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Preface to ”Relativistic Quantum Information”

Relativistic quantum information (RQI) is a multidisciplinary research field that involves

concepts and techniques from quantum information with special and general relativity. General

relativity and quantum physics are two established domains of physics that have been mutually

incompatible until now. Hawking radiation, the black hole information paradox including soft

photons and gravitons, the equivalence between the Einstein–Rosen bridge from general relativity,

and the Einstein–Podolski–Rosen paradox from quantum mechanics are examples of the new

phenomena that arise when two theories are combined. RQI uses information as a tool to investigate

spacetime structure. On the other hand, RQI helps to identify the applicability of quantum

information techniques when relativistic effects become important: entanglement and quantum

teleportation can be used to reveal gravitational waves or realize a quantum link between satellites in

different reference frames in view of future large-scale quantum technologies. The aim of this Special

Issue is to take stock of state-of-the-art perspectives on RQI, with particular attention to the concept

of quantum information and the repercussions of RQI on the foundations of physics.

Fabrizio Tamburini, Ignazio Licata

Editors
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The results obtained since the 70s with the study of Hawking radiation and the Unruh effect
have highlighted a new domain of authority of relativistic principles. Entanglement, the quantum
phenomenon par excellence, is in fact observer dependent [1], and the very concept of “particle” does
not have the same information content for different observers [2,3]. All this proposes the centrality of
the notion of “event” in physics and the meaning of its informational value. It is in this direction that
Quantum Relativistic Information (QRI) is defined, which can therefore be defined as the study of
quantum states in a relational context.

It must be said that, despite being a prelude to a future quantum gravity, QRI is a largely autonomous
field—because it does not imply any specific hypothesis on the Planck scale—and is characterized by
some principles that guard an assumption of great epistemological strength. As A. Zeilinger [4] says, it is
impossible to distinguish between “reality” and “description of reality”, i.e., information in the study of
physics; doing so means jeopardizing the universal value and beauty of physical laws. Both relativity
and quantum physics are aspects of a broader information theory that we have been discovering in
recent years and within which the foundational debate is renewed with new experimental possibilities.
The first principle we need is therefore:

The principle of contextuality [5]: Each description of a class of events must contain, implicitly or
explicitly, the reference structure of the observer. In other words, it must be possible for each observer
to define assign values for each observable.

A very strong request comes from the principle of equivalence, which, after showing unsuspected
resistance to any attempt of de-construction, is now extended to the quantum domain as a request
to describe gravitational phenomena in terms of causal networks [6–11]. L. Susskind and G. ’t Hooft
proposal for the information paradox adds a new element to the picture: the complementarity invoked
is in fact a principle of equivalence [12,13]. Although the Black Holes question are still far from being
resolved (with particular regard to the core of the BH, with interesting inter-connections between
strings, non-commutativity and euclidicity, see for example: [14–20]), the synthesis of equivalence and
complementarity leads to a powerful holographic principle that introduces, according to Bekenstein’s
limit [21], a new way of looking at the locality and a different approach to cosmology. The holographic
principle feeds on conjectures and is still looking for theories (duality between gravity and quantum
field theory: [22–26]), but it is a catalyst for new conceptual suggestions regarding the physical
meaning of the cosmological horizon. In particular, considering the four-dimensional dynamics as
the explication (in a Bohmian sense) of a De Sitter non-perturbative vacuum offers an improvement
of Hartle–Hawking proposal in quantum cosmology and a solution to the informational paradox
in the BH [27–29]. This line of reasoning is also promising for an event-based reading of Quantum
Mechanics [30].

For a long time, holography and emergentism appeared as two styles of explanation irreconcilable
with respect to the locality, but an emergency of time could offer new perspectives with a duality
between imaginary time and real time, in a diachronic/synchronic complementarity [31–33].

It is known that there are well-defined whormhole solutions in General Relativity and Yang
Mills Theory, and the recent ER = EPR conjecture proposes the question of the emergence of metric
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space-time from a non-local background [34–38]. A suggestion in the direction of the laboratory comes
from the Bose–Marletto–Vedral conjecture on the possible coalescence of two quantum systems in a
non-local phase, which would reveal the limits of the local metric description and the non-classical
aspects of space-time [39,40]. A covariant analysis of this situation shows that discrete effects could
prove to be an overlap of geometries measurable through entanglement entropy [41,42].

Furthermore, localization appears as the production of a new degree of freedom. We assume,
in accordance with a recent proposal [30,43], that the localization R of a process is associated with the
genesis of a micro-horizon of de Sitter of center O and radius cθ0 ≈ 10–13 cm (chronon, corresponding
to the classical radius of the electron), with O generally delocalized according to the wave function
entering/leaving the process. The constant θ0 is independent of cosmic time, so the ratio t0/θ0 ≈ 1041

is also independent of cosmic time, with ct0 ≈ 1028 cm. This ratio expresses the number of totally
distinct temporal locations accessible by the R process within the horizon of cosmological de Sitter.
In practice, the time line segment on which an observer at the center of the horizon places the process
R has length t0, while the duration of the process R is in the order of θ0; the segment is therefore
divided into separate t0/θ0 ≈ 1041 “cells”. Each cell can be in two states: “on” or “off”. The temporal
localization of a single process R corresponds to the situation in which all the cells are switched off
minus one. Configurations with multiple cells on will correspond to the location of multiple distinct R
processes on the same time line. If you accept the idea that each cell is independent, you have 21041

distinct configurations in all. The positional information associated with the location of 0, 1, 2, . . . , 1041

R processes then amounts to 1041 bits, the binary logarithm of the number of configurations. This is a
kind of coded information on the time axis contained within the observer’s de Sitter horizon.

The R processes are in fact real interactions between real particles, during which an amount
of action is exchanged in the order of the Planck quantum h. Therefore, in terms of phase space,
the manifestation of one of these processes is equivalent to the ignition of an elementary cell of
volume h3. The number of “switched on” cells in the phase space of a given macroscopic physical
system is an estimator of the volume it occupies in this space, and therefore of its entropy. It is therefore
conceivable that the location information of the R processes is connected to entropy through the
uncertainty principle. This possibility presupposes the “objective” nature of the R processes.

It is therefore natural to ask whether some form of Bekenstein’s limit on entropy applies in some
way to the two horizons mentioned. If we assume that the information on the temporal location of the
processes R, I = 1041 bits, is connected to the area of the micro-horizon, A = (cθ0) 2 ≈ 10−26 cm2 from
the holographic relationship:

A
4l2

= I (1)

Then, the spatial extension l of the “cells” associated with an information bit is ≈10−33 cm,
the Planck scale! It is necessary to underline that the Planck scale presents itself in this way as
a consequence of the holographic conjecture (1), combined with the “two horizons” hypothesis,
and therefore of the finiteness of the information I. It in no way represents a limit to the continuity of
spacetime, nor to the spatial or temporal distance between two events (which remains a continuous
variable). Furthermore, since I = t0/θ0 and t0 is related to the cosmological constant λ by the relation
λ = 4/3t02, the (1) is essentially a definition of the Planck scale as a function of the cosmological constant.
A global-local relationship is exactly what we expect from a holographic vacuum theory.
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Abstract: Black hole (BH) collisions produce gravitational radiation which is generally thought, in a
quantum limit, to be gravitons. The stretched horizon of a black hole contains quantum information,
or a form of quantum hair, which is a coalescence of black holes participating in the generation of
gravitons. This may be facilitated with a Bohr-like approach to black hole (BH) quantum physics with
quasi-normal mode (QNM) approach to BH quantum mechanics. Quantum gravity and quantum
hair on event horizons is excited to higher energy in BH coalescence. The near horizon condition for
two BHs right before collision is a deformed AdS spacetime. These excited states of BH quantum
hair then relax with the production of gravitons. This is then argued to define RT entropy given
by quantum hair on the horizons. These qubits of information from a BH coalescence should then
appear in gravitational wave (GW) data.

Keywords: colliding black holes; quantum hair; bohr-likr black holes

1. Introduction

Quantum gravitation suffers primarily from an experimental problem. It is common to read
critiques that it has gone off into mathematical fantasies, but the real problem is the scale at which
such putative physics holds. It is not hard to see that an accelerator with current technology would
be a ring encompassing the Milky Way galaxy. Even if we were to use laser physics to accelerate
particles the energy of the fields proportional to the frequency could potentially reduce this by a factor
of about 106 so a Planck mass accelerator would be far smaller; it would encompass the solar system
including the Oort cloud out to at least 1 light years. It is also easy to see that a proton-proton collision
that produces a quantum black hole (BH) of a few Planck masses would decay into around a mole of
daughter particles. The detection and track finding work would be daunting. Such experiments are
from a practical perspective nearly impossible. This is independent of whether one is working with
string theory or loop variables and related models. It is then best to let nature do the heavy lifting for
us. Gravitation is a field with a coupling that scales with the square of mass-energy. Gravitation is only
a strong field when lots of mass-energy is concentrated in a small region, such as a BH. The area of
the horizon is a measure of maximum entropy any quantity of mass-energy may possess [1], and the
change in horizon area with lower and upper bounds in BH thermodynamic a range for gravitational
wave production. Gravitational waves produced in BH coalescence contains information concerning
the BHs configuration, which is argued here to include quantum hair on the horizons. Quantum
hair means the state of a black hole from a single microstate in no-hair theorems. Strominger and
Vafa [2] advanced the existence of quantum hair using theory of D-branes and STU string duality. This
information appears as gravitational memory, which is found when test masses are not restored to their
initial configuration [3]. This information may be used to find data on quantum gravitation. There are
three main systems in physics, quantum mechanics (QM), statistical mechanics and general relativity

Entropy 2020, 22, 301; doi:10.3390/e22030301 www.mdpi.com/journal/entropy5
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(GR) along with gauge theory. These three systems connect with each other in certain ways. There
is quantum statistical mechanics in the theory of phase transitions, BH thermodynamics connects
GR with statistical mechanics, and Hawking-Unruh radiation connects QM to GR as well. These are
connections but are incomplete and there has yet to be any general unification or reduction of degrees
of freedom. Unification of QM with GR appeared to work well with holography, but now faces an
obstruction called the firewall [4]. Hawking proposed that black holes may lose mass through quantum
tunneling [5]. Hawking radiation is often thought of as positive and negative energy entangled states
where positive energy escapes and negative energy enters the BH. The state which enters the BH
effectively removes mass from the same BH and increases the entanglement entropy of the BH through
its entanglement with the escaping state. This continues but this entanglement entropy is limited
by the Bekenstein bound. In addition, later emitted bosons are entangled with both the black hole
and previously emitted bosons. This means a bipartite entanglement is transformed into a tripartite
entangled state. This is not a unitary process. This will occur once the BH is at about half its mass at
the Page time [6], and it appears the unitary principle (UP) is violated. In order to avoid a violation
of UP the equivalence principle (EP) is assumed to be violated with the imposition of a firewall.
The unification of QM and GR is still not complete. An elementary approach to unitarity of black
holes prior to the Page time is with a Bohr-like approach to BH quantum physics [7–9], which will be
discussed in next section. Quantum gravity hair on BHs may be revealed in the collision of two BHs.
This quantum gravity hair on horizons will present itself as gravitational memory in a GW. This is
presented according to the near horizon condition on Reissnor-Nordstrom BHs, which is AdS2 × S2,
which leads to conformal structures and complementarity principle between GR and QM.

2. Bohr-Like Approach to Black Hole Quantum Physics

At the present time, there is a large agreement, among researchers in quantum gravity, that BHs
should be highly excited states representing the fundamental bricks of the yet unknown theory of
quantum gravitation [7–9]. This is parallel to quantum mechanics of atoms. In the 1920s the founding
fathers of quantum mechanics considered atoms as being the fundamental bricks of their new theory.
The analogy permits one to argue that BHs could have a discrete energy spectrum [7–9]. In fact,
by assuming the BH should be the nucleus the “gravitational atom”, then, a quite natural question
is—What are the “electrons”? In a recent approach, which involves various papers (see References [7–9]
and references within), this important question obtained an intriguing answer. The BH quasi-normal
modes (QNMs) (i.e., the horizon’s oscillations in a semi-classical approach) triggered by captures of
external particles and by emissions of Hawking quanta, represent the “electrons” of the BH which is
seen as being a gravitational hydrogen atom [7–9]. In References [7–9] it has been indeed shown that,
in the the semi-classical approximation, which means for large values of the BH principal quantum
number n, the evaporating Schwarzschild BH can be considered as the gravitational analogous of the
historical, semi-classical hydrogen atom, introduced by Niels Bohr in 1913 [10,11]. Thus, BH QNMs
are interpreted as the BH electron-like states, which can jump from a quantum level to another one.
One can also identify the energy shells of this gravitational hydrogen atom as the absolute values of
the quasi-normal frequencies [7–9]. Within the semi-classical approximation of this Bohr-like approach,
unitarity holds in BH evaporation. This is because the time evolution of the Bohr-like BH is governed
by a time-dependent Schrodinger equation [8,9]. In addition, subsequent emissions of Hawking
quanta [5] are entangled with the QNMs (the BH electron states) [8,9]. Various results of BH quantum
physics are consistent with the results of [8,9], starting from the famous result of Bekenstein on the area
quantization [12]. Recently, this Bohr-like approach to BH quantum physics has been also generalized
to the Large AdS BHs, see Reference [13]. For the sake of simplicity, in this Section we will use Planck
units (G = c = kB = h̄ = 1

4πε0
= 1). Assuming that M is the initial BH mass and that En is the total

energy emitted by the BH when the same BH is excited at the level n in units of Planck mass (then
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Mp = 1), one gets that a discrete amount of energy is radiated by the BH in a quantum jump in terms
of energy difference between two quantum levels [7–9]

ΔEn1→n2 ≡ En2 − En1 = Mn1 − Mn2

=
√

M2 − n1
2 −

√
M2 − n2

2 ,
(1)

This equation governs the energy transition between two generic, allowed levels n1 and n2 > n1 and
consists in the emission of a particle with a frequency ΔEn1→n2 [7–9]. The quantity Mn in Equation (1),
represents the residual mass of the BH which is now excited at the level n. It is exactly the original BH
mass minus the total energy emitted when the BH is excited at the level n [8,9]. Then, Mn = M − En,
and one sees that the energy transition between the two generic allowed levels depends only on the two
different values of the BH principal quantum number and on the initial BH mass [7–9]. An analogous
equation works also in the case of an absorption, See References [7–9] for details. In the analysis of
Bohr [10,11], electrons can only lose and gain energy during quantum jumps among various allowed
energy shells. In each jump, the hydrogen atom can absorb or emit radiation and the energy difference
between the two involved quantum levels is given by the Planck relation (in standard units) E = hν.
In the BH case, the BH QNMs can gain or lose energy by quantum jumps from one allowed energy
shell to another by absorbing or emitting radiation (Hawking quanta). The following intriguing remark
finalizes the analogy between the current BH analysis and Bohr’s hydrogen atom. The interpretation
of Equation (1) is the energy states of a particle, that is the electron of the gravitational atom, which is
quantized on a circle of length [7–9]

L = 4π

(
M +

√
M2 − n

2

)
. (2)

Hence, one really finds the analogous of the electron traveling in circular orbits around the nucleus in
Bohr’s hydrogen atom. One sees that it is also

Mn =
√

M2 − n
2 . (3)

Thus the uncertainty in a clock measuring a time t becomes, with the Planck mass is equal to 1 in
Planck units,

δt
t
=

1
2Mn

=
1√

M2 − n
2

, (4)

which means that the accuracy of the clock required to record physics at the horizon depends on the
BH excited state, which corresponds to the number of Planck masses it has. More in general, from the
Bohr-like approach to BH quantum physics it emerges that BHs seem to be well defined quantum
mechanical systems, having ordered, discrete quantum spectra. This issue appears consistent with the
unitarity of the underlying quantum gravity theory and with the idea that information should come
out in BH evaporation, in agreement with a known result of Page [6]. For the sake of completeness and
of correctness, we stress that the topic of this Section, that is, the Bohr-like treatment of BH quantum
physics, is not new. A similar approach was used by Bekenstein in 1997 [14] and by Chandrasekhar in
1998 [15].

3. Near Horizon Spacetime and Collision of Black Holes

This paper proposes how the quantum basis of black holes may be detected in gravitational
radiation. Signatures of quantum modes may exist in gravitational radiation. Gravitational memory or
BMS symmetries are one way in which quantum hair associated with a black hole may be detected [16].
Conservation of quantum information suggests that quantum states on the horizon may be emitted or
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entangled with gravitational radiation and its quantum numbers and information. In what follows a
toy model is presented where a black hole coalescence excites quantum hair on the stretched horizon
in the events leading up to the merger of the two horizons. The model is the Poincare disk for spatial
surface in time. To motivate this we look at the near horizon condition for a near extremal black hole.
The Reissnor-Nordstrom (RN) metric is

ds2 = −
(

1 − 2m
r

+
Q2

r2

)
dt2 +

(
1 − 2m

r
+

Q2

r2

)−1

dr2 + r2dΩ2.

Here Q is an electric or Yang-Mills charge and m is the BH mass. In previous section, considering the
Schwarzschild BH, we labeled the BH mass as M instead. The accelerated observer near the horizon
has a constant radial distance. For the sake of completeness, we recall that the Bohr-like approach
to BH quantum physics has been also partially developed for the Reissnor-Nordstrom black hole
(RNBH) in Reference [14]. In that case, the expression of the energy levels of the RNBH is a bit more
complicated than the expression of the energy levels of the Schwarzschild BH, being given by (in
Planck units and for small values of Q) [14]

En � m −
√

m2 +
q2

2
− Qq − n

2
, (5)

where q is the total charge that has been loss by the BH excited at the level n. Now consider

ρ =
∫ r

r+
dr
√

grr =
∫ r

r+

dr√
1 − 2m/r + Q2/r2

with lower integration limit r+ is some small distance from the horizon and the upper limit r removed
from the black hole. The result is

ρ = m log[
√

r2 − 2mr + Q2 + r − m] +
√

r2 − 2mr + Q2
∣∣∣r

r+

with a change of variables ρ = ρ(r) the metric is

ds2 =
( ρ

m

)2
dt2 −

(
m
ρ

)2
dρ2 − m2dΩ2, (6)

where on the horizon ρ → r. This is the metric for AdS2 × S2 for AdS2 in the (t, ρ) variables
tensored with a two-sphere S2 of constant radius = m in the angular variables at every point of AdS2.
This metric was derived by Carroll, Johnson and Randall [17]. In Section 4 it is shown this hyperbolic
dynamics for fields on the horizon of coalescing BHs is excited. This by the Einstein field equation
will generate gravitational waves, or gravitons in some quantum limit not completely understood.
This GW information produced by BH collisions will reach the outside world highly red shifted by
the tortoise coordinate r∗ = r′ − r − 2m ln|1 − 2m/r|. For a 30 solar mass BH, which is mass of
some of the BHs which produce gravitational waves detected by LIGO, the wavelength of this ripple,
as measured from the horizon to δr ∼ λ

δr′ = λ − 2m ln
(

λ

2m

)
� 2 × 106m.

A ripple in spacetime originating an atomic distance 10−10 m from the horizon gives a ν = 150 Hz
signal, detectable by LIGO [18]. Similarly, a ripple 10−13 to 10−17 cm from the horizon will give a
10−1 Hz signal detectable by the eLISA interferometer system [19]. Thus, quantum hair associated
with QCD and electroweak interactions that produce GWs could be detected. More exact calculations
are obviously required. Following Reference [20], one can use Hawking’s periodicity argument
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from the RN metric in order to obtain an “effective” RN metric which takes into account the BH
dynamical geometry due to the subsequent emissions of Hawking quanta. Hawking radiation is
generated by a tunneling of quantum hair to the exterior, or equivalently by the reduction in the
number of quantum modes of the BH. This process should then be associated with the generation of a
gravitational wave. This would be a more complete dynamical description of the response spacetime
has to Hawking radiation, just as with what follows with the converse absorption of mass or black
hole coalescence. This will be discussed in a subsequent paper. These weak gravitons produced by BH
hair would manifest themselves in gravitational memory. The Bondi-Metzner-Sachs (BMS) symmetry
of gravitational radiation results in the displacement of test masses [21]. This displacement requires
an interferometer with free floating mirrors, such as what will be available with the eLISA system.
The BMS symmetry is a record of YM charges or potentials on the horizon converted into gravitational
information. The BMS metric provide phenomenology for YM gauge fields, entanglements of states on
horizons and gravitational radiation. The physics is correspondence between YM gauge fields and
gravitation. The BHs coalescence is a process which converts qubits on the BHs horizons into gravitons.
Two BHs close to coalescence define a region between their horizons with a vacuum similar to that
in a Casimir experiment. The two horizons have quantum hair that forms a type of holographic
“charge” that performs work on spacetime as the region contracts. The quantum hair on the stretched
horizon is raised into excited states. The ansatz is made that AdS2 × S2 for two nearly merged BHs
is mapped into a deformed AdS4 for a small region of space between two event horizons of nearly
merged BHs. The deformation is because the conformal hyperbolic disk is mapped into a strip. In one
dimension lower, the spatial region is a two dimensional hyperbolic strip mapped from a Poincare
disk with the same SL(2,R) symmetry. The manifold with genus g for charges has Euler characteristic
χ = 2g − 2 and with the 3 dimensions of SL(2, R) this is the index 6g − 6 for Teichmuller space [21].
The SL(2, R) is the symmetry of the spatial region with local charges modeled as a U(1) field theory
on an AdS3. The Poincare disk is then transformed into H2

p that is a strip. The H2
p ⊂ AdS3 is simply

a Poincare disk in complex variables then mapped into a strip with two boundaries that define the
region between the two event horizons.

4. AdS Geometry in BH Coalescence

The near horizon condition for a near extremal black hole approximates AdS2 × S2.
In Reference [17] the extremal blackhole replaces the spacelike region in (r+, r−) with AdS2 × S2.
For two black holes in near coalescence there are two horizons, that geodesics terminate on. The region
between the horizons is a form of Kasner spacetime with an anisotropy in dynamics between the radial
direction and on a plane normal to the radial direction. In the appendix it is shown this is for a short
time period approximately an AdS4 spacetime. The spatial surface is a three-dimensional Poincare
strip, or a three-dimensional region with hyperbolic arcs. This may be mapped into a hyperbolic space
H3. This is a further correlation between anti-de Sitter spacetimes and black holes, such as seen in
AdS/BH correspondences [22]. The region between two event horizons is argued to be approximately
AdS4 by first considering the two BHs separated by some distance. There is an expansion of the area
of the S2 that is then employed with the AdS2 × S2. We then make some estimates on the near horizon
condition for black holes very close to merging. To start consider the case of two equal mass black
holes in a circular orbit around a central point. We consider the metric near the center of mass r = 0
and the distance between the two black holes d >> 2m. In doing this we may get suggestions om
how to model the small region between two black holes about to coalesce. An approximate metric for
two distant black holes is of the form

ds2 =

(
1 − 2m

|r + d| − 2m
|r + d|

)
dt2 −

(
1 − 2m

|r + d| − 2m
|r + d|

)−1
dr2 − r2(dθ2 + sin2θdΦ2),
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where dΦ = dφ + ωdt, for ω the angular velocity of the two black holes around r = 0 .
With the approximation for a moderate Keplerian orbit we may then write this metric as This metric is
approximated with the binomial expansion to O(r2) and O(ω) as

ds2 =

(
1 − 2m

d

(
1 + 2

r2

d2

))
dt2 −

(
1 − 2m

d

(
1 + 2

r2

d2

))−1

dr2

− 2r2ω sin θdφdt − r2(dθ2 + sin2θdφ2).

gtt is similar to the AdS2 gtt metric term plus constant terms and and similarly grr. It is important
to note this approximate metric has expanded the measure of the angular portion of the metric.
This means the 2-sphere with these angle measures has more “area” than before from the contribution
of angular momentum.

The Ricci curvatures are

Rtt = Rrr � − 4m
d

, Rtφ �
[

4
(

1 +
4m
d

)
+

16mr2

d3

]
ωsin2θ,

Rφφ = gtφgttRtφ � − 8r2ω2sin4θ + O
(

ω2

d

)
, Rθθ = 0,

where O(d−2) terms and higher are dropped. The Rrr and Rtφ Ricci curvature are negative and Rtφ

positive. The 2-surface in r, φ coordinates has hyperbolic properties. This means we have at least the
embedding of a deformed version of AdS3 in this spacetime. This exercise expands the boundary of
the disk D2, in a 2-spacial subsurface, with boundary around each radial distance so there is an excess
angle or “wedge” that gives hyperbolic geometry.

The (t, φ) curvature components comes from the Riemannian curvature Rrφtr = − 1
2 ωα−1 and

its contribution to the geodesic deviation equation along the radial direction is

d2r
ds2 + Rr

φtrU
tUφr = 0

or that for Ut � 1 and Uφ � ω
d2r
dt2 � 1

2
ω2r.

This has a hyperbolic solution r = r0cosh( 1√
2

ωt). The Uφ will have higher order terms that may be
computed in the dynamics for φ Similarly the geodesic deviation equation for φ is

d2φ

ds2 + Rφ
rtrU

tUrr = 0

or cryptically
d2φ

dt2 � Riem A cosh(αt)sinh(αt),

for Riem → RŒ
rtr. This has an approximately linear form for small t that turns around into exponential

or hyperbolic forms for larger time. The spatial manifold in the (r, φ) variables then have some
hyperbolic structure.

It is worth a comment on the existence of Ricci curvatures for this spacetime. The Schwarzschild
metric has no Ricci curvature as a vacuum solution. This 2-black hole solution however is not exactly
integrable and so mass-energy is not localizable. This means there is an effective source of curvature
due to the nonlocalizable nature of mass-energy for this metric. This argument is made in order
to justify the ansatz the spacetime between two close event horizons prior to coalescence is AdS4.
Since most of the analysis of quantum field is in one dimension lower it is evident there is a subspace
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AdS3. This is however followed up by looking at geometry just prior to coalescence where the S2 has
more area than it can bound in a volume. This leads to hyperbolic geometry. Above we argue there is
an expansion of a disk boundary ∂D2, and thus hyperbolic geometry. It is then assume this carries to
one additional dimension as well. Now move to examine two black holes with their horizons very
close. Consider a modification of the AdS2 × S2 metric with the inclusion of more “œarea” in the S2

portion. The addition of area to S2 is then included in the metric. In this fashion the influence of the
second horizon is approximated by a change in the metric of S2. The metric is then a modified form of
the near horizon metric for a single black hole,

ds2 =
( r

R

)2
dt2 −

(
R
r

)2
dr2 − (r2 + ρ2)dΩ2.

The term ρ means there is additional area to the S2 making it hyperbolic. The Riemann curvatures for
this metric are:

Rtrtr = − 1
r2 − 2ρ2

r2(r2 + ρ2)
, Rrθrθ = − ρ2

r2 + ρ2 , Rrφrφ = − ρ2

r2 + ρ2 sin2θ, Rθφθφ = ρ2sin2θ

From these the Ricci curvatures are

Rrr = − 1
r2 − 2

ρ2

r2 + ρ2

2

, Rθθ = Rφφ = −
(

1 +
R2

r2

)
ρ2

r2 + ρ2

are negative for small values of r. For r → 0 all Ricci curvatures diverge Ric → − ∞. The Rrr

diverges more rapidly, which gives this spacetime region some properties similar to a Kasner metric.
However, Rrr − Rθθ is finite for r → ∞. This metric then has properties of a deformed AdS4. With the
treatment of quantum fields between two close horizons before coalescence the hyperbolic space H2

is considered as the spatial surface in a highly deformed AdS3. A Poincare disk is mapped into a
hyperbolic strip.

The remaining discussion will now center around the spatial hyperbolic spatial surface.
In particular the spatial dimensions are reduced by one. This is then a BTZ-like analysis of the
near horizon condition. The 2 dimensional spatial surface will exhibit hyperbolic dynamics for particle
fields and this is then a model for the near horizon hair that occurs with the two black holes in
this region.

For the sake of simplicity now reduce the dimensions and consider AdS3 in 2 plus 1 spacetime.
The near horizon condition for a near extremal black hole in 4 dimensions is considered for the
BTZ black hole. This AdS3 spacetime is then a foliations of hyperbolic spatial surfaces H2 in time.
These surfaces under conformal mapping are a Poincare disk. The motion of a particle on this disk
are arcs that reach the conformal boundary as t → ∞. This is then the spatial region we consider the
dynamics of a quantum particle. This particle we start out treating as a Dirac particle, but the spinor
field we then largely ignore by taking the square of the Dirac equation to get a Klein-Gordon wave.
Define the z and z̄ of the Poincare disk with the metric

ds2
p−disk = R2gzz̄dzdz̄ = R2 dzdz̄

1 − zz̄

with constant negative Gaussian curvature R = − 4/R2. This metric gzx̄ = R2/(1 − z̄z) is invariant
under the SL(2, R) ∼ SU(1, 1) group action, which, for g ∈ SU(1, 1), takes the form

z → gz =
az + b
b̄z + ā

, g =

(
a b
b̄ ā

)
. (7)
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The Dirac equation iγμDμψ + mψ = 0, Dμ = ∂μ + iAμ on the Poincare disk has the
Hamiltonian matrix

H =

(
m Hw

H∗
w −m

)
(8)

for the Weyl Hamiltonians

Hw =
1√
gzz̄

αz

(
2Dz +

1
2

∂z(ln gzz̄)

)
,

H∗
w =

1√
gzz̄

αz̄

(
2Dz̄ +

1
2

∂z̄(ln gzz̄)

)
,

with Dz = ∂z + iAz and Dz̄ = ∂z̄ + iAz̄. here αz and ᾱz are the 2 × 2 Weyl matrices. Now consider
gauge fields, in this case magnetic fields, in the disk. These magnetic fields are topological in the sense
of the Dirac monopole with vanishing Ahranov-Bohm phase. The vector potential for this field is

Aφ = − i
φ

2

(
dz
z

− dz̄
z̄

)
.

the magnetic field is evaluated as a line integral around the solenoid opening, which is zero, but the
Stokes’ rule indicates this field will be φ(z̄ − z)/r2, for r2 = z̄z. A constant magnetic field dependent
upon the volume V = 1

2 dz ∧ dz̄ in the space with constant Gaussian curvature R = − 4/R2

Av = i
BR2

4

(
zdz̄ − z̄dz

1 − z̄z

)
.

The Weyl Hamiltonians are then

Hw =
1 − r2

R
e−iθ

(
αz

(
∂r − i

r
∂θ −

√
�(� + 1) + φ

r
+ i

kr
1 − r2

))

H∗
w =

1 − r2

R
eiθ

(
αz̄

(
∂r − i

r
∂θ +

√
�(� + 1) + φ

r
+ i

kr
1 − r2

))
, (9)

for k = BR2/4. With the approximation that r << 1 or small orbits the product gives the
Klein-Gordon equation

∂2
t ψ = R−2

(
∂2

r +
�(� + 1) + φ2

r2 + k2r2 + (�(� + 1) + φ2)k
)

ψ.

For �(� + 1) + φ2 = 0 this gives the Weber equation with parabolic cylinder functions
for solutions. The last term (�(� + 1) + φ2)k can be absorbed into the constant phase

ψ(r, t) = ψ(r)e−it
√

E2 + �(� + 1) + φ2 . This dynamics for a particle in a Poincare disk is used to
model the same dynamics for a particle in a region bounded by the event horizons of a black hole.
With AdS black hole correspondence the field content of the AdS boundary is the same as the horizon
of a black hole. An elementary way to accomplish this is to map the Poincare disk into a strip.
The boundaries of the strip then play the role of the event horizons. The fields of interest between the
horizons are assumed to have orbits or dynamics not close to the horizons. The map is z = tanh(ξ).
The Klein-Gordon equation is then

∂2
t ψ = R−2

(
(1 + 2ξ2)∂ξ∂ξ̄ +

�(� + 1) + φ2

|ξ|2 − k|ξ|2
)

ψ, (10)
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where the ξ2 is set to zero under this approximation. The Klein-Gordon equation is identical to
the above.

The solution to this differential equation for Φ = �(� + 1) + φ2 is

ψ = (2ξ)
1
4 (
√

1 − 4Φ + 1)e−
1
2 kξ2×

[
c1U

(
1
4

(
E2R2

k
+

√
1 − 4Φ + 1

)
,

1
2
(
√

1 − 4Φ + 1), kξ2
)

+ c2L
1
2
√

1−4Φ
E2R2

k +
√

1−4Φ
(kξ2)

]
.

The first of these is the confluent hypergeometric function of the second kind. For Φ = 0 this reduces
to the parabolic cylinder function. The second term is the associated Laguerre polynomial. The wave
determined by the parabolic cylinder function and the radial hydrogen-like function have eigenmodes
of the form in the diagram above. The parabolic cylinder function Dn = 2n/2e−x2/4Hn(x/

√
2) with

integer n gives the Hermite polynomial. The recursion formula then gives the modes for the quantum
harmonic oscillator. The generalized Laguerre polynomial L2�+1

n−�−1(r) of degree n − � − 1 gives the
radial solutions to the hydrogen atom. The associated Laguerre polynomial with general non-integer
indices has degree associated with angular momentum and the magnetic fields. This means a part
of this function is similar to the quantum harmonic oscillator and the hydrogen atom. The two parts
in a general solution have amplitudes c1 and c2 and quantum states in between the close horizons of
coalescing black holes are then in some superposition of these types of quantum states (See Figure 1).

Figure 1. These are the wave function components contributed by the parabolic cylinder functions, or
Hermite polynomials and the Laguerre polymomials. These depend on x2 = kξ2 so the wave function is
radial. These are not nomalized. (left) Solution of the form x1/4e−x2

Hn(x2) given by parabolic cylinder
function for n = 1, 2, 3, ...4 represented as a Hermite polynomial; (right) Laguerre wave function
x1/4e−x2

L0
n(x2) for hydrogen atomic-like states for n = 1,2,3,4.

The Hamiltonian
H =

1
2
|π|2 − g

r2 , π = − i∂r,

which contains the monopole field, describes the motion of a gauge particle in the hyperbolic space.
In addition, there is a contribution from the constant magnetic field U = − kr2/2. Now convert this
theory to a scalar field theory with r → φ and π = − i∂rφ. Finally introduce the dilaton operator D
and the scalar theory consists of the operators

H0 =
1
2
|π|2 − g

φ2 , U = − k
φ2

2
, D =

1
4
(φπ + πφ),

where H0 + U is the field theoretic form of the potential in Equation (9). These potentials then lead to
the algebra

[H0, U] = − 2iD. [H0, D] = − iH0, [U, D] = iM.
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This may be written in a more compact form with L0 = 2−1/2(H0 + U), which is the total Hamiltonian,
and L± = 2−1/2(U − H0 ± iD). This leaves the SL(2, R) algebra

[L0, L±] = ± iL0, [L+, L−] = L0. (11)

This is the standard algebra ∼ su(2). Given the presence of the dilaton operator this indicates
conformal structure. The space and time scale as (t, x) → λ(t, x) and the field transforms as
φ → λΔφ. The measure of the integral d4x

√
g is invariant, where λ = ∂x′/∂x gives the Jacobian

J = det| ∂x′
∂x | that cancels the

√
g and the measure is independent of scale. In doing this we are

anticipating this theory in four dimensions. We then simply have the scaling φ → λ−1φ and π → π, .

For the potential term −g/2φ2 invariance of the action requires g → λ−2g and for U = − k φ2

2 clearly
k → λ2k. This means we can consider this theory for 2 space plus 1 time and its gauge-like group
SL(2, R) as one part of an SL(2, C) ∼ SL(2, R)2. The differential equation number 10 is a modified
form of the Weber equation ψxx − ( 1

4 x2 + c)ψ = = 0 The solution in Abramowit and Stegun are
parabolic cylinder functions D−a−1/2(x), written according to hypergeometric functions. The ξ−1 part
of the differential equation contributes the Laguerre polynomial solution. If we let ξ = ex/2 and
expand to quadratic powers we then have the potential in the variable x.

V(x) = − (g + k) +
1
2
(k − g)(x2 + x4),

for g and k the constants in H0 and U. The Schrodinger equation for this potential with a stationary
phase in time has the parabolic cylinder function solution

ψ(x) = c1D β2−4(α+2
√

2α3/2)
16
√

2α3/2

(
β(1 + 4x)√

2(2α)3/4

)
+ c2D−β2−4(α−2

√
2α3/2)

16
√

2α3/2

(
iβ(1 + 4x)√

2(2α)3/4

)
,

where α = g + k and β = k − g. The parabolic cylinder function describes a theory with criticality,
which in this case has with a Ginsburg-Landau potential. The field theory form also has parabolic
cylinder function solutions. The field theory with the field expanded as φ = eχ is expanded around
unity so φ � 1 + χ + 1

2 χ2. A constant C such that χ → Cχ is unitless is assumed or implied to exist.
The Lagrangian for this theory is

L =
1
2

∂μχ∂μχ + α +
1
2

μ2χ2 + 2βμχ.

The constant μ, standing for mass and absorbing α, is written for dimensional purposes. We then
consider the path integral Z = D[χ]e−iS−iχJ . Consider the functional differentials acting on the path
integral (

(p2 + m2)
δ

δJ
− 2iβ

)
Z = − i

〈
δS
δχ

〉
,

where ∂μχ = pμχ. The Dyson-Schwinger theorem tells us that
〈

δS
δχ

〉
= 〈J〉 mean we have a

polynomial expression 〈 1
2 (p2 + m2)χ − iβ − J〉 = 0, where we can trivially let J − iβ → J.

