
Numerical
Methods

Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics

Lorentz Jäntsch and Daniela Roșca
Edited by

 N
um

erical M
ethods • Lorentz Jäntsch and Daniela Roșca

Numerical Methods

Numerical Methods

Editors

Lorentz Jäntschi

Daniela Ros, ca

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin

Daniela Ros, ca
Technical University of Cluj-Napoca
Romania

Editors
Lorentz Jäntschi
Technical University of Cluj-Napoca
Romania

Editorial Office

MDPI
St. Alban-Anlage 66 4052 Basel,
Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/journal/mathematics/special

issues/Numerical Methods 2020).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03943-318-6 (Hbk)
ISBN 978-3-03943-319-3 (PDF)

c© 2020 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editors . vii

Preface to ”Numerical Methods” . ix

Lorentz Jäntschi

Detecting Extreme Values with Order Statistics in Samples from Continuous Distributions
Reprinted from: Mathematics 2020, 8, 216, doi:10.3390/math8020216 1

Monica Dessole, Fabio Marcuzzi and Marco Vianello

dCATCH—A Numerical Package for d-Variate near G-Optimal Tchakaloff Regression via Fast
NNLS
Reprinted from: Mathematics 2020, 8, 1122, doi:10.3390/math8071122 23

Soledad Moreno-Pulido, Francisco Javier Garcia-Pacheco, Clemente Cobos-Sanchez and

Alberto Sanchez-Alzola

Exact Solutions to the Maxmin Problem max ‖Ax‖ Subject to ‖Bx‖ ≤ 1

Reprinted from: Mathematics 2020, 8, 85, doi:10.3390/math8010085 39

Kin Keung Lai, Shashi Kant Mishra and Bhagwat Ram

On q-Quasi-Newton’s Method for Unconstrained Multiobjective Optimization Problems
Reprinted from: Mathematics 2020, 8, 616, doi:10.3390/math8040616 65

Deepak Kumar, Janak Raj Sharma and Lorentz Jäntschi

Convergence Analysis and Complex Geometry of an Efficient Derivative-Free Iterative Method
Reprinted from: Mathematics 2019, 7, 919, doi:10.3390/math7100919 79

Janak Raj Sharma, Sunil Kumar and Lorentz Jäntschi

On Derivative Free Multiple-Root Finders with Optimal Fourth Order Convergence
Reprinted from: Mathematics 2020, 8, 1091, doi:10.3390/math8071091 91

Ampol Duangpan, Ratinan Boonklurb and Tawikan Treeyaprasert

Finite Integration Method with Shifted Chebyshev Polynomials for Solving Time-Fractional
Burgers’ Equations
Reprinted from: Mathematics 2019, 7, 1201, doi:10.3390/math7121201 107

Adrian Holhoş and Daniela Roşca

Orhonormal Wavelet Bases on The 3D Ball Via Volume Preserving Map from The
Regular Octahedron
Reprinted from: Mathematics 2020, 8, 994, doi:10.3390/math8060994 131

Jintae Park, Sungha Yoon, Chaeyoung Lee and Junseok Kim

A Simple Method for Network Visualization
Reprinted from: Mathematics 2020, 8, 1020, doi:10.3390/math8061020 147

SAIRA, Shuhuang Xiang, Guidong Liu

Numerical Solution of the Cauchy-Type Singular Integral Equation with a Highly Oscillatory
Kernel Function
Reprinted from: Mathematics 2019, 7, 872, doi:10.3390/math7100872 161

v

About the Editors

Lorentz Jäntschi was born in Făgăras, , Romania, in 1973. In 1991, he moved to Cluj-Napoca,

Cluj, where he completed his studies. In 1995, he was awarded his B.Sc. and M.Sc. in Informatics

(under the supervision of Prof. Militon FRENT, IU); in 1997, his B.Sc. and M.Sc. in Physics and

Chemistry (under the supervision of Prof. Theodor HODIS, AN); in 2000, his Ph.D. in Chemistry

(under the supervision of Prof. Mircea V. DIUDEA); in 2002, his M.Sc. in Agriculture (under the

supervision of Prof. Iustin GHIZDAVU and Prof. Mircea V. DIUDEA); and in 2010, his Ph.D. in

Horticulture (under the supervision of Prof. Radu E. SESTRAS,). In 2013, he conducted a postdoc in

Horticulture (with Prof. Radu E. SESTRAS,) and that same year (2013), he became a Full Professor

of Chemistry at the Technical University of Cluj-Napoca and Associate at Babes-Bolyai University,

where he advises on Ph.D. studies in Chemistry. He currently holds both of these positions.

Throughout his career, he has conducted his research and education activities under the auspices

of various institutions: the G. Barit, iu (1995–1999) and Bălcescu (1999–2001) National Colleges, the

Iuliu Hat, ieganu University of Medicine and Pharmacy (2007–2012), Oradea University (2013–2015),

and the Institute of Agricultural Sciences and Veterinary Medicine at University of Cluj-Napoca

(2011–2016). He serves as Editor for the journals Notulae Scientia Biologicae, Notulae Horti Agro

Botanici Cluj-Napoca, Open Agriculture, and Symmetry. He has served as Editor-in-Chief of the

Leonardo Journal of Sciences and the Leonardo Electronic Journal of Practices and Technologies

(2002–2018) and as Guest Editor (2019–2020) of Mathematics.

Daniela Ros, ca was born in Cluj-Napoca, Romania in 1972. In 1995, she was awarded her

B.Sc. in Mathematics, and in 1996, her M.Sc. in Mathematics (Numerical and Statistical Calculus).

In 2004, she became Doctor in Mathematics with a thesis entitled “Approximation with Wavelets”

(defended: January 9th, 2004) and conducted a postdoc in Computing in 2013 (with Prof. Sergiu

NEDEVSCHI). That same year (2013), she became a Full Professor of Mathematics at the Technical

University of Cluj-Napoca, where she advises on Ph.D. studies in Mathematics. She was Invited

Professor at Université Catholique de Louvain, Louvain-la-Neuve, Belgium on numerous occasions

(13–27 January 2011 and 10–24 January 2013 and twice for 2 weeks in the academic years 2006–2007,

2007–2008, 2008–2009, and 2009–2010) delivering courses and seminars for the 3rd cycle (doctoral

school) on wavelet analysis on the sphere and other manifolds.

vii

Preface to ”Numerical Methods”

The Special Issue “Numerical Methods” (2020) was open for submissions in 2019–2020) and
welcomed papers from broad interdisciplinary areas since ‘numerical methods’ are a specific form
of mathematics that involve creating and using algorithms to map out the mathematical core of
a practical problem. Numerical methods naturally find application in all fields of engineering,
physical sciences, life sciences, social sciences, medicine, business, and even arts. The common uses
of numerical methods include approximation, simulation, and estimation, and there is almost no
scientific field in which numerical methods do not find a use.

Some subjects included in ‘numerical methods’ are IEEE arithmetic, root finding, systems
of equations, least squares estimation, maximum likelihood estimation, interpolation, numeric
integration, and differentiation—the list may go on and on. Mathematical subject classification
for numerical methods includes topics in conformal mapping theory in connection with discrete
potential theory and computational methods for stochastic equations, but most of the subjects are
within approximation methods and numerical treatment of dynamical systems, numerical methods,
and numerical analysis. Also included are topics in numerical methods for deformable solids, basic
methods in fluid mechanics, basic methods for optics and electromagnetic theory, basic methods
for classical thermodynamics and heat transfer, equilibrium statistical mechanics, time-dependent
statistical mechanics, and last but not least, mathematical finance. In short, the topics of interest deal
mainly with numerical methods for approximation, simulation, and estimation. The deadline for
manuscript submissions was closed on 30 June 2020.

Considering the importance of numerical methods, two representative examples should be
given. First, the Jenkins–Traub method (published as “Algorithm 419: Zeros of a Complex
Polynomial” and “Algorithm 493: Zeros of a Real Polynomial”) which practically put the use of
computers to another level in numerical problems. Second, the Monte Carlo method (published as
’”he Monte-Carlo Method”) which gave birth to the broad class of computational algorithms found
today that rely on repeated random sampling to obtain numerical results. Today, the “numerical
method” topic is much more diversified than 50 years ago, especially because of the technological
progress and this series of collected papers is proof of this fact.

Results communicated here include topics ranging from statistics (Detecting
Extreme Values with Order Statistics in Samples from Continuous Distributions,
https://www.mdpi.com/2227-7390/8/2/216) and statistical software packages (dCATCH—A
Numerical Package for d-Variate near G-Optimal Tchakaloff Regression via Fast
NNLS, https://www.mdpi.com/2227-7390/8/7/1122) to new approaches for numerical solutions
(Exact Solutions to the Maxmin Problem max‖Ax‖ Subject to ‖Bx‖ ≤ 1, https://

www.mdpi.com/2227-7390/8/1/85; On q-Quasi-Newton’s Method for Unconstrained
Multiobjective Optimization Problems, https://www.mdpi.com/2227-7390/8/4/616;
Convergence Analysis and Complex Geometry of an Efficient Derivative-Free Iterative Method,
https://www.mdpi.com/2227-7390/7/10/919; On Derivative Free Multiple-Root Finders with
Optimal Fourth Order Convergence, https://www.mdpi.com/2227-7390/8/7/1091; Finite
Integration Method with Shifted Chebyshev Polynomials for Solving Time-Fractional Burgers’
Equations, https://www.mdpi.com/2227-7390/7/12/1201) to the use of wavelets (Orhonormal
Wavelet Bases on The 3D Ball Via Volume Preserving Map from the Regular Octahedron,
https://www.mdpi.com/2227-7390/8/6/994) and methods for visualization (A Simple Method for

ix

Network Visualization, https://www.mdpi.com/2227-7390/8/6/1020).

Lorentz Jäntschi, Daniela Ros, ca

Editors

x

mathematics

Article

Detecting Extreme Values with Order Statistics in
Samples from Continuous Distributions

Lorentz Jäntschi 1,2

1 Department of Physics and Chemistry, Technical University of Cluj-Napoca, Cluj-Napoca 400641, Romania;
lorentz.jantschi@chem.utcluj.ro or lorentz.jantschi@ubbcluj.ro

2 Institute of Doctoral Studies, Babeş-Bolyai University, Cluj-Napoca 400091, Romania

Received: 17 December 2019; Accepted: 4 February 2020; Published: 8 February 2020

Abstract: In the subject of statistics for engineering, physics, computer science, chemistry, and earth
sciences, one of the sampling challenges is the accuracy, or, in other words, how representative the
sample is of the population from which it was drawn. A series of statistics were developed to measure
the departure between the population (theoretical) and the sample (observed) distributions. Another
connected issue is the presence of extreme values—possible observations that may have been wrongly
collected—which do not belong to the population selected for study. By subjecting those two issues
to study, we hereby propose a new statistic for assessing the quality of sampling intended to be used
for any continuous distribution. Depending on the sample size, the proposed statistic is operational
for known distributions (with a known probability density function) and provides the risk of being in
error while assuming that a certain sample has been drawn from a population. A strategy for sample
analysis, by analyzing the information about quality of the sampling provided by the order statistics
in use, is proposed. A case study was conducted assessing the quality of sampling for ten cases, the
latter being used to provide a pattern analysis of the statistics.

Keywords: probability computing; Monte Carlo simulation; order statistics; extreme values; outliers

MSC: 62G30; 62G32; 62H10; 65C60

1. Introduction

Under the assumption that a sample of size n, was drawn from a certain population (x1, ..., xn ∈
X) with a known distribution (with known probability density function, PDF) but with unknown
parameters (in number of m, {π1, ..., πm}), there are alternatives available in order to assess the quality
of sampling.

One category of alternatives sees the sample as a whole—and in this case, a series of statistics was
developed to measure the agreement between a theoretical (in the population) and observed (of the
sample) distribution. This approach is actually a reversed engineering of the sampling distribution,
providing a likelihood for observing the sample as drawn from the population. To do this for any
continuous distribution, the problem is translated into the probability space by the use of a cumulative
distribution function (CDF).

Formally, if PDF(x; (πj)1≤j≤m) takes values on a domain D, then CDF is defined by Equation (1)
and {p1, ..., pn} defined by Equation (2) is the series of cumulative probabilities associated with the
drawings from the sample.

CDF(x; (πj)1≤j≤m) =
∫ x

in f (D)
PDF(t; (πj)1≤j≤m)dt (1)

{p1, ..., pn} = CDF({x1, ..., xn}; (πj)1≤j≤m). (2)

Mathematics 2020, 8, 216; doi:10.3390/math8020216 www.mdpi.com/journal/mathematics1

Mathematics 2020, 8, 216

CDF is always a bijective (and invertible; let InvCDF be its inverse, Equation (3)) function.

x = InvCDF(p; (πj)1≤j≤m). (3)

The series of cumulative probabilities {p1, ..., pn}, independently of the distribution (PDF) of the
population (X) subjected to the analysis, have a known domain (0 ≤ pi ≤ 1 for all 1 ≤ i ≤ n) belonging
to the continuous uniform distribution (p1, ..., pn ∈ U(0, 1)). In the sorted cumulative probabilities
({q1, ..., qn} defined by Equation (4)), sorting defines an order relationship (0 ≤ q1 ≤ ... ≤ qn ≤ 1).

{q1, ..., qn} = SORT({p1, ..., pn}; “ascending”). (4)

If the order of drawing in sample ({x1, ..., xn}) and of appearance in the series of associated CDF
({p1, ..., pn}) is not relevant (e.g., the elements in those sets are indistinguishable), the order relationship
defined by Equation (4) makes them ({q1, ..., qn}) distinguishable (the order being relevant).

A series of order statistics (OS) were developed (to operate on ordered cumulative probabilities
{q1, ..., qn}) and they may be used to assess the quality of sampling for the sample taken as a whole
(Equations (5)–(10) below): Cramér–von Mises (CMStatistic in Equation (5), see [1,2]), Watson U2
(WUStatistic in Equation (6), see [3]), Kolmogorov–Smirnov (KSStatistic in Equation (7), see [4–6]), Kuiper
V (KVStatistic in Equation (8), see [7]), Anderson–Darling (ADStatistic in Equation (9), see [8,9]), and H1
(H1Statistic in Equation (10), see [10]).

CMStatistic =
1

12n
+

n

∑
i=1

(2i − 1
2n

− qi

)2
(5)

WUStatistic = CMStatistic +
(1

2
− 1

n

n

∑
i=1

qi

)2
(6)

KSStatistic =
√

n · max
1≤i≤n

(
qi − i−1

n
,

i
n
− qi

)
(7)

KVStatistic =
√

n ·
(

max
1≤i≤n

(
qi− i−1

n
)
+ max

1≤i≤n

(i
n
−qi
))

(8)

ADStatistic = −n− 1
n

n

∑
i=1

(2i − 1)ln
(
qi(1− qn−i)

)
(9)

H1Statistic = −
n

∑
i=1

qiln(qi)−
n

∑
i=1

(1− qi)ln(1− qi). (10)

Recent uses of those statistics include [11] (CM), [12] (WU), [13] (KS), [14] (AD), and [15] (H1).
Any of the above given test statistics are to be used, providing a risk of being in error for the assumption
(or a likelihood to observe) that the sample ({x1, ..., xn}) was drawn from the population (X). Usually
this risk of being in error is obtained from Monte Carlo simulations (see [16]) applied on the statistic
in question and, in some of the fortunate cases, there is also a closed-form expression (or at least, an
analytic expression) for CDF of the statistic available as well. In the less fortunate cases, only ’critical
values’ (values of the statistic for certain risks of being in error) for the statistic are available.

The other alternative in assessing the quality of sampling refers to an individual observation
in the sample, specifically the less likely one (having associated q1 or qn with the notations given in
Equation (4)). The test statistic is g1 [15], given in Equation (11).

g1Statistic = max
1≤i≤n

|pi − 0.5|. (11)

2

Mathematics 2020, 8, 216

It should be noted that ’taken as a whole’ refers to the way in which the information contained in
the sample is processed in order to provide the outcome. In this scenario (’as a whole’), the entirety
of the information contained in the sample is used. As it can be observed in Equations (5)–(10), each
formula uses all values of sorted probabilities ({q1, ..., qn}) associated with the values ({x1, ..., xn})
contained in the sample, while, as it can be observed in Equation (11), only the extreme value
(max({q1, ..., qn}) or min({q1, ..., qn})) is used; therefore, one may say that only an individual
observation (the extremum portion of the sample) yields the statistical outcome.

The statistic defined by Equation (11) no longer requires cumulative probabilities to be sorted;
one only needs to find the most departed probability from 0.5—see Equation (11)—or, alternatively,
to find the smallest (one having associated q1 defined by Equation (4)) and the largest (one having
associated qn defined by Equation (4)), and to find which deviates from 0.5 the most (g1Statistic =

max{|q1 − 0.5|, |qn − 0.5|}).
We hereby propose a hybrid alternative, a test statistic (let us call it TS) intended to be used in

assessing the quality of sampling for the sample, which is mainly based on the less likely observation
in the sample, Equation (12).

TSStatistic =

max
1≤i≤n

|pi − 0.5|
∑

1≤i≤n
|pi − 0.5| . (12)

The aim of this paper is to characterize the newly proposed test statistic (TS) and to analyze its
peculiarities. Unlike the test statistics assessing the quality of sampling for the sample taken as a whole
(Equations (5)–(10), and like the test statistic assessing the quality of sampling based on the less likely
observation of the sample, Equation (11), the proposed statistic, Equation (12), does not require that the
values or their associated probabilities ({p1, ..., pn}) be sorted (as {q1, ..., qn}); since (like the g1 statistic)
it uses the extreme value from the sample, one can still consider it a sort of OS [17]. When dealing with
extreme values, the newly proposed statistic, Equation (12), is a much more natural construction of a
statistic than the ones previously reported in the literature, Equations (5)–(10), since its value is fed
mainly from the extreme value in the sample (see the max function in Equation (12)). Later, it will be
given a pattern analysis, revealing that it belongs to a distinct group of statistics that are more sensitive
to the presence of extreme values. A strategy of using the pool of OS (Equations (5)–(12)) including TS
in the context of dealing with extreme values is given, and the probability patterns provided by the
statistics are analyzed.

The rest of the paper is organized as follows. The general strategy of sampling a CDF from an OS
and the method of combining probabilities from independent tests are given in Section 2, while the
analytical formula for the proposed statistic is given in Section 3.1, and computation issues and proof
of fact results are given in Section 3.2. Its approximation with other functions is given in Section 3.3.
Combining its calculated risk of being in error with the risks from other statistics is given in Section 3.4,
while discussion of the results is continued with a cluster analysis in Section 3.5, and in connection
with other approaches in Section 3.6. The paper also includes an appendix of the source codes for two
programs and accompanying Supplementary Material.

2. Material and Method

2.1. Addressing the Computation of CDF for OS(s)

A method of constructing the observed distribution of the g1 statistic, Equation (11),
has already been reported elsewhere [15]. A method of constructing the observed distribution
of the Anderson–Darling (AD) statistic, Equation (9), has already been reported elsewhere [17];
the method for constructing the observed distribution of any OS via Monte Carlo (MC) simulation,
Equations (5)–(12), is described here and it is used for TS, Equation (12).

Let us take a sample size of n. The MC simulation needs to generate a large number of
samples (let the number of samples be m) drawn from uniform continuous distribution ({p1, ..., pn} in

3

Mathematics 2020, 8, 216

Equation (2)). To ensure a good quality MC simulation, simply using a random number generator is
not good enough. The next step (Equations (10)–(12) do not require this) is to sort the probabilities to
arrive at {q1, ..., qn} from Equation (4) and to calculate an OS (an order statistic) associated with each
sample. Finally, this series of sample statistics ({OS1, ..., OSw} in Figure 1) must be sorted in order to
arrive at the population emulated distribution. Then, a series of evenly spaced points (from 0 to 1000
in Figure 1) corresponding to fixed probabilities (from InvCDF0 = 0 to InvCDF1000 = 1 in Figure 1) is
to be used saving the (OS statistic, its observed CDF probability) pairs (Figure 1).

Figure 1. The four steps to arrive at the observed CDF of OS.

The main idea is how to generate a good pool of random samples from a uniform U(0, 1)
distribution. Imagine a (pseudo) random number generator, Rand, is available, which generates
numbers from a uniform U(0, 1) distribution, from a [0, 1) interval; such an engine is available in many
types of software and in most cases, it is based on Mersenne Twister [18]. What if we have to extract a
sample of size n = 2? If we split in two the [0, 1) interval (then into [0, 0.5) and [0.5, 1)) then for two
values (let us say v1 and v2), the contingency of the cases is illustrated in Figure 2.

Figure 2. Contingency of two consecutive drawings from [0, 1).

According to the design given in Figure 2, for 4 (=22) drawings of two numbers (v1 and v2) from
the [0, 1) interval, a better uniform extraction (v1v2, ’distinguishable’) is (“00”) to extract first (v1) from
[0, 0.5) and second (v2) from [0, 0.5), then (“01”) to extract first (v1) from [0, 0.5) and second (v2) from
[0.5, 1), then (“10”) to extract first (v1) from [0, 0.5) and second (v2) from [0.5, 1), and finally (“11”) to
extract first (v1) from [0.5, 1) and second (v2) from [0.5, 1).

An even better alternative is to do only 3 (=2 + 1) drawings (v1 + v2, ’undistinguishable’), which
is (“0”) to extract both from [0, 0.5), then “1”) to extract one (let us say first) from [0, 0.5), and another
(let us say second) from [0.5, 1), and finally, (“2”) to extract both from [0.5, 1) and to keep a record for
their occurrences (1, 2, 1), as well. For n numbers (Figure 3), it can be from [0, 0.5) from 0 to n of them,
with their occurrences being accounted for.

Figure 3. Contingency of n consecutive drawings from [0, 1).

According to the formula given in Figure 3, for n numbers to be drawn from [0, 1), a multiple
of n + 1 drawings must be made in order to maintain the uniformity of distribution (w from Figure 1
becomes n + 1). In each of those drawings, we actually only pick one of n (random) numbers (from the
[0, 1) interval) as independent. In the (j + 1)-th drawing, the first j of them are to be from [0, 0.5), while
the rest are to be from [0.5, 1). The algorithm implementing this strategy is given as Algorithm 1.

Algorithm 1 is ready to be used to calculate any OS (including the TS first reported here). For each
sample drawn from the U(0, 1) distribution (the array v in Algorithm 1), the output of it (the array
u and its associated frequencies n!/j!/(n − j)!) can be modified to produce less information and
operations (Algorithm 2). Calculation of the OS (OSj output value in Algorithm 2) can be made to any
precision, but for storing the result, a single data type (4 bytes) is enough (providing seven significant
digits as the precision of the observed CDF of the OS). Along with a byte data type (j output value
in Algorithm 2) to store each sampled OS, 5 bytes of memory is required, and the calculation of

4

Mathematics 2020, 8, 216

n!/(n− j)!/j! can be made at a later time, or can be tabulated in a separate array, ready to be used at a
later time.

Algorithm 1: Balancing the drawings from uniform U(0, 1) distribution.
Input data: n (2 ≤ n, integer)
Steps:

For i from 1 to n do v[i] ← Rand
For j from 0 to n do

For i from 1 to j do u[i] ← v[i]/2
For i from j+1 to n do u[i] ← v[i]/2+1/2
occ ← n!/j!/(n-j)!
Output u[1], ..., u[n], occ

EndFor
Output data: (n+1) samples (u) of sample size (n) and their occurrences (occ)

Algorithm 2: Sampling an order statistic (OS).
Input data: n (2 ≤ n, integer)
Steps:

For i from 1 to n do v[i] ← Rand
For j from 0 to n do

For i from 1 to j do u[i] ← v[i]/2
For i from j+1 to n do u[i] ← v[i]/2+1/2
OSj ← any Equations (5)–(12) with p1←u[1], ..., pn←u[n]
Output OSj, j

EndFor
Output data: (n+1) OS and their occurrences

As given in Algorithm 2, each use of the algorithm sampling OS will produce two associated
arrays: OSj (single data type) and j (byte data type); each of them with n + 1 values. Running the
algorithm r0 times will require 5 · (n+ 1) · r0 bytes for storage of the results and will produce (n+ 1) · r0
OSs, ready to be sorted (see Figure 1). With a large amount of internal memory (such as 64 GB when
running on a 16/24 cores 64 bit computers), a single process can dynamically address very large arrays
and thus can provide a good quality, sampled OS. To do this, some implementation tricks are needed
(see Table 1).

Table 1. Software implementation peculiarities of MC simulation.

Constant/Variable/Type Value Meaning

stt ← record v:single; c:byte; end (OSj, j) pair from Algorithm 2 stored in 5 bytes
mem ← 12,800,000,000 in bytes, 5*mem ← 64Gb, hardware limit

buf ← 1,000,000 the size of a static buffer of data (5*buf bytes)
stst ← array[0..buf-1]of stt static buffer of data

dyst ← array of stst dynamic array of buffers
lvl ← 1000 lvl + 1: number of points in the grid (see Figure 1)

Depending on the value of the sample size (n), the number of repetitions (r2) for sampling of OS,
using Algorithm 2, from r0 ← mem/(n + 1) runs, is r2 ← r0 · (n + 1), while the length (sts) of the
variable (CDFst) storing the dynamic array (dyst) from Table 1 is sts ← 1 + r2/bu f . After sorting the
OSs (of sttype, see Table 1; total number of r2) another trick is to extract a sample series at evenly spaced
probabilities from it (from InvCDF0 to InvCDF1000 in Figure 1). For each pair in the sample (lvli varying
from 0 to lvl = 1000 in Table 1), a value of the OS is extracted from CDFst array (which contains ordered

5

Mathematics 2020, 8, 216

OS values and frequencies indexed from 0 to r2−1), while the MC-simulated population size is r0 · 2n.
A program implementing this strategy is available upon request (project_OS.pas).

The associated objective (with any statistic) is to obtain its CDF and thus, by evaluating the CDF
for the statistical value obtained from the sample, Equations (5)–(12), to associate a likelihood for the
sampling. Please note that only in the lucky cases is it possible to do this; in the general case, only
critical values (values corresponding to certain risks of being in error) or approximation formulas are
available (see for instance [1–3,5,7–9]). When a closed form or an approximation formula is assessed
against the observed values from an MC simulation (such as the one given in Table 1), a measure of
the departure such as the standard error (SE) indicates the degree of agreement between the two. If a
series of evenly spaced points (lvl + 1 points indexed from 0 to lvl in Table 1) is used, then a standard
error of the agreement for inner points of it (from 1 to lvl − 1, see Equation (13)) is safe to be computed
(where pi stands for the observed probability while p̂i for the estimated one).

SE =

√
SS

lvl − 1
, SS =

lvl−1

∑
i=1

(pi − p̂i)
2. (13)

In the case of lvl + 1, evenly spaced points in the interval [0, 1] in the context of MC simulation
(as the one given in Table 1) providing the values of OS statistic in those points (see Figure 1),
the observed cumulative probability should (and is) taken as pi = i/lvl, while p̂i is to be (and
were) taken from any closed form or approximation formula for the CDF statistic (labeled p̂) as
p̂i = p̂(InvCDFi), where InvCDFi are the values collected by the strategy given in Figure 1 operating
on the values provided by Algorithm 2. Before giving a closed form for CDF of TS (Equation (12)) and
proposing approximation formulas, other theoretical considerations are needed.

2.2. Further Theoretical Considerations Required for the Study

When the PDF is known, it does not necessarily imply that its statistical parameters ((πj)1≤j≤m
in Equations (1)–(3)) are known, and here, a complex problem of estimating the parameters of the
population distribution from the sample (it then uses the same information as the one used to assess
the quality of sampling) or from something else (and then it does not use the same information as the
one used to assess the quality of sampling) can be (re)opened, but this matter is outside the scope of
this paper.

The estimation of distribution parameters (πj)1≤j≤m for the data is, generally, biased by the
presence of extreme values in the data, and thus, identifying the outliers along with the estimation of
parameters for the distribution is a difficult task operating on two statistical hypotheses. Under this
state of facts, the use of a hybrid statistic, such as the proposed one in Equation (12), seems justified.
However, since the practical use of the proposed statistics almost always requires estimation of the
population parameters (and in the examples given below, as well), a certain perspective on estimation
methods is required.

Assuming that the parameters are obtained using the maximum likelihood estimation method
(MLE, Equation (14); see [19]), one could say that the uncertainty accompanying this estimation
is propagated to the process of detecting the outliers. With a series of τ statistics (τ = 6 for
Equations (5)–(10) and τ = 8 for Equations (5)–(12)) assessing independently the risk of being in error
(let be α1, ..., ατ those risks), assuming that the sample was drawn from the population, the unlikeliness
of the event (αFCS in Equation (15) below) can be ascertained safely by using a modified form of
Fisher’s “combining probability from independent tests” method (FCS, see [10,20,21]; Equation (15)),
where CDFχ2(x; τ) is the CDF of χ2 distribution with τ degrees of freedom.

max
(

∏
1≤i≤n

PDF(xi; (πj)1≤j≤m)
)
→ min

(
∑

1≤j≤m
ln
(
PDF(xi; (πj)1≤j≤m)

))
(14)

6

Mathematics 2020, 8, 216

FCS = −ln
(

∏
1≤k≤τ

αk

)
, αFCS = 1−CDFχ2(FCS; τ). (15)

Two known symmetrical distributions were used (PDF, see Equation (1)) to express the relative
deviation from the observed distribution: Gauss (G2 in Equation (16)) and generalized Gauss–Laplace
(GL in Equation (17)), where (in both Equations (16) and (17)) z = (x − μ)/σ.

G2(x; μ, σ) = (2π)−1/2σ−1e−z2/2 (16)

GL(x; μ, σ, κ) =
c1

σ
e−|c0z|κ , c0 =

(Γ(3/κ)

Γ(1/κ)

)1/2
, c1 =

κc0

2Γ(1/κ)
. (17)

The distributions given in Equations (16) and (17) will be later used to approximate the CDF of TS
as well as in the case studies of using the order statistics. For a sum (x ← p1+...+pn in Equation (18))
of uniformly distributed (p1, ..., pn ∈ U(0, 1)) deviates (as {p1, ..., pn} in Equation (2)) the literature
reports the Irwin–Hall distribution [22,23]. The CDFIH(x; n) is:

CDFIH(x; n) =
	x

∑
k=0

(−1)k (x − k)n

k!(n− k)!
. (18)

3. Results and Discussion

3.1. The Analytical Formula of CDF for TS

The CDF of TS depends (only) on the sample size (n), e.g., CDFTS(x; n). As the proposed equation,
Equation (12), resembles (as an inverse of) a sum of normal deviates, we expected that the CDFTS will
also be connected with the Irwin–Hall distribution, Equation (18). Indeed, the conducted study has
shown that the inverse (y ← 1/x) of the variable (x) following the TS follows a distribution (1/TS)
of which the CDF is given in Equation (19). Please note that the similarity between Equations (18)
and (19) is not totally coincidental; 1/TS (see Equation (12)) is more or less a sum of uniform distributed
deviates divided by the highest one. Also, for any positive arbitrary generated series, its ascending (x)
and descending (1/x) sorts are complementary. With the proper substitution, CDF1/TS(y; n) can be
expressed as a function of CDFIH—see Equation (20).

CDF1/TS(y; n) =
	n−y

∑
k=0

(−1)k (n− y− k)n−1

k!(n− 1− k)!
(19)

CDF1/TS(y; n) = CDFIH(n− y; n− 1). (20)

Unfortunately, the formulas, Equation (18) to Equation (20), are not appropriate for large n
and p (p = CDF1/TS(y; n) from Equation (19)), due to the error propagated from a large number of
numerical operations (see further Table 2 in Section 3.2). Therefore, for p > 0.5, a similar expression
providing the value for α = 1− p is more suitable. It is possible to use a closed analytical formula
for α = 1−CDF1/TS(y; n) as well, Equation (21). Equation (21) resembles the Irwin–Hall distribution
even more closely than Equation (20)—see Equation (22).

