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Preface to “Polynomials”

The importance of polynomials in the interdisciplinary field of mathematics, engineering, and
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• The modern umbral calculus

• Orthogonal polynomials, matrix orthogonal polynomials, multiple orthogonal polynomials

• Matrix and determinant approach to special polynomial sequences

• Applications of special polynomial sequences

• Number theory and special functions

• Asymptotic methods in orthogonal polynomials

• Fractional calculus and special functions

• Symbolic computations and special functions

• Applications of special functions to statistics, physical sciences, and engineering

We hope that this book is timely and will fill a gap in the literature on the theory of polynomials

and related fields. We also hope that it will promote further research and development in this
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We also thank the authors for their creative contributions and the reviewers for their prompt and

careful reviews.
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Abstract: In this article, we introduce the parametric kinds of degenerate type Fubini polynomials
and numbers. We derive recurrence relations, identities and summation formulas of these
polynomials with the aid of generating functions and trigonometric functions. Further, we show
that the parametric kind of the degenerate type Fubini polynomials are represented in terms of the
Stirling numbers.

Keywords: Fubini polynomials; degenerate Fubini polynomials; Stirling numbers

MSC: 11B83; 11C08; 11Y35

1. Introduction

In the last decade, many mathematicians, namely, Kargin [1], Duran and Acikgoz [2], Kim et al. [3,4],
Kilar and Simsek [5], Su and He [6] have been studied in the area of the Fubini polynomials and
numbers, degenerate Fubini polynomials and numbers. The range of Appell polynomials sequences is
one of the important classes of polynomial sequences. The Appell polynomials are very frequently used
in various problems in pure and applied mathematics related to functional equations in differential
equations, approximation theories, interpolation problems, summation methods, quadrature rules,
and their multidimensional extensions (see [7,8]). The sequence of Appell polynomials Aj(w) can be
signified by means either following equivalent conditions

d
dw

Aj(w) = jAj−1(w), A0(w) �= 0, w = η + iξ ∈ C, j ∈ N0, (1)

and satisfying the generating function

A(z)ewz = A0(w) + A1(w)
z
1!

+ A2(w)
z2

2!
+ · · ·+ An(w)

zn

n!
+ · · · =

∞

∑
j=0

Aj(w)
zj

j!
, (2)

where A(w) is an entirely real power series with Taylor expansion given by

A(w) = A0(w) + A1(w)
z
1!

+ A2(w)
z2

2!
+ · · ·+ Aj(w)

zj

j!
+ · · · , A0 �= 0.

The well known degenerate exponential function [9] is defined by

eη
μ(z) = (1 + μz)

η
μ , eμ(z) = e1

μ(z), (μ ∈ R). (3)

Mathematics 2020, 8, 405; doi:10.3390/math8030405 www.mdpi.com/journal/mathematics1
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Since
lim
μ→0

(1 + μz)
η
μ = eηz.

In [10,11], Carlitz introduced the degenerate Bernoulli polynomials which are defined by

z

(1 + μz)
1
μ − 1

(1 + μz)
η
μ =

∞

∑
j=0

β j(η; μ)
zj

j!
, (μ ∈ C), (4)

so that

β j(η; μ) =
j

∑
w=0

(
j
w

)
βw(μ)

(
η

μ

)
j−w

. (5)

When η = 0, β j(μ) = β j(0; μ) are called the degenerate Bernoulli numbers, (see [12–15]).

From Equation (4), we get

∞
∑

j=0
limμ−→0 β j(η; μ) zj

j! = limμ−→0
z

(1+μz)
1
μ −1

(1 + μz)
η
μ

= z
ez−1 eηz =

∞
∑

j=0
Bj(η)

zj

j! ,
(6)

where Bj(η) are called the Bernoulli polynomials, (see [9,16]).
The Stirling numbers of the first kind [3,14,17]) are defined by

η j =
j

∑
i=0

S1(j, i)(η)i, (j ≥ 0), (7)

where (η)0 = 1, (η)j = η(η − 1) · · · (η − j + 1), (j ≥ 1). Alternatively, the Stirling numbers of the
second kind are defined by following generating function (see [4,5])

(ez − 1)j

j!
=

∞

∑
i=j

S2(j, i)
zj

j!
. (8)

The degenerate Stirling numbers of the second kind [17] are defined by means of the following
generating function

1
i!

(
(1 + μz)

1
μ − 1

)i
=

∞

∑
j=i

S2,μ(j, i)
zj

j!
. (9)

It is clear that
lim
μ→0

S2,μ(j, i) = S2(j, i).

The generating function of 2-variable degenerate Fubini polynomials [3] are defined by

1

1 − ξ((1 + μz)
1
μ − 1)

(1 + μz)
η
μ =

∞

∑
j=0

Fj,μ(η; ξ)
zj

j!
, (10)

so that

Fj,μ(η; ξ) =
j

∑
i=0

(
j
i

)
Fi,μ(ξ)(η)j−i,μ.

When η = 0, Fj,μ(0; ξ) = Fj,μ(ξ), Fj,μ(0; 1) = Fj,μ are called the degenerate Fubini polynomials
and degenerate Fubini numbers.

2
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Note that
limμ−→0

∞
∑

j=0
Fj,μ(η; ξ) zj

j! = limμ−→0
1

1−ξ((1+μz)
1
μ −1)

(1 + μz)
η
μ

= 1
1−ξ(ez−1) eηz =

∞
∑

j=0
Fj(η; ξ) zj

j! ,
(11)

where Fj(η; ξ) are called the 2-variable Fubini polynomials, (see, [1,18]).

The two trigonometric functions eηz cos ξz and eηz sin ξz are defined as follows (see [19,20]):

eηz cos ξz =
∞

∑
k=0

Ck(η, ξ)
zk

k!
, (12)

and

eηz sin ξz =
∞

∑
k=0

Sk(η, ξ)
zk

k!
, (13)

where

Ck(η, ξ) =
[ k

2 ]

∑
j=0

(
k
2j

)
(−1)jηk−2jξ2j, (14)

and

Sk(η, ξ) =
[ k−1

2 ]

∑
j=0

(
k
2j + 1

)
(−1)jηk−2j−1ξ2j+1. (15)

Recently, Kim et al. [16] introduced the degenerate cosine-polynomials and degenerate
sine-polynomials are respectively, as follows

eη
μ(z) cosξ

λ(z) =
∞

∑
j=0

Cj,μ(η, ξ)
zj

j!
, (16)

and

eη
μ(z) sinξ

μ(z) =
∞

∑
j=0

Sj,μ(η, ξ)
zj

j!
, (17)

where

Cj,μ(η, ξ) =
[

j
2 ]

∑
k=0

j

∑
i=2k

(
j
i

)
μi−2k(−1)kξ2kS1(i, 2k)(η)j−i,μ, (18)

and

Sj,μ(η, ξ) =
[

j−1
2 ]

∑
k=0

j

∑
i=2k+1

(
j
i

)
μi−2k−1(−1)kξ2k+1S1(i, 2k + 1)(η)j−i,μ. (19)

This paper is organized as follows: In Section 2, we introduce degenerate complex Fubini
polynomials with degenerate cosine-Fubini and degenerate sine-Fubini polynomials and present
some properties and their relations. In Section 3, we derive partial differentiation, recurrence relations
and summation formulas, Stirling numbers of the second kind of degenerate type Fubini numbers and
polynomials by using a generating function, respectively.

2. A Parametric Kind of the Degenerate Fubini Polynomials

In this section, we study the parametric kind of degenerate Fubini polynomials by employing
the real and imaginary parts separately and introduce the degenerate Fubini polynomials in terms of
degenerate complex polynomials.

3



Mathematics 2020, 8, 405

The well known degenerate Euler’s formula is defined as follows (see [16])

e(η+iξ)z
μ = eηz

μ eiξz
μ = eηz

μ (cosμ ξz + i sinμ ξz), (20)

where

cosμ z =
ei

μ(z) + e−i
μ (z)

2
, sinμ z =

ei
μ(z)− e−i

μ (z)
2i

. (21)

Note that
lim
μ→0

ei
μ = eiz, lim

μ→0
cosμ z = cos z, lim

μ→0
sinμ z = sin z.

Using (8), we find

1
1 − ρ(eμ(z)− 1)

eη+iξ
μ (z) =

∞

∑
j=0

Fj,μ(η + iξ; ρ)
zj

j!
, (22)

and
1

1 − ρ(eμ(z)− 1)
eη−iξ

μ (z) =
∞

∑
j=0

Fj,μ(η + iξ; ρ)
zj

j!
. (23)

From Equations (22) and (23), we obtain

1
1 − ρ(eμ(z)− 1)

eμ(ηz) cosμ(ξz) =
∞

∑
j=0

Fj,μ(η + iξ; ρ) + Fj,μ(η − iξ; ρ)

2
zj

j!
, (24)

and
1

1 − ρ(eμ(z)− 1)
eμ(ηz) sinμ(ξz) =

∞

∑
j=0

Fj,μ(η + iξ; ρ)− Fj,μ(η − iξ; ρ)

2i
zj

j!
. (25)

Definition 1. For a non negative integer n, let us define the degenerate cosine-Fubini polynomials F(c)
j,μ (η, ξ; ρ)

and the degenerate sine-Fubini polynomials F(s)
j,μ (η, ξ; ρ) by the generating functions, respectively, as follows

1
1 − ρ(eμ(z)− 1)

eμ(ηz) cosμ(ξz) =
∞

∑
j=0

F(c)
j,μ (η, ξ; ρ)

zj

j!
, (26)

and

1
1 − ρ(eμ(z)− 1)

eμ(ηz) sinμ(ξz) =
∞

∑
j=0

F(s)
j,μ (η, ξ; ρ)

zj

j!
. (27)

It is noted that

F(c)
j,μ (0, 0; 1) = Fj,μ, F(s)

j,μ (0, 0; 1) = 0, (j ≥ 0).

The first few of them are:

F(c)
0,μ (η, ξ; ρ) = 1,

F(c)
1,μ (η, ξ; ρ) = η + ρ,

F(c)
2,μ (η, ξ; ρ) = −μη + η2 − ξ2 + ρ − μρ + 2ηρ + 2ρ2,

F(c)
3,μ (η, ξ; ρ) = 2μ2η − 3μη2 + η3 − 3ηξ2 + 3μξ3 + ρ − 3μρ + 2μ2ρ + 3ηρ − 6μηρ

+ 3η2ρ − 3ξ2ρ + 6ρ2 − 6μρ2 + 6ηρ2 + 6ρ3,

4
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and
F(s)

0,μ(η, ξ; ρ) = 0,

F(s)
1,μ(η, ξ; ρ) = ξ,

F(s)
2,μ(η, ξ; ρ) = 2ηξ − μξ2 + 2ξρ,

F(s)
3,μ(η, ξ; ρ) = −3μηξ + 3η2ξ − 3μηξ2 − ξ3 + 2μ2ξ3 + 3ξρ − 3μξρ

+ 6ηξρ − 3μξ2ρ + 6ξρ2.

Note that limμ−→0 F(c)
j,μ (η, ξ; ρ) = F(c)

j (η, ξ; ρ), limμ−→0 F(s)
j,μ (η, ξ; ρ) = F(s)

j (η, ξ; ρ), (j ≥ 0), where

F(c)
j (η, ξ; ρ) and F(s)

j (η, ξ; ρ) are the new type of Fubini polynomials.

From Equations (24)–(27), we determine

F(c)
j,μ (η, ξ; ρ) =

Fj,μ(η + iξ; ρ) + Fj,μ(η − iξ; ρ)

2
, (28)

and

F(s)
j,μ (η, ξ; ρ) =

Fj,μ(η + iξ; ρ)− Fj,μ(η − iξ; ρ)

2i
. (29)

Theorem 1. The following result holds true

Fj,μ(η + iξ; ρ) =
j

∑
r=0

(
j
r

)
(iξ)j−r,μFr,μ(η; ρ)

=
j

∑
r=0

(
j
r

)
(η + iξ)j−r,μFr,μ(ρ),

(30)

and

Fj,μ(η − iξ; ρ) =
j

∑
r=0

(
j
r

)
(−1)j−r(iξ)j−r,μFr,μ(η; ρ)

=
j

∑
r=0

(
j
r

)
(−1)j−r(iξ − η)j−r,μFr,μ(ρ),

(31)

where (η)0,μ = 1, (η)j,μ = η(η + μ) · · · (η + μ(j − 1)), (j ≥ 1).

Proof. From Equation (26), we derive

∞
∑

j=0
Fj,μ(η + iξ; ρ) zj

j! =
1

1−ρ(eμ(z)−1) eη
μ(z)e

iξ
μ (z)

=
∞
∑

r=0
Fr,μ(η; ρ) zr

r!

∞
∑

j=0
(iξ)j,μ

zj

j!

=
∞
∑

j=0

(
j

∑
r=0

(
j
r

)
(iξ)j−r,μFr,μ(η; ρ)

)
zj

j!

.

Similarly, we find

∞
∑

j=0
Fj,μ(η + iξ; ρ) zj

j! =
∞
∑

r=0
Fr,μ(ρ)

zr

r!

∞
∑

j=0
(η + iξ)j,μ

zj

j!

=
∞
∑

j=0

(
j

∑
r=0

(
j
r

)
(η + iξ)j−r,μFr,μ(η; ρ)

)
zj

j! ,

5
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which implies the asserted result (30). The proof of (31) is similar.

Theorem 2. The following result holds true

F(c)
j,μ (η, ξ; ρ) =

j
∑

r=0

(
j
r

)
F(c)

r,μ ρ)Cj−r,μ(η, ξ)

=
[

j
2 ]

∑
q=0

j
∑

r=2q

(
j
r

)
μr−2q(−1)qξ2qS(1)(r, 2q)Fj−r,μ(η; ρ),

(32)

and

F(s)
j,μ (η, ξ; ρ) =

j
∑

r=0

(
j
r

)
F(s)

r,μ (ρ)Sj−r,μ(η, ξ)

=
[

j−1
2 ]

∑
q=0

j
∑

r=2q+1

(
j
r

)
μr−2q−1(−1)qξ2q+1S(1)(r, 2q + 1)Fj−r,μ(η; ρ).

(33)

Proof. From Equations (26) and (16), we find

∞
∑

j=0
F(c)

j,μ (η, ξ; ρ) zj

j! =
1

1−ρ(eμ(z)−1) eμ(ηz) cosμ(ξz)

=

(
∞
∑

r=0
F(c)

r,μ (ρ)
zr

r!

)(
∞
∑

j=0
Cj,μ(η, ξ) zj

j!

)

=
∞
∑

j=0

(
j

∑
r=0

(
j
r

)
F(c)

r,μ (ρ)Cj−r,μ(η, ξ)

)
zj

j! .

(34)

On the other hand, we find

1
1−ρ(eμ(z)−1) eμ(ηz) cosμ(ξz) =

∞
∑

j=0
F(c)

j,μ (η; ρ) zj

j!

∞
∑

r=0

[ l
2 ]

∑
q=0

μr−2q(−1)qξ2qS(1)(r, q) zr

r!

=
∞
∑

j=0

(
j

∑
r=0

[ r
2 ]

∑
q=0

(
j
r

)
μr−2q(−1)qξ2qS(1)(r, 2q)F(c)

j−r,μ(η; ρ)

)
zj

j!

=
∞
∑

j=0

⎛
⎝ [

j
2 ]

∑
q=0

n
∑

r=2q

(
j
r

)
μr−2q(−1)qξ2qS(1)(r, 2q)Fj−r,μ(η; ρ)

⎞
⎠ zj

j! .

(35)

Therefore, by Equations (34) and (35), we obtain (32). The proof of (33) is similar.

Theorem 3. The following relation holds true

Cj,μ(η, ξ) = F(c)
j,μ (η, ξ; ρ)− ρ

j

∑
r=0

(
j
r

)
(1)r,μF(c)

j−r,μ(η, ξ; ρ) + ρF(c)
j,μ (η, ξ; ρ), (36)

and

Sj,μ(η, ξ) = F(s)
j,μ (η, ξ; ρ)− ρ

j

∑
r=0

(
j
r

)
(1)r,μF(s)

j−r,μ(η, ξ; ρ) + ρF(s)
j,μ (η, ξ; ρ). (37)

Proof. In view of (16) and (26), we have

eμ(ηz) cosμ(ξz) =
[
1 − ρ(eμ(z)− 1)

] ∞

∑
j=0

F(c)
j,μ (η, ξ; ρ)

zj

j!

6
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∞

∑
j=0

Cj,μ(η, ξ)
zj

j!
=

∞

∑
j=0

F(c)
j,μ (η, ξ; ρ)

zj

j!
− ρ

∞

∑
j=0

F(c)
j,μ (η, ξ; ρ)

zj

j!

∞

∑
r=0

(1)r,μ
zr

r!

+ρ
∞

∑
j=0

F(c)
j,μ (η, ξ; ρ)

zj

j!

=
∞

∑
j=0

F(c)
j,μ (η, ξ; ρ)

zj

j!
− ρ

∞

∑
j=0

j

∑
r=0

(
j
r

)
(1)r,μF(c)

j−r,μ(η, ξ; ρ)
zj

j!

+ρ
∞

∑
j=0

F(c)
j,μ (η, ξ; ρ)

zj

j!
.

On comparing the coefficients of both sides, we get (36). The proof of (37) is similar.

3. Main Results

In this section, we derive partial differentiation, recurrence relations, explicit and implicit summation
formulae and Stirling numbers of the second kind by using the summation technique series method.
We start by the following theorem.

Theorem 4. For every j ∈ N, the following equations for partial derivatives hold true:

∂

∂η
F(c)

j,μ (η, ξ; ρ) = jF(c)
j−1,μ(η, ξ; ρ), (38)

∂

∂ξ
F(c)

j,μ (η, ξ; ρ) = −jF(s)
j−1,μ(η, ξ; ρ), (39)

∂

∂η
F(s)

j,μ (η, ξ; ρ) = jF(s)
j−1,μ(η, ξ; ρ), (40)

∂

∂ξ
F(s)

j,μ (η, ξ; ρ) = jF(c)
j−1,μ(η, ξ; ρ). (41)

Proof. Using Equation (26), we see

∞

∑
j=1

∂

∂η
F(c)

j,μ (η, ξ; ρ)
zj

j!
=

∂

∂η

eμ(ηz) cosμ(ξz)
1 − ρ(eμ(z)− 1)

=
∞

∑
j=0

F(c)
j,μ (η, ξ; ρ)

zj+1

j!

=
∞

∑
j=0

F(c)
j−1,μ(η, ξ; ρ)

zj

(j − 1)!
=

∞

∑
j=1

nF(c)
j−1,μ(η, ξ; ρ)

zj

j!
,

proving (38). Other (39), (40) and (41) can be similarly derived.

Theorem 5. For j ≥ 0, the following formula holds true:

1
1 − ρ

j

∑
r=0

(
j
r

)
Fr,μ

(
ρ

1 − ρ

)
Cj−r,μ(η, ξ) =

j

∑
r=0

(
j
r

)
∞

∑
q=0

zq(q)r,μCj−r,μ(η, ξ), (42)

and
1

1 − ρ

j

∑
r=0

(
j
r

)
Fr,μ

(
ρ

1 − ρ

)
Sj−r,μ(η, ξ) =

j

∑
r=0

(
j
r

)
∞

∑
q=0

zq(q)r,μSj−r,μ(η, ξ). (43)

7
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Proof. We begin with the definition (26) and write

∞

∑
j=0

F(c)
j,μ (η, ξ; ρ)

zj

j!
=

1
1 − ρ(eμ(z)− 1)

eμ(ηz) cosμ(ξz).

Let
1

1−ρ

(
1

1− ρ
1−ρ [eμ(z)−1]

)
= 1

1−ρeμ(z)
=

∞
∑

q=0
ρq(1 + μz)

q
μ

=
∞
∑

r=0

(
∞
∑

k=0
zk(k)r,λ

)
tr

r!

(44)

∞
∑

j=0
F(c)

j,μ (η, ξ; ρ) zj

j! =
∞
∑

r=0

(
∞
∑

q=0
ρq(q)r,μ

)
zr

r!

(
∞
∑

j=0
Cj,μ(η, ξ) zj

j!

)

=
∞
∑

j=0

(
j

∑
r=0

(
j
r

)
∞
∑

q=0
ρq(q)r,μCj−r,μ(η, ξ)

)
zj

j! .

(45)

Now, we observe that, by (44), we get

1
1 − ρ

⎛
⎝ 1

1 − ρ
1−ρ (1 + μz)

1
μ − 1

⎞
⎠ =

1
1 − ρ

∞

∑
j=0

Fj,μ

(
ρ

1 − ρ

)
zj

j!
.

Then, we have

∞
∑

j=0
F(c)

j,μ (η, ξ; ρ) zj

j! =
1

1−ρ

∞
∑

r=0
Fr,μ

(
ρ

1−ρ

)
zr

r!

(
∞
∑

j=0
Cj,μ(η, ξ) zj

j!

)

= 1
1−ρ

∞
∑

j=0

(
j

∑
r=0

(
j
r

)
Fr,μ

(
ρ

1−ρ

)
Cj−r,μ(η, ξ)

)
zj

j! .

(46)

Therefore, by Equations (45) and (46), we get (42). The proof of (43) is similar.

Theorem 6. For j ≥ 0, the following formula holds true:

Cj,μ(η, ξ) = F(c)
j,μ (η, ξ; ρ)− ρF(c)

j,μ (η + 1, ξ; ρ) + ρF(c)
j,μ (η, ξ; ρ), (47)

and
Sj,μ(η, ξ) = F(s)

j,μ (η, ξ; ρ)− ρF(s)
j,μ (η + 1, ξ; ρ) + ρF(s)

j,μ (η, ξ; ρ). (48)

Proof. We begin with the definition (26) and write

eμ(ηz) cosμ(ξz) = 1−ρ(eμ(z)−1)
1−ρ(eμ(z)−1) eμ(ηz) cosμ(ξz)

=
eμ(ηz) cosμ(ξz)
1−ρ(eμ(z)−1) − ρ(eμ(z)−1)

1−ρ(eμ(z)−1) eμ(ηz) cosμ(ξz).

∞

∑
j=0

Cj,μ(η, ξ)
zj

j!
=

∞

∑
j=0

[
F(c)

j,μ (η, ξ; ρ)− ρF(c)
j,μ (η + 1, ξ; ρ) + ρF(c)

j,μ (η, ξ; ρ)
] zj

j!
.

Finally, comparing the coefficients of zj

j! , we get (47). The proof of (48) is similar.

8
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Theorem 7. For j ≥ 0 and ρ1 �= ρ2, the following formula holds true:

j
∑

q=0

(
j
q

)
F(c)

j−q,μ(η1, ξ1; ρ1)F(c)
q,μ (η2, ξ2; ρ2)

=
ρ2F(c)

j,μ (η1+η2,ξ1+ξ2;ρ2)−ρ1F(c)
n,μ(η1+η2,ξ1+ξ2;ρ1)

ρ2−ρ1
,

(49)

and
j

∑
q=0

(
j
q

)
F(s)

j−q,μ(η1, ξ1; ρ1)F(s)
q,μ (η2, ξ2; ρ2)

=
ρ2F(s)

j,μ (η1+η2,ξ1+ξ2;ρ2)−ρ1F(s)
n,μ(η1+η2,ξ1+ξ2;ρ1)

ρ2−ρ1
.

(50)

Proof. The products of (26) can be written as

∞

∑
j=0

∞

∑
q=0

F(c)
n,μ(η1, ξ1; ρ1)

zj

j!
F(c)

q,μ (η2, ξ2; ρ2)
zq

q!
=

eμ(η1z) cosμ(ξ1z)eμ(η2z) cosμ(ξ2z)
(1 − ρ1(eμ(z)− 1))(1 − ρ2(eμ(z)− 1))

∞

∑
j=0

(
j

∑
q=0

(
j
q

)
F(c)

j−q,μ(η1, ξ1; ρ1)F(c)
q,μ (η2, ξ2; ρ2)

)
zj

j!

=
ρ2

ρ2 − ρ1

eμ((η1 + η2)z) cosμ((ξ1 + ξ2)z)
1 − ρ1(eμ(z)− 1)

− ρ1

ρ2 − ρ1

eμ((η1 + η2)z) cosμ((ξ1 + ξ2)z)
1 − z2(eλ(t)− 1)

=

⎛
⎝ρ2F(c)

j,μ (η1 + η2, ξ1 + ξ2; ρ2)− ρ1F(c)
j,μ (η1 + η2, ξ1 + ξ2; ρ1)

ρ2 − ρ1

⎞
⎠ zj

j!
.

By equating the coefficients of zj

j! on both sides, we get (49). The proof of (50) is similar.

Theorem 8. For j ≥ 0, the following formula holds true:

ρF(c)
j,μ (η + 1, ξ; ρ) = (1 + ρ)F(c)

j,μ (η, ξ; ρ)− Cj,μ(η, ξ), (51)

and
ρF(s)

j,μ (η + 1, ξ; ρ) = (1 + ρ)F(s)
j,μ (η, ξ; ρ)− Sj,μ(η, ξ). (52)

Proof. Equation (26), we see

∞
∑

j=0

[
F(c)

j,μ (η + 1, ξ; ρ)− F(c)
j,μ (η, ξ; ρ)

]
zj

j! =
eμ(ηz) cosμ(ξz)
1−ρ(eμ(z)−1) (eμ(z)− 1)

= 1
ρ

[
eμ(ηz) cosμ(ξz)
1−ρ(eμ(z)−1) − eμ(ηz) cosμ(ξz)

]
= 1

ρ

∞
∑

j=0

[
F(c)

j,μ (x, y; z)− Cj,μ(η, ξ)
]

zj

j! .

Comparing the coefficients of zj

j! on both sides, we obtain (51). The proof of (52) is similar.

Corollary 1. The following summation formula holds true

F(c)
j,μ (η + 1, ξ; ρ) =

j

∑
r=0

(
j
r

)
F(c)

j−r,μ(η, ξ; ρ)(1)r,μ,

9
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and

F(s)
j,μ (η + 1, ξ; ρ) =

j

∑
r=0

(
j
r

)
F(s)

j−r,μ(η, ξ; ρ)(1)r,μ.

Theorem 9. For j ≥ 0, then

F(c)
j,μ (η + α, ξ; ρ) =

j

∑
r=0

(
j
r

)
F(c)

j−r,μ(η, ξ; ρ)(α)r,μ, (53)

and

F(s)
j,μ (η + α, ξ; ρ) =

j

∑
r=0

(
j
r

)
F(s)

j−r,μ(η, ξ; ρ)(α)r,μ. (54)

Proof. Replacing η by η + α in (26), we have

∞
∑

j=0
F(c)

j,μ (η + α, ξ; ρ) zj

j! =
1

1−ρ(eμ(z)−1) eμ((η + α)z) cosμ(ξz)

= 1
1−ρ(eμ(z)−1) eμ(ηz) cosμ(ξz)eμ(αz)

=
∞
∑

j=0
F(c)

j,μ (η, ξ; ρ) zj

j!

∞
∑

r=0
(α)r,μ

zj

j!

=
∞
∑

j=0

(
j

∑
r=0

(
j
r

)
F(c)

j−r,μ(η, ξ; ρ)(α)r,μ

)
zj

j! .

On comparing the coefficients of z in both sides, we get (53). The proof of (54) is similar.

Theorem 10. For j ≥ 0, the following formula holds true:

F(c)
j,μ (η, ξ; ρ) =

j

∑
k=0

k

∑
q=0

(
j
k

)
(η)qS(2)

μ (k, q)F(c)
j−k,μ(0, ξ; ρ), (55)

and

F(s)
j,μ (η, ξ; ρ) =

j

∑
k=0

k

∑
q=0

(
j
k

)
(η)qS(2)

μ (k, q)F(s)
j−k,μ(0, ξ; ρ). (56)

Proof. Consider (26), we find

∞

∑
j=0

F(c)
j,μ (η, ξ; ρ)

zj

j!
=

1
1 − ρ(eμ(z)− 1)

[eμ(z)− 1 + 1]η cosμ(ξz)

=
1

1 − ρ(eμ(z)− 1)

∞

∑
q=0

(
η

q

)
(eμ(z)− 1)q cosμ(ξz)

=
1

1 − ρ(eμ(z)− 1)
cosμ(ξz)

∞

∑
q=0

(η)q

∞

∑
k=q

S(2)
μ (k, q)

zk

k!

=
∞

∑
j=0

F(c)
j,μ (0, ξ; ρ)

zj

j!

∞

∑
k=0

(
k

∑
q=0

(η)qS(2)
μ (k, q)

)
zk

k!

=
∞

∑
j=0

(
j

∑
k=0

k

∑
q=0

(
j
k

)
(η)qS(2)

μ (k, q)F(c)
j−k,μ(0, ξ; ρ)

)
zj

j!
.

10
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On comparing the coefficients of z in both sides, we get (55). The proof of (56) is similar.

Theorem 11. Let j ≥ 0, then

F(c)
j,μ (η, ξ; ρ) =

j

∑
r=0

(
j
r

)
Cj−r,μ(η, ξ)

r

∑
k=0

ρkk!S2,μ(r, k), (57)

and

F(s)
j,μ (η, ξ; ρ) =

j

∑
r=0

(
j
r

)
Sj−r,μ(η, ξ)

r

∑
k=0

ρkk!S2,μ(r, k). (58)

Proof. Using definition (26), we find

∞

∑
j=0

F(c)
j,μ (η, ξ; ρ)

zj

j!
=

1
1 − ρ(eμ(z)− 1)

eμ(ηz) cosμ(ξz)

= eμ(ηz) cosμ(ξz)
∞

∑
k=0

ρk(eμ(z)− 1)k

= eμ(ηz) cosμ(ξz)
∞

∑
k=0

ρkk!
∞

∑
r=k

S2,μ(r, k)
zr

r!

=
∞

∑
j=0

Cj,μ(η, ξ)
zj

j!

(
∞

∑
r=0

r

∑
k=0

ρkk!S2,μ(r, k)
zr

r!

)

L.H.S =
∞

∑
j=0

(
j

∑
r=0

(
j
r

)
Cj−r,μ(η, ξ)

r

∑
k=0

ρkk!S2,μ(r, k)

)
zj

j!
.

Equating the coefficients of zj

j! in both sides, we get (57). The proof of (58) is similar.

Theorem 12. For j ≥ 0, the following formula holds true:

F(c)
j,μ (η + α, ξ; ρ) =

j

∑
q=0

(
j
q

)
Cj−q,μ(η, ξ)

q

∑
k=0

ρkk!S2,μ(q + α, k + α), (59)

and

F(s)
j,μ (η + α, ξ; ρ) =

j

∑
q=0

(
j
q

)
Sj−q,μ(η, ξ)

q

∑
k=0

ρkk!S2,μ(q + α, k + α). (60)

Proof. Replacing η by η + α in (26), we see

∞

∑
j=0

F(c)
j,μ (η + α, ξ; ρ)

zj

j!
=

1
1 − ρ(eμ(z)− 1)

eμ((η + α)z) cosμ(ξz)

= eμ((η + α)z) cosμ(ξz)eμ(rt)
∞

∑
k=0

ρk(eμ(z)− 1)k

= eμ((η + α)z) cosμ(ξz)eμ(rt)
∞

∑
k=0

ρk
∞

∑
q=k

k!S2,μ(q, k)
zq

q!

=
∞

∑
j=0

Cj,μ(η, ξ)
zj

j!

∞

∑
q=0

ρk
q

∑
k=0

k!S2,μ(q + α, k + α)
zq

q!
.

11
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∞

∑
j=0

F(c)
j,μ (η + α, ξ; ρ)

zj

j!

=
∞

∑
n=0

(
j

∑
q=0

(
j
q

)
Cj−q,μ(η, ξ)

q

∑
k=0

ρkk!S2,μ(q + α, k + α)

)
zj

j!
.

Comparing the coefficients of zj

j! in both sides, we get (59). The proof of (60) is similar.

4. Conclusions

In this paper, we study the general properties and identities of the degenerate Fubini polynomials
by treating the real and imaginary parts separately, which provide the degenerate cosine Fubini
polynomials and degenerate sine Fubini polynomials. These presented results can be applied to
any complex Appell type polynomials such as complex Bernoulli and complex Euler polynomials.
Furthermore, we show that the degenerate cosine Fubini polynomials and degenerate sine Fubini
polynomials can be expressed in terms of the Stirling numbers of the second kind.
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Abstract: In this paper, we first introduce the 2-variables Konhauser matrix polynomials; then,
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integral representations, and finite sum formulae. Finally, we obtain the fractional integrals of the
2-variables Konhauser matrix polynomials.
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1. Introduction

Special functions play a very important role in analysis, physics, and other applications,
and solutions of some differential equations or integrals of some elementary functions can be expressed
by special functions. In particular, the family of special polynomials is one of the most useful and
applicable family of special functions. The Konhauser polynomials which were first introduced by
J.D.E. Konhauser [1] include two classes of polynomials Yα

n (x; k) and Zα
n(x; k), where Yα

n (x; k) are
polynomials in x and Zα

n(x; k) are polynomials in xk, α > −1 and k ∈ Z+. Explicit expressions for the
polynomials Zα

n(x; k) are given by

Zα
n(x; k) =

Γ(α + kn + 1)
n!

n

∑
r=0

(−1)r
(

n
r

)
xkr

Γ(α + kr + 1)
, (1)

where Γ(·) is the classical Gamma function and for the polynomials Yα
n (x; k), Carlitz [2] subsequently

showed that

Yα
n (x; k) =

1
n!

n

∑
r=0

xr

r!

r

∑
s=0

(−1)s
(

r
s

)( s + α + 1
k

)
n
, (2)

where (a)n is Pochhammer’s symbol of a as follows:

(a)n =

{
a(a + 1)(a + 2) . . . (a + n − 1), n ≥ 1,
1, n = 0.

(3)

Mathematics 2020, 8, 232; doi:10.3390/math8020232 www.mdpi.com/journal/mathematics15



Mathematics 2020, 8, 232

It is easy to verify that the polynomials Yα
n (x; k) and Zα

n(x; k) are biorthogonal with respect to the
weight function w(x) = xαe−x over the interval (0, ∞), which means

∫ ∞

0
xαe−xYα

i (x; k)Zα
j (x; k)dx =

Γ(kj + α + 1)
j!

δij, (4)

where α > −1, k ∈ Z+ and δij is the Kronecker delta.
The Laguerre polynomials Lα

n(x) are defined as (see, e.g., [3])

Lα
n(x) =

Γ(α + n + 1)
Γ(n + 1)

n

∑
r=0

(−1)r
(

n
r

)
xr

Γ(α + r + 1)
. (5)

For p, q ∈ N, we can define the general hypergeometric functions of p-numerator and
q-denominator by

pFq

[
α1, α2, . . . , αp

β1, β2, . . . , βq
; x

]
=

∞

∑
n=0

(α1)n(α2)n . . . (αp)n

(β1)n(β2)n . . . (βq)n

xn

n!
, (6)

such that β j �= 0,−1,−2, . . . ; j = 1, 2, . . . , q. Then, according to [3], we can rewrite Lα
n(x) as

Lα
n(x) =

(α + 1)n

n! 1F1

[
−n

α + 1
; x

]
. (7)

For k = 1, we note that the Konhauser polynomials (1) and (2) reduce to the Laguerre Polynomials
Lα

n(x) and their special cases; when k = 2, the case was encountered earlier by Spencer and Fano [4] in
certain calculations involving the penetration of gamma rays through matter and was subsequently
discussed in [5].