This does not lead to parabolic cylinder functions. There has been a disconnect between the ordinary
quantum mechanical theory and the QFT. We may however, continue the expansion to quartic terms.
This will also mean there is a cubic term, we may impose that only the real functional variation terms
contribute and so only even power of the field define the Lagrangian

L → 1
2

∂μχ∂μχ + α +
1
2

μ2χ2 +
1
4

λχ4,
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where 2
3 α → 1

4 λ. The functional derivatives are then(
(p2 + m2)

δ

δJ
+ λ

δ3

δJ3

)
Z = − i

〈
δS
δχ

〉
,

This cubic form has three parabolic cylinder solutions. We may think of this as ap + bp3 = J and is a
cubic equation for the source J that is annulled at three points. The correspond to distinct solutions
with distinct paths. These three solutions correspond to three contours and define three distinct vacua.
The overall action is a quartic function, which will have three distinct vacua, where one of these is
the low energy physical vacua. It is worth noting this transformation of the problem has converted it
into a system similar to the Higgs field. This system with both harmonic oscillator and a Coulomb
potentials is conformal and it maps into a system with parabolic cylinder functions solutions. In effect
there is a transformation harmonic oscillator states ↔ hydrogen− like states. The three solutions would
correspond to the continuance of conformal symmetry, but where the low energy vacuum for one of
these may not appear to be conformally invariant. This scale transformation above is easily seen to be
the conformal transformation with λ = Ω. The scalar tensor theory of gravity for coupling constant
κ = 16πG

S[g, φ] =
∫

d4x
√

g
(

1
κ

R +
1
2

∂μφ∂μφ + V(φ)

)
. (12)

This then has the conformal transformations

g′μν = Ω2gμν, φ′ = Ω−1φ, Ω2 = 1 + κφ2.

with the transformed action

S[g′, φ′] =
∫

d4x
√

g′
(

1
κ

R′ +
1
2

g′μν∂μφ′∂νφ′ + V(φ′) +
1

12
Rφ′2

)
. (13)

There is then a hidden SO(3, 1) � SL(2, C) symmetry. Given an internal index on the scalar field
φi there is a linear SO(n) transformation δφi = Cijkφjδτk for τk a parameter. There is also a nonlinear
transformation from Equation (12) as δφi = (1 + κφ2)1/2κδχi for χi a parameterization. In the
primed coordinates the scalar field and metric transform as

δφi = δτi − κφ′iφjδχj

δgμν =
2g′μνκφ′iδχi

1 − κφ′2 . (14)

The gauge-like dynamics have been buried into the scalar field. With this semi-classical model the scalar
field adds some renormalizability. Further this model is conformal. The conformal transformation
mixes the scalar field, which is by itself renormalizable, with the spacetime metric. Quantum
gravitation is however difficult to renormalize. Yet we see the linear group theoretic transformation of
the scalar field in SO(n) is nonlinear in SO(n, 1). Conformal symmetry is manifested in sourceless
spacetime, or spatial regions without matter or fields. The two dimensional spatial surface in AdS3

is the Poincare disk that with complexified coordinates has metric with SL(2, R) algebraic structure.
This may of course be easily extended into SL(2, C) as SL(2, R)× SL(2, R). In this conformal setting
quantum states share features similar to the emission of photons by a harmonic oscillator or an atom.
The orbits of these paths are contained in regions bounded by hyperbolic surfaces, or arcs for the two
dimensional Poincare disk. The entropy associated with these arcs is a measure of the area contained
within these curves. This is in a nutshell the Mirzakhani result on entropy for hyperbolic curves. This
development is meant to illustrate how radiation from black holes is produced by quantum mechanical
means not that different from bosons produced by a harmonic oscillator or atom. Hawking radiation
in principle is detected with a wavelength not different from the size of the black hole. The wavelength
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approximately equal to the Schwarzschild radius has energy E = hν corresponding to a unit mass
emitted. The mass of the black hole is n of these units and it is easy to find mp =

√
h̄c/G. These

modes emitted are Planck units of mass-energy that reach I∞. In the case of gravitons, these carry
gravitational memory. For the coalescence of black holes gravitational waves are ultimately gravitons.
For Hawking radiation there is the metric back reaction, which in a quantum mechanical setting is an
adjustment of the black hole with the emission of gravitons. The emission of Hawking radiation might
then be compared to a black hole quantum emitting a Planck unit of black hole that then decays into
bosons. The quantum induced change in the metric is a mechanism for producing gravitons. In the
coalescence of black holes the quantum hair on the stretched horizons sets up a type of Casimir effect
with the vacuum that generates quanta. In general these are gravitons. We might see this as not that
different from a scattering experiment with two Planck mass black holes. These will coalesce, form
a larger black hole, produce gravitons, and then quantum states excited by this process will decay.
The production of gravitons by this mechanism is affiliated with normal modes in the production of
gravitons, which in principle is not different from the production of photons and other particles by
other quantum mechanical processes. I fact quantum mechanical processes underlying black hole
coalescence might well be compared to nuclear fusion. The 2 LIGOs, plus now the VIRGO detector,
are recording and triangulating the positions of distant black hole collisions almost weekly. This
information may contain quantum mechanical information associated with quantum gravitation. This
information is argued below to contain BMS symmetries or information. This will be most easily
detected with a space-based system such as eLISA, where the shift in metric positions of test masses is
most readily detectable. However, preliminary data with the gross displacement of the LIGO mass
may give preliminary information as well.

5. Discussion

The coalescence of two black holes is a form of scattering. We may think of black holes as an
excited state of the quantum gravity field and a sort of elementary particle. The scattering of two black
holes results in a larger black hole plus gravitational radiation. This black hole will then emit Hawking
radiation. Thus, in general the formation of black holes, their coalescence and ultimate quantum
evaporation is an intermediate processes in a general scattering theory.

Quantum hair is a set of quantum fields that build up quantum gravitation, in the manner of
gauge-gravity duality and BMS symmetry. This is holography, with the fields on the horizons of
two BHs that determine the graviton/GW content of the BH coalescence. A detailed analysis of
this may reveal BMS charges that reach I+ are entangled with Hawking radiation by a form of
entanglement swap. In this way Hawking radiation may not be entangled with the black hole and
thus not with previously emitted Hawking radiation. This will be addressed later, but a preliminary to
this idea is seen in Reference [23], for disentanglement between Hawking radiation and a black hole.
The authors are working on current calculations where this is an entanglement swap with gravitons.
The black hole production of gravitons in general is then a manifestation of quantum hair entanglement.
It is illustrative for physical understanding to consider a linearized form of gravitational memory.
Gravitational memory from a physical perspective is the change in the spatial metric of a surface
according to Reference [3]

Δh+.× = lim
t→∞

h+,×(t) − lim
t→−∞

h+,×(t).

Here, + and x refer to the two polarization directions of the GW. See Reference [24] for more on this.
Quantum hair on two black holes just before coalescence are highly excited and contribute to spacetime
curvature, or in a full context of quantum gravitation the generation of gravitons. As yet there is
no complete theory of quantum gravity, but it is reasonable to think of gravitational radiation as a
classical wave built from many gravitons. Gravitons have two polarizations and a state |Ψ+,×〉 the
density matrix ρ+,× = |Ψ+,×〉〈Ψ+,×| then defines entropy S = ρ+,×log(ρ+,×) that with this near
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horizon condition of AdS with a black hole is a form of Mirzakhani entropy measure in hyperbolic
space. The gravitons emitted are generated by quantum hair on the colliding black holes. These will
contribute to gravitational waves, and in general with BMS translations that bear quantum information
from quantum hair.

This theory connects to fundamental research, The entanglement entropy of CFT2 entropy with
AdS3 lattice spacing a is

S � R
4G

ln(|γ|) =
R

4G
ln

[
�

L
+ e2ρc sin

(
π�

L

)]
.

where the small lattice cut off avoids the singular condition for � = 0 or L for ρc = 0. For the
metric in the form ds2 = (R/r)2(−dt2 + dr2 + dz2) the geodesic line determines the entropy as the
Ryu-Takayanagi (RT) result [25]

S =
R

2G

∫ π/2

2�/L

ds
sin s

= − R
2G

ln[cot(s) + csc(s)]
∣∣∣π/2

2�/L

� R
2G

ln
(
�

L

)
,

which is the small � limit of the above entropy. The RT result specifies entropy, which is connected
to action Sa ↔ Se [26]. Complexity, a form of Kolmogoroff entropy [27], is Sa/πh̄ which can also
assume the form of the entropy of a system S ∼ k log(dim H) for H the Hilbert space and the
dimension over the number of states occupied in the Hilbert space. There is also complexity as the
volume of the Einstein-Rosen bridge [28] vol/GRads or equivalently the RT area ∼ vol/RAdS. There
is an equivalency between entropy or complexity according to the geodesic paths in hyperbolic H2

by geometric means [21]. This should generalize to H3 ⊂ AdS4. The generation of gravitational
waves should have an underlying quantum mechanical basis. It is sometimes argued that spacetime
physics may not be at all quantum mechanical. This is probably a good approximation for energy
sufficient orders of magnitude lower than the Planck scale. However, if we have a scalar field that
define the metric g′ = g′(g, φ) with action S[g, φ] then a quantum field φ and a purely classical g
means the transformation of g by this field has no quantum physics. In particular for a conformal
theory Ω = 1 + κφaφa, here a an internal index, the conformal transformation g′μν = Ω2gμν has no
quantum content. This is an apparent inconsistency. For the inflationary universe the line element

ds′2 = g′μνdxμdxν = Ω2(du2 − dΣ(3)),

with dt/du = Ω2 gives an FLRW or de Sitter-like line element that expands space with Ω2 = et
√

Λ/3.
The current slow accelerated universe we observe is approximately of this nature. The inflation
scalars are then fields that stretch space as a time dependent conformal transformation and are
quantum mechanical. The generation of gravitational waves is ultimately the generation of gravitons.
Signatures of these quantum effects in black hole coalescence will entail the measurement of quantum
information. Gravitons carry BMS charges and these may be detected with a gravitational wave
interferometer capable of measuring the net displacement of a test mass. The black hole hair on the
stretched horizon is excited by the merger and these results in the generation of gravitons. The Weyl
Hamiltonians in Equation (9) depend on the curvature as ∝

√
R. For the curvature extreme during

the merging of black holes this means many modes are excited. The two black holes are pumped
with energy by the collision, this generates or excites more modes on the horizons, where this results
in a black hole with a net larger horizon area. This results in a metric response, or equivalently the
generation of gravitons. Quantum normal modes are given by independent eigen-states, such as with
quantum harmonic oscillator states. The harmonic oscillator states are well known to be given by the
Hermite polynomials, which are a special case of parabolic cylinder functions. Rydberg states are
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also a form of normal modes. The quantum states for the hyperbolic geometry of black hole mergers
are a generalization of these forms of states. The excitation of quantum hair in such a merger and
the production of gravitons is a converse situation for the emission of Hawking radiation. In both
cases there is a dynamical response of the metric, which is associated with gravitons. Currently
a “by hand” correction called back reaction is used in models. A more explicit discussion on the
production of gravitons is beyond the scope here. However, the parabolic cylinder functions and the
Laguerre functions clearly play a role in quantum production of gravitons in BH coalescence. This
means quantum gravitation should have signatures of much the same physics as atomic physics or the
role of electrons and phonons in solids. The major import of this expository is to propose quantum
gravitational signatures in the coalescence of black holes. This would point to quantum hair and
the generation of gravitons. This would be a clear signature of quantum gravitation. While there is
plenty of further development needed to compute more firm predictions, the generic result is that
gravitational waves from colliding black holes have some quantum gravitational signatures. These
signatures are to be found in gravitational memory. Further, this long-term adjustment of spacetime
metric deviates form a purely classical expected result. With further advances in gravitational wave
interferometry, in particular with the future eLISA space mission, it should be possible to detect
elements of gravitons and quantum gravitation.
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Abstract: Einstein’s equations of general relativity (GR) can describe the connection between events
within a given hypervolume of size L larger than the Planck length LP in terms of wormhole
connections where metric fluctuations give rise to an indetermination relationship that involves
the Riemann curvature tensor. At low energies (when L � LP), these connections behave like an
exchange of a virtual graviton with wavelength λG = L as if gravitation were an emergent physical
property. Down to Planck scales, wormholes avoid the gravitational collapse and any superposition
of events or space–times become indistinguishable. These properties of Einstein’s equations can find
connections with the novel picture of quantum gravity (QG) known as the “Einstein–Rosen (ER) =
Einstein–Podolski–Rosen (EPR)” (ER = EPR) conjecture proposed by Susskind and Maldacena in
Anti-de-Sitter (AdS) space–times in their equivalence with conformal field theories (CFTs). In this
scenario, non-traversable wormhole connections of two or more distant events in space–time through
Einstein–Rosen (ER) wormholes that are solutions of the equations of GR, are supposed to be
equivalent to events connected with non-local Einstein–Podolski–Rosen (EPR) entangled states that
instead belong to the language of quantum mechanics. Our findings suggest that if the ER = EPR
conjecture is valid, it can be extended to other different types of space–times and that gravity and
space–time could be emergent physical quantities if the exchange of a virtual graviton between events
can be considered connected by ER wormholes equivalent to entanglement connections.

Keywords: wormholes; entanglement; ER = EPR; relativistic quantum information; Planck scales

1. Introduction

The formulation of an effective theory of quantum gravity can be considered the holy grail of
modern physics. Gravitation was the first force to be mathematically described by Newton and it is
the last force of nature that has yet to be quantized. As pointed out by DeWitt in his early pioneering
works [1–5], since the introduction of quantum field theory around 1930 by Heisenberg, Dirac, Pauli,
Fock, Jordan and others, many attempts were made to find a robust and logically closed method of
quantizing the gravitational field, without success, even if Einstein’s equations are known to remain
valid down to the Planck scales. Rosenfeld [6,7] realized the difficulty of finding general methods to
quantize gravity and that the quanta of the field, if they do exist, cannot give observational effects until
reaching a very high energy Ep =

√
h̄c5/G � 1.22 × 1019 GeV that corresponds to the so-called Planck

length, Lp =
√

h̄G/c2. Thus, Planck scales were somehow “artificially” introduced in the framework
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of general relativity (GR), a classical theory, in the attempt of building a quantum theory of gravitation
based on the finite quantum of action h linked with the gravitational constant G and the speed of
light c.

In principle, following the works by Pauli, De Witt and other pioneers in this field, the fundamental
building block for a quantum theory of gravity is the graviton, a spin-2 massless particle with the
well-known limitations in the building of a QG theory due to the coupling constant of the gravitational
field that depends on the inverse square of the mass. This coupling constant makes the Einstein–Hilbert
Lagrangian of quantum gravity divergent at the loop level. It is a non-renormalizable theory, unless
introducing additional concepts such as supersymmetry like in string theory and supergravity. Up to
now no supersymmetric partners of the known quanta have been found from the Large Hadron
Collider and other experiments presented by the Particle Data Group [8]. At the present moment one
can consider different approaches, including string theory scenarios that do not require supersymmetric
partners at the explored energies, or to consider a model of the Universe without strings, or adopt the
approach of loop quantum gravity [9], where gravitons do not represent the building blocks of the
theory. The interactions between events that can be ascribed to graviton exchanges can be recovered in
a weak field limit approximation. The exchange of a virtual graviton between two particles does not
have the support of an actual theory of quantum gravity. As an example, in string theory and in most
quantum field theory (QFT) scenarios, in the building of the theory, one must introduce the quanta
of the associated field. The quanta are introduced in terms of quantized excitations on a classically
fixed background. The main conceptual problem for the formulation of a consistent theory of QG
is that this theory must unify and contain as special cases both GR and quantum mechanics (QM).
Unfortunately, GR has concepts and mathematical structures that are incompatible with those of QM
and vice versa, with the result that the two theories do not communicate between each other. GR is a
local deterministic theory based on point-to-point connections of events and observers that define a
four-dimensional manifold. Einstein in 1947, his latest memoirs, stated that space–time is made with
connections between events and, more precisely, with coincidences of events. On the other hand, QM
presents non-locality and the well-known probabilistic behavior from the deterministic equations that
rule the quanta.

This contrast between GR and QG can find a fusion in the simple heuristic approach formulated
by Susskind and Maldacena who, starting from the quantum mechanical language, set an hypothetical
equivalence between non-traversable wormhole connections of two (or more) particles or events in
space–time through Einstein–Rosen (ER) bridges and entangled states (the idea that wormholes and
flux tubes can play a role in quantum mechanics and quantum field theory is not new, in particular for
systems with electric and/or magnetic charges and their renormalization has earlier work in [10,11]),
and the quantum properties of the “spooky action at distance” of Einstein–Podolski–Rosen (EPR)
states [12–15]. The ER=EPR equivalence was first defined in Anti-de-Sitter (AdS) space–times in their
equivalence with CFTs [16–19]. In other words, EPR entangled particles are supposed to be equivalent
to connections obtained through ER wormholes involving the concept of entanglement entropy to
describe these many-body quantum state/wormhole connections, even if the ER = EPR equivalence is
more evident with monogamous entangled pairs [20]. Spacetime is supposed to emerge from quantum
entanglement, as discussed in [21] where, from some examples where gauge theory/gravity duality is
valid, one finds that the emergence of space–time is related to the quantum entanglement of the degrees
of freedom present in these quantum systems. Superpositions of quantum states corresponding to
disconnected space–times can give rise to states that are interpreted in terms of classically connected
space–times. In this vision, gravity can be also interpreted as an entropic force, a thermodynamic
property of physical systems defined in an holographic scenario: gravity and space–time connections
are emergent phenomena from the degrees of freedom of a physical system encoded in an holographic
boundary or to emerge from a background-free approach by using quantum entanglement [22,23].
At all effects, one can conclude that space–time is built with the quantum information shared between
EPR states that are equivalently connected with an ER wormhole.
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While ER wormholes are classical solutions of GR, a local deterministic theory, quantum
entanglement, is instead one of the most intriguing quantum physical aspects of nature characterized
by non-locality and the stochastic properties of quantum mechanics. Entanglement occurs when a
pair of particles (or a group of quanta) is generated in a way that the quantum state of each particle
of the pair cannot be described independently of the state of the others even if they are separated by
large distances. For a deeper insight see [24–29]. In ER = EPR, causality is not violated. ER bridges
do not violate causality because of the topological censorship, which forbids ordinary traversable
wormholes; EPR states, instead, prevent causality violations because of the properties of entangled
states described by Bell’s inequalities—no information is transferred between the two entangled states
during the wavefunction collapse of the entangled pair as each quantum state in an EPR pair cannot
be described independently of the other states [24,26]. The ER = EPR equivalence is valid if there
are no traversable wormhole solutions that do not require the violation of the strong and/or weak
energy conditions [30–33], they may instead behave as quantum communication channels between the
quantum fields there defined [34].

The ER = EPR conjecture was initially formulated in the gravity/gauge theory equivalence
between Anti-de Sitter (AdS) space–times and conformal field theories (CFTs) by Maldacena
(gauge/gravity duality) within a relationship between the entanglement entropy of a set of black
holes and the cross-section area of ER bridges connecting them. AdS space–times represent an
elegant solution of Einstein’s equations with negative curvature where the outer boundary is a surface
and, in the CFT, correspondence quanta can interact and generate the holographic universe there
contained. The AdS/CFT correspondence provides a complete non-perturbative definition of gravity
with quantum field theory, extending this correspondence also to space–time scenarios of quantum
gravity where the asymptotic behavior of the space–time is that of AdS space–time. The AdS/CFT
correspondence plays a key role in the calculations of strong coupled quantum field theories. When the
boundary theory is strongly coupled, the bulk theory is weakly coupled, and vice versa. A strongly
coupled field theory can have an AdS dual gravity description weakly coupled and therefore calculable
and vice versa. As an example, if the curvature of the AdS space increases, the gravitational coupling
becomes stronger and the boundary coupling is weaker.

To extend ER = EPR conjecture to space–times different from the Anti-de Sitter solution, one
has to investigate how much ER = EPR depends strictly on AdS/CFT correspondence and from
the properties of wormholes also in de Sitter (dS) space–times. First of all we must consider that
AdS/CFT is a structural correspondence between bulk and screen, but does not contain in itself any
specific indication of the possible dynamics of wormhole formation. Wormholes require a cosmological
scenario. For example, it is plausible that the wormholes were formed in the initial chaotic phases of
the universe with a rate similar to that of the formation of mini black holes (BHs), with very specific
traces as regards the event horizon, as discussed in [35–37]. This aspect is decisive because all the
problems related to the quantum aspect of the wormholes imply a cosmological background capable
of providing a plausible scenario for their existence described by the Ryu–Takanayagi’s entropy that
relates the entanglement entropy in CFT and the geometry of AdS space–times. The Ryu–Takanayagi
formula is a generalization of the BH entropy formula by Bekenstein–Hawking [38,39] to a whole
class of holographic theories [40,41] where gravitational models with dimension D are dual to a gauge
theory in dimension D − 1.

In these recent years, the interest in the maximum symmetry properties of de Sitter’s space gave
this structure a new centrality with respect to AdS. One of the most relevant problems was to project
a hologram of a quantum particle that lives in the infinite future of AdS, which makes it difficult to
describe real-time space in holographic terms. In particular, the main classes of essential results must be
mentioned here: the CPT Universe [42] and the numerous results on the non-locality in dS space–times
[43–47]. Of relevant importance is the so-called “uplifting” technique by Dong et al. [48] where two
Anti-de Sitter space–times are transformed into a de Sitter space–time. The uplifting changes the
curvature of two “saddle-shaped” AdS space–times that, once warped, are glued together along their
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rims and turned into a “bowl-shaped” dS space–time via entanglement or more general two-throated
Randall–Sundrum systems [49,50] and the CFTs relative to both hemispheres become coupled with
each other. In this way one forms a single quantum system that is holographically dual to the entire
spherical de Sitter space, defined on its boundary located at a finite distance away. The technique of
uplifting two AdS into a dS permits us to modify the curvature in a more general way than that offered
by the set of local transformations obtained through Wick rotations that can only act locally—the
curvature changes everywhere by introducing extra fields whose energy density acts as an extra source
of curvature to landscape the AdS space–time into a dS one. The cosmological constant in the bulk
space is then transformed from negative to positive and the holographic projection of the space–time
into its boundaries is changed. Some examples are reported by Silverstein and Polchinski [51] or in
Vasiliev’s higher-spin gravity—in AdS, the boundary theory is an O(N)-vector field theory, while in dS
space it becomes an Sp(N) scalar field theory, where N is the number of the vector (scalar) fields of the
boundary theories [52,53].

In this work, we analyze Einstein’s equations in a finite volume of space–time down to the
Planck scale, finding wormhole connections that avoid the singularity problem and an indetermination
relationship that involves the Riemann curvature. This finds application to the ER = EPR conjecture—in
this framework, geometry behaves as a geodesic tensor network that defines the quantum state
properties of a fundamental quantum state of a given metric [54] and a virtual graviton exchange
becomes equivalent to entanglement to which one can apply the concept of Penrose’s decoherence of a
quantum state [55]. In this crossing between locality of GR and the emergence of non-locality of QM as
in [56,57], where de Sitter space–time is taken as the geometric structure of vacuum, the analysis of
Einstein’s equations can provide an additional support to the ER = EPR conjecture extended from AdS
to dS [58] and to locally Euclidean space–times. This can be interpreted as the route to ER = EPR from
general relativity.

2. Wormhole Connections down to Planck Scales from Einstein’s Equations

In the ER = EPR scenario, wormhole connections are fundamental in the building of space–time.
Consider an entangled quantum system. The emergence of space–time in terms of ER connections,
in the gravity picture, is intimately related to the quantum entanglement of degrees of freedom in the
corresponding conventional quantum system, building up space–time with quantum entanglement.
The ER = EPR equivalence suggests that space–time and gravity may emerge from the degrees
of freedom of the field theory. On the other hand, space–time becomes the optimal way to build
entanglement starting from wormhole connections. At Planck scales, the Planck area is defined as the
area by which the surface of a Schwarzschild black hole increases when in the black hole is injected
one bit of information. In a Riemannian manifold (M, g) the scalar curvature in an (n − 1) hyperplane
relates GR with the entanglement of quantum states in an arbitrary Hilbert space without reference to
AdS = CFT or any other holographic boundary construction.

2.1. Einstein’s Equations in the Neighborhood of an Event

Einstein’s equations are the core of GR—they describe gravity in terms of the curvature of
space–time. Spacetime geometry and the metric tensor gik are determined from Einstein’s equations,
given the distribution of energy, mass and momentum in space–time encoded in the stress–energy
tensor Tik.

In our approach, by assuming that Einstein’s equations remain valid down to the Planck scale,
we find that the connection between events are achieved through wormhole connections, avoiding
the gravitational collapse and the presence of singularities at Planck scales. To this aim, we adopt the
approach by Schwinger in the analysis of classical fields [59]—to determine the properties of a field,
one cannot measure the field in a point, otherwise, because of the equivalence principle, one finds only
a local Minkowskian space–time tangent to the manifold (M, g) in the given point event.
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Following Schwinger, from his studies on electromagnetic theory [59,60], the analysis of a classical
field must be made in a neighborhood of the event. This approach is clearly valid in electromagnetism
and antenna theory: when sensing the electromagnetic field with an antenna, one cannot measure in a
point the fluctuations of the electric field. The antenna must have a finite length in space and the field
must be measured in a finite time interval to be revealed. As happens for any antenna, as well as for
the gravitational field, one has to consider a finite length or a finite hypervolume in which to determine
the properties of the field. For the same reasons, one cannot deduce the properties of the gravitational
field in a single point and at a given time because of the equivalence principle, as discussed in the
free-falling particle paradox [61].

Let us find the main properties of the gravitational field when a finite length L of measure is fixed
down to the Planck scale. Given a Riemannian manifold (M, g), where M is the manifold and g the
metric tensor, g ∈ ⊗2Ṫ of tensorial order 2, (written as g(2)), Einstein’s equations are

Rik −
1
2

Rgik + Λgik = 8πTik (1)

where Λ is the cosmological constant and Rik = glmRlmik and R = gikglmRlmik represent the tensorial
and scalar space–time curvature terms obtained from the Riemann tensor Riklm that, in the tensorial
index notation, takes the usual well-known form [62]

Riklm =
1
2

(
∂2glm

∂xk∂xl +
∂2gkl

∂xi∂xm − ∂2gil

∂xk∂xm − ∂2gkm

∂xi∂xl

)
+ gnp

(
Γn

klΓ
p
im − Γn

kmΓp
il

)
(2)

the tensor is an element of the rank-four tensors Riklm ∈ ⊗4Ṫ in the cotangent bundle Ṫ of the manifold
(M, g) that we will indicate with the symbol R(4), where 4 is the tensorial index.

The gravitational field has the fundamental property that, any body, independently from their
mass, moves in the same way. This is described by the strong equivalence principle, which suggests that
gravity is a geometrical quantity and one cannot measure the gravitational field in an event, as the field
becomes locally Galilean and diagonalizable, and the energy of the field cannot be uniquely defined.

In a neighborhood of a given event, space–time is built by chains of events and observers.
The building of space–time is obtained by causally transferring information encoded locally in one
event of the field to form events and coincidences of events described by punctual (point-to-point)
correlations in a four-dimensional manifold (M, g).

Because of the equivalence principle, these observables must be generated within a volume of
finite spatial extent from a given spatial length L and propagated—through a chain of events—in the
form of four-volumetric densities (or in geometrical sub-varieties) in the four-dimensional manifold
(M, g) to a remotely located finite region of space–time of likewise finite spatial/temporal extent—the
observation (hyper-)volume V ⊆ M over which they are volume integrated into observables, allowing
the information carried by them to be extracted and decoded. More specifically, we will use the local
split of 3 + 1 in space and time where we will consider the integration of the field properties over a
three-dimensional volume V = L3. The volumetric density of every gravitational observable carried
by the gravitational field is a linear combination of quantities that are second order (quadratic/bilinear)
in the metric of the field, and/or of the derivatives of the field. To obtain these quantities one must
integrate the density of a conserved quantity e.g., over a given 3D space-like hypersurface σ or over
a four-dimensional interval, characterized by a given finite length L; there, the field equations are
integrated and averaged to obtain the field observables we need to analyze the properties of space–time
down to the Planck scales.

Let us consider a Lorentzian manifold as example, with cosmological constant Λ and then introduce
a characteristic length L. This quantity is the proper length associated to the generic coordinate variation
Δx written in terms of the metric tensor g, viz., L ∼ g1/2Δx. The Riemann tensor is then written in
terms of the metric variations Δg, the covariant metric tensor g and the contrarvariant one, g−1
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R(4)(g, L) ∼ g2

L2

(
Δ

(
Δg(g)−1

)
+

(
Δg(g)−1

)2
)

(3)

where the term
(
Δg (g)−1)2

{kl,im−km,il} = Γn
klΓ

p
im − Γn

kmΓp
il represents the affine connection and

Δ
(

g−1Δg
)

is the second derivatives of the metric tensor with respect to the coordinates, being

∂2
kl g = g

L2 ΔkΔl g = g2

L2 Δk
(
Δl g(g)−1). The Ricci tensor and scalar are R(2) ∼ g−1R(4) and R ∼ g−2R(4),

the Einstein tensor is G = R(4)(g)−1 and Einstein’s equations are G + gΛ = T, where T is the
energy–momentum tensor.

By introducing a characteristic length L, if Einstein’s equations hold down to the Planck scales,
from the basic formulation of the Riemann tensor and Einstein equations we find that the field
equations, integrated and averaged over a 3D space-like hypersurface σ with unit normal vector
n ∼ g−1/2, obey an indetermination relationship that recalls Heisenberg’s. Instead of focusing on the
more general energy–tensor quantity (or the momentum vector), we consider for the sake of simplicity
the scalar proper energy E, averaged over a proper volume L3, which is given by the integral of
the energy momentum tensor over a given proper volume element of a space-like 3D–hypersurface.
This leads to the following formulation of the proper energy averaged over the given proper volume

〈E − gΛ〉 = Ē ∼ g2

L
R(4) = L

(
Δ

(
Δg(g)−1

)
+

(
Δg(g)−1

)2
)

(4)

If we rescale this relationship down to the Planck scale Lp, by defining the light crossing time as
τ = L and the Planck Time τp, the Einstein equations retain their validity down to the Planck scale,
even if metric fluctuations over a scale larger than Lp can occur. We find that these fluctuations can
give rise to a relationship

(τp

τ

)2 (
Ē × τ

h̄

)
=

(
Lp

L

)2 (
Ē × τ

h̄

)
=

L2

g2 R(4)(g, L) (5)

that holds down to the Planck scales. Fixing a characteristic spatial scale (or time), the relationship
in Equation (5) corresponds to the introduction of fluctuations of the averaged quantity over L3 of
the proper energy Ē. If we set Ē = ΔE∗ and τ = Δt, we can write Equation (5) in a more familiar
Heisenberg relationship that involves the Riemann tensor and the contribution from the dark energy

ΔE∗ × Δt = h̄
(

τ

τp

)2 L2

g2 R(4)(g, L) =
h̄
g2

(
L2

Lp

)2

R(4)(g, L) (6)

that at Planck scales becomes

ΔE∗ × Δt = h̄
L2

p

g2 R(4)(g, L) = h̄
(

Δ
(

Δg(g)−1
)
+

(
Δg(g)−1

)2
)

(7)

where ΔE∗ = ΔE + Δg Λ + gΔΛ averaged on the volume L3 of the 3D space-like hypersurface σ.

2.2. The Energy of the Gravitational Field

Dark energy and other different vacua are parameterized by the cosmological constant Λ.
When Λ > 1, the equations describe an AdS space–time. The gravitational fluctuations are mainly
expressed by the affine connection term

(
Δg(g)−1)2 for any space–time. To describe the energy of

the gravitational field, which is not defined as a global and conserved quantity, one has to introduce
pseudotensorial quantities describing the energy trapped non-locally in the geometry. One example is
the non-symmetric Einstein pseudotensor, which is constructed exclusively from the metric tensor and
its first derivatives but is not suitable for our purposes. Instead, the Landau–Lifshitz pseudotensor
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tik [62] permits us to write for the integrated non-local gravitational energy Eg that includes the
contribution of the cosmological constant in terms of the curvature tensor. This quantity is quadratic in
the connection and, for a general covariant component of the pseudotensor, averaged on the volume
V = L3 one obtains 〈

g−1 (t + Λg)
〉

V=L3
∼ Eg + EΛ

L3 (8)

where EΛ = g−1ΛgL3 is the energy associated to the value of the cosmological constant and to dark
energy. Considering that

|g| g−2 (t + Λg) ∼
(

Δg
Δx

)2
, (9)

this relationship leads to a background curvature with fluctuations having wavelength λ = L that can
be interpreted as connections between events due to an exchange of virtual gravitons with wavelength
λ and energy h̄/λ or, in the ER = EPR scenario, to the connection through an ER wormhole,〈(

Δg(g)−1
)2

〉
V=L3

∼ Eg + EΛ

L
=

(τp

τ

) Eg + EΛ

Ep
(10)

where Ep is Planck’s energy. In the ER = EPR hypothesis, these energy fluctuations would be considered
as equivalent to the connection between two entangled events separated by the distance L, giving
a paradoxical meaning to the exchange of a virtual graviton in terms of entanglement connections
between events like in an emergent gravity scenario.

Following the already cited works by De Witt and the classical QG interpretation found in the
literature [1–5], this term would describe a virtual graviton exchange between two events within
a space–time connection. On the other hand, this term—that can be also interpreted in terms of a
wormhole connection between the two events—with the exchange of at least 1 qbit of information
(in the ER = EPR conjecture) would correspond to the entanglement of two particles. If ER wormholes
are equivalent to a monogamous connection between the two events [20], as realized through a virtual
graviton exchange, one could state that entanglement of EPR states can derive from the exchanges of
virtual gravitons between two events. From another perspective, entangled states should be provided
by a mixed state between the two entangled pairs with that of the virtual graviton. The question is
what is the correct perspective?

From Einstein’s equations, the observable averaged total energy of a metric fluctuation over the
volume V on a scale L, becomes

E ∼
(

τ

τp

)〈
Δ

(
Δg(g)−1

)〉
V

Ep + Eg + EΛ (11)

and is made with the energy of geometry and vacuum and energy of interaction expressed in terms of
gradients of the geometry fluctuations, second order derivatives of the metric tensor, as in the Riemann
tensor that make the connection between observers.

2.3. Planck-Scale Wormhole Connections

In a local neighborhood of a given event {xi}0, one performs a discrete infinite denumerable 3 + 1
local slicing of the space–time with time steps a Planck time unit. To the initial event {xi}0 corresponds
the slice N = 0. The N-th slice corresponds to the time τN = (N + 1)τp, building up a symbolic
dynamics of space–time events. The energy of the gravitational perturbation in the N-th slice is

(
Eg + EΛ

)
N ∼ Ep

N + 1
(12)

27



Entropy 2020, 22, 3

the total energy is instead

EN ∼ (N + 1)
〈

Δ
(

Δg(g)−1
)〉

V,N
Ep +

Ep

N + 1
(13)

for N → 0 the energy fluctuation becomes EN → Ep for which, by definition, ENτN ∼ h̄ and the metric
tidal fluctuations tend to zero—space–time at Planck lengths is homogeneous and isotropic and the
local geometry depends only on the energy of fluctuations in space–time and from the energy of the
cosmological constant. This because Δg/g → 1 are both on the order of the Planck scale. This is the
reason why the field does not diverge and no singularities are present.

For N → ∞ the dominant energy is that of tidal fluctuations at scales larger than Lp accompanied
with that of the cosmological constant when integrated over the metric and remains as a constant
function over the volume of integration; Eg becomes instead negligible. This means that for a process
connecting two events lasting a time τ, the amount of energy does not entirely contribute to the vacuum
energy but it is partially spent in geometry in this process, involving the dark energy contribution
expressed by the cosmological constant Λ. Recalling Heisenberg principle from Equation (5), the larger
is the energy fluctuation, the smaller results the space/time interval fluctuation.

In the neighborhood of Planck scales, when N > 0, the curvature of space–time remains finite
and the Riemann tensor can be written as

R(4)(g, L) ∼ Ep

h̄

(τp

τ

)2 g2

L2 (14)

and the Ricci scalar is

R(g, L) ∼ 1
L2

Ep

h̄

(τp

τ

)2
(15)

that for L → Lp we have R(g, L) → 1/L2
p with the result that at Planck scales there is no singularity in

the curvature and the gravitational radius becomes

Rg = 2
E τ L2

p

h̄ L
(16)

that is written as Rg = 2Lp, which corresponds to elementary wormhole connections at the Planck
scale and finding a trivial equivalence with the corresponding Penrose diagrams. Directly from
Einstein’s equations we find that, at Planck scales, the singularities expected from quantum gravity
can be interpreted in terms of wormhole connections between the events, as required in the ER
= EPR conjecture and obtain an indetermination relationship shown in Equation (6) involving the
Riemann tensor and geometry fluctuations. In this view, wormhole and equivalent EPR connections
can also be formally equivalent to an exchange of a virtual graviton at scales larger than Planck scale,
whilst any group of superimposed states below Planck scales, instead, will be indistinguishable and
therefore entangled.

2.4. Tests for the ER = EPR Conjecture

If we suppose the validity of the ER = EPR conjecture, the geometry fluctuations present at Planck
scales may be revealed with quantum entanglement. By applying the indetermination relationship
that involves the Riemann tensor expressed in Equations (6) and (7), we argue that one can obtain
information about the fluctuations of space–time and determine whether a characteristic scale like the
Planck’s one is present, as expected in QG.

If space–time is discrete, its discreteness is expected to be characterized by a typical scale of space
and/or time: There exist a minimum time interval tp and a minimum length Lp where wormholes
connections—equivalent to entangled states between two or more regions of space–time—connect
different events or space–times. If events/space–times are connected with intervals smaller than Lp and
tp, they would be entangled and actually be the same event or the same space–time. Their quantum
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superposition can exist and collapse after a finite time interval and the properties of wormhole
connections are reflected in the properties of the corresponding EPR states also when they connect
events at scales larger than the Planck scale. This scenario is different from Penrose’s assumptions [55],
where space–time is thought to be continuous and the quantum superposition of space–times result
unfeasible leading to the gravitational collapse.