1−CDF1/TS(y; n) =
	y
−1

∑
k=0

(−1)k (y− 1− k)n

k!(n− 1− k)!
(21)

1−CDF1/TS(y; n) = CDFIH(y− 1; n− 1). (22)

7

Mathematics 2020, 8, 216

For consistency in the following notations, one should remember the definition of CDF, see
Equation (1), and then we mark the connection between notations in terms of the analytical expressions
of the functions, Equation (23):

CDFTS(x; n)=1−CDF1/TS(1/x; n), CDFTS(1/x; n)=1−CDF1/TS(x; n),
since InvCDFTS(p; n)·InvCDF1/TS(p; n) = 1.

(23)

One should notice (Equation (1); Equation (23)) that the infimum for the domain of 1/TS (1) is
the supremum for the domain of TS (1) and the supremum (n) for the domain of 1/TS is the infimum
(1/n) for the domain of TS. Also, TS has the median (p = α = 0.5) at 2/(n + 1), while 1/TS has the
median (which is also the mean and mode) at (n + 1)/2. The distribution of 1/TS is symmetrical.

For n = 2, the p = CDF1/TS(y; n) is linear (y + p = 2), while for n = 3, it is a mixture of two
square functions: 2p = (3− y)2, for p ≤ 0.5 (and y ≥ 2), and 2p + (y− 1)2 = 1 for p ≥ 0.5 (and x ≤ 2).
With the increase of n, the number of mixed polynomials of increasing degree defining its expression
increases. Therefore, it has no way to provide an analytical expression for InvCDF of 1/TS, not even
for certain p values (such as ’critical’ analytical functions).

The distribution of 1/TS can be further characterized by its central moments (Mean μ,
Variance σ2, Skewness γ1, and Kurtosis κ in Equation (24)), which are closely connected with the
Irwin–Hall distribution.

For 1/TS(y; n): μ=(n + 1)/2; σ2=(n−1)/12, γ1 = 0; κ = 3−6/(5n−5). (24)

3.2. Computations for the CDF of TS and Its Analytical Formula

Before we proceed in providing the simulation results, some computational issues must be
addressed. Any of the formulas provided for CDF of TS (Equations (19) and (21); or Equations (20)
and (22) both connected with Equation (18)), will provide almost exact calculations as long as
computations with the formulas are conducted with an engine or package that performs the operations
with rational numbers to an infinite precision (such as is available in the Mathematica software [24]),
when also the value of y (y ← 1/x, of floating point type) is converted to a rounded, rational number.
Otherwise, with increasing n, the evaluation of CDF for TS using either Equation (19) to Equation (22)
carries huge computational errors (see the alternating sign of the terms in the sums of Equations (18),
(19), and (21)). In order to account for those computational errors (and to reduce their magnitude)
an alternate formula for the CDF of TS is proposed (Algorithm 3), combining the formulas from
Equations (19) and (21), and reducing the number of summed terms.

Algorithm 3: Avoiding computational errors for TS.
Input data: n (n ≥ 2, integer), x (1 ≤ x ≤ 1/n, real number, double precision)

y ← 1/x; //p1/TS ← Equation (19), α1/TS ← Equation (21)
if y <(n+1)/2

p ← ∑
	y
−1
k=0 (−1)k (y−1−k)n

k!(n−1−k)! ; α ← 1− p
else if y >(n+1)/2

α ← ∑
	n−y

k=0 (−1)k (n−y−k)n−1

k!(n−1−k)! ; p ← 1− α

else

α ← 0.5 ; p ← 0.5
Output data: α=α1/TS=pTS←CDFTS(x; n) and p= p1/TS=αTS←1−pTS

8

Mathematics 2020, 8, 216

Table 2 contains the sums of the residuals (SS = ∑999
i=1(pi − p̂i)

2 in Equation (13), lvl = 1000) of
the agreement between the observed CDF of TS (pi = i/1000, for i from 1 to 999) and the calculated
CDF of TS (the p̂i values are calculated using Algorithm 3 from xi = InvCDF(i/1000; n) for i from 1 to
999) for some values of the sample size (n). To prove the previous given statements, Table 2 provides
the square sums of residuals computed using three alternate formulas (from Equation (20) and from
Equation (22), along with the ones from Algorithm 3).

Table 2. Square sums of residuals calculated in double precision (IEEE 754 binary64, 64 bits).

n pi Calculated with Equation (19) pi Calculated with Equation (21) pi Calculated with Algorithm 4

34 3.0601572482628 × 10−8 3.0601603616294 × 10−8 3.0601364353173 × 10−8

35 6.0059397209079 × 10−8 6.0057955311142 × 10−8 6.0057052975471 × 10−8

36 1.1567997676343 × 10−8 1.1572997605838 × 10−8 1.1567370749831 × 10−8

37 8.9214456109544 × 10−8 8.9215230398577 × 10−8 8.9213063043724 × 10−8

38 1.1684682533384 × 10−8 1.1681544866285 × 10−8 1.1677646550768 × 10−8

39 1.2101651325053 × 10−8 1.2181659126285 × 10−8 1.2100378665608 × 10−8

40 1.1041708665520 × 10−7 1.1043952711846 × 10−7 1.1036003349029 × 10−7

41 7.2871410520319 × 10−8 7.2755412302319 × 10−8 7.2487977100103 × 10−8

42 1.9483807018501 × 10−8 1.9626447735907 × 10−8 1.9273186509959 × 10−8

43 3.1128379331196 × 10−8 1.7088238120170 × 10−8 1.3899520242290 × 10−8

44 8.7810761126831 × 10−8 3.8671367222236 × 10−8 1.0878689813951 × 10−8

45 1.1914784602127 × 10−7 3.1416715528555 × 10−7 5.8339481916925 × 10−8

46 2.0770754629042 × 10−6 1.2401177918843 × 10−6 4.4594953399233 × 10−8

47 5.0816356972050 × 10−7 4.1644326761832 × 10−7 1.8942487765410 × 10−8

48 1.5504732794049 × 10−6 5.5760558048026 × 10−6 5.7292512517324 × 10−8

49 1.1594466754136 × 10−5 6.4164330856396 × 10−6 1.7286761495408 × 10−7

50 1.0902858025759 × 10−5 8.0190771776360 × 10−6 8.5891058550425 × 10−8

51 6.4572577668164 × 10−6 1.6023753568028 × 10−4 1.9676739380922 × 10−8

52 1.0080944275181 × 10−4 9.1080176774820 × 10−5 1.0359121739272 × 10−7

53 9.3219609856284 × 10−4 2.7347575817507 × 10−4 1.5873847007230 × 10−8

54 4.8555844748161 × 10−4 1.6086902937472 × 10−3 9.2930071189138 × 10−9

55 6.2446720485774 × 10−4 1.6579954395873 × 10−3 1.2848119194342 × 10−7

In red: computing affected digits.

As given in Table 2, the computational errors by using either Equation (20) (or Equation (19))
and Equation (22) (or Equation (21)) until n = 34 are reasonably low, while from n = 42, they become
significant. As can be seen (red values in Table 2), double precision alone cannot cope with the large
number of computations, especially as the terms in the sums are constantly changing their signs
(see (−1)k in Equations (19) and (21)).

The computational errors using Algorithm 3 are reasonably low for the whole domain of the
simulated CDF of TS (with n from 2 to 55), but the combined formula (Algorithm 3) is expected to lose
its precision for large n values, and therefore, a solution to safely compute (CDF for IH, TS and 1/TS)
is to operate with rational numbers.

One other alternative is to use GNU GMP (Multiple Precision Arithmetic Library [25]).
The calculations are the same (Algorithm 3); the only difference is the way in which the temporary
variables are declared (instead of double, the variables become mp f _t initialized later with a
desired precision).

For convenience, the FreePascal [26] implementation for CDF of the Irwin–Hall distribution
(Equation (18), called in the context of evaluating the CDF of TS in Equations (20) and (22)) is given as
Algorithm 4.

9

Mathematics 2020, 8, 216

Algorithm 4: FreePascal implementation for calculating the CDF of IH.

Input data: n (integer), x (real number, double precision);
vark,i: integer; //integer enough for n < 32,768
varz,y: mpf_t; //doubleorextended insteadofmp f_t

Begin //CDF for Irwin–Hall distribution
mpf_set_default_prec(128); //or bigger,256,512,...
mpf_init(y); mpf_init(z); //y := 0.0;
for k := trunc(x) downto 0 do begin //main loop

If(k mod 2 = 0) // z := 1.0 or z := −1.0;
then mpf_set_si(z,1) //z := 1.0;
else mpf_set_si(z,-1); //z := -1.0;

for i := n − k downto 1 do z := z*(x − k)/i;
for i := k downto 1 do z := z*(x− k)/i;
y := y + z;

end;
pIH_gmp := mpf_get_d(y); mpf_clear(z); mpf_clear(y);

End;
Output data: p (real number, double precision)

In Algorithm 4, the changes made to a classical code running without GNU GMP floating point
arithmetic functions are written in blue color. For convenience, the combined formula (Algorithm 3)
trick for avoiding the computation errors can be implemented with the code given as Algorithm 4 at the
call level, Equation (25). If pIH(x:double; n:integer):double returns the value from Algorithm 4,
then pg1, as given in Equation (25), safely returns the combined formula (Algorithm 3) with (or without)
GNU GMP.

pg1 ←
{

1−pIH(n−1, n−1/x), if x(n+1) < 2.

pIH(n− 1, 1/x − 1), otherwise.
(25)

Regarding Table 2, Algorithm 4 listed data, from n = 2 to n = 55, the calculation of the residuals
were made with double (64 bits), extended (FreePascal 80 bits), and mp f _t-128 bits (GNU GMP).
The sum of residuals (for all n from 2 to 55) differs from double to extended with less than 10−11 and
the same for mp f_t with 128 bits, which safely provides confidence in the results provided in Table 2
for the combined formula (last column, Algorithm 4). The deviates for agreement in the calculation of
CDF for TS are statistically characterized by SE (Equation (13)), min, and max in Table 3.

The SE of agreement (Table 3) between the expected value and the observed one (Algorithm 4,
Equation (12), Table 1) of the CDF1/TS(x; n) is safely below the resolution for the grid of observing
points (lvl−1 = 10−3 in Table 1; SE ≤ 1.2 × 10−5 in Table 3; two orders of magnitude). By using
Algorithm 4, Figures 4–7 depict the shapes of CDFTS(x; n), CDF1/TS(x; n), InvCDFTS(x; n), and
InvCDF1/TS(x; n) for n from 2 to 20.

Finally, for the domain of the simulated CDF of the TS population for n from 2 to 54, the error
in the odd points of the grid (for 1000 · p from 1 to 999 with a step of 2) is depicted in Figure 8
(the calculations of theoretical CDF for TS made with gmp f loat at a precision of at least 256 bits).
As can be observed in Figure 8, the difference between p and p̂ is rarely larger than 10−5 and never
larger than 3× 10−5 (the boundary of the representation in Figure 8) for n ranging from 2 to 54.

10

Mathematics 2020, 8, 216

T
a

b
le

3
.

D
es

cr
ip

tiv
e

fo
rt

he
ag

re
em

en
ti

n
th

e
ca

lc
ul

at
io

n
of

th
e

C
D

F
of

TS
(E

qu
at

io
n

(1
2)

vs
.A

lg
or

ith
m

4)
.

n
SE

m
in

ep
m

ax
ep

n
SE

m
in

ep
m

ax
ep

n
SE

m
in

ep
m

ax
ep

2
3.

0
×

10
−6

−2
.1
×

10
−6

1.
8
×

10
−6

20
5.

4
×

10
−6

−4
.1
×

10
−6

3.
9
×

10
−6

38
3.

4
×

10
−6

−7
.3
×

10
−6

6.
1
×

10
−6

3
3.

2
×

10
−6

−2
.4
×

10
−6

2.
7
×

10
−6

21
3.

0
×

10
−6

−4
.5
×

10
−6

4.
1
×

10
−6

39
3.

5
×

10
−6

−7
.3
×

10
−6

6.
4
×

10
−6

4
3.

5
×

10
−6

−2
.3
×

10
−6

2.
7
×

10
−6

22
6.

3
×

10
−6

−4
.8
×

10
−6

4.
0
×

10
−6

40
1.

1
×

10
−5

−7
.2
×

10
−6

5.
5
×

10
−6

5
4.

2
×

10
−6

−2
.8
×

10
−6

2.
2
×

10
−6

23
5.

6
×

10
−6

−5
.6
×

10
−6

4.
6
×

10
−6

41
8.

5
×

10
−6

−7
.2
×

10
−6

7.
4
×

10
−6

6
2.

8
×

10
−6

−3
.2
×

10
−6

2.
4
×

10
−6

24
4.

0
×

10
−6

−6
.4
×

10
−6

4.
6
×

10
−6

42
4.

4
×

10
−6

−7
.0
×

10
−6

7.
8
×

10
−6

7
4.

4
×

10
−6

−3
.3
×

10
−6

3.
1
×

10
−6

25
4.

1
×

10
−6

−6
.3
×

10
−6

4.
5
×

10
−6

43
3.

7
×

10
−6

−6
.5
×

10
−6

6.
9
×

10
−6

8
3.

5
×

10
−6

−3
.7
×

10
−6

2.
6
×

10
−6

26
1.

2
×

10
−5

−6
.2
×

10
−6

5.
1
×

10
−6

44
3.

3
×

10
−6

−6
.1
×

10
−6

7.
0
×

10
−6

9
3.

7
×

10
−6

−3
.9
×

10
−6

2.
2
×

10
−6

27
1.

2
×

10
−5

−6
.3
×

10
−6

4.
9
×

10
−6

45
7.

6
×

10
−6

−6
.1
×

10
−6

6.
8
×

10
−6

10
4.

5
×

10
−6

−3
.7
×

10
−6

2.
9
×

10
−6

28
7.

8
×

10
−6

−6
.3
×

10
−6

5.
1
×

10
−6

46
6.

7
×

10
−6

−6
.1
×

10
−6

6.
9
×

10
−6

11
5.

7
×

10
−6

−3
.7
×

10
−6

2.
7
×

10
−6

29
7.

2
×

10
−6

−6
.6
×

10
−6

5.
4
×

10
−6

47
4.

4
×

10
−6

−6
.2
×

10
−6

7.
3
×

10
−6

12
7.

6
×

10
−6

−3
.9
×

10
−6

2.
5
×

10
−6

30
3.

5
×

10
−6

−6
.3
×

10
−6

5.
7
×

10
−6

48
7.

6
×

10
−6

−6
.2
×

10
−6

8.
0
×

10
−6

13
5.

2
×

10
−6

−3
.8
×

10
−6

3.
0
×

10
−6

31
4.

1
×

10
−6

−6
.2
×

10
−6

5.
0
×

10
−6

49
1.

3
×

10
−5

−6
.3
×

10
−6

7.
8
×

10
−6

14
5.

6
×

10
−6

−4
.3
×

10
−6

3.
2
×

10
−6

32
5.

2
×

10
−6

−6
.0
×

10
−6

4.
9
×

10
−6

50
9.

3
×

10
−6

−6
.0
×

10
−6

7.
0
×

10
−6

15
1.

0
×

10
−5

−3
.8
×

10
−6

3.
5
×

10
−6

33
3.

5
×

10
−6

−6
.0
×

10
−6

4.
5
×

10
−6

51
4.

4
×

10
−6

−6
.4
×

10
−6

7.
0
×

10
−6

16
6.

9
×

10
−6

−3
.9
×

10
−6

3.
6
×

10
−6

34
5.

5
×

10
−6

−6
.6
×

10
−6

4.
3
×

10
−6

52
1.

0
×

10
−5

−6
.4
×

10
−6

6.
4
×

10
−6

17
8.

4
×

10
−6

−4
.2
×

10
−6

3.
5
×

10
−6

35
7.

8
×

10
−6

−6
.3
×

10
−6

5.
2
×

10
−6

53
4.

0
×

10
−6

−6
.1
×

10
−6

6.
1
×

10
−6

18
5.

1
×

10
−6

−4
.1
×

10
−6

4.
1
×

10
−6

36
3.

4
×

10
−6

−6
.7
×

10
−6

5.
7
×

10
−6

54
3.

1
×

10
−6

−6
.4
×

10
−6

6.
7
×

10
−6

19
5.

4
×

10
−6

−4
.2
×

10
−6

4.
4
×

10
−6

37
9.

4
×

10
−6

−6
.8
×

10
−6

6.
4
×

10
−6

55
1.

1
×

10
−5

−6
.7
×

10
−6

7.
1
×

10
−6

m
in

ep
=

m
in
(p

i
−

p̂ i
),

m
ax

ep
=

m
ax
(p

i
−

p̂ i
).

11

Mathematics 2020, 8, 216

Figure 4. InvCDFTS(x; n) for n = 2 to 20.

Figure 5. CDFTS(x; n) for n = 2 to 20.

Figure 6. InvCDF1/TS(x; n) for n = 2 to 20.

12

Mathematics 2020, 8, 216

Figure 7. CDF1/TS(x; n) for n = 2 to 20.

Figure 8. Agreement estimating CDFTS for n = 2...54 and 1000p = 1...999 with a step of 2.

Based on the provided results, one may say that there is no error in saying that Equations (19)
and (21) are complements (see Equation (23) as well) of the CDF of TS given as Equation (12). As long
as the calculations (of either Equations (19) and (21)) are conducted using rational numbers, either
formula provides the most accurate result. The remaining concerns are how large those numbers can
be (e.g., the range of n). This is limited only by the amount of memory available and how precise the
calculations are. This reaches the maximum defined by the measurement of data precision, and finally,
the resolutions are provided, which are given by the precision of converting (if necessary) the TS
value given by Equation (12) from float to rational. Either way, some applications prefer approximate
formulas, which are easier to calculate, and are considered common knowledge for interpreting the
results. For those reasons, the next section describes approximation formulas.

3.3. Approximations of CDF of TS with Known Functions

Considering, once again, Equation (24), for sufficiently large n, the distribution of 1/TS is
approximately normal (Equation (26). For normal Gauss distribution, see Equation (16)).

PDF1/TS(y; n) n→∞−−→PDFG2((n+1)/2;
√
(n−1)/12)). (26)

13

Mathematics 2020, 8, 216

Even better (than Equation (26)), for large values of n, a generalized Gauss–Laplace distribution
(see Equation (17)) can be used to approximate the 1/TS statistic. Furthermore, for those looking for
critical values of the TS statistic, the approximation of the 1/TS statistic to a generalized Gauss–Laplace
distribution may provide safe critical values for large n. One way to derive the parameters of the
generalized Gauss–Laplace distribution approximating the 1/TS statistic is by connecting the kurtosis
and skewness of the two (Equation (27)).

Ku(β)=
Γ(5

β)Γ(
1
β)

Γ(3
β)Γ(

3
β)

→ β=Ku−1
(

3− 6
5n−5

)
, α=

√
n−1
12

Γ(1/β)

Γ(3/β)
. (27)

With α and β given by Equation (27) and μ = (n+ 1)/2 (Equation (24)), the PDF of the generalized
Gauss–Laplace distribution (Equation (17)), which approximates 1/TS (for large n), is given in
Equation (28).

PDFGL(x; μ, α, β) =
β

2αΓ(1/β)
e−
(|x−μ|

α

)β

. (28)

The errors of approximation (with Equation (29)) of pi = CDF1/TS (from Algorithm 3) with
p̂i = CDFGL (from Equations (27) and 28) are depicted in Figure 9 using a grid of 52 × 999 points for
n = 50...101 and p = 0.001...0.999.

SE=

√√√√999

∑
i=1

(pi− p̂i)2

999
, pi =

i
103 , p̂i = CDFGL(InvCDF1/TS(pi; n); α, β). (29)

As can be observed in Figure 9, the confidence in approximation of 1/TS with the GL increases
with the sample size (n), but the increase is less than linear. The tendency is to approximately linearly
decrease with an exponential increase.

Figure 9. Standard errors (SE) as function of sample size (n) for the approximation of 1/TS with GL
(Equation (29)).

The calculation of CDF for 1/TS is a little tricky, as anticipated previously (see Section 3.2). To
avoid the computation errors in the calculation of CDFTS, a combined formula is more appropriate
(Algorithms 3 and 4). With p1/TS ← CDF1/TS(y; n) and α1/TS ← 1−CDF1/TS(y; n), depending on the
value of y (y ← 1/x, where x is the sample statistic of TS, Equation (12)), only one (from α and p, where
α + p = 1) is suitable for a precise calculation.

An important remark at this point is that (n + 1)/2 is the median, mean, and mode for 1/TS
(see Section 3.1). Indeed, any symbolic calculation with either of the formulas from Equation (19)
to Equation (22) will provide that CDF1/TS((n + 1)/2; n) = 0.5, or, expressed with InvCDF,
InvCDF1/TS(0.5; n) = (n + 1)/2.

14

Mathematics 2020, 8, 216

3.4. The Use of CDF for TS to Measure the Departure between an Observed Distribution and a Theoretical One

With any of Equations (5)–(12), a likelihood to observe an observed sample can be ascertained.
One may ask which statistic is to be trusted. The answer is, at the same time, none and all, as
the problem of fitting the data to a certain distribution involves the estimation of the distribution’s
parameters—such as using MLE, Equation (14). In this process of estimation, there is an intrinsic
variability that cannot be ascertained by one statistic alone. This is the reason that calculating the risk
of being in error from a battery of statistics is necessary, Equation (15).

Also, one may say that the g1 statistic (Equation (11)) is not associated with the sample, but to
its extreme value(s), while others may say the opposite. Again, the truth is that both are right, as in
certain cases, samples containing outliers are considered not appropriate for the analysis [27], and
in those cases, there are exactly two modes of action: to reject the sample or to remove the outlier(s).
Figure 10 gives the proposed strategy of assessing the samples using order statistics.

 n

MLE

(eq.3)

Distribution PDF

1 m}

Order statistics eqs.4-11

{x1 n} {p1 n}

CM

CM

{q1 n}

WU

WU

KS

KS

KV

KV

AD

AD

H1

H1

g1

g1

TS

TS

FCS FCS

Figure 10. Using the order statistics to measure the likelihood of sampling.

As other authors have noted, in nonparametric problems, it is known that order statistics, i.e.,
the ordered set of values in a random sample from least to greatest, play a fundamental role. ’A
considerable amount of new statistical inference theory can be established from order statistics
assuming nothing stronger than continuity of the cumulative distribution function of the population’
as [28] noted, a statement that is perfectly valid today.

In the following case studies, the values of the sample statistics were calculated with
Equations (5)–(10) (AD, KS, CM, KV, WU, H1; see also Figure 10), while the risks of being in
error—associated with the values of sample statistics (αStatistic for those)—were calculated with
the program developed and posted online available at http://l.academicdirect.org/Statistics/tests.
The g1Statistic (Equation (11)) and αg1 were calculated as given in [15], while the TSStatistic (Equation (12))
was calculated with Algorithm 4. For FCS and αFCS, Equation (15) was used.

Case study 1.

Data: “Example 1” in [29]; Distribution: Gauss (Equation (16)); Sample size: n = 10; Population
parameters (MLE, Equation (14)): μ = 575.2; σ = 8.256; Order statistics analysis is given in Table 4.
Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 11.2%) but it is
a bad drawing from normal (Gauss) distribution, with less than the imposed level (α = 5%) likelihood
to appear from a random draw (αFCS = 4.5%).

15

Mathematics 2020, 8, 216

Table 4. Order statistics analysis for case studies 1 to 10.

Case Parameter AD KS CM KV WU H1 g1 TS FCS

1 Statistic 1.137 1.110 0.206 1.715 0.182 5.266 0.494 4.961 15.80
αStatistic 0.288 0.132 0.259 0.028 0.049 0.343 0.112 0.270 0.045

2 Statistic 0.348 0.549 0.042 0.934 0.039 7.974 0.496 6.653 6.463
αStatistic 0.894 0.884 0.927 0.814 0.844 0.264 0.109 0.107 0.596

3 Statistic 0.617 0.630 0.092 1.140 0.082 4.859 0.471 5.785 4.627
αStatistic 0.619 0.742 0.635 0.486 0.401 0.609 0.451 0.627 0.797

4 Statistic 0.793 0.827 0.144 1.368 0.129 3.993 0.482 4.292 8.954
αStatistic 0.482 0.420 0.414 0.190 0.154 0.524 0.255 0.395 0.346

5 Statistic 0.440 0.486 0.049 0.954 0.047 104.2 0.500 103.2 5.879
αStatistic 0.810 0.963 0.884 0.850 0.742 0.359 0.034 0.533 0.661

6 Statistic 0.565 0.707 0.083 1.144 0.061 83.32 0.499 82.17 5.641
αStatistic 0.683 0.675 0.673 0.578 0.580 0.455 0.247 0.305 0.687

7 Statistic 1.031 1.052 0.170 1.662 0.149 52.66 0.494 51.00 11.24
αStatistic 0.320 0.202 0.333 0.067 0.106 0.471 0.729 0.249 0.188

8 Statistic 0.996 0.771 0.132 1.375 0.127 22.201 0.460 27.95 5.933
αStatistic 0.322 0.556 0.451 0.248 0.162 0.853 0.980 0.978 0.655

9 Statistic 0.398 0.576 0.058 1.031 0.051 31.236 0.489 32.04 2.692
αStatistic 0.853 0.869 0.828 0.728 0.694 0.577 0.746 0.507 0.952

10 Statistic 0.670 0.646 0.092 1.170 0.085 11.92 0.460 14.66 3.549
αStatistic 0.583 0.753 0.627 0.488 0.373 0.747 0.874 0.879 0.895

Case study 2.

Data: “Example 3” in [29]; Distribution: Gauss (Equation (16)); Sample size: n = 15; Population
parameters (MLE, Equation (14)): μ = 0.018; σ = 0.532; Order statistics analysis is given in Table 4.
Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 10.9%) and
it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 59.6%).

Case study 3.

Data: “Example 4” in [29]; Distribution: Gauss (Equation (16)); Sample size: n = 10; Population
parameters (MLE, Equation (14)): μ = 3.406; σ = 0.732; Order statistics analysis is given in Table 4.
Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 45.1%) and
it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 79.7%).

Case study 4.

Data: “Example 5” in [29]; Distribution: Gauss (Equation (16)); Sample size: n = 8; Population
parameters (MLE, Equation (14)): μ = 4715; σ = 140.8; Order statistics analysis is given in Table 4.
Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 25.5%) and
it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 34.6%).

Case study 5.

Data: “Table 4” in [15]; Distribution: Gauss (Equation (16)); Sample size: n = 206; Population
parameters (MLE, Equation (14)): μ = 6.481; σ = 0.829; Order statistics analysis is given in Table 4.
Conclusion: at α = 5% risk of being in error, the sample have an outlier (αg1 = 3.4%) and it is a good

16

Mathematics 2020, 8, 216

drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%) likelihood to
appear from a random draw (αFCS = 66.1%).

Case study 6.

Data: “Table 1, Column 1” in [30]; Distribution: Gauss (Equation (16)); Sample size: n = 166;
Population parameters (MLE, Equation (14)): μ = −0.348; σ = 1.8015; Order statistics analysis is given
in Table 4. Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 24.7%)
and it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 68.7%).

Case study 7.

Data: “Table 1, Set BBB” in [31]; Distribution: Gauss (Equation (16)); Sample size: n = 105;
Population parameters (MLE, Equation (14)): μ = −0.094; σ = 0.762; Order statistics analysis is given in
Table 4. Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 72.9%)
and it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 18.8%).

Case study 8.

Data: “Table 1, Set SASCAII” in [31]; Distribution: Gauss (Equation (16)); Sample size: n = 47;
Population parameters (MLE, Equation (14)): μ = 1.749; σ = 0.505; Order statistics analysis is given in
Table 4. Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 98.0%)
and it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 65.5%).

Case study 9.

Data: “Table 1, Set TaxoIA” in [31]; Distribution: Gauss (Equation (16)); Sample size: n = 63;
Population parameters (MLE, Equation (14)): μ = 0.744; σ = 0.670; Order statistics analysis is given in
Table 4. Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 74.6%)
and it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 95.2%).

Case study 10.

Data: “Table 1, Set ERBAT” in [31]; Distribution: Gauss (Equation (16)); Sample size: n = 25;
Population parameters (MLE, Equation (14)): μ = 0.379; σ = 1.357; Order statistics analysis is given in
Table 4. Conclusion: at α = 5% risk of being in error, the sample does not have an outlier (αg1 = 87.9%)
and it is a good drawing from normal (Gauss) distribution, with more than the imposed level (α = 5%)
likelihood to appear from a random draw (αFCS = 89.5%).

3.5. The Patterns in the Order Statistics

A cluster analysis on the risks of being in error, provided by the series of order statistics on the case
studies considered in this study, may reveal a series of peculiarities (Figures 11 and 12). The analysis
given here is based on the series of the above given case studies in order to illustrate similarities (and
not to provide a ’gold standard’ as in [32] or in [33]).

17

Mathematics 2020, 8, 216

Tree Diagram for 9 Variables

Single Linkage

Euclidean distances

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Linkage Distance

g1

TS

H1

WU

KV

FCS

KS

CM

AD

Figure 11. Euclidian distances between the risks being in error provided by the order statistics.

Tree Diagram for 9 Variables

Single Linkage

1-Pearson r

0.0 0.1 0.2 0.3 0.4 0.5

Linkage Distance

g1

TS

H1

FCS

KS

WU

KV

CM

AD

Figure 12. Pearson disagreement between the risks being in error provided by the order statistics.

Both clustering methods illustrated in Figures 11 and 12 reveal two distinct groups of statistics:
{AD, CM, KV, WU, KS} and {H1, TS, g1}. The combined test FCS is also attracted (as expected) to
the largest group. When looking at single Euclidean distances (Figure 11) of the largest group, two
other associations should be noticed {AD, CM, KS} and {KV, WU}, suggesting that those groups carry
similar information, but when looking at the Pearson disagreements (Figure 12), we must notice
that the subgroups are changed {CM, KV, WU}, {AD}, and {KS}, with no hint of an association with
their calculation formulas (Equations (5)–(9)); therefore, their independence should not be dismissed.
The second group {H1, TS, g1} is more stable, maintaining the same clustering pattern of the group
({H1, TS}, {g1} in Figure 12).

Taking into account that the g1 test (Equation (11)) was specifically designed to account for
outliers suggests that the H1 and TS tests are more sensitive to the outliers than other statistics, and
therefore, when the outliers (or just the presence of extreme values) are the main concern in the
sampling, it is strongly suggested to use those tests. The H1 statistic is a Shannon entropy formula
applied in the probability space of the sample. When accounting for this aspect in the reasoning,
the rassociation of the H1 with TS suggests that TS is a sort of entropic measure (max-entropy, to be

18

Mathematics 2020, 8, 216

more exact [34], a limit case of generalized Rényi’s entropy [35]). Again, the g1 statistic is alone in this
entropic group, suggesting that it carries a unique fingerprint about the sample—specifically, about its
extreme value (see Equation (11))—while the others account for the context (the rest of the sampled
values, Equations (10) and (12)).

Regarding the newly proposed statistic (TS), from the given case studies, the fact that it belongs
to the {H1, TS, g1} group strongly suggests that it is more susceptible to the presence of outliers (such
as g1, purely defined for this task, and unlike the well known statistics defined by Equations (5)–(9)).

