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Preface to ”Advances and Novel Approaches in

Discrete Optimization”

Discrete optimization is an important area of applied mathematics which lies at the intersection

of several disciplines and covers both theoretical and practical aspects. This book is the result

of a Special Issue entitled ‘Advances and Novel Approaches in Discrete Optimization’. In the

call for papers for this issue, I asked for submissions presenting new theoretical results,

structural investigations, new models, and algorithmic approaches as well as new applications

of discrete optimization problems. Among the possible subjects were integer programming,

combinatorial optimization, optimization problems of graphs and networks, scheduling, logistics,

and transportation, to name but a few.

In response to the call for papers, 43 submissions were received. All submissions have been

reviewed, as a rule, by at least three experts in the discrete optimization area. Finally, 17 papers were

accepted for this Special Issue, all of which are of high quality and reflect the great interest in the

area of discrete optimization. This corresponds to an acceptance rate of 39.5%. The authors of these

publications represent 13 different countries: China, Pakistan, India, Nepal, Germany, Mexico, USA,

Australia, Slovakia, Russia, Korea, Ukraine, and Belarus.

This book contains both theoretical works and practical applications in the field of discrete

optimization. Although many different aspects of discrete optimization have been addressed by the

submissions, among the accepted papers, a major part deals with scheduling problems as well as

graphs and networks. We hope that researchers and practitioners will find much inspiration for their

future work in the exciting area of discrete optimization. Next, all published articles in this book are

briefly surveyed in the order of their sequence in the book.

The first seven articles deal with scheduling problems. In the first article, Zuo et al. consider

two single-machine scheduling problems with possible job rejection and a non-availability interval

of the operator simultaneously. The objective is to minimize the sum of either the makespan

or total weighted completion time of the accepted jobs and the total cost for the rejected jobs.

The authors suggest a pseudo-polynomial solution algorithm as well as a fully polynomial-time

approximation scheme.

In the next article, Wei et al. deal with the problem of transportation and batching scheduling.

A single vehicle is considered, and the goal is to minimize total weighted completion time. The main

results of this paper are the proof that the problem is NP -hard in the strong sense for any batch

capacity of at least 3 as well as a polynomial-time 3-approximation algorithm for the case of a batch

capacity of at least 2.

In the third article, Li et al. consider a bi-criteria online scheduling problem on parallel batch

machines. The batch capacity is unbounded, the processing times of all jobs and batches are equal to

one, and the objective is to minimize the maximum machine cost subject to a minimum makespan.

The authors consider two types of cost functions and present two best possible online algorithms for

the problem under consideration.

Vakhania investigates a single-machine scheduling problem with given release dates, due dates,

and divisible processing times. The objective is to minimize maximum lateness. He suggests a

general method which also leads to useful structural properties of this problem and helps to identify

polynomially solvable cases. In particular, for the case of mutually divisible job processing times,

a polynomial-time algorithm results, and this case turns out to be maximal polynomially solvable

ix



one of this problem with nonarbitrary processing times.

Li et al. consider an online scheduling problem with parallel batch machines and linearly

deteriorating jobs. The batch capacity is unbounded, and the objective is to minimize the makespan.

For the special case of m = 1, a best possible online algorithm with a competitive ratio of (1+αmax)
f

is given, where f denotes the number of job families and αmax gives the maximal deterioration rate

of a job. Furthermore, for m = f ≥ 1, a best possible online algorithm with a competitive ratio of

1 + αmax is also derived.

Then Lazarev et al. consider the single-machine problem with given release dates and the

objective of minimizing the maximum job penalty. While this problem is NP -hard in the strong sense,

they introduce a dual and an inverse problem, which can both be polynomially solved. The optimal

function value of the dual problem is incorporated as a lower bound into a branch and bound

algorithm for the original problem. The authors present computational results with this enumerative

algorithm for hard benchmark instances with up to 20 jobs. Most of the instances considered can be

solved very fast by the proposed algorithm.

In the last scheduling article, Sotskov et al. consider the two-machine job-shop scheduling

problem with interval processing times and makespan minimization. The focus of this paper is how to

execute a schedule in a best way. The paper uses the concept of a minimal dominant set of schedules.

An online algorithm of the complexity O(n2) has been developed, where n denotes the number of

jobs. Detailed numerical results are given for instances with up to 100 jobs and different maximal

percentage errors in the processing times.

The next articles deal with graph-theoretic subjects and applications of graphs. Ali et al. consider

degree-based topological indices and some derived graphs. The goal of this paper is to investigate the

chemical behavior of these graphs by means of the topological indices. In particular, the authors find

the exact results for the Forgotten index, the Balaban index, the reclassified Zagreb indices, the ABC4

index, and the GA5 index of Hex-derived networks of type 3.

Then, Yang et al. consider the extended adjacency index of a molecular graph. In particular,

the authors show some graph transformations which increase or decrease this index. Then,

they derive the extremal acyclic, unicyclic, and bicyclic graphs with a minimum and a maximum

extended adjacency index, respectively.

Stas investigates a graph-theoretic subject, namely the crossing number of a graph which is

the minimum number of edge crossings over all drawings of the graph in the plane. In particular,

he presents this number for the join product K2,3+Cn, where K2,3 is the complete bipartite graph and

Cn is a cycle on n vertices. The methods applied by the author use several combinatorial properties

on cyclic permutations.

Then, Shablya et al. look for new combinatorial generation algorithms. They give basic general

methods and investigate one of them based on AND/OR trees. They apply the method of compositae

from the theory of generating functions. To show the effectiveness of the suggested modifications,

they also derive new ranking and unranking algorithms for several combinatorial sets.

The remaining articles deal with interesting applications of discrete optimization in several

research fields. Pyakurel et al. present efficient algorithms to solve dynamic flow problems with

constant attributes as well as generalized problems with partial contraflow reconfiguration in the

context of evacuation planning. In particular, a strongly polynomial time algorithm for calculating an

approximate solution of the quickest partial contraflow problem on two terminal networks is derived.

Numerical results are given for the road network of Kathmandu (Nepal) as the evacuation network.
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Then, Gu and Yang consider the max-cut problem. They develop a unique method combining a

pointer network and two deep learning strategies, namely supervised learning and reinforcement

learning. The pointer network model includes a long short-term memory network and an

encoder–decoder. It turns out that their model can be used to solve large-scale max-cut problems

heuristically, where for high-dimensional cases, reinforcement learning turned out to be superior to

supervised learning.

Cordona-Valdes et al. deal with the multi-product, multi-period capacitated lot sizing problem.

Determining the optimal lot size allows shortages resulting in a penalty cost. Two mixed-integer

formulations are developed: one model allows shortages, and the other one enforces the fulfillment

of the demand. The developed models have been applied to a Mexican fashion retail company within

a case study. Both formulations significantly reduced the final inventory costs.

Pankratov et al. deal with packing problems of irregular 3D objects. By using the phi-function

technique, the problem is reduced to the solution of a nonlinear programming model and solved

by a multi-start strategy with finding local extreme points. The algorithm has been tested on some

benchmark instances.

Then, Arora et al. present an optimized analysis and planning for power generation and

management. They describe several optimization methodologies. In particular, binary variations of

the moth flame optimizer and the Harris hawks optimizer are analyzed and tested on 23 benchmark

functions, e.g., unimodal, multi-modal ones and functions with fixed dimension. The comparison and

simulation results demonstrate that their implemented algorithm delivered better results towards the

load frequency control problem of a smart grid arrangement compared to earlier methods.

In the last article, Drahos et al. present a method for a conversion between the logarithmic

number system (LNS) and floating point (FLP) representations using reduced instruction

set computing (RISC). After giving an overview on FLP and LNS number representations,

two algorithms of the RISC conversion between both systems using the ‘looping in sectors’

procedure are presented. The proposed algorithms deliver a very small maximum relative conversion

error, and the authors mention also some interesting applications such as camera systems or car

control units.

Finally, I would like to thank all authors for submitting their work to this Special Issue and also

all referees for their support by giving timely and insightful reports. My special thanks go to the

staff of the journal Mathematics for their skilled and pleasant cooperation during the preparation of

this issue.

Frank Werner

Editor
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submissions, among the accepted papers, a major part deals with scheduling problems as well as

graphs and networks. We hope that researchers and practitioners will find much inspiration for their

future work in the exciting area of discrete optimization. Next, all published articles in this book are

briefly surveyed in the order of their sequence in the book.

The first seven articles deal with scheduling problems. In the first article, Zuo et al. consider

two single-machine scheduling problems with possible job rejection and a non-availability interval

of the operator simultaneously. The objective is to minimize the sum of either the makespan or total

weighted completion time of the accepted jobs and the total cost for the rejected jobs. The authors

suggest a pseudo-polynomial solution algorithm as well as a fully polynomial-time approximation

scheme. In the next article, Wei et al. deal with the problem of transportation and batching

scheduling. A single vehicle is considered, and the goal is to minimize total weighted completion

time. The main results of this paper are the proof that the problem is NP -hard in the strong sense for

any batch capacity of at least 3 as well as a polynomial-time 3-approximation algorithm for the case

of a batch capacity of at least 2.

In the third article, Li et al. consider a bi-criteria online scheduling problem on parallel batch

machines. The batch capacity is unbounded, the processing times of all jobs and batches are equal to

one, and the objective is to minimize the maximum machine cost subject to a minimum makespan.

The authors consider two types of cost functions and present two best possible online algorithms for

the problem under consideration.

Vakhania investigates a single-machine scheduling problem with given release dates, due dates,

and divisible processing times. The objective is to minimize maximum lateness. He suggests a

general method which also leads to useful structural properties of this problem and helps to identify

polynomially solvable cases. In particular, for the case of mutually divisible job processing times,

a polynomial-time algorithm results, and this case turns out to be maximal polynomially solvable

one of this problem with nonarbitrary processing times.
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of a job. Furthermore, for m = f ≥ 1, a best possible online algorithm with a competitive ratio of

1 + αmax is also derived.

Then Lazarev et al. consider the single-machine problem with given release dates and the

objective of minimizing the maximum job penalty. While this problem is NP -hard in the strong sense,

they introduce a dual and an inverse problem, which can both be polynomially solved. The optimal

function value of the dual problem is incorporated as a lower bound into a branch and bound

algorithm for the original problem. The authors present computational results with this enumerative

algorithm for hard benchmark instances with up to 20 jobs. Most of the instances considered can be
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An online algorithm of the complexity O(n2) has been developed, where n denotes the number of

jobs. Detailed numerical results are given for instances with up to 100 jobs and different maximal

percentage errors in the processing times.
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degree-based topological indices and some derived graphs. The goal of this paper is to investigate the

chemical behavior of these graphs by means of the topological indices. In particular, the authors find

the exact results for the Forgotten index, the Balaban index, the reclassified Zagreb indices, the ABC4

index, and the GA5 index of Hex-derived networks of type 3.

Then, Yang et al. consider the extended adjacency index of a molecular graph. In particular,

the authors show some graph transformations which increase or decrease this index. Then,

they derive the extremal acyclic, unicyclic, and bicyclic graphs with a minimum and a maximum

extended adjacency index, respectively.

Stas investigates a graph-theoretic subject, namely the crossing number of a graph which is

the minimum number of edge crossings over all drawings of the graph in the plane. In particular,

he presents this number for the join product K2,3+Cn, where K2,3 is the complete bipartite graph and

Cn is a cycle on n vertices. The methods applied by the author use several combinatorial properties

on cyclic permutations.

Then, Shablya et al. look for new combinatorial generation algorithms. They give basic general

methods and investigate one of them based on AND/OR trees. They apply the method of compositae

from the theory of generating functions. To show the effectiveness of the suggested modifications,

they also derive new ranking and unranking algorithms for several combinatorial sets.

The remaining articles deal with interesting applications of discrete optimization in several

research fields. Pyakurel et al. present efficient algorithms to solve dynamic flow problems with

constant attributes as well as generalized problems with partial contraflow reconfiguration in the

context of evacuation planning. In particular, a strongly polynomial time algorithm for calculating an

approximate solution of the quickest partial contraflow problem on two terminal networks is derived.

Numerical results are given for the road network of Kathmandu (Nepal) as the evacuation network.
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pointer network and two deep learning strategies, namely supervised learning and reinforcement

learning. The pointer network model includes a long short-term memory network and an

encoder–decoder. It turns out that their model can be used to solve large-scale max-cut problems

heuristically, where for high-dimensional cases, reinforcement learning turned out to be superior to

supervised learning.

Cordona-Valdes et al. deal with the multi-product, multi-period capacitated lot sizing problem.

Determining the optimal lot size allows shortages resulting in a penalty cost. Two mixed-integer

formulations are developed: one model allows shortages, and the other one enforces the fulfillment

of the demand. The developed models have been applied to a Mexican fashion retail company within

a case study. Both formulations significantly reduced the final inventory costs.

Pankratov et al. deal with packing problems of irregular 3D objects. By using the phi-function

technique, the problem is reduced to the solution of a nonlinear programming model and solved

by a multi-start strategy with finding local extreme points. The algorithm has been tested on some

benchmark instances.

Then, Arora et al. present an optimized analysis and planning for power generation and

management. They describe several optimization methodologies. In particular, binary variations of

the moth flame optimizer and the Harris hawks optimizer are analyzed and tested on 23 benchmark

functions, e.g., unimodal, multi-modal ones and functions with fixed dimension. The comparison and

simulation results demonstrate that their implemented algorithm delivered better results towards the

load frequency control problem of a smart grid arrangement compared to earlier methods.

In the last article, Drahos et al. present a method for a conversion between the logarithmic

number system (LNS) and floating point (FLP) representations using reduced instruction

set computing (RISC). After giving an overview on FLP and LNS number representations,

two algorithms of the RISC conversion between both systems using the ‘looping in sectors’

procedure are presented. The proposed algorithms deliver a very small maximum relative conversion

error, and the authors mention also some interesting applications such as camera systems or car

control units.
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Abstract: In this paper, we study two scheduling problems on a single machine with rejection and
an operator non-availability interval. In the operator non-availability interval, no job can be started
or be completed. However, a crossover job is allowed such that it can be started before this interval
and completed after this interval. Furthermore, we also assume that job rejection is allowed. That is,
each job is either accepted and processed in-house, or is rejected by paying a rejection cost. Our task
is to minimize the sum of the makespan (or the total weighted completion time) of accepted jobs and
the total rejection cost of rejected jobs. For two scheduling problems with different objective functions,
by borrowing the previous algorithms in the literature, we propose a pseudo-polynomial-time
algorithm and a fully polynomial-time approximation scheme (FPTAS), respectively.

Keywords: scheduling with rejection; machine non-availability; operator non-availability; dynamic
programming; FPTAS

1. Introduction

In this section, we introduce some models on scheduling with (machine or operator)
non-availability intervals, scheduling with rejection, and scheduling with rejection and non-availability
intervals, respectively.

1.1. Scheduling with Non-Availability Intervals

In most scheduling problems, it is assumed that the machines are available at all times. However,
in some industrial settings, the assumption might not be true. Some machines or the operator might
be unavailable in some time intervals. Recently, some researchers have studied some scheduling
problems with the non-availability intervals. Two models of the non-availability interval were studied
mainly: one is the machine non-availability (MNA) intervals due to the machine maintenances and
the other is the operator non-availability (ONA) intervals because the operator is resting from work.
The difference between MNA intervals and ONA intervals is that a crossover job can exist in the
ONA interval. However, no job can be processed in the MNA interval.

To the best of our knowledge, the earliest scheduling problem with MNA intervals was studied by
Schmidt [1]. He considered a parallel-machine scheduling problem in which each machine has different
MNA intervals. The task is to find a feasible preemptive schedule if it exists. A polynomial-time
algorithm is presented for the above problem. We first introduce some single-machine scheduling
problems with an MNA interval (a, b). The corresponding problem can be denoted by 1|MNA(a, b)| f ,
where “MNA(a, b)” means that there is an MNA interval (a, b) and f is the objective function to
be minimized. For problem 1|MNA(a, b)|∑ Cj, Adiri et al. [2] proved that the problem is NP-hard
and then presented a 5

4 -approximation algorithm. For problem 1|MNA(a, b)|Cmax, Lee [3] showed
that this problem is binary NP-hard and then provided a 4

3 -approximation algorithm. For problem

Mathematics 2019, 7, 668; doi:10.3390/math7080668 www.mdpi.com/journal/mathematics1
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1|MNA(a, b)|Lmax, Kacem [4] designed a 3
2 -approximation algorithm and a fully polynomial-time

approximation scheme (FPTAS). If there are k ≥ 2 MNA intervals (a1, b1), (a2, b2), · · · , (ak, bk) on
the machine, the corresponding problem 1|MNA(ai, bi)|Cmax is strongly NP-hard (see [3]) when k
is arbitrary. Breit et al. [5] showed that, for any ρ ≥ 1 and k ≥ 2, there is no ρ-approximation algorithm
for problem 1|MNA(ai, bi)|Cmax unless P = NP.

When there are m ≥ 2 parallel machines M1, · · · , Mm and each machine Mi has an MNA interval
(ai, bi), the corresponding problem is denoted by Pm|MNA(ai, bi)| f . For problem Pm|MNA(0, bi)|Cmax,
i.e., each machine Mi has a machine release time bj, Lee [6] provided a modified LPT (MLPT) algorithm
with a tight approximation ratio 4

3 . Kellerer [7] improved this bound 4
3 to 5

4 by a dual approximation
algorithm using a bin packing approach. For problem Pm|MNA(0, bi)|∑ Cj, Schmidt [8] showed that
the SPT rule is optimal. Lee [6] also studied the problem Pm|MNA(ai, bi)|Cmax with the assumption
that one machine is always available. He showed that the approximation ratios of LS (List Scheduling)
and LPT are m and m+1

2 , respectively. Furthermore, Liao et al. [9] considered the same problem
with m = 2 and developed exact algorithms based on the TMO algorithm for problem P2||Cmax.
Aggoune [10] studied the flow-shop scheduling problem with several MNA intervals on each machine.
A heuristic algorithm is provided to approximately solve this problem. Burdett and Kozan [11]
also addressed some MNA intervals in railway scenarios. They introduced new fixed jobs for the
MNA intervals. Some constructive heuristics and meta-heuristic algorithms were proposed in
this paper. For more new models and results about this topic, the reader is referred to the survey by
Ma et al. [12].

Brauner et al. [13] first studied the scheduling problems with an ONA interval. Similarly,
this scheduling model can be denoted by 1|ONA(a, b)| f . For problem 1|ONA(a, b)|Cmax,
Brauner et al. [13] proved that it is binary NP-hard and provided an FPTAS. For problem
1|ONA(a, b)|Lmax, Kacem et al. [14] proposed an FPTAS by borrowing the FPTAS for problem
1|MNA(a, b)|Lmax. Chen et al. [15] considered the problem 1|ONA(a, b)|∑ Cj and presented
a 20

17 -approximation algorithm. Wan and Yuan [16] further considered the problem 1|ONA(a, b)|∑ wjCj.
They designed a pseudo-polynomial-time dynamic programming (DP) algorithm and then converted
the DP algorithm into an FPTAS. Burdett et al. [17] considered the flexible job shop scheduling with
operators (FJSOP) for coal export terminals. A hybrid meta-heuristic and a lot of numerical testings
were designed for the above problem.

1.2. Scheduling with Rejection

In many practical cases, processing all jobs may occur high inventory or tardiness costs. However,
rejecting some jobs can save time and reduce costs. When a job is rejected, a corresponding rejection
cost is required. The decision maker needs to determine which jobs should be accepted (and a feasible
schedule for accepted jobs), and which jobs should be rejected, such that the production cost and
the total rejection cost are minimized. Thus, both from the practical and theoretical point of view,
scheduling models with rejection are very interesting. In addition, an important application also occurs
in scheduling with outsourcing. If the outsourcing cost is treated as the rejection cost, scheduling with
rejection and scheduling with outsourcing are in fact equivalent.

Scheduling models with rejection were first introduced by Bartal et al. [18]. They considered
several off-line and on-line scheduling problems on m parallel machines. The task is to minimize
the sum of the makespan of accepted jobs and the total rejection cost of rejected jobs. For the on-line
version, they designed an on-line algorithm with the best-possible competitive ratio of 2.618. For the
off-line version, they provided an FPTAS when m is fixed, and a PTAS when m is arbitrary.

Next, we only introduce some results on the single-machine scheduling with rejection.
The corresponding problem can be denoted by 1|rej| f + e(R), where f is the objective function
on the set A of accepted jobs and e(R) is the total rejection cost on the set R of rejected jobs.
For problem 1|rj, rej|Cmax + e(R), Cao and Zhang [19] proved that this problem is NP-hard and
designed a PTAS. However, they also pointed out that it is open whether this problem is ordinary or
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strongly NP-hard. Zhang et al. [20] showed that this problem is binary NP-hard by providing two
different pseudo-polynomial-time algorithms. Finally, they also provided a 2-approximation algorithm
and an FPTAS for the above problem. For problem 1|rej|Lmax + e(R), Sengupta [21] proved that this
problem is binary NP-hard. He also proposed two dynamic programming algorithms and converted
one of the two algorithms into an FPTAS. Engels et al. [22] studied the problem 1|rej|∑ wjCj + e(R).
They showed that this problem is binary NP-hard and then provided an FPTAS. They also showed that,
when wj = 1, the problem 1|rej|∑ Cj + e(R) is polynomial-time solvable. Recently, Shabtay et al. [23]
presented a comprehensive survey for the off-line scheduling problems with rejection. For other models
and results on scheduling with rejection, the reader is referred to the survey by Shabtay et al. [23].

1.3. Scheduling with Rejection and Non-Availability Intervals

There are only two articles which considered “scheduling with rejection” and “machine
non-availability intervals” together. Zhong et al. [24], and Zhao and Tang [25] considered the
problems 1|MNA(a, b), rej|Cmax + e(R) and 1|MNA(a, b), rej|∑ wjCj + e(R), respectively. Both of
them presented a pseudo-polynomial dynamic programming algorithm and an FPTAS for the
corresponding problem. In addition, Li and Chen [26] investigated several scheduling problems
with rejection and a deteriorating maintenance activity on a single machine. In their model, the starting
time of the maintenance activity (non-availability intervals) is not fixed and the duration is a linear
increasing function of its starting time. Some (pseudo-)polynomial-time algorithms are presented
for some different objective functions. However, to the best of our knowledge, no article considered
“scheduling with rejection” and “operator non-availability intervals” simultaneously. In this paper,
we are the first to consider scheduling with rejection and an operator non-availability interval.

2. Problem Formulation

The single-machine scheduling with rejection and an operator non-availability interval can be
stated formally as follows. There are n jobs J1, J2, · · · , Jn and a single machine. Each job Jj is available at
time 0 and has a processing time pj, a weight wj and a rejection cost ej. Each job Jj is either rejected and
the rejection cost ej has to be paid, or accepted and then processed non-preemptively on the machine.
There is an operator non-availability interval (a, b) on the machine, where we assume that 0 < a < b.
This implies that, in any feasible schedule π, no accepted job Jj can be started or be completed in
the interval (a, b). However, a crossover job is allowed such that it can start before this interval and
complete after this interval. Without loss of generality, we assume that all the parameters a, b, pj, wj
and ej are non-negative integers. Let A and R be the sets of accepted jobs and rejected jobs, respectively.
Denote by Cmax = max{Cj : Jj ∈ A}, ∑ wjCj = ∑Jj∈A wjCj and e(R) = ∑Jj∈R ej the makespan
of accepted jobs, the total weighted completion time of accepted jobs and the total rejection cost of
rejected jobs, respectively. Our task is to find a feasible schedule such that Cmax + e(R) or ∑ wjCj + e(R)
is minimized. By using the notation for scheduling problems, the corresponding problems are denoted
by 1|ONA(a, b), rej|Cmax + e(R) and 1|ONA(a, b), rej|∑ wjCj + e(R), respectively.

Two similar problems related to the above problems are 1|MNA(a, b), rej|Cmax + e(R)
and 1|MNA(a, b), rej|∑ wjCj + e(R). Zhong et al. [24] and Zhao and Tang [25] presented
a pseudo-polynomial dynamic programming algorithm and an FPTAS for the corresponding
problem, respectively. In this paper, by borrowing the algorithms in [24,25], we also presented
a pseudo-polynomial dynamic programming algorithm and an FPTAS for the problems
1|ONA(a, b), rej|Cmax + e(R) and 1|ONA(a, b), rej|∑ wjCj + e(R), respectively.

3. Pseudo-Polynomial-Time Algorithms

Brauner et al. [13] and Chen et al. [15] showed that problems 1|ONA(a, b)|Cmax

and 1|ONA(a, b)|∑ Cj are NP-hard. Thus, two problems 1|ONA(a, b), rej|Cmax + e(R) and
1|ONA(a, b), rej|∑ wjCj + e(R) are also NP-hard. In this section, we show that the above problems can
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be solved in pseudo-polynomial time. That is, both of the problems, 1|ONA(a, b), rej|Cmax + e(R) and
1|ONA(a, b), rej|∑ wjCj + e(R), are binary NP-hard.

For problems 1|MNA(a, b), rej|Cmax + e(R) and 1|MNA(a, b), rej|∑ wjCj + e(R),
Zhong et al. [24] and Zhao and Tang [25] presented a pseudo-polynomial dynamic programming
algorithm, respectively. By enumerating the crossover job and its starting time, we show
that problem 1|ONA(a, b), rej| f + e(R) can be decomposed into many subproblems of
1|MNA(a, b), rej| f + e(R). Consequently, by borrowing the algorithms in [24,25], we also
presented a pseudo-polynomial algorithm for problems 1|ONA(a, b), rej|Cmax + e(R) and
1|ONA(a, b), rej|∑ wjCj + e(R), respectively.

Lemma 1. If algorithm AMNA solves problem 1|MNA(a, b), rej| f + e(R) in O(T) time, then Algorithm 1
yields an optimal schedule for problem 1|ONA(a, b), rej| f + e(R) in O(naT) time.

Algorithm 1 AONA

Step 1: Let AMNA be a dynamic programming algorithm for problem 1|MNA(a, b), rej| f + e(R),

where f ∈ {Cmax, ∑ wjCj}.

Step 2: Applying algorithm AMNA to the problem 1|MNA(a, b), rej| f + e(R), we can obtain

a schedule π0.

Step 3: For each job Jj with j = 1, · · · , n and each integer t with 0 ≤ t ≤ a and t + pj ≥ b, we first

schedule Jj in time interval [t, t + pj]. Set a′ = t, b′ = t + pj and instance I′ = {J1, · · · , Jn} \ Jj.

Applying algorithm AMNA to the instance I′ of problem 1|MNA(a′, b′), rej| f + e(R), we can obtain

a schedule π(j, t).

Step 4: Choose the schedule among all schedules in {π0} ∪ {π(j, t) : 1 ≤ j ≤ n, 0 ≤ t ≤ a and t + pj ≥
b} with the smallest objective value.

Proof. Firstly, we show that Algorithm 1 yields an optimal schedule for problem 1|ONA(a, b), rej| f +
e(R). Let π∗ be an optimal schedule for problem 1|ONA(a, b), rej| f + e(R). We distinguish two cases
into our discussion.

Case 1: No crossover job exist in π∗.

In this case, interval (a, b) is completely forbidden. That is, an ONA interval is equivalent to
an MNA interval. Thus, in this case, π0 is also an optimal schedule for problem 1|ONA(a, b), rej|
f + e(R).

Case 2: There is a crossover job in π∗.

Let Jj be the crossover job in π∗ and let t be the starting time of Jj in π∗. Clearly, we have
0 ≤ t ≤ a and t + pj ≥ b. In this case, no job in I′ = {J1, · · · , Jn} \ Jj can be processed in the interval
(t, t + pj). Set a′ = t and b′ = t + pj. The remaining problem is equivalent to the instance I′ of the
problem 1|MNA(a′, b′), rej| f + e(R). Thus, in this case, π(j, t) is also an optimal schedule for problem
1|ONA(a, b), rej| f + e(R).

From the above discussions, Algorithm 1 always yields an optimal schedule for problem
1|ONA(a, b), rej| f + e(R). Note that algorithm AMNA is called at most O(na) times. Thus, the time
complexity of Algorithm 1 is exactly O(naT).

Note that Zhong et al. [24] presented an O(n ∑n
j=1 pj)-time dynamic programming algorithm for

problem 1|MNA(a, b), rej|Cmax + e(R). Zhao and Tang [25] presented an O(na ∑n
j=1 pj)-time algorithm

for problem 1|MNA(a, b), rej|∑ wjCj + e(R). Thus, we have the following corollaries.
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Corollary 1. Algorithm 1 solves problem 1|ONA(a, b), rej|Cmax + e(R) in O(n2a ∑n
j=1 pj) time and solves

problem 1|ONA(a, b), rej|∑ wjCj + e(R) in O(n2a2 ∑n
j=1 pj) time.

Example 1. A simple example for problem 1|ONA(a, b), rej|Cmax + e(R) is constructed as follows: Given
a positive number k > 0, we have three jobs J1, J2, J3 with (p1, e1) = (2k, k), (p2, e2) = (4k, 2k) and
(p3, e3) = (7k,+∞). We also assume that there is a single machine with an ONA interval (a, b), where a = 4k
and b = 9k. Note that p1 < p2 < bk − ak = 5k < p3. Thus, J3 is the unique candidate for the crossover job.
Note further that e3 = +∞. Thus, J3 must be accepted in any optimal schedule. We distinguish two cases in
our discussion.

Case 1: J3 is not a crossover job.

In this case, since p3 = 7k > a = 4k, J3 must be processed at or after time b = 9k. Thus, the optimal
schedule is to process J2 and J3 in [0, 4k] and [9k, 16k], respectively, and reject J1. That is, the Cmax + e(R)
value is 16k + k = 17k.

Case 2: J3 is the crossover job and J3 starts its processing at time t.

Since t ∈ [0, 4k] and t + p3 ≥ b = 9k, we have 2k ≤ t ≤ 4k. When t ∈ [2k, 4k), only J1 can
be processed before J3. Thus, the Cmax + e(R) value is at least t + 7k + 2k ≥ 11k. The minimum
value Cmax + e(R) = 11k can be reached by processing J1 and J3 in [0, 9k] and reject J2. When t = 4k,
only one job between J1 and J2 can be processed before J3. Thus, the Cmax + e(R) value is at least
4k + 7k + k ≥ 12k. The minimum value Cmax + e(R) = 12k can be reached by processing J2 and J3 in
[0, 11k] and reject J1.

By combining all cases, the optimal Cmax + e(R) value is 11k, which can be reached by processing
J1 and J3 in [0, 9k] and reject J2.

4. Approximation Schemes

In this section, by borrowing the FPTASs in [24,25], we also presented an FPTAS for problems
1|ONA(a, b), rej|Cmax + e(R) and 1|ONA(a, b), rej|∑ wjCj + e(R), respectively. Given an ε = 1

E for
some positive integer E, we set ti = iεa for each i = 1, 2, · · · , E. To propose an FPTAS, we delay the
starting of the crossover job slightly such that the crossover job starts its processing at some time ti.
Such a delay may increase the objective value by 1 + ε times, we say that it produces a (1 + ε)-loss.

Lemma 2. If a crossover job exists in an optimal schedule, with a (1 + ε)-loss, we can assume that the crossover
job starts its processing at some time ti.

Proof. Let π∗ be an an optimal schedule for problem 1|ONA(a, b), rej|Cmax + e(R) or problem
1|ONA(a, b), rej|∑ wjCj + e(R). Let A∗ and R∗ be the set of accepted jobs and the set of rejected jobs in
π∗, respectively. In addition, we also assume that Jj ∈ A∗ is the jth processed job in π∗. Without loss of
generality, we assume that Jk ∈ A∗ is the crossover job in π∗. Furthermore, we assume that the starting
time of Jk is t with 0 ≤ t ≤ a and t + pk ≥ b. If t 	= ti for each i = 1, 2, · · · , E, then there is some i with
1 ≤ i ≤ E such that ti−1 < t < ti, where t0 = 0. By delaying the processing of Jk, Jk+1, · · · , J|A∗| by
a length of ti − t, we can obtain a schedule π. Note that ti ≤ a and ti + pk ≥ t + pk ≥ b. Thus, π is
feasible for problems 1|ONA(a, b), rej|Cmax + e(R) and 1|ONA(a, b), rej|∑ wjCj + e(R). Note further
that ti − t < ti − ti−1 = εa and Cj(π

∗) ≥ b > a for each j = k, · · · , |A∗|. Thus, we have Cj(π) = Cj(π
∗)

for each j = 1, · · · , k − 1 and Cj(π) = Cj(π
∗) + (ti − t) ≤ Cj(π

∗) + εa ≤ Cj(π
∗) + εCj(π

∗) =

(1 + ε)Cj(π
∗) for each j = k, · · · , |A∗|. It follows that

Cmax(π) ≤ (1 + ε)Cmax(π
∗) and ∑ wjCπ ≤ (1 + ε)∑ wjCj(π

∗).
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Notice that both of the total rejection cost in π and π∗ are e(R∗). Thus, we can conclude that the
objective value is increased by at most 1 + ε times. This completes the proof of Lemma 2.

Next, based on Lemma 2, we propose an FPTAS for problems 1|ONA(a, b), rej|Cmax + e(R) and
1|ONA(a, b), rej|∑ wjCj + e(R).

Lemma 3. If algorithm AMNA
ε is an FPTAS for problem 1|MNA(a, b), rej| f + e(R) with the time complexity

of O(T), then Algorithm 2 is also an FPTAS for problem 1|ONA(a, b), rej| f + e(R) with the time complexity
of O( nT

ε ).

Algorithm 2 AONA
ε

Step 1: Let AMNA
ε be an FPTAS for problem 1|MNA(a, b), rej| f + e(R), where f ∈ {Cmax, ∑ wjCj}.

Step 2: Applying algorithm AMNA
ε to the problem 1|MNA(a, b), rej| f + e(R), we can obtain

a schedule π0.

Step 3: For each job Jj with j = 1, · · · , n and each integer ti with 0 ≤ ti ≤ a and ti + pj ≥ b, we first

schedule Jj in time interval [ti, ti + pj]. Set a′ = ti, b′ = ti + pj and instance I′ = {J1, · · · , Jn} \ Jj.

Applying algorithm AMNA
ε to the instance I′ of problem 1|MNA(a′, b′), rej| f + e(R), we can obtain

a schedule π(j, ti).

Step 4: Choose the schedule among all schedules in {π0} ∪ {π(j, ti) : 1 ≤ j ≤ n, 0 ≤ ti ≤ a and ti +

pj ≥ b} with the smallest objective value.

Proof. Firstly, we prove that Algorithm 2 is an FPTAS for 1|ONA(a, b), rej| f + e(R). Let π∗ be
an optimal schedule for problem 1|ONA(a, b), rej| f + e(R). Let Z and Z∗ be the objective values
obtained from Algorithm 2 and the optimal schedule π∗, respectively. We also distinguish two cases in
our discussion.

Case 1: No crossover job exists in π∗.

In this case, interval (a, b) is completely forbidden. That is, an ONA interval is equivalent to
an MNA interval. Thus, we have Z ≤ Z(π0) ≤ (1 + ε)Z(π∗) = (1 + ε)Z∗.

Case 2: There is a crossover job in π∗.

Let Jj be the crossover job in π∗ and let t be the starting time of Jj in π∗. Clearly, we have
0 ≤ t ≤ a and t + pj ≥ b. In this case, no job in I′ = {J1, · · · , Jn} \ Jj can be processed in the interval
(t, t + pj). Set a′ = t and b′ = t + pj. Thus, the remaining problem is equivalent to the instance I′

of the problem 1|MNA(a′, b′), rej| f + e(R). Let Z∗(j, t) be the optimal objective value for problem
1|ONA(a, b), rej| f + e(R) under the constraint in which Jj is the crossover job and Jj starts its processing
at time t. Note that algorithm AMNA

ε is an FPTAS for problem 1|MNA(a, b), rej| f + e(R). Thus, we have
Z(π(j, ti)) ≤ (1 + ε)Z∗(j, ti). Furthermore, by Lemma 2, we also have Z∗(j, ti) ≤ (1 + ε)Z∗(j, t) =
(1 + ε)Z∗. It follows that

Z ≤ Z(π(j, ti)) ≤ (1 + ε)Z∗(j, ti) ≤ (1 + ε)2Z∗(j, t) = (1 + ε)2Z∗.

From the above discussions, Algorithm 2 is an FPTAS for 1|ONA(a, b), rej| f + e(R). Note that
algorithm AMNA

ε is called at most O( n
ε ) times. Thus, the time complexity of Algorithm 2 is

exactly O( nT
ε ).

Note that Zhong et al. [24] presented an FPTAS with the time complexity of O( n
ε ) for problem

1|MNA(a, b), rej|Cmax + e(R). Zhao and Tang [25] presented an FPTAS with the time complexity
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O( n4L5

ε4 ) for problem 1|MNA(a, b), rej|∑ wjCj + e(R), where L = log(max{n, 1
ε , b, max ej, (max wj) ·

(max pj)}). Thus, we have the following corollaries.

Corollary 2. Algorithm 1 is an FPTAS for problems 1|ONA(a, b), rej|Cmax + e(R) and 1|ONA(a, b), rej|
∑ wjCj + e(R) with the time complexities of O( n2

ε2 ) and O( n5L5

ε5 ), respectively.

5. Conclusions and Future Work

In this paper, we are the first to consider scheduling with rejection and an operator non-availability
interval simultaneously. The objective is to minimize the sum of the makespan (or the total weighted
completion time) of the accepted jobs and the total rejection cost of the rejected jobs. Firstly, we build
the relation between problem 1|MNA(a, b), rej| f + e(R) and problem 1|ONA(a, b), rej| f + e(R),
where f ∈ {Cmax, ∑ wjCj}. That is, by enumerating the crossover job and its starting time,
problem 1|ONA(a, b), rej| f + e(R) can be decomposed into many subproblems of 1|MNA(a, b), rej| f +
e(R). Consequently, by borrowing the previous algorithms for problem 1|MNA(a, b), rej| f + e(R),
we provide a pseudo-polynomial-time algorithm and an FPTAS for problem 1|ONA(a, b), rej| f +
e(R), respectively.

When there are k ≥ 2 MNA or ONA intervals (a1, b1), (a2, b2), · · · , (ak, bk) on the machine,
the corresponding problem is strongly NP-hard (see [3]) when k is arbitrary. However, when k is a fixed
constant, it is possible to propose a pseudo-polynomial-time algorithm with a larger time complexity.
Breit et al. [5] showed that, for any ρ ≥ 1 and k ≥ 2, there is no ρ-approximation algorithm for problem
1|MNA(ai, bi)|Cmax unless P = NP. It is easy to verify that the inapproximability result still holds when
there are k ≥ 2 MNA or ONA intervals on the machine and bk is sufficiently large.

Note that, for problem 1|ONA(a, b), rej|∑ wjCj + e(R), the time complexity of the proposed FPTAS

is O( n5L5

ε5 ). That is, the running time is very large and it is not strongly polynomial. Thus, an interesting
problem is to design a faster (strongly polynomial) FPTAS for problem 1|ONA(a, b), rej|∑ wjCj + e(R).
Note further that, when there are k ≥ 2 MNA or ONA intervals and each MNA or ONA interval
has a bounded length, it is possible to design an effective approximation algorithm. Thus, another
interesting problem is to propose some approximation algorithms for the problems with multiple
MNA or ONA intervals. Finally, it is also interesting to consider other objective functions such as
Lmax + e(R) and other machine setting such as parallel machines or shop machines.

Author Contributions: Conceptualization, methodology and writing-original manuscript, L.Z. (Lili Zuo) and
Z.S.; project management, supervision and writing-review, L.L.; investigation, formal analysis and editing,
L.Z. (Liqi Zhang).

Funding: This research was funded by the National Natural Science Foundation of China under grant number
11771406 and 11571321.

Acknowledgments: We are grateful to the Associate Editor and three anonymous reviewers for their valuable
comments, which helped us significantly improve the quality of our paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schmidt, G. Scheduling independent tasks with deadlines on semi-identical processors. J. Oper. Res. Soc.
1984, 39, 271–277. [CrossRef]

2. Adiri, I.; Bruno, J.; Frostig, E.; Kan, A.H.G.R. Single machine flowtime scheduling with a single breakdown.
Acta Inform. 1989, 26, 679–696. [CrossRef]

3. Lee, C.Y. Machine scheduling with an availability constraints. J. Glob. Optim. 1996, 9, 363–382. [CrossRef]
4. Kacem, I. Approximation algorithms for the makespan minimization with positive tails on a single machine

with a fixed nonavailability interval. J. Comb. Optim. 2009, 17, 117–133. [CrossRef]
5. Breit, J.; Schmidt, G.; Strusevich, V.A. Non-preemptive two-machine open shop scheduling with

non-availability constraints. Math. Methods Oper. Res. 2003, 57, 217–234. [CrossRef]

7



Mathematics 2019, 7, 668

6. Lee, C.Y. Parallel machine scheduling with non-simultaneous machine available time. Discret. Appl. Math.
1991, 30, 53–61. [CrossRef]

7. Kellerer, H. Algorithms for multiprocessor scheduling with machine release times. IIE Trans. 1998, 30, 991–999.
[CrossRef]

8. Schmidt, G. Scheduling with limited machine availability. Eur. J. Oper. Res. 2000, 121, 1–15. [CrossRef]
9. Liao, C.J.; Shyur, D.L.; Lin, C.H. Makespan minimization for two parallel machines with an availability

constraint. Eur. J. Oper. 2005, 160, 445–456. [CrossRef]
10. Aggoune, R. Minimising the makespan for the flow shop scheduling problem with availability constraints.

Eur. J. Oper. Res. 2004, 153, 534–543. [CrossRef]
11. Burdett, R.L.; Kozan, E. Techniques for inserting additional trains into exist- ing timetables. Transp. Res. Part B

2009, 43, 821–836. [CrossRef]
12. Ma, Y.; Chu, C.; Zuo, C. A survey of scheduling with deterministic machine availability constraints.

Comput. Ind. Eng. 2010, 58, 199–211. [CrossRef]
13. Brauner, N.; Frinke, G.; Lebacque, V.; Rapine, C.; Potts, C.; Struservich, V. Operator nonavailability periods.

4OR Q. J. Oper. Res. 2009, 7, 239–253. [CrossRef]
14. Kacem, I.; Kellerer, H.; Seifaddini, M. Efficient approximation schemes for the maximum lateness

minimization on a single machine with a fixed operator or machine non-availability interval. J. Comb. Optim.
2016, 32, 970–981. [CrossRef]

15. Chen, Y.; Zhang, A.; Tan, Z.Y. Complexity and approximation of single machine scheduling with an operator
non-availability period to minimize total completion time. Inf. Sci. 2013, 251, 150–163. [CrossRef]

16. Wan, L.; Yuan, J.J. Single-machine scheduling with operator non-availability to minimize total weighted
completion time. Inf. Sci. 2018, 445, 1–5. [CrossRef]

17. Burdett, R.L.; Corry, P.; Yarlagadda, P.K.D.V.; Eustace, C.; Smith, S. A flexible job shop scheduling approach
with operators for coal export terminals. Comput. Oper. Res. 2019, 104, 15–36. [CrossRef]

18. Bartal, Y.; Leonardi, S.; Marchetti-Spaccamela, A.; Sgall, J.; Stougie, L. Multiprocessor scheduling with
rejection. Siam J. Discret. Math. 2000, 13, 64–78. [CrossRef]

19. Cao, Z.G.; Zhang, Y.Z. Scheduling with rejection and nonidentical job arrivals. J. Syst. Sci. Complex. 2007,
20, 529–535. [CrossRef]

20. Zhang, L.Q.; Lu, L.F.; Yuan, J.J. Single machine scheduling with release dates and rejection. Eur. J. Oper. Res.
2009, 198, 975–978. [CrossRef]

21. Sengupta, S. Algorithms and approximation schemes for minimum lateness/tardiness scheduling with
rejection. Lect. Notes Comput. Sci. 2003, 2748, 79–90.

22. Engels, D.W.; Karger, D.R.; Kolliopoulos, S.G.; Sengupta, S.; Uma, R.N.; Wein, J. Techniques for scheduling
with rejection. J. Algorithms 2003, 49, 175–191. [CrossRef]

23. Shabtay, D.; Gaspar, N.; Kaspi, M. A survey on offline scheduling with rejection. J. Sched. 2013, 16, 3–28.
[CrossRef]

24. Zhong, X.L.; Ou, J.W.; Wang, G.W. Order acceptance and scheduling with machine availability constraints.
Eur. J. Oper. Res. 2014, 232, 435-442. [CrossRef]

25. Zhao, C.L.; Tang, H.Y. Single machine scheduling with an availability constraint and rejection. Asia-Pac. J.
Oper. Res. 2014, 31, 1450037. [CrossRef]

26. Li, S.S.; Chen, R.X. Scheduling with rejection and a deteriorating maintenance activity on a single machine.
Asia-Pac. J. Oper. Res. 2014, 34, 1750010. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

8



mathematics

Article

Transportation and Batching Scheduling for
Minimizing Total Weighted Completion Time

Hongjun Wei * , Jinjiang Yuan and Yuan Gao

School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
* Correspondence: weihongjun@zzu.edu.cn

Received: 20 August 2019; Accepted: 3 September 2019; Published: 5 September 2019

Abstract: We consider the coordination of transportation and batching scheduling with one single
vehicle for minimizing total weighted completion time. The computational complexity of the problem
with batch capacity of at least 2 was posed as open in the literature. For this problem, we show the
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algorithm when the batch capacity is at least 2.
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1. Introduction

Tang and Gong [1] first raised and studied the problem of transportation and batching
scheduling (TBS). This model, which combines transportation and scheduling together, is motivated
by a production environment in which a set of semi-finished jobs are transported from a holding area
to a manufacturing facility for further processing by the available transporters and is used in many
manufacturing systems. This is particularly true in the iron and steel industry.

Formally, we can describe the TBS problem in the following way. We are given a set of jobs, a set
of vehicles (transporters), and a single batching machine that can handle batch jobs at the same time.
Initially, all jobs and all vehicles are located at a holding area and available from time zero onward.
When the production process begins, all jobs have to be transported by the vehicles to the batching
machine and further processing is then carried out, where each vehicle can deliver one job at a time.
The transportation time of a job is job-dependent, the empty moving times of the vehicles from the
batching machine back to the holding area are identical, and the processing times of the batches on the
batching machine are identical. The following notations are used in this scheduling model.

• J = {J1, J2, . . . , Jn} is a set of n jobs to be processed.
• M = {1, 2, . . . , m} is a set of m vehicles used to transport the jobs.
• τj is the transportation time of job Jj, j = 1, 2, . . . , n, from the holding area to the batching machine.
• τ is the empty moving time of each vehicle from the machine back to the holding area. In the

sequel, we simply call τ the vehicle return time.
• c is the capacity of the batching machine. We require that every batch consists at most c jobs.
• p is the processing time of each batch, which is independent of the jobs composing the batch.
• Cj is the completion time of jobs Jj in a schedule, j = 1, 2, . . . , n.
• α(b), which is an increasing function in b, is the processing (or batching) cost if a total of b batches

are generated in of a schedule. The more batches there are, the more processing costs there will be.
• f is the scheduling cost which depends on the completion times C1, C2, . . . , Cn of the jobs.

The goal of the TBS problem is to find a feasible schedule that minimizes the scheduling cost plus
the processing cost. We will denote this problem by (m, c)|τ| f + α(b), where “(m, c)” means that we

Mathematics 2019, 7, 819; doi:10.3390/math7090819 www.mdpi.com/journal/mathematics9
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have m vehicles in the transportation stage and the batching machine has a capacity c for forming a
batch and “τ" indicates the vehicle return time.

Production–transportation problems, which have some similarities as the TBS problems, have
also been extensively studied in the literature. Hall and Potts [2] introduced and studied various
single-machine and parallel-machine scheduling problems in which the various cost functions being
considered are based on the delivery times and delivery cost. Chen [3] surveyed the existing models of
integrated production and outbound distribution scheduling (IPODS) and presented a unified model
representation method. The author also classified the existing models into several different classes and
provided an overview for the optimality properties, computational tractability, and solution algorithms.
As mentioned by Tang and Gong [1], the TBS problem differs from the IPODS problem. In fact, in
the TBS setting, apart from the schedule of the semi-finished jobs in the transportation stage, we also
consider the schedule of these jobs on the batching machine in the production stage.

Recall that a combinatorial optimization problem is binary (unary) NP-hard if it is NP-hard in the
binary (unary) encoding.

Tang and Gong [1] studied the TBS problem which aims to minimize the sum of the total
completion time of the jobs and the processing cost of the batching machine. For this problem, the
authors proved the binary NP-hardness and further established a pseudo-polynomial-time algorithm
and an FPTAS for any fixed m.

For the more “classic" scheduling objectives that exclude the processing cost, Zhu et al. [4] showed
that the complexity result in Tang and Gong [1] is still valid, that is, the TBS problem with fixed m for
minimizing the total completion time of the jobs is binary NP-hard. When m is arbitrary, Zhu et al. [4]
showed that the TBS problem for minimizing the total completion time of the jobs is unary NP-hard.
Moreover, they proved that the TBS problem for minimizing the sum of the total weighted completion
time of the jobs and the processing cost of the batching machine is unary NP-hard even if m = 1
and c = 3. The computational complexity of the TBS problem with m = 1 for just minimizing the
total weighted completion time of the jobs was posed as an open problem in Zhu et al. [4]. It should
be noticed that, in the case where τ = 0, i.e., the vehicle return time is given by 0, the model of
transportation times in the TBS problems can be considered as a special case of setup times studied in
Allahverdi [5] and Ciavotta et al., [6]

In this paper, we consider the TBS problem (1, c)|τ|∑ wjCj, in which we have one single vehicle
in the transportation stage, the scheduling criterion is to minimize the total weighted completion time
of the jobs, and the processing cost is given by 0.

Note that when c = 1 and τ = 0, problem (1, c)|τ|∑ wjCj degenerates to the classical two-machine
flow-shop scheduling problem F2|p2j = p|∑ wjCj. Recently, Wei and Yuan [7] showed that problem
F2|p2j = p|∑ wjCj is unary NP-hard and admits a 2-approximation algorithm. More research of
problem F2||∑ wjCj can be found in Choi et al. [8] and Hoogeveen and Kawaguchi [9].

The unary NP-hardness of problem F2|p2j = p|∑ wjCj, established in the work by the authors
of [7], implies that problem (1, 1)|τ = 0|∑ wjCj is unary NP-hard. However, in general, the
computational complexity of problem (1, c)|τ|∑ wjCj for c ≥ 2 is unaddressed.

In this paper, first, we show that for every c ≥ 3 (including the possibility c = n), problem
(1, c)|τ = 0|∑ wjCj is unary NP-hard. Then, for the general problem (1, c)|τ|∑ wjCj with the batch
capacity c ≥ 2, we present a polynomial-time approximation algorithm, which has a worst-case
performance ratio of less than 3. The complexity of problem (1, 2)|τ|∑ wjCj is still open.

2. Unary NP-Hardness Proof

To show the unary NP-hardness of problem (1, c)|τ = 0|∑ wjCj with c ≥ 3, we will use the
following decision problem “3-Partition" as the source problem. As outlined by Garey and Johnson [10],
a 3-partition is unary NP-complete.

3-Partition: In an instance of the problem, we are given a set {a1, a2, . . . , a3t, B} of 3t + 1 positive
integers satisfying 1

4 B < aj <
1
2 B for j = 1, 2, . . . , 3t and ∑3t

j=1 aj = tB. The decision asks, is there a

10
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partition of the index set I = {1, 2, . . . , 3t} into t parts I1, I2, . . . , It such that |Ii| = 3 and ∑j∈Ii
aj = B

for all i = 1, 2, . . . , t?
The following useful lemma states a basic algebraic result.

Lemma 1. Let x1, x2, . . . , xk be k positive numbers. Then ∑k
i=1 x2

i ≥ k · ( x1+x2+···+xk
k

)2, and moreover the
equality holds if and only if x1 = x2 = · · · = xk =

x1+x2+···+xk
k .

Theorem 1. For every c ≥ 3, problem (1, c)|τ = 0|∑ wjCj is unary NP-hard.

Proof. For a given instance (a1, a2, . . . , a3t; B) of 3-Partition, we first define

Δ = t2B2 + 1 = O(t2B2) (1)

and
M = t(t + 3)(3Δ + B)2 = O(t6B4). (2)

Then we construct a scheduling instance of problem (1, c)|τ = 0|∑ wjCj as follows.

• There are n = 3t + 1 jobs J0, J1, . . . , J3t of two types:

(i) J0, called the 0-job, has a transportation time τ0 = 0 and a weights w0 = M, and
(ii) J1, J2, . . . , J3t, called partition jobs, have transportation times τj = Δ + aj and weights

wj = Δ + aj for j = 1, 2, . . . , 3t.

• The number of vehicles is given by m = 1.
• The vehicle return time is given by τ = 0.
• The batch machine capacity c ≥ 3 is arbitrary, where c = n is allowed.
• The batch processing time is given by p = 3Δ + B = O(t2B2).
• The threshold value is given by

Q = M(3Δ + B) +
1
2

t(t + 3)(3Δ + B)2 = Mp +
1
2

t(t + 3)p2. (3)

The above scheduling instance has 6t + 6 parameters: τj, wj (j = 0, 1, . . . , 3t), τ, p, c, and Q,
with Q being the largest one. Since M = O(t6B4) and p = O(t2B2), from Equation (3), we have
Q = Mp + 1

2 t(t + 3)p2 = O(t8B6). This implies that the size of the above scheduling instance under the
unary encoding is upper bounded by O(t9B6). Note that the size of the 3-partition instance under
the unary encoding is given by O(tB). Then, our scheduling instance can be constructed from the
3-partition instance in a polynomial time under the unary encoding. From the general principle of
NP-hardness proof, we need to show in the following that the 3-Partition instance has a solution if and
only if the scheduling instance has a feasible schedule π such that ∑ wjCj(π) ≤ Q.

Let us first suppose that the 3-Partition instance has a solution, which means that there is a
partition of the index set I = {1, 2, . . . , 3t} into t parts I1, I2, . . . , It such that |Ii| = 3 and ∑j∈Ii

aj = B
for all i = 1, 2, . . . , t. Let J0 = {J0} and Ji = {Jj : j ∈ Ii} for all i = 1, 2, . . . , t. We define a schedule π

for the scheduling instance in the following way.

• The vehicle consecutively transports the 3t + 1 jobs in the order

J0 ≺ J1 ≺ · · · ≺ Jt (4)

one by one, where the transportation order of the three jobs in each Ji, i = 1, 2, . . . , t, does
not matter.

• The batching machine takes each Ji, i = 0, 1, 2, . . . , t, as a single batch and processes the t + 1
batches in the order described in Equation (4) as they are transported. Then we have totally t + 1
processing batches.

11
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Note that the transportation time of the 0-job in J0 is 0, and the total transportation time of the
three partition-jobs in Ji, i ∈ {1, 2, . . . , t}, is given by ∑Jj∈Ji

τj = ∑j∈Ii
(Δ + ai) = 3Δ + B. From p =

3Δ + B, the completion times of the t + 1 batches J0 ≺ J1 ≺ · · · ≺ Jt are given by p, 2p, . . . , (t + 1)p,
respectively. Moreover, the weight of the 0-job in J0 is M and the total weight of the three partition-jobs
in Ji, i ∈ {1, 2, . . . , t}, is given by ∑Jj∈Ji

wj = ∑j∈Ii
(Δ + ai) = 3Δ + B = p. Then we have

∑ wjCj(π) = M · p + p2 · (2 + 3 + · · ·+ (t + 1)) = Mp +
1
2

t(t + 3)p2.

From Equation (3), we have Q = Mp + 1
2 t(t + 3)p2, which leads to the relation ∑ wjCj(π) = Q.

Therefore, π is a required schedule. This proves the necessity.
We next prove the sufficiency. To this end, we suppose that π is a feasible schedule of the

scheduling instance, such that ∑ wjCj(π) ≤ Q. Recall that Q = Mp + 1
2 t(t + 3)p2. Let B0,B1, . . . ,BK

be the batch sequence processed by the batching machine in π in this order.
If the 0-job J0 completes after time p, we have ∑ wjCj(π) > w0C0(π) ≥ M(p + 1) = Mp + M.

From the definition of M in Equation (2), we have M = t(t + 3)(3Δ + B)2 = t(t + 3)p2. Thus,
∑ wjCj(π) > Mp + t(t + 3)p2 > Q, contradicting the choice of π. Consequently, we have

C0(π) = p, B0 = {J0}, and w0C0(π) = Mp. (5)

From Equation (5) and from the fact that ∑ wjCj(π) ≤ Q = Mp + 1
2 t(t + 3)p2, we have

3t

∑
j=1

wjCj(π) ≤ 1
2

t(t + 3)p2. (6)

From the above discussion, we know that the 3t partition-jobs J1, J2, . . . , J3t are distributed into
the K batches Bi, i = 1, 2, . . . , K. Then we define

Ii = {j : Jj ∈ Bi} and Ai = ∑j∈Ii
aj, i = 1, 2, . . . , K. (7)

For each i ∈ {1, 2, . . . , K}, we define w(i) = ∑j∈Ii
wj and τ(i) = ∑j∈Ii

τj. Since wj = τj = Δ + aj for
j ∈ {1, 2, . . . , 3t}, we have

w(i) = τ(i) = |Ii|Δ + Ai, i = 1, 2, . . . , K. (8)

Since each batch Bi cannot be processed before all the jobs in B1 ∪ B2 ∪ · · · ∪ Bi are transported,
we have

CBi (π) ≥ τ(1) + τ(2) + · · ·+ τ(i) + p, i = 1, 2, . . . , K. (9)

Since the batches are processed in the order B0 ≺ B1 ≺ · · · ≺ BK on the batching machine in π,
we further have

CBi (π) ≥ (i + 1)p, i = 1, 2, . . . , K. (10)

Note that ∑K
i=1 τ(i) = ∑3t

j=1 τj = ∑3t
j=1(Δ + aj) = 3tΔ + tB = tp. We show in the following

that K = t.

12
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If K ≥ t + 1, let τ∗ = τ(t+1) + τ(t+2) + · · ·+ τ(K). Then Δ < τ∗ < tp − tΔ. From Equations (9)
and (10), we have

∑3t
j=1 wjCj(π) = ∑K

i=1 w(i)CBi (π)

= ∑t
i=1 τ(i)CBi (π) + ∑K

i=t+1 τ(i)CBi (π)

≥ ∑t
i=1 τ(i)(τ(1) + τ(2) + · · ·+ τ(i) + p) + τ∗(t + 2)p

= 1
2 (∑

t
i=1(τ

(i))2 + (∑t
i=1 τ(i))2) + ∑t

i=1 τ(i)p + τ∗(t + 2)p

= 1
2 ∑t

i=1(τ
(i))2 + 1

2 (tp − τ∗)2 + (tp − τ∗)p + τ∗(t + 2)p

≥ 1
2 · (tp−τ∗)2

t + 1
2 (tp − τ∗)2 + (tp − τ∗)p + τ∗(t + 2)p

> 1
2 t(t + 3)p2,

where the second inequality follows from Lemma 1 and the last inequality follows by a simple
calculation. This contradicts the relation in Equation (6).

If K ≤ t − 1, from Lemma 1 and Equation (9), we have

∑3t
j=1 wjCj(π) = ∑K

i=1 w(i)CBi (π)

≥ ∑K
i=1 τ(i)(τ(1) + τ(2) + · · ·+ τ(i) + p)

= 1
2 (∑

K
i=1(τ

(i))2 + (∑K
i=1 τ(i))2) + ∑K

i=1 τ(i)p

= 1
2 (∑

K
i=1(τ

(i))2 + t2 p2) + tp2

≥ 1
2 (t

2 p2/K + t2 p2) + tp2

> 1
2 (tp2 + t2 p2) + tp2

= 1
2 t(t + 3)p2,

contradicting the relation in Equation (6) again.
The above discussion shows that K = t. Thus, from Lemma 1 and Equation (9) again, we have

∑3t
j=1 wjCj(π) = ∑t

i=1 w(i)CBi (π)

≥ ∑t
i=1 τ(i)(τ(1) + τ(2) + · · ·+ τ(i) + p)

= 1
2 (∑

t
i=1(τ

(i))2 + (∑t
i=1 τ(i))2) + ∑t

i=1 τ(i)p

= 1
2 (∑

t
i=1(τ

(i))2 + t2 p2) + tp2

≥ 1
2 (tp2 + t2 p2) + tp2

= 1
2 t(t + 3)p2

≥ ∑3t
j=1 wjCj(π),

where the last inequality follows from Equation (6). This means that all the inequalities in the above
deduction must hold with equalities. In particular, we have ∑t

i=1(τ
(i))2 = tp2. From Lemma 1 again,

it holds that τ(1) = τ(2) = · · · = τ(t) = p = 3Δ + B. From Equation (8), we conclude that

|I1|Δ + A1 = |I2|Δ + A2 = · · · = |It|Δ + At = 3Δ + B. (11)

Since Ai = ∑j∈Ii
aj ≤ tB for all i = 1, 2, . . . , t and the value Δ = t2B2 + 1 defined in (1) is

sufficiently large, from Equation (11), we can easily deduce that |Ii| = 3 and Ai = B for all i = 1, 2, . . . , t.
Consequently, the 3-partition instance has a solution. The result follows.
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3. Approximation

We assume in this section that c ≥ 2. Given a job instance J = {J1, J2, . . . , Jn} of problem
(1, c)|τ|∑ wjCj, we define

p1,j = τj + τ, j = 1, 2, . . . , n. (12)

In O(n log n) time, we can renumber the n jobs in the nondecreasing order of the ratios
(p1j + p/c)/wj such that

(p1,1 + p/c)/w1 ≤ (p1,2 + p/c)/w2 ≤ · · · ≤ (p1,n + p/c)/wn. (13)

In O(n log n) time, we can also obtain a permutation (1′, 2′, . . . , n′) of {1, 2, . . . , n} such that
τ1′ ≥ τ2′ ≥ · · · ≥ τn′ . Then, we define

α = min{τ1, τ2, · · · , τn, �p/c�} (14)

and
β = max{p, τ1′ + τ2′ + · · ·+ τc′ + cτ}. (15)

For a schedule π of the job instance J , we use C1,j(π) to denote the completion time of job Jj on
the vehicle. Since the batch containing Jj must start at or after time C1,j(π), we have

Cj(π) ≥ C1,j(π) + p, j = 1, 2, . . . , n. (16)

By the job-exchanging argument, we can show that there must be an optimal schedule π of
problem (1, c)|τ|∑ wjCj such that for the two jobs Ji and Jj,

C1,i(π) < C1,j(π) ⇒ Ci(π) ≤ Cj(π). (17)

Then we only consider schedules with the property in (17) in the sequel.
In the following we present an approximation algorithm for problem (1, c)|τ|∑ wjCj with the

worst-case performance ratio at most 3β/(β + α) ≤ 3, where c ≥ 2. Our approximation algorithm can
be described in the following way.

Algorithm 1. For problem (1, c)|τ|∑ wjCj on instance J .

Step 1. Schedule the jobs in the order J1, J2, . . . , Jn on the vehicle without idle time.
Step 2. Form batches and process them on the batching machine by using the following strategy:
When the batching machine is idle at time t and some jobs are available for processing at time
t, it forms and process a new batch, which contains as many jobs as possible subject to the
batch capacity c, by the rule that jobs with small subscriptions have the priority to be processed.

Clearly, Algorithm 1 runs in O(n) time. To analyze the worst-case performance ratio of
Algorithm 1, we first establish a lower bound of the optimal cost of problem (1, c)|τ|∑ wjCj on
instance J .

Lemma 2. Let π∗ be an optimal schedule of instance J and, for each j ∈ {1, 2, . . . , n}, let J[j] denote the job
that occupies the jth position on the vehicle in π∗. Then

n

∑
j=1

w[j]C[j](π
∗) ≥ 1

3
( n

∑
j=1

j

∑
i=1

w[j](p1,[i] + p/c) + (3α + 2p − τ)
n

∑
j=1

w[j]
)
. (18)

14
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Proof. Since π∗ satisfies the property in (17), we may assume that C[1](π
∗) ≤ C[2](π

∗) ≤ · · · ≤ C[n](π
∗).

Note that c ≥ 2 is the batch capacity and each batch has a processing time p. Moreover, the
first batch on the batching machine starts at a time greater than τ[1] = p1,[1] − τ. For each
j = 1, 2, . . . , n, at least �j/c� batches are completed by time C[j](π

∗) on the batch machine. Then
we have C[j](π

∗) ≥ p1,[1] − τ + �j/c�p for j = 1, 2, . . . , n. Consequently, we have

n

∑
j=1

w[j]C[j](π
∗) ≥ (p1,[1] − τ)

n

∑
j=1

w[j] + p
n

∑
j=1

�j/c�w[j]. (19)

From (16), for each j = 1, 2, · · · , n, we also have C[j](π
∗) ≥ C1,[j](π

∗) + p, which implies that

C[j](π
∗) ≥ ∑

j
i=1 p1,[i] + p − τ. Consequently, we have

n

∑
j=1

w[j]C[j](π
∗) ≥

n

∑
j=1

j

∑
i=1

w[j]p1,[i] + (p − τ)
n

∑
j=1

w[j]. (20)

From the above two inequalities, (19) and (20), we obtain

3 ∑n
j=1 w[j]C[j](π

∗) ≥ ∑n
j=1 w[j]

(
p1,[1] − τ + �j/c�p + 2 ∑

j
i=1 p1,[i] + 2(p − τ)

)
≥ ∑n

j=1 w[j]
(

∑
j
i=1(p1,[i] + p/c) + 3α + 2p − τ

)
= ∑n

j=1 ∑
j
i=1 w[j](p1,[i] + p/c) + (3α + 2p − τ)∑n

j=1 w[j].

Then the lemma follows immediately.

The following lemma is also useful in our discussion.

Lemma 3. For any c indices i1, i2, · · · , ic ∈ {1, 2, · · · , n}, we have

|p1,i1 + p1,i2 + · · ·+ p1,ic − p| ≤ β − α

β + α
(p1,i1 + p1,i2 + · · ·+ p1,ic + p).

Proof. Let x = min{p1,i1 + p1,i2 + · · · + p1,ic , p} and y = max{p1,i1 + p1,i2 + · · · + p1,ic , p}. Then
|p1,i1 + p1,i2 + · · ·+ p1,ic − p| = y − x and p1,i1 + p1,i2 + · · ·+ p1,ic + p = x + y. From the definitions
of α and β in Equations (14) and (15), we further have α ≤ x ≤ y ≤ β. This implies that yα ≤ βα ≤ xβ.
Now

|p1,i1 + p1,i2 + · · ·+ p1,ic − p|(β + α)

= (y − x)(β + α) = yβ + yα − xβ − xα

≤ yβ − yα + xβ − xα

= (x + y)(β − α)

= (β − α)(p1,i1 + p1,i2 + · · ·+ p1,ic + p).

It follows that |p1,i1 + p1,i2 + · · ·+ p1,ic − p| ≤ (β − α)(p1,i1 + p1,i2 + · · ·+ p1,ic + p)/(β + α).

Now we are ready to establish our final result. Recall that c ≥ 2.

Theorem 2. Algorithm 1 yields a schedule with cost no more than 3β/(α + β) times the cost of an
optimal schedule.
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Proof. Let π be the schedule of instance J generated by Algorithm 1. Since the jobs in J are scheduled
in the order J1 ≺ J2 ≺ · · · ≺ Jn on the vehicle without idle time, the implementation of Step 2 implies
that, for j = 1, 2, . . . , c, we have

Cj(π) ≤ ∑
j
i=1 p1,i + 2p − τ

= β(∑
j
i=1 p1,i + 2p − τ)/(β + α) + α(∑

j
i=1 p1,i + 2p − τ)/(β + α)

≤ β(∑
j
i=1 p1,i + 2p − τ)/(β + α) + 3αβ/(β + α)

≤ β(∑
j
i=1(p1,i + p/c) + 3α + 2p − τ)/(β + α).

For each j = c + 1, c + 2, . . . , n, we define kj = �j/c� − 1 and lj = j − kjc. Then, we have

Cj(π) ≤ p + max{C1,j(π) + p, Cj−c(π)}
≤ p + max{C1,j−c(π) + p + ∑c

h=1 p1,j−c+h, max{C1,j−c(π) + p, Cj−2c(π)}+ p}
≤ p + max{C1,j−c(π) + p, Cj−2c(π)}+ max{∑c

h=1 p1,j−c+h, p}
≤ p + max{C1,lj+c(π) + p, Clj

(π)}+ ∑
kj−1
i=1 max{∑c

h=1 p1,lj+ic+h, p}
≤ p + max{C1,lj+c(π) + p, C1,lj

(π) + 2p}+ ∑
kj−1
i=1 max{∑c

h=1 p1,lj+ic+h, p}
≤ 2p + C1,lj

(π) + ∑
kj−1
i=0 max{∑c

h=1 p1,lj+ic+h, p}
= ∑

lj
i=1 p1,i + 2p − τ + ∑

kj−1
i=0 max{∑c

h=1 p1,lj+ic+h, p}.

By Lemma 3 and using the algebraic equality

2 · max{x, y} = x + y + |x − y|, for every two real numbers x and y,

we can obtain that

max{∑c
h=1 p1,lj+ic+h, p}

= 1
2
(

∑c
h=1 p1,lj+ic+h + p + |∑c

h=1 p1,lj+ic+h − p|)
≤ 1

2
(

∑c
h=1 p1,lj+ic+h + p + (∑c

h=1 p1,lj+ic+h + p)(β − α)/(β + α)
)

= β(∑c
h=1 p1,lj+ic+h + p)/(β + α).

Then, we have

Cj(π) ≤ (∑
lj
i=1 p1,i + 2p − τ) + β

β+α ∑
kj−1
i=0 (∑c

h=1 p1,lj+ic+h + p)

= α
β+α (∑

lj
i=1 p1,i + 2p − τ) + β

β+α

(
∑k−1

i=0 (∑
c
h=1 p1,l+ic+h + p) + (∑

lj
i=1 p1i + 2p − τ)

)
≤ α

β+α · 3β + β
β+α

(
∑

j
i=1 p1,i + jp/c + 2p − τ

)
= β

β+α

(
∑

j
i=1(p1,i + p/c) + 3α + 2p − τ

)
,

where ∑
lj
i=1 p1,i + 2p − τ ≤ 3β follows from the definition of β. Consequently, we have

n

∑
j=1

wjCj(π) ≤ β

β + α

( n

∑
j=1

j

∑
i=1

wj(p1,i + p/c) + (3α + 2p − τ)
n

∑
j=1

wj
)
. (21)

Now let π∗ be an optimal schedule of instance J , and for each j ∈ {1, 2, . . . , n}, let J[j]
denote the job that occupies the jth position on the vehicle in π∗. Moreover, we consider the
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classical scheduling problem 1||∑ wjCj on job instance J ′ = {J′1, J′2, . . . , J′n}, where each job J′j has a
processing time p1,j + p/c and a weight wj. We consider the two schedules σ = (J′1, J′2, . . . , J′n) and
σ∗ = (J′[1], J′[2], . . . , J′[n]) of problem 1||∑ wjCj on job instance J ′. From Smith [11], the well-known
WSPT rule solves problem 1||∑ wjCj optimally. Thus, from the relations in (13), σ is an optimal
schedule of problem 1||∑ wjCj on job instance J ′. It follows that ∑n

j=1 wjCj(σ) ≤ ∑n
j=1 wjCj(σ

∗). Note

that ∑n
j=1 wjCj(σ) = ∑n

j=1 ∑
j
i=1 wj(p1,i + p/c) and ∑n

j=1 wjCj(σ
∗) = ∑n

j=1 ∑
j
i=1 w[j](p1,[i] + p/c). Then,

we have
n

∑
j=1

j

∑
i=1

wj(p1,i + p/c) ≤
n

∑
j=1

j

∑
i=1

w[j](p1,[i] + p/c). (22)

By applying the inequality in Equation (22) to Equations (18) and (21), we obtain

∑ wjCj(π) ≤ 3β

β + α ∑ w[j]C[j](π
∗)

This completes the proof.

4. Conclusions

We studied the coordination of transportation and batching scheduling with one single vehicle
for minimizing the total weighted completion time of the jobs without considering the processing cost
of the batching machine. For this problem, we showed a unary NP-hardness of at least 3 for each batch
capacity and presented a polynomial-time 3-approximation algorithm when the batch capacity is at
least 2.

Future research may consider to include the processing cost in the objective function. In particular,
approximation behavior of the problem (1, c)|τ|∑ wjCj + α(b) with α(b) = λb being a linear function
in b is worthy of study. Moreover, when the batch capacity is given by c = 2, the computational
complexity of problem (1, 2)|τ|∑ wjCj + α(b) is still open. A polynomial-time approximation scheme
for solving problem (1, c)|τ|∑ wjCj is also expected.
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Abstract: We consider online scheduling with bi-criteria on parallel batch machines, where the batch
capacity is unbounded. In this paper, online means that jobs’ arrival is over time. The objective is to
minimize the maximum machine cost subject to the makespan being at its minimum. In unbounded
parallel batch scheduling, a machine can process several jobs simultaneously as a batch. The processing
time of a job and a batch is equal to 1. When job Jj is processed on machine Mi, it results cost cij. We only
consider two types of cost functions: cij = a + cj and cij = a · cj, where a is the fixed cost of machines
and cj is the cost of job Jj. The number of jobs is n and the number of machines is m. For this problem,
we provide two online algorithms, which are showed to be the best possible with a competitive ratio of
(1+ βm, � n

m�), where βm is the positive root of the equation (1+ βm)m+1 = βm + 2.

Keywords: bi-criteria scheduling; online algorithm; makespan; maximum machine cost; competitive ratio

1. Introduction

In this article, we consider an online bi-criteria scheduling problem to minimize the maximum
machine cost subject to the makespan achieving its minimum. Online means that jobs’ arrival is over
time. It means, until when a job arrives, all information about it, including its arrival time, processing
time and processing cost, is not known by us. For a minimization problem that is relevant to a single
objective function, the competitive ratio of an online algorithm A is defined to be

ρA = sup{ f (A, I)
OPT(A, I)

: I is any job instance and OPT(A, I) > 0}.

Here, f (A, I) is the objective value in algorithm A for any input instance I, OPT(A, I) is the
optimal objective value in the offline circumstance, respectively. We say algorithm A is the best
possible if there doesn’t exist any algorithm A′ such that ρA′ < ρA.

Parallel-batch was first studied by Uzsoy et al. [1,2]. There are two classes of parallel-batch models
that have been widely considered in the literature, the unbounded version b = ∞ and the bounded
version b < ∞, where b is the batch capacity. That is, at most b jobs can be processed simultaneously in
one batch. The processing time of one batch is defined as the longest job in it. Since in this paper we
consider that the jobs are with identical processing time, the processing time of the batches is 1.

In traditional scheduling theory, most problems are concerned with the minimization of one
certain function. There have been many achievements such as, for minimizing maximum completion
time when jobs have the same processing times, Zhang et al. [3] provided two best possible online
algorithmss with 1 + βm and 1 + α-competitive ratio for the unbounded model b = ∞ and bounded
model b < ∞, respectively, and βm satisfies (1 + βm)m+1 = βm + 2, α =

√
5−1
2 . When jobs have

diverse processing times, Tian et al. [4] and Liu et al. [5] independently gave two best possible
online algorithms with competitive ratio of 1 + αm, and αm is the positive solution of the equation

Mathematics 2019, 7, 960; doi:10.3390/math7100960 www.mdpi.com/journal/mathematics19
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α2
m + m · αm − 1 = 0. Fang et al. [6] presented a best possible online algorithm with a competitive

ratio of 1 + φ for a set of processing time scheduling problems, where φ =
√

5−1
2 . For minimizing a

maximum weighted completion time problem, Li et al. [7] established a best possible online algorithm
with a competitive ratio of

√
5+1
2 . For minimizing total weighted completion time problem, Cao et al. [8]

gave a best possible online algorithm with a competitive ratio of ρm, where ρm is the positive solution
of ρm+1

m − ρm − 1 = 0. Some reviews for parallel-batch scheduling research can be found in [9–14].
Today, with the rapid development of science and technology, minimization of one certain

function doesn’t satisfy the needs of things. In addition, jobs’ objective functions may have certain
kinds of aspects to minimize. In recent years, there have been some results about minimizing bi-criteria
objective functions such as Ma et al. [15], who considered an online trade-off scheduling problem
that minimize makespan and total weighted completion time on a single machine, presenting a
nondominated (1 + α, 1 + 1

α )−competitive online algorithm for each α with 0 < α ≤ 1. Liu et al. [16]
considered the single machine online trade-off scheduling problem, which minimizes the makespan
and maximum lateness. They established a nondominated (ρ, 1 + 1

ρ )−competitive online algorithm

with 1 ≤ ρ ≤
√

5+1
2 . Here, a (ρ1, ρ2)-competitive online algorithm is called nondominated if

there is no other (ρ′1, ρ′2)-competitive online algorithm A′ such that (ρ′1, ρ′2) ≤ (ρ1, ρ2) and either
ρ′1 < ρ1 or ρ′2 < ρ2. In addition, Lee et al. [17] considered two bi-criteria scheduling problems:
one is minimizing the maximum machine cost subject to the total completion time achieving its
minimum, another is minimizing the total machine cost subject to the makespan achieves its minimum.
As these two problems are strongly NP-hard, they proposed fast heuristics and found their worst-case
performance bounds.

Another class of scheduling problems with bi-criteria is to minimize a secondary objective function
f2 subject to a primary objective function f1 being at its minimum, and the objective is denoted by
Lex( f1, f2). In practical production, the producer wants to reduce the cost of the machine as soon
as it is finished. Given m parallel batch machines Mi, 1 ≤ i ≤ m, and n jobs Jj, 1 ≤ j ≤ n. Every
machine has a fixed cost ai, job Jj has cost cj, and 1 ≤ j ≤ n. When job Jj is processed on machine
Mi, this will result in different costs cij, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Suppose that xij = 1 if job j is
processed on machine i, otherwise xij = 0. Thus, the total machine cost, is named TMC, and TMC
= ∑m

i=1 ∑n
j=1 cijxij, and the maximum machine cost is named MMC, and MMC = maxm

i=1{∑n
j=1 cijxij}.

In Lee et al. [17], they studied the offline bi-criteria scheduling problems, for which the objective
functions are minimizing MMC subject to the constraint that ∑ Cj is minimized and minimizing TMC
subject to the constraint that Cmax is minimized, where Cj is the completion time of job Jj, ∑ Cj is
total completion time of jobs, and Cmax is the maximum completion time of jobs. They considered
three kinds of cost functions: cij = cj, cij = ai + cj, and cij = ai · cj. In our article, we consider online
algorithms to minimize the maximum machine cost subject to the makespan achieving its minimum,
and the objective function is denoted as Lex(Cmax, MMC). Here, we assume that all machines have the
same fixed cost a, and we consider two kinds of costs: cij = a + cj and cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Since the jobs are processed in batches in our model, the cost of a batch processed on some machine
is defined as the maximum cost of the jobs in it. Then, the cost of one machine is the total cost of the
batches on it. This problem can be written in the three-field notation as Pm|online, p − batch, b = ∞,
pj = 1|Lex(Cmax, MMC), when cij = a + cj or cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

For the online scheduling problem to minimize a primary objective function f1 and a
secondary objective function f2, we say that an online algorithm A is (ρA,1, ρA,2)-competitive if it
is ρA,1-competitive when minimizing f1 and ρA,2-competitive when minimizing f2. In the case that ρA,1
is the competitive ratio of A for minimizing f1 and ρA,2 is the competitive ratio of A for minimizing
f2, we also say that the online algorithm A has a competitive ratio of (ρA,1, ρA,2). Suppose that the best
possible competitive ratio is ρ when minimizing f1. We say that the online algorithm A is the best
possible, if ρA,1 = ρ and there is no other online algorithm A′ such that ρA′ ,1 = ρ and ρA′ ,2 < ρA,2.

This paper is organized as four sections as follows. In Section 2, the parameters and notations are
introduced. In Section 3, the lower bounds of the competitive ratio are presented. In Section 4, two
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best possible online algorithms with a competitive ratio of (1 + βm, � n
m �) are showed, where βm is the

positive root of the equation (1 + βm)m+1 = βm + 2.
The objective considered in this paper is to minimize the maximum machine cost subject to the

makespan being at its minimum. In addition, the algorithms studied in this paper are extensions of
the results about makespan in the literature.

2. Preliminaries and Notations

Some preliminaries and notations that will be used in the paper are shown in the following:

• cmax = max{c1, c2, · · · , cn}: The maximum cost of the jobs;
• Bli : The lth batch on machine Mi;
• cBl : The cost of batch Bl , denoted as cBl , is the maximum cost of jobs belonging to batch Bl ;
• cMi : The cost of machine Mi, i.e., the total cost of all batches on machine Mi;
• U(t): The set of the unscheduled available jobs at time t;
• rmax(t): The last release time of jobs in U(t);
• rj: The release time of job Jj;
• rmax: The last release time of all jobs;
• sl : The starting time of batch Bl by an online algorithm;
• σ and π: The schedules generated by an online algorithm and an offline optimal algorithm,

respectively;
• Cmax(σ) and Cmax(π): The maximum completion time in σ and the maximum completion time in

π, respectively;
• MMC(σ) and MMC(π): The maximum machine cost in σ and the maximum machine cost in π,

respectively.

For minimizing a single criterion, there have been many results about minimizing makespan.
For example, the following lemma shows one result to minimize Cmax. From Theorem 3 of
Zhang et al. [3], we have

Lemma 1. For problem Pm|online, p − batch, b = ∞, pj = 1|Cmax, the competitive ratio of the best possible
online algorithm is 1 + βm, where βm is the positive root of the equation (1 + βm)m+1 = βm + 2.

3. The Lower Bound

Theorem 1. For problem Pm|online, p − batch, b = ∞, pj = 1|Lex(Cmax, MMC), when cij = a + cj or
cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, there exists no online algorithm with a competitive ratio less than
(1 + βm, � n

m �).

Proof. Supposing that the fixed cost of each machine is a, the cost of each job is 1, which means
cmax = 1. Let ψ be the set of the best possible solutions of the objective function Cmax. Then, for ∀σ ∈ ψ,
we prove that there exists no online algorithm that satisfies MMC(σ)

MMC(π)
< � n

m �, subjected to the constraint

Cmax(σ)

Cmax(π)
≤ 1 + βm. (1)

We use adversary strategy to prove this conclusion. Let A be an arbitrary online algorithm, and ε

is an arbitrarily small positive number. Suppose the first job J1 arrives at 0 and starts at s1. From (1),
we can know that s1 ≤ βm. Otherwise, we have

Cmax(σ)

Cmax(π)
=

s1 + 1
r1 + 1

> 1 + βm,
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a contradiction. Job Ji+1 arrives at si + ε and starts at si+1, 1 ≤ i ≤ n − 1. We claim that si ≤
(1 + βm)ri + βm. Otherwise,

Cmax(σ)

Cmax(π)
=

si + 1
ri + 1

>
(1 + βm)ri + βm + 1

ri + 1
= 1 + βm,

Then, Cmax(σ) > (1 + βm)Cmax(π), a contradiction.
Hence, n jobs are processed as n batches on m machines.
When cij = a + cj, after n jobs are processed, there must be not less than � n

m � jobs on one machine.
Because the cost of each job is 1, the maximum machine cost is MMC(σ) ≥ � n

m � × (a + 1). In π, all
jobs can form one batch starting at the last time when the job arrives, so MMC(π) = a + 1. Then, we
get MMC(σ)

MMC(π)
≥ � n

m �.
When cij = a · cj, similarly after n jobs are finished, there must be one machine that does not have

less than � n
m � jobs. Since each job’s cost is 1, the maximum machine cost is MMC(σ) ≥ � n

m � × (a · 1).
In π, all jobs can form one batch starting at the time which the last job arrives, so MMC(π) = a · 1.
Then, we get MMC(σ)

MMC(π)
≥ � n

m �.
Therefore, for problem Pm|online, p − batch, b = ∞, pj = 1|.Lex(Cmax, MMC), when cij = a + cj

or cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, and there exists no online algorithm in which the competitive
ratio is less than (1 + βm, � n

m �).

4. Best Possible Online Algorithms

Here, there are two online algorithms for this problem.

Algorithm H1

At current time t, if some machine is idle, U(t) 	= ∅, when t ≥ (1 + βm)rmax(t) + βm; then, start
the jobs in U(t) as a batch on the idle machine that has the minimum machine cost at the moment.
Otherwise, do nothing but wait.

Algorithm H2

At current time t, if some machine is idle, U(t) 	= ∅, when t ≥ (1 + βm)rmax(t) + βm; then, start
the jobs in U(t) as a batch on the idle machine that has the minimum number of batches at the moment.
Otherwise, do nothing but wait.

Following the notation in Zhang et al. [3], we also call batches that start at (1 + βm)rmax(t) + βm

regular batches. From Lemma 1 of Zhang et al. [3], we have

Lemma 2. All batches generated by algorithm H1 and H2 are regular batches.

Lemma 3. When cij = a + cj, Then, MMC(π) = a + cmax; When cij = a · cj, then MMC(π) = a · cmax.

Proof. The offline optimal objective case of the maximum machine cost MMC is: all jobs can form
one batch starting at the last arrival time on an arbitrary machine. Thus, when cij = a + cj, the
maximum machine cost is MMC(π) = a + cmax; when cij = a · cj, the maximum machine cost is
MMC(π) = a · cmax.

Theorem 2. For problem Pm|online, p − batch, b = ∞, pj = 1|Lex(Cmax, MMC), when cij = a + cj or
cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, algorithm H1 is a best possible online algorithm with a competitive ratio of
(1 + βm, � n

m �).
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Proof. When cij = a + cj, suppose that the schedule generated by algorithm H1 is σ′
1. From Lemmas 1

and 2, we can know that

Cmax(σ
′
1) = (1 + βm)rmax + βm + 1 = (1 + βm)(rmax + 1) ≤ (1 + βm)Cmax(π).

In the following, we prove MMC(σ′
1) ≤ � n

m � · MMC(π). Suppose, in σ′
1, that the machine Mx

has the maximum machine cost, Then,

MMC(σ′
1) = cMx . (2)

We distinguish the following cases:
Case 1 The number of batches on machine Mx is no more than � n

m �. Thus,

cMx ≤ � n
m
� · a + ∑

1≤l≤� n
m �

cBlx

≤ � n
m
� · (a + cmax).

In addition, by (2), we have

MMC(σ′
1) = cMx ≤ � n

m
� · (a + cmax).

From Lemma 3, we get

MMC(σ′
1) ≤ � n

m
� · MMC(π).

Case 2 The number of batches on machine Mx is more than � n
m �. Thus, there must be one machine

that has less than � n
m � batches. Suppose machine Mx′ is the machine that has less than � n

m � batches;
let By be the last batch to process on machine Mx.

Firstly, if machine Mx′ is idle directly before sy, let the total cost of batches that start before sy

on Mx′ be V1. From algorithm H1, because the number of batches on machine Mx′ is no more than
� n

m � − 1, so

V1 ≤ (� n
m
� − 1) · a + ∑

1≤l≤� n
m �−1

cBlx′
. (3)

Moreover, from algorithm H1, the total cost of batches that start before sy on machine Mx is not
greater than the total cost of batches start before sy on machine Mx′ , that is

cMx − (a + cBy) ≤ V1,

then from (3), we have

cMx ≤ V1 + (a + cBy)

≤ (� n
m
� − 1) · a + ∑

1≤l≤� n
m �−1

cBlx′
+ (a + cBy)

≤ � n
m
� · a + (� n

m
� − 1) · cmax + cmax

= � n
m
� · (a + cmax).
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In addition, by (2), we have

MMC(σ′
1) = cMx ≤ � n

m
� · (a + cmax).

Lemma 3 shows that
MMC(σ′

1) ≤ � n
m
� · MMC(π).

Secondly, if machine Mx′ is busy directly before sy, let By′ be the last batch that is on machine Mx

such that machine Mx′ is idle directly before sy′ . Supposing that there are k batches between By and
By′ , we denote them as B′

1, B′
2, · · · , B′

k.
Claim By′ must exist and is not the first batch on Mx.
Otherwise, By′ does not exist or it is the first batch on Mx. This means that machine Mx′ is busy

when B2x , B3x ,· · · start on machine Mx. Since the number of batches on machine Mx is more than � n
m �,

the number of batches on machine Mx′ must be not less than � n
m �, contradicting the assumption that

the number of batches on machine Mx′ is less than � n
m �. Thus, the claim holds.

Let the total cost of batches start before sy′ on machine Mx′ be V2. Then, from the definition of By′
and Mx′ , the number of batches that start before sy′ on machine Mx′ is no more than � n

m� − (k + 2). Thus,

V2 ≤ [� n
m
� − (k + 2)] · a + ∑

1≤l≤� n
m �−(k+2)

cBlx′

≤ [� n
m
� − (k + 2)] · a + [� n

m
� − (k + 2)] · cmax

= [� n
m
� − (k + 2)] · (a + cmax).

That is,
V2 ≤ [� n

m
� − (k + 2)] · (a + cmax). (4)

Furthermore, by algorithm H1, the total cost of batches starting before sy′ on machine Mx is not
greater than the total cost of batches starting before sy′ on machine Mx′ , then

cMx − (a + cBy)− (k · a + ∑
1≤l≤k

cB′
l
)− (a + cBy′ ) ≤ V2.

Thus, from (4), we know that

cMx ≤ V2 + (a + cBy′ ) + (k · a + ∑
1≤l≤k

cB′
l
) + (a + cBy)

≤ [� n
m
� − (k + 2)] · (a + cmax) + (a + cmax) + (k · a + k · cmax) + (a + cmax)

= � n
m
� · (a + cmax).

In addition, by (2), we have

MMC(σ′
1) = cMx ≤ � n

m
� · (a + cmax).

Lemma 3 shows that
MMC(σ′

1) ≤ � n
m
� · MMC(π).

We know that k ≥ 1. When k = 0, similar to the above discussion, the conclusion also holds.
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When cij = a · cj, suppose the schedule produced by algorithm H1 is σ′′
1 . From Lemmas 1

and 2, we obtain that Cmax(σ′′
1 ) ≤ (1 + βm)Cmax(π). In the following, we want to prove that

MMC(σ′′
1 ) ≤ � n

m � · MMC(π). Supposing that machine Mw has maximum machine cost in σ′′
1 , Then,

MMC(σ′′
1 ) = cMw . (5)

We distinguish the following cases:
Case 3 The number of batches is no more than � n

m � on machine Mw. Then,

cMw ≤ ∑
1≤l≤� n

m �
(a · cBlw

)

= a · ∑
1≤l≤� n

m �
cBlw

≤ � n
m
� · a · cmax.

Thus,
cMw ≤ � n

m
� · a · cmax. (6)

From (5) and (6), we have

MMC(σ′′
1 ) = cMw ≤ � n

m
� · (a · cmax).

Lemma 3 shows that
MMC(σ′′

1 ) ≤ � n
m
� · MMC(π).

Case 4 The number of batches is more than � n
m � on machine Mw. Thus, there must be one

machine that has fewer than � n
m � batches. Supposing that machine Mw′ is the machine for which the

number of batches on it is less than � n
m �, let Bz be the last batch to process on machine Mw.

If machine Mw′ is idle directly before sz, we denote the total cost of batches start before sz on
machine Mw′ as V′

1, by algorithm H1 because the number of batches on machine Mw′ is no more than
� n

m � − 1, hence
V′

1 ≤ a · ∑
1≤l≤� n

m �−1
cBlw′ . (7)

Furthermore, by algorithm H1, the total cost of batches starting before sz on machine Mw is not
greater than the total cost of batches starting before sz on machine Mw′ ; then,

cMw − (a · cBz) ≤ V′
1.

From (7), we have

cMw ≤ V′
1 + a · cBz

≤ a · ∑
1≤l≤� n

m �−1
cBlw′ + a · cBz

≤ a · (� n
m
� − 1) · cmax + a · cmax

= a · � n
m
� · cmax.

In addition, by (6), we have

MMC(σ′′
1 ) = cMw ≤ � n

m
� · a · cmax.
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Lemma 3 shows that
MMC(σ′′

1 ) ≤ � n
m
� · MMC(π).

If machine Mw′ is busy directly before sz, let Bz′ be the last batch on machine Mw such that
machine Mw′ is idle directly before sz′ . Similarly, suppose there are k batches between Bz′ and Bz, we
denote them as B′

1, B′
2, · · · , B′

k. From the discussion of case 2 in cij = a + cj situation, such Bz′ must
exist and is not the first batch on Mw. Denoting the total cost of batches starting before sz′ on machine
Mw′ is V′

2; thus, by the definition of Bz′ and Mw′ , the number of batches starting before sz′ on machine
Mw′ is no more than � n

m � − (k + 2). Then,

V′
2 ≤ ∑

1≤l≤� n
m �−(k+2)

a · cBlw′

= a · ∑
1≤l≤� n

m �−(k+2)
cBlw′

≤ a · [� n
m
� − (k + 2)] · cmax.

Thus,
V′

2 ≤ a · [� n
m
� − (k + 2)] · cmax. (8)

Moreover, by algorithm H1, the total cost of batches starting before sz′ on machine Mw is not
greater than the total cost of batches starting before sz′ on machine Mw′ , so

cMw − (a · cBz)− (a · ∑
1≤l≤k

cB′
l
)− (a · cBz′ ) ≤ V′

2.

Therefore, from (8), we get

cMw ≤ V′
2 + a · cBz′ + a · ∑

1≤l≤k
cB′

l
+ a · cBz

≤ a · [� n
m
� − (k + 2)] · cmax + a · cmax + a · k · cmax + a · cmax

= � n
m
� · a · cmax.

In addition, by (6), we have

MMC(σ′′
1 ) = cMw ≤ � n

m
� · (a · cmax).

Lemma 3 shows that
MMC(σ′′

1 ) ≤ � n
m
� · MMC(π).

We know that k ≥ 1. When k = 0, similar to the above discussion, the conclusion also holds.
Overall, for problem Pm|online, p − batch, b = ∞, pj = 1|Lex(Cmax, MMC), when cij = a + cj or

cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, algorithm H1 is a (1 + βm, � n
m �)-competitive online algorithm.

Combining theorem 1, we obtain that algorithm H1 is a best possible online algorithm.

Lemma 4. In algorithm H2, there are at most � n
m � batches on each machine.

Proof. When n ≤ m, there is at most one batch on each machine, so the conclusion holds naturally.
When n > m, suppose, after the kth batch has been processed, that there are at most � k

m � batches on
each machine, and m ≤ k ≤ n − 1. In the following, we have an induction on k, to prove that, after the
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(k + 1)th batch has been processed, there are at most � k+1
m � batches on each machine. The batches are

denoted by B1, B2, · · · , such that s1 < s2 < · · · .
Case 1 k = qm + l, and 1 ≤ q ≤ � n

m � − 1, 1 ≤ l ≤ m − 1, where q, l are integers—as after
the kth batch has been processed, there are k − qm = l machines in which their batch numbers are
� k

m �, and other m − (k − qm) = m − l machines in which their batch numbers are � k
m � − 1. Let sk

be the release time of kth batch, and rk+1 be the latest release time of jobs in (k + 1)th batch. Then,
we get rk+1 > sk; otherwise, jobs in the (k + 1)th batch will process with jobs in the kth batch, a
contradiction. Furthermore, by algorithm H1, we can get that the starting time of the (k + 1)th batch is
(1 + βm)rk+1 + βm. In addition, because

(1 + βm)rk+1 + βm > (1 + βm)sk + βm

= (1 + βm)
2rk + (1 + βm)βm + βm

> (1 + βm)
2sk−1 + (1 + βm)βm + βm

...

> (1 + βm)
msk+1−m +

m−1

∑
i=0

βm(1 + βm)
i

= (1 + βm)
msk+1−m + (1 + βm)

m − 1

=
βm + 2
βm + 1

(sk+1−m + 1)− 1

= sk+1−m +
sk+1−m + 1

βm + 1
≥ sk+1−m + 1,

(1 + βm)rk+1 + βm > sk+1−m + 1. (9)

We use sk+1−m to represent the starting time of the (k + 1 − m)th batch. From (9), it shows
that, when the (k + 1)th batch starts, the (k + 1 − m)th batch has been completed. Then, l
batches that start before the (k + 1 − m)th batch also have been completed. We define these l
batches as Bk+1−m−l , Bk+1−m−(l−1), · · ·, Bk−m. Then, when the (k + 1)th batch starts, l + 1 batches
Bk+1−m−l , Bk+1−m−(l−1), · · ·, Bk−m, Bk+1−m have been completed. In addition, because of k = qm + l,
when the (k + 1)th batch starts, there is at least one machine that is idle. In addition, it can be known,
by algorithm H2, that the number of batches on this idle machine is � k

m � − 1. Hence, after the (k + 1)th
batch is completed, the number of batches on this idle machine is � k

m � − 1 + 1 = � k
m �. Moreover,

because � k
m � = � k+1

m � when k = qm + l, there are k − qm + 1 = l + 1 machines whose batch numbers
are � k+1

m �, and other m − (k − qm + 1) = m − l − 1 machines that have � k+1
m � − 1 batches. This means

that there are at most � k+1
m � batches on each machine. The result follows.

Case 2 k = qm and 1 ≤ q ≤ � n
m � − 1, where q is an integer. After the (k + 1)th batch is

processed, one machine has � k
m �+ 1 batches, and the number of batches on other machines is still � k

m �.
Furthermore, � k

m �+ 1 = � k+1
m � when k = qm. Thus, every machine has at most � k+1

m � batches. The
results follow.

Theorem 3. For problem Pm|online, p − batch, b = ∞, pj = 1|Lex(Cmax, MMC), when cij = a + cj or
cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, algorithm H2 is the best possible online algorithm with a competitive ratio
of (1 + βm, � n

m �).

Proof. When cij = a + cj, suppose the schedule generated by algorithm H2 is σ′
2. From Lemma 1 and

Lemma 2, we have

Cmax(σ
′
2) = (1 + βm)rmax + βm + 1 = (1 + βm)(rmax + 1) ≤ (1 + βm) · Cmax(π).
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In the following, we want to prove MMC(σ′
2) ≤ � n

m � · MMC(π).
Suppose machine Mx has the maximum machine cost, Then,

MMC(σ′
2) = cMx . (10)

From Lemma 4, we know that the number of batches on machine Mx is no more than � n
m �; then,

from (10), we get

MMC(σ′
2) = cMx

≤ � n
m
� · a + ∑

1≤l≤� n
m �

cBlx

≤ � n
m
� · a + � n

m
� · cmax

= � n
m
� · (a + cmax).

In addition, Lemma 3 shows that

MMC(σ′
2) ≤ � n

m
� · MMC(π).

When cij = a · cj, suppose the schedule produced by algorithm H2 is σ′′
2 . From Lemmas 1 and 2,

we can get Cmax(σ′′
2 ) ≤ (1 + βm) · Cmax(π)—the following to prove MMC(σ′′

2 ) ≤ � n
m � · MMC(π).

Assume that machine Mw is the machine with the maximum cost, Then,

MMC(σ′′
2 ) = cMw . (11)

From Lemma 4, we know that the number of batches on machine Mw is no more than � n
m �; then,

from (11), we get

MMC(σ′′
2 ) = cMw

≤ ∑
1≤l≤� n

m �
a · cBlw

≤ � n
m
� · (a · cmax).

From Lemma 3, we have
MMC(σ′′

2 ) ≤ � n
m
� · MMC(π).

To sum up, for problem Pm|online, p − batch, b = ∞, pj = 1|Lex(Cmax, MMC), when cij = a + cj
or cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n, algorithm H2 is an online algorithm with a competitive ratio of
(1 + βm, � n

m �).
Combining Theorem 1, it implies that algorithm H2 is a best possible online algorithm.

5. Conclusions

In this paper, we established two best possible online algorithms for problem Pm|online, p −
batch, b = ∞, pj = 1|Lex(Cmax, MMC), when cij = a + cj or cij = a · cj, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
The algorithms provided in this paper are to minimize the maximum machine cost subject to the
makespan being at its minimum. They are extensions of the algorithm in [3], which is only minimizing
the makespan. Here, we suppose that all machines have the same fixed cost a; for further research,
extending this problem to different machine costs ai is still an important research topic that needs to
be studied.
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Abstract: Scheduling jobs with release and due dates on a single machine is a classical strongly
NP-hard combination optimization problem. It has not only immediate real-life applications but
also it is effectively used for the solution of more complex multiprocessor and shop scheduling
problems. Here, we propose a general method that can be applied to the scheduling problems
with job release times and due-dates. Based on this method, we carry out a detailed study of the
single-machine scheduling problem, disclosing its useful structural properties. These properties
give us more insight into the complex nature of the problem and its bottleneck feature that makes it
intractable. This method also helps us to expose explicit conditions when the problem can be solved
in polynomial time. In particular, we establish the complexity status of the special case of the problem
in which job processing times are mutually divisible by constructing a polynomial-time algorithm
that solves this setting. Apparently, this setting is a maximal polynomially solvable special case of the
single-machine scheduling problem with non-arbitrary job processing times.

Keywords: scheduling algorithm; release-time; due-date; divisible numbers; lateness; bin packing;
time complexity

1. Introduction

Scheduling jobs with release and due-dates on single machine is a classical strongly NP-hard
combination optimization problem according to Garey and Johnson [1]. In many practical scheduling
problems, jobs are released non-simultaneously and they have individual due-dates by which they
ideally have to complete. Since the problem is NP-hard, the existing exact solution algorithms have an
exponential worst-case behavior. The problem is important not only because of its immediate real-life
applications, but also because it is effectively used as an auxiliary component for the solution of more
complex multiprocessor and shop scheduling problems.

Here, we propose a method that can, in general, be applied to the scheduling problems with job
release times and due-dates. Based on this method, we carry out a detailed study of the single-machine
scheduling problem disclosing its useful structural properties. These properties give us more insight
into the complex nature of the problem and its bottleneck feature that makes it intractable. At the
same time, the method also helps us to expose explicit conditions when the problem can be solved
in polynomial time. Using the method, we establish the complexity status of the special case of the
problem in which job processing times are mutually divisible by constructing a polynomial-time
algorithm that solves this setting. This setting is a most general polynomially solvable special case of
the single-machine scheduling problem when jobs have restricted processing times but job parameters
are not bounded: if job processing times are allowed to take arbitrary values from set {p, 2p, 3p, . . . },
for an integer p, the problem remains strongly NP-hard [2]. At the same time, the restricted setting
may potentially have practical applications in operating systems (we address this issue in more detail
in Section 12).

Mathematics 2019, 7, 1104; doi:10.3390/math7111104 www.mdpi.com/journal/mathematics31



Mathematics 2019, 7, 1104

Problem description. Our problem, commonly abbreviated in the scheduling literature as
1|rj|Lmax (the notation suggested by Graham et al. [3]), can be stated as follows. There are given
n jobs {1, 2, . . . , n} and a single machine. Each job j has (uninterruptible) processing time pj, release time
rj and due-date dj: pj is the time required by job j on the machine; rj is the time moment by which job j
becomes available for scheduling on the machine; and dj is the time moment, by which it is desirable
to complete job j on the machine (informally, the smaller is job due-date, the more urgent it is, and the
late completion is penalized by the objective function).

The problem restrictions are as follows. The first basic restriction is that the machine can handle
at most one job at a time.

A feasible schedule S is a mapping that assigns to every job j its starting time tj(S) on the machine,
such that

tj(S) ≥ rj (1)

and
tj(S) ≥ tk(S) + pk, (2)

for any job k included earlier in S (for notational simplicity, we use S also for the corresponding job-set).
The inequality in Equation (1) ensures that no job is started before its release time, and the

inequality in Equation (2) ensures that no two jobs overlap in time on the machine.

cj(S) = tj(S) + pj

is the completion time of job j in schedule S.
The delay of job j in schedule S is

tj(S)− rj.

An optimal schedule is a feasible schedule minimizing the maximum job lateness

Lmax = max{j|cj − dj}

(besides the lateness, there exist other due-date oriented objective functions). Lmax(S) (Lj(S),
respectively) stands for the maximum job lateness in schedule S (the lateness of job j in S, respectively).
The objective is to find an optimal schedule.

Adopting to the standard three-field scheduling notation, we abbreviate the special case of
problem 1|rj|Lmax with divisible job processing times by 1|pj : divisible, rj|Lmax. In that setting, we
restrict job processing times to the mutually divisible ones: given any two neighboring elements in a
sequence of job processing times ordered non-decreasingly, the first one exactly divides the second one
(this ratio may be 1). A typical such sequence is formed by the integers each of which is (an integer)
power of 2 multiplied by an integer p ≥ 1.

A brief introduction to our method. Job release times and due-dates with due-date orientated
objective functions compose a sloppy combination for most of the scheduling problems in the sense
that it basically contributes to their intractability. In such problems, the whole scheduling horizon
can be partitioned, roughly, into two types of intervals, the rigid one and the flexible ones. In an
optimal schedule, every rigid interval (that potentially may contribute to the optimal objective value)
is occupied by a specific set of (urgent) jobs, whereas the flexible intervals can be filled out by the
rest of the (non-urgent) jobs in different ways. Intuitively, the “urgency” of a job is determined by its
due-date and the due-dates of close-by released jobs; a group of such jobs may form a rigid sequence
in a feasible schedule if the differences between their due-dates are “small enough”. The remaining
jobs are to be “dispelled” in between the rigid sequences.

This kind of division of the scheduling horizon, which naturally arises in different machine
environments, reveals an inherent relationship of the scheduling problems with a version of bin
packing problem and gives some insight into a complicated nature of the scheduling problems with job
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release times and due-dates. As shown below, this relationship naturally yields a general algorithmic
framework based on the binary search.

A bridge between the scheduling and the bin packing problems is constructed by a procedure
that partitions the scheduling horizon into the rigid and the flexible intervals. Exploring a recurrent
nature of the scheduling problem, we develop a polynomial-time recursive procedure that partitions
the scheduling horizon into the rigid and flexible intervals. After this partition, the scheduling of the
rigid intervals is easy but scheduling of the flexible intervals remains non-trivial. Optimal scheduling
of the flexible intervals, despite the fact that these intervals are formed by non-urgent jobs, remains
NP-hard. To this end, we establish further structural properties of the problem, which yield a general
algorithmic framework that may require exponential time. Nevertheless, we derive a condition when
the framework will find an optimal solution in polynomial time. This condition reveals a basic difficulty
that would face any polynomial-time algorithm to create an optimal solution.

Some kind of compactness property for the flexible segments may be guaranteed if they are
scheduled in some special way. In particular, we show that the compactness property can be achieved
by an underlying algorithm that works for the mutually divisible job processing times. The algorithm
employs some nice properties of a set of mutually divisible numbers.

In terms of time complexity, our algorithmic framework solves problem 1|rj|Lmax in time
O(n2 log n log pmax) if our optimality condition is satisfied. Whenever during the execution of
the framework the condition is not satisfied, an additional implicit enumeration procedure can
be incorporated (to maintain this work within a reasonable size, here we focus solely to exact
polynomial-time algorithms). Our algorithm for problem 1|pj : divisible, rj|Lmax yields an additional
factor of O(n log pmax), so its time complexity is O(n3 log n log p2

max).
Some previous related work. Coffman, Garey and Johnson [4] previously showed that some

special cases of a number of weakly NP-hard bin packing problems with divisible item sizes can be
solved in polynomial time (note that our algorithm implies a similar result for a strongly NP-hard
scheduling problem). We mention briefly some earlier results concerning our scheduling problem. As
to the exponential-time algorithms, the performance of venerable implicit enumeration algorithms
by McMahon and Florian [5] and Carlier [6] has not yet been surpassed. There is an easily seen
polynomial special case of the problem when all job release times or due-dates are equal (Jackson [7]),
or all jobs have unit processing times (Horn [8]). If all jobs have equal integer length p, the problem
1|pj = p, rj|Lmax can also be solved in polynomial time O(n2 log n). Garey et al. [9] described how the
union and find tree with path compression can be used to reduce the time complexity to O(n log n).
The problem 1|pj ∈ {p, 2p}, rj|Lmax, in which job processing times are restricted to p and 2p, for an
integer p, can also be solved in polynomial O(n2 log n log p) time [10]. If we bound the maximum
job processing time pmax by a polynomial function in n, P(n) = O(nk), and the maximal difference
between the job release times by a constant R, then the problem 1/pmax < P, |rj − ri| < R/Lmax

remains polynomially solvable [2]. When P(n) is a constant or it is O(n), the time complexity of the
algorithm by [2] is O(n2 log n log pmax); for k ≥ 2, it is O(nk+1 log n log pmax). The algorithm becomes
pseudo-polynomial without the restriction on pmax and it becomes exponential without the restriction
on job release times. In another polynomially solvable special case the jobs can be ordered so that
d1 ≤ · · · ≤ dn and d1 − αr1 − βp1 ≥ · · · ≥ dn − αrn − βpn, for some α ∈ [0,+∞) and β ∈ [0, 1] Lazarev
and Arkhipov [11]. The problem allows fast O(n log n) solution if for any pair of jobs j, i with ri > rj
and di < dj, dj − rj − pj ≤ di − ri − pi, and if ri + pi ≥ rj + pj then di ≥ dj [12].

The structure of this work. This paper consists of two major parts. In Part 1, an algorithmic
framework for a single machine environment and a common due-date oriented objective function, the
maximum job lateness, is presented, whereas, in Part 2, the framework is finished to a polynomial-time
algorithm for the special case of the problem with mutually divisible job processing times. In Section 2,
we give a brief informal introduction to our method. Section 3 contains a brief overview of the basic
concepts and some basic structural properties that posses the schedules enumerated in the framework.
In Section 4, we study recurrent structural properties of our schedules, which permit the partitioning
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of the scheduling horizon into the two types of intervals. In Section 5, we describe how our general
framework is incorporated into a binary search procedure. In Section 6, we give an aggregated
description of our main framework based on the partitioning of the scheduling horizon into the flexible
and the rigid segments, and show how the rigid segments are scheduled in an optimal solution. In
Section 7, we describe a procedure which is in charge of the scheduling of the non-urgent segments,
and formulate our condition when the main procedure will deliver an optimal solution. This completes
Part 1. Part 2 consists of Sections 8–11, and is devoted to the version of the general single-machine
scheduling problem with mutually divisible job processing times (under the assumption that the
optimality condition of Section 7 is not satisfied). In Section 8, we study the properties of a set
of mutually divisible numbers that we use to reduce the search space. Using these properties, we
refine our search in Section 9. In Section 10, we give the final examples illustrating the algorithm for
divisible job processing times. In Section 11, we complete the correctness proof of that algorithm. The
conclusions in Section 12 contain final analysis, possible impact, extensions and practical applications
of the proposed method and the algorithm for the divisible job processing times.

