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This Special Issue addresses the latest results on various aspects of artificial intelligent

techniques, such as expert systems, fuzzy logic, and artificial neural networks in important areas

of advanced high-tech electronics, such as applications in power electronics, motor drives, renewable

energy systems and smart grids. There is a multidisciplinary relevant to all of those. Through this

framework, based on fuzzy logic, an integrated hierarchical data envelopment analysis for the

optimal geographical location of solar plants is proposed, a distributed multi-source information is

obtained for equipment condition assessment in the power grid, and control methods to regulate

the demand of thermostatically controlled loads and wind turbine systems are also proposed to

provide frequency support for a smart grid. In addition, using deep learning algorithm transient

voltage stability analysis to optimize the reactive power compensation and detect non-technical

losses is proposed and evaluated. Finally, hourly electricity load demand, multiple electricity

consumption forecasting and non-intrusive load disaggregation methodology are also presented in

this Special Issue.
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Abstract: This paper proposes a fuzzy logic-based controller for a wind turbine system to provide
frequency support for a smart grid. The designed controller is aimed to provide an appropriate
dynamic droop rate depending on the local measurements of each wind turbine of a wind farm
such as the maximum power available and the amount of power reserve. The designed fuzzy
controller depends on the rate of change of frequency (ROCOF) at the point of common coupling
(PCC). The main advantage of the proposed fuzzy controller is to provide frequency support by the
wind turbine system connected to a smart grid. The dynamic rate of the controller is defined by
the fuzzy sets considering the change in the grid’s frequency and the available reserve power. First,
the response of static droop curves is investigated for different scenarios of wind turbines connected
to a smart grid. Then, the proposed fuzzy logic-based droop controller is integrated into the system,
and its performance and response are evaluated, and the results are compared with static-droop
based controller. The proposed controller is tested using Matlab\Simulink.

Keywords: droop curve; frequency regulation; fuzzy logic; the rate of change of frequency; reserve
power; smart grid

1. Introduction

Conventional synchronous generators store kinetic energy in their rotor shaft and provide
inertia to the system. The frequency of the power system is directly coupled to the rotational speed
of the generator. Therefore, more rotational inertia may lead to a stable power system. Recently,
the installation of renewable resources in the power system has increased. These resources are
integrated into the power system using power converters, but they do not provide rotating inertia to
the power system. High penetration of distributed energy resources (DER) might create instability if
not properly controlled. Therefore, ancillary functions had to be added and must be achieved by the
controllers of the DER. Renewable resources can provide voltage regulation and frequency support if
controlled properly.

For instance, the wind energy system (WES) can be adjusted to provide frequency support by
controlling the injected active power as a function of frequency. To do so, WES must maintain a certain
reserve of active power, and then the reserved power can be utilized during a frequency drop.

The active power control (APC) during a disturbing condition is a challenge when it is applied
to a wind farm. The APC requires a fast dynamic response range in a few seconds. Active power
control involves three main sub-control objectives in a power system: the inertial control, the primary
frequency control (PFC), and automatic generation control (AGC) [1,2]. Each is involved in the control
of active power for a certain time in sequence order due to their timely response. One main challenge
is that wind availability is uncertain, causing failure in the control loop due to wind speed variation.

Energies 2019, 12, 1550; doi:10.3390/en12081550 www.mdpi.com/journal/energies1
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Participating in frequency control can be implemented by adjusting the conventional control
techniques of WES systems [1–14]. Different control methods, and approaches have been implemented
to adjust the frequency of a power system during frequency fluctuation [15,16]. These control strategies
can be classified based on the capability and duration of participation [15–19]. The first approach
is to use the stored kinetic energy to be implemented as inertial control. The stored energy can be
released for a few seconds depending on the inertia of the turbine. The other control is to de-load
the wind turbine below the maximum power point, providing a long-term power supply following
the inertial response to maintain a new steady state value of frequency. This is known as a primary
frequency response (PFC). There have been several studies on implementing the PFC in power systems
with existing wind turbines. Some studies have focused on the wind farm level, whereas others have
focused on the power system level [20–23]. Also, some studies have analyzed the equivalent damage
loads for de-loaded wind turbines [24]. Other researchers have focused on the reserve methods and
the response of the wind turbines to PFC [25–28].

In reference [29], the active power control strategy was performed for a WES using inertial,
PFC and AGC. Different droop control approaches were proposed to support the frequency of the grid.
Variable droop controller was proposed to enhance the response of WES based on doubly fed induction
generator DFIG in reference [30]. The concept of droop can be implemented in the local controller of
the WES, at the wind farm level, or to the coordinated distributed generator in the smart grid [31–40].

In this article, a fuzzy logic-based controller is developed for the WES to provide frequency
support for a smart grid. The controller is designed to identify the participation factor of each wind
turbine based on the reserved power and the ROCOF at the point of common coupling (PCC).

A power system is developed to test the response of the wind farm to the frequency drop.

2. Stability of the Power Grid

A power system is a complicated structure involving various elements with different dynamics.
In the ideal world, loads of the power system are provided with consistent frequency and voltage.
At normal conditions, all synchronous generators are synchronized to avoid up-normal fluctuation in
the voltage and current, which may lead to disconnecting areas from the grid. The frequency deviation
is a result of an imbalance between the load and power generated. The frequency of the gird is related
to the rotor speed of the synchronous generators of the power system. The change of frequency of a
network can be given as [41]:

Δ f =
1(

2Hsys
)
S + Dsys

(∑
ΔPG −

∑
ΔPL

)
(1)

where Hsys and Dsys are the equivalent inertia and damping constants of all machines of the system.
The change in generated power and load power are represented by ΔPG and ΔPL respectively. To ensure
stability, the synchronous generator should be equipped with a droop curve in the speed controller of
the turbine’s torque-speed characteristic. The droop characteristic is typically set to 5% in the United
States [42].

3. Frequency Support by a Wind Energy System

WES can be controlled to maintain certain reserve power and then, it can be used to provide
APC by modifying the control loop to follow the required power reference. To do so, a droop control
concept is implemented where the active power is related to the frequency of the grid.

The required active power to stabilize the grid frequency can be achieved by implementing the
droop curve. The response of WES during frequency drop depends substantially on the de-loading
method used to maintain the reserve power (i.e., rotor speed or pitch angle). Also, the response of
the WES can be impacted by the initial operating points of WES just slightly before the occurrence of
frequency deviation. Thus, the droop curve has to be selected cautiously to guarantee stability and
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reliable response of WES. For instance, very fast droop for a de-loaded WES that operates away from
its maximum point may lead to controller instability [43,44].

The droop curve that implemented in the synchronous generator can be adapted to be used for
WES. The variation in the active power of a WES can be expressed as [35]:

PPFC =
PWT,ava

R

(
fnom. − fgrid

)
fnom.

(2)

where PWT,ava is the maximum power available that can be generated by the WES. fgrid is the measured
grid frequency; and fnom. the nominal grid frequency are represented respectively. Here, R is defined
as the slope of the droop curve represented in percentage. The slope determines the rate of power
change in WES. Small droop rate means a fast change in active power. Figure 1 demonstrates different
droop curves as function of an active power change in percentage.

Figure 1. The change of power for different droop rates.

The rate of the droop controller must be selected to ensure a reliable and smooth response against
the deviation of the grid’s frequency. Designing the droop curve for frequency regulation depends on
the initial state and the power availability of the WES. Because of the variation of wind speed, the active
power produced by WES is variable. As a result, the amount of the power reserve for WES is also
dynamic. Also, the ROCOF at the PCC varies depending on how much power is lost from the network.
Therefore, for WES a dynamic controller is the best fit to provide adjustment to the grid’s frequency.

4. Fuzzy Logic-Based Controller

A dynamic droop controller based on fuzzy logic is designed to support the grid’s frequency
of WES. The fuzzy logic controller is a set of rules are defined to perform a certain function [45].
The concept of fuzzy logic has been used in control applications of the electrical grid and power
electronics [46–50].

Fuzzy logic is implemented to determine the slope of the droop curve depending on the available
reserved power of WES and the ROCOF. For instance, when the change of frequency is high, and the
power reserve is not large, the WES must support the frequency by providing active power with a
slow rate. In the other hand, when the power reserve is high, WES should support the frequency by
rapidly providing the required active power.

The equation that relates the grid’s frequency and active power are:

PPFC =
PWT,ava

Rt

(
fnom. − fgrid

)
fnom.

(3)

This fuzzy logic-based controller aims to give an appropriate dynamic rate (Rt). The output of the
fuzzy logic controller depends on two inputs. The inputs are the ROCOF, and the power reserved by the

3
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WES (ΔPWT) at the time of frequency drop. The reserved power of WES varies according to the wind
velocity and the de-loading method used by the central controller of a wind plant. Also, the wake-effect
plays a vital role on the power availability for each individual WES. Therefore, each WES has a different
power reserve to others.

Figure 2 demonstrates the implementation of fuzzy-logic with the dynamic droop controller.
Normally, the wind speed, VW , can be measured to estimate the maximum power of the turbine,
PWT, max. The maximum power is decreased by ΔPWT to maintain a certain reserve. Every individual
WES is de-loaded to maintain a certain reserve of power (ΔPWT) to be utilized to provide APC during
a drop in the grid’s frequency. When grid’s frequency drops below its set point, the controller injects a
certain amount of active power into the grid. Then, this power, PFC, is added to the loop to produced
power to form a reference of the required total wind power. The reference point, PWT, of the total
power is then achieved either by using a pitch angle or rotor speed controller.

Figure 2. The implementation of fuzzy logic within the active power controller.

4.1. Fuzzification

The crisp values of the two inputs are mapped into fuzzy sets using the triangle membership
function. Both inputs are defined using five fuzzy sets as shown in Figures 3 and 4. The sets of the
inputs are defined as: very large (VL), large (L), medium (m), small (S), and very small (VS).

Figure 3. Membership function (changing in grid’s frequency).

Figure 4. Membership function (power reserve).
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The absolute value of the rate of change in the grid’s frequency is represented by the first
membership (Figure 3), whereas the available reserved power is represented by the second membership
function (Figure 4). In this paper, frequency drop less than 0.2 Hz is defined by the fuzzy sets as very
small (VS) and above 0.8 Hz is defined as very large (VL).

In this article, wind energy systems rated at 2 MW are considered. In these wind energy systems,
the amount of reserve can range from 100 kW to 1 MW (i.e., 5% to 50% of the maximum power).
For simplification, the power reserve is measured and scaled down before it enters the membership
function. The dynamic rate is given by the output membership function shown in Figure 5. The output
is determined by the following fuzzy sets: very fast (VF), fast (F), medium (M), slow (SL) and very
slow (VSL). This output is then used to determine the rate of change in injected active power given in
(3). The rules of the fuzzy logic used to define the output are discussed in the following section.

Figure 5. Membership function (output).

4.2. Fuzzy Inference Rules

The output of the fuzzy logic is determined by defining 25 rules, indicated in Table 1. The fuzzy
inference rules are based on the deviation in frequency (Δ f ) and the amount of reserve (ΔPWT).
To evaluate the inference rules of the sets, the minimum conjunction operator is used.

Table 1. Fuzzy inference rules.

ΔPWT\Δf VS S M L VL

VS VSL VSL SL M M
S VSL SL M F M
M SL M M F F
L M M F F VF

VL M M VF VF VF

Fast rate is desired if the frequency drop and the amount of reserve of WES are large. If the amount
of reserved power of the WES is not large and the ROCOF is small, the low rate is preferred. The fuzzy
inference rules are defined to avoid an unnecessary fast rate for very small reserves. The fuzzy inference
rules are explained below:

• IF ΔPWT is VS AND Δ f is VS THEN Rt is VSL
• IF ΔPWT is VS AND Δ f is S THEN Rt is VSL
• IF ΔPWT is VS AND Δ f is M THEN Rt is SL
• IF ΔPWT is VS AND Δ f is L THEN Rt is M
• IF ΔPWT is VS AND Δ f is VL THEN Rt is M
• IF ΔPWT is S AND Δ f is VS THEN Rt is VSL
• IF ΔPWT is S AND Δ f is S THEN Rt is SL
• IF ΔPWT is S AND Δ f is M THEN Rt is M

5
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• IF ΔPWT is S AND Δ f is L THEN Rt is F
• IF ΔPWT is S AND Δ f is VL THEN Rt is F
• IF ΔPWT is M AND Δ f is VS THEN Rt is SL
• IF ΔPWT is M AND Δ f is S THEN Rt is M
• IF ΔPWT is M AND Δ f is M THEN Rt is M
• IF ΔPWT is M AND Δ f is L THEN Rt is F
• IF ΔPWT is M AND Δ f is VL THEN Rt is F
• IF ΔPWT is L AND Δ f is VS THEN Rt is M
• IF ΔPWT is L AND Δ f is S THEN Rt is M
• IF ΔPWT is L AND Δ f is M THEN Rt is F
• IF ΔPWT is L AND Δ f is L THEN Rt is F
• IF ΔPWT is L AND Δ f is VL THEN Rt is VF
• IF ΔPWT is VL AND Δ f is VS THEN Rt is M
• IF ΔPWT is VL AND Δ f is S THEN Rt is M
• IF ΔPWT is VL AND Δ f is M THEN Rt is VF
• IF ΔPWT is VL AND Δ f is L THEN Rt is VF
• IF ΔPWT is VL AND Δ f is VL THEN Rt is VF

4.3. Defuzzification

The fuzzy inference rules give linguistic variables that need to be transformed into crisp values.
Therefore, the defuzzification process is implemented to quantify the output of the fuzzy logic. To do
so, there are different methods of defuzzification. In this article, the weighted average method is
implemented. The defuzzified slope rate (i.e., 1/Rt) is defined as:

output =
∑m

i=1 Zi ∗ μ(Zi)∑m
i μ(Zi)

(4)

where Zi represents the center of the defined function, and μ(Zi) is the value of the membership that
corresponds to Zi. Then, the output (1/Rt) of the fuzzy-logic controller is used to gives the rate of the
droop in Equation (3).

5. Simulation Results

To study the performance of the proposed controller, the small power system is considered as
shown in Figure 6. The model of the wind turbine considered in this paper is defined as type-4,
where the WT is connected to the grid through a full rated back-to-back converter. The machine used
in this system is based on a permanent magnet synchronous generator (PMSG). The machine side
converter is controlled to extract the desired power from the wind. The active and reactive power is
controlled using the grid-side inverter. The detailed model of the implemented WT system and its
designed controller are presented in reference [51].

In the first study, one single WES was used to test the performance of the fuzzy logic-based
controller. Different static droop curves were tested and compared with the proposed approach.
The WES was set to regulate the frequency of the grid by providing the required power. The loads
in the power system are supplied by the synchronous generator and the WES. The conventional
synchronous generator of the system is rated at 15 MW. Its contribution to the total power of the grid is
90%. The rating of the WES used in the simulation is 2 MW. It represents about 10% of the total power
delivered to the loads.

After that, the simulation was repeated for the same power system model using a wind farm,
a conventional synchronous generator, and load. In this study, the wind farm consists of four single
WESs. Here, the synchronous generator provides 80% of the load power, while the wind farm share is

6
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20%. The wind systems are de-loaded to maintain a certain power reserve to be utilized for frequency
regulation. Due to the wake effect, the produced wind power and the reserves are not similar for all
wind systems. Therefore, some wind systems may have a much higher power reserve than others.
Different scenarios were performed to test the response of the wind farm using several droop rates.

 

Figure 6. Power system model with a wind farm of 4 wind turbine systems.

5.1. Frequency Support by Single WES

To study the response of wind turbines to frequency deviation, several simulation-based studies
were performed. The goal was to compare the responses of different droop curves for different ROCOF.
The sensitivity to different droop gains was studied and compared with different control approaches.

5.1.1. The Response of WES to Large ROCOF

For this case study, the WES was producing its maximum power (2.0 MW). The power reserve of
the WES was set to 1.0 MW (i.e., a 50% rate). First, the frequency regulation was achieved using the
proposed fuzzy-logic controller. Then, the simulation was repeated using two different static droop
rates (R = 2%, 7%). Figure 7 demonstrates the system frequency of the baseline simulation (without
WES participation in frequency regulation). Figure 8 shows the frequency of the grid for the three
simulation studies (fuzzy logic, R = 2%, 7%). The proposed fuzzy logic-based controller provides an
acceptable frequency support if compared to both static droop curves.

Figure 7. Grid frequency of the event without wind turbine participation.
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Figure 8. Grid frequency (large ROCOF).

The rate of dynamic droop starts at 10% and then decreases to about 3% at the beginning of the
incident. After a few seconds, it reaches 2% (very fast), when the frequency drops to its minimum
value as shown in Figure 9. For 7% static droop, the WES has a very slow response. On the other hand,
the response of WES with 2% static droop is very fast.

Figure 9. Dynamic droop (large ROCOF).

As defined in the fuzzy logic, the dynamic droop controller should react very quickly when the
power reserve and ROCOF are large. Consequently, the response of the WES with dynamic droop is
quite similar to the one with the static droop curve of 2%. The active power of the WES and the rotation
speed of the turbine’s shaft during the response to frequency drop are shown in Figures 10 and 11.

Figure 10. Rotor speed (large ROCOF).

8
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Figure 11. Wind turbine power (large ROCOF).

5.1.2. Response of WES to Small ROCOF

In this scenario, the WES was maintaining a reserve of 150 kW. This reserve was achieved by the
controller of the rotor speed (using machine side converter). For comparison, the frequency support
was provided using the proposed approach (fuzzy-logic) and two constant rate droops (i.e., R = 2%
and 7%).

The measured frequency of the power system for the three droops (dynamic droop, R = 2% and
7%) is shown in Figure 12. The plot shows the proposed droop controller supports the frequency.
The rate of the proposed droop controller is shown in Figure 13. The rate starts at the minimum value,
which is 10%, and changes to about 5% in the beginning of the frequency drop. After that, it oscillates
and returns to 10% when a new steady state value is achieved.

Figure 12. Grid frequency (small ROCOF).

Figure 13. Dynamic droop (small ROCOF).

9
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In this simulation, the response of the WES using constant droop of 7% is reasonable. In contrast,
the response with a constant curve of 2% is quick. As can be noticed from Figure 14, the rotor speed of
the WES oscillates aggressively. This high oscillation may lead to instability in the controller of the
machine side converter. Also, some stresses and mechanical loading can be observed on the wind
turbine. Because of the limited reserve and insignificant drop in the frequency, the droop rate of the
controller has to be slow. Thus, the grid frequency can be achieved by the proposed droop controller,
which in this case study is very close to the response of seven percent droop curve. The active power
produced by the WES during the frequency regulation for all three studies is demonstrated in Figure 15.

Figure 14. Rotor speed (small ROCOF).

Figure 15. Wind turbine power (small ROCOF).

5.2. Frequency Support by Wind Farm

In this study, an electrical system shown in Figure 6 is simulated. The electrical grid consists of
one conventional synchronous generator with its governor system, wind power plant, and a large
load. For the simulation time constraint, four single WESs are considered to represent the wind farm.
The power supplied to the load is distributed between the wind farm (20%) and the conventional
generator (80%).

The response of every WES was observed using the proposed controller. A reserve of 2000 kW
was maintained by the wind farm using a method proposed in reference [52]. The fuzzy logic-based
controller was implemented to provide frequency support. Every individual WES was assigned to
maintain a certain reserve that is different from others. The total power reserve was divided among all
WESs as ΔPWT1 = 250 kW, ΔPWT2 = 350 kW, ΔPWT3 = 600 kW, ΔPWT4 = 800 kW.

The frequency is measured at the point as shown in Figure 16. The proposed dynamic controller
provides support to the grid’s frequency. The frequency goes to the minimum point (nadir) within
3 s and then it starts to return to new steady-state value. The rates of the dynamic controller for all
WES are shown in Figure 17. The rates of wind turbines 1 and 2 are slower than the rates of wind
turbines 3 and 4; because of the small amount of reserve available in 1 and 2. The power produced by
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the synchronous generator and the wind farm is shown in Figures 18 and 19. The power produced
by each WES is demonstrated in Figure 18. The power of wind turbines 3 and 4 changes rapidly
compared to the power of wind turbines 1 and 2 as shown in Figure 19. Also, the rotational speed of
each turbine is shown in Figure 20. In this study, the controller of the rotor speed and the pitch angle
actuator are activated, and the WES is tracking the reference signal given by the fuzzy logic controller
as demonstrated in Figure 21.

Figure 16. Grid frequency (wind farm).

Figure 17. Dynamic droop (wind farm).

Figure 18. Power: grid, synchronous generator, and wind farm.

11
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Figure 19. Wind energy systems power (wind farm).

Figure 20. Rotor speed (wind farm).

Figure 21. Pitch angle (wind farm).

6. Conclusions

In this article, frequency regulation was provided by a wind farm using a fuzzy logic-based
controller. The proposed droop controller maintained stable and proper droop rates while providing
adequate frequency support. The droop controller is designed based on the available power of the WES
and the rate of change in the grid’s frequency at the PCC. The fuzzy logic improved the performance of
the dynamic controller. The difference between the nadir point and the nominal value of the frequency
is decreased. The constant curve does not work well for WES application because of the variable nature
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in wind velocity. Even though the fast rate (static) provides a very sharp response against frequency
drop, it could lead to instability to the machine-side controller that is responsible for rotational speed.
Also, it may increase the stresses and mechanical loading for the structure of the WES. Thus, having a
dynamic droop rate that changes based on the availability of wind power and the rate of change of the
frequency ensures a stable and smooth response of WES during frequency deviation.
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Abstract: The existence of high proportional distributed energy resources in energy Internet (EI)
scenarios has a strong impact on the power supply-demand balance of the EI system. Decision-making
optimization research that focuses on the transient voltage stability is of great significance for
maintaining effective and safe operation of the EI. Within a typical EI scenario, this paper conducts
a study of transient voltage stability analysis based on convolutional neural networks. Based on
the judgment of transient voltage stability, a reactive power compensation decision optimization
algorithm via deep reinforcement learning approach is proposed. In this sense, the following targets
are achieved: the efficiency of decision-making is greatly improved, risks are identified in advance,
and decisions are made in time. Simulations show the effectiveness of our proposed method.

Keywords: energy Internet; convolutional neural network; decision optimization; deep reinforcement
learning

1. Introduction

With the development of renewable energy related technology, our dependence on conventional
energy has been gradually declining. As the core of the third industrial revolution, a new concept
named as the energy Internet (EI) has been proposed and investigated extensively [1,2], in which a
new architecture of energy supply and demand is constructed through the integration of information
and energy [3–5]. Typically, an EI scenario can have access to the utility grid. Alternatively,
when disconnected from the main power grid, multiple sub-grids interconnected via energy routers
are able to function normally [6,7]. For the detailed definition, architecture and key technologies of EI,
readers can refer to [8,9], and the references therein.

Due to the increase of uncertainty in power generation and usage, compared with traditional
power grids, one of the challenges faced by EI is how to match power demand with supply and
how to maintain the safety and reliability of the whole network. The problem of resilient multi-scale
coordination control against a set of adversarial or non-cooperative nodes in directed networks has
been investigated in [10]. In power systems, static and transient voltage stability analysis have been
extensively studied; see, e.g., [11]. Transient voltage stability problems, such as voltage sag, may occur
in a local network that is not robust in the event of a large disturbance. It is notable that such transient
voltage stability issues also exist in the field of EI, which is worth investigation [12].

The loss of reactive power can increase the voltage loss and may also lead to voltage fluctuation.
Reactive power compensation is of great significance for the safe and reliable operation of EI.
The following four targets can be achieved by proper reactive power compensation: (1) stabilizing the
grid voltage, (2) increasing the power factor, (3) improving the equipment utilization rate, (4) reducing
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the loss of network active power; see, e.g., [13]. In order to guarantee the normal operation of EI,
the dilemma caused by reactive power consumption can be solved by installing a static var generator
(SVG) [14]. The SVG, also known as STATCOM, is a commonly used device to solve the reactive power
consumption problem [15]. The work principle of SVG is as follows: the voltage source inverter is
connected in parallel to EI. Amplitude and phase of output voltage on the AC side is adjusted, or the
current on the AC side is directly adjusted to absorb or emit reactive power. Thus, reactive power
compensation can be dynamically implemented. On the basis of stability assessment and prediction,
SVG is installed to maintain the safe and stable operation of EI. For the case that voltage stability is not
restored by the self-healing ability of EI, the installation of SVGs at different locations and the setting
of different SVGs’ output reactive power affects the voltage stability and the time of restoring stability.
For the case of restoring voltage stability through the self-healing ability of EI, the restoration speed
can be accelerated by installing the SVG. Additionally, the influence on the power consumption on the
customer side can be reduced [16].

Within EI scenarios, transient short-circuit failure may cause great economic loss [17]. The judgment
of transient voltage stability is not only the basis for subsequent decision optimization of reactive power
compensation, but also the key to maintaining the normal operation of EI. Additionally, the credibility
of subsequent decision optimization is affected by the accuracy of the judgment of the stability state.
At present, the mainstream conventional methods used for the judgement of the transient voltage
stability state are mainly time domain simulation approaches [18] and direct methods [19], which
are based on deterministic analysis. Due to the intermittence and volatility of power generation by
renewable energy sources, judgement of the transient voltage stability state cannot be analyzed via
deterministic approaches.

In recent years, with the development of big data technology and data mining technology,
machine learning algorithms have been applied to the judgement of the transient voltage stability
state [20]. The aforementioned algorithms mainly include artificial neural network, decision tree,
support vector machine (SVM) [21] and other shallow machine learning algorithms. To illustrate,
an intelligent algorithm using forward feedback neural network for online voltage stability assessment
and monitoring has been studied in [22], where voltage, active power, reactive power of generators and
loads are used as characteristic inputs for online voltage stability evaluation. In [21], the SVM algorithm
was applied to select the voltage level, generator rate and rotor angle as input features for the prediction
and evaluation of transient voltage stability after any fault occurs. In [23], the authors propose a voltage
safety evaluation method through regularly updating the decision tree. The multi-layer perceptron
neural network is employed to select new characteristics of voltage value and reactive power generation
for online voltage stability testing and evaluation [24]. In [25], the extreme learning machine is used
for voltage stability margin evaluation.

It is notable that the rapidity and accuracy of optimization is difficult to be achieved simultaneously
by conventional evaluation methods. The shallow machine learning algorithm that processes the
input characteristics of complex classification problems has limited computing power, which cannot
meet the accuracy requirement of transient voltage stability prediction and evaluation in EI. In recent
years, extensive applications of deep learning in the field of transient voltage stability prediction
and evaluation have been used to solve the aforementioned challenge. Deep learning has a strong
feature extraction ability and can solve dimensional disaster problems including multi-nodes and
multi-features in EI; see, e.g., [26]. At present, the commonly used deep learning algorithms include
the deep belief network [27,28], recurrent neural network [29], stacked denoising auto-encoders [30]
and convolutional neural network (CNN) [31]. The combination of deep learning and reinforcement
learning forms the deep reinforcement learning approach [32,33]. Reinforcement learning can be
viewed as a process of exploration in the unknown environment [34]. From environment mapping to
action, the subject not only obtains the action with the maximum reward value through exploration,
but also receives the ultimate optimal effect by continuous trials and errors. Thus, as the ultimate
goal, the maximum cumulative reward value is obtained. Reinforcement learning mainly includes
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four key aspects: strategy, reward, evaluation and environment. Such methods explore the unknown
environment, and different strategic selection actions are performed to obtain different reward and
punishment values, such that the quality of the strategy is evaluated. It is worth mentioning that the
quality of the evaluation goal is limited to the reward value obtained after the completion of an action.
Besides, it depends on the follow-up action and the reward value obtained eventually. Based on the
environment of discrete-time Markov decision process, the Q learning algorithm is one of the most
important algorithms in reinforcement learning [35].

The data in EI include information about the state of each node at each time point and information
about the network topology, and such data has both time and spatial correlation. The conventional
simplified power network model [36] based on simulation fails to make full use of the real-time
information obtained by massive data acquisition devices. In addition, the decision-making on reactive
power compensation in existing power grids is mainly based on manual operations. In this paper,
reactive power optimization for transient voltage stability in EI is studied. Based on data with sufficient
information, a deep reinforcement learning model is used to judge the transient voltage stability
state. In order to avoid losing information about time and space while training the model, CNN is
selected to predict the transient voltage stability. Next, based on the stability prediction results,
the deep reinforcement learning algorithm is applied to the decision optimization of reactive power
compensation. Simulations show the effectiveness of the proposed method.

The contribution of this paper can be outlined as follows:

(1) A judgement model for stability state of EI based on a deep learning algorithm is proposed.
Compared to the conventional simplified power network models [36], this paper proposes
a data-based method for reactive power optimization, such that transient voltage stability is
achieved. Compared to a model-based method, the error caused by a data-based method is smaller.
In this sense, the efficiency of data processing has been improved. Therefore, the efficiency of
decision-making of reactive power compensation is greatly improved, such that the desired
reliable operation of EI can be achieved.

(2) By analyzing the data in each node of the EI within the feature time period, the deep learning
algorithm is used to train the stability judgement model. In this sense, whether the voltage would
return to a stable state or not after the short-circuit failure occurs can be estimated, which provides
delay stability information for decision optimization. Meanwhile, based on the mainstream power
simulation software Bonneville Power Administration (BPA) [37], the data batch processing
toolkit is developed to facilitate the change of data card in batches and to extract data in batches.

(3) Traditional power grid decision-making is mainly based on the experience of grid operators and
manual operation. In this paper, an advanced artificial intelligence-based method is applied to the
decision-making optimization of reactive power compensation in EI. In this sense, the efficiency
of decision-making and the accuracy of optimization has been greatly improved.

The rest of this paper is organized as follows. Section 2 provides the problem formulation.
Section 3 constructs the flow of reactive power decision optimization algorithm. Section 4 provides
some simulations. Finally, we conclude our paper in Section 5.

2. Problem Formulation

The goal of this paper is to achieve the stability of high voltage buses, complete distributed
reactive power compensation, and minimize the total compensation of the SVG. In this paper, for the
training model, deep learning and reinforcement learning are combined to provide the installation
strategy of SVGs.
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2.1. Voltage Stability in EI and Construction of the Simulation Model

The local microgrids can be integrated into the large power grid, or they can be operated in the
islanded mode. When the local-area grid network is disconnected from the large power grid, voltage
stability issues occur, which potentially affects the reliability of the system operation.

Normally, an EI scenario functions in a stable state for most of the operation time, and an unstable
state caused by short-circuit faults rarely occurs. Thereby, the gaps between the number of stable and
unstable samples collected by phasor measurement unit (PMU) in EI are extremely large. If real data is
used for prediction and all the selected classifiers are stable, the accuracy of the trained classifier would
still be relatively high (no less than 99%). In this manner, there is no training effect. Hence, for the
considered EI scenario in this paper, the simulation data is generated by BPA software. The power grid
simulation model is shown in Figure 1. The sequence numbers 1–60 in Figure 1 represent network
nodes 1–60. We consider n voltage-grade substations, namely, ni kV, and Ai substation, 1 ≤ i ≤ n. Here,
Ai is a custom symbol.

Figure 1. Energy Internet (EI) simulation model.

2.2. Judgment of Transient Voltage Stability

The data extraction program file was written, and the data in each BPA output file was extracted.
The voltage U, frequency f , active power P and reactive power Q of each node measured each half
cycle in the first n cycles is taken as the input data in the process of training the stability evaluation
model. The data of voltage U in the last five cycles is taken to determine whether the value of voltage
in the stable state is finally restored. The judgment result is used as the output data in the process of
training the stability evaluation model.

The results of the stability prediction are evaluated by three indexes: precision, recall, and f1-score
(known as the harmonic mean of precision and recall [38]), which are as follows:

precision =
true positive

true positive + f alse positive

recall =
true positive

true positive + f alse negative

f 1− score = 2× precision× recall
precusuib + recall
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The interpretations of true positive, false positive, false negative and true negative are shown in Table 1.
True means that the classification is correct, and false means that the classification is false. Positive means
that classification is positive sample “1”, and negative means that classification is negative sample “0”.
By developing a general mathematical framework based upon the percolation model, [39] investigates
attack robustness analytically with a false positive/negative rate.

Table 1. Evaluation of classification results.

Predicted Value
Actual Value

1 0

1 true positive false positive
0 false negative true negative

3. Optimization Algorithm

In this section, we introduce the flow of reactive power decision optimization algorithm based on
the judgement of the transient voltage stability state.

3.1. The Algorithm for Judging the Transient Voltage Stability State Based on CNN

For the prediction of transient voltage stability, normally, the selected input characteristics are
only time domain data. Single-node historical data is mainly considered, without taking into account
the overall spatial characteristics of the grid. Therefore, the historical data of other nodes which contain
a large amount of valid information that is useful for the stability prediction of such nodes is missed.
In addition, the massive collected PMU data fails to be properly processed. In this paper, the judgment
algorithm of the transient voltage stability state is designed based on the analysis of each node’s data
acquired by PMU. Meanwhile, the distance between the time period of the selected characteristic and
the time to be predicted is enlarged. In this sense, the prediction effect can be achieved in advance.

The detailed algorithm for judging the transient voltage stability is as follows:
Step 1: Establishment of the model input sample matrix.
Real-time data is acquired from the data acquisition device PMU deployed at each key node of the

real power grid. The output data can be obtained by simulation software. The data values of voltage
U, frequency f , active power P and reactive power Q of the key nodes in EI during a characteristic
time period T are obtained. The input sample matrix that makes up the model is as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1,1 f1,1 P1,1 Q1,1 · · · U1,M f1, M P1,M Q1,M
U2,1 f2,1 P2,1 Q2,1 · · · U2,M f2, M P2,M Q2,M

U3,1 f3,1 P3,1 Q3,1 · · · U3,M f3, M P3,M Q3,M
...

...
...

...
. . .

...
...

...
...

UN,1 fN,1 PN,1 QN,1 · · · UN,M fN, M PN,M QN,M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the subscript of voltage U, frequency f , active power P and reactive power Q is (i, j). The first
subscript i represents the i-th sample. The second subscript j represents the j-th time collection point.

Step 2: Determination and labeling of the input data stability.
According to the industrial standard, the stability of the input sample data is labeled. The value

of voltage U at a specific time is used to determine whether the voltage is stable or not. If the value of
node voltage U returns to 0.8 times of the standard value, it is regarded as stable and is denoted as “1”.
Conversely, if it is considered as unstable, it is denoted as “0”.

Step 3: Expansion of data.
Considering the imbalance of positive and negative samples under the situation of stability and

instability, the input sample data is expanded by translating window, in order to avoid deflection in
the training process. Such process is illustrated in Figure 2.
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Figure 2. Data expansion mode in the case of unbalanced samples.

Step 4: Construction of CNN.
The CNN is constructed by input layer, convolution layer, pooling layer, fully connected layer

and output layer. The appropriate number of CNN layers, convolutional cores and parameters are
selected to achieve a better prediction effect.

Step 5: Offline training and online evaluation.
The combination model of offline training and online evaluation is shown in Figure 3. According

to the transient stability rule, the transient stability assessment model is obtained by offline training
using historical data or simulation data. Then, real time data is used in the trained model for online
testing, and the stability assessment results are obtained.

 
Figure 3. Combination model of offline training and online evaluation.

3.2. Reactive Power Decision Optimization Algorithm

Based on the judgement of the transient voltage stability state, the process of the reactive power
decision optimization algorithm is proposed as follows:

Step 1: State perception.
The output data is obtained through BPA. During a characteristic time period T, voltage U,

frequency f , active power P and reactive power Q of each key node are selected to form an input
sample matrix of the model as the current state s.

Step 2: Stability prediction.
According to the judgement in Section 3.1, the state information perceived in Step 1 is taken as the

input data of the model, and the output is whether the grid would restore stability or not within a

22



Energies 2019, 12, 1556

certain time period. The stable output is used as an important basis for calculating the reward value by
the subsequent deep reinforcement learning approach.

Step 3: Capture of action.
The location of SVGs and compensation value of each SVG are used as action a of operator Agent

in the deep reinforcement learning algorithm. The action value is acquired according to the setting
mode in the effective action collection and then converted into a one− hot form.

Step 4: Perception of the next state.
In the case of the perceived state s in Step 1, the position and compensation value of SVGs are

set in BPA by executing action a obtained in Step 3. The next state value s′ is obtained by performing
the simulation.

Step 5: Reward value setting.
There are two goals for reactive power optimization. The first one is to enable the grid to recover

in a certain time period after a short-circuit fault occurs. The other is to use distributed reactive
power compensation, so as to reduce the compensation value of each reactive power compensator.
The calculation rule of the reward value r is set in conjunction with the stability prediction in Step 2.
The action value is acquired in Step 3.

Step 6: Experiential playback.
The collected status, action, reward and other data are stored in the database memory_replay

which is self-defined. The training data is randomly selected in small batches during training. In this
sense, the dependency relationship of the observed data can be avoided. In addition, the effect of
the operator Agent influenced by the recent operation can also be avoided. Otherwise, what happens
before would be “forgotten”. The correlation of the samples is weakened, the efficiency of data usage
can be improved, and the correlation between data can be reduced. Therefore, the algorithm can be
easily convergent, and the generalization ability can be improved.

Step 7: Training of Q network.
The CNN is used to fit Q value function. The experiential playback technique in Step 6 is adopted.

The small batch is randomly taken from the database memory_replay for training.
The goal is to obtain the action combination of the highest Q value and to output this value.

4. Simulation Results

4.1. Experimental Results and Analysis

According to Section 2.2, we select N = 500 and n = 200. The loss value curve of the experimental
results is shown in Figure 4.

Figure 4. Comparison diagram of loss value of training set and verification set.
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The results of the stability prediction on the test set are shown in Figure 5. Taking 0.5 as the
dividing line, the value that is greater than 0.5 is classified as “1”, which is considered as stable.
The value that is less than 0.5 is classified as “0”, which is considered as unstable. The accuracy
is 2294/2300.

Figure 5. Stability prediction results of test set (first 200 cycles).

It is shown in Table 2 that the false negative value is 6, i.e., six samples are actually stable. However,
the prediction result is unstable. In order to maintain the stable operation of EI, it is acceptable to
consider appropriate over-warning in real scenarios. While the false positive value is 0, i.e., the actual
unstable sample is correctly predicted, which meets our requirements. In this paper, the threshold of
accuracy is set to be 99%. The calculation is available with a precision of 1, a recall of 98.7%, and an
f1-score of 99.4%.

Table 2. Stability prediction results (first 200 cycles).

Predicted Value
Actual Value

Stable Unstable

Stable 462 0
Unstable 6 1832

The evaluation of stability prediction at this stage is to prepare for the decision optimization
of subsequent reactive power compensation. In order to know in advance whether the EI would
return to a stable state in the future, the characteristic time period is expected to be reduced. The data
from the first 100 cycles would be intercepted, and the aforementioned CNN is still used for training.
The accuracy is 2252/2300, which also meets the expected requirements.

The results of stability prediction are specifically analyzed in Table 3. Through calculating,
the precision, the recall and the f1-score are 91.2%, 99.4% and 95.1%, respectively. The accuracy does
not meet the requirement.

Table 3. Stability prediction results (first 100 cycles).

Predicted Value
Actual Value

Stable Unstable

Stable 465 45
Unstable 3 1787
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Although the precision of the prediction has achieved 97.9%, such rate is still relatively low
and does not meet the requirement. Therefore, the structure of CNN is determined to be optimized.
The parameters in the CNN is set to be fixed. The size of the convolution kernel is selected as 3× 3.
The depth of the network is adjusted by changing the number of convolution layers. The number of
feature extractions is altered by changing the number of convolution kernels per layer, which makes
the extraction effect much better. After twenty experiments are conducted, the average value of the
training results of different CNN structures with different parameters is obtained. The results are
shown in Table 4.

Table 4. Parameter settings of the convolutional neural network (CNN).

Number of
Layers

Number of
Convolution Kernels

Computation
Time (s)

Precision (%) Recall (%) f1-Score (%)

4 64 3 91.2 99.4 95.1
4 128 6 95.3 87.4 91.2
4 256 15 95.0 97.9 96.4
6 64 4 99.5 89.3 94.1
6 128 7 95.0 98.3 96.6
6 256 19 98.6 93.4 96.0
8 64 4 94.0 80.8 86.9
8 128 8 94.3 84.4 89.1
8 256 21 94.8 93.6 94.2

It can be seen from Table 4 that as the number of convolution kernels increases, the time for
calculation increases substantially. The effect of increasing the number of the convolution layer on
the calculation time is not obvious. The setting of the number of convolution layers and convolution
kernels affects the prediction results. After twenty experiments are implemented, when the 6-layer
convolution is set, and the number of convolution kernels per convolution layer is 64, the duration of
calculation becomes shorter, and the accuracy is higher. The false positive value is smaller. More than
half of the false positive values in the experimental results are all 0, which implies that the samples
that are actually unstable are successfully predicted to be unstable. In this sense, the goal of stability
prediction in this paper has been achieved. Thus, the model of CNN is selected. The results of the
stability prediction on the test set are shown in Figure 6. The accuracy is 2236/2300, which meets the
expected target.

Figure 6. Stability prediction results of the test set after optimization (the first 100 cycles).

The analysis of the stability prediction results is shown in Table 5. The false negative value is 64,
i.e., 64 samples are actually stable. However, the prediction result is unstable, which is acceptable in the
real engineering scenario. The false positive value is 0, i.e., the actual unstable samples are not predicted
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to be stable, which meets the expected requirements. Compared with the result before optimization,
although the false negative value has increased, such value is reduced to be 0. In real-world applications,
a false negative is acceptable, and a false positive is unacceptable. Therefore, the optimized results
appear to meet the expected requirements. Through computation, the precision, the recall and the
f1-score are 1, 86.3% and 92.7%, respectively.

Table 5. Stability prediction results after optimization (first 100 cycles).

