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Abstract: Considering the exponential growth of today’s industry and the wastewater results of
its processes, it needs to have an optimal treatment system for such effluent waters to mitigate the
environmental impact generated by its discharges and comply with the environmental regulatory
standards that are progressively increasing their demand. This leads to the need to innovate in the
control and management information systems of the systems responsible to treat these residual waters
in search of improvement. This paper proposes the development of an intelligent system that uses the
data from the process and makes a prediction of its behavior to provide support in decision making
related to the operation of the wastewater treatment plant (WWTP). To carry out the development of
this system, a multilayer perceptron neural network with 2 hidden layers and 22 neurons each is
implemented, together with process variable analysis, time-series decomposition, correlation and
autocorrelation techniques; it is possible to predict the chemical oxygen demand (COD) at the input
of the bioreactor with a one-day window and a mean absolute percentage error (MAPE) of 10.8%,
which places this work between the adequate ranges proposed in the literature.

Keywords: artificial neural network (ANN); chemical oxygen demand (COD); wastewater treatment
plant (WWTP)

1. Introduction

Pursuing the ideas outlined in the sustainable development goals (SDGs), countries have been
showing concern for terrestrial ecosystems even more for the reuse and conservation of water quality.
On this topic, one of the concerns that exists and will be resolved day by day is related to the
contamination of liquid effluents that arise from industrial uses. According to standards established by
the laws of most countries, industry must respond to certain requirements that allow for the reuse of
the water products in its activity. Globally, the most common problem regarding the quality of effluent
water in industries is eutrophication, the result of large amounts of nutrients (mainly phosphorus and
nitrogen), which leads to the purity of the water being reduced [1]. Additionally, pH levels and the
suspended solids index contribute significantly to water quality [2]. Thus, industry daily faces the
challenge of treating wastewater as a result of its processes. The monitoring of this treatment yields
a large volume of revealing data that can increase the efficiency in the removal of the contaminant
load in the water. Faced with this problem, it is worth asking: Is it possible to create an intelligent
system that can monitor the determining variables in the treatment of industrial wastewater? Can this
intelligent system predict the parameters of water quality with a prudent margin of error? How could
it check the operation of this system? This paper focuses on answering the previous questions.

Sustainability 2020, 12, 6348; doi:10.3390/su12166348 www.mdpi.com/journal/sustainability1
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Taking into account the exponential growth of industry at present and the amount of wastewater
that its processes generate, it is essential for it to have an optimal treatment system for such effluents to
mitigate the environmental impact generated by its discharges and comply with the environmental
regulatory standards that increase their demand. This leads to innovation both in the treatment
systems and in control and information management systems thereof to achieve a more efficient
process, whose advantages have been evidenced in different developed countries [3]. The proposed
approach is an intelligent system that uses the data from the biological stage of the process and makes
a prediction of the behavior of bioreactors in a way that provides support in the decision making
related to the operation of the wastewater treatment plant that can improve its operational efficiency.
Implementing a continuous prediction of out-of-range values leads to taking timely preventive
measures. As a result, water of a higher quality than required and bottleneck reduction because of
the adaptation of microorganisms are some of the advantages obtained, which represent savings in
operational costs.

A wastewater treatment plant (WWTP) is composed of different stages depending on the properties
of the effluents to treat, but it most commonly takes advantage of either physical, chemical or biological
treatments to take away pollutants [4]. The present work refers to industrial wastewater, which is
that from the discharges of manufacturing industries [5], and uses data from the activated sludge
process in the biological stage for developing an intelligent system, making use of machine learning
algorithms that allow for automatic extraction of information from previous examples and infer about
new data [6], achieving the forecasting of the chemical oxygen demand (COD), which is an indicator of
water pollution and is a key variable to evaluate the efficiency of the WWTP process [7].

2. Related Works

Over the last decade, the amount and complexity of data have increased significantly thanks
to the improvement in generation and storage of data, related to the cost reduction of them and
the presence of more computational power [8]. Therefore, all this data now available can produce
valuable information leading to better phenomenon comprehension, modeling and reproduction
capable of providing some advantages and improvements to industrial processes [9]. Referring to
water treatment plants, they integrated programmable logic controllers, supervisory control and data
acquisition systems at the beginning of the XXI century [3]. Residential, agricultural, commercial and
industrial effluents can be treated by WWTPs, each with its characteristics [10]. In the present research,
mostly industrial effluent source studies are presented as the main topic of interest.

The analysis of the process of a WWTP can be classified as a complex control problem,
which behaves as a nonlinear dynamic process [11]. Taking into account the nature of the process,
the implementation of real-time optimal control is a challenge. Thus, predicting the effluent quality of
this operation would help to control some parameters to prevent disasters and make the challenge less
complex. Understanding the WWTP’s complex nature depends on microbial, chemical and physical
features, which are important to improve the effectiveness of the process [12]. These factors vary
with time and physical attributes, such as weather, season, influent water, pH and bacteria amount,
among others. However, using the problem background, statistical analysis and computational
techniques reduces the complexity that a human being must understand in the WWTP process.
The concept of “machine learning” has revolutionized analytics techniques to solve elaborate problems;
as a result, experts in this area have taken advantage of the progress in these techniques to implement
algorithms that describe the WWTP process to make the analysis more intelligible.

2.1. Related Works Description

In [11], a q-learning (QL) algorithm with an activated sludge model (ASM2d-guided) reward
setting was proposed. The integrated ASM2d-QL algorithms equipped with a self-learning mechanism
were derived for optimizing the control strategies (hydraulic retention time (HRT) and internal
recycling ratio (IRR)) of the WWTP system. In reference [12], a Bayesian network-based approach was
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proposed for real-time prediction of a wastewater treatment system based on Modified Sequencing
Batch Reactor (MSBR). Based on the framework of the modified sequencing batch reactor prediction
analysis, a Bayesian network model was constructed to analyze an MSBR using training data and
information provided by domain experts.

Work [13] is a synthesis of a new neuro-fuzzy controller with an online learning procedure and
a simple algebraic formulation, making it easy to interpret by a human being to control a bioreactor
without requiring any analytical representation. The authors in [14] focused on the Tabriz wastewater
treatment plant (TWWTP), proposing an ensemble of fuzzy logic (FL), committee fuzzy logic (CFL) and
supervised CFL to predict water quality parameters. In [10], three nonlinear models (feedforward neural
network, adaptive neuro-fuzzy interference system and support vector machines (SVMs)) and a classical
multilinear regression (MLR) were applied to predict the performance of the Nicosia wastewater
treatment plant in terms of biochemical oxygen demand (BOD), COD and total nitrogen (TN).
For paper [15], a data-driven intelligent monitoring system was implemented (using the soft sensor
technique and data distribution service). A fuzzy neural network (FNN) was applied for designing the
soft sensor model.

The paper [16] established two machine learning models—artificial neural networks (ANNs) and
SVMs—to predict one-day interval TN concentration of effluent from a wastewater treatment plant in
Ulsan, Korea. Reference [17] showed how machine learning models obtained better prediction results
concerning traditional methods when increasing the size of the time-to-failure datasets. Four diverse
machine learning approaches were implemented: ANN, SVM, random forest (RF) and soft computing
methods. The reference [18] presented a data-driven anomaly detection approach based on deep
learning methods and clustering algorithms to monitor influent conditions of WWTP, which affect
treatment unit states, ongoing process mechanisms and product qualities. These techniques were
recurrent neural networks (RNNs) and the function to delineate complex distributions from restricted
Boltzmann machines (RBM), with various classifiers.

In work [19], multilayer perceptron ANN–genetic algorithm (MLPANN–GA) and radial basis
function ANN–genetic algorithm (RBFANN–GA) models were successfully implemented for sludge
volume index (SVI) prediction, taking into account that when sludge bulking appears, it causes poor
settleability of sludge that results in poor effluent quality, loss of active biomass and increased costs
and poses several environmental hazards. BOD, COD, nitrate, ammonia, TN, total phosphorus (TP),
total suspended solids (TSS), total dissolved solids (TDS), mixed liquor volatile suspended solids
(MLVSS), mixed liquor suspended solids (MLSS), SVI, dissolved oxygen (DO), pH and T (Celsius)
were measured and used for the estimation. The study [20] performed a simulation of plant behavior
over a wide range of influent disturbances. An artificial neural network (ANN) was trained on the
available WWTP, comparing ANN and a mechanistic WWTP model’s performances.

The study [21] proposed the Kohonen self-organizing map (SOM), a useful tool for illustrating
the prevailing states of a process and their evolution, monitoring the alteration of wastewater quality
and alerting in case of unusual behavior, such as increasing concentrations of harmful discharge
components. The method provided an advanced and efficient way of monitoring and visualizing
many measurements conducted in wastewater treatment. Article [22] emphasized the high potential
of some promising techniques, such as spectral analysis, and discussed issues that could appear soon
concerning control of anaerobic digestion (AD) processes. The authors in work [23] provided a critical
outlook of the evolution of industrial process monitoring (IPM) since its introduction almost 100 years
ago. Several evolution trends that have been structuring IPM developments over this extended period
were briefly referred to, with more focus on data-driven approaches.

Work [24] is a survey of the feasibility of utilizing soft computing models in predicting
emission factors (gaseous H2S) based on five input parameters, namely, the total dissolved sulfides,
biochemical oxygen demand (BOD5), temperature, flow rate and pH. Multivariate nonlinear
autoregressive exogenous (NARX) neural networks were developed and applied to predict weekly

3
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H2S in four WWTPs. The paper [25] described an optimized extreme learning machine (ELM) based
on an improved cuckoo search (ICS) algorithm for the design of the soft BOD measurement model.

Reference [26] is a review of developments in artificial intelligence technologies for environmental
pollution controls, including prediction of removal efficiency, evaluation of fuzzy logic to the control of
the WWTP aerobic stage and AI-aided soft sensors for estimation of hard-to-measure variables.

The study [27] performed different machine learning techniques to model a soft sensor to predict
weather conditions such as SVMs, k-nearest neighbors (KNN), decision trees (DT), RFs and Gaussian
naive Bayes (GND). With accurate weather prediction, an advanced control system can fit the parameters
for better performance.

2.2. Variable Prediction

One of the early approximations to intelligent monitoring and the predicting system was presented
in [28] and [13], where Bayesian networks and neuro-fuzzy logic were implemented to fulfill limitations
of rule-based systems. Further works started to focus their attention on variable prediction using
a variety of methods and a combination of them, taking the major advantages offered by each one.
Reference [29] used iterative predictor weighting–partial least squares (IPW–PLS) boosted by weighted
predictions of a collection of regression models used as an ensemble prediction to estimate some water
quality parameters. It was tested in the field, and its results showed a high correlation of the prediction.

Several recent studies used fuzzy logic or neuro-fuzzy systems, such as [10,14,15], and some
deep learning approaches, as in [16–18], which have provided high performance in prediction tasks.
Studies like [19] used a hybrid artificial neural networks–genetic algorithm approach to optimize
the ANN estimation of the sludge bulking present in the sedimentation stage, which directly affects
the effluent discharge water quality. Reference [30] made a performance comparison between the
autoregressive integrated moving average (ARIMA) and time-delay neural network (TDNN) with
such times-series variables as BOD and TSS and achieved more accurate predictions for real-world
wastewater data with TDNN.

2.3. Fault Detection

There is a research branch whose aim is the opportune fault detection in very stringent processes,
especially when it is part of the operational critical path where any unexpected event that occurs
leads to a stagnation. Depending on the type of fault detection, the prediction of the problem can be
focused on:

- The system’s ability to operate under some given circumstances.
- The time range in which equipment needs no maintenance and logistic support [17].

Regarding system operability, faults and potential causes can be found before they occur by
analyzing some patterns in WWTP data. The data visualization is capable of showing patterns that
are products of a possible anomaly, known as abnormal patterns. These are classified as isolated,
sustained, transient and drift [3]. Each one provides a hint about a future fault. Thus, it is possible to get
fault information by looking at data behavior. Reference [18] implemented data-driven unsupervised
anomaly detection approaches based on deep learning methods and clustering algorithms. The aim
was to monitor and detect anomaly conditions in WWTP operations. The results showed its ability to
detect the vast majority of abnormal events reported by the operator [18].

On the other hand, basic reliability analysis focuses on the prediction of the period in which
equipment needs no support. This technique allows for finding a probability function R(t) to forecast
the performance time of a component without failing until a given period t [17]. The work of [31]
used an ANN to find the best cumulative failure distribution of mechanical components, which had
a performance to fit a set of failure data and estimate its parameters, especially under poor data
conditions. As a result, the networks with a momentum equal to 0.75 produced the best approximation
83.46% of the time [31].

4
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2.4. Big Data Tools

Nowadays, since the world creates new data every single second, it has had to look for technologies
to treat this data properly. In the market, some of them are Apache Hadoop and SciDB (open source)
and others owned by supercompanies like Google, IBM, Amazon and Microsoft (frameworks) [32].
Each framework is specialized to do a particular task. A review [33] synthesized these frameworks as
shown in Table 1 (adapted from [33]). Besides, the main languages for analytics, data mining and data
science are R, SAS and Python. Each language has weaknesses and strengths. However, according to
a Burtch Works poll (2019), computer scientists and engineers preferred using Python, as shown in
Figure 1.

Table 1. Big data tools.

Area Amazon Microsoft Google

Big data storage S3 Azure Google Cloud services
Big data analytics Elastic MapReduce (Hadoop) Hadoop on Azure BigQuery

Relational database MySQL or Oracle SQL Azure Cloud SQL
NoSQL database DynamoDB Table storage App Engine Datastore

MapReduce Elastic MapReduce (Hadoop) Hadoop on Azure App Engine
Streaming processing Nothing prepackaged StreamInsight Search API

Machine learning Hadoop +Mahout Hadoop +Mahout Prediction API
Data sources Public datasets Windows Azure marketplace A few sample datasets
Availability Public production Some services in private beta Some services in private beta

 
Figure 1. SAS, R or Python preferences.

2.5. Computational Techniques

According to related works, machine learning techniques have been implemented in several
WWTP problems (Table 2). Around 64.71% of related work used an algorithm of ANN groups to develop
forecasting models or a modified ANN to improve the analysis performance. Besides, support vector
machines (SVM), fuzzy logic (FL), partial least squares (PLS) and principal component analysis (PCA)
models were implemented by some authors. To clarify, percentages must not add up to 100% since
some references used more than one algorithm. As shown in Table 3, last year, the ANN algorithm had
significant participation in WWTP forecasting development in comparison with others.

5
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Table 2. Related works.

Ref Year Method Prediction Error

[10] 2018 FFNN, ANFIS, SVM, MLR BOD, COD, TN DC, RMSE
[11] 2019 Q-learning - -
[12] 2012 Bayesian network COD, TP, TN -
[13] 2005 NFC Dilution rate -
[14] 2018 FL, SCFL, ANN BOD, COD, TSS MAPE
[15] 2018 FNN, PCA BOD, COD, TSS, TP, NH4-N -
[16] 2015 ANN, SVM TP, TSS, COD R2, NSE, drel

[19] 2015 MLPANN–GA,
RBFANN–GA SVI -

[20] 2006 ANN BOD, COD, TSS, TN R2
[21] 2013 SOM - -
[24] 2019 NARX H2S emission MAPE, RMSE, GRI
[25] 2019 ICS–ELM, BP BOD -

[29] 2012 PLS, IPW–PLS,
Boosting-IPW–PLS COD, TSS, NTU MinE, RMSEP, MaxE, R

[34] 2012 - BOD, TSS, HRT, F/M -

Table 3. Computational techniques used in wastewater treatment plant (WWTP) analysis from
related works.

Algorithm % Algorithm %

ANN 64.71 KNN 5.88
SVM 23.53 PCA 5.88

Fuzzy 17.65 PLS 5.88
BN 11.76 QL 5.88
RF 11.76 GND 5.88
DT 5.88 ICS 5.88

3. Materials and Methods

3.1. Model Design

COD is one of the most important variables in the process of a biological treatment since experts
can make decisions based on the measurements of this variable. The objective of biological wastewater
treatment is to perform a system to remove the pollutants present in water. Thus, this treatment is
used overall because it is compelling and more efficient than numerous mechanical or compound
procedures. In the bioreactor at this stage, a variety of microorganisms are used to break down organic
matter in the water. However, the microorganisms are susceptible to change, depending on all the
conditions in the tank.

For this reason, the present work proposes to use predictive analysis on COD to make decisions,
knowing how contaminated the water will be in the tank. For studying how COD dynamics in the
process are, a dataset was received from a WWTP from the Nantong, China plant with a daily data
frequency for a total of 847 samples at different stages of the process, where a total of 22 variables were
collected from 01/12/2017 to 24/05/2020. The COD dynamic can be observed in Figure 2.

6
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Figure 2. Chemical oxygen demand behavior.

Figure 3 shows the biological stages of the process in which the organic load of water is removed.
Some important variables for the project that describe the WWTP process are represented as circles in
blue and green. The blue circle is the output variable COD for the forecasting analysis, while green
circles are input variables to design the intelligent system.

Figure 3. Biological WWTP process diagram.

For the development of the system, the selected technology was an ANN because of the
state-of-the-art review supported by the complexity of the WWTP process. Figure 4 presents the
flowchart that synthesizes the design process of the intelligent systems proposed, which started with
the data collection and the use of different strategies for variable selection. Within the dataset, the main
variables of the process were:

• Flow
• COD of influent water
• Suspended solids in influent water (SS)
• Mixed liquor suspended solids (MLSS)

7
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• Mixed liquor volatile suspended solids (MLVSS)
• Nitrogen (N)
• pH
• Mixed liquor dissolved oxygen (DO)
• Food to microorganism (F/M)

Figure 4. Model structure diagram.

Each characteristic can be repeated in one or more stages that are listed as below:

• EQ = Equalizer
• BIO = Bioreactor
• BT_N = Bioreactor Pit N
• BT_C = Bioreactor Pit C
• Clari = Clarifier
• OxT = Oxidation Tank
• D = Discharge Pit

After variable selection, the dataset is split into training, validation and test sets. However, in this
case, the data was split into training and test sets since the number of samples was small in comparison
with the amount of data used to train an ANN. It is important to note that a computational technique
must be selected. As mentioned before in related works in Table 3, about 64.71% of the work of authors
used an algorithm from the ANN group to develop forecast models. It has been verified that neural
networks have suitable results in the area since the water treatment process is characterized by being

8
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nonlinear in behavior, so if they are used properly, they can represent the dynamics of this process very
well. Once the model was selected, the model was trained and brought into operating condition to
estimate COD. An error measure is necessary to support the performance of the model. Therefore,
the MAPE), defined as shown in Equation (1), was chosen to quantify the ANN error. In this equation,
xi represents the actual point, which is intended to be predicted, x̂i represents the predicted values of
that observed point and N is the number of observed values that are intended to be predicted.

MAPE =
100
N

∑N

i=1

∣∣∣∣∣xi − x̂i
xi

∣∣∣∣∣, (1)

Figure 5 shows in more detail how the model is conceived and how the COD forecasting is
achieved. First, the objective variable taken from the dataset is studied using a time-series decomposition
technique that transforms the variable into three additive components: trend, seasonality and residual.
Leveraging an autocorrelation study over the components, the first two are estimated using their
past values. On the other hand, the residual component is estimated using an ANN, which received
exogenous variables selected from a correlation study and a past value of the same component. Finally,
the addition of the three components provides the COD prediction. All data analysis and the intelligent
system training were carried out by using Python, mainly taking advantage of Pandas, NumPy,
Matplotlib, Statsmodels and TensorFlow libraries.

Figure 5. Model block diagram.

3.2. Platform Design

A web platform was designed to visualize all the variables of the WWTP dynamically, monitor the
COD prediction provided by the forecast model and consult the historical measurements of the
variables. Thus, the main sections of the platform were built as the real-time and historical data
view. For this purpose, a model–view–controller schema was used to construct the platform using the
technologies as Figure 6 shows. The technology that performed the view in the platform was ReactJS,
responsible for rendering the visual content to interact with the user and make requests (frontend).
ReactJS related to the master and brain of the platform, NodeJS, which controlled the logic responsible
for managing all functions and methods that made the platform work (backend). Parallelly with
NodeJS, TensorFlow.JS deployed the trained forecast model, which was developed to predict the COD
at the beginning of the bioreactor. Besides, all the data and the information important to be the cog in
this system were stored in a database schema settled in PostgreSQL. The interaction between those
technologies allowed for reaching the objectives mentioned.

9
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Figure 6. Platform schema.

4. Results

The experiments carried out were time-series decomposition, autocorrelation study and correlation
study. Each one was to get the best performance of the model described below.

4.1. Time-Series Decomposition

For the time-series analysis of the target, the variable was made a component decomposition where
the time series could be represented as a combination of trend, seasonality and residual components [35].
From this point, it was intended to forecast each component of the time series to obtain the objective
series using the additive model stated by Pearson and presented in Equation (2) [36], where Tt refers to
tendency or trend, St to seasonal movements, Rt to residuals or irregulars and Xt to the series observed.

Xt = Tt + St + Rt, (2)

Figure 7 shows an example of how the equalizer’s COD decomposition looks for the year 2019,
where (a) shows the original COD variable, (b) the trend component, (c) the seasonal component and
(d) the residual component.

 
Figure 7. Equalizer chemical oxygen demand (COD) decomposition.
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4.2. Autocorrelation Study

Analyzing the time-series decomposition, both autocorrelation and partial autocorrelation studies
were made on residual, seasonal and trend COD to extract the important characteristics. From this
analysis, it was possible to conduct an autoregressive estimation of the trend and seasonal component
of the series. Figures 8–10 show the total and partial autocorrelation, respectively.

  
Figure 8. COD trend analysis correlation.

  
Figure 9. COD seasonal analysis correlation.

  
Figure 10. COD residual analysis correlation.

From Figure 8, it is clear how the past values were strongly correlated with the current COD trend
value. Thus, the trend record provided significant information to the model on the dynamics of the
COD. Additionally, Figure 9 shows the important effect of the seven past seasonal values. On the
other hand, for the COD residual autocorrelation, the analysis was not very revealing, but it can be
highlighted that for data with a validity of two days, there was a correlation of almost −0.35 with the
current COD value.
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4.3. Correlation Study

For determining which variables had a significant effect on the COD dynamic, a correlation study
was used to decant characteristics and reduce the dimensionality of the model. Thus, the model could
learn without the noise caused by raw characteristics. Besides, the variables with a high correlation
improved system performance. The correlation selected for the analysis was the Pearson correlation
since when exploring other types of correlations, the results were similar. The correlation results were
carried out using the variable EQ_COD a day ahead of the target, considering that this was the purpose
of this job. Figure 11 shows the correlation matrix, and focusing on the target, the suggested exogenous
variables are below:

• BT_C_MLVSS
• D_SS
• BT_C_N
• EQ_N
• Clari_DO
• F/M

 
Figure 11. Correlation matrix.

Table 4 shows the correlation analysis summary focused on the target variable. To be noted,
the selection threshold for the correlation was adjusted to 0.4, thus obtaining most of the variables
suggested by the experts in the study area. However, BT_C_MLSS, BT_C_MLVSS, BT_N_MLSS and
BT_N_MLVSS were highly related; therefore, the set could be represented by a single variable. In this
case, BT_C_MLSS was selected, but any of the rest could be chosen. It is worth highlighting that
EQ_COD on the correlation table refers to the current value of the variable.
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Table 4. Correlation analysis summary.

Variable Value

Flow_to_EQ 0.067
Flow_efl 0.048

BT_C_MLSS 0.50
BT_C_MLVSS 0.51
BT_N_MLSS 0.51

BT_N_MLVSS 0.51
D_SS 0.52
EQ_N 0.51

BT_C_N 0.34
BT_N_N 0.21

D_N 0.18
OxT_pH Morning 0.28

OxT_pH Afternoon 0.28
EQ_pH 0.12

BT_N_pH 0.051
D_pH 0.024

BT_N_DO 0.31
BT_C_DO 0.11
Clari_DO 0.41

F/M 0.40
D_COD_ON 0.0078
EQ_COD (t) 0.61

4.4. Artificial Neural Network

Utilizing selected variables from the correlation study, an artificial neural network was
implemented to forecast the time-series residual. The architecture implemented was a multilayer
perceptron (MLP) fully connected with 7 neurons in the input layer and 2 hidden layers, with 22 neurons
each, and 1 neuron in the output layer to predict the residual component. The neural network was
trained with approximately 80% of the samples, and 147 corresponding samples from the year 2020
were used for the test. During the 150 training periods, the training used the backpropagation algorithm
to update the weights in the neurons, with the mean square error (MSE) as the loss function and Adam
optimizer. Figure 12 shows the preliminary results, where the blue series is the real one and the orange
is the predicted value.

Figure 12. Residual prediction.

The number of neurons in each hidden layer of the neural network was obtained through a grid
search, as shown in Figure 13, using training data.
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Figure 13. Artificial neural network (ANN) tuning.

Using the autoregressive estimation conducted on the trend, seasonal and the residual component
obtained by the ANN, it was possible to forecast the equalizer COD (adding together the three
components) as shown in Figure 14, obtaining a MAPE of 10.8%, which is appropriate with the
values found in the literature, where similar works reported MAPEs between 4% and 11% as good
forecasting performance.

Figure 14. COD prediction.

The prediction achieved and presented above was made day by day, as was the error obtained.
Pikes on the COD dynamic were not reached by the model. However, it was considered to increase the
number of samples to improve the performance of the model in future work.

4.5. Web Platform.

The final result of the platform was designed so that a user could visualize all the variables of
the WWTP dynamically, monitor the COD prediction and check the historical measurements of the
variables (see Figure 15).
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Figure 15. Real-time view.

This section hides a powerful backend behind its interface. The box where the current COD is
displayed responds to the measurement that is currently being read from the COD variable at that
moment. The box titled as Predicted COD is directly connected to the model that gives a prediction in
response to the current COD input and the selected exogenous variables. To compare the behavior
between the real and predicted COD, a window is available, as Figure 16 shows (this figure captured
only behavior with training data). The prescription box is thought of and built for future work. On the
other hand, there is a visualization of all the process variables and a condensed summary in a table of
the measurement of each variable.

 

Figure 16. COD monitoring.

To have a visualization of the historical data, a section was developed with the corresponding
graphs and a summary table to be able to choose a historical data point from the graphs and detail it in
the right table. Figure 17 shows this result.
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Figure 17. Historical data view.

5. Discussion

The selection and characterization of the most significant variables of the wastewater treatment
process have been carried out satisfactorily using correlation analysis, autocorrelations and
decomposition of the time series. With these variables, an intelligent system based on artificial
neural networks was developed to be capable of giving an adequate prediction of chemical oxygen
demand, one of the most suitable variables to measure the level of pollutant load in the water and
make decisions. The results show that the model presented a MAPE of 10.8%, which supports its good
performance according to historical data mentioned in [14], where the testing step ranged between 10%
and 13%, predicting BOD, COD or TSS. Additionally, it is worth mentioning that this work presents as
a novelty the use of time-series decomposition techniques to address the COD prediction and using
an ANN, in comparison with the works presented in Section 2, whose summary can be seen in Table 2.
This methodology can be useful to improve the prediction of some complex variables in which the
ANNs do not have the desired performance. Finally, a platform was possible to design mainly to
visualize available WWTP variables, monitor COD forecasting and consult the historical measurements.

In search of constant improvement of the industrial wastewater treatment process, it is considered
for future works to scale the prediction of the system to other key variables of the process, obtain a larger
amount of data considering newly available measurements in the process and increase the scope of
the prediction.
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Abbreviations

Abbreviation Definition

ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
BN Bayesian network
BP Backpropagation network
COD Chemical oxygen demand
DC Determination coefficient
DT Decision tree
drel Relative efficiency criteria
ELM Extreme learning machine
F/M Food to microorganism
FFNN Feedforward neural network
FL Fuzzy logic
FNN Fuzzy neural network
GA Genetic algorithm
GND Gaussian naive Bayes
GRI Global Reporting Initiative
HRT Hydraulic retention time
ICS Improved cuckoo search
IPW Iterative predictor weighting
KNN K-nearest neighbors
MAPE Mean absolute percentage error
MLPANN Multilayer perceptron ANN
MLR Multilinear regression
MSE Mean square error
MLSS Mixed liquor suspended solids
MLVSS Mixed liquor volatile suspended solids
NARX Multivariate nonlinear autoregressive exogenous
NFC Neuro-fuzzy controller
NH4-N Ammonium
NSE Nash–Sutcliffe efficiency
O&G Oil and grease
PCA Principal component analysis
PCC Pearson correlation coefficient
PLS Partial least squares
QL Q-learning
R Correlation coefficient
R2 Coefficient of determination
RBFANN Radial basis function ANN
RF Random forest
RMSE Root mean square error
RMSEP Root mean squared error of prediction
SCFL Supervised committee FL
SOM Self-organizing maps
SRM Structural risk minimization
SVI Sludge volume index
SVM Support vector machine
TN Total nitrogen
TP Total phosphorus
TSS Total suspended solids
UVE Uninformative variable elimination
WWTP Wastewater treatment plant
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Abstract: Reversing the chemical and quantitative impacts derived from human activity on aquifers
demands a multidisciplinary approach. This requires, firstly, to update the hydrogeological knowledge
of the groundwater systems, which is pivotal for the sustainable use of this resource, and secondly,
to integrate the social, economic and administrative reality of the region. The present work focuses on
the Benalup aquifer, whose exploitation plays a major role in the economy of the area, based mainly
on irrigated agriculture. This activity has had negative consequences for the aquifer in quantitative
and chemical terms, leading to its declaration as in poor condition. The study presented here shows
the results obtained from the application of hydrogeological techniques, remote sensing and citizen
participation tools, which have allowed us to deepen and improve the current knowledge of the
system’s hydrogeological, geometric, administrative and social aspects. Additionally, the lessons
learned from this case study are analyzed. The deficiencies detected are discussed, and alternatives
aimed at the sustainable use of groundwater are proposed, such as the possibility of a joint use
of surface and groundwater resources, the creation of a Water User Association responsible for
the management of groundwater and the need for greater efforts aimed at educating and raising
awareness of water conservation among citizens.

Keywords: aquifer management; water governance; irrigation; unauthorized use; barbate river basin;
biocalcarenites; remote sensing; citizen surveys; groundwater

1. Introduction

The concept of sustainability was brought to the forefront by the World Commission on
Environment and Development (WCED) held in 1987, and, since then, it has been commonly
applied to the whole variety of resources exploited by human society, including groundwater. In fact,
the European Water Framework Directive, enacted in December 2000, establishes that it is necessary
to promote a sustainable water use. While there is a general consensus on this basic principle,
its practical application in natural resource management is daunting [1]. Although the concept of
sustainability has traditionally been based on 3 basic pillars (social, economic and environmental),
its definition depends on the context, and its dimensions are still under discussion. This point of
view is endorsed by numerous authors: Sophocleous (2000) [2] describes sustainability as a dynamic
concept that has yet to be redefined and translated into feasible policies; Shamir (2000) [3] claims that
the concept of sustainability is integrated by up to 10 dimensions, that include hydrology, ecology,
politics, economy and inter/intragenerational aspects, among others; Mays (2007) [4] asserts that
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“because water impacts so many aspects of our existence, there are many facets that must be considered
in water resources sustainability”. The present work is going to focus mainly on the hydrological
aspects of groundwater sustainability, following the criteria established by the U.S. Geological Survey,
which defined this concept as the “development and use of groundwater in a manner that can be
maintained for an indefinite time without causing unacceptable environmental, economic, or social
consequences” [5]. In this regard, it must be noted the intergenerational perspective inherent to this
concept, which, in the words of Sophocleous (2000) [2], implies that “water resources must be used
in ways that are compatible with maintaining them for future generations, thus constraining our
management of water”.

Groundwater constitutes the main and safest source of water, supplying numerous urban and rural
communities and their associated economic sectors, especially in areas of arid and semi-arid climate
where surface resources are available intermittently and seasonally [6]. Besides, groundwater is a
valuable strategic reserve, considering the uncertainty posed by climate change regarding the availability
of water resources in the medium and long term. From a hydrologic perspective, the sustainable
exploitation of aquifers was commonly understood as the adjustment of withdrawals to recharge,
which implied an intrinsic consideration of groundwater as a renewable resource. Nevertheless,
this conception is an oversimplification of the hydrogeological systems. To achieve a thorough
understanding of groundwater bodies (GWB) and their functioning, it is necessary to have a global
vision of the hydrological cycle. This is because the depletion of the water table (WT) of an aquifer
subject to pumping can lead to alterations that not only affect the discharge areas (springs, wetlands
and groundwater-dependent ecosystems), but can also impact the quantity and quality of river flows,
and even reverse the river-aquifer hydraulic interactions.

Great progress has been made in the field of groundwater management and protection since
the last decade of the 20th century, but there are still important problems specific to each site and
hydrogeological system that the water authorities and public institutions must address [7]. Despite the
numerous competences legally attributed to the administrations, in practice, their efforts fall short of
guaranteeing an effective control and monitoring of the status and exploitation of GWB. This situation is
the result of several factors, such as the poor knowledge of hydrogeological systems, the lack of material
and human resources, the existence of inherited regulatory figures that hinder a sound management
of the resource or the lack of guidance for farmers and landowners regarding the efficient use and
protection of groundwater. In addition, it must be considered that the adoption of excessively restrictive
measures by the administrations may lead to social conflicts. In line with this, Galloway & Pentland
(2003) [8] claim that the administrative implementation of groundwater management objectives must
rely on the science of hydrology and that an improved scientific understanding of the groundwater
systems can also reduce management uncertainties and enhance the beneficial use of the resource.

All these considerations evidence that dealing with the multiple problems concerning groundwater
requires a multidisciplinary approach that combines geological, hydrogeological, historical and social
aspects to build up a detailed picture of the system.

This multidisciplinary approach has been endorsed by numerous works that, despite being focused
on the field of hydrology, display a marked integrative vocation. Custodio et al. (2016) [9] reviewed
hydrogeological, environmental, legal, administrative, economic and social aspects of groundwater
exploitation in Gran Canarias and Tenerife. Molina et al. (2009) [10] and Molina et al. (2010) [11]
applied the concept of Integrated Water Resource Management (IWRM) to aquifers in the province
of Murcia incorporating the aforementioned aspects in Bayesian network models. Melloul and
Collin [12] proposed an integrated hierarchy of hydrological aspects, land uses and social needs
to achieve a sustainable use of water. Gleeson et al. (2012) [13] focused on the most sociological
aspects of water management and advocated the pursuit of multi-generational sustainability goals
and the implementation of adaptive management and backcasting methodologies. Gondwe et al. [14]
conducted a multidisciplinary research combining piezometric measurements with geochemistry,
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geophysics and remote sensing techniques to study the karstic systems of the Yucatan Peninsula and
promote the sound management of its resources.

Following this multidisciplinary approach, this study provides a comprehensive vision of the
Benalup groundwater body (GWB 062.014), located in the province of Cádiz (Andalusia, Spain).
On the one hand, geological, hydrogeological and geophysical techniques and laboratory tests were
used to obtain information on the properties, spatial configuration and dominant structures controlling
the functioning of the hydrogeological system. On the other hand, hydrochemical determinations
were carried out to evaluate its qualitative status, which is closely linked to management practices and
the functioning of the system itself. Finally, in order to provide further knowledge of water usage,
remote sensing and citizen participation tools were implemented in the study area. The first was aimed
at monitoring the evolution and distribution of irrigated crops (useful to quantify the exploitation
of aquifers) and the latter at assessing the citizens’ knowledge and perception regarding the local
water resources. A brief revision of the administrative and socioeconomic scenario is also provided.
Merging all this information enabled us to identify weaknesses and set guidelines for the sustainable
management of groundwater. In this case study, the chemical and quantitative problems of the aquifer
are mainly linked to the agro-livestock activity developed in the area and indirectly to the current social
and administrative circumstances. In this regard, it is noteworthy that these problems are shared by 9 of
the 14 (64%) GWB defined in the province of Cádiz by the regional government of Andalusia [15], all of
them presenting similar hydrogeological characteristics. Thus, this paper presents the lessons learned
from the case of the Benalup aquifer, which are applicable to other systems, as well as alternatives and
considerations aimed at the sustainable use of the resource.

2. Case Study

The Benalup aquifer is located in the mid-western sector of the hydrographic basin of the Barbate
River, in the region known as “La Janda” (province of Cadiz), near the Strait of Gibraltar (Figure 1).
In administrative terms, this region belongs to the Guadalete-Barbate Hydrographic Demarcation.
The aquifer studied has an area of 33 km2 and encompasses the whole groundwater body Benalup
(GWB 062.014), which extends across the municipalities of Medina Sidonia, Benalup and Vejer de
la Frontera. In geological terms, the Benalup aquifer consists of Neogene and Quaternary detrital
materials of considerable interest from a hydrogeological point of view. Owing to its location and
characteristics, the aquifer constitutes a natural reservoir of great local importance for human and
agro-livestock supply.

 

 

(a) (b) 

Figure 1. (a) Location of the Barbate River Basin; (b) Detail of the Benalup aquifer and the municipalities
that it encompasses.
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The hydrographic basin that encompasses the Benalup aquifer has a Mediterranean climate with
oceanic influence according to the Köppen-Geiger classification. The precipitation regime presents a
marked seasonal character, with an average precipitation over the basin that exceeds 820 mm/year and
concentrates mainly between November and March. The potential evapotranspiration (PET) reaches
930 mm/year, of which 77% takes place between May and October (UCA, 2019) [16], which conditions
the irrigation water demand.

The productive model of La Janda region has traditionally been based on agriculture and livestock
farming, while the industrial activity is almost inexistent. In particular, irrigated agriculture is of
major importance and covers a surface of 15.000 ha, supplied with both surface water (84%) and
groundwater (16%). Surface water comes from the Barbate, Celemín and Almodóvar reservoirs
(joint capacity of 277 hm3), which are exploited to supply mainly irrigation. The groundwater resources
in La Janda region come from the Barbate GWB (GWB 062.013) and the aforementioned Benalup GWB
(joint extension of 145 km2); both aquifers display similar characteristics and are subject to intense
exploitation. While the surface resources are managed in a planned and coordinated manner by a
Water User Association (WUA), groundwater lacks an entity responsible for its control. This absence
of a management entity responsible for the groundwater resources has led to an unplanned and
uncontrolled exploitation of the aquifer.

Thus, the Benalup aquifer is exploited through several hundreds of boreholes, many of them
of illegal character and without administrative authorization. Moreover, despite the efforts made
by the administration to control the withdrawals, most of the large-flow boreholes are not equipped
with water flow-meters or devices to control the operation time. The Benalup aquifer is exploited
to serve two purposes: Firstly, to supply drinking water and secondly, for irrigation. This GWB
supplies around 10.000 inhabitants distributed by several urban settings; Benalup, the most important
(6.929 inhabitants, eastern sector of the aquifer), and other small settings of minor importance;
Badalejos, Malcocinado (northern sector), Cantarranas (southern sector) and Naveros (outside the
aquifer boundaries), whose annual consumption is about 0.85 hm3/year (20% of the total extractions).
To ensure this supply, there are seven boreholes operating in different sectors of the aquifer, which
are managed by either the city council or specialized water companies. However, the transfer
of surface water from the adjacent Guadalete river basin began in 2019, managed by the entity
“Consorcio de Aguas de la Zona Gaditana”. This water aimed at human consumption represents
today 1

4 of the urban demand previously covered with groundwater, but its proportion will gradually
increase, so that exploitation for this purpose will become less important. Moreover, we should also
mention the existence of important recreational facilities, with a golf course of about 50 ha and two
equestrian facilities.

Agricultural pumping is carried out to irrigate the plots and farms located on the aquifer, being
the only available source for this purpose. The authorized irrigated area within the aquifer is 785 ha,
which represents 24% of the total surface of the system. The most commonly grown crops are potato
and sweet potato, sunflower, carrot, leek, citrus and pasture for feeding cattle. The number of boreholes,
the volume extracted and the actual irrigated area are difficult to determine. While many agricultural
boreholes are no longer operating, owing to farm abandonment, other wells/boreholes with lower
flow have been dug to supply second residences, which are used during the weekends or holidays
and are usually linked to illegal land use. The area affected by these changes is more than 140 ha,
with an average occupation between 20% and 30%. Indeed, in the framework of the present study,
a total of 384 plots of this type and around 300–400 inhabitant-equivalent have been estimated.
While urban areas have a sanitation network and purification and/or discharge systems to the river
network outside the limits of the aquifer, many of the second residences lack wastewater collection
systems, constituting potential sources of contamination. However, their effect is considered of minor
importance compared to the agricultural diffuse pollution.

In summary, groundwater in the Benalup aquifer is extracted by individuals in an unplanned and
uncoordinated manner, under poor administrative control. Moreover, the fact that some of the farms
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are covered by the 1879 Water Act and included in a “Catalogue of Private Waters” is another factor
contributing to this chaotic situation. This uncontrolled exploitation has had detrimental chemical
and quantitative effects on the aquifers. In fact, the Benalup aquifer was declared to have a poor
quantitative and chemical status in the Hydrological Planning documents [15], which demand the
adoption of measures to reverse this situation and achieve a sustainable use of the resource in the
medium term. The poor quantitative status was declared because the rate of water extraction exceeded
the limits set by the current legislation. The poor chemical status responds to the evidence of nitrate
contamination linked to agricultural activities.

3. Administrative and Socioeconomic Framework

In southern Spain, as in other semi-arid and Mediterranean countries, the intensive exploitation
of groundwater since the second half of the 20th century has given rise to what has been called
a silent revolution, whose main beneficiary has been the sector of irrigated agriculture [17,18].
This phenomenon has contributed not only to achieve food security in the country, but also to a
profound impact in micro and macroeconomic terms due to the important interrelationships of
irrigated agriculture with other sectors of the economy. Likewise, groundwater exploitation has been
fundamental for the development and consolidation of the population in rural areas. In Andalusia,
the productivity of irrigated crops based on the exploitation of groundwater is remarkably higher
than that obtained in crops that use surface water. Furthermore, farmlands based on groundwater
exploitation create 3 times more employment per m3 of water used [19]. This higher productivity
can be explained, firstly, because water is extracted at the point of use, without transport over long
distances, and secondly, because farmers can use it “on demand”, maximizing its efficiency by reducing
the energy costs derived from pumping [20].

However, this silent revolution has traditionally been developed without an effective control by
the Hydraulic Administration, hindering the adequate management of groundwater [21] and resulting
in impacts of different natures on aquifers. In line with what was stated above, the legal status of
groundwater in Spain has undergone a significant evolution in recent decades, with numerous laws
and doctrinal opinions related to the social, political and economic conflicts of the moment. Until 1985,
the regulatory regime of groundwater was comprised in two norms: The 1879 Water Act and the
Civil Code, which recognized the right to exploit groundwater as a consequence of land ownership [22],
enabling the extraction of the resource without administrative requisites.

More than a century later, the enactment of the Water Act of 1985 was a turning point that
changed the legal regime of water decisively. In the first place, it proclaimed the inclusion of
groundwater in the public domain and suppressed the right to appropriate this resource through
wells and galleries. Secondly, it conferred to the River Basin Agencies (Hydrographic Confederations),
which belong to the State Administration, the competence for managing groundwater and granting
authorizations and concessions for its exploitation. These Hydrographic Confederations are also
responsible for the inspection and monitoring of the water resources, for the enforcement of the
conditions set by the authorizations and for carrying out plans, programs and actions to promote
water saving and an efficient use of the resource in economic and environmental terms. In the case
of those hydrographic basins that belong entirely to an Autonomous Region, such as Andalusia, the
competences attributed to the Hydrographic Confederations would be transferred to the Autonomous
Government (Junta de Andalucía) through the corresponding organisms. They would also keep a
Registry of Public Waters and would be responsible for declaring aquifers as over-exploited, having to
formulate management plans aimed at their recovery.

The radical change in water ownership introduced by the Water Act of 1985 meant that the new
regime had to be made compatible with the rights acquired by owners with the previous law. To achieve
this, the law considered two possibilities: (i) that groundwater owners could benefit from the resource
for 75 additional years, by virtue of administrative concessions or authorizations for the occupation or
use of the public domain, or (ii) in a 3-year deadline, owners who did not have the corresponding
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administrative authorization had to regularize their situation by registering in a Catalogue of Private
Waters [23]. Nowadays, the legal regime of groundwater is set up by the Act 10/2001 concerning the
National Hydrological Plan, which emphasizes the role of users in water management, and by the
European Directive 2000/60/EC (Water Framework Directive). However, after more than two decades,
the groundwater situation remains chaotic; both the Water Registry of Public Waters and the Catalogue
of Private Water are considerably incomplete, and hundreds of thousands of new wells and boreholes
have been dug since the Water Law of 1985 without the corresponding authorization and outside the
administration [24].

As stated above, in La Janda region the only regulatory entity, apart from the regional
Water Authority, is a Water User Association that manages the surface water (rivers and reservoirs);
there are no groundwater management entities in the area. The Water Law foresees the constitution of
User Communities that incorporate all the beneficiaries of a concession. Said communities are public
law corporations dependent on the corresponding River Basin Agency, having juridical personality
and its own patrimony. The constitution of these User Communities is mandatory in the case of
GWB in poor status; contravening this disposition would lead to the loss of the concessional rights.
Water resources can be used by the community members with different purposes (supply, irrigation,
industrial use). When most of the hydric resources are invested in irrigation, these entities are termed
Irrigation Communities. Among their competences are the subsidiary execution of agreements breached
by users, the expropriation and imposition of easements and the performance of works and facilities
that the administration may require. In this sense, the current legislation advocates self-regulation.

Finally, some authors (Stephano et al., 2015) [25] identify four general stages in the groundwater
exploitation development in Spain, which are closely related to the national legal and economic scenario:
(1) In the first stage (silent revolution), the number of wells increased in a paced manner, and the
administrative efforts were focused on surface water. (2) The second stage coincided with the approval
of the 1985 Water Act and the intensification of drilling activity. These circumstances, coupled with
the severe drought of 1991-1995, the EU irrigation subsidies and the inability of water authorities
to curb unauthorized groundwater extractions resulted in a dramatic drop in WT. At the same time,
the consolidation and expansion of irrigation were strongly supported by the authorities responsible for
land-use policies. (3) In the third stage, users began to associate to protect their activities from sanctions
and well closure, to achieve their legal recognition as water users and to lobby for new water resources
to complement the shrinking or increasingly expensive groundwater resources. (4) The fourth stage,
termed “technological fix”, was marked by state-subsidized programmes for the modernization of
irrigation systems and the search for additional water to complement groundwater resources and
ensure the access to cheap, good-quality water. This situation in Spain has enabled the partial recovery
of the water table in some aquifers. However, other factors, such as the occurrence of exceptionally
rainy periods, that have favored the recharge of aquifers, or the fact that many farmers have hit the
ceiling in their capacity to sell their products in a competitive way, choosing to consolidate their activity
instead of increasing their pressure on the resource, must be considered.

Figure 2a describes the general trend of WT in Spain through the four stages considered by
De Stephano et al. [25] and the most important features/events of each period. Figure 2b shows
the general trend of the average piezometric level in the Benalup aquifer, according to historical
data from the local monitoring network (11 piezometers with monthly records). Both trend lines
display similarities, but the recovery of the piezometric levels during the last decades appears delayed
in the Benalup aquifer, a circumstance that is more related to the agricultural land abandonment than
to the technological fix stage, as will be discussed in subsequent sections.
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Figure 2. (a) General trend of the water table (WT) in Spain during the four stages considered by
De Stephano et al. (2018), with the most important features/events of each period indicated (Source: [25]).
(b) General evolution of the average WT of the Benalup aquifer. The dotted line indicates the period in
which there are no quantitative records, but historical evidences. The solid line shows the evolution of
the WT since historical records are available.