Noe we propose to test the ER = EPR scenario by using the Heisenberg uncertainty principle
applied to pairs (or groups) of entangled particles and including the additional indetermination
introduced by quantum gravity effects. The generalized Heisenberg’s uncertainty principle for the
momentum p and the position x that includes the existence of a characteristic length Lp such as the
Planck scale, or any other scale typical that can be found in certain quantum gravity models, is given
by [63,64]

Δx = ΔxQM + ΔxGR ≥ h̄
2Δp

+ k Δp (17)

the existence of a minimum interval in space–time is revealed by a deviation from the classical term
due to quantum mechanics only, ΔxQM. The quantum gravity term, ΔGR, due to the existence of a
characteristic length Lp and to the properties of the gravitational field, can be characterized instead by a
parameter k, a constant characteristic of the quantum theory of gravitation here considered. To give an
example, in a string theory scenario, k = αY, where α is the string tension and Y a constant that depends
on the theory. In our case, following [65–67], one can find that k = 2L2

p/h̄. From our calculations that
involve the Riemann tensor, we find that ΔxQG = 2Ep/ΔE∗ and thus Δp = h̄Ep/ΔE∗L2

p, a term that
includes the effects of dark energy in the term ΔE∗ too.

We write now the Heisenberg relationship for sets of N−particle entangled states.
Following [68–72], consider first a couple of entangled particles with positions x1 and x2 and momenta
p1 and p2, respectively. For N = 2, the classical indetermination principle is

Δ(x1, x2)
2
QM =

[
Δ(x1)

2 + Δ(x2)
2
]
×

[
Δ(p1)

2 + Δ(p2)
2
]
≥ h̄2

4
. (18)

In the simplest case, where Δ(x1) = Δ(x2) = Δxe and Δ(p1) = Δ(p2) = Δpe, the uncertainty
relationship becomes (Δxe)2(Δpe)2 ≥ h̄2. For N identical entangled states, the extended
indetermination principle becomes

(Δxe)
2(Δpe)

2 ≥ N2h̄2

4
(19)

and when we include the effects of the gravitational field one obtains

Δx = Δ(x1, x2)QM + Δ(x1, x2)GR ≥ Nh̄
2Δp

+
2NL2

pΔp
h̄

. (20)

By assuming that Einstein’s equations retain their validity down to the Planck scales and that
wormhole connections represent the building blocks of the physics of the gravitational field at and
below Planck scales (tp and Lp), ER = EPR links connecting any space–time (or event) with a difference
smaller than tp and Lp mean that different space–times and events are physically identical, and then in
principle undetectable and entangled. Instead, in a region with radius R, the spatial difference of two
space–times/events is ΔL = 2L2

pΔE∗/h̄c, and the difference of their corresponding space–times is the
difference of the proper spatial sizes of the regions occupied by them and the time of the wavefunction
collapse is on the order of τc ∼ 2h̄Ep/(ΔE∗)2.

If the properties of ER = EPR links remain valid from the Planck up to the macroscopic scales,
where entanglement can be observed in the lab, the term ΔxQG in the Heisenberg relationship expressed
in Equation (20) is expected to reveal the properties of the wormhole structure of space–time from a
deep analysis of the wavefunction collapse of an entangled pair. In other words, the deviation from the
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quantity ΔxQM of the classical Heisenberg principle would reveal the fuzziness space–time or, better,
of the point-by-point identification of the spatial section of the two events/space–times, better evident
with a set of a large number of N entangled quanta like a Schrödinger cat.

From the point of view of relativistic quantum information discipline, entanglement and
wormholes are expected to create space–time and entanglement events (and space–times) through
quantum information—information that emerges from the connection of quantum bits. In fact, from a
quantum-computational interpretation of space–time entanglement, in a foliation of space–time,
the quantum fluctuations of the metric present on the slice n can be interpreted as wormhole
connections between one Planckian pixel in the slice n with that one present in the n − 1 slice.
Following [73], the holographic principle suggests that such a geometrical connection is space–time
entanglement. If not entangled, following Penrose’s argumentation only the quantum superposition of
two space–times with a difference larger than the minimum sizes can not exist, and should collapse
instantaneously. If they are connected by an ER wormhole they should obey the indetermination
relationship expressed in Equation (20).

To verify possible additional anomalies in the indetermination principle introduced by the
ER = EPR conjecture one may instead want to consider to measure the time/energy entangled
states and study the time of collapse as a function of their energy differences. This may explain
why the wavefunction collapse of an EPR pair is not always instantaneous, as it may depend on the
geometry fluctuations. Moreover, one has to also consider the effects introduced by the presence of the
cosmological constant, of the information encoded and shared between the entangled quantum states
and their relationship with the gravitational information entropy that go beyond the purpose of the
present work.

Of course an experimenter has to consider that EPR states depend on the choice of reference
frames and that Bell’s inequalities are preserved in certain reference frames only, and should also
consider the effects of simultaneity and include in the experiment the additional macroscopic effects
induced by the gravitational field at large scales in the presence of massive bodies. As an example,
simultaneity is responsible for the uncertainty of the ordering of non-local wavefunction collapse
when the relativistic effects cannot be neglected. In any case, if a time measurement performed with
an entangled pair of photons is seen as simultaneous in one shared reference frame, then the result of
this measure can be considered simultaneous to all measuring observers who do not share a reference
frame. The inversion of the temporal order due to simultaneity is impossible to determine, the attempt
to measure this effect will unavoidably introduce an uncertainty in the result. There is no need to have
any preferred reference frame for the wavefunction collapse of entangled states. If an experimenter
tries to determine the exact reference frame where the wavefunction collapsed, the measurement
process will unavoidably introduce an uncertainty that would make impossible the identification of
the “exact” reference frame. Obviously, if one can determine the order of the measurement in a shared
reference frame it can result like that in certain reference frames and, instead, indeterminate in the
other reference frames [74,75].

3. Discussion and Conclusions

It is one of the great merits of Albert Einstein to have investigated the possibility of a
multiple-connected space–time and in theoretical physics there is a long tradition of studying quantum
behavior in spaces of this type [76]. These lines of research have progressively merged into the quantum
study of wormholes, assuming a decisive relevance not only for the study of the structure of the GR
and its cosmological implications, but has given the question a decisive configuration as regards the
relations of “coexistence” peaceful between QM and GR. In this work we proposed a formal technique
for the study of the quantum effects of a wormhole within the conjecture ER = EPR. We then considered
different scenarios from the original Susskind and Maldacena one, in particular those related to the dS
space, which seems to be a much more promising ground for the study of the emergence of classical
information starting from a quantum background where time is not defined [56,77–79].
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These reflections suggest that an effective generalization of the physical meaning of ER = EPR
requires a different and more complex philosophy on the emergence of physical space–time as a
holographic “settlement” of temperature/energy scales, and the use of well-known techniques in
QFT [80,81].

In other words, these scenarios suggest that the idea of transition of the metric suggested
by Sacharov may be the most “natural” way to characterize non-locality in a metric formalism.
The assumption of ER = EPR would be only one of the aspects of a more general phenomenon of
Raum–Zeit–Materie production starting from a non-local Euclidean background through quantum
computation procedures. The observable part of space time would therefore, in a rather literal sense,
result in a thin layer of ice emerging from an ocean of non-locality and the extension of ER = EPR
conjecture to Euclidean non-locality may extend its domain from the original AdS/CFT scenario.

Finally, we suggest readers consider the conjecture ER = EPR within the scenario of de Sitter’s
projective cosmology, described by Hartle-Hawking boundary conditions as Nucleation by Sitter
Vacuum [57]. In this cosmological approach one can define the localization conditions in time of the
particles starting from an Euclidean pre-space that models a non-local phase. Using the Bekenstein
relation, it is possible to identify the area of the micro-horizon A = (cθ0)

2 � 10−26 cm2, where theta is
the chronon, chosen as time scale of the baryonic location. In this case the construction of wormholes
applies to a scale much larger than the Planck length. In this case the wormholes are defined by a
transition of the metric similar to that hypothesized in the classical work by Sacharov in 1984 [82].

Anyway, the wormhole structure of space–time could in principle be characterized by the extended
Heisenberg principle through a deep study of the wavefunction collapse of entangled particles and
reveal possible scenarios of QG and cosmology or emergent gravity theories where the exchange of
a virtual graviton could also be interpreted in terms of entanglement. At Planck scales wormhole
connections would avoid the gravitational collapse and singularities. Moreover, the exchange of a
virtual graviton would become equivalent to a wormhole connection and/or entanglement between
two or more events. From this we can argue that the ER = EPR conjecture alone, as it is, cannot fully
explain without experimental results whether Planck-scale phenomenology can be revealed through
entanglement or that gravity and space–time are emergent physical quantities.
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Abstract: Analogue gravity can be used to reproduce the phenomenology of quantum field theory
in curved spacetime and in particular phenomena such as cosmological particle creation and
Hawking radiation. In black hole physics, taking into account the backreaction of such effects
on the metric requires an extension to semiclassical gravity and leads to an apparent inconsistency in
the theory: the black hole evaporation induces a breakdown of the unitary quantum evolution leading
to the so-called information loss problem. Here, we show that analogue gravity can provide an
interesting perspective on the resolution of this problem, albeit the backreaction in analogue systems
is not described by semiclassical Einstein equations. In particular, by looking at the simpler problem of
cosmological particle creation, we show, in the context of Bose–Einstein condensates analogue gravity,
that the emerging analogue geometry and quasi-particles have correlations due to the quantum
nature of the atomic degrees of freedom underlying the emergent spacetime. The quantum evolution
is, of course, always unitary, but on the whole Hilbert space, which cannot be exactly factorized
a posteriori in geometry and quasi-particle components. In analogy, in a black hole evaporation
one should expect a continuous process creating correlations between the Hawking quanta and the
microscopic quantum degrees of freedom of spacetime, implying that only a full quantum gravity
treatment would be able to resolve the information loss problem by proving the unitary evolution on
the full Hilbert space.

Keywords: analogue gravity; Bose-Einstein condensation; information loss; cosmological particle creation

1. Introduction

Albeit being discovered more than 40 years ago, Hawking radiation is still at the center of
much work in theoretical physics due to its puzzling features and its prominent role in connecting
general relativity, quantum field theory, and thermodynamics. Among the new themes stimulated by
Hawking’s discovery, two have emerged as most pressing: the so-called transplanckian problem and
the information loss problem.

The transplanckian problem stems from the fact that infrared Hawking quanta observed at
late times at infinity seems to require the extension of relativistic quantum field theories in curved
spacetime well within the UV completion of the theory, i.e., the Hawking calculation seems to require
a strong assumption about the structure of the theory at the Planck scale and beyond.

With this open issue in mind, in 1981, Unruh introduced the idea to simulate in condensed
matter systems black holes spacetime and the dynamics of fields above them [1]. Such analogue
models of gravity are provided by several condensed-matter/optical systems in which the excitations
propagate in an effectively relativistic fashion on an emergent pseudo-Riemannian geometry induced
by the medium. Indeed, analogue gravity has played a pivotal role in the past years by providing a
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test bench for many open issues in quantum field theory in curved spacetime and in demonstrating the
robustness of Hawking radiation and cosmological primordial spectrum of perturbations stemming
from inflation against possible UV completions of the theory (see, e.g., the work by the authors of [2]
for a comprehensive review). In recent years, the same models have offered a valuable framework
within which current ideas about the emergence of spacetime and its dynamics could be discussed via
convenient toy models [3–6].

Among the various analogue systems, a preeminent role has been played by Bose–Einstein
condensates (BEC), because these are macroscopic quantum systems whose phonons/quasi-particle
excitations can be meaningfully treated quantum mechanically. Therefore, they can be used to fully
simulate the above mentioned quantum phenomena [7–9] and also as an experimental test bench of
these ideas [10–13].

In what follows, we shall argue that these systems cannot only reproduce Hawking radiation and
address the transplanckian problem, but can also provide a precious insight into the information loss
problem. For gravitational black holes, the latter seems to be a direct consequence of the backreaction
of Hawking radiation, leading to the decrease of the black hole mass and of the region enclosed by
the horizon. The natural endpoint of such process into a complete evaporation of the object leads to a
thermal bath over a flat spacetime, which appears to be incompatible with a unitary evolution of the
quantum fields from the initial state to the final one. (We are not considering here alternative solutions
such as long-living remnants, as these are as well problematic in other ways [14–18], or they imply
deviations from the black hole structure at macroscopic scale, see, e.g., the work by the authors of [19]).

Of course, the BEC system at the fundamental level cannot violate unitary evolution.
However, it is obvious that one can conceive analogue black holes provided with singular
regions for the emergent spacetime where the description of quasi-particles propagating on an
analogue geometry fails. (For example, one can describe flows characterized by regions where the
hydrodynamical approximation fails even without necessarily having loss of atoms from the systems).
In such cases, despite the full dynamics being unitary, it seems that a trace over the quasi-particle
falling in these “analogue singularities” would be necessary, so leading to an apparent loss of unitarity
from the analogue system point of view. The scope of the present investigation is to describe how such
unitarity evolution is preserved on the full Hilbert space.

However, in addressing the information loss problem in gravity, the spacetime geometry and the
quantum fields are implicitly assumed to be separated sectors of the Hilbert space. In the BEC analogue,
this assumption is reflected in the approximation that the quantum nature of the operator âk=0, creating
particles in the background condensate, can be neglected. Therefore, in standard analogue gravity,
a description of the quantum evolution on the full Hilbert space seems precluded.

Nonetheless, it is possible to retain the quantum nature of the condensate operator as well as to
describe their possible correlations with quasi-particles within an improved Bogoliubov description,
namely, the number-conserving approach [20]. Remarkably, we shall show that the analogue gravity
framework can be extended also in this context. Using the simpler setting of a cosmological particle
creation, we shall describe how this entails the continuous generation of correlations between
the condensate atoms and the quasi-particles. Such correlations are responsible for (and in turn
consequence of) the nonfactorizability of the Hilbert space and are assuring in any circumstances the
unitary evolution of the full system. The lesson to be drawn is that in gravitational systems only a full
quantum gravity description could account for the mixing between gravitational and matter quantum
degrees of freedom and resolve, in this way, the apparent paradoxes posed by black hole evaporation
in quantum field theory on curved spacetime.

The paper is organized as follows. In Section 2, we briefly recall the analogue gravity model for a
nonrelativistic BEC in mean-field approximation. In Section 3, we review the time-dependent orbitals
formalism and how it is employed in the general characterization of condensates and in the description
of the dynamics. In Section 4, we introduce the number-conserving formalism. In Section 5, we discuss
the conditions under which we can obtain an analogue gravity model in this general case. Finally, we
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analyze, in Section 6, how in analogue gravity the quasi-particle dynamics affects the condensate and,
in Section 7, how the condensate and the excited part of the full state are entangled, showing that the
unitarity of the evolution is a feature of the system considered in its entirety. Section 8 is devoted to a
discussion of the obtained results and of the perspectives opened by our findings.

2. Analogue Gravity

In this Section, we briefly review how to realize a set-up for analogue gravity [2] with BEC in the
Bogoliubov approximation, with a bosonic low-energy (nonrelativistic) atomic system. In particular,
we consider the simplest case, where the interaction potential is given by a local 2-body interaction.
The Hamiltonian operator, the equation of motion, and commutation relations in second quantization
formalism are as usual:

H =
∫

dx
[

φ† (x)
(
−∇2

2m
φ (x)

)
+

λ

2
φ† (x) φ† (x) φ (x) φ (x)

]
, (1)

i∂tφ (x) = [φ (x) , H] = −∇2

2m
φ (x) + λφ† (x) φ (x) φ (x) , (2)[

φ (x) , φ† (y)
]
= δ (x − y) . (3)

For notational convenience, we dropped the time dependence of the bosonic field operator, φ,
while retaining the dependence from the spatial coordinates x and y, and for simplicity, we omit the hat
notation for the operators. Moreover, m is the atomic mass and the interaction strength λ, proportional
to the scattering length [20], and could be taken as time-dependent. We also set h̄ = 1.

In the Bogoliubov approximation [20,21], the field operator is split into two contributions: a
classical mean-field and a quantum fluctuation field (with vanishing expectation value),

φ (x) = 〈φ (x)〉+ δφ (x) , (4)[
δφ (x) , δφ† (y)

]
= δ (x − y) . (5)

The exact equations for the dynamics of these objects could be obtained from the full Equation (2),
but two approximations ought to be considered:

i∂t 〈φ〉 = −∇2

2m
〈φ〉+ λ

〈
φ†φφ

〉
≈ −∇2

2m
〈φ〉+ λ〈φ〉 〈φ〉 〈φ〉 , (6)

i∂tδφ = −∇2

2m
δφ + λ

(
φ†φφ −

〈
φ†φφ

〉)
≈ −∇2

2m
〈φ〉+ 2λ〈φ〉 〈φ〉 δφ + λ 〈φ〉2 δφ† (7)

the bar denoting complex conjugation. The first equation is the Gross–Pitaevskii equation, and we
refer to the second as the Bogoliubov–de Gennes (operator) equation. The mean-field term represents
the condensate wave function, and the approximation in Equation (6) is to remove from the evolution
the backreaction of the fluctuation on the condensate. The second approximation is to drop all the
nonlinear terms (of order higher than δφ) from Equation (7), which then should be diagonalized to
solve the time evolution.

The standard set-up for analogue gravity is obtained by describing the mean-field of the
condensate wave function, and the fluctuations on top of it, in terms of number density and phase,
as defined in the so-called Madelung representation

〈φ〉 = ρ1/2
0 eiθ0 , (8)

δφ = ρ1/2
0 eiθ0

(
ρ1

2ρ0
+ iθ1

)
, (9)

[θ1 (x) , ρ1 (y)] = −iδ (x − y) . (10)
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From the Gross–Pitaevskii equation, we obtain two equations for the real classical fields θ0 and ρ0:

∂tρ0 = − 1
m
∇ (ρ0∇θ0) , (11)

∂tθ0 = −λρ0 +
1

2m
ρ−1/2

0

(
∇2ρ1/2

0

)
− 1

2m
(∇θ0) (∇θ0) . (12)

These are the quantum Euler equations for the superfluid. Equation (11) can be easily interpreted
as a continuity equation for the density of the condensate, whereas Equation (12) is the Bernoulli
equation for the phase of the superfluid, which generates the potential flow: the superfluid has velocity
(∇θ0) /m. From the Bogoliubov–de Gennes Equation, we obtain two equations for the real quantum
fields θ1 and ρ1

∂tρ1 = − 1
m
∇ (ρ1∇θ0 + ρ0∇θ1) , (13)

∂tθ1 = −
(

λρ0 +
1

4m
∇

(
ρ−1

0 (∇ρ0)
)) ρ1

ρ0
+

1
4m

∇
(

ρ−1
0 (∇ρ1)

)
− 1

m
(∇θ0) (∇θ1) . (14)

If in Equation (14) the “quantum pressure” term ∇
(

ρ−1
0 (∇ρ1)

)
/4m is negligible, as usually

assumed, by substitution we obtain

ρ1 = − ρ0

λρ0 +
1

4m∇
(

ρ−1
0 (∇ρ0)

) (
(∂tθ1) +

1
m

(∇θ0) (∇θ1)

)
, (15)

0 = ∂t

⎛⎝ ρ0

λρ0 +
1

4m∇
(

ρ−1
0 (∇ρ0)

) (
(∂tθ1) +

1
m

(∇θ0) (∇θ1)

)⎞⎠
+∇

⎛⎝ ρ0

λρ0 +
1

4m∇
(

ρ−1
0 (∇ρ0)

) 1
m

(∇θ0)

(
(∂tθ1) +

1
m

(∇θ0) (∇θ1)

)
− ρ0

m
(∇θ1)

⎞⎠ (16)

with Equation (16) being a Klein–Gordon equation for the field θ1. Equation (16) can be written in
the form

1√−g
∂μ

(√
−ggμν∂νθ1

)
= 0 , (17)

where we have introduced the prefactor 1/
√−g with g being as usual the determinant of the Lorentzian

metric gμν. This equation describes an analogue system for a scalar field in curved spacetime as the
quantum field θ1 propagates on a curved geometry with a metric given by

λ̃ = λ +
1

4m
ρ−1

0 ∇
(

ρ−1
0 (∇ρ0)

)
, (18)

vi =
1
m

(∇θ0)i , (19)

√
−g =

√
ρ3

0

m3λ̃
, (20)

gtt = −
√

ρ0

mλ̃

(
λ̃ρ0

m
− v2

)
, (21)

gij =

√
ρ0

mλ̃
δij , (22)

gti = −
√

ρ0

mλ̃
vi , (23)

where the latin indices i and j characterize spatial components.
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If the condensate is homogeneous the superfluid velocity vanishes, the coupling is homogeneous
in space (λ̃ = λ), the number density ρ0 is constant in time, and the only relevant behavior of the
condensate wave function is in the time-dependent phase θ0. Furthermore, in this case there is also
no need to neglect the quantum pressure term in Equation (14), as it will be handled easily after
Fourier-transforming and it will simply introduce a modified dispersion relation—directly derived
from the Bogoliubov spectrum.

If the condensate has an initial uniform number density but is not homogeneous—meaning that
the initial phase depends on the position—the evolution will introduce inhomogeneities in the density
ρ0, as described by the continuity equation Equation (11), and the initial configuration will be deformed
in time. However, as long as ∇2θ0 is small, also the variations of ρ0 are small as well: while there is not
a nontrivial stationary analogue metric, the scale of the inhomogeneities will define a timescale for
which one could safely assume stationarity. Furthermore, the presence of an external potential Vext(x)
in the Hamiltonian, via a term of the form

∫
dxVext (x) φ† (x) φ (x), would play a role in the dynamical

equation for θ0, leaving invariant those for ρ0, ρ1, and θ1.

3. Time-Dependent Natural Orbitals

The mean-field approximation presented in the previous section is a solid and consistent
formulation for studying weakly interacting BEC [22]. It requires, however, that the quantum state
has peculiar features which need to be taken into account. In analogue gravity, these assumptions are
tacitly considered, but as they play a crucial role for our treatment, we present a discussion of them in
some detail to lay down the ground and the formalism in view of next sections.

As is well known [22], the mean-field approximation, consisting in substituting the operator φ(x)
with its expectation value 〈φ (x)〉, is strictly valid when the state considered is coherent, meaning it is
an eigenstate of the atomic field operator φ:

φ (x) |coh〉 = 〈φ (x)〉 |coh〉 . (24)

For states satisfying this equation, the Gross–Pitaevskii Equation (6) is exact (whereas Equation (7)
is still a linearized approximation). Note that the coherent states |coh〉 are not eigenstates of the number
operator, but they are rather quantum superpositions of states with different number of atoms. This
is necessary because φ is an operator that—in the nonrelativistic limit—destroys a particle. We also
observe that the notion of coherent state is valid instantaneously, but it may be in general not preserved
along the evolution in presence of an interaction.

The redefinition of the field operator, as in Equation (4), provides a description where the physical
degrees of freedom are concealed: the new degrees of freedom are not the excited atoms, but the
quantized fluctuations over a coherent state. Formally, this is a simple and totally legit redefinition,
but for our discussion, we stress that the quanta created by the operator δφ do not have a direct
interpretation as atoms.

Given the above discussion, it is useful to remember that coherent states are not the only states to
express the condensation, i.e., the fact that a macroscopic number of particles occupies the same state.
As it is stated in the Penrose–Onsager criterion for off-diagonal long-range-order [23,24], the condensation
phenomenon is best defined considering the properties of the 2-point correlation functions.

The 2-point correlation function is the expectation value on the quantum state of an operator
composed of the creation of a particle in a position x after the destruction of a particle in a
different position y:

〈
φ† (x) φ (y)

〉
. As, by definition, the 2-point correlation function is Hermitian,

〈φ† (y) φ (x)〉 =
〈
φ† (x) φ (y)

〉
, it can always be diagonalized as〈

φ† (x) φ (y)
〉
= ∑

I
〈NI〉 f I (x) f I (y) , (25)
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with ∫
dx fI (x) f J (x) = δI J . (26)

The orthonormal functions f I , eigenfunctions of the 2-point correlation function, are known as
the natural orbitals, and define a complete basis for the 1-particle Hilbert space. In the case of a
time-dependent Hamiltonian (or during the dynamics), they are in turn time-dependent. As for the
field operator, to simplify the notation, we will not always explicitly write the time dependence of f I .

The eigenvalues 〈NI〉 are the occupation numbers of these wave functions. The sum of these
eigenvalues gives the total number of particles in the state (or the mean value, in the case of
superposition of quantum states with different number of particles):

〈N〉 = ∑
I
〈NI〉 . (27)

The time-dependent orbitals define creation and destruction operators, and consequently
the relative number operators (having as expectation values the eigenvalues of the 2-point
correlation function):

aI =
∫

dx fI (x) φ (x) , (28)[
aI , a†

J

]
= δI J , (29)[

aI , aJ

]
= 0 , (30)

NI = a†
I aI . (31)

The state is called “condensate” [23] when one of these occupation numbers is macroscopic
(comparable with the total number of particles) and the others are small when compared to it.

In the weakly interacting limit, the condensed fraction 〈N0〉 / 〈N〉 is approximately equal to 1,
and the depletion factor ∑I �=0 〈NI〉 / 〈N〉 is negligible. This requirement is satisfied by coherent states
that define perfect condensates, as the 2-point correlation functions are a product of the mean-field
and its conjugate:

〈coh| φ† (x) φ (y) |coh〉 = 〈φ (x)〉 〈φ (y)〉 , (32)

with

f0 (x) = 〈N0〉−1/2 〈φ (x)〉 , (33)

〈N0〉 =
∫

dy〈φ (y)〉 〈φ (y)〉 , (34)〈
NI �=0

〉
= 0 . (35)

Therefore, in this case, the set of time-dependent orbitals is given by the proper normalization
of the mean-field function with a completion that is the basis for the subspace of the Hilbert space
orthogonal to the mean-field. The latter set can be redefined arbitrarily, as the only nonvanishing
eigenvalue of the 2-point correlation function is the one relative to mean-field function. The
fact that there is a nonvanishing macroscopic eigenvalue implies that there is total condensation,
i.e., 〈N0〉 / 〈N〉 = 1.

3.1. Time-Dependent Orbitals Formalism

It is important to understand how we can study the condensate state even if we are not considering
coherent states and how the description is related to the mean-field approximation. In this framework,
we shall see that the mean-field approximation is not a strictly necessary theoretical requirement for
analogue gravity.
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With respect to the basis of time-dependent orbitals and their creation and destruction operators,
we can introduce a new expression for the atomic field operator, projecting it on the sectors of the
Hilbert space as

φ (x) = φ0 (x) + φ1 (x)

= f0 (x) a0 + ∑
I

f I (x) aI

= f0 (x)
(∫

dy f0 (y) φ (y)
)
+ ∑

I �=0
f I (x)

(∫
dy fI (y) φ (y)

)
. (36)

The two parts of the atomic field operator so defined are related to the previous mean-field 〈φ〉
and quantum fluctuation δφ expressions given in Section 2. The standard canonical commutation
relation of the background field is of order V−1, where V denotes the volume of the system[

φ0 (x) , φ†
0 (y)

]
= f0 (x) f0 (y) = O

(
V−1

)
. (37)

Note that although the commutator (37) does not vanish identically, it is negligible in the limit of
large V.

In the formalism (36), the condensed part of the field is described by the operator φ0 and the
orbital producing it through projection, the 1-particle wave function f0. The dynamics of the function
f0, the 1-particle wave function that best describes the collective behavior of the condensate, can be
extracted by using the relations〈

φ† (x) φ (y)
〉
= ∑

I
〈NI〉 f I (x) f I (y) , (38)

〈[
a†

KaJ , H
]〉

= i∂t
〈

NJ
〉

δJK + i
(
〈NK〉 −

〈
NJ

〉) (∫
dx fJ (x) ˙fK (x)

)
(39)

and the evolution of the condensate 1-particle wave function

i∂t f0 (x) =
(∫

dy f0 (y) (i∂t f0 (y))
)

f0 (x) + ∑
I �=0

(∫
dy f0 (y) (i∂t f I (y))

)
f I (x)

=

(∫
dy f0 (y) (i∂t f0 (y))

)
f0 (x) + ∑

I �=0

1
〈N0〉 − 〈NI〉

〈[
a†

0aI , H
]〉

f I (x)

= − i
2

∂t 〈N0〉
〈N0〉

f0 (x) +
(
−∇2

2m
f0 (x)

)
+

1
〈N0〉

〈
a†

0 [φ (x) , V]
〉
+

+ ∑
I �=0

〈NI〉
〈

a†
0 [aI , V]

〉
+ 〈N0〉

〈[
a†

0, V
]

aI
〉

〈N0〉 (〈N0〉 − 〈NI〉)
f I (x) (40)

we assumed at any time 〈N0〉 �=
〈

NI �=0
〉
. The above equation is valid for a condensate when the

dynamics is driven by a Hamiltonian operator composed of a kinetic term and a generic potential
V, but we are interested in the case of Equation (1). Furthermore, f0 (x) can be redefined through an
overall phase transformation, f0 (x) → eiΘ f0 (x), with any arbitrary time-dependent real function Θ.
We have chosen the overall phase to satisfy the final expression Equation (40), as it is the easiest to
compare with the Gross–Pitaevskii Equation (6).

3.2. Connection with the Gross–Pitaevskii Equation

In this section, we discuss the relation between the function f0—the eigenfunction of the 2-point
correlation function with macroscopic eigenvalue—and the solution of the Gross–Pitaevskii equation,
approximating the mean-field function for quasi-coherent states. In particular, we aim at comparing
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the equations describing their dynamics, detailing under which approximations they show the same
behavior. This discussion provides a preliminary technical basis for the study of the effect of the
quantum correlations between the background condensate and the quasi-particles, which are present
when the quantum nature of the condensate field operator is retained and it is not just approximated
by a number, as done when performing the standard Bogoliubov approximation. We refer to the
work by the authors of [21] for a review on the Bogoliubov approximation in weakly imperfect Bose
gases and to the work by the authors of [25] for a presentation of rigorous results on the condensation
properties of dilute bosons.

The Gross–Pitaveskii Equation (6) is an approximated equation for the mean-field dynamics. It
holds when the backreaction of the fluctuations δφ on the condensate—described by a coherent state—is
negligible. This equation includes a notion of number conservation, meaning that the approximation
of the interaction term implies that the spatial integral of the squared norm of the solution of the
equation is conserved: 〈

φ† (x) φ (x) φ (x)
〉
≈ 〈φ (x)〉 〈φ (x)〉 〈φ (x)〉 (41)

⇓

i∂t

∫
dx〈φ (x)〉 〈φ (x)〉 = 0 . (42)

This depends on the fact that only the leading term of the interaction is included in the equation.
Therefore we can compare the Gross–Pitaevskii equation for the mean-field with the equation
for 〈N0〉1/2 f0 (x) approximated to leading order, i.e., 〈φ (x)〉 should be compared to the function
f0 (x) under the approximation that there is no depletion from the condensate. If we consider
the approximations 〈

a†
0 [φ (x) , V]

〉
≈ λ 〈N0〉2 f0 (x) f0 (x) f0 (x) , (43)

i∂t 〈N0〉 =
〈[

a†
0a0, V

]〉
≈ 0 , (44)

∑
I �=0

〈NI〉
〈

a†
0 [aI , V]

〉
+ 〈N0〉

〈[
a†

0, V
]

aI
〉

〈N0〉 − 〈NI〉
f I (x) ≈ 0 , (45)

we obtain that 〈N0〉1/2 f0 (x) satisfies the Gross–Pitaevskii equation.
The approximation in Equation (43) is easily justified, as we are retaining only the leading order of

the expectation value
〈

a†
0 [φ, V]

〉
and neglecting the others, which depend on the operators φ1 and φ†

1
and are of order smaller than 〈N0〉2. The second equation Equation (44) is derived from the previous
one as a direct consequence, as the depletion of N0 comes from the subleading terms

〈
a†

0φ†
1φ1a0

〉
and

〈
a†

0a†
0φ1φ1

〉
. The first of these two terms is of order 〈N0〉, having its main contributions from

separable expectation values—
〈

a†
0φ†

1φ1a0
〉
≈ 〈N0〉

〈
φ†

1φ1
〉
—and the second is of the same order due

to the dynamics. The other terms are even more suppressed, as can be argued considering that they
contain an odd number of operators φ1. Taking their time derivatives, we observe that they arise from
the second order in the interaction, making these terms negligible in the regime of weak interaction.

The terms
〈

a†
0a†

0a0φ1
〉

are also subleading with respect to those producing the depletion, since
the separable contributions—

〈
a†

0a0
〉 〈

a†
0φ1

〉
—vanish by definition, and the remaining describe the

correlation between small operators, acquiring relevance only while the many-body quantum state is
mixed by the depletion of the condensate:〈

a†
0a†

0a0φ1

〉
=

〈
a†

0φ1 (N0 − 〈N0〉)
〉

. (46)
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Using the same arguments we can assume the approximation in Equation (45) to hold, as the
denominator of order 〈N0〉 is sufficient to suppress the terms in the numerator, which are negligible
with respect to the leading term in Equation (43).

The leading terms in Equation (45) do not affect the depletion of N0, but they may be of the
same order. They depend on the expectation value

〈
a†

0 [aI , V]
〉
≈ λ

(∫
dx fI (x) f0 (x) f0 (x) f0 (x)

)
〈N0〉2 . (47)

Therefore, these terms with the mixed action of ladder operators relative to the excited part and the
condensate are completely negligible when the integral

∫
f I f0 f0 f0 is sufficiently small. This happens

when the condensed 1-particle state is approximately f0 ≈ V−1/2eiθ0 , i.e., when the atom number
density of the condensate is approximately homogeneous.

Moreover, in many cases of interest, it often holds that the terms in the LHS of Equation (45)
vanish identically: if the quantum state is an eigenstate of a conserved charge, e.g., total momentum
or total angular momentum, the orbitals must be labeled with a specific value of charge. The relative
ladder operators act by adding or removing from the state such charge, and for any expectation
value not to vanish the charges must cancel out. In the case of homogeneity of the condensate and
translational invariance of the Hamiltonian, this statement regards the conservation of momentum.
In particular, if the state is invariant under translations, we have〈

a†
k1

a†
k2

ak3 ak4

〉
= δk1+k2,k3+k4

〈
a†

k1
a†

k2
ak3 ak4

〉
, (48)〈

a†
0a†

0a0ak

〉
= 0 (49)

(for k �= 0).
In conclusion, we obtain that for a condensate with a quasi-homogeneous density a good

approximation for the dynamics of the function 〈N0〉1/2 f0, the rescaled 1-particle wave function
macroscopically occupied by the condensate, is provided by

i∂t

(
〈N0〉1/2 f0 (x)

)
= −∇2

2m

(
〈N0〉1/2 f0 (x)

)
+ λ 〈N0〉3/2 f0 (x) f0 (x) f0 (x)

+ λ 〈N0〉−1 (〈
a†

0φ1 (x) φ†
1 (x) a0

〉
+

〈
a†

0φ†
1 (x) φ1 (x) a0

〉) (
〈N0〉1/2 f0 (x)

)
+ λ 〈N0〉−1 〈

a†
0φ1 (x) a†

0φ1 (x)
〉 (

〈N0〉1/2 f0 (x)
)
+O

(
λ 〈N0〉1/2 V−3/2

)
.

(50)

This equation is equivalent to the Gross–Pitaveskii equation Equation (6) when we consider only
the leading terms, i.e., the first line of Equation (50). If we also consider the remaining lines of the
Equation (50), i.e., if we include the effect of the depletion, we obtain an equation that should be
compared to the equation for the mean-field function up to the terms quadratic in the operators δφ.
The two equations are analogous when making the identification:

〈N0〉1/2 f0 ∼ 〈φ〉 , (51)〈
φ†

0φ†
1φ1φ0

〉
∼ 〈φ〉 〈φ〉

〈
δφ†δφ

〉
, (52)〈

φ†
0φ†

0φ1φ1

〉
∼ 〈φ〉〈φ〉 〈δφδφ〉 . (53)

The possible ambiguities in comparing the two equations come from the arbitrariness in fixing
the overall time-dependent phases of the functions f0 and 〈φ〉, and from the fact that the commutation
relations for the operators φ1 and the operators δφ differ from each other by a term going as f0 f0,
as seen in Equation (37). This causes an apparent difference when comparing the two terms:

λ 〈N0〉−1 (〈
a†

0φ1 (x) φ†
1 (x) a0

〉
+

〈
a†

0φ†
1 (x) φ1 (x) a0

〉) (
〈N0〉1/2 f0 (x)

)
∼ 2λ

〈
δφ† (x) δφ (x)

〉
〈φ (x)〉 . (54)
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However, the difference can be reabsorbed—manipulating the RHS—in a term which only affects
the overall phase of the mean-field, not the superfluid velocity.

