image encryption algorithm computational complexity test.

5. Discussion

This paper proposes a new one-dimensional chaos, which is formed by parallel processing
of Logistic and Sine chaos as seed maps and through modulo operation. The new chaos has the
advantages of a simple one-dimensional chaotic structure, being easy to implement and full mapping
in the chaos range. The algorithm in this paper is based on the combination of the double chaos,
this new one-dimensional chaotic, and hyperchaos Qi, and uses DNA coding technology to achieve
image encryption. In the fourth part of the experimental simulation and performance analysis, we
can see that the algorithm proposed in this paper can increase the key space, have high sensitivity to
the key, reduce the degree of correlation of the original image, and resist the advantages of multiple
attacks. However, the efficiency of the algorithm discussed in this paper is not high, and the degree of
anti-attack needs to be improved. This will be progressed in future research.

6. Conclusions

In this paper, a new image encryption scheme based on composite chaos and Qi hyperchaos
combined with DNA coding is proposed. In this scheme, Fibonacci transformation and diffusion
algorithm of adding modules are used for initial encryption. Then the intermediate ciphertext and
the new compound chaos are calculated by DNA to form the final ciphertext. In order to resist
chosen-plaintext attack, the algorithm takes the sum of original image pixels as the initial value of a
chaotic sequence. Experimental simulation shows that this scheme can increase the key space and
resist many common attacks. However, the efficiency of the scheme is not high, so the main work in
the future will be to improve the efficiency of the algorithm.
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Abstract: With the rapid growth of image transmission and storage, image security has become
a hot topic in the community of information security. Image encryption is a direct way to ensure
image security. This paper presents a novel approach that uses a hyperchaotic system, Pixel-level
Filtering with kernels of variable shapes and parameters, and DNA-level Diffusion, so-called PFDD,
for image encryption. The PFDD totally consists of four stages. First, a hyperchaotic system is
applied to generating hyperchaotic sequences for the purpose of subsequent operations. Second,
dynamic filtering is performed on pixels to change the pixel values. To increase the diversity of
filtering, kernels with variable shapes and parameters determined by the hyperchaotic sequences are
used. Third, a global bit-level scrambling is conducted to change the values and positions of pixels
simultaneously. The bit stream is then encoded into DNA-level data. Finally, a novel DNA-level
diffusion scheme is proposed to further change the image values. We tested the proposed PFDD
with 15 publicly accessible images with different sizes, and the results demonstrate that the PFDD
is capable of achieving state-of-the-art results in terms of the evaluation criteria, indicating that the
PFDD is very effective for image encryption.

Keywords: image encryption; hyperchaotic system; filtering; DNA computing; diffusion

1. Introduction

Images carry rich and direct information that is easy to perceive for the human visual system.
In some specific fields, such as military, security, medical fields, and so on, it is very important
to prevent image content from leaking. Therefore, image security has become a very hot research
topic in the community of information security. Image encryption algorithms that change the values
and/or the positions of pixels in images have been thought of as effective methods for image security.
Although many popular encryption algorithms, such as DES (data encryption standard), advanced
encryption standard (AES), and RSA (Rivest–Shamir–Adleman), were initially designed for block
textual data, they can also be applied to encrypting images [1]. For example, AES with cipher block
chaining (CBC) mode can achieve good performance in image encryption in spite of images having
the apparent characteristics of bulky pixels, strong correlations, and high redundancy. Recently,
chaos-based approaches have become another hot topic in the field of image encryption, since chaotic
systems have many merits for encryption, such as ergodicity, unpredictability, pseudorandomness,
and high sensitivity to parameters and initial values [2–5].

In chaos-based image encryption, chaotic systems are usually applied to generate chaotic
sequences for changing the positions and/or values of pixels in images. Chen et al. generalized the 2D
chaotic cat map to three dimensions and then applied the 3D cat map to conducting image encryption,
and the results showed that the proposed scheme was fast and highly secure [2]. Pareek et al.
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used two Logistic maps and eight different operations to encrypt the pixels in an image, and the
experiments demonstrated that the proposed approach was a secure and efficient way for image
encryption [6]. Borujeni and Eshghi used a logistic map to generate a bit sequence for pseudorandom
number generation in Tompinks–Paige algorithm, and the results indicated that the proposed scheme
could resist any brute-force and statistical attacks [7]. Sheela et al. proposed a novel 2D Henon map
with broad chaotic regime, and then used this map and sine map to confuse and diffuse images.
The experimental analysis revealed the proposed scheme was advantageous over some compared
traditional ones [8]. Low-dimensional chaotic systems have many advantages, such as simple form, few
parameters, and easy implementation, but they are vulnerable to attack. A simple but effective solution
is to use high-dimensional chaotic systems instead of low-dimensional ones. Lyapunov exponent (LE)
is a poplar way to measure chaos. When a chaotic system has two or more positive LEs, it is called a
hyperchaotic system, which usually has a larger key space and higher security for encryption [9,10].
Norouzi and Mirzakuchaki used two hyperchaotic systems to modify the gray-level of each pixel and
crack the strong correlation among neighboring pixels in an image at the same time [11]. Zhu et al.
put forward an image encryption scheme using a compound homogeneous hyperchaotic system to
permute the plain image twice and then to diffuse the permutated pixels with dynamic local binary
pattern operations, and the experiments demonstrated its security and effectiveness [12]. Xue et al.
used a hyperchaotic system owning three positive Lyapunov exponents to encrypt the region of interest
(ROI) of a color image [13]. A recently-emerged and hot research topic is to use chaotic systems and
compressive sensing to encrypt and compress images simultaneously [14–17]. Some other hyperchaotic
systems were also applied to image encryption [18–22].

As far as operations of image encryption are concerned, permutation and diffusion are among the
most important ones. The former changes the positions of the data in an image, while the latter changes
the values of the data. An encryption operation may involve one block of pixels, one pixel, one DNA
unit (two bits), or even one bit [10,23–25]. The work by Xu et al. indicated that a scheme with block
permutation and dynamic index based diffusion was very effective for chaotic image encryption [23].
Chaos-based S-Boxes are very popular in block encryption methods [26–28]. Zhang et al. proposed
an image fusion encryption with a hyperchaotic system and DNA-level operations [29]. Chai et al.
integrated several types of chaotic systems and DNA computing to encrypt images, showing that the
proposed schemes had high security and could resist different attacks [30,31]. Khan et al. proposed
a novel image encryption approach that integrated DNA computing, the intertwining logistic map,
and the affine transformation for medical image encryption. The experiments demonstrated that the
proposed approach was robust, efficient, and secure for medical image encryption [32]. Zhan et al.
proposed a scheme with a hyperchaotic system, global bit permuting, and DNA computing (HCDNA)
to improve the security and robustness of encryption [33]. In order to improve the performance
of diffusion, Zhu et al. used hyperchaotic systems and ciphertext diffusion in a crisscross pattern
(CDCP) to encrypt pixel-level data, and the experiments revealed the CDCP had very promising
performance regarding time and diffusion [34]. Sun put forward an image encryption algorithm
that used a 5D hyperchaotic system for operations on pixel-level, DNA-level and bit-level data,
and both the theoretical analysis and the experimental results demonstrated that the encryption
approach was secure and could resist types of attacks [35]. Zhou et al. combined a hyperchaotic
system and quantum operations for bit-level image encryption [36]. To eliminate the weakness of an
image encryption scheme [37], Ahmad et al. integrated discrete cosine transformation (DCT), chaotic
skew tent map, and XOR operations to encrypt images. The proposed cryptosystem was capable
of resisting many types of attacks and achieved very promising results in terms of several tests [38].
Very recently, Hua and Zhou have proposed a novel image cipher algorithm using block-based
scrambling and image filtering (IC-BSIF), which introduced filtering, a classic operation in digital
image processing, into image encryption by designing a special filter [39]. In spite of the effectiveness
for image encryption, the existing filtering-based schemes usually adopt a fixed shape of filters, lacking
the diversity of the filters. Hence, they may have negative impacts on encryption performance [5,10].
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Motivated by the merits of hyperchaotic systems for image encryption as well as the diffusion
performance by filtering and pixel-level CDCP, this paper proposes a novel scheme integrating a
hyperchaotic system, pixel-level filtering with filters of different shapes, and DNA-level CDCP-like
diffusion, namely, PFDD, for image encryption. PFDD consists of four stages. First, we use a 4D
hyperchaotic system to generate chaotic sequences for subsequent encryption operations. Second, each
pixel is filtered by a specific kernel/filter, whose shape and weights are determined by the chaotic
sequences. In other words, the kernels for the pixels in an image are totally different from each other,
which helps to enhance the diversity of kernels. Third, the filtered image is transformed into a bit
stream, and then a global bit-level permutation is conducted on the bit stream to change the position
of each bit and naturally change the values of corresponding pixels. The bit stream is then encoded
into DNA-level data by rules decided by the chaotic sequences. Finally, we propose a DNA-level
diffusion scheme to improve encryption performance. The main novelty of the PFDD is two-fold:
(1) we propose a novel filtering operation for image encryption, which uses variable kernel shapes
and kernel parameters determined by hyperchaotic sequence; and (2) we also propose a DNA-level
diffusion scheme to further change the values of images.

The main contributions of this paper are as follows: (1) we use a hyperchaotic system to generate
sequences for all the encryption operations; (2) kernels with variable shapes and different parameters
determined by hyperchaotic sequences are used to conduct filtering to change the pixel values; (3) novel
DNA-level diffusion is proposed to expand any tiny changes in a plain image to the whole cipher image;
(4) pixel-level, bit-level, and DNA-level operations are used to improve the encryption effectiveness;
and (5) extensive experiments demonstrate the proposed PFDD is very promising for image encryption.

The main advantages of the PFDD are three aspects: (1) permutation or diffusion is conducted
with different-levels of data (pixel-level, bit-level, and DNA-level), improving the effectiveness of the
PFDD; (2) a novel pixel-level filtering strategy with different kernel types and parameters determined
by hyperchaotic sequences increases the diversity of kernels and hence enhances the security of the
PFDD; and (3) the DNA-level diffusion is able to expand a tiny change in a plain image to the whole
cipher image to resist differential attacks very well.

The rest of this paper is organized as follows. First, we briefly describe a 4D hyperchaotic system
with two positive LEs, filtering operations, and DNA computing in Section 2. Then the proposed
image encryption scheme that integrates the hyperchaotic system, pixel-level filtering with variable
kernels, and DNA-level diffusion, is proposed in detail in Section 3. In Section 4, we display our
extensive experiments on 15 testing images; the results are reported and analyzed. Finally, the paper is
concluded in Section 5.

2. Preliminaries

2.1. Hyperchaotic Systems

Hyperchaos, first reported by Rössler [40], is usually defined as a chaotic attractor which has
more than one Lyapunov exponent. Due to its advantages in security, hyperchaos is becoming more
and more popular in image encryption. Recently, Gu and Gao made a 4D hyperchaotic system by
adding a general linear controller to the 3D autonomous Chen’s chaotic system [41,42]. This system
has two positive Lyapunov exponents and can be formulated by Equation (1):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = a(y − x)
ẏ = dx − xz + cy − w
ż = xy − bz
ẇ = mx + k

, (1)

where x, y, z, and w are state variables; and a, b, c, d, m, and k are variable constants. In our work, we
use the 4th-order Runge-Kutta method with a step size of h = 0.001 to solve the hyperchaotic system.
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When the parameters (a, b, c, d, m, k) = (36, 3, 28, −16, 0.5, 0.5) and initial values (x0, y0, z0, w0) = (−1,
−1, 0.3333, −5.9583), the attractors of this 4D hyperchaotic system are illustrated in Figure 1.

x

z
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w

z

y x

w

z y

Figure 1. Hyperchaotic attractors of the 4D Hyperchaotic system.

2.2. Filtering

Filtering, also known as convolution, can be used for smoothing, denoising, and sharpening
images, and thus becomes essential for image processing. By applying a convolution operation
between a kernel/mask/filter and an image, the pixel values of the processed image will be changed.
Thus, filtering can be used for diffusing an image. However, an image filtering operation is usually
irreversible, making it impossible to decrypt images. As a result, filtering cannot be directly used
for diffusion in image encryption. Fortunately, Hua and Zhou proposed a new method to solve this
problem: by setting the value of right-bottom position of the filtering kernel to “1,” the corresponding
point in the encrypted image can be recovered [39]. In spite of the magic this technique is, there
are limitations of this function, including using a kernel with a fixed shape and fixed parameters to
do convolution. An ideal method should use dynamic kernel shape and variable kernel parameters
for filtering.

2.3. DNA Computing

DNA computing could be used to solve a computational problem [43]. Different from the binary
alphabets (0 and 1) in traditional computers, information is expressed by four-character genetic
alphabets; i.e., A, C, G, and T for adenine, cytosine, guanine, and thymine in DNA computing,
respectively. The crucial technologies of DNA computing in image encryption are encoding and
decoding rules and algebraic operations. Considering the four characters of DNA alphabet, there
ought to exist 4! = 24 combinations in DNA encoding. However, only eight categories of DNA
combinations satisfy the DNA complementary rules, as shown in Table 1. A pixel of eight bits in
a grayscale image can be encoded to four characters by using these encoding rules. For instance,
a decimal value 180 can be converted to a binary value “10110100,” and further be transformed
into DNA sequences “GACT” and “ACTG” by Rule 3 and Rule 8, respectively. Obviously, different
encoding rules lead the identical decimal or binary value to completely different DNA sequences.
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Table 1. The encoding and decoding rules of DNA computing.

RULE Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

00 A T T A C G C G
01 C G C G A A T T
10 G C G C T T A A
11 T A A T G C G C

Like binary algebraic operations, DNA has its own algebraic operations, such as addition (⊕),
subtraction (�), and XOR (⊗). Different from traditional binary operations, different DNA encoding
rules can produce different results. In other words, once the encoding rule is decided, the results of
DNA algebraic operations are fixed. For example, with encoding Rule 1, the results of DNA addition,
subtraction, and XOR operations are listed in Table 2. These operations are usually used to change the
values of DNA characters.

Table 2. DNA algebraic addition (⊕), subtraction (�), and XOR (⊗) operations.

⊕⊕⊕ A C G T ��� A C G T ⊗⊗⊗ A C G T

A A C G T A A T G C A A C G T
C C G T A C C A T G C C A T G
G G T A C G G C A T G G T A C
T T A C G T T G C A T T G C A

3. The Proposed Image Encryption Scheme

3.1. Generating Hyperchaotic Sequences

In this paper, we use the 4D hyperchaotic system described in Section 2.1 to generate the
hyperchaotic sequences for encryption. Generally, the procedure is divided into three steps:

Step 1: The 4D hyperchaotic system begins to iterate to generate long enough sequences for image
encryption. In the i-th iteration, we can obtain four state values denoted as si = {xi, yi, zi, wi}.

Step 2: The sequences generated by the first n0 iterations are discarded to eliminate the adverse
effects.

Step 3: When the iteration completes, a hyperchaotic sequence S can be obtained by concatenating all
the sj(j = 1, 2, · · · , N) as in Equation (2):

S = {s1, s2, · · · , sN} = {x1, y1, z1, w1, · · · , xN , yN , zN , wN}
= {s1, s2, s3, s4, · · · , s4N−3, s4N−2, s4N−1, s4N}.

(2)

Then the generated sequence S is further cast to an integral sequence by Equation (3):

si = �(|si| − �|si|�)× 1014�%256, (3)

where |·|, �·�, and % denote the operations of absolute value, flooring, and modulo, respectively [5,9].
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3.2. Pixel-Level Filtering with Variable Kernels

Having generated hyperchaotic sequence via Section 3.1, two sub-sequences, Sh and Sw, can
be obtained. Sh is a 1 × h vector while Sw is a w × 1 vector, so a parameter p can be computed by
Equation (4):

p = Sh · I · Sw%256, (4)

where I represents the plain image; h and w denote its height and width, respectively; and · is the
operation of matrix multiplication. It is clear that p is associated with the plain image and it can be
further used to change filtering kernels. In this way, different plain images will be diffused by different
kernels when conducting filtering.

According to the work of IC-BSIF, filtering can be used for image encryption [39]. However,
it employs convolution operation to images with a kernel with a fixed shape and fixed kernel
parameters values, lacking the diversity of the kernel. Very recently, Li et al. used a 1 × 3 or 3 × 1
variable kernel with different parameters to implement convolution on an image; in other words,
the kernels associated with each pixel in an image for convolution are different in so-called dynamic
filtering [5]. The experimental results have shown the effectiveness of dynamic filtering. Nevertheless,
there still remains some room for improvement with dynamic filtering. An ideal method is to conduct
filtering with variable kernel shapes and parameters, which may lead to better performance. To this
end, we can use the hyperchaotic sequence to determine the shapes and parameters of the kernels.
For a 3× 3 kernel, since the value at the right-bottom corner is fixed to “1,” it only requires 3× 3− 1 = 8
bits to determine the kernel shapes. Fortunately, a single value in the hyperchaotic sequence is exactly
an 8 bit integer, which can determine 28 = 256 types of kernel shapes. For example, an 8 bit integer
“0” denotes a kernel of all “0,” which means all the contents in the kernel are “0” and the shape of the
kernel is blank, and hence the kernel is independent of the filtering. In contrast, an 8 bit integer “256”
denotes a kernel of all “1,” implying all the values in the kernel are involved in filtering. A detailed
example is shown in Figure 2. The integer “17” (“00010001” in binary) in the hyperchaotic sequence
determines the shape of a 3 × 3 kernel, which has only three non-zero cells with blue background
including the “1” in the right-bottom cell, as shown in a red border. The next eight integers first
conduct bit, the XOR operation with the parameter p defined in Equation (4), and a new sequence
containing eight integers can be obtained. Then, the new sequence is used to fill the red kernel, and we
can get the kernel k1. After that, filtering can be conducted on the 3 × 3 part with a red border in the
plain image P, and then the pixel value “211” in P can be encrypted to “125” in the cipher image C.
Likewise, the next nine integers in the hyperchaotic sequence can generate another kernel k2. With this
kernel and the part with a green border in P, the pixel “137” in P can be encrypted to “183” in C.

From this example, we can see that both the shapes and the parameters of the kernels are
completely determined by the hyperchaotic sequence. The filtering operation can be applied to
diffusing an image.
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Figure 2. An example of multi-shape dynamic filtering.

3.3. Global Bit-Level Permutation

Permutation is usually used to change the positions of pixels, and it can be further applied to
permuting bit-streams. The main procedure of such an operation is as the following. First, generate a
hyperchaotic sequence that has the same length as a bit-stream. Then, sort the hyperchaotic sequence
to get the sorting index. Finally, rearrange the bit-stream according to the sorting index [9,33].

3.4. DNA-Level Diffusion

Diffusion is a frequently used way to change the pixels in images. The existing diffusion schemes
are usually associated with pixel-level data or bit-level data only. Motivated by the effectiveness
of CDCP [34], a pixel-level diffusion scheme, this paper proposes a DNA-level diffusion approach.
In this approach, DNA addition and XOR are used to further diffuse the image since DNA algebraic
operations have a property of changing the values of nucleic acids. The main idea of such DNA-level
diffusion is to expand the changes in one DNA character to the whole DNA sequence. Given the length
of the DNA sequence S, L = h × w × d/2, where h, w, and d denote the height, width, and depth of a
plain image, respectively, and half of the L, H = L/2. The pseudocode of such diffusion is described
as follows:

Step 1: C(1) = S(1) ⊗ (C0 ⊕ K(1)); C(H + 1) = S(H + 1) ⊗ (C(1) ⊕ K(H + 1))
Step 2: for i = 2 → H

C(i) = S(i) ⊗ (C(H + i - 1) ⊕ K(i))
C(H + i) = S(H + i) ⊗ (C(i) ⊕ K(H + i))

end for
Step 3: D(1) = C(1) ⊗ (C(DL) ⊕ K(1)); D(H + 1) = C(H + 1) ⊗ (D(1) ⊕ K(H + 1))
Step 4: for i = 2 → H

D(i) = C(i) ⊗ (D(H + i - 1) ⊕ K(i))
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D(H + i) = C(H + i) ⊗ (D(i) ⊕ K(H + i))

end for

where ⊕ and ⊗ are DNA addition and XOR, respectively; C0 is a user-defined parameter; K is
an auxiliary DNA-level sequence generated from the hyperchaotic system; and D is the obtained
diffused image.

3.5. PFDD: The Proposed Image Encryption Approach Using a Hyperchaotic System, Pixel-Level Filtering with
Variable Kernels, and DNA-Level Diffusion

Due to the effectiveness of hyperchaotic systems in image encryption, permutation power of
bit-level scrambling, and diffusion power of filtering and CDCP, this paper proposes a novel image
encryption scheme by integrating such advantages. The proposed scheme conducts encryption on
various levels, including pixel-level data, bit-level data, and DNA-level data. First, it uses a 4D
hyperchaotic system with two positive LEs to generate chaotic sequences for encryption. Second,
dynamic filtering operations with kernels with different shapes and parameters are conducted on
pixels to diffuse the image. Third, the image is transformed into a bit stream and the global bit
permutation is conducted twice. Then, the bit stream is transformed into DNA-level data. Finally,
DNA-level diffusion is operated with DNA-level data, and then the DNA-level data is transformed
into a pixel-level cipher image. The flowchart of the PFDD is shown in Figure 3 and the steps are
described in detail as the following.

Figure 3. The framework of the proposed PFDD (Pixel-level Filtering with kernels of variable shapes
and parameters and DNA-level Diffusion).

Step 1: Use initial values to generate a hyperchaotic sequence via Equations (1)–(3);
Step 2: For each pixel in the plain image, create a kernel whose shape and parameters are determined

by the hyperchaotic sequence. Then, conduct a filtering operation on the pixel with the kernel.
This is named pixel-level filtering with variable kernels, which results in a diffused image,
as described in Section 3.2;

Step 3: Transform the diffused image into a bit stream;
Step 4: Perform the global bit permutation twice;
Step 5: Encode the bit stream into a DNA-stream. Every pair of two adjacent bits is encoded into a

DNA symbol through a DNA encoding rule determined by the hyperchaotic sequence;
Step 6: Conduct DNA-level diffusion on the DNA-stream as described in Section 3.4;
Step 7: Transform the DNA-level diffused plane into a pixel plane, i.e., the cipher image.

The core of the PFDD consists of pixel-level filtering with variable kernels (Step 2), global bit
permutation (Step 4), and DNA-level diffusion (Step 6). The PFDD conducts encryption in the
pixel-level, bit-level, and DNA-level data, and hence it has the potential to improve encryption.
The PFDD is a typical strategy of “divide and conquer”; that is, the task of image encryption is divided
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into several sub-tasks of encrypting different level data [44–46]. The decryption is the reverse of
the encryption.

4. Experimental Results

4.1. Experimental Settings

In order to evaluate the performance of the proposed PFDD, some state-of-the-art encryption
schemes were used for comparison, such as image encryption using pixel-level diffusion with dynamic
filtering and DNA-level permutation with 3D Latin cubes (DFDLC) [10], image encryption with a
hyperchaotic system and DNA computing (HCDNA) [33], CDCP [34], and IC-BSIF [39]. We set the
parameters for the PFDD as follows. For the 4D hyperchaotic system, we set (x0, y0, z0, w0) = (−1, −1,
0.3333, −5.9583) and 1200 as the discard iterating time, respectively. For these comparison encryption
methods’ parameters, we generally set their parameters according to the corresponding original
references. We used 15 publicly-accessed, 256-level grayscale images with different sizes to test the
proposed PFDD, and the sizes and names of the images are listed in Table 3. Note that Lena1024,
Male2048, and Airport2048 were generated from corresponding test images with sizes of 512 × 512,
1024 × 1024, and 1024 × 1024 via interpolation, respectively.

Table 3. Testing images.

Image Size (h × w) Image Size (h × w) Image Size (h × w)

Lena256 256 × 256 Airplane256 256 × 256 Aerial512 512 × 512
Finger512 512 × 512 Clown512 512 × 512 Martha512 512 × 512
Crowd512 512 × 512 Reagan512 512 × 512 Trucks512 512 × 512
Woman512 512 × 512 Lena512 512 × 512 Lena1024 1024 × 1024
Male1024 1024 × 1024 Male2048 2048 × 2048 Airport2048 2048 × 2048

All the experiments were conducted with Matlab R2017a on a PC with 64-bit Windows 10 Ultimate,
16 GB memory, and a 3.60 GHz I7 CPU.

4.2. Security Key Analysiss

Security keys are essential for image encryption. A large key space and high sensitivity of keys
enhance the security of encryption and are capable of resisting brute-force attacks. In this subsection,
we analyze those two attributes of the proposed PFDD.

4.2.1. Key Space

According to the existing research, if a cryptographic system has a key space greater than 2100, it
is able to resist brute-force attacks [14,47]. The initial values (x0, y0, z0, w0) for the hyperchaotic system
can be used as a part of the keys of the PFDD. If the precision of each value is 10−15, the key space
will be (10−15)4 = 10−60 ≈ 2199. Besides, the number of discarded iterations in generation of chaotic
sequence, n0, and the value by multiplying a chaotic sequence and the plain image (p in Equation (4))
can also be used as keys, enhancing the key space. Since the key space of the PFDD is much greater
than 2100, it can resist brute-force attacks.

4.2.2. Sensitivity to Security Keys

A good and practical image encryption system should be extremely sensitive to the security
keys. In other words, a tiny change with keys will lead to a completely different recovered image
from the plain image. It is one of the natural characteristics of hyperchaotic systems. To verify
it, we used the right security key, K1, and a tiny change key, K2, to decrypt some cipher images.
Specifically, K1 is (x0, y0, z0, w0) = (−1, −1, 0.3333, −5.9583), and then we added 10−15 to one of the
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initial value, x0, and kept the other values were unchanged to obtain K2; i.e., K2 = (x0 + 10−15, y0, z0,
w0)= (−1 + 10−15,−1, 0.3333,−5.9583). The decrypted images with K1 and K2 are shown in the first
and the second row in Figure 4, respectively.

Figure 4. Sensitivity to security keys. From left to right, the images are Lena256, Airplane256, Aerial512,
Finger512, Lena1024, Male1024, Male2048, and Airport2048.

It is clear that K1 can decrypt the cipher images correctly, whereas K2 cannot do it at all, so that the
results decrypted by K2 are random-like. The experimental results demonstrate that the sensitivity of
the key of the PFDD is extremely high, which is a good attribute of an ideal image encryption system.

4.3. Statistical Analysis

Typical statistical analysis includes information entropy (IE) analysis, histogram analysis,
and correlation analysis. The cipher images with a well-designed encryption algorithm should
have evenly distributed histograms and very high entropies, and the neighboring pixels should have
very weak correlations.

4.3.1. Information Entropy Analysis

Information entropy, a key concept in information theory, exists to measure the degree of
randomness or uncertainty in a given complex system. Typically, for a 256-level grayscale image I,
the IE can be computed by Equation (5) [10].

IE(I) = −
255

∑
i=0

p(i)log2(p(i)), (5)

where p(i) indicates the probability of occurrence of the i-th gray level. For an image that only contains
one type gray level, e.g., an all white image, the IE obtains the minimum, 0, while if all gray levels
appear with the same probability, i.e., 1

256 , the image can achieve the highest IE, 8. A well-designed
image encryption algorithm will result in an IE as close as possible to 8. The IEs of the images with the
proposed PFDD and the compared algorithms are listed in Table 4.
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Table 4. The information entropies (IEs) of the test images.

Image Input
Cipher Images

PFDD DFDLC [10] HCDNA [33] CDCP [34] IC-BSIF [39]

Lena256 7.5954 7.9973 7.9971 7.9965 7.9966 7.9972
Airplane256 6.4523 7.9972 7.9969 7.9962 7.9973 7.9973
Aerial512 6.9940 7.9993 7.9993 7.9985 7.9993 7.9993
Finger512 6.7279 7.9993 7.9993 7.9990 7.9992 7.9992
Clown512 5.3684 7.9992 7.9993 7.9892 7.9992 7.9994
Martha512 7.5222 7.9993 7.9993 7.9991 7.9993 7.9993
Crowd512 7.4842 7.9992 7.9993 7.9946 7.9994 7.9993
Reagan512 7.1923 7.9993 7.9993 7.9993 7.9993 7.9992
Trucks512 6.5632 7.9994 7.9994 7.9994 7.9993 7.9993
Woman512 6.9542 7.9992 7.9992 7.9993 7.9992 7.9993
Lena512 7.4455 7.9993 7.9993 7.9994 7.9993 7.9993
Lena1024 7.4439 7.9998 7.9998 7.9991 7.9998 7.9998
Male1024 7.5237 7.9998 7.9998 7.9940 7.9998 7.9998
Male2048 7.5369 8.0000 8.0000 7.9935 8.0000 8.0000
Airport2048 6.8106 8.0000 8.0000 7.9994 8.0000 8.0000

From this table, we can see that the IEs of all plain images fall in the range of [5.3648, 7.5954]—far
lower than 8. In contrast, the IEs by all the encryption methods are very close or even equal to the
theoretical maximum 8. More specifically, PFDD, DFDLC, HCDNA, CDCP, and IC-BSIF achieve the
highest IEs with 10, 9, 4, 9, and 9 out of 15 cases, respectively. The PFDD achieved the highest IE 10
times, which is superior to the other models, indicating that the PFDD can effectively resist entropy
attacks. It is worth pointing out that some entropies of the last two images are equal to 8, which shows
the pixel distributions in the last two cipher images are very uniform.

4.3.2. Histogram Analysis

A histogram is a graph that can directly reflect the distribution of pixel values in an image.
The histogram of a natural image usually shows some shapes with mountains and valleys, whereas
that of a cipher image by an ideal encryption algorithm should be nearly uniformly distributed to
avoid histogram attacks. The images and the corresponding histograms are shown in Figure 5.

It can be found that all the histograms of plain images are very different. For example, Lena
with different sizes, Finger512, Martha512, Crowd512, Male1024, and Male2048 have a wide range
of grayscale values, while Airplane256, Trucks512, Woman512, and Airport2048 have a narrow one.
At the same time, the different shapes of the histograms mean that the distributions of the plain images
are totally different. However, when we investigate the cipher images, we can find that they are all
random-like, even for the plain images with narrow pixel ranges. The histograms of all the encrypted
images are so flat that they are very close to uniform distributions, showing that the proposed PFDD
exhibits ideal performance regarding the histogram distribution. In particular, the tops of all bars
in the histograms of cipher images with large size (the last five images) seem like horizontal lines,
indicating the pixels distributes more uniformly in the cipher images with large sizes than those with
small sizes.
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Figure 5. Images and histograms. From left to right, the images are plain images, the histograms of the
plain images, the cipher images, and the histograms of the cipher images. In each histogram, the x-axis
and the y-axis represent the pixel values and the total times the corresponding pixel occurs, respectively.
From top to bottom, the names of the involved images are the same as the first column in Table 4.
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4.3.3. Correlation Analysis

Correlation reflects the relevance between two neighboring pixels in an image. Generally speaking,
the correlation in a natural image is high because any two neighboring pixels are very similar, which is
probably utilized to crack the image. Therefore, a practical encryption scheme should decrease such a
correlation to a very low level. The correlation coefficient γ between a sequence of pixels x and the
sequence of its neighboring pixels y in an image can be formulated by Equation (6) [10].

E(x) =
1
L

L

∑
i=1

xi,

D(x) =
1
L

L

∑
i=1

(xi − E(x))2 ,

ρ(x, y) =
1
L

L

∑
i=1

(xi − D(x)) (yi − D(y)) ,

γ =
ρ(x, y)√

D(x)D(y)
,

(6)

where L is the length of the sequence of x; E(x) and D(x) denote the mathematical expectation and the
standard deviation of x, respectively; and ρ(x, y) is the covariance of the two given sequences: x and y.

For each plain image and each cipher image, we calculate the correlation coefficients in the
horizontal, vertical, and diagonal directions, represented by γh, γv, and γd, respectively. Since all the
pixels in an image are involved, we can think of the correlation from a global perspective. The results
are listed in Table 5. We can see that the correlation coefficients of the plain images are in the range
of [0.8003, 0.9899], which is close to 1, confirming the strong correlation existing in natural images.
However, such a strong correlation is destroyed drastically by the encryption methods. We can also
find that all the correlation coefficients of the cipher images are very close to 0, showing that there is
almost no correlation in the encrypted images. A typical example is the image of Martha. It has the
highest correlation in the vertical direction, i.e., γv = 0.9899. With the encryption schemes, however,
the absolute values of γv are less than 0.002, demonstrating the strong correlation in plain Martha has
almost been completely broken. The PFDD achieves the lowest correlation coefficients in 11 out of 45
cases and all the correlation coefficients are close to 0. The results indicate that the PFDD can obtain
correlation coefficients comparable to the competitive methods.

Table 5. The correlation coefficients γ of the test images.

Image γ Input
Cipher Images

PFDD DFDLC [10] HCDNA [33] CDCP [34] IC-BSIF [39]

Lena256
γh 0.9144 −0.0014 0.0045 −0.0042 0.0041 −0.0004
γv 0.9545 0.0028 0.0012 −0.0011 0.0004 −0.0020
γd 0.9098 0.0066 0.0001 0.0029 −0.0000 0.0028

Airplane256
γh 0.9562 0.0080 −0.0038 −0.0040 −0.0027 0.0009
γv 0.8742 −0.0104 0.0004 −0.0007 0.0001 −0.0036
γd 0.8995 −0.0000 −0.0019 0.0003 0.0022 −0.0022

Aerial512
γh 0.8993 −0.0024 −0.0009 0.0007 0.0009 −0.0014
γv 0.8549 −0.0011 0.0021 −0.0011 −0.0009 0.0014
γd 0.8003 0.0003 0.0005 0.0021 0.0010 −0.0011

Finger512
γh 0.9343 0.0002 −0.0001 0.0007 −0.0023 −0.0026
γv 0.9168 0.0013 0.0002 0.0029 −0.0032 −0.0030
γd 0.8664 −0.0007 0.0017 −0.0022 −0.0010 0.0011
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Table 5. Cont.

Image γ Input
Cipher Images

PFDD DFDLC [10] HCDNA [33] CDCP [34] IC-BSIF [39]

Clown512
γh 0.9763 −0.0018 −0.0026 0.0001 0.0019 0.0022
γv 0.9888 0.0009 −0.0004 0.0020 −0.0033 0.0012
γd 0.9699 −0.0002 0.0002 0.0010 −0.0008 −0.0015

Martha512
γh 0.9864 0.0014 0.0020 0.0002 −0.0009 −0.0001
γv 0.9899 −0.0017 0.0008 −0.0003 0.0003 −0.0013
γd 0.9815 −0.0015 −0.0004 0.0014 −0.0003 −0.0030

Crowd512
γh 0.9059 0.0021 −0.0003 −0.0004 0.0019 −0.0013
γv 0.9047 0.0001 0.0014 −0.0029 −0.0005 0.0003
γd 0.8525 −0.0018 −0.0022 0.0017 −0.0007 0.0012

Reagan512
γh 0.9668 −0.0031 0.0003 −0.0017 0.0003 0.0015
γv 0.9757 0.0010 0.0003 −0.0007 0.0035 −0.0002
γd 0.9573 0.0005 0.0008 0.0013 0.0022 0.0023

Trucks512
γh 0.9408 −0.0016 −0.0034 −0.0013 0.0014 0.0028
γv 0.9110 0.0017 −0.0021 −0.0003 −0.0023 −0.0019
γd 0.8906 −0.0008 0.0000 0.0001 −0.0029 −0.0007

Woman512
γh 0.9250 0.0028 0.0002 −0.0032 0.0008 −0.0004
γv 0.9570 −0.0013 −0.0015 0.0008 −0.0020 0.0003
γd 0.9217 0.0011 0.0014 0.0030 0.0003 −0.0003

Lena512
γh 0.9691 0.0013 0.0023 −0.0015 −0.0004 0.0023
γv 0.9841 0.0021 0.0009 −0.0020 0.0028 0.0009
γd 0.9639 0.0013 0.0008 0.0024 0.0016 0.0008

Lena1024
γh 0.9918 0.0007 0.0008 −0.0012 0.0015 0.0008
γv 0.9962 −0.0007 −0.0003 −0.0020 −0.0012 −0.0003
γd 0.9902 −0.0004 0.0001 0.0001 −0.0005 0.0001

Male1024
γh 0.9769 −0.0012 −0.0001 −0.0003 −0.0005 −0.0001
γv 0.9804 0.0008 0.0014 0.0011 0.0009 0.0014
γd 0.9669 0.0009 0.0008 −0.0002 0.0006 0.0008

Male2048
γh 0.9942 0.0014 0.0001 0.0001 0.0002 0.0001
γv 0.9950 −0.0002 0.0002 −0.0004 −0.0002 0.0002
γd 0.9905 0.0002 0.0004 −0.0003 0.0002 0.0004

Airport2048
γh 0.9781 0.0009 0.0010 −0.0003 0.0001 0.0010
γv 0.9764 −0.0004 0.0001 −0.0007 −0.0003 0.0001
γd 0.9581 −0.0002 0.0002 −0.0006 −0.0002 0.0002

All the information entropy analysis, histogram analysis, and the correlation analysis demonstrate
that the proposed PFDD can effectively resist statistical attacks.

4.4. Analysis of Resisting Differential Attacks

As a type of cryptanalysis, differential attacks aim to analyze how a tiny change in a plain image
affects the corresponding cipher image. To defend differential attacks, a good encryption scheme
should ensure that any tiny changes in the plain image are able to produce a completely different
cipher image.

To measure the ability of resisting differential attacks of encryption schemes, the unified average
changing intensity, UACI for short, and the number of pixels change rate, NPCR for short, are two
very popular indices, as defined by Equations (7) and (8), respectively [48].

UACI =
∑W

i=1 ∑H
j=1 |C1(i, j)− C2(i, j)|

255WH
× 100%, (7)

NPCR =
∑W

i=1 ∑H
j=1 δ(i, j)

WH
× 100%, (8)
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where C1 and C2 are two cipher images, whose width and height are W and H, respectively, and δ(i, j)
is an indicator to judge whether the two pixel values at the position of (i, j) in C1 and C2 are identical,
which is defined as Equation (9).

δ(i, j) =

{
0, C1(i, j) = C2(i, j)
1, C1(i, j) �= C2(i, j)

. (9)

According to [48], for a given 256 × 256 8 bit gray image and a significance level α = 0.05,
if the UACI falls into the interval of

(
U∗l1

0.05,U∗u1
0.05

)
= (33.2824%, 33.6447%), and the NPCR is greater

than N∗1
0.05 = 99.5693%, it is said that the corresponding method passes the UACI and the NPCR

test at α = 0.05, respectively. Likewise, if the UACI falls into
(
U∗l2

0.05,U∗u2
0.05

)
= (33.3730%, 33.5541%),(

U∗l3
0.05,U∗u3

0.05

)
= (33.4183%, 33.5088%), and

(
U∗l4

0.05,U∗u4
0.05

)
= (33.4409%, 33.4862%) for an 8 bit gray

image of 512 × 512, 1024 × 1024, and 2048 × 2048, respectively, the encryption scheme also passes the
UACI test. If the NPCR is greater than N∗2

0.05 = 99.5893%, and N∗3
0.05 = 99.5994%, N∗4

0.05 = 99.6044% for
an 8-bit gray image of these sizes, the encryption scheme is said to pass the NPCR test.

To compute the UACI and the NPCR once, we add one to a randomly selected pixel.
The computation is repeated 10 times, and the mean UACI and NPCR are listed in Tables 6 and 7,
respectively. The values that passed corresponding tests are shown in bold. From Table 6, we can see
that all the UACI by PFDD, DFDLC, CDCP, and IC-BSIF fell in the specified intervals

(
U∗l1

0.05,U∗u1
0.05

)
,(

U∗l2
0.05,U∗u2

0.05

)
,
(
U∗l3

0.05,U∗u3
0.05

)
, and

(
U∗l4

0.05,U∗u4
0.05

)
, showing they can pass the UACI test for images with

all sizes of the testing images. It is worth pointing out that the PFDD achieved the highest UACI values
in seven out of 15 cases. The HCDNA obtains so poor UACI that none of the image with HCDNA can
pass the UACI test. As far as the NPCR is concerned, we found that PFDD, DFDLC, and IC-BSIF can
pass the test. In contrast, CDCP passes the test in eight out of 15 cases, and once again, none of the
images with HCDNA can pass it. The possible reason is that the encryption schemes with filtering
operations (PFDD, DFDLC, and IC-BSIF) are capable of improving the performance of diffusion.

Table 6. The average unified average changing intensities (UACI, in precentages) of running the
schemes 10 times.

Image PFDD DFDLC [10] HCDNA [33] CDCP [34] IC-BSIF [39]

Lena256 33.4440 33.4741 18.7430 33.4862 33.4200
Airplane256 33.4620 33.4367 20.3208 33.5691 33.4330
Aerial512 33.4745 33.4471 22.1490 33.4430 33.4575
Finger512 33.4711 33.4095 13.0616 33.4836 33.4601
Clown512 33.4742 33.4437 26.4164 33.4142 33.4787
Martha512 33.4810 33.4748 22.0456 33.4501 33.4810
Crowd512 33.4718 33.4624 21.2259 33.4466 33.4612
Reagan512 33.4267 33.4657 13.9140 33.4909 33.5007
Trucks512 33.4885 33.4700 25.9466 33.4382 33.4385
Woman512 33.5120 33.4505 21.6499 33.4779 33.4719
Lena512 33.4840 33.4363 26.4423 33.4275 33.4568
Lena1024 33.4776 33.4674 31.1754 33.4320 33.4630
Male1024 33.4459 33.4536 30.3316 33.4876 33.4475
Male2048 33.4587 33.4641 23.7265 33.4629 33.4683
Airport2048 33.4556 33.4550 29.0287 33.4661 33.4590
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Table 7. The average number of pixels change rates (NPCRs (%)) of running the schemes 10 times.

Image PFDD DFDLC [10] HCDNA [33] CDCP [34] IC-BSIF [39]

Lena256 99.6124 99.6202 46.0794 100.0000 99.6045
Airplane256 99.6260 99.6155 47.1913 100.0000 99.5866
Aerial512 99.6101 99.6130 55.1017 99.5516 99.6142
Finger512 99.5956 99.6077 30.8046 99.6445 99.6118
Clown512 99.6141 99.6107 60.8291 99.4683 99.6124
Martha512 99.6112 99.6056 54.7043 99.6180 99.6130
Crowd512 99.6112 99.6066 59.4704 99.5816 99.6156
Reagan512 99.6111 99.6054 35.9236 99.5967 99.6089
Trucks512 99.6112 99.6121 67.8079 99.6015 99.6055
Woman512 99.6120 99.6133 58.5091 99.5684 99.6168
Lena512 99.6062 99.6140 94.1631 99.2096 99.6173
Lena1024 99.6075 99.6100 78.9105 99.2248 99.6100
Male1024 99.6113 99.6107 78.9105 99.2470 99.6084
Male2048 99.6104 99.6092 87.1085 100.0000 99.6099
Airport2048 99.6077 99.6089 87.1085 100.0000 99.6088

The analysis indicates that the PFDD can pass the UACI and the NPCR tests for all the
experimental images, and hence it can resist differential attacks.

4.5. Plaintext and Ciphertext Attack Analysis

For a system of image encryption, there are four typical types of attacks; i.e., ciphertext only,
chosen ciphertext, known plaintext, and chosen plaintext attacks. Among these attacks, the chosen
plaintext attack is known as the most powerful one. If a cryptosystem can withstand it, it is said to
have the ability to resist against other types of attacks [49].

From the aforementioned analysis, it is known that any tiny changes (even a bit) in the plain
image will produce a totally different cipher image, so the proposed PFDD can resist differential
attacks, which is a typically chosen plain text attack. Besides, the security keys include a value (p in
Equation (4)) which is related to the plain image. Therefore, different plain images can generate
different security keys and then obtain different results of permutation and diffusion. The cipher
images by the proposed PFDD are all noise-like and all the corresponding histograms are very close to
uniform distributions, further enhancing the security. In a word, the proposed PFDD highly depends
on the content of the plain image, and it can resist against plaintext and ciphertext attacks.

4.6. Running Time and Results on Large Images

Encryption speed is another index to evaluate approaches of image encryption. Since the speed
is not related to the content but to the sizes of images, we report the running time of the proposed
PFDD and the compared approaches with four different types of sizes, as shown in Table 8. It can be
seen that with the increase of image sizes, the running times of all the encryption approaches increase.
Among the approaches, CDCP ranks first in all cases because of the simplicity of its operations, and is
followed by IC-BSIF. The proposed PFDD ranks third in all cases. Since the main operations of PFDD
include filtering and DNA-diffusion, its speed slightly underperforms against IC-BSIF, which conducts
encryption mainly via filtering operations. DFDLC and HCDNA rank fourth and last regarding
running time, respectively. Note that the running time of HCDNA is extremely high, and the possible
reason is that it uses encoding/decoding rules and DNA algebraic rules directly for each operation.
In the proposed PFDD, we use lookup tables instead of the rules directly for DNA encoding and
DNA operations, so the running time of the PFDD is much less than that of HCDNA. Another
interesting finding from this table is that the running time of all the encryption is linear with the image
size. Therefore, for an encryption approach, we may estimate the running time for an image with a
specific size.
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Table 8. Running time (in seconds).

Image Size PFDD DFDLC [10] HCDNA [33] CDCP [34] IC-BSIF [39]

256 × 256 0.9802 2.4491 8.2463 0.2274 0.6879
512 × 512 3.8264 7.6971 30.4855 0.7035 3.1478

1024 × 1024 14.4212 36.2733 123.9747 2.7289 9.9495
2048 × 2048 56.4122 127.8365 494.1457 10.6423 39.881

A good image encryption approach should process images of different sizes well. Since the PFDD
treats each unit of images (bit, DNA, and pixel) equally, there is no obvious relationship between the
effectiveness of encryption and image size. In other words, the PFDD can handle images of different
sizes very well. This has been demonstrated by the aforementioned analysis and discussion in terms
of entropy, correlation, histogram, UACI, and NPCR. Just like a coin has two sides, the processing
strategy of the PFDD limits the speed because it has to conduct filtering on the pixels one by one.
Therefore, although the PFDD can achieve good encryption results for large images, it will take a lot of
running time to encrypt them, and hence the time efficiency is at an intermediate level. This might be
a limitation of the proposed PFDD.

5. Conclusions

Image encryption is very important for information security. This paper proposed a novel
and effective image encryption scheme integrating a 4D hyperchaotic system, pixel-level filtering
with variable kernels, and DNA-level diffusion, namely, PFDD, for image encryption. In addition,
a global bit-level scrambling operation was introduced to change the position of each single bit.
The advantages of the PFDD come from three aspects: (1) it performs encryption with not only
pixel-data and DNA-level data, but also bit-level data; (2) the filtering kernels with different shapes
and different parameters are used to enhance the diversity of the kernels, and hence improve the
performance of diffusion; and (3) a DNA-level diffusion algorithm is proposed to further enhance the
diffusion. We conducted extensive experiments to verify the proposed PFDD, and the results showed
that the PFDD has reliable security keys and is capable of resisting types of attacks. In the future,
we will extend the PFDD to color image encryption. Besides that, we will study how to improve the
efficiency of the PFDD.
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Abstract: In this paper, the security analysis of an image chaotic encryption algorithm based on
Latin cubes and bit cubes is given. The proposed algorithm adopts a first-scrambling-diffusion-
second-scrambling three-stage encryption scheme. First, a finite field is constructed using chaotic
sequences. Then, the Latin cubes are generated from finite field operation and used for image
chaotic encryption. In addition, according to the statistical characteristics of the diffusion image
in the diffusion stage, the algorithm also uses different Latin cube combinations to scramble the
diffusion image for the second time. However, the generation of Latin cubes in this algorithm is
independent of plain image, while, in the diffusion stage, when any one bit in the plain image changes,
the corresponding number of bits in the cipher image follows the change with obvious regularity.
Thus, the equivalent secret keys can be obtained by chosen plaintext attack. Theoretical analysis and
experimental results indicate that only a maximum of 2.5 × 3

√
w × h + 6 plain images are needed to

crack the cipher image with w × h resolution. The size of equivalent keys deciphered by the method
proposed in this paper are much smaller than other general methods of cryptanalysis for similar
encryption schemes.

Keywords: image chaotic encryption; cryptography; Latin cube; bit cube; chosen plaintext attack

1. Introduction

Image chaotic encryption algorithms have attracted some special attention in the field of
information security [1–7]. In recent years, many image chaotic encryption schemes combined
chaos theories with other technologies, such as one-time keys [8], bit-level permutation [9],
DNA operations [10–13], parallel computing system [14], matrix semi-tensor product theory [15],
cellular automata [16,17], neural network [18,19], Latin square or Latin cube [20–22], and so on, have
been proposed. However, the security issues of image chaotic encryption algorithms have also attracted
much attention. As a basic requirement of security, the ciphertext image of the image chaotic encryption
algorithm must have good uniformity. In addition, the algorithm must have a large enough key space
to resist brute force attacks. For instance, in order to show the security of the image chaotic encryption
algorithm in the statistical sense, the key space analysis, statistical analysis, and differential analysis
of the chaos encryption algorithm proposed in [23] and its corresponding extended algorithm are
given in Sections 4 and 5 of [23], respectively. However, the high uniformity of ciphertext does not
mean that the encryption algorithm has high security performance. For example, in [24], the security
analysis of an image chaotic encryption algorithm proposed in [16] is given, and it is found that the
generation of key stream is related to the sum of pixel values of plain images. Under the premise of
satisfying the sum of pixel values of a plain image unchanged, only two pixel values of cipher image
are changed corresponding to the variation of two pixel values of a plain image, which is vulnerable
to differential attack. Therefore, the equivalent secret keys can be obtained by selecting 512 plain
images. In [25], the cryptanalysis of a DNA encoding-based image scrambling and diffusion encryption
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algorithm proposed in [10] is reported to find that the scrambling algorithm is also independent of plain
image, so that it can be deciphered by chosen plaintext attack. In addition, by choosing some specific
plain images, the original image chaotic encryption algorithm can be simplified into scrambling-only
encryption algorithm, which has been proven to be insecure [26,27]. In [28], the security analysis of
an image encryption algorithm based on a compound chaotic system proposed in [29] is given, and it
is pointed out that there are a large number of equivalent secret keys in the image chaotic encryption
algorithm. In [30], an 8D self-synchronous and feedback-based chaotic stream cipher using the lower
8 bits of one state variable for encryption is proposed. However, in [31], most of the secret keys are
successfully acquired by means of a divide and conquer attack, known plaintext attack, and a chosen
ciphertext attack, respectively. In [32], the security analysis of a Latin square based image chaotic
encryption algorithm proposed in [22] is given to find the security vulnerabilities both in the diffusion
stage and in the scrambling stage through chosen text attack. In [33], the chosen plaintext attack is
adopted for the safety performance assessment of a 1D combinatorial chaotic encryption algorithm
proposed in [34]. In addition, in [35], the chosen plaintext attack is also utilized for analyzing the
security of a bit cube-based image chaotic encryption algorithm proposed in [36]. In addition, some
chaotic cipher designers have also discovered the importance of cryptanalysis. For example, in Section
3 of [37], the resistance to the four classic attack methods is analyzed in detail. The analysis shows that
the proposed encryption algorithm has resistance to the chosen plaintext attack because it is sensitive to
the initial parameters.

In 2019, an image chaotic encryption algorithm based on orthogonal Latin cubes and bit cubes is
given in [20]. First, a chaotic sequence is generated by logistic mapping, and it is further arranged in
ascending order to obtain its corresponding chaotic index sequence. Next, a finite field is constructed by
the chaotic index sequence, and three orthogonal Latin cubes are also generated. Then, the generated
three orthogonal Latin cubes are used for the first-scrambling-diffusion- second-scrambling three-stage
encryption. Although the designer claims that the algorithm has passed various statistical tests,
the analysis results in this paper demonstrate that the algorithm has at least two security vulnerabilities
as follows:

(1) The generation of Latin cubes in this algorithm is independent of plain image.
(2) When any one bit in the plain image changes, the corresponding number of bits in the cipher

image follows the change with obvious regularity.

Based on the above-mentioned security vulnerabilities, this paper adopts both chosen plaintext attack
and differential attack for analyzing the safety performance for the image chaotic encryption algorithm
proposed in [20]. First, a full zero plain image and multiple non-full zero plain images are selected,
and the differential operation is performed between the cipher image corresponding to this full zero
plain image and the cipher image corresponding to those non-full zero plain images. On the premise that
the sum of bit 1 in each differential operation is even, the chaotic index sequence lx can be deciphered.
Next, based on the obtained lx, and on the condition that there exists an intersection in the solutions of
unary quadratic equation on finite field GF(q), the secret keys α, β, γ can be further deciphered.

The rest of the paper is organized as follows: Section 2 briefly introduces the image chaotic
encryption algorithm. Section 3 presents the security analysis. Section 4 gives the steps for deciphering
image chaotic encryption algorithm. Section 5 demonstrates the numerical simulation experiments.
Section 6 gives some improvement suggestions for the image chaotic encryption algorithm. Finally,
Section 7 concludes the paper.

2. Description of an Image Chaotic Encryption Algorithm

2.1. A Brief View of an Image Chaotic Encryption Algorithm

In [20], the image chaotic encryption algorithm consists of secret keys selection, Latin cube
generation, scrambling encryption, and diffusion encryption, as shown in Figure 1, where key0, μ0,
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α, β, γ are the secret keys, xn (n = 0, 1, 2, · · · ) is a chaotic sequence generated by Logistic mapping,
lx is a chaotic index sequence, L1, L2, L3 are three Latin cubes, P is a 2D plain gray image, M is a
bit cube representation of P, S1 is a first-scrambling image of M, D is a diffusion image of S1, S2

is a second-scrambling image of D, E is a 2D cipher gray image of S2, and B is generated by L1.
When the size of the image is w × h, the length of xn and lx is q = 3

√
8 × w × h, the side length of Latin

cubes and bit cubes is q = 3
√

8 × w × h, and the secret keys α, β, γ ∈ {0, 1, 2, · · · , q − 1}. Note that an
appropriate image size w × h should be selected to ensure that q = 3

√
8 × w × h = 2 × 3

√
w × h is an

even number. In Figure 1, L1, L2, L3 ∈ {0, 1, 2, · · · , q − 1} are Latin cubes, M, S1, D, S2, B ∈ {0, 1} are
bit cubes, P is a 2D plain gray image, E is a 2D cipher gray image, pk, pt, s1, b, d, ek ∈ {0, 1} are 1D bit
sequences corresponding to P, S1, B, D, E, and t = T(k) is a position scrambling rule corresponding to
the first-scrambling stage.

P M 1S D 2S E
diffusionfirst-scrambling second-scramblingconvert to bit cube convert to 2-D

gray image

3 1

0[ ] q
k k i
p p i

3 1

0[ ] q
t t i
p p i

3 1
1 1 0[ ] q

t
s s t

3 1

0[ ] q

t
d d t

nx

lx

1L

ascending
sort

Logistic
mapping

generating
Latin cube

, ,

0 0,key

1 2 3, ,L L L1 2 3, ,L L L

1 2 3, ,L L L

1 2 3( , , )B l l l

B
3 1
0{ [ ]}qtb b t

( )t T k
3 1

0[ ] q
k k i
e e i

Figure 1. Block diagram of an image chaotic encryption algorithm.

2.2. Logistic Map

According to Figure 1, the chaotic sequence is generated through logistic mapping, given by

xn+1 = μxn(1 − xn), (1)

where n = 0, 1, 2, · · · , xn ∈ (0, 1), 0 ≤ μ ≤ 4. When μ > 3.573815, Equation (1) is chaotic.

2.3. Generation of Latin Cubes

Let the side length of L1, L2, L3 be q = 3
√

8 × w × h, where q is an even number. For a given
(l1, l2, l3), one gets L1(l1, l2, l3) = ψ1, L2(l1, l2, l3) = ψ2, L3(l1, l2, l3) = ψ3, 0 ≤ ψ1, ψ2, ψ3 ≤ q − 1.
If (l1, l2, l3) �= (l′1, l′2, l′3), (ψ1, ψ2, ψ3) �= (ψ′

1, ψ′
2, ψ′

3), then L1, L2, L3 are orthogonal to each other [38].
When q = 3, one gets three orthogonal Latin cubes, as shown in Figure 2a, and the corresponding
triple tuple is shown in Figure 2b, respectively.
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Figure 2. Three orthogonal Latin cubes and the corresponding triple tuple when q = 3. (a) three
orthogonal Latin cubes; (b) the corresponding triple tuple.

The algorithm for generating Latin cubes proposed in [20] is implemented by replacing the
ordered set {0, 1, 2, ..., q} in the generation method proposed in [38] with the chaotic index sequence
lx. The detailed steps for generating three orthogonal Latin cubes by means of a finite field are in
Algorithm 1.

Algorithm 1 Steps for Generation of Latin Cubes.