2. An Informal Description of the General Framework

In this section, we give a brief informal introduction to our method (the reader may choose to
skip it and go to formal definitions of the next section). We mention above the ties of our scheduling
problem with a version of bin packing problem, in which there is a fixed number of bins of different
capacities and the objective is to find out if there is a feasible solution respecting all the bin capacities.
To see the relationship between the bin packing and the scheduling problems, we analyze the structure
of the schedules that we enumerate. In particular, the scheduling horizon will contain two types of
sequences formed by the “urgent” jobs (that we call kernels) and the remaining sequences formed
by the “non-urgent” jobs (that we call bins). A key observation is that a kernel may occupy a quite
restricted time interval in any optimal schedule, whereas the bin intervals can be filled out by the
non-urgent jobs in different ways. In other words, the urgent jobs are to be scheduled within the rigid
time intervals, whereas non-urgent ones are to be dispelled within the flexible intervals. Furthermore,
the time interval within which each kernel is to be scheduled can be “adjusted” in terms of the delay
of its earliest scheduled job. In particular, it suffices to consider the feasible schedules in which the
earliest job of a kernel K is delayed by at most some magnitude, e.g., δK; δK ∈ [0, ΔK], where ΔK is
the initial delay of the earliest scheduled job of that kernel (intuitively, ΔK can be seen as an upper
bound on the possible delay for kernel K, a magnitude, by which the earliest scheduled job of kernel K
can be delayed without surpassing the minimal so far achieved maximum job lateness). As shown
below, for any kernel K, ΔK < pmax = maxj{pj}. Observe that, if δK = 0, i.e., when we restrict our
attention to the feasible schedules in which kernel K has no delay, the lateness of the latest scheduled
job of that kernel is a lower bound on the optimal objective value. In this way, we can calculate the
time intervals which are to be assigned to every kernel relatively easily. The bins are formed by the
remaining time intervals. The length of a bin, i.e., that of the corresponding time interval, will not be
prior fixed until the scheduling of that bin is complete (roughly, because there might be some valid
range for the “correct” ΔKs).

Then, roughly, the scheduling problem reduces to finding out if all the non-kernel jobs can “fit”
feasibly (with respect to their release times) into the bins without surpassing the currently allowable
lateness for the kernel following that bin; recall that the “allowable lateness” of kernel K is determined
by δK. We “unify” all the δKs to a single δ (common for all the kernels), and carry out binary search to
find an optimal δ within the interval [0, maxK ΔK (the minimum δ such that all the non-kernel jobs fit
into the bins; the less is δ, the less is the imposed lateness for the kernel jobs).

Thus, there is a fixed number of bins of different capacities (which are the lengths of the
corresponding intervals in our setting), and the items which are to be assigned to these bins are
non-kernel jobs. We aim to find out if these items can feasibly be packed into these bins. A simplified
version of this problem, in which no specified time interval with each bin is associated and the items
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can be packed in any bin, is NP-hard. In our version, whether a job can be assigned to a bin depends,
in a straightforward way, on the interval of that bin and on the release time of that job (a feasible
packing is determined according to these two parameters).

If the reader is not yet too confused, we finally note that the partition of jobs into kernel and
non-kernel ones is somewhat non-permanent: during the execution of our framework, a non-kernel
job may be “converted” into a kernel one. This kind of situation essentially complicates the solution
process and needs an extra treatment. Informally, this causes the strong NP-hardness of the scheduling
problem: our framework will find an optimal solution if no non-kernel job converts to a kernel one
during its execution (the so-called instance of Alternative (b2)). We observe this important issue in
later sections, starting from Section 7.

3. Basic Definitions

This subsection contains definitions which consequently gain in structural insight of problem
1|rj|Lmax (see, for instance, [2,13]). First, we describe our main schedule generation tool. Jackson’s
extended heuristics (Jackson [7] and Schrage [14]), also referred to as the Earliest Due-date heuristics
(ED-heuristics), is commonly used for scheduling problems with job release times and due-dates.
ED-heuristics is characterized by n scheduling times: these are the time moments at which a job is
assigned to the machine. Initially, the earliest scheduling time is set to the minimum job release time.
Among all jobs released by a given scheduling time (the jobs available by that time moment), one
with the minimum due-date is assigned to the machine (ties can be broken by selecting a longest
job). Iteratively, the next scheduling time is the maximum between the completion time of the latest
assigned so far job to the machine and the minimum release time of a yet unassigned job (note that
no job can be started before the machine gets idle, and no job can be started before its release time).
Among all jobs available by each scheduling time, a job with the minimum due-date is determined and
is scheduled on the machine at that time. Thus, whenever the machine becomes idle, ED-heuristics
schedules an available job giving the priority to a most urgent one. In this way, it creates no gap that
can be avoided (by scheduling some already released job).

3.1. Structural Components in an ED-Schedule

While constructing an ED-schedule, a gap (an idle machine-time) may be created (a maximal
consecutive time interval during which the machine is idle; by our convention, there occurs a 0-length
gap (cj, ti) if job i is started at its release time immediately after the completion of job j.

An ED-schedule can be seen as a sequence of somewhat independent parts, the so-called blocks;
each block is a consecutive part in that schedule that consists of a sequence of jobs successively
scheduled on the machine without any gap in between any neighboring pair of them; a block is
preceded and succeeded by a (possibly a 0-length) gap.

As shown below in this subsection, by modifying the release times of some jobs, ED-heuristics
can be used to create different feasible solutions to problem 1|rj|Lmax. All feasible schedules that
we consider are created by ED-heuristics, which we call ED-schedules. We construct our initial
ED-schedule, denoted by σ, by applying ED-heuristics to the originally given problem instance. Then,
we slightly modify the original problem instance to generate other feasible ED-schedules.

Kernels. Now, we define our kernels and the corresponding bins formally. Recall that kernel jobs
may only occupy restricted intervals in an optimal schedule, whereas the remaining bin intervals are to
be filled in by the rest of the jobs (the latter jobs are more flexible because they may be “moved freely”
within the schedule, without affecting the objective value to a certain degree, as we show below).

Let B(S) be a block in an ED-schedule S containing job o that realizes the maximum job lateness
in that schedule, i.e.,

Lo(S) = maxj{Lj(S)} = Lmax(S). (3)
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Among all jobs in block B(S) satisfying Equation (3), the latest scheduled one is called an overflow
job in schedule S.

A kernel in schedule S is a longest continuous job sequence ending with an overflow job o, such
that no job from this sequence has a due-date greater than do (for notational simplicity, we use K also
for the corresponding job-set). For a kernel K, we let r(K) = mini∈K{ri}. We may observe that the
number of kernels in schedule S equals to the number of the overflow jobs in it. Besides, since every
kernel is contained within a single block, it may include no gap. We denote by K(S) the earliest kernel
in schedule S. The following proposition states an earlier known fact from [13]. Nevertheless, we also
give its proof as it gains some intuition on the used here techniques.

Proposition 1. The maximum lateness of a job of kernel K in ED-schedule S is the minimum possible if the
earliest scheduled job of that kernel starts at time r(K). Hence, if schedule S contains a kernel with this property,
then it is optimal.

Proof. By the definition, for any job j ∈ K, dj ≤ do (job j is no-less urgent than the overflow job o),
whereas note that the maximum lateness of a job of kernel K in schedule S is Lo(S). At the same time,
the jobs in kernel K form a tight (continuous) sequence without any gap. Let S′ be a complete schedule
in which the order of jobs of kernel K differs to that in schedule S and let job o′ realizes the maximum
lateness of a job of kernel K in schedule S′. Then, from the above observations and the fact that the
earliest job of kernel K starts at its release time in schedule S, it follows that

Lo(S) ≤ Lo′(S
′).

Hence,
Lmax(S′) ≥ Lo(S) = Lmax(S) (4)

and schedule S is optimal.

Emerging jobs. In the rest of this section, let S be an ED-schedule with kernel K = K(S) and with
the overflow job o ∈ K such that the condition in Proposition 1 does not hold. That is, there exists job e
with de > do scheduled before all jobs of kernel K that imposes a forced delay (right-shift) for the jobs
of that kernel. By creating an alternative feasible schedule in which job e is rescheduled after kernel
K, this kernel may be (re)started earlier, i.e., the earliest scheduled job of kernel K may be restarted
earlier than the earliest scheduled job of that kernel has started in schedule S. We need some extra
definitions before we define the so-obtained alternative schedule formally.

Suppose job i precedes job j in ED-schedule S. We say that i pushes j in S if ED-heuristics may
reschedule job j earlier if job i is forced to be scheduled after job j.

If (by the made assumption immediately behind Proposition 1) the earliest scheduled job of kernel
K does not start at its release time, then it is immediately preceded and pushed by Job l with dl > do,
the so-called delaying emerging job for kernel K (we use l exclusively for the delaying emerging job).

Besides the delaying emerging job, there may exist job e with de > do scheduled before kernel K
(hence before Job l) in schedule S pushing jobs of kernel K in schedule S. Any such job as well as Job l
is referred to as an emerging job for K.

We denote the set of emerging jobs for kernel K in schedule S by E(K). Note that l ∈ E(K) and
since S is an ED-schedule, re < r(K), for any e ∈ E(K), as otherwise a job of kernel K with release time
r(K) would have been included at the starting time of job e in schedule S.

Besides jobs of set E(K), schedule S may contain job j satisfying the same parametric conditions
as an emerging job from set E(K), i.e., dj > do and rj < r(K), but scheduled after kernel K. We call
such a job a passive emerging job for kernel K (or for the overflow job o) in schedule S. We denote the set
of all the passive emerging jobs for kernel K = K(S) by EP(K).
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Note that any j ∈ EP(K) is included in block B(S) (the block in schedule S containing kernel K)
in schedule S. Note also that, potentially, any job j ∈ EP(K) can be feasibly scheduled before kernel K
as well. A job not from set E(K) ∪ EP(K) is a non-emerging job in schedule S.

In summary, all jobs in E(K) ∪ EP(K) are less urgent than all jobs of kernel K and any of them
may be included before or after that kernel within block B(S). The following proposition is not difficult
to prove (e.g., see [13]).

Proposition 2. Let S′ be a feasible schedule obtained from schedule S by the rescheduling a non-emerging job of
schedule S after kernel K. Then, The inequality in Equation (4) holds.

Activation of an emerging job. Because of the above proposition, it suffices to consider only the
rearrangements in schedule S that involve the jobs from set E(K) ∪ EP(K). As the first pass, to restart
kernel K earlier, we may create a new ED-schedule Se obtained from schedule S by the rescheduling
an emerging job e ∈ E(K) after kernel K (we call this operation the activation of job e for kernel K).
In ED-schedule Se, besides job e, all jobs in EP(K) are also scheduled (remain to be scheduled) after
kernel K. Technically, we create schedule Se by increasing the release times of job e and jobs in EP(K)
to a sufficiently large magnitude (e.g., the maximum job release time in kernel K), so that, when
ED-heuristics is newly applied, neither job e nor any of the jobs in set EP(K) will be scheduled before
any job of kernel K.

It is easily seen that kernel K (regarded as a job-set) restarts earlier in ED-schedule Se than it has
started in schedule S. In particular, the earliest job of kernel K is immediately preceded by a gap and
starts at time r(K) in schedule Sl , whereas the earliest scheduled job of kernel K in schedule S starts
after time r(K) (the reader may have a look at the work of Vakhania, N. [13] for more details on the
relevant issues).

L-schedules. We call a complete feasible schedule SL in which the lateness of no job is more than
threshold L, an L-schedule. In schedule S, job i is said to surpass the L-boundary if Li(S) > L.

The magnitude
λi(S) = Li(S)− L (5)

is called the L-delay of job i in schedule S.

3.2. Examples

We illustrate the above introduced notions in the following two examples.

Example 1. We have a problem instance with four jobs {l, 1, 2, 3}, defined as follows:
rl = 0, pl = 16, dl = 100,
r1 = 5, p1 = 2, d1 = 8,
r2 = 4, p2 = 4, d2 = 10,
r3 = 3, p3 = 8, d3 = 12.

The initial ED-schedule σ is illustrated in Figure 1. There is a single emerging job in that
schedule, which is the delaying emerging Job l pushing the following scheduled Jobs 1–3, which
constitute the kernel in σ; Job 3 is the overflow job o in schedule σ, which consists of a single block.
Lmax(σ) = L3(σ) = 30 − 12 = 18.

ED-schedule σl , depicted in Figure 2, is obtained by activating the delaying emerging Job l in
schedule σ (the release time of Job l is set to that of job 1 and ED-heuristics is newly applied). Kernel in
that schedule is formed by Jobs 1 and 2, Job 2 is the overflow job with Lmax(σl) = L2(σl) = 17− 10 = 7,
whereas Job 3 becomes the delaying emerging job in schedule σl .
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Figure 1. The initial ED-schedule σ for Example 1.

Figure 2. The ED-schedule σl for Example 1.

Example 2. In our second (larger) problem instance, we have eight jobs {l, 1, 2, . . . , 7}, defined as follows:
rl = 0, pl = 32, dl = 50,
r1 = 3, p1 = 4, d1 = 23,
r2 = 10, p2 = 2, d2 = 22,
r3 = 11, p3 = 8, d3 = 20,
r4 = 0, p4 = 8, d4 = 67,
r5 = 54, p5 = 4, d5 = 58,
r6 = 54, p6 = 4, d6 = 58,
r7 = 0, p7 = 8, d7 = 69.

The initial ED-schedule σ is illustrated in Figure 3. Job l is the delaying emerging job, and Jobs 4
and 7 are passive emerging jobs. The kernel K1 = K(σ) is formed by Jobs 3, 2, and 1 (Job 1 being the
overflow job).

ED-schedule σl is depicted in Figure 4. There arises a (new) kernel K2 = K(σl) formed by Jobs 5
and 6, whereas Job 4 is the delaying emerging job (Job 7 is the passive emerging job for both, kernels
K1 and K2). Job 6 is the overflow job, with Lmax(σl) = L6(σl) = 68 − 58 = 10.

Figure 3. The initial ED-schedule σ for Example 2.

Figure 4. ED-schedule σl for Example 2.

4. Recurrent Substructures for Kernel Jobs

In this section, we describe a recursive procedure that permits us to determine the rigid intervals of
a potentially optimal schedule (as we show below, these intervals not necessarily coincide with kernel
intervals detected in ED-schedules). The procedure relies on an important recurrent substructure
property, which is also helpful for the establishment of the ties of the scheduling problem with bin
packing problems.

We explore the recurrent structure of our scheduling problem by analyzing ED-schedules. To start
with, we observe that in ED-schedule Sl (where l is the delaying emerging job for kernel K = K(S)),
the processing order of the jobs in kernel K can be altered compared to that in schedule S. Since
the time interval that was occupied by Job l in schedule S gets released in schedule Sl , some jobs of
kernel K may be scheduled within that interval (recall that by the construction, no job from EP(K)
may occupy that interval). In fact, the processing order of jobs of kernel K in schedules S and Sl might
be different: recall from Section 3 that a job j ∈ K with rj = r(K) will be included the first within
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the above interval in schedule Sl (whereas kernel K in schedule S is not necessarily initiated by job j;
the reader may compare ED-schedules of Figures 1 and 2 and those of Figures 3 and 4 of Examples 1
and 2, respectively).

We call job j ∈ K anticipated in schedule Sl if it is rescheduled to an earlier position in that schedule
compared to its position in schedule S (in ED-schedules of Figures 2 and 4, Job 3 and Jobs 1 and 2,
respectively, are the anticipated ones). In other words, job j surpasses at least one job i in schedule Sl
such that i has surpassed j in schedule S (we may easily observe that, due to ED-heuristics, this may
only happen if qj < qi, as otherwise job j would have been included before job i already in schedule S).
Recall from Section 3 that the earliest scheduled job of kernel K is immediately preceded by a newly
arisen gap in schedule Sl (in ED-schedules of Figures 2 and 4 it is the gap [0, 3)). Besides, a new gap in
between the jobs of kernel K may also arise in schedule Sl if there exists an anticipated job since, while
rescheduling the jobs of kernel K, there may occur a time moment at which some job of that kernel
completes but no other job is available in schedule Sl . Such a time moment in ED-schedule of Figure 4
is 7, which is extending up to the release Time 10 of Job 2 resulting in a new gap [7, 10) arising within
the jobs of kernel K1.

It is apparent now that jobs of kernel K (kernel K1 in the above example) may be redistributed
into several continuous parts separated by the gaps in schedule Sl (the first such part in ED-schedule
of Figure 4. consists of the anticipated Job 1 and the second part consists of Jobs 2 and 3, where Job 2 is
another anticipated job).

If there arises an anticipated job so that the jobs of kernel K are redistributed into one or more
continuous parts in schedule Sl , then kernel K is said to collapse; if kernel K collapses into a single
continuous part, then this continuous part and kernel K, considered as job-sets, are the same, but the
corresponding job sequences are different because of an anticipated job. It follows that, if kernel K
collapses, then there is at least one anticipated job in schedule Sl that converts to the delaying emerging
job in that schedule (recall from Proposition 1 that schedule S is optimal if it possesses no delaying
emerging job).

Throughout this section, we concentrate our attention to the part of schedule Sl initiating at the
starting time of Job l in schedule S and containing all the newly arisen continuous parts of kernel K in
that schedule that we denote by Sl [K]. We treat this part as an independent ED-schedule consisting
of solely the jobs of the collapsed kernel K (recall that no job distinct from a job of kernel K may be
included in schedule Sl until all jobs of kernel K are scheduled, by the definition of that schedule).
For the instance of Example 1 with S = σ, schedule σl [K] is the part of the ED-schedule of Figure 2 that
initiates at at Time 0 and ends at Time 17. For the instance of Example 2, schedule σl [K1] starts at Time
0 and ends at Time 20 (see Figure 4).

We distinguish three different types of continuous parts in schedule Sl [K]. A continuous
part that consists of only anticipated jobs (contains no anticipated job, respectively) is called an
anticipated (uniform, respectively) continuous part. A continuous part which is neither anticipated
nor uniform is called mixed (hence, mixed continuous part contains at least one anticipated and one
non-anticipated job).

We observe that in ED-schedule of Figure 2 schedule σl [K] consists of a single mixed continuous
part with the anticipated Job 3, which becomes the new delaying emerging job in that schedule.
Schedule σl [K1] of Example 2 (Figure 4) consists of two continuous parts, the first of which is anticipated
with a single anticipated Job 1, and the second one is mixed with the anticipated Job 2. The latter job
becomes the delaying emerging job in schedule σl [K1] and is followed by Job 3, which constitutes the
unique kernel in schedule σl [K1].

Substructure Components

The decomposition of kernel K into the continues parts has the recurrent nature. Indeed, we easily
observe that schedule Sl [K] has its own kernel K1 = K((Sl)[K]). If kernels K and K1 (considered as
sequences) are different, then the decomposition process naturally continues with kernel K1 (otherwise,
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it ends by Point (4) of Proposition 3). For instance, in Example 1, kernel K1 is constituted by Jobs 1 and 2
(Figure 2) and, in Example 2, it is constituted by Job 3 (see Figure 4) (in Lemma 4, we show that schedule
Sl [K] may contain only one kernel, which is from the last continuous part of that schedule). In turn, if
kernel K1 possesses the delaying emerging job, it may also collapse, and this process may recurrently
be repeated. This gives the rise to a recurrent substructure decomposition of kernel K. The process
continues as long as the next arisen kernel may again collapse, i.e., it possesses the delaying emerging
job. Suppose there is the delaying emerging job l1 for kernel K1 in schedule Sl [K]. We recurrently
define a (sub)schedule Sl,l1 [K, K1] of schedule Sl [K] containing only jobs of kernel K1 and in which
the delaying emerging job l1 is activated for that kernel, similarly to what is done for schedule Sl [K].
This substructure definition applies recursively as long as every newly derived (sub)schedule contains
a kernel that may collapse, i.e., it possesses the delaying emerging job (this kernel belongs to the
last continuous part of the (sub)schedule, as we prove in Lemma 4). This delaying emerging job is
activated and the next (sub)schedule is similarly created.

We refer to the created is this (sub)schedules as the substructure components arisen as a result
of the collapsing of kernel K and the following arisen kernels during the decomposition process. As
already specified, the first component in the decomposition is Sl [K] with kernel K1 = K(Sl [K]), the
second one is Sl,l1 [K, K1] with kernel K2 = K(Sl,l1 [K, K1]), the third one is Sl,l1,l2 [K, K1, K2], with kernel
K3 = K(Sl,l1,l2 [K, K1, K2]), where l2 is the delaying emerging job of kernel K2, and so on, with the
last atomic component being Sl,l1,...,lk [K, K1, . . . , Kk] such that the kernel K∗ = K(Sl,l1,...,lk [K, K1, . . . , Kk])

of that component has no delaying emerging job (here, lk is the delaying emerging job of kernel
Kk). Note that the successively created components during the decomposition form an embedded
substructure in the sense that the set of jobs that contains each next generated component is a proper
subset of that of the previously created one: substructure component Sl,l1,...,lj

[K, K1, . . . , Kj], for any
j ≤ k, contains only jobs of kernel Kj, whereas clearly |Kj| < |Sl,l1,...,lj−1

[K, K1, . . . , Kj−1]| (as kernel Kj
does not contain, at least, job lj, i.e., no activated delaying emerging job pertains to the next generated
substructure component).

Below, we give a formal description of the procedure that generates the complete decomposition
of kernel K, i.e., it creates all the substructure components of that kernel.

PROCEDURE Decomposition(S, K, l)
{S is an ED-schedule with kernel K and delaying emerging Job l}

WHILE Sl [K] is not atomic DO
BEGIN

S := Sl [K]; K := the kernel in component Sl [K];
l := the delaying emerging job of component Sl [K];
CALL PROCEDURE Decomposition(S, K, l)

END.

We illustrate the decomposition procedure on our two problem instances.

Example 1 (continuation). In the decomposition of kernel K(σ) of Example 1, in ED-schedule
of Figure 2, kernel K1 of substructure component Sl [K] consists of Jobs 1 and 2, and Job 3 is the
corresponding delaying emerging job. Figure 5 illustrates schedule σl,3 obtained from schedule
σl of Figure 2 by the activation of the (second) emerging Job 3 (which, in fact, is optimal for the
instance of Example 1, with Lmax(σl,3) = L3(σl,3) = 18 − 12 = 6). A new substructure component
Sl,3[K, K1] consisting of jobs of kernel K1 is a mixed continuous part with the anticipated Job 2.
Kernel K2 of that component consists of Job 1, whereas Job 2 is the delaying emerging job for that
sub-kernel (L1(σl,3) = 10 − 8 = 2). Figure 6 illustrates ED-schedule σl,3,2 that contains the next
substructure component Sl,3,2[K, K1, K2] consisting of Job 1. Substructure component Sl,3,2[K, K1, K2] is
uniform and is the last atomic component in the decomposition, as it possesses no delaying emerging
job and forms the last (atomic) kernel K3 in the decomposition (with no delaying emerging job).
Lmax(Sl,3,2[K, K1, K2]) = L1(σl,3,2) = 7 − 8 = −1. Note that the kernel in component Sl,3,2[K, K1, K2]
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coincides with that component and is not a kernel in ED-schedule σl,3,2 (the overflow job in that
schedule is Job 3 with Lmax(σl,3,2) = L3(σl,3,2) = 19 − 12 = 7).

Figure 5. ED-schedule representing the second substructure component in the decomposition of kernel
K for Example 1.

Figure 6. ED-schedule representing the third (atomic) substructure component in the decomposition of
kernel K for Example 1.

Example 2 (continuation). Using this example, we illustrate the decomposition of two different
kernels, which are denoted by K1 and K2 abvoe. In the decomposition of kernel K1, in ED-schedule
σl of Figure 4, we have two continuous parts in substructure component Sl [K1], the second of which
contains kernel K1

1 consisting of Job 3; the corresponding delaying emerging job is Job 2. The next
substructure component Sl,2[K1, K1

1] consisting of Job 3 (with the lateness 19 − 20 = −1) is uniform
and it is an atomic component that completes the decomposition of kernel K1. This component can be
seen in Figure 7 representing ED-schedule σl,2 obtained from schedule σl of Figure 4 by the activation
of the emerging Job 2 for kernel K1

1.
Once the decomposition of kernel K1 is complete, we detect a new kernel K2 consisting of Jobs

5 and 6 in the ED-schedule σl,2 depicted in Figure 7 (the same kernel is also represented in the
ED-schedule σl of Figure 4). Kernel K2 possesses the delaying emerging Job 4. The first substructure
component S4[K2] in the decomposition of kernel K2 consists of a single uniform continuous part,
which forms also the corresponding kernel K2

1. The latter kernel has no delaying emerging job and the
component S4[K2] is atomic (see Figure 8).

Figure 7. ED-schedule representing the second (atomic) substructure component in the decomposition
of kernel K1 and kernel K2 for Example 2.

Figure 8. ED-schedule representing the atomic substructure components for kernels K1 and K2 for
Example 2.

We need a few auxiliary lemmas to prove the validity of the decomposition procedure.
For notational simplicity, we state them in terms of schedule S with kernel K and the component
Sl [K] (instead of referring to an arbitrary component Sl,l1,...,lj

[K, K1, . . . , Kj] with kernel Kj+1 and the
following substructure component Sl,l1,...,lj ,lj+1

[K, K1, . . . , Kj, Kj+1]). The next proposition immediately
follows from the definitions.

Proposition 3. Suppose kernel K collapses. Then:

(1) The anticipated jobs from kernel K are non-kernel jobs in schedule Sl [K].
(2) Any continuous part in schedule Sl [K] is either anticipated or uniform or mixed.
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(3) If schedule Sl [K] consists of a single continuous part then it is mixed.
(4) If K((Sl)[K]) = K (considering the kernels as job sequences), then schedule Sl [K] consists of (a unique)

uniform part that forms its kernel K((Sl)[K]). This kernel has no delaying emerging job and hence cannot
be further decomposed.

Lemma 1. Let A be an anticipated continuous part in component Sl [K]. Then for any job j ∈ A,

Lj(Sl [K]) < Lmax(Sl [K]),

i.e., an anticipated continuous part may not contain kernel K(Sl [K]).

Proof. Let G be the set of all jobs which have surpassed job j in schedule S and were surpassed
by j in Sl [K] (recall the definition of an anticipated part). For any job i ∈ G, dj ≥ di since job j is
released before jobs in set G and it is included after these jobs in ED-schedule S. This implies that
Lj(Sl [K]) < Li(Sl [K]) ≤ Lmax(Sl [K]). The lemma is proved.

Lemma 2. A uniform continuous part U in component Sl [K] (considered as an independent ED-schedule),
may contain no delaying emerging job.

Proof. Schedule U has no anticipated job, i.e., the processing order of jobs in U in both schedules S and
Sl [K] is the same. Observe that U constitutes a sub-sequence of kernel K in schedule S. However, kernel
K has a single delaying emerging Job l that does not belong to schedule Sl [K]. Since U is part of Sl [K]
and it respects the same processing order as schedule S, it cannot contain the delaying emerging job.

Lemma 3. Suppose a uniform continuous part U ∈ Sl [K] contains a job realizing the maximum lateness in
component Sl [K]. Then,

Lmax(U) ≤ Lmax(Sopt), (6)

i.e., the lateness of the corresponding overflow job is a lower bound on the optimal objective value.

Proof. Considering part U as an independent schedule, it may contain no emerging job (Lemma 2).
At the same time, the earliest scheduled job in U starts at its release time since it is immediately
preceded by a gap, and the lemma follows from Proposition 1.

Lemma 4. Only a job from the last continuous part C ∈ Sl [K] may realize the maximum job lateness in
schedule Sl [K].

Proof. The jobs in the continuous part C: (i) either were the latest scheduled ones from kernel K in
schedule S; or (ii) the latest scheduled ones of schedule S have anticipated the corresponding jobs in
C in schedule Sl [K]. In Case (ii), these anticipated jobs may form part of C or be part of a preceding
continuous part P. In the latter sub-case, due to a gap in between the continuous parts in Sl [K], the jobs
of continuous part P should have been left-shifted in schedule Sl [K] no less than the jobs in continuous
part C and our claim follows. The former sub-case of Case (ii) is obviously trivial. In Case (i), similar
to in the earlier sub-case, the jobs from the continuous parts preceding C in Sl [K] should have been
left-shifted in Sl [K] no less than the jobs in C (again, due to the gap in between the continuous parts).
Hence, none of them may have the lateness more than that of a job in continuous part C.

Proposition 4. PROCEDURE Decomposition(S, K, l) finds the atomic component of kernel K in less than
κ/2 iterations, where κ is the number of jobs in kernel K. The kernel of that atomic component is formed by a
uniform continuous part, which is the last continuous part of that component.
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Proof. With every newly created substructure component during the decomposition of a kernel with
κ jobs, the corresponding delaying emerging job is associated. At every iteration of the procedure, the
delaying emerging job is activated, and that job does not belong to the next generated component.
Then, the first claim follows as every kernel contains at least one job. Hence, the total number of the
created components during all calls of the collapsing stage is bounded above by κ/2.

Now, we show the second claim. From Lemma 4, the last continuous part of the atomic component
contains the overflow job of that component. Clearly, the last continuous part of any component cannot
be anticipated, whereas any mixed continuous part (seen as an independent schedule) contains an
emerging job, hence a component with the last mixed continuous part cannot be atomic. Then, the
last continuous part of the atomic component is uniform (see Point (2) in Proposition 3), and since it
possesses no delaying emerging job (Lemma 2), it wholly constitutes the kernel of that component.

From here on, let K∗ = K(Sl,l1,...,lk [K, K1, . . . , Kk]), where Sl,l1,...,lk [K, K1, . . . , Kk] is the atomic
component in the decomposition of kernel K, and let ω∗ be the overflow job in kernel K∗.
By Proposition 4, K∗ (the atomic kernel in the decomposition) is the only kernel in the atomic component
Sl,l1,...,lk [K, K1, . . . , Kk] and is also the last uniform continuous part of that component.

Corollary 1. There exists no L-schedule if

Lmax(K∗) = Lω∗(Sl,l1,...,lk [K, K1, . . . , Kk]) > L.

In particular, Lmax(K∗) is a lower bound on the optimum objective value.

Proof. By Lemma 4 and Proposition 4, kernel K∗ is the last continuous uniform part of the atomic
component Sl,l1,...,lk [K, K1, . . . , Kk]). Then, by Proposition 4 and the inequality in Equation (6),

Lmax(K∗) = Lmax(Sl,l1,...,lk [K, K1, . . . , Kk] ≤ Lmax(Sopt).

Theorem 1. PROCEDURE Decomposition(S, K, l) forms all substructure components of kernel K with the
last atomic component and atomic kernel K∗ in time O(κ2 log κ) (where κ is the number of jobs in kernel K).

Proof. First, observe that, for any non-atomic component Sl,l1,...,lj
[K, K1, . . . , Kj] (j < k) created by the

procedure, the kernel Kj+1 = K(Sl,l1,...,lj
[K, K1, . . . , Kj]) of that component is within its last continuous

part (Lemma 4). This part cannot be anticipated or uniform (otherwise, it would not have been
non-atomic). Thus, the last continuous part M in that component is mixed and hence it contains
an anticipated job. The latest scheduled anticipated job in M is the delaying emerging job lj+1 for
kernel Kj+1 in the continuous part M. Then, the decomposition procedure creates the next component
Sl,l1,...,lj ,lj+1

[K, K1, . . . , Kj, Kj+1] in the decomposition (consisting of the jobs of kernel Kj+1) by activating
job lj+1 for kernel Kj+1.

Consider now the last atomic component Sl,l1,...,lk [K, K1, . . . , Kk]. By Proposition 4, atomic kernel
K∗ of component Sl,l1,...,lk [K, K1, . . . , Kk] is the last uniform continuous part in that component. By the
inequality in Equation (6), Lmax(Sl,l1,...,lk [K, K1, . . . , Kk]) = Lmax(K∗) is a lower bound on the optimal
objective value and hence the decomposition procedure may halt: the atomic kernel K∗ cannot
be decomposed and the maximum job completion time in that kernel cannot be further reduced.
Furthermore, if Lmax(K∗) > L, then there exists no L-schedule (Corollary 1).

As to the time complexity, the total number of iterations (recursive calls of PROCEDURE
Decomposition(S, K, l)) is bounded by κ/2 (where κ is the number of jobs in kernel K, see Proposition 4).
At every iteration i, kernel Ki+1 and job li+1 can be detected in time linear in the number of jobs in
component Sl,l1,...,li [K, K1, . . . , Ki], and hence the condition in WHILE can be verified with the same
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cost. Besides, at iteration i, ED-heuristics with cost O(κ log κ) is applied, which yields the overall time
complexity O(κ2 log κ) of PROCEDURE Decomposition(S, K, l).

Corollary 2. The total cost of the calls of the decomposition procedure for all the arisen kernels in the framework
is O(n2 log n).

Proof. Let K1, . . . , Kk be all the kernels that arise in the framework. For the purpose of this estimation,
assume κ, kκ ≤ n, is the number of jobs in every kernel (this will give an amortized estimation). Since
every kernel is processed only once, the the total cost of the calls of the decomposition procedure for
kernels K1, . . . , Kk is then

kO(κ2 log κ) ≤ n
κ

O(κ2 log κ) < O(n2 log n).

5. Binary Search

In this section, we describe how binary search can be beneficially used to solve problem 1|rj|Lmax.
Recall from the previous section that PROCEDURE Decomposition(S, K, l) extracts the atomic kernel
K∗ from kernel K (recall that l is the corresponding delaying emerging job—without loss of generality,
assume that it exists, as otherwise the schedule S with K(S) = K is optimal by Proposition 1). Notice
that, since the kernel of every created component in the decomposition is from its last continuous part
(Lemma 4), there is no intersection between the continuous parts of different components excluding
the last continuous part of each component. All the continuous parts of all the created components
in the decomposition of kernel K except the last continuous part of each component are merged in
time axes resulting in a partial ED-schedule which initiates at time r(K) and has the number of gaps
equal to the number of its continuous parts minus one (as every two neighboring continuous parts are
separated by a gap). It includes (feasibly) all the jobs of kernel K except ones from the atomic kernel K∗

(that constitutes the last continuous part of the atomic component, see Proposition 4). By merging this
partial schedule with the atomic kernel K∗, we obtain another feasible partial ED-schedule consisting
of all the jobs of kernel K, which we denote by S∗[K]. We extend PROCEDURE Decomposition(S, K, l)
with this construction. It is easy to see that the time complexity of the procedure remains the same.
Thus, from here on, we let the output of PROCEDURE Decomposition(S, K, l) be schedule S∗[K].

Within the gaps in partial schedule S∗[K], some external jobs for kernel K, ones not in schedule
S∗[K], will be included. During such an expansion of schedule S∗[K] with the external jobs, the
right-shift (a forced delay) of the jobs from that schedule by some constant units of time, which is
determined by the current trial δ in the binary search procedure, will be allowed (in this section, we
define the interval from which trial δs are taken).

At an iteration h of the binary search procedure with trial δh, one or more kernels may arise.
Iteration h starts by determining the earliest arisen kernel, which, as we show below, depends on the
value of trial δh. This kernel determines the initial partition of the scheduling horizon into one kernel
and two non-kernel (bin) intervals. Repeatedly, during the scheduling of a non-kernel interval, a new
kernel may arise, which is added to the current set of kernels at iteration h. Every newly arisen kernel
is treated similarly in a recurrent fashion. We denote by K the set of kernels detected by the current
state of computation at iteration h (omitting parameter h for notational simplicity). For every newly
arisen kernel K ∈ K, PROCEDURE Decomposition(S, K, l) is invoked and partial schedule S∗[K] is
expanded by external jobs. Destiny feasible schedule of iteration h contains all the extended schedules
S∗[K], K ∈ K.

The next proposition easily follows from the construction of schedule S∗[K], Lemma 4 and
Corollary 1:
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Proposition 5. K∗ = K(S∗[K]) (K∗ is the only kernel in schedule S∗[K]) and

Lmax(S∗[K]) = Lmax(K∗) ≤ Lmax(Sopt),

i.e., Lmax(S∗[K]) is a lower bound on the optimum objective value.

L∗
max = max

K∈K
{Lmax(K∗)}

is a stronger lower bound on the objective value.

Now, we define an important kernel parameter used in the binary search. Given kernel K ∈ K, let

δ(K∗) = L∗
max − Lmax(K∗) ≥ 0, (7)

i.e., δ(K∗) is the amount of time by which the starting time of the earliest scheduled job of kernel K∗

can be right-shifted (increased) without increasing lower bound L∗
max. Note that for every K ∈ K,

δ(K∗) + Lmax(K∗) is the same magnitude.
Example 2 (continuation). For the problem instance of Example 2, Lmax(K1∗) = L3(σl,2) =

19 − 20 = −1, Lmax(K2∗) = L6(σl,2,4) = 62 − 58 = 4; hence, δ(K1∗) = 5 and δ(K2∗) = 0 (recall that
atomic kernel K1∗ consists of a single Job 3, and atomic kernel K2∗ consists of Jobs 5 and 6; hence,
the lower bound L∗

max = 4 is realized by atomic kernel K2∗).

Proposition 6. Let S be a complete schedule and K be the set of the kernels detected prior to the creation of
schedule S. The starting time of every atomic kernel K∗, K ∈ K, can be increased by δ(K∗) time units (compared
to its starting time in schedule S∗[K]) without increasing the maximum lateness Lmax(S).

Proof. Let (K′)∗, K′ ∈ K, be an atomic kernel that achieves lower bound L∗
max, i.e., Lmax((K′)∗) = L∗

max
(equivalently, δ((K′)∗) = 0). By Equation (7), if the completion time of every job in atomic kernel
K∗ 	= (K′)∗ is increased by δ(K∗), the lateness of none of these jobs may become greater than that of
the overflow job from kernel (K′)∗, which proves the proposition as Lmax(S) ≥ L∗

max.

We immediately obtain the following corollary:

Corollary 3. In an optimal schedule Sopt, every atomic kernel K∗, K ∈ K, starts either no later than at time
r(K∗) + δ(K∗) or no later than at time r(K∗) + δ(K∗) + δ, for some δ ≥ 0.

An extra delay δ might be unavoidable for a proper accommodation of the non-kernel jobs.
Informally, δ is the maximum extra delay that we will allow for every atomic kernel in the iteration of
the binary search procedure with trial value δ. For a given iteration in the binary search procedure
with trial δ, the corresponding threshold, an upper limit on the currently allowable maximum job
lateness, Lδ-boundary (or L-boundary) is

Lδ = L∗
max + δ = Lmax(K∗) + δ(K∗) + δ (K ∈ K). (8)

We call Lδ − schedule a feasible schedule in which the maximum lateness of any job is at most
Lδ = L∗

max + δ (see Equation (8)).
Note that, since to every iteration a particular δ corresponds, the maximum allowable lateness at

different iterations is different. The concept of the overflow job at a given iteration is consequently
redefined: such a job must have the lateness greater than Lδ. Note that this implicitly redefines also the
notation of a kernel at that iteration of the binary search procedure.
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It is not difficult to determine the time interval from which the trial δs can be derived. Let Δ be
the delay of kernel K(σ) imposed by the delaying emerging Job l in initial ED-schedule σ, i.e.,

Δ = cl(σ)− r(K(σ)). (9)

Example 1 (continuation). For the problem instance of Example 1, for instance, Δ = 16 − 3 = 13
(see Figure 1).

Proposition 7.

Lmax(σ)− L∗
max ≤ Δ. (10)

Proof. This is a known property that easily follows from the fact that no job of kernel K(σ) could have
been released by the time tl(σ), as otherwise ED-heuristics would have been included the former job
instead of Job l in schedule σ.

Assume, for now, that we have a procedure that, for a given L-boundary (see Equation (8)), finds
an L-schedule SL if it exists, otherwise, it outputs a “no” answer.

Then, the binary search procedure incorporates the above verification procedure as follows.
Initially, for δ = Δ, L∗

max + Δ-schedule σ already exists. For δ = 0 with L = L∗
max, if there exists no

L∗
max-schedule then the next value of δ is [Δ/2]. Iteratively, if an L-schedule with L = L∗

max + δ for the
current δ exists, the δ is increased correspondingly, otherwise it is decreased correspondingly in the
binary search mode.

Proposition 8. The L-schedule SL corresponding to the minimum L = L∗
max + δ found in the binary search

procedure is optimal.

Proof. First, we show that trial δs can be derived from the interval [0, Δ]. Indeed, the left endpoint
of this interval can clearly be 0 (potentially yielding a solution with the objective value L∗

max). By the
inequality in Equation (10), the maximum job lateness in any feasible ED-schedule in which the delay
of some kernel is more than Δ would be no less than Lmax(σ), which obviously proves the above claim.

Now note that the minimum L-boundary yields the minimal possible lateness for the kernel
jobs subject to the condition that no non-kernel job surpasses L-boundary. This obviously proves
the proposition.

By Proposition 8, the problem 1|rj|Lmax can be solved, given that there is a verification procedure
that, for a given L-boundary, either constructs Lδ-schedule SLδ or answers correctly that it does not
exist. The number of iterations in the binary search procedure is bounded by log pmax as clearly,
Δ < pmax. Then, note that the running time of our basic framework is log pmax multiplied by the
running time of the verification procedure. The rest of this paper is devoted to the construction of the
verification procedure, invoked in the binary search procedure for trial δs.

6. The General Framework for Problem 1|rj|Lmax

In this section, we describe our main algorithmic framework which basic components form the
binary search and the verification procedures. The framework is for the general setting 1|rj|Lmax (in
the next section, we give an explicit condition when the framework guarantees the optimal solution
of the problem). At every iteration in the binary search procedure, we intend to keep the delay of
jobs from each partial schedule S∗[K], K ∈ K within the allowable margin determined by the current
Lδ-boundary.

For a given threshold Lδ, we are concerned with the existence of a partial Lδ-schedule that includes
all the jobs of schedule S∗[K] and probably some external jobs. We refer to such partial schedule as an
augmented Lδ-schedule for kernel K and denote it by SLδ [K] (we specify the scope of that schedule more
accurately later in this section).
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Due to the allowable maximum job lateness of Lδ ≥ Lopt in schedule SLδ [K], in the case that the
earliest scheduled job of kernel K∗ gets pushed by some (external) job l∗ in schedule SLδ [K], that job
will be considered as the delaying emerging job iff

cl∗(SL[K]) ≥ r(K∗) + δ(K∗) + δ.

For a given threshold L = Lδ, the allowable L-bias for jobs of kernel K∗ in schedule SL[K]

βL(K∗) = L − Lmax(K∗). (11)

The intuition behind this definition is that the jobs of kernel K∗ in schedule S∗[K] can be
right-shifted by βL(K∗) time units without surpassing the L-boundary (see Proposition 9 below).

Proposition 9. In an L-schedule SL, all the jobs of schedule S∗[K] are included in the interval of schedule
S∗[K]. Furthermore, any job in S∗[K] \ K∗ can be right-shifted provided that it remains scheduled before the
jobs of kernel K∗, whereas the jobs from kernel K∗ can be right-shifted by at most βL(K∗).

Proof. Let j be the earliest scheduled job of atomic kernel K∗ in schedule S∗[K]. By right-shifting job
j by βL(K∗) time units (Equation (11)) we get a new (partial) schedule S′ in which all the jobs are
delayed by βL(K∗) time units with respect to schedule S∗[K] (note that the processing order of the
jobs of atomic kernel K∗ need not be altered in schedule S′ as the jobs of kernel K∗ are scheduled in
ED-order in schedule S∗[K]). Hence,

max
i∈S∗ [K]

Li(S′) ≤ max
i∈S∗ [K]

{Li(S∗[K]) + βL(K∗)} = max
i∈S∗ [K]

{Li(S∗[K])}+ βL(K∗).

By substituting for βL(K∗) using Equation (11) and applying that maxi∈S∗ [K]{Li(S∗[K])} =

Lmax(K∗), we obtain
max

i∈S∗ [K]
Li(S′) ≤ L.

Hence, the lateness of any job of atomic kernel K∗ is no more than L. Likewise, any other job from
schedule S∗[K] can be right-shifted within the interval of S∗[K] without surpassing the magnitude
Lmax(K∗) ≤ L given that it is included before the jobs of kernel K∗ (see the proof of Lemma 4).

6.1. Partitioning the Scheduling Horizon into the Bin and Kernel Segments

By Proposition 9, all jobs from the atomic kernel K∗ are to be included with a possible delay
(right-shift) of at most βL(K∗) in L-schedule SL. The rest of the jobs from schedule S∗[K] are to
“dispelled” before the jobs of K∗ within the interval of that schedule. Since schedule S∗[K] contains the
gaps, some additional external jobs may also be included within the same time interval. According to
this observation, we partition every complete feasible L-schedule into two types of segments, rigid and
flexible ones. The rigid segments are to be occupied by the atomic kernels, and the rest of the (flexible)
segments, which are called bin segments or intervals, are left for the rest of the jobs (we use term bin
for both, the corresponding time interval and for the corresponding schedule portion interchangeably).
For simplicity, we refer to the segments corresponding to the atomic kernels as kernel segments or
intervals.

In general, we have a bin between two adjacent kernel intervals, and a bin before the first and
after the last kernel interval. Because of the allowable right-shift βL(K∗) for the jobs of an atomic kernel
K∗, the starting and completion times of the corresponding kernel and bin intervals are not priory
fixed. We denote by B−(K) (B+(K), respectively) the bin before (after, respectively) the kernel interval
corresponding to the atomic kernel K∗ of kernel K. There are two bins in schedule σl,3,2, surrounding
the atomic kernel consisting of Job 1 in Figure 6. We have three bins in schedules depicted in
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Figures 8 and 9 for the problem instance of Example 2, B1 = B−(K1), B2 = B+(K1) = B−(K2)

and B3 = B+(K2) (schedule of Figure 9 incorporates an optimal arrangement of jobs in these bins).

Figure 9. An optimal L-schedule for Example 2 with three bins (L = L∗
max = 4).

The scope of augmented L-schedule SL[K] for kernel K includes that of bin B−(K) and that of the
atomic kernel K∗. These two parts are scheduled independently. The construction of second part relies
on the next proposition that easily follows from Proposition 9:

Proposition 10. No job of the atomic kernel K∗ will surpass the L-boundary if the latest scheduled job of bin
B−(K) completes no later than at time moment

ψL(K) = r(K∗) + βL(K∗) (12)

(the latest time moment when atomic kernel K∗ may start in an L-schedule) and the jobs of that kernel are
scheduled by ED-heuristics from time moment ψL(K).

We easily arrange the second part of augmented schedule SL[K], i.e., one including the atomic
kernel K∗, as specified in Proposition 10. Hence, from here on, we are solely concerned with the
construction of the the first part, i.e., that of bin B−(K), which is a complicated task and basically
contributes to the complexity status of problem 1|rj|Lmax.

We refer to a partial feasible L-schedule for the first part of schedule SL[K] (with its latest job
completion time not exceeding the magnitude ψL(K), at which the second part initiates) as a preschedule
of kernel K and denote it by PreS(K). Note that the time interval of preschedule PreS(K) coincides
with that of bin B−(K); in this sense, PreS(K) is a schedule for bin B−(K).

Kernel preschedules are generated in Phase 1, described in Section 7. If Phase 1 fails to construct
an L-preschedule for some kernel, then Phase 2 described in Section 9 is invoked (see Proposition 12 in
Section 5). Phase 2 basically uses the construction procedure of Phase 1 for the new problem instances
that it derives.

6.1.1. The Main Partitioning Procedure

Now, we describe the main procedure (PROCEDURE MAIN) of our algorithm, that is in charge
of the partitioning of the scheduling horizon into the kernel and the corresponding bin intervals.
This partition is dynamically changed and is updated in a recurrent fashion each time a new kernel
arises. The occurrence of each new kernel K during the construction of a bin, the split of this bin into
smaller bins and the collapsing of kernel K induce the recurrent nature in our method (not surprising,
the recurrence is a common feature in the most common algorithmic frameworks such are dynamic
programming and branch-and-bound).

Invoked for kernel K (K is a global variable), PROCEDURE MAIN first calls PROCEDURE
Decomposition(S, K, l) that forms schedule S∗[K] ending with the atomic kernel K∗ (see the beginning
of Section 5 and Propositions 5 and 9).

PROCEDURE MAIN incorporates properly kernel K into the current partition updating
respectively the current configuration C(δ, K) defined by a trial δ, the current set of kernels K together
with the corresponding δ(M∗)s (see Equation (7)) and the augmented schedules SLδ [M], for M ∈ K,
constructed so far.

Given trial δ and kernel K, the configuration C(δ, K) is unique, and there is a unique corresponding
schedule ΣC(δ,K) with K = K(ΣC(δ,K)) that includes the latest generated (so far) augmented schedules
SLδ [M], M ∈ K.
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PROCEDURE MAIN starts with the initial configuration C(Δ, K) with δ = Δ, K = K(σ), ΣC(Δ,K) =

σ and K = ∅ (no bin exists yet in that configuration).
Iteratively, PROCEDURE MAIN, invoked for kernel K, creates a new configuration C(Δ, K)

with two new surrounding bins B−(K) and B+(K) and the atomic kernel K∗ in between these bins.
These bins arise within a bin of the previous configuration (the later bin disappears in the updated
configuration). Initially, atomic kernel (K(σ))∗ splits schedule σ in two bins B−(K(σ)) and B+(K(σ)).

Two (atomic) kernels in schedule ΣC(δ,K) are tied if they belong to the same block in that schedule.
Given configuration C(δ, K), the longest sequence of the augmented L-schedules of the pairwise

tied kernels in schedule ΣC(δ,K) is called a secondary block.
We basically deal with the secondary block containing kernel K and denote it by BK (we may omit

argument K when this is not important). An essential characteristic of a secondary block is that every
job that pushes a job from that secondary block belongs to the same secondary block. Therefore, the
configuration update in PROCEDURE MAIN can be carried out solely within the current secondary
block BK.

As we show below, PROCEDURE MAIN will create an L-schedule for an instance of 1|pj :
divisible, rj|Lmax whenever it exists (otherwise, it affirms that no L-schedule for that instance exists).
The same outcome is not guaranteed for an instance of 1|rj|Lmax, in general. In Theorem 3, we give
an explicit condition under which an L-schedule for an instance of 1|rj|Lmax will always be created,
yielding a polynomial-time solution for the general setting. Unfortunately, if the above condition is not
satisfied, we cannot, in general, affirm that there exists no feasible L-augmented schedule, even if our
framework fails to find it for an instance of problem 1|rj|Lmax.

6.1.2. PROCEDURE AUGMENTED(K, δ), Rise of New Kernels and Bin Split

PROCEDURE MAIN uses PROCEDURE AUGMENTED(K, δ) as a subroutine. PROCEDURE
AUGMENTED(K, δ), called for kernel K with threshold Lδ, is in charge of the creation of
an Lδ-augmented schedule SLδ [K] respecting the current configuration C(δ, K). PROCEDURE
AUGMENTED(K, δ) constructs the second part of schedule SLδ [K] (one including the atomic kernel
K∗) directly as specified in Proposition 10. The most time consuming part of PROCEDURE
AUGMENTED(K, δ) is that of the construction of the preschedule PreS(K) of schedule SLδ [K].
This construction is carried out at Phase 1 described in Section 7.

After a call of PROCEDURE AUGMENTED(K, δ), during the construction of an L-preschedule
PreS(K) at Phase 1, a new kernel K′ may arise (the reader may have a look at Proposition 12 and
Lemma 5 from the next section). Then, PROCEDURE AUGMENTED(K, δ) returns the newly arisen
kernel K′ and PROCEDURE MAIN, invoked for that kernel, updates the current configuration.
Since the rise of kernel K′ splits the earlier bin B−(K) into two new surrounding bins B−(K′) and
B+(K′) = B−(K) of the new configuration, the bin B−(K) of the previous configuration disappears
and is “replaced” by a new bin B−(K) = B+(K′) of the new configuration. Correspondingly, the scope
of a preschedule for kernel K is narrowed (the former bin B−(K) is “reduced” to the newly arisen bin
B+(K′) = B−(K)).

In this way, as a result of the rise of a new kernel within the (current) bin B−(K) and the resultant
bin split, PROCEDURE AUGMENTED(K, δ) may be called more than once for different (gradually
decreasing in size) bins: The initial bin B−(K) splits into two bins, the resultant new smaller bin B−(K)
may again be split, and so on. Thus, to the first call of PROCEDURE AUGMENTED(K, δ) the largest
bin B−(K) corresponds, and the interval of the new arisen bin for every next call of the procedure is a
proper sub-interval of that of the bin corresponding to the previous call of the procedure. Note that
each next created preschedule is composed of the jobs from the corresponding bin.

PROCEDURE AUGMENTED(K, δ) has three outcomes. If no new kernel during the construction
of preschedule PreS(K) respecting the current configuration arises, the procedure completes with the
successful outcome generating an L-augmented schedule SLδ [K] respecting the current configuration
(in this case, schedule SLδ [K] may form part of the complete L-augmented schedule if the later schedule
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exists). PROCEDURE MAIN incorporates Lδ-augmented schedule SLδ [K] into the current configuration
(the first IF statement in the iterative step in the description of the next subsection).

With the second outcome, a new kernel K′ during the construction of preschedule PreS(K) within
bin B−(K) arises (Proposition 12 and Lemma 5). Then, PROCEDURE AUGMENTED(K, δ) returns
kernel K′ and PROCEDURE MAIN is invoked for this newly arisen kernel and it updates the current
configuration, respectively (see the iterative step in the description). Then, PROCEDURE MAIN calls
recursively PROCEDURE AUGMENTED(K′, δ) for kernel K′ and the corresponding newly arisen bin
B−(K′) (this call is now in charge of the generation of an L-preschedule PreS(K′) for kernel K′, see the
second IF statement in the iterative step of the description in the next subsection).

With the third (failure) outcome, Phase 1 (invoked by PROCEDURE AUGMENTED(K, δ) for
the creation of an L-preschedule PreS(K)) fails to create an L-preschedule respecting the current
configuration (an IA(b2), defined in the next section, occurs (see Proposition 12). In this case,
PROCEDURE MAIN invokes Phase 2. Phase 2 is described in Section 9. Nevertheless, the reader can
see a brief description of that phase below:

Phase 2 uses two subroutines, PROCEDURE sl-SUBSTITUTION(K) and PROCEDURE
ACTIVATE(s), where s is an emerging job. PROCEDURE sl-SUBSTITUTION(K) generates modified
configurations with an attempt to create an L-preschedule PreS(K) respecting a newly created
configuration, in which some preschedules of the kernels, preceding kernel K in the secondary block
BK are reconstructed. These preschedules are reconstructed by the procedure of Phase 1, which is
called by PROCEDURE ACTIVATE(s). PROCEDURE ACTIVATE(s), in turn, is repeatedly called by
PROCEDURE sl-SUBSTITUTION(K) for different emerging jobs in the search of a proper configuration
(each call of PROCEDURE ACTIVATE(s) creates a new configuration by a call of Phase 1). If at
Phase 2 a configuration is generated for which Phase 1 succeeds to create an L-preschedule PreS(K)
respecting that configuration (the successful outcome), the augmented L-schedules corresponding to
the reconstructed preschedules remain incorporated into the current schedule ΣC(δ,K).

6.1.3. Formal Description of PROCEDURE MAIN

The formal description of PROCEDURE MAIN below is completed by the descriptions of Phases 1
and 2 in the following sections. For notation simplicity, in set operations, we use schedule notation for
the corresponding set of jobs. Given a set of jobs A, we denote by ED(A) the ED-schedule obtained by
the application of ED-heuristics to the jobs of set A.

Whenever a call of PROCEDURE MAIN for kernel K creates an augmented L-schedule
SLδ [K], the procedure completes secondary block BK by merely applying ED-heuristics to the
remaining available jobs, ones to be included in that secondary block; i.e., partial ED-schedule
ED(BK \ ∪M∈BK{SLδ [M]}) is generated and is merged with the already created part of block BK to
complete the block (the rest of the secondary blocks are left untouched in the updated schedule ΣC(δ,K)).

PROCEDURE MAIN returns Lδ-schedule with the minimal δ, which is optimal by Lemma 8.

PROCEDURE MAIN
Initial step: {Determine the initial configuration C(Δ, K), K = K(σ)}
Start the binary search with trial δ = Δ

{see Equation (9) and the inequality in Equation (10)}
ΣC(Δ,K) := σ

{initialize the set of kernels}
K := K(σ); K := K

{set the initial lower bound and the initial allowable delay for kernel K}
L∗

max := Lmax(K∗); δ(K∗) := 0
IF schedule σ contains no kernel with the delaying emerging job, output σ and halt

{σ is optimal by Proposition 1}

Iterative step:

50



Mathematics 2019, 7, 1104

{Update the current configuration C(δ, K) with schedule ΣC(δ,K) as follows:}
{update the current set of kernels}
K := K ∪ K;
{update the current lower bound}
L∗

max := max{L∗
max, Lmax(K∗)};

{update the corresponding allowable kernel delays (see Equation (7))}
δ(M∗) := L∗

max − Lmax(M∗), for every kernel M ∈ K
Call PROCEDURE AUGMENTED(K, δ) {construct an Lδ-augmented schedule SLδ [K]}
IF during the execution of PROCEDURE AUGMENTED(K, δ) a new kernel K′ arises

{update the current configuration according to the newly arisen kernel}
THEN K := K′; repeat Iterative step
IF the outcome of PROCEDURE AUGMENTED(K, δ) is failure THEN call Phase 2

{at Phase 2 new configuration is looked for such that there exist preschedule PreS(K) respecting that
configuration, see Section 9}

IF Lδ-augmented schedule SLδ [K] is successfully created
{the outcome of PROCEDURE AUGMENTED(K, δ) and that of Phase 2 is successful, hence complete
secondary block BK by ED-heuristics if there are available jobs which were not included in any of the
constructed augmented schedules, i.e., BK \ ∪M∈BK{SLδ [M]} 	= ∅}

THEN update block BK and schedule ΣC(δ,K) by merging it with partial ED-schedule
ED(BK \ ∪M∈BK{SLδ [M]})
(leave in the updated schedule ΣC(δ,K) the rest of the secondary blocks as they are)

IF (the so updated) schedule ΣC(δ,K) is an Lδ-schedule
{continue the binary search with the next trial δ}
THEN δ :=the next trial value and repeat Iterative step; return the generated Lδ-schedule with the

minimum δ and halt if all the trial δs were already considered
ELSE {there is a kernel with the delaying emerging job in schedule ΣC(δ,K)}

K := K(ΣC(δ,K)); repeat Iterative step
IF Lδ-augmented schedule SLδ [K] could not been created

{the outcome of Phase 2 is failure and hence there exists no Lδ-schedule; continue the binary search
with the next trial δ}

THEN δ := the next trial value and repeat Iterative step; return the generated Lδ-schedule with the
minimum δ and halt if all the trial δs were already considered.

7. Construction of Kernel Preschedules at Phase 1

At Phase 1, we distinguish two basic types of the available (yet unscheduled) jobs which can
feasibly be included in bin B−(K), for every K ∈ K. Given a current configuration, we call jobs that
can only be scheduled within bin B−(K) y-jobs; we call jobs which can also be scheduled within some
succeeding bin(s) the x-jobs for bin B−(K) or for kernel K. In this context, y-jobs have higher priority.

We have two different types of the y-jobs for bin B−(K). The set of the Type (a) y-jobs is formed by
the jobs in set K \ K∗ and yet unscheduled jobs not from kernel K released within the interval of bin
B−(K). The rest of the y-jobs are ones released before the interval of bin B−(K), and they are referred
to as the Type (b) y-jobs.

Recall that the interval of bin B−(K) begins right after the atomic kernel of the preceding bin (or at
mini ri if K is the earliest kernel in K) and ends with the interval of schedule S∗[K]. The following
proposition immediately follows:

Proposition 11. Every x-job for bin B−(K) is an external job for kernel K, and there may also exist the external
y-jobs for that kernel. A Type (a) y-job can feasibly be scheduled only within bin B−(K), whereas Type (b) y-jobs
can potentially be scheduled within a preceding bin (as they are released before the interval of bin B−(K)).
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Phase 1 for the construction of preschedule PreS(K) of kernel K consists of two passes. In Pass 1
y-jobs of bin B−(K) are scheduled. In Pass 2, x-jobs of bin B−(K) are distributed within that bin. We
know that all Type (a) y-jobs can be feasibly scheduled within bin B−(K) without surpassing the
L-boundary (since they were so scheduled in that bin), and these jobs may only be feasibly scheduled
within that bin. Note that, respecting the current configuration with the already created augmented
schedules for the kernels in set K), we are forced to include, besides Type (a) y-jobs, also all the Type
(b) y-jobs into bin B−(K). If this does not work at Phase 1 in the current configuration, we try to
reschedule some Type (b) y-jobs to the earlier bins in Phase 2 by changing the configuration.

7.1. Pass 1

Pass 1 consists of two steps. In Step 1, ED-heuristics is merely applied to all the y-jobs for
scheduling bin B−(K).

If the resultant ED-schedule PreS(K, y) is a feasible L-schedule (i.e., no job in it surpasses the
current L-boundary and/or finishes after time ψL(K)), Step 1 completes with the successful outcome
and Pass 1 outputs PreS(K, y) (in this case, there is no need in Step 2), and Phase 1 continues with Pass
2 that augments PreS(K, y) with x-jobs, as described in the next subsection.

If schedule PreS(K, y) is not an L-schedule (there is a y-job in that schedule surpassing the
L-boundary), Pass 1 continues with Step 2.

Proposition 12 specifies two possible cases when preschedule PreS(K, y) does not contain
all the y-jobs for bin B−(K), and Step 1 fails to create an L-preschedule for kernel K at the
current configuration.

Proposition 12. Suppose PreS(K, y) is not a feasible L-schedule, i.e., there arises a y-job surpassing the current
L-boundary and/or completing after time ψL(K).

(1) If there is a Type (b) y-job surpassing the L-boundary, then there exists no feasible partial L-preschedule
for kernel K containing all the Type (b) y-jobs for this kernel (hence there is no complete feasible L-schedule
respecting the current configuration).

(2) If there is a Type (a) y-job y surpassing the L-boundary and there exists a feasible partial L-preschedule
for kernel K containing all the y-jobs, it contains a new kernel consisting of some Type (a) y-jobs including job y.

Proof. We first show Case (2). As already mentioned, all Type (a) y-jobs may potentially be included in
bin B−(K) without surpassing the L-boundary and be completed by time ψL(K) (recall Equation (12)).
Hence, since y is a Type (a) y-job, it should have been pushed by at least one y-job i with di > dy in
preschedule PreS(K, y). Then, there exists the corresponding kernel with the delaying emerging y-job
(containing job y and possibly other Type (a) y-jobs).

Now, we prove Case (1). Let y be a Type (b) y-job that was forced to surpass the L-boundary
and/or could not be completed by time moment ψL(K). In the latter case, ED-heuristics could create
no gap in preschedule PreS(K, y) as all the Type (b) y-jobs were released from the beginning of the
construction, and Case (1) obviously follows. In the former case, job y is clearly pushed by either
another Type (b) y-job or a Type (a) y-job. Let k be a job pushing job y. Independently of whether k
is a Type (a) or Type (b) y-job, since job y is released from the beginning of the construction and job
k was included ahead job y, by ED-heuristics, dk ≤ dy. Then, no emerging job for job y may exist in
preschedule PreS(K, y) and Case (1) again follows as all the Type (a) y-jobs must be included before
time ψL(K).

For convenience, we refer to Case (1) in Proposition 12 as an instance of Alternative (b2) (IA(b2) for
short) with Type (b) y-job y (we let y be the latest Type (b) y-job surpassing the L-boundary and/or
completing after time ψL(K)). (The behavior alternatives were introduced in a wider context earlier
in [13].) If an IA(b2) in bin B−(K) arises and there exists a complete L-schedule, then, in that schedule,
some Type (b) y-job(s) from bin B−(K) is (are) included within the interval of some bin(s) preceding
bin B−(K) in the current secondary block BK (we prove this in Proposition 16 in Section 7).
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In Step 2, Cases (1) and (2) are dealt with as follows. For Case (1) (an IA(b2)), Step 2 invokes
PROCEDURE sl-SUBSTITUTION(K) of Phase 2. PROCEDURE sl-SUBSTITUTION(K) creates one or
more new (temporary) configurations, as described in Section 7. For every created configuration, it
reconstructs some bins, preceding bin B−(K) in the secondary block BK incorporating some Type (b)
y-jobs for bin B(K) into the reconstructed preschedules. The purpose of this is to find out if there exists
an L-preschedule PreS(K) respecting the current configuration and construct it if it exists.

For Case (2) in Proposition 12, Step 2 returns the newly arisen kernel K′ and PROCEDURE MAIN
is invoked with that kernel, which updates the current configuration respectively. PROCEDURE MAIN
then returns the call to PROCEDURE AUGMENTED(K′, δ) (see the description of Section 4) (note that,
since PROCEDURE AUGMENTED(K′, δ) invokes Phase 1 now, for kernel K′, Case (2) yields recursive
calls of Phase 1).

7.2. Pass 2: DEF-Heuristics

If Pass 1 successfully completes, i.e., creates a feasible L-preschedule PreS(K̄, y), Pass 2, described
in this subsection, is invoked (otherwise, IA(b2) with a Type (b) y-job from bin B−(K) arises and
Phase 2 is invoked). Throughout this section, PreS(K, y) stands for the output of Pass 1 containing
all the y-jobs for bin B−(K). At Pass 2, the x-jobs released within the remaining available room in
preschedule PreS(K, y) are included by a variation of the Next Fit Decreasing heuristics, adopted for
our scheduling problem with job release times. We call this variation Decreasing Earliest Fit heuristics,
DEF-heuristics for short. It works with a list of x-jobs for kernel K sorted in non-increasing order of
their processing times, the ties being broken by sorting jobs with the same processing time in the
non-decreasing order of their due-dates.

DEF-heuristics, iteratively, selects next job x from the list and initially appends this job to the
current schedule PreS(K, y) by scheduling it at the earliest idle-time moment t′ before time ψL(K)
(any unoccupied time interval in bin B−(K) before time ψL(K) is an idle-time interval in that bin).
Let PreS(K, y,+x) be the resultant partial schedule, that is obtained by the application of ED-heuristics
from time moment t′ to job x and to the following y-jobs from schedule PreS(K, y) which may possibly
right-shifted in schedule PreS(K, y,+x)) (compared to their positions in schedule PreS(K, y)). In the
description below, the assignment PreS(K, y) := PreS(K, y,+x) updates the current partial schedule
PreS(K, y) according to the rearrangement in schedule PreS(K, y,+x), removes job x from the list and
assigns to variable x the next x-job from the list.

PROCEDURE DEF(PreS(K, y), x)
IF job x completes before or at time ψL(K) in schedule PreS(K, y,+x) {i.e., t′ + px falls within the
current bin}
THEN GO TO Step (A) {verify the conditions in Steps (A) and (B)}
ELSE remove job x from the list {job x is ignored for bin B−(K)}; set x to the next job from the list;

CALL PROCEDURE DEF(PreS(K, y), x)
(A) IF job x does not push any y-job in schedule PreS(K, y,+x) {x can be scheduled at time moment t′

without the interference with any y-job, i.e., t′ + px is no greater than the starting time of the next y-job
in preschedule PreS(K, y)} and it completes by time moment ψL(K) in schedule PreS(K, y,+x)

THEN PreS(K, y) := PreS(K, y,+x); CALL PROCEDURE DEF(PreS(K, y), x)
(B) IF job x pushes some y-job in schedule PreS(K, y,+x)

THEN {verify the conditions in Steps (B.1)–(B.3)}
(B.1) IF in schedule PreS(K, y,+x) no (right-shifted) y-job surpasses L-boundary and

all the jobs are completed by time moment ψL(K)
THEN PreS(K, y) := PreS(K, y,+x); CALL PROCEDURE DEF(PreS(K, y), x)

(B.2) IF in schedule PreS(K, y,+x) some y-job completes after time moment ψL(K)
THEN set x to the next x-job from the list and CALL PROCEDURE DEF(PreS(K, y), x).
We need the following auxiliary lemma before we describe Step (B.3):
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Lemma 5. If a (right-shifted) y-job surpasses L-boundary in schedule PreS(K, y,+x), then there arises a new
kernel in that schedule (in bin B−(K)) consisting of solely Type (a) y-jobs, and x is the delaying emerging job of
that kernel.

Proof. Obviously, by the condition in the lemma, there arises a new kernel in schedule PreS(K, y,+x),
call it K′, and it consists of y-jobs following job x in schedule PreS(K, y,+x). Clearly, x is the delaying
emerging job of kernel K′. Such a right-shifted job y cannot be of Type (b) as otherwise it would have
been included within the idle-time interval (occupied by job x) at Pass 1. Hence, kernel K′ consists of
only Type (a) y-jobs.

Due to the above lemma, PROCEDURE DEF continues as follows:
(B.3) IF in schedule PreS(K, y,+x) the lateness of some (right-shifted) y-job exceeds L

THEN return the newly arisen kernel K′ and invoke PROCEDURE MAIN with kernel K′ {this updates
the current configuration respectively and makes a recursive call of Phase 1 now for kernel K′}

IF the list is empty THEN OUTPUT(PreS(K, y)) and halt.

This completes the description of Pass 2 and that of Phase 1.
From here on, we let PreS(K) = PreS(K, y, x) be the output of Phase 1 (a feasible L-preschedule

for kernel K containing all the y-jobs for bin B−(K)). An easily seen property of PROCEDURE DEF
and preschedule PreS(K, y, x) is summarized in the following proposition.

Proposition 13. An L-preschedule cannot be obtained by replacing any x-job x ∈ PreS(K, y, x) with a longer
available x-job in preschedule PreS(K, y, x). Hence, the omission of job x from preschedule PreS(K, y, x) will
create a new gap which may only be filled in by including job(s) with the same or smaller processing time.

Let υ and χ be the number of y-jobs and x-jobs of bin B−(K), respectively, ν = υ + χ is the total
number of jobs in that bin, and let υ1 be the number of Type (b) y-jobs. The next theorem gives a valid
upper bound on the cost of a call of PROCEDURE AUGMENTED(K, δ) at Phase 1 (including all the
recursive calls that the initial call may yield).

Theorem 2. The total cost of a call of Phase 1 for a kernel K is O(ν2 log ν). Hence, the cost of a call of
PROCEDURE AUGMENTED(K, δ) is the same.

Proof. At Step 1 of Pass 1, during the construction of preschedule PreS(K) ED-heuristics with an
upper bound on its running time O(υ log υ) for scheduling up to υ y-jobs is used, whereas at less than
υ1 scheduling times a new kernel may arise (as the delaying emerging job may only be a Type (b)
y-job). Phase 1 invokes PROCEDURE MAIN which, in turn, calls the decomposition procedure for
each of these kernels. By Lemma 2, the total cost of all the calls of the decomposition procedure can be
estimated as O(κ2

1 log κ1 + κ2
2 log κ2 + · · ·+ κ2

υ1
log κυ1), where κ1, . . . , κυ1 is the number of jobs in each

of the υ1 arisen kernels, correspondingly. Let m be the mean arithmetic of all these κs. Since any newly
arisen kernel may contain only y-jobs for bin B−(K) and no two kernels may have a common job,
υ1m ≤ υ. The maximum in the sum is reached when all the κs are equal to m, and from the above sum
another no-smaller magnitude O(υ1m2 log m) ≤ O(υ1(υ/υ1)

2 log(υ/υ1)) ≤ O(υ2 log υ) is obtained
(in the first and second inequalities, υ1m ≤ υ and υ1 ≥ 1, respectively, are applied).

Then, the total cost of Pass 1 for kernel K (including that of Step 2, Case (2)) is O(υ1υ log υ +

υ2 log υ) = O(υ2 log υ). The cost of Steps (A), (B.1) and (B.2) of Pass 2 is that of ED-heuristics,
i.e., O(χ log χ). At Step (B.3), since the delaying emerging job for every newly arisen kernel is
a distinct x-job for bin B−(K), the number of the calls of PROCEDURE MAIN for all the newly
arisen kernels after the initial call of PROCEDURE AUGMENTED(K, δ), and hence the number
of the recursive calls of Phase 1 for kernel K, is bounded by χ. Similar to what is done for Pass
1, we let κ1, . . . , κυ1 be the number of jobs in each of the χ arisen kernels, respectively. Again, by
Lemma 2, the total cost of all the calls of PROCEDURE MAIN to the decomposition procedure is
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O(κ2
1 log κ1 + κ2

2 log κ2 + · · ·+ κ2
χ log κχ). We let again m be the mean arithmetic of all these κs, χm ≤ υ

and obtain an upper bound O(χ2 log χ + χm2 log m) ≤ O(χ2 log χ + χ(υ/χ)2 log(υ/χ)) ≤ O(ν2 log ν)

on the cost of Pass 2 and hence the total cost of Phase 1 is O(ν2 log ν).
The second claim in theorem follows as the cost of the generation of the second part of an

augmented Lδ-schedule is absorbed by that of the first part. Indeed, recall that for a call of PROCEDURE
AUGMENTED(K, δ), the second part of schedule SLδ [K] consisting of the jobs of the atomic kernel
K∗, is constructed by ED-heuristics in time O(κ′ log κ′), where κ′ ≤ κ is the total number of jobs in
atomic kernel K∗, and κ is the number of jobs in kernel K (Proposition 10). Similar to above in this
proof, we can show that the construction of the second part of the augmented schedules for the calls of
PROCEDURE AUGMENTED for all the arisen kernels (for the same δ) is O(n log n).

At this stage, we can give an optimality (sufficient) condition for problem 1|rj|Lmax, that is
helpful also in that it exhibits where the complex nature of the problem is “hidden”. Dealing with
an IA(b2) is a complicated task as it implies the solution of NP-hard set/numerical problems such
as 3-PARTITION yet with additional restrictions that impose job release times. As to the solution
provided by PROCEDURE MAIN, as we have seen above, the recurrences at Step 2, Case (2) in Pass 1,
and at Step (B.3) at Pass 2 do not, in fact, cause an exponential behavior.

Theorem 3. PROCEDURE MAIN finds an optimal solution to problem 1|rj|Lmax in time
O(n2 log n log pmax) if no IA(b2) at Phase 1 arises.

Proof. The proof is quite straightforward, we give a scratch. The initial step takes time O(n log n)
(the cost of ED-heuristics). At iterative step, the cost of updates of L∗

max and δ(M∗), M ∈ K and that of
the detection of every newly arisen kernel is bounded by the same magnitude. It is easy to see that
an L-preschedule for every kernel in K will be generated at Phase 1 if no Type (b) y-job is forced to
surpasses the L-boundary, or, equivalently, no IA(b2) arises (only a y-job may be forced to surpass the
L-boundary, whereas, if a Type (a) y-job surpasses it, PROCEDURE MAIN proceeds with the newly
arisen kernel). Hence, PROCEDURE AUGMENTED(K, δ) will create a feasible L-augmented schedule
for every kernel (since no IA(b2) at Pass 1 arises). Then, it remains to estimate the calls of PROCEDURE
AUGMENTED(K, δ) in the iterative step. The cost of a call of PROCEDURE AUGMENTED(K, δ) for a
given kernel K including all the embedded recursive calls is O(ν2 log ν) (Theorem 2). These recursive
calls include the calls for all the kernels which may arise within bin B−(K). Hence, for the purpose of
our estimation, it suffices to distinguish the calls PROCEDURE AUGMENTED(K, δ) and PROCEDURE
AUGMENTED(M, δ) for two distinct kernels K and M such that bins B−(K) and B−(M) have no jobs
in common. Then, similar to what is done to estimate the cost of Pass 1 in the proof of Theorem 2, we
easily get an overall (amortized) cost of O(n2 log n) for PROCEDURE MAIN for a given trial δ. Then,
we obtain the overall cost of O(n2 log n log pmax) for PROCEDURE MAIN taking into account that
there are no more than log pmax trial δs.

8. Construction of Compact Preschedules for Problem 1|pj : divisible, rj|Lmax

This section starts Part 2, in which our basic task is to develop an auxiliary algorithm that
deals with an IA(b2) occurred at Phase 1 (recall that if no IA(b2) occurs, PROCEDURE MAIN with
PROCEDURE AUGMENTED(K, δ) using Phase 1 already solves problem 1|rj|Lmax). A compact
feasible schedule, one without any redundant gap, has properties that are helpful for the establishment
of the existence or the non-existence of a complete L-schedule whenever during the construction of
a kernel preschedule at Phase 1 an instance of Alternative (b2) arises. In this section, we study the
compactness properties for instances of problem 1|pj : divisible, rj|Lmax.

Since the basic construction components of a complete feasible schedule are the secondary blocks,
it suffices to deal with compact secondary blocks. A secondary block B is compact if there is no feasible
L-schedule containing all the jobs of that block with the total length of all the gaps in it no-less than
that in block B.
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We can keep the secondary blocks compact if the processing times of some non-kernel jobs are
mutually divisible. For the commodity and without loss of generality, we assume that the processing
times of the non-kernel jobs are powers of 2 (precisely, we identify the specific non-kernel jobs for which
mutual divisibility is required on the fly). Below, we give a basic property of a set of divisible numbers
and then we give another useful property of a kernel preschedule with divisible job processing times,
which are used afterwards.

Lemma 6. For a given job x, let J−(x) be the set of jobs J−(x) = {i|pi < px} such that p(J−(x)) > px and
the processing times of jobs in set J−(x) ∪ {x} are mutually divisible. Then, there exists a proper subset J′ of set
J−(x) with p(J′) = px (that can be found in an almost liner time).

Proof. The following simple procedure finds subset J′. Sort the jobs in set J−(x) in non-increasing
order of their processing times, say {x1, . . . , xk}. It is straightforward to see that, because of the
divisibility of the processing times of the jobs in set J−(x) ∪ {x}, there exists integer l < k such that
∑l

ι=1 xι = px, i.e., J′ = {x1, . . . , xk}.

Lemma 7. Preschedule PreS(K, y, x), constructed at Pass 2 of Phase 1 for an instance of 1|pj :
divisible, rj|Lmax, contains no gap except one that may possibly arise immediately before time moment ψL(K).

Proof. By the way of contradiction, suppose I is an internal gap in schedule PreS(K, y) of Pass 1. Note
that initially, gap I was completely occupied in bin B−(K) in schedule σ, and that it is succeeded by at
least one y-job in preschedule PreS(K, y). That is, the x-jobs with the total length of at least |I| should
have been available while scheduling the interval of gap I in PROCEDURE DEF at Pass 2. Then, an
idle time interval within the interval of gap I in preschedule PreS(K, y, x) of Pass 2 may potentially
occur only at the end of that interval, say at time moment τ, due to the non-permitted interference in
schedule PreS(K, y,+x) of an available (and not yet discarded) x-job with a succeeding y-job, say y
(Step (B)). Note that job y is a Type (a) y-job (if it were of Type (b), then it would have been included
ahead any x-job in bin B−(K)) and that the lateness of that job did not exceed L before kernel K was
detected in schedule Σ(C(δ, K)). Let X be the set of the x-jobs preceding job y in the interval of gap I in
the latter schedule, and X′ be the corresponding set of the x-jobs in preschedule PreS(K, y, x) (by our
construction, P(X) > P(X′)). In PROCEDURE DEF, during the construction of schedule PreS(K, y, x),
at time moment τ there must have been no job with processing time p(X)− p(X′) or less available.
However, this is not possible since, because of the divisibility of job processing times, set X must
contain such a job (and that job must have been available and yet unscheduled). The existence of a gap
from time moment τ in the interval of gap I in schedule PreS(K, y, x) has led to a contradiction and
hence it cannot exist.

In the rest of this section, we assume that preschedule PreS(K) contains a gap; i.e., it ends with a
gap (Lemma 7). Our objective is to verify if that gap can be reduced. To this end, we define two kinds
of jobs such that their interchange may possibly be beneficial.

The first type of jobs are formed from set EP(K, L), the set of the passive emerging jobs for kernel
K in the current configuration with threshold L = Lδ. Recall that a job from set EP(K, L) is included
after kernel K in schedule ΣC(δ,K) but it may feasibly be included (as an x-job) in a preschedule of
kernel K (in bin B−(K)).

Recall at the same time, that a job from preschedule PreS(K) which may be rescheduled after all
jobs of kernel K without surpassing the L-boundary is one from set E(K, L), the set of emerging jobs
for kernel K at the current configuration (such a job was included as an x-job in preschedule PreS(K)).

A vulnerable component of a secondary block is a preschedule in it, in the sense that we can
maintain a secondary block compact if every preschedule that it contains is also compact, i.e., there
exists no other preschedule (for the same kernel) with the total length of the gaps less than that in
the former preschedule (see Corollary 4 at the end of this section). A key informal observation here
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is that, if a preschedule for kernel K is not compact, then a compact one can only be obtained from
the former preschedule by replacing some jobs from set E(K, L) with some jobs from set EP(K, L),
whereas nothing is to be gained by substituting any jobs from a compact preschedule by any jobs from
set EP(K, L) (Proposition 14 below).

Let A ⊆ E(K, L) and B ⊆ EP(K, L). Consider A and B as potential “swap” subsets and denote
by PreS(K,−A,+B) the preschedule for kernel K obtained by interchanging the roles of jobs from
sets A and B while reconstructing the current preschedule PreS(K) by the procedure of Phase 1.
Technically, preschedule PreS(K,−A,+B) can be constructed at Phase 1 for the restricted problem
instance PI(PreS(K),−A,+B) that contains all jobs from preschedule PreS(K) and set B but does not
contain ones in set A (so jobs from set A are activated for kernel K). Note that a job from set A belongs
to PreS(K,−A,+B), and, along with the remaining jobs from preschedule PreS(K), some job(s) from
set B may also be included in PreS(K,−A,+B).

Proposition 14. If an L-preschedule PreS(K) is not compact then there exist sets A and B such that an
L-preschedule PreS(K,−A,+B) is compact.

Proof. Among the jobs included in schedule ΣC(δ,K) after preschedule PreS(K), the available room
(the gap) from preschedule PreS(K) may only potentially be used by job(s) from set EP(K, L). By the
construction of Phase 1, this will not be possible unless some emerging job(s) from preschedule PreS(K)
is (are) rescheduled after kernel K. Then, this kind of the interchange of the jobs from set E(K, L)
with the jobs from set EP(K, L) yields the only potentially improving rearrangement of the jobs in
preschedule PreS(K), and the proposition follows.

Let us say that set A covers set B if preschedule PreS(K,−A,+B) includes all jobs from problem
instance PI(PreS(K),−A,+B). Since we wish to reduce the total gap length in preschedule PreS(K),
p(A) < p(B) must hold, which is our assumption from now on (we use p(A) for the total processing
time in job-set A; below, we use pmin{A} for the minimum job processing time in A).

Let γ(K) the total gap length in preschedule PreS(K) ∈ ΣC(δ,K). We call

ST(K) = γ(K) + βL(K∗) (13)

the store of kernel K in the current configuration C(δ, K). It is easily seen that ST(K) is the maximum
available vacant room in preschedule PreS(K) ∈ ΣC(δ,K):

Proposition 15. The total length of the jobs (the gaps, respectively) in preschedule PreS(K) ∈ ΣC(δ,K) might
be increased (decreased, respectively) by at most ST(K) time units in any L-preschedule for kernel K. If set A
covers set B, then the store of kernel K in an updated configuration with preschedule PreS(K,−A,+B) is

ST(K)− (P(B)− P(A)).

Lemma 8. If ST(K) < pmin{E(K, L)}, then preschedule PreS(K) is compact. If preschedule PreS(K) is not
compact, then ST(K) ≥ pmin{A}, for any A ⊆ E(K, L).

Proof. By the condition in lemma, the gap in preschedule PreS(K) (see Lemma 7) can potentially be
occupied only by a job j with pj ≤ pmin{E(K, L)}/2 (see Proposition 15). There may exist no such job
in set EP(K, L) as otherwise it would have been included in preschedule PreS(K) as an x-job at Pass 2.
Now, it can be straightforwardly seen that no interchange of jobs in set E(K, L) from preschedule
PreS(K) with jobs from set EP(K, L) may reduce the gap, because of the divisibility of the processing
times of the jobs in sets E(K, L) and EP(K, L), and the first claim in lemma follows from Proposition 14.

Now, we show the second claim. Suppose preschedule PreS(K) is not compact. Then, there
exist sets A and B such that A covers B and preschedule PreS(K,−A,+B) results in the reduction
of the store of kernel K by p(B)− p(A) (see Equation (13) and Propositions 14 and 15). Because of
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the divisibility of job processing times in sets A and B, p(B) − p(A) is a multiple of pmin{A ∪ B}.
Hence, if ST(K) < pmin{A ∪ B}, then preschedule PreS(K) is compact; ST(K) ≥ pmin{A ∪ B} must
hold if PreS(K) is not compact. ST(K) ≥ pmin{B} is not possible, as otherwise a job from set B with
processing time pmin{B} would have been included in preschedule PreS(K) at Pass 2 of Phase 1.
It follows that ST(K) ≥ pmin{A}.

Due to Lemma 8, from here on, assume that ST(K) ≥ pmin{A}. It is not difficult to see that not all
ST(K) time units may potentially be useful. In particular, let ν ≥ 1 be the maximum integer such that
ST(K) ≥ νpmin{A}, and let p′ = νpmin{A}.

Lemma 9. A feasible L-preschedule PreS(K,−A,+B) contains gap(s) with the total length of at least ST(K)−
p′; hence, p(B) ≤ p(A) + p′ when set A covers set B. Furthermore, pmin(EP(K, L)) = 2κ pmin{A}, for some
integer κ ≥ 1, and p′ ≤ 2κ pmin{A}.

Proof. The first claim easily follows from the definitions and the mutual divisibility of the processing
times of jobs in sets A and B, and inequality p(B) ≤ p(A) + p′ immediately follows. As to the
second claim, first we note that, for any π ∈ EP(K, L), pπ > ST(K), as otherwise job π would have
been included in preschedule PreS(K) at Pass 2 of Phase 1. Then, pmin(EP(K, L)) > p′, whereas
p′ ≥ pmin{A}. Hence, pmin(EP(K, L)) > pmin{A}. Now, the second claim follows from the fact that
the processing times of jobs in sets EP(K, L) and A are powers of 2.

Example 3. Suppose pmin{A} = 4 and ST(K) = 23. Then, p′ = 5pmin{A} = 20, hence a gap of length 3
is unavoidable. Let pmin(EP(K, L)) = 23 pmin{A} = 32. Since the shortest job that set B may contain has
processing time 32, the most we may expect is to form set A of three jobs of (the minimal) length 4, set B being
formed by a single job with the length 32. Then, after swapping sets A and B, we have a residue 32− 3× 4 = 20.
Because of these extra 20 units, the available idle space of length 23 is reduced to 3 in schedule SL(K,−A,+B)
in which set A covers set B. In that schedule, a gap of (the minimal possible) length 23 − 20 = 3 occurs.

We may restrict our attention to sets A and B which do not contain equal-length jobs, as otherwise
we may simply discount the corresponding jobs from both sets. In particular, for given A and B
with i ∈ A and j ∈ B with pi = pj, we obtain sets A(−i) and B(−j) by eliminating job i and job
j, respectively, from sets A and B, respectively. Let A(−all_equal, B) and B(−all_equal, A) be the
reduced sets A and B, respectively, obtained by the repeated application of the above operation for all
equal-length jobs. Sets A(−all_equal, B) and B(−all_equal, A) contain no equal-length jobs. We have
proved the following lemma.

Lemma 10. If set A covers set B, then set A(−all_equal, B) covers set B(−all_equal, A), where p(B) −
p(A) = p(B(−all_equal, A))− p(A(−all_equal, B)).

Theorem 4. If set A covers set B, then there are also (reduced) sets A′ ⊆ A and B′ ⊆ B, where set B′ contains
a single element π ∈ EP(K, L) with the minimum processing time in set B and with P(B′)− p′ ≤ P(A′) <
P(B′) such that set A′ covers set B′ and P(B′)− P(A′) = P(B)− P(A).

Proof. Let A and B be the reduced sets that contain no equal-length jobs and such that A covers B
(see Lemma 10). We can further reduce sets A and B by discounting, similarly, for each job j ∈ B, jobs
from set A, for which processing times sum up to pj. In particular, take a longest job j ∈ B and longest
jobs from set A that sum up to pj. Due to the divisibility of job processing times and the inequalities
p(B) > p(A) and pmin(EP(K, L)) = 2κ pmin{A} (see Lemma 9), this will be possible as long as the total
processing time in A is no smaller than pj. The sets A and B are reduced respectively, and the same
operation for these reduced sets is repeated until the total processing time of the remaining jobs in
the reduced set A is less than pj. Then, we are left with a single job j ∈ B (one with the minimum
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processing time in B) and the jobs in set A with the total processing time less than pj, and such that
pj − p(A) ≤ p′ (see Lemma 9).

Let A′ and B′ be the reduced sets obtained from sets A and B, respectively. By the construction
of set A′ and B′ and the fact that set A covers set B, it immediately follows that P(B′) − P(A′) =

P(B)− P(A) and that set A′ covers set B′.

Now, we show that the current secondary block BK will be kept compact if we merely unify the
compact preschedules in schedule ΣC(δ,K).

Theorem 5. A secondary block B consisting of compact L-preschedules is compact.

Proof. If the time interval of every preschedule PreS(K) from block B extends up to time ψL(K) and it
contains no gap then the secondary block B is clearly compact. Suppose there is preschedule PreS(K)
from block B that contains a gap and/or completes before time ψL(K). First, we observe that no extra
job can be included within preschedule PreS(K) to obtain another L-preschedule with an extended
time interval and/or with less total gap length. Indeed, let x′, px′ < px, be a shortest available x-job
from set ∈ J−(x). By PROCEDURE DEF, schedule PreS(K,+x′) is not a feasible L-preschedule for
kernel K (as otherwise PROCEDURE DEF would include job x′ in preschedule PreS(K) at Pass 2).
Thus, job x′ may only feasibly be included in preschedule PreS(K) by removing a longer job x from
that preschedule. However, such a rearrangement may, at most, fill in the former execution interval of
job x due to the above made observation and Lemma 6.

To prove the lemma, now it clearly suffices to show that nothing is to be gained by a job
rearrangement in preschedule PreS(K) that involves, besides the jobs from sets E(K, L) and EP(K, L),
the jobs from a preschedule preceding preschedule PreS(K).

Let PreS′(K) be an arbitrary L-preschedule for kernel K (one respecting the current threshold Lδ).
Without loss of generality, assume preschedules PreS(K) and PreS′(K) start at the same time, whereas
none of them may complete after time ψL(K) (Equation (12)). Let W and Z, respectively, be the sets
of integer numbers, the processing times of jobs in the current preschedule PreS(K) ∈ ΣC(δ,K) and in
preschedule PreS′(K), respectively (here, we assume that sets W and Z consist of mutually divisible
integer numbers, possibly with some repetitions).

Similar to what is done in Lemma 10 and Theorem 4, we discount the same numbers from sets
W and Z and the numbers from one set which sum up to another number from the other set (taking
a combination with the longest possible jobs). Note that both sets are reduced by the same amount
(a sum of powers of 2). Denote by W ′ and Z′ the resultant sets.

If p(W ′) ≥ p(Z′) then the total gap length in preschedule PreS(K) cannot be more than that in
preschedule PreS′(K), and the theorem follows if the condition holds for all preschedules in block B.

Otherwise, suppose p(W ′) < p(Z′). By the definition of the sets W ′ and Z′ and the store of kernel
K (Equation (13)), p(Z′)− p(W ′) = p(Z)− p(W) ≤ ST(K) (see Theorem 4) and the preschedule for
kernel K consisting of the jobs associated with the set of processing times {W \ W ′} ∪ Z′ will have the
same total gap length as preschedule PreS′(K) (the substitution of the jobs corresponding to set W ′ by
those from set Z′ would result in a preschedule with the same total gap length as that in preschedule
PreS′(K)). By the construction of preschedule PreS(K) at Phase 1, no job x with processing time from
set Z′ which could have been feasibly included within preschedule PreS(K) was available during
the construction of that preschedule. Hence, every such job x should have been already scheduled
in a preschedule PreS(K′) preceding preschedule PreS(K) in block B. By rescheduling job x from
preschedule PreS(K′) to preschedule PreS(K), the total gap length in the newly created preschedule
of kernel K will be reduced by px, but a new gap of the same length will occur in the resultant new
preschedule of kernel K′ as there is no other suitable job available (otherwise, it would have been
included in preschedule PreS(K)). Hence, the total gap length in block B will remain the same. Thus,
no matter how the jobs are redistributed among the preschedules from block B, the total length of the
remaining gaps in that block will remain the same. The lemma is proved.

59



Mathematics 2019, 7, 1104

Corollary 4. If a secondary block B is constituted by the preschedules created at Phase 1, then it is compact.

Proof. For every kernel K ∈ B, if an L-preschedule PreS(K, x, y) of Phase 1 is not compact then there
exist sets A ⊆ E(K, L) and B ⊆ EP(K, L) such that an L-preschedule PreS(K,−A,+B) is compact
(Proposition 14). By Theorem 4, B = {π}, for some job π ∈ EP(K, L). However, since for every job
j ∈ A, pj < pπ (see Lemma 9), set A cannot cover set B in preschedule PreS(K,−A,+B), as otherwise
job π would have been included in preschedule PreS(K, x, y) at Pass 2 instead of the shorter jobs
from set A. It follows that every preschedule from block B is compact, and the corollary follows from
Theorem 5.

9. Phase 2: Search for an L-preschedule When an IA(b2) at Phase 1 Arises

Throughout this section, we consider the scenario when a compact preschedule for a newly arisen
kernel K cannot be constructed at Phase 1, i.e., an IA(b2) with a Type (b) y-job y at Pass 1 arises. Recall
that this happens when Pass 1 is unable to include job y in preschedule PreS(K, y) in the current
configuration (see Proposition 12). Phase 2, invoked from Phase 1, generates one or more new problem
instances and calls back Phase 1 to create the corresponding new configurations. Thus, Phase 2 has no
proper algorithmic features except that it generates new problem instances.

We refer to the earliest occurrence of IA(b2) in secondary block BK at Phase 1 as the basic case.
In the inductive case (abbreviated IA(b2-I)), IA(b2) repeatedly arises in the current secondary block
(roughly, we “stay” in the current secondary block for IA(b2-I) in the inductive case, whereas we are
brought to a new secondary block with every newly occurred IA(b2) in the basic case). In general,
different occurrences of an IA(b2-I) in the inductive case may occur for different kernels, where all of
them pertain to the current secondary block B.

Throughout this section, let K− be the kernel immediately preceding kernel K in block BK. We
let y be an incoming job in bin B−(K) = B+(K−) at Phase 1; y is an incoming job in the first bin of
block BK if there exists no K−. Note that ry is no smaller than the starting time of block BK, and, since
it can feasibly be scheduled within every bin that initiates at or after time ry up to (and including)
bin B−(K), y is a former x-job for any such a bin (except that it is a Type (b) job for bin B−(K)), i.e., it
may potentially be included in any of these bins. We explore such possibility and seek for a suitable
distribution of all the x-jobs and Type (b) y-jobs into these bins at Phase 2.

Proposition 16. Suppose during the construction of preschedule PreS(K, y) an IA(b2)/IA(b2-I) with job y
occurs and there exists schedule SL. Then, job y or a Type (b) y-job included between kernel K− and job y in bin
B−(K) is scheduled before kernel K− in schedule SL.

Proof. Note that the critical block in schedule ΣC(δ,K) coincides with the secondary block BK− , and it is
compact when the above IA(b2)/IA(b2-I) occurs by Corollary 4. Then, job y cannot be restarted earlier
in any feasible L-schedule in which the same jobs (which were included in preschedule PreS(K, y) at
Pass 1) are left scheduled before job y. The lemma obviously follows if y is the earliest considered job
to be scheduled in bin B−(K). Otherwise, job y may potentially be started earlier either by scheduling
it before kernel K− or by decreasing (left-shifting) its current early starting time. The latter will only
be possible if some job included in bin B−(K) ahead of job y is rescheduled behind job y. By the
construction at Phase 1, any job included in bin B−(K) ahead of job y is a no less urgent than job y
y-job and it cannot be rescheduled after job y without surpassing the L-boundary. Then, job y may be
left-shifted only if one of the latter jobs is rescheduled before kernel K−. However, this is not possible
for a Type (a) y-job and the lemma is proved.

By the above proposition, either job y or a Type (b) y-job included between kernel K− and job y in
bin B−(K) is to be rescheduled before kernel K−. In particular, the following observations are evident:

• (1) If job y, is the first scheduled job in bin B−(K) or is preceded only by Type (a) y-jobs in that
bin, then job y is to be entirely rescheduled before kernel K−.
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• (2) If job y is preceded by some Type (b) y-job(s), then either job y or some of these Type (b) y-job(s)
is (are) to be rescheduled before kernel K−. Since in any L-schedule job y needs to be left-shifted
by at least λy amount of time (the L-delay of job y (see Equation (5))), the total processing time of
these Type (b) y-jobs to be rescheduled before kernel K− must be no-less than λy.

Let us denote by Λy the set of the y-jobs to be rescheduled before kernel K− as defined in Cases (1)
and (2) above. Set Λy will not be explicitly defined; it will be formed implicitly during the activation
procedure that we describe in this section. In Case (1) above, set Λy will contain a single job y,
hence ps ≥ py must clearly hold, whereas, in Case (2), ps must clearly be no-less than the minimum
processing time of a y-job in set Λy. Let p̄min{y} be the minimum processing time among these y-jobs.
The next proposition follows:

Proposition 17. ps ≥ p̄min{y}.

9.1. The Activation of a Substitution Job

Given that an IA(b2)/IA(b2-I) with job y after kernel K− arises, s ∈ BK is called a substitution job
if ds > dy. Intuitively, job s is an emerging job for job y (the latter job surpasses the current L-boundary,
and in this sense, it is a potential overflow job).

PROCEDURE ACTIVATE(s) that activates substitution job s has some additional features
compared to the basic definition of Section 2, as we describe in this subsection (in the next subsection,
we complete the description of Phase 2 by a subroutine that tries different substitution jobs to determine
a “right” one).

Let B{(s)} be the bin from secondary block BK containing substitution job s (it follows that s was
included as an x-job in bin B{(s)}). PROCEDURE ACTIVATE(s) reconstructs preschedules for the
kernels in the current schedule ΣC(δ,K) between the kernel K′ with B−(K′) = B{(s)} (the kernel with
its first surrounding bin B{(s)}) and kernel K−, including these two kernels, calling Phase 1 for each of
these kernels (the kernel preschedules are reconstructed in their precedence order). This reconstruction
leads to a new temporal configuration. PROCEDURE ACTIVATE(s) aims to verify if there exists a
feasible L-preschedule for kernel K respecting this configuration. If it does not exist, PROCEDURE
sl-SUBSTITUTION(K), described in the next subsection, tries another substitution job for kernel K,
calling again Phase 1 for kernel K; each call creates a new temporary configuration and is carried out
for a specially derived problem instance that depends on the selected substitution job.

For notational simplicity, we denote every newly constructed preschedule of kernel K by PreS(K);
we distinguish preschedules constructed at different calls of Phase 1 just by referring to the call with the
corresponding substitution job, and will normally use PreS(K) for the latest so far created preschedule
for kernel K.

In the inductive case, the activation procedure for a substitution job s calls Phase 1 with a
non-empty set SB of the substitution jobs, ones in the state of activation in the secondary block B by the
corresponding call of Phase 1 (note that s 	∈ SB). As already noted, the activation procedure may be
called for different kernels which belong to the current secondary block, so that this block may contain
a preschedule, already reconstructed by an earlier call of the activation procedure for another kernel
from that block (set SB contains all the corresponding substitution jobs).

Problem instances for the basic and inductive cases. The problem instances for the basic and
inductive cases are different, as we specify now. The problem instance PI(current,+y, [s]) of the
basic case contains the jobs in schedule ΣC(δ,K) from all the bins between bin B{(s)} and bin B−(K−),
including the jobs of bins B−(K−) and B{(s)} except job s, job y and all the y-jobs included before job
y in preschedule PreS(K, y) of Pass 1 (the latter y-jobs are ones which were already included in bin
B−(K) at Pass 1 when the IA(b2) with job y has occurred; note that no x-job for bin B−(K) is included
in instance PI(current,+y, [s])).
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The problem instance of the inductive case contains the same set of jobs as that in the basic case,
and it also contains the substitution jobs from set SB . For the sake of simplicity, we denote that problem
instance also by PI(current,+y, [s]).

Successful and failure outcomes. As already specified, the activation of job s consists of
the rescheduling of preschedules of bins B{(s)}, . . . , B−(K−) by a call of Phase 1 for instance
PI(current,+y, [s]) in this precedence order (note that while rescheduling these bins only the jobs from
that instance are considered). As we show at the end of this subsection in Lemma 11, all these bins will
be successfully reconstructed at Phase 1.

PROCEDURE ACTIVATE(s) halts either with the successful outcome or with the failure outcome.
For every successful outcome, the current call of Phase 2 (invoked for the IA(b2) with job y) completes
and Phase 1 is repeatedly invoked from PROCEDURE MAIN for the construction of a new preschedule
PreS(K) for kernel K. Intuitively, the difference between the configurations after this new and the
previous calls of Phase 1 for kernel K is that, as a result of the new call, no job from problem
instance PI(current,+y, [s]) may again surpass the L-boundary, and job y is already included in current
secondary block in the new configuration. We omit a straightforward proof of the next proposition.

Proposition 18. If there is a job from instance PI(current,+y, [s]) that the activation procedure could not
include in any of the reconstructed bins B{(s)}, . . . , B−(K−), this job is a y-job for bin B−(K) (or it is a job
from set SB in the inductive case). If a former y-job is of Type (a), then all such Type (a) y-jobs can be included in
bin B−(K) during the construction of a new preschedule PreS(K) for kernel K at Phase 1.

Note that, independently of the outcome, the activation procedure cannot include job s before any
of the Type (b) y-jobs for bin B−(K) from instance PI(current,+y, [s]) in the basic case. However, as
shown below, job s may be included ahead some of these Type (b) y-jobs at a later call of the activation
procedure for a substitution job, different from job s, in the inductive case.

Extension of Phase 1 for a call from the inductive case. The activation procedure for the
inductive case takes a special care on the jobs from set SB while invoking Phase 1 for instance
PI(current,+y, [s]) (or instance PI(current,+y, [∅]) which we define below). In particular, when Phase
1 is called from the inductive case, two types of the x-jobs are distinguished during the (re)construction
of a preschedule PreS(K̄), K̄ 	= K (one of the bins B{(s)}, . . . , B−(K−)). The Type (b) x-jobs are ones
which are also x-jobs for bin B−(K), and the rest of the x-jobs are Type (a) x-jobs. We observe that a
Type (a) x-job for bin B−(K̄) will transform to a Type (b) y-job for bin B−(K) unless it is included in
one of the preceding reconstructed bins B−(K̄), and that a substitution job from set SB is a Type (b)
x-job for any bin B−(K̄).

Phase 1, when invoked from the inductive case, is extended with an additional, Pass 3, designed
for scheduling the substitution jobs from set SB . Pass 3 uses the algorithm of Pass 2, DEF-heuristics,
but with a different input, restricted solely to Type (b) x-jobs (hence, a former substitution job from SB
may potentially be included at Pass 3). There is a respective modification in the input of Pass 2, which
consists now of only Type (a) x-jobs (hence no substitution job from set SB will be included at Pass 2).
Pass 3 is invoked after Pass 2, and Pass 2 is invoked after Pass 1, which remains unmodified while
rescheduling each of the bins B{(s)}, . . . , B−(K−).

Once (in both basic and inductive cases) preschedules of bins B{(s)}, . . . , B−(K−) are
reconstructed (Lemma 11), Phase 1 continues with the reconstruction of preschedule PreS(K)
as follows.

• (A) If there remains no unscheduled job from instance PI(current,+y, [s]) (except possibly jobs
from set SB in the inductive case), i.e., all these jobs are included in one of the reconstructed bins
B{(s)}, . . . , B−(K−), the activation procedure halts with the successful outcome.

If there is a job from instance PI(current,+y, [s]) that could not have been included in any of
the reconstructed bins B{(s)}, . . . , B−(K−) (excluding jobs from set SB in the inductive case),
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then it is a y-job for bin B−(K) (and it might also be a job from set SB in the inductive case).
PROCEDURE ACTIVATE(s) proceeds as described below.

• (B) If every job from instance PI(current,+y, [s]) that could not have been included in any of the
reconstructed bins B{(s)}, . . . , B−(K−) is a Type (a) y-job for bin B−(K) (or a job from set SB in
the inductive case), the outcome of the activation of job s is again successful (see Proposition 18).
{all the Type (a) y-jobs for bin B−(K) will fit in that bin}.

• If there is a Type (b) y-job for bin B−(K) from instance PI(current,+y, [s]) that could not have
been included in any of the reconstructed bins B{(s)}, . . . , B−(K−), the outcome of the activation
procedure depends on whether Phase 1 will succeed to construct L-preschedule PreS(K) including
all such Type (b) y-jobs.

(C1) If during the construction of preschedule PreS(K) at Pass 1 an iteration is reached at which
all the Type (b) y-jobs from instance PI(current,+y, [s]) are included, then the outcome of the
activation of job s is again successful and Phase 1 continues with the construction of (a new)
preschedule PreS(K) for kernel K by considering all the available jobs (including job s) without
any further restriction.

(C2) If the above iteration during the construction of preschedule PreS(K) does not occur, then
either (C2.1) a new kernel K′ including the corresponding type (a) y-job(s) arises or (C2.2) an
IA(b2) with a Type (b) y-job occurs (see Proposition 12).

In Case (C2.1), Step 2 of Pass 1 returns kernel K′ and calls PROCEDURE MAIN to update the
current configuration (see the description of Pass 1 in Section 7.1).

In Case (C2.2), PROCEDURE ACTIVATE(s) completes with the failure outcome (then
PROCEDURE sl-SUBSTITUTION(K), described in the next subsection, looks for another
substitution job s′ and calls repeatedly PROCEDURE ACTIVATE(s′)).

This completes the description of PROCEDURE ACTIVATE(s). In the next subsection, we describe
how we select a substitution job in the basic and inductive cases completing the description of Phase 2.

Lemma 11. PROCEDURE ACTIVATE(s) creates an L-preschedule, for every reconstructed bin
B{(s)}, . . . , B−(K−) with the cost of Phase 1.

Proof. In this proof, we refer to a call of PROCEDURE ACTIVATE(s) from the condition of the lemma
as the current call of that procedure; note that, for the inductive case, there should have been performed
earlier calls of the same procedure within the current secondary block. In particular, prior to the current
call of PROCEDURE ACTIVATE(s), every bin B−(K̄) ∈ {B{(s)}, . . . , B−(K−)} was (re)constructed
directly at Phase 1 (one or more times). The current call reconstructs bin B−(K̄) (preschedule PreS(K̄))
once again. Recall also that problem instance PI(current,+y, [s]) contains additional job y and the
Type (b) y-jobs preceding that job by the construction of the preschedule for kernel K at Pass 1 (these
jobs were included prior to the occurrence of an IA(b2) with job y). All these Type (b) y-jobs for bin
B−(K) become x-jobs for a bin B−(K̄) after the current call of PROCEDURE ACTIVATE(s).

Again, the activation procedure calls Phase 1, and by the construction of Phase 1, it will suffice to
show that during the reconstruction of any of the bins B−(K̄), there will occur no Type (b) y-job that
cannot be included in the newly created preschedule PreS(K̄) (note that no such Type (a) y-job may
arise). Let us now distinguish two kinds of Type (b) y-jobs for bin B−(K̄): a Type (b) y-job that was
also a Type (b) y-job during the previous (re)construction of preschedule PreS(K̄), and a newly arisen
Type (b) y-job for bin B−(K̄), i.e., one that was earlier included as an x-job in a preceding preschedule
PreS(K′) but which turned out to be a Type (b) y-job during the current construction of preschedule
PreS(K̄).

The lemma is obviously true if there exists no latter kind of a y-job for bin B−(K̄). To the
contrary, suppose job x was scheduled in bin B−(K′) (preceding bin B−(K̄)) as an x-job, but it was
forced to be rescheduled to (a later) bin B−(K̄) as an y-job during the current call of PROCEDURE
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ACTIVATE(s). Then, during the current construction of preschedule PreS(K′) (the last call of
PROCEDURE ACTIVATE(s) that has invoked Phase 1) a new x-job z was included before job x
was considered at Pass 2 of Phase 1. By DEF-heuristics (Pass 2), this may only occur if a job scheduled
in bin B−(K′) at the previous call is not considered at the current call during the construction of
that bin (the preschedule PreS(K′)). Let N be the set consisting of all such jobs. By the definition of
instance PI(current,+y, [s]) and the activation procedure, a job in set N may be job s or a job which
was left-shifted within the time intervals liberated by job s or by other left-shifted job(s).

Thus, job z has now occupied the time intervals within which job x and job(s) in set N were
scheduled. pz ≥ 2px, as otherwise job x would have been considered and included in bin B−(K′)
ahead of job z by DEF-heuristics (recall that the smallest job processing time, larger than px is 2px).
Then, p(N) < px is not possible, since otherwise p(N) + px < 2px ≤ pz and the length of the released
time intervals would not be sufficient to include job z in bin B−(K′) (hence, job z would not push out
job x). If p(N) = px, because of the divisibility of job processing times and by DEF-heuristics, job z
may only push out job x if pz = 2px = 2p(N). Then, pz is greater than the processing time of any
job in set N. However, in this case, job z would have been included at the previous call in bin B−(K̄)
ahead of job x and the jobs in set N since it is longer than any of these jobs, a contradiction.

If now at the current call p(N) > px, a job can be included ahead of job z in preschedule PreS(K′)
within the time intervals earlier occupied by the jobs in set N. Let p′, p′ ≤ p(N), be the length of the
remaining total idle-time intervals. If pz ≤ p′, then job z cannot push out job z since it fits within the
remaining idle-time interval. If pz > p′, then pz must be no smaller than the smallest power of 2 greater
than px + p′. Hence, job z cannot fit within the intervals of the total length of px + p′, and, again,
it cannot pull out job x.

We showed that job z cannot exist, hence job x does not exist and PROCEDURE ACTIVATE(s)
creates an L-preschedule for the bins B{(s)}, . . . , B−(K−). The cost of the procedure is the same as that
of Phase 1 since the cost of the creation of problem instance PI(current,+y, [s]) is obviously absorbed
by the cost of Phase 1.

9.2. Selecting a Substitution Job

Now, we describe PROCEDURE sl-SUBSTITUTION(K) that repeatedly activates different
substitution jobs for an IA(b2) occurred at Phase 1 (using PROCEDURE ACTIVATE(s)) to determine
one for which PROCEDURE ACTIVATE(s) completes with the successful outcome (whenever there
exists such a substitution job). From here on, we refer to the original precedence order of the
substitution jobs in the current secondary block BK (their precedence order corresponding to the
last configuration in which none of them were activated).

Lemma 12. Suppose an IA(b2)/IA(b2-I) with job y arises and s′ and s′′ are the substitution jobs such that job
s′′ preceded job s′. Then, if the outcome of activation of job s′ is the failure then outcome of activation of job s′′

will also be the failure.

Proof. Let j be any candidate job to be rescheduled before kernel K−, i.e., j = y or j is any of the
Type (b) y-jobs included after kernel K− before the above IA(b2)/IA(b2-I) with job y has occurred
(see Proposition 16). Job j is released either: (1) before the (former) execution interval of job s′; or (2)
within or after that interval. In Case (1), job j can immediately be included in bin B{(s′)}. Moreover,
as ps′ > pj, if j cannot be included in bin B{(s′)}, it can also not be included in any other bin before
kernel K− (one preceding bin B{(s′)}). In Case (2), job j cannot be included before kernel K− unless
some jobs from bin B{(s′)} and the following bins are left-shifted within the idle-time interval released
by job s′ (releasing, in turn, the idle-time within which job j may be included). Again, since ps′ > pj,
job j will fit within the idle-time interval released by job s′, given that all the intermediate jobs are
“sufficiently” left-shifted. Since job s′ succeeds job s′′, the activation of job s′ will left-shift these jobs
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no-less than the activation of job s′′ (being a substitution job, s′ is “long enough”). The lemma now
obviously follows.

Determining the sl-substitution job. We use the above lemma for the selection of a right
substitution job. Let us call the shortest latest scheduled substitution job such that the outcome
of its activation is successful, the sl-substitution job for job y. We show in Lemma 16 that, if there exists
no sl-substitution job, there exists no L-schedule.