On the other hand, the matrix theory has become pervasive to almost every area of mathematics,
especially in orthogonal polynomials and special functions. The special matrix functions appear in
the literature related to statistics [6], Lie theory [7], and in connection with the matrix version of
Laguerre, Hermite, and Legendre differential equations and the corresponding polynomial families
(see, e.g., [8–10]). In the past few years, the extension of the classical Konhauser polynomials to
the Konhauser matrix polynomials of one variable has been a subject of intensive studies [11–14].
Recently, many authors (see, e.g., [15–18]) have proposed the generating relations of Konhauser matrix
polynomials of one variable from the Lie algebra method point of view and found some properties
of Konhauser matrix polynomials of one variable via the Lie algebra technique; they also obtained
operational identities for Laguerre–Konhauser-type matrix polynomials and their applications for the
matrix framework.

Some studies have been presented on polynomials in two variables such as 2-variables Shivley’s
matrix polynomials [19], 2-variables Laguerre matrix polynomials [20], 2-variables Hermite generalized
matrix polynomials [21–24], 2-variables Gegenbauer matrix polynomials [25], and the second kind of
Chebyshev matrix polynomials of two variables [26].

The purpose of the present work is to introduce and study 2-variables Konhauser matrix polynomials
and find the hypergeometric matrix function representations; we try to establish some basic properties
of these polynomials which include generating matrix functions, finite sum formulae, and integral
representations, and we will also discuss the fractional integrals of the 2-variables Konhauser
matrix polynomials.

The rest of this paper is structured as follows. In the next section, we give basic definitions and
previous results to be used in the following sections. In Section 3, we introduce the definition of
2-variables Konhauser matrix polynomials for parameter matrices A and B and some generating matrix
relations involving 2-variables Konhauser matrix polynomials deriving the integral representations.
Finally, we provide some results on the fractional integrals of 2-variables Konhauser matrix polynomials
in Section 4.
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2. Preliminaries

In this section, we give the brief introduction related to Konhauser matrix polynomials and recall
some previously known results.

Let CN×N be the vector space of N-square matrices with complex entries; for any matrix A ∈ CN×N ,
its spectrum σ(A) is the set of all eigenvalues of A,

α(A) = max{Re(z) : z ∈ σ(A)}, β(A) = min{Re(z) : z ∈ σ(A)}. (8)

A square matrix A ∈ CN×N is said to be positive stable if and only if β(A) > 0. Furthermore, the
identity matrix and the null matrix or zero matrix in CN×N will be symbolized by I and 0, respectively.
If Φ(z) and Ψ(z) are holomorphic functions of the complex variable z, which are defined as an open
set Ω of the complex plane and A is a matrix in CN×N with σ(A) ⊂ Ω, then, from the properties of the
matrix functional calculus [27,28], we have

Φ(A)Ψ(A) = Ψ(A)Φ(A). (9)

Furthermore, if B ∈ CN×N is a matrix for which σ(B) ⊂ Ω and also if AB = BA, then

Φ(A)Ψ(B) = Ψ(B)Φ(A). (10)

Let A be a positive stable matrix in CN×N . Then, Γ(A) is well defined as

Γ(A) =
∫ ∞

0
tA−I e−tdt, (11)

where tA−I = exp((A − I) ln t). Then, the matrix Pochhammer symbol (A)n of A is denoted as follows
(see, e.g., [29–31]):

(A)n =

{
A(A + I)...(A + (n − 1)I) = Γ−1(A)Γ(A + nI), n ≥ 1,
I, n = 0,

(12)

The Laguerre matrix polynomials are defined by Jódar et al. [8]

L(A,λ)
n (x) =

n

∑
k=0

(−1)kλk

k!(n − k)!
(A + I)n[(A + I)k]

−1xk, (13)

where A ∈ CN×N is a matrix such that −k �∈ σ(A), ∀k ∈ Z+, (A + I)k are given by Equation (12) and
λ is a complex number with Re(λ) > 0.

For p, q ∈ N, 1 ≤ i ≤ p, 1 ≤ j ≤ q, if Ai, Bj ∈ CN×N are matrices such that Bj + kI are invertible
for all integers k ≥ 0, the generalized hypergeometric matrix functions are defined as [32]

pFq

[
A1, A2, . . . , Ap

B1, B2, . . . , Bq
; x

]
= ∑

n≥0

(A1)n(A2)n . . . (Ap)n[(B1)n]−1[(B2)n]−1 . . . ([Bp)n]−1

n!
xn. (14)

It follows that, for λ = 1 in (13), we have

LA
n (x) =

(A + I)n

n! 1F1

[
−nI,
A + I

; x

]
. (15)

For commuting matrices Ai, Bi, Ci, Di, Ei and Fi in CN×N , we define the Kampé de Fériet matrix
series as [32]
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Fm1,n1,l1
m2,n2,l2

[
A, B, C
D, E, F

; x, y

]
=

∑
m,n≥0

m1

∏
i=1

(Ai)m+n

n1

∏
i=1

(Bi)m

l1

∏
i=1

(Ci)n

m2

∏
i=1

[(Di)m+n]
−1

n2

∏
i=1

[(Ei)m]
−1

l2

∏
i=1

[(Fi)n]
−1 xmyn

m!n!
,

(16)

where A abbreviates the sequence of matrices A1, ...., Am1 , etc. and Di + kI, Ei + kI and Fi + kI are
invertible for all integers k ≥ 0.

If A ∈ CN×N is a matrix satisfying the condition

Re(z) > −1, ∀z ∈ σ(A), (17)

and λ is a complex numbers with Re(λ) > 0, we recall the following explicit expression for the
Konhauser matrix polynomials (see, e.g., [11])

Z(A,λ)
n (x, k) =

Γ(A + (kn + 1)I)
n!

n

∑
r=0

(−1)r
(

n
r

)
Γ−1(A + (kr + 1)I)(λx)kr, (18)

and

Y(A,λ)
n (x; k) =

1
n!

n

∑
r=0

(λx)r

r!

r

∑
s=0

(−1)s
(

r
s

)(A + (s + 1)I
k

)
n
, (19)

which are biorthogonal with respect to matrix weight function w(x) = xAe−λx over the interval (0, ∞).

3. 2-Variables Konhauser Matrix Polynomials

In this section, we first introduce the 2-variables Konhauser matrix polynomials with parameter
matrices A and B; then, we get the hypergeometric matrix function representations, generating
matrix functions, finite summation formulas, and related results for the 2-variables Konhauser matrix
polynomials.

Definition 1. Let A, B ∈ CN×N be matrices satisfying the condition (17). Then, for k, l ∈ Z+, the 2-variables
Konhauser matrix polynomials Z(A,B,λ,ρ)

n (x, y, k, l) are defined as follows:

Z(A,B,λ,ρ)
n (x, y, k, l) =

Γ(A + (kn + 1)I)Γ(B + (ln + 1)I)
(n!)2

×
n

∑
r=0

n−r

∑
s=0

(−n)r+s (λx)ks(ρy)lr

r!s!
Γ−1(A + (ks + 1)I)Γ−1(B + (lr + 1)I),

(20)

where λ and ρ are complex numbers with Re(λ) > 0 and Re(ρ) > 0.

Remark 1. Furthermore, we note the following special cases of the 2-variables Konhauser matrix polynomials
Z(A,B,λ,ρ)

n (x, y, k, l) as follows:

i. Letting l = 1, B = 0 and y = 0 in (20), we get the Konhauser matrix polynomials defined in (18);
ii. Letting k = l = 1 and ρ = 1 in (20), we get the 2-variables analogue of Laguerre’s matrix polynomials

L(A,B,λ)
n (x, y) as follows:

Z(A,B,λ,1)
n (x, y, 1, 1) =

(A + I)n(B + I)n

(n!)2

n

∑
r=0

n−r

∑
s=0

(−n)r+s (λx)s(y)r

r!s!
[
(A + I)s(B + I)r

]−1; (21)

iii. Letting k = l = 1, B = 0 and y = 0 in (20), we obtain the Laguerre’s matrix polynomials L(A,λ)
n (x)

defined in (13);
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iv. Letting A = α ∈ C1×1 and B = β ∈ C1×1 in (20), we find the scaler 2-variables Konhauser polynomials
(see, e.g., [33]);

v. Letting A = α ∈ C1×1, and B = 0 in (20), we find Konhauser polynomials defined in (1).

3.1. Hypergeometric Representation

Now, by using (16) and (20), we obtain the hypergeometric matrix function representations

Z(A,B,λ,ρ)
n (x, y, k, l) =

(A + I)kn(B + I)ln
(n!)2 F1

k,l

[ −nI
Δ(k; A + I), Δ(l; B + I)

; (
λx
k
)k, (

ρy
l
)l
]
, (22)

where Δ(k; A) abbreviates the array of k parameters such that

Δ(k; A) = (
A
k
)(

A + I
k

)(
A + 2I

k
) . . . (

A + (k − 1)I
k

), k ≥ 1, (23)

and F1
k,l is defined in (16).

Remark 2. If A ∈ CN×N is a matrix satisfying the condition (17), letting B = 0 and y = 0 in (22), we obtain

Z(A,0,λ)
n (x, 0; k) =

(A + I)kn
n! 1Fk

[
−nI

Δ(k; A + I)
; (

λx
k
)k

]
= Z(A,λ)

n (x; k), (24)

where Z(A,λ)
n (x; k) are Konhauser matrix polynomials in [11] and 1Fk is hypergeometric matrix function of

1-numerator and k-denominator defined in (14).

Remark 3. If A ∈ CN×N is a matrix satisfying the condition (17), let k = 1, B = 0 and y = 0 in (22), then
we get

Z(A,λ)
n (x; 1) =

(A + I)n

n! 1F1

[
−nI,
A + I

; x

]
= LA

n (x), (25)

where LA
n (x) are the Laguerre’s matrix polynomials defined in (15).

3.2. Generating Matrix Relations for the 2-Variables of Konhauser Matrix Polynomials

Generating matrix relations always play an important role in the study of polynomials, first, we
give some generating matrix relations for the 2-variables of Konhauser matrix polynomials as follows:

Theorem 1. Letting A, B ∈ CN×N be matrices satisfying the condition (17), we obtain the explicit formulae of
matrix generating relations for the 2-variables Konhauser matrix polynomials as follows:

∞

∑
n=0

Z(A,B,λ,ρ)
n (x, y, k, l)[(A + I)kn]

−1[(B + I)ln]−1(n!tn)

= et
0Fk

[
−

Δ(k; A + I)
; (
−λx

k
)k

]
0Fl

[
−

Δ(p; B + I)
; (
−ρy

l
)l

]
,

(26)

where 0Fk and 0Fl are hypergeometric matrix functions of 0-numerator and k, l-denominator as (14), Δ(k; A + I)
and Δ(l; B + I) are defined as (23), and the short line "−" means that the number of parameters is zero.
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Proof. From Equation (20), we have

∞

∑
n=0

Z(A,B,λ,ρ)
n (x, y, k, l)[(A + I)kn]

−1[(B + I)ln]−1(n!tn)

=
∞

∑
n=0

n!
n

∑
r=0

n−r

∑
s=0

(−n)r+s(λx)ks(ρy)lr

r!s!(n!)2 [(A + I)ks]
−1[(B + I)lr]−1tn

=
∞

∑
n=0

tn

n!

∞

∑
s=0

(−1)s(λx)ks

s!
[(A + I)ks]

−1ts
∞

∑
r=0

(−1)r(ρy)lr

r!
[(B + I)lr]

−1tr,

(27)

by using

(A)km = k
km (A

k
)

m

(A + I
k
)

m . . .
(A + (k − 1)I

k
)

m,

we get

∞

∑
n=0

Z(A,B,λ,ρ)
n (x, y, k, l)[(A + I)kn]

−1[(B + I)ln]−1(n!tn)

=
∞

∑
n=0

tn

n!

∞

∑
s=0

(−1)s(λx)ks

kkss!

[ k

∏
m=1

(
A + mI

k
)s

]−1
ts

∞

∑
r=0

(−1)r(ρy)lr

llrr!

[ l

∏
n=1

(
B + nI

l
)r

]−1
tr

= et
0Fk

[
−

Δ(k; A + I)
; (
−λx

k
)k

]
0Fl

[
−

Δ(l; B + I)
; (
−ρy

l
)l

]
.

(28)

This completes the proof.

For a matrix E in CN×N , we can easily obtain the following generating relations for the 2-variables
Konhauser matrix polynomial similar to Theorem 1

∞

∑
n=0

(E)n[(A + I)kn]
−1[(B + I)ln]−1(n!tn)

= (1 − t)−EF1
k,l

[
−E

Δ(k; A + I), Δ(l; B + I)
;

t
t − 1

(
λx
k
)k,

t
t − 1

(
ρy
l
)l

]
,

(29)

where F1
k,p are defined in Equation (16), Δ(k; A + I) and Δ(l; B + I) are defined as Equation (23).

Corollary 1. Letting A, B ∈ CN×N be matrices satisfying the condition (17), the following generating matrix
relations of the 2-variables Konhauser matrix polynomials hold:

∞

∑
n=0

Z(A,B,λ,ρ)
n (x, y, k, l)Γ−1(A + (nk + 1)I)Γ−1(B + (nl + 1)I)(n!tn)

= et Γ−1(A + I) Γ−1(B + I) 0Fk

[
−

Δ(k; A + I)
; (
−λx

k
)k

]
0Fl

[
−

Δ(l; B + I)
; (
−ρy

l
)l

]
,

(30)

where 0Fk and 0Fl are hypergeometric matrix functions of 0-numerator and k,l-denominator as (14).
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Corollary 2. Letting A, B, and E be matrices in CN×N satisfying the condition (17), we give explicit formulae
of matrix generating relations for the 2-variables Konhauser matrix polynomials as follows:

∞

∑
n=0

(E)nZ(A,B,λ,ρ)
n (x, y, k, l)Γ−1(A + (nk + 1)I)Γ−1(B + (nl + 1)I)(n!tn)

= (1 − t)−E Γ−1(A + I) Γ−1(B + I)F1
k,l

[
−E

Δ(k; A + I), Δ(l; B + I)
;

t
t − 1

(
λx
k
)k,

t
t − 1

(
ρy
l
)l

]
.

(31)

Considering the double series,

∞

∑
n=0

∞

∑
m=0

[(m + n)!]2

n! m!
Z(A,B,λ,ρ)

n (x, y, k, l)[(A + I)k(m+n)]
−1[(B + I)l(m + n)]−1σmτn

=
∞

∑
n=0

n!Z(A,B,λ,ρ)
n (x, y, k, l)τn[(A + I)kn]

−1[(B + I)ln]−1
1F0

[
−nI
− ;

−σ

τ

]

=
∞

∑
n=0

n!Z(A,B,λ,ρ)
n (x, y, k, l)[(A + I)kn]

−1[(B + I)ln]−1(σ + τ)n.

(32)

Now, by making use of Theorem 1, we find

∞

∑
n=0

∞

∑
m=0

[(m + n)!]2

n! m!
Z(A,B,λ,ρ)

n (x, y, k, l)[(A + I)k(m+n)]
−1[(B + I)l(m + n)]−1σmτn

= eσ+τ
0Fk

[
−

Δ(k; A + I)
; (
−λx

k
)k(σ + τ)

]
0Fl

[
−

Δ(l; B + I)
; (
−ρy

l
)l(σ + τ)

]
.

(33)

Here, Equation (33) may be regarded as a double generating matrix relations for (20).

Remark 4. For A in CN×N, letting k = 1, B = 0 and y = 0 in (33), we have

∞

∑
n=0

(
m + n

n

)
[(A + I)(m+n)]

−1LA
m+n(x) tn

=
∞

∑
n=m

(−1)nm![(A + I)n]−1xn

(n − m)!n! 1F1

[
−(n + 1)I,
(n − m + 1)I

; t

]

=
∞

∑
n=m

∞

∑
j=0

(−x)nn!tn−m[(A + I)n]−1(n + 1)jtj

m!(n − m)!n!(n − m + 1)j!

=
∞

∑
n=0

∞

∑
j=0

(−x)n(n + 1)j(A + I)n]−1tj

(1)jn!j!
,

(34)

we find generating matrix relations of the Laguerre’s matrix polynomials.

3.3. Some Properties of the 2-Variables Konhauser Matrix Polynomials

For the finite sum property of the 2-variables Konhauser matrix polynomials Z(A,B,λ,ρ)
n (x, y, k, l),

we get the generating relations together as follows:

et
0Fk

[
−

Δ(k; A + I)
; (
−λxw

k
)kt

]
0Fl

[
−

Δ(l; B + I)
; (
−ρyw

l
)l t

]

= e(1−wk)tewkt
0Fk

[
−

Δ(k; A + I)
; (
−λxw

k
)kt

]
0Fl

[
−

Δ(l; B + I)
; (
−ρyw

l
)l t

]
,

(35)
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and
n

∑
r=0

Z(A,B,λ,ρ)
n (xw, yw, k, k)[(A + I)kn]

−1[(B + I)kn]
−1tnn!

=
( ∞

∑
n=0

1 − wkntn

n!

)( ∞

∑
n=0

Z(A,B,λ,ρ)
n (x, y, k, k)wkn[(A + I)kn]

−1[(B + I)kn]
−1tnn!

)
.

(36)

By comparing the coefficients of tn on both sides, we have

Z(A,B,λ,ρ)
n (xw, yw, k, k)

=
n

∑
r=0

r!wkr(1 − wk)n−r

n!(n − r)!
[(A + I)kr]

−1[(B + I)kr]
−1(A + I)kn(B + I)knZ(A,B,λ,ρ)

n (x, y, k, k).
(37)

The integral representations for the 2-variables Konhauser matrix polynomials are derived in the
following theorem.

Theorem 2. Letting A, B ∈ CN×N be matrices satisfying the condition (17), and, if
∣∣ t

λx

∣∣ < 1,
∣∣ v

ρy

∣∣ < 1,

then we have the integral representation of the 2-variables Konhauser matrix polynomials Z(A,B,λ,ρ)
n (x, y, k, l)

as follows:

Z(A,B,λ,ρ)
n (x, y, k, l) =

Γ(A + (kn + 1)I)Γ(B + (ln + 1)I)
(n!)2(2πi)2

×
∫

c1

∫
c2

(
tkvl − (λx)kvl − (ρy)ktl)net+v t−(A+(kn+1)I) v−(B+(ln+1)I)dtdv,

(38)

where c1, c2 are the paths around the origin in the positive direction, beginning at and returning to positive
infinity with respect for the branch cut along the positive real axis.

Proof. The right side of the above formulae are deformed into

Γ(A + (kn + 1)I)Γ(B + (ln + 1)I)
(n!)2

n

∑
r=0

n−r

∑
s=0

(−n)r+s(λx)kr(ρy)lr

r!s!

× 1
2πi

∫
c1

t−(A+(ks+1)I)etdt × 1
2πi

∫
c2

v−(B+(lr+1)I)evdv,

(39)

and using the integral representation of the reciprocal Gamma function, which are given in [34]

1
Γ(z)

=
1

2πi

∫
c

ett−zdt, (40)

where c is the path around the origin in the positive direction, beginning at and returning to positive
infinity with respect for the branch cut along the positive real axis. Thus, from Equation (40), we obtain
the following integral matrix functional

Γ−1(A + (kn + 1)I) =
1

2πi

∫
c1

ett−(A+(kn+1)I)dt. (41)

By Equation (41), we can transfer (39) to

Γ(A + (kn + 1)I)Γ(B + (ln + 1)I)
(n!)2 ×

n

∑
r=0

n−r

∑
s=0

(−n)r+s(λx)kr(ρy)lr

r!s!
Γ−1(A + (ks + 1)I)Γ−1(B + (kr + 1)I)

= Z(A,B,λ,ρ)
n (x, y, k, l).

(42)
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This completes the proof of the theorem.

4. Fractional Integrals of the 2-Variable Konhauser Matrix Polynomials

In this section, we study the fractional integrals of the Konhauser matrix polynomials of one and
two variables. The fractional integrals of Riemann–Liouville operators of order μ and x > 0 are given
by (see [35,36])

(I
μ
a f )(x) =

1
Γ(μ)

∫ x

a
(x − t)μ−1 f (t)dt, Re(μ) > 0. (43)

Recently, the authors (see, e.g., [28]) introduced the fractional integrals with matrix parameters
as follows: suppose A ∈ CN×N is a positive stable matrix and μ ∈ C is a complex number satisfying
the condition Re(μ) > 0. Then, the Riemann–Liouville fractional integrals with matrix parameters of
order μ are defined by

Iμ(xA) =
1

Γ(μ)

∫ x

0
(x − t)μ−1tAdt. (44)

Lemma 1. Supposing that A ∈ CN×N is a positive stable matrix and μ ∈ C is a complex number satisfying
the condition Re(μ) > 0, then the Riemann–Liouville fractional integrals with matrix parameters of order μ are
defined and we have (see, e.g., [28])

Iμ(xA−I) = Γ(A)Γ−1(A + μI)xA+(μ−1)I . (45)

Theorem 3. If A ∈ CN×N is a matrix satisfying the condition (17), then the Riemann–Liouville fractional
integrals of Konhauser matrix polynomials of one variable are as follows:

Iμ
[
(λx)AZ(A,λ)

n (x, k)
]
= Γ−1(A + (kn + μ + 1)I)Γ(A + (kn + 1)I)(λx)A+μI Z(A+μI,λ)

n (x, k), (46)

where λ is a complex numbers with Re(λ) > 0, and k ∈ Z+.

Proof. From Equation (44), we find

Iμ
[
(λx)AZ(A,λ)

n (x, k)
]
=
∫ x

0

(
λ(x − t)

)μ−1

Γ(μ)
tAZ(A,λ)

n (t, k)dt

=
Γ(A + (kn + 1)I)

Γ(μ)

n

∑
r=0

(−1)r

r!(n − r)!
Γ−1(A + (kr + 1)I)

∫ x

0
(λx)A+krI(λ(x − t)

)μ−1dt

= Γ(A + (kn + 1)I)
n

∑
r=0

(−1)r

r!(n − r)!
(λx)A+(kr+μ)I Γ−1(A + (kr + μ + 1)I),

(47)

and we can write

Iμ
[
(λx)AZ(A,λ)

n (x, k)
]
= Γ−1(A + (kn + μ + 1)I)Γ(A + (kn + 1)I)(λx)A+μI Z(A+μI,λ)

n (x, k). (48)

The 2-variables analogue of Riemann–Liouville fractional integrals Iν,μ may be defined as follows

Definition 2. Letting A, B ∈ CN×N be positive stable matrices, if Re(ν) > 0 and Re(μ) > 0, then the
2-variables Riemann–Liouville fractional integrals of orders ν, μ can be defined as follows:

Iν,μ
[

xAyB
]
=

1
Γ(ν)Γ(μ)

∫ x

0

∫ y

0
(x − u)ν−1(y − v)μ−1uAvBdudv. (49)
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Theorem 4. Letting A, B ∈ CN×N be matrices satisfying the condition (17), Re(λ) > 0, Re(ρ) > 0, then, for
the Riemann–Liouville fractional integral of a 2-variables Konhauser matrix polynomial, we have the following:

Iν,μ
[
(λx)A(ρy)BZ(A,B,λ,ρ)

n (x, y, k, l)
]

= Γ−1(A + (kn + ν + 1)I)Γ−1(B + (ln + μ + 1)I)Γ(A + (kn + 1)I)

Γ(B + (ln + 1)I)(λx)A+νI(ρy)B+μI Z(A+νI,B+μI,λ,ρ)
n (x, y, k, l),

(50)

where λ and ρ are complex numbers and k, l ∈ Z+.

Proof. By using Equation (49), we obtain

Iν,μ
[
(λx)A(ρy)BZ(A,B,λ,ρ)

n (x, y, k, l)
]
=

1
Γ(ν)Γ(μ)

×
∫ x

0

∫ y

0

(
λ(x − u)

)ν−1(
ρ(y − v)

)μ−1
(λu)A(ρv)BZ(A,B,λ,ρ)

n (u, v, k, l)dudv.
(51)

By putting u = xt and v = yw, we get

Iν,μ
[
(λx)A(ρy)BZ(A,B,λ,ρ)

n (x, y, k, l)
]
=

(λx)A+νI(ρy)B+μI

Γ(ν)Γ(μ)

×
∫ 1

0

∫ 1

0
(λt)A(ρw)B(λ(1 − t)

)ν−1(
ρ(1 − w)

)μ−1Z(A,B,λ,ρ)
n (xt, yw, k, l)dtdw,

(52)

from definition (20), we have

Iν,μ
[
(λx)A(ρy)BZ(A,B,λ,ρ)

n (x, y, k, l)
]

=
Γ(A + (kn + 1)I)Γ(B + (ln + 1)I)(λx)A+νI(ρy)B+μI

(n!)2Γ(ν)Γ(μ)
n

∑
r=0

n−r

∑
s=0

(−n)r+s (λx)ks(ρy)lr

r!s!
Γ−1(A + (ks + 1)I)Γ−1(B + (lr + 1)I).

×
∫ 1

0
(λt)A+ksI(λ(1 − t)

)ν−1dt
∫ 1

0
(ρw)B+lrI(ρ(1 − w)

)μ−1dw,

(53)

and
Iν,μ
[
(λx)A(ρy)BZ(A,B,λ,ρ)

n (x, y, k, l)
]

=
Γ(A + (kn + 1)I)Γ(B + (ln + 1)I)(λx)A+νI(ρy)B+μI

(n!)2Γ(ν)Γ(μ)
n

∑
r=0

n−r

∑
s=0

(−n)r+s (λx)ks(ρy)lr

r!s!
Γ−1(A + (ks + ν + 1)I)Γ−1(B + (lr + μ + 1)I).

(54)

We thus arrive at

Iν,μ
[
(λx)A(ρy)BZ(A,B,λ,ρ)

n (x, y, k, l)
]

= Γ−1(A + (kn + ν + 1)I)Γ−1(B + (ln + μ + 1)I)Γ(A + (kn + 1)I)

Γ(B + (ln + 1)I)(λx)A+νI(ρy)B+μI Z(A+νI,B+μI,λ,ρ)
n (x, y, k, l).

(55)

This completes the proof of Theorem 4.
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Abstract: We provide a realization of fractional supersymmetry quantum mechanics of order r,
where the Hamiltonian and the supercharges involve the fractional Dunkl transform as a Klein
type operator. We construct several classes of functions satisfying certain orthogonality relations.
These functions can be expressed in terms of the associated Laguerre orthogonal polynomials and
have shown that their zeros are the eigenvalues of the Hermitian supercharge. We call them the
supersymmetric generalized Hermite polynomials.

Keywords: orthogonal polynomials; difference-differential operator; supersymmetry

1. Introduction

Supersymmetry relates bosons and fermions on the basis of Z2-graded superalgebras [1,2], where
the fermionic set is realized in terms of matrices of finite dimension or in terms of Grassmann
variables [3]. The supersymmetric quantum mechanics (SUSYQM), introduced by Witten [2], may be
generated by three operators Q−, Q+ and H satisfying

Q2± = 0, [Q±, H] = 0, {Q−, Q+} = H. (1)

Superalgebra (1) corresponds to the case N = 2 supersymmetry. The usual construction of Witten’s
supersymmetric quantum mechanics with the superalgebra (1) is performed by introduction of fermion
degrees of freedom (realized in a matrix form, or in terms of Grassmann variables) which commute
with bosonic degrees of freedom. Another realization of supersymmetric quantum mechanics,
called minimally bosonized supersymmetric quantum [1,4,5], is built by taking the supercharge
as the following Dunkl-type operator:

Q = ∂xR + v(x),

where v(x) is a superpotential.
The fractional supersymmetric quantum mechanics of order r (FSUYQM) are an extension of the

ordinary supersymmetric quantum mechanics for which the Z2-graded superalgebras are replaced by a
Zr-graded superalgberas [3,6,7]. The framework of the fractional supersymmetric quantum mechanics
has been shown to be quite fruitful. Amongst many works, we may quote the deformed Heisenberg
algebra introduced in connection with parafermionic and parabosonic systems [3,4], the Cλ-extended
oscillator algebra developed in the framework of parasupersymmetric quantum mechanics [8], and the
generalized Weyl–Heisenberg algebra Wk related to Zk-graded supersymmetric quantum mechanics [3].

Mathematics 2020, 8, 193; doi:10.3390/math8020193 www.mdpi.com/journal/mathematics27
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Note that the construction of fractional supersymmetric quantum mechanics without employment
of fermions and parafermions degrees of freedom was started in [4,9,10]. In particular, the idea of
realization of fractional supersymmetry in the form as it was presented in [3,8] was initially proposed
in [4] and also in [9]. In this work, we develop a fractional supersymmetric quantum of order r without
parafermonic degrees of freedom. We essentially use a difference-differential operators generated from
a special case of the well known fractional Dunkl transform. We then investigate the characteristics of
the (r)-scheme.

The paper is organized as follows. In Section 2, we discuss some of basic properties of the
fractional Dunkl transform and we define the generalized Klein operator. In Section 3, we present a
realization of the fractional supersymmetric quantum mechanics and we construct a basis involving
the generalized Hermite functions that diagonalize the Hamiltonian. In Section 4, we define the
associated generalized Hermite polynomials and we provide its weight function and we show that the
eigenvalues of the supercharge are the zeros of the associated generalized Hermite polynomials.

2. Preliminaries

Recall that the fractional Dunkl transform on the real line, introduced in [11,12], is both an
extension of the fractional Hankel transform and the Fourier transform. For 0 < |α| < π, the fractional
Dunkl transform is defined by:

F α
ν f (t) =

ei(ν+1/2)(α̃π/2−α)

(2| sin(α)|)ν+1/2Γ(ν + 1/2)

∫
R

e−i t2+x2
2 tan α Eν(

itx
sin α

) f (x) |x|2νdx,

where
α̃ = sgn(sin(α))

and

Eν(x) := Jν−1/2(ix) +
x

2ν + 1
Jν+1/2(ix),

Jν(x) := Γ(ν + 1) (2/x)ν Jν(x).

Notice that Jν(x) is the standard Bessel function ([13] Ch. 10) and Γ(x) is the Gamma function.
It is well known that, for ν > 0, the function Eν(λx ) is the unique analytic solution of the following
system that can be found in [14]:

{
YνEν(λx ) = i λ Eν(λx ),

Eν(0) = 1,
(2)

where Yν is the Dunkl operator related to root system A1 (see ([14] Definition 4.4.2))), which is a
differential-difference operator, depending on a parameter ν ∈ R and acting on C∞(R) as:

Yν :=
d

dx
+

ν

x
(1 − R), (3)

where R is the Klein operator :
(R f )(x) = f (−x). (4)
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The operator Yν is also related by a simple similarity transformation to the Yang–Dunkl operator
used in Refs. [1,4,10]. The corresponding Dunkl harmonic oscillator and the annihilation and creation
operators take the forms [15]

Hν = −1
2

Y2
ν +

1
2

x2 = −1
2

d2

dx2 − ν

x
d

dx
+

ν

2x2 (1 − R) +
1
2

x2, (5)

A− =
1√
2
(Yν + x), A+ =

1√
2
(−Yν + x). (6)

They satisfy the (anti)commutation relations

[A−, A+] = 1 + 2νR, R2 = 1, {A±, R} = 0, [1, A±] = [1, R] = 0. (7)

The generators 1, A±, R, and relations (7) give us a realization of the R-deformed Heisenberg
algebra [1,10]. In [9,13], the authors show that the R-deformed algebra is intimately related to
parabosons, parafermions [13] and to the osp(1|2) osp(2|2) superalgebras.

From now, we assume that ν > 0. The adjoint Y∗
ν of the Dunkl operators Yν with domain S(R)

(the space S(R) being dense in L2(R, |x|2ν dx)) is −Yν and therefore the operator Hν is self-adjoint, its
spectrum is discrete, and the wave functions corresponding to the well-known eigenvalues

λn = n + ν +
1
2

, n = 0, 1, 2, · · · (8)

are given by
ψ
(ν)
n (x) = γ−1/2

n e−x2/2H(ν)
n (x), (9)

where
γn = 22nΓ([

n
2
] + 1)Γ([

n + 1
2

] + ν +
1
2
), n = 0, 1, 2, · · · .

[x] denotes the greatest integer function and H(ν)
n (x) is the generalized Hermite polynomial introduced

by Szegö [15–17] and obtained from Laguerre polynomial L(ν)
n (x) as follows:

⎧⎨
⎩H(ν)

2n (x) = (−1)n22nn! L(ν− 1
2 )

n (x2),

H(ν)
2n+1(x) = (−1)n22n+1n! x L(ν+ 1

2 )
n (x2).

It is well known that for ν > 0, these polynomials satisfy the orthogonality relations :
∫
R

H(ν)
n (x)H(ν)

m (x)|x|2νe−x2
dx = γnδn m. (10)

We define the generalized Klein operator K as a special case of the fractional Dunkl transform F α
ν

corresponding to α = 2π
r . That is,

K = F
2π
r

ν . (11)

It is well known that the wave functions ψ
(ν)
n (x) form an orthonormal basis of L2(R, |x|2ν dx) and

are also eigenfunctions of the Fourier–Dunkl transform [11,12,15]. In particular, the generalized Klein
operator K acts on the wave functions ψ

(ν)
n (x) as:

Kψn(x) = εn
r ψ

(ν)
n (x), εr = e

2iπ
r .
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Let us consider the Zr-grading structure on the space L2(R, |x|2ν dx) as

L2(R, |x|2ν dx) =
r−1⊕
j=0

L2
j (R, |x|2ν dx), (12)

where L2
j (R, |x|2ν dx) is a linear subspace of L2(R, |x|2ν dx) generated by the generalized

wave functions
{ψ

(ν)
nr+j(x) : n = 0, 1, 2, · · · }.

For j = 0, 1, · · · , r − 1, we denote by Πj, the orthogonal projection from L2(R, |x|2ν dx) onto its
subspace L2

j (R, |x|2ν dx). The action of Πj on L2(R, |x|2ν dx) can be taken to be

Πkψ
(ν)
nr+j(x) = δkjψ

(ν)
nr+j(x).

It is clear that they form a system of resolution of the identity:

Π0 + Π1 + · · ·+ Πr−1 = 1, ΠiΠj = δijΠi, Π∗
j = Πj. (13)

Note that the orthogonal projection Πj is related to the Klein operator K by

Πj =
1
r

r−1

∑
l=0

ε
−l j
r Kl .

3. Fractional Supersymmetric Dunkl Harmonic Oscillator

In this section, we shall present a construction of the fractional supersymmetric quantum mechanics
of order r (r = 2, 3, . . . ) by using the generalized Klein’s operator defined in Equation (11). Following
Khare [6,7], a fractional supersymmetric quantum mechanics model of arbitrary order r can be
developed by generalizing the fundamental Equations (1) to the forms

Qr± = 0, [H, Q±] = 0, Q†− = Q+,

Qr−2− H = Qr−1− Q+ + Qr−2− Q+Q− + · · ·+ Q−Q+Qr−2− + Q+Qr−1− .

We introduce the supercharges Q− and Q+ as :

Q− =
1√
2
(Yν + x)(1 − Π0), Q+ =

1√
2
(1 − Π0)(−Yν + x) (14)

and the fractional supersymmetric Dunkl harmonic oscillator Hν by

Hν = −(r − 1)
1
2

Y2
ν + (r − 1)

1
2

x2 −
r−1

∑
k=0

ΘkΠr−k−1, (15)

where

Θk =
(r − 1)(r − 2k)

2
+ 2 ν [

2r + (−1)k − 1
4

] R, k = 0, · · · , r − 1, (16)

and recall that [ . ] denotes the greatest integer function. Obviously, the operators Q± and Hν with
common domain S(R) are densely defined in the Hilbert space L2(R, |x|2ν dx) and have the Hermitian
conjugation relations

H∗
ν = Hν, Q∗− = Q+. (17)
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Furthermore, they satisfy the intertwining relations valid for s = 0, · · · , r − 1:

ΠsQ− = Q−Πs+1, Q+Πs = Πs+1Q+, HνΠs = ΠsHν. (18)

Proposition 1. The supercharges Q± are nilpotent operators of order r.