Input: Secret keys key0, μ0, α, β, γ; Side length q = 3
√

8 × w × h;
Output: Three orthogonal Latin cubes L1, L2 and L3;

1: Generate the chaotic sequence x = {x0, x1, . . . , xq−1} by using Logistic mapping.
2: Obtain the corresponding chaotic index sequence lx = {c0, c1, · · · , ci, · · · , cq−1} by arranging x =

{x0, x1, . . . , xq−1} in ascending order, where 0 ≤ ci, i ≤ q − 1, satisfying lx[i] = ci. Note that the chaotic index

sequence lx can only be determined after the sequence value ci and the sequence number i are simultaneously

obtained. When the sequence value ci is obtained, but the sequence number i is uncertain, the general form of

the chaotic index sequence lx is in the form of

lx = {ci0 , ci1 , · · · , cik
, · · · , ciq−1}, (2)

where 0 ≤ cik
ik ≤ q − 1, i0 �= i1 �= · · · �= ik �= · · · �= iq−1, lx[ik] = cik

. In the following, ξ or ξ ′ denotes the

sequence value and iξ or i′ξ ′ denotes the sequence number in Equation (2), respectively.
3: Construct a finite field by using chaotic index sequence lx, and then one gets the orthogonal Latin cubes on

the finite field, given by

⎧⎪⎪⎨
⎪⎪⎩

L1 (l1, l2, l3) = α2 × cl1 + α × cl2 + cl3 ,

L2 (l1, l2, l3) = β2 × cl1 + β × cl2 + cl3 ,

L3 (l1, l2, l3) = γ2 × cl1 + γ × cl2 + cl3 ,

(3)

where “+” denotes addition operation on the finite field, “×” denotes multiplication operation on the finite

field, α, β, γ ∈ lx, cl1 , cl2 , cl3 are sequence values of lx.
4: return L1, L2, L3.
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2.4. Steps for Image Chaotic Encryption

According to Figure 1, and taking a plain gray image with 512 × 512 resolution as an example,
one has q = 3

√
512 × 512 × 8 = 128. The steps for image chaotic encryption are in Algorithm 2.

Algorithm 2 Steps for Image Chaotic Encryption.

Input: Secret keys key0, μ0, α, β, γ; Plaintext image P;
Output: Ciphertxet image E;

1: Convert the 2D plain gray image P into the bit cube M;
2: Obtain three orthogonal Latin cubes L1, L2, L3 by Algorithm 1;
3: Scramble bit cube M by using three orthogonal Latin cubes L1, L2, L3, and get the corresponding

first-scrambling image S1 in the form of bit cube, such that

S1 (l1, l2, l3) = M (L1 (l1, l2, l3) , L2 (l1, l2, l3) , L3 (l1, l2, l3)) . (4)

4: Obtain the diffusion bit cube B (l1, l2, l3) by using Latin cube L1, given by

B (l1, l2, l3) =

{
0, if L1 (l1, l2, l3) ≥ 64,

1, if L1 (l1, l2, l3) < 64.
(5)

Then, get the diffusion 1D bit sequence b[t] corresponding to diffusion bit cube B(l1, l2, l3) as

b[t] = B
(⌊

t/1282
⌋

, �t/128�%128, t%128
)

, (6)

where t ∈ {0, 1, 2, · · · , q3 − 1}, �·� is a round down operation, and “%” is a modulo operation.
5: Convert S1(l1, l2, l3) into the 1D bit sequence s1[t] as

s1[t] = S1

(⌊
t/1282

⌋
, �t/128�%128, t%128

)
. (7)

Then, get the 1D bit sequence d[t] by using s1[t] and b[t] as

d[t] = s1[t]⊕ d[t − 1]⊕ b[t], (8)

where 0 ≤ t ≤ 1283 − 1, d[−1] = 0, “⊕” denotes bitwise exclusive or operation.
6: Calculate G(d) =

(
∑

q3−1
i=0 d[i]

)
, and convert the 1D bit sequence d[t] into the bit cube D(l1, l2, l3).

Then, get the bit cube S2 (l1, l2, l3) by utilizing D(l1, l2, l3), such that

S2 (l1, l2, l3) =

⎧⎨
⎩D (L2 (l1, l2, l3) , L3 (l1, l2, l3) , L1 (l1, l2, l3)) , (G(d)%2 = 0),

D (L3 (l1, l2, l3) , L1 (l1, l2, l3) , L2 (l1, l2, l3)) , (G(d)%2 = 1),
(9)

where G(d)%2 ∈ {0, 1} denotes the modular 2 operation on G(d).
7: Convert the bit cube S2(l1, l2, l3) into the 2D cipher gray image E with 512 × 512 resolution.
8: return E.

An example of encrypting a gray image with 2 × 4 resolution using the original encryption
algorithm is shown in Figure 3. Figure 3a shows the three Latin cubes and the corresponding bit
cubes L used for encryption. Figure 3b shows the encryption process. The numbers in the cells of P
and E represent pixel values, and the bit values are represented in the cells of S1, B, and S2. The red
cells in M indicate that they are bit representations of the red cell corresponding to P, i.e., the binary
representation of 166 is (10100110)2.
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Figure 3. An example of encrypting a gray image with 2 × 4 resolution. (a) three orthogonal Latin
cubes and the corresponding bit cubes L used for encryption; (b) the encryption process.
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3. Security Analysis

According to Figure 1, it is found that the generation of three orthogonal Latin cubes L1, L2, L3

is not related to the plain image. When the secret keys are given, the three orthogonal Latin cubes
L1, L2, L3 remain unchanged for different input plain images, which are provided a prerequisite for
chosen plaintext attack. Therefore, one can decipher the equivalent secret keys lx, α, β, γ corresponding
to the original secret keys key0, μ0, α, β, γ.

3.1. Analysis of Chaotic Index Sequence lx

3.1.1. Relation between the First-Scrambling Image S1 and the Plain Image M

Proposition 1. Suppose that M is the bit cube representation of P; S1 is the first-scrambling image of M.
The relationship between M and S1 satisfies S1(i0, i0, iξ) = M(ξ, ξ, ξ), where lx[i0] = 0, lx[iξ ] = ξ, i0, ξ ∈
{0, 1, 2, · · · , q − 1}, i0 denotes the sequence number corresponding to the sequence value 0, and iξ denotes the
sequence number corresponding to the sequence value ξ.

Proof. Let l1 = l2 = i0, l3 = iξ , and substitute them into Equation (4), then, one gets

S1(i0, i0, iξ) = M(L1(i0, i0, iξ), L2(i0, i0, iξ), L3(i0, i0, iξ)). (10)

In addition, let l1 = l2 = i0, l3 = iξ , and substitute them into Equation (3), then, one gets
⎧⎪⎪⎨
⎪⎪⎩

L1(i0, i0, iξ) = α2 × ci0 + α × ci0 + ciξ ,

L2(i0, i0, iξ) = β2 × ci0 + β × ci0 + ciξ ,

L3(i0, i0, iξ) = γ2 × ci0 + γ × ci0 + ciξ .

(11)

Since lx[i0] = 0, lx[iξ ] = ξ, one has lx[i0] = ci0 = 0, lx[iξ ] = ciξ = ξ. In addition, substituting
ci0 = 0 and ciξ = ξ into Equation (11), one gets

L1(i0, i0, iξ) = L2(i0, i0, iξ) = L3(i0, i0, iξ) = ξ. (12)

In addition, substituting Equation (12) into Equation (10), it follows that S1(i0, i0, iξ) = M(ξ, ξ, ξ)

holds. The proof is finished.

3.1.2. The First Case for Analysis of Chaotic Index Sequence lx

Suppose that the 1D bit sequence corresponding to plain image P0 is {p0[i]}q3−1
i=0 = {0}q3−1

i=0 ,
the cipher image corresponding to plain image P0 is E0, the 1D bit sequence corresponding to cipher

image E0 is {e0[i]}q3−1
i=0 , and the 1D bit sequence corresponding to plain image Pk is {pk[i]}q3−1

i=0 , where
pk[i] is given by

pk[i] =

{
1, if i = k,

0, if i �= k.
(13)

In addition, suppose that the cipher image corresponding to plain image Pk is Ek, the 1D bit

sequence corresponding to cipher image Ek is {ek[i]}q3−1
i=0 , the 1D bit sequence corresponding to plain

image Pk1k2 = Pk1 ⊕ Pk2 is
{

pk1k2 [i]
}q3−1

i=0 =
{

pk1 [i]⊕ pk2 [i]
}q3−1

i=0 , the cipher image corresponding to

plain image Pk1k2 is Ek1k2 , the 1D bit sequence corresponding to cipher image Ek1k2 is {ek1k2 [i]}
q3−1
i=0 ,

the 1D bit sequence corresponding to plain image Pk1k2k3 = Pk1 ⊕ Pk2 ⊕ Pk3 is
{

pk1k2k3 [i]
}q3−1

i=0 ={
pk1 [i]⊕ pk2 [i]⊕ pk3 [i]

}q3−1
i=0 , the cipher image corresponding to Pk1k2k3 is Ek1k2k3 , and the 1D bit

sequence corresponding to Ek1k2k3 is {ek1k2k3 [i]}
q3−1
i=0 .
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Proposition 2. Suppose that the cipher image corresponding to plain image Pk is Ek, the 1D bit sequence

corresponding to cipher image Ek is {ek[i]}q3−1
i=0 , the cipher image corresponding to plain image P0 is E0, and the

1D bit sequence corresponding to cipher image E0 is {e0[i]}q3−1
i=0 . A differential operation is performed in the form

of ∑
q3−1
i=0 (e0[i]⊕ ek[i]) = q3 − mk,0, in which ek[il ] = e0[il ] (l = 1, 2, · · · , mk,0; il ∈ {0, 1, 2, · · · , q3 − 1}),

q3is an even number. If (q3 − mk,0)%2 = q3%2 − mk,0%2 = mk,0%2 = 0, then T(k) = mk,0 holds, where
T(k) denotes the position scrambling rule in the first-scrambling stage, k denotes the position of the k-th bit
before the first-scrambling of plain image, and T(k) denotes the position of k-th bit after the first-scrambling of
plain image.

Proof. According to Equation (6), the relationship between the coordinates (l1, l2, l3) of bit cube
B(l1, l2, l3) and the position t of 1D bit sequence b[t] corresponding to B(l1, l2, l3) is given by

⎧⎪⎪⎨
⎪⎪⎩

l1 =
⌊
t/q2⌋ = ⌊

t/1282
⌋

,

l2 = �t/q�%q= �t/128�%128,

l3 = t%q = t%128.

(14)

On the other hand, the relationship between the coordinates (ξ, ξ, ξ) of bit cube M(ξ, ξ, ξ) and the
position k of 1D bit sequence pk[i] in Equation (13) is given by

k = ξ(q2 + q + 1). (15)

Thus, the relationship between the position of t-th bit after the first-scrambling of plain image
and the position of k-th bit before the first-scrambling of plain image is given by

t = T(k) = T(ξ(q2 + q + 1)). (16)

(1) Consider the first-scrambling stage. In the first-scrambling stage, only change the bit position,
but the bit value should remain unchanged. Suppose that the input 1D bit sequence corresponding
to plain image Pk is pk, after the first-scrambling of plain image, the corresponding output 1D bit
sequence is pt. According to Equation (16), the relationship between position t and k satisfies t = T(k).

In particular, if the input 1D bit sequence corresponding to plain image P0 is p0 = {p0[i]}q3−1
i=0 =

{0}q3−1
i=0 , after the first-scrambling of plain image, the corresponding output 1D bit sequence is pt =

{pt[i]}q3−1
i=0 , then one has pt = p0 = {0}q3−1

i=0 . (2) Consider the diffusion stage. Take the output 1D

bit encryption sequence {po[i]}q3−1
i=0 in the first-scrambling stage as the input 1D bit sequence in the

diffusion stage. According to Equation (8), diffuse {po[i]}q3−1
i=0 by using the diffusion 1D bit sequence

{b[i]}q3−1
i=0 , obtain the corresponding output {do[i]}1283−1

i=0 in the diffusion stage. By substituting s1[i] =
po[i] = 0 into Equation (8), one has

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

do[0] = po[0]⊕ do[−1]⊕ b[0] = 0 ⊕ 0 ⊕ b[0] = b[0],

do[1] = po[1]⊕ do[0]⊕ b[1] = 0 ⊕ do[0]⊕ b[1] = b[0]⊕ b[1],

do[2] = po[2]⊕ do[1]⊕ b[2] = 0 ⊕ do[1]⊕ b[2] = b[0]⊕ b[1]⊕ b[2],

· · ·
do[i] = b[0]⊕ b[1]⊕ b[2] · · · ⊕ b [i] ,

(17)

where i = 0, 1, 2, · · · , q3 − 1, d0[−1] = 0. Similarly, take the output 1D bit encryption sequence

{pt[i]}q3−1
i=0 in the first-scrambling stage as the input 1D bit sequence in the diffusion stage. According

to Equation (8), diffuse {pt[i]}q3−1
i=0 by using the diffusion 1D bit sequence {b[i]}q3−1

i=0 and obtain the
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corresponding output {dt[i]}1283−1
i=0 in the diffusion stage. By substituting s1[i] = pt[i] into Equation (8),

and also by utilizing Equation (17), one has

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dt[0] = pt[0]⊕ dt[−1]⊕ b[0] = 0 ⊕ 0 ⊕ b[0] = do[0],

dt[1] = pt[1]⊕ dt[0]⊕ b[1] = 0 ⊕ do[0]⊕ b[1] = 0 ⊕ b[0]⊕ b[1] = do[1],

· · ·
dt[t] = pt[t]⊕ dt[t − 1]⊕ b[t] = 1 ⊕ do[t − 1]⊕ b[t] = 1 ⊕ do[t] = do[t],

dt[t + 1] = pt[t + 1]⊕ dt[t]⊕ b[t + 1] = 0 ⊕ dt[t]⊕ b[t + 1] = do[t]⊕ b[t + 1] = do[t + 1],

· · ·
dt[i] = pt[i]⊕ dt[i − 1]⊕ b[i] = 1 ⊕ do[i − 1]⊕ b[i] = do[i],

(18)

where dt[−1] = 0. According to Equation (18), one has

{
dt[i] = do[i] (0 ≤ i < t),

dt[i] = do[i] (t ≤ i ≤ (q3 − 1)),
(19)

where do[i] denotes the bitwise NOT of do[i]. (3) Consider the second-scrambling stage. Take the

output 1D bit encryption sequences {do[i]}q3−1
i=0 and {dt[i]}q3−1

i=0 in the diffusion stage as the input 1D

bit sequences in the second-scrambling stage, calculate G(d0) =
(

∑
q3−1
i=0 d0[i]

)
, G(dt) =

(
∑

q3−1
i=0 dt[i]

)
,

respectively. If t%2 = 0 in Equation (19) holds, then it follows that

G(dt)%2 = G(d0)%2. (20)

According to Equation (9) with Equation (20), it is noted that the same scrambling rule for

{do[i]}q3−1
i=0 and {dt[i]}q3−1

i=0 is used in the second-scrambling stage. By comparing the first equation
dt[i] = do[i] (0 ≤ i < t) of Equation (19) with ek[il ] = e0[il ] (l = 1, 2, · · · , mk,0; il ∈ {0, 1, 2, · · · , q3 − 1}),
it follows that t = mk,0. Then, according to Equation (16), T(k) = mk,0 holds. The proof is finished.

Based on Proposition 1, one has S1(i0, i0, iξ) = M(ξ, ξ, ξ), where ξ ∈ {0, 1, 2, · · · , q − 1} is the
sequence value of chaotic index sequence lx, iξ is the sequence number of lx. However, even though ξ

is given, since S1(i0, i0, iξ) is the first-scrambling result of bit cube M(ξ, ξ, ξ), but the scrambling
rule T(·) is unknown beforehand, the sequence numbers i0 and iξ cannot be directly available.
Thus, Proposition 2 is needed to obtain the specific numbers i0 and iξ .

Based on Proposition 2, suppose that the input plain image M(l1, l2, l3) is given by

M(l1, l2, l3) =

{
1, if l1 = l2 = l3 = ξ,

0, otherwise,
(21)

where ξ ∈ {0, 1, · · · , q − 1}. Based on Equation (15) with Equation (21), one has k = ξ · (q2 + q + 1).
Next, one obtains mk,0 by a chosen plaintext attack. If mk,0%2 = 0 holds, then the same scrambling rule
is used for d0 and dt in the second-scrambling stage, such that T(k) = mk,0 = t. Finally, according to
Equation (14), it follows that

{
i0 =

⌊
t/q2⌋ = ⌊

T(ξ · (q2 + q + 1))/q2⌋ = ⌊
T(k)/q2⌋ = ⌊

mk,0/q2⌋ ,

iξ = t%q = T(ξ · (q2 + q + 1))%q = T(k)%q = mk,0%q.
(22)

An example of Proposition 2 is as in Figure 4. Figure 4a shows the ciphertext corresponding to
the grayscale image lena. Figure 4b shows the corresponding ciphertext image after changing the bit at

187



Entropy 2019, 21, 888

the bit-cube coordinates (6, 6, 6) of lena. Figure 4c is a bitwise exclusive or result between Figure 4a,b.
Figure 4d is a bit statistical histogram of Figure 4c.

(a)

(c)

(b)

(d)

Figure 4. An example of Proposition 2. (a) the ciphertext corresponding to the grayscale image lena;
(b) the corresponding ciphertext image after changing the bit at the bit-cube coordinates (6, 6, 6) of lena;
(c) the bitwise exclusive or result between Figure 4a,b; (d) the bit statistical histogram of Figure 4c.

The difference between the two plaintexts is only 1 bit. It can be found from Figure 4d that the
number of identical bits between their corresponding ciphertexts is 1,733,762, which is an even number.
Substituting mk,0 = 1, 733, 762, ξ = 6, and q = 128 into Equation (22) yields i0 = 105 and i6 = 2.

3.1.3. The Second Case for Analysis of Chaotic Index Sequence lx

If mk,0%2 �= 0, the above-mentioned method is no longer available, which needs to be
further consideration.

Corollary 1. Supposing that the cipher image corresponding to plain image Pk1k2 = Pk1 ⊕ Pk2 (k1 �= k2) is

Ek1k2 , the 1D bit sequence corresponding to Ek1k2 is {ek1k2 [i]}
q3−1
i=0 , the cipher image corresponding to plain image

P0 is E0, the 1D bit sequence corresponding to E0 is{e0[i]}q3−1
i=0 . A differential operation is performed in the form

188



Entropy 2019, 21, 888

of ∑
q3−1
i=0

(
e0[i]⊕ ek1k2 [i]

)
= mk1k2,0, in which ek[il ] �= e0[il ] (l = 1, 2, · · · , mk1k2,0; il ∈ {0, 1, 2, · · · , q3 −

1}). If mk1k2,0%2 = 0, then |T(k1)− T(k2)| = mk1k2,0 holds. In addition, if |T(k1)− T(k2)|%2 = 0,
then mk1k2,0 = |T(k1)− T(k2)| also holds.

Corollary 2. Suppose that the cipher image corresponding to plain image Pk1k2k3 = Pk1 ⊕ Pk2 ⊕ Pk3 (k1 �=
k2 �= k3) is Ek1k2k3 , the 1D bit sequence corresponding to Ek1k2k3 is {ek1k2k3 [i]}

q3−1
i=0 , the cipher image

corresponding to plain image P0 is E0, the 1D bit sequence corresponding to E0 is {e0[i]}q3−1
i=0 . A differential

operation is performed in the form of ∑
q3−1
i=0

(
e0[i]⊕ ek1k2k3 [i]

)
= q3 − mk1k2k3,0, in which ek1k2k3 [il ] =

e0[il ] (l = 1, 2, · · · , mk1k2k3,0; il ∈ {0, 1, 2, · · · , q3 − 1}), q3 is an even number. If (q3 − mk1k2k3,0)%2 =

q3%2 − mk1k2k3,0%2 = mk1k2k3,0%2 = 0, then T(k1) + T(k2) − T(k3) = mk1k2k3,0 holds, where
T(k1) < T(k3) < T(k2) or T(k1) > T(k3) > T(k2). In addition, if [T(k1) + T(k2)− T(k3)]%2 = 0,
then mk1k2k3,0 = T(k1) + T(k2)− T(k3) also holds.

Suppose that the set of all sequence values corresponding to the chaotic index sequence lx is
Ω = {ξi1 , ξi2 , · · · , ξiq/2

, ξ ′i′1 , ξ ′i′2 , · · · , ξ ′i′q/2
}. Let Ψ = {ξi1 , ξi2 , · · · , ξiq/2

} be the set of sequence value ξ

corresponding to sequence number iξ , where iξ is obtained by using Equation (22). The relationship
among ξ, k, t is k = ξ(q2 + q + 1) and t = T(k) = T(ξ · (q2 + q + 1)). For ∀ξ ∈ Ψ, mk,0%2 = 0 and
t = mk,0 hold. Similarly, let Ψ′ = {ξ ′i′1 , ξ ′i′2 , · · · , ξ ′i′q/2

} be the set of sequence value ξ ′ corresponding

to sequence number i′ξ . The relationship among ξ ′, k′, t′ is k′ = ξ ′ · (q2 + q + 1) and t′ = T(k′) =

T(ξ ′ · (q2 + q + 1)). For ∀ξ ′ ∈ Ψ′, mk′ ,0%2 = 0 and t′ = mk′ ,0 do not hold.
When ξ ∈ Ψ, one has k = ξ(q2 + q + 1) and mk,0%2 = 0, based on the Proposition 2, t = mk,0

holds. According to Equation (22), the sequence number iξ corresponding to sequence value ξ is given
by iξ = t%q. However, when ξ ′ ∈ Ψ′, one has k′ = ξ ′(q2 + q + 1) and mk′ ,0%2 �= 0, the Proposition 2 is
not available, t′ = mk′ ,0 does not hold. Therefore, the sequence number i′ξ ′ corresponding to sequence
value ξ ′ ∈ Ψ′ cannot be determined by using Equation (22).

To further solve the above-mentioned problem, by selecting k′1, k′2 (k′1 �= k′2), one can obtain mk′1,0
corresponding to k′1, and mk′2,0 corresponding to k′2 by using chosen plaintext attack, which satisfies
mk′1,0%2 = 1 and mk′2,0%2 = 1. Under this circumstance, although T(k′1) and T(k′2) are unknown, but
according to the Proposition 2, ∀k corresponding to T(k)%2 = 0 can be found, so that the remained
∀k′ satisfies T(k′1)%2 = 1 and T(k′2)%2 = 1, |T(k′1)− T(k′2)|%2 = 0. According to the Corollary 1,
it follows that

mk′1k′2,0 = |T(k′1)− T(k′2)| = |t′1 − t′2|. (23)

According to the chosen plaintext attack, mk′1k′2,0 in Equation (23) can be obtained from the given
ξ ′1, ξ ′2 ∈ Ψ′, where ξ ′1 corresponding to t′1 satisfies t′1 = T(ξ ′1(q

2 + q + 1)), and ξ ′2 corresponding to t′2
satisfies t′2 = T(ξ ′2(q2 + q + 1)), respectively.

For the same k′1, k′2, by selecting a suitable k such that k = ξ(q2 + q + 1), mk,0%2 = 0, one gets[
T(k′1) + T(k′2)− T(k)

]
%2 = 0. Then, according to the Corollary 2, it follows that

mk′1k′2k,0 = T(k′1) + T(k′2)− T(k) = t′1 + t′2 − t, (24)

where T(k′1) < T(k) < T(k′2) or T(k′1) > T(k) > T(k′2), t′1 < t < t′2 or t′1 > t > t′2.
According to the chosen plaintext attack, mk′1k′2k,0 in Equation (24) can be obtained from the given

ξ ′1, ξ ′2 ∈ Ψ′ and ξ ∈ Ψ, where ξ ′1 corresponding to t′1 satisfies t′1 = T(ξ ′1(q
2 + q + 1)), ξ ′2 corresponding

to t′2 satisfies t′2 = T(ξ ′2(q2 + q + 1)), ξ corresponding to t satisfies t = T(ξ(q2 + q + 1)) = mk,0,
in which mk,0 is known by a chosen plaintext attack as well.

Note that one can also select t′i, t′i+1, t (i = 2, 3, · · · , (q/2 − 1)) in the same way, which is omitted
here due to the limited length of the article.

According to Equations (23) and (24), four cases are given as follows:
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(1) If t′1 < t < t′2, then one has

⎧⎨
⎩

t′2 = (mk′1k′2,0 + mk′1k′2k,0 + t)/2 = A1,

t′1 = (−mk′1k′2,0 + mk′1k′2k,0 + t)/2 = B1.
(25)

(2) If t′1 > t > t′2, then one has

⎧⎨
⎩

t′1 = (mk′1k′2,0 + mk′1k′2k,0 + t)/2 = A1,

t′2 = (−mk′1k′2,0 + mk′1k′2k,0 + t)/2 = B1.
(26)

(3) If t′2 < t < t′3, then one has

⎧⎨
⎩

t′3 = (mk′2k′3,0 + mk′2k′3k,0 + t)/2 = A2,

t′2 = (−mk′2k′3,0 + mk′2k′3k,0 + t)/2 = B2.
(27)

(4) If t′2 > t > t′3, then one has

⎧⎨
⎩

t′2 = (mk′2k′3,0 + mk′2k′3k,0 + t)/2 = A2,

t′3 = (−mk′2k′3,0 + mk′2k′3k,0 + t)/2 = B2.
(28)

Based on Equations (25)–(28), it follows that
{{t′1, t′2} = {A1, B1},

{t′2, t′3} = {A2, B2}.
(29)

Then, according to Equation (29), it follows that⎧⎪⎪⎨
⎪⎪⎩

t′2 = {A1, B1}
⋂{A2, B2},

t′1 = {A1, B1} − {t′2},

t′3 = {A2, B2} − {t′2}.

(30)

Similarly, for t′i−1, t′i, t and t′i, t′i+1, t, one has⎧⎪⎪⎨
⎪⎪⎩

t′i = {Ai−1, Bi−1}
⋂{Ai, Bi},

t′i−1 = {Ai−1, Bi−1} − {t′i},

t′i+1 = {Ai, Bi} − {t′i},

(31)

where i = 2, 3, · · · , (q/2 − 1).
For any given ξ ′l ∈ Ψ′ and ξ ∈ Ψ, according to Equation (31), first, one can get the corresponding

t′l . Then, the sequence number i′
ξ ′l

corresponding to the sequence value ξ ′l can be further obtained by

using t′l , such that ⎧⎨
⎩

i′ξ ′l = t′l%q,

lx[i′ξ ′l ] = ξ ′l ,
(32)

where l ∈ {1, 2, · · · , q/2}.
Finally, according to the Equations (22) and (32), one can determine all the sequence values ξ ∈ Ψ,

ξ ′l ∈ Ψ′ and all the corresponding sequence numbers iξ , i′ξ ′ in Equation (2), so that the chaotic index
sequence lx can be completely deciphered.
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3.2. Analysis of Secret Keys α, β, γ

Proposition 3. Under the condition that the chaotic index sequence lx is obtained, for any (l1, l2, l3) �=
(l′1, l′2, l′3), where li, l′i ∈ {0, 1, 2, · · · , q − 1} (i = 1, 2, 3), if L1(l1, l2, l3) = L2(l1, l2, l3) �= 0 and
L2(l′1, l′2, l′3) = L3(l′1, l′2, l′3) �= 0, then the secret keys α, β, γ can be uniquely determined.

Proof. According to Equation (3), if L1(l1, l2, l3) = L2(l1, l2, l3) �= 0 and L2(l′1, l′2, l′3) = L3(l′1, l′2, l′3) �= 0
for any (l1, l2, l3) �= (l′1, l′2, l′3), then it follows that

{
L1(l1, l2, l3) = L2(l1, l2, l3) = cl1 × χ1

2 + cl2 × χ1 + cl3 �= 0,

L2(l′1, l′2, l′3) = L3(l′1, l′2, l′3) = cl′1
× χ2

2 + cl′2 × χ2 + cl′3 �= 0,
(33)

where cl1 , cl2 , cl3 are sequence values of chaotic index sequence lx, χ1 ∈ {α, β}, χ2 ∈ {β, γ}.

According to the first equation of Equation (33), one gets two solutions χ
(1)
1 , χ

(2)
1 for χ1.

Similarly, according to the second equation of Equation (33), one gets two solutions χ
(1)
2 , χ

(2)
2 for

χ2. Thus, there exists an intersection for the first equation and the second equation of Equation (33),
given by β = {χ

(1)
1 , χ

(2)
1 }⋂{χ

(1)
2 , χ

(2)
2 }. Based on the deciphered secret key β, the remaining two secret

keys α = {χ
(1)
1 , χ

(2)
1 } − {β} and γ = {χ

(1)
2 , χ

(2)
2 } − {β} can further be deciphered as well.

If L1(l1, l2, l3) = L2(l1, l2, l3) = 0 and L2(l′1, l′2, l′3) = L3(l′1, l′2, l′3) = 0, then, an intersection for the
first equation and the second equation of Equation (33) does not exist, so the secret keys α, β, γ cannot
be obtained [39]. The proof is finished.

3.3. Flowchart of Security Analysis

The flowchart of security analysis is shown in Figure 5.

0 0choose  and  based on chosen-plaintext attackP E

0 ,0use  &  to get  based on differential analysisk kE E m

,0 %2 0?km
Yes

No

start

21 2 1
choose k kk kP P P

1 2 1 2 ,0 and theg n obtai n et k k kkE m

1 2 1 2
choose k k kk k kP PP P

1 2 1 2 ,0 and theg n obtai  et nk kk k k kE m

according to 31 , give i

get  corresponding to i it

1 21 2give ,  and then get ,k kP P

give  and then get kP

give sequence value  and get corresponding kP

decipher , ,  according to  and proposition 3lx

according to 32 , get %
i ii t q

corresponding to i

decipher chaotic index sequence lx

end

corresponding to 0

2 2
0 ,0g /et / kq m qi t

,0satisfy kt m

calculate sequence values and

corresponding to 
,0get % %km qi t q

choose  and  based on chosen-plaintext attackk kP E

serial numbers according to (22)

Figure 5. Flowchart of security analysis.

191



Entropy 2019, 21, 888

4. Steps for Deciphering the Image Chaotic Encryption Algorithm

The steps for deciphering image chaotic encryption algorithm are as Algorithm 3.

Algorithm 3 Steps for Deciphering Image Chaotic Encryption Algorithm.

Output: The equivalent secret keys lx, α, β, γ;
1: According to the chosen plaintext attack, choose the plain image as P0, the corresponding cipher

image is E0, the 1D bit sequence corresponding to E0 is {e0[i]}q3−1
i=0 .

2: According to the chosen plaintext attack, choose the plain image as Pk, the corresponding cipher

image is Ek, the 1D bit sequence corresponding to Ek is {ek[i]}q3−1
i=0 . where k = ξ · (q2 + q + 1),

ξ ∈ Ψ.
3: According to the differential attack, calculate mk,0 by using {e0[i]}q3−1

i=0 and {ek[i]}q3−1
i=0 obtained in

step 1 and step 2.
4: If mk,0%2 = 0, then t = mk,0 holds. According to Equation (22), the sequence number corresponding

to sequence value 0 is i0 =
⌊
t/q2⌋ = ⌊

mk,0/q2⌋, the sequence number corresponding to sequence

value ξ ∈ Ψ is iξ = t%q = mk,0%q.
5: If mk%2 = 1, then t �= mk,0 holds, Equation (22) is not available. According to the chosen

plaintext attack, choose the plain image as Pk′1k′2 = Pk′1
⊕ Pk′2 , the corresponding cipher image is

Ek′1k′2 , the 1D bit sequence corresponding to Ek′1k′2 is {ek′1k′2 [i]}
q3−1
i=0 . In addition, choose the plain

image asPk′1k′2k = Pk′1
⊕ Pk′2 ⊕ Pk, the corresponding cipher image is Ek′1k′2k, the 1D bit sequence

corresponding to Ek′1k′2k is {ek′1k′2k[i]}q3−1
i=0 .

6: According to the differential attack, first calculate mk′1k′2,0 by using {e0[i]}q3−1
i=0 and {ek′1k′2 [i]}

q3−1
i=0

obtained in step 1 and step 5. Then, calculate mk′1k′2k,0 by using {e0[i]}q3−1
i=0 and {ek′1k′2k[i]}q3−1

i=0

obtained in step 1 and step 5.
7: According to Equation (32), calculate the sequence number i′

ξ ′i
= t′i%q corresponding to sequence

value ξ ′i ∈ Ψ′.
8: Decipher the chaotic index sequence lx by using Equation (22) and Equation (32). Then, decipher

the secret keys α, β, γ according to the Proposition 3.
9: return lx, α, β, γ;

Theoretical analysis and experimental results indicate that only a maximum of 2.5× 3
√

w × h plain
images are needed to decipher the chaotic index sequence lx, and only a maximum of six plain images
are needed to decipher secret keys α, β, γ. Therefore, only a maximum of 2.5 × 3

√
w × h + 6 is needed

to crack the cipher image with w × h resolution.

5. Numerical Simulation Experiments

In the numerical simulation experiments, the secret keys are set as key0 = 0.34, μ0 = 3.9, α = 20,
β = 37, γ = 46, the image is with 512 × 512 resolution. According to the steps for deciphering the
image chaotic encryption algorithm given in Section 4, the deciphering algorithm of the origin cipher
is implemented by the C program language. Simulations are operated under a laptop computer
with Intel Core i7-8550U CPU (Santa Clara, CA, USA) 1.80 GHz, 8 GB RAM, the operating system is
Microsoft Windows 10 (Redmond, WA, USA). Using the original algorithm to encrypt and use the
algorithm proposed in this paper to crack an image with size of 512 × 512 takes about 0.115 s and
10.702 s, respectively. Since the encryption process of the algorithm is independent of plaintext and
ciphertext, the equivalent key obtained by deciphering any ciphertext image can be used to decipher all
ciphertext images of the same resolution. Taking the standard 2D plain gray image Lena, Cameraman,
Livingroom as three examples, the plain images, the cipher images, and the deciphered images are
shown in Figure 6, respectively.
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(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Figure 6. Plain images ((a–c) row), cipher images ((d–f) row), and deciphered images ((g–i) row) of
Lena ((a–g) column), cameraman ((b–h) column), and living room ((c–i) column).

Although the previous analysis is for grayscale images, the original encryption algorithm can be
easily extended to encrypt color images by encrypting each of the three channels of the color image as
a separate grayscale image. In this case, the attack method proposed in this paper is still valid. Take a
real-life image with 1024 × 2048 resolution as an example. Encrypting this image using the original
encryption algorithm, it takes about 0.53 s to encrypt the three color channels with the same key, and it
takes about 107.36 s to decipher the corresponding ciphertext using the attack method proposed in this
paper. Encrypting three color channels with three different sets of keys takes about 1.42 s, and it takes
about 318.45 s to decipher the corresponding ciphertext. The results are shown in Figure 7.

(a)

(b)

(d)

(c)

(e)

Figure 7. The result of the deciphering of the real-life image. (a) the original image; (b) encrypting the
three color channels with the same key; (c) the deciphered image corresponding to (b); (d) encrypting
the three color channels with three different sets of keys; (e) the deciphered image corresponding to (d).
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6. Suggestions for Improvement

According to the analysis in Section 3, the original algorithm is insecure and cannot resist the
choice of plaintext attack, and the complexity of the attack method is relatively low. To deal with its
security defects, the corresponding suggestions for improvement to enhance the security are as follows:

(1) Enhance the sensitivity of the encryption algorithm to plaintext and ciphertext. According to
the analysis in Section 3, the original algorithm has a universal equivalent key lx, α, β, γ. The original
algorithm is not sensitive to both plaintext and ciphertext. The root cause of this defect is that the
generation of Latin cubes is independent of plaintext image. This vulnerability can be solved by
introducing some statistical properties of plaintext, such as the sum of all pixel values, into the
generation phase of the Latin cubes.

(2) The mechanism used in the diffusion phase is too simple to achieve the avalanche effect of
cryptography, which makes the encryption algorithm vulnerable to differential attacks. To fulfill
this demand, increasing the number of encryption rounds or exploiting some complex diffusion
mechanisms are worthy options.

7. Conclusions

This paper investigates the security of a Latin-bit cube-based image chaotic encryption algorithm.
The algorithm adopts a first-scrambling-diffusion-second-scrambling three-stage encryption scheme.
Although the designer claims that the algorithm has passed various statistical tests, the security analysis
results in this paper demonstrate that the algorithm has some security vulnerabilities. In particular,
the generation of Latin cubes is independent of plain image, and the change in the number of bits
in the cipher image follows the change of any one bit in the plain image with obvious regularity.
Thus, the equivalent secret keys lx, α, β, γ can be cracked by a chosen plaintext attack and differential
attack. Only a maximum of 2.5 × 3

√
w × h + 6 plain images are needed to decipher the equivalent

secret keys. Theoretical analysis and numerical simulation experiment results verify the effectiveness
of the analytical method.

Author Contributions: Methodology, Z.Z.; Project administration, S.Y.; Software, Z.Z.; Supervision, S.Y.;
Validation, S.Y.

Funding: This research was funded by the National Key Research and Development Program of China
(No. 2016YFB0800401) and the National Natural Science Foundation of China (No. 61532020, 61671161).

Conflicts of Interest: The authors declare no conflict and interest.

References

1. Özkaynak, F. Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn.
2018, 92, 305–313. [CrossRef]

2. Abdallah, E.E.; Ben Hamza, A.; Bhattacharya, P. Video watermarking using wavelet transform and tensor
algebra. Signal Image Video Process. 2010, 4, 233–245. [CrossRef]

3. Abdallah, E.E.; Hamza, A.B.; Bhattacharya, P. MPEG Video Watermarking Using Tensor Singular
Value Decomposition. In Image Analysis and Recognition; Kamel, M., Campilho, A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 772–783.

4. Wang, J.; Ding, Q. Dynamic Rounds Chaotic Block Cipher Based on Keyword Abstract Extraction. Entropy
2018, 20, 693. [CrossRef]

5. Wang, X.; Yang, L.; Liu, R.; Kadir, A. A chaotic image encryption algorithm based on perceptron model.
Nonlinear Dyn. 2010, 62, 615–621. [CrossRef]

6. Zhang, Y.; Wang, X. A new image encryption algorithm based on non-adjacent coupled map lattices.
Appl. Soft. Comput. 2015, 26, 10–20. [CrossRef]

7. Wang, X.; Liu, L.; Zhang, Y. A novel chaotic block image encryption algorithm based on dynamic random
growth technique. Opt. Lasers Eng. 2015, 66, 10–18. [CrossRef]

194



Entropy 2019, 21, 888

8. Liu, H.; Wang, X. Color image encryption based on one-time keys and robust chaotic maps.
Comput. Math. Appl. 2010, 59, 3320–3327. [CrossRef]

9. Liu, H.; Wang, X. Color image encryption using spatial bit-level permutation and high-dimension chaotic
system. Opt. Commun. 2011, 284, 3895–3903. [CrossRef]

10. Song, C.; Qiao, Y. A Novel Image Encryption Algorithm Based on DNA Encoding and Spatiotemporal
Chaos. Entropy 2015, 17, 6954–6968. [CrossRef]

11. Chai, X.; Fu, X.; Gan, Z.; Lu, Y.; Chen, Y. A color image cryptosystem based on dynamic DNA encryption
and chaos. Signal Process. 2019, 155, 44–62. [CrossRef]

12. Liu, H.; Wang, X.; kadir, A. Image encryption using DNA complementary rule and chaotic maps.
Appl. Soft. Comput. 2012, 12, 1457–1466. [CrossRef]

13. Wang, X.; Zhang, Y.; Bao, X. A novel chaotic image encryption scheme using DNA sequence operations.
Opt. Lasers Eng. 2015, 73, 53–61. [CrossRef]

14. Wang, X.; Feng, L.; Zhao, H. Fast image encryption algorithm based on parallel computing system. Inf. Sci.
2019, 486, 340–358. [CrossRef]

15. Wang, X.; Gao, S. Image encryption algorithm for synchronously updating Boolean networks based on
matrix semi-tensor product theory. Inf. Sci. 2019, 507, 16–36. [CrossRef]

16. Yaghouti Niyat, A.; Moattar, M.H.; Niazi Torshiz, M. Color image encryption based on hybrid hyper-chaotic
system and cellular automata. Opt. Lasers Eng. 2017, 90, 225–237. [CrossRef]

17. Chai, X.; Gan, Z.; Yang, K.; Chen, Y.; Liu, X. An image encryption algorithm based on the memristive
hyperchaotic system, cellular automata and DNA sequence operations. Signal Process.-Image Commun.
2017, 52, 6–19. [CrossRef]

18. Wang, X.; Li, Z. A color image encryption algorithm based on Hopfield chaotic neural network.
Opt. Lasers Eng. 2019, 115, 107–118. [CrossRef]

19. Bigdeli, N.; Farid, Y.; Afshar, K. A robust hybrid method for image encryption based on Hopfield neural
network. Comput. Electr. Eng. 2012, 38, 356–369. [CrossRef]

20. Xu, M.; Tian, Z. A novel image cipher based on 3D bit matrix and latin cubes. Inf. Sci. 2019, 478, 1–14.
[CrossRef]

21. Xu, M.; Tian, Z. A novel image encryption algorithm based on self-orthogonal Latin squares. Optik
2018, 171, 891–903. [CrossRef]

22. Chen, J.; Zhu, Z.; Fu, C.; Zhang, L.; Zhang, Y. An efficient image encryption scheme using lookup table-based
confusion and diffusion. Nonlinear Dyn. 2015, 81, 1151–1166. [CrossRef]

23. Zhang, Y.; Wang, X. A symmetric image encryption algorithm based on mixed linear–nonlinear coupled
map lattice. Inf. Sci. 2014, 273, 329–351. [CrossRef]

24. Li, M.; Lu, D.; Wen, W.; Ren, H.; Zhang, Y. Cryptanalyzing a Color Image Encryption Scheme Based on
Hybrid Hyper-Chaotic System and Cellular Automata. IEEE Access 2018, 6, 47102–47111. [CrossRef]

25. Wen, H.; Yu, S.; Lü, J. Breaking an Image Encryption Algorithm Based on DNA Encoding and Spatiotemporal
Chaos. Entropy 2019, 21, 246. [CrossRef]

26. Li, C.; Lo, K. Optimal quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext
attacks. Signal Process. 2011, 91, 949–954. [CrossRef]

27. Jolfaei, A.; Wu, X.; Muthukkumarasamy, V. On the Security of Permutation-Only Image Encryption Schemes.
IEEE Trans. Inf. Forensic Secur. 2016, 11, 235–246. [CrossRef]

28. Feng, W.; He, Y.; Li, H.; Li, C. Cryptanalysis and Improvement of the Image Encryption Scheme Based on 2D
Logistic-Adjusted-Sine Map. IEEE Access 2019, 7, 12584–12597. [CrossRef]

29. Hua, Z.; Zhou, Y. Image encryption using 2D Logistic-adjusted-Sine map. Inf. Sci. 2016, 339, 237–253.
[CrossRef]

30. Lin, Z.; Yu, S.; Lü, J.; Cai, S.; Chen, G. Design and ARM-Embedded Implementation of a Chaotic Map-Based
Real-Time Secure Video Communication System. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 1203–1216.

31. Lin, Z.; Yu, S.; Feng, X.; Lü, J. Cryptanalysis of a Chaotic Stream Cipher and Its Improved Scheme.
Int. J. Bifurc. Chaos 2018, 28, 1850086. [CrossRef]

32. Hu, G.; Xiao, D.; Wang, Y.; Li, X. Cryptanalysis of a chaotic image cipher using Latin square-based confusion
and diffusion. Nonlinear Dyn. 2017, 88, 1305–1316. [CrossRef]

33. Wang, H.; Xiao, D.; Chen, X.; Huang, H. Cryptanalysis and enhancements of image encryption using
combination of the 1D chaotic map. Signal Process. 2018, 144, 444–452. [CrossRef]

195



Entropy 2019, 21, 888

34. Pak, C. A new color image encryption using combination of the 1D chaotic map. Signal Process.
2017, 138, 129–137. [CrossRef]

35. Wu, J. Cryptanalysis and enhancements of image encryption based on three-dimensional bit matrix
permutation. Signal Process. 2018, 142, 292–300. [CrossRef]

36. Zhang, W.; Yu, H.; Zhao, Y.; Zhu, Z. Image encryption based on three-dimensional bit matrix permutation.
Signal Process. 2016, 118, 36–50. [CrossRef]

37. Wang, X.; Teng, L.; Qin, X. A novel colour image encryption algorithm based on chaos. Signal Process.
2012, 92, 1101–1108. [CrossRef]

38. Arkin, J.; Straus, E.G. Latin k-cubes. Fibonacci Q. 1974, 12, 288–292.
39. Berlekamp, E.; Rumsey, H.; Solomon, G. On the solution of algebraic equations over finite fields. Inf. Comput.

1967, 10, 553–564. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

196



entropy

Article

A Secure and Fast Image Encryption Scheme Based on
Double Chaotic S-Boxes

Shenli Zhu 1 , Guojun Wang 2 and Congxu Zhu 3,*

1 School of Computer Science, University of South China, Hengyang 421001, China
2 School of Computer Science, Guangzhou University, Guangzhou 510006, China
3 School of Computer Science and Engineering, Central South University, Changsha 410083, China
* Correspondence: zhucx@csu.edu.cn; Tel.: +86-0731-8882-7601

Received: 22 July 2019; Accepted: 12 August 2019; Published: 13 August 2019

Abstract: In order to improve the security and efficiency of image encryption systems comprehensively,
a novel chaotic S-box based image encryption scheme is proposed. Firstly, a new compound chaotic
system, Sine-Tent map, is proposed to widen the chaotic range and improve the chaotic performance
of 1D discrete chaotic maps. As a result, the new compound chaotic system is more suitable for
cryptosystem. Secondly, an efficient and simple method for generating S-boxes is proposed, which
can greatly improve the efficiency of S-box production. Thirdly, a novel double S-box based image
encryption algorithm is proposed. By introducing equivalent key sequences {r, t} related with image
ciphertext, the proposed cryptosystem can resist the four classical types of attacks, which is an
advantage over other S-box based encryption schemes. Furthermore, it enhanced the resistance of the
system to differential analysis attack by two rounds of forward and backward confusion-diffusion
operation with double S-boxes. The simulation results and security analysis verify the effectiveness
of the proposed scheme. The new scheme has obvious efficiency advantages, which means that it has
better application potential in real-time image encryption.

Keywords: image encryption; compound chaotic system; S-box; image information entropy

1. Introduction

With the rapid development of network communication, image encryption has become a research
hotspot in the field of image processing and information security. Since image information has the
characteristics of large amounts of data, strong redundancy and high correlation between adjacent
pixels, image encryption algorithms need not only high security, but also fast encryption speed. If
the speed of encryption is low, the time consumed will be too long because of the large amount of
image data. To encrypt multimedia information with large amounts of data, security and efficiency
should be considered comprehensively [1–5]. Chaos-based cryptosystem just meets the need of
image encryption, which leads to the research of chaos-based image encryption technology has
been widely concerned by scholars. As for chaotic cryptography, a new chaotic system with better
cryptographic performance deserves to be established. Some representative studies have contributed
to this aspect [6–9]. How to generate key stream or encryption component with good performance is
very important to the security of the image Cryptosystem [10–12]. How to design encryption algorithm
is the core research content of the image Cryptosystem [13]. Cryptanalysis [14–16] is another important
research direction of cryptography, which can help cryptographic designers improve the security of
cryptographic algorithms.

Among many chaos-based image encryption algorithms, the permutation and diffusion (PD)
pattern encryption algorithm proposed by Fridrich [17] is the most popular one. This image encryption
algorithm structure consists of shuffling pixel positions and changing pixel values. The permutation
(or shuffling, scrambling) process plays a role in confusing the relationship between the cipher image
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and plain image. The function of the diffusion process is to spread the change of one pixel value
in the plain image to the whole range of the cipher image. Based on the basic confusion-diffusion
architecture, researchers have proposed many novel concrete encryption strategies. In Ref. [18–24],
authors proposed some different permutation strategies for image scrambling aiming at the confusion
process. In Ref. [22,25–29], authors put forward some novel image diffusion algorithm. In Ref. [30–36],
authors adopt new chaotic systems to improve the complexity and randomness of chaotic key
streams. Some other cryptographic methods have also been tried by many researchers. For example,
some cryptographic algorithms are based on bit-level permutation and diffusion [30], and some
algorithms introduce the DNA coding mechanism [37], and some algorithms mainly use S-box
to encrypt images [38–40]. However, some image encryption schemes exist as obvious security
vulnerabilities. Thus, these image encryption schemes cannot resist some attacks, such as the
chosen/known plaintext. In addition, some image encryption algorithms are inefficient, such as using
bit-level image scrambling, DNA encoding mechanism, key related to plaintext Hash value [41,42], and
the high-dimensional chaotic system [43,44]. Encryption algorithms with low efficiency are not suitable
for some resource-constrained environments, such as mobile social network [45], sensor network
communication environment [46] and searchable encryption [47]. Compared with high-dimensional
continuous-time chaotic systems, low-dimensional discrete chaotic systems can generate chaotic
sequences with higher efficiency. Moreover, some studies show that the complexity of discrete systems
is higher than that of continuous systems [48–50].

Substitution-boxes (abbreviated as S-boxes) are important non-linear components in the block
cipher system, which play an important role in the security of cryptosystems. Therefore, some image
encryption systems based on chaos also use S-box. Majid Khan [51] employed multi-parameters chaotic
systems in the construction of S-boxes that are applied to the encryption of images. The multi-parameters
chaotic systems are hyper-chaotic systems. Moreover, the output trajectory points of the system need
to be sampled, so the time cost of generating S-boxes in the encryption scheme is bound to be long.
In addition, the S-box in the scheme is equivalent to the original key and is independent of the image
content. Therefore, it is vulnerable to the chosen-plaintext attack. In order to resist the selective
plaintext attack, some image encryption algorithms based on chaos introduce the mechanism of the
key and plaintext association. Wang et al. [52] proposed a novel image encryption algorithm based on
dynamic S-boxes constructed by chaos, in which a system up to 50 S-boxes need to be generated. It is
time-consuming and unsuitable for real-time encryption. M.A. Murillo-Escobar et al. [53] proposed a
color image encryption algorithm based on total plain image characteristics and 1D logistic map with
optimized distribution. They have a diffusion process optimized by the modified chaotic sequence.
In addition, the pseudorandom sequence for the encryption process is based on the total plain
image characteristic and a 128 bits secret key, so the encryption algorithm can resist the powerful
chosen-plaintext attack. Zhang et al. [54] proposed a plaintext-related image encryption algorithm
based on chaos. The Zhang’s system can also fight against the chosen-plaintext attacks due to using
a plaintext-related key sequence. However, in order to make the final key related to the plaintext,
the process of generating the final key in the above algorithms is complex. So far, most image and
video encryption algorithms based on chaos mainly rely on the empirical security analysis. However,
the recent study [55] has shown that the empirical safety analysis is not enough. A encryption
algorithm passing the empirical safety tests is merely a necessary condition for security, but is not a
sufficient criterion.

In order to improve the security and real-time performance of the image encryption algorithm, this
paper presents a simple yet security image encryption algorithm based on chaotic S-boxes. The main
goal of this paper is to improve the encryption efficiency of the encryption system on the premise
of ensuring a certain level of security. The main innovations of this paper are as follows: (1) A new
compound chaotic system, the Sine-Tent system (STS), is proposed. The compound system has wider
chaotic range and better chaotic performance than any of the original systems, so it is more suitable
for cryptographic applications. (2) A simple and effective S-box construction method based on the
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new compound chaotic system is proposed, which can speed up the generation of S-boxes. (3) A
double S-boxes based image encryption algorithm is designed. Double S-boxes can not only meet the
security requirements of the system, but also make the time cost much lower than multiple S-boxes.
The algorithm makes the parameters of the permutation and diffusion process interrelated and related
with image ciphertext so that the encryption algorithm can resist chosen-ciphertext attack. Additionally,
two rounds of forward and backward confusion-diffusion operation enhances the resistance of the
system to the differential analysis attack.

The rest of this paper is organized as follows. Section 2 introduces the new Sine-Tent system (STS)
model. Section 3 describes the simple and effective S-box construction method based on the Sine-Tent
system. Section 4 describes the new double S-boxes based image encryption algorithm. Section 5
presents the results of experiments and analysis of the proposed scheme. Finally, some concluding
remarks are given in Section 6.

2. The Proposed New Chaotic System

1D discrete chaotic systems have many advantages in image encryption because of their simple
structures. In this section, we firstly review two 1D chaotic maps: The Sine and Tent maps. They will
be used for constructing our new chaotic system. Then, a new discrete compound chaotic system is
proposed to solve the problems existing in the Sine and Tent maps.

2.1. Sine Chaotic Map

The Sine map is one of the famous 1D chaotic maps. It is a simple dynamical system with
complex chaotic behavior similar to the Logistic map. The mathematical model of the Sine map can be
expressed as

x(n+1) = μ/4× sin(π× x(n)) (1)

where μ is the system parameter in the range of (0, 4], x(0) is the initial state value of the system and
{x(n), n = 1, 2, . . . } is the output sequence of state values. To observe the chaotic behaviors of the Sine
map, its Lyapunov Exponent and bifurcation diagram are presented in Figure 1a,b.

 
(a) (b) 

Figure 1. Lyapunov Exponent and bifurcation diagram of the Sine map. (a) Lyapunov Exponent
diagram; (b) bifurcation diagram.

As is well known, for a dynamical system, a positive Lyapunov Exponent means chaotic behavior
occurs in the dynamical system. So, from Figure 1a, one can see that only when the parameter μ ≥ 3.57
can chaotic behavior occur in the Sine map. The bifurcation diagram depicts the possible state values
of the system under each parameter. Corresponding to a value of system parameter, if there are infinite
state values, the system with the parameter has chaotic behavior. Corresponding to a value of system
parameter, if only one or a limited number of state values output, the system with the parameter does
not have chaotic behavior. In the bifurcation diagram shown in Figure 1b, the areas of μwith dense
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points shows its good chaotic behavior and the areas of μ with the solid line represents its non-chaotic
property. There are two problems in the Sine map. First, the range of system parameters corresponding
to chaotic phenomena is limited only within the range of [3.57, 4]. Even within this range, there are
some parameters which make the Sine map have no chaotic behaviors. This is verified by its Lyapunov
Exponent diagram and the blank zone in its bifurcation diagram. Second, when the system parameter
value is less than four, the state values of the system output sequence are distributed in a narrower
range than the [0, 1] interval. Only when the system parameter value is four, the state values of the
system output sequence are distributed in the whole [0, 1] range. It shows the nonuniform distribution
in the range of [0, 1]. These two problems reduce the application value of the Sine map.

2.2. Tent Chaotic Map

The name “Tent map” comes from its bifurcation diagram, which has the tent-like shape. Its
mathematical model can be expressed as

x(n+1) =
{
μ/2× x(n) x(n) < 0.5
μ/2× (1− x(n)) x(n) ≥ 0.5

(2)

where μ is the system parameter in the range of (0, 4].
Its chaotic property is shown in the Lyapunov Exponent analysis in Figure 2a and bifurcation

analysis in Figure 2b. Both analysis results indicate that its parameter value range with chaotic behavior
is 2 ≤ μ ≤ 4. The Tent map has the same problems as the Sine map: The small parameter value range
with chaotic behavior and the nonuniform distribution of the output state values.

 
(a) (b) 

Figure 2. Lyapunov Exponent and bifurcation diagram of the Tent map. (a) Lyapunov Exponent
diagram; (b) bifurcation diagram.

2.3. The Sine-Tent System

We put forward a new compound system by combining the Sine and Tent maps and called the
new system the Sine-Tent system (STS). Its mathematical model is as follows:

x(n+1) =
{

(4− μ)/4× sin(π× x(n)) + μ/2× x(n) x(n) < 0.5
(4− μ)/4× sin(π× x(n)) + μ/2× (1− x(n)) x(n) ≥ 0.5

(3)

where μ is the system parameter in the range of [0, 4]. When μ = 0, Equation (3) degenerates to the
Sine map, while μ = 4, Equation (3) degenerates to the Tent map. Therefore, both the Sine map and
Tent map can be regarded as special cases of the Sine-Tent system.

The Lyapunov Exponent and bifurcation diagram of the STS are shown in Figure 3a,b, respectively.
From Figure 3 one can see that its parameter value range with chaotic behavior is μ∈[0, 4], which is
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much larger than those of the Sine or Tent maps. Its output sequences uniformly distribute within [0, 1]
(see Figure 3b). Hence, the STS has better chaotic performance than the Sine and Tent maps.

  
(a) (b) 

Figure 3. Lyapunov Exponent and bifurcation diagram of the Sine-Tent map. (a) Lyapunov Exponent
diagram; (b) bifurcation diagram.

The new compound system has at least three advantages compared with the Sine and Tent maps.
First, the output sequences of the new compound system spread out in the entire value range between
zero and one. Second, the proposed Sine-Tent system has a wider chaotic range. The Lyapunov
Exponents of the Sine-Tent system is positive in the entire range of 0 ≤ μ ≤ 4. However, the Sine map
and Tent map have positive values of Lyapunov Exponents only within much smaller ranges. Thirdly,
we know that a larger Lyapunov Exponent means stronger chaotic properties. From the Lyapunov
Exponent diagrams, one can see that the new system has larger Lyapunov Exponents (Lyapunov
Exponents is always close to 0.7) in the whole parameter range of [0, 4], while the Sine and Tent maps
have large Lyapunov Exponents only when the parameter is close to four. Therefore, the chaotic
characteristic of the new system is stronger, and it always maintains the invariable excellent chaotic
performance in the entire parameter range of 0 ≤ μ ≤ 4. These advantages guarantee that the proposed
Sine-Tent system is more suitable for information security applications such as image encryption.