Predicted Value
Actual Value

Stable Unstable

Stable 404 0
Unstable 64 1832

The output of existing research on stability prediction is mainly based on the analysis of single
node data. Differently, this study selects the data of each node of the whole network as input data.
Meanwhile, the data format is different. In order to verify the feasibility and effectiveness of the study
as a comparative experiment, the SVM algorithm [16] is used for training. The false negative value
is 141, i.e., 141 samples are stable. However, the prediction result is unstable, which is acceptable.
The false positive value is 25, i.e., 25 samples are unstable but these samples are predicted to be stable.
In real engineering practice, important information about voltage instability would be missed in such
results. The future unstable states are difficult to be predicted accurately. Therefore, it is difficult to
make a judgement, which is unacceptable. The obtained precision, the recall and the f1-score are 92.9%,
69.9% and 79.7%, respectively, which are much lower than the result obtained by our algorithm.

In summary, when data for each node in the whole grid system is used as high-dimensional input
feature data within a certain characteristic time period, feature extraction can be better performed
by deep learning CNN than by the conventional machine learning algorithm. A satisfactory fitting
effect is obtained, and the application result in transient voltage stability judgment of EI achieves the
expected target. Based on the mainstream power simulation software, a data batch processing toolkit
has been developed, which improves the efficiency of data processing.

4.2. Simulation Example of Reactive Power Decision Optimization

BPA is used to simulate different short-circuit faults. Since only the load model and load rate can
be changed in BPA, the real-time load value cannot be collected. The system recovery time (cycle)
corresponding to different load rates and the total SVG compensation is shown in Figure 7.

Figure 7. The curve of load rate, SVG compensation, and time of returning to a stable state.

It can be seen that under the same load rate, as the amount of SVG compensation increases,
the system fluctuates from an unstable state to a stable state, and the time of returning to the stable
state decreases gradually.
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One set of SVG compensation was extracted. The load rate-time of returning to stable state (cycle)
curve is drawn under the same SVG compensation. As is shown in Figure 8, with the increase in the
load rate, the time of returning to a stable state increases gradually after the same SVG compensation
is obtained until stability cannot be restored. In Figure 6, the system instability is represented by the
time of returning to a stable state of 0.

Figure 8. The curve of load rate–time of returning to a stable state when the SVG compensator is
the same.

A numerical example is given in the following study where site A and site B represent for two
cities. The load model is set as follows: (1) 30% constant resistance load, 40% constant current load and
30% constant power load at site A; and (2) 70% motor and 30% constant impedance with a load rate of
115% at site B. The short-circuit fault of single-circuit three-phase is set on buses with different voltage
grades. Eight faults are considered in this example, including fault 1 (high-voltage level bus fault of
220 kV between site A and site B), fault 2 and fault 3 (220 kV high voltage grade bus fault on site B, i.e.,
the grid location studied in the experiment), as well as fault 4 to fault 8 (low voltage bus fault of 110 kV
and 66 kV on site B).The fault clearing time is taken as 5 cycles, i.e., 0.1 s. Five SVGs are set at two
220 kV high voltage grade substations (A1 substation and A2 substation) and three 110 kV voltage
grade substations (A3 substation, A4 substation and A5 substation), respectively. The compensation
values of five SVGs, which are intervals of the action in the proposed algorithm, are set as follows:
[20 Mvar, 80 Mvar], [50 Mvar, 80 Mvar], [60 Mvar, 80 Mvar], [50 Mvar, 80 Mvar] and [50 Mvar, 80 Mvar].
In the proposed algorithm, the action space is discretized, and the discretized step is 10 Mvar. By this
means, 1344 discrete actions are obtained. These actions are numbered from 1 to 1344. These actions
are further converted into one− hot form. The network is trained by CNN. The loss value is shown in
Figure 9.

Figure 9. Trend graph of loss value.
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The optimization results based on deep reinforcement learning are shown in Table 6.
The compensations value of each action in Table 5 for five SVGs are listed in Table 7. These two tables
can be understood as follows. Taking the number in the first row of Table 6 as an example, when the
network training times are 5000, the output action numbers of fault 1 to fault 8 are 34. According to the
second line of Table 7, action 34 compensates for five SVGs with 20 Mvar, 50 Mvar, 80 Mvar, 50 Mvar
and 60 Mvar, respectively.

Table 6. Decision Optimization Results.

Training Times Number of Output Action

5000 34, 34, 34, 34, 34, 34, 34, 34
10,000 105, 105, 105, 105, 105, 105, 105, 105
15,000 389, 389, 389, 389, 389, 389, 389, 389
20,000 201, 201, 201, 241, 241, 241, 241, 241
25,000 19, 19, 19, 241, 241, 241, 241, 241

Table 7. Compensation Values.

Action Compensation Value (Mvar)

19 20, 50, 70, 50, 70
34 20, 50, 80, 50, 60
105 20, 70, 60, 70, 50
201 30, 50, 60, 70, 50
241 30, 60, 60, 50, 50
389 40, 50, 60, 60, 50

Fault 1, fault 2 and fault 3 are in the high voltage bus. Thus, reactive compensation should be
increased. It can be seen that at the initial stage of training, the differences from fault 1 to fault 3 and
from fault 4 to fault 8 are not successfully identified. Similar action outputs with high compensation
are given. However, the decision of reactive compensation for different grades could be given by
increasing the training times. The difference can be seen in the results of later training.

The contrast curve of Q value and reward value are shown in Figure 10. It can be seen that the
general trend of the Q value is consistent with the general trend of the reward value. As the training
time increases, the Q value is constantly close to the reward value, which achieves the goal of training.

Figure 10. Comparison chart of Q value and reward value (25000 times of training).

All buses with high voltage are set to be stable. The total compensation of SVG is the lowest.
The decision scheme of the final test is shown in Table 6.
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Fault 1 occurs on the highest level of the transmission bus between site A and site B. One of
the decision schemes obtained by the model is action 19, i.e., five SVGs compensate 20 Mvar,
50 Mvar, 70 Mvar, 50 Mvar and 70 Mvar, respectively. It can be seen that the SVGs are distributed.
The compensation value of each SVG is smaller than that of only two SVGs. The desired distributed
setting of the reactive power compensation device is achieved. The stability result is shown in Figure 11.
The time of returning to a stable state is about 550 cycles.

Figure 11. Fault 1 Action 19: Bus positive sequence voltages after SVG compensates 20 Mvar, 50 Mvar,
70 Mvar, 50 Mvar and 70 Mvar, respectively.

Fault 2 occurs on the high-voltage bus with 220 kV at site B. One of the decision schemes given by
the model is action 34, that is, five SVGs compensate 20 Mvar, 50 Mvar, 80 Mvar, 50 Mvar and 60 Mvar,
respectively. The stability result is shown in Figure 12. The time of returning to a state of stability is
about 250 cycles.

Figure 12. Fault 2 Action 34: Bus positive sequence voltages after SVG compensates 20 Mvar, 50 Mvar,
80 Mvar, 50 Mvar and 60 Mvar, respectively.

Fault 3 occurs on the high-voltage bus with 220 kV at site B. One of the decision schemes given by
the model is action 389, i.e., five SVGs compensate 40 Mvar, 50 Mvar, 60 Mvar, 60 Mvar and 50 Mvar,
respectively. The time of returning to a stable state is about 295 cycles.

Fault 4 occurs on the high-voltage bus with 220 kV at site B. One of the decision schemes given by
the model is action 34, i.e., five SVGs compensate 20 Mvar, 50 Mvar, 80 Mvar, 50 Mvar and 60 Mvar,
respectively. The time of returning to the state of stability is about 50 cycles.
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From the above analysis, the difference between the high voltage bus with 220 kV and 110 kV
in the initial stage of training is not distinguished by the model. The scheme with the same total
compensation amount is selected. Although the requirement of restoring stability can be met, the whole
EI is subject to the impact of smaller short-circuit faulting with lower bus voltage level. In the later
stage of training, a scheme for fault 4 to fault 8 is given by the model. Five SVGs compensate 30 Mvar,
60 Mvar, 60 Mvar, 50 Mvar and 50 Mvar, respectively. At this point, the total compensation amount is
250 Mvar. Fault 4 is set, and then action 241 is executed. The stability result is shown in Figure 13.
The time of returning to a stable state is about 60 cycles. A better optimal decision scheme can be given
by the model though training.

Figure 13. Fault 4 Action 241: Bus positive sequence voltages after SVG compensates 30 Mvar, 60 Mvar,
60 Mvar, 50 Mvar and 50 Mvar, respectively.

However, in the previous setting of the reward value calculation formula, only the requirement
that buses with high voltage grade finally restore stability is considered. The time of returning to a
stable state is not considered. Thereby, we can see from Figure 11 that although the strategy given
by the algorithm ultimately achieves system stability, it is time consuming. The stable operation of
the grid and the usage of the customer side’s load would also be affected. The calculation of rewards
is changed by the choice. The time of returning to the stable state is taken into account. New and
different strategies are given by the algorithm in the final experimental results. One of these strategies
is action 673, i.e., five SVGs compensate 50 Mvar, 70 Mvar, 60 Mvar, 50 Mvar and 50 Mvar, respectively.
Although the total compensation is slightly higher than the previous strategy, it can be seen that the
compensation of each SVG is distributed more evenly.

Fault 1 is set, and action 673 is executed. The stable result is shown in Figure 14. When five SVGs
compensate 50 Mvar, 70 Mvar, 60 Mvar, 50 Mvar and 50 Mvar, respectively, the time of returning to a
stable state is about 200 cycles.

Based on the comparison of the above experimental results, it can be seen that the strategy
proposed by the final algorithm meets the requirement of bus voltage stability. Meanwhile, the SVG
presents distributed settings, and the output compensation is distributed uniformly. In addition,
the distributed SVG conducts reactive compensation with a shorter timeframe, which greatly improves
the efficiency of decision-making compared with conventional manual operations. The distributed
SVG obtains stability within 200 cycles, which meets the requirement for secure and stable operation of
the EI.
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Figure 14. Fault 1 Action 673: Bus positive sequence voltages after SVG compensates 50 Mvar, 70 Mvar,
60 Mvar, 50 Mvar and 50 Mvar, respectively.

5. Conclusions

Based on EI architecture, this study proposes a decision optimization algorithm based on state
judgment, in order to realize efficient, safe and stable operation of the EI. The experimental results
show that the deep CNN is superior to the conventional machine learning algorithms with regards to
feature extraction and prediction accuracy. In addition, a data batch processing toolkit based on BPA
is developed to realize semi-automatic data batch processing, which improves the efficiency of data
processing. Based on the stable state judgment, a deep reinforcement learning algorithm is proposed to
optimize the reactive power compensation decision of EI. The experimental results not only show that
this algorithm can achieve the system stability target, but can also fulfils the expectation of distributed
reactive compensation and minimization of total reactive compensation.

Currently, a large number of simulation data can be generated off-line for training. The simulation
and state feedback of continuous action changes cannot be realized. The action has to be discretized.
In the future, it is necessary to realize the direct interface between simulation software and the deep
learning platform, such that real-time simulation can be performed, and deep reinforcement learning
algorithm can be used for continuous action learning and training.
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Abstract: Load forecasting is of crucial importance for smart grids and the electricity market in
terms of the meeting the demand for and distribution of electrical energy. This research proposes
a hybrid algorithm for improving the forecasting accuracy where a non-dominated sorting genetic
algorithm II (NSGA II) is employed for selecting the input vector, where its fitness function is
a multi-layer perceptron neural network (MLPNN). Thus, the output of the NSGA II is the output
of the best-trained MLPNN which has the best combination of inputs. The result of NSGA II is fed
to the Adaptive Neuro-Fuzzy Inference System (ANFIS) as its input and the results demonstrate
an improved forecasting accuracy of the MLPNN-ANFIS compared to the MLPNN and ANFIS models.
In addition, genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization
(ACO), differential evolution (DE), and imperialistic competitive algorithm (ICA) are used for
optimized design of the ANFIS. Electricity demand data for Bonneville, Oregon are used to test
the model and among the different tested models, NSGA II-ANFIS-GA provides better accuracy.
Obtained values of error indicators for one-hour-ahead demand forecasting are 107.2644, 1.5063,
65.4250, 1.0570, and 0.9940 for RMSE, RMSE%, MAE, MAPE, and R, respectively.

Keywords: electric load forecasting; non-dominated sorting genetic algorithm II; multi-layer
perceptron; adaptive neuro-fuzzy inference system; meta-heuristic algorithms

1. Introduction

Planning electricity systems in terms of generation, transmission, and distribution relies on
generation and load forecasting. In addition to economic load dispatching, unit commitment, and price
forecasting which, are interests of the electricity market, electrical load forecasting is important in
terms of risk reduction for the power grid. In addition, unbalanced supply/demand caused by
inaccurate forecasts in traditional electricity generation systems [1] has led to integration of advanced
communication technologies into traditional grids, which are known as smart girds (Figure 1).
Smart grids engage the customer in the decision-making process and, in a larger view, decisions
are made based on the flow and exchange of information [2]. However, there are challenges to ensure
that smart grids are economically beneficial, such as closing the gap between demand and supply,
and fuel resource planning. All these factors highlight the importance of accurate electrical energy
demand forecasts.

Diverse techniques have been applied in demand forecasting problems such as techniques based
on time series and regression analysis [3–5]. However, because of the non-linear nature of the problem,
techniques based on artificial neural networks and Adaptive Neuro-Fuzzy Inference System (ANFIS)
are more popular [6–11]. As an example, Barak and Sadegh [12] proposed a hybrid ARIMA-ANFIS
model for forecasting of the annual energy consumption of Iran. ARIMA outputs were used to forecast
the energy consumption, using different ANFIS structures. According to the results, the ARIMA-ANFIS
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model gave more accurate forecasts compared to the ARIMA and ANFIS models. As the final step,
meta-heuristic algorithms were employed to increase the accuracy of the ANFIS. The research does
not develop a strategy for large data sets and input selection.

Figure 1. Conceptual diagram of smart grid [2].

In another piece of research conducted by Hooshmand et al. [13], a wavelet transform (WT)
and an artificial neural network (ANN) were used for primary load forecasting where the inputs
are meteorological parameters and previous values of the electric load. The ANFIS was employed
to improve the forecasting results. However, the research does not introduce an approach for
input selection and the capability of the evolutionary algorithms for optimizing the ANFIS has
not been investigated. In another similar model, Panapakinis and Dagoumas [14] proposed a wavelet
transform-ANFIS-GA-neural network model for natural gas demand forecasting. The original signal
was decomposed by WT and used as ANFIS inputs. After optimizing ANFIS parameters with GA,
output of ANFIS was fed into the neural network. The model does not seem to be efficient in case of
multiple inputs since feature selection approach has not been developed.

A difference seasonal auto-regressive integrated moving average (diff-SARIMA), neural network,
ANFIS, and DE combined method was used by Yang et al. [15] for short-term electricity demand
forecasting of New South Wales in Australia. The proposed combined model presented better results
than SARIMA, neural network, and ANFIS models. Parameters of the ANFIS were optimized using
the DE method. Identical to the articles mentioned earlier, the research does not present a strategy for
input selection. Moon et al. [16] proposed a hybrid of random forest and multi-layer perceptron for
daily energy demand forecasting of a university campus. A decision tree was employed to classify the
data into date, day of the week, holiday, and academic year. Furthermore, an approach was developed
for considering the effect of the temperature in energy consumption and classifying the days of the
week. However, the algorithm might not easily adapt to availability of the other parameters to be
considered.

All the issues mentioned earlier motivated the current study to develop a forecasting strategy which:
(i) can perform with any given dataset; (ii) is totally automatized; and (iii) provides a better accuracy.

Contribution

The current study aims to address solutions for data pre-processing and the input selection
problem. As mentioned above, previous studies did not develop a robust model that is compatible
with different datasets. The best combination of the input variables must be achieved before applying
any data pre-processing or feature extraction techniques. The paper proposes a robust model which is
capable of forecasting hourly electrical load demand with any given inputs. The inputs may include
different combinations of previous demand values and weather parameters.
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In addition, despite a combination of ANNs and ANFIS being discussed in previous research,
training ANFIS was realized using a hybrid method. The proposed methodology employs
meta-heuristic algorithms for ANFIS training and combines MLPNN, ANFIS, and meta-heuristics to
increase the forecasting accuracy. Some research related to training ANFIS using meta-heuristics is
given in [17–20].

The proposed methodology is described in Section 2 and the results are presented and discussed
in Section 3. Finally, Section 4 is the conclusion of the present study.

2. Methodology

2.1. Data

Hourly electrical power demand data for Bonneville, Oregon, USA, from 2 July 2015 to 19 September
2017 provided by the US Energy Information Administration [21] were used to test and validate the
model. The original data set was a 1 × n matrix where n is the number of samples. After removing
the matrix fields without reported values, a figure of the initial dataset was generated and presented
in Figure 2.

Figure 2. Electrical power demand data for Bonneville, Oregon, USA, from 2 July 2015 to
19 September 2017.

A new data set (13 × (n − 30) matrix) was created where 30 is the biggest considered delay.
13 is related to the applied probable delays of 1, 2, 3, 4, 5, 6, 24, 25, 26, 27, 28, 29, and 30 for creating
a dataset with 13 variables. To obtain the best combination of the variables, a new dataset was fed into
the NSGAII as described in Section 2.2. Outlier detection techniques can be applied for detection and
removal of outliers. An example of these techniques is given in [22].

2.2. Proposed Algorithm

The created input dataset contains (x − 1), (x − 2), (x − 3), (x − 4), (x − 5), (x − 6), (x − 24), (x − 25),
(x − 26), (x − 27), (x − 28), (x − 29), (x − 30) variables where x is the actual electrical power demand.
These are the inputs of the NSGA II which can generate results with any given input dataset and find
the best combination of the inputs. Thus, other delays of the electrical power demand and weather
parameters (if available) can be added to the inputs.
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The proposed algorithm is a two-step forecasting process. In the primary forecasting step,
a combination of the NSGAII and MLPNN was employed. MLPNN is the fitness function of the NSGA
II to determine fitness of the input combinations in each iteration of the NSGAII. The output of the
NSGAII was set to be the MLPNN with the best fitness. Therefore, the obtained MLPNN contains the
best combination of the input variables among tested combinations in iterations of the NSGAII and is
also the best-trained neural network.

As the second step, the obtained forecasted value from the first step was fed to the ANFIS.
The result of this step is the final forecasted value of the electrical energy demand. Training of
the ANFIS was realized using different algorithms, namely hybrid algorithm (combination of the
backpropagation and least-square error), ACO, DE, GA, ICA, and PSO. Among applied algorithms for
ANFIS training, GA demonstrated better performance in terms of the lower values of error indicators.
The overall proposed approach is presented in Figure 3.

Figure 3. Proposed algorithm.

2.2.1. NSGA II

NSGA II [23] is an elitist multi-objective optimization algorithm that initializes by a random
population and assigns a fitness value for each member of the population. After generating the
offspring using crossover and mutation operators, a binary selection operator, based on fitness and
crowding distance, is applied to the parent and offspring population for elitist selection. Crowding
distance defines the distance of an individual to its neighbors and large crowding distance results
in higher diversity, calculating the crowding distance begins by assigning distance to zero for each
individual. Next, individuals are sorted based on objective function. After assigning infinite value
to the boundaries (I(d1) = ∞, I(dn) = ∞), crowding distance of the mth objective function of the kth
individual in front Fi for k = 2 to (n − 1) is calculated by Equation (1).

I(dk) = I(dk) =
I(k + 1) · m − I(k − 1) · m

f max
m − f min

m
(1)

The algorithm preserves the best individuals from parent and offspring and continues until the
stopping criteria is met. The elitism process is shown in Figure 4.
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Figure 4. Elitism process of NSGA II.

2.2.2. MLPNN

Multi-layer perceptron neural network is a powerful tool for solving non-linear problems.
It consists of an input layer, one or more hidden layers, and an output layer. Each layer contains artificial
neurons and the neurons between layers are connected with an adaptable weight. The output of each
neuron in each layer is multiplied by the adaptable weight and after passing through a transfer function
becomes the input to the next-level neurons. In this research, tuning the weights, which is called
the learning process, is realized by a backpropagation algorithm, namely the Levenberg-Marquardt
algorithm. The structure of an MLPNN is shown in Figure 5.

Figure 5. The structure of the MLPNN.

2.2.3. ANFIS

ANFIS was introduced by Jang [24] and is an artificial intelligence model that benefits from
advantages of both fuzzy systems and ANNs. In this model, fuzzy inference systems (FIS) are
determined by if-then rules and membership functions (MFs) where tuning the MFs are realized by
ANNs. The three main types of FISs are the Takagi-Sugeno-Kang (TSK), Mamdani, and Tsumoto [25].
In this research, TSK FIS model was employed, which is more powerful at handling non-linear
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input-output relationships [26]. TSK uses the pattern of input and output data to create if-then rules.
If-then rules for TSK model in a 2-input system is given in Equation (2).

I f x = A1 and y = B1 ⇒ f = p1x + q1x + r1

I f x = A2 and y = B2 ⇒ f = p2x + q2x + r2
(2)

where A1, B1 and A2, B2 are the MFs related to input x and input y respectively and p1, q1, r1, p2, q2,
r2 are linear parameters of part-Then in TSK. Figure 6 shows the structure of a typical ANFIS model
which contains 5 layers.

Figure 6. ANFIS architecture.

The fuzzification process is realized in the first layer. In this layer, nodes are square nodes with
function presented in Equation (3).

O1
i = μAi(x) (3)

where i is the ith node in the layer, Ai is linguistic value of the node. As the membership function,
a Gaussian membership function was employed (Equation (4)).

μAi(x) = exp
[
−(

x − ci
2ai

)2
]

(4)

where ai and ci are the parameters that define shape of the membership function. These parameters
are tuned during the learning process. Layer 2 contains circle nodes that multiply the input signals
and their output is the product of this multiplication which stands for firing strength of each rule as
given in Equation (5).

ωi = μAi(x)× μBi(y), i = 1, 2. (5)

In layer 3, node i calculates the ratio of ith rule firing strength in respect to sum of all rules firing
strength which, is a normalization process. Similar to layer 2, nodes are fixed in layer 3. Next, adaptive
nodes in layer 4 calculate values of the rule of the consequent part and finally, layer 5 sums all outputs
of layer 4 and contains only one node [27]. Mathematical description of layer 3, layer 4 and layer 5 are
given in Equations (6)–(8) respectively.

ω̄i =
ωi

ω1 + ω2
, i = 1, 2. (6)

O4
i = ω̄i fi = ω̄i(pix + qiy + ri). (7)

O5
i = ∑

i
ω̄i fi =

∑i ωi fi

∑i ωi
. (8)
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ANFIS is trained using input-output data pairs. As seen in the ANFIS architecture and equations
describing each layer, parameters in layer 1 and layer 4 can be tuned. This process defines the shape
of the MFs (tuning of ai and ci) and specifies the fuzzy rules (tuning of pi, qi and ri). Tuning of these
parameters is realized according to an error criterion. Backpropagation algorithm can be employed
for training ANFIS; however, due to slow convergence rate of the backpropagation algorithm and
its tendency to be trapped in local minima, it is used combined with the least-square estimator.
This combination is called the hybrid method and because of reduction of the dimensional search
space, provides a faster convergence rate [28].

2.2.4. Genetic Algorithm (GA)

A genetic algorithm is a meta-heuristic algorithm based on natural selection. A continuous GA
was used for this research, which consists of mutation, crossover, and selection. To distribute the
initial population in solution space, the initial population is generated randomly. The solutions in each
iteration are evolved until the stopping criteria is met.

3. Results and Discussion

3.1. Primary Forecasting Step

As the primary forecasting step, the created data matrix with 13 variables was fed into the NSGAII
algorithm. The employed fitness function is an MLPNN with one hidden layer whose hidden layer size
and transfer functions are 7, tansig, and tansig, respectively. Different combinations of the 13 variables
(input vectors) were generated, and their fitness values were evaluated by the NSGAII in each iteration.
Non-dominated solutions are the outputs of this step. Each output is a MLPNN, which contains the
best non-dominated input vector as its input. The Pareto front of the NSGAII related to the generated
non-dominant solutions is shown in Figure 7.

Figure 7. Pareto front of the NSGAII.

To demonstrate the importance of the feature selection, forecasting results of the best input vector
generated by NSGAII was compared to the 13 variables 1 variable (x − 1) input vectors, using MLPNN
as the forecasting model. The results are presented in Table 1. Explanation of the employed error
indicators can be found in Appendix A.
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Table 1. Forecasting results for different input sets using MLPNN.

Input Set RMSE (MW) RMSE (%) MAE (MW) MAPE (%) R

1 input 301.7724 3.8788 195.0414 3.1479 0.9523
Selected inputs by NSGA II 136.1048 1.7409 68.3688 1.0950 0.9904

All Inputs 160.5449 2.0636 69.4196 1.1029 0.9866

As seen in Table 1, using selected input vector generated by the NSGA II results in better
forecasting accuracy. Furthermore, to compare the forecasting accuracy of the MLPNN and ANFIS
models, the selected input vector was used as the input of the ANFIS models with different training
algorithms. The results are given in Table 2.

Table 2. Forecasting results for each model.

Model RMSE (MW) RMSE (%) MAE (MW) MAPE (%) R

ANFIS-ACOR 207.2688 2.8755 98.9818 1.5777 0.9775
ANFIS-Hybrid 194.6117 2.4017 86.8079 1.3838 0.9803

ANFIS-DE 202.3010 2.1925 100.7624 1.6181 0.9795
ANFIS-GA 190.1248 2.1810 97.4025 1.5438 0.9820
ANFIS-ICA 288.7683 3.8939 208.4114 3.3892 0.9577
ANFIS-PSO 195.7518 2.1215 83.5948 1.3360 0.9805

Comparing Table 1 to Table 2 it can be observed that using selected input vector, MLPNN model
has a better forecasting accuracy compared to the ANFIS model. In addition, among tested ANFIS
training algorithms, GA demonstrates better performance. Response surface of output versus input 1
and input 2 related to hybrid learning algorithm and GA learning algorithm (meta-heuristic with the
best performance) are given in Figure 8 where input 1 and input 2 are (x − 1) and (x − 2) respectively.

Figure 8. Response surface of output versus input 1 and input to for hybrid (left) and GA (right)
learning algorithms.

3.2. Final Forecasting Step

In the primary forecasting step, variables were selected by the NSGAII and an output was
generated which is an MLPNN with selected input vector. As the final step, output of the MLPNN
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was fed into the created ANFIS models with different training algorithms, to evaluate the ability of the
ANFIS to increase the forecasting results of the MLPNN model. The results are given in Table 3.

Table 3. Forecasting results for each model.

Model RMSE (MW) RMSE (%) MAE (MW) MAPE (%) R

MLPNN-ANFIS-ACOR 175.1901 1.8987 69.1994 1.1033 0.9842
MLPNN-ANFIS-Hybrid 142.6229 1.8243 66.5694 1.0603 0.9896

MLPNN-ANFIS-DE 158.2172 1.9138 68.2244 1.0967 0.9869
MLPNN-ANFIS-GA 107.2644 1.5063 65.4250 1.0570 0.9940
MLPNN-ANFIS-ICA 121.7895 1.5229 65.5095 1.0639 0.9922
MLPNN-ANFIS-PSO 148.1894 2.0559 66.8190 1.0641 0.9886

As seen in Table 3, the combination of the MLPNN and ANFIS models improves the forecasting
accuracy and MLPNN-ANFIS models and demonstrates lower error rates compared to the MLPNN
and ANFIS models. Furthermore, all error indicators of RMSE, MAE, MAPE, and R related to
MLPNN-ANFIS-GA model are lower than MLPNN-ANFIS-GA model. Thus, GA has a better
performance in ANFIS training compared to the hybrid method. Figure 9 presents the errors and
absolute percentage error (APE) for ANFIS-GA and MLPNN-ANFIS-GA models to better demonstrate
the increased forecasting accuracy using a combination of MLPNN and ANFIS.

Figure 9. Errors and APE (%) for ANFIS-GA and MLP-ANFIS-GA models.

For the purposes of better illustrating the accuracy of the tested models, error indication of the
correlation coefficient for MLPNN, ANFIS-Hybrid, ANFIS-GA, and MLPNN-ANFIS-GA models are
presented in Figure 10 while error indicators for these models are presented in Table 4.

Table 4. Error indicators for MLPNN, ANFIS-Hybrid, ANFIS-GA, and MLPNN-ANFIS-GA models
using the selected input vector by NSGAII.

Model RMSE (MW) RMSE (%) MAE (MW) MAPE (%) R

MLPNN 136.1048 1.7409 68.3688 1.0950 0.9904
ANFIS-Hybrid 194.6117 2.4017 86.8079 1.3838 0.9803

ANFIS-GA 190.1248 2.1810 97.4025 1.5438 0.9820
MLPNN-ANFIS-GA 107.2644 1.5063 65.4250 1.0570 0.9940
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Figure 10. Correlation coefficient for MLPNN, ANFIS-Hybrid, ANFIS-GA, and MLPNN-ANFIS-
GA models.

As seen, the MLPNN-ANFIS-GA model provides the best correlation coefficient and lower error
rates in terms of the RMSE, MAE, and MAPE among the tested models. The targets (actual load) and
the final forecasting results for a one-day region and a one-week region are presented in Figures 11
and 12 respectively.

Figure 11. Forecasting results for a one-day region.
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Figure 12. Forecasting results for a one-week region.

4. Conclusions

In all forecasting problems, input parameter selection is of great importance. The developed
methodology in the current research proposes a solution to the trial-and-error approach employed
by previous research in a demand forecasting field. The developed approach is compatible with
any given dataset and can perform in cases of addition or removal of input variables. Assigning
a multi-layer perceptron neural network as the output of NSGAII makes it possible to realize secondary
processes automatically which, in the case of the current research, is using the ANFIS model to improve
forecasting capability of the MLPNN.

Regarding processing time and computational complexity, since the most complex process is
finding the input vector, once inputs are selected and the output of the NSGAII is generated, the
algorithm can be used for online applications. It will be necessary to run the primary forecast part of
the algorithm just in case of availability of new parameters, which can increase the forecasting accuracy.

According to the obtained results, while MLPNN has a better forecasting accuracy compared to
the ANFIS, the combination of these two models reduces all forecasting error indicators. In addition,
meta-heuristic algorithms are found to be suitable for training of the ANFIS. GA demonstrated better
performance in terms of ANFIS training compared to the hybrid method. Among all tested models,
the MLPNN-ANFIS-GA model presented lower error rates in terms of the RMSE, MAE, MAPE, and R.
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ACO Ant Colony Optimization
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
APE Absolute Percentage Error

45



Energies 2019, 12, 1891

ARIMA Auto-Regressive Integrated Moving Average
DE Differential Evolution
FIS Fuzzy Inference System
GA Genetic Algorithm
ICA Imperialistic Competitive Algorithm
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MF Membership Function
MLPNN Multi-Layer Perceptron Neural Network
NSGA II Non-dominated Sorting Genetic Algorithm II
PSO Particle Swarm Optimization
R Correlation Coefficient
RMSE Root Mean Square Error
TSK Takagi-Sugeno-Kang
WT Wavelet Transform

Appendix A

The indicators of absolute percentage error (APE%), mean absolute error (MAE), mean absolute
percentage error (MAPE), root mean squared error (RMSE), root mean squared error percentage
(RMSE%), and correlation coefficient (R) were used for evaluations of the model. The following
equations describe these indicators:

APE =
|yi − xi|

xi
× 100 (A1)

MAE =
1
n

n

∑
i=1

|xi − yi| (A2)

MAPE =
1
N

N

∑
i=1

(
|yi − xi|

xi
× 100) (A3)

RMSE =

√
1
n

n

∑
i=1

(xi − yi)2 (A4)

RMSE% = (
RMSE

xmax − xmin
)× 100 (A5)

R =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2 ∑n
i=1(yi − ȳ)2

(A6)

where xi and x̄i are the actual load value and mean of the actual load value and yi and ȳi are the
forecasted load value and mean of the forecasted load value, respectively.
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Abstract: In this paper, a fuzzy neural network controller for regulating demand-side thermostatically
controlled loads (TCLs) is designed with the aim of stabilizing the frequency of the smart grid. Specifically,
the balance between power supply and demand is achieved by tracking the automatic generation control
(AGC) signal in an electric power system. The particle swarm optimization (PSO) and error back
propagation (BP) algorithms are used to optimize the control parameters and consequently reduce the
tracking errors. The fuzzy neural network can be applied to solve load control problems in power systems,
since its self-learning and associative storage functions can deal with the highly nonlinear relationship
between input and output. Simulation results show the advantage of the fuzzy neural network control
scheme in terms of frequency regulation error and consumer comfort.

Keywords: automatic generation control; fuzzy neural network control; thermostatically controlled loads;
back propagation algorithm; particle swarm optimization

1. Introduction

Smart grid is a modern grid infrastructure with high efficiency, reliability, and safety, which is based
on renewable energy, automatic control, and modern communication technology [1,2]. An ancillary
service is indispensable in an electric service, and plays a vital role in providing strong support for power
transmission and power system operation. Ancillary service includes services related to frequency stability.
The stability of grid frequency is closely related to the operation of power market and the equipment safety
of the power generation side and power consumption side. Ancillary service mainly includes: Frequency
adjustment, automatic generation control, spinning reserve, and peaking services.

The mismatch between the power supply side and the area power consumption can affect the
frequency of the power system. Hence, the load frequency regulation is necessary in power systems,
in order to maintain power balance under normal conditions [3]. Grid frequency can be used to evaluate
power quality. The main way to adjust the frequency of the power system is to change the generated output
power and manage the loads in demand side. Reasonable control of temperature control loads can provide
adjustable buffer energy for power systems [4]. A great deal of potential electrically-thermal energy
is stored in all sorts of heat buffers equipment, such as heating, air conditioning units, and fridges [5].
The advantages of aggregated thermostatically controlled loads (TCLs) to take part in power grid frequency
regulation are as follows: Firstly, the TCLs which can store massive energy are of wide distributions;
secondly, the control method of them is simple, fast, and real-time; thirdly, the aggregated TCLs can
generate a continuous reaction without considering the discrete characteristics of the individual load
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control [6]. The management of TCLs is one of frequency adjustment strategies with extremely high
feasibility to ensure frequency stability and improve power quality.

Recently, the bilinear partial differential equation (PDE) model was developed to provide effective
control of aggregated TCLs [7]. Two control methods, based on the combination of estimator and controller,
were utilized to control TCLs and effectively track demand curve [8]. A centralized and distributed
algorithm based on the state space model of heating ventilation and air-conditioning (HVAC) was proposed
to reduce power fluctuations and improve satisfaction of demand side [9]. A model predictive control was
described and applied to demand-side response services in [10]. A distributed model predictive control
(DMPC) method based on an optimized aggregation model was applied to provide frequency regulation
services [11]. A Fokker–Planck diffusion model and a direct load control algorithm were developed
in [12]. A model of aggregate homogeneous TCLs with uniform variation of temperature set-point was
developed, and a linear quadratic regulator (LQR) has been designed in [13]. In [14], the authors proposed
a novel causal method based on a parametric second-order model to forecast the energy conservation.
In [15], a linear optimization model was built to provide frequency regulation services for power systems
while also providing short-term demand response management. In [16], the authors proposed several
switched control strategies for aggregate HVACs to provide demand-side frequency regulation. Although
various aggregation characteristics of TCLs have been extensively studied, modeling precision still needs
to be farther improved. As a matter of fact, it is hard to establish accurate mathematical models or
physical models for aggregated TCLs because of various assumptions and computational complexity in
the modeling process.

In recent years, artificial intelligence has developed rapidly with the characteristics of bionics and
intelligence. This paper proposes a fuzzy neural network control method which adjusts TCLs based on the
input and output data of TCLs instead of the aggregated TCL model. This method can reduce tracking
errors and computational complexity, because it draws the advantages–logic reasoning capability of fuzzy
control and self-learning capability of the neural network [17]. This study has the following contributions:

• The fuzzy neural network can model the characteristics of aggregated TCLs in the network weight
after training, which can meet the response of the system input and output without modeling the
load characteristics.

• The combination of particle swarm optimization (PSO) and back propagation (BP) algorithms,
which optimize the initial value of weight and membership degree parameters, can avoid the local
minimum and accelerate effectively to convergence speed.

The rest of this paper is organized as follows. Section 1 introduces the thermal dynamics of individual
TCLs and the frequency regulation problem. Section 2 describes the system structure, algorithm, and
optimization of the fuzzy neural network control in detail. The simulation results are shown in Section 3.
Finally, the conclusions are summarized in Section 4.

2. Problem Formulation

2.1. Individual TCL Characteristic

The TCLs can consume electric energy and release thermal energy, which can usually be stored and
transferred [18]. For example, the simple TCLs usually have two work states, i.e., “on” or “off”, and
each corresponds to one power value, i.e., Prate or 0. When there is excess power in generation side, the
TCL is changed to the “on” state, then the electricity consumption increases and the transformed heat
energy will also increase. When the power generation fails to meet users’ needs, the TCLs are changed
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to the “off” state and the power demand will be reduced in order to stabilize the power grid frequency.
The characteristics are described as follows [19]:

Ṫ(t) =
1

CR
(Ta − T(t)− s(t)RP), (1)

where T and Ta represent the indoor and outdoor temperature, respectively. P, R, and C denote energy
transfer rate, thermal resistance, and thermal capacitance, respectively. s(t) represents the switching state
of loads.

The operation characteristics of an individual TCL are shown in Figures 1 and 2. The set-point
regulation method is adopted for regulating TCLs to achieve the purpose of peak shaving and load
shifting. In the figure, u is the temperature set-point change. T+, Ts, and T− on the left of the figure denote
the upper boundary of temperature, the temperature set-point, and the lower boundary of temperature,
respectively. � is the width of the temperature deadband, which denotes the difference between the upper
and lower limits of temperature. According to the physical characteristics of TCLs, T+, Ts, T−, and � have
the following relationship: ⎧⎪⎪⎨

⎪⎪⎩
T+ = Ts +�/2,

T− = Ts −�/2,

� = T+ − T−.

(2)

The rising edge represents that the room temperature has a rise caused by a natural heat conduction
process when the TCL is off. The falling edge denotes the temperature drops caused by the cooling process
of the TCL when the TCL is turned on. In order to keep the room temperature near the temperature
set-point, the TCL will be changed from an off to an on state when the temperature reaches the upper limit
and changed from on to off state when the temperature reaches the lower limit in Figure 1. We can observe
that the upper and lower bounds of temperature vary with the temperature set-point, but the deadband �
keeps constant in Figure 2. Hence, when the temperature set-point changes, the TCL’s switch state can be
indirectly changed, and the TCL’s running time will be extended or shortened. Therefore, prolonging or
shortening the running time of TCL will change the demand-side power consumption, thus it is effective
to maintain the stability of the power grid frequency.

Figure 1. Operation characteristic of an individual thermostatically controlled load (TCL) (u = 0).
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Suppose that N TCLs are used to provide the frequency regulation. When u is changed, the power
consumption in demand side will be shifted, which contributes to the peak shaving and valley filling for
the grid. The aggregated power consumption Ptotal could be expressed by

Ptotal(t) =
N

∑
i=1

1
ηi

siPi, (3)

where ηi (>1) is the efficiency coefficient of the ith TCL. si is a binary variable. The TCL is on when si = 1;
and off when si = 0. Pi denotes the rated power of the ith load.

Figure 2. Operation characteristic of an individual TCL (u �= 0).

2.2. Frequency Regulation Problem

In the power system, since the power is difficult to store in large quantities, the real-time power
balance between the generation side and the demand side must be maintained which can achieve the goal
of suppressing the grid frequency fluctuations, keeping the reliable power supply, avoiding accidents
and hurting the user power equipment [20,21]. The aggregated TCLs can reliably provide the frequency
regulation service by energy storage and flexible scheduling, which are mentioned by demand-side
management. In that case, the power consumption of the TCLs tracks the frequency modulation power
signal of the power grid by an effective controller and a control algorithm.

The frequency regulation signal PAGC, which is a continuous change of positive and negative power
signals and reflects the supply and demand deviation, thus, PAGC needs to stacked on a baseline load
signal PBL—that will generate the actual tracking signal Ptarget, which can be tracked by the aggregated
TCLs. Here, PBL is selected as the rated power at one temperature set-point. It can be described as:

PBL =
N

∑
i=1

Ta − Tset
i

ηiRi
, (4)

Ptarget = PAGC + PBL, (5)

where N represents that the quantity of TCLs.
From Figure 3, we can observe that the inputs of the controller are the difference between the

actual tracking signal Ptarget and the power consumption Ptotal, which are the tracking error signal
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e = Ptarget − Ptotal and its differential de. The controller output is the temperature set-point change u.
In the control scheme, since the fuzzy neural network controller looks like a black box with brilliant
self-learning and self-adaptive ability, we do not need to model the aggregated TCLs. The fuzzy neural
network can be trained to encode the internal characteristics of the controlled object into the initial value
of the connection weight. The connection of BP and PSO algorithm is also used to optimize the parameters
of the controller and achieve the goal of reducing load tracking errors, improving tracking performance of
the power grid frequency signal, and providing better frequency regulation service.

Figure 3. System structure diagram.

3. Fuzzy Neural Network Control Scheme

3.1. Fuzzy Neural Network Structure

The fuzzy neural network structure established in this paper has four layers, each layer is connected
by weighted values. The multi-layer forward fuzzy neural network has the following advantages and
characteristics for automatic control:

• The network can realize any complex nonlinear mapping. In this paper, there is a nonlinear
relationship between the real-time tracking error and the temperature set-point, which is not easy to
be formulated. Therefore, the network essentially implements a mapping function from input to
output, which is especially suitable for solving complicated internal mechanism problems;

• The network has strong self-learning ability. First, it can learn the nonlinear relationship between
the real-time tracking error and the temperature set-point—that is, the training process—then
it can reflect the extracted “reasonable” solving rules to the connection coefficients between
the layers. The appropriate connection coefficient has great influence on the control effect for
frequency regulation;

• The network has certain promotion and generalization ability.