Moreover, one may ask that, if based on the risks being in error provided by the statistics from
case studies 1 to 10, some peculiarity about TS or another statistic involved in this study could be
revealed. An alternative is to ask if the values of risks can be considered to be belonging to the same
population or not, and for this, the K-sample Anderson–Darling test can be invoked [36]. With the
series of probabilities, there are actually 29 − 1− 9 = 502 tests to be conducted (for each subgroup of 2,
3, 4, 5, 6, 7, 8, and 9 statistics picked from nine possible choices) and for each of them, the answer is
same: At the 5% risk of being in error, it cannot be rejected that the groups (of statistics) were selected
from identical populations (of statistics), so, overall, any of those statistics perform the same.

The proposed method may find its uses in testing symmetry [37], as a homogeneity test [38] and,
of course, in the process of detecting outliers [39].

3.6. Another Rank Order Statics Method and Other Approaches

The series of rank order statistics included in this study, Equations (5)–(11), covers the most
known rank order statistics reported to date. However, when considering a new order statistic not
included there, the use of it in the context of combining methods, Equation (15), only increases the
degrees of freedom τ, while the design of using (Figure 10) is changed accordingly.

It should be noted that the proposed approach is intended to be used for small sample sizes, when
no statistic alone is capable of high precision and high trueness. With the increasing sample size, all
statistics should converge to the same risk of being in error and present other alternatives, such as the
superstatistical approach [40]. In the same context, each of the drawings included in the sample are
supposed to be independent. In the presence of correlated data (such as correlated in time), again,
other approaches, such as the one communicated in [41], are more suited.

4. Conclusions

A new test statistic to be used to measure the agreement between continuous theoretical
distributions and samples drawn from TS was proposed. The analytical formula of the TS cumulative
distribution function was obtained. The comparative study against other order statistics revealed
that the newly proposed statistic carries distinct information regarding the quality of the sampling. A
combined probability formula from a battery of statistics is suggested as a more accurate measure for
the quality of the sampling. Therefore Equation (15) combining the probabilities (the risks of being in
error) from Equation (5) to Equation (12) is recommended anytime when extreme values are suspected
being outliers in samples from continuous distributions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7390/8/2/216/s1.
The source code for sampling order statistics (file named OS.pas) and source code evaluation of the CDF of TS
with Algorithm 4 (file named TS.pas file) are available upon request. The k-Sample Anderson–Darling test(s) on
risks of being in error from the case studies 1 to 10 is given as a supplementary file.

Funding: This research received no external funding.

Acknowledgments: The following software were used during the research and writing the paper: Lazarus
(freeware) were used to compile the 64bit executable for Monte Carlo sampling (using the parametrization
given in Table 1). The executable was compiled to work for a 64GB multi-core workstation and were used so.
Mathcad (v.14, licensed) were used to check the validity for some of the equations given (Equations (19)–(22),
(24), (26), (27)), and to do the MLE estimates (implementing Equation (14) with first order derivatives and results
given in Section 3.4 as Case studies 1 to 10). Matlab (v.8.5.0, licensed) was used to obtain Figures 4–8. Wolfram
Mathematica (v.12.0, licensed) was used to check (iteratively) the formulas given for 1/TS (Equations (19) and 21))

19

Mathematics 2020, 8, 216

and to provide the data for Figure 8. FreePascal (with GNU GMP, freeware) were used to assess numerically the
agreement for TS statistic (Tables 2 and 3, Figure 8). StatSoft Statistica (v.7, licensed) was used to obtain Figures 11
and 12.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Cramér, H. On the composition of elementary errors. Scand. Actuar. J. 1928, 1, 13–74. [CrossRef]
2. Von Mises, R.E. Wahrscheinlichkeit, Statistik und Wahrheit; Julius Springer: Berlin, Germany, 1928.
3. Watson, G.S. Goodness-of-fit tests on a circle. Biometrika 1961, 48, 109–114. [CrossRef]
4. Kolmogoroff, A. Sulla determinazione empirica di una legge di distribuzione. Giornale dell’Istituto Italiano

degli Attuari 1933, 4, 83–91.
5. Kolmogoroff, A. Confidence limits for an unknown distribution function. Ann. Math. Stat. 1941, 12, 461–463.

[CrossRef]
6. Smirnov, N. Table for estimating the goodness of fit of empirical distributions. Ann. Math. Stat. 1948,

19, 279–281. [CrossRef]
7. Kuiper, N.H. Tests concerning random points on a circle. Proc. K. Ned. Akad. Wet. Ser. A 1960, 63, 38–47.

[CrossRef]
8. Anderson, T.W.; Darling, D. Asymptotic theory of certain ’goodness-of-fit’ criteria based on stochastic

processes. Ann. Math. Stat. 1952, 23, 193–212. [CrossRef]
9. Anderson, T.W.; Darling, D.A. A test of goodness of fit. J. Am. Stat. Assoc. 1954, 49, 765–769. [CrossRef]
10. Jäntschi, L.; Bolboacă, S.D. Performances of Shannon’s entropy statistic in assessment of distribution of data.

Ovidius Univ. Ann. Chem. 2017, 28, 30–42. [CrossRef]
11. Hilton, S.; Cairola, F.; Gardi, A.; Sabatini, R.; Pongsakornsathien, N.; Ezer, N. Uncertainty quantification for

space situational awareness and traffic management. Sensors 2019, 19, 4361. [CrossRef]
12. Schöttl, J.; Seitz, M.J.; Köster, G. Investigating the randomness of passengers’ seating behavior in suburban

trains. Entropy 2019, 21, 600. [CrossRef]
13. Yang, X.; Wen, S.; Liu, Z.; Li, C.; Huang, C. Dynamic properties of foreign exchange complex network.

Mathematics 2019, 7, 832. [CrossRef]
14. Młynski, D.; Bugajski, P.; Młynska, A. Application of the mathematical simulation methods for the assessment

of the wastewater treatment plant operation work reliability. Water 2019, 11, 873. [CrossRef]
15. Jäntschi, L. A test detecting the outliers for continuous distributions based on the cumulative distribution

function of the data being tested. Symmetry 2019, 11, 835. [CrossRef]
16. Metropolis, N.; Ulam, S. The Monte Carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [CrossRef]
17. Jäntschi, L.; Bolboacă, S.D. Computation of probability associated with Anderson-Darling statistic.

Mathematics 2018, 6, 88. [CrossRef]
18. Matsumoto, M.; Nishimura, T. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random

number generator. ACM Trans. Model. Comput. Simul. 1998, 8, 3–30. [CrossRef]
19. Fisher, R.A. On an absolute criterion for fitting frequency curves. Messenger Math. 1912, 41, 155–160,
20. Fisher, R.A. Questions and answers 14: Combining independent tests of significance. Am. Stat. 1948,

2, 30–31. [CrossRef]
21. Bolboacă, S.D.; Jäntschi, L.; Sestraş, A.F.; Sestraş, R.E.; Pamfil, D.C. Supplementary material of ’Pearson-Fisher

chi-square statistic revisited’. Information 2011, 2, 528–545. [CrossRef]
22. Irwin, J.O. On the frequency distribution of the means of samples from a population having any law of

frequency with finite moments, with special reference to Pearson’s type II. Biometrika 1927, 19, 225–239.
[CrossRef]

23. Hall, P. The distribution of means for samples of size N drawn from a population in which the variate takes
values between 0 and 1, all such values being equally probable. Biometrika 1927, 19, 240–245. [CrossRef]

24. Mathematica, version 12.0; Software for Technical Computation; Wolfram Research: Champaign, IL, USA,
2019.

25. GMP: The GNU Multiple Precision Arithmetic Library, version 5.0.2; Software for Technical Computation; Free
Software Foundation: Boston, MA, USA, 2016.

20

Mathematics 2020, 8, 216

26. FreePascal: Open Source Compiler for Pascal and Object Pascal, Version 3.0.4. 2017. Available online:
https://www.freepascal.org/ (accessed on 8 February 2020).

27. Pollet, T.V.; Meij, L. To remove or not to remove: the impact of outlier handling on significance testing in
testosterone data. Adapt. Hum. Behav. Physiol. 2017, 3, 43–60. [CrossRef]

28. Wilks, S.S. Order statistics. Bull. Am. Math. Soc. 1948, 54, 6–50. [CrossRef]
29. Grubbs, F.E. Procedures for detecting outlying observations in samples. Technometrics 1969, 11, 1–21.

[CrossRef]
30. Jäntschi, L.; Bolboacă, S.D. Distribution fitting 2. Pearson-Fisher, Kolmogorov-Smirnov, Anderson-Darling,

Wilks-Shapiro, Kramer-von-Misses and Jarque-Bera statistics. BUASVMCN Hortic. 2009, 66, 691–697.
31. Bolboacă, S.D.; Jäntschi, L. Distribution fitting 3. Analysis under normality assumption. BUASVMCN Hortic.

2009, 66, 698–705.
32. Thomas, A.; Oommen, B.J. The fundamental theory of optimal ’Anti-Bayesian’ parametric pattern classification

using order statistics criteria. Pattern Recognit. 2013, 46, 376–388. [CrossRef]
33. Hu, L. A note on order statistics-based parametric pattern classification. Pattern Recognit. 2015, 48, 43–49.

[CrossRef]
34. Jäntschi, L.; Bolboacă, S.D. Rarefaction on natural compound extracts diversity among genus. J. Comput. Sci.

2014, 5, 363–367. [CrossRef]
35. Jäntschi, L.; Bolboacă, S.D. Informational entropy of b-ary trees after a vertex cut. Entropy 2008, 10, 576–588.

[CrossRef]
36. Scholz, F.W.; Stephens, M.A. K-sample Anderson-Darling tests. J. Am. Stat. Assoc. 1987, 82, 918–924.

[CrossRef]
37. Xu, Z.; Huang, X.; Jimenez, F.; Deng, Y. A new record of graph enumeration enabled by parallel processing.

Mathematics 2019, 7, 1214. [CrossRef]
38. Krizan, P.; Kozubek, M.; Lastovicka, J. Discontinuities in the ozone concentration time series from MERRA 2

reanalysis. Atmosphere 2019, 10, 812. [CrossRef]
39. Liang, K.; Zhang, Z.; Liu, P.; Wang, Z.; Jiang, S. Data-driven ohmic resistance estimation of battery packs for

electric vehicles. Energies 2019, 12, 4772. [CrossRef]
40. Tamazian, A.; Nguyen, V.D.; Markelov, O.A.; Bogachev, M.I. Universal model for collective access patterns

in the Internet traffic dynamics: A superstatistical approach. EPL 2016, 115, 10008. [CrossRef]
41. Nguyen, V.D.; Markelov, O.A.; Serdyuk, A.D.; Vasenev, A.N.; Bogachev, M.I. Universal rank-size statistics in

network traffic: Modeling collective access patterns by Zipf’s law with long-term correlations. EPL 2018,
123, 50001. [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

21

mathematics

Article

dCATCH—A Numerical Package for d-Variate near
G-Optimal Tchakaloff Regression via Fast NNLS

Monica Dessole, Fabio Marcuzzi and Marco Vianello *

Department of Mathematics “Tullio Levi Civita”, University of Padova, Via Trieste 63, 35131 Padova, Italy;
mdessole@math.unipd.it (M.D.); marcuzzi@math.unipd.it (F.M.)
* Correspondence: marcov@math.unipd.it

Received: 11 June 2020; Accepted: 7 July 2020; Published: 9 July 2020

Abstract: We provide a numerical package for the computation of a d-variate near G-optimal
polynomial regression design of degree m on a finite design space X ⊂ Rd, by few iterations of a basic
multiplicative algorithm followed by Tchakaloff-like compression of the discrete measure keeping the
reached G-efficiency, via an accelerated version of the Lawson-Hanson algorithm for Non-Negative
Least Squares (NNLS) problems. This package can solve on a personal computer large-scale problems
where card(X)× dim(Pd

2m) is up to 108–109, being dim(Pd
2m) = (2m+d

d) = (2m+d
2m). Several numerical

tests are presented on complex shapes in d = 3 and on hypercubes in d > 3.

Keywords: multivariate polynomial regression designs; G-optimality; D-optimality; multiplicative
algorithms; G-efficiency; Caratheodory-Tchakaloff discrete measure compression; Non-Negative
Least Squares; accelerated Lawson-Hanson solver

1. Introduction

In this paper we present the numerical software package dCATCH [1] for the computation of a
d-variate near G-optimal polynomial regression design of degree m on a finite design space X ⊂ Rd.
In particular, it is the first software package for general-purpose Tchakaloff-like compression of
d-variate designs via Non-Negative Least Squares (NNLS), freely available on the Internet. The code is
an evolution of the codes in Reference [2] (limited to d = 2, 3), with a number of features tailored to
higher dimension and large-scale computations. The key ingredients are:

• use of d-variate Vandermonde-like matrices at X in a discrete orthogonal polynomial basis
(obtained by discrete orthonormalization of the total-degree product Chebyshev basis of the
minimal box containing X), with automatic adaptation to the actual dimension of Pd

m(X);
• few tens of iterations of the basic Titterington multiplicative algorithm until near G-optimality of

the design is reached, with a checked G-efficiency of say 95% (but with a design support still far
from sparsity);

• Tchakaloff-like compression of the resulting near G-optimal design via NNLS solution of the
underdetermined moment system, with concentration of the discrete probability measure
by sparse re-weighting to a support ⊂ X, of cardinality at most Pd

2m(X), keeping the same
G-efficiency;

• iterative solution of the large-scale NNLS problem by a new accelerated version of the classical
Lawson-Hanson active set algorithm, that we recently introduced in Reference [3] for 2d and 3d
instances and here we validate on higher dimensions.

Before giving a more detailed description of the algorithm, it is worth recalling in brief some
basic notions of optimal design theory. Such a theory has its roots and main applications within
statistics, but also strong connections with approximation theory. In statistics, a design is a probability

Mathematics 2020, 8, 1122; doi:10.3390/math8071122 www.mdpi.com/journal/mathematics23

Mathematics 2020, 8, 1122

measure μ supported on a (discrete or continuous) compact set Ω ⊂ Rd. The search for designs that
optimize some properties of statistical estimators (optimal designs) dates back to at least one century
ago, and the relevant literature is so wide and still actively growing and monographs and survey
papers are abundant in the literature. For readers interested in the evolution and state of the art of this
research field, we may quote, for example, two classical treatises such as in References [4,5], the recent
monograph [6] and the algorithmic survey [7], as well as References [8–10] and references therein.
On the approximation theory side we may quote, for example, References [11,12].

The present paper is organized as follows—in Section 2 we briefly recall some basic concepts from
the theory of Optimal Designs, for the reader’s convenience, with special attention to the deterministic
and approximation theoretic aspects. In Section 3 we present in detail our computational approach to
near G-optimal d-variate designs via Caratheodory-Tchakaloff compression. All the routines of the
dCATCH software package here presented, are described. In Section 4 we show several numerical
results with dimensions in the range 3–10 and a Conclusions section follows.

For the reader’s convenience we also display Tables 1 and 2, describing the acronyms used in this
paper and the content (subroutine names) of the dCATCH software package.

Table 1. List of acronyms.

LS Least Squares
NNLS Non-Negative Least Squares
LH Lawson-Hawson algorithm for NNLS
LHI Lawson-Hawson algorithm with unconstrained LS Initialization
LHDM Lawson-Hawson algorithm with Deviation Maximization acceleration

Table 2. dCATCH package content.

dCATCH d-variate CAratheodory-TCHakaloff discrete measure compression
dCHEBVAND d-variate Chebyshev-Vandermonde matrix
dORTHVAND d-variate Vandermonde-like matrix in a weighted orthogonal polynomial basis
dNORD d-variate Near G-Optimal Regression Designs
LHDM Lawson-Hawson algorithm with Deviation Maximization acceleration

2. G-Optimal Designs

Let Pd
m(Ω) denote the space of d-variate real polynomials of total degree not greater than n,

restricted to a (discrete or continuous) compact set Ω ⊂ Rd, and let μ be a design, that is, a probability
measure, with supp(μ) ⊆ Ω. In what follows we assume that supp(μ) is determining for Pd

m(Ω) [13],
that is, polynomials in Pd

m vanishing on supp(μ) vanish everywhere on Ω.
In the theory of optimal designs, a key role is played by the diagonal of the reproducing kernel

for μ in Pd
m(Ω) (also called the Christoffel polynomial of degree m for μ)

Kμ
m(x, x) =

Nm

∑
j=1

p2
j (x) , Nm = dim(Pd

m(Ω)) , (1)

where {pj} is any μ-orthonormal basis of Pd
m(Ω). Recall that Kμ

m(x, x) can be proved to be independent
of the choice of the orthonormal basis. Indeed, a relevant property is the following estimate of the
L∞-norm in terms of the L2

μ-norm of polynomials

‖p‖L∞(Ω) ≤
√

max
x∈Ω

Kμ
m(x, x) ‖p‖L2

μ(Ω) , ∀p ∈ P
d
m(Ω) . (2)

Now, by (1) and μ-orthonormality of the basis we get

∫
Ω

Kμ
m(x, x) dμ =

Nm

∑
j=1

∫
Ω

p2
j (x) dμ = Nm , (3)

24

Mathematics 2020, 8, 1122

which entails that maxx∈Ω Kμ
m(x, x) ≥ Nm.

Then, a probability measure μ∗ = μ∗(Ω) is then called a G-optimal design for polynomial
regression of degree m on Ω if

min
μ

max
x∈Ω

Kμ
m(x, x) = max

x∈Ω
Kμ∗

m (x, x) = Nm . (4)

Observe that, since
∫

Ω Kμ
m(x, x) dμ = Nm for every μ, an optimal design has also the following property

Kμ∗
m (x, x) = Nm, μ∗-a.e. in Ω.

Now, the well-known Kiefer-Wolfowitz General Equivalence Theorem [14] (a cornerstone of
optimal design theory), asserts that the difficult min-max problem (4) is equivalent to the much simpler
maximization problem

max
μ

det(Gμ
m) , Gμ

m =

(∫
Ω

φi(x)φj(x) dμ

)
1≤i,j≤Nm

,

where Gμ
m is the Gram matrix (or information matrix in statistics) of μ in a fixed polynomial basis {φi}

of Pd
m(Ω). Such an optimality is called D-optimality, and ensures that an optimal measure always

exists, since the set of Gram matrices of probability measures is compact and convex; see for example,
References [5,12] for a general proof of these results, valid for continuous as well as for discrete
compact sets.

Notice that an optimal measure is neither unique nor necessarily discrete (unless Ω is discrete
itself). Nevertheless, the celebrated Tchakaloff Theorem ensures the existence of a positive quadrature
formula for integration in dμ∗ on Ω, with cardinality not exceeding N2m = dim(Pd

2m(Ω)) and which is
exact for all polynomials in Pd

2m(Ω). Such a formula is then a design itself, and it generates the same
orthogonal polynomials and hence the same Christoffel polynomial of μ∗, preserving G-optimality
(see Reference [15] for a proof of Tchakaloff Theorem with general measures).

We recall that G-optimality has two important interpretations in terms of statistical and
deterministic polynomial regression.

From a statistical viewpoint, it is the probability measure on Ω that minimizes the maximum
prediction variance by polynomial regression of degree m, cf. for example, Reference [5].

On the other hand, from an approximation theory viewpoint, if we call Lμ∗
m the corresponding

weighted least squares projection operator L∞(Ω) → Pd
m(Ω), namely

‖ f −Lμ∗
m f ‖L2

μ∗ (Ω) = min
p∈Pd

m(Ω)
‖ f − p‖L2

μ∗ (Ω) , (5)

by (2) we can write for every f ∈ L∞(Ω)

‖Lμ∗
m f ‖L∞(Ω) ≤

√
max
x∈Ω

Kμ∗
m (x, x) ‖Lμ∗

m f ‖L2
μ∗ (Ω) =

√
Nm ‖Lμ∗

m f ‖L2
μ∗ (Ω)

≤ √
Nm ‖ f ‖L2

μ∗ (Ω) ≤
√

Nm ‖ f ‖L∞(Ω) ,

(where the second inequality comes from μ∗-orthogonality of the projection), which gives

‖Lμ∗
m ‖ = sup

f �=0

‖Lμ∗
m f ‖L∞(Ω)

‖ f ‖L∞(Ω)
≤ √

Nm , (6)

that is a G-optimal measure minimizes (the estimate of) the weighted least squares uniform
operator norm.

We stress that in this paper we are interested in the fully discrete case of a finite design space
Ω = X, so that any design μ is identified by a set of positive weights (masses) summing up to 1 and
integrals are weighted sums.

25

Mathematics 2020, 8, 1122

3. Computing near G-Optimal Compressed Designs

Since in the present context we have a finite design space Ω = X = {x1, . . . , xM} ⊂ Rd,
we may think a design μ as a vector of non-negative weights u = (u1, · · · , uM) attached to the points,
such that ‖u‖1 = 1 (the support of μ being identified by the positive weights). Then, a G-optimal
(or D-optimal) design μ∗ is represented by the corresponding non-negative vector u∗. We write
Ku

m(x, x) = Kμ
m(x, x) for the Christoffel polynomial and similarly for other objects (spaces, operators,

matrices) corresponding to a discrete design. At the same time, L∞(Ω) = �∞(X), and L2
μ(Ω) = �2

u(X)

(a weighted �2 functional space on X) with ‖ f ‖�2
u(X) =

(
∑M

i=1 ui f 2(xi)
)1/2

.
In order to compute an approximation of the desired u∗, we resort to the basic multiplicative

algorithm proposed by Titterington in the ’70s (cf. Reference [16]), namely

ui(k + 1) = ui(k)
Ku(k)

m (xi, xi)

Nm
, 1 ≤ i ≤ M , k = 0, 1, 2, . . . , (7)

with initialization u(0) = (1/M, . . . , 1/M)T . Such an algorithm is known to be convergent sublinearly
to a D-optimal (or G-optimal by the Kiefer-Wolfowitz Equivalence Theorem) design, with an increasing
sequence of Gram determinants

det(Gu(k)
m) = det(VTdiag(u(k))V),

where V is a Vandermonde-like matrix in any fixed polynomial basis of Pd
m(X); cf., for example,

References [7,10]. Observe that u(k + 1) is indeed a vector of positive probability weights if such is
u(k). In fact, the Christoffel polynomial Ku(k)

m is positive on X, and calling μk the probability measure
on X associated with the weights u(k) we get immediately ∑i ui(k + 1) = 1

Nm
∑i ui(k)Ku(k)

m (xi, xi) =

1
Nm

∫
X Ku(k)

m (x, x) dμk = 1 by (3) in the discrete case Ω = X.
Our implementation of (7) is based on the functions

• C = dCHEBVAND(n, X)
• [U, jvec] = dORTHVAND(n, X, u, jvec)
• [pts, w] = dNORD(m, X, gtol)

The function dCHEBVAND computes the d-variate Chebyshev-Vandermonde matrix C =

(φj(xi)) ∈ RM×Nn , where {φj(x)} = {Tν1(α1x1 + β1) . . . Tνd(αdxd + βd)}, 0 ≤ νi ≤ n, ν1 + · · ·+ νd ≤ n,
is a suitably ordered total-degree product Chebyshev basis of the minimal box [a1, b1]× · · · × [ad, bd]

containing X, with αi = 2/(bi − ai), βi = −(bi + ai)/(bi − ai). Here we have resorted to the
codes in Reference [17] for the construction and enumeration of the required “monomial” degrees.
Though the initial basis is then orthogonalized, the choice of the Chebyshev basis is dictated by the
necessity of controlling the conditioning of the matrix. This would be on the contrary extremely large
with the standard monomial basis, already at moderate regression degrees, preventing a successful
orthogonalization.

Indeed, the second function dORTHVAND computes a Vandermonde-like matrix in a
u-orthogonal polynomial basis on X, where u is the probability weight array. This is accomplished
essentially by numerical rank evaluation for C = dCHEBVAND(n, X) and QR factorization

diag(
√

u)C0 = QR , U = C0 R−1 , (8)

(with Q orthogonal rectangular and R square invertible), where
√

u = (
√

u1, . . . ,
√

uM). The matrix
C0 has full rank and corresponds to a selection of the columns of C (i.e., of the original basis
polynomials) via QR with column pivoting, in such a way that these form a basis of Pd

n(X),
since rank(C) = dim(Pd

n(X)). A possible alternative, not yet implemented, is the direct use of a
rank-revealing QR factorization. The in-out parameter “jvec” allows to pass directly the column index

26

Mathematics 2020, 8, 1122

vector corresponding to a polynomial basis after a previous call to dORTHVAND with the same degree
n, avoiding numerical rank computation and allowing a simple “economy size” QR factorization of
diag(

√
u)C0 = diag(

√
u)C(:, jvec).

Summarizing, U is a Vandermonde-like matrix for degree n on X in the required u-orthogonal
basis of Pd

n(X), that is
[p1(x), . . . , pNn(x)] = [φj1(x), . . . , φjNn

(x)] R−1 , (9)

where jvec = (j1, . . . , jNn) is the multi-index resulting from pivoting. Indeed by (8) we can write the
scalar product (ph, pk)�2

u(X) as

(ph, pk)�2
u(X) =

M

∑
i=1

ui ph(xi) pk(xi) = (UTdiag(u)U)hk = (QTQ)hk = δhk ,

for 1 ≤ h, k ≤ Nn, which shows orthonormality of the polynomial basis in (9).
We stress that rank(C) = dim(Pd

n(X)) could be strictly smaller than dim(Pd
n) = (n+d

d), when
there are polynomials in Pd

n vanishing on X that do not vanish everywhere. In other words, X lies
on a lower-dimensional algebraic variety (technically one says that X is not Pd

n-determining [13]).
This certainly happens when card(X) is too small, namely card(X) < dim(Pd

n), but think for example
also to the case when d = 3 and X lies on the 2-sphere S2 (independently of its cardinality), then we
have dim(Pd

n(X)) ≤ dim(Pd
n(S2)) = (n + 1)2 < dim(P3

n) = (n + 1)(n + 2)(n + 3)/6.
Iteration (7) is implemented within the third function dNORD whose name stands for

d-dimensional Near G-Optimal Regression Designs, which calls dORTHVAND with n = m.
Near optimality is here twofold, namely it concerns both the concept of G-efficiency of the design and
the sparsity of the design support.

We recall that G-efficiency is the percentage of G-optimality reached by a (discrete) design,
measured by the ratio

Gm(u) =
Nm

maxx∈XKu
m(x, x)

,

knowing that Gm(u) ≤ 1 by (3) in the discrete case Ω = X. Notice that Gm(u) can be easily computed
after the construction of the u-orthogonal Vandermonde-like matrix U by dORTHVAND, as Gm(u) =
Nm/(maxi ‖rowi(U)‖2

2) .
In the multiplicative algorithm (7), we then stop iterating when a given threshold of G-efficiency

(the input parameter “gtol” in the call to dNORD) is reached by u(k), since Gm(u(k)) → 1 as k → ∞,
say for example Gm(u(k)) ≥ 95% or Gm(u(k)) ≥ 99%. Since convergence is sublinear and in practice
we see that 1− Gm(u(k)) = O(1/k), for a 90% G-efficiency the number of iterations is typically in the
tens, whereas it is in the hundreds for 99% one and in the thousands for 99, 9%. When a G-efficiency
very close to 1 is needed, one could resort to more sophisticated multiplicative algorithms, see for
example, References [9,10].

In many applications however a G-efficiency of 90–95% could be sufficient (then we may speak of
near G-optimality of the design), but though in principle the multiplicative algorithm converges to an
optimal design μ∗ on X with weights u∗ and cardinality Nm ≤ card(supp(μ∗)) ≤ N2m, such a sparsity
is far from being reached after the iterations that guarantee near G-optimality, in the sense that there is
a still large percentage of non-negligible weights in the near optimal design weight vector, say

u(k) such that Gm(u(k)) ≥ gtol . (10)

Following References [18,19], we can however effectively compute a design which has the same
G-efficiency of u(k) but a support with a cardinality not exceeding N2m = dim(Pd

2m(X)), where in
many applications N2m � card(X), obtaining a remarkable compression of the near optimal design.

The theoretical foundation is a generalized version [15] of Tchakaloff Theorem [20] on positive
quadratures, which asserts that for every measure on a compact set Ω ⊂ Rd there exists an algebraic

27

Mathematics 2020, 8, 1122

quadrature formula exact on Pd
n(Ω)), with positive weights, nodes in Ω and cardinality not exceeding

Nn = dim(Pd
n(Ω).

In the present discrete case, that is, where the designs are defined on Ω = X, this theorem implies
that for every design μ on X there exists a design ν, whose support is a subset of X, which is exact for
integration in dμ on Pd

n(X). In other words, the design ν has the same basis moments (indeed, for any
basis of Pd

n(Ω))

∫
X

pj(x) dμ =
M

∑
i=1

ui pj(xi) =
∫

X
pj(x) dν =

L

∑
�=1

w� pj(ξ�) , 1 ≤ j ≤ Nn ,

where L ≤ Nn ≤ M, {ui} are the weights of μ, supp(ν) = {ξ�} ⊆ X and {w�} are the positive weights
of ν. For L < M, which certainly holds if Nn < M, this represents a compression of the design μ into
the design ν, which is particularly useful when Nn � M.

In matrix terms this can be seen as the fact that the underdetermined {pj}-moment system

UT
n v = UT

n u (11)

has a non-negative solution v = (v1, . . . , vM)T whose positive components, say w� = vi� , 1 ≤ � ≤ L ≤
Nn, determine the support points {ξ�} ⊆ X (for clarity we indicate here by Un the matrix U computed
by dORTHVAND at degree n). This fact is indeed a consequence of the celebrated Caratheodory
Theorem on conic combinations [21], asserting that a linear combination with non-negative coefficients
of M vectors in RN with M > N can be re-written as linear positive combination of at most N of
them. So, we get the discrete version of Tchakaloff Theorem by applying Caratheodory Theorem to the
columns of UT

n in the system (11), ensuring then existence of a non-negative solution v with at most
Nn nonzero components.

In order to compute such a solution to (11) we choose the strategy based on Quadratic
Programming introduced in Reference [22], namely on sparse solution of the Non-Negative Least
Squares (NNLS) problem

v = argminz∈RM , z≥0‖UT
n z−UT

n u‖2
2

by a new accelerated version of the classical Lawson-Hanson active-set method, proposed in
Reference [3] in the framework of design optimization in d = 2, 3 and implemented by the function
LHDM (Lawson-Hanson with Deviation Maximization), that we tune in the present package for
very large-scale d-variate problems (see the next subsection for a brief description and discussion).
We observe that working with an orthogonal polynomial basis of Pd

n(X) allows to deal with the
well-conditioned matrix Un in the Lawson-Hanson algorithm.

The overall computational procedure is implemented by the function

• [pts, w, momerr] = dCATCH(n, X, u),

where dCATCH stands for d-variate CAratheodory-TCHakaloff discrete measure compression.
It works for any discrete measure on a discrete set X. Indeed, it could be used, other than for
design compression, also in the compression of d-variate quadrature formulas, to give an example.
The output parameter pts = {ξ�} ⊂ X is the array of support points of the compressed measure,
while w = {w�} = {vi� > 0} is the corresponding positive weight array (that we may call a d-variate
near G-optimal Tchakaloff design) and momerr = ‖UT

n v−UT
n u‖2 is the moment residual. This function

is called LHDM.
In the present framework we call dCATCH with n = 2m and u = u(k), cf. (10), that is, we solve

v = argminz∈RM , z≥0‖UT
2mz−UT

2mu(k)‖2
2 . (12)

28

Mathematics 2020, 8, 1122

In such a way the compressed design generates the same scalar product of u(k) in Pd
m(X), and hence

the same orthogonal polynomials and the same Christoffel function on X keeping thus invariant the
G-efficiency

P
d
2m(X) � Kv

m(x, x) = Ku(k)
m (x, x) ∀x ∈ X =⇒ Gm(v) = Gm(u(k)) ≥ gtol (13)

with a (much) smaller support.
From a deterministic regression viewpoint (approximation theory), let us denote by popt

m the
polynomial in Pd

m(X) of best uniform approximation for f on X, where we assume f ∈ C(D) with
X ⊂ D ⊂ Rd, D being a compact domain (or even lower-dimensional manifold), and by Em(f ; X) =

infp∈Pd
m(X) ‖ f − p‖�∞(X) = ‖ f − popt

m |�∞(X) and Em(f ; D) = infp∈Pd
m(D) ‖ f − p‖L∞(D) the best uniform

polynomial approximation errors on X and D.