3. An Efficient New Method for Generating S-Boxes

In Ref. [56], Belazi et al. proposed a simple yet efficient S-box generating method based on the
chaotic sine map, in which a prime number p and a one to one map from the real number interval (0, 1)
to the integer set {0, 1, 2, . . . , 255} need to be found. In this section, we present a simpler approach for
designing S-boxes using the chaotic Sine-Tent map. The new method takes advantage of the excellent
chaotic characteristics of the Sine-Tent map. The detailed steps of generating S-boxes are given below.

Step 1: Set parameter d as an odd positive integer and d > 0, d can be used as a secret key.
Step 2: Let T1 = 1:256, then we obtain an array T1 which contains 256 distinct integers in the

range of [1, 256].
Step 3: Based on T1 and d to obtain a new array T by Equation (4)

T(i) = mod(d× T1(i), 256), i = 1, 2, . . . , 256 (4)

The new array T1×256 will contain 256 distinct integers in the range of [0, 255]. As long as d is a finite
odd integer and T1(i) � T1(j) if i � j, then T(i) � T(j) if i � j. This conclusion is true and can be proved
by experimental tests.

Step 4: Set the parameters μ, initial state value x0 of the Sine-Tent map, and an integer N0 > 0.
Iterate Sine-Tent map (N0 + 256) times to generate a chaotic sequence of length (N0 + 256). Discard the
first N0 elements of the original chaotic sequence, then we can obtain a new chaotic sequence of length
256, which is represented by X.
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Step 5: Sort the chaotic sequence X, then we can get a position index array J = {J(1), J(2), . . . ,
J(256)}, J(i)∈{1, 2, . . . , 256}. As a result of the non-periodicity of the chaotic sequence, it will inevitably
lead to that J(i) � J(j) as long as i � j.

Step 6: Calculate the 1D array S as follows:

S(i) = T(J(i)), i = 1, 2, . . . , 256 (5)

Step 7: Transform the 1D array S1×256 into a 2D matrix S16×16, and this is the proposed S-box.
By the above method, the length of chaotic sequences to be used in constructing a 16 × 16 sized

S-box is only 256. Therefore, the time cost of this method is very low. In our experiments, double
S-boxes are generated by the above S-box generation algorithm. The initial condition x0, system
parameter μ of the Sine-Tent map and the parameters {d, N0} for the S-box generation are set as
{x10 = 0.21, μ1 = 0.399, d1 = 43, N0 = 500} and {x20 = 0.27, μ2 = 3.999, d2 = 241, N0 = 500} for S-box S1

and S2, respectively. The generated double S-boxes are shown in Tables 1 and 2, which are used in our
proposed image encryption algorithm.

Table 1. The chaotic S-box S1 generated with parameters {x10 = 0.21, μ1 = 0.399, d1 = 43, N0 = 500}.

S-box c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

r1 27 4 47 58 146 86 137 215 61 68 129 80 131 214 97 119
r2 168 210 253 91 219 30 112 63 52 188 73 139 55 16 158 204
r3 124 71 21 45 169 32 208 121 198 179 246 8 175 194 35 5
r4 70 3 114 42 205 89 101 159 173 127 75 235 118 243 143 141
r5 147 13 196 163 11 62 134 76 191 133 132 145 33 43 120 31
r6 17 156 245 186 25 237 88 161 0 83 87 72 116 150 255 226
r7 138 74 46 34 136 99 12 218 110 195 105 57 172 65 2 216
r8 211 184 19 20 84 242 85 98 189 22 24 185 166 109 15 217
r9 167 48 56 78 90 59 36 244 6 107 142 180 23 238 106 7

r10 28 247 199 201 40 250 206 183 223 200 29 67 128 126 10 241
r11 113 233 207 140 152 135 122 174 228 151 102 148 79 176 49 95
r12 190 103 92 39 64 1 171 220 212 51 221 130 249 170 164 230
r13 60 162 117 154 157 160 229 187 100 26 37 155 225 222 232 104
r14 181 224 53 18 108 96 66 38 248 182 178 251 165 231 202 81
r15 50 93 149 9 239 192 209 82 115 236 44 144 69 111 153 125
r16 254 41 227 213 193 14 77 197 54 123 203 177 94 252 234 240

Table 2. The chaotic S-box S2 generated with parameters {x20 = 0.27, μ2 = 3.999, d2 = 241, N0 = 500}.

S-box c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16

r1 75 140 59 156 233 234 149 214 126 105 134 228 101 84 111 35
r2 113 241 53 202 17 96 93 168 172 82 78 203 159 182 249 118
r3 115 68 195 107 189 104 165 80 39 94 150 254 199 183 157 74
r4 52 210 55 200 229 48 132 163 219 201 117 146 153 43 71 230
r5 60 70 103 211 95 92 36 12 81 133 46 176 209 251 237 186
r6 98 136 20 44 178 185 177 19 137 50 21 206 65 192 129 79
r7 240 7 121 38 27 196 25 167 89 72 162 221 148 147 24 223
r8 100 47 248 164 34 29 73 69 245 1 10 191 216 26 204 18
r9 37 15 32 108 9 160 139 220 238 232 58 161 109 6 169 62

r10 45 3 0 180 114 120 246 250 33 194 198 13 158 31 66 155
r11 83 125 244 51 212 97 91 99 77 138 173 243 253 102 123 166
r12 225 208 110 40 222 87 218 197 170 184 124 131 4 112 179 255
r13 85 64 193 88 56 16 236 207 181 144 231 239 152 135 122 67
r14 151 171 42 154 142 247 28 41 14 252 224 188 54 175 217 130
r15 22 215 49 5 141 11 2 127 145 86 116 213 205 63 242 128
r16 30 226 227 106 187 23 174 190 143 8 76 61 235 119 57 90

In the first row of Table 1, c1, c2, . . . , c16 denotes the column numbers of the S-box. Additionally,
in the first column of Table 1, r1, r2, . . . , r16 denotes the row numbers of the S-box.
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To determine the randomness of proposed S-box method, the statistical test suite (version 2.1.1),
proposed by the National Institute of Standards and Technology (NIST) NIST-800-22 is introduced.
The NIST-800-22 test results are listed in Table 3. We find that the 12 tests successfully passed. Moreover,
the Random Excursions Test, Random Excursions Variant Test, and Universal Statistical Test were not
applicable for the proposed S-box. This is because the sequence generated by an S-box only consists of
2048 bits. However, the Random Excursions Test and Random Excursions Variant Test require a long
sequence consisting of a minimum of 1,000,000 bits, and the Universal Statistical Test also requires a
long sequence consisting of a minimum of 387,840 bits.

Table 3. NIST-800-22 test results of the obtained S-box.

NIST-800-22 Tests p-Value Result

Frequency Test 1.00000 SUCCESS
Block Frequency Test 0.320250 SUCCESS

Cumulative Sums Test 0.536610 SUCCESS
Runs Test 0.894524 SUCCESS

Longest Run of Ones Test 1.0000 SUCCESS
Rank Test 0.481248 SUCCESS

Discrete Fourier Transform Test 0.807748 SUCCESS
Nonperiodic Template Matchings Test 0.861831 SUCCESS
Overlapping Template Matchings Test 0.282761 SUCCESS

Approximate Entropy Test 0.011732 SUCCESS
Serial Test 0.239176 SUCCESS

Linear Complexity Test 0.203697 SUCCESS
Random Excursions Test \ TESTNOTAPPLICABLE

Random Excursions Variant Test \ TESTNOTAPPLICABLE
Universal Statistical Test \ TESTNOTAPPLICABLE

4. The Proposed S-Box based Encryption Scheme

4.1. Cryptanalysis of an S-Box Based Encryption Algorithm

In Ref. [57], Çavuşoğlu et al. proposed an image encryption scheme by using the S-box generated
with a novel hyper-chaotic system. The sketch of the encryption scheme is shown in Figure 4.

Figure 4. Sketch of the original encryption algorithm.

Suppose the input pixel value array of the plain image is P = [p(1), p(2), . . . , p(L)]. The output
pixel value array of the cipher image is C = [c(1), c(2), . . . , c(L)]. The encryption steps can be described
in detail below.

203



Entropy 2019, 21, 790

Step 1: Generate three real value chaotic sequences x, y, and z by using a hyper-chaotic system
with given parameters and initial state values as secret keys.

Step 2: Transform the three real value sequences x, y and z into three integer sequences X, Y and
Z by the chaos-based pseudo random number generator (PRNG). Each element in X, Y and Z is an
8-bit integer and its decimal number is in the range of [0, 255].

Step 3: The S-box, denoted as S = [s(j, k)], is created by using sequences X, Z and a novel S-box
generation algorithm. Where, s(j, k)∈{0, 1, . . . , 255}, j = 1, 2, . . . , 16, k = 1, 2, . . . , 16.

Step 4: The intermediate cipher image array P’ = [p’(1), p’(2), . . . , p’(L)] is generated by using
sequences Y = [y(1), y(2), . . . , y(L)] as

p’(i) = y(i)
⊕

p(i), i = 1, 2, . . . , L (6a)

where
⊕

denotes bitwise XOR. The decryption operation corresponding to Equation (6a) can be
expressed as Equation (6b):

p (i) = y(i)
⊕

p’(i), i = 1, 2, . . . , L (6b)

Step 5: Perform sub-byte operation on P’ with the 16 × 16 sized S-box S, and obtain the cipher
image array C = [c(1), c(2), . . . , c(L)].

Here, the sub-byte operation is a process in which each pixel value in the image is substituted
with an element value in the S-box. The sub-byte operation can be implemented by defining a
function. For example, the function sub_byte[S, p] can find a substitute to p from the S-box S. Let
q = sub_byte[S, p], the algorithm of the function sub_byte[S, p] can be described as Algorithm 1.
For example, if p = 55 = (0011 0111)2, then j = (0011)2 + 1 = 4, k = (0111)2 + 1 = 8. Consequently,
q = sub_byte[S, p] = sub_byte[S, 55] = s(j, k) = s(4,8).

Algorithm 1 The algorithm pseudo code of function q = sub_byte[S, p].

Input: S = [s(j, k)], p; (j = 1, 2, . . . , 16, k = 1, 2, . . . , 16.)
Output: q = sub_byte[S, p];
1: Convert p to a binary number (b8b7 . . . b2b1)2;
2: Let j = (b8b7b6b5)2 = 8 × b8 + 4 × b7 + 2 × b6 + 1 × b5; k = (b4b3b2b1)2 = 8 × b4 + 4 × b3 + 2 × b2 + 1 × b1;
3: Let j = j + 1; k = k + 1;
4: Let q = s(j, k);

Therefore, Step 5 can be expressed by the following general form:

c(i) = sub_byte[S, p’(i)], i = 1, 2, . . . , L (7a)

The decryption operation corresponding to Equation (7a) can be expressed as Equation (7b):

p’(i) = sub_byte_1[S, c(i)], i = 1, 2, . . . , L (7b)

where, function sub_byte_1[·, ·] is the inverse operation of the function sub_byte[·, ·].
The above S-box based encryption algorithm has the following potential defects:
(1) The chaotic sequence Y and S-box is actually the equivalent of the secret keys, which are not

related with the image to be encrypted.
(2) The algorithm has no diffusion effect. While one pixel is changed in the plain image, there is

only one changed pixel in the cipher image.
(3) The sequence Y and S-box are separated in the bitwise XOR process and Sub-Byte process, and

the bitwise XOR process unrelated to the Sub-Byte process.
Based on the above analysis, we find that the above encryption scheme cannot resist the

chosen-plaintext attack. Suppose the target cipher image to be recovered is C = [c(1), c(2), . . . , c(L)], we
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can launch chosen-plaintext attack on the above encryption scheme to recover its corresponding plain
image P = [p(1), p(2), . . . , p(L)]. The simplest attacking algorithm can be described as Algorithm 2.

Algorithm 2 The simplest attacking algorithm pseudo code.

1: n = 0;
2: while (n < 256) do
3: Choose the n-th plain image Pn = [n, n, . . . , n];
4: Get its corresponding cipher image Cn = [cn(1), cn(2), . . . , cn(L)] by using the encryption machine of Figure 4;
5: for i =1, 2, . . . , L, do

if c(i) = = cn(i), then we can get p(i) = n;
6: end for
7: n = n + 1;
8: end while

This simplest attack method with Algorithm 2 requires 256 selected plaintext images. However, a
more efficient chosen-plaintext method only needs to select two plain images. For details, readers can
refer to Ref. [58].

4.2. The Novel Double S-Boxes Based Image Encryption Algorithm

To eliminate the security defects that exist in some S-box based encryption algorithms, a novel
double S-boxes based image encryption algorithm is proposed. The main innovations of the new
scheme lie in the following three aspects: Firstly, the new Sine-Tent compound chaotic system is used
to generate double S-boxes, which are used in the two rounds of the encryption process of the new
scheme. Secondly, the first S-box is used to realize pixel confusion and substitution simultaneously.
Thirdly, two rounds of the encryption process are correlated and the diffusion mechanism is introduced.
The main steps of the novel double S-boxes based image encryption algorithm is described as follows:

Step 1: Input the secret parameters {x10, μ1, d1, x20, μ2, d2, r0, t0, m} and the plain image PI with
the size of M × N. PI is reshaped to a 1D pixel array P = [p(1), p(2), . . . , p(L) ], where L =M × N.

Step 2: Generate the first S-box S1 by using the new S-box generation algorithm with parameters
{x10, μ1, d1}.

Step 3: Generate the second S-box S2 by using the new S-box generation algorithm with parameters
{x20, μ2, d2}.

Step 4: Perform the first round of encryption on array P with the first S-box S1, and obtain the
temporary cipher image pixel array B = [b(1), b(2), . . . , b(L)] as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
j = mod(1 + m, L) + 1;
r = r0;
b(1) = mod(sub_byte[S1, p( j)] + r, 256).

for i = 1 (8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
j = mod(i + m, L) + 1;
r = mod(b(i− 1) + r, 256);
b(i) = mod(sub_byte[S1, p( j)] + r + b(i− 1), 256).

for i = 2, 3, . . . L (9)

where, sub_byte[S1, x] denotes byte substitution for x using S-box S1. The first round of encryption
is the forward confusion-diffusion operation, in which permutation and diffusion are implemented
simultaneously by introducing the location index j.

Step 5: Perform the second round of encryption on array B with the second S-box S2, and obtain
the final cipher image pixel array C = [c(1), c(2), . . . , c(L)] as

{
t = t0;
c(L) = sub_byte[S2, mod(b(L) + t, 256)].

for i = L (10)
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{
t = mod(c(i + 1) + t, 256);
c(i) = sub_byte[S2, mod(b(i) + c(i + 1) + t, 256)].

for i = L− 1, L− 2, . . . , 1 (11)

where, sub_byte[S2, x] denotes byte substitution for x using S-box S2. The second round of encryption
is the backward diffusion operation.

Step 6: Transform the 1D vector C into a 2D matrix with size of M × N, then the cipher image CI

is obtained.
The decryption process is the inverse operation of the encryption process. To recover the plain

image P from the cipher image CI, the operating steps are as follows.
Step 1: Input the secret parameters {x10, μ1, d1, x20, μ2, d2, r0, t0, m} and the cipher image CI with

the size of M × N, and CI is reshaped to a 1D pixel array C = [c(1), c(2), . . . , c(L)], where L =M × N.
Step 2: Generate the first S-box S1. The operation is exactly the same as Step 2 of the

encryption process.
Step 3: Generate the second S-box S2. The operation is exactly the same as Step 3 of the

encryption process.
Step 4: Recover the intermediate cipher image pixel array B = [b(1), b(2), . . . , b(L)] as

{
t = t0;
b(L) = mod(sub_byte_1(S2, c(L)) − t + 256, 256).

for i = L. (12)

{
t = mod(c(i + 1) + t, 256)
b(i) = mod(sub_byte_1(S2, c(i)) − t− c(i + 1) + 256, 256)

for i = L− 1, L− 2, . . . , 1 (13)

where, sub_byte_1[S2, ·] denotes the inverse operation of sub_byte[S2, ·] using S-box S2.
Step 5: Recover the original plain image pixel array P = [p(1), p(2), . . . , p(L)] as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
j = mod(1 + m, L) + 1;
r = r0;
p( j) = sub_byte_1(S1, mod(b(1) − r + 256, 256)).

for i = 1. (14)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
j = mod(i + m, L) + 1;
r = mod(b(i− 1) + r, 256);
p( j) = sub_byte_1(S1, mod(b(i) − b(i− 1) − r + 256, 256)).

for i = 2, 3, . . . , L (15)

where, sub_byte_1[S1, ·] denotes the inverse operation of sub_byte[S1, ·] using S-box S1.
Step 6: Transform P into an M × N matrix, then the decrypted image PI is obtained.

5. Experimental Results and Security Analyses

To examine the security and efficiency of the proposed cryptosystem, we carry out some simulation
experiments. All the algorithms are implemented with MATLAB R2016b run on a Microsoft Windows
7 operating system. The hardware environment is a PC with 3.3 GHz CPU, and 4 GB memory. Without
losing generality, we adopted the public test images come from the USC-SIPI Image Database. Test
images are 8-bit grayscale images with a size of 256 × 256, such as Lena, Baboon, Pepper. The all-black
and all-white images are also used in the simulation experiments. The secret keys {x10, μ1, d1, x20, μ2,
d2, r0, t0, m} are set as {0.21, 0.399, 43, 0.27, 3.999, 241, 98, 200, 129}.

5.1. Experimental Results

The original plain images and their corresponding cipher-images are shown in Figures 5 and 6,
respectively. While the decrypted images are identical to the corresponding original ones. As can
be seen, the cipher-images are completely disordered and unrecognizable. Therefore, our proposed
algorithm has a good encryption effect.
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(a) (b) (c) (d) (e) 

Figure 5. Original plain images. (a) The Lena plain image; (b) the Peppers plain image; (c) the Baboon
plain image; (d) the all-white image; (e) the all-black image.

     
(a) (b) (c) (d) (e) 

Figure 6. Encrypted cipher images. (a) The Lena cipher image; (b) the Peppers cipher image; (c) the
Baboon cipher image; (d) the all-white cipher-image; (e) the all-black cipher image.

5.2. Key Space Analyses

A secure encryption scheme should have a large key space so as to resist brute-force attack. In our
proposed encryption scheme, the secret keys include {x10, μ1, d1, x20, μ2, d2, r0, t0, m}. Among them,
{x10, μ1, x20, μ2} are four double-precision real numbers, each of them can reach the accuracy of 15
decimal places. d1 and d2 are two odd integers, each of them can have 104 different values. r0 and t0 are
two integers, each of them has 255 different values. m is an integer range from 1 to L, where L = 65536. So,
the key space of our proposed encryption scheme is (1015×4+4×2) × 255 × 255 × 65536 ≈ 2258, which is a
key equivalent to 258 bits in length. Therefore, the key space is large enough to resist brute-force attack.

5.3. Statistical Analysis

5.3.1. Histogram Analysis

A histogram of an image demonstrates the distribution of the image pixel values, and it exposes
the pixel distribution characteristics of the image. The more uniform the distribution of the pixel values,
the closer the image is to the random signal image. Figure 7 shows the histograms of the above test
plain images and cipher images encrypted by our proposed algorithm (the histograms of the all-white
and all-black plain images are omitted). It can be seen from Figure 7 that the distributions of pixel
values in plain images are clearly not uniform but in cipher images are very uniform.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 

 
(g) (h) 

Figure 7. Histograms of plain images and cipher images. (a) The histogram of the Lena plain image;
(b) the histogram of the Lena cipher image; (c) the histogram of the Peppers plain image; (d) the
histogram of the Peppers cipher image; (e) the histogram of the Baboon plain image; (f) the histogram
of the Baboon cipher image; (g) the histogram of the all-white cipher image; (h) the histogram of the
all-black cipher image. 208
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The distribution characteristics of a histogram can also be described quantitatively with the
variance of a histogram, which is calculated by [16]

var(Z) =
1
n2

n∑
i=1

n∑
j=1

1
2
(zi − zj)

2 (16)

where, n is the number of gray levels of an image, and n = 256 for 8-bit gray images. Z is a vector and
Z = {z1, z2, . . . , zn}, zi and zj are the numbers of pixels with gray values equal to (i − 1) and (j − 1)
respectively. The lower value of variance indicates the higher uniformity of an image. In order to
detect the variance values of the above test images and their cipher images, the variances of histograms
of the plain images (size of 256 × 256) and their cipher images are calculated by using Equation (16).
The results are listed in Table 4. Table 4 also lists the results obtained by the algorithm in References [39]
and [40]. The average variance of five cipher images obtained with our proposed algorithm is 256.7125,
which is much less than that of Zhang’s algorithm [39], Wang’s algorithm [40], and Çavuşoğlu’s
algorithm [57]. Thus, our proposed image encryption algorithm has better performance in resisting
statistical attacks.

Table 4. Variances of histograms of the test images.

Images Plain Image
Cipher
Image

Cipher Image [39] Cipher Image [40] Cipher Image [57]

Lena 30,665.703 221.195 284.578 283.156 381.688
Peppers 36,379.133 224.234 269.727 227.898 332.898
Baboon 47,799.055 288.664 268.211 277.297 297.625

All-white image 16,711,680 293.039 544.234 41,725.063 1214.484
All-black image

cipher image 16,711,680 256.430 1396.765 43,233.188 1214.484

Average 6,707,640.778 256.713 552.703 17,149.320 688.236

5.3.2. Correlation Analysis

Natural images usually have a strong correlation with adjacent pixels. An efficient encryption
algorithm should reduce the correlation in cipher images. In order to exhibit the correlation strength
intuitively, we randomly selected 2000 pairs of pixel along a certain direction (horizontal or vertical or
diagonal) from an image to draw the correlation distribution diagram. Figure 8 shows the correlation
distribution diagrams of the Lena plain and cipher image encrypted by our encryption algorithm.
The abscissa and ordinate values at any point in the graph represent the values of a pair of neighbor
pixels, respectively. For plaintext images, most of the points in the graph are distributed near a straight
line with an inclination of 45 degrees. That is to say, the abscissa and ordinate coordinates of most
points are basically equal, indicating that the pixel values of neighboring points in plaintext images are
basically equal. However, the pixel values of each group of neighbor points in ciphertext images are
not equal. The results confirm that the correlation among the adjacent pixels is reduced greatly by our
proposed encryption algorithm.

To illustrate quantitatively the correlation of adjacent pixels in an image, we can calculate the
correlation coefficient rXY by using N pairs of an adjacent pixel. rXY is defined as

rXY = cov(X, Y)/
√

D(X)
√

D(Y) (17)

where, X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . , yN}, (xi, yi) is the i-th pairs of the adjacent pixel
gray-scale values, and

D(X) =
1
N

N∑
i=1

(
xi −X

)2

, D(Y) =
1
N

N∑
i=1

(
xi −Y

)2

(18)
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cov(X, Y) =
1
N

N∑
i=1

(
xi −X

)(
yi −Y

)
(19)

X =
1
N

N∑
i=1

xi, Y =
1
N

N∑
i=1

yi (20)

Three types of correlation coefficients of adjacent pixels in the Lena plain and cipher image are
calculated, respectively. Correlation coefficients of the Lena plain images are as: 0.9567 (horizontal
direction), 0.9239 (vertical direction), 0.8888 (diagonal direction), showing that correlation coefficients
of adjacent pixels in the Lena plain image are very high (all close to one). Results of the Lena cipher
image are listed in Table 5. From Table 5, we can see that the correlation coefficients of adjacent pixels in
the Lena cipher image are very low (all close to zero). Table 5 also lists the correlation coefficients of the
Lena cipher image encrypted with Zhang’s algorithm, Wang’s algorithm and Çavuşoğlu’s algorithm.
The experimental results show that our proposed algorithm has the smallest absolute values of the
correlation coefficient among the three algorithms, showing the best scrambling effect.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 8. Correlation analysis of the plain and cipher Lena. (a) Horizontal correlation in plain
image Lena; (b) vertical correlation in plain image Lena; (c) diagonal correlation in plain image Lena;
(d) horizontal correlation in cipher image Lena; (e) vertical correlation in cipher image Lena; (f) diagonal
correlation in cipher image Lena.

Table 5. Correlation coefficients of the Lena cipher images encrypted by different algorithms.

Algorithms Horizontal Vertical Diagonal

The proposed algorithm −0.002088 0.000312 0.001444
Zhang’s algorithm [39] −0.000582 0.001336 −0.004690
Wang’s algorithm [40] 0.006057 0.012468 −0.006030

Çavuşoğlu’s algorithm [57] 0.001640 0.031372 −0.000626
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5.3.3. Information Entropy Analysis

Information entropy can be used to describe the degree of randomness or uncertainty of signals.
The information entropy H(m) of an image is calculated by

H(m) = −
2n−1∑
i=0

P(mi) log2[P(mi)] (21)

where P(mi) denotes the occurrence probability of the gray level i, and i = 0, 1, 2, . . . , 2n. Here, 2n

is the number of grayscale levels of an image. If each mi has the same occurrence probability in an
image, then P(mi) = 1/2n, then the image is completely random with H(m) = n. For an image with
256 gray-scale levels, n = 8, so, the information entropy of a completely random 8-bit gray image is
eight. A good encryption algorithm should make the information entropy of its cipher image close to
eight. We calculated the information entropy values of several cipher images obtained by four different
encryption algorithms. The results are listed in Table 6. All the images have the same size of 256 × 256.
From Table 6, one can see that all the entropy values are significantly closer to eight, so the randomness
is satisfactory. Among these four algorithms, our proposed algorithm has the largest average entropy
value, showing the best randomness of the cipher image encrypted by our proposed algorithm.

Table 6. Information entropy values of several cipher images obtained by different algorithms.

Test Images Ref. [39] Ref. [40] Ref. [57] Ours

Lena cipher image 7.9969 7.9969 7.9958 7.9976
Peppers cipher image 7.9970 7.9975 7.9963 7.9975
Baboon cipher image 7.9970 7.9969 7.9967 7.9968

All-black cipher image 7.9846 7.3901 7.9871 7.9972
All-white cipher image 7.9940 7.3998 7.9871 7.9968

5.3.4. Sensitivity Analysis

(1) Sensitivity to plain images

A secure encryption algorithm should be sensitive to the change of the plain image so as to resist
the differential attack. To measure the sensitivity of an algorithm to tiny changes in a plain image,
the number of pixels changing rate (NPCR) and the unified average changing intensity (UACI) are
introduced. The NPCR and UACI are calculated by Equations (22)–(24).

NPCR =
1

M×N

M∑
i=1

N∑
j=1

δ(i, j) × 100% (22)

UACI =
1

M×N
(

M∑
i=1

N∑
j=1

∣∣∣c1(i, j) − c2(i, j)
∣∣∣

255
) × 100% (23)

where, M, N represent the number of rows and columns of an image, respectively. C1 = [c1(i, j)] and
C2 = [c2(i, j)] express two encrypted images corresponding to two plain images with a tiny difference,
and δ(i, j) is computed by

δ(i, j) =
{

1, i f c1(i, j) � c2(i, j),
0, i f c1(i, j) = c2(i, j).

(24)

The larger the values of NPCR and UACI, the stronger the sensitivity of the algorithm to plaintext. For
the best case, the ideal average value of NPCR is about 99.61%, and the ideal average value of UACI is
about 33.46% [16].

To measure the sensitivity of our improved algorithm to the plain image, the original Lena gray
image (size of 256 × 256) is adopted as the first plain image, and the second plain image is obtained by
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changing only one pixel of the first plain image. To obtain two cipher images C1 and C2 by executing
the proposed encryption algorithm with the same secret keys, respectively. Then NPCR and UACI are
computed with two cipher images, and the results are listed in Table 7. Table 7 also lists the results
obtained by using the Zhang’s, Wang’s and Çavuşoğlu’s algorithm. The results indicate that our
proposed encryption algorithm is very sensitive to the plain image, and its sensitivity is better than
those of Zhang’s and Wang’s algorithm.

Table 7. Values of number of pixels changing rate (NPCR) and unified average changing intensity
(UACI) of Lena cipher images.

Position i Values Zhang’s [39] Wang’s [40] Çavuşoğlu’s [57] Ours

1 NPCR(%) 49.81 1.53 × 10−3 1.53 × 10−3 99.64
1 UACI(%) 16.86 1.14 × 10−3 2.75 × 10−4 33.55

L/4 NPCR(%) 74.69 1.53 × 10−3 1.53 × 10−3 99.59
L/4 UACI(%) 25.08 1.68 × 10−4 8.26 × 10−4 33.25
L/2 NPCR(%) 99.64 1.53 × 10−3 1.53 × 10−3 99.57
L/2 UACI(%) 33.54 6.10 × 10−4 4.13 × 10−4 33.41
L NPCR(%) 49.84 1.53 × 10−3 1.53 × 10−3 99.62
L UACI(%) 16.72 8.80 × 10−4 8.62 × 10−4 33.46

(2) Sensitivity to Secret Keys

A secure encryption algorithm should also be sensitive to the change of secret keys. That is to say,
when secret keys change slightly, the cipher image should change dramatically. NPCR and UACI can
also be used to measure the sensitivity of an encryption algorithm to secret keys. In our simulation
tests, two groups of secret keys with a tiny difference are used to encrypt the same plain image Lena
and two cipher images, C1 and C2, are obtained. The tiny change (to a float number is 10−15, or to an
integer number is one) is introduced to one of the secret keys (x10, μ1, d1, x20, μ2, d2, r0, t0, m) while
keeping all the others unchanged. The NPCR and UACI of the cipher images C1 and C2 are calculated
and listed in Table 8. The experimental results indicate that our proposed algorithm is very sensitive to
a slight change in any secret key.

Table 8. NPCR and UACI of the proposed algorithm with a tiny difference in one of the secret keys.

Values Δx10 = 10−15 Δμ1 = 10−15 Δx20 = 10−15 Δμ2 = 10−15 Δd1 = 1 Δd2 = 1 Δr0 = 1 Δt0 = 1 Δm = 1

NPCR(%) 99.63 99.62 99.56 99.62 99.61 99.58 99.63 99.61 99.61
UACI(%) 33.53 33.34 33.50 33.41 33.38 33.53 33.46 33.41 33.37

5.4. Analysis of Anti-Attack Performance

5.4.1. Classical Types of Attacks

According to Kerchoff’s hypothesis, it is usually assumed that the cryptanalysts or opponents
know the cryptosystem, and the security entirely depends on the secret key. A secure cryptosystem
should resist all kinds of attacks; otherwise, the cryptosystem is insecure. Generally speaking, there
are four classical types of attacks to break a cryptosystem, and their orders from the hardest types to
the easiest types are listed as follows.

(1) Ciphertext-only attack: The cryptanalyst possesses one or more ciphertexts.
(2) Known-plaintext attack: The cryptanalyst has some plaintexts and the corresponding ciphertexts.
(3) Chosen-plaintext attack: The cryptanalyst has the opportunity to use the encryption machinery,

so he or she can choose some plaintext and generate ciphertext.
(4) Chosen-ciphertext attack: The cryptanalyst has the opportunity to use the cryptograph, so he

or she can choose some ciphertexts and generate plaintexts.

212



Entropy 2019, 21, 790

Among the four classical attack types mentioned above, the chosen-ciphertext attack is the most
powerful attack. If a cryptosystem can resist this attack, it can resist other types of attacks.

In our proposed scheme, {S1, S2, r, t} become the equivalent keys to the original keys. It is not
difficult to understand the following conclusions from the encryption formulas of Equations (8)–(11).
First, it is difficult for an attacker to decipher the above equivalent keys even if he or she obtains known
plaintext-ciphertext pairs (p(i), c(i)). Second, the equivalent keys r and t are updated before encrypting
the i-th pixel and they are related with the intermediate ciphertext b(i−1) or the final ciphertext c(i+1).
It means that a different cipher image will yield different sequences of {r, t}. Even if the attacker
cracked the key sequences of {r, t} with some specially chosen-ciphertext, the key streams of {r, t}
cannot be used to decrypt the target cipher image due to the key streams of the target cipher image
that are different from the cracked key streams. Moreover, it is difficult to decipher the key streams
{r, t} directly by using the chosen-ciphertext attack. Therefore, the proposed scheme can well resist the
chosen-ciphertext attack and can resist the four classical types of attacks.

5.4.2. Analysis of Robustness against Noise and Occlusion

In order to resist the differential cryptanalysis attack brought by the opponent, a strong diffusion
mechanism is introduced into the proposed encryption algorithm. As a result, the ciphertext is sensitive
to the noise of the transmission channel, so the algorithm lacks robustness to noise and occlusion.
However, the lack of such robustness also makes it impossible for the opponent to decipher the
plaintext accurately, which can ensure that the confidentiality of the image content is protected. As for
how to make the encrypted image not only resist differential attack, but also withstand a certain degree
of noise, we consider introducing an error correction mechanism in channel coding and decoding. This
is worthy of further study in the future.

5.5. Analysis of Speed

In addition to security performance, a practical cryptosystem should also have faster encryption
speed. To evaluate the encryption efficiency of the proposed algorithm, the 8-bit greyscale images with
a size of 256 × 256 and 512 × 512 are encrypted. And the same type of S-box based image encryption
algorithms proposed by Zhang [39], Wang [40], and Çavuşoğlu [57] are also implemented on the same
hardware and software platform mentioned at the beginning of Section 5. The average values of the
encryption/decryption time taken by Zhang’s algorithm, Wang’s algorithm, Çavuşoğlu’s algorithm
and our proposed algorithm are shown in Table 9, respectively. The experimental results show the
advantages of the proposed algorithm in time efficiency.

Table 9. The time cost tests (unit: s).

Image Size Ref. [39] Ref. [40] Ref. [57] This Paper

256 × 256 1.205 1.256 0.823 0.464
512 × 512 4.750 4.828 3.253 1.708

Our proposed algorithm has an execution time that includes: Two S-boxes generated by a novel
simple method using the 1D discrete chaotic map, 2L times of byte substitution and 2L times mod 256
addition operations. Zhang’s algorithm execution time include: Two S-boxes generated by an ordinary
method using the 1D discrete chaotic map, 2L times of byte substitution, L times mod 256 addition
operations and L times bitXor operations. Wang’s algorithm has an execution time that includes: Three
S-boxes generated by an ordinary method using the 3D continuous-time chaotic system, L times of
byte substitution, L times mod 3 addition operations and L times bitXor operations. Çavuşoğlu’s
algorithm has an execution time that includes: One S-box generated by an ordinary method using the
3D continuous-time chaotic system, L times of byte substitution and L times bitXor operations. The mod
addition operation has a less execution time than the bitXor operation, and the bitXor operation has a
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less execution time than the byte substitution operation. Our algorithm to generate the S-box has the
least execution time among the four algorithms. As the result, the total execution time of our algorithm
is the smallest one among the four algorithms.

6. Conclusions

In this paper, an efficient and secure image encryption scheme is presented. The main contributions
of this paper are as follows: First, a new compound chaotic system, the Sine-Tent map, is proposed, which
has wider chaotic range and better chaotic performance than any of the old one. And the new compound
chaotic system is more suitable for cryptosystem. Second, an efficient and secure method for generating
S-boxes is proposed, which has less execution time than the other ones. Third, a novel double S-boxes
based image encryption algorithm is proposed. By introducing equivalent key sequences {r, t} related
with image ciphertext, the proposed cryptosystem can resist the four classical types of attacks, which is an
advantage over other S-box based encryption schemes. It overcomes the security defects of some old
S-box based encryption algorithms. In addition, two rounds of forward and backward confusion-diffusion
operation enhance the sensitivity of the algorithm. The simulation results and security analysis verify the
effectiveness of the proposed scheme. The new scheme has obvious efficiency advantages, which means
that it has better application potential in real-time image encryption. The proposed scheme is also suitable
to color images by connecting three color channels of color image into gray image.

As for the research of the chaotic image encryption, there are two aspects worthy of further study
in the future. First, we need to explore new security evaluation criteria to make up for the shortcomings
of empirical security standards. Second, in order to ensure that the encryption system is not only
resistant to differential cryptanalysis attacks, but also robust to noise, it may be an effective solution to
introduce error-correcting codes in the process of cryptography and decoding.
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Abstract: Data hiding is the art of embedding data into a cover image without any perceptual
distortion of the cover image. Moreover, data hiding is a very crucial research topic in information
security because it can be used for various applications. In this study, we proposed a high-capacity
data-hiding scheme for absolute moment block truncation coding (AMBTC) decompressed images.
We statistically analyzed the composition of the secret data string and developed a unique encoding
and decoding dictionary search for adjusting pixel values. The dictionary was used in the embedding
and extraction stages. The dictionary provides high data-hiding capacity because the secret data was
compressed using dictionary-based coding. The experimental results of this study reveal that the
proposed scheme is better than the existing schemes, with respect to the data-hiding capacity and
visual quality.

Keywords: data hiding; AMBTC; steganography; stego image; dictionary-based coding; pixel
value adjusting

1. Introduction

The concealment of information within media files is commonly used in various applications.
This process originates from the hieroglyphs used in the Egyptian civilization. Other cultures, such as
the Chinese culture, adopted a more physical approach to hide messages by writing them on silk or
paper, rolling the material into a ball, and covering the material with wax to communicate political or
military secrets. Data hiding is nearly indispensable for every aspect in our daily lives whether for
good or evil intentions.

Due to its rapid growth, the Internet has recently become far more popular than traditional
media. Data is accessible by everyone due to the popularity of the Internet. Therefore, possessing
the capabilities of detecting copyright violations, forgery, and fraud is crucial. Many techniques,
such as steganography and cryptography, have been designed to secure digital data. The difference
between steganography and cryptography is as follows: In cryptography (e.g., chaos-based encrypted
systems, secure pseudo-random number generator, etc. [1]) users are aware that there is an encrypted
image, but they cannot efficiently decode the encrypted image unless they know the proper key.
In steganography, users can easily decode the encrypted message, but most people do not notice
that there is an encrypted message. In this study, we focused on the techniques used for hiding data
in images.

The schemes present for hiding data in an image can be broadly classified into two categories,
irreversible data-hiding schemes [2–4] and reversible data-hiding schemes [5–7]. In the irreversible
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data-hiding schemes, a recipient can extract the secret information. However, the original image cannot
be recovered after extracting the secret information. In the reversible data-hiding schemes, the hidden
data can be extracted from the image, and the original image can be retrieved from a stego image
without any distortion. Two factors affect a data-hiding scheme, i.e., visual quality and embedding
payload. A high-quality data-hiding scheme should not raise any suspicions of adversaries. Therefore,
this type of scheme should provide low image distortion and high payload.

To decrease the size of a digital image file or accelerate the transmission, a data-hiding scheme
that employs a compressed image should be developed. Many compressed file formats have been
proposed, such as JPEG and JPEG2000. Wang et al. [8] proposed a lossless data-hiding method for
JPEG images by using adaptive embedding. Lee et al. [9] proposed a scheme in which a secret image
was compressed using JPEG2000 and then, embedded in the cover image by using tri-way pixel
value differencing. Nevertheless, both JPEG and JPEG2000 need complicated computation for image
compression and decompression.

Another popular technique used for image compression is block truncation coding (BTC) [10].
Compared with the methods using JPEG and JPEG2000, BTC is a simple and efficient encoding
technique that is used for image compression. Therefore, the computation cost is relatively low when a
data-hiding scheme is based on BTC.

Lema and Mitchell [11] proposed the absolute moment BTC (AMBTC) technique to improve the
compression performance of BTC. When AMBTC is used, the first absolute moment is maintained with
the mean. To exploit the advantages of AMBTC compression, we proposed an AMBTC decompressed
image-based data-hiding scheme by using a pixel adjusting strategy.

The basic idea of the proposed study is to preliminarily calculate the probability of secret data and
then select the best codebook for embedding the secret data. The secret data are embedded into the
AMBTC compression image by modifying the pixel value according to the codebook. Experimental
results reveal that the proposed scheme is almost better than the current state of the art method in
terms of the hiding capacity.

The remainder of the paper is organized as follows: Section 2 describes the relevant approaches
such as the BTC and AMBTC techniques for data hiding; Section 3 describes the implementation flow
of the scheme proposed for data hiding; Section 4 discusses several experimental results are presented,
and some issues; and finally, Section 5 specifies the conclusions and future work.

2. Related Works

Before describing the high data-hiding capacity of the proposed scheme, we review the AMBTC
technique and some recently developed AMBTC-based data-hiding methods.

2.1. Absolute Moment Block Truncation Coding (AMBTC)

BTC, a simple and efficient block-based lossy image compression method, is used for grayscale
images. Although the BTC method provides a low compression ratio, it is a popular image compression
method because of its low complexity with respect to both computation and implementation. In the
BTC algorithm, an image X, with M × N pixels, is divided into nonoverlapping blocks. Each block
has n × n pixels, and the pixel values can be different. The mean and standard deviation of each pixel
value are calculated before conducting BTC. In general, two statistical characteristics change from one
block to another.

The hardware implementation of BTC is challenging because the square and square root functions
are involved. To resolve this problem, AMBTC [11] was proposed as a type of BTC. The AMBTC uses
the first absolute moment and mean values instead of using the standard deviation value. The main
difference between AMBTC and BTC is that the mean and standard deviation values of a block are
preserved in BTC. However, in AMBTC, the high mean and low mean values of a block are preserved.
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As in BTC, an image X is divided into nonoverlapping blocks with n × n pixels also in the
AMBTC encoding phase. For each block, the mean x and the absolute moment α of the pixel values are
calculated using

x =
1
m

m∑
i=1

xi, (1)

α =
1
m

m∑
i=1

|xi− x
∣∣∣. (2)

Note that m = n × n.
The pixel value xi is compared with the mean x for composing a bit plane for each pixel in the

block. If the pixel value xi is greater than the mean x, then xi is denoted as 1. Otherwise, the pixel
value is denoted as 0. The equation of bit representation is

Pi =

{
1, if xi > x,
0, otherwise.

(3)

In the AMBTC-compressed block reconstruction phase, the block reconstruction is conducted
using two values Lm and Hm. The values of Lm and Hm are computed using

Lm = x− ma
2(m− q)

, (4)

Hm = x +
ma
2q

. (5)

In Equations (4) and (5), q represents the number of pixels with pixel values greater than x. Thus,
a compressed block has two values Lm and Hm, where Lm is the low mean value and Hm is the high
mean value. To reconstruct a block, the pixels that are assigned the value of 0 in the bit plane are
replaced with the Lm value, and the pixels assigned the value of 1 in the bit plane are replaced with the
Hm value by

x′i =
{

Hm, if pi = 1,
Lm, if pi = 0.

(6)

2.2. Related Work of BTC and AMBTC Based Data Hiding Schemes

BTC has significantly low complexity and requires less memory. Therefore, BTC is a good scheme
for data hiding. Chuang and Chang proposed a data-hiding scheme for BTC-compressed images for
embedding data in the bitmaps of smooth blocks to obtain an improved image quality. There are two
steps in in the embedding process of the scheme proposed by Chuang and Chang. Initially, a cover
image is compressed into blocks by using BTC for calculating two quantized data and the bit plane
corresponding to each block. Finally, the secret data is embedded into the bitmaps of the predefined
smooth blocks that satisfy the following equation: Hm − Lm < Threshold. The smooth blocks were
selected because bit replacement in these bit planes causes a slight distortion in the BTC image. In the
extraction process of the scheme proposed by Chuang and Chang [12], the difference Hm − Lm has to
be first calculated. If Hm − Lm < Threshold, then the secret bit in the bit plane p′i is extracted. However,
in this scheme, the stego image quality degrades significantly as the threshold values increases.

Hong et al. [13] proposed a reversible data-hiding scheme based on bit plane flipping according
to the corresponding secret bit. In the embedding process, each image block was compressed using
AMBTC-compressed codes to determine whether the block is embeddable or not. If Lm < Hm, then the
block is considered embeddable. Otherwise, the block is considered non-embeddable. For each
embeddable block, if the secret bit is 1, then the bit plane pi is flipped to pi, where pi is not an operator.
If the secret bit is 0, then no operation is required. In the extraction process, if Lm > Hm in p′i, then the
secret in p′i is 1. Otherwise, the secret bit in p′i is 0. The scheme presented by Hong et al. does not hide
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data in blocks with Lm = Hm. Therefore, Chen et al. [14] proposed a reversible data-hiding method to
improve the scheme by Hong et al. The AMBTC-compressed block that has Lm = Hm is a smooth area,
which is considered unnecessary bit plane information. Thus, the secret bit can be embedded all bits in
the bit plane block to improve the scheme by Hong et al.

Li et al. [15] introduced a data-hiding scheme by using the histogram shifting technique on
BTC-compressed mean tables for further improving the hiding capacity, while maintaining the quality
of the BTC-compressed image. The hiding scheme comprises two main steps. The first step is based
on the bit plane flipping method that hides secret bits by swapping the high mean and low mean
values. In the second step, histogram shifting is conducted on the resulting mean tables after swapping.
This scheme requires no additional data in the stego code stream. Therefore, very low distortion is
observed in this scheme after data embedding, and the security of the embedded data is enhanced.
However, this technique cannot provide a sufficient data-hiding capacity and requires overhead
information to record a histogram.

Lin et al. [16] proposed a technique to explore the redundancy in a block of AMBTC-compressed
images to determine whether the block is embeddable. If the secret bits and bit plane combined in the
block has more than three different cases, the block is marked as an embeddable block. Four disjoint
sets were created using this technique of embeddable blocks for embedding data using different
combinations of the mean value and its standard deviation.

Ou and Sun [17] proposed a data-hiding scheme with minimum distortion based on AMBTC.
In this scheme, a predefined threshold is used to determine if a block of the AMBTC-compressed
codes is a smooth or complex block in which data are embedded. If an AMBTC-compressed block
Hm − Lm < Threshold, then the block is considered a smooth block. All bit planes in smooth blocks
are used to embed data by replacing the bits of the block with secret data bits. The two quantization
levels in the smooth block are then recalculated to reduce distortion in the image. In the complex
blocks, a proportion of secret bits were concealed by exchanging the order of two quantization levels
and toggling the bit plane. By performing this method, the payload can be increased without any
distortion. Both smooth and complex blocks can be used to embed data in an AMBTC-compressed
block. Therefore, the payload of this scheme was obviously enhanced.

Malik et al. [18] modified the AMBTC compression technique for embedding secret data. In their
method, one-bit plane is converted to two-bit planes that can attain better image quality and high
capacity. Although this scheme has high visual quality and high payload, it causes permanent distortion
to the original AMBTC code and requires overhead information. Malik et al. [19] proposed an AMBTC
compression-based data-hiding scheme by using the pixel value adjusting strategy. In this technique,
the stream of secret bits was converted to digits with a base of three. Then, the pixel values of the
AMBTC-compressed block are modified, at the most by one, to hide secret data. This scheme could
maintain a balance between the hiding capacity and quality of a stego image.

As discussed above, data hiding by using the AMBTC technique is an issue worthy of more
research. In this study, we extended the work of Malik et al. [19] to embed a larger amount of secret
data. In the next section, the proposed scheme is discussed.

3. Proposed Scheme

Figure 1 shows the flowchart of our application. First, one monitoring image on the unmanned
aerial vehicle was compressed because the transmitting volume of wireless network is limited. When the
command post or chief’s car receives the compression codes, they are decoded as the decompressed
image. In addition, they embed secret data into the reconstructed image, thereby cheating hackers and
avoiding attacks. Finally, the headquarters can extract secret data and recover the decompressed image.

The main aim of the study is to present a data-hiding scheme with high data-hiding capacity
and high image quality. In the scheme, secret data is hidden in an AMBTC decompressed image.
The AMBTC decompressed image is losslessly reconstructed and the secret data, then, is losslessly
revealed from the reconstructed image. The AMBTC encoding procedures are described in Section 2.
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Before embedding the secret data, the cover image must be compressed using the AMBTC algorithm.
In other words, the proposed scheme uses the AMBTC decompressed image to embed the secret data.

The proposed scheme involves three stages: In the first stage, an appropriate encoding and
decoding dictionary is found. The dictionary is used in the second stage to embed the data. In the
third stage, the secret data is extracted. The details of the proposed scheme are presented in Figure 1.

Figure 1. Flowchart of our applications.

3.1. Finding a Unique Decodable Dictionary

A binary secret sequence S comprises 0 and 1 values and is denoted as S = {s1, s2, . . . , sN}, where
si ∈ {0, 1} for i = 1 ∼ N. Consider the dictionaries D1, D2, D3, and D4 formed using K subsets of S,
that is, Sp1, Sp2, . . . , SpK. Different image quality is obtained due to the different dictionaries. Thus,
we can calculate each probability of symbol Sp in S. The amount of information in each symbol Ia can
be represented by

Ia = −log2
(
pr

(
Spk

))
. (7)

Then, the average information per symbol interval is H
(
Spk

)
and can be represented by

H
(
Spk

)
= −

∑n

k=1
pr(Spk)log2

(
pr(Spk

)
). (8)

The average information H
(
Spk

)
is referred to as the entropy. The dictionary with the smallest

entropy H should be selected because it can achieve the best encoding benefit. The following explains
why the dictionary of the smallest entropy is used: Assume that there is only one symbol’s type in the
whole secret sequence. In other words, the other types never occur. In this case, the entropy is equal
to 0, i.e., H

(
Spk

)
= 0. Afterwards, the specific symbols are replaced by the absolute minimum value

“0”, thereby controlling the distortion level in the data embedding phase. Consequently, the proposed
method selects the dictionary of the smallest dictionary.

An example is used to explain the above procedure. Assume the secret sequence S =

{001110111100110110010000010011010}. In dictionary D1 listed in Table 1, the secret sequence is
represented as S = {001, 11, 01, 11, 10, 01, 10, 11, 001, 000, 001, 001, 10, 10} for easy readability. According
to D1, the total number of information is 12.4670 and the average information H

(
Spk

)
per symbol

at S is 2.1570. In dictionary D2, which is listed in Table 2, the secret sequence can be represented
as S = {00, 11, 10, 11, 11, 00, 11, 011, 00, 10, 00, 00, 10, 011, 010}. According to D2, the total number of
information is 12.1451 and the average information H

(
Spk

)
per symbol at S is 2.2264. The third and

fourth dictionaries are constructed in the same manner, and their entropies values are listed in Tables 3
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and 4, respectively. Obviously, the entropy of D1 is the smallest among all the dictionaries. Therefore,
we used D1 to encode the secret sequence.

Table 1. Total number of data was 12.4670 with an entropy H of 2.1570 in the first dictionary D1.

Symbol (Sp) Freq. (Sp Count) Amount of Information

000 1 3.4594

001 4 1.4594

01 2 3.0444

10 4 2.0444

11 3 2.4594

Table 2. Total number of data was 12.1451 with an entropy H of 2.2264 in the second dictionary D2.

Symbol (Sp) Freq. (Sp Count) Amount of Information

00 5 1.7225

010 1 3.4594

011 2 2.4594

10 3 2.4594

11 4 2.0444

Table 3. Total number of data was 12.0751 with an entropy H of 2.2405 in the third dictionary D3.

Symbol (Sp) Freq. (Sp Count) Amount of Information

00 3 2.4150

01 3 2.4150

100 3 1.8301

101 1 3.4150

11 4 2

Table 4. Total number of data was 12.5602 with an entropy H of 2.1726 in the fourth dictionary D4.

Symbol (Sp) Freq. (Sp Count) Amount of Information

00 5 1.7225

01 3 2.4594

10 1 4.0444

110 3 1.8745

111 2 2.4594

Subsequently, the symbols in the selected dictionary are encoded further to obtaining the embedded
digits. According to the rule of thumb of data encoding, Sp with the maximum occurrence frequency
was encoded as the absolute minimum value. By contrast, Sp with the lowest occurrence frequency
was encoded as the absolute maximum value. Consequently, Sp was sorted based on the occurrence
frequency, and then, its sorted index was encoded to obtain the adjusting pixel values Pv, i.e.,

pv =

⎧⎪⎪⎨⎪⎪⎩
−
⌊

Sort index
2

⌋
, if Sort index is an odd number,⌊

Sort index
2

⌋
, otherwise.

(9)
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The following example is used to explain how to encode most symbols as smaller digits, as listed in
Table 5. The occurrence frequencies of two symbols, “001” and “10”, are 4, which are higher than those
of other symbols. According to Equation (9), the symbol “001” is encoded as the absolute minimum
value “0”. Moreover, the symbol “10” is encoded as the second smallest value “1”. The remaining
symbols are encoded in the same manner.

Table 5. Dictionary example presenting the pixel value adjusting method.

Symbol (Sp) Freq. (Sp Count) Sorted Index Adjusting Pixel Values (Pv)

000 1 5 −2

001 4 1 0

01 2 4 2

10 4 2 1

11 3 3 −1

3.2. Embedding Stage

The AMBTC decompressed blocks bi in the original AMBTC decompressed image T are sequentially
scanned. If the difference between Hm and Lm is smaller than 4, then the block is considered a
non-embeddable block. Otherwise, the block is an embeddable block. In the first embeddable block,
the binary representation of the ID number of the selected dictionary is embedded into the least
significant bits (LSBs) of the second Hm and the second Lm. Note that the number of dictionaries is
four, thus the two LSBS can effectively represent the ID number. The other blocks are then used to
embed the secret data by using the pixel value adjusting strategy.

In each embeddable block, the first Hm and the first Lm are defined as non-embeddable pixels,
which are used as the reference information of data extraction and image recovery. For the embeddable
block bi, each pixel x′i except the first Hm and the first Lm is increased by the adjusting pixel values
Pv, that is, x′′i = x′i + Pv. The difference between maximum Pv and minimum Pv in the difference D
is equal to 4. It implies that the distortion of pixels is low. The embedding pseudocode is shown in
Algorithm 1 as follows:

Algorithm 1: Embedding pseudocode

foreach AMBTC− compressed block biin T do

if Hm − Lm ≤ 4 then /* non-embeddable block */
Do nothing;

else if bi is f irst embeddable block then

embedding dictionary D number;
else

foreach pixel x′i in bi do

find adjusting pixel values Pv in D;
x′′i = x′i + Pv;

end

end

end

Figure 2 displays the embedding example in which = {0011101111001101100 10000010011010}.
Figure 2a presents the appropriate dictionary D found in Section 3.1. This dictionary was used to
encode the secret sequence. After looking up the dictionary D, S is divided into many subsets Sp,
as shown in Figure 2b. These subsets are mapped using the adjusting pixel values Pv, which are just
the embedded value.
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Figure 2. Example illustrating the proposed embedding stage.

To embed these values, the original block must be compressed and decompressed using the AMBTC
algorithm, as shown in Figure 2c. After using the AMBTC algorithm, the AMBTC decompressed block
can be reconstructed using a low mean value Lm of 97 and a high mean value Hm of 155, as shown in
Figure 2d. Both the first Lm and first Hm are non-embeddable pixels and are marked with yellow color
for easy readability. They are used as reference information of data extraction and image recovery.
For the AMBTC decompressed block, the pixel, except the first Hm and the first Lm, is increased by the
adjusting pixel values Pv to obtain the stego pixel. Figure 2e shows the stego block.

If the overflow or underflow problem occurs in any altered pixel of the block, then all of the pixels
in the corresponding block remain unchanged. In other words, the block cannot be used to embed any
secret bit. In addition, the proposed method records the ID number of the non-embeddable block to
discriminate between the embeddable block and the non-embeddable block.

3.3. Extraction Stage

In the extraction stage, the secret data is extracted from the stego image T′. Moreover, T′ can be
used to recover the original AMBTC decompressed image T. The details of the procedures are listed
as follows:

1. Scan the stego AMBTC decompressed block b′i in T′ sequentially. If the difference between Hm

and Lm is smaller than 4, then this block is considered a non-embeddable block. Otherwise, it is an
embeddable block.

2. Retrieve the ID number of the selected dictionary D from the first embedded block. In the
first embedded block, both the LSBs of the second Hm and the second Lm are extracted, i.e., binary
representation of the ID number of the selected dictionary. Therefore, the proposed method can
reconstruct the selected dictionary. In addition, both the LSBs are replaced by the first Hm and the first
Lm, thereby recovering the original decompressed pixel.

3. Calculate the adjusting pixel values by using Pv = x′′i − Hm or Pv = x′′i − Lm for each
embeddable block b′i. After obtaining Pv, we can look up the dictionary D to obtain the symbol
Sp. After concatenating all Sp, we obtain the secret sequence S and recover the original AMBTC
decompressed image T. The extraction and recovery pseudocode are shown in Algorithm 2.
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Algorithm 2: Extraction and recovery pseudocode

foreach block b′i in T′ do

if Hm − Lm ≤ 4 then /* non-embeddable block */
Do nothing;

else if bi is f irst embeddable block then

get the dictionary D number;
else

foreach pixel x′′i in b′i do

get the first Hm and Lm;
if x′′ i = Hm then

Pv = x′′i −Hm;
else

Pv = x′′i − Lm;
end

find the symbol Sp in D;
S = S + Sp;

end

end

end

Figure 3 illustrates the extraction and recovery example. First, the dictionary is retrieved from
the first embeddable block. Second, the adjusting pixel values are calculated as Pv = x′′i −Hm or
Pv = x′′i − Lm. Third, Pv is mapped with the dictionary values to obtain Sp. Finally, Sp is concatenated
for obtaining the secret sequence S and the AMBTC decompressed block.

Figure 3. Example illustrating the proposed extraction stage.