Proof. By making use of the following relations

YνΠs = Πs−1Yν, x Πs = Πs+1 x, (19)

we can easily show by induction that

Qk− =

{
Ak−
(
1 − ∑k−1

s=0 Πs
)
, if 1 ≤ k ≤ r − 1,

0, if k = r.
(20)

Since Q+ = Q∗−, we also have Qr
+ = 0.

The first main result is

Theorem 1. The Hermitian operators Q−, Q+ and Hν defined in Equations (14) and (15) satisfy the
commutation relations:

(i) Qr± = 0, [Hν, Q±] = 0, Q†− = Q+,

(ii) Qr−2− Hν = Qr−1− Q+ + Qr−2− Q+Q− + · · ·+ Q−Q+Qr−2− + Q+Qr−1− .

Proof. From the commutation relation (7), we can show by induction that

A+Ak− = Ak−A+ − ϑk Ak−1− , k ≥ 1, (21)

where

ϑk =

{
k, if k is even,

k + 2νR, if k is odd.
(22)

Combining this with Equation (20), we obtain, for, k = 1, · · · , r − 2:

Q+Qr−1− = Ar−2−
(

A−A+ − ϑr−1
)
Πr−1,

Qr−1− Q+ = Ar−2− A−A+Πr−2,

Qr−1−k− Q+Qk− = Ar−2−
(

A−A+ − ϑk
)
(Πr−2 + Πr−1).

Additionally, a straightforward computation shows that

r−1

∑
k=1

ϑk =
r(r − 1)

2
+ 2ν[

r
2
] R.

Thus, we get

r−1

∑
k=0

Qr−1−k− Q+Qk− = Ar−2−
[
(r − 1)A−A+(Πr−2 + Πr−1)− (

r−2

∑
k=1

ϑk)Πr−2 − (
r−1

∑
k=1

ϑk)Πr−1
]

= Qr−2−
[
(r − 1)A−A+ − Θ1Πr−2 − Θ0Πr−1

]
. (23)
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From Equation (13), we easily see that

(Πr−2 + Πr−1)
r−1

∑
k=2

ΘkΠr−k−1 = 0,

and combining with Equation (23), we get

r−1

∑
k=0

Qr−1−k− Q+Qk− = Qr−2− Hν.

It remains to prove that [Hν, Q−] = [Hν, Q+] = 0. Observe that for k = 0, · · · , r − 1, we have

r − 1 = [
2r + (−1)k − 1

4
] + [

2r + (−1)k+1 − 1
4

],

and then, for k = 0, · · · , r − 2, we have

Θk − (r − 1)(1 − 2νR) = Θk+1, (24)

which leads to

Q−Hν =

{
(r − 1)A−A+ + 1 − 2νR −

r−2

∑
k=0

ΘkΠr−k−2

}
A−(1 − Π0)

=

{
(r − 1)A−A+ −

r−2

∑
k=0

Θk+1Πr−k−2

}
(1 − Πr−1)A−

= HνQ−.

Finally, we have obtained [Hν, Q−] = 0, and since the operator Hν is self-adjoint and Q+ = Q∗−,
we conclude that [Hν, Q+] = 0.

Proposition 2. For even integer r, the fractional supersymmetric Dunkl harmonic oscillator Hν has r/2-fold
degenerate spectrum and acts on the wave functions ψ

(ν)
n (x) as:

Hνψ
(ν)
nr+s(x) = λnrψ

(ν)
nr+s(x), s = 0, 1, . . . r − 1, n = 0, 1, 2, . . .

where

λnr = (r − 1)(nr + ν +
r + 1

2
) + (−1)sνr, s = 0, . . . , r − 1.

Proof. From ([15] [formulas (3.7.1) and (3.7.2)]), the creation and annihilation operators A+ and A−
act on the wave functions ψν

nr+s as:

A−ψν
nr+s =

√
nr + s + ν(1 − (−1)s)ψν

nr+s−1,

A+ψν
nr+s =

√
nr + s + 1 + ν(1 − (−1)s+1)ψν

nr+s+1.

Then, the supercharges Q− and Q+ take the value

Q−ψν
nr+s =

√(
nr + s + ν(1 − (−1)s)

)
/2 ψν

nr+s−1, s = 1, · · · , r − 1, (25)

Q+ψν
nr+s =

√(
nr + s + 1 + ν(1 − (−1)s+1)

)
/2 ψν

nr+s+1, s = 0, · · · , r − 2, (26)

Q−ψν
nr = 0, Q+ψν

(n+1)r−1 = 0. (27)
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A straightforward computation shows that

Hνψν
nr+s = λnrψν

nr+s, s = 0, · · · , r − 1,

where λnr = (r − 1)(nr + ν + r+1
2 ) + (−1)sνr.

4. Supersymmetric Generalized Hermite Polynomials

4.1. Associated Generalized Hermite Polynomials

Starting form the following recurrence relations for the generalized Hermite polynomials
{H(ν)

n (x)},

H(ν)
n+1(x) = 2xH(ν)

n (x)− 2
(
n + ν(1 − (−1)n)

)
H(ν)

n−1(x)

H(ν)
0 (x) = 1, H(ν)

1 (x) = 2x,
(28)

given in [15–17], one defines, for each real number c, the system of polynomials H(ν)
n (x, c) by the

recurrence relation:

H(ν)
n+1(x, c) = 2xH(ν)

n (x, c)− 2
(
n + c + ν(1 − (−1)n)

)
H(ν)

n−1(x, c), (29)

with initial conditions

H(ν)
0 (x, c) = 1, H(ν)

1 (x, c) = 2x. (30)

Now, assume that
c > 0, c + 2ν > −1. (31)

By Favard’s theorem [16], it follows that the family of polynomials {H(ν)
n (x, c)} satisfying the

recurrence relation (29) and the initial condition (30), is orthogonal with respect to some positive
measure on the real line. We shall refer to the polynomials {H(ν)

n (x, c)} as the associated generalized
Hermite polynomials. As shown in ([18] Theorem 5.6.1)(see also [19–21]), there are two different
systems of associated Laguerre polynomials denoted by L(ν)

n (x, c) and L(ν)
n (x, c). They satisfy the

recurrence relations:

(2n + 2c + ν + 1 − x)L(ν)
n (x, c) = (n + c + 1)L(ν)

n+1(x, c) + (n + c + ν)L(ν)
n−1(x, c), (32)

L(ν)
0 (x, c) = 1, L(ν)

1 (x, c) =
2c + ν + 1 − x

c + 1
(33)

and

(2n + 2c + ν + 1 − x)L(ν)
n (x, c) = (n + c + 1)L(ν)

n+1(x, c) + (n + c + ν)L(ν)
n−1(x, c), (34)

L(ν)
0 (x, c) = 1, L(ν)

1 (x, c) =
c + ν + 1 − x

c + 1
. (35)

Recall the Tricomi function Ψ(a, c; x) given by

Ψ(a, c; x) =
1

Γ(a)

∫ ∞

0
e−xtta−1(1 + t)c−a−1 dt, �(a),�(x) > 0.
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By [18], the polynomials L(ν)
n (x, c) and L(ν)

n (x, c) satisfy the orthogonality relations

∫ ∞

0
L(ν)

n (x, c)L(ν)
m (x, c) xνe−x |Ψ(c, 1 − ν; xe−iπ)|−2

Γ(c + 1)Γ(ν + c + 1)
dx =

(ν + c + 1)n

(c + 1)n
δnm, (36)

∫ ∞

0
L(ν)

n (x, c)L(ν)
m (x, c) xνe−x |Ψ(c,−ν; xe−iπ)|−2

Γ(c + 1)Γ(ν + c + 1)
dx =

(ν + c + 1)n

(c + 1)n
δnm, (37)

when one of the following conditions is satisfied:

ν + c > −1, c ≥ 0 or ν + c ≥ −1, c ≥ −1.

The monic polynomial version of Hν
n(x, c) is given by

H(ν)
n (x, c) = 2−n H(ν)

n (x, c), n = 0, 1, · · · ,

and satisfies

H(ν)
n+1(x, c) = xH(ν)

n (x, c)− 1
2
(
n + c + ν(1 − (−1)n)

)H(ν)
n−1(x, c),

H(ν)
−1(x, c) = 0, H(ν)

0 (x, c) = 1.
(38)

It is easy to see that the polynomial (−1)nH(ν)
n (−x, c) also satisfies (38). Thus,

H(ν)
n (−x, c) = (−1)nH(ν)

n (x, c).

Thus, by induction, we write them in the form

H(ν)
2n (x, c) = Sn(x2) and H(ν)

2n+1(x, c) = xQn(x2), (39)

where Sn(x), Qn(x) are monic polynomials of degree n.

Theorem 2. Let c > 0 and ν > −c/2. The associated generalized Hermite polynomials H(ν)
n (x, c), defined

in (29), have the explicit form:

H(ν)
2n (x, c) = (−1)n22n(1 + c/2)nL(ν−1/2)

n (x2, c/2),

H(ν)
2n+1(x, c) = (−1)n22n+1(1 + c/2)nxL(ν+1/2)

n (x2, c/2),

and the orthogonality relations

∫
R

H(ν)
n (x, c)H(ν)

m (x, c) |x|2νe−x2 |Ψ(c/2, 1/2 − ν; x2e−iπ)|−2

Γ(1 + c/2)Γ(ν + c/2 + 1/2)
= ζn δnm, (40)

where

ζn =

{
24k(1 + c/2)k(ν + c/2 + 1/2)k, if n = 2k,

24k+2(1 + c/2)k(ν + c/2 + 3/2)k, if n = 2k + 1.
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Proof. It is directly verified that the polynomials Sn(x), Qn(x) given in (39) are orthogonal as they
satisfy the recurrence relations

Sn+1(x) = (x − (2n + c + ν + 1/2))Sn(x)− (n + c/2)

×(n + c/2 − 1/2 + ν)Sn−1(x),

S−1(x) = 0, S0(x) = 1,

and

Qn+1(x) =
(
x − (2n + c + 3/2 + ν)

)
Qn(x)− (n + c/2)big)

×(n + (1 + c)/2 + ν
)
Qn−1(x)

Q−1(x) = 0, Q0(x) = 1.

From Equation (32), we see that the polynomials Sn(x) satisfy the same recurrence relation as (−1)n(1+
c/2)nL(ν−1/2)

n (x, c/2), so that

Sn(x) = (−1)n(1 + c/2)nL(ν−1/2)
n (x, c/2). (41)

A similar analysis shows that

Qn(x) = (−1)n(1 + c/2)nL(ν+1/2)
n (x, c/2). (42)

In view of Equations (41) and (42), the explicit form of the associated generalized Hermite polynomials
is given by

H(ν)
2n (x, c) = (−1)n22n(1 + c/2)nL(ν−1/2)

n (x2, c/2), (43)

H(ν)
2n+1(x, c) = (−1)n22n+1(1 + c/2)nxL(ν+1/2)

n (x2, c/2). (44)

From Equations (36) and (37), we deduce that the system Hν
n(x, c) satisfies the orthogonality relations

∫
R

H(ν)
n (x, c)H(ν)

m (x, c) |x|2νe−x2 |Ψ(c/2, 1/2 − ν; x2e−iπ)|−2

Γ(1 + c/2)Γ(ν + c/2 + 1/2)
= ζn δnm, (45)

with

ζn =

{
24k(1 + c/2)k(ν + c/2 + 1/2)k, if n = 2k,

24k+2(1 + c/2)k(ν + c/2 + 3/2)k, if n = 2k + 1.

4.2. Supersymmetric Generalized Hermite Polynomials

In the sequel, we assume that r is an even integer and we consider the Hermitian supercharge
operator Q, defined on S(R), by

Q =
1√
2

Yν(Πr−1 − Π0) +
x√
2
(2 − Π0 − Πr−1).

From Equation (14), we have

Q =
1√
2
(Q− + Q+),
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so it has a self-adjoint extension on L2(R, |x|2νdx). Furthermore, it acts on the basis ψν
n as

Qψν
nr+s = a(n)s ψν

nr+s−1 + a(n)s+1ψν
nr+s+1, s = 1, · · · , r − 1,

Qψν
nr = a(n)1 ψν

nr+1, Qψν
(n+1)r−1 = a(n)r−1ψν

(n+1)r−1,
(46)

where
a(n)s :=

√
(nr + s + ν(1 − (−1)s))/2, s = 1, · · · , r − 1.

On the other hand, by (46), we see that the operator Q leaves invariant the finite dimensional
subspace of L2(R, |x|2νdx) generated by ψν

nr+s, s = 0, 1, · · · , r − 1. Hence, Q can be represented in

this basis by the following r × r tridiagonal Jacobi matrix A(n)
r

A(n)
r =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a(n)1 0

a(n)1 0 a(n)2 0

0 a(n)2 0 a(n)3
. . .

. . . . . . . . . . . . 0
. . . a(n)r−2 0 a(n)r−1

0 a(n)r−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is well known that, if the coefficients of the subdiagonal of some Jacobi Matrix are different
from zero, then all the eigenvalues of this matrix are real and nondegenerate [16]. We introduce the
normalized eigenvectors φs of the supercharge Q

Qφs = xsφs, s = 0, · · · , r − 1 (47)

that can be expanded in the basis ψnr+k, k = 0, 1, · · · , r − 1, as

φs =
r−1

∑
k=0

√
ws pk(xs)ψnr+k, (48)

where the coefficients pk obey the three-term recurrence relation [22]

a(n)k pk−1(x) + a(n)k+1 pk+1(x) = xpk(x),

p−1(x) = 0, p0(xs) = 1,

Hence, they become orthogonal polynomials. We denote by Pk(x), the monic orthogonal
polynomial related to pk(x) by

Pk(x) = hk pk(x), (49)

where
hk = a(n)k · · · a(n)1 (50)

and satisfying

xPk(x) = Pk+1(x) +
1
2
(k + nr + ν(1 − (−1)k)) Pk−1(x), k = 0, · · · , r − 1,

P−1(x) = 0, P0(x) = 1.
(51)
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From the three terms recurrence relations (51), the polynomials Pk(x) can be identified with the
associated generalized Hermite polynomial H(ν)

k (x, c), namely,

Pk(x) = H(ν)
k (x, nr).

It is well known from the theory of orthogonal polynomials that the eigenvalues of the Jacobi
matrix A(n)

r coincide with the roots of the characteristic polynomial H(ν)
r (x, nr) [16,22]. The weights

ws defined in (56) are given by the following formula

ws =
h2

r

H(ν)
r−1(xs, nr)(H(ν)

r )′(xs, nr)
, (52)

where (H(ν)
r )

′
(x, nr) denotes the derivative of H(ν)

r (x, nr), hr is defined in Equation (50) and xnr,1 >

· · · > xnr,r are the zeros of H(ν)
r (x, nr). For more detail, we refer to [16]. Then, it turns out that

φs =
r−1

∑
k=0

u(n)
ks ψnr+k, (53)

where

u(n)
ks =

hr

hk

H(ν)
k (xs, nr)

(H(ν)
r−1(xs, nr)(H(ν)

r )′(xs, nr))1/2
, 0 ≤ s, k ≤ r − 1. (54)

Since both bases {ψnr+k, k = 0, · · · r − 1} and {φs, s = 0, · · · r − 1} are orthonormal and all the
coefficients are real, then the matrix (u(n)

ks ) is orthogonal and hence the system {H(ν)
k (x)} becomes

orthogonal polynomials:
r−1

∑
s=0

wsH(ν)
k (xs)H(ν)

k′ (xs) = δkk′/h2
k . (55)

We call supersymmetric generalized Hermite polynomials the orthogonal polynomials, denoted
by H

(r,ν)
N (x), extracted form the orthogonal function φs:

H
(r,ν)
N (x) =

r−1

∑
k=0

H(ν)
k (xs, nr)H(ν)

nr+k(x), N = nr + s, (56)

and we obtain the following:

Theorem 3. The supersymmetric generalized Hermite polynomials H(r,ν)
N (x) satisfy the orthogonality relations

∫ ∞

−∞
H

(r,ν)
N (x)H(r,ν)

N′ (x)|x|2νe−x2
dx = �NδNN′ , (57)

where �N = γnr/ws for s = 0, · · · r − 1 and N = nr + s.

Proof. From Equations (10) and (56), we obtain

∫ ∞

−∞
H

(r,ν)
nr+s(x)H(r,ν)

n′r+s′(x) |x|2νe−x2
dx = δnn′

r−1

∑
k=0

H(ν)
k (xs, nr)H(ν)

k (xs′ , nr)γnr+k

= δnn′γnr

r−1

∑
k=0

h2
kH(ν)

k (xs, nr)H(ν)
k (xs′ , nr)
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and, from ([18] Theorem 2.11.2), we obtain the dual orthogonality relation for {H(ν)
k (x)}:

r−1

∑
k=0

H(ν)
k (xs)H(ν)

k (xs′)
[ nr+k

2 ]! Γ( nr+k+1
2 + ν + 1

2 )

[ nr
2 ]! Γ( nr+1

2 + ν + 1
2 )

= δss′/ws (58)

and, finally,

∫ ∞

−∞
H

(r,ν)
nr+s(x)H(r,ν)

n′r+s′(x) |x|2νe−x2
dx = δnn′δss′γnr/ws.
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Abstract: The empirical logarithmic Colebrook equation for hydraulic resistance in pipes implicitly
considers the unknown flow friction factor. Its explicit approximations, used to avoid iterative
computations, should be accurate but also computationally efficient. We present a rational approximate
procedure that completely avoids the use of transcendental functions, such as logarithm or non-integer
power, which require execution of the additional number of floating-point operations in computer
processor units. Instead of these, we use only rational expressions that are executed directly in the
processor unit. The rational approximation was found using a combination of a Padé approximant
and artificial intelligence (symbolic regression). Numerical experiments in Matlab using 2 million
quasi-Monte Carlo samples indicate that the relative error of this new rational approximation does not
exceed 0.866%. Moreover, these numerical experiments show that the novel rational approximation
is approximately two times faster than the exact solution given by the Wright omega function.

Keywords: hydraulic resistance; pipe flow friction; Colebrook equation; Colebrook–White experiment;
floating-point computations; approximations; Padé polynomials; symbolic regression

1. Introduction

The Colebrook equation [1] for turbulent flow friction is implicitly given with respect to the
unknown Darcy flow friction λ, as shown in Equation (1):

1√
λ
= −2· log10

(
2.51
Re
· 1√
λ
+
ε

3.71

)
(1)

where:

λ—Darcy flow friction factor (dimensionless)
Re—Reynolds number, 4000 < Re < 108 (dimensionless)
ε—relative roughness of inner pipe surface, 0 < ε < 0.05 (dimensionless)

As a PhD student at the Imperial College in London, Colebrook developed his empirical equation
based on the data from his joint experiment with his supervisor, Prof. White [2]. They experimented
with flow of air through pipes with different roughness of the inner pipe surface. The experiment by
Colebrook and White was described in a scientific journal and published in 1937 [2], while the related
empirical equation by Colebrook was published in 1939 [1].

Compared with some other experimental findings [3], the Colebrook equation fits the friction
factor within a few dozen percent of error [4]. The Colebrook equation over the last 80 years has
been seen by the industry as an informal standard for flow friction calculation and has been very

Mathematics 2020, 8, 26; doi:10.3390/math8010026 www.mdpi.com/journal/mathematics41
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well accepted in everyday engineering practice. Based on the Colebrook equation, Moody developed
a diagram that was used before the era of computers for graphical determination of turbulent flow
friction [5]. Today, such nomograms have been replaced by explicit approximations, which introduce
some value of error [6,7], or by iterative methods [8–10].

In a central computer processor (CPU), transcendental functions such as logarithmic, exponential,
or functions with non-integer terms require execution of numerous floating-point operations,
and therefore they should be avoided whenever possible [11–18]. Praks and Brkić [19] recently
developed a one-log call iterative method, which uses only one computationally demanding function,
and even then only in the first iteration (for all succeeding iterations, cheap Padé approximants are
used [20,21]). Based on that approach, few very accurate and efficient explicit approximations suitable
for coding and for engineering practice have been constructed [22]. In addition, the same authors
developed few approximations of the Colebrook equation based on the Wright ω-function, which are
among the most accurate to date [23–25]. On the other hand, they contain one or two logarithmic
functions, depending on the chosen version [23,24] (these procedures are based on the previous efforts
by Praks and Brkić for symbolic regression [26] and by Brkić with Lambert W-function [27–29]).

In this communication, we make a step forward and we offer for the first time a procedure for the
approximate solution of the Colebrook equation based only on rational functions. The presented novel
rational approximation procedure introduces a relative error of no more than 0.866% for 0 < ε < 0.05
and 4000 < Re < 108 (as used in engineering practice). The rational approximation procedure is suitable
for computer codes (open-source code in commercial Matlab 2019a is given in this communication,
and in addition, it is compatible with freeware GNU Octave, version 5.1.0).

After introductory Section 1, Section 2 of this communication gives a short overview of
mathematical methods used for the proposed rational approximation procedure. Section 3 describes
the rational approximation procedure in detail (including error analysis), Section 4 provides software
code along with the algorithm to be followed for the rational approximation approach, while Section 5
contains concluding remarks.

2. Mathematics Behind the Proposed Approximation

Our rational approximation approach is based on Padé approximants [20,21], symbolic
regression [30,31] and although not used directly, it is inspired by the Wright ω-function, a cognate of
the Lambert W-function [32]. To avoid detailed explanations about the Lambert W-function [33], here it
should be noted that in this context it is used to transform the Colebrook equation from the shape
implicitly given in respect to the unknown flow friction factor to the explicit form [23,24,27–29,34,35].

2.1. Padé Approximants

The ratio of two power series with properly chosen coefficients of the numerator and denominator
can approximate very accurately various functions in a narrow zone around the chosen expanding
point. For the expressions in the numerator and denominator, Padé approximants [20,21] use rational
functions of given order instead of serial expansions. So, in other words, the Padé approximants
can estimate functions usually in a narrow zone as the quotient of two polynomials, often has better
approximation properties compared with its truncated Taylor series. Being a quotient, the Padé
approximants are composed of lower-degree polynomials, where the degree of polynomials can be
chosen according to needs. We use Matlab 2019a in order to generate the needed Padé approximants
as replacements of the logarithmic function in our rational approximation approach. We do not
use expressions with non-integer exponents, because according to Clamond [10], in the software
interpretation it is evaluated through one exponential and one logarithmic function (for example
Bκ = eκ· ln (B), where κ is in most cases a non-integer). The computational complexity of an algorithm
describes the amount of resources required to run it, for example the execution time. Winning and
Coole [13] performed 100 million calculations for each mathematical operation using random inputs,
with each repeated five times, and found that the most efficient operation for addition requires 23.4 s.
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According to them, relative effort for computation referred to addition-1 as a reference for the following
values: logarithm to base, 10–3.37; fractional exponential, 3.32, cubed root, 2.71; natural logarithm,
2.69; cubed, 2.38; square root, 2.29; squared, 2.18; multiplication, 1.55, division, 1.35; subtraction, 1.18.

2.2. Symbolic Regression

Symbolic regression is a machine learning approach for finding approximate functions based on
evolutionary or genetic algorithms [36]. To avoid imposing prior assumptions on the model, symbolic
regression has the ability to search through the space of mathematical expressions to look for an
approximate function that best fits a given dataset [31].

We used Eureqa [30], a symbolic regression engine, to obtain our final model. HeuristicLab [37],
a software environment for heuristic and evolutionary algorithms, including symbolic regression,
can be used instead.

3. Routine Based on Polynomial-Form Expressions

3.1. Replacement of Logarithmic Function

The Colebrook equation can be accurately approximated using a rational approximation procedure,
as shown in Equation (2):

1√
λ
≈ −0.8686·(ζ1 + ζ2) (2)

where:

ζ1 = 0.02087·r− 0.07659·p(r) − 0.5994
p(r) + 3.846

− 0.0007232
r

− 0.00007489·r2 + 0.1391

ζ2 = p(r) − 7.93

p(r) =
r·(r·(11·r + 27) − 27) − 11
r·(r·(3·r + 27) + 27) + 3

r = 2777.77·
(

2.51·p0

Re
+
ε

3.71

)

p0 =
2600·Re

657.7·Re + 214600·Re·ε+ 12970000
− 13.58·ε+ 0.0001165·Re

0.00002536·Re + Re·ε+ 105.5
+ 4.227

Consequently, Equation (2) contains only rational functions, where:

ζ1 + ζ2 rational approximation of ln
(

2.51
Re · 1√

λ
+ ε

3.71

)
;

ζ1 a rational function that corrects error caused by Padé approximant p(r);
ζ2 shifted Padé approximant p(r), where the shift −7.93 ≈ ln(0.00036) where 0.00036 ≈ 1

2777.77 ;
r argument of p(r);
p(r) Padé approximant of ln(r) of order /2,3/ at the expansion point r = 1;
p0 starting point;

and where: −2
ln(10) ≈ −2

2.302585093 ≈ −0.868, as log10(ς) =
ln(ς)
ln(10) .

Function ζ2 approximates the required logarithmic function ln
(

2.51
Re · 1√

λ
+ ε

3.71

)
, while ζ1 corrects

its error, as r is not always close to the expansion point, because of the large variability of input
parameters of the Colebrook equation (Equation (1)). The rational function ζ1 and also the starting
point p0 were found by symbolic regression software Eureqa [31], whereas the shift −7.93 in ζ2 was
found in order to minimize the error of the Padé approximation of p(r) ≈ ln(r) for the Colebrook
equation, as ln(0.00036·r) ≈ ln(r) − 7.93, where 0.00036 ≈ 1

2777.77 . Variable precision arithmetic (VPA)
at 4 decimal digit accuracy is assumed for ζ1 and for p0. The Padé approximant p(r) is given in
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Horner nested polynomial form generated in Matlab 2019a. It is of order /2,3/, which means that the
polynomial in numerator contains a monomial of highest degree 2, while the denominator of degree 3.
Any other suitable Padé polynomial of any other degree in any other form that can substitute the
natural logarithm around the needed expansion point can be used, but in such cases, the rational
approximation procedure should be tested again, because these changes can affect the value of the
final relative error and its distribution.

3.2. Error Analysis

Distribution of the relative error for the proposed rational approximation procedure, Equation (2),
is given in Figure 1. The maximal relative error goes up to 0.866% for 0 < ε < 0.05 and 4000 < Re
< 108 (as used in engineering practice). The highest error using 2 million input pairs found by the
Sobol quasi-Monte Carlo method is for Re = 71987 and ε = 3.1711·10−7 [38]. The Colebrook equation is
empirical and it follows logarithmic law, so for the procedure with only rational functions, this level
of error is acceptable [39]. For example, Pimenta et al. [7] classify the approximation of Sonnad and
Goudar [40] with relative error of up to 3.17%. With two logarithms and one non-integer power,
this method [40] belongs to the group of approximations with higher performance indexes and precision.
Brkić [6] estimates the relative error of Sonnad and Goudar [40] to be up to 0.8%, which is similar
error compared with the rational approximation approach presented here; the same methodology as in
Brkić [6] is used for Figure 1.

Figure 1. The distribution of the relative error for the proposed rational approximation.

The error in the proposed rational approximation can be possibly reduced by optimizing numerical
values of parameters using a genetic algorithms [41] approach with the methodology described by Brkić
and Ćojbašić [42]. However, the presented rational approximation approach has too many numerical
parameters, meaning such an optimization would be very complex. Further simplifications rather
should go in the direction of simplification of p0, ζ1 and ζ2, but keeping the same or increasing accuracy.

3.3. Computational Costs

The efficiency of the proposed procedure is tested using 2 million input pairs found by the Sobol
quasi-Monte Carlo method [38]. The tests were performed using Matlab R2019a. The tests revealed
that Equation (2) needs 0.56 s to calculate the friction factor λ for 2 million input pairs, or for the
Reynolds number Re and the roughness of the inner pipe surface ε. On the other hand, the exact
solution given by the Wright ω-function [23] implemented by the Matlab library “wrightOmegaq” [43]
took 1.1 s for the same 2 million the tested pairs.
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Our novel rational approximation of the Colebrook equation given with Equation (2) is
approximately two times faster than the exact approach using the Wright ω-function [23], as the speed
ratio is 1.1/0.56–1.96. On the other hand, the approach with the Wright ω-function [23] gives the
exact solution, which requires two logarithms and one Wright ω-function, while this communication
presents a rational approximation.

4. Software Description

The presented rational approximation approach for solving Colebrook’s equation for flow friction
was thoroughly tested at IT4Innovations, National Supercomputing Center, VŠB-Technical University
of Ostrava, Czech Republic.

4.1. Algorithm

The simple algorithm of the rational approximation of the Colebrook equation is presented in
Figure 2. The algorithm contains only one branch and is without loops.

Figure 2. Algorithm of the proposed rational approximation of the Colebrook equation.

4.2. Open-Source Software Code

The code is given in Matlab format, which is compatible with the freeware GNU Octave, but it
can be easily transposed in any programming language (input parameters: R is the Reynolds number
Re, K is the relative roughness of inner pipe surface ε; output parameter; L is the Darcy flow friction
factor λ):

x = (2600*R)/(657.7*R + 214600*R.*K + 1.297e+7)−13.58*K
+ (1.165e-4*R)/(2.536e-5*R + R.*K + 105.5) + 4.227

y0 = 2.51*x./R + K./3.71; r = y0*2777.77

pr = (r.*(r.*(11*r + 27) − 27) − 11)/(r.*(r.*(3*r + 27) + 27) + 3)

k1 = @(r) 0.02087*r− 0.07659*pr− 0.5994/(pr + 3.846) − 7.232e-4./r−7.489e-5*r.ˆ2 + 0.1391

x = −0.8686*(k1(r) + pr − 7.93)

L = 1/x.ˆ2
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5. Conclusions

We provide a novel rational approximation procedure for solving the logarithmic Colebrook
equation for flow friction. Instead of transcendental functions (logarithms, non-integer power) that
are used in the classical approach, in this communication, we replace the logarithm with its Padé
approximant and a simple rational function, which was found using artificial intelligence (symbolic
regression), in order to minimize the error. Although the new rational approximation may seem
unintelligible to human eyes, results of 2 million input pairs found by the quasi-Monte Carlo method [38]
confirm that the relative error of this new approximation does not exceed 0.866%, which is acceptable
for the empirical Colebrook law [44] (trade-off between model complexity and accuracy [45,46]).
Consequently, numerical experiments on 2 million of quasi-Monte Carlo pairs indicates that the rational
approximation presented here provides for Colebrook’s flow friction model a useful combination of
Padé approximants and artificial intelligence (symbolic regression).
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Notations

The following symbols are used in this Communication:
λ Darcy, Darcy–Weisbach, Moody, or Colebrook flow friction factor (dimensionless)
Re Reynolds number, 4000 < Re < 108 (dimensionless)
ε relative roughness of inner pipe surface, 0 < ε < 0.05 (dimensionless)

ζ1 + ζ2 rational approximation of ln
(

2.51
Re · 1√

λ
+ ε

3.71

)
ζ1 a rational function that corrects error caused by Padé approximant p(r)
ζ2 shifted Padé approximant p(r)
r argument of p(r)
p(r) Padé approximant of ln(r) at the expansion point r
p0 polynomial starting point
log10 logarithm with base 10
ln natural logarithm
e exponential function
ω Wright ω-function (Wright omega function)
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Abstract: In this paper, according to some numerical computational evidence, we investigate and
prove certain identities and properties on the absolute Möbius divisor functions and Euler totient
function when they are iterated. Subsequently, the relationship between the absolute Möbius divisor
function with Fermat primes has been researched and some results have been obtained.
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1. Introduction and Motivation

Divisor functions, Euler ϕ-function, and Möbius μ-function are widely studied in the field of
elementary number theory. The absolute Möbius divisor function is defined by

U(n) := |∑
d|n

dμ(d)|.

Here, n is a positive integer and μ is the Möbius function. It is well known ([1], p. 23) that

ϕ(n) = ∑
d|n

μ(d)
n
d

,

where ϕ denotes the Euler ϕ-function (totient function). If n is a square-free integer, then U(n) = ϕ(n).
The first twenty values of U(n) and ϕ(n) are given in Table 1.

Table 1. Values of U(n) and ϕ(n) (1 ≤ n ≤ 20).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U(n) 1 1 2 1 4 2 6 1 2 4 10 2 12 6 8 1 16 2 18 4

ϕ(n) 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16 6 18 8

Let U0 (n) := n, U (n) := U1 (n) and Um (n) := Um−1 (U (n)), where m ≥ 1.
Next, to study the iteration properties of Um (n) ( resp., ϕm′ (n)), we say the order (resp., class)

of n, m-gonal (resp., m′-gonal) absolute Möbius ( resp., totient) shape numbers, and shape polygons
derived from the sum of absolute Möbius divisor (resp., Euler totient) function are as follows.

Mathematics 2019, 7, 1083; doi:10.3390/math7111083 www.mdpi.com/journal/mathematics49
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Definition 1. (Order Notion) To study when the positive integer Um (n) is terminated at one, we consider
a notation as follows. The order of a positive integer n > 1 denoted Ord2(n) = m, which is the least positive
integer m when Um (n) = 1 and Um−1 (n) �= 1. The positive integers of order 2 are usually called involutions.
Naturally, we define Ord2(1) = 0. The first 20 values of Ord2(n) and C(n) + 1 are given by Table 2. See [2].

Table 2. Values of Ord2(n) and C(n) + 1 (1 ≤ n ≤ 20).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ord2(n) 0 1 2 1 2 2 3 1 2 2 3 2 3 3 2 1 2 2 3 2

C(n) + 1 0 1 2 2 3 2 3 3 3 3 4 3 4 3 4 4 5 3 4 4

Remark 1. Define ϕ0(n) = n, ϕ1(n) = ϕ(n) and ϕk(n) = ϕ(ϕk−1(n)) for all k ≥ 2. Shapiro [2] defines the
class number C(n) of n by that integer C such that ϕC(n) = 2. Some values of Ord2(n) are equal to them of
C(n) + 1. Shapiro [2] defined C(1) + 1 = C(2) + 1 = 1. Here, we define C(1) + 1 = 0 and C(2) + 1 = 1.
A similar notation of Ord(n) is in [3].

Definition 2. (Absolute Möbius m-gonal shape number and totient m′-gonal shape number) If Ord2(n) =
m − 2 (resp., C(n) + 1 = m′, we consider the set {(i, Ui(n))|i = 0, ..., m − 2} (resp., {(i, ϕi(n))|i =

0, ..., m′ − 2} and add (0, 1). We then put Vn = {(i, Ui(n) )|i = 0, ..., m − 2} ∪ {(0, 1)} (resp., Rn =

{(i, ϕi(n) )|i = 0, ..., m′ − 2} ∪ {(0, 1)}). Then we find a m-gon (resp., m′-gon) derived from Vn (resp., Rn).
Here, we call n an absolute Möbius m-gonal shape number (resp., totient m′-gonal shape number derived from
U and Vn (resp., ϕ and Rn) except n = 1.