BP algorithm is adopted in the fuzzy neural network, its main feature is the forward transmission of
the signal and the backward propagation of the error [22]. Since the transfer functions must satisfy the
conditions of being differentiable everywhere, the hidden layer transfer function and the output layer
activation function are Gaussian function and linear function, respectively. Fuzzy neural network mainly
refers to the use of neural network structure to achieve fuzzy logic reasoning. Compared with a traditional
neural network, the second layer can give specific physical meaning to tracking error, and the third layer
is the fuzzy logic reasoning layer in the design of fuzzy neural network. The structure of the fuzzy neural
network is shown in Figure 4 [23].

We define the error e and the error variation de as fuzzy linguistic variables, and these two fuzzy
language variables contain five linguistic values, i.e., NB, NS, ZO, PS, and PB. Thus, there are 25 rules in
the third layer of the fuzzy neural network structure. In the following, xk

i represents the ith input of layer
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k, and ok
j represents the net input of the jth node of layer k, and yk

j represents the output of the jth node of
layer k. The input and output relationships of each layer node are as follows [24,25]:

Figure 4. Fuzzy neural network structure diagram.

The fuzzy neural network has input layer, membership function layer, rule layer, and output layer
from left to right in Figure 4. The input–output relationship in the input layer is

o1
i = s(i), i = 1, 2 (6)

s = [e de]′, (7)

y1
i = o1

i . i = 1, 2 (8)

The membership function layer is used to evaluate membership degree of each input component
which belongs to the fuzzy set of each linguistic variable. The input–output relationship of this layer is

o2
ij = h(y1

i ), i = 1, 2 j = 1, 2, ..., 5, (9)

y2
k = f (o2

ij), k = 1, 2, ..., 10, (10)

where o2
ij represents the input of the jth fuzzy set of the ith fuzzy variable. For the same fuzzy concept,

the membership functions can be different. Although the form is not exactly the same, the functions follow
normal distribution which can reflect the fuzzy information that is processed by fuzzy concept when
solving problems. For example, if the membership function of normal distribution is adopted, the result is
shown as follows:

h(x) = − (x − mj)
2

σ2
j

, (11)
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f (x) = exp(x), (12)

where mj and σj are parameters of Gauss membership function of x. Hence, the input and output
relationships of the second layer nodes are shown as

o2
ij = h(y1

i ) = − (y1
i − mij)

2

σ2
ij

, (13)

y2
j = f (o2

ij) = exp(o2
ij). (14)

The third layer denotes fuzzy rule sets, every node denotes a fuzzy rule. This layer has 25 nodes.
The input–output relationships of the third layer nodes are shown in Equations (15) and (16):

o3
n = y2

i ∗ y2
j , i = 1, 2, ..., 5 j = 1, 2, ..., 5 (15)

y3
n = o3

n. n = 1, 2, ..., 25. (16)

The fourth layer denotes controller output, i.e., the optimal result obtained by fuzzy neural network:

o4
1 =

25
∑

k=1
wk∗y3

k

25
∑

k=1
y3

k

, k = 1, 2, ..., 25, (17)

y4
1 = o4

1, (18)

where y4
1 denotes the temperature set-point change u.

3.2. Fuzzy Neural Network Learning Algorithm

Compared with other traditional methods, the BP algorithm has better persistence and predictability.
In BP neural network, the error signal is transmitted backward from the output layer to the first layer.
Therefore, hierarchical calculation can be reserved and the index function can be defined as:

E =
(d − y4

1)
2

2
, (19)

where d is desired signal Ptarget, and y4
1 denotes Ptotal in this paper.

If the output layer is concerned, we can draw the following Equations (20) from (15) and (16):

δ4
1 = − ∂E

∂o4
1

= − ∂E
∂Ptotal

∗ ∂Ptotal
∂u

∗ ∂u
∂o4

1

≈ e ∗ sgn(
�Ptotal
�u

) ∗ ∂u
∂o4

1
,

(20)

where δ represents the local gradient of the BP neural network. Since ∂Ptotal
∂u is unknown, we approximately

replace it with the symbolic operator sgn(�Ptotal�u ), and the learning rate η in the following can compensate
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the inaccurate calculation form.The fundamentals of the BP neural network is to use the gradient descent
method to correct the weights, and Equation (21) is obtained from Equation (20):

� wk = − ∂E
∂o4

1
∗ ∂o4

1
∂wk

= δ4
1 ∗ y3

k , (21)

where k = 1, 2, ..., 25.
For the fuzzy rule layer and the membership function layer, the local gradients are denoted as

δ3
k = − ∂E

∂o3
k
= δ4

1 ∗ wk, (22)

δ2
j = − ∂E

∂o2
j
= (∑

k
δ3

k ∗ y2
i ) ∗ y2

j , j = 1, 2, ..., 10, (23)

where j �= i, k (k = 1, 2, ..., 25) stands for the node in the third layer, which are connected with the jth node
in the second layer. i denotes another node in the second layer that is connected to the kth node in the
third layer.

Therefore, the parameter correction value of the input membership function is as follows:

�mij = − ∂E
∂mij

= δ2
j

2(y1
i − mij)

σ2
ij

, (24)

�σij = − ∂E
∂σij

= δ2
j

2(y1
i − mij)

2

σ3
ij

. (25)

Finally, the correction algorithm of adjustable parameters in fuzzy neural networks is expressed by

wk(n + 1) = wk(n) + η1�wk(n)+

α1(wk(n)− wk(n − 1)),
(26)

mij(n + 1) = mij(n) + η2�mij(n)+

α2(mij(n)− mij(n − 1)),
(27)

σij(n + 1) = σij(n) + η3�σij(n)+

α3(σij(n)− σij(n − 1)),
(28)

where η1, η2, η3 are learning rates for each adjustable parameter, and α1, α2, α3 are momentum factors
for each adjustable parameter. The well-chosen learning factors and momentum factors can accelerate
algorithm convergence, reduce shock, and effectively suppress the local minimum—and their values are
limited to (0, 1) interval.

3.3. Optimization of Initial Value of Adjustable Parameters

The learning effect of the fuzzy neural network has a strong dependence on the initial values of the
connection weight and membership function. The BP algorithm is suitable for solving the complicated
nonlinear problem, but the algorithm usually falls into local minimum, resulting in training failure. In [26],
the authors proposed a method for estimating the parameters of dynamic models for induction motor
dominating loads. Based on PSO, the method finds the adequate set of parameters that best fit the sampling
data from the measurement for a period of time, minimizing the error of the outputs and active and reactive
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power demands. Hence, a hybrid algorithm uniting the PSO and BP algorithms was proposed to find the
optimal initial parameter. The PSO algorithm includes a group of particles, these particles are stochastically
distributed in the high-dimensional search space. These particles are group members that are used to find
the optimal solution in a high-dimensional search space, and the optimal solution is equal to the possible
position for the object. Each particle is a candidate optimal solution in a higher dimensional search space,
the optimal direction and speed of individual particles are dependent on the optimal location and optimal
speed of the whole particle and its own, and the optimization results are measured by the fitness function.
The fitness function is determined by the specific problem. The mathematical description is as follows:

Vi = Vi + c1 ∗ r1 ∗ (lbesti − Li) + c2 ∗ r2 ∗ (gbest − Li), (29)

Li = Li + Vi, (30)

where Vi, Li and lbesti denote the velocity, location, and historical optimal location of the ith particle,
respectively. gbest is the best position of all particles at present. c1 and c2 are learning rates, and r1 and r2

are two random numbers between 0 and 1.
Next, the root-mean-square error (RMSE) is defined as an indicator used to assess tracking

performance, which can be defined as follows:

RMSE =

√√√√√√
Ns
∑

k=1
e2

k

Ns(Pmax
target − Pmin

target)
2

, (31)

where Ns denotes quantity of control cycles, Pmax
target and Pmin

target denote the upper and lower limits of the
target signal range, respectively. The flow chart of the optimization algorithm is shown in Figure 5.

Figure 5. Flow chart of the optimization algorithm.
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4. Simulation Results

In the simulations, the HVAC units track the daily automatic generation control (AGC) signal from the
PJM (Pennsylvania–New Jersey Maryland Interconnection) electricity markets. Following the parameters
of TCLs in the simulation process [7], it is assumed that the average values of R, C, and P in Equation (1)
follow a Gaussian distribution with standard deviation 0.1, and the values of R, C, and P are 2 ◦C/kW,
2 kWh/◦C, and 14 kWh, respectively. Assume the loads’ initial temperatures are distributed uniformly in
the deadband of temperature, Tset is 20 ◦C and Ta is 32 ◦C. The deadband of temperature � is 0.5 ◦C, η in
Equation (4) is 2.5, and the sampling time interval is 4 s. The tracking errors are used to characterize the
performance of the frequency regulation based on the fuzzy neural network control.

Through the iterative solution of the particle swarm optimization algorithm and BP algorithm,
the appropriate connection weight coefficient is obtained after the training of 2500 sample dates.
The membership functions of error e and error variation de are shown in Figures 6 and 7, respectively. At the
beginning of the simulation, we assume that the membership functions of the fuzzy sets of error e and
error variation de are Gaussian functions, as shown in Figures 6a and 7a—after training, the membership
functions of each fuzzy set of the fuzzy neural network are shown in Figures 6b and 7b.

(a) The initialized membership function of error e.

(b) The optimized membership function of error e.

Figure 6. The membership function of error e.
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(a) The initialized membership function of error variation de.

(b) The optimized membership function of error variation de.

Figure 7. The membership function of error variation de.

The influence of the PSO algorithm on the performance of the neural fuzzy network is shown in
Figure 8. From the results shown in Figure 8, it can be observed that the RMSE with optimized parameter
under PSO algorithm is 2.7003, which is obviously smaller than the RMSE with random parameters. Hence,
it is necessary to optimize these parameters by the PSO algorithm.
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Figure 8. Error comparisons with non-optimized and optimized parameters.

The control performance of the fuzzy neural network is shown in Figure 9, and the changes in
temperature set-point are shown in Figure 10. We observe that the aggregated TCLs can track the AGC
signal in a power system to provide ancillary service, and the maximum change in temperature set-point is
1.18 ◦C, which indicates that the control scheme has a minor impact on the thermal comfort of consumers.

Furthermore, several control strategies are compared for the problems of frequency control. Figure 11
shows the comparison results of tracking errors, it is shown that the fuzzy neural network control
strategy can better reduce the tracking errors. Table 1 shows the detailed comparison results, which
demonstrate that the fuzzy neural network control strategy can better reduce tracking errors with
acceptable temperature set-point change. In addition, it can be observed from Table 1 that there are
a small number of switching on/off times using the fuzzy neural network control strategy, which indicates
that its regulation has a smaller impact on the life of TCLs compared with other control strategies.

Figure 9. Automatic generation control (AGC) signal tracking.
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Figure 10. The temperature set-point change.

Figure 11. Error comparisons under five control strategies.

Table 1. Comparison results.

Control Strategies RMSE/% Set-Point Range/◦C Average On/Off Time
On/off control [27] 19.75 20 62

On/off control with the step rule [28] 14.22 20 45
Set-point regulation [16] 4.01 19.83 ∼ 21.11 26

Set-point regulation with (ρ,φ) [28] 2.80 19.82 ∼ 21.02 15
Fuzzy neural network control 2.33 19.83 ∼ 21.18 8
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5. Conclusions

In this paper, the frequency regulation method—based on fuzzy neural network control—is proposed
to regulate the temperature set-point of TCLs in the ancillary service market. Due to the strong dependence
of tracking accuracy on membership functions and connection weight coefficients, the combination of
offline hybrid algorithms and online BP algorithms can better optimize the control parameters. Finally, the
conclusion obtained from the simulation results is that the fuzzy neural network control has prominent
advantages of tracking accuracy without modeling the aggregated TCLs.
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Abstract: A new generation of smart meters are called cognitive meters, which are essentially based
on Artificial Intelligence (AI) and load disaggregation methods for Non-Intrusive Load Monitoring
(NILM). Thus, modern NILM may recognize appliances connected to the grid during certain periods,
while providing much more information than the traditional monthly consumption. Therefore,
this article presents a new load disaggregation methodology with microscopic characteristics collected
from current and voltage waveforms. Initially, the novel NILM algorithm—called the Power Signature
Blob (PSB)—makes use of a state machine to detect when the appliance has been turned on or off.
Then, machine learning is used to identify the appliance, for which attributes are extracted from the
Conservative Power Theory (CPT), a contemporary power theory that enables comprehensive load
modeling. Finally, considering simulation and experimental results, this paper shows that the new
method is able to achieve 95% accuracy considering the applied data set.

Keywords: load disaggregation; artificial intelligence; cognitive meters; machine learning; state
machine; NILM

1. Introduction

Eectricity metering has undergone significant technological progress over the last 30 years, from
electromechanical to electronic metering. An essential stage of this evolution arose with Automatic
Meter Reading (AMR) [1], which includes the following main features [2,3]:

• Improved accuracy in terms of energy readings when compared to the preceding electromechanical
meters, in which the measuring errors were quite susceptive and dependent on human operators;

• Automatic and frequent meter readings;
• Customer support improvement;
• More consumption information;
• Support to hourly price charges.

Moreover, the AMR was the basis for the succeeding evolution called Advanced Metering
Infrastructure (AMI), which includes the following characteristics [4–6]:

• Bidirectional communication;
• A power consumption monitoring system;
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• Advanced and accurate sensors;
• The embedded system is responsible for data collection and manages the required information

between meter and utility.

AMI is related to the entire metering infrastructure and ’smart meter’ is the popular name for the
power metering device in this infrastructure. The term “smart” makes sense in the data processing
approach, that is, the meter might process input data (voltage and current), transforming it into
useful output information (e.g., energy consumption, power quality indicators, efficiency, and others).
However, the concept of “smart” is not usually well defined, since most of the smart meters on
the market do not have any smart functionality. Thus, there is a current demand for innovative
and intelligent techniques to provide different sorts of information to utilities and consumers,
improving their knowledge about energy use, efficiency, costs, consequently improving energy
management. Therefore, researchers all over the world are proposing new tools and methods to
provide further information about energy consumption [7,8], as well as proposing innovative ways to
save energy [9–12].

In this context, a new generation of smart meters are called cognitive meters, which propose to use
artificial intelligence and load disaggregation methods, also known as Non-Intrusive Load Monitoring
(NILM). They recognize appliances connected to the grid during certain periods, while providing
much more information to consumers than the traditional monthly consumption. Consequently,
consumers’ operations can be inspected to provide them with detailed information about their
electrical consumption [13] so they can make better decisions concerning saving electricity, as well as
implementing energy management systems for automatic generation/consumption regulation. This is
certainly a meaningful advance concerning the relationship between utilities and consumers [11–13].
Moreover, “c-meters” can provide advanced functionalities, such as detailed recommendation of
when to use some particular appliances (according to statistical behavior, real-time consumption
or hourly-energy price) and they can also suggest some tip to save electricity over weeks, months
and years.

Hart [14] initially introduced the NILM method, considering active power levels and distributing
them into individual appliance data. With such a type of cognition, the consumer profile can be
mapped and by using artificial intelligence techniques, new methodologies can be proposed for
modern smart meters [7,8,10,14–22]. However, although NILM is quite a good approach to detect
home appliances, it does not always present a reasonable accuracy, demanding other signal analysis or
AI to improve detection accuracy.

Therefore, this paper introduces the Power Signature Blob (PSB)—a novel methodology that
correlates a hybrid load disaggregation technique, which is based on feature extraction from current
and voltage waveforms with power signatures. In this context, a predefined threshold level is
compared to the active power variation, in addition to the power signatures. The procedure uses the
difference between the actual active power and the last active power value used to define the step
level direction—when the appliance is turned on or turned off. Considering that every step level
detection is a new event, the novel NILM method calculates the proper features to classify the load
and then, applies machine learning for appliance recognition. For classification, the NILM dataset
from [15] was used, including instances of 35 appliances (In this paper, the term sample is defined
as a signal acquisition from the voltage and current waveforms, and the term instance represents a
dataset sample with the respective features.). Each appliance instance comprises active power and
other power components (power factor, reactivity factor, and distortion factor). The features to classify
and from the dataset are calculated using a contemporary power theory called Conservative Power
Theory (CPT) [23,24]. Hence, the novelty of this paper is a new state-machine NILM that uses and
acknowledges a dataset of 35 appliances with features based on power components by the CPT.

The next section discusses the main concept of load disaggregation and different techniques from the
literature. Afterwards, the PSB method, using the power decompositions from CPT [23–25], is presented.
Finally, simulations and experimental results depict the performance of the proposed approach.
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2. NILM State-of-the-Art Review

Considering current and voltage acquisition and processing, the literature on NILM can be
divided into two main categories—“high-frequency” and “low-frequency”. The low-frequency is the
category in which the features are extracted at 1 kHz or less. The high-frequency is the category in
which features are extracted at kHz or MHz [15,19]. Table 1 presents a list of NILM studies and the
features extracted from the point of view of the attributes.

Table 1. Summary and categorization of some Non–Intrusive Load Monitoring (NILM) techniques—
relevant works and their main features.

Sampling Signal Sampling Technique Features (Attributes) References

Low-frequency
(Macroscopic)

Active/reactive power signature and variation P, Q [14,26–30]
Active power signature and variation P [31–34]
Power signature and power indicators P, IRMS,URMS,IMAX ,UMAX ,PF(λ) [35,36]
Power signature and power quality indicators P, PF(λ) [37]
Load on or off probability PON

load, POFF
load [38]

Temporal discrete power pulses Ppulse(t) [39]

High-frequency
(Microscopic)

Harmonic decomposition P, Q, H1,3,5,··· ,N [40–43]
Power signature and harmonic decomposition P, THD [7,17]
Power signatures and Power Theory P, Q, S or A, H, I f , CPTcomponents [15,44–46]
Wavelets Wcoe f ,We [19,47–53]
Voltage and current trajectory VItraj [18,54–56]
Harmonic noise in power transients Hf , 36 ≤ f ≤ 500Hz [57,58]
Combination of independent features VItraj, i(t), p(t) and others [17]

Note: P: active power; Q: reactive power; IRMS: effective current; URMS: effective voltage; UMAX :
maximum voltage; IMAX : maximum current; PF(λ): power factor; PON

load: load on probability; POFF
load :

load off probability; Ppulse(t): time power pulse; H1,3,5,··· ,N : nth harmonic components (n = 1, 3, ..., N);
THD: voltage or current total harmonic distortion; S or A: apparent power; H: harmonic power;
I f : inactive current; CPTcomponents: CPT power components; Wcoe f : wavelet coefficients; We: wavelet
equivalent coefficients; VItraj: voltage vs current trajectory; Hf : non-fundamental power components;
i(t): instantaneous current; p(t): instantaneous power.

In 1992, Hart [14] did some pioneering work on load disaggregation, in which he defined
Nonintrusive Appliance Load Monitoring (NALM)—NILM is a derivative term from NALM.
Such work showed that it is possible to separate power consumption by appliances observing the
collective power consumption. To do this, it is necessary to discover the power behavior of each load
or appliance. For a long time, this research did not draw attention due to digital device limitations for
embedded algorithms. At the same time, Sultanem [40] proposed a different algorithm to Hart’s work
and used the PQ trajectory with harmonic decomposition.

Considering the P-Q (active and reactive power) analysis, Drenker and Kader [26] validated
their NILM method with six loads that operate in steady mode, obtaining an accuracy of around 95%.
Cole and Albicki [27] studied the steady-state loads and some loads with slow power changing (such as
heat pump compressors) and they considered the total consumption of each load as geometrical shape
forms. Norford and Leeb [28] also detected transient status of some loads and created an approximation
for these transient statuses. Biansoongnem and Plungklang [29] created a NILM method with 90% of
accuracy when testing air conditioning and refrigerators. Using deep learning to detect operational
load changes, Xiao and Cheng proposed a method and validated it using the Reference Energy
Disaggregation Dataset (REDD) [59].

Powers et al. [31] applied a rule-based algorithm to detect loads with high consumption, such as
air conditioning, water heaters and electric space heaters. Likewise, rule-based algorithms were
proposed by Farinaccio and Zmeureanu [32] to detect power load behavior, as well as by Marceau and
Zmeureanu [33] with the indication of 90% accuracy. With regards to genetic algorithms, Baranski and
Voss [34] proposed their employment to detect patterns based on the use of loads frequency.
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Ruzzelli et al. [35] created a dataset with low-frequency features of voltages and currents (IRMS,
VRMS, IMAX, VMAX) and the power factor (PF) to describe load behavior, and with the P-Q analysis
they carried out load disaggregation. Kelly and Knottenbelt [36] used a deep neural network for
load disaggregation, as well as the UK Domestic Appliance-Level Electricity (UK-DALE) dataset [60],
achieving an excellent performance for that dataset. Figueiredo et al. [37] used the load step changes in
active power and the PF to create a dataset and concluded that there is a need to extract other attributes
that can better detail the loads, especially those that have the same power and the same behavior as
the equivalent circuit.

Kim et al. [38] combined frequency independent features, such as the distribution probability of
ON/OFF duration, frequency of appliance usage and the correlation between the usage of various
appliances with the active power feature, achieving between 64% to 99.8% accuracy in terms of load
disaggregation. Koutitas and Tassiulas [39] replaced time-series power analysis for a set of discrete
pulses. They created features based on pulses, such as variance, spike, slope, periodicity, multi-state,
and sequence of operation. They reached an accuracy of 85%.

Sultanem [40] is the pioneer of the high-frequency use on NILM applications. Srinivasan et al. [41]
used machine learning to recognize the harmonic signatures of 8 loads, and they obtained an accuracy
of 99% or more for the load disaggregation. Laughman et al. [42] used the P-Q analysis for similar
loads and increased the 3rd harmonic to distinguish them. Bouhouras et al. [43] used harmonic
components to create a dataset for load disaggregation with stand-alone loads or combined loads,
and the accuracy was between 85% and 95%.

Dong et al. [7] adopted Total Harmonic Distortion (THD) of current waveforms and P-Q analysis
for load discrimination, and they used some pulse-based features. Lin et al. [17] created a NILM using
features including the THD, P-Q analysis, voltage-current trajectory, current indicators and quadratic
programming. The accuracy of this work is generally more than 90%.

Using power theory concepts, Teshome et al. [44] proposed a NILM with components of active,
reactive, apparent power, and nonactive currents. Nguyen et al. [45] created a NILM method based on
active, reactive and apparent power and used a decision tree (DT) to disaggregate five loads, achieving
more than 98.8% accuracy. Huang et al. [46] pointed out that the application of power theories can be
a useful tool for load disaggregation, especially for loads that have the same value of active power.
In 2003, Tenti and Mattavelli [23,24] proposed the Conservative Power Theory, which allows load
modelling in terms of power components. This work was the basis for the load characterization in the
NILM dataset proposed by Souza et al. [15,25].

Considering the Continuous Wavelet Transform (CWT), Chan et al. [47] applied it up to the 4th
level for the loads, and used Daubechies as mother wavelets, achieving an accuracy of 70%. Su et al. [48],
and Duarte et al. [49] compared the Fast Fourier Transform (FFT) with CWT, pointing out the
advantages of the CWT during load transients and recommended using CWT for feature extraction
for load disaggregation. Chang et al. [52,53] implemented a NILM using active and reactive power
with CWT. The authors extracted load features from five filters and applied a genetic algorithm for
load identification. They reached almost 100% accuracy but the studies were carried out considering
situations of significant discrepancy in power levels.

Gray and Morsi [50] used time-consuming energy to obtain CWT decomposition with Daubechies
mother wavelets. The authors presented results comparing the accuracy of applying each order
of the Daubechies order and concluded that the higher the Daubechie, the greater the accuracy.
Tabatabaei [51] did a similar study, but used power characteristics to create classificatory features
and obtained accuracy at around 85%. Gillis et al. [19] proposed a new CWT for NILM applications,
obtaining around 94% accuracy for four connected loads at the same time.

Hassan et al. [54] created a NILM method based on V-I trajectory, which used wave-shape
features along with the REDD dataset. Similarly, V-I trajectories were mapped to a grid of cells
(as a matrix) by Du et al. [18], having a binary value assigned to each of them. On the other hand,
83% of accuracy was achieved by Gao et al. [55] by converting V-I trajectory into a binary image,
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while using combined features, and considering 11 appliances. Finally, convolutional neural networks
were proposed to be used with V-I trajectory by Baets et al. [56], reaching 77.6% of accuracy for the
PLAID dataset [61], and 75.46% for the WHITED dataset [62]. Voltage harmonic (FFT) noise has also
been used by Patel et al. [57,58], taking into account noise and electromagnetic interference in the
range of 36 to 500 kHz. Nonetheless, such a study only highlighted the types of equipment that present
multiple operational stages.

To summarize, there are many other studies regarding NILM with different methodologies,
feature extraction, different appliances in the validation and different load disaggregation algorithms.
Nevertheless, in Teshome et al. [44], the authors indicate the importance of modern power theories and
the lack of these elegant circuit analyses to improve the NILM systems. One of these elegant power
theories pointed out in Teshome et al. [44] was the CPT. Thus, such a modern power theory is applied
in this work to improve the load disaggregation and present a novel NILM technique.

Accordingly, the next section presents the PSB, a new NILM methodology based on a state
machine, which analyzes the active power signature (a low-frequency feature), and on the event
detection, which finds features from the CPT and triggers the machine learning algorithm that uses
the high-frequency attribute dataset proposed by Souza et al. [15].

3. The Power Signature Blob Method

3.1. Dataset with the Microscopic Features Extraction

In Souza et al. [15] some techniques for appliance disaggregation were evaluated, and
the feasibility of identifying home appliances using pattern recognition algorithms was shown.
Two pattern recognition algorithms achieved significant results: Optimum-Path Forest (OPF) [63]
and K-Nearest Neighbor (KNN) [64] and the KNN (with K = 1) was chosen because of its lower
computational time. The voltage and current waveforms from several appliances were measured and
decomposed in power components using CPT [23,24]. The CPT allows splitting the power into active,
reactive, unbalance and residual parts. These power components help to interpret an appliance as an
equivalent circuit, as shown in Figure 1, where vm is the phase voltage, the current iGm coincides with
the active current, iLm coincides with the reactive current, and the current source jm coincides with
the void current. Gm is the equivalent phase conductance and could be represented as a resistance,
Lm is the equivalent phase inductance and could be represented as an inductor. All the mathematical
background of the equivalent circuit can be found in Reference [65].

Figure 1. Load equivalent circuit by Conservative Power Theory (CPT).

Using the CPT power decomposition, Souza et al. [15] created a dataset of 35 home appliances
such as irons, microwaves, refrigerators, washing machines, lamps and others. Each appliance features
(CPT active power, power factor, reactivity factor, and nonlinearity factor [25]) refer to a set dimension
and each collected instance as a point in the multidimensional space. The pattern recognition algorithm
uses this dataset for the classification purpose of the appliance.

Figure 2 shows the Voronoi diagram concerning the 1NN results for the appliance dataset of [15],
where each class number represents an appliance. It shows three Voronoi diagrams for the four
attributes (P—Active power, PF—power factor, QF—reactivity factor, and VF—nonlinearity factor)
from the dataset, presented in two dimensions to help visualize the decision boundaries.
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Figure 2. K-Nearest Neighbor (KNN) decision boundaries of the CPT appliance dataset.

The supervised classification algorithm identifies which appliances consume electricity, according
to CPT power terms calculation. However, it is likely that some false positives could be detected (when
the appliance is identified mistakenly due to the similarity with others, for example, a 100 W bulb
lamp and a 100 W LCD TV with high power factor). Another potential issue concerns some appliances
with multiple power stages during the power operation, such as washing machines (with washing,
spinning and rinsing). This occurs because the classifier needs to observe various levels of “ON” and
“OFF” and could not perform the correct classification. Some methodologies [7,8,10,16,22,37,42,66]
were created to solve the multiple power steps problem, and both observe the appliance behavior
during time operation. The load power signature is relevant because some appliances do not operate
in steady-state, and the method needs to disaggregate with high accuracy. Thus, in Reference [15]
there was a microscopic feature dataset for the load classification, but it is required to create a method
to observe the appliance power behavior before using the appliance classification.

3.2. Load Power Signatures

As initially pointed out in Reference [14], each appliance has a power signature that is not
necessarily a steady-state power, thus Figure 3 presents different appliances‘ power behaviors, and the
appliances can be classified using power signatures [7,10,14,16,22], as shown in Figure 4.
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Figure 3. Individual appliance events.

Figure 4. Different appliance power signatures. (a) Constant behavior; (b) Multiple power states; (c)
All-time constant; (d) Approximately linear variation; (e) Various operational stages; and (f) Power
behavior with hard detection.

From Figure 4, an appliance can have a power signature with:

(a) Constant behavior: In this case, the appliance has steady power behavior over time. It has a high
probability of being an appliance with the resistive equivalent circuit, or the appliance is in steady
state;

(b) Multiple power states: The appliance has a high-power peak when starting the operation.
This characteristic could be linked to a starting engine, and after such a power step, it presents
some power variations without turning off. This case can be related to a motorized appliance
such as a washing machine;

(c) All-time constant: in this case, the appliance is always connected as a standby mode device;
(d) Approximately linear variation: in this case, there is a linear power variation over time.

This variation corresponds to a transitional period until stabilization, such as by temperature
(such as an iron) or gas (such as mercury lamp);

(e) Various operational stages: Some appliances have several power characteristics over time, which
can be inductive, resistive or non-linear, etc. Besides, the power could also be switched on and off
during the operation. For example, a clothes dryer has a motor that can rotate at different speeds
and can also have a heating system to facilitate the drying process;

(f) Power behaviors with hard sequence detection: This type of appliance is usually electronic,
and there are several fast operation stages, making it difficult to recognize the power signature
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over time. The noises from current and voltage sensors are also aggregated into this power
signature category. The printer is an example of this type of load, which has some power steps
that vary and switch very quickly.

Hence, considering the possibility of such different appliances’ signatures, it would be important
to have a preliminary filter before using any appliance recognition technique, so as to increase the
disaggregation accuracy. Thus, the next section presents the proposed approach, which uses CPT power
terms and NILM techniques to detect the power signatures, before using the appliance classification
method by means of the KNN algorithm.

The power signature behavior was aggregated into the 35 appliances dataset, as can be seen in
Table 2. This characteristic is not used as features into the pattern recognition algorithm [15], but it is
used to filter and increase accuracy in load detection.

Table 2. Household appliance dataset.

Order (Class) Load Event Type (Based on Figure 4)

1 Light bulb a
2 Air conditioning b
3 Refrigerator e
4 Microwave b
5 CRT TV a
6 LCD TV a
7 Plasma TV a
8 Electrical shower a
9 RL Load 1 a
10 NL Load 1 a
11 NL Load 2 a
12 RL Load 2 a
13 Iron d
14 Washing machine b
15 Hairdryer b
16 Fluorescent lamp a
17 Mix lamp d
18 Mercury lamp d
19 Sodium lamp d
20 ASD Dryer e
21 ASD Fridge e
22 Blender b
23 Bread maker a
24 Desktop PC e
25 Electronic ball lamp d
26 Food processor b
27 Freezer e
28 Furnace a
29 Garage door a or e
30 Laptop e
31 LCD monitor a
32 Regular dryer b
33 Regular fridge e
34 Vacuum e
35 Washer b

3.3. The PSB Technique

The appliance dataset helps to detect one appliance by execution but might result in a problem,
since more than one appliance may be ON during a certain period of time. In such a case, the active
power would contain the aggregated value. Therefore, in order to decompose the consumption of each
individual load, it is necessary to know how many loads are operating at that time.
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Thus, considering the existence of an algorithm to classify the appliances that generate a power
event, the set of instances and the appliance class create a new key-pair value. Therefore, a set of
instances may contain several classes associated, and the aggregated set of instances can be decomposed
considering the type of appliances.

To obtain a more accurate value of load energy consumption, the PSB takes the mean value of
each block associated with each class to evaluate the mean active power during that period. Blocks that
contain more than one active appliance should use the historical average value from each of them.
This procedure is called disaggregation by blocks.

The load identification algorithm uses classification attributes extracted from the difference
between two scenarios: before and after an appliance is turned ON. Hence, the step is just a divider
between stable states. This guarantees that classifiers represent the appliances altogether, mitigating
the noise generated in the transition state.

Subtracting the waveforms of these steps creates an approximation of the load waveform.
Then, the CPT algorithm generates the attributes by processing the waveform. Adopting this approach,
four features represent the appliances: active power, power factor, reactive factor, and non-linearity
factor. Using these elements as attributes in a four-dimensional space, each load will result in a cluster.
Therefore, the classification algorithms, such as KNN, can be used to set the frontiers of each load in
the space.

The diagram from Figure 5 shows the state-machine algorithm with the appliance disaggregation
dataset from [15]. The existence of appliance power signatures can be observed, which filter and can
make the appliance disaggregation more accurate. Moreover, the methodology has algorithms for
handling the ON and OFF events, presented in the diagrams from Figures 6 and 7. The methodology
stores the fifteen previous cycles (0.25 s of total samples) of voltage and current waveforms to detect
the appliance events if there are two or more appliances turned ON.

Figure 5. State-machine algorithm of the PSB.
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Figure 6. Event ON Trigger.

Figure 7. Event OFF Trigger.

4. Validation Results

In this paper, the PSB evaluation was based on simulations and experimental results, as depicted
in the next subsections.

4.1. Simulation Results

Table 3 presents the daily appliance schedule for the simulation according to user behavior in
the residence.
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Table 3. Simulation: Appliance Schedule Runtime.

Appliance “Turn on” Time Total Time

Electrical shower 07:15 and 19:40 00:20 and 00:15
Air conditioner 22:00 08:00
CRT TV 12:15 and 18:15 01:00 and 05:00
Refrigerator All the day 00:30 each cycle
Iron 18:30 00:15
Lamp1 (bulb 100 W) 18:30 05:30
Lamp2 (bulb 60 W) 19:00 04:30
Notebook 19:00 04:00
Microwave 07:45 00:05
Washing Machine 13:00 (Saturday) 02:00

Therefore, an electrical circuit model was created in PSIM software in order to simulate the power
behavior of a residence during an entire day, turning on each appliance according to the scheduled
runtime of Table 3.

The simulation collects 256 samples per cycle from current and voltage waveforms and sends
them to a Dynamic Link Library (DLL) block. The general DLL block in PSIM allows users to write
codes in C or C++, compile them as a Windows DLL, and link them to PSIM using the features of input
(from PSIM) and outputs (returning to PSIM). Unlike the simple DLL blocks with a fixed number of
inputs and outputs, the general DLL block provides more flexibility and capability in interfacing PSIM
with custom DLL files. In this paper, the DLL codes were used to implement the CPT, the KNN and
state-machine NILM, according to the algorithms from Figures 5–7. The state machine from Figure 5 is
a loop responsible for the event decision when there is power consumption changing. If there is power
changing, the state machine flows in steps until it detects the power event and triggers the “ON event”
(Figure 6) or the “OFF event” (Figure 7). If an “ON event” is detected, the system runs algorithm
Figure 6 responsible for classifying the appliance. After that, the algorithm adds the appliance to the
turned-on appliance list and saves the waveform status for future comparisons when a new event is
triggered. If an “OFF event” is detected, the system runs algorithm Figure 7 that is responsible for
classifying the appliance and removing the appliance from the turned on appliance list and saves the
waveform status for comparison when a new event is triggered.

Simultaneously, the PSB takes care of four other characteristics:

• A database receives the current power consumption in kWh every minute;
• At every turn ON appliance event, the system makes the pattern recognition and sends all

the appliance power information to the database, and then, it starts the detected appliance
time operation;

• At every turn OFF event, the system recognizes the appliance that was turned off and updates
the database, storing the information from the time the load was switched OFF;

• If there are power changes, the system verifies the power signature of each appliance that is
turned ON and recognizes it as appliance power level changes.

Figure 8 presents the simulation results. The state machine with the classifier algorithm accepted
all the loads according to Table 3. Figure 8 shows the CPT power decomposition and, consequently, the
moments in which the algorithm performed the appliance identification (turn on and turn off triggers).
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Figure 8. Daily consumption of electricity by household appliances. (a) Load disaggregation behavior
in simulation; (b) CPT power components behavior in simulation.

Figure 9 shows an example of the operation of the PSB between 09:27 and 10:03 from Figure 8.
In this interval, there is the operation of a refrigerator, according to the schedule of Table 3. Following
the algorithms of Figures 5–7, the state machine has the following behavior:

• 09:27 to 09:30: Active power is stable, and there is nothing to be done at this time;
• 09:30: (ΔP > Error); TON = TN, goto 1;
• 09:30: (ΔP > Error); // waiting for power stabilization;
• 09:31: (ΔP > Error); // waiting for power stabilization;
• 09:31: (ΔP > Error); // waiting for power stabilization;
• 09:32: (ΔP < −Error); goto 5;
• 09:32: (ΔP < Error) and (ΔP > −Error); ON** Event;

– CPT Features extraction;
– KNN classifier;
– Appliance recognition;
– Recognized appliance added to the appliance list;
– goto 0;

• 09:32 to 10:00: Active power is stable, and there is nothing to be done at this time;
• 10:00: (ΔP < −Error); TOFF = TN; goto 3;
• 10:01: (ΔP < Error) and (ΔP > −Error); goto 4;
• 10:02: (ΔP < Error) and (ΔP > −Error); OFF event;

– Waveform difference;
– CPT feature extraction;
– KNN classifier;
– Appliance recognition;
– Recognized appliance removed from the appliance list;
– goto 0;
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• 10:02 to 10:03: Active power is stable, and there is nothing to be done at this time;

Figure 9. Detailed consumption and state-machine behavior between 09:27 and 10:03. (a) Load
disaggregation behavior between 09:27 and 10:03; (b) Active power behavior between 09:27 and 10:03.

Therefore, the PSB worked as expected, and there was no error in the disaggregation process in
the simulations. In this study, there was no error because it is used an appliance dataset with high
accuracy and the simulated loads operate in a steady state. However, Section 4.2 will present real
appliance cases, including power variations.

4.2. Experimental Results with Household Appliances

The PSB operates with a main loop of 15,360 collected samples. Hence, with a fixed fundamental
frequency, this loop takes a second to perform. Then, a four-step procedure tracks rapid power
variations. Each step updates the average of the active power evaluated with the last block of samples:
0.25 s of total samples.

Therefore, a predefined threshold level compares the active power variation during the time.
Then, the procedure uses the difference between the current average active power and the last one used
to define the step level direction: when there is the “power on” or “power off” state of the appliance.
Figure 10 shows the behavior of the algorithms from Figures 5–7 in this experiment.

In the trigger events—from Figures 6 and 7—the algorithm stores current and voltage waveforms
of the last 0.25 s, extracts the current to be considered in the event and calculates the four elements that
represent the appliance: active power, power factor, reactive factor, and non-linearity factor. With these
elements (attributes), the algorithm uses the classifier algorithm (the KNN) by means of the knowledge
dataset from [15]. The classifier returns the label of the appliance, i.e., the algorithm predicts which
appliance is turned on (algorithm from Figure 6) or turned off (algorithm from Figure 7). If it is an “ON
event” the recognized appliance is added to the appliance list. If it is an “OFF event”, the recognized
appliance is removed from the appliance list. After this, the system stores the fifteen waveform cycles
of the state to use in a new event trigger. Over time, appliances can be identified, as shown in Figure 11.
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Figure 10. Trigger algorithm validation.

Figure 11. Trigger and load disaggregation validation.

Considering such experiments, the PSB reached 95% of accuracy. The main problem encountered
in the method corresponds to the loads with several power changes without the existence of a
zero-power instant (i.e., a real turn OFF event). Figure 12 shows an example of an air conditioner with
an adjustable speed driver (ASD). In this case, the method of load disaggregation carries out the load
identification in the ON event trigger and, in the course of the operation, the power changes without
the activation of a new trigger. When the device is turned off, the power level is different from the
start of the operation, and the classifier may incorrectly identify the turned off appliance. If there is
more than one appliance that is turned on, the algorithm may remove the wrong equipment from the
list. If there is only one appliance, the algorithm empties the list.

Figure 12. Air conditioning with an inverter example.

To solve this problem, the appliance dataset must have a wide range of appliance measuring
times and waveforms should consider the last state (in the OFF event trigger). The algorithm from
Figure 5 could also be adapted to improve the accuracy in such situations.
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5. Conclusions

This work presented a novel load disaggregation method to be used in cognitive meters, making
the “smart” concept from smart meters more reasonable.

The novel methodology called PSB uses the power signature technique with a load recognition
from an appliance dataset. The method detects the appliance ON and OFF events during the
power signature observation, and the method uses classification algorithms to detect the appliance.
The association of the classification algorithm and the power signature recognizes appliances that
present power variation during their regular operation. The method also recognizes several loads
simultaneously.

When evaluating the proposed method through computational simulations, all the loads were
classified correctly. The PSB obtained an accuracy of 95% for real data from a typical residence.

In the future, the authors intend to work on energy efficiency evaluation, associated to identifying
appliances. Moreover, the authors would like to apply the PSB to other smart grid applications,
such as energy management using the concept of Virtual Power Plants and NILM applied to a group
of residential installations. Future papers will deal with such ideas and prominent results.
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Abstract: Non-technical losses (NTL) caused by fault or electricity theft is greatly harmful to the
power grid. Industrial customers consume most of the power energy, and it is important to reduce this
part of NTL. Currently, most work concentrates on analyzing characteristic of electricity consumption
to detect NTL among residential customers. However, the related feature models cannot be adapted
to industrial customers because they do not have a fixed electricity consumption pattern. Therefore,
this paper starts from the principle of electricity measurement, and proposes a deep learning-based
method to extract advanced features from massive smart meter data rather than artificial features.
Firstly, we organize electricity magnitudes as one-dimensional sample data and embed the knowledge
of electricity measurement in channels. Then, this paper proposes a semi-supervised deep learning
model which uses a large number of unlabeled data and adversarial module to avoid overfitting.
The experiment results show that our approach can achieve satisfactory performance even when
trained by very small samples. Compared with the state-of-the-art methods, our method has achieved
obvious improvement in all metrics.