Our procedure for determining the sl-substitution job is easy to describe. PROCEDURE
sl-SUBSTITUTION(K) (invoked for an IA(b2) with a Type (b) y-job from Phase 1 during the
construction of preschedule PreS(K)) finds the sl-substitution job or otherwise returns the failure
outcome. Iteratively, it calls PROCEDURE ACTIVATE(s) for the next substitution job s (a candidate
for the sl-substitution job) until PROCEDURE ACTIVATE(s) delivers a successful outcome or all the
candidate jobs (which may potentially be the sl-substitution job) are considered.

The order in which the candidate substitution jobs are considered is dictated by Lemma 12.
Recall from Proposition 17 that a substitution job is at least as long as p̄min{y}. Let p̄ ≥ p̄min{y}
be the minimum processing time no smaller than p̄min{y} of any yet unconsidered substitution
job. PROCEDURE sl-SUBSTITUTION(K), iteratively, among all yet unconsidered substitution jobs
with processing time p̄ determines the latest scheduled substitution job s and calls PROCEDURE
ACTIVATE(s) (see Lemma 12). If the outcome of PROCEDURE ACTIVATE(s) is successful, the
outcome of PROCEDURE sl-SUBSTITUTION(K) is also successful and it returns job s (s is the
sl-substitution job). Otherwise, if there exits the sl-substitution job, it is longer than job s. p̄ is set to the
next smallest processing time larger than the current p̄, s becomes the latest scheduled substitution job
with the processing time p̄ and PROCEDURE ACTIVATE(s) is called again. The procedure continues
in this fashion as long as the latest outcome is the failure and p̄ can be increased (i.e., a substitution job
with the processing time greater than that of the latest considered one exists). Otherwise, PROCEDURE
sl-SUBSTITUTION(K) halts with the failure outcome.

Let μ be the number of non-kernel jobs in the current secondary block BK.

Lemma 13. PROCEDURE sl-SUBSTITUTION finds the sl-substitution job or establishes that it does not
exist by verifying at most log pmax substitution jobs in time O(log pmaxμ2 log μ).

Proof. The preprocessing step of PROCEDURE sl-SUBSTITUTION creates a list in which the
substitution jobs are sorted in non-decreasing order of their processing times, whereas the jobs of
the same processing time are included into the inverse precedence order of these jobs in that list.
The preprocessing step takes time O(μ log μ).

Since the processing time of every next tried substitution job is larger than that of the previous one,
the procedure works on log pmax iterations (assuming that the processing times of the substitution jobs
are powers of 2). By Lemma 12, among all the candidate substitution jobs with the same processing
time, it suffices to consider only the latest scheduled one. For the failure outcome, by the same lemma,
it suffices to consider the latest scheduled substitution job with the next smallest processing time (given
that the procedure starts with the latest scheduled substitution job with the smallest processing time).

At every iteration, the corresponding bins from the current secondary block BK are rebuilt at
Phase 1. Applying Theorem 2 and the fact that different bins have no common jobs, we easily obtain
that the cost of the reconstruction of all the bins at that iteration is O(μ2 log μ) and hence the total cost
is O(μ log μ + log pmaxμ2 log μ) = O(log pmaxμ2 log μ).

10. More Examples

Before we prove the correctness of our algorithm for problem 1|pj : divisible, rj|Lmax, we give final
illustrations using the problem instances of Examples 1 and 2 and one additional problem instance,
for which an IA(b2) arises. Recall that Figures 5 and 9 represent optimal solutions for the former two
problem instances.
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For the problem instance of Example 1, in the schedule of Figure 6 the collapsing of kernel K is
complete and the decomposition procedure identifies the atomic kernel K∗; hence, the corresponding
two bins are determined. The atomic kernel K∗ consists of Job 1 with the lateness −1 = L∗

max.
The binary search is carried out within the interval [0, 13) (Δ = 16 − 3 = 13). For δ = 7, the
Lδ-boundary is −1 + 7 = 6. At Phase 1, bins B1 and B2 are scheduled as depicted in the schedule of
Figure 5 (in bin 1 only a single x-Job 2 at Pass 2 can be included, whereas bin B2 is packed at Pass 1
with two y-Jobs 3 and l). Hence, the L-schedule of Figure 5 for L = 6 is successfully created. For the
next δ = 4, the Lδ-boundary is −1 + 4 = 3. Bin B1 is scheduled similarly at the iteration with δ = 7;
while scheduling bin B2 at Phase 1, an IA(b2) with y-Job 3 occurs (since its lateness results to be greater
than 3), but there exists no substitution job. Hence, there exists no Lδ-schedule for δ = 4, L = 3. Phase
1 will complete with the similar outcome for the iteration in the binary search with δ = 6, and the
algorithm halts with the earlier obtained feasible solution for δ = 7.

For the problem instance of Example 2, the schedule of Figure 8 represents the result of the
decomposition of both arisen kernels K1 and K2 (kernel K2 arises once the decomposition of kernel
K1 is complete and bin B1 gets scheduled). We have Lmax(K1∗) = L3(σl,2) = 19 − 20 = −1, whereas
Δ = 32− 3 = 29. For δ = 0, bin B1 may contain only Job 1. Once bin B1 is scheduled, the second kernel
K2 arises. The result of its collapsing is reflected in Figure 8. We have L∗

max = Lmax(K2∗) = L6(σl,2,4) =

62 − 58 = 4. Then, δ(K1∗) = 5 (while δ(K2∗) = 0), and an extra delay of 5 is now allowed for kernel
K1. Note that the current secondary block BK2 includes all the three bins. For δ = 0, bin B1 is newly
rescheduled and at Pass 2 of Phase 1 an x-Job 7 is now included in that bin (due to the allowable extra
delay for kernel K1∗). No other job besides Job l can be included in bin B2, and the last bin B3 is formed
by Job 4. A complete L-schedule (with Lδ = L∗

max + δ = 4 + 0 = 4) with the objective value equal to a
lower bound 4 is successfully generated (see Figure 9).

Example 4. In this example, we modify the problem instance of Example 2. The set of jobs is augmented with
one additional Job 8, and the parameters of Jobs 4 and 7 are modified as follows:
r4 = 0, p4 = 8, d4 = 66,
r7 = 0, p7 = 4, d7 = 60,
r8 = 0, p8 = 4, d8 = 63.

Figure 10 represents the last step in the decomposition of kernel K1, which is the same as for the
problem instance of Example 2 (the schedules represented in Figures 10–13 have different scaling due
to the differences in their lengths). This decomposition defines the two bins surrounding atomic kernel
K1∗. The binary search is invoked for δ = 0; since K1∗ is the only detected kernel so far, δ(K1∗) = 0
and Lδ = L3(S∗[K1]) = −1. The first bin is successfully packed with an additional external x-Job 7 at
Pass 2 of Phase 1 (since there exists no y-job, Pass 1 is not invoked). PROCEDURE MAIN proceeds by
applying ED-heuristics from Time 21 during which the second kernel K2 arises. Figure 11 represents
the resultant partial schedule with the first packing of bin B1 and kernel K2. Figure 12 represents the
result of the full decomposition of kernel K2 (which is again the same as for the problem instance of
Example 2). Now, δ(K2∗) = 0 and δ(K1∗) = 5. Bin B1 is repacked, in which a longer x-Job 4 can now
be included, and bin B2 at Phase 1 is packed (at Pass 1 an y-Job 2, and at Pass 2 an x-Job l is included in
that bin, see Figure 12). PROCEDURE MAIN is resumed to expand the current partial schedule, but
now an IA(b2) with the earliest included Job 7 arises (as its resultant lateness is 66 − 60 = 6 > 4). Job
4 from bin B1 is the sl-substitution job. The result of its activation is reflected in Figure 13: bin B1 is
repacked now with x-Jobs 7 and 8, bin B2 remains the same, and the last Job 4 is included in bin B3 at
Phase 0, yielding a complete SL0 -schedule with the optimal objective value 4 (both Jobs 6 and 4 realize
this optimal value).

Figure 10. Full decomposition of kernel K1.
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Figure 11. Extended schedule SL(current, K1) with kernel K2.

Figure 12. In schedule SL(current, K2) Job 7 cannot be included.

Figure 13. An optimal schedule SL in which bins B1, B2 and B3 are successfully repacked.

11. Correctness of the Framework for Jobs with Divisible Processing Times

In Section 8, we show that, for an instance of 1|pj : divisible, rj|Lmax, the current secondary block
is kept active at Phase 1 (Corollary 4). Now, we generalize this result proving a similar statement
for a secondary block that gets reconstructed at Phase 2 (we cannot affirm a similar property for an
instance of 1|rj|Lmax, a reason PROCEDURE MAIN may not provide an optimal solution to the general
problem). For the commodity in the proof that we present here, we introduce a few new definitions.

First, we observe that a call of PROCEDURE ACTIVATE(s) may create the new, so-called critical
gap(s) in a reconstructed preschedule in the current secondary block BK. To every critical gap in
secondary block BK, the substitution job from set SB which activation has yielded that gap, corresponds.
Denote by CG(s) the set of all the currently remaining (yet unused at that configuration) critical gaps
yielded by the activation of a substitution job s; let |CG(s)| be the total length of these gaps.

A substitution job s ∈ SB is stable if |CG(s)| = 0. When a substitution job s is activated, the total
length of the critical gaps arisen after its activation depends, in particular, on ps. For example, in the
basic case, or in the inductive case if substitution jobs in SB are stable, the new critical gaps with the
total length ps − py will arise, where y is the y-job for which s was activated.

If an activated substitution job s is non-stable and during a later call of PROCEDURE
ACTIVATE(s′), s′ 	= s, some y-job within the interval of the gaps in CG(s) is included, |CG(s)|
will be reduced. In this way, job s may eventually become stable.

For a substitution job s′ ∈ SB , we let Y(s′) be the set of all the newly included y-jobs in the
reconstructed bins after a call of PROCEDURE ACTIVATE(s′) (see Lemma 11).

Suppose a call of PROCEDURE ACTIVATE(s) (succeeding an earlier call of PROCEDURE
ACTIVATE(s′)) includes job s′ before all the y-jobs from set Y(s′). Then, job s′ is said to be inactivated.
The intuition behind this definition is that job s′ will not necessity remain in the state of activation for
all jobs from set Y(s′) in the case that the activation of a new substitution job s gives a sufficient room
for a proper accommodation of the jobs in set Y(s′) (this is rectified in more details in the proof below).
At the same time, we may note that job s′ may not be included in any of the newly reconstructed bins
and neither in bin B−(K) (then it eventually will be included within a succeeding bin of the secondary
block BK).

Lemma 14. At Phase 2, the current secondary block is kept compact given that for every occurrence of an
IA(b2-I) the corresponding sl-substitution job exists.

Proof. For the basic case, before the activation of the corresponding sl-substitution job, say s1, the
critical block BK is compact by Corollary 4. Since s1 is the sl-substitution job, block BK will remain
compact after the above activation. We are brought to the inductive case if an IA(b2) repeatedly arises
in the above block, the first occurrence of an IA(b2-I) with the number of the activated substitution
jobs k = 1.
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We proceed with the proof using the induction on the number of the activated substitution jobs.
We now prove our claim for k = 2, in the case that the second substitution job s2 is activated in the
current secondary block. Consider the following possibilities. Originally, job s2 either: (i) succeeded
job s1; or (ii) preceded job s1.

In Case (i), if ps2 ≥ 2ps1 , all the y-jobs already included within CG(s1) together with jobs in set
Λy2 can be feasibly scheduled within CG(s2) as ps2 ≥ 2p(Λy2). Hence, after a call of PROCEDURE
ACTIVATE(s2) job s1 will be inactivated at Pass 3 (see Lemma 11). Hence, job s1 becomes stable and
we are left with a single substitution job s2 in the state of activation.

In Case (ii), note that no job from set Λy2 was included within CG(y1) after a call of PROCEDURE
ACTIVATE(s1). Hence, |CG(s1)| < p(Λy2). If job s2 is long enough and all jobs in Y(s1) are released
early enough and can fit within the newly released space by job s2 after a call of PROCEDURE
ACTIVATE(s2), once Pass 3 of the activation procedure completes, job s1 will again become stable and
we are again left with a single substitution job s2 in the state of activation.

Since in the above considered cases, the only non-stable substitution job is s2, our claim follows
from case k = 1 and the fact that s2 is the sl-substitution job. It only remains to consider the cases
when job s1 remains in the state of the activation after a call of PROCEDURE ACTIVATE(s2), i.e.,
both substitution jobs s1 and s2 remain in the state of activation. This happens in Case (i) if ps2 ≤ ps1

(note that in this case ps2 ≤ p(Λy2) also holds as otherwise job s2, instead of job s1, would have been
selected as the sl-substitution job for job y1). Either jobs in set Λy2 are not released early enough to be
included within CG(s1) or |CG(s1)| is not large enough. Hence, another substitution job needs to be
activated to include jobs in Λy2 (see Lemma 15 below). Since s2 is the sl-substitution job, |CG(s2)| is
the minimal possible. The lemma holds if job s1 again becomes stable. Otherwise, note that, since both
s1 and s2 are the sl-substitution jobs, the only remaining possibility to be considered is when a single
substitution job s with ps < ps1 + ps2 (instead of jobs s1 and s2) is activated.

Consider the following sub-cases: (1) |CG(s1)| ≥ p(Λy2); and (2) |CG(s1)| < p(Λy2). In Case (1).
jobs in Λy2 are not released early enough to be included within CG(s1) as otherwise they would have
been included by an earlier call of PROCEDURE ACTIVATE(s1). Hence, no job preceding originally
job s1 can be beneficially activated. At the same time, any substitution job succeeded originally job
s1 is longer than s1 (by the definition job s1 and PROCEDURE sl-SUBSTITUTION). Then, ps ≥ 2ps1

because of the divisibility of job processing times. In Case (2), ps ≥ 2ps1 must also hold as otherwise
all jobs in set Y(s1) together with jobs in set Λy2 would not fit within the time intervals that potentially
might be liberated by a call of PROCEDURE ACTIVATE(s).

Hence, in both Cases (1) and (2) above, ps < ps1 + ps2 is not possible and hence the activation of
job s will yield the critical gaps with a total length no less than our procedure yields, and the lemma
follows. The proof for the Case (ii) when the jobs in Y(s1) do not fit within CG(s2) or they are not
released early enough is quite similar to case (i) above (the roles of jobs s1 and s2 being interchanged).

For the inductive pass with k ≥ 3, let sk be the next activated sl-substitution job and let
SB = {s1, . . . , sk−1} be the substitution jobs in the state of activation in the current critical block
B). By the inductive assumption, block B was compact before job sk is activated. Now, we show that
the block remains compact once job sk is activated. This follows if sk, as before, remains the only
(non-stable) substitution job in the state of activation after a call of PROCEDURE ACTIVATE(sk).
Otherwise, originally, job sk: (i) succeeded all the jobs {s1, . . . , sk−1}; (ii) preceded these jobs; or (iii)
was scheduled in between their original positions. We use similar arguments as for k = 2. We give
a scratch.

In Case (ii), note that the time intervals released by a call of PROCEDURE ACTIVATE(sk) will be
available for the jobs from set Y(s1) ∪ · · · ∪ Y(sk−1) during the execution of the procedure at Pass 2 of
Phase 1, and they may potentially be left-shifted to these intervals. Because of the mutual divisibility
of processing times of these jobs and by the construction of Pass 2, the total length of the remaining
idle-time intervals, if any, will be the minimal possible (this can be straightforwardly seen). It follows

68



Mathematics 2019, 7, 1104

that, at Pass 3, the corresponding jobs from SB will become inactivated and hence stable, whereas the
rest of them are to stay in the state of activation, and our claim follows from the inductive assumption.

In Case (i), all jobs from Y(s1) ∪ · · · ∪ Y(sk−1) are released early enough to be included within
the intervals newly released by a call of PROCEDURE ACTIVATE(sk). Again, because of the mutual
divisibility of processing times of these jobs and by the construction of Pass 2, the remaining idle-time
intervals, if any, will be the minimal possible, and at Pass 3 the corresponding substitution jobs will
be inactivated.

The proof of Case (iii) merely combines those for Cases (i) and (ii): at Pass 2, the intervals
released by a call of PROCEDURE ACTIVATE(sk) might be used by jobs from Y(s1) ∪ · · · ∪ Y(sk−1)

preceding and also succeeding these intervals, and the corresponding jobs from {s1, . . . , sk−1} will
again become stable.

Lemma 15. Suppose an IA(b2)/IA(b2-I) with job y during the construction of preschedule PreS(K) arises and
there exists an L-schedule SL. Then, a substitution job is scheduled after kernel K− in schedule SL. That is, there
exists no L-schedule if there exists no substitution job.

Proof. The lemma is a kind of reformulation of Proposition 16. For the basic case, before the activation
of the sl-substitution job s1, the secondary block BK is compact by Corollary 4. Similar to in the proof
of Proposition 16, we can see that the current starting time of job y cannot be reduced by any job
rearrangement that leaves the same set of jobs scheduled before job y. Hence, some emerging x-job s
from one of the bins from the secondary block BK pushing job y is included behind job y in schedule
SL (recall that ds > dy must hold as, otherwise, once rescheduled after kernel K−, job s will surpass
the L-boundary or will force another y-job to surpass it). Job s cannot be from bin B−(K) since no
x-job can be included ahead of job y during the construction of PreS(K) as job y is released from the
beginning of that construction (and it would have been included at Pass 1 of Phase 1 before any x-job
is considered at Pass 2). Therefore, job s belongs to one of the bins preceding bin B−(K) in block BK.
The proof for the inductive case is similar except that it uses Lemma 14 instead of Corollary 4.

Lemma 16. If there exists no sl-substitution job, then no L-schedule exists.

Proof. If there exists no substitution job at all, then the statement follows from Lemma 15. Otherwise,
the outcome of the activation of every tried substitution is the failure. We claim that there exists no
L-preschedule that contains the jobs from problem instance PI(current,+y, [s]) together with all the
jobs from all the (intermediate) kernels between the bins B{(s)} and B−(K−). Let s be the earliest
tried substitution job by PROCEDURE sl-SUBSTITUTION(K). If job s becomes non-stable after a
call of PROCEDURE ACTIVATE(s), then, due to the failure outcome, it must be the case that the
corresponding y-job(s) (see Proposition 16) cannot be left-shifted within the time intervals liberated
by job s (because of their release times). Hence, neither they can be left-shifted by activation of any
substitution job preceding job s (Lemma 12). Otherwise, it must have been stable once activated,
but the interval released by job s is not long enough (again, due to the failure outcome). Hence, only
another longer substitution job may be of a potential benefit, whereas the latest scheduled one, again,
provides the maximum potential left-shift for the above y-job(s). We continue applying this argument
to every next tried substitution job. Our claim and hence the lemma follow due to the failure outcome
for the latest tried (the longest) substitution job.

Now, we immediately obtain the following corollary that already shows the correctness of
PROCEDURE MAIN for divisible processing times:

Corollary 5. For every trial δ, PROCEDURE MAIN generates an Lδ-schedule if the outcome of every call of
PROCEDURE sl-SUBSTITUTION(K) for an IA(b2) is successful (or no IA(b2) arises at all); otherwise (there
exists no sl-substitution job for some IA(b2)), no Lδ-schedule exists.
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Theorem 6. PROCEDURE MAIN optimally solves problem 1|pj : divisible, rj|Lmax in time
O(n3 log n log2 pmax).

Proof. The soundness part immediately follows from Corollary 5 and the definition of the binary
search in Section 5 (see Proposition 8). We show the time complexity. Due to Theorem 3, it remains to
estimate an additional cost yielded by Phase 2 for instances of alternative (b2). Recall from Theorem 2
that, for every arisen kernel K, the cost of the generation of Lδ-augmented schedule SLδ [K] for a given
δ is O(ν2 log ν), where ν is the total number of jobs in bin B−(K). Recall also that this cost includes the
cost of all the embedded recursive calls for all the kernels which may arise within bin B−(K). Similar to
in the proof of Theorem 3, it suffices to distinguish the calls of PROCEDURE AUGMENTED(K, δ) and
PROCEDURE AUGMENTED(M, δ) for two distinct kernels K and M such that bins B−(K) and B−(M)

have no jobs in common. Now, we count the number of such calls of PROCEDURE AUGMENTED(K, δ)

from Phase 2 by PROCEDURE sl-SUBSTITUTION(K). The number of times, an IA(b2) at Phase 1
may arise is bounded by υ1, the number of Type (b) y-jobs (note that any Type (b) y-job may yield
at most one IA(b2)). Hence, for any bin B−(K), PROCEDURE AUGMENTED(K, δ) may be called
less than υ1 times for different instances of Alternative (b2), whereas for the same IA(b2) no more
than pmax different substitution jobs might be tried (Lemma 13). Hence, the total number of calls of
PROCEDURE AUGMENTED(K, δ) is bounded above by O(υ1 + pmax), which easily yields the overall
bound O(n3 log n log2 pmax).

12. Possible Extensions and Applications

We describe our framework for the single-machine environment and with a due-date oriented
objective function Lmax. It might be a subject of a future research to adopt and extend the proposed
framework for other machine environments with this or another due-date oriented objective function.
Both the recurrence substructure properties and the schedule partitioning into kernel and bin intervals
can be extended for the identical machine environment and shop scheduling problems with job
due-dates. Less straightforward would be its adaptation for the uniform machine environment, and,
unlikely, the approach can be extended to the unrelated machine environment.

The framework can obviously be converted to a powerful heuristic algorithm, as well as to an
exact implicit enumeration scheme for a general setting with arbitrary job processing times. For both
heuristic and enumerative approaches, it will clearly suffice to augment the framework with an
additional search procedure invoked for the case when the condition of Theorem 3 is not satisfied.

Based on the constructed framework, we have obtained an exact polynomial-time algorithm for
problem 1|pj : divisible, rj|Lmax. A natural question is whether, besides the scheduling and bin packing
problems ([4]), there are other NP-hard combinatorial optimization problems for which restrictions
with divisible item sizes are polynomially solvable (the properties of mutually divisible numbers
exploited in reference [4] and here could obviously be helpful).

Finally, we argue that scheduling problems with divisible job processing times may naturally arise
in practice. As an example, consider the problem of distribution of the CPU time and the computer
memory, the basic functions of the operating systems. In Linux operating systems buddy memory
allocation is used, in which memory blocks of sizes of powers of 2 are allocated. To a request for
memory of size K, the system allocates a block of size 2k where 2k−1 < K ≤ 2k (if currently there is no
available block of size 2k, it splits the shortest available block of size 2k+1 or more). In buddy systems,
memory allocation and deallocation operations are naturally simplified, as an O(n) time search is
reduced to O(log n) time using binary tree representation for blocks.

A similar “buddy” approach for the CPU time sharing in operating systems would assume the
“rounding” of the arriving requests with arbitrary processing times within the allowable patterns of
processing times—the powers of 2. In the CPU time sharing, the system must decide which of the
arriving requests to assign to the processor and when. The request may arrive over time or, in the case
of the scheduled maintenance and other scheduled computer services (for example, operating system
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updates), the arrival time of the requests and their processing times are known in advance. The latter
scenario fits into our model. One may think on the rounding of a processing time of a request up or
down to a closer power of 2. Alternatively, to avoid unnecessary waste of the processor time, one
may always round down and process the remaining small part in a parallel or sequential manner
immediately upon the completion of the main part or later on. Possible efficient and practical strategies
for “completing” the solution with divisible processing times in a single-processor or multiprocessor
environment deserves an independent study.

The “buddy” approach for the CPU time sharing in operating systems is justified by our results,
as we show that the scheduling problems with mutually divisible processing times can be solved
essentially more efficiently than with arbitrary job processing times. The degree of the “waste” during
the rounding of the memory blocks and processing requirements is somewhat similar and comparable
in both the memory allocation and the CPU time sharing methods. In the case of the memory allocation
we may waste an extra memory, and in the case of the time sharing we waste an extra time (which
would influence on the quality of the solution of course). It is important and not trivial how an input
with arbitrary job processing times can be converted to an input with divisible processing times, and
how close the obtained optimal solution for the instance with divisible times will be from an optimal
solution for the original instance. This interesting topic can be a subject of a future independent study.
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Abstract: We considered the online scheduling problem of simple linear deteriorating job families on
m parallel batch machines to minimize the makespan, where the batch capacity is unbounded. In this
paper, simple linear deteriorating jobs mean that the actual processing time pj of job Jj is assumed
to be a linear function of its starting time sj, i.e., pj = αjsj, where αj > 0 is the deterioration rate.
Job families mean that one job must belong to some job family, and jobs of different families cannot
be processed in the same batch. When m = 1, we provide the best possible online algorithm with
the competitive ratio of (1 + αmax) f , where f is the number of job families and αmax is the maximum
deterioration rate of all jobs. When m ≥ 1 and m = f , we provide the best possible online algorithm
with the competitive ratio of 1 + αmax.

Keywords: online algorithm; batch scheduling; linear deterioration; job families; competitive ratio

1. Introduction

1.1. Background

In this paper, all jobs arrive over time, i.e., each job has an arrival time. Before the jobs arrive,
we do not know any information, including arrival time, processing time, deterioration rate, etc.
Due to the unknown information of the jobs, the online algorithm is not guaranteed to be optimal.
Borodin and El-Yaniv [1] used the competitive ratio to measure the quality of an online algorithm.
For a minimization scheduling problem, we define the competitive ratio of the online algorithm A as:

ρ = sup{A(I)/OPT(I) : I is any instance such that OPT(I) > 0 }.

where I is any job instance and A(I) and OPT(I) are the objective values obtained from the algorithm
A and an optimal offline scheduling OPT, respectively. In this study, the objective was to minimize the
makespan. An online algorithm A is called the best possible if no other online algorithms A∗ produce
a smaller competitive ratio.

Parallel-batch means that one batch processing machine can process b jobs simultaneously as a
batch. The processing time of a batch is the maximum processing time of all jobs in this batch. All jobs
in a batch have the same starting time, processing time, and completion time. According to the number
of jobs contained in a batch, Brucker et al. [2] divided the model into two cases: the unbounded model
(b = ∞) and the bounded model (b < ∞).

Job families mean that one job must belong to some job family, and jobs of different families
cannot be processed in the same batch. Online scheduling problems on parallel batch machines with

Mathematics 2020, 8, 170; doi:10.3390/math8020170 www.mdpi.com/journal/mathematics73
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incompatible job families have been studied extensively. Fu et al. [3] studied the online algorithm on a
single machine to minimize the makespan. Li et al. [4] examined the online scheduling of incompatible
unit-length job families with lookahead on a single machine. Tian et al. [5] analyzed the problem
on m parallel machines. However, research is lacking on the parallel-batch online scheduling with
incompatible deteriorating job families.

Traditional scheduling problems assume that the processing time of a job is fixed. However,
in real life, one job will take longer when it has a later starting time. For example, in steel production
and financial management [6,7], the processing time is longer when it starts later. In the steel-making
process, strict requirements are placed on temperature. If the waiting time is too long, the temperature
of molten steel will drop. So, it will take time to heat up again before further processing. Other examples
are provided in cleaning and fire fighting. The scheduling problem of deteriorating jobs was first
introduced by Browne and Yechiali [8] and Gupta and Gupta [9], independently. Both considered
minimizing makespan on a single machine. Since then, this topic has attracted considerable attentions.
Gawiejnowicz and Kononov [10] considered the general properties of scheduling with fixed job
processing time and scheduling with job processing time as proportional linear functions of the job
starting time. The relevant research includes [11–18], among many others. Recently, some works have
been published about online algorithms for linear deteriorating jobs [19–23].

To minimize the makespan of the online scheduling problem on m parallel machines with linear
deteriorating jobs, Cheng et al. [19] constructed an algorithm and proved that the bound of the
competitive ratio of the algorithm is tight, where m = 2 and the largest deterioration rate of jobs
is known in advance. Yu et al. [22] proved that no deterministic online algorithm is better than
(1 + αmax)-competitive when m = 2, where αmax is the maximum deterioration rate of all jobs.

1.2. Research Problem

Our contribution is to extend the online scheduling problem on m parallel batch machines with
simple linear deteriorating job families to minimize the makespan. Here, batch capacity is unbounded,
i.e., b = ∞. We use f-family to denote there are f job families. We constructed the best possible online
algorithm with the competitive ratio of (1 + αmax) f when m = 1, where f is the number of job families
and αmax is the maximum deterioration rate of all jobs. When m ≥ 1 and m = f , we created the best
possible online algorithm with the competitive ratio of 1 + αmax.

We examined the online batch scheduling of simple linear deteriorating job families. The actual
processing time pj of job Jj is assumed to be a linear function of its starting time sj, i.e., pj = αjsj,
where αj > 0 is the deterioration rate, which is unknown until it arrives. The objective was to minimize
makespan. Assume that the arrival time of all jobs is greater than or equal to t0 > 0; otherwise,
jobs arriving at time 0 can be completed at time 0. We used the three-field notation α|β|γ [24] to
represent one scheduling problem.

This paper is organized as follows. In Section 2, we consider the problem 1|online,rj,p-batch, b =

∞,f-family, pj = αjt|Cmax, where f is the number of job families. We prove the lower bound and
provide the best possible online algorithm with the competitive ratio of (1 + αmax) f . In Section 3,
we consider the problem Pm|online,rj,p-batch, b = ∞,m-family, pj = αjt|Cmax, where m is the number
of machines. We prove the lower bound and provide the best possible online algorithm with the
competitive ratio of 1 + αmax, where αmax is the maximum deterioration rate of all jobs.

Throughout this paper, we use σ and π to denote the schedules obtained from an online algorithm
and an optimal offline schedule, respectively. Let Cmax(σ) and Cmax(π) be the objective values of σ

and π, respectively, and αmax be the maximum deterioration rate of all jobs. Let ε be an arbitrary small
positive number.

2. Single Batch Machine (m = 1)

In this section, we consider the online scheduling on an unbounded batch machine and the jobs
belong to f incompatible deteriorating job families. The number of job families, f , is known in advance.
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We prove the lower bound and provide the best possible online algorithm with the competitive ratio
of (1 + αmax) f .

Theorem 1. For problem 1|online,rj,p-batch, b = ∞,f-family, pj = αjt|Cmax, the competitive ratio of any
online algorithm is not less than (1 + αmax) f .

Proof. Let H be any online algorithm and I be a job instance provided by the adversary. In instance I,
all the jobs have the same deterioration rate of α.

At time t0, f jobs from the f different job families arrive by the adversary. If a job is scheduled
by H to process at time t and t is in the time interval [t0, (1 + α) f t0), then at time t + ε, the adversary
releases a copy of this job, which belongs to the same job family. Let s be the starting time of the first
job whose completion time is at least (1 + α) f t0. (1 + α)s ≥ (1 + α) f t0. so,

s ≥ (1 + α) f−1t0. (1)

Case 1 (1 + α) f−1t0 ≤ s < (1 + α) f t0.

In this case, there are still f jobs from f distinct job families that are not processed at time
(1 + α)s. So,

Cmax(σ) ≥ (1 + α) f (1 + α)s = (1 + α) f+1s. (2)

We assume that the jobs processed in the time interval [t0, (1+ α)s) belong to k distinct job families,
say, F1,F2, · · · ,Fk, where 1 ≤ k ≤ f . The other f − k job families are defined by Fk+1,Fk+2, · · · ,F f .
Let si be the last starting time of the jobs in Fi that start before or at time s for 1 ≤ i ≤ k, and satisfy
s1 < s2 < · · · < sk. Clearly, sk = s. From the construction of instance I, we know that the last arrival
time of the jobs in Fi (1 ≤ i ≤ k) is si + ε and the arrival time of the jobs in Fi (k + 1 ≤ i ≤ f ) is t0.

Construct a schedule π′ below: the jobs in Fi (1 ≤ i ≤ f ) form a batch starting at time si
′, where:

si
′ =

{
(1 + α)i−(k+1)t0, k + 1 ≤ i ≤ f
max{si + ε, (1 + α)( f+i)−(k+1)t0}, 1 ≤ i ≤ k.

We can see that π′ is feasible, and the maximum completion time of the jobs in π′ is the completion
time of the jobs in Fk. So,

Cmax(π
′) = (1 + α)max{sk + ε, (1 + α) f−1t0}. (3)

Since sk = s, we have Cmax(π′) = max{(1 + α)(s + ε), (1 + α) f t0}. and Cmax(π) ≤ Cmax(π′).
If Cmax(π′) = (1 + α)(s + ε), then by Equation (2) we know that:

Cmax(σ)

Cmax(π)
≥ (1 + α) f+1s

(1 + α)(s + ε)
→ (1 + α) f = (1 + αmax)

f , ε → 0.

If Cmax(π′) = (1 + α) f t0, then by Equations (1) and (2), we know that:

Cmax(σ)

Cmax(π)
≥ (1 + α) f+1s

(1 + α) f t0
=

(1 + α)s
t0

≥ (1 + α) f = (1 + αmax)
f .

Case 2 s ≥ (1 + α) f t0.

According to the constructing of I, sk is the last starting time of the jobs in time interval
[t0, (1 + α) f t0), and sk + ε is the last arrival time of all jobs.
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Since s is the starting time of the first job whose completion time is at least (1 + α) f t0, we obtain
(1 + α)sk < (1 + α) f t0, i.e., sk < (1 + α) f−1t0. From Equation (3), we have:

Cmax(π
′) = max{(1 + α)(sk + ε), (1 + α) f t0}

→ max{(1 + α)sk, (1 + α) f t0}
= (1 + α) f t0,

as ε → 0.
By the definition of s, f jobs from f distinct job families have not been processed at time s. So,

Cmax(σ) ≥ (1 + α) f s.

Thus,

Cmax(σ)

Cmax(π)
≥ (1 + α) f s

(1 + α) f t0
=

s
t0

≥ (1 + α) f = (1 + αmax)
f .

The result follows.

Before introducing the online algorithm, given a batch B, we define some notations in
the following:

J(B): the last job with maximum deterioration rate in B.
r(B): the arrival time of J(B).
s(B): the starting time of J(B) in σ.
α(B): the deterioration rate of J(B).
U(t): the set of the unprocessed jobs at time t.
Bi(t): the set of the unprocessed jobs of the same family at time t, 1 ≤ i ≤ f , which is a waiting

batch at time t if Bi(t) 	= ∅.
B(t): the set of the waiting batches at time t.
|B(t)|: the number of all waiting batches at time t.
r(B(t)) = min{r(B) : B ∈ B(t)}.
The online algorithm, called A1 (Algorithm 1), can be stated as follows. Without causing

confusion, assume that Bi(t) = Bi in the following.

Algorithm 1: A1

Input: Job instance I. do

Step 0: Set t = t0.
Step 1: If B(t) = ∅, then go to Step 5.
Step 2: Let B(t) = {B1, B2, · · · , Bk} such that α(B1) ≥ α(B2) ≥ · · · ≥ α(Bk), where k ≤ f .
Step 3: If t ≥ (1 + α(B1))

kt0, then process the batch B1 at time t. Reset t = (1 + α(B1))t. Return
to Step 1.

Step 4: If t < (1 + α(B1))
kt0, then reset t = min{(1 + α(B1))

kt0, t∗}, where t∗ is the arrival time
of the next job. Go to Step 2.

Step 5: If new jobs arrive after t, then reset t as the arrival time of the first new job. Go to Step 1.
Output: Job schedule σ.

Example 1. To make the algorithm more intuitive, we present an instance I1 in Table 1, where F1 and F2 are
two different families. As shown in Figure 1, σ is the schedule generated by A1 and π is an optimal offline
schedule for I1, where B1 = {J1, J3} and B2 = {J2}.

We have Cmax(σ) = 81 and Cmax(π) = 9.

76



Mathematics 2020, 8, 170

Table 1. Instance I1.

Job Arrival Time Deterioration Rate

J1 ∈ F1 r1 = t0 = 1 2
J2 ∈ F2 r2 = t0 = 1 2
J3 ∈ F1 r3 = 2 1

B1 B2

1 9 27 81

B2 B1

1 3 9

σ

π

Figure 1. Schedule for Instance I1.

Suppose that rl is the last arrival time. Let s ≥ rl be the minimum time, such that s is the starting
time of some batch and there is no idle time between s and Cmax(σ) in σ. Let B be the set of the
batches that process between s and Cmax(σ) in σ and s(B) be the start time of B. Since s(B) = s ≥ rl ,
each batch in B is from a different family and B = B(s). From Algorithm 1, B = {B1, B2, · · · , Bk} with
α(B1) ≥ α(B2) ≥ · · · ≥ α(Bk), where k ≤ f . Then,

Cmax(σ) =
k

∏
i=1

(1 + α(Bi))s(B). (4)

The following two lemmas are the competition ratio analyses of Algorithm 1.

Lemma 1. Suppose the machine has an idle time immediately before s(B) in σ. Then, Cmax(σ)/Cmax(π) ≤
(1 + αmax) f .

Proof. Since an idle time occurs immediately before s(B) in σ, from Algorithm 1, we have: s(B) =
max{rl , (1 + α(B1))

kt0}.
If s(B) = rl , then for each Bi ∈ B with 1 ≤ i ≤ k, J(Bi) arrives at time rl . From Equation (4),

we know that Cmax(σ) = ∏k
i=1(1 + α(Bi))rl ≤ Cmax(π).

If s(B) = (1 + α(B1))
kt0, then from Equation (4) we have Cmax(σ) = ∏k

i=1(1 + α(Bi))(1 +

α(B1))
kt0. Since Cmax(π) ≥ ∏k

i=1(1 + α(Bi))t0, so Cmax(σ)/Cmax(π) ≤ (1 + α(B1))
k ≤ (1 +

αmax) f .

Lemma 2. Suppose the machine has no idle time immediately before s(B) in σ. Then, Cmax(σ)/Cmax(π) ≤
(1 + αmax) f .

Proof. Since the machine has no idle time immediately before s(B) in σ, s(B) is the completion time
of some batch, say B∗, in σ. We have s(B) = (1 + α(B∗))s(B∗). From the definition of s, we know
s(B∗) < rl .

We suppose that B is divided into two sets, B1 and B2, such that:

B1 = {Bi ∈ B : r(Bi) > s(B∗)},

B2 = {Bj ∈ B : r(Bj) ≤ s(B∗)}.

Since B = B1
⋃B2, s(B) = (1 + α(B∗))s(B∗), then from Equation (4) we have:
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Cmax(σ) =
k

∏
i=1

(1 + α(Bi))s(B)

= ∏
Bi∈B

(1 + α(Bi))s(B)

= ∏
Bi∈B1

(1 + α(Bi)) ∏
Bj∈B2

(1 + α(Bj))(1 + α(B∗))s(B∗).

From the definition of B1, we know Cmax(π) ≥ ∏Bi∈B1
(1 + α(Bi))s(B∗). Hence,

Cmax(σ) = ∏
Bi∈B1

(1 + α(Bi)) ∏
Bj∈B2

(1 + α(Bj))(1 + α(B∗))s(B∗)

≤ ∏
Bj∈B2

(1 + α(Bj))(1 + α(B∗))Cmax(π).

According to the definition of B2 and Algorithm 1, each batch in set B2 and B∗ belongs to the
different family. Then, at most f − 1 batches exist in B2. Hence,

Cmax(σ)/Cmax(π) ≤ ∏
Bj∈B2

(1 + α(Bj))(1 + α(B∗)) ≤ (1 + αmax)
f .

By Lemmas 1 and 2, and Theorem 1, we can reach the final conclusion.

Theorem 2. For problem 1|online,rj,p-batch, b = ∞,f-family, pj = αjt|Cmax, Algorithm 1 has a competitive
ratio of (1 + αmax) f and is the best possible.

3. Parallel Batch Machines (m ≥ 1)

In this section, we consider the online scheduling on m parallel batch machines and the jobs
belong to m incompatible deteriorating job families. We prove the lower bound and construct the best
possible online algorithm with a competitive ratio of 1 + αmax.

Theorem 3. For problem Pm|online,rj,p-batch, b = ∞,m-family, pj = αjt|Cmax, no online algorithm exists
with a competitive ratio less than 1 + αmax.

Proof. Let H be any online algorithm and I be a job instance provided by the adversary. In the
instance I, all the jobs have a deterioration rate of α.

At time t0, m jobs J1, J2, · · · , Jm from different families arrive. Suppose that job Jj starts processing
at time sj in σ, j = 1, 2, · · · , m.

If a job Jk exists such that sk ≥ (1 + α)t0, where 1 ≤ k ≤ m, then the adversary does not release
other jobs. Hence,

Cmax(σ) ≥ (1 + α)sk ≥ (1 + α)2t0 and Cmax(π) = (1 + α)t0.

We have Cmax(σ)/Cmax(π) ≥ 1 + α = 1 + αmax.
If for each job Jj with 1 ≤ j ≤ m, sj < (1 + α)t0, let Jl ∈ {J1, J2, · · · , Jm} is the last starting job.

At time sl + ε, a copy of the job Jj( j = 1, 2, · · · , m) arrives. We have:

Cmax(σ) ≥ (1 + α)2sl and Cmax(π) = (1 + α)(sl + ε).

Hence, Cmax(σ)/Cmax(π) ≥ (1 + α)sl/(sl + ε) → 1 + α = 1 + αmax, as ε → 0.
The result follows.
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Before providing the online algorithm, we define some notations used in the following:
U(t): the set of the unprocessed jobs at time t.
αmax(t): the maximum deterioration rate of the jobs arrived at t or before t.
m(t): the number of the idle machines at time t.
f (t): the number of job families in U(t) at time t.
Bi(t): the nonempty set of the unprocessed jobs of the same family at time t, where 1 ≤ i ≤ f (t).
Ji(t): the job with the maximum deterioration rate in Bi(t), where 1 ≤ i ≤ f (t).
αi(t): the deterioration rate of the job Ji(t), where 1 ≤ i ≤ f (t).
Without loss of generality, assume that α1(t) ≥ α2(t) ≥ · · · ≥ α f (t)(t). The online algorithm,

called A2 (Algorithm 2), can be stated as follows.

Algorithm 2: A2

Input: Job instance I. do

Step 0: Set t = t0.
Step 1: If U(t) = ∅, then go to Step 6.
Step 2: If m(t) = m, and t ≥ (1 + αmax(t))t0, then at time t, start Bi(t) as a single batch on the
idle machine for any i = 1, 2, · · · , f (t). Reset t = (1 + α f (t)(t))t. Go to Step 1.

Step 3: If m(t) = m, and t < (1 + αmax(t))t0, then reset t = t∗, such that t∗ is either the arrival
time of the next job or (1 + αmax(t))t0. Go to Step 1.

Step 4: If m(t) < m, and t ≥ (1 + αmax(t))(1 + α1(t))t0, then at time t, start Bi(t) as a single
batch on the idle machine for any i = 1, 2, · · · , min{m(t), f (t)}. Reset t = t∗, such that t∗ is
either the arrival time of the next job or (1 + αmin{m(t), f (t)}(t))t. Go to Step 1.

STEP 5: If m(t) < m, and t < (1 + αmax(t))(1 + α1(t))t0, then reset t = t∗, such that either t∗ is
the arrival time of the next job or m(t∗) > m(t), or t∗ = (1 + αmax(t))(1 + α1(t))t0.

Step 6: If new jobs arrive after t, then reset t as the arrival time of the first new job. Go to Step 1.
Output: Job schedule σ.

Example 2. To make the algorithm more intuitive, we present an instance I2 in Table 2. Figure 2 depicts the
schedule generated by Algorithm 2 and Figure 3 is an optimal offline schedule for I2.

We have Cmax(σ) = 12 and Cmax(π) = 8.

Table 2. Instance I2.

Job Arrival Time Deterioration Rate

J1 ∈ F1 r1 = t0 = 1 2
J2 ∈ F2 r2 = t0 = 1 1
J3 ∈ F3 r3 = t0 = 1 1
J4 ∈ F1 r4 = 4 1

M1

M2

M3

J1

J2 J4

J3

1 3 6

1 3 6 12

1 3 9

Figure 2. Schedule generated by A2 for Instance I2.

79



Mathematics 2020, 8, 170

M1

M2

M3

J1

J2 J4

J3

1 2

1 2 4 8

1 3

Figure 3. Optimal offline schedule for Instance I2.

Suppose that Algorithm 2 generates n batches B1, B2, · · · Bn. For batch Bi, we define some notations
in the following:

Ji: the job with the maximum deterioration rate in Bi.
αi: the deterioration rate of Ji or the deterioration rate of Bi.
ri: the arrival time of Ji.
si: the starting time of Bi in σ, suppose that s1 ≤ s2 ≤ · · · ≤ sn.
The following is the competition ratio analysis of the Algorithm 2.
Let Bl be the first batch in σ assuming the objective value. Bi is a regular batch if si = max{(1 +

αmax(si))t0, ri} or max{(1 + αmax(si))t0, ri} < si ≤ (1 + αmax(si))(1 + α1(si))t0.

Lemma 3. Suppose that only one job Ji exists in batch Bi of σ, i = 1, 2, · · · , n, then the value of
Cmax(σ)/Cmax(π) does not decrease.

Proof. From Algorithm 2, the start time of batch Bi is only related to the maximum deterioration
rate of the jobs in this batch and the maximum deterioration rate of all jobs that have arrived. So,
the value of Cmax(σ) does not change when we assume each batch Bi has only one job Ji. The reduction
in the number of jobs may decrease the value of Cmax(π), so the value of Cmax(σ)/Cmax(π) does
not decrease.

In the following, we assume that only one job Ji exists in batch Bi of σ, i = 1, 2, · · · , n. Per Lemma
3, this does not influence the competition ratio analysis of Algorithm 2.

Lemma 4. αl = α1(sl).

Proof. Obviously, αl ≤ α1(sl). If αl < α1(sl), since J1(sl) ∈ U(sl), then

Cmax(σ) ≥ (1 + α1(sl))sl > (1 + αl)sl .

This contradicts the completion time of Bl being the maximum completion time. Hence, αl =

α1(sl).

Lemma 5. If the batch Bl is a regular batch, then Cmax(σ)/Cmax(π) ≤ 1 + αmax.

Proof. Since Bl is a regular batch, then

sl = max{(1 + αmax(sl))t0, rl},

or
max{(1 + αmax(sl))t0, rl} < sl ≤ (1 + αmax(sl))(1 + α1(sl))t0.

Case 1 sl = max{(1 + αmax(sl))t0, rl}.
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Then

Cmax(σ) = (1 + αl)sl

= max{(1 + αl)(1 + αmax(sl))t0, (1 + αl)rl}
≤ (1 + αmax)max{(1 + αl)t0, rl}
≤ (1 + αmax)Cmax(π).

Case 2 max{(1 + αmax(sl))t0, rl} < sl ≤ (1 + αmax(sl))(1 + α1(sl))t0.

In this case, at time sl , some batches must have a start time less than sl being processed. Let Ba be
the last such batch to start, then sa < sl ≤ (1 + αa)sa. Hence,

Cmax(σ) = (1 + αl)sl ≤ (1 + αl)(1 + αa)sa. (5)

Suppose that rl ≤ sa. Since sl > sa, the batch with a larger deterioration rate has higher priority
in σ, then αl ≤ αa ≤ α1(sa) per Algorithm 2. At time sa, Jl does not start processing. This indicates that
there is no machine that can process Jl at time sa, i.e., m(sa) < f (sa) ≤ m. From Algorithm 2, we know
that sa ≥ (1 + αmax(sa))(1 + α1(sa))t0. By Lemma 4, we have αl = α1(sl). Hence,

α1(sa) ≥ αa ≥ αl = α1(sl).

By the definition of Ba, we have αmax(sa) = αmax(sl), so

sa ≥ (1 + αmax(sa))(1 + α1(sa))t0 ≥ (1 + αmax(sl))(1 + α1(sl))t0 ≥ sl .

This contradicts sa < sl . Hence rl > sa.
Thus, Cmax(π) ≥ (1 + αl)rl > (1 + αl)sa. From Equation (5), we have

Cmax(σ)/Cmax(π) < 1 + αa ≤ 1 + αmax.

In the following, we discuss the case where Bl is not a regular batch. This implies that no machine
is idle immediately before time sl , where sl > max{(1 + αmax(sl))(1 + α1(sl)t0, rl}. Renumber the m
last batches starting on the m machines before time sl to Bl,1, Bl,2, · · · , Bl,m, such that sl,1 ≤ sl,2 ≤ · · · ≤
sl,m. By Lemma 4, we have αl = α1(sl). So,

Cmax(σ) = (1 + αl)sl ≤ (1 + αl) min
1≤j≤m

{(1 + αl,j)sl,j}. (6)

If sl,1 = sl,2 = · · · = sl,k = · · · = sl,m < sl , then Jl,1, Jl,2, · · · , Jl,m belong to m different job families
and one of them belongs to the same family with Jl . Then rl > sl,1 and Cmax(π) ≥ (1 + αl)rl >

(1 + αl)sl,1. From Equation (6), we have:

Cmax(σ) ≤ (1 + αl) min
1≤j≤m

{(1 + αl,j)sl,1} < min
1≤j≤m

(1 + αl,j) ≤ 1 + αm.

In the following, we suppose that sl,i < sl,i+1 for some i ∈ {1, 2, · · · , m − 1}. Let k be the index
that satisfies sl,1 = sl,2 = · · · = sl,k < sl,k+1 ≤ · · · ≤ sl,m < sl , then αl,1 ≥ αl,2 ≥ · · · ≥ αl,k and
Jl,1 = J1(sl,1). If k ≥ 2, then we observe that any two jobs from {Jl,1, Jl,2, · · · , Jl,k} belong to different job
families. Define

I1 = {Jl,1, Jl,2, · · · , Jl,k} and I2 = {Jl,k+1, · · · , Jl,m}.

Lemma 6. For any job Jl,j ∈ I2, we have sl,j ≥ (1 + αmax(sl,j))(1 + αl,j)t0.
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Proof. Since sl,1 = sl,2 = · · · = sl,k < sl,k+1 ≤ · · · ≤ sl,m < sl , there is no idle machine immediately
before time sl , and Bl,1, Bl,2, · · · , Bl,m is the m last batches starting on the m machines before time sl ,
then m(t) < m for any time t ∈ [sl,k+1, sl,m]. From Algorithm 2, we have: sl,j ≥ (1 + αmax(sl,j))(1 +

αl,j)t0 for any job Jl,j ∈ I2.

Lemma 7. If rl > sl,k+1, then Cmax(σ)/Cmax(π) ≤ 1 + αmax.

Proof. Since rl > sl,k+1, then Cmax(π) ≥ (1 + αl)rl > (1 + αl)sl,k+1. From Equation (6), we have:

Cmax(σ) ≤ (1 + αl) min
1≤j≤m

{(1 + αl,j)sl,j} ≤ (1 + αl)(1 + αl,k+1)sl,k+1.

Hence,
Cmax(σ)/Cmax(π) < 1 + αl,k+1 ≤ 1 + αmax.

Lemma 8. If rl ≤ sl,k+1, then Cmax(σ)/Cmax(π) ≤ 1 + αmax.

Proof. Since rl ≤ sl,k+1, from Algorithm 2, we have:

αl ≤ min{αl,j|Jl,j ∈ I2}. (7)

If a job Jl,h ∈ I2\{Jl,k+1} exists such that rl,h > sl,k+1, then from Equation (7), we obtain:

Cmax(π) ≥ (1 + αl,h)rl,h > (1 + αl,h)sl,k+1 ≥ (1 + αl)sl,k+1.

From Equation (6), we have:

Cmax(σ) ≤ (1 + αl) min
1≤j≤m

{(1 + αl,j)sl,j} ≤ (1 + αl)(1 + αl,k+1)sl,k+1.

Hence,
Cmax(σ)/Cmax(π) < 1 + αl,k+1 ≤ 1 + αmax.

Suppose that, for any job Jl,h ∈ I2\{Jl,k+1}, rl,h ≤ sl,k+1. Since rl,k+1 ≤ sl,k+1 and rl ≤ sl,k+1,
then the arrival time of all jobs from I2

⋃{Jl} is less than sl,k+1. Thus, any two jobs from I2
⋃{Jl}

belong to distinct job families.

Claim At least one job in I2
⋃{Jl} has an arrival time greater than sl,k.

Otherwise, if the arrival time of all jobs is less than or equal to sl,k, then all jobs in I1
⋃

I2
⋃{Jl} are

available at time sl,1, and each job independently forms a batch in σ. We obtain that every two jobs
from I1

⋃
I2

⋃{Jl} belong to distinct job families. Since I1
⋃

I2
⋃{Jl} = {Jl,1, Jl,2, · · · , Jl,m}

⋃{Jl}, then
f (sl,1) = m + 1 > m. This contradicts f (sl,1) ≤ m. The claim follows.

Since at least one job from I2
⋃{Jl} arrives after sl,k, from Equation (7), we have:

Cmax(π) > (1 + αl)sl,k.

From Equation (6), we have:

Cmax(σ) ≤ (1 + αl) min
1≤j≤m

{(1 + αl,j)sl,j} ≤ (1 + αl)(1 + αl,k)sl,k.

Hence,
Cmax(σ)/Cmax(π) < 1 + αl,k ≤ 1 + αmax.
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From Lemmas 5, 7 and 8, and Theorem 3, we obtain the following theorem.

Theorem 4. For problem Pm|online,rj,p-batch, b = ∞,m-family, pj = αjt|Cmax, Algorithm 2 has a
competitive ratio of 1 + αmax and is the best possible.

4. Conclusions and Future Research

In this paper, we outlined two best possible online algorithms. The first algorithm for problem
1|online,rj,p-batch, b = ∞,f-family, pj = αjt|Cmax is a simple delay algorithm. We obtained the delay
time by analyzing the properties of the unprocessed jobs, providing the best possible online algorithm
with the competitive ratio of (1 + αmax) f . The second algorithm for problem Pm|online,rj,p-batch, b =

∞,m-family, pj = αjt|Cmax is a more complex delay algorithm. We obtained the different delay times
depending on the number of idle machines and provide the best possible online algorithm with the
competitive ratio of 1 + αmax. The results are shown in Table 3.

Table 3. Summary of results.

Parallel Machine Number of Families Optimum Rate

m = 1 f (1 + αmax) f ; best possible
m ≥ 1 f = m 1 + αmax; best possible

In future research, the general linear deterioration effect, such as pj = αjsj + β j, is worthy
of research. In additional, for the online scheduling problem on m parallel machines with linear
deteriorating jobs to minimize the makespan, Yu et al. [22] only proved that no deterministic online
algorithm is better than (1+ αmax)-competitive when m = 2, where αmax is the maximum deterioration
rate of all jobs. However, no best possible online algorithm has been reported. This is also a topic for
further study.
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Abstract: In this paper, we consider the single-machine scheduling problem with given release dates
and the objective to minimize the maximum penalty which is NP-hard in the strong sense. For this
problem, we introduce a dual and an inverse problem and show that both these problems can be
solved in polynomial time. Since the dual problem gives a lower bound on the optimal objective
function value of the original problem, we use the optimal function value of a sub-problem of the
dual problem in a branch and bound algorithm for the original single-machine scheduling problem.
We present some initial computational results for instances with up to 20 jobs.
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1. Introduction

We consider single-machine scheduling problems, where a set of n jobs N = {1, 2, . . . , n} has
to be processed on a single machine starting at time τ. For each job j, a release date rj, a processing
time pj and a due date dj are given. Many scheduling problems require the minimization of some
maximum term. Denote by Cj the completion time of job j, then the minimization of the makespan
(i.e., the maximum completion time of the jobs)

Cmax = max
j=1,...,n

Cj,

or the minimization of maximum lateness

Lmax = max
j=1,...,n

{Cj − dj}

are well-known examples of such an optimization criterion.
In this paper, we consider two related problems of such a min-max problem, namely a dual

problem as well as an inverse problem of the single-machine scheduling problem with given release
dates and minimizing the maximum penalty. While the original problem 1|rj|Lmax is NP-hard in the
strong sense [1], we prove that both the dual and inverse problems of this problem can be solved in
polynomial time.

Due to the NP-hardness of the problem 1|rj|Lmax, several branch and bound algorithms have
been developed and special cases of the problem have been considered, see e.g., [2–9]. In [9], it has
been shown that if the release dates for all jobs are from the interval [dj − pj − A, dj − A] for all jobs and
some constant A, the problem can be solved in O(n log n) time if no machine idle times are allowed
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Mathematics 2020, 8, 1131

and in O(n2 log n) time if machine idle times are allowed. Another important special case of this
problem has been considered in [10]. In that paper, it is shown that for naturally bounded job data,
the problem can be polynomially solved. More precisely, a polynomial time solution of the variant
is given when the maximal job processing time and the differences between the job release dates are
bounded by a constant. The binary search procedure presented in this work determines an optimal
solution in O(n2 log n log pmax) or O(dmaxn log n log pmax) time, where pmax is the maximal processing
time and dmax is the maximal due date.

In [11], some computational experiences and applications for the more general case with additional
precedence constraints are reported. Their algorithm turned out to be superior to earlier algorithms.
Some applications to job shop scheduling are also discussed. A more recent branch and bound
algorithm for this single-machine problem with release dates and precedence constraints has been
given in [12]. This algorithm uses four heuristics for finding initial upper bounds and a variable
neighborhood search procedure. It solved most considered instances within one minute of CPU time.
Several approximation schemes for four variants of the problem with additional non-availability or
deadline constraints have been derived in [13]. An approximation algorithm for this single-machine
problem with additional workload dependent maintenance duration has been presented in [14].
This algorithm is even optimal for some special cases of the problem. A hybrid metaheuristic search
algorithm for the single-machine problem with given release dates and precedence constraints has
been developed in [15]. Computational tests have been made using own instance sets with 100 jobs
and instances from [12] with up to 1000 jobs. The hybridization of the elektromagnetism algorithm
with tabu search leads to a tradeoff between diversification and intensification strategies. The metric
approach is another recent possibility for solving the problem 1|rj|Lmax approximately with guaranteed
maximal error, see e.g., [16]. The introduced metric delivers an upper bound on the absolute error of
the objective function value. Taking a given instance of some problem and using the introduced metric,
the nearest instance is determined for which a polynomial or pseudo-polynomial algorithm is known.
Then a schedule is constructed for this instance and applied to the original instance.

There have been also considered problems with several optimization criteria. In [17], the
single-machine problem with the primary criterion of minimizing maximum lateness and the secondary
criterion of minimizing the maximum job completion time has been investigated. The author gives
dominance properties and conditions when the Pareto-optimal set can be found in polynomial time.
The derived properties allow extension of the basic framework to exponential implicit enumeration
schemes and polynomial approximation algorithms. The problem of finding the Pareto-optimal set for
two criteria in the case when there are constraints on the source data have been considered in [18,19].
In [18], the idea of the dual approach is considered in detail, but there is no sufficient experimental
study of the effectiveness of this approach. Lazarev et al. [20] considered the problem of minimizing
maximum lateness and the makespan in the case of equal processing times and proposed a polynomial
time approach for finding the Pareto-optimal set of feasible solutions. They presented two approaches,
the efficiency of which depends on the number of jobs and the accuracy of the input-output parameters.

The dual and inverse problems considered in this paper are maximization problems. In the
literature, there exist some works on other single-machine maximization problems, usually under the
assumption of no inserted idle times between the processing of jobs on the machine. Maximization
problems in single-machine problems were considered e.g., in [21,22]. The complexity and some
algorithms for single-machine total tardiness maximization problems have been discussed in [23].
In [24], a pseudo-polynomial algorithm for the single-machine total tardiness maximization problem
has been transformed by a graphical algorithm into a polynomial one.

The remainder of this paper is as follows. In Section 2, we introduce the dual problem of the
single-machine problem, where the maximum penalty term of a job should be minimized. Section 3
considers an inverse problem, where the minimum of the penalty terms should be maximized.
The solution of this dual problem is embedded into a branch and bound algorithm for the original
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problem. Some computational results for this branch and bound algorithm are given in Section 4. The
paper finishes with some concluding remarks.

2. The Dual Problem

Let us consider the general formulation of the NP-hard problem of minimizing the maximum
penalty or cost ϕmax for a set of jobs on a single machine, i.e., problem 1 | rj | ϕmax. The machine
cannot process more than one job of the set N = {1, . . . , n} at a moment. Preemptions of the processing
of a job are prohibited. Let ϕjk (Cjk (π)) denote the penalty for job j ∈ N if it is processed as the k-th job
in the sequence π = (j1, j2, . . . , jk, . . . , jn). We assume that all ϕjk (Cjk (π)), k = 1, 2, . . . , n, are arbitrary
non-decreasing penalty functions.

By μ∗ we denote the optimal value of the objective function:

μ∗ = min
π∈Π(N)

max
k=1,...,n

ϕjk (Cjk (π)), (1)

where Π(N) = {π1, π2, . . . , πn!} denotes the set of all permutations (schedules) of the jobs of the set N.
In the scheduling literature, many special cases of the following general dual problem are

considered. One wishes to find an optimal job sequence π∗ and the corresponding objective function
value ν∗ such that

ν∗ = max
k=1,...,n

min
π∈Π(N)

ϕjk (Cjk (π)). (2)

For convenience, we introduce a notation that takes into account the position of the job in the
schedule. Let a schedule (job sequence) π ∈ Π(N) be given by π = (j1, j2, . . . , jn). For the job, which is
processed as the k-th job in the sequence, k = 1, 2, . . . , n, under a schedule π, we denote:

νk = min
π∈Π(N)

ϕjk (Cjk (π)), k = 1, 2, . . . , n. (3)

Obviously,
ν∗ = max

k=1,...,n
νk. (4)

Lemma 1 ([25]). Let ϕj(t), j = 1, 2, . . . , n, be arbitrary non-decreasing penalty functions in the problem
1 | rj | ϕmax. Then we have νn ≥ νk for all k = 1, 2, . . . , n, i.e., ν∗ = νn.

Proof. Suppose that there exists a number k, k < n, such that νk > νn. Assume that πn = (j1, j2, . . . , jn)
is a schedule for which the value νn is obtained. Then we consider the schedule

π = (jn−k+1, jn−k+2, . . . , jn, j1, j2, . . . , jn−k).

Please note that under the schedule π, the job jn will be carried out as the k-th job in the sequence.
Since Cjn(πn) ≥ Cjn(π), we have

νn = ϕjn(Cjn(πn)) ≥ ϕjn(Cjn(π)) ≥ νk.

Due to the assumption νk > νn, we obtain the inequality

νk > νn ≥ νk

which is a contradiction. The lemma has been proved.
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Thus, the solution of the dual problem 1|rj|φmax is reduced to the problem of finding the value νn.
We enumerate all jobs in order of non-decreasing release dates: ri1 ≤ ri2 ≤ · · · ≤ rin . Due to

νn = min
π∈Π(N)

ϕjn(Cjn(π)),

we will put each of the jobs j of the set N onto the last (i.e., the n-th) position. The other n − 1 jobs of
the set N \ {j} are arranged in their original order starting at time τ. This gives the earliest completion
time of processing the jobs from the set N \ {j}. This procedure is formally summarized in Algorithm 1.
The input data of Algorithm 1 is the pair (N, τ), where τ is used to calculate Cj.

Algorithm 1: Solution of the dual problem of the problem 1 | rj | ϕmax

1. Construct the schedule πr = (i1, i2, . . . , in), in which all jobs are sequenced according to
non-decreasing release dates: ri1 ≤ ri2 ≤ · · · ≤ rin .

2. For k = 1, 2, . . . , n, find the value ϕik (Cik (πk)) for the schedule πk = (πr \ ik, ik).
3. Find the value ν∗ = min

k=1,...,n
ϕik (Cik (πk)) and the job ik, which gives the value ν∗.

The complexity of Algorithm 1 can be estimated as follows. We need O(n log n) operations to
construct the schedule πr. We need O(n) operations to find each of the n values ϕik (Cik (πk)). Therefore,
to determine the value ν∗ and the corresponding job ik, for which the value ν∗ is obtained, no more
than O(n2) operations are required.

Theorem 1 ([25]). Let ϕj(t), j = 1, 2, . . . , n, be arbitrary non-decreasing penalty functions for the problem
1 | rj | ϕmax. Then the inequality μ∗ ≥ ν∗ holds.

Proof. Suppose the opposite, i.e., there exists an instance of the problem 1 | rj | ϕmax, for which
the inequality μ∗ < ν∗ holds. Let π∗ = (j1, j2, . . . , jn) be an optimal schedule for this instance.
Then we have

ϕjn(Cjn(π
∗)) ≤ μ∗ < ν∗,

which contradicts equality (3):
ν∗ = νn = min

π∈Π(N)
ϕjn(Cjn(π)).

The theorem has been proved.

The obtained estimate can be efficiently used in constructing schemes of a branch and bound
method for solving the problem 1 | rj | ϕmax, and for estimating the error of approximate solutions
when the branch and bound algorithm stops without finding an optimal solution.

We denote by {N′, τ′, ν′, π′, B′} the sub-problem of processing the jobs of the set N′ ⊆ N from
time τ′ ≥ τ on according to some partial sequence π′ for the jobs of the set N \ N′, where ν′ is the
lower bound obtained by solving the dual problem of this instance, τ′ = Cmax(π′, τ) is the start time
of the planning horizon for the jobs from the set B′, which is equal to the makespan value for the
sequence π′, and τ is the time when the machine is ready to process the jobs from the set N. B′ is the
set of jobs that cannot be placed on the corresponding first position of the schedule.

The subsequent Algorithm 2 implements one of the possible schemes of the branch and bound
method using the solution of the dual problem. The branching in Algorithm 2 is carried out as a result
of dividing the current sub-instance into two instances: put the job f (the job with the smallest due
date from the set of jobs ready for processing) at the next position in the schedule and prohibit the
inclusion of the job f at the next position in the schedule (by increasing the possible start time of job f ).
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Denote
rj(τ) = max{rj, τ}, r(N, τ) = min

j∈N
rj(τ).

Let |N| > 1. We choose a job f = f (N, τ) from the set N such that

f (N, τ) = arg min
j∈N\B

{
dj | rj(τ) = r(N, τ)

}
.

If N = {i}, then f (N, τ) = i for all τ. Here B is a set of jobs that cannot be placed on the current
first position. Denote by π∗ the currently best schedule constructed for all jobs.

We note that a deeper comparative discussion of the characteristics of the particular search
strategies can be found in [26,27].

Algorithm 2: Solution of the problem 1 | rj | Lmax by the branch and bound method based on
the solution of the dual problem

1. Initial step

Let π∗ = ∅. The list of instances contains the original instance {N, τ, ν, ∅, ∅}, where ν is
a lower bound on the optimal objective function value obtained by solving the dual
problem of this instance.

2. Main step

(a) From the list of instances, select an instance {N′, τ′, ν′, π′, B′} with a minimal lower
bound ν′.

(b) Find the job f = f (N′, τ′) from the set N′ \ B′ with the smallest due date from the
number of jobs ready for processing at time τ′.

(c) Replace the instance {N′, τ′, ν′, π′, B′} by the two instances {N1, τ1, ν1, π1, B1} and
{N2, τ2, ν2, π2, B2} in the list of instances, where:

- N1 = N′ \ { f }, τ1 = max{r f , τ′}+ p f , B1 = ∅, π1 = (π′, f ), ν1 is a lower
bound obtained by solving the dual problem of this instance by Algorithm 3;

- N2 = N′, τ2 = τ′, B2 = B′ ∪ { f }, π2 = π′, ν2 is a lower bound obtained by
solving the dual problem of this instance by Algorithm 3.

(d) If, after completing this step of the algorithm, we obtain {π1} = N, that is, all jobs
are ordered, then π∗ = arg min{Lmax(π1, τ), Lmax(π∗, τ)}.

(e) Exclude all instances {N′, τ′, ν′, π′, B′}, for which ν′ ≥ Lmax(π∗, τ).

3. Termination step

If the list of instances is empty, STOP, otherwise repeat the main step 2.

To find the value ν in step 2(c), we need to modify Algorithm 1 taking into account a list B of jobs
that cannot be placed on the current position. The input data of Algorithm 3 is the triplet (N, τ, B),
where τ is used to calculate Cj.
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Algorithm 3: Modification of the solution algorithm for the dual problem of the problem
1 | rj | ϕmax with respect to a list of jobs that cannot be on the first position

1. Construct the schedule πr = (i1, i2, . . . , in), in which all jobs are sequenced according to
non-decreasing release dates: ri1 ≤ ri2 ≤ · · · ≤ rin .

2. For k = 1, 2, . . . , n, if N \ (B ∪ {ik}) 	= ∅, find a job

il = arg min
j∈N\(B∪{ik})

rj

and construct the schedule πk = (il , πr \ {il , ik}, ik).
Find the value ϕik (Cik (πk)).
If N \ (B ∪ {ik}) = ∅, then we assume Cik = +∞.

3. Find the value ν∗ = min
k=1,...,n

ϕik (Cik (πk)) and the job ik, which gives the value ν∗.

It is easy to see that this algorithm can be used to solve the more general problem 1 | rj | ϕmax.
In addition, if the algorithm is stopped without an empty list of instances due to a time limit, the current
schedule π∗ can be taken as an approximate solution of the problem.

Hence, although the original problem 1 | rj | ϕmax is NP-hard in the strong sense (recall that
problem 1 | rj | Lmax is NP–hard in the strong sense), the dual problem turned out to be
polynomially solvable.

If precedence relations are specified between the jobs by an acyclic graph G, then the dual problem
of the problem 1 | rj, prec | ϕmax can also be solved in a similar way. Since the argumentation is similar,
we skip the details. Here, the core is to solve the problem 1 | rj, prec | Cmax. Jobs without successors
according to the precedence graph G will be put one-by-one to the last positions in the job sequence.
Thus, the dual problem of the problem 1 | rj, prec | ϕmax is also polynomially solvable.

For problems with m > 1 machines, e.g., problem Pm | rj, prec | ϕmax, the core consists of solving
the dual problem, which is the partition problem. This dual problem is NP–hard in the ordinary sense.

Thus, although in mathematical programming the original and dual problems have usually the
same complexity status, it turned out that the dual problems of the scheduling problems considered
in this paper have a lower complexity than the original problems. This interesting fact should be
investigated further in more detail also for other scheduling problems.

3. The Inverse Problem of the Maximum Lateness Problem

The inverse problem of the NP-hard problem of minimizing maximum lateness 1 | rj | Lmax

consists of finding a schedule π, which reaches the maximum minimal lateness and finding the value

λ∗ = max
π∈Π(N)

min
k=1,...,n

Ljk (Cjk (π)). (5)

Please note that for this problem, inserted idle times of the machine are prohibited.
This problem was solved only for the case of simultaneous availability of the set N for processing,

i.e., rj = 0, for all j ∈ N in [28]. We consider the general case of the problem 1 | rj | max Lmin.

Lemma 2. There exists an optimal schedule π = (i1, . . . , in) for the problem 1 | rj | max Lmin, for which

dik − pik ≤ dik+1
− pik+1

, k = 2, 3, . . . , n − 1, (6)

and
λ∗ = min

k=1,...,n
Lik (Cik (π)).
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Proof. Assume that at least one of inequalities (6) is not satisfied for an optimal schedule π′ =

(j1, . . . , jn) and let
λ∗ = min

k=1,...,n
Lik (Cik (π

′)).

In what follows, the proof will consist of two stages, which can be repeated several times.
Step 1. If there are no machine idle times in the schedule π′, then go to step 2. Let there be idle

times according to schedule π′, and consider the last of them:

Cjk < rjk+1
and rjm ≤ Cjm−1 , m = k + 2, . . . , n.

Construct the schedule π′′ = (jk+1, j1, . . . , jk, jk+2, . . . , jn). Since

Cj(π
′′) ≥ Cj(π

′) for all j ∈ N,

the value of the minimal lateness will not decrease. There will be no idle time under the schedule π′′,
and the optimal value λ∗ will be saved. Set π′ := π′′ and go to step 2.

Step 2. If the schedule π′ meets the conditions of Lemma 2, the proof is completed. If there exist
two jobs jl , jl+1, for which

djl − pjl > djl+1
− pjl+1

,

then exchange the jobs jl , jl+1 which yields the schedule

π′′ = (j1, . . . , jl−1, jl+1, jl , jl+2, . . . , jn).

As there are no machine idle times under the schedule π′, we have

rjl ≤ Cjl−1
(π′).

There are the following possible cases:
(1) Let rjl+1

≤ Cjl−1
(π′). Obviously, in this case we have

Cjk (π
′) = Cjk (π

′′), k = 1, 2, . . . , l − 1, l + 2, . . . , n. (7)

According to the assumptions, inequality

Cjl−1
(π′) + pjl + pjl+1

− djl+1
> Cjl−1

(π′) + pjl − djl . (8)

holds. Moreover, we have

Cjl−1
(π′) + pjl+1

− djl+1
> Cjl−1

(π′) + pjl − djl ; (9)

Cjl−1
(π′) + pjl+1

− djl > Cjl−1
(π′) + pjl − djl . (10)

Formulas (7)–(10) show that the maximal lateness is not reduced. Set π′ := π′′ and repeat step 2.
(2) Let rjl+1

> Cjl−1
(π′). In this case, we have

Cjk (π
′′) = Cjk (π

′), k = 1, 2, . . . , l − 1, (11)

Cjk (π
′′) > Cjk (π

′), k = l + 2, . . . , n. (12)

According to the assumptions, we have

Cjl+1
(π′′)− djl+1

> Cjl (π
′)− djl ; (13)

Cjl (π
′′)− djl > Cjl+1

(π′)− djl+1
. (14)
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Formulas (8) and (11)–(14) show that the maximal lateness is not reduced. Set π′ := π′′ and go to
step 1.

In a finite number of steps, we construct an optimal schedule satisfying the conditions of the
lemma. The lemma has been proved.

Algorithm 4 constructs n schedules, one of which is satisfying the conditions of the lemma.

Algorithm 4: Solution of the inverse problem 1 | rj | max Lmin

1. Enumerate all jobs of the set N according to d1 − p1 ≤ d2 − p2 ≤ · · · ≤ dn − pn.
2. For k = 1, 2, . . . , n do:

(a) construct the schedule πk = (k, 1, . . . , k − 1, k + 1, . . . , n) and
(b) determine λk = min

j=1,...,n
Lj(Cj(πk)).

3. Calculate λ∗ = max
k=1,...,n

λk.

O(n log n) operations are needed for renumbering the jobs of the set N. O(n) operations are
needed for constructing the schedule πk and calculating the value λk, k = 1, . . . , n. Thus, no more than
O(n2) operations are needed to find the value λ∗.

The objective function value of a solution of the problem of maximizing minimal lateness 1 | rj |
max Lmin is a lower bound on the optimal objective function value for the original problem 1 | rj | Lmax.

Theorem 2 ([18]). For the optimal function values of the problem 1 | rj | Lmax and the corresponding inverse
problem 1 | rj | max Lmin, the inequality μ∗ ≥ λ∗ holds.

Proof. Denote by π′ and π′′ optimal schedules for the problems 1 | rj | Lmax and 1 | rj | max Lmin,
respectively. There exist jobs k′, k′′ ∈ N, for which the following inequalities hold:

μ∗ = Ck′(π
′)− dk′ ≥ Cj(π

′)− dj for all j ∈ N; (15)

Cj(π
′′)− dj ≥ Ck′′(π

′′)− dk′′ = λ∗ for all j ∈ N. (16)

Please note that jobs k′ and k′′ can be identical. Let π′′ = (j1, . . . , jn). Obviously, the following
inequality is satisfied for job j1:

Cj1(π
′)− dj1 ≥ Cj1(π

′′)− dj1 . (17)

According to inequalities (15)–(17), we get

μ∗ = Ck′(π
′)− dk′ ≥ Cj1(π

′)− dj1 ≥ Cj1(π
′′)− dj1 ≥ Ck′′(π

′′)− dk′′ = λ∗,

i.e., μ∗ ≥ λ∗. The theorem has been proved.

4. Computational Results

In this section, we present some results of the numerical experiments carried out on randomly
generated test instances. The numerical experiments were carried out on a PC Intel R© CoreTM i5-4210U
CPU @ 1.70GHz, 4 cores; 8 GB DDR4 RAM.

Various methods of generating test instances for different types of scheduling problems are
described in [29]. For the problem 1|rj|Lmax with n jobs, the authors suggest the following
generation scheme:
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• r0 = 0 and ri = ri−1 + Xi, where Xi ∼ exp(λ), for i = 1, ..., n;
• pi ∼ N(μ, σ) for i = 1, . . . , n, truncated below a known lower bound;
• di = ri + kE[pi] for i = 1, . . . , n, where k ≥ 1.

The authors suggest that λ, μ, σ and k are generation parameters that can be fixed by the user.
Applying this generation scheme, we generate release dates which are independent from the processing
times, while the due dates correlate with the processing times, as it usually happens in real problems.
We set

λ =
1

100
, μ = 100, σ = 40, k = 1

and generated 15 instances for each n ∈ {3, 4, ..., 20}. The results are shown in Table 1, where the
number of branching points are given for each of the 15 instances for any value of n.

Table 1. Number of branching points in Algorithm 2 for the test instances generated according to [29].

n
Number of the Instance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 4 2 2 2 2 2 2 2 2 2 2 4 2 2 2

4 3 3 3 3 3 3 3 3 3 5 4 3 3 3 3

5 9 4 4 25 4 4 31 4 4 8 4 4 4 4 18

6 5 5 64 227 161 13 7 5 5 5 5 5 84 15 5

7 6 25 16 6 6 6 31 147 310 34 35 6 172 6 222

8 7 234 33 7 7 23 7 391 7 7 7 7 194 7 7

9 1271 8 1847 8 3786 2934 8 8 62 8 8 721 8 208 8

10 9 690 9 9 66 114 9 9 9 9 9 9 3944 6584 9

11 10 13,098 10 5071 10 13,992 11 10 6081 773 591 303 10 3772 10

12 11 22,736 11 11 35,910 57,407 32,798 11 139 164,613 11 11 166 11 207,119

13 12 12 213,433 1109 * 12 183 227 794,567 12 * 12 30,946 * 12

14 13 13 458 * 5933 21,774 4394 13 13 13 * 32,246 * 13 *

15 2293 14 * * * * 14 * 14 14 * * 14 14 *

16 15 * 15 * 15 * 15 * 15 * * * 172,876 15 *

17 * 16 16 * 16 * 16 16 16 16 * 9128 * 16 16

18 17 * * 17 * * 17 17 17 17 * * * * *

19 * 18 18 * * * * * 4999 18 18 * * 18 18

20 * 19 2103 * * 19 20 19 19 19 19 19 19 19 *

An asterisk (*) in Table 1 means that the solution could not be found within 15 min. According to
this table, a large part of the instances can be solved with several branching points not greater than the
number of jobs. However, some instances appeared to be hard and required a much larger number of
branching points. It can be observed that these hard instances generated according to [29] display a
rather different solution behavior and need very different numbers of branching points for their exact
solution. This interesting phenomenon deserves further detailed investigations which are planned as
future work by the authors.

Next, we consider an instance of the problem as a point in the 3n-dimensional space, where each
value of ri, pi, di represents one of the dimensions. We consider the vector from the zero point to the
point of the instance. The complexity of an instance is defined by the direction of the vector, but not
by its length. Therefore, to explore the complexity of different instances, we can take points on the
surface of the 3n-dimensional cube. For the processing times and the release dates, we consider only
non-negative values. As a result, we obtain points on the quarter of the surface of the 3n-dimensional
cube with ri ≥ 0 and pi ≥ 0. Let the size of the cube be 100. We generated 300,000 points on the
surface for problems with 4, 5, 6, 7, 8 and 9 jobs (i.e., in the 12-, 15-, 18-, 21, 24, 27-dimensional spaces,
respectively). All instances have been solved, and we counted the number of iterations (i.e., branching
points) for each problem instance. The results are shown in Figure 1 for the instances with 4 jobs,
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in Figure 2 for the instances with 5 jobs, in Figure 3 for the instances with 6 jobs, in Figure 4 for the
instances with 7 jobs, in Figure 5 for the instances with 8 jobs and in Figure 6 for the instances with 9 jobs.
At the y-axis, the numbers are given how often a particular number of branching points (Figure 1) or an
interval for the number of branching points (Figures 2–6) has occurred among the 300,000 instances for
each number n of jobs. For example, in Figure 1, one can see that among the 300,000 solved instances
with 5 jobs, there were 72,897 instances with 3 branching points, 16,131 instances with 4 branching
points, 29,342 instances with 5 branching points, and so on. It can be observed that the maximal
number of 20 branching points was reached for 1294 instances, which is approximately equal to 0.4% of
all instances. In Figure 2, the numbers of branching points are grouped in intervals of 5 in each column,
i.e., there were 86 026 instances with several branching points between 0 and 4 (actually 4, because
it is the minimum possible number of branching points for instances with 5 jobs), 28,566 instances
with several branching points between 5 and 9, etc. For instances with 5 jobs, the maximum number
of branching points was 93, and it was reached for only 33 instances. As it can be seen in the figures,
most of instances can be solved by a small number of branches. For a larger number of jobs, one can
detect a smaller number of hard instances with a large number of branching points. Thus, for the
instances with 9 jobs, among the 300,000 solved instances, there were only two instances with several
branching points more than 180,000: one with 184,868, and the other with 191,887.

Figure 1. Number of branching points for the instances with 4 jobs.
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Figure 2. Number of branching points for the instances with 5 jobs.

Figure 3. Number of branching points for the instances with 6 jobs.
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Figure 4. Number of branching points for the instances with 7 jobs.

Figure 5. Number of branching points for the instances with 8 jobs.
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Figure 6. Number of branching points for the instances with 9 jobs.

5. Conclusions

For solving the NP-hard problem 1 | rj | ϕmax for arbitrary non-decreasing penalty functions,
an algorithm has been proposed which implements the branch and bound method. For each
sub-instance to be considered, a lower bound on the optimal function value is determined using
a solution of the dual problem. The proposed algorithm for solving the dual problem can find a
solution in several operations not exceeding O(n2). The proposed algorithm can find an optimal
solution within a time limit of one second for about 98% of the instances for 8 jobs and for about 85%
of instances for 9 jobs. Although there are a few instances with a large number of branching points,
most instances can be solved very fast by the proposed algorithm. For the hard instances, the execution
of the algorithm can be interrupted at any moment, and the current objective function value with
the corresponding schedule π can be used as an approximate solution for the instance. However,
some generated instances appeared to be very hard. At the moment, we cannot explain this interesting
phenomenon. It requires deep additional investigations which are planned in the future.

In addition to the dual problem, the inverse problem has also been solved for the lateness
objective function. The algorithm for solving the inverse problem has a complexity of O(n2) operations.
However, in the problem of minimizing maximum lateness, one tries to ‘equalize’ the lateness while
minimizing the maximum, in the inverse problem the lateness values are ‘equalized’ due to the
maximization of the minimum provided that inserted machine idle times are prohibited.
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Abstract: This study addresses a two-machine job-shop scheduling problem with fixed lower and
upper bounds on the job processing times. An exact value of the job duration remains unknown until
completing the job. The objective is to minimize a schedule length (makespan). It is investigated
how to best execute a schedule, if the job processing time may be equal to any real number from
the given (closed) interval. Scheduling decisions consist of the off-line phase and the on-line phase
of scheduling. Using the fixed lower and upper bounds on the job processing times available at
the off-line phase, a scheduler may determine a minimal dominant set of schedules (minimal DS),
which is based on the proven sufficient conditions for a schedule dominance. The DS optimally
covers all possible realizations of the uncertain (interval) processing times, i.e., for each feasible
scenario, there exists at least one optimal schedule in the minimal DS. The DS enables a scheduler
to make the on-line scheduling decision, if a local information on completing some jobs becomes
known. The stability approach enables a scheduler to choose optimal schedules for most feasible
scenarios. The on-line scheduling algorithms have been developed with the asymptotic complexity
O(n2) for n given jobs. The computational experiment shows the effectiveness of these algorithms.

Keywords: scheduling; job-shop; makespan criterion; uncertain processing times

1. Introduction

Many real-world production planning and scheduling problems have various uncertainties.
Different approaches are used for solving the uncertain planning and scheduling problems.
In particular, a stability approach [1–4] for solving sequencing and scheduling problems with the
interval uncertainty is based on the stability analysis of the optimal job permutations (schedules) to
possible variations of the job processing times (durations). In this paper, this approach is applied to
the uncertain two-machine job-shop scheduling problem, where a job processing time is only known
once the job is completed. Although, the exact value of the job processing time is unknown before
scheduling, it is known that the processing time must have a value no less than the lower bound and
no greater than the upper bound available before scheduling. It should be noted that uncertainties
of the job processing times are due to some external forces in contrast to scheduling problems with
controllable processing times [5–7], where the objective is to determine optimal processing times and
then to find an optimal schedule for the jobs with the chosen processing times.
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1.1. Research Motivation

It is not realistic to assume processing times are exactly known and fixed for many scheduling
problems arising in real-world situations. For such an uncertain scheduling problem, job processing
times are random variables. Moreover, it is often hard to obtain probability distributions for all random
processing times of the jobs to be processed. In such cases, schedules constructed due to assuming
certain probability distributions are often not close to the optimal schedule. Although, the probability
distribution of the job processing time may not be known before scheduling, the upper and lower
bounds on the job processing time are easy to obtain in most practical scheduling environments.
The available information on these lower and upper bounds on the job processing times should be
utilized in finding optimal schedules for the scheduling problem with an interval uncertainty.

Since there may not exist a unique schedule that remains optimal for all possible realizations
of the job processing times (all possible scenarios), it is desirable to construct a minimal dominant
set of schedules (permutations of the jobs to be processed), which dominate all other ones. At the
off-line phase of scheduling (i.e., before starting an execution of the constructed schedule), a minimal
dominant set of schedules may be determined based on the proven dominance relations [8].

If the constructed minimal dominant set of schedules is a singleton, then a single schedule
remaining optimal for all possible scenarios exists. Otherwise, one can reduce the size of the
determined minimal dominant set of schedules at the on-line phase of scheduling based on the
additional information about completing some jobs. This additional on-line information allows a
scheduler to find new dominance relations in order to best execute a schedule. It is clear that on-line
scheduling decisions must be realized very quickly. In other words, only polynomial algorithms may
be applied at the on-line phase of scheduling.

1.2. Contributions of This Research

In this paper, it is shown how to determine a minimal dominant set of schedules that would
contain at least one optimal schedule for every scenario that is possible. The necessary and sufficient
conditions are proven for the existence of a single pair of job permutations, which is optimal for
the two-machine job-shop scheduling problem with any possible scenario. The algorithms have
been developed for testing a set of the proven sufficient conditions for a schedule dominance and
for the realization of a schedule, which is either optimal or very close to optimal one for the factual
scenario. The developed algorithms are polynomial in the number n of the given jobs. Their asymptotic
complexities do not exceed O(n2). The computational experiments on a large number of randomly
generated instances of the uncertain (interval) two-machine job-shop scheduling problem show
the efficiency and effectiveness of the developed off-line and on-line algorithms and programs.
For different distributions of the factual job processing times, the developed on-line algorithms perform
with the maximal errors of the achieved makespan less than 1% provided that n ∈ {20, 30, . . . , 100}.
For all tested classes of the randomly generated instances, the average makespan errors Δave% for all
tested numbers n ∈ {10, 20, . . . , 100} of jobs J are less than 0.02%. Each tested series of 1000 randomly
generated instances was solved within no more than one second.

The paper is organized as follows. Settings of the considered scheduling problems with the
interval uncertainty and main notation are introduced in Section 2. A literature review is presented
in Section 3. The results published for the uncertain (interval) scheduling flow-shop problem are
discussed in Section 3.2. These results are used in Section 4 for finding the optimal job permutations at
the off-line phase of scheduling. In Section 4.2, the precedence digraphs are described for determining
a minimal dominant set of schedules. An illustrative example is considered in Section 4.3. The on-line
phase of scheduling is investigated in Section 5, where two theorems for the dominant sets of
schedules have been proven. Section 6 contains the algorithms developed for the on-line phase
of scheduling, illustrative examples (Section 6.2) and the discussion of the conducted computational
experiments (Section 6.3). Appendix B consists of the tables with the detailed computational results.
Some concluding remarks are made in Section 7.
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2. Settings of Scheduling Problems and Main Notations

A set J = {J1, J2, ..., Jn} of the given jobs must be processed on different machines from a set
M = {M1, M2}. All jobs are available for processing from the same time t = 0. Using the standard
notation α|β|γ [9], this deterministic two-machine job-shop scheduling problem to minimize the
makespan is denoted as follows: J2|ni ≤ 2|Cmax, where α = J2 means a job-shop processing system
with two available different machines and ni a number of possible stages for processing a job Ji ∈ J .
The criterion γ = Cmax determines the minimization of a schedule length (makespan) as follows:

Cmax := min
s∈S

Cmax(s) = min
s∈S

{max{Ci(s) : Ji ∈ J }} , (1)

where Ci(s) denotes the completion time-point of the job Ji ∈ J in the schedule s and S denotes a set
of all semi-active schedules existing for the deterministic problem J2|ni ≤ 2|Cmax. (A schedule s is
called a semi-active one [10–12] if the completion time-point Ci(s) of any job Ji ∈ J cannot be reduced
without changing an order of the jobs on some machine.)

Let Oij denote an operation of the job Ji ∈ J processed on the machine Mj ∈ M. Each of the
available machines can process the job Ji ∈ J no more than once, a preemption of the operation Oij
being not allowed. The job Ji ∈ J has its own processing route through the available machines in set
M. The partition J = J1

⋃J2
⋃J1,2

⋃J2,1 of the jobs is given and fixed, where each job Ji ∈ J1,2

must be processed first on machine M1 and then on machine M2, i.e., all jobs from the set J1,2 have
the same machine route (M1, M2). Each job Ji ∈ J2,1 has an opposite machine route (M2, M1). The set
Jj, where j ∈ {1, 2}, consists of all jobs, which must be processed only on one machine Mj ∈ M.
The following notation mh = |Jh| will be used, where h ∈ {1; 2; 1,2; 2,1}.

In this research, it is investigated the uncertain (interval) two-machine job-shop scheduling
problem denoted as J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax, where the duration pij of each operation Oij is
unknown before scheduling. It is only known that the inclusion pij ∈ [lij, uij] holds for any possible
realization of the chosen schedule, where uij ≥ lij ≥ 0. It is also assumed that a probability distribution
of the random duration of a job from the set J is also unknown before scheduling. Let a set T of all
possible scenarios p = (p1,1, p1,2, . . . , pn1, pn2) of the job processing times be determined as follows:

T = {p : lij ≤ pij ≤ uij, Ji ∈ J , Mj ∈ M}.

It should be noted that the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is mathematically incorrect
since one cannot calculate makespan Cmax(s) in the equality (1) before completing the jobs Ji in the
set J provided that the strict inequality uij > lij holds. Moreover, in most cases there does not exist
a schedule, which is optimal for all possible scenarios p ∈ T for the uncertain job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. Therefore, one cannot solve most such uncertain (interval) scheduling
problems in the generally accepted sense.

In [13], it is proven that the deterministic job-shop problem J2|ni ≤ 2|Cmax is solvable in O(n log n)
time. The optimal semi-active schedule for this deterministic problem is determined as the pair (π′, π′′)
of two job permutations (called a Jackson’s pair of permutations), where π′ = (π1,2, π1, π2,1) is an
optimal permutation of the jobs J1

⋃J1,2
⋃J2,1 processed on machine M1 and π′′ = (π2,1, π2, π1,2)

is an optimal permutation of the jobs J2
⋃J1,2

⋃J2,1 on machine M2. Such an optimal semi-active
schedule is presented in Figure 1. In what follows, it is assumed that job Ji belongs to the permutation
πh, if the following inclusion holds: Ji ∈ Jh.

In a Jackson’s pair of permutations (π′, π′′), the optimal order for processing jobs from the set J1

(from the set J2, respectively) may be arbitrary (due to this, we fix them in the increasing order of their
indexes). For the permutation π1,2 (permutation π2,1, respectively), the following inequality holds:

min{pie1, pi f 2} ≤ min{pi f 1, pie2} (2)
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for all indexes e and f provided that 1 ≤ e < f ≤ m1,2 (1 ≤ f < e ≤ m2,1, respectively).
The permutation π1,2 (permutation π2,1) is called a Johnson’s permutation; see [14].

Figure 1. An example of the optimal semi-active schedule without idle times on both machines.

The deterministic scheduling problem J2|ni ≤ 2|Cmax associated with a fixed scenario p of the
job processing times is an individual deterministic problem. In what follows, this problem is denoted
as follows: J2|p, ni ≤ 2|Cmax. For any fixed scenario p ∈ T, there exists a Jackson’s pair (π′, π′′) of
permutations, which is optimal for the problem J2|p, ni ≤ 2|Cmax, i.e., the equality Cmax(π′, π′′) =
Cp

max holds, where Cp
max denotes the optimal makespan value for the problem J2|p, ni ≤ 2|Cmax.

Let S1,2 denote a set of all permutations of m1,2 jobs from the set J1,2, where |S1,2| = m1,2!. The set
S2,1 is a set of all permutations of m2,1 jobs from the set J2,1, |S2,1| = m2,1!.

Let the set S =<S1,2, S2,1 > be a subset of the Cartesian product (S1,2, π1, S2,1)× (S2,1, π2, S1,2),
each element of the set S being a pair of job permutations (π′, π′′) ∈ S, where π′ = (πi

1,2, π1, π
j
2,1)

and π′′ = (π
j
2,1, π2, πi

1,2) with inequalities 1 ≤ i ≤ m1,2! and 1 ≤ j ≤ m2,1!. It is known that the set S
determines all semi-active schedules and vice versa; see [12]. Since index i (and index j) is the same
in each permutation from the pair (π′, π′′) ∈ S and it is a fixed permutation π1 (permutation π2),
the equality |S| = m1,2! · m2,1! holds. The following definition of a J-solution is used for the uncertain
(interval) job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax.

Definition 1. An inclusion-minimal set of the pairs of job permutations S(T) ⊆ S is called a J-solution for the
uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the set J of the given jobs, if for each scenario
p ∈ T, the set S(T) contains at least one pair (π′, π′′) ∈ S of job permutations that is optimal for the individual
deterministic problem J2|p, ni ≤ 2|Cmax with a fixed scenario p.

From Definition 1, it follows that for any proper subset S′ of the set S(T), S′ ⊂ S(T), there exists
a scenario p′ ∈ T such that the set S′ does not contain an optimal pair of job permutations for the
individual deterministic problem J2|p′, ni ≤ 2|Cmax with a fixed scenario p′.

3. A Literature Review and Closed Results

It should be noted that the uncertain flow-shop scheduling problem denoted as
F2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is well studied [15], unlike the uncertain job-shop scheduling problem.
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3.1. Approaches to Scheduling Problems with Different Forms of Uncertainties

For the well-known stochastic approach, it is assumed that the job processing times are random
variables with certain probability distributions determined before scheduling. There are two types of
the stochastic scheduling problems [10], where one is on stochastic jobs and another is on stochastic
machines. In the stochastic job scheduling problem, each job processing time is a random variable with
a known probability distribution. With the objective of minimizing the expected makespan value, the
flow-shop problem was studied in [16–18]. In the stochastic machine scheduling problem, each job
processing time is a constant, while each completion time of the given job is a random variable due to
the machine breakdown or machine non-availability. In [19–21], the flow-shop scheduling problems to
stochastically minimize either makespan or total completion time were investigated.

If it is impossible to determine probability distributions for all random job processing times,
other approaches have to be used [11,22–25]. In the approach of seeking a robust schedule [22,26–28],
a decision-maker looks for a schedule that hedges against the worst-case possible scenario.

A fuzzy approach [29–35] allows a scheduler to find best schedules with respect to fuzzy
processing times of the jobs to be processed. The work of [35] addresses to the job-shop scheduling
problem with uncertain processing times modeled as triangle fuzzy numbers, where the criterion is
to minimize the expected makespan value. Based on the disjunctive graph model of the job-shop
problem, a definition of criticality is proposed for this job-shop problem along with neighborhood
structure for a local search. It is shown that the proposed neighborhood structure has two properties:
feasibility and connectivity, which allow a scheduler to improve the efficiency of the local search and to
ensure asymptotic convergence (in probability) to a globally optimal solution of the uncertain job-shop
problem. The conducted computational experiments supported these theoretical results.

The stability approach was developed in [1,4,36,37] for the Cmax criterion, and in [2,38–40] for
the total completion time criterion, ∑ Ci := ∑Ji∈J Ci(π

′). The aim of this approach is to construct a
minimal dominant set S(T) of schedules, which optimally covers all feasible scenarios T. The dominant
set S(T) is used in the multi-phase decision framework; see [41]. The set S(T) is constructed at the first
off-line phase of scheduling. Based on the set S(T), it is possible to find a schedule remaining optimal
for most feasible scenarios. The set S(T) enables a scheduler to execute best a schedule in most cases
of the uncertain flow-shop scheduling problem F2|lij ≤ pij ≤ uij|Cmax [41].

The stability radius of the optimal semi-active schedule was studied in [4], where a formula for
calculating the stability radius and corresponding algorithms were described and tested.

In [36], the sufficient conditions were proven when a transposition of the given jobs minimizes
the makespan criterion. The work of [42] addressed the objective criterion ∑ Ci in the uncertain
two-machine flow-shop scheduling problem. The case of separate setup times with the criterion of
minimizing a total completion time or makespan was investigated in [43].

For the uncertain flow-shop problem F2|lij ≤ pij ≤ uij|Cmax, an additional criterion is often
introduced. In particular, a robust schedule minimizing the worst-case deviation from the optimal
value was proposed in [44] to hedge against the interval or discrete uncertainties. In [45], a binary
NP-hardness was proven for finding a pair (πq, πq) ∈ S of the identical job permutations that
minimizes the worst-case absolute regret for the uncertain two-machine flow-shop problem with
the criterion Cmax and only two possible scenarios. In [46], a branch and bound method was developed
for the uncertain job-shop scheduling problem to minimize makespan and optimize robustness based
on a mixed graph model and the propositions proposed in [47]. The effectiveness of the developed
algorithm was clarified by solving test uncertain job-shop scheduling problems.

The work of [48] addresses robust scheduling for a flexible job-shop scheduling problem with
a random machine breakdown. Two objectives makespan and robustness were considered. Robustness
was indicated by the expected value of the relative difference between the deterministic and factual
makespan values. Two measures for robustness have been developed. The first suggested measure
considers the probability of machine breakdowns. The second measure considers the location of
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float times and machine breakdowns. A multi-objective evolutionary algorithm is presented and
experimentally compared with several other existing measures.

A function of predictive scheduling in order to obtain a stable and robust schedule for a shop floor
was investigated in [49]. An innovative maintenance planning and production scheduling method has
been proposed. The proposed method uses a database to collect information about failure-free times,
a prediction module of failure-free times, predictive rescheduling module, a module for evaluating the
accuracy of prediction and maintenance performance. The proposed approach is based on probability
theory and applied for solving a job-shop scheduling problem. For unpredicted failures, a rescheduling
procedure was also developed. The evaluation procedure provides information about the degradation
of a performance measure and the stability of a schedule.

The simulation and experimental design methods play a useful role in solving job-shop scheduling
problems with uncertain parameters (see survey [50], where many studies about dynamic and static
job-shop scheduling problems with material handling are described and systematized).

In [51], a quality robustness and a solution robustness were investigated in order to compare the
operational efficiency of the job-shop in the events of machine failures. Two well-known proactive
approaches were compared to compute the operational efficiency of the job-shop with unpredicted
machine failures. In the computational experiments, the predictive-reactive approach (without
a prediction) and the proactive-reactive one (with a prediction) were applied for the job-shop model
with possible disruptions. The computational results of computer simulations for the above two
approaches were compared in order to select better schedules for reducing costs and waste due to
machine failures.

The paper [52] presents a methodological pattern to assess the effectiveness of Order Review
and Release (ORR) techniques in a job-shop environment. It is presented a comparison among three
ORR approaches, i.e., a time bucketing approach, a probabilistic approach and a temporal approach.
Simulation results highlighted that the performances of the ORR techniques tested depend on how
perturbed the environment, where they are implemented, is. Based on a computer simulation, it was
shown that the ORR techniques greatly differ in their robustness against environment perturbations.

The paper [53] presents an effective heuristic algorithm for the job-shop problem with uncertain
arrival times of the jobs, processing times, due dates and part priorities. A separable problem
formulation that balances modeling accuracy and solution complexity is described with the goal
to minimize expected part tardiness and earliness cost. The optimization is subject to arrival times
and operation precedence constraints (for each possible realization), and machine capacity constraints
(in the expected value sense). The solution algorithm based on a Lagrangian relaxation and stochastic
dynamic programming was developed to obtain dual solutions. The computational complexity of
the developed algorithm is only slightly higher than the one without considering uncertainties of the
numerical parameters. Numerical testing supported by a simulation demonstrated that near optimal
solutions were obtained, and uncertainties are effectively handled for problems of practical sizes.

The published results on the application of the stability approach for the uncertain two-machine
flow-shop problem are presented in Section 3.2. These results are described in detail since they are
used for the uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax in Sections 4–6.

3.2. Closed Results for Uncertain (Interval) Flow-Shop Scheduling Problems

The uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is a generalization of the
uncertain flow-shop problem F2|lij ≤ pij ≤ uij|Cmax, where all given jobs have the same machine
route. Two uncertain flow-shop problems are associated with an uncertain job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. In one of these flow-shop problems, an optimal schedule for processing
the jobs J1,2 must be determined, i.e., it is assumed that J2,1 = J1 = J2 = ∅. In another associated
flow-shop problem, an optimal schedule for processing jobs J2,1 must be determined, i.e., it is assumed
that J1,2 = J1 = J2 = ∅. Our approach to the solution of the uncertain job-shop scheduling problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is based on the following remark.
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Remark 1. The solution of the uncertain job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax may be
based on the solutions of the associated flow-shop scheduling problem F2|lij ≤ pij ≤ uij|Cmax with the job set
J = J1,2, where J2,1 = J1 = J2 = ∅, and that with the job set J = J2,1 (i.e., J1,2 = J1 = J2 = ∅).

The sense of Remark 1 becomes clear from Figure 2, where the semi-active schedule s for the
job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is presented. Indeed, in Figure 2, the length
Cmax(s) of the schedule s is equal to the length of the corresponding semi-active schedule determined
for the associated flow-shop scheduling problem F2|lij ≤ pij ≤ uij|Cmax with the job set J = J1,2.
Thus, if one will solve both associated flow-shop problem F2|lij ≤ pij ≤ uij|Cmax with the job set
J = J1,2 and associated flow-shop problem F2|lij ≤ pij ≤ uij|Cmax with the job set J = J2,1, then the
original job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax will be also solved.

 

M
t 

M

Figure 2. The optimal semi-active schedule for the job-shop scheduling problem.

We next observe in detail the results obtained for the two-machine flowshop problem
F2|lij ≤ pij ≤ uij|Cmax with the job set J = J1,2. For using the above notations introduced for the
uncertain job-shop problem, we need the following remark for the uncertain flow-shop problem.

Remark 2. The considered problem F2|lij ≤ pij ≤ uij|Cmax has the following two mandatory properties:

(i) the set S is a set of n! pairs (πq, πq) of the identical permutations of n = m1,2 jobs from the set J = J1,2

since the machine route for processing all jobs J1,2 is the same (M1, M2);
(ii) the J-solution (see Definition 1) is a set of Johnson’s permutations of the jobs J = J1,2, i.e., for each scenario

p ∈ T the set S(T) contains at least one optimal pair (πq, πq) of identical Johnson’s permutations πq such
that the inequality (2) holds for all indexes e and f .

The following Theorems 1 and 2 have been proven in [54].

Theorem 1 ([54]). There exists a J-solution S(T) for the uncertain flow-shop problem F2|lij ≤ pij ≤ uij|Cmax

with a fixed order Jv → Jw of the jobs Jv and Jw in all permutations πq, (πq, πq) ∈ S(T), if and only if at least
one of the following two conditions hold:

uv1 ≤ lv2 and uv1 ≤ lw1; (3)

uw2 ≤ lw1 and uw2 ≤ lv2. (4)
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Theorem 2 provides the necessary and sufficient conditions for existing a single-element
J-solution S(T) = {(πq, πq)} for the uncertain flow-shop scheduling problem F2|lij ≤ pij ≤ uij|Cmax.
The partition J = J 0 ∪ J 1 ∪ J 2 ∪ J ∗ of the set J = J1,2 is given, where

J 0 = {Ji ∈ J : ui1 ≤ li2, ui2 ≤ li1},
J 1 = {Ji ∈ J : ui1 ≤ li2, ui2 > li1} = {Ji ∈ J \ J 0 : ui1 ≤ li2},
J 2 = {Ji ∈ J : ui1 > li2, ui2 ≤ li1} = {Ji ∈ J \ J 0 : ui2 ≤ li1},
J ∗ = {Ji ∈ J : ui1 > li2, ui2 > li1}.
Note that for each job Jg ∈ J 0, the inequalities ug1 ≤ lg2 and ug2 ≤ lg1 imply the equalities

lg1 = ug1 = lg2 = ug2. Thus, the equalities pg1 = pg2 =: pg hold.

Theorem 2 ([54]). There exists a single-element J-solution S(T) ⊂ S, |S(T)| = 1, for the uncertain flow-shop
problem F2|lij ≤ pij ≤ uij|Cmax, if and only if the following two conditions hold:

(j) for any pair of jobs Ji and Jj from the set J 1 (from the set J 2, respectively), either ui1 ≤ lj1 or uj1 ≤ li1
(either ui2 ≤ lj2 or uj2 ≤ li2, respectively);

(jj) inequality |J ∗| ≤ 1 holds and for the job Ji∗ ∈ J ∗ both inequalities li∗1 ≥ max{ui1 : Ji ∈ J 1},
li∗2 ≥ max{uj2 : Jj ∈ J 2} hold with inequality max{li∗1, li∗2} ≥ pg valid for each job Jg ∈ J 0.

Theorem 2 characterizes the simplest case of the uncertain flow-shop problem
F2|lij ≤ pij ≤ uij|Cmax, i.e., there is a job permutation πq dominating all others.

Let J × J denote a Cartesian product of the set J . If J 0 = ∅, then there exists the following
binary relation A≺ ⊆ J ×J over the set J = J1,2.

Definition 2. For the jobs Jx ∈ J and Jy ∈ J , the inclusion (Jx, Jy) ∈ A≺ holds if and only if at least one of
the conditions (3) and (4) holds with v = x and w = y and neither the condition (3) no the condition (4) holds
with v = y and w = x (or at least one of the conditions (3) and (4) holds both with v = x and w = y and with
v = y, w = x and x < y).

The above relation (Jx, Jy) ∈ A≺ may be represented as follows: Jx ≺ Jy. The binary relation
A≺ is a strict order [55] that determines the precedence digraph G = (J ,A≺) with the vertex set J
and the arc set A≺. The permutation πq = (Jq1 , Jq2 , . . . , Jqn), (πq, πq) ∈ S, is a total strict order over
the set J . The total strict order determined by the permutation πq is a linear extension of the partial
strict order A≺, if the inclusion (Jqx , Jqy) ∈ A≺ implies the inequality x < y. Let Π(G) denote a set of
all permutations πq ∈ S1,2 determining linear extensions of the partial strict order A≺. The equality
Π(G) = {πq} is characterized in Theorem 2, where the strict order A≺ over the set J is represented as
follows: Jq1 ≺ . . . ≺ Jqi ≺ Jqi+1 ≺ . . . ≺ Jqn . The following two claims have been proven in [55].

Theorem 3 ([55]). For any scenario p ∈ T, the set Π(G) contains a Johnson’s permutation for the deterministic
flow-shop problem F2|p|Cmax with the job set J = J1,2 = J ∗ ∪ J 1 ∪ J 2.

Corollary 1 ([55]). There exists a J-solution S(T) for the uncertain flow-shop problem F2|lij ≤ pij ≤ uij|Cmax

with the job set J = J1,2 = J ∗ ∪ J 1 ∪ J 2, such that the inclusion πq ∈ Π(G) holds for all pairs of job
permutations, where (πq, πq) ∈ S(T).

In [55], it is shown how to determine a minimal dominant set S(T) = {(πq, πq)} with πq ∈ Π(G).
The digraph G = (J ,A≺) is considered as a condense form of a J-solution for the uncertain flow-shop
problem F2|lij ≤ pij ≤ uij|Cmax. The above results are used in Sections 4–6 for reducing a size of the
dominant set S(T) for the uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax.

4. The Off-Line Phase of Scheduling

The above setting of the uncertain job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ n|Cmax

implies the following remark.
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Remark 3. The factual value p∗ij of the job processing time pij becomes known at the time-point cj(i) when the
operation Oij is completed on the machine Mj ∈ M.

Due to Remark 3, if all jobs J are completed on the corresponding machines from the set M,
the durations of all operations Oij take on exact values p∗ij, where lij ≤ p∗ij ≤ uij, and a unique factual
scenario p∗ ∈ T is realized. A pair of job permutations selected for this realization should be optimal
for scenario p∗. For constructing such an optimal pair of job permutations, we propose to implement
two phases, namely: the off-line phase of scheduling and the on-line phase of scheduling.

The off-line phase is completed before starting a realization of the selected semi-active schedule.
At the off-line phase, a scheduler knows the exact lower and upper bounds on the job processing times
and the aim is to determine a minimal dominant set of the pairs of job permutations (π′, π′′).

The on-line phase is started when the corresponding machine starts the processing of the first
job in the selected schedule. At this phase, a scheduler can use an additional information on the job
processing time, since for each operation Oij, the exact value p∗ij of the processing time pij ∈ T becomes
known at the completion time cj(i) of this operation; see Remark 3.

We next consider the off-line phase of scheduling for the uncertain job-shop problem J2|lij ≤
pij ≤ uij, ni ≤ 2|Cmax and describe the sufficient conditions for existing a small dominant set of the
semi-active schedules. Along with Definition 1, the following one is also used.

Definition 3. A set of the pairs of job permutations DS(T) ⊆ S is a dominant set for the uncertain job-shop
problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax, if for each scenario p ∈ T the set DS(T) contains at least one optimal
pair of job permutations for the individual deterministic job-shop problem J2|p, ni ≤ 2|Cmax with scenario p.

Obviously, the J-solution is a dominant set for the uncertain job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. Before processing the set J of given jobs, a scheduler does not know the
exact values of the job processing times. Nevertheless, it is needed to determine an optimal pair of
permutations of the jobs J for their processing on the machines M = {M1, M2}.

In Section 4.1, the sufficient conditions are presented for existing a pair of job permutations
(π′, π′′) such that the equality DS(T) = {(π′, π′′)} holds. Section 4.2 contains the sufficient conditions
allowing a scheduler to construct a semi-active schedule (if any), which dominates all other schedules
in the set S. If a singleton DS(T) = {(π′, π′′)} does not exist, a scheduler should construct partial
strict orders A1,2

≺ and A2,1
≺ over set J1,2 and set J2,1; see Section 3.

4.1. Conditions for Existing a Single Optimal Pair of Job Permutations

The following conditions for existing an optimal pair of job permutations are proven in [8].

Theorem 4 ([8]). If one of the following conditions either (5) or (6) holds:

∑
Ji∈J1,2

ui1 ≤ ∑
Ji∈J2,1∪J2

li2 and ∑
Ji∈J1,2

li2 ≥ ∑
Ji∈J2,1∪J1

ui1, (5)

∑
Ji∈J2,1

ui2 ≤ ∑
Ji∈J1,2∪J1

li1 and ∑
Ji∈J2,1

li1 ≥ ∑
Ji∈J1,2∪J2

ui2, (6)

then any pair of permutations (π′, π′′) ∈ S is a singleton DS(T) = {(π′, π′′)} for the uncertain job-shop
problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

Corollary 2 ([8]). If the following inequality holds:

∑
Jj∈J1,2

ui1 ≤ ∑
Jj∈J2,1∪J2

li2, (7)
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then the set <{π1,2}, S2,1>⊆ S, where π1,2 is an arbitrary permutation in the set S1,2, is a dominant set for the
uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

Corollary 3 ([8]). If the following inequality holds: ∑Jj∈J2,1
ui2 ≤ ∑Jj∈J1,2∪J1

li1, then the set <

S1,2, {π2,1} >, where π2,1 is an arbitrary permutation in the set S2,1, is a dominant set for the uncertain
job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

In order to determine an optimal permutation for processing jobs from the set J2,1 (set J1,2,
respectively), we consider the uncertain flow-shop problem F2|lij ≤ pij ≤ uij|Cmax with the job set
J1,2 ⊆ J and the machine route (M1, M2), and that with the job set J2,1 ⊆ J and the machine route
(M2, M1). The following theorem has been proven in [8].