Definition 3. (Convexity and Area) We use same notations, convex, non-convex, and area in [3]. We say that
n is an absolute Möbius m-gonal convex (resp., non-convex) shape number with respect to the absolute Möbius
divisor function U if {(i, Ui(n)) |i = 0, ..., m − 2} ∪ {(0, 1)} is convex (resp., non-convex). Let A(n) denote
the area of the absolute Möbius m-gon derived from the absolute Möbius m-gonal shape number. Similarly,
we define the totient m′-gonal convex (resp., non-convex) shape number and B(n) denote the area of the totient
m′-gon.

Example 1. If n = 2 then we obtain the set of points V2 = R2 = {(0, 2) , (1, 1) , (0, 1)}. Thus, 2 is an absolute
Möbius 3-gonal convex number with A (2) = 1

2 . See Figure 1. See Figures 2–4 for absolute Möbius n-gonal
shape numbers and totient n-gonal shape numbers with n = 2, 3, 4, 5. The first 19 values of A(n) and B(n) are
given by Table 3.

Figure 1. U(2) = ϕ(2).
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Figure 2. U(3) = ϕ(3).

Figure 3. U(4) and ϕ(4).

Figure 4. U(5) and ϕ(5).

Table 3. Values of A(n) and B(n) (2 ≤ n ≤ 20).

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A(n) 1
2 2 3

2 5 7
2 9 7

2 5 15
2 17 13

2 18 25
2 14 15

2 23 19
2 27 25

2

B(n) 1
2 2 5

2 6 7
2 9 15

2 10 17
2 18 19

2 21 25
2 18 37

2 34 29
2 32 41

2
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Kim and Bayad [3] considered the iteration of the odd divisor function S, polygon shape, convex,
order, etc.

In this article, we considered the iteration of the absolute Möbius divisor function and Euler
totient function and polygon types.

Now we state the main result of this article. To do this, let us examine the following theorem.
For the proof of this theorem, the definitions and lemmas in the other chapters of this study have
been utilized.

Theorem 1. (Main Theorem) Let p1, . . . , pu be Fermat primes with p1 < p2 . . . < pu,

F0 := {p1, . . . , pu},

F1 :=
{

t
∏
i=1

pi | pi ∈ F0, 1 ≤ t ≤ 5
}

,

F2 :=

{
r

∏
j=1

pij | pij ∈ F0, p1 ≤ pi1 < pi2 . . . < pir ≤ pu, r ≤ u

}
− (F0 ∪ F1).

If Ord2(m) = 1 or 2 then a positive integer m > 1 is

⎧⎪⎨
⎪⎩

an absolute Möbius 3-gonal (triangular) shape number, if m = 2k or m ∈ F1

an absolute Möbius 4-gonal convex shape number, if m ∈ F0 − {3} or m ∈ F2

an absolute Möbius 4-gonal non-convex shape number, otherwise.

Remark 2. Shapiro [2] computed positive integer m when C(m) + 1 = 2. That is, m = 3, 4, 6. Let C(m) + 1 =

1 or 2. Then

(1) If m = 2, 3 then m are totient 3-gonal (triangular) numbers.
(2) If m = 4, 5 then m are totient 4-gonal non-convex numbers.

2. Some Properties of U(n) and ϕ(n)

It is well known [1,4–14] that Euler ϕ-function have several interesting formula. For example,
if (x, y) = 1 with two positive integers x and y, then ϕ(xy) = ϕ(x)ϕ(y). On the other hand, if x is a
multiple of y, then ϕ(xy) = yϕ(x) [2]. In this section, we will consider the arithmetic functions U(n)
and ϕ(n).

Lemma 1. Let n = pe1
1 pe2

2 · · · per
r be a factorization of n, where pr be distinct prime integers and er be positive

integers. Then,

U(n) =
r

∏
i=1

(pi − 1).

Proof. If n = pe1
1 pe2

2 · · · per
r is an arbitrary integer, then we easily check

U(n) =

∣∣∣∣∣∣∑d|n μ(d)d

∣∣∣∣∣∣
=
∣∣1 − p1 − p2 − ... − pr + p1 p2 + ... + (−1)n p1 p2...pr

∣∣
= (p1 − 1) (p2 − 1) ... (pr − 1) .

This is completed the proof of Lemma 1.
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Corollary 1. If p is a prime integer and α is a positive integer, then U(p) = p − 1 and U(pα) = U(p).
In particular, U(2α) = 1.

Proof. It is trivial by Lemma 1.

Corollary 2. Let n > 1 be a positive integer and let Ord2(n) = m. Then,

U0 (n) > U1 (n) > U2 (n) > · · · > Um (n) . (1)

Proof. It is trivial by Lemma 1.

Remark 3. We compare U(n) with ϕ(n) as follow on Table 4.

Table 4. U(n) and ϕ(n).

U(n) ϕ(n)

n = pe1
1 · · · per

r (p1 − 1) · · · (pr − 1) (pe1
1 − pe1−1

1 ) · · · (per
r − per−1

r )

n = 2k 1 2k−1

sequences U0 (n) > U1 (n) > U2 (n) > · · · ϕ0 (n) > ϕ1 (n) > ϕ2 (n) > · · ·

Lemma 2. The function U is multiplicative function. That is, U(mn) = U(m)U(n) with (m, n) = 1.
Furthermore, if m is a multiple of n, then U(mn) = U(m).

Proof. Let m = pe1
1 pe2

2 ...pei
i and n = q f1

1 q f2
2 ...q fs

s be positive integers. Then pe1
1 , pe2

2 , ..., pei
i and

q f1
1 , q f2

2 , ..., q fs
s are distinct primes. If (m, n) = 1 and also p|m, pn, q|n, and qm by Lemma 1, we note that

U(mn) = ∏
tk |mn

(tk − 1)

= ∏
pi |m

(pi − 1) ∏
qs |n

(qs − 1)

= U (m)U (n) .

Let m be a multiple of n. If pi|n then pi|m. Thus, by Lemma 1, U(mn) = U(m). This is completed
the proof of Lemma 2.

Remark 4. Two functions U(n) and ϕ(n) have similar results as follows on Table 5. Here, n|m means that m
is a multiple of n.

Table 5. U(n) and ϕ(n).

(m, n) = 1 n|m
U(mn) U(m)U(n) U(m)

ϕ(mn) ϕ(m)ϕ(n) nϕ(m)

Theorem 2. For all n ∈ N− {1}, there exists m ∈ N satisfying Um(n) = 1.

Proof. Let n = pe1
1 pe2

2 ...per
r , where p1, ..., pr be distinct prime integers with p1 < p2 < ... < pr.

We note that U(n) =
r

∏
i=1

(pi − 1) by Lemma 1.
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If r = 1 and p1 = 2, then U(n) = 1 by Corollary 1.
If pi is an odd positive prime integer, then U(pei

i ) = pi − 1 by Corollary 1.
We note that pi − 1 is an even integer. Then there exist distinct prime integers qi1 , ..., qis satisfying

pi − 1 = 2li q
fi1
i1

· · · q fis
is ,

where fis ≥ 1, li ≥ 1 and qi1 < · · · < qis . It is well known that qis ≤ pi−1
2 ≤ pr−1

2 .
By Lemma 2, we get

U2(pei
i ) = U(pi − 1) = U(qi1) · · ·U(qis). (2)

By using the same method in (2) for 1 ≤ ij ≤ s, we get

U2(n) = U(
r

∏
i=1

(pi − 1))

= U

(
2l1+l2+...+lr

r

∏
i=1

q
ei1
i1

...qeiu
iu

)

= U

(
r

∏
i=1

q
ei1
i1

...qeiu
iu

)

=
r

∏
i=1

(qi1 − 1) · · · (qiu − 1)

= q(2)j1
· · · q(2)jk

with q(2)j1
< q(2)j2

< ... < q(2)jk
. It is easily checked that q(2)jk

≤ max{ q1u−1
2 , ..., qru−1

2 }.
Using this technique, we can find l satisfying

Ul−1(n) =
(

q(l−1)
j1

− 1
)
· · ·
(

q(l−1)
ju − 1

)
= 2h

s′

∏
u=1

q(l)ju

with q(l)ju < 100.
By Appendix A ( Values of U(n) (1 ≤ n ≤ 100)), we easily find a positive integer v that Uv(n′) = 1

for 1 ≤ n′ ≤ 100. Thus, we get Uv(Ul−1(n)) = 1. Therefore, we can find m = v + l − 1 ∈ N satisfying
Um(n) = 1.

Corollary 3. For all n ∈ N− {1}, there exists m ∈ N satisfying Ord(n) = m.

Proof. It is trivial by Theorem 2.

Remark 5. Kim and Bayad [3] considered iterated functions of odd divisor functions Sm(n) and order of n.
For order of divisor functions, we do not know Ord(n) = ∞ or not. But, functions Um(n) (resp., ϕl(n)),
we know Ord(n) < ∞ by Corollary 3 (resp., [15]).

Theorem 3. Let n > 1 be a positive integer. Then Ord2 (n) = 1 if and only if n = 2k for some k ∈ N.

Proof. (⇐) Let n = 2k. It is easy to see that U (n) = U1 (n) = 1.
(⇒) Let n = pe1

1 pe2
2 ...per

r be a factorization of n, and all pr are distinct prime integers. If Ord2 (n) =
1, then by using Lemma 1 we can note that,

1 = (p1 − 1) (p2 − 1) . . . (pr − 1) . (3)
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According to all pr are distinct prime integers, then it is easy to see that there is only exist p1 and
that is p1 = 2. Hereby n = 2k for some k ∈ N.

This is completed the proof of Theorem 3.

Remark 6. If k > 0 then 2k is an absolute Möbius 3-gonal (triangular) shape number with A
(

2k
)

=

1
2

(
2k − 1

)
by Theorem 3.

Theorem 4. Let n, m and m′ be positive integers with greater than 1 and let Ord2 (n) = m and C(n)+ 1 = m′.
Then, A(n), B(n) ∈ Z if and only if n ≡ 1 (mod 2). Furthermore,

A(n) =
m−1

∑
k=1

Uk(n) +
1
2
(1 + n)− m (4)

and

B(n) =
m′−1

∑
k=1

ϕk(n) +
1
2
(1 + n)− m′. (5)

Proof. First, we consider A(n). We find the set {(0, U0 (n)) , (1, U1 (n)) , . . . , (m, Um (n))}. Thus,
we have

A(n) =
1
2
(U0 (n) + U1 (n)) +

1
2
(U1 (n) + U2 (n)) + . . . +

1
2
(Um−1 (n) + Um (n))− m

= U1 (n) + . . . + Um−1 (n) +
1
2
(1 + n)− m.

≡ 1
2
(1 + n) (mod 1).

Similarly, we get (5). These complete the proof of Theorem 4.

3. Classification of the Absolute Möbius Divisor Function U(n) with Ord2(n) = 2

In this section, we study integers n when Ord2(n) = 2. If Ord2(n) = 2, then n has three cases
which are 3-gonal (triangular) shape number, 4-gonal convex shape number, and 4-gonal non-convex
shape numbers in Figure 5.

Figure 5. 3-gonal (triangular), 4-gonal convex, 4-gonal non-convex shapes.

Theorem 5. Let p1, ..., pr be Fermat primes and e1, ..., er be positive integers. If n = 2k pe1
1 pe2

2 ...per
r , then

Ord2(n) = 2.

Proof. Let
pi = 22mi + 1 (1 ≤ i ≤ r) (6)
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be Fermat primes. By Corollary 1 and Lemma 2 we have

U (n) = U
(

2k pe1
1 pe2

2 ...per
r

)
= U

(
2k
)

U
(

pe1
1
)

U
(

pe2
2
)

...U (per
r )

= (p1 − 1) (p2 − 1) ... (pr − 1)

= 22m1 22m2 ...22mr

= 2t.

Thus, we can see that U (n) = U1 (n) = 2t and U2 (n) = U (U1 (n)) = U
(
2t) = 1. Therefore, we get

Theorem 5.

The First 32 values of U(n) and ϕ(n) for n = 2k pe1
1 pe2

2 ...per
r are given by Table A2 (see Appendix B).

Remark 7. Iterations of the odd divisor function S(n), the absolute Möbius divisor function U(n), and Euler
totient function ϕ(n) have small different properties. Table 6. gives an example of differences of ϕk(n), Uk(n),
and Sk(n) with k = 1, 2.

Table 6. ϕk(n), Uk(n), and Sk(n) with k = 1, 2.

Function f U(n) ϕ(n) S(n)

f1(n) = 1 n = 2k n = 2k n = 2k

(k ≥ 0) (k = 0, 1) (k ≥ 0)

f2(n) = 1 n = 2k pe1
1 . . . per

r n = 2k1 3k2 n = 2kq1 . . . qs
(k ≥ 0) (k1 = 0, 1) (k ≥ 0)

pi : Fermat primes (k2 = 0, 1) qi : Mersenne primes
(Theorem 5) ([2], p. 21) ([3], p. 3)

Lemma 3. Let n = pi be Fermat primes. Then 3 is an absolute Möbius 3-gonal (triangular) shape number and
pi ( �= 3) are absolute Möbius 4-gonal convex numbers.

Proof. The set {(0, 3) , (1, 2) , (2, 1) , (1, 0)} makes a triangle. Let pi = 22mi + 1 be a Fermat primes
except 3 . We get U (pi) = 22mi . So, we get

A =
{(

0, 22mi + 1
)

,
(

1, 22mi
)

, (2, 1) , (0, 1)
}

.

Because of
(

22mi + 1 − 22mi
)
<
(

22mi − 1
)

, the set A gives a convex shape. This completes the
proof Lemma 3.

Lemma 4. Let pi be Fermat primes. Then 2m1 pi and pm2
i are absolute Möbius 4-gonal non-convex shape

numbers with m1, m2(≥ 2) positive integers.

Proof. Let pi = 22mi + 1 be a Fermat primes. Consider

2m1 pi − (pi − 1) = 2m1 · 22mi − 22mi and (pi − 1)− 1 = 22mi − 1.

So, 2m1 pi − (pi − 1) > (pi − 1)− 1. Thus, 2m1 pi are absolute Möbius 4-gonal non-convex shape
numbers. Similarly, we get pi

m1 − (pi − 1) > (pi − 1)− 1.
Thus, these complete the proof Lemma 4.
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Lemma 5. Let p1, . . . , pr be Fermat primes. Then 2p1 . . . pr are absolute Möbius 4-gonal non-convex
shape numbers.

Furthermore, if m, e1, . . . er are positive integers then 2m pe1
1 . . . per

r are absolute Möbius 4-gonal non-convex
shape numbers.

Proof. The proof is similar to Lemma 4.

Lemma 6. Let r be a positive integer. Then

r

∏
i=0

(
22i

+ 1
)
− 2

r

∏
i=0

22i
+ 1 = 0.

Proof. We note that

r

∏
i=0

(
x2i

+ 1
)
=

x2r+1 − 1
x − 1

and
r

∏
i=0

x2i
= x2r+1−1.

Let f (x) := ∏r
i=0

(
22i

+ 1
)
− 2 ∏r

i=0 22i
+ 1. Thus f (2) = 0. This is completed the proof of

Lemma 6.

Corollary 4. Let fi ∈ F1. Then fi is an absolute Möbius 3-gonal (triangular) shape number.

Proof. It is trivial by Lemma 6.

Remark 8. Fermat first conjectured that all the numbers in the form of fn = 22n
+ 1 are primes [16].

Up-to-date there are only five known Fermat primes. That is, f0 = 3, f1 = 5, f2 = 17, f3 = 257, and
f4 = 65537.

Though we find a new Fermat prime p6, 6th Fermat primes, we cannot find a new absolute Möbius 3-gonal
(triangular) number by

4

∏
i=0

(
22i

+ 1
)
×
(

22r′
+ 1
)
− 2

(
4

∏
i=0

22i

)
22r′

+ 1 > 0. (7)

Lemma 7. Let p1, p2, . . . , pr, pt be Fermat primes with p1 < p2 < . . . < pr < pt and t > 5. If n =
r

∏
i=1

pi ∈
F1 then n × pt are absolute Möbius 4-gonal convex shape numbers.

Proof. Let pt = 22k
+ 1 be a Fermat prime, where k is a positive integer. We note that r ≤ 5 and

pt = 22k
+ 1 > 226

+ 1. In a similar way in (7), we obtain

p1 . . . pr pt − 2 (p1 − 1) . . . (pr − 1) (pt − 1) + 1 ={
r−1
�
i=0

(
22i

+ 1
)} (

22k − 1
)
− 21+20+21+...+2r−1+2k

+ 1 > 0.
(8)

By Theorem 5, Ord2(n × pt) = 2. By (8), n × pt is an absolute Möbius 4-gonal convex shape number.
This completes the proof of Lemma 7.

Lemma 8. Let p1, p2, . . . , pr, pt be Fermat primes with p1 < p2 < . . . < pr < pt.

Then m = p f1
1 · · · p fu

u are absolute Möbius 4-gonal non-convex shape numbers except m ∈ F0 ∪ F1 ∪ F2.
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Proof. Similar to Lemmas 5 and 7.

Proof of Theorem 1 (Main Theorem). It is completed by Remark 6, Theorem 5, Lemmas 3 and 4,
Corollary 4, Remark 8, Lemmas 7 and 8.

Remark 9. If n are absolute Möbius 3-gonal (triangular) or 4-gonal convex shape numbers then n is the regular
n-gon by Gauss Theorem.

Example 2. The set V3 is {(0, 3) , (1, 2) , (2, 1) , (0, 1)}. Thus, a positive integer 3 is an absolute Möbius
3-gonal convex shape number.

Similarly, 15, 255, 65535, 4294967295 are absolute Möbius 3-gonal convex numbers derived from

V15 = {(0, 15) , (1, 8) , (2, 1) , (0, 1)},
V255 = {(0, 255) , (1, 128) , (2, 1) , (0, 1)},
V65535 = {(0, 65535) , (1, 32768) , (2, 1) , (0, 1)},
V4294967295 = {(0, 4294967295), (1, 2147483648), (2, 1), (0, 1)}.

Remark 10. Let Min(m) denote the minimal number of m-gonal number. By using Maple 13 Program, Table 7
shows us minimal numbers Min(m) about from 3-gonal (triangular) to 14-gonal shape number.

Table 7. Values of Min(m).

m Min(m) Prime or Not m Min(m) Prime or Not

3 2 prime 9 719 prime
4 5 prime 10 1439 prime
5 7 prime 11 2879 prime
6 23 prime 12 34,549 prime
7 47 prime 13 138,197 prime
8 283 prime 14 1,266,767 prime

Conjecture 1. For any positive integer m (≥ 3), Min(m) is a prime integer.
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Appendix A. Values of U(n)

Table A1. Values of U(n) (1 ≤ n ≤ 100).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U(n) 1 1 2 1 4 2 6 1 2 4 10 2 12 6 8 1 16 2 18 4

n 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

U(n) 12 10 22 2 4 12 2 6 28 8 30 1 20 16 24 2 36 18 24 4

n 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

U(n) 40 12 42 10 8 22 46 2 6 4 32 12 52 2 40 6 36 28 58 8

n 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

U(n) 60 30 12 1 48 20 66 16 44 24 70 2 72 36 8 18 60 24 78 4

n 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

U(n) 2 40 82 12 64 42 56 10 88 8 72 22 60 46 72 2 96 6 20 4

Appendix B. Values of n = 2k p1 p2...pi, U (n), ϕ(n)

Table A2. Values of n = 2k p1 p2...pi, U (n), ϕ(n) with Ord2(n) = 2.

n U (n) ϕ(n) n U (n) ϕ(n)

3 2 2 40 = 23 × 5 4 = 22 16 = 24

5 4 = 22 4 = 22 45 = 32 × 5 8 = 23 24 = 23 × 3

6 = 2 × 3 2 2 48 = 24 × 3 2 16 = 24

9 = 32 2 6 = 2 × 3 50 = 2 × 52 4 = 22 20 = 24 × 5

10 = 2 × 5 4 = 22 4 = 22 51 = 3 × 17 32 = 25 32 = 25

12 = 22 × 3 2 4 = 22 54 = 2 × 33 2 18 = 2 × 32

15 = 3 × 5 8 = 23 8 = 23 60 = 22 × 3 × 5 8 = 23 16 = 24

17 16 = 24 16 = 24 68 = 22 × 17 16 = 24 32 = 25

18 = 2 × 32 2 6 = 2 × 3 72 = 23 × 32 2 24 = 23 × 3

20 = 22 × 5 4 = 22 8 = 23 75 = 3 × 52 8 = 23 40 = 23 × 5

24 = 23 × 3 2 8 = 23 80 = 24 × 5 4 = 22 32 = 25

25 = 52 4 = 22 20 = 22 × 5 81 = 34 2 54 = 2 × 33

27 = 33 2 18 = 2 × 32 85 = 5 × 17 64 = 26 64 = 26

30 = 2 × 3 × 5 8 = 23 8 = 23 90 = 2 × 32 × 5 8 = 23 24 = 23 × 3

34 = 2 × 17 16 = 24 16 = 24 96 = 25 × 3 2 32 = 25

36 = 22 × 32 2 12 = 22 × 3 100 = 22 × 52 4 = 22 40 = 23 × 5
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1. Introduction

The moments of the Poisson distribution are a well-known connecting tool between Bell numbers
and Stirling numbers. As we know, the Bell numbers Bn are those using generating function

e(e
t−1) =

∞

∑
n=0

Bn
tn

n!
.

The Bell polynomials Bn(λ) are this formula using the generating function

eλ(et−1) =
∞

∑
n=0

Bn(λ)
tn

n!
, (1)

(see [1,2]).
Observe that

Bn(λ) =
n

∑
i=0

λiS2(n, i),

where S2(n, i) =
1
i! ∑i

l=0(−1)i−l(i
l)l

n denotes the second kind Stirling number.

The generalized Bell polynomials Bn(x, λ) are these formula using the generating function:

∞

∑
n=0

Bn(x, λ)
tn

n!
= ext−λ(et−t−1), (see [2]).

In particular, the generalized Bell polynomials Bn(x,−λ) = Eλ[(Z + x − λ)n], λ, x ∈ R, n ∈ N,
where Z is a Poission random variable with parameter λ > 0 (see [1–3]). The (r, β)-Bell polynomials
Gn(x, r, β) are this formula using the generating function:

Mathematics 2019, 7, 736; doi:10.3390/math7080736 www.mdpi.com/journal/mathematics61
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F(t, x, r, β) =
∞

∑
n=0

Gn(x, r, β)
tn

n!
= ert+(eβt−1) x

β , (2)

(see [3]), where, β and r are real or complex numbers and (r, β) �= (0, 0). Note that Bn(x + r,−x) =
Gn(x, r, 1) and Bn(x) = Gn(x, 0, 1). The first few examples of (r, β)-Bell polynomials Gn(x, r, β) are

G0(x, r, β) = 1,

G1(x, r, β) = r + x,

G2(x, r, β) = r2 + βx + 2rx + x2,

G3(x, r, β) = r3 + β2x + 3βrx + 3r2x + 3βx2 + 3rx2 + x3,

G4(x, r, β) = r4 + β3x + 4β2rx + 6βr2x + 4r3x + 7β2x2 + 12βrx2

+ 6r2x2 + 6βx3 + 4rx3 + x4,

G5(x, r, β) = r5 + β4x + 5β3rx + 10β2r2x + 10βr3x + 5r4x + 15β3x2 + 35β2rx2

+ 30βr2x2 + 10r3x2 + 25β2x3 + 30βrx3 + 10r2x3 + 10βx4 + 5rx4 + x5.

From (1) and (2), we see that

∞

∑
n=0

Gn(x, r, β)
tn

n!
= e(e

βt−1) x
β ert

=

(
∞

∑
k=0

Bk(x/β)βk tk

k!

)(
∞

∑
m=0

rm tm

m!

)

=
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
Bk(x/β)βkrn−k

)
tn

n!
.

(3)

Compare the coefficients in Formula (3). We can get

Gn(x, r, β) =
n

∑
k=0

(
n
k

)
βkBk(x/β)rn−k, (n ≥ 0).

Similarly we also have

Gn(x + y, r, β) =
n

∑
k=0

(
n
k

)
Gk(x, r, β)Bn−k(y/β)βn−l .

Recently, many mathematicians have studied the differential equations arising from the generating
functions of special polynomials (see [4–8]). Inspired by their work, we give a differential equations by
generation of (r, β)-Bell polynomials Gn(x, r, β) as follows. Let D denote differentiation with respect
to t, D2 denote differentiation twice with respect to t, and so on; that is, for positive integer N,

DN F =

(
∂

∂t

)N
F(t, x, r, β).

We find differential equations with coefficients ai(N, x, r, β), which are satisfied by

(
∂

∂t

)N
F(t, x, r, β)− a0(N, x, r, β)F(t, x, r, β)− · · · − aN(N, x, r, β)eβtN F(t, x, r, β) = 0.

Using the coefficients of this differential equation, we give explicit identities for the
(r, β)-Bell polynomials. In addition, we investigate the zeros of the (r, β)-Bell equations with
numerical methods. Finally, we observe an interesting phenomena of ‘scattering’ of the zeros of
(r, β)-Bell equations. Conjectures are also presented through numerical experiments.
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2. Differential Equations Related to (R, β)-Bell Polynomials

Differential equations arising from the generating functions of special polynomials are studied by
many authors to give explicit identities for special polynomials (see [4–8]). In this section, we study
differential equations arising from the generating functions of (r, β)-Bell polynomials.

Let

F = F(t, x, r, β) =
∞

∑
n=0

Gn(x, r, β)
tn

n!
= ert+(eβt−1) x

β , x, r, β ∈ C. (4)

Then, by (4), we have

DF =
∂

∂t
F(t, x, r, β) =

∂

∂t

(
ert+(eβt−1) x

β

)

= ert+(eβt−1) x
β (r + xeβt)

= rert+(eβt−1) x
β + xe(r+β)t+(eβt−1) x

β

= rF(t, x, r, β) + xF(t, x, r + β, β),

(5)

D2F = rDF(t, x, r, β) + xDF(t, x, r + β, β)

= r2F(t, x, r, β) + x(2r + β)F(t, x, r + β, β) + x2F(t, x, r + 2β, β),
(6)

and
D3F = r2DF(t, x, r, β) + x(2r + β)DF(t, x, r + β, β) + x2DF(t, x, r + 2β, β)

= r3F(t, x, r, β) + x
(

r2 + (2r + β)(r + β)
)

F(t, x, r + β, β)

+ x2(3r + 3β)F(t, x, r + 2β, β) + x3F(t, x, r + 3β, β).

We prove this process by induction. Suppose that

DN F =
N

∑
i=0

ai(N, x, r, β)F(t, x, r + iβ, β), (N = 0, 1, 2, . . .). (7)

is true for N. From (7), we get

DN+1F =
N

∑
i=0

ai(N, x, r, β)DF(t, x, r + iβ, β)

=
N

∑
i=0

ai(N, x, r, β) {(r + iβ)F(t, x, r + iβ, β) + xF(t, x, r + (i + 1)β, β)}

=
N

∑
i=0

ai(N, x, r, β)(r + iβ)F(t, x, r + iβ, β)

+ x
N

∑
i=0

ai(N, x, r, β)F(t, x, r + (i + 1)β, β)

=
N

∑
i=0

(r + iβ)ai(N, x, r, β)F(t, x, r + iβ, β)

+ x
N+1

∑
i=1

ai−1(N, x, r, β)F(t, x, r + iβ, β).

(8)

From (8), we get

DN+1F =
N+1

∑
i=0

ai(N + 1, x, r, β)F(t, x, r + iβ, β). (9)
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We prove that

Dk+1F =
k+1

∑
i=0

ai(k + 1, x, r, β)F(t, x, r + iβ, β).

If we compare the coefficients on both sides of (8) and (9), then we get

a0(N + 1, x, r, β) = ra0(N, x, r, β), aN+1(N + 1, x, r, β) = xaN(N, x, r, β), (10)

and
ai(N + 1, x, r, β) = (r + iβ)ai−1(N, x, r, β) + xai−1(N, x, r, β), (1 ≤ i ≤ N). (11)

In addition, we get
F(t, x, r, β) = a0(0, x, r, β)F(t, x, r, β). (12)

Now, by (10), (11) and (12), we can obtain the coefficients ai(j, x, r, β)0≤i,j≤N+1 as follows. By (12),
we get

a0(0, x, r, β) = 1. (13)

It is not difficult to show that

rF(t, x, r, β) + xF(t, x, r + β, β)

= DF(t, x, r, β)

=
1

∑
i=0

ai(1, x, r, β)F(t, x, r + β, β)

= a0(1, x, r, β)F(t, x, r, β) + a1(1, x, r, β)F(t, x, r + β, β).

(14)

Thus, by (14), we also get

a0(1, x, r, β) = r, a1(1, x, r, β) = x. (15)

From (10), we have that

a0(N + 1, x, r, β) = ra0(N, x, r, β) = · · · = rN a0(1, x, r, β) = rN+1, (16)

and
aN+1(N + 1, x, r, β) = xaN(N, x, r, β) = · · · = xN a1(1, x, r, β) = xN+1. (17)

For i = 1, 2, 3 in (11), we have

a1(N + 1, x, r, β) = x
N

∑
k=0

(r + β)ka0(N − k, x, r, β), (18)

a2(N + 1, x, r, β) = x
N−1

∑
k=0

(r + 2β)ka1(N − k, x, r, β), (19)

and

a3(N + 1, x, r, β) = x
N−2

∑
k=0

(r + 3β)ka2(N − k, x, r, β). (20)

By induction on i, we can easily prove that, for 1 ≤ i ≤ N,

ai(N + 1, x, r, β) = x
N−i+1

∑
k=0

(r + iβ)kai−1(N − k, x, r, β). (21)
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Here, we note that the matrix ai(j, x, r, β)0≤i,j≤N+1 is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 r r2 r3 · · · rN+1

0 x x(2r + β) x(3r2 + 3rβ + β2) · · · ·
0 0 x2 x2(3r + 3β) · · · ·
0 0 0 x3 · · · ·
...

...
...

...
. . .

...
0 0 0 0 · · · xN+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now, we give explicit expressions for ai(N + 1, x, r, β). By (18), (19), and (20), we get

a1(N + 1, x, r, β) = x
N

∑
k1=0

(r + β)k1 a0(N − k1, x, r, β)

=
N

∑
k1=0

(r + β)k1 rN−k1 ,

a2(N + 1, x, r, β) = x
N−1

∑
k2=0

(r + 2β)k2 a1(N − k2, x, r, β)

= x2
N−1

∑
k2=0

N−1−k2

∑
k1=0

(r + β)k1(r + 2β)k2 rN−k2−k1−1,

and
a3(N + 1, x, r, β)

= x
N−2

∑
k3=0

(r + 3β)k3 a2(N − k3, x, r, β)

= x3
N−2

∑
k3=0

N−2−k3

∑
k2=0

N−2−k3−k2

∑
k1=0

(r + 3β)k3(r + 2β)k2(r + β)k1 rN−k3−k2−k1−2.

By induction on i, we have

ai(N + 1, x, r, β)

= xi
N−i+1

∑
ki=0

N−i+1−ki

∑
ki−1=0

· · ·
N−i+1−ki−···−k2

∑
k1=0

(
i

∏
l=1

(r + lβ)kl

)
rN−i+1−∑i

l=1 kl .
(22)

Finally, by (22), we can derive a differential equations with coefficients ai(N, x, r, β), which is
satisfied by

(
∂

∂t

)N
F(t, x, r, β)− a0(N, x, r, β)F(t, x, r, β)− · · · − aN(N, x, r, β)eβtN F(t, x, r, β) = 0.

Theorem 1. For same as below N = 0, 1, 2, . . . , the differential equation

DN F =
N

∑
i=0

ai(N, x, r, β)eiβtF(t, x, r, β)

has a solution
F = F(t, x, r, β) = ert+(eβt−1) x

β ,
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where
a0(N, x, r, β) = rN ,

aN(N, x, r, β) = xN ,

ai(N, x, r, β) = xi
N−i

∑
ki=0

N−i−ki

∑
ki−1=0

· · ·
N−i−ki−···−k2

∑
k1=0

(
i

∏
l=1

(r + lβ)kl

)
rN−i−∑i

l=1 kl ,

(1 ≤ i ≤ N).

From (4), we have this

DN F =

(
∂

∂t

)N
F(t, x, r, β) =

∞

∑
k=0

Gk+N(x, r, β)
tk

k!
. (23)

By using Theorem 1 and (23), we can get this equation:

∞

∑
k=0

Gk+N(x, r, β)
tk

k!
= DN F

=

(
N

∑
i=0

ai(N, x, r, β)eiβt

)
F(t, x, r, β)

=
N

∑
i=0

ai(N, x, r, β)

(
∞

∑
l=0

(iβ)l tl

l!

)(
∞

∑
m=0

Gm(x, r, β)
tm

m!

)

=
N

∑
i=0

ai(N, x, r, β)

(
∞

∑
k=0

k

∑
m=0

(
k
m

)
(iβ)k−mGm(x, r, β)

tk

k!

)

=
∞

∑
k=0

(
N

∑
i=0

k

∑
m=0

(
k
m

)
(iβ)k−mai(N, x, r, β)Gm(x, r, β)

)
tk

k!
.

(24)

Compare coefficients in (24). We get the below theorem.

Theorem 2. For k, N = 0, 1, 2, . . . , we have

Gk+N(x, r, β) =
N

∑
i=0

k

∑
m=0

(
k
m

)
ik−mβk−mai(N, x, r, β)Gm(x, r, β), (25)

where
a0(N, x, r, β) = rN ,

aN(N, x, r, β) = xN ,

ai(N, x, r, β) = xi
N−i

∑
ki=0

N−i−ki

∑
ki−1=0

· · ·
N−i−ki−···−k2

∑
k1=0

(
i

∏
l=1

(r + lβ)kl

)
rN−i−∑i

l=1 kl ,

(1 ≤ i ≤ N).

By using the coefficients of this differential equation, we give explicit identities for the
(r, β)-Bell polynomials. That is, in (25) if k = 0, we have corollary.

Corollary 1. For N = 0, 1, 2, . . . , we have

GN(x, r, β) =
N

∑
i=0

ai(N, x, r, β).
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For N = 0, 1, 2, . . . , it follows that equation

DN F −
N

∑
i=0

ai(N, x, r, β)eiβtF(t, x, r, β) = 0

has a solution
F = F(t, x, r, β) = ert+(eβt−1) x

β .

In Figure 1, we have a sketch of the surface about the solution F of this differential equation. On
the left of Figure 1, we give −3 ≤ x ≤ 3,−1 ≤ t ≤ 1, and r = 2, β = 5. On the right of Figure 1, we
give −3 ≤ x ≤ 3,−1 ≤ t ≤ 1, and r = −3, β = 2.

Figure 1. The surface for the solution F(t, x, r, β).

Making N-times derivative for (4) with respect to t, we obtain

(
∂

∂t

)N
F(t, x, r, β) =

(
∂

∂t

)N
ert+(eβt−1) x

β =
∞

∑
m=0

Gm+N(x, r, β)
tm

m!
. (26)

By multiplying the exponential series ext = ∑∞
m=0 xm tm

m!
in both sides of (26) and Cauchy product,

we derive

e−nt
(

∂

∂t

)N
F(t, x, r, β) =

(
∞

∑
m=0

(−n)m tm

m!

)(
∞

∑
m=0

Gm+N(x, r, β)
tm

m!

)

=
∞

∑
m=0

(
m

∑
k=0

(
m
k

)
(−n)m−kGN+k(x, r, β)

)
tm

m!
.