Keywords: non-technical losses; smart grid; semi-supervised learning; knowledge embed; deep learning

1. Introduction

Non-technical losses (NTL) are one of the most major problems pertaining to the power grid,
and have been for quite a long time. Unlike technical losses which are generally caused during
generation and distribution, NTL are anomalies which include installation errors, faulty meters and
electricity theft, etc. Referring to World Bank reports, NTL represents a significant part of the total
power losses in both developing and developed nations [1]. A survey from the Northeast Group LLC
shows that more than $89.3 billion is lost every year worldwide due to NTL [2]. Besides financial
losses, NTL also causes a decrease of stability and reliability of the power grid.

Presently, over 80% of the global population has access to electricity [1]. However, in total
electricity consumption, industrial and large commercial customers contribute approximately 55% in
Spain [3]. Similarly in China, the ratio of industrial customers is more than 65% [4]. Naturally, detecting
NTL among industrial customers is more interesting than residential customers to electricity providers.
Hence, this paper aims to detect NTL among industrial customers.

Conventional NTL detection methods depend on the in-field inspection, where both the costs
and efficiency can not satisfy electricity providers. With the appearance of the smart grid comes
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a great deal of smart meter (SM) data and extra opportunities to solve NTL. Hence, a lot of data
oriented methods have been proposed recently, due to the development of machine learning and ease
of implementation [5]. Researchers adopt methods of different fields of knowledge with machine
learning, such as anomaly detection, cybersecurity, etc. Generally, these approaches can be classified as
supervised, unsupervised and ensemble methods. Through studying anomaly behaviour in electricity
consumption, some of them can help to identify NTL indeed [6]. However, they only got better effect
on residential customers rather than industrial customers. The primary reasons are listed as follows:

1. The consumption pattern of residential customers is more stable than that of industrial

customers. It is easier to find change points of residential consumption history, while industrial
customers have multiple consumption patterns because they have to adjust their consumption
behaviour according to the market [7].

2. Residential customers are similar to each other, while industrial customers are quite different.
It is easier to cluster residential customers into limited categories [8]. Particularly, [9] uses the
location as assistant feature. On the contrary, industrial customers’ consumption patterns are
quite different from one another, even if they belong to the same domain or are located near to
each other [3].

Therefore, it is more difficult to detect NTL only depends on electricity consumption among
industrial customers. The key challenges are reflected on the follows:

1. How to extract features with higher linear separability? Refer to recent research, the features
are mostly designed manually according to observation and experience based on electricity
consumption. They can hardly represent all scenarios of NTL because consumption behaviour
is random and unpredictable, especially for industrial customers. For example, when changes
in consumption pattern due to change in household residents or usage of electrical devices
might make it looks like electricity theft [10]. This situation would destroy linear separability of
traditional features.

2. How to obtain satisfactory performance based on limited labeled samples? Compared to
unsupervised learning-based methods, supervised learning-based methods acquired better
detection accuracy and become used in the mainstream gradually. However, the realistic NTL
samples of which in-field inspected are rare indeed, supervised learning methods are an easier
lead to overfitting. On the other hand, the artificial samples as a possible solution are adopted
by some approaches [10,11]. Even though they provide lots of labeled samples to support
training models, the effectiveness of such attack models is not verified by realistic cases. Due to
preconfigured parameters or fixed distribution, it is believable that such artificial samples would
also lead to overfitting easily.

3. How to achieve higher accuracy among various customers? Currently, many of related approaches
which are based on Support Vector Machines (SVM), K-Nearest Neighbors (KNN), etc., have low
accuracy. Even if using much auxiliary data [3] or a large number of labeled samples [12],
the performance of these approaches still cannot suit realistic requirements.

Therefore, this paper proposes a deep learning-based Semi-Supervised AutoEncoder (SSAE)
model, and attempts to solve the above problems and achieve an ideal NTL recognition accuracy.
In this work, we focus on three-phase industrial customers with a contracted power higher than
80 kVA. We design a deep semi-supervised neural network to learn advanced features from massive
SM data includes voltage, current, active power, etc. The extracted features cover both principle of
electricity measurement and consumption behavior through knowledge embedding. Our model has
been trained, validated and tested using real in-field inspected data. Overall, the main contributions of
this paper can be summarized as follows:

1. Based on SM data, this paper designs a domain knowledge embedded data model to enhance
linear separability of normal samples and abnormal samples.
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2. We propose a novel deep neural network-based semi-supervised model to extract advanced
features from limited labeled samples efficiently. In addition, by designing an adversarial module,
our model has stronger anti-noise ability.

3. Our approach improves the performance of NTL detection obviously. Experimental results show
that all metrics of SSAE model outperform other existing approaches in realistic cases.

The remainder of the paper is organized as follows. Section 2 presents a brief overview of
NTL detection. Section 3 presents the problem analysis and introduces knowledge embedded data
model. Section 4 presents deep semi-supervised model. Experiments are conducted and the evaluation
results are shown in Section 5. Finally, we provide conclusions and future work in Section 6.

2. Related Work

The recent research for NTL detection is around hardware or non-hardware solutions. Due to
hardware based solution needing further special sensors, the cost and efficiency can hardly satisfy
electricity providers even if it has higher accuracy [12]. With the growing of the smart grid and
implementation of advanced metering infrastructure (AMI) systems, electricity providers collect and
hold various and massive SM data. Hence, non-hardware solutions are more acceptable to electricity
providers, especially data oriented methods. Hence, this section only presents a brief survey of the
state-of-the-art on data oriented NTL detection methods.

According to implemented machine learning algorithms, data oriented methods could be roughly
categorized into three types:

1. Supervised learning-based methods. They mainly include Decision Tree (DT) [13,14], Support
Vector Machines (SVM) [13,15,16], K-Nearest Neighbors (KNN) [17], Bayesian Networks (BN) [18],
Artificial Neural Network(ANN) [12,17], Deep Neural Network(DNN) [12], etc. Depend on
supervised learning algorithm and artificial feature, these methods acquire satisfactory effect in
some situations. Due to the variety of NTL, especially electricity theft, these methods require
large samples with the right labels to train algorithms. However, it is difficult to collect enough
realistic normal and abnormal cases, which makes the labeled samples are very scarce. To avoid
insufficient realistic NTL samples, [10,11,13] attempt to model NTL and produce artificial
NTL samples. Same as the necessary requirement of massive labeled samples, features are
equally important to classifiers. To construct powerful feature models, most researchers applied
raw data, statistics, Fourier coefficients, wavelet coefficients, slope of consumption curve, etc.
However, all of them still could not cover all situation of NTL, especially the NTL of industrial
customers. Hence, [12] proposed deep learning-based method and self-learned features from
massive consumption data. The results from [12] show that wide and deep convolutional
neural networks has strong feature learning ability and improve accuracy in electricity theft
detection. However, the limitation of consumption data blocks the implementation of [12] to
industrial customers.

2. Unsupervised learning-based methods. To avoid labeling massive samples, some researchers
choose unsupervised methods to detect NTL. Unsupervised methods do not need any labeled
samples, and primary contain clustering [8,19], outlier detection [20] and expert systems [21].
Even though a series of unsupervised methods are free from labeling training set, their
performance always could hardly satisfy electricity providers when they deploy standalone.
Frequently, unsupervised algorithms pose auxiliary methods. They are used to group similar
consumers, and then train further classifiers on these groups [8,19]. However, because of the fact
that abnormal samples are always far less than the normal samples, it is still difficult to promise
that each group own enough labeled samples. Hence, misjudging tends to occur whatever
clustering or classification.

3. Semi-supervised learning-based methods. They allow the NTL detector to be trained on a few
labeled samples and large unlabeled samples [22]. In ref. [23] uses Transductive SVM(TSVM) to
build a NTL detecting system. Restricted to TSVM could not handle imbalance situation, [23] has
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not been demonstrated enough for detecting NTL. However, semi-supervised learning still is
competitive and hopeful choice for detecting NTL when it meets deep learning.

Summary, most proposals meet following limitations: (1) Electricity consumption is not enough
to classify normal and abnormal cases in all possible scenarios; (2) Artificial NTL samples are different
from realistic cases and lose effect on industrial customers; (3) Performance of these methods still
needs to be greatly improved.

In the recent years, the field of machine-learning has produced several pivotal advances that
address complex problems. Deep learning simulates the brain’s structure with multiple layers of
neurons, fitting complex functions, and characterizing the input data’s distribution, has demonstrated
excellent capacity of automatically learning features. It is widely adopted in computer vision [24],
speech-recognition [25], natural language processing [26], etc. and has achieved huge success.
Simultaneously, a sequence of semi-supervised deep learning models [27–29] have been proposed.
It is demonstrated that they had achieved remarkable success in image classification tasks. So, great
potential exists that deep learning would contribute a lot to NTL detection application, the research
about which is just in the beginning phase.

The electrical magnitudes are great different from data which they handled. Firstly, electrical
magnitudes are consisting of multiple time series data, such as voltage, current, etc. Secondary,
the dimension of electrical magnitudes is significantly different from image and audio. Furthermore,
the knowledge has been naturally embedded in the picture or audio, however, electrical magnitudes do
not contain any domain knowledge. Therefore, this study attempts to propose a novel semi-supervised
deep learning model to overcome the limitations of the above existing works and detect NTL accurately.

3. Modeling Samples with Knowledge

Although deep learning has strong feature learning ability, it is still difficult to learn domain
knowledge from raw data. Hence, this section will provide an efficient way to embed knowledge of
electricity measurement into sample model to help deep neural network to extract advanced features.

3.1. Principle of Electricity Measurement

Most industrial customers equipped with three-phase smart meters. According to the different
wiring modes, it can be divided into two types: three-phase four-wire and three-phase three-wire.
In this paper, we primary introduce our approach with three-phase four-wire as an example. For single
phase scenario, the electricity energy is calculated by following equation:

E =
N−1

∑
n=0

Pn · Δt (1)

where, Δt is the cycle of computation, E is the active electricity energy in a certain time period N · Δt,
Pn is the average active power at time n. It can be further calculated by voltage and current:

Pn = Un · In · cosφn (2)

where, Un and In are average voltage and current at time n, φn is the phase difference between voltage
and current at the same time stamp and cosφn is called power factor. Further, the equation of active
energy are rewritten by:

E =
N−1

∑
n=0

[Un · In · cosφn] · Δt (3)

For three-phase four-wire situation, the total active electricity energy is calculated by:

Etotal =
N−1

∑
n=0

Ptotal · Δt =
N−1

∑
n=0

[Pn
A + Pn

B + Pn
C ] · Δt (4)
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Generally, electricity energy measured by voltage and current, and the relationship between them
is very important to NTL detection.

3.2. SM Data

Due to industrial customers contribute most electricity consumption, electrical providers equipped
AMI system to read, collect and save important electricity magnitudes. These magnitudes are read
every 15 min and all of them share the same time-stamp. Based on Equations (1)–(3), this paper
collects part of them as dataset to train, validate and test the model from State Grid Corporation of
China(SGCC) which listed in Table 1. The SM data are labeled manually refer to the result of in-field
inspection. The rule for data labeling is that all data of each customer has the same label. There are few
label noise in our data set because abnormal customers were not always abnormal.

Table 1. Electrical magnitudes of three-phase four-wire.

Magnitude Description

UA, UB, UC average voltage of each wire
IA, IB, IC average current of each wire
Ptotal total active power
Qtotal total reactive power
ftotal total power factor
ts time-stamp

3.3. Analysis of NTL

The collected SM data reflects the electricity consumption at a certain moment. For normal
situation, SM data must follow the principle of electricity measurement mentioned above. On the
contrary, anomaly SM data must break the regular law to reduce consumption randomly. Refer to the
principle of electricity measurement, the primary types of NTL include:

1. Shunts: For a three-phase situation, the shunts is the outputs of PT or CT are shorted or
injected a low-resistance path. In general, it would reduce the measured voltage or current.
Commonly, voltages and currents of three-phase customers are almost balance [30], such as
Figure 1a,c. The shunts will break the balance on voltages or currents, such as Figure 1b,d. In
particular, the degree of imbalance about three-phase currents is related to customers’ load level,
and is different among all customers. Shunts are the most complicated NTL because normal
customers may also have similar phenomenon. In Figure 1c, the currents of a normal customer
also have little imbalance when the load is low.

2. Phase Shift: It means that the phase difference between voltage and current is changed artificially.
Through increasing φ to reduce the power factor, and decrease the measured active power. There is
a significant phenomenon that the power factor reduced obviously. Commonly, the power factor
should close to 1.

3. Phase disorder: The currents are coupled with the wrong voltages. Figure 1e–h presents a typical
example of this case. The output of phase-A’s CT and PT are jointed mistakenly with the output
of phase-B’s PT and CT. From the curves of Figure 1e–g, it can be found that the voltages and
currents and power factor are almost normal respectively. However, there is a large gap between
measured total active power and estimated total apparent power in Figure 1h.

4. Phase Inversion: The phase of voltage or current is inverse directly. The phase difference between
voltage and current is changed from φ to (π − φ). The smart meter will measure a negative active
power of such wire and smaller total active power. Figure 2 shows a more complicated situation,
all phases are inversion. This time, there is no abnormality in SM data, too. However, when we
analyze active power and power factor jointly, it can be found that they are negative related rather
than positive related.
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Figure 1. Comparision of normal and Shunts by curves of voltages and currents.

Figure 2. Relationship between active power and power factor about phase inversion.

Overall, it is difficult to discover NTL among industrial customers only with SM data because
the pattern of NTL mentioned above will be changed timely and randomly. Furthermore, it might be
existed from the beginning, such as phase disorder. In contrast to the SMART attack defined in [11] or
FDI5 defined in [10], the realistic NTL does not run in fixed artificial model and is more random and
complicated. Consequently, the domain knowledge based features are very important for classifier to
detect NTL.

3.4. Sample Model with Knowledge Embedding

Before starting to train a deep neural network (DNN), it is necessary to model SM data as a suitable
format. In [12], the electricity consumption is organized as a 1-D vector or 2-D matrix to feed DNN. It
is different in that the SM data are multiple time series data. This paper tends to organize them as a
vector with multiple channels. After comparing varying time span, we found weekly SM data has
better performance. Hence, we choose week as the time span of sample and design a shifting window
to construct different samples which shown in Figure 3a. The samples within same customer own the
same label.
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Figure 3. Structure of sample. (a) create samples based on shift window. (b) sample model embedded
by knowledge.

In Section 3.3, we analyzed the complexity of NTL and came to the preliminary conclusion that
only SM data is not enough to detect it. To further evaluating the linear separability of the samples
based on pure SM data, we use t-SNE algorithm [31] to visualize samples and the result is shown
in Figure 4a. There are lots of abnormal samples spread in the range of normal samples. They must lead
to worse performance of NTL detection. To improve the linear separability of the samples, this paper
attempts to embed electrical knowledge into the sample model. Based on principle of electricity
measurement and phenomenon of NTL, we use the following parameters as additional channels:

Uimbalance =
max(UA, UB, UC)− min(UA, UB, UC)

max(UA, UB, UC)
(5)

Iimbalance =
max(IA, IB, IC)− min(IA, IB, IC)

max(IA, IB, IC)
(6)

f̂ =
Ptotal

UA · IA + UB · IB + UC · IC
(7)

LR =
UA · IA + UB · IB + UC · IC

Contracted Apparent Power
(8)

Finally, the sample is organized as multi-channel vector which is shown in Figure 3b.
From Figure 4b, it is easy to find that the linear separability of the samples embedded knowledge is
improved obviously, only few abnormal samples overlap with the normal samples.

Figure 4. t-SNE results of samples where 0 denotes normal samples plotted in blue, and 1 denotes NTL
samples plotted in orange. (a) samples based on raw SM data. (b) samples based on raw SM data and
electricity measurement knowledge.

3.5. Data Preprocess

Because there are some missing and error values in SM data caused by communication error
or smart meter failure, the raw data cannot be used by DNN directly. For missing data, this paper
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interpolates them by the average of before and after 2 days at the same hour of day. The detailed
equation is shown by:

x̂i =
∑2

k=−2 xi+(24∗k)

#(Existed)
(9)

where, x̂i is the interpolated value, i denotes the hourly time stamp, #(Existed) represents the number
of existed values in before and after two days at the same hour of day.

For error values, there are two situations: (1) negative value; (2) extreme value. We process them
by following equation:

xi =

{
0 xi < 0
Q3(x) + [Q3(x)− Q1(x)] ∗ 3 xi > Q3(x) + [Q3(x)− Q1(x)] ∗ 3

(10)

where, x is a sequence of certain electricity magnitude of certain customer, Q3(·) and Q1(·) are upper
quantile and lower quantile respectively. For different electricity magnitude or different customer,
Q3(·) and Q1(·) are different.

Furthermore, standardization of samples is a necessary requirement for most machine learning
algorithms, especially DNN. Too large value of samples will cause excessive computing error for
DNN. According to SM data, different magnitudes have different scales, especially among different
customers. Non-uniform scalers of samples will degrade the predictive performance of DNN.
Refer to Sections 3.1 and 3.3, the values of ftotal , Uimbalance, Iimbalance, f̂ , LR are already located in the
range of [0, 1]. Hence, the remainder voltages and currents are normalized respectively according to
following equation:

x̄i =
xi

Q3(x) + [Q3(x)− Q1(x)] ∗ 3
(11)

where, x̄i is normalized value, x is a sequence of certain electricity magnitude of certain customer.
After this, all channels of a sample and all samples from different customers are normalized into
same range.

4. Semi-Supervised AutoEncoder

Besides knowledge embedded sample model, a powerful semi-supervised deep neural network
is also necessary to extract advanced features from limited labeled samples. In this section, we will
introduce the framework and algorithm of the Semi-Supervised AutoEncode r(SSAE) to show how
it works.

4.1. Framework of SSAE

The SSAE is a generative model. It consists of four modules: encoder, decoder, discriminator
and classifier. In this model, the encoder and decoder are coupled as an autoencoder. They could
learn more general features from all samples include unlabeled and labeled. Due to generative model,
the SSAE could avoid overfitting effectively. The discriminator is aimed to regularize the autoencoder
by a specified arbitrary prior. It judges the encoding distribution of X is same as the prior or not.
This idea is borrowed from [27]. The classifier are designed to select features from latent vector and
classify normal and abnormal. The architecture of SSAE is shown in Figure 5.

The autoencoder attempts to minimize the reconstruction error. The encoder defines an aggregated
posterior distribution of q(z) on the latent vectors as follows:

q(Z) =
∫

X
E(Z|X)pd(X)dX (12)

where, E(Z|X) is encoding distribution, pd(X) is the data distribution. Meanwhile, the encoder ensures
the aggregated posterior distribution q(Z) can fool the discriminator into thinking that the latent comes
from the true prior distribution p(Z).
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Figure 5. Framework of Semi-Supervised Deep Neural Network.

Figure 6 presents the detail architecture of the proposed network. Due to the samples are modeled
as multi-channel 1D vectors, the encoder is equipped with 1D convolutional (Conv1D) layer. In detail,
the encoder contains 4 Conv1D layers, each convolution layer contains 64 or 128 filters, and the kernel
size is 5 and the stride is 2. The last layer of encoder is a fully connected layer without activation.
The output dimension is related to latent space. In all experiments, 50 is the best choice for the
dimension of latent space. The decoder contains three fully connected layers and a reshape layer
to reconstruct samples. The output of the third fully connected layer is activated by sigmoid which
related to the normalization of samples.

The discriminator also has three fully connected layers and the parameters are same as the
decoder’s fully connected layers. The difference is that the discriminator not only handles latent
vectors, but also the samples drawn from N(Z|0, I) which called Zreal . The discriminator is more like
a function to measure the similarity between the latent vector and Zreal .

Figure 6. The detail architecture of the SSAE modules.

The classifier just contains two fully connected layers and a dropout layer. The last layer is
activated by Softmax even if there are only two categories. The first fully connected layer is aimed to
ascend dimension of latent features because there are difference in the customers’ SM data. Ascending
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the dimension of latent features will improve the linear separability. The dropout layer is used to avoid
overfitting. The second fully connected layer of classifier will find hyperplane between categories to
complete classifying. In fact, the classifier in the SSAE is similar to SVM. However, we cannot use SVM
to replace these 2 fully connected layers, because it is impossible to co-train SVM and autoencoder
together. The separated training will lead to a decline in the learning efficiency, such as [23] could not
get satisfactory performance of NTL detection.

4.2. Losses and Training

All modules of the SSAE are trained in thress phases:

1. Reconstruction Phase: The autoencoder updates the encoder and the decoder to minimize the
reconstruction error:

minE,DE[||X − X̃||2] (13)

where X̃ is the reconstruction of X, and || · ||2 is Euclidean distance.
2. Regularization Phase: Firstly, SSAE updates discriminator to apart the real samples from the

encoded samples. In addition, then, SSAE updates encoder to confuse the discriminator. This
phase can be represented by:

minEmaxDISCE[log(DISC(Zreal))] +E[log(1 − DISC(E(X)))] (14)

3. Classification Phase: SSAE updates classifier and encoder Simultaneously by minimizing
CrossEntropy and the distance of latent vectors within same class.

minE,CE[CrossEntropy(C(E(X)), y) + ω(t) · lG] (15)

where lG is related to supervised feature clustering. It is defined as:

lG((Zi, yi), (Zj, yj)) =

{
||Zi − Zj||2, yi = yj
max(0, m − ||Zi − Zj||)2, yi �= yj

(16)

where m is the margin between different classes. Due to the difference in the various customers’
SM data, lG(·) is designed to ascend distance of latent features between diferent catergaries with
a minimum distance m. It also can be regarded as regularizer to classifier. Refer to [28], the weight
ramp-up function ω(t) is defined as:

ω(t) = exp[−5(1 − T)2] (17)

where, T increases linearly with the number of iterations from zero to one, in the first 40% (refer
to [28]) of the total iterations.

The SSAE must be trained jointly with Adam [32]. The pseudocode of training algorithm with
mini-batches is provided by Algorithm 1.
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Algorithm 1 Mini-batch training of SSAE

Require: x = training inputs
Require: y = labels for labeled inputs in L
Require: zreal = random number from N(0, I)
Require: Eθ(x) = encoder with trainable parameters θ

Require: Dγ(x) = decoder with trainable parameters γ

Require: DISCφ(x) = discriminator with trainable parameters φ

Require: Cϕ(x) = classifier with trainable parameters ϕ

Require: N(x) = stochastic input augmentation function
Require: ω(t) = weight of consistency loss

1: for t = 1 to iterations do

2: Draw a minibatch Bu from unlabeled samples randomly
3: x̃i ← Dγ(Eθ(xi ∈ Bu))
4: zi ← Eθ(xi ∈ Bu)
5: lossAE ← 1

|Bu | ∑i∈Bu d(xi, x̃i)

6: update θ and γ using Adam

7: lossDisc ← 1
|Bu | ∑i∈Bu

[
log(DISCφ(zreal)) + log(1 − DISCφ(zi))

]
8: update φ and θ using Adam
9: Draw a balanced minibatch Bl from labeled samples randomly

10: ỹi ← Cϕ(Eθ(xi ∈ Bl))
11: Construct S, pairs of (xi, xj) with their labels, from Bl

12: lossC ← 1
|Bl | ∑i,j∈Bl

log ỹi[yi] + ω(t) · 1
|S| ∑i,j∈s lG((Eθ(xi), yi), (Eθ(xj), yj))

13: update θ and γ using Adam
14: end for

5. Experiments and Discussion

5.1. Experiment Setting

5.1.1. Dataset

All training, validation and testing data are real data extracted from SGCC. This dataset contains
5000 three-phase four-wire industrial customers, where there are 461 normal and abnormal customers
who have been inspected in-field manually. For each inspected customer, Hence, all normal and
abnormal samples are labeled artificially based on inspection reports. The rule for data labeling
is that all samples of same customer own the same label. The remaining unlabeled customers are
randomly selected. All SM data are created as samples following the method mentioned in Section 3.4.
Detailed information about the dataset is provided in Table 2. Although unlabeled customers could
contribute more samples, we just select 500,000 samples randomly. The meters report electrical
magnitudes listed in Table 1 every 15 min or 1 h. This paper unifies the frequency of all customers to
24 measurements/day.

Table 2. Brief information of dataset.

Type of NTL Number of Customers Number of Samples

Shunts of voltage 14 1321
Shunts of current 32 3609
Phase Shift 16 1798
Phase Disorder 25 2681
Phase Inversion 58 6374
Normal customer 316 35,506
unlabeled 4539 500,000
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For each round of experiments, all samples are randomly splitted into training, validation and
testing sets in approximated proportions of 10%, 10% and 80% by customers. It is worth noting
that those three sub sets must follow above proportions to cover all types of NTL. Further, to verify
generalization performance of algorithms, the samples of same customer would not be split.

5.1.2. Baseline

To demonstrate the effectiveness of our approach, we define several baseline methods for
comparison. In the experiments, these methods are configured as:

1. SVM: The kernel is set as Radial Basis Function(RBF), penalty parameter is 0.01. Due to normal
and abnormal are imbalance, we give them proper weight(normal:1, abnormal:2).

2. KNN: As same as [3], the best results were produced by KNN with 16 neighbors and
euclidean distance.

3. XGBoost: The number of trees are 1200, the max depth of each tree is 7, minimum child weight
equals 1 and the learning rate is configured as 0.01.

4. MLP-3(MultiLayer Perceptron): Three fully connected layers, with 1000, 500 and 250 perceptrons
and an additional classifier with 2 perceptrons. Between the 2nd layer and the 3rd, there is
a dropout layer with a probability of 0.5. The first three layers all equipped l2 regulars and
activated by ReLU. The learning rate is configured as 0.001.

5. ResNet-20(Conv1D): It originates from [33] and we use 1D convolutional layers to replace all 2D
convolutional layers. All parameters follow [33].

The SVM, KNN and XGBoost are based on scikit-learn [34]. The features feed to SVM, KNN and
XGBoost are produced by Truncated Singular Value Decomposition(TruncatedSVD) from samples.
The dimension of features configured as 50. MLP-3 and ResNet-20 are launched upon tensorflow.
Further, they are trained on origin samples.

5.1.3. Metrics

Receiver Operating Characteristic (ROC) curve is a popular way to validate performance of
classifier on imbalanced datasets and widely applied by [3,11,12,35]. It evaluates how fast the True
Positive Rate (TPR) increases with the increase of the False Positive Rate (FPR). Commonly, AUC score,
the area under the ROC curve, is used as primary metric. However, [36] mentioned that Precision-Recall
Curve is the better choice rather than AUC score. [10] opted for the F1 score to evaluate the performance
of algorithm. In order to compare with the above mentioned methods, we choose all of above metrics
to completely evaluate the performance of the algorithm. Those metrics are defined as follows:

GeneralAccuracy =
TP + TN

TP + FP + TN + FN
(18)

TPR =
TP

TP + FN
(19)

FPR =
FP

TN + FP
(20)

Precision =
TP

TP + FP
(21)

Recall =
TP

TP + FN
(22)

F1 =
2 × Precision × Recall

Precision + Recall
(23)

where TP(True Positives) is the number of NTL samples was correctly detected, FP(False Positives) are
the number of NTL samples be classified as normal, and TN(True Negatives) means the number of
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normal samples be classified correctly, FN(False Negatives) represent the number of normal samples
be classified as NTL samples. It should be noted that the decision threshold in GeneralAccuracy,
Precision, Recall, and F1 is 0.5.

5.2. Results

In this section, all experiments are repeated five times based on randomly split datasets (refer
to Section 5.1.1), and the mean result will be provided.

5.2.1. Effect of Knowledge Embedded Sample Model

From Figure 4, we can get a rough impression that the linear separability of knowledge embedded
sample is better than raw SM data. Table 3 presents further the detailed performance of raw SM data
samples and knowledge-embedded samples. By comparing XGBoost and SSAE in both sample models,
all metrics of both algorithms are improved obviously. It demonstrates that knowledge of electricity
measurement is very helpful for NTL recognition. Particularly, knowledge embedded sample model
plays a more important role to SSAE because it allows SSAE learning more advanced features from
mass samples. On the contrary, SSAE could not learn any knowledge from raw SM data, and the
performance of SSAE is similar to XGBoost.

Table 3. Comparison about sample embedded knowledge or not.

Methods Precision Recall F1 Score AUC Score General Accuracy

XGBoost + raw SM data 0.911 0.538 0.676 0.917 0.905
XGBoost + knowledge embedded sample 0.846 0.700 0.766 0.951 0.921

ResNet-20 + raw SM data 0.913 0.578 0.708 0.916 0.909
ResNet-20 + knowledge embedded sample 0.891 0.732 0.804 0.951 0.943

SSAE + raw SM data 0.882 0.565 0.689 0.907 0.898
SSAE + knowledge embedded sample 0.944 0.804 0.866 0.964 0.951

5.2.2. Study of SSAE

We evaluate the performance of SSAE from the following aspects:

1. Capability of semi-supervised learning: As mentioned earlier, semi-supervised learning requires
only a small number of labeled sample to complete the training of deep neural network and
achieve ideal performance. Figure 7a provides the NTL detection effect of SSAE obtained with
varying numbers of labeled samples. The results show that the SSAE can still obtain the F1 score
of 0.775 and the AUC score of 0.938 with only 500 labeled samples. SSAE achieves the best results
when the labeled sample reached 5000. Figure 8 further shows the feature learning ability of SSAE.
By comparing two images, the overlapping regions of the features learned by SSAE in different
categories become very small. It improves the linear separability of samples obviously.

2. Effect of latent feature dimension: The dimension of latent feature is a very important
hyperparameter for SSAE. Figure 7b studied the effect of the dimension in the performance
of SSAE. It can be seen from the results in Figure 7b, too small dimension will excessively cut
down valid features, resulting in a decrease in the NTL detection performance. With the increase
of the latent feature dimension, especially after more than 50, the effect will not continue to
increase, but will decrease a little. The main reason is the latent features in larger dimension
contains partial redundant information, which reduces its linear separability. By contrast, the best
latent feature dimension is 50.

3. Generalization performance: In order to verify the generalization performance of SSAE,
this paper launched the experiment with same parameters five times by randomly splitting the
training set, validation set and testing set. The result of Figure 7c shows that the F1 score and the
AUC score are between the ranges of [0.86, 0.883] and [0.965, 0.979], respectively. It is proved that
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SSAE has achieved remarkable generalization performance. In order to reflect the fairness of the
comparison, the median results of SSAE were selected in subsequent subsections for comparison.

Figure 7. Study the performance of SSAE according to varying proportion of labeled samples, latent size
and experiment round. (a) Capability of semi-supervised learning against NTL. (b) Studying the effect
of latent size to SSAE. (c) F1 score and AUC score on each round of experiment.

Figure 8. Comparison of t-SNE results of original samples and features learned by SSAE where 0
denotes normal samples plotted in blue, and 1 denotes NTL samples plotted in orange. (a) Original
samples with embedding knowledge. (b) Latent features learned by SSAE.

4. Convergence analysis: For semi-supervised learning, the number of epochs is a very important
parameter to avoid underfitting and overfitting. In this paper, the epoch is defined by training all
labeled samples rather than unlabeled samples. Too small or too large an epoch value will lead
to underfitting or overfitting, respectively. Figure 9 provides losses and scores with the epoch
from 1 to 100. Between 40 and 60 epochs, losses and scores are relatively flat and stable. Before
40 epochs and after 60 epochs, there are large fluctuations. Especially after 60 epochs, the training
loss continued to fall, the validation loss began to rise. At same time, the AUC score and the F1
score both decreased slightly, and SSAE is over-fitting obviously. Moreover, in Figure 9, the AUC
score and F1 score reach 0.9738 and 0.8763 at the 50th epoch, respectively. Therefore, the epoch
value of all experiments in this paper is fixed at 50.
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Figure 9. Convergence analysis of SSAE.

5.2.3. Comparison and Discussion

(1) Compared to Baselines

Table 4 and Figure 10 present the performance comparison of our approach and baselines.
Overall, SSAE achieves the best results on all metrics. Benefit from the knowledge embedded sample
model, SVM, KNN and XGBoost have also achieved good results, even using dimensionality reduction
data as input features. Due to the stronger feature learning ability, MLP-3 and ResNet-20 is better than
the above three methods. However, MLP-3 and ResNet-20 are supervised learning, and there can
hardly avoid overfitting when labeled samples are extremely limited. In addition, the results of each
of trial are very unstable. By using massive unlabeled samples and regularized losses, SSAE avoids
overfitting successfully.

Table 4. NTL detection performance comparison (with knowledge).

Methods Precision Recall F1 Score AUC Score General Accuracy

SVM 0.726 0.676 0.700 0.908 0.903
KNN 0.828 0.627 0.714 0.866 0.907
XGBoost 0.846 0.700 0.766 0.951 0.921

MLP-3 0.844 0.734 0.785 0.946 0.926
ResNet-20 0.891 0.732 0.804 0.951 0.934

SSAE 0.944 0.804 0.866 0.964 0.951

Figure 10. The ROC curve and PR curve of SSAE and baselines.
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From Table 4, XGBoost obtained a good AUC score which close to the SSAE by selecting a very
small decision threshold. Obviously, it will make the classifier be more sensitive, and lead to unstable.
On the contrary, SSAE allows larger decision threshold without causing a significant drop in Precision
and Recall. Refer to the results of SSAE presented in Table 4, Precision and Recall of SSAE outperform
all baselines when the decision threshold is 0.5. It shows that SSAE separates normal and abnormal
samples as much as possible. Hence, the classifier of SSAE will be more stable on varying scenarios.

(2) Comparison with other proposals

Table 5 shows a comparison between our method and the state-of-the-art approaches which report
the AUC score and F1 score. It is worth mentioning that the AUC score or F1 score of state-of-the-art
are referenced from their papers directly. Because our dataset cannot satisfy their requirements.
For example, [35] needs observe meters as auxiliary data to help NTL detection. [3] requires GIS data,
quality data and TECH data to achieve the best performance. [10,12] ask large number of labeled
samples, and more than 1 year span of consumption data is [11]’s necessary condition.

Among these state-of-the-art approaches, [10,11,35] are based on artificial samples. The SMART
attack model defined by [11] is the simplest situation because its fraud factor αt is dominated by a fixed
parameter. Due to this reason, [11] achieves the AUC score of 0.99. However, the realistic NTL is more
similar to the adaptive attack model(FDI5) defined by [10]. As the key factor of the FDI5 is changed
randomly and timely, [10] achieves the F1 score of 0.83 and [35] achieves the AUC score of 0.851. Even
though their performance are poor enough refer to [11], their results are more convincing.

On the other hand, [3,12] and the SSAE are validated on realistic NTL samples. The results in
the Table 5 show that the SSAE has achieved a large lead on AUC score and F1 score. The knowledge
embedded sample model and deep semi-supervised learning are key reasons. Although [12] is
also based on deep neural networks, its model is designed on electricity consumption completely
and without any domain knowledge, so that its AUC score is not ideal. To avoid the limitation of
information on electricity consumption, [3] supplements various auxiliary or privacy data to achieve
notable improvement. It undoubtedly increases the difficulty of data acquisition, especially some
data refer to customers’ privacy. Our approach is a compromise solution which based on the SM
data collected by the typical AMI system. It not only reduces the requirement of data types, but also
protects customers’ privacy. Besides knowledge embedded sample model, the SSAE has stronger
feature learning and NTL detection capabilities. Even if raw SM data, SSAE still obtains an AUC score
of 0.907.

Table 5. Comparison with the state-of-the-art.

Methods AUC Score F1 Score NTL Sample Dataset Response Time

[10] - 0.83 Artificial Imbalance 3 weeks
[35] 0.851 - Artificial Imbalance 1 month
[11] 0.99 - Artificial Balance 1 year
[3] 0.91 - Real Imbalance 90 days
[12] 0.80 - Real Imbalance 4 weeks

SSAE 0.964 0.866 Real Imbalance 1 week

6. Conclusions

This paper provides a novel knowledge embedded sample model and deep semi-supervised
learning algorithm to detect NTL by using SM data. We first analyzed the characteristic of realistic NTL,
and design a knowledge embedded sample model refer to the principle of electricity measurement.
Next, we proposed an autoencoder based semi-supervised learning model. To avoid overfitting,
we designed a regularization module, loss and training algorithm. Overall, our scheme outperforms
all baselines and state-of-the-art results. In future work, it is promising to explore a new sample model
and deep neural networks to adapt to possible public datasets.
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Abstract: As one of the most important components of power grid, a distribution network is the most
vulnerable part in the face of various uncertainties, and influences the stability and economy of a
power system. In this paper, the operational information, hardware information and human factors
were considered, and a state evaluation model of multi-source information fusion was established.
Based on big data fuzzy iteration method and a weighted expert library, a weighted distribution of
multi-source information was obtained, and an equipment condition assessment was carried out
reasonably. Taking the distribution transformer as an example, the assessment showed that fusion of
multi-source information presented in this paper is more comprehensive, and has the ability to reflect
the state of equipment. The method proposed in this paper can accurately judge the running state of
distribution equipment based on all kinds of information, and provides a reference for the follow-up
power marketing for the status assessment of the user equipment.

Keywords: distribution network equipment; condition assessment; multi information source;
fuzzy iteration

1. Introduction

With the increasing demand of power and the gradually expanding scale of power grids, higher
requirements have been placed on the power supply reliability of systems. In order to improve the
reliability of power supply, it is one of the most important tasks to analyze the operational status of a
distribution network, and evaluating the status of distribution equipment for the distribution network
is an important part of the transmission and distribution of electric energy in a power system [1–3].
Testing the distribution transformers, circuit breakers and other power distribution equipment, and
evaluating its operating status, can ensure the safety performance of the equipment and the reliability
of the distribution network, and it is of great significance to ensure the safe and stable operation of the
distribution network and improve the economics of the power supply enterprise.

Due to the wide distribution and large amount of distribution equipment, and the large amount
of operational monitoring data without uniform evaluation standards, great difficulties have been
brought to the assessment of distribution equipment [4–10]. As one of the most important pieces of
equipment of a distribution network, power transformers have also been paid much attention.

In response to the above problems, domestic and foreign experts have conducted a lot of research,
and fuzzy evaluation, artificial intelligence and other methods are widely used in transformer state
evaluation [11–15]. Reference [3] presents an evidential reasoning (ER) approach to the transformer
condition assessment [3]. The methodology of transferring the transformer condition assessment
problem into a multiple-attribute decision-making (MADM) solution under an ER framework is then
presented in [3]. Based on the outputs of the ER approach, system operators can obtain an overall
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evaluation of an observed unit’s condition; also, several units may be ranked in order of severity
for system maintenance purposes [3]. In [16] they used artificial neural networks to construct a
multi-information fusion model to comprehensively evaluate transformer status. The validity of the
method was verified by a case study. Based on the fuzzy theory, references [17–20] evaluated the
operating state of the transformer, and verified the effectiveness of the evaluation method by example.
However, no specific standard was given for the selection of the evaluation index. In reference [21],
the transformer evaluation index function was established based on the semi-Cauxi distribution, and
the transformer state evaluation model of multi-information fusion was established considering the
difference of the initial values of the indicators. In reference [22], an adaptive evolutionary limit learning
machine algorithm is proposed, which was applied to the transformer state evaluation process, but the
selection of transformer evaluation information needs to be optimized. In reference [23], based on the
matter-element differential transformation, a transformer hierarchical evaluation model is established.
At the same time, the concept of expert validity material element is introduced to make the weight
determination more reasonable. In reference [24], based on DGA and SVM, the transformer state is
evaluated, and the oil-immersed transformer is taken as an example for verification. Reference [25]
introduces a transformer fleet monitoring solution to help the end user to group transformer assets
and react accordingly to monitored situations [25]. Reference [26] establishes an index assessing
system, considering the main body, the bushing and the accessories components, employs a Cauchy
membership function for fuzzy grades division and represents a fuzzy evidence fusion method to
handle the fuzzy evidence fusion processes [26]. In reference [27], a new multi-criterion based fuzzy
logic model has been proposed to determine the overall health index of transformers. The method relies
on the concentrations of individual dissolved gasses, significant diagnostic test results of transformer
oil and paper insulation [27]. In reference [28], a novel method for DGA and FRA results unification
is proposed, which is based on fuzzy sets application in failures detection and interpretation stages.
In reference [29], a fuzzy logic technique for on-line condition diagnostics of transformer oil on the
basis of leakage current flows through silica gel of breather and changes the color of silica gel [29].

The above evaluation methods consider the basic parameters of the transformer, operational
data and other factors, but the evaluation criteria are greatly influenced by subjective factors, such
as the experience of evaluating individuals and experts. Therefore, it is important to determine an
evaluation method that is more in line with the actual operating conditions of the power distribution
equipment, which can provide assistance for the state assessment of the distribution transformer,
and have reference value for the economics of the power supply enterprise and the reliability of the
power marketing.

In this paper, based on the large amount of operational information generated during the operation
of the distribution network equipment, a state evaluation model of the distribution network equipment
integrating multi-source information is established. The model comprehensively considers the critical
state quantities of the distribution network equipment, and based on the fuzzy iterative method of big
data and the establishment of the weight expert database, weights the multi-source information and
reasonably evaluates the equipment status. Finally, taking the distribution transformer as an example,
the evaluation results of the fusion of multi-source information proposed in this paper are proved to be
more comprehensive. The method proposed in this paper can accurately judge the running status of
the power distribution equipment based on various types of information, and provide a reference for
the subsequent power marketing evaluation of the user equipment state, which is more instructive.

2. Feature Extraction and Scoring of Key State Quantities of Distribution Equipment

During the operation of the distribution network equipment, a large number of data are
generated, including real-time data, historical data, hardware information, environmental conditions,
etc. Therefore, appropriate processing is required to extract key state quantities and establish reasonable
evaluation criteria.
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2.1. Selection of the State Quantity of a Distribution Transformer

The state quantity of a distribution network device can directly or indirectly characterize various
conditions during the operation of the equipment, and has guiding significance for the state evaluation
of the distribution network equipment. At present, there are uniform standards and clear specifications
in technology [30], as shown in Table 1.

Table 1. Typical state quantity of a distribution transformer.

Component State Quantity Reflected State

Winding and bushing

DC resistance DC resistance exceeds the range.
Insulation resistance Insulation resistance is not normal.