4. Materials and Methods

4.1. Data Collection and GIS Implementation

Cartographic databases (Digital Terrain Model (DTM) and digital cartography), geological and
hydrogeological information from pre-existent monitoring networks and other relevant data from
scientific and technical documents were collected. This information and that generated in the
framework of this study were combined in a Geographic Information System (GIS) in order to be
managed and analyzed, and to obtain graphical outputs.

4.2. Hydrogeological Methods

4.2.1. Piezometric and Hydrochemical Monitoring

An inventory of boreholes was made with information gathered from field visits and
in situ observations. This information was subsequently used to design a piezometric monitoring
network and a hydrochemical one.

Three piezometric control campaigns were carried out in successive years (2017, 2018 and 2019)
at the beginning of the dry season. These campaigns allowed us to get to know the functioning of
the aquifer regarding aspects such as the recharge and discharge areas, the main flow directions,
the hydraulic relation between the aquifer and the river network, the influence of pumping and the
compartmentalization in subsystems with a relatively independent functioning. In each campaign,
the average density of control points was 1 point/km2. These piezometric records were subsequently
compared with the historical data from the pre-existing control networks that have been operating
since 1993, to identify changes in water storage occurred in the last 25 years and their spatial distribution.
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Furthermore, 7 automatic logging devices were installed in some of the wells distributed
throughout the aquifer to obtain continuous records of water table and temperature fluctuations since
June 2018. This information has not only enabled us to determine the storage status of the aquifer at
each moment, but has also been useful to understand: (i) the effect of recharge due to rain infiltration;
(ii) the behavior differences among the aquifer’s sectors depending on their hydrogeological properties;
and (iii) the exploitation regime of nearby boreholes and the effect of pumping in distant boreholes.
In addition, the records from the logging devices were coupled with precipitation records from the
nearby meteorological station of Vejer de la Frontera (station no. 6 of the Agroclimatic Network
of Andalusia), located 6.5 km south of the centroid of the aquifer. This enabled us to monitor the
response of the aquifer to recharge and to quantify the infiltration rate.

Two hydrochemical sampling campaigns were carried out in December 2018 (recharge period)
and May 2019 (beginning of the dry period) to determine the hydrochemical facies and the
quality of the groundwater resource. Samples from about 20 control points (which included
springs and uninstalled/exploitation boreholes) were taken. Physical-chemical parameters were
determined in situ (temperature, conductivity, pH, redox potential and dissolved oxygen).
The hydrochemical determinations for each sample were carried out in the laboratories of CEHIUMA
(University of Malaga) and included (i) major ions (HCO3

−, CO3
2−, Cl−, SO4

2−, Na+, K+, Mg2+

and Ca2+), (ii) nitrogen compounds (NO3
−, NO2

− and NH4
+), (iii) minor ions (PO4

3−, F−, Br−, Sr2+,
Ba2+), (iv) trace elements (Be, Al, P, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Cd, Sn, Ba, Hg, Pb)
and (v) stable isotopes (δ18O, δD, δ13C). These analyses are important not only to corroborate the
chemical status of the aquifer, but because apart from being exploited for irrigation, its water is used
for human consumption.

In addition, the Chloride-Mass Balance Method (CMB) was applied to estimate the effective
infiltration into the aquifer, assuming that: (1) chloride in the groundwater originates only from direct
precipitation on the aquifer, (2) chloride is conservative in the system, (3) the chloride-mass flux has not
changed over time and (4) there is no recycling or concentration of chloride within the aquifer [26,27].
For the application of the CMB method, precipitation was systematically sampled between December
2018 and May 2019.

4.2.2. Geophysical Campaigns

A geophysical campaign was carried out to improve the current knowledge of the geometry of
the aquifer. This campaign included the application of electrical and seismic techniques. The electrical
works comprised 5 soundings with 585 m extension Schlumberger arrays. The seismic ones comprised
5 MASW (Multichannel Analysis of Surface Waves) seismic profiles with cable lengths between 110
and 120 meters and 12 4.5 Hz geophones. The information obtained from both geophysical surveys
was combined with that from borehole columns and the Digital Terrain Model (DTM) to deduce the
arrangement and thickness of the aquifer materials and, indirectly, to estimate the groundwater reserves.

4.2.3. Determination of Hydraulic Properties

Finally, to characterize the hydraulic properties of the aquifer, laboratory tests on the grain size,
porosity and permeability were conducted. Additionally, pumping tests were carried out at some
exploitation wells to determine the transmissivity (T) and storage coefficient (S) of the materials.

4.3. Remote Sensing

Remote sensing-derived information was used to identify the irrigated plots over the aquifer.
Comparing this information with the official databases of irrigation authorizations allowed us to
identify (i) the unauthorized areas where groundwater was being applied and (ii) the authorized
irrigation areas that were not being cultivated.

To do so, satellite images from the ESA Copernicus program were used. These images were
obtained from the MultiSpectral Instrument (MSI) aboard the Sentinel-2 mission, which comprises
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a constellation of two “twin” satellites (2A and 2B) placed in the same solar synchronous orbit.
The processing level chosen for the images was an orthorectified Bottom-Of-Atmosphere (BOA)
reflectance (Level-2A).

The Normalized Difference Moisture Index (NDMI) was used to spot the plots that were irrigated
during dry periods. The NDMI was selected because it provides information about the level of
water stress in crops [28]; in principle, high values of this index indicate soil moisture and, therefore,
irrigation. The product that indicates the moisture level of crops was obtained from the combination of
the NIR-Near InfraRed reflectance and the SWIR-Short Wavelength InfraRed reflectance:

NDMI = (NIR − SWIR)/(NIR + SWIR) (1)

The remote sensing campaign of this pilot study comprised the hydrologic years 2016/17 and
2017/18. The analysis was focused on rainless periods, since during rainy months soil moisture and,
therefore, the NDMI index are generally high, and the absence of water stress in crops makes
irrigation unnecessary. Accordingly, a total of 20 images were selected from two temporal windows
coinciding with dry periods. The irrigated areas obtained in this study are referred to average values.
Finally, it should be mentioned the intrinsic difficulty in the identification of irrigation in fruit tree
crops of permanent canopy (citrus), which has been estimated at 34 ha.

4.4. Communication With Stakeholders

This study included the implementation of several communication channels and participation tools:
(i) Personal communications and field visits: In general, these activities have contributed to a

better knowledge of the physical and social environment and to contextualize the circumstances of
the aquifer. These tasks consisted of conversations with landowners about their concerns, problems and
difficulties in developing their activity. Moreover, the authors could have access to private properties
and facilities. It should be noted that some landowners were reluctant to provide information or access
to their farms, owing to (in many cases) the illegality of some aspects of their activity. In any case,
these tasks were fundamental to take measurements in wells and water samples and to verify on site
the remote sensing products.

(ii) Informative sessions and round tables: Two official informative sessions and several meetings
were conducted, congregating a wide spectrum of participants and stakeholders of the Barbate River
Basin area (water users and managers, directors of the adjacent natural parks, researchers of different
profiles, administration technicians etc.). These acted as a forum where some of the preliminary
results obtained by the authors were presented and where the participants shared their knowledge,
expertise and concerns about different aspects of the study area and its resources.

(iii) Survey campaign: A survey campaign was carried out among the locals in 2019 to gather
information about the water users’ perception and knowledge about the local groundwater resources
and the impacts to which they are subject. The questionnaire consisted of 9 multiple choice
(closed-ended) questions (see Table A1) aimed at exploring citizens’ perception regarding water
resources, pressures and other adverse impacts related to climate change. These 9 questions were
selected from a more extensive questionnaire. The method used was a simple random sampling
and the population studied (N) comprised 10.000 inhabitants, approximately, in 2019. Surveys were
classified according to different criteria: municipality, age intervals, gender and occupation. The total
number of questionnaire surveys completed was 98, which implies a confidence level of 95%, a 10%
margin of error and p = 0.5 [29]. All the interviews were conducted personally by the authors, and the
respondents were allowed to suggest alternative answers.
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5. Results

5.1. Geometry and Hydraulic Properties

The Benalup aquifer constitutes a tabular relief that rises several tens of meters above the
surrounding river network. Most of the formation is flanked by a perimetral scarp, and, according to
physiographic criteria, it can be divided into three compartments, whose hydrogeological behavior
is independent and will be discussed later: (i) Mesa Alta, located to the west (6 km2), (ii) Mesa Baja,
that constitutes the major part of the aquifer (25 km2) and (iii) Dehesa de Espartinas, located in the
southern area of the central sector (2 km2). The combined analysis of the DTM, the geological map of
the area (Figure 3) and observations in situ allowed us to define the arrangement of the geological
formations and revealed some significant tectonic accidents.

Figure 3. Geological map of the Benalup aquifer area. The main aquiferous materials that constitute
the system are indicated in red. Source: Continuous Digital Geological Map of Spain (GEODE) [30].

As Figure 2 shows, the aquifer is made up of Neogene and Quaternary detrital materials,
from bottom to top: (i) cross-bedded Upper Miocene biocalcarenites with levels containing
fossil fragments, (ii) yellowish-white calcareous sands of the Pliocene age and (iii) Quaternary
aeolian sands of special interest regarding system recharge.

The sedimentary formations that constitute the aquifer are scarcely deformed, adopting a
subhorizontal position or forming a smooth syncline, except for the western sector, next to the great
tectonic accident that separates Mesa Alta from Mesa Baja, where layers dip 45◦ E. Said steep dips are
attributable to the drag effect of the fault.

The impervious wall of the aquifer comprises either blue marls from the Upper Miocene or
turbiditic materials from the Gibraltar Arc. The latter are intensely deformed and consist of highly
cemented sandstone, clays, marls and calcareous marlstones of very low permeability. The wall
thickness ranges between 20 m at the southwestern sector and 130 m at various points in Mesa Baja
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(Figure 4), where a significant unevenness was observed. This is attributable to the morphology of the
paleorelief of the deposit basin. The average thickness has been estimated at 81.5 m and the volume of
the aquifer at 2.650 hm3.

 
Figure 4. Thickness map of the aquifer. The red dotted lines indicate the presence of tectonic faults,
and the black dots the locations where the depth of the impervious wall is known (through borehole
columns and geophysical techniques).

Of the three geological formations that constitute the aquifer, the lower one
(Upper Miocene calcarenites) is the most productive due to its hydrogeological characteristics.
These calcarenites are a sedimentary formation of marine origin and coarse grain (coarse sand with
conglomeratic levels), rich in calcareous fossils, that can reach a thickness greater than 100 m. Although the
levels of coarse grain are abundant, lateral changes of facies and interspersed levels of finer grain (fine sand,
silt and clay) have been detected. These materials initially present interstitial porosity, but the fossil-rich
levels have undergone dissolution processes that produced secondary porosity. Based on the laboratory
determinations, the total porosity (n), although highly variable, can present values of 0.28, with an effective
porosity (ne) of 0.06 and a hydraulic conductivity (K) of 11 m/day.

Over said calcarenites, there is an intermediate formation that mainly consists of yellowish
sands of littoral origin, from the Pliocene age. Its base is practically indistinguishable from the
aforementioned calcarenites, except by dating criteria. Upwards, the grain size decreases and brings
about lateral changes of facies, with fine sands and interspersed silts that can reach a thickness of
several meters. The thickness described for these materials is less than 20 m. Locally, they can act as
aquitards and produce semi-confinement conditions. Laboratory tests carried out on samples of silty
fine sand levels have given n values of 0.45, a ne of 0.01 and a K of 0.04 m/day.

The most superficial and recent formation (Quaternary age) is constituted by loose aeolian sands
that form a more or less continuous mantle over the underlying materials. These are well-graded
medium to fine sands, with an interstitial porosity that can locally present lagoon-related levels of
clayey nature. In general, the thickness of this formation is less than 5 m. Laboratory tests on this type
of material showed n values of 0.45, ne of 0.04 and K of 3 m/day.

An initial approximation of the volume of gravific water within the aquifer was made using the
values above and considering an intermediate ne (0.035) between that determined for fine Pliocene
sands and that of the Miocene calcarenites: the volume obtained was 80 hm3.

In addition to the aforementioned laboratory tests, the results of previous works and
the methodologies carried out within the framework of this study have been compiled,
displaying discrepant values (Table A2).

The K values varied by three orders of magnitude and were between 0.04 and 60 m/day,
which undoubtedly responds to the grain size of the material and, in the case of the calcarenites, to the
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greater or lesser presence of karstified levels in the aquifer formation. During the pumping tests, the
maximum K values (30 to 60 m/day) were obtained in those sectors where preferential flow paths
and conduits linked to dissolution processes are important. The lowest K values (0.04 m/day) were
obtained during laboratory tests on silty sand samples of the Pliocene age. In any case, an average
K value between 1 and 10 m/day can be representative of the whole formation, although the presence
of silty materials can significantly reduce the permeability and generate multilayer-aquifer conditions
if the system is analyzed in detail.

The S values of the aquifer also varied by two orders of magnitude, between 6 × 10−2 and 5 × 10−4.
In this case, S values can be grouped into two classes, that will be considered as representative of
different hydraulic conditions: (i) values around 4.5 × 10−2, related to an unconfined regime within
the aquifer, and (ii) values of 1 × 10−3 or less, which may reflect the influence of low permeability
levels (linked to the presence of silts, clays, etc.) that locally produce semi-confinement conditions in
the system.

5.2. Aquifer Hydrodynamics Piezometry

As a whole, the Benalup aquifer functions as an unconfined system, although semi-confinement
conditions associated with the presence of low permeability materials can be found locally,
as previously stated. The aquifer recharge takes place due to rain and runoff infiltration through
the permeable outcrops. Thus, the permeable formation of loose aeolian sands that extends over a
large part of the aquifer and enhances rain percolation plays a decisive role in this process. Various
authors have estimated the rain-associated recharge at 20–30% (although there are no rigorous studies
of this phenomenon), which would mean inputs of 5.3 and 7.9 hm3/year into the system [15,31,32].

The topographic position of the aquifer ensures the absence of hydraulic connections with the
surrounding rivers. The natural discharge of the system occurred exclusively through the springs
located in the perimeter of the aquifer, in ravines and troughs produced by erosion. Evapotranspiration
takes place in those locations where the WT is close to the surface. The exploitation of the aquifer began
in the 1960s–1970s and led to an adaptation of the system. At first, the piezometric level decreased
progressively until its stabilization, which resulted in the desiccation of some springs. Today, only two
springs that evacuate more than 0.1 hm3/year remain; the first is located in the northern area, associated
with the Mesa Alta compartment, and the second one is located in the south, associated with the Mesa
Baja compartment. It should be noted that the return flows from some irrigated plots could mean an
additional water input into the system, which, although not being quantified, is estimated as 10% of
the irrigation quotas.

The results obtained in the 3 piezometric campaigns were similar, with differences of less than
0.5 m among them in the different areas of the aquifer, not presenting a clear trend. The highest
WT levels were found at the western and eastern limits of the aquifer, with values greater than
100 m.a.s.l. (Figure 5). These sectors are placed at higher altitudes and coincide with the Miocene
calcarenite outcrops. Groundwater flows toward the aforementioned discharge areas are located
to the north (Rendón spring, about 50 m.a.s.l.) and south (Cucarrete spring, about 45 m.a.s.l.).
The piezometry reveals that the three differentiated compartments of the aquifer (Mesa Alta, Mesa Baja
and Dehesa de Espartinas) present leaps related to hydraulic discontinuities that isolate each subsystem.
These discontinuities produce a significant increase in the hydraulic gradient and are related to tectonic
accidents identified in situ and/or on the DTM, and may be the result of the thinning of the calcarenite
formation, or the contact between materials with different permeability.
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Figure 5. Piezometric map of the Benalup aquifer in May 2019, showing the water table (WT)
level distribution. The blue arrows indicate the general flow direction in the porous media and the
dotted yellow lines the assumed hydraulic barriers.

Figure 6 shows the changes on the WT levels over the last 25 years. While in the sectors closest to
the natural discharge areas the WT was practically stabilized, with differences of a few decimeters,
other sectors present significant drawdowns of 9 m (Mesa Alta compartment) and 3 m (N sector of
Mesa Baja compartment).

Figure 6. Differences in the water table level (WTL) recorded in May 2019 and June 1994 considering
the coincident points of the monitoring network.

The largest drawdown is linked to the intensification of pumping with agricultural purposes.
However, this is presumably a local effect, as its influence has not been detected in the nearby boreholes
(see Figure 7).

33



Sustainability 2020, 12, 5215

 
Figure 7. Evolution of the annual average WT level, obtained from monthly measurements at various
points in the aquifer for the period 1993–2018 (25 years). The drought period 5/2005 to 11/2008 produced
a general drawdown in the WT level of the aquifer.

Conversely, in the eastern sector of Mesa Baja compartment, a WT recovery of about 5 m
was observed. This phenomenon is attributable to the different pumping rates and intensities
associated to the boreholes from different farms and those exploited for urban supply. In any case,
it should be reminded that the historical records start years after the beginning of the exploitation of
the aquifer, which means that only some vestiges and qualitative references of the natural regime of the
aquifer (dried-out springs and traditional wells, personal communications with older inhabitants, etc.)
remain today.

Regarding the evolution of the WT during the last 25 years (Figure 7), a slight general trend of
recovery has been detected in practically all the monitoring wells of the network for which there
are records. This trend, however, is masked by the occurrence of drier periods and the dynamics of the
aquifer itself, which is influenced by pumping at the local level. Thus, in most of the control points,
it has been detected a piezometric increase between 0.2 and 1.25 m in the last 25 years. It is noteworthy
that in one of these wells the level rise is noticeably larger, of almost 4 m for that period. Nonetheless,
in the last 3 or 4 years, a slight drawdown trend has been detected, which is the result of several years
with below-average precipitation. The 2005–2008 drought resulted in drawdowns between 1 and
2.5 m depending on the sector, more attributable to a reduced recharge than to an intensification of the
exploitation, which gives an idea of the aquifer’s natural regulation capacity.

The analysis of the piezometric level records obtained from the automatic loggers reveal that
the aquifer’s response to recharge is remarkably different among sectors. Figure 8 shows some of the
records expressed as WT increments with respect to that existing at an initial instant, coupled with the
daily precipitation registered.
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Figure 8. Evolution of the WT increases in the seven monitoring boreholes equipped with dataloggers
during the recharge period (October 2018 to January 2019).

While in D4 the piezometric level rise in that period was practically nil, in D5 and D6 it was very
sharp (3.22 and 1.94 m, respectively). The wells D2, D3 and D7 showed intermediate increases in their
WT, around 0.8–0.9 m. Finally, D1 registered an intermediate piezometric evolution between the latter
group and D4. Figure 9 shows the spatial distribution of the WT rises (attributable to the autumn rains
of 2018) obtained from the interpolation of the values.

 
Figure 9. Spatial distribution of the rises in WTL during the recharge period (October 2018 to January 2019).
Total precipitation: 284 mm.

Assuming that precipitation is homogeneously distributed in space and given that the topographic,
edaphic and vegetation coverage conditions are very similar, the differences in the infiltration rate
can be considered insignificant for the different monitored sectors of the aquifer. Thus, it can be
inferred that the main factor conditioning the piezometric rise linked to recharge episodes is the ne of
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the rock. The aquifer responds with high rises in sectors with low ne, such as in the D5 sector, where
the S value obtained during a pumping test was 0.001. In sectors with high ne, such as at the eastern
end of Mesa Baja, where there is evidence of dissolution conduits and rapid flow, the WT increases
are reduced. Admitting an average ne of 0.045 and an average rise of 0.85 m as a consequence of
rainfall between October and January, an infiltration rate of 13.5% is obtained. Such infiltration rate is
considered as a default value owing to the probable influence of some pumped boreholes.

5.3. Hydrochemistry

The analysis of the samples reveal that groundwater mineralization was medium. In the first
sampling campaign (December 2018), the conductivity values ranged from 243 to 1299 μS/cm, with an
average value of 706μS. In the second campaign (May 2019), the conductivity values were slightly higher,
ranging between 310 and 1383 μS/cm, with an average value of 792 μS/cm. In both cases, the highest
conductivity values were found in the vicinity of Cantarranas (southwestern sector of the aquifer),
while the lowest were found in a shallow piezometer on sands, with a vadose zone only 5 m thick.
The pH was generally slightly alkaline, with an average value of 7.2 in the first sampling campaign
and 7.4 in the second.

As can be seen in Figure 10, the predominant water type in the aquifer system is calcium bicarbonate,
which is typical of porous media with abundant calcareous material (in this case fossil clasts). In the
first sampling, calcium bicarbonate facies represented 73% of the total samples, and in the second 85%.
In the sector of Cantarranas/Malabrigo, facies evidenced the dissolution of evaporites (gypsum,
halite) or, perhaps, the influence of marine congenital waters, as they were of the sodium chloride or
calcium-chloride-sulfate type.

 

Figure 10. Stiff diagram displaying the groundwater facies in the sampling points.

The CMB method gave as result an effective infiltration of 18% of the rain for the control period.
This value was obtained considering: (1) an average chloride concentration in rainwater of 5.6 mg/L (this
value was weighted by the amount of precipitation) and (2) a mean value of Cl− concentration in the
aquifer of 30.9 mg/L. It should be noted that, to calculate the average value of chloride in groundwater,
some well samples had to be discarded either due to their location in those sectors where the lithology
contributed to the salt inputs (Cantarranas-Malabrigo sector) or due to their proximity to irrigated
agricultural areas, since these did not meet the initial premises.

Nowadays, it is widely known that the agricultural activity represents the main source of nitrate
inputs into the aquifers [33–35], an important problem that might lead to the declaration of these
systems as being in poor condition. This is the case of the Benalup aquifer, declared in poor chemical
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condition for exceeding the permitted threshold values of this ion. For this reason, nitrate analyses were
especially relevant in this study. Of the total of 35 samples collected during the two sampling campaigns,
17 (7 in December and 10 in May) exceeded the legal limit set at 50 mg/L, which represents about
50% of the samples. Figure 11 shows the spatial distribution of nitrate concentrations in the sampling
campaign of December. The average NO3

− concentration found was 44 mg/L, with values ranging
between 0.8 and 250 mg/L. The latter value, which is extremely high, is attributed to point-source
contamination from a poultry farm in Mesa Alta. Values of this magnitude were not detected during
the second sampling campaign. In any case, during the second sampling (May), the nitrate average
value was higher, 55.9 mg/L, with concentrations ranging from 0.6 mg/L (on a shallow borehole in a
non-agricultural area) to 168.7 mg/L.

 

Figure 11. Nitrate concentrations for each monitoring point corresponding to the first sampling
campaign (December 2018).

Figure 12 shows the concentration of metals and trace elements obtained during the first
hydrochemical campaign. The threshold values set by the Spanish legislation for drinking waters
were taken as reference for the elements Al, Cr, Mn, Fe, As, Se, Cd, Sb, Hg and Pb, as they are more
restrictive. In the first sampling campaign, only three points exceeded the permitted concentrations
of Mn (50 ppb) and two of them also exceeded the Fe limit (200 ppb). Another third point exceeded
the maximum legal concentration of Se (10 ppb). During the second sampling campaign, only one of
the previously mentioned points kept displaying high concentrations of Fe and Mn, which may be
a result of the construction characteristics of the borehole itself, as it is a cased piezometer with low
water renewal.
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Figure 12. Boxplot showing the values for the median, maximum, minimum and upper and lower
quartiles for minor elements corresponding to the first sampling campaign (December 2018).

5.4. Remote Sensing for the Identification of Irrigated Plots

Figure 13 displays as an illustrative example a selection of the results obtained in this study.
Specifically, it shows the time-space evolution of the NDMI values obtained between June and
September of 2018.

 
Figure 13. Time-space distribution of the NDMI values in the Benalup aquifer obtained from processed
images from the Sentinel-2 mission.

On the one hand, the orange tones indicate low NDMI values, and therefore soils with a low
moisture content and stressed vegetation. On the other hand, the blue tones point out high NDMI values
that correspond to soils with high moisture content and/or non-stressed vegetation. Since there was no
rainfall in the 30 days prior to the obtention of the processed satellite images, the high soil moisture
levels are attributable to irrigation. It should be noted that some of the plots with permanently high
NDMI values correspond to areas with natural ever-green vegetation that are not subject to water stress,
due to being adapted to the local climatic conditions. Some areas covered by this type of vegetation
can be observed in the western end of Mesa Alta compartment. In order to avoid the influence of
these naturally vegetated plots in the analysis, all the areas that were not classified as agricultural
land according to the official land use databases and presented constant and high NDMI values were
excluded from the “irrigation plot” category. Taking all these aspects into consideration, and according
to the NDMI index, the irrigated plots were identified and compared with the distribution of the
irrigation licenses. The results obtained evidence a mismatch between the actual irrigated plots
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and those regularized by the administration. The total irrigated area in 2017 and 2018 was similar,
with a monthly average of 296 ha. Of this area, 213 ha (72%) held irrigation licenses, whereas 83.5 ha
(28%) affected land with no declared license comprising rainfed land and other agricultural uses.
The maximum value of irrigated area (479 ha) was observed in May 2017 and represented 60% of the
total area classified as irrigated land (786 ha).

5.5. Communication With Stakeholders

5.5.1. Personal Communications and Field Visits

The information obtained in this section is qualitative, sometimes subjective and difficult
to systematize. However, some results can be cited:

• Identification of springs and wells that have disappeared as a consequence of pumping.
• Identification of the WT position prior to the exploitation in some sectors of the aquifer.
• On-site corroboration of farmland abandonment and its underlying reasons; low profitability

and commercialization problems, population aging and lack of generational renewal,
administrative restrictions, etc.

• Identification of unauthorized changes in land use and illegal groundwater abstractions.
• Recognition of the drinking water exploitation regime and the changes occurring because of it.

5.5.2. Informative Sessions and Roundtables

These initiatives enabled to contrast the water users’ posture and that of the administration,
as well as to seek possible alternatives combining law enforcement, economic development and a
sustainable exploitation of the aquifer. An important outcome of these events was the idea that the
hydrological knowledge of the aquifer should be improved in aspects such as the quantification of
recharge, assessment of extractions, nitrate concentrations in groundwater, etc.

5.5.3. Citizen Surveys

The results obtained in the survey campaign highlight that most respondents know the origin of
the supply water they consume. More specifically, 37.2% of the participants, mostly farmers belonging
to the Water User Association, were supplied with water from the local reservoirs, while 47.8%
claimed to use groundwater in their farms and households. In addition, 8.9% chose the option “other
alternative sources”, which could be attributed to a lack of knowledge about the origin of the water
supplied to their own dwellings. It is noteworthy that most respondents supplied by the public
network attributed its origin to surface water, when it is actually groundwater.

Water resources were generally regarded as adequate both in terms of quality and quantity (average
scores of 6.5 and 6.3 out of 10, respectively). In line with this, almost 3/4 of the respondents pointed
out the absence of conflicts arising from water exploitation. However, those who knew about the
existence of conflicts referred to the high water demand of rice crops (outside the aquifer boundaries),
illegal pumping wells or the need for authorizations for their exploitation. It is striking that none of
the participants were aware of the declaration of the Benalup aquifer as having a poor quantitative
and qualitative status and the administrative course of action that this may entail in terms of property
transference and ownership. Likewise, respondents did not know of the existence of threshold
values for the chemical parameters of groundwater or the maximum extraction rates that led to
this categorization.

The surveys also revealed that the origin of groundwater is a still relatively unknown aspect, or at
least vaguely defined by most of the users. While 40.7% rightly considered that the origin of groundwater
was rainfall infiltration, 36.2% of respondents mistakenly conceived it as “underground rivers/lakes”.
The third most frequently chosen option (14.1%) was “I don’t know”. Again, this highlights that a
significant fraction of the population is unaware of the functioning and dynamics of hydrogeological
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systems, which may have potentially adverse implications for the conservation of the resource owing
to individual behavior.

Despite the aforementioned, most respondents acknowledged the susceptibility of groundwater
to contamination and pointed out as pollution sources the diffuse spills of agrochemicals on the soil
surface (53.6%) and the septic tanks of irregular settlements (22.8%), which are common in the study
area. It is striking, however, that some of the respondents considered that aquifers are isolated from
the land surface and susceptible to pollution (10.6%), that groundwater only becomes contaminated at
well installations (8.1%) or that some of them did not even know it (4.9%).

Citizens’ perception of changes regarding the presence of water and other related aspects was
strongly influenced by the age of the respondents. The general feeling among older adults was
that nowadays, there is less water in the region (38.7%). Most of them recalled springs and small
streams that had disappeared, a situation that is verifiable and caused by the adaptation of the aquifer’s
natural discharge to pumping for more than 40 years. Conversely, 16.9% of the respondents (generally
younger) did not perceive any change, presumably due to the stabilization of groundwater exploitation
levels during the last years. These statements coincide with the evolution of the piezometric levels
observed in the Benalup aquifer (Figure 1). It should be noted, however, that these personal perceptions
might be somewhat biased by the extremely wet episodes of the 1960s and the severe droughts from
1998–2000 and 2005–2008.

On the other hand, most participants were familiar with the concept of climate change and
related it to a decrease in the amount of rainfall (37.5%), an increased frequency of droughts (16.4%),
water quality impoverishment (10.2%) or the desiccation of wells (8.6%). On the contrary, 19.5% of the
respondents thought that there would be no changes beyond the cyclic character of climate. It should be
considered, however, that these different outlooks might be influenced at some extent by mass media.

Finally, despite the uneven and sometimes remarkably poor knowledge about groundwater
resources and their dynamics, most citizens agreed on their importance and the need to conserve them.
A stricter control of water use by the administration (20.3%), limitations on groundwater withdrawals
(17.7%) and further investment in hydraulic infrastructure (17.7%) were the most frequently proposed
measures, along with the need for water awareness campaigns and citizenship education.

6. Discussion

6.1. Scientific Aspects

The achievement of a rational and sustainable use of groundwater must be based, first of all,
on scientific knowledge. In this regard, this study has considerably improved the current knowledge
about various aspects of the Benalup aquifer.

The geometry, nature and functioning of the aquifer shows the absence of hydraulic connection
between the aquifer and the river network. This fact mitigates the environmental impacts derived
from intensive exploitation. It can be affirmed that the groundwater depletion does not reverse the
hydraulic relationship between the aquifer and the river and, therefore, does not appreciably reduce
the surface flows or worsen the chemical quality of the surface water bodies. Nevertheless, the impacts
of intensive exploitation cause the reduction of the natural discharge of small springs and a worsening
of the chemical quality of drinking water.

Another important aspect for a sound management is the identified tectonic compartmentation
that restricts the effects of the exploitation and the transport of pollutants in each subsystem.

Another noteworthy aspect is the wide variability in the hydrogeological parameters (K, T,
S, ne) obtained by different methods, which evidences an important heterogeneity in the aquifer and
notable differences in the hydraulic conditions among sectors. Due to lithological and tectonic causes,
the complexity of the aquifer is greater than that considered in previous studies [15,36]. Although its
hydraulic regime can generally be considered as unconfined, the existence of strata/levels of
fine grain size within the stratigraphic series (especially in Pliocene materials) can locally create
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confinement conditions. This implies that the WT drawdowns/rises attributable to the system
exploitation and recharge affect very different volumes of water depending on the sector and, therefore,
erroneous conclusions can be drawn regarding the degree of exploitation if only the water table level
is considered.

The recharge values obtained in this study are lower than the ones from previous works [15,31],
generally based on expert judgments without applying specific scientific methods. Infiltration is a
complex phenomenon that is conditioned by multiple factors [37]. The CMB method provided a
rainfall infiltration rate of 18%. Through a second technique, based on the comparison of the records of
WT (obtained from data loggers) to precipitation inputs, an infiltration rate of 14% was recorded. This
last result was highly conditioned by the value of ne considered and was lower than that obtained
with the CMB method, which is attributable to a period with rainfall contributions below the average
year. It is advisable to extend the analysis period in order to obtain statistically relevant results in
both methods.

The analysis of the piezometric evolution in the last 25 years has enabled us to identify a recovery
trend in groundwater levels, although it is masked by climatic fluctuations. In fact, in the last three
or four years, this trend seems to be slowly reversing at least in some monitoring wells, which is
attributable to several consecutive years somewhat drier than the average. In any case, the levels are
relatively stabilized, and the quantitative status of the aquifer is not getting worse. In this situation,
it is striking that the administration has declared the aquifer as being in poor quantitative condition,
despite being based on data with a high extent of uncertainty. To the aforementioned regarding
the uncertainty in the evaluation of recharge, we must add the inherent difficulty in evaluating the
exploitation of the aquifer: there is a lack of volumetric control devices in most of the boreholes
with largest flow, and there are no gauging stations or other flow control mechanisms in the springs.
Only the precautionary principle linked to administrative acts can justify such declaration, as long as
more reliable information is not available. Obviously, this circumstance can negatively affect users and,
if adequate measures are not taken, hinder the optimization of water management.

In addition, the pilot study developed with remote sensing techniques reveals that there is a
significant mismatch between the agricultural plots authorized for irrigation and those that are actually
being irrigated. The real irrigation surface over the aquifer has turned out to be less than the officially
reported due to the abandonment of the agricultural activity, which means that the evaluation of
groundwater withdrawals made by the administration is probably an overestimation. This reduction
in the actual irrigated areas would justify the WT recovery in the aquifer in recent years. Thus,
this recovery would not be the result of an improved management that some authors have termed
“technological fix” [25] (See Figure 1), which consists in the implementation of subsidized programs
for the modernization of irrigation systems and seeks suitable and affordable water resources that
can complement groundwater. On the contrary, it would evidence a structural problem related to
the low profitability of crops and the economic, social and administrative difficulties inherent to the
agricultural activity in the area. In line with this, the declaration of the poor condition of the aquifer
would result in restrictions on ownership transfer in the case of farms with groundwater use rights,
leading to the abandonment of many agricultural farms.

The results obtained in the hydrochemical campaigns show an important contamination process
related to the application of agricultural fertilizers. These data corroborate the results obtained by the
administration from its own monitoring network, which only has three control points in this aquifer.
The Spanish regulation justifies the declaration of the poor condition with the existence of a single
control point/sample in the monitoring network that exceeds the maximum concentrations established
for any of the constituents analyzed. Although this criterion is excessively restrictive, in the case of
the Benalup aquifer, the declaration of poor chemical condition is amply justified, which makes it
necessary to adopt measures to restore the quality of the water. Finally, the apparent lack of spatial
autocorrelation in the distribution of nitrates and the substantial discrepancies observed at very close
control points are also noteworthy. Among adjacent wells and boreholes of similar characteristics, those
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subject to intense pumping presented much lower nitrate concentrations than those scarcely pumped.
Significant differences in the nitrate content were also found in spring waters during the first and
second sampling campaigns. These findings evidence a significant stratification of the pollutant within
the aquifer, with the existence of a vertical gradient. Thus, the highest nitrate concentrations appear
close to the water table due to leaching processes as water infiltrates into the aquifer.

6.2. Management Guidelines

The management and governance of groundwater must encompass collective action to ensure a
socially sustainable utilization and effective protection of groundwater resources, for the benefit of
people and groundwater-dependent ecosystems [38].

Several lessons can be learned from this study in this regard; gearing up for resource
management requires measures such as (i) the promotion of local management entities with first-hand
knowledge of the system, (ii) information gathering and resource planning by establishing appropriate
systems for groundwater monitoring on a regular basis (iii) sharing groundwater information,
knowledge and experiences, (iv) supporting local water harvesting measures and the creation of
extension services to promote high value crops with lower water consumption or water use
efficiency measures.

According to Spanish water laws, the management of groundwater, especially in the case of those
GWB at risk of not reaching a good quantitative or chemical condition, should be carried out by Water
User Associations (WUA). These entities, which arise from the common use of the resource, should be
responsible for a planned exploitation of the aquifer (with the support of the administration), based on
a solid scientific knowledge and under the principles of transparency, participation and agreement
among users. This type of self-regulation entails several advantages, such as the detailed knowledge of
the physical environment by its members and their ability to gather information, monitor the resources
and enforce the regulations. In addition, the resulting norms derived by water users themselves can be
better tailored to local circumstances, with the right system of incentives and penalties [39].

Given the circumstances of the Benalup aquifer, declared as having a poor quantitative and
chemical status during two hydrological planning cycles (12 years) and suffering from a lack of control
in its exploitation, the best solution appears to be the creation of a groundwater user association that
can represent the common interests of users, set rules and objectives and correct any deviant attitudes
of the members. In fact, in the study area, we have as precedent the outstanding experience and results
achieved by the WUA, that manages the surface waters (Celemín and Barbate reservoirs) in a planned
and adaptive manner depending on the weather conditions and the needs of each moment.

Another aspect to consider is that the participation of citizens and stakeholders is essential
for groundwater resource management and should be encouraged as an important contribution to
groundwater conservation, management and protection [40]. This participation is especially necessary
in the case of rural landholders, who have a major role in groundwater management and whose
land use practices can have major impacts on groundwater quantity and quality. In this regard,
groundwater resources tend to be undervalued and poorly understood in most of its aspects by the
local population, a situation which, among other factors, favors its uncontrolled exploitation. As shown
in the results section, the citizens in the study area assume that water resources in the region are
sufficient both in quantity and quality and are not aware of the actual problems to which the aquifer is
subject. Besides, their extent of knowledge about the dynamics and vulnerability of hydrogeological
systems is uneven and usually remarkably poor; in fact, a certain fraction of the population does
not consider groundwater a renewable resource, susceptible to be degraded in terms of quantity
and quality. The widespread lack of knowledge about the declaration of the aquifer as being in poor
condition and the consequences that it may entail was evident. Public education and outreach are
therefore necessary not only to promote the community’s interest in groundwater issues, but also to
ensure the success of management goals and programs established to achieve sustainability [41].
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Regarding the implementation of the aforementioned management, in a context of climatic,
ecological and resource uncertainties, flexibility is needed. A flexible and adaptive management
allows for a better use of the generally scarce economic resources, reduces administrative instability,
helps to avoid decisions that may harm groundwater property rights and reduces administrative
appeals [9]. Despite having an enormous intervention capacity through jurisdictional mechanisms,
the administration often lacks the means to exercise the necessary control, and sometimes chooses
to avoid social and legal conflicts. However, as Fornés et al. [21] point out, the lack of legal clarity
regarding groundwater in Spain has resulted in the lodging of thousands of administrative appeals
against the administration’s decisions, exceeding the management capacity of the River Basin Agencies.

It is indisputable that, to achieve the sustainable and sound management of any hydrogeological
system, the control and quantification of groundwater withdrawals is fundamental. In this sense,
any regulatory instrument should include individual groundwater abstraction/use rights or licenses,
either at a specified rate or allocation share, subject to periodic review and adjustment in light of the
aquifer’s behavior, trying to avoid the concept of “rights in perpetuity” [40].

An adequate quantification of the extractions can be made through the installation of control
devices in all the pumping wells. Likewise, it is necessary to monitor croplands in order to identify the
space-time distribution of the irrigated areas, the assessment of consumption and the determination
of the areas affected by diffuse contamination. Remote sensing techniques have proven extremely
useful tools for these tasks and for the identification of illegal irrigation [42]. The fact that both tools
are within the reach of any entity (such as WUAs), from a technical and economic point of view, is an
advantage that should not be overlooked.

Finally, water planning should promote the exploration of different management alternatives,
such as the possibility of the conjunctive use of surface and groundwater. In the case studied, and given
the poor condition of the aquifer, it would be advisable to delve into the option of transferring the
surface water surplus to the aquifer through artificial recharge techniques. These techniques, despite
being simple, are usually difficult to implement and often generate social conflicts. Scientific and
technical questions about the aquifer’s capacity to receive and store water require further research.
Nevertheless, this is usually not the main obstacle. Often, the main problems are of economic, legal and
organizational nature [43]. In spite of this, the knowledge gained about this system seems to endorse the
possibility of applying artificial recharge techniques. The eastern sector of the Mesa Baja compartment,
owing to its lithological and hydrogeological characteristics and its proximity to the Barbate reservoir,
seems to be a particularly suitable sector for recharge. An increase in water inputs would enhance
the natural discharge of the aquifer through springs and wetlands in the perimetral area, with the
consequent improvement of the water-dependent habitats and the quality of the resource through the
dilution of pollutants. Besides, a redesign of the pumping network may favor an increase in water
storage by limiting or regulating natural discharge. In any case, the costs of the necessary infrastructure
and operation should be shared among the users of the aquifer.

7. Summary and Conclusions

The hydrogeological research of the Benalup aquifer has enabled the identification of a series
of relevant aspects that must be taken into account for an adequate management of groundwater
resources, such as: (1) the geometry and storage volume of the aquifer, (2) the recharge of the
system, (3) the hydraulic disconnection of the aquifer from the main hydrographic network, (4) the
compartmentalization of the aquifer into three subsystems of relatively independent functioning,
(5) the predominant directions of the groundwater flow, (6) the hydrochemical characteristics of the
resource according to its contents of majority ions, nitrogenous compounds and trace elements, (7) the
most suitable areas for the relocation of wells for the regulation of the underground reservoir or to
carry out artificial recharge.

Although most of the exploitation of groundwater is used in agriculture, a significant part is also
destined for urban supply and recreational uses. Currently, a gradual substitution of the groundwater
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sources for human supply by surface resources from a contiguous basin is taking place, which de facto
implies an indirect artificial recharge and reduces the exploitation-associated pressure on the aquifer.
This effect should not be compensated by an increase in pumping for other purposes. Instead, it should
be considered as an opportunity to improve the quantitative status of the aquifer.

The analysis of the historical piezometric series available since 1993 has revealed that the storage
level of the aquifer has slightly recovered since then. This is more attributable to the reduction of
agricultural pumping linked to the abandonment of irrigated farmland than to a more efficient water
use due to the technification of irrigation. In this regard, there is a significant discrepancy between the
officially authorized irrigation plots and those that are actually irrigated, which evidences the current
disorder in the exploitation of the aquifer. Many plots are irrigated exploiting unauthorized wells,
which also makes it difficult to access reliable information on pumping. In this sense remote sensing
techniques constitute useful low-cost tools for monitoring irrigation in real time and, indirectly,
pumping water from the aquifer.

Despite the fact that in the last two planning cycles (2009–2015 and 2015–2021) the GWB Benalup has
been cataloged as being in poor quantitative and chemical condition by the competent administration,
the majority of the population of the region in general and of groundwater users in particular are
unaware of this situation. There is a general lack of knowledge of the legal repercussions that this
declaration may entail for water users and for the activities developed in the aquifer. Despite the
elapsed time, no measures have been taken to reverse the GWB’s poor condition. It is necessary to
undertake education and outreach programs/campaigns to make the role and value of groundwater
known and to engage citizens in the management and protection of this resource.

Likewise, citizen awareness is necessary to minimize the conflicts that may arise from the
restrictions and rationalization in the use of the resource, aimed at achieving its sustainable exploitation.
In this sense, the administration’s inaction in reversing the state of the aquifer in recent years can
be understood in light of the need to balance environmental sustainability with the economic and
social requirements in the territory. Nevertheless, the management of groundwater resources and their
exploitation in the study area is an indisputable need. In this sense, it is also necessary to implement
initiatives aimed at self-regulation by water users and to promote effective water-management
institutions, with a good knowledge of the aquifer, efficient and trained staff, good monitoring facilities
and adequate economic resources and regulations.
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Appendix A

Table A1. Question wording and response set.

Code Question Response Set

1
Do you know where the water used in your

activity/house comes from?

a. Surface water
b. Groundwater
c. Other sources (rain, reused water . . . )
d. I don’t know

2
Rate from 0 to 10 the availability and quality

of the water resources in the region.
a. Quality:
b. Quantity:

3
Do you know if there are any conflicts
derived from water use in the region?

a. Yes
b. No
c. I don’t know

4
Do you know which is the origin

of groundwater?

a. Underground river/lake
b. Local mountain ranges
c. It comes from the sea, due to
salt filtration
d. It comes from the rocks, it has always
been there
e. Rainfall infiltration/percolation
f. I don’t know
g. Other

5
Do you think that groundwater can undergo

contamination processes?

a. Groundwater is not susceptible
to contamination
b. Yes, when pollutants are poured into
a well
c. Yes, when pollutants leach from
the surface
d. Yes, due to the presence of septic tanks
e. I don’t know

6

Have you noticed any changes in the quantity
or quality of the local water resources or in

other related aspects during the last
20–30 years?

a. There is more water nowadays
b. There is less water nowadays
c. The quality has improved in
recent years
d. The quality has worsened in
recent years
e. There is more pollution nowadays
f. Changes in the local flora and fauna
g. There have been no changes
h. Other

7
Do you think there will be problems with

water in the next 20–30 years?

a. I don’t think so
b. Climate change will result in
scarcer rain
c. The quality will become worse due
to pollution
d. There will be more droughts
e. Wells will run out of water
f. Other
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Table A1. Cont.

Code Question Response Set

8
Do you think it is necessary to take measures

in order to ensure the future availability of
water and its uses?

a. I don’t think it is necessary
b. Improve Administration’s control over
water use
c. Improve the cooperation and
transparency among water users
d. Increase the investments in
water infrastructure
e. Control and set limits to
groundwater pumping
f. Allow more groundwater pumping
g. Reinforce the protection of the
natural environment
h. Replace the current crops with other
types that consume less water
i. Other

9
Have you noticed changes in the local rainfall

pattern in the recent years?

a. There have not been any changes
b. Rainfall is becoming
more unpredictable
c. Rainfall is becoming more torrential
d. I don’t know
e. Other

Table A2. Hydraulic parameters obtained by different authors and methods.

Source Geological Material
Estimation

Method
T (m2/day) K (m/day) S (Dimensionless)

IGME, 1978 [44] Upper Miocene calcarenites Pumping test 210 to 2200 2 to 20 0.01
INTECSA-IGME, 1982 [31] Upper Miocene calcarenites - 20 to 100 0.3 to 2

INTECSA-IGME, 1982 [31] Upper Miocene calcarenites Water table
evolution - - 0.05

INTECSA-IGME, 1982 [31] Upper Miocene calcarenites Pumping test 200 2
CGS-ITGE [45] Upper Miocene calcarenites Pumping test 4.000 to 6.000 40 to 60 0.5·10−3 to 1·10−3

ITGE, 1996 [46] Upper Miocene calcarenites Pumping test 22 to 75

Authors (UCA) [16] Pliocene Sands/ Upper
Miocene calcarenites Pumping test 20 to 30 0.2 to 0.3 1·10−3

Authors (UCA) [16] Upper Miocene calcarenites Pumping test 3000 to 6000 30 to 60 0.045
Authors (UCA) [16] Upper Miocene calcarenites Laboratory test - 11 0.06
Authors (UCA) [16] Aeolian littoral dunes Laboratory test 3 0.04
Authors (UCA) [16] Pliocene silty sands Laboratory test 0.04 0.01
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Abstract: Greenhouse gas (GHG) emissions, which are closely related to climate change and serious
ecological instability, have attracted global attention. The estimation of crucial aquatic factors for the
flux of GHGs in lakes is a key step in controlling and reducing GHG emissions. The importance of 14
aquatic factors for GHG emissions was estimated in Meiliang Bay, which is an eutrophication shallow
bay in Taihu Lake in eastern China. The random forest (RF) method, which is an improved version
of the classified and regression tree (CART) model, was employed. No distribution assumption on
variables was required in this method and it could include nonlinear actions and interactions among
factors. The results show significant positive correlations among the fluxes of CO2, CH4, and N2O.
The most crucial factor influencing CO2 emissions is the water temperature (WT) followed by sulfate
(SO4

2−), alkalinity (Alk), dissolved oxygen (DO), and nitrate (NO3
−–N). The important factors for

CH4 emissions are WT, SO4
2−, DO, Alk, and NO2

−–N. The outcome for N2O, in which the key factor
is NO2

−–N, was slightly different from those of CO2 and CH4. A comprehensive ranking index (CRI)
for the fluxes of all three GHGs was also calculated and showed that WT, NO2

−–N, SO4
2−, DO, and

Alk are the most crucial aquatic factors. These results indicate that increasing DO might be the most
effective means of controlling GHG emissions in eutrophication lake bays. The role of SO4

2− in GHG
emissions, which has previously been ignored, is also worth paying attention to. This study provides
a useful basis for controlling GHG emissions in eutrophication shallow lake bays.

