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Preface to ”Computational Intelligence for Modeling,

Control, Optimization, Forecasting and Diagnostics in

Photovoltaic Applications”

In recent years, a growing number of scientific papers has appeared on computational

intelligence (CI) applied to photovoltaic (PV) systems. CI can be profitably used to carry out the

following tasks in PV applications: modeling, sizing and control of stand-alone and grid-connected

PV systems, centralized maximum power point tracking (MPPT), distributed MPPT, PV arrays

reconfiguration, storage sizing, control optimization, detection of mismatching operating conditions,

fault diagnosis, maintenance programming, prediction and modeling of solar radiation, and output

power plants forecast of PV systems. The aims of the Special Issue are as follows:

- Focus on the latest theoretical studies, numerical algorithms, scientific results, and applications

of CI in PV systems;

- Bring together scientists adopting several approaches and working on the above topics;

- Promote and share as much as possible top-level research in the field of CI in PV systems.

Massimo Vitelli, Luigi Costanzo

Editors
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Abstract: In this paper, a novel maximum power point tracking (MPPT) technique, which has been
named T4S (a technique based on the proper setting of the sign of the slope of the photovoltaic voltage
reference signal), is presented and discussed. It is specifically designed with reference to a single-stage
grid-connected PV system. Its performance is numerically compared with that of the well-known and
widely used perturb and observe (P&O) MPPT technique. The results of the numerical simulations
confirm the validity of the proposed MPPT technique which exhibited a slightly better performance,
under stationary and also time-varying irradiance conditions. In addition, the T4S technique is
characterized by the following features: it does not require explicit power detection or calculation
and, moreover, it allows the tracking of the maximum average power injected into the grid rather
than the tracking of the maximum instantaneous power extracted by the PV source.

Keywords: photovoltaic systems; maximum power point tracking; single stage grid connected systems

1. Introduction

Maximum power point tracking (MPPT) is one of the main functions carried out by power
electronic interfaces that connect photovoltaic (PV) sources to loads and grid. Many MPPT techniques
have been presented and discussed in the literature [1–5]. Among them, the perturb and observe (P&O)
technique has emerged as one of the simplest, but nonetheless efficient, MPPT techniques and is widely
accepted as a benchmark MPPT technique [6–8]. It can be adopted in both single- and double-stage
grid-connected PV systems [9,10]. It works by perturbing the operating point of the PV source and
observing the corresponding variation of the PV power in order to detect the direction of perturbation
of the operating point (increase or decrease of the PV voltage) leading to the maximization of the PV
extracted power [11,12]. In this paper, a novel MPPT technique is introduced and analyzed. It has
been named T4S (a technique based on the proper setting of the sign of the slope of the photovoltaic
voltage reference signal). It is designed with specific reference to a single-stage grid-connected PV
system [13–15]. As shown in this paper, the tracking efficiency of the proposed T4S technique is more
or less comparable to that of the P&O technique. However, the T4S technique is characterized by the
following advantages with respect to the P&O technique: it does not require PV current detection and
the power stage efficiency profile is automatically taken into account by tracking the maximum power
injected into the grid rather than the maximum power extracted by the PV source.

The rest of the paper is organized as it follows: In Section 2 a typical single-stage grid-connected
PV system is described together with the working of the P&O MPPT technique. In Section 3, the
proposed T4S MPPT technique is discussed and analyzed in detail. The main parameters affecting its
performance are identified and proper guidelines for their choice are provided. In Section 4, numerical
results are reported and discussed. In particular, both constant and time-varying irradiance profiles
are considered in the numerical simulations. In Section 5, the performance of the proposed T4S MPPT

Energies 2019, 12, 4501; doi:10.3390/en12234501 www.mdpi.com/journal/energies1



Energies 2019, 12, 4501

technique is compared with the P&O technique under both stationary and time-varying irradiance
conditions. Finally, the conclusions are presented at the end of the paper.

2. Single-Stage Grid-Connected PV System with P&O Controller

A typical single-stage grid-connected PV system is shown in Figure 1 [13–15]. The DC/AC
converter is an active full bridge with a control circuitry exhibiting the presence of two control loops,
an inner current control loop, and an outer voltage control loop [16,17].

Figure 1. Single-stage grid-connected photovoltaic (PV) system equipped with the perturb and observe
(P&O) maximum power point tracking (MPPT) technique.

A fast internal current control loop is aimed at injecting an AC current into the grid with a power
factor ideally equal to one. The interested reader can find all the details concerning the proper design
of such a control loop in [16]. In this paper, ideal working of the internal current control loop (zero
error) is assumed, and therefore the following equation represents the starting point for the analysis:

Rs·igrid(t) = k(t)·vgrid(t), (1)

where Rs is the sensing resistance, vgrid(t) =
√

2·Vgrid·sin(2πf · t) is the grid voltage, and f is the line
frequency. It is worth noting that k(t) is a slowly varying signal [16], hence from (1) it is possible to
state that igrid(t) =

√
2·Igrid·sin(2πf · t) , that is, igrid(t) and vgrid(t) are in phase. The slowly varying

signal, k, dictates the value of the average (over the period of the line frequency f) power, Pgrid, injected
into the grid, i.e., the higher the value of k, the higher the active power Pgrid. In fact, it is

Pgrid = Igrid·Vgrid =
k
Rs
·V2

grid. (2)

2
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A slow external voltage control loop is aimed at the proper regulation of the PV voltage, VPV.
The reference voltage, VPV_ref, is provided, as shown in Figure 1, by the MPPT controller [18,19]. It is
worth noting, as shown in Figure 1, that two low-pass filters appear. One for the PV voltage, VPV, and
the other for the PV power, PPV. Filtering is necessary in order to avoid errors of the MPPT technique,
which can be deceived by the presence of harmonics (at the double of the line frequency and at the
frequencies of switching harmonics). In addition, the working of the voltage control loop can be
negatively affected by such harmonics. Henceforth, for brevity, we refer to VPV and PPV even if we
indeed refer to their filtered versions.

As stated in the Introduction, the P&O technique is one of the most exploited MPPT techniques
since it is simple but nonetheless very efficient. The P&O algorithm operates by periodically
changing, step-by-step, the reference voltage, VPV_ref, and by measuring the corresponding PV
power, PPV = VPV·IPV [18]. After each perturbation of VPV_ref, the P&O controller waits for the settling
of the system steady-state and, subsequently, compares the new steady-state value of PPV with the
older one in order to drive the operating point towards the MPP. In particular, if after a perturbation
of VPV_ref the steady-state value of PPV has increased (decreased), it means that the operating point
has moved towards (away from) the MPP. Therefore, the next perturbation of VPV_ref will have the
same (opposite) sign as the previous perturbation, and so on. In summary, the control law that is
implemented in the P&O MPPT controller of Figure 1 is as follows:

VPV_ref(t)
∣∣∣
(r+1)·TP&O< t < (r+2)·TP&O

= VPV_ref(t)
∣∣∣
t = r·TP&O

+

+
[
VPV_ref(t)

∣∣∣
t = r·TP&O

− VPV_ref(t)
∣∣∣
t = (r−1)·TP&O

]
·sign

{
PPV(t)

∣∣∣
t = r·TP&O

− PPV(t)
∣∣∣
t = (r−1)·TP&O

}
,

(3)

where r is a growing integer index starting from 0 (r = 0, 1, 2, . . . ). It is worth noting that in order
to evaluate the PV extracted power, PPV, appearing in (3), the PV current detection is necessary.
Moreover, the objective of the P&O controller is the maximization of the power extracted by the PV
source. Since the power stage efficiency ηpower_stage(VPV, Pgrid) [20–25] is not taken into account, the
maximization of the PV power does not necessarily correspond to the maximization of the power Pgrid

= PPV·ηpower_stage(VPV, Pgrid) injected into the grid.

3. T4S MPPT Technique

As stated in the previous Section, k is a slowly varying signal [16] which dictates the value of the
average power, Pgrid, in particular, the higher the k signal, the higher the amplitude of igrid(t), and
hence the higher the Pgrid. On the basis of such a consideration, the objective of the proposed T4S
MPPT technique is represented by the identification of the PV voltage reference, VPV_ref, that leads to
the maximization of the signal k. A single-stage grid-connected PV system equipped with the T4S
MPPT controller is shown in Figure 2. From Figure 2, it is evident that for the T4S MPPT technique to
function it needs only the sensing of the PV voltage, VPV, and the signal k that is an already available
internal signal. Even in this case, two low-pass filters appear and the same considerations, made with
reference to Figure 1, apply for the quantities, k and VPV. It is worth noting, different from the P&O
technique, that no PV current detection is necessary.

3
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Figure 2. Single-stage grid-connected PV system equipped with the T4S MPPT technique.

The operating principle of the T4S technique is well illustrated by the following control law that is
implemented in the T4S controller of Figure 2:

VPV_ref(t) = Vref_0 + KI·
t∫

0

sign
{

dk(τ)
dτ
·dVPV(τ)

dτ

}∣∣∣∣∣∣
τ = r·TSH

dτ∇t ∈ [r·TSH; (r + 1)·TSH], (4)

where KI is a positive constant value and Vref_0 is the initial value of VPV_ref. In particular, the PV
voltage reference, VPV_ref, provided by the T4S controller is the output of an integrator, as shown in
Figure 3. Such an integrator processes a signal whose absolute value is the constant, KI, and whose
sign changes every TSH second according to the sign of the product between the time derivatives of k
and VPV. Hence, VPV_ref is a ramp function characterized by a slope equal to ±KI.

Figure 3. Block diagram of the proposed T4S MPPT technique.

In practice, the T4S MPPT technique is aimed at tracking the peak value of k with respect to VPV

since, as already evidenced above, the higher the value of the k signal, the higher the Pgrid. Therefore,
the output VPV_ref of the T4S controller will have a positive slope (+KI) in [r·TSH

+, (r + 1)·TSH
-] if k and

4
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VPV are both increasing at t = r·TSH
- (case A in Figure 4a, where the operating point is located at the

left of the MPP and is moving towards the MPP) or if k and VPV are both decreasing at t = r·TSH
- (case

B in Figure 4a, where the operating point is located at the left of the MPP and is moving away from the
MPP). Instead, VPV_ref will have a negative slope (-KI) in [r·TSH

+, (r + 1)·TSH
-] if k is increasing and

VPV is decreasing at t = r·TSH
- (case C in Figure 4a where the operating point is located at the right

of the MPP and it is moving towards the MPP) or if k is decreasing and VPV is increasing (case D in
Figure 4a where the operating point is located at the right of the MPP and it is moving away from the
MPP). In practice, the working of the T4S technique is based on the proper setting, every TSH second,
of the sign of the slope of the photovoltaic voltage reference signal, VPV_ref, from which the name was
chosen for the proposed MPPT technique.

At steady-state, in the neighborhood of the MPP, the T4S technique leads to a VPV_ref waveform
characterized by a piecewise ramp profile with a period equal to 2·TSH and a peak-peak amplitude
equal to KI·TSH (Figure 4b). Hence, the steady-state performance of the T4S technique is strictly linked
to the values assumed by the two parameters, TSH and KI. TSH must be greater than the settling time of
the filtered versions of the two input signals VPV and k. Then, the proper value of KI can be identified
on the basis of the maximum allowed steady-state variation ΔVPV = KI·TSH of the PV operating point.
It is worth noting that the higher the value of ΔVPV, the higher the steady-state waste of available
PV power.

Figure 4. (a) The operation of the proposed T4S MPPT technique by assuming ηpower_stage(VPV, Pgrid)
� 1 and (b) piecewise ramp waveform assumed by the photovoltaic voltage reference signal, VPV_ref, at
the steady-state in the maximum power point (MPP).
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4. Numerical Results

In this section, numerical results concerning the working of a grid-connected single-stage PV
system equipped with a T4S MPPT controller are reported and discussed. In particular, the system,
as shown in Figure 2, has been implemented and tested in a PSIM environment [26]. The RMS grid
voltage, Vgrid, was set equal to 230 V and the line frequency, f, was set equal to 50 Hz. The considered
PV source is characterized, in STC, by PMPP_STC = 3058 W and VMPP_STC = 401.5 V. With regard to the
current control loop, its crossover frequency, fCI, was set equal to 5 kHz, and the switching frequency,
fSI, of the PWM modulator has been set equal to 50 kHz. Moreover, Rs = 0.1 Ω, Cb = 10 mF, Lf = 330 μH,
and Cf = 47 μF. With respect to the slow voltage control loop, its crossover frequency, fCV, was set
equal to 5 Hz and the low pass filters cut-off frequency, fLPF, was set equal to 10 Hz. The maximum
allowed steady-state variation, ΔVPV, of the PV operating point was set equal to 10 V; such a value
leads to a maximum steady-state PV power waste equal to about 0.5%.

The parameters of the T4S technique were identified as explained in the previous section.
In particular, in [11] the interested reader can find a detailed analysis and discussion on the guidelines
for the proper choice of perturbation periods in MPPT techniques with specific reference to the P&O
technique. Basically, such perturbation periods must be greater than the system settling time in order
to avoid errors in the MPPT process. In practice, the same considerations also hold for the proposed
T4S MPPT technique. In particular, in the considered case, the estimated system settling time, to within
5%, is nearly equal to 0.26 s, which is consistent with the crossover frequency (5 Hz) of the voltage
control loop. Therefore, TSH = 0.4 s was selected. It is worth noting that the influence of the chosen
value of TSH on the performance of the proposed algorithm is such that, for a given KI, the higher
the TSH the slower the tracking process under time-varying irradiance conditions and the higher the
waste of available energy under steady-state irradiance conditions. Then, given the value of TSH, the
proper value of KI can be identified on the basis of the maximum allowed steady-state variation, ΔVPV

= KI·TSH, of the PV operating point, and, in particular, the higher the value of ΔVPV, the higher the
steady-state maximum waste of available PV power. Since ΔVPV was set equal to 10 V, it is KI = 25 V/s.
Moreover, the starting value, Vref_, of, VPV_ref, was set equal to 450 V in order to ensure that, at the
startup, the system works sufficiently far from the minimum allowed value of the DC input voltage
of the full-bridge inverter that is equal to

√
2·230 V = 325 V. It is worth noting that because of the

unit power stage efficiency of the power electronics interface of the ideal system implemented and
simulated in PSIM, the maximum value of Pgrid is only obtained when the PV source operates in
its MPP.

4.1. Constant Irradiance

The first set of simulations were carried out in order to show the correct working of the proposed
T4S MPPT technique and its ability to identify the maximum power point (MPP) under stationary
irradiance conditions. In particular, a constant irradiance level, S = 1000 W/m2, was considered. In such
a condition the PV source is characterized by PMPP = 3058 W and VMPP = 401.5 V.

The following figures illustrate the behavior of the technique at the startup. In particular, in Figure 5
the PV extracted power is reported and compared with the available MPP power.

6
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Figure 5. (a) Power extracted by adopting the T4S MPPT technique under a constant irradiance S =
1000 W/m2 and (b) zoom of the steady-state behavior.

From the analysis of Figure 5a, the ability of the proposed technique to identify, after about 4 s,
the MPP without errors is evident. In Figure 5b, a zoom of the steady-state behavior is reported. It is
evident, as stated in the previous section, that the T4S technique leads to a periodic oscillation of the
extracted power due to the periodic piecewise ramp profile of VPV_ref, as shown in Figure 6a. Moreover,
as predicted, the maximum waste of power due to such an oscillation around the MPP is equal to
about 0.5%, i.e., (3058 W – 3042 W)/3042 W, as shown in Figure 5b, where 3058 W is the PMPP and
3042 W represents the lowest level of the instantaneous extracted power. Moreover, from observations
of Figure 6b, it is clear, as explained in the previous Section, that the voltage, VPV_ref, is characterized
by a period equal to 2·TSH = 0.8 s and a peak-peak amplitude equal to KI·TSH = 10 V.

Figure 6. (a) Voltages, VPV_ref and VPV, obtained under a constant irradiance S = 1000 W/m2 and (b)
zoom of the steady-state behavior.

7
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4.2. Time-Varying Irradiance

The second set of simulations were carried out in order to test the ability of the T4S MPPT
technique to track the MPP under time-varying irradiance conditions. In particular, the operation of
the T4S technique was tested by adopting the irradiance profile, as shown in Figure 7. The considered
irradiance exhibits a step change from S = 1000 W/m2 to S = 500 W/m2 at t = 5 s and back from
S = 500 W/m2 to S = 1000 W/m2 at t = 10 s. At S = 1000 W/m2, it is PMPP = 3058 W and VMPP = 401.5 V
and at S = 500 W/m2, it is PMPP = 1598 W and VMPP = 428 V.

Figure 7. Time-varying irradiance profile.

The results of the numerical tests under the time-varying irradiance profile shown in Figure 7 are
reported in the following figures. In particular, in Figure 8, the PV extracted power is reported and
compared with the available MPP power. In Figure 9, the voltage, VPV_ref, is reported together with
the PV voltage, VPV.

The previous figures show that the proposed MPPT technique is able to quickly track the MPP
after any irradiance step variation.

Figure 8. Power extracted by adopting the T4S technique under the irradiance profile of Figure 7.

Figure 9. VPV_ref and VPV, T4S technique under the irradiance profile shown in Figure 7.
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5. Comparison between the T4S MPPT Technique and the P&O MPPT Technique

The last set of numerical tests were carried out in order to compare the performance of the
proposed T4S MPPT technique with that of the traditional P&O algorithm. to this aim, the system
shown in Figure 1 was implemented and tested in a PSIM environment with the same values for the
parameters as adopted in the previous section. The parameters of the P&O algorithm (TP&O, ΔVPV_ref,
and Vref_0) were chosen on the basis of the guidelines reported in the literature [11] and in order to
obtain the same steady-state maximum waste of power (0.5%) considered in the previous section, in
particular, TP&O = 0.4 s, ΔVPV_ref = 10 V, and Vref_0 = 450 V. It is worth noting that the values of the
parameters that have been chosen for the P&O technique fully ensure a fair comparison with the T4S
MPPT technique.

In the following, the symbol κd% indicates the quantity (PT4S-d/PP&O-d − 1)·100% where PT4S-d

is the average extracted power in dynamic conditions by adopting the T4S technique, and PP&O-d is
the average extracted power under the same dynamic conditions by adopting the P&O technique.
“Dynamic conditions” mean working conditions taking place in the interval of time occurring between
an event associated with a change of the irradiance conditions and the subsequent settling instant of
steady-state periodic conditions. In particular, steady-state periodic conditions associated with the
T4S technique are characterized by a piecewise ramp voltage behavior with period equal to 2·TSH, as
discussed in Section 3 and reported in Figure 4b. Instead, steady-state periodic conditions associated
with the P&O technique are characterized by a three-level voltage behavior with period equal to
3·TP&O [11]. It is worth noting that since the settling instant is, in general, different for the two MPPT
techniques, the highest settling instant will be considered for the evaluation of κd%. In addition, the
symbol κss% indicates the quantity (PT4S-ss/PP&O-ss − 1)·100%, where PT4S-ss is the average extracted
power in steady-state periodic conditions by adopting the T4S technique, for a given irradiance level,
and PP&O-ss is the average extracted power in steady-state periodic conditions by adopting the P&O
technique for the same irradiance level.

5.1. Stationary Irradiance Conditions

The powers extracted by adopting the T4S and the P&O MPPT techniques under a constant
irradiance (S = 1000 W/m2) are reported together in Figure 10a. It is evident that both techniques
need nearly the same time, at the start up, to reach the MPP. Such a startup can be seen as a step
change of the irradiance level from 0 to 1000 W/m2 and is characterized by a settling instant equal to
4 s, PT4S-d = 2519 W, PP&O-d = 2345 W, and hence κd% = 7.4%. In addition, by looking at the zoom of
Figure 10b, no remarkable difference in the steady-state efficiencies of the two MPPT techniques can
be identified, although, indeed, the T4S performance is slightly better. In particular, PT4S-ss = 3053 W,
PP&O-ss = 3048 W, and hence κss% = 0.16%.

Figure 10. Cont.
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Figure 10. (a) Power extracted by adopting the T4s and the P&O MPPT techniques under a constant
irradiance S = 1000 W/m2 and (b) zoom of the steady-state behavior.

An interesting difference between the two MPPT techniques can be evidenced by observing
Figure 11a and, in particular, its zoom in Figure 11b. In this figure, VPV_ref and VPV are reported for
both of the MPPT techniques. It is clear for the P&O case, at steady-state, VPV_ref ≈ VPV oscillates
around the MPP by assuming, as expected, the following three values: VMPP - ΔVPV, VMPP, and VMPP

+ ΔVPV [18]. Instead, in the T4S case, VPV_ref ≈ VPV exhibits a piecewise linear behavior with values
belonging to the range [VMPP and VMPP + ΔVPV]. In other words, the T4S operating point is always
located at the right of the MPP.

Figure 11. (a) VPV_ref and VPV, T4S and P&O MPPT techniques under a constant irradiance
S = 1000 W/m2 and (b) zoom of the steady-state behavior.
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5.2. Time-Varying Irradiance

The performances of the two MPPT techniques were compared also under time-varying irradiance
conditions. The adopted time-varying irradiance profile is shown in Figure 7. The powers extracted
by adopting the T4S and the P&O MPPT techniques under such an irradiance profile are reported
together in Figure 12. In Figure 13, VPV_ref and VPV are reported for both of the MPPT techniques.
From the abovementioned figures, it is evident the P&O MPPT technique is outperformed by the T4S
technique, at least in correspondence to the irradiance positive step.

Figure 12. Power extracted by adopting the T4S and the P&O MPPT techniques under the irradiance
profile of Figure 7.

Figure 13. VPV_ref and VPV, T4S and P&O MPPT techniques under the irradiance profile shown in
Figure 7.

From the above figures, it is evident the P&O MPPT technique is outperformed by the T4S
technique, at least in correspondence to the irradiance positive step. In particular, in correspondence
of the irradiance negative step occurring at t = 5 s the following values have been obtained: settling
instant equal to 6.2 s, PT4S-d = 1571 W, PP&O-d = 1561 W, and hence κd% = 0.64%. In correspondence
to the irradiance positive step occurring at t = 10 s the following values have been obtained: settling
instant equal to 12.2 s, PT4S-d = 2971 W, PP&O-d = 2721 W, and hence κd% = 9.2%.

6. Conclusions

A novel MPPT technique, T4S (a technique based on the proper setting of the sign of the slope of the
photovoltaic voltage reference signal), has been presented and discussed in this paper. Such a technique
is specifically designed with reference to a single-stage grid-connected PV system. Its performance
has been numerically compared to a benchmark MPPT technique, the P&O technique. The tracking
efficiencies of the two techniques are more or less comparable, however, the T4S technique has a slightly
better performance under both stationary and time-varying irradiance conditions. Furthermore, the
T4S technique is characterized by the following two advantages with respect to the P&O technique:
There is no need for PV current detection and the power stage efficiency profile is automatically taken
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into account. In other words, the T4S technique allows the tracking of the maximum average power
injected into the grid rather than the maximum instantaneous power extracted by the PV source.
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Abstract: The maximum power point tracking (MPPT) algorithm has become an integral part
of many charge controllers that are used in photovoltaic (PV) systems. Most of the existing
algorithms have a compromise among simplicity, tracking speed, ability to track accurately, and cost.
In this work, a novel “straight-line approximation based Maximum Power Point (MPP) finding
algorithm” is proposed where the intersections of two linear lines have been utilized to find the MPP,
and investigated for its effectiveness in tracking maximum power points in case of rapidly changing
weather conditions along with tracking speed using standard irradiance and temperature curves
for validation. In comparison with a conventional Perturb and Observe (P&O) method, the Proposed
method takes fewer iterations and also, it can precisely track the MPP s even in a rapidly varying
weather condition with minimal deviation. The Proposed algorithm is also compared with P&O
algorithm in terms of accuracy in duty cycle and efficiency. The results show that the errors in duty
cycle and power extraction are much smaller than the conventional P&O algorithm.

Keywords: linear approximation; MPPT algorithm; duty cycle; global horizontal irradiance;
mathematical modeling

1. Introduction

Electricity generation from renewable energy sources has consistently increased over the past
decade, with the largest percentage of renewable energy sources integrated being photovoltaic (PV)
systems [1–5]. There has been a consistent increase in installed PV capacity globally which has lead to
a corresponding increase in power generation from PV systems as shown in Figure 1 [6].

The massive integration of PV systems has also been aided by the declining cost of PV modules
and improvement in their efficiencies [7]. Other than grid-tied PV systems, the use of PV modules
has been extended to various applications such as rooftop solar power supply for residential homes,
mobile charging systems, wearable devices, standalone PV arrays as car parks and electric vehicle
charging stations, remote weather stations, international space station, and robots for space exploration.

In contrast to PV systems, Solar Thermal Plants (STPs) allow power to be generated by
concentrating solar radiation which causes a very high temperature. The heat produced is subsequently
used to convert water to steam which then used to turn power turbines for electricity generation.
STPs are oriented to allow maximum tracking of the sun’s insolation. The plants usually consist of
reflectors and receivers. The reflectors (which are typically mirrors) are used to capture and concentrate
the sun’s light rays onto the receivers. The heat absorbed by the receivers is used to convert water to
steam in order to drive the conventional steam turbine generators. It is of uttermost importance for the
reflectors used in solar thermal plants to constantly track the movement of the sun in order to ensure
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maximum extraction of solar rays in order to maximize the efficiency of the plant [8–10]. In comparison
with PV systems, Thermal Energy Storage (TES) technologies can be used to store energy for use at
night, during severe cloud coverage, or periods with little or no sunlight. This allows STPs to be more
dispatchable and achieved a higher capacity factor compared to PV. On the other hand, the decking
cost of PV systems makes them cheaper than the STPs. A report by [11] suggests that STP technology
might in the future help to increase the amount of PV penetration in the grid rather than being a direct
competitor or alternative.

Figure 1. Power generation from renewable energy sources globally [6].

Due to the relatively low efficiency of PV systems compared to conventional power sources such
as coal, diesel, or gas-fired plants, extraction of the maximum power per unit PV module becomes
imperative. Maximum Power Point Tracking (MPPT) algorithms are developed to allow PV systems to
operate at their maximum power under prevailing weather conditions [12–14]. The power generation
from PV systems largely depends on the global horizontal irradiance and the atmospheric (consequently
module) temperature. These parameters are stochastic in nature which means an accurate tracking
system (simply called the Maximum Power Point Tracking (MPPT) system) to extract the maximum
power out of the PVs is necessary. Several techniques and algorithms have been proposed for MPPT
applications. These techniques and algorithms include the machine learning [15,16], hill climbing
method [17–21], incremental conductance technique [22–25], Perturb and Observe [26–28], fractional
open circuit voltage [29–31], fractional short circuit current [32–34], and fuzzy logic-based MPPT
algorithms [35–38] amongst others. These algorithms aim to achieve high efficiency, fast-tracking speed,
reduced steady-state oscillations, and reduced complexity in hardware implementation [38]. Out of
these algorithms, the Perturb and Observe (P&O) algorithm, Incremental Conductance, and Fractional
Open Circuit algorithm are most popular because of their simplicity. The P&O MPPT algorithm has
dual shortcomings: enormous power loss due to large oscillations and deflection of tracking under
rapid weather conditions. The large power loss can be minimized by choosing a small step size
around the Maximum Power Point (MPP). However, the convergence speed has to be sacrificed [39].
The main drawbacks of Incremental and Conductance algorithms are the complex circuitry because of
the derivative finding and choice of perturbation extent. The fractional open circuit based algorithm
depends on the open circuit voltage of the panel, so at every change of irradiance, there is a temporary
power loss due to the measurement of VOC. Moreover, it is not module independent since the VOC value
has to be known prior to the application of the algorithm. Fractional short circuit current algorithm
has the same issue as the fractional open circuit voltage. The algorithm is required to know the
characteristics of the PV module and manufacturing specifications which makes it module dependent
and less efficient. Machine learning (such as ANN) based MPPT algorithms are dependent on features
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(weather data) to generate the desired duty cycle for finding the MP point and one of the most common
features is irradiance which requires costly sensors to measure. Though these algorithms are fast in
finding MPPs, they are not cost-effective. Moreover, they require a lot of data to train which is the most
important part of those models to demonstrate good accuracy. Therefore, it can not be generalized
for any module. The PV module characteristics also change with time which necessitates the need for
periodic training of the ANN-based controller to accurately track the MPP.

It is obvious that selecting an MPPT algorithm for many applications is usually a trade-off between
efficiency, complexity, speed, cost, and ease of hardware implementation. This paper proposes a novel
MPPT algorithm where the Maximum Power Point is acquired by the intersection of two linear lines
which are tangents to the power vs voltage curve of the photovoltaic module. The major contributions
of this paper are the following:

(i) Number of iterations in reaching the MPP s are way less than conventional MPPT algorithm
(ii) Reduction of oscillations around the MPP is much better than conventional, less than 0.03%

(iii) Module independence, therefore the algorithm can be used in any PV modules without
knowing the module data

(iv) Highly efficient and easily implementable

MATLAB/SIMULINK environment is used for the simulation and verification of the Proposed
algorithm. BP Solar BP SX 150S PV module is chosen in the MATLAB simulation model. The module
is made of 72 multi-crystalline silicon solar cells in series and provides 150 W of nominal maximum
power [40]. Table 1 shows the electrical parameters of the module:

Table 1. Electrical characteristics of PV Module Specifications.

Maximum Power (PMAX) 150 W
Voltage at PMAX(VMP) 34.5 V
Current at PMAX(IMP) 4.35 A

Open Circuit Voltage (VOC) 43.5 V
Short Circuit Current (ISC) 4.75 A

The rest of this paper is structured as follows: Section 2 presents the development of Proposed
algorithm and description of the P&O; Section 3 represents simulation results using the Proposed
algorithm under slow and fast varying weather conditions, a comparison between the Proposed
algorithm with the P&O algorithm and validation of the Proposed algorithm using the CENELEC
EN50530 standard test procedures; Section 4 concludes this paper.

2. Development of Proposed Algorithm and Description of the P&O

Several MPPT algorithms have been proposed in literature. The P&O, which is one of the widely
used MPPT algorithms is selected as a baseline to compare the performance of the Proposed algorithm.
The detailed formulation and modeling of the Proposed algorithm and a brief description of the P&O is
as presented the following subsection.

2.1. Development of the Proposed Algorithm

Figure 2, the flowchart of the Proposed algorithm, depicts the construction of the algorithm.
In developing the algorithm, a straight line approximation technique is utilized which is based on
the P-V curve shapes. There is no evidence of significantly different P-V curve shape other than an
inverted tilted ‘V’. So, the Proposed algorithm can be employed universally for a controller coupled
with any kind of P-V panel without taking the panel’s preset values. The details of the flowchart are
depicted in the following:
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1. At first, it senses voltage V1 and I1 by voltage and current sensors , respectively, and measured
the power, P1. Then the voltage is perturbed by a small amount, b and another voltage, V2, is
taken . The the power, P2 is measured .

2. If Δ P = P2 − P1 > 0, the operating point is at the left of MPP , else the operating point is at the
right of the MPP.

3. Afterwards , the algorithm perturbs the voltage by a bigger step size c and senses the new
voltage, V3 followed by a small perturbation b. Then it measures voltage V4 and calculates Δ
P = (P4 − P3).

4. If Δ P < 0, the desired four points (V1, P1), (V2, P2) and (V3, P3), (V4, P4) are found to draw the
two straight lines. The algorithm will find then the intersecting point Vi by solving the equations.
The intersecting point should be close to the MPP . If Δ P > 0, step 3 needs to be repeated until Δ
P < 0 is fulfilled.

5. The point Vi is not the desired MPP, rather it is very close to MPP. To track the MPP , the algorithm
will perturb the voltage by a small amount b and calculate Δ P again.

6. If Δ P < 0, the operating point is at the right side of MPP, else the operating point is at the left
side of the MPP.

7. If the operating point lies at the left side of MPP (Δ P > 0), the algorithm will keep on perturbing
the voltage by a small amount ‘b’ until Δ P < 0 is satisfied. Once it reaches to that condition,
the algorithm stops and Piii will be the desired MPP. However, if it starts from the right side of
MPP (Δ P < 0), the algorithm will then keep on perturbing the voltage by a small amount ‘b’ to
the left side. Once Δ P > 0 is satisfied, the algorithm stops and Piii is the desired MPP.

2.1.1. Mathematical Model of the Proposed Algorithm

In the developed method, MPP can be tracked very quickly and this operation is graphically
illustrated in Figure 3. To understand the Proposed algorithm, let us take the operating point P1

which is at the left side of MPP. By a small perturbation of voltage, another point P2 can be found as:
ΔP = P2 − P1 > 0

Now, by straight a line approximation, we can write an equation:

P = m1V + C1 (1)

where:
m1 = (P2 − P1)/(V2 − V1) and

C1 = (V1P2 − V2P1)/(V2 − V1)

Now by taking another two points in the right side of MPP where Δ P = P4 − P3 < 0 does match,
another equation can be written also.

P = m2V + C2 (2)

where:
m2 = (P4 − P3)/(V4 − V3) and

C2 = (V3P4 − V4P3)/(V3 − V4)

By solving Equations (1) and (2), the intersecting point VA can be found as follows:

m1V + C1 = m2V + C2 and

VA = (C2 − C1)/(m1 − m2)
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After getting VA which is very near to MPP, the algorithm would reach MPP very fast as depicted
in Figure 3.

Figure 2. Flowchart of the Proposed algorithm.
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Figure 3. Straight line approach to find the MPP.

2.1.2. Response of the Proposed Algorithm When Irradiance Increases Rapidly

Here, the reaction towards rapidly changing weather conditions has been analyzed. In Figure 4,
it is shown how the normal P&O method fails for a rapid variation in irradiance. Starting from an
operating point located at P1 (right side of MPP) we see, after a little perturbation, the new value is P2.
If the irradiance does not change during the perturbation, then P2 will be lying on the same curve with
G1, I1. So:

ΔP= P2 − P1 < 0
ΔV= Vk − Vk−1 > 0

Figure 4. Response of Proposed method for rapidly increasing irradiance.

Consequently, the P&O algorithm will drive the operating point leftward which would be the
correct direction. However, if the irradiance changes rapidly during the perturbation, then P2 should
lie on the G2 curve at corresponding VK. Let us call it P′

2.
ΔP= P′

2 − P1 > 0
ΔV= Vk − Vk−1 > 0
Accordingly, the P&O algorithm would drive the operating point into the right side which is the

wrong direction even though it should have driven it to the left, whereas, the developed method would
draw the straight line passing through these two points P1, P′

2 and will take another two points P′
3, P′

4
on the I2 curve and draw the straight line as depicted in Figure 4. After calculating the intersection
point, VA of these two straight lines, the algorithm would then drive the operating point to leftward to
reach the MPP on G2 curve.

2.2. The Conventional P&O Algorithm

In the conventional P&O algorithm, duty signal is perturbed till the operating point converges at
the MPP. The algorithm compares the voltage and power at two consecutive samples. A small voltage
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perturbation is performed, if the change of power is positive, the perturbation is continued in the same
direction and for a negative change in power, the perturbation is reversed in order to reach the MPP.
By this approach, the whole P-V curve is checked using fixed perturbations to find the MPP. If the
perturbation size is small, the algorithm takes a longer time in reaching the MPP with a high level of
accuracy and vice versa. A large perturbation size could cause the algorithm to produce steady-state
oscillations around the MPP [41]. Figure 5 illustrates the steps required in determining the MPP using
the P&O approach.

Begin

Find: 

Measure: 
Compute: 

YES NO

YES NO YES NO

Find: 

Measure: 
Compute: 

Figure 5. Flowchart of the conventional P&O Algorithm.

3. Simulation Results Using the Proposed Algorithm

In this section, simulation was conducted under normal and rapid weather conditions to test the
response of the Proposed algorithm. Then comparison was made between P&O and Proposed algorithm
in terms of the total number of iterations in reaching the MPP. After that, the percentage of error in duty
signal and power corresponding to the MPPs was compared. Finally, the validation of the Proposed
algorithm was performed using standard irradiance curves.

3.1. Simulation Results under Normal and Rapid Weather Conditions

In order to investigate the responses of the algorithm, practical irradiance data was taken a for a
sunny day and a cloudy day for 12 h period from 6 a.m. to 6 p.m. This Global Horizontal Irradiance
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(GHI) is plotted for a sunny day and cloudy day as shown in Figure 6a,b respectively in order to certify
the efficacy of the Proposed MPPT algorithm.

Figure 7a–c, illustrate the accuracy of the Proposed algorithm for sunny and cloudy weather
conditions. In Figure 7a,b, the module power vs module voltage graph is plotted for when irradiance
was varying for a particularly sunny day and cloudy day respectively. The red dots shown in
Figure 7a,b, are the exact MPPs and the green curve is the output of the developed algorithm. Itis very
clear from those figures that the Proposed algorithm accurately identified the exact MPPs. The cloudy
day irradiance shown in Figure 6a changed very rapidly; nonetheless, the Proposed algorithm was
able to determine the MPPs (red dots) very successfully which is very clear from Figure 7b. Figure 7c
shows how the module power could be varied just by varying the duty cycle which ensured that the
operating point of the PV panel could be varied by changing the duty ratio.

(a) (b)

Figure 6. (a) Sunny Day Irradiance Data from 6 a.m. to 6 p.m. (b) Cloudy Day Irradiance Data from
6 a.m. to 6 p.m.

(a) (b)

(c)

Figure 7. (a) Panel voltage vs. power for a sunny day (b) Panel voltage vs Power for a Cloudy Day (c)
Duty vs. Output Power.
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3.2. Comparison of the Proposed Algorithm with Conventional Perturb and Observe Algorithm

Here, the number of iterations to reach the MPP was compared between the developed method
and Perturb and Observe method for the following conditions:

Irradiance, G = 1 KW/m2 Temperature, TaC = 25 ◦C
Operating point, Va = 5 V (left side of MPP )
When the operating point lay at the left of MPP, Table 2 shows a comparison between the number

of iterations used by the Proposed and P&O algorithm, where Nop−Ip is the number of iterations from
operating point to intersection point and NIp−MPP is the number of iterations from intersection point
to MPP. The number of iterations used by the developed algorithm was much less than that of the
P&O method. Initially, the developed method had big steps (2 V) in order to get the intersection point
(32.2346 V) of two straight lines and took 15 iterations. The intersection point was close to the MPP as
mentioned earlier. From MPP intersection point to the, the algorithm took 22 iterations since it went
with small steps (0.1 V). The small steps after finding the intersection point not only made sure of
small oscillations around MPP but also ensured high efficiency.

When the operating point lay at the right side of MPP, Table 3 data confirms again that the number
of iterations of the Proposed algorithm was much smaller than the conventional P&O method.

Irradiance, G = 1KW/m2 Temperature, TaC = 25 ◦C Operating point, Va = 40 V (right side
of MPP).

Table 2. Number of iterations comparison between developed and P&O algorithm when the operating
point lies at left of MPP.

P&O (Step Size = 0.1) Proposed (Step Size = 2, 0.1) Exact Value

MPP Voltage 34.6 34.5346 34.5
MPP Power 149.9709 149.9825 149.9858

Intersection Voltage NA 32.2346 NA
Nop−Ip NA 15 NA

NIp−MPP NA 22 NA
Total of iterations 296 37 NA

Table 3. No. of iterations comparison between developed and P&O when the operating point lies at
right of MPP.

P&O (Step Size = 0.1) Proposed (Step Size = 2, 0.1) Exact Value

MPP Voltage 34.6 34.3498 34.5
MPP Power 149.9709 149.9784 149.9858

Intersection Voltage NA 32.2346 NA
Nop−Ip NA 3 NA

NIp−MPP NA 29 NA
Total of iterations 54 32 NA

3.3. Comparison between Proposed and Perturb and Observe Algorithm in Terms of Duty and Maximum
Power Point

Here, the irradiance and temperature were varied to analyze the performance and compare the
two algorithms. It is very apparent from Table 4 that the Proposed method obtained the duty cycles
and maximum power points much closer to the exact duty cycle and maximum power points than the
Perturb and Observe method under varying weather conditions which secured better efficiency.

The comparison in terms of percentage error in duty cycle and percentage error in finding MPPs
are illustrated in Figure 8a,b. It is evident in Figure 8a that the Proposed algorithm had a very small
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error in finding the correct duty cycle under varying irradiance conditions. The error was less than
±0.5% whereas the Perturb and Observe algorithm had more than ±1% error in finding the correct
duty cycle. The similar scenario was observed in Figure 8b as well where the percentage error in
finding the Maximum Power Point under varying irradiance conditions was less than 0.03% for the
Proposed algorithm whereas it was more than 0.23% in the case of the Perturb and Observe method.

(a) (b)

Figure 8. (a) Comparison of percentage of error in duty cycle under 25 ◦C between Proposed and
conventional Perturb and Observe (P&O) algorithm (b) Comparison of percentage of error in Maximum
Power Point under 25 ◦C between Proposed and conventional P&O algorithm.

Table 4. Comparison of duty cycle and maximum power between Proposed and P&O algorithm at
different irradiance and temperature.

G and T(kW/m2, ◦C) Dexact DProposed DP&O Pexact PProposed PP&O

(0.3, 0) 0.3177 0.3201 0.3100 46.8442 46.8059 46.4333
(0.3, 10) 0.3228 0.3200 0.3100 44.8187 44.7739 43.8932
(0.3, 20) 0.3275 0.3280 0.3310 42.7801 42.7802 42.7203
(0.5, 0) 0.3725 0.3720 0.3730 80.4209 80.4200 80.4165
(0.5, 10) 0.3774 0.3780 0.3790 77.1584 77.1546 77.1326
(0.5, 20) 0.3824 0.3820 0.3790 73.8728 73.8702 73.7657
(0.8, 10) 0.4314 0.4320 0.4270 126.4301 126.4219 126.1785
(0.8, 20) 0.4367 0.4350 0.4390 121.3375 121.3139 121.2492
(0.8, 30) 0.4415 0.4420 0.4390 116.2146 116.2139 116.1323
(1.0, 20) 0.4627 0.4620 0.4630 153.1360 153.1256 153.1357
(1.0, 30) 0.4683 0.4680 0.4690 146.8280 146.8288 146.8160
(1.0, 40) 0.4734 0.4720 0.4750 140.4862 140.4611 140.4538
(1.2, 20) 0.4848 0.4850 0.4870 184.8904 184.8890 184.7909
(1.2, 30) 0.4897 0.4890 0.4870 177.4167 177.4042 177.2795
(1.2,40) 0.4948 0.4950 0.4990 169.9001 169.9017 169.6730

3.4. Validation of the Proposed MPPT Algorithm

In order to validate the Proposed algorithm, the standard test irradiance profile (according to
CENELEC EN50530) was used [42,43] which is shown in Figures 9a–12a. Figures 9a–12c show the
performance of the developed algorithm under irradiation ramps with very steep gradients of 0.5, 5,
20, 50 and 100 W/m2/s. From these figures, it can be seen that the quality of the MPP tracking was
very good and it was accurate with all gradients. The figures show that the current always tracked
the irradiance changes accurately, whereby the voltage was either lagging or leading the MPP by a
very small amount. This can be explained by the fact that the current was linearly proportional to
irradiance and it was almost impossible to detect the exact MPP voltage because the algorithm had to
use an epsilon(stopping condition when close to MPP) value which was less than a preset value (the
difference between exact VMPP and estimated VMPP which was very close to exact MPP but not equal)
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to get very close to exact VMPP. Therefore the detected VMPP points stayed either before or after the
exact VMPP point, however very close.

(a) (b)

(c)

Figure 9. (a) Very steep gradient (b) accuracy of the Proposed algorithm in finding Vmpp at very steep
gradient (c) accuracy of the Proposed algorithm in finding Impp at very steep gradient.

(a) (b)

(c)

Figure 10. (a) Irradiance with gradient of 0.5 W/m2/s (b) accuracy of Proposed algorithm in
finding VMPP at 0.5 W/m2/s gradient (c) accuracy of the Proposed algorithm in finding IMPP at
0.5 W/m2/s gradient.
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(a) (b)

(c)

Figure 11. (a) Irradiance at a gradient of 5 W/m2/s (b) accuracy of the Proposed algorithm in finding
Vmpp at 5 W/m2/s gradient (c) accuracy of the Proposed algorithm in finding Impp at 5 W/m2/s gradient.

(a) (b)

(c)

Figure 12. (a) Irradiance at gradients of 20, 50, 100 W/m2/s (b) accuracy of the Proposed algorithm in
finding Vmpp at gradients of 20, 50, 100 W/m2/s (c) accuracy of the Proposed algorithm in finding Impp

at Gradients of 20, 50, 100 W/m2/s.

4. Conclusions

In this paper, a simple and accurate photovoltaic maximum power point tracking algorithm is
proposed with its mathematical formulation. The Proposed MPPT algorithm is tested for its tracking
speed, tracking accuracy, capability to rapid transition, and maximum power point efficiency and
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compared with the conventional hill climbing P&O method. The results show that the system reaches to
MPP voltage in much fewer iterations and hence is very fast to converge to MPPs under fast-changing
weather conditions. The duty cycle and maximum power point under various weather conditions have
been analyzed also and compared with the P&O method. The results also show that the percentage of
errors in finding duty cycles and maximum power points of the Proposed algorithm are much less than
its counterpart ( P&O method). Subsequently, the developed algorithm was validated according to
the CENELEC EN50530 standard which stipulates how the efficiency of the MPPT algorithm should
be measured. It is also worthy of note that the Proposed algorithm does not require the technical
specifications of the PV module as an input to the algorithm.

As a future work, the algorithm will be implemented using a micro-controller and other
necessary hardware for a PV-Battery microgrid system and voltage stability will be studied for
varying load conditions along with other control-algorithms such as fuzzy logic, artificial intelligence,
model predictive control, etc. PV power ramp rate control also will be studied with the Proposed
algorithm for high penetration level of PV systems as future smart grid applications.
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Abstract: Thin-film solar cells are predominately designed similar to a stacked structure. Optimizing
the layer thicknesses in this stack structure is crucial to extract the best efficiency of the solar cell.
The commonplace method used in optimization simulations, such as for optimizing the optical spacer
layers’ thicknesses, is the parameter sweep. Our simulation study shows that the implementation of
a meta-heuristic method like the genetic algorithm results in a significantly faster and accurate search
method when compared to the brute-force parameter sweep method in both single and multi-layer
optimization. While other sweep methods can also outperform the brute-force method, they do not
consistently exhibit 100% accuracy in the optimized results like our genetic algorithm. We have used
a well-studied P3HT-based structure to test our algorithm. Our best-case scenario was observed to
use 60.84% fewer simulations than the brute-force method.

Keywords: genetic algorithm; solar cell optimization; finite difference time domain; optical modelling

1. Introduction

Simulations of optoelectronic devices have helped to understand and design better optimized
structures with efficiencies nearing the theoretical maximum. Lucio et al. analyzed the possibility
of achieving the limits of c-Si solar cells through such simulations [1]. Simulations have reduced the
time it takes for researchers to find optimized device structure. However, the most common way
to obtain results over a large range of a parameter’s values is through parameter sweep method.
This brute-force method is ineffective in most cases where the user only requires the end optimized
device structure. Genetic algorithm (GA) is an optimization algorithm in artificial intelligence based
on Darwin’s evolution and natural selection theory, in which the fittest outcome survives [2,3]. This
algorithm sets an environment with a random population and a function, which is called the fitness
function, that scores each individual of that population. The environment then selects individuals
to become the parents of the next generation through a selection process. The next generation of
individuals (children of the previous generation’s parents) is obtained via a crossover method. Similar
to natural mutation in genes of the offspring, the new generation’s individuals can also suffer mutation
in their genes. After several generations, the population converges to the individuals representing
the optimal solution. Through the application of genetic algorithm, Jafar-Zanjani et al. designed a
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binary-pattern reflect-array for highly efficient beam steering [4] and Tsai et al. was able to beam-shape
the laser to obtain up to 90% uniformity in intensity distribution [5]. Genetic algorithm has been used
by Donald et al. to improve the focusing of light propagating through a scattering medium [6] and by
Wen et al. for designing highly coherent optical fiber in the mid-infrared spectral range [7]. It has also
been used for designing nanostructures to improve light absorption in solar cells. Chen et al. were able
to surpass the Yablonovitch Limit using genetic algorithms to design light trapping nanostructures [8].
Rogério et al. used a genetic algorithm to design surface structures on a Si solar cell to increase the
short-circuit current density obtained from it [9].

In this article, we have demonstrated the optimization of an organic solar cell through the
optimization of the optical spacer layers. Traditionally, finite difference time domain (FDTD) method
was used to simulate the ideal short-circuit current density (Jsc) of the solar cell through the Lumerical,
FDTD solutions software similar to our previous reported study [10]. Parameter sweep or brute-force
method was used to vary the thickness of the optical spacer layers of the solar cell. At the optimized layer
thicknesses, the solar cell will be observed to have the highest Jsc output. Although not computationally
intensive for a single-layer optimization, the number of simulations expands as in Equation (1) for
multi-layer optimization problems.

N = n1 · n2 · n3...NN (1)

where N is the total number of simulations and n1, n2, and n3 are the number of simulations performed
for layers 1, 2, and 3, and NN is the total number of layers (NN > 3), respectively.

To alleviate the brute-force method’s limitations, we propose the use of GA. This article then aims
to heuristically assert the hypothesis that GA is a more efficient approach than brute-force algorithms
in tasks such as optimizing optoelectronic device structures.

2. Methodology

Figure 1 shows the device structure that was constructed in Lumerical, FDTD solutions. It consists of
a 150 nm indium tin oxide (ITO) similar to our previous study [11]. The Al thickness was set to 100 nm as
light gets completely reflected from the Al electrode at this thickness. Any further increase in its thickness
would not affect the outcome of our optical simulation. The active layer, poly (3-hexylthiophene) (P3HT):
indene-C60 bisadduct (ICBA), was designed to be 200 nm as it exhibited good efficiency in our previous
study [12]. The charge transport layers, zinc oxide (ZnO) and Molybdenum oxide (MoOx), also act as
optical spacer layers and are variable quantities in our simulation. In order to qualify as an optical spacer,
the layer material should have the refractive index properties to shift the light induced electric field inside
the solar cell structure by varying its thickness. ZnO was already shown to be a good optical spacer in
our previous research [11]. While a ITO/PEDOT:PSS/P3HT:PCBM/ZnO/Al is a more commonly used
solar cell structure [13], PEDOT:PSS does not have the suitable refractive index to control the distribution
of electric field for the wavelengths under consideration. MoOx was found to be a suitable hole transport
layer substitute to the PEDOT:PSS by a previously reported study by Bohao et al. [14]. MoOx was also
found to have good optical spacer properties in our simulations and so it was used as the other optical
spacer layer.

The simulation was done in perpendicular illumination onto the solar cell as done for device
simulations. This method does not simulate the real outdoor operation of the solar cell, and thus, the
optimized thickness values calculated in this article would not be applicable in the view of energy yield
optimization. However, our study was a comparison of the algorithms, and our conclusion should
be consistent.The solar cell layers were stacked along the y-axis in the FDTD software. The incident
light was set up as a plane wave with the spectral intensity of AM1.5G. The plane wave’s propagation
direction was the same axis along which the solar cell’s layers were stacked. It was incident through
the ITO electrode. Periodic boundaries were set along the x-axis and perfectly matched layers were
used along the y-axis to set the FDTD boundary conditions. The device was meshed good enough for
the results to converge. Further simulation setup details are published elsewhere [11,12]. To simulate
the ideal Jsc, 100% internal quantum efficiency was assumed.
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Figure 1. Solar cell device structure. The electron transport layer is ZnO, while the hole transport layer
is MoOx. Both also act as optical spacer layers as they affect the distribution of light inside the device.
We optimized these optical spacer layers for maximizing photon absorption inside the active layer of
the solar cell.

2.1. Brute Force

Using the software’s parameter sweep option, we simulated our device structure according to
three sections. The first section optimized only the ZnO layer, while keeping the MoOx layer at 10 nm
thickness. The second simulation section consists of optimizing only the MoOx layer, while the ZnO
layer was fixed at 30 nm. Our final section optimized both optical spacer layers together. The results of
the brute-force method are provided in Figure 2.

Figure 2. Brute-force method results: (a) single ZnO layer optimization, (b) single MoOx layer optimization,
(c) multiple ZnO and MoOx layers optimization, (d) 2D data representation of (c) using labels pointing to
the ZnO and MoOx layer thickness combinations for the ease of computation.

Using parameter sweep to simulate every possible combination is time-consuming. Figure 2
contains multiple local maxima and minima points. This makes it tedious to extrapolate the optimal
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thickness from fewer simulation points. Due to this, every possible simulation point is required to find
the optical result. This way of obtaining the optimal result is termed as brute-force method henceforth.
In order to make a 2-layer optimization problem similar to that of the single-layer optimization, we
replaced the optical spacers’ thickness combinations with a label in Figure 2d, effectively converting 3D
data to a 2D data. The label number is given by label number = max(ZnO thickness)× MoOx thickness+
MoOx thickness + 1.

2.2. Genetic Algorithm

To alleviate the computational and time inefficiencies of the brute-force method, we found
inspiration in Darwin’s natural selection theory and proposed the use of a genetic algorithm [3]
for our optimization problem. Consider that there is a random population and their adaptability
to the environment is given by a fitness function. In our optimization problem, the fitness function
was to maximize Jsc output from the FDTD simulation. Each population contains several individual
chromosomes, which in turn consists of an array of bits called genes. Different selection methods
are used to choose certain chromosomes in each generation (see Section 2.2.1) in order to reproduce
off-springs using a crossover method (see Section 2.2.2). To further mimic biology, there is also a
probability that a chromosome might suffer mutation, which is provided by the mutation rate, which
allows the algorithm to escape local minima in the data. In the end, the fittest members of the population
prevail, meaning that the algorithm converges to the optimal solution.

A step-by-step of the works of the genetic algorithm is shown in Algorithm 1. The initial
population pop of size p is randomly selected from the search space, which in our case is the maximum
and minimum thickness of the optical spacer layers. The first iteration of the algorithm then starts.
For each population value, the GA calls the FDTD software to simulate and extract the Jsc result.
The fitness function (Jsc) is applied to all individuals in the population and ranked from the highest Jsc

to the lowest. A selection method is then applied taking into consideration each chromosome and their
respective fitness score. After selecting the parents responsible for the next generation, they reproduce
to obtain the next generation, a step detailed in Algorithm 2. Please note that in our algorithm, the
fittest individual in the current generation is cloned to be part of the next generation. The current
generation is then updated with the next generation, with the algorithm continuing until the maximum
number of generations has been reached.

Algorithm 1: Genetic Algorithm

Data: max_generation, population_size (p), mutation_prob, search_space (range of population)
Result: Best individual and fitness value (optimal solution)
pop ← random initial population of size p from search_space;
while generation <= max_generation do

f itness_score ← Fitness(pop);
f itness_score_sorted, pop_sorted ← Rank( f itness_score, pop);
new_pop ← Cloning of the f ittest;
next_parents ← Selection( f itness_score_sorted, pop_sorted);
new_pop ← [new_pop, Reproduction(p − 1, next_parents, mutation_prob)];
pop ← new_pop;
generation += 1;

Save pop_sorted and f itness_score_sorted in .mat;

As for the reproduction algorithm, detailed in Algorithm 2, the first step is to allocate an empty
array for the new population. The second step is to select two parents to produce C children. Due
to the crossover method used and mutation ratio, the same parents can reproduce different children.
The new population is then updated with the new children obtained through crossover and mutation.
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Algorithm 2: Reproduction Algorithm
Data: next_parents, p, mutation_prob
Result: New population
new_pop ← [];
for i=1 to p / 2 do

parent1 ← next_parents(i);
parent2 ← next_parents(len(next_parents) - i + 1);
Create C children from parent1 and parent2 with Crossover and Mutations;
new_pop ← new_pop + new children

2.2.1. Selection Methods

Four selection methods were examined in this work: random, tournament, roulette wheel, and
breeder. For better clarity of the following explanations, the fittest individual means the individual
with highest fitness score, since our problem is a maximization problem.

Random

This is the simplest selection method since it does not incorporate selection criteria. This method
consists of randomly selecting individuals to be the next generation’s parents, with no regards to the
fitness function. Because of this Monte-Carlo-like approach, it can take very long for the algorithm to
converge.

Tournament

Tournament Selection [15] samples k individuals with replacement from a population of p and
applies the fitness function to those individuals in order to select the one with best fitness score,
also known as the fittest individual. One can think of this method as a battle of the fittest, where k
individuals face each other in tournament fashion to decide the fittest. The fittest individuals from
each tournament round will then constitute the parents responsible for forming the next generation.

Roulette Wheel

Roulette-Wheel Selection (RWS) [16] is a popular way of parent selection in which individuals
have a fitness-proportionate probability of being selected. In that way, if an individual is very fit, it has
a higher chance of being chosen, otherwise their chance is lower.

Breeder

Breeder Selection [17] follows the same strategy used for breeding animals and plants, where the
goal is to preserve certain desired properties from the parents in their children. This is achieved by
conserving the genetic material from the fittest individuals while still giving some mutation leeway by
adding a few random individuals (lucky few) to the mix of parents for the next generation.

2.2.2. Crossover

Crossover is the reproduction method in genetic algorithms, and it consists of choosing the parts
of each parent that will be present in their child.

Uniform

A uniform crossover is shown in Figure 3. In this type of crossover, each bit is chosen from one of
the parents with probability of 0.5. The advantage of this method is that the same parents can form
many children with a more diverse set of genes.
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1 0 0 0 1 1 0 1 

Parent 1 

0 1 1 0 1 0 1 0 

Parent 2 

Child 1 

1 0 0 1 1 1 0 1 

Child 1 Child n 

1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 ... 

Figure 3. Uniform crossover: bitwise reproduction.

k-Point

In a k-point crossover, each parent is divided into k segments. These segments are then chosen
with equal probability to compose the new chromosomes for their children. This crossover, shown
in Figure 4, can be a one-point crossover (k = 1), or a multi-point crossover (1 < k < NC, where NC
is the length of a chromosome). The disadvantage of the one-point crossover is that it is only able to
generate two distinct children.

Figure 4. k-point crossover: blockwise reproduction.

2.2.3. Mutation

This genetic operator is used to ensure genetic diversity within a group of individuals and to
ensure the algorithm does not converge to a local minimum. The mutation operator works by flipping
bits in a chromosome according to a mutation probability, as shown in Figure 5.

1 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 

Figure 5. Mutation of a bit in a chromosome.

3. Complexity Analysis

In this section, we aim to further explain our algorithm’s suitability with respect to its complexity.
In brute force, the total simulation count increases with respect to the solar cell’s layers which are
thickness-optimized, as shown previously in Equation (1). In Big-O notation, which represents the
upper bound for time complexity in an algorithm, the brute-force method has algorithmic complexity
as in Equation (2):

Obrute f orce = O(nl) (2)

where l is the number of layers and n is the number of fitness function evaluations for a layer.
In other words, the complexity increases exponentially with the number of layers, and that can be very
expensive as that number grows.
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Our goal is to efficiently optimize layer thickness in devices composed of a single layer and
multiple layers alike. Hence, we used genetic algorithm for our global optimization requirement.
GA can converge to an optimal solution by evaluating less individuals than the brute-force method.
However, in the classical approach, the same individual might be evaluated multiple times. To prevent
this redundancy from happening, we implement GA with dynamic programming. In this approach,
there is a dynamic dictionary, also called lookup table, which serves as memory to store the already
evaluated individuals and their respective fitness scores. The dictionary is said to be dynamic because
it may change size if the algorithm receives an individual whose fitness score has not been calculated
yet. This approach is illustrated with an example in Figure 6, where in every generation, or iteration,
the algorithm searches the memory for a desired individual. If this individual has already been
computed, its fitness score can simply be used by the algorithm. Otherwise, the fitness function is
evaluated, and the lookup table is updated.

i1 = 10 

i2 = 5 

i3 = 30 

i4 = 35 

i5 = 17 

i6 = 9 

g1 g

Individual Fitness (JSC) 

10 11.52220068 

5 11.4382067 

30 11.66700404 

35 11.65811383 

17 11.58296949 

9 11.44024933 

m
em

or
y 

i1 = 11 

i2 = 17 

i3 = 5 

i4 = 15 

i5 = 5 

i6 = 11 

g2 

Individual Fitness (JSC) 

10 11.52220068 

5 11.4382067 

30 11.66700404 

35 11.65811383 

17 11.58296949 

9 11.44024933 

11 11.5369408 

15 11.58271356 

lookup / 
update 

9

lookup / 
update 

... 

population population 

generation 

Figure 6. Genetic algorithm with dynamic programming, where blue represents values that need to
be added to the lookup table in order to update it and grey represents values that have already been
evaluated and need only to be copied when necessary.

4. Results and Discussion

Since GA is a stochastic algorithm, we calculated the average number of simulations required
by the GA and its standard deviation from 5000 repeated runs per section. The accuracy of the data
discussed below are all 100%, which means that all the 5000 runs converged to the optimal solution. We
have discussed three sections below: single layer—ZnO thickness optimization; single layer—MoOx
thickness optimization; and multiple layers—concurrent ZnO and MoOx thickness optimization.
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4.1. Single Layer

4.1.1. ZnO Optical Spacer Layer

For the single ZnO optical spacer layer optimization, we fixed the MoOx layer thickness as 10 nm.
We applied the brute force and the genetic algorithm to our task and solved it within the same thickness
limits of 0 to 80 nm. The best Jsc, which is also the fitness value, was obtained when the ZnO thickness
was optimized to 30 nm (as shown in Figure 2a). We have compared the total number of simulations
and their respective accuracies for different selection methods. The initial population size, generations
count, and mutation probability were the factors that were iterated in order to find the conditions that
would use the least number of simulations to optimize the device structure. The population size was
varied from 10 to 80 in increments of 10, the generation count from 10 to 100 in increments of 10, and
the mutation probability from 5 to 100 in increments of 5. While the brute-force method required 81
simulations in total, the number of simulations required by the genetic algorithm was dependent on
the selection method and initialization parameters used. The initialization parameters which provided
the least average number of simulations from the 5000 simulations, while keeping the accuracy at
100%, is provided in Table 1.

Table 1. Comparison results for ZnO single-layer optimization.

Brute-Force Method: Number of Simulations = 81
Optimized ZnO Thickness = 30 nm

Selection Method

Parameter Random Roulette Tournament Breeder

Population 20 80 70 60
Generation 40 10 30 10
Mutation prob (%) 80 15 60 75

Mean (simulations) 78.42 ± 1.82 80.47 ± 0.50 78.16 ± 1.65 79.17 ± 1.37

Figure 7. Single ZnO layer optimization using GA with tournament selection: accuracy (%) distribution
data sliced at population size of 70, generation count of 30, and mutation probability of 60%.

