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Preface to ”Data Mining in Smart Grids”

Data-driven techniques have been recognized as the most promising enabling technologies for

improving decision-making processes in smart grids, providing the right information at the right

moment to the right decision-maker. In this context, grid sensor data-streaming cannot provide

the smart grids operators with the necessary information to act on in the time frames necessary to

minimize the impact of the disturbances. Even if there are fast models that can convert the data into

information, the smart grid operator must deal with the challenge of not having a full understanding

of the context of the information, and, therefore, the information content cannot be used with any

high degree of confidence.

To face these challenging issues the development of advanced forecasting models represents

an important issue to address, since they can support the conceptualization of proactive control

systems, mitigating the impacts of critical contingencies. To face this problem, in paper [1] a

novel load forecasting method, which is based on the combination of different forecasting models

and time-series clustering has been proposed. The different models, which include trigonometrical

transformation, Box–Cox transformation, autoregressive moving average (ARMA) errors, trend and

seasonal components, double seasonal Holt–Winters, fractional autoregressive integrated moving

average, ARIMA with regression, and neural network nonlinear autoregressive, are amalgamated on

the basis of both normalized periodogram-based distances and autocorrelation-based distances. The

obtained results demonstrate the effectiveness of this novel approach compared to other traditional

forecasting algorithms proposed in the smart grid literature.

Forecasting of renewable power generation represents another relevant issue to address

in modern smart grids, in order to mitigate the impacts induced by the randomness and

not-programmable operation of these generating units. This complex process requires massive data

processing, especially the analysis of meteorological data obtained by numerical weather prediction

models (NWP). To address this critical issue, in paper [2] a new algorithm for effective NWP data

preprocessing, which is based on t-distributed stochastic neighbor embedding, is proposed for

both reducing the data volume and improving the correlations of wind farm operation predictions.

The proposed algorithm normalizes the data collected in order to mitigate the influence induced

by different dimensions, and reduces the dimensionality of the NWP data related to wind farm

operation. The obtained results show the effectiveness of this algorithm compared to a traditional

solution technique based on principal component analysis. Moreover, the dimension reduction

preprocessing also had a visual effect, which could be applied to big data visualization platforms.

The large data streaming generated by smart grid sensors, if properly processed by advanced

computing paradigms, can enable the development of advanced functions aimed at improving

the condition monitoring of power equipment. In this context, paper [3] proposes case-based

reasoning to detect partial discharge in substations. The main idea is to estimate the correlation

degree between the sensed data and the historical information, in order to detect possible partial

discharge using a matching method based on a variational autoencoder network. To verify the

effectiveness of the proposed method, a real dataset of historical observations was established

through a partial discharge experiment and live detections on the substation site. The obtained

results demonstrate the effectiveness of the proposed method compared to other traditional feature

extraction methods, which include statistical features, deep belief networks, deep convolutional

neural networks, Euclidean distances, and correlation coefficients.

ix



Data-driven techniques can play an important role in improving power system reliability,

by allowing the correct system operation also in the presence of severe internal and external

disturbances. Amongst the possible phenomena perturbing correct smart grid operation, the

predictive assessment of the impacts induced by extreme weather events has been considered as

one of the most critical issues to address, since they can induce multiple, and large-scale system

contingencies. In this context, paper [4] proposes two methodologies, which are based on Time

Varying Markov Chain and Dynamic Bayesian Network, for assessing the power system resilience

against extreme wind gusts. Several case studies and benchmark comparisons demonstrate the

effectiveness of these methods in the task of assessing the power system resilience in realistic

operation scenarios.

Further improvements of smart grid performances may be obtained by predicting the occurrence

of critical events, which can affect the power system security and reliability. In this context, the

adoption of computational intelligence techniques represents one of the most promising research

directions. Armed with such a vision, in paper [5], a knowledge-based data-mining approach,

which employs a fuzzy rule-based classification system characterized by a genetically optimized

interpretability-accuracy trade-off, is conceptualized for transparent and accurate prediction of

decentral smart grid control stability. This paper explores the hierarchy of influence of particular

input attributes upon the system stability, analyzing the effect of possible ”overlapping” of some

input attributes over the other ones from the system stability perspective. A detailed experimental

analysis demonstrates the advantages of the proposed approach compared to other stability

prediction methodologies proposed in the literature.

Other interesting contributions in this field have been oriented towards identifying the most

effective computing paradigms aimed at supporting the large-scale deployment of data-driven smart

grid control functions. To address this complex issue, in paper [6], a novel decentralized control

paradigm based on dynamic agents is proposed for online smart grid voltage control. This represents

a relevant issue to address since the identification of the most effective approach, which is influenced

by the available computing resources, and the required control performance, is still an open problem.

Detailed simulation results obtained in a realistic case study are presented and discussed to prove the

effectiveness and the robustness of the proposed method.
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Abstract: Modern power system operation should comply with strictly reliability and security
constraints, which aim at guarantee the correct system operation also in the presence of severe
internal and external disturbances. Amongst the possible phenomena perturbing correct system
operation, the predictive assessment of the impacts induced by extreme weather events has been
considered as one of the most critical issues to address, since they can induce multiple, and large-scale
system contingencies. In this context, the development of new computing paradigms for resilience
analysis has been recognized as a very promising research direction. To address this issue, this paper
proposes two methodologies, which are based on Time Varying Markov Chain and Dynamic Bayesian
Network, for assessing the system resilience against extreme wind gusts. The main difference between
the proposed methodologies and the traditional solution techniques is the improved capability in
modelling the occurrence of multiple component faults and repairing, which cannot be neglected
in the presence of extreme events, as experienced worldwide by several Transmission System
Operators. Several cases studies and benchmark comparisons are presented and discussed in order
to demonstrate the effectiveness of the proposed methods in the task of assessing the power system
resilience in realistic operation scenarios.

Keywords: power systems resilience; dynamic Bayesian network; Markov model; Probabilistic
Modeling; Smart Grid; Resilience Models

1. Introduction

The modern electric grids operation policies are based on rigorous reliability and recovery
principles, which have been defined in order to allow power systems to operate safely against multiple
severe contingencies, providing high quality of electricity supply [1]. In the last decades, due to
climate change and environmental temperature increase, extreme weather events are becoming more
and more common even in non-tropical regions [2]. Electric networks are particularly vulnerable
to these events, which can induce multiple power equipment damages, especially in overhead lines
and substations. In this context, the deployment of traditional reliability and restoration-based
methodologies could fail in assessing the impacts of these extreme events on power system operation,
due to their inability in effectively modelling low-probable but possible fault scenario [3]. To address
this complex problem, new computing paradigms based on resilience analysis have been proposed
in the literature for reducing the grid vulnerability against severe disturbances, and improving the
corresponding restoration strategies [4–10].

Although there is not an universal definition of system resilience, it can be roughly considered
as the ability of a system to anticipate and absorb a High Impact Low Probability (HILP) event and

Energies 2020, 13, 3501; doi:10.3390/en13133501 www.mdpi.com/journal/energies1



Energies 2020, 13, 3501

regain its normal operating status as quickly as possible [11]. More specifically, according to the UK
Energy Research Center [12] the resilience of an electric power system is: “the capacity of an energy
system to tolerate disturbance and to continue to deliver affordable energy services to consumers.
A resilient energy system can speedily recover from shocks and can provide alternative means of
satisfying energy service needs in the event of changed external circumstances”.

This definition outlines the need for defining proper indexes for quantifying the system
resilience, in order to assess the effectiveness of mitigation strategies reacting to multiple disruptive
events. These strategies can be deployed at both planning and operation stage by (i) improving the
infrastructural capacity of the power components to withstand extreme stresses; and (ii) reducing the
restoration times, by preemptively identifying proper control actions aimed at mitigating the effects
of multiple contingencies, and reducing the restoration times. To this aim, the deployment of the
traditional N-1 reliability principle does not allow to obtain a reliable analysis in the presence of severe
contingencies induced by multiple HILP events. Anyway, evolving from the N-1 to N-k criterion is not
a trivial issue to address due to the prohibitive computational costs of considering a wider, and more
severe, set of multiple and correlated contingencies. Hence, the employment of probabilistic risk-based
approach, which are characterized by relaxed constraints, may be a good trade-off point.

In this context, the development of risk-based methodologies for power system resilience
assessment represents a relevant issue to address in order to estimate the actual system vulnerability
against HILP events, the expected impacts on system operation, and the effectiveness of the potential
countermeasures.

The possible strategies that can be deployed for solving this issue can be classified into two main
groups: ex-post and ex-ante analyses. The first class of methods try to infer from operation data
related to past outages, the system resilience against each perturbation events over large operation
periods. Besides, these methods can contribute to qualitatively identify in which domains the system
operator can intervene for increasing the system resilience, e.g., component design, system restoration,
network planning and operation.

A different, and more interesting, prospective is offered by ex-ante methods, which aim at
identifying preemptive actions, satisfying fixed system resilience requirements. This is a strategic
feature, since power systems operators are compelled to reliably predicting the occurrence and the
impacts of “extreme events”, in order to be able to manage and mitigate their effects on system
operation. Moreover, ex-ante methods allow effectively modelling the impacts of various source of
uncertainties on system resilience analysis, as far as load forecasts errors, renewable power generators
randomness and uncertain power transactions are concerned.

Nowadays, most of the ex-ante methodologies for resilience analysis proposed in the literature are
based on Monte Carlo simulations (MCS), which aim at generating synthetic time series representing
the system behavior under different weather conditions [4–7,10], and probabilistic techniques based
on the minimal path algorithm, which is applied to identify optimal restoration paths based on the
definition of “resilience factors” associated at each component [13–17]. Although these methods
allow obtaining valuable information about the potential impacts of severe perturbations on system
operation, they may fail to model the complex correlations between multiple disruptive events and
components fault rates. These limitations mainly derive by the simplified assumptions that need to be
assumed in order to make the problem tractable.

To address this complex problem, the deployment of Dynamic Bayesian Networks (DBNs)
represents a very promising research direction. These methods allow predicting the impacts of multiple
HILP and cascade events on both system operation and restoration, by considering a plurality of possible
events and consequences [8,9]. However, the deployment of these DBNs in power system resilience
analysis is still at its infancy, and requires further research efforts aimed at developing computational
methods for deep simulations, which should be able to assess and compare the correlations of the physical
parameters affected by the HILP events with the components fault models, and the corresponding
propagation scenarios, from the starting event up to black out and recovery.

2
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Moreover, the computational burden of these methods could be a limiting factor for on-line
predictive resilience analysis, which requires problem solutions in very short time-frames, especially
if these solutions should be used as input for further computational processes, such as loss of load
estimation, and on-line power system contingency analysis.

Finally, new methods aimed at lowering the information granularity of the components fault
models in function of their spatial location, and the expected magnitude of the perturbation events are
necessary in order to improve the effectiveness of the resiliency analysis, especially for power systems
distributed along large geographical area.

On the basis of this literature analysis, it can be argue that the research for new methods aimed at
solving the accuracy versus complexity dichotomy in power system resiliency assessment represents a
relevant issue to address.

In trying and solving this issue, this paper analyzes the potential role of adaptive probabilistic
models for predictive resiliency analysis in the presence of extreme wind gusts, which have been
recognized as one of the most critical weather phenomena affecting many European power systems.
The adoption of these models allows adapting the component fault parameters in function of the
forecast spatial/temporal wind speed evolution, as far as to dynamically estimate the impacts of
multiple faults on power system operation, the corresponding worst-case scenario and its occurrence
probability. The main innovations of these methods compared to other traditional techniques can be
summarized as follows:

1. Differently from the regional approach proposed in [4], a more detailed characterization of wind
spatial profiles, which have been acquired by pervasive sensor devices deployed over the lines,
has been performed in order to assess their impact on the system components. This leads to
resiliency analysis characterized by higher spatial resolution. In particular, the spatial resolution
increment in large network disruption analysis is crucial to face adequately with HILP events as
described by [18].

2. The analyzed power system is modelled without assuming any simplified network equivalent;
3. Differently from the DBN-based approach proposed in [9], the parameters of the components

fault model are correlated to the weather effects;
4. Differently from the approach proposed in [8], the cascade effects induced by multiple components

failure are modelled by dynamically adapting the power system topology, which allows lowering
the complexity of the assessment procedure.

Several cases studies and benchmark comparisons are presented and discussed in order to
demonstrate the effectiveness of the proposed methods in the task of assessing the power system
resilience in realistic operation scenario. For each considered case study, a comprehensive scalability
analysis is performed in order to assess the computational burden of the proposed methods in function
of the system complexity.

2. Mathematical Preliminaries

Predicting the impacts of disruptive events on system operation is a strategic tool for improving
the power systems security, since it allows identifying preemptive actions aimed at mitigating the
effects of multiple contingencies induced by these severe events [19]. This computing process, which is
usually referred as predictive resilience analysis, requires the solution of a set of probabilistic models
aimed at (i) characterizing how the disruptive events affect the components failure parameters,
(ii) predicting the corresponding components failures, and (iii) assessing their impacts on power
system operation. To this aim, modelling techniques based on Markov Process and Bayesian Network
represent the most promising enabling methodologies.

3
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2.1. Markov Chain

A Markov Chain is a memory-less discrete stochastic process, satisfying the so called “Markov
property”:

P[X(t+1) = x(t+1)|X(t) = x(t), . . . , X(0) = x(0)] = P[X(t+1) = x(t+1)|X(t) = x(t)] (1)

where X is a generic discrete random variable, which assumes a finite number of d possible occurrences
(called “state”) SX : {x1, . . . , xd}. Equation (1) states that the evolution of the system depends only on
the present state and not on the past.

Furthermore, if the following equation holds on the process is called “homogeneous”:

P[X(t+1) = xj|X(t) = xi] = P[X(h+1) = xj|X(h) = xi] ∀t, h ∈ [1, T] ∀ i, j ∈ [1, d] (2)

The latter assures the process being time-invariant, which means that the transition probability
matrix Q has constant parameters over the time. The transition probability matrix is a square matrix of
order d:

Q =

⎡
⎢⎢⎢⎢⎣

q11 q1j . . . q1d
qi1 qij . . . qid
...

...
. . .

...
qd1 qdj . . . qdd

⎤
⎥⎥⎥⎥⎦ (3)

whose elements qij represent the conditional probabilities to be in the state j at the time instant t+1
starting from the state i. One of the main properties of this matrix is that the elements of each row
have to guarantee that their sum is equal to 1. Hence, once known the state probability vector x at time
instant t, the corresponding probabilities at the next step can be computed as it follows:

x(t+1) = x(t)Q (4)

The state probability vector at the initial time step is a vector with only one element equal to 1.
In case the parameters of Q change over the time the Markov Chain is called “time-variant” and the
transition matrix has defined as Q(t).

2.2. Bayesian Networks

Bayesian Network (BN) is Directed Acyclic Graph (DAG) that allows representing all the casual
relationship among a set of correlated variables. The structure of a Bayesian network is based on two
main components:

Description 1. Nodes: represent a set of variables SX : {X1, . . . , Xd}. Every node has a conditional probability
distribution represented through Conditional Probability Table (CPT). Arcs: represent the probabilistic
dependencies between the variables. A node is called “parent” of a “child” if there is a direct arc connecting the
first to the second.

Each node is characterized by a conditional probability distribution modeled through the
Conditional Probability Table (CPT). For each variable Xi, with n parent nodes, (Pa1, Pa2, . . . , Pan),
the CPT is indicated as P(Xi|Pa1, Pa2, . . . , Pan) and contains all the probability associated to any
possible combination between the states of Xi and all its parents.

By using the chain rule, the joint probability distribution of all the BN nodes can be computed
as follows:

P(SX) = P(X1, X2, . . . , Xd) =
d

∏
i=1

P(Xi|Pa(Xi)) (5)

4
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3. Proposed Methodology

The aim of this paper is to propose a computationally effective method for assessing the impacts
of severe wind gusts on power system operation by deep simulations of probabilistic models. The final
goal is to assess the system reaction to the loss of multiple critical network components, whose failure
model parameters are adapted in function of predicted time/spatial wind speed profiles. The latter
greatly affect the components fault rate, especially in the presence of extremely high wind speeds,
which may damage the overhead line conductors, causing multiple and severe faults, as recently
experienced in several European power systems [20]. These severe weather phenomena could interest
large geographical area, threatening the correct operation of a large number of power components.
Consequently, the number of fault scenarios that should be analyzed may exponentially increase,
causing an explosion of the problem cardinality, which needs to be properly managed.

To this aim, two different solution methodologies, which are based on time-varying Markov
Chains and Dynamic Bayesian Networks, have been developed and compared.

3.1. Improved Time Varying Markov Chains

As introduced in Section 2.1, a MC is entirely defined by its transition matrix, which owns the
information about the probability to evolve from a state to another over the time. If the transition rates
are time-dependent, the MC is called time-varying, and the transition probability matrix is variable.
Thus, the Equation (4) becomes:

x(t+1) = x(t)Q(t) ∀t ∈ [1, T] (6)

where xt is the probability state vector at tth time step, whose dimensions are [1, S] with S
number of network states, Q(t) is the time varying transition probability square matrix of order
S, whose parameters are time dependents.

This mathematical tool could play an important role in predictive resilience analysis, since it allows
describing the impacts of the time/spatial wind speed profiles on the fault and reparation probability
of each network component. To this aim, each time-varying MC state represents a possible power system
operation state, hence obtaining a number of S = bn possible states, where n is the number of critical
power components, and b is the number of their operation states. Without loss of generality, two operation
states are considered for describing power component operation, namely, “Run” (the component is in
service) or “Fault” (the component is out of service). Hence, a generic power system operation state
si, at each time step, is described by an unique combination of components operating conditions,
as shown in the following example for a network with two critical components (n = 2):

si : {L1RL2R ; L1FL2R ; L1RL2F ; L1FL2F} (7)

The elements of the transition probability matrix in a discrete Markov Chain depends on the
probability rates to evolve from any state si to all the others, where the sum of all transition probability
rates has to be unitary for each row of Q. In particular, the starting and arrival states are organized by
rows and columns of Q, which assumes the following generalization form:

Q(t) =

⎡
⎢⎢⎢⎢⎣

q11(t) q1j(t) . . . q1S(t)
qi1(t) qij(t) . . . qiS(t)

...
...

. . .
...

qS1(t) qSj(t) . . . qSS(t)

⎤
⎥⎥⎥⎥⎦ (8)

where qij(t) can be computed as:

qij(t) =
n

∏
k=1

c(k)t ∀t ∈ [1, T] (9)

5
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where c(k)t , which depends on the characteristic of the k-th component state transition, can be computed
as follows:

c(k)t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ
(k)
t if the k-th component moves from Run to Fault state

μ
(k)
t =

(
1 − λ

(k)
t

)
if the k-th component remains in Run state

γ
(k)
t if the k-th component moves from Fault to Run state

φ
(k)
t =

(
1 − γ

(k)
t

)
if the k-th component remains in Fault state

(10)

where λ
(k)
t and γ

(k)
t are the time-varying fault and restoration rates of the k-th component, respectively.

The variation of these parameters in time reflects the influence of the time/spatial wind speed evolution
on the fault and reparation probability of the k-th component. In this context, the following piece-wise
approximation of the component fragility curve is assumed as the main driving factor affecting the
fault rate [21]:

λ
(k)
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 w(k)
t < w(1,k)

f
(

w(k)
t

)
w(1,k) ≤ w(k)

t < w(2,k)

1 w(k)
t ≥ w(2,k)

(11)

where w(k)
t is the wind speed expected on the k-th component, while w(1,k) and w(2,k) are static

thresholds, which should be properly identified in order to approximate the component fragility curve
by a piece-wise linear function.

As far as the component reparation rate is concerned, it can be computed based on the mean time
to repair the k-th component, as follows:

γ(k) = 1/τ(k) (12)

This simplified assumption is based on the fact that, on the average, every τk time steps the k-th
component is expected to be repaired, hence its restoration probability can be reasonably expressed
as shown in Equation (12). Roughly speaking, this assumption considers a uniform probability
distribution for the event the k-th component is repaired over the time. However, it is important to
outline that also the mean time to repair is correlated to the weather condition insisting on the power
component. To this aim, more advanced techniques should be used for modeling this behaviour by
defining a “repair curve” defined similarly to the “fragility curve”. This problem is currently under
investigation by the Authors.

Once the time-variant transition probability matrix has been updated based on the expected
evolution of the wind speed time/spatial profiles, the state probability for a step ahead (t + 1) can be
computed by using Equation (9).

3.2. Dynamic Bayesian Network

A different, and more effective, methodology for predictive resilience analysis is based on the
development of a Dynamic Bayesian Network, which allows modelling time-varying systems based
on cause-effect relationships modeled through DAG. The main difference with respect to traditional
BN is that each node at time step t can be affected by the state of the Parents (Pa) variables through
inter-slice connections.

The construction of CPT matrix for each couple of Child–Parents relationship is the core of the
proposed DBN model, which describes the operation state of each power component.

The flow scheme of the DBN is reported in Figure 1, showing the operation state of the k-th
component at time step t, which depends on both the previous operations state at (t − 1) and the
expected wind speed at time step t. In particular, similarly to the MC paradigm, the binary random
variable “state” could assume the states Run and Fault, and the random variable “wind” varies in proper
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intervals, depending by the expected wind speed on the k-th component at time step t. This feature
allows modeling the impacts on the power components induced by the expected time/spatial wind
speed profiles. Hence, the variable “wind” assumes three possible occurrences as shown in Table 1,
where the values a({1,2,3},k)

t are the occurrence probabilities characterizing a generic class interval.
The wind speed discretization, which has been performed by applying Equation (11), is necessary in
order to model this process in the DBN context.

wind( )

state( )

wind( )

state( )

wind( )

state( )

CPT( ) CPT( )

time slice( ) time slice( ) time slice( )

CPT( )

Figure 1. Flow scheme of the proposed DBN.

Table 1. Probability of wind speed.

P(k)
t

Weak

w(k)
t < w(1,k)

Medium

w(1,k) ≤ w(k)
t < w(2,k)

Strong

w(k)
t ≥ w(2,k)

wind a(1,k)
t a(2,k)

t a(3,k)
t

In particular, the integration of this random variable in the proposed DBN has been obtained by
clustering the piecewise fragility curve in three parts, as shown in Figure 2b. Thus, the classification
“weak”,“medium”, and “strong” indicates that the impact of the wind gust on the k-th component.
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Figure 2. Failure modelling.
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The proposed DBN model has been developed by defining two CPTs, one modelling the relation
between the wind and the single component state, and the other describing the joint effect of the
previous component state, and the current value of the wind speed, on the current component state.
These CPTs can be expressed as follows:

Tables 2 and 3 describe the DBN conditional probabilities for the k-th critical component,
whose parameters are computed according to Equations (11) and (12). Then, by using the total
probability law, the component state probabilities at time k are computed as indicated in Equation (13).
In particular, the latter equation is specific for the case (state(t) = Run), but the replacement of the
latter term with (state(t) = Fault) in the same equation allows computing the corresponding fault
state probability.

Table 2. CPT for t = 1.

CPT
(k)
(t=1)

State
Run Fault

wind

weak μ
(k)
t (w(k)

t ) λ
(k)
t (w(k)

t )

medium μ
(k)
t (w(k)

t ) λ
(k)
t (w(k)

t )

strong μ
(k)
t (w(k)

t ) λ
(k)
t (w(k)

t )

Table 3. CPT for t > 1.

CPT
(k)
(t>1)

State(t)
Run Fault

st
a

te
(t
−

1
)
∪

w
in

d
(t
)

Run weak μ
(k)
t (w(k)

t ) λ
(k)
t (w(k)

t )

Run medium μ
(k)
t (w(k)

t ) λ
(k)
t (w(k)

t )

Run strong μ
(k)
t (w(k)

t ) λ
(k)
t (w(k)

t )

Fault weak γ
(k)
t φ

(k)
t

Fault medium γ
(k)
t φ

(k)
t

Fault strong γ
(k)
t φ

(k)
t

It is worth noting that Equation (13) takes into account the occurrence probabilities for each wind
speed class interval, which is a very useful information, considering that the expected time evolution
of the wind speed at the k-th component can be preliminary inferred from pre-processing data analysis,
and it can be considered as an input variable for the DBN.

However, for each t, the wind speed probability vector will be a null vector, having only a single
element equal to 1. The latter is the corresponding class interval characterizing the predicted wind
speed value at time step t. For this reason Equation (13) is simplified, since only the expected wind
speed probability class is not null. This leads to Equations (14) and (15), in which the term wx indicates
the occurred wind speed class at time t.

The probabilities describing the components state operation over the time, namely Run and Fault,
are collected in the tensor Y[T, n, b], which allows computing the network state probabilities through
a multiplication over the n critical components by considering all their operation states. To this aim,
the hypothesis of statistical independence between the faults/restorations of the critical components
has been assumed [22].

This computing process, which has described by Algorithm 1, requires a proper indexing
of Y[T, n, b], which considers all the possible combinations of the components operation states.
The following explanatory example, which considers the case of two critical components described in
Equation (7), could be useful to clarify this concept:
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P
[

Run(k)
(t)

]
= P

[
Run(k)

(t) | Run(k)
(t−1) ∪ weak(k)

(t)

]
· P

[
Run(k)

(t−1)

]
· P

[
weak(k)

(t)

]
+

+ P
[

Run(k)
(t) | Run(k)

(t−1) ∪ medium(k)
(t)

]
· P

[
Run(k)

(t−1)

]
· P

[
medium(k)

(t)

]
+

+ P
[

Run(k)
(t) | Run(k)

(t−1) ∪ strong(k)
(t)

]
· P

[
Run(k)

(t−1)

]
· P

[
strong(k)

(t)

]
+

+ P
[

Run(k)
(t) | Fault(k)

(t−1) ∪ weak(k)
(t)

]
· P

[
Fault(k)

(t−1)

]
· P

[
weak(k)

(t)

]
+

+ P
[

Run(k)
(t) | Fault(k)

(t−1) ∪ medium(k)
(t)

]
· P

[
Fault(k)

(t−1)

]
· P

[
medium(k)

(t)

]
+

+ P
[

Run(k)
(t) | Fault(k)

(t−1) ∪ strong(k)
(t)

]
· P

[
Fault(k)

(t−1)

]
· P

[
strong(k)

(t)

]

(13)

P
[

Run(k)
(t)

]
= P

[
Run(k)

(t) | Run(k)
(t−1) ∪ wx

(k)
(t)

]
· P

[
Run(k)

(t−1)

]
· P

[
wx

(k)
(t)

]
+

+ P
[

Run(k)
(t) | Fault(k)

(t−1) ∪ wx
(k)
(t)

]
· P

[
Fault(k)

(t−1)

]
· P

[
wx

(k)
(t)

]
=

= μk
t · P

[
Run(k)

(t−1)

]
+ γk

t · P
[
Fault(k)

(t−1)

] (14)

P
[

Fault(k)
(t)

]
= P

[
Fault(k)

(t) | Run(k)
(t−1) ∪ wx

(k)
(t)

]
· P

[
Run(k)

(t−1)

]
· P

[
wx

(k)
(t)

]
+

+ P
[

Fault(k)
(t−1)| Fault(k)

(t−1) ∪ wx
(k)
(t)

]
· P

[
Fault(k)

(t−1)

]
· P

[
wx

(k)
(t)

]
=

= λk
t · P

[
Run(k)

(t−1)

]
+ φk

t · P
[
Fault(k)

(t−1)

] (15)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P[L1R L2R](t) → y[1, t] = Y[t, 1, 1] · Y[t, 2, 1]

P[L1R L2F](t) → y[2, t] = Y[t, 1, 1] · Y[t, 2, 2]

P[L1F L2R](t) → y[3, t] = Y[t, 1, 2] · Y[t, 2, 1]

P[L1F L2F](t) → y[4, t] = Y[t, 1, 2] · Y[t, 2, 2]

(16)

Algorithm 1 Network state probabilities computing.