Theorem 5 ([8]). Let the set S′
1,2 ⊆ S1,2 be a set of permutations from the dominant set for the flow-shop

problem F2|lij ≤ pij ≤ uij|Cmax with the job set J1,2, and the set S′
2,1 ⊆ S2,1 be a set of permutations

from the dominant set for the flow-shop problem F2|lij ≤ pij ≤ uij|Cmax with the job set J2,1. Then the set
<S′

1,2, S′
2,1 >⊆ S is a dominant set for the job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set

J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

4.2. Precedence Digraphs Determining a Minimal Dominant Set of Schedules

Based on Remark 1, the off-line phase of scheduling for the uncertain job-shop problem J2|lij ≤
pij ≤ uij, ni ≤ 2|Cmax may be based on solving the uncertain flow-shop problem F2|lij ≤ pij ≤ uij|Cmax

with the job set J1,2 and that with the job set J2,1. A criterion for the existence of a single-element
J-solution for the uncertain flow-shop problem F2|lij ≤ pij ≤ uij|Cmax is determined in Theorem 2.

In what follows, it is assumed that the equality J1,2 = J 1
1,2 ∪ J 2

1,2 ∪ J ∗
1,2 holds, i.e., J 0

1,2 = ∅.

Using the results presented in Section 3, one can determine a binary relation A1,2
≺ for the uncertain

flow-shop problem F2|lij ≤ pij ≤ uij|Cmax with the job set J1,2. For the job set J1,2, the binary relation
A1,2
≺ determines the digraph G1,2 = (J1,2, A1,2

≺ ) with the vertex set J1,2 and the arc set A1,2
≺ .

Definition 4. Two jobs Jx ∈ J1,2 and Jy ∈ J1,2, x 	= y, are conflict if they are not in the relation A1,2
≺ , i.e.,

(Jx, Jy) 	∈ A1,2
≺ and (Jy, Jx) 	∈ A1,2

≺ .

Due to Definition 2, for the conflict jobs Jx ∈ J1,2 and Jy ∈ J1,2, x 	= y, relations (3) and (4) do not
hold for the case v = x with w = y, nor for the case v = y with w = x.

Definition 5. The inclusion-minimal set Jx ⊆ J1,2 of the jobs is called a conflict set of the jobs, if for any job
Jy ∈ J1,2 \ Jx either relation (Jx, Jy) ∈ A1,2

≺ or relation (Jy, Jx) ∈ A1,2
≺ holds for each job Jx ∈ Jx.

There may exist several conflict sets in the set J1,2. Let the strict order A1,2
≺ for the flow-shop

problem F2|lij ≤ pij ≤ uij|Cmax with the job set J1,2 be represented as follows:

J1 ≺ J2 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ Jk+r+2 ≺ . . . ≺ Jm1,2 . (8)

Here, an optimal permutation for processing jobs from the set {J1, J2, . . . , Jk} (for jobs from the set
{Jk+r+1, Jk+r+2, . . . , Jm1,2}) is as follows: (J1, J2, . . . , Jk) ((Jk+r+1, Jk+r+2, . . . , Jm1,2), respectively). All jobs
between braces in the presentation (8) constitute the conflict set of the jobs and they are in relation
A1,2
≺ with any job located outside the braces. Due to Theorem 3, the set Π(G1,2) of the permutations

generated by the digraph G1,2 includes an optimal permutation for each vector p1,2 of the processing
times of the jobs J1,2. Due to Corollary 1, the set S1,2(T) = {(π1,2, π1,2)} with π1,2 ∈ Π(G1,2) is a
J-solution for the flow-shop problem F2|lij ≤ pij ≤ uij|Cmax with the job set J1,2. Analogously, the set
S2,1(T) = {(π2,1, π2,1)} with π2,1 ∈ Π(G2,1) is a J-solution for the problem F2|lij ≤ pij ≤ uij|Cmax
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with the job set J2,1. Due to Theorem 5, one can determine a dominant set for the job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J as follows: <Π(G1,2), Π(G2,1)> ⊆ S; see Remark 1.

The following three theorems are proven in [8], where the notation L2 := ∑Jj∈J2,1∪J2
lj2 is used.

These theorems allow a scheduler to reduce the cardinality of a dominant set for the uncertain job-shop
scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax.

Theorem 6 ([8]). Let the strict order A1,2
≺ over the set J1,2 = J ∗

1,2 ∪ J 1
1,2 ∪ J 2

1,2 be determined as follows:
J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 . If the following inequality holds:

k+r

∑
i=1

ui1 ≤ L2 +
k

∑
i=1

li2, (9)

then the set S′ = <{π1,2}, Π(G2,1)> ⊂ S, where π1,2 ∈ Π(G1,2), is a dominant set for the job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

Theorem 7 ([8]). Let the partial strict order A1,2
≺ over the set J1,2 = J ∗

1,2 ∪ J 1
1,2 ∪ J 2

1,2 be determined as
follows: J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 . If the inequality

uk+s,1 ≤ L2 +
k+s−1

∑
i=1

(li2 − ui1) (10)

holds for each s ∈ {1, 2, . . . , r}, then the set S′ =< {π1,2}, S2,1 >, where π1,2 =

(J1, . . . , Jk−1, Jk, Jk+1, Jk+2, . . . , Jk+r, Jk+r+1, . . . , Jm1,2) ∈ Π(G1,2), is a dominant set for the job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

Theorem 8 ([8]). Let the partial strict order A1,2
≺ over the set J1,2 = J ∗

1,2 ∪ J 1
1,2 ∪ J 2

1,2 have the form
J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 . If the inequality

r−s+1

∑
i=r−s+2

lk+i,1 ≥
r

∑
j=r−s+1

uk+j,2 (11)

holds for each s ∈ {1, 2, . . . , r}, then the set S′ = < {π1,2}, S2,1 >, where π1,2 = (J1, . . . , Jk−1, Jk, Jk+1,
Jk+2, . . . , Jk+r, Jk+r+1, . . . , Jm1,2) ∈ Π(G1,2), is a dominant set for the job-shop problem J2|lij ≤ pij ≤
uij, ni ≤ 2|Cmax with the job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

One can describe the analogs of Theorems 6–8 for reducing the cardinality of a dominant set for the
job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax provided that for the flow-shop problem F2|lij ≤ pij ≤
uij|Cmax with the job set J2,1, there exists a partial strict order A2,1

≺ over the set J2,1 = J ∗
2,1 ∪ J 1

2,1 ∪ J 2
2,1

with the following form: J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm2,1 .
If the set {J1, . . . , Jk} is empty in the constructed job permutation, then it is needed to check the

conditions of Theorem 8. If the set {Jk+r+1, . . . , Jm1,2} is empty, then one needs to check the conditions
of Theorem 7. Note that it is enough to test only one permutation for checking the conditions of
Theorem 7 and only one permutation for checking the conditions of Theorem 8; see [8].

4.3. An Illustrative Example

To illustrate the above results, we consider Example 1 of the uncertain job-shop scheduling
problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with eight jobs {J1, J2, . . . , J8} = J . Let three jobs J1, J2 and J3

have the machine route (M1, M2), jobs J6, J7 and J8 have the opposite machine route (M2, M1), job J4

and job J5 have to be processed only on machine M1 and machine M2, respectively. The partition J =
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J1,2 ∪ J2,1 ∪ J1 ∪ J2 is given, where J1,2 = {J1, J2, J3}, J2,1 = {J6, J7, J8}, J1 = {J4} and J2 = {J5}.
The lower and upper bounds on the job processing times are determined in Table 1.

Table 1. The numerical input data for Example 1.

Jj J1 J2 J3 J4 J5 J6 J7 J8

li1 6 8 7 2 - 1 1 1

ui1 7 9 9 3 - 3 3 3

li2 6 5 4 - 2 2 3 4

ui2 7 6 5 - 3 4 4 4

To solve this uncertain job-shop scheduling problem, one need to determine an optimal pair
(π′, π′′) of permutations of the eight jobs for their processing on machine M1 and machine M2.
These permutations π′ and π′′ have the following forms: π′ = (π1,2, π1, π2,1), π′′ = (π2,1, π2, π1,2).

It is necessary to find four permutations π1,2, π2,1, π1 and π2 of the jobs from the sets J1,2, J2,1, J1

and J2, respectively. The permutations π1 and π2 are determined as follows: π1 = (J4) and π2 = (J5).
We test the sufficient conditions given in Section 4.1. The conditions (5) of Theorem 4 do not hold.

For testing the conditions (6) of Theorem 4, one can obtain the following relations:

∑
Ji∈J2,1

ui2 = u6,2 + u7,2 + u8,2 = 4 + 4 + 4 = 12 ≤ ∑
Ji∈J1,2∪J1

li1 = l1,1 + l2,1 + l3,1 + l4,1 = 6 + 8 + 7 + 2 = 23,

∑
Ji∈J2,1

li1 = l6,1 + l7,1 + l8,1 = 1 + 1 + 1 = 3 	≥ ∑
Ji∈J1,2∪J2

ui2 = u1,2 + u2,2 + u3,2 + u5,2 = 7 + 6 + 5 + 3 = 21.

It should be noted that the case when conditions of Theorem 4 hold was considered in [8].
As the first condition in (6) holds, due to Corollary 3, one can construct permutation π2,1 =

(J6, J7, J8) by arranging the jobs from the set J2,1 in the increasing of their indexes.
For the jobs from the set J1,2, the partition J1,2 = J 1

1,2 ∪ J 2
1,2 ∪ J ∗

1,2 holds, where J ∗
1,2 = {J1} and

J 2
1,2 = {J2, J3}. The condition of Theorem 2 holds for these jobs. Therefore, the following optimal

permutation: π1,2 = (J1, J2, J3) is determined.
Thus, there exists a pair of job permutations (π′, π′′), where π′ = (J1, J2, J3, J4, J6, J7, J8) and

π′′ = (J6, J7, J8, J5, J1, J2, J3), which is optimal for all possible scenarios p ∈ T. Hence, there exists a
single-element dominant set DS(T) = {(π′, π′′)} for Example 1 of the uncertain job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the bounds on the job processing times given in Table 1.

The optimal semi-active schedule is constructed for Example 1 at the off-line phase of scheduling,
despite of the uncertainty of the job processing times. Such an issue is called as STOP 1 in the
scheduling algorithms developed in [8] and used in Section 6 of this paper.

5. The On-line Phase of Scheduling

Due to Remark 3, if the job Ji is completed on the corresponding machine Mj ∈ M, the duration
of the operation Oij takes on exact value p∗ij, where lij ≤ p∗ij ≤ uij. A scheduler can use this information
on the duration of the operation Oij for a selection of the next job for processing on machine Mj. Since it
is on-line phase of scheduling, such a selection should be very quick.

It is first assumed that the set S′ = < Π(G1,2), {π∗
2,1}> ⊂ S, is a dominant set for the problem

J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J . In other words, the optimal permutations for
processing all jobs from the set J2,1 are already determined at the off-line phase of scheduling.

Let the strict order A1,2
≺ over the set J1,2 = J ∗

1,2 ∪ J 1
1,2 ∪ J 2

1,2 be determined as
follows: J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 . At the initial time t = 0, machine
M1 has to start processing jobs from the set {J1, . . . , Jk} in the following optimal order: (J1, . . . , Jk).
At the same time t = 0, machine M2 has to start processing jobs from the set J2,1 in the order
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determined by the permutation π∗
2,1, then jobs from the set J2 in the arbitrary order, and then jobs

from the set {J1, . . . , Jk} in the following optimal order: (J1, . . . , Jk); see Figure 3.

M

t 

M

Figure 3. The initial part of the schedule execution.

At the time-point t = c1(k), machine M1 completes the operation Ok1. Let J (i, j) denote a set
of all jobs processed on machine Mj from the initial part of the schedule till the job Ji, e.g., the set of
jobs {J1, J2, . . . , Jk} is denoted as J (k, 1); see Figure 3. Due to Remark 3, at the time-point t = c1(k),
the factual values p∗i1 of the processing times pi1 of all jobs Ji in the set J (k, 1) are already known.

Let machine M2 process the job Jl ∈ J2,1 ∪ J2 ∪ {J1, J2, . . . , Jk} at the time-point t = c1(k), i.e.,
t = c1(k) < c2(l). Let J (l − 1, 2) denote a set of all jobs whose processing is completed on machine
M2 before time-point t = c1(k). Figure 3 depicts this situation for the job Jl−1 ∈ {J1, J2, . . . , Jk} ⊂ J1,2.

The factual values p∗i2 of the processing times pi2 of all jobs Ji in the set J (l − 1, 2) are known at
the time-point t = c1(k) > c2(l − 1), i.e., pi2 = p∗i2, while the factual values of the processing times pj2
of other jobs in the set J remain unknown at the time-point t = c1(k) < c2(l). Thus, at the time-point
t = c1(k), the following subset of possible scenarios:

T(k, l − 1) = {p ∈ T : pi1 = p∗i1, pj2 = p∗j2, Ji ∈ J (k, 1), Jj ∈ J (l − 1, 2)}

may be realized instead of the initial set T of all possible scenarios; T(k, l − 1) ⊆ T.
At the time-point t = c1(k) (it is called a decision-point), a scheduler has to make a decision about

the order for processing jobs from the conflict set {Jk+1, Jk+2, . . . , Jk+r}. The sufficient conditions given
in Theorems 6 and 7 can be reformulated in the following two theorems. (Note that Theorem 8 cannot
be reformulated for the use at the on-line phase of scheduling.)

Theorem 9. Let the set S′ = <Π(G1,2), {π∗
2,1}> ⊂ S be a dominant set for the uncertain problem J2|lij ≤

pij ≤ uij, ni ≤ 2|Cmax with the job set J . Let the strict order A1,2
≺ over the set J1,2 = J ∗

1,2 ∪ J 1
1,2 ∪ J 2

1,2 be
determined as follows: J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 . If at the time-point
t = c1(k), the following inequality holds:

c1(k) +
k+r

∑
i=k+1

ui1 ≤ c2(l − 1) + ∑
Ji∈(J2,1∪J2∪J (k,1))\J (l−1,2)

li2, (12)

then at the time-point t = c1(k), the set S′ = <{π1,2}, {π∗
2,1}> ⊂ S, where π1,2 ∈ Π(G1,2), is a dominant set

for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J and the set T(k, l − 1) of possible scenarios.
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Proof. Let p be an arbitrary vector from the set T(k, l − 1) of possible scenarios at the time-point
t = c1(k). Let Cp

max denote the optimal makespan value for the deterministic job-shop problem
J2|p, ni ≤ 2|Cmax with the set J of the given jobs and the vector p of the job processing times.

We consider an arbitrary permutation π1,2 ∈ Π(G1,2) and show that the pair of job permutations
(π′, π′′) = ((π1,2, π1, π∗

2,1), (π
∗
2,1, π2, π1,2)) ∈ S′ is an optimal one for the deterministic job-shop

problem J2|p, ni ≤ 2|Cmax with the set J of the jobs and with any vector p ∈ T(k, l − 1) of the job
processing times, i.e., the equality Cmax(π′, π′′) = Cp

max holds. Since the equality Cmax(π′, π′′) =

max{c1(π
′), c2(π

′′)} holds, one has to consider two possible cases (a) and (b).
Case (a): It is assumed that c1(π

′) ≥ c2(π
′′). Then, one can obtain the following equalities:

Cmax(π
′, π′′) = c1(π

′) = max
{

∑
Ji∈J1,2∪J2,1∪J1

pi1, Cmax(π
∗
2,1)

}
, (13)

where Cmax(π∗
2,1) is the value of makespan for the deterministic flow-shop problem F2|p2,1|Cmax with

the job set J2,1 and the vector p2,1 whose components are equal to the corresponding components of
the vector p. Due to the conditions of Theorem 9, the permutation π∗

2,1 is optimal for the deterministic
flow-shop problem F2|p2,1|Cmax with the set J2,1 of the given jobs and with vector p2,1 of the job
processing times. Therefore, Cmax(π∗

2,1) is an optimal makespan value for the deterministic flow-shop
problem F2|p2,1|Cmax and Cmax(π∗

2,1) is a minimal completion time for processing all jobs from the set
J2,1 on both machines. From the equalities (13), one can obtain the equality Cmax(π′, π′′) = Cp

max.
Case (b): It is assumed that c1(π

′) < c2(π
′′). Then, one can obtain the following equalities:

Cmax(π
′, π′′) = c2(π

′′) = max
{

∑
Ji∈J2,1∪J2∪J1,2

pi2, Cmax(π1,2)
}

, (14)

where Cmax(π1,2) is an optimal value of the makespan criterion for the deterministic flow-shop problem
F2|p1,2|Cmax with the job set J1,2 and with the vector p1,2 of the job processing times (the components
of this vector are equal to the corresponding components of the vector p). Since π1,2 ∈ Π(G1,2),
the initial part of the permutation π1,2 has the following form: (J1, J2, . . . , Jk). For every pair of jobs
from the set {J1, J2, . . . , Jk}, at least one of the conditions, either (3) or (4), holds, see Theorem 1.

Therefore, for the job processing times determined by the vector p for the jobs {J1, J2, . . . , Jk},
the inequalities (2) hold. Thus, in the permutation π

beg
1,2 := (J1, J2, . . . , Jk), all the jobs are arranged in

the Johnson’s order. One can conclude that the following value

Cmax(π
beg
1,2 ) = max

1≤m≤k

{ m

∑
i=1

pi1 +
k

∑
i=m

pi2

}
(15)

determines an optimal makespan value for the deterministic flow-shop problem F2|pbeg
1,2 |Cmax with the

job set {J1, J2, . . . , Jk} and the corresponding vector pbeg
1,2 of the job processing times (the components of

the vector pbeg
1,2 are equal to the corresponding components of the vector p). Therefore, Cmax(π

beg
1,2 ) is a

minimal makespan value for processing jobs of the set {J1, J2, . . . , Jk} on both machines. Then, for the
time-point c2(k) when machine M2 completes the operation Ok2, one can obtain the following equality:

c2(k) = max
{

∑
Ji∈J2,1∪J2∪J1,2(k,1)

pi2, Cmax(π
beg
1,2 )

}
. (16)

Due to the inequality (12) and the equality (16), one can obtain the following inequalities for the
jobs from the conflict set {Jk+1, Jk+2, . . . , Jk+r}:

c1(k) +
k+r

∑
i=k+1

pi1 ≤ c1(k) +
k+r

∑
i=k+1

ui1 ≤ c2(l − 1) + ∑
Ji∈(J2,1∪J2∪J (k,1))\J (l−1,2)

li2 ≤ (17)

114



Mathematics 2020, 8, 1314

≤ c2(l − 1) + ∑
Ji∈(J2,1∪J2∪J (k,1))\J (l−1,2)

pi2 ≤ max
{

∑
Ji∈J2,1∪J2∪J1,2(k,1)

pi2, Cmax(π
beg
1,2 )

}
= c2(k).

From the inequalities (17), one can obtain the following inequality:

c1(k) +
k+r

∑
i=k+1

pi1 ≤ c2(k). (18)

Thus, machine M2 processes all jobs from the conflict set {Jk+1, Jk+2, . . . , Jk+r} without idle times
and without an idle before processing the first job from this conflict set for any order of these conflict
jobs. Using the inequality (18), one can conclude that the time-point when machine M2 completes
the processing of the last job from the conflict set {Jk+1, Jk+2, . . . , Jk+r} in the permutation π1,2 is
determined as follows:

c2 = c2(k) +
k+r

∑
i=k+1

pi2, (19)

where c2 is an optimal makespan value for processing jobs from the set {J1, J2, . . . , Jk, Jk+1,
Jk+2, . . . , Jk+r}. Next, we consider jobs from the set {Jk+r+1, . . . , Jm1,2}.

Let πend
1,2 := (Jk+r+1, . . . , Jm1,2) denote the permutation of the jobs {Jk+r+1, . . . , Jm1,2} in the

permutation π1,2. Analogously as for the job set {J1, J2, . . . , Jk}, one can obtain that the value of

Cmax(π
end
1,2 ) := max

k+r+1≤m≤m1,2

{ m

∑
i=k+r+1

pi1 +
m1,2

∑
i=m

pi2

}
(20)

is an optimal makespan value for the deterministic flow-shop problem F2|pend
1,2 |Cmax with the job

set {Jk+r+1, . . . , Jm1,2} and with the vector pend
1,2 whose components are equal to the components of

the vector p. Thus, Cmax(πend
1,2 ) is a minimal makespan value for processing all jobs from the set

{Jk+r+1, . . . , Jm1,2} on both machines. The time-point when machine M2 completes the processing of
the last job from the permutation π′′ can be calculated as follows:

c2(π
′′) = max

{k+r

∑
i=1

pi1 + Cmax(π
end
1,2 ), c2 +

m1,2

∑
i=k+r+1

pi2

}
=

= max
{k+r

∑
i=1

pi1 + Cmax(π
end
1,2 ), c2(k) +

k+r

∑
i=k+1

pi2 +
m1,2

∑
i=k+r+1

pi2

}
=

= max
{k+r

∑
i=1

pi1 + Cmax(π
end
1,2 ), max

{
∑

Ji∈J2,1∪J2∪J1,2(k,1)
pi2, Cmax(π

beg
1,2 )

}
+

m1,2

∑
i=k+1

pi2

}
=

= max
{k+r

∑
i=1

pi1 + Cmax(π
end
1,2 ), ∑

Ji∈J2,1∪J2∪J1,2(k,1)
pi2 +

m1,2

∑
i=k+1

pi2, Cmax(π
beg
1,2 ) +

m1,2

∑
i=k+1

pi2

}
=

= max
{

Cmax(π
beg
1,2 ) +

m1,2

∑
i=k+1

pi2,
k+r

∑
i=1

pi1 + Cmax(π
end
1,2 ), ∑

Ji∈J2,1∪J2∪J1,2

pi2

}
, (21)

where relations (16) and (19) are used.
Due to Theorem 3, the set Π(G1,2) contains a Johnson’s permutation for the deterministic

flow-shop problem F2|p1,2|Cmax with the job set J1,2 and with the vector p1,2 of the job durations.
We denote this Johnson’s permutation as π∗

1,2. Since π∗
1,2 ∈ Π(G1,2), the permutation π∗

1,2 has the
following form: π∗

1,2 = (J1, . . . , Jk, J[k+1], J[k+2], . . . , J[k+r], Jk+r+1, . . . , Jm1,2), where the set of indexes is
determined as follows: {[k + 1], [k + 2], . . . , [k + r]} = {k + 1, k + 2, . . . , k + r}.
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The optimal makespan value Cmax(π∗
1,2) can be calculated as follows:

Cmax(π
∗
1,2) = max

1≤m≤m1,2

{ m

∑
i=1

pi1 +
m1,2

∑
i=m

pi2

}
= max

{
max

1≤m≤k

{ m

∑
i=1

pi1 +
k

∑
i=m

pi2 +
m1,2

∑
i=k+1

pi2

}
,

max
[k+1]≤m≤[k+r]

{ m

∑
i=1

pi1 +
m1,2

∑
i=m

pi2

}
, max

k+r+1≤m≤m1,2

{k+r

∑
i=1

pi1 +
m

∑
i=k+r+1

pi1 +
m1,2

∑
i=m

pi2

}}
=

= max
{

Cmax(π
beg
1,2 ) +

m1,2

∑
i=k+1

pi2, max
[k+1]≤m≤[k+r]

{ m

∑
i=1

pi1 +
m1,2

∑
i=m

pi2

}
,

k+r

∑
i=1

pi1 + Cmax(π
end
1,2 )

}
, (22)

where relations (15) and (20) are used. From relations (21) and (22), one can obtain the relations

c2(π
′′) = max

{
Cmax(π

beg
1,2 ) +

m1,2

∑
i=k+1

pi2,
k+r

∑
i=1

pi1 + Cmax(π
end
1,2 ), ∑

Ji∈J2,1∪J2∪J1,2

pi2

}
≤

≤ max
{

Cmax(π
∗
1,2), ∑

Ji∈J2,1∪J2∪J1,2

pi2

}
. (23)

Therefore, relations (14) and (23) imply the equality Cmax(π′, π′′) = Cp
max.

Thus, in both cases (a) and (b), the equality Cmax(π′, π′′) = Cp
max holds and the pair of

permutations (π′, π′′) = ((π1,2, π1, π∗
2,1), (π

∗
2,1, π2, π1,2)) is optimal for the deterministic job-shop

problem J2|p, ni ≤ 2|Cmax with the scenario p ∈ T(k, l − 1). Therefore, the set S′ =<{π1,2}, {π∗
2,1}>

contains an optimal pair of job permutations for the job-shop problem J2|p, ni ≤ 2|Cmax with vector
p ∈ T(k, l − 1) of the job processing times. Since the vector p is arbitrarily chosen in the set T(k, l − 1),
the set S′ contains an optimal pair of job permutations for each scenario in the set T(k, l − 1).

Due to Definition 3, the set S′ is a dominant set for the uncertain job-shop problem J2|lij ≤ pij ≤
uij, ni ≤ 2|Cmax with the job set J and with the set T(k, l − 1) of possible scenarios.

Theorem 10. Let the set S′ = <Π(G1,2), {π∗
2,1}> ⊂ S be a dominant set for the uncertain job-shop problem

J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J . Let the partial strict order A1,2
≺ over the set J1,2 =

J ∗
1,2 ∪ J 1

1,2 ∪ J 2
1,2 be determined as follows: J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 .

If at the time-point t = c1(k), the following inequalities hold:

c1(k) +
k+s

∑
i=k+1

ui1 ≤ c2(l − 1) + ∑
Ji∈(J2,1∪J2∪J (k−1,1))\J (l−1,2)

li2 +
k+s−1

∑
i=k

li2 (24)

for all indexes s ∈ {1, 2, . . . , r}, then at the time-point t = c1(k), the set S′ = < {π1,2}, {π∗
2,1} >, where

π1,2 = (J1, . . . , Jk−1, Jk, Jk+1, Jk+2, . . . , Jk+r, Jk+r+1, . . . , Jm1,2) ∈ Π(G1,2), is a dominant set for the uncertain
problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J and the set T(k, l − 1) of possible scenarios.

Proof. The proof of this theorem is similar to the above proof of Theorem 9 with the exception of the
inequalities (17) and (18). From the condition (24) with s = 1, one can obtain the following inequality:

c1(k) + uk+1,1 ≤ c2(l − 1) + ∑
Ji∈(J2,1∪J2∪J (k−1,1))\J (l−1,2)

li2 + lk2. (25)

Based on the inequality (25), one can obtain the following relations:

c1(k) + pk+1,1 ≤ c1(k) + uk+1,1 ≤ c2(l − 1) + ∑
Ji∈(J2,1∪J2∪J (k−1,1))\J (l−1,2)

li2 + lk2 ≤
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≤ c2(l − 1) + ∑
Ji∈(J2,1∪J2∪J (k,1))\J (l−1,2)

pi2 = c2(k). (26)

Due to relations (26), the following inequality holds:

c1(k) + pk+1,1 ≤ c2(k). (27)

Thus, machine M2 processes the job Jk+1 in permutation π1,2 without an idle time between the
jobs Jk and Jk+1. Analogously, using s ∈ {2, 3, . . . , r}, one can show that the following inequalities hold:

c1(k) + pk+1,1 + pk+2,1 ≤ c2(k + 1);

c1(k) + pk+1,1 + pk+2,1 + pk+3,1 ≤ c2(k + 2);

· · · ;

c1(k) +
k+r

∑
i=k+1

pi1 ≤ c2(k + r − 1).

Therefore, machine M2 processes jobs from the conflict set {Jk+1, Jk+2, . . . , Jk+r} in permutation
π1,2 without idle times between the jobs Jk+1 and Jk+2, between the jobs Jk+2 and Jk+3 and so on,
between the jobs Jk+r−1 and Jk+r. Then, the following relations hold:

c2 = c2(k + r) = c2(k + r − 1) + pk+r,2 = c2(k + r − 2) + pk+r−1,2 + pk+r,2 = . . . = c2(k) +
k+r

∑
i=k+1

pi2

leading to the equality (19). The rest of the proof is the same as the rest of the proof of Theorem 9.
It is shown that the pair of job permutations (π′, π′′) = ((π1,2, π1, π∗

2,1), (π
∗
2,1, π2, π1,2)) ∈ S′ is

optimal for the deterministic job-shop problem J2|p, ni ≤ 2|Cmax with any vector p ∈ T(k, l − 1) of the
job processing times. Due to Definition 3, the set S′ is a dominant set for the uncertain job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J and the set T(k, l − 1) of possible scenarios.

It is easy to be convinced that the sufficient conditions given in Theorems 9 and 10 may be tested
in polynomial time O(r2) of the number r of the conflict jobs.

Similarly, one can prove analogs of Theorems 9 and 10 if the set S′ = <{π∗
1,2}, Π(G2,1)> ⊂ S

provided that a dominant set for the uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with
the job set J and the partial strict order A2,1

≺ over the set J2,1 = J ∗
2,1 ∪ J 1

2,1 ∪ J 2
2,1 has the following

form: J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm2,1 .

6. Scheduling Algorithms and Computational Results

The experimental study was performed on a large number of randomly generated instances of the
uncertain job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. The off-line phase of scheduling
was based on Algorithms 1 and 2 developed in [8]. Algorithms 1 and 2 are presented in Appendix A.

Algorithms 3–5 are developed for the on-line phase of scheduling. The input for each of these three
algorithms includes the output of Algorithms 1 and 2 [8] applied at the off-line phase of scheduling.

Let outputs of Algorithms 1 and 2 [8] applied at the off-line phase of scheduling consist of the
optimal permutation π1,2 of the jobs J1,2 and the optimal permutation π2,1 of the jobs J2,1. In such a
case, the single-element dominant set DS(T) = {(π1,2, π1, π2,1), (π2,1, π2, π1,2)} is already constructed
for the considered instance of the uncertain problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. Therefore, the
pair {(π1,2, π1, π2,1), (π2,1, π2, π1,2)} of the job permutations is optimal for the deterministic instance
J2|p, ni ≤ 2|Cmax with any scenario p ∈ T. Thus, such an instance of the uncertain problem J2|lij ≤
pij ≤ uij, ni ≤ 2|Cmax is optimally solved by Algorithms 1 and 2 at the off-line phase of scheduling.
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Hence, there is no need to use the on-line phase of scheduling for such an instance of the uncertain
job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax.

In Section 6.1, it shown how to solve instances of the uncertain job-shop problem J2|lij ≤ pij ≤
uij, ni ≤ 2|Cmax, which cannot be optimally solved at the off-line phase of scheduling.

6.1. Algorithms 3–5 for the On-Line Phase of Scheduling

Let the considered instance of the uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax

cannot be optimally solved by Algorithms 1 and 2 [8] applied at the off-line phase of scheduling. Thus,
due to an application of Algorithm 1 or Algorithm 2, one can obtain one of the following three possible
outputs:

(a) the permutation π2,1 of the jobs from set J2,1 and the partial strict order A1,2
≺ of the jobs J1,2;

(b) the permutation π1,2 of the jobs from set J1,2 and the partial strict order A2,1
≺ of the jobs J2,1;

(c) the partial strict order A1,2
≺ of the jobs J1,2 and the partial strict order A2,1

≺ of the jobs J2,1.

Let B denote a number of the conflict sets in a partial strict order (in both partial strict orders)
for the obtained output (a), (b) or (c). In other words, B denotes a maximal number of time-points in
the decision-making at the on-line phase of scheduling. Let integer b, where b ≤ B, denote a number
of time-points in the decision-making, where optimal orders of the conflict jobs were found using
Theorem 9 or Theorem 10. Using these notations, we next describe Algorithm 3 provided that there is
no factual processing times of the jobs J in the input of Algorithm 3; see Remark 3.

Let Algorithm 3 terminate at Step 16, i.e., it has not been constructed an optimal pair of job
permutations for the factual scenario p∗ ∈ T randomly determined after completing the on-line
phase of scheduling. Therefore, there is a strictly positive error Δ(s) of the objective function Cmax(s)
calculated for the constructed and realized schedule s. In such a case, the proven sufficient conditions
for the optimality of the schedule s do not hold in some decision-points (or in a single decision-point)
at the on-line phase of scheduling. If Algorithm 3 terminates at Step 17, then an optimal pair of
job permutations has been constructed for the factual scenario p∗ ∈ T randomly generated after
completing the on-line phase of scheduling. The optimality of this pair of the job permutations was
established only after the schedule execution, since the tested sufficient conditions for the optimality
of the schedule s do not hold in some decision-points (or in a single decision-point).

If Algorithm 3 terminates at Step 18, then the tested sufficient conditions hold for all
decision-points considered at the on-line phase of scheduling. Therefore, the constructed pair of
job permutations is optimal for all factual scenarios p∗ ∈ T which were possible during the on-line
phase of scheduling. In this case, the optimal pair of job permutations was established before the end
of the schedule execution (after the last decision-point). The described Algorithm 3 must be used if the
input (a) is obtained due to the application of Algorithms 1 and 2 [8] at the off-line phase of scheduling.
Similarly, one can describe Algorithm 4 with the sufficient conditions from the analogs of Theorems 9
and 10 for their use in the case, when the input (b) is obtained due to the application of Algorithms 1
and 2 at the off-line phase of scheduling.

Similar Algorithm 5 must be used in the case, when the input (c) is obtained due to the application
of Algorithms 1 and 2 at the off-line phase of scheduling. In Algorithm 3, a decision-point may occur
on machine M1 and on machine M2 simultaneously. Therefore, one has to check the conditions of
Theorems 9 and 10 or their analogs alternately for the corresponding conflict sets of the jobs from the
set J1,2 and those from the set J2,1.
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Algorithm 3 for the on-line phase of scheduling

Input: Lower bounds lij and upper bounds uij on the durations pij
of all operations Oij ∈ J processed on machines Mj ∈ M;
a permutation π1 of the jobs J1 and a permutation π2 of the jobs J2;
an optimal permutation π2,1 of the jobs from the set J2,1;
a partial strict order A1,2

≺ of the jobs from the set J1,2;
a number B of the conflict sets in the partial strict order A1,2

≺ .
Output: Permutation π1,2 of the jobs from the set J1,2.

Step 1: Set b = 0.
Step 2: UNTIL the completion time-point of the last job in the set J ,

process the whole linear part of the jobs in the partial strict order A1,2
≺

on the machine M1 till a conflict set of the jobs is met;
let t denote a time-point of the completion of the linearly ordered set of jobs.

Step 3: Process jobs of the permutation (π2,1, π2) and then process the linear part
in the partial strict order A1,2

≺ on the machine M2 up to time-point t.
Step 4: Check the conditions of Theorem 9 for the conflict set of the jobs.
Step 5: IF the sufficient conditions of Theorem 9 hold

THEN set b := b + 1 and choose an arbitrary order πq of the conflict jobs
GOTO step 11.

Step 6: ELSE set dz = lz2 − uz1 for all conflict jobs Jz
and partition the conflict jobs Jz into two subsets X1 and X2,
where Jz ∈ X1 if dz ≥ 0, and Jz ∈ X2 otherwise.

Step 7: Construct the following order πq of the conflict jobs:
First, arrange the jobs from the set X1 in the non-decreasing order

of the values of ui1, then arrange the jobs from the set X2
in the non-increasing order of the values of li2.

Step 8: Check the conditions of Theorem 10 for the constructed
permutation of the conflict jobs.

Step 9: IF the sufficient conditions of Theorem 10 hold THEN
set b := b + 1 GOTO step 11.

Step 10: Construct a Johnson’s permutation πq of the conflict jobs
based on the inequalities (2) provided that pij = (uij + lij)/2.

Step 11: Include the permutation πq of the conflict jobs in the strict order
A1,2
≺ instead of the conflict set of these jobs.

Step 12: RETURN
Step 13: IF b = B THEN GOTO step 18.
Step 14: Calculate makespan Cmax(s) for the schedule s constructed at steps 1 – 12;

calculate makespan Cmax(s∗) for the optimal schedule s∗ polynomially
calculated for the corresponding deterministic problem J2|p∗, ni ≤ 2|Cmax,
where the factual processing times p∗ are randomly generated for all jobs J .

Step 15: IF Cmax(s) = Cmax(s∗) THEN GOTO step 17.
Step 16: STOP 4: The constructed schedule s is not optimal for the factual

processing times p∗ of the jobs J .
Step 17: STOP 3: The optimality of the constructed schedule s for the factual

processing times p∗ of the jobs J was established only after
the execution of the schedule s.

Step 18: STOP 2: The optimality of the constructed schedule s for the factual
processing times p∗ of the jobs J was proven before the end
of the execution of this schedule.
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6.2. The Modified Example with Different Factual Scenarios

To demonstrate the on-line phase of scheduling based on Algorithm 3, it is considered Example 2
of the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the numerical input data given in Table 1 similarly
as for Example 1 with the only one exception. It is assumed that u3,2 = 6.

The first part of the off-line phase of scheduling for solving Example 2 is similar to that for
Example 1 till checking the conditions of Theorem 2. Indeed, the conditions of Theorem 2 do not hold
for the jobs from the set J1,2 since the following strict inequalities hold: u2,2 > l3,2 and u3,2 > l2,2.

Due to checking the inequalities (3) and (4), one can determine the binary relation A1,2
≺ over

the set J1,2 in the following form: J1 ≺ {J2, J3}. Thus, the set {J2, J3} is a conflict set with two jobs;
see Definition 5. Then, one can consecutively check the conditions of Theorems 6–8 for the jobs from
the set J1,2. After letting k = 1, r = 2, one can calculate L2 = ∑Ji∈J2,1∪J2

li2 = l6,2 + l7,2 + l8,2 + l5,2 =

2 + 3 + 4 + 2 = 11 and then obtain the following relations:

k+r

∑
i=1

ui1 = u1,1 + u2,1 + u3,1 = 7 + 9 + 9 = 25 	≤ L2 +
k

∑
i=1

li2 = L2 + l1,2 = 11 + 6 = 17.

Thus, the condition of Theorem 6 does not hold for Example 2. Next, one can check the conditions
of Theorem 7. Similarly as in the previous case, one can obtain that L2 = 11, k = 1, and r = 2. Due to
the condition (10), one can obtain two inequalities as follows: s = 1 and s = 2. Then, one can check
both permutations of the jobs from the set J1,2, which satisfy the partial strict order A1,2

≺ , as follows:
Π(G1,2) = {π1

1,2, π2
1,2}, where π1

1,2 = {J1, J2, J3} and π2
1,2 = {J1, J3, J2}.

Thus, the permutation π1
1,2 must be tested. One can obtain the following relations:

u2,1 = 9 ≤ L2 + (l1,2 − u1,1) = 11 + (6 − 7) = 10;

u3,1 = 9 	≤ L2 +
2

∑
i=1

(li2 − ui1) = L2 + (l1,2 − u1,1) + (l2,2 − u2,1) = 11 + (6 − 7) + (5 − 9) = 6.

Hence, the condition of Theorem 7 does not hold for the permutation π1
1,2.

Analogously, for the permutation π2
1,2, the following relations hold:

u3,1 = 9 ≤ L2 + (l1,2 − u1,1) = 11 + (6 − 7) = 10;

u2,1 = 9 	≤ L2 +
2

∑
i=1

(li2 − ui1) = L2 + (l1,2 − u1,1) + (l3,2 − u3,1) = 11 + (6 − 7) + (4 − 9) = 5.

Hence, the condition of Theorem 7 does not hold for the permutation π2
1,2 as well.

It is impossible to check the condition of Theorem 8, since the conflict set of the jobs {J2, J3} is
located at the end of the partial strict order A1,2

≺ . Thus, the off-line phase of scheduling is completed,
and the constructed partial strict order A1,2

≺ is not a linear order. Therefore, there does not exist a pair of
permutations of the jobs, which is optimal for any scenario p ∈ T. In this case, Algorithms 1 and 2 [8]
do not terminate with STOP 1. A scheduler needs to use the on-line phase of scheduling for solving
Example 2 further.

The output of the off-line phase of scheduling for Example 2 contains the permutation π2,1 =

(J6, J7, J8) of the jobs J2,1 processed on both machines M1 and M2. The partial strict order A1,2
≺ = (J1 ≺

{J2, J3}) of the jobs J1,2 is constructed. The obtained output (a) of the off-line phase of scheduling
shows that Algorithm 3 must be used at the on-line phase of scheduling for solving Example 2.

We next show that Algorithm 3 can be stopped either with STOP 2 (Step 18) or with STOP 3 (Step
17) or with STOP 4 (Step 16) depending on the factual values of the job processing times. Note that
B = 1; see Algorithm 3.

Case (j): Algorithm 3 is stopped at step 18 (STOP 2).
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Consider Step 2 and Step 3 of Algorithm 3. The schedule execution begins as follows: at the initial
time-point t = 0, machine M1 starts to process operation O1,1, while machine M2 starts to process
operation O6,2. This process is continued until the time-point t = 4 when machine M2 completes
operation O6,2. At this time-point, an exact value of the processing time p∗6,2 becomes known, namely:
p∗6,2 = 4. Then, machine M2 starts to process operation O7,2 and machine M1 continues the processing
of operation O1,1. At the time-point t = 6, machine M1 completes operation O1,1. Therefore, an exact
value of the duration of operation O1,1 becomes known as follows: p∗1,1 = 6. At this time-point, a
scheduler needs to choose either job J2 or job J3 to be processed next on machine M1. Note that machine
M2 continues to process the operation O7,2 for two time units, wherein l7,2 = 3.

Consider Step 4 of Algorithm 3, where the condition (12) of Theorem 9 is checked for the conflict
set of jobs {J2, J3}. Due to equalities k = 1, r = 2, c1(1) = 6, c2(6) = 4, one can obtain the following
relations: c1(1) + u2,1 + u3,1 = 6 + 9 + 9 = 23 	≤ c2(6) + l7,2 + l8,2 + l5,2 + l1,2 = 4 + 3 + 4 + 2 + 6 = 19.

At Steps 6 and 7 of Algorithm 3, one can obtain d2 = −4, d3 = −5 and permutation πq having
the following form: πq = (J2, J3). At Steps 8 and 9 of Algorithm 3, the conditions of Theorem 10 are
checked as follows: c1(1) + u2,1 = 6 + 9 = 15 ≤ c2(6) + l7,2 + l8,2 + l5,2 + l1,2 = 4 + 3 + 4 + 2 + 6 = 19;

c1(1) + u2,1 + u3,1 = 6+ 9+ 9 = 24 ≤ c2(6) + l7,2 + l8,2 + l5,2 + l1,2 + l2,2 = 4+ 3+ 4+ 2+ 6+ 5 = 24.

At Step 11 of Algorithm 3, one can obtain the following strict order A1,2
≺ = (J1 ≺ J2 ≺ J3) along

with the permutation π1,2 = (J1, J2, J3). Since b = 1 = B (see Step 13), Algorithm 3 is stopped at Step
18; see STOP 2. The optimal order of the conflict jobs J2 and J3 is found at the time-point t = 6 and the
pair of job permutations π′ = (J1, J2, J3, J4, J6, J7, J8) and π′′ = (J6, J7, J8, J5, J1, J2, J3) is optimal for any
scenario from the remaining set of possible scenarios T(1, 6) = {p ∈ T : p∗1,1 = 6, p∗6,2 = 4}.

Thus, an additional information on the exact values of the processing times p∗6,2 and p∗1,1 allows a
scheduler to find an optimal order of all conflict jobs. It schould be noted that the optimality of the
constructed schedule is proven at the time-point t = 6, i.e., before the end of the schedule execution.

At the time-point t = 6, machine M1 begins to process operation O2,1. Note that all the above
checks are performed at the time-point t = 6.

Case (jj): Algorithm 3 is stopped at Step 17 (STOP 3).
It is considered another possible realization of the semi-active schedule since another factual

processing times are randomly generated at the on-line phase of scheduling for Example 2.
At the time-point t = 0, machine M1 begins to process operation O1,1, while machine M2 begins

to process operation O6,2. Let machine M2 complete operation O6,2 at the time-point t = 2.8. Thus,
the exact processing time p∗6,2 = 2.8 becomes known. Then, machine M2 begins to process operation
O7,2 and completes this process at the time-point t = 6 (i.e., p∗7,2 = 3.2), while machine M1 continues
processing operation O1,1. Let at the time-point t = 6.9, machine M1 completes operation O1,1

(i.e., p∗1,1 = 6.9). One needs to choose either job J2 or job J3 to be processed next on machine M1. At this
time, machine M2 continues to process the operation O8,2 since t = 6 and (6.9 − 6) = 0.9 < 4 = l8,2.

Based on the checking of the condition (12) of Theorem 9 for the conflict set of the jobs, one can
obtain the following relations: k = 1, r = 2, c1(1) = 6.9, c2(7) = 6;

c1(1) + u2,1 + u3,1 = 6.9 + 9 + 9 = 23.9 	≤ c2(7) + l8,2 + l5,2 + l1,2 = 6 + 4 + 2 + 6 = 18.

Similarly as in the previous case (j), one can obtain d2 = −4, d3 = −5, and the permutation πq

having the following form: πq = (J2, J3). The conditions of Theorem 10 are checked as follows:

c1(1) + u2,1 = 6.9 + 9 = 15.9 ≤ c2(7) + l8,2 + l5,2 + l1,2 = 6 + 4 + 2 + 6 = 18;

c1(1) + u2,1 + u3,1 = 6.9 + 9 + 9 = 24.9 	≤ c2(7) + l8,2 + l5,2 + l1,2 + l2,2 = 6 + 4 + 2 + 6 + 5 = 23.

Thus, the conditions of Theorem 10 do not hold. At Step 10 of Algorithm 3, one can construct
a Johnson’s permutation πq of the conflict jobs based on the inequalities (2) for the processing times

121



Mathematics 2020, 8, 1314

of all conflict jobs determined as follows: pij = (uij + lij)/2. For the jobs J2 and J3, one can calculate
p2,1 = 8.5, p2,2 = 5.5, p3,1 = 8, p3,2 = 5 and the Johnson’s permutation πq of the conflict jobs in the
following form: πq = (J2, J3).

At the time-point t = 6.9, one can obtain the pair of permutations π′ = (J1, J2, J3, J4, J6, J7, J8)

and π′′ = (J6, J7, J8, J5, J1, J2, J3) of the jobs for their processing on machines M. Therefore, at the
time-point t = 6, machine M1 begins to process operation O2,1. Then, at the time-point t = 10, machine
M2 completes operation O8,2 (the exact processing time p∗8,2 = 4 becomes known), and then begins
to process operation O5,2 till the time-point t = 12.4 (thus, p∗5,2 = 2.4), and then begins to process
operation O1,2. At the time-point t = 15.5, machine M1 completes operation O2,1 (i.e., the exact
processing time p∗2,1 = 8.6 becomes known), and then begins to process operation O3,1.

Then, at the time-point t = 18.7, machine M2 completes operation O1,2 (the exact processing time
p∗1,2 = 6.3 becomes known), and then begins to process operation O2,2 till the time-point t = 23.7
(thus, p∗2,2 = 5). At this time-point, machine M1 still processes operation O3,1. As a result, machine M2

has an idle time in the realized schedule.
At the time-point t = 24.5, machine M1 completes operation O3,1 (i.e., p∗3,1 = 9), and then begins

to process operation O4,1. Machine M2 begins to process operation O3,2 immediately.
At the time-point t = 26.5, machine M1 completes operation O4,1 (i.e., p∗4,1 = 2), and then begins

to process operation O6,1 till the time-point t = 27.5 (i.e., p∗6,1 = 1). Then, machine M1 processes
operation O7,1 till the time-point t = 28.5 (i,e., p∗7,1 = 1), and then begins to process operation O8,1.

At the time-point t = 30.5, machine M2 completes operation O3,2 (i.e., the exact processing time
p∗3,2 = 6 becomes known). Thus, machine M2 completes to process all jobs in the realized permutation
π′′ at the time-point c2(3) = 30.5. At the time-point t = 31.5, machine M1 completes operation O8,1

(and the exact processing time p∗8,1 = 3 becomes known). Thus, machine M1 completes to process all
jobs in the realized permutation π′ at the time-point c1(8) = 31.5.

All uncertain processing times p ∈ T took their factual values p∗ij as follows:

p∗ = (p∗1,1, p∗1,2, p∗2,1, . . . , p∗7,2, p∗8,1, p∗8,2) = (6.9, 6.3, 8.6, 5, 9, 6, 2, 0, 0, 2.4, 1, 2.8, 1, 3.2, 3, 4).

It should be remind that these factual processing times p∗ were randomly generated at the
time-points of the completions of the corresponding operations; see Remark 3.

For the constructed and realized schedule (π′, π′′), the equalities Cmax(π′, π′′) =

max{c1(8), c2(3)} = max{31.5, 30.5} = 31.5 hold; see Step 14 of Algorithm 3.
Now, one can check whether the constructed and realized schedule (π′, π′′) is optimal for the

factual vector p∗ of the job processing times. To this end, one can construct the pair of Jackson’s
permutations (π′∗, π′′∗ ) for the deterministic problem J2|p∗, ni ≤ 2|Cmax with the factual vector p∗ of
the job processing times. Then, one can find the optimal makespan value for the deterministic problem
J2|p∗, ni ≤ 2|Cmax as follows: Cmax(π′∗, π′′∗ ) = 31.5; see Step 15 of Algorithm 3.

The obtained equalities Cmax(π′∗, π′′∗ ) = 31.5 = Cmax(π′, π′′) mean that Algorithm 3 has
constructed the optimal schedule for the deterministic problem J2|p∗, ni ≤ 2|Cmax with the factual
vector p∗ of the job processing times. However, the optimality of this constructed and realized schedule
(π′, π′′) was established after the execution of the whole schedule (π′, π′′). Indeed, Algorithm 3 is
stopped at Step 17; see STOP 3. The constructed and realized schedule (π′, π′′) is presented in Figure 4
for case (jj) of the randomly generated factual processing times p∗ of the jobs J .

Case (jjj): Algorithm 3 is stopped at Step 16 (STOP 4).
It is considered the same process as in the previous case (jj) up to the time-point t = 28.5 when

machine M1 begins to process operation O8,1 (machine M2 processes operation O3,2 at this time-point).
Let the equality p∗∗8,1 = 1 hold for the factual processing time p∗∗8,1 of the operation O8,1 and

machine M1 complete operation O8,1. Thus, machine M1 completes all operations of the jobs J in the
permutation π′ at the time-point 29.5. Therefore, the equality c1(8) = 29.5 holds. Similarly as in the
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previous case, machine M2 completes operation O3,2 at the time-point t = 30.5. Thus, p∗3,2 = 6 and
c2(3) = 30.5. The factual vector of the job processing times is randomly generated as follows:

p∗∗ = (p∗1,1, p∗1,2, p∗2,1, . . . , p∗7,2, p∗∗8,1, p∗8,2) = (6.9, 6.3, 8.6, 5, 9, 6, 2, 0, 0, 2.4, 1, 2.8, 1, 3.2, 1, 4).

The makespan value for the constructed and realized schedule (π′, π′′) is determined as follows:
Cmax(π′, π′′) = max{c1(8), c2(3)} = max{29.5, 30.5} = 30.5. However, the optimal makespan value
for the deterministic problem J2|p∗∗, ni ≤ 2|Cmax with the factual vector p∗∗ of the job processing times
is equal to 29.7 < 30.5 = Cmax(π′, π′′), since the optimal order of the jobs J2 and J3 is determined as
follows: (J3, J2). Hence, the constructed and realized schedule (π′, π′′) is not optimal for the factual
vector p∗∗ ∈ T of the job processing times. In this case, Algorithm 3 is stopped at Step 16; see STOP 4.

O1,1 

31.5 

idle time 

O2,1 O3,1 O4,1 O6,1 O7,1 O8,1 

O1,2 O2,2 O3,2 O5,2 O6,2 O7,2 O8,2 

30.5 28.5 27.5 26.5 24.5 18.7 15.5 12.4 10.0 6.9 6.0 2.8 23.7 

Figure 4. The optimal semi-active schedule for the Example 2 in case (jj).

6.3. Computational Experiments

We describe the computational experiments and computational results obtained for the tested
randomly generated instances of the uncertain problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. Each tested
series consisted of 1000 randomly generated instances with fixed numbers n ∈ {10, 20, . . . , 100} of the
jobs J and the maximum possible errors δ ∈ {5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}
of the random durations of the operations Oij. The lower bounds lij and upper bounds uij on the
possible values of the durations pij of operations Oij, pij ∈ [lij, uij], were randomly generated as follows.
The lower bound lij was randomly chosen from the segment [10, 100000] using a uniform distribution.

The upper bound uij was determined using the equality uij = lij
(

1 + δ
100

)
. The bounds lij and uij

are decimal fractions with the maximum numbers of digits after the decimal points. The inequality
lij < uij holds for each job Ji ∈ J and each machine Mj ∈ M.

Algorithms 1 and 2 developed in [8] were used at the off-line phase of scheduling. If the tested
instance was not optimally solved using Algorithms 1 and 2, then corresponding Algorithms 3, 4 or 5
was used at the on-line phase of scheduling for solving further the instance of the uncertain problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. All developed algorithms were coded in C# and tested on a PC with
Intel Core i7-7700 (TM) 4 Quad, 3.6 GHz, 32.00 GB RAM.

In the computational experiments, two procedures were used to generate factual durations of the
operations Oij (a factual duration of the job Ji remained unknown until completing this job). In the
first part of the computational experiments, the factual duration p∗ij of the operation Oij was randomly
generated using a uniform distribution in the range [lij, uij]. In the second part of the computational
experiments, two distribution laws were used in the experiments to determine the factual scenarios.
Namely, we used the gamma distribution with parameters (0.5; 1) (we call it as the distribution law
with number 1) and the gamma distribution with parameters (7.5; 1) (we call it as the distribution law
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with number 2). For generating factual processing times for each tested instance, the number of the
used distribution was randomly chosen from the possible set {1, 2}.

The sufficient conditions proven in Section 5 are verified in polynomial time O(n2) of the number
n of the jobs J . Therefore, all series of the tested instances in our computational experiments were
solved very quickly (less than one second per a series with 1000 instances).

The experiments include testing of 14 classes of the instances of the uncertain problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with different ratios of the numbers m1, m2, m1,2 and m2,1 (where
n = m1 + m2 + m1,2 + m2,1) of the jobs in the subsets J1, J2, J1,2 and J2,1 of the set J , respectively.
Every class of the tested instances of the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is characterized by the
following ratio:

m1

n
· 100% :

m2

n
· 100% :

m1,2

n
· 100% :

m2,1

n
· 100% (28)

of the percentages of the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the set J , respectively.
Tables A1–A14 present the computational results obtained for the tested classes of instances with

the following ratios (28):
0% : 0% : 10% : 90% (class 1, Table A1); 0% : 0% : 20% : 80% (class 2, Table A2);
0% : 0% : 30% : 70% (class 3, Table A3); 0% : 0% : 40% : 60% (class 4, Table A4);
0% : 0% : 50% : 50% (class 5, Table A5); 5% : 5% : 5% : 85% (class 6, Table A6);
5% : 15% : 5% : 75% (class 7, Table A7); 5% : 20% : 5% : 70% (class 8, Table A8);
10% : 10% : 10% : 70% (class 9, Table A9); 10% : 10% : 40% : 40% (class 10, Table A10);
10% : 20% : 10% : 60% (class 11, Table A11); 10% : 30% : 10% : 50% (class 12, Table A12);
10% : 40% : 10% : 40% (class 13, Table A13); 10% : 60% : 10% : 20% (class 14, Table A14).
All Tables A1–A14 are organized as follows. The procedure for generating factual processing

times (the uniform distribution or the gamma distribution) is indicated in the first row of each table.
Numbers n of the given jobs J in the tested instances of the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax are
presented in the second row. The maximum possible errors δ of the randomly generated processing
times (in percentages) are presented in the first column. For the fixed maximum possible error δ, the
obtained computational results are presented in four rows called Stop1, Stop2, Stop3 and Stop4.

The row Stop1 determines the percentage of instances from the tested series, which were optimally
solved at the off-line phase of scheduling using either Algorithms 1 or 2 developed in [8]. For such
an instance, an optimal pair (π′, π′′) of the job permutations was constructed before the time-point
of starting the first job of the realized schedule, i.e., the equality Cmax(π′, π′′) = Cmax(π∗, π∗∗) holds,
where (π∗, π∗∗) ∈ S is an optimal pair of job permutations for the deterministic problem J2|p∗, ni ≤
2|Cmax with the factual scenario p∗ ∈ T that is unknown before completing the whole jobs J .

The row Stop2 determines the percentage of instances, which were optimally solved at the on-line
phase of scheduling using corresponding Algorithms 3, 4 or 5. For each such an instance, an optimal
pair (π′, π′′) of job permutations for the deterministic problem J2|p∗, ni ≤ 2|Cmax associated with the
factual scenario p∗ ∈ T was constructed by checking sufficient conditions in Theorem 9 or Theorem 10.
Remind that the factual scenario p∗ ∈ T for the uncertain problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax

remains unknown until completing the jobs J .
The row Stop3 determines the percentage of instances, which were optimally solved at the on-line

phase of scheduling using Algorithms 3, 4 or 5. In such a case, an optimal pair of job permutations
has been constructed for the factual scenario p∗ ∈ T. However, the optimality of this pair of job
permutations was established only after the execution of the constructed schedule.

The row Stop4 determines the percentage of instances, for which the constructed and realized
schedule is not optimal for the deterministic instance J2|p∗, ni ≤ 2|Cmax with the factual scenario p∗.

6.4. Computational Results

First of all, it is important to determine a total number of the tested instances, for which 3
(or Algorithms 4 and 5) were completed at Step 18 (STOP 2) or at Step 17 (STOP 3). This number shows
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how many tested instances of the uncertain job-shop scheduling problem have been optimally solved
either with the proofs of their optimality before the completion of processing all jobs J (STOP 2) or the
optimality of the obtained schedule was established after the realization of the constructed schedule
(STOP 3). For the numbers of jobs from n = 10 to n = 100 and for each value of the tested errors δ of
the processing times, average percentages of the instances optimally solved by Algorithms 1, 2, 3, 4 or 5
(these average percentages summarize the values given in rows Stop1 and Stop2 in all Tables A1–A14)
are presented in Table 2 and Figure 5.

Table 2. Average percentages of the instances whose optimality of the constructed permutations was
proven at the off-line and on-line phases of scheduling.

δ% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0% : 0% : 10% : 90% 98.38 95.66 74.32 40.09 18.56 8.65 4.4 2.48 1.58 0.95 0.57

0% : 0% : 20% : 80% 99.48 98.81 94.37 74.52 45.33 24.20 12.32 6.55 3.87 2.59 1.65

0% : 0% : 30% : 70% 99.87 99.71 98.99 95.09 81.33 59.33 36.65 21.67 11.93 7.28 4.39

0% : 0% : 40% : 60% 99.97 99.94 99.73 99.02 97.09 90.86 78.5 59.76 40.85 25.93 15.2

0% : 0% : 50% : 50% 100 99.99 99.93 99.73 99.13 97.55 94.21 86.65 72.35 51.41 29.45

5% : 5% : 5% : 85% 99.67 98.45 78.97 43.19 19.26 9.11 4.31 2.02 1.1 0.58 0.27

5% : 15% : 5% : 75% 99.64 98.86 84.44 51.06 24.65 11.88 6.43 3.34 1.95 1.02 0.68

5% : 20% : 5% : 70% 99.57 98.97 86.92 55.79 29.59 14.98 7.97 4.42 2.59 1.45 1.01

10% : 10% : 10% : 70% 99.84 99.48 97.46 83.55 57.09 34.11 18.95 11.14 6.81 4.29 2.8

10% : 10% : 40% : 40% 99.99 100 99.96 99.89 99.69 99.35 98.41 96.55 92.84 85.66 73.22

10% : 20% : 10% : 60% 99.87 99.68 98.37 90.56 71.05 48.26 30.28 18.22 11.36 7.21 4.79

10% : 30% : 10% : 50% 99.9 99.72 99.11 95.33 83.85 66.15 49.34 34.35 24.13 16.64 11.44

10% : 40% : 10% : 40% 99.92 99.75 99.33 97.97 92.52 82.69 70.01 58.6 48.52 40.36 32.76

10% : 60% : 10% : 20% 99.98 99.98 99.93 99.83 99.59 99.01 97.96 96.16 93.01 89.46 85.75

Table 2 shows the total percentages of the optimally solved instances for all classes of the tested
instances, for which the optimal schedules were constructed either at the off-line phase of scheduling
(STOP 1) or at the on-line phase of scheduling (STOP 2). One can see that for three small values of
the maximal errors δ ∈ {5%, 10%, 20%} for most classes, more than 90% (up to 100%) of the tested
instances were optimally solved. For all tested classes with a maximal error δ ≤ 20%, more than 70%
tested instances were optimally solved at the off-line or on-line phases of scheduling.

With a further increasing of the maximal error δ, the percentage of solved instances drops rapidly.
For most tested classes with the maximal error δ greater than 70%, the percentage of solved instances
is less than 10%. However, these indicators differ for different tested classes. For classes 4, 5, 10, 13
and 14 with maximal errors δ ≤ 70%, more than 60% of the tested instances were optimally solved
with the proof of the optimality before completing all the jobs. The best computational results are
obtained for classes 5, 10 and 14 of the tested instances. More than 80% of the instances from these
three classes were optimally solved at the off-line phase of scheduling or at the on-line phases of
scheduling provided that the maximal error δ of the given job processing times was no greater than
70%, i.e., for δ ∈ {5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%}. For both classes 10 and 14 of the
tested instances even with an error δ = 100%, more than 70% of the instances were optimally solved.

On the other hand, for both classes 1 and 6 with a maximal error δ = 40%, only less than 20%
of the tested instances were optimally solved at both off-line phase and on-line phase of scheduling.
For classes 1 and 6 with δ = 50%, less than 10% of the tested instances were optimally solved.
Furthermore, these two classes of instances are most difficult ones to find an optimal schedule with
the proof of its optimality before completing all the jobs using the on-line phase and off-line phase
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of scheduling. It should be noted that all tested classes of instances demonstrate a monotonic decrease
in the percentages of the optimally solved problems with an increase of the values of the maximal
error δ of the job processing times; see Figure 5.

Figure 5. Average percentages of the instances whose optimality of the constructed pair of job
permutations was proven at the off-line phase and on-line phase of scheduling.

Let us consider the percentages of the tested instances, for which the optimality of the constructed
schedules was proven at the on-line phase of scheduling and the proofs of their optimality being
obtained before completing all the jobs. Note that it is novelty of this paper; see rows Stop2 in
Tables A1–A14. For all tested numbers of the jobs, n ∈ {10, 20, . . . , 100}, and for all maximal values of
the errors δ ∈ {5%, 10%, 20%, . . . , 100%} of the job processing times, the average percentages of the
instances, which were optimally solved by Algorithms 3, 4 or 5 at the on-line phase of scheduling are
presented in Table 3, where only Stop2 is indicated.

It should be noted that the monotonous increase of the percentages of the optimally solved
instances takes place only for classes 10 and 14 of the tested instances. For other tested classes of
instances, there is a maximum, and for the different classes of the tested instances, these maximal vales
being achieved for different maximal values of the errors δ. Then the percentages of the optimally
solved instances decrease again with the increasing of the maximal values δ. The values of the maximal
numbers of instances, which optimal solutions have been proven at the on-line phase of scheduling
(STOP 2), vary from 0.59% to 8.69% for different classes of instances.

Classes 1–5 are distinguished from the above classes since their maximal numbers of the instances
optimally solved at the on-line phase of scheduling vary from 6% to 9%. Average percentages of the
instances from these five classes, which were optimally solved by Algorithms 3, 4 or 5 at the on-line
phase of scheduling (only Stop2) are shown in Figure 6.

Note that for the difficult classes 1 and 6, the percentages of instances, which were optimally
solved at the on-line phase of scheduling with the proofs of their optimality, behave identically with
the reaching of the maximum for the maximal error δ = 20%. However their maximal values differ,
namely: from 2.96% for class 6 up to 8.69% for class 1.
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Table 3. Average percentages of the instances whose optimality of the constructed permutations was
proven at the on-line phase of scheduling.

δ% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0% : 0% : 10% : 90% 0.97 3.68 8.69 7.26 3.86 1.92 1.06 0.5 0.34 0.2 0.11

0% : 0% : 20% : 80% 0.24 1.24 5.23 8.59 7.85 5.33 2.63 1.49 0.78 0.59 0.32

0% : 0% : 30% : 70% 0.03 0.22 1.33 4.27 6.82 8.13 5.78 4 2.49 1.66 1.07

0% : 0% : 40% : 60% 0.02 0.06 0.31 0.93 2.05 4.15 5.57 6.53 5.6 4.44 3.23

0% : 0% : 50% : 50% 0 0.01 0.06 0.25 0.53 1.24 2.62 4.33 6.06 7.4 6.23

5% : 5% : 5% : 85% 0.33 1.01 2.96 2.31 1.63 0.88 0.49 0.25 0.15 0.07 0.03

5% : 15% : 5% : 75% 0.27 0.84 2.64 2.39 1.78 0.93 0.47 0.3 0.19 0.09 0.08

5% : 20% : 5% : 70% 0.28 0.69 2.38 2.86 1.76 1.07 0.6 0.46 0.26 0.12 0.04

10% : 10% : 10% : 70% 0.06 0.165 0.83 1.87 1.95 1.56 1.08 0.69 0.43 0.32 0.24

10% : 10% : 40% : 40% 0 0 0.02 0.04 0.05 0.14 0.21 0.3 0.45 0.68 0.77

10% : 20% : 10% : 60% 0.05 0.13 0.6 1.29 1.77 1.6 1.22 0.82 0.57 0.41 0.25

10% : 30% : 10% : 50% 0.01 0.07 0.36 0.91 1.49 1.32 1.48 1.03 0.7 0.48 0.36

10% : 40% : 10% : 40% 0 0.03 0.16 0.41 0.78 1.17 1.29 1.01 0.9 0.62 0.46

10% : 60% : 10% : 20% 0 0 0.01 0.05 0.08 0.17 0.28 0.38 0.45 0.51 0.59

For the instances, for which the optimality of the constructed schedules was not proven before
completing all the jobs J , the relative errors Δ% of the achieved objective function vales for the
realized schedules were calculated. Note that the positive errors Δ% may occur only if Algorithm
3 (or Algorithms 4 and 5) have been stopped at Step 16; see STOP 4. For all tested numbers of jobs
n ∈ {10, 20, . . . , 100} and for all maximal values of the errors δ ∈ {5%, 10%, 20%, . . . , 100%} of the
job processing times, the maximal values of Δmax% and the average values of Δave% were calculated
separately for instances with uniform distributions (see Table 4) and gamma distributions (see Table 5).

It can be seen that the values of maximal errors Δave% significantly differ when applying different
distribution laws. With using a uniform distribution, the maximal error Δmax does not exceed 9%,
while when using a gamma distribution, the maximal error Δmax could reach a value more than 17%.

It can be seen that for using various distribution laws, Algorithm 3 (Algorithms 4 and 5 as well)
terminates at STOP 4 with various combinations of the tested classes and maximal errors δ%. If a
uniform distribution is used, then for classes 1–2, strictly positive errors Δave% arise for all values of the
tested maximal errors δ%. For classes 9–10 and 11–13, such errors appear more often with increasing
the maximal error δ%.

For a gamma distribution, for all values of δ%, the error Δave% arises only for class 1. For classes
2–4, 6, 8, 10, the error Δave% arises with the growth of maximal errors δ%. For classes 7, 9, 11–13, on the
contrary, the error Δave% is more common for small values of the maximal errors δ%.

127



Mathematics 2020, 8, 1314

Table 4. Maximal errors Δmax and average errors Δave for all tested instances with factual processing
times randomly generated based on a uniform distribution.

Class δ% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 Δmax 0.031511 0.300924 0.691062 0.333292 1.110492 0.881902 2.246299 3.263145 2.729286 3.85936 5.024917

Δave 0.000003 0.000058 0.000225 0.000057 0.000333 0.000613 0.000733 0.00135 0.001868 0.001409 0.002253

2 Δmax 0.0475 0.189872 0 0.125467 0 0.441669 0.243659 1.076096 3.127794 1.286158 1.353086

Δave 0.000005 0.000023 0 0.000013 0 0.000064 0.000045 0.000189 0.000976 0.000221 0.000135

3 Δmax 0 0 0 0 0 0 0 0 0.8199 0 0

Δave 0 0 0 0 0 0 0 0 0.000082 0 0

4 Δmax 0 0 0 0 0 0 0 0 0 0 0

Δave 0 0 0 0 0 0 0 0 0 0 0

5 Δmax 0 0 0 0 0 0 0 0 0 0 0

Δave 0 0 0 0 0 0 0 0 0 0 0

6 Δmax 0 0 0 0 0 0.411415 0.081623 0 0 0 0

Δave 0 0 0 0 0 0.000082 0.000016 0 0 0 0

7 Δmax 0 0 0 0 0 0 0 0 0 0 0

Δave 0 0 0 0 0 0 0 0 0 0 0

8 Δmax 0 0 0 0 0 0 0 0 0 0 0

Δave 0 0 0 0 0 0 0 0 0 0 0

9 Δmax 0 0.068237 0.055299 0 1.31253 0 0.91223 0.893705 1.697913 2.166717 8.617851

Δave 0 0.000007 0.000006 0 0.000244 0 0.000144 0.000167 0.000338 0.000558 0.001348

10 Δmax 0 0 0 0 0 0 0 0 0 0 0

Δave 0 0 0 0 0 0 0 0 0 0 0

11 Δmax 0 0 0 1.47875 3.660297 5.724288 0.810014 3.316178 0.39653 4.42828 4.666154

Δave 0 0 0 0.000148 0.000694 0.000572 0.000081 0.000332 0.000040 0.000799 0.000924

12 Δmax 0 0 0 0 0 0 0 0 0 0 7.243838

Δave 0 0 0 0 0 0 0 0 0 0 0.000724

13 Δmax 0 0 0 0 0 0 0 0 0 0 5.036085

Δave 0 0 0 0 0 0 0 0 0 0 0.000504

14 Δmax 0 0 0 0 0 0 0 0 0 0 0

Δave 0 0 0 0 0 0 0 0 0 0 0

As one can see, using the uniform distribution for the generation of the factual job processing times
for classes 4, 5, 7, 10, 14, all tested instances were solved optimally using the developed algorithms and
two phases of scheduling. In other words, there are no instances, for which corresponding Algorithms
3, 4 or 5 was stopped at Step 16 (STOP 4). However, for the gamma distribution, there are only two
such classes 5 and 14. Thus, classes 5 and 14 can be considered as easy ones, while class 1 is the most
difficult one. As for class 1, Algorithms 3, 4 and 5 are stopped at Step 16 (STOP 4) for all values of the
tested maximal errors δ%. Moreover, the maximum makespan error Δmax% of more than 5% for the
uniform distribution and more than 10% for the gamma distribution is found for classes 1, 9, 11 and 12
of the tested instances (these classes are difficult for the used stability approach).
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Table 5. Maximal errors Δmax and average errors Δave for all tested instances with factual processing
times randomly generated based on a gamma distribution.

Class δ% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 Δmax 0.211802 0.509319 1.995284 2.439105 4.8928 2.670648 6.613935 8.782202 10.59834 9.153295 9.50327

Δave 0.000055 0.000131 0.00031 0.000746 0.001754 0.001746 0.00369 0.005033 0.006755 0.011687 0.01144

2 Δmax 0 0 0 0 0 4.182544 1.361694 1.070905 5.634459 7.845669 7.974282

Δave 0 0 0 0 0 0.000595 0.000317 0.000107 0.001382 0.001737 0.001725

3 Δmax 0 0 0 0 1.32533 0 0 5.566808 0 4.026352 5.385314

Δave 0 0 0 0 0.000133 0 0 0.000557 0 0.000511 0.001354

4 Δmax 0 0 0 0 0 0 0 0 0 6.044646 0

Δave 0 0 0 0 0 0 0 0 0 0.000604 0

5 Δmax 0 0 0 0 0 0 0 0 0 0 0

Δave 0 0 0 0 0 0 0 0 0 0 0

6 Δmax 0 0 0 0.061048 0 0.387884 1.081353 1.125343 0.710307 0.643768 0.67762

Δave 0 0 0 0.000012 0 0.000078 0.000216 0.000401 0.000206 0.000343 0.000136

7 Δmax 0 0 0.143177 0 0 0 0 0 0 0 0

Δave 0 0 0.000029 0 0 0 0 0 0 0 0

8 Δmax 0 0 0.388797 0 0.426346 0 0.289505 0.059146 2.478004 1.167724 4.748751

Δave 0 0 0.000078 0 0.000085 0 0.000029 0.000006 0.000442 0.000234 0.000948

9 Δmax 2.64165 6.620637 5.266738 4.163808 10.56515 0 0 0 0 0 0

Δave 0.000852 0.001946 0.001696 0.001615 0.003941 0 0 0 0 0 0

10 Δmax 0 0 0 0 0 0 0 0.714515 0 0.334513 3.232162

Δave 0 0 0 0 0 0 0 0.000071 0 0.000033 0.000584

11 Δmax 2.988951 10.50113 2.526341 5.632594 7.258956 0 0 0 0 0 0

Δave 0.0003 0.001289 0.000431 0.000887 0.001595 0 0 0 0 0 0

12 Δmax 0 0.095929 1.639148 17.64929 6.3913 0 0 0 0 0 0

Δave 0 0.000010 0.000164 0.002948 0.001737 0 0 0 0 0 0

13 Δmax 0 0.967642 0.7847 0 0 0 0 0 0 0 0

Δave 0 0.000097 0.000078 0 0 0 0 0 0 0 0

14 Δmax 0 0 0 0 0 0 0 0 0 0 0

Δave 0 0 0 0 0 0 0 0 0 0 0

Class 13 of the tested instances is a rather strange one. For using the uniform distribution,
a maximum makespan error Δmax% of more than 5% was obtained, while when for using the gamma
distribution, the maximum makespan error Δmax% did not reach even 1%. Note that for all tested
classes of the instances, the average makespan errors Δave% for all tested numbers n ∈ {10, 20, . . . , 100}
of jobs J are less than 0.02%.

Maximal relative makespan errors Δmax% for each tested class and for all values of the tested
maximal errors δ are shown in Figure 7 for the instances with uniform distributions and in Figure 8 for
the instances with gamma distributions of the factual durations of the given operations.

Figures 7 and 8 also show that the maximal value of the makespan errors Δmax% for the
constructed and realized schedule for the factual scenarios are achieved for different values of the
maximal errors δ% for different classes of the tested instances.
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Figure 6. Average percentages of the instances whose optimality of the constructed pair of job
permutations was proven at the on-line phase of scheduling.

Figure 7. Maximal errors Δmax for the tested instances with a uniform distribution.
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Figure 8. Maximal errors Δmax for the tested instances with a gamma distribution.

7. Concluding Remarks

The uncertain job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax attract the attention of
practitioners and researchers since this problem is applicable in real-life processing systems for some
reduction of production costs due to a better utilization of the available machines and resources.

This paper is a continuation of our previous one [8], where only off-line phase of scheduling was
investigated and tested for the uncertain problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax based on the stability
approach. In [8], we tested 15 classes of the randomly generated instances J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax.
A lot of instances from nine easy classes were optimally solved at the off-line phase of scheduling.
If the maximal errors were no greater than 20%, i.e., δ ∈ {5%, 10%, 15%, 20%}, then more than 80% of
the tested instances were optimally solved at the off-line phase of scheduling. If the maximal error was
equal to 50%, i.e., δ = 50%, then 45% of the tested instances were optimally solved.

However, less than 5% of the tested instances with maximal possible error δ ≥ 20% from six hard
tested classes were optimally solved at the off-line phase of scheduling. There were no tested hard
instances with the maximal error 50% optimally solved in [8]. All these difficulties were succeeded in
Sections 4–6 of this paper, where it is shown that the on-line phase of scheduling allows a scheduler
to find either optimal schedule or very close to optimal ones. Additional information on the factual
value of the job processing times becomes available once the processing of the job on the machine is
completed. Using this information, a scheduler can determine a smaller dominant set of semi-active
schedules, which is based on sufficient conditions for schedule dominance. The smaller dominant set
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enables a scheduler to quickly make an on-line scheduling decision whenever additional information
on processing the job becomes available.

In Section 5, it is investigated the optimal pair (π′, π′′) of job permutations (Theorems 9 and 10).
Using the proven analytical results, we derived Algorithms 3–5 for constructing optimal pairs (π′, π′′)
of job permutations for all scenarios p ∈ T or a small dominant set S(T) of schedules for the uncertain
problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. At the off-line scheduling phase, Algorithms 1 and 2 [8] are
used to determine the partial strict order A1,2

≺ over the job set J1,2 and the partial strict order A2,1
≺ over

the job set J2,1. The constructed precedence digraphs (J1,2, A1,2
≺ ) and (J2,1, A2,1

≺ ) determine a minimal
dominant set S(T) of schedules.

In Sections 6, it is shown how to use Algorithms 3–5 for constructing a small dominant set
of semi-active schedules that enables a scheduler to make a fast decision whenever information
on completing some jobs become available. Based on these algorithms, the problem J2|lij ≤ pij ≤
uij, ni ≤ 2|Cmax was solved with very small errors of the obtained objective values. The computational
experiments (Section 6.3) show that pairs of job permutations constructed by Algorithms 3–5 are
very close to the optimal pairs of job permutations. We tested 14 classes of randomly generated
instances. For the tested instances, the percentage of the optimally solved instances slowly decreases
with increasing maximal errors δ of the processing times. The developed on-line algorithms perform
with the maximal errors of the achieved makespan less than 1% if n ∈ {20, 30, . . . , 100}. For all tested
classes of the instances, the average makespan errors for all numbers n ∈ {10, 20, . . . , 100} of the jobs
J were less than 0.02%.

In a possible further research, one can continue the study of the uncertain job-shop scheduling
problem based on the stability approach. It is useful to improve the developed algorithms and to
extend them for other machine environments, such as a single machine or processing systems with
parallel machines. It is promising to investigate an optimality region of the semi-active schedule and
to develop algorithms for constructing a semi-active schedule with the largest optimality region.

It is also useful to apply the stability approach for solving the uncertain flow-shop and job-shop
scheduling problems with |M| ≥ 3 different machines.
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Appendix A

Algorithms 1 and 2 Developed in [8].

Algorithm 1

Input: Segments [lij, uij] for all jobs Ji ∈ J and machines Mj ∈ M,
a partial strict order A1,2

≺ on the set J1,2 = J ∗
1,2 ∪ J 1

1,2 ∪ J 2
1,2 in the form

J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 .
Output: EITHER an optimal job permutation for the problem

F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 and any scenario p ∈ T, (see STOP 0).
OR there no permutation π1,2 of jobs from set J1,2, which is optimal
for all scenarios p ∈ T, (see STOP 1).

Step 1: Set δs = lk+s,2 − uk+s,1 for all s ∈ {1, 2, . . . , r}.
construct a partition of the set of conflicting jobs into two subsets X1 and X2,
where Jk+s ∈ X1 if δs ≥ 0, and Jk+s ∈ X2, otherwise.

Step 2: Construct a permutation π1 = (J1, J2, . . . , Jk, π1, π2, Jk+r+1, . . . , Jm1,2), where the permutation
π1 contains jobs from the set X1 in the non-decreasing order of the values uk+i,1 and the
permutation π2 contains jobs from the set X2 in the non-increasing order of the values
lk+i,2, renumber jobs in the permutations π1 and π2 based on their orders.

Step 3: IF for the permutation π1 conditions of Theorem 7 hold THEN GOTO step 8.
Step 4: Set δs = lk+s,1 − uk+s,2 for all s ∈ {1, 2, . . . , r}.

construct a partition of the set of conflicting jobs into two subsets
Y1 and Y2, where Jk+s ∈ Y1 if δs ≥ 0, and Jk+s ∈ Y2, otherwise.

Step 5: Construct a permutation π2 = (J1, J2, . . . , Jk, π2, π1, Jk+r+1, . . . , Jm1,2), where the permutation
π1 contains jobs from the set Y1 in the non-increasing order of the values uk+i,2, and the
permutation π2 contains jobs from the set Y2 in the non-decreasing order of the
values lk+i,1, renumber jobs in the permutations π1 and π2 based on their orders.

Step 6: IF for the permutation π2 conditions of Theorem 8 hold THEN GOTO step 9.
Step 7: ELSE there is no a single dominant permutation for problem

F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 and any scenario p ∈ T STOP 1.
Step 8: RETURN permutation π1, which is a single dominant permutation

for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 STOP 0.
Step 9: RETURN permutation π2, which is a single dominant permutation

for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 STOP 0.
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Algorithm 2

Input: Lower bounds lij and upper bounds uij, 0 < lij ≤ uij, of the durations
of all operations Oij of jobs Ji ∈ J processed on machines Mj ∈ M = {M1, M2}.

Output: EITHER pair of permutations (π′, π′′) = ((π1,2, π1, π2,1), (π2,1, π2, π1,2)),
where π′ is a permutation of jobs from set J1,2 ∪ J1 ∪ J2,1 on machine
M1, π′′ is a permutation of jobs from set J1,2 ∪ J2 ∪ J2,1 on machine M2,
such that {(π′, π′′)} = DS(T), (see STOP 0),

OR permutation π2,1 of jobs from set J2,1 on machines M1 and M2 and
a partial strict order A1,2

≺ of jobs from set J1,2,
OR permutation π1,2 of jobs from set J1,2 on machines M1 and M2 and

a partial strict order A2,1
≺ of jobs from set J2,1,

OR a partial strict order A1,2
≺ of jobs from set J1,2 and

a partial strict order A2,1
≺ of jobs from set J2,1, (see STOP 1).

Step 1: Determine a partition J = J1 ∪ J2 ∪ J1,2 ∪ J2,1 of the job set J ,
permutation π1 of jobs from set J1 and permutation π2 of jobs from
set J2, arrange the jobs in the increasing order of their indexes.

Step 2: IF the first inequality in condition (5) of Theorem 4 holds THEN BEGIN
Construct a permutation π1,2 of jobs from set J1,2,

arrange them in the increasing order of their indexes;
IF the second inequality in condition (5) of Theorem 4 holds

THEN construct a permutation π2,1 of jobs from set J2,1,
arrange them in the increasing order of their indexes GOTO Step 10 END

Step 3: IF the first inequality in condition (6) of Theorem 4 holds THEN BEGIN
Construct a permutation π2,1 of jobs from set J2,1,

arrange them in the increasing order of their indexes;
IF the second inequality in condition (6) of Theorem 4 holds THEN

construct a permutation π1,2 of jobs from set J1,2,
arrange the jobs in the increasing order of their indexes END

Step 4: IF both permutations π1,2 and π2,1 are constructed THEN GOTO Step 10.
Step 5: IF permutation π1,2 is not constructed THEN fulfill Procedure 1.
Step 6: IF permutation π2,1 is not constructed THEN fulfill Procedure 2.
Step 7: IF both permutations π1,2 and π2,1 are constructed THEN GOTO Step 10.
Step 8: IF permutation π2,1 is constructed THEN GOTO Step 11.
Step 9: IF permutation π1,2 is constructed THEN GOTO Step 12 ELSE GOTO Step 13.
Step 10: RETURN pair of permutations (π′, π′′), where π′ is the permutation

of jobs from set J1,2 ∪ J1 ∪ J2,1 processed on machine M1 and π′′ is
the permutation of jobs from set J1,2 ∪ J2 ∪ J2,1 processed
on machine M2 such that {(π′, π′′)} = DS(T) STOP 0.

Step 11: RETURN the permutation π2,1 of jobs from set J2,1 processed on machines M1 and M2,
the partial strict order A1,2

≺ of jobs from set J1,2 GOTO Step 14.
Step 12: RETURN the permutation π1,2 of jobs from set J1,2 processed on machines M1 and M2,

the partial strict order A2,1
≺ of jobs from set J2,1 GOTO Step 14.

Step 13: RETURN the partial strict order A1,2
≺ of jobs from set J1,2

and the partial strict order A2,1
≺ of jobs from set J2,1

Step 14: STOP 1.
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Appendix B. Tables with Computational Results

Table A1. Computational results for the randomly generated instances with the ratio 0%:0%:10%:90%
of the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 93.9 97.3 98.4 97.6 96.6 97.6 97.9 98.3 98 97.5 93.4 97 97.7 97.1 98.5 98.3 97.6 98.6 98.3 98.7
Stop2 0.9 1 0.6 1.1 1.6 1.3 1.2 1.1 0.9 1.4 0.8 0.8 0.9 1.1 0.5 0.5 1.3 0.8 0.9 0.6
Stop3 5.1 1.7 1 1.3 1.8 1.1 0.9 0.6 1.1 1.1 5.3 2.2 1.4 1.8 1 1.2 1.1 0.6 0.8 0.7
Stop4 0.1 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0

10 Stop1 85.8 91.8 91.6 93 92.2 92.2 91.9 92.6 93.6 93.8 83.1 93.5 92.8 92.7 93.1 92.3 92.4 93.3 94.2 93.6
Stop2 2.1 2.5 4.5 3.5 4.1 4 4.2 4.6 4.2 4.2 3.2 2.8 3.1 3.5 3.6 4.3 4.2 3.4 3.5 4.1
Stop3 11.7 5.7 3.9 3.5 3.7 3.8 3.9 2.8 2.2 2 12.8 3.7 4.1 3.8 3.3 3.4 3.4 3.3 2.3 2.3
Stop4 0.4 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0

20 Stop1 70.6 73.2 73.3 71.9 69.6 63.4 63.6 57.7 56.3 53.4 70.2 73.7 74.1 71.5 67.2 64.2 63.4 61.5 56.1 57.5
Stop2 4.3 6.8 9.4 8.6 8.8 11.1 9.4 10.1 9.2 9.2 4.3 8.1 8.7 10 10 11.3 9.1 9.1 8.9 7.5
Stop3 24.2 20 17.3 19.5 21.6 25.5 27 32.2 34.5 37.4 24.9 18.2 17.2 18.5 22.8 24.5 27.5 29.4 35 35
Stop4 0.9 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0

30 Stop1 53 55.1 47.5 41.1 31 30.7 23.4 20.3 18.5 13.4 52 52.2 44.9 34.9 33.6 26.3 27.3 18.3 18.9 14.2
Stop2 4.8 8.8 9.1 9.7 9.8 7 6.7 5.2 4.2 4.4 6.2 8.9 10.1 10.4 11 7.9 6 4.6 5.9 4.5
Stop3 41.9 36.1 43.4 49.2 59.2 62.3 69.9 74.5 77.3 82.2 41 38.9 45 54.7 55.4 65.8 66.7 77.1 75.2 81.3
Stop4 0.3 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0

40 Stop1 41.6 32.5 24.7 16.4 10.9 8.9 5.9 3.9 2.1 2.3 37.8 31.8 22.2 18.6 10.6 8.5 6.1 4.3 3 1.9
Stop2 4.9 7.6 7.7 6.6 4.2 2.9 2 1.1 0.7 0.3 5.2 8.5 9.1 4.8 2.9 3.5 2 1.6 1 0.6
Stop3 52.7 59.7 67.6 77 84.9 88.2 92.1 95 97.2 97.4 55.3 59.7 68.7 76.6 86.5 88 91.9 94.1 96 97.5
Stop4 0.8 0.2 0 0 0 0 0 0 0 0 1.7 0 0 0 0 0 0 0 0 0

50 Stop1 29 16.1 9.3 5 2.4 1.4 1.6 0.8 0.5 0 26.2 19.4 10.4 5.6 3.9 1.6 0.6 0.5 0.3 0.1
Stop2 4.7 5.4 5 2.6 1.2 0.8 0.2 0.3 0.3 0 3.7 5.6 3.8 2.2 0.7 0.7 0.7 0.1 0.2 0.1
Stop3 64.9 78.5 85.7 92.4 96.4 97.8 98.2 98.9 99.2 100 67.8 75 85.8 92.2 95.4 97.7 98.7 99.4 99.5 99.8
Stop4 1.4 0 0 0 0 0 0 0 0 0 2.3 0 0 0 0 0 0 0 0 0

60 Stop1 18.1 8.4 4.6 1.4 1 0.3 0.2 0.1 0 0 16.6 9.6 3.6 1.4 1 0.3 0 0.2 0 0
Stop2 3.8 4 1.6 0.7 0.3 0.1 0 0 0 0 3.2 3.5 2.3 0.9 0.4 0 0.3 0 0.1 0
Stop3 76.4 87.5 93.8 97.9 98.7 99.6 99.8 99.9 100 100 77.7 86.9 94.1 97.7 98.6 99.7 99.7 99.8 99.9 100
Stop4 1.7 0.1 0 0 0 0 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0

70 Stop1 12.3 5.1 1.4 0.7 0.1 0 0 0 0 0 12.1 4.7 2.1 0.8 0.2 0 0.1 0 0 0
Stop2 2.8 1.5 0.7 0.2 0.1 0 0 0 0 0 2 2.1 0.4 0.2 0 0 0 0 0 0
Stop3 83.2 93.4 97.9 99.1 99.8 100 100 100 100 100 82.8 93.2 97.5 99 99.8 100 99.9 100 100 100
Stop4 1.7 0 0 0 0 0 0 0 0 0 3.1 0 0 0 0 0 0 0 0 0

80 Stop1 8.9 1.9 0.4 0.3 0.2 0 0 0 0 0 10 2.3 0.6 0.2 0 0 0 0 0 0
Stop2 1.8 0.8 0.5 0 0 0 0 0 0 0 2.2 1.1 0.2 0 0 0.1 0 0 0 0
Stop3 87.1 97.1 99.1 99.7 99.8 100 100 100 100 100 84.2 96.5 99.2 99.8 100 99.9 100 100 100 100
Stop4 2.2 0.2 0 0 0 0 0 0 0 0 3.6 0.1 0 0 0 0 0 0 0 0

90 Stop1 6.9 0.8 0.2 0.1 0 0 0 0 0 0 5.7 0.9 0.3 0 0 0 0 0 0 0
Stop2 1.2 0.7 0.1 0 0 0 0 0 0 0 1.5 0.5 0 0 0 0 0 0 0 0
Stop3 90.1 98.4 99.7 99.9 100 100 100 100 100 100 88 98.5 99.7 100 100 100 100 100 100 100
Stop4 1.8 0.1 0 0 0 0 0 0 0 0 4.8 0.1 0 0 0 0 0 0 0 0

100 Stop1 4.4 0.3 0.1 0.1 0 0 0 0 0 0 4.1 0.3 0 0 0 0 0 0 0 0
Stop2 1.1 0.2 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0
Stop3 92.1 99.4 99.9 99.9 100 100 100 100 100 100 90.2 99.4 100 100 100 100 100 100 100 100
Stop4 2.4 0.1 0 0 0 0 0 0 0 0 4.9 0.3 0 0 0 0 0 0 0 0
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Table A2. Computational results for randomly generated instances with the ratio 0%:0%:20%:80% of
the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 96.7 98.9 98.6 99.5 99.7 99.7 99.9 99.9 99.9 99.9 96.7 98.9 99 99.3 99.6 99.4 99.7 99.8 99.9 99.8
Stop2 0.8 0.3 0.7 0.1 0 0.2 0.1 0.1 0.1 0.1 0.3 0.4 0.1 0.3 0.1 0.4 0.2 0.1 0.1 0.2
Stop3 2.4 0.8 0.7 0.4 0.3 0.1 0 0 0 0 3 0.7 0.9 0.4 0.3 0.2 0.1 0.1 0 0
Stop4 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 93.4 96.2 97.6 97.7 98 98.4 98.4 98.7 98.5 99.6 93.5 96.1 97.5 97.6 97.8 98.1 98.4 98.2 99 98.7
Stop2 1 1.4 1.4 1.4 1.4 1.3 1.1 1.2 1 0.4 1 1.8 1.1 1.3 1.5 1.6 1.3 1.5 0.9 1.1
Stop3 5.4 2.4 1 0.9 0.6 0.3 0.5 0.1 0.5 0 5.5 2.1 1.4 1.1 0.7 0.3 0.3 0.3 0.1 0.2
Stop4 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 85.4 86.9 89.5 90.2 90.8 90.5 89.1 90 90.3 90.1 83.5 87.5 88.8 88.4 90.6 89.9 91 89.4 90.9 90.1
Stop2 2.6 4.8 5.3 5 5.8 5.8 5.7 5 5 5.4 3.1 5.7 5.8 7.4 4.7 5.8 4.9 6.5 6.2 4
Stop3 12 8.3 5.2 4.8 3.4 3.7 5.2 5 4.7 4.5 13.4 6.8 5.4 4.2 4.7 4.3 4.1 4.1 2.9 5.9
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 70.2 76.4 70.1 69.6 69.2 65.7 64.1 60.4 58 56 71.6 73.3 72.9 69 66 63.1 60.4 62.3 62.2 58.1
Stop2 5.1 6.8 9.7 9.5 8.4 10.5 9.7 9.1 10.8 8.1 3.6 8.7 8.4 9.6 9.8 11.3 8.4 8.3 7.1 8.9
Stop3 24.6 16.8 20.2 20.9 22.4 23.8 26.2 30.5 31.2 35.9 24.8 18 18.7 21.4 24.2 25.6 31.2 29.4 30.7 33
Stop4 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 56.7 55.3 48.8 41.5 39.6 31.2 31.1 26.5 23.5 21.5 55.1 53.9 46.5 41.5 37.5 31.6 33.2 27.4 26.2 21
Stop2 5.1 8.2 10.5 10.6 9.6 8.2 7.6 6.9 7.5 5 5.6 9.2 11.5 7.7 8.9 8.7 7.3 7.2 6 5.7
Stop3 38.2 36.5 40.7 47.9 50.8 60.6 61.3 66.6 69 73.5 39.3 36.9 42 50.8 53.6 59.7 59.5 65.4 67.8 73.3
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 Stop1 42.6 35.2 27.2 22.9 14.3 11.4 9.9 6.9 6.6 5.9 43.9 37.3 29.2 22 16.3 13.2 10.8 10.5 5.5 5.7
Stop2 4.4 9.5 9.8 6.5 6 5.2 3.8 3.4 2.2 2.4 6 10 7.3 6.9 6.5 4.8 4.7 2.8 1.9 2.5
Stop3 52.8 55.3 63 70.6 79.7 83.4 86.3 89.7 91.2 91.7 49.9 52.7 63.5 71.1 77.2 82 84.5 86.7 92.6 91.8
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0

60 Stop1 32.9 20.7 14.4 10.7 6.3 3.3 3.3 2.2 1.4 0.8 31.7 23.1 15.7 10.4 7.2 3.9 2.9 1.4 0.9 0.6
Stop2 5.4 5.5 4.2 2.6 2.3 1.7 0.8 0.6 0.3 0.4 5.6 6 6.4 3.6 2.4 1.5 1.5 0.8 0.3 0.7
Stop3 61.7 73.8 81.4 86.7 91.4 95 95.9 97.2 98.3 98.8 62.3 70.9 77.9 86 90.4 94.6 95.6 97.8 98.8 98.7
Stop4 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0

70 Stop1 22.1 13.7 7.6 2.9 1.6 1.1 0.6 0.2 0.3 0.1 23.9 13.1 6.7 3.4 1.6 0.7 0.9 0.3 0.2 0.1
Stop2 4.9 3.7 2.9 1.7 0.9 0.6 0.4 0.1 0 0.1 4.4 4.5 2 1.5 1.2 0.4 0 0.4 0.1 0.1
Stop3 72.8 82.6 89.5 95.4 97.5 98.3 99 99.7 99.7 99.8 71.6 82.4 91.3 95.1 97.2 98.9 99.1 99.3 99.7 99.8
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

80 Stop1 17.3 8.3 3.5 1.3 0.5 0.3 0.2 0 0 0 16.4 7.9 3.1 1.9 0.9 0.2 0 0 0 0
Stop2 2.8 1.7 1.8 0.8 0.6 0 0 0 0 0 3.4 2.4 0.8 0.9 0.1 0.2 0.1 0 0 0
Stop3 79.4 90 94.7 97.9 98.9 99.7 99.8 100 100 100 79.6 89.7 96.1 97.2 99 99.6 99.9 100 100 100
Stop4 0.5 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0

90 Stop1 12.1 4.5 1.4 0.7 0 0.1 0 0 0 0 12.6 5 2.9 0.4 0.1 0.1 0 0 0 0
Stop2 2.5 2.3 1.3 0.3 0 0.1 0 0 0 0 3.2 1.8 0.2 0.2 0 0 0 0 0 0
Stop3 85.2 93.2 97.3 99 100 99.8 100 100 100 100 83.7 93.2 96.9 99.4 99.9 99.9 100 100 100 100
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0

100 Stop1 10.6 2.7 0.5 0.3 0 0 0 0 0 0 9.1 2.8 0.5 0.1 0 0 0 0 0 0
Stop2 1.9 1.2 0.3 0 0.2 0 0 0 0 0 2 0.6 0.2 0 0 0 0 0 0 0
Stop3 87.4 96.1 99.2 99.7 99.8 100 100 100 100 100 88.2 96.6 99.3 99.9 100 100 100 100 100 100
Stop4 0.1 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0
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Table A3. Computational results for randomly generated instances with the ratio 0%:0%:30%:70% of
the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 99.2 99.6 99.9 99.9 100 100 100 100 100 100 98.6 99.9 99.9 99.9 99.9 100 100 100 100 100
Stop2 0.2 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0
Stop3 0.6 0.3 0 0 0 0 0 0 0 0 1.4 0.1 0.1 0.1 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 97.3 99 99.4 99.9 99.9 100 99.9 99.9 100 100 97.4 98.6 99.1 99.9 99.9 100 99.9 100 99.8 100
Stop2 0.8 0.4 0.3 0.1 0.1 0 0.1 0.1 0 0 0.5 0.8 0.6 0.1 0.1 0 0.1 0 0.2 0
Stop3 1.9 0.6 0.3 0 0 0 0 0 0 0 2.1 0.6 0.3 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 91.7 95.7 97.1 97.5 98.2 98.6 98.7 98.7 99.7 98.9 91.5 97 97.8 97.2 98.5 98.8 99.1 99.6 99.5 99.4
Stop2 1.9 2.6 2 2.1 1.4 1.2 1.2 1.1 0.3 0.8 2.3 1.7 1.6 2.1 1.2 1 0.7 0.4 0.5 0.4
Stop3 6.4 1.7 0.9 0.4 0.4 0.2 0.1 0.2 0 0.3 6.2 1.3 0.6 0.7 0.3 0.2 0.2 0 0 0.2
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 81.9 87.1 89.1 91.9 91.7 92.2 92.2 93.8 93.7 93.9 83 87.2 91.7 91.7 92.4 91.6 92.2 92.8 92.9 93.4
Stop2 4.6 6.2 5.9 4.5 5.5 4.3 4.3 3.9 2.8 2.5 3.1 5.1 4.1 4.4 3.7 4.4 4.8 4.2 3.5 3.5
Stop3 13.5 6.7 5 3.6 2.8 3.5 3.5 2.3 3.5 3.6 13.9 7.7 4.2 3.9 3.9 4 3 3 3.6 3.1
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 74.1 74.7 75.9 76 75.1 75.9 73.4 75.8 71.6 72.5 69.1 74.2 76.4 75.6 76.5 76.4 75 74 75.3 72.7
Stop2 4.4 7.9 7.5 8.2 6.5 6.3 6.9 5.5 6.9 7 6 9.2 7.5 8 7.7 6.4 6.4 7.1 4.6 6.4
Stop3 21.5 17.4 16.6 15.8 18.4 17.8 19.7 18.7 21.5 20.5 24.8 16.6 16.1 16.4 15.8 17.2 18.6 18.9 20.1 20.9
Stop4 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

50 Stop1 61.4 60.7 56.9 53.7 50.4 49.7 47.3 47.3 44.7 39.1 58.2 60.6 57.7 51.7 49.1 50.9 48.3 48.2 43.9 44.3
Stop2 5.3 9.2 9.7 10.4 10.2 7.7 8.4 7.1 6.7 6.3 5.8 8.7 8.5 12.4 10.2 9.1 7.8 7.1 6.6 5.3
Stop3 33.3 30.1 33.4 35.9 39.4 42.6 44.3 45.6 48.6 54.6 36 30.7 33.8 35.9 40.7 40 43.9 44.7 49.5 50.4
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 Stop1 46.7 46.3 39.6 32.9 30.5 29.5 23.9 22.1 18.8 17.8 50.9 42.8 41.7 35.9 30.6 28 24 22.9 19 13.5
Stop2 6.2 8.1 7.7 7.9 6.2 5.3 4.6 4.1 4.2 2.8 5 9.1 7.5 7.5 7.1 5.1 5.2 4.6 3.7 3.6
Stop3 47.1 45.6 52.7 59.2 63.3 65.2 71.5 73.8 77 79.4 44.1 48.1 50.8 56.6 62.3 66.9 70.8 72.5 77.3 82.9
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 Stop1 39.9 34.5 24.5 20.2 17.6 12.2 8.7 8.6 7.6 5.5 38 34.8 23.5 19.1 15.7 13.7 9.5 9 6 4.7
Stop2 5.7 7.4 6.7 5.5 4.1 2.8 2.7 1.9 1.4 0.9 6 6.8 6.3 5.6 3.9 4.8 3.4 1.4 1.4 1.3
Stop3 54.4 58.1 68.8 74.3 78.3 85 88.6 89.5 91 93.6 55.9 58.4 70.2 75.3 80.4 81.5 87.1 89.6 92.6 94
Stop4 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

80 Stop1 27.9 21.6 14.3 8.3 7.2 4.9 4.2 2.7 0.9 0.8 28.5 21.6 14 9.5 9.3 4.2 3.9 2.2 1.2 1.5
Stop2 4.8 5 3.6 3 2.6 1.6 0.7 1 0.2 0.3 5.6 5.6 5.2 3.1 1.9 2.3 1.7 0.6 0.7 0.3
Stop3 67.2 73.4 82.1 88.7 90.2 93.5 95.1 96.3 98.9 98.9 65.9 72.8 80.8 87.4 88.8 93.5 94.4 97.2 98.1 98.2
Stop4 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 Stop1 22.7 13.2 9.8 4.1 2.1 1.5 1.4 0.7 0.2 0 23 14.4 7.4 3.6 3.4 1.9 1.2 0.7 0.3 0.9
Stop2 3.4 4.7 3.1 1.9 1.4 0.9 0.5 0.3 0.3 0.2 3.4 5.1 2.9 2 1 0.6 0.7 0.2 0.2 0.3
Stop3 73.9 82.1 87.1 94 96.5 97.6 98.1 99 99.5 99.8 73.4 80.5 89.7 94.4 95.6 97.5 98.1 99.1 99.5 98.8
Stop4 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0

100 Stop1 17.1 8.9 3.8 2.1 1.2 0.6 0.2 0.2 0 0 14.7 8 4.7 2.5 1.4 0.3 0.3 0.2 0.1 0.1
Stop2 2.6 4.3 1.6 1.5 0.4 0.2 0.2 0 0 0 4.6 2.4 1.7 0.6 0.5 0.3 0.3 0.1 0.1 0
Stop3 80.3 86.8 94.6 96.4 98.4 99.2 99.6 99.8 100 100 80.4 89.6 93.6 96.9 98.1 99.4 99.4 99.7 99.8 99.9
Stop4 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0
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Table A4. Computational results for randomly generated instances with the ratio 0%:0%:40%:60% of
the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 99.8 100 100 100 100 100 100 100 100 100 99.5 99.8 99.9 100 99.9 100 100 100 100 100
Stop2 0.1 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0 0.1 0 0 0 0 0
Stop3 0.1 0 0 0 0 0 0 0 0 0 0.4 0.2 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 99.2 99.7 99.9 100 100 100 100 100 100 100 98.9 100 99.9 100 100 100 100 100 100 100
Stop2 0.4 0.3 0.1 0 0 0 0 0 0 0 0.2 0 0.1 0 0 0 0 0 0 0
Stop3 0.4 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 96.8 98.9 99.4 99.5 99.9 99.8 100 100 100 99.9 96.4 98.6 99.6 99.7 99.9 100 100 100 100 100
Stop2 1.1 0.6 0.4 0.5 0.1 0.2 0 0 0 0.1 1.6 0.8 0.4 0.3 0 0 0 0 0 0
Stop3 2.1 0.5 0.2 0 0 0 0 0 0 0 2 0.6 0 0 0.1 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 91 95.7 97.8 98.7 99.2 99.5 99.4 99.8 99.9 100 91.8 94.9 97.3 98.6 99.1 99.6 99.9 99.9 99.7 100
Stop2 3.5 1.7 1.2 0.9 0.7 0.2 0.4 0.1 0.1 0 2.3 3 1.8 1.1 0.7 0.3 0.1 0.1 0.3 0
Stop3 5.5 2.6 1 0.4 0.1 0.3 0.2 0.1 0 0 5.9 2.1 0.9 0.3 0.2 0.1 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 85.8 90.4 93.7 95.1 96.4 97.6 97.2 98.2 98.3 98.5 85.4 91.2 93 94.8 96.5 97.4 97.3 98 98.2 98
Stop2 2.7 4.5 3.5 1.6 1.9 1.3 2.1 0.6 1 1 3.7 3.7 3.2 2.9 1.8 1.6 0.8 1.2 0.7 1.1
Stop3 11.5 5.1 2.8 3.3 1.7 1.1 0.7 1.2 0.7 0.5 10.9 5.1 3.8 2.3 1.7 1 1.9 0.8 1.1 0.9
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 Stop1 75.3 82.5 84.8 87.4 87 88.2 89.7 90.7 90.5 92.3 76.3 82.5 82.4 85.4 87.5 89.7 89.6 90.4 90.7 91.3
Stop2 5.1 5.5 6 4.4 5.1 3.8 3.7 3.3 3 3 4.1 5.9 6 5.9 3.9 3.5 3.3 2.4 2.7 2.4
Stop3 19.6 12 9.2 8.2 7.9 8 6.6 6 6.5 4.7 19.6 11.6 11.6 8.7 8.6 6.8 7.1 7.2 6.6 6.3
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 Stop1 63.4 70.1 72.3 74.7 75.8 73.9 72.5 75.4 75.4 76.6 66.3 71 73.7 75.2 72.9 73.2 73.7 71.9 75.5 75.2
Stop2 6.6 7 7.8 6.6 5.8 4.3 6.6 4.2 3.9 4.5 4.7 7.4 7 5.9 5.8 5.4 4.2 5.2 5.3 3.1
Stop3 30 22.9 19.9 18.7 18.4 21.8 20.9 20.4 20.7 18.9 29 21.6 19.3 18.9 21.3 21.4 22.1 22.9 19.2 21.7
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 Stop1 51.6 60 57.2 55.7 56.5 52.9 50.5 50.9 50.8 50 49.5 57 54.6 55.1 54.8 53.2 52.8 49.9 50 51.5
Stop2 6.3 7.5 8.3 7.3 6.1 5.8 7.2 6.2 5.7 4.2 6.3 8.6 8 7.2 6.5 5.6 7 5.9 5.2 5.7
Stop3 42.1 32.5 34.5 37 37.4 41.3 42.3 42.9 43.5 45.8 44.2 34.4 37.4 37.7 38.7 41.2 40.2 44.2 44.8 42.8
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

80 Stop1 39.8 43.9 39.4 39 37.8 34.8 31.7 31.1 30 28.1 39 43.7 40.1 40.3 41.1 31.3 31.5 28.1 26 28.2
Stop2 6.3 7.3 8.5 7.4 6.1 4.9 3.7 4.4 4.2 3.3 5.9 8.1 7.8 5.9 6.6 5.7 4.7 3.6 4.6 3
Stop3 53.9 48.8 52.1 53.6 56.1 60.3 64.6 64.5 65.8 68.6 55.1 48.2 52.1 53.8 52.3 63 63.8 68.3 69.4 68.8
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 Stop1 33.7 28.9 27.6 24.1 20.7 18.2 16.8 13.5 14.1 12.4 31.7 32.1 28.8 23.8 23.8 20.1 17.1 15.9 14.2 12.3
Stop2 6 7.7 6.9 5.3 4.5 3.3 3.6 2.8 2.6 1.7 5.7 7.1 5.9 6 4.7 3.5 3.8 3 3.1 1.6
Stop3 60.3 63.4 65.5 70.6 74.8 78.5 79.6 83.7 83.3 85.9 62.5 60.8 65.3 70.2 71.5 76.4 79.1 81.1 82.7 86.1
Stop4 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

100 Stop1 26.1 21.4 15.6 13.1 11.1 7.9 7.3 6 4.4 4.6 24.1 21.2 16.7 16.2 11 8.2 8.3 6.7 5.7 3.8
Stop2 3.9 6.4 5.4 4.6 3.2 2.9 1.8 1.6 0.7 1.3 5 6.2 5 2.9 3.4 3.4 2.5 1.5 1.9 1
Stop3 70 72.2 79 82.3 85.7 89.2 90.9 92.4 94.9 94.1 70.9 72.6 78.3 80.9 85.6 88.4 89.2 91.8 92.4 95.2
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A5. Computational results for randomly generated instances with the ratio 0%:0%:50%:50% of
the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 99.8 100 100 100 100 100 100 100 100 100 99.9 100 100 100 100 100 100 100 100 100
Stop2 0.1 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0
Stop3 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 99.1 99.6 100 100 100 100 100 100 100 100 98.9 99.9 100 100 100 100 100 100 100 100
Stop2 0.3 0.2 0 0 0 0 0 0 0 0 0.5 0.1 0 0 0 0 0 0 0 0
Stop3 0.6 0.2 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 96.2 99.5 99.6 99.8 99.9 100 100 100 100 100 96.1 98.7 99.8 100 100 100 100 100 100 100
Stop2 1.5 0.5 0.4 0.2 0.1 0 0 0 0 0 1.1 1.1 0.1 0 0 0 0 0 0 0
Stop3 2.3 0 0 0 0 0 0 0 0 0 2.8 0.2 0.1 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 91.3 97.4 99.2 99.2 99.6 99.9 100 100 100 100 91.4 96.7 98.9 99.1 99.7 99.6 99.9 100 100 100
Stop2 3 1 0.2 0.5 0.1 0.1 0 0 0 0 2.1 1.7 0.6 0.7 0.3 0.2 0.1 0 0 0
Stop3 5.7 1.6 0.6 0.3 0.3 0 0 0 0 0 6.5 1.6 0.5 0.2 0 0.2 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 Stop1 83.4 92.3 95.3 97.9 98.2 98.8 99.3 99.9 99.8 100 81.7 90 95.5 97.5 98.7 98.9 99.4 99.8 99.9 99.9
Stop2 3.5 3.3 1.9 1.1 0.9 0.6 0.1 0.1 0.1 0 3.8 4.6 2.1 1.3 0.5 0.5 0.4 0 0 0
Stop3 13.1 4.4 2.8 1 0.9 0.6 0.6 0 0.1 0 14.5 5.4 2.4 1.2 0.8 0.6 0.2 0.2 0.1 0.1
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 Stop1 69.4 83.1 87.1 93.8 94.5 96.1 96.4 97.8 98.6 98.3 71.2 81.5 89.2 92.6 93.5 95.1 98 98.2 98.5 98.9
Stop2 5.7 6.7 5 2.5 2.2 1.3 0.8 0.7 0.4 0.6 6.5 6.8 3.3 3.3 2.3 2.1 0.5 0.8 0.7 0.1
Stop3 24.9 10.2 7.9 3.7 3.3 2.6 2.8 1.5 1 1.1 22.3 11.7 7.5 4.1 4.2 2.8 1.5 1 0.8 1
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 Stop1 59.2 70.2 75.5 81.1 81.6 88.1 87.9 92.4 92.8 93.6 58.4 72.7 74.8 81.5 85.8 87.8 88 91 90.3 93.7
Stop2 5.8 7.4 6.6 6 5.2 4.1 3.7 1.7 1.1 2.4 4.3 8.3 7.6 4.4 3.6 3.2 4.1 2.4 2.6 2
Stop3 35 22.4 17.9 12.9 13.2 7.8 8.4 5.9 6.1 4 37.3 19 17.6 14.1 10.6 9 7.9 6.6 7.1 4.3
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