The equation for the depletion can be easily derived for the number-conserving approach and
compared to the result in the Bogoliubov approach. As seen, the dynamical equation for f0 contains
the information for the time derivative of its occupation number. Projecting the derivative along the
function itself and taking the imaginary part, one gets

1
2

i∂t 〈N0〉 =
1
2

〈[
a†

0a0, V
]〉

= iIm
(∫

dx 〈N0〉1/2 f0 (x) i∂t

(
〈N0〉1/2 f0 (x)

))
≈ λ

2

(∫
dx

〈
φ†

0 (x) φ†
0 (x) φ1 (x) φ1 (x)

〉
−

〈
φ†

1 (x) φ†
1 (x) φ0 (x) φ0 (x)

〉)
. (55)

We can now compare this equation to the one for the depletion in mean-field description

1
2

i∂tN =
1
2

i∂t

(∫
dx〈φ (x)〉 〈φ (x)〉

)
= iIm

(∫
〈φ (x)〉i∂t 〈φ (x)〉

)
≈ λ

2

(∫
〈φ (x)〉〈φ (x)〉 〈δφ (x) δφ (x)〉 − 〈φ (x)〉 〈φ (x)〉

〈
δφ† (x) δφ† (x)

〉)
. (56)

The two expressions are consistent with each other〈
φ†

0 (x) φ†
0 (x) φ1 (x) φ1 (x)

〉
∼ 〈φ (x)〉〈φ (x)〉 〈δφ (x) δφ (x)〉 . (57)

For coherent states, one expects to find equivalence between δφ and φ1. To do so, we need to
review the number-conserving formalism that can provide the same description used for analogue
gravity in the general case, e.g., when there is a condensed state with features different from those of
coherent states.

4. Number-Conserving Formalism

Within the mean-field framework, the splitting of the field obtained by translating the field
operator φ by the mean-field function produces the new field δφ. This redefinition of the field also
induces a corresponding one of the Fock space of the many-body states which, to a certain extent,
hides the physical atom degrees of freedom, as the field δφ describes the quantum fluctuations over
the mean-field wave function instead of atoms.

Analogue gravity is defined, considering this field and its Hermitian conjugate, and properly
combined, to study the fluctuation of phase. The fact that δφ is obtained by translation provides
this field with canonical commutation relation. The mean-field description for condensates holds for
coherent states and is a good approximation for quasi-coherent states.

When we consider states with fixed number of atoms, and therefore not coherent states, it is
better to consider different operators to study the fluctuations. One can do it following the intuition
that the fluctuation represents a shift of a single atom from the condensate to the excited fraction and
vice versa. Our main reason here to proceed this way is that we are forced to retain the quantum
nature of the condensate. We therefore want to adopt the established formalism of number-conserving
ladder operators (see, e.g., the work by the authors of [20]) to obtain a different expression for the
Bogoliubov–de Gennes equation, studying the excitations of the condensate in these terms. We can
adapt this discussion to the time-dependent orbitals.

An important remark is that the qualitative point of introducing the number-conserving
approach is conceptually separated from the fact that higher-order terms are neglected by Bogoliubov
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approximations anyway [20,26]. Indeed, neglecting the commutation relations for a0 would always
imply the impossibility to describe the correlations between quasi-particles and condensate, even when
going beyond the Bogoliubov approximation (e.g., by adding terms with three quasi-particle operators).
Including such terms, in a growing level of accuracy (and complexity), the main difference would be
that the true quasi-particles of the systems do no longer coincide with the Bogoliubov ones. From
a practical point of view, this makes clearly a (possibly) huge quantitative difference for the energy
spectrum, correlations between quasi-particles, transport properties and observables. Nevertheless,
this does not touch at heart that the quantum nature of the condensate is not retained. A discussion
of the terms one can include beyond Bogoliubov approximation, and the resulting hierarchy of
approximations, is presented in the work by the authors of [26]. Here, our point is rather of principle,
i.e., the investigation of the consequences of retaining the operator nature of a0. Therefore, we used the
standard Bogoliubov approximation, improved via the introduction of number-conserving operators.

If we consider the ladder operators aI , satisfying by definition the relations in Equations (29)–(30),
and keep as reference the state a0 for the condensate, it is a straightforward procedure to define the
number-conserving operators αI �=0, one for each excited wave function, according to the relations

αI = N−1/2
0 a†

0aI , (58)[
αI , α†

J

]
= δI J ∀I, J �= 0 , (59)[

αI , αJ

]
= 0 ∀I, J �= 0 . (60)

The degree relative to the condensate is absorbed into the definition, from the hypothesis of
number conservation. These relations hold for I, J �= 0, and obviously there is no number-conserving
ladder operator relative to the condensed state. The operators αI are not a complete set of operators to
describe the whole Fock space, but they span any subspace of given number of total atoms. To move
from one another it would be necessary to include the operator a0.

This restriction to a subspace of the Fock space is analogous to what is implicitly done in the
mean-field approximation, where one considers the subspace of states which are coherent with respect
to the action of the destruction operator associated to the mean-field function.

In this set-up, we need to relate the excited part described by φ1 to the usual translated field δφ,
and obtain an equation for its dynamics related to the Bogoliubov–de Gennes equation. To do so, we
need to study the linearization of the dynamics of the operator φ1, combined with the proper operator
providing the number conservation

N−1/2
0 a†

0φ1 = N−1/2
0 a†

0 (φ − φ0)

= ∑
I �=0

f IαI . (61)

As long as the approximations needed to write a closed dynamical equation for φ1 are compatible
with those under which the equation for the dynamics of f0 resembles the Gross–Pitaevskii equation,
i.e., as long as the time derivative of the operators αI can be written as a combination of the αI
themselves, we can expect to have a set-up for analogue gravity. In fact, in this case, the functional
form of the dynamical equations of the system will allow following the standard steps of the derivation
reviewed in Section 2.

Therefore, we consider the order of magnitude of the various contributions to the time derivative
of

(
N−1/2

0 a†
0φ1

)
. We have already discussed the time evolution of the function f0: from the latter

it depends the evolution of the operator a0, since it is the projection along f0 of the full field operator φ.
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At first we observed that the variation in time of N0 must be of smaller order, both for the definition of
condensation and because of the approximations considered in the previous section:

i∂tN0 = i∂t

(∫
dxdy f0 (x) f0 (y) φ† (x) φ (y)

)
=

[
a†

0a0, V
]
+ ∑

I �=0

1
〈N0〉 − 〈NI〉

(〈[
a†

0aI , V
]〉

a†
I a0 +

〈[
a†

I a0, V
]〉

a†
0aI

)
. (62)

Of these terms, the summations are negligible due to the prefactors
〈[

a†
I a0, V

]〉
and

their conjugates. Moreover, as
〈

a†
I a0

〉
is vanishing, the dominant term is the first, which has

contributions of at most the order of the depletion factor.
The same can be argued for both the operators a0 and N−1/2

0 : their derivatives do not provide

leading terms when we consider the derivative of the composite operator
(

N−1/2
0 a†

0φ1

)
, only the

derivative of the last operator φ1 being relevant. At leading order, we have

i∂t

(
N−1/2

0 a†
0φ1

)
≈ i

(
N−1/2

0 a†
0

)
(∂tφ1) . (63)

We, therefore, have to analyze the properties of ∂tφ, considering the expectation values between
the orthogonal components φ0 and φ1 and their time derivatives:〈

φ†
0 (y) (i∂tφ0 (x))

〉
=

(
〈N0〉1/2 f0 (y)

)
i∂t

(
〈N0〉1/2 f0 (x)

)
, (64)〈

φ†
0 (y) (i∂tφ1 (x))

〉
= − ∑

I �=0
f0 (y) f I (x)

〈NI〉
〈

a†
0 [aI , V]

〉
+ 〈N0〉

〈[
a†

0, V
]

aI
〉

〈N0〉 − 〈NI〉

= −
〈(

i∂tφ
†
0 (y)

)
φ1 (x)

〉
, (65)〈

φ†
1 (y) (i∂tφ1 (x))

〉
=

〈
φ†

1 (y)
(
−∇2

2m
φ1 (x)

)〉
+

〈
φ†

1 (y) [φ1 (x) , V]
〉

− ∑
I �=0

f I (y) f0 (x)
〈NI〉

〈[
a†

I a0, V
]〉

〈N0〉 − 〈NI〉
. (66)

The first equation shows that the function 〈N0〉1/2 f0 (x) assumes the same role of the solution of
Gross–Pitaevskii equation in the mean-field description. As long as the expectation value

〈[
a†

0aI , V
]〉

is negligible, we have that the mixed term described by the second equation is also negligible—as it
can be said for the last term in the third equation—so that the excited part φ1 can be considered to
evolve separately from φ0 in first approximation. Leading contributions from

〈
φ†

1 [φ1, V]
〉

must be
those quadratic in the operators φ1 and φ†

1, and therefore the third equation can be approximated as

〈
φ†

1 i∂tφ1

〉
≈

〈
φ†

1

(
−∇2

2m
φ1 + 2λφ†

0φ0φ1 + λφ†
1φ0φ0

)〉
. (67)

This equation can be compared to the Bogoliubov–de Gennes equation. If we rewrite it in terms
of the number-conserving operators, and we consider the fact that the terms mixing the derivative of
φ1 with φ0 are negligible, we can write an effective linearized equation for N−1/2

0 a†
0φ1:

i∂t

(
N−1/2

0 a†
0φ1 (x)

)
≈ −∇2

2m

(
N−1/2

0 a†
0φ1 (x)

)
+ 2λρ0 (x)

(
N−1/2

0 a†
0φ1 (x)

)
+ λρ0 (x) e2iθ0(x)

(
φ†

1 (x) a0N−1/2
0

)
. (68)
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In this equation, we use the functions ρ0 and θ0, which are obtained from the condensed wave
function, by writing it as 〈N0〉1/2 f0 = ρ1/2

0 eiθ0 . One can effectively assume the condensed function to
be the solution of the Gross–Pitaevskii equation, as the first corrections will be of a lower power of
〈N0〉 (and include a backreaction from this equation itself).

Assuming that ρ0 is, at first approximation, homogeneous, implies that the term
〈[

a†
0aI , V

]〉
is negligible. If ρ0 and θ0 are ultimately the same as those obtained from the Gross–Pitaevskii equation,
the same equation that holds for the operator δφ can be assumed to hold for the operator N−1/2

0 a†
0φ1.

The solution for the mean-field description of the condensate is therefore a general feature of the
system in studying the quantum perturbation of the condensate, not strictly reserved to coherent states.

Although having strongly related dynamical equations, the substantial difference between the
operators δφ of Equation (4) and N−1/2

0 a†
0φ1 is that the number-conserving operator does not satisfy

the canonical commutation relations with its Hermitian conjugate, as we have extracted the degree of
freedom relative to the condensed state[

φ1 (x) , φ†
1 (y)

]
= δ (x, y)− f0 (x) f0 (y) . (69)

Although this does not imply a significant obstruction, one must remind that the field φ1 should
never be treated as a canonical quantum field. What has to be done, instead, is considering its
components with respect to the basis of time-dependent orbitals. Each mode of the projection φ1

behaves as if it is a mode of a canonical scalar quantum field in a curved spacetime. Keeping this in
mind, we can safely retrieve analogue gravity.

5. Analogue Gravity with Atom Number Conservation

In the previous section, we discussed the equivalent of the Bogoliubov–de Gennes equation
in a number-conserving framework. Our aim in the present Section is to extend this description to
analogue gravity.

The field operators required for analogue gravity will differ from those relative to the mean-field
description, and they should be defined considering that we have by construction removed the
contribution from the condensed 1-particle state f0. The dynamical equation for the excited part in the
number-conserving formalism Equation (68) appears to be the same as for the case of coherent states
(as in Equation (7)), but instead of the field δφ one has N−1/2

0 a†
0φ1, where we remind that N0 = a†

0a0.
Using the Madelung representation, we may redefine the real functions ρ0 and θ0 from the

condensed wave function f0 and the expectation value 〈N0〉. Approximating at the leading order,
we can obtain their dynamics as in the quantum Euler Equations (11)–(12):

〈N0〉1/2 f0 = ρ1/2
0 eiθ0 . (70)

These functions enter in the definition of the quantum operators θ1 and ρ1, which take a different
expression from the usual Madelung representation when we employ the set of number-conserving
ladder operators

θ1 = − i
2
〈N0〉−1/2 ∑

I �=0

(
f I
f0

N−1/2
0 a†

0aI −
f I

f0
a†

I a0N−1/2
0

)

= − i
2

(
N−1/2

0 φ†
0φ1 − φ†

1φ0N−1/2
0

〈N0〉1/2 f0 f0

)
, (71)

ρ1 = 〈N0〉1/2 ∑
I �=0

(
f0 f I N−1/2

0 a†
0aI + f0 f I a†

I a0N−1/2
0

)
=

= 〈N0〉1/2
(

N−1/2
0 φ†

0φ1 + φ†
1φ0N−1/2

0

)
. (72)
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From Equations (71) and (72), we observe that the structure of the operators θ1 and ρ1 consists of
a superposition of modes, each dependent on a different eigenfunction f I of the 2-point correlation
function, with a sum over the index I �= 0.

The new fields θ1 and ρ1 do not satisfy the canonical commutation relations since the condensed
wave function f0 is treated separately by definition. However, these operators could be analyzed
mode-by-mode, and therefore be compared in full extent to the modes of quantum fields in curved
spacetime to which they are analogous. Their modes satisfy the relations[

θI , ρJ
]
= −i f I f IδJ I ∀I, J �= 0 . (73)

Equation (73) is a basis-dependent expression, which can, in general, be found for the fields
of interest. In the simplest case of homogeneous density of the condensate ρ0, this commutation
relations reduce to −iδI J , and the Fourier transform provides the tools to push the description to full
extent where the indices labeling the functions are the momenta k.

The equations for analogue gravity are found under the usual assumptions regarding the quantum
pressure, i.e., the space gradients of the atom densities are assumed to be small. When considering
homogeneous condensates this requirement is of course satisfied. In nonhomogeneous condensates,
we require

∇
(

ρ−1
0 (∇ρ0)

)
� 4mλρ0 , (74)

∇
(

ρ−1
0 (∇ρ1)

)
� 4mλρ1 . (75)

Making the first assumption (74), the effective coupling constant λ̃ is a global feature of the system
with no space dependence. This means that all the inhomogeneities of the system are encoded in the
velocity of the superfluid, the gradient of the phase of the condensate. As stated before, the continuity
equation can induce inhomogeneities in the density if there are initial inhomogeneities in the phase,
but for sufficiently short intervals of time, the assumption is satisfied. Another effect of the first
assumption (74) is that the term

∫
dx fI f0 f0 f0 is negligible. The more ρ0 is homogeneous, the closer

this integral is to vanishing, making the description more consistent. The second assumption (75) is
a general requirement in analogue gravity, needed to have local Lorentz symmetry, and therefore a
proper Klein–Gordon equation for the field θ1. When ρ0 is homogeneous, this approximation means
considering only small momenta, for which we have the usual dispersion relation.

Under these assumptions, the usual equations for analogue gravity are obtained:

ρ1 = − 1
λ

(
(∂tθ1) +

1
m

(∇θ0) (∇θ1)

)
, (76)

(∂tρ1) = − 1
m
∇ (ρ1 (∇θ0) + ρ0 (∇θ1)) (77)

⇓

0 = ∂t

(
− 1

λ
(∂tθ1)−

δij

mλ

(
∇jθ0

)
(∇iθ1)

)
+∇j

(
− δij

mλ
(∇iθ0) (∂tθ1) +

(
δijρ0

m
− 1

λ

δil

m
δjm

m
(∇lθ0) (∇mθ0)

)
(∇iθ1)

)
(78)

so that θ1 is the analogue of a scalar massless field in curved spacetime. However, the operator θ1

is intrinsically unable to provide an exact full description of a massless field since it is missing the
mode f0. Therefore, the operator θ1 is best handled when considering the propagation of its constituent
modes, and relating them to those of the massless field.

The viability of this description as a good analogue gravity set-up is ensured, ultimately, by the
fact that the modes of θ1, i.e., the operators describing the excited part of the atomic field, have a
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closed dynamics. The most important feature in the effective dynamics of the number-conserving
operators N−1/2

0 a†
0aI , as described in equation Equation (68), is that its time derivative can be written

as a composition of the same set of number operators, and this enables the analogue model.
In the following, we continue with the case of an homogenous condensate, which is arguably

the most studied case in analogue gravity. The description is enormously simplified by the fact
that the gradient of the condensed wave function vanishes, since f0 = V−1/2, meaning that the
condensed state is fully described by the state of null momentum k = 0. In a homogeneous BEC, all the
time-dependent orbitals are labeled by the momenta they carry, and at every moment in time, we can
apply the same Fourier transform to transform the differential equations in the space of coordinates to
algebraic equations in the space of momenta. We expect that the number-conserving treatment of the
inhomogenous condensate follows along the same lines, albeit being technically more complicated.

6. Simulating Cosmology in Number-Conserving Analogue Gravity

With an homogeneous condensate we can simulate a cosmology with a scale factor changing in
time—as long as we can control and modify in time the strength of the 2-body interaction λ—and we
can verify the prediction of quantum field theory in curved spacetime that in an expanding universe
one should observe a cosmological particle creation [9,27–30] . In this set-up, there is no ambiguity in
approximating the mixed term of the interaction potential, as discussed in the Section 3.2.

To further proceed, we apply the usual transformation to pass from the Bogoliubov description
of the atomic system to the set-up of analogue gravity, and we then proceed considering
number-conserving operators. It is convenient to adopt a compact notation for the condensate wave
function and its approximated dynamics, as discussed previously in Equations (11)–(12) and in
Equation (70).

f0 (x) 〈N0〉1/2 ≡ φ0 = ρ1/2
0 eiθ0 , (79)

∂tρ0 = 0 , (80)

∂tθ0 = −λρ0 . (81)

To study the excitations described by the operator θ1 (x) we need the basis of time-dependent
orbitals, which in the case of a homogeneous condensate is given by the plane waves, the set of
orthonormal functions which define the Fourier transform and are labeled by the momenta. By Fourier
transforming the operator φ1 (x), orthogonal to the condensate wave function, we have

δφk ≡
∫ dx√

V
e−ikx N−1/2

0 a†
0φ1 (x)

=
∫ dx√

V
e−ikx N−1/2

0 a†
0 ∑

q �=0

eiqx
√

V
aq

= N−1/2
0 a†

0ak , (82)

[
δφk, δφ†

k′

]
= δk,k′ ∀k, k′ �= 0 . (83)

Notice that with the notation of Equation (58), δφk would be just αk and one sees the dependence
on the condensate operator a0.

Following the same approach discussed in the Section 5, we define θk and ρk.
These number-conserving operators are labeled with a nonvanishing momentum and act in the
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atomic Fock space, in a superposition of two operations, extracting momentum k from the state or
introducing momentum −k to it. All the following relations are defined for k, k′ �= 0.

θk = − i
2

(
δφk
φ0

−
δφ†

−k

φ0

)
, (84)

ρk = ρ0

(
δφk
φ0

+
δφ†

−k

φ0

)
, (85)

[θk, ρk′ ] = −i
[
δφk, δφ†

−k′

]
= −iδk,−k′ , (86)〈

δφ†
k (t) δφk′ (t)

〉
= δk,k′ 〈Nk〉 . (87)

Again, we remark that these definitions of θk and ρk do not provide, through an inverse Fourier
transform of these operators, a couple of conjugate real fields, θ1 (x) and ρ1 (x), with the usual
commutation relations as in Equation (10), because they are not relative to a set of functions that
form a complete basis of the 1-particle Hilbert space, as the mode k = 0 is not included. However,
these operators, describing each mode with k �= 0, can be studied separately and they show the same
behavior of the components of a quantum field in curved spacetime: the commutation relations in
Equation (86) are the same as those that are satisfied by the components of a quantum scalar field.

From the Bogoliubov–de Gennes Equation (68), we get the two coupled dynamical equations for
θk and ρk:

∂tθk = −1
2

(
k2

2m
+ 2λρ0

)
ρk
ρ0

, (88)

∂t
ρk
ρ0

=
k2

m
θk . (89)

Combining these gives the analogue Klein–Gordon equation for each mode k �= 0:

∂t

(
− 1

λρ0 +
k2

4m

(∂tθk)

)
=

k2

m
θk . (90)

In this equation, the term due to quantum pressure is retained for convenience, as the homogeneity
of the condensed state makes it easy to maintain it in the description. It modifies the dispersion relation
and breaks Lorentz symmetry, but the usual expression is found in the limit k2

2m � 2λρ0.
When the quantum pressure is neglected, the analogue metric tensor is

gμνdxμdxν =

√
ρ0

mλ

(
−λρ0

m
dt2 + δijdxidxj

)
. (91)

This metric tensor is clearly analogous to that of a cosmological spacetime, where the evolution
is given by the time dependence of the coupling constant λ. This low-momenta limit is the regime
in which we are mostly interested, because when these conditions are realized the quasi-particles,
the excitations of the field θk, behave most similarly to particles in a curved spacetime with local
Lorentz symmetry.

6.1. Cosmological Particle Production

We now consider a set-up for which the coupling constant varies from an initial value λ to a
final value λ′ through a transient phase. λ is assumed asymptotically constant for both t → ±∞.
This set-up has been studied in the Bogoliubov approximation in the works by the authors of [9,27–30]
and can be experimentally realized with. e.g., via Feshbach resonance. For one-dimensional Bose
gases where significant corrections to the Bogoliubov approximation are expected far from the weakly
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interacting limit, a study of the large time evolution of correlations was presented in the work by the
authors of [31]. Here, our aim is to study the effect of the variation of the coupling constant in the
number-conserving framework.

There will be particle creation and the field in general takes the expression

θk (t) =
1

Nk (t)

(
e−iΩk(t)ck + eiΩ−k(t)c†

−k

)
, (92)

where the operators ck are the creation and destruction operators for the quasi-particles at t → −∞.
For the time t → +∞, there will be a new set of operators c′,

θk (t → −∞) =
1
Nk

(
e−iωktck + eiωktc†

−k

)
, (93)

θk (t → +∞) =
1
N ′

k

(
e−iω′

ktc′k + eiω′
ktc′†−k

)
. (94)

From these equations, in accordance with Equation (88), we obtain

ρk = − 2ρ0
k2

2m + 2λρ0
∂tθk (95)

and the two following asymptotic expressions for ρk,

ρk (t → −∞) =
2iωkρ0

k2

2m + 2λρ0

1
Nk

(
e−iωktck − eiωktc†

−k

)
, (96)

ρk (t → +∞) =
2iω′

kρ0
k2

2m + 2λ′ρ0

1
N′

k

(
e−iω′

ktc′k − eiω′
ktc′†−k

)
. (97)

With the previous expressions for θk and ρk and imposing the commutation relations in

Equation (86), we retrieve the energy spectrum ωk =

√
k2

2m

(
k2

2m + 2λρ0

)
as expected and the

(time-dependent) normalization prefactor N :

Nk =

√√√√√4ρ0

√√√√ k2

2m
k2

2m + 2λρ0
. (98)

The expected commutation relations for the operators c and c′ are found (again not including the
mode k = 0):

0 =
[
ck, ck′

]
=

[
c′k, c′k′

]
, (99)

δk,k′ =
[
ck, c†

k′

]
=

[
c′k, c′†k′

]
. (100)

It is found
c′k = cosh Θkck + sinh Θkeiϕk c†

−k (101)

with

cosh Θk = cosh Θ−k , (102)

sinh Θkeiϕk = sinh Θ−keiϕ−k . (103)

The initial state in which we are interested is the vacuum of quasi-particles, so that each
quasi-particle destruction operators ck annihilates the initial state (To make contact with the standard
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Bogoliubov approximation, if there one denotes by γk the quasi-particles one has that the γk are a
combination of the atom operators ak, a−k of the form γk = ukak + vka†

−k [20]. Correspondingly, in the
number-conserving formalism the quasi-particle operators ck are a combination of the atom operators
δφk ≡ αk, δφ−k ≡ α−k):

ck |in〉 ≡0 ∀k �= 0 . (104)

To realize this initial condition, we should impose constraints, in principle, on every
correlation function. We focus on the 2-point correlation functions

〈
δφ†δφ

〉
and 〈δφδφ〉. In particular,

the first of the two determines the number of atoms with momentum k in the initial state:〈
δφ†

k δφk

〉
=

〈
a†

k a0N−1
0 a†

0ak

〉
=

〈
a†

k ak

〉
= 〈Nk〉 . (105)

In order for the state to be condensed with respect to the state with momentum 0, it must be
that 〈Nk〉 � 〈N0〉 = ρ0V. When the vacuum condition Equation (104) holds, the 2-point correlation
functions can be easily evaluated to be

〈
δφ†

k δφk′
〉
=

⎛⎜⎜⎝1
2

k2

2m + λρ0√
k2

2m

(
k2

2m + 2λρ0

) − 1
2

⎞⎟⎟⎠ δk,k′

≈ 1
4

√
2λρ0

k2

2m

δk,k′ , (106)

〈δφ−kδφk′ 〉 = − e2iθ0

4
2λρ0√

k2

2m

(
k2

2m + 2λρ0

) δk,k′

≈ −e2iθ0
〈

δφ†
k δφk′

〉
, (107)

where in the last line we have used k2

2m � 2λρ0, the limit in which the quasi-particles propagate in
accordance with the analogue metric Equation (91), and one has to keep into account that the phase of
the condensate is time dependent and consequently the last correlator is oscillating.

We now see that the conditions of condensation 〈Nk〉 � 〈N0〉 and of low-momenta translate into

2λρ0

16 〈N0〉2 � k2

2m
� 2λρ0 . (108)

The range of momenta that should be considered is, therefore, set by the number of condensate
atoms, the physical dimension of the atomic system, and the strength of the 2-body interaction.

The operators θk satisfying Equation (90)—describing the excitations of quasi-particles over
a BEC—are analogous to the components of a scalar quantum field in a cosmological spacetime.
In particular, if we consider a cosmological metric given in the usual form of

gμνdxμdxν = −dτ2 + a2δijdxidxj , (109)
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the analogy is realized for a specific relation between the coupling λ (t) and the scale factor a (τ), which
then induces the relation between the laboratory time t and the cosmological time τ. These relations
are given by

a (τ (t)) =
(

ρ0

mλ (t)

)1/4 1
C

, (110)

dτ =
ρ0

ma (τ (t))
1

C2 dt , (111)

for an arbitrary constant C.
In cosmology, the evolution of the scale factor leads to the production of particles by cosmological

particle creation, as implied by the Bogoliubov transformation relating the operators which, at early
and late times, create and destroy the quanta we recognize as particles. The same happens for the
quasi-particles over the condensate, as discussed in Section 6, because the coupling λ is time-dependent
and the definition itself of quasi-particles changes from initial to final time. The ladder operators
associated to these quasi-particles are related to each other by the Bogoliubov transformation
introduced in Equation (101), fully defined by the parameters Θk and ϕk (which must also satisfy
Equations (102) and (103)).

6.2. Scattering Operator

The exact expressions of Θk and ϕk depend on the behavior of λ (t), which is a function of the
cosmological scale parameter, and is therefore different for each cosmological model. They can in
general be evaluated with the well-established methods used in quantum field theory in curved
spacetimes [32]. In general, it is found that cosh Θk > 1, as the value cosh Θk = 1 (i.e., sinh Θk = 0) is
restricted to the case in which λ is a constant for the whole evolution, and the analogue spacetime is
simply flat.

The unitary operator describing the evolution from initial to final time is U (tout, tin) when
tout → +∞ and tin → −∞, and the operator, U, is the scattering operator, S. This is exactly the operator
acting on the quasi-particles, defining the Bogoliubov transformation in which we are interested

c′k = S†ckS . (112)

The behavior of c′k, describing the quasi-particles at late times, can therefore be understood from
the behavior of the initial quasi-particle operators ck when the expression of the scattering operator
is known. In particular, the phenomenon of cosmological particle creation is quantified considering
the expectation value of the number operator of quasi-particles at late times in the vacuum state as
defined by early times operators [32].

Consider as initial state the vacuum of quasi-particles at early times, satisfying the condition
Equation (104). It is analogous to a Minkowski vacuum, and the evolution of the coupling λ (t) induces
a change in the definition of quasi-particles. We find that, of course, the state is not a vacuum with
respect to the final quasi-particles c′. It is

S†c†
k ckS = c′†k c′k =

(
cosh Θkc†

k + sinh Θke−iϕk c−k

) (
cosh Θkck + sinh Θkeiϕk c†

−k

)
(113)

and 〈
S†c†

k ckS
〉
= sinh2 Θk

〈
c−kc†

−k

〉
= sinh2 Θk > 0 . (114)

We are interested in the effect that the evolution of the quasi-particles have on the atoms.
The system is fully characterized by the initial conditions and the Bogoliubov transformation: we have
the initial occupation numbers, the range of momenta which we should consider, and the relation
between initial and final quasi-particles.
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What is most significant is that the quasi-particle dynamics affects the occupation number of
the atoms. Considering that for sufficiently large t we are already in the final regime, the field takes
the following values,

δφk (t → −∞) = iρ1/2
0 eiθ0(t) 1

Nk

(
(Fk + 1) e−iωktck − (Fk − 1) eiωktc†

−k

)
(115)

δφk (t → +∞) = iρ1/2
0 eiθ0(t) 1

N ′
k

((
F′

k + 1
)

e−iω′
ktc′k −

(
F′

k − 1
)

eiω′
ktc′†−k

)
(116)

where Fk ≡ ωk
k2
2m +2λρ0

and F′
k ≡

ω′
k

k2
2m +2λ′ρ0

, with ω′
k =

√
k2

2m

(
k2

2m + 2λ′ρ0

)
. One finds

〈
δφ†

k (t) δφk (t)
〉
=

k2

2m + λ′ρ0

2ω′
k

cosh (2Θk)−
1
2
+

λ′ρ0 sinh (2Θk)

2ω′
k

cos
(
2ω′

kt − ϕk
)

. (117)

In Equation (117), the last term is oscillating symmetrically around 0—meaning that the atoms
will leave and rejoin the condensate periodically in time—whereas the first two are stationary.

An increase in the value of the coupling λ therefore has deep consequences. It appears explicitly
in the prefactor and more importantly it affects the hyperbolic functions cosh Θk > 1, which implies
that the mean value is larger than the initial one, differing from the equilibrium value corresponding
to the vacuum of quasi-particles.

This result is significant because it explicitly shows that the quasi-particle dynamics influences
the underlying structure of atomic particles. Even assuming that the backreaction of the quasi-particles
on the condensate is negligible for the dynamics of the quasi-particles themselves, the mechanism
of extraction of atoms from the condensate fraction is effective and increases the depletion (as also
found in the standard Bogoliubov approach). This extraction mechanism can be evaluated in terms
of operators describing the quasi-particles, that can be defined a posteriori, without notion of the
operators describing the atoms.

The fact that analogue gravity can be reproduced in condensates independently from the use
of coherent states enhances the validity of the discussion. It is not strictly necessary that we have a
coherent state to simulate the effects of curvature with quasi-particles, but, in the more general case of
condensation, the condensed wave function provides a support for the propagation of quasi-particles.
From an analogue gravity point of view, its intrinsic role is that of seeding the emergence of the
analogue scalar field [2].

7. Squeezing and Quantum State Structure

The Bogoliubov transformation in Equation (101) leading to the quasi-particle production
describes the action of the scattering operator on the ladder operators, relating the operators at
early and late times. The linearity of this transformation is obtained by the linearity of the dynamical
equation for the quasi-particles, which is particularly simple in the case of homogeneous condensate.

The scattering operator S is unitary by definition, as it is easily checked by its action on the
operators ck. Its full expression can be found from the Bogoliubov transformation, finding the
generators of the transformation when the arguments of the hyperbolic functions, the parameters Θk,
are infinitesimal:

S†ckS = c′k = cosh Θkck + sinh Θkeiϕk c†
−k . (118)

It follows

S = exp

(
1
2 ∑

k �=0

(
−e−iϕk ckc−k + eiϕk c†

k c†
−k

)
Θk

)
. (119)

The scattering operator is particularly simple and takes the peculiar expression that is required
for producing squeezed states. This is the general functional expression that is found in cosmological
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particle creation and in its analogue gravity counterparts, whether they are realized in the usual
Bogoliubov framework or in its number-conserving reformulation. As discussed previously, the
number-conserving formalism is more general, reproduces the usual case when the state is an eigenstate
of the destruction operator a0, and includes the notion that the excitations of the condensate move
condensate atoms to the excited part.

The expression in Equation (119) has been found under the hypothesis that the mean value of
the operator N0 is macroscopically larger than the other occupation numbers. Instead of using the
quasi-particle ladder operators, S can be rewritten easily in terms of the atom operators. In particular,
we remind that the time-independent operators ck depend on the condensate operator a0 and can
be defined as compositions of number-conserving atom operators δφk (t) and δφ†

−k (t) defined in
Equation (82). At any time, there can be a transformation from one set of operators to the another.
It is significant that the operators ck commute with the operators N−1/2

0 a†
0 and a0N−1/2

0 , which are
therefore conserved in time (as long as the linearized dynamics for δφk is a good approximation)[

δφk, N−1/2
0 (t) a†

0 (t)
]
= 0 , (120)

⇓[
ck, N−1/2

0 (t) a†
0 (t)

]
= 0 , (121)

⇓[
S, N−1/2

0 (t) a†
0 (t)

]
= 0 . (122)

The operator S cannot have other terms apart for those in Equation (119), even if it is defined for
its action on the operators ck, and therefore on a set of functions, which is not a complete basis of the
1-particle Hilbert space. Nevertheless, the notion of number conservation implies its action on the
condensate and on the operator a0.

One could investigate whether it is possible to consider a more general expression with additional
terms depending only on a0 and a†

0, i.e., assuming the scattering operator to be

S = exp

(
1
2 ∑

k �=0

(
Zkckc−k + c†

k c†
−kZ†

−k

)
+ G0

)
, (123)

where we could assume that the coefficients of the quasi-particle operators are themselves depending
on only a0 and a†

0, and so G0. However, the requirement that S commutes with the total number of
atoms N implies that so do its generators, and therefore Z and G0 must be functionally dependent
on N0, and not on a0 and a†

0 separately, as they do not conserve the total number. Therefore, it must
hold that

0 =

[(
1
2 ∑

k �=0

(
Zkckc−k + c†

k c†
−kZ†

−k

)
+ G0

)
, N

]
. (124)

The only expressions in agreement with the linearized dynamical equation for δφ imply that
Z and G0 are multiple of the identity; otherwise, they would modify the evolution of the operators
δφk = N−1/2

0 a†
0aI , as they do not commute with N0. This means that that corrections to the scattering

operator are possible only involving higher-order corrections (in terms of δφ).
The fact that the operator S as in Equation (119) is the only number-conserving operator

satisfying the dynamics is remarkable because it emphasizes that the production of quasi-particles
is a phenomenon that holds only in terms of excitations of atoms from the condensate to the excited
part, with the number of transferred atoms evaluated in the previous subsection. The expression of
the scattering operator shows that the analogue gravity system produces states in which the final
state presents squeezed quasi-particle states; however, the occurrence of this feature in the emergent
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dynamics happens only introducing correlations in the condensate, with each quanta of the analogue
field θ1 entangling atoms in the condensate with atoms in the excited part.

The quasi-particle scattering operator obtained in the number-conserving framework is
functionally equivalent to that in the usual Bogoliubov description, and the difference between
the two appears when considering the atom operators, depending on whether a0 is treated for its
quantum nature or it is replaced with the number

〈
N1/2

0
〉
. This reflects that the dynamical equations

are functionally the same when the expectation value
〈

N0
〉

is macroscopically large.
There are no requirements on the initial density matrix of the state, and it is not relevant whether

the state is a coherent superposition of infinite states with different number of atoms or it is a pure
state with a fixed number of atoms in the same 1-particle state. The quasi-particle description holds the
same and it provides the same predictions. This is useful for implementing analogue gravity systems,
but also a strong hint in interpreting the problem of information loss. When producing quasi-particles
in analogue gravity one can, in first approximation, reconstruct the initial expectation values of the
excited states and push the description to include the backreaction on the condensate. What we are
intrinsically unable to do is reconstruct the entirety of the initial atom quantum state, i.e., how the
condensate is composed.

We know that in analogue gravity the evolution is unitary, the final state is uniquely determined
by the initial state. Knowing all the properties of the final state we could reconstruct the initial state,
and yet the intrinsic inability to infer all the properties of the condensate atoms from the excited part
shows that the one needs to access the full correlation properties of the condensate atoms with the
quasi-particles to fully appreciate (and retrieve) the unitarity of the evolution.

7.1. Correlations

In the previous section, we made the standard choice of considering as initial state the
quasi-particle vacuum. To characterize it with respect to the atomic degrees of freedom,
the quasi-particle ladders operators have to be expressed as compositions of the number-conserving
atomic operators, manipulating Equations (84) and (92).

By definition, at any time, both sets of operators satisfy the canonical commutation relations (87)
and (100) ∀k, k′ �= 0. Therefore, it must exist a Bogoliubov transformation linking the quasi-particle
and the number-conserving operators, which, in general, are written as

ck = e−iαk cosh Λkδφk + eiβk sinh Λkδφ†
−k . (125)

The transformation is defined through a set of functions Λk, constant in the stationary case, and
the phases αk and βk, inheriting their time dependence from the atomic operators. These functions can
be obtained from Equations (84) and (92):

cosh Λk =

⎛⎝ωk +
(

k2

2m + 2λρ0

)
4ωk

⎞⎠ Nk
φ0

. (126)

If the coupling changes in time, the quasi-particle operators during the transient are defined
knowing the solutions of the Klein–Gordon equation. With the Bogoliubov transformation of
Equation (125), it is possible to find the quasi-particle vacuum-state |∅〉qp in terms of the atomic
degrees of freedom

|∅〉qp = ∏
k

e−
1
2 ei(αk+βk) tanh Λkδφ†

k δφ†
−k

cosh Λk
|∅〉a

= exp ∑
k

(
−1

2
ei(αk+βk) tanh Λkδφ†

k δφ†
−k − ln cosh Λk

)
|∅〉a , (127)
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where |∅〉a should be interpreted as the vacuum of excited atoms.
From Equation (127), it is clear that in the basis of atom occupation number, the quasi-particle

vacuum is a complicated superposition of states with different number of atoms in the condensed
1-particle state (and a corresponding number of coupled excited atoms, in pairs of opposite momenta).
Every correlation function is therefore dependent on the entanglement of this many-body atomic state.