Temperature The temperature of the joint is abnormal and
The temperature rise is abnormal.

Load rate Overload.
Degree of contamination Severely contaminated or rusted appearance.

appearance integrity damaged appearance.
The temperature of respirator Exceed the factory defaults.
Three-phase unbalance rate Three-phase unbalance rate is not normal.

Tap changer Performance Operation is not Normal.

Cooling system Mechanical properties Dry change fan vibration is not normal.
Temperature Temperature control device is abnormal.

Tank

Ground distance of the bench The distance to the ground is not enough.
Sealing Finishing seal aging.
Oil level Oil level is not normal.

Oil temperature Oil temperature is abnormal.

Non-electricity protection device Insulation resistance Unqualified insulation.

Ground wire Exterior Insufficient connection or insufficient depth
of grounding body.

Insulation
Grounding resistance Grounding resistance is abnormal.
Withstand voltage test Pressure resistance is unqualified.

Identification Identification integrity Equipment identification is vague,
incomplete, wrong, etc.

It can be seen from Table 1 that the state of the distribution transformer is large, and it is of
great significance to reasonably select the state quantity and establish a scientific and comprehensive
evaluation system for the state evaluation of the transformer. Since the distribution transformers used
by industry and large users are mainly step-down transformers, and most of them are oil-immersed
transformers, refer to the standards such as the State Network Distribution Equipment Status Evaluation
Guidelines [31], according to the selection of key state quantities. The principle selects and classifies
the state quantities of the distribution transformers in Table 1, as shown in Table 2.

Table 2. Selection and classification of distribution transformer key state quantity.

Classification Specific Parts State Quantity

Hardware situation

Sealing means Sealing ability μ1
Degree of insulation Withstand voltage test μ2

System contamination Contamination μ3
Non-electricity protection device Insulation resistance μ10

Winding and bushing DC resistance μ11

Operational situation

Oil level Oil level μ4
Winding and bushing outer temperature Temperature μ5

Grounding condition Grounding down conductor
appearance μ6

Respirator Respirator status μ7
Load situation Load rate μ12

Three-phase load balancing Three-phase unbalance rate μ13

Human factors
Equipment identity Completeness of identification μ8

Tap changer Tap changer performance μ9
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2.2. Scoring Criteria for Key State Quantities of Distribution Transformers

After the state quantity is selected, it needs to be scored to further evaluate the state of the
distribution transformer. According to the unified regulations, the evaluation principles of each state
quantity are shown in Table 3.

Table 3. Grading standard for distribution transformer status.

Serial Number State Quantity Name
Evaluation Standard Description of Status

Quantity Evaluation

1 Withstand voltage test Whether the withstand voltage test is qualified or not.

2 Winding DC resistance

(1) The difference between the three phases of A, B
and C is not more than 2% of the average value;

when no neutral point is taken out, the value is 1%;
(2) The relationship between the resistance values of

the three phases is consistent with the factory.

3 Insulating oil The degree of pressure resistance.

4 Insulation resistance Below 20 ◦C, no less than 300 MΩ; less than 30%
change from the previous time.

5 Equipment identification plate
appearance Whether the appearance is normal or not.

6 Sealing performance Whether there is oil leakage or oil dropping.

7 Oil level Whether the oil is abnormal.

8 Respirator performance Whether the respirator is normal.

9 Grounding condition Ground resistance cannot be greater than a specific
value.

10 Oil temperature Temperature value.

11 Three-phase unbalance rate Percentage.

12 Load condition Refer to the rated capacity to determine whether it is
overload.

13 Casing contamination Score according to the degree of contamination.

14 Temperature control system Whether the temperature control system is normal.

15 Tap changer Tap changer.

16 Non-electricity protection device Whether the insulation is Qualified.

17 Environmental temperature and
humidity information

Refer to the transformer equipment manual and
determine it according to the temperature and
humidity standards of the reference manual.

18 Operation hours Years from the time of commissioning.

19 Family quality defect Score according to no defects, potential defects,
influential defects, and fatal defects.

20 Similar equipment failure rate Score according to the probability of failure rate

21 Equipment maintenance record Whether the equipment has ever failed, whether it
has been overhauled.

It can be seen from Table 3 that the state quantities of the transformer have both qualitative
indicators and quantitative indicators of different orders of magnitude and dimensions, so the state
quantities need to be normalized before evaluation. The state quantities, including winding DC
resistance, oil temperature and other state quantities, which can make the state of the equipment better
when become smaller or lower, are treated by Equation (1); the state quantities such as withstand
voltage test, insulation resistance and other state quantities, which can make the state of the equipment
better when it becomes more powerful and larger, is treated by Equation (2); for state quantities of
qualitative measurements (running time, containment performance, etc.), the degree of deterioration is
given empirically based on experience.
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μi j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 μi j ≤ μi j0
μi j−μi j0
μi j1−μi j0

μi j0 < μi j ≤ μi j1

1 μi j > μi j1

(1)

μi j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 μi j < μi j1
μi j0−μi j
μi j0−μi j1

μi j1 ≤ μi j < μi j0

0 μi j ≥ μi j0

, (2)

where μi j(i = 1, 2, · · · , 9) is the value of j is determined by the state quantity; i indicates the relative
deterioration degree of the state quantity, and the value range is [0,1]; μi j indicates the observation
value; / indicates the ideal value or the factory value; μi j1 indicates the attention value or the warning
value. The value of μi j0, μi j1 refers to reference [32,33].

According to the state quantity evaluation criteria given in Table 3, with reference to [32,33], and
combined with the experience of a large number of experts and long-term experience, the evaluation
set of the key state quantities of the distribution transformer in Table 2 is shown in Table 4.

Table 4. Evaluation set of distribution transformer key state quantity.

State Quantity Description
Evaluation Set

Excellent Good General Malfunction
Serious
Failure

Sealing
performance μ1

Oil leakage situation μ1,1 0.2 0.2 0.3 0.2 0.1
Oil dripping situation μ1,2 0 0 0.1 0.1 0.8
Oil spilling situation μ1,3 0 0 0 0 1

Withstand voltage
test μ2

Pressure resistance μ2,1 0 0 0 0.1 0.9

Contamination μ3

A small amount of
contamination μ3,1

0.9 0.1 0 0 0

More pollution μ3,2 0.8 0.1 0.1 0 0
Obviously damaged rust

μ3,3
0.1 0.2 0.3 0.3 0.1

Severely contaminated
and blocked μ3,4

0 0 0.2 0.5 0.3

Oil level μ4

Oil level gauge indicates
abnormality μ4,1

0.1 0.2 0.3 0.2 0.2

Oil level gauge no
indication μ4,2

0.1 0.1 0.3 0.3 0.2

Temperature μ5

Temperature of connector
is too high μ5,1

0.1 0.3 0.4 0.2 0

Rise of temperature is not
normal μ5,2

0.1 0.2 0.3 0.3 0.1

Grounding down
conductor

Lack of connection μ6,1 0.1 0.2 0.3 0.3 0.1

appearance μ6 Insufficient depth μ6,2 0.2 0.3 0.4 0.1 0

Respirator
condition μ7

The respirator is
completely discolored by

moisture μ7,1

0.3 0.3 0.3 0.1 0

The respirator is
completely breathless μ7,2

0.3 0.3 0.3 0.1 0

Identification
integrity μ8

Lack of identification μ8,1 0 0.1 0.2 0.5 0.2
Wrong identifies or no

identifies μ8,2
0 0 0.1 0.4 0.5

Tap changer
performance μ9

Tap position power
indicates abnormal. μ9,1

0 0.5 0.5 0 0
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3. Weight Determination Based on Fuzzy Iteration and Expert Weighted Database

After the key state quantity of the power distribution switch is selected, it is necessary to perform
reasonable weight allocation for each state quantity to perform comprehensive evaluation of the state
of the distribution network equipment. In this paper, we use the eclectic fuzzy decision-making and
multi-level fuzzy comprehensive evaluation model to analyze the previous data of the distribution
transformer; continuously update the weight ratio of the evaluation set through the weight inverse
operation; reduce the influence of subjective factors brought by the expert review opinions; and improve
the data, the reliability of the analysis and ultimately the establishment of a weight expert database.

3.1. Compromising Fuzzy Decision Weight Solving Process

The flow chart of the compromise fuzzy decision [34] is shown in Figure 1. The basic principle is
the virtual fuzzy positive ideal and the fuzzy negative ideal. Then, the Euclidean distance method
is used to determine the distance between the candidate object and the fuzzy positive and negative
ideals, and the membership degree belonging to the fuzzy positive ideal is calculated to determine the
selection scheme. The greater the degree of membership, the better the solution and the priority.

 
Figure 1. A flow chart of eclectic fuzzy decision-making model.
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The basic solution steps for the compromising fuzzy decision are as follows:
Step 1: The indicator data is transformed into a triangle fuzzy number representation. Let F(R) be

the overall fuzzy set on R, set M ∈ F(R). The membership function μM of M is expressed as

μM(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x−l
m−l , x ∈ [l, m]
x−u
m−u , x ∈ [m, u]
0, x < l or x > u

, (3)

where l ≤ m ≤ u, and M is called a triangular fuzzy number, which is recorded as M = (l, m, u) =
(mL, m, mR).

According to the Equation (3), the qualitative index, the quantitative index and the weight data in
the state quantity are unified into a triangular fuzzy number.

1. For the qualitative indicators μi(i = 1, 2, · · · , 9) in the distribution transformer, they need to be
converted into quantitative indicators according to Table 5.

2. The quantitative index value μi(i = 10, 11, · · · , 13) for the critical state quantity of the distribution
transformer needs to be written in the form of a triangular fuzzy number, as shown in Equation (4).

μi = (μi,μi,μi). (4)

After all the indicators are converted into triangular fuzzy numbers, the fuzzy indicator matrix is
obtained and recorded as F = ( fi j)m×n.

3. The representation of the triangular fuzzy number of the weight vector. For the quantitative
indicator, according to Equation (4), the triangular fuzzy number of its weight is expressed
as follows:

w = [(w1, w1, w1), (w2, w2, w2), · · · (wi, wi, wi)]. (5)

For the weight of qualitative indicators, use the transformation method of Table 5 to convert it
into an expression of triangular fuzzy numbers.

Table 5. Triangular fuzzy number ratio method for transforming qualitative index into quantitative
index.

Quantitative Value Attributes Cost Indicator Profitability Indicator

(0,0,1) Highest Lowest
(1,1,2) Very high Very low
(2,3,4) High Low
(4,5,6) General General
(6,7,8) Low High
(7,8,9) Very low Very high

(9,10,10) Lowest Highest

Step 2: Normalize F. Suppose there are N evaluation objects, and the evaluation index j( j ∈ N)

corresponds to N fuzzy index values in F, and is denoted as xi = (ai, bi, ci), (i = 1, 2, · · · , N). Then, the
normalization equation of xi is as follows:

1. When xi is the fuzzy indicator value corresponding to the cost indicator, the normalization
equation is:

yi =

(
min(ai)

ci
,

min(bi)

bi
,

min(ci)

ai
∧ 1

)
. (6)
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2. When xi is the fuzzy indicator value corresponding to the profitability indicator, the normalization
equation is:

yi =

(
ai

max(ci)
,

bi

max(bi)
,

ci

max(ai)
∧ 1

)
. (7)

The normalized fuzzy indicator matrix is recorded as R = (yij)m×n.

Step 3: Construct a fuzzy decision matrix D. The fuzzy decision matrix can be obtained by
weighting R:

D = (rij)m×n, (8)

where
rij = wΘyij(i = 1, 2, · · · , N, j = 1, 2, · · · , N) (9)

Step 4: Determine the fuzzy positive ideal M+ and the fuzzy negative ideal M−.
Assume

M+ = (M+
1 , M+

2 , · · · , M+
N)

M− = (M−1 , M−2 , · · · , M−N)
(10)

where M+
j = max

{
r1 j, r2 j, · · · rnj

}
( j = 1, 2, · · · , N) and M−j = max

{
r1 j, r2 j, · · · rmj

}
( j = 1, 2, · · · , N)

respectively represent the fuzzy maximum and minimum values corresponding to the fuzzy index of
column j in the fuzzy decision matrix.

Step 5: Determine the distance d+i , d−i between the evaluated object i and M+, M−.

d+i =

√√√√ N∑
j=1

(rij −M+
j )

2, i = 1, 2, · · · , N. (11)

d−i =

√√√√ N∑
j=1

(rij −M−j )
2, i = 1, 2, · · · , N. (12)

Step 6: Fuzzy optimal decision making. Let the evaluation object i be subordinate to the fuzzy
positive ideal membership degree as μi, and then fuzzy optimal decision making. Let μi be the
membership degree that the evaluation object i subordinate to fuzzy positive ideal; then

μi =
d−i

d+i + d−i
, i = 1, 2, · · · , N. (13)

Obviously 0 ≤ μi ≤ 1, if Ai is closer to M+, the closer μi is to 1. The classification results of the
membership degree are used to sort the pros and cons of the sample and form a fuzzy expert group
commentary set of the multi-level fuzzy comprehensive evaluation model.

3.2. Multi-level Fuzzy Comprehensive Evaluation Model

In order to reduce the influence of subjective factors caused by expert experience and avoid errors
caused by data redundancy or errors or omissions, this paper adopts a combination of eclectic fuzzy
decision-making and multi-level fuzzy comprehensive evaluation to improve the evaluation accuracy
of distribution transformer state assessment. The specific steps of the model are as follows:

Step 1: Determine the set of objects to be evaluated X{x1,x2, x3, · · · , xk}; determining factor set
U = {u1, u2, · · · , un} ; confirm the comment set V = {v1, v2, · · · , vn} .
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Step 2: According to the factor set U and the comment set V, the evaluation matrix Ri is obtained.

Ri =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
r(i)11 r(i)12 · · · r(i)1m

...
...

...

r(i)ni1
r(i)ni1

· · · r(i)nim

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ . (14)

Step 3: Make a comprehensive decision for each Ui. Let the weight of Ui be assigned as

Ai =
(
a(i)1 , a(i)2 , · · · , a(i)ni

)
, and

ni∑
i=1

a(i)i = 1. If Ri is a one-factor matrix, then the first-level evaluation

vector is obtained as follows

Ai ×Ri = (bi1, bi2, · · · , bin)ΔBi, i = 1, 2, · · · , s. (15)

Step 4: Think of each Ui as a factor, so U is a single factor set, and the single factor judgment
matrix of U is:

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
B1

B2
...

Bs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11 b12 · · · b1m
...

...
...

bs1 bs2 · · · bsm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (16)

Each Ui is considered part of U, reflecting a certain attribute of U, which can be weighted according to
their importance.

A = (a1, a2, · · · , as). (17)

The second-level fuzzy comprehensive evaluation model is obtained as follows:

B = A×R = (b1, b2, · · · , bm). (18)

If there are more factors in each sub-factor Ui = (i = 1, 2, · · · , s) you can continue to divide Ui.
Step 5: After obtaining the weight distribution, replace it with Step 3 in the basic solution step of

the compromise fuzzy decision, that is, the establishment of the fuzzy weight, and then obtain the final
computer expert library through repeated iterations. This not only gives a review of the computer
expert library for the new data, but also expands the sample data for the computer expert library.

4. Case Analysis

This paper selects 16 distribution transformer data in a certain area to verify the proposed state
assessment model.

4.1. Distribution Transformer Basic Parameters

According to Table 2, there are 13 key state quantities of distribution transformers, including four
quantitative indicators and nine qualitative indicators. To reduce data redundancy and clearly show
the accuracy of the algorithm, Table 6 shows the rating of the five major factor sets of the distribution
transformer, including a quantitative indicator: winding DC resistance; and four qualitative indicators:
sealing performance μ1, insulation performance μ2, grounding situation μ6 and marking situation μ8.

4.2. Status Assessment of Distribution Transformers

According to the basic principle of the compromised fuzzy decision, the qualitative indicators
(excellent, good, qualified, unqualified) are firstly analyzed according to the quantitative indicators.
The quantitative criteria are shown in Table 7.
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Table 6. The original data of distribution transformer.

Distribution
Number

Score of DC
Resistance μ11

Expert group’s Fuzzy Score on State Quantity

Sealing
Performance μ1

Insulation
Performance μ2

Grounding
Condition μ6

Identification
Situation μ8

T1 97 Excellent Excellent Good Excellent
T2 96 Excellent Good Excellent Good
T3 95 Good Excellent Qualified Good
T4 95 Excellent Good Failed Good
T5 94 Good Excellent Good Failed
T6 93 Excellent Good Failed Good
T7 93 Good Excellent Qualified Qualified
T8 93 Good Excellent Good Qualified
T9 92 Good Good Excellent Qualified
T10 92 Failed Good Qualified Excellent
T11 92 Failed Qualified Good Excellent
T12 91 Good Good Qualified Excellent
T13 90 Good Qualified Failed Good
T14 89 Qualified Good Good Qualified
T15 88 Good Excellent Failed Good
T16 86 Good Qualified Good Qualified

Table 7. Quantitative standard for qualitative index of distribution transformers.

Grade Excellent Good Qualified Failed

Quantization fuzzy number (85,90,100) (75,80,85) (60,70,75) (50,55,60)

The initial triangle weight value is:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(0.5, 0.5, 0.5)
(0.2, 0.2, 0.2)

(0.15, 0.15, 0.15)
(0.1, 0.1, 0.1)

(0.05, 0.05, 0.05)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

i.

The index information and the weight information are transformed into triangular fuzzy numbers, and
the fuzzy index matrix F is obtained as follows.

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(96, 96, 96) (85, 90, 100) (85, 90, 100) (75, 80, 85) (75, 80, 85)
(95, 95, 95) (85, 90, 100) (75, 80, 85) (85, 90, 100) (65, 70, 75)
(95, 95, 95) (70, 80, 85) (85, 90, 100) (50, 60, 65) (65, 70, 75)
(94, 94, 94) (85, 90, 100) (75, 80, 85) (75, 80, 85) (75, 80, 85)
(93, 93, 93) (75, 80, 85) (85, 90, 100) (75, 80, 85) (65, 70, 75)
(93, 93, 93) (75, 80, 85) (50, 60, 65) (85, 90, 100) (75, 80, 85)
(92, 92, 92) (85, 90, 100) (75, 80, 85) (65, 70, 75) (75, 80, 85)
(92, 92, 92) (75, 80, 85) (85, 90, 100) (85, 90, 100) (65, 70, 75)
(92, 92, 92) (75, 80, 85) (75, 80, 85) (85, 90, 100) (75, 80, 85)
(92, 92, 92) (50, 60, 65) (75, 80, 85) (85, 90, 100) (65, 70, 75)
(91, 91, 91) (50, 60, 65) (65, 70, 75) (75, 80, 85) (85, 90, 100)
(90, 90, 90) (85, 90, 100) (75, 80, 85) (65, 70, 75) (85, 90, 100)
(89, 89, 89) (75, 80, 85) (65, 70, 75) (50, 60, 65) (85, 90, 100)
(89, 89, 89) (50, 60, 65) (75, 80, 85) (85, 90, 100) (75, 80, 85)
(88, 88, 88) (85, 90, 100) (75, 80, 85) (65, 70, 75) (75, 80, 85)
(87, 87, 87) (75, 80, 85) (85, 90, 100) (75, 80, 85) (65, 70, 75)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The data in F is normalized to obtain the fuzzy decision matrix D. According to Equation (10), the
fuzzy positive ideal M+ and the fuzzy negative ideal M− are obtained as:

M+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(0.5, 0.5, 0.5)

(0.17, 0.20, 0.20)
(0.1275, 0.15, 0.15)
(0.085, 0.1, 0.1)

(0.0425, 0.05, 0.05)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

M− =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(0.4531, 0.4531, 0.4531)
(0.1, 0.1222, 0.1412)

(0.0750, 0.0917, 0.1059)
(0.05, 0.0611, 0.0706)
(0.03, 0.0389, 0.0441)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

The fuzzy double peak value and the membership percentage value obtained by the fuzzy optimization
decision after multiple times of the cycle are shown in Table 8, and finally, the state evaluation value of
the distribution transformer is obtained.

Table 8. Results of distribution transformer status assessment.

Distribution Number Fuzzy Positive Ideal Fuzzy Negative Ideal Final Score

T1 0.0167 0.1775 91.39
T2 0.03 0.1683 84.88
T3 0.0699 0.1495 82.86
T4 0.0333 0.1608 76.27
T5 0.0465 0.1495 75.08
T6 0.0989 0.1253 72.88
T7 0.0558 0.1495 72.8
T8 0.0501 0.151 68.13
T9 0.0525 0.141 68.03
T10 0.1286 0.1036 63.01
T11 0.1396 0.0737 60.87
T12 0.0685 0.1457 55.88
T13 0.1064 0.106 49.92
T14 0.1377 0.0956 44.62
T15 0.0838 0.1428 40.98
T16 0.0896 0.1393 34.54

The fuzzy positive ideal and the fuzzy negative ideal are determined by analyzing a large number
of transformers of the same type. This paper adopts a combination of eclectic fuzzy decision-making
and multilevel fuzzy comprehensive evaluation, and the weights of quantitative indicators and
qualitative indicators can be obtained by performing repeated fuzzy iterations. The weight ratio of
the evaluation set is constantly updated through the weight inverse operation, reducing the influence
of subjective factors brought by the expert review opinions and avoiding errors caused by data
redundancy or errors or omissions, which improving the reliability of data analysis and promoting the
establishment of the weight expert database, finally. The distances between the evaluated object and the
fuzzy positive and negative ideals are determined, and the membership degree belonging to the fuzzy
positive ideal is calculated. The greater the membership degree, the better the state of the transformer.
The smaller the membership degree, the worse the state of the transformer, so it is necessary for the
operation and maintenance personnel to pay attention to it and arrange the maintenance work in good
time. The comparison and analysis of the relevant data in Tables 6 and 8 show that the final score of
each transformer in Table 8 can truly reflect the actual operation status of the transformer in Table 6,
which provides quantitative parameters for the evaluation of distribution equipment, and which is
beneficial to the further focus and field evaluation of the equipment, providing help for maintenance
and operation.

The analysis of practical examples shows that the evaluation method is concise and intuitionistic,
and the evaluation conclusion not only reflects the state of a single transformer, but also facilitates
the ranking of the overall state of the transformer, which provides reasonable suggestions for orderly
arrangement of transformer maintenance.
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5. Conclusions

Taking the distribution transformer as an example, this paper establishes a self-assessment model
of the distribution equipment based on multi-source heterogeneous information fusion. The operation
conditions and reliability assessment of the equipment can be obtained through the integration of data
from a variety of sources, and maintenance is arranged according to the health state of the equipment,
which can support the improvement of power supply reliability and the economy of power marketing.

This method reduces the influence of subjective factors brought by the expert review opinions;
avoids errors caused by data redundancy or errors or omissions; and improves the reliability of data
analysis and the accuracy of distribution equipment state assessment. The data of 16 distribution
transformers in a certain area were selected, their status was evaluated. The effectiveness of the method
was verified by a practical example.
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Abstract: In high power, medium voltage applications, Current Source Inverters CSIs are connected
in parallel to accommodate high DC currents. Using a proper multilevel modulation technique,
parallel-connected CSIs can operate as a Multilevel CSI (MCSI). The most common modulation
technique for MCSIs is the Phase-Shifted Carrier SPWM (PSC-SPWM). The proper operation of
the MCSI requires each CSI modules to have the same average current flowing through its sharing
inductors. In practice, the average currents of the CSI modules deviate from their nominal values.
Therefore, current balancing mechanisms must be implemented. In the literature, several solutions
have been proposed to tackle the current imbalance problem. Most of these solutions are based
on altering the phase-shift or magnitude of the carrier waveforms of the PSC-SPWM. They require
dedicated PI controllers and they are applicable to MCSIs with specific numbers of levels. This paper
proposes a Current Balancing Algorithm (CBA) that can be implemented in any MCSI with any number
of levels. The proposed CBA does not require any PI controllers, nor does it require any alteration
to the PWM carrier waveforms. The CBA is implemented using a modified Level-Shifted SPWM
(LS-PWM). The modified LS-SPWM is shown to produce lower THD and lower di/dt when compared
to the PSC-SPWM. The CBA and modified LS-SPWM where implemented in a proof-of-concept lab
prototype. The experimental results are presented for the five-level and seven-level cases.

Keywords: current balancing algorithm; level-shifted SPWM; medium-voltage applications;
multilevel current source inverter; motor drives; phase-shifted carrier SPWM; STATCOM

1. Introduction

Current Source Inverters (CSIs) have been used as alternatives to Voltage Source Inverters (VSIs)
in applications such as: motor drives [1], STATCOMs [2], High Voltage Direct Current (HVDC)
transmission stations [3], and renewable energy conversion systems [4]. Compared to VSIs, CSIs have
several advantages and drawbacks. Their advantages include inherent fault tolerance and voltage
boosting capabilities. Their main drawbacks are larger ohmic losses in their DC inductors and heavy
inductor cores. Nevertheless, ongoing research in the field of High Temperature Superconductors
(HTS) has yielded promising results [5–7]. In [6], utilizing HTS coils was shown to reduce a generator’s
losses and weight by half and one third, respectively. In the future, access to HTS inductors, with
virtually zero ohmic and core losses will make CSIs more attractive to a broader range of applications.

In high power, medium voltage applications, several VSIs or CSIs are connected in parallel to divide
the high DC current evenly between them. For these applications, CSIs are more attractive because
parallel-connected CSIs can operate as a Multilevel Current Source Inverter (MCSI). MCSIs generate
higher quality current waveforms that require smaller output capacitors and lower switching frequency.

Over the past few decades, several attempts have been made to conceive an effective MCSI
topology. Relying on the duality principle [8], most topologies require the DC input to be a constant
current source. In most cases, either a DC voltage source connected to a large smoothing inductor [9,10]
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or a current-controlled buck converter [11–14] is used as a constant current source. The most common
three-phase MCSI is shown in Figure 1. It was first introduced by Xiong et al. [9] and has been the
subject of several papers over the past few years [10–14]. In addition to a current-controlled buck
converter or a large smoothing inductor at the input, this topology consists of M modules, for a 2M + 1
level converter. Each module contains six controllable unidirectional switches, an upper inductor, and
a lower inductor. The upper and lower inductors are referred to as sharing inductors and they are only
rated for 1/Mth of the DC current, where the current-controlled buck converter or large smoothing
inductor at the input must be rated for the full input current. A unidirectional controllable switch may
be realized using a Gate Turn-Off Thyristor (GTO), an Integrated Gate-Controlled Thyristor (IGCT),
a Reverse-Blocking Insulated-Gate Bipolar Transistor IGBT (RB-IGBT), or a regular IGBT connected,
in series, to a diode, as shown in Figure 1.

Figure 1. The multilevel current source inverter (MCSI) topology [9–14].

For proper operation of the MCSI, the values of the sharing inductors in each module must be
identical. The main challenge in this topology is ensuring the main DC current is divided between the
modules evenly. In [9], since a six-level staircase modulation was used, an optimized fixed switching
sequence was proposed. The sequence minimizes the switching losses while ensuring the volt-second
area remains close to zero for each inductor under steady-state conditions. Unfortunately, this method
becomes very complex and unreliable when Pulse Width Modulation (PWM) techniques are used
for a higher number of levels. Moreover, the number of levels achieved was six for a three-module
converter; the zero level was not achieved using the staircase modulation.

In [11], a prototype of the same topology was built and tested. The input of the inverter, in this case,
was a current-controlled buck converter. The modulation technique used was the Phase-Shifted Carrier
Sinusoidal PWM (PSC-SPWM) [13]. The PSC-SPWM allows individual modules to be modulated
independently using the so-called “tri-logic” SPWM [15]. To synthesize multilevel waveforms using the
PSC-PWM, the phase-shift between any two adjacent module’s carrier signals is set to 2π/M. Although
no current balancing technique was used, the average currents of the sharing inductors remained within
a reasonable range of each other. Nonetheless, implementing such an inverter in a non-controlled
environment, such as industrial applications, with no means to ensure a current-balanced operation is
not safe. Disturbances and small differences in the electrical parameters between the modules can easily
lead different inductors to have different average currents [11], and modules sustaining currents higher
than their rated current could be damaged. The current imbalance problem is highlighted in [12]. Using
the same modulation technique as that used in [11], the authors suggested two Proportional-Integral
(PI) controllers-based solutions to ensure a current-balanced operation for the seven-level case. The first
solution is to allow each module to use a small variation in the magnitude of carrier waveform as
a control variable. The second solution is to allow the use of the phase-shift angle of the carrier
waveform as a control variable. In both cases, to understand the input–output relationship, systems
identification procedures were carried out. Both solutions were verified via simulation only, and both
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yielded satisfactory results. Another attempt to realize a current-balanced operation was presented
in [14] where an improved version of the first solution proposed in [12] was implemented. The solution
targets the seven-level case. It involved two dedicated PI controllers varying the magnitudes of the
PSC-SPWM carrier waveforms. The effectiveness of the solution was verified via simulation and
experimental results. However, there are several disadvantages to the proposed solutions [12,14].
By requiring multiple, dedicated, current-balancing, closed-loop control systems, the converter cost
and complexity increases. Besides, the proposed alteration to the carrier waveforms has a negative
impact on the Total Harmonic Distortion (THD).

This paper focuses on the voltage fed version of the MCSI. In the voltage fed MCSI, the modules
are connected directly to the DC bus. Unlike the MCSI discussed in [9,10], a main smoothing inductor
is not required here. This makes the MCSI modular and it reduces the number of required inductors.
Also, unlike the MCSI considered in [11–14], the voltage fed MCSI does not need to be connected to
the output of a current-controlled buck converter. Adding a buck converter to the input increases the
cost, size, and complexity while reducing the boosting ratio of the MCSI. To compute the boosting
ratio of the MCSI, the AC side power in Equation (1) is equated to the DC side power in Equation (2),
assuming a lossless system. The resulting boosting ratio is given in Equation (3). In Equation (1), m is
the modulation index of the MCSI, V̂LN is the peak value of the line-to-neutral voltage on the AC side
of the MCSI, and cos(ϕ) is the power factor. In Equation (2), d is the duty cycle of the current-controlled
buck converter. The impact of d on the boosting ratio is evident in Equation (3). If the buck converter
is eliminated, the boosting ratio can be derived by assuming d = 1. Therefore, eliminating the buck
converter maximizes the boosting ratio.

PAC =
3
2

( √
3

2
mIdcV̂LN cos(ϕ)

)
(1)

Pdc = IdcdVdc (2)

V̂LN

Vdc
=

4d

3
√

3m cos(ϕ)
(3)

The main contribution of this paper is the introduction of a new Current Balancing Algorithm
(CBA) to address the current imbalance issue in MCSIs. The CBA can be implemented in any MCSI
regardless of the number of levels and it does not require any modification to the carrier’s waveform,
unlike the balancing methods in [12,14]. Moreover, the PWM technique used in this paper is a modified
version of the Level-Shifted SPWM (LS-SPWM). It was first introduced to eliminate common-mode
voltage in three-level Neutral-Point-Clamped (NPC) VSIs [16]. However, its implementation in
MCSI has never been discussed or demonstrated in the literature. Compared to the widely used
PSC-SPWM [13], the modified LS-SPWM produces lower THD and di/dt.

The rest of the paper is divided into four main sections. Section 2 presents the modified LS-SPWM.
Section 3 explains how to solve the current-imbalance problem using the CBA. Section 4 presents
experimental results verifying the CBA and modified LS-SPWM using a proof-of-concept prototype.
The prototype has three modules. Therefore, it can operate as either a five-level MCSI, by only utilizing
two modules, or a seven-level MCSI, by utilizing all three modules. Waveforms demonstrating
the operation of the five-level and seven-level cases are presented. Finally, concluding remarks are
presented in Section 5.

2. Modified LS-SPWM Suitable for MCSIs

An individual CSI must have one upper switch and one lower switch switched ON at any given
instance [15]; this ensures that iLu and iLl will always have a circulation path. Therefore, the CSI has
nine possible switching states. These states can be divided into three zero states and six active states,
as illustrated in Figure 2. Zero states produce zero in all phases at the AC side while active states
produce a positive current in one phase and a negative current in a different phase. It is important to
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note that any set of three-phase currents synthesized by the CSI using any switching state shown in
Figure 2 will always add up to zero. Hence, any multilevel PWM technique must produce a set of
three-phase currents that always adds up to zero. It has been was shown [16] that the Level-Shifted
SPWM (LS-SPWM) does not satisfy this requirement. A simple solution is described in [16] for the
three-level case. The same solution can be extended to any number of levels as follows:

(1) Generate a set of three-phase modulated signals using the reference signals in Equations (4)–(6),
m is the modulation index and M is the number of modules. The modulated signals should be
generated by comparing Equations (4)–(6) to M level-shifted triangle waveforms.

(2) A balanced set of three-phase currents, which add up to zero, can be obtained by computing
Equations (7)–(9), where i1m, i2m, and i3m are the modulated signals of Equations (4)–(6).

(a) Zero switching state (b) Zero switching state (c) Zero switching state

(d) Active switching state (e) Active switching state (f) Active switching state

(g) Active switching state (h) Active switching state (i) Active switching state

Figure 2. MCSI switching states: (a–c) Zero switching states, (d–i) Active switching states.

The obtained currents in Equations (7)–(9) have 2M + 1 levels. Their magnitude is
(
M
√

3 m
)
/2.

To extend the upper limit of m to 2/
√

3, instead of 1, a third harmonic component with a magnitude of
(−m)/6 can be added to Equations (4)–(6) [17].

i1 =
M
2

[
m cos

(
ωt− π

6

)]
(4)
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i2 =
M
2

[
m cos
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ωt− 2π
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− π

6

)]
(5)

i3 =
M
2

[
m cos

(
ωt +

2π
3
− π

6

)]
(6)

iam = i1m − i2m (7)

ibm = i2m − i3m (8)

icm = i3m − i1m (9)

The process described above is shown in Figure 3 for a seven-level case, M = 3. The modulated
signals of Equations (4)–(6) are shown in Figure 3a while Equations (7)–(9) are shown in Figure 3b.
For comparison, a set of three-phase currents were produced using the PSC-SPWM [10–14], as shown
in Figure 4. The modified LS-SPWM resulted in a lower THD, 24.12% compared to 33.62% for the
PSC-SPWM. Also, unlike the PSC-SPWM, the modified LS-SPWM results in modulated waveforms
where the transition from one level to the next happens consecutively, i.e., the modulated waveforms
increase or decrease by one level at a time. This results in a lower di/dt, which produces less
Electromagnetic Interference (EMI).

(a)

(b)

Figure 3. Modified LS-SPWM: (a)Three-phase currents obtained using the conventional LS-SPWM,
m = 0.95 and fs = 1 kHz, (b) Modified LS-SPWM, calculated using Equations (7)–(9).
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Figure 4. PSC-SPWM [13], m = 0.95 and fs = 1 kHz.

Another requirement that must be fulfilled by the modified LS-SPWM is the even and efficient
distribution of the zero states among the phase legs of the modules. A CSI module has three zero
switching states, see Figure 2a–c. The modified LS-SPWM should be able to determine which zero
state should be selected every time a zero state is required. In a previous study [15], the zero states
distribution of the CSI is determined based on the extreme values of the three-phase reference currents.
The same mechanism can be used here. Based on which phase has a positive or negative peak,
the fundamental cycle can be divided into six intervals, as shown in Figure 5. For example, during
interval I, phase A has a positive peak. Therefore, depending on m, Sau must be switched ON in most
modules. During interval IV, on the other hand, phase A has a negative peak. Hence, Sal must be
switched ON in most modules. During intervals I and IV, shortening leg A is the most efficient way to
realize a zero state. Thus, during interval I, Sau is switched ON in all modules while Sal is switched
ON in M− iam modules. Similarly, during interval IV, Sal is switched ON in all modules while Sau is
switched ON in M+ iam modules. Here, iam, ibm, and icm are the instantaneous values of the modulated
three-phase currents, their values are between −M and M. The same procedure can be repeated for the
other four intervals where phases B and C have their positive and negative peaks. Table 1 summarizes
the zero states distribution mechanism over one cycle. For each interval, the corresponding number of
ON upper and lower switches of each phase of the MCSI is given.

Figure 5. Intervals highlighting the extreme values of a set of three-phase currents.
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Table 1. Zero state distribution in MCSI.

Interval ON Sau ON Sal ON Sbu ON Sbl ON Scu ON Scl

I M M− iam 0 −ibm 0 −icm
II iam 0 ibm 0 M + icm M
III 0 −iam M M− ibm 0 −icm
IV M + iam M ibm 0 icm 0
V 0 −iam 0 −ibm M M− icm
VI iam 0 M + ibm M icm 0

3. Current Balancing Algorithm

Table 1 provides the total number of ON switches for all the modules in the MCSI at any given
instance. In odd intervals, the commands for the upper switches in each module are the same, the upper
switch of a specified phase is turned ON in every module. On the other hand, the numbers of lower
switches that should be turned ON in each phase of the MCSI are different. During Interval I, for
example, Table 1 specifies how many modules should have their Sal, Sbl, and Scl switched ON without
mapping these commands to specific modules. During even intervals, the reverse is true. In this section,
an optimized selection process referred to as CBA is presented. Based on the output line-to-neutral
voltages vLN and the sharing inductors’ currents (iLu and iLl in each module), the CBA determines the
optimum way to distribute the ON commands among the modules such that the average value of the
inductors’ currents remain close to each other.

Before introducing the CBA, it is important to understand the relationship between the output
line-to-neutral voltages and the inductors currents. Consider the single module in Figure 6. Expressions
for the voltages across the upper and lower inductors are given in Equation (10) and Equation (11),
respectively. The voltage vcm is the common-mode voltage, which has been discussed extensively in
the literature [1]. Recall that only one of the upper switches (Sau, Sbu, and Scu) can be switched ON, i.e.,
have a value of 1 while others have values of 0. The same constraint is applied to the lower switches.
Equation (10) and Equation (11) show that the voltages across the upper and lower sharing inductors
depends on which phase they are connected to. For example, assume vaN = 0.9 p.u, vbN = −0.073 p.u,
and vcN = −0.827 p.u. In this case, if the current in the upper sharing inductor is low, the best option is
to connect it to phase C, by turning Scu ON. Since Equation (10) has the highest possible value, it will
result in the highest possible diLu/dt. If the current in the upper sharing inductor is high, on the other
hand, connecting it to phase A would result in the lowest possible diLu/dt. The same conclusions are
reversed for the lower sharing inductor, the line to neutral voltage in Equation (11) has a positive sign.
Note that knowledge of vcm is not required when determining the best option, because vcm has the same
effect across all phases. Therefore, to implement an optimized selection process, at every switching
instance, the CBA starts by identifying what interval the MCSI is operating in. During odd intervals
the CBA ranks the modules according to their lower sharing inductors’ currents in a descending order.
It then assigns the modules with low inductor’s currents to phases that has the highest vLN. During
even intervals the CBA ranks the modules according to their upper sharing inductors’ currents in a
descending order; then assigns the modules with lowest inductor currents to phases that have the
lowest vLN. Hence, the average values of the upper and lower inductors’ currents can be maintained
around the same value, Idc/M. The CBA is summarized in the flow chart presented in Figure 7.

vLu =
Vdc
2
− (SauvaN + SbuvbN + ScuvcN) − vcm (10)

vLl =
Vdc
2

+ (SalvaN + SblvbN + SclvcN) + vcm (11)
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Figure 6. Single current source inverter (CSI) module.

Figure 7. A flow chart summarizing the current balancing algorithm (CBA).

To illustrate the process of CBA through an example, assume the CBA was triggered by a PWM
change in a five-level MCSI (M = 2) where the new values of iam, ibm, and icm are 2, −1, and −1,
respectively. Furthermore, assume vbN = 0.5 and vcN = −0.5. Since the MCSI is operating in Interval I
(iam is at its positive peak), the CBA will switch Sau ON in both modules, switch Sbl ON in one module,
and switch Scl ON in the other module, i.e., one module will be assigned to S1 (see Figure 2d) while
another module will be assigned to S2 (see Figure 2e). Here, the CBA must decide which module
should receive the Sbl ON command and which one should receive the Scl ON command. According to
Equation (11), the value of vLl in a module is maximized when Sbl is switched ON (because vbN > vcN).
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Therefore, the CBA will send the Sbl ON command to the module that has the lower iLl value while
sending the Scl ON command to the other module.

4. Experimental Results

A three-module, proof-of-concept prototype was built and tested to verify the operation of the
MCSI. Unlike previous MCSI prototypes, having custom-designed inductors that are strictly identical
was not required for proper operation of the converter [11]. In fact, the inductors used in the prototype
are off-the-shelf 20 mH inductors with ± 5% tolerance [18]. The unidirectional switches used in the
modules are realized by connecting a SiC diode in series with an IGBT. The modified LS-SPWM, CBA,
and data acquisition were implemented in a dSPACE MicroLabBox. All the measured voltages and
currents were sent to dSPACE ControlDesk and then plotted using Matlab. Figure 8 shows a picture of
the experimental setup. The rest of the prototype’s parameters are given in Table 2.

Figure 8. Experimental setup.

Table 2. Prototype parameters.

Parameter Value

Number of Modules M = 3
DC Voltage 30 V

Modulation Index m = 0.95 (With 3rd harmonic injection)
AC Side Capacitors C = 100 μF (Delta-Connected)

Load Y-Connected 28.57 Ω Resistors
Sharing Inductor Parameters (5% Tolerance) L = 20 mH , RL = 0.558 Ω

Switching Frequency fs = 1389 Hz

Unidirectional Switch Parameters IGBT: Infineon IRG7PH35UDPbF
Diode: Cree C3D12065A

DSP dSPACE MicroLabBox

Initially, only two modules were used to create a five-level MCSI. The operation of the five-level
MCSI during startup is shown in Figure 9. The CBA’s effectiveness is apparent in Figure 9b,c;
the instantaneous values of the sharing inductors’ currents remained close to each other during startup.
Figure 10 shows the same quantities under steady-state conditions. The CBA’s efforts can be observed
in Figure 10b,c. When the output current of any phase is at its positive peak, referred to as odd intervals
in Section 3, the upper sharing inductors experience similar di/dt, because they are connected to the
same phase. On the other hand, the lower sharing inductors’ currents are changing at various rates,
which shows the CBA’s effort to balance the inductors’ currents. When the output current of any phase
is at its negative peak, the same phenomenon is reversed, changes are more apparent in the upper
inductor’s currents.
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Figure 9. Operation of the five-level MCSI during startup: (a) output current, (b) upper inductors’
currents, (c) lower inductors’ currents and (d) output voltage.