Then, denoting by Lu(k)
m and Lw

m f = Lv
m f the weighted least squares polynomial approximation

of f (cf. (5)) by the near G-optimal weights u(k) and w, respectively, with the same reasoning used to
obtain (6) and by (13) we can write the operator norm estimates

‖Lu(k)
m ‖ , ‖Lw

m‖ ≤
√

Ñm ≤
√

Nm

gtol
, Ñm =

Nm

Gm(u(k))
=

Nm

Gm(v)
.

Moreover, since Lw
m p = p for any p ∈ Pd

m(X), we can write the near optimal estimate

‖ f −Lw
m f ‖�∞(X) ≤ ‖ f − popt

m ‖�∞(X) + ‖popt
m −Lw

m popt
m ‖�∞(X) + ‖Lw

m popt
m −Lw

m f ‖�∞(X)

= ‖ f − popt
m ‖�∞(X) + ‖Lw

m popt
m −Lw

m f ‖�∞(X) ≤ (1 + ‖Lw
m‖) Em(f ; X)

≤
(

1 +

√
Nm

gtol

)
Em(f ; X) ≤

(
1 +

√
Nm

gtol

)
Em(f ; D) ≈

(
1 +

√
Nm

)
Em(f ; D) .

Notice that Lw
m f is constructed by sampling f only at the compressed support {ξ�} ⊂ X. The error

depends on the regularity of f on D ⊃ X, with a rate that can be estimated whenever D admits a
multivariate Jackson-like inequality, cf. Reference [23].

Accelerating the Lawson-Hanson Algorithm by Deviation Maximization (LHDM)

Let A ∈ RN×M and b ∈ RN . The NNLS problem consists of seeking x ∈ RM that solves

x = argminz≥0‖Az− b‖2
2 . (14)

This is a convex optimization problem with linear inequality constraints that define the feasible region,
that is the positive orthant

{
x ∈ RM : xi ≥ 0

}
. The very first algorithm dedicated to problem (14) is

due to Lawson and Hanson [24] and it is still one of the most often used. It was originally derived for
solving overdetermined linear systems, with N � M. However, in the case of underdetermined linear
systems, with N � M, this method succeeds in sparse recovery.

Recall that for a given point x in the feasible region, the index set {1, . . . , M} can be partitioned
into two sets: the active set Z, containing the indices of active constraints xi = 0, and the passive set
P, containing the remaining indices of inactive constraints xi > 0. Observe that an optimal solution
x� of (14) satisfies Ax� = b and, if we denote by P� and Z� the corresponding passive and active sets
respectively, x� also solves in a least square sense the following unconstrained least squares subproblem

x�P� = argminy‖AP�y− b‖2
2 , (15)

29

Mathematics 2020, 8, 1122

where AP� is the submatrix containing the columns of A with index in P�, and similarly x�P� is the
subvector made of the entries of x� whose index is in P�. The remaining entries of x�, namely those
whose index is in Z�, are null.

The Lawson-Hanson algorithm, starting from a null initial guess x = 0 (which is feasible),
incrementally builds an optimal solution by moving indices from the active set Z to the passive set P
and vice versa, while keeping the iterates within the feasible region. More precisely, at each iteration
first order information is used to detect a column of the matrix A such that the corresponding entry in
the new solution vector will be strictly positive; the index of such a column is moved from the active
set Z to the passive set P. Since there’s no guarantee that the other entries corresponding to indices in
the former passive set will stay positive, an inner loop ensures the new solution vector falls into the
feasible region, by moving from the passive set P to the active set Z all those indices corresponding to
violated constraints. At each iteration a new iterate is computed by solving a least squares problem of
type (15): this can be done, for example, by computing a QR decomposition, which is substantially
expensive. The algorithm terminates in a finite number of steps, since the possible combinations of
passive/active set are finite and the sequence of objective function values is strictly decreasing, cf.
Reference [24].

The deviation maximization (DM) technique is based on the idea of adding a whole set of indices T
to the passive set at each outer iteration of the Lawson-Hanson algorithm. This corresponds to select a
block of new columns to insert in the matrix AP, while keeping the current solution vector within the
feasible region in such a way that sparse recovery is possible when dealing with non-strictly convex
problems. In this way, the number of total iterations and the resulting computational cost decrease.
The set T is initialized to the index chosen by the standard Lawson-Hanson (LH) algorithm, and it
is then extended, within the same iteration, using a set of candidate indices C chosen is such a way
that the corresponding entries are likely positive in the new iterate. The elements of T are then chosen
carefully within C: note that if the columns corresponding to the chosen indices are linearly dependent,
the submatrix of the least squares problem (15) will be rank deficient, leading to numerical difficulties.
We add k new indices, where k is an integer parameter to tune on the problem size, in such a way
that, at the end, for every pair of indices in the set T, the corresponding column vectors form an angle
whose cosine in absolute value is below a given threshold thres. The whole procedure is implemented
in the function

• [x, resnorm, exit f lag] = LHDM(A, b, options).

The input variable options is a structure containing the user parameters for the LHDM algorithm;
for example, the aforementioned k and thres. The output parameter x is the least squares solution,
resnorm is the squared 2-norm of the residual and exit f lag is set to 0 if the LHDM algorithm has
reached the maximum number of iterations without converging and 1 otherwise.

In the literature, an accelerating technique was introduced by Van Benthem and Keenan [25],
who presented a different NNLS solution algorithm, namely “fast combinatorial NNLS”, designed for
the specific case of a large number of right-hand sides. The authors exploited a clever reorganization
of computations in order to take advantage of the combinatorial nature of the problems treated
(multivariate curve resolution) and introduced a nontrivial initialization of the algorithm by means
of unconstrained least squares solution. In the following section we are going to compare such
an approach, briefly named LHI, and the standard LH algorithm with the LHDM procedure
just summarized.

4. Numerical Examples

In this section, we perform several tests on the computation of d-variate near G-optimal Tchakaloff
designs, from low to moderate dimension d. In practice, we are able to treat, on a personal computer,
large-scale problems where card(X)× dim(Pd

2m) is up to 108–109, with dim(Pd
2m) = (2m+d

d) = (2m+d
2m).

30

Mathematics 2020, 8, 1122

Recall that the main memory requirement is given by the N2m × M matrix UT in the compression
process solved by the LHDM algorithm, where M = card(X) and N2m = dim(Pd

2m(X)) ≤ dim(Pd
2m).

Given the dimension d > 1 and the polynomial degree m, the routine LHDM empirically sets the
parameter k as follows k = �(2m+d

d)/(m(d− 1))�, while the threshold is thres = cos(π
2 − θ), θ ≈ 0.22.

All the tests are performed on a workstation with a 32 GB RAM and an Intel Core i7-8700 CPU @
3.20 GHz.

4.1. Complex 3d Shapes

To show the flexibility of the package dCATCH, we compute near G-optimal designs on a
“multibubble” D ⊂ R3 (i.e., the union of a finite number of non-disjoint balls), which can have a
very complex shape with a boundary surface very difficult to describe analytically. Indeed, we are able
to implement near optimal regression on quite complex solids, arising from finite union, intersection
and set difference of simpler pieces, possibly multiply-connected, where for each piece we have
available the indicator function via inequalities. Grid-points or low-discrepancy points, for example,
Halton points, of a surrounding box, could be conveniently used to discretize the solid. Similarly,
thanks to the adaptation of the method to the actual dimension of the polynomial spaces, we can treat
near optimal regression on the surfaces of such complex solids, as soon as we are able to discretize
the surface of each piece by point sets with good covering properties (for example, we could work
on the surface of a multibubble by discretizing each sphere via one of the popular spherical point
configurations, cf. Reference [26]).

We perform a test at regression degree m = 10 on the 5-bubble shown in Figure 1b. The initial
support X consists in the M = 18,915 points within 64,000 low discrepancy Halton points, falling in
the closure of the multibubble. Results are shown in Figure 1 and Table 3.

(a)

(b)
Figure 1. Multibubble test case, regression degree m = 10. (a) The evolution of the cardinality of the
passive set P along the iterations of the three LH algorithms. (b) Multibubble with 1763 compressed
Tchakaloff points, extracted from 18,915 original points.

Table 3. Results for the multibubble numerical test: compr = M/mean(cpts) is the mean compression
ratio obtained by the three methods listed; tLH/tTitt is the ratio between the execution time of LH and
that of the Titterington algorithm; tLH/tLHDM (tLHI/tLHDM) is the ratio between the execution time of
LH (LHI) and that of LHDM ; cpts is the number of compressed Tchakaloff points and momerr is the
final moment residual.

Test LH LHI LHDM
m M compr tLH /tTitt tLH /tLHDM cpts momerr tLH I /tLHDM cpts momerr cpts momerr

10 18,915 11/1 40.0/1 2.7/1 1755 3.4× 10−8 3.2/1 1758 3.2× 10−8 1755 1.5× 10−8

31

Mathematics 2020, 8, 1122

4.2. Hypercubes: Chebyshev Grids

In a recent paper [19], a connection has been studied between the statistical notion of G-optimal
design and the approximation theoretic notion of admissible mesh for multivariate polynomial
approximation, deeply studied in the last decade after Reference [13] (see, e.g., References [27,28] with
the references therein). In particular, it has been shown that near G-optimal designs on admissible
meshes of suitable cardinality have a G-efficiency on the whole d-cube that can be made convergent to 1.
For example, it has been proved by the notion of Dubiner distance and suitable multivariate polynomial
inequalities, that a design with G-efficiency γ on a grid X of (2km)d Chebyshev points (the zeros of
T2km(t) = cos(2km arccos(t)), t ∈ [−1, 1]), is a design for [−1, 1]d with G-efficiency γ(1− π2/(8k2)).
For example, taking k = 3 a near G-optimal Tchakaloff design with γ = 0.99 on a Chebyshev grid
of (6m)d points is near G-optimal on [−1, 1]d with G-efficiency approximately 0.99 · 0.86 ≈ 0.85,
and taking k = 4 (i.e., a Chebyshev grid of (8m)d points) the corresponding G-optimal Tchakaloff
design has G-efficiency approximately 0.99 · 0.92 ≈ 0.91 on [−1, 1]d (in any dimension d).

We perform three tests in different dimension spaces and at different regression degrees. Results
are shown in Figure 2 and Table 4, using the same notation above.

(a) d = 3, n = 6, M = 110,592. (b) d = 4, n = 3, M = 331,776.

(c) d = 5, n = 2, M = 1,048,576.

Figure 2. The evolution of the cardinality of the passive set P along the iterations of the three LH
algorithms for Chebyshev nodes’ tests.

32

Mathematics 2020, 8, 1122

Table 4. Results of numerical tests on M = (2km)d Chebyshev’s nodes, with k = 4, with different
dimensions and degrees: compr = M/mean(cpts) is the mean compression ratio obtained by the
three methods listed; tLH/tTitt is the ratio between the execution time of LH and that of Titterington
algorithm; tLH/tLHDM (tLHI/tLHDM) is the ratio between the execution time of LH (LHI) and that of
LHDM; cpts is the number of compressed Tchakaloff points and momerr is the final moment residual.

Test LH LHI LHDM
d m M compr tLH /tTitt tLH /tLHDM cpts momerr tLH I /tLHDM cpts momerr cpts momerr

3 6 110,592 250/1 0.4/1 3.1/1 450 5.0× 10−7 3.5/1 450 3.4× 10−7 450 1.4× 10−7

4 3 331,776 1607/1 0.2/1 2.0/1 207 8.9× 10−7 3.4/1 205 9.8× 10−7 207 7.9× 10−7

5 2 1,048,576 8571/1 0.1/1 1.4/1 122 6.3× 10−7 1.5/1 123 3.6× 10−7 122 3.3× 10−7

4.3. Hypercubes: Low-Discrepancy Points

The direct connection of Chebyshev grids with near G-optimal designs discussed in the previous
subsection suffers rapidly of the curse of dimensionality, so only regression at low degree in relatively
low dimension can be treated. On the other hand, in sampling theory a number of discretization
nets with good space-filling properties on hypercubes has been proposed and they allow to increase
the dimension d. We refer in particular to Latin hypercube sampling or low-discrepancy points
(Sobol, Halton and other popular sequences); see for example, Reference [29]. These families of points
give a discrete model of hypercubes that can be used in many different deterministic and statistical
applications.

Here we consider a discretization made via Halton points. We present in particular two examples,
where we take as finite design space X a set of M = 105 Halton points, in d = 4 with regression degree
m = 5, and in d = 10 with m = 2. In both examples, dim(Pd

2m) = (2m+d
d) = (2m+d

2m) = (14
4) = 1001,

so that the largest matrix involved in the construction is the 1001× 100,000 Chebyshev-Vandermonde
matrix C for degree 2m on X constructed at the beginning of the compression process (by dORTHVAND
within dCATCH to compute U2m in (12)).

Results are shown in Figure 3 and Table 5, using the same notation as above.

Remark 1. The computational complexity of dCATCH mainly depends on the QR decompositions, which clearly
limit the maximum size of the problem and mainly determine the execution time. Indeed, the computational
complexity of a QR factorization of a matrix of size nr × nc, with nc ≤ nr, is high, namely 2(n2

c nr − n3
c /3) ≈

2n2
c nr (see, e.g., Reference [30]).

Titterington algorithm performs a QR factorization of a M×Nm matrix at each iteration, with the following
overall computational complexity

CTitt ≈ 2k̄ M N2
m ,

where k̄ is the number of iterations necessary for convergence, that depends on the desired G-efficiency.
On the other hand, the computational cost of one iteration of the Lawson-Hanson algorithm, fixed the

passive set P, is given by the solution of an LS problem of type (15), which approximately is 2N2m|P|2 that
is the cost of a QR decomposition of a matrix of size N2m × |P|. However, as experimental results confirm,
the evolution of the set P along the execution of the algorithm may vary significantly depending on the experiment
settings, so that the exact overall complexity is hard to estimate. Lower and upper bounds are available, but may
lead to heavy under- and over-estimations, respectively; cf. Reference [31] for a discussion on complexity issues.

33

Mathematics 2020, 8, 1122

(a) d = 10, m = 2, M = 10,000. (b) d = 10, m = 2, M = 100,000.

(c) d = 4, m = 5, M = 10,000. (d) d = 4, m = 5, M = 100,000.

Figure 3. The evolution of the cardinality of the passive set P along the iterations of the three LH
algorithms for Halton points’ tests.

Table 5. Results of numerical tests on Halton points: compr = M/mean(cpts) is the mean compression
ratio obtained by the three methods listed; tLH/tTitt is the ratio between the execution time of LH and
that of Titterington algorithm; tLH/tLHDM (tLHI/tLHDM) is the ratio between the execution time of LH
(LHI) and that of LHDM; cpts is the number of compressed Tchakaloff points and momerr is the final
moment residual.

Test LH LHI LHDM
d m M compr tLH /tTitt tLH /tLHDM cpts momerr tLH I /tLHDM cpts momerr cpts momerr

10 2 10,000 10/1 41.0/1 1.9/1 990 1.1 × 10−8 1.9/1 988 9.8 × 10−9 990 9.4 × 10−9

10 2 100,000 103/1 6.0/1 3.1/1 968 3.6 × 10−7 2.8/1 973 2.7 × 10−7 968 4.2 × 10−7

4 5 10,000 10/1 20.2/1 2.3/1 997 9.7 × 10−9 2.4/1 993 1.3 × 10−8 997 2.1 × 10−9

4 5 100,000 103/1 2.0/1 3.8/1 969 6.6 × 10−7 3.8/1 964 6.3 × 10−7 969 5.3 × 10−7

5. Conclusions

In this paper, we have presented dCATCH [1], a numerical software package for the computation
of a d-variate near G-optimal polynomial regression design of degree m on a finite design space X ⊂ Rd.
The mathematical foundation is discussed connecting statistical design theoretic and approximation
theoretic aspects, with a special emphasis on deterministic regression (Weighted Least Squares).
The package takes advantage of an accelerated version of the classical NNLS Lawson-Hanson solver
developed by the authors and applied to design compression.

34

Mathematics 2020, 8, 1122

As a few examples of use cases of this package we have shown the results on a complex shape
(multibubble) in three dimensions, and on hypercubes discretized with Chebyshev grids and with
Halton points, testing different combinations of dimensions and degrees which generate large-scale
problems for a personal computer.

The present package, dCATCH works for any discrete measure on a discrete set X. Indeed, it could
be used, other than for design compression, also in the compression of d-variate quadrature formulas,
even on lower-dimensional manifolds, to give an example.

We may observe that with this approach we can compute a d-variate compressed design starting
from a high-cardinality sampling set X, that discretizes a continuous compact set (see Sections 4.2
and 4.3). This design allows an m-th degree near optimal polynomial regression of a function on
the whole X, by sampling on a small design support. We stress that the compressed design is
function-independent and thus can be constructed “once and for all” in a pre-processing stage.
This approach is potentially useful, for example, for the solution of d-variate parameter estimation
problems, where we may think to model a nonlinear cost function by near optimal polynomial
regression on a discrete d-variate parameter space X; cf., for example, References [32,33] for instances
of parameter estimation problems from mechatronics applications (Digital Twins of controlled systems)
and references on the subject. Minimization of the polynomial model could then be accomplished
by popular methods developed in the growing research field of Polynomial Optimization, such as
Lasserre’s SOS (Sum of Squares) and measure-based hierarchies, and other recent methods; cf., for
example, References [34–36] with the references therein.

From a computational viewpoint, the results shown in Tables 3–5 show relevant speed-ups in the
compression stage, with respect to the standard Lawson-Hanson algorithm, in terms of the number of
iterations required and of computing time within the Matlab scripting language. In order to further
decrease the execution times and to allow us to tackle larger design problems, we would like in the
near future to enrich the package dCATCH with an efficient C implementation of its algorithms and,
possibly, a CUDA acceleration on GPUs.

Author Contributions: Investigation, M.D., F.M. and M.V. All authors have read and agreed to the published
version of the manuscript.

Funding: Work partially supported by the DOR funds and the biennial project Project BIRD192932 of the
University of Padova, and by the GNCS-INdAM. This research has been accomplished within the RITA “Research
ITalian network on Approximation”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dessole, M.; Marcuzzi, F.; Vianello, M. dCATCH: A Numerical Package for Compressed d-Variate Near
G-Optimal Regression. Available online: https://www.math.unipd.it/~marcov/MVsoft.html (accessed on
1 June 2020).

2. Bos, L.; Vianello, M. CaTchDes: MATLAB codes for Caratheodory—Tchakaloff Near-Optimal Regression
Designs. SoftwareX 2019, 10, 100349. [CrossRef]

3. Dessole, M.; Marcuzzi, F.; Vianello, M. Accelerating the Lawson-Hanson NNLS solver for large-scale
Tchakaloff regression designs. Dolomit. Res. Notes Approx. DRNA 2020, 13, 20–29.

4. Atkinson, A.; Donev, A.; Tobias, R. Optimum Experimental Designs, with SAS; Oxford University Press: Oxford,
UK, 2007.

5. Pukelsheim, F. Optimal Design of Experiments; SIAM: Philadelphia, PA, USA, 2006.
6. Celant, G.; Broniatowski, M. Interpolation and Extrapolation Optimal Designs 2-Finite Dimensional General

Models; Wiley: Hoboken, NJ, USA, 2017.
7. Mandal, A.; Wong, W.K.; Yu, Y. Algorithmic searches for optimal designs. In Handbook of Design and Analysis

of Experiments; CRC Press: Boca Raton, FL, USA, 2015; pp. 755–783.

35

Mathematics 2020, 8, 1122

8. De Castro, Y.; Gamboa, F.; Henrion, D.; Hess, R.; Lasserre, J.B. Approximate optimal designs for multivariate
polynomial regression. Ann. Stat. 2019, 47, 127–155. [CrossRef]

9. Dette, H.; Pepelyshev, A.; Zhigljavsky, A. Improving updating rules in multiplicative algorithms for
computing D-optimal designs. Comput. Stat. Data Anal. 2008, 53, 312–320. [CrossRef]

10. Torsney, B.; Martin-Martin, R. Multiplicative algorithms for computing optimum designs. J. Stat. Plan. Infer.
2009, 139, 3947–3961. [CrossRef]

11. Bloom, T.; Bos, L.; Levenberg, N.; Waldron, S. On the Convergence of Optimal Measures. Constr. Approx.
2008, 32, 159–169. [CrossRef]

12. Bos, L. Some remarks on the Fejér problem for lagrange interpolation in several variables. J. Approx. Theory
1990, 60, 133–140. [CrossRef]

13. Calvi, J.P.; Levenberg, N. Uniform approximation by discrete least squares polynomials. J. Approx. Theory
2008, 152, 82–100. [CrossRef]

14. Kiefer, J.; Wolfowitz, J. The equivalence of two extremum problems. Can. J. Math. 1960, 12, 363–366.
[CrossRef]

15. Putinar, M. A note on Tchakaloff’s theorem. Proc. Am. Math. Soc. 1997, 125, 2409–2414. [CrossRef]
16. Titterington, D. Algorithms for computing D-optimal designs on a finite design space. In Proceedings of

the 1976 Conference on Information Science and Systems; John Hopkins University: Baltimore, MD, USA, 1976;
Volume 3, pp. 213–216.

17. Burkardt, J. MONOMIAL: A Matlab Library for Multivariate Monomials. Available online: https://people.
sc.fsu.edu/~jburkardt/m_src/monomial/monomial.html (accessed on 1 June 2020).

18. Bos, L.; Piazzon, F.; Vianello, M. Near optimal polynomial regression on norming meshes. In Sampling
Theory and Applications 2019; IEEE Xplore Digital Library: New York, NY, USA, 2019.

19. Bos, L.; Piazzon, F.; Vianello, M. Near G-optimal Tchakaloff designs. Comput. Stat. 2020, 35, 803–819.
[CrossRef]

20. Tchakaloff, V. Formules de cubatures mécaniques à coefficients non négatifs. Bull. Sci. Math. 1957,
81, 123–134.

21. Carathéodory, C. Über den Variabilitätsbereich der Fourier’schen Konstanten von positiven harmonischen
Funktionen. Rendiconti Del Circolo Matematico di Palermo (1884–1940) 1911, 32, 193–217. [CrossRef]

22. Sommariva, A.; Vianello, M. Compression of Multivariate Discrete Measures and Applications. Numer.
Funct. Anal. Optim. 2015, 36, 1198–1223. [CrossRef]

23. Pleśniak, W. Multivariate Jackson Inequality. J. Comput. Appl. Math. 2009, 233, 815–820. [CrossRef]
24. Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems; SIAM: Philadelphia, PA, USA, 1995; Volume 15.
25. Van Benthem, M.H.; Keenan, M.R. Fast algorithm for the solution of large-scale non-negativity-constrained

least squares problems. J. Chemom. 2004, 18, 441–450. [CrossRef]
26. Hardin, D.; Michaels, T.; Saff, E. A Comparison of Popular Point Configurations on S2. Dolomit. Res. Notes

Approx. DRNA 2016, 9, 16–49.
27. Bloom, T.; Bos, L.; Calvi, J.; Levenberg, N. Polynomial Interpolation and Approximation in Cd. Ann. Polon.

Math. 2012, 106, 53–81. [CrossRef]
28. De Marchi, S.; Piazzon, F.; Sommariva, A.; Vianello, M. Polynomial Meshes: Computation and

Approximation. In Proceedings of the CMMSE 2015, Rota Cadiz, Spain, 6–10 July 2015; pp. 414–425.
29. Dick, J.; Pillichshammer, F. Digital Nets and Sequences-Discrepancy Theory and Quasi—Monte Carlo Integration;

Cambridge University Press: Cambridge, UK, 2010.
30. Golub, G.H.; Van Loan, C.F. Matrix Computations, 3rd ed.; Johns Hopkins University Press: Baltimore, MD,

USA, 1996.
31. Slawski, M. Nonnegative Least Squares: Comparison of Algorithms. Available online: https://sites.google.

com/site/slawskimartin/code (accessed on 1 June 2020).
32. Beghi, A.; Marcuzzi, F.; Martin, P.; Tinazzi, F.; Zigliotto, M. Virtual prototyping of embedded control software

in mechatronic systems: A case study. Mechatronics 2017, 43, 99–111. [CrossRef]
33. Beghi, A.; Marcuzzi, F.; Rampazzo, M. A Virtual Laboratory for the Prototyping of Cyber-Physical Systems.

IFAC-PapersOnLine 2016, 49, 63–68. [CrossRef]
34. Lasserre, J.B. The moment-SOS hierarchy. Proc. Int. Cong. Math. 2018, 4, 3791–3814.

36

Mathematics 2020, 8, 1122

35. De Klerk, E.; Laurent, M. A survey of semidefinite programming approaches to the generalized problem of
moments and their error analysis. In World Women in Mathematics 2018-Association for Women in Mathematics
Series; Springer: Cham, Switzerland, 2019; Volume 20, pp. 17–56.

36. Martinez, A.; Piazzon, F.; Sommariva, A.; Vianello, M. Quadrature-based polynomial optimization. Optim.
Lett. 2020, 35, 803–819. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

37

mathematics

Article

Exact Solutions to the Maxmin Problem max‖Ax‖
Subject to ‖Bx‖ ≤ 1

Soledad Moreno-Pulido 1,†, Francisco Javier Garcia-Pacheco 1,†, Clemente Cobos-Sanchez 2,† and

Alberto Sanchez-Alzola 3,*,†

1 Department of Mathematics, College of Engineering, University of Cadiz, 11510 Puerto Real, Spain;
soledad.moreno@uca.es (S.M.-P.); garcia.pacheco@uca.es (F.J.G.-P.)

2 Department of Electronics, College of Engineering, University of Cadiz, 11510 Puerto Real, Spain;
clemente.cobos@uca.es

3 Department of Statistics and Operation Research, College of Engineering, University of Cadiz,
11510 Puerto Real, Spain

* Correspondence: alberto.sanchez@gm.uca.es
† These authors contributed equally to this work.

Received: 15 October 2019; Accepted: 30 December 2019; Published: 4 January 2020

Abstract: In this manuscript we provide an exact solution to the maxmin problem max ‖Ax‖ subject
to ‖Bx‖ ≤ 1, where A and B are real matrices. This problem comes from a remodeling of max ‖Ax‖
subject to min ‖Bx‖, because the latter problem has no solution. Our mathematical method comes
from the Abstract Operator Theory, whose strong machinery allows us to reduce the first problem
to max ‖Cx‖ subject to ‖x‖ ≤ 1, which can be solved exactly by relying on supporting vectors.
Finally, as appendices, we provide two applications of our solution: first, we construct a truly
optimal minimum stored-energy Transcranian Magnetic Stimulation (TMS) coil, and second, we find
an optimal geolocation involving statistical variables.

Keywords: maxmin; supporting vector; matrix norm; TMS coil; optimal geolocation

MSC: 47L05, 47L90, 49J30, 90B50

1. Introduction

1.1. Scope

Different scientific fields, such as Physics, Statistics, Economics, or Engineering, deal with real-life
problems that are usually modelled by the experts on those fields using matrices and their norms
(see [1–6]). A typical modelling is the following original maxmin problem{

max ‖Ax‖
min ‖Bx‖.

One of the most iconic results in this manuscript (Theorem 2) shows that the previous problem,
regarded strictly as a multiple optimization problem, has no solutions. To save this obstacle we provide
a different model, such as {

max ‖Ax‖
‖Bx‖ ≤ 1.

Here in this article we justify the remodelling of the original maxmin problem and we solve it by
making use of supporting vectors. This concept comes from the Theory of Banach Spaces and Operator

Mathematics 2020, 8, 85; doi:10.3390/math8010085 www.mdpi.com/journal/mathematics39

Mathematics 2020, 8, 85

Theory. Given a matrix A, a supporting vector is a unit vector x such that A attains its norm at x, that
is, x is a solution of the following single optimization problem:{

max ‖Ax‖
‖x‖ = 1.

The geometric and topological structure of supporting vectors can be consulted in [7–9]. On the
other hand, generalized supporting vectors are defined and studied in [7,8]. The generalized
supporting vectors of a finite sequence of matrices A1, . . . , An, for the Euclidean norm ‖ • ‖2, are
the solutions of {

max ‖A1x‖2
2 + · · ·+ ‖Anx‖2

2
‖x‖2 = 1.

This optimization problem clearly generalizes the previous one.
Supporting vectors were originally applied in [10] to truly optimally design a TMS coil, because

until that moment TMS coils had only been designed by means of heuristic methods, which were
never proved to be convergent. In [10] a three-component TMS coil problem is posed but only the
one-component case was resolved. The three-component case was stated and solved by means of
the generalized supporting vectors in [8]. In this manuscript, we model a TMS coil with a maxmin
problem and solve it exactly with our method.

A second application of supporting vectors was given in [8], where an optimal location situation
using Principal Component Analysis (PCA) was solved. In this manuscript, we model a more complex
PCA problem as an optimal maxmin geolocation involving statistical variables.

For other perspective on supporting vectors and generalized supporting vectors, we refer the
reader to [9].

1.2. Background

In the first place, we refer the reader to [8] (Preliminaries) for a general review of multiobjective
optimization problems and their reformulations to avoid the lack of solutions (generally caused by the
existence of many objective functions).

The original maxmin optimization problem has the form

M :=

{
max g(x)
min f (x)

where f , g : X → (0, ∞) are real-valued functions and X is a nonempty set. Notice that

sol(M) = arg max g(x) ∩ arg min f (x).

Many real-life problems can be mathematically model, such as a maxmin. However, this kind of
multiobjective optimization problems may have the inconvenience of lacking a solution. If this occurs,
then we are in need of remodeling the real-life problem with another mathematical optimization
problem that has a solution and still models the real-life problem very accurately.

According to [10] (Theorem 5.1), one can realize that, in case sol(M) = ∅, the following
optimization problems are good alternatives to keep modeling the real-life problem accurately:

•
{

max g(x)
min f (x)

reform−→
{

min f (x)
g(x)

g(x) �= 0
.

•
{

max g(x)
min f (x)

reform−→
{

max g(x)
f (x)

f (x) �= 0
.

40

Mathematics 2020, 8, 85

•
{

max g(x)
min f (x)

reform−→
{

max g(x)
f (x) ≤ a

.

•
{

max g(x)
min f (x)

reform−→
{

min f (x)
g(x) ≥ b

.

We will prove in the third section that all four previous reformulations are equivalent for the

original maxmin

{
max ‖Ax‖
min ‖Bx‖ . In the fourth section, we will solve the reformulation

{
max ‖Ax‖
‖Bx‖ ≤ 1

.

2. Characterizations of Operators with Null Kernel

Kernels will play a fundamental role towards solving the general reformulated maxmin (2) as
shown in the next section. This is why we first study the operators with null kernel.

Throughout this section, all monoid actions considered will be left, all rings will be associative,
all rings will be unitary rngs, all absolute semi-values and all semi-norms will be non-zero, all modules
over rings will be unital, all normed spaces will be real or complex and all algebras will be unitary
and complex.

Given a rng R and an element s ∈ R, we will denote by �d(s) to the set of left divisors of s, that is,

�d(s) := {r ∈ R : ∃ t ∈ R \ {0} with rt = s}.