Keywords: GHGs; aquatic factors; random forest; water temperature; nitrogen; sulfate

1. Introduction

The emission of greenhouse gases (GHGs) to the atmosphere is closely related to climate change [1],
resulting in significant disruption in biological living conditions and ecosystem instability [2,3]. Natural
lakes, though representing only about 2% of the land surface area, are important sources of GHGs such
as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) [4–6], and the emission of GHGs in
lakes has therefore attracted the interest of many researchers.

According to previous assessments, lakes contribute about 71.6 TgC CH4 and 1943 TgC CO2

to the atmosphere per year [5,7–9]. However, these data remain largely uncertain due to the spatial
heterogeneity of emissions in waterbodies [9,10]. Furthermore, it is even harder to estimate the
contribution of N2O from global lakes [11]. In large developing countries, such as China, the problem
may be more serious as data are lacking [12]. The flux of GHGs in lakes is also drastically different
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according to the distinct nutrient level zones. The CH4 flux in the East Plain Lakes zone is about two
times more than in the Tibetan Plateau and Inner Mongolia–Xinjiang Lakes zone [13]. GHG emissions
may be different in the same lake. Previous observations have shown a one order of magnitude larger
CO2 flux in the overeutrophication zone compared with the eutrophication and mesotrophic zones
in Taihu Lake in China [14]. The flux of N2O in the emergent macrophyte-type area was also about
1.5 and 30 times larger than in the algae-type and submerged macrophyte areas, respectively, during
summer [15], while in winter, the flux of the algae-type area was the largest [16].

Many factors affect the flux of GHGs. Inorganic nitrogen compounds such as nitrate [15,17,18]
and ammonia nitrogen [19] are the factors controlling N2O production, while total phosphorus
and chlorophyll A promote CO2 [14,20] and CH4 [20–22] production in waterbodies. The water
temperature, wind speed, water velocity, and turbulence are common factors influencing the three
kinds of GHGs [23–25]. Other factors, for instance, pH, dissolved oxygen, and chloride ions may also
affect the release of GHGs [16,26]. However, the roles of aquatic factors in the control of GHG emissions
remain controversial because of their complex effects [15,27,28]. Identifying the main controlling factors
and their roles is critical for further understanding the mechanisms of GHG emissions. Recognizing
the aquatic variables affecting GHG emissions, especially under the nonlinear action and interaction
effects of aquatic factors, is still an urgent problem to be solved.

China has 2700 lakes with a total area of 81,414.6 km2 [29]. The carbon emission of lakes in China
is larger than the mean of the world lakes in the temperate zone [7]. An initial assessment showed that
the lakes in China release 3.0 TgC CH4 per year [13]. Controlling the GHG flux from lakes, especially
from the eutrophication lake bay, will play a key role for China in meeting their United Nations
Framework Convention on Climate Change (UNFCCC) commitments. It is also very important for
the sustainability of lake water in a social and environmental dimension [30]. Hence, it is necessary
to recognize the crucial aquatic factors influencing the GHG flux at different nutrient level zones in
China, especially the eutrophication zone.

Here, we provide a combination approach to identify important variables for GHG flux in
Meiliang Bay, which is an eutrophication zone of Taihu Lake in eastern China. The statistic and
seasonal characteristics of 14 aquatic factors and GHG emissions in this lake bay are performed and
Pearson coefficients among them are also shown. The random forest (RF) method, which can take
into account the nonlinear effects and interaction effects of factors, is employed to identify the most
important factors influencing the flux of the three types of GHGs. A comprehensive ranking of the
GHGs is also given.

The results showed dissolved oxygen, water temperature, alkalinity and nitrite are very important
for the flux of GHGs. Sulfate, which may have been ignored by previous studies, also play a crucial
roles in GHG emissions. Although this assessment is based on a specific shallow lake bay, it is a useful
method and its result could easily be popularized to clarify the vital factors and their roles in GHG flux
in other large shallow fresh water lakes, such as Chaohu Lake [31,32] and Hongze Lake [33], in eastern
of China.

2. Methods

2.1. Data Sources

Taihu Lake, which is located in the north subtropical monsoon climate region, is the third largest
freshwater lake in China. It has an area of approximately 2445 km2 with a mean depth of about only 1.9
m [15]. There are about 100 million people living around the lake, contributing over 5 trillion dollars to
the GDP in the year 2018. Shanghai, which is the most developed city in China, is also close to the
lake. Hence, any research conducted on Taihu Lake could have potentially significant implications
for China.

In recent decades, Taihu Lake has suffered from a eutrophication problem. The water quality
in the north and east of the lake has improved, while it has deteriorated in other regions, especially
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from the 1990s to the 2010s [34,35]. The west eastern corner of the lake is Meiliang Bay, which is
eutrophicated, and algae blooms occur frequently in spring and summer. Figure 1 shows the location
of Taihu Lake and Meiliang Bay.

 
Figure 1. Location of Taihu Lake.

The research on GHG emissions carried out in this bay shows that there is considerable flux in
GHGs that is significantly different from other regions in the lake [14–16]. However, only relationships
between a few aquatic factors and the flux of GHGs were simultaneously considered in Meiliang
Bay. The nonlinear relationships were also ignored because linear regressions and Pearson correlation
analysis were applied. In this paper, the observation data of CO2, CH4, and N2O in this bay (Figure 1
shows the observation site) are analyzed using 14 aquatic factors, including inorganic nitrogen (nitrate,
NO3

−–N; ammonia, NH4
+–N; and nitrite, NO2

−–N), phosphorus (phosphate, PO4
3−; dissolved

total phosphorus (dTP)), the response of nutrients (chlorophyll A ,Chl-a), physical indices of water
(water temperature (WT); water depth (WD); and Secchi depth (SD)) and other chemical factors
(dissolved oxygen (DO); sulfate, SO4

2−; O2 demand (CODMn); pH; and alkalinity, Alk). The data were
sampled once per month from January 2004 to December 2004, and all data have been previously
published [20,36].

2.2. Statistical Analyses

The RF method is an improved and robust version of the classified and regression tree (CART)
method. It introduces the bootstrapping aggregation approach into CART [37–39] and calculates the
predicted values by averaging the results of CART trees on bootstrap samples [40]. The variables used
in the RF method should have an independent identical distribution [40]. However, different from the
common bagging tree method, the RF method resamples prediction features at every split node to
ensure independence among the selected features [41], and the scaled observations would reduce the
difference in their distributions. Similar to many other statistical methods, the violation of the property
of the identical distribution may not lead to serious consequences [42].

The biggest advantage of RF is that the nonlinear and interaction effects of independent variables
can be included. RF has been demonstrated, through practice, to be a successful machine learning
method for forecasting [43,44].

Although the RF model was proposed for prediction, it can be used for other purposes. The RF
model can determine the quantitative importance of predictors using some indices. The most popular
index, which is also used in this paper, is an increase in node purity. The node purity was measured by
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the Gini index [38,40]. All computations were completed using the R (3.6.1) language [45] with the
randomForest package.

After calculating the importance of all aquatic factors for CO2, CH4, and N2O, a comprehensive
importance index was developed to further investigate, because the significant correlations between
GHG emissions were shown. The comprehensive index for all three GHGs can be given by the
following equation:

Rk =
3∑

i=1

1
ri,k

CRI = rank(Rk)
(1)

where Rk is the index whose rank is determined as the comprehensive ranking index (CRI) for the k-th
factor and ri,k is the importance rank of the k-th factor for the i-th GHG. CRI is a simple, helpful, and
widely used index to measure comprehensive importance [46].

3. Results and Discussion

As seen in Table 1, the flux of GHGs showed no significant differences to the observations in
previous years for Meiliang Bay [14–16]. The minimum values of the three GHGs were lower than
0, indicating that, at some stages, the lake acts as a sink for these GHGs, which is also in agreement
with previous studies [14,15,27]. This induced large fluctuations of GHG emissions compared with
the aquatic factors. Based on the observations of CO2, CH4, and N2O emissions, the coefficients of
variation (CVs) were respectively 1.64, 1.50, and 1.50. These values imply that the fluxes were strongly
influenced by the water environment.

Table 1. Statistics of Observations (n = 12).

Factors Maximum Value Mean Value Minimum Value Standard Deviation

CO2 (mmol/m2d) 200.67 39.62 −20.73 64.80
CH4 (mmol/m2d) 2.17 0.54 −0.18 0.81
N2O ((mmol/m2d) 0.27 0.06 −0.03 0.09
NO3

--N (mg/L) 2.046 1.093 0.049 0.596
NO2

--N (mg/L) 0.146 0.046 0.006 0.040
NH4

+-N (mg/L) 1.456 0.507 0.024 0.577
PO4

3- (mg/L) 0.020 0.006 0.001 0.007
dTP* (mg/L) 0.056 0.027 0.012 0.015
Chl-a*(mg/m3) 39.26 16.19 2.46 11.67
WT*(°C) 29.9 16.7 4.2 9.0
WD*(m) 2.9 2.6 2.3 0.15
SD*(m) 0.80 0.44 0.30 0.14
DO* (mg/L) 12.43 8.98 6.42 1.99
SO4

2- (mg/L) 103.60 75.99 51.60 15.26
Alk* (mmol/L) 2.60 2.16 1.76 0.26
CODMn

*(mg/L) 5.94 4.88 4.10 0.60
pH 8.49 8.18 8.03 0.13

* dTP: dissolved total phosphorus, Chl-a: chlorophyll A, WT: water temperature, WD: water depth, SD: Secchi
depth, DO: dissolved oxygen, Alk: alkalinity, CODMn: O2 demand.

The values of aquatic factors showed that the water quality was not very poor, while the high
mean concentration of Chl-a and the very low SD showed that eutrophication at the site was serious.
The large CVs of NH4

+–N and NO2
−–N, which were 1.14 and 0.87, respectively, indicated that the

release of GHGs might be affected by nitrogen. It was also observed that the concentration of SO4
2− in

the lake, which has previously been ignored, was very high. The minimum value of pH was larger
than 8.0, meaning the water was weakly alkaline, which would also have affected the production of
N2O [47].
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Figure 2 shows the scaled time series of the concentrations of the 14 aquatic factors and the flux in
the three GHGs in the year 2004. All values were scaled by their mean and standard deviations.

 
Figure 2. Scaled time series in the year 2004.

As shown in Figure 2, the GHG fluxes showed strong seasonal changes. Combined with the
results of Table 1, they progressed from one extreme to the other from winter to summer. The maximum
values of flux occurred in July, and the data for CH4 and CO2 in September also showed high values,
while for N2O, a second peak emerged in October. November was the only month that Meiliang Bay
appeared to be a sink for all three GHGs. The observed values of N2O showed slight differences to the
data collected from Meiliang Bay in 2017 [15,16], but the characteristics of CH4 were in agreement with
those observed in Donghu Lake in China, which is similar to Taihu Lake [28]. This difference might be
because N2O is controlled by nitrogen, while CH4 emissions are not. In addition, the relatively high
concentration of NO2

−–N in October might be the reason for the high concentration of N2O observed
in this month.

It was clearly observed that the water quality was better in winter, i.e., from November to January,
and this can be explained by the low level of agricultural activity. The high concentrations of NH4

+–N,
NO3

2−–N, and SO4
2− in December were notable exceptions. Laboratory experiments showed that the

low temperature would decrease the activity of nitrifiers and denitrifiers [48,49], and so both NH4
+–N

and NO3
−–N accumulated. The reduction in SO4

2− was also weakened as the sulfate-reducing bacteria
(SRB) were also influenced by low WT. References indicate that SO4

2− and SRB are closely linked to
nitrogen cycling [50]; thus, the variation of NH4

+–N and NO3
2−–N in the time series showed the same

pattern as that of SO4
2−.

In addition to the time series, strong correlations were also observed between CO2 and CH4 and
between CH4 and N2O, with Pearson coefficients being significant at p< 0.01 in Figure 3. Denitrification,
acetate fermentation, and CO2 reduction, which connect the production of CO2, CH4, and N2O [51]
could explain this outcome. The relationship between N2O and CO2 was a little less significant
(0.01 < p < 0.05). This might be because the production pathways of N2O and CO2 were not involved
with each other directly. SO4

2− showed a negative correlation with the fluxes of CO2 and CH4 at p < 0.1.
There have been few studies on the effects of SO4

2− on GHG emissions, but those that have been done
have suggested that SRB could take part in reactions with CH4 [52,53]. SO4

2− would also impact the
nitrogen cycle [51], which may be another reason for the significant correlation among the three GHGs.
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The crucial aquatic factors were similar for CH4 and CO2, with WT, DO, and Alk being recognized
as key factors, which is in agreement with previous studies [20,23,26]. Chl-a was shown to have little
effect on GHG emissions, which differs from previous research [14,20]. Having noticed that Chl-a also
showed strong correlations with WT, DO, CODMn, pH, and Alk, the weak impact that was observed
might be the result of complex interactions amongst the different factors.

Few factors show a correlation with the flux of N2O, with the exception of NO2
−–N. This should

not be surprising considering the fact that NO2
--N is the intermediate product of the denitrification

reaction of nitrifying bacteria [54], which produces N2O [55]. However, the effects of NO3
− and NH4

+

shown by some studies [15–17] may be masked by the effects of NO2
--N under linear relationships.

The influences of SO4
2− on NO3

--N and NH4
+-N were very complex. The strong correlations could be

explained by the effects of sulfur and sulfate on NO3
--N reduction and NH4

+-N oxidation [51]. We
will describe and summarize these reaction details after the results of RF have been shown.

Figure 4 shows the importance of aquatic factors on the three GHGs, measured by an increase in
the Gini index in the RF models. The explained variance of the three models was 80.4%, 86.2%, and
75.1%, respectively, for CO2, CH4, and N2O, and these results imply that the RF models were adequate
for exploring the crucial factors.

(a) CO2                                (b) CH4                     (c) N2O 

Figure 4. The importance order of aquatic factors for greenhouse gas (GHG) emissions using the
random forest (RF) method.

As seen in Figure 4, some RF results were in agreement with the Pearson coefficients, while
others were not. The results of RF showed that the five most important aquatic factors for the three
GHGs were similar. WT was the first key variable implicated in the flux of CO2 and CH4, while it
was also second most important for N2O emissions. This is because methane bacteria choose different
methanogen metabolic pathways [56,57] under different temperatures. The nitrifiers and denitrifiers
are also sensitive to temperature [49]. This outcome was in agreement with the results of the Pearson
coefficients (Figure 3) and were also analogous with the results of other field studies [23,24,58].
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DO also played an important role in the emissions of the three GHGs. Methane bacteria are a
diverse group of strict anaerobes [59] and are, therefore, greatly influenced by DO. The two main
pathways for producing CH4, acetate fermentation and CO2 reduction, are both associated with
CO2 [51,57]. This may be part of the reason why DO also impacts CO2 production. The results of the
linear correlations and field observations also confirmed the effects of DO [20,56]. In addition, the
observations showed that Alk would impact the carbon dioxide partial pressure [60] and anaerobic
digestion [61], so Alk greatly influences the flux of CO2 and CH4. For N2O emissions, although both
nitrification and denitrification would produce N2O, DO has a dominant influence in determining the
pathway. This can explain the importance of DO for N2O [15,16].

Nitrogen compounds, including NO3
−–N, NO2

−–N, and NH4
+–N, were shown to be important

for all three GHGs. It is easy to understand the effects of them on N2O, while it should be noted
that NO2

−–N was shown to be more important. This may be because, in all four main pathways,
the producing NO2

−–N are closer to N2O than NO3
−–N [62]. Both denitrification and dissimilatory

nitrogen reduction to ammonium (DNRA) oxidize organic matter and then produce CO2 [51,59], so
the importance of nitrogen for CO2 can be rationalized. Methanotrophs outcompete nitrifiers for O2

when CH4 is sufficiently abundant, as more energy can be released from oxidizing methane than from
oxidizing NH4

+ [51]. This is a good explanation for the negative relationship between NH4
+ and CH4

shown by the Pearson coefficients, as well as the importance of nitrogen in the results of the RF method
and field observations [21].

SO4
2− was crucial in determining the flux of all three GHGs (Figure 4). This seemed a little strange

as SO4
2− has been often taken for granted when assessing GHG emissions from the lake during field

studies. However, the result should not be surprising. On the one hand, NO3
− may be used in the

oxidation of reduced sulfur (S0 or S2−) and the production of SO4
2−. These processes may occur in

preference to DNRA and denitrification [51,59]. On the other hand, SO4
2− reduction by SRB could

also produce CO2 [51]. Additionally, observations in freshwater wetlands indicated that SO4
2− input

would suppress CH4 flux because of the higher energy alternative provided by SO4
2− reduction [63,64].

In summary, SO4
2− plays an important role in CO2, CH4, and N2O production.

Generally speaking, the effects of nitrogen compounds, SO4
2− and DO on GHG emissions is very

complex and is summarized as concept models as follows.
As seen in Figure 5, the DO, WT, and ALK are conditions that affect the reactions. For example, DO

determines if anaerobic or aerobic oxidation can take place, and it also chooses what type of reduction
will happen. WT is also very important and it can affect the activities of SRB, nitrifiers, and denitrifiers.
Different from these conditions, the NO3

−–N, NO2
−–N, NH4

+–N, and SO4
2− are involved with the

production of GHGs directly. From the models, SO4
2− participates in the production of all three GHGs

simultaneously, which highlights its importance and its complex effects on GHG emissions.
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(a) 

(b) 

Figure 5. Concept models for GHG emissions. (a) Concept model for CH4 and CO2; (b) Concept model
for N2O.

The significant Pearson coefficients among CO2, CH4, and N2O highlight the necessity for working
out a comprehensive importance index for the flux of all three GHGs. The CRI values of the five most
important aquatic factors calculated by Equation 1 are shown in Table 2.

Table 2. The comprehensive importance ranking index for GHG emissions.

Aquatic Factors Index for CO2 Index for CH4 Index for N2O CRI*

WT 1 1 2 1
NO2

--N 10 5 1 2
SO4

2- 2 2 4 3
DO 4 3 3 4
Alk 3 4 9 5

* CRI: comprehensive ranking index defined in equation 1.

The results of CRI showed that WT, NO2
−–N, SO4

2−, DO, and Alk are the five most crucial aquatic
factors influencing the flux of GHGs. The importance and positive relationships between WT and
GHG emissions remind us that the largest flux should appear in summer. Perhaps the emissions will
become larger and larger as global warming progresses [1]. NO2

−–N is not very important for CO2

and CH4, while it is still the second crucial factors for GHG emissions because of its importance for
N2O production. Compared with WT and NO2

−–N, SO4
2− is the third key factors for the flux of GHGs
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because of its importance in all three. Maybe this is an indication that it is feasible to control GHG
emissions by increasing the concentration of SO4

2− in lake bays.

4. Conclusions

GHG emissions, which lead to serious ecological problems, have attracted widespread attention.
The estimation of crucial aquatic factors in the flux of GHGs in lakes has played a key role in reducing
GHG emissions. In this paper, RF methods, taking into account nonlinear effects and interaction effects
of factors, were employed to identify the crucial factors among 14 aquatic variables in the flux of GHGs
in a eutrophicated lake bay.

The results showed significant positive correlations between the fluxes of CO2 and CH4, which
were shown to be affected by similar factors, while there was little difference for N2O. WT, SO4

2−, Alk,
DO, and NO3

−–N were identified as the five key factors in CO2 emissions, while for CH4, the key
factors were WT, SO4

2−, DO, Alk, and NO2
−–N. The outcome that NO2

−–N is the most crucial factor
for N2O emissions while NO3

−–N is the fifth showed the importance of nitrogen in the flux of N2O.
Apart from these common factors, SO4

2−, which has been previously ignored, was also shown to play
an important role in GHG emissions. It is the second most influential factor for CO2 and CH4, and
the fourth factor for N2O. The concept models showed that SO4

2− had very complex effects on the
production of CO2 and CH4, as well as on the nitrogen cycle.

The outcomes of the comprehensive ranking index for the flux of all three GHGs have also been
shown. WT, NO2

−–N, SO4
2−, DO, and Alk were found to be the five most crucial aquatic factors.

Compared with WT and Alk, the remaining factors are easier to manage by engineered measures. A
comprehensive analysis of the results show that increasing the DO might be the most effective way of
controlling GHG emissions in eutrophication lakes. Apart from the direct benefits of increasing DO,
such as reducing the fluxes of CO2 and CH4, N2O emissions should also reduce, led by the decrease
in the concentration of NO2

−–N. It seems that a higher SO4
2− concentration would also be good for

decreasing GHG emissions, but this can be a dilemma for water quality managers because there is
evidence that excess SO4

2− can lead to black blooms in shallow lakes [65].
This study provides useful information for controlling GHG emissions in eutrophicated shallow

lake bays. However, there is still work to be done. The quantitative mechanism model for water factors
and GHG emissions in shallow lake bays is a very important topic for GHG emission reduction. This
model will become more detailed as research continues. The smooth linear regression in Figure 3
suggests that there are threshold points for these relationships. The existence of threshold points
indicates the necessity of investigating these crucial factors in GHG emissions using advanced methods.
The role of SO4

2− should also receive more attention in future studies.
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Abstract: Soil erosion is considered one of the main degradation processes in ecosystems located in
developing countries. In northern Mexico, one of the most important hydrological regions is the
Conchos River Basin (CRB) due to its utilization as a runoff source. However, the CRB is subjected to
significant erosion processes due to natural and anthropogenic causes. Thus, classifying the CRB’s
watersheds based on their erosion susceptibility is of great importance. This study classified and
then prioritized the 31 watersheds composing the CRB. For that, multivariate techniques such as
principal component analysis (PCA), group analysis (GA), and the ranking methodology known
as compound parameter (Cp) were used. After a correlation analysis, the values of 26 from 33
geomorphometric parameters estimated from each watershed served for the evaluation. The PCA
defined linear-type parameters as the main source of variability among the watersheds. The GA
and the Cp were effective for grouping the watersheds in five groups, and provided the information
for the spatial analysis. The GA methodology best classified the watersheds based on the variance
of their parameters. The group with the highest prioritization and erosion susceptibility included
watersheds RH24Lf, RH24Lb, RH24Nc, and RH24Jb. These watersheds are potential candidates for
the implementation of soil conservation practices.

Keywords: prioritization; geomorphometric parameters; compound parameter; geospatial
distribution; GIS

1. Introduction

Soil erosion is considered one of the most important degradation processes in the world [1,2].
The soil resource is limited and its wide use is of utmost importance; it sustains biogeochemical
processes and is the habitat for a great diversity of microorganisms [3]. Sustained soil development,
conservation, and restoration is one of today’s main challenges for humankind.

Hydric erosive processes affect the fertile soil layer, which is a key factor in the primary production
of ecosystems [4]. The production of goods and satisfiers for the population such as wood, food, fiber,
fodder, water, and recreational areas, among others, in addition to industrial expansion and the need
for infrastructure facilities, have increased land-use/land-cover changes, increasing the pressure over
the soil [5]. This has caused experts to pay more attention to the growing trend of soil erosion and the
importance of water and soil conservation for achieving sustainable development.

Integrated watershed management is an alternative for soil management [6–8]. Watersheds are one
of the spatial units that are used for the planning and management of soil resources [9]. Management
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implies the characterization of the ecosystems inside the watershed and the understanding of the
relationships between uplands, lowlands, land use/land cover, geomorphic processes, slope, and soil [10,
11]. In watershed management, erosion control is one of the main components [3]. Thus, the hydrological
planning and monitoring of a watershed is important for the development of environmental policies [12].
In this sense, the quantification of the watersheds’ characteristics is fundamental to understanding
their dynamics and degradation levels. This knowledge serves to define and implement strategies to
prevent soil erosive processes and promote the conservation and restoration of watersheds [13].

Morphometry is used in the analysis of the watershed configuration [14]. Such methodology was
developed by Horton [15] and then modified by Strahler [16], and provides information on the behavior
of the basin [17]. It is an important tool for identifying and prioritizing eroded watersheds [18].

Nevertheless, monitoring soil erosion in situ is costly and time consuming in large watersheds.
Thus, the analysis of geomorphometry is often carried out based on geographic information systems
(GIS) [19–23]. On a spatial scale, geomorphometric parameters, e.g., the Gravelius compactness
coefficient [24] and elongation ratio [25], among others, are important to know the hydrological
configuration of watersheds. The relationships among these parameters are useful for developing
hydrological models, which allow prioritizing watersheds based on their condition, such as erosion
susceptibility. To determine the aforementioned relationships, statistical methods, such as multivariate
techniques, have been widely used worldwide [26,27]. For instance, Gavit et al. [28] characterized
13 geomorphometric parameters in 11 watersheds located in the Godavari river in Maharashta,
India. Youssef et al. [29] estimated the erosion risk by using remote sensing technology, GIS,
and geomorphometric parameters in 11 watersheds located in Sinai, Egypt. Makwana and Tiwari [30]
used seven geomorphometric parameters to characterize 19 watersheds in the region of Gujarat,
India. Sharma et al. [31] applied the multivariate technique of principal component analysis (PCA) to
13 geomorphometric parameters from eight watersheds located in the Madhya district, India. Meshram
and Sharma [32] and Farhan et al. [33] used PCA to analyze the geomorphometric parameters of a
group of watersheds located in the Shakkar Catchment River in India and Jordan.

A large number of shape, relief, and hydrological parameters are associated with watershed
geomorphometry [34,35]. The statistical techniques of PCA and group analysis (GA) [36–41], as well as
multivariate analysis of variance (MANOVA) [41] and the ranking methodology known as compound
parameter (Cp) [42] have been widely used in recent years for the analysis of environmental data from
watersheds. These techniques assist with analyzing the spatial variability of watersheds, their structure,
as well as the relationships existing among them.

The most important basin in the state of Chihuahua, as a runoff source [43], is the Conchos
River Basin (CRB). Yet, this basin has experienced water stress conditions during the past years.
According to Ordoñez [44], approximately 8000 km2 (11.8%) of the basin high lands present strong
erosion problems, which could impact waterflow and water quality. In these high lands, deforestation
and land-use/land-cover changes had contributed to reduce the amount of infiltrated water, impacting
on groundwater availability [43]. In the low lands of the basin, agriculture consumes 90% of the
water harvested in the basin. Other consumers include the industrial and domestic sectors [43,45].
In addition, the international water trade between Mexico and the U.S. from 1944 commands Mexico
to deliver annually from this basin a total of 432 × 106 m3 of water to the U.S. [46]. Therefore, specific
knowledge about water management and the status of the basin’s soil erosion is required to implement
strategies to solve water-related problems and to promote the sustainable development of the region.

The objective of this study was: (1) to describe the behavior of the 31 watersheds located along the
CRB in the state of Chihuahua, Mexico, based on the values of their geomorphometric parameters; (2) to
spatially classify the 31 watersheds into groups; and (3) to prioritize the groups of basins according to
their erosion susceptibility. For the grouping, multivariate techniques and the compound parameter
(Cp) were used and their efficacy compared.
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2. Materials and Methods

2.1. Study Area

The CRB is located in the state of Chihuahua and Durango, Mexico, and is part of the 24th Rio
Bravo-Conchos Hydrological Region [47] (Figure 1). The basin has an area of 67,800 km2 [48], with an
altitudinal distribution ranging from 841 m to 2348 m [49]. It presents a diversity of climates ranging
from temperate in the upper, semi-arid in the middle, and arid in the lower parts of the basin [50].
The physiography of the upper basin belongs to the mountainous zone made up of temperate forests
dominated by species of pines and oaks. The middle part of the Altiplano or central valleys is made up
of transition zones where oaks and bushes are present. Regarding the lower part, it belongs to the arid
region and is made up of shrublands and grasslands [51]. The basin has a precipitation regime from
June to September, with July and August being the wettest months, and fluctuating from 200 mm to
700 mm [48].

Figure 1. (a) Land-use/land-cover types of the Conchos River Basin (CRB), (b) Delimitation of the
31 watersheds of the CRB, (c) Location of the CRB in Mexico.

2.2. Data

Data of the CRB was obtained from the online GIS source of CONABIO [52]. Likewise, the data
of the 31 watersheds composing the CRB (Figure 2) were obtained from the Watershed Water Flows
Simulator [53]. The relief and hydrology type parameters were estimated by processing the necessary
data from a Digital Terrain Model (DTM), with a resolution of 15 × 15 m, downloaded from INEGI [54].
The values of the basic parameters from the watersheds were obtained by using the Hydrology tool [55]
of ArcMap© 10.3 (ESRI, Redlands, CA, USA; https://wwwesri.com/en-us/home). The values of the
shape, relief, and linear type parameters were calculated from the equations listed in Table 1.
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Table 1. Geomorphometric parameters.

Geomorphometric Parameter Equation References

Basic Parameters 1

Area (A) A =Watershed surface area [km2] Horton [15]
Perimeter (P) P =Watershed perimeter [km] Horton [15]
Length (Lb2) Lb2 =Watershed length [km]

Stream order (u) u = Stream order [unitless] Strahler [16]
Main Channel Length (Lc) Lc =Main flow channel length [km]

All Channel Lengths (Lu) Lu = Length of all the flow channels in the
watershed [km] Horton [15]

Contour Length (Li) Li = Contour lines’ length [km]
Number of Flow Channels (Nu) Nu = Number of flow channels [unitless]

Number of First-Order Flow Channels
(No1)

No1 = Number of total first-order flow
channels in the watershed [unitless]

Maximum Height (Hmax) Hmax =Watershed maximum height [m]
Minimum Height (Hmin) Hmin =Watershed minimum height [m]
Medium Height (Hmed) Hmed =Watershed medium height [m]

Shape Parameters

Gravelius Compactness Coefficient (Cc) Cc = P/2
√
πA Zavoianu [24]

Elongation Ratio (Re) Re = 1.1284 (
√

A/Lc) Schumm [25]
Shape Factor (Rf ) Rf = A/Lb2 Horton [15]

Elongation Index (Ia) Ia = Lb2/W
where: W =watershed width (Km)

Horton [15]

Unit Shape Factor (RU) RU = Lb2/A0.5 Horton [15]
Circularity Ratio (Rc) Rc = 4πA/P2 Miller [56]

Relief Parameters

Mean Watershed Slope (J)
J = (ΣLi E/A) × 100

where: E = equidistance among contour lines
(km)

Horton [15]

Massivity Coefficient (tgα) tgα = Hmed/A
Relief Relationship(Rh) Rh = Hmax/Lb Schumm [25]

Relative Relief (Rr) Rr = Hmax/P Schumm [25]
Orographic Coefficient (Co) Co = Hmed × tgα

Linear parameter

Drainage Density (Dd) Dd = ΣLu/A Horton [15]
Mean Slope of the Main Channel (j) j = (Hmax − Hmin)/Lc × 100 Horton [15]

Mean Distance (Am) Am = Lc/(
√

A) Horton [15]
Sinuosity of the Main Flow Channel (Scp) Scp = Lc/Lb2 Mueller [57]

Kirpich Concentration Time (TcK) TcK = 0.066(Lb2/j)0.77 Kirpich [58]
Average Peak Flow (Qp) Qp = 43A0.522 Sen [59]

Texture Ratio (T) T = Nu/P Horton [15]
Rivers Frequency (Fu) Fu = Nu/A Horton [15]

Resistance Number (Rn) Rn = Hmax × Dd Schumm [25]
General Flow Length (Lo) Lo = 1/2 × Dd Schumm [25]

Drainage Intensity (Di) Di = Fu/Dd Faniran [60]
1 The basic parameters were calculated with the GIS software.

Basic parameters include the area (A), perimeter (P), watershed length (Lb2), stream order (u),
main channel length (Lc), all channel lengths (Lu), and contour length (Li). The area and perimeter are
the most important parameters of the watersheds to understand their hydrological design and reflect
the volume of water that can be discharged in a rainfall event [61].

Shape parameters include the Gravelius compactness coefficient (Cc), elongation ratio (Re),
shape factor (Rf ), elongation index (Ia), unit shape factor (Ru), and circularity ratio (Rc). The Gravelius
compactness coefficient is the relationship between the perimeter of the watershed and the perimeter
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of a circle of area equal to that of the watershed [24]. Low values of the Gravelius compactness
coefficient, shape factor, and elongation index indicate a more elongated watershed, while high values
correspond to a less elongated watershed. Watersheds with less elongated shapes have a shorter
maximum flow duration, while elongated watersheds correspond to watersheds with longer flow
duration [24]. The elongation ratio is the diameter of a circle with an area equal to that of the watershed
divided by the length of the watershed [32]. Those watersheds with values close to or greater than
the unit correspond to flat watersheds, while values that move away from the unit are watersheds
with pronounced relief [25]. The shape factor is the relationship between the area and the length
of the watershed [15]. The elongation index is also a relationship between the length and width of
the watershed [15]. The unit shape factor is the relationship between the length and the area of the
watershed. Values less than 2 indicate that they have weak flood discharge periods, while values
greater than 2 indicate that their flood discharge is strong [30]. The circularity ratio is defined as the
relationship between the area and the perimeter of the watershed. If the circularity of the watershed is
low, then discharge will be slow, and the susceptibility to erosion will be low [61].

Figure 2. Classification of 31 watersheds based on the values of five principal components resulting
from a principal component analysis. Conchos River Basin, Chihuahua, Mexico. (a) PC1, (b) PC2,
(c) PC3, (d) PC4, (e) PC5. PC1 = Principal component 1, PC2 = Principal component 2, PC3 = Principal
component 3, PC4 = Principal component 4, PC5 = Principal component 5.

Relief parameters include the mean watershed slope (J), massivity coefficient (tgα), relief ratio
(Rh), relative relief (Rr), and orographic coefficient (Co). The mean watershed slope indicates the
degree of the terrain roughness. As the slope increases, the watershed will be prone to erosion.
The massivity coefficient represents the relationship between the mean watershed height and its surface
area, which is expressed as a percentage. Small values of the massivity coefficient correspond to very
mountainous watersheds, while large values correspond to watersheds from moderately mountainous
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to flat. The relief ratio is directly related to the slope of the currents and the watershed surface,
being an indicator of hydrological processes and erosion. The relief ratio, similar to the relative relief,
has a direct correlation with the watershed erosion processes [25].

Linear parameters include drainage density (Dd), mean slope of the main channel (j), mean distance
(Am), sinuosity of the main channel (Scp), Kirpich concentration time (Tc), average peak flow (Qp),
texture ratio (T), rivers frequency (Fu), resistance number (Rn), general flow length (Lo), and drainage
intensity (Di). High drainage density values indicate a high current density, and therefore a rapid
response to precipitation events [62]. The mean slope of the main channel indicates the slope of the
longest channel in the watershed. The high values of this parameter indicate that sediment flow and
entrainment will quickly exit the watershed [15]. The sinuosity of the main channel indicates the
velocity of flow movement in the channels. The lowest values of sinuosity correspond to channels
where the flow travels at greater speed, whereas the channels with the highest values of sinuosity
indicate the slow movement of the flow [57]. The Kirpich concentration time is the time when a drop of
water falls at the furthest point until it reaches the exit point [58]. Average peak flow is defined as the
mean maximum amount of water passing through a specific section [59]. The texture ratio corresponds
to the relationship between the total number of streams and the watershed perimeter. Rivers frequency
represents the total number of streams of all orders per unit area [15]. The resistance number is used to
measure the flood potential of rivers. It has a direct relationship with erosion, where increasing its
value would represent an increment in erosion susceptibility [15].

2.3. Watershed’s Description and Classification

Prior to the watersheds’ classification, their geomorphometric parameters were correlated [6,63].
Correlation indicates when part of the information contained in a set of geomorphometric parameters
is also contained in the remaining ones [32]. That served to reduce the number of parameters included
in the subsequent analysis.

To describe the variability of the geomorphometric parameters, principal component analysis
(PCA) was performed. The technique of PCA reduces the data dimensionality, simplifies the dataset,
and makes it easier to explain through a set of new principal components (PCs) [64,65]. The first
principal component is the linear combination of the original geomorphometric parameters that
contributes the most to the total variance; the second principal component, not correlated to the first,
contributes the most to the residual variance, and so on until the total variance is analyzed. The PCs are
orthogonal variables that could be obtained by multiplying the original variables, which are correlated,
with coefficients similar to the ones described in Equation (1):

zij = ai1x1 j + ai2x2 j + . . .+ aimxmj (1)

where z represents the coefficient of the component, a represents the weight of the component,
x represents the measured value of the variable, i corresponds to the component number, j represents
the sample number, and m represents the total number of variables.

The PCA was applied to the values of geomorphometric parameters to calculate the correlation
matrix and to obtain the PCs [66]. Both the correlation analysis and the PCA were performed in the
SAS© 9.1.3 software (The SAS Institute Inc., Cary, NC, USA, https://www.sas.com/en_us/home.html).
Then, the PCs were mapped for interpretation.

For the classification, the first method used for the watersheds was a hierarchical group analysis,
which was based on the Ward criterion [67]. The Ward criterion was applied to the GA by using the
square Euclidean distance to explore the clustering of the 31 watersheds. The definition of the watershed
groups was performed based on the coefficient of determination (R2) [68]. Finally, a multivariate
analysis of variance (MANOVA) was used to analyze whether significant multivariate differences exist
between the groups based on the values of their geomorphometric parameters [69].

68



Sustainability 2019, 11, 5140

The second classification method considered in this work was the compound parameter (Cp).
Previous research has employed this approach for sustainable watershed planning and management [42].
Linear and shape parameters have been commonly used for this method, whereas the relief and
basic parameters were additionally included in this study. Linear geomorphometric parameters have
a direct relationship with erosion susceptibility, where high values are more likely to result where
high erosion probabilities are present [61,70]. Thus, for watershed classification, the highest value
of linear parameters was ranked as 1, the second highest was ranked as 2, and so on. Conversely,
shape parameters have an inverse relationship with erosion [61,70], and low values are related to high
susceptibility to erosion and vice versa. Then, the lowest value of the shape parameters was ranked
as 1, the next lowest value was ranked as 2, and so on. Regarding the relief and basic parameters,
the highest value was ranked as 1, the second highest value was ranked as 2, and so on. After this
procedure was completed, the ranked values from each watershed were summed and then averaged to
produce the Cp of each watershed. This average represents the collective impact of all the parameters,
and is calculated according to Equation (2) [42]:

CP =
1
n

n∑
i=1

R (2)

where Cp is the compound parameter, R is the ranked value of each parameter, and n is the number
of parameters.

Based on the Cp, the highest priority was assigned to the watersheds with the lowest Cp value,
the second priority was assigned to the next higher Cp value, and so on. Then, the Cp was classified
into five categories or groups of erosion susceptibility. The categories were defined as: Very High
(Group 5), High (Group 4), Moderate (Group 3), Low (Group 2), and Very Low priority (Group 1),
similar to classifications made in previous studies [71].

2.4. Comparison of the Classification Methods

To compare the grouping methods, the following procedure was followed.
First, an ANOVA was carried out for each geomorphometric parameter (independent variable),

and separated for each grouping method. The source of variation or class was considered to be
the group. Such analyses served to determine possible significant differences among the groups
within each grouping method. After the ANOVA analyses were completed, the grouping method that
achieved the highest number of significant p-values (α < 0.05) was considered the most effective for
grouping the watersheds of the CRB.

A list of abbreviations can be found in Appendix B (Table 3).

3. Results

3.1. Characterization of Conchos River Basin Watersheds

The values of the basic, shape, relief, and linear-type parameters from the 31 watersheds used
in this study are shown in Table A1. Watershed RH24Ia has the smallest area and perimeter with
78.62 km2 and 50.59 km, respectively. Meanwhile, the watershed with the largest area and perimeter
is RH24Lb, with 5428.29 km2 and 640.77 km, respectively. The watershed with the highest stream
order is RH24Kb, while watershed RH24Lb has the longest main channel. First-order streams do
not have tributaries, and their flow depends on the secondary surface contributions that converge to
them [61]. The watershed with the highest number of channels of order one is RH24Ia, whereas the
watershed with the lowest number of channels is RH24Jb. The watershed lengths vary from 11.17 km to
133 km. Watershed RH24Kb presents the largest elongation ratio value, indicating that it is the flattest,
while watershed RH24Ib has the lowest value for this parameter, indicating that it has the steepest
slope [25]. The values of sinuosity of the main channel vary from 0.05 km to 4.1 km. The watershed
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with the shortest Kirpich concentration time is RH24Kb, while watershed RH24Lb has the longest.
The lowest average peak flow value corresponds to watershed RH24Ia, whereas watershed RH24Lb
presents the highest. The texture ratio values are between 4.98–75.1, which are considered as moderate
to high values; the low values correspond to watershed RH24Na, while the highest value belongs to
watershed RH24Lg, so the former is not susceptible to erosion, while the latter is. The watershed with
the lowest resistance value is RH24Na, while the watershed with the highest value is RH24Lg.

3.2. Correlations and Principal Component Analyses

The data matrix of the 31 watersheds and the 33 parameters, which included the basic shape,
linear, and relief type parameters, were analyzed through a correlation analysis. A set of parameters
showing high correlations were identified. From each pair of highly correlated parameters, only one
parameter was chosen, and the rest were eliminated to reduce the data dimensionality. After the
reduction, the final number of geomorphometric parameters was 26, as listed in Table 2.

The PCA was performed on the 26 parameters and showed that the first five principal components
were the most important for explaining the data variance (Figure 2). The most important parameter
was selected according to its contribution to the principal component, as it is shown by the values
of the eigenvectors (in bold) of the correlation matrix (Table 2). The first five principal components
accounted for 88.44% of the total variance of the dataset. The linear parameters (hydrology) are the
ones mainly explaining the CRB behavior (Table 2).

Table 2. Principal components and geomorphometric parameters explaining the greatest portion of
variance in the watersheds of the Conchos River Basin, Chihuahua, Mexico.

PC Eigenvalue Variance
Accumulated

Variance
Geomorphometric
Parameter (First)

Geomorphometric
Parameter (Second)

1 9.0010 0.3462 0.3462 Average peak flow (Qp) Channel lengths (Lu)
2 6.0848 0.2340 0.5802 Unit shape factor (Ru) Drainage density (Dd)
3 3.4222 0.1316 0.7119 Mean distance (Am) Elongation ratio (Re)
4 2.8620 0.1101 0.8219 Minimum height (Hmin) Mean slope (J)
5 1.6246 0.0625 0.8844 Elongation index (Ia) General flow length (Lo)

PC = Principal component, First = Primary importance, Second = Secondary importance.

3.3. Watershed’s Classification Based on Group Analysis

Figure 3 shows the dendrogram, resulting from the group analysis (GA) of the 31 watersheds.
Five groups were identified based on their basic, relief, shape, and hydrology-type parameters,
and considering a value of R2 = 0.84. Group 1, with seven watersheds, has the largest amount of
low values for the shape, relief, and linear-type parameters, as can be verified in Table 3. Group 2,
with eight watersheds, presents the lowest average values of drainage density, sinuosity of the main
channel, and general flow length. Group 3, also with eight watersheds, showed the highest values of
elongation ratio, drainage density, mean slope of the main channel, and general flow length. Group 4,
with four watersheds, has the highest values in maximum and minimum height, mean slope of the
watershed, mean distance, unit shape factor, resistance number, and drainage intensity. In this group,
the lowest values correspond to the elongation ratio. Group 5, also with four watersheds, presents the
largest amount of high values for the basic, shape, relief, and linear-type parameters. The multivariate
analysis of variance (MANOVA) showed significant differences among the groups of watersheds,
showing a value of Wilks’ lambda equal to 0.0025, with a value of p < 0.0001.
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Figure 3. Dendrogram classifying 31 watersheds by group analysis. Conchos River Basin, Chihuahua,
Mexico. The red line was drawn to define the groups.

Table 3. Average values of the geomorphometric parameters by group.

Gid Lb2 Lc Li Lu Hmin Hmax Cc Re Rf Ia J tgα Dd

1 46.12 31.31 371.43 1038.50 1495 995 3.22 0.74 20.03 1.69 6.43 0.49 1.97
2 80.16 65.56 1820.63 2660.91 2489 1415 3.70 0.91 23.28 3.11 13.62 0.79 1.97
3 102.47 75.16 2765.79 6206.70 2294 1060 3.95 1.99 34.73 2.41 12.07 1.48 2.59
4 146.56 88.94 5556.08 6201.08 2970 1545 3.86 0.40 30.30 3.10 21.45 1.17 2.36
5 192.52 99.49 8176.13 12,155.08 2680 1230 4.07 0.44 51.66 2.20 17.31 2.45 2.58

Gid j a TcK Scp Qp T Ru Fu Rn Rh Rr Lo Di

1 1.42 1.92 11.74 1.51 194.51 8.83 1.24 2.56 2673.67 67.01 13.48 0.99 1.30
2 2.44 2.17 18.48 1.37 313.28 16.48 1.69 3.03 4835.28 47.81 11.26 0.98 1.51
3 3.70 2.18 22.19 1.69 417.90 27.78 1.50 3.86 5915.17 34.49 6.97 1.30 1.51
4 0.98 2.87 31.18 1.68 433.61 37.17 1.73 4.87 7040.26 34.58 8.63 1.18 2.04
5 0.82 2.77 42.44 1.94 589.36 49.69 1.44 4.99 6806.71 28.86 5.50 1.29 1.95

Gid = Group identification, 1 = Group 1 (Very low erosion susceptibility), 2 = Group 2 (Low erosion susceptibility),
3 = Group 3 (Moderate erosion susceptibility), 4 = Group 4 (High erosion susceptibility), 5 = Group 5 (Very high
erosion susceptibility), Lc = Length of main channel, Lb2 = Length of watershed, Li = Length of contour lines,
Lu = Length of channels, Hmin=Minimum height, Hmax=Maximum height, Cc=Gravelius compactness coefficient,
Re = Elongation elation, Rf = Form factor, Ia = Elongation index, J =Mean slope of watershed, tgα =Mass coefficient,
Dd = Drainage density, j = Mean slope of main channel, a = Medium distance, TcK = Kirpich concentration
time, Scp = Sinuosity of main channel, Qp = Average peak flow, T = Texture ratio, Ru = Unitary shape factor,
Fu = River frequency, Rn = Resistance number, Rh = Relief ratio, Rr = Relative relief, Lo = Length of general flow,
Di = Drainage intensity.

The geospatial distribution of the groups is shown in Figure 4. Group 1 shows a homogeneous
pattern in its distribution, which is concentrated in the central part of the study area. In contrast,
Group 2 shows a dispersed distribution, mainly at the edges of the CRB. Group 3 is distributed in the
northern, central, and southern parts, and is represented by small clusters of two or three watersheds.
Group 4 corresponds to watersheds spatially dispersed over the basin. The watersheds of these groups
are isolated from the other watersheds of the same group. Group 5 shows watersheds clustered in the
southern part of the basin, except for the watershed RH24Jb, which is located in the northern region.
The GA showed a clustered geospatial pattern for Groups 1, 3, and 5, who share characteristics in their
parameters and space.
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Figure 4. Geospatial distribution of watershed groups classified by group analysis. Very High (�),
High (�), Moderate (�), Low (�), Very Low (�). Conchos River Basin, Chihuahua, Mexico.

3.4. Watershed’s Classification Based on the Compound Parameter (Cp)

Considering the 26 geomorphometric parameters selected after the correlation analysis was
performed, the value of the compound parameter (Cp) was calculated for the 31 watersheds of the
CRB (Figure 5a). The watershed RH24Lg received the highest priority (1), followed by the watershed
RH24Le (2). The watershed with the lowest priority (31) was watershed RH24Kg. A high priority is an
indicator of a high degree of erosion susceptibility in the watershed.