Figure 10. Steady-state operation of the five-level MCSI: (a) output current, (b) upper inductors’
currents, (c) lower inductors’ currents and (d) output voltage.

For further testing and verification, the third module of the prototype was activated to enable a
seven-level operation. All the key waveforms of the seven-level MCSI during startup and steady-state
operating conditions are presented in Figures 11 and 12, respectively. Further demonstration of the
effectiveness of the CBA is shown in Figure 12b,c.
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Figure 11. Operation of the seven-level MCSI during startup: (a) output current, (b) upper inductors’
currents, (c) lower inductors’ currents, and (d) output voltage.

Figure 12. Steady-state operation of the seven-level MCSI: (a) output current, (b) upper inductors’
currents, (c) lower inductors’ currents and (d) output voltage.

5. Conclusions

A solution to the current balancing problem in voltage fed MCSIs was proposed in this paper.
Unlike previous solutions [12,14], the CBA does not require any dedicated PI controllers; and it does
not impose any alteration on the PWM carrier waveforms. Moreover, the CBA can be implemented in
any MCSI, regardless of the number of levels. In addition, the modified LS-SPWM implementation
in MCSIs was discussed in this paper. It was shown to have lower THD and di/dt compared to the
PSC-SPWM. Although it was originally proposed for multilevel VSIs [16], it was never implemented
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in MCSIs. To validate the presented theoretical work, a proof-of-concept lab prototype was designed
and tested. Experimental results for the five-level and seven-level cases were presented.
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Abstract: Electricity consumption forecasting is a vital task for smart grid building regarding the
supply and demand of electric power. Many pieces of research focused on the factors of weather,
holidays, and temperatures for electricity forecasting that requires to collect those data by using kinds
of sensors, which raises the cost of time and resources. Besides, most of the existing methods only
focused on one or two types of forecasts, which cannot satisfy the actual needs of decision-making. This
paper proposes a novel hybrid deep model for multiple forecasts by combining Convolutional Neural
Networks (CNN) and Long-Short Term Memory (LSTM) algorithm without additional sensor data,
and also considers the corresponding statistics. Different from the conventional stacked CNN–LSTM,
in the proposed hybrid model, CNN and LSTM extracted features in parallel, which can obtain
more robust features with less loss of original information. Chiefly, CNN extracts multi-scale robust
features by various filters at three levels and wide convolution technology. LSTM extracts the features
which think about the impact of different time-steps. The features extracted by CNN and LSTM
are combined with six statistical components as comprehensive features. Therefore, comprehensive
features are the fusion of multi-scale, multi-domain (time and statistic domain) and robust due to the
utilization of wide convolution technology. We validate the effectiveness of the proposed method
on three natural subsets associated with electricity consumption. The comparative study shows
the state-of-the-art performance of the proposed hybrid deep model with good robustness for very
short-term, short-term, medium-term, and long-term electricity consumption forecasting.

Keywords: smart grid; electricity forecasting; CNN–LSTM; very short-term forecasting (VSTF);
short-term forecasting (STF); medium-term forecasting (MTF); long-term forecasting (LTF)

1. Introduction

Accurate, reliable, and timely electricity consumption information is the key to ensure a stable
and efficient electricity supply. However, the electricity consumption in daily life usually fluctuates
with time, region, season, temperature, and society. Even in the same city, electricity consumption
in different areas may vary. Typically, the power company arranges fixed personnel to provide the
electricity supply of the fixed place. Once there is a surge of local electricity consumption, the electricity
supply of the area will be affected, thus affecting the healthy life. Forecasting actual future electricity
consumption can make corresponding adjustments in time to avoid this situation. There are three types
of forecasts according to the forecasting duration: short-term forecast (STF), medium-term forecasting
(MTF), and long-term forecasting (LTF). Generally, STF focuses on the time range from 24 h to one
week; MTF focuses on the time range from one week to one month, and LTF focuses on the time range
longer than the other two types [1,2].
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Different types of electric power forecasting have different purposes: The short-term electricity
consumption forecasting supports the personnel and equipment arrangement of the next day. The
medium-term electricity consumption forecasting gives decision support for the human resource
allocation of the power company. The long-term electricity consumption forecasting is a significant
decision basis from the macro perspective. To deal with an emergency such as line damage, natural
disasters, and so on, very short-term (VST) power consumption forecasting is also essential. We defined
very short-term electricity forecasting in this paper is hourly.

Different methods have been carried out for power forecasting, which mainly contains three
categories: regression-based, time series-based, and machine learning-based methods [3]. The
regression-based method can be divided into two sub-classes: Normal regression such as simple
linear regression, lasso regression, ridge regression, and autoregression methods such as vector
auto-regression (AR) and vector moving average (MA). Especially, Tang et al. applied a LASSO-based
approach to forecast the current solar power generation by using the past 30 days of data and achieve
better results than the support vector machine-based method [4]. Yu et al. applied an improved
AR-based method for short-term hourly load forecasting, which was tested on two kinds of real-time
hourly data sets [5]. Ordinary regression only considers the relationship of current variables and needs
additional related data. However, the dependent variables are affected by the relevant variables of the
current and past periods. The autoregressive model takes into account the impact of the current and
past points, but it requires data that must be stationary. To overcome the disadvantages that occurred
in the regression-based method, a time series-based method is presented for energy consumption
forecasting. Autoregressive integrated moving average model (ARIMA) is one of the most excellent
time series-based models. It not only considers the impact of the current and past periods but also can
be used for non-stationary data. The ARIMA model can be symbolized as ARIMA(p, d, q), where p is
the parameter of lag pth order autocorrelation, q is the parameter of lag qth order partial autocorrelation,
and d is the parameter for generating stationary time series. Usually, d ranges from 1 to 2; p, q range
from 8 to 10 [3,6]. ARIMA has been employed for short-term power forecasting in [7,8]. Mitkov et al. [9]
proved that ARIMA could be used for MTF and LTF for electricity forecasting.

The above regression-based and time series-based methods consider the relationship between
the past and the current time is linear. However, most of the hidden relationships are nonlinear.
The machine learning-based method can overcome this issue by using different nonlinear kernels
such as support machine vectors (SVMs). Although some studies have successfully used SVM to
predict energy consumption, there will be overfitting when data is broad [3,10]. Fortunately, the deep
learning-based method can handle the overfitting problem very well with a good forecasting result.
Recently, the convolutional neural network (CNN) [11], one of the mighty deep learning methods, has
been widely applied for power forecasting due to its excellent feature extraction capacity. Li et al. [12]
reshapes the data into two dimensions as an image and then applies CNN for short-term electrical load
forecasting. A novel multi-scale CNN considering time-cognition was presented in [13] for multi-step
short-term load forecasting. Suresh et al. developed a new sliding window algorithm to generate data
to forecast solar PV using multi-head CNN in making STF and MTF [14]. Kim et al. applied CNN for
VST photovoltaic power generation forecasting and compared it with the long short-term memory
(LSTM) method, proving that the CNN-based method is better than LSTM for VSTF [15]. Another deep
learning-based method LSTM was used for LTF and STF problems as it has long-term memory [16].
Ma et al. [17–20] employed LSTM for STF in the area of power. For LTF problems, Agrawal et al.
presented a novel model by combining LSTM and recurrent neural network (RNN) to predict future
five-year electricity loads [21]. An enhanced deep model was proposed in Han’s work [22] for STF and
MTF of electric load. The attention mechanism was combined into LSTM for short-term photovoltaic
power forecasting in Zhou’s work [23]. In order to overcome the shortcomings of a single model, some
hybrid models are proposed for power forecasting, such asWang et al. [24] proposed ARIMA–LSTM
for daily water level forecasting. It used LSTM to forecast the residuals through results and then
utilized ARIMA to train the model with residuals. However, it is complex to build so many ARIMA
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models to get the residuals when the data size is massive. Another hybrid model, CNN–LSTM, is
proposed in Kim’s work [25] for minutely, hourly, daily, and weekly electricity energy consumption
forecasting using multi-variables as input. Hu et al. [26] also applied CNN–LSTM for daily urban
water demand forecasting using related meteorological data. However, collecting such correlated
variables is hard and time-consuming in reality. Although Yan et al. proposed a hybrid of CNN–LSTM
to predict power consumption by using raw time series, it only focused on VSTF (minutely) [27].
Moreover, Yan et al. [28] proposed a hybrid LSTM model, in which wavelet transform (WT) is applied
to preprocess the raw univariate time series firstly. Later, stationary parts of transformation are selected
for VSTF (minutely). However, there is a problem that occurred in Yan’s work [28] is that we still need
to select the stationary part by hand.

The limitations of current research for energy consumption forecasting are summarized as follows.
On the one hand, most above methods only focused on one or two types of forecasts among VSTF, STF,
MTF, and LTF. However, we need to master various types of future power consumption information to
improve power supply efficiency and realize the smart grid. On the other hand, most existing methods
refer to multi-variable regression, which requires collecting multiple related data. Motivated by this, we
present a highly accurate deep model for various types of electricity forecasts by only using self-history
data. We call this deep model multi-channels and scales CNN–LSTM (MCSCNN–LSTM). The proposed
MCSCNN–LSTM employs dual channels as input to extract rich, robust feature representations from
different domains of raw data. One channel is the raw sample, and the other is the information of
statistics corresponding to the raw sample. We adopted the parallel structure of CNN–LSTM, which is
different from conventional CNN–LSTM. At first, the CNN part in this structure extracts multi-scale
and global features from the first channel using multi-scale and wide convolution technology. Then,
the LSTM part guarantees to extract features that have a long-time dependency from the raw data. At
last, combined with CNN, LSTM extracted features with statistics channels as comprehensive features
to forecast the electricity consumption.

The biggest challenge is that the power consumption time series only has fewer time points rather
than vibration signal, image, and video. It requires us to use CNN seriously due to the obtained data
being relatively low dimensional. The strategy of this paper is to use a few pooling layers to reduce the
loss of valuable information.

The main contributions of this paper are summarized as follows:

• To the best of our understanding, a few types of research focused on using one model for VSTF,
STF, MTF, and LTF. This paper addresses this issue with MCSCNN–LSTM.

• The hybrid deep model MCSCNN–LSTM was designed, trained, and validated.
The MCSCNN–LSTM obtains the highest performance compared to the current
state-of-the-art methods.

• The proposed method can accurately forecast electricity consumption by inputting the self-history
data without any additional data and any handcrafted feature selection operation. Therefore, it
reduces the cost of data collection while simultaneously keeping high accuracy.

• The feature extraction capacity of each part has been analyzed.
• The excellent transfer learning and multi-step forecasting capacities of the proposed

MCSCNN–LSTM have been proven.

The rest of the paper is arranged as follows. Section 2 formalizes our problem and gives the
data generation method. Section 3 introduces the theoretical background of the proposed approach
consisting of CNN, LSTM, and statistical components knowledge. Section 4 gives the proposed
architecture for electricity forecasting. Each type of forecasting mission is defined in this section also.
In Section 5, comparative experimental studies on three datasets are carried out. In Section 6, we
discuss the proposed deep model. Section 7 presents the conclusions and feature work.
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2. Problem Formulations

Our purpose is to forecast future power consumption using self-historical data. The self-historical
data of power consumption could be expressed as a time series as follows:

T = (t1, t2, t3, . . . , ti, . . . , tN) (1)

where T contains N data points. Different types of forecasts have different elements in T. We defined
four types of forecasts as shown in Table 1 and described follows.

• VSTF: Hourly forecasting, power consumption data of previous H hours are employed for
next-hour power consumption forecasting.

• STF: Daily forecasting, applying power consumption data of previous D days to get the next day’s
power consumption.

• MTF: Weekly forecasting, using power consumption data of previous W weeks to forecast power
consumption of the next week.

• LTF: Monthly forecasting, the power consumption data of previous M months are employed to
get the next one month.

Table 1. Defined four types of forecasts.

Forecasts Types Length of Input History Data Outputs

VSTF (hourly) Previous H hours Next one hour
STF (daily) Previous D days Next one day

MTF (weekly) Previous W weeks Next one week
LTF (monthly) Previous M months Next one month

The time series T needs to reconstruct as Equation (2) to satisfy the input of the proposed deep
model. The input matrix includes N − L samples; the length of sample x(t) is L. Different types of
forecasts have different L, which corresponds to H, D, W, and M. The corresponding output is defined
as Equation (3). Every output is the electricity consumption of the next duration.

Input =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
t1 t2 t3 · · · tL−1 tL

t2 t3 t4 · · · tL tL+1
...

...
...

. . .
...

...
tN−L tN−L+1 tN−L+2 . . . tN−2 tN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

Output =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
tL+1

tL+2
...

tN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

3. Methods

3.1. CNN

CNN is a typical feedforward neural network. It virtually constructs various filters that can extract
the characteristics of input data. Through these filters, the input data is convoluted and pooled, and
the topology features hidden in the data are extracted step by step. With the deep entry of the network
layer, the extracted features are abstracted. Therefore, the extracted features have translation, scaling,
and rotation invariance. The sparse connection in CNN reduces the number of training parameters and
speeds up the convergence; weight sharing effectively avoids algorithm overfitting; and downsampling
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makes full use of the features of the data and reduces the data dimension, optimizing the network
structure [29,30]. CNN can deal with one-dimensional (1-D) signals and sequences, two-dimensional
(2-D) images, and three-dimensional (3-D) videos. We apply CNN to extract features from 1-D
sequences in this paper.

The essential components of CNN are convolutional operation and pooling operation. Through
convolution operation, high-level local region feature representations are extracted with different filter
kernels. The convolution process is described as follows:

xl
j = f (

∑
i∈Mj

xl−1
i × kl

i j + Bl
j) (4)

where xl
j are the j feature maps of lth layer through convolution operation between l− 1th’s output xl−1

i

and j filters kl
i j, Bl

j is j bias of each feature map; i is in the range of j input values Mj. After convolution

operation, xl
j is processed with an activation function. The comprehensive result al

j is the input of the
next layer. Rectified Linear Unit (ReLU) was widely applied to accelerate and converge the CNN,
which enabled a nonlinear expression of input signals to enhance the representation ability. Which is
formalized as follows:

al
j = max

(
0, xl−1

j

)
(5)

Another key component of CNN is the pooling operation, which is employed to reduce the
dimension of input data and ensure scale invariance. Thus, obtained features are more stable, especially
when data is acquired from a noisy environment. There are three types of pooling operations: maximum,
minimum, and average pooling operation. We give an example of utilizing maximum pooling, which
is expressed as follows:

pl
j = max

(
ql−1

j (t)
)
, t ∈ [( j− 1)w, jw] (6)

where pl
j is the output of maximum value among l − 1th layer obtained feature maps ql−1

j (t), t is tth

output neurons at jth layer in the network, w is the width of pooling size. Further details of CNNs can
be found in LeCun’s paper [11].

3.2. LSTM

The traditional feedforward neural networks only accept information from input nodes. They do
not “remember” input to different time series [31]. Thus, it cannot extract the hidden features which
have a long-time dependency from raw data. LSTM is proposed for overcoming this shortcoming
as its long-term memory character [16]. It is a kind of special recurrent neural network (RNN). It
implements memory function through gate structure in one cell as shown in Figure 1. The key point of
the LSTM cell is the upper horizontal line, and it works like a conveyor belt; the information will not
change during the transmission. It deletes old information or adds new information through three
gate structures: forgot gate, input gate, and out gate. The output value of three gates and updated
information are expressed using ft, it, ot, Ĉt as shown in the following formulas:

ft = σ
(
w f ·[ht−1, xt] + b f

)
(7)

it = σ(Wi·[ht−1, xt] + bi) (8)

Ĉt = tan h(WC·[ht−1, xt] + bC) (9)

Ct = ft ∗Ct−1 + it∗Ĉt (10)

ot = σ(wO·[ht−1, xt] + bO) (11)

ht = σ(wO·[ht−1, xt] + bO)∗ tan h(Ct) (12)
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where Ct represents the memory cell which integrates the old useful information ft ∗Ct−1 and adds
some new information it∗Ĉt. W f , i, o represents the weight and bias vectors of the abovementioned
gates. σ is activation function sigmoid, ht−1 is the LSTM value of the previous time step, and xt is
input data.

Figure 1. The structure of Long-Short-Term Memory (LSTM) cells.

3.3. Statistical Components

Statistics is a variable used to analyze and test data in statistical theory. It is the macro performance
of data in the statistical domain. This paper creatively applied statistical components as one of the
dual channels in the deep model to extract more features. The input matrix of raw time series we
already defined as Equation (2). Each raw sample x(t)εInput corresponds to six tuples named Statistics,
which contains mean, max, min, standard deviation (Sd), skewness (Skew), and kurtosis (Kurt), which
are defined as Equations (13)–(18).

mean(t) =
1
M

M∑
t=1

x(t) (13)

max(t) = max(x(t)) (14)

min(t) = min(x(t)) (15)

Sd(t) =

√√√
1
M

M∑
t=1

(x(t) −mean(t))2 (16)

Skew(t) = E

⎡⎢⎢⎢⎢⎣(x(t) −mean(t)
sd(t)

)3⎤⎥⎥⎥⎥⎦ (17)

Kurt(t) = E

⎡⎢⎢⎢⎢⎣(x(t) −mean(t)
sd(t)

)4⎤⎥⎥⎥⎥⎦ (18)

4. Proposed Deep Model

We propose a deep model that has dual-channel inputs. One is raw data, and the other contains the
six tuples of statistical components as we defined above. The overall architecture of the proposed deep
model for electricity consumption forecasting can be seen from Figure 2 and a detailed configuration
of the proposed deep model is shown in Table 2.
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Figure 2. The architecture of the proposed multi-channels and scales convolutional neural networks
(MCSCNN)–LSTM at three levels.

Table 2. Detailed configuration information of the proposed deep model.

Layer Output Shape Connected To Parameters

Input1 (Raw) (None, 24, 1) − 0
Input2 (Statistic) (None, 6, 1) − 0

Conv1_1 (None, 12, 16) Input1 48
Conv1_2 (None, 8, 16) Input1 64
Conv1_3 (None, 6, 16) Input1 80
Conv2_1 (None, 12, 16) Conv1_1 528
Conv2_2 (None, 8, 16) Conv1_2 528
Conv2_3 (None, 6, 16) Conv1_3 528

Concatenate_1 (None, 26, 16)
Conv2_1,
Conv2_2,
Conv2_3

0

Static_Conv (None, 11, 10) Concatenate_1 2570
Global_Maxpooling (None, 5, 10) Static_Conv 0

Flatten_1 (None, 50) Global_maxpooling 0
LSTM_1 (None, 24, 20) Input2 1760
LSTM_2 (None, 10) LSTM_1 1240
Flatten_2 (None, 6) Input2 0

Concatenate_2 (None, 66)
LSTM_2
Flatten_1
Flatten_2

0

Dense (Output) (None, 1) Concatenate_2 67

Modifying the hyperparameters such as number and size of filter can improve the performance
of the model. We defined the configuration information of MCSCNN–LSTM empirically. Here, we
defined H, D, W, M as 24. The filter numbers of CNN decrease from 16 to 10 due to the shallow CNN
layer being in charge of the detailed local feature extraction; the deeper CNN layer functions to capture
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abstract global feature representations. At the same time, LSTM is relatively time-consuming, so we
defined proper output nodes in two LSTM layers as 20 and 10, respectively. From Figure 2, we can see
six parts in our MCSCNN–LSTM: Input, CNN feature extraction, LSTM feature extraction, feature
fusion, output, and weights updating. Every part is explained in detail as follows.

4.1. Input

The proposed deep model has double-channel inputs: raw sample x(t) from the input matrix and
six statistic components Statistics(x(t)), which can be written as:

In =
{
(x(t), Statistics(x(t)))

}
(19)

Moreover, we transform the raw sample into one tensor with the shape of (24, 1), and six tuples
Statistics into tensor with the shape of (6, 1) to satisfy the input requirements of the deep model. The
reshaped tensor is defined in (20).

Tensorin =
{
Reshape(In)

}
=

{
(Reshape(x(t)), Reshape(Statistic(x(t))))

}
(20)

4.2. CNN Feature Extraction

Different from other CNNs, we adopted only one pooling layer to reduce the dimension of extracted
features due to the data we used with lees dimensions, which is motivated by [31]. Firstly, CNN
models the multi-scale local features from raw sample tensor Reshape(x(t)) at three-scale convolution
operations—Conv1_1, Conv1_2, and Conv1_3—using different size kernels with shapes of 1 × 2,
1× 3, 1× 4. The convoluted results are activated by “ReLU”, as defined in Equation (5). In order to
obtain more robust features, we applied one more convolutional layer to extract the abstract feature
representations again; they are Conv2_1, Conv2_2, and Conv2_3. At last, extracted multi-local features
are processed by one wide convolution layer “Global_Conv” to obtain global representations. CNN
extracted features are expressed as Equation (21) and then are flattened for the next step, where CNN()

is the process of this sub-section.

CNNfeatures = CNN(Reshape(x(t))) (21)

4.3. LSTM Feature Extraction

Although CNN extracted rich feature representations, we doubt whether CNN can extract some
critical hidden features having a long-time dependency. Based on this point, we employed LSTM to
extract those features. Two-stacked LSTM layers are employed in this deep model, and every LSTM
layer contains some LSTM cells as shown in Figure 1. The features LSTM extracted are expressed as
Equation (22). LSTM() is the process of this sub-section.

LSTMfeatures = LSTM(Reshape(x(t))) (22)

4.4. Feature Fusion

Conventional CNN–LSTM is a stacked structure, in which CNN extracted features are processed
by LSTM again. Different from conventional CNN–LSTM, this paper adopted a parallel pattern of
CNN–LSTM to extract the features and then merged the features they extracted with flattening statistics
components. Therefore, we obtained fusion features that are multi-scale and multi-domain (time and
statistic domains), which are expressed as:

FUSION f eatures=Concatenate(CNN f eatures, LSTM f eatures, Flatten(Reshape(Statistic(x(t)))) (23)
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4.5. Output

After obtaining the rich, robust feature representations, the output is given by using one full
connection layer between the output nodes and the fusion features, which can be defined as:

Output = W·FUSION f eatures + B (24)

where W is the weight matrix and B is the bias. This paper mainly focuses on power consumption
forecasting of one duration unit (hourly, daily, weekly, and monthly). It is easy to extend the forecast of
multi-duration units by setting the nodes of output; we will discuss this later.

4.6. Updating the Networks

Backpropagation [32] algorithm was employed for updating the weights of the hidden layer
according to the loss function, and “Adam” [33] was selected as the optimizer for finding the
convergence path. The loss function we applied in this deep model is Mean Squared Error (MSE) as
shown in Equation (25), where yi is ground truth electricity consumption and ỹi is forecasting electricity
consumption using the proposed hybrid deep model.

MSE =
1
N

N∑
i=1

(yi − ỹi)
2 (25)

Electricity forecasting using the proposed model is formalized as Equation (26), where
MCSCNN_LSTM() is our model, and x(t)′ is new history electricity consumption data points.

consumption = MCSCNN_LSTM
(
x(t)′, Statistic

(
x(t)′

))
(26)

5. Experiment Verification

In order to verify the effectiveness of the proposed deep model, we designed the following
experiments using three datasets. The experiments are based on the operating system of Ubuntu
16.04.3, 64 bits with 23.4 GB RAM, and Intel (R) i7-700 CPU of processing speed 3.6 GHz. We used
Keras to implement our proposed deep model.

5.1. Dataset Introduction

The data we adopted for validating the priority of the proposed method is from Pennsylvania-New
Jersey-Maryland (PJM), which is a regional transmission organization in the USA. It is a part of the
Eastern Interconnection grid operating an electric transmission system serving all or parts of some
states. Different companies supply different regions. This paper applies three data sets from three
companies: American Electric Power (AEP), Commonwealth Edison (COMED), and Dayton Power
and Light Company (DAYTON). The raw data set of those is hourly consumption in megawatts
(MW), and detailed information is described in Table 3. The data is available on the website of
kaggle.com/robikscube/hourly-energy-consumption.

Table 3. Induction of data sets.

Dataset Start Date End Date Length

AEP 2004-12-31 01:00:00 2018-01-02 00:00:00 121,273
COMED 2011-12-31 01:00:00 2018-01-02 00:00:00 66,497
DAYTON 2004-12-31 01:00:00 2018-01-02 00:00:00 121,275

The original data is utilized to validate the effectiveness of VSTF. For the other forecasting tasks,
we use an overlapping sample algorithm to generate corresponding samples for each forecast, as
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shown in Algorithm 1. The stride of the algorithm we defined is one. Notably, we adopted the sample
rate of 24 h, 168 h, and 720 h to generate each type of sample for STF, MTF, and LTF. One electricity
consumption at different durations is given in Figure 3, in which different types fluctuate differently,
respectively, VSTF and STF, which fluctuate frequently.

Algorithm 1: Overlapping sample algorithm

Input: Hourly electricity consumption historical time series hourly
Output: Daily, weekly, and monthly electricity consumption historical time series samples and labels.
Define the length of samples D, W, M as 24.
Step 1: Integrating the original data for different forecasts

daily < −sum(hourly, 24) #adopt the sample rate of 24 h for STF
weekly < −sum(hourly, 168) #adopt the sample rate of 168 h for MTF
monthly < −sum(hourly, 720) #adopt the sample rate of 720 h for LTF

Step 2: Generating the feature and label of each sample corresponding to the (2) and (3)
For i in range (length(daily/weekly/monthly)): # different forecasts have different contents

daily f eatures < −daily[i : i + D]

dailylables < −daily[i + D + 1]
weekly f eatures < −weekly[i : i + W]

weeklylabels < −weekly[i + W + 1]
monthly f eatures < −monthly[i : i + M]

monthlylabels < −monthly[i + M + 1]
End for

Return daily f eatures, dailylabels, weekly f eatures, weeklylabels, monthly f eatures, monthlylabels

Figure 3. The electricity consumption at different durations. (a) Hourly electricity consumption for
VSTF. (b) Daily electricity consumption for STF. (c) Weekly electricity consumption for MTF. (d) Monthly
electricity consumption for LTF.

A description of each data for different forecasts is shown in Table 4. The first 80% of samples are
utilized for training the model; the last 20% of samples are utilized to validate. Before starting the
experiment, we adopted Equation (27) to normalize each data to work out the impact of different sizes
of units, where x′ is the normalized data point of time series T and x is the raw data sample.

x′ =
x−min(T)

max(T) −min(T)
(27)
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Table 4. The description of each data set for different forecasts.

Forecasts Dataset Samples

VSTF (Hourly)
AEP 121,249

COMED 66,473
DAYTON 121,251

STF (Daily)
AEP 121,225

COMED 66,449
DAYTON 121,227

MTF (Weekly)
AEP 121,081

COMED 66,305
DAYTON 121,083

LTF (Monthly)
AEP 120,529

COMED 65,753
DAYTON 120,531

5.2. Evaluation Metrics

In order to fairly evaluate the effectiveness of the proposed MCSCNN–LSTM deep model, we
adopted multiple evaluation metrics consisting of the root mean square error (RMSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE), as shown in Equations (28)–(30), where N is
the number of testing samples, the f orecast is the forecasted value, and real is the ground truth. RMSE
evaluates the model by the standard deviation of the residuals between real values and forecasted
values; MAE is the average vertical distance between ground truth values and forecasted values and is
more robust to the larger errors than RMSE. However, when massive data are utilized for training
and evaluating the model, the RMSE and MAE increase significantly and quickly. Therefore, MAPE is
needed, which is the ratio between residuals and actual values.

RMSE =

√∑N
n=1( f orecastn − realn)

2

N
(28)

MAE =

∑N
n=1

∣∣∣ f orecastn − realn
∣∣∣

N
(29)

MAPE =
100%

N

N∑
n=1

∣∣∣∣∣ f orecastn − realn
realn

∣∣∣∣∣ (30)

5.3. Performance Comparison with Other Excellent Methods

We compared our proposed method to other excellent deep learning-based methods: DNN- [34],
NPCNN- [35], LSTM- [20], and CNN–LSTM-based [25] methods. The structure and configuration
information of the above comparative methods are given in Table 5. Because the abovementioned
methods employed other additional sensor data, we adopted the structure of them only. Conv1D
is a convolutional layer with 1-D; Max1D is a max-pooling layer with 1D. We run 10 times of each
deep learning-based method to overcome the impact of randomness, and every time runs at 50 epochs.
Furthermore, we found the above NPCNN- [35], LSTM- [20], and CNN–LSTM-based [25] methods
did not learn at some iterations. It means the loss does not decrease with the increase of training
epochs. Instead, they keep one constant value from the first epoch. In summary, NPCNN, LSTM, and
CNN–LSTM highly rely on initial processing. The results of this phenomenon are listed in Table 6,
which gives the times of the above cases during 10-time training processes for each forecast. Notably,
the term “None” means it always learns from raw data and is not sensitive to the random initial
settings. For electricity consumption, we must avoid unpredicted and unexpected factors. However,
NPCNN- [35], LSTM- [20], and CNN–LSTM-based [25] methods highly rely on initialization. The
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findings show only DNN [34], and the proposed method always learns so that they are considered
as stable.

Table 5. The structure and configuration information of comparative methods.

Method Structure# Layer (Neurons)
Activation
Function

[34] DNN Input-Dense(24)-Dense(10)-Flatten-Output Sigmoid
[35] NPCNN Input-Conv1D(5)-Max1D(2)-Flatten(Dense(1))-Dense(10)-Output ReLu

[20] LSTM Input–LSTM(20)–LSTM(20)-Output ReLu

[25] CNN–LSTM Input-Conv1D(64)-Max1D(2)-Conv1D(2)-Flatten(Max1D(2))–
LSTM(64)-Dense(32)-Output ReLu

Table 6. The non-training times of each deep learning-based method among 10 times.

Dataset Method VSTF STF MTF LTF

AEP

[34] DNN None None None None
[35] NPCNN 2 3 2 2

[20] LSTM 5 4 5 2
[25] CNN–LSTM 2 2 3 2

Proposed None None None None

COMED

[34] DNN None None None None
[35] NPCNN 3 3 2 2

[20] LSTM 5 4 5 4
[25] CNN–LSTM 2 3 4 2

Proposed None None None None

DAYTON

[34] DNN None None None None
[35] NPCNN 2 2 3 2

[20] LSTM 4 4 2 3
[25] CNN–LSTM 2 2 1 2

Proposed None None None None

We compared the proposed method to the stable DNN [34] with averaged metrics of 10 times,
and also compared averaged metrics of the proposed approach to the best results of three unstable
methods: NPCNN [35], LSTM [20], and CNN–LSTM [25] in 10 times, as shown in Table 7 with RMSE,
Table 8 with MAE, and Table 9 with MAPE. The findings reveal that our proposed method has absolute
priority for different durations electricity forecasting at all evaluation metrics compared to DNN. Even
when compared to the best results of the other three methods, the proposed MCSCNN–LSTM keeps
the highest performance of all metrics for all data sets except for VSTF on the data set DAYTON
with evaluation metric MAPE, and RMSE on data set AEP for STF. LSTM [20] performs a little better.
In summary, the proposed MSCSNN–LSTM could forecast the electricity consumption of different
durations accurately and stably.

The averaged improvements of MAPE on different data as shown in Figure 4. The results show
that it improves a lot at all durations forecasts. Especially for STF, MTF, and LTF, which was beyond
50% compared to all the above methods. We select stable DNN as listed in Table 7 to compare the
predicted results, as shown in Figure 5. The findings show both the proposed method and DNN [34]
can predict the global trend of electricity consumption at VSTF, STF, and LTF. However, DNN cannot
predict long-term electricity consumption. Moreover, the proposed method outperforms DNN; it can
predict more detailed irregular trends for VSTF, STF, and LTF, respectively. We can see details from the
marked deep-red box in VSTF and STF of Figure 5.
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Table 7. The comparison results with RMSE.

Dataset Method RMSE (VSTF) RMSE (STF) RMSE (MTF) RMSE(LTF)

AEP

[34] DNN 389.79 756.15 2864.03 15,387.72
[35] NPCNN 476.38 1866.71 4220.96 40,393.06

[20] LSTM 298.28 124.19 757.13 4876.94
[25] CNN–LSTM 374.39 711.02 2408.09 20,060.97

Proposed 294.03 424.14 665.29 3385.70

COMED

[34] DNN 310.69 765.16 3908.04 10,934.82
[35] NPCNN 439.07 1090.17 6,274.38 14,900.91

[20] LSTM 251.47 426.46 2925.53 30,407.07
[25] CNN–LSTM 272.18 501.70 3082.33 4654.41

Proposed 240.51 377.74 520.02 3122.94

DAYTON

[34] DNN 61.49 112.43 311.37 1299.99
[35] NPCNN 71.16 183.90 390.88 1399.25

[20] LSTM 43.84 142.49 107.87 444.95
[25] CNN–LSTM 47.08 109.42 175.67 502.58

Proposed 43.68 65.68 95.84 270.40

Table 8. The comparison results with MAE.

Dataset Method MAE (VSTF) MAE (STF) MAE (MTF) MAE (LTF)

AEP

[34] DNN 246.41 583.44 2052.89 10,384.48
[35] NPCNN 332.21 1682.52 2506.76 16,803.83

[20] LSTM 198.67 995.27 613.45 3732.41
[25] CNN–LSTM 248.65 508.70 1705.03 11,723.84

Proposed 180.94 250.15 494.04 2788.86

COMED

[34] DNN 198.20 611.87 2951.25 8023.53
[35] NPCNN 333.18 813.53 5427.71 11,953.35

[20] LSTM 156.24 316.02 2831.15 30,082.99
[25] CNN–LSTM 179.20 405.19 1181.74 3274.47

Proposed 142.60 244.50 345.84 2434.41

DAYTON

[34] DNN 39.93 88.92 244.97 1145.00
[35] NPCNN 49.81 135.24 312.21 1247.53

[20] LSTM 29.10 116.53 613.45 372.93
[25] CNN–LSTM 28.82 79.36 131.67 392.52

Proposed 27.12 38.68 70.04 212.64

Table 9. The comparison results with MAPE.

Dataset Method MAPE (VSTF) MAPE (STF) MAPE (MTF) MAPE (LTF)

AEP

[34] DNN 1.68 0.16 0.08 0.10
[35] NPCNN 2.32 0.46 0.10 0.17

[20] LSTM 1.65 0.27 0.03 0.03

[25] CNN–LSTM 1.70 0.15 0.07 0.11
Proposed 1.23 0.06 0.02 0.03

COMED

[34] DNN 1.79 0.23 0.16 0.10
[35] NPCNN 3.02 0.30 0.29 0.15

[20] LSTM 1.41 0.12 0.15 0.38
[25] CNN–LSTM 1.68 0.15 0.07 0.04

Proposed 1.30 0.09 0.02 0.03

DAYTON

[34] DNN 1.99 0.19 0.07 0.08
[35] NPCNN 2.58 0.28 0.09 0.08

[20] LSTM 1.36 0.23 0.03 0.03
[25] CNN–LSTM 1.49 0.16 0.04 0.03

Proposed 1.38 0.08 0.02 0.01
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Figure 4. The averaged MAPE improvement results for each duration forecast compared to other
excellent deep learning-based methods on three data sets. Each data set contributes the same to the
final outputs.

Figure 5. The comparative forecasting results using two different deep learning-based methods. The
x-axis is the time stamp at different duration; the y-axis is electricity consumption. (a) VSTF (hourly)
forecasting results. (b) STF (daily) forecasting results. (c) MTF (weekly) forecasting results. (d) LTF
(monthly) forecasting results.
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5.4. Feature Extraction Capacity of MCSCNN–LSTM

To better understand the feature extraction capacity of the proposed MCSCNN–LSTM, firstly,
we compared it to some single models in MCSCNN–LSTM using the metric of MAPE: Multi-Scale
CNN (MSCNN), Multi-Channel and Multi-Scale CNN (MCSCNN), and hybrid conventional stacked
CNN–LSTM (SCNN–LSTM). The structure of LSTM is the same as [20], which is not stable. All
configurations of those models are the same as MCSCNN–LSTM. The results are average of 10 times as
shown in Table 10.

Table 10. The comparison results for validating the feature learning capacity using averaged MAPE.

Dataset Method VSTF STF MTF LTF

AEP

MSCNN 1.91 1.17 0.85 1.26
MCSCNN 2.28 0.93 0.79 1.19

SCNN–LSTM 1.84 0.64 0.57 0.75
Proposed 1.23 0.06 0.02 0.03

COMED

MSCNN 2.36 1.02 0.79 0.86
MCSCNN 2.31 0.87 0.89 0.58

SCNN–LSTM 1.93 0.80 1.08 0.43
Proposed 1.30 0.09 0.02 0.03

DAYTON

MSCNN 2.28 1.14 0.77 0.91
MCSCNN 2.61 0.81 0.70 0.83

SCNN–LSTM 2.08 0.63 0.45 0.45
Proposed 1.38 0.08 0.02 0.01

Comparing the MSCNN with the NPCNN [35], we find that the proposed MSCNN is more stable
than general CNN-based methods. The results indicate MSCNN with single input cannot extract
satisfactory feature representations for different forecasts of electricity consumption by comparing
MSCNN with MCSCNN, especially for STF, MTF, and LTF. By comparing SCNN–LSTM to LSTM, we
can see the MCSCNN can extract elegant, robust features to avoid instability and improve performance.
We computed the averaged improvement of MAPE on three data sets for different duration forecasts, as
shown in Figure 6. MSCNN is selected as the baseline. The findings reveal that the proposed method
promotes a lot for all kinds of forecasts. Attentively, the results show only the performance of the
MCSCNN on data AEP for VSTF decreased. Furthermore, the level of feature extraction capacity is
ranked as proposed: > SCNN–LSTM >MCSCNN >MSCNN.

Secondly, we have analyzed the inside features to confirm the productive feature extraction
capacity of the proposed deep model. The visualization results using one VSTF sample shown
in Figure 7a,b intimate double-channel inputs: one raw data sample and corresponding statistics
components by using the normalized data sample of AEP. Figure 7c is a CNN-learned feature map
through the raw data sample. Figure 7d is the feature map of LSTM and we marked it with a red box at
the comprehensive feature map Figure 7f, and Figure 7e is a statistic feature map that is marked with
the yellow box in Figure 7f. The unmarked part in Figure 7f is a CNN-learned feature map. Figure 7f
is a comprehensive feature map. The findings reveal that CNN can learn multi-scale robust global
features with less noise because it almost has no changes around 0. The feature map of LSTM ranges
from −0.100 to 0.075, and the statistic feature map ranges from 0.00 to 1.75, which indicates statistic
components are more useful to extract detailed patterns than LSTM. The comprehensive feature maps
combined robust multi-scale global features and detailed features of different domains.
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Figure 6. The averaged improvement of the proposed deep model for each duration forecast based on
MSCNN on three data sets.

Figure 7. Feature maps visualization. Each part of the proposed deep model extracted different features.
(a) The raw sample channel. (b) The statistic components channel. (c) CNN-learned feature map, which
almost has no changes around 0. (d) LSTM-learned feature map, which ranges from –0.10 to 0.075.
(e) Statistic components feature map of a reshaped tensor. The raw statistic components channel was
reshaped into [1,6], which ranges from 0.00 to 1.75. (f) Reshaped comprehensive feature map. The
shape of the obtained feature is 1 by 66, and we reshaped it into 11 by 6 to clearly see and analyze.
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5.5. Transfer Learning Capacity Test

We have validated the transfer learning capacity of the proposed method to satisfy the needs in
the real-life. For instance, one new company wants to predict electricity consumption, but they do
not have enough historical data to train the model. It requires the model with an excellent transfer
learning capacity. The following experiments are designed to test the transfer learning capacity of the
proposed method, as described in Table 11. We adopted the training part of AEP as the training set to
train the model for VSTF, the training part of COMED to train the model for STF, and the training part
of DAYTON to train the model for MTF and LTF. The testing part of others is utilized to test.

Table 11. Experiment design for transfer learning capacity test of the proposed deep model.

Forecasts Training Sets Testing Sets

VSTF AEP COMED, DAYTON
STF COMED AEP, DAYTON
MTF DAYTON AEP, COMED
LTF DAYTON AEP, COMED

The DNN [34] and the proposed MCSCNN–LSTM applied the same data to train and test are
considered as comparative experiments to validate the transfer learning capacity. For example, we
trained DNN and MCSCNN–LSTM with the training part of COMED, DAYTON, and tested on the
testing part of the same data set for VSTF. The results as shown in Figure 8; the x-axis is the testing part
of each data set. The results indicate the proposed method has a functional transfer learning capacity,
which outperforms DNN [34] for all kinds of forecasts, and a little lower than the proposed method
using the same data to train and test the model. We performed a t-test to quantify this difference.
The results of the p-value are shown in Table 12. If a p-value is higher than 0.05, it means there is no
significant difference. The results show there was no significant difference when we utilized different
companies’ data for training the model. Moreover, even though DNN [34] employed the same source
data to train and test model, its performance is worse than “transfer”. Notably, there is a significant
improvement for the VSTF of electricity consumption compared to DNN. In summary, Figure 8 and
Table 12 confirmed that the proposed method has an excellent transfer learning capacity against
noisy data.

Table 12. The p-value of significance test using t-test.