Similarly, rd(s) stands for the set of right divisors of s. If R is a ring, then the set of its invertibles
is usually denoted by U (R). Notice that �d(1) (rd(1)) is precisely the subset of elements of R which are
right-(left) invertible. As a consequence, U (R) = �d(1) ∩ rd(1). Observe also that �d(0) ∩ rd(1) = ∅ =

rd(0) ∩ �d(1). In general we have that �d(0) ∩ �d(1) �= ∅ and rd(0) ∩ rd(1) �= ∅. Later on in Example 1
we will provide an example of a ring where rd(0) ∩ rd(1) �= ∅.

Recall that an element p of a monoid is called involutive if p2 = 1. Given a rng R, an involution
is an additive, antimultiplicative, composition-involutive map ∗ : R → R. A ∗-rng is a rng endowed
with an involution.

The categorical concept of monomorphism will play an important role in this manuscript.
A morphism f ∈ homC(A, B) between objects A and B in a category C is said to be a monomorphism
provided that f ◦ g = f ◦ h implies g = h for all C ∈ ob(C) and all g, h ∈ homC(C, A). Once can
check that if f ∈ homC(A, B) and there exist C0 ∈ ob(C) and g0 ∈ homC(B, C0) such that g0 ◦ f is
a monomorphism, then f is also a monomorphism. In particular, if f ∈ homC(A, B) is a section,
that is, exists g ∈ homC(B, A) such that g ◦ f = IA, then f is a monomorphism. As a consequence,
the elements of homC(A, A) that have a left inverse are monomorphisms. In some categories, the last
condition suffices to characterize monomorphisms. This is the case, for instance, of the category of
vector spaces over a division ring.

Recall that CL(X, Y) denotes the space of continuous linear operators from a topological vector
space X to another topological vector space Y.

Proposition 1. A continuous linear operator T : X → Y between locally convex Hausdorff topological
vector spaces X and Y verifies that ker(T) �= {0} if and only if exists S ∈ CL(Y, X) \ {0} with T ◦ S = 0.
In particular, if X = Y, then ker(T) �= {0} if and only if T ∈ �d(0) in CL(X).

Proof. Let S ∈ CL(Y, X) \ {0} such that T ◦ S = 0. Fix any y ∈ Y \ ker(S), then S(y) �= 0 and
T(S(y)) = 0 so S(y) ∈ ker(T) \ {0}. Conversely, if ker(T) �= {0}, then fix x0 ∈ ker(T) \ {0} and
y∗0 ∈ Y∗ \ {0} (the existence of y∗ is guaranteed by the Hahn-Banach Theorem on the Hausdorff locally
convex topological vector space Y). Next, consider

S : Y → X
y �→ S(y) := y∗0(y)x0.

41

Mathematics 2020, 8, 85

Notice that S ∈ CL(Y, X) \ {0} and T ◦ S = 0.

Theorem 1. Let T : X → Y be a continuous linear operator between locally convex Hausdorff topological
vector spaces X and Y. Then:

1. If T is a section, then ker(T) = {0}
2. In case X and Y are Banach spaces, T(X) is topologically complemented in Y and ker(T) = {0}, then T

is a section.

Proof.

1. Trivial since sections are monomorphisms.
2. Consider T : X → T(X). Since T(X) is topologically complemented in Y we have that T(X)

is closed in Y, thus it is a Banach space. Therefore, the Open Mapping Theorem assures that
T : X → T(X) is an isomorphism. Let T−1 : T(X) → X be the inverse of T : X → T(X). Now
consider P : Y → Y to be a continuous linear projection such that P(Y) = T(X). Finally, it suffices
to define S := T−1 ◦ P since S ◦ T = IX .

We will finalize this section with a trivial example of a matrix A ∈ R3×2 such that
A ∈ rd(I) ∩ rd(0).

Example 1. Consider

A =

⎛⎜⎝ 1 0
0 1
0 0

⎞⎟⎠ .

It is not hard to check that ker(A) = {(0, 0)} thus A is left-invertible by Theorem 1(2) and so A ∈ rd(I).
In fact, (

1 0 0
0 1 0

)⎛⎜⎝ 1 0
0 1
0 0

⎞⎟⎠ =

(
1 0
0 1

)
.

Finally, (
0 0 1
0 0 1

)⎛⎜⎝ 1 0
0 1
0 0

⎞⎟⎠ =

(
0 0
0 0

)
.

3. Remodeling the Original Maxmin Problem max‖T(x)‖ Subject to min‖S(x)‖

3.1. The Original Maxmin Problem Has No Solutions

This subsection begins with the following theorem:

Theorem 2. Let T, S : X → Y be nonzero continuous linear operators between Banach spaces X and Y. Then
the original maxmin problem {

max ‖T(x)‖
min ‖S(x)‖ (1)

has trivially no solution.

42

Mathematics 2020, 8, 85

Proof. Observe that arg min ‖S(x)‖ = ker(S) and arg max ‖T(x)‖ = ∅ because T �= {0}. Then the
set of solutions of Problem (1) is

arg min ‖S(x)‖ ∩ arg max ‖T(x)‖ = ker(S) ∩∅ = ∅.

As a consequence, Problem (1) must be reformulated or remodeled.

3.2. Equivalent Reformulations for the Original Maxmin Problem

According to the Background section, we begin with the following reformulation:{
max ‖T(x)‖
‖S(x)‖ ≤ 1

(2)

Please note that arg max
‖S(x)‖≤1

‖T(x)‖ is a K-symmetric set, where K := R or C, in other words,

if λ ∈ K and |λ| = 1, then λx ∈ arg max
‖S(x)‖≤1

‖T(x)‖ for every x ∈ arg max
‖S(x)‖≤1

‖T(x)‖. The finite

dimensional version of the previous reformulation is{
max ‖Ax‖
‖Bx‖ ≤ 1

(3)

where A, B ∈ Rm×n.
Recall that B(X, Y) denotes the space of bounded operators from X to Y.

Lemma 1. Let T, S ∈ B(X, Y) where X and Y are Banach spaces. If the general reformulated maxmin problem{
max ‖T(x)‖
‖S(x)‖ ≤ 1

has a solution, then ker(S) ⊆ ker(T).

Proof. If ker(S) \ ker(T) �= ∅, then it suffices to consider the sequence (nx0)n∈N for x0 ∈ ker(S) \
ker(T), since ‖S(nx0)‖ = 0 ≤ 1 for all n ∈ N and ‖T(nx0)‖ = n‖T(x0)‖ → ∞ as n → ∞.

The general maxmin (1) can also be reformulated as{
max ‖T(x)‖
min ‖S(x)‖

reform−→
{

max ‖T(x)‖
‖S(x)‖

‖S(x)‖ �= 0

Lemma 2. Let T, S ∈ B(X, Y) where X and Y are Banach spaces. If the second general reformulated
maxmin problem {

max ‖T(x)‖
‖S(x)‖

‖S(x)‖ �= 0

has a solution, then ker(S) ⊆ ker(T).

Proof. Suppose there exists x0 ∈ ker(S) \ ker(T). Then fix an arbitrary x1 ∈ X \ ker(S). Notice that

‖T(nx0 + x1)‖
‖S(nx0 + x1)‖ ≥ n‖T(x0)‖ − ‖T(x1)‖

‖S(x1)‖ → ∞

as n → ∞.

43

Mathematics 2020, 8, 85

The next theorem shows that the previous two reformulations are in fact equivalent.

Theorem 3. Let T, S ∈ B(X, Y) where X and Y are Banach spaces. Then

⋃
t>0

targ max
‖S(x)‖≤1

‖T(x)‖ = arg max
‖S(x)‖�=0

‖T(x)‖
‖S(x)‖ .

Proof. Let x0 ∈ arg max‖S(x)‖≤1 ‖T(x)‖ and t0 > 0. Fix an arbitrary y ∈ X \ ker(S). Notice that
x0 /∈ ker(S) in virtue of Theorem 1. Then

‖T(x0)‖ ≥
∥∥∥∥T
(

y
‖S(y)‖

)∥∥∥∥ ,

therefore ‖T(tx0)‖
‖S(tx0)‖ =

‖T(x0)‖
‖S(x0)‖ ≥ ‖T(x0)‖ ≥

∥∥∥∥T
(

y
‖S(y)‖

)∥∥∥∥ .

Conversely, let x0 ∈ arg max‖S(x)‖�=0
‖T(x)‖
‖S(x)‖ . Fix an arbitrary y ∈ X with ‖S(y)‖ ≤ 1. Then∥∥∥∥T

(
x0

‖S(x0)‖
)∥∥∥∥ = ‖T(x0)‖

‖S(x0)‖ ≥ ‖T(y)‖
‖S(y)‖ ≥ ‖T(y)‖

which means that
x0

‖S(x0)‖ ∈ arg max
‖S(x)‖≤1

‖T(x)‖

and thus
x0 ∈ ‖S(x0)‖arg max

‖S(x)‖≤1
‖T(x)‖ ⊆ ⋃

t>0
targ max

‖S(x)‖≤1
‖T(x)‖.

The reformulation {
min ‖S(x)‖

‖T(x)‖
‖T(x)‖ �= 0

is slightly different from the previous two reformulations. In fact, if ker(S) \ ker(T) �= ∅, then
arg min‖T(x)‖�=0

‖S(x)‖
‖T(x)‖ = ker(S) \ ker(T). The previous reformulation is equivalent to the following

one as shown in the next theorem: {
min ‖S(x)‖
‖T(x)‖ ≥ 1

Theorem 4. Let T, S ∈ B(X, Y) where X and Y are Banach spaces. Then

⋃
t>0

targ min
‖T(x)‖≥1

‖S(x)‖ = arg min
‖T(x)‖�=0

‖S(x)‖
‖T(x)‖ .

We spare of the details of the proof of the previous theorem to the reader. Notice that if ker(S) \
ker(T) �= ∅, then arg min‖T(x)‖≥1 ‖S(x)‖ = ker(S) \ {x ∈: ‖T(x)‖ < 1}. However, if ker(S) ⊆ ker(T),
then all four reformulations are equivalent, as shown in the next theorem, whose proof’s details we
spare again to the reader.

Theorem 5. Let T, S ∈ B(X, Y) where X and Y are Banach spaces. If ker(S) ⊆ ker(T), then

arg max
‖S(x)‖�=0

‖T(x)‖
‖S(x)‖ = arg min

‖T(x)‖�=0

‖S(x)‖
‖T(x)‖ .

44

Mathematics 2020, 8, 85

4. Solving the Maxmin Problem max‖T(x)‖ Subject to ‖S(x)‖ ≤ 1

We will distinguish between two cases.

4.1. First Case: S Is an Isomorphism Over Its Image

By bearing in mind Theorem 5, we can focus on the first reformulation proposed at the beginning
of the previous section: {

max ‖T(x)‖
min ‖S(x)‖

reform−→
{

max ‖T(x)‖
‖S(x)‖ ≤ 1

The idea we propose to solve the previous reformulation is to make use of supporting vectors
(see [7–10]). Recall that if R : X → Y is a continuous linear operator between Banach spaces, then the
set of supporting vectors of R is defined by

suppv(R) := arg max
‖x‖≤1

‖R(x)‖.

The idea of using supporting vectors is that the optimization problem{
max ‖R(x)‖
‖x‖ ≤ 1

whose solutions are by definition the supporting vectors of R, can be easily solved theoretically and
computationally (see [8]).

Our first result towards this direction considers the case where S is an isomorphism over its image.

Theorem 6. Let T, S ∈ B(X, Y) where X and Y are Banach spaces. Suppose that S is an isomorphism over
its image and S−1 : S(X) → X denotes its inverse. Suppose also that S(X) is complemented in Y, being
p : Y → Y a continuous linear projection onto S(X). Then

S−1

(
S(X) ∩ arg max

‖y‖≤1

∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥) ⊆ arg max

‖S(x)‖≤1
‖T(x)‖.

If, in addition, ‖p‖ = 1, then

arg max
‖S(x)‖≤1

‖T(x)‖ = S−1

(
S(X) ∩ arg max

‖y‖≤1

∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥) .

Proof. We will show first that

S(X) ∩ arg max
‖y‖≤1

∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥ ⊆ S

(
arg max

‖S(x)‖≤1
‖T(x)‖

)
.

Let y0 = S(x0) ∈ arg max
‖y‖≤1

∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥. We will show that x0 ∈ arg max

‖S(x)‖≤1
‖T(x)‖.

Indeed, let x ∈ X with ‖S(x)‖ ≤ 1. Since ‖S(x0)‖ = ‖y0‖ ≤ 1, by assumption we obtain

‖T(x)‖ =
∥∥∥(T ◦ S−1 ◦ p

)
(S(x))

∥∥∥
≤

∥∥∥(T ◦ S−1 ◦ p
)
(y0)

∥∥∥
=

∥∥∥(T ◦ S−1 ◦ p
)
(S(x0))

∥∥∥
= ‖T(x0)‖ .

45

Mathematics 2020, 8, 85

Now assume that ‖p‖ = 1. We will show that

S
(

arg max
‖S(x)‖≤1

‖T(x)‖
)
⊆ S(X) ∩ arg max

‖y‖≤1

∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥ .

Let x0 ∈ arg max
‖S(x)‖≤1

‖T(x)‖, we will show that S(x0) ∈ arg max
‖y‖≤1

∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥. Indeed, let

y ∈ BY. Observe that ∥∥∥S
(

S−1(p(y))
)∥∥∥ = ‖p(y)‖ ≤ ‖y‖ ≤ 1

so by assumption ∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥ =

∥∥∥T
(

S−1(p(y))
)∥∥∥

≤ ‖T(x0)‖
=

∥∥∥T
(

S−1(p(S(x0)))
)∥∥∥

=
∥∥∥(T ◦ S−1 ◦ p

)
(S(x0))

∥∥∥ .

Notice that, in the settings of Theorem 6, S−1 ◦ p is a left-inverse of S, in other words, S is a section,
as in Theorem 1(2).

Taking into consideration that every closed subspace of a Hilbert space is 1-complemented
(see [11,12] to realize that this fact characterizes Hilbert spaces of dimension ≥ 3), we directly obtain
the following corollary.

Corollary 1. Let T, S ∈ B(X, Y) where X is a Banach space and Y a Hilbert space. Suppose that S is
an isomorphism over its image and let S−1 : S(X) → X be its inverse. Then

arg max
‖S(x)‖≤1

‖T(x)‖ = S−1

(
S(X) ∩ arg max

‖y‖≤1

∥∥∥(T ◦ S−1 ◦ p
)
(y)
∥∥∥)

= S−1
(

S(X) ∩ suppv
(

T ◦ S−1 ◦ p
))

where p : Y → Y is the orthogonal projection on S(X).

4.2. The Moore–Penrose Inverse

If B ∈ Km×n, then the Moore–Penrose inverse of B, denoted by B+, is the only matrix B+ ∈ Kn×m

which verifies the following:

• B = BB+B.
• B+ = B+BB+.
• BB+ = (BB+)∗.
• B+B = (B+B)∗.

If ker(B) = 0, then B+ is a left-inverse of B. Even more, BB+ is the orthogonal projection onto the
range of B, thus we have the following result from Corollary 1.

Corollary 2. Let A, B ∈ Rm×n such that ker(B) = {0}. Then

B
(

arg max
‖Bx‖2≤1

‖Ax‖2

)
= BRn ∩ arg max

‖y‖2≤1

∥∥AB+y
∥∥

2

= BRn ∩ suppv
(

AB+
)

46

Mathematics 2020, 8, 85

According to the previous Corollary, in its settings, if y0 ∈ arg max‖y‖2≤1 ‖AB+y‖2 and there
exists x0 ∈ Rn such that y0 = Bx0, then x0 ∈ arg max‖Bx‖2≤1 ‖Ax‖2 and x0 can be computed as

x0 = B+Bx0 = B+y0.

4.3. Second Case: S Is Not an Isomorphism Over Its Image

What happens if S is not an isomorphism over its image? Next theorem answers this question.

Theorem 7. Let T, S ∈ B(X, Y) where X and Y are Banach spaces. Suppose that ker(S) ⊆ ker(T). If

π : X → X/ ker(S)
x �→ π(x) := x + ker(S)

denotes the quotient map, then

arg max
‖S(x)‖≤1

‖T(x)‖ = π−1

(
arg max

‖S(π(x))‖≤1
‖T(π(x))‖

)
,

where
T : X

ker(S) → Y
π(x) �→ T(π(x)) := T(x)

and
S : X

ker(S) → Y
π(x) �→ S(π(x)) := S(x).

Proof. Let x0 ∈ arg max‖S(x)‖≤1 ‖T(x)‖. Fix an arbitrary y ∈ X with ‖S(π(y))‖ ≤ 1. Then ‖S(y)‖ =

‖S(π(y))‖ ≤ 1 therefore

‖T(π(x0)‖ = ‖T(x0)‖ ≥ ‖T(y)‖ = ‖T(π(y))‖.

This shows that π(x0) ∈ arg max‖S(π(x))‖≤1 ‖T(π(x))‖. Conversely, let

π(x0) ∈ arg max
‖S(π(x))‖≤1

‖T(π(x))‖.

Fix an arbitrary y ∈ X with ‖S(y)‖ ≤ 1. Then ‖S(π(y))‖ = ‖S(y)‖ ≤ 1 therefore

‖T(x0)‖ = ‖T(π(x0))‖ ≥ ‖T(π(y))‖ = ‖T(y)‖.

This shows that x0 ∈ arg max‖S(x)‖≤1 ‖T(x)‖.

Please note that in the settings of Theorem 7, if S(X) is closed in Y, then S is an isomorphism over
its image S(X), and thus in this case Theorem 7 reduces the reformulated maxmin to Theorem 6.

4.4. Characterizing When the Finite Dimensional Reformulated Maxmin Has a Solution

The final part of this section is aimed at characterizing when the finite dimensional reformulated
maxmin has a solution.

Lemma 3. Let S : X → Y be a bounded operator between finite dimensional Banach spaces X and Y. If (xn)n∈N
is a sequence in {x ∈ X : ‖S(x)‖ ≤ 1}, then there is a sequence (zn)n∈N in ker(S) so that (xn + zn)n∈N
is bounded.

47

Mathematics 2020, 8, 85

Proof. Consider the linear operator

S : X
ker(S) → Y

x + ker(S) �→ S(x + ker(S)) = S(x).

Please note that ∥∥S(xn + ker(S))
∥∥ = ‖S(xn)‖ ≤ 1

for all n ∈ N, therefore the sequence (xn + ker(S))n∈N is bounded in X
ker(S) because X

ker(S) is finite

dimensional and S has null kernel so its inverse is continuous. Finally, choose zn ∈ ker(S) such that
‖xn + zn‖ < ‖xn + ker(S)‖+ 1

n for all n ∈ N.

Lemma 4. Let A, B ∈ Rm×n. If ker(B) ⊆ ker(A), then A is bounded on {x ∈ Rn : ‖Bx‖ ≤ 1} and attains
its maximum on that set.

Proof. Let (xn)n∈N be a sequence in {x ∈ Rn : ‖Bx‖ ≤ 1}. In accordance with Lemma 3, there
exists a sequence (zn)n∈N in ker(B) such that (xn + zn)n∈N is bounded. Since A(xn) = A(xn + zn) by
hypothesis (recall that ker(B) ⊆ ker(A)), we conclude that A is bounded on {x ∈ Rn : ‖Bx‖ ≤ 1}.
Finally, let (xn)n∈N be a sequence in {x ∈ Rn : ‖Bx‖ ≤ 1} such that ‖Axn‖ → max

‖Bx‖≤1
‖Ax‖ as n → ∞.

Please note that
∥∥A(xn + ker(B))

∥∥ = ‖Axn‖ for all n ∈ N, so
(

A(xn + ker(B))
)

n∈N is bounded in Rm

and so is
(

A(xn + ker(B))
)

n∈N in Rn

ker(B) . Fix bn ∈ ker(B) such that ‖xn + bn‖ < ‖xn + ker(B)‖+ 1
n for

all n ∈ N. This means that (xn + bn)n∈N is a bounded sequence in Rn so we can extract a convergent
subsequence

(
xnk + bnk

)
k∈N to some x0 ∈ X. At this stage, notice that

∥∥B
(
xnk + bnk

)∥∥ = ∥∥Bxnk

∥∥ ≤ 1
for all k ∈ N and

(
B
(

xnk + bnk

))
k∈N converges to Bx0, so ‖Bx0‖ ≤ 1. Note also that, since ker(B) ⊆

ker(A),
(∥∥Axnk

∥∥)
n∈N converges to ‖Ax0‖, which implies that

x0 ∈ arg max
‖Bx‖≤1

‖Ax‖.

Theorem 8. Let A, B ∈ Rm×n. The reformulated maxmin problem{
max ‖Ax‖
‖Bx‖ ≤ 1

has a solution if and only if ker(B) ⊆ ker(A).

Proof. If ker(B) ⊆ ker(A), then we just need to call on Lemma 4. Conversely, if ker(B) \ ker(A) �= ∅,
then it suffices to consider the sequence (nx0)n∈N for x0 ∈ ker(B) \ ker(A), since ‖B(nx0)‖ = 0 ≤ 1
for all n ∈ N and ‖A(nx0)‖ = n‖A(x0)‖ → ∞ as n → ∞.

4.5. Matrices on Quotient Spaces

Consider the maxmin {
max ‖T(x)‖
‖S(x)‖ ≤ 1

being X and Y Banach spaces and T, S ∈ B(X, Y) with ker(S) ⊆ ker(T). Notice that if (ei)i∈I is
a Hamel basis of X, then (ei + ker(S))i∈I is a generator system of X

ker(S) . By making use of the Zorn’s

Lemma, it can be shown that (ei + ker(S))i∈I contains a Hamel basis of X
ker(S) . Observe that a subset C

of X
ker(S) is linearly independent if and only if S(C) is a linearly independent subset of Y.

48

Mathematics 2020, 8, 85

In the finite dimensional case, we have

B : Rn

ker(B) → Rm

x + ker(B) �→ B(x + ker(B)) := Bx.

and
A : Rn

ker(B) → Rm

x + ker(B) �→ A(x + ker(B)) := Ax.

If {e1, . . . , en} denotes the canonical basis of Rn, then {e1 + ker(B), . . . , en + ker(B)} is a generator
system of Rn

ker(B) . This generator system contains a basis of Rn

ker(B) so let {ej1 + ker(B), . . . , ejl + ker(B)}
be a basis of Rn

ker(B) . Please note that A
(
ejk + ker(B)

)
= Aejk and B

(
ejk + ker(B)

)
= Bejk for every

k ∈ {1, . . . , l}. Therefore, the matrix associated with the linear map defined by B can be obtained from
the matrix B by removing the columns corresponding to the indices {1, . . . , n} \ {j1, . . . , jl}, in other
words, the matrix associated with B is

[
Bej1 | · · · |Bejl

]
. Similarly, the matrix associated with the linear

map defined by A is
[
Aej1 | · · · |Aejl

]
. As we mentioned above, recall that a subset C of Rn

ker(B) is linearly
independent if and only if B(C) is a linearly independent subset of Rm. As a consequence, in order
to obtain the basis {ej1 + ker(B), . . . , ejl + ker(B)}, it suffices to look at the rank of B and consider the
columns of B that allow such rank, which automatically gives us the matrix associated with B, that is,[
Bej1 | · · · |Bejl

]
.

Finally, let
π : Rn → Rn

ker(B)
x �→ π(x) : x + ker(B)

denote the quotient map. Let l := rank(B) = dim
(

Rn

ker(B)

)
. If x = (x1, . . . , xl) ∈ Rl , then

∑l
k=1 xk

(
ejk + ker(B)

) ∈ Rn

ker(B) . The vector z ∈ Rn defined by

zp :=

{
xk p = jk
0 p /∈ {j1, . . . , jl}

verifies that

p(z) =
l

∑
k=1

xk
(
ejk + ker(B)

)
.

To simplify the notation, we can define the map

α : Rl → Rn

x �→ α(x) := z

where z is the vector described right above.

5. Discussion

Here we compile all the results from the previous subsections and define the structure of the
algorithm that solves the maxmin (3).

Let A, B ∈ Rm×n with ker(B) ⊆ ker(A). Then{
max ‖Ax‖2

min ‖Bx‖2

reform−→
{

max ‖Ax‖2

‖Bx‖2 ≤ 1

49

Mathematics 2020, 8, 85

Case 1: ker(B) = {0}. B+ denotes the Moore–Penrose inverse of B.

⎧⎨⎩ max ‖Ax‖2

‖Bx‖2 ≤ 1

supp. vec.−→
⎧⎨⎩ max ‖AB+y‖2

‖y‖2 ≤ 1
solution−→

⎧⎨⎩ y0 ∈ arg max
‖y‖2≤1

‖AB+y‖2

rank(B) = rank([B|y0])

final sol.−→ x0 := B+y0

Case 2: ker(B) �= {0}. B =
[
Bej1 | · · · |Bejl

]
where rank(B) = l = rank

(
B
)

and A =[
Aej1 | · · · |Aejl

]
.{

max ‖Ax‖2

‖Bx‖2 ≤ 1
case 1−→

{
max ‖Ay‖2

‖By‖2 ≤ 1
solution−→ y0

final sol.−→ x0 := α(y0)

In case a real-life problem is modeled like a maxmin involving more operators, we proceed as the
following remark establishes in accordance with the preliminaries of this manuscript (reducing the
number of multiobjective functions to avoid the lack of solutions):

Remark 1. Let (Tn)n∈N and (Sn)n∈N be sequences of continuous linear operators between Banach spaces X
and Y. The maxmin {

max ‖Tn(x)‖ n ∈ N

min ‖Sn(x)‖ n ∈ N
(4)

can be reformulated as (recall the second typical reformulation){
max ∑∞

n=1 ‖Tn(x)‖2

min ∑∞
n=1 ‖Sn(x)‖2 (5)

which can be transformed into a regular maxmin as in (1) by considering the operators

T : X → �2(Y)
x �→ T(x) := (Tn(x))n∈N

and
S : X → �2(Y)

x �→ S(x) := (Sn(x))n∈N
obtaining then {

max ‖T(x)‖2

min ‖S(x)‖2

which is equivalent to {
max ‖T(x)‖
min ‖S(x)‖

Observe that for the operators T and S to be well defined it is sufficient that (‖Tn‖)n∈N and (‖Sn‖)n∈N be
in �2.

6. Materials and Methods

The initial methodology employed in this research work is the Mathematical Modelling of real-life
problems. The subsequent methodology followed is given by the Axiomatic-Deductive Method
framed in the First-Order Mathematical language. Inside this framework, we deal with the Category
Theory (the main category involved is the Category of Banach spaces with the Bounded Operators).
The final methodology used is the implementation of our mathematical results in the MATLAB
programming language.

50

Mathematics 2020, 8, 85

7. Conclusions

We finally enumerate the novelties provided in this work, which serve as conclusions for
our research:

1. We prove that the original maxmin problem{
max ‖Ax‖
min ‖Bx‖ (6)

has no solution (Theorem 2).
2. We then rewrite (6) as {

max ‖Ax‖
‖Bx‖ ≤ 1

(7)

which still models the real-life problem very accurately and has a solution if and only if ker(B) ⊆
ker(A) (Theorem 8).

3. We provide an exact solution of (7) assuming ker(B) ⊆ ker(A), not an heuristic method for
approaching it. See Section 5.

4. A MATLAB code is provided for computing the solution to the maxmin problem. See Appendix C.
5. Our solution applies to design truly optimal minimum stored-energy TMS coils and to find more

complex optimal geolocations involving statistical variables. See Appendixes A and B.
6. This article represents an interdisciplinary work involving pure abstract nontrivial proven

theorems and programming codes that can be directly applied to different situations in the
real world.

Author Contributions: Conceptualization, S.M.-P., F.J.G.-P., C.C.-S. and A.S.-A.; methodology, S.M.-P., F.J.G.-P.,
C.C.-S. and A.S.-A.; software, S.M.-P., F.J.G.-P., C.C.-S. and A.S.-A.; validation, S.M.-P., F.J.G.-P., C.C.-S. and A.S.-A.;
formal analysis, S.M.-P., F.J.G.-P., C.C.-S. and A.S.-A.; investigation, S.M.-P., F.J.G.-P., C.C.-S. and A.S.-A.; resources,
S.M.-P., F.J.G.-P., C.C.-S. and A.S.-A.; data curation, S.M.-P., F.J.G.-P., C.C.-S. and A.S.-A.; writing—original draft
preparation, S.M.-P., F.J.G.-P., C.C.-S. and A.S.-A.; writing—review and editing, S.M.-P., F.J.G.-P., C.C.-S. and
A.S.-A.; visualization, S.M.-P., F.J.G.-P., C.C.-S. and A.S.-A.; supervision, S.M.-P., F.J.G.-P., C.C.-S. and A.S.-A.;
project administration, S.M.-P., F.J.G.-P., C.C.-S. and A.S.-A.; funding acquisition, S.M.-P., F.J.G.-P., C.C.-S. and
A.S.-A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Research Grant PGC-101514-B-100 awarded by the Spanish Ministry of
Science, Innovation and Universities and partially funded by FEDER.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Appendix A. Applications to Optimal TMS Coils

Appendix A.1. Introduction to TMS Coils

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique to stimulate the brain.
We refer the reader to [8,10,13–23] for a description on the development of TMS coils desing as
an optimization problem.

An important safety issue in TMS is the minimization of the stimulation of non-target areas.
Therefore, the development of TMS as a medical tool would be benefited with the design of TMS
stimulators capable of inducing a maximum electric field in the region of interest, while minimizing
the undesired stimulation in other prescribed regions.

51

Mathematics 2020, 8, 85

Appendix A.2. Minimum Stored-Energy TMS Coil

In the following section, in order to illustrate an application of the theoretical model developed in
this manuscript, we are going to tackle the design of a minimum stored-energy hemispherical TMS
coil of radius 9 cm, constructed to stimulate only one cerebral hemisphere. To this end, the coil must
produce an E-field which is both maximum in a spherical region of interest (ROI) and minimum in a
second region (ROI2). Both volumes of interest are of 1 cm radius and formed by 400 points, where
ROI is shifted by 5 cm in the positive z-direction and by 2 cm in the positive y-direction; and ROI2
is shifted by 5 cm in the positive z-direction and by 2 cm in the negative y-direction, as shown in
Figure A1a. In Figure A1b a simple human head made of two compartments, scalp and brain, used to
evaluate the performance of the designed stimulator is shown.

ROI

ROI2

(a)

(b)

Figure A1. (a) Description of hemispherical surface where the optimal ψ must been found along
with the spherical regions of interest ROI and ROI2 where the electric field must be maximized and
minimized respectively. (b) Description of the two compartment scalp-brain model.

52

Mathematics 2020, 8, 85

By using the formalism presented in [10] this TMS coil design problem can be posed as the
following optimization problem: ⎧⎪⎨⎪⎩

max ‖Ex1 ψ‖2
min ‖Ex2 ψ‖2
min ψT Lψ

(A1)

where ψ is the stream function (the optimization variable), M = 400 are the number of points in
the ROI and ROI2, N = 2122 the number of mesh nodes, L ∈ RN×N is the inductance matrix, and
Ex1 ∈ RM×N and Ex2 ∈ RM×N are the E-field matrices in the prescribe x-direction.

(a)

|E| (V/m)

(b)

Figure A2. (a) Wirepaths with 18 turns of the TMS coil solution (red wires indicate reversed current
flow with respect to blue). (b) E-field modulus induced at the surface of the brain by the designed
TMS coil.

53

Mathematics 2020, 8, 85

Figure A2a shows the coil solution of problem in Equation (A1) computed by using the theoretical
model proposed in this manuscript (see Section 5 and Appendix A.3), and as expected, the wire
arrangements is remarkably concentrated over the region of stimulation.