Figure 7 presents the accuracy distribution over different initialization parameters. It was observed
that the best result was obtained while using tournament selection model with the population size of
70, generation count of 30, and mutation probability of 60%. It required 78.16 ± 1.65 simulations to
reach the optimal solution. Although the GA algorithm was observed to produce only a reduction of
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2.26 ± 2.04% in the number of simulations required, this was mainly due to two optimal result points
in the data. Since the device with a 24 nm ZnO layer thickness exhibited a Jsc of 116.62 A/m2 and
the one with the optimal 30 nm ZnO layer thickness exhibited a near same Jsc of 116.67 A/m2, the
algorithm took longer to converge at the optimal structure. In a practical scenario, however, if both
the above-mentioned structures were regarded as optimal, the algorithm would converge with high
accuracy with much lesser number of simulations.

4.1.2. MoOx Optical Spacer Layer

For the MoOx optical spacer single-layer optimization, the ZnO thickness was fixed at 30 nm.
The brute-force method required 31 simulations to determine the optimized layer thickness of 8 nm
(Figure 2b). For finding the best initialization parameter combination, we varied the population size
from 5 to 20 in increments of 5, the generation count from 10 to 100 in increments of 10, and the
mutation probability from 5 to 100 in increments of 5. The best case results for each selection model is
provided in Table 2.

Table 2. Comparison results for MoOx single-layer optimization.

Brute-Force Method: Number of Simulations = 31
Optimized MoOx Thickness = 8 nm

Selection Method

Parameter Random Roulette Tournament Breeder

Population 15 5 15 15
Generation 20 100 30 80
Mutation prob (%) 80 75 75 80

Mean (simulations) 30.91 ± 0.31 13.05 ± 3.24 30.97 ± 0.16 30.97 ± 0.18

It was observed that while the roulette method was able to use 57.9 ± 10.45% fewer simulations
to determine the optimal MoOx thickness, the other methods required nearly the same number of
simulations as the brute-force method. We hypothesize that the roulette method’s preferential weighing
of the fittest model aided in the convergence to the optimal solution faster. Figure 8 presents the
accuracy distribution for the optimum initializing parameter values.

Figure 8. Single MoOx layer optimization using GA with roulette selection: accuracy (%) distribution
data sliced at population size of 5, generation count of 100, and mutation probability of 75%.
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4.2. Multi-Layer: ZnO + MoOx

As mentioned earlier, multi-layer optimization can take a large number of simulations.
The computational and time cost required to run these simulations are expensive. GA can be used to
refine the optimization process to take as less simulations as required. The ZnO layer thickness was
incremented by 1 nm from 0 to 80 nm, while the same thickness increment was done from 0 to 30 nm
for the MoOx layer. The brute-force method used 2511 simulations to find the optimized optical spacer
layer thicknesses of 24 nm ZnO and 8 nm MoOx. We converted the 3D Figure 2c to a 2D Figure 2d by
applying labels for each ZnO and MoOx thickness combination. Thus, we have 2511 labels and the GA
algorithm was applied to determine the label pointing to the optimal result. The population size that
was varied from 500 to 1500 in increments of 500, the generation count from 10 to 100 in increments of
10, and the mutation probability from 10 to 100 in increments of 10. Table 3 presents the result from
multi-layer optimization.

Table 3. Comparison results for multi-layer optimization.

Brute-Force Method: Number of Simulations = 2511
Optimized ZnO Thickness = 24 nm, Optimized MoOx Thickness = 8 nm

Selection Method

Parameter Random Roulette Tournament Breeder

Population 500 1000 500 500
Generation 90 90 80 90
Mutation prob (%) 10 90 20 50

Mean (simulations) 2391.34 ± 38.13 1758.77 ± 39.75 2428.84 ± 34.57 2256.80 ± 70.15

Figure 9 presents a 29.96 ± 1.58% reduction in the number of simulations required by the roulette
selection method to obtain the optimal solution. As the complexity became higher, having more
randomness in the population through a high mutation probability rate aided constructively to reduce
the number of simulations required. Due to this, the roulette selection method was able to show a best
average number of simulation count of 1758.77 ± 39.75 from 5000 repetitive runs.

Figure 9. Multi-layer optimization using GA with roulette selection: accuracy (%) distribution data
sliced at population size of 1000, generation count of 90, and mutation probability of 90%.
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4.3. Performance Comparison: Uniform vs K-Point Crossover Methods

The roulette method demonstrates satisfactory performance in the ZnO layer thickness
optimization problem and the best performances for both MoOx and multi-layer thickness optimization
problems. These results are obtained using the uniform crossover genetic operator, whereas performances
with the k-point crossover method remain uncharted. This section aims to fill that gap and provide a
performance comparison between uniform and k-point crossover methods. We use k values of 1, 2, and 4
for our k-point crossover method.

Table 4 shows the average number of simulations required to solve the optimization problem
when using uniform versus when using k-point crossover. It also compares the result obtained through
the various crossover methods to the chromosome’s binary bit size. In the MoOx case with k = 1
and bits = 12, the chromosome is divided into segments of 6 bits. Since the maximum number of
bits required to define the MoOx layer thicknesses is 5 bits, one of the parents does not pass on its
chromosome to the child. Due to this, there is no genetic variation between the parents and children,
essentially meaning that the children are copies of one parent, hence the solution did not converge.
We also observed that in most cases using k-point crossover, the best results were obtained when
the chromosome was segmented into segments of 4 bits in length. The exception to this were the
MoOx case with 5-bit chromosomes and the ZnO case with 12-bit chromosomes. Uniform crossover
and 4-point crossover proved better in these cases, respectively. We hypothesize that the poorer
performance at other k-point values was linked to the amount of variation in the chromosome. Lower
k-point values meant fewer segmentations in the parent chromosome, which in turn meant fewer
genetic variations occurred, leading to a slower convergence of the result. However, at the same time,
higher k-point value meant high genetic variation which also lead to slower convergence.

Table 4. Comparison results for uniform and k-point crossover methods.

Average Number of Simulations
Crossover Methods

Layers Uniform 1-point 2-point 4-point Bits

MoOx 13.05 ± 3.24 17.83 ± 2.54 20.89 ± 2.84 14.73 ± 3.06 5
MoOx 13.05 ± 3.24 13.83 ± 1.69 19.88 ± 3.74 20.99 ± 3.72 8
MoOx 13.05 ± 3.24 - * 12.14 ± 1.26 19.05 ± 2.13 12
ZnO 80.47 ± 0.50 70.76 ± 0.84 75.72 ± 1.44 74.00 ± 1.96 8
ZnO 80.47 ± 0.50 74.04 ± 1.58 76.37 ± 1.56 73.90 ± 1.51 12

ZnO-MoOx 1758.77 ± 39.75 1701.78 ± 15.34 1140.06 ± 37.11 1355.23 ± 68.35 12

* Solution did not converge.

The best initialization parameters for the optimization problems discussed in this article are
tabulated in Table 5.

Table 5. Initialization parameters for best performances.

Average Number Crossover Initialization Parameters
Layers of Simulations Method Bits Population Generation Count Mutation Rate

MoOx 12.14 ± 1.26 2-point 12 10 30 10
ZnO 70.76 ± 0.84 1-point 8 70 10 15

MoOx + ZnO 1140.06 ± 37.11 2-point 12 500 70 70

5. Conclusions

We have demonstrated that the genetic algorithm can perform better than the conventional
parameter sweep used in simulations. In our best-case scenario, it exhibited no loss in accuracy,
while outperforming the brute-force method by up to 57.9% with the correct initialization parameters.
In the worst-case scenario, the GA utilized the same number of simulations as the brute-force method,
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demonstrating that it cannot be outperformed by brute force. We found that the best selection method
was the roulette-wheel selection. For uniform crossover method, it exhibited a satisfactory performance
for ZnO layer optimization and an outstanding performance for the MoOx and 2-layer optimization
problems. When using k-point crossover, the roulette method was able to further decrease the number
of simulations required to converge to the optimal result. In conclusion, we were able to reduce the
average number of simulations required for MoOx layer optimization to 12.14 (brute force = 31), ZnO
layer optimization to 70.76 (brute force = 81), and ZnO-MoOx layers optimization to 1140.06 (brute
force = 2511). The GA is dependent on its initialization parameters and the selection method chosen.
This article does not discuss an automated way to assign these parameters as it is not in its research
scope. However, the results suggest that there is possibility for greatly refining the parameter sweep
method using genetic algorithms as shown with both single and multi-layer optimization of the solar
cell structure. Code and additional results are at https://github.com/gcunhase/GeneticAlgorithm-
SolarCells.
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Abstract: In this paper, we propose a side-absorption concentrated module with diffractive grating
as a spectral-beam-splitter to divide sunlight into visible and infrared parts. The separate solar
energy can be applied to different energy conversion devices or diverse applications, such as hybrid
PV/T solar systems and other hybrid-collecting solar systems. Via the optimization of the geometric
parameters of the diffractive grating, such as the grating period and height, the visible and the infrared
bands can dominate the first and the zeroth diffraction orders, respectively. The designed grating
integrated with the lens and the light-guide forms the proposed module, which is able to export visible
and infrared light individually. This module is demonstrated in the form of an array consisting of
seven units, successfully out-coupling the spectral-split beams by separate planar ports. Considering
the whole solar spectrum, the simulated and measured module efficiencies of this module were 45.2%
and 34.8%, respectively. Analyses of the efficiency loss indicated that the improvement of the module
efficiency lies in the high fill-factor lens array, the high-reflectance coating, and less scattering.

Keywords: solar concentrator; spectral beam splitting; diffractive optical element; diffractive grating

1. Introduction

Solar technologies have drawn significant attention due to the Earth’s extreme climate and energy
crises, and these technologies have recently made great progress. Mostly, those solar technologies
transform sunlight into electricity or thermal power. Although one of the dominating technologies
for generating electricity from sunlight is photovoltaics, this technology entails significant energy
loss, including thermal loss and spectral loss. To enhance or extend the energy usage of photovoltaic
systems (PV), researchers have collected waste thermal energy, such as cascading photovoltaic and
thermal modules [1], integrated a PV-powered air-conditioning unit with a boiler [2], reduced the
PV temperature for higher efficiency by using air-based hybrid photovoltaic/thermal systems (PV/T),
water-based PV/T, and refrigerant-based PV/T [3–5], and even extended the operating bands by means
of multi-junction photovoltaics, spectral-beam-splitters (SBS), and so on [6–9]. Among the systems
belonging to the PV/T regime, SBS has the following advantages. Photovoltaic cells are no longer
used as thermal receivers, so over-heating can be avoided. Moreover, their relatively low operation
temperatures have led to high efficiency. The temperature of the heat transfer fluid (HTF) of thermal
modules can be unrestricted by the operating temperature of the cells, resulting in a broad range of
thermal applications [8]. Because of the characteristic of spectral splitting, SBS can be applied not
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only to the PV/T but also other hybrid-collecting solar systems, such as a dual-photovoltaic system
with its cells operating in different energy-conversion bands [10,11]. In terms of configurations, the
technique of SBS includes the following categories: dichroic filtering, liquid absorption, diffraction,
and others [8,12]. Diffractive type of SBS can be sorted mainly by the alignment method of the
sunlight receivers. The first type of alignment adopts a common optical axis for different receivers,
such as photovoltaic cells and thermal tubes [13–15]. Thus, the shadow effect becomes unavoidable.
The second kind of alignment arranges multiple receivers with different optical axes [16–19]. In this
arrangement, the sunlight receivers can be photovoltaic cells with different absorption bands and
lateral arrangements [12,13]. The third kind is proposed as a planar concentrator with a zig-zag optical
axis, with the receivers located at different sides of the concentrator [20,21]. Herein, we propose a novel
SBS configuration (of the third kind of alignment), consisting of a zig-zag optical axis, with integration
of the diffractive optical element (DOE) and other planar optics to form a side-absorption concentrated
module. In addition to the design principle of the module constructed by a single unit, we present and
discuss a practical demonstration of seven units. Notably, because of its side-absorption structure, the
system’s thickness, complexities in component alignment, and wire connections can be reduced [22–24].
In brief, the proposed side-absorption concentrated module inherits the benefits of SBS, such as the
improved operating efficiency of photovoltaics, more probable thermal-applications, etc., while its
novel configuration facilitates a compact PV/T system with a simplified packaging process because of
its side-absorption structure.

2. Principles

2.1. Side-Absorption Concentrated Module for Spectral-Beam Splitting

The proposed side-absorption concentrated module utilizes lenses, DOEs, and a light-guide as
the condenser, the spectral beam-splitter and the out-coupling adapter, respectively. The structure
of the proposed module is illustrated in Figure 1. Assume that the whole module is allocated on
a solar tracker and that sunlight is regarded as normally incident to the module. When sunlight
illuminates the positive lens, the light will be condensed and will pass through a DOE (considered
a diffractive grating, herein). Then, the grating will diffract the light according to its wavelength.
In this study, a structured light-guide with its top surface as the entrance and two side surfaces as two
output ports will receive the diffracted waves, while the two ports export the sunlight in the visible
and infrared bands individually. By means of this light-guide, the diffracted waves will be directed
toward different output ports according to their spectra, resulting in the module splitting sunlight
spectrally. Meanwhile, the proposed module inherits the advantages of the planar concentrator such
that the output ports lie in the same horizontal plane, thereby allowing for planar outputs and saving
the system volume. Afterwards, this module can be applied to a hybrid solar system with different
energy-conversion mechanisms. As for the issues and challenges of the proposed module, they are
discussed in Section 5.3 along with the comparisons to other techniques.

Figure 1. Schematic of the side-absorption concentrated module for spectral-beam splitting.
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2.2. Performance Evaluation

The evaluation of the proposed side-absorption concentrated module consists of two stages.
The primary stage evaluates the diffraction performance when the light passes through the grating,
and the secondary stage evaluates the out-coupling performance when the light propagates through
all components and couples out from the different output ports of the light-guide. Compared to the
lens, the grating is more dominant during the first stage because its dispersion affects the performance
of beam-splitting, and its high-order diffraction results in a loss. Accordingly, the lens is regarded as
ideal to simplify the grating analyses in the primary stage. In this study, we evaluate grating by its
diffractive efficiency in the visible band, the infrared band, and the whole solar spectrum. Meanwhile,
the grating is designated to diffract the visible portion of sunlight toward the first-order diffraction and
the infrared portion toward the zeroth-order diffraction. The efficiency of the grating in the visible
band, ηvis

grating, can be then considered as the ratio of the optical power of the first-order visible output
to that of the visible sunlight:

ηvis
grating =

∫ λvis
e

λvis
s
η1

di f f ,grating(λ) · S(λ)dλ∫ λvis
e

λvis
s

S(λ)dλ
, (1)

where η1
di f f ,grating(λ) denotes the first-order diffraction efficiency of the grating under a source with

wavelength λ, and S represents the solar spectrum. λs
vis and λe

vis are the starting and ending
wavelengths of the considered visible spectrum, respectively. Similarly, the grating efficiency in the
infrared band, ηIR

grating, relates to the optical power of the zeroth-order infrared output:

ηIR
grating =

∫ λIR
e
λIR

s
η0

di f f ,grating(λ) · S(λ)dλ∫ λIR
e
λIR

s
S(λ)dλ

, (2)

where η0
di f f ,grating(λ) denotes the zeroth-order diffraction efficiency of the grating, and λs

IR and λe
IR

are the start and the end wavelengths of the considered infrared spectrum, respectively. Likewise, all
out-coupling waves from the designated diffraction orders are counted to derive the grating efficiency
within the whole solar spectrum:

ηtotal
grating =

∫ λvis
e

λvis
s
η1

di f f ,grating(λ) · S(λ)dλ+
∫ λIR

e
λIR

s
η0

di f f ,grating(λ) · S(λ)dλ∫ λtotal
e

λtotal
s

S(λ)dλ
, (3)

where λs
total and λe

total are the start and the end wavelengths of the considered solar
spectrum, respectively.

At the second stage, the synergetic effects of all components, including the lens, the grating, and
the light-guide, are taken into account. The module efficiency for the visible band relates to the optical
power of visible light out-coupled from the visible port of the light-guide:

ηvis
module =

∫ λvis
e

λvis
s
ηlens(λ) · η1

di f f ,grating(λ) · ηlightguide(λ) · S(λ)dλ∫ λvis
e

λvis
s

S(λ)dλ
, (4)

47



Energies 2020, 13, 192

where ηlens(λ) and ηlightguide (λ) are the wavelength-dependent transmittance of the lens and the guiding
efficiency of the light-guide, respectively. Similarly, the module efficiency for the infrared band and the
whole solar spectrum can be respectively expressed as follows:

ηIR
module =

∫ λIR
e
λIR

s
ηlens(λ) · η0

di f f ,grating(λ) · ηlightguide(λ) · S(λ)dλ∫ λIR
e
λIR

s
S(λ)dλ

(5)

and

ηtotal
module =

∫ λvis
e
λvis

s
ηlens(λ)·η1

di f f ,grating(λ)·ηlightguide(λ)·S(λ)dλ+
∫ λIR

e
λIR

s
ηlens(λ)·η0

di f f ,grating(λ)·ηlightguide(λ)·S(λ)dλ
∫ λtotal

e
λtotal

s
S(λ)dλ

. (6)

According to Equations (1)–(6), the spectral-splitting performance of the grating and that of the
entire side-absorption concentrated module can be calculated and evaluated. In the following sections,
these equations will be utilized for the design and optimization of the optical components in the
proposed module, as well as for evaluation of the whole module.

3. Modeling

In order to facilitate the demonstration of a single unit and an assembled array of the proposed
module, we considered the commercial specifications of lenses and then designated a lens as the
condenser with a diameter of 25.4 mm and a distance of 30 mm between the lens and the grating. Since
a lens with a long focal length produces a thick module, and that with a short focal length brings about
large spherical aberrations, a lens with an appropriate focal length was plotted, and a commercial
lens (model: AC254-080-A) with a focal length of 80 mm was selected. Notably, the selected lens uses
achromatic coating to reduce chromatic aberration, which can simplify the optical properties of the
waves incident to the grating and facilitate the grating design.

3.1. Optimization of Diffractive Grating

There are several considerations for designing the diffractive grating in the proposed module,
including the grating period, the geometric shape, the material, and the diffraction orders in use.
Because of the available fabrication processes and the requirement to achieve duplication with sufficient
efficiency, the shape and material of the grating were designed as blazed and polyethylene terephthalate
(PET), respectively. Meanwhile, the zeroth and the first diffraction orders were utilized. According
to the grating equation, the diffractive beams can be characterized by their diffractive angles. For a
normally incident light source, the diffractive angle of the mth-order diffraction can be expressed as
in [25]:

θm = sin−1
(mλ

d

)
, (7)

where d is the grating period. By differentiation, the angular dispersion of the grating is derived as
in [26]:

∂θm

∂λ
=

m
d× cosθm

. (8)

Equation (8) indicates that diffraction order m and grating period d are the determinative factors
of angular dispersion. In the proposed module, the diffractive angle of every spectral wave influenced
the overlapping of the diffractive spots on the following light-guide. Therefore, the effects of the
grating period were analyzed based on Equation (7) for every wavelength. By means of the optical
tool, LightTools, the diffractive spots from a broad-band source were simulated. The results show that
when the grating period was less than 16 μm, the overlapping of the diffractive spots was eliminated.
With consideration of the fabrication accuracy, the grating period was optimized as 15 μm.
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Next, since the designated shape of the grating was blazed, the blaze angle was determined
in terms of its diffraction efficiency, which is the merit-function to determine the blaze angle when
the grating period is given [27]. Further, because of the wide spectral range of the light source,
the diffraction efficiency was unable to be calculated accurately via scalar diffraction theory. Thus,
the simulation was executed by means of the rigorous-coupled-wave-analysis (RCWA) software,
Gsolver, to derive the diffraction efficiency of the blazed grate with different blaze angles. According
to Equations (1)–(3), the grating efficiencies for the considered visible band (380–780 nm), infrared
band (780~2520 nm), and whole solar band (280~2520 nm) were calculated, as shown in Figure 2.
To maximize the grating efficiency within the whole solar spectrum, the optimized blaze angle was
3.51◦, which is equivalent to a grating height of 0.92 μm. Then, the maximum grating efficiency for the
whole solar spectrum reached 63.3%, while the corresponding efficiencies for the visible and infrared
spectra were 73.8% and 54.4%, respectively. Additionally, the spectral-splitting performance illustrated
in Figure 3 reveals that the unused diffraction orders were greatly suppressed.

Figure 2. Relations between the grating efficiency and the blazed angle for different spectral bands.

Figure 3. Diffraction efficiency for different diffraction orders in the spectral range from 280 to 2520 nm.

3.2. Design of the Module

After the lens and the grating had been designed, the following step was to determine the
parameters of the light-guide. Herein, a single-unit module was considered for the design. An isosceles
v-groove was assumed to exist on the bottom side of the light-guide with reflective coating to direct
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the spectral-split beams toward different output ports. The ray-tracing diagram for a collimated light
source impinging on the proposed module is illustrated in Figure 4. This diagram shows that, for
the first-order diffraction, the spot on the light-guide shifts along the +y axis when the wavelength
increases, but this y-shift phenomenon does not occur for the zeroth-order light. Accordingly, adjusting
the length, vertex angle, and center of the reflective v-groove, one can direct the first-order diffractive
light, mainly in the visible spectrum, toward the visible output port and allow the on-axis zeroth-order
diffractive light (mainly infrared) to be reflected toward the infrared output port. In order to maintain
efficient propagation, the v-groove must make the light propagating within the light-guide to fulfill the
condition of total internal reflection (TIR). Then, the v-groove was assigned as an isosceles triangle
with a vertex angle of 120◦ to facilitate fabrication. On the other hand, when the proposed module was
constructed as an array to enlarge the solar insolation, the greater number of units resulted in longer
optical paths for the rays reflected by the v-groove and a higher possibility for them to encounter other
v-grooves. Subsequently, the propagation inclination of these rays changed, and the probability of rays
exiting the light-guide through the entrance surface increased. In this way, more loss was induced,
and the module efficiency was reduced. Thus, the geometries of the v-groove and light-guide were
optimized by maximizing the module efficiency of the whole solar spectrum, as defined in Equation
(6). The material of the light-guide was assigned as polymethylmethacrylate (PMMA). The simulation
was performed using the software LightTools with consideration of the antireflective coating on the
lens, the Fresnel loss at every interface, and the half-angle subtended by the sun, while other factors,
such as the reflectance of the v-groove, were regarded as ideal. Moreover, the sizes of the grating and
the light-guide in the simulation were designed according to the dimensions of the lenses, as well as
the required borders and output area compatible with the receiver.

Figure 4. Single unit of the proposed module with the ray-tracing results for (a) the first-order and (b)
the zeroth-order diffractive beams exiting through the visible and the infrared output ports, respectively.

Based on Equation (6), the module efficiency was counted from the simulated output power.
Based on the results shown in Figure 5a, although the reflectance of the v-groove was assigned as
unity, a longer v-groove length (as illustrated in Figure 5b) did not always contribute to higher module
efficiency. The reason for this result is that an increased v-groove length enlarges the probability of
rays encountering the second or successive grooves, resulting in more possible rays being reflected out
of the light-guide through the entrance surface and leading to greater possible loss. Based on these
simulated results, the geometric parameters of the v-groove were determined after the number of
units for a module was given. The designed parameters of the v-groove and the light-guide will be
presented in the next section along with those of the other components.
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(a) (b) 

Figure 5. (a) Relation between the module efficiency for the whole solar spectrum, the length of the
v-groove, and the number of units based on the simulation results and (b) structure of the v-groove.

4. Demonstration and Experiment

The proposed module was demonstrated in the form of an array comprising seven units. Each
unit consisted of three components, including a commercial achromatic lens (AC254-080-A), a blaze
grating made of PET, and a PMMA light-guide with a carved v-groove. Based on the aforementioned
design considerations, the parameters of the components were determined under the condition of a
seven-unit module, as listed in Table 1. It is worth noting that the gratings of all units can be integrated
into one device to simplify fabrication, and the light-guide has similar properties. Thus, the models
of these two components were constructed as monolithic. Using Equations (4)–(6), the simulated
module efficiency of the seven-unit module for the whole solar spectrum was 45.2%, and the efficiency
for the visible and the infrared output ports was 53.8% and 37.5%, respectively. The grating sheet
was fabricated via a roll-to-roll process. Meanwhile, the structured light-guide was fabricated by
ultra-precision diamond machining, and then the carved v-grooves were coated with a reflective
aluminum film. Moreover, in order to assemble all the components of the module, a fixture was
designed and fabricated. The assembled module is shown in Figure 6.

After the assembly of all components with the fixture, the whole module was mounted on a
dual-axis solar tracker for measurement. A customized integrating sphere, a power meter (NOVA II,
Ophir Optronics), a visible spectrometer (SE1020C-025-VNIR, OtO Photonics Inc.), and an infrared
spectrometer (SW2830S-050-NIRA, OtO Photonics Inc.) were utilized to measure the solar irradiance
along with the out-coupling power and spectra from both the output ports. According the specifications
of these instruments, the guaranteed power accuracy and the spectral accuracies of the visible and
infrared bands were±3%, less than 0.4 nm, and less than 1 nm, respectively. A photo of the experimental
setup is shown in Figure 7.

Table 1. Designed parameters of the components for each unit in the 7-unit module.

Lens
Diameter Focal Length Material *

25.4 mm 80 mm N-BK7, N-SF5

Grating
Period Blaze Angle Material

15 μm 3.51◦ PET

Light-guide
Dimensions (Width × Length × Thickness) Material

25.4 mm × 25.4 mm × 10.8 mm PMMA

V-groove
Vertex Angle Vertex Location Length Width Coating

120◦ Off-axis 0.82 mm 5 mm 5 mm Al

* A commercial sample treated with achromatic coating was utilized.
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Figure 6. Photo of the demonstrated module.

 
Figure 7. Assembled module with the measuring instruments allocated on the solar tracker.

The experiment was performed on a clear sunny day with the whole module fixed on the solar
tracker. The irradiance of sunlight was measured as 606 W/m2, and the incident solar power was
counted as 2149.5 mW. The measured power in the visible spectrum from the visible output port was
523.7 mW, and that in the infrared spectrum from the infrared output port was 225.28 mW. Based on
Equations (4)–(5), the module efficiencies were 44.8% and 24.6% for the visible and the infrared spectra,
respectively. The experimental module efficiency for the whole solar spectrum was then counted as
34.8%, according to Equation (6).

When the proposed side-absorption concentrated module is connected to different receivers that
are energy conversion devices, the system efficiency will vary. Ideally, the visible and the infrared
output ports will be linked to the devices with complete energy conversion in the visible and infrared
bands, respectively. Because of its proper absorption band and low cost, a silicon solar cell is an
economic and efficient choice to link the visible output port. For the infrared port, the successive
receiver for energy conversion can be either infrared solar cells or high-efficiency thermal modules,
such as a solar water heater coupled with a phase-change material [28]. The system efficiencies of
several feasible configurations were analyzed, and their details are reported in the following section.

5. Analyses and Discussions

5.1. System Efficiency

As mentioned above, different energy conversion devices for the proposed module will result in
different system efficiencies. For example, the visible port of the proposed module can be connected to
a commercial mono-crystalline silicon solar cell, with the external quantum efficiency (EQE) coarsely
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calculated as 75% [29], and the infrared port can be connected to a common water heater with a thermal
efficiency of 70% [30,31]. Along with the measured data of the proposed module, the system efficiency
is then estimated to be 25.9%.

Preferably, high-performance devices will be utilized for the proposed module. An example of
such a device is an inter-digitated back contact (IBC) silicon solar cell with a high EQE [32]. This type
of potential device will preferably be coupled to the visible port of the proposed module. On the other
hand, a commercial germanium cell with a high EQE is one possible choice for the infrared port [33].
According to the reported EQE data for these cells and the simulated spectral responses of the proposed
module, as illustrated in Figure 8, the system efficiency is calculated as 29.5%. The proposed module
using this combination of silicon and germanium cells is comparable in efficiency to other double-cell
techniques (for example, advancing tandem cells made of silicon and perovskite [34,35]).

S i Cell Ge cell Visible port Infrared port

Figure 8. External quantum efficiency (EQE) data for the aforementioned silicon and germanium
cells [32,33] and the normalized spectral responses of the visible and infrared ports in the
proposed module.

5.2. Loss Analyses and Efficiency Enhancement

In order to investigate the discrepancy between the simulated and measured module efficiency,
we performed loss analyses via simulation. The pertinent factors are described as follows. Unlike the
original design with the lenses integrated compactly, the fixture of the fabricated module produced
certain spaces for mounting the lenses, as shown in Figure 9. The modeling results show that such
incompactness reduced the module efficiency. Thus, a lens array designed with a high-fill-factor is
preferred. Meanwhile, the reflectance of the v-groove was not as ideal as unity. Thus, the reflectance
spectrum of the aluminum-coated film, as plotted in Figure 10, is not negligible. In addition, a laser
beam was utilized as a testing source to examine the surface quality of the v-groove, and scattering due
to the surface roughness was inspected. Based on these factors, the module efficiency was analyzed,
and the results are listed in Table 2. This analysis shows that the effects of these fabrication factors on
the module efficiency for the whole solar spectrum are close (each around 3% to 4%), and their synergy
dominates a 10% loss of such efficiency.

According to the above root cause analysis of the efficiency loss, improvement of module efficiency
lies in the high fill-factor for the lens array, the high-reflectance coating (such as a silver coating), and
the decreased scattering through the advanced polishing process. Furthermore, through modeling, we
found that the Fresnel loss occurring at each refractive interface is also a dominant factor. When all
Fresnel losses are eliminated, the module efficiency over the whole solar spectrum can be increased
theoretically from 45.2% to 51.2%. Although producing a module without any Fresnel loss is difficult,
a feasible approach for such a module would be to process two significant surfaces—the entrance
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surfaces of the grating and the light-guide—with an antireflective coating. Considering this feasible
antireflective-coating, the module efficiency over the whole solar spectrum is 49.3%, based on the
simulation results.

Figure 9. Exploded drawing of the practical module.

Figure 10. Spectral reflectance of the aluminum-coated film.

Table 2. Analyses of the module efficiency for a module with specific fabrication factors.

No. Factors ηvis
module ηIR

module ηtotal
module

(1) Primary model a 53.8% 37.5% 45.2%
(2) (1) + Bolder between lenses 52.9% 31.0% 42.0%
(3) (2) + Reflectance of Al-coated film 47.4% 28.8% 38.1%
(4) (3) + Scattering effect 43.6% 26.3% 34.9%

Measurement 44.8% 24.6% 34.8%

Expected system efficiency b 42.8% 14.6% 29.5%
a The primary model considered the geometry and material of each component, the antireflective coating of lens, the
Fresnel loss at every refractive interface, and the half angle subtended by the sun. b The expected system efficiency
was calculated on the basis of model No. (4) for an embodiment with the proposed module linking assumptively to
an inter-digitated back contact (IBC) silicon solar cell and a commercial germanium cell [32,33].

5.3. Techniques Comparisons

The proposed side-absorption concentrated module is a zig-zag type of diffractive SBS. Although
SBS possesses the aforementioned electrical and thermal advantages, there are different issues and
challenges for different categories of SBS. The dichroic filtering category requires a dichroic filter
to perform spectral beam splitting [12]; however, filters made of metal suffer from a considerable
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absorption loss, while dielectric filters made from multiple thin layers generally decrease performance
after receiving solar insolation for a period of time. The liquid-absorption category uses liquid to
absorb the thermal portion of sunlight and cool the photovoltaics [36]. However, the flow of liquid
may affect the stability of the output power of the photovoltaics. The diffractive category can realize a
relatively compact structure. However, the fabrication accuracy of the diffractive element is a critical
factor and relates highly to the cost.

Among the available diffractive SBS techniques, the type using a common-axis possesses a simple
structure but suffers from shadowing effect and its resultant loss. The type with multiple optical axes
results in a compressed system by reducing the effective length of the optical axis. Nevertheless, the
energy loss occurring at the spacing between its spectrally adjacent receivers is unavoidable. The type
with a zig-zag axis contributes to another compact system by laterally (rather than longitudinally)
allocating the electric or thermal modules. However, the longer zig-zag path may induce more loss
due to the more probability of rays encountering the successive grooves. The performance of each
representative diffractive-SBS technique is listed in Table 3 for comparison. This comparison shows
that the performance of the proposed module is acceptable.

Table 3. Comparisons between the different diffractive-spectral-beam-splitters (SBS) techniques.

Category Characteristics of Technique
Module Efficiency a or

System Efficiency
Reference

Common axis

• A reflective hologram pasted
on the quadric surface to form a
spectral-beam-splitter

NA [13]

• A hologram mounted above
a broadband receiver, whose
center has an opening for
another spectrally selective
receiver

System efficiency = 21.4% for
a PV/T system a [14]

Multiple optical axis

• A nonuniform
diffractive-grating as a
spectral-beam-splitter

System efficiency = 34.7% for
a dual-cell (InGaP/GaAs)
system b

[17]

• Micro-prism arrays as a
spectral-beam-splitter

System efficiency = 46.05%
for a triple-cell
(InGaP/GaAs/InGaAs)
system c

[18]

Zig-zag axis

• An integrated
diffractive/refractive optical
element as a
spectral-beam-splitter, and a
waveguide with engraved
microstructures beneath the
spectral beam splitter

Module efficiency ≤ 55% b [20]

• Lenses, diffractive grating,
and a light-guide as the
condenser, the
spectral-beam-splitter, and the
out-coupling adapter,
respectively

Module efficiency = 34.8% d,
system efficiency = 29.5% for
a dual-cell (Si/Ge) system b

Proposed

a Equivalent to “Optical efficiency” in some other literatures”, b simulation data, c estimated results from the
measured optical efficiency, d measured data.

6. Conclusions

In this study, we proposed a side-absorption concentrated module as a spectral-beam-splitter
to separate the visible and infrared bands of sunlight for different energy-conversion applications.
The proposed module integrates diffractive grating, lenses, and a light-guide to split sunlight according
to spectral bands and to export the spectrum-split rays to individual planar ports. A design example
with seven units has been provided for demonstration. In the simulation, the grating efficiency and
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module efficiency of this module were counted as 63% and 45.2%, respectively, for the whole solar
spectrum. Experimentally, the components of the proposed module were fabricated and assembled;
the module efficiency for the whole solar spectrum was then measured as 34.8%. Using this type
of module with its visible and infrared ports linked to high-EQE silicon and germanium solar cells,
respectively, a system efficiency of 29.5% is expected (based on the simulation results and the released
data of solar cells). Accordingly, this system is comparable in efficiency to other double-cell systems.
Moreover, the details of efficiency loss were analyzed for the proposed module, while the approaches
to enhance module efficiency were discussed and presented. This analysis shows that when all Fresnel
losses and the pertinent factors, including fixture limitation, reflectance of Al-coated film, and scatting
effect are well-controlled, a module efficiency of 51.2% is expected for the whole solar spectrum. As for
the energy gain in a PV/T system, the worthiness of the hardware development, and the payback
time, they relate highly to PV materials, thermal system designs, the number of units of the proposed
module, the climate and weather conditions of the demonstration site, and so on. Since some of
them, such as the climate conditions, generally need sufficient time to acquire, collecting the necessary
data, optimizing the performance, and lowering the cost of the proposed module will be our future
researches for system realization.
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Abstract: Photovoltaic (PV) models’ parameter extraction with the tested current-voltage values is
vital for the optimization, control, and evaluation of the PV systems. To reliably and accurately extract
their parameters, this paper presents one improved moths-flames optimization (IMFO) method.
In the IMFO, a double flames generation (DFG) strategy is proposed to generate two different types
of target flames for guiding the flying of moths. Furthermore, two different update strategies are
developed for updating the positions of moths. To greatly balance the exploitation and exploration,
we adopt a probability to rationally select one of the two update strategies for each moth at each
iteration. The proposed IMFO is used to distinguish the parameter of three test PV models including
single diode model (SDM), double diode model (DDM), and PV module model (PMM). The results
indicate that, compared with other well-established methods, the proposed IMFO can obtain an
extremely promising performance.

Keywords: moth-flame optimization; parameter extraction; photovoltaic model; double flames
generation (DFG) strategy

1. Introduction

Owing to fuel depletion, global warming, and environmental pollution, the renewable energy
sources such as wave, tidal, wind, geothermal, and biomass have received more attention in recent
years [1–4]. Solar energy is considered as an extremely promising renewable energy source owing to
its usability and cleanliness [5–7]. Furthermore, solar energy is also widely adopted to generate power
via photovoltaic (PV) systems [8]. However, PV systems are susceptible to external environmental
factors such as temperature and global irradiance, affecting the use efficiency of solar energy [9].
Therefore, it is crucial to accurately establish current-voltage models for optimizing and controlling PV
systems [10]. The current-voltage models mainly include single diode model (SDM) and double diode
model (DDM) [11], which are widely utilized to indicate the connection between current and voltage.
The accuracy and reliability of the PV models are primarily determined by their parameters. However,
because of unstable operating cases such as faults and aging, the PV models’ parameters are generally
not available and vary. Thus, developing an effective method to accurately extract these parameters
becomes especially critical.

Recently, a large number of algorithms have been proposed for identifying the parameters of PV
models. They are mainly divided into the following three categories: analytical [12], deterministic [13],
and heuristic methods [14]. The first category methods identify the PV models’ parameters via analyzing
a set of mathematical formulas [15,16], which accelerates and simplifies the calculation. However,
the reliability and accuracy of the solution are poor due to some postulations that need to be made
before the analysis [17,18]. The second category methods are greatly susceptible to initial assumptions
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and tend to fall into local optimum. In addition, they depend on the model’s differentiability or
convexity. However, the PV models are usually non-linear and multimodal, resulting in a set of poor
solutions when using the second category methods. The third category methods are heuristic methods
and can properly overcome the defects of analytical and deterministic methods. Therefore, they have
become potential alternatives to PV models’ parameters extraction.

Until now, various heuristic algorithms have been proposed for the parameter extraction of the
PV models. Reference [14] presents a genetic algorithm (GA) for identifying the SDM parameters of a
photovoltaic panel. Reference [19] proposes a new method adopting particle swarm optimization (PSO)
with inverse barrier constraint to determine the uncertain parameters of a PV model. Reference [20]
applies the artificial bee colony (ABC) to identify the optimal parameters of a silicon solar cell.
Reference [21] presents an improved adaptive differential evolution (IADE) algorithm, which utilizes a
simple structure based on the feedback of fitness value in the evolutionary process. Reference [22] uses
the bird mating optimizer (BMO) to estimate the optimal parameters of silicon solar cell. Reference [23]
proposes the chaotic whale optimization algorithm (CWOA), which adopts the chaotic maps to calculate
and automatically adapt the internal parameters of the optimization algorithm. Reference [24] presents
an improved ant lion optimizer (IALO), which arranges the initial positions of individuals by chaotic
sequence to improve the uniformity and ergodicity of population. Reference [25] adopts the bacterial
foraging algorithm (BFA) to predict the solar PV characteristics accurately. Reference [26] proposes an
improved JAYA (IJAYA) algorithm, in which a self-adaptive weight is proposed to regulate the trend of
moving towards the best result, getting out of the worst result at distinct search stages. Reference [27]
uses a teaching learning–based optimization (TLBO) algorithm to extract all five parameters of a solar
cell. Reference [28] proposes flower pollination algorithm (FPA) to extract the optimal parameters of
different PV models.

Furthermore, as a population-based heuristic algorithm, MFO [29] is inspired by moths’ behaviors
and acquires great performance when solving non-convex and multimodal optimization problems.
In MFO, each of the moths represents a solution for problems. Specifically, the algorithm’s most
striking feature is that each moth has its own flame and flies toward the flame in a spiral curve.
Consequently, the flight curves of the moths are always oriented at a fixed angle to the remote target
flames, known as the transverse orientation. In MFO, the flames’ number is gradually decreased
with the iterations’ number raising, which allows MFO to obtain fast convergence speed. Note that
reference [29] demonstrates MFO’s excellent optimization performance in relation to other well-known
methods such as GA [18], FPA [28], and PSO [19]. Besides, MFO has been commonly applied to various
PV-related practical problems. In reference [30], MFO is utilized to estimate parameters of the three
diode models for multi-crystalline solar cells/modules. In reference [31], MFO is used for PV MPPT
and partial shading problem. In reference [32], MFO is applied for AI-based MPPT that is used for
partial-shaded grid-connected PV plant.

Nevertheless, in MFO, the fast information exchanges among moths are produced owing to
all the moths flying toward their best target flames. Once the global optimal value is close to the
local optimum, the moths can easily fall into the local optimum of the search area. To overcome the
shortcoming of MFO, various MFO variants have been proposed. Reference [33] presents a novel
opposition-based moths-flames optimization (OMFO) that uses an opposition-based learning strategy
in MFO to improve convergence speed. Reference [34] proposes an efficient hybrid algorithm based
on water cycle and MFO algorithms (WCMFO), which combines the Levy-flight operator and spiral
movement of MFO into the Water Cycle (WC) method to enhance the WC’s ability of exploration
and exploitation, respectively. Reference [35] presents a moth-flame optimization algorithm based on
chaotic crisscross operator (CCMFO) that uses the chaotic operator and crisscross strategy in MFO
to enhance the convergence of premature. However, the above MFO variants have no attempts for
solving the PV models’ parameters extraction problems.

This paper proposes an improved MFO (IMFO) for accurately estimating the parameters of the
PV models. In IMFO, a double-flames generation (DFG) strategy is presented to generate two different
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kinds of target flames for effectively guiding the flying of moths. By adopting corresponding local
best moths, a type of flames called local flame (LF) is produced. Another type of flames is called
global flame (GF) and is generated by combining all the moths’ current personal best positions (pbests).
Furthermore, two different update strategies are created for updating the positions of moths, and each
moth only adopts one of the two different evolution update strategies at each iteration. To ensure
the effective compromise between global exploration and local exploitation, a probability is utilized
to rationally select the two different update strategies for each moth. To demonstrate the superior
performance of IMFO, we compare the proposed method with eight well-established algorithms on
extracting the parameters of three different PV models, i.e., SDM, DDM, and PMM. The experimental
results show that IMFO can achieve a highly competitive performance as well as can reliably and
accurately extract the parameters of the three different PV models.

The main contributions of our work are as follows:

1. A novel IMFO algorithm is presented to extract the parameters of different PV models. Different
from most existing MFO methods, IMFO develops a double-flames generation (DFG) strategy
to generate two kinds of high-performance flames. Furthermore, in IMFO, two different update
strategies of moths are developed to effectively tackle exploration and exploitation. Besides,
a probability is applied to rationally select one of two different update strategies for each
moth’s update, contributing the efficient compromise between the global exploration and
local exploitation.

2. To the best of our knowledge, there are no MFO methods for solving the parameters extraction
on the PMM. Specifically, most existing MFO variants such as OMFO and WCMFO have never
been used for the parameter extraction on the three PV models including SDM, DDM, and PMM.
Although MFO [30] has been used for the DDM, it has never been adopted for the parameter on
the SDM or PMM. However, the proposed IMFO fully considers the parameter extraction on the
SDM, DDM, and PMM.

3. Comparisons are given between IMFO and eight well-established algorithms on extracting the
parameters of three PV models. The results verify that IMFO can achieve better performance
than the eight algorithms on the extraction of the three PV models’ parameters.

4. The rest of the paper can be arranged as follows. Section 2 introduces the problem formulation of
PV models. The original MFO algorithm is illustrated in Section 3. Section 4 gives the detail of
the IMFO algorithm. The experimental results and analysis of different PV models are given in
Section 5. Furthermore, the discussion is given in Section 6. Finally, the conclusion is displayed
in Section 7.

2. Formulation of PV Models

The single diode model (SDM), double diode model (DDM), and PV module model (PMM) are
generally adopted to indicate the relationship between current and voltage of solar cells and PV systems.
In this section, the SDM, the DDM, and the PMM are given as follows. Furthermore, the objective
function for extracting the parameters of the three models is described as follows.

2.1. Single Diode Model

The SDM has been commonly used to illustrate the static characteristics of solar cells owing to
its simple structure and accuracy. As shown in Figure 1a, the SDM is composed of a diode, a current
source, a shunt resistor, and a series resistor. Note that the shunt resistor and series resistor are used
for indicating leakage current and denoting load current loss, respectively. The output current Io of
this diode model can be computed as follows:

Io = Iph − Id − Ish (1)
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where Ish, Id, and Iph represent the shunt resistor current, the diode current, and the photo produced
current, respectively; Io denotes the calculated output current. The calculation formulas of Id and Ish

are shown as follows:

Id = Isd

[
exp

(
q(Vt + ItRs)

mkT

)
− 1

]
(2)

Ish =
ItRs + Vt

Rsh
(3)

where Isd indicates the saturation current of the diode; It and Vt respectively represent the tested output
current and voltage; Rs means the series resistance; q and k are the electron charge (1.60217646× 10−19C)
and Boltzmann constant (1.3806503× 10−23 J/K), respectively; m is the ideal factor of diode; T is the cell
temperature (K); Rsh denotes the shunt resistance. Consequently, we can rewrite Formula (1) as follows:

Io = Iph − Isd

[
exp

(
q(Vt + ItRs)

mkT

)
− 1

]
− ItRs + Vt

Rsh
(4)

(a) (b)

(c)

Figure 1. Equivalent circuit diagram of the (a) SDM, (b) DDM, and (c) PMM.

Note that Formula (4) has five undetermined parameters (Iph, Isd, Rs, Rsh, and m). Accurate and
reliable extraction of the five parameters is important for solar cells, which can be realized by the
proposed IMFO algorithms.

2.2. Double Diode Model

The DDM has been developed [36,37] due to this fact that the SDM has not considered the influence
of composite current loss of the depletion area. As shown in Figure 1b, the DDM contains a current
source, two diodes in parallel with a shunt resistance and a resistance in series with the current source.
One of the diodes is applied to simulate the charge-recombination current with the non-ideal factors,
and the other one is set as the rectifier. The output current Io of this model can be acquired as follows:

Io = Iph − Id1 − Id2 − Ish

= Iph − Isd1

[
exp

(
q(Vt + ItRs)

m1kT

)
− 1

]
− Isd2

[
exp

(
q(Vt + ItRs)

m2kT

)
− 1

]
− ItRs + Vt

Rsh
(5)
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where Id1 and m1 denote the current of diffusion and the ideality factor, respectively; m2 and Id2

indicate the composite diode ideality factor and saturation current, respectively. Different from the
SDM, the DDM includes seven undetermined parameters (Iph, Isd1, Isd2, Rs, Rsh, m1, and m2) that need
to be accurately extracted.

2.3. PV Module Model

The PMM typically embodies multiple solar cells connected in parallel and/or in series.
The equivalent circuit diagram of the single diode PMM is presented in Figure 1c. The output
current of this model can be calculated by the following Formula (6):

Io = Np

⎧⎪⎪⎨⎪⎪⎩Iph − Isd

⎡⎢⎢⎢⎢⎢⎢⎣exp

⎛⎜⎜⎜⎜⎜⎜⎝q
(
Vt/Ns + ItRs/Np

)
mkT

⎞⎟⎟⎟⎟⎟⎟⎠− 1

⎤⎥⎥⎥⎥⎥⎥⎦− ItRs/Np + Vt/Ns

Rsh

⎫⎪⎪⎬⎪⎪⎭ (6)

where Ns and Np represent the number of solar cells in series and parallel, respectively. Same as the
SDM, PMM also has five undetermined parameters (Iph, Isd, Rs, Rsh, and m) to be accurately extracted.

2.4. Objective Function

For the extraction problem of the undetermined parameters in PV models, the main task is to
explore the undetermined parameter optimal value for narrowing the difference between the calculated
and tested current values. The errors on each set of calculated and tested current values of the SDM
and DDM can be obtained by the following Formulas (7) and (8), respectively.⎧⎪⎪⎪⎨⎪⎪⎪⎩

fx(Vt, It, X) = Iph − Isd

[
exp

(
q(Vt+ItRs)

mkT

)
− 1

]
− ItRs+Vt

Rsh
− It

X =
{
Iph, Isd, Rs, Rsh, m

} (7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
fx(Vt, It, X) = Iph − Isd1

[
exp

(
q(Vt+ItRs)

m1kT

)
− 1

]
− Isd2

[
exp

(
q(Vt+ItRs)

m2kT

)
− 1

]
− ItRs+Vt

Rsh
− It

X =
{
Iph, Isd1, Isd2, Rs, Rsh, m1, m2

} (8)

In this work, to evaluate the entire difference between the calculated and tested current values, the
root mean square error (RMSE) is utilized as objective functions as shown in Formula (9), which has
been commonly adopted in literature [24,26,27]. Particularly, the smaller the RMSE(X) value, the more
accurate the extraction of PV models’ parameters.

RMSE(X) =

√∑N
x=1 fx(Vt, It, X)2

N
(9)

where N. denotes the number of tested current values, X is the decision vector that contains the
undetermined parameters to be estimated.

3. Moth-Flame Optimization Algorithm

As a novel population-based heuristic algorithm, MFO is proposed by Mirjalili in 2015 [29].
The algorithm mainly contains two mechanisms: flame generation mechanism and the spiral flight
search mechanism.
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3.1. Flame Generation Mechanism

In MFO, the whole moth swarm’ population size and the individual dimensional size are set as N
and D, respectively. The whole moth swarm can be expressed as the following matrix AM:

AM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AM1

AM2
...

AMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

am11 am12 · · · · · · am1D
am21 am22 · · · · · · am2D

...
...

...
...

...
amN1 amN2 · · · · · · amND

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

where AMi = [ami1, ami2, · · · , amiD] represents the state of the i-th moth, i ∈ {1, 2, · · · , N}, and amid
indicates the d-th dimensional position of i-th moth, d ∈ {1, 2, · · · , D}. When MFO is applied for the
estimating a PV model’s parameters, each dimension of AMi = [ami1, ami2, · · · , amiD] corresponds to a
set of extracted parameters of the PV model; D stands for the number of the estimated parameters.
For example, for the SDM with its five estimated parameters, each AMi, i ∈ {1, 2, · · · , N} has five
dimensions, written as AMi = [ami1, ami2, · · · , ami5]; ami1, ami2, ami3, ami4, and ami5 represent five
estimated parameters Iph, Isd, Rs, Rsh, and m, respectively.

F[∗] denotes the fitness value function. Therefore, for the i-th moth AMi, its fitness value is
indicated as F[AMi]. Similarly, the fitness value vector of AM can be represented as follows:

F[AM] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F[AM1]

F[AM2]
...

F[AMN]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

Similarly, for the estimating a PV model’s parameters, F[∗] is defined as objective functions of the
PV model.

Due to each moth has its own target flame, the number of the initial flames is equivalent to moths.
The matrix AF is assumed to be the size of initial flames as follows:

AF =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AF1

AF2
...

AFN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a f11 a f12 · · · · · · a f1D
a f21 a f22 · · · · · · a f2D

...
...

...
...

...
a fN1 a fN2 · · · · · · a fND

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

where AFi is corresponding to the AMi, i ∈ {1, 2, · · · , N}. D and N are the flames’ dimensional number
and population size, respectively.

Similarly, for the i-th flame AFi, its fitness value is described as F[AFi]. The fitness value vector of
AF is expressed as below:

F[AF] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F[AF1]

F[AF2]
...

F[AFN]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

The maximum number of iterations and the current number of iterations are set as K and k,
respectively, k ∈ {1, 2, · · · , K}. The flame generation mechanism is introduced as follows:

• Step one: when the current iterations’ number k is one, the moths {AM1, AM2, · · · , AMN} are
sorted according to their corresponding fitness value

{
F[AM1], F[AM2], · · · , F[AMN]

}
from small

to large, and the i-th moth after sorting is set as AMsi, AMsi ∈ {AMs1, AMs2, · · · , AMsN}. Then,
the AMsi, i ∈ {1, 2, · · · , N}means the i-th flame AFi. Thus, the AF and its corresponding fitness
value F[AF] can be initialed based on the sorted AM and F[AM], respectively.
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• Step two: when the current number of iterations k is greater than one but less than or equal to
K. We sort AM(k− 1) and AF(k− 1) from small to large according to their corresponding fitness
values F[AM(k− 1)] and F[AF(k− 1)]. Next, the top N individuals are selected as new flames
AF(k) from AM(k− 1) and AF(k − 1). The F[AM(k − 1)] and AM(k − 1) represent the fitness
value vector and the position vector of moths at the (k− 1)-th iterations, respectively. Similarly,
the fitness value vector and position vector of flames at the (k − 1)-th iterations are F[AF(k− 1)]
and AF(k− 1), respectively.

From the above demonstration, AF denotes the essence of AM(k − 1) and AF(k− 1). Therefore,
for the estimating a PV model’s parameters, each dimension of AFi = [a fi1, a fi2, · · · , a fiD] corresponds
to an estimated parameters of the PV model; D stands for the number of the estimated parameters.

3.2. Spiral Flight Search Mechanism

Furthermore, since the moths fly toward their respective target flame in spiral, the spiral flight
search mechanism has been developed to simulate the moth’s logarithmic spirally flying curve,
as below:

AMi(k + 1) =
{

Di·ebt· cos(2πt) + AFi(k), i ≤ Fnu

Di·ebt· cos(2πt) + AFFnu(k), i > Fnu
(14)

where AMi(k + 1) indicates the position of the i-th moth AMi after renewing, i ∈ {1, 2, · · · , N};
Di = |AFi −AMi| denotes the distance between the i-th flame AFi and the AMi; b is a constant for the
logarithmic spiral shape; t is a random number of [−1, 1], which denotes the distance between the next
position of the moth and the flame (t = −1 is the smallest distance between AMi and AFi, and t = 1 is
the farthest between AMi and AFi). For diverse t values, the spirally flying trajectory in one dimension
is displayed in Figure 2.

Moth
Flame

Figure 2. Geometric trajectory diagram of flying moth catching flame around logarithmic spiral curve.

Fnu is the number of the flames during the iteration process. Note that as the number of iterations
increases, Fnu gradually decreases and eventually equals to 1. The process of adaptively reducing the
number of flames can be expressed in Formula (15) as below:

Fnu = round
[
N − k× N − 1

K

]
(15)

where N and K are the maximum number of flames and iterations, respectively; k denotes the current
iterative number. Besides, round[x∗] is the function that can make x∗ be rounded to its nearest integer.
Note that with k = 0, Fnu = N; when k = K, Fnu = 1 denotes that moths utilize the best flame to update
their own positions at the last iteration in Formula (14).
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In general, the flames surrounded by their corresponding moths can be randomly distributed in
the search area. Consequently, the MFO can obtain the good balance between the local exploitation
and the global exploration [29].

4. Improve Moth-Flame Optimization Algorithm

In the original MFO [29], the moths always flying towards their corresponding best target flames,
resulting in the fast communication between moths. Therefore, the moths are easily trapped into local
optimum when facing complex multi-modal problems. To address this problem, this paper develops
an improved MFO (IMFO) algorithm. In the IMFO, we propose a double-flames generation (DFG)
strategy to generate two different types of target flames for guiding moths flying. One type of flames is
named local flame (LF), which can be created by dividing the entire swarm into several sub-swarms
and then select the local best moths in a corresponding sub-swarm; another one is called global flame
(GF) that is generated by combining all the moths’ current personal best positions (pbests). Moreover,
two different update strategies are developed for updating the positions of moths; each moth only
adopts one of the two update strategies at each iteration. In addition, to ensure a great balance between
the exploitation and exploration, we develop a probability to rationally select one of the two update
strategies for each moth at each iteration. The above process is detailed below.

4.1. Double Flames Generation Strategy

In this strategy, two types of target flames are produced by adopting different moths’ information.
The first type of flames is the LFs, which can be generated by the following description:

1. Assume the population size of moths is N, AMi and F[AMi] are the position and the fitness value
of i-th moth, respectively, i ∈ {1, 2, · · · , N}.

2. Divide all the moths in the entire swarm into m sub-swarms, and each sub-swarm has n moths.
In this case, the α-th sub-swarm is composed of from number (α− 1) × n + 1 to number α× n,
α ∈ {1, 2, · · · , m}.

3. According to the moths’ fitness values, the best moth of each sub-swarm is select as LFα, which
denotes the LF of the α-th sub-swarm.

The second type is GF, which is generated by combining all the moths’ pbests. The calculation
formula of GF is displayed in Formula (16), we can see from the formula that the GF carries the
information about all moths.

GF =
1
N

N∑
i=1

pbesti (16)

4.2. Update Formulas

Furthermore, two different update strategies are created for generating new moths. Particularly,
the two update strategies correspond to two types of flames, respectively as follows:

AMi(k + 1) =
∣∣∣LFα(k) −AMi(k)

∣∣∣× ebt × cos(2πt) + LFα(k) (φ > P) (17)

AMi(k + 1) =
∣∣∣GF(k) −AMi(k)

∣∣∣× ebt × cos(2πt) + GF(k) (φ ≤ P) (18)

where AMi(k + 1) and AMi(k) respectively represent the updated position of the i-th moth at the
k-th and (k + 1)-th iteration, i ∈ {1, 2, · · · , N}; b indicates a constant for the logarithmic spiral shape;
LFα(k) and GF(k) denote two type of flames; t is a number that randomly distributed in the interval of
[−1,1].
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From the Formula (17), we can observe that as the local best flame in the α-th sub-swarm,
α ∈ {1, 2, · · · , m}, LFα(k) can effectively guide its corresponding moth AMi(k) to perform the local
search and explore a new potential place in the solution area. On the other hand, we can see from the
Formula (18) that the moths in the entire swarm can fly towards GF(k) for improving the accuracy
of solutions. Particularly, instead of using the best flame, Formula (18) adopts GF(k), namely the
average value of all the moths’ pbests to avoid the fast communication between moths and improve
the premature of the moths. In general, the two different update strategies make moths obtain the
promising compromise between global exploration and local exploitation.

In addition, we develop a probability to rationally select one of the above two update strategies at
each iteration. Specifically, a random number φ distributed in [0,1] is created during each iterative
process. If the value of φ is larger than P, the Formula (17) can be selected to update the i-th moth
AMi; otherwise, the Formula (18) be done for updating the AMi. Therefore, it is significant to acquire
a suitable P value for balancing the exploitation and exploration abilities. The setting of P value is
displayed in Section 6.

4.3. Process of IMFO

The pseudo code of IMFO is expressed in the Algorithm 1, where k denotes the number of the
current iteration; LFα denotes the local best flame of the α-th sub-swarm, α ∈ {1, 2, · · · , m}, where m
indicates the number of sub-swarms. It can be seen from the Algorithm 1 that the complexity of IMFO
is comparable to the original MFO. Moreover, the flow chart of IMFO is described in Figure 3, where
the DFG strategy with two different update strategies are adopted to seek the best solution in the
search space.

Algorithm 1: IMFO

1: /*Initialization*/
2: Initialize the position AMi of moths, i ∈ {1, 2, · · · , N};
3: Calculate the fitness value F[AMi] of moths, initialize the pbesti, gbest;
4: /* DFG strategy*/

5: k = 1;
6: for α = 1 to m do

7: subswarmα =
[
AM(α−1)∗n+1, AM(α−1)∗n+2, · · · , AMα∗n

]
;

8: Select the best moth of sub− swarmα as LFα(k);
9: end for

10: Calculate the GF(k) with formula (16);
11: while (condition of termination not met) do

12: k = k + 1;
13: for i = 1 to N do

14: Create a random number φ;
15: if φ > P
16: Update the AMi(k) with formula (17);
17: else

18: Update the AMi(k) with formula (18);
19: end if

20: Update the pbesti, LFα, GF, gbest, i ∈ {1, 2, · · · , N};
21: end for

22: end while
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Figure 3. Flow chart of the improved moths-flames optimization (IMFO).

5. Results and Analysis

To show the validity of the proposed IMFO method, it is applied to identify the parameters of
three different PV models involving the SDM, DDM, and PMM. For the SDM and DDM, reference [18]
gives the measured current and voltage values from a 57 mm diameter commercial silicon R.T.C.
France silicon solar cell working at a temperature of 33 ◦C under irradiance of 1000 W/m2. Besides,
as a PMM, the Photowatt-PWP201 is applied to evaluate the IMFO for identifying the corresponding
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parameters [18,38,39]. Particularly, the Photowatt-PWP201 contains 36 silicon cells with series
conducting under 1000 W/m2 at 45 ◦C. Considering fair comparison, we utilize the same search upper
and lower boundaries [24,26,27] of each parameter of three PV models, as shown in Table 1.

Table 1. Parameters boundaries of the three different photovoltaic (PV) models.

Parameter
Single Diode/Double Diode PV Module

Lower Bound Upper Bound Lower Bound Upper Bound

Iph(A) 0 1 0 2
Isd, Isd1, Isd2(μA) 0 1 0 50

RS(Ω) 0 0.5 0 2
Rsh(Ω) 0 100 0 2000

m, m1, m2 1 2 1 50

To indicate the excellent performance of the IMFO method, it has been compared with eight
well-established and competitive methods. These compared methods were the basis MFO [30],
opposition-based MFO method (OMFO) [33], hybrid water cycle–moth-flame optimization method
(WCMFO) [34], brain storm optimization method (BSO) [40], comprehensive learning PSO (CLPSO)
method [41], artificial bee colony (ABC) method [20], sine cosine algorithm (SCA) [42], and improved
JAYA (IJAYA) method [26]. All the compared methods were independently conducted 30 times on
each PV model. For each running, the maximum number of evaluations for the compared methods
is set to 50,000. Table A1 of Appendix A shows the parameter settings of the comparison methods.
Note that in the IMFO, the population size of moths is set as 100, and the number of sub-swarms and
P are set as four and 0.4, respectively. Moreover, the accuracy of the nine compared methods were
illustrated by comparing the best values in their RMSE. Also, their robustness and convergence speed
were evaluated through the analysis of data results and convergence curves.

5.1. Results on the Single Diode Model

For the SDM, RMSE and the estimated five parameters values are shown in Table 2, where we
highlight the overall best and the second best RMSE values in gray boldface and boldface, respectively.
Interestingly, both the IMFO and WCMFO achieve the best RMSE value (9.8602 × 10−4) among the
nine algorithms; besides, the IJAYA acquires second best RMSE value (9.8606 × 10−4), followed by
ABC, CLPSO, MFO, OMFO, BSO, and SCA. RMSE is applied to denote the accuracy of experimental
results because of the information of the accurate values of the parameters is not available. Although
the gap between the best and second best RMSE values is extremely subtle, it is important to decrease
the difference between the true and estimated parameter values in objective function. Because the
smaller of objective value RMSE, the more accurate the estimated parameters. Moreover, the extracted
best parameters from IMFO are employed to plot I-V and P-V curves. This further demonstrates the
accuracy of the extracted parameters on SDM. From Figure A1 of Appendix A, we can see that the
measured and simulated current and voltage values acquired by IMFO are extremely consistent over
the entire voltage range. In addition, the individual absolute errors (IAE) between the simulated and
measured current values are displayed in Table A2 of Appendix A. Note that compared with 2.5 × 10−3,
all the IAE values are smaller, demonstrating the preciseness of the extracted parameters from IMFO.
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Table 2. Comparison among different algorithms on the single diode model.