Figure 5. (a) Watersheds and their compound parameter (Cp). (b) Geospatial distribution of watershed
groups by Cp reclassification. Very High 1 (�), High 2 (�), Moderate 3 (�), Low 4 (�), Very Low 5 (�).
Conchos River Basin, Chihuahua, Mexico.
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The resulting Cp map (Figure 5a) was reclassified into the following five categories: Very High,
High, Moderate, Low, and Very Low (Figure 5b). The spatial distribution of the groups was reclassified
by natural breaks [71]. The watersheds classified as Very High show a homogeneous pattern in their
distribution in the southwestern part of the watershed. Meanwhile, the watershed RH24Jb is isolated
in the northwestern part. The High, Moderate, and Low classes show a dispersed distribution, with at
least two of their watersheds clustered in space. The Very Low class shows a homogeneous distribution
in space in the southeastern part of the study area, with only one dispersed watershed (RH24Hf).

3.5. Comparison of the Classification Methods

Regarding the GA classification method, the results from the ANOVA analyses performed on
14 geomorphometric parameters, out of 26, detected significant differences among the groups defined
by the method. In the case of the Cp classification method, the ANOVA analysis of only two parameters
detected significant differences among the groups defined by this classification method (Table 4).

Table 4. p-values resulting from the ANOVA analyses performed to detect differences among the
groups defined by each classification method.

Geomorphometric Parameters

Lc Lb2 Li Lu Hmax Hmin Cc Re Rf Ia J tgα Dd

GA 0.0091 0.0865 <0.0001 <0.0001 0.1954 0.3315 0.4011 0.2675 0.0005 0.4273 0.0750 <0.0001 0.0224
Cp 0.3711 0.3576 0.3207 0.1462 0.7602 0.1029 0.4368 0.4983 0.3214 0.8336 0.5236 0.1225 0.1563

j a TcK Scp Qp T Ru Fu Rn Rh Rr Lo Di

GA 0.3316 0.7712 0.0356 0.5116 <.0001 <.0001 0.5327 0.0069 0.0004 0.1205 0.0086 0.0224 0.0265
Cp 0.5902 0.6454 0.4377 0.2158 0.2287 0.1442 0.8277 0.0174 0.1626 0.4913 0.1979 0.1563 0.0302

GA = Group analysis, Cp = Compound parameter, Lc = Length of main channel, Lb2 = Length of watershed,
Li = Length of contour lines, Lu = Length of channels, Hmin = Minimum height, Hmax = Maximum height,
Cc = Gravelius compactness coefficient, Re = Elongation elation, Rf = Form factor, Ia = Elongation index, J =Mean
slope of watershed, tgα =Mass coefficient, Dd = Drainage density, j =mean slope of main channel, a =medium
distance, TcK = Kirpich concentration time, Scp = Sinuosity of main channel, Qp = Average peak flow, T = Texture
ratio, Ru = Unitary shape factor, Fu = River frequency, Rn = Resistance number, Rh = Relief ratio, Rr = Relative
relief, Lo = Length of general flow, Di = Drainage intensity.

4. Discussion

The prioritization of watersheds, based on susceptibility to erosion, has been carried out in
different regions of the world [72,73], using different prioritization methods [74]. This study contributes
to the lack of knowledge regarding the susceptibility to erosion in northern Mexico. This was assessed
by implementing two methods for prioritization based on the analysis of a set of 33 parameters,
which differ from other studies [5,7,75]. The inclusion of several geomorphometric parameters and
their relationships within several connected watersheds enriched the study of their erosion susceptibility.
In this sense, multivariate techniques have proved to be appropriate methods for establishing priorities,
reducing the dimensionality of the dataset by losing the least amount of information [76].

This study integrated a multivariate analysis of several geomorphometric parameters that served
to identify those watersheds, which may be prone to erosion. That was possible by evaluating the
behavior of such geomorphometric parameters and representing them in a geospatial basis [77,78].
Their relationships provided significant information about the main sources of variability among the
studied watersheds [74]. Previous research studies have reported that topography, geomorphology, and
land use/land cover are the most important factors in the watershed susceptibility to erosion [79–82].
In this study, the factors with the greatest influence on the hydrological behavior of watersheds and
their erosion susceptibility were the average peak flow and the all channel lengths, as it has also been
found in previous studies [6,83].

The PCA is considered a statistical exploratory technique, whose results have helped explain the
distribution of environmental attributes [69]. Results from the PCA were useful to identify the sources
of variance, which were mainly represented by the dominant parameters influencing the data structure.
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Then, the basin’s hydrological configuration was explained by those geomorphometric parameters
explaining the greatest portion of the variance among the watersheds. The PCA results from this study
are consistent with the observations made by Meshram and Sharma [32] and Farhan et al. [33].

From the PCA analysis, PC1 and PC2 are mainly influenced by linear geomorphometric parameters.
Some of the linear parameters with an influence on PC1 are the average peak flow. This is shown in
Figure 3, where the lowest PC1 coefficients correspond to the watersheds with the lowest mean slope
values of the small channels. Regarding PC2, drainage density is one of the linear parameters with an
influence. Watersheds with low drainage density indicate the presence of permeable surface material,
good vegetation cover, and low relief [84,85]. The map of PC2 (Figure 3) was highly influenced by
drainage density, since the watersheds with low values of this parameter are located in the south–central
part of the study area and grouped in such a map.

PC3 and PC4 are influenced by linear parameters such as mean distance and shape parameters
such as elongation ratio, as well as topographic parameters such as minimum height and mean slope.
These factors are associated with the main channel, relief, and slopes, among others. In Figure 3,
the watersheds with the greatest heights and slopes correspond to the watersheds located in a
mountainous zone, while the watersheds with the lowest elevations and slopes correspond to the arid
and semi-arid zones of the state of Chihuahua [86]. Regarding PC5, it is mainly influenced by the
elongation index (shape parameter) and the general flow length (linear parameter). The high values of
the elongation index correspond to enlarged watersheds, which are related to high drainage densities.
A watershed with a high drainage density implies a quick hydrological response to rainfall events,
while non-enlarged watersheds correspond to fan-shaped watersheds, which are characterized by
short channels [87].

Group analysis (GA) was one of the methodologies used in this study to group and then prioritize
the watersheds. It was useful to relate watersheds that share the same characteristics based on their
geomorphometric parameters. The groups delineated by the analysis have a unique combination
in terms of their geomorphometric attributes [40]. The groups of watersheds follow a territorial
pattern. Group 1 includes watersheds located in the zones with the least slopes, where the predominant
economic activity is agriculture. Group 2 and 3 belong to watersheds located in transition zones because
of their moderate slopes. Groups 4 and 5 are watersheds with rugged topography, with vegetation of
shrublands and oak forests.

The compound parameter (Cp) was the second methodology employed to prioritize the watersheds.
The value of Cp was calculated for each of the 31 watersheds composing the CRB (Figure 5a). Based on
the value of Cp, watershed RH24Hf received the highest priority (1), followed by the watershed
RH24Le (2). By comparing the results from GA and Cp, Group 4 was identically integrated by the
two methodologies. This group is characterized by watersheds having the highest average values of
maximum and minimum height, elongation ratio, elongation index, mean watershed slope, slope of
the main channel and unit shape factor. The high values of these parameters correspond to watersheds
with a high erosion susceptibility [88]. Conversely, Group 5 was formed by watersheds having the
highest values of main channel length, watershed length, contour length, all channel lengths, Gravelius
compactness coefficient, shape factor, massivity coefficient, mean distance, Kirpich concentration time,
sinuosity of the main channel, average peak flow, texture ratio, river frequency and resistance number.
This coincide with high values of Cp, which correspond to watersheds distributed in the southwestern
zone of the study area and may have a low erosion susceptibility [61].

The two prioritization schemes used in this study gave similar results according to the spatial
distribution of watershed groups. The prioritization of watersheds, obtained through GA and Cp,
highlighted those watersheds with potential for the implementation of soil and water conservation
practices. Based on the ANOVA analyses performed to statistically compare the GA and Cp
methodologies, the former resulted in more effectively classifying the watersheds, since it permitted
better differentiating the watershed groups.
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Results from the GA show that erosion susceptibility is strongly related to linear parameters
(surface hydrology) for southwestern watersheds, where steep slopes of both the watershed and the
main channel influence soil erosion [89]. Watersheds RH24Lg, RH24Le, RH24Lf, RH24Mc, RH24Lb,
RH24Nc, and RH24Ne have the steepest slopes, making them more prone to erosion [29].

One of the advantages of using the watershed as a territorial unit is the analysis of multiple
geomorphometric parameters, which are related to the watershed’s hydrological configuration,
topography, and shape. Most of the watershed surface attributes depend on local topographic
conditions [5]. In this study, the Basin’s altitudinal gradient, a surface attribute, assists in exhibiting the
contrasts among watersheds groups, while showing a homogeneous geographic distribution within
them. The linear and shape-type parameters are important because of their influence on soil erosion.

The description and spatial grouping of the 31 watersheds through their 26 parameters using
multivariate techniques proved to be useful to understand the main factors that control the variance
in the CRB. Prioritization through the two types of grouping was also effective in detecting those
watersheds susceptible to erosion. The proposed methodology for prioritizing watersheds on a
geospatial basis is a feasible approach for identifying watersheds that are susceptible to erosion.
However, prioritization with parameters that are based on shape, linear, and relief of the watersheds
may not be sufficient. Thus, the incorporation of information regarding the activities on the territory of
the CRB would help to improve the efficacy of the classification of watersheds based on their erosion
susceptibility. Therefore, future research could include socioeconomic attributes that contribute to
soil loss, such as agriculture [39]. Despite the limitations of this study, the contribution of this work
represents an advance in the identification of the watersheds that are most susceptible to erosion in the
CRB. This in turn contributes to land-use planning, which may help mitigate soil degradation processes.

5. Conclusions

The application of GA and Cp methodologies allowed integrating a large set of geomorphometric
parameters, which served to classify watersheds according to their characteristics.

GA more effectively clustered the watersheds of the Conchos River Basin than Cp, since the groups
formed by GA were more differentiated based on the analysis of the watersheds’ geomorphometric
parameters. The results of GA show that watersheds RH24Lf, RH24Lb, RH24Nc, and RH24Jb
might be subjected to strong erosion processes, and are potential candidates to be subjected to soil
conservation practices.

The present study demonstrates the usefulness of integrating GIS and multivariate techniques to
prioritize watersheds based on their erosion susceptibility. Such an integration approach showed the
spatial relationships of the different geomorphometric parameters analyzed. Although the present
study permitted a definition of watershed groups according to the values of their geomorphometric
parameters and their relation with erosion susceptibility, the integration of additional variables
in the analysis may provide a more insightful classification and thus a more reliable watershed
prioritization. Such variables could include land use/land cover, soil type, lithology, geomorphology,
and socioeconomic activities, among others.
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Table 2. Eigenvectors of the correlation matrix.

GP PC1 PC2 PC3 PC4 PC5

Lc 0.2678 0.0223 −0.2753 −0.1330 0.0095
Lb2 0.2345 −0.2721 −0.0327 −0.0059 0.0880
Li 0.2872 0.0343 0.0149 0.1182 −0.1631
Lu 0.3014 0.0344 0.1560 −0.1236 −0.0398

Hmax 0.2170 −0.1034 −0.0543 0.3656 −0.1169
Hmin 0.0664 −0.0941 −0.1183 0.4424 −0.3506

Cg 0.1308 −0.2425 0.0677 0.0028 0.2681
Re −0.0340 −0.1992 0.4039 0.0072 0.0603
Rf 0.2180 0.1309 0.2002 −0.1898 −0.3142
Ia 0.0510 −0.3141 −0.1533 0.1096 0.3442

J 0.1269 0.1467 −0.0457 0.4034 −0.1466
tgα 0.2759 −0.0721 0.1407 −0.2389 −0.0850
Dd 0.0720 0.3174 0.1766 −0.0248 0.3345

j −0.0484 −0.2118 0.4035 0.0593 0.0789
a 0.1271 0.1028 −0.4225 −0.0973 0.1850

TcK 0.2483 0.0091 −0.2925 −0.1728 −0.0094
Scp 0.0694 0.2821 −0.2272 −0.1822 0.0258
Qp 0.3031 −0.1104 0.0908 −0.0989 −0.1442
T 0.2642 0.1539 0.1430 0.0413 −0.0230

Ru 0.0641 −0.3193 −0.1582 0.1261 0.3286

Fu 0.1737 0.2478 0.1291 0.1961 0.2488
Rn 0.2305 0.1724 0.0819 0.2424 0.1779
Rh −0.2207 0.2512 0.0133 0.1126 −0.0453
Rr −0.2415 0.1661 −0.0986 0.2273 0.0458
Lo 0.0720 0.3174 0.1766 −0.0248 0.3345

Di 0.1911 0.0795 0.0241 0.2992 0.1179

GP = Geomorphometric parameter, PC1 = Principal component 1, PC2 = Principal component 2, PC3 = Principal
component 3, PC4= Principal component 4, PC5= Principal component 5, Lc= Length of main channel, Lb2 = Length
of watershed, Li = Length of contour lines, Lu = Length of channels, Hmin =Minimum height, Hmax =Maximum
height, Cc = Gravelius compactness coefficient, Re = Elongation ratio, Rf = Form factor, Ia = Elongation index,
J =Mean slope of watershed, tgα =Mass coefficient, Dd = Drainage density, j =mean slope of the main channel,
a =Medium distance, TcK = Kirpich concentration time, Scp = Sinuosity of the main channel, Qp = Average peak
flow, T = Texture ratio, Ru = Unit shape factor, Fu = River frequency, Rn = Resistance number, Rh = Relief ratio,
Rr = Relative relief, Lo = General flow length, Di = Drainage intensity. Bold letters indicate the dominant coefficient.

B.

Table 3. Abbreviations.

Abbreviation Meaning

ANOVA Analysis of variance
Cp Compound parameter

CRB Conchos River Basin
DTM Digital terrain model
GIS Geographic information systems
GA Group analysis

INEGI * National Institute of Statistics, Geography and Informatics
MANOVA Multivariate analysis of variance

CONABIO * National Commission for the Knowledge and Use of Biodiversity
PCA Principal component analysis
PCs Principal components

* Acronyms in Spanish.
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Abstract: With increasing evidence of climate change affecting the quality of water resources, there is
the need to assess the potential impacts of future climate change scenarios on water systems to ensure
their long-term sustainability. The study assesses the uncertainty in the hydrological responses of the
Zero river basin (northern Italy) generated by the adoption of an ensemble of climate projections
from 10 different combinations of a global climate model (GCM)–regional climate model (RCM)
under two emission scenarios (representative concentration pathways (RCPs) 4.5 and 8.5). Bayesian
networks (BNs) are used to analyze the projected changes in nutrient loadings (NO3, NH4, PO4) in
mid- (2041–2070) and long-term (2071–2100) periods with respect to the baseline (1983–2012). BN
outputs show good confidence that, across considered scenarios and periods, nutrient loadings will
increase, especially during autumn and winter seasons. Most models agree in projecting a high
probability of an increase in nutrient loadings with respect to current conditions. In summer and
spring, instead, the large variability between different GCM–RCM results makes it impossible to
identify a univocal direction of change. Results suggest that adaptive water resource planning should
be based on multi-model ensemble approaches as they are particularly useful for narrowing the
spectrum of plausible impacts and uncertainties on water resources.

Keywords: water quality; climate change; Bayesian networks; uncertainty; multi-models

1. Introduction

The maintenance of good water quality resources is essential to protect both ecosystems and
human health, and they represent one of the main targets of both the European Water Framework
Directive (2000/60/CE) and Sustainable Development Goals (i.e., SDG6) [1].

Changes in the global climate system are expected to have major consequences on the qualitative
aspect of available water resources [2–7]; thus, assessing the impacts of future climate change
scenarios on water systems is necessary to ensure a sustainable management of water supply for
multiple purposes.

The inherent complexity, variability, and randomness of water systems, their interaction with
socio-economic factors including the land use and population growth, and the high degree of uncertainty
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stemming from climate change make the assessment of climate change impacts on water resources
particularly challenging [8].

Uncertainty plays a prominent role in climate change science and climate change impact science,
with hydrology and water resources research in particular [8–11]. According to Parker et al. [12] and
Hawkins et al. [13], it can be attributed to a number of reasons including (i) scenario uncertainty, arising
from our limited understanding about the path of greenhouse gasses emissions and socio-economic
development; (ii) internal climate variability, due to the inherent variability of the climate system
components, processes, and their interaction; (iii) model uncertainty, caused by the different
formulations used to represent climatic processes in climate and impact models.

A proper understanding of the type, sources, and effects of uncertainty is needed to achieve
the goals of reliability and sustainability in water system management and planning under
changing conditions [14,15]. Uncertainty quantification is vital to facilitate a risk-based approach to
decision-making, where the range of possible futures is considered [16,17], and costs and benefits of
adaptation are estimated accordingly. For this reason, uncertainties should be communicated as an
inevitable component of each climate impact assessment study in a form which is also understandable
by a non-scientific community to avoid misjudged information and to prevent overconfidence in
impact projections [18].

A promising way to evaluate and deal with uncertainty is represented by ensemble modeling
approaches [19]. Multi-model ensembles are commonly used to investigate structural model uncertainty,
employing more than one climate model to perform multiple simulations and analyzing how climate
change projections differ. The development of ensembles in both climate and impact studies is strongly
encouraged by the Intergovernmental Panel on Climate Change (IPCC) since the Fourth Assessment
Report (AR4, 2007) [20], which suggests the use of multiple climate models and scenarios to cover
different sources of uncertainty [20]. The variability among ensemble components, in fact, can be used
as a measure of the state of the knowledge. Furthermore, it could be useful to describe the confidence
about the impact of climate change on the system modeled, supporting more robust decisions. In
other words, if most ensemble members give comparable results, high confidence in projected climate
change impacts is obtained, while, by contrast, if a large spread between components exist, there is less
confidence in the forecasted impacts. Furthermore, it was shown that ensembles often give a more
accurate prediction of future climate impacts than even the best individual model [21–23].

Relying on the extensive experience acquired in climate modeling, the use of ensembles was
also transferred to the water resources field where attempts to build ensembles of impact models and
scenarios (i.e., hydrological, water quality) are becoming increasingly common [24–26] to support
water system management and adaptation.

In this respect, the paper proposes a Bayesian network (BN)-based approach to develop an
ensemble of impact scenarios simulating the effect of different climate change projections on the quality
of water of the Zero river basin (Italy). Accordingly, BNs are used as a modeling framework to evaluate
the uncertainty due to global climate model (GCM)–regional climate model (RCM) structure and
representative concentration pathways (RCPs), helping in determining and communicating the level
of confidence of projected water quality alterations between baseline and future climate regimes.

BN outcomes (i.e., multiple impact scenarios) can be used to inform the spectrum of plausible
effects of expected climate change on the Zero river basin and, thus, support the choice of effective
adaptation strategies for a sustainable management of water resource quality at the local scale.

After a brief introduction to the study area (Section 1), this paper describes the methodology and
input data employed (Section 2) and, finally, discusses the scenarios developed for the Zero river basin
case study (Section 3), together with their uncertainty analysis.

Study Area

The Zero river basin (ZRB) (latitudes 45◦28’ north (N)–45◦48 N, longitudes 11◦54’ east (E)–12◦25’ E)
(Figure 1) is located within the Venetian floodplain (northern Italy) and it is a sub-basin of the Venice
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lagoon watershed (Figure 1a), covering an area of 140 km2. The Zero river (Figure 1b), which is 47 km
long, together with the Dese rivers, provides the greatest contribution of freshwater (21% of the total)
to the lagoon of Venice [27].

Figure 1. The Zero river basin case study (a) and input data location (b).

The basin features a Mediterranean climate but typical traits of more continental climates [28],
with an average annual precipitation of around 1000 mm (period 2007–2012) and an average annual
temperature of 14 ◦C (period 2004–2013). It is characterized by marked inter-annual climate variability,
which can originate years climatologically very different from each other. The land use of the ZRB is
mainly characterized by agricultural areas, representing 73% of the total surface, while the remaining
surface of the basin is covered by artificial (24%), semi-natural, and forested areas (4%).

Agricultural areas are dominated by industrial crop typologies, including corn (45%)
(i.e., Zea mays L.), soy (9%) (i.e., Glycine max L.), and autumn–winter cereals (13%) such as winter
wheat (i.e., Triticum aestivum L.) and barley (i.e., Hordeum vulgare L.). A negligible percentage of the
agricultural land is also used for the cultivation of beets and other permanent horticultural crops.

Artificial surfaces are mainly represented by housing areas (54%), industrial businesses (32%),
and transportation and services (14%). Accordingly, several industrial and residential activities exist
on the basin. Three wastewater treatment plans (i.e., Morgano, Zero-Branco, and Castelfranco Veneto)
(Figure 1b) with capacities ranging from 2500 to 32,000 of population equivalents (PE) directly discharge
into the Zero river.

The intensive agriculture, characterized by an elevated level of fertilization, and the dense
urbanization represent significant pollution sources for the area and the main factor responsible for the
excessive nutrient loadings in the reaching bodies of the Venice lagoon. Nutrient pollution is a major
concern in the area considering the risk of eutrophication and toxic algae blooms which can threaten
the good qualitative status of waters with consequent implications for environmental and human
health [29]. Climate change, inducing extreme changes in temperature and precipitation trends, could
exacerbate such nutrient pollution, altering those hydrological processes (e.g., runoff, river flow, water
retention time, evapotranspiration) that regulate the mobilization of nutrients from land to inland and
coastal water bodies.
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2. Materials and Methods

To understand the complexity of the interactions between climate, hydrology and water quality
parameters in the Zero river basin, we adopted the BN-based integrated approach proposed in Figure 2.

 
Figure 2. The Bayesian network (BN)-based integrated approach.

The core of the proposed approach is represented by a Bayesian network, which is employed
as a modeling tool for the simulation of multiple nutrient loadings scenarios, and for the analysis of
their uncertainty. Different data coming from hydrological models, historical observations, and expert
judgment (Table A1, Appendix A) were structured and combined into a probabilistic form to develop
and train the BN at different levels of implementation.

Qualitative information elicited from experts was used to develop the conceptual model of the
network and to train socio-economic and agronomic variables (i.e., irrigation, fertilizer application) of
the model for which quantitative data were not available. Observations regarding the main climatic
parameters (i.e., precipitation, temperature, and evapotranspiration) and point-source pollution sources
(i.e., wastewater treatment plants (WWTPs) and industrial discharges), together with Soil and Water
Assessment Tool (SWAT) model simulations (i.e., runoff, river discharge (Q)) for the current conditions
developed by Reference [30], were used for the training of the network for the period 2004–2013.
Additional observed hydrologic data (i.e., river discharge (Q), nutrient concentrations (i.e., NO3

−, NH4
+,

PO4
3−)) coming from the water quality monitoring station were used to evaluate the performance of

the model under current conditions.
After the training and validation, an ensemble of climate change projections generated by coupling

different combinations of Global Climate Models (GCMs) with regional climate models (RCMs) was
used as input for scenarios analysis to assess the effect (and uncertainty) of future climate change on
nutrient loadings.

2.1. Climate Change Projections

To assess the effect of climate change on nutrient loadings (i.e., NO3
−, NH4

+, PO4
3−), changes in

temperature and precipitation over future scenarios were selected as climate change indicators and
used as input for the development of alternative nutrient loading scenarios using the BN model. The
main aim of the study, however, was to capture uncertainties across a range of available GCM–RCM
structures and representative concentration pathways (RCPs); thus, in order to represent the widest
range of temperature and precipitation changes projected for the case study area, different climate
change model outputs were considered (Table 1). This allowed including both the “worst” and “best”
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case scenarios in the BN, giving the users substantial flexibility in exploring and understanding the
possible implications of climate change in the future. GCM–RCM combinations were selected among
those available considering different kinds of features, including (i) their representativeness for the
case study area and for the selected time periods (i.e., 2041–2070 and 2071–2100); (ii) their ability to
perform at high spatial resolution; (iii) their availability in an open-source format.

Table 1. Global climate model (GCM)–regional climate model (RCM) projections selected and
implemented in the Bayesian network (BN). SMHI—Swedish Meteorological and Hydrological Institute;
DMI—Danish Meteorological Institute; CMCC—Centro Euro-Mediterraneo sui Cambiamenti Climatici.

No.
Global Climate
Model (GCM)

Regional
Climate Model

(RCM)

Representative
Concentration

Pathways (RCPs)
Resolution Time Range Institute

1 HadGEM2-ES RCA4 4.5, 8.5 12 km 1970–2099 SMHI
2 IPSL-CM5A-MR RCA5 4.5, 8.6 12 km 1970–2100 SMHI
3 CNRM-CM5 RCA6 4.5, 8.7 12 km 1970–2100 SMHI
4 EC-EARTH RCA7 4.5, 8.8 12 km 1970–2100 SMHI
5 MPI-ESM-LR RCA8 4.5, 8.9 12 km 1970–2100 SMHI
6 CNRM-CM5 CCLM 4.5, 8.10 12 km 1950–2100 CLMcom
7 CMCC-CM COSMO-CLM 4.5, 8.11 8 km 1976–2100 CMCC
8 HadGEM2-ES RACMO22E 4.5, 8.12 12 km 1950–2099 KNMI
9 EC-EARTH HIRHAM5 4.5, 8.13 12 km 1951–2100 DMI
10 EC-EARTH RACMO22E 4.5, 8.14 12 km 1950–2100 KNMI

Ensembles of 10 climate change models were selected (Table 1), including the
CMCC-CM/COSMO-CLM GCM–RCM and nine GCM–RCM model combinations from the
EURO-CORDEX project [31].

The CMCC-CM global model [32] is a coupled atmosphere–ocean general circulation model,
while the COSMO-CLM (CCLM) [33] is a high-resolution (between 1 and 50 km) climate regional
model; both were developed by the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC),
and, when coupled, they allow a spatial resolution of 8 km for the selected region.

EURO-CORDEX is the European branch of the CORDEX initiative sponsored by the World Climate
Research Program (WRCP) with the aim of organizing an internationally coordinated framework
to produce improved regional climate change projections for all land regions worldwide based on
dynamical statistical downscaling models forced by multiple GCMs. CORDEX results were used as
input for climate change impact and adaptation studies within the Fifth Assessment Report (AR5) of
the Intergovernmental Panel on Climate Change (IPCC). In this study, nine climate change scenarios
resulting from different combinations of GCMs and RCMs at 12-km spatial resolution were selected
(Table 1). Different GCMs and RCMs were developed by different research groups including the Danish
Meteorological Institute (DMI), the Swedish Meteorological and Hydrological Institute (SMHI), and
the Met Office Hadley Centre (MOHC) (Table 1).

Based on the outputs of the selected GCM–RCMs (Table 1), different climate change scenarios
were developed for the Zero river basin case study by extrapolating the mean temperature (◦C) and the
cumulative precipitation (mm) calculated on a monthly basis. Specifically, for each GCM–RCM, five
different 30-year scenarios were developed for a control period (i.e., 1983–2012), a mid-term period (i.e.,
2041–2070) and a long-term period (i.e., 2071–2100) under two different representative concentration
pathways (i.e., RCP4.5 and RCP8.5). RCP4.5 represents the moderate emission scenario which predicts
an increase in radiative forcing up to 4.5 W·m−2 by 2100 and a stabilization of the emissions (i.e.,
650 ppm) shortly after 2100 [34], while RCP8.5 was chosen as representative of the extreme emission
scenario, in which the greenhouse gas (GHG) emissions and concentrations increase considerably over
the 21st century, leading to a radiative forcing of 8.5 W·m−2 by 2100 [35], thus describing a future
without any specific climate mitigation target.

To make the outputs of GCM–RCMs suitable to be implemented at the spatial scale of impact
assessment models, a bias correction was applied [30]. GCMs, in fact, have a spatial resolution too
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coarse for local-scale assessments and, for this reason, they are generally coupled with RCMs to
consider the effects of orography, land–sea surface contrast, and land surface characteristics. However,
RCMs also often show significant biases due to imperfect conceptualization, discretization, and spatial
averaging within grid cells; therefore, a bias correction is required.

For the data used in this study, the linear scaling (LS) method was applied to correct the biases in
the monthly values of temperature and precipitation based on observed ones. The LS method was
applied using the software CLIME, a geographic information system (GIS) software for climate data
analysis developed by the Regional Models and Geo-Hydrogeological Impacts (REMHI) division of
CMCC, as extensively described in Reference [30]. Specifically, the method was implemented for
all 10 climate scenarios for every weather station of the case study (Figure 1) using the rainfall and
temperature observations for the period 1993–2012 as a correction factor. Once corrected, outputs of
the GCM–RCMs for each of the 10 climate scenarios and for each of the three weather stations of the
case study (i.e. Castelfranco Veneto, Zero-Branco, Mogliano Veneto) were elaborated to obtain suitable
inputs for the BN model.

2.2. Bayesian Network Model

A BN model was employed to assess and compare the impacts of different climate change scenarios
on nutrient loadings (i.e., NO3

−, NH4
+, PO4

3−) in the transitional waters of the Zero river basin, thus
generating an ensemble of impact scenarios supporting the identification of climate change effect on
water quality.

The BN was implemented by building on a BN model previously developed and validated in a
case study [36] which was extended to allow the incorporation of multiple GCM–RCM inputs. The BN
for the Zero river basin was developed and run using the software HUGIN Expert, version 8 [37,38].
For additional details about the methodology and data used to develop the BN, please refer to
Reference [36].

2.2.1. BN Development and Training

The BN structure was designed following the DPSIR (Drivers-Pressures-State-Impacts-Responses)
framework, starting from the conceptual model described in Reference [36]. An influence (i.e., “box
and arrow”) diagram was developed including the most relevant systems variables (i.e., nodes), as
well as the links between them (i.e., directed arcs), allowing the identification of the main cause–effect
pathways between input variables, represented by climatic changes and land use, and output variables,
represented by the increase in nutrient loadings (i.e., NO3

−, NH4
+, PO4

3−) discharged by the Zero
river basin into the Venice lagoon. Successively, the BN was trained, assigning states, prior information
and conditional probabilities to all nodes of the network, translating the conceptual model into an
operative probabilistic form.

The training was performed using a heterogeneous set of information for the period 2004–2013
(Tables A1 and A2, Appendix A) at seasonal time steps including historical observations, hydrological
model simulations (i.e., SWAT), and expert opinions. Specifically, for nodes associated with climatic
variables (i.e., temperature, precipitation, evapotranspiration), probabilities were learned directly from
the frequency of observations of weather monitoring stations available in the case study (Figure 1).
Nodes related with point pollution sources were trained using the nutrient loadings measured in
the outflow from three different WWTPs (i.e., Morgano, Zero-Branco, Castelfranco Veneto) (Figure 1)
located in the basin, summing up their respective contribution.

Probability distributions of hydrological variables (i.e., runoff, river flow, nutrients loadings,
N and P in the runoff) were instead calculated based on the frequencies of results of hydrological
simulations performed with the Soil and Water Assessment Tool (SWAT) [39]. Finally, nodes describing
agronomic practices (i.e., water needs, irrigation, P and N fertilizer application) were trained through
expert elicitation or by applying empirical equations due to the lack of quantitative information and
experiences in the case study. An exhaustive description of assumptions and information used to train
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the BN can be found in Reference [36]. Figure 3 shows the configuration of the BN for the Zero river
basin once states, prior information, and conditional probabilities of each node were parametrized.

Figure 3. Configuration of the Bayesian network for the Zero river basin trained with the information
for the period 2004–2013.

2.2.2. BN Evaluation

The developed BN was evaluated with the main aim to assess if it was able to correctly represent
nutrient loadings and dynamics in the case study. Specifically, two main forms of model evaluation
were performed, namely, model predictive accuracy and sensitivity analysis [36].

Predictive Accuracy

Predictive accuracy assessment was performed by comparing BN simulations with observations
from water quality monitoring stations available for the case study. Specifically, observed nutrient
loadings were calculated, multiplying the observed water flow (Q) and nutrient concentrations
measured at two different water quality monitoring stations located in the case study (Figure 1)
managed by ARPAV Servizio Acque Interne and the former MAV (Magistrato alle Acque di Venezia).
The manual station 122 (45◦33’ N and longitude 12◦15’ E), provided seasonal data, and the automatic
station B2q (45◦34’ N and longitude 12◦17’ E) provided daily data. Both stations were specifically
identified and they are routinely used for (i) the assessment of the good environmental status of the
Zero river according to the requirements of the Water Framework Directive (WFD); (ii) the assessment
of the compliance with the maximum admissible load of nutrients discharged into the Venice lagoon
from the drainage basin fixed by the national competent law (DM 09/02/1999).

For this reason, the two stations were considered particularly representative to measure
the condition of the Zero river and its basin, thus providing reliable data for the evaluation of
BN performance.

Specifically, loadings of nitrogen nitrate (NO3
−) and ammonium (NH4

+) were obtained using
data from station B2q, while loadings of phosphate (PO4

3−) were calculated using data from station
122. A consistent set of observations was available only from year 2007 to 2012 and, therefore, the
evaluation was conducted only for this period.

For each output node (i.e., NO3
−, NH4

+, and PO4
3− loadings), correctly classified instances (CCIs)

were assessed as the percentage of cases correctly predicted divided by the total number of cases,
providing the measure of how many instances the model predicted correctly when tested against
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known case outcomes (i.e., observations). Error rates, used as evaluation criteria, were then computed
and depicted in confusion matrices as suggested in Reference [40].

Sensitivity Analysis

Another form of evaluating the developed model entails sensitivity analysis, which allows testing
the sensitivity of model outcomes to variations of model parameters [41]. Sensitivity analysis in
BNs can measure the sensitivity of outcome probabilities to changes in input nodes or other model
parameters, such as changes in node type of state and their coarseness; therefore, it useful to detect the
most relevant variables within the network. Sensitivity analysis was performed using two types of
measures: entropy and Shannon’s measure of mutual information [42].

The entropy (H(x)) of the probability distribution of a variable (x) expresses the measure of the
associated uncertainty of the random process with a particular probability distribution (P(x)) [42]; it is
calculated using the following function:

H(x) = −
∑

P(x) log P(x). (1)

Reducing entropy by collecting information, in addition to the current knowledge about the
variable x, is interpreted as reducing the uncertainty about the true state of x. Accordingly, the entropy
function enables an assessment of the level of uncertainty/certainty about the state of the output node
and of the additional information required to specify a particular alternative.

Entropy can be seen as a score of a variable richness (i.e., how much information is within the
data for that particular variable) [43,44], and it was used to rank nodes from the most uncertain to the
least uncertain, where the most uncertain variables are the least informative within the network.

In addition, the sensitivity of one node to multiple other nodes was evaluated using Shannon’s
measure of mutual information (MI) as follows:

MI (Y,X) = H(Y) − H(Y|X). (2)

MI enables assessing the effect of collecting information about one variable (Y) on reducing the
total uncertainty about variable X. When MI is equal to zero, the condition of one node does not affect
the state of the other and, therefore, the nodes can be defined as mutually independent [43].

2.2.3. Scenarios and Uncertainty Analysis

The model developed as above was used in this study to perform scenario analysis, allowing
the assessment of the relative change in outcome probabilities of nutrients under different climate
change conditions (Section 2.1), thus obtaining an ensemble of multiple impact scenarios. For each
GCM–RCM combination (Table 1) and climate change scenario (i.e., 2041–2070 and 2071–2100 under
two different representative concentration pathways, RCP4.5 and RCP8.5), the probability distributions
of temperature and precipitation were calculated based on the frequency in the respective model
simulations (Section 2.1). The BN was then run, alternatively fixing the evidence of being in a particular
scenario by assigning 100% probability to the related state in the “climate change scenario node”, letting
the information propagate through nodes linked by conditional probability (Figure 3) and calculating
the change in the posteriori probabilities of output variables (i.e., NO3

−, NH4
+, PO4

3− loadings).
Moreover, uncertainties in projected loadings due to the application of the ensemble of 10

GCM–RCM couples was performed by comparing outputs obtained with each of the different
GCM–RCM combinations across scenarios and seasons. Specifically, the changes in the probability
of each loading class in the mid-term (i.e., 2041–2070) and long-term (i.e., 2071–2100) simulated
periods were compared against the respective baseline scenario (i.e., 1983–2012) for each combination
of GCM–RCM.
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3. Results

3.1. BN Evaluation

3.1.1. Accuracy

As described above, a data-based evaluation was performed to assess the ability of the model
to correctly predict instances in an independent dataset. Accordingly, BN predictions were tested
against observations from water quality monitoring stations available from ARPAV for the case study
(Figure 1), generating confusion matrices representing the percentage of CCIs and, consequently, the
error rates (Figure 4). Observations were available only for 2007–2012 and, therefore, the evaluation
was conducted only for this period.

 

 
Figure 4. Confusion matrices for output nodes of the BN model tested against the observed dataset
(2007–2012). The cells lying on the leading diagonal of the matrices represent the correctly predicted
instances, while those off the diagonal are incorrect predictions. Adapted from Sperotto et al., 2019 [35].

In addition, the expected values of the probability distributions of nutrient loadings (i.e., NO3
−,

NH4
+, PO4

3−) for observed data were compared with those obtained through the Bayesian network
outputs (Figure 5).

Overall, the BN was able to reproduce the observed nutrient dynamics with loadings closely
replicated for most seasons. The evaluation produced very good results for phosphate (PO4

3−), while,
for ammonium (NH4

+) and nitrate (NO3
−), the correlation between observed and predicted nutrient

loadings was slightly worse. Indeed, overall, the BN was able to correctly classify 87.50% of instances
for PO4

3−, 63.64% for NH4
+, and the 66.67% for NO3

−, when tested against the observed dataset
(Figure 4). The BN overpredicted the decrease in ammonium and nitrate loadings between spring
and summer, while it underestimated the autumn loadings (Figure 5) for all three nutrient species
(i.e., PO4

3−, NH4
+, NO3

−) and the winter loadings of NH4
+ and NO3

−.
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Figure 5. Expected values of the probability distributions of nutrient loadings (NO3
−, NH4

+, P04
3−)

from observed data (black) and Bayesian network outputs (red) for the period 2007–2012.

3.1.2. Sensitivity Analysis

Entropy was calculated for each node of the network (Table 2), allowing us to rank all variables from
the most uncertain to the least uncertain, where the most uncertain variables were those characterized
by high entropy and were, thus, the least informative probability distributions.

Results showed that the variable characterized by the least informative probability distribution
and a particularly high value of entropy was “effective rainfall” (3.26); however, variables characterized
by intermediate values of uncertainty were nodes directly influencing “loading NO3

−”, including
“N point sources” (1.36), “river flow” (1.34), “N runoff”(1.33), “N diffuse sources” (1.31), and “total
N Loading” (1.31). These uncertainties propagated through the network and, as a result, “loading
NO3

−” was the output node characterized by the highest value of entropy (1.24), while, for others, the
uncertainty was moderate (0.98 and 0.97).
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Table 2. Node ranking according to entropy score.

Variable Entropy H(x)

Effective rainfall 3.26
Season 1.39

Temperature 1.38
N point sources 1.36

River flow 1.34
N runoff 1.33

N diffuse sources 1.33
Total N Loading 1.31

Evapotranspiration 1.28
Loading NO3

− 1.24
Irrigation 1.24

P point sources 1.17
Runoff 1.12

Precipitation 1.06
N fertilizer application 1.04

Loading NH4
+ 0.98

Loading PO4
3− 0.97

P runoff 0.96
P diffuse sources 0.96

Water needs 0.56
P fertilizer application 0.56

Table 3 provides a ranking of the top five most influential variables on output nodes based on the
mutual information analysis. The output nodes “NO3

− loadings” and “NH4
+ loadings” were both

highly sensitive to “river flow” (MI = 0.54 and 0.37, respectively). “PO4
3− loadings” resulted highly

sensitive to “total P Loading” (M = 0.53), “P runoff” (M = 0.39), and “P diffuse sources” (M = 0.39).

Table 3. Summary of the mutual information (MI) analysis presenting the top five most influential
variables on output nodes.

Sensitive Node Node Affecting Sensitivity MI

Loading NO3
− River flow 0.54

Total N loading 0.30
N diffuse sources 0.23

N runoff 0.23
Evapotranspiration 0.23

Loading NH4
+ River flow 0.37

Loading NO3
− 0.18

Total N loading 0.17
Runoff 0.15

N diffuse sources 0.11

Loading PO4
3− Total P loading 0.53

P runoff 0.39
P diffuse sources 0.39

River flow 0.34
Runoff 0.31

In general, hydrological variables, which in turn were strongly influenced by climatic ones
(i.e., precipitation, temperature), were those most influential on other network variables. By contrast,
variables related to agronomic practices and land use had a mild effect (MI < 0.1) on other variables
with the exception of “N fertilizer application”, which moderately affected “NO3

− loadings” (MI = 0.22).
In particular, point sources had negligible effects on all output nodes (MI < 0.04) with respect to
diffuse sources.
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3.2. Climate Change Scenarios for the Zero River Basin

Different climate change scenarios were developed for the Zero river basin case study by
extrapolating the mean temperature (◦C) and the cumulative precipitation (mm) calculated on a
monthly basis, based on the outputs of the selected GCM–RCMs (Table 1). Specifically, for each
GCM–RCM, five different 30-year scenarios were developed for a control period (i.e., 1983–2012),
a mid-term period (i.e., 2041–2070), and a long-term period (i.e., 2071–2100) under two different
representative concentration pathways (i.e., RCP4.5 and RCP8.5).

Figure 6 shows the variability of temperature for different time periods and RCPs across different
climate change scenarios used to inform the BN. It is possible to observe that the temperature variability
across the future projection was quite narrow.

 
Figure 6. Variability in mean seasonal temperature within the global climate model (GCM)–regional
climate model (RCM) ensembles for the Zero river basin.

All climate scenarios agreed on projected temperature during the control period (i.e., 1983–2012).
Greater variability, instead, was depicted for RCP8.5 where one model in particular
(i.e., MPI-ESM-LR/RCA4, Model 5) of the ensemble projected lower temperatures in spring and
higher temperatures in autumn. In general, all models predicted an increase in mean seasonal
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temperature with respect to baseline across the different considered scenarios (Figure A3, Appendix A).
MPI-ESM-LR/RCA4 (Model 5) represented the only exception, predicting a decrease in temperature in
spring for RCP8.5 (Figure A3, Appendix A). A greater increase in temperature with respect to baseline
was predicted by RCP8.5 for the period 2071–2100.

By contrast, precipitation featured marked variability in all scenarios, as shown in Figure 7. All 10
GCM/RCMs of the ensemble generated quite similar statistics for the control period (i.e., 1983–2012)
with a narrow range between maximum and minimum values for all seasons. By contrast, the
variability increased consistently along the century, especially for RCP8.5. Greater variability can
be seen in summer, autumn, and winter, where the range between maximum and minimum values
projected by different GCM/RCMs became quite wide. However, while for winter and autumn most
models agreed on an increase in the cumulative precipitation (Figure A4, Appendix A), for spring and
summer, models gave the opposite results, making it impossible to agree on the direction of change
(i.e., decrease or increase).

Figure 7. Variability in cumulative seasonal precipitation within the GCM/RCM ensembles for the Zero
river basin.
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3.3. Hydrological Responses to Climate Change

The BN model was run, alternatively fixing the probability distribution of precipitation and
temperature according to the medium- and long-term projections (i.e., 2041–2070, 2071–2100) provided
by the different available combinations of GCM–RCMs under two different representative concentration
pathways (i.e., RCP4.5 and RCP8.5). Accordingly, the network was used to develop multiple impact
scenarios linking the effect of future climate change projections on nutrient loadings. The developed
scenarios represent the probability of different classes of nutrient loadings (i.e., low, medium, high,
very high) calculated by the BN model as a result of changes in the probability distribution of input
variables (i.e., temperature and precipitation).

Figure 8 gives a concise overview of the probabilistic results obtained through the BN for each
season and scenario across the different GCM–RCM models considered (Table 1). Specifically, each
triangular portion of the graph represents one of the different climate change scenarios considered
(i.e., RCP4.5 2041–2070, RCP8.5 2041–2070, RCP4.5 2071–2100, RCP8.5 2071–2100), while, inside them,
each slice represents the results of different GCM–RCMs arranged in a clockwise direction (i.e., from
1–10, in Table 1). Each slice, in turn, is divided into the four different classes of loadings with an
amplitude corresponding to the value of the associate probability (i.e., from 0–100).

With regard to NO3
− (Figure 8a), the impact scenarios reported that higher loadings will take place

in autumn and winter, while the lowest loadings are predicted for summer. Across different models, in
fact, in autumn, higher probabilities were associated with high (i.e., 48,615-69,182 kg/season, orange)
and very high loading classes (i.e., >69,182 kg/season, red). The highest loading was predicted by the
MPI-ESM-LR/RCA4 (Model 5) under the RCP8.5 2071–2100 scenario with 70% probability associated
with the high loading class (Figure A5, Appendix A).

In summer, by contrast, a higher probability was associated with low (i.e., 0–28,047 kg/season,
green) loading classes, with the CMCC-CM/COSMO-CLM (Model 7) predicting the highest probability
(77%) under the long-term RCP8.5 scenario (Figure A5, Appendix A).

For ammonium (i.e., NH4
+), results across different models predicted high probabilities of

low loading during summer and spring (Figure 8b). The lowest loading was predicted by the
CMCC-CM/COSMO-CLM (Model 7) under RCP8.5 2041–2070 with a 97% probability of the low loading
class (i.e., 0–3224 kg/season, green) (Figure A6, Appendix A). In autumn, the probability of low loading
states decreased gradually across the scenarios, followed by an increase in the probability of medium
(i.e., 3224–5009 kg/season, yellow) and very high loadings (i.e., >6794 kg/season, red), respectively
reaching 38% and 24% under RCP8.5 2071–2100 in the simulation with IPSL-CM5A-MR/RCA4 (Model 2).

Results for PO4
3− showed a marked seasonality with high autumn loads and low loads in

spring and summer across different scenarios (Figure 8c). In summer, in fact, higher probabilities
were associated with the low loading state (i.e., 0–1978 kg/season, green). Specifically, the lowest
loadings were predicted by the CMCC-CM/COSMO-CLM (Model 7) under the medium- and long-term
RCP8.5 scenarios with a probability of 98% (Figure A5, Appendix A). High loadings were instead
predicted for autumn with probabilities of high (i.e., 2954–3929 kg/season, orange) and very high
classes (i.e., >3929 kg/season, red) increasing across scenarios. The IPSL-CM5A-MR/RCA4 (Model 2),
which described the most extreme loadings for the season, predicted probabilities of 34% and 16% of
being in very high and high classes under the long-term RCP8.5 scenario (Figure A5, Appendix A).
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Uncertainty Analysis

The variability of results was also analyzed by comparing outputs obtained with each of the 10
GCM–RCM combinations across scenarios and seasons. To make the results comparable, the change
in the probability of each loading class with respect to the baseline scenario (i.e., 1983–2012) was
calculated for each combination of GCM–RCM.

Accordingly, in Figure 9, which provides an example for PO4
3− loadings, negative values describe

a decrease in probability of specific loading classes (i.e., colored bars) with respect to baseline, while
positive values indicate an increase. Orthophosphate (i.e., PO4

3−) loadings showed clear variability
during spring and summer. During these periods, in fact, half of considered models predicted an
increase in loading, while others predicted a strong decrease. Less marked variability, however,
was depicted under RCP8.5 2071–2100, where most models agreed on a reduction in loadings in
the summer–spring period and an increase in probabilities associated with the low class. A good
agreement among models, instead, can be depicted in autumn especially under RCP8.5 2071–2100,
where most models predicted an increase in probabilities of very high and high loadings. Despite the
good agreement on the increase in loading, a moderate variability in the magnitude of the change with
respect to baseline remained. For RCP8.5 2041–2070, for instance, the maximum variation was related to
MPI-ESM-LR/RCA4 (Model 5) (i.e., +20%), while EC-EARTH/RCA4 (Model 4) predicted an increase of
+1.5%. In RCP8.5 2071–2100, the increase in probability ranged from +28% for IPSL-CM5A-MR/RCA4
(Model 2) to 2% for EC-EARTH/RCA4 and EC-EARTH/HIRHAM5 (Models 4 and 9). Also, in winter,
a general increase in loading was predicted with an increase in probabilities associated with higher
classes and a consequent decrease in probabilities of lower classes. The maximum increase (i.e., +10%)
was depicted with EC-EARTH/RACMO22E (Model 10) under RCP4.5 2071–2100.