4. Experimental Results and Discussion

Some experimental cover images were tested to demonstrate the efficiency of the proposed scheme.
In the experiments, the proposed scheme was verified using the following six test cover images:
airplane, boat, lena, mandrill, peppers, and sailboat. As shown in Figure 4, all the images had the same
size of 512 × 512 pixels with 256 grayscales, and the features of the images were diverse. The block size
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of the image presented in the AMBTC format was 4 × 4 pixels. A random binary sequence generated
using a MATLAB (R2018a) function was used in the experiments as the secret sequence, where our
secret data are the same as the secret data of the related works [15–17,19]. Note that each bit in the
sequence has equal probability of being 0 or 1.

 
Figure 4. Test cover images.

The proposed scheme was evaluated and compared with the aforementioned schemes in terms of
two performance measures, i.e., hiding capacity and peak signal-to-noise ratio (PSNR). The hiding
capacity can be defined as the number of secret data bits that can be hidden into a cover image.
The PSNR is an objective measure used for determining the visual quality of an image. The higher the
PSNR of a stego image, the better its visual quality is. The rule of thumb is that when the PSNR is
higher than 30 dB, the human eyes cannot easily perceive the difference between the cover image and
the stego image. PSNR is defined by

PSNR = 10 log10
2552

MSE
, (10)

MSE =
1

M×N

∑M

i=1

∑N

j=1

(
xij − x′i j

)2
, (11)

where xij and x′ij are the original and stego grayscale pixel values located at (i, j), respectively.
To present the superiority of the proposed scheme, we compared our scheme with the schemes

presented by Li et al. [15], Lin et al. [16], Ou and Sun [17], and Malik et al. [19], as shown in Table 6.
The proposed scheme achieved the highest data-hiding capacity for all five images except for the
airplane image. The data-hiding capacity of the pixel value adjusting strategy was determined using
the number of smooth blocks. If there are many smooth zones in a cover image, non-embeddable
blocks are observed in abundance in the image. Moreover, the pixel value adjusting strategy used in
the proposed scheme is modified at the most by 2, whereas the strategy used in the scheme proposed by
Malik et al. is modified at the most by 1. Therefore, compared with the scheme presented by Malik et al.,
our scheme has a higher number of non-embeddable blocks in the airplane image. Non-embeddable
blocks can be observed in black in Figure 5a,b. This is the main factor that causes the hiding capacity
of the scheme proposed by Malik et al. to be better than that of the proposed scheme for the airplane
image. For the other five images, the hiding capacity of our scheme is better than that of the scheme
presented by Malik et al. by an enhancement value in the range of 10.13% to 29.89%. The hiding
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capacity of our scheme is better than the schemes proposed by Li et al., Lin et al., and Ou and Sun.
Thus, we conclude that our scheme is better than the existing AMBTC- and BTC-based data-hiding
schemes, in terms of the hiding capacity.

Table 6. Comparison between hiding capacity and PSNR for different images for the proposed scheme
and other AMBTC- and BTC-based schemes.

Method Performance Airplane Boat Lena Mandrill Peppers Sailboat

Proposed
Hiding capacity (bits) 338,836 495,582 437,577 515,836 478,591 479,407

PSNR (dB) 32.0908 31.0397 33.0562 26.9348 33.0087 29.7857

Malik et al.
(2018)

Hiding capacity (bits) 397,147 397,380 397,348 397,105 397,057 397,466

PSNR (dB) 31.9018 31.0926 33.102 26.9474 33.304 29.8081

Ou and
Sun (2015)

Hiding capacity (bits) 223,039 217,264 234,004 141,919 238,969 219,169

PSNR (dB) 30.71 29.54 30.87 26.02 31.59 28.61

Lin et al.
(2013)

Hiding capacity (bits) 261,984 262,096 262,112 262,144 261,984 262,064

PSNR (dB) 31.64 30.32 33.05 26.0047 32.2021 28.8049

Li et al.
(2011)

Hiding capacity (bits) 17,659 16,580 16,789 16,880 17,264 16,990

PSNR (dB) 30.18 31.83 31.05 27 32.35 28.43

 
Figure 5. Non-embeddable blocks in “airplane.”: (a) Proposed scheme and (b) scheme proposed by
Malik et al.

Table 7 lists the comparison between the method by Malik et al. and the proposed method in
terms of structural similarity index (SSIM). As mentioned above, the SSIM value of the method by
Malik et al. is greater than that of the proposed method because the proposed method embeds more
secret data. In other words, the maximum hiding capacity of the proposed method is higher than that
of the method by Malik et al.

Table 7. Comparison between hiding capacity and SSIM for different images for the proposed scheme
and the other method by Malik et al.

Image
Malik et al.’s Method Proposed Method

Hiding Capacity (bits) SSIM Hiding Capacity (bits) SSIM

Airplane 397,147 0.947 338,836 0.9447
Boat 397,380 0.918 495,582 0.915
Lena 397,348 0.937 437,577 0.933

Mandrill 397,105 0.886 515,836 0.885
Peppers 397,057 0.931 478,591 0.927
Sailboat 397,466 0.915 479,407 0.912
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The PSNR is the other factor for evaluating performance of a hiding scheme. Table 6 presents
that the PSNR of our scheme is better than the schemes proposed by Li et al., Lin et al., and Ou and
Sun. For the airplane stego image, the proposed scheme has a better PSNR but a weaker hiding
capacity than the scheme proposed by Malik et al., because our scheme has a higher number of
non-embeddable blocks than the scheme by Malik et al. Note that a non-embeddable block maintains
the image quality but decreases the hiding capacity. For the other five stego images, the PSNR obtained
using the proposed scheme is weaker than that obtained using the scheme proposed by Malik et al.
However, because the PSNR difference is less than 0.29 dB for the five stego images, they would
not be distinguishable by human vision due to such negligible differences. By contrast, the hiding
capacities are significantly increased by a value in the range of 10.13% to 29.89% for the other five stego
images. This implies that a tradeoff exists between the PSNR and hiding capacity when the pixel value
adjusting strategy is used. The visual quality of the proposed scheme is observed to be above the
average value of that of the baseline schemes.

5. Conclusions

A high-capacity data-hiding scheme was proposed in this study for an AMBTC-compressed
image. The proposed scheme has many more properties than only high capacity. In this scheme,
the dictionary-based coding scheme and the pixel value adjusting strategy were combined to increase
the hiding capacity and attain a satisfactory visual quality. Experimental results reveal that the proposed
scheme is better than the existing AMBTC-based data-hiding schemes in terms of the hiding capacity.
Moreover, the visual quality of the proposed scheme is better than that of baseline schemes. In the
future, we should combine the method by Liao et al. [20] with the proposed method to discriminate
the image smoothness, thereby enhancing the hiding capacity. In addition, we should try to add
the concept of partition strategy [21] into the proposed method to embed more secret data into the
color images.
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Abstract: Image retrieval based on a convolutional neural network (CNN) has attracted great attention
among researchers because of the high performance. The pooling method has become a research
hotpot in the task of image retrieval in recent years. In this paper, we propose the feature distribution
entropy (FDE) to measure the difference of regional distribution information in the feature maps from
CNNs. We propose a novel pooling method, which fuses our proposed FDE with region maximum
activations of convolutions (R-MAC) features to improve the performance of image retrieval, as it takes
the advantage of regional distribution information in the feature maps. Compared with the descriptors
computed by R-MAC pooling, our proposed method considers not only the most significant feature
values of each region in feature map, but also the distribution difference in different regions. We
utilize the histogram of feature values to calculate regional distribution entropy and concatenate
the regional distribution entropy into FDE, which is further normalized and fused with R-MAC
feature vectors by weighted summation to generate the final feature descriptors. We have conducted
experiments on public datasets and the results demonstrate that our proposed method could produce
better retrieval performances than existing state-of-the-art algorithms. Further, higher performance
could be achieved by performing these post-processing on the improved feature descriptors.

Keywords: image retrieval; pooling method; convolutional neural network; feature distribution entropy

1. Introduction

Content-based image retrieval (CBIR) has achieved appreciable performance over its long-standing
development and has attracted more and more attention among researchers in recent years [1–3]. It
aims to search the images with the same object, instance, and architecture from an image database and
rank the images from the database to certain query images according to the similarities. The global
features extracted from visual clues like texture and color were utilized to realize image retrieval in
early times [1,2,4]. However, the global descriptors might change with the illumination, occlusion, and
translation, and it is hard to keep invariance, which would reduce robustness and affect the performance
of image retrieval. Later, the local descriptor of scale-invariant feature transform (SIFT) was proposed
to meet invariance exception [5]. The appearance of SIFT has spawned a heavy load of excellent
algorithms, which have achieved effective performance in image retrieval. At the beginning, most of
the SIFT-based image retrieval methods relied on the bag-of-visual-words (BoW) model to obtain a
compact vector of images [6]. Later, the vector of locally aggregated descriptors (VLAD) was proposed
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to consider all of cluster centers and the distance of local features to its nearest cluster center [7]. Fisher
vector (FV) calculates the distances of local features to all cluster centers [8]. Then, spatial pyramid
matching (SPM) was proposed, which is based on BoW, with spatial location information added to the
feature descriptors [9]. All these methods fail to extract high-level semantic features.

Recently, convolutional neural network (CNN) has made a huge development with the success
of AlexNet in the task of image classification [10], and has been widely applied in the tasks of image
retrieval [11–15], object recognition [9,16,17], and target detection [18,19]. There are a number of
CNN-based methods that have achieved acceptable performance in these tasks, as the deep features
extracted from fully connected or convolutional layer contain richer high-level semantic information
compared with traditional manual features. Especially for the task of image retrieval, a mass of
methods based on the pre-trained network have achieved effective performance [3,12,17,20–24].
Recently, researchers have tended to use the feature maps generated from the last convolutional layer to
achieve higher performance in image retrieval [3,12,16,20–26]. However, the high dimension of feature
maps makes the descriptors hard to use directly. In early times, traditional aggregating methods were
used to encode the feature map’s output from the CNNs into deep feature descriptors [12,16,26]. With
further development of deep learning, more and more methods have been proposed to utilize the
feature maps from the CNNs to generate compact feature vectors by using pooling operation [12,20–25].
The key challenge for the pooling operation is how to extract the most pivotal features from feature
maps and eliminate the effect of the irrelevant information noise. The region maximum activations
of convolutions (R-MAC) pooling aim to consider the most prominent points for multiscale regions
and has achieved outperforming results in image retrieval [24]. However, this method ignores the
difference of distribution in different regions, which could be important to extract more effective feature
descriptors for the task of image retrieval. In general, there are some effective post-process methods,
like re-ranking [24,25,27] and query expansion (QE) [25,28,29], used in the model image retrieval.
These operations could be significantly helpful to further increase the performance of image retrieval.

To solve the key challenge mentioned above, we tend to take the distribution information of
feature maps into consideration to generate deep feature representations with richer information. In
this paper, we propose a novel method to measure the distribution differences of multiple regions in
feature maps called feature distribution entropy (FDE). We combine the proposed FDE with R-MAC to
generate more effective features to improve the effectiveness of our image retrieval. To be specific, we
make four contributions, as follows.

Firstly, we propose an effective scheme to compute FDE, which could be used to fully reflect
the distribution differences of different regions. It would be helpful to focus on the more noteworthy
regions and weaken the influence of irrelevant noise.

Secondly, we employ a superior strategy to combine our proposed FDE with R-MAC features to
generate more discriminative features. The fused features could tend to extract compact feature
representations with more information and are significant to eliminate influence of irrelevant
information, especially the noise of background. The compact feature representations are more
distinctive and could be more effective in improving the performance of image retrieval.

Thirdly, we perform the operation of re-ranking and QE on the deep-fused features produced by
our proposed method. This helps us to obtain better retrieval results.

Fourth, we utilize the fine-tuned network [25] to perform our experiments on different datasets to
verify the effectiveness of our proposed method.

To verify the superiority of our proposed method, we perform the experiments on the benchmarks
with state-of-the-art re-ranking and QE approaches with the pre-trained and the fine-tuned network.
The results of our experiments, which are described in detail in Section 4.3, show that our proposed
method outperforms the existing state-of-the-art methods.

We organize the rest of our paper as follow. Section 2 is to illustrate the related work. The
calculation of our proposed FDE and the fused features are represented in Section 3. We represent the
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results and analysis of our experiments in Section 4. Lastly, we make a conclusion for our paper in
Section 5.

2. Related Work

Deep learning methods based on CNNs have made a great breakthrough in many tasks of
computer vision. A general architecture of CNN usually consists of several convolutional layers
followed by fully connected layers. The network is usually trained with a softmax layer. Recent
works prefer to utilize the activations from the intermediate layer to realize some special tasks like
target detection, semantic segmentation, target recognition, and so on, and have obtained effective
performance [9,16–19,30,31]. Particularly for the task of image retrieval, Babenko et al. proposed to
use the global features from the fully connected layers in image retrieval [22]. Gong et al. proposed to
employ VLAD to aggregate the feature descriptors from the fully connected layers [20]. Recently, more
and more works tend to use the feature representations generated by applying pooling on each channel
feature maps output from the convolutional layers [3,12,16,20–26]. These feature representations
usually contain richer high-level semantic information than fully connected ones and are significant
to promote the effectiveness of image retrieval. More and more works show that better performance
of image retrieval could be obtained when the deep feature descriptors are whitened [24,25]. Also,
abundant works have shown that some post-process methods, like re-ranking and QE, would be
significant to improve the performance of image retrieval [24,25,27–29]. In the rest of this section, we
describe the related work for the methods we utilize in this paper in detail, which contains the pooling
method, normalization, PCA, re-ranking, and QE.

2.1. Pooling Approaches

The methods based on CNNs have achieved superior performance in image retrieval. The early
works using global features output from the fully connected layers are replaced by the local feature
representations derived from the convolutional layers as it has more discriminative descriptive power.
In early times, there were some popular encoding methods used in generating compact representations.
Gong et al. proposed multi-orderless pooling CNN (MOP-CNN), which aim to extract multi-scale
feature maps and utilize VLAD to encode them into the final feature descriptors [20]. Arandjelovic et
al. later proposed to apply the VLAD to aggregate local features and design an end-to-end network for
image retrieval [16]. Then, Mohedano et al. proposed a novel method, which applies the BOW into
deep features [26]. It aggregates the features from CNN into compact representations. Multi-scale
feature representation (MFC) was proposed by Hao et al. to extract features from three different scales
and fuse the extracted features to generate the final feature vector [32]. However, all these methods
mainly use traditional aggregation methods to encode the features from CNN into compact feature
descriptors, which are always accompanied by huge consumption of computing.

There is another way to generate compact representations, which is derived from the pooling
layer in CNN. The main idea is to utilize pooling on the activations of convolutional layers to produce
more compact deep features [12,20–25]. The dimensionality of the deep features is consistent with the
channels of feature maps from the corresponding convolutional layer. Babenko et al. propose sum
pooling (SPoC), which computes the sum of values in the feature maps [22]. It has shown effective
performance in image retrieval. The SPoC feature is calculated as following equation:

f (sum) =
[

f sum
1 , . . . , f (sum)

c , . . . , f (sum)
C

]T
, f (sum)

c =
1
|Xc|

∑
x∈Xc

x (1)

where C is the number of feature maps, c means the channel of features, f (sum)
c denotes the SPoC feature

of c-th channel, |Xc| is the amount of feature values in c-th channel feature map, Xc is c-th feature map,
and x is the feature value in a certain feature map.
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Later, Razavian et al. proposed max pooling (MAC) to select the maximum of each feature
map [12]. The MAC pooling feature is computed as follows:

f (max) =
[

f (max)
1 , . . . , f (max)

c , . . . , f (max)
C

]T
, f (max)

c = max
x∈Xc

x (2)

where C is the number of feature maps, c means the channel of feature, f (max)
c denotes the MAC feature

of c-th channel, Xc is c-th feature map, and x is the feature values in a certain feature map.
According to the former work of MAC pooling, Giorgos et al. proposed R-MAC pooling, which

uses sliding windows strategy to obtain a set of regions with different scale [24]. Each region performs
MAC pooling in order to obtain the regional feature vectors. The computing equation is shown
as follows:

f (r−max)
R =

[
f (r−max)
R,1 , . . . , f (r−max)

R,c , . . . , f (r−max)
R,C

]T
, f (r−max)

R,c = max
x∈R xc(r) (3)

where f (r−max)
R denotes the maximum value of the given region, R denotes the regions extracted from

the c-th feature map, and Xc(r) means the feature value in the region r on c-th feature map
These methods have made great progress in improving the performance of image retrieval.

However, the algorithms described above fail to take the regional distribution information of the
feature maps into account. In order to make full use of distribution information, we introduce
the concept of entropy to measure the distribution of feature maps. As the R-MAC pooling has
obtained superior effectiveness and utilizes multi-scale strategy to extract regions, it is easy for us
to analyze their difference. We design an effective scheme to calculate FDE, and then we fuse FDE
with R-MAC features. Our experimental results show that our algorithm is better than many existing
state-of-the-art algorithms.

2.2. Compact Features with Distribution Information

For image retrieval, many traditional algorithms ignore the distribution information of feature
maps during generating the deep descriptors. To solve this issue, spatial distribution information is
introduced as a supplement to feature descriptors to improve the retrieval performance. Based on
BoW, Mehmood et al. combined histograms of local features with global features and constructed local
feature maps in local regions [33]. Krapac et al. used Fisher kernel to calculate the spatial mean and
cluster changes. Then, they encoded the BoW into a spatial map and combined them with Gaussian
mixture model [34]. Koniusze et al. used spatial coordinate coding to simplify spatial pyramid
representation [35]. Sancheset et al. improved the performance of FV-based object classification and
prompted the spatial position of descriptors [36]. Liu et al. introduced the concept of spatial distribution
entropy and applied spatial distribution entropy to the original VLAD algorithm [37]. These methods
have achieved great performance in image retrieval, but these improvements were merely applied on
traditional algorithms, which are no longer superior to the popular CNN-based algorithms.

Due to the rapid development of neural networks, CNN-based methods have shown excellent
retrieval performance in mage retrieval. However, many retrieval algorithms do not make full use of
regional distribution information. It is very important to preserve the regional distribution information
of images to promote retrieval performance. In R-MAC, the local features of each region are directly
concatenated to obtain global features. The contribution of each region is simply the biggest value
in each region, which does not consider the difference of regional distribution information and fail
to generate more informative feature descriptors. Entropy is an effective measurement to reflect the
distribution information of regions, which is proposed by Shannon in 1948 [38]. We take the advantage
of the regional distribution information to compute FDE in multiple-scale regions and fuse with the
deep feature descriptors as supplement information to solve the disadvantages of R-MAC feature
representations. We use FDE to measure the regional distribution information of feature maps and use
it as a supplement to combine with the R-MAC features to enrich the deep feature representations.
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Compared with R-MAC, the results the performance of our algorithm are improved, which indicates
that the proposed algorithm is effective.

2.3. Normalization and PCA

Normalization plays an important role in image retrieval and has been largely used in image
retrieval [13]. This operation aims to transform the data into a uniform scope to make a comparison
among them. We would like to discuss two types of normalization, one being L2 normalization and
the other being power normalization.

L2 normalization [13] aims to balance the impact of different values, as the values output from the
convolutional layer are usually discrete and very different from each other. There would be a mass of
extreme values, which would affect the performance of image retrieval. We utilize L2 normalization to
narrow the difference of values without changing the proportional difference of values. Specifically,
L2 normalization is to limit the values within the range from 0 to 1, and the formulation is defined
as follows:

XL2 =
X
‖X‖ (4)

where ‖X‖ denotes the values in a certain vector and X means the magnitude of this vector.
Power normalization [13] functions the same as L2 normalization to eliminate the gap among

extreme values. Power normalization is the reduction of the values in the vector in the form of power
exponent, and we give the formulation as follows:

Xp = sgn(X) ×Xp (5)

where X is the values of a certain vector and sig(X) denotes a symbolic function to prevent the sign of
the value from changing after power normalization; the value would be 1 if X is larger than 0 and −1 if
smaller than 0. p is a hyper-parameter.

The feature vectors generated from the pooling layer tend to have higher dimensions, which
could cause large calculation consuming. The features would be accompanied by large noise, which
always reduces the performance of image retrieval. To achieve better performance, whitening the
feature descriptors is a common and essential stage used in image retrieval as described in the work
of Chum et al. [39]. They focus on jointly down-weighting co-occurrences and aim to handle the
problem of over-counting. Their work is further migrated in feature descriptors based on CNN. The
principal component analysis (PCA) trained on an independent set is always used for whitening and
dimensionality reduction [25,40,41]. It aims to project the original vector onto the direction in which
the most original information can be retained. The values after PCA are expected to be as scattered
as possible with high variance. Mokolajczyk et al. [41] used the training data to whiten local feature
representations. Gordo et al. preferred to learn the whitening in an end-to-end manner based on
CNN [40], and Filip et al. proposed a new method named learning whitening by taking advantage
of training data provided by their 3D models and using liner discriminant projections to perform
whitening on features [25]. In our paper, we prefer to utilize PCA to realize dimensionality reduction.
It could reduce the computing consuming and eliminate the mutual influence between the original
data components to promote the performance of image retrieval.

2.4. Re-ranking and Query Expansion

In image retrieval, the results of the first search are often not expressive enough, so reordering the
first output will give better results. In image retrieval, re-ranking [27] is often followed by QE [28,29].
The operations of re-ranking and QE are generally helpful in achieving a better performance compared
with the results retrieved by raw representations.

Giorgos et al. use approximate max-pooling localization (AML) to coarsely locate the local
features of top N images by using the raw representations and then re-rank them [24]. The following
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QE operation further improves the retrieval performance. In recent years, some new QE methods
have been proposed. The most widely used is average query expansion (AQE), which extracts the
features of the images ranking top K and averages them with the features of the query images, and
then re-retrieving images to obtain a more accurate result. Inspired by AQE, Filip et al. added a weight
to the features of the i-th image and named it αQE [25].

3. Proposed Method

In this section, we give some details of our proposed FDE and introduce how to combine FDE with
R-MAC feature vectors to produce more discriminative feature representations, which is significant
to improve the effectiveness of image retrieval. Furthermore, we perform re-ranking and QE, which
have become standard post-processing used in improving the performance of image retrieval on our
proposed method to obtain better performance. We would like to illustrate the process of our method
in Section 3.3.

3.1. The Algorithm Background

For an image I, we use the pre-trained network without the fully connected layers to output the
activations with 3D tensor of W ×H × C dimensions, where C means the number of feature maps
output from the last convolution layer. For each feature map with size of W ×H, which could be
represented as Xc and k ∈ {1, . . . , C}, herein c denotes the feature channel, and each channel feature
map with a certain region r, is represented as Xc(r); we denote region location of each feature map as r.
To ensure all these elements in the activations are non-negative, we apply the rectified linear units
(ReLU) to the last layer.

As mentioned in Section 2.2, the R-MAC pooling method produces R different regions for each
feature map and then calculates MAC features for each region. We represent the region as r ∈ {1, . . . , R}.
R-MAC uses multiple scale region extraction strategy to take full advantage of the convolutional layer
activation information, which is different from MAC. The R-MAC performs MAC pooling on each R to
produce an R-dimensional vector for each feature map. Then, all these feature vectors are encoded into
a matrix of R×C for the activations. After the operation of normalization, the matrix is concatenated
to obtain a C-dimensional feature vector, which could be denoted as f =

{
f1, . . . , fC

}
. However, the

feature vector does not make full use of the information of each region, because the distribution differs
in feature regions. We propose to calculate FDE for feature maps that can reflect the difference in the
distribution of pixel values of feature maps in different regions. Then, we combine our proposed FDE
with R-MAC feature descriptors. To fuse the two parts better, we apply the operation of L2 and power
normalization on FDE vector before fusing. Then, the L2 and power normalizations and PCA are
performed on the fused feature descriptors to generate the final features, which would be used for
retrieval. The distinctiveness of the final features can be enhanced, and this is further used to improve
the performance of image retrieval.

3.2. Calculation of FDE

In this section, we represent our idea of the proposed FDE to take the difference of regions into
consideration. Our proposed FDE could be helpful to generate more discriminative features that
contain richer semantic information and simultaneously eliminate the effects of irrelevant background
noise. To be specific, we calculate the proposed FDE and then combine FDE with R-MAC features
to produce our final discriminative features. Herein, we design an effective scheme to calculate FDE.
This scheme is proposed to focus on the different feature values in regions. We show the details of the
processes of FDE calculation, as follows.

Herein, we would like to describe our proposed scheme in detail by taking one feature map as
example. At the first step, we analyze statistical information of the feature values in each region. We
build a histogram for each region of feature map. For each region of a certain feature map, there is a
range of different feature values. We set the number of blocks in the histogram to B. Then, the value
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range s of each block is computed according to the maximum and minimum value of the current region.
The information of distribution histogram on each region is calculated as the following equation:

h =
{
h(i, s)

∣∣∣1 ≤ i ≤ B; Xr(min) + (i− 1)S ≤ s ≤ Xr(min) + is
}
, S =

(
Xr(max) −Xr(min)

)
/B (6)

where Xr(max) and Xr(min) are the minimum and maximum value in current region, and the value of B
is a parameter that denotes the number of blocks; h(i, s) denotes the statistical values in current region
r. The total number of ranges of each region is counted by histogram.

Probability distribution entropy is an effective method to measure the distribution information of
feature maps. Herein, we utilize the distributional probability to compute probability distribution
entropy for all these regions. The distributional probability of each region can be calculated by
following formula:

Pi = h(i, s)/
∑

B
i=1h(i, s) (7)

where h(i, s) denotes the statistical values i-th block. Pi is the distributional probability of i-th block in
in current region r.

After that, according to the distributional probability of each region that computes the statistical
values of distribution histogram h, the probability distribution entropy of each region is calculated
using the following formulation:

Hr = −
∑

B
i=1Pi log Pi (8)

where Pi denotes the distributional probability of block i.
The probability distribution entropy of a certain region computed by our proposed scheme reflects

the distribution of the pixel values of the feature regions. The FDE measures the distribution of
feature values in the feature maps. The more concentrated the feature values of the feature maps
in a certain region, the smaller the entropy value, and vice versa, as shown in Figure 1. This can
reflect the distribution of information in different regions and make descriptors more distinguished.
It could be significant to focus on areas that are more useful and eliminate the influence of useless
background noises.

Figure 1. The two regions with different distribution in a feature map. The x-axis and y-axis denote the
position of the feature values. The dots with different colors are the feature values. To be specific, the
blue, red, green, and black dots are the values of 110, 80, 50, and 10, respectively.

As is shown in Figure 1, we assume the large square is a certain feature map generated by the
convolutional layer and there are four different feature values within the first region and two different
feature values within the second region. The dots of different colors represent feature values in different
ranges. The largest value is represented as a blue dot. It is obvious that the distribution in the two
regions is inconsistent, but when using the R-MAC algorithm, the MAC feature of the two regions
are both 110. R-MAC does not highlight the difference in information distribution between the two
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regions. We utilize our proposed scheme 1 to calculate the distribution entropy, which could be applied
to reflect the difference of the two regions as the values of FDE are different. Then, computed FDE is
combined with R-MAC features to improve the effectiveness of image retrieval.

Herein, we discuss the impact of different noises to our proposed FDE scheme. We conduct a set
of comparative experiments on computing the values of FDE for a set of 50 images distilled randomly
from Oxford5k dataset and after applying four kinds of noises on these images. We give the results
in Figure 2. We could make a conclusion as follows. The values of FDE calculated by our proposed
method are hardly sensitive to poisson, salt, and speckle noises. Gaussian noise might increase the
value of FDE slimly in a very small number of images. We could conclude that our proposed FDE is
robust to the most types of noise.

Figure 2. The feature distribution entropy (FDE) curve of 50 images applied four kinds of noise. The
x-axis represents the image ID and y-axis denotes the values of FDE. The red curve is the FDE values
of original images. The other four curves denote the FDE values of the same images with Poisson,
Gaussian, salt, and speckle noise, respectively.

3.3. Fusing R-MAC Features with FDE

We aim to use FDE to reflect distribution information of feature regions to overcome the
shortcomings of R-MAC. However, the format of FDE is quite different from R-MAC features. It is
cautious for us to combine the FDE with R-MAC features. We give more detailed description of the
combination schemes, as follows.

The simplest fusing method is to directly concatenate entropy with R-MAC features. There are
two ways to concatenate them together. One is to concatenate the regional FDE with R-MAC features
directly, which is represented as strategy 1. This strategy will increase the dimension of regional
features from R×C to 2R×C. There is another way to fuse them, which would be called strategy 2.
The main idea of strategy 2 is to sum the FDE for the whole feature map and then concatenate FDE
vector with R-MAC features. The dimension would be increased to (R + 1)×C. The two strategies will
both increase the dimension of feature vector, which could further increase computational overhead
in the process of image retrieval. We design strategy 3, which adopts the weighted summation to
fuse the R-MAC features with the FDE without increasing the feature dimension. In strategy 3, the
final feature vectors could be obtained by adjusting the weight parameter α. The experiment’s results
indicate that strategy 3 will induce better performance of image retrieval. We describe strategy 3 in
detail, as follows.

In order to reduce the difference of R-MAC features and FDE, we perform an operation of L2 and
power normalization on them separately. We define p1 and p2 as the power normalization parameter
for R-MAC and FDE, respectively. After the normalization operation, the two parts are weighted
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summed together. The regional feature, which is produced by MAC pooling, is fused with the FDE for
a certain feature map by weighted summation as follows:

fc = [ fc1, . . . , fcr, . . . , fcR]
T, fcr = f m

cr + αHcr (9)

where fc denotes the regional feature vector of with FDE of the c-th channel and fcr is the element
in the regional feature vector of fc, which is weighted summed with an element of R-MAC regional
feature f m

cr and an element of regional FDE Hcr of one feature map. α is an adjustable parameter. We
set α = 0.5 according to analysis in Section 3.4.

Then, we concatenate all these regional features to generate a feature vector. The concatenation of
the element fcr in the vector fc yields the feature descriptors fcE of each channel, and is calculated by
the following formula:

fE = [ f1E, . . . , fcE, . . . , fCE]
T, fcE =

∑
R
r=1 fcr (10)

where fcE is computed by adding all these regional features
Lastly, we perform L2, power normalization, and PCA to generate more effective feature

representations, which is significant to improve the performance of image retrieval. We define p3 as
the power normalization parameter for the fused features. The retrieval process with our fused feature
descriptor is illustrated in Figure 3.

 
Figure 3. The process of image retrieval with our proposed fused features. The pre-trained convolutional
neural network (CNN) is used to produce feature maps on the input query image and a retrieval set.
The region maximum activations of convolutions (R-MAC) pooling and the proposed FDE are applied
on feature maps and the normalization is applied on them separately. Then, weighted fusion strategy is
utilized to produce raw features. We finally perform normalization and principal component analysis
(PCA) on the fused features to generate the final feature descriptors, which are used in the following
retrieval stage.

As is shown in Figure 3, we follow the deep framework to perform image retrieval. Firstly,
we utilize the pre-trained network to extract feature maps. Then, we utilize the R-MAC pooling
and FDE scheme mentioned in Section 3.2 to produce deep features for all regions. Then, we fuse
them after the process of L2 and power normalization and add up all these regional fused vectors in
one feature map to get compact vectors by using the strategy 3 mentioned in Section 3.3. Then, we
obtain the final feature descriptors after the process of L2 and power normalization, and we apply
the dimensionality reduction of PCA on the final compact feature descriptors, which are then used to
perform image retrieval. The experiment results described in Section 4 demonstrate the effectiveness
of our proposed method.
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3.4. Parameter Analysis

In this section, we analyze the main parameters of our algorithm on Paris6k dataset [42] and
measure the retrieval accuracy by mean average precision (mAP) [27] as the same to R-MAC. mAP
is a commonly evaluation method to measure the performance of image retrieval. It is defined as
follows: During the testing phase, we rank all these samples in the testing database by computing their
Euclidean distance with the query. Then, we utilize the ranked list to get the average precision (AP) for
each query image. Then, we use the AP to compute mAP as follows.

mAP =
1
|Q|

∑ |Q|
i=1

1
ni

∑
ni
j=1pr(i, j),pr(i, j) =

k
n

(11)

where |Q| is the amount of the query images in the dataset, ni is the volume of images in testing dataset
which is relevant to i-th query image, Pr(i, j) is the precision of j-th retrieved image to i-th query image,
k is the result images returned relevant to the query image, and n is the volume of returned images
during retrieving.

In FDE computation, the number of blocks B in the histogram is an adjustable parameter. When
fusing the R-MAC features with FDE, the weight α will affect the descriptive ability of the finally
generated feature descriptors. In order to fuse the R-MAC features with the FDE, L2 and power
normalization processing is required to make them range on the same level. After fusing, we perform
a power normalization and L2 normalization again to facilitate subsequent training of PCA. As
mentioned in Section 3.1 during the stage of testing, we use multiscale strategy to extract features. We
conduct the experiment with different scale size L. And we would give the analysis as follows.

As mentioned in Section 3.2, the number of blocks B plays an important role in computing the
FDE. We conduct the experiments on different B with range from 2 to 275 on AlexNet and we set α to
0.5 and p1, p2, p3 to 1.0, 1.1, and 1.1. The results are presented in Table 1.

Table 1. The influence of B on retrieval.

.B 2 15 50 100 175 275

mAP(%) 75.01 74.44 74.21 74.12 74.06 74.03

From Table 1 we can learn that when the value of B becomes larger, the result gradually
decreases. The mAP reaches the maximum with 75.01% when B is equal to 2, and we set B to 2 in the
later experiments.

Factor α is a parameter used to fuse the computed FDE and R-MAC features. We perform the
experiments with α from 0.2 to 1.2 on AlexNet and set B to 2, p1, p2, p3 to 1.0, 1.1, and 1.1, respectively.
The results are shown in Table 2.

Table 2. The influence of α on retrieval.

α 0.2 0.4 0.5 0.6 0.8 1.0 1.2

mAP(%) 73.69 73.95 74.05 73.95 73.80 73.58 73.31

From Table 2, we can know that the mAP (%) obtains the maximum value when α = 0.5, and the
maximum mAP value is bolded. According to the data in the table, α = 0.5 is finally selected for the
following experiments.

As described in Section 2.3, we utilize L2 and power normalization on R-MAC features and FDE.
We conduct the following experiment to find the best values for power normalization. We conduct the
experiments with different values from 0.2 to 2 on p1, p2, and p3 separately with α = 0.5 and B = 2.
Then, we show the results in Figure 4.
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Figure 4. The changes of mean average precision (mAP) with p1, p2, p3. The x-axis is the value of p,
which could be used to denote the values of p1, p2, p3. The y-axis is the value of mAP (%).

We could conclude that the three curves are convex function, which increase and then decrease
monotonously. Figure 4 shows that p3 is most sensitive to the values of mAP. The maximum values are
obtained at 1.0, 1.1, and 1.1, respectively. We set the p1, p2, p3 equal to 1.0, 1.1, and 1.1, respectively, in
the rest of the experiments.

We conducted an analysis about different scale size to choose the most appropriate value for L. We
performed the following experiment with different scale size for L = 1, 2, 3, 4 on AlexNet and VGG16
separately. E indicates feature distribution entropy

We can conclude from Table 3 that when L is smaller than 3, the mAP (%) will increase with the
increase of L. However, when L is larger than 3, the mAP (%) will decrease with the increase of L. The
best result is obtained when L = 3. We set the scale size L to 3 for the following experiments.

Table 3. The results with different scale size.

Methods. AlexNet VGG16

L 1 2 3 4 1 2 3 4

R-MAC 47.9 54.6 56.1 55.6 57.3 64.5 66.9 67.44
R-MAC+E 54.00 57.03 57.15 56.38 64.04 67.97 69.64 69.09

MAC 44.83 55.01

4. Experiments and Evaluation

In this chapter, we discuss the implementation details and evaluate our algorithm on different
datasets. More details are shown as follows.

4.1. The Details of Implementation

All our experiments are implemented on Ubuntu 16.04 with a GPU NVIDIA TITAN X and memory
of GPU is 64 GB. We use the deep learning tool MatConvNet [43] to realize the convolutional neural
network. The experiments use AlexNet [44] and VGG16 [11] pre-trained on ImageNet [45]. We also
finetune the network to achieve better performance. We use stochastic gradient descent (SGD) to train
Alexnet and Adam to train VGG16. We initialize the learning rate with l0 = 10−3 for SGD and l0 = 10−6

for Adam. The channel of convolutional activation is 256 on AlexNet and 512 on VGG16. We set the
input image of resolution to 1024× 768. The cosine similarity is used to measure the similarity between
the features. The experiments are performed on the Oxford5k [46] and Paris6k [42], Holidays [46],
Oxford105k [27], and Paris106k [42]. We utilize mAP to measure the performance of image retrieval.
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We conduct our experiments on the following benchmark datasets frequently used for image
retrieval. Herein, we give the details of these datasets as follows.

Oxford5k [27] is a dataset provided by Flickr with a total of 5062 images. It contains 11 different
landmarks of Oxford. Oxford5k [27] owns five query areas for each landmark building. Each image is
labeled as one of four tags: Good, okay, junk, bad. The first two match the current query area; not
good means that the error is matched.

Paris6k [42] is usually used in conjunction with Oxford5k [27] and it is also provided by Flickr
with 11 classes. Each class has five query areas with a total of 6412 images about Paris buildings. It is
also labeled with a four-category label, which is similar to Oxford.

Flickr100k [27] is made up of 1,000,071 high-resolution images from 145 of the most popular tags
on Flickr, and is late added to the Oxford5k and Paris6k to become Oxford105k [27] and Paris106k [42]
for large-scale image retrieval.

Holidays [46] mainly contains a variety of landscape pictures. It consists of 1491 images with 500
groups of similar images; each group has a query image. Unlike Oxford5k [27] and Paris6k [42], the
query image on Holidays is the entire image rather than the region of interest (ROI).

4.2. The Calculation and Fusing Schemes of Entropy

In this section, we analyze the effect of different fusion strategies. As mentioned in Section 3.3, we
show three strategies to fuse feature distribution entropy with R-MAC features. Strategy 1 stitches the
region entropy directly to R-MAC features of each region. Strategy 2 is to stitch the entropy of the
entire feature map to the R-MAC feature. Strategy 3 uses weighted summation. We use the pre-trained
AlexNet and VGG16 to perform a series of comparative experiment with the three strategies on Paris6k,
respectively. The results are shown in Table 4.

Table 4. The strategies of fusing with R-MAC features.

Network Fusing mAP(%)

AlexNet

1 71.15
2 73.56
3 75.01

R-MAC 72.95

VGG16

1 79.46
2 83.02
3 83.50

R-MAC 83.02

From the results shown in Table 4, we can make the following conclusions. The result of strategy 3
achieves 75.01% and is better than other fusion schemes when the experiment is conducted on AlexNet.
Then, we perform the experiment of the three schemes on VGG16. We find that scheme 3 still gains the
best result and obtains 83.50%. It can be seen from Table 4 that both scheme 2 and scheme 3 have been
improved, but scheme 3 is more effective, and scheme 3 is adopted for the following experiments.

4.3. Compact Representation Comparison

In this section, we conduct the experiments with our proposed method and verify the compatibility
of our proposed algorithm. To gain more, we perform PCA whitening to reduce the influence of
noise with no dimensionality reduction. We use MAC, R-MAC, and our proposed method for the
comparative experiments; the calculation and fusion method of FDE is selected in Section 4.1.

PCA whitening is one of the most important post-processing methods, which can reduce noise
influence and improve retrieval efficiency. In order to verify the impact of PCA whitening on
the retrieval results, we conducted comparative experiments on AlexNet [10] and VGG16 [47] on
Paris6k [42], Oxford5k [27], and Holidays [46]. The results are shown in Table 5.
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Table 5. Performance (mAP) comparison with or without PCA whitening. P: Performing PCA
whitening (+P), E: Fusing with feature distribution entropy (+E), or without entropy. The best result is
highlighted in bold.

Pooling. AlexNet VGG16

Paris6k Oxford5k Holidays Paris6k Oxford5k Holiday
MAC+P 54.42 44.83 68.75 74.73 55.01 75.23
R-MAC 66.82 50.99 75.75 75.31 56.23 81.26

R-MAC+P 72.95 56.06 80.99 83.02 66.71 84.04
R-MAC+E 66.35 49.71 76.90 74.36 57.58 81.66

R-MAC+E+P 75.01 57.15 82.76 83.56 69.64 86.90

Table 5 shows the results of different feature descriptors before and after PCA whitening. It
should be noted that whether using PCA whitening or not, the feature dimension in AlexNet is 256, the
same as VGG16 is 512. We train PCA on Oxford5k and then use it to test on Holidays or Paris6k and
similarly we train PCA on Paris6k to test on Oxfor5k. From this table we can learn that when we test
on AlexNet, R-MAC+E+P on Paris6k, Oxford6k, and Holidays achieve 75.01%, 57.15%, and 82.76%,
respectively, and the best retrieval results are obtained. When we perform the experiments on VGG16,
the best results are 83.56%, 57.58%, and 86.90% on Paris6k, Oxford5k, and Holidays, respectively. We
can also see that whether it is MAC, R-MAC, or R-MAC+E, the mAP value of using PCA compared
with the one without using PCA has been significantly improved in most cases, with only a slight drop
in the MAC method using AlexNet on Holidays. It is fully proved that PCA whitening can effectively
improve retrieval performance in most cases.

Fusion representations. In order to verify the compatibility of the algorithm, we designed four
sets of comparative experiments, using pre-trained networks on VGG16 and AlexNet to perform
experiments. Oxford5k and Paris6k use the query area specified in the 55 query images given by the
datasets. We compare the MAC and R-MAC features with features after fusing entropy by mAP (%).
The results are shown in Table 6.

Table 6. Performance (mAP (%)) comparison between fusing with FDE or without. E: Fusing with FDE
(+E), or without entropy. The best result is highlighted in bold.

Network. Pooling Oxford5k Oxford105k Paris6k Paris106k Holidays

AlexNet MAC 44.83 34.84 54.42 37.09 68.75
MAC+E 51.73 45.54 64.78 50.34 78.01
R-MAC 56.06 46.85 72.95 60.07 80.99

R-MAC+E 57.15 50.19 75.01 63.29 82.76

VGG16

MAC 55.01 48.50 74.73 62.46 75.23
MAC+E 62.57 58.75 79.51 72.57 82.07
R-MAC 66.71 62.35 83.02 76.28 84.04

R-MAC+E 69.64 64.91 83.56 77.89 86.90

The conclusions drawn from Table 6 are as follows. The results in the table indicate that when we
experiment on AlexNet, R-MAC+E obtains the best results on all these datasets with 57.15%, 50.19%,
75.01%, 63.29%, and 82.76%, which has been bolded. The same conclusion is obtained when we
perform the experiments on VGG16. We get the results of 69.64%, 64.91%, 83.56%, 77.89%, and 86.90%,
which are the maximum values on the different datasets. We have bolded these maximum values in
Table 6. We can know that the fused feature representations generated by using our proposed method
could be more effective and gain a better performance.

Re-ranking and QE. As mentioned in Section 2.4, re-ranking and QE can further improve the
performance of image retrieval. In this section, we use the pooling methods above to calculate feature
descriptors. Then, we examine the advantage of re-ranking and QE on Oxford5k, Paris6k, Oxford105k,
and Paris106k. We show the results in Table 7.
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Table 7. Performance (mAP(%)) comparison using re-ranking and query expansion or without, R:
Using re-ranking (+R), QE: Using query expansion (+QE). E: Fusing with feature distribution entropy
(+E), or without entropy. The best result is highlighted in bold.

Network Pooling Oxford5k Oxford105k Paris6k Paris106k

AlexNet MAC+R 59.01 46.26 65.67 45.61
MAC+R+QE 63.92 50.21 69.13 49.08
MAC+E+R 64.02 54.03 73.95 58.51

MAC+E+R+QE 70.46 59.67 76.60 61.16
R-MAC+R 61.13 55.16 77.52 65.63

R-MAC+R+QE 66.85 60.68 80.42 69.02
R-MAC+E+R 62.37 56.46 78.35 67.49

R-MAC+E+R+QE 67.83 61.01 81.04 70.75

VGG16

MAC+R 70.57 60.39 81.16 64.29
MAC+R+QE 74.21 63.65 82.84 69.01
MAC+E+R 76.09 67.97 84.36 76.37

MAC+E+R+QE 78.95 71.47 85.22 76.99
R-MAC+R 74.54 70.89 85.16 79.29

R-MAC+R+QE 77.33 74.69 86.45 80.73
R-MAC+E+R 75.96 72.97 85.33 79.97

R-MAC+E+R+QE 78.48 75.79 86.53 81.22

From Table 7, we could know that the best results are achieved when we apply re-ranking and QE
on our proposed method with the mAP (%) being 67.83%, 61.01%, 81.04%, and 70.75% on the four
different datasets on AlexNet. We get the same conclusion on VGG16 with the maximum values of
mAP (%) being 78.48%, 75.79%, 86.53%, and 81.22%. We could conclude from Table 7 that the results of
the features would likely increase when we apply the operation of re-ranking and QE on four different
datasets on AlexNet and VGG16.

Comparison with state-of-the-art algorithms. In order to demonstrate the effectiveness and
superiority of our algorithm, our experimental results are compared with other state-of-the-art
algorithms. We conduct experiments not only with raw image representations, but also use
representations performed with re-ranking and query expansion. The results can be seen in Table 8.

Table 8. Performance (mAP (%)) comparison with the state-of-the-art algorithms. Dim: Dimensionality
of final compact image feature descriptors, Not Applicable (N/A) for the bag-of-visual-words
(BoW)-CNN due to its sparse representations. R: Using re-ranking (+R), QE: Using QE (+QE).
E: Fusing with feature distribution entropy (+E), or without entropy. The best result is highlighted
in bold.

Network Pooling Dim Oxford5k Oxford105k Paris6k Paris106k Holidays

Original retrieval results

AlexNet

MAC [12] 256 44.24 34.84 54.42 37.09 68.75
R-MAC [24] 256 56.06 46.85 72.95 60.07 80.99
R-MAC+E 256 57.15 50.19 75.01 63.29 82.76

VGG16 SPOC [15] 256 53.1 50.1 - - 80.2
uCrow [23] 256 66.7 61.2 73.9 65.8 81.5
MFC [32] 256 68.4 62.9 83.4 - -
MAC [17] 512 55.01 74.73 75.23
SPOC [15] 512 56.4 47.8 72.3 58.0 79.0
uCrow [23] 512 69.7 64.1 78.6 71.0 83.9

BoW-CNN [26] N/A 73.9 59.3 82.0 64.8 -
NetVLAD [16] 4096 55.5 - 67.7 - 82.1

MFC [32] 512 70.6 65.3 83.3 - -
R-MAC [24] 512 66.71 62.35 83.02 76.28 84.04
R-MAC+E 512 69.64 64.91 83.56 77.89 85.90

After re-ranking (R) and query expansion (QE)

AlexNet MAC+R+QE [12] 256 63.92 50.21 69.13 49.08 -
R-MAC+R+QE [24] 256 66.85 60.68 80.42 69.02 -
R-MAC+E+R+QE 256 67.83 61.01 81.04 70.75 -

VGG16 Crow+QE [23] 512 74.9 70.6 84.8 79.4 -
MAC+R+QE [12] 512 74.21 63.65 82.84 69.01 -

R-MAC+R+QE [24] 512 77.33 74.69 86.45 80.73 -
BoW-CNN+R+QE [26] 512 78.8 65.1 84.8 64.1 -

R-MAC+E+R+QE 512 78.48 75.79 86.53 81.22 -
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We can see from Table 8 that our proposed method obtains the best results in most cases.
After performing re-ranking and query expansion, the performance has been significantly improved.
According to the experimental data, our algorithm after re-ranking and query expansion achieves the
best results in almost all categories, which fully demonstrates the effectiveness and superiority of the
improved algorithm.

Test on fine-tuned network. The network proposed by Filip et al. [25] uses the contrastive loss
function to train the parameters in the network. In order to adapt the network parameters to our
algorithm and achieve better performance, four sets of comparative experiments were performed on
Oxford5k, Oxford105k, Paris6k, and Paris106k and Holidays. The results are shown in Table 9.

Table 9. The results of image retrieval on five different datasets with fine-tuned network on AlexNet
and VGG16. R: Using re-ranking (+R), QE: Using query expansion (+QE). E: Fusing with feature
distribution entropy (+E), or without entropy.

Network Pooling Oxford5k Oxford105k Paris6k Paris106k Holidays

AlexNet MAC 61.20 50.29 68.25 53.40 73.42
MAC+E 66.57 58.14 74.13 61.61 78.95
R-MAC 63.68 53.12 73.35 60.02 78.96

R-MAC+E 64.96 54.96 75.79 63.01 79.72

VGG16 MAC 81.34 75.29 83.90 75.22 80.11
MAC+E 84.23 78.65 86.80 80.36 82.25
R-MAC 80.73 72.67 85.08 77.64 82.43

R-MAC+E 81.91 73.82 85.91 79.06 83.39

We can make the following conclusion from the results achieved on fine-tuned network. When
we experiment on AlexNet, MAC+E gains the best results on Oxford5k and Oxford105k. R-MAC+E
achieve the best results on Paris6k, Paris106k, and Holidays. When we test on the fine-tuning network
initialized with VGG16, the best results were obtained on MAC+E on Oxford5k, Oxford105k, Paris6k,
and Paris106k, and on R-MAC+E on Holidays. The experimental results indicate that the feature
distribution entropy can also be used in the fine-tuned network to promote the performance of
image retrieval.

Experiment on medical dataset. To further demonstrate our proposed method, we conduct a set
of experiments on medical dataset with the methods of MAC, MAC+E, R-MAC, and R-MAC+E on the
AlexNet, which is pre-trained on ImageNet. The dataset for performing our experiments is composed
of two public medical datasets of Brain_Tumor_Dataset [48] and Origa [49]. We present the results in
Table 10.

Table 10. Performance (mAP (%)) comparison between fusing with FDE or without. E on medical
dataset: Fusing with FDE (+E), or without entropy. The best result is highlighted in bold.

Pooling mAP(%)

MAC 86.64
MAC+E 91.11
R-MAC 92.89

R-MAC+E 92.93

We can learn from Table 10 that our proposed method of fusing our FDE with R-MAC features
obtains the best result with mAP is 92.93%, which is higher than R-MAC by 0.04%. The mAP of fusing
MAC with our FDE would be increased by nearly 4.5% compared to MAC. The results in Table 10 shows
that our proposed FDE is effective in improving the performance of image retrieval. Furthermore,
the results demonstrate that our proposed method of fusing FDE with R-MAC outperforms the
existing methods.
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4.4. Discussion

We would like to give some discussion for our proposed method. Taking the distribution
information in different regions into consideration and combining the distribution information with
R-MAC features could obtain remarkable performance in image retrieval. We design an effective
scheme to calculate FDE, which is significant for promoting the performance of image retrieval. Here,
we propose a superior strategy of weighted summation to fuse our proposed FDE with R-MAC feature
descriptors to generate more informative feature representations. Furthermore, the post-processing of
re-ranking and QE would be helpful to promote the effectiveness of our proposed method. When we
test the five public datasets on AlexNet, our method can achieve state-of-the-art performance in image
retrieval. When we test on VGG 16, we obtain the best results for most datasets and acceptable results
on Oxford5k lower than BoW-CNN.

5. Conclusions

In this paper, we proposed to make full use of the regional distribution information to generate
more informative feature representations to promote the performance of image retrieval. We proposed
to utilize FDE to reflect the difference of distribution information in different regions. We designed an
effective scheme to calculate our proposed FDE, and the experimental results show that our FDE is
effective to improve the performance of image retrieval. Then, we proposed a superior strategy to
fuse the proposed FDE with R-MAC features to generate more effective deep representations, which
could achieve prominent performance in the task of image retrieval. In order to demonstrate the
compatibility of our proposed method, we also conducted the experiments with the fused features
on different datasets on the pre-trained network. The results show that the performance with our
proposed method outperforms that of the existing state-of-the-art methods. Furthermore, we used
the post-process methods of re-ranking and QE to further improve the performance. Finally, we used
the fine-tuned network and medical dataset to verify the effectiveness of our proposed method. We
obtained state-of-the-art results with our proposed method on five different datasets.

Our method mainly focuses on how to make full use of the feature maps output from the
pre-trained network. We would like to pay attention to train more suitable network for the task of
image retrieval, and we would concentrate on improving the effectiveness and robust of our network
by designing more effective loss function and network architecture in our following works.
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Abstract: Automatic text recognition from the natural images acquired in uncontrolled lighting
conditions is a challenging task due to the presence of shadows hindering the shape analysis and
classification of individual characters. Since the optical character recognition methods require prior
image binarization, the application of classical global thresholding methods in such case makes it
impossible to preserve the visibility of all characters. Nevertheless, the use of adaptive binarization
does not always lead to satisfactory results for heavily unevenly illuminated document images. In this
paper, the image preprocessing methodology with the use of local image entropy filtering is proposed,
allowing for the improvement of various commonly used image thresholding methods, which can be
useful also for text recognition purposes. The proposed approach was verified using a dataset of 140
differently illuminated document images subjected to further text recognition. Experimental results,
expressed as Levenshtein distances and F-Measure values for obtained text strings, are promising
and confirm the usefulness of the proposed approach.

Keywords: image binarization; optical character recognition; local entropy filter; thresholding; image
preprocessing; image entropy

1. Introduction

Image binarization is one of the most relevant preprocessing steps leading to significant decrease
in the amount of information subjected to further analysis and allowing for an increase of its speed.
Such an operation is typically applied in many systems which utilize mainly shape recognition
methods and do not require the colour or texture analysis. Some good examples might be some robotic
applications, including line followers and visual navigation in corridors and labyrinths, advanced
driver-assistance systems (ADAS) and autonomous vehicles with lane tracking, as well as widely used
optical character recognition (OCR) methods. Binary image analysis may also be applied successfully
in embedded systems with limited amount of memory and low computational power.

Nevertheless, the appropriate results of binary image analysis, in particular text recognition,
depend on the correct prior binarization. In some applications, where the uniform illumination of
the scene can be ensured, e.g., popular flatbed scanners or some non-destructive automated book
scanners, even with additional infrared cameras allowing for software straightening the scanned book
pages [1], the simplest global thresholding may be sufficient. However, in many other situations the
illumination may be non-uniform, especially in natural images captured by cameras, and therefore
more sophisticated adaptive methods should be applied.

One of the most challenging problems related to the influence of image thresholding on further
analysis is document image binarization and therefore newly developed algorithms are typically
validated by using intentionally prepared document images containing various distortions. For this
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reason well-known document image binarization competitions (DIBCO) datasets are typically used
to verify the usefulness and validate the advantages of binarization methods. These databases
are prepared for yearly document image binarization competitions organized during two leading
conferences in this field—the International Conference on Document Analysis and the Recognition
(ICDAR) [2] and International Conference on Frontiers in Handwriting Recognition (ICFHR) [3], where
the H-DIBCO datasets are used, containing only handwritten document images without machine
printed samples. All DIBCO datasets contain not only the distorted document images but also “ground
truth” binary images and therefore the binarization results can be compared with them at the pixel
level analysing the numbers of correctly and improperly classified pixels [4,5].

Despite the fact that image binarization is not a new topic, some enhancements of algorithms are
still proposed, particularly for historical document image binarization, as well as unevenly illuminated
natural images. A proposal of such an improvement based on the image entropy filter, possible to
apply in many commonly known binarization methods, is presented in this paper.

The rest of the paper consists of the short overview of the most widely used image binarization
methods, description of the proposed approach based on the use of local entropy filter, presentation
and discussion of results and final conclusions.

2. Brief Overview of Image Binarization Algorithms

Probably the most popular image thresholding method was proposed in 1979 by Nobuyuki
Otsu [6], who delivered the idea of minimizing the sum of intra-class variances of two groups of
pixels classified as foreground and background, assuming the bi-modal histogram of the image pixels’
intensity. Hence, this approach leads to maximization of inter-class variance and therefore a good
separation of two classes of pixels, represented finally as black and white, is achieved. Due to the
operations on the histograms, this method is fast, although it works properly only for uniformly
illuminated images with bi-modal histograms.

A similar approach, utilizing the entropy of the histogram instead of variances was proposed
by Kapur et al. [7], whereas the idea of combining the global and local Otsu and Kapur methods
was presented in the paper [8]. An extended adaptive version of Otsu method, known as AdOtsu,
proposed by Moghaddam and Cheriet [9], assumed some additional operations such as multi-scale
background estimation and calculation of average stroke widths and line heights. Since some images
with unimodal histograms cannot be properly binarized using the above mentioned histogram-based
methods another interesting idea was presented by Paul Rosin [10], who proposed to determine the
threshold as the corner of the histogram curve.

Since the images containing some shadows being the result of non-uniform illumination should
not be binarized using a single global threshold, some adaptive algorithms, which require the analysis
of each pixels’ neighbourhood, were proposed as well. The most popular approach developed by
Wayne Niblack [11] assumed the determination of the local threshold as the average local intensity
lowered by the local standard deviation scaled by the constant parameter k. A further modification of
this approach, utilizing the additional normalization of the local standard deviation by its division by
its maximum value in the image, is known as Sauvola method [12]. Its multi-scale version was further
developed by Lazzara and Géraud [13].