Algorithm Iph(A) Isd(μA) Rs(Ω) Rsh(Ω) m RMSE

IMFO 0.76078 0.32296 0.03638 53.71456 1.48117 9.8602 × 10−4

MFO 0.76092 0.30105 0.03596 51.81957 1.46935 9.9496 × 10−4

OMFO 1.09171 0.69332 0.06003 93.11915 2.16144 1.1927 × 10−3

WCMFO 0.76078 0.32314 0.03638 53.69502 1.48122 9.8602 × 10−4

BSO 0.76090 0.99996 0.03137 97.35715 1.60455 2.4551 × 10−3

CLPSO 0.76073 0.31629 0.03639 52.31786 1.47910 9.9455 × 10−4

ABC 0.76085 0.33319 0.03623 53.72712 1.48431 9.9049 × 10−4

SCA 0.76503 0.67937 0.03544 50.14796 1.56094 5.8058 × 10−3

IJAYA 0.76077 0.32349 0.03637 53.89245 1.48133 9.8606 × 10−4

Note: 9.8602 × 10−4 : both the IMFO and WCMFO achieve the best RMSE value among the nine algorithms;

9.8606 × 10−4 : the IJAYA acquires second best RMSE value (9.8606 × 10−4), followed by ABC, CLPSO, MFO,
OMFO, BSO, and SCA.

5.2. Results on the Double Diode Model

For the DDM, the values of seven extracted parameters with the comparison results of RMSE are
presented in Table 3. It can be seen that the proposed IMFO obtain the best RMSE result (9.8252 × 10−4)
among the nine methods; the second best RMSE result (9.8371 × 10−4) is achieved by WCMFO. Besides,
the I-V and P-V curves are rebuilt in Figure A2 through using the best model that estimated by IMFO.
Furthermore, via using IMFO, we can obtain IAE values listed in Table A3 of Appendix A, where each
of all the IAE values is also smaller than 2.5 × 10−3. In addition, we can see from the Figure A2 of
Appendix A that the measured and simulated current and voltage values obtained by IMFO are highly
in coincidence. Therefore, IMFO can extract the parameters of DDM with high accuracy.

Table 3. Comparison among different algorithms on the double diode model.

Algorithm Iph(A) Isd1(μA) Rs(Ω) Rsh(Ω) m1 Isd2(μA) m2 RMSE

IMFO 0.76078 0.23350 0.03671 55.29970 1.45374 0.68372 2.00000 9.8252 × 10−4

MFO 0.76087 0.15997 0.03699 52.76975 1.43092 0.55840 1.82735 1.0102 × 10−3

OMFO 0.76078 0.01137 0.03644 53.27466 1.46548 0.30651 1.48014 9.8652 × 10−4

WCMFO 0.76078 0.23956 0.03661 55.11475 1.45681 0.44291 1.90457 9.8371 × 10−4

BSO 0.76100 0.00001 0.03134 92.63446 1.14459 0.99843 1.60458 2.4636 × 10−3

CLPSO 0.76066 0.28752 0.03664 55.28951 1.95861 0.26868 1.46524 9.9224 × 10−4

ABC 0.76051 0.24568 0.03641 58.63990 1.46175 0.26266 1.76608 1.0001 × 10−3

SCA 0.76540 0.00000 0.02945 38.07191 1.02508 0.95693 1.60284 9.2482 × 10−3

IJAYA 0.76077 0.64791 0.03675 54.86248 1.98667 0.22965 1.45222 9.8380 × 10−4

Note: 9.8252 × 10−4 : It can be seen that the proposed IMFO obtain the best RMSE result among the nine methods;

the second best RMSE result ( 9.8371 × 10−4 ) is achieved by WCMFO.

5.3. Results on the PV Module Model

For the PMM, it has five parameters that need to be estimated. Table 4 presents the best RMSE
and the five extracted parameters values for each of the nine compared methods on 30 tests. From the
Table 4, we can see that IMFO achieves the best RMSE value (2.4251 × 10−3); the IJAYA has the second
best RMSE value (2.2453 × 10−3). Furthermore, Figure A3 of Appendix A shows that the I-V and P-V
curves features of the estimated parameters by IMFO are good in coincidence with the measured
values. In addition, Table A4 of Appendix A indicates that each of all the IAE values is smaller than
4.8 × 10−3. From these results, IMFO can achieve the great accuracy parameters extraction.
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Table 4. Comparison among different algorithms on the PV module model.

Algorithm Iph(A) Isd(μA) Rs(Ω) Rsh(Ω) m RMSE

IMFO 1.03052 3.47835 1.20139 980.46728 48.63854 2.4251 × 10−3

MFO 1.02807 4.06598 1.19215 1185.52443 49.19573 2.4576 × 10−3

OMFO 1.03062 3.41288 1.20337 961.83398 48.56592 2.4257 × 10−3

WCMFO 1.03039 3.53468 1.19979 1003.12281 48.69988 2.4255 × 10−3

BSO 1.03591 1.18207 1.31645 593.82890 44.80230 4.7604 × 10−3

CLPSO 1.03013 3.62057 1.19763 1043.44361 48.79166 2.4282 × 10−3

ABC 1.03095 3.79242 1.18896 946.21624 48.97719 2.4660 × 10−3

SCA 1.04244 4.68166 1.20422 1204.05479 49.78753 1.0327 × 10−2

IJAYA 1.03047 3.50872 1.20024 987.63650 48.67208 2.4253 × 10−3

Note: IMFO achieves the best RMSE value 2.4251 × 10−3 ; the IJAYA has the second best RMSE value 2.4251 × 10−3 .

5.4. Statistical Results and Convergence Curves

In this section, IMFO is compared with the other eight methods on the reliability and convergence
speed by the convergence curves and statistical results. Table 5 displays the nine algorithms’ statistical
results over 30 independent tests on each of three PV models, where the minimum (min), mean and
standard deviation (SD) values of RMSE represent the accuracy, average preciseness and reliability of
the extracted parameters, respectively. Besides, we conduct the Wilcoxon signed-rank examination at
5% significant level [43] to verify the great differences between IMFO and other compared methods.
Sign “+” in the Table 5 indicates that the IMFO is greatly superior to its competitors.

Table 5. Comparisons on the statistical results of different algorithms for three different PV models.

Model Algorithm
RMSE

Sig.
Min Mean Max SD

Single diode
model

IMFO 9.8602 × 10−4 9.8767 × 10−4 9.964110−4 2.181010−6

MFO 9.9496 × 10−4 1.9256 × 10−3 2.584910−3 4.925510−4 +

OMFO 1.1927 × 10−3 2.1967 × 10−3 5.836910−3 8.52141−4 +

WCMFO 9.8602 × 10−4 1.0122 × 10−3 1.330510−3 7.342310−5 +

BSO 2.4551 × 10−3 2.6986 × 10−3 3.330710−3 1.96141−4 +

CLPSO 9.9455 × 10−4 1.0507 × 10−3 1.186510−3 4.673010−5 +

ABC 9.9049 × 10−4 1.2951 × 10−3 1.927810−3 2.548310−4 +

SCA 5.8058 × 10−3 3.7413 × 10−2 4.863610−2 1.302310−2 +

IJAYA 9.8606 × 10−4 1.0261 × 10−3 1.122310−3 4.160910−5 +

Double
diode model

IMFO 9.8252 × 10−4 9.9737 × 10−4 1.140910−3 3.293910−5

MFO 1.0102 × 10−3 3.4150 × 10−3 3.521510−2 5.689710−3 +

OMFO 9.8652 × 10−4 2.1677 × 10−3 3.727710−3 7.301810−4 +

WCMFO 9.8371 × 10−4 1.1449 × 10−3 2.264810−3 3.080910−4 +

BSO 2.4636 × 10−3 2.8700 × 10−3 4.090610−3 3.704510−4 +

CLPSO 9.9224 × 10−4 1.0522 × 10−3 1.146210−3 4.314110−5 +

ABC 1.0001 × 10−3 1.0936 × 10−3 1.289610−3 7.411110−5 +

SCA 9.2482 × 10−3 4.2445 × 10−3 2.228610−1 3.624810−2 +

IJAYA 9.8380 × 10−4 1.0240 × 10−3 1.350710−3 8.564710−5 +

PV module
model

IMFO 2.4251 × 10−3 2.4294 × 10−3 2.500510−3 1.383110−5

MFO 2.4576 × 10−3 2.7962 × 10−3 5.175410−3 5.728310−4 +

OMFO 2.4257 × 10−3 2.5901 × 10−3 2.639110−3 5.258610−5 +

WCMFO 2.4255 × 10−3 1.1551 × 10−2 2.742510−1 4.961610−2 +

BSO 4.7604 × 10−3 2.0011 × 10−1 4.063510−1 1.051610−1 +

CLPSO 2.4282 × 10−3 2.4527 × 10−3 2.527710−3 2.382810−5 +

ABC 2.4660 × 10−3 2.6049 × 10−3 2.759510−3 5.996210−5 +

SCA 1.0327 × 10−2 1.2834 × 10−1 2.743310−1 1.074010−1 +

IJAYA 2.4253 × 10−3 2.4404 × 10−3 2.502610−3 1.976710−5 +
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We can clearly see from the Table 5 that the IMFO algorithm achieves the more outstanding
performance than other eight algorithms on the reliability and average accuracy of the three models.
For the SDM, WCMFO and IJAYA obtain the second-best average accuracy and reliability, respectively.
For the DDM, the second-best reliability and average accuracy are acquired by IJAYA and CLPSO,
respectively. For the PMM, the IJAYA achieves the second-best result both on average accuracy
and reliability. Moreover, the results of Wilcoxon signed-rank test from Table 5 demonstrate that
IMFO presents the greatly superior to all the compared methods on all the three models. Figure A4
of Appendix A displays the box-plots, indicating the distribution of all the 30 independent runs’
results acquired by the nine different methods. Note that the sign “+” in Figure A4 represents the
abnormal value during the plotting. The span of the data distributions demonstrates that the superior
performance is also obtained by IMFO algorithm.

Furthermore, Figure 4 gives the convergence curves of nine methods, which are plotted by using
the average RMSE value on the 30 independent tests. Clearly, IMFO acquired the fastest convergence
speed among the nine methods on each of the three PV models.

Figure 4. Convergence curves of different algorithms for three models.

In general, according to the above comparisons, we can indicate that the IMFO method expresses
the superior performance on searching preciseness, reliability and faster convergence performance
when extracting the three different PV models’ parameters. Besides, IMFO performs the superior and
competitive performance in contrast with eight mature heuristic methods.

6. Discussion

6.1. Discussion of Parameter

In this paper, the parameter P is used to rationally select one of the two update strategies for each
moth at each iteration. Thus, it is significant to set a suitable P value for balancing the local exploitation
and global exploration abilities. In this section, we test the influences of different P values on IMFO
performance through comparing the preciseness and reliability when extracting the parameters of the
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three different PV models. The maximum number of evaluations is also set as 50,000 on each running;
the population size of the moths and number of sub-swarms are set as 100 and 4, respectively.

We evaluate the IMFO with three different P values: 0.4, 0.5 and 0.6. In addition, the IMFO with
each different P value is independently conducted 30 times on each model. Table 6 shows that P = 0.4
provides the best values on all the three different PV models according to all criteria. This means
that P = 0.4 can obtain the best performance on accuracy and reliability when estimating the three
models’ parameters.

Table 6. Statistical results of root mean square error (RMSE) of IMFO with different settings of P on the
three models.

Model P
RMSE

Min Mean Max SD

Single diode
model

P = 0.4 9.8602 × 10−4 9.8767 × 10−4 9.9641 × 10−4 2.1810 × 10−6

P = 0.5 9.8605 × 10−4 9.9166 × 10−4 1.0558 × 10−3 1.2596 × 10−5

P = 0.6 9.8604 × 10−4 1.0592 × 10−3 1.6218 × 10−3 1.5329 × 10−4

Double diode
model

P = 0.4 9.8252 × 10−4 9.9737 × 10−4 1.1409 × 10−3 3.2939 × 10−5

P = 0.5 9.8259 × 10−4 1.0316 × 10−3 1.3051 × 10−3 9.3092 × 10−5

P = 0.6 9.8463 × 10−4 1.1169 × 10−3 1.5621 × 10−3 1.8730 × 10−4

PV module
model

P = 0.4 2.4251 × 10−3 2.4294 × 10−3 2.5005 × 10−3 1.3831 × 10−5

P = 0.5 2.4251 × 10−3 2.0553 × 10−2 2.7425 × 10−1 6.8963 × 10−2

P = 0.6 2.4252 × 10−3 1.1607 × 10−2 2.7425 × 10−1 4.9607 × 10−2

6.2. Discussion of IMFO

To demonstrate that IMFO can effectively escape the local optimum when solving multimodal
problems, we further tested the performance of IMFO, MFO [30], OMFO [33], WCMFO [34], BSO [40],
CLPSO [41], ABC [20], SCA [42], and IJAYA [26] on the CEC2017 benchmark suite [44]. Due to the
space constraints, the 30 benchmark functions of CEC2017 were listed in Table A5 of the Appendix A.
Moreover, according to the characteristics of the 30 benchmark functions, they can be classified into
unimodal, multimodal, hybrid, and composition problems. In addition, each function has the same
search boundary range (−100,100) on each dimension. Note that F(x∗) is the optimal value of each
function; x∗ is the best solution corresponding to the optimal value. Here, owing to the limited space,
we select F4, F7, and F8 from the multimodal functions, and F12 and F18 from the hybrid functions
for evaluating the nine compared algorithms. Each evaluated algorithm was conducted 30 times
independently on each of the five selected benchmarks. The mean values (Mean) of the corresponding
errors are used as rating criteria. The comparison results of the nine algorithms with 30 dimensions are
displayed in Table 7, where we highlight the best and second-best Mean results in gray boldface and
boldface, respectively.

From the Table 7, we can see that IMFO achieves the best error means among the nine algorithms
on all the five complex functions. Moreover, the indicators of IMFO on the five benchmark functions
are all superior to the conventional MFO. For example, IMFO can provide the results of errors’ mean
values 5.06 and 7.30 × 10 on multimodal functions F4 and F7, respectively, which are both close to the
optimal error value 0. However, MFO only can obtain the results of errors’ mean values 8.91 × 102

and 3.42 × 102 on multimodal functions F4 and F7, respectively. The above analysis shows that IMFO
can find a more promising solution than the MFO of the multimodal problem in the search space.
This indicates that MFO is easily trapped into the local optimum when solving complex multimodal
problems, however, IMFO can effectively escape the local optimum to find a more promising solution
on the multimodal problems.
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Table 7. Comparisons between IMFO and eight algorithms on five benchmark functions of CEC2017
with 30 dimensions.

Criteria Algorithm F4 F7 F8 F12 F18

Mean

IMFO 5.06 7.30 × 10 4.48 × 10 2.16 × 104 8.61 × 104

MFO 8.91 × 102 3.42 × 102 1.86 × 102 3.34 × 108 2.52 × 106

OMFO 9.04 × 10 2.28 × 102 1.17 × 102 4.86 × 106 4.17 × 105

WCMFO 7.74 × 10 6.63 × 102 2.09 × 102 7.12 × 105 1.52 × 105

BSO 8.86 × 10 3.66 × 102 1.25 × 102 1.63 × 106 1.72 × 105

CLPSO 7.03 × 10 8.84 × 10 5.25 × 10 4.27 × 105 1.33 × 105

ABC 2.60 × 10 1.06 × 102 9.02 × 10 9.48 × 105 2.74 × 105

SCA 9.58 × 102 4.18 × 102 2.40 × 102 1.10 × 109 2.89 × 106

IJAYA 1.38 × 102 2.30 × 102 1.18 × 102 6.54 × 106 3.06 × 105

7. Conclusions

The PV models’ parameters are located in the multi-modal and nonlinear solution space with
various local optima so that it is extremely tricky for various existing MFO algorithms to extract a set
of optimal parameters of the PV models. This paper proposes an improved MFO (IMFO) algorithm
for estimating the parameters of PV models. In IMFO, the DFG strategy has been first developed to
generate two different types of high-performance target flames for effectively searching the global
optimal solution. To effectively tackle the global exploration and local exploitation, two different update
strategies are developed. In addition, we develop a probability to select one of above two update
strategies for each moth during the iterative process, which ensures the balance between the global
exploration and local exploitation. Due to effectively combining the DFG strategy with the two update
strategies, IMFO can effectively accurately and reliably identify the different PV models’ parameters.

In the future, IMFO will be adopted to settle multi-objective and constrained problems or economic
dispatch issues in power systems. Furthermore, some other improvements will be proposed to expand
the use of complex renewable energy algorithms by optimization algorithms.
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Appendix A

Table A1. Parameters settings of the compared algorithms.

Algorithm Parameters

MFO NP = 50
OMFO NP = 40

WCMFO NP = 40, Nsr = 4, Nstream = Npop − Nsr, β = 3/2
BSO NP = 50, pr0 = 0.2, pr1 = 0.8, pr11 = 0.4, pr21 = 0.5, c = 25, M = 5

CLPSO NP = 40, w = 0.9-0.2, c = 1.49445, m = 5
ABC NP = 50, α = 1, limit = 100
SCA NP = 50

IJAYA NP = 50
IMFO NP = 100, m = 4, P = 0.4
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Table A2. Absolute error of IMFO for each measured on the single diode model.

Item Vmeasured(V) Imeasured(A) Isimulated(A) IAE

1 −0.2057 0.7640 0.76408801 0.00008801
2 −0.1291 0.7620 0.76266328 0.00066328
3 −0.0588 0.7605 0.76135541 0.00085541
4 0.0057 0.7605 0.76015400 0.00034600
5 0.0646 0.7600 0.75905514 0.00094486
6 0.1185 0.7590 0.75804220 0.00095780
7 0.1678 0.7570 0.75709145 0.00009145
8 0.2132 0.7570 0.75614111 0.00085889
9 0.2545 0.7555 0.75508658 0.00041342
10 0.2924 0.7540 0.75366357 0.00033643
11 0.3269 0.7505 0.75139069 0.00089069
12 0.3585 0.7465 0.74735365 0.00085365
13 0.3873 0.7385 0.74011717 0.00161717
14 0.4137 0.7280 0.72738237 0.00061763
15 0.4373 0.7065 0.70697301 0.00047301
16 0.4590 0.6755 0.67528069 0.00021931
17 0.4784 0.6320 0.63075889 0.00124111
18 0.4960 0.5730 0.57192892 0.00107108
19 0.5119 0.4990 0.49960738 0.00060738
20 0.5265 0.4130 0.41364884 0.00064884
21 0.5398 0.3165 0.31750984 0.00100984
22 0.5521 0.2120 0.21215441 0.00015441
23 0.5633 0.1035 0.10225068 0.00124932
24 0.5736 −0.0100 −0.00871799 0.00128201
25 0.5833 −0.1230 −0.12550748 0.00250748
26 0.5900 −0.2100 −0.20847181 0.00152819

Table A3. Absolute error of IMFO for each measured on the double diode model.

Item Vmeasured(V) Imeasured(A) Isimulated(A) IAE

1 −0.2057 0.7640 0.76399414 0.00000586
2 −0.1291 0.7620 0.76261019 0.00061019
3 −0.0588 0.7605 0.76133957 0.00083957
4 0.0057 0.7605 0.76017183 0.00032817
5 0.0646 0.7600 0.75910236 0.00089764
6 0.1185 0.7590 0.75811332 0.00088668
7 0.1678 0.7570 0.75717857 0.00017857
8 0.2132 0.7570 0.75623282 0.00076718
9 0.2545 0.7555 0.75516740 0.00033260
10 0.2924 0.7540 0.75371531 0.00028469
11 0.3269 0.7505 0.75139682 0.00089682
12 0.3585 0.7465 0.74730504 0.00080504
13 0.3873 0.7385 0.74001983 0.00151983
14 0.4137 0.7280 0.72725956 0.00074044
15 0.4373 0.7065 0.70686255 0.00036255
16 0.4590 0.6755 0.67521858 0.00028142
17 0.4784 0.6320 0.63076237 0.00123763
18 0.4960 0.5730 0.57199017 0.00100983
19 0.5119 0.4990 0.49969784 0.00069784
20 0.5265 0.4130 0.41372571 0.00072571
21 0.5398 0.3165 0.31754180 0.00104180
22 0.5521 0.2120 0.21212422 0.00012422
23 0.5633 0.1035 0.10216958 0.00133042
24 0.5736 −0.0100 −0.00878600 0.00121400
25 0.5833 −0.1230 −0.12553982 0.00253982
26 0.5900 −0.2100 −0.20837881 0.00162119
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Table A4. Absolute error of IMFO for each measured on the PV module model.

Item Vmeasured(V) Imeasured(A) Isimulated(A) IAE

1 0.1248 1.0315 1.02912657 0.00237343
2 1.8093 1.0300 1.02738585 0.00261415
3 3.3511 1.0260 1.02574421 0.00025579
4 4.7622 1.0220 1.02410747 0.00210747
5 6.0538 1.0180 1.02229035 0.00429035
6 7.2364 1.0155 1.01992786 0.00442786
7 8.3189 1.0140 1.01635944 0.00235944
8 9.3097 1.0100 1.01049231 0.00049231
9 10.2163 1.0035 1.00062569 0.00287431

10 11.0449 0.9880 0.98454637 0.00345363
11 11.8018 0.9630 0.95952145 0.00347855
12 12.4929 0.9255 0.92284049 0.00265951
13 13.1231 0.8725 0.87260289 0.00010289
14 13.6983 0.8075 0.80727824 0.00022176
15 14.2221 0.7265 0.72834029 0.00184029
16 14.6995 0.6345 0.63714077 0.00264077
17 15.1346 0.5345 0.53621417 0.00171417
18 15.5311 0.4275 0.42951068 0.00201068
19 15.8929 0.3185 0.31877223 0.00027223
20 16.2229 0.2085 0.20738624 0.00111376
21 16.5241 0.1010 0.09616350 0.00483650
22 16.7987 −0.0080 −0.00832793 0.00032793
23 17.0499 −0.1110 −0.11093729 0.00006271
24 17.2793 −0.2090 −0.20924554 0.00024554
25 17.4885 −0.3030 −0.30085833 0.00214167

Table A5. CEC2017 benchmark functions with initialization and search range: (−100,100)D.

Types No. Functions F[x∗]

Unimodal
F1 Shifted and Rotated Bent Cigar Instance 100
F2 Shifted and Rotated Sum of Different Power Instance 200
F3 Shifted and Rotated Zakharov Instance 300

Multimodal

F4 Shifted and Rotated Rosenbrock’s Instance 400
F5 Shifted and Rotated Rastrigin’s Instance 500
F6 Shifted and Rotated Expanded Scaffer’s F6 Instance 600
F7 Shifted and Rotated Lunacek Bi_Rastrigin Instance 700
F8 Shifted and Rotated Non-Continuous Rastrigin’s Instance 800
F9 Shifted and Rotated Levy Instance 900
F10 Shifted and Rotated Schwefel’s Instance 1000

Hybrid

F11 Hybrid Instance 1 (N = 3) 1100
F12 Hybrid Instance 2 (N = 3) 1200
F13 Hybrid Instance 3 (N = 3) 1300
F14 Hybrid Instance 4 (N = 4) 1400
F15 Hybrid Instance 5 (N = 4) 1500
F16 Hybrid Instance 6 (N = 4) 1600
F17 Hybrid Instance 6 (N = 5) 1700
F18 Hybrid Instance 6 (N = 5) 1800
F19 Hybrid Instance 6 (N = 5) 1900
F20 Hybrid Instance 6 (N = 6) 2000

Composition

F21 Composition Instance 1 (N = 3) 2100
F22 Composition Instance 2 (N = 3) 2200
F23 Composition Instance 3 (N = 4) 2300
F24 Composition Instance 4 (N = 4) 2400
F25 Composition Instance 5 (N = 5) 2500
F26 Composition Instance 6 (N = 5) 2600
F27 Composition Instance 7 (N = 6) 2700
F28 Composition Instance 8 (N = 6) 2800
F29 Composition Instance 9 (N = 3) 2900
F30 Composition Instance 10 (N = 3) 3000
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Figure A1. Comparisons between the experimental data and simulated data obtained by IMFO for
single diode model: I-V and P-V characteristics.

Figure A2. Comparisons between the experimental data and simulated data obtained by IMFO for
double diode model: I-V and P-V characteristics.

77



Energies 2019, 12, 3527

Figure A3. Comparisons between the experimental data and simulated data obtained by IMFO for PV
module model: I-V and P-V characteristics.
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Figure A4. Best RMSE boxplot over 30 runs of different algorithms for three models.
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Abstract: Estimation of single-diode and two-diode solar cell parameters by using chaotic optimization
approach (COA) is addressed. The proposed approach is based on the use of experimentally
determined current-voltage (I-V) characteristics. It outperforms a large number of other techniques
in terms of average error between the measured and the estimated I-V values, as well as of time
complexity. Implementation of the proposed approach on the I-V curves measured in laboratory
environment for different values of solar irradiation and temperature prove its applicability in terms
of accuracy, effectiveness and the ease of implementation for a wide range of practical environment
conditions. The COA-based parameter estimation is, therefore, useful for PV power converter
designers who require fast and accurate model for PV cell/module.

Keywords: Solar cell parameters; single-diode model; two-diode model; COA

1. Introduction

The contribution of solar energy in total electric energy production is growing constantly. As the
price of solar inverters and solar panels constantly decreases, most countries are basing their energy
policy on higher use of solar energy. Studies on energy networks, and especially testing of the integration
of solar energy sources into power networks, requires accurate calculation of the solar output power,
as well as accurate modeling of solar cells. For that reason, modeling of solar cells (corresponding
equivalent circuit and accurate parameters value) represents a very popular research field.

In the literature, two basic models of the equivalent circuits of solar cell can be found, namely the
single-diode model (SDM) [1] and the double-diode model (DDM) [2]. DDM considers the composite
effect of the neutral region of the junction, and, therefore, models the solar cells more accurately [3].
However, it is characterized by seven unknown parameters. Because of the complexity of DDM,
some authors reduce the number of unknown parameters [3,4], which can greatly affect the model
accuracy [5]. In this work, we focus on both SDM and DDM, without neglecting any of the model
parameters of the solar cell.

For the estimation of solar cell parameters, two main sets of “input data” and corresponding
estimations can be found, namely

(a) estimation based on datasheet information [6,7] and
(b) estimation based on experimental data [8].
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The former uses the datasheet information (open circuit voltage, short circuit current, voltage and
current value at maximum power point characteristics) provided by photovoltaic (PV) manufacturers
under standard test conditions. However, recent research [7] on the usage of datasheet values for
solar cell parameter estimation shows that current-voltage characteristic is not unique when designers
focus on three datasheet points (open circuit, short circuit and maximum power). It is shown that by
observing only three points, we can have multiple I-V characteristics, although in reality a solar cell
has a single defined I-V characteristic corresponding to a specific set of cell parameters. To obtain
unique and accurate I-V characteristic of PV cell, experimental data on more than three major points
are necessary [7]. Research [7] has also implied that only approaches based on experimental data
generate accurate models.

Evaluating the performance of solar cells (or PV panels) requires as accurate an estimation of
the equivalent circuit solar cell parameters as possible. The approaches used for this purpose can be
categorized as follows:

(a) analytical techniques [9–13],
(b) numerical extraction [13] and
(c) meta-heuristic techniques [14–59].

Analytical techniques provide mathematical expressions for solving equivalent circuit parameters
based on some input data (manufacturer data or/and data obtained from measurements). A review
and comparative assessment of non-iterative methods for the extraction of the single-diode model
parameters of photovoltaic modules is given in [11]. In general, analytical techniques provide rapid
solution. On the other hand, these techniques give erroneous results when the estimated and measure
solar cell output characteristics are compared [12].

Numerical techniques are based on curve fitting, usually via iterative methods. However,
the application of curve fitting to nonlinear diode equations is quite complex, making numerical
determination of solar cell parameters unpopular [14].

Recently, meta-heuristic algorithms for solar cell parameter estimation have been proposed [14–58].
They impose no restrictions on the problem formulation, they are excellent in dealing with nonlinear
equations, and they can be applied for different numbers of unknown parameters.

Of all the proposed techniques, none excels in terms of accuracy and efficiency with respect
to others. This was our main incentive for doing research in this field. We propose both accurate
and efficient parameter optimization of solar cell SDM and DDM through chaotic optimization
approach (COA).

Recently, COA has been used in solving various optimization problems: parameter identification
of Jiles-Atherton hysteresis model [59], single-phase transformer parameter estimation [60], design of
PID parameters for automatic voltage regulation of synchronous machine [61], antenna array radiation
pattern synthesis [62,63]. The main advantages of COA over other optimization techniques are easy
implementation and short execution time [64]. It should be noted that different versions of chaotic
algorithm have also been used in solar cell parameters estimation, namely chaotic heterogeneous
comprehensive learning particle swarm optimizer variants [16], chaotic asexual reproduction
optimization [33], mutative-scale parallel chaos optimization algorithm [41], chaos-embedded
gravitational search algorithm [65], chaotic improved artificial bee colony algorithm [66], improved
chaotic whale optimization algorithm [67], etc. Unlike methods proposed in [16,33,41,65–67], this paper
will use COA based on Logistic map for solar cell parameter estimation. Logistic map has a simple
form with one variable and one control parameter, and it can produce chaotic behavior similar to more
complex chaotic systems. [68]. The power of this optimization approach is demonstrated in [60], where
it was used for the estimations of the transformer’s parameters.

The effectiveness of the proposed approach will be evaluated on different solar cells (different with
respect to solar cell voltage and current level) found in the literature and the laboratory environment.
Furthermore, COA-based parameter estimation will be compared with 50 various literature techniques
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for SDM, and with 12 various techniques for DDM. Also, we will compare parameters obtained by using
the proposed method on the measured data with analytically and numerically obtained parameters.
Finally, we will apply COA on the measured I-V characteristics using the laboratory environment.

The paper is organized as follows. SDM and DDM for solar cells are described in Section 2.
In Section 3, COA and its implementation for solar cell parameters estimation are described.
The comparison of solar cell parameters estimation accuracy obtained by using the COA-based
and other methods, for one solar cell and one solar module, is presented in Section 4. The experimental
setup for measuring I-V curves is presented in Section 5, along with the COA-based parameter
estimation results. The concluding remarks are given in Section 6.

2. Mathematical Modeling of Single and Double Solar Cells

SDM is commonly used model for solar cell representation [1], and the equivalent circuit is shown
in Figure 1a. The I-V relationship for this model can be described by the following equation:

I = Ipv − Io

(
e

V+IRs
n·Vth − 1

)
− V + IRs

Rp
(1)

where Ipv is the photo-generated current, Rs the series parasitic resistance, Rp the parallel parasitic
resistance, I0 the saturation current, n is ideality factor and Vth = kBT/q is the thermal voltage (kB is
Boltzmann constant equal to 1.38 × 10−23 J/K, T the temperature and q the electron charge equal to
1.602 × 10−19 C).

I

R

R

I 
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I 
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Figure 1. (a) SDM, and (b) DDM of a solar cell.

The equivalent circuit with DDM for the solar cell is shown in Figure 1b. Therefore, unlike the
SDM model, the DDM model of the solar cell, in addition to the rectifying diode, includes one more
diode to consider the space charge recombination current [48]. The I-V characteristic of DDM is
given as

I = Ipv − Io1

(
e

V+IRs
n1 ·Vth − 1

)
− Io2

(
e

V+IRs
n2 ·Vth − 1

)
− V + IRs

Rp
(2)

where Io1 and Io2 are the diffusion and saturation currents, whereas n1 and n2 are the diffusion and
recombination diode ideality factors [48]. The ideality factor is discussed in [69,70], whereas [71]
presents a method for ideality factor calculation.

3. COA and Objective Function

COA is a very powerful optimization technique that has found numerous scientific
applications [59–63]. This approach is based on the theory of chaos, which is, in a mathematical sense,
described by ordinary differential equations or by an iterative map [64].

Different chaotic systems, including the logistic map, lozi map, tent map and Lorenz system,
can be found in the literature. In this paper, we will base COA on the logistic map [59–64].

The task of COA is to estimate a set of unknown parameters X which minimizes the objective
function (OF). In our case, for SDM, X = [Rs, Rp, Ipv, Io, n], and for DDM, X = [Rs, Rp, Ipv, Io1, Io2, n1, n2].
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Therefore, in general, vector X = [x1, x2, ... xn] contains variables limited to the lower (LV) and upper
(UV) permitted value, i.e, xi ∈ [Li, Ui]. On the other side, the OF for SDM is

OF =
P∑

t = 1

(
Ipv − Io

(
e

Vt+ItRs
n·Vth − 1

)
− Vt + ItRs

Rp
− It

)
(3)

whereas for DDM it reads

OF =
P∑

t = 1

(
Ipv − Io1

(
e

Vt+ItRs
n1 ·Vth − 1

)
− Io2

(
e

Vt+ItRs
n2 ·Vth − 1

)
− Vt + ItRs

Rp
− It

)
(4)

where P is the number of measured I-V pairs from the I-V characteristics, and Vt and It represent the
voltage and current value of pair t.

Figure 2 presents the search procedure, i.e., the COA flowchart. The detailed description of COA
flowchart can be found in [59].

Define ranges (upper and lower limits) of unknown 
parameters (Rs, Rp, Ipv, Io and n for SDM and Rs, Rp, Ipv, Io1, 
Io2, n1 and n2 for DDM) 
Define number of iterations (Mg) 
Define number of COA starting (Ms)  

Define initial values for logistic mapping 

In the kth iteration for X(k), calculate the 
value of OF (Equation (3) for SDM and 

Equation (4) for DDM) 

The estimated parameters values are those 
which minimize the OF over all possible 

startings and iterations 

By using logistic mapping, form variables 
xi(k), k = 1, ..., Mg and i = 1, ..., 5 for SDM, and 

i = 1, ..., 7 for DDM, as described in [59] 

Figure 2. COA flowchart.

In this paper, the following COA parameters were used: M = 1000, N = 50,000. The COA-based
estimation is compared with other approaches through the root mean square error (RMSE), defined as
follows:

RMSE =

√√√√√ P∑
k = 1

(
Iest,k − Imeas,k

)
P

(5)
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where Iest,k and Imeas,k represent the estimated and the measured values of solar output current in point
k, respectively.

4. Simulation Results

To evaluate COA for solar cell parameters estimation, we first applied the proposed method
to an experimental current-voltage characteristic extracted from the manufacturer’s datasheets of a
well-known R.T.C. France solar cell operating under standard test conditions.

The values of parameters obtained by using COA for the R.T.C. France solar cell are summarized,
by year of publication, in Table 1, for SDM and Table 2 for DDM. These values are compared with the
values of parameters published in recent papers (column Reference) for the same experimental data.
During the estimation process, the parameter ranges for SDM estimation were Rs(Ω) ∈ [0.02, 0.05],
Ipv(A) ∈ [0.74, 0.78], Io(μA) ∈ [0.2, 0.4], Rp(Ω) ∈ [50, 55] and n ∈ [1.35, 1.6], whereas for DDM,
they were Rs(Ω) ∈ [0.02, 0.04], Rp(Ω) ∈ [54, 58], n1 ∈ [1.4, 1.5], n2 ∈ [1.95, 2], Ipv(A) ∈ [0.75, 0.77]
Io1(μA) ∈ [0.2, 0.25] and Io2(μA) ∈ [0.7, 0.8].

Table 1. Calculated SDM parameters for the R.T.C France solar cell.

No. Algorithm Reference First Author, Year Ipv (A) I0 (μA) n Rs (Ω) Rp (Ω) RMSE

Proposed Method—COA 0.7607745 0.3230018 1.4811774 0.0363775 53.73 9.860221 × 10−4

1. HISA * [15] Dhruv, 2019 0.7607078 0.31068459181.47726778 0.03654694 52.88979426 9.8911 × 10−4

2. HCLPSO * [16] Dalia, 2019 0.76079 0.31062 1.4771 0.036548 52.885 1.12009 × 10−3

3. OBWOA * [17] Abd, 2018 0.76077 0.3232 1.5208 0.0363 53.6836 1.1417 × 10−3

4. MPSO * [18] Manel, 2018 0.760787 0.310683 1.475262 0.036546 52.88971 7.33007 × 10−3

5. ER-WCA [19] Kler D, 2017 0.760776 0.322699 1.481080 0.036381 53.69100 9.8609 × 10−4

6 MSSO [20] Lin P, 2017 0.760777 0.323564 1.481244 0.036370 53.742465 1.0599 × 10−3

7 BPFPA * [21] Ram JP, 2017 0.7600 0.3106 1.4774 0.0366 57.7151 1.2536 × 10−3

8 ICA [22] Fathy A, 2017 0.7603 0.14650 1.4421 0.0389 41.1577 1.1582 × 10−1

9 GOTLBO [23] Chen X, 2016 0.760780 0.331552 1.483820 0.036265 54.115426 9.8744 × 10−4

10 CSO [24] Guo L, 2016 0.76078 0.3230 1.48118 0.03638 53.7185 9.8612 × 10−4

11. NM-MPSO [25] Hamid N, 2016 0.76078 0.32306 1.48120 0.03638 53.7222 9.8620 × 10−4

12. PCE [26] Zhang Y, 2016 0.760776 0.323021 1.481074 0.036377 53.718525 1.0606 × 10−3

13. TONG [27] Tong NT, 2016 0.7610 0.3635 1.4935 0.03660 62.574 2.3859 × 10−3

14. MABC [28] Jamadi M, 2016 0.760779 0.321323 1.481385 0.036389 53.39999 2.7610 × 10−3

15. MVO [29] Ali EE, 2016 0.7616 0.32094 1.5252 0.0365 59.5884 1.2680 × 10−1

16. DET [30] Chellaswamy C, 2016 0.751 0.315 1.487 0.036 54.532 2.4481 × 10−2

17. WCA

[31] Jordehi AR, 2016

0.760908 0.4135540 1.504381 0.035363 57.669488 7.6069 × 10−3

18. TLBO 0.760809 0.312244 1.47578 0.036551 52.8405 7.2723 × 10−3

19. GWO 0.760996 0.2430388 1.451219 0.037732 45.116309 7.2845 × 10−3

20. TVACPSO 0.760788 0.3106827 1.475258 0.036547 52.889644 7.3438 × 10−3

21. PPSO [32] Ma J, 2016 0.7608 0.3230 1.4812 0.0364 53.7185 9.9161 × 10−4

22. CARO [33] Yuan X, 2015 0.76079 0.31724 1.48168 0.03644 53.0893 8.1969 × 10−3

23. LI [34] Lim LHI, 2015 0.7609438 0.3456572 1.48799169 0.03614233 49.482205 1.3462 × 10−3

24. MBA [35] El-Fergany A. 2015 0.7604 0.2348 1.4890 0.0388 44.61 1.1672 × 10−1

25. FPA * [36] Alam DF, 2015 0.76079 0.310677 1.47707 0.0365466 52.8771 1.2121 × 10−3

26. LMSA [37] Dkhichi F, 2014 0.76078 0.31849 1.47976 0.03643 53.32644 9.8649 × 10−4

27. DE
[38] Niu Q, 2014

0.76068 0.35515 1.49080 0.03598 56.5533 1.0035 × 10−3

28. BBO 0.76098 0.86100 1.58742 0.03214 78.8555 2.3929 × 10−3

29. BBO-M 0.76078 0.31874 1.47984 0.03642 53.36227 9.8656 × 10−4

30. STLBO [39] Niu Q, 2014 0.76078 0.32302 1.48114 0.03638 53.7187 9.9763 × 10−4

31. TLBO 0.76074 0.32378 1.48136 0.03641 54.4029 1.0016 × 10−3

32. ABC [40] Oliva D, 2014 0.7608 0.3251 1.4817 0.0364 53.6433 1.0967 × 10−3

33. HPEPD [8] Laudani A, 2014 0.7607884 0.3102482 1.4769641 0.03655304 52.859056 1.1487 × 10−3

34. MPCOA [41] Yuan X, 2014 0.76073 0.32655 1.48168 0.03635 54.6328 2.3131 × 10−3

35. TLBO [42] Patel SJ, 2014 0.7608 0.3223 1.4837 0.0364 53.76027 9.6960 × 10−3

36. BMO [43] Askarzadeh A, 2013 0.76077 0.32479 1.48173 0.03636 53.8716 9.8622 × 10−4

37. ABSO [44] 0.76080 0.30623 1.47583 0.03659 52.2903 9.9125 × 10−4

38. IADE [45] Jiang LL, 2013 0.7607 0.33613 1.4852 0.03621 54.7643 9.9076 × 10−4

39. CS [46] Ma J, 2013 0.7608 0.323 1.4812 0.0364 53.7185 9.9161 × 10−4

40. ABSO

[47] Hachana O, 2013

0.76080 0.30623 1.47986 0.03659 52.2903 1.4169 × 10−2

41. ABCDE 0.76077 0.32302 1.47986 0.03637 53.7185 4.8548 × 10−3

42. DE 0.76077 0.32302 1.48059 0.03637 53.7185 2.3423 × 10−3

43. MPSO 0.76077 0.32302 1.47086 0.03637 53.7185 3.9022 × 10−2

44. GGHS
[48] Askarzadeh A, 2012

0.76092 0.32620 1.48217 0.03631 53.0647 9.9089 × 10−4

45. HS 0.76070 0.30495 1.47538 0.03663 53.5946 9.9515 × 10−4

46. IGHS 0.76077 0.34351 1.48740 0.03613 53.2845 1.0335 × 10−3

47. PS [49] AlHajri MF, 2012 0.7617 0.9980 1.6000 0.0313 64.10256 1.4936 × 10−2

48. SA [50] El-Naggar KM, 2012 0.7620 0.4798 1.5172 0.0345 43.10345 1.8998 × 10−2

49. GA [51] AlRashidi MR, 2011 0.7619 0.8087 1.5751 0.0299 42.37288 1.9078 × 10−2

50. PSO [52] Ye M, 2009 0.760798 0.322721 1.48382 0.0363940 53.7965 9.6545 × 10−3

* for this method, a real RMSE are given [56].
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Table 2. Calculated DDM parameters for the R.T.C France solar cell.

No. Algorithm Ref.
First Author,

Year
Ipv(A) Io1(μA) Io2(μA) Rs(Ω) Rp(Ω) n1 n2 RMSE

Proposed Method—COA 0.76078105 0.2259742 0.749346 0.03674043 55.4854236 1.45101673 2
9.82484852 ×

10−4

1. GOFPANM [53] X Shuhui, 2017 0.7607811 0.7493476 0.2259743 0.0367404 55.485449 2 1.4510168 9.82485 × 10−4

2. SATLBO [54] Y Kunjie, 2017 0.76078 0.25093 0.545418 0.03663 55.117 1.45982 1.99941 9.82941 × 10−4

3. MSSO [20] P Lin, 2017 0.760748 0.234925 0.671593 0.036688 55.714662 1.454255 1.995305 1.059101 × 10−3

4. WDO [55] M Derick, 2017 0.7606 0.2531 0.0482 0.037433 52.6608 151.162 1.38434 1.095213 × 10−3

5. CSO [24] L Guo, 2016 0.76078 0.22732 0.72785 0.036737 55.3813 1.45151 1.99769 9.82532 × 10−4

6. GOTLBO [23] X Chen, 2016 0.760752 0.800195 0.220462 0.036783 56.0753 1.999973 1.448974 9.83152 × 10−4

7. PCE [26] Y Zhang, 2016 0.760781 0.226015 0.749340 0.03674 55.483160 1.450.923 2 9.8248 × 10−4

8. MABC [28] M Jamadi, 2016 0.7607821 0.24102992 0.6306922 0.03671215 54.7550094 1.4568573 2.0000.538 9.8276 × 10−4

9. FPA [36] DF Alam, 2015 0.760795 0.300088 0.166159 0.0363342 52.3475 1.47477 2 1.24239 × 10−3

10. BMO [43] A. Askarzadeh,
2013 0.76078 0.2111 0.87688 0.03682 558.081 1.44533 1.99.997 9.82661 × 10−4

11. ABSO [44] A. Askarzadeh,
2013 0.73078 0.26713 0.38191 0.03657 54.6219 1.46512 1.98152 9.8359 × 10−04

12. IGHS [48] A. Askarzadeh,
2012 0.76079 0.97310 0.16791 0.03690 56.8368 1.92126 1.42814 9.86572 × 10−4

Tables 1 and 2 report parameters as they appear in the cited papers with no modification. However,
in some papers in the Energy Conversion and Management journal (in Table 1 marked by *), inaccuracies
occurred in parameter estimation of the PV cell using metaheuristic techniques. Namely, the results
proposed in [15–18,21] do not correspond to the objective function [56].

The presented results, especially the value of RMSE, show that COA offers solar characteristics
closer to the measured characteristics than the other existing methods, i.e., it outperforms other methods
in terms of accuracy. In addition, by observing Tables 1 and 2, it is also evident that DDM characterizes
solar cells more accurately than SDM, which supports the conclusion regarding DDM accuracy noted
in [3].

It can be seen that COA outperforms several other techniques, such as evaporation rate-based
water cycle algorithm (ER-WPA) [19] and cat swarm optimization (CSO) [24] for SDM, and with the
generalized opposition-flower pollination algorithm-nelder-mead simplex method (GOFPANM) [53],
by a small margin. However, the implementation of COA is simpler than implementation of ER-WPA,
CSO and GOFPANM. Furthermore, COA is computationally less demanding than CSO since CSO
requires changing the operation mode during the estimation process [24]. On the other side, GOFPANM
is a hybrid algorithm which combines local and global search as well as different algorithms during
estimation [53]. In general, most evolutionary algorithms have the complexity of O((np + Cof p)Ni),
where O is the big O notation, n is the dimension of the parameter space, p is the population size, Ni is
the number of iterations and Cof is the complexity of the OF. The complexity of COA is O(QCof), where
Q is the number of points in the parameter space in which the OF is calculated. Therefore, the proposed
COA-based estimation has significantly lower computational complexity than evolutionary algorithms.

To show the additional advantage of COA over other techniques, we conducted a comparison in
terms of required time for one iteration. In that sense, in MATLAB 2015 (MathWorks, Natick, MA,
USA) we have implemented the following algorithms for solar cell parameter estimation: evaporation
rate-based water cycle algorithm (ER-WCA) [19], cuckoo search (CS) [46] and harmony search (HS) [48].
ER-WCA algorithm has a very good accuracy, very close to that obtained by the proposed method
(see Table 1). On the other hand, HS and CS also have a good accuracy (~10−4). All computer
simulations were carried out on a PC with Intel(R) Core (TM) i3-7020U CPU @ 2.30 GHz and 4 GB RAM.
The obtained results, i.e., the mean, maximal and minimal required time per one iteration, obtained
over 20 runs, are presented in Table 3. Clearly, the COA-based algorithm is the most efficient method,
as it is characterized by the lowest value of required time per iteration. Note, in order to draw a fair
comparison between the considered algorithms, MATLAB implementation follows the same rules
for each algorithm (e.g., avoiding loops and using array operations such as dot product and matrix
product whenever possible).
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Table 3. Time per iteration comparison.

Algorithm
Mean Value of

Requested Time (s)
Maximal Value of

Requested Time (s)
Minimal Value of

Requested Time (s)

COA 0.016416 0.017023 0.015871
ER-WCA [19] 0.021063 0.024145 0.019492

CS [46] 0.029179 0.037177 0.027130
HS [48] 0.021103 0.023264 0.020393

The measured I-V and P-V characteristics and the corresponding simulated characteristics,
for parameters obtained by using COA, are shown in Figure 3. Very good agreement can be seen
between the measured and estimated curves. Also, the difference between the DDM and SDM
simulated curves is small but consistent and always in favor of DDM. In addition, in Table 4,
we presented the estimated value of the unknown DDM parameters of the BPSolar MSX-60 module.
These parameters are obtained by using COA as well as by using analytical, numerical, iteration and
Newton methods presented in the literature. In the COA-based estimation, the ranges of parameters
were Rs(Ω) ∈ [0.2 0.4], Rp(Ω) ∈ [150, 300], n1 ∈ [0.5, 1.5], Ipv(A) ∈ [3.5, 4], Io1(A) ∈

[
10−10, 10−6

]
,

Io2(A) ∈
[
10−10, 10−6

]
, and n2 ∈ [1.5, 2]. From the presented results, it is clear that COA outperforms

the considered non-metaheuristic methods for solar cell parameters determination in terms of accuracy.

Figure 3. I-V and P-V characteristics of R.T.C. France solar cell.

Table 4. Calculated DDM parameters for the BPSolar MSX-60 module.

Parameter
Analytical

Method [13]
Numerical

Method [13]
Iteration

Method [57]
Newton

Method [58]
COA

Ipv (A) 3.8752 3.8046 3.8 3.8084 3.8418
Io1 (A) 3.6129 × 10−10 3.9901 × 10−10 4.704 × 10−10 4.8723 × 10−10 4.95821 × 10−8

Io2 (A) 9.3773 × 10−6 4.033 × 10−6 4.704 × 10−10 6.1528 × 10−10 9.54961 × 10−9

Rs (Ω) 0.3084 0.3397 0.35 0.3692 0.2495
Rp (Ω) 280.6449 280.2171 176.4 169.0471 267.57
n1 1 0.99859 1 1.0003 1.2569
n2 2 2.0014 1.2 1.9997 1.9345
RMSE 0.0358 0.0517 0.1211 0.1636 0.0194

The measured and corresponding simulated I-V and P-V characteristics, for parameters obtained
by using COA and other methods, are shown in Figures 4 and 5, respectively. It is evident that COA
outperforms the other methods in terms of approaching the measured characteristics.
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Figure 4. I-V characteristics of BPSolar MSX-60 module.

Figure 5. P-V characteristics of BPSolar MSX-60 module.

Based on all of the presented results, it can be concluded that COA can precisely estimate the
solar cell/module circuit parameters, outperforming the other metaheuristics as well as analytical or
numerical methods in terms of estimation accuracy.

5. Experimental Results and Analysis

To check the applicability and efficiency of COA for solar cell parameter estimation, we also
observed solar cells from the Clean Energy Trainer setup. The main motivation to use these solar
modules is that this setup enables adjustable solar insolation, USB data monitoring for PC-supported
data acquisition and analysis, as well as highly advanced didactic software for system control and
real-time data plotting.

The observed system contains of:

1. two solar modules and one module: 4 solar cells, 400 mW, 2 V, 0.5 A,
2. TES 1333R data logging Solar power meter—instrument with range of 2000 W/m2, high resolution

(0.1 W/m2), and wide spectral resolution (400–1100 nm), etc.
3. lamp—special double spotlight lamp that simulates sunlight. It provides the optimal light

spectrum for the solar module.
4. USB Data Monitor—used for data acquisition. Also, it is connected to the computer and software

through the USB port.
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5. load—simulates electric consumer load.
6. software—designed to facilitate system control, parameter monitoring, data acquisition and

graphical representation of the collected data.

The experimental setup, installed in Laboratory for Automatics, at the Faculty of Electrical
engineering, University of Montenegro, is presented in Figure 6.

Figure 6. Experimental setup.

Firstly, we measured the I-V characteristics for insolation of 1285 W/m2 and temperature of
42 ◦C. For the measured I-V pairs, we determined single and double diode solar cell parameters (see
Table 5). The parameter ranges for SDM estimation were Rs(Ω) ∈ [0.1, 0.4], Ipv(A) ∈ [0.2, 0.4], Io(A) ∈[
5× 10−8, 15×10−8

]
, Rp(Ω) ∈ [200, 600] and n ∈ [0.2, 1], whereas for DDM were Rs(Ω) ∈ [0.1, 0.4],

Rp(Ω) ∈ [600, 900], n1 ∈ [0.2, 1], n2 ∈ [1.95, 2], Ipv(A) ∈ [0.2, 0.4], Io1(A) ∈
[
5× 10−8, 15×10−8

]
,

and Io2(A) ∈
[
5× 10−8, 15×10−8

]
. Then we measured the I-V and P-V characteristics for different

values of insolation and temperature. The corresponding simulated characteristics were determined by
taking into account the change of parameters with insolation and temperature (see [13]). The measured
and estimated I-V and P-V characteristics for different values of insolation and temperature are
presented in Figures 7–10. The agreement between the measured and estimated characteristics is
evident (see zoomed parts in these figures). Finally, we repeated the estimation procedure on all
measured I-V characteristics. The estimated values of parameters were in range of ±4% of the initially
observed, which confirms that we can use any of the measured characteristics for parameter estimation.
On the other hand, by observing the data provided in Table 5, even for this module, it is evident that
DDM is more accurate than SDM.

Table 5. Estimated value of experimentally tested solar module parameters.

SDM DDM

Rs (Ω) 0.2283 Rs (Ω) 0.2513
Rsh (Ω) 439.55 Rsh (Ω) 782.9911
Io (A) 10.56 × 10−8 Io1 (A) 6.8452 × 10−8

Ipv (A) 0.2987 n1 0.3342
n 0.3441 Ipv (A) 0.2972

RMSE 4.3418 × 10−4
Io2 (A) 6.0643 × 10−8

n2 1.9906
RMSE 4.146 × 10−4
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Figure 7. Current-voltage characteristics for two different insolation values and for temperature
T = 42 ◦C.

Figure 8. Power-voltage characteristics for two different insolation values and for temperature T= 42 ◦C.

Figure 9. Current-voltage characteristics for two different temperatures and insolation values.
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Figure 10. Power-voltage characteristics for two different temperatures and insolation values.

6. Conclusions

Modeling of solar cells is a very popular research direction, which is supported by numerous
recent contributions in the literature. This paper proposes COA as a very successful approach for
this purpose.

The proposed method is verified using practical data from various manufacturers. Its accuracy is
confirmed by comparing its RMSE with numerous metaheuristics and non-metaheuristics methods
for different solar cells. Experimental testing of COA applicability for parameter estimation is
also implemented in laboratory environment. In all considered scenarios, a high level of accuracy
is demonstrated. Apart from this, excellent matching of the simulated I-V and P-V curves with
the measured characteristics additionally confirms the COA accuracy and its applicability for
parameter estimation.

In future work, our attention will be focused on the usage of COA for estimation of solar cell
parameters when solar cell output current is represented through the Lambert W function.
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Funding: This work has been supported through European Union’s Horizon 2020 research and innovation
program under project CROSSBOW-CROSS BOrder management of variable renewable energies and storage units
enabling a transnational Wholesale market (Grant No. 773430).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moshksar, E.; Ghanbari, T. Adaptive Estimation Approach for Parameter Identification of Photovoltaic
Modules. IEEE J. Photovolt. 2017, 7, 614–623. [CrossRef]

2. Ali, H.; Mojgan, H.; Saad, M.; Hussein, H. Solar cell parameters extraction based on single and double-diode
models: A review. Renew. Sustain. Energy Rev. 2016, 56, 494–509.

3. Kashif, I.; Zainal, S.; Hamed, T. Simple, fast and accurate two-diode model for photovoltaic modules.
Sol. Energy Mater. Sol. Cells 2011, 95, 586–594.

4. Chitti, B.B.; Suresh, G. A novel simplified two-diode model of photovoltaic (PV) module. IEEE J. Photovolt.
2014, 4, 1156–1161.

5. Chen, Y.; Sun, Y.; Meng, Z. An improved explicit double-diode model of solar cells: Fitness verification and
parameter extraction. Energy Convers. Manag. 2018, 169, 345–358. [CrossRef]

6. Laudani, A.; Fulginei, F.R.; Salvini, A. Identification of the one-diode model for photovoltaic modules from
datasheet values. Sol. Energy 2014, 108, 432–446. [CrossRef]

93



Energies 2019, 12, 4209

7. Biswas, P.P.; Suganthan, P.N.; Wu, G.; Amaratunga, G.A.J. Parameter estimation of solar cells using datasheet
information with the application of an adaptive differential evolution algorithm. Renew. Energy 2019, 132,
425–438. [CrossRef]

8. Laudani, A.; Riganti, F.F.; Salvini, A. High performing extraction procedure for the one-diode model of a
photovoltaic panel from experimental I-V curves by using reduced forms. Sol. Energy 2014, 103, 316–326.
[CrossRef]

9. Chatterjee, A.; Keyhani, A.; Kapoor, D. Identification of photovoltaic source models. IEEE Trans. Energy
Convers. 2011, 24, 883–889. [CrossRef]

10. Shongwe, S.; Hanif, M. Comparative analysis of different single-diode PV modeling methods. IEEE J.
Photovolt. 2015, 5, 938–946. [CrossRef]

11. Batzelis, E. Non-Iterative Methods for the Extraction of the Single-Diode Model Parameters of Photovoltaic
Modules: A Review and Comparative Assessment. Energies 2019, 12, 358. [CrossRef]

12. Jordehi, A.R. Parameter estimation of solar photovoltaic (PV) cells: A. review. Renew. Sustain. Energy Rev.
2016, 61, 354–371. [CrossRef]

13. Kumar, M.; Kumar, A. An efficient parameters extraction technique of photovoltaic models for performance
assessment. Sol. Energy 2017, 158, 192–206. [CrossRef]

14. Kashif, I.; Salam, Z.; Mekhilef, S.; Shamsudin, A. Parameter extraction of solar photo voltaic modules using
penalty based differential evolution. Appl. Energy 2012, 99, 297–308.

15. Dhruv, K.; Goswami, Y.; Kumar, R.V. A novel approach to parameter estimation of photovoltaic systems
using hybridized optimizer. Energy Convers. Manag. 2019, 187, 486–511.

16. Dalia, Y.; Dalia, A.; Eteiba, M.B.; Ponnuthurai, N.S. Static and dynamic photovoltaic models’ parameters
identification using Chaotic Heterogeneous Comprehensive Learning Particle Swarm Optimizer variants.
Energy Convers. Manag. 2019, 182, 546–563.

17. Abd, E.M.; Diego, O. Parameter estimation of solar cells diode models by an improved opposition-based
whale optimization algorithm. Energy Convers. Manag. 2018, 171, 1843–1859.

18. Manel, M.; Anis, S.; Faouzi, M.M. Particle swarm optimisation with adaptive mutation strategy for
photovoltaic solar cell/module parameter extraction. Energy Convers. Manag. 2018, 175, 151–163.

19. Kler, D.; Sharma, P.; Banerjee, A.; Rana, V.; Kumar, K.P.S. PV cell and module efficient parameters estimation
using evaporation rate-based water cycle algorithm. Swarm Evolut. Comput. 2017, 35, 93–110. [CrossRef]

20. Lin, P.; Cheng, S.; Yeh, W.; Chen, Y.; Wu, L. Parameters extraction of solar cell models using a modified
simplified swarm optimization algorithm. Sol. Energy 2017, 144, 594–603. [CrossRef]

21. Ram, J.P.; Babu, T.S.; Dragicevic, T.; Rajasekar, N. A new hybrid bee pollinator flower pollination algorithm
for solar PV parameter estimation. Energy Convers. Manag. 2017, 135, 463–476. [CrossRef]

22. Fathy, A.; Rezk, H. Parameter estimation of photovoltaic system using imperialist competitive algorithm.
Renew. Energy 2017, 111, 307–320. [CrossRef]

23. Chen, X.; Yu, K.; Du, W.; Zhao, W.; Liu, G. Parameters identification of solar cell models using generalized
oppositional teaching learning-based optimization. Energy 2016, 99, 170–180. [CrossRef]

24. Guo, L.; Meng, Z.; Sun, Y.; Wang, L. Parameter identification and sensitivity analysis of solar cell models
with cat swarm optimization algorithm. Energy Convers. Manag. 2016, 108, 520–528. [CrossRef]

25. Hamid, N.F.A.; Rahim, N.A.; Selvaraj, J. Solar cell parameters identification using hybrid Nelder-Mead and
modified particle swarm optimization. J. Renew. Sustain. Energy 2016, 8, 1–10. [CrossRef]

26. Zhang, Y.; Lin, P.; Chen, Z.; Cheng, S. A population classification evolution algorithm for the parameter
extraction of solar cell models. Int. J. Photoenergy 2016, 2016, 2174573. [CrossRef]

27. Tong, N.T.; Pora, W. A parameter extraction technique exploiting intrinsic properties of solar cells. Appl. Energy
2016, 176, 104–115. [CrossRef]

28. Jamadi, M.; Merrikh-Bayat, F.; Bigdeli, M. Very accurate parameter estimation of single- and double-diode
solar cell models using a modified artificial bee colony algorithm. Int. J. Energy Environ. Eng. 2016, 7, 13–25.
[CrossRef]

29. Ali, E.E.; El-Hameed, M.A.; El-Fergany, A.A.; El-Arini, M.M. Parameter extraction of photovoltaic generating
units using multi-verse optimizer. Sustain. Energy Technol. Assess. 2016, 17, 68–76. [CrossRef]

30. Chellaswamy, C.; Ramesh, R. Parameter extraction of solar cell models based on adaptive differential
evolution algorithm. Renew. Energy 2016, 97, 823–837. [CrossRef]

94



Energies 2019, 12, 4209

31. Jordehi, A.R. Time varying acceleration coefficients particle swarm optimisation (TVACPSO): A new
optimisation algorithm for estimating parameters of PV cells and modules. Energy Convers. Manag. 2016,
129, 262–274. [CrossRef]

32. Ma, J.; Man, K.L.; Guan, S.U.; Ting, T.O.; Wong, P.W. Parameter estimation of photovoltaic model via parallel
particle swarm optimization algorithm. Int. J. Energy Res. 2016, 40, 343–352. [CrossRef]

33. Yuan, X.; He, Y.; Liu, L. Parameter extraction of solar cell models using chaotic asexual reproduction
optimization. Neural Comput. Appl. 2015, 26, 227–239. [CrossRef]

34. Lim, L.H.I.; Ye, Z.; Ye, J.; Yang, D.; Du, H. A linear identification of diode models from single I-V characteristics
of PV panels. IEEE Trans. Ind. Electron. 2015, 62, 4181–4193. [CrossRef]

35. El-Fergany, A. Efficient tool to characterize photovoltaic generating systems using mine blast algorithm.
Electr. Power Compon. Syst. 2015, 43, 890–901. [CrossRef]

36. Alam, D.F.; Yousri, D.A.; Eteiba, M.B. Flower pollination algorithm based solar PV parameter estimation.
Energy Convers. Manag. 2015, 101, 410–422. [CrossRef]

37. Dkhichi, F.; Oukarfi, B.; Fakkar, A.; Belbounaguia, N. Parameter identification of solar cell model using
Levenberg–Marquardt algorithm combined with simulated annealing. Sol. Energy 2014, 110, 781–788.
[CrossRef]

38. Niu, Q.; Zhang, L.; Li, K. A biogeography-based optimization algorithm with mutation strategies for model
parameter estimation of solar and fuel cells. Energy Convers. Manag. 2014, 86, 1173–1185. [CrossRef]

39. Niu, Q.; Zhang, H.; Li, K. An improved TLBO with elite strategy for parameters identification of PEM fuel
cell and solar cell models. Int. J. Hydrogen Energy 2014, 39, 3837–3854. [CrossRef]

40. Oliva, D.; Cuevas, E.; Pajares, G. Parameter identification of solar cells using artificial bee colony optimization.
Energy 2014, 72, 93–102. [CrossRef]

41. Yuan, X.; Xiang, Y.; He, Y. Parameter extraction of solar cell models using mutative-scale parallel chaos
optimization algorithm. Sol. Energy 2014, 108, 238–251. [CrossRef]

42. Patel, S.J.; Panchal, A.K.; Kheraj, V. Extraction of solar cell parameters from a single current–voltage
characteristic using teaching learning-based optimization algorithm. Appl. Energy 2014, 119, 384–393.
[CrossRef]

43. Askarzadeh, A.; Rezazadeh, A. Extraction of maximum power point in solar cells using bird mating
optimizer-based parameters identification approach. Sol. Energy 2013, 90, 123–133. [CrossRef]

44. Askarzadeh, A.; Rezazadeh, A. Artificial bee swarm optimization algorithm for parameters identification of
solar cell models. Appl. Energy 2013, 102, 943–949. [CrossRef]

45. Jiang, L.L.; Maskell, D.L.; Patra, J.C. Parameter estimation of solar cells and modules using an improved
adaptive differential evolution algorithm. Appl. Energy 2013, 112, 185–193. [CrossRef]

46. Ma, J.; Ting, T.O.; Man, K.L.; Zhang, N.; Guan, S.-U.; Wong, P.W.H. Parameter estimation of photovoltaic
models via cuckoo search. J. Appl. Math. 2013, 2013, 362619. [CrossRef]

47. Hachana, O.; Hemsas, K.E.; Tina, G.M.; Ventura, C. Comparison of different metaheuristic algorithms for
parameter identification of photovoltaic cell/module. J. Renew. Sustain. Energy 2013, 5, 053112. [CrossRef]

48. Askarzadeh, A.; Rezazadeh, A. Parameter identification for solar cell models using harmony search-based
algorithms. Sol. Energy 2012, 86, 3241–3249. [CrossRef]

49. AlHajri, M.F.; El-Naggar, K.M.; AlRashidi, M.R.; Al-Othman, A.K. Optimal extraction of solar cell parameters
using pattern search. Renew. Energy 2012, 44, 238–245. [CrossRef]

50. El-Naggar, K.M.; AlRashidi, M.R.; AlHajri, M.F.; Al-Othman, A.K. Simulated annealing algorithm for
photovoltaic parameters identification. Sol. Energy 2012, 86, 266–274. [CrossRef]

51. AlRashidi, M.R.; AlHajri, M.F.; El-Naggar, K.M.; Al-Othman, A.K. A new estimation approach for determining
the I-V characteristics of solar cells. Sol. Energy 2011, 85, 1543–1550. [CrossRef]

52. Ye, M.; Wang, X.; Xu, Y. Parameter extraction of solar cells using particle swarm optimization. J. Appl. Phys.
2009, 105, 1–8. [CrossRef]

53. Shuhui, X.; Yong, W. Parameter estimation of photovoltaic modules using a hybrid flower pollination
algorithm. Energy Convers. Manag. 2017, 144, 53–68.