1: load the label tag for all S network operation states (a.e. < 10 21 > , < 11, 20 >, ... )
2: loop
3: move over each network operation state (si)
4: loop
5: move over the time (t)
6: loop
7: move over each network line
8: load the k-th line tag (1, ..., n) from si
9: load the occurred operative state tag (run/fault) for each k-th line from si

10: get from tensor Y the probability for the extracted ‘line-state-time step’ tag set
11: store the probability in the t-th cell of a temporary array and scroll through it
12: end loop
13: compute the product of all temporary array elements
14: store the i-th network state probability at time t (si) in matrix y[i, t]
15: erase the temporary array
16: end loop
17: end loop
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3.3. Effect of the Time-Step Choice in the Developed Discrete-Time Models

Since both proposed methodologies are discrete-time models it is important to analyze the effect
of time-step choice on the modeled system. In particular, the time step does not affect the dynamics of
both Bayesian Network and Markov Time Varying Process but it affects the input data of the proposed
methodologies such as:

• line maintenance probabilities after a fault: they need to be adapted by considering the adopted
time step;

• wind speeds: where the predicted values are usually the mean value for that time interval.
Thus, a shorter time interval implies greater volatility as well as an excessively large time interval
cannot take into account the wind fluctuations. The right choice might be based on the base of
wind frequency of the severe events of the area under analysis.

4. Case Studies

The proposed methodologies have been applied in order to perform predictive resilience analyses
for several networks, which are characterized by different lines number. The final goal is to compare
the performances of the proposed non-homogeneous Improved Markov chains and the Dynamic
Bayesian network-based approaches, in terms of both accuracy and computation burden.

In particular, since the weather conditions can sensibly vary along the transmission line route,
hence affecting the corresponding fault model parameters to a considerable extent. Consequently,
worst-case assumption has been adopted by considering, for each time step, the maximum wind speed
predicted along the line route as input to the fragility curve.

According to this approach, the failure rate of the critical lines have been modeled through the
“fragility curve” reported in [21], which, at each time step, allows computing the line failure rates in
function of the maximum wind speed expected at the lines locations.

4.1. Numerical Results

The proposed methodologies have been tested on several case studies characterized by an
increasing number of critical lines and different spatial wind profiles. For the sake of simplicity,
several simplified hypothesis have been assumed during these studies. First of all, the wind speed
in each conductor’s surrounding is the same, with a profile as shown in Figure 2a. This hypothesis
could compromise the results effectiveness, since severe extreme wind gusts usually propagates as
fronts, especially in wide-area power systems. However, the methodologies proposed in this paper are
designed to model the impacts of spatial and temporal wind speed profiles, which can be estimated
by high-resolution wind speed forecasting, as far as to consider the impacts of these profiles on the
failure and recovery rates associated to each system component. Moreover, the component failure
rate is modeled based on the fragility curve depicted in Figure 2b, which can be used to compute the
time-varying transition matrices of the TVMC model, and the CPTs describing the DBN, as described
in Sections 3.1 and 3.2.

4.2. Predictive Resilience Analysis: TVMC vs. DBN Approach

This section shows the comparison of TVMC and DBN approaches for power system predictive
analysis. In particular, Figures 3–5 show the probability profiles obtained by applying the Markov
Process (left side) and the DBN (right side) methodology for one, two and three critical lines,
respectively. In particular, each profile represents the probability of the network to be in a certain state,
which is characterized by the code shown in the legend (e.g., <10 21 31 40 51>). The latter codifies the
information about the state of each line in the system: the first identifies the line, while the second
indicates its state (1 the line is “in service”, 0 the line is “out of service”). For example, considering
a network with five critical components, the code <10 21 31 40 51> identifies the network state in
which lines 1 and 4 are “out of service” and lines 2, 3 and 5 are “in service”. This representation is

10
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more convenient than the semantic one used in the previous sections, since it allows automatically
generating the states enumeration.

It is worth noting that in Figures 3 and 5 there are states with identical probability of occurrence.
This behaviour can be reasonably justified by recalling that the proposed case studies consider the
same weather conditions on all the critical lines in the network; hence, the network states characterized
by the same ratio between “in service” and “out of service” lines cannot be distinguished each other.
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(a) Improved Markov Chain
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(b) Dynamic Bayesian Network

Figure 3. Network State Probability: One critical line with wind speed profile ‘A’.
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(a) Improved Markov Chain
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(b) Dynamic Bayesian Network

Figure 4. Network State Probability: Two critical lines with wind speed profile ‘A’.

0 5 10 15 20 25

unit of time [-]

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

[-
]

10 20 30
11 20 30
10 21 30
11 21 30
10 20 31
11 20 31
10 21 31
11 21 31
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(b) Dynamic Bayesian Network

Figure 5. Cont.
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(c) Standard Markov Model

Figure 5. Network State Probability: Three critical lines with wind speed profile ‘A’.

The results of the proposed methodologies are proven to be equal as depicted in Figures 3 and
5. This result is not unexpected because DBNs are a particular instance of Markov Process, and,
under certain conditions (i.e., global and local Markov Properties), they allow obtaining the same results
[23]. In this context, given the structure of the proposed DBN, it is proved that this equivalence is assured
by only satisfying of the local direct Markov property, which is a prerequisite to apply the chain rule (5).

Furthermore, in order to outline the main benefits of the proposed methodologies a standard
reliability model, which are based on a time-continuous Markov chain for a 3 line-grid as shown in
Figure 5, has been compared.

The main difference between the proposed methodologies and this modeling technique, which is
widely adopted for power system reliability analysis, is that the neglects of the occurrence of multiple
component faults and repairing. This assumption is well verified in reliability analysis, but it could be not
suitable for resilience analysis, since the probability of multiple failures in the presence of extreme events is
not negligible, as experienced worldwide by several Transmission System Operators. Hence, this assumption
may lead to underestimate the probability of the worst operation states, in the presence of high speed gusts.
Hence, the reliability standard model assumptions may lead to underestimate the probability of the worst
operation states (<10 20 30>) in the presence of high speed gusts as shown in Figure 5c.

Moreover, for the sake of completeness, both methodologies have been tested with a further wind
spatial profile (‘B’), which is characterized by greater values magnitude than the previous case (‘A’),
where some occurrences lie on the 100% “out of service” probability side of the fragility curve.

In particular, a 2 line-network has been considered in this case, where the wind speed profiles are
depicted in Figure 6a, where, for t > 14, the wind speed is greater than the maximum strength limit
going to cause the likely failure of the overhead line (Figure 2b). Indeed, the full operation grid state
(<11 21>) dramatically drops to 0 due to the occurred severe wind speeds as shown by Figure 7a,b.
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Figure 6. Wind speed spatial profiles.
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(a) Improved Markov Chain
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(b) Dynamic Bayesian Network

Figure 7. Network State Probability: Two critical lines with the wind spatial profile ‘B’.

4.3. Spatial Wind Profile Characterization

The development of the proposed methodologies is based on the spatial characterization of the
wind profile at high resolution, where the latter may permit to asses the impact of a weather perturbation
evolution over the grid. Therefore, a further case study has been developed, where the latter is based on
the spatial wind profile (‘C’) (Figure 6b) and a 3-line grid, in order to support this statement.

In particular, for the sake of clarity, the spatial wind profiles shown in Figure 6b have been
generated from the same wind profile lagged over the time of 8 units. This has been realized for better
highlighting the effect of the spatial effect on the network probability states.

Indeed, Figures 6b and 8 reveal how the weather perturbation movement dramatically affects
the states probability profiles evolution. In particular, the combined analysis of the latter figures has
revealed that for:

• t < 5: the spatial average wind speed is low over the grid, therefore the most likely state is that
concerning a full operative condition (<11 21 31>);

• 5 ≤ t < 14: line 1 is affected by a severe weather event with increasing wind gust speeds.
The most likely state becomes that with line 1 out of service (<10 21 31>);

• 14 ≤ t < 22: The severe weather event moves from line 1 to 2. Since line 1 is likely under
maintenance and line 2 is interested by strong wind gusts the most likely state is (<10 20 31>);

• t ≥ 22: line 1 may be repaired and the storm is affecting line 3 now. Hence the most probable
state is (<10 20 30>). Furthermore, the full operative grid state is the least probable because the
grid has been not completely repaired yet.
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(b) Dynamic Bayesian Network

Figure 8. Network State Probability: Two critical lines with the wind spatial profile ‘C’.
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4.4. Analysis on the Computational Efforts

In consideration of the previous case studies it is worth observing that one of the main problems
when analyzing multiple contingency scenarios derives from the high number of possible state to
be analyzed. In particular, in the presence of n critical components, the possible combination are 2n.
This exponential growth is the main issue to address in performing predictive resilience analysis for
complex power systems. This is confirmed in Table 4, which shows the computation burden required
by TVMC and DBN approaches as the critical lines number increases. Clearly it is possible to note that,
for both methodologies, the computation burden exponentially increases with the number of possible
network states. Even though the TVMC-based approach is more effective for small test networks,
DBN methodology allows to effectively solve the problem even when TVMC fails. In fact it can be
observed that DBN allows analyzing networks up to 25 critical lines, with respect to 11 critical lines,
which is the limit of TVMC approach. Hence, DBN can almost double the capability of the more
intuitive TVMC without any loss of information and accuracy.

Table 4. Table Type Styles.

Improved Markov Process DBN

Critical Lines Transition Matrix Computation Computation
Number Dimension Time [s] Time [s]

1 Line 2 × 2 0.0008 0.1131
2 Lines 4 × 4 0.001 0.1410
3 Lines 9 × 9 0.010 0.1448
4 Lines 16 × 16 0.012 0.1516
5 Lines 32 × 32 0.017 0.1663
6 Lines 64 × 64 0.083 0.1766
7 Lines 128 × 128 0.102 0.2189
8 Lines 256 × 256 0.400 0.1839
9 Lines 512 × 512 2.010 0.2016

10 Lines 1024 × 1024 8.664 0.3408
11 Lines 2048 × 2048 49.79 0.3918
12 Lines - - 0.8164
15 Lines - - 3.160
20 Lines - - 86.18
25 Lines - - 3316

The previous analysis has neglected the impact of the time resolution and forecasting horizon
on the computational effort. In fact, the latter is not affected by them because the most part of
computational burden is related to state generation and not to the basic arithmetic operators required
for computing the model evolution. Hence, for the sake of completeness, a case study on a long run
simulation has been performed by applying the DBN model, where the spatial wind profiles and the
probability state evolution have been depicted in Figure 9a,b, respectively. In particular both figures
allow to observe the full restoration of the system after a certain time, which is necessary to complete
all recovery operation after a severe weather event over 2 line-grid (<11 21>).

14



Energies 2020, 13, 3501

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

unit of time [-]

0

5

10

15

20

25

30

35

40

w
in

d 
sp

ee
d 

[m
/s

]

1
2

(a) wind profiles D

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

unit of time [-]

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y 

[-
]

10 20
11 20
10 21
11 21

(b) State probability evolution

Figure 9. Long Run Simulation DBN-based.

5. Future Research Directions

The proposed methodologies do not take into account the randomness of the time/spatial wind
speed profiles, which have been considered as an input of the resilience assessment process. This is a
relevant issue to address, since this information is generated by forecasting algorithms, which could be
characterized by strong uncertainties, especially in the presence of medium-term forecasting horizons.
These uncertainties should be properly considered in solving both the TVMC and DBN models,
since they can affect the computed state probabilities to a considerable extent.

In the Authors’ opinion, which have been confirmed by some preliminary results, it can be argue
that a greater impact occurs when the wind speed forecasting errors lie around the wind class interval
value of the fragility curve, which dramatically change the component fault ratios.

A further point of analysis concerns the not spatial uniformity in weather conditions over the
transmission lines. A way to consider the spatial weather effect over the network is following an
approach similar to as done in wind spatial forecasting where, given a horizontal spatial resolution,
each grid cell is characterized by a spatial average wind value. Thus, by overlaying this grid with the
network scheme is possible relating a wind value to each line part as shown in Figure 10a.

Obviously, a further improvement may be considering a line as split in several parts as shown by
Figure 10b, where the overall operation condition probability of the whole line is given by the product
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of the operation probabilities of each line part. Hence, in this scenario the greater flexibility of DBN
may allow to better manage possible high cardinality issues than the Improved Markov Chain.

Another relevant issue to address deals with the impacts of the weather conditions on the
components restoring probabilities, which can greatly slowing down the repairing times, especially
in the presence of extreme weather conditions. To address this issue, DBN-based approaches seem
to be the most effective solution strategy, since they allow to model the time/spatial wind speed
randomness, and the corresponding impacts on both fault and restoration rates in a very effective way.

A further analyzed issue, which is currently under investigation by the Authors, is the improvement
of the proposed DBN-based methodology by integrating adaptive fault models for specific network
components, as far as tower, transformers, and primary station are concerned. This could be obtained by
properly modeling the cause-effect relation between the considered components.

(a) (b)

Figure 10. Proposed and future trend-approaches in transmission line modeling. (a) Wind spatial
characterization on the network. Dotted red circle: proposed approach. Colored cell: Finer mesh
approach. (b) Piece-wise line model with finer mesh approach.

6. Conclusions

Predictive resilience analysis is assuming a major role in modern power system operation,
where the strive for strictly reliability and security constraints is pushing system operators to identify
effective strategies aimed at reducing the grid vulnerability against severe disturbances, and improving
the corresponding restoration strategies.

In trying and solving this issue, this paper proposed two methodologies, which are based on Time
Varying Improved Markov Chain and Dynamic Bayesian Network, for assessing the system resilience
against extreme wind gusts. The main idea was to employ lines weather dependent fault parameters
in function of the forecast spatial/temporal wind speed evolution, and to dynamically estimate the
impacts of multiple faults on power system operation.

Simulation results obtained on several operation scenarios confirmed the effectiveness of the
proposed methods in the task of estimating the system resilience by a deep simulation of all
the possible network states, which were generated by considering all the possible fault scenario.
The proposed methodologies have been mutually compared, and benchmarked with a traditional
reliability modelling technique. On the basis of these results, the following conclusions can be drawn:
(i) The proposed Markov Chain and Dynamic Bayesian Network-based techniques allow effectively
modelling the effects of multiple disruptions and restorations, which are not infrequent in the presence
of extreme weather conditions. (ii) Compared to the Markov Chain-based techniques, the Dynamic
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Bayesian Network is characterized by lower computational burden. In particular, the obtained results
have revealed the effectiveness of DBN in facing with high cardinality problems, which mainly
derives from the low complexity of the solution algorithm, that does not require the solution of
ordinary differential equations, and complex matrix manipulations. Furthermore, the Dynamic
Bayesian Network is characterized by an improved capability in modelling the statistical dependencies
characterizing the random processes influencing the fault models and the restoring operations, which is
one of the direction of our future research activities.
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Abstract: The main objective and contribution of this paper was/is the application of our
knowledge-based data-mining approach (a fuzzy rule-based classification system) characterized by a
genetically optimized interpretability-accuracy trade-off (by means of multi-objective evolutionary
optimization algorithms) for transparent and accurate prediction of decentral smart grid control
(DSGC) stability. In particular, we aim at uncovering the hierarchy of influence of particular input
attributes upon the DSGC stability. Moreover, we also analyze the effect of possible "overlapping"
of some input attributes over the other ones from the DSGC-stability perspective. The recently
published and available at the UCI Database Repository Electrical Grid Stability Simulated Data Set
and its input-aggregate-based concise version were used in our experiments. A comparison with 39
alternative approaches was also performed, demonstrating the advantages of our approach in terms
of: (i) interpretable and accurate fuzzy rule-based DSGC-stability prediction and (ii) uncovering the
hierarchy of DSGC-system’s attribute significance.

Keywords: decentral smart grid control (DSGC); interpretable and accurate DSGC-stability
prediction; data mining; computational intelligence; fuzzy rule-based classifiers; multi-objective
evolutionary optimization

1. Introduction

The stability of electrical grids depends on the balance between electricity generation and
electricity demand. In conventional power systems, such a balance is achieved through demand-driven
electricity production. Nowadays, however, due to a gradual shift from fossil-based power generation
to renewable energy sources, the grid topologies are becoming more decentralized and the flow of
power is becoming more bidirectional [1]. That means that consumers may function as both producers
and consumers at the same time; they are often referred to as prosumers [2]. The volatile and fluctuating
nature of renewable energy sources poses a significant challenge as far as design strategies and control
of electric power grids are concerned. In order to balance the supply and demand in such fluctuating
power grids, various smart grid approaches have been proposed. A key idea they implement is to
regulate the consumers’ demand [3], usually referred to as the demand response strategy [4,5].

The changes in the consumption of electricity (in comparison with normal patterns of
consumption) by customers in reaction to the changes in the price of electricity are referred to
as demand response. There are two general approaches to defining the electricity price and
to communicating it to consumers. A conventional approach—using costly information and
communication technology infrastructure [6] is based on extensive communication between producers

Energies 2020, 13, 2559; doi:10.3390/en13102559 www.mdpi.com/journal/energies19
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and consumers [7,8], raising questions, however, of cybersecurity and privacy protection [9,10].
In contrast, an alternative and novel approach referred to as decentral smart grid control (henceforward
DSGC) [11] avoids massive communication between prosumers by binding the electricity price to the
grid frequency which can be easily measured by means of cheap equipment by particular prosumers.
During power excess, the frequency increases, whereas in times of underproduction, it decreases [12].
In that way, DSGC introduces real-time pricing allowing prosumers to easily control their momentary
demand on the basis of the grid frequency. For DSGC systems to be successfully applied, they must be
able to maintain grid stability for rapid changes in electricity prices and for different levels of reaction
times and price sensitivity of particular grid participants [13,14].

Data mining approaches are well suited for decision support in management, control, and stability
analysis of power systems including also decentralized smart grids. That is due to the availability of
big amounts of simulated data on various aspects of the power systems operation; see, e.g., [15–18].
Many data mining methods have been used in the considered research field—see the next section for a
brief review. However, their significant shortcoming is usually their non-transparent, black-box, and
accuracy-only-oriented nature. It means that they do not provide any deeper (or any) explanations
and justifications of the decisions made. As well, they do not provide any insight into mechanisms
governing a given system. A similar remark has been formulated in the most recently published
work [19]: "Various machine-learning and data-mining algorithms have been applied to the
decentralized management and control of microgrids... Transparency is typically not the priority
for most machine learning algorithms" (a quote from [19]). The present work is our attempt to address
the smart-grid-stability prediction problem in an effective way by providing a solution coming from the
knowledge-based data-mining field and characterized by both high interpretability and transparency
and high accuracy.

The main goal and contribution of this work is the application of our knowledge-based
data-mining technique, i.e., fuzzy rule-based classifiers (FRBCs) with a genetically optimized
interpretability-accuracy trade-off (see, e.g., [20–23] for details) to transparent and accurate prediction
of DSGC stability. In particular, we aim at uncovering the hierarchy of influence of particular input
attributes upon the DSGC stability. Moreover, we will also analyze the effect of possible “overlapping”
of some input attributes over the other ones from the DSGC-stability perspective. In our approach
to designing FRBCs from data, measures of FRBCs’ interpretability and accuracy are treated as
separate performance indices and optimization objectives. Due to their complementary/contradictory
nature, we employ multi-objective evolutionary optimization algorithms (MOEOAs) in the process
of the FRBCs’ structure and parameter optimization which is also equivalent to the FRBC’s
interpretability-accuracy trade-off optimization (related work is reviewed in [24] and—for the case of
single-objective optimization of the system—in [25,26]).

The remaining parts of the paper are organized as follows: We start with a review of related work
regarding applications of data mining techniques to various aspects of electricity grid and microgrid
operations. Next, the recently published Electrical Grid Stability Simulated Data Set available at the UCI
Database Repository (https://archive.ics.uci.edu/ml) and its input-aggregate-based concise version
proposed in [14] are characterized. Both data sets are used in our experiments. Then, main building
blocks of our FRBCs are presented. Next, the FRBCs’ learning and optimization process is outlined.
Two MOEOAs are independently used and compared; namely, the well-known strength Pareto
evolutionary algorithm 2 (SPEA2) [27] and our generalization of SPEA2, referred to as SPEA3 [28–30].
In turn, the previously outlined main goal of the paper, including the application of our approach
to the DSGC-stability prediction using two aforementioned simulated data sets and a comparative
analysis with as many as 39 alternative approaches, is presented and discussed.

2. Related Work

Various data-mining and machine-learning models and algorithms have been applied to
security, stability prediction/monitoring, management, and control of electricity grids and microgrids.
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An approach using an artificial neural network (ANN for short) for generating security boundaries and
their visualization to transmission system operators within a power system in California is presented
in [15]. The resulting security boundaries are visualized in the form of the so-called nomograms
(the total number of simulations performed is equal to 1792). Extreme learning machines (ELMs for
short)—a special class of ANNs—are used in [31] to improve the online learning speed and parameter
tuning of the real-time transient-stability assessment model for earlier detection of the risk of blackouts.
ANNs are also used to construct new monitoring methods for smart power grids. Such a method and
a virtual test evaluating its performance are presented in [32]. A multilayer ANN with four hidden
layers trained using a deep reinforcement learning algorithm is applied to a smart grid optimization
task in [33]. In turn, a contextual anomaly detection ANN-based approach for cyber-physical security
in smart grids is presented in [34]. The simulation experiments show that the contextual anomaly
detection performs over 55% better than the point anomaly detection.

Support vector machines (SVMs for short) and ANNs supported by some feature selection
methods are applied in [17] to the analysis of the transient stability of a large-scale Brazilian power
system (the data are generated in 1242 simulation runs). SVMs and random forests (RFs for short) are
used in [35] to detect smart grid devices compromised by cyber attacks. The proposed framework in
different evaluation scenarios yields high accuracy (91% on average) which confirms its effectiveness
at overcoming the compromised smart grid devices problem. Core vector machines (CVMs for
short)—faster and big-data-oriented extensions of SVMs—are used in [36] for an online transient
stability assessment of a power system by mapping that problem as a two-class classification task.
An online approach makes it attractive to be used in real time applications. Genetic-algorithm-based
SVMs (GA-SVMs for short) are used (and compared with conventional SVMs and ANNs) in [37] for
an online voltage-stability monitoring and prediction. Their effectiveness is demonstrated by applying
them to the New England 39-bus system and to the real Indian Northern Region Power Grid system.

Decision trees (DTs for short) are used (and compared with ANNs and SVMs) in [18] for prediction
of the transient instability of a large-scale Iranian national grid following the test on a small 9-bus
system. DTs are also used in [14] to classify the DSGC stability conditions based on the response
of heterogeneous consumers to provide some insight into the relationship between the input space
parameters and the grid stability.

As far as other selected data-mining techniques are concerned, the so-called active learning
solution is applied in [38] to the voltage-stability prediction problem. The active learning approach
interacts with the online prediction and offline training process to enhance the well-known data-mining
methods (DTs, ANNs, SVMs, RFs, and radial basis function networks). In turn, modeling a non-linear
security boundary by (i) using features formed as monomials of the original input up to a certain level
and (ii) using kernel ridge regression to solve the problem of a large number of features is proposed
in [16]. The potential of the proposed method is demonstrated by simulating the aforementioned
New England 39-bus system and a larger power system with 470 buses. Next, the study [39] presents
a cooperative multi-agent approach for solving the complex problems of energy management in a
stand-alone solar microgrid using fuzzy logic systems and a reinforcement learning method referred
to as fuzzy Q-learning. Moreover, the study [19] applies an optimized data-matching algorithm
referred to as transparent open box learning network to the DSGC stability prediction. This study
demonstrates the importance of compound feature selection in the considered stability prediction
problem. The overwhelming majority of the above-listed studies presents the accuracy-oriented
approaches. The transparency is not their priority and they usually do not provide an insight into the
considered systems.

3. Electrical Grid Stability Simulated Data Set and Its Input-Aggregate-Based Version for
Stability Prediction of a Four-Node Star System Implementing the DSGC Concept

As already mentioned in the Introduction of this paper, the Electrical Grid Stability Simulated Data
Set available since November 2018 at the UCI Database Repository (https://archive.ics.uci.edu/ml) is
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the first set used in our experiments. This data set is the outcome of a simulation experiment using a
two-part mathematical model of a four-node star grid implementing the DSGC concept. The first part
of the model describes the physical dynamics of electric power generation and its connection with
consumption loads. The second part is an economic structure which binds the electricity price to the
grid frequency (see [11,13,14,19] for details). In the simulation experiment, three key input variables of
the model were selected (each allowed to vary independently) for each of the four grid participants.
These key input variables include: (i) Pj, j = 1, 2, 3, 4 (referred to as p1, . . . , p4 in the simulated data set)
describing the mechanical power produced (for j = 1) or consumed (for j = 2, 3, 4); (ii) τj, j = 1, 2, 3, 4
(referred to as tau1, . . . , tau4 in the simulated data set) describing reaction time of each grid participant
to an electricity price change; and (iii) γj, j = 1, 2, 3, 4 (referred to as g1, . . . , g4 in the simulated data
set) which is a coefficient proportional to price elasticity for each grid participant. Figure 1 illustrates
the structure of the DSGC system considered in the simulation experiment and the feasible solution
space values (boundary conditions) for all the previously listed key input variables. Except for P1

(P1 = −(P2 + P3 + P4) as shown in Figure 1), they all are sampled as uniform distributions throughout
their respective feasible spaces to initialize and launch the simulations (10000 simulation runs were
performed). Several other input variables of the two-part mathematical model of the DSGC system
are kept unchanged during the simulation process. They include: (i) the averaging time T required to
measure the price signal (T = 2s), (ii) the coupling strength K proportional to line capacity (K = 8s−2),
and (iii) the damping constant α (α = 0.1s−1). The model’s output variable (referred to as stab in the
simulated data set), i.e., the stability metric (ranging from −0.0808 to +0.1094), is quantified such that a
negative value of that metric indicates that the grid is stable, whereas a positive value indicates that
the grid is unstable. In the simulated data set the stab-variable is accompanied by a stabf label of the
grid stability—a categorical attribute taking values from a two-element set: “stable” for stab < 0 and
“unstable” for stab > 0. The details regarding the simulation experiment are presented in [14].
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Figure 1. An illustration of the four-node star DSGC system structure in a simulation experiment.

Therefore, the characteristics of the Electrical Grid Stability Simulated Data Set collecting the
simulation experiment results and used in our experiments is the following. It contains 10, 000 records
(instances). Each record is characterized by 12 input attributes—tau1, tau2, tau3, tau4, p1, p2, p3, p4,
g1, g2, g3, and g4; and two output attributes—stab and stabf, out of which only the stabf labels are
used in our experiments (see Table 1 for details).
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Table 1. Details of particular records of the Electrical Grid Stability Simulated Data Set used in
our experiments.