80 Stop1 45 57.2 61.8 62.7 67.8 68.7 71 74.9 75.5 77 46.8 54.8 61.1 64.1 69.4 71 71.4 73.8 75.8 76
Stop2 7 8.5 7.2 7.4 7.5 6 6 5.2 4.2 3.9 5.5 7.5 7 7.7 6.4 5.3 6.4 4.5 4.4 3.5
Stop3 48 34.3 31 29.9 24.7 25.3 23 19.9 20.3 19.1 47.7 37.7 31.9 28.2 24.2 23.7 22.2 21.7 19.8 20.5
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 Stop1 35.2 41.2 38.7 44.2 42.5 45.6 46.2 45.2 50.3 50 37.2 37.3 41.3 43.8 43.3 46.5 48 46.7 47.5 49.4
Stop2 6 8.3 9.8 7.7 7.8 7.4 6.4 6.2 6.4 5.5 5.4 8.7 9.8 8.9 9.3 9.2 6.4 6.9 6.2 5.7
Stop3 58.8 50.5 51.5 48.1 49.7 47 47.4 48.6 43.3 44.5 57.4 54 48.9 47.3 47.4 44.3 45.6 46.4 46.3 44.9
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 Stop1 25.7 28.8 25.2 22.6 21.4 21.4 20.2 20.5 19 22.1 26.5 26 25.2 25.5 25.1 22.1 22.8 19.9 23.8 20.7
Stop2 4.1 8.6 8.1 6.9 7.9 5.9 6.6 5.4 5.5 4.3 3.7 9.2 7.8 6 7.2 7.1 5.4 5.1 4.8 4.9
Stop3 70.2 62.6 66.7 70.5 70.7 72.7 73.2 74.1 75.5 73.6 69.8 64.8 67 68.5 67.7 70.8 71.8 75 71.4 74.4
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A6. Computational results for randomly generated instances with the ratio 5%:5%:5%:85% of the
numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 20 40 60 80 100 20 40 60 80 100

5 Stop1 99 99.5 99.7 99.3 99.4 98.1 99.7 99.8 99.2 99.7
Stop2 0.3 0.3 0.2 0.4 0.6 0.4 0.2 0 0.6 0.3
Stop3 0.7 0.2 0.1 0.3 0 1.5 0.1 0.2 0.2 0
Stop4 0 0 0 0 0 0 0 0 0 0

10 Stop1 96.4 97.4 98.4 97.8 97.1 95.4 97.6 97.7 98 98.6
Stop2 0.9 1.1 0.7 1.2 0.7 1.5 1.4 1 1.3 0.3
Stop3 2.7 1.5 0.9 1 2.2 3.1 1 1.3 0.7 1.1
Stop4 0 0 0 0 0 0 0 0 0 0

20 Stop1 84.3 81.4 76.5 71.7 67.9 86.5 80.5 73.8 71 66.5
Stop2 3.1 3.5 3.7 2.5 2.1 2.9 3.5 2.9 3.7 1.7
Stop3 12.6 15.1 19.8 25.8 30 10.6 16 23.3 25.3 31.8
Stop4 0 0 0 0 0 0 0 0 0 0

30 Stop1 61.8 52.9 38.4 27.1 20.9 65.1 53 40 29.3 20.3
Stop2 5.7 2.9 2.1 2.1 0.3 3.4 2.6 1.4 1.4 1.2
Stop3 32.5 44.2 59.5 70.8 78.8 31.4 44.4 58.6 69.3 78.5
Stop4 0 0 0 0 0 0.1 0 0 0 0

40 Stop1 38.6 25.5 14.1 7.3 3.1 40 24.4 13.6 6.5 3.2
Stop2 5.4 1.2 1.2 0.4 0.3 4.5 2.4 0.4 0.4 0.1
Stop3 56 73.3 84.7 92.3 96.6 55.5 73.2 86 93.1 96.7
Stop4 0 0 0 0 0 0 0 0 0 0

50 Stop1 27.4 8.4 3.2 1.7 0.3 25.9 10.9 3.3 0.9 0.3
Stop2 2.3 1.4 0.3 0 0 3.7 1.1 0 0 0
Stop3 70.2 90.2 96.5 98.3 99.7 70.4 88 96.7 99.1 99.7
Stop4 0.1 0 0 0 0 0 0 0 0 0

60 Stop1 14.3 3.4 0.5 0.2 0 15.7 3.2 0.6 0.3 0
Stop2 2.3 0.4 0 0 0 1.8 0.1 0.3 0 0
Stop3 83.4 96.2 99.5 99.8 100 82.4 96.7 99.1 99.7 100
Stop4 0 0 0 0 0 0.1 0 0 0 0

70 Stop1 8 1.1 0.3 0 0 6.5 1.7 0.1 0 0
Stop2 0.9 0 0 0 0 1.5 0 0.1 0 0
Stop3 91.1 98.9 99.7 100 100 91.8 98.3 99.8 100 100
Stop4 0 0 0 0 0 0.2 0 0 0 0

80 Stop1 4 0.1 0 0.1 0 5.1 0.2 0 0 0
Stop2 0.5 0.1 0 0 0 0.9 0 0 0 0
Stop3 95.5 99.8 100 99.9 100 93.8 99.8 100 100 100
Stop4 0 0 0 0 0 0.2 0 0 0 0

90 Stop1 2.6 0.3 0 0 0 2.2 0 0 0 0
Stop2 0.3 0 0 0 0 0.4 0 0 0 0
Stop3 97.1 99.7 100 100 100 97 100 100 100 100
Stop4 0 0 0 0 0 0.4 0 0 0 0

100 Stop1 0.9 0 0 0 0 1.5 0 0 0 0
Stop2 0.3 0 0 0 0 0 0 0 0 0
Stop3 98.8 100 100 100 100 98.4 100 100 100 100
Stop4 0 0 0 0 0 0.1 0 0 0 0
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Table A7. Computational results for randomly generated instances with the ratio 5%:15%:5%:75% of
the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 20 40 60 80 100 20 40 60 80 100

5 Stop1 98.9 99.4 99.3 99.7 99.5 98.4 99.7 99.4 99.7 99.7
Stop2 0.2 0.3 0.4 0.3 0.3 0.4 0.2 0.2 0.2 0.2
Stop3 0.9 0.3 0.3 0 0.2 1.2 0.1 0.4 0.1 0.1
Stop4 0 0 0 0 0 0 0 0 0 0

10 Stop1 97 98.2 97.7 98.6 99.3 95.5 98.6 98.6 98.4 98.3
Stop2 1 0.8 1.1 0.7 0.3 1.3 0.8 0.8 0.7 0.9
Stop3 2 1 1.2 0.7 0.4 3.2 0.6 0.6 0.9 0.8
Stop4 0 0 0 0 0 0 0 0 0 0

20 Stop1 86 86.7 83.3 76.9 75.4 88.3 86.1 83.3 77.4 74.6
Stop2 2.6 2.8 2.5 3.1 2.5 2.5 2.3 3.1 2.7 2.3
Stop3 11.4 10.5 14.2 20 22.1 9.2 11.6 13.6 19.9 23.1
Stop4 0 0 0 0 0 0 0 0 0 0

30 Stop1 67.1 58.1 47.1 36.1 29.3 69 64.5 48.2 38.6 28.7
Stop2 3.1 3.2 2.8 2.6 1.5 3.2 2.1 2.2 2 1.2
Stop3 29.8 38.7 50.1 61.3 69.2 27.8 33.4 49.6 59.4 70.1
Stop4 0 0 0 0 0 0 0 0 0 0

40 Stop1 48.2 30.1 18.9 11.1 8.3 45.6 31.8 17.6 10.5 6.6
Stop2 2.7 3.7 1.2 0.3 0.1 4.3 2.6 1.9 0.7 0.3
Stop3 49.1 66.2 79.9 88.6 91.6 50.1 65.6 80.5 88.8 93.1
Stop4 0 0 0 0 0 0 0 0 0 0

50 Stop1 30.1 15.1 7.4 3 1.2 29.1 13.2 6 2.7 1.7
Stop2 2.8 1.3 0.7 0.3 0 2.6 1.1 0.3 0.2 0
Stop3 67.1 83.6 91.9 96.7 98.8 68.3 85.7 93.7 97.1 98.3
Stop4 0 0 0 0 0 0 0 0 0 0

60 Stop1 19.2 7.6 1.9 0.5 0 21.1 5.9 2.6 0.5 0.3
Stop2 1.5 0.4 0 0 0.1 2 0.5 0.2 0 0
Stop3 79.3 92 98.1 99.5 99.9 76.9 93.6 97.2 99.5 99.7
Stop4 0 0 0 0 0 0 0 0 0 0

70 Stop1 11.4 2.6 0.9 0 0 12 3.1 0.3 0 0.1
Stop2 1.9 0.1 0 0 0 0.8 0.2 0 0 0
Stop3 86.7 97.3 99.1 100 100 87.2 96.7 99.7 100 99.9
Stop4 0 0 0 0 0 0 0 0 0 0

80 Stop1 7.6 1.2 0.1 0 0 7.9 0.6 0.2 0 0
Stop2 0.7 0.1 0 0 0 1 0.1 0 0 0
Stop3 91.7 98.7 99.9 100 100 91.1 99.3 99.8 100 100
Stop4 0 0 0 0 0 0 0 0 0 0

90 Stop1 3.4 0.6 0.1 0 0 4.6 0.5 0.1 0 0
Stop2 0.4 0 0 0 0 0.5 0 0 0 0
Stop3 96.2 99.4 99.9 100 100 94.9 99.5 99.9 100 100
Stop4 0 0 0 0 0 0 0 0 0 0

100 Stop1 2.7 0.2 0 0 0 2.9 0.2 0 0 0
Stop2 0.5 0 0 0 0 0.3 0 0 0 0
Stop3 96.8 99.8 100 100 100 96.8 99.8 100 100 100
Stop4 0 0 0 0 0 0 0 0 0 0
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Table A8. Computational results for randomly generated instances with the ratio 5%:20%:5%:70% of
the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 20 40 60 80 100 20 40 60 80 100

5 Stop1 98.6 99.2 99.6 99.4 99.5 98.3 99.2 99.7 99.8 99.6
Stop2 0.1 0.4 0.3 0.4 0.5 0.5 0.1 0.1 0.1 0.3
Stop3 1.3 0.4 0.1 0.2 0 1.2 0.7 0.2 0.1 0.1
Stop4 0 0 0 0 0 0 0 0 0 0

10 Stop1 96.1 98.5 99.7 99.1 99.1 96.6 98.2 98.2 98.9 98.4
Stop2 1.1 0.6 0.2 0.7 0.4 0.3 0.9 1.2 0.6 0.9
Stop3 2.8 0.9 0.1 0.2 0.5 3.1 0.9 0.6 0.5 0.7
Stop4 0 0 0 0 0 0 0 0 0 0

20 Stop1 88.8 87.6 84.6 80.1 77.6 89.5 89.8 84.6 83.5 79.3
Stop2 1.9 2.4 2.6 2.2 2.8 3 1.9 2.7 1.9 2.4
Stop3 9.3 10 12.8 17.7 19.6 7.5 8.3 12.7 14.6 18.3
Stop4 0 0 0 0 0 0 0 0 0 0

30 Stop1 72 62.3 52.3 43.2 33.5 70.6 63.1 53 42.4 36.9
Stop2 3.4 2.2 3.9 3 1.8 3.9 3.4 3.9 2.5 0.6
Stop3 24.6 35.5 43.8 53.8 64.7 25.5 33.5 43.1 55.1 62.5
Stop4 0 0 0 0 0 0 0 0 0 0

40 Stop1 50.6 37.1 25.9 15 9.9 50.7 36.4 25.9 16.5 10.3
Stop2 3.7 2.1 1.8 0.7 0.4 3.5 2.7 1.3 1 0.4
Stop3 45.7 60.8 72.3 84.3 89.7 45.8 60.9 72.8 82.5 89.3
Stop4 0 0 0 0 0 0 0 0 0 0

50 Stop1 36.2 19.5 9.4 4.5 1.7 33.2 17.9 9.6 4.3 2.8
Stop2 3.1 1.6 0 0.1 0.2 3.9 0.9 0.6 0.3 0
Stop3 60.7 78.9 90.6 95.4 98.1 62.9 81.2 89.8 95.4 97.2
Stop4 0 0 0 0 0 0 0 0 0 0

60 Stop1 25.2 7.7 3.1 1.2 0.3 24 7.6 3.5 0.6 0.5
Stop2 2 0.7 0.3 0 0 1.6 1.2 0.2 0 0
Stop3 72.8 91.6 96.6 98.8 99.7 74.4 91.2 96.3 99.4 99.5
Stop4 0 0 0 0 0 0 0 0 0 0

70 Stop1 12 3.3 0.8 0.2 0.4 16.6 4.1 1.6 0.5 0.1
Stop2 2.3 0.4 0.1 0 0 1.1 0.7 0 0 0
Stop3 85.7 96.3 99.1 99.8 99.6 82.3 95.2 98.4 99.5 99.9
Stop4 0 0 0 0 0 0 0 0 0 0

80 Stop1 9.4 1.8 0.3 0 0 9.9 1.8 0.1 0 0
Stop2 1.4 0.1 0 0 0 1 0.1 0 0 0
Stop3 89.2 98.1 99.7 100 100 89 98.1 99.9 100 100
Stop4 0 0 0 0 0 0.1 0 0 0 0

90 Stop1 5.6 0.3 0.1 0.1 0 6.5 0.6 0.1 0 0
Stop2 0.7 0.1 0 0 0 0.3 0.1 0 0 0
Stop3 93.7 99.6 99.9 99.9 100 93.2 99.3 99.9 100 100
Stop4 0 0 0 0 0 0 0 0 0 0

100 Stop1 4.5 0.5 0 0 0 4.5 0.2 0 0 0
Stop2 0.2 0 0 0 0 0.2 0 0 0 0
Stop3 95.3 99.5 100 100 100 95.3 99.8 100 100 100
Stop4 0 0 0 0 0 0 0 0 0 0
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Table A9. Computational results for randomly generated instances with the ratio 10%:10%:10%:70% of
the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 98.9 99.5 100 99.8 100 99.9 100 100 100 99.9 98.4 99.4 99.9 100 99.9 99.9 100 100 100 100
Stop2 0.4 0 0 0.2 0 0 0 0 0 0.1 0 0.3 0.1 0 0 0.1 0 0 0 0
Stop3 0.7 0.5 0 0 0 0.1 0 0 0 0 1.6 0.3 0 0 0.1 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 95.9 98.9 98.9 100 99.8 100 100 100 99.9 99.9 96.2 98.4 99.5 99.7 99.8 99.9 99.9 99.8 99.8 99.9
Stop2 0.2 0.5 0.6 0 0.2 0 0 0 0.1 0 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.1
Stop3 3.8 0.6 0.5 0 0 0 0 0 0 0.1 3.4 1.3 0.3 0.2 0.1 0 0 0 0 0
Stop4 0.1 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

20 Stop1 88.8 97 97.1 97.8 97.8 97.5 98.2 98.7 97.5 97.9 88.5 95.3 96.5 97.2 97.6 97.3 97.9 98.3 98.2 97.5
Stop2 1.6 1.2 1.1 0.5 0.6 1 0.6 0.4 0.2 0.2 1.6 1.6 1 1.3 0.5 0.7 0.8 0.7 0.6 0.4
Stop3 9.5 1.8 1.8 1.7 1.6 1.5 1.2 0.9 2.3 1.9 9.8 3.1 2.5 1.5 1.9 2 1.3 1 1.2 2.1
Stop4 0.1 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

30 Stop1 79.3 85.8 86.6 85.1 81.4 83.3 82.6 79.2 77.4 75.9 80.4 86.3 86.5 85.1 81.2 81.6 80.8 80 79 76.1
Stop2 3.7 2.2 2.5 1.7 2.9 1.8 1.5 1.2 1.5 1 2.4 2.8 2.8 1.7 1.9 1.4 1.4 1.3 1 0.6
Stop3 17 12 10.9 13.2 15.7 14.9 15.9 19.6 21.1 23.1 16.9 10.9 10.7 13.2 16.9 17 17.8 18.7 20 23.3
Stop4 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0

40 Stop1 66.6 71.7 65.8 62.2 58.2 53.1 48.4 44 42 38.3 65.8 70.1 65.8 60.9 57.4 52.7 53.9 46.8 40.6 38.5
Stop2 3 2.6 2.4 2.8 2.2 2.4 1.7 2 1.1 0.9 2.6 2.7 2.6 1.8 1.6 1.5 2.1 1 0.9 1.1
Stop3 30.2 25.7 31.8 35 39.6 44.5 49.9 54 56.9 60.8 31.1 27.2 31.6 37.3 41 45.8 44 52.2 58.5 60.4
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0

50 Stop1 55.8 55.3 46.9 38.9 30.9 25.5 22.2 19.9 15.1 13.2 56 52.9 44.3 39.4 34.1 27.4 22.6 18.2 17.5 14.9
Stop2 2.6 2.9 2.4 2.5 1.7 1 0.8 0.3 0.7 0.6 3.3 3.5 2.4 1.4 1.7 1.1 0.7 0.5 0.4 0.7
Stop3 41.6 41.8 50.7 58.6 67.4 73.5 77 79.8 84.2 86.2 40.5 43.6 53.3 59.2 64.2 71.5 76.7 81.3 82.1 84.4
Stop4 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0

60 Stop1 44.4 35.9 27.8 20.1 15.6 12.7 8.6 7.1 7.8 3.3 43.6 36.5 26.2 20.7 14.6 9.9 8.8 6.4 4.2 3.2
Stop2 3.2 2.7 1.6 0.9 0.8 0.7 0.2 0.1 0.2 0.1 3.3 2 1.4 1.8 1.7 0.2 0.2 0.3 0.1 0
Stop3 52.2 61.4 70.6 79 83.6 86.6 91.2 92.8 92 96.6 52.5 61.5 72.4 77.5 83.7 89.9 91 93.3 95.7 96.8
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0

70 Stop1 33.5 25.4 17 11.2 6.6 2.8 2 1.2 1.1 0.7 36.7 24 17.3 11.6 5.7 5.2 3.5 1.5 0.7 1.1
Stop2 2.5 2 1.5 0.4 0.5 0.1 0.3 0.2 0.1 0 2.4 1.9 1 0.5 0.2 0.2 0 0.1 0 0
Stop3 63.8 72.6 81.5 88.4 92.9 97.1 97.7 98.6 98.8 99.3 60.5 74.1 81.7 87.9 94.1 94.6 96.5 98.4 99.3 98.9
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0

80 Stop1 29.8 13.5 10 5.1 2.9 1.2 0.3 0.4 0 0.1 27.9 18.6 8.4 4 2.5 1.4 0.9 0.4 0.2 0.1
Stop2 1.9 1.4 0.3 0.4 0.1 0 0 0.1 0 0 2.5 0.8 0.5 0.2 0.1 0.2 0 0 0 0
Stop3 68.1 85.1 89.7 94.5 97 98.8 99.7 99.5 100 99.9 68.8 80.6 91.1 95.8 97.4 98.4 99.1 99.6 99.8 99.9
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0

90 Stop1 22.4 10.5 3.9 1.7 0.7 0.1 0.3 0.2 0 0 20.8 10.2 4.5 3.1 0.7 0.2 0.3 0 0 0
Stop2 1.9 0.6 0.6 0.1 0 0 0 0 0 0 1.6 0.9 0.5 0 0 0.1 0 0 0 0
Stop3 75.3 88.9 95.5 98.2 99.3 99.9 99.7 99.8 100 100 76.8 88.9 95 96.9 99.3 99.7 99.7 100 100 100
Stop4 0.4 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0

100 Stop1 15.6 5.9 1.5 0.9 0.6 0.1 0.1 0 0 0 15.9 6.7 2.6 0.9 0.2 0.1 0.2 0 0 0
Stop2 1.6 0.7 0.2 0 0 0 0 0 0 0 1.7 0.2 0.2 0.1 0 0 0 0 0 0
Stop3 82.3 93.4 98.3 99.1 99.4 99.9 99.9 100 100 100 81.4 93.1 97.2 99 99.8 99.9 99.8 100 100 100
Stop4 0.5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
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Table A10. Computational results for randomly generated instances with the ratio 10%:10%:40%:40%
of the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 99.3 100 100 100 100 100 100 100 100 100 99.5 100 100 100 100 100 100 100 100 100
Stop2 0.2 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0
Stop3 0.5 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 98.4 99.9 100 100 100 100 100 100 100 100 99 99.9 100 100 100 100 100 100 100 100
Stop2 0.5 0.1 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0
Stop3 1.1 0 0 0 0 0 0 0 0 0 0.9 0.1 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 97 99.8 99.9 100 100 100 100 100 100 100 96.4 99.8 100 100 100 100 100 100 100 100
Stop2 0.1 0 0.1 0 0 0 0 0 0 0 0.5 0.2 0 0 0 0 0 0 0 0
Stop3 2.9 0.2 0 0 0 0 0 0 0 0 3.1 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 Stop1 93 99 99.9 99.9 100 100 100 100 100 100 92.8 99.6 99.9 100 100 100 100 100 100 100
Stop2 1.2 0.5 0.1 0 0 0 0 0 0 0 0.9 0.1 0 0 0 0 0 0 0 0
Stop3 5.8 0.5 0 0.1 0 0 0 0 0 0 6.3 0.3 0.1 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 Stop1 86.6 97.9 99.6 99.5 99.8 99.8 99.8 99.9 100 100 85.8 97.1 99.3 99.6 99.8 99.7 99.9 100 100 100
Stop2 1.4 0.5 0 0.2 0 0.1 0 0 0 0 1.5 0.4 0 0 0 0 0 0 0 0
Stop3 12 1.6 0.4 0.3 0.2 0.1 0.2 0.1 0 0 12.7 2.5 0.7 0.4 0.2 0.3 0.1 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 Stop1 82.3 92.5 96.7 97.2 98.6 98.1 99 99.2 99.5 99.7 80 92.7 96.5 97.5 97.9 99.2 99.5 99.5 99.8 99.5
Stop2 1.8 1.1 0.2 0.2 0 0 0.1 0 0 0.1 1.7 0.5 0 0.2 0.1 0 0 0 0 0
Stop3 15.9 6.4 3.1 2.6 1.4 1.9 0.9 0.8 0.5 0.2 18.3 6.8 3.5 2.3 2 0.8 0.5 0.5 0.2 0.5
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

80 Stop1 71.8 85.9 91.5 93.8 94.4 95.3 95.6 97.7 97.3 98.1 73.1 87.2 91 93.1 95.1 95.9 96.7 97.3 98.1 98.8
Stop2 1.9 1.2 0.6 0.2 0.5 0 0 0.1 0 0.1 2 0.9 0.2 0.7 0.1 0.2 0 0.3 0 0
Stop3 26.3 12.9 7.9 6 5.1 4.7 4.4 2.2 2.7 1.8 24.9 11.9 8.8 6.2 4.8 3.9 3.3 2.4 1.9 1.2
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 Stop1 63.2 77.8 81.6 84.2 85 88.7 89.9 91.5 93.6 93.6 61.7 77.2 83.3 85 86.4 88 90.4 91.4 92.7 94.4
Stop2 2.6 1 0.8 1.1 0.2 0.2 0.6 0.2 0.1 0.2 2.6 1.9 0.9 0.2 0.5 0.2 0.1 0.1 0 0.1
Stop3 34.2 21.2 17.6 14.7 14.8 11.1 9.5 8.3 6.3 6.2 35.7 20.9 15.8 14.8 13.1 11.8 9.5 8.5 7.3 5.5
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 Stop1 53.1 66.7 68.3 70.3 74.1 74.1 75.6 78.3 81 84.1 51.8 67 69.8 71 72.5 75.9 75.7 79.6 79.8 80.3
Stop2 2.1 1.7 0.6 0.8 0.3 0.7 0.3 0.2 0.1 0.3 2.4 0.9 1 0.7 1.1 0.5 0.3 0.6 0.3 0.5
Stop3 44.8 31.6 31.1 28.9 25.6 25.2 24.1 21.5 18.9 15.6 45.8 32.1 29.2 28.3 26.4 23.6 24 19.8 19.9 19.2
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A11. Computational results for randomly generated instances with the ratio 10%:20%:10%:60%
of the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 99.2 99.6 99.8 100 99.9 100 100 100 100 100 98.5 99.8 99.9 99.9 100 100 100 100 100 100
Stop2 0 0.1 0.2 0 0.1 0 0 0 0 0 0.2 0.1 0.1 0.1 0 0 0 0 0 0
Stop3 0.8 0.3 0 0 0 0 0 0 0 0 1.3 0.1 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 98.1 99.2 99.4 99.9 99.9 99.8 100 100 100 100 96.4 99.2 99.8 99.7 99.8 99.9 99.9 100 100 100
Stop2 0.1 0.5 0.4 0.1 0.1 0 0 0 0 0 0.6 0.3 0.2 0.1 0 0.1 0.1 0 0 0
Stop3 1.8 0.3 0.2 0 0 0.2 0 0 0 0 3 0.5 0 0.2 0.2 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 91.3 97.7 97.7 97.8 99.1 98.7 98.8 98.7 99.1 99.6 90.3 96.5 97.6 98 98.4 99.1 99.4 99.4 99.2 99
Stop2 1.4 0.8 0.8 0.7 0.4 0.7 0.4 0.4 0.1 0.1 0.3 1.3 1.4 0.9 0.7 0.6 0.1 0 0.6 0.3
Stop3 7.3 1.5 1.5 1.5 0.5 0.6 0.8 0.9 0.8 0.3 9.4 2.2 1 1.1 0.9 0.3 0.5 0.6 0.2 0.7
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 83.4 90.5 92 91.4 89.7 90.8 90.4 88.7 88.8 87 82.8 92.2 91.8 92.1 90.5 90.5 88.7 89.8 87.6 86.9
Stop2 1.7 1.7 1.7 1.1 1.2 1.6 0.6 1.4 1.1 1 1.6 1.2 1.5 0.8 1.5 1.8 0.6 1.2 1.3 1.1
Stop3 14.8 7.8 6.3 7.5 9.1 7.6 9 9.9 10.1 12 15.6 6.6 6.7 7.1 8 7.7 10.7 9 11.1 12
Stop4 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 75.8 78.3 76.6 74 72 69.2 65.5 62.7 57.6 59.2 74.3 78.2 78.1 76.3 70.5 68.3 64 65.5 61.2 58.2
Stop2 1.9 3 3 1.9 1.6 1.4 1.8 1 0.9 1.2 1.6 2.7 2.3 1.3 2.5 1.8 1.7 0.9 1.4 1.5
Stop3 22 18.7 20.4 24.1 26.4 29.4 32.7 36.3 41.5 39.6 24 19.1 19.6 22.4 27 29.9 34.3 33.6 37.4 40.3
Stop4 0.3 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

50 Stop1 64.4 65 59.6 53.1 46.9 40.6 40.1 35 31.4 30.4 64.6 63.3 57.6 53.9 49.4 42.6 38.3 36.6 32.4 28
Stop2 1.9 2.8 1.9 2.1 1.7 1.5 0.8 1.1 1.5 0.7 1.6 3.8 2.4 1.5 1.3 1.1 0.8 1.1 1.3 1.1
Stop3 33.7 32.2 38.5 44.8 51.4 57.9 59.1 63.9 67.1 68.9 33.6 32.9 40 44.6 49.3 56.3 60.9 62.3 66.3 70.9
Stop4 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0

60 Stop1 54.4 52.2 42.3 33 28.1 21.7 19.9 15.8 13.7 11.3 54.4 49.2 43.4 33.6 26.7 22.2 20.2 14.9 13 11.1
Stop2 1.4 2.9 1.8 1.6 1.4 0.7 0.4 0.3 0.2 0.3 2.4 2.4 2.3 2.8 0.9 0.9 0.7 0.4 0.3 0.3
Stop3 44.1 44.9 55.9 65.4 70.5 77.6 79.7 83.9 86.1 88.4 43 48.4 54.3 63.6 72.4 76.9 79.1 84.7 86.7 88.6
Stop4 0.1 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0

70 Stop1 47 37.9 25.3 21 14.1 11 7.5 6 4.4 3.1 44.2 34.1 28.5 19.4 14 11.3 7.5 4.4 4.1 3.1
Stop2 1.5 1.4 1.3 1.5 0.7 0.5 0.3 0.2 0.1 0 2.1 2.9 1.4 0.7 0.9 0.4 0.1 0.2 0.1 0.1
Stop3 51.5 60.7 73.4 77.5 85.2 88.5 92.2 93.8 95.5 96.9 53.4 63 70.1 79.9 85.1 88.3 92.4 95.4 95.8 96.8
Stop4 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0

80 Stop1 38 26.7 16 10.5 6.4 4.9 2.5 1.9 0.8 0.7 35 26.1 17.6 10.4 8.1 4.2 2.2 2.1 1.3 0.5
Stop2 1.3 1.7 1.3 1 0.9 0.1 0 0.1 0 0 1.6 1.3 0.7 0.7 0.3 0.4 0 0 0 0
Stop3 60.6 71.6 82.7 88.5 92.7 95 97.5 98 99.2 99.3 63.1 72.6 81.7 88.9 91.6 95.4 97.8 97.9 98.7 99.5
Stop4 0.1 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0

90 Stop1 29 15.7 9.2 4.7 3.8 1.7 1.6 0 0.2 0.3 29.5 16.7 10.2 5.9 3.2 2.1 1.1 0.7 0.3 0.2
Stop2 1.5 1.4 0.7 0.4 0.1 0.2 0.1 0 0 0.1 1.7 1.2 0.4 0.3 0 0 0 0 0 0
Stop3 69.3 82.9 90.1 94.9 96.1 98.1 98.3 100 99.8 99.6 68.6 82.1 89.4 93.8 96.8 97.9 98.9 99.3 99.7 99.8
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0

100 Stop1 21.6 12.2 6.7 2.4 1.6 0.6 0.2 0.1 0.1 0 23 11 5.8 3 1.7 0.5 0.2 0.3 0 0
Stop2 1.2 0.8 0.1 0.1 0.1 0 0 0 0.1 0 1.1 0.6 0.5 0.2 0.1 0 0 0 0 0
Stop3 77 87 93.2 97.5 98.3 99.4 99.8 99.9 99.8 100 75.3 88.4 93.7 96.8 98.2 99.5 99.8 99.7 100 100
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0
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Table A12. Computational results for randomly generated instances with the ratio 10%:30%:10%:50%
of the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 98.6 99.9 100 100 100 100 100 100 100 100 99.3 100 100 100 100 100 100 100 100 100
Stop2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 1.2 0.1 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 97.8 99.4 99.8 99.8 100 99.8 100 100 100 100 97.3 99.7 99.7 100 100 99.9 100 100 99.9 100
Stop2 0.2 0.1 0.1 0.2 0 0.2 0 0 0 0 0.2 0.1 0.1 0 0 0 0 0 0.1 0
Stop3 2 0.5 0.1 0 0 0 0 0 0 0 2.5 0.2 0.2 0 0 0.1 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 93.5 98.1 98.1 99.4 99.1 99.7 99.6 99.9 99.7 99.4 95 97.5 98.8 99 99.5 99.5 99.8 99.7 99.6 100
Stop2 0.4 0.8 0.6 0.2 0.4 0.2 0.2 0.1 0.3 0.2 0.6 0.7 0.6 0.5 0.5 0.3 0.1 0.2 0.3 0
Stop3 6.1 1.1 1.3 0.4 0.5 0.1 0.2 0 0 0.4 4.4 1.8 0.6 0.5 0 0.2 0.1 0.1 0.1 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 85.9 94.2 96.1 95.2 94.3 95.3 96.1 95.8 95.8 95.2 89.9 94.2 94.2 95.3 95.4 95.9 95.2 95.2 92.8 96.3
Stop2 0.6 1.4 1.1 1.1 1.2 0.5 0.7 1.1 0.3 0.4 0.9 0.8 1.4 1 1.5 1 1.2 0.6 1.1 0.3
Stop3 13.5 4.4 2.8 3.7 4.5 4.2 3.2 3.1 3.9 4.4 9.2 5 4.4 3.7 3.1 3.1 3.6 4.2 6.1 3.4
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 80.5 85.7 85.5 83.4 85.4 81.9 82.3 77.7 77.8 77.5 81.7 85.9 88.3 85.6 82.1 84.3 81.6 79.1 80.9 80.1
Stop2 1.3 2.2 1.9 1.9 1.3 1.4 1.6 1.7 0.7 1.2 1.4 2.2 1.5 2.3 2 1.3 0.4 1.6 1 0.9
Stop3 18.2 12.1 12.6 14.7 13.3 16.7 16.1 20.6 21.5 21.3 16.9 11.9 10.2 12.1 15.9 14.4 18 19.3 18.1 19
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 Stop1 74.1 74.8 72.6 70 67 62 59.2 58.5 54.9 52.7 73 75.9 73.6 69.7 67.6 60.9 62.6 59.1 56.6 52
Stop2 1.2 2.6 2.5 1.8 1.3 1.5 1.5 0.9 0.9 0.6 0.9 2.1 2.1 1.3 1.2 1.1 0.8 1 0.6 0.4
Stop3 24.7 22.6 24.9 28.2 31.7 36.5 39.3 40.6 44.2 46.7 26.1 22 24.3 29 31.2 38 36.6 39.9 42.8 47.6
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 Stop1 66.9 64.3 60.9 52.3 45 46.7 40 37.4 34.6 32.2 63.8 64.2 58.4 55.9 48.2 42.8 40.1 35.9 36.3 31.2
Stop2 1.3 3.2 1.6 2.5 1.5 0.9 1.8 0.9 0.8 0.9 0.8 2 1.9 1.6 1.8 1.4 1.2 1.3 0.9 1.3
Stop3 31.8 32.5 37.5 45.2 53.5 52.4 58.2 61.7 64.6 66.9 35.4 33.8 39.7 42.5 50 55.8 58.7 62.8 62.8 67.5
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 Stop1 58.4 52.6 42.7 38.7 34.6 29.4 21.1 21.5 17.6 16.3 57.7 50.8 45 37.9 31 27.6 26.2 21.6 20.5 15.1
Stop2 1.4 2.2 1 2.3 0.8 0.7 0.5 0.3 0.2 0.1 0.9 3.5 2.4 1.1 1.3 0.6 0.6 0.4 0.3 0
Stop3 40.2 45.2 56.3 59 64.6 69.9 78.4 78.2 82.2 83.6 41.3 45.7 52.6 61 67.7 71.8 73.2 78 79.2 84.9
Stop4 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

80 Stop1 51.9 40.7 34.1 28.3 21.4 14.2 13.9 9.9 9.8 8 49.7 41.7 33.3 27.1 24.1 17.4 14.1 12.6 8.8 7.5
Stop2 0.9 1.7 1.4 1.4 0.2 0.1 0.2 0.3 0.1 0 0.8 2.5 1.6 0.9 0.5 0.3 0.6 0.5 0 0
Stop3 47.2 57.6 64.5 70.3 78.4 85.7 85.9 89.8 90.1 92 49.4 55.8 65.1 72 75.4 82.3 85.3 86.9 91.2 92.5
Stop4 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

90 Stop1 44.2 31.3 24.6 17.3 12.3 11 7.1 4.7 3.6 4.2 44 32.7 24.8 16.3 12.7 10 7.9 6.5 4.2 3.8
Stop2 1.3 1.3 0.4 0.8 0.2 0.1 0.1 0.1 0.1 0 1 1.4 1.2 1 0.3 0 0.1 0 0.1 0.1
Stop3 54.5 67.4 75 81.9 87.5 88.9 92.8 95.2 96.3 95.8 54.6 65.9 74 82.7 87 90 92 93.5 95.7 96.1
Stop4 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0

100 Stop1 36.1 24.3 17.8 12.4 7.5 6.2 3 2.9 2.3 1.1 35.5 25.9 15.3 10.6 6.9 5.1 3.1 2 1.8 1.7
Stop2 0.8 1.6 0.8 0.6 0.2 0.1 0 0 0.1 0 1 1.1 0.3 0.3 0.2 0 0.1 0 0 0
Stop3 63.1 74.1 81.4 87 92.3 93.7 97 97.1 97.6 98.9 62.9 73 84.4 89.1 92.9 94.9 96.8 98 98.2 98.3
Stop4 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0
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Table A13. Computational results for randomly generated instances with the ratio 10%:40%:10%:40%
of the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 98.9 100 100 100 100 100 100 100 100 100 99.6 99.9 100 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 1.1 0 0 0 0 0 0 0 0 0 0.4 0.1 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 97.6 99.6 99.9 99.9 100 100 100 100 100 100 98.2 99.5 99.9 99.9 100 100 100 99.9 100 100
Stop2 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.1 0.1 0 0 0 0.1 0 0
Stop3 2.4 0.4 0 0 0 0 0 0 0 0 1.8 0.5 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 95.8 98.6 99 99.7 99.7 99.9 99.7 100 100 99.9 95.5 97.6 99.7 99.3 99.5 99.8 100 99.8 99.9 100
Stop2 0 0.4 0.4 0.1 0.3 0.1 0.2 0 0 0.1 0.1 0.4 0 0.5 0.2 0.2 0 0.1 0.1 0
Stop3 4.2 1 0.6 0.2 0 0 0.1 0 0 0 4.4 2 0.3 0.2 0.3 0 0 0.1 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 93.2 94.8 97.1 97.8 98.1 98.9 99 99 98.5 99.3 93.4 94.9 96.8 98.3 98.5 97.4 98.8 99.4 99.1 99
Stop2 0 0.8 0.5 0.9 0.2 0.1 0 0.4 0.5 0.1 0.5 1 0.7 0.3 0.4 0.9 0.2 0.1 0.5 0
Stop3 6.8 4.4 2.4 1.3 1.7 1 1 0.6 1 0.6 6.1 4.1 2.5 1.4 1.1 1.7 1 0.5 0.4 1
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 88.6 91.1 91 91.9 94.5 91.2 91.7 92 93.3 93 87.7 90.5 91.6 92 92.5 93 93.1 92.6 92 91.5
Stop2 0.3 1.4 1.1 0.7 0.2 0.8 0.9 0.7 0.9 0.5 0.2 1.7 1 1.3 0.8 0.4 0.9 0.6 0.4 0.7
Stop3 11.1 7.5 7.9 7.4 5.3 8 7.4 7.3 5.8 6.5 12.1 7.8 7.4 6.7 6.7 6.6 6 6.8 7.6 7.8
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 Stop1 84.6 86.9 84.6 84.8 81 82 79.3 79.7 77.8 77.8 85 84.9 82 81.6 82 83.1 77.2 79.7 78.5 78.1
Stop2 0.6 0.9 1.2 1.6 1.6 1.1 1 0.8 1.1 0.9 0 2.2 1.8 2 1 1.2 1.3 0.9 1.1 1
Stop3 14.8 12.2 14.2 13.6 17.4 16.9 19.7 19.5 21.1 21.3 15 12.9 16.2 16.4 17 15.7 21.5 19.4 20.4 20.9
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 Stop1 79.7 77.8 75.4 71.5 71.1 69.2 63.5 61.3 59 58.8 77.5 75.1 75.4 71.8 70.7 66.4 66.3 63.5 60.1 60.3
Stop2 0.2 1.9 2 1.9 1.9 1.2 0.8 1.1 0.9 0.6 0.8 1.7 2.1 1.5 1.4 1.8 0.5 0.8 1.7 1
Stop3 20.1 20.3 22.6 26.6 27 29.6 35.7 37.6 40.1 40.6 21.7 23.2 22.5 26.7 27.9 31.8 33.2 35.7 38.2 38.7
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 Stop1 73.5 68.5 65.8 65.9 57.7 54.2 49.6 47.9 44.8 45.3 75.4 71.4 65.7 62.8 59.4 55.9 50.7 49.5 44.6 43.2
Stop2 0.6 1.7 1.6 1.4 1.5 0.7 0.9 0.7 0.7 0.8 0.2 1.5 1.2 1.2 1.4 0.7 1 0.7 1 0.7
Stop3 25.9 29.8 32.6 32.7 40.8 45.1 49.5 51.4 54.5 53.9 24.3 27.1 33.1 36 39.2 43.4 48.3 49.8 54.4 56.1
Stop4 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

80 Stop1 67.6 60.5 58.7 52.8 46.1 43.5 40.1 36.7 35.4 34.2 66.6 62.4 53.4 50.8 49 43 41.4 37.8 38.7 33.7
Stop2 0.3 2.7 1.2 1.1 0.9 0.6 0.8 0.4 0.2 0.6 0.4 2.1 2 1.1 1.4 1 0.4 0.3 0.3 0.2
Stop3 32.1 36.8 40.1 46.1 53 55.9 59.1 62.9 64.4 65.2 32.9 35.5 44.6 48.1 49.6 56 58.2 61.9 61 66.1
Stop4 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

90 Stop1 63.3 50.9 49.5 42.8 36.3 36.2 33.7 28.7 28.2 28.9 58.2 54.1 51.9 44.1 37.3 33.8 31.6 30.8 27 27.5
Stop2 0.8 1.5 1.7 0.9 0.5 0.1 0.3 0.2 0.2 0.3 0.3 1.4 1.2 1 0.7 0.5 0.4 0.1 0.3 0
Stop3 35.9 47.6 48.8 56.3 63.2 63.7 66 71.1 71.6 70.8 41.5 44.5 46.9 54.9 62 65.7 68 69.1 72.7 72.5
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 Stop1 58.1 48.4 41.1 32.5 30.9 27.2 24.2 21.2 23.1 20.4 55.5 44.4 38.2 32.2 32.3 27.7 24.1 21.8 22.4 20.3
Stop2 0.2 1 0.6 0.8 0.3 0.4 0.2 0.4 0 0 0.7 1.5 0.7 0.8 0.6 0.5 0.2 0.1 0.2 0
Stop3 41.6 50.6 58.3 66.7 68.8 72.4 75.6 78.4 76.9 79.6 43.8 54.1 61.1 67 67.1 71.8 75.7 78.1 77.4 79.7
Stop4 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A14. Computational results for randomly generated instances with the ratio 10%:60%:10%:20%
of the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 100 99.8 100 100 100 100 100 100 100 100 100 99.9 100 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 0 0.2 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 100 99.9 100 100 100 100 100 100 100 100 100 99.8 99.9 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 0 0.1 0 0 0 0 0 0 0 0 0 0.2 0.1 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 100 99.4 99.9 100 100 100 100 100 100 100 100 99.3 99.9 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0
Stop3 0 0.6 0.1 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 99.9 98.7 99.7 99.9 100 100 100 100 100 100 100 98.6 99.5 99.5 99.9 100 100 100 100 100
Stop2 0 0.3 0 0 0 0 0 0 0 0 0 0.2 0.1 0.3 0 0 0 0 0 0
Stop3 0.1 1 0.3 0.1 0 0 0 0 0 0 0 1.2 0.4 0.2 0.1 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 100 97.3 99.5 99.7 99.7 100 99.8 100 99.9 99.9 100 97.2 98.6 99.1 99.8 100 100 100 99.9 100
Stop2 0 0.3 0.3 0 0 0 0.1 0 0 0 0 0.1 0.5 0.2 0 0 0 0 0 0
Stop3 0 2.4 0.2 0.3 0.3 0 0.1 0 0.1 0.1 0 2.7 0.9 0.7 0.2 0 0 0 0.1 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 Stop1 99.9 96.1 97 98.3 99.2 99 99.3 99.5 99.8 100 100 95.8 96.9 98.4 99.2 99.2 99.7 99.9 99.6 100
Stop2 0 0.2 0.5 0.2 0.3 0.5 0.2 0 0.2 0 0 0.2 0.5 0.4 0 0 0.1 0 0 0
Stop3 0.1 3.7 2.5 1.5 0.5 0.5 0.5 0.5 0 0 0 4 2.6 1.2 0.8 0.8 0.2 0.1 0.4 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 Stop1 99.7 94.6 96.1 96.8 97.8 98.2 97.9 98.3 98.7 99 99.8 94.9 95.3 97.6 97.9 98.3 96.9 98.8 98.4 98.6
Stop2 0 0.4 1.1 0.1 0.3 0.2 0.7 0 0.1 0.1 0 0.1 0.2 0.3 0.2 0.3 0.6 0.3 0.4 0.2
Stop3 0.3 5 2.8 3.1 1.9 1.6 1.4 1.7 1.2 0.9 0.2 5 4.5 2.1 1.9 1.4 2.5 0.9 1.2 1.2
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 Stop1 99.6 94.4 94.2 94.8 95.9 94.6 95.6 95.8 96.5 96.7 99.6 94 94.9 93.4 94.5 96 97 96.2 96 96
Stop2 0 0.4 0.6 0.5 0.6 0.6 0.3 0.4 0.4 0 0 0.2 0.7 0.5 0.4 0.8 0.2 0.2 0.4 0.3
Stop3 0.4 5.2 5.2 4.7 3.5 4.8 4.1 3.8 3.1 3.3 0.4 5.8 4.4 6.1 5.1 3.2 2.8 3.6 3.6 3.7
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

80 Stop1 99.8 90.9 92 91.2 91.2 92 92 92.3 91.9 92 99.1 89.5 92 91.6 90.8 92.6 92.4 93.4 92.6 92.1
Stop2 0 0.2 0.6 0.8 0.7 0.2 0.5 0.6 0.4 0.3 0 0.4 0.6 0.7 1.1 0.6 0.5 0.2 0.4 0.1
Stop3 0.2 8.9 7.4 8 8.1 7.8 7.5 7.1 7.7 7.7 0.9 10.1 7.4 7.7 8.1 6.8 7.1 6.4 7 7.8
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 Stop1 98.9 88.3 89.5 88.3 87.6 89 86.1 87.8 86.9 86.2 98.6 89.9 87.3 88.8 88.5 88.7 87.8 85.1 88.5 87.2
Stop2 0 0.2 1 0.9 1.2 0.5 0.8 0.6 0.2 0.3 0 0.1 0.5 0.3 0.4 0.5 0.7 0.4 0.6 0.9
Stop3 1.1 11.5 9.5 10.8 11.2 10.5 13.1 11.6 12.9 13.5 1.4 10 12.2 10.9 11.1 10.8 11.5 14.5 10.9 11.9
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 Stop1 97.8 88.4 86.6 83.1 85.7 83.4 82.8 81.3 82.1 82.4 97.6 90.2 84.4 85 84.2 81.7 80.2 82.2 80.7 83.2
Stop2 0 0.4 1.1 1 1 0.6 0.7 0.5 0.8 0.2 0 0.2 0.7 0.9 1.2 0.6 0.6 0.5 0.4 0.5
Stop3 2.2 11.2 12.3 15.9 13.3 16 16.5 18.2 17.1 17.4 2.4 9.6 14.9 14.1 14.6 17.7 19.2 17.3 18.9 16.3
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Abstract: There are numeric numbers that define chemical descriptors that represent the entire
structure of a graph, which contain a basic chemical structure. Of these, the main factors of topological
indices are such that they are related to different physical chemical properties of primary chemical
compounds. The biological activity of chemical compounds can be constructed by the help of
topological indices. In theoretical chemistry, numerous chemical indices have been invented, such as
the Zagreb index, the Randić index, the Wiener index, and many more. Hex-derived networks have
an assortment of valuable applications in drug store, hardware, and systems administration. In this
analysis, we compute the Forgotten index and Balaban index, and reclassified the Zagreb indices,
ABC4 index, and GA5 index for the third type of hex-derived networks theoretically.

Keywords: forgotten index; balaban index; reclassified the zagreb indices; ABC4 index; GA5 index;
HDN3(m); THDN3(m); RHDN3(m)

1. Introduction

Topological indices are very useful tools for chemists which are provided by Graph Theory. In a
molecular graph, vertices denotes the atoms and edges are represented as chemical bonds in the terms
of graph theory. To predict bioactivity of the chemical compounds, the topological indices such as ABC
index, Wiener index, Randić index, Szeged index and Zagreb indices are very useful.

A graph ξ is a tuple, which consists of the n-connected vertex set |V(ξ)| and the edge set |E(ξ)|.
τ(m) denotes the degree of a vertex ‘m’ in a graph ξ. A graph can be represented by the polynomials,
numeric numbers, a sequence of numbers, or a matrix. Throughout this article, all graphs examined
are simple, finite, and connected.

As a chemical descriptor, the topological index has an integer attached to the graph which features
the graph, and there is no change under graph automorphism. Previously, interest in the computing
chemistry domain has grown in terms of topological descriptors and is mainly associated with the
use of unusual quantities, the relationship between the structure property, and the relationship of the
structure quantity. The topological indices that are based on distance, degree, and polynomials are
some of the main classes of these indices. In a number of these segments, degree-based displayers are
widely important and chemical graphs play an integral part in theory and theoretical chemistry.

In this article, we consider some important topological indices and some important derived
graphs. We examine their chemical behavior by the help of topological indices. These topological
indices are of use to chemists.

Chen et al. [1] gleaned a hexagonal mesh which consists of triangles. Triangle graphs are called
oxide graphs in terms of chemistry. We can construct a hexagonal mesh by joining these triangles,
as shown in Figure 1. There does not exist any hexagonal mesh whose dimension equals 1. By the
joining of six triangles, we make a hexagonal mesh of dimension 2, HX(2) (see Figure 1 (1)). By putting

Mathematics 2019, 7, 612; doi:10.3390/math7070612 www.mdpi.com/journal/mathematics153



Mathematics 2019, 7, 612

the triangles around the all sides of HX(2), we obtain hexagonal mesh of dimension 3, HX(3) (see
Figure 1 (2)). Furthermore, we assemble the nth hexagonal mesh by putting n triangles around the
boundary of each hexagon.

Drawing Algorithm of Third Type of Hex-Derived Networks HDN3

Step-1: For HDN3, we should draw a hexagonal mesh of dimension m.
Step-2: Draw a K3 graph in each subgraph of K3 and join all the vertices to the outer vertices of

each K3. The new graph is called an HDN3 (see Figure 2) network.
Step-3: By HDN3 network, we can simply design THDN3 (see Figure 3) and RHDN3 (see

Figure 4).

Figure 1. Hexagonal meshes: (1) HX2, (2) HX3, and (3), all facing HX2.

Figure 2. Third type of hex-derived network (HDN3(4)).

In this paper, ‘ξ’ is taken as a simple connected graph and the degree of any vertex ḿ ∈ V(ξ) is
stands for τ(ḿ).

The oldest, most desired and supremely studied degree-based topological index was introduced
by Milan Randić and is known as Randić index [2] denoted by R− 1

2
(ξ) and described as

R− 1
2
(ξ) = ∑

ḿń∈E(ξ)

1√
τ(ḿ)τ(ń)

. (1)

The Forgotten index, also called F-index, was discovered by Furtula and Ivan Gutman [3] and
described as

F(ξ) = ∑
ḿń∈E(ξ)

((τ(ḿ))2 + (τ(ń))2). (2)
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Figure 3. Third type of triangular hex-derived network (THDN3(7)).

Figure 4. Third type of rectangular hex-derived network (RHDN3(4, 4)).

In 1982, Balaban [4,5] found another important index known as Balaban index. For a graph ξ of ‘n’
vertices and ‘m’ edges, and is described as

J(ξ) =
(

m
m − n + 2

)
∑

ḿń∈E(ξ)

1√
τ(ḿ)× τ(ń)

. (3)

The reclassified the Zagreb indices which are proposed by Ranjini et al. [6], is of three types.
For a graph ξ, it is described as

ReZG1(ξ) = ∑
ḿń∈E(ξ)

(
τ(ḿ)× τ(ń)
τ(ḿ) + τ(ń)

)
, (4)

ReZG2(ξ) = ∑
ḿń∈E(ξ)

(
τ(ḿ) + τ(ń)
τ(ḿ)× τ(ń)

)
, (5)

ReZG3(ξ) = ∑
ḿń∈E(ξ)

(τ(ḿ)× τ(ń))(τ(ḿ) + τ(ń)). (6)

The atom-bond connectivity (ABC) index is a useful predictive index in the study of the heat of
formation in alkanes [7] and is introduced by Estrada et al. [8].

Ghorbani et al. [9] introduced the ABC4 index and is described as

ABC4(ξ) = ∑
ḿń∈E(ξ)

√
Sḿ + Sń − 2

SḿSń
. (7)

Graovac et al. [10] introduced the GA5 index and is described as

GA5(ξ) = ∑
ḿń∈E(ξ)

2
√

SḿSń

(Sḿ + Sń)
. (8)
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2. Main Results

Simonraj et al. [11] created the new network which is named as third type of hex-derived networks.
Chang-Cheng Wei et al. [12] found some topological indices of certain new derived networks. In this
paper, we compute the exact results for all the above descriptors. For these results on different
degree-based topological descriptors for a variety of graphs, we recommend [13–20]. For the basic
notations and definitions, see [21,22].

2.1. Results for HDN3(m)

In this part, the Forgotten index, Balaban index, reclassified the Zagreb indices, ABC4 index, and
GA5 index are under consideration for the third type of hex-derived network.

Theorem 1. Consider the third type of hex-derived network HDN3(m); its Forgotten index is equal to

F(HDN3(m)) = 6(5339 − 8132n + 3108n2).

Proof. Let ξ1 be the hex-derived network of Type 3, HDN3(m) shown in Figure 2, where m ≥ 4.
The hex derived network ξ1 has 21m2 − 39m + 19 vertices and the edge set of ξ1 is divided into nine
partitions based on the degrees of end vertices as shown in Table 1.

Forgotten index can be calculated by using Table 1. Thus, from (2), it follows,

F(ξ1) = 32|E1(ξ1)|+ 65|E2(ξ1)|+ 116|E3(ξ1)|+ 340|E4(ξ1)|+ 149|E5(ξ1)|+ 373|E6(ξ1)|+
200|E7(ξ1)|+ 424|E8(ξ1)|+ 648|E9(ξ1)|.

After some calculations, we have the final result

=⇒ F(ξ1) = 6(5339 − 8132n + 3108n2).

Table 1. Edge partition of third type of hex-derived network HDN3(m), based on degrees of end
vertices of each edge.

(τḿ, τń) Where ḿń ∈ E(ξ1) Number of Edges (τḿ, τń) Where ḿń ∈ E(ξ1) Number of Edges

(4, 4) 18m2 − 36m + 18 (7, 18) 6
(4, 7) 24 (10, 10) 6m − 18
(4, 10) 36m − 72 (10, 18) 12m − 24
(4, 18) 36m2 − 108m + 84 (18, 18) 9m2 − 33m + 30
(7, 10) 12 - -

In the subsequent theorem, we compute the Balaban index of the third type of hex-derived
network, ξ1.

Theorem 2. For the third type of hex-derived network ξ1, the Balaban index is equal to

J(ξ1) =

(
1

70(43 − 84m + 42m2)

)
((20 − 41m + 21m2)(1595.47 + 7(−307 − 270

√
2 + 12

√
5 +

54
√

10)m) + 210(5 + 3
√

2)m2)
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Proof. Let ξ1 be the third type of hex-derived network HDN3(m). The Balaban index can be calculated
by using (3) and with the help of Table 1, we have.

J(ξ1) =

(
63n2 − 123n + 60
43 − 84n + 42n2

)(
1
4
|E1(ξ1)|+ 1

2
√

7
|E2(ξ1)|+ 1

2
√

10
|E3(ξ1)|+ 1

6
√

2
|E4(ξ1)|+

1√
70

|E5(ξ1)|+ 1
3
√

14
|E6(ξ1)|+ 1

10
|E7(ξ1)|+ 1

6
√

5
|E8(ξ1)|+ 1

18
|E9(ξ1)|

)
.

After some calculations, we have the result

=⇒ J(ξ1) =

(
1

70(43 − 84m + 42m2)

)
((20 − 41m + 21m2)(1595.47 + 7(−307 − 270

√
2 + 12

√
5 +

54
√

10)m) + 210(5 + 3
√

2)m2).

Now, we compute ReZG1, ReZG2 and ReZG3 indices of the third type of hex-derived network ξ1.

Theorem 3. Let ξ1 be the third type of hex-derived network, then

• ReZG1(ξ1) = 19 − 39m + 21m2,
• ReZG2(ξ1) = 115452

425 − 5637m
11 + 2583m2

11 ,
• ReZG3(ξ1) = 12(27381 − 38996m + 13692m2).

Proof. Reclassified Zagreb index can be calculated by using Table 1, the ReZG1(ξ1) by using
Equation (4) as follows.

ReZG1(ξ1) = 2|E1(ξ1)|+ 28
11

|E2(ξ1)|+ 20
7
|E3(ξ1)|+ 36

11
|E4(ξ1)|+ 70

17
|E5(ξ1)|+ 126

25
|E6(ξ1)|+

5|E7(ξ1)|+ 45
7
|E8(ξ1)|+ 9|E9(ξ1)|.

After some calculations, we have

=⇒ ReZG1(ξ1) = 19 − 39m + 21m2.

The ReZG2(ξ1) can be calculated by using (5) as follows.

ReZG2(ξ1) =
1
2
|E1(ξ1)|+ 11

28
|E2(ξ1)|+ 7

20
|E3(ξ1)|+ 11

36
|E4(ξ1)|+ 17

70
|E5(ξ1)|+

25
126

|E6(ξ1)|+ 1
5
|E7(ξ1)|+ 7

45
|E8(ξ1)|+ 1

9
|E9(ξ1)|.

After some calculations, we have

=⇒ ReZG2(ξ1) =
115452

425
− 5637m

11
+

2583m2

11
.

The ReZG3(ξ1) index can be calculated from (6) as follows.

ReZG3(ξ1) = ∑
ḿń∈E(ξ1)

(τ(ḿ)× τ(ń))(τ(ḿ) + τ(ń) = ∑
ḿń∈Ej(ξ1)

9

∑
j=1

(τ(ḿ)× τ(ń))(τ(ḿ) + τ(ń))

ReZG3(ξ1) = 128|E1(ξ1)|+ 308|E2(ξ1)|+ 560|E3(ξ1)|+ 1584|E4(ξ1)|+ 1190|E5(ξ1)|+
3150|E6(ξ1)|+ 2000|E7(ξ1)|+ 5040|E8(ξ1)|+ 11664|E9(ξ1)|.
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After some calculations, we have

=⇒ ReZG3(ξ1) = 12(27381 − 38996m + 13692m2).

Now, we find ABC4 and GA5 indices of third type of hex-derived network ξ1.

Theorem 4. Let ξ1 be the third type of hex-derived network, then

• ABC4(ξ1) = 51.706 + 3
20

√
79
2 (−5 + m) + 3

√
53
70 (−4 + m) + 3

5

√
109
14 (−4 + m) +

√
114
5 (−4 + m) +

3
35

√
139

2 (−4 + m) + 3
√

14
65 (−3 + m) + 12

√
26
55 (−3 + m) + 2

√
174
35 (−3 + m) +

√
62
7 (−3 + m) +√

78
11 (−2 + m) + 9

11

√
43
2 (−2 + m)2 + 1

3

√
35
2 (−5 + 2m) + 1

26

√
155

2 (24 − 17m + 3m2) + 3
√

6
13 (19 −

15m + 3m2);
• GA5(ξ1) = 315.338 + 288

29

√
5(−4 + m) + 48

11

√
7(−4 + m) + 16

9

√
35(−4 + m) + 9

2

√
7(−3 + m) +

36
11

√
35(−3 + m) + 48

23

√
385(−3 + m) + 12

37

√
1365(−3 + m) + 18

5

√
11(−2 + m) − 99m + 27m2 +

12
25

√
429(19 − 15m + 3m2).

Proof. The ABC4(ξ1) index can be calculated by using (7) and by Table 2, as follows.

ABC4(ξ1) =
2
5

√
14
33

|E10(ξ1)|+
√

59
30

|E11(ξ1)|+ 1
15

√
77
6
|E12(ξ1)|+ 36

11
2√
77

|E13(ξ1)|+

1
6

√
31
14

|E14(ξ1)|+ 1
14

√
103
11

|E15(ξ1)|+ 1
4

√
53
70

|E16(ξ1)|+ 1
6

√
67
33

|E17(ξ1)|+
1
9

√
85
22

|E18(ξ1)|+ 4
3

√
10

473
|E19(ξ1)|+ 1

18

√
32
2
|E20(ξ1)|+ 1

2

√
13
66

|E21(ξ1)|+
1
2

√
37
231

|E22(ξ1)|+ 1
4

√
19
30

|E23(ξ1)|+ 1
6

√
163
129

|E24(ξ1)|+ 1
2

√
29
210

|E25(ξ1)|+
1
22

√
43
2
|E26(ξ1)|+ 1

2

√
57

473
|E27(ξ1)|+ 1

2

√
13
110

|E28(ξ1)|+ 1
2

√
3

26
|E29(ξ1)|+

1
3

√
43
154

|E30(ξ1)|+ 1
9

√
181
86

|E31(ξ1)|+ 1
4

√
31
77

|E32(ξ1)|+ 2

√
17

3311
|E33(ξ1)|+

1
14

√
43
11

|E34(ξ1)|+ 1
40

√
79
2
|E35(ξ1) +

1
20

√
109
14

|E36(ξ1)|+ 1
2

√
99

1505
|E37(ξ1) +

1
6

√
283
559

|E38(ξ1)|+ 1
70

√
139
2

|E39(ξ1)|+ 1
2

√
7

130
|E40(ξ1)|+ 1

78

√
155

2
|E41(ξ1)|.

After some calculations, we have

=⇒ ABC4(ξ1) = 51.706 +
3
20

√
79
2
(−5 + m) + 3

√
53
70

(−4 + m) +
3
5

√
109
14

(−4 + m) +√
114
5

(−4 + m) +
3
35

√
139
2

(−4 + m) + 3

√
14
65

(−3 + m) + 12

√
26
55

(−3 + m) +

2

√
174
35

(−3 + m) +

√
62
7
(−3 + m) +

√
78
11

(−2 + m) +
9
11

√
43
2
(−2 + m)2 +

1
3

√
35
2
(−5 + 2m) +

1
26

√
155

2
(24 − 17m + 3m2) + 3

√
6
13

(19 − 15m + 3m2).
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The GA5(ξ1) index can be determined from (8) as follows.

GA5(ξ1) =
5
29

√
33|E10(ξ1)|+ 60

11
|E11(ξ1)|+ 30

79

√
6|E12(ξ1)|+ 5

51

√
77|E13(ξ1)|+

3
8

√
7|E14(ξ1)|+ 4

15

√
11|E15(ξ1)|+ 4

27

√
35|E16(ξ1)|+ 4

23

√
33|E17(ξ1)|+

6
29

√
22|E18(ξ1)|+ 1

31

√
957|E19(ξ1)|+ |E20(ξ1)|+ 3

10

√
11|E21(ξ1)|+

12
113

√
77|E22(ξ1)|+ 12

29

√
5|E23(ξ1)|+ 4

55

√
129|E24(ξ1)|+ 3

22

√
35|E25(ξ1)|+

|E26(ξ1)|+ 4
173

√
1419|E27(ξ1)|+ 1

23

√
385|E28(ξ1)|+ 1

25

√
429|E29(ξ1)|+

6
131

√
462|E30(ξ1)|+ 6

61

√
86|E31(ξ1)|+ 8

157

√
385|E32(ξ1)|+ 1

103

√
9933|E33(ξ1)|+

4
31

√
55|E34(ξ1)|+ |E35(ξ1) +

4
11

√
7|E36(ξ1)|+ 4

269

√
4515|E37(ξ1)|+

4
95

√
559|E38(ξ1)|+ |E39(ξ1)|+ 1

37

√
1365|E40(ξ1)|+ |E41(ξ1)|.

After some calculations, we have

=⇒ GA5(ξ1) = 315.338 +
288
29

√
5(−4 + m) +

48
11

√
7(−4 + m) +

16
9

√
35(−4 + m) +

9
2√

7(−3 + m) +
36
11

√
35(−3 + m) +

48
23

√
385(−3 + m) +

12
37

√
1365(−3 + m) +

18
5

√
11(−2 + m)− 99m + 27m2 +

12
25

√
429(19 − 15m + 3m2).

Table 2. Edge partition of the third type of hex-derived network HDN3(m) based on sum of degrees of
end vertices of each edge.

(τḿ, τń) Where ḿń ∈ E(ξ1) Number of Edges (τḿ, τń) Where ḿń ∈ E(ξ1) Number of Edges

(25, 33) 12 (44, 44) 18m2 − 72m + 72
(25, 36) 12 (44, 129) 36
(25, 54) 12 (44, 140) 48m − 144
(25, 77) 12 (44, 156) 36m2 − 180m + 228
(28, 36) 12m − 36 (54, 77) 12
(28, 77) 12 (54, 129) 6
(28, 80) 12m − 48 (77, 80) 12
(33, 36) 12 (77, 129) 12
(33, 54) 12 (77, 140) 12
(33, 129) 12 (80, 80) 6m − 30
(36, 36) 12m − 30 (80, 140) 12m − 48
(36, 44) 12m − 24 (129, 140) 12
(36, 77) 48 (129, 156) 6
(36, 80) 24m − 96 (140, 140) 6m − 24
(36, 129) 24 (140, 156) 12m − 36
(36, 140) 24m − 72 (156, 156) 9m2 − 51m + 72

2.2. Results for Third Type of Triangular Hex-Derived Network THDN3(m)

Now, we discuss the third type of rectangular hex-derived network and compute exact results for
Forgotten index and Balaban index, and reclassified the Zagreb indices, ABC4 index, and GA5 index
for THDN3(m).
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Theorem 5. Consider the third type of triangular hex-derived network of THDN3(n); its Forgotten index is
equal to

F(THDN3(m)) = 12(990 − 997m + 259m2).

Proof. Let ξ2 be the third type of triangular hex-derived network, THDN3(m) shown in Figure 3,
where m ≥ 4. The third type of triangular hex-derived network ξ2 has 7m2−11m+6

2 vertices and the edge
set of ξ2 is divided into six partitions based on the degree of end vertices as shown in Table 3.

By using edge partition from Table 3, we get. Thus, from (2) it follows that

F(ξ2) = 32|E1(ξ2)|+ 116|E2(ξ2)|+ 340|E3(ξ2)|+ 200|E4(ξ2)|+ 424|E5(ξ2)|+ 648|E6(ξ2)|.

By doing some calculations, we get

=⇒ F(ξ2) = 12(990 − 997m + 259m2).

Table 3. Edge partition of the third type of triangular hex-derived network THDN3(m) based on
degrees of end vertices of each edge.

(τx, τy) Where ḿń ∈ E(ξ1) Number of Edges (τu, τv) Where ḿń ∈ E(ξ1) Number of Edges

(4, 4) 3m2 − 6m + 9 (10, 10) 3m − 6
(4, 10) 18m − 30 (10, 18) 6m − 18
(4, 18) 6m2 − 30m + 36 (18, 18) 3m2−21m+36

2

In the following theorem, we compute the Balaban index of the third type of triangular hex-derived
network, ξ2.

Theorem 6. For the third type of triangular hex-derived network ξ2, the Balaban index is equal to

J(ξ2) =

(
1

40(8 − 14m + 7m2)

)(
6 − 13m + 7m2)(159 + 1802

√
2 − 36

√
5 − 90

√
10 + (−107 − 150

√
2 +

12
√

5 + 54
√

10)m + 10(5 + 3
√

2)m2
)

.

Proof. Let ξ2 be the third type of triangular hex-derived network THDN3(m). By using edge partition
from Table 3, the result follows. The Balaban index can be calculated by using (3) as follows.

J(ξ2) =
3
2

(
6 − 13m + 7m2

8 − 14m + 7m2

)(
1
4
|E1(ξ2)|+ 1

2
√

10
|E2(ξ2)|+ 1

6
√

2
|E3(ξ2)|+ 1

10
|E4(ξ2)|+

1
6
√

5
|E5(ξ2)|+ 1

18
|E6(ξ2)|

)
.

After some calculation, we have

=⇒ J(ξ2) =

(
1

40(8 − 14m + 7m2)

)(
6 − 13m + 7m2)(159 + 1802

√
2 − 36

√
5 − 90

√
10 + (−107 −

150
√

2 + 12
√

5 + 54
√

10)m + 10(5 + 3
√

2)m2
)

.

Now, we compute ReZG1, ReZG2 and ReZG3 indices of third type of triangular hex-derived
network ξ2.
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Theorem 7. Let ξ2 be the third type of triangular hex-derived network, then

• ReZG1(ξ2) = 3
154 (3408 − 5117m + 2009m2),

• ReZG2(ξ2) = 1
2 (6 − 11m + 7m2),

• ReZG3(ξ2) = 24(6192 − 5185m + 1141m2).

Proof. By using edge partition given in Table 3, the ReZG1(ξ2) can be calculated by using (4)
as follows.

ReZG1(ξ2) = 2|E1(ξ2)|+ 20
7
|E2(ξ2)|+ 36

11
|E3(ξ2)|+ 5|E4(ξ2)|+ 45

7
|E5(ξ2)|+ 9|E6(ξ2)|.

After some calculation, we have

=⇒ ReZG1(ξ2) =
3

154
(3408 − 5117m + 2009m2).

The ReZG2(ξ2) can be calculated by using (5) as follows.

ReZG2(ξ2) =
1
2
|E1(ξ2)|+ 7

20
|E2(ξ2)|+ 11

36
|E3(ξ2)|+ 1

5
|E4(ξ2)|+ 7

45
|E5(ξ2)|+ 1

9
|E6(ξ2)|.

After some calculation, we have

=⇒ ReZG2(ξ2) =
1
2
(6 − 11m + 7m2).

The ReZG3(ξ2) index can be calculated from (6) as follows.

ReZG3(ξ2) = 128|E1(ξ2)|+ 560|E2(ξ2)|+ 1584|E3(ξ2)|+ 2000|E4(ξ2)|+ 5040|E5(ξ2)|+
11664|E6(ξ2)|.

After some calculation, we have

=⇒ ReZG3(ξ2) = 24(6192 − 5185m + 1141m2).

Now, we compute ABC4 and GA5 indices of third type of triangular hex-derived network ξ2.

Theorem 8. Let ξ2 be the third type of triangular hex-derived network, then

• ABC4(ξ2) = 24.131 + 3
√

7
130 (−6 + m) + 6

√
26
55 (−5 + m) +

√
174
35 (−5 + m) + 3

10

√
109
14 (−5 + m) +

3
40

√
79
2 (−5 + m) + 3

70

√
139
2 (−5 + m) + 3

2

√
53
70 (−4 + m) +

√
39
22 (−4 + m) +

√
57
10 (−4 + m) +

3
22

√
43
2 (−4 + m)2 + 1

3

√
35
2 (−3 + m) + 2

√
7

11 (−2 + m) + 1
52

√
155

2 (42 − 13m + m2) + 3
√

3
26 (30 −

11m + m2);
• GA5(ξ2) = 110.66+ 6

37

√
1365(−6+ m) + 24

11

√
7(−5+ m) + 18

11

√
35(−5+ m) + 24

23

√
385(−5+ m) +

144
29

√
5(−4 + m) + 9

5

√
11(−4 + m) + 8

9

√
35(−4 + m) + 36

29

√
22(−2 + m) − 12m + 3m2 + 3

2 (42 −
13m + m2) + 6

25

√
429(30 − 11m + m2).

Proof. By using the edge partition given in Table 4, the ABC4(ξ2) index can be calculated by using (7)
as follows.
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ABC4(ξ2) =
1

11

√
21
2
|E7(ξ2)|+

√
6

77
|E8(ξ2)|+ 1

3

√
7
11

|E9(ξ2)|+ 1
11

√
43
6
|E10(ξ2)|+√

23
462

|E11(ξ2)|+ 1
4

√
53
70

|E12(ξ2)|+ 1
18

√
32
2
|E13(ξ2)|+ 1

2

√
13
66

|E14(ξ2)|+
5
3

1√
6
|E15(ξ2)|+ 1

4

√
19
30

|E16(ξ2)|+ 1
6

√
79
62

|E17(ξ2)|+ 1
2

√
29

210
|E18(ξ2)|+

1
22

√
43
2
|E19(ξ2)|+ 1

2

√
83
682

|E20(ξ2)|+ 1
2

√
13
110

|E21(ξ2)|+ 1
2

√
3
26

|E22(ξ2)|+
1

33

√
65
2
|E23(ξ2)|+

√
3

110
|E24(ξ2)|+

√
47

2046
|E25(ξ2)|+ 1

40

√
79
2
|E26(ξ2)|+

1
4

√
101
310

|E27(ξ2)|+ 1
20

√
109
14

|E28(ξ2)|+ 1
2

√
131

2170
|E29(ξ2)|+ 1

70

√
139

2
|E30(ξ2)|+

1
2

√
7

130
|E31(ξ2)|+ 1

78

√
155
2

|E32(ξ2)|.

After some calculation, we have

=⇒ ABC4(ξ2) = 24.131 + 3

√
7

130
(−6 + m) + 6

√
26
55

(−5 + m) +

√
174
35

(−5 + m) +

3
10

√
109
14

(−5 + m) +
3

40

√
79
2
(−5 + m) +

3
70

√
139

2
(−5 + m) +

3
2

√
53
70

(−4 + m) +√
39
22

(−4 + m) +

√
57
10

(−4 + m) +
3
22

√
43
2
(−4 + m)2 +

1
3

√
35
2
(−3 + m) +

2

√
7

11
(−2 + m) +

1
52

√
155
2

(42 − 13m + m2) + 3

√
3

26
(30 − 11m + m2).

The GA5(ξ2) index can be calculated from (8) as follows.

GA5(ξ2) = 1|E7(ξ2)|+ 2
25

√
154|E8(ξ2)|+ 6

29

√
22|E9(ξ2)|+ 1

2

√
3|E10(ξ2)|+

2
47

√
462|E11(ξ2)|+ 4

27

√
35|E12(ξ2)|+ 1|E13(ξ2)|+ 3

10

√
11|E14(ξ2)|+

2
17

√
66|E15(ξ2)|+ 12

29

√
5|E16(ξ2)|+ 3

20

√
31|E17(ξ2)|+ 3

22

√
35|E18(ξ2)|+

1|E19(ξ2)|+ 1
21

√
341|E20(ξ2)|+ 1

23

√
385|E21(ξ2)|+ 1

25

√
429|E22(ξ2)|+

1|E23(ξ2)|+ 4
73

√
330|E24(ξ2)|+ 2

95

√
2046|E25(ξ2)|+ 1|E26(ξ2)|+

4
51

√
155|E27(ξ2)|+ 4

11

√
7|E28(ξ2)|+ 1

33

√
1085|E29(ξ2)|+ 1|E30(ξ2)|+

1
37

√
1365|E31(ξ2)|+ 1|E32(ξ2)|.

After some calculation, we have

=⇒ GA5(ξ2) = 110.66 +
6

37

√
1365(−6 + m) +

24
11

√
7(−5 + m) +

18
11

√
35(−5 + m) +

24
23

√
385(−5 +

m) +
144
29

√
5(−4 + m) +

9
5

√
11(−4 + m) +

8
9

√
35(−4 + m) +

36
29

√
22(−2 + m)− 12m +

3m2 +
3
2
(42 − 13m + m2) +

6
25

√
429(30 − 11m + m2).
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Table 4. Edge partition of the third type of triangular hex-derived network THDN3(m) based on the
sum of degrees of end vertices of each edge.

(τx, τy) Where ḿń ∈ E(ξ2) Number of Edges (τu, τv) Where ḿń ∈ E(ξ2) Number of Edges

(22, 22) 3 (44, 124) 12
(22, 28) 12 (44, 140) 24m − 120
(22, 36) 6 (44, 156) 6m2 − 66m + 180
(22, 66) 6m − 12 (66, 66) 3
(28, 66) 24 (66, 80) 6
(28, 80) 6m − 24 (66, 124) 6
(36, 36) 6m − 18 (80, 80) 3m − 15
(36, 44) 6m − 24 (80, 124) 6
(36, 66) 12 (80, 140) 6m − 30
(36, 80) 12m − 48 (124, 140) 6
(36, 124) 24 (140, 140) 3m − 15
(36, 140) 12m − 60 (140, 156) 6m − 36
(44, 44) 3m2 − 24m + 48 (156, 156) 3m2−39m+126

2

2.3. Results for Third Type of Rectangular Hex-Derived Network, RHDN3(m, n)

In this section, we calculate certain degree-based topological indices of the third type of rectangular
hex-derived network, RHDN3(m, n) of dimension m = n. We compute Forgotten index and Balaban
index, and reclassified the Zagreb indices, forth version of ABC index, and fifth version of GA index
in the coming theorems of RHDN3(m, n).

Theorem 9. Consider the third type of rectangular hex-derived network RHDN3(m), its Forgotten index is
equal to

F(RHDN3(m)) = 19726 − 20096m + 6216m2.

Proof. Let ξ3 be the third type of rectangular hex-derived network, RHDN3(m) shown in Figure 4,
where m = s ≥ 4. The third type of rectangular hex-derived network ξ3 has 7m2 − 12m + 6 vertices
and the edge set of ξ3 is divided into nine partitions based on the degree of end vertices as shown in
Table 5.

Table 5. Edge partition of the third type of rectangular hex-derived network, RHDN3(m) based on
degrees of end vertices of each edge.

(τḿ, τń) Where ḿń ∈ E(ξ1) Number of Edges (τḿ, τń) Where ḿń ∈ E(ξ1) Number of Edges

(4, 4) 6m2 − 12m + 10 (7, 18) 2
(4, 7) 8 (10, 10) 4m − 10
(4, 10) 24m − 44 (10, 18) 8m − 20
(4, 18) 12m2 − 48m + 48 (18, 18) 3m2 − 16m + 21
(7, 10) 4 - -

Thus, from (2), it follows that.

F(G) = ∑
ḿń∈E(ξ)

((τ(ḿ))2 + (τ(ń))2)

Let ξ3 be the third type of rectangular hex-derived network, THDN3(m). By using edge partition
from Table 5, the result follows.

F(ξ3) = ∑
ḿń∈E(ξ3)

((τ(ḿ))2 + (τ(ń))2) = ∑
ḿń∈Ej(ξ3)

9

∑
j=1

((τ(ḿ))2 + (τ(ń))2)
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F(ξ3) = 32|E1(ξ3)|+ 65|E2(ξ3)|+ 116|E3(ξ3)|+ 340|E4(ξ3)|+ 149|E5(ξ3)|+ 373|E6(ξ3)|+
200|E7(ξ3)|+ 424|E8(ξ3)|+ 648|E9(ξ3)|.

After some calculation, we have

=⇒ F(ξ3) = 19726 − 20096m + 6216m2.

In the following theorem, we compute the Balaban index of the third type of rectangular
hex-derived network, ξ3.

Theorem 10. For the third type of rectangular hex-derived network ξ3, the Balaban index is equal to

J(ξ3) =

(
1

315(15 − 28m + 14m2)

)
7(−157 − 180

√
2 + 12

√
5 + 54

√
10)m + 105(5 + 3

√
2)m2)(19 −

40m + 21m2)(3(280 + 420
√

2 − 70
√

5 + 60
√

7 − 231
√

10 + 5
√

14 + 6
√

70)).

Proof. Let ξ3 be the rectangular hex-derived network RHDN3(m). By using edge partition from
Table 5, the result follows. The Balaban index can be calculated by using (3) as follows.

J(ξ3) =

(
m

m − n + 2

)
∑

ḿń∈E(ξ3)

1√
τ(ḿ)× τ(ń)

=

(
m

m − n + 2

)
∑

ḿń∈Ej(ξ3)

9

∑
j=1

1√
τ(ḿ)× τ(ń)

J(ξ3) =

(
19 − 40m + 21m2

15 − 28m + 14m2

)(
1
4
|E1(ξ3)|+ 1

2
√

7
|E2(ξ3)|+ 1

2
√

10
|E3(ξ3)|+ 1

6
√

2
|E4(ξ3)|+

1√
70

|E5(ξ3)|+ 1
3
√

14
|E6(ξ3)|+ 1

10
|E7(ξ3)|+ 1

6
√

5
|E8(ξ3)|+ 1

18
|E9(ξ3)|

)
.

After some calculation, we have

=⇒ J(ξ3) =

(
1

315(15 − 28m + 14m2)

)
7(−157 − 180

√
2 + 12

√
5 + 54

√
10)m + 105(5 + 3

√
2)m2)

(19 − 40m + 21m2)(3(280 + 420
√

2 − 70
√

5 + 60
√

7 − 231
√

10 + 5
√

14 + 6
√

70)).

Now, we compute ReZG1, ReZG2 and ReZG3 indices of the third type of rectangular hex-derived
network ξ3.

Theorem 11. Let ξ3 be the third type of rectangular hex-derived network, then

• ReZG1(ξ3) = 10102843
32725 − 2036m

11 + 861m2

11 ,
• ReZG2(ξ3) = 56 − 12m + 7m2,
• ReZG3(ξ3) = 4(50785 − 50608m + 13692m2).

Proof. By using the edge partition given in Table 5, the ReZG1(ξ3) can be calculated by using (4)
as follows.

ReZG1(ξ) = ∑
ḿń∈E(ξ3)

(
τ(ḿ)× τ(ń)
τ(ḿ) + τ(ń)

)
=

9

∑
j=1

∑
ḿń∈Ej(ξ3)

(
τ(ḿ)× τ(ń)
τ(ḿ) + τ(ń)

)
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ReZG1(ξ3) = 2|E1(ξ3)|+ 28
11

|E2(ξ3)|+ 20
7
|E3(ξ3)|+ 36

11
|E4(ξ3)|+ 70

17
|E5(ξ3)|+ 126

25
|E6(ξ3)|+

5|E7(ξ3)|+ 45
7
|E8(ξ3)|+ 9|E9(ξ3)|.

After some calculation, we have

=⇒ ReZG1(ξ3) =
10102843

32725
− 2036m

11
+

861m2

11
.

The ReZG2(ξ3) can be calculated by using (5) as follows.

ReZG2(ξ3) = ∑
ḿń∈E(ξ3)

(
τ(ḿ) + τ(ń)
τ(ḿ)× τ(ń)

)
= ∑

ḿń∈Ej(ξ3)

9

∑
j=1

(
τ(ḿ) + τ(ń)
τ(ḿ)× τ(ń)

)

ReZG2(ξ3) =
1
2
|E1(ξ3)|+ 11

28
|E2(ξ3)|+ 7

20
|E3(ξ3)|+ 11

36
|E4(ξ3)|+ 17

70
|E5(ξ3)|+ 25

126
|E6(ξ3)|+

1
5
|E7(ξ3)|+ 7

45
|E8(ξ3)|+ 1

9
|E9(ξ3)|.

After some calculation, we have

=⇒ ReZG2(ξ3) = 56 − 12m + 7m2.

The ReZG3(ξ3) index can be calculated from (6) as follows.

ReZG3(ξ3) = ∑
ḿń∈E(ξ3)

(τ(ḿ)× τ(ń))(τ(ḿ) + τ(ń) = ∑
ḿń∈Ej(ξ3)

9

∑
j=1

(τ(ḿ)× τ(ń))(τ(ḿ) + τ(ń))

ReZG3(ξ3) = 128|E1(ξ3)|+ 308|E2(ξ3)|+ 560|E3(ξ3)|+ 1584|E4(ξ3)|+ 1190|E5(ξ3)|+
3150|E6(ξ3)|+ 2000|E7(ξ3)|+ 5040|E8(ξ3)|+ 11664|E9(ξ3)|.

After some calculation, we have

=⇒ ReZG3(ξ3) = 4(50785 − 50608m + 13692m2).

Now, we compute ABC4 and GA5 indices of the third type of rectangular hex-derived network ξ3.

Theorem 12. Let ξ3 be the third type of rectangular hex-derived network, then

• ABC4(ξ3) = 22.459 + 8
√

26
55 (−4 + m) + 4

√
58

105 (−4 + m) + 4
7

√
67
15 (−4 + m) + 3

√
6

13 (−4 + m)2 +

2
√

26
33 (−3 + m) + 3

11

√
43
2 (−3 + m)2 +

√
14
65 (−9 + 2m) + 1

35

√
139

2 (−9 + 2m) + 1
3

√
62
7 (−5 + 2m) +

4
63

√
31(−5 + 2m) + 4

9

√
97
7 (−3 + 2m) + 2

21

√
89(−3 + 2m) + 1

9

√
35
2 (−11 + 4m) + 1

78

√
155
2 (65 −

28m + 3m2);
• GA5(ξ3) = 173.339 + 96

29

√
5(−4 + m) + 24

11

√
35(−4 + m) + 32

23

√
385(−4 + m) + 12

25

√
429(−4 +

m)2 + 12
5

√
11(−3 + m) − 48m + 9m2 + 4

37

√
1365(−9 + 2m) + 3

2

√
7(−5 + 2m) + 48

13 (−3 + 2m) +
32
11

√
7(−3 + 2m).

Proof. By using the edge partition given in Table 6, the ABC4(ξ3) can be calculated by using (7)
as follows.
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ABC4(ξ3) = ∑
ḿń∈E(ξ3)

√
Sḿ + Sń − 2

SḿSń
= ∑

ḿń∈Ej(ξ3)

44

∑
j=10

√
Sḿ + Sń − 2

SḿSń

ABC4(ξ3) =
1
11

√
21
2
|E10(ξ3)|+

√
6
77

|E11(ξ3)|+ 1
3

√
83

154
|E12(ξ3)|+ 1

5

√
46
33

|E13(ξ3)|+
1
30

√
59|E14(ξ3)|+ 1

15

√
77
6
|E15(ξ3)|+ 1

15

√
86
7
|E16(ξ3)|+ 1

6

√
31
14

|E17(ξ3)|+
1
42

√
89|E18(ξ3)|+ 1

6

√
67
33

|E19(ξ3)|+ 1
9

√
85
22

|E20(ξ3)|+ 4
3

√
10
473

|E21(ξ3)|+
1
18

√
35
2
|E22(ξ3)|+ 1

2

√
13
66

|E23(ξ3)|+ 1
18

√
97
7
|E24(ξ3)|+ 1

6

√
79
62

|E25(ξ3)|+
1
6

√
163
129

|E26(ξ3)|+ 1
2

√
29
210

|E27(ξ3)|+ 1
22

√
43
2
|E28(ξ3)|+ 1

2

√
83
682

|E29(ξ3)|+
1
2

√
57
473

|E30(ξ3)|+ 1
2

√
13
110

|E31(ξ3)|+ 1
2

√
3
26

|E32(ξ3) +
1
9

√
115
42

|E33(ξ3) +

1
9

√
181
86

|E34(ξ3)|+ 1
63

√
31|E35(ξ3)|+ 1

6

√
185
217

|E36(ξ3)|+ 1
3

√
190
903

|E37(ξ3)|+
1
14

√
67
15

|E38(ξ3)|+ 1
2

√
131
2170

|E39(ξ3)|+ 1
2

√
89

1505
|E40(ξ3) +

1
70

√
283
559

|E41(ξ3) +

1
70

√
139

2
|E42(ξ3)|+ 1

2

√
7

130
|E43(ξ3)|+ 1

78

√
155

2
|E44(ξ3)|.

After some calculation, we have

=⇒ ABC4(ξ3) = 22.459 + 8

√
26
55

(−4 + m) + 4

√
58

105
(−4 + m) +

4
7

√
67
15

(−4 + m) + 3

√
6

13

(−4 + m)2 + 2

√
26
33

(−3 + m) +
3

11

√
43
2
(−3 + m)2 +

√
14
65

(−9 + 2m) +
1
35

√
139

2

(−9 + 2m) +
1
3

√
62
7
(−5 + 2m) +

4
63

√
31(−5 + 2m) +

4
9

√
97
7
(−3 + 2m) +

2
21

√
89

(−3 + 2m) +
1
9

√
35
2
(−11 + 4m) +

1
78

√
155

2
(65 − 28m + 3m2).

The GA5(ξ3) index can be calculated from (8) as follows.

GA5(ξ3) = ∑
ḿń∈E(ξ3)

2
√

SḿSń

(Sḿ + Sń)
= ∑

ḿń∈Ej(ξ3)

44

∑
j=10

2
√

SḿSń

(Sḿ + Sń)
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GA5(ξ3) = 1|E10(ξ3)|+ 2
25

√
154|E11(ξ3)|+ 6

85

√
154|E12(ξ3)|+ 5

29

√
33|E13(ξ3)|+

60
61

|E14(ξ3)|+ 30
79

√
6|E15(ξ3)|+ 15

44

√
7|E16(ξ3)|+ 3

8

√
7|E17(ξ3)|+ 12

13
|E18(ξ3)|+

4
23

√
33|E19(ξ3)|+ 6

29

√
22|E20(ξ3)|+ 1

27

√
473|E21(ξ3)|+ 1|E22(ξ3)|+

3
10

√
11|E23(ξ3)|+ 4

11

√
7|E24(ξ3)|+ 3

20

√
31|E25(ξ3)|+ 4

55

√
129|E26(ξ3)|+

3
22

√
35|E27(ξ3)|+ |E28(ξ3)|+ 1

21

√
341|E29(ξ3)|+ 4

173

√
1419|E30(ξ3)|+

1
23

√
385|E31(ξ3)|+ 1

25

√
429|E32(ξ3)|+ 2

13

√
42|E33(ξ3)|+ 6

61

√
86|E34(ξ3)|+

1|E35(ξ3)|+ 12
187

√
217|E36(ξ3)|+ 1

32

√
903|E37(ξ3)|+ 12

29

√
5|E38(ξ3)|+

1
33

√
1085|E39(ξ3)|+ 4

269

√
4515|E40(ξ3)|+ 4

95

√
559|E41(ξ3)|+ 1|E42(ξ3)|+

1
37

√
1365|E43(ξ3)|+ 1|E44(ξ3)|.

After some calculations, we have

=⇒ GA5(ξ3) = 173.339 +
96
29

√
5(−4 + m) +

24
11

√
35(−4 + m) +

32
23

√
385(−4 + m) +

12
25

√
429

(−4 + m)2 +
12
5

√
11(−3 + m)− 48m + 9m2 +

4
37

√
1365(−9 + 2m) +

3
2

√
7(−5 + 2m) +

48
13

(−3 + 2m) +
32
11

√
7(−3 + 2m).

The graphical representations of topological indices of these networks are depicted in
Figures 5 and 6 for certain values of m. By varying the different values of m, the graphs are increasing.
These graphs show the correctness of the results.

Table 6. Edge partition of the third type of rectangular hex-derived network RHDN3(m) based on the
sum of degrees of end vertices of each edge.

(τx, τy) Where ḿń ∈ E(ξ3) Number of Edges (τu, τv) Where ḿń ∈ E(ξ3) Number of Edges

(22, 22) 2 (44, 44) 6m2 − 36m + 54
(22, 28) 8 (44, 124) 8
(22, 63) 4 (44, 129) 12
(25, 33) 4 (44, 140) 32m − 128
(25, 36) 4 (44, 156) 12m2 − 96m + 192
(25, 54) 4 (54, 63) 4
(25, 63) 4 (54, 129) 2
(28, 36) 8m − 20 (63, 63) 4m − 10
(28, 63) 8m − 12 (63, 124) 8
(33, 36) 4 (63, 129) 4
(33, 54) 4 (63, 140) 8m − 32
(33, 129) 4 (124, 140) 4
(36, 36) 8m − 22 (129, 140) 4
(36, 44) 8m − 24 (129, 156) 2
(36, 63) 16m − 40 (140, 140) 4m − 18
(36, 124) 16 (140, 156) 8m − 36
(36, 129) 8 (156, 156) 3m2 − 28m + 65
(36, 140) 16m − 64 - -
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Figure 5. Comparison of ABC4 index for ξ1, ξ2 and ξ3.
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Figure 6. Comparison of GA5 index for ξ1, ξ2 and ξ3.

3. Conclusions

The study of topological descriptors are very useful to acquire the basic topologies of networks.
In this paper, we find the exact results for Forgotten index, Balaban index, reclassified the Zagreb
indices, ABC4 index and GA5 index of the Hex-derived networks of type 3. Due to their fascinating
and challenging features, hex-derived networks have studied literature in relation to different
graph-ideological parameters. However, their developmental circulatory features have been read for
the foremost in this paper.

We are also very keen in designing some new networks and then study their topological indices
which will be quite helpful to understand their primary priorities.
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Abstract: For a (molecular) graph G, the extended adjacency index EA(G) is defined as Equation (1).
In this paper we introduce some graph transformations which increase or decrease the extended
adjacency (EA) index. Also, we obtain the extremal acyclic, unicyclic and bicyclic graphs with
minimum and maximum of the EA index by a unified method, respectively.

Keywords: degree of vertex; extended adjacency index

1. Introduction

Molecular descriptors are playing an important role in Chemistry, Pharmacology, etc.
Among them, topological indices have a prominent place. Topological indices (molecular structure
descriptor) are numerical quantities of a molecular graphs (or simple graphs), that are invariant under
graph isomorphism. And, are used to correlate with various physico chemical properties, chemical
reactivity or biological activity. There are hundreds of topological indices that have found some
applications in theoretical chemistry, especially in QSPR/QSAR research. Among all topological
indices one of the most investigated are the degree based topological indices, among them, the old and
widely studied topological index is Randić index [1], see the recent articles [2,3] and references cited
there in. Recently researchers are studying various degree based topological indices such as Zagreb
group indices [4–9], forgotten index [10–13], etc.

Let G = (V, E) be a simple graph without loops and multiple edges. Let V(G) and E(G) be the
vertex set and the edge set of G, respectively. The degree of a vertex u in G is the number of edges
incident to it and is denoted by dG(u). For v ∈ V(G) and e ∈ E(G), let NG(v) be the set of all neighbors
of v in G.

Extended adjacency index is one of the degree based topological descriptors which has been
proposed by the authors Yang et al. [14] in 1994 and defined as, for any graph G extended adjacency
(EA) index is:

EA = EA(G) = ∑
uv∈E(G)

1
2

(
dG(u)
dG(v)

+
dG(v)
dG(u)

)
. (1)

In [14] Yang et al. described that EA index exhibits high discriminating power and correlate well
with a number of physico chemical properties and biological activities of organic compounds. There
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are a couple of topological indices in the literature (see [15]) which are closely related to the extended
adjacency index, and they are

EA∗(G) = ∑
i<j

(
di
dj

+
dj

di

)
= 2|E|

n

∑
j=1

1
dj

− n

and

R̂(G) = ∑
i<j

(
di
dj

+
dj

di

)
Rij

where Rij is the effective resistance between vertices i and j. Obviously, EA(G) ≤ EA∗(G), and all
upper bounds for the inverse degree index ρ(G) = ∑n

j=1
1
dj

can be used to furnish upper bonds for

EA∗(G) and EA(G), even though they may not be tight for EA(G).
Since 1994, neither extended adjacency matrix nor the extended adjacency index was taken into the

consideration but in recent years only few articles have come out with its algebraic approach [16–18].
Ramane et al. determined the bounds for the EA index and characterizes graphs extremal with
respect to them. Also, obtained relation between EA index and other well known topological indices.
Moreover, determined the new results on EA index from an algebraic view point [19]. As an application,
one can find a unified approach for some degree based topological descriptors in [20–25]. For other
undefined notations refer [26,27].

Let Sn, Pn and Cn be the star, path and cycle on n vertices, respectively. Let G − V be a subgraph
of graph G by deleting vertex v and G − e be a subgraph of graph G by deleting edge e. Let G0 be a
nontrivial graph and u be its vertex. If G is obtained by G0 amalgamating a tree T at u. Then we say
that T is a subtree of G and u is its root. Let u ◦ v denote the amalgamating two vertices u and v of G.

In the present work, we obtain extremal properties of the EA index. In Section 2, we present
some graph transformations which increase or decrease EA index. In Section 3, we obtain extremal
acyclic, unicyclic and bicyclic graphs with minimum and maximum EA index by a unified method,
respectively.

2. Some Graph Transformations

In this section, we present some graph transformations which increase or decrease the EA index
and these graph transformations play an important role to determine the extremal graphs of the EA
index among acyclic, unicyclic and bicyclic graphs, respectively.

Transformation I. Let G0 be a non-trivial connected graph and v is a given vertex in G0. Let G1

be a graph obtained from G0 by attaching at v two paths p : vu1u2 . . . uk of length k and
Q : vw1w2 . . . wl of length l. Let G2 be a graph which is obtained from the graph G1, by Transformation I,
G2 = G1 − vw1 + ukw1.

Lemma 1. Let G2 be a graph obtained from G1 by Transformation I as shown in Figure 1, then

EA(G1) > EA(G2).
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Figure 1. Transformation I.

Proof. In Transformation I degree of the vertex v is decreased and the degrees of its neighbor vertices
NG0(v) remains same value. Let us assume that dG1(v) > 0. Then by the definition of EA index,
we have

EA(G1)− EA(G2) >

⎡⎢⎢⎣
1
2

(
dG1

(v)
dG1

(w1)
+

dG1
(w1)

dG1
(v)

)
+ 1

2

(
dG1

(u1)

dG1
(v) +

dG1
(v)

dG1
(u1)

)
+ 1

2

(
dG1

(uk−1)

dG1
(uk)

+
dG1

(uk)

dG1
(uk−1)

)
⎤⎥⎥⎦

−

⎡⎢⎢⎣
1
2

(
dG2 (uk)

dG2 (w1)
+

dG2 (w1)

dG2 (uk)

)
+ 1

2

(
dG2 (u1)

dG2 (v)
+

dG2 (v)
dG2 (u1)

)
+ 1

2

(
dG2 (uk−1)

dG2 (uk)
+

dG2 (uk)

dG2 (uk−1)

)
⎤⎥⎥⎦

=
(2 + dG0(v))

2 + 4
2(2 + dG0(v))

+
5
4
−

[
(1 + dG0(v))

2 + 4
4(1 + dG0(v))

+ 2

]

=
dG0(v)

4(1 + dG0(v))

[
dG0(v)

2

(2 + dG0(v))
+ 3

]
> 0.

Remark 1. By continuing the process of Transformation I, any tree T of size t connected to a graph G1 can be
changed into a path P with size (t+ 1) (i.e., Pt+1). From this process, we infer that EA index is strictly decreases.

Transformation II. Let G1 be a connected graph with an edge uv and dG1(v) ≥ 2.
Suppose that NG1(u) = {v, w1, w2, . . . , wt} and w1, w2, . . . , wt are pendent vertices.
Let G2 = G1 − {uw1, uw2, . . . , uwt}+ {vw1, vw2, . . . , vwt}.

We now show that Transformation II strictly increases the EA index of a graph.

Lemma 2. Let G2 be a graph obtained from G1 by Transformation II as shown in Figure 2. Then

EA(G2) > EA(G1).

Figure 2. Transformation II.
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Proof. Let dG0(v) > 0. In Transformation II dG2(v) > dG1(v). So similar to the proof of Lemma 1,
we have

EA(G2)− E(G1) >

[
t

∑
i=1

1
2

(
dG2(v)
dG2(wi)

+
dG2(wi)

dG2(v)

)
+

1
2

(
dG2(u)
dG2(v)

+
dG2(v)
dG2(u)

)]

−
[

t

∑
i=1

1
2

(
dG1(u)
dG1(wi)

+
dG1(wi)

dG1(u)

)
+

1
2

(
dG1(u)
dG1(v)

+
dG1(v)
dG1(u)

)]

=
1
2

t

∑
i=1

[(
dG2(v)
dG2(wi)

+
dG2(wi)

dG2(v)

)
−

(
dG1(u)
dG1(wi)

+
dG1(wi)

dG1(u)

)]
> 0.

Remark 2. By continuing the process of Transformation II, any tree T of size t connected to a graph G1 can be
changed into a star St+1. And from this process EA index increases.

Transformation III. Let G1 be a non-trivial connected graph, u and v be two vertices of G1. Let
Pl = v1(= u)v2 . . . vl(= v) is a non-trivial path of length t connected to the vertices u and v in G1.
If G2 = G1 − {v1v2, v2v3, . . . , vl−1vl}+ {w(= u ◦ v)v1, wv2, . . . , wvl} , see the Figure 3.

Figure 3. Transformation III.

Lemma 3. Let G2 be a connected graph obtained from G1 by Transformation III as shown in Figure 3. Then

EA(G2) > EA(G1).

Proof. Let dH1(u) = x and dH2(v) = y, while w be the new vertex by merging u and v with dG2(w) =

x + y + l − 1, with l ≥ 2. We can easily get that EA(G2)− EA(G1) > 0, for l = 2. We now show that
EA(G2)− EA(G1) > 0, for l > 2. From (1), we have

EA(G2)− EA(G1) >
1
2

l−1

∑
i=1

(
dG2(w)

dG2(vi)
+

dG2(vi)

dG2(w)

)
−

[
1
2

(
x
2
+

2
x

)
+

1
2

(
y
2
+

2
y

)
+ (l − 3)

]
= (l − 1)

1
2

(
(x + y + l − 1)

1
+

1
(x + y + l − 1)

)
−

(
x2 + 4

4x

)
−

(
y2 + 4

4y

)
− (l − 3)

>

[
(x + y + l − 1)2 + 1

2(x + y + l − 1)
− x2 + 4

4x

]
+

[
(x + y + l − 1)2 + 1

2(x + y + l − 1)
− y2 + 4

4y

]
> 0.
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Transformation IV. Let G1 be a non-trivial connected graph and x > 3, y > 3 are two neighbors of
vertex v1. Assume that a pendent path P = v1v2, v2v3, . . . , vt−1vt is attached at v1 in graph G1, then
G2 = G1 − xv1 + xvt, see Figure 4.

Figure 4. Transformation IV.

Lemma 4. Let G2 be a connected graph obtained from G1 by Transformation IV. Then

EA(G2) > EA(G1). (2)

Proof. By the definition of EA index, we have

EA(G2)− E(G1) >

⎡⎢⎢⎣
1
2

(
dG2 (x)
dG2 (v1)

+
dG2 (v1)

dG2 (x)

)
+ 1

2

(
dG2 (v1)

dG2 (v2)
+

dG2 (v2)

dG2 (v1)

)
+ 1

2

(
dG2 (vt−1)

dG2 (vt)
+

dG2 (vt)

dG2 (vt−1)

)
+ 1

2

(
dG2 (vt)

dG2 (y)
+

dG2 (y)
dG2 (vt)

)
⎤⎥⎥⎦

−

⎡⎢⎢⎣
1
2

(
dG1

(x)
dG1

(v1)
+

dG1
(v1)

dG1
(x)

)
+ 1

2

(
dG1

(v1)

dG1
(v2)

+
dG1

(v2)

dG1
(v1)

)
+ 1

2

(
dG1

(vt−1)

dG1
(vt)

+
dG1

(vt)

dG1
(vt−1)

)
+ 1

2

(
dG1

(v1)

dG1
(y) +

dG1
(y)

dG1
(v1)

)
⎤⎥⎥⎦

=

[
1
2

(
x
2
+

2
x

)
+ 2 +

1
2

(
2
y
+

y
2

)]
−

[
1
2

(
x
3
+

3
x

)
+

13
12

+
5
4
+

1
2

(
3
y
+

y
3

)]
=

x2 + 4
4x

−
(

x2 + 9
6x

)
+

y2 + 4
4x

−
(

y2 + 9
6y

)
− 1

3
> 0.

Transformation V: Let G0 be a non-trivial connected graph. Let u and v be a pair of equivalent vertices
in G0 with dG0(u) = dG0(v) = x and G1 be a graph obtained by attaching Sk+1 and Sl+1 at the vertices
u and v of G0 with k ≥ l, respectively. If G2 is the graph obtained by deleting the l pendent vertices at
v in G1 and connecting them to the vertex u of G, respectively, see Figure 5.

Figure 5. Transformation V.
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Lemma 5. Let G2 be a connected graph obtained from G1 by Transformation V. Then

EA(G2) > EA(G1).

Proof. Let k ≥ l ≥ 1. By (1), we have

EA(G2)− EA(G1) >
1
2

(
k

∑
i=1

dG2(u)
dG2(ui)

+
dG2(ui)

dG2(u)

)
− 1

2

(
k

∑
i=1

dG1(u)
dG1(ui)

+
dG1(ui)

dG1(u)

)

+
1
2

(
l

∑
i=1

dG2(u)
dG2(vi)

+
dG2(vi)

dG2(u)

)
− 1

2

(
l

∑
i=1

dG1(v)
dG1(vi)

+
dG1(vi)

dG1(v)

)

= k
(

1
2

(
dG2(u)

1
+

1
dG2(u)

))
− 1

2

(
dG1(u)

1
+

1
dG1(u)

)
+ l

(
1
2

(
dG2(u)

1
+

1
dG2(u)

))
− 1

2

(
dG1(v)

1
+

1
dG1(v)

)
= k + l > 0.

Remark 3. From Lemmas 3–5, we can say that Transformation III, Transformation IV and Transformation V
increases the EA index of a graph respectively.

3. Main Results

In this section, we determine the extremal EA index of graphs from An, Un and Bn, respectively
by a unified method.

Let An, Un and Bn are the set of connected acyclic, unicyclic and bicyclic graphs of order n
respectively. Let Cn(p, q) be the graph contains two cycles Cp and Cq having a common vertex with
p + q − 1 = n, Pk,l,m

n be the graph obtained by connecting two cycles Ck and Cm with a path Pl with
k + l + m − 2 = n and Cn(r, l, t) be the graph obtained by joining two triples of pendent vertices
of three paths Pl , Pr and Pt to two vertices with l + r + t − 4 = n. (without loss of generality, we
set 2 ≤ l ≤ r ≤ t). If a bicyclic graph contains one of the three graphs which are depicted in
Figure 6 as its subgraph then we have three subsets of Bn as B1

n = {Cn(p, q) : p + q − 1 = n},
B2

n = {Cn(r, l, t) : l + r + t − 4 = n} and B3
n = {Pk,l,m

n : k + l + m − 2 = n}. So the set Bn can be
partitioned into three subsets B1

n, B2
n and B3

n.

Figure 6. Subgraphs of Bn.
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The following theorem gives the minimum and maximum value of the EA index.

Theorem 1. Let G be a acyclic connected graph with order n. Then

EA(Pn) ≤ EA(G) ≤ EA(Sn).

The lower bound and upper bound is attained iff G ∼= Pn and G ∼= Sn respectively.

Proof. By using Lemmas 1 and 2 above inequalities holds good.

The graphs which are depicted in Figure 7 will be used in the following proof.

 

Figure 7. The graphs which are used in the later proof.

Theorem 2. Let G be a unicyclic graph with order n. Then

EA(Cn) ≤ EA(G) ≤ EA(S1
n),

where the lower bound and upper bound is attained iff G ∼= Cn and G ∼= S1
n respectively.

Proof. Let G contains a uniquely cycle Cl and by Lemma 3 we obtain the graph G2 in which the size
of the cycle is three and its EA index is strictly increased. Moreover, from Lemma 5, we can get the
uniquely maximum graph S1

n with respect to EA index (see Figure 7 ). On the other hand, by Lemma 1
we conclude that the minimum graph is Cn .

Theorem 3. Let G be a bicyclic graph with n vertices. Then

n +
3
2
≤ EA(G) ≤ [(n − 1)2 + 1][3n − 8] + 17

6(n − 1)
+

13
6

, (3)

where the lower bound and upper bound is attained iff G ∈ {Pk,l,m
n : l ≥ 3} ∪ {Cn(r, l, t) : l ≥ 2} and G ∼= S2

n
respectively.

Proof. Firstly, we have to prove the upper bound for the bicyclic graph with respect to EA index.
Suppose G is isomorphic to S2

n (orG ∼= S2
n), then from (1), we get

EA(G) =
[(n − 1)2 + 1][3n − 8] + 17

6(n − 1)
+

13
6

.

Next, we show that EA(G) < EA(S2
n) for G is not isomorphic to S2

n.
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Case 1: K4 − e is the subgraph of G.
If K4 − e is the subgraph of a graph G, then from Lemmas 2 and 5 we obtain G′ as a new

(bicyclic) graph whose EA index is more than that of G (see Figure 7). One can easily check that

EA(G) = [(n−1)2+1][3n−8]+17
6(n−1) + 13

6 , equality attains iff G ∼= S2
n.

Case 2: K4 − e is not the subgraph of G.
From Lemma 3 we can say that may be there are a bicyclic graph whose EA index is more than

that of graph G has the subgraph K4 − e. Hence following two subcases exist.
Subcase 2.1: G contains Cs(3, 2, m) as a subgraph.
By Lemma 3 Subcase 2.1 deduce to Case 1.
Subcase 2.2: Cs(3, 2, m) is not a subgraph of G.
If Cs(3, 2, m) is not a subgraph of G, then from Lemmas 2, 3 and 5, we will have a new

graph G
′′

whose EA index is more than that of G, see Figure 7. It is easy to verify that

EA(G) < [(n−1)2+1][3n−8]+17
6(n−1) + 13

6 .
Furthermore, We have to show the lower bound. By Lemmas 1, 2 and 4, we infer that the extremal

graph of the minimum EA index in bicyclic graphs must be the element which belongs to the set
{B1

n,B2
n,B3

n}.
We easily get that EA(Cn(p, q)) = n + 2; EA(Pk,l,m

n ) = n + 17
12 if l = 2 and EA(Pk,l,m

n ) = n + 3
2 ,

otherwise; EA(Cn(r, l, t) = n + 3
2 if l ≥ 2. Hence the lower bound and the equality attains iff

G ∈ {Pk,l,m
n : l ≥ 3} ∪ {Cn(r, l, t) : l ≥ 2}.
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Abstract: The crossing number cr(G) of a graph G is the minimum number of edge crossings over
all drawings of G in the plane. The main goal of the paper is to state the crossing number of the
join product K2,3 + Cn for the complete bipartite graph K2,3, where Cn is the cycle on n vertices.
In the proofs, the idea of a minimum number of crossings between two distinct configurations in the
various forms of arithmetic means will be extended. Finally, adding one more edge to the graph K2,3,
we also offer the crossing number of the join product of one other graph with the cycle Cn.

Keywords: graph; join product; crossing number; cyclic permutation; arithmetic mean

1. Introduction

For the first time, P. Turán described the brick factory problem. He was forced to work in
a brickyard and his task was to push the bricks of the wagons along the line from the kiln to the
storage location. The factory contained several furnaces and storage places, between which sidewalks
passed through the floor. Turán found it difficult to move the wagon through the track passage, and in
his mind he began to consider how the factory could be redesigned to minimize these crossings.
Since then, the topic has steadily grown and research into the number of crosses has become one of the
main areas of graph theory. This problem of reducing the number of crossings on the edges of graphs
were studied in many areas.