54. Kunjie, Y.; Xu, C.; Xin, W.; Zhenlei, W. Parameters identification of photovoltaic models using self-adaptive
teaching-learning-based optimization. Energy Convers. Manag. 2017, 145, 233–246.

55. Derick, M.; Rani, C.; Rajesh, M.; Farrag, M.E.; Wang, Y.; Busawon, K. An improved optimization technique
for estimation of solar photovoltaic parameters. Sol. Energy 2017, 157, 116–124. [CrossRef]

95



Energies 2019, 12, 4209

56. Gnetchejo, P.J.; Essiane, S.N.; Ele, P.; Wamkeue, R.; Wapet, D.M.; Ngoffe, S.P. Important notes on parameter
estimation of solar photovoltaic cell. Energy Convers. Manag. 2019, 197, 111870. [CrossRef]

57. Ishaque, K.; Salam, Z.; Taheri, H. Accurate MATLAB Simulink PV System Simulator Based on a Two-Diode
Model. J. Power Electron. 2011, 11, 179–187. [CrossRef]

58. Elbaset, A.A.; Ali, H.; Abd-El Sattar, M. Novel seven-parameter model for photovoltaic modules. Sol. Energy
Mater. Sol. Cells 2014, 130, 442–455. [CrossRef]
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63. Jovanović, A.; Lazović, L.; Rubežić, V. Radiation pattern synthesis using a Chaotic beamforming algorithm.
COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2016, 35, 1814–1829. [CrossRef]

64. Yang, D.; Li, G.; Cheng, G. On the efficiency of chaos optimization algorithms for global optimization. Chaos
Solitons Fractals 2007, 34, 1366–1375. [CrossRef]

65. Valdivia-González, A.; Zaldívar, D.; Cuevas, E.; Pérez-Cisneros, M.; Fausto, F.; González, A.
A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of
Photovoltaic Cells. Energies 2017, 10, 1052. [CrossRef]

66. Oliva, D.; Ewees, A.A.; Aziz, M.A.E.; Hassanien, A.E.; Peréz-Cisneros, M. A Chaotic Improved Artificial Bee
Colony for Parameter Estimation of Photovoltaic Cells. Energies 2017, 10, 865. [CrossRef]

67. Oliva, D.; Aziz, M.A.E.; Hassanien, A.E. Parameter estimation of photovoltaic cells using an improved
chaotic whale optimization algorithm. Appl. Energy 2017, 200, 141–154. [CrossRef]

68. Bertuglia, C.S.; Via, F. Nonlinearity, Chaos, and Complexity; Oxford University Press: Oxford, UK, 2005.
69. Tress, W. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap

defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy
Environ. Sci. 2017. [CrossRef]

70. Wetzelaer, G.A.H.; Kuik, M.; Lenes, M.; Blom, P.W.M. Origin of the dark-current ideality factor in
polymer:fullerene bulk heterojunction solar cells. AIP Appl. Phys. Lett. 2011, 99, 153506. [CrossRef]

71. Perovich, S.M.; Djukanovic, M.; Dlabac, T.; Nikolic, D.; Calasan, M. Concerning a novel mathematical
approach to the solar cell junction ideality factor estimation. Appl. Math. Model. 2015, 39, 3248–3264.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

96



energies

Article

A Solution of Implicit Model of Series-Parallel
Photovoltaic Arrays by Using Deterministic and
Metaheuristic Global Optimization Algorithms

Luis Miguel Pérez Archila 1, Juan David Bastidas-Rodríguez 2, Rodrigo Correa 1,

Luz Adriana Trejos Grisales 3,* and Daniel Gonzalez-Montoya 4

1 Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones, Universidad Industrial de Santander,
Bucaramanga 680003, Colombia; luis2188752@correo.uis.edu.co (L.M.P.A.); crcorrea@saber.uis.edu.co (R.C.)

2 Departamento de Ingeniería Eléctrica, Electrónica y Computación, Universidad Nacional de Colombia,
Manizales 170003, Colombia; jubastidasr@unal.edu.co

3 Departamento de Electromecánica y Mecatrónica, Instituto Tecnológico Metropolitano,
Medellín 050013, Colombia

4 Departamento de Electrónica y Telecomunicaciones, Instituto Tecnológico Metropolitano,
Medellín 050013, Colombia; danielgonzalez@itm.edu.co

* Correspondence: adrianatrejos@itm.edu.co; Tel.: +57-4-460-0727

Received: 19 December 2019; Accepted: 30 January 2020; Published: 12 February 2020

Abstract: The implicit model of photovoltaic (PV) arrays in series-parallel (SP) configuration does not
require the LambertW function, since it uses the single-diode model, to represent each submodule,
and the implicit current-voltage relationship to construct systems of nonlinear equations that describe
the electrical behavior of a PV generator. However, the implicit model does not analyze different
solution methods to reduce computation time. This paper formulates the solution of the implicit
model of SP arrays as an optimization problem with restrictions for all the variables, i.e., submodules
voltages, blocking diode voltage, and strings currents. Such an optimization problem is solved by
using two deterministic (Trust-Region Dogleg and Levenberg Marquard) and two metaheuristics
(Weighted Differential Evolution and Symbiotic Organism Search) optimization algorithms to
reproduce the current–voltage (I–V) curves of small, medium, and large generators operating
under homogeneous and non-homogeneous conditions. The performance of all optimization
algorithms is evaluated with simulations and experiments. Simulation results indicate that both
deterministic optimization algorithms correctly reproduce I–V curves in all the cases; nevertheless,
the two metaheuristic optimization methods only reproduce the I–V curves for small generators,
but not for medium and large generators. Finally, experimental results confirm the simulation results
for small arrays and validate the reference model used in the simulations.

Keywords: implicit model solution; photovoltaic array; series–parallel; global optimization; partial
shading; deterministic optimization algorithm; metaheuristic optimization algorithm

1. Introduction

The continuous effects of climate change and environmental contamination have motivated
a growing interest in the use of renewable energies to replace conventional energy sources based
on fossil fuels. Within renewable energies, photovoltaic (PV) energy offers interesting advantages:
long life cycle, lack of mobile parts, low maintenance costs, modularity, among others [1]; that is
why the installed PV capacity has been growing in the last years [2]. In a PV system, one of the
most important elements is the generator; therefore, it is important to have models of this element
to reproduce its electrical behavior when they operate under homogeneous and non-homogeneous
conditions [3]. These models are used in different applications like the sizing of PV generators,
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the power, and energy production estimation, the analysis, and evaluation of maximum power
point tracking techniques, model-based diagnosis, and other applications [4]. A PV generator can
be connected in different configurations, nonetheless, series-parallel (SP) is one of the most used
configurations. In an SP generator, two or more modules are connected in series to form a string and
two or more strings are connected in parallel to form the generator. As a consequence, all the strings
have the same voltage and can be analyzed independently [5]. It is worth noting that each module
is formed by one or more submodules connected in series and each submodule has a bypass diode
connected in antiparallel. When the irradiance and temperature of all the submodules in the generator
are the same, it can be said that the generator operates under homogeneous conditions [6]. In these
conditions, the whole generator can be represented by the single-diode model (SDM) scaled in voltage,
according to the number of modules in the string, and scaled in current, according to the number
of strings in parallel [7]. In this case, the current vs. voltage (I–V) curve has a single knee and the
power vs. voltage (P-V) curve has a single maximum power point (MPP), which can be easily tracked.
In real applications, the PV generator is commonly shaded, or partially shaded, by surrounding objects,
passing clouds, or other objects. Hence, the operating conditions (i.e., irradiance and temperature) of
the shaded submodules are different than the operating conditions of the rest of the submodules [8].
In this case, it is said that the generator operates in nonhomogeneous conditions and the generator’s
I–V curve may present multiple knees, which is translated into multiple MPPs in the P-V curve [9].
To model a PV generator operating in nonhomogeneous conditions, it is necessary to consider that
each submodule in a module is represented by the SDM. In this way, it is possible to include the
effects of the nonhomogeneous conditions in the electrical behavior of the generator [10]. Therefore,
the generator can be analyzed as an equivalent circuit that is obtained by connecting strings in parallel,
where each string is formed by a set of submodules connected in series [11,12].

In the literature, most of the models use the SDM to represent each submodule and they use the
LambertW function [13] to obtain an explicit equation of the submodule’s current as a function of
its voltage [7,14–16]. Then, each string formed by N submodules and a blocking diode is modeled
independently by a system of N + 1 nonlinear equations, where the unknowns are the voltages of
the blocking diode and the N submodules [7,14–16]. Solving the system of nonlinear equations of
each string, it is simple to calculate the string current and finally the generator’s current. However,
the evaluation of the LambertW function implies a high computational cost for the solution to the
system of nonlinear equations associated with each string. For example, in [7] the modeling of a PV
array based on the use of the Lambert W-function to obtain an explicit relationship between the voltage
and current of any PV module is presented. In addition, the non-linear equations that describe the
PV array are solved by means of explicit symbolic calculation of the inverse of the Jacobian matrix.
A similar solution was published in [14], where a new formulation of the one-diode model of the PV
module is solved using the LambertW function with the terminal voltage expressed as an explicit
function of the current, this approximation resulting in a reduction of simulation calculation time.
Another solution was presented in [16], where a model of the PV field is presented by means of
a set non-linear equations characterized by a sparse Jacobian matrix, which requires a moderate
computational burden, both in terms of memory use and processor speed. Optimization methods for
estimating the PV module parameters are presented as a suitable option to overcome the drawbacks
of deterministic and iterative methods. In addition, optimization methods are not only used in PV
area for estimating parameters, since the reconfiguration of PV modules to mitigate the effect of partial
shading conditions in PV arrays is currently one of the most studied topics [17]. The model proposed
in [18] uses the implicit equation that describes the current-voltage relationship in the SDM. From such
an equation, is it possible to construct a system of N + 2 implicit equations to model each string,
where the unknowns are the string current and the N + 1 voltages of the N submodules and the
blocking diode. Then, solving each string it is possible to calculate the generator’s current as in the
other models. In [18] the system of N + 2 implicit equations is solved by using the Trust-Region Dogleg
(TRD) algorithm, which is a deterministic optimization method. However, the authors in [18] do not
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formulate the solution of the system of N + 2 implicit equations as an optimization problem with
restrictions; moreover, the authors do not provide any justification for the selection of TRD for solving
the optimization problem nor evaluate other deterministic and metaheuristic optimization algorithms.
Finally, those works [7,14–16,18] are focused on the model, i.e., the system of nonlinear equations,
and not in the optimization algorithms used to solve such models. Therefore, from those papers it is
not clear which type of optimization methods should be used to reduce the calculation time.

This paper formulates the solution of the system of N + 2 implicit equations, associated with each
string, as an optimization problem with restriction for the N + 2 unknowns, i.e., string current and the
voltages of the N modules and the blocking diode. Moreover, the paper evaluates four optimization
algorithms, two deterministic and two metaheuristics, to solve the problem and generate the I–V
and P-V curves of generators with different sizes. The two deterministic algorithms are TRD and
Levenberg-Marquardt (LMA), which are widely used to solve optimization problems in different areas;
while the two metaheuristic optimization algorithms are Weighted Differential Evolution (WDE) and
Symbiotic Organism Search (SOS), which have been recently used for PV applications. The evaluation
of the optimization algorithms is performed with simulations of small, medium, and large generators
in homogeneous and non-homogeneous conditions. Finally, experimental results are used to evaluate
the different optimization algorithms for a small PV generator. In light of the previous analysis,
the main advantages of the proposed procedure are listed as follows:

• A solution of the system of N + 2 implicit equation as an optimization problem with restrictions,
which can be used to explore other optimization methods to reduce the model’s solution time.

• Performance comparison of metaheuristic and deterministic optimization algorithms for solving
the problem provides guidelines to continue exploring other optimization methods to reduce the
computation time.

• A novel application of the algorithms of weighted differential evolution and search for symbiotic
organisms to solve the implicit model of series-parallel photovoltaic arrays is presented.

The rest of the paper is organized as follows: Section 2 describes the implicit model used in this
paper, Section 3 introduces the optimization problem and the operating principle of the optimization
algorithms, Sections 4 and 5 show the simulation and experimental results, respectively, and Section 6
closes the paper with the conclusions.

2. Implicit Model of a Series-Parallel Generator

This section shows a brief description of the implicit model of SP generators proposed in [18],
which includes the SDM used to represent each submodule, the system of N + 2 implicit equation of
each string, and the calculation of the array current.

2.1. Submodule Model

The SDM (see Figure 1) has been widely used in the literature to represent the electrical behavior
of PV submodules [10,19,20], which can be defined as a set of Ns cells connected in series. Such a model
is able to represent mono-crystalline and poly-crystalline PV cells technologies [20]; in this paper PV
modules formed by poly-crystalline cells have been used in simulation and experimental validations.
In the SDM, Iph represents the current generated by the photovoltaic effect, the diode D models
the nonlinearities of the PN junction, and the resistors Rp and Rs represent the leakage currents
and ohmic losses, respectively. The bypass diode (BD) is an additional connected in antiparallel to
the submodule (see Figure 1) to limit the power dissipated in the cells in mismatching conditions.
The calculation of the PV module parameters has been widely reported in literature, not only for
the SDM model [21] but also for the two-diode [22] and three-diode model [23]. Nevertheless,
the estimating parameter techniques have been more widely studied for the SDM. Such an issue
has been addressed by means of different approaches which can be grouped into: analytical,
deterministic and metaheuristic [24,25]. The first two groups present drawbacks concerning accuracy
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and convergence. Therefore, metaheuristic algorithms have been introduced as an attractive alternative
for estimating the PV cells and modules parameters [25]. Such approaches may include particle swarm
optimization [26], genetic algorithms [27], differential evolution [28], cuckoo search [29], among others.

Figure 1. Submodule model including the bypass diode.

From the circuit shown in Figure 1, it is possible to write an implicit equation that describes the
relationship between the submodule’s output voltage (V) and current (I), as shown in (1), where Isat

and η are the inverse saturation current, and ideality factor of D, respectively, Vt,d is the diode thermal
voltage and Ibd is the current through BD. The thermal voltage is defined as Vt,d = k · T/q, where k
is the Boltzmann constant, q is the electron charge and T is the cell’s temperature in K. Moreover,
Idb is defined in (2), where Isat,bd and ηbd are the inverse saturation current and ideality factor of
BD. It is worth noting that Vt,d is the same for diodes D and BD since it can be assumed that the
cell’s temperature and the bypass diode temperature are the same if there isn’t a fast change in the
irradiance [30].

f (V, I) = −I + Iph − Isat

[
exp
(

V + (I − Ibd) · Rs

Ns · η · Vt,d

)
− 1
]
− V + (I − Ibd) · Rs

Rp
+ Ibd = 0. (1)

Ibd = Isat,bd ·
[

exp

(
−V

ηbd · Vt,d

)
− 1

]
. (2)

Although the SDM parameters (i.e., Iph, Isat, Vt,d, Rs and Rh) may vary with the irradiance
and temperature [31–33], Iph is directly proportional to the irradiance; therefore, it can be used
as an indication of the incident irradiance on the submodule.

2.2. Generator’s Model

In general, an SP generator is formed by M parallel-connected strings (see Figure 2), where each
string is formed by a set of PV modules (Nm) and a blocking diode connected in series. In turn,
each module is formed by one or more submodules connected in series (Nsm); then, each string is
formed by N submodules, where N = Nm · Nsm. The generator is connected to a power converter,
which sets the generator voltage (Vgen) to perform the MPP tracking; therefore, Vgen is known for the
model and the objective is to find: the generator current (Igen), the current of each string, the voltage of
each submodule, and the voltage of each blocking diode.

Considering the Vgen is common for all the strings, each string can be analyzed and solved
independently. Then, a string formed by N submodules and a blocking diode connected in series
can be represented by a system of N + 2 nonlinear and implicit equations, as shown in (3) [18];
where �V is a vector formed by the voltages of the N submodules and the blocking diode (�V =

[V1, V2, · · · , VN , Vblk]) and Istr is the string current.
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Figure 2. Series–parallel photovoltaic generator with M strings, of N submodules each, connected in
parallel, where each string includes a blocking diode and each module has two submodules.

F
(
�V, Istr

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1 (V1, Istr)

f2 (V2, Istr)
...

fN (VN , Istr)

fN+1 (Vblk, Istr)

fN+2

(
�V
)
= ∑N+1

i=1 Vi − Vgen

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=�0. (3)

The first N equations of (3), correspond the voltage-current relationship in each submodule given
in (1), while equation N + 1 describes the model of the blocking diode and it is described in (4),
where Isat,blk, and ηblk are the inverse saturation current and the ideality factor of the blocking diode,
respectively, and Vt,d is the diode thermal voltage defined in Section 2.1, since the blocking diode
temperature is assumed the same of the submodules. Finally, equation N + 2 in (3) is obtained from
the Kirchhoff voltage law in the loop formed with the string and Vgen.

fN+1 (Vblk, Istr) = −Istr + Isat,blk ·
(

exp
( −Vblk

ηblk · Vt,d

)
− 1
)
= 0. (4)

All the electrical variables of the string are obtained by solving (3), i.e., Istr and �V; hence,
after solving all the strings, Igen can be calculated using (5).

Igen =
M

∑
j=1

Istr,j. (5)

3. Optimization Problem Formulation and Solution Methods

This Section defines the solution of (3) as an optimization problem with its restrictions and presents
a brief explanation of the optimization algorithms used in the paper to solve the optimization problem.

3.1. Optimization Problem and Restrictions

Let R be the set of real numbers and L a non-empty subset of R
n, i.e., L ⊂ R

n; then,
the system of nonlinear equations given in (3) can be expressed as shown in (6), where �x ∈ R

n
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and fk : L → R, ∀ k = 1, 2, . . . , N + 2. The solution of (6) is given by all vectors �a ∈ R
n, such that

fk (�a) = 0, ∀ k = 1, 2, . . . , N + 2. ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1 (�x) = 0
f2 (�x) = 0

...
fN+2 (�x) = 0

. (6)

Now, let’s consider the function Fobj : L → R a function defined as shown in (7).

Fobj =
N+2

∑
i=1

fi (�x)
2, with �x ∈ L. (7)

Note that Fobj is a well-defined function that guarantees the existence of a minimum, since
Fobj(�x) ≥ 0 for all �x ∈ L is a totally ordered set where exists the infimum of Fobj(L) ∈ R and this

infimum is non-negative, i.e., in f
{

Fobj(L)
}
≥ 0. Therefore, the minimum of Fobj over L exists and it

is a non-negative minimum.

Theorem 1. Suppose that the system of equations given in (3) has a solution L and (�a ∈ L); hence, is a solution
of (3) if and only if,�a minimizes Fobj given in (7).

Proof. If�a is a solution of the system of equations given in (3), then fk (�a) = 0, ∀ k = 1, 2, . . . , N + 2,
therefore, Fobj(�a) = 0. Moreover, considering that Fobj(�x) ≥ 0 for all �x ∈ L, then�a is the minimum
point of Fobj. Now, if�a minimizes Fobj but it is not a solution of (3), then Fobj(�a) must be positive, since
Fobj(�x) ≥ 0 for all �x ∈ L. Taking into account that (3) has a solution in L, then there is a solution �x∗ ∈ L

such that Fobj(�x∗) = 0 and �x∗ �= �a. Hence, Fobj(�x∗) < Fobj(�a), which contradicts that�a is a minimum
point for Fobj.

The last paragraph proves that the minimum point of the objective function given in (7) is the
set of values that solve the system of equations shown in (3). Such a solution contains the unknown
voltages in the string (�V) and the string current (Istr). However, to minimize (7) using numerical
methods, it is necessary to establish the limits of Istr and each unknown in �V as shown in Table 1.

Table 1. Upper and lower limits of the electrical variables in a string.

Variable Lower Limit Upper Limit

V1 . . . VN −Vbd,max VOC,STC

Vblk −Vblk,max 0 V

Istr 0 A ISC,STC

The lower limit of the string current is 0 A; while the upper limit is ISC,STC, which corresponds to
the submodule short-circuit current in Standard Test Conditions (STC), i.e., irradiance of 1 kW/m2

and the submodule temperature is 25 ◦C (i.e., T = 298.15 K). Moreover, the upper limit of the
submodules voltages (V1 . . . VN) is open-circuit voltage in STC (VOC,STC), which corresponds to the
submodule voltage when I = 0 A. The lower limit of V1 . . . VN is the negative value of the maximum
bypass diode voltage (Vbd,max), defined in (8), which corresponds to the bypass diode voltage when
Ibd = ISC,STC. This current corresponds to the worst-case scenario where the submodule is completely
shaded, and the string current is maximum. Finally, the upper limit of the blocking diode voltage is
0 V, which corresponds to Istr = 0 A; while the lower limit corresponds to the negative value of the
maximum blocking diode voltage (Vblk,max) defined in (9).

Vbd,max = ηbd · Vt,d · ln
(

ISC,STC

Isat,bd
+ 1
)

. (8)
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Vblk,max = ηblk · Vt,d · ln
(

ISC,STC

Isat,blk
+ 1
)

. (9)

3.2. Optimization Methods

This section presents a brief description of the optimization algorithms used to minimize the
objective function introduced in (7) and to find the solution to the system of nonlinear equations
associated with the string (3).

3.2.1. Trust-Region Dogleg (TRD)

This is a deterministic algorithm with a single search agent. It starts from an initial point x0,
that belongs to the domain of f (x), and searches the point x∗ that minimizes the function f through
the iterative process indicated in (10), where xk is the actual position of the search agent and pk is the
step of the k-th iteration.

xk+1 = xk + pk. (10)

To determine the magnitude and direction of the vector pk that approaches xk+1 to x∗ is posed as
an optimization problem, as shown in (11), where mk(p) is an approximate function of f (x) formed by
the two first terms of the Taylor series in a region Qk that contains xk.

min
p

{mk (p) , p ∈ Qk}. (11)

If mk(p) is a good approximation of the objective function in a region Qk, then this region is
denominated thrust-interval and it is defined as Qk = {p | |p | < Δk}, where Δk is the radius of the
thrust-region in the k-th iteration. Once the vector p∗k is found, i.e., the solution of (11), it is necessary
to verify the fulfillment of the condition expressed in (12).

f (xk + p∗k ) < f (xk) . (12)

If condition (12) is fulfilled, the actual position is updated as xk+1 = xk + p∗k ; then, the next
step is to calculate a new model mk+1 and a new trust-region Qk+1 from the updated point xk+1.
Otherwise, if condition (12) is not fulfilled, the algorithm keeps the actual position, i.e., xk+1 = xk,
and the trust-region is reduced by reducing its radius (Δk+1 < Δk). The details of this algorithm can be
found in [34] along with different variants of this method.

3.2.2. Levenberg-Marquardt (LMA)

This is a deterministic optimization algorithm that requires the calculation of the jacobian matrix
(J) and it is especially effective for solving nonlinear problems, where methods that used linear models,
like Gauss–Newton, are not effective for the entire solution region [35]. The essence of this method is
to select the search direction of the next step between the one given by the Gauss–Newton method and
a direction close to the one provided by the gradient descent method. That direction search is selected
by a criterion denominated μk.

Let’s consider an optimization problem that has the structure of a trust-interval, as shown in (13)
and (14) [35].

min
1
2
‖J(xk)(x − xk) + rxk‖2

2 . (13)

s.t. ‖x − xk‖ ≤ Δk. (14)
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This is a least-squares problem, which is linear with restrictions because r(xk) is a linearized
model valid in the trust-region defined by Δk. The solution to the problem described in (13) and (14) is
obtained by solving (15), where s = x − xk, and the position of the next iteration is given by (16) [35].

(J(xk)
T J(xk) + μk I)s = −J(xk)

Tr(xk). (15)

xk+1 = xk − (J(xk)
T J(xk) + μI)−1 · J(xk)

Tr(xk). (16)

When
∥∥(J(xk)

T J(xk))
−1 J(xk)

Tr(xk)
∥∥ ≤ Δk, then μk = 0 and (16) is solved by sk; in this case,

the best search direction is the same as the Gauss–Newton method. Otherwise, μk > 0 and the solution
of (16) fulfills sk = Δk; with this condition, it is possible to find the solution of (16) and the value of
μk. When μk � 0, the search direction is close to the one of the gradient descent method and (15)
approaches to (17). Further details of the Levenberg–Marquardt algorithm are provided in [35].

μk Is = −J(xk)
Tr(xk). (17)

3.2.3. Weighted Differential Evolution (WDE)

This metaheuristic optimization method uses the evolution concept to solve numerical
optimization problems and it is characterized by calculating the search direction and the search
steps in an evolutionary way [36]. The general process of the WDE algorithm is introduced in
Figure 3, where the first step is to generate two populations denominated initial population (P)
and subpopulation (SubP), both randomly created with a normal distribution. Then, SubP is mutated
to create TempP and vector F and binary map M are generated, by using random variables. Population
SubP, F and M are used in a mutation and crossover proves to generate the new population (T),
which requires verification that all the individuals fulfill the problem restrictions (boundaries control).
The individuals that do not fulfill the restrictions are adjusted to be within the problem borders.
Now, the objective function is evaluated for all the individuals of T and SubP and the best individuals
in both populations are identified (T(i) and SubP(i)). If T(i) is a better solution than SubP(i), then SubP(i)
is updated (SubP(i) = T(i)), and population P is updated from SubP; otherwise, TempP, F and M are
calculated to generate a new T. Finally, the best individual of P is evaluated to verify if it fulfills the
stop criteria; else, a new algorithm iteration starts.

Figure 3. Flow chart of the weighted differential evolution algorithm.
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3.2.4. Symbiotic Organism Search (SOS)

This is a metaheuristic optimization algorithm inspired by the different interactions between the
living beings of different species that share an ecosystem, named symbiotic relationships. The first
phase of the algorithm is to create an initial population of particles that represents an ecosystem,
and each particle represents an organism. Then, it is necessary to define some parameters, like the
solution boundaries and the stop criteria, before starting the iterative process, which is based on
three types of relationships: mutualism, commensalism, and parasitism. In the mutualism phase, two
organisms participate, Xi and Xj, where Xi is the i-th organism into the ecosystem and Xj is a randomly
chosen organism within the ecosystem. In this phase, both organisms could be benefited from each
other through the creation of a new vector (Mvec) described in (18)

Mvec =
Xi + Xj

2
. (18)

Then, the algorithm calculates two new candidates to replace Xinew and Xjnew by using (19)
and (20), which model the mutualist symbiotic relationship between two organisms. In (19) and (20)
rand(0, 1) is a vector with random numbers between 0 and 1, and Xbest is the organism with the lowest
value of the cost function, also known as the organism with the best adaptation in the ecosystem.
Moreover, in mutualist relationships some species benefit more than the others; this phenomenon
is represented by the factors BF1 and BF2 in (19) and (20), which are randomly assigned with 1 or 2.
Once Xinew and Xjnew are calculated, the algorithm evaluates the objective function for both organisms.
If Xinew and Xjnew are better solutions than Xi and Xj, then Xinew and Xjnew replace Xi and Xj in
the ecosystem.

Xinew = Xi + rand(0, 1) · (Xbest − Mvec · BF1). (19)

Xjnew = Xj + rand(0, 1) · (Xbest − Mvec · BF2). (20)

In the commensalism phase, Xi is the same organism used in the previous phase, while Xj is
an organism randomly selected from the ecosystem, but it is different than Xj used in the mutualism
stage. The commensalism relationship between Xi and Xj is represented by (21), where Xi benefits
from Xj. If the objective function of the Xinew is less than the one of the objective function of Xi, then
Xi is updated in the ecosystem.

Xinew = Xi + rand (−1, 1) · (Xbest − Xj
)

. (21)

The last symbiotic relationship is parasitism, where the organism Xj is aleatory chosen from
the ecosystem and Xi is the same organism used in the commensalism phase, but with a random
modification of one of its components. The modified Xi is named parasite vector and if its objective
function if better than Xj, then the parasite vector replaces Xj; otherwise, the parasite vector is
discarded, and it is said that Xj developed immunity to the parasite. Once the three phases end
for the i-th organism, the algorithm moves to the next organism to repeat the process until all the
organisms in the ecosystem have been processed. At this point, one iteration if finished and the
stop criteria are evaluated, if no stop condition is met, then the algorithm starts a new iteration.
The detailed explanation of this algorithm is shown in [37]. Keep in mind that the evaluated algorithms
(many of them) are sensitive to the assumed values for their multiple parameters. It is so sensitive that
if they are not chosen with caution, they may not even converge to the expected solution even for PV
arrays operating under uniform conditions. This aspect is a notable disadvantage of this metaheuristic
solution strategy. Until now, there is no solid mathematical basis to predict the convergence and
influence of these parameters. It is certainly possible that the results presented could have been
obtained in shorter computation times, having selected other values for the algorithm parameters.
However, it is worth noting that we tune the optimization algorithms in order to obtain the best results
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for all the algorithms. Particularly, the parameters of the metaheuristic methods selected for this work
were defined randomly.

4. Simulations Results

This section introduces the simulation results for small, medium and large generators, i.e., PV
generators formed by a single string with 6, 36 and 72 series-connected submodules, respectively.
All the simulated generators are formed by Trina Solar TMS-PD05 de 270 W [38] modules, which are
composed of three series-connected submodules. Moreover, the bypass diodes of the three submodules
in this section are GF3045T [39]. It is worth noting that the generators considered in this section only
have one string. This is because for generators with M strings each string is independently solved,
which is equivalent to solve one string M times and then to sum the currents of all the strings to
calculate the array current. The SDM parameters in STC are calculated, with the procedure proposed
in [40], from the module datasheet information. Then, the parameters are adjusted for a module
temperature of 44 ◦C (T = 44 ◦C) and an irradiance of 1 kW/m2 (G = 1 kW/m2), by following
the procedure proposed in [31], obtaining the following values: Iph = 9.311 A, Isat = 23.782 ηA,
η = 1.097, Rs = 0.088 Ω, and Rp = 246.670 Ω. Afterward, the bypass diode parameters are calculated
from the datasheet information as follows: Isat,bd = 851, 540 μA and ηbd = 1.634. The irradiance
condition of each submodule in the generator is represented by using the linear dependence on
Iph with the submodule irradiance. Therefore, the irradiance reduction in a submodule produced
by some kind of shading is represented by a coefficient Pirr that multiplies Iph and varies between
0 and 1. Thus the reduction of Iph is proportional to the reduction of the submodule irradiance.
The Pirr coefficients of all the string submodules are grouped in a vector ( �Pirr) that represents the
shading conditions of the string. The solutions obtained with the four optimization methods used in
this paper are compared with the solution of the equivalent electrical circuit (EEC) of each generator.
Those EECs for the small, medium, and large generators are implemented in Simulink of Matlab; hence,
the errors calculated for the optimization algorithms are calculated concerning the EEC solution.

4.1. Small Generator

This generator is formed by two modules connected in series that correspond to six submodules.
This low power generator may be used in grid-connected applications, by using a microinverter,
or in stand-alone applications to charge a battery or to feed a set of lights. The simulation results
of this generator operating under homogeneous (i.e., �Pirrh = [1 1 1 1 1 1]) and partial shading
(i.e., �Pirrnh = [0.8 0.8 0.8 0.8 0.3 0.3]) conditions are introduced in Figures 4 and 5, respectively.
Those figures show the I–V curves and the error in the current calculation for all the implemented
optimization methods, which use the stop criteria shown in Table 2. Moreover, the evaluation criteria
of the simulation results (see Table 3) are: the computation time, the root mean square error (RMSE),
and the number of evaluations of the objective function (Feval).

Table 2. Stop criteria for the optimization methods used for the small generator.

Stop Criteria TRD LMA WDE SOS

Number of particles N/A N/A 20 50

Maximun iteration number 1 × 103 1 × 103 1 × 104 5 × 104

Tolerance in the solution variation 1 × 10−3 1 × 10−9 N/A N/A

Tolerance in the objective function N/A N/A 1 × 10−18 1 × 10−18
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(a)

(b)
Figure 4. Simulation results of the small generator (six submodules) under homogeneous conditions.
(a) Current vs. voltage (I–V) curve. (b) Current calculation error.

(a)

(b)
Figure 5. Simulation results of the small generator (six submodules) under partial shading conditions.
(a) Current vs. voltage (I–V) curve. (b) Current calculation error.

In Figure 4a it can be observed that all the implemented optimization methods can reproduce the
I–V curve of a small string (six submodules) under homogeneous conditions. Additionally, the errors
in the string current calculation are similar for the different methods, as shown in Figure 4b and Table 3.
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When the generator operates in partial shading conditions, three of the four algorithms (TRD, LMA,
and SOS) can solve the system of implicit equations for all the voltages to reproduce the I–V with
similar errors (see Figure 5 and Table 3). However, the WDE algorithm presents significant errors in
the current calculation for voltages between 20 V and 55 V, as it is evidenced in Figure 5 and Table 3.
Therefore, WDE is not a suitable algorithm to solve the model of a small generator in partial shading
conditions. Note that under homogeneous and partial shading conditions the computation time and
number of cost function evaluations (Feval) of the deterministic optimization methods (TRD and LMA)
are significantly less than the computation time and Feval of the metaheuristic algorithms (WDE and
SOS), as shown in Table 3. Moreover, the RMSE values of the methods able to solve the optimization
problem provide similar errors in the I–V curve reproduction.

Table 3. Evaluation criteria for the small generator operating under homogeneous and partial
shading conditions.

Homogeneous Conditions

Algorithm Computation Time (s) RMSE (A) Feval

EEC(REF) 4.9 0 0

TRD 1.1 0.0957 2.03 × 104

LMA 1.2 0.0957 2.32 × 104

WDE 308.0 0.0957 1.36 × 107

SOS 164.0 0.0957 7.48 × 106

Partial Shading Conditions

EEC(REF) 5.8 0 0

TRD 1.6 0.0387 2.69 × 104

LMA 1.6 0.0387 3.12 × 104

WDE 281.8 0.3488 1.24 × 107

SOS 161.3 0.0388 7.55 × 106

4.2. Medium Generator

In this case, the generator is formed by one string with 12 modules (36 submodules) connected in
series, which is a typical configuration for a residential application with a string inverter (e.g., ABB
UNO-7.6-TL-OUTD). For this generator, the stop criteria of the optimization algorithms are modified
concerning the previous subsection, as shown in Table 4, to improve the performance of the algorithms.

Table 4. Stop criteria for the optimization methods used for the medium and large generators.

Stop Criteria TRD LMA WDE SOS

Number of particles N/A N/A 20 100

Maximun iteration number 4 × 103 4 × 103 1 × 104 1 × 105

Tolerance in the solution variation 1 × 10−5 1 × 10−9 N/A N/A

Tolerance in the objective function N/A N/A 1 × 10−18 1 × 10−18

The medium generator I–V curves for homogeneous and partial shading conditions are presented
in Figures 6 and 7, respectively; while the computation time, RMSE and Feval are introduced in Table 5.
Moreover, the vectors that define the homogeneous ( �Pirrh) and partial shading conditions ( �Pirrnh) have
36 elements and are defined as follows: all elements in �Pirrh are 1 and �Pirrnh has 24 elements equal to
0.8, 6 elements equal to 0.6, and 6 elements equal to 0.2.
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The results in Figures 6 and 7 and Table 5 show that the deterministic methods (TRD and
LMA) solve the system of equations of the string for homogeneous and partial shading conditions.
Additionally, the RMSE values for the I–V curves are the same for both deterministic methods
(less than 0.1 A); nevertheless, computation times of TRD are less than the computation times of
LMA for both homogeneous and partial shading conditions. In general, metaheuristic methods present
greater errors and computation times than the deterministic methods in the I–V curve’s calculation.
For homogeneous conditions, the current errors are concentrated in medium and high generator
voltages (from 250 V to 400 V), as shown in Figure 6; those errors generate RMSE values between 13%
and 60% greater than the ones of the deterministic methods. Whilst for partial shading conditions,
the RMSE values of the metaheuristic methods between 15.3 and 21.3 times greater than the RMSE
values of the deterministic methods, and the errors occur in the entire range of the generator voltage
(see Figure 7). As observed, the computation times of the metaheuristic algorithms are two orders of
magnitude greater than the computation times of the deterministic methods, which is also reflected
in the number of cost function evaluations (Feval). Finally, the results in Table 5 indicate that the
implemented metaheuristic optimization methods are not suitable for solving the implicit model of
a medium PV generator.

(a)

(b)
Figure 6. Simulation results of the medium generator (36 submodules) under homogeneous conditions.
(a) Current vs. voltage (I–V) curve. (b) Current calculation error.
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(a)

(b)
Figure 7. Simulation results of the medium generator (36 submodules) under partial shading conditions.
(a) Current vs. voltage (I–V) curve. (b) Current calculation error.

Table 5. Evaluation criteria for the medium generator operating under homogeneous and partial
shading conditions.

Homogeneous Conditions

Algorithm Computation Time (s) RMSE (A) Feval

EEC(REF) 28.1 0 0

TRD 9.6 0.1034 2.78 × 105

LMA 10.0 0.1034 2.84 × 105

WDE 1898.8 0.1170 5.24 × 107

SOS 1271.3 0.1660 4.54 × 107

Partial Shading Conditions

EEC(REF) 28.3 0 0

TRD 15.9 0.0460 4.56 × 105

LMA 20.3 0.0460 5.07 × 105

WDE 1784.4 1.0273 5.11 × 107

SOS 1296.9 0.7486 4.54 × 107
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4.3. Large Generator

This generator is formed by a single string with 24 modules (72 submodules) connected in
series, which can be found in industrial applications or high-power generators that use inverters whit
maximum input voltages of 1 kV (e.g., Sunny Tripower 20000TL). The stop criteria are the same shown
in Table 4 and the vectors that define homogeneous ( �Pirrh) and partial shading ( �Pirrnh) conditions have
72 elements defined as follows: all elements in ( �Pirrh) are 1 and ( �Pirrnh) has 30 elements equal to 0.8, 30
elements equal to 0.6, and 12 elements equal to 0.2. The generator I–V curves and the errors in the
current calculation are shown in Figures 8 and 9 for homogeneous and partial shading conditions,
respectively; while the computation time, RMSE and Feval are presented in Table 6.

(a)

(b)
Figure 8. Simulation results of the large generator (72 submodules) under homogeneous conditions.
(a) Current vs. voltage (I–V) curve. (b) Current calculation error.
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(a)

(b)
Figure 9. Simulation results of the large generator (72 submodules) under partial shading conditions.
(a) Current vs. voltage (I–V) curve. (b) Current calculation error.

Table 6. Evaluation criteria for the large generator operating under homogeneous and partial
shading conditions.

Homogeneous Conditions

Algorithm Computation Time (s) RMSE (A) Feval

EEC(REF) 61.8 0 0

TRD 42.0 0.1041 1.13 × 106

LMA 36.6 0.1041 8.25 × 105

WDE 5410.8 0.2415 1.14 × 108

SOS 3047.3 0.8351 9.10 × 107

Partial Shading Conditions

EEC(REF) 92.4 0 0

TRD 72.3 0.0404 1.81 × 106

LMA 85.6 0.0408 1.87 × 106

WDE 5586.4 1.3015 1.13 × 108

SOS 3124.7 0.9886 9.10 × 107

Once more, the results in Figures 8 and 9 and Table 6 indicate that the deterministic optimization
methods (TRD and LMA) are capable to reproduce the I–V curves for the evaluated conditions with
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RMSE less than 0.10 A. In homogeneous conditions, the computation time of LMA is 12.9% less than
the one of TRD; while in partial shading conditions the computation time of TRD is 15.5% less than
the computation time of LMA. Moreover, the values of Feval for TRD and LMA have similar behavior
to the computation time. The metaheuristic algorithms show errors and computation time greater
than the deterministic algorithms in the reproduction of the I–V curves in the evaluated operating
conditions. For homogeneous conditions (see Figure 8) the biggest errors are present in high voltages;
as consequence, the RMSE values of the metaheuristic methods are significantly greater (between 132%
and 700%) than the deterministic algorithms. In partial shading conditions (see Figure 9) the errors
are in the whole voltage range, making the RMSE values of the metaheuristic methods between 24.2
and 31.9 times the RMSE values of the deterministic methods. Additionally, the computation time
of the metaheuristic algorithms is two orders of magnitude greater than the one of the deterministic
algorithms, which is similar to the differences in Feval (see Table 6). After the evaluation of the
four optimization algorithms for small, medium and large PV arrays, it seems that metaheuristic
optimization methods do not worth their evaluations because the evaluated deterministic optimization
methods outperform the evaluated metaheuristic methods. However, those results could not be
obtained if the comparison is not performed; therefore, we consider that the evaluation is proposed
in the paper is valid, since it is necessary to explore different optimization methods to reduce the
computation time of the model. Such a reduction is important for applications like reconfiguration,
energy production estimation, evaluation of MPPT techniques, among others.

5. Experimental Results

The performance of the optimization methods was validated with experimental data, which were
obtained with the test bench shown in Figure 10 This test bench if formed by a PV with Matlab,
a programmable electronic load BK Precision 8500, and a Trina Solar TMS-PD05 de 270 W [38] PV
module. The PV module is the same one used in the simulations (formed by 3 submodules); however,
the SDM parameters of the submodules (Iph = 9.316 A, Isat = 1.549 nA, η = 0.972, Rs = 0.175 Ω
and Rp = 400.804 Ω) and the bypass diodes (Isat,bd = 851, 540 μA and ηbd = 0.2261) are calculated
from experimental I-V curves. The experimental validation considers two cables AWG 12 of 28.96 m
each, which introduce losses that can be represented by resistance in series with the module of 313 mΩ.
Therefore, such resistance was included in the Rs parameter of each submodule; thus, the ohmic losses
introduced by the cables are lumped in the Rs of the submodules.

Figure 10. Test bench used to obtain the experimental data. (a) PV module with three submodules.
(b) Electronic load. (c) PC with Matlab.
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The small generator used for the experimental validation was formed by one string of three
submodules, which was evaluated for homogeneous (C-1) and partial shading (C-2) defined by the
vectors ( �Pirr,1) = [0.4 0.4 0.4] and ( �Pirr,2) = [0.620 0.598 0.210], respectively. Moreover, the stop criteria
used for the optimization algorithms were the same ones defined in Table 2. The experimental results
for conditions C-1 and C-2 are summarized in Figure 11 and Table 7. Figure 11 introduces the I–V
curves obtained with the experimental test bench, the four optimization algorithms (TRD, LMA, WDE,
and SOS), and the equivalent electrical circuit (EEC) for conditions C-1 and C-2; while Table 7 shows
the computation time, RMSE values, and Feval for the different methods.

In general, the experimental results agree with the simulation results obtained for small generators
(Section 4.1) regarding computation time and current errors. On the one hand, in homogeneous
conditions (C-1), the four optimization algorithms generate I–V curves that fit the experimental data
with practically the same RMSE values. Moreover, the error in the current calculation for condition
C-1 increases for high voltages (circles in Figure 11b), which agrees with the behavior shown in the
simulation results for small generators (see Figure 4b). On the other hand, in partial shading conditions
(C-2) three algorithms (TRD, LMA and SOS) reproduce the experimental I–V curves with the same
RMSE values. However, the WDE presents significant errors in the current calculation for medium
voltages (blue x in Figure 11b), which agree with the simulation results in Figure 5 of Section 4.1
(small generators). The behavior of the computation time in the experimental validation is similar
to the one presented in simulation results. The computation time of the metaheuristic algorithms
are, approximately, two orders of magnitude greater than the deterministic algorithms. Additionally,
the computation time of the deterministic methods was less than the EEC in a proportion similar to
the one presented above. The computation time of the four optimization algorithms is reflected in the
Feval values, which are similar to the values in the simulation results. Finally, Table 7 shows that the
smallest errors were obtained with the EEC model, which verifies the usefulness of this model to be
used as the reference in the simulation results.

Table 7. Evaluation criteria for a small generator operating under homogeneous and partial shading
conditions from experimental results.

Scenario Method Computation Time (s) RMSE (A) Feval

1 EEC 3.04 0.0860 0

2 TRD 0.67 0.0766 1.18 × 104

C-1 3 LMA 0.78 0.0766 1.33 × 104

4 WDE 74.33 0.0766 3.57 × 106

5 SOS 98.17 0.0766 4.75 × 106

1 EEC 3.15 0.0898 0

2 TRD 1.02 0.1012 1.82 × 104

C-2 3 LMA 1.23 0.1012 2.22 × 104

4 WDE 83.40 0.3698 3.87 × 106

5 SOS 104.33 0.1012 4.89 × 106
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(a)

(b)
Figure 11. Experimental results in a small generator (3 submodules) under homogeneous and partial
shading conditions. (a) Current vs. voltage (I–V) curve. (b) Current calculation error.

6. Conclusions

The solution of the implicit model of a PV generator in SP configuration as an optimization
problem has been proposed and solved with deterministic and metaheuristic algorithms. The implicit
model of an NxM SP generator (M strings with N submodules each) is formed by M systems of N + 2
implicit equations, where each system of equations corresponds to one string and it can be solved
independently. Moreover, in a system of N + 2 implicit equations, the unknowns correspond to the
N submodules voltages, the blocking diode voltage, and the string current. To solve a system of
N + 2 implicit equations, the paper proposes an objective function and defines the upper and lower
restrictions for the unknowns. Finally, the paper evaluates two deterministic optimization algorithms
(TRD and LMA) and two metaheuristic algorithms (WDE and SOS) to solve the optimization problem
and generate the I–V curves of small, medium, and large generators.

The proposed objective function and the performance of the four evaluated methods were
validated with simulation and experimental results. The simulations show that the deterministic
optimization methods can solve the optimization problem for small, medium and large generators
operating in homogeneous and partial shading conditions; therefore, with these algorithms,
it is possible to reproduce the generator I–V curves. Moreover, simulation results show that the
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metaheuristic algorithms are not able to solve the optimization problem in all cases. On the one
hand, SOS correctly reproduces the I–V curves for small generators under homogeneous and
non-homogeneous conditions and medium generators in homogeneous conditions. Nevertheless,
for the other simulation scenarios, the errors were significant. On the other hand, WDE only solved the
optimization problem for small generators under homogeneous conditions; while the errors were large
for the other cases concerning the deterministic methods. We believe that metaheuristic algorithms
performed worse because due to the random selection of parameter values instead of the nature
of the selected algorithms (weighted differential evolution and search for symbiotic organisms).
This could even be explained based on the No Free Lunch Theorems (NFL) for Optimization.
Additionally, experimental results confirm simulation results for small generators in homogeneous
and non-homogeneous conditions, where all the methods correctly reproduce the I–V curves except
for WDE under partial shading conditions. Moreover, experimental results illustrate the usefulness of
the EEC model as a reference for simulation results.

Finally, the results suggest that the solution of the implicit model of SP generators should
be performed with deterministic algorithms, which suggests the necessity of evaluating other
metaheuristic optimization methods to solve the proposed problem and reduce the computation time.
Those presented results should be used to evaluate different solutions for energy yield calculations or
economic analysis of a PV system; hence as future work, an addition to the presented algorithms with
energy predictions or economic calculations will be considered.
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Abstract: In this manuscript, distinct approaches were used in order to obtain the best electrical power
estimation from photovoltaic systems located at different selected places in Mexico. Multiple Linear
Regression (MLR) and Gradient Descent Optimization (GDO) were applied as statistical methods
and they were compared against an Adaptive Neuro-Fuzzy Inference System (ANFIS) as an
intelligent technique. The data gathered involved solar radiation, outside temperature, wind speed,
daylight hour and photovoltaic power; collected from on-site real-time measurements at Mexico City
and Hermosillo City, Sonora State. According to our results, all three methods achieved satisfactory
performances, since low values were obtained for the convergence error. The GDO improved the
MLR results, minimizing the overall error percentage value from 7.2% to 6.9% for Sonora and from
2.0% to 1.9% for Mexico City; nonetheless, ANFIS overcomes both statistical methods, achieving a
5.8% error percentage value for Sonora and 1.6% for Mexico City. The results demonstrated an
improvement by applying intelligent systems against statistical techniques achieving a lesser mean
average error.

Keywords: ANFIS; statistical method; gradient descent; photovoltaic system; sustainable development

1. Introduction

Considerable research has been developed internationally in the field of photovoltaic systems and
power generation [1–3]. Mexico is a country that receives abundant solar energy, with the northwest
region being the one with the highest annual incidence of solar radiation, achieving radiation indexes
between 5.6 and 6.2 kWh/m2 per day; nevertheless, its advances on the photovoltaic field are scarse
nowadays, although there are many possibilities of research in this topic [4].
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There are many scientific reports on statistical methods to estimate power generation [5–8].
Multiple Linear Regression (MLR) includes any study area, since it finds an approach to the relation
among variables [9].

A satisfactory photovoltaic power estimation involving meteorological variables was carried out
in [10] in which a Gradient Descent Optimization (GDO) minimizes the error value between the real
and estimated variables after many iterations; even so, it is mentioned that other techniques may
obtain better results despite their lower or greater complexity.

On the other hand, intelligent techniques have acquired a worldwide reputation as simple
methods to represent and replicate the behavior of a process with a not-so-understood performance.
These techniques have potential to model, precisely, linear and non-linear processes, the latter being
their strongest application. Some studies have used intelligent techniques to analyze photovoltaic
power behavior, e.g., in [11] an artificial neural network (ANN) was used to obtain a model to forecast
the photovoltaic energy; however, solar radiation was the only meteorological variable analyzed.
In [12], different ANN techniques were used to perform a comparative study of systems predicting
photovoltaic thermal energy data; nevertheless, due to solar radiation measurement devices being
expensive and requiring periodic maintenance, some results employed global solar radiation (GSR)
estimations through ANNs. In [13], it was established that a photovoltaic system is affected by
many meteorological conditions; a predictive model was proposed considering outside temperature,
solar radiation and direction and speed of wind. In [14], an ANN-Adaptive Neuro-Fuzzy Inference
System (ANFIS)-based forecast model for predicting the photovoltaic generation and wind energy
generation is presented and considers the susceptibilities to which renewable energies are exposed
due to nature’s vagaries. In [15], it is proved that an adaptive neuro-fuzzy inference system technique
provides a reliable tool to estimate temperature from photovoltaic systems. In [16], the solar still
productivity prediction aims to be improved by using an ANFIS due to its simple maintenance and
ready affordability.

The importance of achieving a satisfactory model design with a minimum error between estimated
and real values is crucial in precision studies or management tasks in which certain differences among
them may result in economic problems or loss of information.

As can be seen, diverse statistical and intelligent methods have been applied to estimate
photovoltaic power generation. However, this topic still is an open field that requires better estimation
methods, in particular, those related to intelligent systems.

Since it is relevant to develop new estimation strategies in photovoltaic systems, the aim of this
work is to compare ANFIS methodology with MLR and GDO as statistical approaches by comparing
electrical power estimation data from photovoltaic systems [10]. It was observed that all three methods
achieve a satisfactory estimation performance, but ANFIS had a better estimation capacity.

2. Methodology

2.1. Statistical Methods

2.1.1. Multiple Linear Regression

To create a statistical representative model of the power generated by solar energy, the concept
of multiple linear regression was applied. The relation that exists among all the input variables and
the output is represented by a “linear regression”. Depending on the number of input variables,
the regression can be simple or multiple [6,17–19]. The purpose of multiple linear regression is to find
an estimation of the real output through an equation involving all the gathered data, as shown in
Equation (1).

y = β0 + β1x1 + β2x2 + ... + βkxk + ε (1)

where y is the estimated output, xk is the kth input variable, βk is the characteristic coefficient of every
variable and ε is the error between the model and the real data.
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To obtain Equation (1), a matrix “X” and a vector “y” are generated. The number of columns for
“X” is k + 1, with the condition that the first column is filled with ones. The dimension of the columns
and the vector “y” depends on the total quantity of data “n”. Consequently, Equation (2) is applied to
find the respective coefficient values.

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
1 x31 x32 · · · x3k
...

...
...

...
1 xn1 xn2 · · · xnk

⎤
⎥⎥⎥⎥⎥⎥⎦

y =

⎡
⎢⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎥⎦ β =

(
X′X
)−1 (X′y

)
(2)

The data collected from Hermosillo, Sonora (located in the northwest region of Mexico) were
obtained with the support of the University of Sonora (UNISON), while the data from Mexico City
were issued by the Centro de Investigación y de Estudios Avanzados (CINVESTAV) campus Zacatenco.
Solar radiation, outside temperature, wind speed and daylight hour (time) served as the input
meteorological variables, while the electric power was the output for both of the PV systems. Each data
sample was registered every 5 min. According to the above, the matrix “X” and the vector “y” from
Equation (2) are shown in Equation (3).

X =
[

1 Solar Radiation Temperature Wind Speed Time
]

y = [Electric Power]
(3)

2.1.2. Gradient Descent Optimization

The GDO has been used to estimate different behaviors in several studies [20,21]. As seen in [10],
this method seeks the optimum βk coefficients now symbolized by θ. To achieve the minimum possible
error value in Equation (4), the cost function is used.

J [θ] =
1

2m

m

∑
i=1

(
hθ

(
x(i)
)
− y(i)

)2
(4)

where θ = β is as mentioned in Equation (1), x (i) represents the ith row of matrix “X” and y (i) is the
value of the ith row of vector “y”, both described in Equation (2). It is important to notice that, in this
case, the number of columns in matrix “X” is equal to the number of variables involved, omitting the
column full of ones. The gradient descent, denoted by Equation (5), aims to converge to the cost
function minimum by its partial derivative. The quickness of the convergence is given by α.

θk := θk − α
∂

∂θk
J [θ] (5)

Equation (6) represents the substitution of Equation (4) into Equation (5) and it is known as the
gradient descent implementation on linear regression method, which has to be repeated n-times until
the convergence is done.

θk := θk − α
1
m

m

∑
i=1

(
hθ

(
x(i)
)
− y(i)

)
· x(i)k (6)

Once all the coefficients have been computed, they are substituted into Equation (7)

hθ (x) = θ0 + θ1x1 + θ2x2 + ... + θkxk + ε (7)

where hθ (x) is the estimated output, xk is the kth input variable, θk is the characteristic coefficient for
every variable and ε is the error between the model and the real data.
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2.2. Intelligent Technique

An intelligent technique consists of a dynamic learning process in order to generate an output
as close as possible to the required one. Among the best intelligent systems are the artificial neural
network, fuzzy systems and the adaptive neuro-fuzzy inference system [22,23]. For this contribution,
an ANFIS is considered combining the strengths of a neural network and fuzzy systems, obtaining a
better performance.

An artificial neural network (ANN) imitates the processing of a human brain and it has a great
number of processing units (neurons or nodes) working in parallel. These nodes can be circular or
squared in order to represent different adaptive capabilities. A circular node employs fixed operations
that cannot be altered at any time (sum or product of inputs), unlike a squared node, which can be
modified by the user (activation functions).

All the neurons are highly connected among each other through links (synapse) with weights.
The network has a layer for all the inputs, a layer for one or more outputs and one or more hidden
layers between the input and the output.

A neural network requires previous assumptions so it can learn from examples by adjusting the
connection weights. The learning may be supervised if the right output is specified (being the case
for this work) or non-supervised if it has to explore the relations between the patterns and learn to
categorize the inputs [11,24].

A fuzzy system is able to apply conditional sentences as a human brain would. The objective of
every system that uses fuzzy logic is to describe the degrees of the output sentences (given by a series
of rules) according to the input ones. The “if–then” fuzzy rules are sentences with the form “if an event
A happens then an event B will occur”, where both events are known as the labels of fuzzy sets from
their corresponding membership functions (MF). The strength of this system is to be able to capture all
the imprecise modes of the reasoning, for example:

If the pressure is high, then the volume is small

where, analogous to the neural network, each and every variable has a specific type of membership
function according to its behavior, which can be triangular, trapezoidal, gaussian, etc., as well as to its
quantity [25].

Figure 1 shows three trapezoidal membership functions for the variable called “pressure”.
Each of them represents a range of values labeled as low (blue), medium (red) and high (yellow).
This advantage allows to embrace all the possible data and to classify them as necessary.

Figure 1. Example of three trapezoidal membership functions.

ANFIS is the union of both methods mentioned above, the neural network and fuzzy systems,
in which the advantages of both cooperate in order to achieve easier and faster estimations [26].

The ANFIS consists of if–then rules and input–output pairs. Moreover, for the training,
the learning algorithms of neural networks are used. In order to simplify the explanations, a basic
fuzzy inference system consists of two inputs (x and y) and one output (z) [27]. Figure 2 shows that,
if each input consists of three membership functions (represented as squared nodes, because they
can be modified by the user), then the input layer would have six neurons (three for each input) and,
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in turn, the output layer would just have one neuron. As for the hidden layers, the first one of them
will be formed by each of the if–then fuzzy rules mentioned before; by this, an ANFIS is created.

Figure 2. Adaptive Neuro-Fuzzy Inference System (ANFIS) structure with two inputs and three
membership functions for each one.

The variables used to train the ANFIS are radiation, outside temperature, wind speed,
daylight hour and electrical power, as mentioned in Section 2.1.1. Figure 3 presents the MF of
input variables for the intelligent system. The behavior of each variable helps to identify the type of
MF to be declared. Solar radiation, wind speed and daylight hour, due to their rapid change with
respect to time, have 4, 3 and 3 triangular MF, respectively. As for temperature, which presents a slow
variation with time, it has 3 gaussian MF.

Figure 3. Membership functions for ANFIS: (a) Triangular for solar radiation; (b) gaussian for
temperature; (c) triangular for wind speed; (d) triangular for daylight hour.
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According to the above, the structure of the ANFIS is presented in Figure 4. The method applied to
train the ANFIS is called hybrid training. This process consists of two steps; the first one computes the
result of the next linked node according to the nodes behind, i.e., based on Figure 2 each circular node
depends on two rectangular nodes (MF of variables x and y). Once all the nodes have been calculated
and the output is obtained, the second step must identify the error in each node and minimize it during
the training iterations in order to improve the estimation result. The first and second steps are based
on least squares and gradient descent, respectively.

This ANFIS model was applied for both locations by using the MATLAB R© software in order
to prove its effectiveness against the statistical method, regardless of the place where the system
is installed.

Figure 4. ANFIS structure.

3. Results

Seven different cases or sets of data were computed to analyze which estimation technique
executes a better performance for the Hermosillo site (HS) and the Mexico City site (MCS). Every case
was represented by data collected during a whole month; consequently, the first case corresponds to six
months of collected data, while the seventh case stands for the accumulation of all data. According to
Section 2.1.1, the time step of each estimation, regardless of the method, was five minutes. The former
was considered to generate a greater amount of data allowing a better estimation result by the ANFIS.
Figures 5 and 6 present the physical systems for each location, HS and MCS, respectively.

Figure 5. Physical system for the Hermosillo site (HS).
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Figure 6. Physical system for the Mexico City site (MCS).

3.1. Hermosillo Site

Table 1 shows the resulting equations for the monthly and overall electrical power estimation by
MLR and GDO with 1000 repetitions to minimize Equation (4), considering the data gathered from HS
as mentioned in Sections 1 and 2, and by using the MATLAB R© software. Figures 7 and 8 present the
resulting estimation for each method considering a random period to achieve a reliable comparison
and a better appreciation of the behavior (24th November to 24th December). The computational
load for the overall case using MLR and GDO resulted in total durations of approximately 30 s and
10 min, respectively.

Table 1. Monthly and overall Multiple Linear Regression (MLR) and Gradient Descent Optimization
(GDO) equations for HS.