No.
Attribute

Name

Attribute
Type

Attribute Domain Details std.
min. max. avg. dev.

1.

in
pu

ta
tt

ri
bu

te
s

tau1 numerical reaction time of electricity producer (in sec.) 0.50079 9.9995 5.25 2.7424
2. tau2 numerical }

reaction time of electricity consumers (in sec.)
0.50014 9.9998 5.25 2.7424

3. tau3 numerical 0.50079 9.9995 5.25 2.7424
4. tau4 numerical 0.50047 9.9994 5.25 2.7424
5. p1 numerical nominal power produced (positive values) 1.5826 5.8644 3.57 0.75212
6. p2 numerical }

nominal power consumed (negative values)
−1.9999 −0.50011 −1.25 0.43301

7. p3 numerical −1.9999 −0.50007 −1.25 0.43301
8. p4 numerical −1.9999 −0.50002 −1.25 0.43301
9. g1 numerical gamma coefficient 1) for electricity producer 0.050009 0.99994 0.525 0.27424
10. g2 numerical }

gamma coefficient 1) for electricity consumers
0.050053 0.99994 0.525 0.27424

11. g3 numerical 0.050054 0.99998 0.525 0.27424
12. g4 numerical 0.050028 0.99993 0.525 0.27424
13.

ou
tp

ut
at

tr
. stab 2) numerical the maximal real part of the characteristic

equation root (if positive—the system is linearly
unstable)

−0.08076 0.1094 0.01573 0.03691

14. stabf categorical
(class label)

2 class labels; class balance: “nstable” class (63.8% of all records) and “stable”
class (36.2% of all records)

1) coefficient proportional to price elasticity; 2) attribute "stab" is not used in our experiments.

A more concise representation of the above-characterized simulated data set is proposed in [14].
It is based on aggregates—such as minimum, maximum, and average (mean) values—of input
attributes across all grid participants. For instance, for the reaction time τj, j = 1, . . . , 4, the input
aggregates are the following: τmin = minj=1,...,4 τj, τavg = 1

4 ∑4
j=1 τj, and τmax = maxj=1,...,4 τj.

In the modified simulated data set, they are referred to as tau_min, tau_avg, and tau_max;
analogously—p_min, p_avg, and p_max for Pj and g_min, g_avg, and g_max for γj, j = 1, . . . , 4
(see Table 2 for details). The modified data set (referred to as the Concise Simulated Data Set) is the
second set used in our experiments.

Table 2. Details of particular records of the input-aggregate-based version of the Electrical Grid Stability
Simulated Data Set (referred to as the Concise Simulated Data Set) used in our experiment.

No. Attribute
Name

Attribute
Type

Attribute Domain Details std.
min. max. avg. dev.

1.

in
pu

ta
tt

ri
bu

te
s

tau_min numerical }
min., avg., and max. reaction time of
electricity producer/consumers (in sec.)

0.50014 8.874 2.4011 1.5649
2. tau_avg numerical 0.87644 9.446 5.25 1.3743
3. tau_max numerical 1.0217 9.9998 8.0944 1.5482
4. p_min numerical }

min., avg., and max. nominal power
consumed

0.5644 1.9999 1.6254 0.2913
5. p_avg numerical 0.5275 1.9548 1.25 0.2507
6. p_max numerical 1.5526 5.8644 3.75 0.7521
7. g_min numerical }

min., avg., and max. gamma coefficient 1)

for electricity producer/consumers

0.05 0.8884 0.2397 0.1552
8. g_avg numerical 0.1194 0.9536 0.525 0.1369
9. g_max numerical 0.1459 0.9999 0.811 0.1539
10.

ou
t.

at
tr

. stabf categorical
(class label)

2 class labels; class balance: "unstable" class (63.8% of all records) and "stable"
class (36.2% of all records)

1) coefficient proportional to price elasticity.

4. Methodology: Main Components of the Proposed FRBCs Designed from Data Using MOEOAs

In this section we briefly present the main components of our approach to designing FRBCs from
data by means of MOEOAs. They are used to perform FRBCs’ learning and structure-and-parameter
optimization, which also results in the optimization of FRBCs’ interpretability-accuracy trade-off
(see [20–22,28] for details and discussion). The following components are characterized: learning data
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set, representation of input attributes and class labels, FRBC knowledge base, objectives of the FRBCs’
evolutionary optimization, original dedicated genetic operators introduced, and MOEOAs used in
our experiments. An FRBC with n input attributes x1, x2, . . . , xn and an output—a fuzzy set over the
set Y = {y1, y2, . . . , yc} of c class labels—is considered. Our approach can process both numerical and
categorical attributes. However, in the DSGC-stability prediction problem, only numerical attributes
occur. Hence, only numerical attributes will be considered from now on.

Learning data set L: The construction of the proposed FRBC is based on the data set L which
contains K input–output samples:

L = {x(lrn)
k , y(lrn)

k }K

k=1, (1)

where x(lrn)
k = (x(lrn)

1k , x(lrn)
2k , . . . , x(lrn)

nk ) ∈ X = X1 × X2 × · · · × Xn (× stands for Cartesian product of

ordinary sets) represents the collection of input attributes and y(lrn)
k represents the corresponding class

label (y(lrn)
k ∈ Y) for the k-th data sample, k = 1, 2, . . . , K.

Representation of input attributes and class labels: Each numerical attribute xi, i ∈ {1, 2, . . . , n}
is represented by ai fuzzy sets Aiki

∈ F(Xi), ki = 1, 2, . . . , ai, where F(Xi) is a family of all fuzzy
sets defined in the universe Xi, i = 1, 2, . . . , n. Ai1 represents an S-type fuzzy set (corresponding to
linguistic term "Small"), Aiai represents an L-type set (corresponding to linguistic term "Large"), and
Ai2, Ai3, . . . , Ai,ai−1 represent M-type sets (corresponding to linguistic terms "Medium 1,’ "Medium 2,’ ...
, "Medium ai − 2"). For simplicity, Aiki

s denote the corresponding linguistic terms also. Figure 2 shows
trapezoidal membership functions for S, M, and L-type fuzzy sets used in our experiments. In turn,
each class label yj, j ∈ {1, 2, . . . , c} is represented by a fuzzy singleton Bj = B(singl.)

j with the following
membership function: μ

B(singl.)
j

(y) = 1 for y = yj and 0 elsewhere.

Figure 2. S-type, M-type, and L-type fuzzy sets with trapezoidal membership functions and
their parameters.

FRBC’s knowledge base contains R genetically optimized fuzzy rules discovered in the learning
data set (1). The form of the r-th rule, r = 1, 2, . . . , R, is the following (the overall number of rules R
changes as the learning progresses):

IF [x1 is A
1,sw(r)

1
]
(sw(r)

1 >0)
AND...AND [xn is A

n,sw(r)
n
]
(sw(r)

n >0)
THEN y is B(singl.)

j(r)
. (2)

Formula [expression](condition) in (2) represents conditional inclusion of the [expression]-part into a

given rule assuming that the (condition)-part is fulfilled. In turn, sw(r)
i denotes a switch-parameter

which controls the presence/absence of the i-th input attribute in the r-th rule, i = 1, 2, . . . , n.
sw(r)

i ∈ {0, 1, 2, . . . , ai}, where ai is the number of fuzzy sets (and the corresponding linguistic

terms) defined for the i-th attribute. For sw(r)
i = 0, the i-th attribute is removed from (not active in)

that rule, whereas for sw(r)
i > 0 the component [xi is Aiki

] (ki = sw(r)
i ) is included (active) in that rule.
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An FRBC’s knowledge base contains two separate modules; i.e., a rule-base-structure module
RB and a data-base module DB. We propose a simple, direct, and thus computationally efficient RB
representation as follows:

RB = {sw(r)
1 , sw(r)

2 , . . . , sw(r)
n , j(r)}R

r=1. (3)

In turn, DB contains tunable and non-tunable parts. The tunable part contains parameters
of membership functions of fuzzy sets representing particular numerical input attributes. These
parameters—subject to tuning during the FRBCs’ learning and MOEOA-based optimization—include
(see Figure 2): eS and ρS for S-type fuzzy sets; σM, dM, eM, and ρM for M-type fuzzy sets; and σL and dL
for L-type fuzzy sets. The non-tunable part of DB contains the set of class labels Y = {y1, y2, . . . , yc}.

Objectives of the FRBC’s evolutionary optimization: Two separate optimization objectives are
considered; i.e., the accuracy and the interpretability of the system. The FRBC’s accuracy measure
(subject to maximization) is defined as follows [20–22,40]:

Q(lrn)
ACC = 1 − Q(lrn)

RMSE, (4)

where

Q(lrn)
RMSE =

√√√√ 1
Kc

K

∑
k=1

c

∑
j=1

[
μ

B(singl.)(lrn)
k

(yj)− μB′
k
(yj)

]2
. (5)

μB′
k
(y) is the membership function of fuzzy set B′

k, which is a response of system (2) for the

learning data sample x(lrn)
k . In turn, μ

B(singl.)(lrn)
k

(y) (equal to 1 for y = y(lrn)
k and to 0 elsewhere) is the

membership function of fuzzy singleton B(singl.)(lrn)
k , which is the desired fuzzy-singleton response for

that sample (Q(lrn)
RMSE ∈ [0, 1]).

As far as the FRBC’s interpretability is concerned, we use the notion of interpretability in a broader
sense, which includes two essential aspects; i.e., the FRBC’s complexity and semantic aspects of the
FRBC’s operation. We evaluate the FRBC’s complexity-related interpretability using the following
measure (subject to maximization):

QINT = 1 − QCPLX , (6)

where
QCPLX =

QRINP + QINP + QFS
3

, (7)

and

QRINP =
1
R

R

∑
r=1

n(r)
INP − 1
n − 1

, QINP =
nINP − 1

n − 1
, QFS =

nFS − 1
∑n

i=1 ai − 1
, n > 1. (8)

The FRBC’s complexity measure QCPLX (7) takes its values from interval [0, 1], where 0 represents
the minimal complexity and 1 the maximal one. QCPLX is an average of three sub-measures that
evaluate: (i) an average complexity of particular rules QRINP (8) (n(r)

INP in (8) denotes the number of
active input attributes in the r-th rule); (ii) the complexity of the whole system in terms of its active
inputs QINP (8) (nINP in (8) denotes the number of active inputs in the whole system); and (iii) the
whole-system complexity in terms of its active fuzzy sets QFS (8) (nFS in (8) denotes the numbers of
active fuzzy sets (linguistic terms) in the whole system).

The FRBC’s semantics-related interpretability is addressed by us by imposing—as optimization
constraints—the so-called strong fuzzy partitions (SFPs) [41] upon domains of particular numerical
attributes. SFPs are special class of fuzzy partitions; namely, for any domain value, the sum of the
values of all membership functions constituting SFP is equal to 1. It can be shown [41] that SFPs satisfy
the desired demands regarding the semantics-related interpretability. Straightforward implementation
of SFP requirements for the case of trapezoidal membership functions can be formulated in the
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following way (see Figure 3 for illustration of the SFP-requirements’ implementation for the three-set
SFP of xi-domain):

σiki
= ρi,ki−1 = diki

− ei,ki−1, ki = 2, 3, . . . , ai (9)

and, obviously,

ei1 ≤ di2 ≤ ei2 ≤ · · · ≤ di,ai−1 ≤ ei,ai−1 ≤ diai , i = 1, 2, . . . , n. (10)

Figure 3. Illustration of the strong fuzzy partition (SFP) requirements for the three-set SFP of xi-domain.

Original, dedicated genetic operators introduced: A population of FRBC’s knowledge bases (each
represented by its RB and DB) is processed during the genetic learning process. We developed original
crossover and mutation operators for the transformation of the RB population. The crossover operator
processes two individuals (i.e., two RBs) containing R1 and R2 fuzzy rules, respectively, by performing
one sub-operation randomly selected from the set of five sub-operations referred to as Cro-RB1,
Cro-RB2, . . . , Cro-RB5. They are defined as follows:

Cro-RB1 (labeled as “exchange of many fuzzy rules”) operates in two stages. First, for the r-th rule
in both RBs, r = 1, 2, . . . , min(R1, R2), a random-switch condition (equivalent to the random selection
of 1 from the set {0, 1}) is checked. Then, the r-th rules from both RBs are exchanged, provided that the
random-switch condition is fulfilled. Second, each of the remaining rules of the larger RB is moved to
the smaller RB, provided that its random-switch condition is fulfilled.

Cro-RB2 (labeled as “exchange of a single fuzzy rule”) is similar to Cro-RB1 but the Cro-RB1
activities are carried out unconditionally and only once for randomly selected single rule from the
larger RB.

Cro-RB3 (labeled as “exchange of many fuzzy sets in many fuzzy rules”) is analogous to the first
stage of Cro-RB1. This time, the random-switch condition is run for each input attribute and for the
output class label from the corresponding rules coming from both RBs. Fuzzy sets describing a given
input attribute or class label in both RBs are exchanged provided that their random-switch conditions
are fulfilled.

Cro-RB4 (labeled as “exchange of many fuzzy sets in a single fuzzy rule”) performs the activities
of Cro-RB3 unconditionally and only once for a randomly selected single rule from the first RB and its
counterpart from the second RB.

Cro-RB5 (labeled as “exchange of a single fuzzy set”) is a special case of Cro-RB4. The activities
of Cro-RB4 are performed unconditionally and only once for a randomly selected input attribute or
output class label.

The mutation operator for the RB transformation processes a single individual (i.e., a single RB)
by performing one sub-operation randomly selected from the set of four sub-operations referred to as
Mut-RB1, Mut-RB2, Mut-RB3, Mut-RB4. They are defined as follows:
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Mut-RB1 (labeled as “fuzzy rule insertion”) inserts into RB a new fuzzy rule (2) with
randomly selected values of switches sw(r)

i (sw(r)
i ∈ {0, 1, 2, . . . , ai}, i = 1, 2, . . . , n) and class label

j(r) (j(r) ∈ {1, 2, . . . , c}).
Mut-RB2 (labeled as “fuzzy rule deletion”) removes a randomly selected fuzzy rule from the RB.
Mut-RB3 (labeled as “change a single fuzzy set”) randomly selects one fuzzy rule from the RB and

its one i-th input attribute or output class label j. Next, it randomly selects a new value of its switch
swi or class label j.

Mut-RB4 (labeled as “change of an input in a fuzzy rule”) randomly selects: (i) one fuzzy rule
from the RB, (ii) its one active input attribute (i.e., with swi1 > 0), and (iii) its one non-active input
attribute (i.e., with swi2 = 0). Then, the first attribute is set to be non-active (i.e., swi1 = 0) and the
second attribute—to be active (i.e., swi2 > 0) in that rule.

The crossover and mutation operators for the RB-population transformation are followed by
three RB-repairing operators. The first operator removes “empty” fuzzy rules, i.e., the rules with all
non-active input attributes (with swi = 0 for i = 1, 2, . . . , n), whereas the second one removes rule
duplicates. In turn, the third operator adds—for each class label that is currently not represented in
RB—one fuzzy rule with that class label (in order to preserve the principle “at least one fuzzy rule per
class in RB”).

DB population transformation is performed by means of separate genetic operators. The crossover
operator (processing two individuals; i.e., two DBs), randomly selects one fuzzy set from each DB.
New values of d and e-parameters, which characterize membership functions of both fuzzy sets
(see Figure 2) are calculated as linear combinations of their old values from both sets; they also must
fulfill condition (10). New values of σ and ρ-parameters are calculated from (9) using new values of d
and e-parameters. The mutation operator (processing a single individual, i.e., a single DB) randomly
selects one fuzzy set from the DB and one of its two parameters d and e (say, d is selected). Its new
value dnew = d + rand(−0.2, 0.2)[xi,max − xi,min], where rand(·) returns a random number from the
assumed interval and [xi,min, xi,max] is a range of the domain of the selected set. New values of σ and
ρ-parameters are calculated from (9).

MOEOAs used in our experiments: The performances of different MOEOAs are usually evaluated
and compared in terms of three aspects [42]. First, the accuracy of generated non-dominated solutions
is considered. The accuracy represents the closeness of those solutions to either the Pareto-optimal
solutions, or if they are not available, to reference solutions. Second, the spread of the solution set is
investigated; i.e., how well these solutions arrive at the extrema of the Pareto-optimal or reference
solution sets. The spread is usually represented by the distance between the extreme solutions in
the set. Third, the distribution of the solutions in the set, i.e., how evenly distributed they are along
the approximation of Pareto-optimal front in the objective space, is considered. A set of solutions
which are more accurate and are characterized by a higher spread and a better-balanced distribution
outperforms the alternative solution sets.

For the purpose of comparison, two MOEOAs are used in experiments reported in this
work; i.e., the well-known SPEA2 method and our generalization of SPEA2, referred to as SPEA3.
In comparison with SPEA2, the proposed SPEA3 approach generates sets of non-dominated solutions
characterized by higher spread and a more even distribution in the objective space. The essence
of the proposed SPEA2’s generalization consists of replacing its environmental selection procedure
with our original algorithm, which improves both the spread and distribution balance of generated
solutions. The environmental selection consists of selecting a representation of the best solutions from
all solutions obtained so far and keeping them in an external archive of a fixed size. In SPEA2 all
non-dominated solutions from the archive and the current population are copied to the next-generation
archive (to fill the archive, the best dominated solutions are copied to it). In the case of overfilling the
archive, a truncation procedure is run to reduce the archive size to the predefined level. Thus, only the
truncation procedure (if activated) contributes to improving the distribution balance and diversity of
the final set of solutions. On the contrary, the proposed environmental selection algorithm implemented
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in SPEA3 is fully-oriented towards achieving these goals. The archive is iteratively increased by
gradual adding of carefully selected non-dominated solutions from the current population (in each
subsequent generation, a single solution characterized by possible longest and similar distances
to its near neighbors is added). Then, a process of relocation of particular archived solutions
aiming at increasing average distances between solutions and their nearest neighbors is carried
out. Said relocation is performed by gradual replacement of archived solutions by new solutions
selected from the population in such a way as (i) to maximize the distances between extreme solutions
(which results in improving the spread of solutions) and (ii) to minimize the distance differences
between neighboring solutions (which results in improving the distribution of solutions). Concluding,
in our approach, the complementary operations of increasing and reducing the archive aim at obtaining
the best available distribution balance and spread of solutions belonging to Pareto-front approximation
(see [28,29] for detailed presentation and discussion).

5. Experiments (Application of Our Approach to DSGC-Stability Prediction) and Discussion

In this section we present the results of two experiments (for both data sets characterized in
Section 3 of this paper) regarding the application of our approach to interpretable and accurate
DSGC-stability prediction.

5.1. Application to Electrical Grid Stability Simulated Data Set

We start with revealing some details of the operation of our method for constructing FRBCs from
the considered simulated data set. Figure 4a presents two 10-element-collections of non-dominated
solutions (optimized FRBCs) generated in a single run of our FRBCs’ design technique employing,
independently, our SPEA3 and SPEA2 algorithms. Both experiments of genetic learning have been
performed for a learning-test data split with 1:9 ratio. It means that only 10% of the whole original data
set (preserving the class proportions) is used as the learning data to construct the system, whereas the
remaining 90% of the original data are used for the system’s testing. It is worth emphasizing that such a
data split poses a significant challenge to any system’s design technique. Each collection of solutions of
Figure 4a represents the best available approximations of Pareto-optimal solutions generated either by
our SPEA3 or SPEA2. Particular solutions from a given collection (front) are characterized by different
levels of optimized interpretability-accuracy trade-off. Thus, the user can select a single solution
(a specific FRBC) with a desired degree of compromise between the interpretability and accuracy.

(a) (b)

No.Objective function
complements

Interpretability
measures

Accuracy
measures

1 − QINT

= QCPLX

1 − Q(lrn)
ACC

= Q(lrn)
RMSE

R nINP nFS nINP/R ACC(lrn) ACC(tst)

1. 0 0.48901 3 1 5 1 69.7% 68.0%
2. 0.0454 0.46331 4 2 5 1 72.1% 69.5%
3. 0.1193 0.43866 8 3 5 1.6 74.5% 70.6%
4. 0.1848 0.38803 15 4 5 2.1 76.6% 74.5%
5. 0.2686 0.41247 11 6 7 1.9 79.1% 77.1%
6. 0.3181 0.35943 19 7 7 2 85.6% 81.9%
7. 0.3659 0.33349 20 8 8 2 87.0% 84.5%
8. 0.4063 0.30451 33 8 8 2.9 89.4% 83.9%
9. 0.5110 0.28618 41 10 14 3.2 90.1% 83.9%
10. 0.6218 0.27587 47 12 14 3.7 89.9% 83.2%

Figure 4. (a) The best Pareto-front approximation generated by our SPEA3 and SPEA2;
(b) interpretability and accuracy measures of SPEA3-based solutions from (a) (Electrical Grid Stability
Simulated Data Set).
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Figure 4a shows that our SPEA3-based approach generates the collection of solutions characterized
by: (i) a much-better-balanced distribution in the objective space (i.e., the solutions are distributed
along the front in a much more even way) and (ii) higher accuracy (i.e., the closeness to Pareto-optimal
front). Therefore, our SPEA3-based approach outperforms its SPEA2-based counterpart (see Section 4
of this paper for MOEOAs’ performance evaluation criteria). The interpretability and accuracy-related
numerical details of all SPEA3-based solutions (FRBCs) from Figure 4a are collected in Figure 4b, in
which nINP/R is the number of input attributes per rule, whereas ACC(lrn) is the percentage of correct
decisions in the learning set and ACC(tst)—in the test set (the remaining parameters were defined in
Section 4 of the paper).

Table 3. Fuzzy rule bases for SPEA3-based solutions (FRBCs) 1–3 from Figure 4.

No. Fuzzy Classification Rules

Solution No. 1 (ACC(tst) = 68%):
1. IF tau1 is Small THEN stable
2. IF tau1 is Medium THEN unstable
3. IF tau1 is Large THEN unstable

Solution No. 2 (ACC(tst) = 69.5%):
1-3. These rules are the same as rules 1-3 from Solution No. 1.
4. IF tau4 is Small THEN stable

Solution No. 3 (ACC(tst) = 70.6%):
1,2. These rules are the same as rules 1, 2 from Solution No. 2.
3. IF tau1 is Large AND tau4 is Medium THEN

unstable
4. This rule is the same as rule 4 from Solution No. 2.
5. IF tau1 is Large AND tau4 is Large THEN

unstable
6. IF tau3 is Small AND tau4 is Medium THEN

stable
7. IF tau3 is Medium AND tau4 is Medium THEN

unstable
8. IF tau3 is Large AND tau4 is Large THEN

unstable
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Table 4. Fuzzy rule base for SPEA3-based solution (FRBC) 7 from Figure 4 which is characterized by
the highest test-data accuracy.

No. Fuzzy Classification Rules

Solution No. 7 (ACC(tst) = 84.5%):
1. IF tau1 is Small AND tau2 is Small THEN stable
2. IF tau1 is Small AND tau3 is Small THEN stable
3. IF tau1 is Small AND tau4 is Small THEN stable
4. IF tau1 is Small AND g2 is Small THEN stable
5. IF tau1 is Small AND g4 is Small THEN stable
6. IF tau1 is Medium AND g4 is Large THEN

unstable
7. IF tau1 is Large AND g1 is Large THEN unstable
8. IF tau2 is Small AND tau3 is Small THEN stable
9. IF tau2 is Small AND tau4 is Small THEN stable
10. IF tau2 is Small AND g3 is Small THEN stable
11. IF tau2 is Medium AND g2 is Large THEN

unstable
12. IF tau2 is Large AND g2 is Large THEN unstable
13. IF tau3 is Small AND tau4 is Small THEN stable
14. IF tau3 is Small AND g4 is Small THEN stable
15. IF tau3 is Large AND g3 is Large THEN unstable
16. IF tau4 is Small AND g3 is Small THEN stable
17. IF tau4 is Large AND g4 is Large THEN unstable
18. IF g1 is Small AND g2 is Small THEN stable
19. IF g1 is Small AND g2 is Medium AND g4 is

Medium THEN stable
20. IF g2 is Small AND g3 is Small THEN stable

Fuzzy rule bases of exemplary SPEA3-based solutions (FRBCs) are presented in Tables 3 and 4
(membership functions of fuzzy sets representing input attributes used are also included). Table 4
presents the fuzzy rule base for the SPEA3-based solution (FRBC) 7 from Figure 4 which is characterized
by the highest test-data accuracy. In turn, Table 3 reveals an interesting regularity, i.e., the fuzzy rule
base of the solution 2 contains three rules from the solution 1. In turn, the fuzzy rule base of the solution
3 contains three rules from the solution 2, etc. Therefore, if higher system accuracy is required, then our
approach adds some additional fuzzy rules (or extends the earlier-discovered rules) to provide a more
detailed, and thus, more accurate description of the considered prediction problem. Said regularity
confirms the internal integrity of our approach. This regularity is also illustrated in Table 5 (see, first,
Part A of Table 5) in which each black square denotes the presence of a given input attribute in the
fuzzy rule base of a given solution (FRBC). ACC(tst)

1 is the test-data accuracy of the system exclusively
based on the most significant input attribute. In Part A of Table 5 the most significant attribute is
tau1, occurring in the solution 1 and giving ACC(tst)

1 = 68%. Moreover, ΔACC(tst)
j , j = 2, 3, . . . is the

accuracy increase following the inclusion of the 2nd, 3rd, . . . most significant attributes into the system.
In Part A of Table 5, the inclusion of tau4 (2nd most significant attribute) yields 1.5% increase in the
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test-data-accuracy and is related to the solution 2. In turn, the inclusion of tau3 (3rd most significant
attribute) gives a further 1.1% test-data-accuracy-increase and is related to the solution 3, etc.

In such a way, we can uncover the hierarchy of significance of particular attributes. However,
the obtained attribute-significance hierarchy is correct provided that no “overlapping” of some input
attributes over the other ones occurs in the simulated data set. In order to verify that, we remove from
the original data set the so-far most significant attribute, i.e., tau1, and we repeat, in an analogous way,
the learning experiment. Its results are presented in Part B of Table 5, giving tau4 attribute the most
significance place. Tau4 occupied second position in the experiment of Part A. Therefore, we conclude
that tau4 is not "overlapped" by tau1. In the next step, we remove tau4 from the present data set and
repeat the learning experiment—see Part C of Table 5—obtaining tau3 as the most significant attribute
at this stage. It occupied second position in experiment of Part B. Therefore, tau3 is not “overlapped”
by tau4. We repeat analogous experiments several times; i.e., we remove the most significant—at a
given stage—input attribute and repeat the learning process on the reduced data set—see Parts D–H
of Table 5. In such a way, we arrive to the real final hierarchy of input attribute significance in the
DSGC-stability prediction problem. It is shown in the left part of Table 6 that ACC(tst)

1 has the same
meaning as in Table 5; i.e., it is the test-data-accuracy of the system exclusively based on a single
attribute listed to the left of ACC(tst)

1 in Table 6.
The results of an alternative approach addressing the hierarchy of importance of particular input

attributes in the considered simulated data set and proposed in [43] are presented in the right part
of Table 6. The following remarks are formulated in [43]: “The time response of the consumers and
producer to the price fluctuation play a more important role in the grid stability, as compared to the
price elasticity index... Unstable grid conditions generally prevail for higher values of τ and γ. . . The
power consumption pattern does not show any difference under stable and unstable grid conditions
thus conforming with the analysis of feature selection obtained.” (a quote from [43]). The results of
our experiments are consistent with all the above comments.