The crossing number cr(G) of a simple graph G with the vertex set V(G) and the edge set E(G) is
the minimum possible number of edge crossings in a drawing of G in the plane (for the definition of
a drawing see [1].) It is easy to see that a drawing with minimum number of crossings (an optimal
drawing) is always a good drawing, meaning that no edge crosses itself, no two edges cross more
than once, and no two edges incident with the same vertex cross. Let D (D(G)) be a good drawing
of the graph G. We denote the number of crossings in D by crD(G). Let Gi and Gj be edge-disjoint
subgraphs of G. We denote the number of crossings between edges of Gi and edges of Gj by crD(Gi, Gj),
and the number of crossings among edges of Gi in D by crD(Gi). It is easy to see that for any three
mutually edge-disjoint subgraphs Gi, Gj, and Gk of G, the following equations hold:

crD(Gi ∪ Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi ∪ Gj, Gk) = crD(Gi, Gk) + crD(Gj, Gk) .

By Garey and Johnson [2] we already know that calculating the crossing number of a simple
graph is an NP-complete problem. Recently, the exact values of the crossing numbers are known only
for some special classes of graphs. In [3], Ho gave the characterization for a few multipartite graphs.
So, the main purpose of this work is to extend the results concerning this topic for the complete
bipartite graph K2,3 on five vertices. In this paper we use definitions and notations of the crossing
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number theory presented by Klešč in [4]. In the proofs we will also use the Kleitman’s result [5] on the
crossing numbers of the complete bipartite graphs. He estimated that

cr(Km,n) =
⌊m

2

⌋⌊m − 1
2

⌋⌊n
2

⌋⌊n − 1
2

⌋
, with min{m, n} ≤ 6.

Again using Kleitman’s result [5], the exact values of the crossing numbers for the join product
of two paths, the join product of two cycles, and also for the join product of a path and a cycle were
proved in [4]. Further, some values for crossing numbers of G + Dn, G + Pn, and of G +Cn for arbitrary
graph G at most on four vertices are estimated in [6,7]. Let us note that the exact values for the crossing
numbers of the join product G with Pn and Cn were also investigated for a few graphs G of order
five and six in [1,8–12]. In all mentioned cases, the graph G contains usually at least one cycle and it
is connected.

It is important to note that the methods in this paper will mostly use several combinatorial
properties on cyclic permutations. If we place the graph K2,3 on the surface of the sphere, from the
topological point of view, the resulting number of crossings of K2,3 + Cn does not matter which of the
regions in the subdrawing of K2,3 ∪ Ti is unbounded, but on how the subgraph Ti crosses or does not
cross the edges of K2,3 (the description of Ti will be justified in Section 2). This representation of Ti can
best be described by the idea of a configuration utilizing some cyclic permutation on the pre-numbered
vertices of the graph K2,3. We introduce a new idea of various form of arithmetic means on a minimum
number of crossings between two corresponding subgraphs Ti and Tj. Certain parts of proofs can be
also simplified with the help of software which generates all cyclic permutations of five elements due
to Berežný and Buša [13].

2. Possible Drawings of K2,3 and Preliminary Results

Let us first consider the join product of the complete bipartite graph K2,3 with the discrete graph
Dn considered on n vertices. It is not difficult to see that the graph K2,3 + Dn contains just one copy of
the graph K2,3 and n vertices t1, . . . , tn, where each vertex ti, i = 1, . . . , n, is adjacent to every vertex
of K2,3. For 1 ≤ i ≤ n, let Ti denote the subgraph which is uniquely induced by the five edges that are
incident with the fixed vertex ti. This means that the graph T1 ∪ · · · ∪ Tn is isomorphic to the graph
K5,n and we obtain

K2,3 + Dn = K2,3 ∪ K5,n = K2,3 ∪
( n⋃

i=1

Ti
)

. (1)

The graph K2,3 + Cn contains K2,3 + Dn as a subgraph. For all subgraphs of the graph K2,3 + Cn

which are also subgraphs of the graph K2,3 + nK1 we can use the same notations as above. Let C∗
n

denote the cycle induced on n vertices of K2,3 + Cn but which do not belong to the subgraph K2,3.
Hence, C∗

n consists of the vertices t1, t2, . . . , tn and of the edges {ti, ti+1} and {tn, t1} for i = 1, . . . , n − 1.
So we get

K2,3 + Cn = K2,3 ∪ K5,n ∪ C∗
n = K2,3 ∪

( n⋃
i=1

Ti
)
∪ C∗

n. (2)

In the paper, the definitions and notation of the cyclic permutations and of the corresponding
configurations of subgraphs for a good drawing D of the graph K2,3 + Dn presented in [14] are used.
By Hernández-Vélez et al. [15], the cyclic permutation that records the (cyclic) counter-clockwise
order in which the edges leave a vertex ti is said to be the rotation rotD(ti) of the vertex ti. On the
basis of this, we use the notation (12345) if the counter-clockwise order the edges incident with the
vertex ti is tiv1, tiv2, tiv3, tiv4, and tiv5. Recall that any such rotation is a cyclic permutation. For our
research, we will separate all subgraphs Ti of K2,3 + Dn, i = 1, 2, . . . , n, into three families of subgraphs
depending on how many times are edges of K2,3 crossed by the edges of the considered subgraph
Ti in D. For i = 1, 2, . . . , n, let RD = {Ti : crD(K2,3, Ti) = 0}, and SD = {Ti : crD(K2,3, Ti) = 1}.
The edges of K2,3 are crossed at least twice by each other subgraph Ti in D. For Ti ∈ RD ∪ SD, let
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Fi denote the subgraph K2,3 ∪ Ti, i ∈ {1, 2, . . . , n}, of K2,3 + Dn. Clearly, the idea of dividing the
subgraphs Ti into three mentioned families is also retained in all drawings of the graph K2,3 + Cn.
In [14], there are two possible non isomorphic drawings of the graph K2,3, but only with the possibility
of obtaining a subgraph Ti ∈ RD in D. Due to the arguments in the proof of Theorem 2, if we wanted
to get an optimal drawing D of K2,3 + Cn, then the subdrawing D(K2,3) of the graph K2,3 induced
by D with at least three crossings among the edges of K2,3 forces that the set RD must be nonempty.
But, in the cases of crD(K2,3) ≤ 2, just one of the sets RD or SD can be empty. With these assumptions,
we obtain four non isomorphic drawings of the graph K2,3 as shown in Figure 1. The vertex notation of
K2,3 will be substantiated later in all mentioned drawings, and wherein two disjoint independent sets
of vertices of the complete bipartite graph K2,3 will be also highlighted by filled and non filled rings.

Figure 1. Four possible non isomorphic drawings of the graph K2,3. (a) the planar drawing of K2,3;
(b) the drawing of K2,3 with one crossing on edges of K2,3; (c) the drawing of K2,3 with crD(K2,3) = 2;
(d) the drawing of K2,3 with crD(K2,3) = 3.

3. The Crossing Number of K2,3 + Cn

In the proofs of the paper, several parts are based on the Theorem 1 presented in [14].

Theorem 1. cr(K2,3 + Dn) = 4
⌊

n
2

⌋⌊
n−1

2

⌋
+ n for any n ≥ 1.

Now we are able to prove the main results of the paper. The exact values of the crossing numbers
of the small graphs K2,3 + C3, K2,3 + C4, and K2,3 + C5 can be estimated using the algorithm located on
the website http://crossings.uos.de/ provided that it uses an ILP formulation based on Kuratowski
subgraphs and also generates verifiable formal proofs, for more see [16].

Lemma 1. cr(K2,3 + C3) = 10, cr(K2,3 + C4) = 15, and cr(K2,3 + C5) = 24.

Recall that two vertices ti and tj of K2,3 + Cn are antipodal in a drawing of K2,3 + Cn if the
subgraphs Ti and Tj do not cross, and a drawing is said to be antipodal-free if it does not have
antipodal vertices. The result in the following Theorem 2 has already been claimed by Yuan [17].
The correctness of an article written in Chinese cannot be verified because compilers cannot handle it.
Therefore, such results can only be considered as unconfirmed hypotheses.

Theorem 2. cr(K2,3 + Cn) = 4
⌊

n
2

⌋⌊
n−1

2

⌋
+ n + 3 for n ≥ 3.

Proof of Theorem 2. In Figure 2 there is the drawing of K2,3 + Cn with 4
⌊ n

2
⌋⌊ n−1

2
⌋
+ n + 3 crossings.

Thus, cr(K2,3 + Cn) ≤ 4
⌊ n

2
⌋⌊ n−1

2
⌋
+ n + 3. Theorem 2 is true for n = 3, n = 4, and n = 5 by Lemma 1.

Assume n ≥ 6. We prove the reverse inequality by contradiction. Suppose now that there is a drawing
D of K2,3 + Cn with

crD(K2,3 + Cn) < 4
⌊n

2

⌋⌊n − 1
2

⌋
+ n + 3 (3)
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and that
cr(K2,3 + Cm) ≥ 4

⌊m
2

⌋⌊m − 1
2

⌋
+ m + 3 for each 3 ≤ m < n. (4)

Figure 2. The good drawing of K2,3 + Cn with 4
⌊ n

2
⌋⌊ n−1

2
⌋
+ n + 3 crossings.

Let us show that the considered drawing D must be antipodal-free. For a contradiction suppose,
with the rest of paper, that crD(Tn−1, Tn) = 0. It is not difficult to verify in Figure 1 that if at least one
of Tn−1 and Tn, say Tn, does not cross the edges of the graph K2,3, then the edges of Tn−1 must cross
the edges of K2,3 ∪ Tn at least twice, that is, crD(K2,3, Tn−1 ∪ Tn) ≥ 2. By [5], we already know that
cr(K5,3) = 4, which yields that each Tk, k 	= n − 1, n, have to cross the edges of the subgraph Tn−1 ∪ Tn

at least four times. On the basis of this, we have

crD(K2,3 +Cn) = crD (K2,3 + Cn−2)+ crD(K5,n−2, Tn−1 ∪ Tn)+ crD(K2,3, Tn−1 ∪ Tn)+ crD(Tn−1 ∪ Tn)

≥ 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ n − 2 + 3 + 4(n − 2) + 2 + 0 = 4

⌊n
2

⌋⌊n − 1
2

⌋
+ n + 3.

This contradicts the assumption (3) and consequently confirms that D must be antipodal-free.
As the graph K2,3 + Dn is a subgraph of the graph K2,3 + Cn, by Theorem 1, the edges of K2,3 + Cn are

crossed at least 4
⌊ n

2
⌋ ⌊ n−1

2

⌋
+ n times, and therefore, at most two edges of the cycle C∗

n can be crossed
in D. This also enforces that the vertices ti of the cycle C∗

n must be placed at most in two different
regions in the considered good subdrawing of K2,3. If r = |RD| and s = |SD|, then the assumption (4)
together with cr(K5,n) = 4

⌊ n
2
⌋⌊ n−1

2
⌋

enforce that there is at least one subgraph Ti which crosses the
edges of K2,3 at most once in the drawing D. To be precise,

crD(K2,3) + crD(K2,3, K5,n) ≤ crD(K2,3) + 0r + s + 2(n − r − s) < n + 3,

that is,
crD(K2,3) + s + 2(n − r − s) ≤ n + 2. (5)

This implies that 2r + s ≥ n + crD(K2,3)− 2. Further, if crD(K2,3) = 0 and r = 0, then s ≥ n − 2.
Now, we will deal with the possibilities of obtaining a subgraph Ti ∈ RD ∪ SD in D and we will exhibit
that in all mentioned cases a contradiction with the assumption (3) is achieved.

Case 1: crD(K2,3) = 0. In this case, without lost of generality, we can assume the drawing with
the vertex notation of K2,3 as shown in Figure 1a. The unique subdrawing of K2,3 induced by D
contains three different regions. Hence, let us denote these three regions by ω1,4,3,2, ω1,4,5,2, and ω2,5,4,3

depending on which of vertices are located on the boundary of the corresponding region. Since the
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vertices of C∗
n do not have to be placed in the same region in the considered subdrawing of K2,3,

two possible subcases may occur:

(a) All vertices of C∗
n are placed in two regions of subdrawing of K2,3 induced by D. In the rest

of paper, based on their symmetry, we can suppose that all vertices ti of C∗
n are placed in

ω1,4,3,2 ∪ω1,4,5,2. Of course, there is no possibility to obtain a subdrawing of K2,3 ∪Ti for a Ti ∈ RD,
that is, r = 0. Clearly, the edges of C∗

n must cross the edges of K2,3 exactly twice. This fact,
with the property (5) in the form 0 + 1s + 2(n − s) < n + 1, confirms that s = n, which yields
that each subgraph Ti cross the edges of K2,3 just once. If some vertices ti of C∗

n are placed
in ω1,4,3,2, then we deal with the configurations Ak, k ∈ {1, 2, 3, 4} (they have been already
introduced in [14]). For ti ∈ ω1,4,5,2, there are four other ways for how to obtain the subdrawing
of Fi depending on which edge of K2,3 is crossed by the edge tiv3 provided by there is only
one subdrawing of Fi \ {v3} represented by the rotation (1452). These four possibilities can
be denoted by Ak, for k = 5, 6, 7, 8 and they are represent by the cyclic permutations (14532),
(13452), (14523), and (14352), respectively. Consequently, we denote by MD the subset of
all configurations that exist in the drawing D belonging to the set M = {Ak : k = 1, . . . , 8}.
Using the same arguments like in [14], the resulting lower bounds for the number of crossings of
two configurations from M can be established in Table 1 (here, Ak and Al are configurations of
the subgraphs Fi and Fj, where k, l ∈ {1, . . . , 8}).

Table 1. The necessary number of crossings between two different subgraphs Ti and Tj for
the configurations Ak and Al .

- A1 A2 A3 A4 A5 A6 A7 A8

A1 4 2 3 3 1 3 2 2
A2 2 4 3 3 3 1 2 2
A3 3 3 4 2 2 2 1 3
A4 3 3 2 4 2 2 3 1
A5 1 3 2 2 4 2 3 3
A6 3 1 2 2 2 4 3 3
A7 2 2 1 3 3 3 4 2
A8 2 2 3 1 3 3 2 4

Let us first assume that {Ak,Ak+4} ⊆ MD for some k ∈ {1, 2, 3, 4}. In the rest of paper,
let us assume two different subgraphs Tn−1, Tn ∈ SD such that Fn−1 and Fn have different
configurations A1 and A5, respectively. Then, crD(K2,3 ∪ Tn−1 ∪ Tn, Ti) ≥ 1 + 5 = 6 holds for
any Ti ∈ SD with i 	= n − 1, n by summing the values in all columns in two considered rows of
Table 1. Hence, by fixing the subgraph K2,3 ∪ Tn−1 ∪ Tn, we have

crD(K2,3 + Cn) ≥ crD(K5,n−2) + crD(K5,n−2, K2,3 ∪ Tn−1 ∪ Tn) + crD(K2,3 ∪ Tn−1 ∪ Tn)

≥ 4
⌊n − 2

2

⌋⌊n − 3
2

⌋
+ 6(n − 2) + 2 + 1 ≥ 4

⌊n
2

⌋⌊n − 1
2

⌋
+ n + 3.

Due to the symmetry of three remaining pairs of configurations, we also obtain a contradiction in
D by applying the same process. Now, let us turn to the good drawing D of the graph K2,3 + Cn

in which {Ak,Ak+4} 	⊆ MD for any k = 1, 2, 3, 4. Further, let us also suppose that the number of
subgraphs with the configuration Ak ∈ MD is at least equal to the number of subgraphs with
the configuration Al ∈ MD, for each possible l 	= k, and let Ti ∈ SD be such a subgraph with the
configuration Ak of Fi. Hence,

crD(K5,n−1, Ti) = ∑
j 	=i

crD(Tj, Ti) ≥ 3(n − 2) + 2 − 2
⌊n

7

⌋
≥ 5

2
n − 5

2
,
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where an idea of the arithmetic mean of the values four, three and two of Table 1 could be
exploited. Thus, by fixing the subgraph Ti, we have

crD(K2,3 + Cn) = crD (K2,3 + Cn−1) + crD(K5,n−1, Ti) + crD(K2,3, Ti)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ n − 1 + 3 +

5
2

n − 5
2
+ 1 ≥ 4

⌊n
2

⌋⌊n − 1
2

⌋
+ n + 3.

(b) All vertices ti of C∗
n are placed in the same region of subdrawing of K2,3 induced by D. In the rest

of paper, based also on their symmetry, we suppose that ti ∈ ω1,4,3,2 for each i = 1, . . . , n. Whereas
the set RD is again empty, there are at least n − 2 subgraphs Ti ∈ SD provided by the property (5)
in the form s + 2(n − s) < n + 3. For Ti ∈ SD, we consider only one from the configurations Ak,
for k = 1, 2, 3, 4. Again, let us also assume that the number of subgraphs with the configuration
Ak is at least equal to the number of subgraphs with the configuration Al , for each possible l 	= k,
and let Ti ∈ SD be such a subgraph with the configuration Ak of Fi. Then, by fixing the subgraph
Ti, we have

crD(K2,3 + Cn) = crD (K2,3 + Cn−1) + crD(K5,n−1, Ti) + crD(K2,3, Ti)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ n − 1 + 3 + 3(s − 2) + 2 + 1(n − s) + 1 = 4

⌊n − 1
2

⌋⌊n − 2
2

⌋
+2n + 2s − 1 ≥ 4

⌊n − 1
2

⌋⌊n − 2
2

⌋
+ 2n + 2(n − 2)− 1 ≥ 4

⌊n
2

⌋⌊n − 1
2

⌋
+ n + 3,

wherein a simplified form of the idea of the arithmetic mean of the values of Table 1 is applied.

Case 2: crD(K2,3) = 1. We can choose the drawing with the vertex notation of K2,3 like in Figure 1b.
Similarly as in the previous case, we will discuss two subcases:

(a) The cycle C∗
n is crossed by some edge of the graph K2,3. As the edges of C∗

n cross the edges of
K2,3 exactly twice, there is a subgraph Ti which does not cross the edges of K2,3 provided
by the property (5) in the form 1 + s + 2(n − r − s) ≤ n. For a Ti ∈ RD, the reader can
easily verify that the subgraph Fi = K2,3 ∪ Ti is uniquely represented by rotD(ti) = (12345),
and crD(Ti, Tj) ≥ 4 holds for any Tj ∈ RD with j 	= i provided that rotD(ti) = rotD(tj),
for more see [18]. Moreover, it is not difficult to verify in possible regions of D(K2,3 ∪ Ti) that
crD(K2,3 ∪ Ti, Tj) ≥ 4 is true for each Tj ∈ SD. Thus, by fixing the subgraph K2,3 ∪ Ti, we have

crD(K2,3 + Cn) ≥ crD(K5,n−1) + crD(K5,n−1, K2,3 ∪ Ti) + crD(K2,3 ∪ Ti)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4(r − 1) + 4s + 3(n − r − s) + 1 = 4

⌊n − 1
2

⌋⌊n − 2
2

⌋
+3n + (r + s)− 3 ≥ 4

⌊n − 1
2

⌋⌊n − 2
2

⌋
+ 3n + 4 − 3 ≥ 4

⌊n
2

⌋⌊n − 1
2

⌋
+ n + 3,

where r + s ≥ 4 holds also due to the property (5).
(b) None edge of C∗

n is crossed by the edges of K2,3. Since all vertices ti of the cycle C∗
n are placed in

the same region of subdrawing of K2,3 induced by D, they must be placed in the outer region of
D(K2,3). If there is a Ti ∈ RD, then the edges of K2,3 ∪ Ti are crossed at least four times by any
subgraph Tj with the placement of the vertex tj in the outer region of D(K2,3), which yields that
the similar idea as in the previous subcase can be used by fixing the subgraph K2,3 ∪ Ti

crD(K2,3 + Cn) ≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4(r − 1) + 4(n − r) + 1

= 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 4n − 3 ≥ 4

⌊n
2

⌋⌊n − 1
2

⌋
+ n + 3.
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To finish the proof of this case, let us suppose that the set RD is empty. Whereas the set RD
is empty, there are at least n − 1 subgraphs Ti ∈ SD according to the property (5). Since the
edges v2v3, v3v4, v2v5, and v1v4 of K2,3 can be crossed by the edges tiv4, tiv2, tiv4, and tiv2,
respectively, these four ways can be denoted by Bk, for k = 1, 2, 3, 4. So, the configurations
B1, B2, B3, and B4 are uniquely described by the cyclic permutations (12435), (13245), (12354),
and (13452), respectively., and the aforementioned properties of the cyclic rotations imply all
lower-bounds of number of crossings in Table 2.

Table 2. The necessary number of crossings between two different subgraphs Ti and Tj for
the configurations Bk and Bl .

- B1 B2 B3 B4

B1 4 2 2 2
B2 2 4 2 2
B3 2 2 4 2
B4 2 2 2 4

Now, let us also suppose that the number of subgraphs with the configuration Bk is at least equal
to the number of subgraphs with the configuration Bl , for each possible l 	= k, and let Ti ∈ SD be
such a subgraph with the configuration Bk of Fi. Hence,

∑
Tj∈SD , j 	=i

crD(Ti, Tj) ≥ 3(s − 2) + 2 − 2
⌊ s

4

⌋
≥ 5

2
s − 4,

where again an idea of the arithmetic mean of the values four and two of Table 2 could be
exploited. Thus, by fixing the subgraph Ti, we have

crD(K2,3 + Cn) = crD (K2,3 + Cn−1) + crD(K5,n−1, Ti) + crD(K2,3, Ti)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ n − 1 + 3 +

5
2

s − 4 + 1(n − s) + 1 = 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+2n +

3
2

s − 1 ≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ 2n +

3
2
(n − 1)− 1 ≥ 4

⌊n
2

⌋⌊n − 1
2

⌋
+ n + 3.

Case 3: crD(K2,3) = 2. In the rest of paper, we choose the drawing with the vertex notation of K2,3

like in Figure 1c. Obviously the set RD must be empty. As s = n by the property (5), all vertices ti of the
subgraphs Ti ∈ SD must be placed in the region of D(K2,3) with four vertices v1, v2, v4, and v5 of the
graph K2,3 on its boundary. For Ti ∈ SD, there is only one possible subdrawing of Fi \ {v3} described
by the rotation (1245), which yields that there are exactly three ways of obtaining the subdrawing of
K2,3 ∪ Ti depending on which edge of K2,3 may be crossed by tiv3. In all cases of Ti ∈ SD represented
by either (12345) or (12453) or (12435), it is not difficult to verify using cyclic permutations that
crD(Ti, Tj) ≥ 2 is fulfilling for each Tj ∈ SD, j 	= i. Thus, by fixing the subgraph Ti, we have

crD(K2,3 + Cn) = crD (K2,3 + Cn−1) + crD(K5,n−1, Ti) + crD(K2,3, Ti)

≥ 4
⌊n − 1

2

⌋⌊n − 2
2

⌋
+ n − 1 + 3 + 2(n − 1) + 1 ≥ 4

⌊n
2

⌋⌊n − 1
2

⌋
+ n + 3.

Case 4: crD(K2,3) = 3. We assume the drawing with the vertex notation of K2,3 like in Figure 1d.
As the property (5) enforces r ≥ 1 and r + s ≥ 4, the proof can proceed in the similar way as in the
Subcase 2a).

We have shown, in all cases, that there is no good drawing D of the graph K2,3 + Cn with fewer
than 4

⌊ n
2
⌋⌊ n−1

2
⌋
+ n + 3 crossings. This completes the proof.
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Finally, in Figure 2, we are able to add the edge v1v5 to the graph K2,3 without additional
crossings, and we obtain one new graph H in Figure 3. So, the drawing of the graph H + Cn with
4
⌊ n

2
⌋⌊ n−1

2
⌋
+ n + 3 crossings is obtained. On the other hand, K2,3 + Cn is a subgraph of H + Cn,

and therefore, cr(H + Cn) ≥ cr(K2,3 + Cn). Thus, the next result is an immediate consequence of
Theorem 2.

Figure 3. The graph H by adding one edge to the graph K2,3.

Corollary 1. cr(H + Cn) = 4
⌊

n
2

⌋⌊
n−1

2

⌋
+ n + 3 for any n ≥ 3.

4. Conclusions

We suppose that the application of various forms of arithmetic means can be used to estimate the
unknown values of the crossing numbers for join products of some graphs on five vertices with the
paths, and also with the cycles. The same we expect for larger graphs, namely for a lot of symmetric
graphs of order six.
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Abstract: In this paper, we study the problem of developing new combinatorial generation algorithms.
The main purpose of our research is to derive and improve general methods for developing
combinatorial generation algorithms. We present basic general methods for solving this task and
consider one of these methods, which is based on AND/OR trees. This method is extended by using
the mathematical apparatus of the theory of generating functions since it is one of the basic approaches
in combinatorics (we propose to use the method of compositae for obtaining explicit expression of the
coefficients of generating functions). As a result, we also apply this method and develop new ranking
and unranking algorithms for the following combinatorial sets: permutations, permutations with
ascents, combinations, Dyck paths with return steps, labeled Dyck paths with ascents on return steps.
For each of them, we construct an AND/OR tree structure, find a bijection between the elements
of the combinatorial set and the set of variants of the AND/OR tree, and develop algorithms for
ranking and unranking the variants of the AND/OR tree.

Keywords: combinatorial generation; method; algorithm; AND/OR tree; Euler–Catalan’s triangle;
labeled Dyck path; ranking algorithm; unranking algorithm

MSC: 68R05; 05C05; 05A15

1. Introduction

Many information objects have a hierarchical or recursive structure. In this case, a tree structure is
a convenient form of representing such information objects. This allows us to describe an information
object by a combinatorial set and apply combinatorial generation algorithms for it. A combinatorial
set is a finite set whose elements have some structure and there is an algorithm for constructing
the elements of this set. The elements of combinatorial sets (combinatorial objects) like combinations,
permutations, partitions, compositions, paths, graphs, trees, etc. play an important role in mathematics
and computer science.

Knuth [1] gives a detailed overview of the formation and development of the direction related
to designing combinatorial algorithms. In this overview, special attention is paid to the procedure
for traversing all possible elements of a given combinatorial set. This problem can be studied as
enumerating, listing, and generating elements of a given combinatorial set. On the other hand,
Ruskey [2] introduces the concept of combinatorial generation and distinguishes the following four
tasks in this area:

1. Listing: generating elements of a given combinatorial set sequentially;
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2. Ranking: ranking (numbering) elements of a given combinatorial set;
3. Unranking: generating elements of a given combinatorial set in accordance with their ranks;
4. Random selection: generating elements of a given combinatorial set in random order.

Before applying combinatorial generation algorithms, it is necessary to develop them. General
methods for developing combinatorial generation algorithms were studied by such researches
as E.M. Reingold [3], D.L. Kreher [4], E. Barcucci [5,6], S. Bacchelli [7,8], A. Del Lungo [9,10],
V. Vajnovszki [11–13], P. Flajolet [14,15], C. Martinez and X. Molinero [16–20], B.Y. Ryabko and
Y.S. Medvedeva [21–23], and V.V. Kruchinin [24].

There are several basic general methods for developing combinatorial generation algorithms:

• backtracking [3,4]: this method is used for exhaustive generation and based on constructing
a state space tree for a combinatorial set and obtaining feasible solutions on level l of the tree that
are built up from partial solutions on level l − 1;

• ECO-method [5–13]: this method is used for exhaustive generation and based on producing a set
of new objects of size n + 1, using a succession rule and starting from an object of size n;

• Flajolet’s method [14–20]: this method can be applied for listing, ranking, and unranking a large
family of unlabeled and labeled admissible combinatorial classes that can be obtained by using
admissible combinatorial operators (disjoint union, Cartesian unlabeled product, labeled product,
sequence, set, cycle, powerset, substitution, etc.);

• Ryabko’s method [21–23]: this method can be applied for ranking and unranking combinatorial
objects presented in the form of a word, this method operates with word prefixes and uses
the divide-and-conquer paradigm;

• Kruchinin’s method [24]: this method can be applied for listing, ranking, and unranking
a combinatorial set represented in the form of an AND/OR tree structure for which the total
number of its variants is equal to the value of the cardinality function of the combinatorial set.

Each of these methods claims the universality of its application in the development of new
combinatorial generation algorithms. The study of these methods have shown the following results
connected with their limitations and requirements [25]:

• the main characteristic, which is necessary for developing combinatorial generation algorithms,
is the cardinality function of a combinatorial set;

• some methods (backtracking and ECO-method) are aimed only at the development of
listing algorithms;

• there are restrictions on applying some methods (ECO-method and Flajolet’s method) for
combinatorial sets that are described by more than one parameter;

• most methods require the representation of a combinatorial object in a special form (for example,
as a word, a sequence, a specification, or an AND/OR tree), but this is not always a trivial task
and requires additional research;

• there are requirements for additional information describing a combinatorial set.

Also, there are many combinatorial generation algorithms that are based on features of the
applied combinatorial set or that are based on simple counting techniques (for example, see [26–28]).
Therefore, the methods used for developing such algorithms cannot be universal (they cannot be
applied to develop new combinatorial generation algorithms for other combinatorial sets).

Thus, there is no universal general method that can be applied for developing new combinatorial
generation algorithms. The main purpose of our research is to derive and improve general methods for
developing combinatorial generation algorithms. In this paper, we consider and extend Kruchinin’s
method for developing combinatorial generation algorithms, which is based on the use of AND/OR
trees. This method:
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• allows us to develop all types of combinatorial generation algorithms (listing, ranking,
and unranking algorithms);

• has no restrictions on the number of parameters that describe combinatorial sets (this allows us to
consider complex discrete structures);

• requires only an expression of the cardinality function as additional information describing
a combinatorial set.

However, to apply this method, it is necessary to know an expression of the cardinality function
of a combinatorial set that must satisfy the following conditions:

• the expression of the cardinality function can contain only positive integers (let N denotes the set
of natural numbers);

• the expression of the cardinality function can contain only such algebraic operations as addition
(which is denoted by +) and multiplication (which is denoted by ×);

• the cardinality function may be recursively defined in terms of itself (let R denotes a primitive
recursive function).

If an expression of the cardinality function f of a combinatorial set A satisfies the conditions
presented above, then we will say that f belongs to the algebra {N,+,×, R}. The requirement of
the cardinality function that belongs to the algebra {N,+,×, R} is the main restriction of Kruchinin’s
method. If the required form of the cardinality function is unknown for a given combinatorial set,
then this method cannot be applied to develop combinatorial generation algorithms.

The organization of this paper is as follows. Section 2 of this paper is devoted to a brief
description of the main theoretical points of the used method for developing combinatorial generation
algorithms. In Section 3, our modification of the original method is presented. The modification is
based on applying the method of compositae from the theory of generating functions. To confirm
the effectiveness of using the proposed modification of the original method, we develop new ranking
and unranking algorithms for the following combinatorial sets: permutations, permutations with
ascents, combinations, Dyck paths with return steps, labeled Dyck paths with ascents on return steps.
The obtained results are shown in Section 4.

2. Method for Developing Combinatorial Generation Algorithms Based on AND/OR Trees

Kruchinin [24] introduces a method for developing combinatorial generation algorithms, which is
based on the use of AND/OR trees. This method is based on representing a combinatorial set in
the form of an AND/OR tree structure for which the total number of its variants is equal to the value
of the cardinality function of the combinatorial set. Using an AND/OR tree structure, it is possible to
develop listing, ranking, and unranking algorithms for a given combinatorial set. The effectiveness of
this method is shown in the development of combinatorial generation algorithms for a large number of
combinatorial sets (for example, permutations, combinations, partitions, compositions, the Fibonacci
numbers, the Catalan numbers, the Stirling numbers, tree structures, and formal languages).

An AND/OR tree is a tree structure that contains nodes of two types: AND nodes and OR nodes.
Figure 1 shows a way for representing nodes in an AND/OR tree.

 

   …

 

   …

Figure 1. The representation of nodes in an AND/OR tree.
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A variant of an AND/OR tree is a tree structure obtained by removing all edges except one for
each OR node. Figure 2 shows an example of an AND/OR tree and all its variants.

 

Figure 2. An AND/OR tree and all its variants.

If we know the cardinality function f of a combinatorial set A that belongs to the algebra
{N,+,×, R}, then we can construct an AND/OR tree structure for which the total number of its
variants is equal to the value of the cardinality function (Theorems 1–3 and Corollaries 1–2 in [24].
To do this, it is necessary to perform the following steps for the cardinality function f :

• each addition + from f must be represented as an OR node of the AND/OR tree where all terms
are represented as sons of the OR node;

• each multiplication × from f must be represented as an AND node of the AND/OR tree where
all factors are represented as sons of the AND node;

• each coefficient k ∈ N from f must be represented as an OR node of the AND/OR where all sons
are leaves and their number is equal to k;

• each recursive operation from f must be represented as recursion in the AND/OR tree (it will be
denoted by a node with a triangle).

Thus, the method for developing combinatorial generation algorithms based on AND/OR trees
can be written in the following form:

Input: The cardinality function f of a combinatorial set A that belongs to the algebra {N,+,×, R}.
Output: The combinatorial generation algorithms

RankVariant(v) : W(D) → N|W(D)|

and
UnrankVariant(r) : N|W(D)| → W(D),

where each variant v of an AND/OR tree D constructed for the combinatorial set A must correspond to
a specific combinatorial object a ∈ A. That is, the bijection A ↔ W(D) must be defined, where W(D) is
the set of all the variants v of the AND/OR tree D. The combination of this bijection with the algorithms
RankVariant(v) and UnrankVariant(r) represents the desired combinatorial generation algorithms
Rank(a) : A → N and Unrank(r) : N → A (for ranking and unranking elements of the combinatorial
set A).

The ranking algorithm RankVariant(v) allows us to associate each variant v ∈ W(D) of
the AND/OR tree D with a unique number r ∈ N|W(D)| = {0, 1, . . . , |W(D)| − 1} called the rank.
The rank r of a combinatorial object a represented as a variant v of the corresponding AND/OR tree D
is determined by the value of l(z) for the node z of the variant v that is the root of the AND/OR tree D.
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The value of l(z) corresponds to a number for the node z that satisfies the condition

0 ≤ l(z) < w(z),

where w(z) shows the number of variants in the subtree of the node z.
The value of l(z) is calculated according to the following rules:

1. If a node z of the variant v is a leaf of the AND/OR tree D, then

l(z) = 0;

2. If a node z of the variant v is an AND node of the AND/OR tree D, then

l(z) = l(s(z)1 ) + w(s(z)1 )
(

l(s(z)2 ) + w(s(z)2 )
(

. . .
(

l(s(z)n−1) + w(s(z)n−1)l(s
(z)
n )

)
. . .

))
,

where n is equal to the number of sons for the node z and s(z)i is the i-th son of the node z;
3. If a node z of the variant v is an OR node of the AND/OR tree D, then

l(z) = l(s(z)k ) +
k−1

∑
i=1

w(s(z)i ),

where k is the position of the son s(z)k of the node z chosen in the variant v among all its sons in
the AND/OR tree D.

For the general case, the rules for ranking the variants of an AND/OR tree was formalized
and presented as Algorithm 1. To run this algorithm, it is necessary to start from the command
RankVariant(root, v, D), where root is the root of an AND/OR tree D.

Algorithm 1: A general algorithm for ranking the variants of an AND/OR tree.

1 RankVariant (z, v, D)
2 begin

3 if z = a leaf of the AND/OR tree D then l := 0
4 if z = an AND node of the AND/OR tree D then

5 n := the number of sons for the node z

6 l := RankVariant (s(z)n , v, D)

7 for i := n − 1 to 1 do l := RankVariant (s(z)i , v, D) + w(s(z)i ) · l
8 end

9 if z = an OR node of the AND/OR tree D then

10 k := the position of the son of the node z chosen in the variant v among all its sons

11 l := RankVariant (s(z)k , v, D)

12 for i := 1 to k − 1 do l := l + w(s(z)i )

13 end

14 return l
15 end

The unranking algorithm UnrankVariant(r) performs the inverse operation to the algorithm
RankVariant(v). That is, the algorithm UnrankVariant(r) allows us to associate each rank r ∈ N|W(D)|
with a unique variant v of the AND/OR tree D. The algorithm UnrankVariant(r) is based on
the inverse actions to the calculations used in the algorithm RankVariant(v). For the general case,
the rules for unranking the variants of an AND/OR tree were formalized and presented as Algorithm 2.
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Algorithm 2: A general algorithm for unranking the variants of an AND/OR tree.

1 UnrankVariant (r, D)
2 begin

3 Push (r, root) onto the stack
4 Add root to the variant v
5 while the stack is not empty do

6 Pop (l, z) from the stack
7 if z = an AND node of the AND/OR tree D then

8 n := the number of sons for the node z
9 for i := 1 to n do

10 li := l mod w(s(z)i )

11 Push (li, s(z)i ) onto the stack

12 Add s(z)i to the variant v

13 l :=
⌊

l
w(s(z)i )

⌋
14 end

15 end

16 if z = an OR node of the AND/OR tree D then

17 k := 1
18 sum := 0

19 while sum + w(s(z)k ) ≤ l do

20 sum := sum + w(s(z)i )

21 k := k + 1
22 end

23 l := l − sum

24 Push (l, s(z)k ) onto the stack

25 Add s(z)k to the variant v
26 end

27 end

28 return v
29 end

3. Modification of the Method for Developing Combinatorial Generation Algorithms

The use of the method for developing combinatorial generation algorithms based on AND/OR
trees has the following two restrictions:

Firstly, if we do not know the cardinality function of a combinatorial set that belongs to the algebra
{N,+,×, R}, then we cannot construct the corresponding AND/OR tree for the combinatorial set.
Therefore, this method for developing combinatorial generation algorithms cannot be applied without
an AND/OR tree structure.

If an AND/OR tree structure is constructed for a combinatorial set, then there is a new problem.
This problem is associated with finding a bijection between the elements of the combinatorial set and
the set of variants of the AND/OR tree (that is, each variant v of an AND/OR tree D constructed for
the combinatorial set A must correspond to a specific combinatorial object a ∈ A, and vice versa).
A general approach for solving this problem does not exist, since each combinatorial set has its own and
completely unique characteristics. We propose to use the following recommendation: it is necessary to
consider the changes that occur in the structure of combinatorial objects when moving from one node
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of an AND/OR tree to another (considering the type of a node, the label of a node and the selected
sons) and show these changes in the bijection.

For solving the first problem, we propose to apply the theory of generating functions, since it is
one of the basic approaches in modern combinatorics and generating functions are already known
for many combinatorial sets. An ordinary generating function of a sequence (an)n≥0 is the following
formal power series [29]:

A(t) = a0 + a1t + a2t2 + . . . = ∑
n≥0

antn.

For the coefficients of the powers of generating functions, the notion of the compositae of
a generating function was introduced in [30]. The composita of an ordinary generating function

G(t) = ∑
n>0

gntn

is the following function with two variables GΔ(n, k), which is a coefficients function of the k-th power
of the generating function G(t):

(G(t))k = ∑
n≥k

GΔ(n, k)tn.

This mathematical apparatus provides such operations on compositae as shift, addition,
multiplication, composition, reciprocation, and compositional inversion of generating functions.
Such operations on compositae allow us to obtain explicit expressions for the coefficients of generating
functions. To obtain an explicit expression for the coefficients of a generating function using the method
of compositae, it is necessary to decompose the given generating function into functions for that
the compositae are known and apply the corresponding operations to them. More detailed information
about the compositae can be found in [30–35].

If for a given combinatorial set A we consider its subset An ⊂ A, which contains only
the combinatorial objects of size n, then the cardinality function f (n) = |An| of this combinatorial
set An can be described by a generating function

F(t) = ∑
n≥0

fntn = ∑
n≥0

f (n)tn = ∑
n≥0

|An|tn.

Hence, to obtain an expression for the cardinality function f (n) of a combinatorial set for
which a generating function is known, we can apply the method of compositae for obtaining an
explicit expression of the coefficients fn of the generating function [25]. Moreover, the operations on
compositae can be extended to the case of multivariate generating functions. This makes it possible to
obtain expressions for the cardinality functions of combinatorial sets that are described by more than
one parameter.

The obtained method for developing combinatorial generation algorithms with its modification is
presented as a sequence of the following steps:

1. If the cardinality function f of a combinatorial set A that belongs to the algebra {N,+,×, R}
is known, then go to Step 4.

2. If the generating function F for the values of the cardinality function f of the combinatorial
set A is known, then apply the method of compositae for obtaining an explicit expression of
the coefficients of the generating function. Otherwise, the method for developing combinatorial
generation algorithms cannot be applied.

3. If the cardinality function f of the combinatorial set A that belongs to the algebra {N,+,×, R}
is obtained, then go to Step 4. Otherwise, the method for developing combinatorial generation
algorithms cannot be applied.

4. Using the cardinality function f of the combinatorial set A, construct the corresponding AND/OR
tree D.
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5. Find a bijection A ↔ W(D) between the elements of the combinatorial set A and the set of variants
v of the AND/OR tree D in the form of the algorithms ObjectToVariant(a, D) : A → W(D),
where a ∈ A, and VariantToObject(v, D) : W(D) → A, where v ∈ W(D).

6. Find a bijection W(D) ↔ N|W(D)| between the elements of the set of variants v of the AND/OR
tree D and the finite set of natural numbers N|W(D)| = {0, 1, . . . , |W(D)| − 1}, using the algorithms
RankVariant(root, v, D) : W(D) → N|W(D)|, where root is the root of an AND/OR tree D,
v ∈ W(D), and UnrankVariant(r, D) : N|W(D)| → W(D), where r ∈ N|W(D)|.

The combination of the algorithms defined in the last two steps of the modified method forms
a bijection A ↔ N and represents the combinatorial generation algorithms Rank(a) : A → N for
ranking and Unrank(r) : N → A for unranking elements of the combinatorial set A.

4. Application of the Modification of the Method for Developing Combinatorial
Generation Algorithms

Next, we consider the process of developing ranking and unranking algorithms using the
obtained method for developing combinatorial generation algorithms. We describe a combinatorial
set, construct an AND/OR tree, find a bijection between the elements of the combinatorial set and the
set of variants of the AND/OR tree, and develop algorithms for ranking and unranking the variants.

4.1. Combinatorial Set

Let us consider the following combinatorial object: a labeled Dyck n-path with m ascents on return
steps. A Dyck n-path is a lattice path in the plane which begins at (0, 0), ends at (2n, 0), and consists
of steps (1, 1) called rises or up-steps and (1,−1) called falls or down-steps [36]. A return step is
a down-step at level 1 (a return to the ground level 0) [37]. In a labeled Dyck n-path with m ascents on
return steps, each down-step has its own label (a unique value from 1 to n). If we consider the sequence
of labels of down-steps of a Dyck n-path starting from (0, 0), then it has exactly m ascents.

Figure 3 shows all possible variants of the considered labeled Dyck paths for n = 3 and m = 1.

1 3 2 2 1 3

2 3 1 3 1 2

1

3

2 1

2

3

2

1

3

3

1 2

2

1 3

1

2 3

Figure 3. All labeled Dyck paths of size 3 with 1 ascent on return steps.
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The total number of labeled Dyck n-paths with m ascents on return steps is defined by the elements
of the Euler–Catalan number triangle (the sequence A316773 in [38]). That is, the cardinality function
of this combinatorial set is equal to the Euler–Catalan numbers, which are denoted by ECm

n [39].
Applying the method of compositae for obtaining explicit expressions for the coefficients of

generating functions, we have found a generating function and the following explicit formula [39]:

ECm
n =

⎧⎪⎨⎪⎩
1, for n = m = 0;

n
∑

k=m+1

n!
k! CTk

nEm
k , otherwise,

=

⎧⎪⎨⎪⎩
1, for n = m = 0;

n
∑

k=m+1
CTk

nCk
nEm

k Pn−k, otherwise,
(1)

where CTm
n is the transposed Catalan triangle, Cm

n is the number of m-combinations of n elements,
Em

n is the Euler triangle, and Pn is the number of permutations of n elements.

4.2. AND/OR Tree

Equation (1) belongs to the algebra {N,+,×, R}, and there are the well-known formulas for
the components of Equation (1), which also belong to the required algebra:

• the elements of the transposed Catalan triangle (the sequence A033184 in [38]) show the number
of Dyck n-paths with m return steps and can be calculated using the following recurrence [37]:

CTm
n = CTm−1

n−1 + CTm+1
n , CT0

n = 0, CTn
n = 1; (2)

• the number of m-combinations of n elements (the sequence A007318 in [38]) can be calculated
using the following recurrence [40]:

Cm
n = Cm

n−1 + Cm−1
n−1 , Cn

n = C0
n = 1; (3)

• the elements of the Euler triangle (the sequence A173018 in [38]) show the number of permutations
of n elements with m ascents and can be calculated using the following recurrence [41]:

Em
n = (m + 1)Em

n−1 + (n − m)Em−1
n−1 , En−1

n = E0
n = 1; (4)

• the number of permutations of n elements (the sequence A000142 in [38]) can be calculated using
the following recurrence [40]:

Pn = nPn−1, P0 = 1. (5)

Since Equation (1) and all the formulas for its components belong to the algebra {N,+,×, R},
we can construct the AND/OR tree structure for ECm

n , which is presented in Figure 4. A bijection
between the labeled Dyck n-paths with m ascents on return steps and the variants of the AND/OR
tree is defined by the following rules:

• the number of return steps in a Dyck path is determined by the value of k (the selected son of
the OR node labeled ECm

n in a variant of the AND/OR tree);
• the subtree of the node labeled CTk

n determines the version of a Dyck n-path with k return steps;
• the subtree of the node labeled Ck

n determines k values given from the set of n values, which are
used as the labels for the return steps (the remaining n − k values are used as the labels for
the remaining n − k down-steps);

• the subtree of the node labeled Em
k determines the version of a permutation of the labels for

k return steps, which form exactly m ascents;
• the subtree of the node labeled Pn−k determines the version of a permutation of the labels for

the remaining n − k down-steps.
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 …+ 1 

   

Figure 4. An AND/OR tree for ECm
n .

Next, we need to construct AND/OR tree structures for all the subtrees of the AND/OR
tree for ECm

n . We also need to find bijections between the variants of these AND/OR trees and
the corresponding combinatorial objects.

Since Equation (2) belongs to the algebra {N,+,×, R}, we can construct the AND/OR tree
structure for CTm

n , which is presented in Figure 5. A bijection between the Dyck n-paths with m return
steps and the variants of the AND/OR tree is defined by the following rules:

• if a Dyck n-path is not completely filled and it is at the ground level 0, then it is necessary to add
an up-step;

• each selected left son of the AND/OR tree (the node labeled CTm−1
n−1 ) corresponds to a down-step

in a Dyck n-path;
• each selected right son of the AND/OR tree (the node labeled CTm+1

n ) corresponds to an up-step
in a Dyck n-path;

• if a leaf of the AND/OR tree is reached (when m = n), then it is necessary to add n down-steps.

 

 

  

Figure 5. An AND/OR tree for CTm
n .
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For a compact representation, we encode a Dyck n-path by a sequence a = (a1, . . . , a2n),
where ai =‘u’ encodes an up-step and ai =‘d’ encodes a down-step. We also encode a variant
of an AND/OR tree by a sequence v = (v1, v2, . . .) of the selected sons of the OR nodes in this tree
(the left son corresponds to vi = 0 and the right son corresponds to vi = 1). An example of applying
the obtained bijection for Dyck paths with return steps is presented in Table A1.

Since Equation (3) belongs to the algebra {N,+,×, R}, we can construct the AND/OR tree
structure for Cm

n , which is presented in Figure 6. A bijection between the m-combinations of n elements
and the variants of the AND/OR tree is defined by the following rules:

• each selected left son of the AND/OR tree (the node labeled Cm
n−1) determines that the element n

is not selected in an m-combination of n elements;
• each selected right son of the AND/OR tree (the node labeled Cm−1

n−1 ) determines that the element
n is selected in an m-combination of n elements;

• if a leaf of the AND/OR tree is reached (when m = 0), then it is necessary to not select all n
elements in an m-combination of n elements;

• if a leaf of the AND/OR tree is reached (when m = n), then it is necessary to select all n elements
in an m-combination of n elements.

 

 

  

Figure 6. An AND/OR tree for Cm
n .

For a compact representation, we encode an m-combination of n elements by a sequence
a = (a1, . . . , an), where ai = 0 encodes that the i-th element is not selected and ai = 1 encodes that
the i-th element is selected. We also encode a variant of an AND/OR tree by a sequence v = (v1, v2, . . .)
of the selected sons of the OR nodes in this tree (the left son corresponds to vi = 0 and the right son
corresponds to vi = 1). An example of applying the obtained bijection for combinations is presented in
Table A2.

Since Equation (4) belongs to the algebra {N,+,×, R}, we can construct the AND/OR tree
structure for Em

n , which is presented in Figure 7. A bijection between the permutations of n elements
with m ascents and the variants of the AND/OR tree is defined by the following rules:

• each selected left son of the OR node labeled Em
n determines that the element n does not

add an ascent in a permutation of n elements, and the selected son of the OR node labeled
m + 1 determines the position of the element n in the permutation (there are exactly m + 1
possible positions);

• each selected right son of the OR node labeled Em
n determines that the element n adds an ascent

in a permutation of n elements, and the selected son of the OR node labeled n − m determines
the position of the element n in the permutation (there are exactly n − m possible positions);
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• if a leaf of the AND/OR tree is reached (when m = 0), then it is necessary to arrange all n elements
in a permutation of n elements in decreasing order;

• if a leaf of the AND/OR tree is reached (when m = n − 1), then it is necessary to arrange all n
elements in a permutation of n elements in increasing order.

 

  

    

Figure 7. An AND/OR tree for Em
n .

For a compact representation, we encode a variant of an AND/OR tree by a sequence
v = (v1, v2, . . .) of the selected sons of the OR nodes in this tree, where each vi is represented
as a pair (vi,1, vi,2). In this pair: vi,1 = 0 corresponds to the left son of the OR node labeled Em

n and
vi,2 determines the selected son of the OR node labeled m + 1; vi,1 = 1 corresponds to the right son of
the OR node labeled Em

n , vi,2 determines the selected son of the OR node labeled n − m. An example of
applying the obtained bijection for permutations with ascents is presented in Table A3.

Since Equation (5) belongs to the algebra {N,+,×, R}, we can construct the AND/OR tree
structure for Pn, which is presented in Figure 8. A bijection between the permutations of n elements
and the variants of the AND/OR tree is defined by the following rules:

• each selected son of the OR node labeled n determines the position of the element n in
a permutation of n elements;

• if a leaf of the AND/OR tree is reached (when n = 0), then it is necessary to form an
empty permutation.

 

 

  

    

Figure 8. An AND/OR tree for Pn.
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For a compact representation, we encode a variant of an AND/OR tree by a sequence
v = (v1, v2, . . .) of the selected sons of the OR nodes in this tree. An example of applying the obtained
bijection for permutations is presented in Table A4.

We have constructed AND/OR trees for all the combinatorial sets presented in this paper.
Hence, we can develop algorithms for ranking and unranking the variants of the AND/OR trees.

4.3. Ranking and Unranking Algorithms

Based on Algorithms 1 and 2, we can develop algorithms for ranking and unranking the variants
of the constructed AND/OR trees for ECm

n , CTm
n , Cm

n , Em
n , and Pn.

For the AND/OR tree for CTm
n , which is presented in Figure 5, we develop an algorithm

for ranking its variants (Algorithm 3) and an algorithm for unranking its variants (Algorithm 4).
Combining the developed algorithms with the derived rules for the bijection, we get algorithms for
ranking and unranking the combinatorial set of Dyck n-paths with m return steps.

Algorithm 3: An algorithm for ranking the variants of the AND/OR tree for CTm
n .

1 RankVariant_CT (v = (v1, v2, . . .), n, m)
2 begin

3 if m = n then r = 0
4 else

5 if v1 = 0 then r := RankVariant_CT ((v2, . . .), n − 1, m − 1)
6 else r := RankVariant_CT ((v2, . . .), n, m + 1) + CTm−1

n−1
7 end

8 return r
9 end

Algorithm 4: An algorithm for unranking the variants of the AND/OR tree for CTm
n .

1 UnrankVariant_CT (r, n, m)
2 begin

3 if m = n then v := ()

4 else

5 if r < CTm−1
n−1 then v :=concat ((0), UnrankVariant_CT (r, n − 1, m − 1))

6 else v :=concat ((1), UnrankVariant_CT (r − CTm−1
n−1 , n, m + 1))

7 end

8 return v
9 end

In these algorithms, () denotes an empty sequence and a function concat denotes merging
sequences. That is, if we have a sequence a = (a1, . . . , an) and a sequence b = (b1, . . . , bm), then we
can get the following sequence:

concat(a, b) = (a1, . . . , an, b1, . . . , bm).

For the AND/OR tree for Cm
n , which is presented in Figure 6, we develop an algorithm for ranking

its variants (Algorithm 5) and an algorithm for unranking its variants (Algorithm 6). Combining the
developed algorithms with the derived rules for the bijection, we get algorithms for ranking and
unranking the combinatorial set of m-combinations of n elements.
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Algorithm 5: An algorithm for ranking the variants of the AND/OR tree for Cm
n .

1 RankVariant_C (v = (v1, v2, . . .), n, m)
2 begin

3 if m = 0 or m = n then r = 0
4 else

5 if v1 = 0 then r := RankVariant_C ((v2, . . .), n − 1, m)
6 else r := RankVariant_C ((v2, . . .), n − 1, m − 1) + Cm

n−1
7 end

8 return r
9 end

Algorithm 6: An algorithm for unranking the variants of the AND/OR tree for Cm
n .

1 UnrankVariant_C (r, n, m)
2 begin

3 if m = 0 or m = n then v := ()

4 else

5 if r < Cm
n−1 then v :=concat ((0), UnrankVariant_C (r, n − 1, m))

6 else v :=concat ((1), UnrankVariant_C (r − Cm
n−1, n − 1, m − 1))

7 end

8 return v
9 end

For the AND/OR tree for Em
n , which is presented in Figure 7, we develop an algorithm

for ranking its variants (Algorithm 7) and an algorithm for unranking its variants (Algorithm 8).
Combining the developed algorithms with the derived rules for the bijection, we get algorithms for
ranking and unranking the combinatorial set of permutations of n elements with m ascents.

Algorithm 7: An algorithm for ranking the variants of the AND/OR tree for Em
n .

1 RankVariant_E (v = ((v1,1, v1,2), (v2,1, v2,2), . . .), n, m)
2 begin

3 if m = 0 or m = n − 1 then r = 0
4 else

5 if v1,1 = 0 then

6 l1 := v1,2 − 1
7 l2 := RankVariant_E (((v2,1, v2,2), . . .), n − 1, m)
8 r := l1 + (m + 1)l2
9 end

10 else

11 l1 := v1,2 − 1
12 l2 := RankVariant_E (((v2,1, v2,2), . . .), n − 1, m − 1)
13 r := l1 + (n − m)l2 + (m + 1)Em

n−1
14 end

15 end

16 return r
17 end
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Algorithm 8: An algorithm for unranking the variants of the AND/OR tree for Em
n .

1 UnrankVariant_E (r, n, m)
2 begin

3 if m = 0 or m = n then v := ()

4 else

5 if r < (m + 1)Em
n−1 then

6 l1 := r mod m + 1
7 l2 :=

⌊ r
m+1

⌋
8 v :=concat (((0, l1 + 1)), UnrankVariant_E (l2, n − 1, m))
9 end

10 else

11 r := r − (m + 1)Em
n−1

12 l1 := r mod n − m
13 l2 :=

⌊ r
n−m

⌋
14 v :=concat (((1, l1 + 1)), UnrankVariant_E (l2, n − 1, m − 1))
15 end

16 end

17 return v
18 end

For the AND/OR tree for Pn, which is presented in Figure 8, we develop an algorithm for
ranking its variants (Algorithm 9) and an algorithm for unranking its variants (Algorithm 10).
Combining the developed algorithms with the derived rules for the bijection, we get algorithms
for ranking and unranking the combinatorial set of permutations of n elements.

Algorithm 9: An algorithm for ranking the variants of the AND/OR tree for Pn.

1 RankVariant_P (v = (v1, v2, . . .), n)
2 begin

3 if n = 0 then r = 0
4 else

5 l1 := v1 − 1
6 l2 := RankVariant_P ((v2, . . .), n − 1)
7 r := l1 + nl2
8 end

9 return r
10 end

Algorithm 10: An algorithm for unranking the variants of the AND/OR tree for Pn.

1 UnrankVariant_P (r, n)
2 begin

3 if n = 0 then v := ()

4 else

5 l1 := r mod n
6 l2 :=

⌊ r
n
⌋

7 v :=concat ((l1 + 1), UnrankVariant_P (l2, n − 1))
8 end

9 return v
10 end
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For the AND/OR tree for ECm
n , which is presented in Figure 4, we develop an algorithm for

ranking its variants (Algorithm 11) and an algorithm for unranking its variants (Algorithm 12).
Combining the developed algorithms with the derived rules for the bijection, we get algorithms for
ranking and unranking the combinatorial set of labeled Dyck n-paths with m ascents on return steps.

Algorithm 11: An algorithm for ranking the variants of the AND/OR tree for ECm
n .

1 RankVariant_EC (v = (k, v1, v2, v3, v4), n, m)
2 begin

3 l1 := RankVariant_CT (v1, n, k)
4 l2 := RankVariant_C (v2, n, k)
5 l3 := RankVariant_E (v3, k, m)
6 l4 := RankVariant_P (v4, n − k)

7 r := l1 + CTk
n(l2 + Ck

n(l3 + Em
k l4)) +

k−1
∑

i=m+1
CTi

nCi
nEm

i Pn−i

8 return r
9 end

Algorithm 12: An algorithm for unranking the variants of the AND/OR tree for ECm
n .

1 UnrankVariant_EC (r, n, m)
2 begin

3 k := m + 1
4 sum := 0
5 while sum + CTk

nCk
nEm

k Pn−k ≤ r do

6 sum := sum + CTk
nCk

nEm
k Pn−k

7 k := k + 1
8 end

9 r := r − sum
10 l1 := r mod CTk

n

11 r :=
⌊

r
CTk

n

⌋
12 l2 := r mod Ck

n

13 r :=
⌊

r
Ck

n

⌋
14 l3 := r mod Em

k

15 l4 :=
⌊

r
Em

k

⌋
16 v1 := UnrankVariant_CT (l1, n, k)
17 v2 := UnrankVariant_C (l2, n, k)
18 v3 := UnrankVariant_E (l3, k, m)
19 v4 := UnrankVariant_P (l4, n − k)
20 v = (k, v1, v2, v3, v4)

21 return v
22 end

In these algorithms, we use all the above mentioned algorithms for ranking and unranking
the variants of the AND/OR trees for CTm

n , Cm
n , Em

n , and Pn. For a compact representation, a variant of
the AND/OR tree for ECm

n is encoded by a sequence v = (k, v1, v2, v3, v4), where:

• k is the label of the selected son of the OR node labeled ECm
n in a variant of the AND/OR tree;

• v1 corresponds to the variant of the subtree of the node labeled CTk
n ;

• v2 corresponds to the variant of the subtree of the node labeled Ck
n;
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• v3 corresponds to the variant of the subtree of the node labeled Em
k ;

• v4 corresponds to the variant of the subtree of the node labeled Pn−k.

5. Conclusions

In this paper, we study methods for developing combinatorial generation algorithms and
present basic general methods for solving this task. We consider one of these methods, which is
based on AND/OR trees, and extend it by using the mathematical apparatus of the theory of
generating functions.

Using an AND/OR tree structure, it is possible to develop listing, ranking, and unranking
algorithms for a given combinatorial set. However, the use of the method for developing combinatorial
generation algorithms based on AND/OR trees has the following restriction: the cardinality function
of a combinatorial set must belong to the algebra {N,+,×, R}. For solving this problem, we propose
to apply the method of compositae for obtaining explicit expression of the coefficients of generating
functions, since the theory of generating functions is one of the basic approaches in combinatorics.
The limitation of this method is that it can be applied only for a combinatorial set for which a generating
function is known.

As a result, we formalize the proposed idea in our modification of the original method for
developing combinatorial generation algorithms. In addition, one of the main contributions of
the paper is the application of this method. To confirm the effectiveness of using the proposed
method, we develop new ranking and unranking algorithms for the following combinatorial sets:
labeled Dyck n-paths with m ascents on return steps, Dyck n-paths with m return steps, m-combinations
of n elements, permutations of n elements with m ascents, permutations of n elements. For each of
them, we construct an AND/OR tree, find a bijection between the elements of the combinatorial
set and the set of variants of the AND/OR tree, and develop algorithms for ranking and unranking
the variants of the AND/OR tree.

All the developed algorithms have been realized in the computer algebra system “Maxima” and
validated by exhaustive generation for fixed values of combinatorial set parameters. It also has shown
that all the developed algorithms have polynomial time complexity. Several examples of applying
the obtained results can be found in Appendix A.

As further research, we will consider the development of new and effective combinatorial
generation algorithms in the field of applied mathematics. For example, it can be done for combinatorial
sets that represent different types of chemical compounds [42], molecular structures such as RNA
and DNA [43–45], etc. We also plan further improvements to the presented method for developing
combinatorial generation algorithms, for example, through the usage of other types of trees [46].

Author Contributions: Investigation, Y.S., V.K., and D.K.; methodology, V.K.; writing—original draft preparation,
Y.S.; writing—review and editing, D.K. All authors have read and agreed to the published version of
the manuscript.

Funding: The reported study was supported by the Russian Science Foundation (project no. 18-71-00059).

Acknowledgments: The authors would like to thank the referees for their helpful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Examples of Ranking the Elements of Combinatorial Sets

Table A1. Ranking the combinatorial set of Dyck n-paths with m return steps for n = 5 and m = 2.

Dyck path Variant of AND/OR Tree Rank

u d u u d u d u d d (0, 1, 0, 1, 0, 1) 0
u d u u d u u d d d (0, 1, 0, 1, 1) 1
u d u u u d d u d d (0, 1, 1, 0, 0, 1) 2
u d u u u d u d d d (0, 1, 1, 0, 1) 3
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Table A1. Cont.

Dyck path Variant of AND/OR Tree Rank

u d u u u u d d d d (0, 1, 1, 1) 4
u u d d u u d u d d (1, 0, 0, 1, 0, 1) 5
u u d d u u u d d d (1, 0, 0, 1, 1) 6
u u d u d d u u d d (1, 0, 1, 0, 0, 1) 7
u u d u d u d d u d (1, 0, 1, 0, 1) 8
u u d u u d d d u d (1, 0, 1, 1) 9
u u u d d d u u d d (1, 1, 0, 0, 0, 1) 10
u u u d d u d d u d (1, 1, 0, 0, 1) 11
u u u d u d d d u d (1, 1, 0, 1) 12
u u u u d d d d u d (1, 1, 1) 13

Table A2. Ranking the combinatorial set of m-combinations of n elements for n = 5 and m = 2.

Combination Variant of AND/OR Tree Rank

(1, 1, 0, 0, 0) (0, 0, 0) 0
(1, 0, 1, 0, 0) (0, 0, 1, 0) 1
(0, 1, 1, 0, 0) (0, 0, 1, 1) 2
(1, 0, 0, 1, 0) (0, 1, 0, 0) 3
(0, 1, 0, 1, 0) (0, 1, 0, 1) 4
(0, 0, 1, 1, 0) (0, 1, 1) 5
(1, 0, 0, 0, 1) (1, 0, 0, 0) 6
(0, 1, 0, 0, 1) (1, 0, 0, 1) 7
(0, 0, 1, 0, 1) (1, 0, 1) 8
(0, 0, 0, 1, 1) (1, 1) 9

Table A3. Ranking the combinatorial set of permutations of n elements with m ascents for n = 4 and
m = 2.

Permutation Variant of AND/OR Tree Rank

(4, 1, 2, 3) ((0, 1)) 0
(1, 4, 2, 3) ((0, 2)) 1
(1, 2, 4, 3) ((0, 3)) 2
(3, 4, 1, 2) ((1, 1), (0, 1)) 3
(3, 1, 2, 4) ((1, 2), (0, 1)) 4
(1, 3, 4, 2) ((1, 1), (0, 2)) 5
(1, 3, 2, 4) ((1, 2), (0, 2)) 6
(2, 3, 4, 1) ((1, 1), (1, 1)) 7
(2, 3, 1, 4) ((1, 2), (1, 1)) 8
(2, 4, 1, 3) ((1, 1), (1, 2)) 9
(2, 1, 3, 4) ((1, 2), (1, 2)) 10

Table A4. Ranking the combinatorial set of permutations of n elements for n = 4.

Permutation Variant of AND/OR Tree Rank

(4, 3, 2, 1) (1, 1, 1, 1) 0
(3, 4, 2, 1) (2, 1, 1, 1) 1
(3, 2, 4, 1) (3, 1, 1, 1) 2
(3, 2, 1, 4) (4, 1, 1, 1) 3
(4, 2, 3, 1) (1, 2, 1, 1) 4
(2, 4, 3, 1) (2, 2, 1, 1) 5
(2, 3, 4, 1) (3, 2, 1, 1) 6
(2, 3, 1, 4) (4, 2, 1, 1) 7
(4, 2, 1, 3) (1, 3, 1, 1) 8
(2, 4, 1, 3) (2, 3, 1, 1) 9
(2, 1, 4, 3) (3, 3, 1, 1) 10

208



Mathematics 2020, 8, 962

Table A4. Cont.

Permutation Variant of AND/OR Tree Rank

(2, 1, 3, 4) (4, 3, 1, 1) 11
(4, 3, 1, 2) (1, 1, 2, 1) 12
(3, 4, 1, 2) (2, 1, 2, 1) 13
(3, 1, 4, 2) (3, 1, 2, 1) 14
(3, 1, 2, 4) (4, 1, 2, 1) 15
(4, 1, 3, 2) (1, 2, 2, 1) 16
(1, 4, 3, 2) (2, 2, 2, 1) 17
(1, 3, 4, 2) (3, 2, 2, 1) 18
(1, 3, 2, 4) (4, 2, 2, 1) 19
(4, 1, 2, 3) (1, 3, 2, 1) 20
(1, 4, 2, 3) (2, 3, 2, 1) 21
(1, 2, 4, 3) (3, 3, 2, 1) 22
(1, 2, 3, 4) (4, 3, 2, 1) 23
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Abstract: Contraflow technique has gained a considerable focus in evacuation planning research
over the past several years. In this work, we design efficient algorithms to solve the maximum,
lex-maximum, earliest arrival, and quickest dynamic flow problems having constant attributes and
their generalizations with partial contraflow reconfiguration in the context of evacuation planning.
The partial static contraflow problems, that are foundations to the dynamic flows, are also studied.
Moreover, the contraflow model with inflow-dependent transit time on arcs is introduced. A strongly
polynomial time algorithm to compute approximate solution of the quickest partial contraflow
problem on two terminal networks is presented, which is substantiated by numerical computations
considering Kathmandu road network as an evacuation network. Our results show that the quickest
time to evacuate a flow of value 100,000 units is reduced by more than 42% using the partial contraflow
technique, and the difference is more with the increase in the flow value. Moreover, the technique
keeps the record of the portions of the road network not used by the evacuees.

Keywords: network optimization; dynamic flow; evacuation planning; contraflow configuration;
partial lane reversals, algorithms and complexity; logistic supports

1. Introduction

Because of the significant occurrences of many predictable and unpredictable large-scale disasters
worldwide, regardless of various discoveries and urbanization, an efficient, implementable, and reliable
evacuation planning is indispensable for saving life and supporting humanitarian relief with optimal
use and equitable distribution of available resources. Among prevalent disasters, e.g., earthquakes,
volcanic eruptions, landslides, floods, tsunamis, hurricanes, typhoons, chemical explosions, and
terrorist attacks, the most remarkable losses are noted in earthquakes in Nepal (April 2015), Japan
(March 2011), Haiti (January 2010), Chichi (Taiwan, September 1999), Bam (Iran, December 2003),
Kashmir (Pakistan, October 2005), and Chile (May 1960); various tsunamis in Japan and the Indian
Ocean; the major hurricanes Katrina, Rita, and Sandy in USA; and the September 11 attacks in USA.
The threat of disasters always persists, e.g., there is a prediction of earthquakes of more than 8.4 in
Richter scale around the capital of Nepal in the near future (Pyakurel et al. [1]). Therefore, there is
always a need for an effective emergency plan to cope with disasters worldwide, including Nepal.

Evacuating people from disastrous areas to safe places is one of the important aspect of emergency
planning. Among the diversified fields (e.g., traffic simulation, fluid dynamics, control theory,
variational inequalities, and network flow) of mathematical research in evacuation planning, network
flow methodologies are the most efficient [2]. An evacuation optimizer looks after a plan on evacuation
network for an efficient transfer of maximum evacuees from the dangerous (sources) to safer (sinks)
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locations as quickly as possible [3,4]. An optimal shelter location and support of humanitarian logistics
within these emergency scenarios are equally demanding but challenging issues. The aim of this paper
is to look at the transportation planning based on strong mathematical modeling with applications,
not only in emergency evacuations, but also in the heavy traffic hours of a city. A comprehensive
explanation on diversified theories and applications can be found in the survey papers of Hamacher
and Tjandra [4], Cova and Johnson [5], Altay and Green III [6], Pascoal et al. [7], Moriarty et al. [8],
Chen and Miller-Hooks [9], Yusoff et al. [10], Dhamala et al. [11], Kotsireas et al. [12], and the literature
therein. The theoretical background needed in this paper, in particular, is given in Section 2 and inside
other sections, wherever necessary.

The evacuation network, which corresponds to a region (or a building, shopping mall, etc.), is
represented by a dynamic network in which nodes represent the street intersections (or rooms), and
arcs represent the connections (streets, doors, etc.) between the nodes. The hazardous locations of
evacuees are termed as the source nodes and the safe locations where the evacuees are to be transferred
are termed as sink nodes. The nodes and arcs have capacities. Further, each arc has a transit time
or a cost associated with it. The evacuees or the vehicles carrying evacuees traveling through the
network are modeled as a flow. An evacuation plan largely depends on the number of sources, number
of sinks, and the parameters associated with nodes and arcs, which may be dependent on time or
the amount of the flow, along with other constraints. The time variable which is continuous may be
discretized. The discrete time steps approximate the computationally heavy continuous models at the
cost of solution approximations. Also the constant time probably approximated by free flow speeds
or certain queuing rules and constant capacity settings mostly realize the evacuation problems to be
linear, at least more tractable, in contrast to the more general and realistic flow-dependent real-world
evacuation scenarios.

Following the pioneers of Ford and Fulkerson [13], with an objective to maximize the flow from a
source to a sink at the end of given discrete time period, Gale [14] shows an existence of the maximum
flow from the very beginning in discrete time setting. Two pseudo-polynomial time algorithms are
presented by Wilkinson [15] and Minieka [16] for the latter problem with constant arc transit times.
An upward scaling approximation algorithm of Hoppe [17] polynomially solves this problem within a
factor of 1 + ε, for every ε > 0. For the special series-parallel networks, Ruzika et al. [18] solve this
problem, applying a minimum cost circulation flow algorithm by exploiting a property that every
cycle of its residual network is of non-negative length. Minieka [16], and Hoppe and Tardos [19]
maximize the flow in priority ordering, which is important in some scenarios of evacuation planning.
Burkard et al. [20], and Hoppe and Tardos [19] present efficient algorithms for shifting the already
fixed evacuees in minimum time. However, the general multiterminal evacuation problems, with
variable number of evacuees at sources, are computationally hard even with constant attributes on
arcs. Likewise, the earliest arrival transshipment solutions that fulfill the specific demands at sinks
by the specific supplies from sources maximizing the flow at each point of time are also not solved
in polynomial time yet. The multisource single-sink (cf. Baumann and Skutella [21]) and zero transit
times, in either one source or one sink (cf. Fleischer [22]) earliest arrival transshipment problems, have
polynomial time solutions. Gross et al. [23] propose efficient algorithms to calculate the approximate
earliest arrival flows on arbitrary networks. Several works have been done with continuous time
settings as well (see, Pyakurel and Dhamala [24] for the references). Several polynomial time algorithms
by natural transformations are obtained by Fleischer and Tardos [25].

In urban road networks, the vehicles in a particular road segment are allowed to move in a
specified direction only. In case of disasters, the evacuation planners discourage people to move
towards risk areas from safer places. As a result, the road segments leading towards the risk areas
become unoccupied and those towards safer places become overoccupied. If the direction of the traffic
flow in unoccupied segments is reversed, then the vehicles moving towards the safe areas can use those
segments as well. Reversing the traffic flow in a particular road segment is also known as lane reversal.
The optimal lane reversal strategy makes the traffic systematic and smooth by removing the traffic jams
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caused, not only in different natural and human-created disasters of large scale, but also in busy office
hours, special events and street demonstrations. The contraflow reconfiguration, by means of various
operations research models (cf. Section 2), heuristics, optimization techniques and simulation, reverses
the usual direction of empty lanes towards sinks satisfying the given constraints that increase the
value of the flow, and decrease the average time of evacuation. However, an efficient and universally
acceptable solution approach that meets the macroscopic and microscopic behavioral characteristics of
the evacuees (e.g., threat conditions, community context, and preparedness) is still lacking (see [4,26]).
Because of the large size of the problem (a large number of variables and parameters involved),
designing algorithms to calculate optimal solution within a desired time is challenging. Heuristics and
approximation methods provide solutions within an acceptable time but the optimality of the solution
is not guaranteed. A trade-off between computational costs and solution quality should always be
desired when designing solution algorithms.

As the computational costs of the exact mathematical solutions for general contraflow techniques
are quite high, a series of heuristic procedures are approached in literature that are computationally
manageable. Kim et al. [27] present two greedy and bottleneck heuristics for possible numerical
approximate solutions to the quickest contraflow problem, and they show that at least 40% evacuation
time can be reduced by reverting at most 30% arcs in their case study. They model the problem of
lane reversals mathematically as an integer programming problem by means of flows on network
and also prove that it is NP-hard. All contraflow evacuation problems are at least harder than the
corresponding problems without contraflow. We recommend Dhamala et al. [11] and the references
therein for different approaches of contraflow heuristics.

Though comparatively less, recent interest also includes analytical techniques, after
Rebennack et al. [28] solved the two-terminal maximum contraflow and quickest contraflow
problems optimally in polynomial times. The earliest arrival and the maximum contraflow problems
are solved with the temporally repeated solutions in Dhamala and Pyakurel [29]. Its solution with
continuous time is obtained in [30]. The authors of [31] solve the earliest arrival contraflow on
two-terminal network in pseudo-polynomial time. They also introduce the lex-maximum dynamic
contraflow problem in which flow is maximized in given priority ordering and solved with polynomial
time complexity. These problems are also solved in continuous time setting by using natural
transformation (cf. Section 2.2) of flow in discrete times to continuous time intervals in [24,30]. With
the given supplies at the sources and demands of the sink, the earliest arrival transshipment contraflow
problem is modeled in discrete time [32] and solved on multisource network with polynomial
algorithm. The problem with zero transit time on arcs is also solved on multi-sink network with a
polynomial time complexity. For the multiterminal network, they present approximation algorithms
to solve the earliest arrival transshipment contraflow problem. The discrete solutions are extended
into continuous time in [1,24]. The problems with similar objectives, in what is known as an abstract
network, are solved in [33].

In the present work, we propose algorithms to reverse the road segments up to the necessary
capacity only, to record segments with unused capacities so that they can be used for other purposes
of facilitating evacuation. Our proposed algorithms also summarize the earlier results on contraflow
in compact form. To the best of our knowledge, this is the first attempt to address the issues on
different partial contraflow problems with constant transit times and inflow-dependent transit times
associated to the arcs. These node–arc partial contraflow models contribute in saving the unnecessary
arc reversals improving the complete contraflow approaches.

The organization of this paper is as follows. Section 2 presents the basic terminology necessary
in the paper and different flow models. All the previously solved dynamic contraflow problems
with constant transit time are extended in the partial contraflow configuration and solved with
efficient algorithms in Section 4, after presenting the fundamental static partial contraflow solutions
in Section 3. Section 5 introduces the partial contraflow approach to solve the quickest flow problem
with inflow-dependent transit times presenting efficient algorithms. Section 6 presents numerical

215



Mathematics 2019, 7, 993

computations related to the quickest partial contraflow, with inflow-dependent transit times and taking
a case of the Kathmandu road network. The paper is concluded in Section 7.

2. Basic Terminology

An evacuation network is represented by N = (V, A, b, τ, S, D, T), where V is the set of n nodes,
A ⊆ V × V is the set of m arcs with a set of source nodes S and that of sink nodes D. For each v ∈ V,
we define Av = {e : e = (v, u) ∈ A}, the set of arcs outgoing from v, and Bv = {e : e = (u, v) ∈ A}, the
set of arcs incoming to v. The network is assumed to be without parallel arcs between the nodes as they
can be combined to a single arc with added capacity. It is connected with m arcs, so that n − 1 ≤ m,
and therefore n + m = O(m). The nodes may be equipped with the initial occupancy o : V → R+.
The predefined parameter T denotes a permissible time window within which the whole evacuation
process has to be completed. It may be discretized into discrete time steps T = {0, 1, . . . , T} or can be
considered a continuous one as T = [0, T].

On arcs, the upper capacity (bound) function b : A × T → R+ limits the flow rate passing along
the arcs for each point in time. The transit time function τ : A × T → R+ measures the time the flow
units take to travel along the arcs. We frame this work with constant and inflow-dependent transit
times on arcs. Smith and Cruz [34] give various approaches of travel time estimation on arterial links,
free and high ways. With inflow-dependent transit times, the transit time τe(xe(θ)) is a function of
inflow rate xe(θ) on the arc e at given time point θ, so that at a time flow units enter an arc with the
uniform speed and remain with the uniform speed traveling through this arc.

The flow rate function is defined by x : A × T → R+, where xe(θ) denotes the flow rate on e at
time θ. It may be taken as an inflow, outflow, and intermediate flow rate that measure the flow at entry,
exit, and intermediate points on an arc, respectively. For θ ∈ {0, 1, . . . , T} and constant function τ, the
amount of flow sent at time θ into e arrives to its end at time θ + τe. Whereas, for continuous time
θ ∈ [0, T] and constant function τ, the amount of flow per time unit enters at this rate e at time θ and
proceed continuously.

One may introduce an additional parameter λe ∈ R+ on arc e, e.g., a gain factor, to model a
generalized dynamic flow when only λe units of flow leave from w at time θ + τe, by entering a unit
of flow on e = (v, w) at time θ. If the flow is not gained, practically, along any arc, then λe ≤ 1
holds for each arc e ∈ A, and we call the network as a lossy network [35], which is denoted by
N = (V, A, b, τ, λ, S, D, T).

2.1. Flow Models

For a source node, s, and a sink node, d, a static s-d flow with value val(y) is a function
y : → R+ satisfying

val(y) = ∑
e∈Bd

ye = ∑
e∈As

ye (1)

∑
e∈Bv

ye − ∑
e∈Av

ye = 0, ∀ v ∈ V\{s, d} (2)

be ≥ ye ≥ 0, ∀ e ∈ A (3)

The constraints in (2) are flow-conservation constraints and the constraints in (3) are capacity
constraints. The maximum static flow problem seeks to maximize the objective (1), and we denote the
value of the maximum static flow by valmax(y). If the flow conservation constraints (2) are satisfied
for each v ∈ V, then corresponding flow y is also known as a circulation. If we add an arc (d, s) with
capacity val(y) and set y(d, s) = val(y), then the value of such a flow is zero, and the resulting flow
is a circulation. Given a fixed flow value val(y) and the cost ce per unit of flow for each e ∈ A, the
minimum cost static flow problem seeks to minimize the total cost ∑e∈A ceye of shifting val(y) from s
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to d. Adding an arc (d, s) with capacity val(y) and cost 0, the minimum cost static flow problem can be
turned into a minimum cost circulation problem.

Let us assume that the arc transit times and capacities are constant over the time. With an amount
of inflow xe(θ) on arc e at discrete time θ = 0, 1, . . . , T that may change over the planning horizon T,
the generalized dynamic flow x : A × T → R+ for given time T satisfies constraints (4–6).

T

∑
σ=τe

∑
e∈Bv

λexe(σ − τe) =
T

∑
σ=0

∑
e∈Av

xe(σ), ∀ v 	∈ {s, d} (4)

θ

∑
σ=τe

∑
e∈Bv

λexe(σ − τe) ≥
θ

∑
σ=0

∑
e∈Av

xe(σ), ∀ v 	∈ {s, d}, θ ∈ T (5)

be(θ) ≥ λexe(θ) ≥ 0, ∀ e ∈ A, θ ∈ T (6)

The generalized earliest arrival flow problem is to find a generalized dynamic flow of value
valmax(xe, θ) for each time unit θ ∈ T defined by objective function (7). It is defined as a generalized
maximum dynamic flow problem if the maximization is considered for θ = T only:

val(x, θ) = ∑
e∈Bd

θ

∑
σ=τe

λexe(σ − τe), θ ∈ T (7)

Note that, besides the sink, no flow units remain in the dynamic network after time T. It is
ensured by assuming that xe(θ) = 0 for all θ ≥ T − τe.

For the following models we assume that gain factor λ = 1. Then, the generalized dynamic flow
reduces to the dynamic flow and the generalized earliest arrival flow reduces to the earliest arrival
flow with objective function (8).

val(x, θ) =
θ

∑
σ=0

∑
e∈As

xe(σ) =
θ

∑
σ=τe

∑
e∈Bd

xe(σ − τe) (8)

Given a time horizon, T, and and a set of terminals with a given priority order, the lexicographic
maximum (lex-maximum) dynamic flow problem seeks to identify a feasible dynamic flow that
maximizes the amount leaving (entering) a terminal in the given order. For a given value Q0 (number
of flow units representing evacuees), the quickest flow problem minimizes T = T(Q0) such that the
value of the dynamic flow not less than Q0, satisfying the constraints (4)–(6) with equality in (5) and
λ = 1.

Let N = (V, A, b, τ, S, D, μ(s), μ(d)) be a multiterminal network with source-supply and
sink-demand vectors μ(s) and μ(d), respectively, such that μ(S ∪ D) = ∑v∈S∪D μ(v) = 0.
The multiterminal earliest arrival flow problem seeks to find the dynamic flow, so that the total
supply μ(S) = ∑s∈S μ(s) is sent from S to meet the total demand μ(D) = ∑d∈D μ(d) in D with
maximum value at each θ ≥ 0. If all demands are to be fulfilled with supplies by shifting them to
the sinks within given time T, then the problem is known as a transshipment problem. The earliest
arrival transshipment problem maximizes val(x, θ) in objective function (9) satisfying multiterminal
constraints (4)–(6) for all time points θ ∈ {0, 1, . . . , T} with λ = 1.

val(x, θ) =
θ

∑
σ=0

∑
e∈As :s∈S

xe(σ) =
θ

∑
σ=τe

∑
e∈Bd :d∈D

xe(σ − τe) (9)

If the transshipment from S to D is done in the minimum time min T = T(μ(S ∪ D)), then the
problem is called quickest transshipment problem.
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Let e′ = (w, v) be the reverse of an arc e = (v, w). The residual network N (y) for a static
flow y is given by (V, A(y)), where A(y) = AF(y) ∪ AB(y) with AF(y) = {e ∈ A : ye < be} and
AB(y) = {e′ ∈ A : ye > 0} with arc length τe for e ∈ AF(y) and −τe for e′ ∈ AB(y). The residual
capacity b(y) : A(y) → R+ is defined as be(y) = be − ye for e ∈ AF(y) and be(y) = ye′ for e ∈ AB(y).

Given a multiterminal S-D network, we construct an extended network by adding two extra
nodes: s∗ (called super-source) and d∗(called super-sink). For each s ∈ S, d ∈ D, we construct arcs
(s∗, s), (d, d∗) with zero transit time and problem-dependent capacities.

2.2. Natural Transformation

With the continuous time settings set as T = [0, T], all of the above models described in the above
subsection can be remodeled by replacing the summation over time with respective integrals. The
amount of flow entry, xe, on the arcs considered above in discrete models naturally transfer to the
entry flow rates in this continuous approach.

Fleischer and Tardos [25] connect the continuous and discrete flow models by the following
natural transformation, as defined in (10), that deals with the same computational complexity to both.

xc
e(ψ) = xe(θ), for all θ and ψ with θ ≤ ψ < θ + 1 (10)

where xe(θ) is the amount of discrete dynamic flow that enters arc e at time θ = 0, 1, . . . , T with
constant capacities on the arcs. For static flow ye on arc e, the amount of discrete dynamic flow with
transit time τe on arc e is

xe(θ) =
τ(e)−1

∑
σ=0

ye(θ − σ), for all θ = 0, 1, . . . , T − 1 (11)

Notice that the flow entering an arc e = (v, w) at time θ − τe arrives at w at time θ in discrete time,
but at time [θ + 1) in continuous time. The flow xc is feasible and will be same for both settings at any
interval [θ, θ + k), for θ = 0, 1, . . . , T, k ∈ N.

With standard chain decomposition, the static flow y is decomposed into a set of chain flows
Γ = {γ1, . . . , γr} with r ≤ m that satisfies y = ∑r

k=1 γk. Each chain in Γ starts at a source node and
ends at a sink node using arcs in the same direction as y does. The travel time on each chain γk is such
that τ(γk) ≤ T. The feasible dynamic flow can be obtained by summing the dynamic flows induced
by each chain flow.

A nonstandard chain decomposition of feasible y, e.g., Γ = {γ1, . . . , γr′ }, allows for an arc in
the opposite direction also for the flow. If e = (v, w) has transit time τe, then for its reverse arc
e′ = (w, v), τe′ = −τe. A unit of flow starting from w at time θ + τe and reaching v at time θ cancels the
unit of flow starting from v at time θ and reaching w at time θ + τe, and thus it is equivalent to sending
a negative unit of flow from v at time θ to w at time θ + τe.

Using the concept of natural transformation discussed above, Fleischer and Tardos [25] solved
the continuous versions of maximum flow, universal dynamic flow, lexicographically maximum flow,
quickest flow, and dynamic transshipment problems by solving their discrete counter parts with
time-invariant attributes. The computational complexities for both approaches remain the same. The
generalized dynamic cut capacity is defined to show the equivalent maximum flow solutions.

2.3. Models for Arc Reversals

Let N = (V, A, b, τ, S, D, T) be an evacuation network. For e = (v, w) ∈ A, we denote its reverse
arc (w, v) by e′. To solve a network flow problem with arc reversals, a common approach is to solve the
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corresponding problem in, what is known as, an auxiliary network. We denote the auxiliary network
of N by N = (V, E, b, τ, S, D, T), in which

be = be + be′ , and τe =

{
τe if e ∈ A
τe′ otherwise

and an edge e ∈ E in auxiliary N if e ∈ A or e′ ∈ A. While working with the auxiliary network
for reconfiguration, one is allowed to redirect the edge in any direction with the modified increased
capacity and same transit time in either direction. The remaining graph topology and data structures
in reconfigured network are unaltered. By discarding the time factor for flow passing through the
network, a static contraflow configuration will be defined analogously.

The core idea behind contraflow reconfiguration technique is to increase outbound flow with
reduced time on the evacuation network. Numerous dynamic contraflow heuristics have been
presented and implemented during the past few years. However, recently many analytical approaches
have been investigated, and polynomial time algorithms are also presented in a few cases, though the
general multiterminal problem is still NP-hard because of a conflict with reverting intermediate arcs.
We recommend a complete survey [11] for details.

Example 1. Let us consider a single-source single-sink evacuation network as shown in Figure 1(i), where s
is the source node and d is the sink node. The arcs, for example, (x, y) and (y, x), represent the two-way road
segments between nodes x and y. Each arc contains capacity and transit time (cost) associated to it. For example,
arc (s, w) has capacity 2 and transit time 3, that means, assuming a time unit of 5 min and a flow unit of 10
cars, a maximum of 20 cars can reach w from s in 15 min. The auxiliary network for reconfiguration is as shown
in Figure 1(ii), in which the capacity of each edge ē is obtained by adding the capacities of e, e′ and the transit
time τe = τe = τe′ .

s y

w

x d

z

2, 1

1, 1

3, 2

3, 2

3, 1

2, 1

2, 3

3, 3
1, 0 2, 0

1, 2 2, 2

3, 1

2, 1

2, 1

1, 1

2, 1

2, 1

1, 11, 1

s y

w

x d

z

5, 3

6, 2

3, 1 3, 2

3, 0 3, 1

4, 1

5, 1

5, 1

2, 1

(i) (ii)(capacity, transit time)

Figure 1. (i) Evacuation network N . (ii) Auxiliary network N of N .

3. Static Partial Contraflow

In this section, we introduce the maximum static partial contraflow problem (MSPCFP)
(cf. Problem 1) and the lex-maximum static partial contraflow problem (LMSPCFP) (cf. Problem 2).
Thereafter, polynomial time algorithms are presented to solve these problems. These algorithms
work as a foundation of solving the dynamic versions of the corresponding problems in the
subsequent sections.
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3.1. Maximum Static Partial Contraflow

Problem 1. Given a static network N = (V, A, b, τ, S, D), the maximum static partial contraflow problem
(MSPCFP) is to maximize a static S-D flow, saving the unused arc capacity, if the direction of arcs can be
reversed partially.

Algorithm 1 is designed for a single-source single-sink static network.

Algorithm 1: The maximum static partial contraflow algorithm (MSPCFA).

Input: A static network N = (V, A, b, s, d)
Output: A maximum static partial contraflow (MSPCF) on N with saved capacities of arcs

1. Construct the auxiliary network N = (V, E, b, s, d).
2. Run the maximum static flow algorithm in N with capacity b, that is, b̄e for each ē ∈ E to

compute the maximum static flow y.
3. Decompose the flow into paths and cycles and remove the flow in cycles.
4. Reverse e′ ∈ A up to the capacity ye − be iff ye > be, be replaced by 0 whenever e /∈ A.
5. For each e ∈ A, if e is reversed, r(e) = b̄ē − ye′ and r(e′) = 0. If neither e nor e′ is reversed,

r(e) = be − ye, where r(e) is the saved capacity of e.

Step 2 of Algorithm 1 relies on any of the best polynomial time maximum flow algorithms
that have a long history but are still under study. Their optimal solutions are guaranteed by
the fundamental max-flow min-cut theorem, which states that the maximum flow value equals
to the minimum cut capacity. Following the flow augmenting path pseudo-polynomial, that is,
O(nm log bmax) time, algorithm of Ford and Fulkerson [13], which ensures a maximum static flow
y if and only if the corresponding residual network does not contain an augmenting path, there
exist several advancements on its improvements. By scaling the capacities, the running time can
be improved to O(m2 log bmax), where bmax represents the integer valued maximum arc capacity.
Furthermore, the shortest augmenting path algorithm that uses the unit path length function, the
blocking flow algorithm that augments along a maximal set of shortest paths with respect to a blocking
flow, and the push-relabel algorithm that functions with nonconservation of flows, except at the source,
and sink nodes turn into strongly polynomial time algorithms with complexity, O(nm2), O(n2m) and
O(nm log(n2/m)), respectively.

The flow decomposition of Step 3 into paths and cycle removal is less costly with O(nm) running
time. In a few special case, like unit capacities, some of these algorithms can be implemented with
nearly linear time bounds. Using advanced data structures and dynamic trees, though much theoretical,
even more strongly polynomial time algorithms are developed, however, not much implementable in
usual practice (see Goldberg and Tarjan [36] for a brief review). For example, with the dynamic-tree
data structure, the binary blocking flow algorithm requires O(min(n2/3,

√
m)m log(n2/m) log bmax)

time within a factor log(n2/m) log bmax of the best algorithm for the unit arc capacity problem without
parallel arcs.

In Step 4 of Algorithm 1, reversal of traffic flow is allowed only in the necessary amount on
the road segment, i.e, partial reversal of the arcs in evacuation network. Unlike in the previous
investigations, the remaining capacity of the segment is not reversed, which can be used for other
purposes, for example, facility location–allocation and emergency logistic supports.

Based on maximum static contraflow solution with complete contraflow configuration presented
in [28], Step 2 of Algorithm 1, the maximum flow algorithm, computes the maximum static flow
optimally on auxiliary network N and Step 5 comes as a direct consequence of it. This leads to:

Lemma 1. Algorithm 1 computes the maximum static flow with partial arc reversal on N by saving capacities
r(e) of arc e ∈ A correctly.
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Theorem 1. Algorithm 1 solves the MSPCFP in strongly polynomial time with partial arc reversal capability.

Using a maximum flow algorithm, Rebennack et al. [28] obtained a maximum contraflow solution
in auxiliary network. However, their algorithm applies complete arc reversal strategy, such that an arc
e′ ∈ A is reversed if and only ye > be or ye > 0 for e 	∈ A in the maximum static contraflow solution
y. Here, we use partial lane reversal strategy, where the lanes of arcs not required by the contraflow
solution are not reversed.

Example 2. We illustrate Algorithm 1 on the network constructed in Example 1. First, we solve the maximum
static flow problem on auxiliary network in Figure 1(ii). As shown in Figure 2(i), paths P1 = s − x − d,
P2 = s − y − d, P3 = s − y − z − d, P4 = s − w − z − d, and P5 = s − w − y − x − d carry 3, 5, 1, 1, and 2
flow units, respectively. Thus, the obtained maximum static flow 12 units on N is equivalent to the maximum
static contraflow on N with arc reversals. According to Algorithm 1, arcs (x, s), (y, s), (d, x), (d, y), (d, z) are
reversed completely; arcs (w, s), (x, y), (y, w) are partially reversed each up to the capacity 1; each of the arcs
(y, z), (w, z), (z, w), (y, w) has a saved capacity of one unit; and each of (z, y), (w, s) has that of two units, as
shown in Figure 2(ii).

s y

w

x d

z

3/3, 1 5/5, 1

3/5, 3

2/3, 2

5/5, 1

2/2, 1

6/6, 2

2/3, 0

1/4, 1

1/3, 1

s y

w

x d

z1

1
2

2

1
1

1

(i) (ii)

Figure 2. (i) Solution in Figure 1(ii) with (flow/capacity, transit time). (ii) Saved capacities to part (i).

3.2. Lex-Maximum Static Partial Contraflow

Assume that, in a multiterminal evacuation network, the risk zones and the destination areas are
prioritized subject to specific reasons such as risk levels of disastrous areas, disabilities or urgency of
the evacuees, and service requirements to them. To meet these necessities, the sets of sources and sinks
are categorized as priority sets.

Let S1 ⊆ · · · ⊆ Sq ⊆ S and D1 ⊆ · · · ⊆ Dr ⊆ D, respectively, be the priority sets of the sources
and sinks, where Xi gets higher priority to Xj whenever Xi ⊆ Xj holds. Considered with a maximal
flow, let the greatest number of units that can enter the sink D∗ be valm(D∗). Then, a maximal flow
that delivers valm(Dk) units into each Dk is a lexicographically (lex-) maximal static flow on the sinks.
A maximal flow that sends maximum number of units, valm(Sk), out of each Sk is a lexicographically
(lex-) maximal flow on the sources.

Problem 2. Let N = (V, A, b, S, D) be a given multiterminal network with ordered sets of sources and sinks.
The lex-maximum static partial contraflow problem (LMSPCFP) at sources (sinks) is used to determine a feasible
flow that lexicographically maximizes the amounts leaving (entering) the terminals in given priority orders, if
the partial reversal of arcs is allowed.
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To solve the lex-maximum static partial contraflow problem (LMSPCFP; Problem 2), we design
Algorithm 2. An illustration is given in Figure 3.

Algorithm 2: The lex-maximum static partial contraflow algorithm (LMSPCFA).

Input: A multiterminal static network N = (V, A, b, S, D, T) with given orders of sources and
sinks priorities

Output: A LMSPCF on N with saved capacities of arcs

1. Construct the auxiliary network N = (V, E, b, S, D).
2. Run the lex-maximum static algorithm of [16] on N with capacity b̄ to find the flow y.
3. Decompose y into paths and cycles, and remove flows in cycles.
4. Reverse e′ ∈ A up to the capacity ye − be iff ye > be, be replaced by 0 whenever e /∈ A.
5. For each e ∈ A, if e is reversed, r(e) = b̄ē − ye′ and r(e′) = 0. If neither e nor e′ is reversed,

r(e) = be − ye, where r(e) is the saved capacity of e.

The authors of [31] presented a polynomial time algorithm to find contraflow reconfiguration
with complete arc reversals. We establish the following result that leaves the unused parts of arcs
unturned, solving a lex-maximum partial contraflow problem in polynomial time.

Theorem 2. The LMSPCFP can be solved using Algorithm 2 in polynomial time with arc reversals partially.

Proof. For the given priority ordering of multiterminals, the maximum static flow problem is
solved iteratively on auxiliary network N = (V, E, b, S, D) that gives an optimal solution to the
lexicographically (lex-) maximum static flow problem, as in [16]. The obtained solution is equivalent
to the lex-maximum static contraflow solution on N , [31]. Step 5 of Algorithm 2 saves all unused
capacities of arcs in O(m) time, leading to the solution of LMSPCFP in polynomial time.
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4
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1
2
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22
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2
1
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Figure 3. On the capacitated static network (i) with 2-sources and 3-sinks having priority ordering of
sinks d1, d3, and d2, the lex-maximum static partial contraflow is obtained as in (ii). Flow entering sinks
d1, d3, and d2 are maximized through paths s1 − x − d1, s2 − y − d1, s2 − y − d3, and s1 − x − y − d3,
and s1 − x − y − d2, respectively, by saving arc unit capacity of arcs (x, y) and (d2, y).

4. Partial Lane Reversals for Time-Invariant Attributes

This section deals with the concepts of dynamic partial contraflow and contra-transshipment
problems with constant transit times and capacities on arcs. Some efficient algorithms are presented
for their solutions. As the evacuation issues with dynamic environment have been categorized into
different problem types, such as maximum flow, quickest flow, lexicographically maximum flow,
earliest arrival flow, quickest transshipment, and earliest arrival transshipment, each has to be dealt to
separately with contraflow and, thereby, partial contraflow configuration techniques. The maximum
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dynamic, earliest arrival, lex-maximum dynamic and quickest, dynamic partial contra-transshipment
problems are abbreviated by MDPCFP, EAPCFP, LMDPCFP, QPCFP, and DPCTP, respectively.

4.1. Dynamic Contraflow Problems

As there is no algorithm to find temporally repeated flows on general S-D dynamic networks,
an exact optimal dynamic contraflow solution for them have not been found in polynomial time yet.
In particular, on the networks, like two-terminal s-d; priority-based S-D; and transshipments S-d, s-D,
and S-D with different constraints, the optimal static flow can be decomposed into chains (paths) that
are temporally repeated over the time horizon, T, returning the temporally repeated dynamic flows in
such cases. From the series of literature on analytical contraflow [1,24,28,30–32,37], it is established
that the optimal dynamic contraflow for the given network N = (V, E, b, τ, s, d, T) is equivalent
to the optimal dynamic flow on corresponding reconfigured network N = (V, E, b, τ, s, d, T). The
input network may be a super-source super-sink added extended network if one is considering a
multiterminal network, whenever a temporally repeated solution is possible.

Previous contraflow approaches do not apply the remaining arc capacities, which result after
contraflow reconfiguration. In this subsection, we redefine a series of partial contraflow problems
with time-invariant attributes and present appropriate efficient algorithms to solve the corresponding
problems saving the unnecessary arc capacities. Once a dynamic flow is obtained, it should be
subtracted from reconfigured capacities of arcs to record the maximum unused arc capacities.
These algorithms have great benefit as the remaining unused arc capacities can be used for emergency
vehicles and logistics. The following problem is more general, addressing respective partial contraflow
problems in a compact form.

Problem 3. Given a network, N = (V, A, b, τ, S, D, T), with integer inputs, the dynamic partial contraflow
problem (DPCFP) with objective function (G) is to find a dynamic S-D flow optimizing (G) for all time θ ∈ T
with arc reversals partially.

Problem 3 is stated in an abstract form for a general objective function G without its explicit nature.
As per the requirement of the specific problem, we will state it explicitly in the subsequent sections.

Applying Step 2 of Algorithm 3, any technique that computes a temporally repeated flow on
reconfigured network N is applicable to find an optimal solution to the corresponding contraflow for
the original network N . During the computation of temporally repeated flows, Step 3 removes the
cycle flows, if they exist, so that the simultaneous flows in both directions are not possible. Saving of
the unused capacities are recorded in Step 5. Thus, a flow is either along arc e or arc e′, and its value
is not greater than the added arc capacities at all time units. Therefore, the condition of feasibility is
satisfied by the algorithm. The optimality depends on the specific objective function.

Algorithm 3: The dynamic partial contraflow algorithm (DPCFA).

Input: A Dynamic network N = (V, A, b, τ, s, d, T) with constant and symmetric transit time,
i.e., τe = τe′

Output: A dynamic partial contraflow x with the partial arc reversals

1. Construct the auxiliary network N = (V, E, b, τ, s, d, T) of N for contraflow reconfiguration.
2. Use a temporally repeated flow algorithm to solve DPCFP(G) on reconfigured network N

with capacity be and transit time τ̄e for each ē ∈ E.
3. Decompose the flow y into paths and cycles and remove the flow in cycles.
4. For each θ ∈ T, reverse e′ ∈ A up to the capacity ye − be iff ye > be, be replaced by 0

whenever e /∈ A.
5. For each θ ∈ T and e ∈ A, if e is reversed, r(e) = b̄ē − ye′ and r(e′) = 0. If neither e nor e′ is

reversed, r(e) = be − ye, where r(e) is the saved capacity of e.
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4.1.1. Maximum Dynamic Contraflow

If the flow has to be maximized for given time period, T, without considering earlier periods,
then Problem 3 with the arcs permissible to be reversible only at time zero is the MDPCF problem.
The objective (8) is then max G = max val(x, T) for θ = T subject to constraints (4)–(6).

Polynomial time algorithms to solve the S-D MDCFP has not been investigated yet. However, it
can be solved in pseudo-polynomial time by reducing it into extended s-d network of its time-expanded
network. The s-d MDCFP is polynomially solvable in discrete time [28] and, in continuous time, [30]
reverses an arc completely whenever it is to be reversed.

Theorem 3. The s-d MDPCFP with G = val(x, T) can be solved in O(h1(n, m) + h2(n, m)) time in which
flow decomposition and minimum cost flow problems are solved in h1(n, m) = O(n.m) and h2(n, m) =

O(n2.m3. log n) times, respectively.

Proof. Theorem 3 is proved in three steps. First, we show that the solution Algorithm 3 yields is
feasible. Step 2 uses maximum dynamic flow algorithm of [13]. After the removal of the positive flow
in cycles in Step 3, there is a flow either along arc e or e′ but never in both arcs and the flow is not
greater than the modified capacities in the auxiliary network on each arc at each time unit. Second, we
show the optimality. We use the temporally repeated flow algorithm of [13] after we obtain the feasible
flow that gives a maximum dynamic flow solution on reconfigured network N , which is equivalent to
the maximum dynamic contraflow solution on N with the arcs reversed up to the necessary capacity
in Step 4. In Step 5, we record the capacities of the arcs not used by the flow after necessary (partial)
arc reversals, thereby obtaining a MDPCF solution.

The time complexity of the algorithm is dominated by the time complexity of the maximum
dynamic flow algorithm of [13] in Step 2, which is equal to the complexity of a minimum cost flow
computation, and that of flow decomposition in Step 3. This completes the proof.

Example 3. We compute the maximum dynamic flow on auxiliary network (cf. Figure 1(ii)) of evacuation
network in Figure 1(i)) having the aforementioned capacities and transit times on each arc with the repetition of
path flows computed in Example 2 within given time horizon T = 6. Using the algorithm in [13], we get the
static flow y corresponding to the temporally repeated dynamic flow, which is the same as that in Figure 2(i).
The temporally repeated maximum dynamic flow after partial contraflow configuration is as given in Table 1.

Table 1. Maximum dynamic flow computation after partial contraflow configuration (cf. Figure 1).

Path P y(P) Repeated for θ = Dynamic Flow Value

s − x − d 3 2, 3, 4, 5, 6 15
s − y − d 5 3, 4, 5, 6 20

s − y − z − d 1 4, 5, 6 3
s − w − z − d 1 5, 6 2

s − w − y − x − d 2 6 2

Total 42

The arc reversals and saved capacities are similar to those in Example 2.

We observe another algorithm for the partial contraflow configuration that is based on the
minimum cut problem. The formation of reconfigured network is from weighted undirected network
on which a minimum s-d cut can be obtained in O(n2 log3 n) time complexity that is independent
with maximum flow computations (Karger and Stein [38]). The partial contraflow configuration can
be achieved by reversing only the capacities of arcs that are equal to the minimum cut capacities.
However, it is difficult to identify the used capacities of other arcs that are not contained on minimum
cut set. We can say that maximum flow is equal to the minimum cut but there is not any technique
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developed to decompose the maximum flow value in different s-d paths in undirected network given
a minimum cut solution. If any such technique exists, then solving partial contraflow configuration
problem is not harder than finding the distribution of maximum flow value in different arcs and paths
of the network.

4.1.2. Earliest Arrival Contraflow

The earliest arrival (also known as the universal maximum) partial contraflow problem
(EAPCFP/UMPCFP) on the given dynamic network N = (V, A, b, τ, S, D, T) is to find a dynamic S-D
flow that is maximum for all time steps θ = 0, 1, . . . , T with arc reversal capability partially. In Step 2
of Algorithm 3, the objective function (8) is then max G = max val(x, θ) for all θ ∈ T subject to
constraints (4)–(6).

The earliest arrival contraflow problem for s-d series-parallel network is solved in polynomial
time O(nm + m log m), being identical with maximum flow optimal solution in which arcs are reversed
only at time zero [29,30]. The two solutions match for this case since each cycle in the residual network
has nonnegative length [18]. However, for other general networks, as there does not exist any exact
earliest arrival maximum flow solution with standard chain decomposition of [13], the nonstandard
chain decomposition of [19] has to be applied in order to decide contraflow reconfiguration which
demands arc reversals time to time, [24,31]. This results in a pseudo-polynomial time algorithm,
using the successive shortest path algorithms as in [15,16]. A complication for the s-d earliest arrival
contraflow solution arises because of the flipping requirements of intermediate arcs with respect to
the time.

As the S-D maximum dynamic contraflow problem is NP-hard, the corresponding S-D earliest
arrival contraflow problem is also NP-hard. However, the authors of [30] obtain an approximate
contraflow solution within the factor (1 − ε) of the optimal earliest arrival contraflow in polynomial
time. For this they run, the fully polynomial time approximation algorithm of [17] and obtain the
approximate s-d earliest arrival contraflow in O(mε−1(m + n log n) log b̄max) time are used, where
b̄max = maxe∈E b̄ē.

The authors of [39] extend the results on earliest arrival contraflow problem to the partial
lane reversal reconfiguration by saving unused arc capacity. Their algorithms have similar times
complexities as without contraflow.

4.1.3. Generalization of Dynamic Contraflow

Given a generalized dynamic lossy network N = (V, A, b, τ, λ, S, D, T) with integer inputs, the
generalized earliest arrival partial contraflow problem (GEAPCFP) is to find a generalized maximum
flow max G = max val(x, θ) for all θ ∈ T defined in Equation (7), subject to the constraints (4)–(6) with
partial arc reversal capability at time zero. If flow is maximized for a given time horizon T only, then
the problem is a generalized maximum dynamic partial contraflow problem (GMDPCFP).

As the corresponding contraflow problems on general S-D network are NP-hard, an additional
gain factor on each arc make the partial contraflow problems also NP-hard on general S-D lossy
network, too. However, considering s-d lossy network, the contraflow problems can be solved
computing corresponding generalized flows on the auxiliary network in pseudo-polynomial time
complexity [40]. Moreover, with the same complexity, we can solve the partial contraflow problems
using Algorithm 4 saving all unused arc capacities that can be used for other purposes.

There are different factors that make the flow to be lost during evacuation process. However,
we consider a special case in which it is assumed that in each time unit the same percentage of the
remaining flow value is lost. Thus, we consider a special case λ ≡ 2c.τ for some constant c < 0.

In the reconfigured network, we compute a maximum flow by calculating flow along shortest
s-d paths, augmenting this flow, and repeating the process successively until no s-d path exists in the
residual network. Then, such a maximum flow constructs an optimal maximum dynamic flow in
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pseudo-polynomial time with the standard temporally repeated flow technique in time-expanded
network.

Algorithm 4: The generalized dynamic partial contraflow algorithm (GDPCFA).

Input: Given a lossy network N = (V, A, b, τ, λ, s, d) with integer inputs
Output: The resulting flow is GMDPCF and GEAPCF with the arc reversals by saving unused

arc capacities

1. Compute the generalized maximum dynamic contraflow and generalized earliest arrival
contraflow on N = (V, E, b, τ, λ, s, d) with respective be and τe calculated in Step 1 of
Algorithm 3, and with additional gain factor λe ≡ 2c.τe , c < 0 using algorithms of [40,41].
Let y be the corresponding flow.

2. Reverse e′ ∈ A up to the capacity ye − be iff ye > be, be replaced by 0 whenever e /∈ A.
3. For each e ∈ A, if e is reversed, r(e) = b̄ē − ye′ and r(e′) = 0. If neither e nor e′ is reversed,

r(e) = be − ye, where r(e) is the saved capacity of e.

Theorem 4. The generalized maximum dynamic partial contraflow problem (GMDPCFP) can be solved with
pseudo-polynomial time complexity.

Proof. The highest gain path is computed in h3(n, m) = O(mn) time, in which transit time τē =
1
c log λē is considered as cost function. In auxiliary network N the generalized maximum flow using
the highest gain path is computed by a standard maximum flow algorithm. For given time horizon T,
there are at most T iteration, i.e., a maximum flow is computed at each iterations in O(nm), and thus
time complexity is h3(n, n) = O(nm.T) [41]. As Steps 2 and 3 are solved in linear time, the complexity
of Algorithm 4 is dominated by Step 1. Therefore, the GMDPCFP is solved in O(h3(n, m) + h3(n, n))
time complexity. Moreover, the GMDPCF solution has the earliest arrival property maximizing the
flow at each point of time and thus, the GEAPCFP is also solved in the same complexity.

4.1.4. Lexicographically Maximum Dynamic Contraflow

With given priority ordering at terminals of the dynamic network N = (V, A, b, τ, S, D, T), the
LMDPCFP is to find a lexicographically maximum dynamic flow at each priority terminal sets with
arc reversal capability partially at any time point.

Fixing the supplies and demands at sources and sinks, the LMDPCFP problem has been solved
with polynomial time complexity [24,31]. However, it is also solvable for unknown supplies and
demands on terminals with the same complexity, because there is a priority ordering in terminals but
not in supplies and demands. In the reconfigured network N = (V, E, b, τ, S, D, T) of Algorithm 3,
if we calculate the minimum cost flow in Step 2 at each iteration as in [19], the LMDPCF solution is
obtained after δ (number of terminals) iterations within time horizon T by saving unused arc capacities.
However, it uses so-called nonstandard flow decomposition in which backward arcs are allowed. The
consequence is Theorem 5.

Theorem 5. The LMDPCFP with partial reversals of arc capacities can be solved in O(δ × MCF(m, n)) time,
where MCF(m, n) = O(m log n(m + n log n)) is the time complexity of minimum cost flow solution.

4.1.5. Quickest Contraflow Problem

Problem 4. For a given dynamic network N = (V, A, b, τ, S, D, Q0) with integer inputs and fixed flow value
Q0, the quickest partial contraflow problem (QPCFP) is to find a minimum time T to transship the flow value
Q0 from the sources S to the sinks D with arc reversal capability partially.
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The authors of [24,28,30,37] investigate the s-d network quickest contraflow problem and S-D
network quickest contra-transshipment problem and present polynomial-time algorithms for their
solution. On the S-D network, the quickest contraflow problem is not easier than 3-SAT and
PARTITION [28]. However, for an s-d network, they present a strongly polynomial time algorithm with
discrete T based on the parametric search technique of Megiddo [42] and Burkard et al. [20]). They
find an upper bound for the quickest time by computing s-d paths in polynomial time and then use
parametric search to find the minimum time before which given flow value is sent to the sink resulting
in a strongly polynomial time complexity of O(m2(log n)3(m + n log n)). In same time complexity, the
quickest contraflow problem is solved in continuous times in [30].