Results for NO3
− and NH4

+ loadings presented a similar tendency (Figure A6, Appendix A).
The best agreement among models resulted for the autumn season, where an increase in loading was
predicted across all scenarios and for all GCM–RCM combinations. Specifically, for NO3

−, an increase
in probability of the high loading class was depicted, while, for NH4

+, the increase was associated
with the highest loading class (i.e., very high). Also, for winter, the variability of results was quite low,
with most models agreeing on an increase in probability of high and very high classes across different
scenarios. By contrast, two models (i.e., CNRM-CM5/CCLM and CMCC-CM/COSMO-CLM (Model 6
and 7)) predicted a decrease in loadings for both NO3

− and NH4
+. Large variability resulted for both

summer and spring seasons; hence, it was not possible to identify a clear direction of change.
Overall, the results for different nutrient species highlighted that, in general, the best agreement

between models resulted for autumn and winter, especially for RCP8.5 scenarios. In summer
and spring, instead, variability was high and, thus, there was less confidence in the changes
projected. This seasonal pattern of variability to some extent reflects that of precipitation (Section 3.1,
Figures 6 and 7), suggesting that this variable could play a major role in the model in determining both
the direction and the magnitude of changes in nutrient loadings. Comparing the results (Figures 9,
A3 and A4, Appendix A) with the changes in precipitation across the different models (Figure 9 and
Tables A1 and A2, Appendix A), a strong correlation between the increase in precipitation and increase
in the probability of high loading can be found.

In summer and spring, in fact, those models which predicted the highest increase in probability of
high loadings were also those showing a positive variation (i.e., increase) in precipitation with respect
to baseline.
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In this context, it is interesting to notice how, in spring (Figures A6 and A7, Appendix A) some
models (e.g., Models 8–10) contemporarily predicted an increase in probability of the two most extreme
classes (i.e., low and very high). The same models were also those predicting the highest increase in
precipitation with respect to baseline (Figure A7, Appendix A), suggesting that the unexpected high
probabilities of very high loading classes could be related to the projections of extreme precipitation
events in the considered scenarios.

4. Discussion and Conclusions

A BN was used to develop an ensemble of impact scenarios to investigate the potential mid- and
long-term impacts of climate change on the nutrient loadings in the waters of the Zero river basin in
northern Italy, one of the main tributaries of the Venice lagoon. Moreover, the uncertainty related to the
implementation of 10 GCM–RCM combinations forced with RCP4.5 and RCP8.5 emission scenarios
was analyzed.

The BN used was implemented by building on a model previously developed and tested in a
case study [36], integrating a heterogeneous set of data coming from multiple information sources
(i.e., observations, hydrological model simulations, climate change projections). The BN was evaluated
through a cross comparison between predicted and observed loadings, providing satisfactory results on
a seasonal time step; therefore, it is considered suitable for projecting future climate change scenarios.

According to the analysis of future climate for the Zero river basin, all projections agreed on an
increase in the mean seasonal temperature with respect to baseline for both RCPs.

By contrast, precipitation featured marked variability across scenarios; while for winter and
autumn most models agreed on an increase in the cumulative precipitation, for spring and summer, some
models gave opposite results, making it impossible to agree on the direction of change (i.e., decrease or
increase). The variability increased consistently along the century, especially for RCP8.5.

The impact scenarios developed showed that seasonal changes in precipitation and temperature
are likely to affect nutrient loadings and, consequently, the water quality of the Zero river. Results
suggest with good confidence that, across the considered scenarios, nutrient loadings will increase,
especially during the autumn and winter seasons. Most models, in fact, agreed in projecting a high
probability of an increase in nutrient loadings with respect to the current conditions. In summer
and spring, instead, the large variability between different GCM–RCM results made it impossible to
identify a clear direction of change.

The results were consistent with those obtained by Reference [45] applying the SWAT model for
simulating the effect of climate change on hydrological and ecological parameters in the same case
study. However, while conclusions for autumn are similar to those reached by other authors [26,46,47]
for similar catchments in Europe and the United States (US), for spring and summer, the results differ.
Xu et al., in particular, found that, in the Lake Erie region, spring loading of P will increase under
RCP8.5 scenarios driven by an anticipation of snow-melting processes. Such discrepancies can be
attributed to local and regional climatic characteristics which should, therefore, be taken into account
carefully, as they can have a significant role in governing nutrient transport dynamics.

In the Zero river basin, nutrient loadings were found to be particularly sensitive to hydrological
variables (i.e., river flow, runoff, N and P in runoff) directly correlated with climate variables
(i.e., precipitation, temperature) and diffuse pollution, especially considering that most dramatic
changes (e.g., increases in precipitation and runoff) will happen during seasons characterized by
intensive agricultural activities (e.g., manure application, irrigation).

In spring and summer, in fact, NO3
− and NH4

+ are commonly applied as fertilizers. In dry
and warm conditions, NH4

+ is readily adsorbed to clay mineral and is, therefore, scarcely prone to
movements; however, it becomes easily available in autumn, driven by runoff and extreme precipitation
events. NO3

−, on the other hand, is highly soluble and, thus, suitable to be transported by hydrological
flow. In autumn, the elevated temperature and wet conditions projected will enhance the nitrification
process, making NO3

− highly available. This, combined with the seasonal increase in the river flow,
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could explain the great increase in NO3
− loading during autumn. In the soil, the soluble form of

phosphorus (PO4
3−) is mobile, and it can be transported by diffusion or by surface water flow. At

elevated temperatures and in dry conditions, however, PO4
3− is easily adsorbed to clay particles or

immobilized by organic matter accumulating in the upper soil layer. In autumn, an increase in runoff,
following the enrichment of the topsoil of phosphorus occurring during the summer, increases PO4

3−
transport and, thus, its loading in the river. In addition, the projected increase of dry prolonged
conditions in summer might speed up soil erosion phenomena and, consequently, enhance the runoff
of adsorbed mineral forms of phosphorus through the basin, leading to peaks of PO4

3− loading in
autumn as soon as the drought breaks.

At the same time, the large uncertainty in spring and summer loadings makes it difficult to predict
the possible implications for the trophic state of the Venice lagoon. A significant increase in spring and
summer nutrients delivered by the Zero river, during the season of growth for most phytoplankton
species, would significantly increase the risk of harmful algae blooms and eutrophication phenomena.

The BN was revealed to be a suitable tool to characterize and communicate uncertainty on the
effect of climate change and land use on water quality attributes in a policy-relevant manner; however,
it is important to also acknowledge some limitations. Some uncertainty exists mainly due to the
availability and quality of input data, especially regarding agronomic practices. Due to data constraints,
in fact, fertilizer application and irrigation were considered uniform across the whole catchment, while
they could vary considerably, both spatially and temporally. Furthermore, due to scarce information
regarding point pollution sources, nutrient (N and P) loading was considered while neglecting to take
into account the type of WWTPs and how they work in cases with a large amount of inflow water, for
instance, during extreme precipitation events.

Improving the accuracy of input data throughout the catchment and involving a higher number
of experts in the model development would improve its calibration, validation, and results.

Finally, changes in land use (i.e., agricultural land extension, crop typology distribution) and
agricultural management practices (i.e., amount of fertilizer application), which were kept constant
over future scenarios in this BN version, should be accounted for in future model improvements to
provide a realistic picture of future risks threatening water quality sustainability. Accordingly, further
improvements of the proposed approach will consider the implementation of a dynamic version of
the BN [48] to better handle temporal dynamics over future scenarios, while also integrating land-use
change projections.

Overall, the results obtained from this study show that the selection of climate change information to
feed impact studies should be considered carefully as it strongly affects the outcome and the conclusions
of the assessment. Studies based on only one GCM–RCM combination should be interpreted with
caution, as results are highly dependent on the assumptions of the selected combination. Adaptation
and management decisions are taken based on this information with the consequence that societies
may underprepare for real risks affecting water systems, increasing the likelihood of severe impacts, or,
by contrast, they may overreact, wasting resources and efforts targeting irrelevant threats.

Accordingly, an adaptive water resource planning method should be based on ensembles and
multi-model probabilistic approaches rather than on an individual scenario and a single-value projection
for the future. Through the identification of worst- or best-case scenarios, it is possible to bound the
spectrum of plausible climate change impacts into an uncertainty space, inside which a set of optimal
adaptation strategies can be defined and tested for the sustainable and climate-proof management of
the water system.
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Appendix A

Table A1. List of input data used for the implementation of the BN in the Zero river basin.

Data Type Description Time Scale Resolution Source

Observations

Land cover
map

� Land-use map of the
Veneto region 2006 1:10,000

Regione del Veneto
Infrastruttura dati territoriali
(http://idt.regione.veneto.it/

app/metacatalog/)

Climatic data

� Daily precipitation
� Maximum/minimum

daily temperature
� Daily evapotranspiration

2004–2013

3 stations (i.e.,
Castelfranco, Veneto,

Zero-Branco, Mogliano
Veneto) (Figure 1)

ARPAV Servizio
Meteorologico

Water quantity
and quality

data

� Observed daily
river discharge

� Observed nutrient (NO3
−,

NH4
+, PO4

3−)
concentrations in the lagoon

2007–2012

2 stations (i.e., manual
station (Code 122),

automatic station (Code:
B2q) (Figure 1)

ARPAV Servizio Acque
Interne

MAV (Magistrato Acque
Venezia)

Point-source
pollution

� Monthly N and P loadings
from WWTP and
industrial discharges 2004–2013

3 stations (i.e., Morgano,
Zero-Branco,

Castelfranco Veneto)
(Figure 1)

ARPAV Servizio Acque
Interne

Hydrological simulations

Water quantity
and quality

data

� Simulated runoff
� Simulated N and P load in

the runoff
2004–2013 River basin

SWAT (Soil Water
Assessment Tool)
simulations [30]

� Simulated river discharge
Simulated nutrient loadings
(NO3

−, NH4
+, PO4

3−) in
the lagoon

2004–2013 1 station (i.e., manual
station (Code 122)
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Figure A6. Cont.
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Figure A6. Variations in the probability of each NO3
− loading class with respect to baseline

(i.e., 1983–2012) under different scenarios and GCM–RCM combinations.

Figure A7. Cont.
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Figure A7. Variations in the probability of each NH4
+ loading class with respect to baseline

(i.e., 1983–2012) under different scenarios and GCM–RCM combinations.
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Abstract: Since water stress and industrial water pollution pose a huge threat to South Korea’s
sustainable water use, it is an urgent task to assess industrial water green use efficiency (GUEIW).
Based on the global non-radial directional distance function (GNDDF) model, this paper calculated
GUEIW in 16 Korean local governments from 2006 to 2015 using two decomposition indicators:
Economic efficiency of industrial water use (ECEIW) and environmental efficiency of industrial water
use (ENEIW). The growth of GUEIW is mainly driven by ECEIW, and subsequent environmental
problems are obstacles to achieving green use of Korean industrial water. The regional heterogeneity
of GUEIW is so important that the downstream region outperformed the upstream region in all
three indicators. The government’s efforts to ensure water quality inhibits industrial development
in upstream areas, where incomes are much lower than in downstream areas, and downstream
industrial areas have to pay upstream industrial areas extra for water. However, regarding upstream
industrial areas, low prices easily promote water waste. Because of relatively high water use costs,
downstream producers are encouraged to save water. To improve the economic efficiency of industrial
water use in upstream areas, advanced water technology should be developed or introduced to make
full use of water resources in industrial production.

Keywords: water resource; South Korean urban industry; green use efficiency of industrial water
(GUEIW); global non-radial directional distance function model (GNDDF); economic efficiency of
industrial water use (ECEIW); environmental efficiency of industrial water use (ENEIW)

1. Introduction

1.1. Background of the Research

In the 20th century, oil was referred to as black gold, the “core of the world market economy,”
but in the 21st century, “blue gold,” or water, has become an increasingly valuable resource due to
population explosion, climate change, and the current world economic model [1]. Water systems are
vital to human well-being and offer diverse benefits to society. Water policies have long aimed at
optimal water use due to the ever-increasing demand for limited water resources in many parts of
the world [2,3].

However, many countries around the world still face significant challenges in managing their
scarce water resources due to industrialization, urbanization, and climate change. Industrialization
and urbanization, driven by population pressure, are the main factors of economic growth; meanwhile,
intensive agricultural spread-out use of high pesticides has also become dominant, resulting in water
shortage and degradation in many parts of the world. In addition, climate change has increased
characteristics of severe spatial and temporal variations in water resources [4].

Sustainability 2019, 11, 3895; doi:10.3390/su11143895 www.mdpi.com/journal/sustainability119
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South Korea (“Korea”) is no exception. Over the past few decades, the Korean economic growth
rate has been astonishingly high [4,5]. Unfortunately, economic growth has come at the expense
of the environment [6,7], indicated by water shortage and deteriorating water quality [8] which
became serious problems in the 1990s [9]. Rapid economic development has led to urban, industrial,
and agricultural pollution that has severely disrupted water supplies and ecosystems. Population and
industrial growth have increased pressure on limited available water resources, resulting in water
conflicts among stakeholders [10]. Sewage contains a large number of organic pollutants which
affect the ecosystem in the form of toxicity, reduce dissolved oxygen in water, and endanger human
health. Specific organic pollutants refer to organic compounds with high toxicity, strong accumulation,
and delayed degradation that are listed as priority pollutants [11]. Organic pollutants have different
characteristics. The hazardous substances are a minor fraction of wastewater, often measured in μg/L,
while the less harmful organic substances may be given in hundreds or even thousands of mg/L. They are
not toxic or pose a strong risk to human health but are responsible for oxygen consumption in receiving
water bodies and for this reason should be reduced by treatment. The water resources management
information system of the Korean government advises that the concentration of organic pollutants
(BOD) needs to be kept below 10 mg/L [12]. Regarding water regulation policies, an intermediate law
concerning the flow of river water was introduced in 1999, which mandates lowland water users to pay
upland residents in an effort to reduce agricultural intensification (Agricultural intensification refers
to a kind of agricultural operation mode in which more labor, capital, and technology are invested
in a certain area of land in order to obtain more output per unit area and simultaneously reduce the
labor cost per unit of product.) in the upland regions and decrease the need for more water pollution
treatment facilities. However, water pollution has still occurred [13,14].

More than direct regulatory policies, therefore, water prices may play an important role in
determining the efficiency of resource utilization, as suggested by Kumbhakar and Bhattacharyya [15].
Specifically, relatively low prices can easily promote water waste, and relatively high prices may lead
to higher production costs, thus encouraging water consumers to save water [16]. Therefore, the price
should be set within a reasonable range for sustainable use of water. Uncontrolled water wastage and
numerous water pollution incidents have made the problems of water shortage and degradation more
serious, which has led to a huge negative impact on social and economic development [17–19]. Therefore,
improving water efficiency and reducing water pollution are crucial for sustainable water use [20–23].

As for the estimation of resource efficiency, many recent studies prefer the distance function
method, which simultaneously takes multiple input and output factors into account [24–29]. There are
two methods for estimating the distance function: The nonparametric data envelope analysis (DEA)
method and the parametric method. The DEA method was proposed by Charnes et al. [30] and has
been widely applied in recent environmental and energy-related studies [31]. A major advantage of
the DEA method over the parametric method is that it does not require the underlying technology to
have a specific functional form [32–35].

As for the evaluation of water use efficiency in China, Hu et al. [36] developed the pioneer
empirical analytic framework DEA to evaluate water use efficiency at the national level. The concept
adjustment quantity they proposed was used to determine the optimal scale of water use. Liao and
Dong [37] adopted a similar method to evaluate the efficiency of provincial water resources utilization.
However, these studies only took economic benefits into account and may be considered only a part of
a comprehensive analysis because they ignored pollutants (such as water waste and water pollution)
from industrial production. Therefore, the expected output should also be considered along with
the undesirable output. By utilizing this undesirable output in our model, “green use efficiency”
will be achieved [38–41]. In addition, most previous studies tended to use the radial DEA method,
which aims to increase the good output and reduce the bad output at the same rate. This is inconsistent
with actual production activities and often leads to the same efficiency value of 1 for many evaluated
observations, making it very difficult to evaluate the observed results in an appropriate manner [42].
In addition, as pointed out by Zhang et al. [32], many relevant studies have used time series data only,
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but studies on cross-sectional data can be regarded as yielding more efficient and effective evaluations
over the same period. Obviously, production technology varies from year to year, and results based
on production technology at the same time may not be reasonable. To overcome these spatial and
dynamic issues, Zhang et al. [32] and Zhang et al. [33] proposed a global non-radial directional distance
function (GNDDF) method, which increased the good output and reduced the bad output at different
rates and covered all contemporary technologies during the research period.

Although there are many papers on resource utilization efficiency, to our knowledge, there is no
research on the analysis of the green use efficiency of industrial water (GUEIW) in Korea. Therefore,
we applied a relatively advanced GNDDF model, which included undesirable output, to calculate
the GUEIW in Korea from 2006 to 2015. We further analyzed water use efficiency using the economic
efficiency of industrial water use (ECEIW) and the environmental efficiency of industrial water use
(ENEIW) components to illuminate the major contributing factors of GUEIW. Moreover, we calculated
local government-level ECEIW and ENEIW to find out which local government is more effectively
promoting the efficiency of Korean industrial water use.

1.2. Geographic Features

Korea is located in East Asia, south of the Korean peninsula, and is surrounded by the East Sea and
Yellow (West) Sea. The country lies between 124◦ and 132◦ longitude and between 33◦ and 42◦ latitude.
This geographical location has a major influence on the country’s climate, which is divided into four
distinct seasons and is characterized by continental and temperate monsoon climates, depending on
the region [43].

The country’s land area is 99,596 square kilometers, with mountainous topography covering
70 percent of the country. Most of the mountains are in the eastern part, characterized by sharp declines,
while the height of the western and southern regions drops slowly. This is why four major rivers flow
from the eastern mountain areas into the West Sea (see Figure 1) [43]. The Han river is 481.7 km long,
with a catchment area of 26,018 sq km, and is the largest river in South Korea; it flows through the most
populous Seoul metro area, including Incheon (the third largest city), and into the West Sea. The Naktong
river (506.17 km in length), with a catchment area of 23,384 sq km, is the longest river flowing into the
southern sea, passing through the two metropolises of Busan (second) and Daegu (fourth), as well as
several industrial cities. The Geum river, which is 394.79 km in length and covers 9912.15 sq km, begins in
the central part of the country and ends in the West Sea. The cities of Daejeon and Sejong (fifth) reside
on its banks. The Yeongsan, which is 115.5 km in length and 3371 sq km in basin area, is a river in
southwestern Korea. It passes through Gwangju (sixth) and flows into the West Sea [43].

Despite heavy rainfall, water supplies in South Korea are limited. The Organization for Economic
Co-operation and Development (OECD) classifies Korea as a water-stressed country (Figure 2), for,
although the concept of water stress is relatively new, access to freshwater resources has become much
more difficult over time and could lead to further depletion and deterioration of available water resources.
Water shortage can be caused by climate change, droughts or floods, increased pollution, increased human
demand, and excessive use of water resources. A water crisis can occur when the amount of potable,
uncontaminated water in an area is less than what the area needs. Shortage of water resources is caused
by two converging phenomena: The ever-increasing fresh water use and the exhaustion of available fresh
water resources. Water stress can be the result of two mechanisms: Material (absolute) water stress and
economic water stress. Material water stress is the result of water resources being naturally inadequate in
meeting regional needs, while economic water stress is the result of mismanagement of adequate available
water resources (OECD Environmental Outlook to 2050).

121



Sustainability 2019, 11, 3895

 
Figure 1. The four major river basins in South Korea.

Figure 2. Water stress in Organization for Economic Co-operation and Development (OECD) countries.
Note: Water stress levels: Below 10% = no stress; 10%–20% = low stress; 20%–40% =medium stress;
above 40%: Severe stress.

As shown in Figure 2, compared with other OECD countries, Korea is coming close to facing
a water crisis. As of 2015, Korea had used up to 33 percent of its total available water, putting the
country’s water balance at risk. Korea’s total water resources amounted to 132.3 billion m3 in 2014,
as shown in Figure 3. However, available water resources are estimated to be slightly more than half
(76 billion m3, or 57%). During the rainy season between June and September, 42.5 percent of water
(56.3 billion m3) was discharged. In particular, heavy rain brought by summer monsoons and typhoons
resulted in flooding in the downriver areas of the four major river basins (see Figure 3). Due to steep
mountain slopes and covered soils, the surface runoff is fast and half of it goes directly into the Sea.
Furthermore, almost half of the precipitation is lost due to evaporation and transpiration [44].
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Figure 3. Distribution of water resources in South Korea, 100 million m3/year. Note: Flood runoff is
measured between June and September. Source: MoLIT (2017), The 4th Long-term Comprehensive
Plan of Water Resources (2001–2020), 3rd revision.

Moreover, the proportion of water utility bills that covers production costs is far lower than total
costs, with a 0.7 per cent decrease per year on average, from 84.4 percent in 2007 to 77.5 percent in
2015 (see Table 1). This continuously increasing disparity between the production costs of drinkable
water and the price for which it is supplied has magnified the mismatch between water demand and
supply. According to Kim [13], Korea’s per capita daily water consumption of 395 liters is the highest
among the 29 member nations of the OECD. The amount stands at 197.5 liters in France, 197.5 liters in
Germany, and 158 liters in Denmark. Korea’s low-priced water bills are likely to lead to this overuse.
Therefore, in order to delineate the sustainable performance of this water policy, we will evaluate the
quantitative and qualitative efficiency of water in the following section.

Table 1. Water tariff over 2007–2015.

2007 2008 2009 2010 2011 2012 2013 2014 2015

Public water price
(won/m3) 603.9 609.3 609.9 610.2 619.3 649.1 660.4 666.9 683.4

Production costs
(won/m3) 715.4 730.7 761.6 777.2 813.4 814.7 849.3 876.5 881.7

Cost coverage ratio
(%) 84.4 83.4 80.1 78.5 76.1 79.7 77.8 76.1 77.5

Source: Ministry of the Interior and Safety, https://www.mois.go.kr/.

2. Methodology

In this section, the global non-radial directional distance function (GNDDF) is presented to
evaluate water stress in terms of its efficiency. This model shows how to estimate the green use
efficiency of industrial water (GUEIW), the “economic” efficiency of industrial water (ECEIW), and the
“environmental” efficiency of industrial water (ENEIW).
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2.1. GNDDF (Global Non-Radial Directional Distance Function)

Chambers et al. [30] first introduced the traditional directional distance function (DDF).
After Chung et al. [45] extended this approach to evaluate environmental efficiency, DDF became
a widely accepted approach to resource and environmental efficiency assessment. As shown in
Equation (1), the conventional radial directional distance function approach always assumes that
all inputs and outputs are introduced at the same proportionate rate, which does not conform to
real production activities. Moreover, this radial DDF approach may overestimate efficiency due to
non-zero slacks existing in inputs or outputs [46,47]. To overcome these problems, this paper utilized
a non-radial DDF approach, which is widely used in research on resource efficiency evaluations [48],
as shown in Equation (2)

→
D
(x,y,b;g) = sup{β:((x,y,b) + g × β)∈T}

(1)

→
D
(x,y,b;g) = sup{WTβ:((x,y,b) + g × diag(β)) ∈ T}

, (2)

where WT = (x, y, b)T denotes a normalized weight vector with respect to inputs and outputs,
g =

(
−gx, gy,−gb

)
is an explicit directional vector, and β = (βx, βy, βb)

T ≥ 0 represents the vector
of scaling factors. Thus, input and output may have different adjustment ratios, conforming to real
production activities. The symbol diag denotes diagonal matrices and the environmental technology
possibility set.

In this paper, let us assume that there are N local governments being evaluated. Each local
government has inputs (x) to produce desirable outputs (y) and undesirable outputs (b). The regulated
environmental technology T1 for N decision making units (DMUs) can be expressed as follows:

T1(x) =
{
(x, y, b)

∣∣∣ x can produce (y, b) :
}

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
n=1

znxn ≤ x,

N∑
n=1
λnyn ≥ y,

N∑
n=1
λnbn = b,

N∑
n=1
λn = 1,

λn > 0, n = 1, . . . , N,

(3)

where T1(x) satisfies the production function theory, implying that limited inputs can produce limited
outputs only. Inactivity is assumed as well, implying that there is no production for no undesirable
outputs [49]. In addition, we imposed a weak disposability hypothesis on T1(x), implying that the
undesirable output cannot be reduced freely. Considering the production technical change during

the experimental period, we applied a function that imposed the constraints
N∑

n=1
λn = 1 into variable

returns to scale (VRS). Because the value is estimated based on the benchmark technology of the same
period, the technology is obviously different over the years. The values over different years cannot be
compared with each other; therefore, we utilized a global technology benchmark to include all of the
contemporary technologies over the research period. Global technology integration, as proposed by
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Pastor [50], is denoted by TG = T1 ∪ T2 ∪ . . .∪ TN, and the global benchmark technology possibility set
T2(x) can be defined as follows:

GT2(x) =
{
(x, y, b) x can produce(y, b)

}

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T∑
t=1

N∑
n=1

xt
nλ

t
n ≤ x,

T∑
t=1

N∑
n=1

yt
nλ

t
n = y,

T∑
t=1

N∑
n=1

bt
nλ

t
n = b,

λn > 0, n = 1, . . . , N, t = 1, 2, . . . , T

(4)

In this research, in accordance with previous research and data availability, input variables mainly
included three indicators: Industrial water use (WA), industrial labor force (L), and industrial capital
(K), referring to the water amount used for industrial production, the strength of the labor force in
the industrial sector, and annual net industrial fixed assets, respectively. The desirable output was
industrial GDP (Y), while the undesirable output was the two major water stress factors in industries:
Water waste and organic pollution (OP). In order to eliminate the dilution effect of industrial labor
and industrial capital, we removed it from the objective function and constrained it with the “ceteris
paribus” condition. Therefore, we can calculate the GUEIW through the GNDDF model as follows.

→
D = maxwIWβIW + wYβY + wWWβWW + wOPβOP

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T∑
t=1

N∑
nh=1
λt

nIWn ≤ (1− βIW)IWo,
T∑

t=1

N∑
n=1
λt

nLn ≤ Lo,
T∑

t=1

N∑
n=1
λt

nKn ≤ Ko,

T∑
t=1

N∑
n=1
λt

nYn ≥ (1 + βY)Yo,

T∑
t=1

N∑
n=1
λt

nWWn = (1− βWW)WWo,
T∑

t=1

N∑
n=1
λt

nOPn = (1 + βOP)OPo,

βIW ≥ 0, βY ≥ 0, βWW ≥ 0, βOP ≥ 0,

n = 1, ..., N; t = 1, 2, ..., T;λt
n ≥ 0,

N∑
n=1
λt

n = 1

(5)

where subscript 0 refers to the evaluation of the local government. βIW is the input adjustment ratio
of industrial water, βY is the adjustment radio of desirable output of industrial GDP’s, and βWW and
βOP are the adjustment ratios of undesirable outputs of industrial water waste and organic pollutants.
Subscript n refers to the number of local governments in the sample; superscript t is the year. When β

is zero, it means the local government is located on the production frontier.

2.2. GUEIW (Green Use Efficiency of Industrial Water)

In accordance with Wang et al. [51], we set the weight vector as (1/3, 1/3, 1/6, 1/6) since we included
two undesirable outputs. By solving the following equations, we can estimate the GUEIW and its two
decompositions ECEIW and ENEIW [51]. The estimated DMU is valid in industrial water when the
value of the GUEIW is equal to 1 and is ineffective when the GUEIW is less than 1. ECEIW and ENEIW
are the same case.

GUEIW =
(1− βIW) + (1− βY)

1
2 [(1− βWW) + (1− βOP)]

3
= 1− βIW + βY + 1

2 (βWW + βOP)

3

ECEIW =
(1− βIW) + (1− βY)

2
= 1− βIW + βY

2
(6)
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ENEIW =
(1− βIW) + 1

2 [(1− βWW) + (1− βOP)]

2
= 1− βIW + 1

2 (βWW + βOP)

2

3. Empirical Results

In this section, we present the data including the inputs and outputs of the GNDDF framework.
We collected annual industry data for all 16 Korean local government levels from 2006–2015. In this
chapter, we calculated GUEIW based on the non-radial directional distance function (NDDF) and
GNDDF models for comparison. In order to examine the main catalyst for GUEIW growth in Korea,
we calculated the two forms of decomposition of the GUEIW: ECEIW and ENEIW.

3.1. Data Collection

In the DEA model, production inputs include two basic types: Industrial labor (L) and industrial
capital (K); we added industrial water (IW) as the third input. We selected industrial GDP as the
desirable output and selected water waste (WW) and organic pollutants (OP) {Organic pollutant
(kg/year) = BOD (mg/l) × water waste (m3/year) × 103} as two undesirable outputs. Table 2 shows the
descriptive statistics for each variable. The data were derived from the Korean Statistical Information
Service (KOSIS). The industrial GDP and capital were converted based on 2010 prices.

Table 2. Descriptive statistics for variables.

Variable Unit Mean
Std.
Dev.

Min Max Obs.

Input
Labor 103 person 166.43 183.20 3.14 885.85 160

Industrial water 107 m3 11.16 10.91 1.68 43.90 160

Capital 1012 KRW 6.11 14.82 0.02 82.88 160

Desirable output GDP 1012 KRW 172.09 157.39 11.02 753.95 160

Undesirable output water waste 106 m3 11.90 10.54 0.29 46.87 160

Organic pollutant 103 ton 5.63 4.81 0.19 20.98 160

Sources: Korean Statistical Information Service (KOSIS) (http://kosis.kr/).

3.2. Results and Discussion

As demonstrated in Figure 4, the GUEIW calculated from the GNDDF model is always lower
than the value based on the NDDF model during the study period, with average values of 0.929 and
0.864. This indicates that the GUEIW based on the NDDF model might be over-estimated, as it is based
on contemporary environmental production technology. The NDDF measures relative efficiency and
its evaluation criteria are determined by the evaluated DMUs. The efficiency scores obtained under
different evaluation criteria are not comparable. To compare efficiency intertemporally, they must be
carried out on the same benchmark (frontier). For example, when evaluating the efficiency of 16 local
governments in 2006, relevant data constituted a frontier surface A, and the efficiency of each DMU
was relative to the evaluation benchmark A. When evaluating the efficiency of 16 local governments in
2007, relevant data constituted a new frontier surface B, and the efficiency of each DMU was relative to
the evaluation benchmark B. Generally, A and B are not the same, so the efficiency values in 2006 and
2007 were not comparable. If intertemporal comparisons are to be made, the efficiency of the two years
must be based on the same frontier. The GNDDF in this paper refers to the data of the same region
sampled in the ten years from 2006 to 2015 as different DMUs. The 160-sample data are then combined
to create a common frontier on which the efficiency may be measured. However, the GNDDF model
encompasses all concurrent technologies during the sample period. The calculated value is more
reasonable because the most efficient node 1 is based on global environmental production technology.
Therefore, the following analysis was based on the GNDDF model. In Figure 4, the GUEIW trend
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on GNDDF exhibits an m-shaped curve, which can be divided into three phases. The first phase
is 2006–2007, the second 2008–2012, and the third 2013–2015. The first phase shows a rising trend
from 2006–2007, indicating that industrial water use efficiency had achieved obvious improvement
during the two years, but decreased in 2008 because of the global economic crisis. A rising trend
can be seen again after 2010, following strong support for President Lee’s “green growth policies.”
However, this upward trend only lasted two years; in 2013, a sharp decline occurred again following
less emphasis on the environment by President Park’s administration. It is clear that the GUEIW
for Korea experienced two notable increase–decrease phases over the sample period. Measurements
during 2007 and 2012 show that water use was more efficient; this may stem from the impacts of
ENEIW and ECEIW. Therefore, in order to further understand the dynamic changes in GUEIW, it is
necessary to analyze the trends of its contributing factors.

 
Figure 4. The green use efficiency of industrial water (GUEIW) for Korea based on the non-radial
directional distance function (NDDF) and global non-radial directional distance function (GNDDF)
models, 2006–2015.

Based on Equation (6) and as shown in Figure 5, we were able to outline the trends in ECEIW and
ENEIW for Korea. It is clear that they exhibited similar trends as the GUEIW. There was no large gap
during the study period, but the value of ECEIW was higher than that of ENEIW, with an average value
of 0.870, while that of ENEIW was 0.864. This implies that environmental efforts may present some
opportunity costs that are expressed in the gap between ECEIW and ENEIW. The year 2010 exhibited
the biggest gap between ECEIW and ENEIW, with average values of 0.845 and 0.826. This implies that
the growth of GUEIW is mainly driven by ECEIW and that environmental issues function as constraints
in the achievement of green use efficiency of industrial water in Korea. This is consistent with the
argument of Wang et al. [51], who stated that environmental protection of industrial sectors needs to be
improved in China too. In order to improve the economic efficiency of industrial water use, advanced
water technology should be developed or introduced to make full use of water resources in industrial
production. For example, in Denmark, through technology integration, “wastewater treatment plants”
could be turned into “energy factories”, biomass power could be produced by extraction of organic
matter in sewage, and enough electricity could be supplied not only to run the motor, but also to pump
water and have a surplus. In addition, waste water treatment plants use the money earned from waste
power generation and heating to support the operation of the sewage treatment plant and even to
achieve a break-even point [52]. In addition, it is noteworthy that ENEIW showed a significant upward
trend during 2006–2007 and 2010–2012, indicating a significant environmental improvement in Korea.
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This can be attributed to a series of laws and regulations. As the River Basin Law was amended in
2007 under the Long-term Comprehensive Water Resources Plan, the Korean government worked to
ensure a stable supply of water in the event of climate change. The Korean government implemented
the river-oriented national land improvement project (four-river restoration project) and the new
national land development paradigm (low-carbon green growth) [53]. Nevertheless, the unanticipated
international financial crisis in 2008 had a significant negative impact on Korea’s industrial exports,
which caused many factories to close down and workers to lose their jobs, resulting in sharp decreases
in both ECEIW and ENEIW. This forced the central government to introduce a series of economic
stimulus plans, the components of which included expanding investment in small- and medium-sized
industries to ensure industrial growth, thus boosting the recovery of the ECEIW [54]. Under the
stimulus plan, some small- and medium-sized industries in Korea have overemphasized temporary
doubts about the monitoring and implementation of environmental policies; they take chances on not
being regulated, causing serious industrial pollution to many rivers. This is consistent with our findings.
Figure 5 demonstrates the rapid upward trend of the ECEIW after 2008, as well as a large gap in the
ENEIW in 2010. As Water Vision 2020 was revised for the second time in 2011 [55], both the ECEIW and
ENEIW exhibit upward trends. The period between 2008–2012 exhibits these stricter environmental
regulations that can stimulate technological innovation and improve production efficiency, leading to
resource savings and environmentally friendly industrial production. This provides evidence for the
Porter hypothesis [56]. Unfortunately, since 2013, President Park Geun-hye changed the paradigm from
“green growth” to “creative economy.” Environmental policies became passive and loose compared
with those during Lee Myung-bak’s administration. These changes led to the decline of the GUEIW.

 
Figure 5. The GUEIW, economic efficiency of industrial water use (ECEIW), and environmental
efficiency of industrial water use (ENEIW) for Korea, 2006–2015.

Figure 6 shows the average values of the GUEIW, ECEIW, and ENEIW at the local government
levels. All three values are close to 1 in many governments; this is because Korea’s water management
system is centralized. In other words, all of these local governments share the same management
experience and are under the same laws and regulations, so their efficiency values are extremely
close. Therefore, there is no competition among local governments to enhance water management,
resulting in similar performances. During the study period, Ulsan showed the highest value of 1
and Gangwon showed the lowest value of 0.351. It is worth noting that 10 local governments with
a GUEIW value of over 0.9 are located on the south and west coasts of South Korea (Chungnam,
Busan, Jeonnam, Gyeonggi, Gyeongnam, Seoul, Gyeongbuk, Jeju, Gwangju, Ulsan). These local
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governments are situated downstream of rivers. Moreover, Gangwon, Daejeon, Daegu, Chungbuk,
and Jeonnbuk are situated upstream, in the water source protection area. The results are not surprising,
as the Han River Law was established in 1999 [57] to improve water quality, manage drinking water
sources, and support the compensation of local governments in the upper reaches of the river basin
as an economic incentive to reduce chemical use in factories and farms. In the same year, the River
Basin Law envisaged the comprehensive improvement of national development plans [56]. This has
led downstream industries to pay a kind of water environmental tax to upstream industries. Water
users in downstream areas, such as Seoul, Gyeonggi, Chungnam, Busan, Jeonnam, Gwangju, Ulsan,
and Gyeongnam pay for upstream water protection compensation in conservation areas that supply
them with more environmentally friendly water. Gangwon, Chungbuk, Daejeon, Daegu, and Jeonnbuk
provinces are the areas that protect upstream areas and their people by regulating economic activity
(such as environmentally friendly housing and industries). It is worth mentioning that Incheon,
although in the downstream.

 
Figure 6. Average values of GUEIW, ECEIW, and ENEIW for Korea local governments.

m region, has a GUEIW value of 0.752, lower than other downstream regions. This result is not
surprising. Most of Incheon’s cities have been developed as industrial zones for Seoul; thus, many of
these zones, such as Namdong or Gajwa, consist of small- and medium-sized enterprises in the country.
Compared with large enterprises in other cities such as Ulsan, industries in Incheon do not have
sufficient technologies and facilities for environmentally friendly production processes, resulting in
low ECEIW and ENEIW values. This situation also indicates that small- and medium-sized enterprises
in the area can learn more from big companies by a spill-over effect.

Except for Incheon, all downstream regions outperformed the upstream region in all three
indicators, particularly ECEIW. The government’s efforts to ensure water quality inhibits industrial
development in upstream areas, which negatively impacts the incomes of upstream areas; the relatively
high water use costs in downstream areas encourage producers to save water. While the government
focuses on compensating the upstream areas for water quality management with the water tax from
downstream areas, such supplies cannot be sustainable because the government is only responsible
for the initial stage of installation and does not provide any incentives for industries to reduce
emissions. Regulations should be strengthened and effective incentives should be implemented
to allow upstream industries to provide their own environmental protection activities. Therefore,
the upstream region should focus on environmental protection as a valuable activity for sustainable
performance and develop suitable industries with lower pollution and higher output. To develop
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such an industry, the water emission trading system (ETS) could be a good option for sustainable
performance because the industry may reduce water use (quantitative efficiency) as well as produce
less pollution (qualitative efficiency) for enhanced GUEIW. Here, ETS is the market-oriented carbon
emission regulatory mechanism for the participating unit to reduce its carbon emission for better
compensation in the ETS market. A water ETS could be constructed in a similar direction with caps
and a trading system based on water management of industries.

4. Conclusions

Since water stress—which mainly comes from industrial water waste and water pollution—poses
a significant threat to sustainable water management in Korea, it is urgent to assess GUEIW and
make useful policy recommendations. Based on the GNDDF model, this paper calculated GUEIW
in 16 Korean local governments from 2006 to 2015 based on two decomposition indicators: ECEIW
and ENEIW.

Empirical results showed that GUEIW exhibited fluctuations during the study and that the growth
of GUEIW was mainly driven by ECEIW. In order to improve the economic efficiency of industrial
water use, advanced water technology should be developed or introduced to make full use of water
resources in industrial production. Local governments should employ advanced technology and help
less developed local governments achieve enhanced industrial water use.

For the ENEIW, environmental issues might be constraints for achieving green use of industrial
water. Stricter environment regulations can stimulate technological innovation and improve water
management efficiency, leading to water resource savings and environmentally friendly industrial
production. This result supports the arguments related to the Porter hypothesis. It also demonstrates
that environmental deregulation leads to a decline in GUEIW.

Regarding local government heterogeneity, the downstream region outperformed the upstream
region in all three indicators, particularly in ECEIW. The government’s efforts to ensure water quality
inhibits industrial development in upstream areas. Upstream area incomes are much lower than in
downstream areas, as downstream industries have to pay upstream industries for upstream water
quality management. With relatively high water use costs, producers in downstream regions promote
conservation of water. Upstream industries, however, may easily create water waste due to relatively
low prices of water use. In order to improve the economic efficiency of industrial water use in
upstream areas, an advanced water technology should be developed and introduced to make full use
of water resources in industrial production. The local government in upstream regions should help
local industries acquire advanced technology. In addition, the government can provide incentives for
producers to save water to encourage industrial water saving. Water ETS could be one of the best
alternatives for these performance-oriented policies.
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Abstract: The concentration of suspended solids in water is one of the quality parameters that can
be recovered using remote sensing data. This paper investigates the data obtained using a sensor
coupled to an unmanned aerial vehicle (UAV) in order to estimate the concentration of suspended
solids in a lake in southern Brazil based on the relation of spectral images and limnological data.
The water samples underwent laboratory analysis to determine the concentration of total suspended
solids (TSS). The images obtained using the UAV were orthorectified and georeferenced so that the
values referring to the near, green, and blue infrared channels were collected at each sampling point
to relate with the laboratory data. The prediction of the TSS concentration was performed using
regression analysis and artificial neural networks. The obtained results were important for two main
reasons. First, although regression methods have been used in remote sensing applications, they may
not be adequate to capture the linear and/or non-linear relationships of interest. Second, results show
that the integration of UAV in the mapping of water bodies together with the application of neural
networks in the data analysis is a promising approach to predict TSS as well as their temporal and
spatial variations.

Keywords: suspended solids; unmanned aerial vehicle; spectral imaging; artificial neural networks

1. Introduction

The typical methodology for investigating water quality involves collecting water samples directly
from various locations and laboratory analyses. While this method may result in accurate assessments
of water body quality with limited areas, it is time consuming and expensive, and difficult to apply in
large areas. Moreover, because the results are punctual, they do not necessarily reflect the quality of
the whole site [1,2].

Alternative measures for in situ monitoring of water quality in lakes, dikes, and reservoirs can
be obtained by means of remote sensing techniques. Such an application is only possible due to the
presence of optically active components in the water. These substances can be identified via sensor
systems in that their presence in a water body results in different absorption and backscattering patterns
of the incident light, which are characteristic of each component. Among the parameters of water
quality, suspended inorganic sediments, organic chlorophyll-a, and dissolved organic material are the
main agents of absorption and scattering of electromagnetic radiation in a water body [3,4].
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It should be noted that these components are directly related with the quality of the aquatic
ecosystem and its surroundings. For example, total suspended solids (TSS), which represents the
total amount of inorganic or organic particles drifting or floating in water [5], may be related to
water pollution since these can serve as a transporting and storage agent of various pollutants, as
well as erosive processes in a river basin (resulting in silting of major rivers and reservoirs) [4]. TSS
concentration is often related to total primary production, heavy-metal and micro-pollutant flows, and
in many turbid regions, is directly linked to sediment transport problems and the light available for
primary production [6].

An indirect measurement of TSS in water bodies via remote sensing can compensate for deficiencies
in manual water quality monitoring by being fast, allowing for continuous monitoring of large
areas [2,7,8]. Most of the studies published on the TSS prediction from remote sensing involve the
use of spectral data retrieved from satellite images. Because of its medium spatial resolution (30 m),
in the studies of remote water sensing, one the most common satellites are Landsat, such as found
in Qun et al. [2], Kong et al. [8], Din et al. [9], and Amanollahi et al. [10]. Song et al. [6] tested the
images for medium spatial resolution IRS-P6 (Indian Remote Sensing Satellite) as well. Besides these,
Wang et al. [7], Breuning et al. [11], and Moridnejad et al. [12] used MODIS (Moderate Resolution
Imaging Spectroradiometer) satellite images and Campbell et al. [3] of the MERIS (Medium Resolution
Imaging Spectrometer), with these having low spatial resolutions (250 and 300 m, respectively) and
limited to large areas of water.

Thus, although remote sensing serves as a powerful technique for monitoring environmental and
seasonal changes, and its ability to remotely monitor water resources has increased in recent decades
because of the improved quality and availability of satellite imagery data [13], the analysis of small
water bodies may not be adequate due to the medium image resolution of the most usual commercial
satellites [1]. In this case, the use of aerial images obtained by unmanned aerial vehicle (UAVs) for
monitoring small bodies of water has presented good results and becomes promising for producing
greater detail due to high spatial resolution and the possibility of constant monitoring [14,15].

Although some applications of UAVs for water quality parameters monitoring, such as
chlorophyll-a [1,15–17], organic matter [18], and suspended solids [1,18–20], have been demonstrated
in the literature, there are still few studies focused on this application. For suspended solids monitoring,
for example, Veronez et al. [18] and Saénz et al. [19] used regression analyses between TSS values
measured in the laboratory and the UAV responses in the visible and near infrared (NIR) regions
to generate their prediction models. Saenz et al. [19] explored relations between individual bands
and combinations between them (as NIR-red, for example), and Veronez et al. [18] chose to relate to
vegetation indexes such as normalized difference vegetation index (NDVI) and normalized difference
water index (NDWI). Although both mentioned studies have shown positive results, the modeling of
these parameters in complex environments is not always possible through regression analysis.

Therefore, cognizant of the limitations that techniques such as regression analysis has, the need
for research and improvement of inland waters monitoring techniques integrated with the facilities
provided by the technologies developed and available in the market can be seen. Among these modern
techniques that can provide the support for the monitoring of waters via remote sensing is the artificial
intelligence with the use of neural networks.

Approaches involving neural networks are promising in the area of remote sensing and the
development of water quality models because they can be more sensitive and robust than other
traditional regression techniques, with the ability to capture both linear and non-linear relationships
between the involved parameters [8,12,13,21]. However, results presented in the literature on artificial
neural networks (ANN) approaches in water bodies use mainly satellite imagery of low [12] to
medium [8,13,21] spatial resolution.

No papers were found that included the application of artificial neural networks to the analysis of
high spatial resolution images obtained using UAVs, and therefore, this study intends to fill this gap.
The aim of this article was to use remote sensing technologies to evaluate water quality, identifying an
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alternative method for monitoring and quantifying the concentration of suspended solids in water,
through the correlation between UAV images and limnological data using regression analysis (RA)
and artificial neural networks (ANN). Furthermore, this study aims to contribute to the development
of temporal and spatial water quality monitoring techniques through modern remote sensing tools
and artificial intelligence.

The manuscript is structured as follows: Section 2 contains the information about the field site, the
acquisition of the data, and its subsequent analyses; in Section 3, we present and discuss the results of
the research on the concentration of TSS, regression models, and ANN; and finally, Section 4 presents
our conclusions regarding the study, with indications of its importance and its continuity.

2. Materials and Methods

The method that we are proposing can be structured according to the following steps: GNSS (Global
Navigation Satellite System) data acquisition, water sampling and laboratory analysis, overflight with
the UAV and processing of the images, extraction of values from images UAV, regression analysis, and
training and testing of the ANN. The flowchart of the proposed method is depicted in Figure 1 and
detailed in the following subsections.

 
Figure 1. Flowchart of the proposed method.

2.1. Field Site

The adopted study site was the lake on the Unisinos University campus, located in the state of Rio
Grande do Sul, southern Brazil (Figure 2). The lake is artificial, has an area of approximately 0.025 km2

and maximum depth of 4 m. Although small, it is located at the lowest altitude of the campus, and
because it is formed from rainwater drainage collected at the university, it contains several inorganic
and organic compounds found in the form of suspended solids or organic matter from rainwater
runoff [18].