Table 5. Illustration of attribute presence and significance in the Electrical Grid Stability Simulated
Data Set.

Attribute
Name

ACC(tst)
1

ΔACC(tst)
j

j = 2, 3, . . .

Attribute Presence in the
Rules of Solution No.:

1 2 3 4 5 6 7 8 9 10

Part A—Number of input attributes: 12 (all)

−→
H

ig
h tau1 68.0% � � � � � � � � � �

tau4 +1.5% � � � � � � � � �

A
tt

ri
bu

te
si

gn
ifi

ca
nc

e

tau3 +1.1% � � � � � � � �

tau2 +3.9% � � � � � � �

g3 }
+2.6%

� � � � � �

g4 � � � � � �

g2 +4.8% � � � � �

g1 +2.6% � � � �

Lo
w
←−

p1 }
−0.4%

� �

p4 � �

p2 }
−0.7%

�

p3 �
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Table 5. Cont.

Attribute
Name

ACC(tst)
1

ΔACC(tst)
j

j = 2, 3, . . .

Attribute Presence in the
Rules of Solution No.:

1 2 3 4 5 6 7 8 9 10

Part B—Number of input attributes: 11

−→
H

ig
h tau1—removed attribute

tau4 67.7% � � � � � � � � � �

A
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te
si
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ifi
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nc

e

tau3 +0.7% � � � � � � � � �

tau2 +2.0% � � � � � � � �

g3 +2.2% � � � � � � �

g4 +3.4% � � � � � �

g2 +3.9% � � � � �

g1 +1.8% � � �
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w
←−

p2 }
−0.6%

� �

p4 � �

p3 }
+0.2%

�

p1 �

Part C—Number of input attributes: 10
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removed attributestau4

A
tt

ri
bu

te
si

gn
ifi

ca
nc

e
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tau2 +2.2% � � � � � � � � �

g3 +2.4% � � � � � � �

g2 +3.0% � � � � � �

g4 +2.5% � � � � �

g1 +3.7% � � � �
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w
←−

p1 +0.3% � � �

p3 −0.2% � �

p2 }
−0.1%

�

p4 �

Part D—Number of input attributes: 9

−→
H
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h tau1 }

removed attributestau4
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ifi
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e

tau3
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g3 +1.7% � � � � � � �
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Part E—Number of input attributes: 8
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h tau1 }
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tau4
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e

tau3
tau2
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Table 5. Cont.

Attribute
Name

ACC(tst)
1

ΔACC(tst)
j

j = 2, 3, . . .

Attribute Presence in the
Rules of Solution No.:

1 2 3 4 5 6 7 8 9 10

Part F—Number of input attributes: 7

−→
H

ig
h tau1 ⎫⎪⎬

⎪⎭ removed attributes
tau4
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e
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tau2
g3
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g4 +5.1% � � � � � � � � �

p1 −3.1% � � � � � �

Lo
w
←−

g1 +3.1% � � � � �

p4 −1.9% � � �

p3 +0.6% � �

p2 +0.8% �

Part G—Number of input attributes: 6

−→
H

ig
h tau1 ⎫⎪⎪⎬

⎪⎪⎭ removed attributes

tau4

A
tt

ri
bu

te
si

gn
ifi

ca
nc

e

tau3
tau2
g3
g2
g4 62.2% � � � � � � � � � �

p1 +1.3% � � � � � � � � �

Lo
w
←−

g1 +1.6% � � � � � �

p2 +0.1% � � �

p4 +0.3% � �

p3 −0.6% �

Part H—Number of input attributes: 5

−→
H

ig
h tau1 ⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭
removed attributes

tau4

A
tt

ri
bu

te
si

gn
ifi

ca
nc

e

tau3
tau2
g3
g2
g4
g1 62.1% � � � � � � � � � �

Lo
w
←−

p1 +1.1% � � � � � � � � �

p2 0.0% � � � � �

p4 −0.1% � � �

p3 −0.1% � �
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Table 6. Final hierarchy of attribute significance—a comparison of our approach and an alternative
method of [43] (Electrical Grid Stability Simulated Data Set).

Our Approach
Alternative Approach of [43]

(Panda and Das (2019))

Attribute Name ACC(tst)
1 Attribute Name Importance

A
tt

ri
bu

te
si

gn
ifi

ca
nc

e

−→
H

ig
h tau1 68.2% tau2 0.064

tau4 67.8% tau4 0.061
tau3 66% tau3 0.06
tau2 66% tau1 0.058
g3 64% g3 0.057

Lo
w
←−

g2 62.7% g2 0.05
g4 62.2% g4 0.044
g1 62.1% g1 0.041
p1, p2, p3, and p41) - p1, p2, p3, and p4 � 0.001

1) The attributes p1, p2, p3, and p4 do not occur in the fuzzy rule base of our most accurate solution 7 (see Table 4)
and have not been tested.

The cross-validation experiment with 1:9 learning-test data split ratio is the next and important
part of our work. Each single learning experiment begins with generation of a Pareto-front
approximation. Next, a single solution with, first, the highest test-data accuracy, and second, the highest
interpretability, is chosen from that front approximation. In turn, the results from all partial experiments
are averaged. The experiment is then repeated 10 times for different initializations of our approach.
The averaged results are shown in the last row of Table 7, which also collects the results of as many as
39 alternative approaches applied to the considered data set; i.e., the Electrical Grid Stability Simulated
Data Set. There are four groups of them. The first one, considered in [44], includes four methods:
logistic regression (LR), random forest (RF), gradient boosted trees (GBT), and multilayer perceptron
classifier (MPC). Each of them was supported, independently, by three feature selection algorithms:
multivariate adaptive regression splines (MARS) algorithm, binary kangaroo mob optimization feature
selection (BKMOFS) algorithm, and binary particle swarm optimization feature selection (BPSOFS)
algorithm. The second group, considered in [45], includes seven methods: k-nearest neighbors (kNN)
algorithm, support vector machine (SVM), radial basis function (RBF) network, decision trees, RF,
naive Bayes approach, and quadratic discriminant analysis (QDA). The third group, considered
in [46], includes eight methods: fine and bagged-tree algorithms, fine and weighted-kNN, LR, and
linear, quadratic, and cubic-SVMs. The last group, considered in [47], includes six methods: the
stochastic damped regularized LBFGS algorithm (Sd-REG-LBFGS; LBFGS stands for the limited
memory Broyden–Fletcher–Goldfarb–Shanno algorithm), stochastic damped regularized LBFGS
without regularization (SdLBFGS), robust stochastic approximation (RSA), stochastic approximation
averaging (SAA), stochastic gradient difference (SGD), and a method of gradient-based stochastic
optimization (Adam [48]). Each of them was used, independently, with logistic regression and Bayesian
logistic regression algorithms.

The overwhelming majority of the alternative approaches of Table 7 are the black-box methods
focused only on the system’s accuracy. Moreover, for methods applied in [44–46] only the
learning-data-accuracy is available. Therefore, it is not possible to assess their generalizing capabilities
(usually measured by test-data-accuracy), which belong to essential performance-evaluation criteria
of any system designed from data. Some of the methods of [44] operate on more than 100 features,
whereas the remaining approaches typically use 12 attributes; i.e., all the input attributes from the
simulated data set. The experiments of [47] are performed for the 4:1 learning-test data split ratio,
which significantly favors them in regard to our experiments using only 1:9 learning-test data split
ratio. Despite that, our approach provides not only comparable test-data accuracy but also a detailed
insight—in the form of fuzzy linguistic rules—into the mechanisms governing the DSGC stability.
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Table 7. Results of our approach and comparison with alternative methods for the Electrical Grid
Stability Simulated Data Set.

S
o

u
rc

e

Method
Learn-to-

Test
Ratio

Number
of Runs

Average Accuracy
Measures for Learning

and Test Data

Average
Interpretability

Measures

ACC(lrn) ACC(tst) R nATR nFS nATR/R

[4
4]

(M
ol

do
va

n
an

d
Sa

lo
m

ie
(2

01
9)

)

LR
RF
GBT
MPC

⎫⎪⎬
⎪⎭

with MARS-based feature
selection algorithm

- n/a 63.9% n/a - 10 - -
- n/a 87.8% n/a n/a 10 n/a n/a
- n/a 88% n/a n/a 10 n/a n/a
- n/a 91.9% n/a - 10 - -

LR
RF
GBT
MPC

⎫⎪⎬
⎪⎭

with BKMOFS-based feature
selection algorithm

- n/a 66.3% n/a - 102 - -
- n/a 83.7% n/a n/a 102 n/a n/a
- n/a 88.8% n/a n/a 102 n/a n/a
- n/a 91.5% n/a - 102 - -

LR
RF
GBT
MPC

⎫⎪⎬
⎪⎭

with BPSOFS-based feature
selection algorithm

- n/a 64.7% n/a - 111 - -
- n/a 84.3% n/a n/a 111 n/a n/a
- n/a 87% n/a n/a 111 n/a n/a
- n/a 93.8% n/a - 111 - -

[4
5]

(K
ar

im
(2

01
9)

)

kNN n/a n/a 80.4% n/a - 12 - -
SVM n/a n/a 82.2% n/a - 12 - -
RBF n/a n/a 62.7% n/a - 12 - -

Decision Tree n/a n/a 84% n/a n/a 12 n/a n/a
RF n/a n/a 88.5% n/a n/a 12 n/a n/a

Naive Bayes n/a n/a 83.6% n/a - 12 - -
QDA n/a n/a 82.7% n/a - 12 - -

[4
6]

(B
al

al
ie

ta
l.

(2
02

0)
)

Fine Tree n/a n/a 84.2% n/a n/a 12 n/a n/a
Bagged Tree n/a n/a 91.5% n/a n/a 12 n/a n/a
Fine KNN n/a n/a 81.1% n/a - 12 - -

Weighted KNN n/a n/a 86.6% n/a - 12 - -
LR n/a n/a 81.5% n/a - 12 - -

Linear SVM n/a n/a 81.5% n/a - 12 - -
Quadratic SVM n/a n/a 94.2% n/a - 12 - -

Cubic SVM n/a n/a 96.9% n/a - 12 - -

[4
7]

(C
he

n,
C

ha
n,

W
u

an
d

La
m

(2
01

9)
)

Sd-REG-LBFGS
SdLBFGS
RSA
SAA
SGD
Adam

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

with logistic
regression

4:1 50 n/a 87.55% - 12 - -
4:1 50 n/a 87.68% - 12 - -
4:1 50 n/a 86.72% - 12 - -
4:1 50 n/a 86.72% - 12 - -
4:1 50 n/a 86.72% - 12 - -
4:1 50 n/a 52.69% - 12 - -

Sd-REG-LBFGS
SdLBFGS
RSA
SAA
SGD
Adam

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

with Bayesian
logistic
regression

4:1 50 n/a 87.56% - 12 - -
4:1 50 n/a 87.67% - 12 - -
4:1 50 n/a 87.27% - 12 - -
4:1 50 n/a 87.27% - 12 - -
4:1 50 n/a 87.27% - 12 - -
4:1 50 n/a 64.53% - 12 - -

Th
is

pa
pe

r

Our approach based on SPEA3 1:9 10 91.1% 85.5% 22.7 9.7 26.9 4.1

n/a stands for not available.

5.2. Application to an Input-Aggregate-Based, Concise Version of the Simulated Data Set of Section 5.1

As already said in Section 3 of this paper, a concise, input-aggregate-based representation of the
Electrical Grid Stability Simulated Data Set was proposed in [14]. According to [14]: “Since the system
has symmetries, we hypothesize that a more concise representation of simulation results is feasible
based on input aggregates, i.e., features. To create features, we take the minimum, maximum and
mean values across all N participants of each input; e.g., minτj for j = 1, . . . , N.” (a quote from [14]).
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Following that, we constructed such a set (referred to as the Concise Simulated Data Set) as shown in
Section 3. It will be used in experiments reported in this section.

Figure 5a presents a 10-element-collection of non-dominated solutions (optimized FRBCs)
generated in a single run of our SPEA3 algorithm. Similarly to Section 5.1, the genetic learning
experiment has been performed for the learning-test data split with a 1:9 ratio. Figure 5b presents the
interpretability and accuracy-related numerical details for solutions of Figure 5a.

(a) (b)

No.Objective function
complements

Interpretability
measures

Accuracy
measures

1 − QINT

= QCPLX

1 − Q(lrn)
ACC

= Q(lrn)
RMSE

R nINP nFS nINP/R ACC(lrn) ACC(tst)

1. 0 0.4185 3 1 3 1 74.3% 73.2%
2. 0.0625 0.4014 5 2 5 1 81.2% 79.5%
3. 0.0833 0.3835 5 2 6 1.2 81.3% 79.6%
4. 0.1563 0.371 5 2 6 1.4 81.9% 80.3%
5. 0.2188 0.3642 7 4 6 1.4 82.9% 80.9%
6. 0.2857 0.3582 8 5 6 1.5 84.2% 82.4%
7. 0.3255 0.3492 10 5 6 1.8 84.9% 82.2%
8. 0.3934 0.3479 12 6 7 2.3 84.6% 82.1%
9. 0.4816 0.3471 12 7 8 2.3 84.6% 82%
10. 0.6042 0.3446 14 8 8 2.3 84.9% 82%

Figure 5. (a) The best Pareto-front approximation generated by our SPEA3; (b) interpretability and
accuracy measures of solutions from (a) (Concise Simulated Data Set).

Table 8—presenting fuzzy rule bases of exemplary solutions from Figure 5—shows the same
regularity as for experiments of Section 5.1. Namely, if the higher accuracy of the system is required,
our approach adds additional rules or extends the existing ones to provide a more detailed and accurate
model for decision support. Table 9 presents fuzzy rule base of the solution 6 which achieves the
highest test-data accuracy (see Figure 5). Transformation of fuzzy classification rules from Table 9 into
decision-tree form is shown in Figure 6. It reveals the mechanisms governing the DSGC-stability from
the perspective of essential input aggregates such as tau_min, tau_avg, tau_max, g_avg, and g_max.

tau_max

tau_avg

g_maxg_avg

stable

stable

unstable

Rule No. 7

Rule No. 8

Rule No. 2

Large
Large

LargeLarge

tau_avgg_avg

stable

Small

Small

Rule No. 1

Medium

Medium

g_avg

tau_avg

tau_avg

g_maxtau_max

stablestable

stablestable

unstable

unstable

unstable

Rule No. 1Rule No. 4

Rule No. 8Rule No. 4

Rule No. 5

Rule No. 2

Rule No. 3

tau_min

tau_min

unstable

Rule No. 6 LargeLarge

Small

Small

Small

Small

SmallSmall

Small

Medium Medium

Medium

Figure 6. Transformation of fuzzy classification rules from Table 9 into decision-tree form.

36



Energies 2020, 13, 2559

Table 8. Fuzzy rule bases for SPEA3-based solutions (FRBCs) 1–3 from Figure 5.

No. Fuzzy Classification Rules

Solution No. 1 (ACC(tst) = 73.2%):
1. IF tau_avg is Small THEN stable
2. IF tau_avg is Medium THEN unstable
3. IF tau_avg is Large THEN unstable

Solution No. 2 (ACC(tst) = 79.5%):
1-3. These rules are the same as rules 1-3 from Solution No. 1.
4. IF g_avg is Small THEN stable
5. IF g_avg is Large THEN unstable

Membership functions of fuzzy sets for particular
input attributes are the same as in Solution No. 5

Solution No. 3 (ACC(tst) = 79.6%):
1. IF tau_avg is Small AND g_avg is Medium

THEN stable
2-5. These rules are the same as rules 2-5 from Solution No. 2.

Membership functions of fuzzy sets for particular
input attributes are the same as in Solution No. 5

Solution No. 4 (ACC(tst) = 80.3%):
1. This rule is the same as rule 1 from Solution No. 3.
2. IF tau_avg is Medium AND g_max is Large

THEN unstable
3-5. These rules are the same as rules 3-5 from Solution No. 3.

Membership functions of fuzzy sets for particular
input attributes are the same as in Solution No. 5

Solution No. 5 (ACC(tst) = 80.9%):
1-3. These rules are the same as rules 1-3 from Solution No. 4.
4. IF tau_min is Small AND g_avg is Small

THEN stable
5. This rule is the same as rule 5 from Solution No. 4.
6. IF tau_min is Medium THEN unstable
7. IF g_max is Small THEN stable
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Table 9. Fuzzy rule base for SPEA3-based solution (FRBC) 6 from Figure 5.

No. Fuzzy Classification Rules

Solution No. 6 (ACC(tst) = 82.4%):
1. IF tau_avg is Small AND g_avg is Medium

THEN stable
2. IF tau_avg is Medium AND g_max is Large

THEN unstable
3. IF tau_avg is Large THEN unstable
4. IF tau_min is Small AND g_avg is Small THEN

stable
5. IF g_avg is Large THEN unstable
6. IF tau_min is Medium THEN unstable
7. IF g_max is Small THEN stable
8. IF tau_avg is Small AND tau_max is Large

THEN stable

Rules 1-7 are the same as rules 1-7 from Solution No. 5.
(for the convenience of the reader, they have been repeated here)

In the work [14] we can say that, “If min(τj) < 2.1 and avg(γj) ≥ 0.5 and avg(τj) < 4.8 and
max(τj) ≥ 8 then the system is stable. This means that, in a stable grid, a consumer may have a
reaction time higher than τc ≈ 8s) as long as there is a consumer reacting quite fast, and the average
reaction time is moderate" (a quote from [14]). We can formulate a similar conclusion based on the
much simpler (and thus more interpretable) rule 8 from our fuzzy rule base of Table 9. It is obvious
that as long as tau_avg is small, then tau_min is also small; therefore, it is not necessary to include
tau_min into the rule. In turn, the grid stability suffers when all participants react relatively slowly (see
the rule 6 of Table 9) or very slowly (see the rule 3 of that table). In general, higher values of tau and g
lead to unstable grid conditions—see the rules 2 and 5 of Table 9 from the “unstable”-class perspective
and the rules 1, 4, and 7 of that table—from the "stable"-class point of view.

In the final part of this section, we would like to put a "bridge" between solutions for the Electrical
Grid Stability Simulated Data Set of Section 5.1 and its input-aggregate-based Concise Simulated Data Set
of Section 5.2. Figure 7 shows the best Pareto-front approximations generated by our SPEA3 algorithm
for both considered data sets (they were earlier presented independently in Figures 4a and 5a). Figure 7
confirms an intuitively obvious regularity; namely, the solutions for the input-aggregate-based concise
data set are more interpretability-oriented ones, whereas the solutions for the original data set with
non-aggregated input attributes are more accuracy-oriented ones.
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Figure 7. The best Pareto-front approximations generated by our SPEA3 for the Electrical Grid Stability
Simulated Data Set and the Concise Simulated Data Set.

6. Conclusions

In this paper we address the problem of transparent and accurate prediction of decentral smart
grid control stability using our knowledge-based data-mining approach implemented as the fuzzy
rule-based classifier. Our approach employs multi-objective evolutionary optimization algorithms
to optimize the interpretability-accuracy trade-off of the classification system. The transparency and
interpretability (i.e., the ability to provide the user with understandable and compact explanations of
generated predictions) and the accuracy (i.e., the ability to generate correct and precise predictions)
are important aspects of the operation of decision support systems for smart grid stability prediction.
Compact, linguistic, fuzzy classification rules generated by our approach—due to their high readability
and easy-to-grasp interpretation—belong to the most effective knowledge-representation structures
in the considered domain. Our approach, in a single run, generates a set of non-dominated
solutions (a collection of fuzzy classification systems) characterized by different levels of optimized
interpretability-accuracy trade-off; the user can select a single solution according to his/her needs.
Recently published and available at the UCI Database Repository (https://archive.ics.uci.edu/ml)
Electrical Grid Stability Simulated Data Set and its input-aggregate-based concise version referred to as
Concise Simulated Data Set are used in our experiments.

The contribution of this paper is twofold. First, by means of broad cross-validation-based
experiments, we show that our approach significantly outperforms alternative methods (altogether
39 alternative methods are considered) in terms of the transparency and interpretability of generated
predictions while remaining competitive or superior in terms of the accuracy of those predictions.
It is worth emphasizing that the overwhelming majority of the existing studies on smart grid
stability prediction concentrate on the accuracy-oriented approaches not providing an insight into the
prediction mechanisms.

Second, our approach—besides being interpretable and accurate in the considered domain—is also
an effective method for uncovering the hierarchy of significance of particular input attributes contributing
to the smart grid stability prediction process. In order to uncover the real attribute-significance hierarchy
we also analyze the possible “overlapping” of some input attributes over the other ones from the
DSGC-stability perspective.

Our further work will concentrate on improving the optimization of the systems’
interpretability-accuracy trade-off. It is essential from the point of view of generating highly
interpretable and highly accurate modern systems (cf. explainable artificial intelligence [49,50] or
interpretable machine learning [51,52] systems) for decision support in various areas of applications
including smart grid modeling and control.
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Springer: Berlin, Germany, 2012; Volume 7269, pp. 222–230.
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Abstract: This study forecasts electricity demand in a smart grid environment. We present a prediction
method that uses a combination of forecasting values based on time-series clustering. The clustering
of normalized periodogram-based distances and autocorrelation-based distances are proposed
as the time-series clustering methods. Trigonometrical transformation, Box–Cox transformation,
autoregressive moving average (ARMA) errors, trend and seasonal components (TBATS), double
seasonal Holt–Winters (DSHW), fractional autoregressive integrated moving average (FARIMA),
ARIMA with regression (Reg-ARIMA), and neural network nonlinear autoregressive (NN-AR) are
used for demand forecasting based on clustering. The results show that the time-series clustering
method performs better than the method using the total amount of electricity demand in terms of the
mean absolute percentage error (MAPE).

Keywords: smart grid; DSHW; TBATS; NN-AR; time-series clustering

1. Introduction

In order to switch to a smart grid environment, real-time power demand data of each residence and
industry is collected through the supply of AMI (advanced metering infrastructure). We aim to achieve
efficient power use through an environment that can identify and control electricity consumption
with AMI. After the expansion of smart-metering devices, it is necessary to forecast demand and
supply accurately. The power system in a smart grid environment enhances the efficiency of power use
and production using the exchange of information between the electricity supplier and the consumer
through the smart meter [1].

In the Korea domestic electric power market, electrical power is produced while maintaining
a reserve of 40,000 MW based on the maximum demand. However, after the “Second Energy Basic
Plan” policy was promulgated in 2014 [2], the power management policy transformed from a power
supply center policy into a power demand management center policy. Therefore, it is required to
study the demand forecast based on the bottom-up method according to the individual companies
and households, as well as power demand forecasts across the country. You should also consider
environmental protection issues as well as energy efficiency issues.

In the power supply center scenario, efficiency was low owing to power being consumed even
when it was not needed, and problems such as greenhouse gas emissions (which pose a serious
threat to the environment) occurred owing to the burning of coal, oil, and gas [3]. A greenhouse gas
(GHG) reduction target of 30%, as compared with the 2020 business-as-usual (BAU) levels, was fixed
consequent to the G7 expansion summit in July 2008. Therefore, reducing emissions has become a
mandatory requirement. It is possible to reduce greenhouse gas emissions through accurate electric
power demand prediction, which helps avoid unnecessary electric power generation. A smart grid
environment can result in improved accuracy of electric power demand prediction, by transitioning
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from the existing method of top-down prediction of the country’s total electricity demand to a bottom-up
approach; this improved accuracy will help reduce greenhouse gas emissions. In other words, by
eliminating unnecessary power production through the introduction of high-efficiency power grids,
which incorporate smart grids and smart meters, greenhouse gas emissions can be reduced.

Even though the importance of accurate prediction is emphasized in the smart grid environment,
the development of the forecasting methodology is progressing somewhat slowly owing to the obstacle
of private information disclosure. In addition, the name and the characteristics of the company are
often not revealed even if the electricity usage is disclosed. In this study, despite the fact that electricity
demand data for each company were collected, there was a problem that the characteristics of the
company (e.g., corporate sector, contracted power volume, region, name, size of the buildings) could
not be obtained.

Besides, even when collecting company-specific data, situations may arise where the classification
criteria are ambiguous. We were only able to collect ID numbers and hourly power demand data for
each company. Therefore, this study intends to present a forecasting method in a situation where only
electricity demand data for each company are provided or in a condition where the classification of
companies is obscure.

First, companies are clustered using the demand pattern of electricity demand. As the data of
the same pattern fit for the same time-series model, companies belonging to the same cluster are
aggregated into one cluster power data to make forecasts according to the appropriate model. Lastly,
the total power demand is predicted by summing the results for each cluster.

In the past, before information and communication technologies (ICTs) and smart grids were
developed, forecasting was based primarily on supply-side aggregated data in top-down formats
at overarching governmental levels. Recently, owing to the development of computer technology,
it has become possible to consider end-user demand through a bottom-up approach. The top-down
approach was considered appropriate for the short-term load forecasting (STLF) method in the past.
However, currently, the bottom-up approach is also applicable for STLF [4]. Thus, these technologies
have expanded their roles by helping forecast peak load demand.

Forecasting methods are classified into statistical and non-statistical methods, depending on the
underlying technique. Statistical methods generate mathematical equations from existing historical
data to estimate model parameters and obtain predictions. These methods include autoregressive
integrated moving average (ARIMA) models [5,6], regression seasonal autoregressive moving average
generalized autoregressive conditional heteroscedasticity models (Reg-SARIMA-GARCH models) [7,8],
exponential smoothing methods [9,10], time-series models for series exhibiting multiple complex
seasonality (trigonometrical transformation, Box–Cox transformation, ARMA errors, trend and seasonal
components (TBATS)) [10,11], regression models [12], support vector machine (SVM) models [13,14],
fuzzy models [15,16], and Kalman filters [17].

In contrast, Artificial Intelligence (AI)-based techniques have high predictive power and are suitable
for nonlinear data because of their nonlinear and nonparametric function characteristics. Many studies
using neural network models such as convolutional neural network (CNN) [18,19], recurrent
neural network (RNN) [20,21], and long short-term memory (LSTM) [22,23] have been published.
Recent studies on the smart grid environment are briefly reviewed in the following paragraphs.
Mohammadi et al. [24] proposed a hybrid model consisting of an improved Elman neural network
(IENN) and novel shark smell optimization (NSSO) algorithm based on maximizing relevancy and
minimizing redundancy to predict smart-meter data in Iran. Ghadimi et al. [25] studied a hybrid
forecast model of artificial neural networks (ANNs), radial basis function neural networks (RBFNNs),
and support vector machines (SVMs) to predict loads and prices in smart grids, based on Australia
and new England data. They showed that the proposed model, using a dual-tree complex wavelet
transform and a multi-stage forecast engine, was superior across the four seasons, as compared with
other classic models. Kim et al. [26] provided advanced metering infrastructure (AMI) forecasting
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data for Korea using a long short-term memory (LSTM) network with a sequence of past profiles,
temperature, and humidity.