Method Month Equations

Aug y = −2305.4 + 1.4182x1 + 116.4097x2 + 8.686x3 − 2078.9x4
Sep y = −498.9858 + 1.8082x1 + 36.7926x2 + 32.4585x3 − 1042.6x4
Oct y = −190.6163 + 1.6737x1 + 38.1824x2 + 9.8075x3 − 1075.2x4

MLR Nov y = −120.4414 + 2.1624x1 + 13.5544x2 + 18.5136x3 − 379.8749x4
Dec y = 26.2042 + 1.9806x1 + 12.1240x2 + 12.0973x3 − 405.2137x4
Jan y = 142.9390 + 2.1120x1 + 18.8379x2 + 20.2070x3 − 792.1223x4

Total y = 84.9221 + 2.0035x1 + 9.7233x2 + 15.5707x3 − 386.3517x4

Aug y = 0.0067 + 2.2334x1 + 0.2415x2 + 0.0186x3 + 0.0036x4
Sep y = 0.0050 + 2.2366x1 + 0.1711x2 + 0.0182x3 + 0.0025x4
Oct y = 0.0064 + 2.2069x1 + 0.1931x2 + 0.0251x3 + 0.0032x4

GDO Nov y = 0.0029 + 2.2732x1 + 0.0764x2 + 0.0108x3 + 0.0014x4
Dec y = 0.0036 + 2.1411x1 + 0.0814x2 + 0.0114x3 + 0.0018x4
Jan y = 0.0044 + 2.3776x1 + 0.0932x2 + 0.0138x3 + 0.0020x4

Total y = 0.0044 + 2.2387x1 + 0.1156x2 + 0.0154x3 + 0.0022x4

Figure 7. MLR results from HS.
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Figure 8. GDO results from HS.

Table 2 displays the monthly and overall trained parameters applying the ANFIS technique
with the structure specified in Section 2.2 by using the MATLAB R© software, with a hybrid mode
and 1000 iterations. Finally, Figure 9 shows the resulting estimation within the same time range,
i.e., total durations of approximately 30 s and 10 min in MLR and GDO, respectively. The computational
load for the overall case using this method resulted in a total duration training of approximately 1.5 h.

Table 2. Monthly and overall trained membership function (MF) parameters for HS.

Month
Trained MF Parameters

Solar Radiation Outside Temperature Wind Speed Daylight Hour

Aug

a b c σ c a b c a b c
−394.1 5.593 405.2 2.463 26.73 −3 0.9994 4.997 0.05206 0.3462 0.5417
5.593 405.2 804.9 2.434 32.47 1.005 4.999 9 0.3214 0.5721 0.7766
405.2 804.9 1205 2.434 38.23 5 9 13 0.5417 0.7538 1.01
804.9 1205 1604

Sep

a b c σ c a b c a b c
−394.2 0.4883 395.2 4.142 22.39 −5.5 0.001136 5.497 0.02085 0.2968 0.5208
0.4883 395.2 789.9 4.138 32.14 −1.51 × 10−11 5.501 11 0.2645 0.5625 0.73
395.2 789.9 1185 4.137 41.89 5.5 11 16.5 0.5 0.7479 1.021
789.9 1185 1579

Oct

a b c σ c a b c a b c
−474 0.1488 474.3 4.193 16.56 −7 0.0005153 6.999 0.0396 0.3274 0.5382
0.1489 474.3 948.5 4.184 26.42 0.04423 7.001 14 0.2215 0.5069 0.75
474.3 948.5 1423 4.185 36.28 6.925 14 21 0.5021 0.7389 0.9879
948.5 1423 1897

Nov

a b c σ c a b c a b c
−375.6 0.3992 376.4 4.399 12.4 −6 −0.00118 5.873 0.08051 0.336 0.5347
0.3991 376.4 752.4 4.381 22.72 −0.005881 5.998 12 0.2085 0.5 0.7248
376.4 752.4 1128 4.389 33.05 5.92 12 18 0.5 0.7117 0.9466
752.4 1128 1504

Dec

a b c σ c a b c a b c
−390.7 1.12 393 5.623 5.238 −5.5 0.004238 5.418 0.08844 0.3785 0.5287

1.12 393 784.8 5.599 18.41 −0.0002569 5.502 11 0.2034 0.5139 0.7245
393 784.8 1177 5.606 31.6 5.552 11 16.5 0.5546 0.684 0.943

784.8 1177 1568

Jan

a b c σ c a b c a b c
−408.1 0.9953 410.1 4.522 7.837 −4.5 −0.001668 4.493 0.08968 0.3261 0.5139
0.9953 410.1 819.2 4.513 18.47 0.09047 4.497 9 0.3044 0.5216 0.7491
410.1 819.2 1228 4.512 29.11 4.496 8.999 13.5 0.5417 0.7097 0.9521
819.2 1228 1637

Total

a b c σ c a b c a b c
−474 0.1488 474.3 7.79 5.226 −7 0.001869 6.848 0.01973 0.3254 0.4923
0.1488 474.3 948.5 7.783 23.55 −0.0008495 7.001 14 0.2726 0.5248 0.9075
474.3 948.5 1423 7.781 41.89 6.917 14 21 0.5243 0.6577 0.9961
948.5 1423 1897
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Figure 9. ANFIS results from HS.

Each case analyzed contemplates a different range of time (different month) and its respective
ANFIS gets trained according to the data gathered within that period. Given that meteorological
inputs vary in time, so do the ANFIS coefficients for every case; nevertheless, even if they are changing,
the variation range is not too wide, as can be seen from solar radiation, outside temperature and
daylight hour. As for wind speed, its variation is due to a smaller relationship with the output than
with the other inputs, as well as to the different behaviors in each month.

3.2. Mexico City Site

Analogous to the HS case, the same procedure was applied to the data registered from the Mexico
City site (MCS) mentioned in Sections 1 and 2, achieving approximately the same time duration to
find the beta and theta parameters. For the MLR and GDO methods, Table 3 presents the monthly and
overall estimation equations. Figures 10 and 11 depict the resulting MLR and GDO estimation in the
period 24th November to 24th December (same as HS) for a better appreciation of the convergence of
the method.

Table 3. Monthly and overall MLR and GDO equations for MCS.

Method Month Equations

Jul y = 727.5535 + 52.7725x1 + 8.6209x2 + 28.9473x3 − 947.31789x4
Ago y = 2527.4 + 55.7540x1 − 110.5462x2 + 19.4716x3 + 849.8508x4
Sep y = 1093.9 + 58.4495x1 − 27.2714x2 + 28.7514x3 − 82.2214x4

MLR Oct y = −99.2276 + 57.0806x1 − 20.0065x2 + 52.4617x3 + 1326.5x4
Nov y = −1059.8 + 57.7075x1 − 32.4315x2 + 12.1205x3 + 3016.3x4
Dec y = −1430.5 + 53.7683x1 − 15.8521x2 + 109.1599x3 + 2953.6x4
Total y = 70.2756 + 55.1011x1 + 33.8665x2 + 90.3112x3 − 689.5238x4

Jul y = 0.0927 + 53.4273x1 + 2.2298x2 + 0.1005x3 + 0.0491x4
Ago y = 0.1083 + 56.0178x1 + 2.5973x2 + 0.1441x3 + 0.0580x4
Sep y = 0.1159 + 59.0818x1 + 2.7233x2 + 0.1431x3 + 0.0625x4

GDO Oct y = 0.1035 + 57.3927x1 + 2.2950x2 + 0.1899x3 + 0.0560x4
Nov y = 0.0908 + 57.2318x1 + 1.9788x2 + 0.1036x3 + 0.0463x4
Dec y = 0.0913 + 53.3033x1 + 1.8920x2 + 0.0441x3 + 0.0477x4
Total y = 0.1005 + 55.9815x1 + 2.2910x2 + 0.1290x3 + 0.0533x4
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Figure 10. MLR results from MCS.

Figure 11. GDO results from MCS.

The same ANFIS structure with 1000 epoch hybrid training for the HS case was employed to
obtain the estimation model of the photovoltaic system with the data collected from MCS. Table 4
shows the monthly and overall trained MF parameters. Figure 12 displays the comparison between
the resulting estimation against real data with the same time range as for MLR and GDO. The time
duration to train the neuro-fuzzy system was approximately the same as in the HS case.
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Table 4. Monthly and overall trained MF parameters for MCS.

Month
Trained MF Parameters

Solar Radiation Outside Temperature Wind Speed Daylight Hour

Jul

a b c σ c a b c a b c
−356 1 358 4.274 13.02 −8.5 −0.005509 8.509 0.01522 0.3264 0.5521

1 358 715 4.238 23 0.1882 8.494 17 0.2917 0.5493 0.8816
355 712 1070 4.227 33.01 8.492 17 25.5 0.5612 0.7535 1.102
715 1072 1429

Ago

a b c σ c a b c a b c
−371.7 1 373.7 4.481 14.01 −8 −0.002784 7.967 0.02276 0.4896 0.4934

1 373.7 746.3 4.452 24.5 0.1432 7.997 16 0.343 0.5799 0.7157
373.7 746.3 1119 4.45 34.9 7.984 16 24 0.5584 0.8143 1.099
746.3 1119 1492

Sep

a b c σ c a b c a b c
−377.7 1 379.7 5.096 10 −10.5 −0.0001171 10.5 0.04167 0.3015 0.5584

1 379.7 758.3 5.096 22 0.01522 10.5 21 0.2981 0.5556 0.8166
379.7 758.3 1137 5.096 34 10.5 21 31.5 0.566 0.8042 1.069
758.3 1137 1516

Oct

a b c σ c a b c a b c
−353.7 1 355.7 4.463 9.003 −7.5 −0.001309 7.497 0.01042 0.2663 0.4574

1 355.7 710.3 4.453 19.5 0.0376 7.499 15 0.3247 0.4896 0.8325
355.7 710.3 1065 4.455 30 7.504 15 22.5 0.4612 0.7494 1.052
710.3 1065 1420

Nov

a b c σ c a b c a b c
−314.7 1 316.7 5.124 6.014 −6 0.007692 5.994 0.03837 0.3368 0.5183

1 316.7 632.3 5.067 17.99 −0.01071 6.005 12 0.307 0.4896 0.736
316.7 632.3 948 5.065 30.02 5.907 12 18 0.4931 0.6581 0.9685
632.3 948 1264

Dec

a b c σ c a b c a b c
−295.7 1 297.7 5.313 3.003 −5.5 −0.0008596 5.494 0.04514 0.2633 0.5084

1 297.7 594.3 5.31 15.5 −2.43E-10 5.499 11 0.3472 0.4868 0.7411
297.7 594.3 891 5.314 28 5.505 11 16.5 0.4805 0.7325 0.9757
594.3 891 1188

Total

a b c σ c a b c a b c
−377.7 1 379.7 6.813 3.01 −10.5 −0.00304 10.5 −0.008574 0.3395 0.498
0.9999 379.7 758.3 6.791 19 0.04036 10.5 21 0.2713 0.5833 0.8143
379.7 758.3 1137 6.783 35.01 10.5 21 31.5 0.5576 0.8047 1.115
758.3 1137 1516

Figure 12. ANFIS results from MCS.

3.3. Error Analysis

In order to demonstrate the impact of the intelligent technique over statistical approaches, an error
analysis was applied for every result obtained in Sections 3.1 and 3.2 for HS and MCS. Considering [10],
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Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were used to achieve a
solid comparison between MLR, GDO and ANFIS. MAE is one of the most implemented errors in
estimation studies to measure and analyze precision and is described by Equation (8), and MAPE
computes the percentage error value as in Equation (9).

MAE =

N
∑

s=1
|Pm − Pe|

N
(8)

MAPE(range)%
=

N
∑

s=1

∣∣∣ Pm−Pe
max(Pm)−min(Pm)

∣∣∣
N

· 100 (9)

where “s” is the sample taken into consideration, “N” is the total amount of data samples gathered,
“Pm” is the photovoltaic electrical power real measure and “Pe” is the estimated value.

Table 5 presents the monthly and overall MAE and MAPE for each applied technique in HS.
By the analysis of these results, an improvement of GDO over MLR can be observed by achieving a
lesses error value; nonetheless, the ANFIS overcomes both MLR and GDO, successfully obtaining
lower error values for every time range. By increasing “N” in Equations (8) and (9) from the first to
the last data sample, Figure 13 displays graphically the overall MAE and MAPE behavior of each
implemented technique, showing and proving a clearly better performance by ANFIS against the
statistical methods.

Table 5. Error comparison between MLR, GDO and ANFIS for HS.

MLR GDO ANFIS

Month MAE MAPE MAE MAPE MAE MAPE

(W) (%) (W) (%) (W) (%)

Aug 296.5 11.8 299.8 11.9 23.8 0.9
Sep 222.7 8.3 203.7 7.6 96.3 3.6
Oct 276.9 9.5 268.0 9.2 168.1 5.8
Nov 142.7 5.3 138.2 5.1 96.2 3.6
Dec 190.8 7.5 178.9 7.0 129.4 5.1
Jan 192.0 7.1 184.5 6.8 126.3 4.7

Total 209.3 7.2 200.1 6.9 169.2 5.8

Figure 13. Error behavior comparison between MLR, GDO and ANFIS from HS: (a) MAE behavior;
(b) MAPE behavior.

Table 6 presents the monthly and overall MAE and MAPE for each applied technique in MCS.
As well as for the HS case; an improvement of GDO over MLR can be seen; nonetheless, the ANFIS
overcomes again both MLR and GDO, successfully obtaining lower error values for every time range.
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Analogous to Figure 13, Figure 14 displays graphically the overall MAE and MAPE behavior of each
implemented technique for MCS, proving as well an improved performance by ANFIS compared to
the statistical methods.

Table 6. Error comparison between MLR, GDO and ANFIS for MCS.

MLR GDO ANFIS

Month MAE MAPE MAE MAPE MAE MAPE

(W) (%) (W) (%) (W) (%)

Jul 588.8 1.0 590.6 1.0 334.1 0.6
Aug 1234.4 2.1 1192.9 2.0 732.9 1.3
Sep 727.6 1.3 726.3 1.3 345.8 0.6
Oct 733.6 1.3 741.8 1.3 441.4 0.8
Nov 715.5 1.3 741.4 1.4 477.6 0.9
Dec 794.1 1.7 812.8 1.7 638.3 1.4
Total 1142.2 2.0 1130.4 1.9 924.7 1.6

Figure 14. Error behavior comparison between MLR, GDO and ANFIS from MCS: (a) MAE behavior;
(b) MAPE behavior.

4. Conclusions

An ANFIS was used to estimate the photovoltaic electrical power generated by solar energy
at two different locations, Hermosillo and Mexico City. The intelligent technique demonstrated a
better performance than the MLR and GDO as statistical methods. The reported results for MCS
showed that all three methods achieved a satisfactory estimation performance by their comparison
against real measured values; nonetheless, the ANFIS system clearly displayed an improvement
among the methods employed. For the case of HS, the MAE overall values with respect to GDO
and MLR were 200.1 W and 209.3 W, and the MAPE overall values with respect to GDO and MLR
were 6.9% and 7.2%. For the MCS, the MAE overall values with respect to GDO and MLR were
1130.4 W and 1142.2 W, and the MAPE overall values with respect to GDO and MLR were 1.9% and
2.0%. Consequently, GDO produced better results than MLR overall and in almost every monthly
case; however, ANFIS outperformed both MLR and GDO in every case, achieving overall results with
respect to MAE and MAPE of 169.2 W and 5.8% for HS and 924.7 W and 1.6% for MCS.

As outlined in Section 3, even when the ANFIS computational time is considerably greater than
the one involved in statistical methods, the neuro-fuzzy result displays a better performance. It should
be mentioned that, although the intelligent method took approximately 90 min to be trained, it is quite
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an acceptable amount of time and can even be considered fast in terms of neuro-fuzzy models with
months of data.

During a period of a year, the times of dusk and dawn are modified by minutes, resulting in
different times to end and begin each day; as outlined in Section 3.1, for every transition day, dusk and
dawn times may vary due to external variables, e.g., cloudiness. These issues generate discrepancies
between the estimated and the real data, as seen in the results section, regardless the applied method;
nonetheless, these may be minimized by gathering a greater amount of data to fulfil the range of
changing time values.

The ANFIS proved to have a better performance than the conventional statistical methods,
demonstrating that this kind of intelligent system is a potential tool to be considered for power
estimation in Mexico.
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Abbreviations

The following abbreviations are used in this manuscript:

ANFIS Adaptive Neuto-Fuzzy Inference System
ANN Artificial Neural Network
◦C Celsius degree. It is a temperature scale used by the International Systems of Units
GDO Gradient Descent Optimization
GSR Global Solar Radiation
HS Hermosillo Site
kWh/m2 Quantity of kilowatts during an hour striking a squared meter area
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MCS Mexico City Site
MF Membership Function
MLR Multiple Linear Regression
MPH Miles Per Hour
PV Photovoltaic
W Watt. It is a unit of power defined as a derived unit of 1 joule per second (J/s)
W/m2 Quantity of watts striking a squared meter area
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Abstract: The power output forecasting of the photovoltaic (PV) system is essential before deciding
to install a photovoltaic system in Nakhon Ratchasima, Thailand, due to the uneven power
production and unstable data. This research simulates the power output forecasting of PV systems by
using adaptive neuro-fuzzy inference systems (ANFIS), comparing accuracy with particle swarm
optimization combined with artificial neural network methods (PSO-ANN). The simulation results
show that the forecasting with the ANFIS method is more accurate than the PSO-ANN method.
The performance of the ANFIS and PSO-ANN models were verified with mean square error (MSE),
root mean square error (RMSE), mean absolute error (MAP) and mean absolute percent error (MAPE).
The accuracy of the ANFIS model is 99.8532%, and the PSO-ANN method is 98.9157%. The power
output forecast results of the model were evaluated and show that the proposed ANFIS forecasting
method is more beneficial compared to the existing method for the computation of power output
and investment decision making. Therefore, the analysis of the production of power output from PV
systems is essential to be used for the most benefit and analysis of the investment cost.

Keywords: PVs power output forecasting; adaptive neuro-fuzzy inference systems; particle swarm
optimization-artificial neural networks; solar irradiation

1. Introduction

At present, the world population has become more alert to the use of renewable energy due to the
impact of the use of energy from coal, petroleum, and natural gas, emitting large amounts of carbon
dioxide gas, which causes global warming [1]. There are many interesting renewable energy sources
such as solar energy, wind energy, water energy, ocean tidal energy, geothermal energy, and biofuels.
These renewable energy sources are non-polluting and do not negatively affect the environment [2].

Nowadays, many scientists and researchers have studied and developed the ability to use
renewable energy, such as solar energy, wind energy, and water energy, and it is expected that by 2030,
100% of energy will come from such renewable resources. Therefore, there is a clear trend that these
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renewable energies will play an important role in Thailand as well [3,4]. The most popular renewable
energy in Thailand is solar energy. Since Thailand is located near the equator, it receives high amounts
of solar energy. The average energy that can be obtained nationwide is about 4 to 4.5 kilowatt-hours
per square meter per day. It consists of approximately 50% of direct radiation and the rest is diffused
radiation, which is caused by water droplets in the atmosphere (clouds), which are higher than the
area away from the equator to the north-south [5]. According to energy consumption estimates by the
International Energy Agency in the year 2011, the use of solar thermal energy may be the main energy
for electricity generation in the world in the next 50 years, which can reduce greenhouse gas emissions
that affect the environment [6]. Solar radiation is measured to evaluate the energy potential, with
hourly measurements that are 295–2800 nm and 695–2800 nm and ultraviolet (UV) 295–385 nm at the
National Observatory of Athens (NOA) [7]. The intensity of the solar radiation will vary according to
the area, day, time, and season, it will be of very high intensity in the afternoon and the sky conditions
and wind speed will also affect the intensity and distribution of solar radiation [8]. However, the PV
power output has a significant limitation in terms of instability of the power system as its output varies
over a wide range throughout the day according to the available solar radiation. The energy storage
can improve the stability of the PV system until low solar irradiance. Now, it is well known that the
storage is still expensive, so we should get the most out of it [9]. Today, the industrial internet of things
(IIoT) plays an essential role in creating tools to help entrepreneurs or investment decision-makers
know the benefits of investing in IIoT applications of machine learning and deep learning to provide
a new way to develop complex system models, instead of using system physics models to describe
the behavior of that system. Some algorithms can infer the operation of the model from the sample
input data, in which these models are used to forecast the state of the system, and it is often called
forecasting analysis [10].

The power forecasting of PV systems has a variety of methods depending on the data that is
used, such as the PV power forecasting with the 1D5P method. This uses the parameters of the solar
panel and the solar radiation intensity to calculate the PV power of the solar system and can also
improve the accuracy of power output with a weight function that is appropriate for each area [11].
Later, the predictive method with the HIstorical SImilar MIning (HISIMI) method was used to predict
the short-term power of the solar system, and it was adjusted by using genetic algorithms and using
historical forecasting data [12]. There are discrepancies in the power output forecasting for renewable
energy due to fluctuations in renewable energy. The learning methods of machine learning models
are more accurate than traditional predictive models. Precise forecasting helps stakeholders decide
to plan investment and install solar farms connected to grid systems [13,14]. The auto-regressive
moving average (ARMA) model is used, including the exponentially weighted moving average
(EWMA) improvements by Piorno et al. [15]. Biological systems and natural phenomena exhibit chaotic
behaviors that have been applied for PV power output forecasting. Such as least-squares support vector
machines (SVM) methods, it can predict experimental chaotic time series [16] The power forecasting
methods with artificial neural networks (ANN) is one method that is providing precise values, using
actual measurement data learning to predict future power [17]. The hybrid method forecasting using
artificial neural networks has been the basis of fuzzy inference systems (ANFIS) [18] and predictions
using particle swarm optimization methods combined with artificial neural networks (PSO-ANN) [19].
The PV power forecasting with these hybrid methods is more accurate than other methods, which
are interesting for many researchers to improve the power efficiency of the PV system as well as to
develop different forecast models. In this research, we wanted to focus on the ANFIS model because it
is an interesting method of forecasting at present, and it is the forecasting method with deep learning
techniques that have not been widely used forecasting on solar power generation systems. It is a
forecasting technique that can be applied to other complex systems that provide accurate and quick
predictions. Then the ANFIS model is applied and compared with the ANN-PSO method, which has
similar forecasting techniques. PSO-ANN is one of the forecasting techniques that is more accurate.
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As the number of iterations and the number of particle swarms increases, the accuracy becomes more
and more accurate. Therefore, the researcher focused on these two forecasting techniques.

So, this work was to study the power output forecasting of the PV systems by the hybrid model
and the fast-operating process model. Therefore, the forecasting model using the ANFIS was applied
in the study. The simulation results were compared with the PSO-ANN model forecasting. This article
is divided into the following six sections. The first section is the introduction. The second section is an
explanation of energy efficiency analysis in Thailand. The third section explains the PV power output
forecasting model. The fourth section will discuss the case studies of this research and PV power data
analysis, and in this study, we will use case study data as a solar system in Thailand. The fifth section
will mention simulation results and analysis, and the last section is conclusions.

2. Energy Efficiency Analysis in Thailand

2.1. Energy Sources in Thailand

Natural gas is the primary fuel for electricity generation in the country. If considering the installed
production capacity, the power plants that use natural gas as a fuel are approximately 67 percent.
Natural gas is a hydrocarbon compound consisting of hydrogen and carbon, which is caused by the
accumulation of fossilized micro-organisms that are hundreds of millions of years old. It is also able to
separate components into methane, ethane, propane, butane, pentane, petroleum with gasification, etc.

Natural gas is clean energy, and the cost of electricity with natural gas is lower than fuel oil.
However, it is slightly higher than coal because the electricity generating system in Thailand has a high
proportion of natural gas, so we want to diversify to use other forms of fuel. The advantage of natural
gas fuel is that it is a petroleum fuel that can be used with high efficiency. It has complete combustion
and highly secure usability because it is lighter than the air, therefore, it floats up when a natural gas
leak occurs. Most of it used in Thailand is produced by itself from domestic sources, thus helping to
reduce the import of other fuels and saving a lot of foreign currency.

Lignite coal is a natural fuel used in electricity generation, which is a combustible fuel mineral.
It consists of four essential elements, which are carbon, hydrogen, nitrogen, and oxygen. It is the
second most used fuel from natural gas. The advantage of lignite is that electricity production costs
are lower than other fuels, whether natural gas and renewable energy. Coal has a large number of
reserves, especially lignite and sub-bituminous coal, which are found mainly in Mae Moh District and
Li District, Lampang Province, Mueang District, and Krabi Province. Currently, clean coal technology
can be used, which can eliminate more than 99% of coal pollution.

Normally, two types of fuel, namely furnace oil and diesel oil, are used for electricity generation
in Thailand. Due to price hike in the international market, such fuels are becoming more and more
expensive, resulting in an increase in electricity prices. Additionally, fuel oil causes more pollution
than diesel and natural gas. Therefore, fuel oil was used as a secondary fuel rather than a primary fuel.

Diesel is used as fuel for electricity generation of diesel power plants. In Thailand, there are only
three locations. Nowadays, the price of diesel has dramatically increased, resulting in a high cost.
It also causes more pollution than natural gas. The use of diesel fuel, therefore, is used as a secondary
fuel rather than a primary fuel.

Solar energy is a natural energy that is clean and free from pollution. At this time, it is used widely
around the world. It is renewable energy with high potential and can be used endlessly. Especially, the
use of solar energy to produce electricity, which will help strengthen the electrical system of Thailand
and also help reduce global warming. The advantage of solar energy is that it is the largest natural
energy source. It is an energy that will never run out, and there is no fuel cost. Solar energy can be
used in energy sources that do not have electricity and are far away from power transmission and
distribution systems. It is clean energy that does not cause pollution from the electricity production
process. There is also renewable energy from water power, wind power, biomass energy, biogas, and
waste energy. Figure 1 shows the proportion of electricity production from fuel and renewable energy
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sources in Thailand. In Thailand, the production of electricity from biomass is the highest, followed by
water and solar energy [20].

Figure 1. The proportion of electricity production from fuel and renewable energy sources in Thailand.

2.2. Solar Radiation

Solar radiation is the energy released from the sun, which hits the edge of the atmosphere called
extraterrestrial solar radiation. In Thailand, ten provinces have the highest potential for the production
of electricity from solar energy. Nakhon Ratchasima Province has the highest potential for solar
electricity production in Thailand. However, the availability of high-intensity solar radiation will not
guarantee the most efficient site for the installation of generation facilities, there are many other factors
to be considered [21,22].

The solar potential in Thailand found that most areas receive the highest solar radiation between
April and May in the range of 5.56–6.67 kWh/m2/day. Moreover, the area that has the highest average
annual solar radiation is in the Northeast. It covers parts of Nakhon Ratchasima, Buriram, Surin,
Sisaket, Roi Et, Yasothon, Ubon Ratchathani, and Udon Thani and parts of the central region with
an average annual solar radiation of 5.28–5.56 kWh/m2/day. The area accounts for 14.3% of the
country’s total area. Additionally, 50.2% of the total area receives the average annual solar radiation
during 5–5.28 kWh/m2/day, and only 0.5% of the total area exposed to solar radiation is less than
4.45 kWh/m2/day [23]. Figure 2 shows the average daily solar radiation intensity in Thailand.

Figure 2. The average daily solar radiation intensity in Thailand [23].
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3. PV Power Output Forecasting Model

The accurate forecasting of the PV power generation is essential for the estimation of cost and
breakeven. Currently, there are many researchers, including this research, interested in studying
the forecasting of power output produced by solar cell systems. In this section, we will explain the
principles of the ANFIS and PSO-ANN forecasting models. The PSO-ANN model was used to compare
the forecasting result, which has higher accuracy than other methods and can be applied to other areas
of research [18]. The models of both methods are shown in the following topics.

3.1. ANFIS Model

Adaptive network-fuzzy inference systems (ANFIS) is a type of network adaptation based on the
fuzzy inference systems (FIS), which is a theory adapted from the fuzzy logic theory. The fuzzy rules
from the input and output data groups are created using the basis constructing of the neural network
system. Artificial neural network (ANN) is a calculation model where its functions and methods are
based on the structure of the human brain cells. The neural network follows graph topology in which
neurons are nodes of the graph and weights are edges of the graph. It consists of such multilayers that
should be a limit in order to the time of problem-solving. The weights changing in the connections
between network layers are the training process of the network to achieve the expected output. Another
model is neuro-fuzzy, which is a combination of fuzzy logic and neural networks to solve a variety of
problems efficiently.

This theory is used in the analysis of problems consisting of information that is widely characterized
by uncertainty. The structure of ANFIS will be a fuzzy inference system, which under consideration
has two inputs (x and y), and one output is f for the first Sugeno fuzzy model [24,25]. This study
uses the hybrid learning algorithm with the following principles. Figure 3 shows the fuzzy inference
system [26].

Figure 3. The fuzzy inference system [26].

Layer 1 consists of a member function of each input variable, which can be adjusted. The variables
in this layer are also known as premise parameters and can be shown in Equation (1).

o1,i = μAi(x) (1)

Layer 2 is the calculation of all possible equations of the input vector relationships, which can be
expressed in Equation (2). It has 4 (22 = 4) fuzzy rules.

o2,i = wi(x, y) = μAi(x)μBi(y) (2)

Layer 3 is normalized to find the input vector obtained from Layer 2, as shown in Equation (3).

o3,i = w =
wi

w1 + w2
(3)
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Layer 4 is called standard perceptron, which can be written according to Equation (4), where (p, q,
r) is called the consequent parameter.

o4,i = wi fi = wi(pix + qiy + ri) (4)

Layer 5 is the calculation to find the output value in real numbers, and the result can be written in
Equation (5).

o5,i =
∑

i
wi fi (5)

In this study, the determination of consequent parameters using the least-square estimator method
and the reverse pattern study to modify the premise parameters using the gradient descent method.
The structure of the ANFIS is shown in Figure 4. Using the ANFIS model to predict the PV power
output in this article, it will use 2 inputs, panel temperature, and solar radiation. The model training
with one output using the measured power output from the PV system. The structure of a 5-layer
model identifies a fixed node, while a square refers to a modified node in which parameters are
changed during adjustment or training.

A1

A2

B2

B1

x

y

f

x y

x y

w1 w’1

w2 w’2

Figure 4. The structure of the adaptive neuro-fuzzy inference systems (ANFIS) model.

3.2. PSO-ANN Model

Particle swarm optimization (PSO) is a natural-inspired algorithm, especially the movement of
fish and bird swarms. The change of both types is the movement of the small elements that move
together in synchronous time. Fish or birds can move in a swarm, separate from the swarm, and then
reunite into the swarm again. The movement of this particle swarm can be considered social behavior.
Details of the PSO process were presented in 1995 by James Kennedy and Russell Eberhart [27].

A bird, which is comparable to one particle, and each particle remembers its current position,
along with the direction and speed of its movement. Figure 5 shows the position and direction of
particle movement. When each particle moves, each particle collects its best data (Pbest) and compares
it to find the best position of every particle (Gbest). Every cycle at t time, the speed of movement is
changed by using data of the best position of each particle and the best position of all particles [28,29].
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Figure 5. The position and direction of particle movement [28].

PSO has many features that are similar to evolutionary calculations, such as the genetic algorithm
(GA). The initial population is randomly generated and used to find the best answer by adjusting that
population in every calculation cycle. The solution of the system is represented by particles moving in
the search space in the direction of the particles that are closest to the answer that is most appropriate
at that time. PSO has been successful in many applications such as optimization of functions, training
of artificial neural networks, and the fuzzy control system, including finding the power output or
forecasting the suitable power of the photovoltaic power generation systems [30].

Artificial neural networks (ANN) is a simulation of the human nervous system with repeated
learning. When learning from something that is repeated many times, it will be able to find a
relationship from past learning [31,32]. Figure 6 shows the structure of an artificial neural network that
is simulated from the human nervous system. This article will be a supervised learning network to
help define the output target for the artificial neural network that uses the multilayer feedforward
neural network. It is a back-propagation type which is rather complicated and non-linear. Each neural
consists of weight and bias, which begin at random. There is also an activation function or transfer
function, which helps to calculate the suitable values such as tan sigmoid, log-sigmoid, and linear.
ANN consists of neurons, also called nodes in a circle (Node); the line connecting the nodes is called
the weight (Weight) indicates the connection between nerve cells. The artificial neural network has
three layers, the input layer, hidden layer, and the output layer.

x1

x2

…

…

…

…

…

…

…

…

y

Figure 6. Forecast model based on artificial neural networks (ANN).
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The procedure of the hybrid PSO-ANN forecast model is a combination of particle swarm
optimization algorithm and BP_ANN algorithm using MATLAB® programs [33,34]. The first step is to
determine the number of particles in the ANN structure, beginning with the sampling of particles
showing weights, determining the position and speed of the particles. Next, simulate an artificial
neural network and evaluate the suitability of initial particles. Find the best of Gbest and Pbest, calculate
the fitness of each particle in the ANN structure. Find the best fitness in the group or calculation cycle,
improve particle velocity and position. Then collect the best particle of the current particle and repeat
it until you reach the maximum number of iterations you set [30,35]. Figure 7 shows a diagram of the
operation of the hybrid PSO-ANN forecast model.

The parameters of the PSO algorithm are set before the optimization of the ANN model, which
has two inputs: panel temperature and solar radiation. The training output is PV power output form
the PV systems. Therefore, the structure of the ANN model is 2 8 8 8 4 1. For this article, use the
number of particle swarm 100, the maximum number of iterations 100, lower and upper bound of
variables −5 to 5, inertia weight 1, inertia weight damping ratio 0.99, personal learning coefficient 1.5,
global learning coefficient 2.0, and 4 the number of neurons as shown in Table 1.

Table 1. PSO-ANN parameters.

Particle
Swarm

Iterations
Lower-Upper

Bound
Inertia
Weight

Damping
Ratio

Personal Learning
Coefficient

Global Learning
Coefficient

Number of
Neurons

100 100 −5 to 5 1 0.99 1.5 2.0 4

 
Figure 7. Diagram of the operation of the hybrid PSO-ANN forecast model.

3.3. Accuracy of the Simulation Results

After the simulation, the simulation results will be checked for accuracy, so all measurement
forms will always have inaccuracies or uncertainties. An effective experiment must begin with the
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smallest data error; the percentage of the error can determine the accuracy and reliability of the
experiment. Therefore, there must be a realistic and accurate quantity for comparison. If S is defined
as the standard quantitative physics and E is the same physical quantitative value as S but obtained
from the experiment, then the percentage error can be determined by the Equation (6).

The percentage error =
|E− S|

S
× 100% (6)

Statistical analysis can find the best numerical solution of all data sets and determine the statistical
error of the answer. The best replacement number is the average value or mean value [36]. In order
to assess the accuracy of the prediction methods, the mean absolute percent error (MAPE) and root
mean squared error (RMSE) are used as criteria for consideration, [31] which can be found in the
following equation.

Mean square error (MSE) is an indication of the variance of the forecasting error which can be
obtained by Equation (7)

MSE =
1
n

n∑
t=1

(
Xi −Yi

Yi
)

2
(7)

where Yi is the measured power value, Xi is the predicted value, and n is the amount of data to be
tested; it is the power in every period of measurement.

Root mean square error (RMSE) or standard error (SE) is shown by Equation (8).

RMSE =

√√
1
n

n∑
t=1

(
Xi −Yi

Yi
)

2
(8)

Mean absolute error (MAP) is shown by Equation (9).

MAE =
1
n

n∑
t=1

∣∣∣∣∣Xi −Yi
Yi

∣∣∣∣∣ (9)

The mean absolute percent error (MAPE) is shown by Equation (10). It is also possible to calculate
the forecast accuracy (Acc), which indicates how close the forecast the power value to the actual value,
which can be obtained by Equation (11).

MAPE(%) =
1
n

n∑
t=1

∣∣∣∣∣Xi −Yi
Yi

∣∣∣∣∣× 100 (10)

Acc = 100 −MAPE (%) (11)

4. PV Power Output Data Analysis

This research uses a case study area in the northeastern region of Thailand with the installation of
a 14 MW solar cell system using a 330 W polycrystalline solar panel, the maximum solar irradiation
of 1.142 kW/m2, the highest ambient temperature of 39.4 ◦C, and the highest panel temperature of
57.44 ◦C. This data is obtained from a PV plant in the Nakhon Ratchasima province. The results of
the measurement are used for one year as forecasting data. Figures 8 and 9 shows the annual solar
irradiation and solar panels temperature.
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Figure 8. Annual solar irradiation of the case study area.

Figure 9. Annual solar panels temperature.

This PV power generation system will be connected to the grid system (Grid connected) and
it will produce the electricity for the power distribution systems to be the source of the residential
electricity load. In order to study the energy efficiency, we must also analyze the output power of this
solar power generation system. Figure 10 shows the PV power output produced by the solar system
case study and solar irradiance, for example 5-day data during April in 2018. The input data used for
learning of the model is the temperature of the solar panel, ambient temperature, solar irradiance, and
PV output power.
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Figure 10. PV power output and solar irradiance.

5. Simulation Results and Discussion

A MATLAB program is used to simulate the PV power output forecasting by inputting one year
of input data, which is the actual measured power output, solar irradiation, panel temperature, and
ambient temperature. The PSO-ANN technique is used to simulate the calculation cycle of 100 cycles,
the population of 100 population, and the number of neurons of 10 cells. The annual power output
forecasts are shown in Figure 11, in which some of the predicted electrical power is less than zero
because it is a random method. It has a maximum error of 1721 kW, as shown in Figure 12. In April it
is the month in which the most energy was produced from solar energy and it is summer in Thailand,
which has the most solar radiation intensity. Therefore, the forecasting results of April 1–7 were
selected. Figure 13 shows a weekly PV power output forecasting with PSO-ANN. Figure 14 shows a
weekly percentage error of PV forecasting using PSO-ANN. In a positive state, the predicted value is
higher than the actual value, and in a negative state, the predicted value is less than the real value.
It can be seen that the percentage error from the forecast is as high as 190.7% because the PV power
forecasting value is much higher than the actual PV power of the system (actual PV power value of
238.5 kW and PV power forecasting value of 693.5 kW). The PSO-ANN is a technique for determining
optimal values with sampling, so high errors may occur due to the input instability. The simulation
results, when compared to the real power output, can be seen that at night without irradiation intensity,
the PSO-ANN model has a rather high discrepancy. The calculation efficiency of the ANFIS method
was 429.522 s.
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Figure 11. Annual PV power output with PSO-ANN forecasting.

Figure 12. Annual PV power output error with PSO-ANN forecasting.
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Figure 13. Weekly PV power output with PSO-ANN forecasting.

Figure 14. Weekly PV power output percentage error with PSO-ANN forecasting.

The simulation of PV power output forecasting with ANFIS is shown in Figure 15, which is a
comparison between the actual PV power output and the PV power forecasting. Figure 16 shows
the annual error of PV power output forecasting, which a maximum of 1742.2 kW. The maximum
error occurs in the period from October to December. Figure 17 shows a weekly PV power output
forecasting with ANFIS, and Figure 18 shows a weekly percentage error of PV power forecasting
using ANFIS. It can be seen that the forecasted results at night have less error than the PSO-ANN
method. Figure 19 shows the comparison of power output forecasting, which shows that the PV power
forecasting using the ANFIS method provides more accurate forecasting results than the PSO-ANN
method. The calculation efficiency of the ANFIS method was 3.5675 s.
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Figure 15. Annual PV power output with ANFIS forecasting.

Figure 16. Annual power output error with ANFIS forecasting.
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Figure 17. Weekly PV power output with ANFIS forecasting.

Figure 18. Weekly PV power output percentage error with ANFIS forecasting.

Figure 19. Comparison of PV power output forecasting.

Table 2 shows the calculation results to assess the accuracy of the simulation results of the PV
power forecasting model using the PSO-ANN model and ANFIS model. The indicators such as MSE,
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RMSE, MAD, MAPE, and Accuracy are used for evaluating forecasting performance. The simulation
results show that the ANFIS model has less error than the PSO-ANN model and has 99.8532% greater
accuracy. RMSE is another indicator used to check the accuracy of the simulation results. Forecasting
results with the ANFIS model provided an RMSE value of only 0.1184, which is less than the PSO-ANN
model. When compared with the results of the PV power output forecasting of D. Lee and K. Kim [37],
they predict the power output with long- and short-term memory (LSTM) -based models with an
RMSE of 0.563 with summer, so it shows that the simulation results with the ANFIS model have greater
accuracy. The calculation efficiency of the ANFIS model takes less time than the PSO-ANN model.
Therefore, this article shows that the ANFIS model is more efficient for the PV power forecasting than
the PSO-ANN model, and it also takes quick calculations.

Table 2. Performance and forecast accuracy of the model.

Models MSE RMSE MAE MAPE (%)
Accuracy

(%)
Calculation

Efficiency (s)

PSO-ANN 0.3234 0.5687 8.8233 1.0842 98.9157 429.522
ANFIS 0.0140 0.1184 1.1952 0.1468 99.8532 3.5675

6. Conclusions

In this article, the PV power output is forecast using one-year of electricity production data
from a solar power plant in the northeast Thailand area. A comparison of the PV power output
forecasting using the ANFIS and PSO-ANN method was undertaken. The performance of the ANFIS
and PSO-ANN models were verified accurate with MSE, RMSE, MAP, and MAPE. The accuracy of
the ANFIS model is 99.8532%, and the PSO-ANN method is 98.9157%. The calculation efficiency
of the ANFIS model takes less time than the PSO-ANN model. The simulation results show that
the ANFIS method has more accurate simulation results than the PSO-ANN method. For the most
efficient use of PV power generation systems, it is necessary to analyze the energy consumption of the
user load (household loads, industrial loads, department store loads). The forecasting results of the
PSO-ANN model has more discrepancies than the ANFIS method at night. Therefore, nighttime inputs
may be omitted before the simulation. The ANFIS model is an interesting method for forecasting at
present, and it uses deep learning techniques to solve the problem. It is a forecasting technique that can
compare to other complex systems which provide accurate and quickly predictions. The power output
forecasting is essential for planning the installation of a PV power system. The PV power output
forecasting using the ANFIS model is another method that can predict and analyze the energy, cost, and
cost-effectiveness that will occur in the future. Future work will study the PV power output forecasting
in a new method and a more efficient way and improve the input data with small deviations, which
can make the simulation results more accurate. Additionally, to analyze the simulation results using
reliable and widely used methods.
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Abstract: The problem of forecasting hourly solar irradiance over a multi-step horizon is dealt with
by using three kinds of predictor structures. Two approaches are introduced: Multi-Model (MM) and
Multi-Output (MO). Model parameters are identified for two kinds of neural networks, namely the
traditional feed-forward (FF) and a class of recurrent networks, those with long short-term memory
(LSTM) hidden neurons, which is relatively new for solar radiation forecasting. The performances
of the considered approaches are rigorously assessed by appropriate indices and compared with
standard benchmarks: the clear sky irradiance and two persistent predictors. Experimental results on
a relatively long time series of global solar irradiance show that all the networks architectures perform
in a similar way, guaranteeing a slower decrease of forecasting ability on horizons up to several
hours, in comparison to the benchmark predictors. The domain adaptation of the neural predictors is
investigated evaluating their accuracy on other irradiance time series, with different geographical
conditions. The performances of FF and LSTM models are still good and similar between them,
suggesting the possibility of adopting a unique predictor at the regional level. Some conceptual and
computational differences between the network architectures are also discussed.

Keywords: feed-forward neural networks; recurrent neural networks; LSTM cell; performances
evaluation; clear sky irradiance; persistent predictor

1. Introduction

As is well known, the key challenge with integrating renewable energies, such as solar power,
into the electric grid is that their generation fluctuates. A reliable prediction of the power that can be
produced using a few hours of horizon is instrumental in helping grid managers in balancing electricity
production and consumption [1–3]. Other useful applications could benefit from solar radiation
forecasting, such as the management of charging stations [4,5]. Indeed, such a kind of micro-grid
is developing in several urban areas to provide energy for electric vehicles by using Photo Voltaic
(PV) systems [6]. To optimize all these applications, a classical single-step-ahead forecast is normally
insufficient and a prediction over multiple steps is necessary, even if with decreasing precision.

Reviews concerning machine learning approaches to forecasting solar radiation were provided, for
instance, in [7–10], but the recent scientific literature has seen a continuous growth of papers presenting
different approaches to the problem of forecasting solar energy. According to Google Scholar, the
papers dealing with solar irradiance forecast were about 5000 in 2009 and became more than 15,000 in
2019, with a yearly increase of more than 15% in the last period. The growth of papers utilizing neural
networks as a forecasting tool has been quite more rapid since they grew up at a pace of almost 30% a
year in the last decade and they constituted about half of those cataloged in 2019.

Energies 2020, 13, 3987; doi:10.3390/en13153987 www.mdpi.com/journal/energies153
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The short-term prediction of solar radiation and/or photovoltaic power output has expanded
from traditional ARMA (Auto-Regressive Moving Average) models and their evolution such as
ARMA-GARCH (Generalized Autoregressive with Conditional Heteroscedasticity) models [11],
to Bayesian statistical models [12], and Naïve Bayes Classifiers [13], and to Neuro-Fuzzy
Systems [14–16], and Fuzzy with Genetic Algorithms models [17]. More recently, other approaches
such as Markov Switching Models [18], Support Vector Machines [19–21], wavelets transformation [22],
kernel density estimation [23], and tree-based algorithms [24] have been suggested. Traditional Feed
Forward (FF) neural network for ultra-short-time horizon (one-minute resolution) was proposed
in [25]. Specific classes of neural networks have also been used, such as TDNN (Time Delay Neural
networks) [26], Recurrent [27–29], Convolutional Neural Networks [30] and other configurations [31–35].
Other works specifically concentrate on the use of Long Short-Term Memory (LSTM) networks [36–38].
Specifically, Abdel-Nasser and Mahmoud’s (2017) [36] use of the Long Short-Term Memory Recurrent
Neural Network (LSTM-RNN) to accurately forecast the output power of PV systems was proposed,
based on the idea that such a network can model the temporal changes in PV output power due of
their recurrent architecture and memory units. The proposed method was evaluated using hourly
datasets of different sites for a year. The authors have implemented five different model structures
in order to predict the average hourly time series one-step ahead. The accuracy of the models was
assessed comparing the RMSE error in comparison with other techniques, namely Multiple Linear
Regression (MLR) models, Bagged Regression Trees (BRT) and classical Feed-Forward (FF) Neural
Networks (NN), showing that one of the five studied models outperforms the others. One of the
limitations of this attempt seems to be the very short time horizon considered (1 h). On the contrary,
several regression-based trees, were considered by Fouilloy et al. (2018) [39] for prediction horizons
from 1 to 6 hours ahead. They compared the performance of these ML approaches with the more
traditional ARMA and Multi-layer Perceptrons (MLP), over three different data sets recorded in France
and Greece. The performances, in terms of nRMSE and MAE, seem to point out that among the
methods considered there is no prevalent one and their ranking depends on the variability of the data
set. The recent paper [40] provides a large bibliography on neural network applications to solar power
forecast. The paper by Husein et al. [41] also analyses several preceding studies and compares the
results of LSTM-RNN and FF networks for hourly ahead solar irradiance forecasting using only indirect
weather measures (namely, dry-bulb temperature, dew-point temperature, and relative humidity),
even if irradiance data are still needed for network training. Various deep learning approaches, namely
Gated Recurrent Units (GRUs), LSTM, RNN and FF neural networks were considered by Aslam et
al. [42] to represent the statistical relations of solar radiation data over a very long horizon (one year
ahead).

What clearly emerges is that the very large majority of these studies concentrate on a single
(very short to very long) forecast step. However, the implementation of advanced control methods,
such as model predictive control requires the availability of forecasted values for some steps ahead.
This paper thus contributes to the field by clearly defining the possible model structures for a multi-step
prediction and comparing the performances of feed-forward and LSTM recurrent networks in the
problem of multi-step ahead forecasting of the solar irradiance at a station in Northern Italy, which
is characterized by a relatively high annual and daily variability. The forecasting approaches are
rigorously evaluated using appropriate indices and compared with standard benchmarks: the clear
sky irradiance and two persistent predictors.

Furthermore, the adaptation capability of the neural predictors is investigated evaluating their
accuracy on three locations with different geographical conditions with respect to that used for
the training.

The paper is organized as follows: In Section 2, the basic characteristics of the multi-step
feed-forward and LSTM forecasting model are presented together with the different ways of formulating
and approaching the prediction task. Some features of solar irradiance time series are pointed out
through statistical and spectral analysis. In addition, the benchmark predictors and the evaluation
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metrics are presented. Section 3 shows the results of solar irradiance forecasting performed by
autoregressive neural models, along with the domain adaptation capability of such predictors.
Section 4 reports a discussion on the intrinsic differences in the identification phase of feed-forward
and LSTM neural predictors. In Section 5, some concluding remarks are drawn.

2. Materials and Methods

2.1. Structure of the Multi-Step Neural Predictors

The time-series forecasting task is inherently dynamic because the variable to be predicted can be
seen as the output of a dynamical system. Recurrent neural networks, which are themselves dynamical
systems due to the presence of one or more internal states, are a natural choice. On the other hand,
the more traditional feed-forward (FF) nets are static and can reproduce any arbitrarily complex
mapping from the input to the output space. Static models can be adapted to deal with dynamic tasks
in different ways.

Thinking for instance to an hourly autoregressive forecast, we can consider three different ways to
predict the h step-ahead hourly sequence

[
Î(t + h− 1), . . . , Î(t + 1), Î(t)

]
basing on the observations of

the last d steps (i.e., [I(t− 1), I(t− 2), . . . , I(t− d)]) with a FF network. Here, the symbols Î(t) and I(t)
indicate the forecasted and observed solar irradiance, respectively.

2.1.1. The Recursive (Rec) Approach

Rec approach repeatedly uses the same one-step-ahead model, assuming as input for the second
step the forecast obtained one step before [43]. Only one model, fRec, is needed in this approach,
whatever the length of the forecasting horizon and this explains the large diffusion of this approach.

Î(t) = fRec(I(t− 1), I(t− 2), . . . , I(t− d)) (1)

Î(t + 1) = fRec
(
Î(t), I(t− 1), . . . , I(t− d + 1)

)
(2)

Equations (1) and (2) show the first two steps of the procedure, which has to be repeated h times.

2.1.2. The Multi-Model (MM) Approach

Although the Rec model structure is the most natural one also for h-steps ahead prediction,
other alternatives are possible and in this work, we have explored two new structures, here respectively
referred as multi-model (MM) and multi-output (MO), which are illustrated below. The peculiarity of
the MM model is that, unlike the fRec, its parameters are optimized for each prediction time horizon,
following the framework expressed by Equations (3)–(5). MM thus requires h different models to cover
the prediction horizon.

It is trivial to note that for h = 1 the model works exactly as a Rec model, but it represents a
generalization when h > 1.

Î(t) = fMM,1(I(t− 1), I(t− 2), . . . , I(t− d)) (3)

Î(t + 1) = fMM,2(I(t− 1), I(t− 2), . . . , I(t− d)) (4)

Î(t + h− 1) = fMM,h(I(t− 1), I(t− 2), . . . , I(t− d)) (5)

2.1.3. The Multi-Output (MO) Approach

The MO model [44] expressed by Equation (6) can be considered a trade-off between the Rec and
the MM since it proposes to develop a single model with a vector output composed by the h values
predicted for each time step.[

Î(t + h− 1), . . . , Î(t + 1), Î(t)
]
= fMO(I(t− 1), I(t− 2), . . . , I(t− d)) (6)
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The number of parameters of the MO, is a bit higher than the Rec (a richer output layer has to be
trained), but much lower than the MO. However, with respect to the Rec it could appear, at least in
principle, more accurate, since it allows its performance to be optimized over a higher dimensional
space. A MO in comparison to the Rec offers the user a synoptic representation of the various prediction
scenarios and therefore can be more attractive from the application point of view. Furthermore, in case
the Rec model has some exogenous inputs, one must limit the forecasting horizon h to the maximum
delay between the external input and the output. Nothing changes, on the contrary, for the other
two approaches.

2.2. Model Identification Strategies

Neural networks are among the most popular approaches for identifying nonlinear models
starting from time series. Probably this popularity is due to the reliability and efficiency of the
optimization algorithms, capable of operating in the presence of many parameters (many hundreds or
even thousands, as in our case). Two different kinds of neural networks have been used in this work.
One of the purposes behind this work was in fact to explore, on rigorous experimental bases, if more
complex but more promising neural network architectures, such as the LSTM neural networks, could
offer greater accuracy for predicting solar radiation, compared to simpler and more consolidated
architectures such as feed-forward (FF) neural networks.

LSTM cells were originally proposed by Hochreiter and Schmidhuber in 1997 [45] as a tool to
retain a memory of past errors without increasing the dimension of the network explosively. In practice,
they introduced a dynamic within the neuron that can combine both long- and short-term memory.
In classical FF neural networks, the long-term memory is stored in the values of parameters that are
calibrated on past data. The short-term memory, on the other side, is stored in the autoregressive inputs,
i.e., the most recent values. This means that the memory structure of the model is fixed. LSTM networks
are different because they allow balancing the role of long and short-term in a continuous way to best
adapt to the specific process.

Each LSTM cell has three gates (input, output, and forget gate) and a two-dimensional state vector
s(t) whose elements are the so-called cell state and hidden state [46,47]. The cell state is responsible
for keeping track of the long-term effects of the input. The hidden state synthesizes the information
provided by the current input, the cell state, and the previous hidden state. The input and forget
gates define how much a new input and the current state, respectively, affect the new state of the cell,
balancing the long- and short-term effects. The output gate defines how much the output depends on
the current state.

Recurrent nets with LSTM cells appear particularly suitable for solar radiation forecast since
the underlying physical process is characterized by both slow (the annual cycle) and fast (the daily
evolution) dynamics.

An LSTM network can be defined as in Equations (7)–(8), namely as a function computing an
output and an updated state at each time step.[

Î(t), s(t)
]
= fLSTM(I(t− 1), s(t− 1)) (7)

[
Î(t + 1), s(t + 1)

]
= fLSTM

(
Î(t), s(t)

)
(8)

The predictor iteratively makes use of fLSTM starting from an initial state s(t− d− 1) of LSTM
cell and processes the input sequence [I(t− 1), I(t− 2), . . . , I(t− d)], updating the neurons internal
states in order to store all the relevant information contained in the input. The LSTM net is thus able to
consider iteratively all the inputs and can directly be used to forecast several steps ahead (h) at each
time t. In a sense, these recurrent networks unify the advantages of the FF recursive and multi-output
approaches mentioned above. They explicitly take into account the sequential nature of the time series
as the FF recursive, and are optimized on the whole predicted sequence as the FF multi-output.
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The four neural predictors presented above have been developed through an extensive
trial-and-error procedure implemented on an Intel i5-7500 3.40 GHz processor with a GeForce GTX
1050 Ti GPU 768 CUDA Cores. FF nets have been coded using the Python library Keras with Tensorflow
as backend [48]. For LSTM networks, we used Python library PyTorch [49]. The hyperparameters of
the neural nets were tuned by systematic grid search together with the number of neurons per layer,
the number of hidden layers, and all the other features defining the network architecture.

2.3. Preliminary Analysis of Solar Data

The primary dataset considered for this study was recorded from 2014 to 2019 by a Davis Vantage 2
weather station installed and managed by the Politecnico di Milano, Italy, at Como Campus. The station
is continuously monitored and checked for consistence as part of the dense measurement network of
the Centro Meteorologico Lombardo (www.centrometeolombardo.com). Its geographic coordinates
are: Lat = 45.80079, Lon = 9.08065 and Elevation = 215 m a.s.l. Together with the solar irradiance
I(t), the following physical variables are recorded every 5 min: air temperature, relative humidity,
wind speed and direction, atmospheric pressure, rain, and the UV index. However, as explained in
Section 2.2, the current study only adopts purely autoregressive models; namely, the forecasted values
of solar irradiance Î(t) are computed only based on preceding values.

A detail of the time series recorded at 00:00 each hour is shown in Figure 1a. We can interpret this
time series as the sum of three different components: the astronomical condition (namely the position
of the sun), that produces the evident annual cycle; the current meteorological situation (the attenuation
due to atmosphere, including clouds); and the specific position of the receptor that may be shadowed
by the passage of clouds in the direction of the sun. The first component is deterministically known,
the second can be forecasted with a certain accuracy, while the third is much trickier and may easily
vary within minutes without a clear dynamic.

Figure 1. Hourly solar irradiance time series (a), compared with clear sky values for a few specific
days (b).

The expected global solar radiation in average clear sky conditions IClsky(t) (see Figure 1b) was
computed by using the Ineichen and Perez model, as presented in [50] and [51]. The Python code that
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implements this model is part of the SNL PVLib Toolbox, provided by the Sandia National Labs PV
Modeling Collaborative (PVMC) platform [52].

2.3.1. Fluctuation of Solar Radiation

Solar radiation time series, as well as other geophysical signals, belong to the class of the so-called
1/f noises (also known as pink noise), i.e., long-memory processes whose power density spectrum
exhibit a slope, α, ranging in [0.5,1.5]. In other words, they are random processes lying between white
noise processes, characterized byα= 0, and random walks, characterized byα= 2 (see, for instance [53]).
Indeed, the slope of hourly solar irradiance recorded at Como is about α = 1.1 (Figure 2), while the
daily average time series exhibits a slope of about α = 0.6, meaning that solar radiation at daily scale is
more similar to a white process.

Figure 2. Power spectral density of the hourly solar irradiance (grey) and trend 1/fα characterized by
α = 1.1 (black).

Figure 2 also shows that the power spectral density has some peaks corresponding to periodicity
of 24 hours (1.16·10−5 Hz) and its multiples.

2.3.2. Mutual Information

To capture the nonlinear dependence of solar irradiance time series from its preceding values,
we computed the so-called mutual information M(k), defined as in Equation (9) [54].

M(k) = −
∑
i, j

pi j(k)·ln
pij(k)

pipj
(9)

In this expression, for some partition of the time series values, pi is the probability to find a time
series value in the i-th interval, and pij(k) is the joint probability that an observation falls in the i-th
interval, and the observation k time steps later falls into the j-th interval. The partition of the time
series can be made with different criteria, for instance by dividing the range of values between the
minimum and maximum in a predetermined number of intervals or by taking intervals with equal
probability distribution [55]. In our case, we chose to divide the whole range of values into 16 intervals.
The normalized mutual information of solar irradiance time series at Como is shown in Figure 3. In the
case of Como hourly time series, it gradually decays reaching zero after about six lags. Moreover, it can
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be observed that the mutual information for the daily values decays more rapidly, thus confirming the
greatest difficulty in forecasting solar radiation at a daily scale.

Figure 3. Normalized mutual information of hourly and daily solar irradiance at Como.

2.4. Benchmark Predictors of Hourly Solar Irradiance

Multi-step ahead forecasting of the global solar irradiance I(t) at hourly scale was performed by
using models of the form (1–8) defined above.

The performance of such a predictor has been compared with that of some standard baseline
models. More specifically, we computed:

• The “clear sky” model, Clsky in the following, computed as explained in Section 2.2,
which represents the average long-term cycle;

• The so-called Pers24 model expressed as Î(t) = I(t− 24), which represents the memory linked to
the daily cycle;

• A classical persistent model, Pers in what follows, where Î(t + k) = I(t), k = 1, 2, . . . h, representing
the component due to a very short-term memory.

2.5. Performance Assessment Metrics

The performances of the various predictors were assessed by computing the following error
indices [56]: Bias (10), Mean Absolute Error—MAE (11), Root Mean Square Error—RMSE (12), and R2,
also known as Nash-Sutcliffe Efficiency—NSE (13).

Bias =
1
T

T∑
t=1

(
I(t) − Î(t)

)
(10)

MAE =
1
T

T∑
t=1

∣∣∣I(t) − Î(t)
∣∣∣ (11)

RMSE =

√√√
1
T

T∑
t=1

(
I(t) − Î(t)

)2
(12)

NSE = 1−
∑T

t=1

(
I(t) − Î(t)

)2

∑T
t=1

(
I(t) − I

)2 (13)
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where T is the length of the time series, while I is the average of the observed data.
As concerning to the NSE, an index originally developed for evaluating hydrological models [57],

it is worth bearing in mind that it can range from −∞ to 1. An efficiency of 1 (NSE = 1) means that
the model perfectly interprets the observed data, while an efficiency of 0 (NSE = 0) indicates that the
model predictions are as accurate as the mean of the observed data. It is worth stressing here that,
in general, a model is considered sufficiently accurate if NSE > 0.6.

Regardless of what performance index is considered, it is worth noticing that the above classical
indicators may overestimate the actual performances of models when applied to the complete time
series. When dealing with solar radiation, there is always a strong bias due to the presence of many
zero values. In the case at hand, they are about 57% of the sample due to some additional shadowing
of the nearby mountains and to the sensitivity of the sensors. When the recorded value is zero,
also the forecast is zero (or very close) and all these small errors substantially reduce the average
errors and increase the NSE. Additionally, forecasting the solar radiation during the night is useless,
and the power network dispatcher may well turn the forecasting model off. In order to overcome
this deficiency, which unfortunately is present in many works in the current literature, and allow
the models’ performances to be compared when they may indeed be useful, we have also computed
the same indicators considering only values above 25 Wm−2 (daytime in what follows), a small value
normally reached before dawn and after the sunset. These are indeed the conditions when an accurate
energy forecast may turn out to be useful.

Since the Clsky represents what can be forecasted even without using any information about the
current situation, it can be assumed as a reference, and the skill index Sf (14) can be computed to
measure the improvement gained using the f LSTM and the f FF models:

S f = 1− RMSE f

RMSEClsky
(14)

3. Results

3.1. Forecasting Perfomances

The comparison of the multi-step forecast of solar irradiance with LSTM and FF networks was
performed setting the delay parameter d to 24, despite the mutual information indicated that it would
be enough to assume d = 6. This choice is motivated by the intrinsic periodicity of solar radiation at an
hourly scale [54]. We have experimentally observed that this choice gives more accurate estimates for
all the models considered. This probably helps the model in taking into account the natural persistence
of solar radiation (see the comments about the performance of the Pers24 model, below). The length of
the forecasting horizon h, representing the number of steps ahead we predict in the future, was varied
from 1 to 12. Data from 2014 to 2017 were used for network training, 2018 for validating the architecture,
and 2019 for testing.

The average performances computed on the first 3 hours of the forecasting horizon of the Pers,
Pers24, and Clsky models for the test year 2019 are shown in Tables 1 and 2. The Pers predictor
performance rapidly deteriorate when increasing the horizon. They are acceptable only in the short
term: after 1 h, the NSE is equal to 0.79 (considering whole day samples) and 0.59 (daytime samples
only), but after two hours NSE decreases to 0.54 (whole day) and 0.14 (daytime only), and six steps
ahead the NSE becomes −0.93 (whole day) and −1.64 (daytime). The Pers24 and Clsky preserve the
same performances for each step ahead since they are independent on the horizon. Such models
inherently take into account the presence of the daily pseudo-periodic component, which affects hourly
global solar radiation.
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Table 1. Average performances of the Pers, Pers24, and Clsky predictors on the first 3 hours (whole day).

Index Pers Pers24 Clsky

Bias 0.07 0.01 −46.20
MAE 87.78 59.24 74.07

RMSE 158.40 136.63 146.39
NSE 0.51 0.63 0.58

Table 2. Average performances of the Pers, Pers24, and Clsky predictors on the first 3 hours (daytime
samples only).