This feature is enhanced by the dynamics, as can be observed from the scattering operator in
Equation (119) relating early and late times. The scattering operator acts on atom pairs and the creation
of quasi-particles affects the approximated vacuum differently depending on the number of atoms
occupying the condensed 1-particle state. The creation of more pairs modifies further the superposition
of the entangled atomic states depending on the total number of atoms and the initial number of
excited atoms.

We can observe this from the action of the condensed state ladder operator, which does not
commute with the the creation of coupled quasi-particles c†

k c†
−k, which is described by the combination

of the operators δφ†
k δφk, δφ†

k δφ†
−k, and δφkδφ−k. The ladder operator a†

0 commutes with the first, but not
with the others: (

δφ†
k δφk

)
a†

0 = a†
0

(
δφ†

k δφk

)
, (128)(

δφ†
k δφ†

−k

)n
a†

0 = a†
0

(
δφ†

k δφ†
−k

)n
(

N0 + 1
N0 + 1 − 2n

)1/2
, (129)

(δφkδφ−k)
n a†

0 = a†
0 (δφkδφ−k)

n
(

N0 + 1
N0 + 1 + 2n

)1/2
. (130)

The operators a0 and a†
0 do not commute with the number-conserving atomic ladder operators,

and therefore the creation of couples and the correlation functions, up to any order, will present
corrections of order 1/N to the values that could be expected in the usual Bogoliubov description.
Such corrections appear in correlation functions between quasi-particle operators and for correlations
between quasi-particles and condensate atoms. This is equivalent to saying that a condensed state,
which is generally not coherent, will present deviations from the expected correlation functions
predicted by the Bogoliubov theory, due to both the interaction and the features of the initial state itself
(through contributions coming from connected expectation values).

7.2. Entanglement Structure in Number-Conserving formalism

Within the Bogoliubov description discussed in Section 3, the mean-field approximation for the
condensate is most adequate for states close to coherence, thus allowing a separate analysis for the
mean-field. The field operator is split in the mean-field function 〈φ〉 and the fluctuation operator δφ,
which is assumed not to affect the mean-field through backreaction. Therefore, the states in this picture
can be written as

|〈φ〉〉m f ⊗
∣∣∣δφ, δφ†

〉
a Bog

, (131)

meaning that the state belongs to the product of two Hilbert spaces: the mean-field defined on
one and the fluctuations on the other, with δφ and δφ† ladder operators acting only on the second.
The Bogoliubov transformation from atom operators to quasi-particles allows to rewrite the state as
shown in Equation (127). The transformation only affects its second part:

|〈N〉〉m f ⊗ |∅〉qp Bog = |〈N〉〉m f ⊗ ∑
lr

alr |l, r〉a Bog . (132)

With such transformation, the condensed part of the state is kept separate from the superposition
of coupled atoms (which here are denoted l and r for brevity) forming the excited part, a separation, that
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is maintained during the evolution in the Bogoliubov description. Also, the Bogoliubov transformation
from early-times quasi-particles to late-times quasi-particles affects only the second part

|〈N〉〉m f ⊗ ∑
lr

alr |l, r〉a Bog ⇒ |〈N〉〉m f ⊗ ∑
lr

a′lr |l, r〉a Bog . (133)

In the number-conserving framework there is not such a splitting of the Fock space, and there
is no separation between the two parts of the state. In this case, the best approximation for the
quasi–particle vacuum is given by a superposition of coupled excitations of the atom operators, but the
total number of atoms cannot be factored out:

|N; ∅〉qp ≈ ∑
lr

alr |N − l − r, l, r〉a . (134)

The term in the RHS is a superposition of states with N total atoms, of which N − l − r are in the
condensed 1-particle state, and the others occupy excited atomic states and are coupled with each other
analogously to the previous Equation (132) (the difference being the truncation of the sum, required
for a sufficiently large number of excited atoms, implying a different normalization).

The evolution does not split the Hilbert space, and the final state will be a different superposition
of atomic states:

∑
lr

alr |N, l, r〉a ⇒ ∑
lr

a′lr
(

1 +O
(

N−1
))

|N − l − r, l, r〉a . (135)

We remark that in the RHS the final state must include corrections of order 1/N with respect
to the Bogoliubov prediction, due to the fully quantum behavior of the condensate ladder operators.
These are small corrections, but we expect that the difference from the Bogoliubov prediction will be
relevant when considering many-point correlation functions.

Moreover, these corrections remark the fact that states with different number of atoms in the
condensate are transformed differently. If we consider a superposition of states of the type in
Equation (134) with different total atom numbers so to reproduce the state in Equation (132), therefore
replicating the splitting of the state, we would find that the evolution produces a final state with
a different structure, because every state in the superposition evolves differently. Therefore, also
assuming that the initial state could be written as

∑
N

e−N/2
√

N!
|N; ∅〉qp ≈ |〈N〉〉m f ⊗ |∅〉qp Boq , (136)

anyway, the final state would unavoidably have different features:

∑
N

e−N/2
√

N!
∑
lr

a′lr
(

1 +O
(

N−1
))

|N − l − r, l, r〉a �= |〈N〉〉m f ⊗ ∑
lr

a′lr |l, r〉a Bog . (137)

We remark that our point is qualitative. Indeed, it is true that also in the weakly interacting limit
the contribution coming from the interaction of Bogoliubov quasi-particles may be quantitatively larger
than the O

(
N−1) term in Equation (137). However, even if one treats the operator a0 as a number

disregarding its quantum nature, then one cannot have the above discussed entanglement. In that case,
the Hilbert space does not have a sector associated to the condensed part and no correlation between
the condensate and the quasi-particles is present. To have them one has to keep the quantum nature of
a0, and its contribution to the Hilbert space.

Alternatively, let us suppose to have an interacting theory of bosons for which no interactions
between quasi-particles are present (as in principle one could devise and engineer similar models
based on solvable interacting bosonic systems [33]). Even in that case one would have a qualitative
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difference (and the absence or presence of the entanglement structure here discussed) if one retains or
not the quantum nature of a0 and its contribution to the Hilbert space. Of course one could always
argue that in principle the coupling between the quantum gravity and the matter degrees of freedom
may be such to preserve the factorization of an initial state. This is certainly possible in principle, but it
would require a surprisingly high degree of fine tuning at the level of the fundamental theory.

In conclusion, in the Bogoliubov description the state is split in two sectors, and the total density
matrix is therefore a product of two contributions, of which the one relative to the mean-field can
be traced away without affecting the other. The number-conserving picture shows instead that
unavoidably the excited part of the system cannot be manipulated without affecting the condensate.
Tracing away the quantum degrees of freedom of the condensate would imply a loss of information
even without tracing away part of the couples created by analogous curved spacetime dynamics.
In other words, when one considers the full Hilbert space and the full dynamics, the final state ρ f in is
obtained by an unitary evolution. But now, unlike the usual Bogoliubov treatment, one can trace out
in ρ f in the condensate degrees of freedom of the Hilbert space, an operation that we may denote by
“Tr0[. . .]”. So

ρreduced
f in = Tr0[ρ f in] (138)

is not pure, as a consequence of the presence of the correlations. So one has Tr[ρ2
f in] = 1, at variance

with Tr[(ρreduced
f in )2] �= 1. The entanglement between condensate and excited part is an unavoidable

feature of the evolution of these states.

8. Discussion and Conclusions

The general aim of analogue gravity is to reproduce the phenomenology of quantum field theory
on curved spacetime with laboratory-viable systems. In this framework, the geometry is given by a
metric tensor assumed to be a classical tensor field without quantum degrees of freedom, implying
that geometry and matter—the two elements of the system—are decoupled, i.e., the fields belong to
distinct Hilbert spaces.

The usual formulation of analogue gravity in Bose–Einstein condensates reproduces this feature.
In the analogy between the quasi-particle excitations on the condensate and those of scalar quantum
fields in curved spacetime, the curvature is simulated by the effective acoustic metric derived from the
classical condensate wave function. The condensate wave function itself does not belong to the Fock
space of the excitations, instead it is a distinct classical function.

Moreover, analogue gravity with Bose–Einstein condensates is usually formulated assuming a
coherent initial state, with a formally well-defined mean-field function identified with the condensate
wave function. The excited part is described by operators obtained translating the atom field by
the mean-field function and linearizing its dynamics; the quasi-particles studied in analogue gravity
emerge from the resulting Bogoliubov–de Gennes equations. (Moreover, let us notice that the relation
between several quantum gravity scenarios and analogue gravity in Bose–Einstein condensates appears
to be even stronger than expected, as in many of these models a classical spacetime is recovered by
considering an expectation value of the geometrical quantum degrees of freedom over a global coherent
state the same way that the analogue metric is introduced by taking the expectation value of the field
on a coherent ground state (see, e.g., the works by the authors of [34,35]). It is also interesting to note
that within the AdS/CFT correspondence a deep connection between the analogue gravity system
built from the hydrodynamics on the boundary and gravity in the bulk has emerged in recent work
(see, e.g., the work by the authors of [36]). It would be interesting to extend the lessons of this work
to these settings) The mean-field drives the evolution of the quasi-particles, which have a negligible
backreaction on the condensate, and can be assumed to evolve independently, in accordance with
the Gross–Pitaevskii equation. Neglecting the quantum nature of the operator creating particles in
the condensate, one still has unitary dynamics occurring in the Hilbert space of noncondensed atoms
(or, equivalently, of the quasi-particles).
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However, one could still expect an information loss problem to arise whenever simulating an
analogue black hole system entailing the complete loss of the ingoing Hawking partners, e.g., by having
a flow with a region where the hydrodynamical description at the base of the standard analogue gravity
formalism fails. The point is that the Bogoliubov theory is not exact as much as quantum field theory
in curved spacetime is not a full description of quantum gravitational and matter degrees of freedom.

Within the number-conserving formalism, analogue gravity provides the possibility to develop a
more complete description in which one is forced to retain the quantum nature of the operator creating
particles in the condensate. While this is not per se a quantum gravity analogue (in the sense that
it cannot reproduce the full dynamical equations of the quantum system), it does provide a proxy
for monitoring the possible development of entanglement between gravitational and matter degrees
of freedom.

It has already been conjectured in quantum gravity that degrees of freedom hidden from the
classical spacetime description, but correlated to matter fields, are necessary to maintain unitarity
in the global evolution and prevent the information loss [37]. To address the question of whether
particle production induces entanglement between gravitation and matter degrees of freedom, we
have carefully investigated the number-conserving formalism and studied the simpler process of
cosmological particle production in analogue gravity, realized by varying the coupling constant from
an initial value to a final one. We verified that one has a structure of quasi-particles, whose operators
now depend on the operator a0 destroying a particle in the natural orbital associated to the largest,
macroscopic eigenvalue of the 1-point correlation functions.

We have shown that also in the number-conserving formalism one can define a unitary scattering
operator, and thus the Bogoliubov transformation from early-times to late-times quasi-particles.
The scattering operator provided in Equation (119) not only shows the nature of quasi-particle creation
as a squeezing process of the initial quasi-particle vacuum, but also that the evolution process as
a whole is unitary precisely, because it entangles the quasi-particles with the condensate atoms
constituting the geometry over which the former propagate.

The correlation between the quasi-particles and the condensate atoms is a general feature,
it is not realized just in a regime of high energies—analogous to the late stages of a black
hole evaporation process or to sudden cosmological expansion—but it happens during all the
evolution (Indeed, the transplanckian problem in black hole radiation may suggest that Hawking
quanta might always probe the fundamental degrees of freedom of the underlying the geometry),
albeit they are suppressed in the number of atoms, N, relevant for the system and are hence
generally negligible. When describing the full Fock space, there is not unitarity breaking, and the
purity of the state is preserved: it is not retrieved at late times nor is it spoiled in the transient of
the evolution. Nonetheless, such a state after particle production will not factorise into the product
of two states—a condensate (geometrical) and quasi-particle (matter) one—but, as we have seen, it
will be necessarily an entangled state. This implies, as we have discussed at the end of the previous
section, that an observer unable to access the condensate (geometrical) quantum degrees of freedom
would define a reduced density matrix (obtained by tracing over the latter), which would no more be
compatible with an unitary evolution.

In practice, in cases such as the cosmological particle creation, where the phenomenon
happens on the whole spacetime, N is the (large) number of atoms in the whole condensate,
and thus the correlations between the substratum and the quasi-particles are negligible. Therefore,
the number-conserving formalism or the Bogoliubov one in this case may be practically equivalent.
In the black hole case, a finite region of spacetime is associated to the particle creation, thus N is not
only finite but decreases as a consequence of the evaporation making the correlators between geometry
and Hawking quanta more and more non-negligible in the limit in which one simulates a black hole
at late stages of its evaporation. This implies that tracing over the quantum geometry degrees of
freedom could lead to non-negligible violation of unitary even for regular black hole geometries
(i.e., for geometries without inner singularities, see, e.g., the works by the authors of [38–40]).
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The Bogoliubov limit corresponds to taking the quantum degrees of freedom of the geometry
as classical. This is not per se a unitarity violating operation, as it is equivalent to effectively
recover the factorization of the above mentioned state. Indeed, the squeezing operator so
recovered (which corresponds to the one describing particle creation on a classical spacetime) is
unitarity preserving. However, the two descriptions are no longer practically equivalent when a
region of quantum gravitational evolution is somehow simulated. In this case, having the possibility
of tracking the quantum degrees of freedom underlying the background enables to describe the full
evolution; whereas, in the analogue of quantum field theory in curved spacetime, a trace over the
ingoing Hawking quanta is necessary with the usual problematic implications for the preservation of
unitary evolution.

In the analogue gravity picture, the above alternatives would correspond to the fact that the
number-conserving evolution can keep track of the establishment of correlations between the atoms
and the quasi-particles that cannot be accounted for in the standard Bogoliubov framework. Hence,
this analogy naturally leads to the conjecture that a full quantum gravitational description of a black
hole creation and evaporation would leave not just a thermal bath on a Minkowski spacetime but rather
a highly entangled state between gravitational and matter quantum degrees of freedom corresponding
to the same classical geometry (With the possible exception of the enucleation of a disconnected baby
universe which would lead to a sort of trivial information loss); a very complex state, but nonetheless
a state that can be obtained from the initial one (for gravity and matter) via a unitary evolution.

In conclusion, the here presented investigation strongly suggests that the problems of unitarity
breaking and information loss encountered in quantum field theory on curved spacetimes can only
be addressed in a full quantum gravity description able to keep track of the correlations between
quantum matter fields and geometrical quantum degrees of freedom developed via particle creation
from the vacuum; these degrees of freedom are normally concealed by the assumption of a classical
spacetime, but underlay it in any quantum gravity scenario.
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Abstract: Recently, Bennett et al. (Eur. J. Phys. 37:014001, 2016) presented a physically-motivated
and explicitly gauge-independent scheme for the quantisation of the electromagnetic field in flat
Minkowski space. In this paper we generalise this field quantisation scheme to curved spacetimes.
Working within the standard assumptions of quantum field theory and only postulating the
physicality of the photon, we derive the Hamiltonian, Ĥ, and the electric and magnetic field
observables, Ê and B̂, respectively, without having to invoke a specific gauge. As an example,
we quantise the electromagnetic field in the spacetime of an accelerated Minkowski observer, Rindler
space, and demonstrate consistency with other field quantisation schemes by reproducing the
Unruh effect.

Keywords: quantum electrodynamics; relativistic quantum information

1. Introduction

For many theorists the question “what is a photon?” remains highly nontrivial [1]. It is in principle
possible to uniquely define single photons in free space [2]; however, the various roles that photons play
in light–matter interactions [3], the presence of boundary conditions in experimental scenarios [4,5]
and our ability to arbitrarily shape single photons [6] all lead to a multitude of possible additional
definitions. Yet this does not stop us from utilising single photons for tasks in quantum information
processing, especially for quantum cryptography, quantum computing, and quantum metrology [7].
In recent decades, it has become possible to produce single photons on demand [8], to transmit them
over 100 kilometres through Earth’s atmosphere [9] and to detect them with very high efficiencies [10].
Moreover, single photons have been an essential ingredient in experiments probing the foundations of
quantum physics, such as entanglement and locality [11,12].

Recently, relativistic quantum information has received a lot of attention in the literature.
Pioneering experiments verify the possibility of quantum communication channels between Earth’s
surface and space [13] and have transmitted photons between the Earth and low-orbit satellites [14],
while quantum information protocols are beginning to extend their scope towards the relativistic
arena [15–21]. The effects of gravity on satellite-based quantum communication schemes, entanglement
experiments and quantum teleportation have already been shown to produce potentially observable
effects [22–25]. Noninertial motion strongly affects quantum information protocols and quantum
optics set-ups [26–30], with the mere propagation and detection of photons in such frames being highly
nontrivial [31–34].

Motivated by these recent developments, this paper generalises a physically-motivated
quantisation scheme of the electromagnetic field in flat Minkowski space [35] to curved space
times. Our approach aims to obtain the basic tools for analysing and designing relativistic quantum
information experiments in a more direct way than alternative derivations, and without having to
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invoke a specific gauge. Working within the standard assumptions of quantum field theory and
only postulating the physicality of the photon, we derive the Hamiltonian, Ĥ, and the observables,
Ê and B̂, of the electromagnetic field. Retaining gauge-independence is important when modelling
the interaction of the electromagnetic field with another quantum system, like an atom. In this case,
different choices of gauge correspond to different subsystem decompositions, thereby affecting our
notion of what is ‘atom’ and what is ‘field’ [36,37]. Composite quantum systems can be decomposed
into subsystems in many different ways. Choosing an unphysical decomposition can result in the
prediction of spurious effects when analysing the dynamics of one subsystem while tracing out the
degrees of freedom of the other [38]. Hence it is important to first formulate quantum electrodynamics
in an entirely arbitrary gauge, as this allows us to subsequently fix the gauge when needed. This work
does not seek to quantise the gravitational field. Instead, we follow the standard approach of quantum
field theory in curved spacetime. This is a first approximation to understanding gravitational effects
on quantum fields [39,40], which neglects the back-reaction of those fields on the spacetime geometry,
treating the spacetime as a fixed background.

The direct canonical quantisation of the electromagnetic field in terms of the (real) gauge
independent electric and magnetic fields, E and B, is not possible, since these do not offer a complete
set of canonical variables [41–45]. As an alternative, Bennett et al. [35] suggested to use the physicality
of the photon as the starting point when quantising the electromagnetic field. Assuming that the
electromagnetic field is made up of photons and identifying their relevant degrees of freedom, like
frequencies and polarisations, results in a harmonic oscillator Hamiltonian Ĥ for the electromagnetic
field. Using this Hamiltonian and demanding consistency of the dynamics of expectation values with
classical electrodynamics, especially with Maxwell’s equations, is sufficient to then obtain expressions
for Ê and B̂ without having to invoke vector potentials and without having to choose a specific gauge.
Generalising the work by the authors of [35] from flat Minkowski space to curved space times, we
obtain field observables which could be used, for example, to model photonics experiments in curved
spacetimes in a similar fashion to how quantum optics typically models experiments in Minkowski
space [5,36,46].

Additional problems with our understanding of photons (indeed all particles) arise when we
consider quantum fields in gravitationally bound systems [7]. General relativity can be viewed as
describing gravitation as the consequence of interactions between matter and the curvature of a
Lorentzian (mixed signature) spacetime with metric gμν [47,48]. Locally, however, any spacetime
appears flat, by which we mean

gμν(p) ∼= ημν ≡ diag(+1,−1,−1,−1) , (1)

the familiar special relativistic invariant line-element of Minkowski space. For the Earth’s surface,
where gravity is (nearly) uniform, this limit can be taken everywhere, and spacetime curvature can
be neglected. Spacetimes in relativity have no preferred coordinate frame, so physical laws must
satisfy the principle of covariance and be coordinate independent and invariant under coordinate
transformations [49]. Indeed, it has been demonstrated that, while the form of the Hamiltonian may
change under general coordinate transformations, physically measurable predictions do not [50].

Quantum field theory in curved spacetime is the standard approach used to study the behaviour
of quantum fields in this setting. As aforementioned, this is a first approximation to quantum gravity,
in which the gravitational field is treated classically and back-reactions on the spacetime geometry are
neglected [39,40]. Intuitively this is what is meant by a static spacetime, where the time derivative of
the metric is zero. This approximation holds on typical astrophysical length and energy scales and is
thus well-suited for dealing with most physical situations [51]. How to generalise field quantisation
to curved spaces is very well established, and the theory has produced several major discoveries,
like the prediction that the particle states seen by a given observer depend on the geometry of their
spacetime [52–54]. For example, the vacuum state of one observer does not necessarily coincide with
the vacuum state of an observer in an alternative reference frame. This surprising result even arises in
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flat Minkowski space, where the Fulling–Davies–Unruh effect predicts that an observer with constant
acceleration sees the Minkowski vacuum as a thermal state with temperature proportional to their
acceleration [55–59].

To make quantum field theory in curved spacetimes more accessible to quantum opticians, and to
obtain more insight into the aforementioned effects and their experimental ramifications, this paper
considers static, 4-dimensional Lorentzian spacetimes. Our starting point for the derivation of the field
observables Ĥ, Ê and B̂ is the assumption that the detectors belonging to a moving observer see photons.
These are the energy quanta of the electromagnetic field in curved space times. To demonstrate the
consistency of our approach with other field quantisation schemes, we consider the explicit case of an
accelerated Minkowski observer, who is said to reside in a Rindler spacetime [60–64], and reproduce
Unruh’s predictions [55–59].

This paper is divided into five sections. In Section 2, we provide a summary of the
gauge-independent quantisation scheme by Bennett et al. [35] which applies in the case of flat spacetime.
In Section 3, we discuss what modifications must be made to classical electrodynamics when moving
to the more general setting of a stationary curved spacetime. We then show that similar modifications
allow for the gauge-independent quantisation scheme of Section 2 to be applied in this more general
setting. In Section 4, we apply our results to the specific case of a uniformly accelerating reference
frame and have a closer look at the Unruh effect. Finally, we draw our conclusions in Section 5.
For simplicity, we work in natural units h̄ = c = 1 throughout.

2. Gauge-Independent Quantisation of the Electromagnetic Field

In this section, we review the gauge dependence inherent in the electromagnetic field and contrast
standard, more mathematically-motivated quantisation procedures with the gauge-independent
method of Bennett et al. [35].

2.1. Classical Electrodynamics

Under coordinate transformations, the electric and magnetic fields transform as the components
of an antisymmetric 2-form, the field strength tensor

Fμν =

⎛⎜⎜⎜⎝
0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

⎞⎟⎟⎟⎠ . (2)

The field strength is defined in terms of the 4-vector potential by

Fμν = ∂μ Aν − ∂ν Aμ . (3)

We can obtain the equations of motion by applying the Euler–Lagrange equations to the
Lagrangian density

L = −1
4

FμνFμν =
1
2

(
E2 − B2

)
, (4)

which gives the Maxwell equation
∂μFμν = 0 . (5)

The field strength tensor also satisfies the Bianchi identity,

∂[σFμν] ≡
1
3
(
∂σFμν + ∂μFνσ + ∂νFσμ

)
= 0 , (6)
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and together, Equations (5) and (6) can be used to obtain the standard Maxwell equations expressed in
terms of the magnetic and electric field strengths, E and B, respectively,

div (E) = 0 , curl (B) = Ė ,

div (B) = 0 , curl (E) = −Ḃ .
(7)

The solutions to these equations are transverse plane waves with orthogonal electric and magnetic
field components with two distinct, physical polarisations propagating through Minkowski space, M,
at a speed c = 1.

2.2. Gauge Dependence in Electromagnetic Field Quantisation

The most commonly used methods for quantising fields are the traditional canonical and modern
path-integral approaches. When applied to electromagnetism, these have to be modified due to the
gauge freedom of the theory. For example, in the canonical approach, standard commutation relations
cannot be satisfied. One can get around this by either breaking Lorentz invariance in intermediate
steps of calculations, or by considering excess degrees of freedom with negative norms that do not
contribute physically [37]. Standard path integral quantisation fails for electromagnetism because
the resultant propagator is divergent. The Fadeev–Popov procedure rectifies this by implementing a
gauge-fixing condition [65]. This method also gives additional terms from nonphysical contributions
in the form of Fadeev–Popov ghosts. Such terms can be ignored for free fields in Minkowski space as
they only appear in loop diagrams, but in curved spacetimes this is not the case [51]. While physical
quantities remain gauge-invariant under both approaches to quantisation, nondirectly observable
quantities can become gauge-dependent.

This can result in conceptual problems when modelling composite quantum systems, like the
ones that are of interest to those working in relativistic quantum information, quantum optics and
condensed matter. Suppose H denotes the total Hamiltonian of a composite quantum system. Then
one can show that any Hamiltonian H′ of the form

H′ = U† H U , (8)

where U denotes a unitary operator, has the same energy eigenvalues as H. Both Hamiltonians H and
H′ are unitarily equivalent and can be used interchangeably. However, the dynamics of subsystem
observables O can depend on the concrete choice of U, since O′ = U† O U and O are in general not the
same. For example, atom–field interactions depend on the gauge-dependent vector potential A for most
subsystem decompositions [36,37]. Hence it is important here to formulate quantum electrodynamics
in an entirely arbitrary gauge and to maintain ambiguity as long as possible, thereby retaining the
ability to later choose a gauge which does not result in the prediction of spurious effects [38].

2.3. Physically-Motivated Gauge-Independent Method

In contrast to this, the electromagnetic field quantisation scheme presented in the work by the
authors of [35] relies upon two primary experimentally derived assumptions. Firstly, the electric and
the magnetic field expectation values follow Maxwell’s equations, and, secondly, the field is composed
of photons of energy h̄ωk, or ωk in natural units. Whereas, in standard canonical quantisation, the
electromagnetic field’s photon construction is a derived result, for the method of [35] it is an initial
premise. This is physically acceptable, since photons are experimentally detectable entities [7,10].
The motivation for the scheme [35] comes from the observation that one observes discrete clicks when
measuring a very weak electromagnetic field. An experimental definition of photons is that these
are electromagnetic field excitations with the property that their integer numbers can be individually
detected, given a perfect detector [10].
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Hence the Fock space for this gauge-independent approach is spanned by states of the form

⊗
λ=1,2

∞⊗
k1=−∞

∞⊗
k2=−∞

∞⊗
k3=−∞

|nkλ〉 , (9)

where nkλ is the number of excitations of a mode with wave-vector k and physical, transverse
polarisation state λ. Since it is an experimental observation that photons of frequency ωk = |k| have
energy ωk in natural units, the Hamiltonian Ĥ for such a Fock space must satisfy

Ĥ |nkλ〉 = (ωk nkλ + H0) |nkλ〉 , (10)

where H0 is the vacuum or zero-point energy and nkλ is an integer [35]. An infinite set of evenly spaced
energy levels, as is present here, has been proven to be unique to the simple harmonic oscillator [66].
Hence this Hamiltonian must take the form [5]

Ĥ = ∑
λ=1,2

∫
d3k

(
ωk â†

kλ âkλ + H0

)
, (11)

where the âkλ, â†
kλ are a set of independent ladder operators for each (k, λ) mode, obeying the canonical

commutation relations

[âkλ, âk′λ′ ] = 0 , [â†
kλ, â†

k′λ′ ] = 0 , [âkλ, â†
k′λ′ ] = δλλ′δ3(k − k′) . (12)

Since the classical energy density is quadratic in the electric and magnetic fields, while the above
Hamiltonian is quadratic in the ladder operators, the field operators must be linear superpositions
of creation and annihilation operators [35]. By further demanding that the fields’ expectation values
satisfy Maxwell’s equations, consistency with the Heisenberg equation of motion,

∂

∂t
Ô = −i[Ô, Ĥ] , (13)

allows the coefficients of these superpositions to be deduced, and the (Heisenberg) field operators can
be shown to be of the form [35]

Ê(x, t) = i ∑
λ=1,2

∫
d3k

√
ωk

16π3

[
ei(k·x−ωkt) âkλ + H.c.

]
êλ ,

B̂(x, t) = −i ∑
λ=1,2

∫
d3k

√
ωk

16π3

[
ei(k·x−ωkt) âkλ + H.c.

]
(k̂ × êλ) , (14)

where êλ is a unit polarisation vector orthogonal to the direction of propagation, with ê1 · ê2 = ê1 · k =

ê2 · k = 0. This is also consistent with the Hamiltonian being a direct operator-valued promotion of its
classical form

Ĥ(t) =
1
2

∫
d3x

[
Ê2(x, t) + B̂2(x, t)

]
. (15)

Comparing Equations (11) and (15) allows us to determine the zero point energy H0 in Minkowski
space, which coincides with the energy expectation value of the vacuum state |0〉 of the electromagnetic
field. In quantum optics, Equations (11) and (14) often serve as the starting point for further
investigations [5,36,46].

Note that a quantisation scheme in a similar spirit to the work by the authors of [35] can be found
in the work by the authors of [67], which also uses the Maxwell and Heisenberg equations to directly
quantise the physical field operators. The attraction of such a scheme is in the lack of reliance on the
gauge-dependent electromagnetic potentials, instead directly quantising the gauge-invariant electric
and magnetic fields, the benefits of which for quantum optics were discussed in the preceding section.
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3. Gauge-Independent Quantisation of the Electromagnetic Field in Curved Spacetimes

Many aspects of the quantisation method of Bennett et al. [35] are explicitly noncovariant, and
hence unsuitable for general curved spacetimes. Here we lift the scheme onto static spacetimes,
maintaining the original global structure and approach.

3.1. Classical Electrodynamics in Curved Space

To begin, consider electromagnetism on stationary spacetimes in general relativity, which are
differentiable manifolds with a metric structure gμν. By stationary we mean ∂0gμν = 0. For any theory,
the standard approach is to follow the minimal-coupling procedure [48,51],

ημν → gμν ,

∂μ → ∇μ ,∫
d4x →

∫
d4x

√
|g| ,

(16)

where g = det(gμν) and ∇μ is the covariant derivative associated with the metric (Levi-Civita)
connection. Since electric and magnetic fields can be expressed in a covariant form through the field
strength tensor, it is simple to generalise to curved space by just applying this procedure. Firstly, the
derivatives of the four-vector potential generalise to

∇ν Aμ = ∂ν Aμ − Γρ
μν Aρ ,

∇ν Aμ = ∂ν Aμ + Γμ
ρν Aρ ,

(17)

where Γμ
νρ are the standard symmetric Christoffel symbols. The field strength tensor and the

Bianchi identity remain unchanged by these derivatives, as their explicit antisymmetry cancels
all the Christoffel symbols. Thus Equations (3) and (6) still hold in curved spacetimes. The only
modification we need to make is to the (free-space) inhomogeneous Maxwell equation. Applying the
minimal-coupling procedure to Equation (5) gives

∇μFμν = 0 , (18)

which on stationary spacetimes can be written as [61]

∇μFμν =
1√
|g|

∂μ

(√
|g|Fμν

)
= 0 , (19)

as may be obtained from a Lagrangian density L = − 1
4

√
|g|FμνFμν. To obtain the modified Maxwell

equations for the electric and magnetic field strengths, one may now simply extract the relevant terms
from the covariant form given above, working in a particular coordinate system [60]. For the resulting
wave equations, as with any wave equation on a curved spacetime, obtaining a general solution is a
highly nontrivial task [49]. However, on simple spacetimes such as we will consider later, it is possible
to obtain analytic solutions.

3.2. Particles in Curved Spacetimes

To quantise the electromagnetic field in the manner of [35] our starting point must be to write
down an appropriate Fock space for experimentally observable photon states. On curved spacetimes
this is complicated by the lack of a consistent frame-independent basis for such a space. To see why,
consider that to introduce particle states in quantum field theory, we must first write the solutions to a
momentum–space wave equation as a superposition of orthonormal field modes, which are split into
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positive and negative frequency modes ( fi, f ∗i ). In order for us to do this, the spacetime must have a
timelike symmetry. Symmetries of spacetimes are generated by Killing vectors, V, which satisfy

∇μVν +∇νVμ = 0 . (20)

If Vμ is, in addition, timelike at asymptotic infinity then it defines a timelike Killing vector Kμ.
The presence of such a vector defines a stationary spacetime, in which there always exists a coordinate
frame such that ∂tgμν = 0, where x0 = t in this coordinate set is the Killing time. If, in addition, Kμ is
always orthogonal to a family of spacelike hypersurfaces then the spacetime is said to be static, and in
addition we have gti = 0. Conceptually, the spacetime background is fixed but fields can propagate
and interact. Particle states can only be canonically introduced with frequency splitting. Hence, to
define particles in a curved spacetime there must be a timelike Killing vector [53].

Canonical field quantisation morphs the field into an operator acting on a Fock space of particle
states, promoting the coefficients of the positive frequency modes to annihilation operators and those
of negative frequency modes to creation operators [33,40]. General field states are therefore critically
dependent on the frequency splitting of the modes, which itself depends on the background geometry
of the spacetime [52]. In general, we define positive and negative frequency modes fωk

of frequency
ωk with respect to the timelike Killing vector Kμ, by using the definition

£K fωk
=

{
−iωk fωk

positive frequency
iωk fωk

negative frequency
, (21)

where £K is the coordinate-invariant Lie derivative along Kμ, which, in this case, is given by Kμ∂μ.
However, a particle detector reacts to states of positive frequency with respect to its own proper time
τ, not the killing time [55]. For a timelike observer with worldline xμ on a (not necessarily stationary)
spacetime, the proper time is defined by the metric gμν infinitesimally as

dτ =
√

gμνdxμdxν . (22)

A given detector with proper time τ has positive frequency modes gωk
satisfying

dxμ

dτ
∇μgωk

= −iωkgωk
, (23)

and they will, generally, only cover part of the spacetime. To consistently approach quantisation we
need these detector modes to relate to the set fωk

defined with respect to the timelike Killing vector.
Fortunately, the set of modes fωk

forms a natural basis for the detector’s Fock space if the proper time τ

is proportional to the Killing time t. This occurs if the future-directed timelike Killing vector is tangent
to the detector’s trajectory [48,55].

Even with a timelike Killing vector and its associated symmetry, solving a given wave equation
and hence obtaining mode solutions can still be highly nontrivial [49]. Considering a static spacetime
greatly simplifies this as the d’Alembertian operator, � = ∇μ∇μ, that appears in the general wave
equation can be separated into pure spatial and temporal derivatives, allowing us to easily write
separable mode solutions [48,52]

fωk
(x) = e−iωktΣωk

(x) . (24)

These modes are then positive frequency in the above sense, and conjugate modes f ∗ωk
are negative

frequency. The set ( fωk
, f ∗ωk

) then forms a complete basis of solutions for the wave equation and
provides a suitable basis for particle detectors.

However, when two distinct inertial particle detectors follow different geodesic paths in the
spacetime, each will have its own unique proper time, determined by its motion and the local geometry.
But this proper time is what we have used in Equation (23) to define the basis modes associated with a
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given particle Fock space associated with a particle detector. Thus, the detectors will define the particle
states they observe in different manners, and will not agree on a natural set of basis modes [52,53,68].
This has no counterpart in inertial Minkowski space, where there is a global Poincaré symmetry, but
will be unavoidable in our scheme.

3.3. Covariant and Gauge-Independent Electromagnetic Field Quantisation Scheme

Accommodating for the above considerations allows the physically motivated scheme [35] to be
covariantly generalised to static curved spacetimes.

3.3.1. Hilbert Space

Since for static spacetimes there exists a global timelike Killing vector we can define positive and
negative frequency modes and thus introduce a well-defined particle Fock space. Again we assume
the existence of photons on the considered spacetime. As travelling waves on the spacetime, these
photons are again characterised by their physical, transverse polarisation λ and wave-vector k [69].
Taking these as labels for general states yields again the states in Equation (9) as the basis states of the
quantised field. Physical energy eigenstates have integer values of nkλ and are associated with energy
ωk. Thus the field Hamiltonian must again satisfy Equation (10), allowing it to be written in terms
of independent ladder operators [66]. In the following, we denote these by bkλ and assume that they
satisfy the equal time canonical commutation relations

[b̂kλ, b̂k′λ′ ] = 0 , [b̂†
kλ, b̂†

k′λ′ ] = 0 , [b̂kλ, b̂†
k′λ′ ] = δλλ′δ3(k − k′) . (25)

Importantly, the bkλ generate a distinct Fock space from that of the ladder operators utilised in the
Minkowskian case.

3.3.2. Hamiltonian

To write down the full field or classical Hamiltonian requires some care, as a Hamiltonian is a
component of the energy–momentum tensor

Tμν = − 2√
|g|

δSmatter

δgμν , (26)

where Smatter is the action determining the matter content on the spacetime. As a component of a
tensor, the Hamiltonian itself is not invariant under general coordinate transformations. On stationary
spacetimes a conserved energy equal to the Hamiltonian can be introduced through the timelike
Killing current

Jμ = KνTμν , (27)

which satisfies the continuity equation ∇μ Jμ = 0. Stokes’s theorem can then be used to integrate over
a spacelike hypersurface Σ in three dimensions, giving

H =
∫

Σ
d3x

√
|γ|nμ Jμ , (28)

where γ = det(γij) with γij being the induced metric on Σ and nμ being the timelike unit normal
vector to Σ. On stationary spacetimes the result of this integral is the same for all hypersurfaces
Σ [48,70]. For the electromagnetic field, the variation in Equation (26) yields

Tμν = FμρFρ
ν +

1
4

gμνFρσFρσ , (29)

from which we can obtain a covariant form of the classical electromagnetic Hamiltonian.
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Note that, since in Equation (28) Σ is a spacelike hypersurface, nμ must be timelike. Thus, there
exists a frame in which nμ Jμ = n0 J0, and as this is a scalar this is valid in any frame. We also have that
Jμ = Tμ

0 , so we seek T0
0 . On a static spacetime T0

0 = g00T00, so

T0
0 =

1
2

(
E2 + B2

)
, (30)

where in the intermediate step we have used the Minkowski field strength tensor, as the quantities are
scalars. Hence we obtain the electromagnetic field Hamiltonian

H =
∫

Σ
d3x

1
2

(
E2 + B2

)√
|γ|n0K0 . (31)

This result is consistent with the literature [47], and reduces to the familiar expression in Equation (15)
in Minkowski space.