Vrablecova et al. [27] used the support vector regression (SVR) method to predict smart grid data
for 5000 households in Ireland. They compared various forecasting methods using an optimal window,
and the results showed that the online SVR method was suitable for STLF in non-stationary data.
Chou et al. [28] forecasted the energy consumption of air conditioners from a smart grid system using
a hybrid model of ARIMA, metaheuristic firefly algorithm (MetaFA), and least-squares support vector
regression (LSSVR) to integrate linear and nonlinear characteristics. The models were compared for
various sizes of the sliding window as well as various input factors, and showed superiority over
the basic models. Mohammad et al. [29] studied smart meters from 100 commercial buildings using
the ARIMA model, exponential smoothing method, and seasonal and trend decomposition using
loess (SLT) method. The buildings were compared based on industry characteristics, and the 5 min
recorded data were aggregated with the 30 min data to ensure that a similar day approach could be
followed. Muralitharan et al. [30] compared the neural network-based optimization approach for
smart grid prediction. The results showed that the neural network based genetic algorithm (NNGA)
was suitable for STLF. At the same time, neural network-based particle swarm optimization (NNPSO)
was better for the long-term load forecast (LTLF). Kim et al. [8] compared multiple time-series methods
(SARIMA, GARCH-ARIMA, and exponential smoothing methods) and AI-based (ANN) methods
in a comprehensive approach for STLF over 1 h to 1 day ahead forecasting horizons. They showed
that the optimal model was the ANN model with external variables of weather and holiday effects
over the time horizons. Kundu et al. [31] worked on the uncertainty of parameters and measurements
for hourly energy consumption forecasts. They analyzed the sensitivity of the optimization with
commercial heating ventilation and air conditioning (HVAC) system data. Ahmad et al. [32] proposed
a novel forecasting technique for a one-day ahead prediction in a smart grid environment with an
intelligent modular approach. Besides, in the smart grid environment, prediction accuracy and
calculation time, which is a trade-off relationship, are essential to consider. Amin et al. [33] compared
a linear regression model, univariate seasonal ARIMA model, and the novel multivariate LSTM
model for 114 residential apartment smart meters over two years. The performances varied from
each model by seasons and forecasting horizons. Overall, the LSTM model was the most accurate;
however, under the high variability seasons of the temperature, the simple regression model was better.
Motlagh et al. [34] recommended a clustering method to support electricity smart grid forecasts of a
large residential dataset. To overcome the unequal time-series of each residential smart meter, they
suggested model-based clustering to compute parallel data for large samples. Moreover, the results of
clustering were described as intra-cluster consistency and variability factors.

The authors reviewed numerous studies about the smart grid and forecasting methods, however,
most of the studies dealt with aggregated data or independent small area data. In a smart grid
environment, the government recommends the bottom-up method for figuring out the various
energy-consuming patterns in the economic distribution system. Nevertheless, it is time-consuming
to build up the independent forecasting models for each grid. Therefore, we would like to suggest
clustering methods to forecast the AMI systems efficiently. There have been some papers proposing a
clustering method in smart grid datasets [34], but the study was conducted in residential smart meters.
The present study makes the following contributions. We confirmed the robustness of the bottom-up
method using AMI data in industrial areas on the smart grid with time-series clustering methodologies.
There are some differences in time-series patterns for residents and industries, and the total amount of
energy consumptions are a more substantial portion in industry areas. Moreover, forecasting through
time-series pattern analysis was used to reduce the time of computing and make the method more
natural to use in practice.

The remainder of this paper is organized as follows. Section 2 introduces the methodology used
in this study. Section 3 describes the data and variables and discusses the application of the data to the
models, and Section 4 concludes the paper.
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2. Methodology

In this study, we present bottom-up demand forecasting using time-series data for industrial
sectors collected through AMI. Figure 1 describes a schematic format of the forecasting design. The
AMI data used are electricity demand by the company per hour and use only the ID and power demand
of the company. First, companies are clustered using demand patterns of electricity demand for each
AMI data. For clustering by company, time-series cluster analysis, which is a cluster analysis method
according to a similar time-series pattern, is used. The time-series clustering method considered is
presented in Section 2.1. Next, we estimate the optimal model of the sum of the data in the cluster.
The considered time-series prediction model is presented in Section 2.2. Finally, the total amount of
power generation of the entire company is estimated by summing up the optimal model prediction
values for each cluster.

 
Figure 1. Methodology for clustering of electricity demands for industrial areas. AMI, advanced
metering infrastructure.

2.1. The Time-Series Clustering

2.1.1. Autocorrelation-Based Distances

Galeano et al. [35] suggested a clustering technique for autocorrelation function (ACF) in the
time-series data. ρ̂XT =

(
ρ̂1,XT , · · · , ρ̂L, XT

)′
and ρ̂YT =

(
ρ̂1,YT , · · · , ρ̂L,YT

)′
are estimated autocorrelation

vectors of XT and YT, respectively, then ρ̂1,XT ≈ 0 and ρ̂1,YT ≈ 0 when i > L. The ACF measures are
expressed as below.

dACF(XT, YT) =

√(
ρ̂XT − ρ̂YT

)′
Ω

(
ρ̂XT − ρ̂YT

)
(1)

where Ω is a weight matrix, and the equal weights are assumed by giving the initial Ω as I. In this case,
dACF becomes a Euclidiean distance measure between estimated ACF, as below.

dACF(XT, YT) =

√√√ L∑
i=1

(
ρ̂1,XT − ρ̂1,YT

)2
(2)
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The measure can be expressed as below as the considering geometric weights without time lag
in ACF.

dACF G(XT, YT) =

√√√ L∑
i=1

p(1− p)i
(
ρ̂1,XT − ρ̂1,YT

)2
, with 0 < p < 1 (3)

2.1.2. Normalized Periodogram-Based Distance

The periodogram distance proposed by Caiado et al. [36] is a metric to recognize the keyframes
using a short boundary estimated on a sliding sub-window basis. If its correlation structure is more
appropriate than the process scale, then it is better to use the normalized periodogram by using the
Euclidean distance. The normalized periodogram measures are expressed as below.

dNP(XT, YT) =
1
n

√√√ N∑
k=1

(
NIXT (λk) −NIYT (λk)

)2
(4)

where NIXT (λk) = T−1

∣∣∣∣∣∣ T∑
t=1

Xte−iλkt

∣∣∣∣∣∣
2

and NIYT (λk) = T−1

∣∣∣∣∣∣ T∑
t=1

Yte−iλkt

∣∣∣∣∣∣
2

are the periodograms of Xt and

Yt, respectively. λk = 2πk
T , k = 1, . . . , n.

2.2. Forecasting Models

The double seasonal Holt–Winters (DSHW), trigonometric transform, Box–Cox transform, ARMA
errors, trend and seasonal components (TBATS), fractional autoregressive integrated moving average
(FARIMA), ARIMA with regression (Reg-ARIMA), and neural network nonlinear autoregressive
(NN-AR) models are presented in this section.

2.2.1. The Double Seasonal Holt–Winters (DSHW) Method

The extension version for the double seasonal Holt–Winters method helped address multiple
seasonal cycles, and can be written as below [37].

Lt = α(yt − St−s1 −Dt−s2) + (1− α)(Lt−1 + Tt−1) (5)

Tt = β(Lt − Lt−1) + (1− β) Tt−1 (6)

St = γ(yt − Lt −Dt−s2) + (1− γ)St−s1 (7)

Dt = δ(yt − Lt − St−s1) + (1− δ)Dt−s2 (8)

Ft+h = Lt + Tt × h + St+h−s1 + Dt+h−s2 , (9)

where yt represents the actual data; St, Dt represent the seasonal component over time t (t = 1, 2, · · · , T);
and s1, s2 are the double seasonal cycles. The components Lt and Tt describe the level and trend of
the series at time t, respectively. The coefficients α, β, γ are parameters for smoothing. Ft+h is the
forecasting value of h ahead of time t. The initial points are calculated as follows.

Ls1 =
1
s1

s1∑
t=1

yt , Ls2 =
1
s2

s2∑
t=1

yt (10)

Ts1 =
1

s1
2

⎛⎜⎜⎜⎜⎜⎜⎝
2s1∑

t=s1+1

yt −
s1∑

t=1

yt

⎞⎟⎟⎟⎟⎟⎟⎠, Ts2 =
1

s22

⎛⎜⎜⎜⎜⎜⎜⎝
2s2∑

t=s2+1

yt −
s2∑

t=1

yt

⎞⎟⎟⎟⎟⎟⎟⎠ (11)

S1 = y1 − Ls1 , · · · , Ss1 = ys1 − Ls1 (12)
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D1 = y1 − Ls2 , · · · , Ss2 = ys2 − Ls2 (13)

2.2.2. Trigonometric Transform, Box–Cox Transform, ARMA Errors, Trend and Seasonal Components
(TBATS) Model

TBATS is an acronym for trigonometrical transformation, Box–Cox transformation, ARMA
errors, trend and seasonal components. To overcome the problems of a wider seasonality and
correlated errors in the exponential smoothing method, modified state-space models were introduced
by De Livera et al. [38]. It is restricted to linear homoscedasticity, but the Box–Cox transformation
can handle some types of non-linearity. This class of model is named BATS (Box–Cox transformation,
ARMA errors, trend and seasonal components) and is defined as follows.

y(ω)t =

⎧⎪⎪⎨⎪⎪⎩
yωt −1
ω , ω � 0

log(yt), ω = 0

⎫⎪⎪⎬⎪⎪⎭ (14)

y(ω)t = lt−1 + φbt−1 +
T∑

i=1

S(i)
t−m1

+ dt (15)

lt = lt−1 + φbt−1 + αdt (16)

bt = (1−φ)b + φbt−1 + βdt (17)

S(i)
t = S(i)

t−mi
+ γidt (18)

dt =

p∑
i=1

ϕidt−i +

q∑
i=1

θiεt−i + εt (19)

where y(ω)t is the Box–Cox transformed data for parameter ω at time t, lt depicts the local level, b is the
long-term trend, and bt is the short-term trend within the period of time. Rather than converging on
zero, the value of bt finally meets on b. φ is a damping parameter for the trend. dt is a series of ARMA
models with orders (p, q) and εt is the white noise process with a mean of zero and a constant variance
of σ2. mi is the ith seasonal cycle. α, β, and γi are the smoothing parameters for i = 1, · · · , T.

The trigonometric seasonal approach incorporated into the model leads to a reduction in the
estimation time (which increases with the number of parameters). This approach further accommodates
non-integer seasonality. The final arguments for TBATS model (ω,φ, p, q, {m1, k1}, {m2, k2}, · · · , {mT, kT})
are explained with some additional equations, as below.

S(i)
t =

ki∑
j=1

S(i)
j,t (20)

S(i)
j,t = S(i)

j,t−1cosλ(i)j + S∗(i)j,t−1sinλ(i)j + γ
(i)
1 dt (21)

S∗(i)j,t = −Sj,t−1sinλ(i)j + S∗(i)j,t−1cosλ(i)j + γ
(i)
2 dt, (22)

where ki is the number of harmonics for S(i)
t , which is a seasonal component. γ(i)1 and γ(i)2 are the

smoothing parameters and λ(i)j =
2π j
mi

. S(i)
j,t is the stochastic level of the ith seasonal component by S(i)

j,t ,

and S∗(i)j,t is the stochastic growth of the ith seasonal component.
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2.2.3. The Fractional Autoregressive Integrated Moving Average (FARIMA) Model

The FARIMA model is the common generalization of regular ARIMA processes when the degree
of differencing d can take nonintegral values [39]. When the series

{
yt

∣∣∣t = 1, 2, · · · , T
}

follows ARIMA
(p, d, q), the time series takes the following form:

φp(l)(1− l)dyt = θq(l)εt, (23)

where yt denotes the actual data observed at time t (t = 1, 2, · · · , T), and εt describes the random errors
assuming white noise on t with a mean of zero and a constant variance of σ2. p and q are integers and
orders in the model. φp(l) = 1−φ1l− · · · −φplp, where p represents the degree of the autoregressive
polynomial. θq(l) = 1 − θ1l − · · · − θqlq, where q is the degree of the moving average polynomial.

(1− l)d =
∞∑

j=1

(
d
j

)
(−1) jLj with

(
d
j

)
(−1) = Γ(−d+ j)

Γ(−d)Γ( j+1) , and d ∈ (−0.5, 0.5).

2.2.4. Reg-ARIMA

The Reg-ARIMA model is proposed by Bell and Hilmer [40], it is a compound word of Regression
and ARIMA. We consider hourly temperature data as a regressor, and double seasonality was
fitted to explain the daily and weekly cycles. When the series

{
yt

∣∣∣t = 1, 2, · · · , T
}

follows ARIMA
(p, d, q)(P1, D1, Q1)s1

(P2, D2, Q2)s2
, the time series takes the following form:

φp(l)ΦP1(l
s1)ΠP2(l

s2)(1− l)d(1− ls1)D1(1− ls2)D2

⎛⎜⎜⎜⎜⎝yt −
r∑

j=1
β jxjt

⎞⎟⎟⎟⎟⎠
= θq(l)ΘQ1(l

s1)ΨQ2(l
s2)εt,

(24)

where β j is a coefficient for the j-th regressor, yt denotes the actual data observed at time t (t = 1, 2, · · · , T),
and εt describes the random errors assuming white noise on t with a mean of zero and a constant
variance of σ2. p and q are integers and orders in the model. φp(l) = 1 − φ1l − · · · − φplp, where p
represents the degree of the autoregressive polynomial. θq(l) = 1 − θ1l − · · · − θqlq, where q is the
degree of the moving average polynomial. Moreover, for the first seasonal operators, ΦP1(l

s1) =

1 −Φ1ls1 − · · · −ΦP1 lPs1 , and ΘQ1(l
s1) = 1 −Θ1ls1 − · · · −ΘQ1 lQs1 , where P1 and Q1 are the degree of

the first-seasonal autoregressive polynomial and moving average polynomial, respectively. For the
second seasonal operators, ΠP2(l

s2) = 1−Π1ls2 − · · · −ΠP2 lPs2 , and ΨQ2(l
s2) = 1−Ψ1ls2 − · · · −ΨQ2 lQs2 ,

where P2 and Q2 are the degree of the second-seasonal autoregressive polynomial and moving average
polynomial, respectively. (1− l)d, (1− ls1)D1 , and (1− ls2)D2 are the non-seasonal, first, and second
seasonal difference operators of order d and D, respectively. s1 and s2 represent a seasonal cycle.

2.2.5. Neural Network Nonlinear Autoregressive (NN-AR)

Artificial neural network (ANN) models are designed similar to the neurons of a human brain.
There are substantial complex forms of connected neurons in human brains. The network cells carry a
specific signal from the body along an axon, transferring the signals to other neurons. The connections
among axons are processed by a synapse. Some neurons are structured at birth, some grow and mature,
and the rest die when considered to be non-useful. Likewise, the neural network model having a
single-input neuron is defined below [41].

a = f (wp + b) (25)
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where p is an input, w is the weight of p, and b is a bias. f is a transfer function used to obtain an output
of a, and it can be either linear or non-linear. If the neuron structure consists of R numbers of inputs as
p1, p2, · · · pR, the expression of summarized inputs can be expressed as follows:

n = w1,1p1 + w1,2p2 + · · ·+ w1,RpR + b (26)

where wi, j is the connection weight of the ith neuron from the jth neuron. n can also be expressed as a
matrix form of inputs and weights: n = Wp + b. If there are S neurons in a layer, the model can be
expressed as follows: a = f(Wp + b) , where b is a bias vector, a is an output vector, and p is an input
vector with the weight matrix, W. The matrix, W, can be written as follows:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w1,1 . . . w1,R

...
. . .

...
wS,1 . . . wS,R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (27)

If we expand the single layer to multiple layers, the output of the first layer can become an input
to the next layer. For example, the output from the three layers can be explained as follows:

a3 = f3
(
W3f2

(
W2f1

(
W1p + b1

)
+ b2

)
+ b3

)
(28)

In this case, the third layer is considered as the output layer, and the first and second layers are
hidden layers. The model is advantageous, because it can explain the complex relationships of the
neurons with nonlinear functions. NN-AR models when additional exogenous variables are used for
the ANN-based model.

3. Application of the Models

The auto-meter-reading (AMR) data obtained from Korea Electric Power Corporation (Naju, Korea)
comprise data for 114 commercial buildings [42]. The data we provided were already refined; therefore,
there was no extra step for data preprocessing. They were collected at 1 h intervals during the period
from 12 February to 28 April 2014. A period of 10 weeks (10 February–20 April) was used for training,
and the remaining one week (21 April–27 April) was used for testing. The datasets from the four weeks
(24 March–20 April) prior to the test set were used for cluster analysis. Figure 2 shows an average time
series profile of 114 buildings. The demand shows daily seasonal patterns, and there is a pattern of
increasing demand from February to March.

We fitted the data with DSHW, TBATS, FARIMA, Reg-ARIMA, ANN, and NN-AR models;
regarding the clustering, we chose the model showing the lowest mean absolute percentage error
(MAPE) in each cluster. Then, the forecasting values from the aggregated and clustered data were
compared. The model performances were evaluated using the mean absolute percentage error (MAPE).
These evaluation methods are widely used to evaluate model performance, especially for STLF.

MAPE is defined as follows:

MAPE =
100
n

∑n

t=1

∣∣∣∣∣∣ yt − ŷt

yt

∣∣∣∣∣∣ (29)

where yt is the actual value and ŷt is the forecasted demand at time t.
The number of clusters was chosen based on the silhouette metric. Figure 3 shows the time-series

profiles of each of the 10 clusters measured. It demonstrates different patterns that have their own
periodicity in the clusters. In this study, the double seasonality of daily and weekly patterns is
considered. The optimal number of parameters at each k step in FARIMA models and Reg-ARIMA
models was identified according to the corrected Akaike information criterion (AICc). Table 1 presents
the FARIMA models in the training set of the aggregated data. The optimal parameter of d was
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selected as 0.1206 from the range (−0.5, 0.5), and then the number of p and q was selected as 5 and 5,
respectively. Table 2 shows the identification of the best Reg-ARIMA models. Tables 3 and 4 represent
the hyperparameter tuning in ANN and NN-AR models, respectively. As we used nnetar function in
the forecast package of R for the hyperparameter optimization in ANN and NN-AR models, we were
able to search the number of nodes in the hidden layer, weight decay, iteration times, and network
numbers. The optimized hyperparameters are chosen, indicating the minimum sum of squared errors.

Figure 2. Average demand plot from the 114 buildings.

 
Figure 3. Demand plot for 10 cluster groups by autocorrelation-based distances.
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Table 1. Identification of the best fractional autoregressive integrated moving average (FARIMA) model
with d̂ = 0.1206. AICc, corrected Akaike information criterion.

(p,q) AICc

5, 5 34,868.8
6, 4 34,873.3
7, 4 34,874.2
5, 4 34,875.4
6, 3 34,879.9

Table 2. Identification of the best regression ARIMA (Reg-ARIMA) model.

(p,d,q) (P,D,Q)s=128 AICc

(2, 1, 3) (0, 1, 0) 28,177.9
(1, 1, 2) (0, 1, 0) 28,189.8
(2, 1, 2) (0, 1, 0) 28,190.6
(1, 1, 3) (0, 1, 0) 28,191.7
(3, 1, 2) (0, 1, 0) 28,192.1

Table 3. Hyperparameter optimization of the best artificial neural network (ANN) model.

Parameter Search Space Selected Value

Node numbers (10, 15, 20, 25, 30) 15
Weight decay (0.0, 0.05, 0.1) 0.0
Iteration times (50, 100, 150, 200) 200

Network numbers (15, 20, 25, 30) 20

Sum of squared errors 8,724,653

Table 4. Hyperparameter optimization of the best neural network nonlinear autoregressive
(NN-AR) model.

Parameter Search Space Selected Value

Node numbers (10, 15, 20, 25, 30) 15
Weight decay (0.0, 0.05, 0.1) 0.0
Iteration times (50, 100, 150, 200) 200

Network numbers (15, 20, 25, 30) 15

Sum of squared errors 8,250,619

Tables 5–8 represent the estimated parameters and the results for assumptions in the training set.
Figure 4 describes a dendrogram from the autocorrelation-based distances clustering. Table 9 presents
the results of the MAPE in the test set and the number observations assigned in each cluster. It shows
that the TBATS model is superior to other models in clusters 5 and 9 and the DSHW model elicits high
accuracy in cluster 6. For clusters 1, 2, 3, 4, 7, 8, and 10, NN-AR was the most suitable model. Therefore,
each cluster yields forecasting values from the different models. Further, we fit the NN-AR model for
the aggregated data because it was superior to the other models in the dataset. Consequently, a week
long forecasting was conducted for each cluster and total usage. In Table 10, the results indicate the
MAPE of the aggregated forecasting value and the total usage data for the forecasted amounts for each
cluster through the cluster analysis method. The MAPE for the forecasting of total data by the NN-AR
model is 3.86%. The MAPE for the forecasting of aggregated data by clustering of autocorrelation-based
distances is 3.32%, which is the summation forecasting result based on cluster-specific forecasting; the
result based on clustering of normalized periodogram-based distance is 3.94%; the forecasting through
clustering of autocorrelation-based distances showed a more accurate overall forecasting.
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Table 5. Parameter estimations of double seasonal Holt–Winters (DSHW).

Parameter Estimate

Level (α) 0.3022
Trend (β) 0.0003

Seasonal 1 (γ) 0.1630
Seasonal 2 (δ) 0.2467

φ 0.6988

Table 6. Parameter estimations of the TBATS model.

Parameter Estimate

Level (α) 0.0245
φ1 1.0765
φ2 −0.2735
θ1 0.0158
γ1(24) 0.0004
γ1(168) −0.0006
γ2(24) 0.0001
γ2(168) 0.0002

Table 7. Parameter estimations of the FARIMA model.

Parameter Estimate

φ1 0.7254
φ2 0.0243
φ3 0.4461
φ4 0.2097
φ5 −0.4065
θ1 −0.2022
θ2 0.0014
θ3 0.3324
θ4 0.7423
θ5 0.0588

Table 8. Parameter estimations of the Reg-ARIMA model.

Parameter Estimate

φ1 −0.1978
φ2 0.7702
θ1 0.3379
θ2 −0.9602
θ3 −0.3277

Temperature −562.3

Table 9. Mean absolute percentage error (MAPE) of training dataset by autocorrelation-based distances
clustering approach.

MAPE (%) C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

DSHW 3.5 4.3 7.5 4.9 1.5 1.7 3.4 6.6 0.5 9.9
TBATS 3.2 5.7 5.2 5.5 1.4 2.4 4.5 3.2 0.4 9.4

FARIMA 3.4 5.6 5.2 9.4 1.7 3.1 8.6 4.1 0.5 11.0
Reg-ARIMA 3.5 5.6 5.4 5.3 1.7 1.9 3.7 4.0 0.5 11.5

ANN 2.1 1.8 2.7 3.1 1.6 2.4 2.3 2.1 0.4 4.8
NN-AR 2.0 1.7 2.5 3.0 1.6 2.4 2.3 2.1 0.4 4.2

Obs. 29 5 13 2 7 14 24 9 6 5

Table 10. Result of forecasting accuracy by MAPE.

Method Total (NN-AR) dACF G dNP

MAPE (%) 3.86 3.32 3.94

53



Energies 2020, 13, 2377

Figure 4. Dendrogram for autocorrelation-based clustering.

4. Conclusions

It is well known that forecasts based on the bottom-up method are more accurate than forecasts
based on the top-down method if companies’ power demand pattern is constant. However, in the
actual operating establishment, as each company’s prediction can cause problems such as excessive
computing time, it is necessary to determine the most appropriate method.

This study presents a bottom-up power prediction method through the results of a cluster analysis
of electricity demand for each company in a smart grid environment. To this end, data from 114
companies recorded using auto-metering-reading (AMR) devices were classified into 10 clusters using
time series cluster analysis. Owing to the strong time-series characteristics of power demand, this
study uses clustering of autocorrelation-based distances and normalized periodogram distance. The
power demand classified through time-series cluster analysis revealed different patterns according to
the characteristics of the companies. As the demand pattern for each cluster was different, the optimal
forecasting model for each cluster was selected using the NN-AR and TBATS models. Finally, the total
power demand was calculated based on the aggregated forecasting results for each cluster.

The forecasting result using the time-series cluster (autocorrelation-based distances) analysis of
the bottom-up method was superior to that of the top-down method by about 0.5%.

This study proposed a solution to the problem of low predictive accuracy and computing speed
owing to big data management in the process of transitioning to the smart grid method. If the power
consumption of all companies is forecasting, accuracy will increase, but the program run time will
be longer. In addition, if all companies and households with electricity demand are considered,
the electricity demand forecasting will take longer. Accordingly, in real-time operations, it is proposed
to improve the accuracy of prediction through time-series cluster analysis and to reduce the program
run time by predicting each cluster analysis result. This method is proposed as a proactive response to
issues related to the smart grid method with regard to national power management.

The results of this study may be relevant only to the demand data of generic companies. Therefore,
any future analysis based on cluster characteristics may consider specificities. Future studies should
examine the patterns of demand based on company characteristics by analyzing corporate information.
Further, demand patterns should be examined according to the characteristics of the company’s
industry, and researchers should determine the optimal model for each cluster characteristic. Finally,
it is necessary to determine a system automation method that can be used in an actual power
operation establishment.
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Abstract: With the accumulation of partial discharge (PD) detection data from substation, case-based
reasoning (CBR), which computes the match degree between detected PD data and historical case
data provides new ideas for the interpretation and evaluation of partial discharge data. Aiming at the
problem of partial discharge data matching, this paper proposes a data matching method based on a
variational autoencoder (VAE). A VAE network model for partial discharge data is constructed to
extract the deep eigenvalues. Cosine distance is then used to calculate the match degree between
different partial discharge data. To verify the advantages of the proposed method, a partial discharge
dataset was established through a partial discharge experiment and live detections on substation site.
The proposed method was compared with other feature extraction methods and matching methods
including statistical features, deep belief networks (DBN), deep convolutional neural networks (CNN),
Euclidean distances, and correlation coefficients. The experimental results show that the cosine
distance match degree based on the VAE feature vector can effectively detect similar partial discharge
data compared with other data matching methods.