Index Pers Pers24 Clsky

Bias 28.82 7.08 −89.91
MAE 175.89 131.71 154.35

RMSE 228.24 204.91 212.97
NSE 0.11 0.28 0.22

The Pers24 predictor appears to be superior to the Clsky (lower error indicators, higher NSE)
confirming that the information of the last 24 h is much more relevant for a correct prediction than
the long-term annual cycle. Indeed, the sun position does not change much between one day and the
following, and the meteorological conditions have a certain, statistically relevant tendency to persist.
Additionally, the Pers24 predictor is the only one with practically zero bias, since the small difference
that appears in the first column of Table 1 is simply due to the differences between 31/12/2018 (which is
used to compute the predicted values of 1/1/2019) and 31/12/2019. The clear sky model that operates by
definition in the absence of cloud cover, overestimates the values above the threshold by 89.86 Wm−2,
on average.

From Table 2, it appears that Pers, Pers24 and Clsky, are not reliable models, on average, especially
if the NSE is evaluated by using daytime samples only.

Figure 4 reports the results obtained with the three different FF approaches (Figure 4a–c) and
the LSTM forecasting model (Figure 4d) in terms of NSE (both in the whole day and in daytime
samples only).

Figure 4. NSE of hourly solar irradiance at Como obtained with recursive FF (a), multi-output FF (b),
multi-model FF (c), and LSTM (d). Solid line represents the performance in the whole day, dashed line
in daytime only. Values refer to the test year 2019.

Generally speaking, Figure 4 shows that all the considered neural predictors exhibit an NSE which
reaches an asymptotic value around six steps ahead. This is coherent with the previous analysis about
the mutual information (see Figure 3), which, at an hourly scale, is almost zero after six lags.

If the evaluation is carried out considering whole day samples, all the models would have to
be considered reliable enough since NSE is only slightly below 0.8, even for prediction horizons of
12 h. On the contrary, if the evaluation is made considering daytime samples only, it clearly appears
that models are reliable for a maximum of 5 h ahead, as for higher horizons the NSE value typically
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falls below 0.6. Therefore, removing the nighttime values of the time series is decisive for a realistic
assessment of a solar radiation forecasting model, that would otherwise be strongly biased.

Going in deeper details, the following considerations can be made.
The FF recursive approach performs slightly worse, particularly as measured by NSE and

specifically after a forecasting horizon of 5 h. The FF multi-output and multi-model approaches
show performances similar to the LSTM. Additionally, one can note that the performance regularly
decreases with the length of the horizon for the FF recursive approach and LSTM net, since they
explicitly take into account the sequential nature of the task. Conversely, the FF multi-output and
the multi-model ones have irregularities, particularly the latter being each predictor for each specific
time horizon completely independent on those on a shorter horizon. If perfect training was possible,
such irregularities might perhaps be reduced, but they cannot be completely avoided, particularly on
the test dataset, because they are inherent to the approach that considers each predicted value as a
separate task.

For all the considered benchmarks and neural predictors, the difference between the whole
time series (average value 140.37 Wm−2) and the case with a threshold (daytime only), that excludes
nighttime values (average 328.62 Wm−2), emerges clearly, given that during all nights the values are
zero or close to it, and thus the corresponding errors are also low.

FF nets and LSTM perform similarly also considering the indices computed along the first 3 h of
the forecasting horizon as shown in Tables 3 and 4, for the whole day and daytime, respectively.

Table 3. Average performances of FF and LSTM predictors on the first 3 hours (whole day).

Index FF-Recursive FF-Multi-Output FF-Multi-Model LSTM

Bias −1.49 −0.28 0.17 −4.19
MAE 40.26 40.39 39.26 45.91

RMSE 84.33 82.60 82.29 82.09
NSE 0.86 0.87 0.87 0.87

S 0.42 0.44 0.44 0.44

Table 4. Average performances of FF and LSTM predictors on the first 3 hours (daytime samples only).

Index FF-Recursive FF-Multi-Output FF-Multi-Model LSTM

Bias 3.79 6.59 6.46 12.11
MAE 86.31 84.63 84.75 86.01

RMSE 125.35 122.87 122.74 121.78
NSE 0.73 0.74 0.74 0.75

S 0.41 0.42 0.42 0.43

All the neural predictors provide a definite improvement in comparison to the Pers, Pers24,
and Clsky models. Looking, for instance, at the NSE the best baseline predictor is the Pers24, scoring
0.63 (whole day) and 0.28 (daytime only). The corresponding values for the neural networks exceed
0.86 and 0.73, respectively.

An in-depth analysis should compare the neural predictors performance at each step with the best
benchmark for that specific step. The latter can be considered as an ensemble of benchmarks composed
by the the Pers model, the most performing one step ahead (NSE equal to 0.79), and the Pers24 on the
following steps (NSE equal to 0.63 for h from 2 to 12). Under this perspective, the neural nets clearly
outperform the considered baseline since their NSE score varies from 0.90 to 0.75 (see the solid lines in
Figure 4 referring to the whole day). The same analysis performed excluding nighttime values leads to
quite similar results, confirming that the neural networks always provide a performance much higher
than the benchmarks considered here.

An additional way to examine the model performances is presented in Table 5. We report here
the NSE of the predictions of the LSTM network on three horizons, namely 1, 3, and 6 hours ahead.
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The sunlight (i.e., above 25 W/m2) test series is partitioned into three classes: cloudy, partly cloudy
and sunny days, which constitute about 30, 30, and 40% of the sample, respectively. More precisely,
cloudy days are defined as those when the daily average irradiance is below 60% of the clear sky index
and sunny days those that are above 90% (remember that the clear sky index already accounts for the
average sky cloudiness).

Table 5. LSTM performances in terms of NSE for cloudy, partly cloudy and sunny days
(daytime samples only).

Index 1 Hour Ahead 3 Hours Ahead 6 Hours Ahead

Cloudy 0.44 0.06 −0.45
Partly cloudy 0.65 0.59 0.59

Sunny 0.89 0.83 0.73

It is quite apparent that the performance of the model decreases consistently from sunny, to
partly cloudy, to cloudy days. This result is better illustrated in Figure 5 where the 3-hour-ahead
predictions are shown for three typical days. In the sunny day, on the right, the process is almost
deterministic (governed mainly by astronomical conditions), while the situation is completely different
in a cloudy day. In the last case, the forecasting error is of the same order of the process (NSE close to
zero) and it can be even larger at 6 hours ahead. This determines the negative NSE value shown in
Table 5.

Figure 5. Three-hour-ahead LSTM predictions versus observations in three typical days with different
cloudiness: a cloudy day (a), a partly cloudy day (b), and a sunny day (c). Values refer to the test
year (2019).

3.2. Domain Adaptation

Besides the accuracy of the forecasted values, another important characteristic of the forecasting
models is their generalization capability, often mentioned as domain adaptation in the neural networks
literature [58]. This means the possibility of storing knowledge gained while solving one problem and
applying it to different, though similar, datasets [59].

To test this feature, the FF and LSTM networks developed for the Como station (source domain)
have been used, without retraining, on other sites (target domains) spanning more than one degree of
latitude and representing quite different geographical settings: from the low and open plain at 35 m
a.s.l. to up the mountains at 800 m a.s.l. In addition, the test year has been changed because solar
radiation is far from being truly periodical and some years (e.g., 2017) show significantly higher values
than others (e.g., 2011). This means quite different solar radiation encompassing a difference of about
25% between yearly average values.

Figure 6 shows the NSE for the multi-output FF and LSTM networks for three additional stations.
All the graphs reach somehow a plateau after six steps ahead, as suggested by the mutual information
computed on Como station, and the differences between FF and LSTM networks appear very small or
even negligible in almost all the other stations. Six hours ahead, the difference in NSE between Como,
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for which the networks have been trained, in the test year (2019) and Bema in 2017, which appears to
be the most different dataset, is only about 3% for both FF models and LSTM.

Figure 6. NSE of hourly solar irradiance forecast at Casatenovo (a–d) in 2011, Bigarello (e–h) in 2016,
and Bema (i–l) in 2017. Each column is relative to a different neural predictor. Solid line represents the
performance in the whole day, dashed line in daytime only.

As a further trial, both FF models and LSTM have been tested on a slightly different process,
i.e., the hourly average solar radiation recorded at the Como station. While the process has the same
average of the original dataset, the variability of the process is different since its standard deviation
decreased of about 5%. The averaging process indeed filters the high frequencies. Forecasting results
are shown in Figure 7. Additionally for this process, the neural models perform more or less as for the
hourly values for which they have been trained. The accuracy of both LSTM and FF networks improves
by about 0.02 (or 8%) in terms of standard MAE and slightly less in terms of NSE, in comparison to the
original process. For a correct comparison with Figure 4, however, it is worth bearing in mind that
the 1-hour-ahead prediction corresponds to (t + 2) in the graph, since the average computed at hour
(t + 1) is that from (t) to (t + 1) and, thus, includes values that are only 5 minutes ahead of the instant
at which the prediction is formulated.

An ad-hoc training on each sequence would undoubtedly improve the performance, but the
purpose of this section is exactly to show the potential of networks calibrated on different stations,
to evaluate the possibility of adopting a predictor developed elsewhere when a sufficiently long series
of values is missing. The forecasting models we developed for a specific site could be used with
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acceptable accuracy for sites were recording stations are not available or existing time series are not long
enough. This suggest the possibility of developing a unique forecasting model for the entire region.

Figure 7. NSE of hourly average solar irradiance at Como obtained with recursive FF (a), multi-output
FF (b), multi-model FF (c), and LSTM (d). Solid line represents the performance in the whole day,
dashed line in daytime only. Values refer to the test year (2019).

4. Some Remarks on Network Implementations

The development of many successful deep learning models in various applications has been
made possible by three joint factors. First, the availability of big data, which are necessary to identify
complex models characterized by thousands of parameters. Second, the intuition of making use of
fast parallel processing units (GPUs) able to deal with the high computational effort required. Third,
the availability of an efficient gradient-based method to train these kinds of neural networks.

This latter are the well-known backpropagation (BP) techniques, which allow efficient computing
of the gradients of the loss function with respect to each model weight and bias. To apply the
backpropagation of the gradient, it is necessary to have a feed-forward architecture (i.e., without
self-loops). In this case, the optimization is extremely efficient since the process can be entirely
parallelized, exploiting the GPU.

When the neural architecture presents some loops, as it happens in recurrent cells, the BP
technique has to be slightly modified in order fit the new situation. This can be done by unfolding
the neural networks through time, to remove self-loops. This extension of BP technique is known
as backpropagation through time (BPTT) in the machine learning literature. The issue with BPTT
is that the unfolding process should in principle lasts for an infinite number of steps, making the
technique useless for practical purposes. For this reason, it is necessary to limit the number of unfolding,
considering only the time steps that contain useful information for the prediction (in this case, we say
that the BPTT is truncated). As it is easy to understand, BPTT is not as efficient as the traditional BP,
because it is not possible to fully parallelize the computation. As a consequence, we are not able to
fully exploit the GPU’s computing power, resulting in a slower training. The presence of recurrent
units also produces much complex optimization problems due to the presence of a significant number
of local optima [60].

Figure 8 shows the substantial difference in the evolution of the training process. As usual,
the mean of the quadratic errors of the FF network slowly decreases toward a minimum while
this function shows sudden jumps followed by several epochs of stationarity in the case of LSTM.
The training algorithm of LSTM can avoid being trapped for too many epochs into local minima, but
on the other side, these local minima are more frequent.
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Figure 8. Evolution of the MSE across the training epochs for recursive FF (a) and LSTM (b) predictors.

For the sake of comparison, we trained the four neural architectures using the same
hyperparameters grid, considering the ranges reported in Table 6. As training algorithm, we used the
Adam optimizer. Each training procedure has been repeated three times to avoid the problems of an
unlucky weights initialization.

Table 6. Hyperparameters values considered in the grid-search tuning process for FF and
LSTM predictors.

Hyperparameter
Search
Range

Optimal Values

FF-Recursive FF-Multi-Output FF-Multi-Model LSTM

Hidden layers 3–5 3 5 5 3
Neurons per layer 5–10 5 10 10 5

Learning rate 10−2–10−3 10−3 10−2 10−2 10−3

Decay rate 0–10−4 0 10−4 10−4 10−4

Batch size 128–512 512 128 512 512

While performing similarly under many viewpoints, the FF and LSTM architectures show
significant differences if we consider the sensitivity to the hyperparameters values. Figure 9 shows
the sensitivity bands obtained for each architecture. The upper bound represents, for each step
ahead, the best NSE score achieved across the hyperparameters combinations. The cases in which the
optimization process fails due to a strongly inefficient initialization of the weights have been excluded.

Figure 9. Sensitivity bands obtained with FF-recursive (a), FF-multi-output (b), FF-multi-model (c),
and LSTM (d) on the 12-step-ahead prediction. Values refer to the test year (2019).
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The variability of performances of LSTM across the hyperparameter space is quite limited if
compared with that of FF architectures. This is probably because the LSTM presents a sequential
structure and is optimized on the whole 12-step-forecasting horizon. The recursive FF model is
identified as the optimal one-step ahead predictor, and thus there are some cases characterized by
poor performances in the rest of the horizon. The multi-output and multi-model FF seem to suffer
of the same problem because, as already pointed out, they predict the values at each time step as
independent variables.

5. Conclusions

The availability of accurate multi-step ahead forecast of solar irradiance (and, hence, power) is of
extreme importance for the efficient balancing and management of power networks since they allow
the implementation of accurate and efficient control procedures, such as model predictive control.

The results reported in this study further confirm the well-known accuracy of FF and LSTM
networks for the above purpose and, more in general, in predicting time series related to environmental
variables. Another interesting conclusion is that among the Rec, MM and MO models, the Rec is
the one that exhibits the lowest performances. A rough explanation probably lies in the fact that its
parameters are optimized over a time horizon of 1 step, but then artificially used for a longer horizon,
thus propagating the error. Therefore one of the merits of this study is to clarify that a common practice,
namely to identify a model of the type x(t + 1) = f (x(t)), to then predict x(t + h) is not the best choice.
To this end, the proposed MM and MO may represent alternatives that are more appropriate.

However, such good performances are obtained at a cost in terms of data and time required to
train the network. In actual applications, one has to trade these costs versus the improvement in
the precision of the forecasting. In this respect, the solution which appears to be a trade-off between
accuracy and complexity seems to be the MO. Indeed, it can reach a very good performance with
a minimum increment of the number of parameters compared to the recursive approach. The MM
approach performs slightly better than the MO one but requires a different training (and possibly,
a different architecture) for each forecasting horizon, which, in the present study, means training over a
million parameters.

In more general terms, the selection of the forecasting model should be made by looking at the
comparative advantages that a better precision provides versus the effort to obtain such a precision.
Though the economic cost and the computation time required to synthesize even a very complex LSTM
network are already rather low and still decreasing, one may also consider adopting a classical FF
neural network model, which outperforms the traditional Pers24 model and is much easier to train
with respect to the corresponding LSTM.

Another of the peculiarities of this work has been showing how performance indices are strongly
affected by the presence of null values and, in this respect, nighttime samples should be removed for a
correct assessment of model performances.

Both FF and LSTM networks developed in this study have proved to be able to forecast solar
radiation in other stations of a relatively wide domain with a minimal loss of precision and without
the need to retrain them. This opens the way to the development of county or regional predictors,
valid for ungauged locations with different geographical settings. Such precision may perhaps be
further improved by using other meteorological data as input to the model, thus extending the purely
autoregressive approach adopted in this study.
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Abstract: A fully automated transferable predictive approach was developed to predict photovoltaic
(PV) power output for a forecasting horizon of 24 h. The prediction of PV power output was made
with the help of a long short-term memory machine learning algorithm. The main challenge of
the approach was using (1) publicly available weather reports without solar irradiance values and
(2) measured PV power without any technical information about the PV system. Using this input data,
the developed model can predict the power output of the investigated PV systems with adequate
accuracy. The lowest seasonal mean absolute scaled error of the prediction was reached by maximum
size of the training set. Transferability of the developed approach was proven by making predictions
of the PV power for warm and cold periods and for two different PV systems located in Oldenburg
and Munich, Germany. The PV power prediction made with publicly available weather data was
compared to the predictions made with fee-based solar irradiance data. The usage of the solar
irradiance data led to more accurate predictions even with a much smaller training set. Although
the model with publicly available weather data needed greater training sets, it could still make
adequate predictions.

Keywords: photovoltaic power prediction; publicly available weather reports; machine learning;
long short-term memory; integrated energy systems; smart energy management

1. Introduction

The building sector consumed one-third of global final energy use in 2016. About 80% of this
final energy consumption was supplied by fossil fuels. The combustion of this fossil fuel amount
caused 28% of global energy-related CO2 emissions, which represent one of the main reasons for the
greenhouse effect in the atmosphere and global warming. A plan to limit global warming is described
in the Paris Agreement, which entered into force on 4 November 2016. The first point of this agreement
defines that the increase in global average temperature should not exceed 2 ◦C in comparison to the
pre-industrial level [1].

Many countries included the aims of the Paris Agreement in their National Climate Action Plans,
which, among other things, outline the national policies for reduction of the greenhouse gas emissions
in the building sector through to 2050. The Climate Action Plan of Germany aims to make the building
stock virtually climate neutral by reducing the primary energy demand of buildings by at least 80%
compared to 2008 levels by 2050. This ambitious goal can be achieved by a combination of increasing
efficiency, using renewable energy, and sector coupling with the energy and transport sectors [2].
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These solutions, particularly the coupling between different sectors, face big challenges. One of
these challenges is the development and integration of energy management systems for the buildings.
Such smart energy management system can have a significant impact, especially on the energy
consumption of non-residential commercial buildings, because this type of building has an advantage of
simultaneity between load behavior and locally generated energy from photovoltaic (PV) systems [3,4].
However, the fluctuating electricity generation from PV systems challenges the energy management
system to use a prediction of PV power output. This type of power prediction leads to increasing the
self-consumption, avoiding higher grid fees, and efficient controlling of temporal coincidence between
integrated energy systems such as PV systems, battery electric vehicles (BEV), heat pumps, and other
flexible loads.

As a continuation of a previous study Hanke et al. [5], a predictive model based on a machine
learning approach was developed within this study to forecast the PV power output for the next 24 h.
This model had the same conditions as before [5]; the input dataset for the predictive approach consists of
only measured power values of PV systems and free publicly available weather reports. The prediction
of PV power is made without any technical information about the PV system (e.g., without installed
capacity, efficiency, inclination of the PV modules, etc.). Wang et al. [1] used also only historical PV
power output and numerical weather prediction for the short-term forecasting of PV power. One of
the main differences between the study [6] and this study is the type of forecasting method, whereby
Wang et al. [6] proposed interval forecasting of PV power with lower and upper boundaries, while the
predictive model of this study makes deterministic point forecasting.

The study [5] and this study are not the first surveys, which used publicly available data for
making predictions. For example, Kwon et al [7] used publicly available weather data (temperature,
humidity, dew point, and sky coverage) to make predictions of global horizontal irradiance (GHI),
which can theoretically be used for PV power prediction. The given study made direct predictions
of PV power using publicly available weather reports as input data. However, these reports do not
provide measurements and predictions of GHI. For this reason, the input dataset was extended with
an additional descriptive feature. Two possible additional features were investigated within this study:
PV power under clear-sky conditions and maximum PV power, calculated from power measurements
of the last five days.

The requirement to use free publicly available weather data can be explained by the assumption that
most commercial building integrated and grid-connected PV systems do not have any profitable business
model. These systems do not generate enough revenue from feed-in tariffs and self-consumption.
Without enough revenue, the buildings with PV systems cannot have an energy management system
based on cost-intensive forecast data. Using publicly available weather reports is necessary to ensure
that energy management systems with an integrated developed predictive approach can operate at a
low-cost level.

In addition to using publicly available weather reports, the predictive model should also satisfy
other requirements; it should operate fully automatically, be continuously learning, be transferable to
other PV systems, and adapt to changes in weather conditions and the PV system, such as degradation
of the solar modules.

With regard to these requirements, different studies were investigated in order to find an appropriate
predictive approach. In recent years, more and more machine learning algorithms were developed and
applied for time series predictions, as References [8–11] showed in their reviews about PV power forecast
techniques. Mohammed et al. [12] investigated different machine learning models for forecasting PV
power for the next 24 h: seven individual machine learning methods (k-nearest neighbors, decision
tree, gradient boosting, etc.) and three ensemble models. Both individual and ensemble models were
compared to the benchmark models (autoregressive integrated moving average model, naïve, and
seasonal naïve). Das et al. [13] used support vector regression to forecast PV power, and they compared
the prediction to a persistence and conventional artificial neural network (ANN). In particular, ANNs
are used widely for PV power prediction. Rosato et al. [14] proposed three predictive approaches
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based on ANN, which were used to predict power output for a large-scale PV plant in Italy. An ANN
model was also used by Khandakar et al. [15] to predict the PV power output in Qatar, but the authors
of this study additionally investigated two different feature selection techniques. In References [16–18],
it was discussed that the application of long short-term memory (LSTM) neural networks provides
particularly good results in PV power forecasting.

Taking into account the conducted literature research and the defined requirements for the
predictive model, it was not suitable for this study to use classical splitting of the dataset into training
and test sets and training the model only once. The dataset with the measured values used in this
study is regularly updated with current weather data and PV measurements. Therefore, a re-training
of the model with new data occurs at regular time intervals (every 12 h). Together with the current
data, the weather forecast is also updated regularly (every 3 h). After each update of the weather
forecast the developed model makes updated predictions of the PV power output for the next 24 h.
These procedures can ensure continuous learning of the predictive model and addressing concept drift,
i.e., adaptation to possible changes in data, completely new data, and new relationships between input
and output.

The developed predictive approach was tested for two PV systems, which have different installed
capacity, age, solar cell types, and location. This test checked whether the predictive approach can
be transferred to different PV systems, despite having different individual parameters. In addition
to this, PV power was predicted for two seasons of the year with different levels of GHI, in order to
investigate how seasonal fluctuations of GHI can influence the accuracy of PV power prediction.

After making predictions of PV power for two seasons using two different PV systems, it was
necessary to evaluate the quality of the developed predictive approach. For this purpose, the developed
predictive approach was compared to a benchmark model (seasonal naïve forecast). This comparison
analysis was implemented with the help of seasonal mean absolute scaled error (MASE). Furthermore,
the PV power prediction of the model, based on publicly available weather data, was compared to
predictions made with fee-based solar irradiance data.

At the end of Section 1, it is important to underline the novelty of this study and its contribution
to the knowledge of PV power prediction. The “low-cost” predictive approach, which was developed
within this study, can predict PV power output without any knowledge of the PV system, i.e., no
technical information of the PV system is required. Only measured PV power values and publicly
available weather reports were used as input data for the predictive approach. These publicly available
weather reports do not have any values of the GHI; thus, the PV power prediction was made without
the prediction of GHI. Moreover, all conducted simulations proved that the developed “low-cost”
approach can operate fully automatically, can predict the power output of different PV systems, and
can adapt for different seasons of the year.

2. Data

In this section, the origin, main characteristics, and quality of input data are explained.
In supervised machine learning, the input data are divided into descriptive and target features [19].
The descriptive features of this study included historical weather measurements and numerical weather
predictions for two different locations in Germany: Oldenburg and Munich. These features were used
for prediction of PV power output, which was defined as a target feature.

The datasets for Oldenburg and Munich included weather data and measured PV power for
different observation periods. The observation period for Oldenburg lasted from 5 May 2017 until
10 April 2018, and the observation period for Munich lasted from 5 March 2019 until 30 June 2019.
These datasets were explored extensively to determine possible data quality issues and to estimate
correlation between descriptive and target features for feature selection.
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2.1. Photovoltaic Power Output

The origins of the PV power measurements used in this study are roof-top PV systems. The first
system is in operation at the DLR Institute of Networked Energy Systems in Oldenburg since November
2010. Another system was newly installed on a commercial building in Munich and it generates
electricity since November 2018.

The investigated PV systems have not only different locations, but also different installed capacities,
solar cell types, etc. The main technical characteristics of these two systems are presented in Table 1.

Table 1. Main technical characteristics of the investigated photovoltaic (PV) systems.

Location Oldenburg Munich

Installation year 2010 2018
Total capacity 1.14 kWP 99.9 kWP
Orientation 237◦ 177.5◦
Inclination 7◦ 10◦

Solar cell type a-Si mono-Si
Nominal cell efficiency at standard test conditions 6.6% 17.9%

From 5 May 2017 until 10 April 2018, the PV system in Oldenburg generated 675.63 kWh of
electricity. The measured values of the PV system in Munich are available for the DLR institute since
5 March 2019 and, from this time until 30 June 2019, it produced 50,740.14 kWh of energy.

The technical characteristics of the PV systems were not considered in the predictive model and
they are given here only for better understanding of the prediction results. Only measured values of
PV power output were used in the prediction model. These measured values for both PV systems
were recorded with a time resolution of 5 min.

2.2. Weather Data

The requirements for the predictive model defined that input data should be open and publicly
available, in order to ensure low-cost operation of the approach. Therefore, the input weather data for
the predictive model were taken from an online service “OpenWeatherMap” (OWM) of a company
Openweather Ltd. The main activity profile of this company includes providing current weather data,
historical weather data, and weather forecasts of different locations to developers who want to present
meteorological data on their homepages, mobile applications, or other web services. If the developers
make fewer than 60 calls per minute, the current weather and five-day weather forecasts are available
for free. The data of OWM are licensed by the Open Data Commons Open Database License (ODbL).
Because the data from OWM are available to the public, the data are here referred to as “publicly
available weather reports” [20].

OWM provides current and forecast values of various weather parameters, including ambient air
temperature, pressure, air humidity, cloudiness factor, wind speed, precipitation type, etc. Current and
forecast values from OWM have different time resolutions; meteorological parameters of the current
weather are given every 30 min, but the forecasted weather data are available only every 3 h. The data
receiving time of the meteorological values from OWM is in coordinated universal time (UTC) [20].

The used publicly available weather reports do not contain measured and predicted values of
GHI. In order to evaluate how the absence of GHI in input data impacts the accuracy of PV power
prediction, further weather data were purchased for use as input data for the same model. Because
these data are not publicly available, they are here referred to as “fee-based solar irradiance data”.
These fee-based data include measured values of GHI, which are collected by pyranometer. They also
contain calculated values of GHI, direct normal irradiance (DNI), and diffuse horizontal irradiance
(DHI) under clear-sky conditions and angles of solar zenith and azimuth. The GHI prediction is based
on an optimized combination of different forecasting methods, including satellite cloud images and
different numerical weather prediction models [21]. This dataset does not include other meteorological
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parameters, such as temperature or humidity. The measured values and predictions of solar irradiance
in the fee-based dataset are presented in 1 h and 15 min time intervals, respectively. These data were
provided by the DLR Institute of the Networked Energy Systems and the Energy Meteorology Group,
Institute of Physics, Oldenburg University. Kalisch et al. [21] described these data and published a
dataset for the year 2014. For this study, the solar irradiance data (W/m2) were taken from the year 2019.

The problem of different time resolutions of the input data was dealt with in the data pre-processing
step, as described later.

2.3. Additional Descriptive Feature

The publicly available weather reports from OWM do not provide measured and predicted values
of GHI, which are strongly correlated with PV power output. Because of this reason, the input dataset
with weather parameters was extended with an additional descriptive feature. Two possible features
were investigated: PV power under clear-sky conditions and maximum PV power calculated from the
PV power measurements of previous days. Then, these values were inserted in the input dataset and
used for training of the model and for making predictions.

2.3.1. PV Power under Clear-Sky Conditions

PV power output under clear-sky conditions was the first additional descriptive feature investigated
within this study. The process of this feature generation consisted of three steps.

Step 1: Calculation of the total solar irradiance on a horizontal surface, which is called GHI,
under clear-sky conditions. GHI was estimated with the help of pvlib, a special open-source python
toolbox for modeling PV system performance [22]. This toolbox provides three different simple
clear-sky models in order to estimate solar irradiance on horizontal surface under clear-sky conditions:
Ineichen, Haurwitz, and simplified soils [22]. These and other clear-sky models were investigated by
Reno et al. [23], and the Ineichen model was ranked among the more accurate approaches. For this
study, GHI under clear-sky conditions was estimated in pvlib with the Ineichen model, because this
model does not need very specific information and it showed good performance in Reference [23].
The Ineichen model in pvlib needs the following input data for the calculation of GHI under clear-sky
conditions [22]:

• Latitude, longitude, altitude, and time zone of PV system location;
• Some meteorological parameters, like air temperature and pressure (if these parameters are not

available, pvlib uses default values: T = 12 ◦C, pressure = none);
• Time period for which the GHI is calculated.

At the end of the first step, a time series with GHI values under clear-sky conditions was generated
for the definite location of the PV system.

Step 2: Calculation of PV system-specific clear-sky index CSIPV system (m2). For this step, the
maximum value of the PV power measurements PPV, max (W) was divided by the maximum value of
the GHI under clear-sky conditions GHIclear sky,max (W/m2) (see Equation (1)).

CSIPV system =
PPV, max

GHIclear sky,max
. (1)

According to the motivation of this study, the prediction of the PV power output should be made
without any technical information of the PV system. The calculated index is a parameter for initial
assessment of the size, installed capacity, and efficiency of the PV system.

Step 3: Multiplication of GHI values under clear-sky conditions from the first step with the PV
system-specific clear-sky index from the second step. The third step generates a time series of power
output, which can theoretically be produced by the PV system under clear-sky conditions. In the study,
this additional feature is called “clear-sky PV power”.
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Figure 1 presents two time series for one summer day (1 June 2017) and one winter day
(1 December 2017) for the PV system in Oldenburg (see technical parameters of this PV system in
Table 1). The yellow areas in Figure 1 present PV power output under clear-sky conditions. As it can be
seen, this feature takes into account seasonal properties such as lower solar irradiance and the shorter
daytime in winter.

 
(a) (b) 

Figure 1. PV power output under clear-sky conditions on (a) June 1st and (b) December 1st 2017
estimated for the PV system in Oldenburg with an installed capacity of 1.14 kWP.

2.3.2. Maximum PV Power

The maximum PV power curve was the next additional descriptive feature investigated within
this work. The calculation methodology of maximum PV power and the optimal number of days to
look back were taken from a fully automated model of Hanke et al. [5]. Table 2 presents the working
steps for the estimation of maximum power from PV power measurements of the last five days.

Table 2. Working steps for the estimation of the maximum PV power of the last five days.

Step 1

Collection of PV power measurements of the
last five days and plotting them in an overlaid
manner. The power values of the PV system

were recorded and presented in W.

Step 2

Finding a maximum of the PV power for each
time point. The maximum values are marked

bold in the picture.

Step 3

Leaving only the maximum values for each
time point and deleting other values. These

maximum PV power values had the same unit
as PV power measurements (W).
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Table 2 explains only the calculation approach for the estimation of the maximum PV power
output; it does not explain why this parameter was calculated using power values of the last five days.
This number of days was not chosen randomly; rather, Hanke et al. [5] investigated different numbers
of days. In this study, the model was consistently trained with data from only yesterday up to data of
the last 30 days. Then, the simulation results were compared to each other and to the measured values.
Statistical errors, mean absolute error (MAE), and root-mean-square error (RMSE) were selection
criteria for choosing the optimal number of days for training of the model. Because the model which
was trained with the last five days had the lowest statistical errors in the study [5], this number of days
was chosen for generation of the additional feature, i.e., maximum PV power, within this study.

Both maximum PV power and clear-sky PV power were used not only for training the model,
but also for verification of the PV power prediction. The prediction of PV power output should not
be greater than these additional features. If the predicted PV power was greater than the additional
feature, then this predicted value was replaced with the additional feature value. The main advantage
of this verification rule was that it prevented the prediction of PV power output overnight, as well as
great overestimation by day.

2.4. Data Exploration

The predictive model, which was developed within this study, is a data-driven approach. For this
kind of approach, input data and quality of these data play key roles in prediction accuracy. Therefore,
exploration of the input data is one of the main steps in data pre-processing and feature selection [19].

Firstly, all input data were explored with the goal of determining whether the data suffered
from any data quality issues. Both the publicly available weather reports with current meteorological
parameters and the dataset with measured PV power output suffered from missing values. Only 2.9% of
values in the publicly available weather dataset were missing. The dataset with the PV measurements
had 5.7% missing values. The rule of thumb of Kelleher et al. [19] helped to decide whether these
amounts of missing values were critical or not. This rule recommends removing a feature from the
input dataset if the proportion of missing values exceeds 60% of the whole dataset. In this case, the
amount of relevant information stored in the rest of the data is very low. According to this rule, the
proportion of missing values in the datasets with weather parameters and PV measurements was
uncritical, and both datasets could be used as input data for the predictive model. The next common
data quality issue involves outliers; publicly available weather reports had only one outlier (humidity
value) within the investigated period, and the PV dataset did not have any outliers in the same period.
According to the OWM homepage, humidity is calculated as a percentage and varies between zero and
one hundred. During data exploration, it was determined that the humidity value on 12 March 2018 at
21:00 was 107%.

Secondly, the quality of the numerical weather forecast from publicly available weather reports
could also be evaluated, because the weather forecast was available for the whole investigated period
of time. The prediction accuracy of publicly available weather reports was evaluated with the help of
three statistical metrics.

Mean absolute error (MAE):

MAE =
1
n

n∑
i=1

∣∣∣Yi −Yi
∣∣∣. (2)

Root-mean-square error (RMSE):

RMSE =

√√
1
n

n∑
i=1

(
Yi −Yi

)2
. (3)
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Symmetric mean absolute percentage error (sMAPE) [24]:

sMAPE =
100%

n

n∑
i=1

∣∣∣Yi −Yi
∣∣∣∣∣∣Yi + Yi
∣∣∣ . (4)

In Equations (2)–(4), Yi is the measured value, Yi is the predicted value, and n is the number
of values.

The statistical metrics can only be calculated for the numerical variables. The meteorological
parameter “precipitation” in publicly available weather reports is a categorical feature, which contains
categories such as “rain” and “snow”. In order to evaluate the forecast accuracies for this parameter, it
was converted into dummy variables. After this procedure, the dataset contained two new columns
with discrete variables: “precipitation (rain)” and “precipitation (snow)”.

The meteorological parameters cover different ranges; for example, cloudiness and humidity cover
the range [0, 100], ambient air temperature covers the range [−10, 29], etc. In order to compare them with
each other, all values were converted into the range [0, 1] using range normalization [19]. Afterward,
MAE, RMSE, and sMAPE for all meteorological parameters were calculated. The statistical metrics
which indicate the quality of weather forecast of publicly available weather reports are presented in
the Table 3.

Table 3. Statistical metrics of OpenWeatherMap (OWM) forecast: MAE—mean absolute error; RMSE—root-
mean-square error; sMAPE—symmetric mean absolute percentage error.

Investigated Meteorological
Parameters from OWM

MAE RMSE sMAPE (%)

Temperature 0.023 0.031 2.61
Pressure 0.017 0.022 1.56

Humidity 0.219 0.263 15.43
Cloudiness 0.236 0.339 33.79
Wind speed 0.079 0.100 20.11

Precipitation (rain) 0.415 0.644 41.48
Precipitation (snow) 0.023 0.150 2.31

Among all meteorological parameters, temperature and pressure, with an sMAPE of less than
3%, had the best prediction accuracy. The high statistical errors of cloudiness and precipitation make
sense, because these meteorological parameters are the hardest to predict. The accuracy of humidity
forecasting lay between the accuracies for temperature and cloudiness.

2.5. Correlation Analysis and Feature Selection

In the previous subsections, the meteorological parameters were investigated separately from the
target feature, i.e., the PV power output. The next step was the calculation of the relationship between
weather data, additional features (clear-sky PV power and maximum PV power), and measured PV
power. The relationship between all these features was estimated with the help of covariance cov and
correlation corr metrics [19]. The formulas for the calculation of these metrics are given below.

cov(a, b) =
1

n− 1

n∑
i=1

(
(ai − a) ×

(
bi − b

))
. (5)

corr(a, b) =
cov(a, b)

sd(a) × sd(b)
. (6)

In Equations (5) and (6), a, b represent features a and b, a, b represent the means of features a and
b, and sd is the standard deviation.
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The correlation values between meteorological parameters from publicly available weather reports,
two additional features, and PV power output are presented as a heat map in Figure 2.

Figure 2. Correlation values between descriptive, additional, and target features. Values close to −1
mean a strong negative linear correlation, values close to 1 mean a strong positive linear correlation,
and values around 0 mean no linear correlation [19].

The correlation analysis showed that air temperature and humidity have a stronger relationship
with PV power output in comparison with the other meteorological features. The strong positive
correlation between PV power and temperature can be explained by the fact that daily curves of
the solar irradiation and air temperature were similar to each other. In general, an increase in solar
irradiation also causes an increase in air temperature. The same explanation is valid for the strong
negative correlation between PV power and humidity. However, in this case, the increase in solar
irradiation causes a decrease in humidity.

Despite the commonly perceived fact that the PV generation strongly depends on the current
cloud cover, the given probability for cloudiness from the OWM showed a weak correlation with
the measured PV power. The calculated maximum PV power values and the expected PV power
under clear-sky conditions had the strongest positive relationship with PV power output, as the
correlation values were greater than 0.80. Pressure, wind speed, and both precipitation features had
the lowest correlation with the measured PV power, or the relationship between these features was
strongly non-linear.

The two precipitation features “rain” and “snow” were combined as a common feature, which
received the name “precipitation”. In the case of rain or snow, the parameter “precipitation” was equal
to one; otherwise, it was zero. The correlation value between the new descriptive feature “precipitation”
and the target feature “measured PV power” was −0.14.
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The conducted correlation analysis helped for a better understanding of the data. Furthermore,
the results of this analysis were applied for feature selection. Hall [25] defined the feature selection as
a process of identifying and removing features which contain irrelevant or redundant information.
The presence of irrelevant information can reduce the prediction accuracy and make the results less
understandable. By the same token, the removal of irrelevant features can improve the performance of
the machine learning algorithm, whereby the operation time decreases and the algorithm operates
more effectively [25].

There are a lot of techniques for feature selection, but this research work used correlation values
in order to identify and select the input features with relevant information. Only those descriptive
features with correlation values greater than 0.1 or lower than −0.1 were selected for the predictive
model. The selected features were air temperature, humidity, cloudiness, precipitation, maximum PV
power, and clear-sky PV power.

The heat map in Figure 2 presents the correlation values for the whole observation period (one
year). The next step was to investigate whether the correlation values were dependent on seasons or
whether they remained constant throughout the whole year. For this purpose, the correlation was
calculated for each month in the investigated period. Figure 3 presents the monthly correlation values
among the measured PV power, four selected meteorological parameters, and two additional features.

Figure 3. Monthly correlation values among measured PV power, selected meteorological parameters,
and additional features.

The correlation between the measured PV power and two additional features remained the
strongest over the whole observation period. Moreover, the monthly correlation values between these
parameters fluctuated slightly over the year; for example, the correlation values between the measured
PV power and calculated maximum PV power ranged between 0.63 in December 2017 and 0.87 in
April 2018. The relationship between the PV measurements and air temperature had strong seasonal
dependency. The correlation between these features was much stronger in warm seasons. It decreased
in autumn and reached its minimum in winter months. In spring, the correlation values began
increasing again. The same tendency can be seen by observing the relationship between measured PV
power and humidity. The correlation between the measured PV power and two remaining weather
parameters did not fluctuate as strongly, and it lay between 0 and −0.25 for almost the whole year.
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3. Methodology

3.1. Machine Learning Algorithm

There are two main approaches to PV power output forecasts: performance method and machine
learning method. The performance or physical method needs technical specifications of the PV system
and prediction of the solar irradiance for this location. However, the main aim of the developed
predictive approach is to obtain the PV power output without any information about the PV system
(except historical measured values of the generated power). Thus, the performance method could
not be used according to the motivation of this study. The machine learning method does not need
any information of the system. This was the first reason for choosing the machine learning approach.
The second reason was an absence of the solar irradiance in the publicly available weather reports.

The next step was to select a machine learning technique among the many techniques of forecasting
the PV power output. The artificial neural network (ANN) is currently the most used machine learning
approach for the prediction of PV power. In 24% of all studies in Reference [10], the researchers predicted
PV power using ANN models. ANN has many different variants with their own advantages and
disadvantages, such as feed-forward, convolutional, recurrent, etc. This study used a special architecture
of artificial recurrent neural network (RNN) named the long short-term memory network (LSTM).

LSTM was firstly proposed by Hochreiter and Schmidhuber [26]. This new model was developed
in order to overcome a classic problem of the RNN, i.e., that error signals in the RNN blow up or
vanish during their backpropagation through time. The LSTM model developed by Hochreiter and
Schmidhuber [26] is not affected by this problem. Since then, the classical structure of LSTM was
improved and developed further by many different scientists. One of the most relevant improvements
was the addition of a component called a “forget gate”, which was developed and described by
Gers et al. [27]. This additional component and all standard components of the LSTM module are
presented in Figure 4.

Figure 4. Internal structure of a single long short-term memory (LSTM) block (following the description
of Hua et al. [28]).

The key components of the LSTM block are the cell state and gates (input, output, and forget).
The cell state is displayed as a horizontal line running through the top of the LSTM module in Figure 4.
This component is responsible for remembering the current state of the neural network. The gates
are also marked and labeled in the figure. They consist of different units, such as a sigmoid layer (σ),
tangent hyperbolic layer (tanh), and multiplication operator (×). These components help to control
the information flow to the memory cell. The forget gate looks at the input of the current cell and
the output of the previous cell and decides how much information remains in the current cell state.
This gate returns a number between 0 and 1. The next step is to control what new information is stored
in the current cell state. This is the task of the input gate, which combines sigmoid and tanh layers.
The last gate, i.e., the output gate, decides what information flows to the next memory block [28].
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The following characteristics of the LSTM network were the main reasons for choosing it for the
predictive model of this study [26]:

• LSTM is able to learn long-term dependencies that are typically found in time series. All used
input datasets were time series (weather data and measurements of PV power).

• This structure of the ANN can remember relevant information for long periods of time.
• In the case of great time lags, the special structure of the LSTM prevents the error signals from

increasing or vanishing.

The detailed mathematical explanation of the LSTM, as well as application cases, can be found in
References [26–28].

3.2. Description of Developed Predictive Model

After the neural network structure was chosen, it was decided which programming language
and framework would be used to develop the predictive model. The predictive model was designed
and trained with machine learning library Keras, which was written in Python. This open-source
framework was developed as part of the research project ONEIROS (open-ended neuro-electronic
intelligent robot operating system). Keras is intended for the quick implementation of neural networks,
both convolutional and recurrent, for different experimental purposes [29].

However, before training the model with the chosen machine learning technique, i.e., LSTM, the
input data were prepared. The data preparation, model training, and other main steps of PV power
forecasting are presented in a simplified flow chart in Figure 5.

 
Figure 5. Simplified flow chart of the predictive model.
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The developed predictive tool is initialized at the very beginning of the operation. In this case,
initialization means a definition of parameters such as geographical coordinates, location, and name of
the additional descriptive feature. These parameters are necessary to generate the additional feature,
i.e., clear-sky PV power or maximum PV power. The reasons and procedures of additional feature
generation were described in Section 2.3. If maximum PV power was chosen as the additional input
feature, the predictive tool waited five days to collect enough data to calculate the maximum power
output (see Section 2.3.2).

After the definition of the additional feature, the main process of PV power prediction could
start. This process occurred continuously in an endless loop. Each iteration of this loop started
by making a decision about the execution of the training process (see rhombus in Figure 5). In the
case of a positive decision, the predictive model was trained with updated weather data and PV
measurements. A positive decision occurred twice per day, at 00:00 and at 12:00. As known from the
previous chapter, all input data used in this study had data quality issues, e.g., missing values and
different time resolutions. Therefore, data pre-processing was an unavoidable step, which included the
following functions: timestamp transformation of PV measurements from local time UTC + 01:00 to
UTC, detection of the double or completely inconsistent timestamps, imputation of missing values
by linear interpolation, and transformation of data time resolutions into the pre-defined unified time
resolution. This pre-defined unified time resolution for all used input data was 30 min. The last
step of data pre-processing was the normalization of values. The normalization involved a scaling of
values into the range [0, 1] using range normalization. The descriptive and target features were scaled
separately from each other, and the scalers were saved for future use in the forecasting process, i.e., for
scaling of the input weather forecast values and rescaling of the predicted PV power values.

After the normalization step, the scaled values of the weather reports and the PV measurements
were used to train the predictive model. The training process consisted of three steps: architecture
definition, compilation (configuration of the learning process), and training. The architecture of the
model had the following characteristics:

• First layer with five input parameters;
• Two hidden LSTM layers with 64 and 32 neurons;
• Output dense layer;
• The total number of trainable parameters was 30,369.

Then, the learning process was configured and the model was trained for 100 epochs. After this
process, the model architecture and the weights were saved in order to use them later for the prediction
of PV power output.

As mentioned above, the model was trained only at midnight and at noon. At other times,
the prediction of PV power output was made with the help of the model, which was saved after
the previous training step. The last steps in the loop included rescaling of the predicted values and
evaluation of the forecast accuracy.

3.3. Content and Sizes of the Training and Test Sets

Because the PV power output depends strongly on the weather conditions and seasons, it was
checked whether the developed predictive model can forecast the PV power output for different
seasons. For this purpose, the model was trained with the weather data of warm and cold periods, and
then the trained model was used to make predictions for warm and cold periods, respectively.

Both the content and the size of the training set were varied. Figure 6 shows four different sizes of
the training set (seven days, 14 days, 30 days, and 90 days), one constant size of the test set (23 days),
and a general splitting of the whole dataset into training and test sets.
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Figure 6. Splitting the dataset into training and test sets.

As seen in Figure 6, the first prediction of PV power output always began at the same time point
of the test set, independent of the training set size. One after the other, the pre-defined training set
sizes were used to train the model and make predictions of PV power. Then, the impact of the training
set sizes on the forecast accuracy was investigated by comparing the predictions with each other.

3.4. Evaluation of Prediction Accuracy

The evaluation of the prediction accuracy was done by calculating standard statistical errors
MAE, RMSE, and MAPE (see Equations (2)–(4)). Antonanzas et al. [10] described an adaptation of the
classical MAPE for the evaluation of PV power forecasting.

MAPE =
100%

n

n∑
i=1

∣∣∣Ppred − Pmeas
∣∣∣

P0
, (7)

where P0 is the installed capacity of the PV system.
Another measure for estimation of the forecast accuracy is the mean absolute scaled error (MASE),

which was described in References [10,30].

MASE =
MAE

1
n−m

∑n
i=1

∣∣∣Pmeas,i − Pmeas,i−m
∣∣∣ . (8)

This error differs from classical statistical errors in the fact that MASE is independent of the scale
of the data. An MASE less than one points to the used predictive method being better than the average
naïve forecast [30]. The naïve forecast and persistence forecast represent simple forecasting methods,
whereby the forecast value is equal to the last measured value. There is an extension of the classical
naïve forecast for seasonal data called the seasonal naïve forecasting method. According to this method,
the forecast value is equal to the last measured value of the same season (season can be day, month,
year, etc.) [31].

Because PV power output can be defined as seasonal data, it was decided to use the seasonal
MASE to evaluate prediction accuracy in this study. Some assumptions which were needed to calculate
MASE within this work are listed below.

• The season was taken as one day;
• m in Equation (8) was set to 48, because the time resolution of the data was 30 min;
• Pmeas,i in Equation (8) was the measured power of the PV system at time i;
• Pmeas,i−m in Equation (8) was the measured power of the PV system at the same time yesterday.

In addition to statistical errors, the difference between the measured and predicted daily energies
plays an important role in energy management systems. This measure is called the energy forecast
error, and it was calculated with the following equation [32]:

ΔE =
Edaily, model − Edaily,measured

Edaily,measured
. (9)
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The sign of the energy forecast error indicates whether the predictive model overestimates or
underestimates the measured energy production of PV system.

4. Results and Discussion

In this chapter, the PV power prediction, made with the publicly available weather reports, is
presented, discussed, and compared with the prediction with fee-based solar irradiance data. Moreover,
it was also checked whether the developed predictive model meets the defined requirements, such as
self-learning ability, transferability, etc.

4.1. Choice of the Additional Descriptive Feature

Section 2.3. described two additional descriptive features: clear-sky PV power and maximum
PV power. Here, these two features were compared by making predictions of PV power output
and estimating the prediction accuracy. The developed predictive model was trained with the same
weather data and the same power measurements of the PV system in Oldenburg (the installed capacity
of this PV system is 1.14 WP). Both training datasets contained 90 days of data. The architecture of
the predictive model and the procedure of the predictive process also remained the same. The only
difference was that the first input dataset contained maximum PV power and the second input dataset
contained clear-sky PV power as the additional descriptive feature.

After training the model and predicting PV power, the MAE of this prediction was calculated for
each day in the test set. These MAE values are presented in Figure 7 in the form of boxplots.

Figure 7. Distribution of daily MAE values of PV power prediction after training the model without
any additional feature and with maximum PV power or clear-sky PV power as additional features
(training set 90 days; test set 8 August 2017–31 August 2017).

A boxplot is a very representative way of displaying the distribution of values. The main components
of boxplots are the box, median, whiskers, and outliers. The box or interquartile range contains the middle
50% of all values. The line in the box indicates the median. The space between the lower whisker and the
box covers the range between the minimum and lower quartile. The space above the box includes the
values from the upper quartile until the maximum.

The first important conclusion which can be drawn from Figure 7 is that the extension of input
data with one of the additional features (maximum PV power or clear-sky PV power) improved
the prediction accuracy significantly; the median MAE decreased from 150 W to 67 W. The second
important conclusion is that both additional features resulted in a similar accuracy of the PV power
prediction. MAE values of these predictions varied between 25 W and 125 W. The only difference
between these prediction accuracies was the distribution of the errors between the lower quartile,
interquartile range, and upper quartile. Because MAEs of the predictions with both additional features
had almost the same range, they could be equally used for PV power prediction.

To generate the maximum PV power, only two parameters are needed for the calculation: measured
power of the PV system and pre-defined number of days looking back (see calculation procedure
in Section 2.3.2). The feature “clear-sky PV power” required more input data for its generation,

185



Energies 2020, 13, 735

including geographical coordinates, location name, and calculated specific clear-sky index for the
feature generation. Thus, the additional feature “maximum PV power” was more independent than
the feature “clear-sky PV power”. For this reason, it was decided to use the maximum PV power as the
additional descriptive features for all predictions, as described later.

4.2. Prediction with Publicly Available Weather Reports

The developed predictive model with publicly available weather reports as input data must
be able to make reasonably good predictions of PV power output. Moreover, the model must meet
the requirements defined in Section 1. One of these requirements was the suitability of the model
for different seasons of the year. This requirement was checked using the PV system in Oldenburg.
Therefore, the predictive model was tested for two periods of time with different weather and solar
irradiance conditions: a warm period from 8 August until 30 August 2017 and a cold period from
19 March until 10 April 2018.

The prediction accuracies for warm and cold periods are displayed in Figure 8 in the form of
boxplots with the distribution of MAE, RMSE, MAPE, and MASE values. The predictions for both
warm and cold periods were made using the predictive model, which was trained with four training set
sizes one after the other. All training and test sets contained the data from publicly available weather
reports. The X-axis in the figure presents the four sizes of the training set, which were used to train the
model. The Y-axis shows the distribution of the error values for warm and cold periods.

(a) MAE (b) RMSE 

(c) MAPE (d) MASE 

Figure 8. Daily values of MAE, RMSE, MAPE, and mean absolute scaled error (MASE) of PV power
prediction for warm and cold seasons, which were made after training with four sizes of the training
set containing publicly available weather reports.

The training dataset size was increased step by step in order to investigate and improve the
prediction accuracy of the model. The prediction accuracy improved with the increase in size of the
training set. This was especially significant in the cold period; for example, if the training set was
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increased from seven days to 90 days, the median MAE of the cold period decreased from 51 W to
45 W (almost 12%).

The next important point, which can be seen in Figure 8, is that the scale-dependent errors MAE
and RMSE in the cold period were lower than in the warm period (see Figure 8a,b). These results can
be explained by the fact that the measured values of PV power in winter were much lower than in
summer. The percentage error MAPE had the same disadvantage. For this reason, it was important to
calculate the scale-independent metric MASE and to use it for comparison of the prediction accuracy
across different seasons.

The distribution of the daily MASE values for the two seasons and four training sets are also
presented as boxplots in Figure 8d. It is obvious from this figure that the prediction of the PV power
in the cold period was less accurate than that in the warm period. The MASE medians of the cold
period lay above 1.0 for almost all training sets, except for the set with 90 days, and the MASE medians
in the warm period were about 0.90 for all training sets. One of the possible reasons for the better
prediction in the warm period is that solar irradiance and, consequently, PV power output in the warm
season was more stable, whereas the cold season had a lot of days with strongly fluctuating solar
irradiance during the day. However, the developed predictive model should forecast the PV power
output for all seasons of the year equally well. In this case, only the training set with 90 days could
ensure appropriate prediction accuracy for both warm and cold seasons; the MASE medians of the PV
power prediction for this training set were about 0.90, regardless of the season.

After testing whether the predictive model could accurately predict PV power for different seasons,
the same model was also tested with regard to forecasting PV power for a completely different PV
system. This system is located in Munich, Germany, and its installed capacity is almost one hundred
times greater than the PV system in Oldenburg. The technical parameters of this PV system were
presented in Table 1. The power output prediction for the PV system in Munich was also made for
23 days from 8 June until 30 June 2019. The dataset of the Munich PV system was split in the same way
as the dataset of the Oldenburg PV system (see Figure 6).

Because the installed capacity of the Munich PV systems was much greater than the capacity
of the Oldenburg PV system, only the scale-independent statistical metric MASE could be used for
comparison of the prediction accuracy of these two systems. The average values of MASE for the
whole test periods of the two PV systems are displayed as a dot chart in Figure 9.

Figure 9. Average of MASE values for two different PV systems in Oldenburg and Munich.

The predicted values of the Munich PV system had similar average values of MASE to the
predicted values of the Oldenburg’s system. The most accurate prediction occurred again after 90 days
of training, but the extension of the Munich training set to 90 days led to a greater improvement of the
prediction accuracy. Figure 9 not only shows the forecasting quality; it also verifies that the developed
predictive model was able to forecast the power output for the different PV systems without any
technical information about these systems, except for the measured power values, using only publicly
available weather reports without direct prediction of GHI.
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4.3. Prediction with Fee-Based Solar Irradiance Data

In this section, the PV power prediction with publicly available weather data was compared to the
prediction with fee-based solar irradiance data. The main difference between these two data sources
lies in the fact that publicly available weather data contain only indirect values of the GHI such as
cloudiness and precipitation, while fee-based data contain measurements and predictions of the GHI,
which are highly correlated with PV power output. The prediction of PV power output presented in
this section was also made using the same predictive model described in Section 3.

In the previous subsection, it was proven that the developed predictive approach could be used to
make predictions for two different PV systems. This is why fee-based solar irradiance data were used
to make predictions for only one PV system. The PV system in Munich was chosen for this purpose.

Firstly, the MASE values of the PV power predictions with publicly available weather reports
and fee-based solar irradiance data for all training sets were compared with each other, in order to
determine the optimal sizes of the training set for each data origin. Figure 10 shows these values.

Figure 10. MASE of PV power predictions with publicly available data and fee-based data. The prediction
was made for the Munich PV system (installed capacity of 99.9 kWP).

Figure 10 shows that the prediction accuracy of the model with the solar irradiance data was much
better when using shorter training datasets. The extension of the training set with solar irradiance data
from 30 days to 90 days led to an increase in MASE. The predictive model made the most accurate
prediction if the training set contained 14 days of solar irradiance data or 90 days of publicly available
data. The PV power predictions with these exact training set sizes are compared below.

The next measure for the comparison between predictions, made with two data origins, was the
error between the predicted and measured daily energies, calculated using Equation (9). The normalized
distribution of energy forecast errors of the predictive model, which was trained with 90 days of
publicly available weather data and 14 days of fee-based data, is displayed in Figure 11.

Figure 11. Normalized distribution of the energy forecast errors of predictions with publicly available
weather reports (training set with 90 days) and fee-based data (training set with 14 days). The prediction
was made for the Munich PV system (installed capacity of 99.9 kWP).
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Two main conclusions can be drawn from Figure 11. The first conclusion is that the developed
predictive model was slightly inclined to overestimate the measured values regardless of the input
data used; about 60% of the energy forecast errors had a positive sign The second conclusion is that
the predictive model with fee-based solar irradiance data could predict daily energy more accurately
than the same model trained with publicly available weather reports. The energy forecast errors of
the prediction with solar irradiance data varied between −10% and 60%, but the usage of publicly
available weather reports for the input data led to an increase in forecast errors in both directions,
i.e., overestimating and underestimating.

It is relevant to consider the predicted PV power output not only for the whole test period, but
also for single days. This is why two days with different solar irradiance were selected from the test
set: one with clear-sky conditions during the whole day (29 June 2019) and another with strongly
fluctuating solar irradiance (20 June 2019). The developed model was used to make predictions for
these days with publicly available weather reports and fee-based solar irradiance data. The results
were compared to each other and to the measured values. The predicted and measured power curves
for the selected days are presented in Figure 12.

Figure 12. Measured PV power of the Munich PV system in comparison to the PV power predictions
made by the model with publicly available weather reports (training set with 90 days) and fee-based
solar irradiance data (training set with 14 days) on 20 and 29 June 2019.

Despite the smaller training set, the model trained with fee-based irradiance data could predict PV
power output more accurately for both selected days than the model trained with publicly available
weather reports. Moreover, the training with solar irradiance data led to the model predicting single
peaks and drops of the PV system accurately even with fluctuating PV power production on 20 June
2019. Despite the fact that publicly available weather reports do not have direct predictions of the
GHI, the model trained for 90 days with this dataset could forecast the main trends of the PV power
production for both days. Furthermore, this model was also able to predict the rapid power drop on
the day with strongly fluctuating solar irradiance (20 June 2019 at 12:00).

5. Conclusions

The developed predictive approach is a data-driven method, where the quality of input data plays
a key role. Therefore, the accuracy of the publicly available weather reports was investigated at the
very beginning of the study. The accuracy of the PV power output prediction cannot be better than the
accuracy of the used input data.

The evaluation of the prediction accuracy indicated that the machine learning approach provided
adequate results of PV power prediction for the next 24 h even with publicly available weather reports.
Although the publicly available weather data from OWM are to be used mainly on websites and
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mobile applications, they can be also used for the purposes of PV power prediction. This study also
proved that it is possible to predict the PV power output without solar irradiance measurements and
forecasts, and without any technical information about the PV system, except the measured power
values. Because publicly available weather reports do not provide GHI values, this input dataset was
extended with an additional descriptive feature, i.e., the maximum PV power of the last five days.
The addition of this feature improved the prediction accuracy, prevented the prediction of PV power
overnight, and avoided overestimated predictions of PV power by day.

The requirements of the predictive approach were defined in the motivation of the study.
The first requirement was a fully automated online operation of the day-ahead PV power forecasting.
This requirement was proven during the simulation, where the weather forecast was updated every 3 h.
In the same time interval, the PV power was predicted for the next 24 h. The constant updating of the
training set with current weather data and PV measurements resulted in a periodic re-training of the
predictive model every 12 h. The second requirement was the transferability of the model for different
seasons and PV systems. The suitability for different seasons was tested using a simulation with the
dataset from Oldenburg, which contains weather data for warm and cold periods. The comparison of
the simulation results with these two datasets pointed to an influence of seasons on prediction accuracy,
as well as the ability of the model to adapt to seasonal weather changes. The transferability of the
model to the PV systems with different locations, sizes, and technical parameters was proven by the
prediction of the PV power for two completely different PV systems. During the transferability check,
the main disadvantage of MAE, RMSE, and MAPE was detected. Therefore, the seasonal MASE was
selected to compare the forecasting accuracies across different seasons and PV systems.

Afterward, the PV power predictions with publicly available weather reports were compared
to the predictions with fee-based solar irradiance data. The predictive model, which was fitted with
publicly available weather data, needed more training data in order to make more accurate predictions
of the PV power. The best accuracy of the prediction with publicly available weather reports occurred
using the training set with data from the last 90 days (the time resolution of all data was 30 min).
If fee-based solar irradiance data were used, the training set with the last two weeks of data led to
the most accurate prediction. The predictive model which used solar irradiance data not only had
better prediction accuracy, but it also forecasted single power peaks and drops of the PV system more
accurately than the model which used publicly available data.

The developed predictive approach with publicly available weather data is not suitable for
applications which require higher accuracy and finer resolution, e.g., grid stabilization. However, the
accuracy of the developed predictive approach with publicly available weather reports is suitable for
other applications, such as forecast-based energy management system for buildings with PV systems.
An energy management system based on PV power prediction can increase the self-consumption of
the PV system and optimize its operation and flexible loads, such as BEVs and heat pumps. Moreover,
if the PV power prediction is considered for the distribution of energy demand over the day, it can
support a reduction in peak load, which prevents power limits on the house connection point from
being exceeded and avoids high grid fees.

The publicly available weather reports from OWM and the PV power measurements are
continuously recorded in order to collect more input data for training and validation of the developed
predictive approach with a greater input dataset. This greater input dataset contains more information
about seasonal circumstances, rapid weather changes, and relationships between weather data and PV
power, which can improve the accuracy of the predictive approach.

In this study, the accuracy of the developed predictive model with publicly available weather
reports was improved in different ways, such as selection of appropriate input features and machine
learning algorithm, optimal configuration of the LSTM network, increase in training set size, etc.
However, the prediction accuracy may also be improved in the future if publicly available weather
data sources provide measurements and prediction of solar irradiance.
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Future investigations should not only deal with the improvement of the developed predictive
approach, but also investigate many other questions. One of these refers to the optimal size of the
training set. The accuracy of PV power prediction strongly depends on the type of solar irradiance for
the next 24 h; in other words, the prediction accuracy depends on whether the prediction is made for a
day with constant solar irradiance or for a day with strongly fluctuating solar irradiance. Therefore,
it will be interesting to investigate dynamic sizes of the training set, i.e., the training set size can be
adapted automatically depending on the weather forecast and type of solar irradiance. Dynamic
training set sizes can also be more efficient in cases of disruptive changes like snow cover on PV
modules or the failure of strings.