For the covariant analogue of the quantum field Hamiltonian, we note that the field Hamiltonian
used in the Minkowskian gauge-independent scheme, given in Equation (11), has a similar functional
form to the Hamiltonian for a quantised scalar field; they are identical up to labelling and
choice of integration measure. It has been established by Friis et al. [16] that the propagation
of transverse electromagnetic field modes can be well approximated by such an uncharged field,
and this technique has been used to determine the effects of spacetime curvature on satellite-based
quantum communications and to make metrology predictions [23,26]. In the following, we use this
approximation to justify the form of the electromagnetic field Hamiltonian from that of a real scalar
field with the equation of motion (�+ m2)φ = 0. The Hamiltonian density on a static manifold with
Killing time t is

H =

√
|g|
2

(
∂tφ∂tφ − ∂iφ∂iφ +

1
2

m2φ2 +
1
2

ξRφ

)
. (32)

The final term pertains to the coupling between the spacetime background and the field. Given we just
seek to study photons propagating on some curved background and are ignoring their back-reaction
on the geometry, we can choose ξ = 0. This is known as the minimal coupling approximation.

Since on static spacetimes the d’Alembertian permits separable solutions, we can write φ =

ψωk
(x)e±iEωk

t [48,52]. Here ψωk
, Eωk

are the eigenstates of the Klein–Gordon operator (�+ m2). Upon
quantisation, the field operator for a real scalar field can now be written as a linear superposition of
these modes with ladder operators bωk

, b†
ωk

defining the Fock space. However, we must also account
for the nonuniqueness of particle states in curved spacetimes. One set of Fock space operators is
often not able to cover an entire spacetime, so we will include a sum over distinct sets of operators,
b(i)ωk

, b(i)†ωk
. Following Fulling [52], we introduce a measure, μ(ωk), such that if the eigenstates form

a complete basis for the Hilbert space of states, allowing a general function to be written as F(x) =∫
dμ(ωk) ( f (ωk)ψωk

(x)), the inner product on the Hilbert space becomes

〈F1, F2〉 =
∫

d3x
√
|g|gttF∗

1 F2 =
∫

dμ(ωk) f ∗1 f2 . (33)

With this measure, the Hamiltonian field operator for a minimally-coupled scalar field on any static
spacetime can be written as [52]

Ĥ =
∫

dμ(ωk)∑
i

E(i)
ωk

[
b̂(i)†ωk

b̂(i)ωk
+

1
2

δ(0)
]

. (34)

Thus using the approximation of Friis et al. [16], we obtain the same functional form for the free
electromagnetic quantised Hamiltonian on any static spacetime. To incorporate the direction of
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propagation, we can instead label modes in the above expressions by their wave-vector satisfying
|k| = ωk. Then the integration measure μ(ωk) can be taken as dμ(ωk) = d3k. This applies since

F(x) =
∫

d3k ( f (k)ψk(x)) (35)

and the inner product of two such functions is

〈Fk, Fk′ 〉 =
∫

d3k
∫

d3k′
∫

d3x
√
|g|gtt f ∗k fk′ψ∗

kψk′

=
∫

d3k
∫

d3k′ f ∗k fk′ 〈ψ∗
k, ψk′ 〉

=
∫

d3k f ∗k fk . (36)

To obtain the third line we have used that ψk and ψk′ are eigenstates of a self-adjoint operator [52].
Physical photon modes will also be indexed by their transverse polarisation, so we also introduce an
additional mode label for the polarisation λ. Thus, in all, for a minimally-coupled electromagnetic
field on a static Lorentzian manifold the quantised field Hamiltonian for the Fock space defined in
Equation (9) can be taken as

Ĥ = ∑
λ=1,2

∫
d3k

(
∑

i
ω
(i)
k b̂(i)†kλ b̂(i)kλ + H0

)
. (37)

Other than the sum over distinct sectors, this result is no different from its Minkowskian counterpart;
this has only been possible with careful considerations of the static curved background.

3.3.3. Electromagnetic Field Observables

The classical Hamiltonian remains quadratic in the electric and magnetic fields, and the quantised
field Hamiltonian is still quadratic in the ladder operators. As is demonstrated above, this will
continue to be the case for any static spacetime, as it was in the Minkowskian case of Section 2.3.
In nonstatic spacetimes, the lack of a conserved local energy introduces ambiguity into our definition
of the Hamiltonian and the scheme may no longer apply. Since the Hamiltonian is quadratic in both
the field observables and the ladder operators, we can again make the ansatz that the electromagnetic
field operators are linear superpositions of creation and annihilation operators. Assuming that the
Hamiltonian and field operators retain the same relationships with one another as their classical
counterparts guarantees the validity of this linear superposition, since there must exist a linear
transformation between any two sets of variables if a quantity (the Hamiltonian) can be independently
written as a quadratic function of each set. Our linear superposition of creation and annihilation
operators takes as coefficients the negative and positive frequency modes respectively with respect to
the future-directed timelike killing vector Kμ. The only modification we propose is the addition of a
sum over spacetime sectors as introduced in the previous section. Including such flexibility will be
essential in Section 4 when we quantise the electromagnetic field in an accelerated frame.

Thus the ansatz for the field operators becomes

Ê = ∑
λ=1,2

∫
d3k

(
∑

i
p(i)kλ b̂(i)kλ + H.c.

)
êλ ,

B̂ = ∑
λ=1,2

∫
d3k

(
∑

i
q(i)kλ b̂(i)kλ + H.c.

)
(k̂ × êλ) , (38)

where pkλ and qkλ are unknown positive frequency mode functions of all the spacetime coordinates,
and êλ is a unit polarisation vector orthogonal to the direction of the wave’s propagation at a point x
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in the spacetime. To determine the unknown mode functions, we demand that the expectation values
of the operators satisfy the form of Maxwell’s equations explicit in E and B that derives from

1√
|g|

∂μ

(√
|g|Fμν

)
= 0 and ∂[σFμν] = 0 . (39)

In general, this could be highly nontrivial and is indeed the greatest obstacle to a simple implementation
of the scheme. Solving wave equations on curved spacetimes is a difficult task [49], so we would
like to again follow the Minkowskian scheme and simplify the task by using a Heisenberg equation
of motion.

To get around the manifest noncovariance of Equation (13), we note that since Ĥ generates a
unitary group that implements time translation symmetry on the Fock space, the equation is a geometric
expression of the fact that time evolution of operators is generated by the system’s Hamiltonian [52].
Considering the effect of an infinitesimal Poincaré transformation on an observable, Ô thus gives

∂μÔ = −i[Ô, P̂μ] , (40)

from which Equation (13) can be obtained as the 0th component [39,71,72]. Generalising this expression
to curved spacetimes is then a simple matter of applying the minimal-coupling principle, giving

∇μÔ = −i[Ô, P̂μ] . (41)

However, it is common to only consider evolution due to the Hamiltonian, in which case the Heisenberg
equation is made covariant by using a proper time derivative to give [73–75]

dÔ
dτ

= −i[Ô, Ĥ] . (42)

Both approaches are used in the literature as covariant generalisations of the Heisenberg equation, yet
they do not immediately appear to give the same results. To connect the two, we multiply Equation (41)
by a tangent vector,

Uμ∇μÔ = −i
[
ÔUμ P̂μ − Uμ P̂μÔ

]
, (43)

where we have assumed that it commutes with all the operators. Along a curve xα the directional
derivative of any given tensor T is dT

dλ = dxα

dλ ∇αT = Uα∇αT , where λ is any affine parameter.
The case λ = τ promotes Uμ to the four velocity. For a particle on a stationary spacetime, in its rest
frame UμPμ = H, and as this is a scalar this holds in any frame. Thus one obtains Equation (42), which
is the proper time covariant Heisenberg equation of motion.

Our generalised quantisation scheme will apply this covariant Heisenberg equation to the
expectation value 〈Ô〉 of a general state in the photon Fock space |ψ〉,

∇0〈Ô〉 = −i〈[Ô, Ĥ]〉 . (44)

This gives the temporal evolution in the wave equations resulting from Equation (39), where Ĥ is
taken as the field Hamiltonian of Equation (37). If the form of Maxwell’s equations on the spacetime
can be obtained and solved for the expectation values of the field operators using this procedure, the
constant terms are determined by demanding that

Ĥ ≡ 1
2

∫
Σ

d3x
(

Ê2 + B̂2
)√

γn0K0 (45)

on the spacelike hypersurface Σ. As the integration over this hypersurface is independent of the choice
of surface and is constant, this holds for all time. In this manner, the unknown modes in Equation (38)
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can be determined and the electromagnetic field on a static, 4-dimensional Lorentzian manifold can
be quantised.

3.3.4. Summary of Scheme

Let us reflect on our construction. We have taken the Minkowskian gauge-independent
electromagnetic field quantisation scheme in Section 2.3 and lifted it onto a static Lorentzian manifold
with metric gμν. Assuming the existence of detectable photons, the presence of a global timelike Killing
vector allowed the definition of positive and negative frequency modes and thus the introduction of a
well-defined particle Fock space, with general photon states labelled by their physical polarisation
λ and wave-vector k. We introduced a ladder-operator structure for the Fock space, and using the
approximation of Friis et al. [16] argued that this Fock space is associated with the field Hamiltonian of
Equation (37) for minimal coupling to the background geometry.

The fact that both the field Hamiltonian Ĥ and the classical Hamiltonian H of Equation (31)
were quadratic in the ladder operators or field strengths respectively allowed the proposal of a linear
ansatz for the electric and magnetic field operators in terms of unknown wave modes. The scheme
is then restricted to the specific manifold in question by demanding that the expectation values of
these operators satisfy the modified Maxwell equations deriving from Equation (39), which introduces
an explicit metric dependence to the scheme. To facilitate solving the potentially nontrivial Maxwell
equations we use a form of the covariant Heisenberg equation, which we expect from work in
Minkowski space to then uniquely determine the functional form of the modes in the operator ansatz.
To determine all constants in these modes we demand that if we promote the classical Hamiltonian to
an operator, upon substitution of the field operators the field Hamiltonian is regained.

By building off an already explicitly gauge-independent scheme, our method has the advantage
of offering a gauge-independent and covariant route to the derivation of the Hamiltonian Ĥ and the
electric and magnetic field observables, Ê and B̂, respectively, on curved spacetimes. However, so
far the only justification we have that this field quantisation scheme will give a physical result is
based on its progenitor in Minkowski space. To test the consistency of our approach with other field
quantisation schemes, we now consider a specific non-Minkowskian spacetime as an example and
show that standard physical results are reproduced.

4. Electromagnetic Field Quantisation in an Accelerated Frame

In this section we apply the general formalism developed above to a specific example:
1-dimensional acceleration in Minkowski space. This situation is interesting as the noninertial nature of
this motion leads to observers having different notions of particle states, and is thus often considered
first in developments of quantum field theory in curved spacetime. It is also the situation most easily
accessible to experimental tests. We must note that Soldati and Specchia [34] have emphasised photon
propagation in accelerated frames remains conceptually nontrivial due to the separation of physical
and nonphysical polarisation modes arising from standard quantisation techniques. Here we avoid
these issues by only considering motion in the direction of acceleration (1D propagation) [33,34], and
also by avoiding the use of canonical quantisation and immediately considering the physical degrees
of freedom.

4.1. Rindler Space

An observer in Minkowski space M accelerating along a one-dimensional line with proper
acceleration α appears to an inertial observer to travel along a hyperbolic worldline

xμ =

(
1
α

sinh(ατ),
1
α

cosh(ατ), 0, 0
)

, xμxμ = − 1
α2 , (46)
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where τ is the accelerating observer’s proper time. As the proper acceleration α → ∞, the hyperbolic
worldline of Equation (46) becomes asymptotic to the null lines of M, x = t for t > 0 and x = −t for
t < 0. The interior region in which the hyperbola resides is defined by |t| < x and is called the Right
Rindler wedge (RR); if |t| < −x we have the Left Rindler wedge (LR). The union of both wedges yields
the Rindler space R, which is a static globally hyperbolic spacetime [58].

More concretely, we can obtain Rindler space by the coordinate transformation

t = ±ρ sinh(αζ) , x = ±ρ cosh(αζ) , y = y , z = z , (47)

where we call the coordinates (ζ, ρ, y, z) polar Rindler coordinates, with positive signs labelling points
in RR and negative signs labelling those in LR [76]. In this coordinate system, the metric associated
with the frame of accelerating observer O′ is [34,56,62]

ds2 = α2ρ2dζ2 − dρ2 − dy2 − dz2 . (48)

The right Rindler wedge is covered by the set of all uniformly accelerated motions such that α−1 ∈ R+,
and the boundaries of Rindler space are Cauchy horizons for the motion of O′ [61,63].

Many studies of this spacetime choose to introduce conformal Rindler coordinates
(ξ, η, y, z) [58,76], defined by the coordinate transformation

t = ±a−1eaξ sinh(aη) , x = ±a−1eaξ cosh(aη) , y = y , z = z , (49)

where a ∈ R is a positive constant such that ae−aξ = α, so the proper time τ of O′ relates to η as
τ = eaξ η. The two coordinate systems for R hence relate as

ρ = a−1eaξ and αζ = aη . (50)

Lines of constant Rindler coordinates are shown in Figure 1. Rindler space can thus also be associated
with the metric line element

ds2 = e2aξ(dη2 − dξ2)− dy2 − dz2 . (51)

ξ

η

x

t

x
=
tx

= −
t

I

II

III

IV

Figure 1. Depiction of a 2-dimensional Minkowski space M. Regions I and III are the future and past
light cones of the observer O at the origin, while regions II and IV are the right Rindler wedge (RR)
and left Rindler wedge (LR) respectively. The worldline of a uniformly accelerated observer with
acceleration α is the displayed line of constant conformal Rindler coordinate ξ.
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These coordinates are useful because worldlines with ξ = 0 have constant acceleration a = α [58].
From the discussion of Killing vectors in Section 3.3, it is immediate that since the metric

components are independent of ζ or η in the respective coordinate systems, ∂η ≡ α
a ∂ζ is a Killing

field for R, and moreover the field is timelike. However in LR the field is orientated in the past
time direction, so the future-directed timelike killing vector in this wedge is ∂(−η) = −∂η ≡ − α

a ∂ζ .
To deal with this when considering wave propagation, one must introduce two disjoint sets of positive
frequency modes f (i)k , i = L, R. These satisfy

∂η f (R)
k = −iωk f (R)

k and − ∂η f (L)
k = −iωk f (L)

k , (52)

so each set is positive frequency with respect to its appropriate future-directed timelike Killing vector.
These sets and their conjugates form a complete basis for solutions of the wave equation on R [48,51].

As a region of Minkowski space Rindler space is a flat spacetime with no matter content [64].
Despite this, because of the spacetime’s noninertial nature covariant considerations must be applied
when working in R. For example the naïve divergence ∂μ Aμ �= ∂μ Aμ as required by Lorentz invariance,
and we have non-zero Christoffel symbols

Γξ
ξξ = Γξ

ηη = Γη
ηξ = Γη

ξη = a . (53)

With the Christoffel symbols covariant derivatives ∇μ can be taken, and the timelike Killing vector
fields ∂η and ∂(−η) can be shown to formally satisfy Equation (20).

4.2. Electromagnetism in Rindler Space

To apply our covariant gauge-independent quantisation scheme to accelerating frames, we need
to consider classical electromagnetism in Rindler space. Our starting point, the field strength tensor,
takes the standard form

FR
μν =

⎛⎜⎜⎜⎝
0 E1

R E2
R E3

R
−E1

R 0 −B3
R B2

R
−E2

R B3
R 0 −B1

R
−E3

R −B2
R B1

R 0

⎞⎟⎟⎟⎠ . (54)

The explicit relations between the Rindler fields and those in Minkowski space are given in Appendix A.
These relations are taken to define the fields in the accelerated frame. For the Maxwell equation we
need the contravariant field strength tensor Fμν = gμσgνρFσρ. Because of the metric contractions this is
explicitly coordinate dependent. In conformal coordinates we have

Fμν
R =

⎛⎜⎜⎜⎝
0 −E1

Re−4aξ −E2
Re−2aξ −E3

Re−2aξ

E1
Re−4aξ 0 −B3

Re−2aξ B2
Re−2aξ

E2
Re−2aξ B3

Re−2aξ 0 −B1
R

E3
Re−2aξ −B2

Re−2aξ B1
R 0

⎞⎟⎟⎟⎠ . (55)

The polar coordinate form of this equation can be found in Appendix A.
The Maxwell equations that incorporate the spacetime’s nontrivial geometry now follow from

Equation (39). In Rindler space and conformal coordinates, g = −e4aξ . Thus we obtain

e−2aξ∂ξ E1
R − 2aE1

Re−2aξ + ∂yE2
R + ∂zE3

R = 0 ,

e−2aξ∂ηE1
R = ∂yB3

R − ∂zB2
R ,

∂ηE2
R = e2aξ∂zB1

R − ∂ξ B3
R ,

∂ηE3
R = ∂ξ B2

R − e2aξ∂yB1
R .

(56)
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The set of equations deriving from the Bianchi identity are exactly the same as in flat space; these are
listed in Appendix A, along with the full Maxwell equations in polar coordinates.

4.3. Field Quantisation in Rindler Space

Knowing how classical electric and magnetic amplitudes evolve in Rindler space, we are now
in a position to derive the Hamiltonian Ĥ and the electric and magnetic field observables, Ê and B̂,
respectively, of the quantised electromagnetic field in Rindler space R. For simplicity, we are only
interested in photons which propagate along one spatial dimension. Suppose they travel along the ξ

axis in conformal or along the ρ axis in polar coordinates, which from Equation (50) are proportional
and thus equivalent. Thus photon modes will have a wave-number k and a polarisation λ = 1, 2
as their labels. Working in only one dimension, we have avoided the necessity to introduce more
complicated polarisations [34].

Unfortunately, the general states in Equation (9) are complicated in R by the existence of different
future-directed timelike killing vectors in the two Rindler wedges, with ∂η in RR and −∂η in LR.
Hence there need to be two sets of positive frequency modes for solutions of the wave equation on the
spacetime. There will thus be two distinct Fock spaces representing the particle content in LR and RR.
A general particle number state for light propagating in one dimension in R will hence be

⊗
λ=1,2

∞⊗
k=−∞

∣∣∣nL
kλ, nR

kλ

〉
, (57)

with nL
kλ being the number of photons in LR and nR

kλ being the number of photons in RR. Thus the
physical energy eigenstates are in general degenerate and the Hamiltonian must satisfy

Ĥ
∣∣∣nL

kλ, nR
kλ

〉
=

[
ωk(nL

kλ + nR
kλ) + H0

] ∣∣∣nL
kλ, nR

kλ

〉
, (58)

with integer values for both nL
kλ and nR

kλ. This suggests that the field Hamiltonian Ĥ of Equation (37)
has to be expressed in terms of independent ladder operators for both wedges. Hence, it can be
written as

Ĥ = ∑
λ=1,2

∫ ∞

−∞
dk

[
ωk

(
b̂R†

kλ b̂R
kλ − b̂L†

kλ b̂L
kλ

)
+ H0

]
, (59)

where the Eωk
factor of Equations (34) and (52) give the relative sign between the left and right sectors.

As we are considering photons propagating along ξ or ρ, and photons are electromagnetic waves, the
electric and magnetic fields must be in the transverse spatial dimensions y, z that are unaffected by
the acceleration and thus identical to their Minkowski counterparts. As described in Section 2.3, the
polarisation basis states correspond to choices of these fields. Here we choose

E, B =

{
(0, E, 0), (0, 0, B) λ = 1

(0, 0, E), (0,−B, 0) λ = 2 ,
(60)

where E and B are scalar functions of (ζ, ρ) or (η, ξ). With this choice of fields, the Rindler–Maxwell
equations of Equation (56) reduce to

∂ηE = −∂ξ B , ∂ξ E = −∂η B , (61)

for conformal Rindler coordinates, and from Equation (A7) to

1
ρ2α2 ∂ζ E = −

(
∂ρB +

1
ρ

B
)

, ∂ρE = −∂ζ B , (62)
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for polar coordinates. Both sets of equations hold in both LR and RR. The conformal expressions are
now identical to the 1D Minkowski propagation considered in [35]. It should be emphasised that the
apparent simplicity is a result of demanding 1-dimensional propagation along the accelerated spatial
axis and choosing convenient polarisations.

The noninertial nature of Rindler space still requires care; recall from Equation (31) that to
determine the classical electromagnetic Hamiltonian, we require a timelike Killing vector field. We must
also choose a spacelike hypersurface Σ with normal vector nμ and induced metric γij to integrate
over. In conformal Rindler coordinates, we know that the timelike Killing vector field is K = ∂η , so
Kμ = δ

μ
η . Choosing Σ as being the hypersurface defined by η = 0 allows us to continue using the

spatial coordinates xi = (ξ, y, z). Hence, the full conformal Rindler metric of Equation (51) implies
γ = det(γij) = e−2aξ . Finally, since Σ is spacelike, nμ is normalised to +1, so

1 = gμνnμnν = e2a¸
(

n0
)2

, (63)

giving n0 = e−aξ [48]. Hence the Hamiltonian in Rindler space is

H =
1
2

∫
dξ

(
E2 + B2

)
eaξ e−aξ δ

η
η

=
1
2

∫
dξ

(
E2 + B2

)
, (64)

so the initial apparent simplicity holds.
Following our general prescription, we again make the ansatz that the field operators are linear

superpositions of the relevant ladder operators. As we are considering 1-dimensional propagation
with the electric and magnetic field vectors E and B, respectively, as specified in Equation (60), we
need only apply the ansatz to the scalar components E and B for quantisation, giving

Ê = ∑
λ=1,2

∫ ∞

−∞
dk

(
pL

kλ b̂L
kλ + pR

kλ b̂R
kλ + H.c.

)
,

B̂ = ∑
λ=1,2

∫ ∞

−∞
dk

(
qL

kλ b̂L
kλ + qR

kλ b̂R
kλ + H.c.

)
,

(65)

where pi
kλ and qi

kλ are unknown functions of (η, ξ), and i = L, R for LR and RR respectively. Since the
left and the right wedges of R are causally disjoint, we can demand that modes in different wedges
are orthogonal with respect to the inner product in Equation (36) [48]. Explicitly this yields

〈pL
kλ, pR

k′λ′ 〉 =
∫ ∞

−∞
dk p∗L

kλ pR
k′λ′ = 0 ,

〈p∗L
kλ , pR

k′λ′ 〉 =
∫ ∞

−∞
dk pL

kλ pR
k′λ′ = 0

(66)

with similar expressions for qi
kλ. To determine all the modes, we follow the recipe of Section 3.3 and

demand that the expectation values of these field operators satisfy Equations (61) and (62).
From now on we will work in the conformal Rindler coordinates (η, ξ) due to the wonderful

simplicity of their Maxwell equations. One could of course also use polar coordinates, and indeed
one can show that this yields the same results in this set for the case a = α. To determine temporal
evolution we use the Heisenberg equation, which, as the time coordinate is η in this system and our
observables Ô are scalars, is

∂ηÔ = −i[Ô, Ĥ]. (67)
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Following our prescription, we compare expectation values of the ladder operators for spatial
derivatives and time evolution from Heisenberg’s equation by using our form of Maxwell’s equations.
In this case, using Equations (61) this procedure gives the relations

∂ξ qi
kλ = iωk pi

kλ , (68)

∂ξ pi
kλ = iωkqi

kλ . (69)

Solving for pi
kλ we of course just obtain the wave equation,

(
∂2

ξ + k2
)

pi
kλ = 0, when we consider

free, on-shell photons with k2 = ω2
k. This equation admits separable solutions pi

kλ = χi
kλ(η)Pi

kλ(ξ),
so as there are no temporal derivatives we lose all temporal information. Writing the spatial solution
is trivial:

Pi
kλ = Ji

λeikξ + Ki
λe−ikξ , (70)

where Ji
λ, Ki

λ ∈ C. To determine the temporal dependence of χkλ(η) we use that positive frequency
Rindler modes must satisfy Equation (52). The two modes pL

kλ and pR
kλ must both be positive frequency

with respect to the future-direction of ∂η as they are coefficients of annihilation operators [40]. Thus
the difference between them will be in their time dependence. This gives that we must have

χL
kλ = eiωkη , χR

kλ = e−iωkη . (71)

This difference is a direct result of the two Rindler wedges having different future-directed timelike
Killing vectors. Thus, in all, we have

pR
kλ(η, ξ) = UR

λ ei(kξ−ωkη) + VR
λ e−i(kξ+ωkζ) ,

pL
kλ(η, ξ) = UL

λei(kξ+ωkη) + VL
λ e−i(kξ−ωkη) .

(72)

We can then easily obtain the qi
kλ solutions from Equation (68) as

qR
kλ(η, ξ) =

k
ωk

[
UR

λ ei(kξ−ωkη) − VR
λ e−i(kξ+ωkη)

]
,

qL
kλ(η, ξ) =

k
ωk

[
UL

λei(kξ+ωkη) − VL
λ e−i(kξ−ωkη)

]
.

(73)

We now seek to determine the unknown coefficients in these expressions. Similarly to Section 2.3, first
note that wave modes propagating in the positive ξ direction in R should be functions of (kξ − ωkη)

in RR where ∂η is the future-directed timelike Killing vector, and functions of (kξ + ωkη) in LR where
it is −∂η . Similarly, modes propagating in the negative ξ direction should be functions of (kξ + ωkη)

in RR and functions of (kξ − ωkη) in LR. These conditions imply VR = VL = 0.
We then determine the remaining constants by demanding that the classical and the quantised

field Hamiltonians are equivalent, as in Equation (45). Since Ĥ is quadratic in the electric and magnetic
field operators, we obtain cross terms between LR and RR modes during the calculation. Integrating
over such terms gives the inner products in Equation (66), but as modes in the different wedges are
orthogonal these terms are identically 0, so there are no physical cross terms. Then after some algebra
and relying on the integral definition of the delta function, we arrive at

Ĥ = 2π ∑
λ=1,2

∫ ∞

−∞
dk

[
|UR

λ |2
(

2b̂†R
kλ b̂R

kλ + δ(0)
)
+ |UL

λ |2
(

2b̂†L
kλ b̂L

kλ + δ(0)
) ]

, (74)
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where we have used the commutation relations in Equation (25). As in Section 2.3, to finally determine
the constant terms and zero-point energy we compare with Equation (59) which yields

|UR
λ |2 =

ωk

4π
, |UL

λ |2 =
ωk

4π
, H0 =

∫ ∞

−∞
dk ωk δ(0) . (75)

To obtain our final expressions for the electric and magnetic field operators we arbitrarily choose the
phases of both UR

λ and UL
λ to give consistency with standard Minkowskian results, and multiply the

electric field operator by polarisation unit vector êλ and the magnetic field operator by k̂ × êλ. Thus,
in all, we obtain the final results

Ê = i ∑
λ=1,2

∫ ∞

−∞
dk

√
ωk

4π

[
ei(kξ−ωkη) b̂R

kλ + ei(kξ+ωkη) b̂L
kλ + H.c.

]
êλ ,

B̂ = −i ∑
λ=1,2

∫ ∞

−∞
dk

√
ωk

4π

[
ei(kξ−ωkη) b̂R

kλ + ei(kξ+ωkη) b̂L
kλ + H.c.

]
(k̂ × êλ) ,

Ĥ = ∑
λ=1,2

∫ ∞

−∞
dk ωk

[
b̂†R

kλ b̂R
kλ + b̂†L

kλ b̂L
kλ + δ(0)

]
. (76)

These three operators are very similar to the electric and magnetic field operators Ê and B̂, respectively,
and Ĥ in Equations (11) and (14) in Minkowski space. When moving in only one dimension, the
orientation of the electric and magnetic field amplitudes is still pairwise orthogonal and orthogonal to
the direction of propagation. However, the electromagnetic field has become degenerate and additional
degrees of freedom which correspond to different Rindler wedges have to be taken into account in
addition to the wave numbers k and the polarisations λ of the photons. Finally, instead of depending
on kx, the electric and magnetic field observables now depend on kξ ± ωkη, i.e., they depend not only
on the position but also on the amount of time the observer has been accelerating in space and on
their acceleration. Most importantly, Equation (76) can now be used as the starting point for further
investigations into the quantum optics of an accelerating observer [5,36,46], and is expected to find
immediate applications in relativistic quantum information [13–21,69].

4.4. The Unruh Effect

As an example and to obtain a consistency check, we now verify that our results give the
well-established Unruh effect [55,56,58,59]. This effect predicts that an observer with uniform
acceleration α in Minkowski space measures the Minkowski vacuum as being a pure thermal state
with temperature

TUnruh =
α

2π
. (77)

Deriving this result relies on being able to switch between modes in Minkowski and modes in
Rindler space, which requires a Bogolubov transformation. This transformation allows us to switch
between the modes of different coordinate frames and generally transforms a vacuum state to a
thermal state [57,77]. For a field expansion in two complete sets of basis modes, φ = ∑i âi fi + â†

i f ∗i =

∑j b̂jgj + b̂†
j gj, this relates the modes as

gi = ∑
j

αij f j + βij f ∗j ,

fi = ∑
j

α∗jigj − β jig∗j ,
(78)
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where αij and βij are the Bogolubov coefficients [58]. Knowing these coefficients also allows the
associated particle Fock spaces to be related,

âi = ∑
j

αji b̂j + β∗
ji b̂

†
j ,

b̂i = ∑
j

α∗ij âj − β∗
ij â

†
j .

(79)

For transforming between the Rindler and Minkowski Fock spaces, the coefficients can be calculated
using coordinate relations in a method first introduced by Unruh [55].

Here our field modes are the expansions of the electric field operators in R and M with the
Minkowski results taking the same functional form. Following the standard approach [48,51], our
expressions for the field operators yield

αLL = αRR =
1

ωk

√
1

2 sinh(πωk
a )

e
πωk

2a

βLR = βRL =
1

ωk

√
1

2 sinh(πωk
a )

e−
πωk

2a .

(80)

These immediately give the following relationship between the ladder operators.

b̂R
kλ =

1
ωk

√
1

2 sinh(πωk
a )

(
e

πωk
2a ĉR

kλ + e−
πωk

2a ĉL†
−kλ

)
,

b̂L
kλ =

1
ωk

√
1

2 sinh(πωk
a )

(
e

πωk
2a ĉL

kλ + e−
πωk

2a ĉR†
−kλ

)
.

(81)

The ĉi
kλ operators are associated with modes that can be purely expressed in terms of positive frequency

Minkowski modes (from the form of the field operators in Cartesian coordinates). They must thus share
the Minkowski vacuum, so ĉR

k |0M〉 = ĉL
k |0M〉 = 0. Because we possess the Bogolubov transformation

between Minkowski and Rindler space, we can now evaluate particle states seen by an observer in R,
given by b̂i

k, in terms of a Minkowski Fock space given by ci
k. In particular, evaluating the RR number

operator on the Minkowski vacuum gives

〈0M|b̂R†
k b̂R

k |0M〉 = 1
ω2

k

δ(0)

exp( 2πωk
a )− 1

. (82)

This energy expectation value is the same as the energy expectation value of a thermal Planckian state
with temperature a

2π . For the case a = α this is the prediction that exactly constitutes the Unruh effect,
and thus verifies that the results of our quantisation scheme match known theoretical predictions.
Having a �= α just corresponds to a redshift [48]. The external factor 1/ω2

k is different to that for a
standard scalar field; this is just a remnant of the different normalisation of our electric field operator
and does not affect the physical prediction, with such factors indeed sometimes appearing in the
literature [49].

5. Conclusions

This paper generalises the physically-motivated quantisation scheme of the electromagnetic
field in Minkowski space [35] to static spacetimes of otherwise arbitrary geometry. As shown in
Section 3, such a generalisation requires only minimal modification of the original quantisation
scheme in flat space. In order to assess the validity of the presented generalised approach, we apply
our findings in Section 4 to the well understood case of Rindler space: the relevant geometry for a
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uniformly accelerating observer. Since this reproduces the anticipated Unruh effect, it supports the
hypothesis that our approach is a consistent approach to the quantisation of the electromagnetic field
on curved spacetimes.

The main strength of our quantisation scheme is its gauge-independence, i.e., its nonreliance
on the gauge-dependent potentials of more traditional approaches. Instead it relies only on the
experimentally verified existence of electromagnetic field quanta. As such, our scheme provides a
more intuitive approach to field quantisation, while still relying on well established concepts and
constructions in quantum field theory in curved space. Given this and the applicability of our results
to accelerating frames in an otherwise flat spacetime, it seems likely that our approach can also be
used to model more complex, but experimentally accessible, situations with applications, for example,
in relativistic quantum information.

The specific case of Rindler space, as considered in this paper, led to equations with
straightforward analytic solutions. This will likely not be true in more general settings, where the
necessary wave equations will be nontrivial and will possibly require approximation or numerical
solution. This fact is partially mitigated by our use of the Heisenberg equation, thereby reducing
the necessary calculation to an ordinary differential equation and commutation relation, rather
than a partial differential equation. Furthermore, recall that the scheme laid out in this paper is
a generalisation of that in flat space to the case of static curved spacetimes. This simplified the
definition and construction of the quantisation scheme, due to our reliance on spacelike hypersurfaces.
When applied to the more general case of stationary spacetimes, the correct prescription of the scheme
becomes less clear and will require further theoretical development.
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Appendix A. Further Results of Electromagnetism in Rindler Space

To define the electric and magnetic fields in Rindler space we apply coordinate transformations to
the Minkowski field strength tensor,

FR
μν =

∂xα
M

∂xμ
R

∂xβ
M

∂xν
R

Fαβ , (A1)

where xμ
R are the coordinates in Rindler space and xμ

M are the coordinates used by an intertial observer.
The Rindler electric and magnetic fields are defined as the elements of FR

μν. In polar and conformal
coordinates this transformation is given by Equations (47) and (49), respectively, which readily give
the Jacobian of the transformation as

Jμ
α ≡ ∂xα

M

∂xμ
R

=

⎛⎜⎜⎜⎝
±αρ cosh(αζ) ± sinh(αζ) 0 0
±αρ sinh(αζ) ± cosh(αζ) 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ (A2)
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in polar Rinder coordinates and

Jμ
α ≡ ∂xα

M

∂xμ
R

=

⎛⎜⎜⎜⎝
±eaξ cosh(aη) ±eaξ sinh(aη) 0 0
±eaξ sinh(aη) ±eaξ cosh(aη) 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ (A3)

in conformal Rindler coordinates, where upper signs refer to RR and lower signs to LR. Transforming
the Minkowski field strength tensor in Equation (A1), we obtain FR

μν in Equation (54), where the Rindler
space elements are defined in either wedge by the transformations

E1
R = E1

Mαρ ,

E2
R =

(
E2
Mαρ cosh(αζ)− B3

M sinh(αζ)
)

,

E3
R =

(
E3
Mαρ cosh(αζ) + B2

M sinh(αζ)
)

,

B1
R = B1

M ,

B2
R =

(
B2
M cosh(αζ) + E3

Mαρ sinh(αζ)
)

,

B3
R =

(
B3
M cosh(αζ)− E2

Mαρ sinh(αζ)
)

,

(A4)

in polar Rindler coordinates and

E1
R = E1

Me2aξ ,

E2
R =

(
E2
M cosh(aη)− B3

M sinh(aη)
)

eaξ ,

E3
R =

(
E3
M cosh(aη) + B2

M sinh(aη)
)

eaξ ,

B1
R = B1

M ,

B2
R =

(
B2
M cosh(aη) + E3

M sinh(aη)
)

eaξ ,

B3
R =

(
B3
M cosh(aη)− E2

M sinh(aη)
)

eaξ ,

(A5)

in conformal Rindler coordinates. While the conformal coordinate form of the field strength tensor is
listed in Equation (55), that for polar coordinates, which equals

Fμν
R =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −E1
R

ρ2α2
−E2

R
ρ2α2

−E3
R

ρ2α2

E1
R

ρ2α2 0 −B3
R B2

R
E1
R

ρ2α2 B3
R 0 −B1

R
E1
R

ρ2α2 −B2
R B1

R 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (A6)
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was omitted. Then, since in polar coordinates, g = −ρ2α2, Equation (5) gives that the modified
Maxwell equations in these coordinates are

∂ρE1
R − 1

ρ
E1
R + ∂yE2

R + ∂zE3
R = 0 ,

1
ρ2α2 ∂ζ E1

R = ∂yB3
R − ∂zB2

R ,

1
ρ2α2 ∂ζ E2

R = ∂zB1
R − ∂ρB3

R − 1
ρ

B3
R ,

1
ρ2α2 ∂ζ E3

R = ∂ρB2
R +

1
ρ

B2
R − ∂yB1

R ,

(A7)

while the Bianchi identity leads to
∂iBi

R = 0 ,

∂ζ B1
R = ∂zE2

R − ∂yE3
R ,

∂ζ B2
R = ∂ρE3

R − ∂zE1
R ,

∂ζ B3
R = ∂yE1

R − ∂ρE2
R ,

(A8)

as in flat space. These equations also hold for conformal coordinates; one just replaces ζ with η and ρ

with ξ.
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Abstract: Summoning is a task between two parties, Alice and Bob, with distributed networks of
agents in space-time. Bob gives Alice a random quantum state, known to him but not her, at some
point. She is required to return the state at some later point, belonging to a subset defined by
communications received from Bob at other points. Many results about summoning, including
the impossibility of unrestricted summoning tasks and the necessary conditions for specific types
of summoning tasks to be possible, follow directly from the quantum no-cloning theorem and
the relativistic no-superluminal-signalling principle. The impossibility of cloning devices can be
derived from the impossibility of superluminal signalling and the projection postulate, together
with assumptions about the devices’ location-independent functioning. In this qualified sense,
known summoning results follow from the causal structure of space-time and the properties of
quantum measurements. Bounds on the fidelity of approximate cloning can be similarly derived.
Bit commitment protocols and other cryptographic protocols based on the no-summoning theorem
can thus be proven secure against some classes of post-quantum but non-signalling adversaries.