Keywords: partial discharge; gas insulated switchgear; case-based reasoning; data matching;
variational autoencoder

1. Introduction

CIGRE’s statistics show that about 30% dielectric failures of gas insulated switchgears (GIS) are
related to design deficiencies [1]. Through the analysis of a large amount of partial discharge (PD) data
from GIS in service, we also found that the proportion of PD cases caused by design reasons is high.
This leads to a situation that the same type GIS equipment from the same manufacturer are susceptible
to repeat partial discharge on similar location. This provides the basis for case-based reasoning (CBR)
in GIS. Case-based reasoning is a branch of artificial intelligence (AI) that provides answers to new
questions based on experience in historical cases [2,3]. In the latest studies, CBR has been used in
load forecasting, energy management, grid system safety assessment, and power equipment failure
assessment [4–7]. In Reference [8], a case-based reasoning method is utilized to diagnose the incipient
fault of power transformer. Pretreated dissolved gas analysis (DGA) data is used in the CBR system.
Reference [9] developed a case-based reasoning approach for identifying and filtering acoustic emission
(AE) noise signals. The paper proposed a parametric case representation method for the AE signal
process. Since CBR requires the accumulation of cases and data in the early stage, there is no CBR
related literature published in the field of partial discharge. After accumulating a large amount of
GIS PD detection data from substation site, CBR can provide new ideas for the interpretation and
evaluation of partial discharge data. The key step in a CBR system is the case matching strategy.
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PD data is one of the key features in a GIS PD detection case. So this paper focused on the data
matching problem in the CBR system establishment. A structure of GIS, CBR used PD data, the match
degree is presented and shown in Figure 1.

 

Figure 1. The framework of partial discharge (PD) data matching.

Some phase resolved pulse sequence (PRPS) graphs are used in Figure 1 to refer to the data
detected by the GIS partial discharge ultra-high frequency (UHF) detection. The specific procedures
are as follows: First, the historical data are retrieved from the historical case database according to
the operating conditions of the detected equipment, the manufacturer and other search conditions;
the detected data are then matched with the historical data, and those cases for which the data match
degree exceeds a threshold are considered match cases; and finally, from the match case, we can obtain
information such as the highest probability of PD location in the detected power equipment, the most
likely cause of PD in the detected power equipment, and pictures of disintegrated power equipment
in historical cases. Maintenance plans can be developed based on match information. Therefore,
PD history detection data can be more effectively utilized and can provide a basis for data-driven
device status evaluations.

There are two key processes that are used to calculate PD data match degree. The first key process
is to extract the valid eigenvalues for PD data, and the second is to obtain the match degree (MD) based
on the eigenvectors. The traditional feature extraction methods used for PD data extract a variety
of statistical features from, for example, histograms, scatter plots, and grayscale images based on
PRPD (phase resolved partial discharge) data [10–12]. Moreover, there are also some other algorithms
applied to PD data feature extraction, such as principal component analysis (PCA) [13], wavelet packets
transformation [14], sparse representation [15], and signal norms [16]. The algorithms proposed in the
references behaved a good performance in the task of PD pattern recognition. However, due to the
multi-source heterogeneity of access data in big data centers, the huge differences in the performances
of PD detect instruments and the complex operating environments in substations, the statistical
characteristics obtained by the traditional statistical methods have become inadequate in identifications
of typical partial discharge types. In addition, data matching of PD data needs even more stringent
requirements than those for PD pattern recognition.

In recent years, related technologies such as deep auto-encoders, deep convolutional networks,
recurrent neural networks, and deep belief networks have shown good performance in many fields,
including image processing and speech processing [17–21]. Reference [22] studied the application of
deep neural networks in the diagnosis of partial discharges and demonstrated the improvements in
accuracy and visualization that can be obtained through the deep learning method. Reference [23]
obtained a two-dimensional spectral frame representation of a UHF signal employing a time-frequency
analysis and then used a deep convolutional network to obtain enhanced features under different PD
sources. Auto-encoding (AE) is an unsupervised feature learning method, and its hidden layer can
effectively extract the internal expression of data. Its deep structure makes the network closer to the
human brain’s information hierarchical processing, with better nonlinear modelling ability [24,25].
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The variational autoencoder (VAE) proposed by Kingma et al. is a generating network based on
variational Bayesian inference [26]. It avoids the computational complexity of dataset likelihood
probability calculations and traditional Monte Carlo sampling and is therefore becoming an area of
considerable research interest in text classification, semi-supervised learning, and other related fields.

This paper presents a PD data matching method based on VAE. The network uses variational
Bayesian method to quickly approximate the posterior probability and extract the deep features of
PD data. Euclidean distance, cosine distance, and correlation coefficient (Cc) methods were used to
measure the similarity between different data, the comparative results of which are also shown in
this paper.

The rest of the paper is organized as follows. Section 2 introduces basic information on variational
autoencoder networks. Section 3 provides further information on the proposed partial discharge data
matching approach. The dataset used in this paper is described in Section 4. Section 5 validates the
data matching approach with different case studies and discusses the results obtained. The conclusions
are presented in Section 6.

2. Variational Autoencoder

Variational Bayes inference [27] is a deterministic approximation method that maximizes the
lower bound of the marginal likelihood function of the observed data by iteratively updating the
variational parameters and approximates the posterior probability of unobservable variables.

For a sample set X, define the eigenvalues of the data as latent variables z because they cannot be
directly observed. According to the Bayesian criterion, the posterior probabilities of the latent variables
z are

p(z|x) = p(x|z)p(z)
p(x)

(1)

It is difficult to obtain an exact analytical solution for p(x), therefore, in the variational Bayes
inference, an approximate distribution q(z|x) is introduced to fit the real posterior distribution p(z|x).
Kullback-Leibler (KL) divergence is used to compare the similarities of the two distributions.

KL(p(z|x)||q(z|x)) =
∑

p(z|x) log
p(z|x)
q(z|x) (2)

The approximate distribution q(z|x) is estimated by an auto-encoder network in VAE. VAE consists
of a probabilistic encoder and a probabilistic decoder and uses a stochastic gradient variational Bayes
algorithm to achieve a posterior distribution model that optimizes the hidden layer.

According to the variational Bayes method, the log marginal likelihood of the sample data X can
be simplified as shown below.

log pθ(x(i)) = KL(qφ(z|x(i))||pθ(z|x(i))) +L(θ,φ; x(i)) (3)

where φ is the real posterior distribution parameter, and θ is the approximate distribution parameter of
the hidden layer. The first item is the KL divergence between the approximate distribution of the hidden
layer and the real posterior distribution. Since KL divergence is nonnegative, the KL divergence is zero
only if the two distributions are exactly the same [28]. Thus, log pθ(x(i)) ≥ L(θ,φ; x(i)). Equation (3)
can be expanded:

log pθ(x(i)) ≥ L(θ,φ; x(i)) = −KL(qφ(z|x(i))||pθ(z)) + Eqφ(z|x(i))[log pθ(x(i)|z)] (4)

The optimal approximation of the sample set pθ(x(i)) can be obtained by maximizing variational
bound L(θ, ϕ; x(i)) [29].

59



Energies 2019, 12, 3677

3. Data Matching Method of Partial Discharge Based on VAE

The encoder section of the VAE model for partial discharge data can be represented by Equation (5).

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
z = μenc + σenc � ε ε ∼ N(0, I)
μenc = f (Wμench1 + bμenc)

log σenc = f (Wσench1 + bσenc)

h1 = f (Wh1x + bh1)

(5)

where W and b are the weights and biases of each layer, and x is the input vector. h1, μenc, and σenc

are the outputs of the first and second layers of the network. f is the activation function. Based on
Gaussian distribution parameters μ and σ, the hidden layer output z is obtained by sampling q(z|x(i)),
and N(0,I) is the standard normal distribution.

The decoder section of the VAE model for partial discharge data can be represented by the
following equation. ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

log p(x|z) = logN(x;μdec, σ2
decI)

μdec = f (Wμdech2 + bμdec)

log σdec = f (Wσdech2 + bσdec)

h2 = f (Wh2z + bh2)

(6)

where W and b are the weights and biases of each layer, h2, μdec, and σdec are the outputs of each layer
of the decoder, and f is the activation function.

The target optimization function of Equation (4) can be rewritten as Equation (7).

L(θ; x(i)) =
1
2

J∑
j=1

(1 + log((σ(i)encj)
2
) − (μ(i)encj)

2 − (σ(i)encj)
2
) +

1
L

L∑
l=1

(log pθ(x(i)|z(i,l))) (7)

where J is the dimension of the latent variables z, and L is the number of samples of the latent variables
z on the posterior distribution.

The parameters of the probability encoder and the probability decoder are then optimized by the
stochastic gradient descent algorithm. When Equation (7) converges or stabilizes, the output of the
encoder part of VAE is the extracted eigenvalues.

Figure 2 shows the matching process of partial discharge data based on the VAE model.

h1

uenc enc

q z x

z

h2

udec dec

p x z

h1

uenc enc

Figure 2. The procedure of feature extraction and match degree computation based on variational
autoencoder (VAE).
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The match degree of partial discharge data can be obtained by calculating the distance between
the partial discharge data by using the cosine algorithm of Equation (8).

MD =
Va·Vb

||Va|| × ||Vb|| (8)

where Va and Vb are the eigenvectors extracted from the two PD datasets. ||•|| is the length of the vector.

4. Dataset

For this paper, the PD data sample sets were set up by laboratory partial discharge simulation and
substation partial discharge live detection. We used the ultra-high frequency detection method and
PRPS data format that is commonly used in UHF partial discharge detection. The dataset contained
more than 20,000 pieces of simulated experimental data and more than 20,000 pieces of field test data.

4.1. Laboratory Experiment

Four typical partial discharge defect models were designed, and the experiment was conducted
on a real GIS platform, the experimental connection diagram of which is shown in Figure 3. Typical
design defects include floating electrode defects, metallic protrusion defects, insulation void discharge
defects, and free metal particle discharge defects.

Figure 3. PD experiment circuit on a true gas insulated switchgears (GIS) model.

(1) Floating electrode defect: Epoxy resin was used to cast copper sheets of different sizes.
The amount of discharge can be controlled by changing different epoxy blocks, as shown in Figure 4a.

(2) Metallic protrusion defect: The high-voltage terminal is connected to an aluminum tip electrode,
and the ground terminal is connected with a Ø54 mm aluminum disc. By adjusting the size of the tip
electrode and the height of the air gap between it and the ground electrode, it is possible to control the
amount of discharge, as shown in Figure 4b.

(3) Particle discharge: The high-voltage terminal is connected to a ball electrode, and the
low-voltage ground terminal is connected to a concave disk electrode, with free metal particles of
different sizes and numbers placed in the center of it, as shown in Figure 4c.

(4) Insulation discharge: Casting the epoxy into a cylinder will leave bubbles of different sizes
inside during the casting process, as shown in Figure 4d.

The nominal voltage of the GIS used in partial discharge experiment is 145 kV, the output voltage
of experimental power supply is 0–220 kV. Typical partial discharge inception voltage (PDIV) and
partial discharge extinction voltage (PDEV) for each type of defect are listed in Table 1. The main
parameters of instrument used in the experiment are shown in Table 2.
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(a) (b) 

  
(c) (d) 

Figure 4. PD defect models. (a) Floating electrode discharge; (b) metallic protrusion discharge; (c) free
metal particle discharge; (d) insulation void discharge.

Table 1. Typical partial discharge inception voltage (PDIV) and partial discharge extinction voltage
(PDEV) in the experiment.

PD Type PDIV (kV) PDEV (kV)

Floating electrode discharge 128 112
Metallic protrusion discharge 67 60

Insulation void discharge 110 102
Free metal partial discharge 84 70

Table 2. The main parameters of instrument used in the experiment.

Instrument Type Key Parameter

IEC60270 Digital partial discharge detector Sensitivity: <0.1 pC
System bandwidth: 30 kHz–1.5 MHz

Oscilloscope Sampling rate: single channel 10 GS/s
Analog bandwidth: 2 GHz

The typical PRPS data detected in the simulation experiment were normalized, as shown in Figure 5.
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 (d) 

Figure 5. Typical PD phase resolved pulse sequence (PRPS) data from a true GIS model experiment.
(a) Floating electrode discharge; (b) metallic protrusion discharge; (c) free metal particle discharge;
(d) insulation void discharge.

4.2. Substation On-Site Detection

In the past five years, we have accumulated a large amount of on-site detection data by periodically
conducting PD tests for more than 30 substations in China. Among those data, there are 42 cases in
which the power equipment defects have been verified by disassembly overhaul, including floating
electrode defects, metallic protrusion defects, insulation void discharge defects, and free metal particle
discharge defects. The statistical information related to the cases is shown in Table 3.

As seen from Table 1, in all disintegrative cases, the proportion of similar cases for the same PD
type was high. Therefore, for some detected data from equipment suspected of being defective, there is
a high probability that similar data can be found from its historical cases, especially for those data that
can be recognized as floating and insulation discharges.
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Table 3. Information of on-site power equipment disintegration verification cases.

PD Type
Number
of Cases

Defect Reason
Number
of Cases

Floating Electrode Discharge 24

Poor contact in disconnector 6

Loose connection in equipotential leaf spring 10

The build in sensors is not effectively grounded 5

Other reasons 3

Metallic Protrusion Discharge 2 Quality defects in conductor 2

Insulation Void Discharge 14

Quality defects in supporting insulator 4

Aging of insulation 3

Installation defects 2

Other reasons 5

Free Metal Particle Discharge 2 Installation defects 2

5. Experiment and Results Analysis

5.1. Experiment Setup

The main flow of the comparative experiment is shown in Figure 6.
First, the training set was composed of both laboratory experimental data and substation field

detection data. The experimental data and the field detection data were mixed and disordered.
An unsupervised training was performed to the established VAE model on this dataset, to obtain
a feature extraction model with better generalization performance. The test set consisted of only
substation field detection case data which the defect is verified by GIS disintegration. The data from
four GIS disintegration cases were selected in order to examine the matching performance of the data
matching model for case data. These four cases contained different similar situations. The matching
degrees were calculated between data in four cases, and the different feature extraction methods and
different matching degree calculation methods were compared. Finally, the generalization capabilities
of different methods were analyzed on all the 42 cases.

 
Figure 6. Experimental flow chart.

The baseline systems that were used for feature extraction are now briefly described.
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(1) Statistical eigenvalues: They are a commonly used feature extraction method in PD data
processing. The traditional statistical eigenvalues consist of 16 characteristic parameters such as
skewness (Sk), steepness (Ku), asymmetry (Q), the cross correlation coefficient (Cc) of the PD amplitude,
and PD numbers in the positive and negative half of the power frequency cycle [30].

(2) DBN: A deep belief network (DBN) consists of multi-layer RBMs. The DBN network used for
comparison had six layers, and the numbers of units for each layer were 3600, 1000, 500, 100, 10, and 4.
In addition, the output of the second to last layer is used as the extracted eigenvalue. The detailed
calculation can be seen in Reference [31].

(3) CNN: A deep convolutional neural network (CNN) consists of a number of two-dimensional
convolutional kernels and uses multi-layer convolutional and pooling operations to obtain deep
features of data. The CNN input layer used for this paper was 50 × 72, the two convolutional layers
were six convolutional kernels of 3 × 3 and 36 convolutional kernels of 3 × 3, and the corresponding
pooling layers were 1 × 2 and 1 × 11. The numbers of two fully connected layers were 500 and 10,
and the number of output layers was four. The input of the output layer was used as the extracted
eigenvalue. Detailed calculations can be seen in Reference [23].

The baseline systems used for the MD calculation are now briefly described.
(1) Euclidean distance MD: MD is obtained based on the Euclidean distance [32] between two

groups of vectors. The problem with matches based on Euclidean distance is that it is difficult to
determine the appropriate standard, and thus normalization is difficult. For this paper, the maximum
distance in all sample data was selected as the standard, and MD was calculated according to the
following formula:

MD = 1− Dab
Dmax

(9)

where Dab is the Euclidean distance between the eigenvectors extracted from the two PD data. Dmax is
the maximum Euclidean distance between the PD data in the dataset.

(2) Correlation coefficient: A correlation coefficient is a measure of the linear correlation between
two variables [33]. It has a value between +1 and −1, where one is total positive linear correlation, zero
is no linear correlation, and −1 is total negative linear correlation. Therefore, the MD can be calculated
according to the following formula:

MD = |rab| (10)

where rab is the correlation coefficient between the eigenvectors extracted respectively from the two
PD data.

The experimental platform was configured as a Core i7 processor (Intel, Santa Clara, CA, USA)
operating at 3.9 GHz with 16 GB of memory, the operating system was Ubuntu 14.0 (Canonical, London,
UK), and the code was implemented in Python. For the results presented in this paper, the dimension
of each PD data was 50 × 72. The VAE used in the study consisted of seven layers: An input layer,
an output layer, a latent layer, and four intermediate layers. The structure of the network is shown
in Table 4.

Table 4. VAE model parameters for partial discharge data feature extraction.

Layer Number Layer Type Number of Neurons Activation Function

1 Input layer 3600 -
2 Hidden layer 1000 ReLU
3 Hidden layer 500 ReLU
4 Latent variables layer 2 Gaussian distribution
5 Hidden layer 500 ReLU
6 Hidden layer 1000 ReLU
7 Output layer 3600 Sigmoid

65



Energies 2019, 12, 3677

Network layers 1–4 formed the encoder part of VAE, and layers 4–7 formed the decoder part of
VAE. The output of the latent variables layer was the extracted eigenvalues. Using the established PD
dataset, the VAE was trained without supervision, as described in Section 3.

5.2. The Comparison between Different Feature Extraction Methods

We selected four cases of partial discharge detection verified by disintegration and numbered
them cases 1–4. The case information is shown in Table 5.

The equipment in Case 1 and Case 2 belonged to the same manufacturer and were of the same
type. They also had the same discharge location. Case 3 has the same PD pattern as for Cases 1 and 2,
but the equipment manufacturers and discharge locations differed. Case 4 was a comparative case with
different PD types. The partial discharge data detected in the above four cases are shown in Figure 7.

Table 5. Information for four partial discharge detection substation site cases.

Case Number PD Type PD Location

1 Floating discharge Joint of insulation tension pole and transmission gear in disconnector
2 Floating discharge Joint of insulation tension pole and transmission gear in disconnector
3 Floating discharge Built-in sensor connector
4 Insulation discharge Cable terminal damaged in GIS

 
(a) (b) 

(c) (d) 

Figure 7. Data from four partial discharge detection substation site cases. (a) Case 1; (b) case 2; (c) case
3; (d) case 4.
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The trained VAE network model was used to extract the features of the partial discharge data
in the above four cases and to calculate the MD between them. At the same time, the statistical
characteristics, DBN eigenvalues, and CNN eigenvalues for the four cases data were used to calculate
MD. All the MDs were based on cosine distance. The results are shown in Table 6.

Table 6. Match degree for the different feature extraction methods between data from four on-site
detection cases.

Case Number VAE Statistical DBN CNN

1-2 96.87% 66.42% 90.41% 88.62%
1-3 73.78% 59.33% 85.38% 88.46%
1-4 6.93% 40.41% 9.28% 7.41%
2-3 61.75% 60.27% 86.50% 89.15%
2-4 1.92% 39.53% 5.74% 6.46%
3-4 9.51% 26.98% 11.72% 11.96%

The information of four cases in Table 6 are described in Table 5. The similarity between case
1 and case 2 should be 100% because they have GIS devices produced by the same manufacturer,
and partial discharge occurs at the same position, so the similarity result should definitely be the
higher the better. Case 3 has the same PD type compared to cases 1, 2, but the case details such as
PD location and reason are different. Case 4 has a completely different PD type, and the similarity
should be 0%, so the similarity result should definitely be the smaller the better. As seen from Table 6,
using the VAE method, case 1-2 had a higher MD than those of the other cases and was 23.09% higher
than that of case 1-3 and 89.94% higher than that of case 1-4. As a comparison, for the MD results
based on statistical eigenvalues, case 1-2 was 7.09% higher than case 1-3 and 26.01% higher than case
1-4, which means that the MD based on statistical eigenvalues were relatively close. It had a lower
distinguishing ability, even for different PD pattern recognitions. Regarding the MD results based
on DBN and CNN, the MD of case 1-4 and case 2-4 were obviously lower than those of case 1-2 and
case 1-3. Therefore, the DBN and CNN models performed better for data from different PD types
than the traditional statistical method. However, for cases 1-2, 1-3, and 2-3, the MDs were too close to
distinguish similar and dissimilar cases and were therefore less effective than the VAE model.

5.3. The Comparison between Different Match Degree Calculation Methods

To investigate the effects of the different match degree calculation methods, the MD were calculated
by cosine distance, Euclidean distance, and correlation coefficient, respectively based on the VAE
eigenvalues for the four cases in Table 5. The results are shown in Table 7.

Table 7. Comparison of different matching calculation methods on four detection cases on-site.

Case Number Cosine Distance Euclidean Distance Correlation Coefficient

1-2 96.87% 93.03% 95.70%
1-3 73.78% 75.23% 77.64%
1-4 6.93% 8.31% 12.67%
2-3 61.75% 60.84% 79.14%
2-4 1.92% 6.80% 18.22%
3-4 9.51% 7.18% 13.95%

It can be seen that there were slight differences in the specific values among the methods,
but overall, all the methods had good ability to distinguish between similar and dissimilar cases.
Furthermore, we calculated the MDs on all the data for the 42 cases. The VAE model was used to extract
the eigenvalues, and the MD were calculated by cosine distance, Euclidean distance, and correlation
coefficient, respectively. The match result is defined accurate if the MD exceeds 80% under the similar
cases and less than 20% under the dissimilar cases. The accuracies are shown in Table 8.
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Table 8. Comparison of the different matching calculation methods for all the on-site cases.

PD Type Floating Discharge
Metallic Protrusion

Discharge
Insulation Discharge Particle Discharge

Cosine distance 82.6% 79.3% 85.7% 89.6%
Euclidean distance 63.6% 53.5% 75.3% 40.4%

Correlation coefficient 77.5% 48.5% 70.9% 39.9%

It can be seen from Table 8 that for a large number of cases, the accuracy of MD based on Euclidean
distance and the correlation coefficient were lower than those based on the cosine distance. The reason
was that in the calculation of the Euclidean distance MD, data from all kinds of cases were compared
with the fixed maximum distance, thus the singular value will result in the poor effect overall. In the
calculation of MD based on correlation coefficient, more MD values exceeded 20% under dissimilar
cases. In addition, because a large amount of PD data was stored in each case, there may have been
some low quality data that differed greatly from other data in the same case. To improve performance
in big data engineering applications, the data cleaning method needs to be used for data filtration in
future research.

5.4. The Comparison between Different Threshold

The different definition of accurate match also has an important impact on the final effect of the
CBR system. In Section 5.3, the match result is defined accurate if the MD exceeds 80% under the similar
cases and less than 20% under the dissimilar cases. The accuracies change with the threshold changes.
In the classification problem, the number 50% is usually used as the threshold for the classification
output. If the output of a category is greater than 50%, the sample can be classified into this category.
If it is less than 50%, it is not considered to be the category. In data matching applications, it is necessary
to adopt differentiated thresholds to get more accurate case results. However, different algorithms have
different adaptability to different threshold settings. To investigate the accuracy of different algorithms
at different thresholds, we performed the following experiments.

Firstly, 1000 sets of data were selected from similar cases, and the eigenvalues of the data in each
case were calculated by VAE, statistical eigenvalue, DBN and CNN, and the MDs were obtained by
the cosine algorithm. The thresholds were defined as 50%, 60%, 70%, 80%, and 90%, respectively.
The match result is defined accurate if the MD exceeds the threshold, and the accuracy obtained by
different algorithms is shown in Figure 8a.

Secondly, 1000 sets of data were selected from dissimilar cases, and the eigenvalues of the data in
each case were calculated by VAE, statistical eigenvalue, DBN and CNN, and the MDs were obtained
by the cosine algorithm. The thresholds were defined as 50%, 40%, 30%, 20%, and 10%, respectively.
The match result is defined accurate if the MD less than the threshold, and the accuracy obtained by
different algorithms is shown in Figure 8b.

As seen from Figure 8a, in the comparative analysis under similar case data, when the threshold
was set to 70% or less, the accuracy obtained by CNN, DBN, and VAE has a small difference. When the
threshold was set to 80% or more, the accuracy of CNN and DBN decreased more obviously, while the
accuracy of VAE can still reach more than 60% at the threshold of 90%. The reason is that under similar
cases, the MDs obtained by VAE were mainly distributed above 0.9, while the MDs calculated by CNN
and DBN were mainly distributed between 0.7 and 0.8. The MDs calculated by the statistical eigenvalues
were mainly distributed between 0.5 and 0.6. in the comparative analysis under dissimilar case data,
when the threshold was set to 40% or more, the accuracy obtained by the four methods was not much
different. When the threshold was set to 20% or less, the accuracy of the four methods all reduced,
while the accuracy of VAE can still reach more than 40% at the threshold of 10%. Under dissimilar
cases, the MDs obtained by VAE were mainly distributed below 0.2, while the MDs calculated by
CNN and DBN were mainly distributed between 0.1 and 0.4. The MDs calculated by the statistical
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eigenvalues were mainly distributed between 0.3 and 0.4. Taken together, the VAE model also has
better generalization capabilities for threshold changes.

(a) (b) 

Figure 8. Accuracy of the different methods. (a) Accuracy of the different methods under similar cases;
(b) accuracy of the different methods under dissimilar cases.

6. Conclusions

This paper has proposed a PD data matching method based on a VAE network to perform
data mining on historical PD databases. Similar cases found by the method can provide abundant
information for PD diagnosis and equipment status evaluation. A PD dataset was established from
a laboratory partial discharge experiment and substation live detections. Additionally, on the data
set, a comparative experiment was conducted on the VAE and the comparison method. Experimental
results show:

(1) Compared with traditional statistical eigenvalues, deep learning related methods, such as CNN,
DBN, VAE, etc., have better effects on the identification of different PD types on complex data sets;

(2) Compared with CNN, the DBN and VBE models extracted the partial discharge data eigenvalues
with better expression ability. In the data matching experiment, the discrimination degree is higher.

(3) The MD calculation method of cosine distance has better precision under a large number of
samples than the Euclidean distance and correlation coefficient.

The work in this paper provides a new way of thinking about PD data mining under the
background of big data. In further research, a better match strategy will be designed to meet the
engineering requirements of PD data mining. The benchmarking criteria for MD of PD data is the key
issue to be studied in the next step.
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Abstract: The operation prediction of wind farms will be accompanied by the need for massive data
processing, especially the preprocessing of wind farm meteorological data or numerical weather
prediction (NWP). Because NWP data are strongly correlated with wind farm operation, proper
processing of NWP data could not only reduce data volume but also improve the correlations
of wind farm operation predictions. For this purpose, this paper proposes a data preprocessing
algorithm based on t-distributed stochastic neighbor embedding (t-SNE). Firstly, the data collected
were normalized to eliminate the influence caused by different dimensions. The t-SNE algorithm
is then used to reduce the dimensionality of the NWP data related to wind farm operation. Finally,
the wind farm data visualization platform is established. In this paper, 22 index variables in NWP
data were taken as objects. The t-SNE method was used to preprocess the NWP historical data of
a wind farm, and the results were compared with the results of the principal component analysis
(PCA) algorithm. It outperformed PCA in error precision; in addition, t-SNE dimension reduction
preprocessing also had a visual effect, which could be applied to big data visualization platforms.
A long short-term memory network (LSTM) was used to predict the operation of the wind farm
by combining the preprocessed NWP data and the operation data. The simulation results proved
that the effect of the preprocessed NWP data based on t-SNE on the wind power prediction was
significantly improved.