(27)

By using the Leibniz rule and inverse relation, we obtain

e−nt
(

∂

∂t

)N
F(t, x, y) =

N

∑
k=0

(
N
k

)
nN−k

(
∂

∂t

)k (
e−ntF(t, x, r, β)

)

=
∞

∑
m=0

(
N

∑
k=0

(
N
k

)
nN−kGm+k(x − n, r, β)

)
tm

m!
.

(28)

So using (27) and (28), and using the coefficients of
tm

m!
gives the below theorem.

Theorem 3. Let m, n, N be nonnegative integers. Then

m

∑
k=0

(
m
k

)
(−n)m−kGN+k(x, r, β) =

N

∑
k=0

(
N
k

)
nN−kGm+k(x − n, r, β). (29)
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When we give m = 0 in (29), then we get corollary.

Corollary 2. For N = 0, 1, 2, . . . , we have

GN(x, r, β) =
N

∑
k=0

(
N
k

)
nN−kGk(x − n, r, β).

3. Distribution of Zeros of the (R, β)-Bell Equations

This section aims to demonstrate the benefit of using numerical investigation to support
theoretical prediction and to discover new interesting patterns of the zeros of the (r, β)-Bell equations
Gn(x, r, β) = 0. We investigate the zeros of the (r, β)-Bell equations Gn(x, r, β) = 0 with numerical
experiments. We plot the zeros of the Bn(x, λ) = 0 for n = 16, r = −5,−3, 3, 5, β = 2, 3 and x ∈ C

(Figure 2).
In top-left of Figure 2, we choose n = 16 and r = −5, β = 2. In top-right of Figure 2, we

choose n = 16 and r = −3, β = 3. In bottom-left of Figure 2, we choose n = 16 and r = 3, β = 2 .
In bottom-right of Figure 2, we choose n = 16 and r = 5, β = 3.

Prove that Gn(x, r, β), x ∈ C, has Im(x) = 0 reflection symmetry analytic complex functions
(see Figure 3). Stacks of zeros of the (r, β)-Bell equations Gn(x, r, β) = 0 for 1 ≤ n ≤ 20 from a 3-D
structure are presented (Figure 3).

On the left of Figure 3, we choose r = −5 and β = 2. On the right of Figure 3, we choose r = 5
and β = 2. In Figure 3, the same color has the same degree n of (r, β)-Bell polynomials Gn(x, r, β). For
example, if n = 20, zeros of the (r, β)-Bell equations Gn(x, r, β) = 0 is red.

Figure 2. Zeros of Gn(x, r, β) = 0.
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Figure 3. Stacks of zeros of Gn(x, r, β) = 0, 1 ≤ n ≤ 20.

Our numerical results for approximate solutions of real zeros of the (r, β)-Bell equations
Gn(x, r, β) = 0 are displayed (Tables 1 and 2).

Table 1. Numbers of real and complex zeros of Gn(x, r, β) = 0

Degree n r = −5, β = 2 r = 5, β = 2

Real Zeros Complex Zeros Real Zeros Xomplex Zeros

1 1 0 1 0
2 0 2 2 0
3 1 2 3 0
4 0 4 4 0
5 1 4 5 0
6 0 6 6 0
7 1 6 7 0
8 0 8 8 0
9 1 8 9 0

10 2 8 10 0

Table 2. Approximate solutions of Gn(x, r, β) = 0, x ∈ R.

Degree n x

1 −5.000
2 −9.317, −2.683
3 −13.72, −5.68, −1.605
4 −18.21, −9.01, −3.77, −1.010
5 −22.8, −12.6, −6.4, −2.61, −0.655
6 −27.4, −16.3, −9.3, −4.7, −1.85, −0.434
7 −32.0, −20.0, −12.0, −7.1, −3.5, −1.34, −0.291

Plot of real zeros of Gn(x, r, β) = 0 for 1 ≤ n ≤ 20 structure are presented (Figure 4).
In Figure 4 (left), we choose r = 5 and β = −2. In Figure 4 (right), we choose r = 5 and β = 2.

In Figure 4, the same color has the same degree n of (r, β)-Bell polynomials Gn(x, r, β). For example,
if n = 20, real zeros of the (r, β)-Bell equations Gn(x, r, β) = 0 is blue.

Next, we calculated an approximate solution satisfying Gn(x, r, β) = 0, r = 5, β = 2, x ∈ R.
The results are given in Table 2.
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Figure 4. Stacks of zeros of Gn(x, r, β) = 0, 1 ≤ n ≤ 20.

4. Conclusions

We constructed differential equations arising from the generating function of the (r, β)-Bell
polynomials. This study obtained the some explicit identities for (r, β)-Bell polynomials Gn(x, r, β)

using the coefficients of this differential equation. The distribution and symmetry of the roots of the
(r, β)-Bell equations Gn(x, r, β) = 0 were investigated. We investigated the symmetry of the zeros of
the (r, β)-Bell equations Gn(x, r, β) = 0 for various variables r and β, but, unfortunately, we could not
find a regular pattern. We make the following series of conjectures with numerical experiments:

Let us use the following notations. RGn(x,r,β) denotes the number of real zeros of Gn(x, r, β) = 0
lying on the real plane Im(x) = 0 and CGn(x,r,β) denotes the number of complex zeros of Gn(x, r, β) = 0.
Since n is the degree of the polynomial Gn(x, r, β), we have RGn(x,r,β) = n − CGn(x,r,β)(see Table 1).

We can see a good regular pattern of the complex roots of the (r, β)-Bell equations Gn(x, r, β) = 0
for r > 0 and β > 0. Therefore, the following conjecture is possible.

Conjecture 1. For r > 0 and β > 0, prove or disprove that

CHn(x,y) = 0.

As a result of investigating more r > 0 and β > 0 variables, it is still unknown whether the conjecture 1 is
true or false for all variables r > 0 and β > 0 (see Figure 1 and Table 1).

We observe that solutions of (r, β)-Bell equations Gn(x, r, β) = 0 has Im(x) = 0, reflecting
symmetry analytic complex functions. It is expected that solutions of (r, β)-Bell equations
Gn(x, r, β) = 0, has not Re(x) = a reflection symmetry for a ∈ R (see Figures 2–4).

Conjecture 2. Prove or disprove that solutions of (r, β)-Bell equations Gn(x, r, β) = 0, has not Re(x) = a
reflection symmetry for a ∈ R.

Finally, how many zeros do Gn(x, r, β) = 0 have? We are not able to decide if Gn(x, r, β) = 0 has
n distinct solutions (see Tables 1 and 2). We would like to know the number of complex zeros CGn(x,r,β)
of Gn(x, r, β) = 0, Im(x) �= 0.

Conjecture 3. Prove or disprove that Gn(x, r, β) = 0 has n distinct solutions.

As a result of investigating more n variables, it is still unknown whether the conjecture is true
or false for all variables n (see Tables 1 and 2). We expect that research in these directions will make
a new approach using the numerical method related to the research of the (r, β)-Bell numbers and
polynomials which appear in mathematics, applied mathematics, statistics, and mathematical physics.
The reader may refer to [5–10] for the details.
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1. Mező, I. The r-Bell Numbers. J. Integer. Seq. 2010, 13. Available online: https://www.google.com.hk/url?sa
=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiq6diglPfjAhW9yosBHX4lAo8QFjAAegQIBB
AC&url=https%3A%2F%2Fcs.uwaterloo.ca%2Fjournals%2FJIS%2FVOL13%2FMezo%2Fmezo8.pdf&usg
=AOvVaw0N25qEl3ROosJgHzsnxrlv (accessed on 10 July 2019).

2. Privault, N. Genrealized Bell polynomials and the combinatorics of Poisson central moments. Electr. J. Comb.
2011, 18, 54.

3. Corcino, R.B.; Corcino, C.B. On generalized Bell polynomials. Discret. Dyn. Nat. Soc. 2011, 2011. [CrossRef]
4. Kim, T.; Kim, D.S. Identities involving degenerate Euler numbers and polynomials arising from non-linear

differential equations. J. Nonlinear Sci. Appl. 2016, 9, 2086–2098. [CrossRef]
5. Kim, T.; Kim, D.S.; Ryoo, C.S.; Kwon, H.I. Differential equations associated with Mahler and

Sheffer-Mahler polynomials. Nonlinear Funct. Anal. Appl. 2019, 24, 453–462.
6. Ryoo, C.S.; Agarwal, R.P. ; Kang, J.Y. Differential equations arising from Bell-Carlitz polynomials and

computation of their zeros. Neural Parallel Sci. Comput. 2016, 24, 93–107.
7. Ryoo, C.S. Differential equations associated with tangent numbers. J. Appl. Math. Inf. 2016, 34, 487–494.

[CrossRef]
8. Ryoo, C.S. Differential equations associated with generalized Bell polynomials and their zeros. Open Math.

2016, 14, 807–815. [CrossRef]
9. Ryoo, C.S. A numerical investigation on the structure of the zeros of the degenerate Euler-tangent

mixed-type polynomials. J. Nonlinear Sci. Appl. 2017, 10, 4474–4484. [CrossRef]
10. Ryoo, C.S.; Hwang, K.W.; Kim, D.J.; Jung, N.S. Dynamics of the zeros of analytic continued polynomials

and differential equations associated with q-tangent polynomials. J. Nonlinear Sci. Appl. 2018, 11, 785–797.
[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

71





mathematics

Article

Truncated Fubini Polynomials

Ugur Duran 1,* and Mehmet Acikgoz 2

1 Department of the Basic Concepts of Engineering, Faculty of Engineering and Natural Sciences, Iskenderun
Technical University, TR-31200 Hatay, Turkey

2 Department of Mathematics, Faculty of Science and Arts, University of Gaziantep, TR-27310 Gaziantep, Turkey;
acikgoz@gantep.edu.tr

* Correspondence: mtdrnugur@gmail.com

Received: 22 April 2019; Accepted: 9 May 2019; Published: 15 May 2019
��������	
�������

Abstract: In this paper, we introduce the two-variable truncated Fubini polynomials and numbers and
then investigate many relations and formulas for these polynomials and numbers, including summation
formulas, recurrence relations, and the derivative property. We also give some formulas related to the
truncated Stirling numbers of the second kind and Apostol-type Stirling numbers of the second kind.
Moreover, we derive multifarious correlations associated with the truncated Euler polynomials and
truncated Bernoulli polynomials.
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1. Introduction

The classical Bernoulli and Euler polynomials are defined by means of the following generating
functions:

∞

∑
n=0

Bn (x)
tn

n!
=

t
et − 1

ext (|t| < 2π) (1)

and:
∞

∑
n=0

En (x)
tn

n!
=

2
et + 1

ext (|t| < π) , (2)

see [1–10] for details about the aforesaid polynomials. The Bernoulli numbers Bn and Euler numbers En

are obtained by the special cases of the corresponding polynomials at x = 0, namely:

Bn (0) := Bn and En (0) := En. (3)

The truncated exponential polynomials have played a role of crucial importance to evaluate integrals
including products of special functions; cf. [11], and also see the references cited therein. Recently, several
mathematicians have studied truncated-type special polynomials such as truncated Bernoulli polynomials
and truncated Euler polynomials; cf. [1,4,7,9,11,12].
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For non-negative integer m, the truncated Bernoulli and truncated Euler polynomials are introduced
as follows:

∞

∑
n=0

Bm,n (x)
tn

n!
=

tm

m!

et − ∑m−1
j=0

tj

j!

ext (cf. [1]) (4)

and:
∞

∑
n=0

Em,n (x)
tn

n!
=

2 tm

m!

et + 1 − ∑m−1
j=0

tj

j!

ext (cf. [7]) . (5)

Upon setting x = 0 in (4) and (5), the mentioned polynomials (Bm,n (x) and Em,n (x)), reduce to the
corresponding numbers:

Bm,n (0) := Bm,n and Em,n (0) := Em,n (6)

termed as the truncated Bernoulli numbers and truncated Euler numbers, respectively.

Remark 1. Setting m = 0 in (4) and m = 1 (5), then the truncated Bernoulli and truncated Euler polynomials
reduce to the classical Bernoulli and Euler polynomials in (1) and (2).

The Stirling numbers of the second kind are given by the following exponential generating function:

∞

∑
n=0

S2 (n, k)
tn

n!
=

(
et − 1

)k

k!
(cf. [2–5,7,8,10,13]) (7)

or by the recurrence relation for a fixed non-negative integer ζ,

xζ =
ζ

∑
μ=0

S2 (ζ, μ) (x)μ , (8)

where the notation (x)μ called the falling factorial equals x (x − 1) · · · (x − μ + 1); cf. [2–5,7–10,13], and see
also the references cited therein.

The Apostol-type Stirling numbers of the second kind is defined by (cf. [8]):

∞

∑
n=0

S2 (n, k : λ)
tn

n!
=

(
λet − 1

)k

k!
(λ ∈ C/ {1}) . (9)

The following sections are planned as follows: the second section includes the definition of the
two-variable truncated Fubini polynomials and provides several formulas and relations including Stirling
numbers of the second kind with several extensions. The third part covers the correlations for the
two-variable truncated Fubini polynomials associated with the truncated Euler polynomials and the
truncated Bernoulli polynomials. The last part of this paper analyzes the results acquired in this paper.

2. Two-Variable Truncated Fubini Polynomials

In this part, we define the two-variable truncated Fubini polynomials and numbers. We investigate
several relations and identities for these polynomials and numbers.

We firstly remember the classical two-variable Fubini polynomials by the following generating
function (cf. [2,3,5,6,10,13]):

∞

∑
n=0

Fn (x, y)
tn

n!
=

ext

1 − y (et − 1)
. (10)
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When x = 0 in (10), the two-variable Fubini polynomials Fn (x, y) reduce to the usual Fubini
polynomials given by (cf. [2,3,5,6,10,13]):

∞

∑
n=0

Fn (y)
tn

n!
=

1
1 − y (et − 1)

. (11)

It is easy to see that for a non-negative integer n (cf. [2]):

Fn

(
x,−1

2

)
= En (x) , Fn

(
−1

2

)
= En (12)

and (cf. [3,5,6,10,13]):

Fn (y) =
n

∑
μ=0

S2 (n, μ) μ!yμ. (13)

Substituting y by 1 in (11), we have the familiar Fubini numbers Fn (1) := Fn as follows
(cf. [2,3,5,6,10,13]):

∞

∑
n=0

Fn
tn

n!
=

1
2 − et . (14)

For more information about the applications of the usual Fubini polynomials and numbers,
cf. [2,3,5,6,10,13], and see also the references cited therein.

We now define the two-variable truncated Fubini polynomials as follows.

Definition 1. For non-negative integer m, the two-variable truncated Fubini polynomials are defined via the
following exponential generating function:

∞

∑
n=0

Fm,n (x, y)
tn

n!
=

tm

m! e
xt

1 − y
(

et − 1 − ∑m−1
j=0

tj

j!

) . (15)

In the case x = 0 in (15), we then get a new type of Fubini polynomial, which we call the truncated
Fubini polynomials given by:

∞

∑
n=0

Fm,n (y)
tn

n!
=

tm

m!

1 − y
(

et − 1 − ∑m−1
j=0

tj

j!

) . (16)

Upon setting x = 0 and y = 1 in (15), we then attain the truncated Fubini numbers Fm,n defined by
the following Taylor series expansion about t = 0:

∞

∑
n=0

Fm,n
tn

n!
=

tm

m!

2 + ∑∞
j=m

tj

j!

. (17)

The two-variable truncated Fubini polynomials Fm,n (x, y) cover generalizations of some known
polynomials and numbers that we discuss below.

Remark 2. Setting m = 0 in (15), the polynomials Fm,n (x, y) reduce to the two-variable Fubini polynomials
Fn (x, y) in (10).
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Remark 3. When m = 0 and x = 0 in (15), the polynomials Fm,n (x, y) become the usual Fubini polynomials
Fn (y) in (11).

Remark 4. In the special cases m = 0, y = 1, and x = 0 in (15), the polynomials Fm,n (x, y) reduce to the familiar
Fubini numbers Fn in (14).

We now are ready to examine the relations and properties for the two-variable Fubini polynomials
Fn (x, y), and so, we firstly give the following theorem.

Theorem 1. The following summation formula:

Fm,n (x, y) =
n

∑
k=0

(
n
k

)
Fm,k (y) xn−k (18)

holds true for non-negative integers m and n.

Proof. By (15), using the Cauchy product in series, we observe that:

∞

∑
n=0

Fm,n (x, y)
tn

n!
=

tm

m!

1 − y
(

et − 1 − ∑m−1
j=0

tj

j!

) ext

=
∞

∑
n=0

Fm,n (y)
tn

n!

∞

∑
n=0

xn tn

n!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
Fm,k (y) xn−k tn

n!
,

which provides the asserted result (18).

We now provide another summation formula for the polynomials Fm,n (x, y) as follows.

Theorem 2. The following summation formulas:

Fm,n (x + z, y) =
n

∑
k=0

(
n
k

)
Fm,k (x, y) zn−k (19)

and:

Fm,n (x + z, y) =
n

∑
k=0

(
n
k

)
Fm,k (y) (x + z)n−k (20)

are valid for non-negative integers m and n.
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Proof. From (15), we obtain:

∞

∑
n=0

Fm,n (x, y)
tn

n!
=

tm

m!

1 − y
(

et − 1 − ∑m−1
j=0

tj

j!

) e(x+z)t

=
tm

m! e
xt

1 − y
(

et − 1 − ∑m−1
j=0

tj

j!

) ezt

=
∞

∑
n=0

Fm,n (x, y)
tn

n!

∞

∑
n=0

zn tn

n!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
Fm,k (x, y) zn−k tn

n!

and similarly:

∞

∑
n=0

Fm,n (x, y)
tn

n!
=

tm

m!

1 − y
(

et − 1 − ∑m−1
j=0

tj

j!

) e(x+z)t

=
∞

∑
n=0

Fm,n (y)
tn

n!

∞

∑
n=0

(x + z)n tn

n!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
Fm,k (y) (x + z)n−k tn

n!

which yield the desired results (19) and (20).

We here define the truncated Stirling numbers of the second kind as follows:

∞

∑
n=0

S2,m (n, k)
tn

n!
=

(
et − 1 − ∑m−1

j=0
tj

j!

)k

k!
. (21)

Remark 5. Upon setting m = 0 in (21), the truncated Stirling numbers of the second kind S2,m (n, k) reduce to the
classical Stirling numbers of the second kind in (8).

The truncated Stirling numbers of the second kind satisfy the following relationship.

Proposition 1. The following correlation:

S2,m (n, k + l) =
l!k!

(k + l)!

n

∑
s=0

(
n
s

)
S2,m (s, k) S2,m (n − s, l) (22)

holds true for non-negative integers m and n.
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Proof. In view of (8) and (21), we have:

∞

∑
n=0

S2,m (n, k + l)
tn

n!
=

(
et − 1 − ∑m−1

j=0
tj

j!

)k+l

(k + l)!

=
l!k!

(k + l)!

(
et − 1 − ∑m−1

j=0
tj

j!

)k

k!

(
et − 1 − ∑m−1

j=0
tj

j!

)l

l!

=
l!k!

(k + l)!

∞

∑
n=0

S2,m (n, k)
tn

n!

∞

∑
n=0

S2,m (n, l)
tn

n!

=
l!k!

(k + l)!

∞

∑
n=0

n

∑
s=0

(
n
s

)
S2,m (s, k) S2,m (n − s, l)

tn

n!
,

which gives the claimed result (22).

We present the following correlation between two types of Stirling numbers of the second kind.

Proposition 2. The following correlation:

S2,1 (n, k) = 2kS2

(
n, k :

1
2

)
(23)

holds true for non-negative integers m and n.

Proof. In view of (8) and (21), we have:

∞

∑
n=0

S2,1 (n, k)
tn

n!
=

(
et − 1 − 1

)k

k!

=
2k
(

1
2 et − 1

)k

k!

= 2k
∞

∑
n=0

S2

(
n, k :

1
2

)
tn

n!
,

which presents the desired result (23).

A relation that includes Fm,n (x) and S2,m (n, k) is given by the following theorem.

Theorem 3. The following relation:

Fm,n+m (x) =
n

∑
k=0

(
n + m

m

)
xkk!S2,m (n, k) (24)

is valid for a complex number x with |x| < 1 and non-negative integers m and n.
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Proof. By (16) and (21), we see that:

∞

∑
n=0

Fm,n (x)
tn

n!
=

tm

m!

1 − x
(

et − 1 − ∑m−1
j=0

tj

j!

)

=
tm

m!

∞

∑
k=0

xk

(
et − 1 −

m−1

∑
j=0

tj

j!

)k

=
tm

m!

∞

∑
k=0

xkk!
∞

∑
n=0

S2,m (n, k)
tn

n!

=
∞

∑
n=0

∞

∑
k=0

xkk!S2,m (n, k)
tn+m

m!n!
,

which implies the desired result (24).

We now state the following theorem.

Theorem 4. The following identity:

F1,n+1 (x) = n
∞

∑
k=1

xkk!S2

(
n, k :

1
2

)
(25)

holds true for a complex number x with |x| < 1 and a positive integer n.

Proof. By (9) an (16), using the Cauchy product in series, we observe that:

∞

∑
n=0

F1,n (x)
tn

n!
=

t
1 − x (et − 2)

= t
∞

∑
k=0

xk (et − 2
)k

= t
∞

∑
k=0

xkk!

(
1
2 et − 1

)k

k!
2k

=
∞

∑
n=0

∞

∑
k=0

xkk!S2

(
n, k :

1
2

)
tn+1

n!
,

which provides the asserted result (25).

We now provide the derivative property for the polynomials Fm,n (x, y) as follows.

Theorem 5. The derivative formula:

∂

∂x
Fm,n (x, y) = nFm,n−1 (x, y) (26)

holds true for non-negative integers m and a positive integer n.
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Proof. Applying the derivative operator with respect to x to both sides of the equation (15), we acquire:

∂

∂x

(
∞

∑
n=0

Fm,n (x, y)
tn

n!

)
=

∂

∂x

⎛
⎝ tm

m! e
xt

1 − y
(

et − 1 − ∑m−1
j=0

tj

j!

)
⎞
⎠

and then:

∞

∑
n=0

∂

∂x
Fm,n (x, y)

tn

n!
=

tm

m!

1 − y
(

et − 1 − ∑m−1
j=0

tj

j!

) ∂

∂x
ext

=
tm

m! e
xt

1 − y
(

et − 1 − ∑m−1
j=0

tj

j!

) t

=
∞

∑
n=0

Fm,n (x, y)
tn+1

n!
,

which means the claimed result (26).

A recurrence relation for the two-variable truncated Fubini polynomials is given by the following
theorem.

Theorem 6. The following equalities:

Fm,n (x, y) = 0 (n = 0, 1, 2, · · · , m − 1)

and:

Fm,n+m (x, y) =
y

1 + y

n

∑
s=0

(
n + m

s

)
Fm,s (x, y)− xn

1 + y
(n + m)!

n!m!
(27)

hold true for non-negative integers m and n.

Proof. Using Definition 1, we can write:

tm

m!
ext =

(
1 − y

(
∞

∑
j=m

tj

j!
− 1

))
∞

∑
n=0

Fm,n (x, y)
tn

n!

=
∞

∑
n=0

Fm,n (x, y)
tn

n!
− y

[
∞

∑
j=m

tj

j!

∞

∑
n=0

Fm,n (x, y)
tn

n!
−

∞

∑
n=0

Fm,n (x, y)
tn

n!

]

=
∞

∑
n=0

Fm,n (x, y)
tn

n!
− y

[
∞

∑
j=0

tj+m

(j + m)!

∞

∑
n=0

Fm,n (x, y)
tn

n!
−

∞

∑
n=0

Fm,n (x, y)
tn

n!

]
.

Because of:
∞

∑
j=0

tj+m

(j + m)!

∞

∑
n=0

Fm,n (x, y)
tn

n!
=

∞

∑
n=0

n

∑
j=0

(
n + m

j

)
Fm,j (x, y)

tn+m

(n + m)!
,
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we obtain:

∞

∑
n=0

xn tn+m

n!m!
=

∞

∑
n=0

Fm,n (x, y)
tn

n!
− y

∞

∑
n=0

n

∑
j=0

(
n + m

j

)
Fm,j (x, y)

tn+m

(n + m)!

+y
∞

∑
n=0

Fm,n (x, y)
tn

n!
.

Thus, we arrive at the following equality:

∞

∑
n=0

Fm,n (x, y)
tn

n!
=

1
1 + y

∞

∑
n=0

(
y

n

∑
j=0

(
n + m

j

) Fm,j (x, y)
(n + m)!

− xn

n!m!

)
tn+m.

Comparing the coefficients of both sides of the last equality, the proof is completed.

Theorem 6 can be used to determine the two-variable truncated Fubini polynomials. Thus, we provide
some examples as follows.

Example 1. Choosing m = 1, then we have F1,0 (x, y) = 0. Utilizing the recurrence formula (27), we derive:

F1,n+1 (x, y) =
y

1 − y

n

∑
s=0

(
n + 1

s

)
F1,s (x, y)− xn

1 − y
(n + 1) .

Thus, we subsequently acquire:

F1,1 (x, y) = − 1
1 + y

,

F1,2 (x, y) = − 2y

(1 + y)2 − 2x
1 + y

,

F1,3 (x, y) =
3

1 + y

(
2y2

(1 + y)2 − 2xy
1 + y

− x2

)
.

Furthermore, choosing m = 2, we then obtain the following recurrence relation:

F2,n+2 (x, y) =
y

1 + y

n

∑
s=0

(
n + 2

s

)
F2,s (x, y)− xn

1 + y
(n + 2) (n + 1)

2

which yields the following polynomials:

F2,0 (x, y) = F2,1 (x, y) = 0,

F2,2 (x, y) = − 1
1 + y

,

F2,3 (x, y) = − 3x
1 + y

,

F2,4 (x, y) =
6x

y + 1

(
3y

1 + y
+ x
)

.

By applying a similar method used above, one can derive the other two-variable truncated Fubini
polynomials.
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Here is a correlation that includes the truncated Fubini polynomials and Stirling numbers of the
second kind.

Theorem 7. For non-negative integers n and m, we have:

Fm,n (x, y) =
n

∑
u=0

u

∑
k=0

(
n
u

)
Fm,n−u (y) S2 (u, k) (x)k . (28)

Proof. By means of Theorem 1 and Formula (8), we get:

Fm,n (x, y) =
n

∑
u=0

(
n
u

)
Fm,n−u (y) xu

=
n

∑
u=0

(
n
u

)
Fm,n−u (y)

u

∑
k=0

S2 (u, k) (x)k ,

which completes the proof of this theorem.

The rising factorial number x is defined by (x)(n) = x (x + 1) (x + 2) · · · (x + n − 1) for a positive
integer n. We also note that the negative binomial expansion is given as follows:

(x + a)−n =
∞

∑
k=0

(−1)k
(

n + k − 1
k

)
xka−n−k (29)

for negative integer −n and |x| < a; cf. [7].
Here, we give the following theorem.

Theorem 8. The following relationship:

Fm,n (x, y) =
∞

∑
k=0

n

∑
l=k

(
n
l

)
S2 (l, k) Fn,n−l (−k, y) (x)(k) (30)

holds true for non-negative integers n and m.

Proof. By means of Definition 1 and using Equations (7) and (29), we attain:

∞

∑
n=0

Fm,n (x, y)
tn

n!
=

tm

m!

1 − y
(

et − 1 − ∑m−1
j=0

tj

j!

) (e−t)−x

=
tm

m!

1 − y
(

et − 1 − ∑m−1
j=0

tj

j!

) ∞

∑
k=0

(
x + k − 1

k

) (
1 − e−t)−k

=
tm

m!

1 − y
(

et − 1 − ∑m−1
j=0

tj

j!

) ∞

∑
k=0

(x)(k)
(
et − 1

)k

k!
e−kt

=
∞

∑
k=0

(x)(k)
∞

∑
n=0

Fm,n (−k, y)
tn

n!

∞

∑
n=0

S2 (n, k)
tn

n!

=
∞

∑
k=0

(x)(k)
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
Fm,n−l (−k, y) S2 (l, k)

)
tn

n!
,
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which gives the asserted result (30).

Therefore, we give the following theorem.

Theorem 9. The following relationship:

y
n

∑
k=0

(
n
k

)
Fm,n−k (z, y) Fm+1,k (x, y) =

n

∑
k=0

(
n
k

)
Fm+1,n−k (x, y) zk (31)

− n
m + 1

n−1

∑
k=0

(
n − 1

k

)
Fm,n−1−k (z, y) xk

holds true for non-negative integers n and m.

Proof. By means of Definition 1, we see that:

ext tm+1

(m + 1)!
=

(
1 − y

(
et − 1 −

m

∑
j=0

tj

j!

))
∞

∑
n=0

Fm+1,n (x, y)
tn

n!

=

(
1 − y

(
et − 1 −

m−1

∑
j=0

tj

j!

))
∞

∑
n=0

Fm+1,n (x, y)
tn

n!

−y
tm

m!

∞

∑
n=0

Fm+1,n (x, y)
tn

n!
.

Thus, we get:

ext tm+1

(m + 1)!

∞

∑
n=0

Fm,n (z, y)
tn

n!
=

tm

m!
ezt

∞

∑
n=0

Fm+1,n (x, y)
tn

n!

−y
tm

m!

∞

∑
n=0

Fm,n (z, y)
tn

n!

∞

∑
n=0

Fm+1,n (x, y)
tn

n!

and then:

∞

∑
n=0

n

∑
k=0

(
n
k

)
Fm,n−k (z, y) xk tn+1

n! (m + 1)
=

∞

∑
n=0

n

∑
k=0

(
n
k

)
Fm+1,n−k (x, y) zk tn

n!

−y
∞

∑
n=0

y
n

∑
k=0

(
n
k

)
Fm,n−k (z, y) Fm+1,k (x, y)

tn

n!

which provides the claimed result in (31).

Here, we investigate a linear combination for the two-variable truncated Fubini polynomials for
different y values in the following theorem.

Theorem 10. Let the numbers m and n be non-negative integers and y1 �= y2. We then have:

m!n!
(n + m)!

n+m

∑
k=0

(
n + m

k

)
Fm,n+m−k (x1, y1) Fm,k (x2, y2) =

y2Fm,n−k (x1 + x2, y2)− y1Fm,n−k (x1 + x2, y1)

y2 − y1
. (32)
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Proof. By Definition 1, we consider the following product:

tm

m! e
x1t

1 − y1

(
et − 1 − ∑m−1

j=0
tj

j!

) tm

m! e
x2t

1 − y2

(
et − 1 − ∑m−1

j=0
tj

j!

)

=
y2

y2 − y1

t2m

(m!)2 e(x1+x2)t

1 − y2

(
et − 1 − ∑m−1

j=0
tj

j!

) − y1

y2 − y1

t2m

(m!)2 e(x1+x2)t

1 − y1

(
et − 1 − ∑m−1

j=0
tj

j!

) ,

which yields

∞

∑
n=0

n

∑
k=0

(
n
k

)
Fm,n−k (x1, y1) Fm,k (x2, y2)

tn

n!

=
y2

y2 − y1

∞

∑
n=0

Fm,n (x1 + x2, y2)
tn+m

n!m!
− y1

y2 − y1

∞

∑
n=0

Fm,n (x1 + x2, y1)
tn+m

n!m!
.

Thus, we get:

∞

∑
n=0

(
n

∑
k=0

(
n
k

)
Fm,n−k (x1, y1) Fm,k (x2, y2)

)
tn

n!

=
∞

∑
n=0

(
y2

y2 − y1
Fm,n (x1 + x2, y2)− y1

y2 − y1
Fm,n (x1 + x2, y1)

)
tn+m

n!m!
,

which gives the desired result (32).

3. Correlations with Truncated Euler and Bernoulli Polynomials

In this section, we investigate several correlations for the two-variable truncated Fubini polynomials
Fm,n (x, y) related to the truncated Euler polynomials Em,n (x) and numbers Em,n and the truncated
Bernoulli polynomials Bm,n (x) and numbers Bm,n.

Here is a relation between the truncated Euler polynomials and two-variable truncated Fubini
polynomials at the special value y = − 1

2 .

Theorem 11. We have:

Fm,n

(
x,−1

2

)
= Em,n (x) . (33)

Proof. In terms of (5) and (15), we get:

∞

∑
n=0

Fm,n

(
x,−1

2

)
tn

n!
=

tm

m! e
xt

1 + 1
2

(
et − 1 − ∑m−1

j=0
tj

j!

)

=
2 tm

m! e
xt

et + 1 − ∑m−1
j=0

tj

j!

=
∞

∑
n=0

Em,n (x)
tn

n!
,

which implies the asserted result (33).
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Corollary 1. Taking x = 0, we then get a relation between the truncated Euler numbers and truncated Fubini
polynomials at the special value y = − 1

2 , namely:

Fm,n

(
−1

2

)
= Em,n. (34)

Remark 6. The relations (33) and (34) are extensions of the relations in (12).

We now state the following theorem, which includes a correlation for Fm,n (x, y), Fm,n (y) and Em,n (x).

Theorem 12. The following formula:

Fm,n (x, y) =
n!m!

(n + m)!

n+m

∑
l=0

1
2

(
n + m

l

)
Fm,l (y) Em,n+m−l (x) (35)

+
n!m!

(n + m)!

n

∑
j=0

1
2

(
n + m

j

) j

∑
l=0

(
j
l

)
Fm,l (y) Em,j−l (x)

is valid for non-negative integers m and n.

Proof. By (5) and (15), we acquire that:

∞

∑
n=0

Fm,n (x, y)
tn

n!
=

tm

m! e
xt

1 − y
(

et − 1 − ∑m−1
j=0

tj

j!

) 2 tm

m!

et + 1 − ∑m−1
j=0

tj

j!

et + 1 − ∑m−1
j=0

tj

j!

2 tm

m!

=
1
2

m!
tm

∞

∑
n=0

Fm,n (y)
tn

n!

∞

∑
n=0

Em,n (x)
tn

n!

(
∞

∑
j=m

tj

j!
+ 1

)

=
m!
2

∞

∑
n=0

(
n

∑
l=0

(
n
l

)
Fm,l (y) Em,n−l (x)

)
tn−m

n!

(
∞

∑
j=0

tj+m

(j + m)!
+ 1

)

=
m!
2

∞

∑
n=0

(
n

∑
l=0

(
n
l

)
Fm,l (y) Em,n−l (x)

)
tn−m

n!

+
m!
2

∞

∑
n=0

n

∑
j=0

(
n + m

j

)( j

∑
l=0

(
j
l

)
Fm,l (y) Em,j−l (x)

)
tn

(n + m)!
,

which completes the proof of the theorem.

We finally state the relations for the truncated Bernoulli and Fubini polynomials as follows.

Theorem 13. The following relation:

Fm,n (x, y) =
n!m!

(n + m)!

n

∑
l=0

(
n + m

l

) l

∑
k=0

(
l
k

)
Fm,l (y) Bm,l−k (x) (36)

is valid for non-negative integers m and n.

85



Mathematics 2019, 7, 431

Proof. By (5) and (15), we acquire that:

∞

∑
n=0

Fm,n (x, y)
tn

n!
=

tm

m! e
xt

1 − y
(

et − 1 − ∑m−1
j=0

tj

j!

) tm

m!

et − ∑m−1
j=0

tj

j!

et − ∑m−1
j=0

tj

j!
tm

m!

=
m!
tm

∞

∑
n=0

Fm,n (y)
tn

n!

∞

∑
n=0

Bm,n (x)
tn

n!

∞

∑
j=m

tj

j!