Keywords: relativistic quantum information; quantum cryptography; summoning; no-cloning;
no-signalling; bit commitment

1. Introduction

To define a summoning task [1,2], we consider two parties, Alice and Bob, who each have
networks of collaborating agents occupying non-overlapping secure sites throughout space-time.
At some point P, Bob’s local agent gives Alice’s local agent a state |ψ〉. The physical form of |ψ〉
and the dimension of its Hilbert space H are pre-agreed; Bob knows a classical description of |ψ〉 but
from Alice’s perspective it is a random state drawn from the uniform distribution on H. At further
pre-agreed points (which are often taken to all be in the causal future of P, though this is not necessary),
Bob’s agents send classical communications in pre-agreed form, satisfying pre-agreed constraints,
to Alice’s local agents, which collectively determine a set of one or more valid return points. Alice may
manipulate and propagate the state as she wishes but must return it to Bob at one of the valid return
points. We say a given summoning task is possible if there is some algorithm that allows Alice to ensure
that the state is returned to a valid return point for any valid set of communications received from Bob.

The “no-summoning theorem” [1] states that summoning tasks in Minkowski space are not
always possible. We write Q � P if the space-time point Q is in the causal future of the point P and
Q � P otherwise; we write Q � P if either Q � P or Q = P and Q � P otherwise. Now, for example,
consider a task in which Bob may request at one of two “call” points ci � P that the state be returned
at a corresponding return point ri � ci, where r2 � c1 and r1 � c2. An algorithm that guarantees that
Alice will return the state at r1 if it is called at c1 must work independently of whether a call is also
made at c2, since no information can propagate from c2 to r1; similarly if 1 and 2 are exchanged. If calls
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were made at both c1 and c2, such an algorithm would thus generate two copies of |ψ〉 at the space-like
separated points r1 and r2, violating the no-cloning theorem. This distinguishes relativistic quantum
theory from both relativistic classical mechanics and non-relativistic quantum mechanics, in which
summoning tasks are always possible provided that any valid return point is in the (causal) future of
the start point P.

Further evidence for seeing summoning tasks as characterising fundamental features of relativistic
quantum theory was given by Hayden and May [3], who considered tasks in which a request is made
at precisely one from a pre-agreed set of call points {c1, . . . , cn}; a request at ci requires the state to
be produced at the corresponding return point ri � ci. They showed that, if the start point P is in
the causal past of all the call points, then the task is possible if and only if no two causal diamonds
Di = {x : ri � x � ci} are spacelike separated. That is, the task is possible unless the no-cloning
and no-superluminal-signalling principles directly imply its impossibility. Wu et al. have presented
a more efficient code for this task [4]. Another natural type of summoning task allows any number of
calls to be made at call points, requiring that the state be produced at any one of the corresponding
return points. Perhaps counter-intuitively, this can be shown to be a strictly harder version of the
task [5]. It is possible if and only if the causal diamonds can be ordered in sequence so that the return
point of any diamond in the sequence is in the causal future of all call points of earlier diamonds
in the sequence. Again, the necessity of this condition follows (with a few extra steps) from the
no-superluminal-signalling and no-cloning theorems [5].

The constraints on summoning have cryptographic applications, since they can effectively force
Alice to make choices before revealing them to Bob. Perhaps the simplest and most striking of these is
a novel type of unconditionally secure relativistic quantum bit commitment protocol, in which Alice
sends the unknown state at light speed in one of two directions, depending on her committed bit [6].
The fidelity bounds on approximate quantum cloning imply [6] the sum-binding security condition

p0 + p1 ≤ 1 +
2

d + 1
, (1)

where d = dim(H) is the dimension of the Hilbert space of the unknown state and pb is the probability
of Alice successfully unveiling bit value b.

Summoning is also a natural primitive in distributed quantum computation, in which algorithms
may effectively summon a quantum state produced by a subroutine to some computation node that
depends on other computed or incoming data.

From a fundamental perspective, the (im)possibility of various summoning tasks may be seen
either as results about relativistic quantum theory or as candidate axioms for a reformulation of
that theory. They also give a way of exploring and characterising the space of theories generalising
relativistic quantum theory. From a cryptographic perspective, we would like to understand precisely
which assumptions are necessary for the security of summoning-based protocols. These motivations
are particularly strong given the relationship between no-summoning theorems and no-signalling,
since we know that quantum key distribution and other protocols can be proven secure based on
no-signalling principles alone. In what follows, we characterise that relationship more precisely,
and discuss in particular the sense in which summoning-based bit commitment protocols are secure
against potentially post-quantum but non-signalling participants. These are participants who may
have access to technology that relies on some unknown theory beyond quantum theory. They may thus
be able to carry out operations that quantum theory suggests is impossible. However, their technology
must not allow them to violate a no-signalling principle. Exactly what this implies depends on which
no-signalling principle is invoked. We turn next to discussing the relevant possibilities.
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2. No-Signalling Principles and No-Cloning

2.1. No-Signalling Principles

The relativistic no-superluminal-signalling principle states that no classical or quantum
information can be transmitted faster than light speed. We can frame this operationally by considering
a general physical system that includes agents at locations P1, . . . , Pn. Suppose that the agent at each Pi
may freely choose inputs labelled by Ai and receive outputs ai, which may probabilistically depend
on their and other inputs. Let I = {i1, . . . , ib} and J = {j1, . . . jc} be sets of labels of points such that
Pik � Pjl for all k ∈ {1, . . . , b} and l ∈ {1, . . . , c}. Then we have

P(ai1 . . . aib |Ai1 . . . Aib) = (2)

p(ai1 . . . aib |Ai1 . . . Aib Aj1 . . . Ajc) .

In other words, outputs are independent of spacelike or future inputs.
The quantum no-signalling principle for an n-partite system composed of non-interacting

subsystems states that measurement outcomes on any subset of subsystems are independent of
measurement choices on the others. If we label the measurement choices on subsystem i by Ai, and the
outcomes for this choice by ai, then we have

P(ai1 . . . aim |Ai1 . . . Aim) = P(ai1 . . . aim |A1 . . . An) . (3)

That is, so long as the subsystems are non-interacting, the outputs for any subset are independent
of the inputs for the complementary subset, regardless of their respective locations in space-time.

The no-signalling principle for a generalised non-signalling theory extends this to any notional
device with localised pairs of inputs (generalising measurement choices) and outputs (generalising
outcomes). As in the quantum case, this is supposed to hold true regardless of whether the sites of
the localised input/output ports are spacelike separated. Generalized non-signalling theories may
include, for example, the hypothetical bipartite Popescu-Rohrlich boxes [7], which maximally violate
the CHSH inequality, while still precluding signalling between agents at each site.

2.2. The No-Cloning Theorem

The standard derivation of the no-cloning theorem [8,9] assumes a hypothetical quantum cloning
device. A quantum cloning device D should take two input states, a general quantum state |ψ〉 and
a reference state |0〉, independent of |ψ〉. Since D follows the laws of quantum theory, it must act
linearly. Now we have

D |ψ〉 |0〉 = |ψ〉 |ψ〉 , D
∣∣ψ′〉 |0〉 = ∣∣ψ′〉 ∣∣ψ′〉 , (4)

for a faithful cloning device, for any states |ψ〉 and |ψ′〉. Suppose that 〈ψ′|ψ〉 = 0 and that
|φ〉 = a |ψ〉+ b |ψ′〉 is normalised. We also have

D |φ〉 |0〉 = |φ〉 |φ〉 , (5)

which contradicts linearity.
To derive the no-cloning theorem without appealing to linearity, we need to consider quantum

theory as embedded within a more general theory that does not necessarily respect linearity. We can
then consistently consider a hypothetical post-quantum cloning device D which accepts quantum
states |ψ〉 and |0〉 as inputs and produces two copies of |ψ〉 as outputs:

D |ψ〉 |0〉 = |ψ〉 |ψ〉 . (6)
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We will suppose that the cloning device functions in this way independent of the history of
the input state. We will also suppose that it does not violate any other standard physical principles:
in particular, if it is applied at Q then it does not act retrocausally to influence the outcomes of
measurements at earlier points P ≺ Q.

We can now extend the cloning device to a bipartite device comprising a maximally entangled
quantum state, with a standard quantum measurement device at one end and the cloning device
followed by a standard quantum measurement device at the other end. This extended device accepts
classical inputs (measurement choices) and produces classical outputs (measurement outcomes) at
both ends.

If we now further assume that the joint output probabilities for this extended device, for any
set of inputs, are independent of the locations of its components, then we can derive a contradiction
with the relativistic no-superluminal signalling principle. First suppose that the two ends are timelike
separated, with the cloning device end at point Q and the other end at point P ≺ Q. A complete
projective measurement at P then produces a pure state at Q in any standard version of quantum theory.
The cloning device then clones this pure state. Different measurement choices at P produce different
ensembles of pure states at Q. These ensembles correspond to the same mixed state before cloning
but to distinguishable mixtures after cloning. The measurement device at Q can distinguish these
mixtures. Now if we take the first end to be at a point P′ spacelike separated from Q, by hypothesis
the output probabilities remain unchanged. This allows measurement choices at P′ to be distinguished
by measurements at Q and so gives superluminal signalling [10].

It is important to note that the assumption of location-independence is not logically necessary,
nor does it follow from the relativistic no-superluminal-signalling principle alone. Assuming that
quantum states collapse in some well defined and localized way as a result of measurements, one can
consistently extend relativistic quantum theory to include hypothetical devices that read out a classical
description of the local reduced density matrix at any given point, that is the local quantum state that
is obtained by taking into account (only) collapses within the past light cone [11]. This means that
measurement events at P, which we take to induce collapses, are taken into account by the readout
device at Q if and only if P ≺ Q. Given such a readout device, one can certainly clone pure quantum
states. The device behaves differently, when applied to a subsystem of an entangled system, depending
on whether the second subsystem is measured inside or outside the past light cone of the point at
which the device is applies. It thus does not satisfy the assumptions of the previous paragraph.

The discussion above also shows that quantum theory augmented by cloning or readout devices is
not a generalized non-signalling theory. For consider again a maximally entangled bipartite quantum
system with one subsystem at space-time point P and the other at a space-like separated point P′.
Suppose that the Hamiltonian is zero and that the subsystem at P′ will propagate undisturbed to point
Q � P. Suppose that a measurement device may carry out any complete projective measurement at P
and that at Q there is a cloning device followed by another measurement device on the joint (original
and cloned) system. As above, different measurement choices at P produce different ensembles of
pure states at Q, which correspond to the same mixed state before cloning but to distinguishable
mixtures after cloning. The measurement device at Q can distinguish these mixtures. The output
(measurement outcome) probabilities at Q thus depend on the inputs (measurement choices) at P,
contradicting Equation (3). Assuming that nature is described by a generalized non-signalling theory
thus gives another reason for excluding cloning or readout devices, without assuming that their
behaviour is location-independent.

In summary, neither the no-cloning theorem nor cryptographic security proofs based on it can
be derived purely from consistency with special relativity. They require further assumptions about
the behaviour of post-quantum devices available to participants or adversaries. Although this was
noted when cryptography based on the no-signalling principle was first introduced [12], it perhaps
deserves re-emphasis.
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On the positive side, given these further assumptions, one can prove not only the no-cloning
theorem but also quantitative bounds on the optimal fidelities attainable by approximate cloning
devices for qubits [10] and qudits [13]. In particular, one can show [13] that any approximate universal
cloning device that produces output states ρ0 and ρ1 given a pure input qudit state |ψ〉 satisfies the
fidelity sum bound

〈ψ|ρ0|ψ〉+ 〈ψ|ρ1|ψ〉 ≤ 1 +
2

d + 1
. (7)

It is worth stressing that (with the given assumptions) this bound applies for any approximate
cloning strategy, with any entangled states allowed as input.

3. Summoning-Based Bit Commitments and No-Signalling

We recall now the essential idea of the flying qudit bit commitment protocol presented in
Reference [6], in its idealized form. We suppose that space-time is Minkowski and that both parties,
the committer (Alice) and the recipient (Bob), have arbitrarily efficient technology, limited only by
physical principles. In particular, we assume they both can carry out error-free quantum operations
instantaneously and can send classical and quantum information at light speed without errors.
They agree in advance on some space-time point P, to which they have independent secure access,
where the commitment will commence.

We suppose too that Bob can keep a state secure from Alice somewhere in the past of P and
arrange to transfer it to her at P. Alice’s operations on the state can then be kept secure from Bob
unless and until she chooses to return information to Bob at some point(s) in the future of P. We also
suppose that Alice can send any relevant states at light speed in prescribed directions along secure
quantum channels, either by ordinary physical transmission or by teleportation.

They also agree on a fixed inertial reference frame and two opposite spatial directions within
that frame. For simplicity we neglect the y and z coordinates and take the speed of light c = 1.
Let P = (0, 0) be the origin in the coordinates (x, t) and the two opposite spatial directions be defined
by the vectors v0 = (−1, 0) and v1 = (1, 0).

Before the commitment begins, Bob generates a random pure qudit |ψ〉 ∈ Cd. This is chosen
from the uniform distribution and encoded in some pre-agreed physical system. Again idealizing,
we assume the dimensions of this system are negligible and treat it as pointlike. Bob keeps his qudit
secure until the point P, where he gives it to Alice. To commit to the bit i ∈ {0, 1}, Alice sends the state
|ψ〉 along a secure channel at light speed in the direction vi. That is, to commit to 0, she sends the qudit
along the line L0 = {(−t, t), t > 0}; to commit to 1, she sends it along the line L1 = {(t, t), t > 0}.

For simplicity, we suppose here that Alice directly transmits the state along a secure channel.
This allows Alice the possibility of unveiling her commitment at any point along the transmitted
light ray. To unveil the committed bit 0, Alice returns |ψ〉 to Bob at some point Q0 on L0; to unveil
the committed bit 1, Alice returns |ψ〉 to Bob at some point Q1 on L1. Bob then tests that the returned
qudit is |ψ〉 by carrying out the projective measurement defined by Pψ = |ψ〉 〈ψ| and its complement
(I − Pψ). If he gets the outcome corresponding to Pψ, he accepts the commitment as honestly unveiled;
if not, he has detected Alice cheating.

Now, given any strategy of Alice’s at P, there is an optimal state ρ0 she can return to Bob at Q0

to maximise the chance of passing his test there, i.e., to maximize the fidelity 〈ψ|ρ0|ψ〉. There is
similarly an optimal state ρ1 that she can return at Q1, maximizing 〈ψ|ρ1|ψ〉. The relativistic
no-superluminal-signalling principle implies that her ability to return ρ0 at Q0 cannot depend on
whether she chooses to return ρ1 at Q1 or vice versa. Hence she may return both (although this violates
the protocol). The bound (7) on the approximate cloning fidelities implies that

〈ψ|ρ0|ψ〉+ 〈ψ|ρ1|ψ〉 ≤ 1 +
2

d + 1
. (8)
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Since the probability of Alice successfully unveiling the bit value b by this strategy is

pb = 〈ψ|ρb|ψ〉 , (9)

this gives the sum-binding security condition for the bit commitment protocol

p0 + p1 ≤ 1 +
2

d + 1
. (10)

Recall that the bound (7) follows from the relativistic no-superluminal-signalling condition
together with the location-independence assumption for a device based on a hypothetical
post-quantum cloning device applied to one subsystem of a bipartite entangled state. Alternatively,
it follows from assuming that any post-quantum devices operate within a generalized non-signalling
theory. The bit commitment security thus also follows from either of these assumptions.

3.1. Security Against Post-Quantum No-Superluminal-Signalling Adversaries?

It is a strong assumption that any post-quantum theory should be a generalized non-signalling
theory satisfying Equation (3). So it is natural to ask whether cryptographic security can be maintained
with the weaker assumption that other participants or adversaries are able to carry out quantum
operations and may also be equipped with post-quantum devices but do not have the power to signal
superluminally. It is instructive to understand the limitations of this scenario for protocols between
mistrustful parties capable of quantum operations, such as the bit commitment protocol just discussed.

The relevant participant here is Alice, who begins with a quantum state at P and may send
components along the lightlike lines PQ0 and PQ1. Without loss of generality we assume these
are the only components: she could also send components in other directions but relativistic
no-superluminal-signalling means that they cannot then influence her states at Q0 or Q1.

At any points X0 and X1 on the lightlike lines, before Alice has applied any post-quantum devices,
the approximate cloning fidelity bound again implies that fidelities of the respective components ρX0

and ρX1 satisfy

〈ψ|ρX0 |ψ〉+ 〈ψ|ρX1 |ψ〉 ≤ 1 +
2

d + 1
. (11)

Now, if Alice possesses a classical no-superluminal-signalling device, such as a Popescu-Rohrlich
box, with input and output ports at X0 and X1 and her agents at these sites input classical information
uncorrelated with their quantum states, she does not alter the fidelities 〈ψ|ρXi |ψ〉. Any subsequent
operation may reduce the fidelities but cannot increase them. More generally, any operation involving
the quantum states and devices with purely classical inputs and outputs cannot increase the fidelity
sum bound (7). To see this, note that any such operation could be paralleled by local operations within
quantum theory if the two states were held at the same point, since hypothetical classical devices with
separated pairs of input and output ports are replicable by ordinary probabilistic classical devices
when the ports are all at the same site.

We need also to consider the possibility that Alice has no-superluminal signalling devices with
quantum inputs and outputs. At first sight these may seem unthreatening. For example, while a device
that sends the quantum input from X0 to the output at X1 and vice versa would certainly make the
protocol insecure—Alice could freely swap commitments to 0 and 1—such a device would be signalling.

However, suppose that Alice’s agents each have local state readout devices, which give Alice’s
agent at X0 a classical description of the density matrix ρX0 and Alice’s agent at X1 a classical description
of the density matrix ρX1 . Suppose also that Alice has carried out an approximate universal cloning at
P, creating mixed states ρX0 and ρX1 of the form

ρXi = pi |ψ〉 〈ψ|+ (1 − pi)I , (12)

96



Entropy 2019, 21, 534

where 0 < pi < 1. This is possible provided that p0 + p1 ≤ 1 + 2
d+1 . From these, by applying their

readout devices, each agent can infer |ψ〉 locally. Alice’s outputs at Xi have no dependence on the
inputs at Xī. Nonetheless, this hypothetical process would violate the security of the commitment to
the maximum extent possible, since it would give p0 + p1 = 2.

To ensure post-quantum security, our post-quantum theory thus need assumptions—like those
spelled out earlier—that directly preclude state readout devices and other violations of
no-cloning bounds.

4. Discussion

Classical and quantum relativistic bit commitment protocols have attracted much interest
lately, both because of their theoretical interest and because advances in theory [14] and practical
implementation [15–17] suggest that relativistic cryptography may be in widespread use in the
forseeable future.

Much work on these topics is framed in models in which two (or more) provers communicate
with one (or more) verifiers, with the provers being unable to communicate with one another during
the protocol. Indeed, one round classical relativistic bit commitment protocols give a natural physical
setting in which two (or more) separated provers communicate with adjacent verifiers, with the
communications timed so that the provers cannot communicate between the commitment and opening
phases. The verifiers are also typically unable to communicate but this is less significant given the
form of the protocols and the verifiers are sometimes considered as a single entity when the protocol is
not explicitly relativistic.

Within the prover-verifier model, it has been shown that no single-round two-prover classical bit
commitment protocol can be secure against post-quantum provers who are equipped with generalized
no-signalling devices [18]. It is interesting to compare this result with the signalling-based security
proof for the protocol discussed above.

First, of course, the flying qudit protocol involves quantum rather than classical communication
between “provers” (Alice’s agents) and “verifiers” (Bob’s agents).

Second, as presented, the flying qudit protocol involves three agents for each party. However,
a similar secure bit commitment protocol can be defined using just two agents apiece. For example,
Alice’s agent at P could retain the qudit, while remaining stationary in the given frame, to commit to 0,
and send it to Alice’s agent at Q1 (as before) to commit to 1. They may unveil by returning the qudit at,
respectively, (0, t) or (t, t). In this variant, the commitment is not secure at the point where the qudit is
received, but it becomes secure in the causal future of (t/2, t/2).

Third, the original flying qudit protocol illustrates a possibility in relativistic quantum
cryptography that is not motivated (and so not normally considered) in standard multi-prover bit
commitment protocols. This is that, while there are three provers, communication between them in
some directions is possible (and required) during the protocol. Alice’s agent at P must be able to send
the quantum state to either of the agents at Q0 or Q1; indeed, a general quantum strategy requires her
to send quantum information to both.

Fourth, the security proof of the flying qudit protocol can be extended to generalised no-signalling
theories. However, the protocol is not secure if the committer may have post-quantum devices that
respect the no-superluminal signalling principle but are otherwise unrestricted. Security proofs require
stronger assumptions, such as that the commmitter is restricted to devices allowed by a generalized
non-signalling theory.

The same issue arises considering the post-quantum security of quantum key distribution
protocols [12], which are secure if a post-quantum eavesdropper is restricted by a generalised
no-signalling theory but not if she is only restricted by the no-superluminal-signalling principle.
One distinction is that quantum key distribution is a protocol between mutually trusting parties,
Alice and Bob, whereas bit commitment protocols involve two mistrustful parties. It is true that
quantum key distribution still involves mistrust, in that Alice and Bob mistrust the eavesdropper,
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Eve. However, if one makes the standard cryptographic assumption that Alice’s and Bob’s laboratories
are secure, so that information about operations within them cannot propagate to Eve, one can justify
a stronger no-signalling principle [12]. Of course, the strength of this justification may be questioned,
given that one is postulating unknown physics that could imply a form of light speed signalling that
cannot be blocked. But in any case, the justification is not available when one considers protocols
between two mistrustful parties, such as bit commitment, and wants to exclude the possibility that
one party (in our case Alice) cannot exploit post-quantum operations within her own laboratories
(which may be connected, forming a single extended laboratory).

Our discussion assumed a background Minkowski space-time but generalizes to other space-times
with standard causal structure, where the causal relation ≺ is a partial ordering. Neither standard
quantum theory nor the usual form of the no-superluminal signalling principle hold in space-times
with closed time-like curves, where two distinct points P and Q may obey both P ≺ Q and
Q ≺ P. Formulating consistent theories in this context requires further assumptions (see for example
Reference [19] for one analysis). The same is true of superpositions of space-times with indefinite
causal order [20]. We leave investigation of these cases for future work.
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20. Oreshkov, O.; Costa, F.; Brukner, Č. Quantum correlations with no causal order. Nat. Commun. 2012, 3, 1092.
[CrossRef] [PubMed]

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

99





entropy

Article

Simultaneous Classical Communication and
Quantum Key Distribution Based on Plug-and-Play
Configuration with an Optical Amplifier

Xiaodong Wu 1, Yijun Wang 1,*, Qin Liao 1, Hai Zhong 1 and Ying Guo 1,2,*

1 School of Automation, Central South University, Changsha 410083, China;
wuxiaodong2019@163.com (X.W.); llqqlq@csu.edu.cn (Q.L.); zhonghai@csu.edu.cn (H.Z.)

2 Jiangsu Key Construction Laboratory of IoT Application Technology, Wuxi Taihu University,
Wuxi 214064, China

* Correspondence: csuyijun@163.com (Y.W.); yingguo@csu.edu.cn (Y.G.)

Received: 28 January 2019; Accepted: 26 March 2019; Published: 27 March 2019

Abstract: We propose a simultaneous classical communication and quantum key distribution (SCCQ)
protocol based on plug-and-play configuration with an optical amplifier. Such a protocol could
be attractive in practice since the single plug-and-play system is taken advantage of for multiple
purposes. The plug-and-play scheme waives the necessity of using two independent frequency-locked
laser sources to perform coherent detection, thus the phase noise existing in our protocol is small
which can be tolerated by the SCCQ protocol. To further improve its capabilities, we place an optical
amplifier inside Alice’s apparatus. Simulation results show that the modified protocol can well
improve the secret key rate compared with the original protocol whether in asymptotic limit or
finite-size regime.

Keywords: simultaneous; classical communication; quantum key distribution; plug-and-play
configuration; optical amplifier

1. Introduction

Quantum key distribution (QKD) is one of the most active areas in quantum information
science, which promises to generate a secure key between two authenticated parties (Alice and
Bob) over insecure quantum and classical channels [1–4]. The security of a key is guaranteed by the
fundamental laws of quantum mechanics [5,6]. Generally speaking, there are two main approaches
for the implementation of QKD, namely, discrete-variable (DV) QKD [7] and continuous-variable
(CV) QKD [8–11]. Different from the DVQKD, in CVQKD, there is no requirement to use expensive
single-photon detectors. Instead, the key bits are encoded in the quadrature variables (X and P) of the
optical field, and the secret key bits are decoded through high-efficiency homodyne or heterodyne
detection techniques [12–15].

At present, the CVQKD protocol, especially for the Gaussian-modulated coherent-state (GMCS)
scheme, has been demonstrated over 100-km telecom fiber through controlling excess noise [16] and
designing high-efficiency error correction codes [17–19]. From a practical point of view, the hardware
needed in the implementation of the GMCS QKD is amazingly similar to that needed in classical
coherent optical communication [20]. On the basis of this similarity, it is viable to take advantage of
the same communication facility for both QKD and classical communication.

Recently, a simultaneous classical communication and quantum key distribution (SCCQ) scheme
was proposed [21,22]. In this scheme, the Gaussian distributed random numbers for GMCS QKD and
bits for classical communication are encoded on the same weak coherent pulse and decoded through
the same coherent receiver, which provides a more cost-effective solution in practice. However, a major
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obstacle to the SCCQ scheme is that it can only tolerate a very small amount of phase noise [21]. This
problem could lead to poor performance and thus obstruct its further development.

In this paper, we propose a SCCQ protocol based on plug-and-play configuration with an optical
amplifier. Different from the GMCS QKD protocols using a true local oscillator (LO) [23–25], the
plug-and-play CVQKD scheme waives the necessity of using two independent frequency-locked laser
sources and automatically compensating the polarization drifts [26]. Since the LO and signal pulses are
generated from the same laser source, we can obtain a small phase noise which can be tolerated by the
SCCQ protocol in the framework of plug-and-play configuration. To further improve its capabilities,
we insert an optical amplifier (OA) at the output of the quantum channel [27–29]. The modified
protocol (SCCQ protocol based on plug-and-play configuration with an OA) can well increase the
secret key rate by compensating the imperfection of Alice’s detector with only little cost in transmission
distance. Here, both the asymptotic limit and the finite-size regime are taken into consideration.

This paper is structured as follows. In Section 2, we first introduce the plug-and-play dual-phase
modulated coherent states (DPMCS) scheme, then present the model of SCCQ protocol based on
plug-and-play configuration and the proposed modified protocol. In Section 3, we perform the noise
analysis and show numeric simulations in view of practical system parameters. Finally, conclusions
are drawn in Section 4. Detailed calculation of equations is shown in the Appendix.

2. Protocol Description

In this section, we first introduce the plug-and-play DPMCS protocol. Then, we present the model
of SCCQ protocol based on the plug-and-play configuration and its modified protocol (with OA). To
simplify the analysis, we adopt the binary phase-shift keying (BPSK) modulation for the classical
communication and the GMCS for QKD protocol in this paper.

2.1. The Plug-and-Play DPMCS Protocol

The prepare-and-measurement scheme of plug-and-play DPMCS protocol is illustrated in Figure 1.
The source of light is sent from Alice to Bob, then Bob performs the dual-phase-modulation work after
receiving the light. During the modulated process, random numbers drawn from a random number
generator are utilized to modulate the amplitude and phase quadrature (X and P quadrature). This is
really different from previous one-way CV-QKD protocols where the symmetrical Gaussian modulation
is performed at Alice’s side. When Bob completes the modulation work, the dual-quadrature
modulated coherent-state is directly reflected to Alice with the help of Faraday mirrors. After
passing through the untrusted channel characterized by transmittance T and excess noise ξ, Alice
receives the modulated signal. Then, she performs homodyne detection to measure the incoming
mode. After this, Alice can obtain the list of data which is correlated with the list of Bob. Note
that this correction is important in generating a secret key through error reconciliation and privacy
amplification. Here, the classical source mentioned above is controlled by Fred [26]. Besides, the
untrusted source noise is characterized by taking advantage of a phase-insensitive amplifier (PIA)
with a gain of g. In such a practical scheme, the detector used by Alice features an electronic noise υel
and an efficiency η. Therefore, the detector-added noise referred to Alice’s input can be expressed as
χhom = [(1 − η) + υel ]/η.

102



Entropy 2019, 21, 333

Figure 1. The prepared-and-measure scheme of plug-and-play dual-phase modulated coherent states
(DPMCS) protocol. (a) Gaussian modulation scheme by using two phase modulators. PIA, phase
insensitive amplifier; RNG, random number generator; PM, phase modulator; FM, Faraday mirror.

2.2. SCCQ Protocol Based on Plug-and-Play Configuration

In the BPSK modulation scheme, the bit value kB is encoded by |e−ikBπα〉, where α is a real number.
While, in plug-and-play DPMCS protocol, Bob prepares coherent state |xB + ipB〉 and transmits it to
Alice. Here xB and pB are assumed to be Gaussian random numbers with zero mean and a variance
of VBN0, where N0 represents the shot-noise variance. The SCCQ protocol based on plug-and-play
configuration is straightforward and combines these two communication schemes. Namely, as shown
in Figure 2, both the classical bit kB and Gaussian random numbers {xB, pB} are encoded on a coherent
state |(xB + e−ikBπα) + i(pB + e−ikBπα)〉. It is remarkable that in the plug-and-play DPMCS protocol,
Alice performs homodyne detection to measure either the X or P quadrature of each incoming signal.
In order to obtain deterministic classical communication, the same classical bit kB should be encoded
on both X and P quadratures.

Figure 2. Simultaneous classical communication and quantum key distribution (SCCQ) protocol based
on plug-and-play configuration. The probability distributions of X-quadrature measurement is shown
at Alice’s side.

Suppose Alice measures the X quadrature (P quadrature) and obtains the measurement result xh
(ph). The sign of xh (ph) can be utilized to determine a classical bit kB. In other words, the value of kB
is assigned as 0 if xh (ph) > 0 and the value of kB is assigned as 1 if xh (ph) < 0. Note that according
to the overall transmittance Tη and the value of kB, Alice’s measurement result can be rescaled and
displaced to generate a secure key, which is given by

xA = xh√
Tη

+ (2kB − 1)α,

pA = ph√
Tη

+ (2kB − 1)α.
(1)

On the basis of the raw keys {xB, xA} and {pB, pA}, Alice and Bob can distill a secure key by
proceeding with classical data postprocessing, as in the case of traditional GMCS QKD.
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The prepare-and-measurement (PM) version of our protocol shown above is equivalent to the
entanglement-based (EB) version. In the EB scheme, Fred prepares a three-mode entanglement state
|ΦABF〉. Bob keeps one mode (B) with variance V = VB + 1 and measures it by using a heterodyne
detector. The other mode (A0) is sent to Alice through an untrusted quantum channel. At Alice’s
side, a beam splitter with transmission η is taken advantage of to model her detector inefficiency,
while an EPR state of variance υel is utilized to model its electronics . For the homodyne detection
case, we have υel = ηχhom/(1 − η) = 1 + υel/(1 − η). Finally, to distill the secret key, Alice and Bob
perform information reconciliation and privacy amplification procedures. Here, we mainly consider
the reverse reconciliation since it has been proved to provide a great advantage in performance of
QKD schemes [11].

2.3. Addition of an Optical Amplifier

In practice, becuase of some inherent imperfection inevitably existing in Alice’s detection
apparatus, the ideal detection process cannot be achieved. Therefore, we can only obtain a lower secret
key rate than expected. In order to improve the performance of our protocol, here, an optical amplifier
is applied to compensate for the detectors’ imperfections. In the following, two types of amplifiers are
considered, namely, the phase-sensitive amplifier (PSA) and phase-insensitive amplifier (PIA).

Phase-sensitive amplifier. The PSA can be deemed as a degenerate amplifier which allows ideally
noiseless amplification of a chosen quadrature. We use a matrix ΞPSA to describe its properties, which
is given by

ΞPSA =

( √
G 0

0
√

1
G

)
, (2)

where G represents the gain of amplification and G ≥ 1.
Phase-insensitive amplifier. The PIA can be regarded as a non-degenerate amplifier, which is able to

amplify both quadratures symmetrically. Different from the PSA, the amplification process of the PIA
is related to the inherent noise. The transform of the PIA can be modeled as

ΞPIA =

( √
gI2

√
g − 1σz√

g − 1σz
√

gI2

)
. (3)

The inherent noise of the PIA can be given by

Ξnoise =

(
Ns I2

√
N2

s − 1σz√
N2

s − 1σz Ns I2

)
, (4)

where g is the gain of the PIA and Ns stands for variance of noise. We have introduced the PIA in the
above analysis. Different from the PIA which is inserted into the output of the quantum channel in our
protocol, the PIA is placed at the channel to characterize the untrusted source noise. That is to say the
gain g of the PIA can be used to weight the source noise in the plug-and-play scheme.

As illustrated in Figure 3, after the amplification process, mode A3 is measured using Alice’s
detector. A beam splitter with transmission η is taken advantage of to model her detector inefficiency.
Besides, an EPR state of variance υel is utilized to model its electronics. It is worth mentioning that we
adopt homodyne detection in our scheme, thus it is suitable for us to choose the PSA to compensate
for Alice’s apparatus imperfection [27,28]. Then, the modified parameter χPSA

hom for this case is given by

χPSA
hom =

(1 − η) + υel
Gη

. (5)

Consequently, we can achieve the modified secure key rate K̂ by substituting χPSA
hom for χhom in

homodyne detection case.
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Figure 3. Schematic diagram of the modified protocol (SCCQ protocol based on plug-and-play
configuration with an optical amplifier).

3. Performance Analysis and Discussion

The noises which originated from the practical system have important effects on the performance
of the SCCQ protocol. In this section, we first introduce the noise model which we adopt in this paper
and present the computation of the BER in BPSK modulation scheme. Then, we show and discuss the
simulation results.

3.1. Noise Model of SCCQ Protocol Based on Plug-and-Play Configuration

Note that the main noise sources analyzed here are (1) the detector noise assumed as υel , (2) the
vacuum noise, (3) the excess noise due to the untrusted sources denoted by ζs, (4) excess noise ξRB
caused by Rayleigh backscattering photons, (5) the Gaussian modulation for QKD with a variance of
VB. All the noises mentioned above are defined in the shot-noise unit.

Now let’s calculate the BER of the BPSK modulation scheme, which is expressed by [21]

BER =
1
2

er f c(
√

Tηα√
2N0(VBTη + υel + 1)

), (6)

where er f c(x) represents the complementary error function. In order to make the value of BER small
enough in the classical channel, namely, obtain a BER of 10−9, the displacement α is required as

α =
4.24

√
VBTη + υel + 1√

2Tη
. (7)

The numerical simulations of the required displacement α as a function of the transmission
distance and modulation variance VB are illustrated in Figure 4. It shows that the longer transmission
distance needs a larger displacement α for a typical modulation variance VB in the range of 1 to 20.

Figure 4. The required displacement α as a function of modulation variance VB and transmission
distance to obtain a BER of 10−9 in the classical channel. Parameters γ = 0.2dB/km, η = 0.5, and
υel = 0.1.
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The untrusted source noise ζs is deemed to be one of the most important excess noises in the
plug-and-play configuration. It can be expressed as ζs = (g − 1) + (g − 1)VI , where g is a gain of a
PIA and VI is the noise variance of a vacuum state (XI , PI). That is to say, the untrusted source noise
ζs can be weighted by parameter g.

The other excess noise we need to consider here is ξRB, which is caused by Rayleigh backscattering
photons. Since the reflected light in the plug-and-play configuration is of the same frequency as the
initial laser source, we cannot use the “in-band” photon to filter or attenuate it. The excess noise ζRB is
given by

ζRB =
2〈NRB〉

ηT
, (8)

where 〈NRB〉 is Rayleigh backscattering photons. Then, the backscattered photons 〈NRB〉 per second
ΔB is expressed as [30]

ΔB =
�(1 − 10−2γL/10)VBR

2ηBT
, (9)

where � stands for the the Rayleigh backscattering coefficient, ηB represents the insertion loss inside
Bob (round-trip), R represents the system repetition rate, γ is a fiber loss, and L is the length of an
infinite fiber used as a QKD link. Under the assumption that the electronic integral time of Alice’s
homodyne detector is σt, the excess noise ζRB can be rewritten as

ζRB =
2ΔBησt

ηBT
=

�(1 − 10−2γL/10)VBRσt
ηB10−2γL/10 . (10)

Note that Equation (10) shows the excess noise which is caused by the quantum channel, namely,
here ζRB can be used to represent ξ.