Keywords: t-SNE algorithm; numerical weather prediction; data preprocessing; data visualization;
wind power generation

1. Introduction

Wind power is becoming one of the most important power sources in the power grid. At present,
China’s accumulated wind power capacity is 188 GW, and the total installed capacity has leapt to first
in the world [1]. While the penetration rate of wind power is increasing, it generates a huge amount of
data for recording the operational status of wind turbines, and so it needs to be studied using big data
technology [2,3].

The key technologies of power big data include the following five parts: data acquisition, data
storage, data preprocessing, data analysis, and data visualization. The five key parts of wind power
big data technologies are shown in Figure 1. In the Figure 1, SCADA means supervisory control and
data acquisition.
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Data  Collection
SCADA

Data  Storage
Distributed database

Data interaction
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Data Analysis
Trend forecast

Result Analysis
Visualization of 
running results

Figure 1. Important technologies of wind energy big data processing.

The acquisition and storage of data is the basis for an in-depth understanding of the operational
status of wind turbines as contained in wind power big data; data preprocessing is a prerequisite for
data analysis [4,5]; data analysis is the key to obtaining valuable information from massive data [6–9];
and data visualization is an intuitive and effective method of data presentation. Data preprocessing
refers to the review, screening, sorting, transformation, statute, summary, and other processing done
before the collected data is processed [10]. Unprocessed data obtained after data collection often have
some problems. After preprocessing of data, it is possible to select and extract appropriate features for
model training.

In terms of data preprocessing, Wang et al. [11] used data preprocessing techniques and swarm
intelligence optimization algorithms to analyze wind speeds for wind energy potential assessment and
prediction problems. Niu et al. [12] proposed a combined model for wind speed prediction, including
a set of empirical mode decompositions of adaptive noise and a multi-target locust optimization
algorithm. Jiang et al. [13] proposed a new hybrid model combining the de-drying method and an
optimization algorithm with prediction technology for various unstable factors in complex power
systems. Tian et al. [14] studied the accuracy of photovoltaic (PV) power prediction data, and proposed
the processing of meteorological data by wavelet decomposition and principal component analysis.
Malvoni et al. [15] proposed a cloud segmentation optimal entropy algorithm for the identification of
unit anomaly data. Azimi et al. [16] proposed a new time-based K-means clustering method, including
discrete wavelet transform, harmonic analysis, and multi-layer perceptual neural network methods,
and developed a cluster selection method to determine the optimal training cluster. Zhao et al. [17]
studied the feature reduction analysis of wind-induced anomaly data, and integrated the quadrilateral
method and density-based clustering method to eliminate sparse outliers. Ye et al. [18] used the
adjacent spatial correlation to establish an outlier identification algorithm based on the probabilistic
wind farm power curve for the missing data problem in wind farm time series power data.

In terms of data analysis, Renani et al. [19] proposed a new backtracking algorithm for crossover
and mutation operators for the problem of wind power prediction, and compared the advantages of an
adaptive neuro-fuzzy inference system and other data mining algorithms. Zameer et al. [20] proposed
a ML-STWP-based, machine-learning-based short-term wind energy prediction method for short-term
wind power forecasting problems, and applied feature selection and regression learning techniques to
wind power forecasting. Yuan et al. [21] proposed a hybrid model of the least squares support vector
machine and gravity search algorithm for wind farm output power prediction. Abdoos et al. [22] used
variational mode decomposition to decompose the time series for the wind power data prediction
problem, and then used the Gram–Schmidt orthogonalization to eliminate the redundancy. Finally,
the extreme learning machine algorithm was used to train the features.

The above research has mainly been aimed at the cleanup of bad data in wind power big datasets,
and the recovery of missing data in the wind speed–power model. Atmospheric dynamics and detailed
weather data such as wind direction, wind speed, atmospheric pressure, and air density also have
important impacts on the operating state of wind farms, but they have not been paid much attention.
Research on data reduction processing with such a large variety of data is also insufficient.

In this paper, a wind power data preprocessing method based on t-SNE has been proposed to
reduce the dimensionality of the collected numerical weather prediction. The main work and problems
of this paper are as follows:
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(1) Applying the data dimensionality reduction algorithm of t-SNE to the preprocessing of numerical
weather prediction (NWP) data of wind farms, and comparing this with the principal component
analysis algorithm, the superiority of the algorithm was proven. A long short-term memory
network (LSTM) network was used to predict the data after the dimension reduction using t-SNE
and the original historical data, which proved that the method improves the prediction accuracy.

(2) Based on this, a wind farm visualization platform was established to display various types of data.

2. Preprocessing Algorithm

2.1. Normalized Processing

Assuming that the dataset has 2 dimensions, first calculate the influence of the zero mean difference
and the covariance. The data after zero mean transformation is:{

x′ = x− x
y′ = y− y

(1)

The covariance of the new data is:

σ′xy =
1
n

n∑
i=1

(
x′i − x′

)(
y′i − y′

)
(2)

x′ = 0, y′ = 0, therefore:

σ′xy =
1
n

n∑
i=1

(
x′i

)(
y′i

)
(3)

The raw data covariance is:

σxy =
1
n

n∑
i=1

(xi − x)(yi − y) =
1
n

n∑
i=1

(
x′i

)(
y′i

)
(4)

Therefore:
σ′xy = σxy (5)

After the variance is normalized, we have:⎧⎪⎪⎨⎪⎪⎩ x′′ = x−x
σx

y′′ = y−y
σy

(6)

After the variance is normalized, the covariance is as shown in Equation (7).

σ′′xy =
1
n

n∑
i=1

(
x− x
σx

)(
y− y
σy

)
=
σxy

σxσy
(7)

The min–max normalization method is used for calculation, and the result of the linear function
transformation is: {

x′ = cx · x
y′ = cy · y (8)

Calculate the covariance as:

σ′′xy =
1
n

n∑
i=1

(cx · xi − cx · x)
(
cy · yi − cy · y

)
= cxcyσxy (9)
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2.2. t-SNE Dimensionality Reduction Algorithm

2.2.1. Introduction to t-SNE Algorithm

t-distributed stochastic neighbor embedding (t-SNE) is a nonlinear machine learning algorithm
for dimensionality reduction. It is an improvement of the stochastic neighbor embedding (SNE) [23]
proposed by Laurens van der Maaten and Geoffrey Hinton. It is very suitable for high-dimensional
data dimensionality reduction to 2D or 3D for visualization. The essence of the process is mapping of
the similarity between data points in low-dimensional space to high-dimensional space.

2.2.2. Basic Principles and Derivation of the SNE Algorithm

SNE maps data points to probability distributions by affine transformation. From a mathematical
point of view, it can be understood that SNE first converts the Euclidean distance into a conditional
probability to express the similarity between points.

Given N high-dimensional data x1, x2, . . . , xN, we first construct a conditional probability pji
proportional to the similarity between xi and xj, using the calculation formula Equation (10).

pji =
exp

(
−‖xi − xj‖2/

(
2σ2

i

))
∑

k�i exp
(
−‖xi − xk‖2/

(
2σ2

i

)) (10)

In the formula, σi is the Gaussian function variance of data point xi.
For low dimensions yi and the variance of the Gaussian distribution as 1√

2
, qji indicates the

similarity between two points, as defined in Equation (11):

qji =
exp

(
−‖xi − xj‖2

)
∑

k�i exp
(
−‖xi − xk‖2

) (11)

As with Equation (10), we assume that pji = 0. If yi, yj precisely retain the probability distributions
of xi, xj, it indicates a better dimension reduction effect, from which Equation (12) is established:

pji = qji (12)

As can be seen from the above, the goal of t-SNE is to find a different way of expressing data that
can minimize pij and qji. By optimizing the distance between these two probability distributions pij and
qji, namely KL scatter (Kullback–Leibler divergences), the objective function is given by Equation (13):

C =
∑

i

KL(Pi‖Qi) =
∑

i

∑
j

pji log
pji

qji
(13)

In Equation (13), Pi represents the conditional probability distribution of its data points after xi.
Different points have different σi, and the entropy of Pi increases as σi increases. SNE uses the

concept of perplexity to represent the best σ by binary search. The confusion is:

prep(Pi) = 2H(Pi) (14)

In Equation (14), H(Pi) is the entropy of Pi:

H(Pi) = −
∑

j

pji log2pji (15)
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The physical interpretation of confusion is the number of valid neighbors near a point.
After determining the value of σ, the problem becomes a solution to the gradient. Therefore,
the gradient formula of the objective function of t-SNE can be derived as shown in Equation (16):

δC
δyi

= 4
∑

j

(
pij − qij

)(
yi − yj

)(
1 + ‖yi − yj‖2

)−1
(16)

Generally, the Gaussian distribution under a small σ is used for initialization. In order to speed up
the optimization process and avoid falling into the local optimal solution, a large momentum is needed
in the gradient update, that is, the parameter update needs to introduce the gradient accumulating
term of the previous gradient accumulation. The parameter update formula is Equation (17):

Y(t) = Y(t−1) + η
δC
δY

+ α(t)
(
Y(t−1) −Y(t−2)

)
(17)

In Equation (17), Y(t) represents a solution of iteration t times, η represents a learning rate, and α(t)
represents a momentum of iteration t times.

2.2.3. t-SNE Principle and Derivation

t-SNE uses the t-distribution in low-dimensional space to characterize the similarity between two
points. As can be seen from Figure 2, the red line represents a normal distribution and the blue dashed
line represents a t-distribution. Due to the difference in the probability distributions of the normal
distribution and the t-distribution, the t-distribution has a longer and longer tail effect than the normal
distribution. Therefore, in the high-dimensional space where the data values are relatively compact,
the data distribution after the dimensionality reduction can be made larger by using the t-distribution.

    (a) (b) 

Figure 2. Comparison—normal distribution and t-distribution. (a) Distribution without outliers;
(b) distribution with outliers.

As seen in Figure 2a, in the absence of outliers, the t-distribution can better describe the edge data;
as can be seen from Figure 2b, the t-distribution can better reflect the probability distribution of the
data in the presence of outliers. The smaller distances are larger than in the normal distribution after
mapping, which captures the overall characteristics of the data.
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The qij changes after using the t-distribution can be shown by Equation (18):

qij =

(
1 + ‖yi − yj‖2

)−1

∑
k�l

((
1 + ‖yi − yj‖2

)−1
) (18)

In addition, in the computational time complexity, since the t-distribution is a linear sum of
Gaussian distributions, it does not increase the time complexity. The post-gradient is optimized by
t-distribution, as in Equation (19):

δC
δyi

= 4
∑

j

(pij − qij)(yi − yj)(1 + ‖yi − yj‖2)−1
(19)

According to the derivation of the above algorithm, after summarizing, the flow chart of the t-SNE
algorithm as shown in Figure 3 can be obtained. The program can then be implemented according to
the steps of the algorithm flow chart.

t < T ?

  Data nX x x=

Calculate confusion  
Perp

Set number of 
iterations T

Learning rate
momentum (t)

Calculate  pji  under 
given  Perp

Set j i i j
j i

p p
p

n
+

=

 Use                      
initialize Y randomly

( )N I−

Calculate  qji in the 
low dimension

Calculate the 
gradient

End

t+=1

Refresh 
t t

t t

CY Y
Y

t Y Y

−

− −

= +

+ −

δη
δ

α

Figure 3. The t-distributed stochastic neighbor embedding (t-SNE) algorithm flow.

3. Weather Forecast Data Preprocessing Scheme and Application

3.1. Composition of Wind Farm Operation Data

Classified by its electrical connection and hardware configuration, wind power big data can be
divided into three sources: wind farms, wind turbines, and system access points. The composition of
wind power big data is shown in Figure 4. In Figure 4, AGC means automatic generation control, AVC
means automatic voltage control, STATCOM means static synchronous compensator.
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Figure 4. Components in wind power data during operation.

Wind farm big data is composed of primary equipment data, secondary equipment data,
and equipment temperature measurement data; wind turbine big data is composed of electrical
quantity data, mechanical quantity data, and other data; power system access point big data mainly
includes power flow data, AGC, AVC, STATCOM, etc.

The object of this paper is the preprocessing of wind farm NWP data, which is part of the wind
turbine big data. As shown in Figure 5, the wind turbine big data mainly includes wind turbine
mechanical quantity data, electrical quantity data, and other data including NWP. The mechanical
data and electrical data have lower dimensionality and are important operational data, and have no
need for dimensionality reduction; NWP data has a high dimensionality which must be considered,
so dimension reduction processing must be considered. The dimensionality-reduced data can be
applied to the analysis of various problems, including forecasting, running scheduling, and so on.

Wind 
turbine 
big data

Tip speed ratio, pitch angle, rotor speed, 
electromagnetic torque and gearbox ratio

FSIG: stator three-phase voltage/current, 
terminal shunt capacitor bank voltage and 
soft-start voltage/current
DFIG: stator three-phase voltage/current, 
rotor three-phase voltage/current, DC-side 
capacitor voltage, Crowbar overcurrent 
protector voltage/current
PMSG: stator three-phase voltage/current, 
back-to-back converter

Including temperature, wind speed and 
direction, and equipment temperature data, 
etc.

Mechanical 
data

Electrical 
data

Other 
quantity 

data

Figure 5. The data components from wind turbines.

For the prediction of wind power output, the current research focused on the wind speed–power
model. However, considering only the influence of wind speed on power, other indicators related
to power output may be ignored, resulting in a decrease in prediction accuracy. Detailed NWP data
such as wind direction, wind speed, atmospheric pressure, and air density of wind farms are used
as references for dimension reduction processing, which plays an important role in wind power
forecasting and operation scheduling.

3.2. Numerical Weather Data Acquisition and Processing Steps

Numerical weather forecast data has a large number of meteorological indicator variables.
The processing method used to date is to select meteorological indicator variables according to
experience, but the accuracy of selecting meteorological indicators by experience alone cannot be
guaranteed. In addition, low correlation or redundant variables will also adversely affect the cost
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and time of prediction. In order to improve the efficiency of the model, the N-dimensional data were
reduced by the t-SNE dimensionality reduction method.

The purpose of preprocessing wind power data is to normalize, reduce dimensionality, and predict
the error of the collected NWP data. The specific implementation steps are as follows:

(1) The operating status of N fans is measured by various sensors installed on the fan and uploaded
to the main station of the wind airport.

(2) The dimension equivalent of each dimension of the collected data is calculated according to
Equations (1)–(10) to avoid the influence of different dimensions.

(3) According to Equations (11)–(19), the dimensionality of the different indicators in the NWP data
is reduced to reduce the redundancy of the phase data.

(4) The effectiveness of the preprocessing is verified by using the LSTM network for power prediction.
(5) Visualize the forecast data and historical data.

4. Case Analysis

4.1. Data Source

The sample data used in this paper were from the data segment collected by a wind turbine.
The sampling start time was 13:33 on 6 August 2013, and a total of 2.4 million pieces of data were
collected. After eliminating the missing variables, the NWP data has 22 remaining dynamics, pressure,
temperature, humidity, wind speed, and wind direction at different heights, as shown in Table 1.

Table 1. Numerical weather prediction NWP variables.

Number of Variables Index Shorthand Unit

1 Air pressure p mbar
2 Air temperature T degC
3 Thermodynamic temperature Tpot K
4 Relative humidity rh %
5 Relative pressure VPact mbar
6 Absolute humidity sh g/kg
7 Air density rho g/m3

8 Minimum wind speed minWs m/s
9 Rainfall TP mm

10 Photosynthetically active radiation PAR μmol/m/s
11 Logarithmic temperature Tlog degC
12 Carbon dioxide concentration CO2 ppm
13 Maximum wind speed maxWs m/s
14 10 m wind speed wv m/s
15 10 m wind direction wd deg
16 10 m wind level ws /
17 20 m wind speed wv m/s
18 20 m wind direction wd deg
19 20 m wind rating ws /
20 30 m wind speed wv m/s
21 30 m wind direction wd deg
22 30 m wind rating ws /

As can be seen from Table 1, the dimensionality of the NWP data was very high, and it was not
possible to determine whether each feature affects the operating state of the wind farm. If the data
were subsequently input into the prediction model without processing, too many data would not only
lead to a large increase in computation time, but would also affect the ability of the model to express
features. Therefore, it was necessary to select valuable features from the appropriate algorithms. In this
part, the t-SNE method introduced above was used for feature selection, and compared with the PCA
dimensionality reduction algorithm.
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4.2. Wind Power Big Data Dimensionality Reduction Based on t-SNE Algorithm

In order to remove the noise of the NWP samples and visually reflect the characteristics of wind
farm meteorological data in low-dimensional space, the sample set was reduced from 22 dimensional
to 2 dimensional space using the t-SNE algorithm, the confusion was set to 20, and iteration was set
to 5000 times. The effect of confusion was to balance the weights of the t-SNE local transformation
and the global transformation. It can be understood that the confusion was used to set the number
of adjacent points of each point. The greater the confusion setting, the more attention is paid to the
global data distribution. Usually, the confusion parameter is roughly equal to the number of neighbors
needed. In this paper, it was determined based on the NWP variables. The number of iterations was
based on the parameters recommended by the authors in the literature [23].

We selected 3000 data from a single day to show the dimensionality reduction results of the t-SNE
algorithm, as shown in Figure 6. The dots in the figure represent data points, and the different colors
represent different variables.

Figure 6. The 2 dimensional result of t-SNE dimensionality reduction algorithm.

As shown in Figure 6, the data of the input NWP were color-coded according to the number of
data categories in the default series of RGBA, RGBA is the color space representing red green blue
and alpha. The t-SNE algorithm was able to clearly represent all data points in a 2 dimensional space,
and most of the data points of different features exhibited a short-line structure of one or several
segments. The t-SNE algorithm clearly separated the different categories of data.

At the same time, it can be seen from Figure 6 that when the algorithm was used to reduce the
original data to 2 dimensions, some data points overlapped, for example, the red and blue in the figure
overlap, making them more difficult to distinguish. Therefore, the following attempt was to to reduce
the original sample set to the three dimensional subspace using the t-SNE algorithm. The confusion
was set to 20 and iteration was set to 5000 times. We again selected 3000 data to show the dimensionality
reduction results, as shown in Figure 7. The colors of the input data were color-coded according to the
format of “RdYlGn”, which is the order from red to green.

In order to verify the generalization of the t-SNE model, the meteorological data segment of
this wind farm at other times was used as the experimental object, and the sampling start time was
8 August 2013. After the data were input into the model using the same preprocessing method,
the dimensionality reduction visualization that resulted is shown in Figure 8.
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Figure 7. The three dimensional result of t-SNE dimensionality reduction algorithm.

Figure 8. The three dimensional result of t-SNE dimensionality reduction algorithm for data series 2.

It can be seen from the above simulation results that the t-SNE algorithm could clearly represent
all data points in three dimensional space. Most data points presented a one- or several-segment
short-line segment structure that reflected the temporal continuity of weather changes. It can be seen
that dots of different colors represent different features that were distinctly distinguished in three
dimensions. The simulation results demonstrated the effectiveness of the t-SNE algorithm in processing
meteorological data in wind farm operating data.

Analysis of the distance relationship between data points does not provide quantitative information
about the data. Therefore, the purpose of the t-SNE dimensionality reduction method is mainly to
visualize the data, so that we can have a macroscopic understanding of the data patterns that need to
be mined. For a certain set of data, if t-SNE performs well on the segmentation feature, it is highly
probable that a machine learning method that projects this set of data into different categories will be
found. Conversely, if t-SNE is generally represented on segmentation features, such as in the case of
class overlaps, then a more complex model needs to be built.

4.3. Comparison with the PCA Algorithm for Dimensionality Reduction

The idea of principal component analysis is to find one or several projection directions so that the
variance of the original data samples after projection is maximized. The original m-dimensional features
are projected onto a new n-dimensional space, which is characterized by the principal component.
The main evaluation method of principal component selection is to use variance. The larger the
variance of new features, the more information contained in this feature can be reflected. Therefore,
the percentage of contribution of cumulative variance is calculated to select the principal component.
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Assuming that the sample set X = {x1, x2, . . . , xm} satisfies the centralization, it is assumed that the
new coordinate system after the projection transformation is {w1, w2, . . . , wd}, where wi is the standard
orthogonal basis vector and ‖wi‖2 = 1. The projection of a data point xi in the new coordinate system
{w1, w2, . . . , wd} is WTxi. If the projection of the data points in the original sample set can be effectively
separated under this new coordinate system, the variance of the different sample data points in the
new coordinate system is

∑
i

WTxixT
i W, so the optimization goal is to maximize this variance:

⎧⎪⎪⎨⎪⎪⎩ max
w

tr
(
WTXXTW

)
s.t. WTW = 1

(20)

For Equation (20), the Lagrangian multiplier method is used, giving:

XXTW = λW (21)

Therefore, it is only necessary to perform eigenvalue decomposition on the covariance matrix
and sort the obtained eigenvalues: λ1 ≥ λ2 ≥ . . . ≥ λm. Generally, a dimension with a
cumulative contribution rate of about 75% to 95% is selected as the reference dimension after PCA
dimensionality reduction.

The variance contribution rate and the cumulative variance contribution rate are, respectively:

ηi =
100%λi∑

m λi
(22)

η∑(p) =
p∑
i

ηi (23)

The eigenvectors corresponding to the first x eigenvalues constitute the solution of principal
component analysis W = (w1, w2, . . . , wx).

In order to compare the dimensionality reduction effect of the t-SNE and PCA algorithms, the data
of wind farm meteorological data segment 1 were reduced to 2D, 3D, 5D, and 8D space, and credibility
was used as the evaluation standard. Credibility indicates the retention of the local structure of the
original structure of the data when dimension reduction to low-dimensional space is carried out.
The size range of credibility is [0,1]. The greater the credibility, the better the data retention, and the
lower the credibility, the worse the data retention after dimension reduction. The mathematical
definition of credibility is given by Equation (24).

T(k) = 1− 2
nk(2n− 3k− 1)

n∑
i=1

∑
j∈ui

(r(i, j) − k) (24)

In Equation (24), r(i, j) represents the rank of the low-dimensional data points j, determined
according to the pairwise distance between the low-dimensional data points, and Uk

i represents the set
of neighbor data points k in the low-dimensional space. The following will be used to compare the
reliability of high-dimensional data to 2, 3, 5, and 8 dimensions using PCA and t-SNE.

Table 2 and Figure 9 show the comparison of the reliability of the data after dimension reduction
using the t-SNE algorithm and the PCA method. Through the graph, it can be seen that t-SNE gave a
significant improvement in the dimensionality reliability of the experimental low-dimensional space
compared with PCA, and t-SNE basically retained the time-series characteristics of the original data.
PCA means principal component analysis

83



Energies 2019, 12, 3622

Table 2. Comparison of trustworthiness of low-dimensional representations of the data set.
PCA—principal component analysis.

Dimension PCA t-SNE

2 0.918 0.921
3 0.970 0.975
5 0.975 0.983
8 0.977 0.989

ε ε

Figure 9. Dimensionality reduction results of principal component analysis PCA and t-SNE.

4.4. Comparison of Wind Speed Prediction Before and After Data Preprocessing

Here, the long-short-term memory (LSTM) was selected as the wind speed prediction model to
evaluate the effect of the wind power data preprocessing. As a complex nonlinear unit, LSTM uses a
deeper neural network to reflect long-term memory effects and has deep learning ability [24,25].

The preprocessed data were divided into training data and test data. Among them, 1300 pieces of
data are used as training data, and the remaining 500 pieces of data are used as test data.

In the error analysis of the prediction results, it is often evaluated by two evaluation indicators:
mean absolute percentage error (MAPE) and root mean square error (RMSE). The error calculation
formula is given by reference to Equations (25) and (26), respectively.

εMAPE =
1
n

n∑
i=1

∣∣∣P̂N(i) − PN(i)
∣∣∣

PN(i)
× 100% (25)

εRMSE =

√√
1
n

n∑
i=1

(P̂N(i) − PN(i))
2 (26)

In Equations (25) and (26), PN(i) and P̂N(i) (i = 1, 2, 3, . . . , n) are the actual measured and predicted
values of the data point i, respectively, and n represents the length of the data used for verification.

Table 3 shows the prediction results of the wind farm data through the preprocessing method
of this paper and the direct use of the original data. It can be seen from Table 3 that the prediction
results εMAPE and εRMSE after preprocessing by t-SNE were reduced compared with the prediction
results using historical data, which effectively improved the prediction accuracy. The results also show
that after the dimension reduction preprocessing, the analysis of less relevant invalid variables can
be avoided, and only the highly correlated useful variables were retained, which helps to improve
the prediction performance of the LSTM model. In addition, after using the dimensionality reduction
preprocessing method of this paper, the input variables were much fewer than the original, which is
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conducive to large-scale data calculation. MAPE is mean absolute percentage error and RMSE means
root mean square error.

Table 3. Error analysis of the forecasting result.

Index Type of Data εMAPE (%) εRMSE

Active power Preprocessed data 0.603 2098.866
historical data 0.711 2293.650

Phase current
Preprocessed data 3.1589 73.358

historical data 3.722 80.577

Phase voltage Preprocessed data 2.224 32.68
historical data 2.517 37.955

4.5. Visualization Platform Implementation

We designed a visualization system for statistical and real-time status monitoring of wind power
big data. In order to display relevant information in a timely manner, the platform uses Grafana as a
visualization tool and the timing database InfluxDB as a data storage container. In the experimental
part, the Python language was used to implement various functions, including client and server
building, reading, and writing to InfluxDB.

InfluxDB is backed by Norwest Venture Partners, Sapphire Ventures, Battery Ventures, Trinity
Ventures, Mayfield, Harmony Partners, Sorenson Capital, Bloomberg Beta and Y Combinator, its
location is San Francisco, CA 94103, USA. Grafana is created by raintank co-founder Torkel Odegaard
and located in San Francisco, USA. Python is created by Guido van Rossum and managed by Python
software foundation, located in Beaverton 97008, USA.

4.5.1. System Architecture and Implementation Process

The overall architecture of the wind farm monitoring data visualization platform is shown in
Figure 10. The visualization platform was mainly composed of a data processing module and a
data visualization module. The data processing module was responsible for processing the raw
data and importing it into the database. The visualization module was responsible for reading and
aggregating the data and visualizing it. The data visualization module also included data query and
data aggregation functions. Through these two functions, the wind farm monitoring data visualization
platform can be realized.

Wind farm monitoring data 
visualization platform

Data preprocessing Data visualization module

Convert 
data

Process 
data

Write data  
to database

Filter 
condition

Query 
data

Data 
visualization 

Distributed time series 
database InfluxDB GrafanaFront display frame

Obtain
Raw data

Figure 10. Overall framework of the system.

The visualization implementation process is shown in Figure 11. The data were processed and
filtered, transformed into visually expressible geometric data by mapping, and finally rendered into
user-visible image data.
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Real-time 
data

Preprocessed 
data

Forecast data

Geometric 
data

Image 
display

Filter

Data 
analysis
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Figure 11. Mapping from data space to graphics space.

4.5.2. Visualization Platform Implementation

The data visualization platform included the following three modules: a data processing module,
a data aggregation module, and a data visualization module. The data processing module converted
the wind power data in the form of a csv file into Json format and wrote it to the InfluxDB database
in batches. The data aggregation module compressed aggregated operational data through the data
retention function and continuous query (CQ) function provided by InfluexDB. Data visualization
module: Connect the data in the InfluxDB database to Grafana and select the appropriate visualization
panel to visualize meteorological data such as precipitation, pressure, temperature, humidity, and wind
speed and direction.