The lake and its surroundings also function as an ecosystem for several species of animals, such
as ducks, geese, and several other birds, as well as a great diversity of fish. Because it is a university
campus, the area has several buildings, paved areas, and a large circulation of people and cars.
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However, the campus also has several vegetated areas, mainly around the lake, as can be seen in
Figure 2.

Figure 2. Location of the study site.

Studies addressing the applicability of remote sensing in the monitoring of water bodies have
already been developed in this area. Guimarães et al. [17] used spectral data collected in the field and
UAV images to model the chlorophyll-a concentration in the environment. Veronez et al. [18], based on
UAV images, applied neural networks to estimate Landsat 8 OLI satellite bands and correlated this
with data on suspended solids and dissolved organic matter.

Studies including the characterization of this lake, the behavior of the limnological variables, and
their relationships with the remote sensing variables are important as they serve as pilot studies to be
applied in larger water bodies.

2.2. Data Acquisition

We performed two field samplings in March 2016 and 2017 during the transition period between
the seasons of summer and fall. The collections were carried out in a single day and we ensured that
the climatic conditions of both days were similar. The average temperatures were between 22 and 24
◦C, winds with a speed of 0.4 ms−1 (southeast direction), and without the occurrence of precipitation
events on the days of the collections.

On the same days, the UAV overflew the area and in situ collection of water samples occurred such
that the two pieces of information could be compared as being representative of the same conditions
of the lake. Besides, possible temporal variations from one year to another can be evaluated for the
collected data and compared to the predicted one from the analyzed RA and ANN methods.

We selected 21 sample points, as shown in Figure 3, that were spatially distributed over the
lake such that surface water samples (up to 0.5 m) were collected for the laboratory determination of
suspended solids using the gravimetric method described in the Standard Methods for the Examination
of Water and Wastewater [22].
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Figure 3. Sample points used in the survey.

The UAV used to take the images was the SenseFly, Swinglet CAM model (SenseFly Parrot Group,
Cheseaux-sur-Lausanne, Switzerland). It was coupled to a Canon ELPH 110HS (Canon U.S.A., Inc.,
New York, NY, United States) camera with a 16-megapixel resolution and was factory-modified to
capture the NIR band instead of the red band. Thus, mapping was in three distinct channels, namely:
near infrared (NIR), green (G), and blue (B).

As well as the sampling points for water collection, in the field we also established and tracked
six ground control points (GCPs), through the GNSS (Global Navigation Satellite System), based on
the RTK (real time kinematic) method, located in the area of coverage of the flight such that later their
positions were used in the georeferencing of the images obtained.

The images obtained using the UAV were processed using the PIX4D software, version 2.1 (Pix4D
S.A., Lausanne, Switzerland), in which the images were orthorectified and georeferenced, where we
adopted the SIRGAS 2000 (Geocentric Reference System for the Americas) as the reference system, in
the UTM (Universal Transverse Mercator) −22S projection zone. We generated orthophotos with a
pixel size of 5 cm × 5 cm.

2.3. Data Analysis

In order to perform analysis between the data collected of the water quality and those obtained
via remote sensing, we plotted the sample points where samples were collected in the orthophotos
generated by the overfly with the UAV and extracted the values of the pixels concerning each point for
the NIR, G, and B channels. We emphasize that among the collected values of the two years (n = 42),
four were disregarded because the points were located in a shaded area of the image. Thus, a sample
of 38 points was considered for the analysis.

We used this data to predict the suspended solids concentration in Lake Unisinos using linear
and non-linear regression analysis (RA) and artificial intelligence through an artificial neural network
(ANN). The aim of this step was to identify a model to quantify the concentrations of suspended
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solids present in the water using the information obtained through remote sensing. We evaluated their
performances using the following statistical metrics: coefficient of determination (R2) and root mean
square error (RMSE).

Linear and non-linear regression models were investigated. The considered non-linear functions
were exponential, logarithmic, quadratic, and power (range from −1 to 1). Knowing that different
concentrations of suspended solids present different responses for each wavelength, to predict TSS in
RA models, we considered as independent variables each channel individually (NIR, G, and B) and
the operations of bands (sum, subtraction, and ratios) to highlight the spectral characteristics of the
compounds [6–8,13,21]. Thus, besides the simple regressions with the covariates included individually,
multiple regressions were considered with two or more independent variables combined, taking care
to avoid dependence among the covariates.

Considering the sample size of this experiment, all 38 observations were used for RA modeling
because the probabilistic assumptions of this class of models. After adjustment, the usual residual
verifications related to the distribution (Gaussian), independence, and homoscedasticity were checked.
If the estimated model was adequate, a cross-validation step could be performed where one observation
at a time was left out of the adjustment for comparison or a sample part was reserved when the sample
size was large.

In the TSS prediction from the ANN, which is a distribution-free method, the neural network
modeling considered two processing steps, the first being the training of the network, and the second
being its subsequent testing with a data set different from the first stage. In this study, we used 80% of
the data collected for ANN training and 20% for testing, which were randomly defined [23].

As the objective of the method was to create an ANN capable of recovering the concentration
of suspended solids in the water from the bands of the modified Canon sensor incorporated into a
UAV, we considered the normalized values of the NIR, G, and B channels as inputs to ANN, and
the TSS concentration as an output at the same sampling point. We used a network of feed-forward
backpropagation, with this being commonly used in remote sensing studies [8,10,21].

During the training phase, several tests were carried out in order to obtain the best ANN topology
applicable to this study, choosing the network that provided the highest correlation coefficient and the
lowest mean square error during training and testing. We tested different numbers of neurons (from 5
to 20) in one single hidden layer, as well as three activation functions (sigmoid, tangent, and linear),
and the number of training cycles.

3. Results and Discussion

The results of the laboratory analyses were satisfactory for the research and compatible with
prior knowledge of the water quality in the study area and analysis of the spatial behavior of these
parameters, which would later be compared with the UAV images. Table 1 shows the descriptive
statistics of the total suspended solids (TSS) analyzed in this research for March 2016 and 2017.

Table 1. Descriptive statistics of TSS.

Parameter
Value (mg/L)

2016 2017 All

Average 16.27 13.65 14.93
Standard deviation 2.97 3.07 3.29

Minimum value 11.67 9.33 9.33
Maximum value 23.75 20.00 23.75

Median 15.33 12.68 14.87
Variance Coefficient (%) 19.77 23.65 23.02

We observed from the analysis of the data presented in Table 1 that the characteristics of the study
lake were not the same between the two collections. This was also confirmed from the Wilcoxon test at
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a 95% confidence level. There was a decrease in the concentration of suspended solids from 2016 to
2017, which can be seen in the averages, medians, maximum, and minimum values of Table 1.

This difference in TSS concentration, although small, can be justified because although it did
not rain on the days of sampling in 2016 and 2017, there were rainfall events in the week before the
collection of 2016 (85 mm according to the experimental climatological station located at Unisinos
University), which did not occur in 2017. Allen et al. [24] point out that in impermeable urban areas, the
flow of rainwater in the soil causes the collection of the pollutants and sediments from these surfaces,
which are transported to the nearest waterways. As the lake receives the drainage of rainwater from
the university campus, it is expected that in rainy periods, various compounds will be carried into it,
increasing the concentration of suspended solids, for example.

As initial cartographic products, obtained via overflying with the UAV in 2016 and 2017, and by
processing the images, we have the orthophotos of the area, as shown in Figure 4.

Figure 4. Orthophotos generated by the overfly with UAV in March 2016 and 2017.

The simple and multiple linear and non-linear RA described in the previous section were evaluated;
however, most of the results were unsatisfactory. Table 2 shows the best results that we obtained in
these analyses. Although not shown, residual analyses were performed to check the error assumptions.

Table 2. Best results of the RA Model.

Variables Function R2 RMSE

NIR Power 0.20 3.05
G/NIR Exponential 0.19 3.07

G Linear 0.16 3.08
B Linear 0.13 3.14

B and G/NIR Multiple Linear 0.20 3.00
G/NIR and NIR/B Multiple Linear 0.18 3.05

G and B Multiple Linear 0.16 3.08

According to Table 2, the best adjustments of the simple regression analyses were for the NIR
and G/NIR variables, agreeing with Song et al. [6] and Amanollahi et al. [10], although both studies
obtained better results than ours (0.7 for Amanollahi et al. [10] and above 0.9 for Song et al. [6]). Also,
a combination of B and G/NIR was the best result for the multiple linear regressions.
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Although the regression models in Table 2 showed statistical significance, the low R2 values
indicate that the RA models were not ideal for TSS recovery in the study area. This result can
be explained by the optical complexity of the study waters such that the relations between the
bands of the collected images and the concentration of TSS could not be explained by traditional
regression techniques.

To improve the accuracy of TSS predictions, ANN can be effective. Kong et al. [8] emphasize that
ANN models establish different weights for each input in the network and thus take full advantage of
the characteristics of TSS included in the different bands.

We performed several trainings of neural networks with different topologies. In Table 3, the results
include a coefficient of determination (R2) greater than 0.5 in the training step and their respective
topologies, activation functions, number of epochs, and time of training are presented.

Table 3. Results of the ANN training for R2 > 0.5.

Topology a Activation Function b Epochs Time c (s) R2 RMSE

3-5-1 Tangent/Linear 100 1 0.60 2.11
3-5-1 Sigmoid/Linear 400 4 0.57 2.11
3-7-1 Tangent/Tangent 300 5 0.84 1.33
3-10-1 Tangent/Tangent 300 4 0.50 2.32
3-10-1 Tangent/Linear 400 5 0.50 2.30
3-10-1 Sigmoid/Linear 100 1 0.64 2.05
3-10-1 Sigmoid/Linear 400 5 0.53 2.19
3-12-1 Tangent/Tangent 200 3 0.65 2.02
3-15-1 Tangent/Tangent 500 7 0.58 2.10
3-15-1 Tangent/Linear 400 5 0.53 2.21
3-17-1 Sigmoid/Linear 300 4 0.50 2.27
3-20-1 Tangent/Linear 100 1 0.55 2.20
3-20-1 Sigmoid/Linear 200 2 0.50 2.30

a with “input (3)-neurons-output (1)”. b Hidden layer/output layer. c Where the computer used had the following
configuration: processor—Intel® Core™ i3-4005U CPU @ 1.70 GHz ×4, memory—4GB DDR3 1600MHz RAM.

According to Table 3, the topology in which we obtained the smallest RMSE and the highest
determination coefficient was 3-7-1, with the tangent function as the activation function, and with 300
training cycles. Thus, the ANN adopted was a feed-forward backpropagation type, with three input
layers (NIR, G, and B), seven neurons in a single hidden layer, and one output (TSS). As usual, the
training processing time depended on the number of epochs and was not a problem in our experiment
because of the reduced sample size.

The results that we found in the training and testing steps for this best ANN are presented in
Table 4. The graph presented in Figure 5 demonstrates the comparison between the data measured in
the laboratory and those estimated through ANN.

The ANN training stage resulted in an R2 of 0.84 and RMSE of 1.33, while during testing, these
values were 0.57 and 2.97, respectively. As shown in Table 4 and Figure 5, considering all the data
collected in this study as inputs to the ANN, the R2 was 0.75 and the RMSE was 1.81.

As expected, the results showed a significant improvement in the prediction of suspended solids
data in the study area through the use of ANN in place of the simple and multiple linear and non-linear
investigated RA.

Table 4. Results of the ANN.

Steps n R2 RMSE

Training 30 0.84 1.33
Testing 8 0.57 2.97

All 38 0.75 1.81
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Figure 5. Comparison between TSS measurements and estimated values from the ANN model
in training (black) and testing (red) set using March 2016 (circular shape) and 2017 (triangular
shape) samplings.

Although several studies show good results using regression methods to predict TSS [2,7,11,15–19],
others, such as Song et al. [6], Amanollahi et al. [10], Moridnejad et al. [12], and Wu et al. [25], compared
the two methodologies (RA and ANN) and obtained results indicating better quality in the prediction
of the data through an ANN, signaling the capacity of the neural networks to model more complex
and non-linear relations between the parameters. Only Kong et al. [8] reported that an ANN did not
present better results than regression methods for TSS predictions in their area of study.

Din et al. [9] used statistical correlation analysis only as a support for choosing the ideal bands
of the Landsat 8 OLI satellite for an ANN input. Then, the authors decided to include also the
bands of the short-wave infrared (SWIR-1 and SWIR-2) as inputs, which is not common in papers
about ANN for predicting water quality parameters since only visible and near infrared regions are
exploited [6,8,10,12,13,21,25,26].

Although the aforementioned approaches from the literature are similar to our paper for comparing
RA and ANN for the prediction of TSS, we point out that our results differ and are highlighted by the
high spatial resolution of the UAV images used in comparison to low or medium spatial resolutions of
the satellite images of other studies. Thus, our method allows for giving more geographically accurate
TSS predictions because of the small pixel size of the UAV images (5 cm in comparison to 30 m for
Landsat, for example) and generating high quality and resolution TSS monitoring maps.

Finally, the ANN model was used to predict the TSS concentration for the whole lake using the
NIR, G, and B variables for the 2016 and 2017 UAV images. Thus, the generated TSS maps for Lake
Unisinos are shown in Figure 6.

While analyzing Figure 6, we noticed the highest concentrations of suspended solids in the 2016
sampling compared to the 2017 one, a situation that was already indicated in Table 1. Besides, the
used data set presented a significant statistical difference between the two years, where the spatial
distribution also became evident in Figure 6. The highest concentrations of TSS in 2016 were in the
lower central region of the lake, whereas in 2017, they were near the lower-right margin. A large
part is found in the center of the lake for 2017 with the minimum TSS values. This difference in
spatial distribution, mainly showing as a large TSS concentration in 2016, is consistent with the in situ

143



Sustainability 2019, 11, 2580

collected water samples and is also explained by the rain that occurred in the previous week of the
field collection in 2016. Figure 6 also shows that TSS concentrations were in the same range (9.33 to
23.75 mg/L) for both years. In this sense, to verify if the statistical characteristics of the prediction, data
remain close to the observed ones, where Figure 7 shows the box plot of TSS concentrations for both
observed and predicted values in March 2016 and 2017.

Figure 6. Maps of predicted TSS based on the ANN model for March, 2016 and 2017.

Figure 7. Box plot of TSS concentrations for observed and predicted values in 2016 and 2017.

From Figure 7, we can see the similarity between the observed and predicted distributions, even
though this was not a large sample. From the Wilcoxon test, which is adequate for asymmetric
distributions, the null hypothesis of equal medians was not rejected at a 5% significance level
(p-value = 0.74). From the same test, the statistically significant difference between the years already
seen for the observed TSS values was maintained for the predicted TSS (p-value = 0.0007). The observed
average that was 16.27 and 13.65 (Table 1) became 15.72 and 12.51 for the predicted TSS in March 2016
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and 2017. The variance coefficient also remained similar, 17.51% and 22.56%, which are close to 19.77%
and 23.65% presented in Table 1.

Although the results of this study confirm the viability of the prediction of the concentration of
TSS from remote sensing data and ANN, we emphasize that because it is a new methodology and that
is still under development it has some limitations that should be considered.

For example, since each water body has its own characteristics (hydraulic, physical, chemical,
and biological), which are related to its surroundings and the region’s climate, the proposed model in
this study was trained relative to these conditions of the study area. Thus, it is necessary to develop
regional models adapted to the area of interest of the study. Other authors like Kong et al. [8] and
Chen et al. [26] also point out the absence of a standard model for different regions.

In relation to temporal variation, we point out that the field samplings were carried out in March
of the two years and therefore the seasonal variation of TSS (not considered in this study) may indicate
that a single model trained with data from only one season is not sufficient to predict other values
throughout the year. Another factor that stands out is that besides the seasonal variation of TSS, other
changes can occur in the natural environments over the years. Once the environmental characteristics
are modified, it is not possible to affirm the capability of the trained neural network to predict data
in the long term at this time. Thus, the monitoring of TSS from remote sensing does not rule out
laboratory analyses from time to time. For instance, if the predictions exhibit unexpected behavior,
such as a growth trend, new TSS and spectral data may be collected to check if it is a real change in the
TSS or the neural network needs to be updated for current conditions.

Finally, although studies as this serve as pilot studies to be applied in larger water bodies, we
emphasize that adaptations need to be made for this to occur because when flying with a UAV in lakes
and dams because large homogeneous areas makes it difficult to generate orthophotos and products
generated from the Structure for Motion (SfM) technique. One of the ways to minimize this problem
would be to perform high altitude flights, facilitating the identification of homologous points in the
images for generating the orthophoto, but which would result in a loss in resolution of the images.

The presented limitations indicate that this research needs to be continued. Nevertheless, what
we have demonstrated in this article should instigate replications of this method in other water bodies
such that more involved communities benefit from our positive results. This can be done through
area flyovers with UAVs with RGB and NIR cameras, correct processing of acquired images, reliable
data collection of water quality, and the establishment of an ANN with the ideal parameters for the
prediction of interest, which can be TSS as in this study, or for example, chlorophyll-a or organic matter.

The prediction of TSS in water bodies from images acquired using a UAV and processed via an
ANN should benefit managers, professionals, and researchers linked to the management and control
of water resources by presenting a method for the dynamic and spatial monitoring of water quality
problems, such as the presence of suspended solids.

4. Conclusions

The use of UAVs in the mapping of water quality is shown to be a promising tool because it
alleviates issues found in the usual in situ monitoring, such as the insufficiency of data, high time
and money costs, and modeling via remote orbital sensing, such as the low spectral and temporal
resolutions. Through analysis of the response that the sensor on board the UAV collected in the regions
of visible and near infrared, it was possible to model the concentration of optically active compounds,
such as suspended solids, and generate maps that allowed for their temporal monitoring and spatial
analysis at the study site.

We emphasize the applicability of the use of artificial intelligence through artificial neural
networks to meet the need for modeling suspended solids in complex aquatic environments, where
more simplistic analyses, such as the regression models presented in this study, may not be sufficient.
The use of an ANN instead of RA significantly improved the quality of the results from the generated
models, where R2 values rose from 0.20 (RA) to 0.75 (ANN).
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However, although the model presented could accurately predict suspended solids concentrations
compatible with the statistical features of the in situ observed values, its use was limited only to the
study area where the ANN was trained and calibrated, and possible adaptations to it are required for
use in other environments.

The presented results are important for two main reasons. First, although regression methods
have been used in remote sensing applications, they may not be adequate for capturing the linear
and/or non-linear relationships of interest. Second, they show that the use of UAVs in the mapping of
water bodies together with the application of neural networks in the analysis of the results obtained is
a promising approach and has the potential to assist in monitoring the quality of these environments.
Thus, we intend to continue monitoring the total suspended solids concentrations in Lake Unisinos
by performing new overflights with a UAV in the region and simulating the data collected with the
neural network.

We also emphasize the need to continue the research in order to improve the generated model,
as well as to consider the interference of other optically active compounds, such as chlorophyll and
organic matter, in the spectral response of water, and consequently, in the neural network generated.
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Abstract: High urbanization in Sub-Saharan Africa (SSA) has resulted in increased peri-urban
groundwater contamination by on-site sanitation. The World Health Organization introduced Water
Safety Plans (WSP) towards the elimination of contamination risks to water supply systems; however,
their application to peri-urban groundwater sources has been limited. Focusing on Uganda, Ghana,
and Tanzania, this paper reviews limitations of the existing water regime in addressing peri-urban
groundwater contamination through WSPs and normative attributes of Transition Management (TM)
towards a sustainable solution. Microbial and nutrient contamination remain prevalent hazards in
peri-urban SSA, arising from on-site sanitation within a water regime following Integrated Water
Resources Management (IWRM) principles. Limitations to implementation of WSPs for peri-urban
groundwater protection include policy diversity, with low focus on groundwater; institutional
incoherence; highly techno-centric management tools; and limited regard for socio-cultural and
urban-poor aspects. In contrast, TM postulates a prescriptive approach promoted by community-led
frontrunners, with flexible and multi-domain actors, experimenting through socio-technical tools
towards a shared vision. Thus, a unified risk-based management framework, harnessing attributes
of TM and IWRM, is proposed towards improved WSP implementation. The framework could
assist peri-urban communities and policymakers in formulating sustainable strategies to reduce
groundwater contamination, thereby contributing to improved access to safe water.

Keywords: contamination; integrated water resources management; groundwater; pollution;
Sub-Saharan Africa; transition management; water safety plan

1. Introduction

Groundwater contamination by human activities is a growing global concern in light of increasing
population, urbanization, industrialization, and agriculture [1,2]. Over one-third of the global
water use is derived from groundwater, which is under increasing stress from anthropogenic
contamination and diminishing resource quantities due to over-extraction and climate change effects [2].
On-site sanitation practices for disposal of human excreta and greywater are major contributors to
groundwater contamination, especially in peri-urban areas where settlement patterns are dense [3,4].
On-site sanitation facilities, mainly pit latrines and septic tanks, remain the primary form of improved
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sanitation in rural and peri-urban areas in most of the developing world, including Sub-Saharan
Africa (SSA); South, East, and Central Asia; Southern and Middle America, and Oceania [4–6].
While such facilities have promoted access to improved sanitation to the peri-urban communities, their
increased number, and usually poor construction and maintenance, results in increased groundwater
contamination [4,7–13]. Groundwater contamination by on-site sanitation systems in SSA is, thus,
a significant hindrance to providing access to safe water to vulnerable populations [7–9]. Indeed, SSA
lags behind other regions of the world in the struggle to meeting sustainable development goal (SDG)
number 6 on universal access to safe water and sanitation [5,14].

Sub-Saharan Africa continues to register unprecedented urbanization, mainly occurring in
peri-urban areas, which have low access to safe water and sanitation [10–12]. Groundwater, drawn
mainly from boreholes, shallow wells, and springs, is the predominant source of water for domestic
consumption, small scale industry, and irrigation to the majority of peri-urban residents in SSA due
to its relatively low cost of abstraction and high availability [3,7,9]. Despite this high reliance on
groundwater, on-site sanitary practices have increased contamination, leading to severe human health
and ecological consequences [12,15–17]. For instance, Murphy et al. [18] reported that over 60% of
groundwater sources tested in Kampala (Uganda) were positive for Escherichia coli (E. coli), which is
commonly attributed to fecal contamination, during a typhoid outbreak in 2015, which affected
more than 10,000 people. The scale and nature of the contamination and associated risks increase in
complexity with a growing population.

The failure to address groundwater resource challenges, such as the increasing stress of
groundwater resources due to contamination by on-site sanitation in peri-urban areas, can be attributed
to limitations in the groundwater management (governance) framework [12,19,20]. Vardy et al. [20]
described groundwater governance to include elements of institutional setting; availability and access
to information and science; robustness of civil society; and economic and regulatory frameworks.
Generally, groundwater governance has evolved within the overall realm of water governance,
dating back to the Helsinki Rules on the use of waters of international rivers in 1966 [19]. Globally,
there have been several groundwater governance approaches, depending upon the geographical scale
(local, regional, or transboundary). These have included approaches based on 1) international water
law and political ecology perspectives, especially in transboundary aquifer governance [19,21–23];
institutionalism, including management of “common pool resources” through polycentric approaches
advanced by Elinor Ostrom and associates [24–26]; economic and market regulation perspectives [20,27];
and socio-ecological approaches [19,28]. Generally, the current water governance framework in SSA
is mainly influenced by Integrated Water Resources Management (IWRM) principles, adopted after
the International Conference on Water and Environment (Dublin) and the United Nations Conference
on Environment and Development (Rio de Janeiro), both in 1992 [29]. However, despite the high
importance of groundwater resources, it has always received less profiling within the overall water
governance frameworks [19,22,30–32].

Many countries in SSA embraced IWRM as a multi-stakeholder framework towards addressing
water resources challenges, including contamination [33–35]. IWRM is defined as ‘a process which
promotes the coordinated development and management of water, land and related resources, in order
to maximize the resultant economic and social welfare in an equitable manner without compromising the
sustainability of vital ecosystems’ [29]. IWRM introduced improved integrated policies, and improved
participatory and gender-responsive approach, which have provided an enabling environment
for implementing water resources improvement initiatives. However, implementation of IWRM
in SSA has faced several challenges, including; (1) a high level of diversity (ambiguity), leading
to complexity and limited action to address specific societal challenges [30,33–36]; (2) contested
institutional framework based on catchment-based structures [32,37–40]; (3) ineffective stakeholder
participation and cooperation frameworks [30,37]; (4) undefined monitoring framework for assessing
results [33,39]; (5) ineffective cost recovery mechanisms [35]; and (6) limited resources to implement the
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ambitious targets of IWRM approaches [40]. These IWRM experiences have influenced the adoption
and implementation of water resources management initiatives within the water sector in SSA [40].

In 2004, the World Health Organization (WHO) introduced Water Safety Plans (WSPs) as an
instrument for identification, prevention, and management of contamination risks to water supply
systems, which has been adopted in SSA as well [41–43]. The WSP approach is based on the principles
and steps of the “Multiple-Barrier” concept for prevention of contamination to water sources and
the “Hazard Analysis and Critical Control Points (HACCP)” concept, adopted from food safety
management systems [44]. The WSPs are intended to ensure continuous provision of safe water,
free from any contamination, for all levels and types of community water supply systems [41,44].
WSPs have been implemented, mainly by water utilities, in all regions of the world, voluntarily or by
regulation [42,45]. Uganda was among the first countries in SSA to implement WSPs for prevention of
pollution to public water supplies [45]. Ghana and Tanzania have also recently adopted implementation
of WSPs for protection of public water supplies [42]. Although WSPs have mainly been implemented
for conventional urban water supply systems, with complex infrastructure, there have also been
efforts to apply them for improvement of the safety of basic water supply infrastructure in rural and
peri-urban areas [46]. However, like other management instruments, adoption and implementation
of WSPs is greatly influenced by the existing water governance regime [47–51]. The influence of
the existing water regime (IWRM) towards the implementation of WSPs for addressing peri-urban
groundwater contamination, in particular, has not been comprehensively documented. An analysis of
the challenges to the existing framework in implementing WSPs to address the growing challenge of
peri-urban groundwater contamination would identify the gaps, which can be addressed by emerging
management concepts.

Transition Management (TM) is an emerging management framework, within the context of
sustainability science, which has been explored in various developing and developed countries to
address complex socio-technical sustainability challenges [52–54]. TM is described as a ‘prescriptive
and descriptive, complex-based governance framework towards long-term social change through
small steps basing on searching, learning and experimenting’ [52]. TM has evolved in the past two
decades in the realm of sustainability science, attempting to provide solutions to societal complex and
persistent problems [52,53]. Groundwater contamination by on-site sanitation in peri-urban SSA is
certainly one such challenge, which could benefit from developments of the emerging field of TM.
TM acknowledges that societal problems are getting more complex with increased pressures like
population growth, climate change, and technological advancement, and traditional management
approaches are ill-equipped for this complexity [55]. Since 2015, a project has been implemented
by the research team, T-group, focusing on adapting TM approach towards improved peri-urban
groundwater management in Uganda, Ghana, and Tanzania [56,57].

Through a critical review, this paper aims to highlight the existing water regime challenges
towards implementing WSPs for protecting peri-urban groundwater against contamination by on-site
sanitation and explore normative attributes of TM towards a sustainable solution. The paper first
illustrates the complex socio-technical system influencing peri-urban groundwater contamination
arising from on-site sanitation in peri-urban SSA and then reviews the challenges of IWRM framework
and the normative attributes of TM framework towards improved risk management. Using the
Entity-Relationship Diagramming (ERD) technique, complementary attributes of IWRM and TM are
demonstrated in a proposed risk-based management framework for reducing peri-urban groundwater
contamination by on-site sanitation through WSPs for small communities. This framework could be
a sound tool for comprehensive assessment and formulation of strategies to improve adoption and
implementation WSPs targeted at reducing peri-urban groundwater contamination in SSA.

2. Methodology

The literature survey was conducted in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [58]. Relevant documentation (both
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published and unpublished) were searched, with no date restrictions, from Google Scholar, Google,
Scopus, Water Safety Portal, and Web of Science. Titles of all retrieved documents were reviewed
to remove any duplications followed by an analysis of abstracts for eligibility. Eligible documents
included those that contained information on groundwater contamination/pollution, on-site sanitation,
water contamination risk management, water safety plans, integrated water resources management,
groundwater management/governance, aquifer management, and transition management. The full-text
analysis was only undertaken for the documents with implication to SSA context, with particular focus
on Ghana, Uganda, and Tanzania. Relevant subject articles and documents from WHO and other
sources pertinent to WSP and groundwater contamination by on-site sanitation were also included
in the review. The documents reviewed also provided additional sources, which were assessed for
eligibility. The review was conducted between January 2019 to May 2020. Figure 1 shows the flow
diagram for the literature review.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow
diagram for the literature survey.

From the comprehensive review, the governance factors influencing implementation of WSPs
for reducing peri-urban groundwater contamination in SSA were analyzed and represented using
Entity-Relationship Diagramming technique (ERD). ERD can be used to visually display qualitative
data on system entities, their relationships, and attributes [59]. Content validation of the proposed
framework was achieved through expert opinion and stakeholder consultation at a stakeholder
workshop held in Entebbe (Uganda), in February 2020. The workshop was attended by 37 participants
drawn from government institutions, private sector, and research institutions. Iterative improvements
were made to the final version presented.
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3. Understanding the Complex Socio-Technical System Influencing Groundwater Contamination
by On-Site Sanitation in Peri-Urban SSA

On-site sanitation, through pit latrines and septic tanks, is the predominant sanitation system used
in peri-urban areas for disposal of human waste in most of SSA, and the developing world, particularly
in Asia, Middle America, and Oceania [3–8]. In the developed world, including Europe and North
America, on-site facilities, mainly in the form of decentralized treatment options, are mostly used in
the rural setting [60,61]. While on-site systems have contributed to the increased access to improved
sanitation in peri-urban areas, they have been reported to be a source of contamination hazards to
groundwater, which is used by many peri-urban dwellers [1–10,12,15–18,60,61]. Table 1 summarizes
recently documented cases of peri-urban groundwater chemical and microbial contamination from
on-site sanitation in the three focus countries of Uganda, Tanzania, and Ghana.

Table 1. Recently documented cases of urban groundwater contamination by on-site sanitation in
Uganda, Tanzania, and Ghana.

Country
Reported Contaminants from On-Site Sanitation in Peri-Urban

Areas 1 Reference

Uganda

Nutrient contamination (nitrate of up to 94.6 mg/L; orthophosphate
up to 2.4 mg/L) in shallow groundwater in Kampala and Lukaya [3,9,62]

Microbiological contamination (E. coli, fecal coliforms, viruses,
salmonella) detected from springs in Kampala [18,63]

Tanzania

Nutrient contamination (nitrate of up to 445 mg/L in Dar es Salaam;
449 mg/L in Dodoma; 100 mg/L in Tanga and 180 mg/L in Manyara) [64]

Microbial contamination (Fecal coliforms, E. coli and fecal
streptococci) in Arusha, Dar es Saalam, and Babati [12,16,65]

Ghana
Nutrient contamination (nitrate of up to 170 mg/L in Volta Region) [66]
Microbial contamination (Fecal coliforms, E. coli, and salmonella) in

Kumasi, Ashanti Region, and Accra [10,67–69]

1 Data covering the period of 2010–2020.

From Table 1, it can be noted that E. coli, fecal coliforms, and salmonella are widely studied in
peri-urban groundwater matrices in SSA. Due to increased access to modern analytical methods in SSA,
previously un-detected microbial groundwater contaminants like viruses are also increasingly being
analyzed and reported [70]. Chemical contamination has also been well documented, arising from
on-site sanitation facilities, especially with respect to nitrate contamination (Table 1). High nutrient
(nitrate and phosphorous) and microbial groundwater contamination by on-site sanitation are
also widely reported in countries of other regions of the world, including India [4], France [60],
and Sweden [61]. Shivendra and Ramaraju [4] reported microbial contamination in the majority of
wells sampled from Kanakapura town (India), with nitrate concentration of up to 45.9 mg/L, which is
comparable to the Table 1 data. In the developed world setting, there is growing concern over emerging
organic and inorganic contaminants, including pharmaceutical and personal care products, which could
be attributed to on-site sanitation systems [17,71]. However, there is still limited information on
occurrence, distribution, and ecological effects of emerging contaminants in peri-urban groundwater
in the SSA context, which could also potentially be attributed to on-site sanitation practices [17,71–73].

The WHO introduced WSPs as a management tool towards identification, reduction,
and prevention of such hazards (Table 1) in a water supply system, from catchment to consumer [41].
Rickert et al. [44] provided a simplified WSP process for small communities encompassing six steps
from assembling a WSP team, describing the community water supply system, hazard assessment,
deriving improvement plans, monitoring, and finally reviewing the WSP process (Figure 2). The process
acknowledges consideration of societal and technical factors across the entire catchment, which may
affect the quality of a water supply system. The process, thus, attempts to integrate comprehensive
technical and socio-institutional aspects influencing risks to water supply stems. A socio-technical
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approach to resolving groundwater resources challenges has gained prominence due to the complexity
of interactions [74,75].

Figure 2. Tasks to develop a Water Safety Plan (WSP) for small communities (adapted from World
Health Organization (WHO) [44]).

These socio-technical regime factors, thus, significantly influence the adoption and implementation
of technologies, processes, and management tools, such as WSPs. Socio-technical regime factors can
be summarized into five dimensions of (1) policy and regulation, (2) institutions, (3) science and
technology, (4) user and market dynamics, and (5) socio-cultural considerations [76–78]. Addressing a
complex system, therefore, requires careful consideration of both technical and socio-institutional
factors influencing the challenge. The WSP process has been implemented in Uganda, Ghana,
and Tanzania within the last decades [42,50,51], with varying levels of enabling and inhibiting regime
factors, as reviewed in the next section. In assessing a given socio-technical system, it is important to
understand the system boundaries or geographical scale [79]. This review focuses on small community
groundwater-based supplies in peri-urban areas, which may be part of larger aquifer systems.

4. Challenges of IWRM and Attributes of TM in Implementing WSPs to Reduce Peri-Urban
Groundwater Contamination by On-Site Sanitation in SSA

Like many countries in SSA, the existing water regime in Ghana, Uganda, and Tanzania generally
follows the principles of IWRM [34,37,38]. IWRM promotes a multi-stakeholder approach to water
resources management through a framework of creating an enabling environment, developing
management instruments, and defining institutional roles for action [29]. IWRM promotes integrated
management of water and land resources through four principles, namely; (1) fresh water is a finite
and vulnerable resource, essential to sustain life, development, and the environment; (2) water
development and management should be based on a participatory approach, involving users,
planners, and policymakers, at all levels; (3) women play a central part in the provision, management,
and safeguarding of water; and (4) water has an economic value in all its competing uses and should
be recognized as an economic good [29]. These principles have been adopted in the policy and
regulation framework, institutional set-up, and influence practices within the water sector in most
of SSA. While the explicit implementation of WSPs in SSA is still growing [42,51], there is extensive
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documentation on implementation of the constituent tasks of the WSP process (Figure 2), influenced
by the IWRM regime.

Transition Management, on the other hand, is still unexplored in the context of SSA, despite
promising attributes at addressing persistent societal challenges [56,57]. TM has been explored,
especially in the global north, in addressing sustainability problems in the transport, energy, water,
and environment sectors, among others [56,80,81]. Rotmans and Loorbach [55] summarized eight
principles of TM as; (1) creating space for niche developments; (2) empowering the niches; (3) focus on
frontrunners; (4) guided variation and selection (system flexibility); (5) radical change in incremental
steps; (6) learning by doing and doing by learning; (7) multi-domain approach; and (8) anticipation
and adaptation. Transition Management, in practice, is usually implemented through concepts of
Transition Management Cycle (TMC), Multi-Level Perspective (MLP), Multi-Phase Perspective (MPP),
and Multi-Pattern Approach (MPA), among others [82–84]. The normative attributes of these TM
approaches towards re-enforcing the principles and application of IWRM in implementing WSPs for
reducing groundwater contamination in peri-urban areas in SSA, are further discussed.

4.1. Policy and Regulation

Ghana enacted the Water Resources Commission Act in 1996, which was the first legislation to
embrace IWRM principles of managing water resources through a multidisciplinary and participatory
approach [34]. Uganda developed the Water Action Plan in the period 1993–1995, basing on IWRM
principles, culminating into the Water Policy of 1999 [85]. Adoption of IWRM principles in Tanzanian
legislation can also be dated to as early as 1991, with the first river basin organization (Pangani River
Basin Office, Moshi), and later entrenched in the Water Resources Management Act 2009 and the
Water Supply and Sanitation Act 2009 [86]. The improved policy and legislation recognized holistic
management of activities within a catchment and the interlinkages with the hydrological cycle, including
groundwater, within overall sector objectives and documentation. This improved the appreciation of
effects of human activities in the catchment on the quality of groundwater, and thus provided a holistic
approach for groundwater contamination risk analysis, assessment, and management. This improved
policy framework, thus, provided an enabling environment for the introduction of WSPs. Due to this
holistic policy framework, Uganda was one of the first countries to adopt WSPs in SSA, undertaken in
Kampala in 2005, which resulted in the national framework and guidelines for water source protection
in 2013 [47,51]. In Ghana, the first WSPs were implemented in 2014, leading to the national drinking
water quality management framework in 2016 [42]. In Tanzania, the first WSPs were undertaken in
Dar es Salaam in 2014, and development of national guidelines is still underway [42].

However, in an attempt to include multiple stakeholders and multiple sectors towards water and
land resources management, IWRM policies are conceptually diverse, without clear boundaries nor
guidance to address specific societal challenges [32,33,87,88]. As a result, groundwater-specific issues
have not been adequately addressed in policy and strategic sector direction [32]. Komakech and de
Bont [89] pointed out that while the water management policies in Tanzania refer to groundwater
protection, anthropogenic contamination of groundwater in urban areas continues unregulated,
as depicted in Table 1. Within the maze of many issues affecting water resources management,
it is therefore difficult to have sufficient scope analysis for the problem of peri-urban groundwater
contamination, thus insufficient risk management strategies. Several pilot interventions on WSP
implementation have been undertaken in Uganda, Ghana, and Tanzania, however, they are not specific
to groundwater, despite the wide use of groundwater by the peri-urban majority, albeit, a low-income
population [42,51,82]. Low funding for WSPs is also a manifestation of low prioritization to water
safety, which is even more severe for the groundwater resources [90].

Transition Management approach is a prescriptive, stepwise, approach usually intended for
a particular societal persistent (wicked) problem [91]. Loorbach [52] described the Transition
Management Cycle to transition society from an undesirable state to a desired equilibrium state
through; (a) establishing a transition arena, (b) establishing a transition agenda, (c) experimenting,

155



Sustainability 2020, 12, 4210

and (d) monitoring and evaluating progress. Considering the extensive use of groundwater in
peri-urban areas, the persistent hazards identified (Table 1) constitute a societal challenge that deserves
particular attention. Through a TMC, the problem can be critically analyzed through its historical
perspectives, identifying the critical formal and informal stakeholders and thereby addressing all
socio-technical aspects. Through incremental steps and effective monitoring, the process is adapted
until sustainability on this particular issue is achieved. The Multi-Phase Perspective (MPP) is a tool
proposed under TM approaches for monitoring a transition process through stages of pre-development,
take-off, acceleration, and finally stabilization, but aiming to avoid undesired scenarios of system
lock-in, backlash, or system break down [92]. It is not clear to what extent WSPs have contributed to the
elimination of contamination to public water supply systems in SSA, due to limited audits and follow-up
processes [47,50]. Specific WSPs for sustainable protection of the groundwater resources against
contamination by on-site sanitation in peri-urban areas could also be formulated, and implemented
through small incremental steps until sustainability is attained by reduced contamination levels.

The need for prescriptive, flexible policy and regulation arrangements to groundwater management
can be drawn from hydropolitics experiences in transboundary aquifer management in the Disi and
Guarani aquifers, among others [22,23]. In an effort to address water scarcity in Jordan, a co-operation
agreement was negotiated, with several geopolitical tradeoffs, between Jordan and Saudi Arabia for
exploitation of the Disi aquifer to supply drinking water to the Jordanian capital, Aman, and other
towns [23]. The co-operation agreement between Argentina, Uruguay, Paraguay, and Brazil towards
improved management of the shared Guarani aquifer, reached after a decade of negotiations, also
shows the benefits of policy specificity to handle a particular problem [22]. These examples from
transboundary groundwater management show that specific and flexible policy and regulation
instruments are required to address particular groundwater challenges. Thus, specific policies and
regulations, within the local hydropilitics of the urban/peri-urban areas, could be helpful towards
improved adoption and implementation of WSPs for reducing groundwater contamination.

4.2. Institutions

The IWRM principle of subsidiarity, management of the water resources at the lowest level, has
been mainly constructed around catchment/basin organizations. Uganda, Tanzania, and Ghana have
all made progress towards operationalizing of the catchment-based institutions, with varying degrees
of success [40,85,86]. However, the adequacy of catchment/ basin organizations for groundwater
management has been severely contested [37,38,40]. Foster and Ait-Kadi [32] argued that for effective
groundwater management, the hydrogeological delineation would serve better than river/lake basin
delineation. The effectiveness and coordination between various institutions and governance entities,
including town authorities, has not been well addressed [37,93]. Effectiveness of the basin organizations
in Uganda, Ghana, and Tanzania is as well in infancy stages, trying to establish legitimacy in the
already existing institutional framework [37,40,85]. ‘Top-down’ centralized planning and control
of resources has also remained prevalent in all the countries reviewed, leaving the created basin
institutions deprived of technical and financial resources to make meaningful contributions to issues
affecting peri-urban areas [37,89,94]. This institutional conundrum, therefore, has resulted in failure to
address groundwater contamination challenges in peri-urban areas, among other challenges.

Implementation of WSPs has not been shielded from these institutional challenges. The WSPs
developed in Uganda have mainly been undertaken within the National Water and Sewerage
Corporation (NWSC), with minimal involvement of external stakeholders in the process [51,95–97].
In Ghana, the implementation of a WSP for a small-town water supply system (Assin Fosu), not
operated by the national utility company, showed limited capacity of the local government and
community beneficiaries to participate in a formal WSP process effectively [98]. Adoption and
implementation of an effective WSP process for community water supplies in a peri-urban area requires
a diverse section of actors, owing to the complex interlinkages required to make a sustainable societal
change [99]. In Tanzania, Herslund and Mguni [100] argued that the water utility in Dar es Salaam
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city, the Dar es Salaam Water and Sewerage Corporation (DAWASCO), had done little to improve
sanitation in low-income areas, despite high levels of contamination of the groundwater used by the
peri-urban communities. This is evidenced by the microbial and nutrient contamination reviewed in
Table 1, with a similar situation in urban centers in Uganda and Ghana. From all the cases, there is an
institutional vacuum to supporting peri-urban communities in implementing WSPs for water supply
options, which are usually off the conventional water supply network.

From TM concepts, the multi-domain principle encourages multiple pathways through both
‘top-down’ and ‘bottom-up’ approaches towards realizing an intended societal goal, as advanced by
the Multi-Pattern Approach (MPA) [94,99]. The MPA advances a systematic analytic framework for
review of different interrelated processes (patterns) aimed at achieving a desired societal goal by a
different configuration of structures, cultures, and processes [84,99]. A specific system and its goal must
first be defined, and then the relevant stakeholders and actors identified. In this regard, the societal
goal is universal access to safe water (SDG 6). Through this approach, the tensions between different
agencies in the water management initiatives can be minimized by exploring the most feasible and
practical institutional constellation (formal and informal) for achieving the desired goal. De Haan and
Rotmans [99] described that transitions could occur along three patterns of empowerment (bottom-up),
re-constellation (top-down), or adaptation (internally induced change). Thus, this may include a
co-existence of ‘bottom-up’ approaches aimed at improving community water sources in un-served
low-income areas, while advances are also being explored by the existing regime (through public water
utilities) for universal network coverage.

The concept of frontrunners can also be helpful to identify individuals from any pertinent
organization, with commitment and capacity to contribute to the WSP process. This would ensure
diversity of representatives in the process and thus improved community ownership of the processes.
This approach is also supported by the attribute of guided variation and selection, which advocates
for system flexibility, to devise alternative system configurations where a problem persists. De Haan
and Rogers [84] documented several socio-institutional constellations that have been explored to
address water management challenges in Melbourne (Australia), emphasizing the need for system
flexibility to emerging challenges. Such a flexible institutional configuration, which may involve formal
and informal agents towards a particular objective, is also supported by the growing literature on
polycentric governance approaches [24–26]. Polycentric structures include multiple, interdependent
autonomous agents (formal and informal), with a defined conflict resolution mechanism, working
towards a common goal [25,26]. It is argued that polycentric governance approaches offer advantages
of a context-specific institutional fit, enhanced system adaptability to emerging challenges, eliminate
redundant actors, and improve local participation and accountability [26]. There is therefore sufficient
theoretical grounding for an alternative institutional configuration to support community level
initiatives for implementation of WSPs to protect their groundwater sources, with collaboration with
the local governments and utilities providing water and sanitation services.

4.3. Science and Technology

Through IWRM, research has also been supported to develop and promote groundwater
quality management instruments and processes in SSA such as groundwater quality/risk mapping,
modelling, and protection/zoning [8,15,94,101]. However, extensive risk analysis for emerging organic
and inorganic contamination from on-site sanitation is still limited [71,72]. Aquifer vulnerability
assessments have been conducted, mainly through DRASTIC approach (representing parameters of
depth, net recharge, aquifer media, soil media, topography, impact of vadose zone and hydraulic
conductivity), as a step in the risk management process [15]. Risk assessment tools, mainly Quantitative
Microbial Risk Assessment, have also been explored in SSA [67]. However, most of the management
instruments/tools developed under the IWRM regime are still techno-centric, being water-sector specific,
with limited integration with socio-institutional parameters [1,101,102]. Management instruments that
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integrate the socio-institutional aspects and hydrogeological assessments are limited, which complicates
holistic decision making.

Water professionals have mainly been responsible for the WSP processes in Uganda, Tanzania,
and Ghana, where the process tends to focus on the water treatment processes [95,97,98]. For instance,
Howard et al. [95] noted that the WSPs should be based on health-based targets and independent
surveillance conducted to ensure water safety by the health sector, but in practice, the WSP processes are
usually implemented by the water sector. The limited capacity of local governments in participating in
the WSPs process in Ghana could also be reviewed as a process left to the water sector [98]. Integration
of traditional and non-traditional approaches, from various sectors and actors, could result in new,
improved socio-technical approaches [103,104].

Transition Management concepts stem from complex systems theory trying to represent the
complex relations between nature, science, society, and technology [55]. Complexity theory contends
that such systems tend to be non-linear, continually evolving with changes in the environment and
adapt to new situations. It is, thus, usually impossible to generalize or predict system behaviors [99].
Practical experimentation and learning from each experiment to adapt the system to an improved
configuration is one of the prime attributes of TM. Peri-urban communities are usually served by
groundwater supplies which are off the primary water supply network, thus not included in municipal
physical models. Implementation of WSPs for such communities would be implemented in an
experimental approach, learning lessons from incremental steps, which can be assimilated by the
regime upon demonstrated successes. Such experimentation can be led by any relevant stakeholder,
especially in the domain neglected by the primary grid, such as peri-urban areas. This variable
approach could result in novel approaches, which could be adopted by the water regime. In analyzing
requirements for a transition to sustainable urban wastewater management principles in Stellenbosch
Municipality (South Africa), Malisa et al. [103] recommend for adoption of both traditional sources
and alternatives such as rainwater harvesting, aquifer storage, and stormwater and wastewater reuse.