= m!
∞

∑
n=0

(
n

∑
k=0

(
n
k

)
Fm,k (y) Bm,n−k (x)

)
tn

n!

∞

∑
j=0

tj

(j + m)!

=
n!m!

(n + m)!

∞

∑
n=0

n

∑
l=0

(
n + m

l

)( l

∑
k=0

(
l
k

)
Fm,l (y) Bm,l−k (x)

)
tn

(n + m)!
,

which means the asserted result (36).

4. Conclusions

In this paper, we firstly considered two-variable truncated Fubini polynomials and numbers, and we
then obtained some identities and properties for these polynomials and numbers, involving summation
formulas, recurrence relations, and the derivative property. We also proved some formulas related to
the truncated Stirling numbers of the second kind and Apostol-type Stirling numbers of the second kind.
Furthermore, we gave some correlations including the two-variable truncated Fubini polynomials, the
truncated Euler polynomials, and truncated Bernoulli polynomials.
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Abstract: Let 1 < a < b < c < d and α̂[5] :=
(

1,
√

a,
√

b,
√

c,
√

d
)∧

be a weighted sequence

that is recursively generated by five weights 1,
√

a,
√

b,
√

c,
√

d. In this paper, we give sufficient
conditions for the positive quadratic hyponormalities of Wα(x) and Wα(y,x), with α (x) :

√
x, α̂[5] and

α (y, x) :
√

y,
√

x, α̂[5].

Keywords: positively quadratically hyponormal; quadratically hyponormal; unilateral weighted
shift; recursively generated

MSC: 47B37; 47B20

1. Introduction

Let H be a separable, infinite dimensional, complex Hilbert space, and let L(H) be the algebra
of all bounded linear operators on H. An operator T in L(H) is said to be normal if T∗T = TT∗,
hyponormal if T∗T ≥ TT∗, and subnormal if T = N|H , where N is normal on some Hilbert space K ⊇ H.
For A, B ∈ L(H), let [A, B] := AB − BA. We say that an n-tuple T = (T1, . . . , Tn) of operators in L(H)

is hyponormal if the operator matrix ([T∗
j , Ti])

n
i,j=1 is positive on the direct sum of n copies of H. For

arbitrary positive integer k, T ∈ L(H) is (strongly) k-hyponormal if (I, T, . . . , Tk) is hyponormal. It is
well known that T is subnormal if and only if T is ∞-hyponormal. An operator T in L(H) is said to be
weakly n-hyponormal if p(T) is hyponormal for any polynomial p with degree less than or equal to n. An
operator T is polynomially hyponormal if p(T) is hyponormal for every polynomial p. In particular, the
weak two-hyponormality (or weak three-hyponormality) is referred to as quadratical hyponormality
(or cubical hyponormality, resp.) and has been considered in detail in [1–9].

Let {en}∞
n=0 be the canonical orthonormal basis for Hilbert space l2 (Z+),and let α := {αn}∞

n=0 be
a bounded sequence of positive numbers. Let Wα be a unilateral weighted shift defined by Wαen :=
αnen+1 (n ≥ 0) . It is well known that Wα is hyponormal if and only if αn ≤ αn+1 (n ≥ 0) . The moments
of Wα are usually defined by γ0 := 1, γi := α2

0 · · · α2
i−1 (i ≥ 1) . It is well known that Wα is subnormal if

and only if there exists a Borel probability measure μ supported in
[
0, ‖Wα‖2

]
, with ‖Wα‖2 ∈ supp μ,

Mathematics 2019, 7, 212; doi:10.3390/math7020212 www.mdpi.com/journal/mathematics89
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such that [10] γn =
∫

tndμ (t) (∀n ≥ 0) . It follows from [11] (Theorem 4) that Wα is subnormal if and
only if for every k ≥ 1 and every n ≥ 0, the Hankel matrix:

A (n, k) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

γn γn+1 γn+2 · · · γn+k
γn+1 γn+2 γn+3 · · · γn+k+1
γn+2 γn+3 γn+4 · · · γn+k+2

...
...

...
. . .

...
γn+k γn+k+1 γn+k+2 · · · γn+2k

⎤
⎥⎥⎥⎥⎥⎥⎦
≥ 0.

A weighted shift Wα is said to be recursively generated if there exists i ≥ 1 and ϕ = (ϕ0, . . . , ϕi−1) ∈
Ci such that:

γn = ϕi−1γn−1 + · · ·+ ϕ0γn−i (n ≥ i) ,

where γn is the moment of Wα, i.e., γ0 := 1, γi := α2
0 · · · α2

i−1 (i ≥ 1) , equivalently,

α2
n = ϕi−1 +

ϕi−2

α2
n−1

+ · · ·+ ϕ0

α2
n−1 · · · α2

n−i+1
(n ≥ i) .

Given an initial segment of weights α : α0, . . . , α2k (k ≥ 0) , there is a canonical procedure to
generate a sequence (denoted α̂) in such a way that Wα̂ is a recursively-generated shift having α as
an initial segment of weight. In particular, given an initial segment of weights α :

√
a,
√

b,
√

c with
0 < a < b < c, we obtain ϕ0 = − ab(c−b)

b−a and ϕ1 = b(c−a)
b−a .

In [12,13], Curto-Putinar proved that there exists an operator that is polynomially hyponormal, but
not two-hyponormal. Although the existence of a weighted shift, which is polynomially hyponormal,
but not subnormal, was established in [12,13], a concrete example of such weighted shifts has not been
found yet. Recently, the authors in [14] proved that the subnormality is equivalent to the polynomial

hyponormality for recursively-weighted shift Wα with α :
√

x,
(√

a,
√

b,
√

c
)∧

. Based on this, in this
paper, we have to consider the weighted shift operator with five generated elements.

The organization of this paper is as follows. In Section 2, we recall some terminology and
notations concerning the quadratic hyponormality and positive quadratic hyponormality of unilateral
weighted shifts Wα. In Section 3, we give some results on the unilateral weighted shifts with recursively

generated by five weights α̂[5] :=
(

1,
√

a,
√

b,
√

c,
√

d
)∧

(1 < a < b < c < d). In Section 4, we consider

positive quadratic hyponormalities of Wα with weights α :
√

x, α̂[5] and α :
√

y,
√

x, α̂[5]. In Section 5,
we give more results on the positive quadratic hyponormality for any unilateral weighted shift Wα.
In Section 6, we present the conclusions.

2. Preliminaries and Notations

Recall that a weighted shift Wα is quadratically hyponormal if Wα + sW2
α is hyponormal for any

s ∈ C [2], i.e., D(s) := [(Wα + sW2
α )

∗, Wα + sW2
α ] ≥ 0, for any s ∈ C. Let {ei}∞

i=0 be an orthonormal
basis for H, and let Pn be the orthogonal projection on ∨n

i=0{ei}. For s ∈ C, we let:

Dn(s) = Pn[(Wα + sW2
α )

∗, Wα + sW2
α ]Pn

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0 r0 0 · · · 0 0
r0 q1 r1 · · · 0 0

0 r1 q2
. . . 0 0

...
...

. . . . . . . . .
...

0 0 0
. . . qn−1 rn−1

0 0 0 · · · rn−1 qn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where:

qk : = uk + |s|2 vk, rk := wks̄,

uk : = α2
k − α2

k−1, vk := α2
kα2

k+1 − α2
k−2α2

k−1,

wk : = α2
k(α

2
k+1 − α2

k−1)
2, for k ≥ 0,

and α−1 = α−2 := 0. Hence, Wα is quadratically hyponormal if and only if Dn(s) ≥ 0 for every s ∈ C

and every n ≥ 0. Hence, we consider dn (·) := det Dn (·), which is a polynomial in t := |s|2 of degree
n + 1, with Maclaurin expansion dn (t) := ∑n+1

i=0 c (n, i) ti. It is easy to find the following recursive
relations [2]: ⎧⎪⎨

⎪⎩
d0 (t) = q0,
d1 (t) = q0q1 − |r0|2 ,
dn+2 (t) = qn+2dn+1 (t)− |rn+1|2 dn (t) (n ≥ 0) .

Furthermore, we can obtain the following:

c (0, 0) = u0, c (0, 1) = v0,

c (1, 0) = u1u0, c (1, 1) = u1v0 + u0v1 − w0, c (1, 2) = v1v0,

and:

c (n + 2, i) = un+2c (n + 1, i) + vn+2c (n + 1, i − 1)− wn+1c (n, i − 1)

(n ≥ 0, and 0 ≤ i ≤ n + 1) .

In particular, for any n ≥ 0, we have:

c (n, 0) = u0u1 · · · un, c (n, n + 1) = v0v1 · · · vn.

Furthermore, we can obtain the following results.

Lemma 1. Let ρ := v2 (u0v1 − w0) + v0 (u1v2 − w1) . Then, for any n ≥ 4, we have:

c (n, n) = unc (n − 1, n) + (un−1vn − wn−1) c (n − 2, n − 1)

+
n−3

∑
i=1

vnvn−1 · · · vi+3 (ui+1vi+2 − wi+1) c (i, i + 1) + vnvn−1 · · · v3ρ.

Lemma 2. Let τ := u0 (u1v2 − w1) . Then, for any n ≥ 4, we have:

c (n, n − 1) = unc (n − 1, n − 1) + (un−1vn − wn−1) c (n − 2, n − 2)

+
n−3

∑
i=1

vnvn−1 · · · vi+3 (ui+1vi+2 − wi+1) c (i, i) + vnvn−1 · · · v3τ.

Lemma 3. For any n ≥ 5 and 0 ≤ i ≤ n − 2, we have:

c (n, i) = unc (n − 1, i) + (un−1vn − wn−1) c (n − 2, i − 1)

+
n−3

∑
j=1

vnvn−1 · · · vj+3
(
uj+1vj+2 − wj+1

)
c (j, j + i − n + 1)

+vnvn−1 · · · v5c (i − n + 5, 0) (ui−n+6vi−n+7 − wi−n+6) .

To detect the positivity of dn (t) , we need the following concept.
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Definition 1. Let α : α0, α1, . . . be a positive weight sequence. We say that Wα is positively quadratically
hyponormal if c (n, i) ≥ 0 for all n, i ≥ 0 with 0 ≤ i ≤ n + 1, and c (n, n + 1) > 0 for all n ≥ 0 [2].

Positive quadratic hyponormality implies quadratic hyponormality, but the converse is false [15].
In addition, the authors in [15] showed that the positive quadratic hyponormality is equivalent to the

quadratic hyponormality for recursively-generated weighted shift Wα with α :
√

x,
(√

a,
√

b,
√

c
)∧

(here, 0 < x ≤ a < b < c).

3. Recursive Relation of Wα̂[5]

Given the initial segment of weights α : 1,
√

a,
√

b,
√

c,
√

d with 1 < a < b < c < d, we obtain
the moments:

γ0 = γ1 = 1, γ2 = a, γ3 = ab, γ4 = abc, γ5 = abcd.

Let:

V0 =

⎛
⎜⎝ γ0

γ1

γ2

⎞
⎟⎠ , V1 =

⎛
⎜⎝ γ1

γ2

γ3

⎞
⎟⎠ , V2 =

⎛
⎜⎝ γ2

γ3

γ4

⎞
⎟⎠ ,

and we assume that V0, V1, V2 are linearly independent, i.e.,

det (V0, V1, V2) = det A(0, 2) �= 0.

Then, there exist three nonzero numbers ϕ0, ϕ1, ϕ2, such that:⎛
⎜⎝ γ3

γ4

γ5

⎞
⎟⎠ = ϕ0

⎛
⎜⎝ γ0

γ1

γ2

⎞
⎟⎠+ ϕ1

⎛
⎜⎝ γ1

γ2

γ3

⎞
⎟⎠+ ϕ2

⎛
⎜⎝ γ2

γ3

γ4

⎞
⎟⎠ .

A straightforward calculation shows that:

ϕ0 =
ab(ab2 − 2abc + bc2 + acd − bcd)

a2 − 2ab + ab2 + bc − abc
,

ϕ1 =
−ab(ab − ac − bc + bc2 + cd − bcd)

a2 − 2ab + ab2 + bc − abc
,

ϕ2 =
b(a2 − ab − ac + abc + cd − acd)

a2 − 2ab + ab2 + bc − abc
.

Thus:
γn+1 = ϕ0γn−2 + ϕ1γn−1 + ϕ2γn (n ≥ 5) ,

i.e.,
α2

n = ϕ2 +
ϕ1

α2
n−1

+
ϕ0

α2
n−1α2

n−2
(n ≥ 5) . (1)

By (1), we can obtain a recursively-generated weighted shift, and we set it as α̂[5]. In this case,
we call the weighted shift operator Wα̂[5]

with rank three.

Proposition 1. Wα̂[5]
with rank three is subnormal if and only if:

(1) 1 < a < b,

(2) c > a
b

(
(b−1)2

a−1 + 1
)

,

(3) d > b
c

(
(c−a)2

b−a + a
)

.

Proof. See [16], Example 3.6.
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Proposition 2. If Wα̂[5]
with rank three is subnormal, then ϕ0 > 0, ϕ1 < 0 and ϕ2 > 0.

Proof. By Proposition 1, we know that:

�1 : = ab2 − 2ab + bc + a2 − abc < 0,

�2 : = ab2 + bc2 − 2abc + acd − bcd < 0.

Thus, ϕ0 > 0. Since:

ab − ac − bc + bc2 + c (1 − b) d < (c − b)
�1

b − a
< 0,

and:
a2 − ab − ac + abc + c (1 − a) d < (c − a)

�1

b − a
< 0,

we have ϕ1 < 0 and ϕ2 > 0. The proof is complete.

Proposition 3. Let un−1
un

= βn (n ≥ 5) . Then:

βn = − α2
n−1α2

n−2α2
n−3

ϕ1α2
n−3 + ϕ0 + ϕ0βn−1

. (2)

Proof. Since:

un = α2
n − α2

n−1

= − ϕ1

α2
n−1α2

n−2
un−1 − ϕ0

α2
n−1α2

n−2α2
n−3

(un−1 + un−2)

= −
(

ϕ1

α2
n−1α2

n−2
+

ϕ0

α2
n−1α2

n−2α2
n−3

)
un−1 − ϕ0

α2
n−1α2

n−2α2
n−3

un−2,

so:

1 = −
(

ϕ1

α2
n−1α2

n−2
+

ϕ0

α2
n−1α2

n−2α2
n−3

)
un−1

un
− ϕ0

α2
n−1α2

n−2α2
n−3

un−2

un

= −
(

ϕ1

α2
n−1α2

n−2
+

ϕ0

α2
n−1α2

n−2α2
n−3

+
ϕ0

α2
n−1α2

n−2α2
n−3

un−2

un−1

)
un−1

un
.

Thus, we have:

βn = − 1(
ϕ1

α2
n−1α2

n−2
+ ϕ0

α2
n−1α2

n−2α2
n−3

+ ϕ0
α2

n−1α2
n−2α2

n−3
βn−1

)

= − α2
n−1α2

n−2α2
n−3

ϕ1α2
n−3 + ϕ0 + ϕ0βn−1

.

Thus, we have our conclusion.

Since limn→∞ α2
n = L2, we let limn→∞ βn := β∗, and by (2), we have β∗ = − L6

ϕ1L2+ϕ0+ϕ0β∗ ; hence:

β∗ = −1
2
− ϕ1

2ϕ0
L2 +

1
2ϕ0

√(
ϕ2

1 − 4ϕ0 ϕ2
)

L4 − 2ϕ0 ϕ1L2 − 3ϕ2
0. (3)
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4. Main Results

First, we give the following result (cf. [11], Corollary 5).

Proposition 4. Let Wα be any unilateral weighted shift. Then, Wα is two-hyponormal if and only if θk :=
ukvk+1 − wk ≥ 0, ∀k ∈ N.

It is well-known that if Wα is two-hyponormal or positively quadratically hyponormal, then Wα

is quadratically hyponormal. By Proposition 4 and Lemma 1∼3, we have the following result.

Theorem 1. Let Wα be any unilateral weighted shift. If Wα is 2-hyponormal, then Wα is positively
quadratically hyponormal.

4.1. The Positive Quadratic Hyponormality of Wα(x)

Let α (x) :
√

x, α̂[5] with 0 < x ≤ 1, and we consider the following (n + 1)× (n + 1) matrix:

Dn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u0 + v0t
√

w0t 0 · · · 0√
w0t u1 + v1t

√
w1t · · · 0

0
√

w1t u2 + v2t
. . . 0

...
...

. . . . . .
√

wn−1t
0 0 · · · √

wn−1t un + vnt

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Let dn = det Dn = ∑n+1
i=0 c (n, i) ti. Then:

Lemma 4. c(n, i) ≥ 0, n = 0, 1, 2, and 0 ≤ i ≤ n + 1.

Proof. In fact, c(1, 1) = x (a − x) > 0, c(2, 1) = ax (1 − x) (b − 1) > 0, and:

c(2, 2) = ax ((ab − 1)− (b − 1) x)

> ax ((ab − a)− (b − 1) x)

= ax (a − x) (b − 1) > 0.

Thus, we have our conclusion.

Lemma 5. Assume that θk := ukvk+1 − wk ≥ 0 for k ≥ 2. Then, for n ≥ 3, 0 ≤ i ≤ n + 1, we have:

c(n, i) ≥ unc(n − 1, i) + vn · · · v3[v2c(1, i − n + 1)− w1c(0, i − n + 1)].

Proof. For n = 3, 0 ≤ i ≤ 4,

c(3, i) = u3c(2, i) + v3c(2, i − 1)− w2c(1, i − 1)

= u3c(2, i) + (u2v3−w2)c(1, i − 1) + v3[v2c(1, i − 2)− w1c(0, i − 2)]

≥ u3c(2, i) + v3[v2c(1, i − 2)− w1c(0, i − 2)].

By the inductive hypothesis, we have our result.

Thus, if θk := ukvk+1 − wk ≥ 0 for k ≥ 2, then by Lemma 1∼3 and Lemma 5, for n ≥ 3, we have:
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c(n, i) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vn · · · v2c(1, 2), for i = n + 1,
unc(n − 1, n) + vn · · · v3ρ, for i = n,
unc(n − 1, n − 1) + vn · · · v3τ, for i = n − 1,
unc(n − 1, i), for 0 ≤ i ≤ n − 2,

where ρ = ax (b − 1) (a − x) > 0, τ = x (a (b − a)− (ab − 2a + 1) x) . Therefore, when n ≥ 3, we have:⎧⎪⎨
⎪⎩

c(n, n + 1) > 0,
c(n, n) > unc(n − 1, n) + vn · · · v3ρ ≥ 0,
c(n, i) ≥ un · · · ui+2c(i + 1, i) (n ≥ 3, 0 ≤ i ≤ n − 2).

To complete our analysis of the coefficients c(n, i), it suffices to determine the values of x for
which c(n, n − 1) ≥ 0 (n ≥ 3).

Lemma 6. c(n, n − 1) ≥ 0 (for any n ≥ 3), if c(3, 2) ≥ 0, c(4, 3) ≥ 0 and An := v0v1v2unun−1 +

unvn−1ρ + vnvn−1τ ≥ 0 (n ≥ 5).

Proof. For n ≥ 4, by Lemma 2, we have:

c(n, n − 1) ≥ unc(n − 1, n − 1) + vn · · · v3τ

≥ un[un−1c(n − 2, n − 1) + vn−1 · · · v3ρ] + vn · · · v3τ,

and since c(n − 2, n − 1) = vn−2 · · · v0, we get:

c(n, n − 1) ≥ un(un−1vn−2 · · · v0 + vn−1 · · · v3ρ) + vn · · · v3τ.

If n ≥ 5, we can factor vn−2 · · · v3 to get:

c(n, n − 1) ≥ vn−2 · · · v3(v0v1v2unun−1 + unvn−1ρ + vnvn−1τ)

= vn−2 · · · v3 An.

Hence, we have our result.

Let:
xn := sup{x : c(n, n − 1) ≥ 0 in Wα} (n ≥ 3).

By direct computations, we have:

x3 =
aθ2 + a (b − a) v3 + a (ab − 1) u3

θ2 + a (b − 1) u3 + (−2a + ab + 1) v3
,

x4 =
a (ab − 1) θ3 + a (u4 + v4) θ2 +

(
a2 (b − 1) u4 + v4a (b − a)

)
v3 + a2bu3u4

a (b − 1) θ3 + v4θ2 + ((ab − 2a + 1) v4 + u4a (b − 1)) v3 + au3u4
.

For n ≥ 5, a calculation using the specific form of v0, v1, v2, ρ and τ shows that:

An = [a2bunun−1 + a2(b − 1)unvn−1 + a(b − a)vnvn−1

− (aunun−1 + a(b − 1)unvn−1 + (ab + 1 − 2a)vnvn−1) x]x,

it follows that:

xn =
a2bunun−1 + a2(b − 1)unvn−1 + a(b − a)vnvn−1

aunun−1 + a(b − 1)unvn−1 + (ab + 1 − 2a)vnvn−1
.
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Let zn := vn
un

(un �= 0). Then, for n ≥ 5,

xn =
a2b + a2(b − 1)zn−1 + a(b − a)znzn−1

a + a(b − 1)zn−1 + (ab + 1 − 2a)znzn−1
. (5)

Lemma 7. limn→∞ zn = K := (1 + β∗)
(

ϕ2 − ϕ0
L4 β∗

)
, where β∗ as in (3).

Proof. Since:
α2

n+1 = ϕ2 +
ϕ1

α2
n
+

ϕ0

α2
nα2

n−1
(n ≥ 5),

from which it follows that:
α2

nα2
n+1 = ϕ2α2

n + ϕ1 +
ϕ0

α2
n−1

.

Thus:

vn = ϕ2(un + un−1)− ϕ0(un−1 + un−2)

α2
n−1α2

n−3
. (n ≥ 5) (6)

Thus, we have (for n ≥ 5):

zn = ϕ2(1 + βn)− ϕ0

α2
n−1α2

n−3
βn(1 + βn−1).

Since α2
n → L2, we have:

lim
n→∞

zn = (1 + β∗)
(

ϕ2 − ϕ0

L4 β∗
)

.

Thus, we have our conclusion.

Let:

f (z, w) :=
a2b + a2(b − 1)z + a(b − a)zw

a + a(b − 1)z + (ab + 1 − 2a)zw
.

By Lemma 7 and the fact in [2] (p. 399), if zn is increasing, then we know that {xn}n≥5 in (5) is
decreasing and infn≥5 xn = f (K, K). Thus, we have the following result.

Theorem 2. Assume that Wα̂[5]
with rank three is subnormal. Let α (x) :

√
x, α̂[5], and let:

h+2 := sup{x : Wα(x) be positively quadratically hyponormal}.

If zn := vn
un

(n ≥ 5) is increasing, then:

h+2 ≥ min
{

1, x3, x4,
a2b + a2(b − 1)K + a(b − a)K2

a + a(b − 1)K + (ab + 1 − 2a)K2

}
,

where:

x3 =
aθ2 + a (b − a) v3 + a (ab − 1) u3

θ2 + a (b − 1) u3 + (−2a + ab + 1) v3
,

x4 =
a (ab − 1) θ3 + a (u4 + v4) θ2 +

(
a2 (b − 1) u4 + a (b − a) v4

)
v3 + a2bu3u4

a (b − 1) θ3 + v4θ2 + (a (b − 1) u4 + (ab − 2a + 1) v4) v3 + au3u4
,

K = (1 + β∗)
(

ϕ2 − ϕ0

L4 β∗
)

.
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Remark 1. By (6), we know that if βn is increasing, then so is zn. Hence, our problems are as follows.

Problem 1. Let α := {αn}∞
n=0 be any unilateral weighted sequence. If Wα is subnormal, is βn increasing or

not? In particular, what is the answer for subnormal Wα̂[5]
with rank three?

Example 1. Let α (x) :
√

x,
(

1,
√

2,
√

3,
√

4,
√

5
)∧

. Then, ϕ0 = 6, ϕ1 = −18, ϕ2 = 9, L2 ≈ 6.2899, and

K ≈ 32.118, x3 = 17
18 ≈ 0.94444, x4 = 226

249 ≈ 0.90763, f (K, K) ≈ 0.77512. We obtain h+2 � 0.77512. That is,
if 0 < x � 0.77512, then Wα(x) is positively quadratically hyponormal. Numerically, we know that βn and zn

are all increasing. See the following Table 1.

Table 1. Numerical data for βn and zn in Example 1.

n 7 8 9 10 11 12

βn 1. 985 1 2. 392 9 2. 600 8 2. 688 2 2. 721 8 2. 734 3
zn 25.597 29.120 30.909 31.660 31.949 32.056
n 13 14 15 16 17 18
βn 2. 738 9 2. 740 6 2. 741 2 2. 741 4 2. 741 5 2. 741 5
zn 32.096 32.11 32.116 32.117 32.118 32.118

4.2. The Positive Quadratic Hyponormality of Wα(y,x)

Let α (y, x) :
√

y,
√

x, α̂[5]. We also consider the matrix as in (4), and let dn = det Dn =

∑n+1
i=0 c (n, i) ti. Then:

c (1, 1) = xy (1 − y) > 0,

c (2, 1) = y (x − y) (a − x) > 0,

c (2, 2) = xy
(

a − ay + xy − x2
)
≥ xy (1 − y) (a − x) > 0,

and:

c (3, 1) ≥ u3c(2, 1) > 0,

c (3, 2) = y
(
(x − a)

(
x2 − 2x + ab

)
y + x

(
(1 − a) x2 + a (1 − b) x + a (ab − 1)

))
,

c (3, 3) ≥ u3c(2, 3) + v3ρ > 0.

Since:

ρ = xy (1 − y) (a − x) > 0,

τ = y
((

2x − x2 − a
)

y + x (a − 1)
)

,

we can similarly show that c(n, n − 1) ≥ 0 for all n ≥ 3, if c(3, 2) ≥ 0, c(4, 3) ≥ 0 and

y ≤ x((a−1)K2+(a−x)K+ax)
(a−2x+x2)K2+(a−x)xK+x3 , where K = (1 + β∗)

(
ϕ2 − ϕ0

L4 β∗
)

. Thus, we have the following result.

Theorem 3. Let α (y, x) :
√

y,
√

x, α̂[5]. If zn := vn
un

(n ≥ 5) is increasing, and:

(1) 0 < x ≤ min
{

a −√a (a − 1), ab(c−1)−
√

ab(a−1)(a2b+bc2−ab−ac+2a2−a3−abc)
a(a−1)+b(c−a)

}
,
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(2) 0 < y ≤ min {x, f1 (x) , f2 (x) , f3 (x)} , where:

f1 (x) =
x
(
a (ab − 1) + a (1 − b) x − (a − 1) x2)

(a − x) (ab − 2x + x2)
,

f2 (x) = − xp1 (x)
p2 (x)

, with:

p1 (x) =
(
a2b + bc − a2 − abc

)
x2 +

(
a2b − 2ab + a2 − ab2c + abc

)
x

+
(
ca2b2 − 2a3b + 2a2b − cab

)
,

p2 (x) =
(
bc − ab − a + a2) x3 +

(
a − a2b + 3ab − 2bc − abc

)
x2

+
(
a3b − 3a2b − a2 + cab2 + 2cab

)
x + a2b (a − bc) ,

f3 (x) =
x
(
(a − 1)K2 + (a − x)K + ax

)
(a − 2x + x2)K2 + (a − x) xK + x3 , K = (1 + β∗)

(
ϕ2 − ϕ0

L4 β∗
)

,

then Wα(y,x) is positively quadratically hyponormal.

Example 2. Let a = 2, b = 3, c = 4, d = 5. If 0 < x ≤ 2 −√
2 ≈ 0.585 79, y ≤ x(K2+(2−x)K+2x)

(x2−2x+2)K2+(2x−x2)K+x3

with K ≈ 32.118, then Wα(y,x) is positively quadratically hyponormal. See the following Figure 1.

Figure 1. A subset of the region of positive quadratic hyponormality of Wα(y,x) in Example 2.

5. More Results

From the above discussions, we obtain the following criteria for any unilateral weighted shifts.

Proposition 5. Let α (x) :
√

x, 1,
√

a,
√

b,
√

c,
√

d,
√

α5,
√

α6, . . . , and α : 1,
√

a,
√

b,
√

c,
√

d,
√

α5,
√

α6, . . .
be subnormal weighted shifts. Let:

h+2 := sup{x : Wα(x) be positively quadratically hyponormal}.

If zn = vn
un

(n ≥ 5) is increasing and zn → K (as n → ∞), then:

h+2 ≥ min
{

1, x3, x4,
a2b + a2(b − 1)K + a(b − a)K2

a + a(b − 1)K + (ab + 1 − 2a)K2

}
,
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where:

x3 =
aθ2 + a (b − a) v3 + a (ab − 1) u3

θ2 + a (b − 1) u3 + (−2a + ab + 1) v3
,

x4 =
a (ab − 1) θ3 + a (u4 + v4) θ2 +

(
a2 (b − 1) u4 + a (b − a) v4

)
v3 + a2bu3u4

a (b − 1) θ3 + v4θ2 + (a (b − 1) u4 + (ab − 2a + 1) v4) v3 + au3u4
.

By Proposition 5, we can have the following results, but we omit the concrete computations.

Example 3. (1) Let α (x) :
√

x,
√

2
3 ,
√

3
4 ,
√

4
5 , . . . . Then, h+2 = 2

3 (cf. [11], Proposition 7).

(2) Let α (x) :
√

x,
√

5
8 ,
√

3
4 ,
√

4
5 , . . . . Then, h+2 = 1945

3136 (cf. [15], Theorem 3.7).

(3) Let α (x) :
√

x, 1,
(√

2,
√

2.1,
√

12.1
)∧

. Then, h+2 � 0.16682.

(4) Let α (x) :
√

x,
√

n
n+1 · 1

2 · 2n+1−1
2n−1 . Then, h+2 = 3

4 (cf. [16], Example 3.4).

6. Conclusions

In this work, we study a weighed shift operator for which the weights are recursively generated
by five weights. We give sufficient conditions of the positive quadratic hyponormalities. Next, it is
worth studying the cubic hyponormality, semi-weak k-hyponormalities, and so on.
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Abstract: In this paper, we study a class of nonlinear Choquard equation driven by the fractional
Laplacian. When the potential function vanishes at infinity, we obtain the existence of a ground state
solution for the fractional Choquard equation by using a non-Nehari manifold method. Moreover, in the
zero mass case, we obtain a nontrivial solution by using a perturbation method. The results improve
upon those in Alves, Figueiredo, and Yang (2015) and Shen, Gao, and Yang (2016).
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1. Introduction

In this paper, we deal with the following nonlocal equation:

{
(−Δ)su + V(x)u =

(∫
RN

Q(y)F(u(y))
|x−y|μ dy

)
Q(x) f (u), in RN ,

u ∈ Ds,2(RN),
(1)

where N ≥ 3, 0 < s < 1, 0 < μ < N, V ∈ C(RN , [0, ∞)), Q ∈ C(RN , (0, ∞)), f ∈ C(R,R) and
F(t) =

∫ t
0 f (s)ds. The fractional Laplacian (−Δ)s is defined as

(−Δ)su(x) = CN,sP.V.
∫
RN

u(x)− u(y)
|x − y|N+2s dy, u ∈ S(RN),

where P.V. denotes the principal value of the singular integral, S(RN) is the Schwartz space of rapidly
decaying C∞ functions in RN , and

CN,s =
22ssΓ(N + s)
πN/2Γ(1 − s)

.

(−Δ)s is a pseudo-differential operator, and can be equivalently defined via Fourier transform as

F [(−Δ)su](ξ) = |ξ|2sF [u](ξ), u ∈ S(RN),

Mathematics 2019, 7, 151; doi:10.3390/math7020151 www.mdpi.com/journal/mathematics
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where F is the Fourier transform, that is,

F [u](ξ) =
1

(2π)
N
2

∫
RN

e−iξ·xu(x)dx, u ∈ S(RN).

The fractional Laplace operator (−Δ)s is the infinitesimal generator of Lévy stable diffusion processes,
and appears in several areas such as the thin obstacle problem, anomalous diffusion, optimization,
finance, phase transitions, crystal dislocation, multiple scattering, and materials science, see [1–5] and
their references.

Recently, a great deal of work has been devoted to the study of the Choquard equations, see [6–14]
and their references. For instance, Alves, Cassani, Tarsi, and Yang [7] studied the following singularly
perturbed nonlocal Schrödinger equation:

− ε2Δu + V(x)u = εμ−2
[

1
|x|μ ∗ F(u)

]
f (u), in R

2,

where 0 < μ < 2 and ε is a positive parameter, the nonlinearity f has critical exponential growth in
the sense of Trudinger–Moser. By using variational methods, the authors established the existence and
concentration of solutions for the above equation.

In [6], Alves, Figueiredo and Yang studied the following Choquard equation:

{
−Δu + V(x)u = ( 1

|x|μ ∗ F(u)) f (u), in RN .

u ∈ H1(RN).
(2)

Under the assumption V(x) → 0 as |x| → ∞, the authors obtained a nontrivial solution for (2) by
using a penalization method.

In the physical case N = 3, μ = 1, V(x) = 1 and F(t) = t2

2 , (2) is also known as the stationary Hartree
equation [15]. It dates back to the description of the quantum mechanics of a polaron at rest by Pekar
in 1954 [16]. In 1976, Choquard used (2) to describe an electron trapped in its own hole, in a certain
approximation to the Hartree–Fock theory of one-component plasma [11]. In 1996, Penrose proposed (2)
as a model of self-gravitating matter, in a programme in which quantum state reduction is understood as a
gravitational phenomenon [15].

In addition, there is little literature on the fractional Choquard equations. Frank and Lenzmann [17]
established the uniqueness and radial symmetry of ground state solutions for the following equation:

(−Δ)
1
2 u + u = (|x|−1 ∗ |u|2)u, in R

N .

D’Avenia, Siciliano, and Squassina [18] obtained the existence, regularity, symmetry, and asymptotic
of the solutions for the nonlocal problem

(−Δ)su + ωu = (|x|−μ ∗ |u|p)|u|p−2u, in R
N .

In [19], Shen, Gao, and Yang studied the following fractional Choquard equation:

(−Δ)su + u = (|x|−μ ∗ F(u)) f (u), in R
N , (3)
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where N ≥ 3, s ∈ (0, 1), and μ ∈ (0, N). Under the general Berestycki–Lions-type conditions [20],
the authors obtained the existence and regularity of ground states for (3). The authors also established the
Pohoz̆aev identity for (3):

N − 2s
2

∫
RN

|(−Δ)
s
2 u|2dx +

N
2

∫
RN

u2dx =
2N − μ

2

∫
RN

(|x|−μ ∗ F(u))F(u)dx.

Motivated by the above works, in the first part of this article, we study the ground state solution for
(1). We assume

(I) V(x), Q(x) > 0 for all x ∈ RN , V ∈ C(RN ,R) and Q ∈ C(RN ,R) ∩ L∞(RN ,R);
(II) if {An} ⊂ RN is a sequence of Borel sets such that meas{An} ≤ δ for all n and some δ > 0, then

lim
r→∞

∫
An∩Bc

r (0)
[Q(x)]

2N
2N−μ dx = 0 uniformly in n ∈ N;

(III) one of the below conditions occurs:
Q
V

∈ L∞(RN), (4)

or there exists p ∈ (2, 2∗s ) such that

[Q(x)]
2N

2N−μ

[V(x)]
2∗s −p
2∗s −2

→ 0, |x| → ∞, (5)

where 2∗s = 2N
N−2s is the fractional critical exponent;

(F1) F(t) = o(|t| 2N−μ
N ) as t → 0 if (4) holds; or F(t) = o(|t| p(2N−μ)

2N ) as t → 0 if (5) holds;

(F2) F(t) = o(|t| 2N−μ
N−2s ) as t → ∞;

(F3) f (t) is nondecreasing on R;

(F4) lim
|t|→+∞

F(t)
|t| = +∞.