To evaluate the stimulation of the coil, we resort to the direct BEM [24], which permits the
computation of the electric field induced by the coils in conducting systems. As can be seen in
Figure A2b, the TMS coil fulfils the initial requirements of stimulating only one hemisphere of the
brain (the one where ROI is found); whereas the electric field induced in the other cerebral hemisphere
(where ROI2 can be found) is minimum.

Appendix A.3. Reformulation of Problem (A1) to Turn it into a Maxmin

Now it is time to reformulate the multiobjective optimization problem given in (A1), because it
has no solution in virtue of Theorem 2. We will transform it into a maxmin problem as in (7) so that
we can apply the theoretical model described in Section 5:⎧⎪⎨⎪⎩

max ‖Ex1 ψ‖2
min ‖Ex2 ψ‖2
min ψT Lψ

Since raising to the square is a strictly increasing function on [0, ∞), the previous problem is
trivially equivalent to the following one: ⎧⎪⎨⎪⎩

max ‖Ex1 ψ‖2
2

min ‖Ex2 ψ‖2
2

min ψT Lψ

(A2)

Next, we apply Cholesky decomposition to L to obtain L = CTC so we have that ψT Lψ =

(Cψ)T(Cψ) = ‖Cψ‖2
2 so we obtain ⎧⎪⎨⎪⎩

max ‖Ex1 ψ‖2
2

min ‖Ex2 ψ‖2
2

min ‖Cψ‖2
2

(A3)

Since C is an invertible square matrix, arg min ‖Cψ‖2
2 = {0} so the previous multiobjective

optimization problem has no solution. Therefore it must be reformulated. We call then on Remark 1
to obtain: {

max ‖Ex1 ψ‖2
2

min ‖Ex2 ψ‖2
2 + ‖Cψ‖2

2
(A4)

which in essence is {
max ‖Ex1 ψ‖2
min ‖Dψ‖2

(A5)

where D :=

(
Ex2

C

)
. The matrix D in this specific case has null kernel. In accordance with the

previous sections, Problem (A5) is remodeled as{
max ‖Ex1 ψ‖2
‖Dψ‖2 ≤ 1

(A6)

Finally, we can refer to Section 5 to solve the latter problem.

54

Mathematics 2020, 8, 85

Appendix B. Applications to Optimal Geolocation

Several studies involving optimal geolocation [25], multivariate statistics [26,27] and
multiobjective problems [28–30] were carried out recently. To show another application of maxmin
multiobjective problems, we consider in this work the best situation of a tourism rural inn considering
several measured climate variables. Locations with low highest temperature m1, radiation m2

and evapotranspiration m3 in summer time and high values in winter time are sites with climatic
characteristics desirable for potential visitors. To solve this problem, we choose 11 locations in the
Andalusian coastline and 2 in the inner, near the mountains. We have collected the data from the
official Andalusian government webpage [31] evaluating the mean values of these variables on the last
5 years 2013–2019. The referred months of the study were January and July.

Table A1. Mean values of high temperature (T) in Celsius Degrees, radiation (R) in MJ/m2, and
evapotranspiration (E) in mm/day, measures in January (winter time) and July (summer time) between
2013 and 2018.

T-Winter R-Winter E-Winter T-Summer R-Summer E-Summer

Sanlúcar 15.959 9.572 1.520 30.086 27.758 6.103
Moguer 16.698 9.272 0.925 30.424 27.751 5.222

Lepe 16.659 9.503 1.242 30.610 28.297 6.836
Conil 16.322 9.940 1.331 28.913 26.669 5.596

El Puerto 16.504 9.767 1.625 31.052 28.216 6.829
Estepona 16.908 10.194 1.773 31.233 27.298 6.246
Málaga 17.663 9.968 1.606 32.358 27.528 6.378
Vélez 18.204 9.819 1.905 31.912 26.534 5.911

Almuñécar 17.733 10.247 1.404 29.684 25.370 4.952
Adra 17.784 10.198 1.637 28.929 26.463 5.143

Almería 17.468 10.068 1.561 30.342 27.335 5.793
Aroche 16.477 9.797 1.434 34.616 27.806 6.270

Córdoba 14.871 8.952 1.149 36.375 28.503 7.615
Baza 13.386 8.303 3.054 35.754 27.824 1.673

Bélmez 13.150 8.216 1.215 35.272 28.478 7.400
S. Yeguas 13.656 9.155 1.247 33.660 28.727 7.825

To find the optimal location, let us evaluate the site where the variables mean values are maximum
in January and minimum in July. Here we have a typical multiobjective problem with two data matrices
that can be formulated as follows: ⎧⎪⎨⎪⎩

max ‖Ax‖2

min ‖Bx‖2

min ‖x‖2

(A7)

where A and B are real 16 × 3 matrices with the values of the three variables (m1, m2, m3) taking into
account (highest temperature, radiation and evapotranspiration) in January and July respectively.
To avoid unit effects, we standarized the variables (μ = 0 and σ = 1). The vector x is the solution of
the multiobjective problem.

Since (A7) lacks any solution in view of Theorem 2, we reformulate it as we showed in Remark 1
by the following: {

max ‖Ax‖2
min ‖Dx‖2

(A8)

with matrix D :=

(
B
In

)
, where In is the identity matrix with n = 3. Notice that it also verifies that

ker(D) = {0}. Observe that, according to the previous sections, (A8) can be remodeled into

55

Mathematics 2020, 8, 85

{
max ‖Ax‖2
‖Dx‖2 ≤ 1

(A9)

and solved accordingly.

Figure A3. Geographic distribution of the sites considered in the study. 11 places are in the coastline of
the region and 5 in the inner.

Figure A4. Locations considering Ax and Bx axes. Group named A represents the best places for the
tourism rural inn, near Costa Tropical (Granada province). Sites on B are also in the coastline of the
region. Sites on C are the worst locations considering the multiobjective problem, they are situated
inside the region.

56

Mathematics 2020, 8, 85

Figure A5. (left) Sites considering Ax and Bx and the function y = −x. The places with high values
of Ax (max) and low values of Bx (min) are the best locations for the solution of the multiobjective
problem (round). (right) Multiobjective scores values obtained for each site projecting the point in the
function y = −x. High values of this score indicate better places to locate the tourism rural inn.

Figure A6. Distribution of the three areas described in Figure A4. A and B areas are in the coastline
and C in the inner.

The solution of (A9) allow us to draw the sites with a 2D plot considering the X axe as Ax and
the Y axe as Bx. We observe that better places have high values of Ax and low values of Bx. Hence,
we can sort the sites in order to achieve the objectives in a similar way as factorial analysis works
(two factors, the maximum and the minimum, instead of m variables).

Appendix C. Algorithms

To solve the real problems posed in this work, the algorithms were developed in MATLAB. As
pointed out in Section 5, our method relies on finding the generalized supporting vectors. Thus,
we refer the reader to [8] (Appendix A.1) for the MATLAB code “sol_1.m” to compute a basis of

57

Mathematics 2020, 8, 85

generalized supporting vectors of a finite number of matrices A1, . . . , Ak, in other words, a solution of
Problem (A10), which was originally posed and solved in [7]:⎧⎪⎨⎪⎩ max

k

∑
i=1

‖Aix‖2
2

‖x‖2 = 1
(A10)

The solution of the previous problem (see [7] (Theorem 3.3)) is given by

max
‖x‖2=1

k

∑
i=1

‖Aix‖2
2 = λmax

(
k

∑
i=1

AT
i Ai

)

and

arg max
‖x‖2=1

k

∑
i=1

‖Aix‖2
2 = V

(
λmax

(
k

∑
i=1

AT
i Ai

))
∩ S�n

2

where λmax denotes the greatest eigenvalue and V denotes the associated eigenvector space. We refer
the reader to [8] (Theorem 4.2) for a generalization of [7] (Theorem 3.3) to a infinite number of operators
on an infinite dimensional Hilbert space.

As we pointed out in Theorem 8, the solution of the problem{
max ‖Ax‖
‖Bx‖ ≤ 1

exists if and only if ker(B) ⊆ ker(A). Here is a simple code to check this.

function p=existence_sol(A,B)

%%%%

%%%% This function checks the existence of the solution of the

%%%% problem

%%%%

%%%% max ||Ax||

%%%% ||Bx||<=1

%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%

%%%% INPUT:

%%%%

%%%% A, B - the matrices involved in the problem

%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%

%%%% OUTPUT:

%%%%

%%%% p - true if the problem has solution or false on the contrary

%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

KerB = null(B);

dimKerB = size(KerB,2);

KerA = null(A);

dimKerA = size(KerA,2);

if (dimKerB<=dimKerA) & (rank([KerB KerA])==dimKerA)

p = true;

else

58

Mathematics 2020, 8, 85

p = false;

end

end

Now we present the code to solve the first case of the previous maxmin problem, that is, the case
where ker(B) = {0}. We refer the reader to Section 5 on which this code is based.

function x = case_1(A, B)

%%%%

%%%% This function computes the solution of the problem

%%%%

%%%% max ||Ax||_2

%%%% ||Bx||_2<=1

%%%%

%%%% in the case KerB={0}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%

%%%% INPUT:

%%%%

%%%% A, B - the matrices involved in the problem

%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%

%%%% OUTPUT:

%%%%

%%%% x - basis of unit eigenvectors associated to lambda_max

%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%

KerB = null(B);

dimKerB = size(KerB,2);

if (dimKerB ~= 0)

display(’KerB~={0}’)

x=[];

else % KerB={0}

M = A*pinv(B); % M = A*B^+

% B^+ is the pseudoinverse matrix

[lambda_max, y] = sol_1({M}); % where sol_1 is the algorithm in [5, Appendix A.1]

[nrows_y ncols_y] = size(y);

r_B = rank(B);

counter = 0;

for i=1:ncols_y

r = rank([B y(:,i)]);

if (abs(r_B - r)<1e-12) % Here we check if rank(B) = rank ([B y0]).

% A tolerance of 1e-12 is needed in

% order to compare these two ranks.

counter = counter +1;

y0(:,counter) = y(:,i);

end

end

x = pinv(B)*y0; % This is a basis of solutions of our problem

end

Next, we can compute the global solution of the maxmin problem by means of the following code.
Again, we refer the reader to Section 5 on which this code is based.

59

Mathematics 2020, 8, 85

function x = sol_2(A, B)

%%%%

%%%% This function computes the solution of the problem

%%%%

%%%% max ||Ax||_2

%%%% ||Bx||_2<=1

%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%

%%%% INPUT:

%%%%

%%%% A, B - the matrices involved in the problem

%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%

%%%% OUTPUT:

%%%%

%%%% x - Supporting vector which is the solution of the problem

%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%

p=existence_sol(A,B);

if p==true

n = size(B,2);

KerB = null(B);

dimKerB = size(KerB,2);

if (dimKerB == 0) % KerB = {0} This is the case 1

x = case_1(A,B); % x is the solution of our problem

else % KerB~={0}

[Br indices] = colsindep(B); %%% First we extract the

%%% independent columns in B

Ar = A(indices); %%% We extract the same columns of A

%%% Now, Ker(Br)={0} so this is the case 1 treated above:

xr = case_1(Ar,Br);

[nrows_xr,ncols_xr] = size(xr);

%%% Now we compute the matrix solutions x of the problem

counter = 0;

for j = 1:ncols_xr

for i=1:n

if ismember(i,indices)==1 %%% i is an index of the ones

%%% defined above

counter = counter + 1;

x(i,j) = xr(counter,j);

else

x(i,j) = 0;

end

end

end

end

else

display(’This problem has no solution’);

x=[];

end

60

Mathematics 2020, 8, 85

end

Notice that we use the case_1 function described above and a new function named colsindep.We
include the code to implement this new function below.

function [Dcolsind, indices]=colsindep(D)

%%%%

%%%% This function extracts r = rank(D) independent columns of the

%%%% matrix D and the indices of the columns in D which are independent

%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%

%%%% INPUT:

%%%%

%%%% D - a matrix with rank r

%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%

%%%% OUTPUT:

%%%%

%%%% Dcolsind - r independent columns in D

%%%% indices - the indices of independent columns extracted from D

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

r=rank(D); %%% Compute the rank

[Q R p]=qr(D,0); %%% p is a permutation vector such that A(:,p)=Q*R

indices=sort(p(1:r)); %%% The first r elements in p are the indices of the

%%% columns linearly independent in D

Dcolsind=D(:,indices);%%% Extract these columns

end

The MATLAB code to compute the solution of the TMS coil problem (A6):{
max ‖Ex1 ψ‖2
‖Dψ‖2 ≤ 1

with the matrix D :=

(
Ex2

C

)
, where C is the Cholesky matrix of L, and in this case it verifies that

ker(D) = {0}. Recall that (A6) comes from (A1):⎧⎪⎨⎪⎩
max ‖Ex1 ψ‖2
min ‖Ex2 ψ‖2
min ψT Lψ

function psi = sol2_psi(Ex1, Ex2, L)

C = chol(L); % Cholesky’s decomposition of matrix L = C’ * C

A = Ex1;

B = [Ex2;C];

psi = case_1(A,B); % We apply the algorithm to obtain the solutions

end

Finally, we provide the code to compute the solution of the optimal geolocation problem (A9):

61

Mathematics 2020, 8, 85

{
max ‖Ax‖2
‖Dx‖2 ≤ 1

with matrix D :=

(
B
I3

)
. Notice that it also verifies that ker(D) = {0} and A and B are composed by

standardized variables. Recall that (A9) comes from (A7):⎧⎪⎨⎪⎩
max ‖Ax‖2

min ‖Bx‖2

min ‖x‖2

function x = sol_2_geoloc(A, B)

[rows,cols] = size(A);

D = [B; eye(size(cols))];

x = case_1(A,D); % We apply the algorithm to obtain the solutions

end

References

1. Huang, N.; Ma, C.F. Modified conjugate gradient method for obtaining the minimum-norm solution of
the generalized coupled Sylvester-conjugate matrix equations. Appl. Math. Model. 2016, 40, 1260–1275,
doi:10.1016/j.apm.2015.07.017. [CrossRef]

2. Yassin, B.; Lahcen, A.; Zeriab, E.S.M. Hybrid optimization procedure applied to optimal location finding
for piezoelectric actuators and sensors for active vibration control. Appl. Math. Model. 2018, 62, 701–716,
doi:10.1016/j.apm.2018.06.017. [CrossRef]

3. Bishop, E.; Phelps, R.R. A proof that every Banach space is subreflexive. Bull. Am. Math. Soc. 1961, 67, 97–98,
doi:10.1090/S0002-9904-1961-10514-4. [CrossRef]

4. Bishop, E.; Phelps, R.R. The support functionals of a convex set. In Proceedings of Symposia in Pure Mathematics;
American Mathematical Society: Providence, RI, USA, 1963; Volume VII, pp. 27–35.

5. Lindenstrauss, J. On operators which attain their norm. Israel J. Math. 1963, 1, 139–148,
doi:10.1007/BF02759700. [CrossRef]

6. James, R.C. Characterizations of reflexivity. Stud. Math. 1964, 23, 205–216, doi:10.4064/sm-23-3-205-216.
[CrossRef]

7. Cobos-Sánchez, C.; García-Pacheco, F.J.; Moreno-Pulido, S.; Sáez-Martínez, S. Supporting vectors of
continuous linear operators. Ann. Funct. Anal. 2017, 8, 520–530, doi:10.1215/20088752-2017-0016. [CrossRef]

8. Garcia-Pacheco, F.J.; Cobos-Sanchez, C.; Moreno-Pulido, S.; Sanchez-Alzola, A. Exact solutions to
max‖x‖=1 ∑∞

i=1 ‖Ti(x)‖2 with applications to Physics, Bioengineering and Statistics. Commun. Nonlinear Sci.
Numer. Simul. 2020, 82, 105054, doi:10.1016/j.cnsns.2019.105054. [CrossRef]

9. García-Pacheco, F.J.; Naranjo-Guerra, E. Supporting vectors of continuous linear projections. Int. J. Funct.
Anal. Oper. Theory Appl. 2017, 9, 85–95. [CrossRef]

10. Cobos Sánchez, C.; Garcia-Pacheco, F.J.; Guerrero Rodriguez, J.M.; Hill, J.R. An inverse boundary element
method computational framework for designing optimal TMS coils. Eng. Anal. Bound. Elem. 2018,
88, 156–169, doi:10.1016/j.enganabound.2017.11.002. [CrossRef]

11. Bohnenblust, F. A characterization of complex Hilbert spaces. Portugal. Math. 1942, 3, 103–109.
12. Kakutani, S. Some characterizations of Euclidean space. Jpn. J. Math. 1939, 16, 93–97,

doi:10.4099/jjm1924.16.0_93. [CrossRef]
13. Sánchez, C.C.; Rodriguez, J.M.G.; Olozábal, Á.Q.; Blanco-Navarro, D. Novel TMS coils designed using

an inverse boundary element method. Phys. Med. Biol. 2016, 62, 73–90, doi:10.1088/1361-6560/62/1/73.
[CrossRef]

62

Mathematics 2020, 8, 85

14. Marin, L.; Power, H.; Bowtell, R.W.; Cobos Sanchez, C.; Becker, A.A.; Glover, P.; Jones, A. Boundary element
method for an inverse problem in magnetic resonance imaging gradient coils. Comput. Model. Eng. Sci. 2008,
23, 149–173.

15. Marin, L.; Power, H.; Bowtell, R.W.; Cobos Sanchez, C.; Becker, A.A.; Glover, P.; Jones, I.A. Numerical solution
of an inverse problem in magnetic resonance imaging using a regularized higher-order boundary element
method. In Boundary Elements and Other Mesh Reduction Methods XXIX; WIT Press: Southampton, UK, 2007;
Volume 44, pp. 323–332, doi:10.2495/BE070311. [CrossRef]

16. Wassermann, E.; Epstein, C.; Ziemann, U.; Walsh, V.; Paus, T.; Lisanby, S. Oxford Handbook of Transcranial
Stimulation (Oxford Handbooks), 1st ed.; Oxford University Press: New York, NY, USA, 2008.

17. Romei, V.; Murray, M.M.; Merabet, L.B.; Thut, G. Occipital Transcranial Magnetic Stimulation Has Opposing
Effects on Visual and Auditory Stimulus Detection: Implications for Multisensory Interactions. J. Neurosci.
2007, 27, 11465–11472, doi:10.1523/JNEUROSCI.2827-07.2007. [CrossRef]

18. Koponen, L.M.; Nieminen, J.O.; Ilmoniemi, R.J. Minimum-energy Coils for Transcranial Magnetic
Stimulation: Application to Focal Stimulation. Brain Stimul. 2015, 8, 124–134, doi:10.1016/j.brs.2014.10.002.
[CrossRef]

19. Koponen, L.M.; Nieminen, J.O.; Mutanen, T.P.; Stenroos, M.; Ilmoniemi, R.J. Coil optimisation for transcranial
magnetic stimulation in realistic head geometry. Brain Stimul. 2017, 10, 795–805, doi:10.1016/j.brs.2017.04.001.
[CrossRef]

20. Gomez, L.J.; Goetz, S.M.; Peterchev, A.V. Design of transcranial magnetic stimulation coils with optimal
trade-off between depth, focality, and energy. J. Neural Eng. 2018, 15, 046033, doi:10.1088/1741-2552/aac967.
[CrossRef]

21. Wang, B.; Shen, M.R.; Deng, Z.D.; Smith, J.E.; Tharayil, J.J.; Gurrey, C.J.; Gomez, L.J.; Peterchev, A.V.
Redesigning existing transcranial magnetic stimulation coils to reduce energy: application to low field
magnetic stimulation. J. Neural Eng. 2018, 15, 036022, doi:10.1088/1741-2552/aaa505. [CrossRef]

22. Grandy, W.T. Time Evolution in Macroscopic Systems. I. Equations of Motion. Found. Phys. 2004, 34, 1–20,
doi:10.1023/B:FOOP.0000012007.06843.ed. [CrossRef]

23. Sakurai, J.J. Modern Quantum Mechanics; Addison-Wesley Publishing Company: Reading, MA, USA, 1993.
24. Sanchez, C.C.; Bowtell, R.W.; Power, H.; Glover, P.; Marin, L.; Becker, A.A.; Jones, A. Forward electric field

calculation using BEM for time-varying magnetic field gradients and motion in strong static fields. Eng. Anal.
Bound. Elem. 2009, 33, 1074–1088, doi:10.1016/j.enganabound.2009.02.006. [CrossRef]

25. Jäntschi, L.; Bálint, D.; Bolboaca, S. Multiple Linear Regressions by Maximizing the Likelihood under
Assumption of Generalized Gauss-Laplace Distribution of the Error. Comput. Math. Methods Med. 2016,
2016, 1–8, doi:10.1155/2016/8578156. [CrossRef] [PubMed]

26. Gil-García, I.C.; García-Cascales, M.S.; Fernández-Guillamón, A.; Molina-García, A. Categorization
and Analysis of Relevant Factors for Optimal Locations in Onshore and Offshore Wind Power Plants:
A Taxonomic Review. J. Mar. Sci. Eng. 2019, 7, 391, doi:10.3390/jmse7110391. [CrossRef]

27. Pérez Morales, A.; Castillo, F.; Pardo-Zaragoza, P. Vulnerability of Transport Networks to Multi-Scenario
Flooding and Optimum Location of Emergency Management Centers. Water 2019, 11, 1197,
doi:10.3390/w11061197. [CrossRef]

28. Choi, J.W.; Kim, M.K. Multi-Objective Optimization of Voltage-Stability Based on Congestion Management
for Integrating Wind Power into the Electricity Market. Appl. Sci. 2017, 7, 573, doi:10.3390/app7060573.
[CrossRef]

29. Zavala, G.R.; García-Nieto, J.; Nebro, A.J. Qom—A New Hydrologic Prediction Model Enhanced with
Multi-Objective Optimization. Appl. Sci. 2019, 10, 251, doi:10.3390/app10010251. [CrossRef]

30. Susowake, Y.; Masrur, H.; Yabiku, T.; Senjyu, T.; Motin Howlader, A.; Abdel-Akher, M.; Hemeida, A.M.
A Multi-Objective Optimization Approach towards a Proposed Smart Apartment with Demand-Response in
Japan. Energies 2019, 13, 127, doi:10.3390/en13010127. [CrossRef]

31. ESTACIONES AGROCLIMÁTICAS. Available online: https://www.juntadeandalucia.es/
agriculturaypesca/ifapa/ria/servlet/FrontController (accessed on 18 September 2019).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

63

mathematics

Article

On q-Quasi-Newton’s Method for Unconstrained
Multiobjective Optimization Problems

Kin Keung Lai 1,*,†, Shashi Kant Mishra 2,† and Bhagwat Ram 3,†

1 College of Economics, Shenzhen University, Shenzhen 518060, China
2 Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India;

shashikant.mishra@bhu.ac.in
3 DST-Centre for Interdisciplinary Mathematical Sciences, Institute of Science, Banaras Hindu University,

Varanasi 221005, India; bhagwat.ram2@bhu.ac.in
* Correspondence: mskklai@outlook.com
† These authors contributed equally to this work.

Received: 01 April 2020; Accepted: 13 April 2020; Published: 17 April 2020

Abstract: A parameter-free optimization technique is applied in Quasi-Newton’s method for solving
unconstrained multiobjective optimization problems. The components of the Hessian matrix are
constructed using q-derivative, which is positive definite at every iteration. The step-length is
computed by an Armijo-like rule which is responsible to escape the point from local minimum to
global minimum at every iteration due to q-derivative. Further, the rate of convergence is proved as a
superlinear in a local neighborhood of a minimum point based on q-derivative. Finally, the numerical
experiments show better performance.

Keywords: multiobjective programming; methods of quasi-Newton type; Pareto optimality;
q-calculus; rate of convergence

MSC: 90C29; 90C53; 58E17; 05A30; 41A25

1. Introduction

Multiobjective optimization is the method of optimizing two or more real valued objective
functions at the same time. There is no ideal minimizer to minimize all objective functions at
once, thus the optimality concept is replaced by the idea of Pareto optimality/efficiency. A point is
called Pareto optimal or efficient if there does not exist an alternative point with the equivalent or
smaller objective function values, such that there is a decrease in at least one objective function value.
In many applications such as engineering [1,2], economic theory [3], management science [4], machine
learning [5,6], and space exploration [7], etc., several multiobjective optimization techniques are used
to make the desired decision. One of the basic approaches is the weighting method [8], where a single
objective optimization problem is created by the weighting of several objective functions. Another
approach is the ε-constraint method [9], where we minimize only the chosen objective function and
keep other objectives as constraints. Some multiobjective algorithms require a lexicographic method,
where all objective functions are optimized in their order of priority [10,11]. First, the most preferred
function is optimized, then that objective function is transformed into a constraint and a second priority
objective function is optimized. This approach is repeated until the last objective function is optimized.
The user needs to choose the sequence of objectives. Two distinct lexicographic optimizations with
distinct sequences of objective functions do not produce the same solution. The disadvantages of
such approaches are the choice of weights, constraints, and importance of the functions, respectively,
which are not known in advance and they have to be specified from the beginning. Some other
techniques [12–14] that do not need any prior information are developed for solving unconstrained

Mathematics 2020, 8, 616; doi:10.3390/math8040616 www.mdpi.com/journal/mathematics65

Mathematics 2020, 8, 616

multiobjective optimization problems (UMOP) with at most linear convergence rate. Other methods
like heuristic approaches or evolutionary approaches [15] provide an approximate Pareto front but do
not guarantee the convergence property.

Newton’s method [16] that solves the single-objective optimization problems is extended for
solving (UMOP), which is based on an a priori parameter-free optimization method [17]. In this
case, the objective functions are twice continuously differentiable, no other parameter or ordering of
the functions is needed, and each objective function is replaced with a quadratic model. The rate of
convergence is observed as superlinear, and it is quadratic if the second-order derivative is Lipschitz
continuous. Newton’s method is also studied under the assumptions of Banach and Hilbert spaces for
finding the efficient solutions of (UMOP) [18]. A new type of Quasi-Newton algorithm is developed to
solve the nonsmooth multiobjective optimization problems, where the directional derivative of every
objective function exists [19].

A necessary condition for finding the vector critical point of (UMOP) is introduced in the steepest
descent algorithm [12], where neither weighting factors nor ordering information for the different
objective functions are assumed to be known. The relationship between critical points and efficient
points is discussed in [17]. If the domain of (UMOP) is a convex set and the objective functions
are convex component-wise then every critical point is the weak efficient point, and if the objective
functions are strictly convex component-wise, then every critical point is the efficient point. The new
classes of vector invex and pseudoinvex functions for (UMOP) are also characterized in terms of
critical points and (weak) efficient points [20] by using Fritz John (FJ) optimality conditions and
Karush–Kuhn–Tucker (KKT) conditions. Our focus is on Newton’s direction for a standard scalar
optimization problem which is implicitly induced by weighting the several objective functions.
The weighting values are a priori unknown and non-negative KKT multipliers, that is, they are
not required to fix in advance. Every new point generated by the Newton algorithm [17] initiates such
weights in the form of KKT multipliers.

Quantum calculus or q-calculus is also called calculus without limits. The q-analogues of
mathematical objects can be again recaptured as q → 1. The history of quantum calculus can be traced
back to Euler (1707–1783), who first proposed the quantum q in Newton’s infinite series. In recent
years, many researchers have shown considerable interest in examining and exploring the quantum
calculus. Therefore, it emerges as an interdisciplinary subject. Of course, the quantum analysis is very
useful in numerous fields such as in signal processing [21], operator theory [22], fractional integral and
derivatives [23], integral inequalities [24], variational calculus [25], transform calculus [26], sampling
theory [27], etc. The quantum calculus is seen as the bridge between mathematics and physics. To study
some recent developments in quantum calculus, interested researches should refer to [28–31].

The q-calculus was first studied in the area of optimization [32], where the q-gradient is used in
steepest descent method to optimize objective functions. Further, global optimum was searched using
q-steepest descent method and q-conjugate gradient method where a descent scheme is presented
using q-calculus with the stochastic approach which does not focus on the order of convergence
of the scheme [33]. The q-calculus is applied in Newton’s method to solve unconstrained single
objective optimization [34]. Further, this idea is extended to solve (UMOP) within the context of the
q-calculus [35].

In this paper, we present the q-calculus in Quasi-Newton’s method for solving (UMOP).
We approximate the second q-derivative matrices instead of evaluating them. Using q-calculus,
we present the convergence rate is superlinear.

The rest of this paper is organized as follows. Section 2 recalls the problem, notation,
and preliminaries. Section 3 derives a q-Quasi-Newton direction search method solved by (KKT)
conditions. Section 4 establishes the algorithms for convergence analysis. The numerical results are
given in Section 5 and the conclusion is in the last section.

66

Mathematics 2020, 8, 616

2. Preliminaries

Denote R as the set of real numbers, N as the set of positive integers, and R+ or (R−) as the set of
strictly positive or (negative) real numbers. If a function is continuous on any interval excluding zero,
then the function is called continuous q-differentiable. For a function f : R → R, the q-derivative of
f [36] denoted as Dq,x f , is given as

Dq,x f (x) =

⎧⎨⎩
f (x)− f (qx)
(1−q)x , x �= 0, q �= 1

f ′(x), x = 0.
(1)

Suppose f : Rn → R, whose partial derivatives exist. For x ∈ Rn, consider an operator εq,i on f as

(εq,i) f (x) = f (x1, x2, . . . , qxi, xi+1, . . . , xn). (2)

The q-partial derivative of f at x with respect to xi, indicated by Dq,xi f , is [23]:

Dq,xi f (x) =

⎧⎨⎩
f (x)−(εq,i f)(x)

(1−q)xi
, xi �= 0, q �= 1,

∂ f
∂xi

, xi = 0.
(3)

We are interested to solve the following (UMOP):

minimize F(x) (4)

subject to x ∈ X,

where X ⊆ Rn is a feasible region and F : X → Rm. Note that the function F = (f1, f2, . . . , fm) is a
vector function whose components are real valued functions such as f j : X → R, where j = 1, . . . , m.
In general, n and m are independent. For x, y ∈ Rn, we present the vector inequalities as:

x = y ⇐⇒ xi = yi; ∀ i = 1, . . . , n,

x � y ⇐⇒ xi ≥ yi ∀ i = 1, . . . , n,

x ≥ y ⇐⇒ xi ≥ yi and x �= y,

x > y ⇐⇒ xi > yi ∀ i = 1, . . . , n.

A point x∗ ∈ X is called Pareto optimal point such that there is no any point x ∈ X, for which
F(x) ≤ F(x∗), and F(x) �= F(x∗). A point x∗ ∈ X is called weakly Pareto optimal point if there is
no x ∈ X for which F(x) < F(x∗). Similarly, a point x∗ ∈ X is a local Pareto optimal if there exists a
neighborhood Y ⊆ X of x∗ such that the point x∗ is a Pareto optima for F restricted on Y. Similarly,
a point x∗ is a local weak Pareto optima if there exists a neighborhood Y ⊆ X of x∗ such that the point
x∗ is a weak Pareto optimal for F restricted on Y. The matrix JF(x) ∈ Rm×n is the Jacobian matrix of f j
at x, i.e., the j-th row of JF(x) is ∇q fj(x) (q-gradient) for all j = 1, . . . , m. Let W fj(x) be the Hessian
matrix of f j at x for all j = 1, . . . , m. Note that every Pareto optimal point is a weakly Pareto optimal
point [37]. The directional derivative of f j at x in the descent direction dq is given as:

f ′j (x, dq) = lim
α→0

f j(x + αdq)− f j(x)
α

(5)

The necessary condition to get the critical point for multiobjective optimization problems is given
in [17]. For any x ∈ Rn, ‖x‖ denotes the Euclidean norm in Rn. Let K(x0, r) = {x : ‖x − x0‖ ≤ r} with
a center x0 ∈ Rn and radius r ∈ R+. Norm of the matrix A ∈ Rn×n is ‖A‖ = maxx∈Rn×n

‖Ax‖
‖x‖ , x �= 0.