Forecasts Transfer vs. DNN [34] Transfer vs. Proposed

VSTF 0.0380 0.4650
STF 0.4800 0.3600
MTF 0.3120 0.1840
LTF 0.1300 0.4230

5.6. Multi-Step Forecasting Capacity Test

Accurate one-step forecasting enables decision-makers to create proper policies and measures
of the power supply before one duration. Multi-step forecasting can provide multi-step future
consumption information in advance. To validate the multi-step forecasting capacity of the proposed
method for multiple forecasts, we designed a five-step forecasting experiment and compared it to [27],
which tests the multi-step forecasting capacity of their model for VSTF. The input of the proposed
MCSCNN–LSTM for multi-step forecasting in Figure 2 has the same shape with one-step forecasting,
we only need to change the output into one vector with five elements regarding the five future
consumption data points of each forecast. The comparative results using averaged RMSE, MAE, and
MAPE of 10 times are shown in Table 13. AEP is adopted for VSTF and LTF; COMED and DAYTON
are adopted for STF and MTF. The results indicate the proposed MCSCNN–LSTM performs very well
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for STF, MTF, and LTF. Especially, the performance of MTF and LTF has increased tenfold compared to
the method of [27] using RMSE, MAE, and MAPE. Only the VSTF is a little worse than [27], but they
still are the same level. We also give one sample of five-step forecasting of different forecasts as shown
in Figure 9. We can see the proposed MCSCNN–LSTM accurately predicts all types of trends from
the raw data and it outperforms [27] CNN–LSTM in terms of handing details. Notably, the proposed
method has an absolute advantage in terms of STF, MTF, and LTF.

Figure 8. The average MAPE of different methods to validate the transfer learning capacity of
the proposed MCSCNN–LSTM for different forecasts. (a) Transfer learning capacity test for VSTF.
(b) Transfer learning capacity test for STF. (c) Transfer learning capacity test for MTF. (d) Transfer
learning capacity test for LTF.

Table 13. The multi-step forecasting capacity test results.

Metrics RMSE MAE MAPE

Forecasts (Data) Proposed
CNN–LSTM

[27]
Proposed

CNN–LSTM
[27]

Proposed
CNN–LSTM

[27]

VSTF(AEP) 508.33 477.08 354.52 324.73 2.43 2.22
STF(COMED) 1.8311 × 103 1.8320 × 103 1.3592 × 103 1.3612 × 103 0.50 0.51

MTF(DAYTON) 4.6342 × 102 1.0418×103 3.0828 × 102 8.2458× 102 0.11 0.23
LTF(AEP) 1.1251 × 104 3.0284×104 6.9459× 103 2.3523× 104 0.07 0.22
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Figure 9. A comparison of the results of the five-step forecasting using the proposed method and
CNN–LSTM [27]. The results indicate the proposed method has an absolute advantage in terms of
STF, MTF, and LTF. For VSTF, CNN–LSTM performs a little better than proposed MCSCNN–LSTM.
(a) Five-step electricity forecasting results for VSTF. (b) Five-step electricity forecasting results for STF.
(c) Five-step electricity forecasting results for MTF. (d) Five-step electricity forecasting results for LTF.

6. Discussion

We have proposed a novel MCSCNN–LSTM that models different domain and multi-scale feature
patterns to forecast the electricity consumption at different durations. The difficulty of feature extraction
for different durations forecasts using one model, and different duration electricity consumptions
have different patterns of the trend as shown in Figure 3, which requires a model with excellent
feature extraction capacity with good robustness. Besides, collecting related data such as weather, the
temperature is costly and time-consumption. Therefore, we developed MCSCNN–LSTM to extract
multi-scale and multi-domain features by only inputting the electricity history data, as shown in
Figure 2. We connected CNN and LSTM parallelly with dual inputs, Table 10 and Figure 6 shows it is
more effective than conventional stacked CNN–LSTM.

We compared our proposed deep model with other excellent deep models in Table 6, which
indicates our proposed model is stable. Furthermore, Tables 7–9 and Figure 4 show that we have
improved the performance compared to the stable DNN [34] and the best results of NPCNN [35],
LSTM [20], and CNN–LSTM [25]. Primarily, it has improved a lot for STF, MTF, and LTF.
Figure 5 explained that the proposed method could predict the detailed irregular patterns of
electricity consumption.

As can be seen from Table 10, we have analyzed the feature capacity of each part of the
proposed MCSCNN–LSTM by comparing the averaged MAPE. In addition, we computed the averaged
improvement ratio of the proposed MCSCNN–LSTM by using MCSCNN as the benchmark in Figure 6.
It proved that each part of our proposed model has excellent feature extraction capacity. Moreover, we
have analyzed the inside feature map of MCSCNN–LSTM as shown in Figure 7, it shows the CNN
part of MCSCNN–LSTM can extract multi-scale robust global features, and statistic components are
more effective in extracting detailed patterns than LSTM.

As shown in Figure 8, we have designed comparative experiments on three data sets to validate
the transfer learning capacity of the proposed MCSCNN–LSTM. The findings from Figure 8 have
proven that our proposed deep model has excellent transfer learning skills. In order to quantify the
transfer learning capacity, we compared the p-value of the t-test with none-transfer learning methods
in Table 12. Moreover, we have confirmed the proposed method could accurately forecast multi-step
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electricity consumption in advance in Table 13 and Figure 9, the results from Table 13 and Figure 9
indicate our proposed method outperforms CNN–LSTM which was developed in [27].

7. Conclusions

In conclusion, we proposed a novel MCSCNN–LSTM to forecast the electricity consumption
at different durations accurately and robustly only by using the self-history data. The comparative
analysis has shown that the proposed hybrid deep model MCSCNN–LSTM reaches state-of-the-art
performance. The proposed model is compared to other excellent deep learning-based methods to
confirm the efficiency and robustness. We run ten times for each model on three data sets to evaluate
fairly. The results indicate that our proposed deep model is not sensitive to the initial settings and
stable. We compare the forecasted results with other methods to prove that the proposed method can
extract more detailed patterns. We also confirmed the necessity of each part in the proposed deep
model by comparing the MAPE of each part for electricity forecasting at different durations. We proved
that the parallel structure of CNN–LSTM is more potent than conventional stacked CNN–LSTM. We
also analyzed the internal feature maps to confirm the feature extraction capacity of each part, and the
results show CNN can extract global features; LSTM, and statistic components are in charge of detailed
pattern extraction. Some individual experimental cases are designed to validate their excellent transfer
learning capacity. We confirmed the proposed MCSCNN–LSTM has excellent multi-step forecasting
capacity for STF, MTF, and LTF, respectively. The proposed MCSCNN–LSTM can accurately and stably
predict the irregular patterns of electricity consumption at different durations by only using self-history
data and have a good transfer learning capacity, which can be easy to extend to other forecasting tasks.

In this paper, we designed the networks empirically. Setting proper hyperparameters can
effectively improve forecasting performance. In the feature, we will use deep reinforcement learning
to automatically build the model and choose the better hyperparameters of MCSCNN–LSTM for
electricity consumption forecasting.
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Abstract: Asynchronous motors are widely used in industry and agriculture because of their simple
structure, low cost, and easy maintenance. However, due to the coupling and uncertain factors of
the actual operation of the motor, a traditional controller cannot achieve a satisfactory control effect.
A linear active disturbance rejection controller (LADRC), featuring good robustness and adaptability,
was proposed to improve the control efficiency of a nonlinear, uncertain plant. A linear extended
state observer (LESO) is the core part of a L. The accuracy of the observation of state variables and
unknown disturbances is related to the control effect of the controller. The performance of a traditional
LESO is not high enough, and thus an error differential is introduced by analyzing the principle of
LESO to improve its observation performance. The improved LADRC applies to the vector speed
control of the induction motor. Additionally, low-speed and high-speed no-load starting, sudden
load, electromagnetic torque, and three-phase stator current of the induction motor was simulated
using MATLAB (Developed by MathWorks in Natick, MA, USA, and dealt by MathWorks Software
(Beijing) Co., Ltd. in Beijing, China). Theoretical analysis and simulation results show that the ADRC
based on the improved linear expansion observer was better than the traditional linear ADRC in
terms of the dynamic and static performance and robustness.

Keywords: asynchronous motor; linear active disturbance rejection control; error differentiation;
vector control

1. Introduction

Three-phase asynchronous motors are commonly used in industrial and agricultural production
due to their advantages of simple structure, ruggedness, and low price [1–4]. The emergence of vector
control allows the AC speed regulation system to have good speed regulation performance, just like a
DC speed regulation system [5]. However, vector control has disadvantages, such as dependence on
accurate mathematical models, poor adaptability to instruction changes, and sensitivity to changes in
the system parameters. Even if the motor parameters and rotor flux linkage are known accurately,
decoupling can be achieved under steady-state conditions, and there are still couplings during the
field-weakening speed regulation. The nonlinearity of the magnetization curve of the ferromagnetic
material in the motor [6] leads to the nonlinearity of the motor inductance, and the change of the
inductance parameter reduces the speed control effect of the vector control. The AC control system has
the characteristics of non-linearity [1,4], strong couplings, and having multiple variables, which means
the traditional control method based on a precise mathematical model faces severe challenges.

The active disturbance rejection control (ADRC) theory was proposed for the control of nonlinear
uncertain systems. The system is linearized by compensating for the observed total disturbance.
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The compensated system can be converted into an integrator series independent of whether the
object is deterministic, linear, or nonlinear, or whether it is time-varying or time-invariant. At present,
the ADRC theory has been applied to a six-rotor aircraft [7], a permanent magnet synchronous motor [8],
DC–DC boost converter [9], and other fields. Abdul-Adheem et al. [10] applied the improved ADRC
to the decoupling control of multivariable systems. The coupling is divided into two parts: static
coupling (control input of the system) and dynamic coupling (parts other than the control input to
the system). All ADRC pass a reversible static matrix (approximately reversible also applies) that
is used for decoupling. Compared with the traditional decentralized control method (an automatic
disturbance rejection controller designed independently for each part of the system), the improved
ADRC decoupling algorithm uses part of the system model information, easing the burden of the
extended state observer (ESO) such that the decoupling effect is better. Although both numerical
simulations and physical verification show that the ADRC controller has a good control effect, the large
number of modeled non-linear links between the ADRC require high system hardware requirements
and increases the difficulty of real-time control. The second-order auto-disturbance rejection controller
has 15 parameters that need to be adjusted, and the direction of the parameter adjustment is difficult to
determine, which brings certain difficulties in the practical application of the controller. In short, many
factors limit the popularity and engineering application of ADRC.

American scholar Gao Zhiqiang explored the connotation and meaning of the idea of
auto-disturbance control. He was inspired by the concept of “time scale” [11] proposed by Han
Jingqing researchers and proposed the concept of “frequency scale.” The parameter setting is carried
out through the pole configuration in the frequency domain, and the parameters to be set are reduced to
three, which greatly promotes the development and application of the auto-disturbance control theory.
Since then, the linear auto-rejection controller has been used in fault detection [12], a wind energy
conversion system [13], maximum power point tracking [14], and other fields. Li et al. [15] adopted
the concept of “relative order” to determine the order of the linear ADRC (LADRC) controller and
designed a second-order LADRC controller to suppress the harmonics to the grid in the AC microgrid.
Laghridat et al. [13] applied LADRC to the control of generators and grid-side converters. Compared
with the ADRC, an LADRC has the advantages of a fixed structure, an independent object model,
clear physical meaning, easy theoretical analysis [13,16], and easy engineering application. However,
in practical applications, it is found that the anti-interference performance of LADRC decreases rapidly
with the increase of interference and input frequency, which is related to the insufficient performance
of a traditional ESO [17].

This study took the three-phase cage asynchronous motor as the control object, established a
mathematical model for it according to the rotor flux linkage orientation, and introduced the structure
of the ADRC controller and the role of each component. First, the structure and function of each
part of the ADRC controller are introduced. Then, based on the basic principle of deviation control,
the adjustment process of each state variable of traditional LESO is discussed and improved. Through
theoretical analysis, the stability proof and precision analysis of an improved LESO are given. From the
frequency domain, the convergence, tracking, and immunity of the improved linear auto-disturbance
controller are analyzed. In the time domain, a large deviation band of the initial value of the internal
state variable of the observer is seen and the corresponding value of the system’s overshooting is
compared. Finally, the control effects of the two controllers are compared based on results from
Matlab/Simulink digital simulation software (Developed by MathWorks in Natick, MA, USA, and dealt
by MathWorks Software (Beijing) Co., Ltd. in Beijing, China).

2. Mathematical Modeling of an Asynchronous Motor and Introduction to Classic LADRC

2.1. Mathematical Modeling of the Rotor Flux Orientation of Induction Motor

To facilitate the research, it was necessary to treat the motor as an ideal motor; therefore, it was
necessary to make the following assumptions [18]:
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1. The stator and rotor three-phase windings of the motor are completely symmetrical.
2. The surfaces of the stator and rotor are smooth without any cogging effect, and the air gap

magnetic potential of each phase of the stator and rotor exhibits a sinusoidal distribution in space.
3. The influences of the core eddy current, saturation, and hysteresis loss are ignored, and the skin

effect of the conductor is ignored. (Note: the parameters of the rotor side have been converted to
those of the stator side.)

The three-phase winding voltage balance equation in the three-phase stationary coordinate system
is shown in Figure 1:
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Figure 1. Physical model of an asynchronous motor.

The three-phase winding voltage balance equation in the three-phase stationary coordinate system
is shown in Equation (1):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uA
uB

uC
ua

ub
uc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rs 0 0 0 0 0
0 Rs 0 0 0 0
0 0 Rs 0 0 0
0 0 0 Rr 0 0
0 0 0 0 Rr 0
0 0 0 0 0 Rr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iA
iB
iC
ia
ib
ic

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

d
dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψA
ψB

ψC
ψa

ψb
ψc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where uA,uB,uC,ua,ub and uc are the instantaneous values of the stator (A, B, C) and rotor phase (a, b, c)
voltages; iA,iB,iC,ia ,ib , and ic are the instantaneous values of the stator (A, B, C) and rotor (a, b, c) phase
currents; and ψA,ψB,ψC,ψa,ψb,ψc are the full flux of each phase winding. Rs and Rr are the resistances
of the stator and rotor windings, respectively.

The flux of each winding of an asynchronous motor is the sum of its own self induction flux and
the mutual inductance flux of other windings. Therefore, the flux of the six windings can be expressed
as follows: [

ψs

ψr

]
=

[
Lss Lsr

Lrs Lrr

][
is
ir

]
, (2)

where ψs =
[
ψA ψB ψC

]T
,ψr =

[
ψa ψb ψc

]T
,is =

[
iA iB iC

]T
, and ir =

[
ia ib ic

]T
.

The stator inductance matrix is:

Lss =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Lms + Lls − 1

2 Lms − 1
2 Lms

− 1
2 Lms Lms + Lls − 1

2 Lms

− 1
2 Lms − 1

2 Lms Lms + Lls

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (3)
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The rotor inductance matrix is:

Lrr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Lms + Llr − 1

2 Lms − 1
2 Lms

− 1
2 Lms Lms + Llr − 1

2 Lms

− 1
2 Lms − 1

2 Lms Lms + Llr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

The mutual inductance matrix of the stator and rotor is:

Lrs = LT
sr = Lms

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosθ cos(θ− 2π

3 ) cos(θ+ 2π
3 )

cos(θ+ 2π
3 ) cosθ cos(θ− 2π

3 )

cos(θ− 2π
3 ) cos(θ+ 2π

3 ) cosθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

The voltage equation of the asynchronous motor in the rotating orthogonal coordinate system can
be obtained from a Park transform:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

usd
usq

urd
urq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rs 0 0 0
0 Rs 0 0
0 0 Rr 0
0 0 0 Rr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

isd
isq

ird
irq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
d
dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ψsd
ψsq

ψrd
ψrq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ω1ψsq

ω1ψsd
−(ω1 −ω)ψrq

(ω1 −ω)ψrd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (6)

where usd, usq, urd, and urq are the components of the voltage of the stator and rotor sides along the
d and q axes; isd, isq, ird, irq are the components of the current of the stator and rotor sides along the
d and q axes; ψsd, ψsq, ψrd, and ψrq are the components of the magnetic flux of the stator and rotor
sides along the d and q axes; and ω1 and ω are the synchronous angular velocity and the rotor angular
velocity, respectively.

The flux equation of the asynchronous motor in the synchronous rotation orthogonal coordinates
system is: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψsd
ψsq

ψrd
ψrq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ls 0 Lm 0
0 Ls 0 Lm

Lm 0 Lr 0
0 Lm 0 Lr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

isd
isq

ird
irq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (7)

where Ls, Lr, and Lm are stator inductance, rotor inductance, and mutual inductance between the stator
and rotor, respectively. ψrd = ψr when the rotor flux is oriented as in Figure 2.
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Figure 2. Rotor flux orientation.
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Selecting the stator currents and rotor flux as the state variables, and the stator voltages as the
control variables, a fourth-order simplified nonlinear differential equation can be given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

.
ωr = k1ψrisq − np

J TL,
.
ψrd = Lm

Tr
isd − 1

Tr
ψr,

.
isd = −k2isd + k3ψr +ω1isq +

1
σLs

usd,
.
isq = −k2isq − Lm

σLsLr
ψrωr −ω1isd +

1
σLs

usq.

(8)

In the above state equations, np, Tr, and TL represent the number of pole pairs of the motor,
the load torque, and the rotor time constant, respectively. The coupling between the state variables
in Equation (8) causes the nonlinearity of the system [4,10]. The vector control block diagram of the
asynchronous motor is shown in Figure 3, in which automatic speed regulator (ASR), the automatic
current torque regulator (ACTR), and the automatic current magnetic regulator (ACMR) are the
controllers of the vector speed regulation system.
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Figure 3. Vector control structure of an asynchronous motor. ASR: automatic speed regulator, ACTR:
Automatic torque current regulator, ACMR: Automatic magnetic field current regulator SVPWM: Space
Vector Pulse Width Modulation.

In Equation (8), there is a cross-coupling term in the state equation of the asynchronous motor,
thus resulting in the mutual effect of control of the torque component and the excitation component of
the stator current, which further affects the dynamic and static performance of the system. The graphical
representation of the coupling term is shown in Figure 4. Decoupling can be achieved if the coupling
terms are observed and compensated for [19].
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Figure 4. Coupling structure of an asynchronous motor.
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2.2. LADRC Introduction and First-Order LADRC Design

The ADRC consists of a tracking differentiator (TD) [20,21], an extended state observer (ESO) [22,23],
and a nonlinear states error feedback control laws (NLSEF) . Among them, the TD can arrange the
transition process for the given input, reduce the “impact” of the original error on the system caused
by the given mutation, and realize the differential signal extraction; ESO can observe the state variables
and total disturbances (unmodeled dynamics and external disturbances) of the controlled object in a
real-time manner; and the NLSEF is used to improve the dynamic characteristics of the closed-loop
system. The linear ADRC only replaces the nonlinear part of the original controller with the linear
part, where the structure of the controller is shown in Figure 5.

TD b SVPWM

bond order
z z

Arrange the
transition process

Disturbance
compensation

v y
−

u u
Motor

Accused object

NLSEF

ESOADRC

Figure 5. Structure of an active disturbance rejection controller (TD: tracking differentiator, NLSEF:
nonlinear state error feedback, ESO: extended state observer).

Consider the first-order system [24]:

.
y = −ay + w + bu, (9)

where u is the output of the controller, y is the system output, w is the external disturbance, a is the
system parameter, b is the controller gain that satisfies b ≈ b0; the parameters a and b are unknown.
Let x1 = y and x2 = f (y, w) = −ay + w + (b − b0)u, where x1 represents the system output and
x2 represents the total disturbance of the system. Assuming that f (y, w) is derivable and satisfies
.
f (y, w) = h, the state variables x1 = y and x2 are selected to establish the continuous extended state
equation s shown in Equation (10):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[ .
x1
.
x2

]
=

[
0 1
0 0

][
x1

x2

]
+

[
b0

0

]
u +

[
0
1

]
.
f ,

y =
[

1 0
][ x1

x2

]
.

(10)

The corresponding continuous expansion state observer can be established as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
e = z1 − y,[ .

z1
.
z2

]
=

[ −β1 1
−β2 0

][
z1

z2

]
+

[
b0 β1

0 β2

][
u
y

]
.

(11)

In Equation (11), z1 and z2 are the state variables of the linear extended state observer, which can
be adjusted using the difference between the state variables z1 and the system output y. By selecting
the appropriate observer gain coefficients β1 and β2, the observer state variables can be used to observe
the system output y and the total disturbance f (y, w).
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Estimate the total disturbance of the system through the expanded state variables, and compensate
for the input side of the system:

u =
(−z2 + u0)

b0
. (12)

If the estimation error of z2 to f (y, w) is excluded, Equation (9) is simplified to a pure integral link:

.
y = ( f (y, w) − z2) + u0 ≈ u0. (13)

The linear feedback control law uses proportional links:

u0 = kp(v− z1). (14)

In Equation (14), kp is the controller bandwidth and v is the given reference input. Pole assignment
of the parameters of the observer and controller is performed using the bandwidth method [10]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

β1 = 2ω0,
β2 = ω2

0,
kp = ωc.

(15)

where ωc is the controller gain and ω0 is the observer gain. The bandwidth ω0 of the observer is about
3 to 5 times that of the controller ωc.

3. Design and Performance Analysis of ADRC

3.1. Design and Stability Proof of the Improved State Observer

The traditional observer estimates the internal state variables of the system using the difference e
between the estimated value z1 of the system output and the output y of the system. In Sun [25], it is
pointed out that the observer should first track the output y of the system with z1, and then track the
output f with z2. Before the tracking of the estimated value z1 to the system output y is completed,
other state variables of the observer cannot complete the tracking of the corresponding state variables
of the system. However, when the observation variable z1 can better track the output y of the system,
the smaller error e makes it difficult to adjust other observation variables; therefore, we have to use a
larger coefficient β2 to speed up the tracking of the observation variables to the real value. Meanwhile,
to ensure the stability of the system, the value of β2 cannot be too large. In general, the gain coefficient
of the observer βi increases by an order of magnitude, which is more serious in the higher-order ADRC.
Yang et al. [26] mentioned that the extended observer could be improved by introducing the differential
of the observation error, but the parameters of the controller were doubled and the parameters of the
observer needed to be configured; therefore, it had to be further simplified.

From Equation (11), we can get: {
z1 = x1 + e,
z2 =

.
z1 + β1e− b0u.

(16)

The following equation can be obtained by sorting Equation (16):{
z1 = x1 + e,
z2 = x2 +

.
e + β1e.

(17)
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It can be seen from Equation (17) that the error between z2 and x2 is
.
e + β1e, and adjusting z2 by

using it as a correction amount can speed up the convergence without significantly increasing the
observer gain. Therefore, the classic LESO can be modified as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

e = z1 − x1,
.
z1 = z2 − β1e + b0u,
.
z2 = −β2(

.
e + β1e).

(18)

Equations (12), (14), and (18) form the improved Linear Active Disturbance Rejection Controller
of Equation (8), whose structure is shown in Figure 6.

ββ
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b

βs

b
G s

u yv
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− −
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+
+

Figure 6. Structure of the improved controller.

3.1.1. Improved Stability Proof of LESO

Let e1 = z1 − x1 and e2 = z2 − x2. From Equations (10) and (18), we obtain:{ .
e1 = e2 − β1e1,
.
e2 = −β2e2 −w.

(19)

Let Y1 = e1 and Y2 = e2 − β1e1 to obtain the error equation of the LESO system:⎧⎪⎪⎨⎪⎪⎩
.
Y1 = Y2,
.
Y2 = −(β1 + β2)Y2 − β1β2Y1 −w.

(20)

The characteristic equation of Equation (20) is:

λ2 + (β1 + β2)λ+ β1β2 = 0. (21)

The necessary and sufficient conditions for the stability of the second-order system are β1 + β2 > 0
and β1β2 > 0. The zero solution (e1 = 0, e2 = 0) of the second-order constant-coefficient differential
equation shown in Equation (20) is globally asymptotically stable because ω0 > 0 and ωc > 0 are stable.

When considering the disturbance w, the system has a steady-state error. Specify w0 = const > 0
when |w| ≤ w0 . When the system reaches a steady-state, then:⎧⎪⎪⎨⎪⎪⎩

.
Y1 = Y2 = 0,
.
Y2 = 0.

(22)

The steady-state error is calculated according to Equation (19):⎧⎪⎪⎨⎪⎪⎩ |e1| ≤ w0
β1β2

,
|e2| ≤ w0

β2
.

(23)
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3.1.2. Observation Errors of the Classical First-Order LESO

Stability and error analyses are performed on the traditional first-order LESO represented by
Equation (11). Let Y1 = e1 and Y2 = e2 − β1e1 be used to obtain the equation of the traditional LESO
error system: ⎧⎪⎪⎨⎪⎪⎩

.
Y1 = Y2,
.
Y2 = −β1Y2 − β2Y1 −w.

(24)

The characteristic equation of Equation (24) is given as follows:

λ2 + β1λ+ β2 = 0. (25)

Using the Hurwitz theorem, the necessary and sufficient conditions for the stability of the
second-order system are β1 > 0 and β2 > 0. The zero solution (e1 = 0, e2 = 0) of the second-order
constant-coefficient differential equation shown in Equation (24) is globally asymptotically stable
because ω0 > 0 and ωc > 0 are stable.

When considering the disturbance w, the system has a steady-state error. Specify w0 = const > 0
when |w|≤ w0 . When the system reaches a steady-state, then:⎧⎪⎪⎨⎪⎪⎩

.
Y1 = Y2 = 0,
.
Y2 = 0.

(26)

The steady-state error of the observer can be expressed as:⎧⎪⎪⎨⎪⎪⎩ |e1| ≤ w0
β2

,

|e2| ≤ β1w0
β2

.
(27)

According to the above analysis, the modified LESO shown in Equation (18) can exhibit a better
dynamic regulation performance and a smaller steady-state observation error than the traditional LESO
when the parameters β1 and β2 are the same. Compared with Equations (23) and (27), the improved
LESO exhibits a higher observation accuracy than the traditional LESO when the observer and controller
bandwidths are the same.

3.2. Performance Index Analysis of the Improved Linear ADRC

3.2.1. Convergence and Estimation Error of the Improved LESO

The Laplace transform of Equation (18) can be used to obtain the transfer function of the observer:⎧⎪⎪⎪⎨⎪⎪⎪⎩ Z1(s) =
(β1+β2)s+β1β2
(s+β1)(s+β2)

Y(s) + b0s
(s+β1)(s+β2)

U(s),

Z2(s) =
β2s

s+β2
Y(s) − b0β2

s+β2
U(s).

(28)

Taking e1 = z1 − y and e2 = z2 − .
y into account for analyzing a typical y, and u as the amplitude K

step signal, then the steady-state error of LESO is given as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
e1 = lim

s→0
sE1(s) = 0,

e2 = lim
s→0

sE2(s) = 0.
(29)
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Equation (29) shows that the improved LESO has a good convergence performance for realizing
the invariant estimation of the system state variables and generalized disturbances. Further analyzing
its dynamic process, the response of z1 under the step signal when b0 = 0 is as follows:

z1(s) = K(
1
s
+

2
(s + 2ω0)(ω0 − 2)

− ω0

(s +ω2
0)(ω0 − 2)

). (30)

The time-domain response of z1 under the action of a step signal can be obtained using an inverse
Laplace transform:

z1(t) =

⎧⎪⎪⎨⎪⎪⎩ K(1 + 2e−2tω0−ω0e−tω2
0

ω0−2 ) ω0 � 2,
K(1 + 4te−4t − e−4t) ω0 = 2.

(31)

In Equation (30), for t > 0, the derivative of t and taking
.
z1(t) = 0 can produce the extreme point

of t0:

t0 =

⎧⎪⎪⎨⎪⎪⎩
2(lnω0−ln 2)
ω2

0−2ω0
ω0 � 2,

1
2 ω0 = 2.

(32)

The extreme value of z1 is obtained by substituting the extreme value t0 into Equation (30):

z1(t0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ K(1 + 2e
−4(lnω0 − ln2)

ω0−2 −ω0e
−2ω0(ln

ω0 − ln2)
ω0−2

ω0−2 ) ω0 � 2,
K(1 + e−2) ≈ 1.135K ω0 = 2.

(33)

The trajectory of z1(t0)with the observer bandwidth valueω0 can be obtained via digital simulation.
According to Figure 7, when ω0 = 2, the tracking overshoot of observer z1(t0) to y is the largest. At this
time, the system overshoot is equal to the traditional LESO overshoot. The traditional LESO has a
13.5% overshoot at t0 = 2/ω0 and the amount of overshoot is independent of the value of the observer
bandwidth ω0.

Figure 7. Relation curve between the system overshoot and observer bandwidth.

The overshoot of the improved LESO varies with the observer bandwidth ω0. The maximum
overshoot of the observer state variable z1 is equal to that of the traditional observer. The corresponding
speed of the system can be increased and the amount of overshoot is reduced by selecting a larger
observer bandwidth ω0. Although the observer bandwidth ω0 is larger and the tracking speed is faster,
it will lead to noise amplification. The ability of LESO to suppress noise needs to be analyzed.

3.2.2. Improved Disturbance Immunity Analysis of LESO

The closed-loop transfer function of the improved LADRC can be obtained by combining
Equations (12), (14), and (18):

u =
1
b0

G1(s)(kpv−H(s)y). (34)
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The transfer functions of G1(s) and H(s) in Equation (34) are as follows:

G1(s) =
(s+β1)(s+β2)

s2+(β1+kp)s
,

H(s) =
β2s2+(β1β2+β1kp+β2kp)s+β1β2kp

(s+β1)(s+β2)
.

(35)

According to Equation (34), the diagram of the system structure shown in Figure 8 is obtained [24]:

cδ

δ

G scωv G s

H s
−

u y
b

Figure 8. Equivalent system structure diagram.

Now the effect of the observation noise δ0 at the output y of the system and the disturbance δc

at the output u of the controller for the improved LESO will be discussed. Based on Equation (28),
the transfer function of the improved LADRC is:

z1

δ0
=

(2ω0 +ω2
0)s + 2ω3

0

(s + 2ω0)(s +ω2
0)

. (36)

Similarly, the transfer function of δ0 of the traditional LESO’s observation noise can be obtained
as follows:

z1

δ0
=

2ω0s +ω2
0

(s +ω0)
2 . (37)

The transfer function of the disturbance δc at the output of the LESO controller can be improved
according to:

z1

δc
=

b0s
(s + 2ω0)(s +ω2

0)
. (38)

The transfer function of the disturbance δc at the output of a traditional LESO controller is:

z1

δc
=

b0s

(s + w0)
2 . (39)

Figure 9 shows the characteristic amplitude and phase–frequency curves for the improved and
traditional LESOs. The bandwidth of the improved LESO was higher than that of the traditional LESO,
and the phase lag of the intermediate frequency segment was improved. Unlike Figure 9, the improved
LESO with the same observer bandwidth in Figure 10 is basically the same as the traditional LESO in
the high frequency band, but it has better noise immunity in the low frequency band compared with
the traditional LESO, and can more effectively suppress the interference at the input end.
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Figure 9. Frequency-doman characteristic curves of the observed noise.

Figure 10. Frequency-domain characteristic curves of the input disturbance.

3.2.3. Immunity Analysis of the Improved Self-Disturbance Rejection Controller

According to Equation (10), the control object can be written as:

sY(s) = F(s) + b0U(s). (40)

Combined with Figure 8, the closed-loop transfer function of the system is as follows:

Y(s) =
kp

s + kp
V(s) +

s2 + (β1 + kp)s
(s + β1)(s + β2)(s + kp)

F(s). (41)

The closed-loop transfer function of the system includes the tracking term and the disturbance
term. If the state variable of the observer can be used to accurately estimate the total disturbance of
the system, the closed-loop transfer function of the system is simplified to the first-order inertial link.
At this time, it relates the corresponding speed of the system to the bandwidth of the controller, and
the larger the bandwidth, the faster the system.

It can be seen from the closed-loop transfer function that the disturbance term impacts the observer
and controller bandwidths. The same observer and controller bandwidths were selected for comparing
the improved LESO with the traditional LESO. It can be seen from Figure 11 that under the same
bandwidth, the immunity of the improved LESO in the middle- and low-frequency bands were better
than that of the traditional LESO, and it improved the phase lag of the middle-frequency band.
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Figure 11. Logarithmic phase–frequency characteristic curves of the disturbance term.

In particular, if the disturbance f is taken as the unit step signal, we can obtain the output response
using Equation (41):

Y(s) =
a

(s +ω0)
+

b
(s +ω2

0)
+

c
(s +ωc)

, (42)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
a = ω0+ωc

(ω2
0−ω0)(ωc−ω0)

,

b =
2ω0+ωc−ω2

0
(ω0−ω2

0)(ωc−ω2
0)

,

c = 2ω0
(ω0−ωc)(ω2

0−ωc)
.

(43)

The time domain for the anti-Laplace transformation to obtain system output can be expressed as:

y(t) = ae−ω0t + be−ω2
0t + ce−ωct. (44)

It is easy to find lim
t→∞y(t) = 0, i.e., the steady-state output of the system is zero under the external

step disturbance.

(a) Controller Stability with an Unknown Input Gain

Considering only the influence of the input gain on the stability of the system, i.e., if f = (b− b0)u,
then Equation (40) can be simplified to:

sY(s) = bU(s). (45)

The following equation can be obtained by combining Equations (26) and (30):

Y(s) =
ωc(s + 2ω0)(s +ω2

0)

a3s3 + a2s2 + a1s + a0
V(s). (46)

In Equation (46), the coefficients are as follows: a3 = b0/b,a2 = 2a0ω0 + a0ωc + ω2
0, a1 =

2ω3
0 + 2ω0ωc +ω2

0ωc, and a0 = 2ω3
0ωc. As ω0 and ωc are greater than zero, it is easy to see that a3,a2,a1

and a0 are all positive numbers. The necessary and sufficient condition for the stability of the Leonard
qipat stability criterion (Equation (46)) is that all odd or even Hurwitz determinants are positive.

Δ3 =

∣∣∣∣∣∣∣∣∣
a2 a0 0
a3 a1 0
0 a2 a0

∣∣∣∣∣∣∣∣∣ = a0(a1a2 − a0a3)

= a2
0(4ω

4
0 + 2ω3

0ωc +ω2
cω

2
c + 4ω2

0ωc + 2ω0ω2
c ) + (2ω5

0 +ω
4
0ωc + 2ω3

0ωc)a0

(47)
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Since b, b0, ω0 and ωc are all positive numbers, Δ3 > 0 is true, i.e., the improved LADRC can be
stable for any parameter greater than zero.

(b) Stability of the Controller when the System Parameters are Unknown

Set the controlled object as the following:

y =
b0

s + kc
u, (48)

where kc in Equation (48) is an unknown system parameter, and the closed-loop transfer function of
the system is obtained by combining with Figure 8:

Y(s) =
ωc(s +ω0)(s +ω2

0)(s + 2ω0)

s4 + a4s3 + a3s2 + a2s + a1
V(s), (49)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
a4 = ω2

0 + 4ω0 +ωc + kc,
a3 = ω2

0ωc + 4ω2
0 + 3ω3

0 + 4kcω0 + kcωc + 4ω0ωc,
a2 = 4kcω2

0 + 2ω2
0ωc + 3ω3

0ωc + 2ω4
0 + 2kcω0ωc,

a1 = 2ω4
0ωc.

. (50)

The necessary and sufficient conditions for the stability of Equation (49) are:

ak3
c + bk2

c + ckc + d > 0, (51)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = 4ω5
0ωc(4ω0 +ωc)(2ω0 +ωc),

b = (72ω9
0ωc + 68ω8

0ω
2
c + 128ω8

0ωc + 14ω7
0ω

3
c + 160ω7

0ω
2
c + 52ω6

0ω
3
c + 4ω5

0ω
4
c ,

c = 52ω11
0 ωc + 62ω10

0 ω
2
c + 176ω10

0 ωc + 16ω9
0ω

3
c + 252ω9

0ω
2
c + 128ω9

0ωc+

104ω8
0ω

3
c + 272ω8

0ω
2
c + 10ω7

0ω
4
c + 144ω7

0ω
3
c + 20ω6

0ω
4
c ,

d = 12ω13
0 ωc + 18ω12

0 ω
2
c + 56ω12

0 ωc + 6ω11
0 ω

3
c + 96ω11

0 ω
2
c + 64ω11

0 ωc+

48ω10
0 ω

3
c + 160ω10

0 ω
2
c + 6ω9

0ω
4
c + 124ω9

0ω
3
c + 64ω9

0ω
2
c + 24ω8

0ω
4
c+

72ω8
0ω

3
c + 16ω7

0ω
4
c .

(52)

If the roots of Equation (51) are kc1, kc2, and kc3 (kc1 < kc2 < kc3), the conditions of system stability
are kc1 < kc < kc2 or kc > kc3.

According to the digital simulation results, the equation had a pair of conjugate complex roots and
a real root. Figure 12 shows the boundary curve for ensuring the system stability when ω0 = 30 and
ω0 ∈ [0, 60], and Figure 13 shows the boundary curve for ensuring the system stability when ω0 = 30
and ωc ∈ [0, 60]. From Figures 12 and 13, it can be seen that the stability region of the system increased
with an increase of the observer bandwidth ω0 and the controller bandwidth ωc

o

Figure 12. System stability region under different observer bandwidths ω0.
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Figure 13. System stability region under different controller bandwidth ωc.

4. Simulation Study

To verify the actual control effect of the improved LADRC , a vector control model of a three-phase
asynchronous motor based on rotor flux linkage orientation was established based on MATLAB
and Simulink simulation software (Development by MathWorks, Natick, MA, USA, and agent of
MathWorks Software (Beijing) Co., Ltd.). The motor parameters are shown in Table A1. The current
loop controller adopted the improved LADRC control, and the outer loop adopted Proportional integral
controller (PI) control. The control effect of the controller was verified by simulating the motor speed,
the three-phase stator current, the electromagnetic torque, and the sudden load when the motor was
started without load at different speeds.

4.1. Dynamic Performance of the Controller for an Induction Motor at Different Given Speeds

4.1.1. Dynamic Performance of the Controller Given a Low Speed of the Motor

Figure 14a shows the simulation diagram of the no-load starting process of the asynchronous
motor with a given reference speed of 200 rev/min. The red curve represents the improved LADRC,
while the blue curve represents the traditional LADRC. It can be seen from Figure 14 that the traditional
LADRC could reach the given value near the motor speed at 0.1 s, while the improved LADRC could
reach the given value near the motor speed at 0.07 s. Therefore, the controller effect of the improved
LADRC was better than that of the traditional LADRC.

(a) (b) 

 
(c) (d) 

Figure 14. Low-speed simulation of an asynchronous motor. LADRC: Linear ADRC.
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Figure 14b is a simulation diagram of the electromagnetic torque of the induction motor during
no-load starting. The corresponding speed of the electromagnetic torque of the motor was greater
when the improved LADRC was adopted. The electromagnetic torque of the motor when the improved
LADRC was adopted was larger than that when the traditional LADRC was adopted at the same time
point; therefore, the electromagnetic torque of the motor could be restored to zero in a shorter time.

Figure 14c is the simulation diagram of the three-phase stator current when the asynchronous
motor started up without a load under the action of the traditional LADRC. After the improved LADRC
was adopted, the three-phase stator current reached the steady-state again near 0.09 s, and the motor
speed reached the given value. Figure 14d is the simulation diagram of the three-phase stator when
the asynchronous motor started up without a load under the action of the improved LADRC. After the
improved LADRC was adopted, the three-phase stator current reached the steady-state again near
0.07 s. It can be seen from the simulation diagram of the three-phase stator under the action of two
controllers that the dynamic performance of the improved linear observer was better.

The improved linear expansion observer can better estimate the total disturbance in the system
and realize the decoupling between the excitation subsystem and the torque subsystem. Therefore,
the motor controlled by the improved Linear Active Disturbance Rejection Controller at the same time
in Figure 14b can obtain a greater electromagnetic torque. The key to motor speed regulation is the
adjustment of electromagnetic torque. At the same time in Figure 14b, the electromagnetic torque
obtained by the motor under the improved linear auto-disturbance control is larger than that under
the traditional linear auto-disturbance controller, so the improvement in Figure 14a Under the Linear
Active Disturbance Rejection Controller, the motor speed can reach the given value of a shorter time.

The load in the equivalent circuit of the motor is purely resistive and the magnitude of the
equivalent resistance is related to the slip rate. The slip rate is 1 when the motor is started without load.
At this time, the total impedance of the system is small and the current on the stator side is large. When
the motor reaches a given speed, the slip ratio is less than 1 and the total impedance of the system
becomes larger. Therefore, the three-phase stator currents in Figure 14c,d become smaller when the
motor speed reaches a given value.

4.1.2. Dynamic Performance of the Controller Given a High Speed of the Motor

Figure 15a is the speed simulation diagram of the asynchronous motor at a given reference speed
of 800 rev/min, in which the blue curve is the simulation diagram under the action of the traditional
LADRC, and the red curve is that under the action of the improved LADRC. It can be seen from the
figure that the traditional LADRC reached the given value near the motor speed at 0.23 s, while the
improved LADRC reaches the given value near the motor speed at 0.18 s, and exhibited a better control
effect than the traditional LADRC.

Figure 15c is the simulation diagram of the three-phase stator when the asynchronous motor
started up without a load under the action of the traditional LADRC. After the improved LADRC was
adopted, the three-phase stator current reached the steady-state again near 0.17 s, when the motor
speed reached the given value. Figure 15d is the simulation diagram of the three-phase stator when
the asynchronous motor started up without a load under the action of the improved LADRC. After the
improved LADRC was adopted, the three-phase stator current reached the steady-state again near
0.16 s. According to Figure 15c,d, the dynamic performance of the improved linear observer was better.

166



Energies 2020, 13, 2168

(a) (b) 

  
(c) (d) 

Figure 15. High-speed simulation of the asynchronous motor.