It is necessary for us to point out that the original of assumptions (I)–(III) come from [21–23].
The assumptions can be used to prove that the work space E is compactly embedded into the weighted
Lebesgue space Lq

K(R
N), see Section 2 and Lemma 1.

Now, we can state the first result of this article.

Theorem 1. Suppose that (I), (I I), (I I I) and (F1)–(F4) hold. Then (1) has a ground state solution.

Remark 1. Since the Nehari-type monotonicity condition for f is not satisfied, the Nehari manifold method used
in [24] no longer works in our setting. To prove Theorem 2, we use the non-Nehari manifold method developed by
Tang [25], which relies on finding a minimizing sequence outside the Nehari manifold by using the diagonal method
(see Lemma 8).

In the second part of this article, we consider the following fractional Choquard equation with zero
mass case: {

(−Δ)su =
(

1
|x|μ ∗ F(u)

)
f (u), in RN ,

u ∈ Ds,2(RN),
(6)
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where N ≥ 3, 0 < s < 1, 0 < μ < min{N, 4s}. The homogeneous fractional Sobolev space Ds,2(RN), also
denoted by Ḣs(RN), can be characterized as the space

Ds,2(RN) =

{
u ∈ L2∗s (RN) :

∫
RN

∫
RN

|u(x)− u(y)|2
|x − y|N+2s dxdy < +∞

}
.

f ∈ C(R,R) satisfy the following Berestycki–Lions-type condition [19,20]:

(F5) F is not trivial, that is, F �≡ 0;
(F6) there exists C > 0 such that for every t ∈ R,

|t f (t)| ≤ C|t| 2N−μ
N−2s ;

(F7)

lim
t→0

F(t)
|t|2 = lim

t→∞

F(t)

|t| 2N−μ
N−2s

= 0.

The second result of this paper is as follows.

Theorem 2. Suppose that f satisfies (F5)–(F7). Then (6) has a nontrivial solution.

Remark 2. Notice that the method used in [13] is no longer applicable for (6), because it relies heavily on the
constant potentials. In the zero mass case, we use the perturbation method and the Pohoz̆aev identity established
in [19] to overcome this difficulty.

In this article, we make use of the following notation:

• ‖ · ‖p denotes the usual norm of Lp(R3);
• C, Ci, i = 1, 2, · · ·, denote various positive constants whose exact values are irrelevant;
• o(1) denotes the infinitesimal as n → +∞.

2. Ground State Solutions for (1)

Set

Ds,2(RN) :=
{

u ∈ L2∗s (RN) :
∫
RN

∫
RN

|u(x)− u(y)|2
|x − y|N+2s dxdy < +∞

}
,

endowed with the Gagliardo (semi)norm

[u] :=
(∫

RN

∫
RN

|u(x)− u(y)|2
|x − y|N+2s dxdy

)1/2

.

From [5], we have the following identity:

[u]2 =
∫
RN

|(−Δ)
s
2 u|2dx =

∫
RN

|ξ|2s|F [u](ξ)|2dξ.

From [26], Ds,2(RN) is continuously embedded into L2∗s (RN). Then, we can define the best constant
S > 0 as

S := sup
u∈Ds,2(RN)

(∫
RN |u|2∗s dx

) 2
2∗s∫

RN |(−Δ)
s
2 u|2dx

.
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Let

E :=
{

u ∈ Ds,2(RN) :
∫
RN

V(x)u2dx < +∞
}

.

Under the assumptions (I)–(III), following the idea of ([21], Proposition 2.1) or ([22], Proposition 2.2),
we can prove that the Hilbert space E endowed with scalar product and norm

(u, v) =
∫
RN

[(−Δ)
s
2 u(−Δ)

s
2 v + V(x)uv]dx, ‖u‖ =

(∫
RN

[|(−Δ)
s
2 u|2 + V(x)u2]dx

) 1
2

is compactly embedded into the weighted space Lq
K(R

N) for every q ∈ (2, 2∗s ), where K(x) :=
[Q(x)]2N/(2N−μ) and

Lq
K(R

N) :=
{

u : meas{u} < ∞ and
∫
RN

K(x)|u|qdx < ∞
}

, ∀q ≥ 2.

Lemma 1. Assume that (I)–(III) hold. If (K1) holds, E is compactly embedded in Lq
K(R

N) for all q ∈ (2, 2∗s ). If
(K2) holds, E is compactly embedded in Lp

K(R
N).

Proof. If (K1) holds, then
K(x)
V(x)

=
Q(x)
V(x)

[Q(x)]
μ

2N−μ ∈ L∞(RN).

Given ε > 0 and fixed q ∈ (2, 2∗s ), there exist 0 < t0 < t1 and C > 0 such that

K(x)|t|q ≤ εC(V(x)|t|2 + |t|2∗s ) + CK(x)χ[t0,t1]
(|t|)|t|2∗s ∀t ∈ R.

Hence, ∫
Bc

r (0)
K(x)|u|qdx ≤ εCW(u) + CK(x)

∫
A∩Bc

r (0)
K(x)dx ∀u ∈ E, (7)

where
W(u) =

∫
RN

V(x)|u|2dx +
∫
RN

|u|2∗s dx

and
A = {x ∈ R

N : s0 ≤ |u(x)| ≤ s1}.

Let {vn} be a sequence such that vn ⇀ v in E, then there exists a constant M1 > 0 such that
∫
RN

[|(−Δ)
s
2 vn|2 + V(x)|vn|2]dx ≤ M1 and

∫
RN

|vn|2∗s dx ≤ M1 ∀n ∈ N,

which implies that {W(vn)} is bounded. On the other hand, setting

An = {x ∈ R
N : s0 ≤ |vn(x)| ≤ s1},

we have
s2∗s

0 |An| ≤
∫

An
|vn|2∗s dx ≤ M1 ∀n ∈ N

and so sup
n∈N

|An| < +∞. Therefore, from (I I), there is r > 0 such that

∫
An∩Bc

r (0)
K(x)dx <

ε

s2∗s
1

∀n ∈ N. (8)
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Combining (7) and (8), we have
∫

Bc
r (0)

K(x)|vn|qdx < εCM1 + s2∗s
1

∫
Fn∩Bc

r (0)
K(x)dx < (CM1 + 1)ε ∀n ∈ N. (9)

By q ∈ (2, 2∗s ), we have from Sobolev embeddings that

lim
n→+∞

∫
Br(0)

K(x)|vn|qdx =
∫

Br(0)
K(x)|v|qdx. (10)

Combining (9) and (10), we have

lim
n→+∞

∫
RN

K(x)|vn|qdx =
∫
RN

K(x)|v|qdx,

which yields
vn → v in Lq

K(R
N) ∀q ∈ (2, 2∗s ).

Next, we suppose that (K2) holds. For each x ∈ RN fixed, we observe that the function

g(t) = V(x)t2−p + t2∗s −p ∀t > 0

has CpV(x)
2∗s −p
2∗s −2 as its minimum value, where

Cp =

(
p − 2

2∗s − p

) 2−p
2∗s −2

+

(
p − 2

2∗s − p

) 2∗s −p
2∗s −2

.

Hence

CpV(x)
2∗s −p
2∗s −2 ≤ V(x)t2−p + t2∗s −p ∀x ∈ R

N and t > 0.

Combining this inequality with (K2), given ε ∈ (0, Cp), there exists r > 0 large enough such that

K(x)|t|p ≤ ε(V(x)|t|2 + |t|2∗s ) ∀t ∈ R and |x| ≥ r,

leading to ∫
Bc

r (0)
K(x)|u|pdx ≤ ε

∫
Bc

r (0)
(V(x)|u|2 + |u|2∗s )dx ∀u ∈ E.

Let {vn} be a sequence such that vn ⇀ v in E, then there exists a constant M2 > 0 such that
∫
RN

V(x)|vn|2dx ≤ M2 and
∫
RN

|vn|2∗s dx ≤ M2 ∀n ∈ N,

and so, ∫
Bc

r (0)
K(x)|vn|pdx ≤ 2εM2 ∀n ∈ N. (11)

Since p ∈ (2, 2∗s ) and K is a continuous function, we have

lim
n→+∞

∫
Bc

r (0)
K(x)|vn|pdx =

∫
Bc

r (0)
K(x)|v|pdx. (12)
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From (11) and (12), we have

lim
n→+∞

∫
RN

K(x)|vn|pdx =
∫
RN

K(x)|v|pdx.

Therefore
vn → v in Lp

K(R
N).

Lemma 2. (Hardy–Littlewood–Sobolev inequality, see [26]). Let 1 < r, t < ∞, and μ ∈ (0, N) with 1
r +

1
t =

2 − μ
N . If φ ∈ Lr(RN) and ψ ∈ Lt(RN), then there exists a constant C(N, μ, r, t) > 0, such that

∫
RN

∫
RN

φ(x)ψ(y)
|x − y|μ dxdy ≤ C(N, μ, r, t)‖φ‖r‖ψ‖t.

Lemma 3. Assume that (I)–(III) and (F1)–(F3) hold. Then for u ∈ E
∣∣∣∣
∫
RN

∫
RN

Q(x)Q(y)F(u(x))F(u(y))
|x − y|μ dxdy

∣∣∣∣ < +∞, (13)

and there exists a constant C1 > 0 such that∣∣∣∣
∫
RN

∫
RN

Q(x)Q(y)F(u(x)) f (u(y))v(y)
|x − y|μ dxdy

∣∣∣∣ < C1‖v‖, ∀v ∈ E. (14)

Furthermore, let {un} ⊂ E be a sequence such that un ⇀ u in E, then

lim
n→∞

∫
RN

∫
RN

Q(x)Q(y)[F(un(x))F(un(y))− F(u(x))F(u(y))]
|x − y|μ dxdy = 0 (15)

and

lim
n→∞

∫
RN

∫
RN

Q(x)Q(y)F(un(x)) f (un(y))[un(y)− u(y)]
|x − y|μ dxdy = 0. (16)

Proof. Set

β =

{
2, if (K1) holds,
p, if (K2) holds.

By (F1), (F2), Lemma 2, Hölder inequality and Sobolev inequality, we have

∫
RN

K(x)|F(u)| 2N
2N−μ dx ≤ C1

∫
RN

K(x)
[
|u| β(2N−μ)

2N + |u| 2N−μ
N−2s

] 2N
2N−μ

dx

≤ C2

∫
RN

K(x)|u|βdx + C2

∫
RN

|u|2∗s dx

≤ C3(‖u‖β + [u]2
∗
s ), ∀u ∈ E

(17)
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and ∫
RN

K(x)| f (u)v| 2N
2N−μ dx ≤ C1

∫
RN

K(x)
[
|u| β(2N−μ)−2N

2N + |u| N−μ+2s
N−2s

] 2N
2N−μ |v| 2N

2N−μ dx

≤ C4

∫
RN

[K(x)]
β(2N−μ)−2N

β(2N−μ) |u|
β(2N−μ)−2N

2N−μ [K(x)]
2N

β(2N−μ) |v| 2N
2N−μ dx

+ C5

∫
RN

|u|
2N(N+2s−μ)
(N−2s)(2N−μ) |v| 2N

2N−μ dx

≤ C6

[
‖u‖

β(2N−μ)−2N
2N−μ + ‖u‖

2N(N+2s−μ)
(N−2s)(2N−μ)

]
‖v‖ 2N

2N−μ , ∀u, v ∈ E.

(18)

Applying Lemma 2 and (17), we have
∣∣∣∣
∫
RN

∫
RN

Q(x)Q(y)F(u(x))F(u(y))
|x − y|μ dxdy

∣∣∣∣
≤ C7

[∫
RN

K(x)|F(u)| 2N
2N−μ dx

] 2N−μ
N

≤ C8

[
‖u‖ β(2N−μ)

N + ‖u‖ 2(2N−μ)
N−2s

]
, ∀u ∈ E,

(19)

which yields (13) holds. Similarly, we have
∣∣∣∣
∫
RN

∫
RN

Q(x)Q(y)F(u(x)) f (u(y))v(y)
|x − y|μ dxdy

∣∣∣∣
≤ C9

[∫
RN

K(x)|F(u)| 2N
2N−μ dx

] 2N−μ
2N
[∫

RN
K(x)| f (u)v| 2N

2N−μ dx
] 2N−μ

2N
, ∀u, v ∈ E,

(20)

which, together with (17) and (18), implies that (14) holds.
Similar to ([21], Lemma 2), by (F2), (F3), and Lemma 2, we have

lim
n→∞

∫
RN

K(x)|F(un)− F(u)| 2N
2N−μ dx = 0, lim

n→∞

∫
RN

K(x)| f (un)|
2N

2N−μ |un − u| 2N
2N−μ dx = 0. (21)

Combining (18), (20), and (21), we deduce that (15) and (16) hold.

The energy functional Φ : E �→ R given by

Φ(u) :=
1
2

∫
RN

|(−Δ)
s
2 u|2dx +

1
2

∫
RN

V(x)|u|2dx − 1
2

∫
RN

∫
RN

Q(x)Q(y)F(u(x))F(u(y))
|x − y|μ dxdy. (22)

By Lemmas 2 and 3, Φ is well-defined and belongs to C1-class. Moreover, we have

〈Φ′(u), v〉 =
∫
RN

(−Δ)
s
2 u(−Δ)

s
2 vdx +

∫
RN

V(x)uvdx

−
∫
RN

∫
RN

Q(x)Q(y)F(u(x)) f (u(y))v(y)
|x − y|μ dxdy, ∀u, v ∈ E.

(23)

Lemma 4. Assume that (F1)–(F3) hold. Then, for all t ≥ 0 and τ1, τ2 ∈ R,

l(t, τ1, τ2) := F(tτ1)F(tτ2)− F(τ1)F(τ2) +
1 − t2

2
[F(τ1) f (τ2)τ2 + F(τ2) f (τ1)τ1] ≥ 0. (24)
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Proof. Firstly, it follows from (F1) that f (0) = 0. By (F3), we have

f (τ) ≥ 0, ∀τ ≥ 0; f (τ) ≤ 0, ∀τ ≤ 0; F(τ) ≥ 0, ∀τ ∈ R

and
f (τ)τ ≥

∫ τ

0
f (t)dt = F(τ), ∀τ ∈ R. (25)

It is easy to verify that (24) holds for t = 0. For τ �= 0, we have from (25) that

[
F(τ)

τ

]′
=

f (τ)τ − F(τ)
τ2 ≥ 0. (26)

For every τ1, τ2 ∈ R, we deduce from (F3) and (26) that

d
dt

l(t, τ1, τ2)

= τ1τ2t
[

F(tτ1)

tτ1
f (tτ2) +

F(tτ2)

tτ2
f (tτ1)− F(τ1)

τ1
f (τ2)− F(τ2)

τ2
f (τ1)

]
{

≥ 0, t ≥ 1,
≤ 0, 0 < t < 1,

which implies that l(t, τ1, τ2) ≥ l(1, τ1, τ2) = 0 for all t > 0 and τ1, τ2 ∈ R.

Lemma 5. Assume that (I)–(I I I) and (F1)–(F4) hold. Then

Φ(u) ≥ Φ(tu) +
1 − t2

2
〈Φ′(u), u〉, ∀u ∈ E, t ≥ 0. (27)

Proof. By (22), (23), and (24), we have

Φ(u)− Φ(tu)− 1 − t2

2
〈Φ′(u), u〉

=
1
2

∫
RN

∫
RN

1
|x − y|μ [F(tu(x))F(tu(y))− F(u(x))F(u(y))

+
1 − t2

2
(F(u(x)) f (u(y))u(y) + F(u(y)) f (u(x))u(x))

]
dxdy

=
1
2

∫
RN

∫
RN

l(t, u(x), u(y))
|x − y|μ dxdy

≥ 0, ∀u ∈ E, t ≥ 0.

Corollary 1. Assume that (I)–(I I I) and (F1)–(F4) hold. Let

N := {u ∈ E \ {0} : 〈Φ′(u), u〉 = 0}.

Then
Φ(u) = max

t≥0
Φ(tu), ∀u ∈ N .
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Lemma 6. Assume that (I)–(I I I) and (F1)–(F4) hold. Then, for any u ∈ E \ {0}, there exists tu > 0 such that
tuu ∈ N .

Proof. Let u ∈ E \ {0} be fixed. Define a function ζ(t) := Φ(tu) on (0, ∞). By (22) and (23), we have

ζ ′(t) = 0 ⇐⇒ t‖u‖2 −
∫
RN

∫
RN

Q(x)Q(y)F(tu(x))F(tu(y))) f (tu(y))u(y)
|x − y|μ dxdy = 0

⇐⇒ tu ∈ N .

By (19), we have for u ∈ E

Φ(u) ≥

⎧⎪⎪⎨
⎪⎪⎩

1
2‖u‖ − C8

[
‖u‖ 4N−2μ

N + ‖u‖ 4N−2μ
N−2s

]
, if (K1) holds,

1
2‖u‖ − C8

[
‖u‖ 2pN−pμ

N + ‖u‖ 4N−2μ
N−2s

]
, if (K2) holds,

(28)

which implies that there exists ρ0 > 0 such that

δ0 := inf
‖u‖=ρ0

Φ(u) > 0. (29)

Therefore, lim
t→0

ζ(t) = 0 and ζ(t) > 0 for small t > 0. By (F4), for t large, we have

ζ(t) =
t2

2

[
‖u‖2 − 1

2

∫
RN

∫
RN

Q(x)F(tu(x))
|tu(x)|

Q(y)F(tu(y))
|tu(y)|

|u(x)u(y)|
|x − y|μ dxdy

]
< 0. (30)

Therefore max
t∈[0,∞)

ζ(t) is achieved at some tu > 0 so that ζ ′(tu) = 0 and tuu ∈ N .

Lemma 7. Assume that (I)–(I I I) and (F1)–(F4) hold. Then

inf
u∈N

Φ(u) := c = inf
u∈E\{0}

max
t≥0

Φ(tu) > 0.

Proof. Corollary 1 and Lemma 6 imply that

c = inf
u∈E\{0}

max
t≥0

Φ(tu).

By (22) and (29),

c ≥ inf
u∈E\{0}

Φ
(

ρ0

‖u‖u
)
= inf

‖u‖=ρ0
Φ(u) > 0.

Next, we will seek a Cerami sequence for Φ outside N by using the diagonal method, which is used
in [25,27,28].

Lemma 8. Assume that (I)–(I I I) and (F1)–(F4) hold. Then there exist {un} ⊂ E and c∗ ∈ (0, c] such that

Φ(un) → c∗, (1 + ‖un‖)‖Φ′(un)‖ → 0, (31)

as n → ∞.
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Proof. For c = inf
N

Φ, we can choose a sequence {vk} ⊂ N such that

c ≤ Φ(vk) < c +
1
k

, k ∈ N. (32)

By (29) and (30), it is easy to verify that Φ(0) = 0, Φ(Tvk) < 0 when T is large enough, and Φ(u) ≥
δ0 > 0 when ‖u‖ = ρ0. Therefore, from Mountain Pass Lemma ([29]), there is a sequence {un,k} such that

Φ(uk,n) → ck ∈ [δ0, sup
t∈[0,1]

Φ(tvk)], (1 + ‖uk,n‖)‖Φ′(uk,n)‖ → 0, k ∈ N. (33)

By Corollary 1 and {vk} ⊂ N , we have

Φ(tvk) ≤ Φ(vk), ∀ t ≥ 0. (34)

It follows from (34) that Φ(vk) = sup
t∈[0,1]

Φ(tvk). Hence, by (32)–(34), we have

Φ(wk,n) → ck ∈
[

δ0, c +
1
k

)
, (1 + ‖uk,n‖)‖Φ′(uk,n)‖ → 0, k ∈ N.

Then, we can choose {nk} ⊂ N such that

Φ(uk,nk
) ∈

[
δ0, c +

1
k

)
, (1 + ‖uk,nk

‖)‖Φ′(uk,nk
)‖ <

1
k

, k ∈ N.

Let uk = uk,nk
, k ∈ N. Therefore, up to a subsequence, we have

Φ(un) → c∗ ∈ [δ0, c], (1 + ‖un‖)‖Φ′(un)‖ → 0.

Lemma 9. Assume that (I)–(I I I) and (F1)–(F4) hold. Then, the sequence {un} satisfying (31) is bounded in E.

Proof. Arguing by contradiction, suppose that ‖un‖ → ∞. Let vn = un
‖un‖ , then ‖vn‖ = 1. Passing to a

subsequence, we have vn ⇀ v in E. There are two possible cases: (i). v = 0; (ii) v �= 0.
Case (i) v = 0. In this case∣∣∣∣∣

∫
RN

Q(x)Q(y)F(2
√

c∗ + 1vn(x))F(2
√

c∗ + 1vn(y))
|x − y|μ dxdy

∣∣∣∣∣
≤ C1

[∫
RN

K(x)|F(2√c∗ + 1vn(x))| 2N
2N−μ dx

] 2N−μ
N

= o(1).

(35)
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Combining (27), (31), and (35), we have

c∗ + o(1) = Φ(un)

≥ Φ

(
2
√

c∗ + 1
‖un‖ un

)
+

1 −
(

2
√

c∗+1
‖un‖

)2

2
〈Φ′(un), un〉

= Φ(2
√

c∗ + 1vn) + o(1)

= 2(c∗ + 1) + o(1),

which is a contradiction.
Case (ii) v �= 0. In this case, since |un| = |vn|‖un‖ and un/‖un‖ → v a.e. in RN , we have

lim
n→∞

|un(x)| = ∞ for x ∈ {y ∈ RN : v(x) �= 0}. Hence, it follows from (22), (31), (F4), and Fatou’s

lemma that

0 = lim
n→∞

c∗ + o(1)
‖un‖2 = lim

n→∞

Φ(un)

‖un‖2

=
1
2
− 1

2
lim

n→∞

∫
RN

∫
RN

Q(x)F(un(x))
|un(x)|

Q(y)F(un(y))
|un(y)|

|vn(x)vn(y)|
|x − y|μ dxdy

≤ 1
2
− 1

2

∫
RN

∫
RN

lim inf
n→∞

Q(x + kn)F(un(x))
|un(x)|

Q(y + kn)F(un(y))
|un(y)|

|vn(x)vn(y)|
|x − y|μ dxdy

= −∞.

This contradiction shows that {un} is bounded in E.

Proof of Theorem 1. In view of Lemmas 8 and 9, there exists a bounded sequence {un} ⊂ E such that
(31) holds. Passing to a subsequence, we have un ⇀ u in E. Thus, it follows from (22), (23), (31), and
Lemma 3 that

‖un − u‖2 = 〈Φ′(un), un − u〉+
∫
RN

∫
RN

Q(x)Q(y)F(un(x)) f (un(y))[un(y)− u(y)]
|x − y|μ = o(1),

which implies that Φ′(u) = 0 and Φ(u) = c∗ ∈ (0, c]. Moreover, since u ∈ N , we have Φ(u) ≥ c. Hence,
u ∈ E is a ground state solution for (1) with Φ(u) = c > 0.

3. Zero Mass Case

In this section, we consider the zero mass case, and give the proof of Theorem 2. In the following,
we suppose that (F5)–(F7) and μ < 4s hold. Fix q ∈ (2, 2N−μ

N−2s ), by (F7), for every ε > 0 there is Cε > 0
such that

| f (t)t| ≤ ε(|t|2 + |t| 2N−μ
N−2s ) + Cε|t|q, |F(t)| ≤ ε(|t|2 + |t| 2N−μ

N−2s ) + Cε|t|q, ∀t ∈ R. (36)

To find nontrivial solutions for (6), we study the approximating problem

{
(−Δ)su + εu =

(
1

|x|μ ∗ F(u)
)

f (u), in RN ,

u ∈ Hs(RN),
(37)
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where ε ≥ 0 is a small parameter. The energy functional associated to (37) is

Φε(u) =
1
2

∫
RN

[|(−Δ)
s
2 u|2 + εu2]dx − 1

2

∫
RN

∫
RN

F(u(x))F(u(y))
|x − y|μ dxdy. (38)

By using (F5)–(F7) and Lemma 2, it is easy to check that Φ0 ∈ C1(Ds,2(RN),R) and Φε ∈
C1(Hs(RN),R) for every ε > 0. Moreover, for every ε ≥ 0,

〈Φ′
ε(u), v〉 =

∫
RN

[(−Δ)
s
2 u(−Δ)

s
2 v + εuv]dx − 1

2

∫
RN

∫
RN

F(u(x)) f (u(y))v(y)
|x − y|μ dxdy. (39)

In view of ([19], Proposition 2), for every ε > 0, any critical point u of Φε in Hs(RN) satisfies the
following Pohoz̆aev identity

Pε(u) : =
N − 2s

2

∫
RN

|(−Δ)
s
2 u|2dx +

N
2

ε
∫
RN

|u|2dx − 2N − μ

2

∫
RN

∫
RN

F(u(x))F(u(y))
|x − y|μ dxdy

= 0.
(40)

For every ε > 0, let

Mε : = {u ∈ Hs(RN) \ {0} : Φ′
ε(u) = 0},

Γε : = {γ ∈ C([0, 1], Hs(RN)) : γ(0) = 0, Φε(γ(1)) < 0},

cε : = inf
γ∈Γε

max
t∈[0,1]

Φε(γ(t)).

Lemma 10. For every ε > 0, (37) has a ground state solution uε ∈ Hs(RN) such that 0 < Φε(uε) = inf
Mε

Φε = cε.

Moreover, there exists a constant K0 > 0 independent of ε such that cε ≤ K0 for all ε ∈ (0, 1].

Proof. In view of ([19], Theorem 1.3), under the assumption (F5)–(F7), for every ε > 0, (37) has a ground
state solution uε ∈ Hs(RN) such that 0 < Φε(uε) = inf

Mε

Φε = cε. Let γ ∈ Γ1, since Φε(u) ≤ Φ1(u) for

u ∈ Hs(RN) and ε ∈ (0, 1], we have γ ∈ Γε for ε ∈ (0, 1], and so

cε ≤ max
t∈[0,1]

Φε(γ(t)) = Φε(γ(tε)) ≤ Φ1(γ(tε)) ≤ max
t∈[0,1]

Φ1(γ(t)) := K0, ∀ε ∈ (0, 1],

where tε ∈ (0, 1).

Lemma 11. There exists a constant K1 > 0 independent of ε such that

[uε] ≥ K1, ∀uε ∈ Mε. (41)
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Proof. Since 〈Φ′
ε(uε), uε〉 = 0 for uε ∈ Mε, from (F6), (39), and Sobolev inequality, we have

[uε]
2 =

∫
RN

|(−Δ)
s
2 uε|2dx ≤

∫
RN

[|(−Δ)
s
2 uε|2 + εu2

ε ]dx

=
∫
RN

∫
RN

F(uε(x)) f (uε(y))uε(y)
|x − y|μ dxdy

≤ C1

(∫
RN

|F(uε)|
2N

2N−μ dx
) 2N−μ

2N
(∫

RN
| f (uε)uε|

2N
2N−μ dx

) 2N−μ
2N

≤ C2

(∫
RN

|uε| 2N
N−2s dx

) 2N−μ
N

≤ C2S
2N−μ
N−2s [uε]

2(2N−μ)
N−2s , ∀uε ∈ Mε,

which, together with (2N − μ)/(N − 2s) > 1, implies that (41) holds.

The following lemma is a version of Lions’ concentration-compactness Lemma for
fractional Laplacian.

Lemma 12. ([18]) Assume {un} is a bounded sequence in Hs(RN), which satisfies

lim
n→+∞

sup
y∈RN

∫
B1(y)

|un(x)|2dx = 0.

Then un → 0 in Lq(RN) for q ∈ (2, 2∗s ).

Proof of Theorem 2. We choose a sequence {εn} ⊂ (0, 1] such that εn ↘ 0. In view of Lemma 10, there
exists a sequence {uεn} ⊂ Mεn such that 0 < Φεn(uεn) = inf

Mεn
Φεn = cεn ≤ K0. For simplicity, we use un

instead of uεn . Now, we prove that {un} is bounded in Ds,2(RN). Since Pεn(un) = 0 for un ∈ Mεn , it
follows from (38) and (40) that

K0 ≥ cεn = Φεn(un)− 1
2N − μ

Pεn(un)

=

[
1
2
− N − 2s

2(2N − μ)

]
[un]

2 +

[
1
2
− N

2(2N − μ)

]
εn‖un‖2

2.
(42)

Thus, {un} is bounded in Ds,2(RN) and L2(RN). If

δ := lim
n→∞

sup
y∈RN

∫
B1(y)

|un|2dx = 0.

Then, by Lemma 12, for q ∈ (2, 2N−μ
N−2s ), we have

∫
RN

|un|
4N

2N−μ dx → 0,
∫
RN

|un|
2Nq

2N−μ dx → 0.
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Therefore, by (36) and Sobolev embedding for Ds,2(RN), for every ε > 0 there exists Cε > 0 such that
∣∣∣∣
∫
RN

|F(un)|
2N

2N−μ dx
∣∣∣∣ ≤ ε

[∫
RN

(
|un|

4N
2N−μ + |un|2∗s

)
dx
]
+ Cε

∫
RN

|un|
2Nq

2N−μ dx

≤ εC + o(1).

By the arbitrariness of ε, we get
∫
RN

|F(un)|
2N

2N−μ dx → 0. (43)

Combining (36), (43), and Lemma 2, we have
∣∣∣∣
∫
RN

∫
RN

F(un(x)) f (un(y))un(y)
|x − y|μ dxdy

∣∣∣∣
≤ C1

(∫
RN

|F(un)|
2N

2N−μ dx
) 2N−μ

2N
(∫

RN
| f (un)un|

2N
2N−μ dx

) 2N−μ
2N

= o(1).

(44)

Notice that {un} is bounded in L2(RN), we have from (44) and un ∈ Mεn that [un]2 = o(1).
This contradicts (41). Thus, we get δ > 0. Passing to a subsequence, there exists a sequence {yn} ⊂ RN

such that ∫
B1+

√
N(yn)

|un|2dx >
δ

2
.

Let ũn(x) = un(x + yn). Then

Φ′
εn(ũn) = 0, Φεn(ũn) = cεn

and ∫
B1+

√
N(0)

|ũn|2dx >
δ

2
. (45)

Passing to a subsequence, we have ũn ⇀ u0 in Ds,2(RN). Clearly, (45) implies that u0 �= 0. By the
standard argument, u0 ∈ Ds,2(RN) is a nontrivial solution for (6).

4. Conclusions

In this work, we study a class of nonlinear Choquard equation driven by the fractional Laplacian.
When potential function vanishes at infinity and the Nehari-type monotonicity condition for the
nonlinearity is not satisfied, we prove that the fractional Choquard equation has a ground state solution
by using the non-Nehari manifold method. Unlike the Nehari manifold method, the main idea of our
approach lies in finding a minimizing sequence for the energy functional outside the Nehari manifold by
using the diagonal method. Moreover, by using a perturbation method, we obtain a nontrivial solution in
the zero mass case.

115



Mathematics 2019, 7, 151

Author Contributions: All authors contributed equally in writing this article. All authors read and approved the final
manuscript.

Funding: This work is supported by Hainan Natural Science Foundation (Grant No.118MS002 and No.117005),
the National Natural Science Foundation of China (Grant No.11861028 and No.11461016 ), Young Foundation of
Hainan University (Grant No.hdkyxj201718).

Conflicts of Interest: The authors declare no conflict of interest.

References
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Abstract: In recent years, intensive studies on degenerate versions of various special numbers and
polynomials have been done by means of generating functions, combinatorial methods, umbral
calculus, p-adic analysis and differential equations. The degenerate Bernstein polynomials and
operators were recently introduced as degenerate versions of the classical Bernstein polynomials
and operators. Herein, we firstly derive some of their basic properties. Secondly, we explore some
properties of the degenerate Euler numbers and polynomials and also their relations with the
degenerate Bernstein polynomials.

Keywords: degenerate Bernstein polynomials; degenerate Bernstein operators; degenerate Euler
polynomials

1. Introduction

Let us denote the space of continuous functions on [0, 1] by C[0, 1], and the space of polynomials
of degree ≤ n by Pn. The Bernstein operator Bn of order n, (n ≥ 1), associates to each f ∈ C[0, 1] the
polynomial Bn( f |x) ∈ Pn, and was introduced by Bernstein as (see [1,2]):

Bn( f |x) =
n

∑
k=0

f (
k
n
)

(
n
k

)
xk(1 − x)n−k

=
n

∑
k=0

f (
k
n
)Bk,n(x),

(1)

(see [1–14]) where

Bk,n(x) =
(

n
k

)
xk(1 − x)n−k, (n, k ∈ Z≥0) (2)

are called either Bernstein polynomials of degree n or Bernstein basis polynomials of degree n.
The Bernstein polynomials of degree n can be defined in terms of two such polynomials of degree

n − 1. That is, the k-th Bernstein polynomial of degree n can be written as

Bk,n(x) = (1 − x)Bk,n−1(x) + xBk−1,n−1(x), (k, n ∈ N). (3)

From (2), the first few Bernstein polynomials Bk,n(x) are given by

B0,1(x) = 1 − x, B1,1(x) = x, B0,2(x) = (1 − x)2, B1,2(x) = 2x(1 − x),

B2,2(x) = x2, B0,3(x) = (1 − x)3, B1,3(x) = 3x(1 − x)2,

B2,3(x) = 3x2(1 − x), B3,3(x) = x3, · · · .
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Thus, we note that

xk = x(xk−1) = x
n

∑
i=k−1

( i
k−1)

( n
k−1)

Bi,n(x)

=
n

∑
i=k−1

( i
k−1)

( n
k−1)

i + 1
n + 1

Bi+1,n+1(x)

=
n

∑
i=k−1

(i+1
k )

(n+1
k )

Bi+1,n+1(x).

For λ ∈ R, L. Carlitz introduced the degenerate Euler poynomials given by the generating function
(see [15,16])

2

(1 + λt)
1
λ + 1

(1 + λt)
x
λ =

∞

∑
n=0

En,λ(x)
tn

n!
, (4)

When x = 0, En,λ = En,λ(0) are called the degenerate Euler numbers. It is easy to show that
limλ→0 En,λ(x) = En(x), where En(x) are the Euler polynomials given by (see [15–18])

2
et + 1

ext =
∞

∑
n=0

En(x)
tn

n!
(5)

For n ≥ 0, we define the λ-product as follows (see [8]):

(x)0,λ = 1, (x)n,λ = x(x − λ)(x − 2λ) · · · (x − (n − 1)λ), (n ≥ 1), (6)

Observe here that limλ→0(x)n,λ = xn, (n ≥ 1).
Recently, the degenerate Bernstein polynomials of degree n are introduced as (see [8])

Bk,n(x|λ) =
(

n
k

)
(x)k,λ(1 − x)n−k,λ, (x ∈ [0, 1], n, k ≥ 0), (7)

From (7), it is not difficult to show that the generating function for Bk,n(x|λ) is given by (see [8])

1
k!
(x)k,λtk(1 + λt)

1−x
λ =

∞

∑
n=k

Bk,n(x|λ) tn

n!
, (8)

By (8), we easily get limλ→0 Bk,n(x|λ) = Bk,n(x), (n, k ≥ 0).
The Bernstein polynomials are the mathematical basis for Bézier curves which are frequently

used in computer graphics and related fields. In this paper, we investigate the degenerate Bernstein
polynomials and operators. We study their elementary properties (see also [8]) and then their further
properties in association with the degenerate Euler numbers and polynomials.