The following proposition indicates that when f (x) is a linear function, then the q-gradient is similar
to the classical gradient.

67

Mathematics 2020, 8, 616

Proposition 1 ([33]). If f (x) = a + pTx, where a ∈ R and p ∈ Rn, then for any x ∈ Rn, and q ∈ (0, 1),
we have ∇q f (x) = ∇ f (x) = p.

All the quasi-Newton methods approximate the Hessian of function f as Wk ∈ Rn×n, and update
the new formula based on previous approximation [38]. Line search methods are imperative methods
for (UMOP) in which a search direction is first computed and then along this direction a step-length is
chosen. The entire process is an iterative.

3. The q-Quasi-Newton Direction for Multiobjective

The most well-known quasi-Newton method for single objective function is the BFGS (Broyden,
Fletcher, Goldfarb, and Shanno) method. This is a line search method along with a descent direction dk

q
within the context of q-derivative, given as:

dk
q = −(Wk)−1∇q f (xk), (6)

where f is a continuously q-differentiable function, and Wk ∈ Rn×n is a positive definite matrix that is
updated at every iteration. The new point is:

xk+1 = xk + αkdk
q. (7)

In the case of the Steepest Descent method and Newton’s method, Wk is taken to be an Identity
matrix and exact Hessian of f , respectively. The quasi-Newton BFGS scheme generates the next
Wk+1 as

Wk+1 = Wk − Wksk(sk)TWk

(sk)TWksk +
yk(yk)T

(sk)Tyk , (8)

where sk = xk+1 − xk = αkdk
q, and yk = ∇q f (xk+1)−∇q f (xk). In Newton’s method, second-order

differentiability of the function is required. While calculating Wk, we use q-derivative which behaves
like a Hessian matrix of f (x). Wk+1 may not be a positive definite, which can be modified to be a
positive definite through the symmetric indefinite factorization [39]. The q-Quasi-Newton’s direction
dq(x) is an optimal solution of the following modified problem [40] as:

min
dq∈Rn

max
j=1,...,m

∇q fj(x)dq +
1
2

dT
q Wj(x)Tdq, (9)

where Wj(x) is computed as (8). The solution and optimal value of (9) are:

ψ(x) = min
dq∈Rn

max
j=1,...,m

∇q fj(x)Tdq +
1
2

dT
q Wj(x)dq, (10)

and

dq(x) = arg min
dq∈Rn

max
j=1,...,m

∇ f j(x)Tdq +
1
2

dT
q Wj(x)dq. (11)

The problem (9) becomes a convex quadratic optimization problem (CQOP) as follows:

minimize h(t, dq) = t,

subject to ∇q fj(x)Tdq +
1
2

dT
q Wj(x)dq − t ≤ 0, j = 1, . . . , m, (12)

where (t, dq) ∈ R×R
n.

68

Mathematics 2020, 8, 616

The Lagrangian function of (CQOP) is:

L((t, dq), λ) = t +
m

∑
j=1

λj

(
∇q fj(x)Tdq +

1
2

dT
q Wj(x)dq − t

)
. (13)

For λ = (λ1, λ2, . . . , λm)T , we obtain the following (KKT) conditions [40]:

m

∑
j=1

λj
(∇q fj(x) + Wj(x)dq

)
= 0, (14)

λj ≥ 0, j = 1, . . . , m, (15)
m

∑
j=1

λj = 1, (16)

∇q fj(x)Tdq +
1
2

dT
q Wj(x)dq ≤ t, j = 1, . . . , m, (17)

λj

(
∇q fj(x)Tdq +

1
2

dT
q Wj(x)dq − t

)
= 0, j = 1, . . . , m. (18)

The solution (dq(x), ψ(x)) is unique, and set λj = λj(x) for all j = 1, . . . , m with dq = dq(x) and
t = ψ(x) for satisfying (14)–(18). From (14), we obtain

dq(x) = −
(m

∑
j=1

λj(x)Wj(x)
)−1 m

∑
j=1

λj(x)∇q fj(x). (19)

This is a so-called q-Quasi-Newton’s direction for solving (UMOP). We present the basic result
for relating the stationary condition at a given point x to its q-Quasi-Newton direction dq(x) and
function ψ.

Proposition 1. Let ψ : X → R and dq : X → Rn be given by (10) and (11), respectively, and Wj(x) ≥ 0 for
all x ∈ X. Then,

1. ψ(x) ≤ 0 for all x ∈ X.
2. The conditions below are equivalent:

(a) The point x is non stationary.
(b) dq(x) �= 0
(c) ψ(x) < 0.
(d) dq(x) is a descent direction.

3. The function ψ is continuous.

Proof. Since dq = 0, then from (10), we have

ψ(x) ≤ min
dq∈Rn

max
j=1,...,m

∇q fj(x)T0 +
1
2

dT
q Wj(x)0 = 0,

thus ψ(x) ≤ 0. It means that JF(x∗)dq(x) ∈ Rm−. Thus, the given point x ∈ Rn is non-stationary. Since
Wj(x) is positive definite, and from (10) and (11), we have

∇q fj(x)Tdq(x) < ∇ f j(x)Tdq(x) +
1
2

dq(x)TWj(x)Tdq(x) = ψ(x) ≤ 0.

69

Mathematics 2020, 8, 616

Since ψ(x) is the optimal value of (CQOP), and it is negative, thus solution of (CQOP) can never
be dq(x) = 0. It is sufficient to show that the continuity [41] of ψ in set Y ⊂ X. Since ψ(x) ≤ 0, then

∇q fj(x)Tdq(x) ≤ −1
2

dq(x)TWj(x)dq(x), (20)

for all j = 1, . . . , m, and Wj(x), where j = 1 . . . , m are positive definite for all x ∈ Y. Thus, the
eigenvalues of Hessian matrices Wj(x), where j = 1, . . . , m are uniformly bounded away from zero on
Y so there exists R, S ∈ R+ such that

R = max
x∈Y,j=1,...,m

‖∇q fj(x)‖, (21)

and

S = min
x∈Y,‖e‖=1,j=1,...,m

eTWj(x)e. (22)

From (20) and using Cauchy–Schwarz inequality, we get

‖∇q fj(x)‖‖dq(x)‖ ≤ 1
2

S‖dq(x)‖2 ≤ R‖dq(x)‖,

that is,

dq(x) ≤ 2
R
S

,

for all x ∈ Y, that is, Newton’s direction is uniformly bounded on Y. We present the family of function
{ℵx,j}x∈Y,j=1,...,m, where

ℵx,j : Y → R,

and
z → ∇q f (z)Tdq(x) +

1
2

dq(x)TWj(x)dq(x).

We shall prove that this family of functions is uniformly equicontinuous. For small value εz ∈ R+

there exists δz ∈ R+, and for y ∈ K(z, δz), we have

‖Wj(y)−∇2
q fj(z)‖ <

εz

2
,

and

‖∇2
q fj(y)−∇2

q fj(z)‖ <
εz

2
,

for all j = 1, . . . , m. because of q-continuity of Hessian matrices, the second inequality is true. Since Y
is compact space, then there exists a finite sub-cover.

ψx,j(z) = ∇q fj(z)Tdq(x) +
1
2

dq(x)TWj(x)dq(x),

that is

ψx,j(z) = ∇q fj(z)Tdq(x) +
1
2

dq(x)T∇2 f j(z)dq(x) +
1
2

dq(x)T(Wj(z)−∇2
q fj(z)dq(x)).

70

Mathematics 2020, 8, 616

To show the q-continuous of last term, set y1, y2 ∈ Y such that ‖y1 − y2‖ < δ for small δ ∈ R+, then

|1
2

dq(x)TWj(y1)−∇2
q fj(y1)dq(x)− 1

2
dq(x)TWj(y2)−∇2

q fj(y2)dq(x)|

≤ 1
2
‖dq(x)‖2(‖Bj(y1)−∇2 f j(z1))‖+ ‖∇2

q fj(z2)

−∇2
q fj(z1 + ‖Bj(y2)−∇2 f j(z21))‖+ ‖∇2

q fj(z2)−∇2
q fj(z21‖)
≤ 1

2
‖dq(x)‖2(εz1 + εz2).

ψx,j is uniformly continuous [40] for all x ∈ Y and for all j = 1, . . . , m. There exists δ ∈ R+ such that
for all y, z ∈ Y, ‖y− z‖ < δ implies |ψ(y)− ψ(z)| < ε for all x ∈ Y. Thus, ‖y− z‖ < δ.

ψ(z) ≤ max
j=1,...,m

∇ f j(z)Tdq(y) +
1
2

dq(y)TWj(z)dq(y) = φy(z)

≤ φy(y) + |φy(z)− φy(y)| < ψ(y) + ε.

Thus, ψ(z)− ψ(y) < ε. If we interchange y and z, then |ψ(z)− ψ(y)| < ε. It proves the continuity
of ψ.

The following modified lemma is due to [17,42].

Lemma 1. Let F : Rn → Rm be continuously q-differentiable. If x∗ ∈ X is not a critical point for∇q(x)dq < 0,
where dq ∈ Rn, σ ∈ (0, 1], and ε > 0. Then,

x + αdq(x) ∈ X and F(x + αdq(x)) < F(x) + αγψ(x),

for any α ∈ (0, σ] and γ ∈ (0, ε].

Proof. Since x∗ is not a critical point, then ψ(x) < 0. Let r > 0 such that B(x, r) ⊂ X and α ∈ (0, σ].
Therefore,

F(x + αdq(x))− F(x) = α∇qF(x)Tdq(x) + oj(αdq(x), x)

Since ∇q(x)dq(x) < ψ(x), for α ∈ (0, σ], then

F(x + αdq(x))− F(x) = αγψ(x) + α(1− σ)ψ(x) + oj(αdq(x), x).

The last term in the right-hand side of the above equation is non-positive because ψ(x) ≤ ψ(x∗)
2 < 0,

for α ∈ [0, σ].

4. Algorithm and Convergence Analysis

We first present the following Algorithm 1 [43] to find the gradient of the function using q-calculus.
The higher-order q-derivative of f can be found in [44].

Algorithm 1 q-Gradient Algorithm

1: Input q ∈ (0, 1), f (x), x ∈ R, z.
2: if x = 0 then

3: Set g ← lim
(

f (z)− f (q∗z)
(z−q∗z) , z, 0

)
.

4: else

5: Set g ← f (x)− f (q∗x)
(x−q∗x) .

6: Print ∇q f (x) ← g.

71

Mathematics 2020, 8, 616

Example 1. Given that f : R2 → R defined by f (x1, x2) = x2
2 + 3x3

1. Then ∇q f (x) =

[
3x2

1(1 + q + q2)

x2(1 + q)

]
.

We are now prepared to write the unconstrained q-Quasi-Newton’s Algorithm 2 for solving
(UMOP). At each step, we solve the (CQOP) to find the q-Quasi-Newton direction. Then, we obtain
the step length using the Armijo line search method. In every iteration, the new point and Hessian
approximation are generated based on historical values.

Algorithm 2 q-Quasi-Newton’s Algorithm for Unconstrained Multiobjective (q-QNUM)

1: Choose q ∈ (0, 1), x0 ∈ X, symmetric definite matrix W0 ∈ Rn×n, c ∈ (0, 1), and a small tolerance
value ε > 0.

2: for k=0,1,2,. . . do

3: Solve (CQOP).
4: Compute dk

q and ψk.

5: if ψk > −ε then

6: Stop.
7: else

8: Choose αk as the α ∈ (0, 1] such that xk + αdk
q ∈ X and F(xk + αdk

q) ≤ F(xk) + cαψk.

9: Update xk+1 ← xk + αkdk
q.

10: Update Wk+1
j , where j = 1, . . . , m using (8).

We now finally start to show that every sequence produced by the proposed method converges to
a weakly efficient point. It does not matter how poorly the initial point is guessed. We assume that the
method does not stop, and produces an infinite sequence of iterates. We now present the modified
sufficient conditions for the superlinear convergence [17,40] within the context of q-calculus.

Theorem 1. Let {xk} be a sequence generated by (q-QNUM), and Y ⊂ X be a convex set. Also, γ ∈ (0, 1)
and r, a, b, δ, ε > 0, and

(a) aI ≤ Wj(x) ≤ bI for all x ∈ Y, j = 1, . . . , m,
(b) ‖∇2

q fj(y)−∇2
q fj(x), ‖ < ε

2 for all x, y ∈ Y with ‖y− x‖ ∈ δ,
(c) ‖(Wk

j −∇2
q fj(xk))(y− xk)‖ < ε

2‖y− xk‖ for all k ≥ k0, y ∈ Y, j = 1, . . . , m,
(d) ε

a ≤ 1− c,
(e) B(x0, r) ∈ Y,
(f) ‖dq(x0)‖ < min{δ, r(1− ε

a)}.

Then, for all k ≥ k0, we have that

1. ‖xk − xk0‖ ≤ ‖dq(x0)‖ 1−(ε
a)

k−k0

1−(ε
a)

2. αk = 1,
3. ‖dq(xk)‖ ≤ ‖dq(xk0)‖(ε

a)
k−k0 ,

4. ‖dq(xk+1)‖ ≤ ‖dq(xk)‖ ε
a .

Then, the sequence {xk} converges to local Pareto points x∗ ∈ Rm, and the convergence rate is superlinear.

Proof. From part 1, part 3 of this theorem and triangle inequality,

‖xk + dq(xk)− x0‖ ≤ 1− (ε
a
)k+1

1− ε
a

‖dq(xk0)‖.

From (d) and (f), we follow xk, xk + dq(xk) ∈ K(xk0 , r) and xk + dq(xk)− xk < δ. We also have

f j(xk + dq(xk)) ≤ f j(xk) + dq(xk)∇q f (xk) +
1
2

dq(xk)(∇2
q f)(xk) +

1
2
‖dq(xk)‖2,

72

Mathematics 2020, 8, 616

that is,

f j(xk + dq(xk)) ≤ f j(xk) + ψ(xk) +
ε

2
‖dq(xk)‖2

= f j(xk) + γψ(xk) + (1− γ)ψ(xk) +
ε

2
‖dq(xk)‖2.

Since ψ ≤ 0 and (1− γ)ψ(xk) + ε
2‖dq(xk)‖2 ≤ (ε− a(1− γ))

‖dq(xk)‖2

2 ≤ 0, we get

f j(xk + dq(xk)) ≤ f j(xk) + γψ(xk),

for all j = 1, . . . , m. The Armijo conditions holds for αk = 1. Part 1 of this theorem holds. We now
set xk, xk+1 ∈ K(xk0 , r), and ‖xk+1 − xk‖ < δ. Thus, we get xk+1 = xk + dq(xk). We now define
v(xk+1) = ∑m

j=1 λk
j∇q fj(xk+1). Therefore,

|ψ(xk+1)| ≤ 1
2a
‖v(xk+1)‖2.

We now estimate ‖v(xk+1)‖. For x ∈ X, we define

Gk(x) :=
m

∑
j=1

λk
j f j(xk+1),

and

Hk =
m

∑
j=1

λk
j Wj(xk),

where λk
j ≥ 0, for all j = 1, . . . , m, are KKT multipliers. We obtain following:

∇qGk(x) =
m

∑
j=1

λk
j∇q fj(x),

and

∇2
qGk(x) =

m

∑
j=1

λk
j∇2

q fj(x).

Then, vk+1 = ∇qGk(xk+1). We get

dq(xk) = −(Hk)−1∇qGk(xk).

From assumptions (b) and (c) of this theorem,

‖∇2
qGk(y)−∇2

qGk(xk)‖ <
ε

2
,

‖(Hk −∇2
qGk(xk))(y− xk)‖ <

ε

2
‖y− xk‖

hold for all x, y ∈ Y with ‖y− x‖ < δ and k ≥ k0. We have

∇qGk(xk + dq(xk))− (∇qGk(xk) + Hkdq(xk))‖ < ε‖dq(xk)‖.

Since ∇qGk(xk) + Hkdq(xk) = 0, then

‖v(xk+1)‖ = ‖∇qGk(xk+1)‖ < ε‖dq(xk)‖,

73

Mathematics 2020, 8, 616

and

|ψk+1| ≤ 1
2a
‖v(xk+1)‖2 <

ε2

2a
‖dq(xk)‖2.

We have
a
2
‖dq(xk+1)‖2 <

ε2

2a
‖dq(xk)‖2.

Thus,
‖dq(xk+1)‖ <

ε

a
‖dq(xk)‖

Thus, part 4 is proved. We finally prove superlinear convergence of {xk}. First we define

rk = ‖d0
q‖

ε
a

k−k0

1− ε
a

,

and
δk = ‖dk0

q ‖
(ε

a
)k−k0 .

From triangle inequality, assumptions (e), (f) and part 1, we have K(xk, rk) ⊂ K(xk0 , r) ⊂ V.
Choose any τ ∈ R+, and define

ε̄ = min{a
τ

1 + 2τ
, ε}.

For k ≥ k0 inequalities

‖∇2
q fj(y)−∇2

q fj(x)‖ <
ε̄

2

for all x, y ∈ K(xk, rk) with ‖y− x‖ < δk, and

‖Wj(xl)−∇2
q fj(xl)(y− xl)‖ <

ε̄

2

for all y ∈ K(xk, rk) and l ≥ k holds both for j = 1, . . . , m. Assumptions (a)–(f) are satisfied for ε̄, rk, δk,
and xk instead of ε, r, δ, and x0, respectively. We have

‖xl − xk‖ ≤ ‖dq(xk)‖1− (ε̄
a)

l−k

1− ε̄
a

.

Let l → ∞ and we get ‖x∗ − xk‖ ≤ ‖dq(xk)‖ 1
1− ε̄

a
. Using the last inequality, and part 4, we have

‖x∗ − xk+1‖ ≤ ‖dq(xk+1)‖ 1
1− ε̄

a
≤ ‖dq(xk)‖

ε̄
a

1− ε̄
a

.

From above and triangle inequality, we have

‖x∗ − xk+1‖ ≥ ‖xk+1 − xk‖ − ‖x∗ − xk+1‖,

that is,

‖x∗ − xk+1‖ ≥ ‖dq(xk)‖ − ‖dk‖ ε̄

1− ε̄
a
= ‖dk

q‖
1− 2 ε̄

a
1− ε̄

a
. (23)

Since 1− 2 ε̄
a > 0, and 1− 2 ε̄

a > 0, then we get

‖x∗ − xk+1‖ ≤ τ‖x∗ − xk‖,

where τ ∈ R+ is chosen arbitrarily. Thus, the sequence {xk} converges superlinearly to x∗.

74

Mathematics 2020, 8, 616

5. Numerical Results

The proposed algorithm (q-QNUM), i.e., Algorithm 2, presented in Section 4 is implemented in
MATLAB (2017a) and tested on some test problems known from the literature. All tests were run under
the same conditions. The box constraints of the form lb ≤ x ≤ ub are used for each test problem. These
constraints are considered under the direction search problem (CQOP) such that the newly generated
point always lies in the same box, that is, lb ≤ x + dq ≤ ub holds. We use the stopping criteria at xk as:
ψ(xk) > −ε where ε ∈ R+. All test problems given in Table 1 are solved 100 times. The starting points
are randomly chosen from a uniform distribution between lb and ub. The first column in the given
table is the name of the test problem. We use the abbreviation of author’s names and number of the
problem in the corresponding paper. The second column indicates the source of the paper. The third
column is for lower bound and upper bound. We compare the results of (q-QNUM) with (QNMO)
of [40] in the form of a number of iterations (iter), number of objective functions evaluation (obj), and
number of gradient evaluations (grad), respectively. From Table 1, we can conclude that our algorithm
shows better performance.

Example 2. Find the approximate Pareto front using (q-QNUM) and (QNMO) for the given (UMOP) [45]:

Minimize f1(x1, x2) = (x1 − 1)2 + (x1 − x2)
2,

Minimize f2(x1, x2) = (x2 − 3)2 + (x1 − x2)
2,

where −3 ≤ x1, x2 ≤ 10.

The number of Pareto points generated due to (q-QNUM) with Algorithm 1 and (QNMO) is
shown in Figure 1. One can observe that the number of iterations as iter = 200 in (q-QNUM) and
iter = 525 in (QNMO) are responsible for generating the approximate Pareto front of above (UMOP).

Figure 1. Approximate Pareto Front of Example 1.

75

Mathematics 2020, 8, 616

Table 1. Numerical Results of Test Problems.

Problem Source [lb,ub]
(q-QNUM) (QNMO)
iter obj grad iter obj grad

BK1 [46] [−5, 10] 200 200 200 200 200 200

MOP5 [46] [−30, 30] 141 965 612 333 518 479

MOP6 [46] [0, 1] 250 2177 1712 181 2008 2001

MOP7 [46] [−400, 400] 200 200 200 751 1061 1060

DG01 [47] [−10, 13] 175 724 724 164 890 890

IKK1 [47] [−50, 50] 170 170 170 253 254 253

SP1 [45] [−3, 2] 200 200 200 525 706 706

SSFYY1 [45] [−2, 2] 200 200 200 200 300 300

SSFYY2 [45] [−100, 100] 263 277 277 263 413 413

SK1 [48] [−10, 10] 139 1152 1152 87 732 791

SK2 [48] [−3, 11] 154 1741 1320 804 1989 1829

VU1 [49] [−3, 3] 316 1108 1108 11,361 19,521 11,777

VU2 [49] [−3, 7] 99 1882 1882 100 1900 1900

VFM1 [50] [−2, 2] 195 195 195 195 290 290

VFM2 [50] [−4, 4] 200 200 200 524 693 678

VFM3 [50] [−3, 3] 161 1130 601 690 1002 981

6. Conclusions

The q-Quasi-Newton method converges superlinearly to the solution of (UMOP) if all objective
functions are strongly convex within the context of q-derivative. In a neighborhood of this solution,
the algorithm uses a full Armijo steplength. The numerical performance of the proposed algorithm is
faster than their actual evaluation.

Author Contributions: K.K.L. gave reasonable suggestions for this manuscript; S.K.M. gave the research direction
of this paper; B.R. revised and completed this manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Science and Engineering Research Board (Grant No. DST-SERB-
MTR-2018/000121) and the University Grants Commission (IN) (Grant No. UGC-2015-UTT–59235).

Acknowledgments: The authors are grateful to the anonymous reviewers and the editor for the valuable
comments and suggestions to improve the presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Eschenauer, H.; Koski, J.; Osyczka, A. Multicriteria Design Optimization: Procedures and Applications; Springer:
Berlin, Germany, 1990.

2. Haimes, Y.Y.; Hall, W.A.; Friedmann, H.T. Multiobjective Optimization in Water Resource Systems, The Surrogate
Worth Trade-off Method; Elsevier Scientific: Amsterdam, The Netherlands, 1975.

3. Nwulu, N.I.; Xia, X. Multi-objective dynamic economic emission dispatch of electric power generation
integrated with game theory based demand response programs. Energy Convers. Manag. 2015, 89, 963–974.
[CrossRef]

4. Badri, M.A.; Davis, D.L.; Davis, D.F.; Hollingsworth, J. A multi-objective course scheduling model:
Combining faculty preferences for courses and times. Comput. Oper. Res. 1998, 25, 303–316. [CrossRef]

76

Mathematics 2020, 8, 616

5. Ishibuchi, H.; Nakashima, Y.; Nojima, Y. Performance evaluation of evolutionary multiobjective optimization
algorithms for multiobjective fuzzy genetics-based machine learning. Soft Comput. 2011, 15, 2415–2434.
[CrossRef]

6. Liu, S.; Vicente, L.N. The stochastic multi-gradient algorithm for multi-objective optimization and its
application to supervised machine learning. arXiv 2019, arXiv:1907.04472.

7. Tavana, M. A subjective assessment of alternative mission architectures for the human exploration of mars
at NASA using multicriteria decision making. Comput. Oper. Res. 2004, 31, 1147–1164. [CrossRef]

8. Gass, S.; Saaty, T. The computational algorithm for the parametric objective function. Nav. Res. Logist. Q.
1955 , 2, 39–45. [CrossRef]

9. Miettinen, K. Nonlinear Multiobjective Optimization; Kluwer Academic: Boston, MA, USA, 1999.
10. Fishbum, P.C. Lexicographic orders, utilities and decision rules: A survey. Manag. Sci. 1974, 20, 1442–1471.

[CrossRef]
11. Coello, C.A. An updated survey of GA-based multiobjective optimization techniques. ACM Comput. Surv.

(CSUR) 2000, 32, 109–143. [CrossRef]
12. Fliege, J.; Svaiter, B.F. Steepest descent method for multicriteria optimization. Math. Method. Oper. Res. 2000,

51, 479–494. [CrossRef]
13. Drummond, L.M.G.; Iusem, A.N. A projected gradient method for vector optimization problems. Comput.

Optim. Appl. 2004, 28, 5–29. [CrossRef]
14. Drummond, L.M.G.; Svaiter, B.F. A steepest descent method for vector optimization. J. Comput. Appl. Math.

2005, 175, 395–414. [CrossRef]
15. Branke, J.; Dev, K.; Miettinen, K.; Slowiński, R. (Eds.) Multiobjective Optimization: Interactive and Evolutionary

Approaches; Springer: Berlin, Germany, 2008.
16. Mishra, S.K.; Ram, B. Introduction to Unconstrained Optimization with R; Springer Nature: Singapore, 2019;

pp. 175–209.
17. Fliege, J.; Drummond, L.M.G.; Svaiter, B.F. Newton’s method for multiobjective optimization. SIAM J. Optim.

2009, 20, 602–626. [CrossRef]
18. Chuong, T.D. Newton-like methods for efficient solutions in vector optimization. Comput. Optim. Appl. 2013,

54, 495–516. [CrossRef]
19. Qu, S.; Liu, C.; Goh, M.; Li, Y.; Ji, Y. Nonsmooth Multiobjective Programming with Quasi-Newton Methods.

Eur. J. Oper. Res. 2014, 235, 503–510. [CrossRef]
20. Jiménez; M.A.; Garzón, G.R.; Lizana, A.R. (Eds.) Optimality Conditions in Vector Optimization; Bentham

Science Publishers: Sharjah, UAE, 2010.
21. Al-Saggaf, U.M.; Moinuddin, M.; Arif, M.; Zerguine, A. The q-least mean squares algorithm. Signal Process.

2015, 111, 50–60. [CrossRef]
22. Aral, A.; Gupta, V.; Agarwal, R.P. Applications of q-Calculus in Operator Theory; Springer: New York, NY,

USA, 2013.
23. Rajković, P.M.; Marinković, S.D.; Stanković, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal.

Discret. Math. 2007, 1, 311–323.
24. Gauchman, H. Integral inequalities in q-calculus. Comput. Math. Appl. 2004, 47, 281–300. [CrossRef]
25. Bangerezako, G. Variational q-calculus. J. Math. Anal. Appl. 2004, 289, 650–665. [CrossRef]
26. Abreu, L. A q-sampling theorem related to the q-Hankel transform. Proc. Am. Math. Soc. 2005, 133, 1197–1203.

[CrossRef]
27. Koornwinder, T.H.; Swarttouw, R.F. On q-analogues of the Fourier and Hankel transforms. Trans. Am. Math.

Soc. 1992, 333, 445–461.
28. Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland; Heidelberg, Germany;

New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2012.
29. Noor, M.A.; Awan, M.U.; Noor, K.I. Some quantum estimates for Hermite-Hadamard inequalities. Appl.

Math. Comput. 2015, 251, 675–679. [CrossRef]
30. Pearce, C.E.M.; Pec̆arić, J. Inequalities for differentiable mappings with application to special means and

quadrature formulae. Appl. Math. Lett. 2000, 13, 51–55. [CrossRef]
31. Ernst, T. A Method for q-Calculus. J. Nonl. Math. Phys. 2003, 10, 487–525. [CrossRef]

77

Mathematics 2020, 8, 616

32. Sterroni, A.C.; Galski, R.L.; Ramos, F.M. The q-gradient vector for unconstrained continuous optimization
problems. In Operations Research Proceedings; Hu, B., Morasch, K., Pickl, S., Siegle, M., Eds.; Springer:
Heidelberg, Germany, 2010; pp. 365–370.

33. Gouvêa, E.J.C.; Regis, R.G.; Soterroni, A.C.; Scarabello, M.C.; Ramos, F.M. Global optimization using
q-gradients. Eur. J. Oper. Res. 2016, 251, 727–738. [CrossRef]

34. Chakraborty, S.K.; Panda, G. Newton like line search method using q-calculus. In International Conference on
Mathematics and Computing. Communications in Computer and Information Science; Giri, D., Mohapatra, R.N.,
Begehr, H., Obaidat, M., Eds.; Springer: Singapore, 2017; Volume 655, pp. 196–208.

35. Mishra, S.K.; Panda, G.; Ansary, M.A.T.; Ram, B. On q-Newton’s method for unconstrained multiobjective
optimization problems. J. Appl. Math. Comput. 2020. [CrossRef]

36. Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1908,
46, 253–281. [CrossRef]

37. Bento, G.C.; Neto, J.C. A subgradient method for multiobjective optimization on Riemannian manifolds.
J. Optimiz. Theory App. 2013, 159, 125–137. [CrossRef]

38. Andrei, N. A diagonal quasi-Newton updating method for unconstrained optimization. Numer. Algorithms
2019, 81, 575–590. [CrossRef]

39. Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer Series in Operations Research and Financial
Engineering; Springer: New York, NY, USA, 2006.

40. Povalej, Z. Quasi-Newton’s method for multiobjective optimization. J. Comput. Appl. Math. 2014,
255, 765–777. [CrossRef]

41. Ye, Y.L. D-invexity and optimality conditions. J. Math. Anal. Appl. 1991, 162, 242–249. [CrossRef]
42. Morovati, V.; Basirzadeh, H.; Pourkarimi, L. Quasi-Newton methods for multiobjective optimization

problems. 4OR-Q. J. Oper. Res. 2018, 16, 261–294. [CrossRef]
43. Samei, M.E.; Ranjbar, G.K.; Hedayati, V. Existence of solutions for equations and inclusions of multiterm

fractional q-integro-differential with nonseparated and initial boundary conditions. J. Inequal Appl. 2019, 273.
[CrossRef]

44. Adams, C.R. The general theory of a class of linear partial difference equations. Trans. Am. Math.Soc. 1924,
26, 183–312.

45. Sefrioui, M.; Perlaux, J. Nash genetic algorithms: Examples and applications. In Proceedings of the 2000
Congress on Evolutionary Computation, La Jolla, CA, USA, 16–19 July 2000; Volume 1, pp. 509–516.

46. Huband, S.; Hingston, P.; Barone, L.; While, L. A review of multiobjective test problems and a scalable test
problem toolkit. IEEE T. Evolut. Comput. 2006, 10, 477–506. [CrossRef]

47. Ikeda, K.; Kita, H.; Kobayashi, S. Failure of Pareto-based MOEAs: Does non-dominated really mean near to
optimal? In Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001;
Volume 2, pp. 957–962.

48. Shim, M.B.; Suh, M.W.; Furukawa, T.; Yagawa, G.; Yoshimura, S. Pareto-based continuous evolutionary
algorithms for multiobjective optimization. Eng Comput. 2002, 19, 22–48. [CrossRef]

49. Valenzuela-Rendón, M.; Uresti-Charre, E.; Monterrey, I. A non-generational genetic algorithm for
multiobjective optimization. In Proceedings of the Seventh International Conference on Genetic Algorithms,
East Lansing, MI, USA, 19–23 July 1997; pp. 658–665.