The focus for future investigation can be on an economic analysis of the PV power prediction.
This study used only statistical metrics (MAE, RMSE, MAPE, and MASE) to evaluate the performance
of the developed predictive approach and to estimate influences of the data origin on the prediction
accuracy. Additionally, predictions made with different data origins can also be evaluated with
economic metrics, e.g., whether paying for solar irradiance data can provide considerable economic
benefit. Another goal for further investigations is a combination of the developed machine learning
approach for PV power prediction with another approach for load prediction. These two approaches
use different input features, predict different target features, and can use different measures for
prediction accuracy evaluation. However, in order to evaluate the combination of these predictions
uncertainty quantification needs to be conducted for both approaches. Afterward, these predictive
tools can be integrated into the energy management system of the buildings.
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Abstract: Photovoltaics (PV) output power is highly sensitive to many environmental parameters
and the power produced by the PV systems is significantly affected by the harsh environments.
The annual PV power density of around 2000 kWh/m2 in the Arabian Peninsula is an exploitable
wealth of energy source. These countries plan to increase the contribution of power from renewable
energy (RE) over the years. Due to its abundance, the focus of RE is on solar energy. Evaluation and
analysis of PV performance in terms of predicting the output PV power with less error demands
investigation of the effects of relevant environmental parameters on its performance. In this paper,
the authors have studied the effects of the relevant environmental parameters, such as irradiance,
relative humidity, ambient temperature, wind speed, PV surface temperature and accumulated
dust on the output power of the PV panel. Calibration of several sensors for an in-house built PV
system was described. Several multiple regression models and artificial neural network (ANN)-based
prediction models were trained and tested to forecast the hourly power output of the PV system.
The ANN models with all the features and features selected using correlation feature selection (CFS)
and relief feature selection (ReliefF) techniques were found to successfully predict PV output power
with Root Mean Square Error (RMSE) of 2.1436, 6.1555, and 5.5351, respectively. Two different bias
calculation techniques were used to evaluate the instances of biased prediction, which can be utilized
to reduce bias to improve accuracy. The ANN model outperforms other regression models, such as a
linear regression model, M5P decision tree and gaussian process regression (GPR) model. This will
have a noteworthy contribution in scaling the PV deployment in countries like Qatar and increase the
share of PV power in the national power production.

Keywords: PV power prediction; artificial neural network; renewable energy; environmental
parameters; multiple regression model

1. Introduction

Due to global warming and climate change concerns, many pieces of energy legislation and
incentives to promote the use of renewable energy have been established worldwide. Among
renewable energy resources, photovoltaics (PV) energy is one of the most-promising supplements for
fossil fuel-generated electricity, and has received a lot of attention recently it is abundant, inexhaustible,
and clean. Arabian Peninsula is blessed with solar irradiance of more than 2000 kWh/m2 annually [1].
Due to this high amount of solar irradiance in this region, PV technology has potential in comparison
to other renewable energy sources (e.g., wind energy or tidal energy). Solar energy is gaining
popularity day-by-day, due to some other salient features like noise and pollution free technology
with low maintenance cost. Together with the ever-decreasing prices of PV modules and continuous
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depletion of fossil fuel, it is expected that the penetration level of PV energy into modern electric
power and energy systems will further increase. However, due to the chaotic and erratic nature of the
weather systems, the power output of the PV energy system exhibits strong uncertainties regarding its
intermittency, volatility, and randomness. These uncertainties may potentially degrade the real-time
control performance, reduce system economics, and, thus, pose a great challenge for the management
and operation of electric power and energy system. Predicting the power efficiency of a PV power plant
is very crucial in making the best economic benefit out of it. The PV output power is directly related
to the solar irradiance on the PV panels, which is a well-known fact. However, other meteorological
parameters (e.g., ambient temperature, relative humidity, wind speed and dust accumulation) have
been reported to influence the PV efficiency as well [2–5]. This association substantially increases in
the harsh environment of the Gulf region. There are several recent works that showed the negative
influence of dust accumulation on the PV panel on PV output power prediction [6,7]. The authors
hypothesize that suitable weather parameters at a specific geographic location can be an important
aspect for PV power forecasting. Moreover, PV power prediction can be particularly useful when
multiple energy sources are combined to produce a hybrid energy matrix. Since solar energy source
is highly intermittent, it is difficult to maintain system stability with an intolerable proportion of
renewable energy injection. Solar power forecasting can be used to improve system stability by
providing approximated future power generation to system control engineers. This will help the
utility companies to devise a mechanism to design a switching controller to switch between the energy
sources in a hybrid energy source [8]. It can be hypothesized that the key design parameters for the
switching controller will be linked to the environmental parameters due to its potential effect in PV
power generation.

Several recent works reported different approaches for PV output power forecasting and estimation.
In detail, the specific literature on PV plant power production estimation presents three different
types of models: Phenomenological, stochastic/statistical learning and hybrid ones. Deterministic
approaches, based on physical phenomena, try to predict PV plant output by considering the electrical
model of the PV devices constituting the plant using software like PVSyst, System Advisor Model
(SAM). A deterministic approach was used to model electrical, thermal, and optical characteristics of
PV modules [9]. Most of the published researches for PV power forecasting concentrate only on the
deterministic forecast, i.e., point forecast. Deterministic forecasting methods sometimes fail to evaluate
the uncertainties exhibited in PV power data. Probabilistic PV power forecasting models that can
statistically describe these uncertainties have received much attention recently. One of the mainstreams
for generating probabilistic uncertainty is to use an ensemble of deterministic forecaster. The main
shortcoming of ensemble-based PV power forecasting model is their high computational cost—which
may cause a real-time problem for practical implementation. Another demerit with respect to the
methodologies used in deterministic and probabilistic PV power forecasting is their shallow learning
models. Because of the complicated nature of the weather system, these shallow models may be
inadequate to fully extract the corresponding nonlinear features and static traits in PV power data.
Therefore, more investigation on the deterministic technique to provide high accuracy by optimization
of artificial neural network (ANN) can lead to better performance.

By using the hourly solar resource and meteorological data, the model has been validated for
different modules types. Statistical and machine learning ones, such as: Artificial neural network
(ANN), support vector machine (SVM), multiple linear regression (MLR), adaptive neuro-fuzzy
inference system (ANFIS) operate without any a priori knowledge of the system under consideration.
They try to “understand” the relation between inputs and outputs by adequately analyzing a dataset
containing acquired input and output variables collection. Statistical learning algorithms have many
advantages. Firstly, they are able to learn from them, and they can also work in the presence of
incomplete data. Secondly, once trained, they are able to generalize and to provide predictions.
Their features make them suitable to be used in different contexts. Different machine learning (ML)
algorithms to predict output power have been investigated for other renewable energy sources rather
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than solar energy [10,11]. ML gives insights into the properties of data dependencies and shows the
significance of individual characteristics in datasets [10]. Jawaid et al. [12], compared different ANN
algorithms without showing the details of the prediction model and their comparative performance
numerically. Several other works predicted the solar irradiance using machine learning techniques,
rather than the PV power itself [13–15]. Some of the researches were only focusing on training and
testing of one machine learning algorithm for PV power prediction [16]. An adaptive ANN was used
to model and size a stand-alone PV plant, using a minimum input dataset [17,18]. An ANFIS was
applied to model the different devices constituting a PV power system and its output signals [19].
A linear regression model and an ANN were applied to estimate daily global solar radiation [20,21].
Thirdly, a hybrid model can combine different models to overcome limitations characterizing one
single technique [22]. In addition, “ensemble” methods [23] build predictive models by integrating
multiple strategies in order to improve the overall prediction performance.

It can be noted that the previous works extensively explore different ML-based prediction models;
however, there is still scope for improvement in prediction accuracy. In this manuscript, authors have
reported the following new contributions:

1. Development of a PV and weather system testbed with the continuous calibration of sensors.
This continuous calibration of the sensors ensures that the weather data is measured accurately.

2. A moderately sized dataset, with several PV and environmental parameters, was acquired
during the two years’ deployment period of the PV system. The prediction model reported in
this manuscript were trained and tested on the actual dataset, which can be shared publicly
upon request.

3. Comparison of several multiple regression models and ANN-based prediction models.
4. Exploring the ANN extensively and finding the best prediction model using an ANN that can

provide the lowest Root Mean Squared Error (RMSE). It was also evaluated that the prediction is
a biased prediction or not.

5. Exploring the best set of features that could predict the PV power accurately.

The rest of the paper is organized as follows: Section 2 describes the materials and methodologies
used in the paper; Section 3 describes the analysis techniques used in this work, Section 4 discusses the
results, and finally, Section 5 concludes the work.

2. Materials and Methodology

To analyze the effect of PV performance due to the PV and environmental parameters, an in-house
PV setup was designed and implemented, which acquired and recorded the PV performance and
environmental parameters. The experimental setup comprised of two sub-systems (as shown in
Figure 1: One at the rooftop which was equipped with sensors for acquiring the data and the other
sub-system in the laboratory which was used for archiving the data and plotting them in real time.

The system on the terrace included PV modules (characteristics are shown in Table 1), signal
conditioning circuits for all sensors of weather parameters, an Arduino Mega 2560 microcontroller,
a wireless transceiver (XBee/Wifi) and a controllable electronic resistive load along with a DC-DC
converter. Maximum power point tracking (MPPT) algorithm was implemented to produce pulse
width modulation (PWM) signals to drive the controllable electronic load, which was emulating
different levels of currents and voltage across the load without varying the actual load resistance itself.
Power-voltage (P-V) and current-voltage (I-V) curves were plotted using the calibrated voltage and
current sensors’ data across the emulated electronic load. The MPPT was used to adjust the orientation
of the PV panels to optimize solar irradiance, while achieving maximum PV output power yield.
The sub-system at research laboratory consisted of XBee/Wifi adapters, connected to a workstation,
for receiving and logging data from the rooftop subsystem wirelessly. All measurements from the
rooftop sub-system sensors were received on demand or periodically at a specified time interval by
these wireless adapters. Received data were recorded as a LabVIEW measurement file and displayed
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on the LabVIEW front panel numerically on the workstation screen. The recorded parameters were
also uploaded to an open Internet of things (IoT) data platform called Thingspeak [24] for widespread
access. Both sub-systems communicate through an Xbee/EtherMega shield connected to the Arduino
Mega 2560 microcontroller. The overall block diagram of the PV system is depicted in Figure 1.

 

Figure 1. Block diagram of experimental photovoltaics (PV) system set-up: Roof-top sub-system (left)
and lab sub-system (right).

Table 1. Poly-crystalline silicon PV module characteristics (manufacturer: PTL Solar, UAE).

Max Power at STC 1 Area (m2) Voc (V) Isc (A)

80 0.6426 21 5.24
1 Standard Test Conditions (STC) −1000 W/m2 and 25 ◦C.

2.1. Sensor Calibration

The hardware components consist of a microcontroller (Atmega32), six sensors with signal
conditioning circuits, a DC-DC Buck-boost converter and long-range XBee Pro wireless modules. The six
sensors read the ambient temperature LM35DT (http://www.ti.com/product/LM35/datasheet/pin_
configuration_and_functions#SNIS1593406), solar irradiance SP110 (http://www.apogeeinstruments.co.
uk/pyranometer-sp-110/), humidity HSM-20G (http://www.geeetech.com/wiki/index.php/Humidity_
/Temperature_Sensor_Module_HSM-20G), dust GP2Y1010AU0F(https://digitalmeans.co.uk/shop/
compact_optical_dust_sensorgp2y1010au0f), wind speed anemometer (https://www.adafruit.com/
products/1733) and the PV module surface temperature sensor PT100 (http://export.farnell.com/
labfacility/rtf4-3/sensorpt100-patch-3m/dp/1633500). The PT100 was fixed at the backside of the PV
module using a highly thermally conductive adhesive. Also, the voltage and current transducers
are used to sense voltages and currents from the PV module in order to plot the P-V and I-V curves.
Before installing the overall system, all sensors were tested and calibrated methodically. The BK
PRECISION-720 humidity and temperature meter are used as a reference when calibrating the humidity,
surface and ambient temperatures’ sensors. The temperature of a heating element is controlled to
generate various ambient and surface temperatures for sensors’ calibration. The HSM-20G sensor
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was calibrated using steam generated inside an encapsulated box where both the HSM-20G humidity
sensor along with the BK-PRECISION-720 m was placed. Simultaneous measurements were performed
by taking the readings from both the BK PRECISION meter and the humidity and temperature sensors.
The commercially available INSPEED VORTEX wind speed sensor, using a CATEYE VELO8 display,
was used to calibrate the anemometer (wind speed sensor with analog output). The voltage and
current sensors were calibrated using Yokogawa GS510 SMU (source measurement unit) with standard
procedures. For the dust sensor, we used the firm calibration curve. In the laboratory, different dust
levels were deposited on the sensing element of the GP2Y1010AU0F sensor, which were found to
be within the operating range of this sensor. All the calibration results were repeatable. The output
voltages of the various sensors were amplified in order to match the full-scale analog range of the
microcontroller’s analog-to-digital converter (ADC) without causing ADC saturation errors. However,
the dust and PV surface temperature sensors do not directly provide analog signals, and a circuit
was developed so that they can be interfaced to the microcontroller. For the PV surface temperature
sensor, which is a resistive type (resistance temperature dependent, RTD), a constant current source
circuit is devised to provide an output voltage that is linearly dependent to the variation of resistance.
For the dust sensor, its output pulse lies on a 0.32 ms pulse width that needs to be acquired correctly
by sampling at 0.28 ms of the pulse. All the sensors conditioning circuits are integrated into a single
printed circuit board (PCB).

The maximum power point tracking (MPPT) used a back-boost converter, which serves as a
direct load to the PV modules. Through a gate driver circuit, by adjusting the firing angles of the
insulated gate bipolar transistor (IGBT) switch of the back-boost converter, the microcontroller keeps
adjusting the output voltage of the PV modules until reaching the maximum power point. Then,
the microcontroller reads the corresponding voltages and currents of the PV module through the
voltage and current transducers above discussed. Furthermore, two XBee Pro transceivers were
used to transfer the measured data wirelessly from the rooftop sensors and electronics modules to a
LABVIEW-based monitoring station (Figure 1), which plots I-V curves, P-V curves and also save the
measured data for future analysis.

2.2. Machine Learning-Based Prediction

The process of applying ML on any dataset to predict unknown output values consists of three
general phases (Figure 2): Pre-processing of data to extract features, training the prediction models
and observing validation accuracy on training dataset and evaluation of the pre-trained model for
the test dataset. Firstly, the acquired dataset was pre-processed to make it suitable in format, free of
anomalies, such as missing, outliers and erroneous data values. Most importantly, then the relevant
features were extracted. We have used the collected parameters, e.g., Temperature, Relative Humidity,
PV surface Temperature, Irradiance, Dust accumulation and Wind Speed as features for the training
and testing; which eased this sub-task. Training and testing dataset was created using the cvpartition
function in Matlab, which allows to randomly partition the training and testing data into 80% and 20%
respectively. In this study, 380 instances were used for training and validation, whereas 95 instances
were used for testing. In the prediction phase, data with known output response values were used
for training several ML algorithms using Regression Learner from Statistical and Machine Learning
Toolbox and Neural Network toolbox of Matlab.
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Figure 2. Block diagram of the machine learning-based training and prediction stages.

An additional step of feature selection can be used to optimize the trained algorithm. Selection
of features is the process of selecting a subset of relevant, high-quality and non-redundant features
to create learning models with better accuracy [25,26]. Several feature reduction techniques were
tested to obtain the optimized prediction model with the selected subset of features. In the testing
phase, the best performing pre-trained models were evaluated for test dataset, and the evaluation
parameters were computed to perform the reliable statistical evaluation. In addition, this process can
be made adaptive and can be accomplished to improve model quality as historical data gradually
becomes available.

2.3. Features Selection

After processing the data acquired from the data acquisition system, as shown in Figure 1,
the acquired PV and environmental parameters were used as features for the training, validation and
testing purpose. However, it is important to evaluate whether the complete set of environmental
parameters are necessary for the prediction or the feature number can be reduced. Correlation feature
selection (CFS) and Relief feature selection (ReliefF) techniques were used to select most contributory
features. CFS technique selects feature sub-sets, based on correlation-based heuristic evaluation
function, and uses a sub-set search method and calculates the level of redundancy between features in
all sub-sets created. It then evaluates the importance of sub-sets, where the low inter-correlation, but
high-correlation to the target result are selected. ReliefF is an instance-based algorithm that assigns a
relevance weight to each feature that reflects its ability to differentiate class values. Because of sufficient
data, ReliefF has the potential to detect interactions higher than pairwise. In order to select the best
subset with ReliefF from the ranked features, the lowest ranked features were iteratively removed
until the best result was achieved.

2.4. Prediction Models

There are many predictive methods, based on ML, and they can perform differently for the given
datasets. Several simple and popular regression and prediction models were attempted in this work
to estimate the PV output power. These are namely simple linear regression [27], gaussian process
regression (GPR) [28] from the regression learner, M5P regression tree [29]. The simple linear regression
model has a linear relationship between the output response and the input parameters. GPR involves a
Gaussian process using lazy learning and a measure of the point similarity (kernel function) to predict
the value from the training data for an unseen point. The prediction is not only an estimate for that
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point, but also information about uncertainty. It is a one-dimensional Gaussian distribution (which at
that point is the marginal distribution) [28]. In the M5P regression tree model, a tree-based model with
an M5 algorithm developed by Quinlan, 1992 [29], combines a conventional decision tree with the
linear regression functions at each branch end of the tree; it creates a model that predicts the target’s
value by learning simple decision rules [30]. In other words, predicted power would be the result of
“if... then... else...” statements [8].

In this work, the ANN was also used to predict daily PV output power, which is a very popular
machine learning tool for classification and regression application [31]. Figure 3 provides the layered
structure of the ANN along with the detailed depiction of forward propagation and weight adjustment.
The ANN tries to replicate the machine learning in the similar nature of the human brain with a
layered structure (input, hidden and output layers) (Figure 3). Models of ANNs take the form of
artificial neurons where a number of inputs are given to each neuron. The activation function is applied
to these inputs resulting in neuron activation level (neuron output value) and learning knowledge
is provided in the form of training inputs and output pairs (Figure 3). More details on the various
training functions/algorithms are listed in Table 2. Each training function has their own advantages
and disadvantages, and they work differently with different datasets. It was necessary to explore all
the training functions to check which of them works the best for the dataset developed and used in
this work.

Figure 3. The layered structure of the artificial neural network (ANN).

Table 2. Training algorithms of a ANN in Matlab and their description.

Matlab Algorithm Functions Description

trainlm Levenberg-Marquardt
trainbfg BGFS Quasi-Newton
trainrp Resilient Back propagation
trainscg Scaled Conjugate Gradient
traincgf Conjugate Gradient with Powell/Beale Restarts
traincgp Polak-Ribiere Conjugate Gradient
trainoss One Step Secant
traingdx Variable Learning Rate Back propagation
trainbr Bayesian Regularization back propagation
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The artificial neural network and other regression-based predictors were implemented on Matlab
2017b version on a workstation with the below specification:

Processor: Intel® Core™ i7-7500U CPU @ 2.70 GHz
Installed memory (RAM): 16.0 GB
System type: 64-bit operating system, x64 based processor

In this work, various combinations of the number of hidden layers and training functions were
explored to find the best combination that predicts the PV power most accurately, as shown in Figure 4.
An in-house written Matlab script was used to train automatically 10 different training functions
(Table 2). The script was written to change the number of hidden layers from 10 to 300 in increments
of 10 and each training was performed using a particular training function and a specific number of
hidden layers. This is due to the fact that each run provides different network and the best network
out of that 10 tries is selected for that specific combination of training function and number of hidden
layers. Later, a comparison was carried out between the best set of networks with different training
functions, and the number of hidden layers and the best network for each function amongst all the
combination was selected. A final comparison was made with the best network of different training
functions, and the best network among all functions was selected. Figure 4 shows the flowchart of
how the best model selection was carried out.

Figure 4. Method to find the best ANN to predict PV power.
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Table 3 summarizes the network settings for the ANN-based PV power prediction. It can be seen
in Table 3 that the optimum number of hidden layers providing the best model were different for all
features, CFS technique and ReliefF technique.

Table 3. Neural network parameters. CFS, correlation feature selection.

Parameters Values

Number of hidden layer
when all features were used 60
when CFS filtering was used 260

when ReliefF filtering was used 180

Training data 70%
Validation data 15%

Testing data 15%
Number of Folding in Cross validation 5

2.5. Bias Calculation and Correction in Prediction

The biased forecast is described as a tendency to either over-forecast (the forecast is more than the
actual), or under-forecast (the forecast is less than the actual). To improve the forecast accuracy in the
presence of bias is possible if the bias is correctly identified. The correction of the forecast error can be
achieved by adjusting the forecast by the appropriate amount in the appropriate direction, i.e., increase
it in the case of under-forecast bias, and decrease it in the case of over-forecast bias.

Two different techniques are used in this work to calculate the bias in the forecast:

(i) Tracking signal-based technique
(ii) NFM technique

Tracking Signal-Based Technique

The other common metric used to measure forecast accuracy is the tracking signal. The “Tracking
Signal” quantifies “Bias” in a forecast. No product can be planned from a badly biased forecast.
Tracking Signal is the gateway test for evaluating forecast accuracy. The tracking signal in each period
is calculated using the formula as follows:

Tracking signal =
Actual− Forecast

ABS(Actual− Forecast)

Once this is calculated, for each period, the numbers are added to calculate the overall tracking
signal. A forecast history totally void of bias is returned a value of zero, with 12 observations, the worst
possible result would return either +12 (under-forecast) or −12 (over-forecast). Such a forecast history
generally returns a value greater than 4.5 or less than negative 4.5 would be considered out of control.
NFM Technique

Normalized Forecast Metric (NFM) can be used to measure the bias. The formula of NFM to
calculate bias is:

NFM =
(Forecast−Actual)
(Forecast + Actual)

As can be seen, this metric stays between −1 and 1, with 0 indicating the absence of bias.
Consistent negative values indicate a tendency to under-forecast, whereas consistent positive values
indicate a tendency to over-forecast. Over a 12 period window, if the added values are more than 2,
we consider the forecast to be biased towards over-forecast. Likewise, if the added values are less than
−2, we consider the forecast to be biased towards under-forecast. A forecasting process with a bias
eventually get off-rails unless steps are taken to correct the course from time to time.
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The bias correction and change factor methods work well for bias correcting non-stochastic
variables. The quantile mapping (QM) technique removes the systematic bias in the predicted output
and has the benefit of accounting for biases in statistical downscaling approaches.

3. Analysis

Several statistical analyses were carried out to evaluate the performance of machine learning
algorithms for PV output power prediction. To compare models’ performances, various evaluation
metrics are commonly used: (i) Correlation coefficient, which measures the linear dependency between
two variables; (ii) mean absolute error (MAE), which takes the average of the absolute difference
between the real and predicted values; (iii) mean square error (MSE) measures the average squared
error and the square difference between target and predicted values were calculated and averaged;
(iv) root mean square error (RMSE) is the square root of MSE and similar to MAE, but it averages
the squares of the difference and then finds the square root where it actually puts a heavier weight
on larger errors; and (v) coefficient of determination (R2) always lies between − ∞ to 1 and is the
ratio between how well the prediction model in comparison to naive mean model. These parameters
provide better descriptions of predictor performance [32].

Correlation Coefficient, r =
Con(X, Y)

σxσy
(i)

Mean absolute error, MAE =
1
n

∑
n
|X−Y| (ii)

Mean Squared Error, MSE =

∑|X−Y|2
n

(iii)

Root mean square error, RMSE =

√∑|X−Y|2
n

=
√

MSE (iv)

coefficient of determination, or R2 = 1− MSE (Model)
MSE (Baseline)

(v)

MSE(Baseline) is calculated by

∑∣∣∣X − Y
∣∣∣2

n
(vi)

where X is the actual data vector, Y and Y are the predicted data vector and mean of the predicted
data vector.

Different ANNs and regression models were compared using MAE, MSE, RMSE, r-value and
R2 value. After extensively exploring the ANN training functions that provide a better prediction
of the PV, Bayesian regularization backpropagation algorithm was used from the neural network
toolbox of Matlab. A built-in Matlab function for Bayesian regularization backpropagation minimizes
a linear combination of squared errors and weights and then determines the correct combination so
as to produce a network that generalizes well. It updates the weight and bias values according to
Levenberg-Marquardt optimization [33]. The best ANN selection technique (as shown in Figure 4) was
repeated for three different scenarios: (i) When all the features were used; (ii) when features selected
using CFS technique are used; and (iii) when features selected using ReliefF technique.

4. Results and Discussion

The prototype system (setup shown in Figure 1) was used for collecting the PV and environmental
parameters and PV power output data from the period of November 2014 until October 2016. Summary
of the PV and environmental parameters and the data used for deriving the predictive model of the PV
power is shown in Table 4.
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Table 4. Details of the environment parameters used for the predictive model.

Environmental Parameters Max Min Unit

Temperature 61.0000 14.6365 Degree Celsius
Relative Humidity 90.76345 27.8157 %

PV surface Temperature 74.3968 9.3037 Degree Celsius
Irradiance 1033.5290 38.0076 W/m2

Dust Accumulation 1.1142 0.0553 mg/m3

Wind Speed 34.2437 0.5893 km/h
Power 114.2017 0.0368 W

Table 5 shows that Temperature, PV Temperature, Irradiance and Accumulated dust were the
selected feature using CFS algorithm, whereas the irradiance, wind speed, PV temperature, and
environmental temperature were selected as highly ranked features by ReliefF technique.

Table 5. Selected features vector.

Selection Technique Selected Features

Filters

CFS

Temperature
PV Temperature

Irradiance
Dust Accumulation

ReliefF (Ranked Features)

Irradiance
Wind Speed

PV Temperature
Temperature

Table 6. summarizes the evaluation matrix for different regression techniques evaluated in this
study. Linear regression, M5F tree and GPR were implemented using MATLAB with all the features,
and also with reduced features using CFS and ReliefF. The reason for selecting these regression
techniques, because they provided the best performance compared to other regression techniques
commonly used. Table 6A shows the performance matrix of the different regression techniques in the
validation phase, whereas Table 6B shows their performance matrix for the unseen test dataset.

Table 6. (A) Performance comparison between the various regression techniques (validation phase).
(B) Performance comparison between the various regression techniques (testing phase).

(A)

Selection
Criterion

Features
Linear Regression

Model
M5P Tree Model GPR

Without feature
Selection

(all features are
used)

Temperature
Relative Humidity
PV Temperature

Irradiance
Dust Accumulation

Wind Speed

r 00.9853 r 00.8908 R 00.9833
MAE 05.3592 MAE 06.7867 MAE 04.2601
MSE 59.1440 MSE 80.1867 MSE 44.8460

RMSE 07.6905 RMSE 08.9547 RMSE 06.6967
R2 00.8100 R2 00.9167 R2 00.8600

CFS

Temperature
PV Temperature

Irradiance
Dust Accumulation

r 00.9814 r 00.9727 R 01.0000
MAE 05.7514 MAE 06.6892 MAE 05.1657
MSE 66.7100 MSE 92.8209 MSE 61.4970

RMSE 08.1680 RMSE 09.6344 RMSE 05.1657
R2 00.7900 R2 00.7048 R2 00.8100

ReliefF

Irradiance
Wind speed

PV Temperature
Temperature

r 00.9837 r 00.9694 R 01.0000
MAE 05.3727 MAE 06.9110 MAE 04.2257
MSE 60.0210 MSE 103.9819 MSE 46.4300

RMSE 07.7473 RMSE 10.1972 RMSE 06.8139
R2 00.8100 R2 00.6693 R2 00.8500
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Table 6. Cont.

(B)

Selection
Criterion

Features
Linear Regression

Model
M5P Tree Model GPR

Without feature
Selection

(all features are
used)

Temperature
Relative Humidity
PV Temperature

Irradiance
Dust Accumulation

Wind Speed

r 00.8550 r 00.7139 R 00.8662
MAE 13.1340 MAE 16.7506 MAE 12.6338
MSE 212.1000 MSE 418.5574 MSE 195.7792

RMSE 14.5639 RMSE 20.4587 RMSE 13.9921
R2 00.7310 R2 00.5096 R2 00.7502

CFS

Temperature
PV Temperature

Irradiance
Dust Accumulation

r 00.8672 r 00.6809 R 00.8895
MAE 12.4394 MAE 27.3516 MAE 11.5247
MSE 194.3095 MSE 1050.19 MSE 161.6557

RMSE 13.9395 RMSE 32.4066 RMSE 12.7144
R2 00.7520 R2 00.4636 R2 00.7912

ReliefF

Irradiance
Wind speed

PV Temperature
Temperature

r 00.8650 r 00.5797 R 00.8815
MAE 12.7339 MAE 18.8818 MAE 11.5482
MSE 197.5275 MSE 614.7668 MSE 173.3196

RMSE 14.0544 RMSE 24.7945 RMSE 13.1651
R2 00.7482 R2 00.3361 R2 00.7771

This is clearly revealed from the tables in Table 6, the overall performance of the evaluated
regression techniques for the testing dataset was not similar to that of the training dataset. For the testing
dataset, CFS-based feature selection technique outperforms all features and ReliefF-based techniques
for Linear and GPR regression techniques; however, M5P outperforms for all features-based technique.

Training and validation performance of the ANN-based prediction models were shown in Figures 5
and 6 for the three different techniques. The validation performance, as shown in Figure 5, the best
training performance was observed at different epochs for different techniques. Out of the numerous
models developed by the ANN using the different set of features, the best epochs were obtained 707,
91 and 598 respectively. This could be used in future to derive the model for predicting the PV power.
Figure 6 shows the error histogram with 20 bins, where bins represent the vertical bars in the graph.
Total error from each neural network ranges from (−25.84 to 16.88), (−49.08 to 26.43) and (−43.83 to
20.03) respectively. Each vertical bar represents the number of samples from corresponding dataset,
which lies in a particular bin. There is a zero-error line in the graph, and more than 80% of the errors lie
within +10 Watt. It is typically assumed that any algorithm which could predict the output where 80%
of the error lying within 10% (i.e., approximately 10 W) of the target value, is a very good predictive
model [34].
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Figure 5. Comparison of the MSE for different techniques: (a) With all features; (b) CFS feature selection
technique; (c) ReliefF feature selection technique for training and validation.

Figure 6. Error Histogram (a) with all features; (b) CFS feature selection technique; (c) ReliefF feature
selection technique for training and validation.

Figure 7 shows the relation between the original power output and the predicted power output
using the best epochs from the ANN. The dots represent the original power output, the blue line is
the best linearized predictive model derived from ANN, and the dotted line represents the best linear
relation for the true target. The difference between the dotted line and the blue line is represented
by the correlation coefficient, i.e., in Figure 7, r represents the successful linearized model developed
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by the ANN using three different techniques. However, the difference between the predictive model
trend-line and the true trend-line was noticed minimum for all features, which is evident in Figure 6a
and Table 7.

 
Figure 7. Relation between the original power output and the predicted power output in training
and validation: (a) With all features; (b) CFS feature selection technique; (c) ReliefF feature
selection technique.

The best ANN model found using the Figure 4 approach, was validated during training and
validation process and results were reported in Table 7A. The testing dataset was used to validate
the trained model, and the results were shown in Table 7B. As seen in Table 7A, the ANN provides
really good prediction compared to the other regression techniques. By using the various feature
selection techniques, it was found that the ANN provides the lowest RMSE, i.e., 2.1436 for all feature
set; whereas ReliefF feature selection technique provides the second-best performance in terms of
RMSE, i.e., 5.5351 in the validation phase. Similar performance was observed for the testing dataset
as well. All features technique outperforms others, and the best RMSE was observed to be 5.4784.
Figure 8 shows the comparison of the ANN predicted power with the actual power using test dataset
for different sets of features. It is apparent from Figure 9 that there is a consistent over-forecasting or
under-forecasting in the predicted output, i.e., the predicted output was biased in prediction for some
instances. Figure 9 shows the biased forecasting for all the features-based predictions, as shown in
Figure 8a. It can be seen that tracking signal-based bias calculation can identify bias more accurately
than the NFM technique.
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Table 7. (A) Performance comparison between the various ANN techniques (validation phase).
(B) Performance comparison between the various ANN techniques (testing phase).

(A)

Selection Method Features ANN

Without features
Selection

(all features are used)

Temperature
Relative Humidity
PV Temperature

Irradiance
Dust Accumulation

Wind Speed

r
MAE
MSE
RMSE
R2

00.9967
02.1275
04.5952
02.1436
00.9641

CFS

Temperature
PV Temperature

Irradiance
Dust Accumulation

r
MAE
MSE
RMSE
R2

00.9852
04.8239
37.8900
06.1555
00.8396

ReliefF

Irradiance
Wind speed

PV Temperature
Temperature

r
MAE
MSE
RMSE
R2

00.9910
03.7225
30.6370
05.5351
00.9032

(B)

Selection Method Features ANN

Without features
Selection

(all features are used)

Temperature
Relative Humidity
PV Temperature

Irradiance
Dust Accumulation

Wind Speed

r
MAE
MSE
RMSE
R2

00.9856
03.2945
30.0134
05.4784
00.9538

CFS

Temperature
PV Temperature

Irradiance
Dust Accumulation

r
MAE
MSE
RMSE
R2

00.9713
07.7453

130.3845
11.4186
00.8213

ReliefF

Irradiance
Wind speedPV
Temperature
Temperature

r
MAE
MSE
RMSE
R2

00.9804
05.0234
36.2345
06.0145
00.9013
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Figure 8. Comparison of the ANN predicted power with the actual power using test dataset: (a) With
all features; (b) CFS feature selection technique; (c) ReliefF feature selection technique.
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Figure 9. Bias calculation for a biased prediction for all features based PV power prediction: (A) Using
tracking signal technique; (B) using NFM technique.
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In order to confirm if the ANN derived models are efficient in predicting PV power, test dataset
(not included in training) was used for testing the performance of the ANN algorithms. From Figures 8
and 10, it is evident that using all the features, it is closer to predict the actual power than CFS and ReliefF
filtering. It should be noted that more data should be included in the training dataset to increase the
accuracy of prediction. It has been mentioned in the literature by several groups that the bias correction
can improve accuracy; however, some other article showed a contrary performance. Most importantly,
by incorporating bias correction in the prediction algorithm, overall computational complexity and
cost will significantly increase. Moreover, shallow Convolutional Neural Network (CNN) can be used
for PV power prediction to remove the biasing problem. The ANN’s computational complexity could
be less than CNN or deep learning approach and more flexible for real-time prediction.

Figure 10. Error Histogram between the Predicted and actual PV with test dataset: (a) With all features;
(b) CFS feature selection technique; (c) ReliefF feature selection technique.

5. Conclusions

An in-house PV system was developed at Qatar University to monitor, analyze and evaluate the
performance of PV using various weather factors. The PV and environmental data collected from the
system was used to develop a prediction model that can be used to predict the PV power in advance.
To conclude, the prediction model was developed using several regressions—and ANN-based networks
using the data collected by the PV system. Two feature selection techniques (CFS and ReliefF) were
used to select subsets of applicable, high-quality and non-redundant characteristics. Compared to
the three best regression models (simple linear regression model, M5P decision tree model and GPR),
the ANN was more accurate in predicting the output power with RMSE of 2.1436. It was found that
using feature selection techniques along with the ANN can predict the PV power with RMSE of 6.1555
and 5.5351, respectively. The trained ANN models are simpler and can be used to accurately predict
the output power of PV systems with minimal computational complexity. Since the PV system was
designed and tested in Qatar, this work can help the researchers in the Gulf to utilize the optimized
algorithm and its performance in prediction for this region. We believe this would help the solar
industry of this region in a great deal for optimizing the overall PV output. More PV and environmental
data are being acquired for training a more accurate predictive model using the approach described in
this work and will be compared with CNN-based approach in the future. Moreover, the concept of
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cooling the PV using the techniques discussed in Reference [5] are going to combine with the existing
PV system, which can potentially help in increasing the efficiency and also avoid the accumulation
of dust, which can affect the PV performance. Future works can open new horizons in this domain
regarding different bias correction algorithm, with five years’ system data, and more parameters for
prediction—including cooling and cleaning effect on the PV system.
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Abstract: The Polish power system is undergoing a slow process of transformation from coal to
one that is renewables dominated. Although coal will remain a fundamental fuel in the coming
years, the recent upsurge in installed capacity of photovoltaic (PV) systems should draw significant
attention. Owning to the fact that the Polish Transmission System Operator recently published the
PV hourly generation time series in this article, we aim to explore how well those can be modeled
based on the meteorological measurements provided by the Institute of Meteorology and Water
Management. The hourly time series of PV generation on a country level and irradiation, wind speed,
and temperature measurements from 23 meteorological stations covering one month are used as
inputs to create an artificial neural network. The analysis indicates that available measurements
combined with artificial neural networks can simulate PV generation on a national level with a mean
percentage error of 3.2%.

Keywords: photovoltaics; artificial neural networks; national power system

1. Introduction

The transformation of the power system is a continuous process, and to fully realize this we
will need years of ongoing commitment and well-thought decisions on country and regional levels.
In the past two years in the Polish power system, we could observe a significant increase in the
installed capacity in both residential and commercial photovoltaic (PV) systems. To a set of interesting
investments in PV capacity one could potentially include a 600 kWp system located near Porąbka-Żar
pumped-storage hydropower station, 2.5 MW installation for waterworks in Szczecin, and 739 kW for
35 buildings belonging to a housing cooperative in Wrocław. The growing interest in PV systems can
be linked to (a) increasing electricity prices, (b) the decreasing cost of PV systems, and (c) growing
awareness of the impact of the energy generation sector on the natural environment. (Impact of PV
systems from the perspective of Life Cycle Assessment should not be neglected. Readers are referred
to other works strictly dedicated to this topic.)

The Polish Transmission System Operator (PSE) has been publishing wind generation data on
an aggregated level for quite some time. These time series with an hourly time step are of great
importance to visualize and analyze the variability [1] of wind generation with different time horizons.
They can also be used to create forecasting or simulation models [2–5]. Recently, the PSE has also made
publicly available aggregated generation time series from photovoltaic installations located in Poland.
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These data create new opportunities for further research, including an analysis of the complementarity
between renewable energy sources in Poland [6] or the use of available ground measurements to
simulate PV generation on a country level. The second research direction can be later used to simulate
and predict how the growing installed capacity in PV systems in Poland will affect power system
operations. Based on available measurement data, and knowing the transmission system constraints,
decisions can be made regarding the optimal distribution of renewable generators in the power system.

Considering the information above, the objective of this study is to conduct first tests with regard
to the possibility of using ground measurements from meteorological stations to simulate the power
generation from PV systems on a country level. Such research results can be found in the international
literature both for PV and wind generation, using different kinds of inputs and simulation tools.
For example, for Sweden reanalysis based on MERRA (Modern Era Retrospective-Analysis for Research
and Applications), data sets have been used to effectively model a national fleet of wind turbines’
power output [7]. Recently, Olauson [8] found that ERA5 data sets performed much better than the
MERRA reanalysis sets mentioned previously [7]. Similar to the analysis presented in this work,
Black et al. [9] used meteorological data and regression techniques to simulate a fleet of PV systems.

2. Materials and Methods

To simulate the energy generation from PV systems on a country level, the method based on an
artificial neural network (ANN) was applied. ANNs are a computational system loosely inspired by
biological neural networks. They belong to a group of artificial intelligence information processing
paradigms that has gained immense popularity in recent years. Simulation or forecasting models
based on ANNs have been successfully applied in various areas of cognitive and application research,
including water-demand forecasting [10], lake water-level forecasting [11], renewables integration
studies [12], in the area of color image identification and reconstruction [13], multi-core optic fibers [14],
wind speed prediction [15], or, most importantly from this paper’s perspective, in the areas of direct
and global radiation prediction [16] and PV energy yield forecasting [17].

A model of feedforward neural network (NN) has been developed in Matlab 2019a software.
The Levenberg–Marquardt method was used to optimize the weights and bias values [18]. The input
data were divided into training, validation, and testing subsets in proportions of 70, 15, and 15. Since
the length of the available time series was limited to one month, the data were divided so that the first
70% of hours was used to teach the neural network, followed by 15% to validate/supervise the teaching
process and the remaining 15% to test the NN performance. The number of neurons in the hidden
layer was selected following a brute-force approach, namely NNs with the number of hidden neurons
k ranging from 1 to n, where n is the number of input neurons being tested. In the literature, various
approaches to solving this problem can be found [18,19]. However, considering the low computing
effort to create an ANN, a brute-force approach in this particular case seems to be a justified choice.

As inputs, the PV generation time series covering the month of May (available at https://www.pse.
pl/) and time series of wind speed, temperature, and irradiation for 23 meteorological stations located
in Poland, obtained from the Institute of Meteorology and Water Management—National Research
Institute (IMWM-NRI), were used. The locations of meteorological stations along with the equipment
used are presented in Figure 1 and in Table 1. The data have an hourly time step. The nighttime hours
and hours when the energy generation from the PV system was less than 5 MW were removed from
the input data set. Such low values were removed because hourly temporal resolution does not take
into account the spatial distribution of PV systems in Poland, and low generation periods occur during
sunset and sunrise. The final data set consisted of 473 hourly records. The data were normalized to a
range of 0–1 before the ANN creation procedure. The performance of ANN has been assessed based
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on two commonly applied metrics, namely (MAPE) mean absolute percentage error (Equation (1)) and
(RMSE) root-mean-square error (Equation (2)).

MAPE =
1
n

n∑
i=1

∣∣∣∣∣oi − si
oi

∣∣∣∣∣ (1)

RMSE =

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

(oi − si)
2/n

⎤⎥⎥⎥⎥⎥⎦
1/2

(2)

where n—sample size, o—observed value, and s—simulated value.

Figure 1. Locations of 23 IMWM-NRI meteorological stations.
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Table 1. Meteorological stations measurement sensor description.

No.
Meteorological

Element
Sensor Type

1
Irradiation

KIPP & ZONEN
CNR4 Net

Radiometer

KIPP &
ZONEN
CMP11

Pyranometer

X X

Location Piła, Łeba All 21 others X X

2

Air
temperature Pt 100 PVC Vaisala QMT

103 Vaisala QMT 110 Vaisala
HMP45A/45D

Location

Radzyń,
Warszawa-B.,
Legionowo,

Jarczew,
Kasprowy W.,

Wieluń,
Zakopane, Łódź,

Włodawa,
Suwałki

Łeba, Koło,
Bielsko-B., Piła,

Gorzów W.,
Sulejów,

Mikołajki

Toruń, Koszalin,
Legnica, Jelenia G.,

Kłodzko
Gdynia

3

Wind speed
Vaisala

Ultrasonic
WS 425

Vaisala Cup
Anemometer

WAA 151

Gill Instruments
WindSonicM

Others (Vaisala WMS
302, WMT 700, 702,
703 and G. Lufft WS

200-UMB

Location

Gorzów W.,
Jelenia G.,
Kłodzko,

Koszalin, Legnica
Łódź, Mikołajki,

Piła, Sulejów,
Suwałki, Wieluń,

Włodawa,
Zakopane

Gdynia,
Radzyń,

Warszawa-B.
Toruń, Legionowo

Jarczew, Kasprowy,
Łeba, Koło, and

Bielsko-B.

3. Results and Discussion

The energy yield from photovoltaic modules is a function of irradiation falling on the module
area, the modules’ efficiency, and their temperature. Since detailed information about the PV systems’
location is currently not available to the authors, nor is the specification of the modules used, it
is justified to use a black-box approach where the input data are transferred into desired output.
Because the temperature of the PV modules is determined by irradiation and ambient air temperature
as well as wind speed, which has a cooling effect, the above-mentioned meteorological parameters
have been considered as explanatory variables. To simulate an hourly power generation from PV
systems in Poland, a set of 69 (3 meteorological parameters from 23 stations: Bielsko-Biała, Gdynia,
Gorzów Wielkopolski, Jarczew, Jelenia Góra, Kasprowy Wierch, Kłodzko, Koło, Koszalin, Legionowo,
Legnica, Łeba, Łódź, Mikołajki, Piła, Radzyń, Sulejów, Suwałki, Toruń, Warszawa-Bielany, Wieluń,
Włodawa, and Zakopane – please see Figure 1) explanatory variables was used. These explanatory
variables exhibited various correlation coefficient values with the response variable. For the irradiation,
it was on average 0.777, whereas the air temperature and wind speed were, respectively, 0.439 and
0.299. Figure 2 shows the observed hourly irradiation on the 1st of May 2020 and the production of
energy from PV systems at the national level. During that day, the observed irradiation in individual
hours varied significantly among considered locations (meteorological stations), while the PV systems
maintained a relatively smooth energy generation pattern. This phenomenon can be attributed to
the spatial smoothing of power generation due to the geographical dispersion of the PV systems [20].
This situation is beneficial from the perspective of variable renewable energy sources (VRES) integration
to the power system, although constraints such as transmission network capacity may limit the benefits
resulting from spatial smoothing.
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Figure 2. Observed irradiation in 23 meteorological stations along with photovoltaic (PV) production
on a country level on 1st of May 2020.

The generation from PV systems during the whole period is visualized in Figure 3. Significant
variability between individual daily yield sums can be observed. On a side note, accordingly to the PSE
data in May, the PV systems generated 223 GWh, whereas wind turbines generated almost 1.072 TWh,
which contributed to covering, respectively, 1.8% and 8.6% of the national demand in this month.

Figure 3. PV generation on a country level during May 2020.

As mentioned in the Methods and Data section, in total 69 potential configurations of the ANNs
were tested. For those, the one with the lowest MAPE was selected for further analysis. The performance
of the selected and the remaining ANNs as a function of the number of neurons in the hidden layer is
presented in Figure 4. The best performing ANN had 15 neurons in the hidden layer and MAPE of 3.2%.
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Figure 4. Performance of neural networks for the testing subset based on mean absolute percentage
error (MAPE) criteria.

The ANN also performed well in terms of RMSE, which was found to be 39.2 MW. In Figure 5,
the performance of the ANN was visualized for the testing subset only. This set is the final verification if
the neural network is capable of obtaining good-quality results for input data that remained unknown
during the training phase. In Figure 5 it can be noted that the ANN performed very well for the extreme
values (very low and high generation), whereas some systematic errors with an unknown source
occurred for the mid-range values. On average, it was found that the ANN tended to overestimate the
generation by 6 MW. The highest overestimation error was found to be 133 MW, whereas the highest
underestimation was 150 MW.

Figure 5. Performance of the neural network for the testing subset. R2 refers to linear regression.
Red line indicates a theoretical perfect match.

Figure 6 visualizes the performance of the neural network over a period of 4.5 days by the end
of May 2020. The night hours are excluded from the analysis. As shown in the figure, the values
simulated by the ANN followed the real PV systems generation well. During the second day, the ANN
wrongly simulated a sudden drop in PV generation, increasing the variability of the modeled time
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series (in terms of ramp rates). During the fourth day, one can observe that in the midday hours the
simulated generation was slightly greater than the observed one. In general, the absolute errors did
not exceed 150 MW.

Figure 6. Performance of the neural network for the testing subset. Please note that night hours
(no irradiation) are excluded.

4. Conclusions

The presented short communication archives the first results regarding the potential of simulating
the generation from the PV systems on a national level based on ground measurements provided
by the Institute of Meteorology and Water Management. The conducted analysis based on artificial
neural networks revealed that ground measurements consisting of irradiation, wind speed, and air
temperature can be used to correctly model the power generation from PV systems on a country level.
Despite some limitations, such as neglecting the technical specification of the PV systems, the spatial
distribution of PV farms across the country, taking input irradiation on a horizontal rather than an
inclined surface, and finally representing the meteorological conditions in Poland based on a sample
of 23 locations, it was possible to model the PV generation with a mean absolute percentage error of
roughly 3.2%.

Most importantly, the obtained results have some practical implications. In the research and
reality of the operation of present energy systems, meteorology starts to play a very important and,
in many instances, crucial role in enabling and securing an efficient and reliable operation of the
power system. The need for including meteorology-based studies in energy research comes directly
from the unprecedented increase in the installed capacity of renewable energy sources, especially
the ones in which variability/availability is driven by climate and weather [21]. The Polish power
sector is starting a process of transformation. The increasing share of renewables such as wind and,
in particular, solar energy (as observed in 2019/2020) is driven by an increasing awareness of the
energy sector’s impact on the natural environment, the growing cost of electricity generation from
conventional fuels, the decreasing cost of renewables, and national/international policy. The power
system expansion/development studies [22] call for data with both higher temporal and spatial
resolution. This can be provided by either ground measurements, satellite measurements, numerical
weather prediction models, or reanalysis data sets. In this paper we have investigated whether
the in-house data available from a governmental institution (Institute of Meteorology and Water
Management) can be used to simulate aggregated PV generation on a country level. The results

221



Energies 2020, 13, 4255

obtained proved the high value of the already available data and its promising applications in power
system expansion studies as well as research dedicated, for example, to optimal location of PV systems
from the perspective of grid topology or the impact of PV systems on the residual load curve.

This study intended to present the results of the first tests on the freshly published data by the
Polish Transmission System Operator—PSE. Therefore, we did not go into detail comparing different
statistical or machine learning techniques. Clearly, for now, the data sample is relatively short and,
at the time of writing, was limited to one month. In the future, we plan to extend this research by
investigating (a) in detail the impact of the input set on the model performance, (b) comparing different
simulation tools, (c) the impact of a long series of meteorological parameters on the quality of the
model, and finally (d) selecting a minimal set of representative meteorological stations sufficient for
simulations. The results presented here should be taken with caution since solar irradiation has a high
annual variability, and model performance might, therefore, vary depending on the part of the year.
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resources, M.W.; data curation, M.W.; writing—original draft preparation, J.J.; writing—review and editing, M.W.
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Nomenclature

ANN Artificial Neural Network
ECMWF European Centre for Medium-Range Weather Forecasts
ERA5 ECMWF Reanalysis 5th Generation
IMWM-NRI Institute of Meteorology and Water Management—National Research Institute
MAPE Mean Absolute Percentage Error
MERRA Modern Era Retrospective-Analysis for Research and Applications
NN Neural Network
PS Power System
PSE pol. Polskie Sieci Elektroenergetyczne—Polish Transmission System Operator
PV Photovoltaic
RMSE Root-Mean-Squared Error
VRES Variable Renewable Energy Sources
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ekonomika [Wind power plants in electric power system–Connecting, influence on the system and economics].
Rynek Energii 2010, 1, 3–10.

5. Paska, J. Elektrownie wiatrowe w systemie elektroenergetycznym i ich zdolność do pokrywania obciążenia
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Abstract: This paper presents a novel data-driven approach, based on sensor network analysis in
Photovoltaic (PV) power plants, to unveil hidden precursors in failure modes. The method is based on
the analysis of signals from PV plant monitoring, and advocates the use of graph modeling techniques
to reconstruct and investigate the connectivity among PV field sensors, as is customary for Complex
Network Analysis (CNA) approaches. Five month operation data are used in the present study.
The results showed that the proposed methodology is able to discover specific hidden dynamics,
also referred to as emerging properties in a Complexity Science perspective, which are not visible
in the observation of individual sensor signal but are closely linked to the relationships occurring
at the system level. The application of exploratory data analysis techniques on those properties
demonstrated, for the specific plant under scrutiny, potential for early fault detection.

Keywords: sensor network; data fusion; complex network analysis; fault prognosis; photovoltaic plants

1. Introduction

The cumulative global photovoltaic (PV) capacity has been growing exponentially around the
world over recent years. In the decade 2005–2015, the solar PV generation capacity in the EU has
increased from 1.9 GW to 95.4 GW [1]. Notwithstanding this, the Europe PV market’s conditions are
still substantially dependent on regional energy policies and public subsidies for renewable energies.
As per the Italian market, in June 2013 the Italian public company GSE (Gestore dei Servizi Energetici)
officially announced the discontinuation of the last Feed-in-Tariff incentive after its cap of 6700 million
euro was reached [2]. The end of such subsidies has led to new attention being focused on PV plant
performance management, lifetime and availability, with a view to reduce operating and maintenance
costs [3].

Faults in PV plant components (i.e., modules, converters, connection lines), in addition to
downtime correlated penalties, could result in an acceleration of system aging and as a consequence
in a reduction of power plant reliability [4]. Typically, faults severity depends on various factors.
These factors include the time to detect, time to repair or substitute, COE, and occurrence over time,
and all of these factors can have a significant impact on profitability [5]. For these reasons, over the
last decade Fault Detection and Diagnosis (FDD) in PV systems has been established as a critical
field of research [6]. To mention but a few areas, research has addressed key topics like real-time
monitoring, partial shading effects analysis, estimation of natural degradation rate over time and
residual life for solar panels [7]. In the FDD arena, a number of studies have proposed data-driven
fault detection algorithms based on statistical processing of performance parameters (e.g., power loss
factor analysis studies, I-V output characteristics [8–11]) or an exponentially weighted moving average
control chart [12]. In addition, model-based techniques, implementing dynamic fault trees [13] or
combining PV system performance simulation (voltage ratio, performance ratio, &c) and Fuzzy and

Energies 2019, 12, 1995; doi:10.3390/en12101995 www.mdpi.com/journal/energies225



Energies 2019, 12, 1995

neuro-Fuzzy logic classification systems [14,15], have also been studied as methods to detect fault
occurrence [16]. The open literature already offers several review papers on this field, illustrating the
state-of-the-art and opportunities [4,17–19].

With the advent of Internet of Things, technologies for smart monitoring have found widespread
applications, including in PV systems, thereby enabling decision-making processes [20]. However,
monitoring systems typically employ several distributed sensors and the collection of raw data
opening the field to a number of specific challenges is still unresolved, which is in part due to the
different communication standards, heterogeneous structure and the huge volume of data [21,22].
As reported in a number of big data studies [23,24], traditional data analysis in statistics, management
and visualization fails with sensor network data streams. High-dimensionality and heterogeneity
encourage data mining and artificial intelligence solutions, such as feature extraction, classification,
clustering and sampling [25–30]. Furthermore, multi-sensor data fusion techniques have been
introduced to provide a robust description of an environment or process of interest by combining
observations from a number of different sources [31].

In this context, complex network science emerged as an active field, cross-fertilized by natural,
social and computer science, exploiting the general idea that artificial systems like biological ones
(metabolic network, worldwide web, distribution network, etc.) are complex systems, composed of
a large number of interacting parts (components or entities) with an articulated self-organization.
The complexity of the systems, then, resides in interaction and loops among its entities [32]. Looking
for example at industrial systems, constitutive elements are governed by well-defined physical laws
and are included in a pre-determined process scheme. However, surrounding environments and
business laws (determining the operations) influence this by-definition deterministic structure. Moving
to the component level, multi-physics processes are nonlinear, as is the component matching. In a
general view, these systems can evolve surfacing complex structures characterized by diversity, as well
as multiple interactions within and between layers. These characteristics can make industrial systems
a complex engineering system [33,34].

In this paper CNA has been used to model the sensor network of a 1 MW PV field, advocating
a complex system engineering point of view [35,36]. A data fusion criterion has been developed
processing the signals from the sensor equipment with a view to detect fault precursors. The sensors
include PV field AC and DC electrical parameters, temperature, and solar irradiance measurements.

The paper, first, illustrates the methodology for data processing with a consideration of connectivity
analysis to create the digital twin of the sensor network in the form of a functional graph. The result of
these analyses is a correlation matrix that defines the graph structure in terms of the weight of the edges
connecting the nodes (element/sensor signal) at a given instant from all the pairs of pre-processed
sensor time series. By applying the data processing within a fixed time window, sliding over the
monitoring interval, the result is a fully-connected weighted dynamic graph. Then, dynamic graph
analysis is used to explore the sensor network in order to unveil hidden correlations among signal time
series. The results are discussed by using exploratory data analysis to combine the most significant
topological graph metrics in the identification of operational patterns of the PV plant.

2. Methodology

The field sensors are modeled using graph theory as a complex network, where the nodes are
represented by the signals from sensors and the edge are evaluated with non-linear statistical correlation
functions applied to the time series pairs. Specifically, the data flow is structured according to the
following steps:

a. data collection and pre-processing,
b. connectivity analysis and graph modeling,
c. pattern recognition.
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At the initial stage (a), heterogeneous data acquired by the sensors are synchronized and cleaned
by removing outliers. Then for stage (b), a fully-connected graph is created in which each monitored
variable represents a node and all the nodes are connected to each other with directed edges. The output
of this phase is a complete weighted graph model (also called functional graph) of the sensor network.
After, some typical complex network measurements are applied to extrapolate synthetic properties
from the functional graphs. Finally (c), these measurements were used as input for exploratory network
analysis, with the aim of grouping the data as a function of multiple topological graph metrics.

The implementation of the proposed methodology has been done using Python version 3.5 [37].
In particular, a Python code has been created using Scikit-learn and NetworkX packages, respectively [38,39].

2.1. Complex Network Analysis

The CNA has its origins in graph theory and is used to describe the properties of complex systems
through the mathematical study of networks. The key ingredient in the CNA is the study of the
correlation among uni-variate signals recorded from different sources, as is customary for biological
network analysis. For this purpose, the mutual information (MI) has been widely used [40–42].

In this paper we propose a novel approach based on the study of correlations between signals of
m heterogeneous sensors within a fixed window of n samples. In particular, given two signals yn,i and
yn,j, taken from the i-th and j-th component of the feature matrix Yn,m, where (n) is spanning over time
steps, the mutual information MI quantifies the level of uncertainty in yn,i removed by the conditional
knowledge of yn,j. This measure essentially tells us how much extra information one gets from one
signal by knowing the outcomes of the other one [43–45]. Once for each sample, a correlation matrix
is obtained computing the MI in the m-dimensional feature space, while sliding the window from
the beginning of the data set up to the entire monitoring interval. As a consequence, the evolution
of correlation matrix is represented in the form of a functional graph consisting of a set of m nodes
associated by k weighted edges representing the connecting force between the pairs of nodes.

The result of this phase is therefore a dynamic graph that contains all the information about the
evolution of spatial and temporal relationships between all the entities monitored and allows the
definition of parameters quantifying the characteristics of the systems [46].

In the context of CNA, the network measurements represent the most used tools for the
extrapolation of synthetic information through the analysis of network topology. These measurements
can be evaluated over the entire network (e.g., Shortest Path length, Diameter, Global Efficiency,
Modularity, &c) or they can locally refer to nodes (e.g., Centrality Measures). This type of metric has
been applied in several social networking studies to address the problem of identifying and ranking
those people who exert an unequal amount of influence on the decision-making of others (also called
influencers or opinion leaders) and to study the diffusion information within the network [47–49].

In the present approach, both the network measurements relating to the whole network (global
scale) and those specific to individual nodes (local scale) were considered. Specifically, the study uses
Shortest Path Length [50], Diameter and Radius of the graph [51], among the different global-scale
measurements, Eccentricity and Weighted Degree Centrality of the nodes [39,52–54], among the
local-scale measurements.

2.2. Exploratory Data Analysis

Promoted by Tukey [55], exploratory data analysis (EDA) represents a powerful tool to maximize
insight into the underlying structure of a complex dataset. It facilitates the understanding of the
distribution of samples and simplifies the data analysis, pointing out to special observations (outliers),
clusters of similar observations, groups of related variables, and crossed relationships between specific
observations and variables [56,57]. All this information in turn, can be very informative for further
data modeling and it is of paramount importance to improve data knowledge. For these purposes,
it encompasses a wide range of statistics and graphical tools (e.g., histogram, box plot, Pareto chart,
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principal component analysis, etc.) which have been commonly used for decades in various research
fields such as archeology, biology, anthropology, medicine, chemometrics, &c [58–60].

In this paper, EDA is used to investigate the results of the complex network analysis and compare
them with the sensor signals Yn,m. In particular, the 3D scatterplot has been used for visual pattern
recognition. This tool is based on a features representation in a multivariable space, allowing us to
identify the dependencies between different network measurements in order to discriminate specific
operational PV plant clusters.

3. Case Study

The data were collected from a PV plant with a power of 1 MWp. The solar field is connected
to two inverters, each with three conversion blocks. Both inverters are grid-tied, feeding a medium
voltage power distribution network. They are equipped with fully independent monitoring systems
and incorporate a solar power controller to regulate the Maximum Power Point Tracking (MPPT).

Measurements were recorded every 5 min and included AC and DC electrical parameters,
AC power output, ambient temperature and solar irradiance. The monitoring system is shown in
Figure 1. In particular, solar radiation on the plane of the modules and ambient temperature have been
measured by a pyranometer and a PT-100 RTD sensor respectively, both installed on a sensor box near
the panels. Both inverters are equipped with resistive potential divider voltage sensors for DC and AC
parameters measurement for each conversion block. Shunt resistors have been used to measure 12
string currents as a representative sample of the plant.

 

Figure 1. Schematic block circuit diagram of the PV system with sensors and measuring points.

The measurements were collected in the period from May 20th to September 15th 2017. The 47
monitored variables which define the m-dimensional feature matrix Yn,m are listed in Table 1.

Table 1. Monitored PV plant variables.

Yn,1–16 Variable Yn,17–47 Variable

1 DC Total Output Power [kW] 17 DC Voltage Inv. 1—block C [V]
2 AC Total Active Output Power [kW] 18,19,20 AC Voltage-phase 1, 2, 3 Inv. 1—block C [V]
3 Total PV Plant Energy Produced [kWh] 21 Active Output Power Inv. 2—block A [kW]
4 Ambient Air Temperature [◦C] 22 DC Voltage Inv. 2—block A [V]
5 Solar Irradiance [W/m2] 23,24,25 AC Voltage-phase 1, 2, 3 Inv. 2—block A [V]
6 Active Output Power Inv. 1—block A [kW] 26 Active Output Power Inv. 2—block B [kW]
7 DC Voltage Inv. 1—block A [V] 27 DC Voltage Inv. 2—block B [V]

8,9,10 AC Voltage-phase 1, 2, 3 Inv. 1—block A [V] 28,29,30 AC Voltage-phase 1,2,3 Inv. 2—block B [V]
11 Active Output Power Inv. 1—block B [kW] 31 Active Output Power Inv. 2—block C [kW]
12 DC Voltage Inv. 1—block B [V] 32 DC Voltage Inv. 2—block C [V]

13,14,15 AC Voltage-phase 1, 2, 3 Inv. 1—block B [V] 33,34,35 AC Voltage-phase 1, 2, 3 Inv. 2—block C [V]
16 Active Output Power Inv. 1—block C [kW] 36–47 String currents [A]
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Table 2 provides the specification of the sensors used in the monitoring system. As far as the
dataset is concerned, the 47 monitored variables Yn,m are used for the connectivity analysis with a
sliding window set to 216 data (about 18 h) per variable, along the available 5-months records.

Table 2. Main characteristics of the different sensors involved.

Sensor Type Measurement Range Temperature Range

Solar radiation sensor Pyranometer 0 to 4000 W/m2 −20 to + 50 ◦C
Temperature sensor RTD (PT-100) −50 to + 300 ◦C −50 to + 300 ◦C

Current sensors Shunt resistor 15 A −40 to + 125 ◦C
Voltage sensors Resistive potential divider 3 to 500 V (DC) −40 to + 85 ◦C

4. Results

Figure 2 provides the evolution of the solar irradiance and the active power of the inverter 1
(block A) gathered from the measurement system during the period of investigation.

(a) Period of investigation: from May 20th to July 20th 2017 

 
(b) Period of investigation: from July 21st to September 15th 2017  

Figure 2. Solar irradiance and active power of the inverter 1 (block A) during the period of investigation.