Pyakurel et al. [37] presented the first polynomial algorithm with a time-complexity of a minimum
cost flow algorithm to solve the s-d quickest contraflow problem. The s-d quickest contraflow solution
has been computed by solving the parametric minimum cost flow problem using the cost scaling
algorithm of Lin and Jaillet [43]. It takes O(nm log(n2/m) log(nτmax)) time to solve this problem,
where τmax is the maximum transit time over all arcs. All the algorithms are presented with complete
contraflow configuration.

Replacing the cost scaling algorithm of Lin and Jaillet [43], if we use the cancel and tighten
algorithm of Saho and Shigeno [44] in Step 2 of Algorithm 3 that computes the quickest flow by solving
the parametric minimum cost flow problem in strongly polynomial time complexity, we get what
is stated in Theorem 6 without detailed proof. With this, we not only improve the complexity of
algorithm to solve the s-d quickest contraflow problem, but also reverse necessary parts of the road
segments saving all unused arc capacities, obtaining the QPCF solution in strongly polynomial time.

Theorem 6. The quickest contraflow problem on s-d network can be solved in O(nm2(log n)2) time complexity
with partial reversals of arc capacities.

4.2. Dynamic Contra-Transshipment Problems

Problem 5. Given a network N = (V, A, b, τ, S, D, μ(S), μ(D), T) with integer inputs, the dynamic partial
contra-transshipment problem (DPCTP) with objective function (H) is to find a feasible dynamic S-D flow for
(G) that fulfills the supply-demand shipments with partial arc reversals.

Problem 5 is stated in an abstract form for a general objective function G without its explicit nature.
As per the requirement of the specific problem, we will state it explicitly in the subsequent sections.

If the fixed source-sink supply-demand amounts should be shifted within given time horizon T
by maximizing G at every time point from the beginning with partial arc reversals, then the problem is
earliest arrival partial contra-transshipment (EAPCTP).

The authors of [1,24,32] investigate the earliest arrival contra-transshipment problem and present
polynomial time algorithms on multisource or multi-sink networks for specific arc transit times.
Moreover, a pseudo-polynomial time algorithm has been presented and its approximation solution
is computed for arbitrary transit times on each arc. If the transit time of each arc is zero, then the
approximation solution is obtained in polynomial time. For an urban evacuation scenarios including
life boats or pick-up bus stations, the concept of zero transit time is very important and applicable [45].

Based on the previous results from the literature, the EAPCTP can be solved in different
conditions using Algorithm 5 in which all unused arc capacities are saved in contraflow configuration.
However, this problem is not solved on general S-D network yet. For the S-d network N =

(V, A, b, τ, S, d, μ(S), μ(d), T) with arbitrary arc transit times, a solution of the earliest arrival
contra-transshipment problem can be found in polynomial time reversing the arc in the time intervals
whenever necessary. Moreover, the algorithm records all unused arc capacities.

By constructing extended network of reconfigured S-d network, we can compute with
super-source s∗ the s∗-d minimum cost flow circulations according to [21] and can save arc capacity
using Step 3 of Algorithm 5 as follows.
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First, the S-d network N is converted into extended network s∗-d network, making all nodes
in S intermediate and the total of the supply μ(S) is assigned to s∗. Moreover, node s∗ is connected
from d with a dummy arc (d, s∗) having infinite capacity. On s∗-d auxiliary network, we obtain
a feasible dynamic flow by computing the minimum cost circulation to the dynamic flow on S-d
auxiliary network, where μ(S) units of flow are being sent from the sources in S to d in time T. In
this procedure, to overcome from the violation of individual supplies at the source nodes, an earliest
arrival flow pattern p(θ), i.e., the maximum flow valS(x, θ) in which p(θ) ≤ valS(x, θ) for every θ ≥ 0,
is defined on s∗-d network. If p(θ) = valS(x, θ), for all θ ≥ 0, the process is complete. The pattern is
obtained polynomially in the input size plus the number of breakpoints. For given pattern p(θ) with k
breakpoints on the S-d network N , an earliest arrival transshipment can be obtained by computing a
transshipment dynamic flow in s∗-d network with k additional nodes and arcs. Thus, the obtained
earliest arrival transshipment is equivalent to the earliest arrival contra-transshipment on S-d network
N. Moreover, we can save all the unused arc capacities within the same complexity.

Algorithm 5: The dynamic partial contra-transshipment algorithm (DPCTPA).

Input: A dynamic network N = (V, A, b, τ, S, D, μ(S), μ(D), T) with constant and symmetric
transit times, i.e., τe = τe′

Output: A dynamic contra-transshipment with the partial arc reversals

1. Construct the reconfigured auxiliary network N = (V, E, b, τ, S, D, μ(S), μ(D)) of N for
contraflow reconfiguration.

2. Use a respective transshipment algorithm to solve DPCTP(G) on reconfigured network N
with capacity be and transit time τe for each ē ∈ E. Let y be the corresponding flow.

3. For each θ ∈ T and reverse e′ ∈ A up to the capacity ye − be iff ye > be, be replaced by 0
whenever e /∈ A.

4. For each θ ∈ T and e ∈ A, if e is reversed, r(e) = b̄ē − ye′ and r(e′) = 0. If neither e nor e′ is
reversed, r(e) = be − ye, where r(e) is the saved capacity of e.

Theorem 7. On the S-d network, the EAPCTP can be solved in polynomial time in the input plus output size.

If the network is s-D with arbitrary transit times, its solution does not exist, because there is
always conflict of which s-D path should be used first to make earliest possible flows. However, if
transit times are assumed to be zero, every s-D path has same length yielding optimal earliest arrival
contra-transshipment solution in polynomial time. Different networks can be categorized as in [45],
wherein the s-D network EAPCTP can be solved polynomially using Algorithm 5 with reversing the
partial capacities of arcs.

Theorem 8. The EAPCTP problem can be solved polynomially on multi-sink networks with transit time zero
on each arc, saving the unused arc capacities.

Even with the zero transit times, for the S-D network, an earliest arrival transshipment solution
is not possible. Consider a network N with two sources, s1 and s2; two sinks, d1 and d2; and arcs
(s1, d1), (s1, d2), and (s2, d2). Each source and sink have supply 2 and demand 2, and each arc has unit
capacity. If we use all paths at time zero, we can transship three units of flows. But leaving the path
s1-d2 empty, we can transship only two units of flow at time zero violating the maximality at every
time point.

Thus, we investigate for an approximate solution for the S-D network earliest arrival partial
contra-transshipment problem. For the solution, the reconfigured S-D transshipment network is
transformed into time-expanded network. Then, the extended time-expanded network is constructed
adding supper source s∗ and super sink d∗ with enough time bound, T, in which we can apply
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the algorithm of Gross et al. [23] that computes 2-value approximate earliest arrival transshipment
solution. The optimal earliest arrival transshipment solution is bounded by 2 times the earliest
arrival transshipment solution, called the 2-value approximate earliest arrival transshipment. It is
equivalent to the 2-value approximate earliest arrival contra-transshipment on given network with
arbitrary transit time on each arc. As it works on a time-expanded network, its time complexity
is pseudo-polynomial. However, if the transit time is reduced to be zero, polynomial time 2-value
approximation EAPCT can be obtained using the algorithm in [46] on Step 2 of Algorithm 5, thereby
reversing the necessary parts of the segments and saving unused arc capacities in Steps 4 and 5.

Theorem 9. The 2-value approximated EAPCT on S-D network can be solved efficiently by saving all unused
arc capacities of arcs.

5. Lane Reversals with Variable Attributes

We consider problems with variable transit times as a nonlinear function of probable congestion
due to the current situation of flow in arcs. The transit times are flow dependent if they depend upon
the density, speed and flow rate along the arcs. The inflow-dependent transit time τe(xe(θ)) depends
on inflow rate xe(θ) at given time point θ so that, at a time, the flow units enter an arc e with uniform
speed which remains uniform throughout this arc.

Contraflow with Inflow Dependent Transit Times

To introduce the inflow-dependent quickest partial contraflow problem (IFDQPCFP), the function
τ in Problem 4 is replaced by inflow-dependent transit time function τ(x), which comprises functions
τe(xe), which denote the transit time on arc e if the inflow rate is xe, for each e ∈ A (see also [47]).
In what follows, we model the problem and present a strongly polynomial time algorithm for an
approximate solution of IFDQPCFP.

In oder to model the inflow-dependent flow over time problem, assume that at any moment of
time the transit time function on an arc is given as a piecewise constant, nondecreasing, left-continuous
function of inflow rate, Köhler et al. [2]. Note that this function can be restricted to be only integral
values as it can be easily relaxed to allow arbitrary rational values by scaling the time with a proper way.
Moreover, any general non-negative, nondecreasing, left-continuous function has been approximated
by a step function within arbitrary precision.

Along with the inflow rate, the transit time functions generally depend on the free flow transit
time and capacity of the arc. If the capacity of an arc is increased, more flow can be sent along the arc
and the units of flow take less time to travel the same arc. In a contraflow configuration, the auxiliary
network is constructed by adding the capacities of the opposite arcs. Therefore the same amount of
flow may take less time to reach from one end of the arc to the other end in comparison to the one
without contraflow configuration. We assume that the free flow transit time in the two opposite arcs
and the arc with which they are replaced with in the contraflow configuration are identical. The value
of the transit time function on the arc in the auxiliary network is the result of the free flow transit time
and the enhanced capacity. We assume that the transit time τe on an arc e is a function of the inflow
rate xe(θ), the free flow transit time τ0

e , and the capacity be. Our approach is to find the quickest flow
in the form of a temporally repeated static flow y, we assume that τe is given as a function of the static
flow rate ye, τ0

e , be. Let
τe(ye) = f (ye, τ0

e , be).

Then, for some ye = ζ, assuming that the free flow transit times on the opposite arcs e and e′ are
equal, we have,

τe(ζ) = f (ζ, τ0
e , be),

τe′(ζ) = f (ζ, τ0
e , be′),
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and on the auxiliary network
τē(ζ) = f (ζ, τ0

e , be + b′e).

We present Algorithm 6 to solve the single-source single-sink IFDQPCF Problem 6.

Problem 6. Given a network N = (V, A, b, τ, s, d, Q0) with inflow-dependent τ, integer inputs, and fixed
flow value Q0, the s-d inflow-dependent quickest partial contraflow problem (IFDQPCFP) is to find a minimum
time T to transship the flow value Q0 allowing partial arc reversals.

Algorithm 6: Inflow dependent quickest partial contraflow algorithm (IFDQPCFA).

Input: Given a dynamic network N = (V, A, b, τ, s, d, Q0)

Output: An inflow-dependent quickest contraflow allowing partial arc reversals

1. Consider the reconfigured network N = (V, E, b, τ, s, d, Q0), where

bē = be + be′ and τ0
ē =

{
τ0

e if e ∈ A
τ0

e′ otherwise

for e ∈ E.
2. Compute the static flow y corresponding to the quickest flow on N using algorithm of

Köhler et al. [2].
3. Decompose y into paths and cycles and remove flows in cycles.
4. Reverse e′ ∈ A up to the capacity ye − be iff ye > be, be replaced by 0 whenever e /∈ A.
5. For each e ∈ A, if e is reversed, r(e) = b̄ē − ye′ and r(e′) = 0. If neither e nor e′ is reversed,

r(e) = be − ye, where r(e) is the saved capacity of e.

Before we realize the correctness of Algorithm 6, we show that the temporally repeated flow with
inflow-dependent transit times can be computed using a bow network in Step 2 as in Köhler et al. [2].
Let τst be the step function representation of τ, such that for a particular arc e = (v, w) ∈ A, τst

e (z) =
τi, z ∈ (zi−1, zi], i = 1 · · · k, where 0 = z0 < z1 < · · · < zk = be and zi, τi are non-negative integers.
To construct the bow graph, we introduce

(i) regulating arcs ρi(i = 1 · · · k) with capacity zi and transit time 0, such that the tail of ρi is the head
of ρi+1 for i = 1 · · · k − 1 and tail of ρk is v, and

(ii) bow arcs βi(i = 1 · · · k) with infinite capacity and transit time τi such that the tail of βi is the head
of ρi and the head of βi is w.

Figure 4 shows the bow graph representation of e = (v, w) in which τst
e (z) = 2, z ∈ (0, z1]; τst

e (z) =
4, z ∈ (z1, z2 = be].

We denote the bow network corresponding to the network N = (V, A, b, τ, s, d) by N B =

(VB, AB, bB, τB, s, d), where VB, AB consist of vertices and arcs constructed as a result of bow graph
representation of each arc e ∈ A; bB and τB represent the capacity and transit time of each e ∈ AB

as defined above. With this, every flow over time with inflow-dependent transit times in N can be
considered as a flow over time with constant transit times in N B, but not conversely. The problem on
bow network is certainly a relaxation of the original with inflow-dependent transit times flow over
time problem. Lemma 2 assumes inflow-dependent nondecreasing piecewise constant transit time
functions.

Lemma 2. For given dynamic s-d flow with inflow-dependent transit times sending Q0 units in reconfigured
network N within time T∗ = min T(Q0), a temporally repeated flow with inflow-dependent transit times can
be computed in strongly polynomial time that sends the same amount of s-d flow within at most 2T∗ time.
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Proof. To construct the bow graph N B
of N , we modify E by replacing each ē ∈ E by two opposite

arcs, each with the capacity b̄ and transit time τē, which can be done in o(m) times. Then we construct
the bow network as mentioned earlier. As this network has constant transit time on arcs, we can
use any algorithm to calculate the quickest flow for a network with constant transit time on arcs.
The best-known strongly polynomial algorithm so far is the cancel-and-tighten algorithm in [44]. Let
TB be the quickest time to send a flow of value Q0 from s to d. Thus, TB is a lower bound on the
optimal time T∗ in N . The quickest flow computation, e.g., by cancel-and-tighten algorithm, yields a
static flow yB on N B

. Temporal repetition of yB over the time horizon TB yields a dynamic flow xB in
N B

, with

val(xB) = TBval(yB)− ∑
e∈EB

τeyB
e = Q0 (12)

The dynamic flow xB in N B
may not yield a feasible dynamic flow in N [2]. We overcome the

difficulty by pushing the static flow from fast bow arcs to the slowest positive flow carrying bow arc
(say, βe) for each e ∈ E. This results into a modified static flow ȳB, with val(ȳB) = val(yB), which
induces a temporally repeated dynamic flow x̄B in N B

with time horizon T ≥ TB. T can be calculated
by using the equation

val(x̄B) = Tval(ȳB)− ∑
e∈EB

τeȳB
e = Q0 (13)

One can show that
2TBval(ȳB)− ∑

e∈EB

τeȳB
e ≥ Q0 (14)

and as val(x̄B) is an increasing function of T, it can be realized that T ≤ 2TB. For any e ∈ E, as ȳB uses
at most one bow arc βe, we can find a feasible dynamic flow x in N such that xe(θ) = x̄B

βe(θ) ≤ ȳB
βe . As

the temporally repeated dynamic flow induced by ȳB satisfies flow conservation, x also satisfies the
flow conservation with storage of flow at intermediate nodes on N . The time horizon of x is T such
that T ≤ 2TB ≤ 2T∗.

v
e

be, τe(ye)
w

ye

τst
e (ye)

z1 z2 = be0

2

4

v
(z2, 0)

ρ2

(z1, 0)
ρ1

(∞, τ2)

β2

(∞, τ1)

β1 w

Figure 4. Expansion of a single arc e = (v, w) in the bow network with transit times 2 and 4, for at most
z1 and z2 flow units, respectively.

Theorem 10. An approximate solution to the IFDQPCFP can be obtained using the IFDQPCFPA (Algorithm 6)
in strongly polynomial time by reversing arc capacities partially.

Proof. First, the IFDQPCFPA algorithm (cf. Algorithm 6) is feasible, as all of its steps are feasible. On
auxiliary network N , we can compute the temporally repeated flow with inflow-dependent transit
times using the algorithm of Köhler et al. [2] that gives the approximate quickest flow as in Lemma 2
as well as we can save all the unused arc capacities. From the feasibility of our algorithm, we directly
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conclude that every feasible quickest flow solution on the reconfigured network N is equivalent to
the quickest flow solution in the original network N as in constant transit times [28,30,32]. Thus, the
obtained approximate quickest flow on N is the approximate quickest partial contraflow for network
N with inflow-dependent transit times which can be obtained in polynomial time complexity.

6. Case Illustration

To illustrate some computational results, we consider Kathmandu road network containing major
road sections (cf. Figure 5) as an evacuation network N with n = 44 and m = 124. The transit time
(which we consider as the free flow transit time) in each road segment is as provided by Google Maps,
and the integer capacity is assumed to be between 1 to 4 flow units per second according to the width
of the segment. Related data are given in Appendix A (Tables A1 and A2).

Figure 5. Kathmandu road network.

For the purpose of calculating inflow-dependent transit time on each arc e, we consider the
following two functions given in [48] and present an analysis corresponding to each of them in parallel.

1. BPR function, developed by US Bureau of Public Roads:

τe(ye) = t0
e

[
1 + α

(
ye

b′e

)β
]

(15)

As an usual practice, we take α = 0.15, β = 4, b′e = 0.8be.
2. Davidson’s function:

τe(ye) = t0
e

[
1 + J

ye

be − ye

]
(16)

In our computations, we take J = 0.1.
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Given the number of flow units Q0 to be evacuated, to find the quickest flow allowing (partial) arc
reversal, we construct the auxiliary network of the evacuation network. To solve the problem with the
transit time depending on the inflow on each arc, we construct the bow graph of the auxiliary network
as described in Section 5.

To construct the bow graph, measuring ye, be in flow units per second and t0
e in seconds, we

consider the transit time function as the step function

τst
e (ye) = �τe(�ye� − 1)� , 0 < ye ≤ be (17)

where �ye� represents the least integer greater than or equal to ye and �τe(ye)� is the value of τe(ye)

rounded to the nearest integer. As an example, the step function representation of a function on an arc
with the free flow transit time 120 s and capacity four units of flow per second is given in Figure 6.

(a) BPR function (b) Davidson’s function

Figure 6. Flow-dependent transit time functions and corresponding step functions with τ0
e = 120 s and

be = 4 per second.

We find the static flow corresponding to the quickest flow in the bow graph, and we push the
flow to the slowest arc (see Section 5) to find the approximate dynamic flow corresponding to the
quickest flow. To compare the quickest time T∗ in the bow graph and its approximate value Tapprox,
we consider Q0 between 1 to 10,000 with a gap of 500. The results are shown in Figure 7. We find the
maximum value of Tapprox

T∗ to be 1.045 in case of BPR function and 1.098 in case of Davidson’s function.
We compare the quickest times before and after allowing partial arc reversal in Figure 8. For

Q0 as small as 500, the quickest time before allowing (partial) arc reversal using the BPR function is
approximately 29.5 min; whereas, after allowing arc reversal, it is 27.6 min (i.e., approximately 93.5%
of the time before allowing arc reversal). With the increase in the value of Q0, the gap increases. For
Q0 as large as 100,000, the value after allowing arc reversal is 141.7 min, 57.6% of the value before
allowing arc reversal which is 246.1 min. The quickest times for some values of Q0 before and after
allowing arc reversal are listed in Table 2.

The number of arcs reversed (partially) for some values of Q0 are given in Table 3.
The observations show that increasing Q0 beyond a sufficient large value does not increase the
number of arcs reversed beyond some fixed value (e.g., 29 in this case).

The links used for the quickest flow corresponding to Q0 = 100,000 allowing partial arc reversal
(using BPR function and Davidson’s function) are depicted in Figure 9, with appropriate direction of
the flow. The road segments which need to be reversed fully are (1, Source), (12, Source), (18, Source),
(27, Source), (2, 1), (13, 12), (14, 13). (15, 14). (5, 4), (7, 6), (Sink, 8), (17, 16), (16, 15), (Sink, 7), (Sink, 40).
The segments which are to be reversed partially are listed in Table 4.
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(a) Using BPR function (b) Using Davidson’s function

Figure 7. Quickest time in bow graph and its approximation by pushing the flow to the slowest arc.

(a) Using BPR function (b) Using Davidson’s function

Figure 8. Quickest times before and after allowing partial arc reversal.

Table 2. Comparison of the quickest time before and after allowing arc reversal.

BPR Function Davidson’s Function

Quickest Time Quickest Time

Q0 before Contraflow after Contraflow before Contraflow after Contraflow

500 29.5 27.6 30.8 28.6

1000 33.6 29.7 35 30.8

10,000 58.6 47.4 60.9 49

20,000 79.5 58.4 81.8 60.5

50,000 142 89.6 144.3 91.7

100,000 246.1 141.7 248.4 143.8
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Table 3. Number of arcs reversed.

Number of Arcs Reversed

Q0 BPR Function Davidson’s Function

500 8 5

1000 8 10

10,000 20 21

20,000 29 29

50,000 29 29

100,000 29 29

Figure 9. Direction of the approximate quickest flow allowing partial arc reversal, Q0 = 100,000.

We also compare the quickest times with inflow-dependent transit time on arcs against the
quickest times with constant transit time on arcs. For the purpose, we consider three types of constant
transit time τe for each e ∈ A:

(i) τe = τst
e (be), the upper bound on the step function represent of τe(ye).

(ii) τe = τ̄st
e (ye) =

∑be
i=1 τst

e (i)
be

, the average of the step function values.

(iii) τe = τ0
e the free flow transit time.

It is observed, in the network considered, that the quickest times corresponding to the constant
time on each arc as the average of the corresponding step function are very close to the quickest time
with inflow-dependent transit time (cf. Figure 10).
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Table 4. Partially reversed segments.

Segment Reversed Capacity Capacity

(3, 27) 1 2
(38, 2) 1 3

(39, 38) 1 3
(40, 39) 1 3
(6, 5) 1 3
(4, 32) 1 2

(32, 31) 1 2
(8, 7) 1 3

(23, 24) 2 4
(24, 25) 2 4
(26, 21) 2 4
(25, 26) 2 4
(31, 30) 1 2

(19, 18) a 1 2
(7, 17) b 1 2

a for Davidson’s function only. b for BPR function only.

(a) Using BPR function (b) Using Davidson’s function

Figure 10. Comparison of quickest times (inflow-dependent transit time vs. constant transit time
on arcs).

7. Conclusions

Highlighting the overall pros and cons of the complete contraflow models and algorithms, a new
and more relevant approach—a partial lane reversal strategy—has been introduced in this paper.
Using this approach, we can send maximum evacuees in minimum evacuation time recording all
unused capacities of the lanes for other crucial emergency and logistic supports for the evacuees with
partial reversals of lane capacities. The static partial contraflow problems and the dynamic partial
contraflow problems including, the maximum dynamic, the earliest arrival, quickest, lex-maximum
dynamic, generalized universally maximum, and partial contra-transshipment problems, have been
solved with efficient algorithms. The maximum dynamic and earliest arrival contraflow problems are
generalized on lossy networks with partial contraflow reconfiguration. Polynomial time algorithms to
solve these problems with constant transit time on each arc have been proposed.
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Moreover, the partial contraflow models with variable transit time on each arc have been
introduced for the first time. For the inflow-dependent transit times on each arc, an algorithm
with strongly polynomial time complexity has been presented that computes an approximate solution
to the two terminal quickest contraflow problem with partial lane reversals, which is substantiated by
numerical computations considering a case of Kathmandu road network as an evacuation network.
The algorithms related to static flow are useful when one is interested to find the maximum rate of
flow (evacuees) that can reach the sink(s). Within a specified time, if the maximum number of evacuees
have to be evacuated, algorithms related to maximum dynamic flow are useful. The algorithms related
to quickest flow are useful to identify the minimum time to evacuate a known number of evacuees.

To the best of our knowledge, the problems investigated in this work are conducted for the
first time in the partial contraflow approach. Although these models provide information about
the parts of the road segments not used by evacuees, they do not guarantee the existence of such a
path between given nodes which may be required for movement of facilities from a node towards
sources. As we have investigated only a single-source single-sink model with variable attributes
to identify the quickest time, we are interested to extend these contraflow and partial contraflow
models and algorithms to solve other network flow over time problems with variable attributes.
In addition, we intend to implement the results for supporting logistics in emergencies using the
partial contraflow techniques.
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Abbreviations

The following abbreviations are used in this manuscript:

BPR Bureau of Public Roads
DPCFA Dynamic partial contraflow algorithm
DPCFP Dynamic partial contraflow problem
DPCTA Dynamic partial contra-transshipment algorithm
DPCTP Dynamic partial contra-transshipment problem
EAPCFA Earliest arrival partial contraflow algorithm
EAPCFP Earliest arrival partial contraflow problem
GDPCFA Generalized dynamic partial contraflow algorithm
GDPCFP Generalized dynamic partial contraflow problem
GEAPCFA Generalized earliest arrival partial contraflow algorithm
GEAPCFP Generalized earliest arrival partial contraflow problem
GMDPCFA Generalized maximum dynamic partial contraflow algorithm
GMDPCFP Generalized maximum dynamic partial contraflow problem
IFDQPCFA Inflow-dependent quickest partial contraflow algorithm
IFDQPCFP Inflow-dependent quickest partial contraflow problem
LMDPCFA Lexicographic maximum dynamic partial contraflow algorithm
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LMDPCFP Lexicographic maximum dynamic partial contraflow problem
LMSPCFA Lexicographic maximum static partial contraflow algorithm
LMSPCFP Lexicographic maximum static partial contraflow problem
MDPCFA Maximum dynamic partial contraflow algorithm
MDPCFP Maximum dynamic partial contraflow problem
MSPCFA Maximum static partial contraflow algorithm
MSPCFP Maximum static partial contraflow problem
QPCFA Quickest partial contraflow algorithm
QPCFP Quickest partial contraflow problem
UMPCFA Universal maximum partial contraflow algorithm
UMPCFP Universal maximum partial contraflow problem

Appendix A

Table A1. Network data considered in Section 6.

e be (per second) be′ (per second) τ0
e (minutes)

(Source, 1) 2 2 6
(Source, 12) 2 2 10
(Source, 18) 2 2 3
(Source, 27) 2 2 4

(1, 2) 2 2 3
(1, 27) 2 2 5
(2, 3) 3 3 5

(2, 38) 3 3 12
(3, 4) 3 3 5

(3, 27) 2 2 6
(4, 5) 3 3 1

(4, 32) 2 2 1
(5, 6 ) 3 3 1
(5, 42) 2 2 7
(6, 7) 3 3 5

(6, 23) 2 2 2
(7, 8) 3 3 8

(7, 17) 2 2 10
(7, Sink) 2 2 5

(8, 9) 2 2 16
(8, Sink) 3 3 7
(9, 10) 2 2 3
(9, 17) 2 2 3

(10, 11) 2 2 5
(11, 12) 2 2 17
(11, 37) 2 2 7
(12, 13) 2 2 4
(13, 14) 2 2 6
(13, 33) 2 2 9
(14, 15) 2 2 1
(14, 33) 2 2 3
(15, 16) 2 2 1
(15, 35) 2 2 1
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Table A2. Network data considered in Section 6 (contd. . . ).

e be (per second) be′ (per second) τ0
e (minutes)

(16, 17) 2 2 1
(16, 36) 2 2 3
(16, 37) 4 0 1
(18, 19) 2 2 2
(18, 28) 2 2 2
(19, 20) 2 2 2
(19, 29) 2 2 2
(20, 21) 2 2 2
(20, 30) 2 2 2
(20, 33 ) 2 2 1
(21, 26) 0 4 1
(21, 34) 2 2 1
(22, 23) 4 0 1
(22, 32) 2 2 1
(23, 24) 4 0 1
(24, 25) 4 0 2
(25, 26) 4 0 1
(26, 35) 2 2 2
(27, 28) 2 2 3
(28, 29) 4 0 2
(29, 30) 4 0 1
(30, 31) 2 2 2
(31, 32) 2 2 2
(33, 34) 2 2 2
(34, 35) 2 2 1
(35, 36) 2 2 2
(38, 39) 3 3 7
(38, 42) 2 2 8
(39, 40) 3 3 1
(39, 41) 2 2 1
(40, 41) 2 2 2

(40, Sink) 3 3 8
(41, 42) 2 2 2
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Abstract: The Max-cut problem is a well-known combinatorial optimization problem, which has
many real-world applications. However, the problem has been proven to be non-deterministic
polynomial-hard (NP-hard), which means that exact solution algorithms are not suitable for
large-scale situations, as it is too time-consuming to obtain a solution. Therefore, designing heuristic
algorithms is a promising but challenging direction to effectively solve large-scale Max-cut problems.
For this reason, we propose a unique method which combines a pointer network and two deep
learning strategies (supervised learning and reinforcement learning) in this paper, in order to address
this challenge. A pointer network is a sequence-to-sequence deep neural network, which can extract
data features in a purely data-driven way to discover the hidden laws behind data. Combining the
characteristics of the Max-cut problem, we designed the input and output mechanisms of the pointer
network model, and we used supervised learning and reinforcement learning to train the model
to evaluate the model performance. Through experiments, we illustrated that our model can be
well applied to solve large-scale Max-cut problems. Our experimental results also revealed that
the new method will further encourage broader exploration of deep neural network for large-scale
combinatorial optimization problems.

Keywords: Max-cut problem; combinatorial optimization; deep learning; pointer network;
supervised learning; reinforcement learning

1. Introduction

Combinatorial optimization is an important branch of operations research. It refers to solving
problems of variable combinations by minimizing (or maximizing) an objective function under given
constraints, and is based on the research of mathematical methods to find optimal arrangements,
groupings, orderings, or screenings of discrete events. As a research hot-spot in combinatorial
optimization, the Max-cut problem is one of the 21 typical non-deterministic polynomial (NP)-complete
problems proposed by Richard M. Karp [1]. It refers to obtaining a maximum segmentation for a given
directed graph, such that the sum of the weights across all edges of two cutsets is maximized [2].
The Max-cut problem has a wide range of applications in engineering problems, such as Very Large
Scale Integration (VLSI) circuit design, statistical physics, image processing, and communications
network design [3]. As a solution of the Max-cut problem can be used to measure the robustness of
a network [4] and as a standard for network classification [5], it can also be applied to social networks.

It has been discovered that many classic combinatorial optimization problems derived from
engineering, economics, and other fields are NP-hard. The Max-cut problem concerned in this paper
is among these problems. For combinatorial optimization problems, algorithms can be roughly
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divided into two categories: one is represented by exact solution approaches, including enumeration
methods [6] and branch and bound methods [7], etc. The other category is represented by heuristic
algorithms including genetic algorithms, ant colony algorithms, simulated annealing algorithms,
neural networks, Lin–Kernighan Heuristic (LKH) algorithms, and so on [8]. However, there is
no polynomial time solvable algorithm to find a global optimal solution for NP-hard problems.
Compared with the exact approach, heuristic algorithms are able to deal with large-scale problems
efficiently. They have certain advantages in computing efficiency and can be applied to solving
large-scale problems with huge amount of variables. In order to solve the Max-cut problem, a large
number of heuristic algorithms have been proposed, such as evolutionary algorithms and ant colony
algorithms. However, for these algorithms, the most obvious disadvantage of them is that they are
easy to fall into local optima. For this reason, more and more experts have begun working on the
research and innovation of some novel and effective algorithms for large-scale Max-cut problems.

Deep learning is a research field which has developed very rapidly in recent years, achieving
great success in many sub-fields of artificial intelligence. From its root, deep learning is a sub-problem
of machine learning. Its main purpose is to automatically learn effective feature representations
from a large amount of data, such that it can better solve the credit assignment problem (CAP) [9];
that is, the contribution or influence of different components in a system or their parameters to the
output of the final system. The emergence of deep neural networks has provided the possibility
for solving large-scale combinatorial optimization problems. In recent years, with the development
of the combination of deep neural networks and operations research for large-scale combinatorial
optimization problems, scholars have explored how to apply deep neural networks in these fields,
and have achieved certain results. The related research has mainly focused on the algorithm design
for combinatorial optimization problems based on pointer networks. Vinyals used the attention
mechanism [10] to integrate a pointer structure into the sequence-to-sequence model, thus creating the
pointer network. Bello improved the pointer network structure and used a strategy gradient algorithm
combined with time-series difference learning to train the pointer network in reinforcement learning to
solve the combinatorial optimization problem [11]. Mirhoseini removed the coding part of a recurrent
neural network (RNN) and used the embedded input to replace the hidden state of the RNN. With this
modification, the computational complexity was greatly reduced and the efficiency of the model
was improved [12]. In Reference [13], a purely data-driven method to obtain approximate solutions
of NP-hard problems was proposed. In Reference [14], a pointer network was used to establish
a flight decision prediction model. Khalil solved classical combinatorial optimization problems by
Q-learning [15]. The pointer network model has also been used, in Reference [16], to solve the
weightless Max-cut problem. Similarly, solved the unconstrained boolean quadratic programming
problem (UBQP) through the pointer network [17].

The section arrangement of this paper is as follows. Section 2 mainly introduces the Max-cut
problem and the method for generating its benchmark. Section 3 demonstrates the pointer network
model, including the Long Short-Term Memory network and Encoder–Decoder. Section 4 introduces
two ways to train the pointer network model to solve the Max-cut problem, namely supervised
learning and reinforcement learning. Section 5 illustrates the details of the experimental procedure
and the results. Section 6 provides the conclusions.

2. Motivation and Data Set Structure

2.1. Unified Model of the Max-Cut Problem

The definition of the Max-cut problem is given as follows.
An undirected graph G= (V, E) consists of a set of vertices V and a set of edges E, where V =

{1, 2, ..., n} is its set of vertices, and E ⊆ V × V is its set of edges, and wi,j is the weight on the edge
connecting vertex i and vertex j. For any proper subset S of the vertex set V, let:

δ(S) = {ei,j ∈ E; i ∈ S, j ∈ V−S}, (1)
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where δ(S) is a set of edges, one end of which belongs to S and the other end belongs to V−S.
Then, the cut cut(S) determined by S is:

cut(S) = ∑
ei,j∈δ(S)

wi,j. (2)

In simple terms, the Max-cut problem is to find a segmentation (S, V−S) of a vertex set V,
where the maximum weight of the edges is segmented.

2.2. Benchmark Generator of the Max-Cut Problem

When applying deep learning to train and solve the Max-cut problem, whether supervised
learning or reinforcement learning, a large number of training samples are necessary. The method of
data set generation introduced here is to transform the {−1,1} quadratic programming problem into
the Max-cut problem.

First of all, the benchmark generator method for the boolean quadratic programming (BQP)
problem, proposed by Michael X. Zhou [18], is used to generate random {−1,1} quadratic programming
problems, which can be solved in polynomial time. Next, inspired by [19], we transform the
results of the previous step into solutions of the Max-cut problem. The specific implementation
is described below.

Michael X. Zhou transformed the quadratic programming problem shown by Equation (3) into
the dual problem shown by Equation (4) through the Lagrangian dual method.

min { f (x) =
1
2

xTQx − cTx
∣∣x ∈ {−1, 1}n }, (3)

where Q = QT ∈ Rn×n is a given indefinite matrix, and c ∈ Rn is a given non-zero vector.
The dual problem is described as follows:

find Q, c, x, λ

s.t. (Q + diag(λ)) = c
Q + diag(λ) > 0
x ∈ {−1, 1}n

. (4)

Then, according to the paper [19], the solution of the {−1,1} quadratic programming problem can
be transformed into the solution of the Max-cut problem.

The integer programming for the Max-cut problem is given by:

max 1
2 ∑

i<j
wi,j(1 − xi · xj)

s.t. xi ∈ {−1, 1}, ∀i = 1, · · ·, n,
(5)

where i in xi ∈ {−1, 1} represents the vertex i, and −1 and 1 represent the values of the two sets.
If xi · xj is equal to 1 and the vertices of edge (i, j) are in the same set, then (i, j) ∈ E is not a cut
edge; if xi · xj is equal to −1 and the vertices of the edge (i, j) are not in the same set, then (i, j) ∈ E
is the cut edge. If (i, j) ∈ E is a cut edge, (1 − xi · xj)

/
2 is equal to 1; if (i, j) ∈ E is not a cut edge,

(1 − xi · xj)
/

2 is equal to 0. Thus, the objective function represents the sum of the weights of the
cut edges of the Max-cut. Define S = {i : xi = 1}, S = {i : xi = −1}, and the weight of the cut is
w(S, S) = ∑

i<j
wi,j(1 − xi · xj)

/
2.

The pseudocode for generating the benchmark of the Max-cut problem is shown in Algorithm 1,
where the parameter base is used to control the value range of the elements in matrix Q.
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Algorithm 1 A benchmark generator for the Max-cut problem

Input: Dimension: n; base = 10;

Output: Matrix: Q; Vector: x

1: Randomly generate an n-dimensional matrix that conforms to the standard normal distribution to

obtain Q;

2: Q = base × Q;

3: Convert Q to a symmetric matrix with Q+QT

2 ;

4: Generate random numbers in the range (0,1) of n rows and 1 column as a vector x;

5: x = 2x − 1;

6: Take the absolute value of Q and sum it over the rows, assigning the result to λ;

7: Place the value of the vector λ on the main diagonal of the square matrix Q′ in order, and let the

values of Q′ (except the main diagonal) be zero.

8: c = (Q + Q′)× x;

9: Set an additional variable woj, woj =
1
4 (

i−1
∑

j=1
qji+

n
∑

j=i+1
qij) +

1
2 ci , 1 ≤ j ≤ n, and wij=

1
4 qij , 1 ≤ i <

j ≤ n;

10: Update Q: Q = (qT
1j, qT

2j, ..., qT
(n+1)j) ← (wT

0j, wT
1j, ..., wT

nj);

11: Set an additional variable x0 = 1, and let x = 2x + 1;

12: Update x: x = (x1, x2, ..., xn+1) ← (x0, x1, ..., xn).

This method for obtaining Max-cut benchmark data sets effectively solves the difficulty in training
the network to solve the Max-cut problem model when lacking a large number of training samples.
However, there is a common defect in this method: in the training set obtained using the dual problem
to deduce the solution of the original problem, its data samples obey certain rules. This may lead to
difficulty in learning the general rule of the Max-cut problem when training with the method by deep
learning.

Therefore, in addition to the above method, we consider using the benchmark generator in the Biq
Mac Library to solve the Max-cut problem. The Biq Mac Library offers a collection of Max-cut instances.
Biq Mac is a branch and bound code based on semi-definite programming (SDP). The dimension
of the problems (i.e., number of variables or number of vertices in the graph) ranges from 60–100.
These instances are mainly used to test the pointer network model for the Max-cut problem.

3. Models

3.1. Long Short-Term Memory

It is difficult for traditional neural networks to classify subsequent events by using previous event
information. However, an RNN can continuously operate information in a cyclic manner to ensure that
the information persists, thereby effectively processing time-series data of any length. Given an input
sequence x1:T = (x1, x2, ..., xt, ..., xT), the RNN updates the activity value ht of the hidden layer with
feedback and calculates the output sequence y1:T = (y1, y2, ..., yt, ..., yT) using the following equations:

ht = sigmoid(Mhxxt + Mhhht−1), (6)

yt = Myhht. (7)
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As long as the alignment between input and output is known in advance, an RNN can easily
map sequences to sequences. However, the RNN cannot solve the problem when the input and
output sequences have different lengths or have complex and non-monotonic relationships [20]. In
addition, when the input sequence is long, the problem of gradient explosion and disappearance
will occur [21]; which is also known as the long-range dependence problem. In order to solve these
problems, many improvements have been made to RNNs; the most effective way, thus far, is to use
a gating mechanism.

A long short-term memory (LSTM) network [22] is a variant of RNN, which is an outstanding
embodiment of RNN based on the gating mechanism. Figure 1 shows the structure of the loop unit of
a LSTM. By applying the LSTM loop unit of the gating mechanism, the entire network can establish
long-term timing dependencies to better control the path of information transmission. The equations
of the LSTM model can be briefly described as:⎡⎢⎢⎢⎣

c̃t

ot

it
ft

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
tanh

σ

σ

σ

⎤⎥⎥⎥⎦
(

M

[
xt

ht−1

]
+ b

)
, (8)

ct = ft � ct−1 + it � c̃t, (9)

ht = ot � tanh(ct), (10)

where xt ∈ Re is the input at the current time; M ∈ R4d×(d+e) and b ∈ R4d are the network parameters;
σ(·) is the Logistic function, with output interval (0, 1); ht−1 is the external state at the previous time;
� is the product of vector elements; ct−1 is the memory unit at the previous moment; and c̃t is the
candidate state obtained by the non-linear function. At each time t, the internal state ct of the LSTM
records historical information up to the current time. The three gates used to control the path of
information transmission are ft, it, and ot. The functions of three gates are:

• The forget gate ft controls how much information the previous state ct−1 needs to forget;
• The input gate it controls how much information the candidate state c̃t needs to be saved at the

current moment; and
• The output gate ot controls how much information the internal state ct−1 of the current moment

needs to be output to the external state ht−1.

Figure 1. Long short-term memory (LSTM) loop unit structure.

In our algorithm, the purpose of the LSTM is to estimate the conditional probability
p(y1, ..., yT′ |x1, ..., xT ), where (x1, ..., xT) is the input sequence, y1, ..., yT′ is the corresponding output
sequence, and the length T′ may be different from T. The LSTM first obtains a fixed dimension
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representation X of the input sequence (x1, ..., xT) (given by the last hidden state of the LSTM),
then calculates y1, ..., yT′ , whose initial hidden state is set to x1, ..., xT :

p(y1, ..., yT′ |x1, ..., xT) =
T′

∏
t=1

p(yt|X, y1, ..., yt−1), (11)

where each p(yt|X, y1, ..., yt−1) distribution is represented by the softmax of all variables in the input
Max-cut problem matrix.

3.2. Encoder–Decoder Model

The encoder–decoder model is also called the asynchronous sequence-to-sequence model; that is,
the input sequence and the output sequence neither need to have a strict correspondence relationship,
nor do they need to maintain the same length. Compared with traditional structures, it greatly expands
the application scope of the model. It can directly model sequence problems in a pure data-driven
manner and can train the model using an end-to-end method. It can be seen that it is very suitable for
solving combinatorial optimization problems.

In the encoder–decoder model (shown in Figure 2), the input is a sequence x1:T = (x1, ..., xT) of
length T, and the output is a sequence y1:T′ = (y1, ..., yT′) of length T′. The implementation process
is realized by first encoding and then decoding. Firstly, a sample x is input into an RNN (encoder)
at different times to obtain its encoding hT . Secondly, another RNN (decoder) is used to obtain the
output sequence ŷ1:T′ . In order to establish the dependence between the output sequences, a non-linear
autoregressive model is usually used in the decoder:

ht = f1(ht−1, xt), ∀t ∈ [1, T], (12)

hT+t = f2(hT+t−1, ŷt−1), ∀t ∈ [1, T′], (13)

yt = g(hT+t), ∀t ∈ [1, T′], (14)

where f1(·) and f2(·) are RNNs used as encoder and decoder, respectively; g(·) is a classifier; and ŷt

are vector representations used to predict the output.

Figure 2. Encoder–decoder model.

3.3. Pointer Network

The amount of information that can be stored in a neural network is called the network capacity.
Generally speaking, if more information needs to be stored, then more neurons are needed or the
network must be more complicated, which will cause the number of necessary parameters of the neural
network to increase exponentially. Although general RNNs have strong capabilities, when dealing
with complex tasks, such as processing large amounts of input information or complex computing
processes, the computing power of computers is still a bottleneck that limits the development of neural
networks.

In order to reduce the computational complexity, we use the mechanisms of the human brain to
solve the information overload problem. In such a way, we add an attention mechanism to the RNN.
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When the computing power is limited, it is used as a resource allocation scheme to allocate computing
resources to more important tasks.

A pointer network is a typical application for combining an attention mechanism and a neural
network. We use the attention distribution as a soft pointer to indicate the location of relevant
information. In order to save computing resources, it is not necessary to input all the information
into the neural network, only the information related to the task needs to be selected from the input
sequence X. A pointer network [9] is also an asynchronous sequence-to-sequence model. The input is
a sequence X = x1, ..., xT of length T, and the output is a sequence y1:T′ = y1, y2, ..., yT′ . Unlike general
sequence-to-sequence tasks, the output sequence here is the index of the input sequence. For example,
when the input is a group of out-of-order numbers, the output is the index of the input number
sequence sorted by size (e.g., if the input is 20, 5, 10, then the output is 1, 3, 2).

The conditional probability p(y1:T′ |x1:T ) can be written as:

p(y1:T′ |x1:T ) =
m
∏
i=1

p(yi |y1:i−1 , x1:T)

≈ m
∏
i=1

p(yi
∣∣xy1 , ..., xyi−1 , x1:T ),

(15)

where the conditional probability p(yi
∣∣xy1 , ..., xyi−1 , x1:T ) can be calculated using the attention

distribution. Suppose that an RNN is used to encode xy1 , ..., xyi−1 , x1:T to obtain the vector hi, then

p(yi |y1:i−1 , x1:T) = softmax(si,j), (16)

where si,j is the unnormalized attention distribution of each input vector at the ith step of the
encoding process,

si,j = vTtanh(U1xj + U2hi), ∀j ∈ [1, T], (17)

where v, U1, and U2 are learnable parameters.
Figure 3 shows an example of a pointer network.

Figure 3. The architecture of pointer network (encoder in green, decoder in purple).

4. Learning Mechanism

Machine learning methods can be classified according to different criteria. Generally speaking,
according to the information provided by the training samples and different feedback mechanisms,
we classify machine learning algorithms into three categories: supervised learning, unsupervised
learning, and reinforcement learning. Our algorithm uses supervised learning (SL) and reinforcement
learning (RL) to train the pointer network model to obtain the solution of the Max-cut problem, which
will be described in detail below.
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4.1. Supervised Learning

4.1.1. Input and Output Design

The feature of the Max-cut problem is that its variable is either 0 or 1, such the problem is
equivalent to selecting a set of variables from all variables with a value of 1 to maximize the objective
function. This is a typical choice problem in combinatorial optimization problems. The goal of
supervised learning is to learn the relationship between the input x and the output y by modeling
y = f (x; θ) or p(y |x ; θ). For the Max-cut problem, the pointer network uses an n × n symmetric
matrix Q to represent the input sequence of the n nodes, where qij is an element in the symmetric
matrix, which represents the weight of the connection between vertex i vertex and vertex j (qij ≥ 0,
qij = 0 means there is no connection between vertex i and vertex j). The output sequence of the pointer
network is represented by X = x1, x2, ..., xn, which contains two variables; that is 0 and 1. Vertices with
0 and vertices with 1 are divided into two different sets. The result of summing weights with all edges
across the two cut sets is the solution to the Max-cut problem.

The following example is used to explain the input and output design of the pointer network to
solve the Max-cut problem.

Example 1.

f (x) = 3x1x2 + 4x1x4 + 5x2x3 + 2x2x4 + x3x4

xi ∈ {0, 1} , (i = 1, ..., 4)
. (18)

The symmetric matrix Q of the above problem can be expressed as:

Q =

⎛⎜⎜⎜⎝
0 3 0 4
3 0 5 2
0 5 0 1
4 2 1 0

⎞⎟⎟⎟⎠,

and the characteristics of the variables x1, x2, x3, and x4 are represented by the vectors q1 = (0, 3, 0, 4)T ,
q2 = (3, 0, 5, 2)T , q3 = (0, 5, 0, 1)T , and q4 = (4, 2, 1, 0)T , respectively.

For the Max-cut problem, the optimal solution of the above example is x. The sequence
(q1, q2, q3, q4) is the input of the pointer network, and the known optimal solution is used to train the
network model and guide the model to select q1 and q3. The input vector selected by the decoder
represents the corresponding variable value of 1, while the corresponding variable value of the
unselected vector is 0.

For the output part of the pointer network model, for the n × n matrix, we design a matrix of
dimension (n + 1) to represent the network output. Exactly as in Example 1, the output result is a label
that be described by the matrix Olabel :

Olabel =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠.

The relationship between Olabel and the variable x is:

xj =

⎧⎪⎪⎨⎪⎪⎩
1 , if oij = 1, j 	= 0;

EOS , if oij = 1, j = 0;

0 , others.

(19)

We use EOS = (1, 0, · · · , 0)T to indicate the end of the pointer network solution process. After the
model training is completed, the probability distribution of the softmax of the output matrix is obtained.

250



Mathematics 2020, 8, 298

The corresponding result may be as described by the matrix Opredict. In the solution phase, we select
the one with the highest probability in the output probability distribution and set it to 1, and the rest
of the positions to 0. According to the result of Opredict, the pointer network selects the variables x1

and x3 with a value of 1, and the remaining variables have a value of 0—which is consistent with the
result selected by Olabel :

Opredict =

⎛⎜⎜⎜⎜⎜⎝
0.03 0.8 0.02 0.1 0.05
0.1 0 0.2 0.7 0
0.9 0.03 0.03 0.01 0
1 0 0 0 0
1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠.

4.1.2. Algorithm Design

When training deep neural networks, for N given training samples
{(

x(n), y(n)
)}N

n=1
, the softmax

regression in supervised learning uses cross entropy as a loss function and uses gradient descent to
optimize the parameter matrix W. The goal of neural network training is to learn the parameters
which minimize the value of the cross-entropy loss function. In practical applications, the mini-batch
stochastic gradient descent (SGD) method has the advantages of fast convergence and small
computational overhead, so, it has gradually become the main optimization algorithm used in
large-scale machine learning [23]. Therefore, during the training process, we use mini-batch SGD.
At each iteration, we randomly select a small number of training samples to calculate the gradient and
update the parameters. Assuming that the number of samples per mini-batch is K, the training process
of softmax regression is: initialize W0 ← 0, and then iteratively update by the following equation

Wt+1 ← Wt + α(
1
K

N

∑
n=1

x(n)(y(n) − ŷ(n)Wt
)

T
), (20)

where α is the learning rate and ŷ(n)Wt
is the output of the softmax regression model when the parameter

is Wt.
The training process of mini-batch SGD is shown in Algorithm 2.

Algorithm 2 Mini-batch SGD of pointer network

Input: training set: D = {(x(n), y(n))}N
n=1; mini-batch size: K; number of training steps: L; learning

rate: α;

Output: optimal: W

1: random initial W;

2: repeat

3: randomly reorder the samples in training set D;

4: for t = 1, ..., L do

5: select samples (x(n), y(n)) from the training set D;

6: update parameters: Wt+1 ← Wt + α( 1
K

N
∑

n=1
x(n)(y(n) − ŷ(n)Wt

)
T
);

7: end for

8: until the error rate of model f (x; W) no longer decreases.
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4.2. Reinforcement Learning

Reinforcement learning is a very attractive method in machine learning. It can be described
as an agent continuously learning from interaction with the environment to achieve a specific goal
(such as obtaining the maximum reward value). The difference between reinforcement learning and
supervised learning is that reinforcement learning does not need to give the “correct” strategy as
supervised information, it only needs to give the return of the strategy and then adjust the strategy to
achieve the maximum expected return. Reinforcement learning is closer to the nature of biological
learning and can cope with a variety of complex scenarios, thus coming closer to the goal of general
artificial intelligence systems.

The basic elements in reinforcement learning include:

• The agent can sense the state of the external environment and the reward of feedback, then make
decisions;

• The environment is everything outside the agent, which is affected by the actions of the agent by
changing its state and feeding the corresponding reward back to the agent;

• s is a description of the environment, which can be discrete or continuous, and its state space is S;
• a is a description of the behavior of the agent, which can be discrete or continuous, and its action

space is A;
• The reward r(s, a, s′) is a scalar function—that is, after the agent makes an action a based on the

current state s, the environment will give a reward to the agent. This reward is related to the state s′

at the next moment.

For simplicity, we consider the interactions between agent and environment as a discrete
time-series in this paper. Figure 4 shows the interaction between an agent and an environment.

Figure 4. Agent–environment interaction.

4.2.1. Input and Output Design

The pointer network input under reinforcement learning is similar to that under supervised
learning. The only difference is that, when applying reinforcement learning, a special symbol Split
needs to be added, as reinforcement learning only focuses on those variables selected before the
variable Split. Split is a separator that divides a variable into two types. We use the following rules:
when inputting into the pointer network, all variables before Split are set to 1, and all variables after
Split are set to 0. We use the zero vector to represent the Split. Therefore, in order to change the
n-dimensional matrix Q into n + 1 dimensions, we add a row and a column of 0 to the last row and
the last column of matrix Q. Under this rule, taking Example 1 as an example, to convert the matrix Q
into the matrix P, the input sequence of the pointer network is (p1, p2, p3, p4, Split):
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P =

⎛⎜⎜⎜⎜⎜⎝
0 3 0 4 0
3 0 5 2 0
0 5 0 1 0
4 2 1 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠.

Similar to supervised learning, at the output of the pointer network, a symbol EOS is added to
divide the set of output vertices. As in Example 1, the output of the pointer network is (1, 3, EOS, 2, 4),
which means that the four vertices are divided into two sets, which are (1, 3) and (2, 4). The numbers
in front of EOS indicate that the value at these vertex positions is 1, and the numbers after EOS indicate
that the value at these positions is 0. Thus, the max-cut value can be calculated according to the divided
sets, and it is this value that is used as the reward in reinforcement learning.

4.2.2. Actor–Critic Algorithm

The actor–critic algorithm is a reinforcement learning method which combines a policy gradient
and temporal difference learning. We combine the input–output structure characteristics of the Max-cut
problem with the actor–critic algorithm in reinforcement learning to train the pointer network model.
The actor–critic algorithm used for solving such combinatorial optimization problems uses the same
pointer network encoder for both the actor network and the critic network. First, the actor network
encodes the input sequence. Next, the decoder part selects the variable with value 1, according to
the probability. The critic network encodes the input sequence, then predicts the optimal value of the
Max-cut problem using a value function.

In the actor–critic algorithm, φ(s) is the input to the actor network, which corresponds to the
given symmetric matrix Q in the Max-cut problem; that is, Q is used as the input sequence of the
actor network. The actor refers to the policy function πθ(s, a), which can learn a strategy to obtain
the highest possible reward. For the Max-cut problem, πθ(s, a) represents the strategy scheme in
which variables are selected as 1. The critic refers to the value function Vφ(s), which estimates the
value function of the current strategy. With the help of the value function, the actor–critic algorithm
can update the parameters in a single step, without having to wait until the end of the round to
update. In the actor–critic algorithm, the policy function πθ(s, a) and the value function Vφ(s) are both
functions that need to be learned simultaneously during the training process.

Assuming the return G (τt:T) from time t, we use Equation (21) to approximate it:

Ĝ (τt:T) = rt+1 + γVφ (st+1) , (21)

where st+1 is the state at t + 1 and rt+1 is the instant reward.
In each step of the update, the strategy function πθ(s, a) and the value function Vφ(s) are learned.

On one hand, the parameter φ is updated, such that the value function Vφ(st) is close to the estimated
real return Ĝ (τt:T):

min
φ

(
Ĝ (τt:T)− Vφ (st)

)2 . (22)

On the other hand, the value function Vφ(st) is used as a basis function to update the parameter,
in order to reduce the variance of the policy gradient:

θ ← θ + αγt (Ĝ (τt:T)− Vφ (st)
) ∂

∂θ
log πθ (at|st) . (23)

In each update step, the actor performs an action a, according to the current environment state s
and the strategy πθ(a |s ); the environment state becomes s′ and the actor obtains an instant reward r.
The critic (value function Vφ(s)) adjusts its own scoring standard, according to the real reward given
by the environment and the previous score (r + γVφ(s′)), such that its own score is closer to the real
return of the environment. The actor adjusts its strategy πθ according to the critic’s score, and strives
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to do better next time. At the beginning of the training, actors performs randomly and critic gives
random marks. Through continuous learning, the critic’s ratings become more and more accurate, and
the actor’s movements become better and better.

Algorithm 3 shows the training process of the actor–critic algorithm.

Algorithm 3 Actor–critic algorithm

Input: state space: S; action space: A; differentiable strategy function: πθ(a |s ); differentiable state

value function: Vφ(s); discount rate: γ; learning rate: α > 0, β > 0;

Output: strategy: πθ

1: random initial θ, φ;

2: repeat

3: initial starting state s;

4: λ = 1;

5: repeat

6: In state s, select an action a = πθ(a |s );
7: perform the action a to get an instant reward r and a new state s′;
8: δ ← r + γVφ (s′)− Vφ(s);

9: φ ← φ + βδ ∂
∂φ Vφ(s);

10: θ ← θ + αλδ ∂
∂θ log πθ(a|s);

11: λ ← γλ;

12: s ← s′;
13: until s is the termination state;

14: until θ converges.

5. Experimental Results and Analysis

Based on the TensorFlow framework, this paper uses two learning strategies (supervised learning
and reinforcement learning) to train and predict the Max-cut problem with a pointer network.
The model is trained on a deep learning server platform consisting of two NVIDIA TITAN Xp GPUs
and an Intel Core i9-7960X CPU.

The initial parameters in the pointer network are randomly generated by a uniform distribution
in [−0.08, 0.08], and the initial learning rate is 0.001. During the training process, when supervised
learning is applied to train the pointer network, the model uses a single-layer LSTM with 256 hidden
units and is trained with mini-batch SGD. When applying reinforcement learning to train the pointer
network, the model uses three layers of LSTMs, with each layer consisting of 128 hidden units,
and is trained with the actor–critic algorithm. In the prediction stage, the heat parameter in the
pointer network is set to 3, and the initial reward baseline is set to 100. The model tested during
the prediction phase is the last iteration of the training phase. For the Max-cut problem of different
dimensions, except for increasing the sequence length, the other hyperparameter settings are the same.
In the implementation, we use the Adam algorithm to adjust the learning rate. Adam algorithm can
make effective dynamic adjustments to the model to make the changes in hyperparameters relatively
stable [24].

We constructed a data set based on the method mentioned in Section 2.2 (using the {−1,1}
quadratic programming problem transformed into the Max-cut problem), which we refer to as the
Zhou data set. In order not to lose generality, we also used the Binary quadratic and Max cut Libraries
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(Biq Mac Library), which are the most commonly used benchmark generators for the Max-cut problem.
We performed experiments on the Zhou data set and the Biq Mac Library data set, respectively.

5.1. Experiments on Zhou Data Set

According to the method for randomly generating Max-cut problems in Section 2.2, a large
number of Max-cut problems with known exact solutions were obtained, which we formed into data
sets with specified input and output formats. The training set and the test set are both data generated
from the same probability distribution, and the density of the input matrix Q in the data sample is
94.6%. Each sample in the training and test sets is unique. Then, we divided the data sets randomly
into training and test sets according to the ratio of 10:1. For different dimensions, the training set
contained 1000 samples and the test set contained 100 samples. The maximum number of training
iterations was set to 100,000. The accuracy of the solution trained by the model is defined as:

Accuracy =
v (Ptr-Net)

v (Opt)
× 100%, (24)

where v (Ptr-Net) is the solution of trained pointer network model, and v (Opt) is the optimal value of
the Max-cut problem.

We first used supervised learning to train the pointer network on the 10-, 30-, 50-, 60-, 70-, 80-, 90-,
100-, 150-, and 200-dimensional Max-cut problems, respectively. Table 1 shows average accuracy of the
Max-cut problem of the above dimensions. And the detailed experimental results are listed in Table 2.

Table 1. Average accuracies and training times for Max-cut problems with different dimensions by SL.

Dimensions Average Accuracy Average Training Time

10 100% 1:13:20
30 98.78% 2:12:35
50 97.56% 5:29:16
60 94.51% 6:37:10
70 90.95% 7:33:42
80 88.64% 8:39:08
90 86.35% 9:58:06

100 80.50% 11:14:57
150 74.94% 14:52:46
200 71.95% 19:28:25
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Table 2. Detailed solutions and accuracies for Max-cut problems with different dimensions by
supervised learning (SL).

Sample Optimum Solution Accuracy Sample Optimum Solution Accuracy

S10.1 330 330 100% S80.1 85,462 74,634 87.33%
S10.2 281 281 100% S80.2 94,552 83,357 88.16%
S10.3 240 240 100% S80.3 100,512 82,782 82.36%
S10.4 236 236 100% S80.4 92,108 83,735 90.91%
S10.5 171 171 100% S80.5 89,311 79,299 88.79%
S10.6 124 124 100% S80.6 100,862 97,624 97.79%
S10.7 208 208 100% S80.7 88,919 81,996 92.21%
S10.8 230 230 100% S80.8 91,045 79,974 87.84%
S10.9 245 245 100% S80.9 87,873 75,870 86.34%
S10.10 257 257 100% S80.10 111,327 95,374 85.67%
S30.1 4861 4861 100% S90.1 136,959 114,251 83.42%
S30.2 5820 5698 97.90% S90.2 134,022 124,033 92.55%
S30.3 4708 4617 98.07% S90.3 145,727 115,448 79.22%
S30.4 6123 6123 100% S90.4 132,287 117,391 88.74%
S30.5 6033 6008 99.59% S90.5 134,420 126,341 93.99%
S30.6 5380 5342 99.29% S90.6 133,817 116,491 87.05%
S30.7 6927 6799 98.15% S90.7 142,957 123,292 86.24%
S30.8 4914 4741 96.48% S90.8 120,026 104,207 86.82%
S30.9 6401 6340 99.05% S90.9 145,635 120,749 82.91%
S30.10 5185 5147 99.27% S90.10 141,741 117,019 82.56%
S50.1 24,468 23,386 95.58% S100.1 174,947 144,963 82.86%
S50.2 22,462 21,646 96.37% S100.2 199,441 181,966 91.24%
S50.3 23,246 23,246 100% S100.3 166,682 130,995 78.59%
S50.4 19,776 19,273 97.46% S100.4 179,885 146,426 81.40%
S50.5 25,057 23,947 95.57% S100.5 184,363 146,653 79.55%
S50.6 27,510 27,037 98.28% S100.6 191,636 165,283 86.25%
S50.7 26,698 26,368 98.76% S100.7 189,959 136,784 72.01%
S50.8 20,627 20,261 98.23% S100.8 177,545 144,373 81.32%
S50.9 20,493 20,213 98.63% S100.9 181,022 145,642 80.46%
S50.10 22,130 21,404 96.72% S100.10 189,239 134,965 71.32%
S60.1 43,173 40,062 92.79% S150.1 542,081 453,348 83.63%
S60.2 42,057 39,280 93.40% S150.2 571,793 390,333 68.26%
S60.3 43,190 40,360 93.45% S150.3 678,393 551,327 81.27%
S60.4 54,174 53,138 98.09% S150.4 574,523 481,574 83.82%
S60.5 43,638 40,180 92.08% S150.5 545,008 412,718 75.73%
S60.6 38,255 37,333 97.59% S150.6 613,130 467,820 76.30%
S60.7 52,689 49,260 93.49% S150.7 545,500 354,314 64.95%
S60.8 43,902 40,741 92.80% S150.8 632,578 521,155 82.39%
S60.9 39,098 37,980 97.14% S150.9 612,560 349,406 57.04%
S60.10 41,005 38,655 94.27% S150.10 630,733 479,420 76.01%
S70.1 64,914 59,371 91.46% S200.1 1,444,264 1,080,545 74.82%
S70.2 63,306 62,872 99.31% S200.2 1,488,701 1,006,851 67.63%
S70.3 71,127 62,855 88.37% S200.3 1,368,359 1,052,517 76.92%
S70.4 65,673 57,286 87.23% S200.4 1,352,301 1,102,923 81.56%
S70.5 59,045 54,864 92.92% S200.5 1,309,815 1,152,570 87.99%
S70.6 60,016 50,337 83.87% S200.6 1,338,423 928,162 69.35%
S70.7 63,158 57,117 90.44% S200.7 1,311,058 805,257 61.42%
S70.8 63,478 59,211 93.28% S200.8 1,462,304 822,691 56.26%
S70.9 67,019 60,871 90.83% S200.9 1,350,077 1,114,423 82.55%
S70.10 70,616 64,818 91.79% S200.10 1,347,381 822,037 61.01%

Then the pointer network based on reinforcement learning was also trained with the Zhou data
set, on 10-, 50-, 150-, 200-, 250-, and 300-dimensional Max-cut problems. Table 3 shows the average
accuracy of the Max-cut problem for the above dimensions. And the detailed experimental results are
listed in Table 4.
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Table 3. Average accuracies and training times for Max-cut problems with different dimensions by RL.

Dimensions Average Accuracy Average Training Time

10 100% 0:10:07
50 98.28% 0:23:03
100 96.32% 0:42:33
150 95.06% 1:03:57
200 92.38% 1:27:18
250 89.88% 1:53:28
300 87.64% 2:21:30

Table 4. Detailed solutions and accuracies for Max-cut problems with different dimensions by
reinforcement learning (RL).

Sample Optimum Solution Accuracy Sample Optimum Solution Accuracy

R10.1 233 233 100% R150.6 584,968 572,689 97.90%
R10.2 248 248 100% R150.7 553,878 453,361 81.86%
R10.3 193 193 100% R150.8 618,615 583,545 94.33%
R10.4 192 192 100% R150.9 529,739 522,427 98.62%
R10.5 302 302 100% R150.10 559,414 513,463 91.79%
R10.6 187 187 100% R200.1 1,274,866 1,267,884 99.45%
R10.7 341 341 100% R200.2 1,392,200 1,165,174 83.69%
R10.8 133 133 100% R200.3 1,358,320 1,345,870 99.07%
R10.9 301 301 100% R200.4 1,320,006 1,118,705 84.75%
R10.10 272 272 100% R200.5 1,368,199 1,020,056 74.55%
R50.1 25,565 25,302 98.97% R200.6 1,397,432 1,292,628 92.50%
R50.2 22,528 22,441 99.61% R200.7 1,421,061 1,420,172 99.94%
R50.3 25,426 24,783 97.47% R200.8 1,376,229 1,357,875 98.67%
R50.4 25,787 25,425 98.60% R200.9 1,344,436 1,266,442 94.20%
R50.5 21,030 19,755 93.94% R200.10 1,388,152 1,332,225 95.97%
R50.6 25,079 24,614 98.15% R250.1 2,590,918 2,242,263 86.54%
R50.7 22,077 21,820 98.84% R250.2 2,700,294 2,503,768 92.72%
R50.8 28,899 28,715 99.36% R250.3 2,542,443 2,230,460 87.73%
R50.9 29,101 28,614 98.33% R250.4 2,542,413 2,357,060 92.71%
R50.10 25,729 25,607 99.53% R250.5 2,702,833 2,547,463 94.25%
R100.1 187,805 182,369 97.02% R250.6 2,764,901 2,750,197 99.47%
R100.2 197,470 193,171 97.82% R250.7 2,777,948 2,027,296 72.98%
R100.3 187,495 185,929 99.16% R250.8 2,671,835 2,530,103 94.70%
R100.4 216,339 211,431 97.73% R250.9 2,593,131 2,031,284 78.33%
R100.5 161,961 161,067 99.45% R250.10 2,596,843 2,579,798 99.34%
R100.6 178,737 176,723 98.87% R300.1 4,430,263 3,858,903 87.10%
R100.7 183,560 183,315 99.87% R300.2 4,363,482 2,344,354 53.73%
R100.8 155,038 154,292 99.52% R300.3 4,459,682 4,248,761 95.27%
R100.9 191,120 142,059 74.33% R300.4 4,562,319 2,369,015 51.93%
R100.10 174,202 173,729 99.73% R300.5 4,404,895 4,113,113 93.38%
R150.1 568,452 554,128 97.48% R300.6 4,497,912 4,483,644 99.68%
R150.2 549,303 542,731 98.80% R300.7 4,364,640 4,298,760 98.49%
R150.3 672,601 628,655 93.47% R300.8 4,589,744 4,372,106 95.26%
R150.4 590,417 553,860 93.81% R300.9 4,655,631 4,652,613 99.94%
R150.5 563,674 561,554 99.62% R300.10 4,956,332 4,944,887 99.77%

It can be seen, from Tables 1 and 3 that, regardless of whether supervised learning or reinforcement
learning was used, the average accuracy of the pointer network solution decreased as the number of
dimensions increased. However, the average accuracy of reinforcement learning decreased very slightly.
Secondly, by comparing the two tables, we find that the pointer network model obtained through
reinforcement learning was more accurate than that obtained by supervised learning. Finally, it can
be seen that the time taken to train the model with reinforcement learning was faster than that for
supervised learning. Figure 5 shows the accuracy of the solution for the Max-cut problem samples
trained with supervised learning and reinforcement learning.
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Figure 5. Average accuracies of SL and RL.

5.2. Experiments on Biq Mac Library

In order to further verify the generalization ability of the pointer network model, ten groups
of 60-, 80-, and 100-dimensional Max-cut samples were selected from the Biq Mac Library (http:
//biqmac.uni-klu.ac.at/biqmaclib.html). As the Max-cut problem data set of each dimension in the
Biq Mac Library only has ten groups of data, the amount of data was not enough to train the pointer
network (training the pointer network model requires at least 100 groups of data), so we only used the
Biq Mac Library as the test set; the Zhou data set was still used as the training set.

Table 5 shows the detailed experimental results of the Max-cut problem with 60, 80, and
100 dimensions using the Biq Mac Library by reinforcement learning.

Table 5. Solution and accuracy on Biq Mac Library data set by RL.

Sample Optimum Solution Accuracy Sample Optimum Solution Accuracy

R60.1 536 441 82.28% R80.6 926 817 88.23%
R60.2 532 478 89.85% R80.7 929 773 83.21%
R60.3 529 463 87.52% R80.8 929 785 84.50%
R60.4 538 478 88.85% R80.9 925 830 89.73%
R60.5 527 486 92.22% R80.10 923 640 69.34%
R60.6 533 479 89.87% R100.1 2019 1530 75.78%
R60.7 531 438 82.49% R100.2 2060 1507 73.16%
R60.8 535 473 88.41% R100.3 2032 1461 71.90%
R60.9 530 468 88.30% R100.4 2067 1573 76.10%
R60.10 533 483 90.62% R100.5 2039 1433 70.28%
R80.1 929 829 89.24% R100.6 2108 1483 70.35%
R80.2 941 753 80.02% R100.7 2032 1464 72.04%
R80.3 934 824 88.22% R100.8 2074 1585 76.42%
R80.4 923 819 88.73% R100.9 2022 1477 73.05%
R80.5 932 805 86.37% R100.10 2005 1446 72.20%

The average prediction results are shown in Table 6.
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Table 6. Average accuracies of different dimensional Max-cut problems using the Biq Mac Library by RL.

Dimensions Average Accuracy

60 88.05%
80 84.76%
100 73.09%

It can be seen, from Tables 3 and 6, that the average accuracies when predicting the Biq Mac Library
using reinforcement learning were lower than the accuracies on Zhou dataset. This is because the Biq
Mac Library is composed of data samples with different distributions, which can better characterize
the essential characteristics of the Max-cut problem. We believe that, in future research, if the model
can be trained on a larger training set with the distribution of the Biq Mac Library, its performance can
be definitely improved.

6. Conclusions

In this paper, we proposed an effective deep learning method based on a pointer network
for the Max-cut problem. We first analyzed the structural characteristics of the Max-cut problem
and introduced a method to generate a large data set of Max-cut problems. Then, the algorithmic
frameworks for training the pointer network model under two learning strategies (supervised
learning and reinforcement learning) were introduced in detail. We applied supervised learning
and reinforcement learning strategies separately to train the pointer network model, and experimented
with Max-cut problems with different dimensions. The experimental results revealed that, for the
low-dimensional Max-cut problem (below 50 dimensions), the models trained by supervised learning
and reinforcement learning both have high accuracy and that the accuracies are basically consistent.
For high-dimensional cases (above 50 dimensions), the accuracy of the solution in the training mode
using reinforcement learning was significantly better than that with supervised learning. This
illustrates that reinforcement learning can better discover the essential characteristics behind the
Max-cut problem and can mine better optimal solutions from the data. This important finding will
instruct us to further improve the performance and potential of pointer networks as a deep learning
method for Max-cut problems and other combinatorial optimization problems in future research.
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Abbreviations

The following abbreviations are used in this manuscript:
NP-hard Non-deterministic Polynomial-hard
NP Non-deterministic Polynomial
VLSI Very Large Scale Integration
LKH Lin–Kernighan Heuristic
CAP Credit Assignment Problem
RNN Recurrent Neural Network
UBQP Unconstrained Boolean Quadratic Programming
BQP Boolean Quadratic Programming
SDP Semi-Definite Programming
LSTM Long Short-Term Memory
SL Supervised Learning
RL Reinforcement Learning
SGD Stochastic Gradient Descent
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Variables

The following variables are used in this manuscript:
D Training set
E Edge set, E ⊆ V × V
G Undirected graph of the Max-cut problem, G = (V, E)
G (τt:T) The return from time t in actor–critic
K The mini-batch size
L Number of training steps
M Network parameter in LSTM, M ∈ R4d×(d+e)

Olabel Label matrix of the output
Opredict The probability distribution of the output matrix
P The transformed reinforcement learning input matrix
Q Adjacency matrix, Q = QT = (qij)n×n and qij(i = j) are zero
S Subset of vertex set
U Learnable parameter in attention mechanism
V Vertex set, V = {1, 2, ..., n}
Vφ Value function of actor–critic algorithm
W Parameter matrix to be updated in mini-batch SGD
X Input sequence, X = x1:T
Y Output sequence, Y = y1:T
a Action in agent–environment interaction
b Network parameter in LSTM, b ∈ R4d

c Non-zero vector, c ∈ Rn

ct Memory unit for the current moment
ft Forget gate for the current moment
f (x) f (x) = 1

2 xTQx − cT x
h Hidden layer
it Input gate for the current moment
n Dimensions of the Max-cut problem
ot Output gate for the current moment
p Conditional probability
r Reward of agent-environment interaction
s State of agent-environment interaction
si,j Non-normalized attention distribution of each input vector
v Learnable parameter in attention mechanism
wi,j The weight on the edge connecting vertex i and vertex j
α Learning rate in mini-batch SGD
β Learning rate in actor–critic algorithm
γ Discount rate in actor–critic algorithm
θ Parameters to be updated in strategy function
λ Lagrange multiplier, λ ∈ Rn

πθ Strategy function of actor–critic algorithm
σ Logistic function in LSTM
φ Parameters to be updated in value function
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Abstract: This paper addresses the multi-product, multi-period capacitated lot sizing problem.
In particular, this work determines the optimal lot size allowing for shortages (imposed by budget
restrictions), but with a penalty cost. The developed models are well suited to the usually rather
inflexible production resources found in retail industries. Two models are proposed based on
mixed-integer formulations: (i) one that allows shortage and (ii) one that forces fulfilling the demand.
Both models are implemented over test instances and a case study of a real industry. By investigating
the properties of the obtained solutions, we can determine whether the shortage allowance will
benefit the company. The experimental results indicate that, for the test instances, the fact of allowing
shortages produces savings up to 17% in comparison with the model without shortages, whereas
concerning the current situation of the company, these savings represent 33% of the total costs while
preserving the revenue.

Keywords: capacitated lot sizing; mixed integer formulation; retail; inventory; shortages

1. Introduction

Today’s companies are immersed in a globalized market crammed with considerable demands for
different products. Regardless of the size or type of industry, the selling business always involves two
parties: customers and sellers. Customers search for quality products that meet their requirements,
whereas companies search for adaptive strategies to compete against each other and satisfy the
preferences of their individual customers while minimizing any negative impact on their operations
and other aspects of their businesses [1].

One of the most integral operations of a company is inventory management, because many
resources are expended on goods and products that will generate profits for the company.
Yet, the purchased materials must be ordered at an economic price and then stored. On the other hand,
companies that sell products in large quantities or with high variability in their demand commonly
face the overstock problem, wherein the optimum stocking level is exceeded, and the stored products
cannot be sold beyond an estimated time. This is the problem faced by a Mexican textile and footwear
distributor that inspired this research. This company handles several products in catalogues and sells
them to wholesale and retail customers. Currently, the company manually gathers the data that allow
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the analysts and sales force to understand the products’ behaviours and, consequently, plan the most
appropriate purchase strategy. This data collection process is merely supported by the empirical sui
generis methods of older, more experienced workers. Coupled with this problem, suppliers place
product-dependent batch orders of different sizes with the company. The delivery time of each item is
established by the corresponding supplier and hinders the empirical purchasing planning conducted
by the company. Thus, the present work develops a couple of Mixed-Integer Linear Programming
(MILP) models for inventory management. The two MILP models involve multiple items and multiple
periods, including different capacity constraints related to the batch size, lead time, and budget. These
models seek to improve the timing and quantity of the ordering scheme, thereby reducing the operating
expenses of the company. The effectiveness of these formulations is evaluated through the case study.
The remaining sections of this paper are organized as follows. Section 2 reviews the relevant literature,
and Section 3 introduces the proposed MILP formulations. In Section 4, the proposed models are
implemented and evaluated in the case study of a Mexican fashion retail company. Section 5 presents
the conclusions and some directions for future research.

2. Literature Review

Interest in streamlining inventory processes has recently increased, particularly in tasks related to
classifying products, registration methods, and re-inventory models. According to De Horatius [2],
inventory management focuses on minimizing the inventory levels while ensuring stock availability.
Inventory planning then is a fundamental part of the fashion retail industry, which covers the
business of fashion products such as apparel, shoes, and beauty products. This fashion market is very
challenging as it is characterized by short life cycles compared to other retail and service industries,
high volatility, poor predictability, and critical-mass shopping behaviour [1]. As Liu et al. [3] stated,
retailers’ optimal management of their inventories largely depends on the accuracy of predicting
future demand, which is commonly affected by uncertainty factors that are difficult to manage, such
as trends, seasonality, and availability.

The history of inventory problems is rooted in the Economic Order Quantity (EOQ) model,
which assumes a single item in a continuous and constant demand over an infinite planning horizon.
This EOQ model is easily solved to determine the optimal order quantity, balancing the setups,
and computing the inventory holding costs. However, the model becomes NP-hard when more
items are considered and multiple capacity restrictions are in place [4]. Thus, this problem has been
extended to considering multiple items under the imposition of different cost conditions and limited
production capacities, which in turn have culminated in the known Capacitated Lot Sizing Problem
(CLSP). Furthermore, the combination of these considerations, along with additional features such as
the demand uncertainty, setup costs and/or time, and alternative suppliers have introduced different
complexities to address the problem [5]. Hence, every firm must decide the lot sizing problem with the
specific considerations that are better suited to describe its current circumstances and that will directly
affect its system operation, productivity, and overall performance.

The general CLSP problem seeks to optimize the order quantity that will meet the customer
demand, over a finite time horizon, while minimizing the sum of ordering, purchasing, and holding
inventory costs. Although constraints in the formulation of this problem might limit the production,
space, or budget capacity for any given product, the basic mathematical model is easily adapted by
appropriately interpreting the model elements, such as the variables and parameters [5].

The lot sizing problem has been studied since the early Twentieth Century, and its application in
real scenarios currently constitute an active area of research [6–8]. Moreover, this problem has split
into a wide diversity of variants to the problem, which in turn have been solved by an even wider
variety of approaches. In this regard, different reviews summarizing the literature available have
been published since the mid 1990s [9–16]. Overall, this literature can be classified into three groups:
(1) studies considering space or monetary budgets; (2) studies on lead time; and (3) studies considering
batch size.
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First, among the studies considering space or monetary budgets, Ben-Daya and Raouf [17]
developed an algorithm that optimizes the ordering policy in the multi-item, single-period inventory
problem, within the context of perishable commodities. In this study, the algorithm determines
the setup costs and lot size decisions when items compete for budgetary and floor- or shelf-space
restrictions. Any shortage is translated into a penalty cost, and the excess of products (above demand)
is disposed at a reduced price. Nonetheless, the policy is fixed during the planning horizon and does
not consider the possibility of replenishment. A few years later, Guan and Li [18] presented two
models of lot size, one with a restricted storage capacity and a second with a constraint on the order
capacity. Meanwhile, a different study was developed by Fan and Wang [19], who modelled a lot
size problem that sought to reduce ordering and storing expenses in a scenario where the size of the
warehouse could be altered at a cost for each change in capacity. One more study was conducted by
Woarawichai et al. [20], who developed an MILP for the multi-period inventory lot size problem with
supplier selection under storage and budget constraints. The authors introduced a supplier-dependent
transaction cost, but the order lead time was deterministic and assumed identical for all products,
which limited the contribution of the model.

Second, among the studies on lead time, Karmarkar [21] related the lead time to lot size and
concluded that extending the lead time negatively affected the response to customers. The author also
argued that small batches created more setups while large batches lengthened the lead time. Some
years later, Ben-Daya and Raouf [22] reviewed different inventory models that considered the lead time
and order quantity as decision variables. However, most of the revised works assumed an invariant
lead time over the entire planning horizon. For this reason, Kuik et al. [9] defined these models as finite
capacity models. Meanwhile, Hariga and Ben-Daya [23] developed a continuous-review inventory
model in which the reorder point, the ordering quantity, and the lead time were the decision variables,
followed by Ouyang, Chen, and Chang [24], who studied a reorder-point inventory model with a
variable lead time and partial backorders in an imperfect production process. These authors similarly
defined the lead time as a decision variable to be minimized, in combination with other variables
such as lot size, reorder point, process quality, and setup cost. A more recent study conducted by
Helber and Sahling [25] solved a dynamic multilevel CLSP with positive lead times by a mathematical
programming approach. Here, the authors developed an iterative procedure that fixed the products to
be purchased in each period and then optimized the lot size of each purchased item. They developed
four variants of this procedure with different decomposition structures to diversify the search in the
solution space.

Finally, among studies considering batch size, more recent studies have been carried out.
For example, Yang et al. [26] analyzed the optimal inventory management of a single product that is
purchased in batches. This method accounts for the placement cost in a limited warehouse capacity.
A different algorithm was later proposed by Akbalik et al. [27], who addressed a company that buys its
products in batches and varies the storage cost when supply exceeds the determined capacity. At the
same time, Farhat et al. [28] studied batch purchases with the option of returning the items that were
not sold to the supplier. When the products purchased in batches are perishable, they must be treated
with special care, and the model must consider a series of constraints, as proposed by Broekmeulen
and van Donselaar [29].

As shown in this section, there is a vast literature addressing different variants of the lot sizing problem.
Yet, literature focusing on optimizing the CLSP by considering variable batch sizes and variable
delivery times (lead times) in retail applications is very scarce. In addition, many articles apply
discounts when buying in large volumes, which is managed differently by the company under study.

3. Problem Statement

The problem analyzes a retailer who buys products in large quantities (lot sizes) from manufacturers
and then sells them in smaller quantities (possibly single units) to consumers. The ordered quantities
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are merely considered as integer multiples of the batch size of each item. The retailer, should decide
“what products to order”, “how much to order for each product”, and “when to order”.

Unlike common lot sizing models in manufacturing environments, in our model, the retailers
depend mainly on the lead time (LT) established by the suppliers. To ensure their timely receipt,
purchase orders must be placed ahead of time (i.e., in advance). This anticipation is represented by an
artificial shift (ST) created over the planning horizon, where the periods to be phased out are added
before the first week of demand.

The following example attempts to show how the artificial shift over the time horizon periods
will work. The instance considers three products to be purchased within a planning horizon of six
(r = 6) periods (1, . . . , r). Item 1 belongs to imported products, i.e., is provided by an external supplier.
The demand for each product in each period is displayed in Table 1.

Table 1. Demands per item and period for the original planning horizon.

1 . . . r

Item/Demand 1 2 3 4 5 6

1 110 99 164 181 95 164
2 197 120 146 101 152 131
3 174 132 137 142 119 183

The lead time (LT) of items 1, 2, and 3 are 3, 1, and 2 periods, respectively. The batch sizes of Items
1, 2, and 3 are 200, 200, and 150 units, respectively.

To create the shifted horizon (ST), we must determine the maximum number of periods that
must be added to the horizon planning time. We assume that the maximum lead time (LTmax) is
the maximum LT of the imported products (LTmax = 3 in this example). Therefore, the end of the
time horizon is shifted from the sixth (r) to the ninth period (s = r + LTmax). Table 2 shows the
corresponding demands over the ST shifted horizon in the illustrative example.

Table 2. Demand per item and per period for the shifted planing horizon.

1 . . . r . . . s

Item / Period 1 2 3 4 5 6 7 8 9

1 0 0 0 110 99 164 181 95 164
2 0 0 0 197 120 146 101 152 131
3 0 0 0 174 132 137 142 119 183

As shown in Table 2, the first three periods represent the artificial shift (with zero demand values).
From the fourth to the ninth period, the demands correspond to those of the original planning horizon
(Table 1).

Since the company has the policy of paying the orders in advance (to seize the discount prices),
we formulated the model to take into account this feature. For this reason, we considered the shifted
time horizon, in which the company can place the orders LTi periods ahead (depending on the item) of
the period in which they will be sold. To avoid dealing with negative indices, the first demand period
is shifted to the LTmax + 1 period.

3.1. Mathematical Formulation

In this section, we formally define the addressed problem and propose an MILP formulation.
Prior to that, let us introduce the following sets and parameters:
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N : Set of n items to sell, indexed by i, where i ∈ {1, . . . , n}.
M : Set of m imported items, the first m items from N, M ⊂ N, indexed by j, where j ∈ {1, . . . , m}.
T : Set of r original time horizon periods, indexed by h, where h ∈ {1, . . . , r}.

ST : Set of s shifted periods, indexed by t, where t ∈ {LTmax + 1, . . . , s}.
Dit : Demand for item i at period t.

TDi : Total demand per item i, expressed as the sum of the periodical demands over the time horizon.
Oi : Setup order cost for item i.
Pi : Unitary purchase cost for item i.
Hi : Holding cost for item i.

Wini : Initial purchase budget.
Wt : Periodical budget (after the initial purchase) for period t.
LTi : Lead time of item i.

LTmax : Maximum lead time over imported items.
Bi : Batch size of item i (in number of units).
Si : Penalty shortage cost for every unit of item i.

Two particular features must be considered in the proposed model. On the one hand, the company
classifies the items into two categories: imported (purchased from external suppliers) and domestic
(acquired from internal manufacturers). On the other hand, imported items share a common lead time
that requires the placing of future orders. Therefore, for them, only an initial order must be placed.
For this reason, imported items represent the first items in the N set.

3.2. MILP Formulation with Shortages

The problem consists of determining the purchase orders, i.e., the quantity of batches to be
purchased per item over the planning period, in such a way that the total cost incurred by the holding,
shortages, and final inventory costs are minimized. We also determined the maximum inventory levels
in order to take advantage of the availability of space in the warehouse.

Let us introduce the following decision variables to establish the mathematical model:

Xit = Quantity of batches of item i to purchase at period t.

Iit = Quantity of units of item i to hold in inventory at period t.

Zit = Quantity of shortage units of item i at period t.

Ri = Maximum allowed inventory of item i in any period.

Yit =

{
1, if purchase order i is placed at period t

0, otherwise.

The objective function (1) aims to minimize three terms: the holding cost, the shortage cost,
and the final inventory costs. The third term is considered only over the last period stock per item.

Minimize
n

∑
i=1

s−1

∑
t=1

Hi Iit +
n

∑
i=1

s

∑
t=1

SiZit + 2
n

∑
i=1

Pi Iis. (1)

The balance equation for item i in period t (equals the sum of the inventory over the previous
period and the purchase in the current period, minus the remaining surplus in the current period) is
established by Equation (2).

Ii(t−1) + BiXi(t−LTi)
− Dit + Zit = Iit, ∀ i ∈ N; t ∈ ST. (2)

The maximum allowable inventory of each item in each period is ensured by Equation (3).
Meanwhile, Equation (4) ensure that, for each item, no inventory is generated before the LTmax period.

Iit ≤ Ri, ∀ i ∈ N, t ∈ ST, (3)

Iih = 0, ∀ i ∈ N, h ∈ T, h ≤ LTmax. (4)
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For imported items, only one purchase order must be placed, and it should be placed at the
beginning of the time horizon; this is ensured by Equation (5).

s

∑
t=LTmax+2

Yj(t−LTi)
= 0, ∀ j ∈ M. (5)

The amount of the initial purchase cannot exceed the budget assigned at the first original time
period; this is ensured by Equation (6), while the total lot size based on the weekly budget is ensured
by Equation (7).

n

∑
i=1

(BiPiXi(LTmax−LTi+1) + OiYi(LTmax−LTi+1)) ≤ Wini, (6)

n

∑
i=m+1

(BiPiXi(t−LTi)
+ OiYi(t−LTi)

) ≤ Wt, ∀ t ∈ ST, t > LTmax + 1. (7)

Based on the batch size of each item, the maximum allowable quantity of purchased batches
(in general) of item i is determined by Equation (8).

Xi(t−LTi)
≤

(
1 +

TDi
Bi

)
Yi(t−LTi)

, ∀ i ∈ N; t ∈ ST. (8)

The units of shortage per item and per period is estimated by Equations (9) and (10), respectively.

Zit ≥ Dit − BiXit − Iit, ∀ i ∈ N; t ∈ ST, (9)

Zit ≤ Dit, ∀ i ∈ N; t ∈ ST. (10)

The nature of the variables is established by the group of Equations (11)–(15).

Ri ≥ 0, ∀ i ∈ N, (11)

Iit ≥ 0, ∀ i ∈ N; t ∈ ST, (12)

Xit ≥ 0, ∀ i ∈ N; t ∈ ST, (13)

Zit ≥ 0, ∀ i ∈ N; t ∈ ST, (14)

Yit ∈ {0, 1}, ∀ i ∈ N; t ∈ ST. (15)

This model will be referred to as the “AS model” in the computational experiments section.
Let us continue with the illustrative example of Section 3. The optimal solution has an objective

function value of $33,895.40. Table 3 shows the purchase orders of each item over the planning period.

Table 3. Optimal purchase orders during the shifted planning horizon.

Item/Period 1 2 3 4 5 6 7 8 9

1 4 0 0 0 0 0 0 0 0
2 0 1 1 1 0 1 0 0 0
3 0 0 2 1 0 1 1 1 0

During the first three periods, the purchases listed in Table 3 satisfy the demands in the fourth
period. The created inventories and shortages of each item are described in Tables 4 and 5, respectively.
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Table 4. Periodical inventory held in units per item during the shifted planning horizon.

Item/Period 1 2 3 4 5 6 7 8 9

1 0 0 0 690 591 427 246 151 0
2 0 0 0 3 283 137 36 284 153
3 0 0 0 126 144 7 15 46 13

Table 5. Periodical shortage during the shifted planning horizon.

Item/Period 1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 13
2 0 0 0 0 0 0 0 0 47
3 0 0 0 0 0 0 0 0 0

Regarding the maximum inventories per item, they were determined as follows: Item 1: 690 units,
Item 2: 284 units, and Item 3: 144 units. These results could help the company to determine a strategic
decision about the distribution of the warehouse so they can seize the space availability.

3.3. MILP Formulation without Shortages

To evaluate properly if allowing the model to consider shortages was beneficial, a second
formulation that did not allow having shortages was developed to compare. The version without
shortages is denoted as “WS model”. The WS model was obtained by removing the Zit variables
from the AS model and also removing the equations involving them. In particular, Equations (2), (9),
and (10) were reformulated in terms of the inequalities proposed in [30]. The reformulated expressions
are given by (16), (17), and (18) respectively:

Ii(t−1) + BiXi(t−LTi)
− Dit = Iit, ∀ i ∈ N; t ∈ ST, (16)

Ii(t−1) ≥ Dit(1 − Yit), ∀ i ∈ N; t ∈ ST, (17)

BitXit ≤ Dit + Iit, ∀ i ∈ N; t ∈ ST. (18)

Under these equations, the model must fulfill the demand of each period. In particular,
Equation (16) balances the inventories to suit the demand in period t. Equation (17) imposes an
inventory in weeks when no purchases will be placed. Finally, Equation (18) places an upper bound
on the maximum purchase amount in a specific period.

In addition, the objective function (1) is modified by removing the component of shortage. It will
be stated as shown in Equation (19). For the sake of clarity, we present the condensed MILP formulation;
from the AS model, this model preserves Equations (3)–(8) and (11)–(15).

Minimize
n

∑
i=1

s−1

∑
t=1

Hi Iit + 2
n

∑
i=1

Pi Iis, (19)

subject to:
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Ii(t−1) + BiXi(t−LTi)
− Dit = Iit, ∀ i ∈ N; t ∈ ST,

Iit ≤ Ri, ∀ i ∈ N, t ∈ ST,

Iih = 0, ∀ i ∈ N, h ∈ T, h ≤ LTmax.
s

∑
t=LTmax+2

Yj(t−LTi)
= 0, ∀ j ∈ M.

n

∑
i=1

(BiPiXi(LTmax−LTi+1) + OiYi(LTmax−LTi+1)) ≤ Wini,

n

∑
i=m+1

(BiPiXi(t−LTi)
+ OiYi(t−LTi)

) ≤ Wt, ∀ t ∈ ST, t > LTmax + 1.

Xi(t−LTi)
≤

(
1 +

TDi
Bi

)
Yi(t−LTi)

, ∀ i ∈ N; t ∈ ST.

Ii(t−1) ≥ Dit(1 − Yit), ∀ i ∈ N; t ∈ ST,

BitXit ≤ Dit + Iit, ∀ i ∈ N; t ∈ ST.

Ri ≥ 0, ∀ i ∈ N,

Iit ≥ 0, ∀ i ∈ N; t ∈ ST,

Xit ≥ 0, ∀ i ∈ N; t ∈ ST,

Zit ≥ 0, ∀ i ∈ N; t ∈ ST,

Yit ∈ {0, 1}, ∀ i ∈ N; t ∈ ST.

In the following section, the experimental results and a discussion about the advantages and
disadvantages for each mathematical model will be presented.

4. Computational Experiments

This section is devoted to the implementation and experimental results of the two proposed
formulations. The validation was performed over a test set of random instances. The performance
assessments were over the instances’ size and the CPU time. We also present the results over the
instance of the case study that motivated this research.

The computational experimentation was executed on a Workstation Think Centre, ThinkStation
P910 Xeon E5-2620, and a Windows 10 operating system. The mathematical model was coded using
Visual Studio 2019 and solved by the commercial solver CPLEX 12.9. The time limit was set to two
hours (7200 s).

4.1. Case Study

As explained in the Introduction Section, this study was motivated by a real problem in which
a retailer sells clothes, shoes, and accessories by catalogue. This company has over 29 years of
experience in the market and manages two sales seasons per year: the spring-summer season and
the autumn-winter season. In each 21 week season, the company handles around 465 stock-keeping
units (items) purchased from different suppliers. Each supplier has its own delivery time (lead time).
Around 30% of these items (139 out of 465) belong to the category of imported, and the remaining 70%
are domestic. In the case of the imported items, the length of the lead time (seven weeks) requires the
company to place replenishment orders. For this reason, they established the policy of placing only an
initial purchase order, purchasing as much as possible. To ensure competitive prices, the suppliers also
stipulate batch ordering of their items, which complicates the purchase and inventory management
policy. Currently, the company performs the ordering process empirically, through a purchasing
department involving approximately 20 personnel. Each person is in charge of purchasing certain
items and considers both the placement and the order size under individual criteria. As these criteria
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are non-standardized (i.e., there is no institutionalized ordering scheme for either time or order
size), the fear of overfilling the inventory constantly generates an opportunity cost. For this reason,
the company decided to incorporate efficient methods for determining the appropriate number of
orders per week, as well as the number of orders per item type that would minimize both the costs
of placing purchase orders and keeping the inventory. To fulfill this need, we developed an efficient
ordering scheme policy based on MILP.

4.2. Test Instances

Based on the case study instance that considered 465 items, we created nine different instances by
randomly selecting subsets of items from the case study instance (10, 20, 30, or 50 items). As in the
case study, we preserved the percentages of items provided by external and internal suppliers (30%
and 70%, respectively).

For each subset size, we generated four instances. Each instance was labelled by “X-Y”, where X
and Y denote the number of items and the instance number, respectively.

The demands, lead times, setup order costs, batch sizes, unitary purchasing costs, and holding
cost of the items in a specific instance were decided from the case study instance. The initial and
periodical budget were proportionally scaled regarding the vales considered for the case study instance.
The time horizon was set to 21 weeks, and the penalty cost per unit of shortage was set to 2.5 times the
unitary purchasing cost.

4.3. Experimental Results over the Test Instances

The AS model was solved by the commercial solver CPLEX 12.9. The results obtained for the test
instances are reported in Table 6. The first column displays the instance name, while columns 2, 3,
and 4 report the integer solution, the best bound obtained, and the GAPreported by the commercial
solver, respectively. For optimal solutions, the GAP value reported is zero. Finally column 5 reports
the elapsed CPU time.

Table 6. Performance of the AS model over the test random instances.

Instance Objective Function Best Bound GAP%
CPU Time
(Seconds)

10-1 $372,721 $372,721 0.00 82.03
10-2 $349,317 $349,317 0.00 528.52
10-3 $ 543,781 $543,781 0.00 94.96
10-4 $1,258,256 $1,258,256 0.00 406.59
20-1 $679,124 $679,124 0.00 8.891
20-2 $676,166 $676,166 0.00 56.49
20-3 $964,839 $964,839 0.00 19.66
20-4 $1,303,250 $1,303,250 0.00 47.562
30-1 $977,660 $965,095 1.29 7200.00
30-2 $1,385,400 $1,331,200 0.52 7200.00
30-3 $985,798 $973,146 1.28 7200.00
30-4 $1,115,070 $1,104,540 0.94 7200.00
50-1 $3,535,310 $3,519,520 0.45 7200.00
50-2 $2,966,000 $2,950,390 0.53 7200.00
50-3 $3,533,190 $3,496,460 1.04 7200.00
50-4 $3,454,710 $3,428,850 0.75 7200.00

Average 0.43 3677.794

According to the results, the model solved to optimality eight out of 16 instances. For the
remaining instances, it reached the specified time limit imposed on the solver. The GAPs deviated by
up to 1.30% from the best bound. Among these instances, the average GAP was only 0.43%. Based on
these results, the model showed a reasonable performance by providing high-quality integer values.
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In particular, from the instances of 30 and 50 items, the formulation was unable to obtain optimal
solutions; for those instances, we decided to increase the time limit of 7200 s imposed on the solver
in pursuit of getting optimal solutions. However, the commercial solver got stuck in a positive GAP
after more than 10,000 s. We analyzed the behaviour of the solver during the solution process on a test
instance, evaluating the behaviour of the GAP when the elapsed time increased. Figure 1 illustrates
this behaviour for Instance 30-1. Due to this, we decided to preserve the time limit of 7200 s for solving
the case study.

Figure 1. GAP analysis for the test instance 30-1.

Another point to highlight is that, for the instance of 50 items, the solution value was significantly
higher than the rest of the cases. When revising in detail the cost segments contributing to the
objective function, we realized that, for some cases, the model preferred to generate a high level
of shortage, in particular for imported items. Based on this result, we could infer that the model
determined when it was worth purchasing products or leaving a shortage in pursuit of minimizing
costs. To validate this hypothesis, we conducted a complementary analysis by evaluating the case in
which the formulation must fulfill the demand, through the WS model. The next section presents the
results of this comparison.

4.4. Comparison between the AS Model and WS Model over Test Instances

The WS model was solved by the commercial solver CPLEX 12.9. The results obtained for the
test instances are summarized in Table 7. In this table, column 1 indicates the instance name, whereas
columns 2, and 3 display the objective function and the elapsed CPU time, respectively.

As expected, the WS model solved all of the instances to optimality and produced higher objective
function values than the AS model. In particular, the AS model obtained solutions that produced
savings up to 35.80% of the objective function. However, we conducted a Man–Whitney analysis with
a confidence level of 95 % to determine if the the savings were statistically significant. The alternative
hypothesis (Ha), “the WS model computes higher objective function values than the AS model”,
was evaluated against the null hypothesis (Ho) “there is no objective function value difference between
the models”. The obtained p-value was 0.107, which accepted the null hypothesis that, eventually,
both models could produce an equivalent total cost.
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Table 7. Performance of the WS model over the test random instances.

Instance
Objective
Function

CPU Time
(Seconds)

10-1 $528,137 0.688
10-2 $544,109 1.140
10-3 $595,973 0.625
10-4 $1,529,770 2.875
20-1 $1,008,150 0.813
20-2 $782,212 2.469
20-3 $1,120,920 0.750
20-4 $1,611,150 3.531
30-1 $1,447,230 3.969
30-2 $1,510,310 2.266
30-3 $1,340,600 3.515
30-4 $1,414,390 1.422
50-1 $4,015,590 1.953
50-2 $3,495,540 2.875
50-3 $4,135,130 2.953
50-4 $3,998,180 2.266

Average 2.220

Another important aspect to analyze is the one related to the inventories. In this case, the inventory
cost of the WS model was compared with the inventory cost plus the opportunity cost of the AS model.
The results are displayed in Table 8. For this table, column 1 displays the instance name, column 2
the Inventory Costs (IC) for the WS formulation, columns 3 and 4 the inventory cost, the Opportunity
Cost (OC), and the Total Cost (TC) composed by the sum of the inventory cost and the opportunity
cost (lost-sales costs), for the AS formulation, respectively. Column 6 estimates the savings gained by
AS (monetary savings), and column 7 presents the percentage of savings of the AS model over the WS
model (% of savings AS vs. WS). In the table, IC, OC, and TC are estimated by Equations (20), (21),
and (22), respectively:

IC =
n

∑
i=1

s

∑
t=LTmax+1

Hi Iit (20)

OC =
n

∑
i=1

s

∑
t=LTmax+1

PiZit (21)

TC = IC + OC (22)

From Table 8, we observe that the AS model, in terms of inventory costs, was more cost effective
than the WS model, producing savings up to 35.8%. However, the total cost, composed by the inventory
and opportunity cost, presented a mixed behaviour, showing that 68.5% of the instances produced
savings (values with a positive sign in the last column) when the AS model was compared with the
WS model. We also observed that the WS approach produced higher values (up to 18%) of inventory
costs than the AS model. Thus, the AS formulation could be useful to decrease the overstock while
ensuring the availability of items (i.e., minimizing the shortage levels).

In particular, for the 20-3 instance and all 30 item instances, it was observed that the AS model
produced an opportunity cost (estimated as the prices of the unsold items) that, after being added to
the inventory cost, exceeded the inventory cost created by the WS model. The effect could be explained
by the fact that, in order to minimize the final inventory, the AS model preferred to generate a high
level of shortages in the last period, which was less expensive than buying complete batches that
would be penalized at the end of the time horizon. However, in general, the AS model produced
lower opportunity cost values, which also supported the fact that the model offered the advantage of
determining which products should be prioritized at the time of purchase for each period.
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Table 8. Comparison between the total inventory costs for the model with and without shortage for
the test random instances. IC, Inventory Cost; OC, Opportunity Cost; TC, Total Cost.

Instance
WS Model AS Model Monetary

Savings
% of Savings

AS vs. WSIC IC OC TC

10-1 $266,897 $217,126 $33,570 $250,696 $16,111 6.04
10-2 $257,546 $214,408 $46,332 $260,740 $ −3194 −1.24
10-3 $435,105 $408,633 $17,151 $425,784 $9321 2.14
10-4 $1,157,045 $1,100,163 $40,816 $1,140,979 $16,066 1.39
20-1 $455,757 $353,577 $76,390 $429,967 $25,790 5.66
20-2 $397,775 $358,129 $51,600 $409,729 $ −11,955 −3.01
20-3 $770,110 $739,858 $40,505 $780,363 $−10,253 −1.33
20-4 $1,069,308 $996,489 $68,938 $1,065,427 $3880 0.36
30-1 $706,880 $635,984 $82,238 $717,922 $−11,042 −1.56
30-2 $815,893 $734,699 $84,400 $819,099 $−3205 −0.39
30-3 $638,094 $536,434 $119,413 $655,847 $−17,752 −2.78
30-4 $719,120 $660,574 $89,034 $749,658 $−30,537 −4.24
50-1 $3,042,402 $2,906,978 $3640 $2,910,619 $131,783 4.33
50-2 $2,697,426 $2,322,546 $2720 $2,325,267 $372,159 1.38
50-3 $2,886,510 $2,717,491 $4391 $2,721,882 $164,628 5.70
50-4 $2,953,503 $2,821,755 $2933 $2,824.688 $128,815 4.36

In terms of CPU time, the WS model optimized the test instances within 4 s of CPU time, whereas
for the AS model, the fastest instance required almost 9 s to solve to optimality. The results of the WS
model could be used to obtain a “fast” purchasing plan in which all items will have overstock, and
with the aim of minimizing the inventory levels, the company could create a clearance or sales strategy
for the last period.

The inventory cost is commonly used to assess the efficiency of the overall purchase policy.
We compared the final inventory costs of the two models. The results are reported in Table 9. Column 1
shows the instance name and columns 2 ans 3 the final inventory cost for the WS model and the AS
model, respectively. Column 4 shows the percentage of saving of the AS model over the WS model.

Table 9. Comparison of the final inventory cost for the AS model and the WS model.

Final Inventory Cost

Instance WS Model AS Model % of Saving AS vs. WS

10-1 $3266.63 $888.88 72.57%
10-2 $3582.04 $238.48 93.34%
10-3 $2010.85 $11,153.38 42.64%
10-4 $4659.02 $700.67 84.96%
20-1 $6904.91 $1682 75.64%
20-2 $4809.59 $2362.96 50.83%
20-3 $4385.10 $1546.48 64.73%
20-4 $6772.98 $1680.18 75.19%
30-1 $9254.41 $1704.75 81.57%
30-2 $6180.20 $11,160.50 81.22%
30-3 $8781.33 $1885.40 78.52%
30-4 $8690.87 $2897.33 66.67%
50-1 $12,164.00 $3303.10 72.85%
50-2 $11,843.28 $4642.65 60.80%
50-3 $15,607.00 $4706.79 69.85%
50-4 $13,058.00 $4246.13 67.48%

From Table 9, the AS model saved up to 93% of the final inventory cost computed in the WS model.
Even when there was not significant evidence of savings with respect to the objective value against
the AS model, a statistical analysis was conducted to determine if the AS model produced significant
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savings regarding the final inventory cost. We analyzed the results of the test instances by performing
a hypothesis test. Given the distribution of the costs, a Mann–Whitney (non-parametric test) with a
confidence level of 95 % was selected again for this purpose. The alternative hypothesis (Ha), “the WS
model computes higher final inventory costs than the AS model”, was evaluated against the null
hypothesis (Ho) “there is no final inventory cost difference between the models”. The test yielded a
p-value of 0.013, which supported the evidence that the WS model computed higher final inventory
costs than the AS model. However, the WS model reached the optimal results in a significantly shorter
CPU time than the AS model. Based on these findings, we could conclude that the WS model could be
used to determine the total cost for the worst scenario (i.e., avoiding shortages). In other words, by the
WS model, it was possible to obtain an upper bound for the AS model.

4.5. Experimental Results over the Case Study

To conclude the present set of computational experiments, the performances of the WS and AS
models were compared on real data provided by the company. Whereas the WS model solved this
instance to optimality in 15.94 s, the AS model reached the time limit of 7200 s and reported a GAP of
0.81%. Regarding the objective function values, Table 10 summarizes the results. In this table, columns
1 and 2 provide the objective function value obtained by the WS and AS models, respectively. Columns
3 and 4 display the savings of the AS model over the WS model, in monetary and percentage terms,
respectively.

Table 10. Comparison between the solution cost for the AS model and the WS model for the case
study instance.

Objective Function
Monetary Savings % of Savings AS vs. WS

WS Model AS Model

$35,306,310 $29,532,400 $5,773,910 16.35

It is important to note that the AS model achieved significant monetary savings, which represented
almost 17% of the total cost incurred by the WS model. In the real situation, these savings rose up
to 33.33% with regard to the last year’s operation costs of the company (their costs according to our
proposed objective function were equal to $44,078,209). For the case of the administration of the
warehouse capacity, it could be observed that, according to the results of the Ri variables, the AS
formulation distributed the maximum inventories of the items in a way that the total stock in any
period did not exceed 70% of the full capacity. In the case of the WS model, this value was not superior
to 90%. Finally, the comparisons of the final inventory between both models is presented in Table 11.

Table 11. Comparison between the final inventory cost for the AS and WS model for the case study instance.

Final Inventory Cost

Instance WS Model AS Model % of Savings AS vs. WS

Case study $141,073 $36,201 74%

In the real situation, the company incurred a final inventory cost of $195, 778.50. Therefore, both
models improved this cost substantially. In particular, the AS model recovered approximately 32.29%
of the inventory cost, increasing the company’s profits by approximately 1.2%.

5. Conclusions and Future Work

This work addressed the capacitated lot sizing problem with lead times, batch ordering, and
shortages. This problem was motivated by a retail company that sells clothes, shoes, and accessories
by catalogue. The problem considered a retail environment in which items were not produced, but
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purchased from manufacturers (suppliers) who stipulated the batch ordering and who provided
different delivery times (lead times) for each item. The problem was modelled and solved via an
MILP formulation.

Two mathematical formulations were developed, one that allowed shortage (AS model) and another
that did not (WS model). In the AS version, instances up to 20 items were solved to optimality, whereas
the WS version solved all instances. The performance of the formulation was evaluated on different
instance sizes. The AS model obtained significant savings (up to 17%) over the current situation of
the company. Most relevantly, both mathematical formulations significantly improved the current
situation of the company, saving up to 33% of the current final inventory costs. These results would be
of interest to both academics and practitioners.

To assess whether introducing shortages benefited the company, we compared the final inventories
computed by both models. The inventory costs in the AS version were cost-effective in all cases,
but these savings were not statistically different from the savings gained in the WS model. In addition,
the WS version optimized the test instances within 16 s of CPU time. In the case study, the best
obtained solution deviated by 0.80% from the lower bound after reaching the specified time limit.

This research contributes to the body of knowledge as it optimized the CLSP by considering
multiple items along with variable batch sizes and variable delivery times (lead times) in a retail
environment. Still, the study addressed a comprehensive problem in the retail industry, but the
approach assumed the following: first, there was a deterministic demand, which represented the
first limitation of this study; and second, suppliers presented the right deliveries in terms of quality
and amount and time, which represented the second limitation of this study. Any change to these
assumptions would create a different scenario that should be addressed in a very particular way.

Further research should consider stochastic environments, in particular the uncertainty in the
demand and/or lead times. Moreover, considerations such as the quality and timely deliveries by the
suppliers can be questioned since these scenarios might not reflect 100% of the real-life cases. Including
these variants will bring value to the lot sizing problem literature. Other considerations may include
not only the lost-sales costs, but the cost of losing future customers in order to improve the estimation
of opportunity costs. Finally, high-quality solutions within short computational time frames can be
obtained by heuristics and metaheuristic algorithms. The models presented in this study will benefit
companies by providing a good starting point to facilitate their decision-making process.
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Abstract: Packing irregular 3D objects in a cuboid of minimum volume is considered. Each object
is composed of a number of convex shapes, such as oblique and right circular cylinders, cones and
truncated cones. New analytical tools are introduced to state placement constraints for oblique
shapes. Using the phi-function technique, optimized packing is reduced to a nonlinear programming
problem. Novel solution approach is provided and illustrated by numerical examples.
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1. Introduction

Packing problems aim to allocate a set of objects in a container subject to placement constraints.
The latter typically stipulates non-overlapping between the objects and the boundary of the container.
Additional placement constraints may include weight distribution and stacking, cargo stability,
balance constraints, loading and unloading preferences, etc. [1]. In optimized packing certain criteria
have to be optimized, e.g., maximizing the number of the packed objects, minimizing the waste or
optimizing characteristics of the container, its volume or shape [2]. Packing problems are proved to be
NP-hard [3].

Packing issues traditionally are important in logistics, e.g., in maritime transportation and container
loading, cutting industrial materials in furniture and glass manufacturing [4]. Packing problems also
arise in modelling liquid and glass structures, in analyses of powder and granular materials in mineral
industry, in molecular and nanotechnologies [5–9].