A simple choice of the local threshold as the average of the minimum and the maximum intensity
within the local window (so called midgray value) was proposed by John Bernsen [14], whereas Bradley
and Roth [15] developed the method using the integral image for the calculation of the local mean
intensity of the neighbourhood. The implementation of this method, also in the modified versions
utilising the local median and Gaussian weighted mean, is available as MATLAB adaptthresh function.

Some other adaptive binarization methods were proposed by Wolf and Jolion [16], who used
a relatively simple contrast maximization approach as a modification of Niblack’s method, as well
as Feng and Tan [17], where a similar idea based on the maximization of local contrast was used,
however significantly slower due to the application of additional median filtering and bilinear
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interpolation. Another method proposed by Gatos et al. [18] utilizes a low-pass Wiener filtering and
background estimation, followed by the use of Sauvola’s thresholding with additional interpolation
and post-processing using so called shrink and swell filters to remove noise and fill some foreground
gaps and holes.

More recent document image binarization methods include the idea of region-based thresholding
using Otsu’s method with additional use of support vector machines (SVM) presented by
Chou et al. [19] as well as faster region-based approaches [20,21]. Another method utilising the
SVM-based approach with local features was presented recently by Xiong et al. [22].

The algorithm proposed by Howe [23] utilizes a Laplacian operator, Canny edge detection and
graph cut method to find the threshold minimizing the energy. Erol et al. [24] proposed a more general
approach related to the localization of text on a document captured by mobile phone camera using
morphological operations for background estimation. Another background suppression method,
although working properly mainly for evenly illuminated document images, was proposed by
Lu et al. [25], whereas another attempt to the application of morphological operations was presented
by Okamoto et al. [26].

Lelore and Bouchara [27] proposed the extended fast algorithm for document image restoration
(FAIR) algorithm based on rough text localization and likelihood estimation followed by simple
thresholding of the obtained super-resolution likelihood image. A multi-scale adaptive–interpolative
method was proposed by Bag and Bhowmick [28], useful for faint characters. A method proposed by
Su et al. [29] exploited adaptive image contrast map combined with results of Canny edge detection,
whereas an attempt to use multiple thresholding methods was presented by Yoon et al. [30].

Some faster ideas of image thresholding based on the Monte Carlo method were proposed as
well [31–33], where the simplified histogram of the image was approximated using the limited number
of randomly chosen pixels. On the other hand, Khitas et al. [34] developed recently an algorithm based
on median filtering used for estimation of the background information. An application of local features
with Gaussian mixtures was examined in the paper [35], whereas Chen and Wang [36] used extended
non-local means method followed by adaptive thresholding with additional postprocessing.

Bataineh et al. [37] developed an algorithm inspired by Niblack’s and Sauvola’s methods with
additional application of dynamic windows. Further modifications of Niblack’s method were proposed
by Khurshid et al. [38], Kulyukin et al. [39] and recently by Samorodova and Samorodov [40]. A direct
binarization scheme of colour document images based on multi-scale mean-shift algorithm with the
use of modified Niblack’s method was recently proposed by Mysoreet al. [41]. A review of many
modifications of Niblack inspired algorithms can be found in Saxena’s paper [42], whereas many other
approaches are discussed in some other survey papers [43–45]. Some earlier methods can also be
found in BinarizationShop software developed by Deng et al. [46].

Some recent trends in image binarization are related to the use of variational models [47] and
deep learning methods [48]. Recently, Vo et al. [49] proposed another supervised approach based on
hierarchical deep neural networks. A comprehensive overview of many document image binarization
algorithms can be found in the survey paper written by Sulaiman et al. [50].

An interesting method of binarization of non-uniformly illuminated images based on Curvelet
transform followed by Otsu’s thresholding was proposed by Wen et al. [51]. However, the application
of this algorithms requires the additional nonlinear enhancement functions and time-consuming
multi-scale processing.

Some of the binarization methods utilize the calculation of histogram entropy as well as image
entropy. The most widely known approach proposed by Kapur et al. [7] may be considered as
the modification of the classical Otsu’s thresholding, which is based on earlier ideas presented
by Thierry Pun [52,53]. Fan et al. [54] proposed a method maximizing the 2D temporal entropy,
whereas Abutaleb [55] developed a method which uses pixel’s grey level as well the average of
its neighbourhood for minimization of two-dimensional entropy. Brink and Pendock [56] used the
cross-entropy instead of distance or similarity between the original image and the result of binarization
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to optimize the threshold. Some similar multilevel methods have been further developed as well
for image segmentation [57], also with the use of genetic methods [58]. A ternary entropy-based
method [59], based on the classification of pixels into text, near-text, and non-text regions was proposed
as well, which utilized Shannon entropy, whereas Tsallis entropy was used by Tian and Hou [60].
Nevertheless, entropy-based methods are generally less popular than simple histogram-based
thresholding or some adaptive binarization methods. Apart from the typical image binarization,
one can find some other applications of entropy related to classification of signals or images obtained
as the results of measurements or some other experiments, e.g., in a gearbox testing system presented by
Jiang et al. [61], where Shannon entropy of the vibration signal is used to detect worn and cracked gears.

Development of any new image processing algorithms usually requires their reliable validation
based on the comparison of the obtained results with the other methods. Stathis et al. [62] proposed
a method of evaluation of binarization algorithms based on comparison of individual pixels, using
the pixel error rate (PERR), peak signal to noise ratio (PSNR) and similar metrics, whereas some
other approaches were presented in the survey paper by Sezgin and Sankur [63]. A much more
popular approach is the use of typical classification metrics based on precision, recall, sensitivity,
specificity or F-Measure [4,5], as well as the application of misclassification penalty metric (MPM) [64]
or distance reciprocal distortion (DRD) [65]. Another binarization assessment method was presented
by Lins et al. [66], which utilizes a dataset of synthetic images for comparison of various thresholding
algorithms. Nevertheless, considering the final results of the document image recognition as the
recognized text strings, a more useful approach would be the application of metrics calculated for
characters instead of individual pixels. Apart from F-Measure, some metrics dedicated for text strings,
such as Levenshtein distance, defined as the number of character operations necessary to convert one
string into another, may be applied as well.

3. Proposed Method and Its Experimental Verification

3.1. Description of the Method

Analysing the unevenly illuminated document images, important information can be achieved
with the use of the local image entropy, which may be calculated using the MATLAB entropyfilt
function. Using its default parameters the local measure of randomness of the grey levels of the
neighbourhood defined by the 9 × 9 pixels mask was achieved and stored as the result for the
central pixel. Such an approach may be useful for image forgery detection, switching purposes
in adaptive median filtering as well as for image preprocessing followed by comparison of properties
of image regions. Hence, the local entropy filter was considered in the proposed method as one of
the preprocessing steps for adaptive image binarization of unevenly illuminated document images
subjected to further optical text recognition.

It is worth noting that most of the OCR engines used some “built-in” thresholding procedures
and therefore their results are dependent also on the quality of the input data. For example, widely
used freeware Tesseract OCR developed by Google utilized global Otsu’s thresholding, whereas
the commercial ABBYY FineReader software employed the adaptive Bradley’s method. Therefore,
the application of some other image binarization methods may improve or decrease the recognition
accuracy, since the OCR “internal” thresholding does not change the input binary image. Hence,
prior image thresholding may be considered as a replacement of the default methods used in the
OCR engines.

The proposed method caused the equalization of illumination of an image, increasing also its
contrast, making it easier to conduct the proper binarization and further recognition of alphanumerical
characters. It is based on the analysis of the local entropy, assuming its noticeably higher values in the
neighbourhood of the characters. Hence, only the relatively high entropy regions should be further
analyzed as potentially containing some characters, whereas low entropy regions may be considered
as the background. The proposed algorithm consists of the following steps:
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• entropy filter—calculation of the local entropy using the predefined mask (in our experiments the
most appropriate size is 19 × 19 pixels) leading to the local entropy map;

• negative—simple negation leads to more readable dark characters on a bright background;
assuming the maximum entropy value equal to eight (considering eight bits necessary to store
256 grey levels), the additional normalization can be applied with the formula Y = 1 − X

8 , where
X is the local entropy map and the final range of the output image Y is 〈0; 1〉;

• thresholding—one of the global binarization methods may be used for this purpose, in our
experiments the classical Otsu’s thresholding was used, leading to the image M with segmented
regions containing text and representing the background;

• masking—the obtained binary image M was used as the mask for the original input image,
leading to the background image B with removed text regions;

• morphological dilation—the purpose of this operation was to fill the gaps containing the characters
making it possible to obtain a full estimate of the background; a critical element of this step is
an appropriate choice of the size of the structuring element (in our experiments the square
20 × 20 pixels one was sufficient and larger structuring elements caused an increase of the
computation time);

• background subtraction—the expected result of the subtraction of the background estimate
from the original input image should contain a bright text and the dark background with
equalized illumination;

• negation with increase of contrast—a simple operation leading to the dark text and the bright
background with improved readability;

• final binarization—the last step conducted after pre-processing, which can utilize any of commonly
used binarization methods (in our experiments good results were obtained using adaptive
Bradley’s and Niblack’s thresholding).

The simplified flowchart of the method is shown in Figure 1, whereas the illustration of results
obtained after consecutive steps of the algorithm is presented in Figure 2.

Local entropy
filtering

Negative of the 
entropy map

Entropy map 
thresholding

Application 
of the final mask

Morphological
dilation of the mask

Generating the mask
for background

estimation

Background
estimation

and removal

Negation and 
increase of contrast

Final binarization
of the image

Figure 1. The simplified flowchart of the proposed method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Results of the consecutive steps of the proposed algorithm obtained for an exemplary
document image: (a) original input image, (b) local entropy map, (c) normalized negative entropy
image, (d) binarized entropy image, (e) result of masking, (f) dilated masked image being the full
background estimate, (g) result of background subtraction, (h) negative with eliminated background,
and (i) final result of adaptive Niblack’s thresholding after preprocessing.

3.2. Practical Verification

The verification of the proposed method was conducted using the database of document images,
prepared applying various illuminations (uniform lighting and six types of non-uniform or directional
shadows). The well-known quasi-Latin text Lorem ipsum, used as the basis for the generated sample
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pages containing 536 words, was printed using five various font shapes (Arial, Times New Roman,
Calibri, Verdana and Courier) and their style modifications (normal, bold, italics and bold+italics).
Such printed 20 sheets of paper were photographed applying 7 types of illuminations mentioned above
(six unevenly illuminated examples are shown in Figure 3). These 140 captured images were binarized
in two scenarios: with and without the proposed preprocessing. In both cases several binarization
algorithms were applied to verify the proposed approach in practice. All the obtained binary images
were used as the input data for the Google Tesseract OCR engine. For each of the images, the number
of correctly and incorrectly recognized characters were determined, allowing for the calculation of
some typical classification metrics, such as F-Measure defined as:

FM = 2 · PR · RC
PR + RC

, (1)

where PR and RC stand for the precision (true positives to sum of all positives ratio) and recall (ratio
of true positives to sum of true positives and false negatives). Hence, they can be expressed as:

PR =
TP

TP + FP
and RC =

TP
TP + FN

, (2)

where TP are true positives and FN false negatives, respectively. All positive and negative values are
considered as the numbers of correctly and incorrectly recognized characters.

(a) (b) (c)

(d) (e) (f)

Figure 3. Exemplary unevenly illuminated images used in experiments: (a) side shading—series
#2, (b) shading from the bottom—series #3, (c) diagonal shading—series #4, (d) irregular sharp
shadow edges—series #5, (e) arc type shadows—series #6, (f) overexposure in the central part with
underexposed boundaries—series #7.
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The additional metric, which may be applied for the evaluation of text similarity, is known as
Levenshtein distance, representing the minimum number of text changes (insertions, deletions or
substitutions of individual characters) necessary to change the analyzed text into another. This metric
was also applied for evaluation purposes, assuming the knowledge of the original text string (Lorem
ipsum-based in these experiments).

4. Results and Discussion

The development of the final preprocessing algorithm allowing for the increase of the final OCR
accuracy required an appropriate choice of some parameters mentioned earlier. The first of them is
the size of the block used for the entropy filter which influences significantly the obtained results.
Too small size of the filter would not be efficient due to its sensitivity to small details and noise
whereas too big windows would be vulnerable to averaging effects. Since the default size of the filter
in MATLAB entropyfilt function is 9 × 9 pixels, the first experiments were conducted using various
windows to verify the influence of their size on the OCR results. The obtained results are presented in
Figure 4, where the best values can be observed for 19 × 19 pixels filter. Therefore, the application of
the default values would be inappropriate, particularly for the series #5 containing the non-uniformly
illuminated images with sharp shadow edges as shown in Figure 3d.

(a) (b)

Figure 4. Experimental OCR results obtained for various size of blocks applied in the entropy filter:
(a) F-Measure values, (b) Levenshtein distance.

A similar difference may be observed during the choice of the most appropriate size of the
structuring element applied during the morphological dilation, since the results obtained for the series
#5 differ significantly from the others. Nevertheless, in all cases the choice of a similar size of the
structuring element to the size of the block in the entropy filter leads to the best results as illustrated in
Figure 5 (in our experiments 20 × 20 pixels structuring element was chosen).

The additional reason of the choice of such structuring element was the processing time, which
increased noticeably for bigger structuring elements as shown in Figure 6, where its values normalized
according to the computation time obtained using the selected 20 × 20 pixels structuring element are
presented. Unfortunately, relatively shorter processing did not guarantee good enough OCR accuracy,
whereas increase of the structuring element’s size and computation time did not enhance the obtained
results significantly. Since the experiments were conducted using a personal computer, some processes
running in background (including the Tesseract OCR engine) might have influenced the obtained
results. Nonetheless, the relation between the size of structuring element and the processing time can
be considered as nearly linear. Hence, the most reasonable choice was the smallest possible structuring
element not affecting the acceptable OCR accuracy level.
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(a) (b)

Figure 5. Experimental optical character recognition (OCR) results obtained for various size of
structuring element applied for morphological dilation: (a) F-Measure values, (b) Levenshtein distance.

Figure 6. Normalized processing time for various size of structuring elements used in morphological
dilation relatively to the time obtained applying the 20 × 20 pixels structuring element.

Having chosen the most appropriate parameters of the proposed preprocessing method,
the obtained F-Measure values and Levenshtein distances for the whole dataset and each of the
illumination types, as well as individual font faces and style modifications, were compared with
some other methods applied without the proposed preprocessing. The comparison of the influence
of the proposed preprocessing method on the F-Measure values is presented in Table 1, whereas
respective Levenshtein distances are shown in Table 2. Analysing the results, a significant decrease
of the Levenshtein distance, as well as the increase of the F-Measure values, may be observed for all
methods, proving the usefulness of the proposed approach. The best results were achieved for Niblack,
Sauvola and Wolf thresholding, as well as the simple Meanthresh method, which was significantly
improved by the use of the entropy filtering-based preprocessing.
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Table 1. Comparison of F-Measure values obtained for various binarization methods with and without
the proposed preprocessing.

Binarization Method
Series

#1 #2 #3 #4 #5 #6 #7 All

None 0.9638 0.6201 0.8139 0.6650 0.6693 0.7460 0.6260 0.7291
+ preprocessing 0.9728 0.6475 0.8729 0.7272 0.8167 0.8027 0.9584 0.8283

Otsu (global) [6] 0.9614 0.6281 0.7908 0.6662 0.6841 0.7598 0.6583 0.7355
+ preprocessing 0.9737 0.6400 0.8573 0.7312 0.8049 0.7947 0.9561 0.8226

Region-based [20] 0.9616 0.7579 0.8661 0.8407 0.7737 0.8318 0.9528 0.8550
+ preprocessing 0.9525 0.8377 0.8861 0.8254 0.7438 0.8468 0.9104 0.8575

Niblack [11] 0.9614 0.7920 0.8668 0.8444 0.8510 0.8567 0.9589 0.8759
+ preprocessing 0.9596 0.9439 0.9451 0.9516 0.8878 0.9436 0.9674 0.9427

Sauvola [12] 0.9709 0.9581 0.9646 0.9722 0.7660 0.9655 0.9721 0.9385
+ preprocessing 0.9674 0.9635 0.9665 0.9668 0.8401 0.9671 0.9694 0.9487

Wolf [16] 0.9661 0.9482 0.9513 0.9514 0.7614 0.9594 0.9703 0.9297
+ preprocessing 0.9691 0.9661 0.9643 0.9662 0.8561 0.9621 0.9657 0.9499

Bradley (mean) [15] 0.9665 0.9191 0.9093 0.8484 0.7369 0.8976 0.9699 0.8925
+ preprocessing 0.9666 0.8896 0.9169 0.9262 0.8040 0.9103 0.9642 0.9111

Bradley (Gaussian) [15] 0.9663 0.8521 0.8295 0.7528 0.7267 0.7907 0.9489 0.8381
+ preprocessing 0.9678 0.8863 0.8991 0.8741 0.7521 0.8786 0.9124 0.8815

Feng [17] 0.9110 0.3782 0.7924 0.6312 0.7292 0.7938 0.8461 0.7285
+ preprocessing 0.9261 0.4418 0.7990 0.6489 0.7103 0.8076 0.8688 0.7432

Bernsen [14] 0.6948 0.6414 0.6844 0.6467 0.6286 0.7122 0.7245 0.6764
+ preprocessing 0.6971 0.6688 0.6938 0.6752 0.6312 0.7047 0.7141 0.6836

Meanthresh 0.9597 0.7348 0.8314 0.7921 0.8317 0.7947 0.9308 0.8393
+ preprocessing 0.9651 0.9570 0.9596 0.9602 0.8970 0.9606 0.9684 0.9525

Table 2. Comparison of Levenshein distances obtained for various binarization methods with and
without the proposed preprocessing.

Binarization Method
Series

#1 #2 #3 #4 #5 #6 #7 All

None 56.40 1897.20 1031.80 1362.40 1548.30 1387.90 1815.50 1299.93
+ preprocessing 10.90 1665.10 718.40 1045.20 512.55 1063.85 68.15 726.31

Otsu (global) [6] 62.75 1878.20 1039.80 1393.40 1514.55 1358.55 1715.80 1280.44
+ preprocessing 12.60 1671.85 720.05 1047.05 514.20 1066.75 76.10 729.80

Region-based [20] 27.30 537.40 388.35 217.50 294.35 423.60 44.75 276.18
+ preprocessing 27.40 133.55 78.90 141.60 378.55 166.30 48.15 139.21

Niblack [11] 30.50 560.55 359.95 388.00 222.10 398.05 31.15 284.33
+ preprocessing 26.00 42.90 35.40 25.55 79.45 32.20 16.55 36.86

Sauvola [12] 20.30 22.85 17.35 14.80 651.60 17.75 12.40 108.15
+ preprocessing 22.40 30.25 23.05 17.35 197.55 19.75 15.95 46.61

Wolf [16] 21.35 54.90 69.90 74.05 923.65 58.55 17.60 174.29
+ preprocessing 21.45 27.75 19.75 23.50 202.75 17.80 16.65 47.10

Bradley (mean) [15] 26.45 63.15 157.15 389.45 1231.95 188.25 17.35 296.25
+ preprocessing 26.30 75.60 52.05 44.10 312.15 54.05 19.05 83.33

Bradley (Gaussian) [15] 27.10 355.80 731.00 950.75 1282.40 1136.70 32.25 645.14
+ preprocessing 25.75 91.05 193.00 219.95 700.15 149.50 19.95 199.91

Feng [17] 66.20 2518.00 1069.50 1507.50 1030.50 1037.10 174.20 1057.57
+ preprocessing 59.15 2385.25 1015.75 1435.10 887.75 945.70 142.30 981.57

Bernsen [14] 467.75 1471.25 1071.00 1273.65 1634.15 1167.40 623.10 1101.19
+ preprocessing 490.40 1178.10 1046.75 1011.85 1402.25 1093.35 687.35 987.15

Meanthresh 20.85 776.30 529.10 519.85 250.70 763.35 72.40 418.94
+ preprocessing 21.95 26.10 21.55 17.25 81.65 20.00 14.20 28.96
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Some exemplary results obtained using the proposed preprocessing as well as its application for
Bradley binarization with Gaussian kernel are illustrated in Figure 7. The additional illustration of
its advantages for three exemplary images with the use of Niblack and Sauvola methods is shown
in Figure 8, whereas another such comparison for Bernsen and Meanthresh methods is presented
in Figure 9.

(a) (b) (c) (d)
Figure 7. Comparison of binarization results obtained for exemplary unevenly illuminated images
before the binarization: (a) without preprocessing, (b) with the proposed preprocessing, as well as
using the Bradley method with a Gaussian kernel: (c) without preprocessing, (d) with the proposed
preprocessing.
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(a) (b) (c) (d)
Figure 8. Comparison of binarization results obtained for exemplary unevenly illuminated images
using the Niblack method: (a) without preprocessing, (b) with the proposed preprocessing, as well as
Sauvola thresholding: (c) without preprocessing, (d) with the proposed preprocessing.
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(a) (b) (c) (d)
Figure 9. Comparison of binarization results obtained for exemplary unevenly illuminated images
using the Bernsen method: (a) without preprocessing, (b) with the proposed preprocessing, as well as
using the Meanthresh: (c) without preprocessing, (d) with the proposed preprocessing.

Since the properties of the proposed method may differ for various font shapes and styles,
particularly for some of the thresholding algorithms, more detailed results are presented for them in
Tables 3 and 4, where F-Measure values can be compared for the same methods with and without the
proposed entropy-based preprocessing method.
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Table 3. Comparison of F-Measure values obtained for various binarization methods with and without
the proposed preprocessing for various font faces.

Binarization Method

Font Face

Arial
Times New

Calibri Courier Verdana
Roman

None 0.7556 0.7432 0.7374 0.6483 0.7612
+ preprocessing 0.8541 0.8277 0.7886 0.8173 0.8539

Otsu (global) [6] 0.7489 0.7528 0.7525 0.6598 0.7637
+ preprocessing 0.8506 0.8214 0.7802 0.8058 0.8548

Region-based [20] 0.8726 0.8799 0.8738 0.7970 0.8514
+ preprocessing 0.8513 0.8689 0.8590 0.8425 0.8659

Niblack [11] 0.8776 0.9012 0.8729 0.8499 0.8777
+ preprocessing 0.9463 0.9550 0.9475 0.9195 0.9452

Sauvola [12] 0.9395 0.9476 0.9412 0.9239 0.9402
+ preprocessing 0.9555 0.9540 0.9450 0.9395 0.9495

Wolf [16] 0.9399 0.9507 0.9355 0.8826 0.9400
+ preprocessing 0.9567 0.9558 0.9551 0.9310 0.9511

Bradley (mean) [15] 0.9036 0.9004 0.8946 0.8676 0.8963
+ preprocessing 0.9158 0.9186 0.9158 0.8906 0.9147

Bradley (Gaussian) [15] 0.8475 0.8448 0.8434 0.8087 0.8463
+ preprocessing 0.9004 0.8992 0.8873 0.8609 0.8599

Feng [17] 0.7137 0.7430 0.7113 0.7528 0.7210
+ preprocessing 0.7368 0.7462 0.7304 0.7540 0.7487

Bernsen [14] 0.6735 0.6970 0.6938 0.6213 0.6971
+ preprocessing 0.7062 0.6917 0.6956 0.6041 0.7202

Meanthresh 0.8251 0.8698 0.8483 0.8197 0.8337
+ preprocessing 0.9511 0.9623 0.9516 0.9429 0.9548

Table 4. Comparison of F-Measure values obtained for various binarization methods with and without
the proposed preprocessing for various font styles.

Binarization Method
Font Style

Normal Bold Italic Bold + Italic

None 0.6945 0.7497 0.7221 0.7291
+ preprocessing 0.8049 0.8455 0.8076 0.8283

Otsu (global) [6] 0.7095 0.7544 0.7272 0.7355
+ preprocessing 0.7980 0.8426 0.8038 0.8226

Region-based [20] 0.8631 0.8444 0.8700 0.8550
+ preprocessing 0.8621 0.8590 0.8593 0.8575

Niblack [11] 0.8781 0.8898 0.8669 0.8759
+ preprocessing 0.9396 0.9444 0.9424 0.9427

Sauvola [12] 0.9366 0.9377 0.9340 0.9385
+ preprocessing 0.9464 0.9545 0.9463 0.9487

Wolf [16] 0.9165 0.9430 0.9223 0.9297
+ preprocessing 0.9428 0.9567 0.9467 0.9499

Bradley (mean) [15] 0.8888 0.8942 0.8916 0.8925
+ preprocessing 0.9031 0.9230 0.9099 0.9111

Bradley (Gaussian) [15] 0.8342 0.8418 0.8370 0.8381
+ preprocessing 0.8801 0.8738 0.8754 0.8815

Feng [17] 0.7333 0.7342 0.7391 0.7285
+ preprocessing 0.7368 0.7458 0.7518 0.7432

Bernsen [14] 0.6722 0.6786 0.6718 0.6764
+ preprocessing 0.6656 0.7060 0.6573 0.6836

Meanthresh 0.8379 0.8454 0.8381 0.8393
+ preprocessing 0.9547 0.9519 0.9541 0.9525
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Comparing the influence of the proposed approach on the obtained OCR accuracy expressed as
the F-Measure values calculated for individual text characters, relatively smaller enhancement may be
observed for adaptive binarization methods, which achieve good results even without the proposed
preprocessing method, such as Niblack or Sauvola. Nevertheless, in all cases the improvements
may be noticed, also for the binarization method proposed by Wolf, which achieved much worse
results for Courier fonts without the presented preprocessing method. A great improvement may also
be observed for the simple mean thresholding as well as the direct usage of OCR engine’s built-in
binarization, whereas the proposed method caused a small decrease of recognition accuracy after
Bernsen thresholding for some font shapes (Courier and Times New Roman). It is worth to note that
the proposed entropy-based preprocessing method always leads to better text recognition of bold fonts.

5. Conclusions

Binarization of unevenly illuminated and degraded document images is still an open and
challenging field of research. Considering the necessity of fast image processing, many sophisticated
methods, which cannot be effectively applied in many applications, may be replaced by simpler
thresholding supported by less complicated preprocessing methods without the necessity of shape
analysis or training procedures.

The approach proposed in the paper may be efficiently applied as the preprocessing step for many
binarization methods in the presence of non-uniform illumination of document images, increasing
significantly the accuracy of further text recognition, as shown in experimental results. Since its
potential applicability is not limited to binarization of document images for OCR purposes, our further
research may concentrate on the development of similar approaches for some other applications
related to binarization of natural images and machine vision in robotics, particularly in unknown
lighting conditions.
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The following abbreviations are used in this manuscript:

ADAS advanced driver-assistance system
DIBCO document image binarization competition
DRD distance reciprocal distortion
FAIR fast algorithm for document image restoration
ICDAR International Conference on Document Analysis and Recognition
ICFHR International Conference on Frontiers in Handwriting Recognition
MPM misclassification penalty metric
OCR optical character recognition
PERR pixel error rate
PSNR peak signal to noise ratio
SVM support vector machines
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Abstract: Human key-point detection is a challenging research field in computer vision. Convolutional
neural models limit the number of parameters and mine the local structure, and have made great
progress in significant target detection and key-point detection. However, the features extracted by
shallow layers mainly contain a lack of semantic information, while the features extracted by deep
layers contain rich semantic information but a lack of spatial information that results in information
imbalance and feature extraction imbalance. With the complexity of the network structure and the
increasing amount of computation, the balance between the time of communication and the time of
calculation highlights the importance. Based on the improvement of hardware equipment, network
operation time is greatly improved by optimizing the network structure and data operation methods.
However, as the network structure becomes deeper and deeper, the communication consumption
between networks also increases, and network computing capacity is optimized. In addition,
communication overhead is also the focus of recent attention. We propose a novel network structure
PGNet, which contains three parts: pipeline guidance strategy (PGS); Cross-Distance-IoU Loss (CIoU);
and Cascaded Fusion Feature Model (CFFM).

Keywords: object detection; key-point detection; IoU; feature fusion

1. Introduction

Deep-learning methods have been successfully applied to many fields, such as image recognition
and analysis, speech recognition, and natural language processing, due to their automatic learning and
continuous learning capabilities. Detection of human key points is a fundamental step in expounding
human behavior, such as action analysis, action prediction, and behavior judgment. In addition,
behavior prediction needs to capture the fine details of an object, such as video tracking and behavior
prediction. A fast and effective key-point detection is of great practical value in predicting and tracking
people’s behavior under special scenarios.

Human key-point detection is a considerable undertaking in computer vision. Before 2014,
researchers mainly solved the task by using SIFT, HOG, and other feature operators to extract features,
and combined them with graph structure models to detect joint point positions. With the combination
of deep learning and many tasks of computer vision achieving remarkable results, researchers have
begun to try to combine it with human key-point detection tasks.

The main application of human body key-point detection is human body pose estimation. These
methods involve detecting the location of human body key points and distinguishing artificially set
key-point locations on the human body, separating human body key points from a given image. In [1],
a novel method for the maintenance of temporal consistency is proposed, and maintained the temporal
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consistency of the video by the structured space learning and halfway temporal evaluation methods.
Wang et al. [2] proposed a method for estimating 3D human poses from single images or video
sequences. [3] explored the human action analysis in a specified situation, based on the human posture
extraction by pose-estimation algorithm. Deep neural network (DNN) methods were used, composed
of residual learning blocks for feature extraction and recurrent neural network for time-series data
learning. However, although this method performs predictive analysis on the behavior of people in the
video, using deep convolutional networks, the trade-offs in computational consumption and real-time
performance are not fully considered, meanwhile showing that human pose estimation is an important
research field of computer vision, and that human key-point detection is a front-end research of human
pose estimation. In [4] it was illustrated that human body pose recognition is performed by comparing
the shadow of the projection with the shadow of the human body under special circumstances, and
proposed a normalization technique to bridge the gap and help the classifier better generalize with
real data. Zhang et al. [5] proposed three effective training strategies, and exploited four useful
postprocessing techniques and proposed a cascaded context mixer (CCM). [6] proposed an end-to-end
architecture for joint 2D and 3D human pose estimation in natural images. However, the above uses
deep convolutional networks for training and positioning. However, the down-sampling makes
for a lack of spatial information at the deep level and a lack of semantic information at the shallow
level. At the same time, the trade-off between calculation volume and efficiency also makes it difficult
to consider performance of the network in terms of practicality. There are deficiencies in real-time
and computational burden. Figure 1 below shows the detection results of the method proposed in
this paper.

Figure 1. The proposed network to find key points of the human body.

Substantial research has been done before in human key-point detection. The purpose of human
key-point detection is to estimate the key points of a human body from pictures or videos; it is also
an important link in some downstream applications prior to preprocessing, e.g., [4,7–11]. At present,
convolutional neural networks show strong advantages in feature extraction. Various models have been
proposed for features, as well as various evolutionary networks, some for extracting high-semantic
information, and more attention to shallow spatial information. The structure of the model is also the
focus of many scholars; coding-decoder, fusion mechanism, and feedback mechanism are responsible
for the optimization and supplement of the network structure. [5] depicted a key-point graph network
designed to extract object detection and object segmentation of key points. There was excellent
performance, but easy overlap of key points when separating small objects. [6,12] proposed improved
network mainly using anchor center points to detect small objects, but the efficiency of the whole
network was reduced. In the feature extraction process, there are two main methods of feature
extraction. One is box-of-free feature extraction [13–15], in which target detection is accomplished
by embedding a cosine function or embedding a class of clusters in pixels. The other is based on
frame-based feature extraction, but this method of embedding clusters has two major disadvantages
in the extraction process [16]. One is that the global information of the picture cannot be fully
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considered, and the other is that the embedded information is mainly a cosine function, so there are
many restrictions before embedding, and this method must be limited in the use process. Another
feature extraction and positioning method is based on bounding box object detection. [13,14,17–20]. [13]
addressed two limitations brought up by conventional anchor-based detection: (1) heuristic-guided
feature selection; and (2) overlap-based anchor sampling. Specifically, an anchor-free branch is attached
to each level of the feature pyramid, allowing box encoding and decoding in the anchor-free manner
at an arbitrary level [14]. Han et al. proposed an efficient framework for real-time object tracking
which is an end-to-end trained offline Fully Conventional Anchor-Free Siamese network; the network
consists of correlation section, implemented by depth-wise cross correlation, and supervised section
which has two branches, one for classification and the other for regression. [17] presented a monocular
3D object detection method with feature enhancement networks; 3D geometric features of RoI point
clouds are further enhanced by the proposed point feature enhancement (PointFE) network, which can
be served as an auxiliary module for an autonomous driving system.

The current popular framed object detection method is based on anchored framed feature
extraction. This method maps the density of the anchored frame onto the feature heat map and further
improves the border of the anchored image by predicting the offset. An important metric for framed
object detection is intersection over union (IoU). [18] used the IoU of the union of the bounding boxes
for multiple objects predicted by images taken at different times, termed mIOU, and the corresponding
estimated number of vehicles to estimate the multi-level traffic status. [19] generated a tight oriented
bounding box for elongated object detection which achieves a large margin of improvement for both
detection and localization of elongated objects in images. [20] used multi-label classification as an
auxiliary task to improve object detection, and the box-level features and the image-level features of
multi-label are fused to improve accuracy. [21–23] demonstrated that the main problems of current
IoU loss are the speed of convergence and the inaccuracy of iterative regression. Zhao et al. [24]
proposed that Distance-IoU mainly predicts the target frame based on normalized data, which makes
convergence speed of the network itself and the accuracy of feature extraction better, compared with
the previous methods IoU and Genaralized-IoU.

In this paper, we propose a novel network of human key-point detection. The main backbone of
the network is Resnet50, in the way our model can accurately locate the key points of the human body;
the model adopts the pipeline structure, which effectively optimizes communication and network
computing before contradiction. By using the form of bus pipeline, the features extracted at each stage
are recombined, so that efficiency and speed are greatly improved. With the optimized network, the
features of each stage can be shared to a greater extent, and the contradiction between the semantic
information of the shallow features and the spatial information of the deep features is solved.

The improved PGNet network has excellent performance on the COCO datasets. We use the
image-guided method to accurately extract the key points of the human body to complete the
positioning, and consider the combination of the network structure features extracted by the shallow
network and the semantic features extracted by the deep network. A good feature extraction actuator
should contain two common features; one is spatial information and edge information with sufficient
shallow features, and the extraction of such information is mainly done through multiple convolution
and iterative convolution operations; the other is with abundant semantic information for more
accurate localization to complete the classification. In addition, we use the cross-loss function in the
design of the loss function, which performs well on the COCO dataset, and our main contributions are
as follows:

1. We introduce a kind of pipeline guiding strategy (PGS) to share the extracted features to all layers
(shallow layers and deep layers) in the form of a pipeline. This allows each layer to better separate
the background noise, and at the same time share the weight of the opposite transfer between
each other.

2. We propose a cross-fusion feature extraction mode. Combining this model with PGS enables
shallow spatial information and deep semantic information to be combined through a pipelined
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bus strategy, so that the computational efficiency and the network’s separation of foreground and
background can effectively remove the foreground noise and the background effective information
at the edges is fully considered.

3. We developed a crossed Distance-IoU loss function. To obtain the region of interest, we calculated
the convergence and speed of the border regression. The Cross-Distance-IoU loss function used is
based on the distance between the center points and the overlap area, and shows excellent results
in the rectangular anchor border regression. The pipeline is used to guide the network to use the
Distance-IoU loss function and the backbone network uses the GIoU loss function.

Table 1 shows that the backbone structure of the [12] network is the same, but due to the different
processing methods of subsequent decoding fusion, the performance on the COCO dataset is different.
In the case of the same encoding method, this paper uses deep convolution and 1*1 convolution, so
that a trade-off between calculation volume and speed is satisfied in feature extraction. The proposed
method improves the accuracy of the COCO dataset by 0.2% over the previous method. Table 1
demonstrates that our algorithm makes full use of the pipeline guidance method, and the accuracy of
the COCO dataset exceeds the previous advanced algorithms.

Table 1. Performance comparison of various network structures.

Method Backbone Decoder Postprocessing Performance

Mask-R-CNN [25] ResNet-50-FPN conv+deconv offset regression 63.1AP@COCO
DHN [26] ResNet-152 deconv Flip/sub-pixel shift 73.7 AP@COCO
CNN [27] VGG-19 conv Flip/sub-pixel shift 61.8 AP@COCO

PGNN [28] ResNet-50 GlobalNet Flip/sub-pixel shift 68.7 AP@COCO
DetNet [29] ResNet-50 deconv Flip/sub-pixel shift 69.7 AP@COCO

DENSENETS [30] ResNet-50 deconv - 61.8AP@COCO
LCR-Net++ [12] ResNet-50 deconv Flip/sub-pixel shift 73.2AP@COCO

HRNet [6] HRNet-152 1×1conv Flip/sub-pixel shift 77.0AP@COCO
[5] ResNet-101 deconv Flip/sub-pixel shift 69.9 AP@COCO

PFAN [24] VGG-19 multi-stage CNN Flip/sub-pixel shift 70.2 AP@COCO
Proposed method ResNet-50-Pipeline Deconv+1×1conv offset regression 77.2AP@COCO

2. Materials and Methods

In this section, we mainly introduce some studies related to this article, including the recent
key-point detection method, the characteristics of the pipeline structure and the working principle and
the loss function of border regress-IoU.

2.1. Key-Point Detection Method

Previous methods mainly optimized network structure improvement and used deeper network
structures. However, these methods achieved satisfactory results in key-point detection. [6,12,24–30].

2.2. Pipeline Guidance Strategy

As the layers of the network become deeper and deeper, the joint parallel computing of multiple
GPUs provides the possibility of speeding up the network. Multi-GPU is divided into multiple stages
of the network, and the convolution operations and rectangular transformations of the network are
performed in parallel, and communication between various operations is performed. The guidance
mechanism is to use its own characteristics to supervise and complete the further optimization of
its own information feature extraction. For example, shallow rich-edge information is used to guide
the deep layer to better extract deep semantic information, feedback the deep semantic information
to supervise the extraction of shallow edge information, and ultimately complete the performance
optimization of the network structure, so that the receptive fields of different layers can play to their
own advantages [31–34].
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2.3. IoU Loss

In deep convolutional neural networks, the mainstream method in the process of feature extraction
is the frame regression method. An important index for measuring this method is the loss function.
The function of the loss function is to predict the distance between the target frame and the prediction
frame. Current popular networks such as YOLOv3, SSD, and Faster R-CNN use GIoU, CIoU, or some
improved loss functions combined with them [22,23]. Figure 2 shows that the number of positive
bounding boxes after the NMS, grouped by their IoU with the matched ground truth.

Figure 2. The number of positive bounding boxes after the NMS, grouped by their IoU with the matched
ground truth. In traditional NMS (blue bar), a significant portion of accurately localized bounding
boxes get mistakenly suppressed due to the misalignment of classification confidence and localization
accuracy, while IoU-guided NMS (yellow bar) preserves more accurately localized bounding boxes [35].

IoU is an important indicator for neural networks to measure between ground truths and predicted
images. In object detection of a bounding box, the object being detected is the minimum value of the
rectangular border through multiple iterations.

IoU =
B∩ Bgt

B∪ Bgt (1)

Bgt, B respectively ground truth and predicted images.
Table 2 shows IoU operation logic, realized target point detection, and key fixed positioning

through the same iterative operation multiple times. Despite the detection network frameworks being
different, the regression calculation logic for predicting the borders to locate the borders in the target
object is the same. Shengkai et al. [36] propose IoU-balanced loss functions that consist of IoU-balanced
classification loss and IoU-balanced localization loss to solve poor localization accuracy, and this is
harmful for accurate localization. [37] proposed visible IoU to explicitly incorporate the visible ratio
in selecting samples, which included a box regressor to separately predict the moving direction of
training samples. [23] Yan et al. proposed a novel IoU-Adaptive Deformable R-CNN framework for
multi-class object detection, i.e., IoU-guided detection framework to reduce the loss of small-object
information during training. Zheng et al. [38] proposed a Distance-IoU (DIoU) loss by incorporating
the normalized distance between the predicted box and the target box, which converges much faster in
training than IoU and GIoU losses.
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Table 2. Logic operation based on bounding box regression.

Alogrithm1 IoU for two axis-Aligned BBox.

Require: -Corners of the bounding boxes:
A1(x1,y1),B1(x2, y1),C1(x2, y2),D1(x1, y2),
A2 (x′1,y′1),B2(x′2,y′1), C2(x′2,y′2), D2(x′1,y′2),
Where x1≤x2,y2≤y1,and x′1 ≤ x′2, y′2 ≤ y′1

Ensure: - IoU value;

1:�The area of Bg : Areag = (x1 − x2) × (y1 − y2);
2:�The area of Bd : Aread =

(
x′2 − x′1

)
×

(
y′

1 − y′
2

)
;

3:�The area of overlap:Areaoverlap = (max
(
x2, x′2

)
−

min(x1, x′1))×
(
max

(
y1, y′1

)
−min

(
y2, y′2

))
;

4:�IOU =
Areaocerlap

Areag+Aread−Areaoverlap
;

3. Results

Based on the above, our model solves the accuracy and efficiency of key points in positioning,
and optimizes the communication consumption due to many iterative operations and convolution
operations. In the process of extracting features, the feature fusion mechanism is used to combine
high-latitude semantic information with low-latitude spatial information, which makes for great
efficiency in the process of locating key points of the human body. Figure 1 shown our proposed
framework, which consists of three parts, in three branches—ResNet-51 is selected as the backbone
network for picture feature extraction; there is adaptive strategy using pipeline guidance; and a
cascaded feature fusion model. The framework of the network is shown in Figure 3.

 
Figure 3. An of overview of proposed PGNet.ResNet-50 is used as the backbone. Using the cascaded
fusion feature model (CFFM), the backbone network is divided into 5 stages, and the feature-guided
network after the image is convolved is used to extract key-point features.

3.1. Cascaded Fusion Feature Model

The main task of the Cascaded Fusion Feature Model (CFFM) is to extract the multi-layer features
of the input picture and generate regions where key points are located. The traditional method is to
directly use the multi-layer features to generate the prediction anchor frame and compare the ground
truth picture to generate the key-point coordinates.

We propose the cascade fusion feature model to extract high-level features and low-level features;
the high layers are rich in semantic correlation information and lack low-level spatial information.
In contrast, the low layers are rich in edge and spatial features and lack semantic information.
In particular, we build CFFM on ResNet-50, which will extract its features using conv1–5 layers.
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Considering the shallow layers simultaneously use a lot of computing resources, there is no significant
improvement in performance, lack of edge, and spatial information during deep feature processes. We
use the middle three layers to avoid the consumption of a large amount of spatial information during
convolution calculations.

3.2. Pipeline Guidance Strategies

The process of locating key points of the human body is mainly done by analyzing human
characteristics, locate key parts, and prepare for downstream video surveillance. We proposed combined
traditional data parallelism with model parallelism enhanced with pipelining [39]. Through the
structure of the pipelining, separate processing is performed on feature extraction and feature guidance,
which effectively saves the resource consumption of the network structure in the communication process.

Pipeline-parallel training partitions the layers of the object being trained into multiple stages.
Each layer contains a continuous set of structures in the model, as shown in Figure 3. The pipeline-type
structure is used to guide the feature extraction at each stage. After the feature extraction, a convolution
operation is used to fuse the features of the two branches on the pipeline and after the feature extraction
to complete the key points. Figure 2 shows a network structure based on pipeline guidance, and
Figure 3 is a diagram of key points of the human body using the PGNet network. [39]. Figure 4 shows
that an example pipeline-parallel assignment with four machines and an example timeline at one
of machines.

 
Figure 4. An example pipeline-parallel assignment with four machines and an example timeline at one
of machines, highlighting the temporal overlap of computation and activation/gradient communication.

Because IoU loss can only be effective when the bounding box is reattached during the training
process, there are steps where gradient optimization cannot be performed without any coincidence [36].
To overcome the disadvantage that the border boxes must have coincidence to take advantage of IoU
losses, GIoU was proposed. Both these losses can make key-point detectors more powerful for accurate
localization. According to Equation (1), IoU loss can be defined such that

LIoU = 1− B∩ Bgt

B∪ Bgt (2)

According to Equation (2), it can be known that the calculation of LIoU must be performed in an
iterative manner only if there is intersection between the predicted target and the ground truth. GIoU
was proposed to improve the gradient descent prediction operation of two bounding boxes without
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intersection. GIoU defines a distance, between which two bounding boxes can exist without crossing.
GIoU is defined as such that

GIoU = IoU − C− B∪ Bgt

|C| (3)

where C is the smallest box covering B and Bgt. Due to the introduction of the penalty term, the
predicted box will move towards the target box in non-overlapping cases [40]. From Equation (3), we
get LGIoU Loss such that

LGIoU = 1− IoU +

∣∣∣C− B∪ Bgt
∣∣∣

|C| (4)

LGIoU loss aims to reduce the distance between the center point of the predicted box and the
real box.

The cross-distance loss functions we propose inherit some of their inherent properties and are
defined as

LCDIoU = 1− IoU +
ρ2

(
δ, δgt

)
D2 (5)

Where, in Equation (5), δ, δgt denote the central points of B and Bgt, ρ is the Euclidean distance,
and D is the distance of the B and Bg. Figure 5 shows that LCDIoU Distribution of bounding boxes for
iterative training.

Figure 5. LCDIoU Distribution of bounding boxes for iterative training.

4. Discussion

4.1. Datasets and Evaluation Metrics

Our method of evaluating our designed network is on the COCO-2017 database, which is a
large image dataset designed for object detection, segmentation, human key-point detection, thing
segmentation, and subtitle generation.

In addition, the average precision (AP) metric is used to measure and evaluate the performance of
PGNet. To illustrate the performance between the key-point location of the detection object and the
key-point of the ground truth object, the results show that the method performs well.

4.2. Ablation Studies

The ablation experiment uses different backbone networks to regularize the method separately
and unreasonably, and experiments on the network structure of this problem are based on six indicators.
The benchmark database of the experiment is COCO val-2017. The experimental results shown below
are obtained. The experimental results show that the network structure proposed in this paper is
superior to other network structures in performance, as shown in Table 3.
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Table 3. Parameter comparison of various network structures after different regularization processing.

Backbone Norm APbbox AP50
bbox AP75

bbox APS
bbox APM

bbox APL
bbox

ResNet50+FPN
GN 37.8 59.0 40.8 22.3 41.2 48.4

syncGN 37.7 58.5 41.1 22.3 40.2 48.9
CBN 37.8 59.8 40.3 22.5 40.5 49.1

ResNet101+FPN
GN 39.3 60.6 42.7 22.5 42.5 48.8

syncGN 39.3 59.8 43.0 22.3 42.9 51.6
CBN 39.2 60.0 42.2 22.3 42.6 51.8

ResNet50+proposed
GN 39.3 60.7 42.6 22.5 43.2 48.1

syncGN 39.3 59.8 43.5 23.4 43.7 51.9
CBN 39.4 59.8 43.2 23.1 42.9 52.6

Another part of the ablation experiment is to compare the results of the Eproch training using a
pipelined structure. On object detection and image classification with small mini-batch sizes, CBN is
found to outperform the original batch normalization and a direct calculation of statistics over previous
iterations without the proposed compensation technique [41] in COCO val-2017. Figure 6 shows the
training and test results.

Figure 6. Comparison of epoch trained by this method and epoch of other training methods.

5. Conclusions

In this paper, we propose an up-to-date type of human body key-point positioning network
structure Piple-Guidance NeT. Considering that different layers contain incomprehensible features,
the use of pipelined guidance in the structure allows the network to achieve a balance between the
convolution calculations and the communication time between the layers, which improves the training
speed of the network. In addition, the Cross-Distance-IoU mode is used in the training process, and
the results are pleasing in different network backbones. Finally, regarding the COCO2017 dataset, the
effectiveness of the algorithm is measured by the six parameters of the AP, and the effects demonstrate
that the algorithm performs well. Compared with the current most advanced algorithms, the method
improves the accuracy by 0.2%.
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Abstract: The motor imagery-based brain-computer interface (BCI) using electroencephalography
(EEG) has been receiving attention from neural engineering researchers and is being applied to
various rehabilitation applications. However, the performance degradation caused by motor imagery
EEG with very low single-to-noise ratio faces several application issues with the use of a BCI system.
In this paper, we propose a novel motor imagery classification scheme based on the continuous
wavelet transform and the convolutional neural network. Continuous wavelet transform with three
mother wavelets is used to capture a highly informative EEG image by combining time-frequency and
electrode location. A convolutional neural network is then designed to both classify motor imagery
tasks and reduce computation complexity. The proposed method was validated using two public BCI
datasets, BCI competition IV dataset 2b and BCI competition II dataset III. The proposed methods
were found to achieve improved classification performance compared with the existing methods,
thus showcasing the feasibility of motor imagery BCI.

Keywords: brain-computer interface (BCI); electroencephalography (EEG); motor imagery (MI);
continuous wavelet transform (CWT); convolutional neural network (CNN)

1. Introduction

Brain-Computer Interface (BCI) translates brain signals into an interpretable output without the
direct use of peripheral nerves and muscles. The primary purpose of BCI is to create a communication
system through brain signals without physical movement for people with severe motor disabilities [1].
Non-invasive BCI model consists of a variety of paradigms on the basis of experimental processes and
types of electroencephalography (EEG) recordings. As representative models, event-related potential
(e.g., P300), steady-state visual evoked potential (SSVEP), and motor imagery (MI) have attracted
attention in the BCI research community. Among them, the MI BCI model has been widely used
since it can be easily applied to control external devices [2]. The MI BCI approach is increasingly
being applied in various fields, including games [3] and assistive technology [4]. However, despite
the growing interest, MI BCI has limitations in real-life applications due to the following issues: First,
about 20% of BCI users have difficulties controlling the system compared to others, which we term
“BCI illiteracy” [5]. Second, even for the remaining BCI users, particularly those with motor disabilities,
MI BCI might not offer the best mental option for BCI control [1,6]. Thus, effective improvement of MI
BCI performance remains a challenging issue [7].

In recent years, various MI studies using EEG recordings have been conducted [8,9].
The conventional method of MI BCI with EEG signals consists of the extraction of hidden features and
subsequent classification based on various machine learning methods. The common spatial pattern
(CSP) algorithm is one of the most popular feature extraction methods [10,11]. CSP is commonly
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used to analyze spatial patterns of multichannel MI EEG signals. However, CSP is considerably
dependent on the frequency band of EEG signals. To deal with this issue, variant algorithms, which are
extended versions of the CSP, such as filter bank CSP (FBCSP) [12] or filter bank regularized CSP
(FBRCSP) [13], are presented. In addition, feature extraction methods that reduce the dimension of
EEG signals are becoming popular due to their advanced classification performance. Typical examples
include principal component analysis (PCA) [14] and independent component analysis (ICA) [15].
Other widely-known methods, such as Short Time Fourier Transform (STFT) and Wavelet Transform
(WT) [16], which possess outstanding time-frequency localization characteristics and multi-resolution
properties, have been extensively applied to the feature extraction process. These provide the ability to
capture dynamic time-frequency properties of MI EEG signals.

To classify MI EEG signals, a variety of machine learning algorithms have appeared in the
literature [17]; they include support vector machine (SVM) [18], linear discriminant analysis (LDA) [19,
20], and restricted Boltzmann machines (RBM) [21]. The deep neural network (DNN) approach has
recently shown excellent classification performance in this field. The convolutional neural network
(CNN) is one of the most famous methods in the DNN model and has various applications. It has
successfully achieved object detection tasks [22] and text recognition [23,24]. A recent study by Tabar
and Halici [25] presented a classification model based on STFT and 1D CNN, which made use of
the 1D CNN with a one-dimensional kernel for images generated by using STFT for MI EEG signals.
However, STFT has difficulty in generating images with high quality information about signals due
to the trade-off between time and frequency resolution. Thus, this might degrade the classification
performance of MI BCI.

To address this issue, we propose an advanced MI EEG-decoding method using continuous
wavelet transform (CWT) and the subsequent 1D CNN with low computational complexity. In order
to alleviate the limitation of STFT, a new MI EEG image is formed by CWT with three features (time,
frequency, and electrode), which contain a highly informative spectrum without loss of time and
frequency features in EEG signals. The input image is composed of the frequency domain with distinct
electrodes in the horizontal axis and the time domain in the vertical axis. It is widely known that the
characteristics of MI EEG signals are mainly reflected in two frequency bands of EEG signals, i.e.,
mu (μ)-band (8–13 Hz) and beta (β)-band (13–30 Hz). By utilizing CWT, images using the power
spectrum of EEG signals—time, frequency, and electrode information—are obtained. Thus, it is more
capable of detecting specific MI patterns in EEG signals compared to Fourier transform. In addition,
the use of 1D CNN leads to efficient discrimination of the MI-related patterns that are shown as
temporal variations in mu and beta bands. The performance of the proposed method was validated
using a public BCI competition dataset [26].

The rest of this paper is organized as follows: Section 2 introduces the experimental datasets
used in this study and methodology of the proposed method. The results are presented in Section 3.
Section 4 concludes this work.

2. Method

2.1. Motor Imagery EEG Datasets

Among the datasets provided by BCI competitions, we used the BCI competition IV dataset
2b [27,28] and the BCI competition II dataset III [29] for validation. Both datasets consist of left and
right hand MI, and EEG signals were recorded at C3, Cz, and C4 channels.

As shown in Leeb et al. [27], the first MI EEG dataset, i.e., BCI competition IV dataset 2b, is composed
of EEG signals from nine healthy subjects with a sampling frequency of 250 Hz. Each subject consists of
two sessions without feedback, three sessions with online smiley feedback, and a total of five sessions.
In this study, we utilized previously studied three sessions in whole sessions. In the first two sessions,
after 2 s from the beginning on the fixation cross in the 3 s interval, short acoustic stimulus indicates
the start of the trial. A visual cue, which is an arrow pointing to the left and right hand, appears for
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1.25 s. The subject then performs the MI task on the hand corresponding to the visual cue for 4 s. In the
last session, the scheme of the experiment is similar to the preceding sessions. However, the difference
is that the visual cue and MI task parts in the preceding sessions were replaced by cue and smiley
feedback. The smiley feedback changed to green when user feedback moved in the correct direction;
else, it turned to red. The number of trials in each session is 120, 120, and 160, respectively.

The second MI EEG dataset, i.e., BCI competition II dataset III, consists of one subject and 7 runs
with 40 trials for each run, which was sampled at 128 Hz. During acquisition of the EEG signals,
the subject starts the MI experiment and rests for 2 s. After that, the acoustic stimulus is activated to
indicate the beginning of the trials. Then, a cross ‘+’ was displayed for 1 s, and the hand MI task,
depending on where the arrow is pointed, is carried out from 3 s to 9 s. The details of the datasets are
summarized in Table 1.

Table 1. Details of the datasets.

Dataset Subjects Channels Trials
Sampling

Frequency (Hz)
MI Class

BCI competition IV dataset 2b 9 C3, Cz, C4 400 250 2 (left/right hands)
BCI competition II dataset III 1 C3, Cz, C4 280 128

2.2. Motor Imagery EEG Image Form Using Continuous Wavelet Transform

We developed a new two-dimensional image by extracting MI features that appear in a specific
frequency band during the MI task. The resulting image was obtained through the time-frequency
representation of the MI EEG signals. STFT, which is widely used in the time-frequency representation,
is ineffective in interpreting MI EEG signals because of a trade-off in resolution between time and
frequency. When the size of the window in STFT is short, it results in good time and poor frequency.
A wide window offers the opposite results. To resolve this problem, we make use of continuous wavelet
transform (CWT) [30] to develop an image of the EEG signal. CWT and Fourier Transform (FT) have
similar methods. FT yields correlation coefficients between the original signal and a sinusoidal signal.
Similarly, CWT obtains correlation coefficients between the original signal and a mother wavelet.
However, unlike the FT, where the signal is decomposed into a frequency domain, CWT assigns the
signal to a time-frequency domain by controlling the shape of the mother wavelet. Here, the shape of
the mother wavelet is controlled by scaling and shifting parameters. The mathematical formula of
CWT is given in Equation (1):

CWT(ω, s) =
1√|s|

∫
x(t)ψ

( t−ω
s

)
dt (1)

where x(t) is MI EEG signal in this paper, ψ is the mother wavelet, ω denotes a time shifting parameter
or translation, and s denotes a scaling parameter. CWT(ω, s) represents the correlation coefficients of
CWT. The MI EEG signal x(t) can be recovered by an inverse CWT, as following:

x(t) =
1
C

∫ ∫
CWT(ω, s)

ψω,s(t)

|s|3/2
dsdω (2)

where C indicates the normalization constant, which depends on the choice of wavelet.
Unlike STFT with a constant window function, CWT, with a smooth analytical mother wavelet,

is capable of identifying the dynamic frequency properties over MI EEG signals at different scales.
The CWT coefficients in Equation (1), by applying various scales and translations to the mother wavelet,
reflect the similarity of the signal to the wavelet at the current scale. We use three types of mother
wavelet, i.e., Morlet, Mexican hat, and Bump wavelets, provided in MATLAB.