The interest on inverter 1 is motivated by the observation of the signals revealing the occurrence of
a fault in the period between 31st August and 15th September. In particular, a breakdown of switching
devices occurred, which caused the failure of the block A of inverter 1 inductor. In this case the internal
protection of the inverter automatically reacted by turning off the block involved in the fault. It is
worth noting that the protection reacts within the sampling interval.
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Detailing on a three-day period at the end of August, the trends of the active power on the 3 blocks
(from A to C) of the two inverters with the irradiation are shown in Figure 3 (inverter 2) and Figure 4
(inverter 1) respectively. The plots refer to 30th August (Figures 3a and 4a), 31st August (Figures 3b
and 4b) and September 1st (Figures 3c and 4c).

(a) 

(b) 

(c) 

Figure 3. Analysis of sensor signals of the Inverter 2 on 30st August (a), on 31th August (b) and on 1st
September (c)—Solar Irradiance over the Active Power of the inverter blocks.

In Figures 3a and 4a, August 30th plots reveals the typical operation of PV plant in sunny condition,
where the solar irradiance reaches the peak value of about 950 W/m2 at mid-day and the active powers
of all the inverters blocks follow its trend.

Looking at the monitored data on 31st August (Figures 3b and 4b), it is possible to infer that the
PV plant operates under cloudy weather conditions with variations of solar irradiance. In particular,
while the inverter 2 (Figure 3b) appears to work in standard conditions, following the solar radiation
trend, inverter 1 (Figure 4b) starting from 13:30 features the collapse of active power on block A,
which then extends to 1st September (see Figure 4c) and gives evidence of fault occurrence.
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To give more hints on this fault event, Figure 5 compares the signals Yn,7–8 and Yn,36 gathered from
inverter 1 block A (Figure 5a) and the corresponding CNA metrics. Specifically, Figure 5b illustrates
the behavior of degree centralities of solar irradiance, DC voltage, AC voltage and string currents.

(a) 

(b) 

(c) 

Figure 4. Analysis of sensor signals of the Inverter 1 on 30st August (a), on 31th August (b) and on 1st
September (c)—Solar Irradiance over the Active Power of the inverter blocks.

As confirmed by sensor signals (Figure 5a), at 13:30 the fault has an immediate effect on the
string currents, while the voltages zeroed around 16:30. When looking at complex network topology
measurements (Figure 5b), the fault occurrence correlates with the departure of the degree centrality of
solar irradiance from those of voltage-current signals which remain correlated.
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(a) 

(b) 

Figure 5. Analysis of (a) sensor signals from block A of the inverter 1 compared with (b) sensor network
CNA metrics on 31st August.

In order to understand the dynamic of the PV field operation, EDA is applied to raw data from
the plant monitoring system as well as to the modeled sensor network topology variables. Figure 6,
first, shows the results of the three-dimensional scatterplot of sensor signals as a function of time and
solar irradiance, focusing on: the active power (Figure 6a), DC voltage (Figure 6b) and AC voltage
(Figure 6c) of the inverter 1 block A. Notably, the plots refer to the sampling period from 20th May to
15th September. Data have been colored according to an agglomerative clustering.

Irrespective of the EDA variables, the analysis of the scatter plots in Figure 6a–c identify three
patterns. Specifically:

• A to B (from 00:00 of 20 May to 16:00 of 31 August), includes the sub-set of operating conditions
of the inverter block with AC and DC voltages, and active power following the trend of actual
solar irradiance.

• A’ to B’ (from 00:00 of 20 May to 16:00 of 31 August), includes the sub-set representative of
night conditions.

• C to D (from 16:00 of 31 August to 18:00 of 15 September), then, represents the power system shutdown
phase after the fault event following which AC and DC voltages, and active power zeroed.

In terms of raw data clustering, it is possible to resolve only the two behaviors which determine
the operations before and after the fault event.

Figure 7 illustrates the results of EDA applied to network topology measurements. The scatter
plots are created to investigate the correlation in time between a global graph measure (e.g., the graph
diameter) and a local node related variable (e.g., sensor signal degree of centrality). In particular,
the sensor network graph diameter is plotted against active power degree centrality (Figure 7a),
AC voltage degree centrality (Figure 7b), and DC voltage degree centrality (Figure 7c).
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(b) 

(c) 
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Figure 6. Exploratory data analysis applied to sensor signals from block A of the inverter 1. Trends
of (a) active power, (b) DC voltage and (c) AC voltage (x-axis), against solar irradiance (y-axis) and
time (z-axis).
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Figure 7. Exploratory data analysis applied to complex network measurements from block A of the
inverter 1. Trends of (a) active power, (b) DC voltage and (c) AC voltage normalized weighted degree
centralities (x-axis), against network diameter (y-axis) and time (z-axis).
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As a first general comment, Figure 7 gives the evidence of a wealth of information emerging from
the application of CNA methods. All the scatter plots demonstrate how the combination of global-local
network topology measures determine the emergence of the dynamics in the PV plant operations,
opening the possibility for a different performance indexing. In detail, all the plots distinguish three
patterns possibly linked to the operations of the inverter block:

• A to B (from 00:00 of 20 May to 06:30 of 31 August), typical of the standard operation, features a
degree centrality in the range 3 to 2, which is nearly proportional to the diameter of the network
which experience a variation in the range 3 to 1.5.

• C to D (from 16:30 of 31 August to 18:00 of 15 September), represents the fault phase with the
inverter shutdown. This cluster is characterized by low values of degree centrality (i.e., below 1)
and low values of the network diameter (1.5 to 0.2).

• B to C (from 06:30 to 16:30 of 31 August), finally includes the sub-set of operations that transition
the inverter to fault. This cluster contains the series of points connecting the previous groups.
While the network diameter ranges between 2.5 and 1.5, the degree of centralities gradually
decreases from 2 to about 1 for inverter 1 block A voltages and active power. This circumstance
permits us to infer that this cluster, possibly, isolates the evolution of inverter operating conditions
from the precursor (6:30) to the automatic block shutdown (13:30) including also the preliminary
phase of fault evolution with non-zero AC/DC voltages (16:30). As such, it demonstrates the
possibility of identifying at 7 h long pre-fault event which anticipates the evolution of inverter
operating conditions on 31 August.

In this case, the results of the agglomerative clustering coincide with those emerging from the
scatterplots and confirm the existence of a pre-fault behavior following a nearly proportional decrease
in global/local graph topology measures.

5. Conclusions

This paper proposes a sensor fusion approach based on the use of graph modeling techniques to
investigate the connectivity among several key parameters of the PV plant.

The results show that the study of the properties of the graphs through the application of Complex
Network Analysis techniques is able to reveal a wealth of hidden information.

As reported in Korn et al. [61] the global behavior of the system is more than the sum of its
parts, so these properties can be thought of as behavior deriving from the interaction between the
components that can’t be identified through their simple functional decomposition.

In particular, the visual analysis of the single topological metrics of the functional graph focused
on the inverter block where the fault occurs (see Figure 4), reveals an evident variation in terms of
correlation between the monitored variables, mainly associated with an anomalous deviation of the
degree centrality of the solar irradiance with respect to the centrality of the key block parameters in the
fault conditions.

However, by combining the multiple information deriving from the different network
measurements (i.e., Degree Centrality and Network Diameter) with EDA techniques, it is possible to
clearly distinguish not only the standard operation from the fault conditions, but also to isolate specific
pre-fault conditions with an advance time with respect to the event of about 7 h. It is important to note
that these conditions only emerge after applying CNA and are not observable with EDA techniques
based on simple sensor signals. This latter type of analysis, in fact, is only able to discriminate standard
operating conditions from fault conditions.

Thus, the results of this study show interesting potential in the evaluation of useful Key
Performance Indicators and Control Charts based on topographic metrics of graphs for early fault
detection in the PV plant.
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Abstract: Several factors cause the output degradation of the photovoltaic (PV) module. The main
affecting elements are the higher PV module temperature, the shaded cell, the shortened or conducting
bypass diodes, and the soiled and degraded PV array. In this paper, we introduce an image processing
technique that automatically identifies the module generating the hot spots in the solar module.
In order to extract feature points, we used the maximally stable extremal regions (MSER) method,
which derives the area of interest by using the inrange function, using the blue color of the PV module.
We propose an effective matching method for feature points and a homography translation technique.
The temperature data derivation method and the normal/ abnormal decision method are described in
order to enhance the performance. The effectiveness of the proposed system was evaluated through
experiments. Finally, a thermal image analysis of approximately 240 modules was confirmed to be
97% consistent with the visual evaluation in the experimental results.

Keywords: thermal image; photovoltaic module; hot spot; image processing; deterioration

1. Introduction

Photovoltaic (PV) modules are made up of several solar cells. When an abnormality occurs in such
a cell, the cell operates like an electrical resistor. As a result, the short circuit current decreases because
of the power consumption and the series circuit characteristic. This phenomenon leads to an increase
in temperature and accelerates the damage of the PV cell. Eventually, this abnormal process limits the
short circuit current of the faulty PV module, reducing the power generation efficiency, performance
and life of the PV module [1]. When the current capacity is reduced due to shadows produced by
leaves, clouds, and dust or an abnormality occurs such that one cell is completely obscured or the cell
is aged, a reverse bias is applied to the PV cell. This causes a so-called hot spot [2]. Some studies have
found the modules that may cause failures by the thermal analysis of PV modules using an infrared
thermal camera to prevent this loss [3–8].

Suárez-Domínguez’s PV module thermal image analysis study [5] showed that the mean
temperature of the PV module was 21 degrees. However, the temperatures at the two hot spots were
found to be 26 degrees and 28 degrees. E. Kaplani’s study [6], confirmed that the temperature of the
hot spot area exceeded 100 ◦C in summer. Several other studies have also suggested that thermal
imaging cameras are reliable, economical, and easy methods of inspecting hot spots, and suggest that
periodic inspection can lead to optimal plant operation [6,7]. However, reflection and emissivity must
be considered when inspecting a PV module using a thermal imaging camera. When PV modules
are inspected from the front, a thermal imaging camera sees the heat distribution on the glass surface
but only indirectly sees the heat distribution in the underlying cells. Glass reflections are specular,
which means that the surrounding objects, with different temperatures, can be seen clearly in the
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thermal image. In the worst case, this results in misinterpretations (false “hot spots”) and measurement
errors. In order to avoid the reflection of the thermal imaging camera and the operator in the glass,
it should not be positioned perpendicularly to the module being inspected. However, emissivity is at
its highest when the camera is perpendicular and decreases as the angle increases [8].

Some solar power plants are considering installing fixed dual cameras. However, high-resolution
thermal cameras are still very expensive. In order to install a large number of these expensive cameras,
a large initial investment cost is required. In addition, it is necessary to establish and maintain an
information processing system for multiple cameras. In recent years, in order to inspect the PV modules
installed in a wide area or in a difficult accessing place, a thermal image of the PV module using a
drone is taken and a thermal temperature analysis is performed [9,10]. However, these studies rely on
visually inspecting the temperature distribution and finding faulty modules while viewing infrared
thermal images on the monitor. Thus, a deterioration diagnosis program of a photovoltaic module is
required to manage a module installed in various solar power plants in a wide area.

Thermal cameras generally measure the wavelength emitted by an object to extract temperature
information. However, it is difficult to distinguish objects according to temperature conditions.
The thermal image alone provides the temperature value of a specific object. Nevertheless, object
boundaries cannot be distinguished by the thermal image alone in order to automatically extract the
region and determine the abnormality through the temperature in the region [11]. Therefore, research
has been carried out to realize object classification and object temperature distribution through a visible
camera and a thermal camera. These studies express the temperature image of a specific region by
performing a matching process between a visible image and a thermal image [12–14]. The image
registration process is particularly essential in order to obtain necessary information by using multiple
thermal and visible cameras. The matching process performs a geometric alignment process on the
image so that data can be compared or integrated from different images. In these studies, the feature
points must be extracted well for matching, and the matching relation of feature points is important.
Davis [12] proposed a method of extracting background-subtraction and contour and synthesizing
thermal image and visible images to extract the feature points. Conaire [11] evaluated the use of
feature points by applying various methods such as four feature points, color and edge histograms,
and weighted models.

Another study suggests a method of finding a plane homography that aligns the thermal spectrum
with the visible spectrum. Using the obtained homography, the thermal image is image-warped to
match the image [14]. In order to obtain such a precise homography, a number of correspondence
points are defined in the image manually and perform a homography search process is performed
that minimizes the least squared error [15]. However, the lack of correlation between the brightness
intensity of the degradation image and the intensity of the visible image makes it difficult to generate
an automatic correspondence point due to the brightness. Thus, a passive correspondence point
designation or a specific landmark search method is required [16].

In this paper, we introduce an image processing method that can automatically identify the
module generating hot spots in the solar module. In order to overcome the difficulties of generating the
automatic correspondence points proposed in the previous studies, the proposed PV module analysis
system adopts the image processing method that uses the characteristic elements of the PV module.
Additionally, the proposed method extracts temperature information automatically and determines
whether there is an abnormality through the rectified module image. The proposed method consists of
four major image processing methods using the unique features of the PV module. The first method
uses the shape and color characteristics of the PV module. The second exploits the fact that the PV
modules are installed in multiple clusters. The third method involves the extraction of characteristic
points from the visible image and deterioration. Finally, the fourth method derives a homography
transformation equation for matching between minutiae points. To extract the feature points, we use the
maximally stable extremal regions (MSER) algorithm, which computes the depth change value with the
neighboring pixels and generates a tree up to the neighboring pixel level value [17]. Next, the proposed
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method derives the area of interest by using the inrange function using the blue color of the PV module.
We propose an effective matching method for feature points and a homography conversion technique
using the random sample consensus (RANSAC) algorithm [18]. The module area is rectified to increase
the ease of the temperature distribution inspection of the module area after the matching of the thermal
image and the visible image is completed.

The temperature information is extracted from the rectified thermal image and the failure
prediction module is determined by calculating the abnormal area of high temperature area. Through
this image processing method, it is possible to automatically identify the module generating the
hot spot of the photovoltaic module, and it can help identify the cause of hot spots by displaying
the thermal image and visible image generated by the hot spot. If there is contamination, shadows,
or breakage, etc., in the visible image in the high temperature area, it is easy to identify the cause.
However, if there is no abnormal point, it can be judged that the performance degradation is due to the
characteristic change. In order to distinguish between the normal and abnormal modules, accurate
region extraction of the photovoltaic module must proceed. If the photovoltaic module area is well
extracted from the thermal image, the abnormal temperature distribution is not found as shown in
Figure 1a, but it is judged as normal. If the module area is incorrectly extracted as shown in Figure 1b,
an abnormal temperature distribution is found and it is judged to be an abnormal module.

  
(a) (b) 

Figure 1. Examples of photovoltaic module area extraction and decision: (a) Correct extraction; (b)
Incorrect extraction.

In Section 2, we describe an algorithm for detecting the occurrence of hot spots by analyzing
the temperature distribution of a solar module. Furthermore, we describe the proposed visible
image and thermal image registration, rectification process, temperature data derivation method,
and normal/abnormal decision method. In Section 3, image analysis is performed on various solar
modules and the effectiveness of the proposed algorithm is examined. In Section 4, we discuss the
results and draw conclusions.

2. Deterioration Diagnosis Method of PV Module Using Thermal Image and Visible
Image Processing

2.1. Proposed Method

The flow chart of the proposed method is shown in Figure 2.
The proposed algorithm can be summarized in the following five steps:

• Image acquisition.
• Solar module area search and block segmentation.
• Extraction of visible image and thermal image feature points and corresponding point matching.
• Matching and rectification based on corresponding points.
• Determining the abnormal module.
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Figure 2. Flowchart of the proposed visible and thermal image matching and rectification algorithm.

Figures 3 and 4 show the algorithm proposed in this paper which includes the process of feature
points extraction, feature points matching, segmentation, rectification and abnormal module judgment.
The detailed description of the proposed method consists of following functional steps.

• A visible image (Img1) and a thermal image (Img2) are acquired by simultaneously photographing
the PV module with a visible camera and a thermal camera.

• The region of interest corresponding to the region of Img1 is RImg1.
• Extract the PV module area from Rimg1 through the inrange function. The binary image represented

by white in the module area portion is RMImg1.
• The feature points (MP1: mP11 to mP1n) corresponding to the vertexes of the box area are derived

by the MSER algorithm in Rimg1.
• The feature points (MP2: mP21 to mP2n) corresponding to the vertexes of the box area are derived

by the MSER algorithm in Img2.
• The effective matching point set (M1,M2) is derived from MP1 and MP2 through a decision

criterion function.
• The homogrphy (H1) to convert M2 to M1 is found.
• Img2 is projected on Rimg1 to obtain a matching image (Rrimg).
• The temperature distribution calculation and module recognition process for each module consists

of the following steps.
• In RMImg1, MB1, . . . , MBn are obtained by segmenting by block using the findcontuors function.
• The homography Hb1 for rectifying the region of MB1, and the homography Hbn for rectifying

the region of MBn are obtained. This homography is applied to obtain each rectified image RB1,
. . . , RBn.

• The rectified image RBImg is used to determine whether there is an abnormality through the
temperature distribution and the abnormality determination equation for each module area.
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Figure 3. Feature points extraction and matching images creation through corresponding points.

 

Figure 4. Segmentation, rectification, abnormal module judgment.

2.2. Image Acquisition

To acquire the image, we constructed a stereo camera with a visible image camera (resolution:
1280 × 720) and an infrared camera (640 × 512) as shown in Figure 5. Camera calibration was performed
to derive a common image area with different angles of view between the visible image and the thermal
image. Through the camera calibration process, the lens distortion correction and the main shooting
distance were taken at positions of 8 to 18 m, and a strategic area of the thermal image was set in the
visible image area.

 

Figure 5. Stereo camera configuration of visible and infrared camera.

2.3. PV Module Area Search and Block Segmentation

2.3.1. Extraction of Region of Interest through Color Inrange

We implemented an algorithm that derives the area of the photovoltaic module by exploiting the
fact that the main color is in the blue region due to the characteristics of the PV module. The color image
was transformed into the HSV image using the color inrange function. The hue value was 80~140,
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the saturation value was 65~255, and the value was 65~255. An example of the image processing using
HSV conversion and inrange function is shown in Figure 6.

(a) (b) (c) (d) 

Figure 6. Image processing through HSV image and inrange function: (a) visible image; (b) HSV image;
(c) inrange function result; (d) mask image (RMImg1).

2.3.2. Block Segmentation through Find Contours

Since PV modules have a cluster array structure for serial-parallel connection and the installation
type may be changed in units of cluster blocks, the image was segmented in units of blocks. An example
of the block segmentation by the findcontours function is shown in Figure 7.

  
(a) (b) (c) 

Figure 7. Block segmentation through findcontours: (a) find contours; (b) mask image; (c) sub-block
mask image.

2.4. Module Feature Point Detection Using MSER Algorithm

This step converted the visible image into a gray image and extracted the module area using
the MSER algorithm. Additionally, the thermal area image was extracted using the MSER algorithm.
As an example, the results of using MSER without considering module size are shown in Figure 8.

  
(a) (b) 

Figure 8. MSER algorithm without consideration of module size: (a) result of visible image gray MSER
algorithm; (b) result of thermal image MSER algorithm.
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The MSER rectangular areas of the visible image as shown in Figure 8a were sorted in ascending
order, and are used as the predicted area value of one PV module based on the intermediate area value.
In Figure 9, we show a graph of rectangular area vs. rank by area. MSER rectangular areas within
20%, the appropriate value according to various experiments, are derived by comparing these with the
predicted area values. The calculation was performed in following steps.

 

Figure 9. Choosing PV module area size by median value in a visible image.

• Arrange rectangular area elements by area.
• Find the median predicted area of the sorted result.
• Among the median predicted areas, the rectangular regions are filtered with those of a prediction

area of ±20%.

In Figure 10, we show predicted areas by using the median value. The number of green rectangles
in Figure 10 is reduced, compared to Figure 8, as a result of applying the MSER algorithm considering
the module size and extracting the feature points. The yellow dots are used as feature points.

  
(a) (b) 

Figure 10. MSER algorithm and feature point detection result considering module size: (a) result of
visible image; (b) result of thermal image.
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2.5. Valid Matching Point, Homography and Registration

2.5.1. Valid Matching Point

An unnecessary matching point of a rectangular area is estimated as shown in Figure 10a,b.
In order to remove the unnecessary matching points, the validity between the points of two images is
determined, which is expressed as:

x1i ∈MP1, x2 j ∈MP2, i : 1 ∼ MP1size, j : 1 ∼MP2size (1)

r =
√(

x1i − x2 j
)2
+

(
y1i − y2 j

)2

i f (r < thr) then M1k = MP1i, M2k = MP2 j
(2)

The set of feature points of the visible image and degradation images are called MP1 and MP2,
respectively as shown in Figure 3. The expressions (x1i, y1i) and

(
x2 j, y2 j

)
respectively represent the

x value and the y value of the i-th feature point of the MP1 and the j-th element of the MP2, Equation (1)
performs an iterative search while changing to the introduction number. The validity evaluation step
computes the distance value (r) between the two points. If the estimated distance is smaller than the
boundary value (thr), these two points are determined as an element of the effective feature point set
(M1, M2).

2.5.2. Homography Derivation through Valid Feature Points, Registration

A set MP1 of points (x1i) existing in the projection plane space corresponding to the set MP2 of
points (x2i) existing in the two-dimensional projection plane space can be projected, and a projective
transformation between the two images can be expressed as a relation function. Projectivity is defined
as an invertible mapping h, which is a linear transformation through a non-singular 3 × 3 matrix [19].

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x’

1
x’

2
x’

3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

X′ = HX (4)

The homography converting the thermal image feature point M2 into the visible image feature
point M1 was obtained as follows.

H1 : M2→M1 (5)

Homography (H1) in the case of Figure 7 is as follows.

H1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1.011490762 −0.0011793 −0.17881936
−0.0074779 0.95735177 5.3210135
−0.0000029 −0.0000903 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6)

Using the obtained homography H1, the thermal image is projected onto the visible image. Figure 11
shows a composite image of a red image with a visible image converted to green. The disparity
between the images is shown by a simple synthesis before the conversion in Figure 11a,c. However,
it can be confirmed that the images are well matched without any difference value in the composite
image using the homography.
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(a) (b) 

  
(c) (d) 

Figure 11. Registration images of visible and thermal using homography: (a) registration image
without homography; (b) registration image with homography; (c) enlarged registration image of (a);
(d) enlarge registration image of (b).

2.6. Rectification, Thermal Data Extraction, and Determination of Results

The module region was rectified to increase the ease of the temperature distribution inspection
of the module area, once the registration of the thermal image and the visible image was completed.
The faulty module was determined by calculating the high temperature area. Through this image
processing procedure, the module generating hot spot in the PV module was automatically identified.
This helped to identify the cause of the hot spot by displaying the thermal image and visible image
generated by the hot spot. Visible images can be used to distinguish between contaminants, shadows,
breakages, microcracks, or cell deterioration.

2.6.1. Homography Derivation and Rectification

In the blocks obtained through the segmentation, the entire area of the PV module was obtained,
and the homography was derived using the edges of the valid feature points needing to be rectified.

HBn : MBn→ RBn, n : 1 ∼MBsize (7)

RBimg =
blocksize∑

n=0

RBn (8)

HBn uses a homography matrix for rectifying the sub-block MBn into the rectified block RBn,
and obtains the rectified image Rbimg by summing the rectified images of sub-blocks. An example of
obtaining the rectified images from sub-blocks is shown in Figure 12.
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(a) (b) (c) 

Figure 12. Process of obtaining a rectified image: (a) sub-block MB1; (b) sub-block MB2; (c) rectified
block RB1, RB2.

2.6.2. Extracting Temperature Information and Determining the Abnormality

In order to determine whether an error had occurred in the PV module, the average temperature
value (T_avg), the maximum temperature value (T_max), and the minimum temperature value, (T_min)
information in the module area were extracted. Next, the high threshold temperature (Th_high) and
the low threshold temperature (Th_low) were determined in the PV module area. If the temperature
value was less than Th_high and less than Th_low, the count value (a_count) would be increased. If the
value a_count exceeded 0.2% of the module area value (area_module), then the module would be
considered as an abnormal module. Figure 13 shows an example of extracting temperature information
and determining the abnormality. Figure 13a shows the temperature distribution for the abnormal
module among several modules, and Figure 13b shows the results of the normal module (left) and the
abnormal module (right) obtained through the proposed equation.

(a) 
 

(b) 

Figure 13. Extracting temperature information and determining the abnormality: (a) extracting
temperature information; (b) normal module and abnormal module judgment.
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TH_high = T_avg + T_max × 0.2
TH_low = T_avg + T_min × 0.2

if ((T_val > Th_high) or (T_val < Th_low)) a_count ++;
if (a_count > area_module × 0.002) abnomal PV module

(9)

3. Experiment

To evaluate the validity of the proposed algorithm, 40 visible and thermal images were
simultaneously captured using a drone. The shooting altitude was set to about 10 m, and the
acquired image is shown in Figure 14.

  

(a) (b) 

Figure 14. Samples for experiment: (a) visible image samples; (b) thermal image samples.

In order to evaluate correspondence consistency, ground-true images were manually generated
for seven images as shown in Figure 15.

 

Figure 15. Ground-true images for evaluating matching consistency.

For each image, feature points were derived, and the homography for matching was derived,
projected, and finally, matched. To obtain the validity, the homography was applied to the ground-true
image to calculate the match rate. The results showed an average of 97% agreement.

The mean area value of the module area obtained by the MSER algorithm was 10,336 pixels,
and the standard deviation of the PV area was 215 pixels. The average area accuracy of the module
area was about 98%. Finally, the proposed method determined whether the module was normal or
faulty, and estimated the faulty module by calculating the high temperature area. The thermal image
analysis of approximately 240 modules was confirmed to be 97% consistent with the visual evaluation.
The module with the error was confirmed to be faulty due to the reflection of sunlight.

Figure 16 shows the experimental results for finding the abnormal module. Based on the GPS
information, the analysis results are shown on Google Maps in Figure 16a. A green mark indicates
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a normal module and a red mark indicates an abnormal module. When an user presses a red
mark on a screen, the user can see the detailed analysis such as the corresponding visible image
(Figure 16b), thermal image (Figure 16c), merge image before registration (Figure 16d), merge image
after registration (Figure 16e), normalized image (Figure 16f), and the abnormal region derivation
result by the determination algorithm (Figure 16g) are expressed. As a result of pressing the mark
manually, it was confirmed that both normal and abnormal modules can be distinguished well.

Figure 16. Abnormal module detection system: (a) main result screen; (b) visible image; (c) thermal
image; (d) merge image before registration; (e) merge image after registration; (f) normalized image;
(g) abnormal region derivation result.

4. Conclusions

In this paper, we introduced an image processing technique that can automatically identify the
modules generating the hot spots in solar modules. The proposed PV module analysis system adopted
the image processing method that uses the characteristic elements of the PV module in order to
overcome the difficulties of generating the automatic correspondence point presented in the previous
studies. Additionally, the proposed method determined an abnormality of the PV module. The image
processing method using the characteristic elements of the PV module extracts the feature point
derivation from the visible image and the degradation image by using the shape characteristic of the
color module, the rectangular shape of the PV module, and the installation of a plurality of clusters,
and a homography transform equation is derived from the matching points. To extract the feature
points, we used the MSER algorithm, the inrange function, an effective proposed matching method
and a homography conversion technique using the RANSAC algorithm.

Experimental results show that the match between the thermal image and the visible image
was 97%. The accuracy of applying the MSER algorithm and the average area derivation algorithm
was confirmed to be 98%. Similarly, through the rectification of the module area, the ease of the
inspection of the temperature distribution of the module area was enhanced, and the failure prediction
module was determined by calculating the abnormal area of high temperature. The thermal image
analysis of approximately 240 modules was confirmed to be 97% consistent with the visual and visual
evaluation. Through the application of these algorithms, it is possible to automatically identify the
module generating the hot spots in the solar module, and to identify the cause of the hot spots by
displaying the thermal image and visible image generated by the hot spot.
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Abstract: This work proposes a fault detection and imputation scheme for a fleet of small-scale
photovoltaic (PV) systems, where the captured data includes unlabeled faults. On-site meteorological
information, such as solar irradiance, is helpful for monitoring PV systems. However, collecting this
type of weather data at every station is not feasible for a fleet owing to the limitation of installation
costs. In this study, to monitor a PV fleet efficiently, neighboring PV generation profiles were utilized
for fault detection and imputation, as well as solar irradiance. For fault detection from unlabeled raw
PV data, K-means clustering was employed to detect abnormal patterns based on customized input
features, which were extracted from the fleet PVs and weather data. When a profile was determined to
have an abnormal pattern, imputation for the corresponding data was implemented using the subset
of neighboring PV data clustered as normal. For evaluation, the effectiveness of neighboring PV
information was investigated using the actual rooftop PV power generation data measured at several
locations in the Gwangju Institute of Science and Technology (GIST) campus. The results indicate that
neighboring PV profiles improve the fault detection capability and the imputation accuracy. For fault
detection, clustering-based schemes provided error rates of 0.0126 and 0.0223, respectively, with and
without neighboring PV data, whereas the conventional prediction-based approach showed an error
rate of 0.0753. For imputation, estimation accuracy was significantly improved by leveraging the
labels of fault detection in the proposed scheme, as much as 18.32% reduction in normalized root
mean square error (NRMSE) compared with the conventional scheme without fault consideration.

Keywords: PV fleet; clustering-based PV fault detection; unsupervised learning; self-imputation

1. Introduction

A photovoltaic (PV) power plant is one of the most renewable, sustainable, and eco-friendly
setups for converting solar energy, which is the most abundant and freely available energy source, into
electrical energy [1]. The contribution of solar energy to the total global energy supply has rapidly
increased in recent decades with PV installation capacity growing to more than 500 GW by the end
of 2018 [2,3]. However, PV systems are exposed to harsh working conditions owing to uncertain
outdoor environments and their complex structure. In [4], it was reported that the annual losses in
PV generation reached 18.9% under zero or shading faults. Improving the reliability of renewable
energy generation by fault detection and diagnosis (FDD) and correcting faulty data is essential
for maintaining the efficiency of PV generation [5]. In addition, reliable information is required to
be applied for various power applications, e.g., energy scheduling [6] and energy forecasting [7,8],
to guarantee safe and stable grid systems.

For utility planners and operators, it is essential to examine the power output variability [9] to
aggregate the fleet of PV systems, which is defined as the number of individual PV systems spread out
over a geographical area [10]. Several studies presented station-pair correlation analyses by introducing
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virtual networks. A correlation was observed between short-term irradiance variability as a function of
diverse distance and time scale [11]. Similarly, the maximum output variability of a fleet of PV plants
was estimated by using the clearness index [12]. A variability model was built in [13] to integrate
a large amount of generated solar power into power systems. To integrate the fleet as a distributed
power source, it should be managed by an intelligent monitoring system that can correct abnormal
data via real-time fault diagnosis and power generation forecasts.

PV faults occur because of various reasons at different locations, such as a module, string, or any
other spot related to the PV systems. Visual and thermal methods employed in PV fault detection
can detect superficial problems, such as browning, soiling or snow, discoloration, delamination,
and hot spots, using auxiliary measurements [14]. However, this requires expensive and complicated
equipment [15]. In recent years, many studies have employed methods using electrical variables via
a data-driven approach. The electrical signal approaches are mainly referred to as maximum power
point tracking (MPPT) with I–V characteristic analysis and power loss analysis. They are usually
utilized to distinguish an open circuit, short circuit, degradation or aging, and shading faults that may
typically occur on the DC side of a PV array [16–18].

For data-driven methods, automatic fault detection approaches can be categorized into
conventional modeling-based methods and methods that utilize intelligent machine learning [19].
For the former case, the model can be built with respect to the physical attributes from the PV
module specification for simulation settings to compare the desired output with the measured
output [20]. Conventional statistical detection methods have been primarily presented in previous
studies [16,21–25]. The exponentially weighted moving average has been used to identify DC side
faults by comparing the one-diode model and estimated MPPs [21,22]. Lower and upper limits were set
when the ratio of the measured to the modeled AC power exceeds 3-sigma [22]. In [23], outlier detection
rules were proposed in their statistical details: The 3-sigma rule, Hampel identifier, and Boxplot rule
using a PV string current. A symbolic aggregate approximation (SAX) scheme was used to convert the
voltage profile, prior to performing clustering and anomaly detection [24].

With the advent of artificial intelligence (AI), which can be applied to various domains, particularly
suited to the nonlinear behavior of PV systems, numerous studies have exploited AI-based monitoring
systems [26]. The common artificial neural network (ANN) is widely used either to predict PV
generation behavior or as a fault detection module based on several electrical parameters [15,27–31].
In comparison with a conventional back-propagation network, a probabilistic neural network (PNN)
uses a probability density function as the activation function; thus, it is less sensitive to noisy and
erroneous samples [32–34]. Fault detection by a support vector machine (SVM) has been used in
several studies because it has the ability to separate objects by finding an optimal hyperplane that
maximizes the margin in both binary and multiclass problems [35–37]. The decision tree (DT) builds
repetitive decision rules within if/else instructions, which is intuitive. The model can be implemented
conveniently with a large dataset [35,38]. The random forest (RF) has been applied to improve
multiclass classification accuracy and to generalize performance [19]. Fuzzy classifications based
on a fuzzy inference system (FIS) were developed by constructing logic rules [29,39]. A kernel extreme
learning machine was investigated owing to its fast learning speed and good generalization [40].
Particle swarm optimization-back-propagation (PSO-BP) has been shown to improve the convergence
and prediction accuracy of fault diagnosis systems [41].

Most of the data-driven approaches involve a supervised learning-based fault detection system
that assigns a label for binary PV states as either normal or abnormal or as multi-class for corresponding
fault types in advance. The detection or classification model learns the complex and unrevealed
relation between input attributes and predefined labels in the training phase, and then the model
is tested to determine whether it can distinguish PV states properly for new inputs. However,
these processes require human effort to manually assign labels, and it is not easy to visualize the
trained model. Graph-based semi-supervised learning (GBSSL) was proposed to detect line-to-line
and open circuit faults using a few labeled data [42]. In [20], five types of faults were classified based
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on a single diode model with five input vectors associated with IV characteristics, solar irradiance,
and temperature. Gaussian-fuzzy C-means was conducted using the distribution of each cluster
and faults were diagnosed through PNN based on previous cluster center information [33]. A fuzzy
membership algorithm based on degrees of fault data and cluster centers has been proposed [43].
Density peak-based clustering has also been proposed [44]. The 3-sigma rule was applied to determine
each cluster center using the normalized voltage and current at the MPPs. Similarly, the PV local outlier
factor (PVLOF) was computed from the current of the PV array to identify the degree of faults [45].
A single diode model-based prediction was implemented, enabling the generation of the residual,
which was applied to the one-class SVM by quantifying the dissimilarity between the normal and
faulty features [46].

In this study, we propose a framework of two stages of self-fault detection and self-imputation
in a fleet of PV systems using neighboring PV power generation units based on correlation
analysis. Because insolation data is not available with sufficient geographical resolution, especially
for a small-scale PV system [12,37], neighboring PV generation data in the same fleet can be
used jointly with distanced weather data. Since daily PV generation captures generally include
unidentified erroneous samples, faulty data candidates were first labeled in the proposed scheme by
an unsupervised manner with several extracted features. K-means clustering was employed to find out
fault data point in the daily PV power outputs obtained from all the sites in the fleet. When the profile
was considered as an abnormal pattern, restoration was accomplished by the following imputation
step. Imputation schemes were implemented by autoregressive (AR) and multiple regression models
with optional neighboring PV data of normal candidates obtained from the previous clustering step.
For evaluation, several types of fault patterns observed in actual PV power profiles were simultaneously
injected into a single or multiple sites, and proposed schemes were tested without injection information.

The remainder of this paper is organized as follows: Section 2 describes the PV fleet power output
relationship between distance and the correlation with actual data measured on campus. Section 3
proposes an efficient fault detection and imputation methods for use with a PV fleet. The simulation
setup, including the injected fault pattern, is provided in Section 4. Section 5 details the detection and
imputation results, and Section 6 concludes the paper.

2. PV Fleet Power Data Analysis

2.1. Materials

In this study, actual PV fleet data were utilized for analysis and simulation. Hourly power
generation data were measured in rooftop solar installations from 13 buildings at the Gwangju
Institute of Science and Technology (GIST) campus located in Gwangju, South Korea, as shown in
Figure 1, with installation details given in Table 1. In this densely distributed PV fleet, only the
facility management building (site 3) collects environmental information, such as ambient temperature,
module temperature, slope solar irradiance, and horizontal solar irradiance. The data were collected
in 2019 for approximately nine months. To investigate the influence of solar irradiance with respect
to the distance between the weather station and PV installation, local environmental data retrieved
from the nearest weather station provided by the Korea Meteorological Administration (KMA) website
were used [47]. The weather data including local solar irradiance were recorded every hour, the same
as for the PV data. We selected 159 days of PV power data from 13 sites without missing values
for an overlapping period. The meteorological data were acquired at the site weather station (SWS).
In addition, a local weather station (LWS), which was approximately 7 km away from the campus,
was subsequently employed for the same time period.
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Figure 1. Weather stations and photovoltaic (PV) fleet on the Gwangju Institute of Science and
Technology (GIST) campus.

Table 1. Installation information for rooftop PVs in the GIST fleet.

Site Number Location Capacity (kW) Date of Installation

1 Soccer field 158.4 April 2011
2 Student union bldg.1 46.1 April 2011
3 Facility maintenance bldg. 115.9 January2009
4 Central storage 32.6 April 2011
5 Samsung environment science & research bldg. 54.4 March 2019
6 Dasan bldg. 51.8 February 2011
7 Central library 25.0 March 2019
8 LG library 21.8 March 2019
9 Central research facilities 122.9 March 2019
10 Renewable energy research bldg. 46.1 March 2019
11 GIST college bldg.C 21.0 December 2014
12 GIST college dormitory A 70.0 April 2012
13 Laboratory animal resource center 70.0 February 2017

2.2. Cross-Correlation Analysis

Because previous studies have demonstrated that the correlation coefficient decreases when the
distance between the weather station and the PV system increases, we investigated the cross-correlation
as a function of distance. The cross-correlation is computed using the Pearson’s correlation coefficient
as follows:

ρx,y =
cov(x, y)

σxσy
(1)

The covariance of two time-series data x and y, cov(x, y) is normalized by the product of their
standard deviation σx and σy. The correlation between each PV site with solar irradiance, which was
obtained at SWS and LWS, was analyzed. As expected, the SWS data showed a stronger positive
correlation than the LWS data for every site on the campus, as given in Table 2. The correlation analysis
was conducted between PV generation data for each site in the same manner. Figure 2 shows the
result of the correlation analysis, which produced five groups according to the degree of correlation.
Apart from other sites, site 1 belonged to the independent group G1. Sites 2–4 were grouped into
group 2 (G2) due to high correlation because of the relatively short distance from SWS. Group 3 (G3)
comprised sites 5–11, which had a medium distance from SWS but were clustered together. Groups 4
(G4) and 5 (G5) comprised site 12 and 13, respectively, where one site was far from SWS and other
sites. Based on the cross-correlation analysis, we determined that the use of neighbor PV power data
can provide additional information that can help perform fault detection and imputation in the fleet of
PV systems.
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Table 2. Cross-correlation of the PV power output between the local weather station (LWS) and the site
weather station (SWS).

Site Number 1 2 3 4 5 6 7 8 9 10 11 12 13

LWS 0.93 0.93 0.93 0.90 0.93 0.93 0.94 0.93 0.92 0.93 0.94 0.85 0.91
SWS 0.96 0.98 0.99 0.97 0.97 0.97 0.98 0.98 0.95 0.97 0.97 0.89 0.93

Figure 2. Cross-correlation of PV power output for the fleet.

3. PV Fleet Fault Detection and Imputation

The overall scheme of the proposed system is shown in Figure 3. SWS data and 13 power output
data sets from the PV fleet were provided, from which features were extracted to distinguish the
daily binary condition of normal or faulty. At the clustering stage, daily states for each PV site were
estimated, which is reflected by the final step of imputation.

Figure 3. Overall architecture of the proposed system.
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3.1. Operation Time

Operation time was considered to extract meaningful properties from the PV pattern accordance
with environmental factor. The daylight hours or insolation duration can be obtained by mathematical
modeling based on geographical components, such as the latitude of the PV site, using the
following equation:

G0 = Gsc

(
1 + 0.33 cos

(
360d
365

))
(cosδ cosφ cosω + sinδ sinφ) (2)

where Gsc is the solar constant, which is 1368 [W/m2], d is the day number in the year, δ is the solar
declination, φ is the latitude of the site, and ω is the solar hour angle. During an hour after sunrise
and an hour before sunset, the small amount of solar irradiance has a tidal effect on PV operation.
We defined the operation time, T, by excluding these time periods from the insolation duration [37].

3.2. Feature Extraction

Several features were extracted from the given dataset (e.g., the PV fleet power data x, and the solar
irradiance observation data y) to distinguish the fault patterns from normal data at the candidate PV site
n. In this study, y1:N = y3 as there is one SWS at site 3. We distinguished Fs and Ff , which represent the
feature set derived from daily solar irradiance and daily neighboring PVs, respectively. Seven features
were introduced in this study for two types of datasets, which generated 14 features. The extracted
features of the candidate PV can be written as F(n) = [F(n)

s , F(n)
f ].

3.2.1. Total Coefficient of Determination

The coefficient of determination used in this study refers to how well a certain profile can explain
the PV power generation profile for each PV site. For simulation comparison, the profile can be either
solar irradiance data or neighboring PV generations, as follows:

F(n)
s,1 = 1 − R2

xn ,yn

F(n)
f ,1 = 1 − 1

N − 1 ∑
k

R2
xn ,xk

(3)

where R2 denotes the coefficients of determination of the regression depending on the other
independent variable.

3.2.2. Normalized Profile Distance

The distance between normalized profiles is related to the closeness of the pattern shape.
Daily profiles were converted within the range of [0,1] through min–max normalization, and the
distance for each time step was computed, as follows:

F(n)
s,2 =

1
Tp

∑
t∈T

|xnorm n,t − ynorm n,t|

F(n)
f ,2 =

1
N − 1

· 1
Tp

∑
k

∑
t∈T

|xnorm n,t − xnorm k,t|
(4)

where xnorm n,t =
xn,t

maxt∈T{xn,t}−mint∈T{xn,t} and ynorm n,t =
yn,t

maxt∈T{yn,t}−mint∈T{yn,t} .

3.2.3. Degree of Consistency

To investigate the fluctuation consistency, the degree of consistency between two profiles was
proposed in [48]. Regardless of the heterogeneous dataset, e.g., comparing solar irradiance and
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PV generations or different capacities of the PV installations, it can reflect the variation tendency.
During the operation time period, fi, fo, and fz count whether the variation tendency is identical,
opposite, or zero, respectively. Then, they are converted into F3, F4, and F5 to be computed as a ratio.

F(n)
s,3 = 1 − 1

Tp
∑
t∈T

fi(xn,t, yn,t) where fi(xn,t, yn,t) = 1 if (xn,t − xn,t−1)(yn,t − yn,t−1) > 0

F(n)
f ,3 = 1 − 1

N − 1
· 1

Tp
∑
k

∑
t∈T

fi(xn,t, xk,t) where fi(xn,t, xk,t) = 1 if (xn,t − xn,t−1)(xk,t − xk,t−1) > 0
(5)

F(n)
s,4 =

1
Tp

∑
t∈T

fo(xn,t, yn,t) where fo(xn,t, yn,t) = 1 if (xn,t − xn,t−1)(yn,t − yn,t−1) < 0

F(n)
f ,4 =

1
N − 1

· 1
Tp

∑
k

∑
t∈T

fo(xn,t, xk,t) where fo(xn,t, xk,t) = 1 if (xn,t − xn,t−1)(xk,t − xk,t−1) < 0
(6)

F(n)
s,5 =

1
Tp

∑
t∈T

fz(xn,t, yn,t) where fz(xn,t, yn,t) = 1 if (xn,t − xn,t−1)(yn,t − yn,t−1) = 0

F(n)
f ,5 =

1
N − 1

· 1
Tp

∑
k

∑
t∈T

fz(xn,t, xk,t) where fz(xn,t, xk,t) = 1 if (xn,t − xn,t−1)(xk,t − xk,t−1) = 0
(7)

3.2.4. Relative Error Percentile of the Maximum Value

By comparing the relative maximum property of each profile, the relative error percentiles of the
maximum values were determined. Two different attributes, i.e., the first order difference (F6) and
standard value (F7), were used:

F(n)
s,6 =

xn dmax − yn dmax
yn dmax

F(n)
f ,6 =

1
N − 1 ∑

k

xn dmax − xk dmax
xk dmax

(8)

where xn dmax = maxt∈T

{
|xn,t−xn,t−1|
|xn,T−xn,T−1|

}
and yn dmax = maxt∈T

{
|yn,t−yn,t−1|
|yn,T−yn,T−1|

}
.

F(n)
s,7 =

xn smax − yn smax

yn smax

F(n)
f ,7 =

1
N − 1 ∑

k

xn smax − xk smax
xk smax

(9)

where xn smax = maxt∈T

{
xn,t−x̄n,T

σxn,T

}
and yn smax = maxt∈T

{
yn,t−ȳn,T

σyn,T

}
.

3.3. Clustering

Because the condition of the PV system is not labeled in the real environment, unsupervised
learning was applied in this study. K-means clustering is the simplest method and requires low
computation based on calculation of the Euclidean distance. The objective function of K-means
clustering, J, is given by Equation (10). Determining the number of clusters and importing the initial
center have a crucial impact on the clustering accuracy. In our case, we set the number of clusters as
two to distinguish between normal and fault patterns, and they were used in the imputation part for
filtering the PV site candidates of the explanatory variables. Initial centroids were set to zero vectors
and one vectors multiplied by 0.5 for the normal and fault condition, respectively. Optimal features
were selected by exhaustive search for the objective function as follows:

J =
s

∑
j=1

N

∑
n=1

||Fs(n) − cj||
2

(10)
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where s is the number of clusters (s = 2, binary condition for the fault or normal state), cj is the center
of cluster j, and Fs(n) are the selected features of site n. Feature selection results are shown in Section 5.

3.4. Imputation

Once the PV profile was labeled as a fault pattern, the fault data were restored using the regression
method. In [49], the time series analysis of various meteorological data related to renewable energy
systems was conducted using a statistical method. We built a linear regression model based on the
linear minimum mean squared error (LMMSE) to estimate the regression parameter, as follows:

P = βX + ε (11)

β = (XTX)−1XT P (12)

where P is the expected imputation profile at the candidate site, β is the regression coefficient, X is the
set of explanatory datasets, and ε is the random error.

In this study, several cases were studied to compare the explanatory dataset for the regression
model and to investigate the impact of the labeling of neighboring PV profiles at the previous detection
stage, as demonstrated in Table 3. In Case 1, we assumed that only PV historical power output data
were available without any other measurements. In this case, we built an AR model for a single PV
site to focus on its periodic power generation behavior. Case 2 exclusively considers local irradiance
data. For our dataset, solar irradiance data provided at site 3 were used identically to construct the
univariate simple regression model. Case 3 allows a neighbor PV profile that has unknown operation
states in each PV system, and all of them are inputted into the multivariate regression model. Case 4
conducted a multiple regression model that was similar to Case 3 but the explanatory data were refined
with the normal pattern classified at the previous detection stage. Case 5 merged Cases 2 and 4 that
utilizes both local irradiance data and normal PV fleet data. Furthermore, as several previous works
have confirmed that kNN is an efficient method for missing data imputation, we adopted kNN for
fault data imputation as Case 6.

Table 3. Imputation case study.

Case Description

Case 1 Autoregressive (AR) model that uses PV generation data from a single location
Case 2 Simple regression model that uses SWS solar irradiance data
Case 3 Multiple regression that uses all PV generation data without labeling
Case 4 Multiple regression model that uses normally labeled PV generation data
Case 5 Multiple regression model that uses normally labeled PV generation data and SWS solar irradiance data
Case 6 kNN

4. Simulations

4.1. Fault Pattern Injection

To evaluate the performance, we primarily sorted 159 days of PV generation patterns for all sites
for the normal condition simultaneously. The overall normal dataset comprised 159 × 13 = 2067 PV
power profiles. To characterize the fault patterns, the actual fault patterns detected from different
PV plants were investigated. Six fault patterns were extracted, which were composed of whole zero,
part zero, whole shift, part shift, constant padding, and spike, as shown in Figure 4. The faults were
injected arbitrarily into a single or multiple power profiles of PV sites, thus retaining target labels to
describe the performances of fault detection and imputation.
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Figure 4. Fault pattern for the actual observation.

4.2. Evaluation Metric

4.2.1. Fault Detection Performance Metric

A confusion matrix is widely used to evaluate classification performance, as depicted in Table 4.
It matches the output label and target label for testing samples one by one; thus, target output label
sets are sorted as true positive (TP), false negative (FN), false positive (FP), and true negative (TN).
Based on these attributes, accuracy is derived as the ratio of correctly classified samples among all
samples. The error rate is the opposite of accuracy, which indicates the error proportion for all samples.
Precision is the ratio of TPs for all positives that are categorized in the test phase. Lastly, recall indicates
the ratio of TPs out of all pre-labeled positives, as follows:

Table 4. Confusion matrix.

Output

Positive Negative Total

Target Positive TP FN P

Negative FP TN N

Total P’ N’

Accuracy =
TP + TN

P + N

Errorrate =
FP + FN

P + N

Precision =
TP

TP + FP
=

TP
P′

Recall =
TP

TP + FN
=

TP
P

(13)

4.2.2. Imputation Performance Metric

To evaluate the accuracy of imputation performance, normalized root mean square error (NRMSE)
is adopted since the PV capacities in the fleet are different. In this study, RMSE was normalized by mean
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as described in Equations (14) and (15) Low NRMSE implies valuable imputation performance where
abnormal pattern is restored similar to the real profile. The daily abnormal pattern for a corresponding
site is then substituted by the reconstructed normal pattern.

RMSE =

√
∑t∈T (xt − x̂t)2

Tp
[kW] (14)

NRMSE =
RMSE

xt∈T
(15)

where xt∈T is the mean of x during operation hours.

5. Results and Discussion

5.1. Feature Selection

The feature characterized in Section 3.2 can be assembled in various combinations. To determine
the optimal parameter combination, an exhaustive search was followed by division into two scenarios:
In one, combinations from Fs were selected and the other involved Ff . Tables 5 and 6 list the detection
performance for all datasets that included 2067 feature sets and labels with and without neighboring
PV data, respectively. Accuracy, error rate, precision, and recall for all the combinations were surveyed.
We selected high accuracy with a similar portion of false alarm and missing fault to increase detection
accuracy and prevent inclination to one side. Features 1, 2, and 5 were selected from Fs in the first
scenario. However, the combination of features 1, 5, and 7 from Fs and 1, 2, 3, and 5 from Ff were
selected for the second scenario to detect the fault pattern.

Table 5. Feature selection from Fs.

Feature Combination Accuracy Error Rate Precision Recall

Fs,1, Fs,2, Fs,3, Fs,4, Fs,5, Fs,6, Fs,7 0.9768 0.0232 0.9791 0.9964
Fs,1, Fs,2, Fs,3, Fs,5, Fs,6, Fs,7 0.9768 0.0232 0.9791 0.9964
Fs,1, Fs,2, Fs,4, Fs,5, Fs,7 0.9773 0.0227 0.9901 0.9855
Fs,1, Fs,2, Fs,3, Fs,5 0.9777 0.0223 0.9821 0.9943
Fs,1, Fs,2, Fs,5 0.9787 0.0213 0.9861 0.9912
Fs,1, Fs,5 0.9773 0.0227 0.9860 0.9896
Fs,2 0.9681 0.0319 0.9683 0.9984

Table 6. Feature selection from the combination of Fs and Ff .

Feature Combination Accuracy Error Rate Precision Recall

Fs,1, Fs,2, Fs,3, Fs,4, Fs,5, Fs,6, Fs,7, Ff ,1, Ff ,2, Ff ,3, Ff ,4, Ff ,5, Ff ,7 0.9836 0.0164 0.9861 0.9964
Fs,1, Fs,2, Fs,3, Fs,4, Fs,5, Fs,7, Ff ,1, Ff ,2, Ff ,3, Ff ,4, Ff ,5, Ff ,7 0.9840 0.0160 0.9907 0.9922
Fs,1, Fs,2, Fs,3, Fs,4, Fs,5, Fs,7, Ff ,1, Ff ,2, Ff ,3, Ff ,4, Ff ,5 0.9860 0.0140 0.9877 0.9974
Fs,1, Fs,2, Fs,3, Fs,4, Fs,5, Fs,7, Ff ,1, Ff ,2, Ff ,3, Ff ,5 0.9874 0.0126 0.9892 0.9974
Fs,1, Fs,2, Fs,3, Fs,5, Fs,7, Ff ,1, Ff ,2, Ff ,3, Ff ,5 0.9884 0.0116 0.9897 0.9979
Fs,1, Fs,2, Fs,3, Fs,5, Fs,7, Ff ,1, Ff ,3, Ff ,5 0.9869 0.0131 0.9887 0.9974
Fs,1, Fs,5, Fs,7, Ff ,1, Ff ,2, Ff ,3, Ff ,5 0.9874 0.0126 0.9933 0.9933
Fs,1, Fs,3, Ff ,5, Ff ,7, Ff ,2, Ff ,5 0.9874 0.0126 0.9897 0.9969
Fs,1, Fs,3, Fs,5, Fs,7, Ff ,5 0.9860 0.0140 0.9882 0.9969
Fs,5, Fs,7, Ff ,1, Ff ,5 0.9869 0.0131 0.9912 0.9948
Fs,2, Ff ,1, Ff ,5 0.9855 0.0145 0.9852 0.9995
Fs,5, Ff ,1 0.9850 0.0150 0.9847 0.9995
Ff ,2 0.9700 0.0300 0.9712 0.9974

5.2. Analysis of Fault Detection Results

To validate the proposed clustering-based method compared with previous approaches,
SolarClique [50] was implemented, and the obtained results were evaluated. To give a brief information
of SolarClique, it detects anomalies on the basis of prediction by employing solar generation data from
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geographically nearby sites. Each candidate site is predicted for 100 iterations and implemented by
random forest with bootstrapping. Then, the local factor is excluded from prediction error and used to
detect anomalies. The data are categorized into fault when the prediction error is outside the threshold,
i.e., 4-sigma.

By performing numerical evaluation, the overall results of fault detection are indicated in Table 7.
The fault identification by the proposed method with and without PV fleet data show accuracies
of 0.9874 and 0.9777, respectively, which are more accurate than accuracy of 0.9247 obtained by the
SolarClique technique. In the same context, the detection error rates derived by clustering with
and without PVs are 0.0126 and 0.0223 which are smaller than 0.0753 of error rate obtained by
SolarClique. Precision and recall for the proposed method are also improved, compared with those
of SolarClique. This is because the prediction-based approach is sensitive to random fluctuations
that depend on subtle unknown changes; the detection depends only on a threshold applied to the
univariate component. As a result, clustering-based fault detection using neighboring PVs shows the
best detection performance.

Table 7. Fault detection comparison with SolarClique.

Accuracy Error Rate Precision Recall

SolarClique 0.9247 0.0753 0.9481 0.9707
Proposed (w/o PV) 0.9777 0.0223 0.9821 0.9943
Proposed (w/ PV) 0.9874 0.0126 0.9933 0.9933

Fault detection performances for each site are provided in Table 8. Fault detection tested for
all sites in a campus fleet showed a high accuracy rate that exceeded 98%, except for site 12.
For interpretation, normal profiles and injected profiles that are distinguished as a fault are depicted in
Figure 5. The green-shaded profile shown in Figure 5c indicates the missing fault that the clustering
machine identified from an abnormal condition as a normal status. In contrast, the yellow-shaded
area in Figure 5b represents false positives or false alarms with wrong identification despite the
normal condition. However, the normal condition is not guaranteed in this case in that the false
alarm profile seemed to spike, which showed a disparate profile with irradiance compared with
Figure 5a. Hence, these false positives should be reassigned as true negatives to provide a more
accurate detection rate.

Table 8. Fault detection of individual sites.

Site Number Accuracy Error Rate Precision Recall

1 0.9874 0.0126 0.9932 0.9932
2 0.9874 0.0126 0.9867 1.0000
3 0.9874 0.0126 0.9868 1.0000
4 0.9874 0.0126 0.9932 0.9932
5 0.9937 0.0063 0.9933 1.0000
6 0.9937 0.0063 1.0000 0.9934
7 0.9937 0.0063 0.9933 1.0000
8 0.9937 0.0063 0.9933 1.0000
9 0.9937 0.0063 0.9932 1.0000
10 0.9937 0.0063 0.9933 1.0000
11 0.9937 0.0063 1.0000 0.9932
12 0.9434 0.0566 0.9929 0.9456
13 0.9874 0.0126 0.9933 0.9933

Overall 0.9874 0.0126 0.9933 0.9933
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(a) Normal profile

(b) Fault observation

(c) Fault detection
Figure 5. Profiles of PV power and solar irradiance for (a) normal, (b) fault injected, and (c) fault
detected days.The green-shaded profile in (b) denotes a missing fault and the yellow-shaded profiles
in (c) correspond to false alarms occurring at site 12.

5.3. Analysis of Fault Imputation Result

The imputation accuracy computed with the NRMSE metric is presented in Table 9. As generally
expected, most of the sites in the PV fleet show improved imputation performance when using each
other self-labeled PV data, corresponding to Cases 4 or 5 as their overall NRMSEs are the lowest
at 0.2359 and 0.2367, respectively. Comparing to Case 2 (only SWS data utilized), where overall
imputation accuracy is 0.2925, the improvement is shown to be 19.35% and 19.08%, respectively.
Likewise compared to Case 3 (PV without label) where NRMSE is 0.2888, Cases 4 and 5 have been
improved by 18.32% and 18.04%, respectively. In addition, as depicted in Figure 6, Cases 4 and 5 are
shown to have slightly tighter deviations in comparison with the other cases, which means more stable.
In the following we present the details for each imputation case.

Case 1 supposed that only historical PV data from a certain site is applicable, which means
that information is restricted when considering weather variations. Therefore, an AR model was
constructed in this case that focused only on the periodicity of the operation time without reflecting
climatic properties. The imputation result showed insufficient performance compared to the other
case studies for all sites in the fleet. Case 2 was a general case that applied the nearest meteorological
data. The weather stations were lacking in the fleet, which resulted in representative station data being
used after all. We concluded that when the PV site was close to the weather station, Case 2 showed
better performance than when using surrounding PV data. For example, the imputation results from
sites 3 and 4 that belonged to G2 were the best in this case. Case 3 used additional data obtained from
neighboring PV systems beyond the labels of the system conditions. Because abnormal patterns were
not removed in the previous stage, they were fed into the imputation phase as provided. This case
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was feasible only when the assumption that faults do not occur was satisfied. Case 4 was used to
examine the effectiveness of a neighbor PV generation profile with labeled status. Because normal
profiles were selected as candidates of explanatory data for the regression model, they showed reliable
imputation results. In particular, PV sites from G4 showed improved results to those used in Case 2.
This was because, even though the groups were slightly away from the weather station, they were
crowded collectively, which provided more relevant information on the PV power output than distant
weather data. As mentioned earlier, Case 5 merged Cases 2 and 4. It is observed that only sites in close
distance to SWS have effects on combining SWS data to neighbor PVs. Otherwise, it did not appear
to have a significant effect in faraway PVs despite of belonging to PV fleet. This demonstrates that
even neighboring PVs in the same fleet have subtle differences in solar irradiance. The kNN in Case 6
shows low performance in PV fleet fault imputation. Since it depends on similar historical patterns of
solar irradiance, it may not reflect random fluctuation especially in overcasting day which results in
low imputation accuracy.

Table 9. Imputation normalized root mean square error (NRMSE).

Site Number 1 2 3 4 5 6 7 8 9 10 11 12 13 Overall

Case 1 0.88 0.74 0.95 1.12 0.63 0.82 0.82 0.85 0.90 1.37 0.89 0.92 0.98 0.9156
Case 2 0.29 0.38 0.12 0.30 0.18 0.29 0.14 0.18 0.38 0.24 0.21 0.55 0.48 0.2925
Case 3 0.33 0.27 0.23 0.58 0.10 0.38 0.14 0.19 0.33 0.22 0.19 0.34 0.49 0.2888
Case 4 0.28 0.35 0.14 0.33 0.08 0.16 0.08 0.13 0.29 0.16 0.17 0.36 0.52 0.2359
Case 5 0.28 0.36 0.13 0.32 0.08 0.17 0.08 0.13 0.30 0.18 0.17 0.35 0.53 0.2367
Case 6 0.45 0.62 0.49 0.63 0.34 0.46 0.36 0.35 0.62 0.52 0.43 0.54 0.60 0.4930

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
0

0.5
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Figure 6. Boxplot of imputation NRMSE for each imputation case.

6. Conclusions

This paper presents a framework for PV fault detection and imputation method on PV fleets
without the manual annotation of the state of the PV systems. We supplement the meteorological
data measured at LWS, which had a relatively low value for the cross-correlation with PV generation,
using the neighboring PV fleet data. Several features were derived to be used as input for K-means
clustering to label normal or abnormal patterns. PV fleet on the campus and solar irradiance data
measured at one of the PV sites in the fleet were utilized to extract the features for fault pattern
detection. We arbitrarily injected a fault pattern based on actual observations, and the detection
accuracy was evaluated using a confusion matrix. The detection error rate was compared for three
cases: Using SolarClique (a conventional prediction-based detection method), a clustering-based
method without PV fleet data, and a clustering-based method with PV fleet data which is the proposed
method. The error rates for these three cases were 0.0753, 0.0223, and 0.0126, which means that the
proposed clustering-based detection using neighboring PV fleet data can effectively detect the faults.

265



Energies 2020, 13, 737

Data imputation was conducted for the distinguished abnormal patterns. Five cases of
regression-based imputation and kNN were evaluated by NRMSE. In general, Cases 4 and 5,
which utilized neighboring self-labeled PV data, showed better imputation performance than
imputation without nearby sites or without labeled PV data by reducing NRMSE over 19% and
18%, respectively. In addition, according to earlier grouping information based on cross-correlation
analysis, G3, which were close SWS, generally showed better performance when only solar irradiance
data were used. However, the imputation result for G3 sites and neighboring PV profiles provided
more relevant information than weather data obtained at SWS that was relatively far away. In summary,
neighboring PV data are effective in improving fault detection and imputation accuracy in a dense
PV fleet.
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Abbreviations

The following abbreviations are used in this manuscript:

Fs Feature associated with candidate PV and solar irradiance
Ff Feature associated with candidate PV and neighboring PVs
N Total number of PVs in PV fleet
n ID number of candidate PV
k ID number of neighboring PVs i.e., k ∈ {1, 2, · · · , n − 1, n + 1, · · · , N}
t Hourly time index
T Set of PV operation time indexes
Tp Duration of T
x Daily profile of PV
y Daily profile of solar irradiance
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