4.4. User and Market Dynamics

It is also argued that stakeholder participation under IWRM has been largely focused to
institutional and high-level stakeholders, with limited active involvement of lower-level community
stakeholders (usually economically vulnerable) in decision making processes [37,87,105]. Stakeholder
participation has been promoted through Multi-Stakeholder Platforms (MSPs), in the form of
Catchment Management Committees, which are decision making bodies (voluntary or statutory)
comprising different stakeholders aimed at interdependence in solving water resources management
problems [106,107]. Stakeholders in groundwater should encompass all entities (institutional,
individual, association), whose actions directly or indirectly affect groundwater, with or without
there consciousness [107]. However, it is noted that individual households are vital sources of
peri-urban groundwater contamination, and thus their involvement in key decision-making is crucial
to the resolution of the problem. Water User Associations in Uganda were an attempt to involve
the communities at the lowest level, but these structures were not supported to grow and remained
inactive, especially in urban areas [85]. In Tanzania, Pantaleo et al. [12] showed that despite the high
level of microbial contamination in shallow wells in Babati town, the local community was not aware
of the contamination, nor the potential risks. The involvement of individual households or local
communities in WSP process in SSA has equally been limited [43,51].

The Multi-Level Perspective (MLP) has gained prominence in structuring transition processes at
different levels of influence, structured as landscape, regime, and niche levels [82,83]. The landscape
level encompasses the external environment, which puts pressure on the regime processes to create space
for niche innovations to emerge towards the desired sustainability [82]. In this regard, international
commitment to the attainment of SDGs can be regarded as one of the vital landscape pressures
influencing national processes to develop innovations at all levels towards the attainment of SDG
targets. Such innovations may include implementation of WSPs to improve community water sources
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in peri-urban areas, which have previously been abandoned by the urban water utilities. The national
processes (socio-technical regime) need to allow for protected spaces (niches) for various innovations to
incubate, which can be assimilated by the regime upon successful demonstration [83]. Creating space
for niches and empowering them significantly improves community participation at the lowest level of
society, as emphasized by the TM approach. Niches are created at the local level, with the participation
of willing individuals. Frontrunners, as well, could be derived from the community, which offers an
opportunity for individual participation in vision creation and decision making. Poustie et al. [80]
shared experiences in designing a transition experiment for leapfrogging to sustainable urban water
management in the city of Port Vila through niche experiments. Through a TM process, it was analyzed
that unsustainability of the urban water infrastructure in Port Vila was as a result of the focus on technical
and institutional capacities, with limited stakeholder networks and collaborations. Participation in
a new vision creation and transition pathways analysis was achieved through a transition arena
composed of community members, state actors, and private sector actors. Individual households
could, therefore, through such an approach, be engaged to champion sustainability transition towards
improved on-site sanitation facilities to reduce the risk of peri-urban groundwater contamination.

Implementation of the IWRM economic principle (polluter-pays-principle) also remains to be
effective in SSA and almost non-existent for peri-urban groundwater context, which is affected by
communities with limited economic capacity to pay. Groundwater management strategies should take
into consideration the socio-economic position of the community [20,27]. Even in the conventional
utility networks, raising resources for WSPs is a cross-cutting challenge [47,51,96]. Komakech and
de Bont [89] attested to the inability of peri-urban communities in Tanzania to pay for such services.
The principle would essentially imply that individual households owning the on-site sanitation
facilities would meet the costs of implementing the WSP. While the principle may be applicable to
industrial discharges, it is impractical to implement for community-level sources, such as unlined
pit latrines and illicit municipal waste dumping by impoverished communities. Through the system
flexibility principle of TM approach, “polluter-pays-principle” in the context of peri-urban groundwater
management can be assessed depending upon the community characteristics such as willingness and
ability to pay for such services; the level of existing public sanitation infrastructure in the area and
settlement (housing) patterns. An alternative framework for compensating polluting activities could
be assessed and recommended for the peri-urban areas depending upon the economic vulnerability of
the population. An example of promoting resource recovery approaches to a circular economy in the
Dutch wastewater system transition demonstrates a policy shift from “polluter-pays-principle” [108].
In this regard, a WSP process that advocates for resource recovery from the on-site products would be
recommended. The recovered products could then be marketed for nutrient recovery in agricultural
production and energy recovery, which benefits the society [6,61], in comparison to requesting the
community to pay for the pollution. The economic principle of IWRM has found limited application
to groundwater, especially in low-income communities, thus, system flexibility is required to find
alternative remedies.

4.5. Socio-Cultural Considerations

Under IWRM, adequate consideration of socio-cultural aspects in the prevention of groundwater
contamination in peri-urban areas in SSA has been rather limited [105,109]. Yeleliere et al. [110]
highlighted the immense challenges of implementing integrated water resources policies in regulating
peri-urban groundwater pollution in Ghana due to a disconnect with the customary practices in the
region, which regulated equitable access to water resources and prevented community contamination
of water resources. Such customary practices (like customary rights over water and gender customs in
water utilization) are usually addressed by informal stakeholders such as traditional leaders, community
elders, and unregistered well drillers (and diggers), who are unregulated by the regime, yet influential
to a certain extent considering their high numbers in the SSA context [105,109]. Mapunda et al. [111]
estimated that over 68% of the population from 20 cities in Tanzania is covered by informal providers,
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mainly from unregulated groundwater sources, which are not part of the city public water infrastructure.
Such informal services are, thus, operated through social-cultural arrangements for water pricing,
pollution control, operational schedules, and protection against vandalism. Culture (socio and
institutional) issues have found limited space in the WSP processes to date [112]. Van Koppen et al. [86]
argued that the implementation of IWRM in Tanzania removed the customary rights to water enshrined
in previous arrangements. Consideration of socio-cultural factors in the implementation of WSPs in
SSA has equally been limited, primarily focused on the technical factors [112].

Creating space for niches and empowering the niches to develop at the community level,
as advocated by TM approaches, provides for an opportunity to incorporate and address socio-cultural
issues, particular to the society [57]. These may include customary rights and practices to water
and sanitation, and customary land ownership, which may influence groundwater protection zoning
and community mobilization towards water source protection [57,105]. In assessing strategies for
developing the transformative capacity of the urban water management sector in the city of Melbourne
(Australia), Brodnik and Rebekha [113] emphasized the inclusion of organizational and socio-cultural
factors in the transition process. Geels [82] also stressed the relevance of niche level innovations in
achieving a transition process, usually emanating from the community, well grounded in the societal
socio-cultural practices. Mukherji and Shah [28] also present strong arguments for active involvement
of community users in groundwater management, drawing on experiences from India, Pakistan,
Bangladesh, China, Spain, and Mexico, which have intensive use of groundwater.

However, the TM approach is also faced with unresolved socio-institutional challenges, including
limited regard of “politics, power, and conflicts” in achieving democratic participation and ensuring
equal and influential participation of weaker members of society in transition processes [56,114].
Other noted challenges include uncertainty in the framing of regimes and system boundaries, low
legitimacy of frontrunners, concern for individual perspectives, and inadequate capacity for steering
and monitoring societal changes [56]. Considering the complexity of the problems addressed in
TM, the development of appropriate management instruments is a work-in-progress [84]. Globally,
there are also still limited empirical prescriptive interventions by TM. In view of these limitations,
TM alone, as well, may not be the “silver bullet” to addressing the complex dynamic challenge of
peri-urban groundwater contamination in SSA. A complementary approach harnessing attributes of
both IWRM and TM could offer complementarity towards improved uptake and implementation of
WSPs for peri-urban groundwater management.

5. Proposal for a Risk-Based Management Framework towards Reducing Peri-Urban
Groundwater Contamination by On-Site Sanitation in SSA

Remedies to complex problems need an interdisciplinary and multifaceted approach [33].
While several studies have advocated for alternative approaches to IWRM [33,39,88], in light of
the achievements and gains realized in the global efforts in the implementation of IWRM, others
have argued for the strengthening of the concept with attributes of emerging frameworks in order
to address emerging challenges [30,38,40]. From the achievements of IWRM in Uganda, Tanzania,
and Ghana, this review advocates for strengthening of IWRM towards addressing the challenge of
peri-urban groundwater contamination by on-site sanitation. From the analysis of attributes of IWRM
and TM, a unified risk-based management framework is proposed towards improved adoption and
implementation of WSPs for reducing groundwater contamination from peri-urban areas in SSA
(Figure 3).

The socio-technical regime factors that influence groundwater contamination in peri-urban areas
in SSA are presented in Figure 3, described with a simplified Entity-Relationship Diagramming
(ERD) approach. These factors must be taken into consideration when designing the WSP process for
protecting peri-urban groundwater sources against contamination from on-site sanitation. The tenets
of natural resources sustainability are hinged on the balance between economic efficiency, social equity
and environmental (ecological) sustainability, as advocated by IWRM. TM approach emphasizes a
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prescriptive approach, which should target a particular persistent societal problem. The proposed
framework is, thus, envisioned to contributed to reduce peri-urban groundwater contamination by
on-site sanitation. The attributes of this vision are hinged on the sustainability tenets of ecological
sustainability, social equity, and economic efficiency. Simultaneous maximization of the three attributes,
as suggested by IWRM, has not been practical, leading to ambiguity in actions [33,36]. Giordano and
Shah [88] advocated for context-specific approaches in consideration of the attributes. In this context,
considering the social-economic marginalization of peri-urban communities, it can be argued that the
proposed framework maximizes social equity, while taking into reasonable consideration the economic
and ecological attributes. The focus on social equity is also in accordance with the transformative
principle of the SDGs of “leave no one behind” [5].

Figure 3. Proposed risk-based management framework for reducing groundwater contamination by
on-site sanitation peri-urban Sub-Saharan Africa (SSA) (Adapted from [29,44,52,82]).

The WSP process is in line with the WHO process for small communities [44]. The WSP team may
represent the frontrunners, according to TM approach, who follow the process through. The team should
be composed of stakeholders from diverse background, different sections of the community, institutions,
and leaders, with willingness and ability to participate in the process [56]. In describing the water
supply system, both technical and socio-institutional factors affecting community water supply need to
be critically analyzed. The Catchment Management Committees, developed under IWRM approaches,
have been critiqued for the limited representation of vulnerable community members, power imbalances
in decision making, and high cost of operationalizing the committees [106]. The MLP perspective
offers a structured approach in analyzing the system components at landscape, regime, and niche
levels, ensuring effective representation from all levels. The niche level initiatives at community level,
to some extent, address representation and power imbalances. Improved socio-technical management
processes and instruments should be used to comprehensively identify and assess hazards, hazardous
events, risks, and existing control measures. Experimental measures should be explored, including
radical steps, which may not be in the main system configuration, but demonstrated to improve water
safety of the peri-urban communities. The process and activities should be monitored, along the MPP
approach, with a focus on the sustainability goal [83]. All aspects of the WSP process are continually
reviewed and adapted to emerging situations and the process is repeated continuously to achieve
sustainable reduction of groundwater contamination from on-site sanitation. Throughout the WSP
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process, communication and feedback to and from all stakeholders is emphasized, while continually
adapting tools, processes, and focus to emerging hazards and events. This continuous influence and
adapting of processes are reflected in the bi-directional influence arrows between the various entities
in Figure 3.

As postulated by IWRM, the process is influenced by a framework of ‘enabling environment’,
‘management instruments’, and ‘institutional roles’ [29]. Using concepts of TM approach, these
elements are re-enforced for practical analysis and formulation of strategies for reducing groundwater
contamination in peri-urban areas by on-site sanitation. In the enabling environment, the MLP
differentiates between the socio-technical landscape and socio-technical regime to influence transitions
towards sustainability. The landscape pressures, including international development agenda
(SDGs), multinational development agencies, and international political/trade treaties are avenues for
influencing regimes towards the sustainable achievement of groundwater quality. IWRM has been
strong at mobilizing the international agenda towards holistic management of water resources [30,36].
The socio-technical regime, comprised of national level policies, structures, political dynamics, user
preferences, national development, and cultures, can be rallied towards the support of groundwater
protection initiatives. While the external environment influences the contamination risk management
process, emerging innovations should equally impact the external environment for improved adaptation
of the entire system. This provides for the possibility of upscaling promising niche level experiments to
be adopted by the system regime and subsequently, the landscape level. This also ensures continuous
adaptation of the landscape and regime forces towards emerging situations.

An array of stakeholders from both formal (under regulation by the regime) and informal
(unregulated by the regime) settings, derived from the individual level, the national level, and the
international level, are required for driving the transition towards the reduction of peri-urban
groundwater contamination by on-site sanitation in SSA. This polycentric arrangement would enable
a resilient and accountable institutional framework to support the particular challenges faced by
peri-urban communities in managing groundwater resources. Management boundaries need to be
specified between different stakeholders to avoid scenarios of inaction and conflicts. While IWRM
advocates for catchment-based boundary systems, TM advocates for flexibility in setting the boundary
of assessment, depending upon a given challenge. The peri-urban areas could be assessed as a specific
sub-system, with particular socio-economic characteristics, within the overall urban water supply
system. TM advocates for an approach that starts at the lowest community level, within the existing
societal arrangements for change action. The informal arrangements with the community need to be
given due consideration for any management arrangements proposed for implementation of the WSP.

Appropriate socio-technical management instruments are required to manage the entire process,
stakeholders, and the environment towards realization of the sustainability objective. Prediction and
modelling tools and techniques developed under IWRM could be strengthened, which could be used
to study the overall system, including the technical and socio-institutional aspects and the complex
interactions towards achieving the desired sustainability goal. Such management tools may include
laboratory analysis techniques, problem analysis tools, pathways analysis tools such as back-casting,
and vulnerability assessment tools. The process of tools development is continuous with knowledge
advancement. Experimentation with various processes and adaptation of the WSP process to emerging
issues from the peri-urban communities is an integral part of the process.

6. Conclusions

Groundwater is a vital resource for most of the population in low-income peri-urban areas in
SSA. However, the resource is threatened by increasing contamination arising from on-site sanitation
facilities, in light of a growing population. From the review of literature, it is evident that microbial
and chemical contamination is prevalent and well documented in SSA. The WHO introduced WSPs to
assist communities to manage such contamination by managing the technical and socio processes from
catchments to the water user. However, adoption and implementation of the WSPs have been met
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with several successes and challenges influenced by the existing management framework (regime),
which is aligned to the IWRM principles [36,37,85].

IWRM introduced improved holistic water resource management policies, improved public
participation, improved management tools, and gender-sensitive approaches, which provided an
enabling environment for the adoption of WSPs, which were multi-stakeholder by design [44].
However, implementation of IWRM has had a low focus on groundwater-specific problems and
implemented through an incoherent institutional framework based on catchment management
structures within already existing governance structures. The practicality of such structures to address
groundwater-specific issues has been severely questioned [34,37]. The management instruments
developed under IWRM have also, to date, remained techno-centric, with limited integration of
socio-technical factors. There has also been limited regard for socio-cultural aspects and the economically
vulnerable society segments, reflected in low financing of WSPs initiatives [51,98]. These limitations
have affected the adoption and implementation of WSPs for groundwater interventions in peri-urban
areas in SSA. The WSPs have been mainly implemented by urban water utilities for the conventional
piped water supplies, with no consideration to community sources within the peri-urban areas.

TM advances normative strengths of long-term planning for societal transformation and
implementation of the plan through incremental short-term measures, which has shown promise
at addressing such complex adaptive systems. It provides a prescriptive approach, which targets a
particular societal concern and works towards a shared vision, guided by frontrunners, which addresses
the challenge of system diversity. TM processes are also multi-domain and flexible to institutional
and actor dynamics, with emphasis on community-level (niche) initiatives [82]. These attributes can
eliminate institutional tensions, ensure incorporation of community vulnerable persons, and integration
of socio-cultural elements in a transition process towards the elimination of groundwater contamination.
The process is improved through learning by doing and doing by learning, through a multi-domain
approach, further adapting the system in light of increased pressures like increased urbanization and
climate change. The normative strengths proposed by TM are consistent with emerging approaches in
polycentric governance approaches, postulated to improve system adaptability to emerging challenges
and accountability for results to the local population in attainment of set goals.

Based on the normative strengths of IWRM and TM, a unified risk-based management framework
is advanced by this review towards the improved adoption and implementation of WSPs for
reducing peri-urban groundwater contamination from on-site sanitation in SSA. The framework
strengthens the vision of the WSP process, illuminates the enabling environment along landscape and
regime aspects while refining the WSP process at the community level for incremental steps towards
sustainability. Socio-technical management instruments are identified, which could be strengthened
and applied in improved WSP implementation. The stakeholders, coordinated by a specific team of
frontrunners, are also structured into formal and informal stakeholders towards improved WSP process
implementation to emphasize community-level interventions. Experimentation of the proposed
framework is recommended for empirical validation, which could then be adopted towards the
improved implementation of WSPs for reducing groundwater contamination by on-site sanitation in
peri-urban SSA, in the effort towards attaining sustainable development goal number 6 for universal
access to safe water.

Key research gaps identified by the review include; the need for a further understanding of
emerging contaminants in peri-urban groundwater, in light of increased urbanization, which have
not been addressed by the WSP processes. There is also need for further assessment of the context
and regional specific socio-institutional factors influencing adoption and implementation of WSPs
in addressing the persistent challenge of groundwater contamination by on-site sanitation in SSA,
such as cultures, power imbalances, societal practices, which differ between various socio-technical
settings. While the integration of TM and IWRM approaches for improved implementation of WSPs is
recommended, tensions between attributes of the approaches may also arise, which need further study
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through experimentation. There are also limited management instruments that incorporate analysis of
socio-technical aspects of groundwater contamination, in the light of emerging challenges.
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Abstract: The concept of sustainability is assumed for this research from a temporal perspective.
Rivers represent natural systems with an inherent internal memory on their runoff and, by extension,
to their hydrological behavior, that should be identified, characterized and quantified. This memory
is formally called temporal dependence and allows quantifying it for each river system. The ability
to capture that temporal signature has been analyzed through different methods and techniques.
However, there is a high heterogeneity on those methods’ analytical capacities. It is found in this
research that the most advanced ones are those whose output provides a dynamic and quantitative
assessment of the temporal dependence for each river system runoff. Since the runoff can be split into
temporal conditioned runoff fractions, advanced methods provide an important improvement over
classic or alternative ones. Being able to characterize the basin by calculating those fractions is a very
important progress for water managers that need predictive tools for orienting their water policies to
a certain manner. For instance, rivers with large temporal dependence will need to be controlled
and gauged by larger hydraulic infrastructures. The application of this approach may produce huge
investment savings on hydraulic infrastructures and an environmental impact minimization due to
the achieved optimization of the binomial cost-benefit.

Keywords: runoff; temporal dependence; rivers’ sustainability; predictive methods; causal reasoning;
runoff fractions; water management

1. Introduction

In order to implement a real integrated water resource management (IWRM), it is required the
proper use and organization of a great range and amount of data sources and methods. In this context,
climatic and hydrological variables are essential [1,2].

Hydrological processes’ variability is increasing on a global and local scale [3,4]. Consequently,
those events, with values and trends far from the historical average behavior, are more recurrent [5–7].
In order to address this new hydrological reality and aimed to anticipate and forecast it, new approaches,
methodologies and techniques have emerged, incorporating this changing behavior. However, in order
to build tools for the present-future, not all the reasons that explain this increasing variability are brand
new (climate change and projections to the future), but also, the historical behavior should be more
deeply understood [8].

Hydrological temporal behavior from a stochastic view has been usually studied, and many
of those concepts, assumptions and applications are still valid today. Those concepts comprise
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temporal-spatial correlation and statistical hydrological parameters, including basic, droughts and
storage ones, as well as trends, shifts and seasonality testing, among others [8,9].

Traditionally, hydrological models and all their mathematical development are built based on a
unique observation runoff record collected from a gauge station. Still, today, most of the hydrological
tools officially implemented in water administrations are based on the previous and rudimentary
approach [10]. However, the boom of very powerful analytical techniques and methods such as data
mining (DM), artificial intelligence (AI) and machine learning (ML), among others, have produced a
drastic change in several disciplines, including hydrology [8]. Consequently, river basins’ hydrological
behaviors can be currently characterized through those tools by means of huge amount of information
coming from statistical or deterministic operations [11]. This massive amount of information is used for
populating sophisticated expert systems that provide quantitative and dynamic results, incorporating
and quantifying the inherent hydrological uncertainty [11]. However, those techniques have a high
variety of performance, usage, utility, analytical power and/or accuracy, among other parameters.
This heterogeneity is not properly revised or synthetized in academic studies or research articles, and,
consequently, it is worthy to analyze and characterize it.

The most powerful and useful methods are the stochastic ones, which are able to incorporate
and deal with the uncertainty of hydrological variables. In this sense, the discipline of stochastic
hydrology is where those methods are included. Furthermore, ideas and features such as
temporariness or persistence strongly related to the measure of the time series long-term memory
(Hurst coefficient) [12], dependence-independence of internal data or structure and strength of causal
relationships, are particularly significant.

This study is aimed to review the most popular, powerful and innovative approaches and methods
for analyzing and predicting rivers’ temporal behaviors. Furthermore, this paper is also aimed to
provide the reader with an evaluation of the strengths, weaknesses, opportunities and threats (SWOT)
of those methods and techniques set. Finally, this paper is also aimed to provide the reader with a
rigorous suitability assessment focused on achieving the most suitable method for developing robust
sustainable rivers’ assessments. For that, the paper is structured as follows. Section 2 covers a revision
of the main material and methods included in literature for developing a rigorous and updated analysis
of rivers’ temporal behavior and, by extension, their applications. Section 3 contains the methodology
and the main results drawn from this research. This section includes the identification and assessment
of parameters, a SWOT analysis of those techniques and methods and a suitability assessment for
capturing the best methods for temporal rivers’ sustainability. Finally, Sections 4 and 5 are dedicated
for the discussion and conclusions, respectively.

2. Overview of Research Approaches

Traditionally, the use of hydrological models has been extensive worldwide. A model can be
in the form of a physical, analog or mathematical model [13]. Currently, mathematical models are
more preferred due to the rapid development of computer technology and because of including
a chronological set of relations. However, as it was aforementioned before, most of the models
uniquely rely on their large set of theoretical mathematical algorithms, using for their input only the
historical runoff record rather than feeding them with massive high-quality information. Predictive
and descriptive methods for studying and evaluating the temporal behavior of rivers may be classified
according to different criteria. In this sense, main criteria can be the following: First, considering
its incapacity/capacity for explicitly incorporating and quantifying the uncertainty in their whole
functioning, methods can be categorized into deterministic and stochastic [14]. Then, taking into
account its capacity for dealing with massive or low amounts of data, methods are grouped into
DM, big data (BD) and ML or, on the other hand, scarce-data methods. Furthermore, methods
can be classified into a black or white box, in view of its transparency and manageability in their
processing [15]. Additionally, stochastic methods are differentiative due to its way for dealing with
the uncertainty. In this sense, there are methods like causal reasoning (CR) that uses probability [11];
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other stochastic methods, such as HJ-Biplot, use multivariate analysis and techniques [16], and they
are able to evaluate correlation, similarity, distance/dissimilarity and covariance [16] in the datasets.
Application of different multivariate statistical techniques has increased in the recent past. The most
used methods are the following ones. First, HJ-Biplot, which simultaneously interprets the position of
the variables, the sets and the relationships between them [16]. Furthermore, discriminant analysis
(MDA) [17] and cluster analysis (CA) allow classifying the units according to similarities [18]; factor
analysis (FA) explores relationships in the few principle components [19]; principal component analysis
(PCA) [17] and canonical correlation analysis (CCA) [20] select variables and identify factors influencing
hydrological changes.

Given the high variability, randomness and uncertainty of hydrological processes, methods that
fall on the classification of stochastic and deterministic are described in detail as follows. In this sense,
according to Koutsoyiannis [21], an appropriate modeling approach for any uncertain hydrological
system should necessarily include quantification of its uncertainty within a stochastic framework.
Consequently, for the same previous reasons, the most adequate methods are the stochastic ones [14].
However, some new deterministic approaches can be successfully applied to some river’s systems,
especially for very controlled and gauged rivers’ basins poorly affected by climate change [14] that are
explained as follows.

2.1. Deterministic Methods

2.1.1. Process-Based on Hydrological Models

This type of modeling has complex physical theory and usually needs to have a large amount of data
and computational time. They have an initial given condition which is defined and parameterized and
apply nonlinear partial differential equations which describe the hydrologic processes. Furthermore,
they are usually accurate; however, they are often complex and need a lot of information as model
inputs, such as river bathymetry; a complete set of meteorological information (air temperature, solar
radiation, wind, etc.); inflow and outflow conditions; etc. As a result, application of such models
for regions with limited data is impractical [22]. These models can be classified into black, grey,
or white box, in view of its transparency and manageability in their processing [15]. Firstly, the lumped
model (black model), which evaluates the response of the basin simply at the output and does not
characterize the physical characteristics of the hydrological processes. Secondly, the semi-distributed
model (grey model), which is partly permitted to change in space with division of catchment into an
amount of sub-basins. It requires lesser amounts of input data in contrast with the fully distributed
model. The final type is the distributed model (white model), which requires large amounts of
data for parameterization; however, it presents some problems, such as the nonlinearity, scale and
uncertainty [15]. One of the important advantages of the deterministic models is that they present the
inside view of a process which enables better understanding of the hydrological system. On the other
hand, their capacity for dealing (identifying, characterizing, evaluating or quantifying) with temporal
behavior of rivers (dependence/memory) is very limited [14,23]. In this sense, traditional hydrological
modeling codes such as HEC-HMS [24] or SIMPA [10], among others, have used the mathematical
equations given by classic hydrology. They have implemented simulation models for being applied to
hydrographic basins and then are compared to observational data records to get a good calibration.
Those models follow the traditional hydrological scheme of procedure of routing for getting the final
product of hydrographs [25–28].

2.1.2. Wavelets Transformation (WT)

Wavelet transform (WT) is a method that has been widely used to reveal information (signal)
both over time and on a domain scale (frequency). It splits the main time series into sub-fractions,
which improves the data decomposition in forecasts. Consequently, this allows capturing useful
information at different levels of data resolution. It has been extensively applied in hydrology,
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such as rainfall–runoff relations for karstic springs [29,30], scale-dependent synthetic streamflow
generation [31], temporal patterns of precipitation [32,33], variabilities of hydrological processes [34,35]
and hydrological forecasting and regionalization [36,37].

The discrete wavelet decomposition is known to offer a local representation of time series data
using wavelet and scaling coefficients at different resolutions obtained via Mallat’s pyramidal algorithm,
among others [38]. There are several researches that have employed the wavelet technique for various
hydro-climatological applications [39]. For instance, Adamowski and Chan [40] developed a wavelet
neural network conjunction model to forecast monthly groundwater levels using wavelet decomposed
data of multiple hydrological and meteorological variables. Moosavi et al. [41] compare the forecast
performance of Wavelet-ANFIS and Wavelet-ANN hybrid models to the ANFIS and ANN benchmark
models. Wavelet-ANFIS model provided better groundwater level forecasts at different time horizons.
Likewise, numerous groundwater level estimation studies based on hybrid Wavelet-AI models can
be found in the literature [42,43]. Furthermore, such hybrid WT-ANN methods have been shown
to provide good performance in hydrological studies, such as rainfall-runoff modeling [44,45] and
streamflow forecasting [46,47], as well as river and groundwater level forecasting [48], among others.
Several studies have also shown that the WT-ANN hybrid models perform better than some other
widely used models. For example, Peng et al. [47] applied empirical wavelet transform and artificial
neural networks for streamflow forecasting. They concluded that the hybrid model can capture the
nonlinear features of the streamflow time series and, consequently, provide more accurate forecasts
than the traditional ANN method. Adamowski and Chan [40] applied the WT-ANN method to predict
groundwater level and stated that it provided better forecasting accuracy than the conventional ANN
method. Similar results have also been reported by Rajaee et al. [49] and Seo et al. [50]. These studies
indicate that the WT-ANN hybrid models allow users to achieve forecasts with higher accuracies.

2.2. Deterministic Machine Learning (ML) methods

Some of the most widely used methods have been selected to be included in this section given its
high operational capacity. Most of them belong to the ML group of methods. However, there are other
methods that exceed ML influence and are also worthy to include.

There are two general categories of machine learning: supervised and unsupervised. Supervised
ML techniques refer to when there is a piece of data to predict or explain. This is done by using previous
data of inputs and outputs to predict an output based on a new input. By contrast, unsupervised ML is
aimed to search ways to relate and group data points without the use of a target variable to predict.
In other words, it evaluates data in terms of traits and uses the traits to form clusters of items that are
similar to one another. To keep a robust and coherent structure, ML methods have been classified in
this paper into deterministic and stochastic ones.

When there is inadequate information of influential parameters, the ML methods demonstrate
higher potential and efficiency, and they are more appropriate than the conventional numerical or finite
element methods [38]. The ML techniques make more reliable predictions/forecasts based on their
ability to identify and reveal the nonlinear, non-stationary and discriminant features from historical
time-series records and also effectively handle chaos and uncertainties associated with the input data.
Furthermore, currently, the development of hybrid ML techniques for modeling hydrologic time
series is also a very active area of research. For instance, the ML models developed from wavelet
decomposed data have demonstrated better performance than the models provided with raw data.
The description of selected methods, shown as follows, is focused on their capacity for predicting
increasing hydrological condition processes, such as rivers’ runoff.

2.2.1. Artificial Neural Networks Methods (ANN)

During the last 20 years, ANN have been increasingly used for wider applications in forecasting
time series, including geophysical, meteorological and hydrological time series. Most ANN applications
are used for forecasting in situations where there is an unknown relationship between the set of input
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factors and the outputs. Despite there is a strong criticism about the capacity of ANN for dealing
with hydrological uncertainty and its reliability for semiarid regions is seriously questioned, the ANN
model has become an appreciated tool for modeling nonlinear hydrometeorological phenomena,
such as precipitation forecasting [51–53], streamflow forecasting [54,55] and ground water-level
simulation [56,57], as well as river water temperature forecasting [58,59]. Furthermore, in regards
to more specific utilities, using ANN as a tool, the NERD (neural error regression diagnosis) model
of Abramowitz et al. [60] is available for data assimilation and the SOLO (self-organizing linear
output) model of Hsu et al. [61], first for classifying input features into various categories, and then
for performing function mapping for each category separately. Since the hydrological conditions
are increasingly changing, applications of the linear and nonlinear regression models, as well as the
traditional ANN models for river water temperature modeling, frequently have limitations, especially
in processing of nonstationary data [62]. In this regard, wavelet transform, as a good preprocessing
method for nonstationary data, can be a potential complement for the traditional methods.

2.2.2. System Dynamics Methods (SDs)

SDs is basically a methodology for studying complex feedback systems [63]. Consequently, this
method was not originally intended to be applied for hydrological forecasting [64–67]. However, due to
the inherent uncertainty and complex causal and dependency relationships within the hydrological
records, it is also recommended for that. Specifically, it is particularly useful when studying complex
systems with interacting elements, the behavior of which cannot be easily predicted. It allows one to
examine system behavior modes and response as different variables are altered. The most well-known
SDM packages include: SIMILE [68], VENSIM (www.vensim.com), STELLA (www.iseesystems.com),
POWERSIM (www.powersim.com) and SIMULINK—an add-on to MATLAB (www.mathworks.
com) [63].

2.3. Stochastic Methods

2.3.1. Traditional Techniques

The traditional statistical/time series methods, such as linear and nonlinear regression models, are
usually simple to develop; however, they produce, in general, large modeling errors [69]. Consequently,
the way they cope with uncertainty is not recommended. It is well-known that a correlogram provides
an idea of temporal dependence intensity through the correlation coefficient [70]. Furthermore, it is
known that a correlogram comprises a static picture and average result of the temporal behavior
of hydrological series. This fact provokes the existence of indeterminacy points for defining the
temporal dependence/independence of time series [70,71]. Traditional techniques were designed
exclusively for the short term through Pearson’s correlation coefficient and for the long term through
the Hurst coefficient, which provides an idea of the degree of dependency of hydrological events
throughout time series. Within these methods, dependence has been analyzed for hydrologic studies
from many perspectives and through several approaches [72]. The most common traditional measure
of dependence is the Pearson’s correlation coefficient, which is computed based on the assumption of
normal distribution to measure the linear dependence [8]. This is commonly assumed in statistical
approaches, such as autoregressive (AR) models or the autoregressive moving average (ARMA) model,
to characterize the linear dependence among multivariate random variables in hydrology, such as
precipitation, streamflow or runoff [73,74]. Nevertheless, the normal assumption does not hold, and
the linear dependence is too basic to characterize far more complicated dependence structures [72].
Another nonparametric correlation estimator as the Spearman and Kendall has been widely used.
They have also been commonly used as alternative dependence measures to characterize the nonlinear
dependence of hydrological variables, as demonstrated recently with copula models [75] described later.
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2.3.2. Multivariate Adaptive Regression Splines (MARS)

This procedure, proposed by Friedman [76], is a multivariate nonparametric model which searches
over all possible univariate knot locations and across interactions among all variables by means of
the use of local so-called basis functions. In this sense, MARS algorithm is based on three sequential
steps [76,77]. In the first one, named “constructive phase”, it is created through adding basis functions
step by step. Then, in order to improve the model, the best pairs of spline functions are selected. At each
step, the split that minimized some lack of fit criterion from all the possible splits is chosen on each
basis function. The iterative procedure of construction finishes when the model reaches a maximum
number of basic functions. Then, in the second step, “pruning phase”, a backward elimination process
to redefine the model fitting, is carried out. Here, basis functions are eliminated one at a time until
the lack of fit criterion based on the generalized cross validation (GCV) criterion [78] is a minimum.
Finally, in the third phase, the optimal model selection is done based on an evaluation of the properties
of the different models.

On the other hand, recently, MARS procedure has begun to be applied in the field of hydrological
forecasting due to its flexibility in modeling high-dimensional data. It is recommended and applied
over a wide range of hydrological issues, like runoff prediction [79,80], drought prediction [81], water
pollution prediction [82], pan evaporation modeling [83] and prediction of scour depth below free
overfall spillways [84]. In most of these previous researches, the raw time-series data are fed as input.
The performance of MARS was better than that of the ANN, ANFIS, support vector machine (SVM)
and M5 Tree models [38].

2.3.3. ARIMA/ARMA Methods

ARIMA/ARMA methods are usually used for generating synthetic series from the historical
record [8]. Before tackling this generation, historical time series need to be normalized, which is a
drawback of this technique [85]. Once the normalization is done, by means of the previous model,
several synthetic series are generated with the same occurrence probability of the historical one [70].
Frequently, these synthetic series are used to populate a further model/method, such as CR [23].
Consequently, this method is usually hybridized with other techniques of artificial intelligence, which
provide more accurate results in the modeling of complex natural processes [73,74,86,87]. This approach
is applied to the hybridization with Bayesian methods for developing CR [77].

2.3.4. Causal Reasoning (CR) Methods

CR is based on the propagation of probability along a Bayesian implementation through a causal
model. This model is based on decision variables who represent probability distributions for temporal
runoff. Most of the CR approaches are based on Bayesian networks (BNs) and dynamic Bayesian
networks (DBNs). Those methods are based on probabilistic graphical models [88,89]. They easily and
automatically allow defining relationships between parts into complex models, through conditional
probabilities, due to both models being based on Bayes’ theorem [90]. BNs are probabilistic graphical
models that offer compact representations of the joint probability distribution over sets of random
variables [91,92]. This property has been taken to use BNs as a decision support system (DSS), for
example in [93,94], to address problems within the IWRM paradigm [95]. Dynamic Bayesian networks
(DBN) are a generalization of hidden Markov models (HMM) [8,96]. One of the main advantages of
BNs is that they compute inference omni-directionally. Given an observation with any type of evidence
on any of the networks’ nodes (or a subset of nodes), BNs can compute the posterior probabilities of all
other nodes in the network, regardless of arc direction, through observational inference [97].

The inherent ability of BNs to explicitly model uncertainty makes them suitable for temporal
hydrological series analysis. Another feature of BNs is the unsupervised structural learning [98],
which means probabilistic relationships between a large number of variables without having to specify
input or output nodes. This can be seen as a quintessential form of knowledge discovery, as no
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assumptions are required to perform these algorithms on unknown datasets. Furthermore, this is
strongly related to machine learning that has been applied successfully in the hydrological context in
papers such as [99,100]. Consequently, the resulting product has many similarities with a neuro-fuzzy
system or adaptive neuro-fuzzy inference system (ANFIS) that has been applied in works such as [101].
Finally, an important contribution of this method comprises the identification, characterization and
quantification of temporal conditioned runoff fractions [8]. This represents an outstanding advance
over classic or alternative methods.

2.3.5. Copulas Methods

In hydrology, copula applications started after the work of De Michele and Salvadori [102], who
tested Frank copulas for a joint study of the negatively associated storm intensity and duration. Other
research, such as that of Zhang and Singh [103], incorporated copulas for an extreme analysis of rainfall
and drought events. The study of the dependence’s modeling between extreme events is widely
studied nowadays [104]. Dependence in extreme events needs to be evaluated through techniques
focused on an extreme distribution, such as the tail-dependence coefficient. This has been commonly
used in investigating hydroclimatic extremes, such as precipitation and temperature [105].

Another important and recent area of research is the construction of a multivariate distribution in
modeling different dependence structures [106]. This is applied to hydrology in the form of frequency
analysis, downscaling, streamflow or rainfall simulation, geostatistical interpolation, bias correction
and so on. Other methods, such as multivariate parametric distribution [107], entropy [108] and
copula [75], have been developed to model various dependence structures of multivariate variables
through the construction of joint or conditioned distribution.

On the other hand, it should be highlighted that Copula method is based on the description and
modeling of the dependence structure between random variables independently of the marginal laws
involved. In this sense, there are high similarities with CR. Differences with CR lies in the fact that a
Copula is a bivariate function, while CR is based on conditioned probabilistic distributions.

2.3.6. Kalman and Particle Filter Methods

The Kalman filter (KF) is a method that allows estimating unobservable state variables from
observable variables that may contain some measurement error. It is a recursive nature algorithm
that requires two types of equations: those that relate the state variables (main equations) and those
that determine the temporal structure of the state variables (state equations). The estimates of the
state variables are made based on the dynamics of these variables (time dimension), as well as the
measurements of the observable variables that are obtained at each moment of time (cross-sectional
dimension). That is, the dynamics are summarized in two steps: estimate the state variables using
its own dynamics (prediction stage). Then, improve that first estimate using the information of the
observable variables (correction stage). Once the algorithm predicts the new state at time, it adds a
correction term, and the new “corrected” state serves as the initial condition in the next stage, t + 1.
In this way, the estimation of the state variables uses all the available information until that moment
and not only the information until the stage before the moment in which the estimation is made [109].

Recently, some novel applications, based on KF, have emerged in the field of hydrologic predictions.
This is due to its features of real-time adjustment and easy implementation within a framework dynamic
state [110]; one of them is an ensemble Kalman filter (EnKF). This method approximates the distributions
of the system states by random samples, named ensembles and replaces the covariance matrix by the
sample covariance computed from the ensembles, which is used for state updating in the KF [111].
In this sense, it is worth noting interesting approaches in the hydrological predictions field. For example,
Moradkhani et al. [112] showed a dual-state estimation for parameters and state variables in a hydrologic
model. For its part, Weerts and Serafy [113] compared the capability of EnKF and particle filter (PF)
methods by reducing uncertainty in the rainfall-runoff update and internal model state estimation
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for flooding forecasting purposes. For their part, Pathiraja et al. [114] proposed an approach to detect
nonstationary hydrologic model parameters in a paired catchment system.

On the other hand, a particle filter (PF) technique has emerged as an attractive alternative to
remove the unrealistic Gaussian assumption of the EnKF [115], improving the reliability of hydrologic
predictions [116]. PF is able to fully represent the posterior distributions of model parameters and
state variables through a number of independent random samples called particles, and the particles
are weighted and propagated sequentially by assimilating available observations. Over the past few
years, the PF and its variants have been receiving increasing attention from the hydrologic community
due to its ability to properly estimate the state of nonlinear and non-Gaussian systems [117,118].

2.4. Stochastic Machine Learning (ML) Methods

2.4.1. HJ-Biplot

The HJ-Biplot [119] is an extension of the classical Biplot methods [120]. This technique allows a
joint representation of a data matrix in a reduced subspace dimension, usually a plane, of the rows and
columns of a matrix of multivariate data Xnxp. It is a symmetric simultaneous representation technique
that is in some ways similar to correspondence analysis but is not restricted to frequency data.

HJ-Biplot uses markers (points/vectors), denoted as g1, g2, . . . , gn for each row, and h1, h2, . . . , hp

for each column. The markers are obtained from the usual singular value decomposition (SVD) of the
data matrix X = UDVT, where U are the eigenvectors of XXT, V is the eigenvectors of XTX and D is the
matrix diagonal of singular values, taking as row markers rows of J = UD and, as column markers,
rows of H = VD. HJ-Biplot is widely used, because it provides a higher goodness-of-fit for rows and
columns of the matrix [16].

Recently, this technique has been applied in the field of hydrology. Carrasco et al. [16] examined
the relationship between the physicochemical and biological variables, as well as the sampling points
through different months. Although this method has a descriptive character contributing to deepening
the hydro-chemical knowledge and, consequently, improving the hydrological and hydrodynamic
understanding and interpretation of water systems, which allowed generating new interpretations,
knowledge and evaluations about the water quality of Gatun Lake. It also offers the advantage of
providing high representation quality, both for the sampling points and for the physicochemical and
biological variables.

2.4.2. Principal Component Analysis (PCA)

PCA analysis reduces the dimension of the original dataset. This technique uses an orthogonal
transformation to convert highly correlated variables into a set of values of linearly uncorrelated, which
are called principal components. Each principal component is a linear combination of the original
variables. The mathematical approach for processing can be called adaptive data analysis (Table 1) that
comprises mathematical processes such as orthogonal linear transformation, rank (dimensionality)
reduction and visualization of latent data structures.

On several occasions, hydrological datasets contain not only useful important information but
also confusing noise. Sometimes, datasets are not normally distributed or may contain outliers. Even
the hydrological parameters are usually many times correlated. The correlation indicates that some of
the information contained in one variable is also contained in some of the other remaining variables.
In order to reveal the logical structures of the data, there are several hydrological procedures, such
as PCA, which reduces the data dimensionality and gain more effective features [121]. Therefore, in
several studies, the reason for selecting PCA as a statistical method was the low noise sensitivity [121].

PCA analysis has been used in numerous hydrological studies to test the water quality
assessment [122], understand the role of land-atmosphere interactions in driving climate variability
and the spatiotemporal variability [123] or select the redundant input variables for a prediction model
of hybrid runoffmodels [124].
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2.4.3. Factorial Analysis of Variance (FAV)

Factorial analysis is usually used to help in the study of the individual and interaction effects of
the parameters [125]. More specifically, the factorial analysis of variance method is used to diagnose
the curve relationship between the parameters and the response [126,127]. In other words, FAV
technique is used for measuring the specific variations of hydrological responses in terms of posterior
distributions to investigate the individual and interactive effects of parameters on model outputs [128].
To complete this description, FAV comprises a powerful statistical tool to facilitate the exploration
of the main effects. This is done by measuring the variation ranges of hydrological response under
the impact of individual parameters and parameter interactions by revealing the specific variations
of each parameter’s effects under the impact of another parameter [129]. The FAV technique can
also quantify the sensitivity of model outputs to individual parameters, as well as their interactions,
through addressing the curvilinear characteristic of the hydrological response when parameters vary
across their multiple levels [130,131].

Consequently, the hybridization of this method with Bayesian methods is quite appropriate, direct
and powerful. This is called the Bayesian-based multilevel factorial analysis (BMFAV), and it is used to
assess parameter uncertainties and their effects on hydrological model outputs. In this sense, there are
several other applications aimed to approximate the posterior distributions of model parameters with
Bayesian inference [128,132]. Another important application of FAV was to develop a BMFAV method
to address the dynamic influence of hydrological model parameters on runoff simulation [133].

3. Methodology and Results

This research comprises a methodological framework that includes the development of several
consecutive phases listed as follows. First, an identification of parameters for a posterior SWOT
analysis took place; then, those parameters were assessed based on a rigorous analysis of the global
scientific literature; after that, a SWOT analysis was developed; finally, a suitability assessment for
rivers’ sustainability was developed. Results drawn from this research are largely established in terms
of a comparative analysis of the aforementioned techniques aimed to reach a ranking of methods from
a multidimensional way. This will allow selecting the most suitable technique for each component of
rivers’ sustainability included in this research.

3.1. Identification of Parameters

The parameters identified and established in this research for tackling the SWOT analysis are
listed as follows. Predictability: There is a high variability on the prediction capacity provided by
the analyzed methods and techniques. A qualitative score (high, medium and low) to rank and
measure that skill is established. Reliability: This parameter is aimed to qualitatively score the
degree of confidence and/or accuracy that the generated prediction provides from a certain method.
Mathematical approach for dealing with uncertainty: This descriptive parameter informs about
which way is the method that deals with uncertainty (probability, multivariate, etc.). Mathematical

approach for processing: This provides insights of the algorithms type and theoretical development
the method relies on. Amount of processed information: This parameter is aimed to qualitatively
score the amount of information the method requires for generating its output. A qualitative score (high,
medium and low) for ranking and measuring is established. Manageability: This provides an idea of
the ease of handling. Consequently, it measures the complexity and level of expertise required for
implementing the method. A qualitative score (high, medium and low) is established. Transparency:
This measures the ease for an external observer to look into the internal process. The spectrum is quite
wide, going all the way through total transparency to complete a black box. A qualitative score (high,
medium and low) for ranking and measuring is also established.
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3.2. Assessment of Parameters

Table 1 shows the scores and values for each method, based on a rigorous analysis of the global
scientific literature and on our own experience. The reader may be referred to the previous section,
where the insights of each method are described, and also to the discussion and conclusions sections,
where a summary of the essential information drawn from this research is shown.

The interpretation of Table 1 is not trivial. The reader may conclude that there are several
similarities among methods, and that is right. Consequently, it seems necessary to tackle a further
assessment where the main strengths, weaknesses, opportunities and threats (SWOT) for each method
are shown and summarized (Table 2). After that, a final assessment that comprises a suitability
evaluation is carried out (Table 3). There, the degree of method suitability for assuring the highest
level of rivers’ sustainability depends on the final use that the method is designed to and the type of
service that it is able to deliver.

Table 2. Strengths, weaknesses, opportunities and threats (SWOTs) analysis for methods.

Method Strength Weakness Opportunity Threat

Process-based
hydrological models

Physical Knowledge
Capture

Low capacity on
temporally runoff

understanding

Hybridization with
Stochastic methods

Inaccurate manifold and
not-extrapolatable usage

Artificial Neural
Networks (ANN) Computation power Not-dealing with

hydrological variability
Hybridization with
Stochastic methods Opacity

Wavelets transformation
(WT) Computation power Hard output

interpretation
Hybridization with
Stochastic methods High usage complexity

System Dynamics (SDS) Complex systems
interlinks handling

Hard output
interpretation

Hybridization with
Stochastic methods

Inaccurate usage for
hydrological prediction

Linear and nonlinear
regression models Global known High and rigid inputs

requirements

Generation of
advanced

numerical methods

Inaccurate manifold and
not-extrapolatable usage

Pearson’s Correlogram
Coefficient

(Correlogram)
Global known High and rigid inputs

requirements

Generation of
advanced

numerical methods

Inaccurate manifold and
not-extrapolatable usage

Hurst coefficient Long-term runoff
memory identification Inaccurate prediction

Validation with
alternative
methods

Inaccurate usage

Multivariate Adaptive
Regression Splines

(MARS)

High predictive
performance High usage complexity

Flexible high
dimension
modeling

High usage complexity

ARMA and ARIMA High synthetic
generation performance

High and rigid inputs
requirements High operability High usage complexity

Causal Reasoning (CR) Computation power Opacity Hybridization ease Opacity

Copulas Dealing with
hydrological uncertainty

Mathematical
Complexity

High predictive
performance High usage complexity

Kalman, Particle Filter
and Ensemble Kalman

Filter

Dealing with
hydrological uncertainty

Mathematical
Complexity Flexible modeling High usage complexity

HJ-Biplot Complex systems
interlinks capture Null predictive capacity

High descriptive
capacity for
Hydrology

Overrated usage

Principal Component
Analysis (PCA)

Ability for information
simplification Null predictive capacity Hybridization with

other methods Overrated usage

Factorial Analysis (FAV) Computation power High and rigid inputs
requirements

Hybridization with
other methods

Hybridization
complexity

1 feature pear method is included.
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3.3. SWOT analysis

This evaluation comprises the identification and inclusion of the main feature for each of the 4
characteristics of the SWOT analysis (Table 2). This deep analysis is aimed to provide a guide for the
final users to get a general knowledge of each method applicability, so the usage for the goals to reach is
optimum. There is a high variety in the traits across methods. However, it is worthy to mention some
of the main patterns identified here. For the strength, several methods show great computation power,
so make them able to cope with great amounts of data at very fast processing. Other methods are known
worldwide that make their usage easier for non-specialists’ users. Process-based hydrological models
show their ability for capturing and reproducing physical knowledge. Other methods, such as MARS,
reveals its high predictive nature and others; furthermore, KF, EnKF and PF, as well as Copulas, show
their capacity for dealing with hydrological uncertainty. Regarding weaknesses, methods show also a
great heterogeneity. Some of them, such as process-based hydrological models or ANN, show scarce
capacity for dealing with hydrological variability and temporally runoff understanding, respectively.
Then, WT and SDS reveal a hard output interpretation; traditional techniques show very high inputs
requirements; others methods like MARS, Copulas, KF, EnKF and PF are very mathematically complex
to deal with. CR show its great opacity in its functioning, and others show their low ability for
predicting. In regards to the opportunity, the most frequent and important trait is hybridization with
other methods. Finally, threats analysis also shows methods’ deficiencies on opacity, as well as on
inaccurate, manifold, overrated and complex usage, among others.