The mathematical expressions of Morlet, Mexican hat, and Bump mother wavelets are given
by Equations (3)–(5), respectively [31–33]. First, as shown in Equations (3) and (4), Morlet wavelet
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originated from a Gaussian function, while the Mexican hat wavelet, which is also called the Ricker
wavelet, is a special case of the second derivative of a Gaussian function. Next, as another type of
mother wavelet different from the Gaussian function-based ones, Bump wavelet with scale s and
window w is defined in the Fourier domain as Equation (5):

ψMorl(t) = e2πite−t2/2σ2
= (cos 2πt + i sin 2πt)e−t2/2σ2

(3)

ψMexh(t) =
(
1− t2

σ2

)
e−t2/2σ2

(4)

ψBump(sw) = e
(1− 1

1−(sw−μ)2/σ2
)
χ[μ− σ,μ+ σ ] (5)

where ψMorl, ψMexh, and ψBump denote Morlet, Mexican hat, and Bump mother wavelets, respectively.
The parameter σ plays a role in transshaping the mother wavelet. μ in Equation (5) admits the peak
frequency defined by swψ := argmax

sw

∣∣∣ψBump(sw)
∣∣∣ and χ denotes the indicator function.

CWTs with three mother wavelets are employed to a duration of 2 s of the MI EEG signals. We set
the frequency range of CWT—from a minimum frequency of 0.1 Hz to a maximum frequency of 50 Hz.
Then, we extract the time-frequency image of the mu and beta bands from the overall frequency range.
The image of the MI EEG signal is obtained by the following two methods.

First, an input image was obtained from the CWT results of the mu and beta bands. The sizes of
the image extracted were 26 × 500 and 37 × 500, respectively. In order to prevent the extracted features
from being biased by one dominant frequency band, both bands were resized to have similar size
using the cubic spline interpolation method. The deformation of the input image is conducted not
only on the frequency axis, but also on the time axis. In the labeled 2 s MI task, the smallest part of
the output spectrum of the 0.5 s interval was extracted from the mu-band image. Then, the obtained
samples corresponding to 0.5 s were resized to 32 samples by using the cubic spline interpolation
method. Subsequently, we obtained a MI EEG image with N f = 31 and Nt = 32 for one electrode by
combining samples generated from the mu and beta bands. The same procedure was repeated for
three electrodes, i.e., C3, Cz, and C4, and the resultant three MI EEG are stacked as one MI image. As a
result, an MI EEG image has a size of Nv × Nt, where Nv = N f × 3. This overall process is carried out
for the three mother wavelets.

Second, we make use of a time-frequency image of only the mu-band in the frequency axis.
Similar to the previous method, the modification process of the MI EEG image on the time axis is
carried out. However, in this method, the frequency axis is not resized to avoid loss of frequency
information. The MI EEG image constructed by the proposed method is used as an input to the
proposed CNN architecture.

2.3. Convolutional Neural Networks Architecture

We conduct MI task recognition based on a variant of CNN. The conventional CNN has shown
considerable performance for 2D image classification. CNN consists of input, output, and several
hidden layers, which contain several pairs of convolutional-pooling layers and a fully connected layer.
The standard CNN extracts the features of the image through the 2D kernel in the convolutional layer
and subsampled them to a smaller size in the pooling layer. The reduced image is then classified in the
fully connected layer.

It is to be noted that our input MI EEG image is different from the existing input data format for
CNN. Since the input image contains three specific details (time, frequency, and electrode locations),
our aim is to classify the hand MI tasks through features in the vertical axis corresponding to the
electrode and frequency, whereas the time axis (horizontal axis) is not of critical interest. Therefore,
we propose a new MI classification method based on CNN with 1D kernels rather than standard 2D
kernels to capture the features of frequency and electrode location on the same time axis.
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The proposed CNN architecture with four layers is shown in Figure 1. The input layer is the 2D
input MI EEG image with a size of 93 × 32. The input layer is followed by the second and third hidden
layers, which consist of one convolutional layer and one max-pooling layer. The following fourth layer
is a fully connected layer that differentiates between left or right hand MI tasks. In the convolution
layer, the input image is convolved using NF = 30 kernels with a size of 93 × 3 for the same time axis.
The output of convolution between an input image and a kernel is given by Equation (6):

yk
i = f (a) = f

((
Wk ∗ x

)
i
+ bk

)
(6)

where x is an input image, Wk is a convolution kernel, bk is a bias for k = 1, 2, . . . , NF, and i = 1, 2, . . . ,
Nt − 2. As a result, the output applied with stride 1 in the convolutional layer yields 30 feature maps
with a size of (Nt − 2) × 1. f (·) denotes an activation function; here, the rectified linear unit (ReLU)
function is used. The ReLU function is carried out between the convolutional layer and max-pooling
layer by the following Equation (7):

f (a) = ReLU(a) = max(a, 0) =
{

a, if a > 0
0, otherwise

(7)

where a is defined in Equation (6).

Figure 1. Convolutional Neural Network architecture consists of a convolutional layer with 93 × 3
kernels, a max-pooling layer with sampling factor of 10, and a fully connected layer. The input image
with 93 × 32 is passed through the proposed neural network. In the convolution layer, 30 kernels are
convolved with the input image. Through a pooling procedure, each feature map is shrunk to 3 × 1.
Refer to Section 2.3 for more details.

The output of the convolutional layer with size of (Nt − 2) × 1 is applied to the input of the
max-pooling layer. The max-pooling is carried out with a sampling factor of 10 and zero padding is
not used. Therefore, the size of the output of the convolutional layer is subsampled to 3 × 1 dimension
for 30 kernels by the max-pooling layer. Finally, the fully connected layer is performed to classify two
classes, i.e., left and right hand MI tasks. In this approach, the labeled training data is used for training
of the proposed CNN model and the classification error is calculated as the difference between the
CNN output and target data. The weights of the neural network during training are updated by the
back-propagation algorithm, which is conducted using gradient descent to minimize errors. Using the
trained weights of the neural network, MI classification performance with the test MI EEG signals
is computed.
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In the proposed method, we make use of the continuous wavelet transform to produce the
transient EEG image with improved time and frequency resolution. The use of a one-dimensional
convolution neural network results in the improved discrimination capability of temporal variations of
motor imagery patterns of an EEG image. In addition, since the neural network consists of not only a
one-dimensional kernel to extract MI patterns of the input image but also shallow layers compared
to conventional models, it has the advantage of low computation complexity in training. Since the
proposed method utilizes an input image with time, frequency, and electrode information, the training
of the neural network is robust to variations or abnormal patterns of MI EEG signals.

3. Results

3.1. Quantification of the Event-Related Desynchronization/Event-Related Synchronization Pattern

In the literature, it has been widely known that MI features are reflected in the mu-band
(8–13 Hz) and beta-band (13–30 Hz) of EEG signals [34,35]. In the case of imagination of left and right
motor movements, the power decrease of mu and beta bands of EEG signals, named event-related
desynchronization (ERD), is observed in the contralateral brain region. In addition, the phenomenon
in which the power of both frequency bands of the EEG signals is restored after the MI tasks is called
event-related synchronization (ERS). To reflect ERD and ERS, we utilize a method to quantify the
ERD/ERS patterns of the MI tasks done in this work [34].

The ERD/ERS patterns are reflected as a variation of power in the MI EEG signal, compared to
a reference interval, prior to the start of motor movement imagery. Firstly, each MI EEG channel is
averaged over all subjects and trials in the dataset. The ERD/ERS patterns are then calculated as the rate
of the change of power with respect to the reference signals, which are given in Equations (8)–(10) [36]:

EEGavg( j) =
1
N

N∑
i=1

s2
i j (8)

EEGre f =
1
k

t+k∑
j=t

EEGavg( j) (9)

ERD/ERS (%) =

(EEGavg( j) − EEGre f

EEGre f

)
× 100(%) (10)

where N is the total number of trials and sij is the jth sample of the ith trial of the bandpass filtered
MI EEG signals. EEGavg( j) is the average power of MI EEG signals for all trials. EEGre f is the average
power of MI EEG signals measured on the reference interval.

To extract a reliable MI task interval, we detect the ERD/ERS patterns in typical motor movement
related frequency bands, e.g., mu-band (8–13 Hz), beta-band (13–30 Hz), and combined mu and beta
band (8–30 Hz). In general, ERD/ERS patterns are distinctly observed in the motor cortex region.
Figure 2 shows the ERD/ERS patterns in mu-band, which are recorded from C3, Cz, and C4 electrodes,
respectively. The relative amplitude indicates the values calculated by Equation (10) across all subjects
in the first dataset. Details on the dataset are described in Section 2.1. As shown in Figure 2, the ERD
patterns occur bilaterally during the MI tasks (second 2–5), which are lateralized to the contralateral
hemisphere. However, ERS patterns on the motor cortex are not observed clearly in mu-band. The ERD
and ERS patterns in the Cz channel are not clearly distinguished, compared to other electrodes.
Therefore, in order to extract a common MI task interval from datasets used in this paper, we chose a 2 s
MI task interval (0.5 s~2.5 s after the visual cue is displayed), where the ERD patterns actively appear.
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(a) (b) (c) 

Figure 2. Event-related desynchronization/Event-related synchronization patterns over each channel
(C3, Cz, and C4) during the hand Motor Imagery tasks in mu-band: (a) C3 electrode; (b) Cz electrode;
(c) C4 electrode.

3.2. Classification Results

We validated the classification performance of the proposed CNN for two input image types and
three mother wavelets. Here, we show MI EEG images for left hand MI tasks by utilizing CWTs to
extract mu and beta bands or only mu-band of EEG signals. Figures 3–5 show the MI EEG images
generated by the first method, i.e., using the mu and beta bands, for a left hand MI task using three
distinct mother wavelets, i.e., Morlet, Mexican, and Bump wavelets, respectively. In each figure, the left
figure denoted by (a) shows the resized image on the frequency axis, and the right figure denoted by
(b) denotes the resized image both on the frequency and the time axes. Compared to FT and STFT,
the use of CWT helps reveal ERD patterns of the mu-band from an EEG input image more clearly
without loss of information in terms of time and electrode-frequency due to its superior time-frequency
resolution. Figure 6a–c show the MI EEG images generated by using only the mu-band and three
mother wavelets, respectively. As stated before, ERD patterns are shown in the MI EEG recorded from
C4 electrode contralaterally in case of left hand MI tasks. Thus, in the figures, the ERD patterns are
represented as a decrease of mu-band power in the C4 electrode, compared to other electrodes, i.e.,
Cz and C3. As a result, as shown in Figures 3–6, the generated EEG images depict the ERD patterns of
mu-band EEG signals; the mu-band power of the C4 electrode is lower than those of other electrodes,
regardless of mother wavelets.

 
(a) (b) 

Figure 3. Motor Imagery EEG image for left hand Motor Imagery task using Morlet wavelet: (a) size of
93 × 500; (b) size of 93 × 32.
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(a) 

 
(b) 

Figure 4. Motor Imagery EEG image for left hand Motor Imagery task using Mexican hat wavelet:
(a) size of 93 × 500; (b) size of 93 × 32.

 
(a) 

 
(b) 

Figure 5. Motor Imagery EEG image for left hand Motor Imagery task using Bump wavelet: (a) size of
93 × 500; (b) size of 93 × 32.

 
(a) 

 
(b) 

 
(c) 

Figure 6. Motor Imagery EEG image with mu-band for left hand Motor Imagery task: (a) Morlet
wavelet; (b) Mexican hat wavelet; (c) Bump wavelet.

Tables 2 and 3 indicate the average accuracy and standard deviation across all subjects in the two
datasets used in this paper. We compared classification performance with the previous CNN-based MI
classification method, which used STFT and CNN [25]. The first dataset, BCI competition IV dataset 2b,
is comprised solely of the labeled training set. To evaluate the accuracy of the dataset, we divided it into
training and test sets for each subject using 10-fold cross-validation. Thus, 90% of the total 400 trials per
subject was randomly selected as the training set and the rest as the test set. This process was repeated
10 times and a total of 100 test sets were produced to reduce the effect of within-subject variation.
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Table 2. Average classification accuracy and standard deviation (%) for BCI competition IV dataset 2b.

Subjects

Accuracy (%) and Standard Deviation

STFT [25]
CWT

Morlet Mexican Hat Bump

mu + beta mu + beta mu mu + beta mu mu + beta mu

1 74.5 ± 4.6 85.6 ± 1.3 84.7 ± 1.6 81.8 ± 1.3 81.7 ± 1.6 83.2 ± 1.4 82.4 ± 1.1
2 64.3 ± 2.0 72.8 ± 1.4 72.7 ± 2.0 70.6 ± 2.1 71.9 ± 2.0 73.8 ± 2.1 72.5 ± 2.0
3 71.8 ± 1.6 78.0 ± 1.9 79.5 ± 2.1 76.4 ± 1.8 74.7 ± 2.1 71.5 ± 2.1 73.6 ± 1.8
4 94.5 ± 0.2 95.4 ± 1.0 96.4 ± 0.5 96.0 ± 0.4 95.0 ± 0.9 96.2 ± 0.8 97.4 ± 0.5
5 79.5 ± 2.5 82.6 ± 1.7 79.6 ± 2.1 78.7 ± 1.9 75.6 ± 2.0 81.0 ± 1.0 73.1 ± 1.7
6 75.0 ± 2.4 79.8 ± 2.1 77.9 ± 1.6 75.5 ± 2.2 76.9 ± 1.5 80.6 ± 1.8 81.0 ± 1.3
7 70.5 ± 2.3 82.9 ± 1.2 81.0 ± 1.6 82.1 ± 1.2 81.4 ± 1.8 78.9 ± 2.0 81.7 ± 1.9
8 71.8 ± 4.1 85.0 ± 1.9 85.7 ± 1.7 84.7 ± 1.4 83.5 ± 1.4 83.5 ± 1.5 83.1 ± 1.6
9 71.0 ± 1.1 85.3 ± 1.9 84.9 ± 1.4 84.6 ± 1.2 85.1 ± 1.7 86.6 ± 1.4 84.0 ± 2.2

Mean 74.8 ± 2.3 83.0 ± 1.6 82.5 ± 1.6 81.2 ± 1.5 80.6 ± 1.7 81.7 ± 1.6 81.0 ± 1.6

Table 3. Average classification accuracy (%) for BCI competition II dataset III. N/A denotes ‘not available’.

Frequency Band
Accuracy (%)

STFT [25] Morlet Mexican Hat Bump

Mu + beta 89.3 89.3 90.0 92.9
mu N/A 91.4 89.2 91.4

The test sets were evaluated by the proposed CNN, which is described in Section 2.3. The CNN
structure consists of one convolutional layer, one max-pooling layer, and one fully connected
layer. CNN was trained by using a batch training method with a batch size of 50 for 300 epochs.
Data normalization was applied to the input MI EEG image in an interval between 0 and 1.

Table 2 shows the classification performance depending on input image types using the BCI
competition IV dataset 2b. As can be seen, for the first input MI EEG image type with the mu and beta
band, the proposed method yields average accuracy of 83.0%, 81.2%, and 81.7% for Morlet, Mexican
hat, and Bump mother wavelet, respectively. Since the previous study using STFT has 74.8% accuracy,
the proposed method achieves an improvement for classification of MI tasks. In addition, the proposed
method with an input image using mu-band outperformed the STFT-based method, while it is
comparable with the use of an input image using the mu and beta bands. For distinct mother wavelets,
using the Molet wavelet for combined mu and beta bands results in the best classification accuracy.

Table 3 indicates the classification performance using the second dataset, i.e., BCI competition II
datasets III. This dataset consists of a labeled training set and an unlabeled test set. The number of trials
for each set is 140. This dataset with sampling rate of 128 Hz was likewise selected for the samples for
2 s after 0.5 s from the start of the cue appearance, as described in Section 2.2. The parameters used in
the CNN model are the same as those applied to the first dataset. The results in Table 3 show that the
proposed method is superior to the STFT-based method for both input image types. Note that STFT for
an input image using mu-band is not available to compute accuracy, whereas the proposed method
achieves comparable performance with the use of both mu and beta bands.

4. Conclusions

In this study, we propose a new continuous wavelet transform and convolutional neural network
based decoding scheme to classify motor imagery tasks. The proposed method is comprised of two
stages: image generation using continuous wavelet transform for motor imagery EEG signals and
motor imagery tasks classification using the proposed one-dimensional convolutional neural network.
By employing continuous wavelet transform, highly informative input motor imagery EEG image with
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time, frequency, and electrode location is generated. We confirm that the resultant motor imagery EEG
image contains event-related desynchronization patterns, along with frequency and electrode location.
Next, using the motor imagery EEG image as input, a one-dimensional convolutional neural network
with four layers is developed to decode the two distinct motor imagery tasks. The network aims to
capture the one-dimensional dynamics of event-related desynchronization patterns of the input motor
imagery EEG image.

In the proposed method, the use of continuous wavelet transform yields a more detailed
representation of motor imagery-related EEG patterns, compared to Fourier transform-based methods.
In addition, by utilizing a one-dimensional convolutional neural network, it is capable of discriminating
between temporal variations of EEG signals of motor imagery tasks, in terms of specific frequency
and electrode. The combinational use of wavelet transform and neural network may lead to the
development of advanced signal processing and machine learning tools to analyze EEG signals in
motor imagery BCI research.
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Abstract: To compose art, artists rely on a set of sensory evaluations performed fluently by the
brain. The outcome of these evaluations, which we call neuroaesthetic variables, helps to compose
art with high aesthetic value. In this study, we probed whether these variables varied across art
periods despite relatively unvaried neural function. We measured several neuroaesthetic variables
in portrait paintings from the Early and High Renaissance, and from Mannerism. The variables
included symmetry, balance, and contrast (chiaroscuro), as well as intensity and spatial complexities
measured by two forms of normalized entropy. The results showed that the degree of symmetry
remained relatively constant during the Renaissance. However, the balance of portraits decayed
abruptly at the end of the Early Renaissance, that is, at the closing of the 15th century. Intensity and
spatial complexities, and thus entropies, of portraits also fell in such manner around the same time.
Our data also showed that the decline of complexity and entropy could be attributed to the rise
of chiaroscuro. With few exceptions, the values of aesthetic variables from the top of artists of the
Renaissance resembled those of their peers. We conclude that neuroaesthetic variables have flexibility
to change in brains of artists (and observers).

Keywords: neuroaesthetics; symmetry; balance; complexity; chiaroscuro; normalized entropy;
renaissance; portrait paintings; art history; art statistics

1. Introduction

Aesthetic emotions are not arbitrary. For instance, people exhibit aesthetic preference for visual
art with high degrees of symmetry across many cultures [1,2]. Other such visual properties with
universal impact on aesthetic values are balance, contrast, and complexity (measured as normalized
entropy—[3,4]. Why do these properties have universal aesthetic impact? The Processing Fluency
Theory provides a simple answer by postulating that sensory variables processed by the brain with
ease facilitate positive aesthetic emotions [5,6]. Hence, if the brain has specialized mechanisms to
deal with a sensory variable, it will tend to be aesthetically valuable. This is the case for symmetry,
balance, contrast, and complexity variables, which have dedicated neural circuitries, because of their
evolutionary importance. We call such properties like symmetry, balance, contrast, and complexity
neuroaesthetic (or fluency) variables, since their importance emerges directly from neural constraints [7].

Because specialized brain mechanisms constrain neuroaesthetic variables, one may expect that they
remain relatively constant over time, especially across art periods [8]. However, a recent study found
that artists exhibited an appropriate bias towards these variables, but did not optimize them. Moreover,
artists also exhibited individuality with respect to these variables [4]. Because of this individuality,
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a certain degree of flexibility appears to exist with respect to neuroaesthetic variables. Therefore,
they could potentially evolve across different periods of art. The possibilities that neuroaesthetic
variables could either remain constant or evolve across art periods raised a series of questions in our
minds: Are changes in art periods occurring in the absence of evolution of neuroaesthetic variables?
Conversely, if these variables evolve over time, in what directions are the changes? For example, would
the degrees of symmetry, balance, contrast, and complexity necessarily increase over time following
the improvement of artistic techniques? And would the evolution in neuroaesthetic variables at the
boundaries of different art periods (as determined by art historians) be abrupt? So far, there has been
limited research aimed at answering such questions. One notable study looked at changes in fractal
dimension and Shannon entropy in western paintings ranging from years 1285 to 2008 [9]. The research
found that both measures remained relatively stable over time, except for an abrupt change around
the late nineteenth century. The author speculates that this change may indicate the transition from
pre-Modern to Modern Art.

In the study reported here, we probed what happened to the neuroaesthetic variables across
the three periods of the Renaissance. These periods were the Early and High Renaissance, and the
Mannerism (Late Renaissance—[8]). Art historians have characterized the differences between these art
periods in terms of key artistic concepts. New concepts were continuously discovered or rediscovered
during the Renaissance, and introduced in the work of artists. For example, Alberti’s books on
painting [10] and architecture [11] introduced new concepts that influenced the theory of the arts
during the Renaissance itself. These concepts included ideas that evolved throughout the Renaissance,
such as harmony, golden ratio, naturalism, anatomical studies, linear perspective, aerial perspective,
and chiaroscuro [8]. These ideas are related to the neuroaesthetic variables mentioned above. Harmony
and golden sections have to do with balance and symmetry. In turn, naturalism, anatomical studies,
and the two forms of perspective produce realism and thus, complexity. Finally, chiaroscuro (translates
to ‘bright and dark’ in Italian) is related to contrast. In chiaroscuro, strong tonal contrast between light
and dark in different regions of a painting helps highlight its important parts, often with a dramatic
effect. Furthermore, chiaroscuro helps to model three-dimensional forms through shades. Consequently,
chiaroscuro along with the other concepts were elements of a new theory that transformed art from the
practices of the Middle Ages.

Finally, our study focused on portrait paintings during these three periods. Our rationale for
focusing on portraits was their relative simplicity, as they centered solely on the depiction of the human
subject as opposed to other forms of art. In addition, portraits tended to have a vertical composition,
simplifying the measurement of symmetries in the canvas. Therefore, focusing on portraits helped us
constrain our study in a simpler set of measurements and statistics. Another reason to focus on portraits
was that they encouraged interesting evolutionary tendencies across time during the Renaissance.
Such evolution happened because portraits set up a competition among artists and their workshops to
gain the favor of patrons and get the commissions [12]. This competition led the painters to explore
new artistic forms to represent the character of the individual subject. Thus, portrait paintings evolved
and improved over time.

In this article, we begin with a series of statistical measurements on symmetry, balance,
and complexity. We chose these variables because they have a direct relationship to processing
fluency [13,14]. In this study, we expand the measurements to all three periods of the Renaissance and
compare Italy with the rest of Europe. We also attempt to compare the most famous painters of those
times (as judged today) with other Renaissance painters. This comparison allows studying whether
these two cohorts of painters differ significantly in terms of neuroaesthetic variables. Finally, some
of the findings related to the evolution of balance and complexity were surprising. We attempted to
explain them statistically through both the emergence of perspective and new measurements of the
degree of chiaroscuro.
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2. Materials and Methods

Methods for image selection, and measurements of symmetry, balance, and complexity appear
in detail elsewhere [4]. In this section, we mainly focus on methods that are unique to this article.
New qualitative methods include the choice of portrait paintings (Section 2.1), selection of top portrait
painters of the Renaissance (Section 2.2), and classification of paintings into stylistic characteristics
(Section 2.3). New quantitative methods are the statistical analyses (Section 2.4) and the development
of indices of chiaroscuro (Section 2.5). In Section 2.6, we rewrite the equations of symmetry, balance,
and complexity in [4] using the notation of Section 2.5.

2.1. Portrait Paintings

We studied 456 portrait paintings from 53 painters. We only included a painting in the study
if it displayed one main individual as the subject. The portraits were painted in oil, tempera,
frescos, or a mixture of these materials. We obtained all paintings from the “Artstor Digital Library”
(library.artstor.org). If the painting had a frame, we removed it before performing our analyses, except
if the painter had painted it. While all images were originally in color, we converted them into an 8-bit
grayscale by rounding the average of the red, green, and blue values.

A complete list of the painters, paintings (by Artstor file name), and their classification into periods
and stylistic characteristics appears in the Supplementary Materials. To each painting, we assigned a
date of completion, giving the median values in case art historians are uncertain about the exact times.
We excluded paintings with more than 50 years of uncertainty from the study. We decided to allow
such an uncertainty in the determination of the time of completion, because such uncertainty happened
rarely and we used robust statistics for all our conclusions (Section 2.4). The classification into Early
Renaissance, High Renaissance, and Mannerism used the date of birth of the painters. Thus, we took
painters of the Early Renaissance as those born between 1370 and 1450. In turn, painters of the High
Renaissance were born between 1452 and 1489. Finally, Mannerists were those born from 1494 until
1571. This manner of classification into periods can be debated, especially at their borders. However,
as shown in Supplementary Materials, the classification yields results accepted by art historians [8].
Furthermore, border errors were removed by the robust statistics in our articles (Section 2.4).

2.2. Selection of Top Portrait Painters

We wished to compare the most renowned painters of the Renaissance (as judged today) with
other good painters from the same period. We know of no objective way to make a list of the most
famous artists and different people may disagree on it. However, some rankings do exist and we
decided to use one of them. We used the ranking developed by Ranker, a digital media company that
produces polls on entertainment, brands, sports, and culture (Ranker.com). The list that Ranker has
produced on Renaissance artists appears in http://bit.ly/RankerRenaissance (accessed 11 April 2018).
Table 1 shows the top-ten vote getters in this list on 11 April 2018:

Table 1. Top Ten Renaissance Artists According to Ranker.com.

Name # of Votes Period In this Study

1 da Vinci 1322 High Renaissance Yes
2 Michelangelo 1071 High Renaissance No
3 Raphael 713 High Renaissance Yes
4 Donatello 599 High Renaissance No
5 Titian 413 High Renaissance Yes
6 Botticelli 407 Early Renaissance Yes
7 Caravaggio 296 Mannerism Yes
8 van Eyck 275 Early Renaissance Yes
9 Brunelleschi 258 Early Renaissance No
10 Dürer 257 High Renaissance Yes
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As the table indicates, we used seven of these ten artists in our study. The other three were
renowned for other forms of art not portraits. Further support that these seven portrait artists are
among the leading ones from the Renaissance comes from [15].

2.3. Classification of Paintings into Stylistic Characteristics

To try understanding some surprising findings related to the evolution of balance and complexity,
we divided the portrait paintings into four categories, namely, chiaroscuro, linear perspective, aerial
perspective, and none of those. This classification was performed by eye by one of us, ICH. He used
the following definitions for the classification:

• Linear Perspective: perspective in which the relative size, shape, and position of architectural
objects are determined by imagined lines converging at a point on the horizon.

• Aerial Perspective: the technique of representing distant objects as fainter and bluer.
• Chiaroscuro: an effect of contrasted light and shadow created by light falling unevenly on something.

Fortunately, no portrait painting seemed to belong to more than one of these categories.

2.4. Statistical Analyses

All analyses comparing neuroaesthetic variables across locations and art periods used two-way
ANOVA followed by post-hoc two-sided t-tests. In turn, we compared the probability of artistic styles
(Section 2.3) across art periods with the Fisher’s exact test. Finally, the comparison of neuroaesthetic
variables for different artistic styles employed one-way ANOVA followed by post-hoc one-sided t-tests.

We performed tests of temporal trends of neuroaesthetic variables with the robust Kendall’s τ
correlation coefficient. The probability that this coefficient is different from zero and estimates of error
are as developed by [16]. We used the Kendall’s τ correlation coefficient, since the data exhibited
outliers and trends often did not seem linear. To quantify the trends, we attempted to obtain robust fits
with each of the following functions:

∅C(t : α1) = α1, (1)

∅L(t : α1,α2) = α1 + α2(t− t0), (2)

∅exp(t : α1,α2,α3) = α2 + (α1 − α1)e−(t−t0)/α3 , (3)

∅er f (t : α1,α2,α3,α4) = α1 + α2 erf
(
((t− t0) − α3)/

(√
2α4

))
, (4)

where t was time, t0 was the year of the first painting in our dataset, α1,α2,α3 and α4 were the
parameters of the functions, and erf was the error function [17]. Equations (1)–(4) represent constant,
linear, exponential, and error-function trends respectively. The parameters of these functions have
familiar interpretations. For the linear trend, α1 is the estimated value of the neuroaesthetic variable at
t0 and α2 is the slope of the change. Similarly, for the exponential trend, α1 is the estimated value of
the neuroaesthetic variable at t0. However, α2 is the value at long t’s, and α3 is the rate constant of the
change. Finally, for the erf trend, ∅er f is a sigmoidal function [18]. Its point of fastest rate of change is
α3, with α1 being the value of the function at that point. In turn, 2α2 would be the output range of ∅er f
if t were to vary from −∞ to +∞, with α4 setting the rate of the transition.

To obtain robust fits of these functions to the values of neuroaesthetic variables, we proceeded
as follows: Let vi be the values of paintings completed at times ti where 1 ≤ i ≤ N and N is the
number of paintings in the dataset. To reduce the effect of outliers, we computed the M medians vi
of non-overlapping subsets of the data comprising temporally consecutive paintings. The number
of paintings included in the medians ranged from 25 to 35 depending on the noise in the data. We
indicate this number for each case when describing the results. We also computed the median time, ti
for each of the vi. For these pairs, we then computed:

→
α = argmin→

α
∗
∑M

i=1

(
ui −∅x

(
ti :

→
α
∗))2

, (5)
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where
→
α was the optimal set of parameters for each fit (e.g.,

→
α = (α1,α2,α3,α4) for Equation (4)),

and the subscript x captured one of the functions in Equations (1)–(4) (e.g., x = er f for Equation (4)).
To perform this computation, we used a trust-region-reflective algorithm [19,20]. Each fit computation
used five initial conditions to minimize local-minimum trapping. The initial conditions were random
and chosen from the ranges of either vi or ti (the latter for variables with time dimensions). Means and
standard errors of fit parameters were obtained for those initial conditions yielding errors (Equation (5))
of not more than 10% of the minimum. Although this fit was a least-squares procedure, the estimates
were robust because of the median steps to obtain ti, and vi.

To probe the quality of the fits provided by Equations (1)–(4) and to compare them, we used
a regression test for arbitrary fits [21,22]. In this test, a linear regression was performed in the
data-versus-fitted-model scatter plot. If the model was good, this regression should be close to a
straight line, with slope = 1, and intercept = 0. Consequently, the regression test probed whether the
correlation coefficient, slope, and intercept were statistically significantly larger than zero, not different
from 1, and not different from 0, respectively. We used the p-values of the tests to compare the fits
(t-tests). The calculations of the p-values considered the number of parameters of the equations through
the degrees of freedom (d.f.). Hence, for example, if the linear and exponential fits gave similar results,
the linear one was better, because it had fewer parameters.

Finally, we tested whether particular painters behaved differently from the population for each
neuroaesthetic variable. For this purpose, we used a two-sided t-test of whether the neuroaesthetic
variable was statistically significantly above or below the optimal trend line.

For each neuroaesthetic variable, we removed outliers with a median-absolute-deviation (MAD)
method [23] (MAD > 3.5) before beginning the statistical analyses.

All statistical tests, and the computations described in Sections 2.5 and 2.6 were performed with
MATLAB R2015a (MathWorks, Natick, MA, USA), using code specially developed for this project.

2.5. Chiaroscurro Indices

We developed two computational indices of chiaroscuro. We begin the description of each with a
paragraph providing the physical intuition of the proposed calculations. We hope that these paragraphs
will allow the reader to understand the rationale even by skipping the equations, which in turn, appear
after the introductory paragraphs.

The chiaroscuro technique tries to use intensities close to the extremes, i.e., some regions bright
and others dark. In its extreme form, chiaroscuro would make all the points of the painting either
black or white. To measure the Index of Chiaroscuro Extremes, we thus calculate the distance from the
distribution of intensities in the canvas to distributions in which the intensities are at either minimal
or maximal possible values. (In our study, these intensities are 0 and 255 respectively.) To measure
this distance, we begin by obtaining the midway point between the minimal or maximal possible
intensities. We then perform a sum with two components: 1. sum of the subtractions of the intensities
below the midway point and the minimal possible intensity; 2. sum of the subtractions of the maximal
intensity and the intensities above the midway point. This sum should be zero only if the canvas has
the desired property. In contrast, this sum reaches a maximal value when the image is homogeneous at
the mid gray. We then construct the Index of Chiaroscuro Extremes, which is linearly related with this
sum, being 0 and 1 when the sum 1 and 0 respectively.

Let I
(
pk, j

)
be the intensity of the pixel pk, j in Row k and Column j of the image. Let the number

of rows and columns be Nr and Nc respectively. (We ensure that Nc is even). Consequently, the total
number of pixels is N = NrNc. Finally, let I∗ be the maximal possible intensity (the minimum being 0).

Denote the set of all pixels in the image as S =
{
pk, j

}
. Define two subsets of S, namely S− and S+,

with the following properties:

S− ∪ S+ = S, S− ∩ S+ = ∅,
pk, j ∈ S− =⇒ I

(
pk, j

)
< I∗

2 , pk, j ∈ S+ =⇒ I
(
pk, j

)
> I∗

2
(6)

297



Entropy 2020, 22, 146

Hence, S− and S+ contain all pixels with intensities below and above I∗/2 respectively. (Because
intensities are integers and I∗/2 = 127.5, S− and S+ contain all the pixels in S.) We use Equation (6) to
define the Index of Chiaroscuro Extremes through the sum:

CE =
∑
p∈S−

I(p) +
∑

p∈S+

(I∗ − I(p)) (7)

This sum would have an upper bound at NI∗/2, if the image were homogeneous with intensity
I∗/2, the middle gray. We thus define the Index of Chiaroscuro Extremes as:

icE = 1− 2CE

NI∗ (8)

Therefore, 0 ≤ icE ≤ 1. The value of icE would be 0 if the image were homogeneous with intensity
I∗/2, and would be 1 if all the pixels of the image were black or white.

A possible limitation of the Index of Chiaroscuro Extremes was that some images could be entirely
very dark or entirely very bright, and the index would still suggest the presence of chiaroscuro. If for
example, an image was homogeneously back, the Index of Chiaroscuro Extremes would be 1. Although
this limitation was unimportant for images of Renaissance portrait paintings, we decided to devise an
alternate index of chiaroscuro. The new index measured how different the highest and lowest intensities
were. To make this measurement, we again divided the set of points in the image into two sets. One
set had all the points with intensities above a given percentile, while the other had the points with
intensities below this percentile. We then subtracted the median intensity in the dark set from the
median intensity in the bright set. As the result of this subtraction increases, we have more evidence of
chiaroscuro. Thus, we use the result of this subtraction to construct an Index of Chiaroscuro Intensities.
This index is linearly related to the result of the subtraction. The index is 0 when the subtraction yields
0, and 1 when the subtraction is equal to the difference between the maximal and minimal possible
intensities. The higher this index is, therefore, the higher is the chiaroscuro intensity difference.

We again split S into two subsets, but this time based on a given percentile. We define S−, f and
S+, f with the following properties:

S−, f ∪ S+, f = S, S−, f ∩ S+, f = ∅,∣∣∣S−, f
∣∣∣ = f N,

∣∣∣S+, f
∣∣∣ = (1− f )N,

pk, j ∈ S−, f , pl,m ∈ S+, f =⇒ I
(
pk, j

)
≤ I

(
pl,m

)
,

(9)

where 0 ≤ f ≤ 1, i.e., a fraction of 1. Hence, S−, f contains f N elements below the f th percentile of S
and S+, f contains all the (1− f )N elements above the f th percentile of S. We use Equation (9) to define
the Index of Chiaroscuro Intensities through the subtraction:

CΔ = S̃+, f − S̃−, f , (10)

where the wiggles denote medians. The result of this subtraction reaches its maximum, I∗, when the
medians of S̃+, f and S̃−, f are the extremes, i.e., I∗ and 0 respectively. We thus define the Index of
Chiaroscuro Intensities as:

icΔ =
CΔ

I∗ (11)

Consequently, 0 ≤ icΔ ≤ 1. The value of icΔ would be 0 if S̃+, f = S̃−, f , i.e., the intensities at the top
and the bottom were similar, and would be 1 if S̃+, f = I∗ and S̃−, f = 0, i.e., the intensities at the top
and the bottom are maximally different.
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2.6. Brief Descriptions of Symmetry, Balance, & Complexity

Elsewhere, we developed indices to quantify symmetry, balance, and complexity with methods
and arguments like those in Section 2.5 [4]. Here, we describe these indices briefly to give the reader
an intuitive understanding.

2.6.1. Symmetry

Our measure of symmetry is bilateral. This measure is taken as a comparison of intensities of
pixels equidistant from the vertical midline of the whole image. The difference between a pair of pixels
can range from 0 (perfectly symmetric) to 255 (highly asymmetric). To compute our final measure,
we take the root mean square of all of the pixel-wise computations and normalize by the maximum
intensity. The result is a measure of asymmetry ranging from 0 to 1, which is what we use in all of
our analyses.

2.6.2. Balance

Like symmetry, we calculate our measure of balance across the vertical midline of the whole
image. However, unlike symmetry, the computation for balance involves the integrals of the two sides
rather than being pixel by pixel. The left and right integrals are then subtracted, and the absolute value
of the result normalized by their sum. This measure gives an index of imbalance also ranging from 0
(full balance) to 1 (full imbalance).

2.6.3. Thickness of Balance Line

We further extend the balance measure above to catch finer details of balance composition. Artists
often compose an image by parts as well as a whole. For example, while an image may be perfectly
balanced at the bottom of the canvas, it may not be at the top. The overall balance measure in
Section 2.6.2 does not capture this difference. To do so, we take the same computation of balance but in
a row-by-row manner. This gives us a row-wise vertical balance line. We measure the “thickness” of
this line as the relative median absolute deviation of all the points on the line divided by the horizontal
size of the canvas. Thus, this measure expresses the thickness of the balance line as fraction of the
size of the canvas, and thus being similar for small and large paintings. The measure is such that the
thicker the line is, the greater is the amount of changes in balance across the image.

2.6.4. Complexity of Order 1

This form of complexity is the relative intensity entropy of an image. Thus, Complexity of
Order 1 is the entropy of the distribution of intensities normalized by the maximal possible intensity
entropy for an image of the same dimensions. An image with a wider distribution of intensities leads
to greater Complexity of Order 1. This measure gives an index of complexity ranging from 0 (no
complexity—only one intensity) to 1 (maximal complexity—all possible intensities equally likely).

2.6.5. Complexity of Order 2

This form of complexity captures Complexity of Order 1 minus the loss of complexity due to the
spatial organization of the image. While the distribution of pixel intensities may be the same in two
images, the relative spatial organization can be different. For example, an image with relatively large
regions of isometric intensities (for example, large objects, shadows, or walls) will be less complex
due to the spatial grouping. In contrast, images with finer details (for example, embroidered clothing
or smaller objects) will have greater complexity. In the latter example, Complexity of Order 2 will
be larger than in the former. We measure the spatial organization underlying Complexity of Order
2 through the ability to explain the image with isometric transformations. (They are translations,
rotations, reflections, and their compositions). Consequently, the resulting entropy comes from the
two-dimensional distribution of intensities obtained by juxtaposing an image with all possible isometric
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transformations of it. We then divide the outcome by the maximal possible Entropy of Order 2 for an
image of the same dimensions. Therefore, Complexity of Order 2 ranges from 0 to 1. An index of 0 for
Complexity of Order 2 occurs in single-intensity images, while 1 happens for spatially random images
with all possible intensities equally likely.

2.6.6. Spatial Simplicity

As explained in Section 2.6.5, Complexity of Order 2 is Complexity of Order 1 minus the loss of
complexity due to the spatial organization of the image. Hence, Complexity of Order 2 depends and
is never greater than Complexity of Order 1. To obtain an index that captures spatial organization
independently of Complexity of Order 1, we subtract from it Complexity of Order 2. We call this index
Spatial Simplicity. To understand why, consider that the more spatially organized is the image (large
homogeneous regions) the larger is Spatial Simplicity. From the definitions of Complexities of Order 1
and 2, Spatial Simplicity ranges from 0 to 1.

3. Results

3.1. Evolution of Neuroaesthetic Variables Throughout the Renaissance

In this study, we were interested in the drift of values of neuroaesthetic variables in relation
to the passing of time and the evolution of art. Because specialized brain mechanisms constrain
these variables, one may expect that they remain relatively constant over time. In contrast, a recent
study demonstrated that a certain degree of flexibility appears to exist with respect to neuroaesthetic
variables [4]. Therefore, they could potentially evolve across different periods of art. We thus asked
whether changes across art periods can occur in the absence of evolution of neuroaesthetic variables.
To answer this question, we first performed computational measurements of asymmetry, imbalance,
and complexity (normalized entropy—[3]). In particular, we probed the changes that happened to
these variables in Italy and in the rest of Europe. Our study involved a time span of close to 200 years
of Renaissance. In Figure 1, we see the results divided to the periods of Early Renaissance, High
Renaissance, and Mannerism.

Figure 1. Spatiotemporal Evolution of Neuroaesthetic Variables throughout the Renaissance. (a) Index
of Asymmetry; (b) Index of Imbalance; (c) Index of Complexity of Order 1; (d) Index of Complexity of
Order 2. Error bars are standard errors. Whereas asymmetry remained statistically constant throughout
the Renaissance, imbalance rose and complexities fell, especially in the Early Renaissance.
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Our analysis revealed no significant changes in symmetry across the Early Renaissance, High
Renaissance, and Mannerism (Figure 1a). In contrast, imbalance rose significantly between the Early
and High Renaissance (Figure 1b, two-way ANOVA and post-hoc two-sided t-test, 298 d.f., t = 3.19,
p < 0.002). The degree of imbalance grew by almost 30% in the span of 80 years. Complexity (i.e.,
normalized entropy) also evolved over time. We found falls in Complexities of Order 1 and Order 2
between the Early and High Renaissance (Figure 1c,d). These falls were significant for both Order
1 (432 d.f., t = 6.90, p < 2 × 10−11) and Order 2 (449 d.f., t = 7.26, p < 2 × 10−12). The falls reduced
complexities of both orders by about 10%. Interestingly, however, no changes occurred in imbalance or
complexity from High Renaissance to Mannerism. Hence, all changes in neuroaesthetic variables took
place during the Early Renaissance. Finally, although we detected temporal changes in these variables
throughout the Renaissance, we found no significant differences between Italy and the rest of Europe.

In conclusion, although symmetry was constant throughout the Renaissance, balance and
complexities fell during the Early Renaissance.

3.2. Abrupt Transitions at the End of the 15th Century

To quantify these results further and to compare top artists with the other painters in our dataset,
we produced scatter plots of the data. An example of the analysis of these plots appears in Figure 2 for
Complexity of Order 2 (normalized spatial entropy).

Figure 2. Analysis of the Scatter Plot of Complexities of Order 2 for Renaissance Paintings (a) Scatter
Plot for All paintings (b) Best Fits of Four Models to Medians of the Data (25 paintings per median)
(c) Kendall’s τ in Three Non-overlapping Time Windows During the Renaissance. The star indicates a
Kendall’s τ statistically significantly different from zero (d) Kendall’s τ and their standard errors for
non-overlapping, consecutive periods with 55 paintings each. The Complexity of Order 2 appeared to
fall abruptly in the last decade of the 15th century.

The basic scatter plot for Complexity of Order 2 appears in Figure 2a, in which each point
represents an individual painting. The abscissas correspond to the years of painting completion and the
ordinates are the measured complexities. The data show great variability in each moment of portrait
evolution. To quantify the variability, we calculated the ratio between the standard deviation and the
mean of the Complexity of Order 2. Overall, this variability ratio was 15%. Despite the variability,
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the results in Figure 2a confirmed and extended the temporal trends in Figure 1. One observes that
the Complexity of Order 2 falls during the Renaissance. The Kendall’s τ correlation coefficient was
statistically significantly negative for Complexity of Order 2 (Kendall’s τ = −0.211, p < 3 × 10−11).

We attempted to characterize the fall of Complexity of Order 2 throughout the Renaissance by
fitting four models (Equations (1)–(4); Figure 2b). Figure 1d had suggested that this fall was nonlinear
and thus, we attempted exponential and error-function fits (Equations (3)–(5)). The latter seemed
especially relevant, because no fall was apparent from the High Renaissance to the Mannerism. For
completeness, we also attempted constant and linear fits. All the fits were statistically robust, by first
extracting median complexities in small sections of the data (black dashed line in Figure 2b—obtained
from the scatter plot with medians from 25 paintings).

The median Complexity-of-order-2 curve appeared to exhibit an abrupt fall around 1490. Not
surprisingly, therefore, the Error-function model (Equation (4)) provided the best fit to the data. For
example, the sums of squared errors for the optimal fits were 0.036, 0.014, 0.013, and 0.0068 for the
Constant, Linear, Exponential, and Error-function models respectively. However, that the fit was better
for the Error-function model was perhaps not surprising, because it had more parameters and could
subsume some of the other models. Hence, we tested the quality of the fits with a regression test for
arbitrary fits (Section 2.4; [21,22]). This test considered the number of parameters of the models. The
test first plotted model predictions against the data and then analyzed the statistics of the resulting
linear regression. The predictions were of positive correlation, with an intercept of 0 and a slope of 1.
For all models, except the Constant one, we could not reject the null hypothesis that the correlation
was positive. But the correlation was highest for the Error-function model (R2 = 0, 0.61, 0.65, and 0.81
for the Constant, Linear, Exponential, and Error-function models respectively). Furthermore, we could
reject that the intercept was zero for the Constant, Linear, and Exponential models (p < 0.0001, p < 0.005,
and p < 0.008 respectively). In contrast, we could not reject this null hypothesis for the Error-function
fit. Similarly, although we could not reject that the slope was 1 for the Error-function model, we could
reject this null hypothesis for the Constant, Linear, and Exponential models (p < 0.0001, p < 0.005, and
p < 0.008 respectively). Consequently, the Error-function model provided a superior fit than did the
others. This superiority was true for all the fits in this article for data exhibiting trends. Moreover, we
could not reject the Error-function model for any of these data.

The excellent error-function fit reinforced the conclusion of an abrupt fall of Complexity of Order
2 around 1490. The optimal transient year parameter (t0 + α3 in Equation (4)) was 1493. In addition,
the optimal transition was indeed abrupt as shown by the red line Figure 2b. However, the transition
was not as abrupt as suggested by the red line. This line was obtained by fitting the curve of medians
from 25 paintings, corresponding to a span of 12 years around 1493, namely [1488–1500]. Therefore, all
that we could say was that 12 years was the upper bound for the duration of the transition. We call this
time window ([1488–1500] for this example) the upper-bound transition interval.

Such an abrupt transition was surprising, because it was not immediately apparent in the scatter
plot (Figure 2a). We thus wished to obtain model-independent evidence for such a transition. This
evidence is what Figure 2c,d show. In Figure 2c, we show the Kendall’s τ correlation coefficients for
three non-overlapping section of the data. The middle section has 50 paintings around 1493. The other
sections have all the paintings before and after the middle section. As the figure shows, although
the middle section is far smaller than are the others, only it has a statistically significantly negative
Kendall’s τ. The Kendall’s τ for the middle section is −0.275, with p < 0.004 that the correlation
coefficient is 0. Comparison of this Kendall’s τ with that obtained for the entire data (−0.211) suggests
that most of the fall of Complexity of Order 2 happens during the period encompassed by the middle
section [1478–1502]. This result is compatible with the upper-bound transition interval estimated above.

Further confirmation of the conclusion of abrupt transition appears in Figure 2d. This figure
plots the Kendall’s τ’s and their standard errors for non-overlapping, consecutive sections of the data
comprising 55 paintings. Only one point in the plot is statistically significantly negative, namely, the
one centered on 1492.
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In conclusion, our data indicate an abrupt fall in Complexity of Order 2 in the last decade of the
15th century. Similar analyses have shown abrupt transitions in most other variables studied in this
paper, except as indicated.

3.3. Dynamics of Neuroaesthetic Variables and the Top Painters

We extended the scatter-plot analysis of Section 3.2 to Asymmetry, Imbalance, and Complexity
of Order 1. In particular, we superimposed on the scatter plots temporal trend lines to help quantify
the time courses of the drift of values of neuroaesthetic variables (Equations (4) and (5)). Finally, we
colored the points of the top artists (Section 2.2) to compare them with peers from their periods. The
results appear in Figure 3.

Figure 3. Scatter Plots of the Evolution of Neuroaesthetic Variables throughout the Renaissance with
Error-function Fit (a) Index of Asymmetry (b) Index of Imbalance (c) Index of Complexity of Order 1
(d) Index of Complexity of Order 2. Data points from portraits of the top painters of the Renaissance
are colored for ease of identification. Except for asymmetry, all aesthetic variables considered here
undergo an abrupt transition at the end of the 15th century. For the most part, the statistics for the top
painters are like those of their peers.

As for Complexity of Order 2 (Figure 2), Figure 3 shows great variability in each moment of
portrait evolution. This variability holds for the results of both the whole group of painters and the
work of the leading masters. The ratio between the standard deviation and the mean is 28%, 73%, and
13% for asymmetry, imbalance, and Complexity of Order 1 respectively. Consequently, the variability
is lowest for complexities (see also Section 3.2) and highest for balance.

Also, like Figure 2, despite the variability, the results in Figure 3 confirmed and extended the
temporal trends in Figure 1. The Kendall’s τ correlation coefficient was not significantly different
from zero for asymmetry (see its robust constant regression in Figure 3a). However, the coefficient
was statistically significantly positive for Imbalance (Kendall’s τ = 0.0738, p < 0.03). In contrast, the
coefficient was statistically significantly negative for Complexity of Order 1 (Kendall’s τ = −0.204,
p < 2 × 10−10), as it was for Order 2 (Section 3.2). The Error-function regression lines (Equation (4))
attempted to capture these positive and negative tendencies in the evolution of the neuroaesthetic
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variables. The line rose for imbalance (Figure 3b; obtained from the scatter plot with medians from
30 paintings). But the line fell for complexities (Figure 3c,d; obtained from the scatter plot with medians
from 25 paintings). The best-fit transition times for Imbalance and Complexities of Order 1 were
1467 and 1502 respectively. The corresponding upper-bound transition intervals (see discussion of
Figure 2b) were [1451–1473] for imbalance and [1499–1505] for Complexity of Order 1. Therefore, the
transition was about 25 years earlier for imbalance than Complexity of Order 2 (see also Section 3.2).
The transition was also slower for imbalance. Moreover, the transition may have been about 10 years
later for Complexity of Order 1 than of Order 2.

The top painters did not generally appear to behave differently from their peers in terms of
neuroaesthetic variables. Statistical comparisons of the values of their neuroaesthetic variables show
relatively equal distribution above and below the trend lines. Titian was the only exception for
Complexity of Order 1 (t = 3.48, 17 d.f., and p < 0.003). In turn, two painters were exceptions for
Complexity of Order 2. They were van Eyck (t = 3.42, 5 d.f., and p < 0.02) and Titian (t = 3.11, 17 d.f.,
and p < 0.007). These painters produced portraits that were less complex than were those of the peers,
as evaluated by the Error-function model.

In sum, balance and complexity declined abruptly towards the end of the 15th century, but this fall
was not generally due to the top painters of those times. Together with the results of Sections 3.1 and 3.2,
we thus established that neuroaesthetic variables were not constant throughout the Renaissance.

3.4. Evolution of the Thickness of Balance Lines

To understand the decline of balance over time, we must start from the definition of imbalance. We
defined it relative to the midline of the canvas. Elsewhere, we also considered the position of balance,
i.e., the place for which the integrals of intensities to the right and left of it were equal [4]. Thus, the
decline of balance in the Renaissance meant that the distance between the midline and the position
of balance tended to increase over time (see examples in Figure 4a,b). However, this decline did not
imply a rise in the sloppiness of balancing different parts of the portrait. Painters could continue to
balance portraits delicately but simply do it in a position of balance away from the midline. In an
earlier publication, we reported that painters in the Early Renaissance not only balanced their portraits,
but also did so at every row of the canvas [4]. We thus decided to test if this delicate form of balance
was also diminished as the Renaissance progressed. To do so, we measured the positions of balance at
every height of the painting. All these points together formed the Balance Line (Figure 4c,d). We then
measured the thickness of this line as a fraction of the horizontal size of the canvas. The results appear
in Figure 4e,f.

The results show that the thickness of the balance line also rises in the Renaissance. We can
appreciate an example by comparing a portrait by Domenico Veneziano in the Early Renaissance
with one by Giovanni Battista Moroni during Mannerism (Figure 4c,d, respectively). In Veneziano’s
portrait, the balance line shows that the distributions of intensities on the two sides of the midline of
the canvas are similar. The balance line is close to midline at every height analyzed. In contrast, in
Moroni’s portrait, the balance line has more variation across vertical positions. Hence, the balance
line in Moroni’s portrait has more thickness (0.165) than in Veneziano’s (0.018). Thus, Moroni was
“sloppier” in balancing different parts of his portrait than was Veneziano.

This difference held when we analyzed the thicknesses of balance lines throughout the Renaissance.
In the Early Renaissance, the thickness of the balance line was significantly lower in Italy than in the
rest of Europe (two-way ANOVA and post-hoc two-sided post-hoc t-test, 149 d.f., t = 4.05, p < 9 ×
10−5—Figure 4e).

Afterwards the thickness of the balance line grew in Italy from the Early to High Renaissance
(211 d.f., t = 7.00, p < 4 × 10−11—Figure 4e), catching up with the values in the rest of Europe.
In contrast, the thickness of the balance line was statistically constant in the rest of Europe throughout
the Renaissance. Therefore, portraits in the rest of Europe were more prescient of future trends of
balance than were Italian ones.
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Figure 4. Balance and Balance Line. (a,b) Portraits with Midline (Red) and Position of Balance
(Green) Marked. (a) Jan van Eyck, Portrait of Cardinal Niccolo Albergati Papal Envoy in the Spanish
Netherlands, 1431–1432, Kunsthistorisches Museum, Viena, Austria. Photo Credit: Erich Lessing/Art
Resource, N.Y. (b) El Greco, Portrait of a Man (possibly Alonso de Herrera) 1600, Musée de Picardie,
Amiens and Picardy, France. (c,d) Portraits with Balance Lines Marked. (c) Domenico Veneziano,
Head of a Tonsured, Beardless Saint 1440-4, The National Gallery, London, Great Britain. Photograph:
©The National Gallery, London National Gallery Picture Library, The National Gallery Company.
(d) Giovanni Battista Moroni; Portrait of Mario Benvenuti 1560, The John and Mable Ringling Museum
of Art, the State Art Museum of Florida, a division of Florida State University. (e) Spatiotemporal
Evolution of the Thicknesses of Balance Lines throughout the Renaissance. (f) Scatter Plot of the
Evolution of the Thicknesses of Balance Line throughout the Renaissance. Conventions for Panels
E and F are as in Figures 1 and 3. The thickness of balance line was low in Italy during the Early
Renaissance, but rose before the High Renaissance.

The scatter plots showed that the thicknesses of the balance lines (Figure 4f) followed a trend
like that of imbalance (Figure 3d). The data in Figure 4f show great variability of thicknesses in each
moment of portrait evolution. The ratio between the standard deviation and the mean of the thicknesses
of balance lines was 50%. Despite the variability of thicknesses, the results in Figure 4f confirmed
and extended the temporal trends in Figure 4e. Portraits tended to be carefully balanced in the Early
Renaissance, but exhibit sloppier balances in the High Renaissance and Mannerism. Accordingly, the
Kendall’s τ correlation coefficient was statistically significantly positive for the thicknesses of balance
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lines (Kendall’s τ = 0.190, p < 1.21 × 10−9). The best-fit transition time was 1467, confirming that most
change happened in the Early Renaissance. However, the change was much slower for the thickness
of balance line than for other aesthetic variables. Consequently, its change was not abrupt. Finally,
as for imbalance (Figure 3b), top painters did not generally produce portraits with thicker balance lines
than those of peers (Figure 4f). In conclusion, as the Early Renaissance progressed, painters tended to
become “sloppier” in balancing different parts of the portrait.

3.5. Evolution of Spatial Complexity

How are we to understand the decline of complexity over time? The Complexities of Order 1
and 2 in Figures 1 and 3 have different types of interpretation [4]. Complexity of Order 1 measures
the normalized entropy in the distribution of intensities in the image. In turn, Complexity of Order
2 begins from Complexity of Order 1 and then discounts the reduction of entropy due to spatial
organization. Consequently, if we want to isolate the loss of complexity due to spatial organization
alone, we must calculate Complexity of Order 1 minus Complexity of Order 2. We call this quantity the
Spatial Simplicity [4]. The temporal drift of the Spatial Simplicity throughout the Renaissance appears
in Figure 5.

Figure 5. Evolution of Spatial Simplicity throughout the Renaissance. (a) Spatiotemporal Evolution.
(a) Scatter Plot of the Evolution. Conventions for Panels (a) and (b) are as in Figures 1 and 3. Spatial
simplicity was lower in the Early Renaissance, but rose abruptly at the end of the 15th century.

Portrait paintings tended to become spatially simpler as the Renaissance progressed. Thus, in
High Renaissance and Mannerist periods, spatial complexity was lower than in the Early Renaissance
(Figure 5a; t = 4.38, 447 d.f., p < 0.00002). However, as for Figure 1, although we detected temporal
changes in Spatial Simplicity throughout the Renaissance, we found no significant differences between
Italy and the rest of Europe. The scatter plots confirmed the rise of spatial simplicity (Figure 5b).
Accordingly, the Kendall’s τ correlation coefficient was statistically significantly positive for spatial
simplicity (τ = 0.0994, p < 0.002). The Error-function regression lines (Equation (4)) rose abruptly for
Spatial Simplicity (Figure 5b; obtained from the scatter plot with medians from 35 paintings). The
best-fit transition time was 1486, with the upper-bound transition interval lasting 17 years, namely,
[1477–1494]. Finally, four of the seven top painters produced portraits with different spatial-simplicity
distributions than those of their peers (Figure 5b). Botticelli (t = 2.55, 8 d.f., p < 0.04), van Eyck (t = 3.19,
4 d.f., p < 0.04), and Raphael (t = 3.76, 18 d.f., p < 0.002) exhibited more spatial simplicity than did their
peers. In contrast, Caravaggio exhibited less (t = 3.60, 7 d.f., p < 0.009).