Currently, there are six types of panels, including Graph, Singlestat, Heatmap, Dashlist, Table,
and Text. The visualization panel for each meteorological factor of the wind farm is shown in Figure 12.

 

Figure 12. Panel of numerical weather prediction NWP data of wind farm.
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5. Conclusions

In this paper, the preprocessing links in wind farm big data mining were studied, and data
preprocessing methods were discussed and applied. The t-SNE algorithm was used to preprocess and
analyze numerical weather prediction (NWP) data. The main conclusions are as follows:

(1) Due to the large size of meteorological indicator variables in NWP data, the traditional feature
selection method is no longer effective. For this reason, the t-SNE algorithm was used to reduce
the NWP data. Using actual NWP data collected by a wind farm, the experiment proved that
t-SNE can better preserve the local similarity of sample points in the original high-dimensional
space in 2 dimensional space; the t-SNE data preprocessing method improved the computational
efficiency of the subsequent data analysis model while ensuring accuracy.

(2) By comparing two different data preprocessing methods, t-SNE and PCA, it was found that the
dimensionality reliability of t-SNE was slightly better than the PCA dimensionality reduction
method in each low-dimensional space of the experiment; the data preprocessing results of the
t-SNE and PCA algorithms were applied to wind power prediction based on a deep learning
LSTM network, which proved that the preprocessed data had better prediction accuracy.

(3) The wind farm monitoring data visualization platform consisted of a data processing module,
a data aggregation module, and a data visualization module, able to realize the visualization
of the massive data recorded during the operation of the wind farm. It not only provides
important understanding of the operating state of the wind farm, but also provides a basis for the
construction of subsequent trend prediction models.
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Abstract: The large-scale integration of renewable power generators in power grids may cause
complex technical issues, which could hinder their hosting capacity. In this context, the mitigation
of the grid voltage fluctuations represents one of the main issues to address. Although different
control paradigms, based on both local and global computing, could be deployed for online voltage
regulation in active power networks, the identification of the most effective approach, which is
influenced by the available computing resources, and the required control performance, is still an
open problem. To face this issue, in this paper, the mathematical backbone, the expected performance,
and the architectural requirements of a novel decentralized control paradigm based on dynamic
agents are analyzed. Detailed simulation results obtained in a realistic case study are presented and
discussed to prove the effectiveness and the robustness of the proposed method.

Keywords: voltage regulation; smart grid; decentralized control architecture; multi-agent systems

1. Introduction

The intermittent power profiles generated by renewable power generators in power grids
considerably perturb the bus voltage magnitude [1–3], which may go outside the allowable admissible
range, especially during critical operating conditions (i.e., high generation and low load demand [3–5]).
These events are not infrequent in existing power networks, which have been traditionally designed
by assuming the passivity of all system buses, without considering the presence of distributed and
dispersed generators [6]. Hence, increasing of renewable power generators in these networks, driven
by the modern sustainable environmental policies, is causing severe and complex phenomena that
need to be carefully addressed [7–9]. In this context, the research for new and more advanced online
voltage control systems, aimed at regulating the reactive power injected/absorbed by distributed
generators, represents one of the most promising research directions for smart power grids [10–12].
To address this issue, the use of centralized architectures, traditionally used for voltage control in
power systems, could not be suitable in short-term scenarios [13], since it asks for a significant upgrade
of the communication and computing resources, to effectively solve constrained optimal power flow
problems [14]. Moreover, the deployment of reliable state estimation algorithms, which is a prerequisite
of optimal power flow-based regulation techniques, is still an open problem due to the limited number
of installed sensors [15]. This has stimulated the research for alternative control techniques for the
coordination of the reactive power injected/absorbed by distributed generation units, which process
only local data [16–18]. Recent experimental results have demonstrated that these local control
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techniques could be effectively used in existing distribution networks, but they may not provide
sufficiently accurate results, especially in the presence of many renewable power generators [11].
To solve this problem, in [19–21] the voltage regulation problem is solved by a centralized computing
framework, which collects and processes the sensor data streaming, and sends back the corresponding
set-points to the voltage controllers. Although the results obtained by this hierarchical voltage control
paradigm are highly accurate, a reliable and pervasive communication system is required to connect
all the sensor/controllers to the central processing system, which makes the entire control architecture
extremely vulnerable. Furthermore, this method asks for an accurate model of the power system and a
reliable estimation of the load/generation patterns, which are highly unpredictable, due to rapidly
changing operating conditions [22]. Moreover, as recently outlined in many research works, these kinds
of centralized control architectures are characterized by low scalability levels, since an increased grid
complexity could ask for unaffordable computing resources, further hardware redundancies, higher
communication bandwidth, and larger data storage resources [23]. All these limitations could hinder
the application of centralized control architectures in modern power systems, where the constant
growth of grid complexity and the need for a massive pervasion of renewable power generators
ask for more scalable, and more flexible control architectures. In this framework, the deployment of
decentralized architectures based on cooperative controllers, which infer global information about the
actual power system operation by exchanging and processing only local data, has been recognized as
one the most promising enabling technology for solving the voltage control problem. The concept is
to try keeping the bus voltage magnitudes very close to the nominal value by adjusting the reactive
power generated by the distributed generators, without asking for sophisticated communication
hardware and computational resources. In particular, in [24,25] a decentralized technique for voltage
regulation based on mutually coupled oscillators has been proposed. The main idea is to couple each
grid sensor to a first-order oscillator equipped with decentralized consensus protocols, which converge
to the global variables characterizing the actual power system operation. Thanks to this paradigm,
the distributed voltage controllers can infer the global variables without the need for a fusion center,
which collects and processes all the sensor data. In [26], a two-stage control technique for decentralized
voltage regulation in active networks has been proposed. During the first stage, all the local controllers
adjust the voltage at the monitored bus, by only processing local data; in the second stage, a proper
coordination strategy is activated to properly balance the reactive power absorbed/injected by each
controller. A similar approach is proposed in [19], where two control techniques are conceived,
to avoid excessive reactive power absorption/injection by each distributed controller. In particular,
the first technique is based on the decentralized estimation of the average reactive power generated
by all the controllers. The second approach is based on the estimation of the average current that
controllers inject at the point of common coupling, which is then used to define the optimal set of each
controller. More recently, new techniques based on multi-agent systems (MASs) have been proposed
for decentralized voltage regulation. In particular, in [27] a MAS-based decentralized technique for
voltage control in distribution networks, and an incentive mechanism aimed at stimulating renewable
power generators to support the grid voltage are designed. The main idea is to allow the local
control agents to compute the voltage sensitivities by cooperating only with their neighborhood,
without the need for an arbitration agent, which collect all the agent’s measurements. Starting from
these sensitivity coefficients, each agent identifies its local voltage control strategy by maximizing
its own profit. An alternative decentralized approach to compute the voltage sensitivities, which
is based on the data surface fitting technique, has been proposed in [28]. This technique requires
the knowledge of the network characteristics, and it is robust to changes in network parameters.
The decentralized optimization of the local voltage control strategy is obtained in [29] by employing a
computing paradigm, which aims at minimizing a quadratic voltage mismatch error objective using
gradient-projection updates. To solve this problem two dynamic scenarios have been considered,
which include an asynchronous scheme for the decentralized parameters update, and a time-varying
communication scheme for highly variable network operation states. A similar solution approach
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has been proposed in [30] for voltage control of radial distribution grids with photovoltaic generators
operating in voltage support mode, and distributed storage systems. In this paper, the voltage
optimization problem has been led to the design of a decentralized disturbance-feedback controller,
which minimizes the expected value of a convex quadratic cost function, subject to robust convex
quadratic constraints on the system state and input. This decentralized problem has been solved
by deriving an inner approximation, which enables the efficient computation of an affine control
policy via the solution of a finite-dimensional conic program. Although these techniques show their
potential of decentralized architectures in solving the online voltage regulation, their performance,
in terms of grid voltage magnitude deviations, may be not satisfactory [31]. This limitation mainly
stems from the fact that the computed control action is not based on a real picture of the system
operating condition. Hence, new and more effective decentralized voltage control architectures should
be looked for. In trying to address these problems, this paper proposes a novel decentralized control
architecture for the online voltage regulation in active power grids. The proposed solution leverages
the mathematical framework of consensus/synchronization control theory in MASs. MASs consist
of groups (i.e., ensemble) of dynamical systems exchanging their information and interacting with
each other through wireless/wired communication networks, to agree, for example, upon a certain
quantity of interest. Many real systems in nature and human society can be modeled as MAS and
many researchers, inspired by natural occurrence of flocking and formation forming, have focused
their work on synchronization, consensus and coordination of these latter [32], i.e., in controlling
the whole network in order to produce a common behavior by applying distributed algorithms and
to guarantee a smart group behavior. Examples in engineering deal with the coordinated motion
of autonomous vehicles [33–35], the phase or frequency synchronization in large power grids [36],
and the synchronization of wireless sensor networks [37].

By leveraging this paradigm, an electrical grid can be controlled by exploiting N cooperative
smart agents that, exchanging their state information through communication networks, impose a
common voltage magnitude value to the whole electrical grid. Specifically, each smart controller uses
the information received by neighbors, via a communication interface, to locally control the voltage
magnitude of the monitored bus, while aiming at achieving a synchronization behavior to desired
voltage magnitude, as imposed by the network generator without the need for fusion data center.
This allows the smart controller to locally decide how much reactive power it needs to inject, or absorb,
to reach the desired voltage asset for the whole power grid.

The current literature exploits decentralized control strategies only for the control of the generators
(see the survey [31] and the references herein). Our approach, differently, aims to guarantee that all the
buses, both generation and load, synchronize to the common reference imposed by the generators,
while reducing power losses. The proposed approach hence provides a self-organized power grid,
which has the ability to cope effectively with the problems that might occur using only local interactions
and providing “plug and play” capability. A case study developed on the IEEE 30-bus network confirm
the effectiveness of the approach, and shows its robustness regarding electrical load variations.

Finally, it is worth mentioning that the large-scale deployment of the proposed control paradigm
asks for the conceptualization of new tools aimed at facilitating operational data acquisition and
handling in inter-operable formats. In this domain the current research activities are oriented in
conceptualizing advanced computing paradigms aimed at handling complex systems by information
semantics [38]. The main idea is to develop a power system ontology able to adapt to different
use-cases, which could be used to define and specify complex events and actions that run on an event
processing engine. To this aim the Authors are developing a distributed and cooperative information
framework aimed at exploiting the semantic representation of power system measurements for
transparently exchanging data and information between the local voltage controllers, and with the
Energy Management Systems of the Distributed System Operator. The proposed framework is based
on specific software components, which support decentralized semantic sensor data exchanging and
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a distributed middleware aimed at processing massive and heterogeneous sensor measurements.
The details of this framework will be presented in a future works.

The paper is organized as follows. In Section 2 the problem is formulated, while in Section 3 the
proposed decentralized solution is analyzed. Section 4 is devoted to a case study; concluding remarks
are presented in Section 5.

2. Problem Formulation

The online voltage control function identifies, for each power system state Γ, the set-point y of
the grid controllers that minimizes an objective function J subject to several equality and inequality
constraints g(Γ, y).

This problem can be formalized by the following constrained optimization problem:

{ miny∈Ω J(y, Γ)
g(Γ, y) ≤ 0

(1)

where
y =

[
Qdg,1, · · · , Qdg,Ng , Qcap,1, · · · , Qcap,Nc , m

]
(2)

is the control vector, whose components are the grid controller set-points, Qdg,i is the reactive power
injected by the i-th (i = 1, . . . , Ng) distributed generator available for the regulation; Qcap,j is the vector
of the reactive power injected by the j-th (j = 1, . . . , Nc) capacitor bank and m is the tap position of
the HV/MV line tap changing transformer. Please note that the control vector y takes value in the
solution space Ω:

y ∈ Ω ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

tapmin ≤ m ≤ tapmax,

Qdg,min,i ≤ Qdg,1 ≤ Qdg,max,i i = 1, · · · , Ng,

Qcap,min,j ≤ Qcap,j ≤ Qcap,max,j j = 1, . . . , Nc.

(3)

The vector function g(Γ, y) describes the problem constraints in terms of allowable ranges for the
bus voltage magnitudes (i.e., Vmin,q ≤ Vq ≤ Vmax,q, q = 1, · · · , N), and maximum allowable currents
for the nl power lines (i.e., Il ≤ Imax, l = 1, · · · , nl).

The objective function could take into account both technical and economic aspects, and it is
typically expressed as a weighted sum of O normalized design objectives:

J(y, Γ) = αF1

F1(y, Γ)
F̄1

+ αF2

F2(y, Γ)
F̄2

+ · · ·+ αFO

FO(y, Γ)
F̄O

(4)

The typical design objectives that should be minimized are:

• the active power losses:
F1 = Pg − Pl ≥ 0 (5)

where Pg and Pl are the total active power generated and absorbed on the network;
• the average voltage deviation:

F2 =
∑n

i=1 ‖Vq − V�
q ‖

N
(6)

where Vq and V�
q are the current and the desired voltage at the node q respectively, and N is the

number of nodes;
• the maximum voltage deviation:

F3 = max
i

(
‖Vq − V�

q ‖
)
= ‖Vq − V�

q ‖∞ (7)
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Since the design objectives are competing, the voltage control problem has no unique solution
and a suitable trade-off between objectives must be identified.

3. A Decentralized Solution of the Optimal Voltage Regulation Problem

To address the voltage regulation problem, an innovative solution based on a decentralized
architecture is discussed here. This architecture is based on a network of N cooperative smart
controllers, each regulating the voltage magnitude of a specific bus (called node too).

In this operating scenario, each controller device is equipped with three basic components:

1. a set of sensors measuring the available set of local electrical variables (i.e., voltage magnitude,
active and reactive bus power);

2. a dynamical system, whose state is initialized by sensor measurements and evolves interactively
with the states of nearby controllers, according to a properly designed distributed control strategy;

3. a communication interface, carrying the interaction among controllers by transmitting the state of
the dynamical system and receiving the state transmitted by the other nodes.

The idea is to leverage the theoretical framework of multi-agent dynamical systems [39] to design
and implement distributed cooperative control strategies allowing the optimal energy management
of the whole power grid. To this aim, the N cooperative controller devices are modeled as a
one-dimensional network of dynamical agents, in which each agent uses only its neighboring
information to locally control the voltage magnitude of the bus, while aiming to achieve certain
global coordination with all other agents. This mathematical framework is represented in Figure 1
as the composition of the following main interrelated components: (a) agent dynamics that describe
the dynamics of each bus controller device; (b) communication topology, which indicates how and
if a controller device obtains information about other agents, depending on the presence/absence of
connecting lines; (c) distributed control action, which is implemented at the single-controller device
level, and depends on both the state variables of the bus controller itself, and on information received
from neighboring controller devices through the communication topology. Use of this paradigm
allows the voltage controllers to assess, in a totally decentralized way, many important variables
characterizing the actual operation of the grid. Thanks to this feature, each controller knows both
the variables characterizing the monitored bus (sensed by in-built sensors) and the global variables
describing the actual performance of the entire power grid (assessed by checking the state of the
dynamical system). This allows each controller to (i) assess the evolution of the objective function
describing the voltage regulation objectives and (ii) identify the proper control actions aimed at
minimizing this function.

Figure 1. Cooperative smart controller network as a multi-agent dynamic system.
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From this perspective, a power grid made of Nc capacitor banks, Ng generators and N = Ng + Nc

buses can be managed by N cooperative smart controllers. Specifically, if the i-th smart controller is
associated with the i-th generation bus (i = 1, · · · , Ng) of the grid, then it aims at regulating the i-th
bus voltage magnitude so to achieve the desired voltage V∗

i . Conversely, if the j-th smart controller is
associated with the j-th capacitor bank bus (j = 1, · · · , Nc), then it aims at controlling, via distributed
cooperative algorithm, the j-th bus reactive power generation capability in order to: (i) guarantee that
its voltage magnitude achieves the desired optimal voltage value (according to (6)), as imposed by the
Ng generators within the electric grid; (ii) reduce power losses (according to (5)).

3.1. Agent Dynamics

Within our theoretical framework, each smart device j (j = 1, · · · , Nc) for the j-th capacitor bank
bus of the power grid is described by the following dynamical system:

Q̇j(t) = uj(t), (8)

where Qj(t) [p.u.] represents the reactive power of the j-th capacitor bank bus; uj(t) is the cooperatively
distributed control input that drives the reactive power, and hence the voltage magnitude, of the
electrical node. It is evaluated by exploiting both local electrical measurements and electrical
networks information.

Conversely, we assume that each smart device i (i = 1, · · · , Ng) for the i-th generation bus within
the electrical grid is described by the following dynamical system:

V̇i(t) = ui(t), (9)

where Vi(t) [p.u.] represents the voltage magnitude of the i-th generator; ui(t) is the control input that
drives the voltage magnitude of the electrical node so the achieve the desired voltage V∗

i . Please note
that the i-th generator acts as a leader for the whole SG by imposing the reference voltage magnitude
Vi(t) for the capacitor bank buses.

3.2. Communication Topology

The communication topology indicates how and if a smart controller q (q = 1, · · · , N,
with N = Ng + Nc) obtains information about the other smart devices p (p = 1, · · · , N, with q �= p).

The connections among the Nc cooperative smart controller for the capacitor bank buses can
be modeled as a directed graph (digraph) GNc = (V , E ,A) of order Nc characterized by the set of
nodes V = {1, . . . , Nc} and the set of edges E ⊆ V × V . The topology of the graph is associated
with an adjacency matrix with non-negative elements A =

[
αjρ

]
N×N , being ρ = 1, · · · , Nc. In what

follows, we assume αjρ = 1 in the presence of a communication link from the smart device j to device
ρ, otherwise αjρ = 0. Moreover, αjj = 0 (i.e., self-edges (j, j) are not allowed). The presence of edge
(j, ρ) ∈ E means that device j can obtain information from the device ρ, but not necessarily viceversa.

The presence/absence of connections among the Nc cooperative smart controller and the Ng smart
controller for the generation buses is instead described by the matrix A1 =

[
αji

]
Nc×Ng

, whose elements

αji = 1 in the presence of a communication link among the smart device j and the device i, otherwise
αji = 0.

Finally, we highlight that in our application we assume that the pairs (j, ρ) and (j, i) can
communicate if there exist a power transmission line among them.

3.3. Control Design

The voltage regulation control problem for the power grid can be solved by achieving two control
objectives, namely:
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1. designing the control strategy ui(t) in (9) , leveraging local electric information, to opportunely
manage the voltage magnitude of the bus i so to reach and maintain the desired reference voltage
value V∗

i , i.e.,
lim
t→∞

‖(Vi(t)− V∗
i )‖ = 0 (10)

∀i = 1, · · · , Ng, being Vi(t) the voltage magnitude of the i-th electrical node;
2. designing the distributed control input uj(t) in (8), leveraging both local and neighboring electrical

information, to opportunely manage the reactive power of the bus j, hence updating its voltage
magnitude Vj(t) until it converges to the common reference behavior imposed by generators
within the SG, i.e.,

limt→∞ ‖∑Nc
ρ=1 αjρ(Vj(t)− Vρ(t))‖ → 0

limt→∞ ‖∑
Ng
i=1 αji(Vj(t)− Vi(t))‖ → 0

(11)

being Vi(t) the voltage magnitude of the i-th generation bus and Vρ(t) the voltage magnitude of
the neighboring nodes ρ (∀ρ = 1, · · · , Nc, with j �= ρ).

To attain the control goal in (10), we consider, according to the literature (see e.g., [40]), for each
electric node i the following Proportional controller:

ui(t) = ki(Vi(t)− V∗
i )) (12)

where ki is the proportional gain to be properly tuned according to the maximum admissible voltage
variations for the i-th node.

Conversely, to attain the control objective in (11), we propose, for each electric node j the following
consensus-based control protocol that updates its action based on the errors among the electrical
state information:

uj(t) = kj

Nc

∑
ρ=1

αjρ(Vj(t)− Vρ(t)) + bj

Ng

∑
i=1

αji(Vj(t)− Vi(t)), (13)

where αjρ models the presence/absence of communication link among the bus j and the bus ρ;
αji models the presence/absence of communication link among the bus j and the generator bus i;
kj and bj are the control gains to be tuned so to guarantee that the reactive power of the bus j does not
exceed a pre-fixed operating range [Qj,min; Qj,max].

Finally, we highlight that the exploitation of the distributed cooperative control input (13)
guarantees that all the Nc buses within the SG closely converge to the common behavior imposed by
the Ng generators, hence guaranteeing the optimal management of the electrical grid.

4. Case Study

To validate the effectiveness of the approach proposed in Section 3, we consider here the voltage
regulation problem for the IEEE 30-bus test system depicted in Figure 2. The power grid is made of
Ng = 6 generators (i.e., node 1, 2, 5, 8, 11, 13), Nc = 24 capacitor banks, N = 30 buses, and nl = 41 lines.
Load information, lines impedance, as well as reactive power limits, are reported in [41]. Numerical
analysis has been carried out by exploiting the MATLAB c© platform.

The initial condition for the N cooperative agents within the grid as well as the selected
control gains for both the control protocol in (12) and the one in (13) are listed in Table 1.
Finally, the desired voltage value V∗

i for the generation buses Ng are selected as follows:
[V∗

1 , V∗
2 , V∗

5 , V∗
8 , V∗

11, V∗
13] = [1.05, 1.02, 1.05, 1.03, 1.05, 1.02] [p.u.]. Our aim is to show how the

proposed solution can ensure in a totally distributed fashion the desired optimal voltage magnitude of
the whole grid with reduced power losses.
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Figure 2. The IEEE 30-bus test system.

Table 1. Simulation parameters for the IEEE 30-bus test system.

Initial Conditions

Voltage magnitude V1(0) = 1.02; V2(0) = 1.01; V5(0) = 1.03;
of generation bus i [p.u.] V8(0) = 1.04; V11(0) = 1.01; V13(0) = 1.03

Reactive power Q3(0) = −0.012; Q4(0) = −0.016;
of capacitor bank bus Q6(0) = −0.005; Q7(0) = −0.109;

j [p.u.] Q9(0) = −0.005; Q10(0) = −0.02
Q12(0) = −0.075; Q14(0) = −0.016;
Q15(0) = −0.025; Q16(0) = −0.018;
Q17(0) = −0.058; Q18(0) = −0.009;
Q19(0) = −0.034; Q20(0) = −0.007;
Q21(0) = −0.112; Q22(0) = −0.005;
Q23(0) = −0.016; Q24(0) = −0.067;
Q25(0) = −0.005; Q26(0) = −0.023;
Q27(0) = −0.005; Q28(0) = −0.005;
Q29(0) = −0.009; Q30(0) = −0.019.

Control Gains

Control gains ki ki = 5 i = 1, 2, 5, 8, 11, 13
Control gains kj kj = 10 ∀j ∈ Nc
Control gains bj bj = 15 ∀j ∈ Nc

Results in Figures 3–5 show the effectiveness of the proposed control approach in ensuring the
control goal in (10) and (11). Indeed, as depicted in Figure 3, thanks to the control action (12), the smart
controllers for the generation buses ensure that the corresponding voltage magnitude converge to
the desired values V∗

i in 1 [s]. Accordingly, the smart controller device j (j ∈ Nc) dynamically acts
on the reactive power generation capability of the j-th electrical node (i.e., it produces or absorbs
the bus reactive power; see Figure 5) and due to cooperative control action in (13) guarantees that
its voltage magnitude converges in 1 [s] to the desired optimal value [1.02; 1.05] [p.u.] as imposed
by the Ng generators of the electrical grid. Indeed, the mean grid voltage of the Nc electrical nodes,
i.e., Vmean = 1.03 [p.u.] is equal to the mean voltage imposed by the Ng generators. This confirms the
benefit of the proposed decentralized approach in ensuring the electrical grid synchronization to the
reference behavior imposed by generators only leveraging local and neighboring information and
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without the need for knowing global information about the whole grid. The proposed approach hence
provides a distributed control solution allowing the power grid to be self-organized. The benefits
of the approach are the scalability of the solution, which makes the grid to be easily re-configurable,
and the low computational burden required for the controlling purposes.

Figure 3. Time history of the voltage magnitude Vi(t) [p.u.] for i ∈ Ng.

Figure 4. Time history of the voltage magnitude Vj(t) [p.u.] for j ∈ Nc.

Finally, we remark that due to the scalability features of the proposed approach, the convergence
settling time still remains equal to 1 [s] when increasing the number of devices, differently from the
centralized solution where this increasing number may significantly affects the dynamic performance
of the whole grid.
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Figure 5. Time history of the reactive power Qj(t) [p.u.] for j ∈ Nc.

Robustness to Variable Load

Here we show the robustness of the proposed approach by considering percentage variations of all
the loads compared to the nominal values reported in [41]. Specifically, as illustrative example, we take
into account that load, indicated with L(t), varies over time according to Figure 6 (i.e., maximum
variations of ±50%). Results in Figures 7 and 8 disclose that despite the presence of load variations
acting on the whole grid, the proposed approach promptly reacts to load changes by recovering
the desired optimal voltage magnitude as imposed by the Ng generators. Specifically, in the time
interval 5 ≤ t < 10 it is possible to appreciate that after increasing of the 30% of all the loads within
the grid (see Figure 6), the smart controllers dynamically regulate the voltage magnitude of the j-th
bus via production or absorption of reactive power. The same behavior also occurs when there
exist both a variation of 50% in the time interval 10 ≤ t < 15 and a variation of −50% in the time
interval 15 ≤ t < 20.

Figure 6. Load Variations Percentage L(t).
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Figure 7. Robustness with respect to variable load: time history of the voltage magnitude Vj(t) [p.u.]
for j ∈ Nc.

Figure 8. Robustness with respect to variable load: time history of the reactive power Qj(t) [p.u.]
for j ∈ Nc.

5. Conclusions

MAS-based architectures are considered as the most promising enabling methodology for
decentralized voltage regulation in modern power distribution systems, where the massive pervasion
of renewable power generators could hinder the deployment of hierarchical and centralized control
paradigms. Although the conceptualization of MAS-based solutions has been widely explored
in the literature, their deployment in realistic operation scenario is still at its infancy, and several
open problems need to be addressed in order to identify the most effective computing paradigm,
which reliably solves the voltage regulation problem, exhibiting high resilience to internal and external
perturbations, high scalability to support an exponential growth of distributed energy resources,
and low computational requirements.

In the light of these needs, this paper proposed a novel decentralized control architecture for the
online voltage regulation in active power grids, which is based on a network of cooperative dynamic
agents equipped with consensus protocols, and interacting with each other through wireless/wired
communication networks. Thanks to the adoption of this cooperative paradigm, each agent regulates
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the voltage magnitude of a specific generation/load bus so to achieve a synchronization behavior to
desired voltage magnitude without the need for fusion data center. This feature makes the proposed
solution self-organized, decentralized, and scalable, hence resulting a promising alternative to solve
the voltage regulation problem in modern smart grids.

Simulation results, carried out for the realistic case of study of the IEEE 30-bus test system, confirm
the effectiveness and the robustness of the approach in ensuring that all the electrical buses reach and
maintain the desired synchronization behavior.
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