4.2. Steady State Error of Asynchronous Motor Controller at Different Given Speeds

Figure 16a is the local amplification of Figure 15a. Although the steady-state error of the system
under the action of the traditional Linear Active Disturbance Rejection Controller is not large at a given
reference speed of 200 r/min, the steady-state error of the asynchronous motor under the action of the
improved Linear Active Disturbance Rejection Controller is smaller. Figure 16b is the local amplification
of Figure 16a. Compared with the given reference speed of 200 r/min, the steady-state error of the
asynchronous motor under the action of the improved Linear Active Disturbance Rejection Control
is still better than the traditional Linear Active Disturbance Rejection Controller, which, although,
becomes larger under the given reference speed of 200 r/min.

 

(a) (b) 

Figure 16. Steady-state error of the system at different speeds.

PI control uses error feedback to eliminate the error. When the system output is equal to the
given input, the controller output is zero. At this time, the motor cannot maintain the current speed
and deviates from the given value, resulting in the steady-state error of motor speed. The coupling
between the excitation subsystem and the torque subsystem increases with the increase of the speed,
resulting in the steady-state error of the speed of the motor in Figure 16b at high speed higher than
that in Figure 16a at low speed.
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4.3. Immunity Performance of the Asynchronous Motor Controller at Different Given Speeds

Figure 17a is a simulation diagram of the motor speed during the process of a sudden increase in
the mechanical torque by 10 N·m in 0.35 s and a subsequent sudden decrease in the mechanical torque
by 10 N·m in 0.4 s at a given speed of 200 rev/min (returning to the state before the system loading).
Figure 17b is a simulation diagram of the motor speed during the process of a sudden increase in the
mechanical torque by 10 N·m in 0.35 s and subsequent sudden decrease in the mechanical torque by
10 N·m in 0.4 s (returning to the state before the system loading) at a given speed of 800 rev/min. From
Figure 17a,b, it can be seen that the motor speed controlled by the traditional LADRC fluctuated more
after the mechanical load of the motor suddenly increased; therefore, the immunity of the improved
LADRC was better than that of the traditional LADRC.

 
(a)                                        (b) 

Figure 17. Sudden load increase and decrease of the motor at different speeds.

The coupling between the excitation subsystem and the torque subsystem increases to the increase
in speed, resulting in the steady-state error of the motor in Figure 17b at a high speed greater than that
in Figure 17a at low speed. The improved linear expansion observer can estimate the total disturbance
more accurately, reduce the coupling between the two subsystems to a certain extent, and improve the
control of electromagnetic torque. Since the improved Linear Active Disturbance Rejection Controller is
applied to the current inner loop decoupling and the outer loop still adopts PI control, the improvement
of load torque and the steady-state error is not obvious.

5. Conclusions

The key to the performance of an ADRC is whether the extended state observer can accurately
estimate the state variables of the system. There is a cross-coupling term in the state equation of
the asynchronous motor in the synchronous rotating coordinate system. The control of the torque
component and the excitation component of the motor stator current will affect each other, thus further
affecting the dynamic and static performances of the system.

Actual systems always have unknown dynamic characteristics, i.e., the uncertainty of the model.
In the control system, there are often various external disturbances, such as the control quantity
disturbance or the measurement noise. LESOo regards the coupling of the dynamic model of the
asynchronous motor system as a part of the total disturbance of the system. The disturbance is added
to the input of the system model using feedforward compensation. After compensation, the model of
the controlled asynchronous motor is transformed into the integrator series type.

The key to the motor speed regulation lies in the regulation of the electromagnetic torque.
The improved LESOo had a higher observation accuracy, the estimated value of total disturbance was
closer to the real value, the coupling degree between the torque component and excitation component
was smaller after compensation, and the improved LESOo could control the torque component more
independently; therefore, the control effect of the motor speed was better. Theoretical analysis and
simulation results showed that the control effect of the improved LADRC was better than that of the
traditional LADRC.
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Abbreviations

Acronym Definition
LESO Linear extended state observer
LSEF Linear state error feedback
LTD Linear tracking differentiator
LADRC Linear active disturbance rejection control

Appendix A

Table A1. Three-phase cage asynchronous motor parameters.

Parameter Symbol Value Unit

Rated Capacity SN 3730 VA
Rated voltage UN 220 V
Rated frequency f 50 Hz
Stator resistance Rs 0.435 Ω
Rotor resistance Rr 0.069 Ω
Stator inductance Ls 0.079 H
Rotor inductance Lr 0.071 H
Stator and rotor mutual inductance Lm 0.069 H
Pole pairs of asynchronous motor np 2
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Abstract: Following the recent development trend in the struggle for cleaning the earth’s environment,
solar is the one of most promising area that can partially be used as a replaceable energy from
non-renewable fuel sources. As such, it plays a significant role in protecting the environment from
global warming. As solar power does not emit harmful gases into the atmosphere, its production,
distribution, setup, and operation are vital should the production remain constant. Even solar
energy waste emissions are small; when compared to current energy sources, the amount of harmful
gases is negligible. This paper presented an integrated approach for site of solar plants by using
data envelopment analysis (DEA) and Fuzzy Analytical Network Process (FANP). Furthermore,
these integrated methodologies, incorporated with the most relevant parameters of requirements for
solar plants, are introduced. First, the paper considers an integrated hierarchical DEA and FANP
model for the optimal geographical location of solar plants in Mekong Delta Region, Vietnam. Using
the proposed model for implementation would allow the renewable energy policy makers to select
and control the optimal location for allocating and constructing a solar energy power plant in Vietnam.
This is the preferred strategy for location optimization problems associated with solar plant units in
Vietnam and around the world.

Keywords: renewable energy; solar power plant; Data Envelopment Analysis (DEA); Fuzzy Analytical
Network Process (FANP); Fuzzy Theory

1. Introduction

Energy has been a fundamental driver of global economies in order maintain development in
almost any industry. It is compulsory that the sources of energy must be maintained and continue
developing to meet the demand. With fossil fuel continuing to be proven to be detrimental to the
environment, solar energy is continuing to become a modern, growing, and potential source of
renewable energy. According to the International Energy Agency (IEA) in 2015, the consumption of
fossil fuels coming from coal, oil, and natural gas accounts for 81.6% of the total energy consumption
amongst the 38 leading countries. From the same data, wind, and solar energy only accounts for 1.5%
of the energy consumption [1]. As also shown in Figure 1, solar energy has the highest development
compared to other renewable energies such as hydropower, onshore and offshore wind energy,
and bioenergy [2]. According to NASA’s physics and astronomy calculations, solar energy is still
available for about 6.5 billion years before the sun fades away, which means that the energy source can
be utilized for a longer and more durable time before it is projected to deplete [3].

Energies 2020, 13, 4066; doi:10.3390/en13164066 www.mdpi.com/journal/energies171
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Figure 1. Comparison of different renewable energy sources [4].

Solar energy takes the direct sun rays from the sun and transforms them into usable energy
consumed for many purposes. The major limitations of solar energy include geographical conditions,
high dependency on technology development, large installation area with a high initial cost.
Additionally, with such limitations come additional, big environmental changes where modifications
could leave an impact on local ecosystems should the development a plant be initialized with the trend
of sustainable development, and maintaining the balance of the triple bottom line of environmental,
social, and economical elements must be considered [5].

Solar energy is still not a popular energy source amongst the economic and social development
of the provinces in the Mekong Delta region, Vietnam. However, according to Vietnam Academy of
Science and Technology (VAST), Vietnam is one of the potential countries for solar energy development
when looking at the data for the amount of sun rays the world receives annually, shown in Figure 2
with a second highest overall evaluation of 4–5 Kwh/m2/day [6].

Figure 2. Average amount of potential solar energy output [6].
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In fact, if more than 50% [7] of the energy supply for a national electricity system is imported from
other countries, the risk of energy unavailability will be extremely high. Once that supply is depleted
or affected by natural disasters, accidents, armed conflicts, sabotage, policy changes or strikes within
coal mines, energy security will be directly affected. Besides, the coal transportation from a remote area
to the electric production factory, which is done mainly by sea, also has many potential implications
for the environment, social security, and economy. The pollution of dust, noise, and ash accumulation
from the operation of coal-fired power plants can cause frustration in the local community and sow the
seeds for protests, creating long-term instability in terms of social security [8]. Located in the tropical
and monsoon region, with an abundant solar energy, the Mekong Delta of Vietnam is entering a period
of strong solar power development. Solar energy has been selected as one of the major alternative
renewable energy sources in the energy development strategy of the Mekong Delta region. Solar
Radiation Maps of Vietnam is shown in Figure 3.

Figure 3. Solar Radiation Maps of Vietnam [9].

Currently, there is very little research for developing a solar power plant in Vietnamese Mekong
Delta region. Determining an optimal location, which is sustainable and satisfies the triple bottom line
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concepts, is essential for the growth of the country’s power supply and alleviates the environmental
damage from fossil fuel consumption by promoting a renewable alternative energy supply. Therefore,
this problem is tackled as a Multi-Criteria Decision Making (MCDM) problem that requires both
quantitative and qualitative information to be considered. The MCDM problem is commonly defined
as determining an optimal decision based on a finite set of available decision alternatives with multiple,
and potentially conflicting, criteria.

As mentioned, the purpose of this paper is now to propose a suitable MCDM methodology for
localizing and selecting an optimal area in Vietnam in developing a solar power plant. In the next
section, the literature will be presented to discuss the first stage of the paper. Discussions and results’
analysis are explained towards the end of the paper.

2. Literature Review

Nowadays, there are many researchers applied MCDM models to any fields of sciences.
A. Kengpol et al. [10] initially conducted a study on proposing a solar power plant location to
avoid flooding in Thailand using geographical information system (GIS) to determine an optimum
site condition. Upon the study, a number of geographical conditions had to be considered which
developed into an MCDM problem of ranking the priorities amongst the conditions using Fuzzy
Analytic Hierarchy Process (FAHP) and the Technique of Order Preference by Similarity to Ideal
Solution (TOPSIS).

A. Azadeh et al. [11] integrated a hierarchical model for solar plants’ location selection by data
envelopment analysis (DEA), principal component analysis (PCA) and numerical taxonomy (NT).
Anuchit Thongpun et al. [12] focused on a building location selection approach for locating a solar
power plant in Thailand based on DEA models. A. Azadeh et al. [13] applied an artificial neural
network (ANN) and fuzzy data envelopment analysis (FDEA) for location optimization of solar plants
with uncertainty and complexity.

Amy H. I. Lee et al. [14] integrated MCDM model to set the assurance region (AR) of the
quantitative factors, and the AR is incorporated into data envelopment analysis (DEA), additionally
adopting a fuzzy analytic hierarchy process (FAHP) for the location of a PV solar plant. Adnan
Sozen et al. [15] presented an approach for the location of solar plants by data envelopment analysis
(DEA). Ali Azadeh et al. [16] presented an integrated fuzzy DEA model for decision making on wind
plant locations. Shinya Yokota et al. [17] applied data envelopment analysis (DEA) for the optimal
allocation of mega-solar.

Chabuk et al. [18] discussed two MCDM methods to propose two alternative landfill sites for
each area in the studied location, which were AHP and Ratio Scale Weighting (RSW), using multiple
environmental factors as criteria for evaluation. The methods successfully proposed a geographical
map that addressed the suitable locations throughout the studied sector. Chakraborty et al. [19] also
proposed multiple MCDM methods including AHP for assigning criteria weights; Grey Rational
Analysis (GRA), Multi Objective Optimization on the Basis of Ratio Analysis (MOORA), Elimination of
Choice Translating Reality (ELECTRE II), and Operational Competitiveness Rating Analysis (OCRA) for
ranking the results of each location alternative; and Spearman’s rank correlation coefficient, Kendall’s
rank correlation coefficient, agreement between the top three ranked alternatives were used to compare
each ranking methodology with another; finally, the REGIME was used for the final evaluation of each
methodology after all the applied evaluating methodologies were calculated. With a huge comparison
study between the methods, the author was able to utilize which methodology was most suitable for
choosing the most suitable supplier.

Amy H. I. Lee et al. [20] proposed MCDM model to decide the most suitable photovoltaic solar
plant allocation by using the interpretive structural modeling (ISM), the Serbian VlseKriterijumska
OptimizacijaI Kompromisno Resenje (VIKOR), meaning multi-criteria optimization with a compromise
solution, fuzzy analytic network process (FANP). A. Azadeh et al. [21] integrated hierarchical Data
Envelopment Analysis for the location optimization of wind plants in Iran. This model would enable
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the energy policy makers to select the best possible location for construction of a wind power plant
with the lowest possible cost. Lei Fang et al. [22] applied the DEA model and goal programming to
evaluate the relative efficiency of each potential location.

Chia-Nan Wang et al. [9] proposed a similar MCDM approach to determine a solar power plant
location for the entire country of Vietnam using the methods of DEA, FAHP, and TOPSIS to evaluate
qualitative and quantitative criteria. Ehsan Dehghani et al. [23] evaluated different areas for solar plants
according to a set of social, geographical, and technical criteria through a data envelopment analysis
(DEA) model. In this study, the DEA model considers both information of the efficient and anti-efficient
frontiers to raise discrimination power in DEA analysis. Ali Mostafaeipour et al. [24] applied Data
Envelopment Analysis (DEA) methodology to prioritize cities for installing the solar-hydrogen power
plant so that one candidate location was selected for each city. A. Azadeh et al. [25] presented a
technical and economic research for allocation of solar plants by using multivariable methods namely,
Data Envelopment Analysis (DEA) and Principle Component Analysis (PCA). A hybrid model for the
allocation of solar plants was presented by the utilization of most related parameters to solar plants
and an integrated DEA-PCA approach. Seong Kon Lee et al. [26] proposed a hybrid model including a
fuzzy Analytic Hierarchy Process (AHP)/Data Envelopment Analysis (DEA) for efficiently allocating
energy R&D resources in the case of energy technologies against high oil prices.

As the literature review shows, the amount of studies that apply the MCDM approach to various
fields of science and engineering has increased in number in recent years. Location selection is one
of the fields where the MCDM model has been employed, especially in the renewable energy sector,
where decision makers must evaluate both qualitative and quantitative factors. Although some studies
have reviewed the applications of MCDM approaches in solar power plant location selection, very few
works have focused on this problem in a fuzzy environment. This is a reason why we proposed a fuzzy
MCDM model in this study.

3. Methodology

3.1. Basic Theory

3.1.1. Fuzzy Set

A fuzzy set is used to address the issues that exist in an uncertain environment. It was proposed
by Zadeh when attempting to solve multiple criteria decision-making problems. If the set Z̃ is a
triangular fuzzy number (TFN), each value of the membership function is in the range [0, 1]:

μZ̃(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(x− j)
(k− j) j ≤ x ≤ k
(l−x)
(l−k) k ≤ x ≤ l

0

(1)

Each value of membership, which includes the left (the lowest value to evaluate) and right (the
highest value to evaluate) representatives, of a TFN is shown below:

Ñ= (N1(y), Nr(y)) = (j− (k− j) y, l + (k− d) y), y ∈ [0, 1].

A triangular fuzzy number can be described as in Figure 4.
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Figure 4. A triangular fuzzy number (TFN).

3.1.2. Fuzzy Analytic Network Process

Different to the AHP model, a strict hierarchical structure is not required for the ANP model.
ANP models allow control elements, that can be controlled by attribute clusters or difference levels.
When the elements are at the same level, they can present multiple control factors. A systematic
approach in the interaction or feedback between factors is explained using the degree of interaction
and interdependence between factors.

Using the rating scale of expert as the basis and data, the decision maker will pair each factor
where the weight of each factor is matrixed and determined for the ANP model.

The AHP model then uses a quantitative pair comparison with a priority ratio of 1–9 to set the
priority level for each level of the system, where 1 is the lowest priority and 9 is the highest priority.
Meanwhile, the ANP model allows making complex relationships between criteria and their rank in
the system. The 1–9 scale of the AHP model is shown in Table 1.

Table 1. The 1–9 scale [6].

Importance Intensity Definition

1. Equal significance
3. Moderate significance
5. Strongly higher significance
7. Very strong higher significance
9. Extremely high significance

2, 4, 6, 8. Intermediate values

The display and goals in the pairwise comparison process, which were considered disadvantages
of ANP, were overcome with the development of the FANP model. The FANP model uses a set of
values to incorporate decision makers in an uncertain environment, while a crisp value is presented in
the ANP model. The Saaty’s model is used to convert the values for the fuzzy prioritization model to
easily fix the conversion values, where Oab = (Ox

ab, Oo
ab, Ov

ab) is a TFN with the core Oo
ab, the support

[Ox
ab, Ov

ab], and the TFN, as shown in Figure 5.

Figure 5. A triangular fuzzy number (TFN).

176



Energies 2020, 13, 4066

Table 2 presents the 1–9 fuzzy conversion scale.

Table 2. The 1–9 fuzzy conversion scale.

Importance Intensity. Triangular. Fuzzy Scale.

1. (1.0, 1.0, 1.0).
2. (1.0, 1.0, 2.0).
3. (1.0, 2.0, 3.0).
4. (2.0, 3.0, 4.0).
5. (3.0, 4.0, 5.0).
6. (4.0, 5.0, 6.0).
7 (5.0, 6.0, 7.0).
8 (7.0, 8.0, 9.0).
9 (9.0, 9.0, 9.0).

At the reverse level to Oab, expressing the non-preference is also shown by a TFN: (1/Ov
ab,

1/Oo
ab, 1/Ox

ab). Using the fuzzy Saaty’s matrix, the weights of the criteria can be determined into four
steps that are used to input the data:

1. Using Equations (2)–(4), the fuzzy synthetic extensions Ka(kx
a , ko

a, kv
a) calculation can be transformed

into TNT.

Ka =
∑n

b=1
Oab ⊗

(∑n

a=1

∑n

b=1
Oab

)−1
(2)

n∑
j=1

Oab =

⎛⎜⎜⎜⎜⎜⎝ n∑
b=1

Ox
ab,

n∑
b=1

Oo
ab,

n∑
b=1

Ov
ab

⎞⎟⎟⎟⎟⎟⎠ (3)

O−1
ab = 1/Ov

ab, 1/Oo
ab, 1/Ox

ab (4)

O⊗N = (Ox.Nx, O0.N0, Ov.Nv) (5)

Let a = 1, 2, . . . , n, in which a and b specifically are TFN (Ox, Oo, Ov) and (Nx, N0, Nv) where x is
the minimum value, o is the average value, and v is the maximum value;

2. Using relationships with the fuzzy valued for addressing the weight of criteria. In order to
determine certain fuzzy extensions, they are calculated by using the minimum fuzzy extension of
valued relation ≤ at [5] with weights Qa calculated as follows

Qa = minb

⎧⎪⎪⎨⎪⎪⎩ kv
b − kv

a

(ko
a − kv

a) −
(
ko

b − kx
b

)⎫⎪⎪⎬⎪⎪⎭ (6)

where a, b = 1, 2, . . . ., n;
3. Standardize the weights. If the decision maker expects to obtain the total weights in one matrix

equal to 1, final weights qi are solved by (7)

qa = Qa/
n∑

a=1

Qa (7)

where a, b = 1, 2, . . . , n;
4. An evaluation of a Saaty’s matrix is used to test for its consistency. The matrix of the weights and

criteria are consistent and sufficient if inequality of the Consistency Ratio (CR) from Equation (8)
is defined as follows using the Consistency Index (CI) and Random Index (RI):

CR =
CI
RI

=
λ− n

(n− 1) ×RI
≤ 0.1 (8)
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3.2. Data Envelopment Analysis Model

3.2.1. Charnes–Cooper–Rhodes model (CCR model)

The CCR model, as the fundamental model for the DEA model, is defined as follows:

max
c.a

ξ =
aZ y0
cZx0

S.t :
aZye − cZxe ≤ 0, e = 1, 2, . . . , n

a ≥ 0
c ≥ 0

(9)

The defined constraints ensure that the ratio of virtual output to virtual input cannot exceed 1 per
decision making unit (DMU). The objective is to obtain a rate of weighted output for every weighted
inputs. Subject to the constraints, the optimal goal value ξ* can only reach a maximum of 1.

DMU0 is CCR’s efficient if ξ∗ = 1. The result must include a minimum of 1 optima a* > 0 and
c* > 0. In addition, the fractional program can be defined as a linear programming problem (LP)
as follows:

max
c.a
ξ = aZy0

S.t :
cZx0 − 1 = 0

aZye − cZxe ≤ 0, e = 1, 2, . . . , n
c ≥ 0
a ≥ 0

(10)

The linear program (10) provides an equal result to the fractional program (9). The linear program
from the Farrell model (10) has a variable ξ and a nonnegative vector α = α1,α2,α3, . . . ,α f as:

max
m∑

d=1
s−i +

o∑
g=1

s+g

S.t :
n∑

e=1
xdeαd + s−d = ξxd0, b = 1, 2, . . . , p

n∑
e=1

ygeαe − s+g = yg0, g = 1, 2, . . . , o

αe ≥ 0, e = 1, 2, . . . , n
s−d ≥ 0, d = 1, 2, . . . , p
s+g ≥ 0, g = 1, 2, . . . , o

(11)

The model (3) provides a feasible solution, ξ = 1,α∗0 = 1,α∗j = 0, ( j � 0), in which the optimal
solution is affected when ξ∗ is not higher than 1. A specific DMU is provided when the optimal
solution, ξ∗, is calculated. For each DMUe, the process will repeat for every e = 1, 2, . . . , n. When ξ∗ < 1,
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the DMUs are inefficient. If ξ∗ = 1, the DMUs then are classified as boundary units. By invoking a
linear program, we can prevent weakly efficient points d as follows:

max
m∑

d=1
s−d +

s∑
g=1

s+g

S.t :
n∑

e=1
xdeαe + s−d = ξxd0, d = 1, 2, . . . , p

n∑
e=1

ygeαe − s+g = yr0, g = 1, 2, . . . , o

αe ≥ 0, e = 1, 2, . . . , n
s−d ≥ 0, d = 1, 2, . . . , p
s+g ≥ 0, g = 1, 2, . . . , o

(12)

For this situation, we clarify that the optimal solution, ξ∗, is not affected by the results from s−d
and s+g .

For both (1) ξ= 1 and (2) s−∗d = s+g = 0, DMU0 achieves 100% accuracy and efficiency. For both (1)
ξ∗ = 1 and (2) s−∗d � 0 and s+g � 0 for d or g in optimal options, the performance of DMU0 is weakly
efficient. Thus, following the development procedure to solve the problem is as follows:

minθ− μ
⎛⎜⎜⎜⎜⎝ m∑

d=1
s−d +

s∑
g=1

s+g

⎞⎟⎟⎟⎟⎠
S.t :

n∑
b=1

xdeαe + s−d = ξxd0, d = 1, 2, . . . , p
n∑

e=1
ygeαe − s+g = yg0, g = 1, 2, . . . , o

αe ≥ 0, e = 1, 2, . . . , n
s−d ≥ 0, d = 1, 2, . . . , p
s+g ≥ 0, g = 1, 2, . . . , o

(13)

In this case, s−b and s+r variables are first used to transform the inequalities into equivalent
equations. For (13), it is the same in terms of methods as when we solve (3) by minimizing ξ in the first
stage and then fixing ξ = ξ∗ as in (4), where the slacks’ variables provide the highest values but the
previously determined value of ξ = ξ∗ is not affected. The objective is converted from maximum to
minimum, as in (9), to obtain the following:

max
c.a
ξ = cZx0

aZ ye

S.t :
aZx0 ≤ cZye, e = 1, 2, . . . , n

c ≥ ε > 0
a ≥ ε > 0

(14)

If the non-Archimedean value and the ε > 0 are displayed, the input models are similar to models
(10) and (13) as follows:

max
c.a
ξ = cZx0

S.t :
aZy0 = 1

cZxo − aZye ≥ 0, e = 1, 2, . . . , n
c ≥ ε > 0
a ≥ ε > 0

(15)
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and:

maxφ− ε
⎛⎜⎜⎜⎜⎝ m∑

d=1
s−i +

s∑
g=1

s+g

⎞⎟⎟⎟⎟⎠
S.t :

n∑
e=1

xdeαe + s−d = xd0, d = 1, 2, . . . , p∑n
e=1 ygeαe − s+g =∅yg0, g = 1, 2, . . . , q

αe ≥ 0, e = 1, 2, . . . , n
s−d ≥ 0, d = 1, 2, . . . , p
s+g ≥ 0, g = 1, 2, . . . , o

(16)

A dual multiplier model of the CCR input-oriented (CCR-I) is expressed as:

maxz =
q∑

g=1
∂gyg0

S.t :
o∑

g=1
∂gyre −

o∑
g=1

agyge ≤ 0

p∑
d=1

adxd0 = 1

cg, ad ≥ ε > 0

(17)

A dual multiplier model of the CCR output-oriented (CCR-O) is also expressed as:

mino =
p∑

d=1
adxd0

S.t :
p∑

d=1
adxde −

o∑
g=1
∂gyge ≤ 0

o∑
g=1
∂gyg0 = 1

cg, ad ≥ ε > 0

(18)

3.2.2. Banker Charnes Cooper Model (BCC Model)

The input-oriented BBC model (BCC-I) was introduced by Banker et al., in which the efficiency of
DMU0 is assessed by solving the following LP (19):

ξB = minξ
S.t :

n∑
e=1

xdeαe + s−d = ξxd0, d = 1, 2, . . . , p
n∑

e=1
ygeαe − s+g = yg0, g = 1, 2, . . . , o

n∑
k=1
αk = 1

αk ≥ 0, k = 1, 2, . . . , n

(19)
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By invoking a linear program, we can prevent the weakly efficient points as in the following:

max
m∑

d=1
s−d +

s∑
g=1

s+g

S.t :
n∑

e=1
xdeαe + s−d = ξxd0, d = 1, 2, . . . , p

n∑
e=1

ygeαe − s+g = yg0, g = 1, 2, . . . , o
n∑

k=1
αk = 1

αk ≥ 0, k = 1, 2, . . . , n
s−d ≥ 0, b = 1, 2, . . . , p
s+g ≥ 0, g = 1, 2, . . . , o

(20)

The first multiplicative form to the solve problem is as follows:

minξ− ε
⎛⎜⎜⎜⎜⎝ m∑

d=1
s−d +

s∑
g=1

s+g

⎞⎟⎟⎟⎟⎠
S.t :

n∑
e=1

xdeαe + s−d = ξxi0, d = 1, 2, . . . , p
n∑

e=1
ygeαe − s+g = yg0, g = 1, 2, . . . , o

n∑
k=1
αk = 1αk ≥ 0, k = 1, 2, . . . , n

s−d ≥ 0, b = 1, 2, . . . , p
s+g ≥ 0, r = 1, 2, . . . , o

(21)

A second multiplier form of the linear program is expressed as:

max
c.a,a0
ξB = aZy0 − a0

S.t :
cZx0 = 1

aZye − cZxe − a0 ≤ 0, e = 1, 2, . . . , n
c ≥ 0
a ≥ 0

(22)

As mentioned in Formula (14), in this case Z and u are vectors, and the scalar v0 may be positive
or negative or zero. The dual program for the equivalent BCC fractional program (12) can be obtained
as follows:

max
c.a
ξ =

aZ y0−a0
cZx0

S.t :
aZ ye−a0

cZxe
≤ 1, e = 1, 2, . . . , n

c ≥ 0
a ≥ 0

(23)

A BCC-efficient solution is a solution where if an optimal solution, DMU0, (ξ∗B, s−∗, s+∗) as solved
in this two phase processes for model satisfies ξ∗B = 1 and has no slack values where s−∗ = s+∗ = 0.
Otherwise, the model would be considered as BCC-inefficient.

181



Energies 2020, 13, 4066

The improved activity, (ξ∗x− s−∗, y + s+∗), also can be claimed as BCC efficient. A DMU, which is
a minimized input value for any input item, or a maximized output value for any output item,
is BCC-efficient.

The output-oriented BCC model (BCC-O) is defined as the following:

maxη
S.t :

n∑
e=1

xdeαe + s−d = ξxd0, b = 1, 2, . . . , p
n∑

e=1
ygeαe − s+g = ηyg0, g = 1, 2, . . . , o

n∑
k=1
αk = 1

αk ≥ 0, k = 1, 2, . . . , f

(24)

A multiplier form of the linear program (24) can be expressed as [25]:

min
c.a,c0

aZy0 − a0

S.t :
aZy0 = 1

cZxe − aZye − a0 ≤ 0, e = 1, 2, . . . , n
c ≥ 0
a ≥ 0

(25)

In the envelopment model, the Z0 is the scalar combined with
n∑

k=1
αk = 1. Conclusively,

the equivalent fractional programming formulation for the BCC model was achieved by the authors (25):

min
c.a,c0

cZx0−c0
aZ y0

S.t :
cZxe−a0

aZ ye
≤ 1, e = 1, 2, . . . , n

c ≥ 0
a ≥ 0

(26)

3.2.3. Slacks Based Measure Model (SBM Model)

The SBM model was developed by Tone, which has three elements, input-oriented, output-oriented.
Input-Oriented SBM (SBM-I-C).

The following model can be defined as the Input-oriented SBM under
constant-returns-to-scale-assumption:

ρ∗I = min
α, s−,s+

1− 1
m

m∑
d=1

s−d
xdh

S.t :

xdc =
m∑

e=1
xdcαd + s−d , d = 1, 2, . . . , p

ygc =
m∑

e=1
ygcαe − s+g , g = 1, 2, . . . , o

αe ≥ 0, k (∀ j), s−d ≥ 0 (∀e), s+g ≥ 0 (∀e)

(27)
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4. Case Study

Solar power in Vietnam belongs to the emerging energy industry group, which is engaged in the
development of the world’s renewable energy sources, the import of science and technology, and meets
the demand for developing power sources. When large hydropower sources are fully exploited, small
hydroelectricity will not guarantee benefits compared to the environmental damage. Vietnam, on the
other hand, has great potential for solar and wind power, due to its proximity to the equator and the
existence of dry, sunny regions like the southern central provinces. The study results are shown in
Figure 6. Therefore, solar power, together with wind power, is being encouraged to develop by the
State of Vietnam, reflected in the Prime Minister’s Decision No. 2068/QD-TTg of 25 November 2015,
approving the Renewable Energy Development Strategy. Vietnam’s electricity generation until 2030,
with a vision of 2050, ensures the development of electricity sources when stopping nuclear power
projects and reducing fossil-fired thermal power plants.

Figure 6. Irradiation Map of Mekong Delta, Vietnam [27].

With the growth of economic sectors in general and agriculture, the demand for electricity in the
Mekong Delta provinces is increasing. However, fossil fuel for electricity generation is declining, so the
development of renewable energy is one of the sustainable solutions for the Mekong Delta to have
electricity to ensure domestic living and economic development.

In this research, the authors present an integrated approach for the site of solar plants in Mekong
Delta, Vietnam, by using data envelopment analysis (DEA) and Fuzzy Analytical Network Process
(FANP). In the first stage, DEA model is applied to select some potential location, then FANP model
is used for ranking these potential locations. The authors collected data from thirteen locations in
Mekong Delta, Vietnam, which can invest in solar power plants, as shown in Table 3.
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Table 3. List of the 13 locations identified in Mekong Delta, Viet Nam.

No Locations Symbols No Locations Symbols

1 An Giang DEL01 8 Kien Giang DEL08
2 Bac Lieu DEL02 9 Long An DEL09
3 Ben Tre DEL03 10 Soc Trang DEL10
4 Ca Mau DEL04 11 Tien Giang DEL11
5 Can Tho DEL05 12 Tra Vinh DEL12
6 Dong Thap DEL06 13 Vinh Long DEL13
7 Hau Giang DEL07 - - -

DEA model is a quantitative technique that determines the relative effectiveness of multiple
inputs and outputs decision makers. Halasah et al. [28] employed life-cycle assessment to evaluate the
energy-related impacts of PV systems at different scales of integration. The input parameters included
panel efficiency, temperature coefficient, shading losses, ground cover ratio and latitude, and the input
data included hourly solar radiation, wind speed and temperature. Wang and Amy [9,14] using DEA
model for ranking potential location for building solar power plant. In their research, the output
data included sunshine hour and elevation. Due to the information accessibility of various sites and
the importance of various factors, we select two inputs and two outputs for the quantitative factors.
The two inputs are temperature (I1) and wind speed (I2). The two outputs are sunshine hours (O1)
and elevation (O2) [14,20]. The definition of the inputs and outputs are defined in Table 4 [20]. Raw
data of inputs and outputs of DMUs are demonstrated in Figure 7.

Table 4. Definition of inputs and outputs.

Factors Definition

Inputs

Temperature (I1)

This is a measure of how high or low the heat radiation of the current
environment is. Radziemska [29] discussed that should the temperature increase,
the overall output power and the conversion efficiency of the PV module would
decrease. A solar panel that receives more sunlight would lead to an increase in
temperature on the panel, hence a decrease in the conversion efficiency.
This decrease can vary from 10% to 25% depending on the location and material
of the equipment. [30]

Wind speed (I2)

Wind is the current of gas particles that flows randomly. Depending on the
strength of the current, small particles from solid sediments to suspended objects
could obstruct and affect the solar panels and other equipment. The wind can
cause erosion and potential failures in operation for solar power plants.

Outputs

Sunshine hours (O1)

An indicator that measures the average duration of sunshine in a time period
(here, annually) for a given location. This period is when direct solar irradiance
shows a measurement higher than 120 W/m2 [31]. A higher output power would
be produced should a higher sunshine hour be recorded.

Elevation (O2)

The geographical height above sea level of a given location (here, meters). If the
geographical elevation is high, the distance between the ground to the sun is
decreased, which means the solar radiant takes a shorter time to reach the ground.
Additionally, lower distance means a lower dispersion of solar radiation, so the
intensity is projected to be higher. Higher intensity yields higher solar energy
output. Panjwani and Narejo discussed how elevation generated a 7–12%
increase in power by testing 3 solar panels at a 27.432 m elevation [32].
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Figure 7. Inputs and outputs of DEA models.

For applied DEA model, some additional data about 13 locations in Mekong Delta, Vietnam are
show in Table 5.

Table 5. Raw data of DEA model.

DMUs Temperature (I1) Wind Speed (I2) Sunshine hours (O1) Elevation (O2)

DEL01 27.20 1.70 2589 2.00
DEL02 27.30 7.20 2700 1.50
DEL03 27.00 1.00 2341 2.00
DEL04 26.80 1.30 2300 1.00
DEL05 26.90 2.80 2672 2.00
DEL06 27.40 2.50 2500 2.00
DEL07 27.30 7.00 2700 0.80
DEL08 27.50 6.00 2563 1.20
DEL09 27.70 2.80 2800 1.60
DEL10 26.80 6.40 2292 0.90
DEL11 27.00 1.70 2645 1.00
DEL12 27.60 6.80 2556 0.80
DEL13 28.00 1.40 2400 1.60

To select some potential sites in Mekong Delta, Vietnam, there are several DEA models, including
SBM-I-C; CCR-I; BCC-O; CCR-O and BCC-I, applied in this step. The results of the DEA models are
shown in Table 6.

Table 6. Ranking results from some DEA models.

Locations
DEA Approaches

SBM-I-C CCR-I BCC-O CCR-O BCC-I

DEL01 1 1 1 1 1
DEL02 0.6546 0.9784 0.9868 0.9784 0.9918
DEL03 1 1 1 1 1
DEL04 0.8728 0.936 0.9999 0.936 1
DEL05 1 1 1 1 1
DEL06 0.7767 0.9824 1 0.9824 0.9824
DEL07 0.6451 0.9784 0.9868 0.9784 0.9918
DEL08 0.6159 0.922 0.9259 0.9220 0.9771
DEL09 1 1 1 1 1
DEL10 0.5521 0.8461 0.9961 0.8461 1
DEL11 1 1 1 1 1
DEL12 0.5935 0.9162 0.9181 0.9162 0.9735
DEL13 0.8604 0.9325 0.9595 0.9325 0.962
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As the results in Table 6 show that there are seven DMUs that are potential locations for building
a solar power plant in Mekong Delta, Vietnam including DEL01, DEL03, DEL05, DEL09 and DEL11.
These DMUs will be evaluated in the next step of this research by using the FANP model.

In the final stage, all the potential locations will be ranked by the FANP model. Some criteria
affecting the location selection are shown in Figure 8.

Figure 8. Main criteria and sub-criteria in Fuzzy Analytical Network Process (FANP) model.

Fuzzy comparison matrix of EC from the FANP model is shown in Table 7.

Table 7. Fuzzy comparison matrices for Economic factor (EC).

Technological (TL) Site Characteristics (ST) Environmental (EL) Social (SL)

TL (1,1,1) (5,6,7) (1,2,3) (3,4,5)
ST (1/7,1/6,1/5) (1,1,1) (1/3,1/4,1/5) (2,3,4)
EL (1/3,1/2,1) (5,4,3) (1,1,1) (4,5,6)
SL (1/5,1/4,1/3) (1/4,1/3,1/2) (1/6,1/5,1/4) (1,1,1)

The fuzzy numbers were converted to real numbers by using the TFN. During the defuzzification,
the authors obtain the coefficients α = 0.5 and β = 0.5. In this, α represents the uncertain environment
conditions, and β represents whether the attitude of the evaluator is fair.

g0.5,0.5(aEL,SL) = [(0.5 × 4.5) + (1 – 5.5) × 2.5] = 5

f0.5(LEL,SL) = (5 − 4) × 0.5 + 4 = 4.5

f0.5(USL,SL) = 6 − (6 − 5) × 0.5 = 5.5
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g0.5,0.5(aSL,EL) = 1/5

The remaining calculations for other criteria are similar to the above calculation. The real number
priority when comparing the main criteria pairs is shown in Table 8.

Table 8. Real number priority.

TL ST EL SL

TL 1 6 2 4
ST 1/6 1 1/4 3
EL 1/2 4 1 5
SL 1/4 1/3 1/5 1

The following are used for calculating the maximum individual value:

P1 = (1 × 6 × 2 × 4)1/4 = 2.63

P2 = (1/5 × 1 × 1/4 × 3)1/4 = 0.62

P3 = (1/2 × 4 × 1 × 5)1/4 = 1.78

P4 = (1/4 × 1/3 × 1/5 × 1)1/4 = 0.36∑
Q = 5.39

ω1 =
2.63
5.39

= 0.49

ω2 =
0.62
5.39

= 0.12

ω3 =
1.78
5.39

= 0.33

ω4 =
0.36
5.39

= 0.07⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 6 2 4

1/6 1 1/4 3
1/2 4 1 5
1/4 1/3 1/5 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦×
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.49
0.12
0.33
0.07

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.15
0.49
1.41
0.30

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.15
0.49
1.41
0.30

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦/
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.49
0.12
0.33
0.07

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.39
4.08
4.27
4.29

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Based on the number of main criteria, the authors get n = 5; λmax and CI are calculated as follows:

λmax =
4.39 + 4.08 + 4.27 + 4.29

4
= 4.23

CI =
λmax − n

n− 1
=

4.23− 4
4− 1

= 0.077

To calculate CR value, we get RI = 0.9 with n = 4.

CR =
CI
RI

=
0.077
0.9

= 0.08556

As CR = 0.08556 ≤ 0.1, we do not need to re-evaluate.
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5. Discussion

There have been many studies presenting MCDM models using fuzzy set theory to evaluate
and select the location of a renewable energy plant, particularly solar energy. However, the literature
review shows that most of these studies only use economic, or technological, or site characteristics,
or environmental or social standards to assess potential locations. There are few studies that
simultaneously use economic, technological, site characteristics, environmental and social factor
standards in the process of location selection. In addition, there seems to be no research on developing
an MCDM model to choose a location for a solar power plant in the Mekong Delta.

This is a reason the author proposed an MCDM model including data envelopment analysis
(DEA) and fuzzy analytical network process (FANP) for solar power plant location selection in Mekong
Delta, Vietnam in this work. In the first step, some potential location is selected from 13 location in
Mekong Delta by using the DEA model. Then, the FANP model is applied for rank potential sites.
In a renewable energy project, location decision is the most importance activity; location decision is
always a multicriteria decision making factor, as the decision maker must consider both quantitative
and qualitative factors. In any renewable energy project, location decision is a very important decision,
decision maker must consider qualitative and quantitative factors. Thus, solar power plant location
selection is a multicriteria decision making (MCDM). For selection optimal location, the proposed
model considered five main factors: economic factors (construction cost, operation and management
cost, new feeder cost), technological factors (distance from major road, distance from power network,
potential demand), site characteristics factors (ecology, elevation, approachability), environmental
factors (temperature, sunshine hours, humidity) and social factors (supports mechanisms, protection
law and legal regulatory compliance) As per the results shown in Table 9, Ben Tre (DEL03) is the
optimal solution for investing solar power plants in Mekong Delta, Vietnam.

Table 9. Final ranking from the FANP model.

No Location-Symbols Score Ranking Order

1 An Giang-DEL01 0.226 3
2 Ben Tre-DEL03 0.246 1
3 Can Tho-DEL05 0.238 2
4 Long An-DEL09 0.107 4
5 Tien Giang-DEL11 0.183 5

6. Conclusions

Facing energy demand challenges to ensure sustainable economic growth, especially the exhaustion
of fossil fuels, environmental pollution, and climate change. Incentive policies to take advantage of
renewable energy supply opportunities in Vietnam. This approach to taking advantage of this new
energy source not only contributes to timely supply of the energy needs of the society but also helps to
save electricity and reduce environmental pollution.

However, when considering investing in solar power plants, decision makers must consider
many qualitative and quantitative factors including economic, technological, site characteristics,
environmental and social factors. Therefore, this problem is tackled as a Multi-Criteria Decision Making
(MCDM) problem that requires that both quantitative and qualitative information are considered.
This paper presented an integrated approach for site of solar plants by data envelopment analysis (DEA)
and Fuzzy Analytical Network Process (FANP). Furthermore, this integrated approach, incorporating
the most relevant parameters of solar plants, is introduced.

The contributions of this research include a fuzzy multicriteria decision-making (F-MCDM)
approach for solar power plant site selection in Vietnam. This research also utilizes the evolution of a
new approach that is flexible and practical for the decision-maker and provides useful guidelines for
solar power plant location selection in many countries around the world.
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For further studies regarding this topic, the study can be expanded to other MCDM approaches
such as VIKOR, ELECTRE I, ELECTRE III.
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