Hence, spatial complexity (the component of entropy due to spatial organization) fell abruptly
towards the end of the Early Renaissance. This fall mimicked the decline of the complexity due to the
distribution of intensities (Complexity of Order 1—Figure 3c).
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3.6. Chiaroscuro and the Fall of Complexity

The decline of complexity over time (Figure 1c,d, Figure 2, Figure 3c,d and Figure 5) was
surprising to us. We had expected complexity to increase as paintings became more realistic in the
Renaissance. Ideas that evolved throughout the Renaissance, such as naturalism, anatomical studies,
linear perspective, and aerial perspective should perhaps have made portraits more complex. Therefore,
we wondered why complexity fell. We hypothesized that portrait paintings got simpler with the
invention of chiaroscuro. It introduced large dominant regions with fewer colors and homogeneous
intensities. We can appreciate an example of such regions by comparing a portrait by Andrea Mantegna
in the Early Renaissance with one by Caravaggio during Mannerism (Figure 6a,b, respectively).
Mantegna’s portrait has no dominant regions in terms of blacks and white, and thus has no or very little
chiaroscuro. In contrast, Caravaggio’s portrait is a good example of chiaroscuro, with some bright regions
contrasting against a large, dark background. Hence, the indices of chiaroscuro extremes (Equation
(8)) and chiaroscuro intensities (Equation (11)) in Mantegna’s portrait (0.33 and 0.094 respectively)
were lower than those in Caravaggio’s (0.75 and 0.83 respectively). Thus, our measurements confirm
the common knowledge that Caravaggio used chiaroscuro more than did Mantegna (and most other
painters—[8]). A quantitative study of these chiaroscuro indices across the Renaissance appears in
Figure 6c–f.

Figure 6c revealed that the index of chiaroscuro extremes (Equation (8)) rose between the Early
Renaissance and the High Renaissance periods (two-way ANOVA and post-hoc two-sided t-test,
303 d.f., t = 8.28, p < 4 × 10−15). However, no such rise occurred from the High Renaissance to
Mannerism. Figure 6d also showed that this index grew abruptly towards the end of the Early
Renaissance (Kendall’s τ = 0.231, p < 3 × 10−13; best-fit transition time = 1487, upper-bound transition
interval lasting 15 years, namely, [1479, 1494]). These findings were replicated for the index of
chiaroscuro intensities (Equation (11)) in Figure 6e,f (313 d.f., t = 5.92, p < 9 × 10−9; Kendall’s τ = 0.194,
p < 8 × 10−10; best-fit transition time = 1481, transition interval lasting 14 years, namely, [1476, 1490]).
Another finding in Early Renaissance was the statistical similarity of Italy with the rest of Europe in
terms of chiaroscuro tendencies. Finally, we again detected little difference from top painters and their
peers (Figure 6d,f). The only exceptions were van Eyck for the index of chiaroscuro extremes (t = 3.75,
5 d.f., p < 0.02), and Caravaggio for the index of chiaroscuro intensities (t = 6.67, 7 d.f., p < 3 × 10−4).
Both van Eyck and Caravaggio exhibited more chiaroscuro than did their peers.

That the degree of chiaroscuro usage went up in the Renaissance was consistent with our hypothesis
for the decline of complexity. However, we still had to demonstrate that more chiaroscuro in a portrait
tended to lead to less complexity. In Figure 7, we classified portrait paintings in three compositional
concepts that could affect complexity: linear perspective, aerial perspective, and chiaroscuro (Section 2.3).
We also included a class for those portraits that do not belong to any of these three categories. Finally,
we quantified Complexity of Order 1, spatial simplicity, and the index of chiaroscuro extremes in these
four categories.

In Figure 7a, we observe that the prevalence of chiaroscuro portraits increases as time progresses in
the Renaissance. This increase occurs specially from the Early to the High Renaissance (Fisher’s exact
test, odds ratio = 0.30, p < 5 × 10−4). Although we categorized these portraits by hand (Section 2.3),
Figure 7b supported the idea that our chiaroscuro category was correct. The index of chiaroscuro extremes
was higher for this category than was for the others (one-way ANOVA followed by post-hoc one-sided
t-tests; linear perspective, 114 d.f., t= 6.37, p< 3× 10−9; aerial perspective, 151 d.f., t= 6.52, p< 6 × 10−10;
None, 381 d.f., t = 8.28, p < 2 × 10−15). Consequently, the use of chiaroscuro techniques increased
over time. In contrast, the prevalence of portraits with the other tested compositional categories,
namely, linear and aerial perspective, was statistically constant throughout the Renaissance. Hence, of
the compositional elements studied, chiaroscuro is the only candidate available to explain the fall of
complexity over time. Is chiaroscuro contributing to the simplification of portraits? The answer to this
question appears in Figure 7c,d. The former shows that Complexity of Order 1 is significantly lower in
portrait paintings with chiaroscuro than in portraits in the other categories (linear perspective, 106 d.f.,
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t = 3.83, p < 2 × 10−4; aerial perspective, 143 d.f., t = 6.09, p < 5 × 10−9; None, 378 d.f., t = 5.40, p < 6 ×
10−8). Consequently, chiaroscuro reduces the complexity of the distribution of intensities. Furthermore,
in Figure 7d, we see that spatial simplicity is significantly lower in portraits with chiaroscuro than is in
portraits of the other categories (linear perspective, 106 d.f., t = 3.30, p < 2 × 10−3; aerial perspective,
142 d.f., t = 2.57, p < 6 × 10−3; None, 372 d.f., t = 3.37, p < 5 × 10−4). Therefore, chiaroscuro tends
to reduce the spatial complexity of portraits. We conclude that the reduction in complexity in the
Renaissance may be due to the rise of chiaroscuro.

Figure 6. Evolution of Chiaroscuro. (a,b) Illustration of Portraits without (a) and with (b) chiaroscuro.
(a) Andrea Mantegna, Portrait of Jacopo Antonio Marcello, 1453, Bibliothèque de l’Arsenal, Paris, France.
Photo Credit: Erich Lessing/Art Resource, N.Y. (b) Michelangelo Merisi da Caravaggio, Narcissus,
1597, Galleria Nazionale D’arte Antica nel Palazzo Corsini, Rome, Italy © 2006, Scala, Florence/Art
Resource, N.Y. C. Spatiotemporal Evolution of the Index of Chiaroscuro Extremes. (d) Scatter Plot
of the Evolution of the Index of Chiaroscuro Extremes. (e) Spatiotemporal Evolution of the Index
of Chiaroscuro Intensities. (f) Scatter Plot of the Evolution of the Index of Chiaroscuro Intensities.
Conventions for Panels A and B are as in Figures 1 and 3. The degree of chiaroscuro rose abruptly in
the Early Renaissance.
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Figure 7. Link between Chiaroscuro and Complexity. (a) Evolution of Various Compositional Elements
throughout the Renaissance. (b) Link between these Compositional Elements and the Index of
Chiaroscuro Extremes. (c) Link between these Compositional Elements and Complexity of Order 1.
(d) Link between these Compositional Elements and Spatial Simplicity. Error bars are standard errors.
The emergence and rise of chiaroscuro accounted for the fall of complexity in the Renaissance.

4. Discussion

4.1. Neuroaesthetic Variables Evolved Throughout the Renaissance

In the Introduction, we raised the hypothesis that specialized brain mechanisms might constrain
neuroaesthetic variables to remain relatively constant across art periods. However, our analysis of the
Renaissance ruled out this hypothesis, showing that neuroaesthetic variables evolved.

This evolution tended to be abrupt towards the end of the Early Renaissance (Figures 1–3, Figures 5
and 6). We observed abrupt transitions centered around 1465 for balance-related variables, around
1490 for spatial complexity and chiaroscuro, and around 1500 for intensity complexity. These different
transition centers were significant, because their corresponding upper-bound transition intervals
did not overlap. The transition was significantly slower for balance-related variables than for the
others (see for example, Figure 4f). As for the other variables, the transitions were fast. They lasted
less than about 15 years for spatial complexity and chiaroscuro, and no more than about 6 years for
intensity complexity.

What are possible explanations for these abrupt transitions? The median data on Figure 2b and the
model fits in Figures 3, 5 and 6 suggest that these abrupt changes correspond to phase transitions. Phase
transitions are common in natural sciences (for example, the abrupt transition from ice to liquid water
as a function of temperature), but may also occur in the social sciences [24]. In our data, the phases are
demonstrated by the relatively constant median values of the aesthetic variables before and after the
transitions. However, although the transition between the phases is fast, it is not discontinuous. Hence,
the abrupt changes of aesthetic values are second-order phase transitions (like the magnetization in iron)
and not first-order (like the ice-to-water transformation). The essential components of such transitions
are nonlinear interactions between the basic components of a system, which is under the influence
of changing external conditions. We propose that the basic elements are the values associated with
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different instantiations of aesthetic variables by individual artists. In turn, the nonlinear interactions
are due to mutual influence between artists learning from each other [7]. Finally, the changing external
environment could exert social pressure to innovate and lead to cultural trends ([25]—for example,
the desire for increasing realism during the Renaissance—[8]). With such external pressure, the phase
transitions of aesthetic variables could happen as follow: Under pressure to innovate, an artist invents
a technique, whose aesthetic value is superior to extant pieces of art (for instance, chiaroscuro). A small
number of other artists are exposed to the new technique, using and perfecting it. As the number of
artists using the technique increase, the probability that others learn increases exponentially. Therefore,
the use of technique accelerates rapidly, causing the phase transition.

4.2. What Explains the Unexpected Declines of Balance and Complexity

Why did balance decrease throughout the Renaissance? Because balance is highly salient and
preferred [26–28], we might have expected balance to increase over time. An explanation for the decay
of balance and the thickening of balance lines might be the rise of dynamism in paintings, leading to
the Baroque period [8]. Representation of motion brings with itself new neuroaesthetic variables that
might compete with balance. Such competition exists between complexity and balance [29]. Computer
simulations with a new theory for the learning of aesthetic values suggest that learning under the
influence of motivated behaviors may have a role in generating these competitions [7].

Why did complexity fall throughout the Renaissance? Our expectation before starting this study
was that the addition of details in paintings should perhaps have increased their entropy and thus,
complexity. After all, Renaissance painters were striving to make their portraits more realistic, by
studying nature and adding features such as perspective [30]. Perhaps with the realism, complexity
would rise. We considered different factors that could fight complexity. One factor would be the
invention of aerial perspective, with its tendency to smear details from distant objects [8]. However,
our results argued against the aerial-perspective factor (Figure 7). An alternate factor for the fall
of complexity would be the gradual emergence of chiaroscuro, with its large dominant regions with
relatively homogeneous colors or intensities. Our data confirm the relevance of this factor, showing a
strong link between the fall of complexity and the rise of chiaroscuro (Figure 7). This link makes an
interesting point: Fall in complexity does not imply fall in realism. Part of the reason to use chiaroscuro
is to increase the sense of realistic three-dimensional space through shadow effects [31].

4.3. Temporal Constancy of Symmetry

Different from balance and complexity, we did not detect temporal trends in the degree of
symmetry in portrait paintings across the Renaissance (Figures 1a and 3a). However, this lack of
trend did not mean that symmetry was frozen. We used the Kendall’s τ statistic to test for such
trends. This statistic is used to measure the ordinal association between two quantities [16]. However,
different aspects of the distribution of symmetries could have changed over time without affecting this
association. For example, inspection of Figure 3a suggests a temporal change of the variance in the
distribution of the Index of Asymmetry.

Why did the central tendency of symmetry not exhibit a temporal trend? The emphasis on
symmetry appeared as a rebirth of the classical ideas of composition from antiquity [31]. Hence,
perhaps the cultural force of the classic ideals kept symmetry strong throughout the Renaissance.
An alternative is that symmetry is an important variable in the brain, thus constraining what painters
do. We believe that this is not the case, because from the Early Renaissance, portrait painting is not
mostly frontal, therefore with an automatic break of symmetry [32]. Instead, we propose that our
mathematics of symmetry is delicate, because of the point-by-point comparisons. Consequently, the
variability of the data could have destroyed temporal trends of symmetry. One component of the
variability could have arisen by our choice of using the Artstor Digital Library. Therefore, the digital
images were acquired by different institutions without common standards for color balance or lighting
conditions. Future studies of temporal trends of symmetry should try to standardize the methods of
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image acquisition. Other factors of variability beyond image acquisition are individuality of artists,
image degradation over time, and image restoration. Those factors are harder to control and may cause
the permanent loss of any possible small temporal trends of symmetry. Fortunately, all these factors of
variability do not invalidate statistically significant temporal trends such as those observed for balance,
complexities, and chiaroscuro. This is especially fortunate for the latter, because degradation and
restoration could have had a specially devastating effect on chiaroscuro trends.

In contrast to symmetry, the mathematics of balance and complexity involve integrations that
make the measurement of these variables more robust. Consequently, variations across paintings could
impair detection of any changes of symmetry that may be occurring during the Renaissance. Future
efforts could try to bypass this potential limitation by using either multiple measures of symmetry (for
example, radial—[33]) or object-wise, local symmetry [34,35] instead of global measures obtained from
the whole picture.

4.4. Italy Versus the Rest of Europe

A surprising result in our study was obtained when comparing the evolution of balance in Italy
versus the rest of Europe. When measuring the progression of the thickness of balance lines, the rest
of Europe seemed to be more prescient about their future trends than Italy was. For example, the
thicknesses of balance lines rose over time during the Renaissance (Figure 4e,f). These thicknesses
were already larger in the rest of Europe than in Italy in the Early Renaissance (Figure 4e). Similar
results (although without strong statistical significance) held for Spatial Simplicity and both indices of
chiaroscuro (Figures 5a and 6c,e). How could we understand these results given that for most scholars,
Italy was the most influential site of the Renaissance [36]. In truth, the Northern Renaissance remained
relatively independent of Italy until the end of the 15th century [8]. In addition, some scholars even
suggest a North-to-South direction of influence [37,38]. Venetians had much in common with the
Flemish in their oil technique and representation of light. Only after 1500, the Italian Renaissance
began influencing the rest of Europe. Therefore, the rest of Europe could develop a style with both
chiaroscuro and relatively low spatial complexity before did the Italian Renaissance.

4.5. Top Master Painters Versus Peers

We were curious whether the top master painters of the Renaissance distinguished themselves by
having different values of neuroaesthetic variables. When we probed this issue, we found that for the
most part, the top artists had similar statistics as the rest of their contemporaries. (The standardization
of the methods of image acquisition proposed in Section 4.3 could help reveal more delicate differences
between artists.) However, there were some interesting and important exceptions. One of the most
important examples was van Eyck, who was ahead of his time in terms of various artistic trends of the
Renaissance. He led specially in trends related to chiaroscuro and spatial complexity of the portraits
(Figures 3d, 5b and 6d). These van Eyck results are compatible with those discussed in Section 4.4. We
pointed out in that section that Flanders was ahead of Italy in terms of neuroaesthetic variables in the
Early Renaissance. Another worthwhile painter to mention in terms of uniqueness of neuroaesthetic
variables was Caravaggio, whose portraits showed high spatial complexity (Figure 5b). Thus, although
he painted in chiaroscuro [8], the bright portions of his paintings were highly complex.

A possibly surprising negative result was that da Vinci’s portraits did not yield chiaroscuro indices
statistically significantly higher than did those of his peers (Figure 6d,f). This is surprising, because
many consider that in European painting, he was the one who brought the technique to its full
potential [8,39]. He painted some clearly chiaroscuro pieces (for example, The Adoration of the Magi,
1481). However, he also had non-chiaroscuro portraits (for example, the Mona Lisa, 1517). Figure 6f
illustrates this variety of da Vinci styles. This figure shows that his portraits yield indices of chiaroscuro
intensities in roughly equal amounts above and below the fit line. This distribution contrasts sharply
with that for Caravaggio, for whom the fit line is entirely below the corresponding indices.
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Apropos Leonardo da Vinci’s paintings, a modification of our techniques may be able to reveal
some special statistics as compared to his contemporaries. da Vinci is famous for his sfumato
technique [10,27]. If we increased the spatial resolution of our analysis, we could perhaps gauge
sfumato through Complexity of Order 2 in small translations of the image. However, we would have
to perform this analysis near the edges of image objects. To achieve this goal, we would have to add
shape analysis, such as edge detection to our study [40]. Such shape analysis could enhance our studies
in the future in other ways. In our paper, the analysis of aesthetic variables was performed with global
tools, accounting for pixel statistics obtained from the entire image. An interesting question concerns
the analysis of these variables in shapes in the centerpiece. These shapes would be faces in the case
of portraits. Using edge-detection and machine-learning algorithms [41]), the outlines of faces in
paintings could be selected. Then, the same measures used in this paper could in principle be applied
to these selections. Based on our previous study [4], we believe that these focused measures might
reveal interesting results. In that study, we did a manual pose classification of the subjects of portrait
paintings and found that artists seldom painted their subjects in frontal poses, instead opting for a
side-on or 3

4 pose. Often, the pose was such that the head would be turned in relation to the torso to
create greater variation. Our analysis showed that those paintings with complex poses had greater
Complexity of Order 2, and lesser balance and symmetry, which is what we would expect here as well.

4.6. Implications of Evolution across Art Periods

Why does the distribution of the values of neuroaesthetic variables drift over time if the brain
constrains them? This is only possible if these variables have flexibility to change in the brains of
artists (and other people). Elsewhere, we propose that the range of values of these variables form a
space, which we termed neuroaesthetic space [4]. The aesthetic choices of each artist would reside in a
sub-region of this space. The locations of this sub-region depend on both the life experience of each
artist and the materials and techniques available him or her. Consequently, artists learn from their social
and cultural background, and especially, from other artists of the cultural moment. Thus, we propose
two principles as guides for how neuroaesthetic variables evolved in portrait painting throughout
the Renaissance: (1) New materials, techniques, or ideas by artists, propelled other artists to change
through learning from the cultural environment. In this paper, the best example was the evolution of
chiaroscuro. Our data set contained a portrait from as early as 1438 that belonged to the chiaroscuro
category (Portrait of Giovanni Arnolfini, Jan van Eyck). Other painters liking the result were compelled
to produce more and better chiaroscuro pieces (Figure 7a). (2) The necessity of artistic innovation was
accelerated by different workshops competing for the favor of patrons [12]. For example, many artists
included in this study, such as Pollaiuolo, da Vinci, Botticelli, and Ghirlandaio competed for Lorenzo
de’ Medici’s. Thus, such artists reciprocally affected each other’s artistic evolution, pushing aesthetic
variables to evolve rapidly. Hence, the artistic influence of aesthetic variables may have evolved in a
manner related to biological co-evolution [42].

Supplementary Materials: The supplementary materials for this article are available online at https://github.com/
ha554n/Neuroaesthetic-Variables-Measures.
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Abstract: We perform image-based denomination recognition of the Pakistani currency notes. There
are a total of seven different denominations in the current series of Pakistani notes. Apart from
color and texture, these notes differ from one another mainly due to their aspect ratios. Our aim
is to exploit this single feature to attain an image-based recognition that is invariant to the most
common image variations found in currency notes images. Among others, the most notable image
variations are caused by the difference in positions and in-plane orientations of the currency notes in
images. While most of the proposed methods for currency denomination recognition only focus on
attaining higher recognition rates, our aim is more complex, i.e., attaining a high recognition rate
in the presence of image variations. Since, the aspect ratio of a currency note is invariant to such
differences, an image-based recognition of currency notes based on aspect ratio is more likely to be
translation- and rotation-invariant. Therefore, we adapt a two step procedure that first extracts a
currency note from the homogeneous image background via local entropy and range filters. Then,
the aspect ratio of the extracted currency note is calculated to determine its denomination. To validate
our proposed method, we gathered a new dataset with the largest and most diverse collection of
Pakistani currency notes, where each image contains either a single or multiple notes at arbitrary
positions and orientations. We attain an overall average recognition rate of 99% which is very
encouraging for our method, which relies on a single feature and is suited for real-time applications.
Consequently, the method may be extended to other international and historical currencies, which
makes it suitable for business and digital humanities applications.

Keywords: image entropy; image processing; image segmentation

1. Introduction

In this paper, we propose an image-based framework for the denomination recognition of
Pakistani currency notes of the 2005 series. Such systems are important as they are used at several
situations such as automatic vending machines and supporting visually impaired people [1] to identify
the denomination of a given currency note. Consequently, such image-based denomination recognition
of currency notes has become an active area of research where the proposed solutions can be divided
into two main groups. The first group of methods [2] deals with currency images that are acquired
with scanners. Such methods are more suitable for applications like automatic teller machines (ATM).

Entropy 2019, 21, 1085; doi:10.3390/e21111085 www.mdpi.com/journal/entropy315
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However, the most common variations that are found in scanned images are the ones induced by the
variations in currency notes orientation, scale and position. The second group of methods deals with
currency note images that are taken with a camera in a cluttered environment. Such a system installed
on a smart phone can be helpful for visually impaired people in their daily life. However, these
methods face challenges due to the image variations caused by non-uniform illumination, background
clutter, and partial occlusions.

The proposed solutions are broadly divided into three different groups, where the first group uses
the so-called local features matching such as scale-invariant feature transform (SIFT) [3]. The second
group makes use of supervised machine learning algorithms such as artificial neural networks
(ANNs) [4]. Lastly, the third group of methods uses pure image processing techniques such as
template matching [5].

We take a different approach to the problem of image-based denomination recognition of
scanned currency notes. We are interested in utilizing simple image filtering, rather than using
a complex handcrafted local image descriptor or a complicated machine learning algorithm such as
a convolutional neural network (CNN). In addition to simplicity, such filtering is also invariant to
the most commonly found variations in the currency notes images. These image variations are not
explicitly identified and dealt with in any of the previously proposed methods. Figure 1 depicts the
variations that are found in the currency note images. The orientation differences found among the
currency notes of any given denomination can cause variations in their images. This makes images
of the same currency note look different from one another. This can clearly be observed in the third
column of Figure 1. Similarly, the variations caused by position and scale differences of the currency
notes induce variations in their images which are depicted in the first and second columns of Figure 1.
Lastly, the image variations can also be caused by multiple currency notes in a single image as shown in
fourth column of Figure 1. Apart from image variations, the recognition rate is also likely to be affected
by the variations caused by the condition of currency notes themselves. The standard aspect ratios of
currency notes are based on the freshly printed and unused notes as shown in Table 1. However, the
excessive and rough use of the currency notes causes wear and tear, due to which, their boundaries
become irregular. Since, we propose to use the aspect ratio as a single feature for recognizing these
notes, such irregularities in the boundaries induce variations in the aspect ratios as well. This is
demonstrated in Figure 2 where currency notes of multiple frequently used denominations are shown.
It can be observed that the aspect ratios of currency notes belonging to a single denomination vary
from one another. However, it should be noted that the measurements are based on our proposed
image-based method. To summarize, in order to achieve an accurate denomination recognition of
currency notes, it is important to address these variations. This has already been proved in other object
categories such as ancient coins [6], and butterflies and fish [7], where image variations caused by
changes in object orientation, scale, and position are very common.

Table 1. The Pakistani currency notes of the 2005 Series along with their width, height, and aspect
ratios. The aspect ratio is calculated as (height/width)×10, 000.
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Position variations Scale variations Orientation variations Multiple currency notes

Figure 1. Common image variations found in currency note images.

Figure 2. Variations in aspect ratios due to irregular currency note boundaries. The aspect ratio of each
currency note is shown below it.
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1.1. Related Work

Based on their approaches, the proposed solutions for currency denomination recognition can
broadly be divided in the following three classes.

Machine learning-based methods:

The first class of methods uses machine learning techniques such as artificial neural networks
(ANN) and support vector machines (SVMs). For instance Takeda and Omatu [4] used a mask of
slabs that is convoluted with a local pixel neighborhood such that the coefficients of the masks are
randomly chosen to be either 1 or 0. The aggregated results of several such convolutions are then
provided as input to a three layered neural network (NN). Similarly, in Frosini et al. [8], the light
refracted from the bank notes was captured with arrays of opto-electronic sensors and then provided
to a multi-layered perceptron. Takeda and Nishikagi [9] extracted the information of the currency
notes via the so-called axis symmetric masks and then provided it to an ANN. However, more recently,
a state-of-the-art performing convolutional neural network (CNN) was used by Pham et al. [10] where
they reported a result of 100% on an image dataset of 64,000 images belonging to 64 classes. In addition
to the neural networks and its variants, other machine learning algorithms such SVM were also used
along with its various types of kernels. In Chang et al. [11], the features constructed from sensors were
used to represent the key regions of a currency note to predict whether it is real or fake. The task of
classification is performed by a support vector machine (SVM) where different kernels were evaluated
for classification accuracy. Similarly, He et al. [12] used principle component analysis (PCA) features to
represent an edge image of a single banknote. A genetic algorithm (GA) was further used for feature
selection. Such image representation was then used to train an SVM model, and later for testing it.
Other machine learning algorithms used for currency recognition include the hidden Markov model
(HMM) [13], k nearest neighbors (kNN) [14] and Gaussian mixture model (GMM) [15].

Local feature matching-based methods:

A local feature descriptor is a compact representation of the pixel intensity distribution within a
local image patch. As a common practice, the feature descriptor is an N dimensional vector. For object
recognition via feature matching, the local features such as scale-invariant feature transform (SIFT) [3]
are extracted from the representative images of a given object and stored in a database. Then, from a
given image, local features are extracted and matched with the ones using a distance measure such
as the Euclidean distance. The local features of the stored image that are the nearest to the local
features of the test image are declared to belong to the same object class. The local feature matching
is also used for currency recognition. SIFT and its color variant also known as color SIFT are used
for currency recognition by [16]. Similarly, Hasanuzzaman et al. [1] used speedup robust features
(SURF) for currency recognition. More recently, Yousry et al. [17] used binary local feature descriptor
oriented FAST and rotated BRIEF (ORB) to represent the input image and then compared with the
representative images in the database using the Hamming distance. Other local features used for
currency recognition include local binary patterns (LBP) [18] and a gray-level co-occurrence matrix
(GLCM) [19].

Image processing-based methods:

The image processing based methods are purely based on pixel level manipulation techniques
such as extracting the region of interest (ROI) of a banknote and then applying various measures such
as the correlation [20]. Such methods are more relevant for real-time applications where relatively less
processing resources are available. Similarly, Youn et al. [5] used the banknote size information along
with multiple-template matching for a multiple currency recognition system.

The proposed paper currency recognition method is based on a two step process. The first
step deals with the extraction of paper currency note from the image via local entropy and range
filters. The extracted note region is then normalized and rotated to achieve scale- , translation-, and
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rotation-invariance. The second step is recognition of the extracted and processed region. This is done
by computing the aspect ratio of the extracted region as currency notes differ from one another based
on this feature. Since, the aspect ratio of a rectangular object is not affected by the scale, position, and
in-plane orientation of the object, it is also invariant to these transformations. Hence, our proposed
paper currency recognition method is invariant to changes in scale, position, and in-plane orientations.

2. Methodology

The proposed method is inspired by an automatic ancient coin segmentation [21]. Following
their method, we also segment a currency note that is imaged on a homogeneous background by the
following assumptions.

1. The image region depicting a currency note contains the highest information content.
2. The most rectangular object found in the image is a currency note that has a predefined but

slightly varying aspect ratio depending on its condition.

Therefore, the segmentation becomes a two step process. The first step deals with the extraction of
image regions with the highest information contents. The second step consists of finding rectangular
regions among the extracted ones and calculating their aspect ratios. In the following, we elaborate on
both of these steps.

2.1. Informative Region Extraction

Since, the currency note is imaged on a homogeneous background, the image region depicting the
note is likely to have more variations in terms of pixel values than the background. We employ a local
image neighborhood processing strategy to extract informative regions. The local image neighborhood
is simply a subset of image pixels arranged in rows and columns. The image filters that process a local
image neighborhood are called the local filters. In our proposed method, we use the following two
local filters.

Local entropy filter:

Entropy gives the measurement of information content in an event, signal, or in our case,
an image. Concretely, entropy is inversely proportional to the probability of a random variable
where it is maximum if the value of probability is close to zero and vice versa. In the context of image,
the information content is represented by the pixel intensity values that range from 0 to L − 1 where
L = 256. The histogram of pixel intensity values [22] represents the number of pixels per intensity
value as shown in Equation (1).

h(i) = ni i ∈ 0, 1, 2, ..., 255. (1)

Each bin in this histogram gives the count of that particular intensity value as n0, n1, . . . , n(L−1) .
In other words, the total number of pixels in the local neighborhood having intensity value i, is ni.

In order to convert this count into their respective probabilities, the histogram of intensity values is
normalized by dividing the value of each bin over the total number of pixels in the local neighborhood.
For instance, if the total number of rows in a local neighborhood is M and the total number of columns
is N, then, the normalized histogram is given as,

p(i) = h(i)/(M ∗ N) = ni/(M ∗ N), i ∈ 0, 1, 2, ..., 255 (2)

where, p(0), p(1), . . . , p(255) give the probabilities of each intensity value in the local neighborhood.
The entropy of a local neighborhood Ω in an image is then found via this normalized histogram

using Equation (3),

H(Ω) = −
255

∑
i=0

p(i). log2(p(i)). (3)
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Local range filter:

The range of a local neighborhood is simply calculated by finding the difference of maximum
intensity value in that particular neighborhood and the minimum.

To summarize, the response of local entropy filter for homogeneous image regions will be
minimum whereas it will be maximum for those regions having higher variations of pixel intensity
values. A similar result will be achieved for the local range filter. Figure 3 shows the same effect where
we depict the responses of both the filters on a one dimensional signal that is a single row of a currency
note image. The flat part of the intensity signal corresponds to the homogeneous background while
its fluctuating part shows the variations in pixel intensity values of the currency note. Consequently,
both the local filters achieve results that are adequate for both the homogeneous and fluctuating part.
It can be observed that they do not respond to the homogeneous part while their responses are more
pronounced to the part of signal representing the pixel intensity variations.
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Figure 3. Responses of local entropy and range filters on a single row of currency note images (where
the values at x-axis show the number of rows).

Sum of both filters:

Both these local filters are applied to a given note image. For each filter, the size of a local circular
neighborhood is empirically selected as 3. The resultant response of each filter is scaled to the range
between 0 and 1. Finally, both the responses are summed to get the combined response of both the
filters. The individual and cumulative responses of both filters are shown in Figure 4. The region of
images where both the filters give high response shows more informativeness than the background.
However, the border region of the currency note in the combined response is more pronounced, which
proves supportive at the stage of segmentation.
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Response of local entropy filter

Response of local range filter

Σ

Combined response

Figure 4. Responses of local entropy and range filters on a currency note image.

2.2. Currency Note Segmentation and Recognition via Aspect Ratio

For the current imaging conditions, a set of empirically defined thresholds (0.3, 0.4, 0.5, and 0.6) is
applied to the combined response image for segmenting the currency note region. All the binarized
images produced by each threshold are summed to get the final segmentation mask for the currency
note. This whole procedure is shown in Figure 5. The resulting binarized masks generated by applying
each threshold are very similar except for the last one. This effect is more or less observed on all the
images of the dataset. As a last step, the aspect ratio of the generated mask is calculated to determine
the denomination of currency note. To this end, we evaluated two kinds of aspect ratios for each
denomination that are further explained in Section 4.

Σ

Figure 5. The process of segmentation mask generation using threshold-defined binarization masks.

3. A New Pakistani Currency Notes Dataset (PCND):

We collect an image dataset of Pakistani notes with images having high variations with respect to
in-plane orientation and position. These images are taken with a desktop flatbed scanner where the
background is completely homogeneous. All the seven denominations of the Pakistani Currency of
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the 2005 series are represented in the dataset. We divide our dataset into two disjoint subsets. The first
subset that we call the “training set” is used to calibrate the aspect ratio for each note. This is further
elaborated in Section 4. We call the second dataset the “test dataset”, where currency notes of various
denominations are scanned at arbitrary positions and orientations in the following three different
settings.

1. This is the simplest setting with only one currency note per image.
2. The images in this setting contain two currency notes of different denominations. However, the

notes are separated from each other to such an extent that they are not overlapped. Overlapping
will cause their boundaries to merge thus resulting in a wrong segmentation. For this setting, the
notes of consecutive denominations are chosen as they are more likely to get confused.

3. Finally, three notes per image of consecutive denominations are imaged together.

It should be noted that the images with multiple notes are simply made by combining the single note
images such that they are scaled, rotated and positioned arbitrarily. Table 2 shows the total number of
images per denomination in both subsets of the image dataset.

Table 2. Details of image dataset.

Number of Images per Denomination
Training Set Test Set

Denomination No. of Images Denomination No. of Images

10 105 10 100
20 101 20 97
50 101 50 96

100 94 100 97
500 101 500 77

1000 101 1000 90
5000 9 5000 41

4. Results and Discussion

Since the proposed currency note recognition method is based on the aspect ratios of the banknotes,
as a first step, the values of aspect ratios for each denomination have to be established. We simply
divide the shorter side (width) of the note over its longer side (length) and then scale the number
by multiplying it with 10, 000. For instance the standard width of the currency note of 10 rupees is
65 mm and its standard length is 115 mm. Therefore, its aspect ratio is 10, 000 × (65/115), which is
5652. We adapt the following two different methods to obtain the aspect ratio for each denomination.

1. Standard aspect ratio: This is the aspect ratio of an original and new currency note.
2. Calibrated aspect ratio: The majority of the notes used in the market undergo wear and tear

due to their age and usage. These currency notes are not in their original shape and thus their
aspect ratios are more likely to differ from the new ones. We use currency note images in the
training set to “calibrate” the aspect ratio for each denomination. To this end, we find the aspect
ratios of currency notes for each denomination in the training set that include both new and
used notes. The mean of all these aspect ratios is then considered as the aspect ratio of the
respective denomination.

Both the standard and the calibrated aspect ratios for each denomination are shown in Table 3.
The difference between standard and calibrated aspect ratios for each denomination can be observed.
This is due to the fact that training set consists of used currency notes whose aspect ratios vary from
one another due to the deterioration in their shapes. Once, the aspect ratios are established for each
note type, the next step is to use them to label a given test note image. From a given image, the note
image is extracted and then its aspect ratio is calculated using the proposed method. This aspect ratio
is then compared with the aspect ratios of all the notes and the one nearest to it is assigned the label.
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Table 3. Values of standard and calibrated aspect ratios for different denominations.

10 20 50 100 500 1000 5000

Standard aspect ratio 5652 5285 4962 4676 4422 4194 3988
Calibrated aspect ratio 5750 5356 5055 4762 4526 4295 4083
Difference 98 71 93 86 104 101 95

Table 4. Denomination recognition rates achieved on standard and calibrated aspect ratios where the
recognition rates of calibrated aspect ratios (in bold) are better than those of the standard aspect ratios

10 20 50 100 500 1000 5000 Overall

Standard aspect ratio 100% 97% 96% 97% 77% 90% 41% 89%
Calibrated aspect ratio 100% 99% 98% 99% 100% 99% 100% 99%

The images per note type vary from 60 to 100, for a total of 598 images. In each test image, there is
a single instance of a note that is displayed at an arbitrary scale, position, and orientation. The results
for both the methods are shown in Table 4 while the confusion matrices for each note type are shown
in Figure 6. The aspect ratios based on calibration clearly outperform the standard aspect ratios. This
is quite realistic as the notes in the test image data contain both new and old notes. Due to this reason,
the calibration-based aspect ratios give flexible values for both new and old notes to be recognized.
The denomination recognition results for currency notes images with different variation are shown
in Figure 7. Our method successfully recognizes denominations of each currency note under the
translation, scale, and rotation variations. It also very accurately recognizes the denomination of
multiple currency notes that are imaged together. However, a failure on the currency note of 500 can
be observed where it is wrongly recognized as a note with the denomination of 100.
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Figure 6. Confusion matrices for both the standard and calibrated aspect ratios.
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Position variations Orientation variations Multiple currency notesScale variations

Figure 7. Visualization of denomination recognition of currency notes imaged at various positions,
scales and orientations.

5. Conclusions and Future Work

We performed denomination recognition of Pakistani currency notes from their images. Such
recognition was achieved despite the image variations that are commonly found in currency images.
These image variations are mainly caused by changes in currency note position, scale, and orientation.
To achieve a denomination recognition that is invariant to these image variations, a two step process
was proposed where, in the first step, informative regions from the images are extracted via local
entropy and range filters. As a second step, these regions are extracted via binarization and their
aspect ratios are calculated for final denomination recognition. The aspect ratio for each denomination
is established by using a training set where, for each denomination, notes are used with various
degrees of deterioration based on their usage. The proposed method is evaluated on a novel dataset of
Pakistani currency notes of the 2005 series, where it achieves a recognition rate of 99% on a total of
598 images. The usage of a single feature, i.e. aspect ratio, for recognition makes our method more
feasible for real-time application which we plan to test in the future by implementing this method on a
Raspberry Pi.
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Abstract: In this paper, a methodology based on weld segmentation using entropy and evaluation by
conventional and convolution neural networks to evaluate quality of welds is developed. Compared
to conventional neural networks, there is no use of image preprocessing (weld segmentation
based on entropy) or data representation for the convolution neural networks in our experiments.
The experiments are performed on 6422 weld image samples and the performance results of both
types of neural network are compared to the conventional methods. In all experiments, neural
networks implemented and trained using the proposed approach delivered excellent results with a
success rate of nearly 100%. The best results were achieved using convolution neural networks which
provided excellent results and with almost no pre-processing of image data required.

Keywords: weld segmentation; local entropy filter; weld evaluation; convolution neural network;
image entropy; Python; Keras; RSNNS; MXNet

1. Introduction

The Fourth Industrial Revolution (Industry 4.0) has opened space for research and development
of new manufacturing methods, systems and equipment based on innovations such as computing
intelligence, autonomous robots, big data, augmented reality, process simulation, quality management
systems, etc. [1].

Weld evaluation is very important quality control process in many manufacturing processes.
Without this technological process, it would be almost impossible to produce welded constructions
with current efficiency—whether we are talking about time, price, or material consumption. It is
therefore necessary to welds be inspected to meet the specified quality level. In order to detect the
possible presence of different weld defects, proper sensing, monitoring and inspection methods are
necessary for quality control. Very effective and non-destructive method for weld evaluation is visual
inspection. Inspection process using this method can be in certain level automated and done by
computer systems [2,3].

Visual inspection of a weld is an important non-destructive method for weld quality diagnostics
that enables to check welded joint and its various parameters. This examination is carried out as a first
examination and able to detect various defects [4].

In this paper, we focus on indirect visual evaluation due to which the evaluation process can be
automated. Indirect inspection can be applied also in places that are not directly accessible, for example
the inner surface of a pipeline, the interior of pressure vessels, car body cavities etc. It also eliminates
errors of human judgment and removes errors caused by workers for such reasons as e.g., fatigue,
inattention or lack of experience.

The improved beamlet transformation for weld toe detection described in [5,6] considers images
which are corrupted by noise. The authors aim at detecting edge borders of welds. The dynamic

Entropy 2019, 21, 1168; doi:10.3390/e21121168 www.mdpi.com/journal/entropy327



Entropy 2019, 21, 1168

thresholding is performed in one of the beamlet algorithm steps. The algorithm predicts the directional
characteristics of the weld allows to filtrate unsuitable edges. Using this method, it is possible to
directly extract weld seam edges from highly noisy welding images without any pre-processing or
post-processing steps.

In [7], the authors work with pipeline weld images with a very low contrast and corrupted by
noise; this causes problems to conventional edge detectors. At first, the image is noise-filtered using
a morphological operation of opening and closing. Next, the improved algorithm of fuzzy edge
detection is applied. Multi-level fuzzy image improvement is based on interactive searching of optimal
threshold level and multi-directional edge detector which convolution kernel is 5 × 5 with 8 directions
based on gradient searching. The result of the algorithm is compared with detectors as Sobel, canny
FED and fast FED.

Edge detection and histogram projection are used in [8], where histogram projections of tested
welds are compared with a specified similarity threshold used to evaluate quality of the tested welds.
The loaded image pattern has the same specifications (width and position) as the tested image. Always
one vertical line from the pattern and the tested images is compared. Line histograms of pattern and
tested images are computed, the correlation degree of two histograms is computed using the Tukey
HSD difference. A lower correlation degree than the specified correlation threshold indicates edge
defects in this part of the examined image. The procedure is repeated over the entire width of image.

Evaluation of metal cans welds is dealt with in [9]. Can’s weld defects may not be directly related
to welding (they can be brought about by rest of glue, dust, etc.). Therefore, authors use probability
evaluation of two evaluation methods; the Column Gray-Level Accumulation Inspection represents
histogram projection in general. The histogram projections of the pattern and the tested weld are
compared. The comparison of first derivation for making better results is also performed. This method
can detect defects of wider surface. The overall evaluation is done using Dampster-Shafer theory
of evidence.

In another work [10], the above authors deal with edge detection based on pixel intensity difference
of the foreground and the background. The background pixels’ intensity occurs with a maximum
probability and the distribution of the background pixels fits the Gauss distribution.

The weld visual inspection process performed through image processing on the image sequence
to improve data accuracy is presented in [11]. The Convolution Neural Network (CNN) as an image
processing technique can determine the feature automatically to classify the variation of each weld
defect pattern. A classification using CNN consists of two stages: image extraction using image
convolution, and image classification using neural network. The proposed evaluation system has
obtained classification for four different types of weld defects with validation accuracy of 95.83%.

A technique for automatic endpoint detection of weld seam removal in a robotic abrasive belt
grinding process using a vision system based on deep learning is demonstrated in [12]. The paper
presents results of the first investigative stage of semantic segmentation of weld seam removal states
using encoder-decoder convolutional neural networks (EDCNN). The prediction system based on
semantic segmentation is able to monitor weld profile geometry evolution taking into account the
varying belt grinding parameters during machining which allows further process optimization.

Utilizing computing intelligent using support vector machine (SVM) is presented in [13,14].
Authors developed real-time monitoring system to automatically evaluate the welding quality during
high-power disk laser welding. Fifteen features were extracted from images of laser-induced metal
vapor during welding. To detect the optimal feature subset for SVM, a feature selection method based
on the SFFS algorithm was applied. An accuracy of 98.11% by 10-fold cross validation was achieved
for the SVM classifier generated by the ten selected features. The authors declare the method has the
potential to be applied in the real-time monitoring of high-power laser welding.

The authors of [15–18] deal with the development of a system for automatic weld evaluation using
new information technologies based on cloud computing and single-board computer in the context of
Industry 4.0. The proposed approach is based on using a visual system for weld recognition, and a
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neural network cloud computing for real-time weld evaluation, both implemented on a single-board
low-cost computer. The proposed evaluation system was successfully verified on welding samples
corresponding to a real welding process. The system considerably contributes to the weld diagnostics
in industrial processes of small- and medium-sized enterprises. In [18], the same authors use a
single-board computer able to communicate with an Android smartphone which is a very good
interface for a worker or his shift manager. The basic result of this paper is a proposal of a weld quality
evaluation system that consists of a single-board computer in combination with Android smartphone.

This paper deals with development of a software system for visual weld quality evaluation
based on weld segmentation using entropy and evaluation by conventional and convolution neural
networks. The evaluation of the performance results is compared to the conventional methods (weld
segmentation based on entropy and evaluation using conventional neural networks with and without
weld segmentation). Most experiments of proposed method apply on weld metal, however, one
experiment with convolution neural networks applies also on weld adjected zones. 6422 real and
adjusted laboratory samples of welds are used for experiments. The paper is organized in five sections:
Section 2 deals with preparation of input data for the neural network. Section 3 describes configuration
of used neural networks and their training process. In Section 4 the results of experiments are presented.
In Section 5 we discuss the results.

2. Preparation of Input Data for the Neural Network

The input data for the proposed diagnostic system were represented in the form of grayscale
laboratory samples of metal sheet welds in JPEG format. The samples were pre-classified as OK
(correct) and NOK (incorrect) (Figures 1 and 2). Defective weld samples (NOK) include samples of
various surface defects such as irregular weld bead, excess weld metal, craters, undercut, etc. Welds
images are captured under the same illumination and have the same resolution 263 × 300 pixels.
The total number of evaluated sample images was 6422.

However, for several reasons the image resolution 263× 300 pixels is not suitable for a conventional
neural network due to the necessity of large amount of allocated memory (about gigabytes for thousands
of frames even in a relatively low resolution) and time-consuming network training time.

 

Figure 1. Laboratory sample of an OK weld.
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Figure 2. Laboratory sample of NOK weld.

Several suitable options for data processing that eliminate the above problems are presented next.
At first, the background weld segmentation is described. Segmentation provides two outputs - the weld
mask and the segmented weld itself. Three transformations of the weld mask into a one-dimensional
feature vector are described further. Feature vectors are useful as inputs for the multilayer perceptron
(MLP)/radial basis function (RBF) neural networks. Finally, the size of the segmented/unsegmented
weld image is reduced when applied in the conventional neural network (if CNN is applied, no size
reduction is needed).

2.1. Weld Segmentation

The sample images depict the weld itself and the background—metal sheet. The background
does not affect the evaluation of the weld and is masked from the images by the proposed algorithm.
The simplified flowchart of the algorithm is shown in Figure 3.

 
Figure 3. The simplified flowchart of the segmentation algorithm.
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After reading the images, local entropy of each pixel is computed according to [19]:

K∑
i=1

K∑
j=1

pij log2 pij, (1)

where pij represents the probability function for the pixel [i, j].
This value contains information about the complexity/unevenness around the pixel.

The neighbourhood radius was set to 8 pixels. To compute the entropy, the filters.rank.entropy
function from the Python library scikit-image was used. The resulting local entropy matrix effectively
finds the edges and texture complexity in the image. The results of filtering can be seen in Figure 4.

As the entropy resolution values were too detailed for our application, the blur filtering was
applied. The anisotropic blur filter from the imager library was implemented, which removes
noise/unimportant details while preserving edges better than other types of blur filters. The blur filter
with an amplitude of 250 was applied (Figure 5).

  
(a) Input image (b) Local entropy matrix 

Figure 4. Step 1—local entropy computing.

  
(a) Local entropy matrix (b) Result of anisotropic blur filtering 

Figure 5. Step 2—blur filtering.
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The next step is thresholding. In the image matrix, the value 1 (white) represents weld pixels, the
value 0 (black) represents background. Thresholding was implemented using the function threshold
from the imager library. The optimal threshold value was computed automatically using the kmeans
method (Figure 6).

  

(a) Input for thresholding (b) Output – a mask 

Figure 6. Step 3—thresholding.

The thresholding result may have some imperfections—small blobs and unfilled areas. Unfilled
areas are removed using the inverted output of the function bucketfill (imager library). It is applied on
the background of the weld and it finds all pixels of the background. The remaining the pixels are
filled with value 1 (white) (Figure 7a).

  
(a) filling holes (b) morphological simplification 

Figure 7. Step 4—filling holes (a) and morphological simplification (b).

Very small blobs were removed using the function clean (imager library). This function reduces
objects size using morphological erosion, and then increases it. This causes, that very small objects are
removed and the shape of larger object is simplified (Figure 7b).

However, larger blobs were not removed in the previous step. To find the largest object in the
image, the function split_connected (imager library) was used (Figure 8).

332



Entropy 2019, 21, 1168

 

Figure 8. Step 5—Finding the largest object.

The segmentation result—the mask and the masked weld can be seen in Figure 9.

  
(a) The resulting weld mask (b) The resulting segmented weld 

Figure 9. Results of segmentation.

2.2. Vector of Sums of Subfields in the Mask

The first representation of the mask is a vector which entries are sums of subfields. For input
images of resolution 263 × 300 pixels, was selected a subfield of 50 × 50 pixels, which corresponds to
36 values. The function for vector calculation is shown in the Algorithm 1.

The function ceiling rounds a number to the next higher integer. Using division of the index
(i, j) by the size of the subfield, and subsequently the function ceiling, we obtained indI/indJ for the
selected index i/ j. The function as.vector retypes the resulting two-dimensional array into a vector by
writing the matrix elements column-wise into a vector. Example of retyping can be understood from
Figures 10 and 11.

Graphs for OK and NOK welds (Figure 12) can be compared in Figure 13: the OK mask graph has
every third value (representing the subfields in the image center) maximal. Values of the NOK weld
graph are distributed into more columns and the values do not achieve maximum values. The main
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drawback of this representation is that it can be used only for images with the same size. The benefit is
a multiple reduction of input data (number of mask pixels in our case has been reduced 502-times).

Algorithm 1. Computing of subfields sums of the mask

procedure MaskToSums(img, size)
xLen ←length(img[ ,1])
yLen ←length(img[1, ])
nRows ← ceiling(xLen/size)
nCols ← ceiling(yLen/size)
res ← matrix(0, nRows, nCols)
for i in 1:xLen do

for j in 1:yLen do

if img[i,j] == TRUE then

indI ← ceiling(i/size)
indJ ← ceiling(j/size)
res[indI, indJ] ++

end if

end for

end for

return as.vector(res)
end procedure

Figure 10. Two-dimensional array of sums.

Figure 11. Resulting vector of sums.

  
(a) OK weld mask (b) NOK weld mask 

Figure 12. Weld masks.
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(a) (b) 

Figure 13. Graphs of vector of sums of subfields in the mask for OK (a) and NOK (b) weld.

2.3. Histogram Projection of the Mask

A histogram projection is a vector containing sums of columns and rows of the input image matrix
(Figure 14). In the case of an image mask, these are amounts representing numbers of white pixels.
Thus, the length of the vector corresponds to the vector of the height and width of the image.

In the graphs (Figures 15 and 16) showing the histogram projection of the mask, the difference
between correct and wrong welds is visible. The projection of the correct weld mask is more even,
the sums by columns have an even increase and slope, and the sums per line have small variations.
On the other hand, the histogram projection of the wrong weld mask has a lot of irregularities.
The disadvantage of this representation consists in that it cannot be used for input images of different
resolutions. The resulting projection vector is much larger than other representations. The advantage
is easy implementation and calculation.

  
(a) OK weld mask (b) NOK weld mask 

Figure 14. Weld masks for histogram projection.
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Figure 15. Graph of histogram projection of an OK weld.

Figure 16. Graph of histogram projection of a NOK weld.

2.4. Vector of Polar Coordinates of the Mask Boundary

A next representation of a weld mask in this paper is the vector of polar coordinates of the mask
boundary. To transform weld masks, an algorithm has been proposed and implemented. Its main
steps are described below.

The first step is to find the x, y coordinates of the mask boundary using the function boundary
(imager library). Then, coordinates of the center of the object [cx, cy] are calculated according to:

cx =
max(x) −min(x)

2
+ min(x), (2)

cy =
max(y) −min(y)

2
+ min(y), (3)

In the next step, the position of the object is normalized (the center is moved to the position [0, 0])
according to the found coordinates. Then, for each boundary point, the coordinates are converted
from Cartesian to polar [r,α] (i.e., distance from center, angle). According to the Pythagorean theorem,
the distance is calculated as follows:

r =
√

x2 + x2, (4)

Calculation of the angle is realized by Algorithm 2:

Algorithm 2. Calculation of angle from Cartesian coordinates

procedure Angle(x, y)
z ← x + 1i * y
a ← 90 - arg(z) / π * 180
return round(a mod 360)

end procedure
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If the resulting number of coordinates is less than 360, the missing angle values are completed
and the corresponding distances are calculated from the surrounding values by linear interpolation
using the na_approx function (zoo library). The result is a vector with 360 elements, which indices
correspond to the angle values in degrees, and the value is the distance r. The resulting graphs of OK
and NOK weld masks (Figure 17) are in Figures 18 and 19.

  
(a) OK weld mask (b) NOK weld mask 

Figure 17. Mask of OK and NOK weld.

 

Figure 18. Graph of polar coordinates vector of an OK weld mask.

Figure 19. Graph of polar coordinates vector of a NOK weld mask.

The representation in the form of polar coordinates for the OK weld visibly differs from the
NOK one. The big jumps and variations on the graph are caused by large irregularities in the weld
shape. The advantage of such representation is that it can be used for any input mask resolution.
The disadvantage is a complicated calculation. Generally, mask representations contain information
only about the shape of the weld, which can be considered as a disadvantage because texture information
is important input data for the neural network.
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2.5. Data Preparation for Neural Network

Weld images and feature vectors were stored in two data structures of type list. The first list
represented welds classified as NOK (incorrect); the second list welds classified as OK (correct).
For neural networks, it was necessary to combine data, i.e., to transform and randomly mix them.
For MLP and RBF networks, each input vector has to have assigned a classification value 0 (incorrect)
or 1 (correct). Then, the vectors were merged together and with randomly mixed elements. Next,
the L2-normalization was applied to the data. Finally, 85% of training and 15% of test samples were
selected randomly. For convolution neural networks, the images were 5-times reduced, then the data
type was converted to a three-dimensional array data structure. In the arrays, the dimensions were
transposed to represent to correspond to the following structure: [number o f images ∗ length ∗ height].
The vector of zeros with the same length as the first dimension corresponded to the first array (array of
NOK welds). The vector of ones corresponded to the second array (array of OK welds). The arrays
and vectors were merged into a common list and their elements were mixed randomly. Then, 77% of
training samples, 15% of test samples and 8% of validation samples were selected.

3. Configuration and Training of Neural Networks

Several neural network architectures were configured for comparison and testing. Their parameters
were changed during the experiments and the experiment results were compared and evaluated.
Both RBF and MLP networks were configured in The Stuttgart Neural Network Simulator for R
language - RSNNS library, the MLP networks were configured in the Keras library, and the convolution
networks were configured in the Keras and the MXNet libraries.

3.1. RBF Network

To implement the RBF network, the RSNNS library was chosen (just in this one the RBF network
template is available). Three RBF networks were configured using the function rbf (RSNN library).
The set parameters were the number of units in the hidden layer and the number of epochs, the initial
parameters had default values. The best configurations were chosen experimentally. Configuration
details are in Figures 20–22.

Figure 20. Settings for RBF network—for the vector of sums of subfields in the mask.

Figure 21. Settings for RBF network—for the histogram projection vector.
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Figure 22. Settings for RBF network—for the polar coordinates vector.

3.2. MLP Network

Experiments with training and testing of MLP networks showed, that a one-layer architecture
is sufficient for our data representation. The performance of the network was very good and the
difference from multiple hidden layers was negligible. To keep the objectivity, MLP networks had
the same configuration in both libraries. The sigmoid activation function and the randomize weights
initialization functions were used. For the NN training, the error backpropagation algorithm with
learning parameter 0,1 was used.

The implementation in the RSNNS library uses the mlp function for configuration and training.
Configuration details are in Figures 23–25.

Figure 23. Settings for MLP network—for vector of sums of subfields in the mask.

Figure 24. Settings for MLP network—for histogram projection vector.
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Figure 25. Settings for MLP network - for the polar coordinates vector.

The implementation of the MLP network in the Keras library required a detailed list of layers
in the code. Two layer_dense layers were used; the first one defines the hidden layer with the ReLU
activation function, and the second one defines the output layer with the size 2 (two output categories)
using the softmax activation function (Figure 26).

Figure 26. MLP network architecture—for vector of sums of subfields in the mask.

3.3. Convolution Neural Network

For an objective comparison of the Keras and MXNet libraries, the same convolution network
architecture in both libraries was used at first, however in the MXNet library, training such a neural
network was too slow. Thus, we designed our own architecture with a better learning time performance.
The discussion about the results is provided in the next Section 4.

The architecture of the convolution network 1 is shown in Figure 27 and visualized in Figure 28.
The architecture includes a list of all layers and the size of output structures for both NN. Two pairs
of convolution and pooling layers were used, the convolution being applied twice before the first
pooling layer. The input image size was 56 × 60. The number of convolution filters was 32 at the
beginning, in further convolution filters it rose to 64. A dropout was used between some layers to
prevent overtraining of the neural network by deactivating a certain percentage of randomly selected
neurons. At the end, the flatten layer was used to convert the resulting structure into a one-dimensional
vector used as an input for a simple MLP network with one hidden layer containing 256 neurons.
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Figure 27. Architecture of the convolution neural network 1.

Figure 28. Architecture visualization of the convolution neural network 1.

Parameters of individual layers are shown in the diagram in Figure 28. For example, the
convolution layer (red) contains a list of 3 × 3 - filter size, 3 × 3 - stride, 32 - number of filters.

The architecture of the convolution network 2 is visualized in Figure 29. Two pairs of convolution
and pooling layers were used, however in this case a double convolution occurs only in the second
layer. There is also a difference in the design of the convolution, where the parameter stride (step of
the filter) is 3,3. Dropout was used only in two places.
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Figure 29. Architecture visualization of the Convolution neural network 2.

4. Results

This chapter presents results of code profiling, weld segmentation and evaluation of
neural networks.

4.1. Code Profiling

Profiling was done using the profvis library at the level of the code line. The output is an interactive
visualization using memory listing in MB and computing time in ms for each code line. The example
can be seen in Figure 30.