3.4. Suitability Assessment for Rivers’ Sustainability

The measure of a method suitability is a quite complex matter, and the procedure designed and
followed in this research is explained as follows. In this sense, the level of suitability depends on
the final use that the method is designed to. For that reason, this analysis is divided on the different
services that the method may address. These services are: average prediction (AP), current conditions
simulation (CCS), temporal dependence evaluation (TDE), spatio-temporal dependence evaluation
(SPTDE), extreme prediction (EP) and protection actions (PA). At the end, a global suitability score
(GSS) for the sustainability assessment is provided.

The quantitative score for each service/method is explained as follows (Table 3): The highest level
of suitability is symbolized with (***), the second level (**), the third level (*) and, finally, the absence of
suitability leaves the cell in blank.

The analysis and interpretation of this assessment shows that the best method for predicting runoff
temporal behavior is the CR. On the other hand, the worst methods for this purpose are HJ-Biplot and
Hurst coefficient.

4. Discussion

Hydrological processes’ variability is increasing on all levels, and those extreme events are more
recurrent over time. In order to address this new hydrological reality and aimed to anticipate and
forecast it, new approaches, methodologies and techniques have been analyzed in this research.
This analysis is articulated in three phases: identification and assessment of parameters, SWOT analysis
and suitability assessment.

Seven parameters have been identified and evaluated whose behavior assessment is discussed as
follows. For predictability, the methods that behaves the best are ANN, WT, CR and copulas. On the
other hand, considering these methods were not initially or specifically conceived for developing
predictions, the worst ones for developing a prediction are process-based hydrological models, linear
and nonlinear regression models, Pearson’s correlogram coefficient (correlogram)–Spearman and
Kendall estimator, multivariate adaptive regression splines (MARS) and HJ-Biplot. For reliability,
the best methods are CR and FAV. On the contrary, the worst methods are process-based hydrological
models and Pearson’s correlogram coefficient (correlogram). Regarding the mathematical approach for
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dealing with uncertainty, 11 different values have been identified: null; null/scarce, scaling coefficients
at different resolutions, regression, correlogram coefficient, optimization, mathematical residuals
coefficients, probability, bivariate function, random samples (ensembles) and different statistical
expressions. The methods that do not include any uncertainty treatment are the artificial neural
networks (ANN), system dynamics (SDs) and Hurst coefficient. In regards to the mathematical
approach for processing, four values are identified: theoretical algorithms, dynamic and adaptive
mathematical expressions, constant mathematical expressions and matrixes visualization/cluster
analysis. Then, regarding the amount of processed information, none of the studied methods requires
low levels of data amounts, which is reasonable, because, usually, the more information for populating
the method, the best performance level is obtained. For manageability, the easiest methods to work
with are the Pearson’s correlogram coefficient (correlogram) and Hurst coefficient; on the contrary,
the most complicated and sophisticated methods to deal with are the ANN, WT and SDs. Finally,
in regards to transparency, the clearest methods are the Pearson’s correlogram coefficient (correlogram)
and Hurst coefficient, while the darkest are the ANN, SDs, CR, Copulas, Kalman and particle filter.

SWOT analysis reveals a multidimensional analysis largely focused on the advantages and
drawbacks for each method. In this sense, one feature has been identified and included for each of the
four components of the SWOT analysis, which are strength, weakness, opportunity and threat (Table 2).
Some of the most important traits are the following. On the strengths, several methods show great
computation power, others are globally known, others are aimed to capture and reproduce physical
knowledge, others have a clear predictive nature and others, such as Kalman and the particle filter,
show their capacity for dealing with hydrological uncertainty. Regarding weaknesses, some of them
show scarce capacity for dealing with hydrological variability and temporally runoff understanding.
Then, hard output interpretations and very high input requirements are also common traits; others
methods are, mathematically, very complex to deal with; opacity in its functioning and low predictive
skills are also important weaknesses to mention. In regards to the opportunity, the most frequent and
important trait is hybridization with other methods. Finally, a threat analysis also shows methods’
deficiencies on opacity, as well as on inaccurate, manifold, overrated and complex usage, among others.

Suitability assessment for rivers’ sustainability comprises an analysis of seven services, which are:
average prediction (AP), current conditions simulation (CCS), temporal dependence evaluation (TDE),
spatio-temporal dependence evaluation (SPTDE), extreme prediction (EP) and protection actions (PA).
At the end, a global suitability score (GSS) for the sustainability assessment is provided. This evaluation
reveals that the method that averagely behaves the best for achieving temporally river sustainability
is causal reasoning. It is recommended to inform that this final score is an average, and, in this case,
CR has an important drawback on the great opacity across the whole implementation.

It is worthy to highlight that none of the analyzed methods are too appropriate by themselves
for implementing protection actions. In this service, the best methods are the traditional physical
methods (process-based hydrological models) that allow changing the physical features of the
hydrological model.

5. Conclusions

This review paper shows an extensive analysis of the most important methods for the hydrological
understanding and prediction of rivers’ runoff behaviors. Of course, there is a high variability of
dimensions involved in this research. Consequently, there are methods more appropriate to one
dimension than to others. However, in general terms, the most recommended method is causal
reasoning, despite its dark (black box) nature, need of large data amount and manageability difficulty.
The reasons why CR is the best-ranked method largely comprises its flexibility, articulated by the
chance for incorporating dynamic and adaptive mathematical expressions, reliability, predictability,
ease to hybridize with other methods and the uncertainty treatment method, which is probability; that,
in itself, is a very powerful uncertainty tool.
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This research may be useful for helping to reach a much larger sustainability of rivers, since their
temporal hydrological behavior is far from being well understood.
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Abstract: The importance of dams is rapidly increasing due to the impact of climate
change on increasing hydrological process variability and on water planning and management
need. This study tackles a review for the concrete arch-dams’ design process, from a dual
sustainability/safety management approach. Sustainability is evaluated through a design optimization
for dams´ stability and deformation analysis; safety is directly related to the reduction and
consequences of failure risk. For that, several scenarios about stability and deformation, identifying
desirable and undesirable actions, were estimated. More than 100 specific parameters regarding
dam-reservoir-foundation-sediments system and their interactions have been collected. Also,
a summary of mathematical modelling was made, and more than 100 references were summarized.
The following consecutive steps, required to design engineering (why act?), maintenance (when to
act) and operations activities (how to act), were evaluated: individuation of hazards, definition of
failure potential and estimation of consequences (harm to people, assets and environment). Results
are shown in terms of calculated data and relations: the area to model the dam–foundation interaction
is around 3.0 Hd

2, the system-damping ratio and vibration period is 8.5% and 0.39 s. Also, maximum
elastic and elasto-plastic displacements are ~0.10–0.20 m. The failure probability for stability is 34%,
whereas for deformation it is 29%.

Keywords: concrete arch-dams; stability scenarios; deformation scenarios; safety management;
sustainability assessment

1. Introduction

There are many factors, largely controlled by the structures size, that hinder sustainability in the
field of dam engineering. In this sense, the height of the blocks can reach more than 100 m and the
crown length can reach more than 500 m [1,2]. Dams with these dimensions are called “super-high
dams” [3,4]. Then, the presence of structural elements [5], and their interactions, with different
functions that increase the difficulty of calculation and modelling, e.g., the cantilevers that support and
distribute the vertical loads and the arches that distribute the horizontal loads. Finally, the interaction
of dam, foundation, sediments and reservoir sub-systems, requires not only the knowledge of the
structural and hydraulic engineering, but also, other engineering areas are involved.

Three aspects, namely geometry, behaviour, and materials, comprise the internal and intrinsic
actions, which exclude the external actions and their uncertainties of probability and occurrence.
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These uncertainties are called “random” and are related to the magnitude of variability and inherent
randomness. Besides these types of uncertainties, there are the “epistemic” uncertainties that are
related to the lack of knowledge of materials and models [6]. Random and epistemic uncertainties
are studied in stochastic analyses, which are used to solve problems that cannot be deterministically
solved because models are not known, or data are not available.

Due to the doubts of the input data, analyses, methodologies, and results, the concept of “risk”
and quantitative risk assessment (QRA) is introduced through the following equation:

Risk =
∫

[P(L,E) × P(R|L) × C(L,R)] (1)

where L = loads, E = events, and R = responses. P[R|L] is the conditional probability that R is true,
given that L is true, and C stands for the consequences [7,8].

This integral is a measure of risk quantification based on the occurrence and probability of L,
E and R, regarding the variability of extreme events, e.g., flooding, hurricanes, earthquakes, explosions.
The interest of the concrete arch-dams is proven by the fact that several studies have been published
since 1931 [9]. This interest has generated several codes/manuals/reports [10–14]. Furthermore, several
academic works with the following goal have been published. First, there are researches about the
definition of the shape (volume and area of concrete) optimization, aimed to minimize the cost and the
impact of the dam body on the environment [15–23]. Then, publications addressing the analysis of the
dam behaviour under seismic actions accounting the enormous importance of the structure [24–33].
Finally, there are studies that consider the fact that the dam body is linked with the foundation base,
water reservoir, and soil sediments [34–39].

However, there are some aspects, described as follows, that are not well studied either synthetized
or published in the literature. In this sense, the response estimation of arch-dams are not well studied
or categorized, for example the effects of the non-uniform temperature variation due to the solar
radiation and convective heat [30,40–44]. Furthermore, a good calibration between the theoretical
and practical data is often difficult to obtain. In this sense, there is a lack of experimental tests made
in the laboratory, which allow verifying the analytical and computational models. Also, there is a
lack of practical experience of researchers and technical engineers do not easily accept the insights
of researchers. In this sense, some cases about real concrete arch-dams are listed in Appendix A (see
Table A1). Finally, but not least, there is a clear lack of academic papers that synthetize, integrate,
and summarize most of the aspects involved in sustainability of concrete arch dam building. This
review paper mainly aims to cover this deficiency, which comprises its main novelty too. This is
performed herein by reviewing the existent knowledge on the development of sustainability and safety
assessment through the study of structural stabilities/deformations and failure risk, respectively.

The rest of this paper is organized as follows: Section 2 shows a background about the data and
mathematical modelling. Section 3 describes some main key findings about an operating system and
the project variables in a managerial context [7,12,14]. Section 4 is dedicated to the materials and
methodologies followed in this research, describing the structure gand content of the different stages.
Regarding materials, Random Variables (RVs) are showed; on the other hand, methods such as Monte
Carlo Simulation (MCS), sustainability assessment framework and seismic hazard assessment are
described. Then, Section 5 comprises the description of results, largely addressing the sustainability
assessment of structural stability and deformations. Finally, Section 6 is dedicated to show the main
conclusions drawn from this research.

2. Data and Mathematical Modelling Background

The case study is the Rules Dam, which is situated on the Guadalfeo River in the Granada province,
Southern Spain. It is a super-high concrete arch-gravity, formed by 32 blocks, with single curvature,
509 m of crown length and maximum height of the vertical cantilever Hd 132 m. The Down-Stream
(DS) and Up-Stream (US) slope faces are 1:0.60 and 1:0.18, respectively. The capacity and area for the
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maximum operating level Ho,r (i.e., water depth of 113 m) of the reservoir are 117.07 Hm3 and 308 Ha,
respectively. The area of the water basin is 1070 km2 [1,2].

The whole system of concrete arch-gravity dams is composed by four sub-systems, i.e., dam,
foundation, reservoir and sediments. Usually, only the dam-reservoir-foundation system is studied,
and, in many analyses, sediments are not considered as a separated system, but they are included in
the reservoir or foundation sub-system. The parameters of the sediments as well as the foundation are
very complicated to estimate, unless specific analyses “in situ” are developed. Moreover, it is very
complicated to model them because they are not visible without adequate means.

Considering the precedent studies of the authors about the dam [45–49], more of 100 technical
data regarding the system dam-reservoir-foundation-sediments have been summarized and shown in
the Appendix A (see Tables A2–A7). The subscripts represent the four parts of the system, i.e., d = dam,
f = foundation, r = reservoir, and s = sediments.

2.1. Dam Sub-System

Concrete arch-gravity dams are designed to be stabilized by equilibrium forces (horizontals and
verticals). Each section of the dam must be stable and independent of any other section.

The dam body is formed by several arch and cantilever units. Arch refers to a portion of the dam
bounded by two horizontal planes. Arches have uniform or variable thickness, i.e., the arches may be
designed so that their thickness increases gradually on both sides of the reference plane. Cantilever is
a portion of the dam contained between two vertical radial planes [10].

The function of arches is to distribute the horizontal stresses along the dam body, whereas the
function of cantilevers is to transmit the vertical stresses from the top to the bottom. Moreover, the
arch has an important role respect to the stiffness which increases on the dam body.

Dam sub-systems can be modelled using several theories and models that are briefly mentioned
as follows.

• Rigid body equilibrium and beam theory. The gravity method is based: (1) on rigid body
equilibrium to determine the internal forces acting on the potential failure plane (joints and
concrete-rock interface), and (2) on beam theory to compute stresses. The use of the gravity
method requires several simplified assumptions regarding the structural dam behaviour and
loads application [50].

• Membrane theory (tank structures). The behaviour of arch-dams can be imagined as being similar
to the behaviour of storage tanks: an arch in plant is a part of the tank circumference. The function
of the elements is analogue, i.e., arch-dams are formed by cantilever and arch units, whereas
tanks are formed by meridional and circumferential units. The stresses in the tanks are: vertical
compressive stress (meridional compression associated with hydrostatic and hydrodynamic
pressures) and tensile hoop stress (circumferential stress) [35,46,51,52].

• Independent blocks model. Here, the dam’s blocks are modelled as independent parts. Each
block can be considered as a simple oscillator where the mass is the predominant parameter. This
approximation is generally useful for estimating preliminary results [26,47].

Moreover, dam sub-systems can be modelled accounting the vertical joints, as follows.

• Monolithic model. The monolithic model ensures the continuity between adjacent blocks.
The rigid connection between them is ensured by means of vertical joints, which are modelled
by surface-based “tie” constraints that account the translational and rotational degrees of
freedom [53–55]. Considering a series of monolithic, the model can be called “multi-monolithic
model” [56].

• Surface-to-surface joints. The surface-to-surface joint model simulates the discontinuity between
blocks along the contact surfaces. The contact model describes tangential and normal behaviour
by adopting a coefficient of friction and contact pressures transmitted from surfaces [54,55].
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• Solid elements joints. The solid element joint model simulates the joints, connected to the ashlars,
as independent solid elements, separating the discontinuity surface and spacing the blocks.
These joints are characterized by mechanical models (i.e., elastic or elasto-plastic model) [54,55].

2.2. Foundation Sub-System

Even if it is possible to analyse the four systems separately, it is too approximate to approach
some aspects without considering the interactions. In this sense, the foundation sub-system is usually
studied including the dam-foundation interactions.

The model that describes the dam base and top foundation contact is Mohr-Coulomb model.
This model, used in the literature to evaluate base sliding [57], constitutes a simplified procedure to
model a nonlinear single-degree-of-freedom system [58] and the failure mode under a reliability-based
approach. This is performed as such due to the failure analysis of the dam–foundation interface
being characterized by complexity, uncertainties on models and parameters, and a strong non-linear
softening behaviour [59].

The foundation sub-systems can be modelled by a massed, massless, rigid, flexible model.

• The massed model (m � 0, k = 0) is composed by finite elements that form the foundation [24].
In 3D analysis, it consists of solid elements, of which, each one is an eight-node element. It is based
upon an isoparametric formulation that includes nine bending modes [40]. For each element the
density of the material is assigned. The massed model only accounts the weight of the elements in
static analysis and the inertial force in dynamic analysis.

• The massless model (m = 0, k � 0) is composed by fixed joints (or nodal points). A joint is defined
in three spatial coordinates x, y, z. It defines a joint individually, many joints on a line (or curve),
surface or a three-dimensional region. The massless model accounts only material flexibility by
elastic springs and forces. The foundation model should be extended to a large enough distance
beyond which its effects on deflections and stresses of the dam become negligible [60]. It is
possible to consider for the elastic modulus two cases: (i) the same modulus as the concrete and
(ii) 1/5 the modulus of concrete [10].

• Rigid model (k→∞). Rigid foundation model neglects dam-foundation interaction and, in fact,
neither stiffness nor mass of the foundation is accounted in overall coupled equation of motion. It
can be modelled by elastic springs with very high stiffness (e.g., ~ 1.0 × 109 kN/m) or by fixed.

• The flexible model (k→ 0), conceptually, it is equal to the massless model because it is formed by
a series of joints where are applied springs. An order of magnitude of the elastic spring can be ~
1.0 × 106 kN/m.

2.3. Reservoir Sub-System

The main actions produced by water mass are the pressures, which can be static or dynamic
pressures and act in horizontal or vertical directions. Reservoir sub-system can be approached by
considering “rigid” or “flexible” dam, respectively. In this sense, it can be modelled as:

• Added mass, where the hydrodynamic pressures exerted on a dam, by an incompressible fluid,
are considered [61]. The hydrodynamic pressures are the same as if a portion of the fluid body is
forced to move back and forth with the dam and, that this “added mass” is confined in a volume
bounded by a two-dimensional parabolic surface on the dam upstream side.

• Hydrodynamic interaction. Analytical equations for hydrodynamic response of dam-reservoirs
considering compressibility effects during harmonic and arbitrary ground motions have been
defined [62]. Effects of the deformability of the dam on hydrodynamic pressure have been
introduced. The main limitation consists in considering the deformation by only the vibration
fundamental mode of the structure [63].

A very popular modelling approach is the “acoustic elements”. This model simulates the pressure
distributions of the fluid considering the compressibility of the fluid through the “bulk modulus”. To
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find a solution it is necessary to define appropriate boundary conditions, where the most important
one takes place on the contact between fluid and structure [63–65]. Acoustic elements are used for
modelling an acoustic medium undergoing small pressure changes. The solution in the acoustic
medium is defined by a single pressure variable, which represents its degree of freedom [64,65].

2.4. Sediments Sub-System

Sediments can be modelled as a liquid (viscous model) or as a solid (elastic–plastic model). This
is, because two cases should be considered: full and empty reservoir. In the first case, sediments are
totally submerged, and therefore sediments can be considered in a more similar way to the liquid
hydrodynamic behaviour. In contrast, in the second case, sediments can be dry (solid) or yet submerged
(semi-solid) depending on the material of which sediments are made: if the predominant material
is the sand soil, the liquid drains easily and thus sediments can be idealized as solid, whereas if it is
made of clay soil, the liquid does not drain and so it can be idealized as a liquid.

Considering the two extreme cases, the liquid behaviour tends to the reservoir sub-system
behaviour, whereas the solid tends to the foundation sub-system (liquid sediments→ like reservoir
sub system. Solid sediments→ like foundation sub-system). The presence of sediments can affect the
behaviour of the whole system. This is because, the reservoir bottom absorption affects the stiffness
and damping ratio of the structure [34,66,67].

2.5. Interactions of Sub-Systems

By means of the aforementioned parameters of the four sub-systems, it is possible to define some
parameters that account the interactions among sub-systems. By considering these values, it is possible
to estimate some general relations that can be used to the design, for instance: (i) the area of rigid
foundations under the dam can be estimated as ~ 3.0 Hd

2; (ii) the contribution of the damping ratio of
each sub-system respect to the damping ratio of the system is ξd = 0.05 (26%), ξf = 0.1 (51%), ξr = 0.005
(3%), ξs = 0.04 (20%); (iii) the contribution of the vibration period of each sub-system respect to the
system vibration period is T1,d (s) = 0.284 (40%), T1,f = 0.09 (13%), T1,r = 0.314 (45%), T1,s = 0.014 (2%).

These percentages show the weight of each sub-system respect to the total response. However, it
is important to note that these values refer to this specific case study or, more in general, to concrete
arch-gravity dams under specific conditions.

Finally, a modelling process should be calibrated for accurately identifying the problem to be
analysed. There is a closer correlation between models and types of analysis: The choice of a model
(software) is based on the specific problem to be solved. Although nowadays, there are extremely
complex models [68] that consider all the phenomena together, it is good to define and focus a specific
problem aspect and then to converge and resolve it by using a unique model.

Each model is made to study a specific problem. It is important to consider all the parts of the
whole system, but it is also necessary not to lose control of the parameters and their interactions.

3. Management Operating Systems

The managerial procedures that account for the risk analysis are studied in reliable papers [7,8,69]
and guidelines [12,14]. Moreover, in the literature, it is possible to find several contributions regarding
stability optimization for concrete arch-dams [17,18,22,36,45]. However, the search of a safety and
no-safety domain by taking into account the stability and deformation of arch-dams in a managerial
context, by considering some parameters (see Table 1 later) obtained from several data, has not been
carried out. In this sense, this paper provides a novelty for the research.
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Table 1. Probabilistic parameters (collected results from [47–49]).

Parameter Unit Details Mean RV SD CV (%) a Distribution

Maximum
dead stress kN/m2 Stress at the heel dam

(US face) −2215.38 ±221.54 10.0 N

Elastic
displacement mm Top displacement of the

central block 151.65 ±30.33 20.0 N

Elasto-plastic
displacement mm Top displacement of the

central block 186.41 ±37.28 20.0 N

Hydrostatic
pressure kN/m2 For Ho,r = 113 m 1107.40 ±110.74 10.0 N

Hydrodynamic
pressure kN/m2

Pressures for flexible
dam accounting

compressible water.
First three modes are

considered.

350.55 ±35.06 10.0 N

Acceleration cm/s2 Horizontal PGA for a
return period 1950 years 303.20 ±60.64 20.0 N

Note: PGA = Peak Ground Acceleration. SD = Standard Deviation. N =Normal (Gaussian) distribution. a CV is the
Coefficient of Variation defined by: CV = (SD/Mean RV) × 100.

The project management is formed by design phases, which are called “project baselines”, “project
procedures”, and “project systems”. Each phase contains several sub-phases listed in the Figure 1.

 
Figure 1. Operating system requirements.

In this paper, a particular attention about the “management level schedules” and “risk assessment”
is considered; the former estimates the possible scenarios, whereas the latter defines the hazards.

In analyses there are different parameters/values that usually are adopted: deterministic parameters
(DP), probabilistic parameters (PP), semi-probabilistic parameters (SPP), semi-deterministic parameters
(SDP) and super-probabilistic parameters (SP2). SPP are the parameters obtained by combining DP and
PP, whereas SDP are obtained by DP and SPP. SP2 are obtained by a probabilistic analysis, which are
recalculated and re-estimated using one or more probabilistic approaches. Deterministic parameters are
usually well known through the literature (papers, books, codes, guidelines), experience (real projects,
academic works, research projects), and empirical experimentation (laboratory work, building sites).
Probabilistic parameters are not known, and therefore are subject to aleatory (inherent randomness)
and epistemic (lack of knowledge of materials/models) uncertainties, as have already been introduced.

4. Materials and Methods

4.1. Materials

This research comprises the analysis of probabilistic approaches which are the most reliable and
precise ones for analysing the stability of dams. In this sense, these analyses are based on the definition
of probability density functions (PDFs) through several random variables (RVs). The parameters used
to develop the analysis in this paper are listed in Table 1. These parameters come from precedent
studies [47–49], and here are considered as RVs to carry out a sustainability assessment, and are
therefore plotted by a probabilistic distribution with a mean and standard deviation (SD).
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4.2. Methods

4.2.1. Monte Carlo Simulation (MCS)

To estimate possible scenarios, MCS, which generates RVs, has been used in following way. Limit
State (LS) function G(X) is defined. When the domain G(X) < 0, the LS is called “no safety”, whereas
when G(X) > 0, the LS is called “safety”. The separation of both domains is given when G(X) = 0 (limit
domain). Given a random variable vector X = {x1, . . . ,xj} = {xi} for a LS function G(X) and fX(xi), which
is the joint PDFs of xi, the general probability x% that G(X) takes on a value less than 0 (called here
probability of failure pf) is [70,71]:

pf = P[G(X) < 0] =
∫
{X: G(X)<0}

fX
(
x1, . . . , xj

)
dx1 . . .dxj =

∫
{X: G(X)<0}

fX(xi)dxi (2)

Equation (2) represents the cumulative failure probability (CFP), which represents the area of the
PDF within a defined interval.

By using MCS, Equation (2) can be rewritten as:

p f =

∫
{X: G(X)<0}

I(xi) fX(xi)dxi (3)

where I(·) is an indicator function, defined by:

I(xi) =

{
1, f or G(X) ≤ 0
0, f or G(X) > 0

(4)

Finally, pf can be considered as the mean value of I(xi), i.e., Ī(xi) = E[I(xi)], therefore Equation (3)
becomes:

p f =
1
N

∑N

i=1
I(xi) =

N f

N
(5)

where N is the number of simulations (or samples) and Nf is the number of simulations with I(xi) ≤ 0.
It is note that the result of pf is more accurate when N→∞. In practice, samples required are 1 × 10Nk

where the choice of Nk is due to the computer power and available computational time.

4.2.2. Sustainability Assessment Framework

Sustainability has been assessed in this research from a double perspective. First, the perspective
of temporal sustainability, closely related to the duration and useful life of arch dam infrastructures.
This dimension is specifically articulated and assessed through the design parameters of “stability”
and “deformation”. Secondly, sustainability has been assessed from a safety perspective articulated
through risk calculation. Consequently, in a broad scale, sustainability assessment is developed from a
dual sustainability/safety management approach (Figure 5). On the other hand, in a detailed scale, the
sustainability of concrete arch dams is evaluated from a design optimization perspective, specifically,
for dams´ stability and deformation. Additionally, the safety perspective is directly related to the
reduction and consequences of failure risk. For this, several scenarios about stability and deformation,
identifying desirable and undesirable actions, were estimated. Quantitative results on both dimensions
of sustainability are provided and explained in results section.

There are several types of actions that are generated either by human or by nature. These actions
can be catalogued as either “environmental actions” or “human actions”. All aspects regarding these
actions are included in “impact matrices” where they are identified as “hazards”. Several hazards
can affect the durability of structures, e.g., environmental, social and economic impact; population
and consumptions growing; climate change (temperature and humidity) [72]; flooding; hurricanes;
explosions of blast waves in the terrorist attacks [73] or in demolitions [74]; seismic hazard [75];
corrosion [76,77].
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Here, the last two hazards are introduced since are known by authors. However, in this analysis
only seismic hazard assessment is considered.

Structures are subjected to internal and external stresses and deformations due to (1) excitation of
masses by seismic vibrations or general dynamic loading by extreme events, and (2) the corrosion of
the reinforced concrete (RC) elements.

Table 2 shows both hazards (as a succession: hazard → approach → scenarios), the relative
approach and its scenario type.

Table 2. Identification of impacting hazards.

Hazard Approach Scenarios

Seismic hazard Poisson [49]. Bayesian [78] Probability of occurrence
Corrosion Diffusion [79]. Reliability [70] Probability of failure

Figure 2 shows the inter-combinations among the four sub-systems of the concrete arch-dams. It is
possible to see all the possible combination among the dam-foundation, dam-sediments, dam-reservoir,
foundation-sediments, foundation-reservoir and sediments-reservoir. By knowing the variables of the
project, it is possible to treat the hazards in a practical way.

Figure 2. Inter-combinations of the sub-systems (the number in the brackets indicates the quantity of
the used data provide in the Appendix A) and the impacting hazards.

4.2.3. Seismic hazard assessment

The seismic events are extreme events that may be accurately studied. The seismic hazard is
usually estimated by using two approaches: probabilistic and deterministic. The former, probabilistic
seismic hazard analysis (PSHA) is based on the Cornell method [80] and Poisson distribution [71]. To
apply it, it is necessary to know seismogenic zones, i.e., zones where the earthquakes are equally likely
and independent of each other at any location (e.g., in Spain [81]).

The probability that a ground motion parameter S exceeds the ground motion level S0 in i-th
source area is defined by Λi, which depends on: the PDF of the magnitude fm(m) and of the site-source
distance fr(r), the standardization Normal distribution fε(ε) [71] with the ground motion randomness ε
and, the average annual rate of exceedance λc of an event with magnitude m described through the
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Gutenberg–Richter trend line [82], which provides the ratio between the number of small and large
events and the level of seismicity [83].

The probability is defined by:

Λi = λc

∫
m

∫
r

∫
ε

P[S > S0|m, r, ε] fm(m) fr(r) fε(ε)dm dr dε (6)

If the analysis involves more of one seismogenic zones (where Ns = number of seismogenic zones),
the probability of exceedance is defined by:

ΛS0 = P[S > S0] =
∑Ns

i=1
Λi (7)

Figure 3 shows some curves (as results example) in terms of accelerations vs. structural period
(Figure 3a) and hazard contribution respect to the magnitude and fault-site distance (Figure 3b).

 
(a) 

 
(b) 

Figure 3. Example of hazard curves (a) and hazard contributions (b).

MCS is used to analyse the sustainability of the structure respect to the stability and deformations.
LS function is written as the difference between the stable actions As, and unstable actions Au:
G(X) = As(X) – Au. When As < Au, G(x) < 0, the failure is achieved.

Figure 4a,b shows the generated MCS points, whereas Figure 4c–d shows an example how to
identify the LS function (Figure 4c) and the PDF in 3D (Figure 4d). To the left of the intersection point
(Figure 4c), between stable and unstable trend line, there is the “no safety” state (G(X) < 0), whereas to
the right of this point there is the “safety” state (G(X) > 0). The PDF in the (xi, xi+1) point represents the
value of the probability around (xi, xi+1) point in relation to the amplitude of this around (density).

(a) (b) 

Figure 4. Cont.

201



Sustainability 2020, 12, 392

 
(c) 

 
(d) 

Figure 4. MCS points for 1 × 104 simulations in spread form (a) and linear form (b). Individuation of
the LS (c) and PDF (d) respect to RVs for G(X) = 0.

Figure 5 shows the methodology by the flow chart used in the analysis. The flow chart is divided
in two principal parts: general and specific part. In the first one, the process and operation phase
are defined. Here, choices, decisions, individuation of the structure (issue), hazards, and the possible
approaches are established. Then, the technical actions are analysed in terms of data and control of
modelling and analyses. Here, a specific concrete arch-dam is individuated (case study), by defining
sub-systems data, RVs, methods and approaches (if the modelling and analysis are not satisfactory
and are not consistent to the individuated hazards, it is necessary to start over). Finally, scenarios are
estimated in terms of stability and deformations of the dam by providing safety and no-safety domain
(sustainability assessment) and probability of failure (safety assessment). The flow chart concluded by
taking a final decision from managers and technical engineers.

Figure 5. General methodology flow chart.

5. Results

5.1. Sustainability Assessment

Here, six scenarios to evaluate the sustainability assessment accounting the deformation and
stability of concrete arch-dams are shown. Stable actions refer to the probabilistic parameters in Table 1.
By knowing the mean RV and SD for each parameter it is possible to generate a several points by MCS.
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To the left of the Figures 6 and 7 the trend lines of the stable and unstable actions are shown.
The horizontal dashed line indicates the LS line (i.e., the mean line when the stable line intersects the
unstable line). For the stable action, its logarithmic trend line is also plotted, which shows better the
progress of an action that starts from zero and reaches its maximum value. The logarithmic trend
intersects the unstable line before respect to the linear stable trend. This gap could represent a security
factor that increase the “safety” LS. When the dashed horizontal line rises, the pf increases and so the
“no safety” state is more probable.

Left Right 

  
(I) 

  

(II) 

  

(III) 

fX

fX

fX

Figure 6. Three scenarios (I–III) regarding dams’ deformation. Trend lines of stable and unstable
actions vs. number of simulation (left); PDF when As = Au (right).
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Left Right 

  

(IV) 

  

(V) 

  

(VI) 

fX

fX

fX

Figure 7. Three scenarios (IV–VI) regarding dams’ stability. Trend lines of stable and unstable actions
vs. number of simulation (left); PDF when As = Au (right).

To the right of the Figures 6 and 7, the PDFs when (As =Au) are plotted. The solid curves represent
the PDFs by mean RVs, whereas the dashed curves represent the PDFs by negative SDs.

5.2. Safety Assessment

Finally, the risk management model defined in literature [12,14] show the need of defining the
undesirable event with the potential for harm or damage in these following steps: individuation of
hazards → defining of potential for failure → estimating of consequences (harm to people, assets,
environment). These steps are needed to design and justify engineering activities (why act?), to propose
activities maintenance (when to act) and to tackle operations activities (how to act).

In this sense, the safety management assessment can be evaluated by quantifying the pf. Table 3
and Figure 8 summarize the results in accordance to Figures 6 and 7.
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Table 3. Identification of impacting hazards.

Scenario Parameter Unit Au Mean of G(X) SD of G(X) pf

I Dead stress kN/m2 2130 85.4 128.33 0.3095
II Elastic displacement mm 140 11.32 17.40 0.3097
III Elasto-plastic displacement mm 170 16.71 21.67 0.2753
IV Hydrostatic pressure kN/m2 1065 42.52 63.65 0.3053
V Hydrodynamic pressure kN/m2 342 8.61 20.21 0.3791
VI Acceleration cm/s2 285 18.14 35.10 0.3496

  
(a) (b) 

Figure 8. Estimates for risk management models in terms of pf (a) and normalized values (b).

6. Summary

This paper mainly aimed to review the knowledge on the development of sustainability and safety
assessment through the study of structural stabilities/deformations and failure risk consequences,
respectively, for concrete gravity arch-dams.

In order to carry out the main analysis, several aspects have been defined: materials regarding the
sub-systems (dam, foundation, reservoir, sediments) and their interactions; methods respecting to the
operating systems of a project; deterministic and probabilistic variables; modelling and methodologies.

From precedent-specific studies of the authors investigating dam design, more than 10 theoretical
modelling, 10 modelling types by software, more than 100 specific parameters, and more than
100 references are summarized.

This paper addresses and comprises critical aspects that are summarized as follows: (i) to show
innovative approaches respecting to the enormous quantities of variables that are involved for concrete
arch-dams; (ii) to provide numerical values of parameters to design concrete arch-dams; (iii) to show
the project phases and methodologies; (iv) to estimate different scenarios respecting to the main actions
on the dam system; (v) to contribute to the knowledge of the state-of-the-art about concrete arch dams.

The first results are shown in terms of new estimated data provided in the Appendix A. Other
results concern the parameters of the interaction between dam–foundation–reservoir–sediments with
respect to the area of rigid foundations under the dam (~ 3.0 Hd

2), the contribution of each sub-system
damping ratio respect to the system damping ratio (8.5%), and the contribution of each sub-system
vibration period respect to the system vibration period (0.393 s). These values are useful to estimate
some general relations that can be used to aid design. Moreover, the maximum elastic and elasto-plastic
displacements are of the order of ~ 0.10–0.20 m that, in relation to the maximum dam height, is Hd/1000,
in accordance with the literature [6].

Furthermore, the sustainability assessment demonstrates that the mean probability of failure of
the stability of dam body and its deformation is about 32%. In particular, that for stability is 34%,
which is higher than for the deformation at 29%. These mean percentages are quite large because
unstable actions have been taken. When the intersection point between the stable and unstable line
rises, the pf increases, and so the “no safety” state is more probable. However, this raises the level of
attention during the design of a monitoring method for concrete arch-dams, and in this sense, risk
management can be carried out satisfactory.
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Appendix A

Table A1. Some cases of real concrete-arch dams studied for scientific purposes.

Dam Name Location Researched Main Topics Reference

Ertan Dam Sichuan province,
Southwestern China Modal analysis. Seismic response [84]

Tsankov Kamak Dam Vacha River,
Southwestern Bulgaria Monitoring. Dam performance [85]

Longyangxia Dam Qinghai province, China Dam-water-foundation interaction. Shock
wave effects [86]

Ridracoli Dam Emilia Romagna, Italy
Modelling and reconstruction of dams.

Unmanned aerial vehicle (UAV)
photogrammetry

[54]

Lancang River Dam Yunnan, China Optimal sensor placement. Monitoring [87]

Outardes 3 Dam Quebec, Canada Dam-reservoir-foundation interaction.
Seismic analysis [38]

Brezina Dam Beyadh, Algeria west Dam-water-foundation interaction.
Sloshing effect [35]

Shapai Dam Sichuan province, China Dam hazards. Seismic performance [67]

Morrow Point Dam Southwest Denver,
Colorado

Shape optimal design. Fluid-structure
interaction [88]

Xiluodu Dam Sichuan province, China Excavation optimization design. Stability
analysis [89]

Rules Dam Granada, Southern Spain Probabilistic and deterministic seismic
hazard. Dynamic analysis [48]

Dagangshan Dam Southwest China Seismic damage. Joint opening. Artificial
accelerograms [26]

Jinping I Dam Sichuan Province, China Permeability of foundations. Behaviour of
transient groundwater flow [90]

Cabril Dam Castelo Branco, Portugal Seismic performance. Hydrodynamic
pressures respect to the water level [91]
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Table A2. Collected data relative to dam sub-system.

Dam

Geometry Material (Concrete) Behaviour (Solid: Elasto-Plastic)

Blocks number [83] 32 Density ρd (kN/m3)
[92]

24 T1,d (s) [48] 0.284

US slope [83] 0.18 Volume (103 m3) [83] 2051 T2,d (s) [48] 0.245

DS slope [83] 0.6 fcd (MPa) [47] 47.5 T3,d (s) [48] 0.208

Base’s max. length (m) 102 * fcm (MPa) [92] 58 MPMR for T1,d in x, y,
x (%) [48] 45.1

Crown length (m) 10 * σc (MPa) 38.46* Mass (106 kg) 4830 *

Crown height (m) 7.5 * Ecm (GPa) [47] 44.4 Stiffness (GN/m) 2406 *

Crown long. length (m) [83] 509 Eep (GPa) 35.52* Eq. inertia (m4) 1,376,852 *

Max. height Hd (m) [83] 132 εc1 (%�) [92] 2.45 Damping ratio ξd (%)
[48] 5.0

Radius (m) [83] 500 εc (%�) 3.45 * Blocks’ eq. mean
period (s) 0.262 *

Ange in plane (◦) 71 * Ductility (= εc/εc1) 1.408 Blocks’ mean mass
(106 kg) 130.56 *

Volume (103 m3) 2291 * Thermal expansion
(10−6 1/K) [92] 10 Blocks’ mean eq.

stiffness (MN/m) 75,089 *

Voids’ volume (103 m3) 239 * νd [47] 0.19 Blocks’ mean eq.
inertia (m4) 43,027 *

Long. area (103 m2) 46 * fctd (MPa) [47] 2.73 Concrete crack model

Spillway’s length (m) [83] 16.54 Gd (GPa) 9.92 εlt (%�) [47] 0.166

Min. block height (m) 7.0 * cd (kN/m2) [63] 1000 ac (m) [47] 0.484

Blocks’ mean length (m) [83] 19.375 φd (◦) [63] 55 wc (μm) [47] 240.51

Min. block volume (m3) 373 * Gt (N/m) [47,93] 113.06

Max. block volume (103 m3) 125 * h0 (m) [47,94] 1.35

Min. block long. area (m2) 137 * lc (m) [47] 0.45

Max. block long. area (m2) 2463 *

Min. block trans. area (m2) 19 *

Max. block trans. area (m2) 6624 *

Note: * = Estimated value. US = Up-Stream. DS = Down-Stream. max. =Maximum. min. =Minimum. long. =
Longitudinal. trans. = Transversal. fcd = Design compressive strength. fcm =Mean compressive strength at 28 days.
σc = Compressive stress. Ecm = Secant modulus of elasticity. Eep = Secant elasto-plastic modulus. εc1 = Strain at
peak stress. εc = Shortening strain. νd = Poisson’s ratio of the concrete. fctd = Design tensile strength. Gd = Shear
modulus. cd = Cohesion of the concrete. φd = Angle of friction of the concrete. Ti,d = Structural period for i-th
mode. MPMR =Modal participating mass ratios. eq. = Equivalent. εlt = Limit dynamic tensile strain. ac = Effective
crack length. wc = Characteristic micro-crack opening that propagate through the aggregates. Gt = Tension specific
fracture energy. h0 = Size of the element that model lc for the linear analysis. lc = Crack band width of the fracture.

Table A3. Collected data relative to foundation sub-system.

Foundation

Material (Rock) Behaviour (Solid: Elastic)

Density ρf (kN/m3) [48] 27.47 T1,f (s) 0.09 *
cf (kN/m2) [63] 45 Mass (103 kg) 205,175 *

φf (◦) [63] 45 Stiffness (kN/m) 1.0 × 109 *
νf [47] 0.31 Damping ratio ξf (%) 10 *

Gf (GPa) 6.181 * Geometry
Ef (GPa) [47] 41.55 Radius of semicircle (m2/m) [10] 27,355

Vs,f (m/s) 1500 * Area (m2/m) 74,690 *
Eo,f (GPa) 109.34 *
Vp,f (m/s) 6309 *

Note: * = Estimated value. cf = Cohesion of the foundation. φf = Angle of friction of the foundation. νf = Poisson’s
ratio of the foundation. Gf = Shear modulus. Ef = Elastic modulus of foundation. Vs,f = Shear wave velocity in rock.
Vp,f = Compressive wave velocity. Eo,f = Oedometric modulus. T1,f = Foundation’s first period.
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Table A4. Collected data relative to reservoir sub-system.

Reservoir

Geometry Material (Water)

Operating level Ho,r (m) [48] 113 Density ρr (kN/m3) [49] 9.8
Operating level area (m2/m) [11] 38,307 Vp,r (m/s) [49] 1438

Flood level Hf,r (m) 120 * Eb (GPa) 2.026 *
Flood level area (m2/m) [11] 43,200 Behaviour (Liquid: Viscous)

DS Operating level (m) 5.0 * T1,r for Ho,r (m) [95] 0.314
Capacity for Ho,r (Hm3) [83] 117.07 T1,r for Hf,r (m) [95] 0.334

Area for Ho,r (Ha) [83] 308 Damping ratio ξr (%) [48] 0.5
Water basin area (km2) [83] 1070

Spillway capacity (m3/s) [83] 2987

Note: * = Estimated value. DS = Down-Stream. Vp,r (or Cr) = Compressive wave velocity. Eb = Bulk modulus of
reservoir. T1,r = Reservoir’s first period.

Table A5. Collected data relative to sediments sub-system.

Sediments

Material Behaviour (Semi-Solid: Visco-Elastic)

Density ρs (kN/m3) 13 * T1,s (s) [95] 0.014
cs (kN/m2) 20 * Damping ratio ξs (%) 4.0 *

φs (◦) 20 * Geometry

νs 0.45 * Area (m2/m) [11] 75.0
Gd,s (GPa) 0.81 * Height Hs (m) 5.0 *
Ed,s (GPa) 0.27 *
Vs,s (m/s) 25 *
Vp,s (m/s) 1450 *
Eo,s (GPa) 2.73 *

Note: * = Estimated value. cs = Cohesion of the sediments. φs = Angle of friction of the sediments. νs = Poisson’s
ratio of the sediments. Gd,s = Shear modulus. Ed,s = Elastic modulus. Vs,s = Shear wave velocity in sediments.
Vp,s = Compressive wave velocity in sediments. Eo,s = Oedometric modulus. T1,r = Sediments’ first period.

Table A6. Parameters accounting the interactions.

Sub-Systems’ Combination Parameter Value

Dam + foundation + reservoir + sediments
Damping ratio (%) [48] 8.5
Vibration period (s) [48] 0.393

Dam + foundation (rigid) Impedance ratio 0.853 *
Area (m2/m) ~ 3.0 Hd

2 *

Dam + reservoir Vibration period (s) 0.37*

Foundation + reservoir
q 5.655 × 10−5 *

α [47] 0.85

Reservoir + sediments
q 5.199 × 10−4 *
α 0.144 *

Note: * = Estimated value. q = Admittance coefficient. α =Wave reflection.
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Table A7. Modelling types.

Model Input Output Dimension Description Software

FEM [24,96]

Elements.
Joints. Material

properties.
Loads

Stresses. Deformations.
Modal parameters (e.g.

frequency, modal
participating mass

ratio)

2D/3D

Discretization of an area or
volume in mesh. A function is
performed on each mesh and

so the calculus is extended
over the whole structure

[97]

Gravity
method [29,98]

Loads.
Geometry.
Material

properties

Stresses. Pressures.
Stabilities 2D

It based on the rigid body
equilibrium and beam theory.
It performs stability analyses

for hydrostatic loads and
seismic loads

[50]

Numerical
[47,99]

Differential
equations.

Boundary and
initial

conditions

Displacements.
Velocities.

Accelerations
2D/3D

By using interpolation
function, it is possible to solve
partial differential equations

under specific conditions

[100]

Variational
[90,101]

Functionals.
Boundary and

initial
conditions

Optimum shape.
Modal parameters
(eigenvalues and

eigenvectors)

2D
Through functionals, it is

possible to find the maximum
and minimum solutions

[100]

Analytical
[95,102]

Analytical
equations Stresses. Pressures 1D

Substituting specific
numerical values in the

equations it is possible to find
the solutions

[103]

BEM [19,53] a Differential
equations

Displacements.
Velocities.

Accelerations
2D/3D

It is a numerical
computational method that

solves partial differential
equations under specific

conditions

[64,65]

UAV
photogrammetry

[54,104]

Drones.
Sensors

Geometry.
Photogrammetry 3D

Geodetic survey of a study site
by creating a detailed point

cloud. It provides
measurements from

photographs

[105]

Geometric
[9,106]

Measures.
Quotes

Geometrical and
architectural design 2D/3D

Plotting of drawings through
heights, lengths and

thicknesses
[107]

Experimental
Measures.

Quotes. Tools.
Laboratory

Simulations.
Calibrations 3D

Reproduction of a structure
with scaled dimensions

respect to the real project
N/A

Rendering b
Measures.

Quotes.
Imagens

Photos. Animations 3D

Generation of 3D
reconstructions by algorithms
that define the colour and size

of each point of the input
image

[108]

Note: FEM = Finite Element Method. BEM = Boundary Element Method. UAV = Unmanned Aerial Vehicle.
N/A =Not applicable. a Coupled BEM-FEM is used to study the fluid-structure interactions [19]. Also, accurate
computation of fluid-structure nonlinear interaction is analysed by the immersed boundary method (IBM) proposed
in [41]. b The reader can refer to specific bibliographies in the area of the design and/or architecture.
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