In the following, we perform an analysis of the effect of phase noise, which commonly exists in a
coherent communication system. The excess noise caused by the phase instability is given by

ζp =
α2 ϕ

N0
, (11)

where ϕ represents the phase-noise variance. Here Equation (11) is derived with the assumption of
α2 ≥ (VB + 1)N0 [21]. It is worth mentioning that the excess noise ϕ not only contains the phase noise
between the signal and the LO but also the other modulation errors.

On the basis of the above analysis, the overall excess noise outside Alice’s system can be defined as

ζt = ζs + ζRB + ζp. (12)

Note that excess noises ζs and ζRB are independent of α.

3.2. Simulation Results

In Figure 5, we conduct numerical simulations of the asymptotic secret key rate as a function of
transmission distance in different imperfect source scenarios. Note that g = 1 means no source noise
case. We adopt the optimal value of modulation VB in the analysis (see Appendix A). Here, the solid
lines in Figure 5 stand for the case of the original protocol (G = 1), while the dashed lines represent
the case of the modified protocol (a protocol with homodyne detection and a PSA, G = 3). On the one
hand, we observed that for each imperfect source scenario, the secret key rate is well improved within
a relatively long distance by utilizing an optical preamplifier. On the other hand, we also found that
the maximum secure distance of the modified protocol is slightly shorter compared with the original
protocol. That is to say, by utilizing the optical amplifier, the secret key rate of the modified protocol
increases in a large range of distance with a slight cost of the maximum transmission distance. It is
remarkable that the PLOB bound has been plotted in Figure 5, which illustrates the ultimate limit
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of point-to-point QKD [31]. Here, we should note that the phase noise in our protocol is very small
since the LO and signal pulses are generated from the same laser source in the plug-and-play scheme.
Therefore, we can achieve the phase noise ζp = 10−6. Detailed calculation of the asymptotic secret key
rate is shown in Appendix B.

Figure 5. Comparison of secret key rate between the modified protocol (homodyne detection with
phase-sensitive amplifier (PSA)) and the original protocol (without PSA) under different imperfect
source scenarios. Solid lines represent the original protocol (G = 1) while the dashed lines represent
the modified protocol (G = 3). From left to right, the green curves correspond to g = 1.015, the black
curves correspond to g = 1.01, the red curves correspond to g = 1.005, and the blue curves correspond
to g = 1 (no source noise). The simulation parameters are VB = 4, ζp = 10−6, ζRB = 0.02, η = 0.5,
υel = 0.1.

In addition, it is necessary to consider the finite-size effect since the length of secret key is
impossibly unlimited in practice. Different from the asymptotic case, in the finite-size scenario,
the characteristics of the quantum channel cannot be known before the transmission is performed.
The reason is that a portion of the exchanged signals needs to be taken advantage of for parameter
estimation instead of generating the secret key. We conduct numerical simulations of the finite-size
secret key rate in different imperfect source scenarios, as shown in Figure 6. The solid lines in Figure 6
stand for the case of the original protocol (G = 1), while the dashed lines represent the case of the
modified protocol (G = 3). From left to right, the green curves, the black curves, and the red curves
correspond to the finite-size scenario of block length N = 106, 108, and 1010, respectively, and the
blue curves represent the asymptotic scenario. Here, Figure 6a–d show the proposed protocol with
g = 1 (no source noise), g = 1.005, g = 1.01, and g = 1.015. We observe that the performance of the
asymptotic scenario is better than that of the finite-size scenario whether the PSA is placed at Alice’s
detection apparatus or not. Furthermore, the curves of the finite-size scenario are more and more close
to the curve of asymptotic case with the increased number of exchanged signals N. That is to say that
the more exchanged signals we have, the more the signal parameter estimation step can be utilized,
and thus the parameter estimation is approaching perfection. Interestingly, for each imperfect source
scenario, the finite-size secret key rate of the modified protocol is well improved without the price of
reducing the maximum transmission distance, especially for the small-length block, compared with
the original protocol, which is different from the asymptotic case. Detailed calculation of finite-size
secret key rate is shown in Appendix C.
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(a) (b)

(c) (d)

Figure 6. Finite-size secret key rate of SCCQ protocol based on plug-and-play configuration with PSA
as a function of transmission distance under different imperfect source scenarios. Solid lines represent
the original protocol (G = 1) while the dashed lines represent the modified protocol (G = 3). From left to
right, the green curves, the black curves, and the red curves correspond to finite-size scenario of block
length N = 106, 108, and 1010, respectively, and the blue curves represent the asymptotic scenario.
(a) The parameter g = 1 (no source noise). (b) The parameter g = 1.005. (c) The parameter g = 1.01.
(d) The parameter g = 1.015. Other parameters are set to be the same as Figure 5.

4. Conclusions

We propose a SCCQ protocol based on plug-and-play configuration with an optical amplifier.
Benefiting from the plug-and-play scheme where a real local LO is generated from the same laser
of quantum signal at Alice’s side, the phase noise existing in our protocol is very small, which can
be tolerated by the SCCQ protocol. Therefore, our research may bring the SCCQ technology into
real life and thus reduce the cost of QKD effectively. To further improve its capabilities, we inserted
an optical amplifier inside Alice’s apparatus. The simulation results show that the secret key rate is
greatly enhanced in a large range of distances for each imperfect source scenario in both asymptotic
limit and finite-size regime compared with the original protocol.
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Appendix A. Parameter Optimization

To maximize the performance of our protocol, we need to find an optimal Bob’s modulation VB.
As illustrated in Figures A1–A3, different values of g, d, and G are, respectively, set to find a public
optimal VB. From Figure A1, we observe that as the value of parameter g increases (the source noise
increases), the optimal interval becomes gradually compressed. In addition, the secret key rate also
decreases as a result of the increase in parameter g. Fortunately, there exists a public interval where we
can obtain a public optimal modulation VB for all curves in Figure A1. Namely, we have VB = 4. Note
that in this case, the parameters d and G are fixed to legitimate values.

Figure A1. SCCQ protocol based on plug-and-play configuration using homodyne detection with a
practical detector, d = 50, G = 1.

Figure A2. SCCQ protocol based on plug-and-play configuration using homodyne detection with a
practical detector, g = 1.005, G = 1.

Figure A3. SCCQ protocol based on plug-and-play configuration using homodyne detection with a
practical detector, g = 1.005, d = 40.
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The plot of Figure A2 illustrates the relationship between secret key rate and modulation VB
under different values of distance d. We find that the peak value of secret key rate can be obtained
when Bob’s modulation is about 4. In other words, the optimal value of VB in this case is 4.

Furthermore, Figure A3 shows the relationship between secret key rate and modulation VB with
different gains of the amplifiers. Here, the optimal value of Bob’s modulation VB is still about 4. That
is to say that we achieve the same conclusion (optimal VB = 4) as above.

In view of above analysis, we can achieve the optimal value of modulation VB, namely, VB = 4,
which is deemed as a constant in our protocol.

Appendix B. Calculation of Asymptotic Secret Key Rate

Here, we calculate the asymptotic secret key rate with reverse reconciliation under the optimal
collective attack, which is given by [32]

Kasym = f I(A : B)− χAE, (A1)

where f is the reconciliation efficiency, I(A : B) represents the Shannon mutual information shared by
Alice and Bob, and χAE represents the Holevo bound of the information between Eve and Alice.

The mutual information shared by Alice and Bob I(A : B) is expressed as

I(A : B) =
1
2

log2
V + χtot

1 + χtot
. (A2)

The Holevo bound of the information between Eve and Alice χAE can be calculated by [26,27]

χAE =
2

∑
i=1

G(
νi − 1

2
)−

5

∑
i=3

G(
νi − 1

2
), (A3)

where G(x) = (x + 1)log2(x + 1)− xlog2x, and the symplectic eigenvalues ν1,2,3,4,5 are given by

ν2
1,2 =

1
2
[A ±

√
A2 − 4B], (A4)

where
A = V2(1 − 2T) + 2T + T2(V + χline)

2, (A5)

B = T2(Vχline + 1)2, (A6)

ν2
3,4 =

1
2
[C ±

√
C2 − 4D], (A7)

where

C =
Aχhom + V

√
B + T(V + χline)

T(V + χtot)
, (A8)

D =

√
B(V +

√
Bχhom)

T(V + χtot)
, (A9)

ν5 = 1. (A10)

Note that in the above equations, V = VB + 1, the total channel-added noise χline =
1
T − 1 + ζt

and the total noise referred to the channel input χtot = χline +
χhom

T .
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Appendix C. Secret Key Rate in the Finite-Size Scenario

For the proposed protocol, the finite-size secret key rate is expressed as [33,34]

K f ini =
n
N
[ f I(A : B)− χεPE(A : E)− Δ(n)], (A11)

where f and I(A : B) are as the same as the aforementioned definitions. Here, N stands for the
total exchanged signals and n stands for the number of signals which is taken advantage of to derive
QKD. The remaining signals r = N − n are utilized to estimate the parameter. εPE represents the
failure probability of parameter estimation and χεPE(A : E) represents the maximum of the Holevo
information compatible with the statistics except with probability εPE. Δ(n) is related to the security
of the privacy amplification, which is given by

Δ(n) = (2dimHA + 3)

√
log2(2/ε̄)

n
+

2
n

log2(1/εPB), (A12)

where ε̄ and εPB stand for the smoothing parameter and the failure probability of privacy amplification,
respectively. In addition, HA represents the Hilbert space corresponding to the Alice’s raw key. In our
protocol, binary bits are taken advantage of to encode the raw key, thus we have dimHA = 2.

In the finite-size scenario, the covariance matrix ΓεPE needs to be used to calculate χεPE(A : E).
Besides, ΓεPE minimizes the secret key rate with a probability of at least 1 − εPE. Here, r couples of
correlated variables (xi, yi)i=1...r are sampled to derive the covariance matrix ΓεPE . Then, a normal
model is used for these correlated variables, which is given by

y = tx + z, (A13)

where t =
√

T and z follow a centered normal distribution with variance ψ2 = 1 + Tζt. On the basis of
Equation (A13), Alice and Bob’s data can be linked. The covariance matrix ΓεPE is given by

ΓεPE =

(
(VB + 1)I2 tminZσz

tminZσz (t2
minVB + ψ2

max)I2

)
, (A14)

where tmin and ψ2
max represent the minimum of t and maximum of ψ2 compatible with sampled couples

except with probability εPE/2, and Z =
√

V2
B + 2VB. Here, we denote the Maximum-likelihood

estimators as t̂ and ψ̂2, which can be, respectively, expressed by

t̂ = ∑r
i=1 xiyi

∑r
i=1 x2

i
and ψ̂2 =

1
r

r

∑
i=1

(yi − t̂xi)
2. (A15)

According to this, tmin (the minimum of t) and ψ2
max (the maximum of ψ2) can be derived by

tmin ≈ t̂ − zεPE/2

√
ψ̂2

rVB
,

ψ2
max ≈ ψ̂2 + zεPE/2

√
2ψ̂2
√

r
, (A16)

where zεPE/2 is such that 1 − er f (zεPE/
√

2)/2 = ε/2, and er f (x) = 2√
π

∫ x
0 e−t2

dt stands for error

function. In order to theoretically analyze our protocol, the expected values of t̂ and ψ̂2 are, respectively,
given by
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E[t̂] =
√

T,

E[ψ̂2] = 1 + Tζt. (A17)

Then, we can calculate tmin and ψ2
max as follows:

tmin ≈
√

T − zεPE/2

√
1 + Tζt

rVB
,

ψ2
max ≈ 1 + Tζt + zεPE/2

√
2(1 + Tζt)√

r
. (A18)

The optimal value for the error probabilities can be taken as being

ε̄ = εPE = εPB = 10−10. (A19)

Then, the secret key rate in the finite-size scenario can be calculated by taking advantage of the
derived bounds tmin and ψ2

max.
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Abstract: We consider the thermodynamic origin of the gravitational force of matter by applying the
spacetime entanglement entropy and the Unruh effect originating from vacuum quantum fluctuations.
By analyzing both the local thermal equilibrium and quasi-static processes of a system, we may get
both the magnitude and direction of Newton’s gravitational force in our theoretical model. Our work
shows the possibility that the elusive Unruh effect has already shown its manifestation through
gravitational force.

Keywords: spacetime entanglement entropy; Unruh effect; gravitational force; thermodynamics;
holographic principle

1. Introduction

In the last decade, the investigation of spacetime entanglement [1–8] has given remarkable
opportunities to consider the coalescence of quantum mechanics and gravitational force, although
it is still unclear how to unify quantum mechanics and general relativity. Nevertheless, the concept
of quantum entanglement has been found to connect closely with some fundamental properties of
spacetime, such as vacuum quantum fluctuations [9–11], the holographic principle [12–14], and black
holes [15–18].

The concept of quantum entanglement has already promoted our understanding of Boltzmann
entropy and statistical thermodynamics [19–21]. For a thermodynamic system we want to study, if we
consider the whole system including the external environment, the thermodynamic system is highly
entangled with the external environment. In this case, the usual entropy of this thermodynamic system
is in fact the entanglement entropy obtained from the reduced density matrix of this thermodynamic
system [22].

In the present work, we apply both the concepts of entanglement entropy and relevant
thermodynamics to consider the fundamental property of spacetime. In particular, the Unruh effect
for an accelerating particle is used to consider the thermodynamic origin of gravitational force. In
addition, we use a quasi-static process to consider theoretically the direction of gravitational force,
which has potential application for further studies of the gravitational force for dark energy [23,24],
black holes, and so on.

The paper is organized as follows. In Section 2, we give a brief introduction to the Unruh effect
for the Minkowski spacetime and curved spacetime. In particular, we discuss the Unruh temperature
for gravitational radiation. In Section 3, we give the finite spacetime temperature distribution of
matter from the consideration of spacetime entanglement entropy and statistical thermodynamics. In
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Section 4, based on the consideration of the local thermal equilibrium and a quasi-static process of
a system, we give an interpretation to Newton’s gravitational force and in particular the attractive
characteristic. In Section 5, we consider the relativistic formula of the spacetime temperature. In the
last section, we give a brief summary and discussion.

2. Vacuum Quantum Fluctuations and the Unruh Effect for Minkowski Spacetime and
Curved Spacetime

The Minkowski spacetime can be specified by the distance between two nearby points in
spacetime, given by:

ds2 = −c2dt2 + dx2 + dy2 + dz2. (1)

Even for this flat spacetime without considering the spacetime curvature of general relativity, the
Minkowski spacetime has some remarkable properties when both spacetime and quantum mechanics
are considered.

The confluence of special relativity and quantum mechanics will lead to nontrivial vacuum
quantum fluctuations [9–11]. Although we do not know the exact property of the quantum vacuum,
we may assume the existence of an extremely complex and time-dependent quantum vacuum state
|Ψvacuum〉 for the quantum vacuum of the Minkowski spacetime.

The usual vacuum quantum fluctuations are considered for the existence of the zero-point energy
of various quantum fields. The Casimir effect [11] between two conducting metals is due to the
presence of the zero-point energy of electromagnetic field. Although there are other types of zero-point
energy, the conducting metals can only change the zero-point energy of the electromagnetic field in a
noticeable way. Hence, the Casimir effect is about the specified vacuum quantum fluctuations due to
the electromagnetic field.

Now, we turn to consider the Unruh effect in both Minkowski spacetime and curved spacetime,
which originates from the vacuum quantum fluctuations and the coupling between matter and
spacetime, a little similar to the Casimir effect.

2.1. The Unruh Effect for an Accelerating Particle in Minkowski Spacetime

The Unruh effect [17,25,26] is due to vacuum quantum fluctuations of various quantum fields. For
an inertial frame of reference in the Minkowski spacetime, we consider a particle with four acceleration
aα = d2xα/dτ2 with τ the proper time. We first consider the simplest case that the particle has a
specified charge so that it has a coupling with a massless scalar Bose field φ (t, r). The scalar field φ

should satisfy the following equation in Minkowski spacetime,(
− 1

c2
∂2

∂t2 +�2
)

φ (t, r) = 0. (2)

The quantization of this scalar field leads to:

φ̂ (t, r) ∼
∫

d3k
(

â (k) fk + â† (k) f ∗k
)

. (3)

Here, fk = eik·r−iEkt/h̄. â (k) and â† (k) are the annihilation and creation operators for the mode
k, respectively. The vacuum state |0M〉 of the Minkowski spacetime satisfies the following property:

â (k) |0M〉 = 0 (4)

for all the modes denoted by k.
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For the particle with four acceleration aα, we should use the Rindler coordinate [27–30] to consider
the expansion of the field operator φ̂ (t, r). In this case, we have:

φ̂ (t, r) ∼
∫

d3k
(

b̂ (k) gk + b̂† (k) g∗k
)

. (5)

It is worthwhile to point out that in this case, â (k) �= b̂ (k) and fk �= gk for nonzero aα.
For this accelerating particle, it will seem that there are excitations of the φ field in the Minkowski

spacetime because 〈0M| b̂† (k) b̂ (k) |0M〉 �= 0. It is shown by Unruh [17] that:

〈0M| b̂† (k) b̂ (k) |0M〉 ∼ 1
eEk/kBTU − 1

, (6)

with:
TU =

h̄a
2πckB

(7)

the so-called Unruh temperature. Here, the proper acceleration a in this equation is the magnitude of
the four acceleration defined by:

a =
√

ημνaμaν. (8)

ημν is the metric of the Minkowski spacetime. Further works have verified that there are no hidden
correlations in the excitations of the φ field, which means that the excitations are purely thermal [28].

We should note that TU can be only observed by this accelerating particle. Hence, only at the
location of this particle, there are observable thermal excitations of the φ field, because only at the
location of this particle, there is coupling with the φ field in the vacuum. It is similar to calculate〈
0p

∣∣ â† (k) â (k)
∣∣0p

〉
with

∣∣0p
〉

defined by b̂ (k)
∣∣0p

〉
= 0 for all modes k. For an observer at rest in the

Minkowski spacetime, this means that this observer will think that there is a temperature distribution
around the accelerating particle with peak temperature given by TU .

2.2. The Unruh Effect for Curved Spacetime

The concept of Unruh temperature had been generalized to curved spacetime. This is shown
clearly in [30] by Jacobson where the Unruh temperature in curved spacetime is used to give a simple
derivation of Hawking temperature. Here, we give a brief introduction of the Unruh temperature for
curved spacetime.

We first consider a particle with a specified charge so that it has a coupling with the φ field. For a
curved spacetime given by:

ds2 = gμνdxμdxν, (9)

we may also define the four acceleration in curved spacetime for this particle. The four velocity uα is:

uα =
dxα

dτ
. (10)

The four acceleration aα is then:
aα = uμDμuα. (11)

Here, Dμ is a covariant derivative operator.
The magnitude of the four acceleration is:

a =
√

gμνaμaν. (12)

It is worthwhile to point out that the proper acceleration a is an invariant quantity for any observer.
In a local inertial frame of reference, it is clear that previous analysis of the Unruh effect and

Unruh temperature is valid, and hence, Equation (7) can be applied to curved spacetime by replacing a
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given by Equation (8) with Equation (12). It is by the application of Equations (7) and (12) that the
Hawking temperature can be derived with the Unruh effect.

2.3. The Unruh Effect for Gravitational Field hμν

For a small deviation from the Minkowski metric, we may write:

gμν = ημν + hμν. (13)

To leading order, we get the Ricci curvature tensor as follows,

Rμν = −1
2

(
∂2hμν − ∂μ∂λhλ

ν − ∂ν∂λhλ
μ + ∂μ∂νhλ

λ

)
+ O

(
h2

)
. (14)

Here, hλ
μ = ημνhνλ. Obviously, there is gauge freedom in hμν. Similar to the case of electromagnetic

field, we may use the gauge condition to consider further the physical significance of hμν. Using the
following harmonic gauge condition:

∂μhμ
ν =

1
2

∂νh, (15)

the symmetric tensor hμν will have six free components.
With this harmonic gauge condition, in a vacuum, the Einstein field equation simplifies to:(

− 1
c2

∂2

∂t2 +�2
)

hμν = 0. (16)

After the harmonic gauge condition, we may still make a “residual” gauge transformation so that
the solution becomes:

hμν = εμν sin(ηαβkαxβ + ϕ), (17)

with:

εμν =

⎛⎜⎜⎜⎝
0 0 0 0
0 ε+ ε× 0
0 ε× −ε+ 0
0 0 0 0

⎞⎟⎟⎟⎠ . (18)

Here, ε+ and ε× represent two independent degrees of polarizations of gravitational waves.
Similar to the quantization of electromagnetic waves, we obtain gravitons, after we quantize
gravitational waves. Of course, the above discussions are about the weak field approximation, which
can be applied in the present work.

By quantizing the hμν field and carrying out almost identical calculations, we will get the same
Unruh temperature for the gravitational radiation. Of course, these considerations can be applied
to the Unruh temperature for electromagnetic field as well. In the following sections, we will use
Equation (7) as the effective temperature for gravitational radiation. It is well known that energy is
the “charge” of the gravitational field hμν. Hence, for any particle with a �= 0, there is always nonzero
Unruh temperature for gravitational radiation.

We want to emphasize two properties of the Unruh effect as follows.

1. TU should be regarded as a peak value of a local temperature distribution in an inertial frame
of reference.

2. Besides the case of an electrically-charged particle usually considered for the Unruh effect, the
particle may have other types of charges. Hence, TU may also mean the temperature for other
gauge fields, such as the gravitational field. Because the gravitational field is universal for
any particle, Equation (7) can be applied to the gravitational field. In this paper, the Unruh
temperature is considered mainly for the gravitational field.
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The purpose of this subsection is to show that for an accelerating observer, it will think that there is
excitation of gravitons with the same Unruh temperature as that of the scalar field and electromagnetic
field. We will show that this result gives us the chance to have close connection between the Unruh
effect, spacetime temperature, and gravitational force.

3. Finite Spacetime Temperature Distribution Due to Matter

3.1. The Spacetime Quantum Fluctuations

When the sum of all zero-point energies is considered, it is well known that the vacuum energy
density εV is extremely high and even divergent as a result of a rough consideration. Usually, the
finite value of εV may be assumed by setting the Planck energy and Planck length as the cutoff
of the quantum spacetime [27]. It is natural that this will lead to violent quantum fluctuations of
the spacetime geometry [31,32] at the microscopic scale of lp. To distinguish the vacuum quantum
fluctuations introduced in the preceding section, we call it spacetime quantum fluctuation in this paper.

To give a clear picture of spacetime quantum fluctuations, we consider fAB defined by:

fAB =

√√√√ 〈Ψvacuum| d2
AB |Ψvacuum〉 − |〈Ψvacuum| dAB |Ψvacuum〉|2

〈Ψvacuum| d2
AB |Ψvacuum〉

. (19)

Here, dAB is an operator in an inertial frame of reference to measure the spatial distance between
nearby points A and B in spacetime. It is clear that fAB shows the fluctuations of spacetime geometry.

If A and B are macroscopically separated, it is expected that the fluctuation fAB is negligible,
while below or of the order of a microscopic distance lp, there would be significant fluctuations in
fAB. At the present stage, we do not know the exact value of lp. However, the existence of spacetime
quantum fluctuations [31,32] and the stable spacetime property at macroscopic scales means that there
should be a distance lp. We will give further discussion of lp in the next section.

3.2. Spacetime Entanglement Entropy and Spacetime Temperature

We consider a sphere of radius R. The surface of this sphere divides the whole universe into two
systems SA and SB, i.e., the interior of the sphere SA and the external environment SB. Without the
presence of any other matter in the Minkowski spacetime, the entanglement entropy is [33]:

Sentangle = −Tr [ρA log ρA] . (20)

Here, ρA = TrB(ρ) is the reduced density matrix with ρ = |Ψvacuum〉 〈Ψvacuum| the density
matrix for the pure state |Ψvacuum〉 of the Minkowski spacetime. It is easy to show that Sentangle =

−Tr [ρB log ρB] with ρB = TrA(ρ).
For the situation that R >> lp, it is expected that the entanglement entropy Sentangle depends only

on the property of |Ψvacuum〉 in the region of a thin spherical shell with the width of the order of lp.
Hence, it seems reasonable to assume the following conjecture of the spacetime entanglement entropy:

Sentangle ∼
Aarea

l2
p

. (21)

Here, Aarea = 4πR2 is the area of the sphere. This is the so-called area laws for the entanglement
entropy [34–36]. We have another way to understand this relation. From Equation (21), we may also
regard Aarea/l2

p as the number of Planck areas on the spherical surface. We will show that lp is the
Planck length in due course. It is worthwhile to point out that at the present stage, this formula does
not mean directly the holographic principle because we do not consider the possible presence of matter
distribution inside the sphere yet.
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Now, we consider the case that there is a classical particle with mass M inside the sphere. Of
course, the coupling between this particle and spacetime will lead to a change of |Ψvacuum〉 on the
spherical surface. Hence, the modified entanglement entropy for the sphere becomes:

SM
entangle ∼

Aarea

l2
p

+ ΔSM. (22)

For the usual case that the particle M only gives a slight change to the curvature of the spacetime,
it is expected that ΔSM << Sentangle. However, the presence of this particle will lead to an important
effect by applying the holographic principle. The holographic principle [12–14] implies that the energy
Mc2 will show its effect on the spherical surface. Combined with the first law of thermodynamics
dU = TMdS, we have:

Mc2 ∼ kBTM(R)× Aarea

l2
p

. (23)

TM(R) is the effective spacetime temperature on the spherical surface. From the above equation,
we have:

TM(R) ∼
c2l2

p

4πkB

M
R2 . (24)

There is another way to understand this formula. We consider an ideal case that the mass M is
distributed uniformly on a surface of a sphere with a radius a little smaller than R. Assume that the
spacetime temperature of this case is the same as the case we are considering. On the spherical surface,
the energy within the spatial cell of area l2

p is:

ε =
Mc2

4πR2/l2
p

. (25)

Assume the microscopic freedom of this cell is i; we have:

ikBTM
2

= ε. (26)

Because it is expected that i is of the order of one, we will also get TM given by Equation (24).
From the result given by Equation (24), we see that our consideration is self-consistent by assuming the
ideal distribution of M on the spherical surface. In a sense, this distribution of TM is the well-known
Gaussian law. Here, we give an interpretation of the Gaussian law from the holographic principle and
thermodynamics. In Section 5, we will give another method to calculate TM.

It is worthwhile to discuss the following properties of this effective spacetime temperature.
(1) In the usual case, this effective spacetime temperature is extremely small by noticing that there

is a factor l2
p in the above equation.

(2) This effective spacetime temperature is about the spacetime and gravitational field, rather than
the electromagnetic field.

(3) Because this effective spacetime temperature originates from the entanglement entropy and the
presence of M inside the sphere, its finite value does not mean that there would be various radiations
spontaneously. We may notice these radiations only when we have an appropriate means to experience
the entanglement entropy. This is a little similar to the observation of the Casimir effect [11]. We must
have two conducting metals to show the Casimir effect through the coupling with the fluctuating
electromagnetic field in the quantum vacuum.

It seems that it would be extremely challenging to observe this effective spacetime temperature.
However, combined with the physical picture of the Unruh effect, we will show the possibility that the
simultaneous considerations of this effective spacetime temperature and the Unruh effect just lead to
gravitational force.
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4. Newtonian Gravitational Force Derived by the Consideration of Local Spacetime
Thermal Equilibrium

4.1. Spacetime Thermal Equilibrium

We consider another fictitious particle with mass m and assume that this particle does not have
any other interaction in addition to gravitational force. The particle M establishes an effective vacuum
temperature field TM(r) given by Equation (24). Now, we consider the case that the particle m is fixed
at location r, relative to M. Because there is no relative motion between M and m, the whole system has
the chance to be in spacetime thermal equilibrium. For simplicity, we consider the case that M >> m.
To be in spacetime thermal equilibrium, there should be another effective temperature Tm for m so that:

TM(r) = Tm. (27)

When the relative location between M and m is fixed, we know that in the local inertial frame of
reference for m, m has a finite acceleration. It is clear that the Unruh temperature should be calculated
in a local inertial frame of reference. Hence, omitting the high-order term for the proper acceleration a,
the Unruh temperature for m is:

Tm(a) =
h̄ |a|

2πckB
. (28)

Here, a = d2r/dt2. We will give the exact value of Tm in Section 5. It is clear that both TM and Tm

are about gravitons, so that this equation is universal for any particle. This is one of the motivations of
the analysis of the Unruh effect for gravitons in Section 2.3.

The spacetime thermal equilibrium condition (27) leads to:

|a| = α
c3l2

p

2h̄
M
r2 . (29)

The coefficient α can be absorbed in the definition of Newton’s gravitational constant G. Compared
with Newton’s law of gravitational force, we have:

lp =

(
2h̄G
αc3

)1/2
. (30)

We see that with the choice of α = 2, we get the conventional gravitational constant G if we regard
lp as the Planck length. Here, we show the possibility that lp is more fundamental than G in a sense.

In the units with h̄=1 and c = 1, we have G = l2
p. We see that G decreases with the decreasing of

lp. This is due to the fact that with the decreasing of lp, the degree of freedom increases, and hence, the
effective spacetime temperature decreases on the spherical surface. The spacetime thermal equilibrium
condition means that m has smaller acceleration, and equivalently smaller G.

4.2. Quasi-Static Process to Determine the Direction of Gravitational Force

Previous studies only give the magnitude of gravitational force. Now, we turn to consider the
direction of gravitational force. We consider a quasi-static process by an external force Fext so that the
system is always in quasi-thermal equilibrium. In addition, we consider the case that the particle m
moves toward M in a quasi-static way. Because TM ∼ 1/r2, we see that the particle m will exchange
heat energy with spacetime during the quasi-static process, while the kinetic energy will not change.
The first law of thermodynamics then gives:

dUm = δQ + δW = 0. (31)
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Here, δQ is the heat energy absorbed from spacetime, while δW is the work by the external force
on the particle m. δW is given by:

δW = Fext · dr. (32)

Hence, for the quasi-static process of the system with dUm = 0, we have:

Fext · dr = −δQ. (33)

For simplicity, we consider the case that the particle m moves along the line connecting M and m.
If their distance increases, δQ < 0, and we have:

Fext ∼
r

r3 .

This determines the direction of the external force to maintain the thermal equilibrium or
time-independent location of the particle m. We see that this is equivalent to the fact that the
gravitational force is attractive.

If we consider the case that the particle m moves toward M along the line connecting M and
m, we have δQ > 0. We will still have Fext ∼ r /r3, and this leads to the attractive characteristic of
gravitational force as well. Combined with Equation (29), the gravitational force can then be written as:

Fg = −GMm
r3 r. (34)

4.3. Free-Fall Motion

In a gravitational field, we know that the free-fall motion has no acceleration at all, based on
Einstein’s general relativity. In this case, the Unruh temperature is zero for the particle m, while the
spacetime temperature due to M is larger than zero. Hence, during the free-fall motion, there is always
a temperature difference between TM(r) and the Unruh temperature Tm. Because of this temperature
difference, the free fall motion is not a quasi-static process. This temperature difference leads to the
possibility of energy exchange between spacetime and the particle m.

Similarly to the analysis of Joule expansion in thermodynamics, for the free-fall motion from A to
B, we may construct a quasi-static process from A to B by a fictitious external force, and then, at the
end of this quasi-static process, the work of the external force is given to the particle m. In this case, in
the non-relativistic approximation, the work by the gravitational force on the particle m during the
free-fall motion is:

ΔW = φ(r1)− φ(r2), (35)

with φ(r) = −GMm/r and ΔW the work done on the particle m by the gravitational field.

5. Relativistic Formula of the Spacetime Temperature TM of a Classical Particle

In Section 3.2, based on spacetime entanglement entropy, the holographic principle, and
thermodynamics, we get the non-relativistic approximation of the spacetime temperature TM for
a classical particle with mass M. It seems that it is extremely difficult to give a method to calculate
TM(r) in the frame of general relativity because we do not know the exact mechanism to unify general
relativity and quantum mechanics yet. However, in this section, we will provide the method to
calculate TM (r) by using the local thermal equilibrium condition TM (r) = Tm.

For a classical particle with mass M, the Schwarzschild metric is:

ds2 = −
(

1 − 2GM
c2r

)
c2dt2 +

(
1 − 2GM

c2r

)−1
dr2 + r2

(
dθ2 + sin2 θdφ2

)
. (36)
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The four-dimensional coordinate of another particle m is:

xα = (t, r, θ, φ) . (37)

We consider the situation that the particle m has a fixed location, i.e., r, θ, and φ are time
independent. The four velocity uα is:

uα =
dxα

dτ
=

(
1
c

(
1 − 2GM

r

)−1/2
, 0, 0, 0

)
. (38)

The four acceleration aα is:

aα = uμDμuα =

(
0,

MG
r2 , 0, 0

)
. (39)

From this result, we have:

a2 = gμνaμaν =

(
MG
r2

)2 (
1 − 2GM

c2r

)−1
. (40)

The proper acceleration is then:

a =
MG
r2

(
1 − 2GM

c2r

)−1/2
. (41)

For this particle m with fixed r, θ, and φ, relative to M, the Unruh temperature is then:

Tm(aα) =
h̄G

2πckB

M
r2

(
1 − 2GM

c2r

)−1/2
. (42)

We see that the factor
(

1 − 2GM
c2r

)−1/2
is the correction due to general relativity.

From the local thermal equilibrium condition given by Equation (27), the relativistic formula for
the spacetime temperature due to particle M is then:

TM(r, θ, φ) =
l2
p

2πkB

Mc2

r2

(
1 − 2GM

c2r

)−1/2
. (43)

Here, for a comparison with Equation (24), we have used the Plank length lp in this equation.
Of course, if we regard the particle M as a point particle, this formula only holds for the situation of

r > 2GM/c2. Compared with Equation (24), we see that the factor
(

1 − 2GM
c2r

)−1/2
is the correction

due to curved spacetime.
Compared with the calculations of the spacetime temperature TM in Section 3.2, in this section, we

give significant improvement to calculate TM by using Equations (27) and (42). These improvements
also show that the calculations in Section 3.2 are valid in the semi-relativistic approximation, and hence,
this gives the support for the concept of the entanglement entropy for spacetime and the relevant
thermodynamics for spacetime based on this entanglement entropy. It also implies the validity of the
holographic principle and relevant thermodynamics based on the concept of entanglement entropy,
because the Unruh effect does not depend on the holographic principle.

6. Potential Application to Modified Gravity

Although the present work is not a modification to Einstein’s general relativity, we may consider
the potential application to modified gravity in the future. Here, we consider the potential application
to two modified theories of gravity as follows.
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In [37–40], the modification of the inertia originated from a reconsideration of the quantum
effect in the Unruh effect was considered to give a modified gravitational law, which has potential
application to modified Newtonian dynamics [41]. In particular, in [39,40], the modified inertia due to
the consideration of the long-wavelength of the order of the Hubble scale in Unruh radiation is used to
explain the Pioneer anomaly [42]. This means that when the long-wavelength excitation of gravitons is
considered, there may be significant modification to spacetime temperature considered in the present
work, because the result of the present work relies on the local thermal equilibrium condition. When
the long-wave mode is addressed, there is even the condensation of gravitons, similar to Bose–Einstein
condensed gases.

Another potential application would be the case of massive gravity [43]. The observations of
gravitational waves have given strong confinement on the graviton mass that it should be no more than
7.7 × 10−23 eV/c2 [44], which means that the Compton wavelength of the graviton would be at least
1.6 × 1016 m. This suggests that our theory will not give a significant modification to massive gravity
for the long-wave mode below 1.6× 1016 m. However, when the cosmology evolution is addressed, we
cannot exclude the possibility of significant modification due to massive gravity. Another possibility is
the modification of the massive gravity to black holes [45–50], which has seen intensive studies in the
last few years. Near the horizon of a black hole, the Unruh effect has close connection with Hawking
radiation, and it would be interesting to consider the gravitational radiation in the Unruh effect and
the relevant spacetime temperature in this work.

7. Summary and Discussion

In summary, we consider the thermodynamic origin of Newton’s gravitational force by
considering simultaneously the spacetime entanglement entropy, the holographic principle,
thermodynamics, and the Unruh effect for an accelerating particle. Different from previous works on
the thermodynamic origin of gravitational force [2,51–53], in this work, we emphasize the quantum
entanglement of spacetime. In the present paper, we do not use the assumption of the displacement
entropy ΔS ∼ d in [2,52], which implies a more solid basis for the thermodynamic origin of Newton’s
gravitational force.

Currently, the direct observation of the Unruh effect is still elusive. For an electronically-charged
particle, the Unruh temperature is too small to have observable electromagnetic radiation with current
techniques. Most recently, a pioneering quantum simulation of coherent Unruh radiation [54] was
observed based on an ultra-cold atomic system. Of course, this observation does not show directly the
original Unruh effect for spacetime. In the present work, however, we show the possibility that the
original Unruh effect has already shown its manifestation through gravitational force.

The purpose of this paper is to try to propose the possibility that there exists a spacetime
temperature due to the curvature of spacetime because of the existence of matter. We give the general
method to calculate the spacetime temperature of a classical particle by applying the thermodynamics
of spacetime and the Unruh effect. Our theory suggests that the magnitude of the four acceleration for
a fixed location is of equivalent importance, compared with the scalar curvature. By analyzing both
the local thermal equilibrium and quasi-static processes of a system, we may give the microscopic
interpretation of the attractive characteristic of classical particles, while in general relativity, this is
imposed by observation [55]. It is worthwhile to point out that even in the pioneering work about
the thermodynamic origin of gravitational force in [2], there is no consideration on the direction of
gravitational force. In future work, we may consider the application of the spacetime temperature to
black holes, e.g., the excitation of atoms falling into a black hole [56] because of the presence of the
spacetime temperature in this work. Another future work may consider the influence of the spacetime
temperature on the quantum correlation of matter, which would be a complementary of the recent
scenario where quantum correlations are considered theoretically to affect the gravitational field [57],
by emphasizing the quantum thermodynamic characteristic of work [58].
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