 

Figure 30. Example of profiling output using profvis.

342



Entropy 2019, 21, 1168

Profiling was performed on a desktop computer with parameters listed in Table 1 (the graphic
card was not used).

Table 1. Technical specifications of PC.

Operating System Windows 7 Professional 64-bit

Processor Intel Core i7-2600 CPU @ 3,40 GHz

Memory 16 GB DDR3

Disc Samsung SSD 850 EVO 500 GB

4.2. Results of Data Preparation and Segmentation

Segmentation was successful for all tested weld samples. For some NOK defective welds which
consisted of several parts or contained droplets, only the largest continuous weld surface was segmented,
which was considered to be a correct segmentation for proposed methodology. Segmentation examples
are shown in Figure 31.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Figure 31. Cont.
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(m) 

 
(n) 

 
(o) 

 
(p) 

Figure 31. Examples of weld segmentation results (a–p).

The segmentation time is an important indicator in comparison of results. Results of profiling
different parts of the segmentation process can be seen in Figure 32. Code profiling was carried out
using a computer with the technical specification shown in Table 1.

 

Figure 32. Results of segmentation process profiling.

Segmentation was performed by concatenating the outputs from functions load.image, grayscale,
entropyFilter, createMask, and segmentWeld. Almost all functions in this section of the program were
performed very quickly (within 30 ms) except for the entropyFilter function, which took an average of
158 ms to be completed. This function is the most important part of the segmentation algorithm; the
time was acceptable. The average time to complete the whole segmentation was 194 ms. The average
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amount of memory allocated was 74.76 MB. For MLP and RBF networks, the next step was to transform
masks into feature vectors. The profiling results of functions performing three types of transformations
can be seen in Figure 33.

 
Figure 33. The profiling results of data transformation.

The results show that these functions are optimal, taking up minimal memory and time. The mean
values for computing the vector of sums of subfields in the mask are 16 ms and 0.1 MB; for the
histogram projection vector, it is less than 10 ms and less than 0.1 MB (estimation of profiling tool,
real values are immeasurably small). Values for the polar coordinates vector are 18 ms and 7.56 MB.
Presented results are also shown in Table 2.

Table 2. Algorithms results for transform masks into feature vectors.

Data Interpretation Time [ms] Memory [MB]

the vector of sums of subfields in the mask 16 0.1

histogram projection vector 10 0.1

polar coordinates vector 18 7.56

4.3. Criteria for Evaluation of Neural Network Results

As the main criterion for results evaluation the confusion matrix was chosen. The main diagonal of
the confusion matrix contains the numbers of correctly classified samples, the antidiagonal contains the
numbers of incorrectly classified samples; the smaller values in the antidiagonal, the more successful
the prediction model. In a binary classification this matrix contains four values (Figure 34): TP—true
positive; FP—false positive; FN—false negative; TN—true negative.
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Figure 34. Confusion matrix.

The accuracy was computed from the confusion matrix and is expressed as the ratio of correctly
classified samples to all samples, see Equation (5) [20].

Accuracy =

∑
TP +

∑
TN∑

all samples
, (5)

Accuracy is an objective criterion only if the FN and FP values are similar.
A more objective criterion for comparing results is the F-score. The F-score is calculated as the

harmonic average of the precision and the recall (sensitivity) values [20], the best score corresponds to
F-score = 1:

Precision =

∑
TP∑

TP +
∑

FP
, (6)

Recall =
∑

TP∑
TP +

∑
FN

, (7)

F− score =
2 ∗Recall ∗ Precision∑

TP +
∑

FN Recall + Precision
, (8)

To visualize the success of neural network classification, the ROC (Receiver operating
characteristics) curve was chosen. It shows the recall (sensitivity) value depending on the value
1-specificity at the variable threshold [20] (Figure 35):

Speci f icity =

∑
TN∑

TN +
∑

FP
, (9)

Figure 35. ROC curves: excellent (blue); good (green); worthless (red).

The ROC curve for the best possible classifier is rectangular with the vertex [0,1].
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4.4. Results of Neural Network Classificaton

We configured and tested neural networks for all data representations (in total 15 experiments).
For a better clarity, the experiments results are labelled using labels from Table 3.

Table 3. Labels of neural network experiment.

Test Label Network Type Library Data Format

rbf-rsn-sum01 RBF RSNNS Subfields sum
rbf-rsn-hpr02 RBF RSNNS Histogram projection
rbf-rsn-pol03 RBF RSNNS Polar coordinates

mlp-rsn-sum04 MLP RSNNS Subfields sum
mlp-rsn-hpr05 MLP RSNNS Histogram projection
mlp-rsn-pol06 MLP RSNNS Polar coordinates

mlp-ker-sum07 MLP Keras Subfields sum
mlp-ker-hpr08 MLP Keras Histogram projection
mlp-ker-pol09 MLP Keras Polar coordinates

cnn-ker-ori10 CNN 1 Keras Original
cnn-ker-seg11 CNN 1 Keras Segmented

cnn-mxn-ori12 CNN 1 MXNet Original
cnn-mxn-seg13 CNN 1 MXNet Segmented

cnn-mxn-ori14 CNN 2 MXNet Original
cnn-mxn-seg15 CNN 2 MXNet Segmented

The first tests were carried out for RBF and MLP networks with input data formats according to
Table 3. Resulting confusion matrices for RBF networks are as follows:

rb f − rsn− sum01 =

[
502 14
15 433

]
,

rb f − rsn− hpr02 =

[
434 0
83 447

]
,

rb f − rsn− pol03 =

[
435 0
82 447

]
,

(10)

From the matrices (10) it is evident that the RBF network performed bad when classifying NOK
welds—they are often classified as OK. ROC curves of trained RBF networks are depicted in Figure 36.

(a) ROC curve for rbf-rsn-sum01 (b) ROC curve for rbf-rsn-hpr02 

Figure 36. Cont.
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(c) ROC curve for rbf-rsn-pol03 

Figure 36. ROC curves for experiments with RBF networks.

ROC curves for MLP networks are depicted Figure 37 and Resulting confusion matrices are as
follows:

mlp− rsn− sum04 =

[
516 1

1 446

]
,

mlp− rsn− hpr05 =

[
5017 0

0 447

]
,

mlp− rsn− pol06 =

[
514 1

3 446

]
,

(11)

mlp− ker− sum07 =

[
517 15
17 446

]
,

mlp− ker− hpr08 =

[
511 2
23 459

]
,

mlp− ker− pol09 =

[
522 13
12 448

]
,

(12)

 

(a) ROC curve for mlp-rsn-sum04 (b) ROC curve for mlp-rsn-hpr05 

Figure 37. Cont.
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(c) ROC curve for mlp-rsn-pol06 (d) ROC curve for mlp-ker-sum07 

 
(e) ROC curve for mlp-ker-hpr08 (f) ROC curve for mlp-ker-pol09 

Figure 37. ROC curves for experiments with MLP networks.

The results show that the MLP implementation in the RSNNS library was more successful
compared with the Keras library. The networks had no problem to classify correct (OK) or incorrect
(NOK) welds. FP and FN values were approximately similar. The resulting calculated accuracy and
F-scores shown in Table 4 describe the performance of the trained neural networks.

Table 4. Accuracy a F-score for RBF and MLP networks.

Test Label Accuracy F-Score

rbf-rsn-sum01 0.9699 0.9719
rbf-rsn-hpr02 0.9139 0.9127
rbf-rsn-pol03 0.9149 0.9139

mlp-rsn-sum04 0.9979 0.9981
mlp-rsn-hpr05 1.0000 1.0000
mlp-rsn-pol06 0.9959 0.9961

mlp-ker-sum07 0.9678 0.9700
mlp-ker-hpr08 0.9761 0.9761
mlp-ker-pol09 0.9766 0.9766
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The results show that MLP networks are much more successful. Using default RBF initialization
weights the RBF network less successful. From a practical point of view, MLP networks are more
suitable for weld evaluation.

It was hard to compare the results for MLP networks, they provided similar results for all data
representations. The RBF network achieved significantly better results in the vector of sums of subfields
in the mask data representation.

It was found out, that using the same network configuration in the two libraries yields slightly
different results. The implementation in the RSNNS library was almost 100% successful and therefore
it was considered as the best candidate for practical use.

Training profiling for RSNN library was done next. Although training in the Keras library
allocated less memory, the training time was several times longer than in case of the RSNNS library.
Using vector of sums of subfields in the mask, the MLP network training time in RSNNS took less than
one second, while using the Keras library was tens of seconds. The list of training profiling results is
shown in Table 5.

Table 5. Profiling of RBF and MLP networks training.

Test Label. Time [ms] Memory [MB]

rbf-rsn-sum01 6660 687.6
rbf-rsn-hpr02 42,530 775.6
rbf-rsn-pol03 32,080 752.3

mlp-rsn-sum04 850 769.8
mlp-rsn-hpr05 9890 653.7
mlp-rsn-pol06 17,270 672.0

mlp-ker-sum07 52,830 485.2
mlp-ker-hpr08 45,660 410.4
mlp-ker-pol09 46,420 401.9

Comparison of convolution neural nets was again based on the confusion matrices, ROC curves,
accuracy and F-scores. The input of the networks were just images of welds without any filtration and
masked welds without background (black background). Confusion matrices are as follows:

cnn− ker− ori10 =

[
534 1

0 460

]
,

cnn−mxn− ori12 =

[
559 8

1 431

]
,

cnn−mxn− ori14 =

[
498 0
0 460

]
,

(13)

cnn− ker− seg11 =

[
534 0

0 461

]
,

cnn−mxn− seg13 =

[
558 0

2 439

]
,

cnn−mxn− seg15 =

[
498 0

0 460

]
,

(14)

Classification error in convolution neural networks was minimal, therefore the ROC curve was
evaluated as ideal for all experiments with indistinguishable differences. For all neural nets, the ROC
curve was the same (Figure 38).

The resulting accuracy and F-scores along with the number of epochs needed to train the networks
are listed in Table 6.
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Figure 38. ROC curve for all convolution nets.

Table 6. Accuracy and F-scores for convolution neural network experiments.

Test Label Epochs Accuracy F-Score

cnn-ker-ori10 5 0.9990 0.9991
cnn-ker-seg11 4 1.0000 1.0000

cnn-mxn-ori12 6 0.9910 0.9920
cnn-mxn-seg13 3 0.9980 0.9982

cnn-mxn-ori14 4 1.0000 1.0000
cnn-mxn-seg15 4 1.0000 1.0000

For convolution networks, changes of accuracy after each epoch for both training (blue line) and
validation data (green line) are shown in Figure 39. The charts show that training with non-segmented
weld images started at a lower accuracy and the learning was slower (Figure 40).

Figure 39. Progress of accuracy for cnn-ker-ori10.
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Figure 40. Progress of accuracy during epochs for cnn-ker-seg11.

The progress of training for the Keras library was more uniform, without steps. The graphs can
be seen in Figures 41 and 42.

Figure 41. Progress of accuracy during epochs for cnn-mxn-ori14.

Figure 42. Progress of accuracy during epochs for cnn-mxn-seg15.

The success rate for all networks was higher than 99%. The decisive factor for comparison were
the code profiling results shown in Table 7.
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Table 7. Code profiling results for designed convolution neural networks.

Test Label Epochs Time [ms] Memory [MB]

cnn-ker-ori10 5 38,610 186.9
cnn-ker-seg11 4 30,660 180.0

cnn-mxn-ori12 6 119,630 4.7
cnn-mxn-seg13 3 82,580 2.6

cnn-mxn-ori14 4 12,170 157.9
cnn-mxn-seg15 4 11,850 3.7

It can be concluded, that the network with the architecture shown in Figure 29 in Section 3.3
implemented using the MXNet library was the fastest. With a training time 12.170 ms and a 100%
success also for non-segmented data it is considered the best choice for practical use.

Although the MLP network (mlp-rsn-sum04) was similarly successful and several times faster in
training, the preparation of the representation in the form of the vector of sums of subfields in the mask
took considerably more time. The number of training samples was approximately 5400, the average
time to obtain a mask of one sample was 164 ms, and the vector calculation was 16 ms, in total 972 ms.

4.5. Profiling Single Weld Diagnostics

In practice, neural network training is not a frequent process. Usually, the network is trained once
and then implemented for prediction. Therefore, at the end we decided to evaluate the prediction of one
weld for the most successful models. The provided results represent the average of five independent
tests. The list can be seen in Table 8 along with the average image preparation time and memory
required to prepare the weld input image for the specific diagnostic model.

Table 8. Profiling results for single weld diagnostics.

Test Label Image Time Preparation [ms] Diagnostic Time [ms] Memory [MB]

mlp-rsn-sum04 210 20 0.2
mlp-rsn-hpr05 194 240 3.0
mlp-rsn-pol06 198 105 1.8
cnn-mxn-ori14 14 14 0.5
cnn-mxn-seg15 194 4 0.5

The diagnostic profiling results confirmed that the best solution was the classification of the weld
using the convolution net with the architecture shown in Figure 29 in Section 3.3. The average image
loading time and its 5× reduction took only 14 ms on average, and evaluation time was 14 ms.

5. Discussion

The aim of this paper was to develop a neural network based methodology to evaluate quality of
welds. Several types of neural networks implemented in several software libraries were compared
with respect to performance. It was necessary to prepare the data (images of welds) into a format
suitable for neural network processing. For some types of networks (convolution) the input data
preparation was minimal (segmentation or no segmentation), while for other networks (MLP, RBF), a
sophisticated data preprocessing was required (filtering, equalizing and segmenting the image based
on entropy). Each library required its own input data format which also had to be taken into account
during programming. The main result of the paper is confirmation, that the convolutional neural
networks can be used for weld quality evaluation without using image preprocessing and in case of
using no segmentation, they can be used for evaluation not only weld metal but also adjected zones.

Neural networks were configured experimentally to achieve the best performance and the obtained
results were compared. In all cases, neural networks implemented and trained using the proposed
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approach delivered excellent results with a success rate of nearly 100%. Thus, we can recommend any
of the tested libraries to solve the weld quality evaluation problem. The best results were achieved
using convolution neural networks which provided excellent results and with almost no pre-processing
of image data required. The longer training time of these networks is acceptable in practical usage.

In summary, based on achieved experimental results, convolution neural networks have shown to
be a promising approach for weld evaluation and will be applied in the future research dealing with
evaluation of images in the real welding processes. The convolutional neural networks can be used for
weld quality evaluation without using image preprocessing.
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Abstract: Aiming at the application requirements of infrared detection, the influence of earth
background interference on plume radiation detection is investigated and discussed in this article.
The infrared image of the earth’s atmospheric background radiation is simulated by the spectral
correlation based on the conversion model of the surface radiation with different bands. The infrared
radiation image of the jet flame and the background is generated by overlapping the infrared radiation
of the engine flame and the background radiation according to the detection angle of view. Through
the image quality evaluation model, the detectability of the flame is analyzed. The simulating results
show that the comprehensive statistical features such as image information entropy, variance and
signal-to-clutter ratio can be used to evaluate the detectability of the engine flame.

Keywords: atmosphere background; engine flame; infrared radiation; detectability; image
quality evaluation

1. Introduction

The detectability investigation of infrared radiation gives very important guiding and reference
for the performance evaluation and design of infrared detection system [1–3]. The detection of the
rocket engine flame in flight state plays an important role in military affairs. Due to the complexity of
the infrared imaging process, the rocket exhaust plume is presented as a small dim target in the image,
which is hard to detect using existing techniques. Thus, many improvements have been made by
researches in recent years, including shearlet features [4,5], high-order cumulant [6], local energy [7],
non-convex optimization with regularization constraint [8–13].

The background of the flying rocket engine flame is mainly the earth’s atmosphere background
and deep space background. Deep space can be equivalent to 4K cold background and the atmosphere
has strong selective absorption of infrared radiation from the plume. The background radiation of
the earth also interferes with the detection of plume radiation. Therefore, it is of great significance to
study the coupled radiative transfer characteristics between the plume and the earth’s atmosphere.
The jet flow field and its radiation characteristics are complex physical and chemical processes in
many disciplines. The research involves the interaction and flow process between the jet and the
accompanying flow, the secondary combustion of some components, the spectral characteristics of
components and the radiation transfer process. Atmospheric radiation transfer involves scattering and
absorption of molecules and aerosols, as well as radiation scattering of the sun and the moon. Since
the last century, scholars at home and abroad have carried out relevant research and formed a series of
special computing software. For example, Fluent, CFD and CFD++ are used to calculate the flow field
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of jet, LOWTRAN and MODTRAN are used to calculate the atmospheric radiation transmission. But
usually the rocket engine works at a certain altitude. In order to achieve its detection and evaluation, it
is necessary to consider the energy state after the coupling between the flame and the atmosphere and
it is also related to the detection angle and altitude.

The research of flame radiation and flow field modeling has been published in many papers [1–3].
This paper focuses on analyzing the detectability of flame from the perspective of image by using the
existing target and background data, and builds an image-based analysis model of detectability. First,
we uses MODIS remote sensing data and MODTRAN calculation data to simulate the infrared image
of the earth’s atmospheric background radiation through the spectral correlation based conversion
model of the surface radiation band. Then, the infrared radiation image of target and background is
generated by overlapping the infrared radiation of engine exhaust flame and background radiation
according to the detection angle of view. Finally, the detectability of plume radiation is studied and
analyzed by some image quality evaluation model.

2. Infrared Radiation Calculation

2.1. Earth Background

In the process of sensor remote sensing imaging, the measured infrared image is the result of the
interaction between surface, atmosphere and sensor. The imaging process is shown in Figure 1. The
radiation received by the sensor is a comprehensive characterization of the solar radiation outside the
atmosphere and the thermal radiation on the surface of the atmosphere. In this paper, the infrared
radiation simulation method of the earth background in Reference [14], using MODIS remote sensing
data and then, through adjacent channel band conversion [15], the infrared radiation image of the
earth background is obtained.

Figure 1. Diagram of the imaging process of a remote sensor.

2.2. Missile Flame

The line of sight (LOS) method combined with the single line group (SLG) model of single line
group is used to solve the radiation transfer of jet flame. The transmission of L in radiation field is
simplified to a problem of radiation transmission in multi-dimensional and multi-layered media. The
flame region through which the line of sight passes is decomposed into N layers. The medium of
each layer is considered homogeneous and isothermal. Considering the absorption and emission of
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each layer, the total infrared radiation intensity can be obtained by recursion step by step [16,17]. The
formula is:

Ī i
Δη = Ī i−1

Δη τ̄i
Δη + Ī i

b,Δη

(
1 − τ̄i

Δη

)
(1)

where Ī i
Δη is average spectral radiation intensity, Ī i

b,Δη is average spectral radiation intensity of

blackbody, τ̄i
Δη is average transmittance.

3. Detectability Analysis of Flame Infrared Radiation

3.1. Generation of Infrared Radiation Data of Flame and Background

In order to analyze the detectability of engine exhaust plume, it is necessary to physically overlap
the exhaust plume radiation with the background radiation. Firstly, the projection of the image plane is
calculated according to the size of the jet and the spatial resolution of the sensor. Then the convolution
calculation of the flame radiation spectrum observed by each pixel with the atmospheric transmittance
spectrum and the sensor transmittance spectrum is carried out. Finally, the integration is carried out
according to the band of the sensor. The energy distribution of the flame on the image plane of the
sensor can be obtained. According to the maximum and minimum energy in the image, the gray level
is linearly transformed and the energy infrared image is transformed into a gray level image. The
determination of simulation band is based on the spectrum of flame and atmospheric transmission.

Figure 2 shows atmospheric transmittance spectra at different altitudes. We can see that
0.7–2.5 μm, 3–5 μm, 8–12 μm are three atmospheric windows, which are the range of electromagnetic
wavelengths to which earth’s atmosphere is largely or partially transparent. Its low value zones
(2.5–3.0 μm, 4.0–4.5 μm) indicate absorption bands. Figure 3 shows engine exhaust spectra at different
flight altitudes.

Figure 2. Atmospheric transmittance spectra from different altitudes to the outer atmosphere.
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(a) first stage engine (b) second stage engine

Figure 3. Normalization of engine flame radiation.

From the comparison of Figures 2 and 3, it can be seen that there are two radiation peaks at
2.5–3 μm and 4.0–4.5 μm. The two bands in the atmosphere are the absorption bands, which can
effectively shield the earth background radiation to the sensor. Therefore, the simulation band is
determined to be 2.5–3 μm and 4.0–4.5 μm. Four typical backgrounds are selected to simulate the cities,
deserts, mountains and waters. The simulation time is daytime (solar zenith angle 15 degrees, relative
azimuth 180 degrees), night and cloudless sky. Atmospheric model: Mid-latitude summer.

Figure 4 shows the infrared radiation image of the jet and the earth’s atmosphere at the altitude of
30 km. For the sake of intuitive description, 3D surfaces of the local area (red rectangular box) including
the flame are drawn, corresponding to the 2D graylevel image of the upper parts, respectively.

3.2. Detectability Analysis of Flame Radiation

Space sensors usually output infrared images. Generally speaking, there are several commonly
used evaluation indicators to evaluate the imaging quality of an infrared image, such as peak
signal-to-noise ratio (PSNR), signal-to-clutter ratio (SCR), information entropy (En), contrast (Contrast),
structural similarity index measurement (SSIM), homogeneity (Hom), smoothness (Smo), variance
(Var), skewness (Skew), kurtosis (Kur) and so forth. These indicators are defined as follows.

(1) Signal Effectiveness

I. Peak signal-to-noise ratio

The calculation of the peak signal-to-noise ratio (PSNR) is based on the mean square error
(MSE) and is defined by:

PSNR = 10log10

(
MAX2

t
MSE

)
(2)

where MSE is defined as:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

‖t (i, j)− b (i, j)‖2 (3)

where t and b represent the target area and background area, respectively.
II. Signal-to-clutter ratio

The signal-to-clutter ratio is defined as:

SCR =
|μt − μb|

σb
(4)
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where μt is the average gray value of target pixels, μb is the average gray value of the
background pixels, σb is the standard deviation of the gray value of the background area.

III. Contrast

The contrast describes the gradual change of image brightness [18]. A larger contrast value
represents a richer gray level change of an image. The contrast is defined as:

C = ∑
δ

δ(i, j)2Pδ (i, j) (5)

where δ(i, j) = ‖i − j‖ represents the gray difference between adjacent pixels. Pδ (i, j)
represents the distribution probability of pixels whose gray difference is equal to δ.

(2) Statistical Characteristics

I. Variance

Image variance is a measure of gray contrast and a measure of uniformity of sample
distribution [19].

Var =
L−1

∑
i=0

(zi − m)2 p (zi) (6)

where z is a random variable representing gray level, p (zi) is the corresponding histogram
distribution, m is the mean of z.

II. Skewness

The skewness of an image is defined by the third-order statistical moments [18]:

Skew =
L−1

∑
i=0

(zi − m)3 p (zi) (7)

III. Kurtosis

The kurtosis of an image is defined by the fouth-order statistical moments [18]:

Kur =
L−1

∑
i=0

(zi − m)4 p (zi) (8)

(3) Texture

I. Homogeneity

The homogeneity describes the variance of pixels within a region. It is defined as
follows [18]:

Hom =
L−1

∑
i=0

p2 (zi) (9)

where z is a random variable representing gray level, p (zi) is histogram distribution, L is
the number of different gray levels.

II. Smoothness

The smoothness of an image is defined by the second-order statistical moments [18]:

Smo =
L−1

∑
i=0

(zi − m)2 p (zi) (10)

where m is the average gray value of an image.

361



Entropy 2019, 21, 946

(4) Information

The image entropy is the average number of bits per pixel in the gray level set of the image. The
greater the image entropy, the more uniform the gray distribution of the image. The definition of
image information entropy is as follows [20–24]:

En (z) = −
L−1

∑
i=0

p (zi) log2 p (zi) (11)

where z is a random variable representing gray level, p (zi) is histogram distribution, L is the
number of different gray levels.

(5) Structural similarity

The structural similarity index measurement(SSIM)is designed to improve on traditional methods
such as PSNR and mean squared error(MSE) and is based on the image light, contrast and
structure and is defined as [25]:

l (T, B) = 2μtμb+C1
μ2

t +μ2
b+C1

c (T, B) = 2σtσb+C2
σ2

t +σ2
b+C2

s (T, YB) = σtb+C3
σt+σb+C3

SSIM (T, B) = l (T, B)× c (T, B)× s (T, B)

(12)

where μt is the average gray value of target pixels, μb is the average gray value of the background
pixels, σt is the standard deviation of the target, σb is the standard deviation of the background.
C1, C2 and C3 are constants.

According to the above evaluation metrics, we calculated the simulated data of frozen lakes scene
at different altitudes (10–100 km). The data are divided into two parts, the area including the flame by
overlapping (the upper parts of Table 1) and without flame (the bottom of Table 1). The results are
shown in Table 1.

Table 1. Detectability results of different indicators on the lake scene.

Altitude
Indicator

PSNR Contrast SSIM En Hom Smo Var Skew SCR Kur
Including

Flam
e

10km 43.32 36.08 0.97 4.70 7.2 × 10−2 0.40 210.20 5.9 × 103 0.55 2.7 × 105

20 km 40.04 38.00 0.95 4.71 7.0 × 10−2 0.41 214.60 5.9 × 103 1.23 2.7 × 105

30 km 39.99 64.09 0.93 4.96 6.1 × 10−2 0.63 330.90 1.1 × 104 1.91 6.1 × 105

40 km 38.39 68.41 0.91 5.06 5.4 × 10−2 0.65 345.10 1.1 × 104 2.14 6.2 × 105

50 km 37.91 94.92 0.88 5.08 5.5 × 10−2 0.71 399.80 1.4 × 104 3.59 8.6 × 105

60 km 36.19 150.77 0.84 5.28 4.7 × 10−2 0.85 602.10 3.2 × 104 5.54 2.8 × 106

70 km 35.63 167.29 0.83 5.33 4.4 × 10−2 0.88 704.30 4.3 × 104 6.38 4.2 × 106

80 km 34.86 239.91 0.81 5.53 3.6 × 10−2 0.93 962.40 8.1 × 104 8.11 1.0 × 107

90 km 34.96 224.68 0.81 5.52 3.8 × 10−2 0.93 900.70 7.0 × 104 7.61 8.4 × 106

100 km 33.01 213.19 0.77 5.66 3.1 × 10−2 0.96 1.2 × 103 1.1 × 105 10.21 1.4 × 107

W
ithoutFlam

e

10 km 38.11 43.95 0.93 5.56 2.6 × 10−2 0.29 161.90 −1.9 × 103 1.74 1.2 × 105

20 km 37.54 46.07 0.92 5.61 2.6 × 10−2 0.31 171.20 −1.7 × 103 2.46 1.3 × 105

30 km 37.80 56.53 0.90 5.63 2.6 × 10−2 0.35 188.30 −841.50 3.74 1.8 × 105

40 km 36.99 60.16 0.89 5.66 2.5 × 10−2 0.41 211.70 290.90 4.14 2.5 × 105

50 km 36.54 87.18 0.87 5.70 2.4 × 10−2 0.56 288.60 6.7 × 103 6.47 8.4 × 105

60 km 35.36 119.96 0.84 5.74 2.4 × 10−2 0.78 476.30 2.4 × 104 8.15 2.7 × 106

70 km 34.91 121.29 0.83 5.79 2.3 × 10−2 0.81 533.50 2.8 × 104 8.07 3.0 × 106

80 km 34.03 140.35 0.82 5.83 2.2 × 10−2 0.85 600.80 3.4 × 104 7.99 3.7 × 106

90 km 34.18 139.90 0.82 5.83 2.2 × 10−2 0.85 597.80 3.3 × 104 8.15 3.6 × 106

100 km 32.53 153.77 0.79 5.75 2.4 × 10−2 0.92 856.80 6.4 × 104 11.19 7.1 × 106
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(d) Frozen Lake

Figure 4. Infrared image of flame and background superimposed. The surface plots show the gray
level of the target areas, which are labeled by the red bounding boxes in images.
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4. Simulation Results

According to the analysis results of simulation experiment, three indicators: En, Var and SCR can
reflect the infrared radiation response best. By using these three indicators, the differences (intensity in
imagery) between background and target are well represented, that they indicate Information richness,
texture characteristics and radiation intensity, respectively. Thus, these indicators are chosen to evaluate
the detectability of the plume. The detectability of the infrared radiation of the plume at different flight
altitudes is investigated below. The calculation area is a rectangular area of 61× 21 size centered on the jet
target. The size of the calculation window depends on the actual size of the simulation target.

From Figure 5, we can see that the three curves in 2.5–3 μm band (a,b,c) have obvious variation
regularity, which indicates that the infrared radiation of the flame and background can be distinguished
obviously. However, the curves in 4–4.5 μm band (d,e,f) is basically flat and excessive. The difference
and discrimination of radiation indices are very small.

(a) Information entropy (2.5–3 μm) (b) Variance (2.5–3 μm)

(c) SCR (2.5–3 μm) (d) Information entropy (4–4.5 μm)

(e) Variance (4–4.5 μm) (f) SCR (4–4.5 μm)

Figure 5. Detectability evaluation results at different wave bands.
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5. Conclusions and Discussion

The calculation models for infrared radiation of the earth background and missile plume are
constructed in this paper. The image quality of the simulation data, that are formed by overlapping
the plume on the background, are evaluated to study the detectability of the plume radiation. Based
on the above analysis and investigation, we summarize as follows:

(1) In the detection period, the observation condition at night is better than that at daytime. The
difference is mainly reflected in the observation of level II targets (second-stage engine exhaust with
the same propellant), which can be clearly observed at night at all heights but it is difficult to observe
the level II targets at all heights during the day. On the one hand, the infrared radiation of level II
engines is less than that of level I engines, on the other hand, the background radiation in the day is
greater than that in the night.

(2) We can see from the simulation results, three indicators response, such as entropy, SNR and
variance, is relatively sensitive in 2.5–3 μm detector band.

(3) In terms of altitude, the visibility of the target at a higher altitude is higher. The infrared
radiation of the engine can be clearly observed at or above 10 km in both day and night conditions. The
reason is that the attenuation effect of the atmosphere above 10 km on the plume radiation is reduced.

The above conclusions are drawn from the selected typical surface scenes and cloudless
conditions. In the actual flight process, the engine is located in a complex background and
meteorological conditions, which require specific analysis and calculation according to the specific
detection conditions.
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Abstract: This paper proposes a method for salient crowd motion detection based on direction entropy
and a repulsive force network. This work focuses on how to effectively detect salient regions in
crowd movement through calculating the crowd vector field and constructing the weighted network
using the repulsive force. The interaction force between two particles calculated by the repulsive
force formula is used to determine the relationship between these two particles. The network node
strength is used as a feature parameter to construct a two-dimensional feature matrix. Furthermore,
the entropy of the velocity vector direction is calculated to describe the instability of the crowd
movement. Finally, the feature matrix of the repulsive force network and direction entropy are
integrated together to detect the salient crowd motion. Experimental results and comparison show
that the proposed method can efficiently detect the salient crowd motion.

Keywords: crowd behavior analysis; salient crowd motion detection; repulsive force; direction
entropy; node strength

1. Introduction

Video surveillance plays an important role in monitoring crowd safety, which is one of the key
concerns in our daily life. Since the traditional human-computer interaction between video surveillance
and crowd safety is time-consuming and labor-intensive, intelligent video surveillance issues such
as target tracking, target detection and crowd analysis have become popular research topics. Crowd
motion detection and analysis are essential for crowd behavior understanding [1,2]. It is thus very
important to detect the salient motion in the crowd to monitor any potential threats or even damage to
social safety. Salient motion has been defined as motion that is likely to result from a typical surveillance
target as opposed to other distracting motions [3]. According to this definition, salient crowd motion
usually indicates areas that are inconsistent with the mainstream pedestrians’ movement. For video
surveillance, these areas deserve more attention.

In recent years, due to the rapid development of computer vision technologies, progress has been
made in detection of crowd saliency. For example, Lim et al. [4,5] proposed a method for automatically
detecting a salient region using time variation of a crowd scene flow field by detecting the fluid activity
in a given scene and detecting saliency with a minimum amount of observation region. Some methods
for detecting globally salient motion regions for spectral singularity analysis of motion regions in
video [6,7] have been also presented. Zhou et al. [8] studied the invariance of coherent neighbors
as coherent motion priors, and proposed an effective clustering technique to detect crowd saliency.
Solmaz et al. [9] overlaid the scene from the particle grid of the dynamic system defined by the optical
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flow, and proposed a method to identify the behavior of five people in the visual scene through time
integration. Zhang et al. [10] surveyed physics-based methods for crowd video analysis and sorted
out the existing public database of crowd video analysis. Although many methods have shown good
performance in crowd salient motion detection, the internal mechanism of crowd movement still needs
to be explored. The pattern of crowd movement depends on both individual movement and interaction
between individuals. It is of great value to explore a method to describe individual interaction and
apply it to crowd salient motion detection.

In this paper, we propose a salient crowd motion detection method based on a direction entropy
and a repulsive force network. The optical flow is first obtained using the pyramid-based Lucas-Kanade
optical flow algorithm. Then, the weighted network is constructed by the repulsive force and the node
strength matrix is obtained by using the node degree as the characteristic parameter. Finally, the particle
motion direction entropy is used to optimize the node strength matrix and to detect salient movements
of the crowds. The framework of the proposed method is shown in Figure 1. A motion vector field is
established by giving each pixel a velocity vector in each image through the Pyramid Lucas-Kanade
optical flow algorithm. Each vector in the crowd vector field is treated as a moving micro-particle.
In order to build a complex network model, we regard each particle and the relationship between two
particles as node and edge in the network, respectively. In order to show whether there is a connection
between two particle nodes, we use the interaction force to construct the network. After calculating
by optical flow method, the position and velocity parameters of each particle can be determined.
Whether there is an edge between the nodes depends on the value of repulsive force between these
nodes. The repulsive force can be described by the inertial centrifugal force. The value of the inertial
centrifugal force is the weight of the edge and a velocity vector node can be selected accordingly. In the
neighborhood of the node, the relevancy between the two velocity vectors is taken as a condition to
determine the relevancy between the corresponding nodes.

 

Figure 1. Framework of salient crowd motion detection based on repulsive force network and
direction entropy.

A weighted crowd network model is constructed to obtain the adjacency matrix representing
the crowd motion information. In order to obtain a complete boundary of salient motion region,
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the velocity field is reversed and the repulsive force between particles is calculated repeatedly to
construct the repulsive force network model. Then, the edge and weight are constructed by the
repulsive force model, and the results of the superposition are taken as a construction step. Once all
nodes are traversed, the strength of each crowd-weighted network node is extracted as a characteristic
parameter to construct the strength matrix of the nodes. By calculating the direction of the velocity
entropy of each node in the neighborhood, we can obtain the direction entropy matrix of the node.
Then, the normalized direction entropy matrix and the strength matrix of the node are used to further
optimize the strength matrix of the node. Once the node strength matrix is obtained, the salient region
in crowd movement can be detected.

2. Calculation of Crowd Velocity Vector Field

To calculate the velocity vector field, the crowd video is decomposed into image sequences.
Then, each pixel of the image is given a velocity vector calculated using an optical flow algorithm.
A motion vector field is thus established. In this paper, considering the spatio-temporal information
in motion detection [11], we adopt an improved algorithm based on Lucas-Kanade optical flow
algorithm [12] for this task, namely pyramid optical flow algorithm [13].

Lucas-Kanade optical flow, in the process of moving the picture, assumes that a pixel (x, y) on the
image has a brightness of I (x, y, t) at time t. After a small time interval of Δt, the brightness of the
point becomes I(x + Δx, y + Δy, t + Δt). The Taylor formula is used to expand and when Δt is small
enough to approach zero:

I(x + Δx, y + Δy, t + Δt) = I(x, y, t) +
∂I
∂x

Δx +
∂I
∂y

Δy +
∂I
∂t

Δt (1)

The optical flow constraint equation can be obtained from the brightness constant:

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
∂I
∂t

=
∂I
∂x

u +
∂I
∂y

v +
∂I
∂t

= Ixu + Iyv + It = 0 (2)

According to the uniformity of optical flow, we can establish the optical flow equations:

Ix1u + Iy1v + It1 = 0
Ix2u + Iy2v + It2 = 0

...
Ixnu + Iynv + Itn = 0

(3)

Then use the least square method to gain the Lucas-Kanade optical flow, where u is the horizontal
velocity and v is the vertical velocity:

[
u
v

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

Iix
2

n∑
i=1

IixIiy

n∑
i=1

IixIiy
n∑

i=1
Iiy

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− n∑

i=1
IixIt

− n∑
i=1

IiyIt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

The basic ideas of Lucas Kanade optical flow algorithm are mainly based on three assumptions:
(1) constant brightness; (2) time continuous or movement is “small movement”; (3) spatial consistency.
If an object is moving fast, the second assumption is not fully satisfied. The value calculated by
traditional Lucas-Kanade optical flow will have a larger deviation. Pyramid optical flow algorithm
reduces the offset of the target motion by reducing the image layer by layer, which satisfies the
hypothesis of optical flow calculation better and weakens the influence of fast target motion. In this
paper, the crowd velocity field Q is obtained by the pyramid optical flow algorithm. All the velocity
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values in the horizontal direction and vertical direction are rounded up. The velocity vector field
calculated using pyramid Lucas-Kanade optical flow algorithm for a crowd scene is shown in Figure 2.

Figure 2. Crowd optical flow field of the sampled frame.

3. Construction of Repulsive Force Network

3.1. Establishment of a Network Node

Complex network is a useful tool for describing a complex system. Each element in the system unit
is regarded as a node, and the relationship between elements is regarded as a connection. A complex
system can be represented as a network [14]. The crowd velocity vector field can be described as a
complex network, in which each velocity vector is a node, and the relationship between the velocity
vectors is connected. If the properties of the velocity vectors are measured separately, information
stored in the velocity vector cross-correlation cannot be obtained, because the correlation of velocity
vectors carries more information than the nature of each velocity [15].

We use the interaction force between particles to construct the network [16,17]. After applying the
optical flow method, each vector in the obtained crowd vector field is regarded as a moving microscopic
particle. The position and velocity parameters of each particle can be then determined. In our crowd
complex network, each particle is treated as a node, and the interaction force between two particles
is treated as an edge in the network. Whether there is an edge between the nodes depends on the
repulsive force between the nodes, the repulsive force can be described by the inertial centrifugal force,
and the value of the inertial centrifugal force is the weight of the edge. A weighted undirected network
Gw node set Q =

{
q1, q2, · · · , qn

}
can be generated, where n is the total number of nodes. The number of

network nodes is equal to the number of particles in the crowd velocity field.

3.2. Establishing the Network Edges Using Repulsive Force Model

In the whole particle field, the size and direction of particle velocity are instantaneous, and the
motion of the next times is random. If the moving particle is assumed as an agent, there is a possibility
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of interaction and collision between particles in motion. Imagine that each particle is an agent. In order
to avoid collision between agents, an agent adds a repulsive force element to prevent them from
colliding with each other. This repulsive force can be described by inertial centrifugal force [18].
For a given crowds particle field Q (M, N) in the column N and row M, selecting a particle qxoyo as
the node, constructing a two-dimensional neighborhood δ, the size is (x0 ± ε, y0 ± ε). In this region,
the connection between qxoyo and other nodes qxy(x � x0, y � y0) can be described as e(qxoyo, qxy).
Whether this connection exists is determined by the following formula:

e(qxoyo, qxy)

⎧⎪⎪⎨⎪⎪⎩
∃,

→
Fij � 0, qxy ∈ δ

�, otherwise
(5)

The formula for calculating the inertial centrifugal force is as follow:

→
Fij = −mikij

v2
i j

disti j

→
e ij (6)

where
→
e ij is the direction vector and mi is the mass of particle qi. In this paper, the mass of all particles

is set as unit 1.vij is the relative velocity of two particles, disti j is the distance between two particles,
kij is a coefficient, the calculation of vij and kij is determined by the following formula:

vij =

⎧⎪⎨⎪⎩ (
→
v i −→

v j) · →e ij, (
→
v i −→

v j) · →e ij > 0
0, others

(7)

kij ==

⎧⎪⎨⎪⎩ (
→
v i · →e ij)/vi,

→
v i · →e ij > 0, vi � 0

0, others
(8)

Then, we can obtain the joint weight, which can be expressed by the magnitude of the
repulsive force:

We =
∣∣∣∣∣→Fij

∣∣∣∣∣ (9)

According to the repulsive force formula, if the particle moves away from the affected particle,
the repulsive force will be very low. As shown in Figure 3, the arrow represents the moving optical
flow, and the blue line represents the repulsive force generated. Figure 3a is the schematic diagram of
the repulsive force in the original direction, and Figure 3b is the schematic diagram of the repulsive
force in the opposite direction. Thus, for some application of salient region detection, only half of the
boundary can be detected.

Figure 3. Schematic diagram of repulsive force: (a) original motion flow; (b) motion flow reversed.

In order to get a complete boundary, the velocity field is reversed and the repulsive force between
particles is calculated repeatedly. Thus, the repulsive force model can be used to construct the edge
and weight of the repulsive force network. The results of the superposition of the two are taken as
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a construction step. Figure 4 shows an example. If we construct the repulsive force network for the
optical flow field of the original video sequence, only half of the boundary can be obtained. If we
construct the repulsive force network again after reversing the optical flow field, the other half of the
boundary can be obtained.

 
Figure 4. Expressing the effect of optical flow reversal: (a) original sample frame; (b) detection result
using original optical flow; (c) detection result using reversed optical flow; (d) detection result after the
integration of optical flow.

The two-dimensional crowd velocity field is transformed into weighted undirected network model
Gw(Q, E, We) by repeating the above steps for each node. The corresponding weighted undirected
network node is set as Q =

{
q1, q2, · · · , qn

}
and the network edge is set as E = {e1, e2, · · · , em}. In the

crowds weighted network model, the connection between nodes and the degree of connection between
nodes can be expressed by the following adjacency matrix:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣∣ →F11

∣∣∣∣∣
∣∣∣∣∣ →F12

∣∣∣∣∣ . . .
∣∣∣∣∣ →F1n

∣∣∣∣∣
...

...
. . .

...∣∣∣∣∣ →Fn1

∣∣∣∣∣
∣∣∣∣∣ →Fn2

∣∣∣∣∣ · · ·
∣∣∣∣∣ →Fnn

∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10)

3.3. Calculation of Node Strength

Statistical characteristic parameters of a network can be used to represent the characteristics of a
network, such as node degree, average path length, clustering coefficient. In this paper, node strength
is chosen to describe the characteristics of the crowd complex network. In the complex network model,
node strength is the generalization of node degree, which integrates the strength between edges and
nodes [19,20]. From the adjacency matrix, the node strength s(qi) of node qi can be expressed as follows:

s(qi) =

j∑
n=1

∣∣∣∣∣→Fij

∣∣∣∣∣, (11)
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After calculating each point in the crowd velocity field, we can get the node strength of all nodes.
The node strength field S(M, N) is also a two-dimensional matrix containing M rows and N columns.
There is also a one-to-one correspondence between the node strength field and the crowd speed field:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
S11 S12 . . . S1N

...
...

. . .
...

SM1 SM2 · · · SMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (12)

In order to facilitate the node strength field optimization operation in later stage, the node strength
field is normalized as follows:

S′ = S− Smin
Smax − Smin

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
S11 S12 . . . S1N

...
...

. . .
...

SM1 SM2 · · · SMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (13)

where Smax and Smin are the maximum and minimum values of the nodes in all node strengths.

4. Optimizing Node Strength Field Using Direction Entropy

4.1. Establishment of Vector Direction Entropy Matrix

For a crowd motion field Q (M, N) of the M row and N column, one particle qxoyo is selected,
and thus, the direction angle of particle motion is divided into eight directions at 45 degrees interval.
The calculation of velocity direction angle and direction grade is determined by the following formula:

θ = arctan
qyo

qxo
, (14)

d =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 0 ≤ θ < π4
...

...

8 7π
4 ≤ θ < 2π

, (15)

Choose a two-dimensional neighborhood δ with the same edge and weight as the repulsive force
model with the size of (x0 ± ε, y0 ± ε). For a sub-image region, because of the different motion forms of
particles, the direction of particle motion is uncertain at eight angles. Shannon entropy is a classical
method to measure the uncertainty of information, and is the basis of communication science [21–23].
In this paper, Shannon entropy is used to measure the uncertainty of particle motion direction. In this
paper, we employ Shannon entropy to describe the chaotic degree of crowd motion. In a neighborhood
δ, each particle can be calculated by direction rank formula to get a direction rank d. Each direction
rank occupies a certain probability pi in all direction ranks. According to the definition of Shannon
entropy [21] and [23], we can assign the velocity direction entropy between the central particle qxoyo

and other particles qxy(x � x0, y � y0) neighboring the central particle. The calculation is determined
by the following formula:

Hxoyo = −
n∑

i=1

pi log pi, n = ε2, (16)

For each position, in the crowd particle field Q (M, N), the entropy can be calculated by repeating
the steps mentioned above. Therefore, the direction entropy of each particle in the crowd particle field
can be obtained. The two-dimensional crowd velocity vector field can be transformed into a particle
direction entropy matrix:
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H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
H11 H12 . . . H1N

...
...

. . .
...

HM1 HM2 · · · HMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (17)

where, H11, H12 . . . . . . HMN is the entropy at the corresponding position of the crowd particle field.
In order to facilitate the node strength field optimization operation in later stage, the direction entropy
matrix is normalized as follows:

H′ = H −Hmin
Hmax −Hmin

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
H11 H12 . . . H1N

...
...

. . .
...

HM1 HM2 · · · HMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (18)

Hmax and Hmin are the maximum and minimum values in the entropy matrix for all directions.

4.2. Optimizing the Node Strength Field

The direction entropy matrix of crowd movement can describe the degree of changes in the
direction of movement of the nodes. Furthermore, the strength field of the repulsive force node
describes the degree of repulsion of each node and the surrounding nodes. In order to reduce the noise
caused by other interference motion, this paper combines these two kinds of model to optimize the node
strength field. It is very important to choose an effective way to integrate these two features, e.g., node
strength and entropy. There are many ways to integrate features, such as multiplication and addition.
For the application of salient crowd motion detection, the way of feature fusion requires significant
expression of specific crowd motion regions and adaptation to the changes of scene. We analyzed
the feature of node strength and entropy. The saliency region can be detected by combining the two
features by multiplying or add. However, the saliency region obtained by addition is more effective.
Because the range of the two features is quite different and there are great changes in different scenarios,
it is difficult to determine the combined weights. Therefore, this paper applies a normalized processing
of the two features before adding the two features together. Although there are differences in dimension
between them, as a normalized feature, it works well when integrating them at the application level.

The direction entropy matrix of crowd motion is in one-to-one correspondence with the strength
field of nodes; thus, we have made a comparison according to the following formulas:

Pij =

⎧⎪⎪⎨⎪⎪⎩
Sij

′ + Hij
′ Sij

′ � 0, Hij
′ � 0

0 others
, (19)

The optimized node strength field is:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P11 P12 . . . P1N

...
...

. . .
...

PM1 PM2 · · · PMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)

Then, for nomalizing the optimized node strength field, the specific calculation formula is
as follows:

P′ = P− Pmin
Pmax − Pmin

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
P11 P12 . . . P1N

...
...

. . .
...

PM1 PM2 · · · PMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (21)

After normalizing the strength field of the nodes, we smoothed the node strength field with a
3 × 3 mean filter template. It can eliminate the negative effects of the node strength caused by too high
or too low values on the experimental results. In order to intuitively describe and observe the value of

374



Entropy 2019, 21, 608

node strength, we use a pseudo-color image display method to visualize node strength. Pseudo-color
image shows the pixel value corresponding to the node strength value. In a crowd scene, it is obvious
that the node pixel values in salient regions are higher than those in other regions.

5. Experimental Results and Analysis

In our experiments, we tested three crowded scene video sequences from Crowd Saliency
dataset [5] and a video sequence in [24] to show the performance of the proposed method. Retrograde
and instability regions of a crowd were detected in the experiment. For different crowded scenes,
the scale of the velocity field Q(M,N) and the parameters ε (the size of neighborhood) in the experiment
are shown in Table 1. The proposed method is effective for images used in this experiment, which
do not have a high resolution. If it is used to deal with high resolution images, there are two ways
to processing the data. One is to reduce the high-resolution image using interval sampling and local
mean, and the other is to process optical flow data by interval sampling.

Table 1. Different scenes and parameter values.

Crowded Scenes Symbol of Parameter The Value

Train station scene in Figure 5 ε
M × N

13
480 × 360

Single retrograde scene in Figure 6 ε
M × N

15
480 × 360

Marathon scene in Figure 7 ε
M × N

11
640 × 480

Pilgrimage scene in Figure 8 ε
M × N

15
640 × 480

5.1. Crowd Retrograde Behavior Detection

In this experiment, we used the train station scene and the single retrograde scene to show the
salient detection for retrograde behavior. As shown in Figures 5 and 6, some pedestrians do not conform
to the flow of the mainstream crowd, hence, a retrograde motion was formed instead. The particles
will thus have a larger repulsion force and direction entropy in this region. This proposed method can
effectively detect human retrograde movement. Figures 5a and 6a shows the original video frame.
The node strength field calculated from the repulsive force network is shown in Figures 5b and 6b.
It can be clearly seen that the regions with high node strength represents the retrograde motion.
However, there are still some disturbances. As shown in Figures 5c and 6c, though the entropy value
of the retrograde region is large, there are still some noise regions. Fortunately, the disturbance regions
detected by node strength and direction entropy are different. Therefore, we can optimize the saliency
detection results by integrating node strength and direction entropy, as is shown in Figures 5d and 6d.
In order to illustrate the detection performance, we overlap the saliency detection results with the
original video frames in Figures 5e and 6e. Experiments show that our method can detect pedestrians
who even move oppositely to the flow of mainstream crowd.
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Figure 5. Retrograde motion detection in train station scene: (a) input frame; (b) node strength field of
repulsive force network; (c) detection result using direction entropy; (d) salient region detection after
optimized; (e) overlap the salient region with input frame.

Figure 6. Retrograde motion detection in single retrograde scene: (a) input frame; (b) node strength
field of repulsive force network; (c) detection result using direction entropy; (d) salient region detection
after optimized; (e) overlap the salient region with input frame.

5.2. Crowd Motion Instability Region Detection

In the crowd surveillance system, the instability area of crowd movement often deserves attention.
In this experiment, we used two scenes, including the marathon scene (Figure 7) and the pilgrimage
scene (Figure 8) to show the performance of the proposed method for detecting the instability
crowd motion.

The sample frames for the two scenarios are shown in Figures 7a and 8a. There are instability
motion regions (some pedestrians are different from the mainstream crowd) in these two crowds.
The results of node strength fields of two scenes are shown in Figures 7b and 8b, respectively. We
can see that the node strength of the repulsive force model is larger in instability motion regions.
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The direction entropy fields of two scenarios are shown in Figures 7c and 8c, respectively. The entropy
values of the instability region are clearly large. However, there is some noise in the unstable region
detected by any single method. After integrating these two methods of node strength and direction
entropy, the saliency detection results are optimized and the interference areas are effectively removed,
which can be seen in Figures 7d and 8d. Figures 7e and 8e show saliency detection results after
overlapping with the original video frame. Experimental results show that the proposed method can
detect the salient crowd instability motion in large-scale crowded scenes.

Figure 7. Salient crowd instability motion detection in marathon scene: (a) original video frame and
ground true (red box); (b) node strength field of repulsive force network; (c) detection result using
direction entropy; (d) salient region detection after optimized; (e) overlap the salient region with
original video frame.

Figure 8. Salient crowd instability motion detection in pilgrimage scene: (a) original video frame
and ground true (red box); (b) node strength field of repulsive force network; (c) detection result
using direction entropy; (d) salient region detection after optimized; (e) overlap the salient region with
original video frame.
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5.3. Detection Results Using Different Neighborhood Size

It is very important to select a suitable neighborhood size ε to construct complex network.
A neighborhood that is too small will not be bias to salient motion, while a neighborhood with too
large a scale will introduce more noise. In this section, the salient crowd motion will be detected using
different neighborhood sizes ε. For retrograde motion detection, the train station scene and single
retrograde scene is used to show the performance of the proposed method. From Figure 9, we can
see that the salient motion region detected by applying the size of 5 × 5 neighborhood is slightly
scattering, while the area detected by the size of 13 × 13 is more complete. A larger the neighborhood
23 × 23, can cause more noise in the detection results. As for the Figure 10, the salient motion region
size detected by using the 5 × 5 neighborhood is small, while the area detected by using the 15 × 15
neighborhood size is more complete. When choosing a larger neighborhood of 23 × 23, the result
includes more noise. For instability motion detection, two scenes were used in this experiment. For the
marathon scene, the detection result was usually not closed if the neighborhood size was too small
(5 × 5 neighborhood). Applying a neighborhood size of 23 × 23, noise interference will be introduced,
although closed salient motion regions can still be obtained. After the experiment, the closed salient
motion region can be obtained using a neighborhood size of 11 × 11 (Figure 11). For another pilgrimage
scene, although the saliency region can also be detected with a 5 × 5 size neighborhood, the result
obtained with a 15 × 15 size neighborhood is closer to the ground truth (Figure 12).

 

Figure 9. Retrograde motion detection in train station scene using different neighborhood size:
(a) original video frame; (b) detection result using 5 × 5 neighborhood; (c) detection result using 13 × 13
neighborhood; (d) detection result using 23 × 23 neighborhood.
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Figure 10. Retrograde motion detection in single retrograde scene using different neighborhood size:
(a) original video frame; (b) detection result using 5 × 5 neighborhood; (c) detection result using 15 × 15
neighborhood; (d) detection result using 23 × 23 neighborhood.

 

Figure 11. Instability motion detection in marathon scene using different neighborhood size: (a) original
video frame and ground truth region; (b) detection result using 5 × 5 neighborhood; (c) detection result
using 11 × 11 neighborhood; (d) detection result using 23 × 23 neighborhood.
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Figure 12. Instability motion detection in pilgrimage scene using different neighborhood size: (a) original
video frame and ground truth region; (b) detection result using 5 × 5 neighborhood; (c) detection result
using 15 × 15 neighborhood; (d) detection result using 25 × 25 neighborhood.

5.4. Performance Evaluation and Comparison

The ground truth of crowd salient detection for pilgrimage and marathon scene has been given
in the Crowd Saliency dataset [5]. The ground truth is given using a rectangular area. In order to
evaluate the performance of the proposed method, we calculate the minimum enclosing rectangle
of the detected salient motion region. To quantitatively evaluate the performance of the method,
two indicators (precision and recall) are calculated in our experiments. In this paper, precision is the
ratio of the number of pixels in the detected region that belong to the ground truth to the number
of pixels in the detected area, indicating whether the number of pixels in the detected local motion
instability area is accurate, expressed by Pr. Recall is the ratio of the number of pixels in the detected
results region that belonging to the instability motion region to the number of all pixels of the ground
truth, represented by R [25]. The precision and recall can be calculated as:

Pr =
TP

TP + FP
(22)

R =
TP

TP + FN
(23)

where TP indicates that both the detection result and the ground truth are positive. FP indicates that
the detection is positive and the actual is negative. TN indicates that both the prediction and the
ground truth are negative. FN indicates that the prediction is negative but the actual is positive.

The precision and recall calculated from the pilgrimage and marathon scene using different
parameters (the size of neighborhood) are given in Table 2. Obviously, according to the parameters
selected in this paper, satisfactory detection accuracy can be obtained. If the neighborhood size is too
large or too small, the detection accuracy will be seriously affected. Figure 13 shows the detection
results of the pilgrimage and marathon scene using different methods. From Figure 13 we can see that
both the proposed method and the methods mentioned in [26] can detect the salient region correctly.
However, the rectangular region obtained by the proposed method is closer to the ground truth.
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Table 2. The measurement of the accuracy of the detection results using different parameters.

Crowded Scenes Statistics Size of Neighborhood Results

marathon

Pr
5 × 5 0.862

11 × 11 0.910
23 × 23 0.531

R
5 × 5 0.841

11 × 11 0.909
23 × 23 0.877

pilgrimage

Pr
5 × 5 1

15 × 15 1
25 × 25 0.684

R
5 × 5 0.244

15 × 15 0.867
25 × 25 0.656

 

Figure 13. Comparison of the method in this paper with the article [26]: (a,e) are the ground truth
of marathon and pilgrimage scene; (b,f) are the results gained by our method; (c,g) are courtesy of
reference [26]; (d,h) are the local enlarged displays of the results.

6. Conclusions

In this paper, we proposed a method for crowd salient motion detection based on a direction
entropy and a repulsive force network. This paper focused on how to detect saliency regions in
crowd movement effectively. Firstly, the crowd video sequence frames are processed by the optical
flow algorithm followed by the crowd velocity vector field calculation. Secondly, according to
the repulsive force model, the interaction force between two particles is determined as a certain
condition. The repulsive force network is obtained and the strength of the crowd weighted network
node is extracted as the characteristic parameter to construct a two-dimensional feature matrix.
Finally, the velocity vector direction entropy is combined with the repulsive force network characteristic
matrix to detect the salient crowd motion structure. The experimental results of four crowd video
sequences show that the proposed method can not only detect the region of retrograde behavior
of crowd movement but also the region of unstable crowd movement in large-scale crowd scenes.
For future work, we will focus on the development of a method for an adaptive threshold and
neighborhood calculation.
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