Finally, we would like to briefly go over some of the recent works related with Bernstein
polynomials and operators.

Kim-Kim in Ref. [19] gave identities for degenerate Bernoulli polynomials and Korobov
polynomials of the first kind. The authors in Ref. [20] introduced a generalization of the Bernstein
polynomials associated with Frobenius–Euler polynomials. The paper [21] deals with some identities
of q-Euler numbers and polynomials associated with q-Bernstein polynomials. In Ref. [22], the
authors studied a space-time fractional diffusion equation with initial boundary conditions and
presented a numerical solution for that. Both normalized Bernstein polynomials with collocation
and Galerkin methods are applied to turn the problem into an algebraic system. Kim in Ref. [23]
introduced some identities on the q-integral representation of the product of the several q-Bernstein
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type polynomials. Grouped data are commonly encountered in applications. In Ref. [24], Kim-Kim
studied some properties on degenerate Eulerian numbers and polynomials. The authors in Ref. [25] give
an overview of several results related to partially degenerate poly-Bernoulli polynomials associated
with Hermit polynomials.

2. Degenerate Bernstein Polynomials and Operators

The degenerate Bernstein operator of order n is defined, for f ∈ C[0, 1], as

Bn,λ( f |x) =
n

∑
k=0

f (
k
n
)

(
n
k

)
(x)k,λ(1 − x)n−k,λ =

n

∑
k=0

f (
k
n
)Bk,n(x|λ), (9)

where x ∈ [0, 1] and n, k ∈ Z≥0.

Theorem 1. For n ≥ 0, we have

Bn,λ( f |0) = f (0)(1)n,λ, Bn,λ( f |1) = f (1)(1)n,λ,

and

Bn,λ(1|x) = (1)n,λ, Bn,λ(x|x) = x
n−1

∑
k=0

(−1)kλk(n − 1)k(1)n−1−k,λ, (n ≥ 1),

where (x)k = x(x − 1) · · · (x − k + 1), (k ≥ 1), (x)0 = 1.

Proof. From (9), we clearly have

Bn,λ(1|x) =
n

∑
k=0

(
n
k

)
(x)k,λ(1 − x)n−k,λ. (10)

Now, we observe that

∞

∑
n=0

(1)n,λ
tn

n!
= (1 + λt)

1
λ = (1 + λt)

x
λ (1 + λt)

1−x
λ

=

(
∞

∑
l=0

(x)l,λ
tl

l!

)(
∞

∑
m=0

(1 − x)m,λ
tm

m!

)

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
(x)l,λ(1 − x)n−l,λ

)
tn

n!
.

(11)

Comparing the coefficients on both sides of (11), we derive

(1)n,λ =
n

∑
l=0

(
n
l

)
(x)l,λ(1 − x)n−l,λ. (12)

Combining (10) with (12), we have

Bn,λ(1|x) =
n

∑
k=0

(
n
k

)
(x)k,λ(1 − x)n−k,λ = (1)n,λ, (n ≥ 0). (13)
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Furthermore, we get from (9) that for f (x) = x,

Bn,λ(x|x) =
n

∑
k=0

k
n

(
n
k

)
(x)k,λ(1 − x)n−k,λ

=
n

∑
k=1

(
n − 1
k − 1

)
(x)k,λ(1 − x)n−k,λ

=
n−1

∑
k=0

(
n − 1

k

)
(x)k,λ(1 − x)n−1−k,λ(x − kλ)

= x(1)n−1,λ − (n − 1)λ
n−1

∑
k=0

(
n − 1

k

)
(x)k,λ(1 − x)n−1−k,λ

k
n − 1

= x(1)n−1,λ − (n − 1)λBn−1,λ(x|x).

(14)

From (14), we can easily deduce the following Equation (15):

Bn,λ(x|x) = x(1)n−1,λ − (n − 1)λ{x(1)n−2,λ − (n − 2)λBn−2,λ(x|x)}
= x(1)n−1,λ − x(n − 1)λ(1)n−2,λ + (−1)2(n − 1)(n − 2)λ2Bn−2,λ(x|x)
= x(1)n−1,λ − x(n − 1)λ(1)n−2,λ

+ (−1)2(n − 1)(n − 2)λ2{x(1)n−3,λ − (n − 3)λBn−3,λ(x|x)}
= x(1)n−1,λ − x(n − 1)λ(1)n−2,λ + (−1)2(n − 1)(n − 2)λ2x(1)n−3,λ

+ (−1)3(n − 1)(n − 2)(n − 3)λ3Bn−3,λ(x|x)
= · · ·

= x
n−1

∑
k=0

(−1)kλk(n − 1)k(1)n−1−k,λ.

(15)

Let f , g be continuous functions defined on [0, 1]. Then, we clearly have

Bn,λ(α f + βg|x) = αBn,λ( f |x) + βBn,λ(g|x), (n ≥ 0), (16)

where α, β are constants.
So, the degenerate Bernstein operator is linear. From (7), we note that

B0,1(x|λ) = 1 − x, B1,1(x|λ) = x, B0,2(x|λ) = (1 − x)2 − λ(1 − x),

B1,2(x|λ) = 2x(1 − x), B2,2(x|λ) = x2 − λx.

It is not hard to see that

∞

∑
n=0

(1 − x)n,λ
tn

n!
= (1 + λt)

1−x
λ = (1 + λt)

1
λ (1 + λt)−

x
λ

=

(
∞

∑
l=0

(1)l,λ
tl

l!

)(
∞

∑
m=0

(−x)m,λ
tm

m!

)

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
(1)n−l,λ(−1)l(x)l,−λ

)
tn

n!
.

This shows that we have

(1 − x)n,λ =
n

∑
l=0

(
n
l

)
(1)n−l,λ(−1)l(x)l,−λ, (n ≥ 0). (17)
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Theorem 2. For f ∈ C[0, 1] and n ∈ Z≥0, we have

Bn,λ( f |x) =
n

∑
m=0

(
n
m

)
(x)m,−λ

m

∑
k=0

(
m
k

)
(−1)m−k(1)n−m,λ

(x)k,λ

(x + (m − 1)λ)k,λ
f (

k
n
).

Proof. From (9), it is immediate to see that

Bn,λ( f |x) =
n

∑
k=0

f (
k
n
)Bk,n(x|λ) =

n

∑
k=0

f (
k
n
)

(
n
k

)
(x)k,λ(1 − x)n−k,λ

=
n

∑
k=0

f (
k
n
)

(
n
k

)
(x)k,λ

n−k

∑
j=0

(
n − k

j

)
(−1)j(1)n−k−j,λ(x)j,−λ.

(18)

We need to note the following:

(
n
k

)(
n − k

j

)
=

(
n

k + j

)(
k + j

k

)
, (n, k ≥ 0), (19)

and

(x)j,−λ =
(x)k+j,−λ

(x + (j + k − 1)λ)k,λ
. (20)

Let k + j = m. Then, by (19), we obviously have

(
n
k

)(
n − k

j

)
=

(
n
m

)(
m
k

)
. (21)

Combining (18) with (19)–(21) gives the following result:

Bn,λ( f |x) =
n

∑
m=0

(
n
m

)
(x)m,−λ

m

∑
k=0

(
m
k

)
(−1)m−k(1)n−m,λ

(x)k,λ

(x + (m − 1)λ)k,λ
f (

k
n
).

Theorem 3. For n, k ∈ Z≥0 and x ∈ [0, 1], we have

Bk,n(x|λ) =
n

∑
i=k

(−1)i−k
(

n
i

)(
i
k

)
(x)i,−λ

(x)k,λ

(x + (i − 1)λ)k,λ
(1)n−i,λ.

Proof. From (7), (17), and (20), we observe that

Bk,n(x|λ) =
(

n
k

)
(x)k,λ(1 − x)n−k,λ

=

(
n
k

)
(x)k,λ

n−k

∑
i=0

(
n − k

i

)
(−1)i(x)i,−λ(1)n−k−i,λ

=
n−k

∑
i=0

(−1)i
(

n
k

)(
n − k

i

)
(x)k+i,−λ

(x)k,λ

(x + (k + i − 1)λ)k,λ
(1)n−k−i,λ

=
n

∑
i=k

(−1)i−k
(

n
k

)(
n − k
i − k

)
(x)i,−λ

(x)k,λ

(x + (i − 1)λ)k,λ
(1)n−i,λ

=
n

∑
i=k

(−1)i−k
(

n
i

)(
i
k

)
(x)i,−λ

(x)k,λ

(x + (i − 1)λ)k,λ
(1)n−i,λ.

(22)

123



Mathematics 2019, 7, 47

3. Degenerate Euler Polynomials Associated with Degenerate Bernstein Polynomials

Theorem 4. For n ≥ 0, the following holds true:

n

∑
l=0

(
n
l

)
(1)n−l,λEl,λ + En,λ =

{
2, if n = 0,

0, if n > 0.

Proof. From (4), we remark that

2 =

(
∞

∑
l=0

El,λ
tl

l!

)(
(1 + λt)

1
λ + 1

)
=

(
∞

∑
l=0

El,λ
tl

l!

)(
∞

∑
m=0

(1)m,λ
tm

m!
+ 1

)

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
El,λ(1)n−l,λ

)
tn

n!
+

∞

∑
n=0

En,λ
tn

n!

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
(1)n−l,λEl,λ + En,λ

)
tn

n!
.

(23)

The result follows by comparing the coefficients on both sides of (23).

From Theorem 4, we note that

E0,λ = 1, En,λ = −
n

∑
l=0

(
n
l

)
(1)n−l,λEl,λ, (n > 0).

From these recurrence relations, we note that the first few degenerate Euler numbers are given by

E0,λ = 1, E1,λ = −1
2

, E2,λ =
1
2

λ, E3,λ =
1
4
− λ2, E4,λ = −3

2
λ + 3λ3,

E5,λ = −1
2
+

35
4

λ2 − 12λ4, E6,λ =
15
2

λ − 225
4

λ3 + 60λ5.

Theorem 5. For n ≥ 0, we have

En,λ(1 − x) = (−1)nEn,−λ(x).

Especially, we have

En,λ(2) = (−1)nEn,−λ(−1), (n ≥ 0).

Proof. By (4), we get

∞

∑
n=0

En,λ(1 − x)
tn

n!
=

2

(1 + λt)
1
λ + 1

(1 + λt)
1−x

λ =
2

(1 + λt)−
1
λ + 1

(1 + λt)−
x
λ

=
∞

∑
n=0

En,−λ(x)(−1)n tn

n!
.

(24)

Comparing the coefficients on both sides of (24), we have

En,λ(1 − x) = (−1)nEn,−λ(x), (n ≥ 0). (25)
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In particular, if we take x = −1, we get

En,λ(2) = (−1)nEn,−λ(−1), (n ≥ 0). (26)

Corollary 1. For n ≥ 0, we have

En,λ(2) = 2(1)n,λ + En,λ.

Proof. From (4), we have

∞

∑
n=0

En,λ(2)
tn

n!
=

2

(1 + λt)
1
λ + 1

(1 + λt)
2
λ

=
2

(1 + λt)
1
λ + 1

(1 + λt)
1
λ ((1 + λt)

1
λ + 1 − 1)

= 2(1 + λt)
1
λ − 2

(1 + λt)
1
λ + 1

(1 + λt)
1
λ

=
∞

∑
n=0

(
2(1)n,λ −

n

∑
l=0

(
n
l

)
(1)n−l,λEl,λ

)
tn

n!
.

(27)

Thus, by (27), we get

En,λ(2) = 2(1)n,λ −
n

∑
l=0

(
n
l

)
(1)n−l,λEl,λ = 2(1)n,λ + En,λ, (n ≥ 0).

Theorem 6. For n ≥ 0, k ≥ 1, we have

En,λ(x) = 2
k

∑
i=1

(−1)i−1(x − i)n,λ + (−1)kEn,λ(x − k).

Proof. From (4), we easily see that

En,λ(x) =
n

∑
l=0

(
n
l

)
El,λ(x)n−l,λ, (n ≥ 0).
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Now, we observe that

2

(1 + λt)
1
λ + 1

(1 + λt)
x
λ =

2

(1 + λt)
1
λ + 1

((1 + λt)
1
λ + 1 − 1)(1 + λt)

x−1
λ

= 2(1 + λt)
x−1

λ − 2

(1 + λt)
1
λ + 1

(1 + λt)
x−1

λ

= 2(1 + λt)
x−1

λ − 2(1 + λt)
x−2

λ +
2

(1 + λt)
1
λ + 1

(1 + λt)
x−2

λ

= 2(1 + λt)
x−1

λ − 2(1 + λt)
x−2

λ + 2(1 + λt)
x−3

λ − 2

(1 + λt)
1
λ + 1

(1 + λt)
x−3

λ

= 2(1 + λt)
x−1

λ − 2(1 + λt)
x−2

λ + 2(1 + λt)
x−3

λ − 2(1 + λt)
x−4

λ

+
2

(1 + λt)
1
λ + 1

(1 + λt)
x−4

λ .

(28)

Continuing the process in (28) gives the following result:

∞

∑
n=0

En,λ(x)
tn

n!
= 2

k

∑
i=1

(−1)i−1(1 + λt)
x−i

λ + (−1)k 2

(1 + λt)
1
λ + 1

(1 + λt)
x−k

λ

=
∞

∑
n=0

(
2

k

∑
i=1

(−1)i−1(x − i)n,λ

)
tn

n!
+ (−1)k 2

(1 + λt)
1
λ + 1

(1 + λt)
x−k

λ .

(29)

The desired result now follows from (4) and (29).

Theorem 7. For n, k ≥ 0, we have

Bk,n+k(x|λ) = 1
2
(x)k,λ

(
n + k

k

)
(En,λ(2 − x) + En,λ(1 − x)).

Proof. In view of (8), we have

(x)k,λ(1 + λt)
1−x

λ =
k!
tk

∞

∑
n=k

Bk,n(x|λ) tn

n!
=

∞

∑
n=0

Bk,n+k(x|λ) 1

(n+k
n )

tn

n!
. (30)

On the other hand, (30) is also given by

(x)k,λ(1 + λt)
1−x

λ =
∞

∑
n=0

(x)k,λ(1 − x)n,λ
tn

n!
. (31)

From (30) and (31), we have

(x)k,λ(1 − x)n,λ =
1

(n+k
n )

Bk,n+k(x|λ), (n, k ≥ 0). (32)
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Now, we observe that

(x)k,λ(1 + λt)
1−x

λ =
(x)k,λ

2
2

(1 + λt)
1
λ + 1

(1 + λt)
1−x

λ ((1 + λt)
1
λ + 1)

=
(x)k,λ

2

(
2

(1 + λt)
1
λ + 1

(1 + λt)
2−x

λ +
2

(1 + λt)
1
λ + 1

(1 + λt)
1−x

λ

)

=
(x)k,λ

2

(
∞

∑
n=0

(En,λ(2 − x) + En,λ(1 − x))
tn

n!

)
.

(33)

By (31) and (33), we get

(x)k,λ(1 − x)n,λ =
(x)k,λ

2
(En,λ(2 − x) + En,λ(1 − x)), (n ≥ 0). (34)

Therefore, from (32) and (34), we have the result.

4. Conclusions

In 1912, Bernstein first used Bernstein polynomials to give a constructive proof for the
Stone–Weierstrass approximation theorem. The convergence of the Bernstein approximation of a
function f to f is of order 1/n, even for smooth functions, and hence the related approximation process
is not used for computational purposes. However, by combining Bernstein approximations and the
use of ad hoc extrapolation algorithms, fast techniques were designed (see the recent review [14] and
paper [13]). Furthermore, about half a century later, they were used to design automobile bodies at
Renault by Pierre Bézier. The Bernstein polynomials are the mathematical basis for Bézier curves,
which are frequently used in computer graphics and related fields such as animation, modeling, CAD,
and CAGD.

The study of degenerate versions of special numbers and polynomials began with the papers
by Carlitz in Refs. [15,16]. Kim and his colleagues have been studying various degenerate numbers
and polynomials by means of generating functions, combinatorial methods, umbral calculus, p-adic
analysis, and differential equations. This line of study led even to the introduction to degenerate
gamma functions and degenerate Laplace transforms (see [26]). These already demonstrate that
studying degenerate versions of known special numbers and polynomials can be very promising and
rewarding. Furthermore, we can hope that many applications will be found not only in mathematics
but also in sciences and engineering. As we mentioned in the above, it was not until about fifty years
later that Bernstein polynomials found their applications in real-world problems.

With this hope in mind, here we investigated the degenerate Bernstein polynomials and operators
which were recently introduced as degenerate versions of the classical Bernstein polynomials and
operators. We derived some of their basic properties. In addition, we studied some further properties
of the degenerate Bernstein polynomials related to the degenerate Euler numbers and polynomials.
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Abstract: In this paper, we study differential equations arising from the generating functions of
Hermit Kampé de Fériet polynomials. Use this differential equation to give explicit identities for
Hermite Kampé de Fériet polynomials. Finally, use the computer to view the location of the zeros of
Hermite Kampé de Fériet polynomials.
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1. Introduction

Numerous studies have been conducted on Bernoulli polynomials, Euler polynomials, tangent
polynomials, Hermite polynomials and Laguerre polynomials (see [1–13]). The special polynomials
of the two variables provided a new way to analyze solutions of various kinds of partial differential
equations that are often encountered in physical problems. Most of the special function of mathematical
physics and their generalization have been proposed as physical problems. For example, we recall that
the two variables Hermite Kampé de Fériet polynomials Hn(x, y) defined by the generating function
(see [2])

∞

∑
n=0

Hn(x, y)
tn

n!
= ext+yt2

= F(t, x, y) (1)

are the solution of heat equation

∂

∂y
Hn(x, y) =

∂2

∂x2 Hn(x, y), Hn(x, 0) = xn.

We note that Hn(2x,−1) = Hn(x), where Hn(x) are the classical Hermite polynomials (see [1]).
The differential equation and relation are given by

(
2y

∂2

∂x2 + x
∂

∂x
− n

)
Hn(x, y) = 0 and

∂

∂y
Hn(x, y) =

∂2

∂x2 Hn(x, y),

respectively.
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By (1) and Cauchy product, we get

∞

∑
n=0

Hn(x1 + x2, y)
tn

n!
= e(x1+x2)t+yt2

=
∞

∑
n=0

Hn(x1, y)
tn

n!

∞

∑
n=0

xn
2

tn

n!

=
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
Hl(x1, y)xn−l

2

)
tn

n!
.

(2)

By comparing the coefficients on both sides of (2), we have the following theorem:

Theorem 1. For any positive integer n, we have

Hn(x1 + x2, y) =
n

∑
l=0

(
n
l

)
Hl(x1, y)xn−l

2 .

The following elementary properties of the two variables Hermite Kampé de Fériet polynomials
Hn(x, y) are readily derived from (1).

Theorem 2. For any positive integer n, we have

(1) Hn(x, y1 + y2) = n!
[ n

2 ]

∑
l=0

Hn−2l(x, y1)yl
2

l!(n − 2l)!
,

(2) Hn(x, y) =
n

∑
l=0

(
n
l

)
Hl(x)Hn−l(−x, y + 1),

(3) Hn(x1 + x2, y1 + y2) =
n

∑
l=0

(
n
l

)
Hl(x1, y1)Hn−l(x2, y2).

Recently, many mathematicians have studied differential equations that occur in the generating
functions of special polynomials (see [8,9,14–16]). The paper is organized as follows. We derive the
differential equations generated from the generating function of Hermite Kampé de Fériet polynomials:

(
∂

∂t

)N
F(t, x, y)− a0(N, x, y)F(t, x, y)− · · · − aN(N, x, y)tN F(t, x, y) = 0.

By obtaining the coefficients of this differential equation, we obtain explicit identities for the
Hermite Kampé de Fériet polynomials in Section 2. In Section 3, we investigate the zeros of the
Hermite Kampé de Fériet polynomials using numerical methods. Finally, we observe the scattering
phenomenon of the zeros of Hermite Kampé de Fériet polynomials.

2. Differential Equations Associated with Hermite Kampé de Fériet Polynomials

In order to obtain explicit identities for special polynomials, differential equations arising from
the generating functions of special polynomials are studied by many authors (see [8,9,14–16]). In this
section, we introduce differential equations arising from the generating functions of Hermite Kampé de
Fériet polynomials and use these differential equations to obtain the explicit identities for the Hermite
Kampé de Fériet polynomials.

Let

F = F(t, x, y) = ext+yt2
=

∞

∑
n=0

Hn(x, y)
tn

n!
, x, y, t ∈ C. (3)
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Then, by (3), we have

F(1) =
∂

∂t
F(t, x, y) =

∂

∂t

(
ext+yt2

)
= ext+yt2

(x + 2yt)

= (x + 2yt)F(t, x, y),

F(2) =
∂

∂t
F(1)(t, x, y) = 2yF(t, x, y) + (x + 2yt)F(1)(t, x, y)

= (2y + x2 + (4xy)t + 4y2t2)F(t, x, y),

and
F(3) =

∂

∂t
F(2)(t, x, y)

= (4xy + 8y2t)F(t, x, y) + (2y + x2 + (4xy)t + 4y2t2)F(1)(t, x, y)

= (6xy + x3)F(2)(t, x, y)

+ (8y2 + 4x2y + 4y2 + 2x2y)tF(t, x, y)

+ (4xy2 + 8xy2)t2F(t, x, y).

If we continue this process, we can guess as follows:

F(N) =

(
∂

∂t

)N
F(t, x, y) =

N

∑
i=0

ai(N, x, y)tiF(t, x, y), (N = 0, 1, 2, . . .). (4)

Differentiating (4) with respect to t, we have

F(N+1) =
∂F(N)

∂t

=
N

∑
i=0

ai(N, x, y)iti−1F(t, x, y) +
N

∑
i=0

ai(N, x, y)tiF(1)(t, x, y)

=
N

∑
i=0

ai(N, x, y)iti−1F(t, x, y) +
N

∑
i=0

ai(N, x, y)ti(x + 2yt)F(t, x, y)

=
N

∑
i=0

iai(N, x, y)ti−1F(t, x, y) +
N

∑
i=0

xai(N, x, y)tiF(t, x, y)

+
N

∑
i=0

2yai(N, x, y)ti+1F(t, x, y)

=
N−1

∑
i=0

(i + 1)ai+1(N, x, y)tiF(t, x, y) +
N

∑
i=0

xai(N, x, y)tiF(t, x, y)

+
N+1

∑
i=1

2yai−1(N, x, y)tiF(t, x, y).

(5)

Now, replacing N by N + 1 in (4), we find

F(N+1) =
N+1

∑
i=0

ai(N + 1, x, y)tiF(t, x, y). (6)

Comparing the coefficients on both sides of (5) and (6), we obtain

a0(N + 1, x, y) = a1(N, x, y) + xa0(N, x, y),

aN(N + 1, x, y) = xaN(N, x, y) + 2yaN−1(N, x, y),

aN+1(N + 1, x, y) = 2yaN(N, x, y),

(7)
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and

ai(N + 1, x, y) = (i + 1)ai+1(N, x, y) + xai(N, x, y) + 2yai−1(N, x, y), (1 ≤ i ≤ N − 1). (8)

In addition, by (4), we have

F(t, x, y) = F(0)(t, x, y) = a0(0, x, y)F(t, x, y), (9)

which gives
a0(0, x, y) = 1. (10)

It is not difficult to show that

xF(t, x, y) + 2ytF(t, x, y)

= F(1)(t, x, y)

=
1

∑
i=0

ai(1, x, y)F(t, x, y)

= a0(1, x, y)F(t, x, y) + a1(1, x, y)tF(t, x, y).

(11)

Thus, by (11), we also find

a0(1, x, y) = x, a1(1, x, y) = 2y. (12)

From (7), we note that

a0(N + 1, x, y) = a1(N, x, y) + xa0(N, x, y),

a0(N, x, y) = a1(N − 1, x, y) + xa0(N − 1, x, y), . . .

a0(N + 1, x, y) =
N

∑
i=0

xia1(N − i, x, y) + xN+1,

(13)

aN(N + 1, x, y) = xaN(N, x, y) + 2yaN−1(N, x, y),

aN−1(N, x, y) = xaN−1(N − 1, x, y) + 2yaN−2(N − 1, x, y), . . .

aN(N + 1, x, y) = (N + 1)x(2y)N ,

(14)

and
aN+1(N + 1, x, y) = 2yaN(N, x, y),

aN(N, x, y) = 2yaN−1(N − 1, x, y), . . .

aN+1(N + 1, x, y) = (2y)N+1.

(15)

For i = 1 in (8), we have

a1(N + 1, x, y) = 2
N

∑
k=0

xka2(N − k, x, y) + (2y)
N

∑
k=0

xka0(N − k, x, y). (16)

Continuing this process, we can deduce that, for 1 ≤ i ≤ N − 1,

ai(N + 1, x, y) = (i + 1)
N

∑
k=0

xkai+1(N − k, x, y) + (2y)
N

∑
k=0

xkai−1(N − k, x, y). (17)
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Note that here the matrix ai(j, x, y)0≤i,j≤N+1 is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x 2y + x2 6xy + x3 · · · ·

0 2y 2x(2y) · · · · ·

0 0 (2y)2 3x(2y)2 · · · ·

0 0 0 (2y)3 . . . ·

...
...

...
...

. . . (N + 1)x(2y)N

0 0 0 0 · · · (2y)N+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, we obtain the following theorem.

Theorem 3. For N = 0, 1, 2, . . . , the differential equation

F(N) =

(
∂

∂t

)N
F(t, x, y) =

(
N

∑
i=0

ai(N, x, y)ti

)
F(t, x, y)

has a solution
F = F(t, x, y) = ext+yt2

,

where

a0(N, x, y) =
N−1

∑
k=0

xia1(N − 1 − k, x, y) + xN ,

aN−1(N, x, y) = Nx(2y)N−1,

aN(N, x, y) = (2y)N ,

ai(N + 1, x, y) = (i + 1)
N

∑
k=0

xkai+1(N − k, x, y) + (2y)
N

∑
k=0

xkai−1(N − k, x, y),

(1 ≤ i ≤ N − 2).

Making N-times derivative for (3) with respect to t, we have

(
∂

∂t

)N
F(t, x, y) =

(
∂

∂t

)N
ext+yt2

=
∞

∑
m=0

Hm+N(x, y)
tm

m!
. (18)

By Cauchy product and multiplying the exponential series ext = ∑∞
m=0 xm tm

m!
in both sides of (18),

we get

e−nt
(

∂

∂t

)N
F(t, x, y) =

(
∞

∑
m=0

(−n)m tm

m!

)(
∞

∑
m=0

Hm+N(x, y)
tm

m!

)

=
∞

∑
m=0

(
m

∑
k=0

(
m
k

)
(−n)m−k HN+k(x, y)

)
tm

m!
.

(19)

For non-negative integer m, assume that {a(m)}, {b(m)}, {c(m)}, {c̄(m)} are four sequences
given by

∞

∑
m=0

a(m)
tn

m!
,

∞

∑
m=0

b(m)
tm

m!
,

∞

∑
m=0

c(m)
tm

m!
,

∞

∑
m=0

c̄(m)
tm

m!
.
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If ∑∞
m=0 c(m)

tm

m!
× ∑∞

m=0 c̄(m)
tm

m!
= 1, we have the following inverse relation:

a(m) =
m

∑
k=0

(
m
k

)
c(k)b(m − k) ⇐⇒ b(m) =

m

∑
k=0

(
m
k

)
c̄(k)a(m − k). (20)

By (20) and the Leibniz rule, we have

e−nt
(

∂

∂t

)N
F(t, x, y) =

N

∑
k=0

(
N
k

)
nN−k

(
∂

∂t

)k (
e−ntF(t, x, y)

)

=
∞

∑
m=0

(
N

∑
k=0

(
N
k

)
nN−k Hm+k(x − n, y)

)
tm

m!
.

(21)

Hence, by (19) and (21), and comparing the coefficients of
tm

m!
gives the following theorem.

Theorem 4. Let m, n, N be nonnegative integers. Then,

m

∑
k=0

(
m
k

)
(−n)m−k HN+k(x, y) =

N

∑
k=0

(
N
k

)
nN−k Hm+k(x − n, y). (22)

If we take m = 0 in (22), then we have the following:

Corollary 1. For N = 0, 1, 2, . . . , we have

HN(x, y) =
N

∑
k=0

(
N
k

)
nN−k Hk(x − n, y).

For N = 0, 1, 2, . . . , the differential equation

F(N) =

(
∂

∂t

)N
F(t, x, y) =

(
N

∑
i=0

ai(N, x, y)ti

)
F(t, x, y)

has a solution
F = F(t, x, y) = ext+yt2

.

Here is a plot of the surface for this solution.
In Figure 1 (left), we choose −3 ≤ x ≤ 3,−1 ≤ t ≤ 1, and y = 3. In Figure 1 (right), we choose

−3 ≤ x ≤ 3,−1 ≤ t ≤ 1, and y = −3.
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Figure 1. The surface for the solution F(t, x, y).
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3. Zeros of the Hermite Kampé de Fériet Polynomials

By using software programs, many mathematicians can explore concepts more easily than in
the past. These experiments allow mathematicians to quickly create and visualize new ideas, review
properties of figures, create many problems, and find and guess patterns. This numerical survey is
particularly interesting because it helps many mathematicians understand basic concepts and solve
problems. In this section, we examine the distribution and pattern of zeros of Hermite Kampé de
Fériet polynomials Hn(x, y) according to the change of degree n. Based on these results, we present a
problem that needs to be approached theoretically.

By using a computer, the Hermite Kampé de Fériet polynomials Hn(x, y) can be determined
explicitly. First, a few examples of them are as follows:

H0(x, y) = 1,

H1(x, y) = x,

H2(x, y) = x2 + 2y,

H3(x, y) = x3 + 6xy,

H4(x, y) = x4 + 12x2y + 12y2,

H5(x, y) = x5 + 20x3y + 60xy2,

H6(x, y) = x6 + 30x4y + 180x2y2 + 120y3,

H7(x, y) = x7 + 42x5y + 420x3y2 + 840xy3,

H8(x, y) = x8 + 56x6y + 840x4y2 + 3360x2y3 + 1680y4,

H9(x, y) = x9 + 72x7y + 1512x5y2 + 10, 080x3y3 + 15, 120xy4,

H10(x, y) = x10 + 90x8y + 2520x6y2 + 25, 200x4y3 + 75, 600x2y4 + 30, 240y5.

Using a computer, we investigate the distribution of zeros of the Hermite Kampé de Fériet
polynomials Hn(x, y).

Plots the zeros of the polynomial Hn(x, y) for n = 20, y = 2,−2, 2 + i,−2 + i and x ∈ C are
as follows (Figure 1). In Figure 2 (top-left), we choose n = 20 and y = 2. In Figure 2 (top-right),
we choose n = 20 and y = −2. In Figure 2 (bottom-left), we choose n = 20 and y = 2 + i . In Figure 2
(bottom-right), we choose n = 20 and y = −2 − i.

Stacks of zeros of the Hermite Kampé de Fériet polynomials Hn(x, y) for 1 ≤ n ≤ 20 from a 3D
structure are presented (Figure 3). In Figure 3 (top-left), we choose y = 2. In Figure 3 (top-right),
we choose y = −2. In Figure 3 (bottom-left), we choose y = 2+ i. In Figure 3 (bottom-right), we choose
y = −2 − i. Our numerical results for approximate solutions of real zeros of the Hermite Kampé de
Fériet polynomials Hn(x, y) are displayed (Tables 1–3).

The plot of real zeros of the Hermite Kampé de Fériet polynomials Hn(x, y) for 1 ≤ n ≤ 20
structure are presented (Figure 4). It is expected that Hn(x, y), x ∈ C, y > 0, has Im(x) = 0 reflection
symmetry analytic complex functions (see Figures 2 and 3). We also expect that Hn(x, y), x ∈ C, y < 0,
has Re(x) = 0 reflection symmetry analytic complex functions (see Figures 2–4). We observe a
remarkable regular structure of the complex roots of the Hermite Kampé de Fériet polynomials
Hn(x, y) for y < 0. We also hope to verify a remarkable regular structure of the complex roots of the
Hermite Kampé de Fériet polynomials Hn(x, y) for y < 0 (Table 1). Next, we calculated an approximate
solution that satisfies Hn(x, y) = 0, x ∈ C. The results are shown in Table 3.
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Figure 2. Zeros of Hn(x, y).
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Figure 3. Stacks of zeros of Hn(x, y), 1 ≤ n ≤ 20.
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Table 1. Numbers of real and complex zeros of Hn(x,−2).

Degree n Real Zeros Complex Zeros

1 1 0
2 2 0
3 3 0
4 4 0
5 5 0
6 6 0
7 7 0
8 8 0
9 9 0

10 10 0
11 11 0
12 12 0
13 13 0
14 14 0
...

...
...

29 29 0
30 30 0

Table 2. Numbers of real and complex zeros of Hn(x, 2).

Degree n Real Zeros Complex Zeros

1 0 1
2 0 2
3 0 3
4 0 4
5 0 5
6 0 6
7 0 7
8 0 8
9 0 9

10 0 10
11 0 11
12 0 12
13 0 13
14 0 14
...

...
...

29 0 29
30 0 30

-10 0 10

Re�x�

0

5

10

15

20

n

Figure 4. Real zeros of Hn(x,−2) for 1 ≤ n ≤ 20.
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Table 3. Approximate solutions of Hn(x,−2) = 0, x ∈ R .

Degree n x

1 0

2 −2.0000, 2.0000

3 −3.4641, 0, 3.4641

4 −4.669, −1.4839, 1.4839, 4.669

5 −5.714, −2.711, 0, 2.711, 5.714

6 −6.65, −3.778, −1.233, 1.233, 3.778, 6.65

7 −7.50, −4.73, −2.309, 0, 2.309, 4.73, 7.50

8 −8.3, −5.6, −3.27, −1.078, 1.078, 3.27, 5.6, 8.3

4. Conclusions and Future Developments

This study obtained the explicit identities for Hermite Kampé de Fériet polynomials Hn(x, y).
The location and symmetry of the roots of the Hermite Kampé de Fériet polynomials were investigated.
We examined the symmetry of the zeros of the Hermite Kampé de Fériet polynomials for various
variables x and y, but, unfortunately, we could not find a regular pattern. However, the following
special cases showed regularity. Through numerical experiments, we will make the following series
of conjectures.

If y > 0, we can see that Hn(x, y) has Re(x) = 0 reflection symmetry. Therefore, the following
conjecture is possible.

Conjecture 1. Prove or disprove that H(x, y), x ∈ C and y > 0, has Im(x) = 0 reflection symmetry analytic
complex functions. Furthermore, Hn(x, y) has Re(x) = 0 reflection symmetry for y < 0.

As a result of investigating more n variables, it is still unknown whether the conjecture is true or
false for all variables n (see Figure 1).

Conjecture 2. Prove or disprove that Hn(x, y) = 0 has n distinct solutions.

Let’s use the following notations. RHn(x,y) denotes the number of real zeros of Hn(x, y) lying on
the real plane Im(x) = 0 and CHn(x,y) denotes the number of complex zeros of Hn(x, y). Since n is the
degree of the polynomial Hn(x, y), we have RHn(x,y) = n − CHn(x,y) (see Tables 1 and 2).

Conjecture 3. Prove or disprove that

RHn(x,y) =

{
n, if y < 0,
0, if y > 0,

CHn(x,y) =

{
0, if y < 0,
n, if y > 0.
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