Different classifications for packing problems are proposed (see, e.g., [2,4,10] and the references
therein). Focusing on the shapes involved, packing problems can be divided into two large groups:
regular and irregular. While regular 3D packing deals with relatively simple shapes (spheres, ellipsoids,
convex polyhedrons), irregular packing focuses basically on nonconvex figures (see, e.g., [2,11–19]).

Various modelling and solution approaches, exact and approximated, are known for the regular
packing (see, e.g., [20–22] and the references therein). For irregular 3D packing, heuristics are
widely used [2]. A large group of heuristics is based on representing complex irregular shapes by
corresponding collections of simpler (regular) figures thus reducing the problem approximately to a
regular case [23–27]. Techniques in the other group combine a local search with simple decision rules,
such as the deepest bottom-left approach or random allocation [28–33]. An alternative methodology is
using genetic algorithms, directly or in combination with the first two approaches [34–37].

In this paper, packing irregular 3D objects in a cuboid of minimum volume is considered.
Each complex object is composed of a number of convex shapes, such as oblique and right circular
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cylinders, cones and truncated cones. Studying composed objects requires new modelling tools,
different from those used previously for simpler objects (see, e.g., [20–22] and the references
therein). In this paper, the phi-function approach is applied to represent analytically containment and
non-overlapping conditions. Using the concept of quasi phi-functions [38], an exact mathematical
model is formulated and a corresponding nonlinear programming problem is stated. A solution
algorithm is proposed and computational results are presented to illustrate the approach. To the best
of our knowledge, exact mathematical models for packing complex objects composed of a mixture of
oblique and right convex shapes nether were considered before.

Nonspherical particles presented by the superquadric equations are widely used in different
industrial production, and significantly affect the macro- and microcharacteristics of granular materials,
see, e.g., [39] and the references therein. However, the particle shapes constructed by the superquadric
equations are geometrically symmetrical and strictly convex, which significantly limits their further
engineering applications [40]. In recent years, the composed element method has been successfully
used. In this approach a complex nonconvex object is composed of basic convex elements, e.g., spheres,
cylinders, super-quadratic elements and other convex (irregular) shapes [41,42].

Another source of packing complex composed shapes is additive manufacturing (AM), also known
as 3D printing. AM refers to technologies for producing complex parts in a layer-by-layer material
deposition process. The process takes place inside the machine in an enclosed build container or a “build
volume”. AM does not use any conventional physical tooling such as moulds, cutting implements
or dies. Using AM, products previously designed and manufactured as assemblies of multiple
components can now be manufactured as single items [43]. As a parallel manufacturing process,
AM permits producing various complex parts in a single build volume. This gives rise to a build
volume packing problem arising during the machine setup process. Thus, packing complex objects
composed of different shapes plays an important role 3D printing.

Our interest in studying oblique objects is motivated by modelling particulate systems of
nonspherical shapes [44,45] and by build volume packing problems in 3D printing [10].

The main contributions of the paper are as follows:

1. New tools of mathematical modelling are presented to describe analytically non-overlapping and
containment constraints for packing irregular 3D objects composed by the union of oblique and
right basic shapes (circular cylinders, cones, truncated cones and spheres). The objects can be
freely translated and rotated.

2. An exact mathematical model for the irregular packing problem is formulated in the form of
nonlinear continuous programming problem.

3. A solution algorithm for the irregular packing problem is developed.
4. New benchmark instances are provided to illustrate the efficiency of the approach.

The paper is organized as follows. Section 2 provides the general formulation for the irregular
packing problem. Quasi-phi-function s for the composed 3D objects are defined to describe analytically
placement constraints in Section 3. The nonlinear programming model for the irregular packing
problem is presented and solved by an algorithm described in Section 4. Computational results are
given in Section 5, while Section 6 concludes. Definitions of the phi-functions and quasi-phi-function s
are provided in Appendix A.

2. Problem Formulation

The packing problem is considered in the following setting. Denote a cuboid of variable length l,
width w and height h by Ω (see Figure 1). Let a set of objects Tq ⊂ R3, q ∈ JN = {1, 2, . . . , N} be given.
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Figure 1. Container Ω.

The location and orientation of each 3D object Tq is defined by a vector uq = (vq, θq) of its (variable)
placement parameters in the fixed coordinate system OXYZ. Here vq = (xq, yq, zq) is a translation
vector and θq = (θ1

q , θ2
q , θ3

q) is a vector of rotation parameters, where θ1
q , θ2

q , θ3
q are Euler angles.

The notation Tq(uq) = {p̃ ∈ R3 : p̃ = vq + Θ(θq) · (p)T,∀p ∈ Tq} is used for translated and rotated
object Tq, where Θ(θq) = Θ(θ1

q , θ2
q , θ3

q) is a rotation matrix of the form:

Θ(θq) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Assume that Tq(uq) =
nq∪

i=1
Tq

i (uq), where Tq
i denotes a basic object from a family of oblique and

right circular cylinders, cones, truncated cones denoted by � and spheres (Figure 2a). An object Tq for
nq ≥ 2 is referred to the composed object (Figure 2b).

 
(a) 

 
(b) 

Figure 2. Placement objects: (a) basic; (b) composed.

Let a sphere be defined by its centre pq
i = (xq

i , yq
i , zq

i ) and a radius rq
i . Each basic object from the

family � is defined by three vectors pq
i1 = (xq

i1, yq
i1, zq

i1), pq
i2 = (xq

i2, yq
i2, zq

i2) and n
q
i = (nx

i , ny
i , nz

i ), as well
as a pair of parameters rq

i1 and rq
i2. Here pq

i1, pq
i2 are the centres and rq

i1, rq
i2 are the radii of the bottom

and top bases of Tq
i , n

q
i is the unit normal vector to the bottom (top) base of Tq

i .
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Note that if rq
i1 = rq

i2 > 0 then Tq
i is a circular cylinder; if rq

i1 � rq
i2 and rq

i1 > 0, rq
i2 > 0 then Tq

i is a
circular truncated cone; if rq

i1 > 0, rq
i2 = 0 or rq

i1 = 0, rq
i2 > 0 then Tq

i is a circular cone. The height of each
object Tq

i ∈ � is denoted by hq
i .

Let pq
i = (xq

i , yq
i , zq

i ) be a reference point of the basic object Tq
i ⊂ Tq: the centre point of a sphere

or the central point for a circular base of the objects from the family �. In what follows, notation

p̃q
i = (x̃q

i , ỹq
i , z̃q

i ) = vq + Θ(θq) · (pq
i )

T
is used, where vq is the translation vector and Θ(θq) is the rotation

matrix of the object Tq.
The placement constraints can be stated in the following form:

intTq(uq) ∩ intTg(ug) = O for q > g ∈ JN, (1)

Tq(uq) ⊂ Ω for q ∈ JN. (2)

Conditions (1) describe non-overlapping for all pairs of objects Tq(uq) and Tg(ug) for q > g ∈ JN

(further, non-overlapping constraints), while conditions (2) assure containing Tq(uq) in the container Ω
for q ∈ JN (further, containment constraints).

Irregular packing problem. Pack the set of objects Tq, q ∈ JN, within a cuboidal container Ω of
minimal volume κ = l ·w · h, taking into account the placement constraints (1)–(2).

3. Analytical Tools

In this section geometric tools for the mathematical modelling of the placement constraints (1)
and (2) are presented. To describe analytically the relations between a pair of objects considered in the
placement constraints, the phi-functions [38] and quasi-phi-functions [18] are used (see Appendix A for
the details. These functions for irregular objects composed of oblique and right shapes are introduced
in this paper for the first time.

3.1. Modeling Non-Overlapping Constraints

Consider a pair of the composed objects Tq(uq) =
nq∪

i=1
Tq

i (uq) and Tg(ug) =
ng∪
j=1

Tg
j (ug).

To describe non-overlapping constraints (1) a phi-function for two composed objects Tq(uq) and
Tg(ug) is introduced. It can be written in the form

Φ′qg(uq, ug, τqg) = min
i=1,..,nq, j=1,...,ng

Φ′qg
i j (uq, ug, τqg

i j ) (3)

where τqg = (τ
qg
i j , i = 1, . . . , nq, j = 1, . . . , nq), Φ′qg

i j (uq, ug, τqg
i j ) is an adjusted quasi-phi-function for

convex objects Tq
i (uq) and Tg

j (ug).

Let Pqg
ij = {(x, y, z) : x ≤ 0} be a half space. Denote the half-space P translated along OX on value

μ
qg
i j and rotated by angles θ1, θ2, by P̃qg

i j = {p : Ψqg
i j (p, τqg

i j ) ≤ 0}, where

Ψqg
i j (p, τqg

i j ) = cos θ1qg
i j · cos θ2qg

i j · x− sin θ
2qg
i j · y + sin θ

1qg
i j · cos θ2qg

i j · z + μ
qg
i j (4)

p = (x, y, z), τqg
i j = (θ

1qg
i j , θ2qg

i j ,μqg
i j ), θ

1qg
i j and θ

2qg
i j are rotation angles of the half space Pqg

ij around the

axes OY and OZ in the fixed coordinate system. Define the plane L̃qg
i j = {(x, y, z) : Ψqg

i j (p, τ) = 0}.
A quasi-phi-function for convex basic objects Tq

i (uq) and Tg
j (ug) can be defined in the form

Φ′qg
i j (uq, ug, τqg

i j ) = min{Φq
i (uq, τqg

i j ), Φ∗gj (ug, τqg
i j )} (5)
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where Φq
i (uq, τqg

i j ) is a phi-function for the object Tq
i (uq) and the half space P̃qg

i j , Φ∗gj (ug, τqg
i j ) is a

phi-function for the object Tg
j (ug) and the half space P̃∗qg

i j = R3\intP̃qg
i j . Here τ

qg
i j = (θ

1qg
i j , θ2qg

i j ,μqg
i j ) is

the vector of auxiliary variables of the quasi-phi-function Φ′qg
i j .

Therefore to define the quasi-phi-functions (5) for each pair of convex basic objects the phi-functions
Φq

i (uq, τqg
i j ) and Φ∗gj (ug, τqg

i j ) have to be derived.

First, define the phi-function Φq
i (uq, τqg

i j ) for the basic object Tq
i (uq) and the half space P̃qg

i j .

Let Tq
i (uq) be a sphere centred at the point p̃q

i1 = (x̃q
i , ỹq

i , z̃q
i ) and having its radius rq

i .

The phi-function for the sphere Tq
i (uq) and a half space P̃qg

i j has the form

Φq
i (uq, τqg

i j ) = cos θ1qg
i j · cos θ2qg

i j · x̃
q
i1 − sin θ

2qg
i j · ỹ

q
i1+sin θ

1qg
i j · cos θ2qg

i j · z̃
q
i1 + μ

qg
i j − rq

i =

ñ
qg
i j · p̃

q
i1 + μ

qg
i j − rq

i ,

while the phi-function for the sphere Tg
j (ug) and the half space P̃∗qg

i j can be defined as follows

Φ∗gj (ug, τqg
i j ) = − cos θ1qg

i j · cos θ2qg
i j · x̃

q
i1 + sin θ

2qg
i j · ỹ

q
i1−sin θ

1qg
i j · cos θ2qg

i j · z̃
q
i1 − μ

qg
i j − rq

i =

−ñ
qg
i j · p̃

q
i1 − μ

qg
i j − rq

i .

For Tq
i (uq) from the family �, let the bottom base of Tq

i (uq) is a circle centred at the point
p̃q

i1 = (x̃q
i , ỹq

i , z̃q
i ) and having its radius rq

i1, while the top circular base of Tq
i (uq) is centred at

p̃q
i2 = (x̃q

i , ỹq
i , z̃q

i + hq
i ) and has its radius rq

i2 (the cone corresponds to rq
i2 = 0).

The phi-function for the object Tq
i (uq) ∈ � and a half space P̃qg

i j has the form

Φq
i (uq, τqg

i j ) = min
{

f1(uq, τqg
i j ), f2(uq, τqg

i j )
}
,

f1(uq, τqg
i j ) = ñ

qg
i j · p̃

q
i1 + μ

qg
i j − rq

i1

√
1− (ñqg

i j · ñ
q
i )

2
,

f2(uq, τqg
i j ) = ñ

qg
i j · p̃

q
i2 + μ

qg
i j − rq

i2

√
1− (ñqg

i j · ñ
q
i )

2
,

where ñ
qg
i j = (ñx

ij, ñ
y
ij, ñ

z
i j) denotes a unit vector of the external normal to the half space P̃qg

i j and

ñ
q
i = (ñx

i , ñ
y
i , ñ

z
i ) stands for a unit vector of the external normal to the object Tq

i (uq) (see Figure 3).

The phi-function for the object Tg
j (ug) and a half space P̃∗qg

i j has the form

Φ∗gj (ug, τqg
i j ) = min{ f1(ug, τqg

i j ), f2(ug, τqg
i j )},

f1(ug, τqg
i j ) = −ñ

qg
i j · p̃

g
j1 − μ

qg
i j − rg

j1

√
1− (ñqg

i j · ñ
q
i )

2
,

f2(ug, τqg
i j ) = −ñ

qg
i j · p̃

g
j2 − μ

qg
i j − rg

j2

√
1− (ñqg

i j · ñ
q
i )

2
.
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(a) 

 
(b) 

Figure 3. Non-overlapping: (a) convex basic objects Tq
i and the half space P̃qg

i j ; (b) convex basic objects

Tq
i and the half space P̃∗qg

i j .

The inequality Φ′qg(uq, ug, τqg) ≥ 0 assures the non-overlapping condition int Tq(uq) ∩
int Tg(ug) = ∅ in (1).

3.2. Modeling the Containment Constraints

Let us express the containment constraint Tq(uq) ⊂ Ω in the equivalent form as intTq(uq)∩Ω∗ =∅,
where Ω∗ = R3\intΩ.

The phi-function for the objects Tq(uq) =
nq∪

i=1
Tq

i (uq) and Ω∗ can be defined in the form:

Φq(uq) = min
i=1,..,nq

Φq
i (uq), (6)

where Φq
i (uq) is the phi-function for the basic convex object Tq

i (uq) and the object Ω∗.
The inequality Φq(uq) ≥ 0 implies fulfilling the condition intTq(uq) ∩Ω∗ = ∅ that describes the

containment condition (2).
Containment of a sphere Tq

i (uq) in a cuboid Ω. The phi-function for the sphere Tq
i (uq) and the object

Ω∗ can be defined by the equation

Φq
i (uq) = min

{
l− p̃qx

i1 − rq
i1, w− p̃qy

i1 − rq
i1, h− p̃qz

i1 − rq
i1, p̃qx

i1 − rq
i1, p̃qy

i1 − rq
i1, p̃qz

i1 − rq
i1

}
.

Containment of the object Tq
i (uq) from the family � in a cuboid Ω. The phi-function for the objects

Tq
i (uq) and Ω∗ has the form

Φq
i (uq) = min

{
ϕk(uq), k = 1, . . . , 6

}
(7)

where

ϕ1(uq) = min{p̃qx
i1 − rq

i1

√
1− ( ñ

qx
i )

2
, p̃qx

i2 − rq
i2

√
1− ( ñ

qx
i )

2},

ϕ2(uq) = min{p̃qy
i1 − rq

i1

√
1− ( ñ

qy
i )

2
, p̃qy

i2 − rq
i2

√
1− ( ñ

qy
i )

2},

ϕ3(uq) = min{p̃qz
i1 − rq

i1

√
1− ( ñ

qz
i )

2
, p̃qz

i2 − rq
i2

√
1− ( ñ

qz
i )

2},

ϕ4(uq) = min{l− p̃qx
i1 − rq

i1

√
1− ( ñ

qx
i )

2
, l− p̃qx

i2 − rq
i2

√
1− ( ñ

qx
i )

2

},
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ϕ5(uq) = min{w− p̃qy
i1 − rq

i1

√
1− ( ñ

qy
i )

2
, w− p̃qy

i2 − rq
i2

√
1− ( ñ

qy
i )

2},

ϕ6(uq) = min{h− p̃qz
i1 − rq

i1

√
1− ( ñ

qz
i )

2
, h− p̃qz

i2 − rq
i2

√
1− ( ñ

qz
i )

2}.
The inequality Φq

i (uq) ≥ 0 implies the condition intTq
i (uq) ∩Ω∗ = ∅.

4. Mathematical Model and Solution Algorithm

4.1. Mathematical Model

Now the irregular packing problem can be formulated as the following nonlinear optimization
problem:

min κ s.t. (u, τ) ∈W, (8)

W =
{
(u, τ) : Φ′qg(uq, ug, τqg) ≥ 0, q > g ∈ IN, Φq(uq) ≥ 0, q ∈ IN

}
, (9)

where τqg = (τ
qg
i j , i = 1, . . . , nq, j = 1, . . . , nq) is a vector of the auxiliary variables for the

quasi-phi-function Φ′qg(uq, ug, τqg) (3)–(5) for the objects Tq(uq) and Tg(ug), Φq(uq) is the phi-function
(6)–(7) for the objects Tq(uq) and Ω∗, q ∈ IN.

The feasible region W in (9) is defined by a system of nonsmooth inequalities that can be reduced
to a system of inequalities with differentiable functions.

The model (8)–(9) is a nonconvex and continuous nonlinear programming problem. This is an
exact formulation in the sense that it gives all optimal solutions to the irregular packing problem.

The number of the problem variables is σ = 3(1 + 2N + m), where m =
∑

q>g∈IN

nqng. The model

(8)–(9) involves O(N2) nonlinear inequalities and O(N2) variables.
The model (8)–(9) represents all globally optimal solutions to the original irregular packing

problem. It can be solved by any available global solver, e.g., BARON or LGO included in AMPL [46].
However, due to large number of variables and constraints, a direct solution to this problem may be
time consuming and complicated. In the next section a solution approach is proposed to search for a
local minimum of the problem (8)–(9). This solution can be used either as a reasonable approximation
to the original global solution, or as a starting point for a global solver or heuristics.

4.2. Solution Algorithm

The following multistart strategy is used to solve the problem (8)–(9). A number of feasible
starting points is generated. Then a local maximum of the problem (8)–(9) is obtained starting from
each feasible point generated at the first stage. Finally, the best solution is selected from those obtained
at the second stage. This result is considered as the solution of the problem (8)–(9).

4.2.1. Feasible Starting Points

To find feasible starting points for the problem (8)–(9) an algorithm based on the homothetic
(scaling) transformation of objects is applied. The basic steps of the algorithm are as follows.

Step 1. Circumscribe spheres Sq, q ∈ JN around the objects Tq(uq), q ∈ JN.
Step 2. Construct a container Ω0 with sufficiently large starting length l0, width w0 and height h0

allowing placement of all the spheres Sq, q ∈ JN.
Step 3. Generate a set of N randomly chosen centre points (x0

q , y0
q , z0

q) for the spheres Sq, q ∈ JN

inside the container Ω0.
Step 4. Grow up the spheres Sq of the radii λrq, q ∈ JN, starting from λ = 0 to the full size (λ = 1).

Here the decision variables are the centres of Sq and the homothetic coefficient λ, where 0 ≤ λ ≤ 1.
Step 5. Form a vector of feasible parameters of our objects Tq(uq) ⊂ Sq(vq).
Now proceed with a more detailed description of the algorithm.
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First, fix l = l0, w = w0, h = h0 and then starting from the point
ω0 = (x0

1, y0
1, z0

1, . . . , x0
N, y0

N, z0
N, λ0 = 0) solve the following nonlinear programming subproblem:

max λ s.t. ω ∈Wλ ⊂ R3N+1,

Wλ = {ω : ΦSqSg(ω) ≥ 0, ΦSqΩ∗(ω) ≥ 0, q < g ∈ IN, 1− λ ≥ 0, λ ≥ 0}.
Here ω = (x1, y1, z1, . . . , xN, yN, zN, λ),

ΦSqSg(ω) = (xq − xg)
2 + (yq − yg)

2 + (zq − zg)
2 − (λrq + λrg)

2

is the phi-function for the sphere Sq of the radius λrq and the sphere Sg of the radius λrg,

ΦSqΩ∗(ω) = min{ϕ(ω)kq, k = 1, . . . , 6}

is the phi-function for the sphere Sq of the radius λrq and the object Ω∗, where

ϕ1q(ω) =l0 − xq − λrq, ϕ2q(ω) =xq − λrq,

ϕ3q(ω) =w0 − yq − λrq, ϕ4q(ω) =yq − λrq,

ϕ5q(ω) =h0 − zq − λrq, ϕ6q(ω) =zq − λrq.

Denote the global maximum point of the above subproblem by (x∗1, y∗1, z∗1, . . . , x∗N, y∗N, z∗N, λ∗ = 1)
and form a vector of feasible parameters ς0=(l0, w0, h0, u0

1, . . . , u0
q , . . . , u0

N). Here u0
q = (x∗q, y∗q, z∗q, θ0

q) and
θ0

q is a vector of randomly generated rotation parameters of the objects Tq, q ∈ JN.
To generate a starting point u0 = (ς0, τ0) for a subsequent search for a local minimum of the

problem (8)–(9), define a vector τ0 = (τ
qg
i j , i = 1, . . . , nq, j = 1, . . . , nq, q > g ∈ IN) by solving the

following optimization subproblems: max
τ

qg
i j

Φ′qg
i j (uq, ug, τqg

i j ) for i = 1, . . . , nq, j = 1, . . . , ng, q > g ∈ IN.

4.2.2. Local Optimization

The definition of the feasible set W in (9) involves a large number O(N2) of inequalities and
variables. To cope with this large-scale problem the decomposition algorithm [47] is used that reduces
the problem (8)–(9) to a sequence of nonlinear programming subproblems with a smaller number O(N)

of inequalities and variables. The key idea of the algorithm is as follows. For each vector of feasible
placement parameters of the objects, fixed individual cubic containers are constructed containing
spheres that circumscribe the appropriate convex basic object. Each sphere is allowed to move within
the appropriate individual container. The motion of each sphere is described by a system of six linear
inequalities. Then a subregion of the feasible region W is formed as follows. For all spheres, O(N)

inequalities are added to the system (9) and O(N2) phi-inequalities corresponding to the pairs of basic
objects with individual containers non-overlapping each other are deleted. Moreover, some redundant
containment constraints are also deleted. This auxiliary local minimization subproblem has O(N)

variables and nonlinear constraints. The solution to this problem is used as a starting feasible point
for the next iteration. On the last iteration of the algorithm a local minimum to the problem (8)–(9)
is obtained.

5. Computational Results

In this section, five new benchmark instances are provided to demonstrate the efficiency of the
proposed methodology. All experiments were running on an AMD FX(tm)-6100, 3.30 GHz computer
(Ultra A0313). Programming Language C++, Windows 7. For the local optimisation, the IPOPT code
(https://projects.coin-or.org/Ipopt) reported in [48] was used under default options. The multistart
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approach was used for the problem (8)–(9) as follows. For each problem instance, 10 starting points
were generated using the algorithm of SubSection 4.2.1. Then 10 corresponding local minima were
obtained by the algorithm described in SubSection 4.2.2 and the best local mimimum was selected as
an approximate solution to the problem (8)–(9). The CPU time indicated for each problem instance is
the total time for all 10 runs.

Example 1. The optimized packings of N = 25 irregular objects. Each object Tq(uq), q = 1, . . . , 25 is composed
by the union of two cones Tq

i (uq), i = 1, 2 given by the following parameters: pq
11 = (0,0,0), pq

12 = (9,0,0), n
q
1 =

(1,0,0), rq
11 = 3, rq

12 = 0 and pq
21 = (7,0,0), pq

22 = (−2,0,0), n
q
2 = (1,0,0), rq

21 = 3, rq
22 = 0 respectively.

The best local minimum obtained for 2857.99 sec is κ∗ = l∗ ·w∗ · h∗ = 17.673918 · 20.065788 ·
24.972631 = 8856.3211208954.

The corresponding packing is shown in Figure 4a.

 
(a) 

 
(b) 

Figure 4. Optimized packings of composed objects: (a) Example 1; (b) Example 2.

Example 2. The optimized packings of N = 25 basic and irregular objects, including:

− spheres Tq(uq), q = 1, . . . , 10 of radii rq = 2 centred at pq = (0,0,0);
− irregular objects Tq(uq), q = 11, . . . , 15 composed by the union of three basic objects Tq

i (uq), i = 1, 2, 3,
where Tq

1(uq) is the cylinder with pq
11 = (0,0,0), pq

12 = (8,0,0), n
q
1 = (1,0, 0), rq

11 = 2, rq
12 = 2; Tq

2(uq)

and Tq
3(uq) are the spheres of radii rq

2 = rq
3 = 3, centred at the points pq

2 = pq
3 = (0,0, 0);

− irregular objects Tq(uq), q = 16, . . . , 20 composed by the union of two basic objects Tq
i (uq), i = 1, 2, where

Tq
1(uq) is the truncated cone with pq

11 = (0,0,0), pq
12 = (9,0,0), n

q
1 = (1,0,0), rq

11 = 1, rq
12 = 3; Tq

2(uq) is
the cone with pq

21 = (0,0,0), pq
22 = (9,0,0), n

q
2 = (1,0,0), rq

21 = 3, rq
22 = 0;

− irregular objects Tq(uq), q = 21, . . . , 25 composed by the union of two cones Tq
i (uq), i = 1, 2 with pq

11 =

(0,0,0), pq
12 = (8,6,0), n

q
1 = (1,0,0), rq

11 = 3, rq
12 = 0; pq

21 = (0,0,0), pq
22 = (8,6,0), n

q
2 = (1,0,0), rq

21 = 3,
rq

22 = 0 respectively.

The best local minimum obtained for 3478.23 sec. is κ∗ = l∗ · w∗ · h∗ = 14.889393 · 24.925430 ·
17.165791 = 6370.6459961746.

The corresponding packing is shown in Figure 4b.

Example 3. The optimized packings of N = 2, 3, 4, 5 objects from Example 1:

(1) for N = 2 the best local minimum

κ∗ = l∗ ·w∗ · h∗ = 8.085071 · 10.392305 · 6.000000 = 504.135155
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was obtained for 11.638 sec. starting from the feasible solution

κ0 = l0 ·w0 · h0 = 26.147623 · 14.547834 · 14.550066 = 5534.7182137988.

The corresponding packings are shown in Figure 5.

(2) for N = 3 the best local minimum

κ∗ = l∗ ·w∗ · h∗ = 12.682284 · 11.050980 · 6.000000 = 840.910031

was obtained for 26.146 sec. starting from the feasible solution

κ0 = l0 ·w0 · h0 = 27.617932 · 26.392891 · 13.953370 = 10170.849561976.

 

 

(a) (b) 

Figure 5. Packings of two composed objects: (a) the feasible starting point; (b) the corresponding local
optimal packing.

The corresponding packings are shown in Figure 6.

(3) for N = 4 the best local minimum

κ∗ = l∗ ·w∗ · h∗ = 8.091432 · 13.454112 · 10.099594 = 1099.4724285295

was obtained for 53.602 sec. starting from the feasible solution

κ0 = l0 ·w0 · h0 = 14.771808 · 27.984482 · 24.620742 = 10177.75667595.
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(a) (b) 

Figure 6. Packings of three composed objects: (a) the feasible starting point; (b) the corresponding local
optimal packing.

The corresponding packings are shown in Figure 7.

(4) for N = 5 the best local minimum

κ∗ = l∗ ·w∗ · h∗ = 11.492738 · 11.267728 · 10.652737 = 1379.4979707504

was obtained for 79.186 sec. starting from the feasible solution

κ0 = l0 ·w0 · h0 = 26.126900 · 26.524042 · 23.378807 = 16201.302676444.

 

 

(a) (b) 

Figure 7. Packings of four composed objects: (a) the feasible starting point; (b) the corresponding local
optimal packing.

The corresponding packings are shown in Figure 8.
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(a) (b) 

Figure 8. Packings of five composed objects: (a) the feasible starting point; (b) the corresponding local
optimal packing.

Example 4. The optimized packings of N = 12 objects (three objects of each type from Example 2).
The best local minimum

κ∗ = l∗ ·w∗ · h∗ = 15.084109 · 15.073729 · 16.129947 = 3667.5268798149

was obtained for 934.103 sec. starting from the feasible solution

κ0 = l0 ·w0 · h0 = 20.944159 · 24.547251 · 32.847595 = 16887.65573111.

The corresponding packings are shown in Figure 9.

 

 

(a) (b) 

Figure 9. Packings of twelve composed objects: (a) the feasible starting point; (b) the corresponding
local optimal packing.
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Table 1 below provides objective function values for the feasible starting point (κ0) and the
corresponding local optimal solution (κ∗) for all 10 starting points. These values are indicated for N = 2,
3, 4, 5 (Example 3) and N = 12 (Example 4). The best local optimal solutions are highlighted in bold.

Table 1. Objective values for feasible starting points and corresponding local optima.

N = 2 N = 3 N = 4 N = 5 N = 12

κ0 κ* κ0 κ* κ0 κ* κ0 κ* κ0 κ*

1 5337.97 816.30 10,170.84 840.91 11,077.98 1565.10 15,543.36 1536.67 18,810.97 4132.31
2 5215.23 835.79 8733.59 1118.40 12,479.28 1372.18 15,564.86 1639.94 18,886.64 4039.23
3 5580.59 1002.95 9085.77 1319.98 10,011.8 1668.54 15,415.77 1507.72 16,951.12 4014.97
4 5457.55 670.08 9949.29 1145.73 10,177.75 1099.47 16,201.30 1379.50 16,708.20 4478.20
5 5534.71 504.13 9029.34 1063.02 12,348.53 1214.28 15,253.70 1920.94 16,726.72 4160.61
6 5260.31 670.08 9801.35 1409.52 17,169.69 1365.29 16,085.74 1733.08 16,480.82 4055.20
7 5395.85 767.15 10,148.29 1152.08 11,556.14 1826.22 15,634.75 1398.68 16,887.65 3667.53

8 5403.27 1091.65 12,206.66 1134.85 10,317.50 1597.13 17,578.42 1670.72 17,137.79 4102.02
9 5332.57 761.25 12,003.17 1094.66 12,295.11 1264.55 17,556.03 1682.84 17,311.19 3809.62
10 4787.59 896.41 9634.21 1426.20 12,860.21 1637.15 15,228.21 1800.38 15,868.61 3879.69

As can be seen from Table 1, different starting points lead to different local minima.

6. Conclusions

Packing irregular 3D objects in a cuboid of minimum volume is considered. Each irregular
object is composed by convex shapes from the family of oblique and right circular cylinders, cones,
truncated cones and spheres. Continuous translations and rotations for all objects are allowed. The
optimized packing problem is formulated for 3D regular and irregular objects. New analytical tools
(quasi-phi-functions and phi-functions) are defined for the first time to describe non-overlapping and
containment constraints for irregular objects composed by oblique shapes.

The phi-function technique is used to state the irregular packing in the form of nonlinear
programming problem. The solution approach is proposed and illustrated by the numerical examples.
The problem instances were selected to demonstrate the ability of the proposed modelling techniques
to work with complex objects composed by different convex shapes used in applications.

The multistart algorithm used in this paper consists of two stages: constructing a number of
initial feasible solutions and using local minimization (compaction) procedure to improve starting
points. A simple and fast heuristic was implemented to get a starting solution. Using more advanced
heuristics to construct better starting points may result in improving the overall optimization scheme.
Some results in this direction are on the way.

The model (8)–(9) provides all global solutions to the original irregular packing problem. It can
be solved by global solvers, e.g., BARON or LGO included in AMPL [46]. However, due to a large
number of variables and constraints, the direct solution to this problem is time consuming and this
approach was not used in the paper. Instead, the decomposition technique was used for the large-scale
problem (8)–(9) and combined with IPOPT for solving NLP subproblems. An interesting direction
for the future research is using alternative decomposition techniques [49] or constructing Lagrangian
relaxations with respect to binding constraints (see, e.g., [50] and the references therein).
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Appendix A

To place feasibly two objects within a container, an analytical description of the relations between
the pair of objects is required. In this paper the phi-function technique is used to express this relation.
Let A and B be three-dimensional objects. The position of the object A is defined by a vector of
placement parameters uA = (vA, θA), where: vA = (xA, yA, zA) is a translation vector and θA is a
vector of rotation parametrs. The object A, rotated by θA and translated by vA is denoted by A(uA).
Phi-functions allow us to distinguish the following three cases: A and B are intersecting so that A and
B have common interior points; A and B do not intersect, i.e., A and B do not have common points; A
and B are in contact, i.e., A and B have only common frontier points.

A continuous function ΦAB(uA, uB) is called a phi-function of the objects A(uA) and B(uB) if the
following conditions are fulfilled [38]: ΦAB(uA, uB) > 0, for A(uA) ∩ B(uB) = ∅ (see Figure A1a);
ΦAB(uA, uB) = 0, for intA(uA) ∩ intB(uB) = ∅ and f rA(uA) ∩ f rB(uB) � ∅ (see Figure A1b);
ΦAB(uA, uB) < 0, for intA(uA) ∩ intB(uB) � ∅ (see Figure A1c).

(a) (b) (c) 

Figure A1. Attributes of a phi-function: (a) non-overlapping, ΦAB(uA, uB) > 0; (b) touching,
ΦAB(uA, uB) = 0; (c) interior overlapping, ΦAB(uA, uB) < 0.

Here f rA denotes the boundary (frontier) of the object A, while intA stands for its interior.
Thus, ΦAB(uA, uB) ≥ 0⇔ int A(uA) ∩ int B(uB) = ∅.
A function Φ′AB(uA, uB, u′) is called a quasi-phi-function for two objects A(uA) and B(uB) if

max
u′∈U

Φ′AB(uA, uB, u′) is a phi-function for the objects [12]. Here u′ denotes a vector of auxiliary variables

depending on the object shapes. This function is defined for all values of uA, uB and has to be continuous
in all its variables.

The main property of the quasi-phi-function for two objects A(uA) and B(uB) is as follows:
if Φ′AB(uA, uB, u′) ≥ 0 for some u′, then int A(uA) ∩ int B(uB) = ∅.
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Abstract: In the recent era, the need for modern smart grid system leads to the selection of optimized
analysis and planning for power generation and management. Renewable sources like wind energy
play a vital role to support the modern smart grid system. However, it requires a proper commitment
for scheduling of generating units, which needs proper load frequency control and unit commitment
problem. In this research area, a novel methodology has been suggested, named Harris hawks
optimizer (HHO), to solve the frequency constraint issues. The suggested algorithm was tested and
examined for several regular benchmark functions like unimodal, multi-modal, and fixed dimension
to solve the numerical optimization problem. The comparison was carried out for various existing
models and simulation results demonstrate that the projected algorithm illustrates better results
towards load frequency control problem of smart grid arrangement as compared with existing
optimization models.

Keywords: Harris hawks optimizer; load frequency control; sensitivity analysis; smart grid; particle
swarm optimization; genetic algorithm; meta-heuristics

1. Introduction

Optimization shows a critical role in various regions of science and technology. This is the method
through which the optimal solution can be found with the help of a wide range of search mechanisms
like primary, secondary, and tertiary controls [1]. With recent advancement in technology, novel
optimization methodologies are identified as meta-heuristic with concern of mathematical culture.
Meta-heuristic algorithms (MA) is a typical technique to get the best outcomes for the issue. It plays a
fictional role to find good specifications in an optimization matter [2].

Each real-life optimization problem required procedures which observe the examination zones
effectively to find most operative explanations. Moth-flame optimizer (MFO) is newly projected
meta-heuristics search algorithmic rule that is inspired by the direction-finding environment of
lepidopteron and its convergence in the direction of lightweight. However, like alternative similar
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strategies, MFO contributes to being stuck into sub-optimal segments, which is mirrored within the
procedure effort needed to search out the most effective rate. This case happens due to the developer
used for research not performing well to research the find house. In addition, no free lunch theorem
encourages planners to promote a new algorithmic rule or to boost the prevailing algorithmic rule.

The modern technology that balances the two-way communication between energy production
and consumption and sense the critical behavior of voltage, current, and frequency which makes an
electric grid as a smart grid. Smart grid is an opportunity in the growth of the country’s economy and
environmental health due to efficient electricity transmission, quicker restoration, reduced power cost,
and enhanced integration with renewable energy sources, which is possible through optimal gain
scheduling and the load frequency control method.

In earlier days, the load frequency control (LFC) problem was explained with respect to
conventional dispatching [3], whose objective was to maintain voltages and frequency within prescribed
limits. Today, LFC uses advanced numerical optimization techniques to solve constrained combinatorial
and diverse number optimization issues. The type of controller [4], its architecture and choice of
objective function play a very important role in enhancing achievement of the power system.

In the current scenario, the integral of time multiplied absolute error (ITAE) criteria is observed as
an impartial task which is stated as [5]:

J =

tsim∫
0

(|ΔF1|+ |ΔF2|+ |ΔPtie|).t.dt., (1)

where, ΔF1, ΔF2 indicate deviation of the frequency in both areas and the total simulation time
(in seconds) is denoted by ‘tsim’ and tie-line interchange [6] assessment is characterized by ΔPtie.

The ITAE is implemented as a detached role to enhance gain of the PI controller in the present
investigation. The reduction of the ITAE index with the binary moth flame optimizer (BMFO) algorithm
offers augmented constraints of PI controllers which can be subjected to the following restraints [7–9]:
Minimize J,

KP
i min ≤ KP ≤ KP

i max, and KInt.
i min ≤ KInt. ≤ KInt.

i max,

where, KInt.
i and KP

i symbolize fundamental and comparative gain of PI controller of ith (i = 1, 2) area.
Our contributions in this work are as follows: First, we propose the two variants of binary moth

flame optimizers to solve the frequency constraint issues. We implemented two different binary
variants for improving performance of the moth flame optimizer (MFO) for discrete optimization
problems. In the first variant, i.e., binary moth flame optimizer (BMFO1), coin flipping-based selection
probability of binary numbers is used. We used the improved Sigmoid transformation in the second
variant called BMFO2. These binary MFO algorithms along with the Harris hawks optimizer (HHO)
algorithms are tested and analyzed for various unimodal, multi-modal, and fixed dimension numerical
optimization problem. Secondly, Section 2 explores various optimization methodologies, including
classical artificial intelligence techniques, modern intelligence techniques, hybrid artificial intelligence
techniques, and smart grid technologies which are tested using standard benchmarks and compared
with various algorithms. Lastly, in Section 3, all the latest used algorithms are evaluated and compared
in terms of standard testing benchmarks in which the proposed HHO model is having improved
results in terms of average and standard deviation. Finally, Section 4 concludes the paper.

2. Optimization Methodologies

In order to discover the mathematical design of load frequency control, numerous optimization
methodologies are classified into three foremost groups like traditional techniques [10], recent
techniques [11], and hybrid techniques [12].
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2.1. Traditional Techniques

The traditional methods may be further classified into artificial neural network, fuzzy logic
technique [13], and genetic algorithm.

2.1.1. Artificial Neural Network

The architecture of Artificial Neural Network (ANN) as shown in Figure 1 is promptly the
emerging zone of investigation, producing attention of predictors from a noble type of scientific field,
which gives a deviation of desired output and actual output as an error signal. An error signal acts like
a feedback to the neural network, which balances the desired and actual output.

Neural 
Network

Error Signal
Generator

Error Signal (D-Y) D(Desired Output)

Y(Actual Output)

X(Input)

Figure 1. Artificial neural network architecture.

2.1.2. Fuzzy Logic Technique

The essential configuration of the scientific reasoning scheme in which the fuzzification [14]
boundary recreates the additional contribution into a fuzzy verbal input, and likewise shows an
significant character in the mathematical coherent [15] procedure as actual principles, which are
delivered from current sensors, are a forever crisp analytical equivalent as shown in Figure 2.

Fuzzification
Interface

Inference
Engine

Defuzzification
Inference

Fuzzy Rule
Base

Fuzzy Input Fuzzy Output

Rules

Figure 2. Fuzzy logic system architecture.

2.1.3. Genetic Algorithm

The overall thoughts were conceived by a European country [16], whereas practicality of
persecution of exhausting it to untie innovative concerns was indisputable. It may be a soft computing
style, which implements strategies stimulated by usual hereditary knowledge to develop conclusions to
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matters [17]. Genetic Algorithm (GA) as shown in Figure 3 is refreshed by Darwin’s theory concerning
progression, which is useful to a vast variety of methodical and industrial problems like optimization,
machine learning, and automatic software design [18].

 
Figure 3. Genetic algorithm architecture.

2.2. Modern Intelligence Techniques

To solve the multi-disciplinary optimization problems [14], various modern practices are
established by the investigators. The modern intelligence techniques are explored in the
following sub-sections.

2.2.1. Differential Evolution Technique

It is a genetic-based algorithm [19] having identical operators corresponding to initialization,
mutation, crossover, and selection. In this method, all constraints are expressive in genetic measurable
by a genuine measurement [20]. The mathematical formulation of differential evolution is given below:

• Initialization

Firstly, whole vector of initial population is assigned any arbitrary assessment [21] starting with
its equivalent state:

X(0)
j,i = Xmin

j + μ j
(

Xmax
j −Xmin

j

)
, (2)

where μ j represents uniformly dispersed arbitrary numeral initialize with the array of [0, 1], generates
novel for all value of Xmin

j and Xmax
j are representing the uppermost and lowermost limits of the jth

parameter, correspondingly.

•Mutation

This operator [22] generates distorted vectors X′i by disturbing a randomly chosen vector ‘Xa’ and
dissimilarity randomly chosen vectors ‘Xb’ and ‘Xc’ as per the following equation:

X′(G)
i = X′(G)

a + a
(
X(G)

b + X(G)
c

)
i = 1, . . . ..N P, (3)

where ‘Xa’,‘Xb’, and ‘Xc’ represent the randomly selected vectors among set of population, and ‘α’
represents the scaling constant of the algorithm parameter which is used to regulate the size of the
mutation operator and find better results.
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• Crossover

Crossover operations [23] create trial vectors X′′i with integration of the parameters of the distorted
vectors X′i with its objective or parent vectors xi:

X′′j,i(G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X′(G)

j,i i f pj ≤ CR or j = q

X(G)
j,i otherwise

, (4)

where pj represents consistently discrete unplanned integer [24] between the variety of 0 and 1 and
generates an extra for every value of j. q represents the random selected indicator {1, ..., NP} of the
trial vector [25] obtain one parameter as a distorted vector. CR representing the crossover operation
constant of algorithm parameters [26] that manage the variety of population and algorithm is run
absent as of local minima [27].

• Selection

Selection operator [28] develops the population by choosing the trial and parent vectors (precursor)
which presents a best fitness [29]:

X(G+1)
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X
′′(G)
i i f f

(
X
′′(G)
i

)
≤ f

(
X′(G)

i

)
X(G)

i otherwise
i = 1, . . . . . . , N P. (5)

This optimization procedure is replicate to the number of generations to obtain superior fitness
functions because they required optimal values to explore the search space.

2.2.2. Biogeography Based Optimization

Biogeography Based Optimization (BBO) is the investigation of topographical propagation of
living classes which is based on mutation and migration procedures [30].

•Migration

The migration process is either leaving or entering the species from an island. Biogeography-based
optimization also used a population of candidate solution for optimization similar to partial swarm
optimization and another population-based search method [31]. Depiction of all candidate solutions
is complete as a vector of actual statistics. Now, all real statistics is considered in the population as
suitability index variable (SIV). SIV [32] is similar to the output power of generating components
in load frequency control. Few best solutions are the same in the resultant iterations; the migration
process arranges to avoid the best solutions from being changed. Emigration rate [33] and immigration
rate [34] for habitat contain ‘k’ species is express as:

λk = I
(
1− K
η

)
, (6)

μk =
Ek
η

, (7)

where E represents the emigration rates, I represents the maximum immigration rates, and η represents
the maximum number of species, respectively.

•Mutation

The habitat suitability index (HSI) [35] can easily be modified with resultant in the breed
calculation to be different from the symmetry value, if a number of catastrophic actions occur. In
biogeography-based optimization, this procedure is modeled as SIV mutation and the mutation rates
of habitats may be intended to use the species add up probabilities known unexpected modification in
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weather of one habitat or additional occurrence will cause the unexpected modification in HSI (habitat).
This condition is replica in the form of unexpected modification in the value of the suitability index
variable in BBO. The probability of some organism [36] is calculated by this equation:

PS =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(λS + μS)PS + μS+1PS+1 S = 0

−(λS + μS)PS + λS−1PS−1 + μS+1PS+1 1 ≤ S ≤ Smax−1

−(λS + μS)PS + λS−1PS−1 S = Smax

. (8)

The own probability of all members is one habitat. If probability of this is too low, and after that,
this result has more probability to mutilation [37]. In a similar way, if the probability of a result is
more, that result has a small probability to mutate. As a result, solutions with a low suitability index
variable and high suitability index variable have a small possibility to grow an improved SIV in the new
iteration. Dissimilar low suitability index variable and high suitability index [38] variable solutions,
middle HSI solutions have a bigger possibility to grow improved solutions after the mutation process.
By the use of equation mutation, all results can be calculated easily:

m(s) = mmax

(1− PS
Pmax

)
, (9)

where m(s) represent the mutation rate.

2.2.3. Dragonfly Algorithm (DA)

DA [39] is an exceptional optimization process planned by Seyedali. The most important purpose
of swarm is durability; thus, all individual must be unfocused outward, and opponents attracted
towards nourishment sources. Taking both behaviors in swarms [40], these are five major topographies
in position informing procedure of individuals. The numerical model of swarms actions as shown
below: The parting procedure [41] in DA informing as in the above equation:

Si = −
N∑

J=1

X −XJ, (10)

where N represents the amount of entities of neighboring, X represents the present situation of specific,
XJ indicates the location of Jth specific of the adjacent [42].

The orientation procedure in this approach can be rationalized by subsequent expression [43]:

Ai =

∑N
J=1 VJ

N
, (11)

where VJ represents velocity of Jth specific of the adjacent. The unity in DA can be intended by the
above evaluation:

Ci =

∑N
J=1 XJ

N
−X, (12)

where X represents the existing specific point, XJ is the spot of Jth specific of the adjacent, and N
indicates the amount of areas.

2.3. Hybrid Artificial Intelligence Techniques

2.3.1. Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA) Hybridization

The easiest technique to mongrelize PSO and GSA is to implement the strength separately in the
successive approach [44].
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Particle Swarm Optimization (PSO)

PSO is provoked with keen collective activities [45] accessible by a multiplicity of creatures, such
as the group of ants or net of birds. The particle position and velocity both are updated according to
the equations:

vd
i (t + 1) = w(t)vd

i (t) + c1Xr1X
(
pbestd

i − xd
i

)
+ c2 + r2, (13)

xd
i (t + 1) = xd

i (t + 1) + vd
i (t + 1), (14)

Wt = rand X
t

tmax
X(wmax −wmin) + wmin, (15)

where vd
i (t + 1) shows velocity of (dth) dimension at (t) reiteration of (ith) particle, xd

i (t + 1) is existing
position of (dth) dimensional iteration (t) of (ith) particle; c1 and c2 representing the acceleration
coefficients [46] which manage the pressure of gbest and pbest on the search procedure, r1 and r2

representing the arbitrary statistics in variety [0, 1]; pbestd
i represents finest point of (ith) element up

to now.

Gravitational Search Algorithm (GSA)

GSA is meta-heuristic population-centered approach inspired with directions of attraction and
quantity associations [47–49]. In this method, cause is dignified as article encompasses of unlike
multitudes and the enactment of this is considered via crowds.

2.3.2. Differential Evolution and Particle Swarm Optimization Hybrids

It is a population-based optimizer [50] alike the genetic algorithm, having identical operatives
corresponding to selection, mutation, and crossover. In this method, all constraints are expressive in
genetic measurable by a genuine measurement [20,51].

2.3.3. Binary Moth Flame Optimizer (BMFO1)

BMFO is a newly projected meta-heuristics search algorithm proposed by Seyedali Mirjalili [52,53]
which is refreshed by direction-finding behavior of moth and its converges near light. Although,
moths are having a robust capability to uphold a secure approach with respect to the moon and hold a
tolerable erection for nomadic in an orthodox mark for extensive distances. Besides, they are attentive
in a fatal/idle curved track over simulated basis of lights.

2.3.4. Modified SIGMOID Transformation (BMFO2)

The binary calibration of constant pursuit house and places of search representatives, resolutions
to binary exploration house could be the obligatory method for optimization of binary environmental
issues such as LFC. In the proposed research, a modified sigmoidal transfer function is adopted, which
has superior performance than another alternatives of sigmoidal transfer function as reported in [54].

2.3.5. Harris Hawks Optimizer

HHO [55] is gradient-free and populations-centered algorithm that comprises exploitative and
exploratory stages, which is fortified by astonishment swoop, the fauna of examination of a victim,
and diverse stratagems built on violent marvel of Harris hawks.

2.3.6. Smart Grid Applications

The modern smart grid system as shown in Figure 4 consists of various power generating
units consisting of thermal, hydro, nuclear, wind, and solar-based power producing elements. The
scheduling of every power producing in optimal condition is a tedious task and requires proper
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commitment schedule of generating units. Further, consideration of solar and wind-based energy
sources requires proper load frequency control [56].

 
Figure 4. Modern smart grid system with Electric Vehicles (EVs) load demand.

An electric grid can easily be converted into a smart grid by balancing the voltage, current, and
frequency which is possible by the load frequency control method [57]. If incoming voltage, current,
and frequency is matched with the outgoing voltage, current, and frequency of an electric grid with the
help of optimal gain scheduling and load frequency control approach, then steady state error will be
near to zero or nil. In the proposed research, load frequency control is tested and validated with various
standard benchmarks simultaneously and mathematically depicted in the following sub-sections.

3. Standard Testing Benchmarks

The consequences for various benchmark issues [58] considering the LFC situation are deliberated
in the above-mentioned units.

Test System and Standard Benchmark

For confirmation of prospects of deliberate BMFO and HHO algorithms, CEC2005 benchmark
functions [59] have been taken into thought, which include unimodal, multi-modal, and fixed
dimensions benchmark issues and its mathematical formulation has been represented in Tables 1–3.
Table 1 interprets unimodal standard performance, Table 2 portrays multi-modal standard, and Table 3
interprets fixed dimensions standard issues.

To explain the random behavior of the expected BMFO2 logarithmic rule and confirm the
consequences, thirty trials were applied with all objective function check for average, variance, best
and worst values for justification of output from the probable algorithmic rule, unimodal benchmark
work f1, f2, f3, f4, f5, f6, and f7 are used. Table 4 (a) signifies the response of unimodal benchmark
function with BMFO1 logarithmic rule, Table 4 (b) characterizes the retort of unimodal benchmark
operate function by using the BMFO2 algorithmic rule and Table 4 (c) represents the answer of the
fixed dimension benchmark function by using HHO algorithmic instruction.
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Table 1. Unimodal benchmark.

Function Dim Range fmin

f1(x) =
n∑

i=1
x2

i 30 [−100, 100] 0

f2(x) =
n∑

i=1
|xi|+

n∏
i=1
|xi| 30 [−10,10] 0

f3(x) =
n∑

i=1
(

i∑
j−1

xj)
2

30 [−100, 100] 0

f4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

f5(x) =
n−1∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
30 [−30, 30] 0

f6(x) =
n∑

i=1
([xi + 0.5])2 30 [−100, 100] 0

f7(x) =
n∑

i=1
ix4

i + random [0, 1] 30 [−1.28, 1.28] 0

Table 2. Multimodal benchmark.

Function Dim Range fmin

f8(x) =
n∑

i=1
−xi sin(

√|xi|) 30 [−500, 500] −418.98

f9(x) =
n∑

i=1

[
x2

i − 10 cos(2Πxi) + 10
]

30 [−5.12, 5.12] 0

f10(x) = −20 exp(−0.2
√

1
n

n∑
i=1

x2
i ) − exp( 1

n

n∑
i=1

cos(2Πx)i + 20 + c 30 [−32, 32] 0

f11(x) = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos( xi√
i
) + 1 30 [−600, 600] 0

f12(x) = Π
n

{
10 sin(Πy1) +

n−1∑
i=1

(yi − 1)2
[
1 + 10sin2(Πyi+1) + (yn − 1)2

]}
+

n∑
i=1

u(xi, 10, 100, 4)

where yi = 1 +
xi+1

4

u(xi, a, k, m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k(xi − a)m, xi > a

0, −a < xi < a
k(−xi − a)m xi < −a

30 [−50, 50] 0

f13(x) =

0.1{sin2(3Πxi) +
n∑

i=1
(xi − 1)2

[
1 + sin2(3Πxi + 1

]
+ (xm − 1)2

[
1 + sin2(2Πxm)

]
}+

n∑
i=1

u(xi,5,100,4)

30 [−50, 50] 0

f14(x) = −
n∑

i=1
sin(xi).

(
sin

(
ix2

i
Π

))2m
, m = 10 30 [0, π] −4.687

f15(x) =
[
e− n∑

i=1
(xi/β)

2m − 2e− n∑
i=1

x2
i

]
− n∏

i=1
cos2xi, m = 5 30 [−20, 20] −1

f16(x) =
{

n∑
i=1

sin2(xi) − exp
(
− n∑

i=1
x2

i

)}
.exp

[
− n∑

i=1
sin2 √|xi|

]
30 [−10, 10] −1

It is analyzed from Table 4 that the unimodel benchmark functions f1 to f7 are tested using the
modern hybrid algorithms like BMFO 1, BMFO 2, and HHO, and found that Harris hawks optimizer
(HHO) produces optimal outcomes in terms of mean, standard deviation, best and worst value for all
functions as compared to other algorithms. The convergence curve and trial solutions for BMFO1,
BMFO2, and HHO for f1 to f7 unimodal benchmark functions are presented in Figure 5.
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Table 3. Fixed dimension benchmark.

Function Dim Range fmin

f14(x) =

⎛⎜⎜⎜⎜⎝ 1
500 +

25∑
j=1

1
j+

∑2
i=1(xi−aij)

6

⎞⎟⎟⎟⎟⎠
−1

2 [−65, 65] 1

f15(x) =
11∑

i=11

[
ai − xi(b2

i +bix2)
b2

i +bix3+x4

]2
4 [−5, 5] 0.00030

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

f17(x) =
(
x2 − 5.1

4Π2 x2
1 +

5
Π x1 − 6

)2
+ 10

(
1− 1

8Π

)
cosxi + 10 2 [−5, 5] 0.398

 
2 [−2, 2] 3

f19(x) = −
4∑

i=1
ciexp

⎛⎜⎜⎜⎜⎝− 3∑
j=1

aij
(
xj − pij

)2
⎞⎟⎟⎟⎟⎠ 3 [1, 3] −3.32

f20(x) = −
4∑

i=1
ciexp

⎛⎜⎜⎜⎜⎝− 6∑
j=1

aij
(
xj − pij

)2
⎞⎟⎟⎟⎟⎠ 6 [0, 1] −3.32

f21(x) = −
5∑

i=1

[
(x− ai)(x− ai)

T + ci
]−1

4 [0, 10] −10.1532

f22(x) = −
7∑

i=1

[
(x− ai)(x− ai)

T + ci
]−1

4 [0, 10] −10.4028

f23(x) = −
10∑

i=1

[
(x− ai)(x− ai)

T + ci
]−1

4 [0, 10] −10.5363

Table 4. (a) Outcomes of the BMFO1 algorithm. (b) Outcomes of the BMFO2 algorithm. (c) Outcomes
of the HHO algorithm.

Benchmark
Functions

Parameters

Mean Value SD Worst Value Best Value p-Value

(a)

f1 5.75 × 10−34 2.55 × 10−33 1.40 × 10−32 0 3.79 × 10−60

f2 1.48 × 10−20 2.24 × 10−20 1.14 × 10−19 0 3.79 × 10−60

f3 3.87 × 10−10 1.61 × 10−9 8.70 × 10−9 0 2.56 × 10−60

f4 0.03831 0.08819 0.4401 0 2.56 × 10−60

f5 3.14461 2.21914 6.01278 0 2.56 × 10−60

f6 1.27 × 1032 1.60 × 10−32 8.32 × 10−32 0 7.23 × 10−60

f7 1.00564 1.00438 1.01652 0 1.74 × 10−60

(b)

f1 3.64 × 10−34 1.05 × 10−33 4.50 × 10−33 0 2.56 × 10−60

f2 6.08 × 10−20 1.30 × 10−19 6.12 × 10−19 0 2.56 × 10−60

f3 7.64 × 10−11 3.00 × 10−10 1.65 × 10−9 9.46 × 10−15 1.73 × 10−60

f4 0.04709 0.09997 0.47495 0 2.56 × 10−60

f5 3.4591 2.2489 6.2531 0.00064 1.73 × 10−60

f6 2.85 × 10−32 5.78 × 10−32 3.08 × 10−31 0 1.61 × 10−50

f7 1.00499 1.00387 1.01831 0.00032 1.74 × 10−60

(c)

f1 1.0634 × 10−90 5.82468 × 10−90 3.19 × 10−89 8.7 × 10−112 1.734 × 10−6

f2 6.9187 × 10−51 2.46844 × 10−50 1.31 × 10−49 1.71 × 10−60 1.734 × 10−6

f3 1.251 × 10−80 6.62663 × 10−80 3.632 × 10−79 8.3 × 10−99 1.734 × 10−6

f4 4.4615 × 10−48 1.70307 × 10−47 8.676 × 10−47 2.45 × 10−59 1.734 × 10−6

f5 0.01500185 0.023472777 0.0874276 1 × 10−5 1.734 × 10−6

f6 0.00011487 0.00015409 0.0007119 4.17 × 10−7 1.734 × 10−6

f7 0.00015829 0.000224928 0.001202 2.87 × 10−6 1.734 × 10−6
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(a) 

(b) 

(c) 

 
(d) (e) 

 
(f) (g) 

Figure 5. (a–g) Convergence curve of all algorithms for unimodal benchmark functions.

The convergence curve and trial solutions for BMFO1, BMFO2, and HHO for f1 to f7 unimodal
benchmark functions are presented in Figure 5a–g.
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The connected upshots for unimodal standard functions [60] have been represented in Table 5,
which are correlated with various latest refined algorithms [61] grey wolf optimizer (GWO) [62],
PSO [63,64], GSA [8,65], differential evolution (DE) [66,67], fruit fly optimization algorithm (FOA) [68,69],
ant lion optimizer (ALO) [70,71], symbiotic organisms search (SOS) [72], bat algorithm (BA) [73],
flower pollination algorithm (FPA) [74,75], cuckoo search (CS) [76], firefly algorithm (FA) [52], GA [77],
grasshopper optimization algorithm (GOA) [73,78], MFO [79], multiverse optimization algorithm
(MVO) [80], DA [81], binary bat optimization algorithm (BBA) [65], BBO [5,82], binary gravitational
search algorithm (BGSA) [83,84], sine cosine algorithm (SCA) [85,86], FPA [74,87], salp swarm
optimization algorithm (SSA) [88], and whale optimization algorithm (WOA) [89] in lieu of mean and
standard deviation.

Table 5. Comparison of unimodal benchmark functions.

Algorithm Parameter
Uni-Modal Benchmark Functions

f1 f2 f3 f4 f5 f6 f7

GWO
[62]

Mean 0.02 0 0.01 1.02 26.81 0.82 0
SD 0 0.03 79.15 1.32 69.9 0 0.1

PSO
[63,64]

Mean 0 0.04 70.13 1.09 96.72 0 0.12
SD 0 0.05 22.12 0.32 60.12 0 0.04

GSA
[8,65]

Mean 0 0.06 896.53 7.35 67.54 0 0.09
SD 0 0.19 318.96 1.74 62.23 0 0.04

DE
[66,67]

Mean 0.01 0.01 0.01 0.01 0.01 0.01 0.01
SD 1.01 1.01 1.01 1.01 1.01 1.01 1.01

FOA
[68,69]

Mean 0.05 0.06 0.04 0.4 5.06 0.02 0.14
SD 0.02 0.02 0.01 1.5 5.87 0 0.35

ALO
[70,71]

Mean 0.01 0.01 0 0.01 0.35 0.01 0
SD 0.01 0 0.01 0.01 0.11 0.01 0.01

SOS [72] Mean 0.06 0.01 0.96 0.28 0.09 0.13 0
SD 0.01 0 0.82 0.01 0.14 0.08 0

BA [73] Mean 1.77 1.33 1.12 1.19 1.33 1.78 1.14
SD 1.53 4.82 1.77 1.89 1.3 1.67 1.11

FPA
[74,75]

Mean 0.01 0.01 0.01 0.01 0.78 0.01 0.01
SD 0.01 0.01 0.01 0.01 0.37 0.01 0.01

CS [76] Mean 0 1.21 1.25 0.01 0.01 0.01 0.01
SD 0 1.04 1.02 0.01 0.01 0.01 0.01

FA [52] Mean 0.04 0.05 0.05 0.15 2.18 0.06 0
SD 0.01 0.01 0.02 0.03 1.45 0.01 0

GA [77] Mean 0.12 0.15 0.14 0.16 0.71 0.17 0.01
SD 0.13 0.05 0.12 0.86 0.97 0.87 0

GOA
[73,78]

Mean 0.01 0.01 0.01 0.01 0.01 0.01 0.01
SD 0.01 0.01 0.02 0.01 0.01 0.01 0.01

MFO [79] Mean 0.01 0.01 0.01 0.07 27.87 3.12 0
SD 0 0 0 0.4 0.76 0.53 0

MVO
[80]

Mean 2.09 15.92 453.2 3.12 1272.1 2.29 0.05
SD 0.65 44.75 177.1 1.58 1479.5 0.63 0.03

DA [81] Mean 0.01 0.01 0.01 0.01 7.6 0.01 0.01
SD 0.01 0.01 0.01 0.01 6.79 0.01 0.01

BBA [65] Mean 1.28 1.06 15.6 1.25 24.7 1.1 1.01
SD 1.42 1.07 23.8 1.33 35.8 1.14 1.01

BBO
[5,82]

Mean 6.52 0.2 16.7 2.8 87.6 7.96 0.01
SD 2.99 0.05 14.9 1.47 66.9 4.87 0.01

BGSA
[83,84]

Mean 85 1.19 458 7.35 3110 109 0.04
SD 48.7 0.23 275 2.25 2936 77.7 0.06

SCA
[85,86]

Mean 0.01 0.01 0.06 0.1 0.01 0.01 0.01
SD 0.01 0.01 0.14 0.58 0.01 0.01 0.01

SSA [88] Mean 0.01 0.23 0.01 0.01 0.01 0.01 0.01
SD 0.01 1 0.01 0.66 0.01 0.01 0.01

WOA
[89]

Mean 0.01 0.01 696.73 70.69 139.15 0.01 0.09
SD 0.01 0.01 188.53 5.28 120.26 0.01 0.05

BMFO1
Mean 0.01 0.01 0.01 0.04 3.14 0.01 0.01

SD 0.01 0.01 0.01 0.09 2.22 0.01 0.01

BMFO2
Mean 0.01 0.01 0.01 0.05 3.46 0.01 0.01

SD 0.01 0.01 0.01 0.1 2.25 0.01 0.01

HHO
(Proposed)

Mean 1.06 × 10−90 6.92 × 10−51 1.25 × 10−80 4.46 × 10−48 0.015002 0.000115 0.000158

SD 5.82 × 10−90 2.47 × 10−50 6.63 × 10−80 1.70 × 10−47 0.023473 0.000154 0.000225
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To defend the synthesis part of the probable algorithm, multi-modal benchmark functions f8, f9,
f10, f11, f12, and f13 are taken with numerous native goals with values rising violently w.r.t magnitude.
Table 6 (a) presents clarification of the multimodal benchmark function with the BMFO1 algorithm
and Table 6 (b) presents the explanation of the multimodal benchmark function with the BMFO2
algorithm and Table 6 (c) presents the explanation of the multimodal benchmark function with the
HHO algorithm.

Table 6. (a) Outcomes of the BMFO1 algorithm. (b) Outcomes of the BMFO2 algorithm. (c) Results of
the HHO algorithm.

Benchmark
Functions

Parameters

Mean Value SD Worst Value Best Value p-Value

(a)

f8 −3140.3 290.75 −2641 −4071.4 0
f9 1.63 0.96 2.98 0.01 0
f10 0.04 0.21 1.16 0.01 0
f11 0.01 0.01 0.01 0.01 1
f12 0.01 0.01 0.01 0.01 0.01
f13 0 0 0.01 0 0

(b)

f8 −3361.2 287.325 −2879.4 −4071.4 1.73 × 10−6

f9 1.39294 0.72032 2.98488 0 3.89 × 10−6

f10 4.56 × 10−15 0 4.56 × 10−15 4.56 × 10−15 4.33 × 10−8

f11 0 0 0 0 1
f12 4.82 × 10−32 8.59 × 10−34 5.12 × 10−32 4.71 × 10−32 1.56 × 10−6

f13 0.00256 0.01025 0.05478 1.35 × 10−32 1.34 × 10−6

(c)

f8 −12561.4 40.82419124 −12345.3 −12569.5 1.7344 × 10−6

f9 0.01 0.01 0.01 0.01 1
f10 8.88 × 10−161 0.01 8.88 × 10−161 8.88 × 10−161 4.3205 × 10−8

f11 0.01 0.01 0.01 0.01 1
f12 8.92 × 10−6 1.16218 × 10−5 4.76 × 10−5 4.64 × 10−8 1.7344 × 10−6

f13 0.000101 0.000132197 0.000612 7.35 × 10−7 1.7344 × 10−6

It is analyzed from Table 6 that multi-model benchmark functions f8 to f13 are tested using modern
hybrid algorithms like BMFO 1, BMFO 2, and HHO and found that the Harris hawks optimizer (HHO)
produces optimal outcomes in terms of mean, standard deviation, best and worst value for all functions
as compared to other algorithms.

The convergence curve and trial solutions for BMFO1, BMFO2, and HHO for f8 to f13 multi-modal
benchmark functions are presented in Figure 6a–f.

The connected outcomes for multimodal benchmark functions has been signified in Table 7,
which are associated with various latest refined meta-heuristics search algorithms like GWO [62],
PSO [63,64], GSA [8,65], DE [66,67], FOA [68,69], ALO [70,71], SOS [72], BA [73], FPA [74,75], CS [76],
FA [52], GA [77], GOA [73,78], MFO [79], MVO [80], DA [81], BBA [65], BBO [5,82], BGSA [83,84],
SCA [85,86], FPA [74,87], SSA [88], and WOA [89] in lieu of average [90] and standard deviation.
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Figure 6. (a–f) Convergence curve of all algorithms for multi-modal benchmark functions.

The verified consequences for fixed dimension benchmark situations are obtainable in Table 8.
It is analyzed from Table 8 that fixed dimension benchmark functions f14 to f23 are tested using

modern hybrid algorithms like BMFO 1, BMFO 2, and HHO and found that Harris hawks optimizer
(HHO) produces optimal outcomes in terms of mean, standard deviation, best and worst value for all
functions as compared to other algorithms.

The convergence curve and trial solutions for BMFO1, BMFO2, and HHO for f14 to f23 fixed
dimension benchmark functions are presented in Figure 7a–j.
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Table 7. Comparison of multi-modal benchmark functions.

Algorithms Parameters
Multi-Modal Benchmark Functions

f8 f9 f10 f11 f12 f13

GWO [62] Mean −6120 0.31 0 0 0.05 0.65
SD −4090 47.4 0.08 0.01 0.02 0

PSO
[63,64]

Mean −4840 46.7 0.28 0.01 0.01 0.01
SD 1150 11.6 0.51 0.01 0.03 0.01

GSA [8,65] Mean −2820 26 0.06 27.7 1.8 8.9
SD 493 7.47 0.24 5.04 0.95 7.13

DE [66,67] Mean −11100 69.2 0 0 0 0
SD 575 38.8 0 0 0 0

FOA
[68,69]

Mean −12600 0.05 0.02 0.02 0 0
SD 52.6 0.01 0 0.02 0 0

ALO
[70,71]

Mean −1610 0 0 0.02 0 0
SD 314 0 0 0.01 0 0

SOS [72] Mean −4.21 1.33 0 0.71 0.12 0.01
SD 0 0.33 0 0.91 0.04 0

BA [73] Mean −1070 1.23 0.13 1.45 0.4 0.39
SD 858 0.69 0.04 0.57 0.99 0.12

FPA
[74,75]

Mean −1840 0.27 0.01 0.09 0 0
SD 50.4 0.07 0.01 0.04 0 0

CS [76] Mean −2090 0.13 0 0.12 0 0
SD 0.01 0 0 0.05 0 0

FA [52] Mean −1250 0.26 0.17 0.1 0.13 0
SD 353 0.18 0.05 0.02 0.26 0

GA [77] Mean −2090 0.66 0.96 0.49 0.11 0.13
SD 2.47 0.82 0.81 0.22 0 0.07

GOA
[73,78]

Mean 1 0 0.1 0 0 0
SD 0 0 1 0 0 0

MFO [79] Mean −5080 0 7.4 0 0.34 1.89
SD 696 0 9.9 0 0.22 0.27

MVO [80] Mean −11700 118 4.07 0.94 2.46 0.22
SD 937 39.3 5.5 0.06 0.79 0.09

DA [81] Mean −2860 16 0.23 0.19 0.03 0
SD 384 9.48 0.49 0.07 0.1 0

BBA [65] Mean −924 1.81 0.39 0.19 0.15 0.04
SD 65.7 1.05 0.57 0.11 0.45 0.06

BBO [5,82] Mean −989 4.83 2.15 0.48 0.41 0.31
SD 16.7 1.55 0.54 0.13 0.23 0.24

BGSA
[83,84]

Mean −861 10.3 2.79 0.79 9.53 2220
SD 80.6 3.73 1.19 0.25 6.51 5660

SCA
[85,86]

Mean 1 0.01 0.38 0.01 0.01 0.01
SD 0.01 0.73 1 0.01 0.01 0.01

SSA [88] Mean 0.06 0.01 0.2 0.01 0.14 0.08
SD 0.81 0.01 0.15 0.07 0.56 0.71

MFO [79] Mean −8500 84.6 1.26 0.02 0.89 0.12
SD 726 16.2 0.73 0.02 0.88 0.19

BMFO1
Mean −3140.3 1.63 0.04 0 0 0

SD 290.75 0.96 0.21 0 0 0

BMFO2
Mean −3361.2 1.39 0 0 0 0

SD 287.32 0.72 0 0 0 0.01

HHO
(Proposed)

Mean −12561.38 0 8.88 × 10−16 0 8.92 × 10−6 0.000101
SD 40.82419 0 0 0 1.16 × 10−5 0.000132
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Figure 7. (a–j) Convergence curve and trial solution of BMFO2 for fixed dimension benchmark functions.
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Table 8. (a) Outcomes of the BMFO1 algorithm. (b) Outcomes of the BMFO2 algorithm. (c) Outcomes
of the HHO algorithm.

Benchmark
Functions

Parameters

Mean Value SD Worst Value Best Value p-Value

(a)

f14 12.61 1.35 12.67 10.76 0
f15 0 0 0 0 0
f16 −1.03 0 −1.03 −1.03 0
f18 3 0 3 3 0
f19 −3.86 0 −3.85 −3.86 0
f20 −3.16 0.08 −2.86 −3.32 0
f21 −5.06 0 −5.06 −5.06 0
f22 −5.09 0 −5.09 −5.09 0
f23 −5.13 0 −5.13 −5.13 0

(b)

f14 12.67 0 12.67 12.67 0
f15 0 0 0 0 0
f16 −1.03 0 −1.03 −1.03 0
f18 3 0 3 3 0
f19 −3.86 0 −3.85 −3.86 0
f20 −3.17 0.12 −2.81 −3.32 0
f21 −5.06 0 −5.06 −5.06 0
f22 −5.09 0 −5.09 −5.09 0
f23 −5.13 0 −5.13 −5.13 0

(c)

f14 2.361171 1.95204 5.928845 1.998004 1.73 × 10−8

f15 1.00035 3.2 × 10−5 0.000433 0.000309 1.73 × 10−8

f16 −1.03162 2.86 × 10−9 −1.03162 −1.03162 1.73 × 10−8

f17 0.397895 1.6 × 10−5 0.397948 0.397887 1.73 × 10−6

f18 3.000001 4.94 × 10−6 3.000027 2 1.73 × 10−8

f19 −2.85977 1.005195 −3.8354 −3.86274 1.73 × 10−8

f20 −2.06481 0.136148 −2.74389 −3.26174 1.73 × 10−8

f21 −4.37397 1.227502 −5.0413 −10.0309 1.73 × 10−6

f22 −5.08346 0.004672 −5.06481 −5.08765 1.73 × 10−6

f23 −5.78398 1.712458 −5.1145 −10.3706 1.73 × 10−6

The comparative outcomes for fixed dimension benchmark [91] functions have been represented
in Tables 9 and 10, which are associated with other latest refined met heuristics search algorithms [54,92]
GWO [62], PSO [63,64], GSA [8,65], DE [66,67], FOA [68,69], ALO [70,71], SOS [72], BA [73], FPA [74,75],
CS [76], FA [52], GA [77], GOA [73,78], MFO [79], MVO [80], DA [81], BBA [65], BBO [5,82], BGSA [83,84],
SCA [85,86], FPA [74,87], SSA [88], and WOA [89] in terms of standard deviation [93] and average.
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Table 9. Comparison of fixed dimension benchmark functions.

Algorithms Parameters
Composite Benchmark Functions

f14 f15 f16 f17 f18 f19

GWO [62] Mean 3.06 0 −1.03 0.4 3 −3.86
SD 4.25 0 −1.03 0.4 3 −3.86

PSO
[63,64]

Mean 3.63 0 −1.03 0.4 3 −3.86
SD 2.56 0 0 0 0 0

GSA [8,65] Mean 5.86 0 −1.03 0.4 3 −3.86
SD 3.83 0 0 0 0 0

DE [66,67] Mean 1 0 −1.03 0.4 3 NA
SD 0 0 0 0 0 NA

FOA
[68,69]

Mean 1.22 0 −1.03 0.4 3.02 −3.86
SD 0.56 0 0 0 0.11 0

ALO
[70,71]

Mean 0 14.6 175 316 4.4 500
SD 0 32.2 46.5 13 1.66 0.21

SOS [72] Mean 776.48 873.8 961 899.86 741 900.5
SD 0 9.72 67.2 0 0.79 0.84

BA [73] Mean 182.48 487.2 588.2 756.98 542 818.5
SD 117.02 161.4 137.8 160.1 220 152.5

FPA
[74,75]

Mean 0.34 18.23 224 362.03 10.2 504
SD 0.24 3.07 50.3 54.02 1.39 1.16

CS [76] Mean 110 140.6 290 402 213 812
SD 110.05 92.8 86.1 98.2 206 192

FA [52] Mean 150.17 314.5 734.5 818.57 134 862.2
SD 97.16 92.93 204 109.97 216 126

GA [77] Mean 114.61 95.46 325.4 466.31 90.4 521.2
SD 26.96 7.16 51.67 29.57 13.7 27.99

GOA
[73,78]

Mean 0 0.49 0 0.82 0 0.79
SD 0.34 0.72 0 1 0.01 0.94

MFO [79] Mean 2.11 0 −1.03 0.4 3 −3.86
SD 2.5 0 0 0 0 0

MVO [80] Mean 10 30.01 50 190.3 161 440
SD 31.62 48.31 52.7 128.67 158 51.64

DA [81] Mean 104 193 458 596.66 230 680

SD 91.2 80.6 165 171.06 185 199

BBA [65] Mean 1.39 1.02 1.05 1 1.01 1
SD 1.19 1.07 1.49 1.11 1.01 1.2

BBO [5,82] Mean 0.06 0 0.2 0 0.14 0.08
SD 0.81 0 0.15 0.07 0.56 0.71

MFO [79] Mean 0 66.73 119 345.47 10.4 707

SD 0 53.23 28.33 43.12 3.75 195

BMFO1
Mean 12.61 0 −1.03 0 3 −3.86

SD 0.35 0 0 0 0 0

BMFO2
Mean 12.67 0 −1.03 0 3 −3.86

SD 0 0 0 0 0 0

HHO
(Proposed)

Mean 1.361171 0.00035 −1.03163 0.397895 3.000001225 −3.8597664
SD 0.95204 3.20 × 10−5 1.86 × 10−9 1.60 × 10−5 4.94 × 10−6 0.00519467
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Table 10. Comparison of results for fixed dimension functions.

Algorithms Parameters
Benchmark Functions

f20 f21 f22 f23

GWO [62] Mean −2.79 −9.8 −9.9 −9.69
SD −2.84 −9.18 −7.55 −7.48

PSO [63,64] Mean −2.29 −7.89 −7.49 −8.99
SD 1.06 3.07 4.08 1.76

GSA [8,65] Mean −2.36 −4.99 −8.64 −10.63
SD 1.02 4.74 2.01 0

DE [66,67] Mean 0.01 −10.2 −10.4 −10.54
SD 0.01 0 0 0

FPA [74,75] Mean −4.28 −6.56 −6.57 −7.59
SD 0.08 1.57 2.18 3.18

WOA [84] Mean −2.98 −7.05 −8.18 −9.34
SD 0.38 3.63 3.83 2.41

BMFO1
Mean −3.16 −5.06 −5.09 −5.13

SD 0.08 0 0 0

BMFO2
Mean −3.17 −5.06 −5.09 −5.13

SD 0.12 0 0 0

HHO
(Proposed)

Mean −3.06481 −5.37397 −5.08346 −5.78398

SD 0.136148 1.227502 0.004672 1.712458

4. Conclusions

The smart grid process needs a continuing matching of resource and ultimatum in accordance with
recognized functioning principles of numerous algorithms. The LFC scheme delivers the consistent
action of power structure by constantly balancing the resource of electricity with the response, while
also confirming the accessibility of adequate supply volume in upcoming periods. In this paper,
binary variations of the moth flame optimizer and HHO have been analyzed and tested to solve
twenty-three benchmark problems including unimodel, multi-model, and fixed dimension functions
which investigate that the proposed Harris hawks optimizer approach suggestions are offering better
results as associated to substitute labeled meta-heuristics search algorithms. In upcoming work, the
effectiveness of the HHO technique is deliberate for optimal matching of total generation with total
consumption of electrical energy to convert an electric grid to smart grid. So, by using the Harris hawks
optimizer, we can easily balance the smart grid elements by matching production and consumption of
electrical energy.
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Abstract: The paper presents an original methodology for the implementation of the Logarithmic
Number System (LNS) arithmetic, which uses Reduced Instruction Set Computing (RISC). The core
of the proposed method is a newly developed algorithm for conversion between LNS and the
floating point (FLP) representations named “looping in sectors”, which brings about reduced
memory consumption without a loss of accuracy. The resulting effective RISC conversions use
only elementary computer operations without the need to employ multiplication, division, or other
functions. Verification of the new concept and related developed algorithms for conversion between
the LNS and the FLP representations was realized on Field Programmable Gate Arrays (FPGA),
and the conversion accuracy was evaluated via simulation. Using the proposed method, a maximum
relative conversion error of less than ±0.001% was achieved with a 22-ns delay and a total of 50
slices of FPGA consumed including memory cells. Promising applications of the proposed method
are in embedded systems that are expanding into increasingly demanding applications, such as
camera systems, lidars and 2D/3D image processing, neural networks, car control units, autonomous
control systems that require more computing power, etc. In embedded systems for real-time control,
the developed conversion algorithm can appear in two forms: as RISC conversions or as a simple
RISC-based logarithmic addition.

Keywords: LNS; numerical conversion; RISC; FPGA; embedded systems

1. Introduction

The Logarithmic Number System (LNS) provides comparable range and precision as the floating
point (FLP) representation, however—for certain applications—it can surpass it in terms of complexity.
The range of logarithmic numbers depends on the exponent’s integer part, and the precision is defined
by its fraction part [1]. Yet, LNS would outperform FLP only if the logarithmic addition and subtraction
can be performed with at least the same speed and accuracy as FLP [2].

The long history of LNS numbers dates back to the 1970′s when the “logarithmic arithmetic”
for digital signal processing was introduced [3]. To avoid negative logarithms, a complementary
notation for LNS was introduced in [4]. Architecture for the LNS-based processor was proposed in [5].
Implementations of basic arithmetic operations on FPGA [6] using FLP and LNS have shown that
the multiplication and division operations are more effective if using LNS, as they require fewer area
resources and have a significantly lower time latency. Otherwise, addition and subtraction are more
suitable using FLP representation. A higher efficiency of some LNS operations was a motivation for
using the LNS format for the realization of control algorithms for the autonomous electric vehicle
developed within a running research project.

Nowadays, LNS representation is implemented in various applications, such as deep-learning
networks [7], Cartesian to polar coordinates converters [8], or embedded model predictive control [9].
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In a very interesting paper [10], it is proposed how numbers close to zero can be represented in the
denormal LNS method (DLNS) using either fixed-point or LNS representations, guaranteeing constant
absolute or constant relative precisions, respectively. Up to now, LNS have not been standardized.

Various methods have been developed to decrease the costs and complexity of LNS implementation,
e.g., interpolation, co-transformation, multipartite tables, etc. [11–13]. Typically, there are three
main categories of LNS arithmetic techniques: lookup tables, piecewise polynomial approximation,
and digit–serial methods [14].

Generally, LNS addition and subtraction are carried out based on the evaluation of the
transcendental functions as follows:

a±LNS b = log2

(
2a ± 2b

)
= a + log2

(
1± 2b−a

)
, (1)

where a, b are logarithmic numbers.
Signal processing in embedded systems based on LNS has three stages: logarithmic conversions,

simple operations, and antilogarithmic conversions. In the first processing stage, logarithmic
conversions are applied to convert binary numbers into logarithmic ones. In the second stage,
simple operations are used to perform corresponding calculations, such as addition and subtraction.
In the last stage, logarithmic numbers are converted back to binary ones. There are many approaches
to solving logarithmic conversion that can be classified into three categories: memory-based
methods [15,16], mathematical approximations [6], and shift-and-add-based methods [11,13,17–20].
Very fast conversions (e.g., shift-and-add) allow us to combine calculations in LNS and FLP systems
and design hybrid LNS/FLP processors [13,21,22]. In hybrid systems, the conversions are carried out
several times during the calculation, not only the first and last phases.

Using memory-based methods, fast and more accurate conversions are achieved; however,
memory size costs may increase significantly while the bit-width of the inputs increases. On the other
hand, using polynomial approximations will reduce the area costs, while sacrificing the accuracy and
speed. Approximation-based methods almost always use a multiplication operation, for example,
an antilogarithmic converter [6] uses 20 multipliers and achieves a latency of more than 70 ns. Compared
with these two kinds of implementation, shift-and-add methods can be used to achieve better design
tradeoffs between accuracy, memory costs, and speed. All the above-mentioned “shift-and-add”
methods achieve a latency of less than 1 ns at the cost of a low accuracy (above 1% relative error [20])
except for [23], where the attained accuracy of the LNS/FLP conversions is 0.138%. Using the proposed
looping-in-sectors method in combination with a very simple approximation based on bit manipulations,
a radical increase in accuracy and an acceptably low latency can be achieved.

The logarithmic and antilogarithmic conversions are a gateway to LNS algorithms. Yet,
the conversions are not freely available from FPGA producers [24] and, thus, must be implemented
by our own means. Furthermore, the above methods available in the literature do not meet our
requirements in that the accuracy of modern industrial sensors is better than 0.1%, and sampling
periods in embedded systems for motion control are less than 1 ms, which places high demands on
conversion speed and application calculations. Therefore, our motivation was to develop a simple and
efficient FLP/LNS conversion guaranteeing sufficient accuracy and speed, which will be a “golden
mean” between the accurate but complex approximation methods and the very efficient and fast
(up to 1ns) but inaccurate (relative error higher than 1%) shift-and-add methods.

Embedded systems are expanding into increasingly demanding applications, such as camera
systems, lidars and 2D/3D image processing, neural networks, car control units, autonomous control
systems that require more computing power, etc. A necessary reliability and functional safety are often
based on redundancy of two/three channel technologies. Therefore, alternative calculations (one option
is LNS) on independent HW and SW (hardware and software) solutions are needed; outputs of the
independent channels are then compared according to the principles of fault tolerant systems (e.g.,
two out of three).
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However, embedded control systems based on LNS arithmetic that operate in real-time necessitate
an efficient conversion in every sampling period. Input data from sensors, counters, A/D converters,
etc., are typically fixed-point (FXP) numbers, thus they have to be converted to LNS, and, the other way
round, the LNS arithmetic results are to be converted back to the FXP format conventionally required
by typical output devices (actuators). In this paper, the focus is on conversions between LNS and FLP,
conversions from FXP to FLP and back are supposed to be resolved.

The Xilinx’s industry-leading tool suite natively supports different FLP precisions including half
(FLP16), single (FLP32), and double (FLP64) precisions, as well as fixed-point data types. The added
flexibility of custom precision is also available in MATLAB System Generator for DSP toolbox. The FLP
to FXP conversion is dealt with in [24], however the LNS data type is not yet officially supported and
conversions from LNS to FLP and back are not available in FPGA libraries.

This paper presents an application of the proposed RISC conversions for logarithmic addition using
the Reduced Instruction Set Computing (RISC) realizable just by means of simple operations without
using multiplication, etc. Herein, RISC indicates a set of simple computer operations (add, minus, shift
by 2, i.e., multiplication/division, logical operations, and bit manipulations). The proposed approach
has the ambition to apply just the above-mentioned RISC operations fully excluding multiplication,
division, and all other functions (log, square, . . . ). Using the unified format of LNS and FLP, conversion
between them can be realized only by dealing with the mantissa and the fraction. To reduce memory
requirements for conversions, a novel method called “looping in sectors” was developed.

The paper presents a novel effective RISC-based method, which uses the so-called
“looping-in-sectors” procedure and a simple interpolation in the conversion between FLP and
LNS number representations. The novel algorithm of logarithmic addition based on the developed
conversions performs differently from previously known approaches. The partial results on the
development of RISC conversions and algorithms for LNS [25] are completed by the conversion
algorithm from LNS to FLP and its realization on FPGA.

The paper is organized as follows. In Section 2, an overview of FLP and LNS number representations
is provided. Section 3 presents two developed algorithms of the RISC conversion between both systems.
A simple interpolation method along with accuracy analysis are dealt with in Section 4. Principle
of the RISC-based LNS addition is explained in Section 5. FPGA realization of the RISC conversion
is demonstrated on a simple example in Section 6. Discussion on obtained results, their potential,
and future research concludes the paper.

2. Number Systems

Let us briefly revisit the FLP and LNS number representations. According to Table 1, a floating
point (FLP) number is expressed as follows:

FLP = (−1)S × 2E × (1 + m) = (−1)S × 2E ×
(
1 +

N
M

)
, (2)

where m is a mantissa, and N is an integer or a real number from the intervals 〈0, M − 1〉 or 〈0, M〉,
respectively. M is the maximum of the mantissa (fractional part) with t bits.

M = 2t (3)

Table 1. Floating point (FLP) number representation.

Sign Bit Exponent: e-Bits Mantissa: t-Bits

S E m = N/M
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Table 2 shows the principle of an LNS number representation; according to it:

LNS = (−1)S × 2E f = (−1)S × 2E × 2 f . (4)

The logarithmic fraction f can be expressed as follows:

f = F/M, (5)

where F is an integer in the range 〈1−M, M− 1〉 or a real number in the range (−M, M).

Table 2. Logarithmic number (LNS) representation.

Sign Bit Integer: e-Bits Fractional: t-Bits

S E f = F/M

In terms of individual bits, the whole exponent Ef consists of “integer bits” (ix) and “fractional
bits” (f y), placed next to each other. SE denotes the sign of the exponent.

E f = SEie−2...i1i0 ft−1... f1 f0, (6)

For both numerical systems, the number of bits of the exponent E corresponds to the range of the
numbers, and the number of the fractional part bits reflects the accuracy.

2.1. Two Possible Representations of LNS Numbers

The mantissa m is always a positive number (0 ≤ m < 1), but the logarithmic fraction depends on
the sign of the exponent SE. Still, there is also another possibility to represent LNS fraction as always
positive, similar to mantissas.

Let a number X < 1, E ≤ 0 and a fraction f < 0. FSE and FAP are positive real numbers from 〈0, M〉.

X = (−1)S × 2E × 2−
FSE
M = (−1)S × 2E−1 × 2

FAP
M , (7)

where FAP is a complement of FSE to the range of the fraction M, i.e.,

FAP = M− FSE (8)

For numbers X > 1, FAP = FSE and the integer E is unchanged. FAP is an always-positive fraction.
The sign of FSE is the same as the sign SE. For the sake of completeness note that for X = 1 there

are two possible ways (i.e., possible codes) to represent zero. In the FSE representation, E= ±0 and
the fraction FSE = 0 (the same as for X = −1). In the FAP representation there is no such anomaly;
the conversion between FAP and FSE proceeds (7) and (8).

2.2. Equivalence between FLP and LNS

The FLP (2) and LNS (4) representations are equivalent if integer parts of both representations are
equal numbers of e-bits, and both the fraction and the mantissa are equal numbers of t-bits. It is also
necessary to use an always positive fraction FAP. The sign S and the exponent E are matching:

X = (−1)S × 2E × 2
LX
M = (−1)S × 2E ×

(
1 +

NX

M

)
. (9)

Let NX denote the mantissa (FLP) and LX = FAP is the always positive fraction (LNS). The subscript
“x“ specifies that they represent (code) the equivalent number X in diverse number systems. Using the
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following conversion between the mantissa and the fraction, equivalence of FLP and LNS can
be attained:

Z = 2
LZ
M =

(
1 +

NZ

M

)
, (10)

where Z ∈ 〈1, 2〉 and LZ, NZ are positive integers from the interval 〈0, M− 1〉 or positive real numbers
within the interval 〈0, M〉. In the same range, sequences of integers for L and N are geometric and
arithmetic, respectively. The integer form of L and N is used to address the look up table (LUT) memory,
while their real form is needed to attain a required accuracy. By extending the number of bits of the
lower fraction and mantissa to t + r bits, the accuracy can be improved. Using the following corrections,
the mutual number conversions over the interval 〈0, M〉 can be defined as follows:

LZ = Nz + CNZ(NZ), (11)

Nz = LZ −CLZ(LZ), (12)

where CNZ and CLZ are correction functions for conversions in both directions:

CNZ(NZ) = M× log2

(
1 +

NZ

M

)
−NZ, (13)

CLZ(LZ) = −M×
(
2

LZ
M − 1

)
+ LZ. (14)

From the corresponding diagrams in Figure 1 it is evident that both functions have the same
maximum, however at various arguments:

maxNZCNZ(453.319721) = maxLZCLZ(541.456765) = 88.137044 .

 
Figure 1. Diagram of correction functions from NZ to LZ (red plot) and from LZ to NZ (blue plot) for
M = 1024.

3. RISC-Based Conversion between FLP and LNS

If we assume equivalence of the FLP and LNS numbers, the conversion can be completed between
the fraction and mantissa. The proposed algorithm aims to use RISC-type computing operations to
reduce memory consumption and costs, while achieving as high accuracy as possible. In the Reduced
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Instruction Set Computing (RISC), operations of multiplication, division, square, square root, logarithm,
etc., are not used.

3.1. Conversion from LNS to FLP

The conversion from LNS to FLP is carried out using (12) and (14). When converting LZ it is
required to cover the whole range of the fraction, guarantee a sufficient accuracy, and avoid a large
memory consumption. According to the proposed approach, LZ is split in two parts:

LZ = LS + LB, (15)

where LS is relevant for each sector and LB for the common base. The fraction is split into sectors (e.g.,
32 sectors in our case). In (15), LS represents a relocation of the converted number to the base LB —a
part of the CLZ function diagram placed in the close vicinity of the extreme (Figure 2).

 
Figure 2. Looping in sectors: conversion from LZ to NZ for M = 1024.

To obtain NB from LB, a simple interpolation is performed (as described in Section 5).
The calculation loop closes by applying Ns in (18). This procedure was named “looping in sectors”
(LiS) by the first author. Mathematically, the LiS method is expressed by the Equations (16)–(18):

Z = 2
LZ
M = 2

LS
M × 2

LB
M . (16)

The equivalent FLP representation in the mantissa form is as follows:

Z =
(
1 +

NZ

M

)
=

(
1 +

NS
M

)
×

(
1 +

NB

M

)
. (17)

From (17) results:

NZ = NB + NS +
NS
M
×NB. (18)

By appropriately choosing Ns and calculating corresponding Ls according to (11), a conversion
look-up table LUT1LS was generated using 10 bits, i.e., M = 1024 (Table 3). For each sector, the numbers
Ns and Ls form a pair when using the looping-in-sectors method.
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Table 3. Look-up table LUT1LS for 32 sectors.

Min Lz Max Lz Address Ns Ls

0 31 0 −304 520.3424
32 63 1 −290 491.8925
. . . . . . . . . . . . . . .
480 511 15 −32 46.9030
512 543 16 −8 11.5869
544 575 17 12 −17.2117
576 607 18 36 −51.0449
. . . . . . . . . . . . . . .
960 991 30 352 −436.4951
992 1023 31 380 −466.2551

The procedure for selecting the sector number Ns is as follows. Choose the interval for the
“interpolation base LB“ in the vicinity of the argument (541.456765) of the extreme of the correction
function in Figure 2. In our case, the minimum interval is min LB = 520. Each sector has a minimum,
denoted “min Lz” in Table 3. We choose Ns with three active bits (Table 4) under the condition
Ls > (520-minLz) where Ls is calculated according to (11) with the required accuracy. The choice of
Ns is specific in each sector; as a result the interval for the interpolation base is not 32 but 40 (wider)
where LB ∈ (520, 560).

The RISC conversion procedure from L to N is described in the Algorithm 1 (input variable is the
fraction LZ; the sign S and the exponent E do not change):

Algorithm 1 RISC conversion from L to N

1. Input: LNS fraction LZ
2. Output: FLP mantissa NZ

3. Round LZ to the upper 5 bits = address (cut the lower bits).
4. Read LS and NS from the memory LUT1LS (Table 3), where 5 MSB of LZ represent the LUT1S address.
5. LB = LZ + LS.
6. Read NB0 and NB1 from the memory LUT2NB, where the 9 MSB of LB represent the LUT2NB address.
7. Calculate NB using the interpolation between NB0 and NB1 (see the next Section).
8. Calculate NZ using bit shifting (19).

In the above Algorithm 1, NZ is calculated as follows:

Nz = NB + NS ± shi f t1 (NB) ± shi f t2 (NB) ± shi f t3 (NB) (19)

where shift1, shift2, shift3 denote shifting bits of NB according to Table 4, which is suitable for FPGA
implementation (it substitutes the original product NB * NS/M). In (18), we modified the expression
NS/M to 3 “shift operations” according to the weights (w bits) of the 3 active bits (Table 4). M = 210

represents a shift by 10 places to the right.

Table 4. Generating Ns using 3 active bits in 32 sectors.

|NS|\w Bits 8 7 6 5 4 3 2 1

304 1 0 1 0 −1 0 0 0
290 1 0 0 1 0 0 0 1
. . . . . . . . . . . . . . . . . . . . . . . . . . .
32 0 0 0 1 0 0 0 0
8 0 0 0 0 0 1 0 0
12 0 0 0 0 0 1 1 0
36 0 0 0 1 0 0 1 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

352 1 1 0 −1 0 0 0 0
380 1 1 0 0 0 0 −1 0
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The variable NS was chosen to include just 3 “active bits”, i.e., bits with nonzero (+1 or −1)
values, see Table 4. The algorithm results that the conversion can be performed as RISC, i.e., using just
elementary computer operations: addition, subtraction, shifting (multiplication and division by 2),
and addressing/reading from the memory.

3.2. Conversion from FLP to LNS

Conversion from FLP to LNS is based on Equations (11) and (13) and modified Equations (16)–(18).
Details are described in [25].

The RISC conversion from N to L (input variable is the mantissa NZ; the sign S and the exponent
E do not change) is described in Algorithm 2:

Algorithm 2 RISC conversion from N to L

1. Input: FLP mantissa NZ
2. Output: LNS fraction LZ

3. Round NZ to the upper 5 bits = address (cut the lower bits).
4. Read LS and NS from the memory LUT1LS (Table 3), where 5 MSB of NZ are the memory address.
5. Calculate NB according to (20).
6. Read LB0 and LB1 from the memory.
7. Calculate LB using the interpolation between LB0 and LB1.
8. Calculate LZ = LB + LS.

In the above Algorithm 2, NB is calculated as follows:

NB = NZ + NS ± shi f t1 (NZ) ± shi f t2 (NZ) ± shi f t3 (NZ). (20)

Note that (20) is a modification of (18). Again, NS has to be chosen to include just 3 “active bits”.
It can be concluded that both conversions from FLP to LNS and vice versa can be performed as RISC,
using just elementary computer operations.

4. Interpolation and Accuracy

For both FLP and LNS, the accuracy is given by the number of bits of the mantissa and the fraction;
it usually decreases due to approximation or interpolation. In the effective RISC conversion design,
a simple interpolation is based on bit manipulation. The interpolation is demonstrated on the LNS to
FLP conversion. The base generated according to (12) and (14) and the corresponding look-up table
LUT2NB were chosen so that the base falls within the plateau in the close vicinity of the CLZ function
maximum (Figure 2).

The plateau region was intentionally chosen as the interpolation base because differences between
the “adjacent” logarithmic values of LB and the arithmetic sequence values of NB are approximately
matching; this allows us to interpolate between two points in the table in a very simple way (Figure 3).

ADDRESS   Number/MEMORY 
Higher bits Lower bits Operation All bits 
LB1= LB0+1  000...000 MEM  NB1 

    
LB = LB0 + + LLB APROX. NB=NB0 + LLB + ... 

    
LB0 000...000 MEM  NB0 

Figure 3. Principle of approximating NB using a simple bit manipulation.
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Approximating the mantissa NB (denoted as the interpolation base LB in Figure 2) using the
look-up table LUT2NB is demonstrated in Figure 3:

• The fraction LB is rounded to the higher n bits (e.g., n = 10), thus obtaining the address LB0. Then,
NB0 is read from the memory.

• Lower bits of LB are denoted as LLB:

LB = LB0 + LLB. (21)

• The simplest approximation is the “quasilinear” interpolation as follows:

NB = NB0 + LLB. (22)

According to this method, the error dNB01 is calculated as a difference of adjacent memory
locations in the considered memory LUT2NB:

dNB01 = NB1 −NB0 − 1. (23)

In case of a 10-bit memory quantization in the range LB ∈ (520, 560), the maximum positive error
is 1.1988× 10−5 (dNB01 = 1.2275× 10−2) at the right limit of the interval, and the maximum negative
error is −1.3742× 10−5 (dNB01 = −1.4072× 10−2) at the left limit, which corresponds to an accuracy of
16 bits (10 + 6). These errors of the variable NB will then be influenced by a factor (1 + NS/M) in the
range 〈0.70312, 1.37109〉, according to (18). The resulting error analysis is in Section 6. The accuracy can
be improved using a finer memory quantization in the plateau region. Note that the above accuracy
levels are attained using RISC, i.e., multiplication is not used.

If a higher accuracy is needed, the following linear interpolation can be applied:

NB = NB0 + LLB + dNB01 × LLB. (24)

In the memory region LUT2NB with 40 cells where LB ∈ (520, 560), the approximation error occurs
due to nonlinearity. Local extremes between adjacent memory cells (approximately in the middle of
them) were examined. For a 10-bit memory quantization, the related accuracy is 23 bits (10 + 13).
The proposed linear interpolation is a RISC extended by one multiplication operation.

Finally, it has to be noted that the FLP to LNS interpolation procedure is similar, only based
on Equations (11) and (13). Details are described in [25]. Accuracy assessment in terms of memory
quantization is the same.

5. Application of RISC Conversions for Logarithmic Addition

The principle of the logarithmic addition based on the developed RISC conversions is briefly
presented in this section. The aim is to show the possibility of applying the developed conversions for
RISC-based LNS addition without additional memory requirements. Similar algorithms developed for
data conversion at the input and output of the embedded system can be used for the LNS adder.

Consider two real numbers A, B, where A > B represented in LNS using integer exponents EA, EB,
and fractions LA, LB, respectively:

A + B = 2EA × 2
LA
M + 2EB × 2

LB
M . (25)

The proposed operation of logarithmic addition will be demonstrated under the assumptions
EA ≥ EB and LA ≥ LB. Applying the distributive law, we obtain:

A + B = 2EA × 2
LB
M ×

(
2

LA−LB
M +

2t

M
× 2−(EA−EB)

)
. (26)
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Assume EA > EB and LA < LB, we obtain:

A + B = 2EA−1 × 2
LB
M ×

(
2

M+LA−LB
M +

2t

M
× 2−(EA−1−EB)

)
. (27)

Denote LAB, d and EAS as follows:

LAB = LA − LB or LAB = M + LA − LB (28)

d = EA − EB or d = EA − EB − 1 (29)

EAS = EA or EAS = EA − 1 . (30)

Then from both assumptions results:

A + B = 2EAS × 2
LB
M ×

(
2

LAB
M +

2t−d

M

)
. (31)

The RISC-based conversion of the fraction LAB = LA − LB to the mantissa NAB is carried out using
(12). Then, 1 + NAB /M has a mantissa format; M = 2t can be considered as a mantissa or a fraction,
as needed. For M, the corrections (13), (14) are zero, i.e., no conversion is required. Dividing M by
powers of 2d, i.e., applying the shifting by d, we obtain a result, which has the range and character of
a mantissa; let us denote it NE = 2t−d, then

A + B = 2EAS × 2
LB
M ×

(
1 +

NAB
M

+
NE

M

)
, (32)

where the two rightmost terms in the expression in parentheses have a mantissa format and can be
simply summed:

NABE = NAB + NE. (33)

If is NABE ≥M (overflow), then

NABE = (NABE −M)/2 and EAS = EAS + 1. (34)

Applying the RISC conversion of NABE to LABE according to (11) we obtain:

A + B = 2EAS × 2
LB
M × 2

LABE
M = 2ESUM × 2

LSUM
M , (35)

which is a logarithmic sum of the original numbers A, B.
When implemented, the overflow LABE + LB of the range 〈0, M − 1〉 by the fraction L has

to be treated. The integer exponent of the sum ESUM can take two values: either EAS or EAS + 1
(under overflown).

LSUM = LABE + LB or LSUM = LABE + LB −M (36)

The above-presented original procedure of LNS addition is based solely on RISC-type operations
including two RISC conversions that determine the accuracy of the adder. The LNS adder can be
implemented using the six standard additions or subtractions (28)–(30), (33), (34) and (36), by comparing
four pairs of numbers, two shifting operations, and two RISC conversions. The developed approach is
promising for applications in embedded control systems realized, e.g., on FPGA [26]. More details on
LNS addition and subtraction via RISC computing can be found in [25].
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6. Implementation on FPGA

To verify the proposed conversion algorithm, a hardware realization of a simple converter from
LNS to FLP number representations was realized. The provided example demonstrates the feasibility
of the proposed approach and the solution accuracy.

6.1. Design of an LNS to FLP Converter

The implemented LNS input of the converter represented according to Table 2 has a 32-bit data
width. The most significant bit is assigned to the sign, the next 8 bits belong to the integer part, and the
last 23 significant bits are the fractional part of the number. The convertor output is a 32-bit FLP
number format compatible with the IEEE 754 standard (Table 1).

The LNS to FLP converter is realized as a digital logic circuit and contains only combinational
logic. The converter design was developed in VHDL (Very High-Speed Integrated Circuit Hardware
Description Language) using Vivado IDE and was targeted for the FPGA (Field Programmable Gate
Array) chip Xilinx Artix-7 XC7A100T-1CSG324C mounted on Nexys 4 trainer board [27]. FPGAs are
a powerful tool for prototyping and testing hardware designs based on digital logic. FPGAs have broad
resources for implementation of combinational and sequential logic, which allows us to implement
even more complex and tailored digital designs.

The structure of the LNS to FLP convertor represented by RTL (Register Transfer Level) is shown
in Figure 4. The design is based on the algorithm of RISC conversion from LNS to FLP as described in
Section 3. The sign bit and the integer part of the LNS input are directly connected to the sign and
exponent parts of the FPL output. The fractional part of the input signal is marked as LZ. The five MSB
bits of LZ are the input for Table 3, LUT1LS (Address column). LB described in (15) is computed as
a sum of LUT1LS output LS and the signal LZ. In this converter design, only a simple approximation
according to (22) is realized. LB is calculated as the sum of NB0 and LLB. The mantissa NZ (18) as a part
of the output FLP number is computed as the sum of three signals: NB, NS, and output product of NB
and NS. Division in (18) is realized by a proper choice of the output product bits.

 
Figure 4. Illustration of the principle of approximating NB using a simple interpolation.

Both tables LUT1LS and LUT2NB at the RTL level are implemented as an ROM memory.
After performing the synthesis and implementation steps in Vivado IDE, the tables are assigned to
the LUT tables [28] of FPGA. In FPGAs, LUT tables are part of configuration blocks and are the main
resource for implementation of combinational logic. Multiplication and summation operations are
automatically assigned to DSP cores [29]. The overall converter design needs only 50 slices representing
just 0.32% of the used FPGA chip capacity. In Table 5, the obtained results are compared with the
reference conventional approximation methods [6] and very fast shift-and-add methods [20]. Latency
of the circuit, or the time from input to output as a performance measure, is very circuit-dependent.
In the considered reference design, the FPGA Virtex II was used, which is an older product line of the
Xilinx FPGA chips.
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Table 5. Comparison of area, latency, and accuracy of a conversion from LNS to FLP.

Conventional Design [6] Proposed Design Shift-and-Add Design [20]

Slices 236 50 NA
Multipliers 20 1 0

Memory 4 × 18 k BRAM 0 0
Latency 72 ns 22/12 ns <1 ns

Accuracy High <0.001% >1%

Previous converters are realized on 65 nm full customizable CMOS technology with latency
under 1 ns [20]. For our implementation, a 28-nm prefabricated structure of FPGA Artix-7 was used.
Even with this significant limitation, the achieved latency was 22.198 ns (12.083-ns logic delay and
10.115 net delay), which is a very promising result for the embedded real-time applications.

6.2. Simulation and Verification

For synthesis, simulation, and verification of the presented converter design, the Matlab–Simulink
environment combined with the system generator toolbox [30] were used. The system generator
toolbox is an additional part of Vivado IDE connecting synthesis and simulation tools of digital designs
targeted for FPGA with Matlab–Simulink. After a successful installation of both environments, it is
possible to add system generator blocks to the Simulink simulation scheme. These blocks are not
simulated in the Matlab environment but separately in the Vivado simulator. The simulation scheme
is shown in Figure 5. Specialized input and output blocks serve as an interface between Matlab
and Vivado simulation tools. This approach is more flexible than a standard testbench created in
Vivado IDE.

Figure 5. Converter simulation and verification in the Matlab–Simulink environment.

The core of the simulation scheme is the system generator block, which represents the VHDL
code of the converter developed in Vivado IDE. The output signal from the converter is split into the
sign, exponent, and mantissa parts. For verification, the mantissa signal simulated in Vivado using
system-generator-for-DSP blocks and the mantissa_mtb obtained directly in Simulink were compared.
The mantissa error was calculated as the difference between the mantissa and the mantissa_mtb.

From the simulated fractional input in the interval 〈0, 1〉, the maximum positive mantissa error is
1.5806× 10−5 and the maximum negative mantissa error is −1.4047× 10−5, which corresponds to the
maximum error as mentioned in Section 4. The average error across the input range is 1.9979× 10−7.
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Overall dependence of the conversion error on the fractional part LZ is depicted in Figure 6. Dependence
of the error focused for one sector on Address 30 in Table 3 is shown in Figure 7.

Figure 6. Mantissa error evaluation.

Figure 7. Zoomed mantissa error evaluation for one sector.

In Table 6, accuracy achieved using the proposed LiS method of LNS to FPL converter was
compared with selected existing methods.
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Table 6. Comparison of accuracies achieved using the proposed LiS method with selected
conversion methods.

Maximum
Positive Error

Maximum
Negative Error

Error
Range

Maximum Positive
Relative Error

Maximum Negative
Relative Error

Relative Error
Range

Mitchell [31] 0.086 0 0.086 5.791% 0 5.791%
Combet [32] 0.0253 −0.0062 0.0315 2.293% −0.468% 2.761%

SG [33] 0.0292 −0.028 0.0572 2.503% −1.704% 4.207%
Juang [18] 0.0369 −0.0097 0.0466 2.963% −0.487% 3.45%
Juang [11] 0.0319 0 0.0319 2.337% 0 2.337%

AS [17] NA NA NA 1.331% −0,5631% 1,8941%
Kuo [19] NA NA NA 1.2% −0.1436% 1.3436%

Nandan [20] NA NA NA 0.94% −0.1436% 1.084%
Chen [23] NA NA NA NA NA 0.138%

LiS method 0.00001581 −0.00001407 0.00002988 0.000966% −0.000783% 0.001749%

It can be observed that the proposed converter has a much better accuracy compared with other
presented converters.

The proposed looping-in-sectors (LiS) method can be included in a category in between the
approximation methods and the shift-and-add methods, which are very fast and ROM-less, based only
on logic circuits and binary operations. The proposed LiS method uses a very simple approximation
at the bit-manipulation level, a simple so-called RISC operation, and needs relatively small memory
(32 + 40 memory cells).

The advantage of the proposed LiS method over the shift-and-add methods is a much higher
relative accuracy (up to 1000 times), the disadvantage is a higher latency. Compared to conventional
approximation methods, its advantages are simplicity and a higher speed.

7. Discussion

Conversions of numbers play an important role in the LNS arithmetic, especially in real-time
systems. In this paper, equivalence between the FLP (semi-logarithmic) and LNS (fully logarithmic)
systems was defined, and conversion between them was reduced to a conversion between the mantissa
and fraction performed within the interval 〈1, 2〉. Derived correction functions enabled to specify
an optimal interval for conversion within the plateau around their maxima where a mathematically
simple and accurate interpolation can be performed. According to the developed procedure called
looping in sectors (LiS), the converted number is to be moved to the plateau in the vicinity of the
correction function peak and back after the interpolation accomplishment, hence reducing memory
consumption. Note, that the LiS is performed without loss of accuracy, resulting in effective RISC
conversions, which use only elementary computer operations. The developed conversions are then
implemented in the designed LNS addition based on RISC operations and can thus be realized without
a necessity to use multiplication, division, and other functions.

As a part of the development, conversion algorithms from LNS to FLP and vice versa [25] were
implemented on FPGA, and their accuracy was verified by simulation. The presented methodology
based on the new correction functions, the looping-in-sectors method, and the optimal choice of a base
for an efficient interpolation can further be optimized for different types of applications in embedded
systems. For different applications, different attributes are prioritized: in measurement and signal
processing from sensors it is accuracy, in complex control algorithms it is speed, in automotive and
autonomous systems reliability and credibility of the information obtained are the most essential ones.

The modern very fast “shift-and-add” methods (latencies about 1 ns) prevail only in selected
complex algorithms that tolerate low accuracy (only 1%) but are inappropriate in other applications.
The proposed LiS method is suitable for control applications in combination with input and output signal
processing, as well as one of alternative methods for redundant signal processing and fault-detection
due to a deterministically determined high accuracy. The proposed LiS method belongs to faster
methods (with a latency of 22 ns) and can be used in real-time control applications even in time-critical
applications with a sampling period up to 1 ms.
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The future research will be directed on the functional safety of embedded system applications,
usually implemented through redundancy and dual-channel technology today. In this sense,
we understand LNS not only as an alternative to FLP but also as an SW/HW independent dual
method of calculation to eliminate errors and increase the plausibility of results in full compliance with
a new paradigm [34]: “It is much more important to know whether information is reliable or not than
the accuracy of the information itself.”
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