50. Vlennet, R.; Fonteix, C.; Marc, I. Multicriteria optimization using a genetic algorithm for determining a
Pareto set. Int. J. Syst. Sci. 1996, 27, 255–260. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

78

mathematics

Article

Convergence Analysis and Complex Geometry of
an Efficient Derivative-Free Iterative Method

Deepak Kumar 1,2*,†, Janak Raj Sharma 1,*,† and Lorentz Jäntschi 3,4,*

1 Department of Mathematics, Sant Longowal Institute of Engineering and Technology, Longowal 148106,
Sangrur, India

2 Chandigarh University, Gharuan 140413, Mohali, India
3 Department of Physics and Chemistry, Technical University of Cluj-Napoca, Cluj-Napoca 400114, Romania
4 Institute of Doctoral Studies, Babeş-Bolyai University, Cluj-Napoca 400084, Romania
* Correspondence: deepak.babbi@gmail.com (D.K.); jrshira@yahoo.co.in (J.R.S.);

lorentz.jantschi@gmail.com (L.J.)
† These authors contributed equally to this work.

Received: 12 September 2019; Accepted: 29 September 2019; Published: 2 October 2019

Abstract: To locate a locally-unique solution of a nonlinear equation, the local convergence analysis
of a derivative-free fifth order method is studied in Banach space. This approach provides radius
of convergence and error bounds under the hypotheses based on the first Fréchet-derivative only.
Such estimates are not introduced in the earlier procedures employing Taylor’s expansion of higher
derivatives that may not exist or may be expensive to compute. The convergence domain of the
method is also shown by a visual approach, namely basins of attraction. Theoretical results are
endorsed via numerical experiments that show the cases where earlier results cannot be applicable.

Keywords: local convergence; nonlinear equations; Banach space; Fréchet-derivative

MSC: 49M15; 47H17; 65H10

1. Introduction

Banach [1] or complete normed vector spaces constantly bring new solving strategies for real
problems in domains dealing with numerical methods (see for example [2–5]). In this context,
development of new methods [6] and their convergence analysis [7] are of growing interest.

Let B1, B2 be Banach spaces and Ω ⊆ B1 be closed and convex. In this study, we locate a solution
x∗ of the nonlinear equation

F(x) = 0, (1)

where F : Ω ⊆ B1 → B2 is a Fréchet-differentiable operator. In computational sciences, many problems
can be transformed into form (1). For example, see the References [8–11]. The solution of such
nonlinear equations is hardly attainable in closed form. Therefore, most of the methods for solving
such equations are usually iterative. The important issue addressed to an iterative method is its domain
of convergence since it gives us the degree of difficulty for obtaining initial points. This domain is
generally small. Thus, it is necessary to enlarge the domain of convergence but without any additional
hypotheses. Another important problem related to convergence analysis of an iterative method is to
find precise error estimates on ‖xn+1 − xn‖ or ‖xn − x∗‖.

A good reference for the general principles of functional analysis is [12]. Recurrence relations
for rational cubic methods are revised in [13] (for Halley method) and in [14] (for Chebyshev
method). A new iterative modification of Newton’s method for solving nonlinear scalar equations was
proposed in [15], while a modification of a variant of it with accelerated third order convergence was
proposed in [16]. An ample collection of iterative methods is found in [9]. The recurrence relations

Mathematics 2019, 7, 919; doi:10.3390/math7100919 www.mdpi.com/journal/mathematics79

Mathematics 2019, 7, 919

for Chebyshev-type methods accelerating classical Newton iteration have been introduced in [17],
recurrence relations in a third-order family of Newton-like methods for approximating solution of a
nonlinear equation in Banach spaces were studied in [18]. In the context of Kantrovich assumptions
for semilocal convergence of a Chebyshev method, the convergence conditions are significantly
reduced in [19]. The computational efficiency and the domain of the uniqueness of the solution
were readdressed in [20]. The point of attraction of two fourth-order iterative Newton-type methods
was studied in [21], while convergence ball and error analysis of Newton-type methods with cubic
convergence were studied in [22,23]. Weaker conditions for the convergence of Newton’s method
are given in [24], while further analytical improvements in two particular cases as well as numerical
analysis in the general case are given in [25], while local convergence of three-step Newton–Gauss
methods in Banach spaces was recently analyzed in [26]. Recently, researchers have also constructed
some higher order methods; see, for example [27–31] and references cited therein.

One of the basic methods for approximating a simple solution x∗ of Equation (1) is the
quadratically convergent derivative-free Traub–Steffensen’s method, which is given by

xn+1 = M2,1(xn) = xn − [un, xn; F]−1F(xn), for each n = 0, 1, 2, . . . , (2)

where un = xn + βF(xn), β ∈ R − {0} has a quadratic order of convergence. Based on (2),
Sharma et al. [32] have recently proposed a derivative-free method with fifth order convergence for
approximating a solution of F(x) = 0 using the weight-function scheme defined for each n = 0, 1 . . . by

yn =M2,1(xn),

zn =yn − [un, xn; F]−1F(yn),

xn+1 =zn − H(xn)[un, xn ; F]−1F(zn), (3)

wherein H(xn) = 2I − [un, xn ; F]−1[zn, yn ; F]. The computational efficiency of this method was
discussed in detail and performance was favorably compared with existing methods in [32]. To prove
the local convergence order, the authors used Taylor expansions with hypotheses based on a
Fréchet-derivative up to the fifth order. It is quite clear that these hypotheses restrict the applicability
of methods to the problems involving functions that are at least five times Fréchet-differentiable.
For example, let us define a function g on Ω = [− 1

2 , 5
2] by

g(t) =

{
t3 ln t2 + t5 − t4, t �= 0,
0, t = 0.

(4)

We have that
g′(t) = 3t2 ln t2 + 5t4 − 4t3 + 2t2,

g′′(t) = 6t ln t2 + 20t3 − 12t2 + 10t

and
g′′′(t) = 6 ln t2 + 60t2 − 24t + 22.

Then, g′′′ is unbounded on Ω. Notice also that the proofs of convergence use Taylor expansions.
In this work, we study the local convergence of the methods (3) using the hypotheses on the first

Fréchet-derivative only taking advantage of the Lipschitz continuity of the first Fréchet-derivative.
Moreover, our results are presented in the more general setting of a Banach space. We summarize
the contents of the paper. In Section 2, the local convergence analysis of method (3) is presented.
In Section 3, numerical examples are performed to verify the theoretical results. Basins of attraction
showing convergence domain are drawn in Section 4. Concluding remarks are reported in Section 5.

80

Mathematics 2019, 7, 919

2. Local Convergence Analysis

Let’s study the local convergence of method (3). Let p ≥ 0 and M ≥ 0 be the parameters and
w0 : [0,+∞)2 → [0,+∞) be a continuous and nondecreasing function with w0(0, 0) = 0. Let the
parameter r be defined by

r = sup {t ≥ 0 ; w0(pt, t) < 1}. (5)

Consider the functions w1 : [0, r)2 → [0,+∞) and v0 : [0, r) → [0,+∞) as continuous and
nondecreasing. Furthermore, define functions g1 and h1 on the interval [0, r) as

g1(t) =
w1(βv0(t)t, t)
1− w0(pt, t)

and
h1(t) = g1(t)− 1.

Suppose that
w1(0, 0) < 1. (6)

From (6), we obtain that

h1(0) =
w1(0, 0)

1− w0(0, 0)
− 1 < 0

and, by (5), h1(t) → +∞ as t → r−. Then, it follows from the intermediate value theorem [33] that
equation h1(t) = 0 has solutions in (0, r). Denote by r1 the smallest such solution.

Furthermore, define functions g2 and h2 on the interval [0, r1) by

g2(t) =
(
1 +

M
1− w0(pt, t)

)
g1(t)

and
h2(t) = g2(t)− 1.

Then, we have that h2(0) = −1 < 0 and h2(t) → +∞ as t → r−1 . Let r2 be the smallest zero of
function h2 on the interval (0, r1).

Finally, define the functions ḡ, g3 and h3 on the interval [0, r2) by

ḡ(t) =
1

1− w0(pt, t)

(
1 +

(
w0(pt, t) + w0(g1(t)t, g2t)

)
1− w0(pt, t)

)
,

g3(t) =
(
1 + Mḡ(t)

)
g2(t)

and
h3(t) = g3(t)− 1.

It follows that h3(t) = −1 < 0 and h3(t) → +∞ as t → r−2 . Denote the smallest zero of function
h3 by r3 on the interval (0, r2). Finally, define the radius of convergence (say, r∗) by

r∗ = min{ri}, i = 1, 2, 3. (7)

Then, for each t ∈ [0, r), we have that

0 ≤ gi(t) < 1, i = 1, 2, 3. (8)

Denote by U(ν, ε) = {x ∈ B1 : ‖x − ν‖ < ε} the ball whose center ν ∈ B1 and radius ε > 0.
Moreover, Ū(ν, ε) denotes the closure of U(ν, ε).

81

Mathematics 2019, 7, 919

We will study the local convergence of method (3) in a Banach space setting under the following
hypotheses (collectively called by the name ‘A’):

(a1) F : Ω ⊆ B1 → B2 is a continuously differentiable operator and [·, · ; F] : Ω×Ω → L(B1, B2) is a
first divided difference operator of F.

(a2) There exists x∗ ∈ Ω so that F(x∗) = 0 and F′(x∗)−1 ∈ L(B2, B1).
(a3) There exists a continuous and nondecreasing function w0 : R+ ∪ {0} → R+ ∪ {0} with w0(0) = 0

such that, for each x ∈ Ω,

‖F′(x∗)−1([x, y ; F]− F′(x∗))‖ ≤ w0(‖x − x∗‖, ‖y− x∗‖).

(a4) Let Ω0 = Ω ∩ U(x∗, r), where r has been defined before. There exists continuous and
nondecreasing function v0 : [0, r) → R+ ∪ {0} such that, for each x, y ∈ Ω0,

‖β[x, x∗ ; F]‖ ≤ v0(‖x0 − x∗‖),

Ū(x∗, r) ⊂ Ω,

‖I + β[x, x∗ ; F]‖ ≤ p.

(a5) Ū(x∗, r3) ⊆ Ω and ‖F′(x∗)−1F′(x)‖ ≤ M.
(a6) Let R ≥ r3 and set Ω1 = Ω ∩ Ū(x∗, R),

∫ 1
0 w0(θR)dθ < 1.

Theorem 1. Suppose that the hypotheses (A) hold. Then, the sequence {xn} generated by method (3) for
x0 ∈ U(x∗, r3)− {x∗} is well defined in U(x∗, r3), remains in U(x∗, r3) and converges to x∗. Moreover, the
following conditions hold:

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < �, (9)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ (10)

and
‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (11)

where the functions gi, i = 1, 2, 3 are defined as above. Furthermore, the vector x∗ is the only solution of
F(x) = 0 in Ω1.

Proof. We shall show estimates (9)–(11) using mathematical induction. By hypothesis (a3) and for
x ∈ U(x∗, r3), we have that

‖F′(x∗)−1([u0, x0 ; F]− F′(x∗))‖ ≤ w0(‖u0 − x∗‖, ‖x0 − x∗‖)
≤ w0(‖x0 − x∗ + βF(x0)‖, ‖x0 − x∗‖)
≤ w0((I + β[x0, x∗ ; F])‖x0 − x∗‖, ‖x0 − x∗‖)
≤ w0(p‖x0 − x∗‖, ‖x0 − x∗‖)
≤ w0(pr, r) < 1.

(12)

By (12) and the Banach Lemma [9], we have that [un, xn ; F]−1 ∈ L(B2, B1) and

‖[u0, x0 ; F]−1F′(x∗)‖ ≤ 1
1− w0(p‖x0 − x∗‖, ‖x0 − x∗‖) . (13)

We show that yn is well defined by the method (3) for n = 0. We have

y0 − x∗ = x0 − x∗ − [u0, x0 ; F]−1F(x0)

= [u0, x0 ; F]−1F′(x∗)F′(x∗)−1([u0, x0 ; F]− [x0, x∗ ; F]
)
(x0 − x∗).

(14)

82

Mathematics 2019, 7, 919

Then, using (8) (for i = 1), the conditions (a4) and (13), we have in turn that

‖y0 − x∗‖ = ‖[u0, x0 ; F]−1F′(x∗)‖‖F′(x∗)−1([u0, x0 ; F]− [xn, x∗ ; F]
)‖‖x0 − x∗‖

≤ w1(‖u0−x0‖,‖x0−x∗‖)‖x0−x∗‖
1−w0(p‖x0−x∗‖,‖x0−x∗‖)

≤ w1(‖βF(x0)‖,‖x0−x∗‖)‖x0−x∗‖
1−w0(p‖x0−x∗‖,‖x0−x∗‖)

≤ w1(‖β[x0,x∗ ; F](x0−x∗)‖,‖x0−x∗‖)
1−w0(p‖x0−x∗‖,‖x0−x∗‖) ‖x0 − x∗‖

≤ w1(‖βv0(‖x0−x∗‖)(x0−x∗)‖,‖x0−x∗‖)
1−w0(p‖x0−x∗‖,‖x0−x∗‖) ‖x0 − x∗‖

≤ g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(15)

which implies (9) for n = 0 and y0 ∈ U(x∗, r3).
Note that for each θ ∈ [0, 1] and ‖x∗ + θ(x0 − x∗)− x∗‖ = θ‖x0 − x∗‖ < r, that is, x∗ + θ(x0 −

x∗) ∈ U(x∗, r3), writing

F(x0) = F(x0)− F(x∗) =
∫ 1

0
F′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (16)

Then, using (a5), we get that

‖F′(x∗)−1F(x0)‖ =
∥∥∥ ∫ 1

0 F′(x∗)−1F′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ
∥∥∥

≤ M‖x0 − x∗‖.
(17)

Similarly, we obtain
‖F′(x∗)−1F(y0)‖ ≤ M‖y0 − x∗‖, (18)

‖F′(x∗)−1F(z0)‖ ≤ M‖z0 − x∗‖. (19)

From the second sub-step of method (3), (13), (15) and (18), we obtain that

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+ ‖[u0, x0 ; F]−1F′(x∗)‖‖F′(x∗)−1F(y0)‖
≤ ‖y0 − x∗‖+ M‖y0−x∗‖

1−w0(p‖x0−x∗‖,‖x0−x∗‖)

≤
(

1 + M
1−w0(p‖x0−x∗‖,‖x0−x∗‖)

)
‖y0 − x∗‖

≤
(

1 + M
1−w0(p‖x0−x∗‖,‖x0−x∗‖)

)
g1(‖x0 − x∗‖)‖x0 − x∗‖

≤ g2(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

(20)

which proves (10) for n = 0 and z0 ∈ U(x∗, r3).

83

Mathematics 2019, 7, 919

Let ψ(xn, yn) =
(
2I − [un, xn ; F]−1[yn, zn ; F]

)
[un, xn ; F]−1 and notice that, since x0, y0 ∈

U(x∗, r3), we have that

‖ψ(x0, y0)F′(x∗)‖
= ‖(2I − [u0, x0 ; F]−1[y0, z0 ; F]

)
[u0, x0 ; F]−1F′(x∗)‖

≤
(

1 + ‖[u0, x0 ; F]−1([u0, x0 ; F]− [y0, z0 ; F]
)‖)‖[u0, x0 ; F]−1F′(x∗)‖

≤
(

1 + ‖[u0, x0 ; F]−1F′(x∗)‖(‖F′(x∗)−1([u0, x0 ; F]− F′(x∗))‖

+‖F′(x∗)−1(F′(x∗)− [y0, z0 ; F])‖))‖[u0, x0 ; F]−1F′(x∗)‖

≤
(

1 +
(

w0(p‖xn−x∗‖,‖xn−x∗‖)+w0

(
‖y0−x∗‖,‖z0−x∗‖

))
1−w0(p‖xn−x∗‖,‖xn−x∗‖)

)
× 1

1−w0(p‖xn−x∗‖,‖xn−x∗‖)

≤
(

1 +

(
w0(p‖xn−x∗‖,‖xn−x∗‖)+w0

(
g1(‖x0−x∗‖)‖x0−x∗‖,g2(‖x0−x∗‖)‖x0−x∗‖

))
1−w0(p‖xn−x∗‖,‖xn−x∗‖)

)
× 1

1−w0(p‖xn−x∗‖,‖xn−x∗‖)

≤ ḡ(‖x0 − x∗‖).

(21)

Then, using Equation (8) (for i = 3), (19), (20) and (21), we obtain

‖x1 − x∗‖ = ‖z0 − x∗ − ψ(x0, y0)F(z0)‖
≤ ‖z0 − x∗‖+ ‖ψ(x0, y0)F′(x∗)‖‖F′(x∗)−1F(z0)‖
≤ ‖z0 − x∗‖+ ḡ(‖x0 − x∗‖)M‖z0 − x∗‖
=
(
1 + Mḡ(‖x0 − x∗‖))‖z0 − x∗‖

≤ (1 + Mḡ(‖x0 − x∗‖))g2(‖x0 − x∗‖)‖x0 − x∗‖
≤ g3(‖x0 − x∗‖)‖x0 − x∗‖,

which proves (11) for n = 0 and x1 ∈ U(x∗, r3).
Replace x0, y0, z0, x1 by xn, yn, zn, xn+1 in the preceding estimates to obtain (9)–(11). Then, from

the estimates ‖xn+1 − x∗‖ ≤ c‖xn − x∗‖ < r3, where c = g3(‖x0 − x∗‖) ∈ [0, 1), we deduce that
limn→∞ xn = x∗ and xn+1 ∈ U(x∗, r3).

Next, we show the uniqueness part using conditions (a3) and (a6). Define operator P by P =∫ 1
0 F′(x∗∗ + θ(x∗ − x∗∗))dθ for some x∗∗ ∈ Ω1 with F(x∗∗) = 0. Then, we have that

‖F′(x∗)−1(P− F′(x∗)
)‖ ≤ ∫ 1

0
w0(θ‖x∗ − x∗∗‖)dθ

≤
∫ 1

0
w0(θ�∗)dθ < 1,

so P−1 ∈ L(B2, B1). Then, from the identity

0 = F(x∗)− F(x∗∗) = P(x∗ − x∗∗),

it implies that x∗ = x∗∗.

84

Mathematics 2019, 7, 919

3. Numerical Examples

We illustrate the theoretical results shown in Theorem 1. For the computation of divided difference,
let us choose [x, y; F] =

∫ 1
0 F′(y + θ(x − y))dθ . Consider the following three numerical examples:

Example 1. Assume that the motion of a particle in three dimensions is governed by a system of
differential equations:

f ′1(x)− f1(x)− 1 = 0,

f ′2(y)− (e− 1)y− 1 = 0,

f ′3(z)− 1 = 0,

with x, y, z ∈ Ω for f1(0) = f2(0) = f3(0) = 0. A solution of the system is given for u = (x, y, z)T by
function F := (f1, f2, f3) : Ω → R3 defined by

F(u) =
(

ex − 1,
e− 1

2
y2 + y, z

)T
.

Its Fréchet-derivative F′(u) is given by

F′(u) =

⎡⎢⎣ex 0 0
0 (e− 1)y + 1 0
0 0 1

⎤⎥⎦ .

Then, for x∗ = (0, 0, 0)T, we deduce that w0(s, t) = w1(s, t) = L0
2 (s + t) and v0(t) = 1

2 (1 + e
1

L0),

p = 1 + 1
2 (1 + e

1
L0), β = 1

100 , where L0 = e − 1 and M = 2. Then, using a definition of parameters, the
calculated values are displayed as

r∗ = min{r1, r2, r3} = min{0.313084, 0.165881, 0.0715631} = 0.0715631.

Example 2. Let X = C[0, 1], Ω = Ū(x∗, 1). We consider the integral equation of the mixed
Hammerstein-type [9] given by

x(s) =
∫ 1

0
k(s, t)

x(t)2

2
dt,

wherein the kernel k is the green function on the interval [0, 1]× [0, 1] defined by

k(s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.

Solution x∗(s) = 0 is the same as the solution of equation F(x) = 0, where F : C[0, 1] is given by

F(x)(s) = x(s)−
∫ 1

0
k(s, t)

x(t)2

2
dt.

Observe that ∥∥∥ ∫ 1

0
k(s, t)dt

∥∥∥ ≤ 1
8

.

Then, we have that

F′(x)y(s) = y(s)−
∫ 1

0
k(s, t)x(t)dt,

85

Mathematics 2019, 7, 919

and F′(x∗(s)) = I. We can choose w0(s, t) = w1(s, t) = s+t
16 , v0(t) = 9

16 , p = 25
16 , β = 1

100 and M = 2.
Then, using a definition of parameters, the calculated values are displayed as

r∗ = min{r1, r2, r3} = min{4.4841, 2.3541, 1.0090} = 1.0090.

Example 3. Let B1 = B2 = C[0, 1] be the spaces of continuous functions defined on the interval [0, 1]. Define
function F on Ω = Ū(0, 1) by

F(ϕ)(x) = φ(x)− 10
∫ 1

0
xθϕ(θ)3dθ.

It follows that

F′(ϕ(ξ))(x) = ξ(x)− 30
∫ 1

0
xθϕ(θ)2ξ(θ)dθ, f or each ξ ∈ Ω.

Then, for x∗ = 0, we have that w0(s, t) = w1(s, t) = L0(s + t) and v0(t) = 2, p = 3, β = 1
100 , where

L0 = 15 and M = 2. The parameters are displayed as

r∗ = min{r1, r2, r3} = min{0.013280, 0.0076012, 0.0034654} = 0.0034654.

4. Basins of Attraction

The basin of attraction is a useful geometrical tool for assessing convergence regions of the
iterative methods. These basins show us all the starting points that converge to any root when we
apply an iterative method, so we can see in a visual way which points are good choices as starting
points and which are not. We take the initial point as z0 ∈ R, where R is a rectangular region in C

containing all the roots of a poynomial p(z) = 0. The iterative methods starting at a point z0 in a
rectangle can converge to the zero of the function p(z) or eventually diverge. In order to analyze the
basins, we consider the stopping criterion for convergence as 10−3 up to a maximum of 25 iterations.
If the mentioned tolerance is not attained in 25 iterations, the process is stopped with the conclusion
that the iterative method starting at z0 does not converge to any root. The following strategy is taken
into account: A color is assigned to each starting point z0 in the basin of attraction of a zero. If the
iteration starting from the initial point z0 converges, then it represents the basins of attraction with that
particular color assigned to it and, if it fails to converge in 25 iterations, then it shows the black color.

We analyze the basins of attraction on the following two problems:

Test problem 1. Consider the polynomial p1(z) = z4 − 6z2 + 8 that has four simple zeros
{±2,±1.414 . . .}. We use a grid of 400 × 400 points in a rectangle R ∈ C of size [−3, 3] × [−3, 3]
and allocate the red, blue, green and yellow colors to the basins of attraction of these four zeros. Basins
obtained for the method (3) are shown in Figure 1(i)–(iii) corresponding to β = 10−2, 10−4, 10−9.
Observing the behavior of the method, we say that the divergent zones (black zones) are becoming
smaller with the decreasing value of β.

86

Mathematics 2019, 7, 919

� � �

�

�

(i) β = 10−2
� � �

�

�

�

(ii) β = 10−4
� � �

�

�

�

(iii) β = 10−9

Figure 1. Basins of attraction of method for polynomial p1(z).

Problem 2. Let us take the polynomial p2(z) = z3 − z having zeros {0,±1}. In this case, we also
consider a rectangle R = [−3, 3]× [−3, 3] ∈ C with 400× 400 grid points and allocate the colors red,
green and blue to each point in the basin of attraction of −1, 0 and 1, respectively. Basins obtained for
the method (3) are displayed in Figure 2(i)–(iii) for the parameter values β = 10−2, 10−4, 10−9. Notice
that the divergent zones are becoming smaller in size as parameter β assumes smaller values.

� � �

�

�

�

(i) β = 10−2
� � �

�

�

�

(ii) β = 10−4
� � �

�

�

�

(iii) β = 10−9

Figure 2. Basins of attraction of method for polynomial p2(z).

5. Conclusions

In this paper, the local convergence analysis of a derivative-free fifth order method is studied
in Banach space. Unlike other techniques that rely on higher derivatives and Taylor series, we have
used only derivative of order one in our approach. In this way, we have extended the usage of the
considered method since the method can be applied to a wider class of functions. Another advantage
of analyzing the local convergence is the computation of a convergence ball, uniqueness of the ball
where the iterates lie and estimation of errors. Theoretical results of convergence thus achieved are
confirmed through testing on some practical problems.

The basins of attraction have been analyzed by applying the method on some polynomials.
From these graphics, one can easily visualize the behavior and suitability of any method. If we choose
an initial guess x0 in a domain where different basins of the roots meet each other, it is uncertain
to predict which root is going to be reached by the iterative method that begins from x0. Thus, the
choice of initial guess lying in such a domain is not suitable. In addition, black zones and the zones
with different colors are not suitable to take the initial guess x0 when we want to achieve a particular
root. The most attractive pictures appear when we have very intricate boundaries of the basins. Such
pictures belong to the cases where the method is more demanding with respect to the initial point.

87

Mathematics 2019, 7, 919

Author Contributions: Methodology, D.K.; writing, review and editing, J.R.S.; investigation, J.R.S.; data curation,
D.K.; conceptualization, L.J.; formal analysis, L.J.

Funding: This research received no external funding.

Acknowledgments: We would like to express our gratitude to the anonymous reviewers for their valuable
comments and suggestions which have greatly improved the presentation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Banach, S. Théorie des Opérations Linéare; Monografje Matematyczne: Warszawna, Poland, 1932.
2. Gupta, V.; Bora, S.N.; Nieto, J.J. Dhage iterative principle for quadratic perturbation of fractional

boundary value problems with finite delay. Math. Methods Appl. Sci. 2019, 42, 4244–4255. [CrossRef]
3. Jäntschi, L.; Bálint, D.; Bolboacă, S. Multiple linear regressions by maximizing the likelihood under

assumption of generalized Gauss-Laplace distribution of the error. Comput. Math. Methods Med. 2016,
2016, 8578156. [CrossRef] [PubMed]

4. Kitkuan, D.; Kumam, P.; Padcharoen, A.; Kumam, W.; Thounthong, P. Algorithms for zeros of two accretive
operators for solving convex minimization problems and its application to image restoration problems.
J. Comput. Appl. Math. 2019, 354, 471–495. [CrossRef]

5. Sachs, M.; Leimkuhler, B.; Danos, V. Langevin dynamics with variable coefficients and nonconservative
forces: From stationary states to numerical methods. Entropy 2017, 19, 647. [CrossRef]

6. Behl, R.; Cordero, A.; Torregrosa, J.R.; Alshomrani, A.S. New iterative methods for solving nonlinear
problems with one and several unknowns. Mathematics 2018, 6, 296. [CrossRef]

7. Argyros, I.K.; George, S. Unified semi-local convergence for k−step iterative methods with flexible and
frozen linear operator. Mathematics 2018, 6, 233. [CrossRef]

8. Argyros, I.K.; Hilout, S. Computational Methods in Nonlinear Analysis; World Scientific Publishing Company:
Hackensack, NJ, USA, 2013.

9. Argyros, I.K. Computational Theory of Iterative Methods, Series: Studies in Computational Mathematics 15;
Chui, C.K., Wuytack, L., Eds.; Elsevier: New York, NY, USA, 2007.

10. Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964.
11. Potra, F.A.; Ptak, V. Nondiscrete Induction and Iterative Process; Research Notes in Mathematics; Pitman: Boston,

MA, USA, 1984.
12. Kantrovich, L.V.; Akilov, G.P. Functional Analysis; Pergamon Press: Oxford, UK, 1982.
13. Candela, V.; Marquina, A. Recurrence relations for rational cubic methods I: The Halley method. Computing

1990, 44, 169–184. [CrossRef]
14. Candela, V.; Marquina, A. Recurrence relations for rational cubic methods II: The Chebyshev method.

Computing 1990, 45, 355–367. [CrossRef]
15. Hasanov, V.I.; Ivanov, I.G.; Nebzhibov, G. A new modification of Newton’s method. Appl. Math. Eng. 2002,

27, 278–286.
16. Kou, J.S.; Li, Y.T.; Wang, X.H. A modification of Newton’s method with third-order convergence. Appl. Math.

Comput. 2006, 181, 1106–1111. [CrossRef]
17. Ezquerro, J.A.; Hernández, M.A. Recurrence relation for Chebyshev-type methods. Appl. Math. Optim. 2000,

41, 227–236. [CrossRef]
18. Chun, C.; Stănică, P.; Neta, B. Third-order family of methods in Banach spaces. Comput. Math. Appl. 2011, 61,

1665–1675. [CrossRef]
19. Hernández, M.A.; Salanova, M.A. Modification of the Kantorovich assumptions for semilocal convergence

of the Chebyshev method. J. Comput. Appl. Math. 2000, 126, 131–143. [CrossRef]
20. Amat, S.; Hernández, M.A.; Romero, N. Semilocal convergence of a sixth order iterative method for quadratic

equations. Appl. Numer. Math. 2012, 62, 833–841. [CrossRef]
21. Babajee, D.K.R.; Dauhoo, M.Z.; Darvishi, M.T.; Barati, A. A note on the local convergence of iterative methods

based on Adomian decomposition method and 3-node quadrature rule. Appl. Math. Comput. 2008, 200,
452–458. [CrossRef]

22. Ren, H.; Wu, Q. Convergence ball and error analysis of a family of iterative methods with cubic convergence.
Appl. Math. Comput. 2009, 209, 369–378. [CrossRef]

88

Mathematics 2019, 7, 919

23. Ren, H.; Argyros, I.K. Improved local analysis for certain class of iterative methods with cubic convergence.
Numer. Algor 2012, 59, 505–521. [CrossRef]

24. Argyros, I.K.; Hilout, S. Weaker conditions for the convergence of Newton’s method. J. Complexity 2012, 28,
364–387. [CrossRef]

25. Gutiérrez, J.M.; Magreñán, A.A.; Romero, N. On the semilocal convergence of Newton–Kantorovich method
under center-Lipschitz conditions. Appl. Math. Comput. 2013, 221, 79–88. [CrossRef]

26. Argyros, I.K.; Sharma, J.R.; Kumar, D. Local convergence of Newton–Gauss methods in Banach space. SeMA
2016, 74, 429–439. [CrossRef]

27. Behl, R.; Salimi, M.; Ferrara, M.; Sharifi, S.; Alharbi, S.K. Some real-life applications of a newly constructed
derivative free iterative scheme. Symmetry 2019, 11, 239. [CrossRef]

28. Salimi, M.; Nik Long, N.M.A.; Sharifi, S.; Pansera, B.A. A multi-point iterative method for solving nonlinear
equations with optimal order of convergence. Jpn. J. Ind. Appl. Math. 2018, 35, 497–509. [CrossRef]

29. Sharma, J.R.; Kumar, D. A fast and efficient composite Newton-Chebyshev method for systems of nonlinear
equations. J. Complexity 2018, 49, 56–73. [CrossRef]

30. Sharma, J.R.; Arora, H. On efficient weighted-Newton methods for solving systems of nonlinear equations.
Appl. Math. Comput. 2013, 222, 497–506. [CrossRef]

31. Lofti, T.; Sharifi, S.; Salimi, M.; Siegmund, S. A new class of three-point methods with optimal convergence
order eight and its dynamics. Numer. Algor. 2015, 68, 261–288. [CrossRef]

32. Sharma, J.R.; Kumar, D.; Jäntschi, L. On a reduced cost higher order Traub–Steffensen-like method for
nonlinear systems. Symmetry 2019, 11, 891. [CrossRef]

33. Grabnier, J.V. Who gave you the epsilon? Cauchy and the origins of rigorous calculus. Am. Math. Mon. 1983,
90, 185–194. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

89

mathematics

Article

On Derivative Free Multiple-Root Finders with
Optimal Fourth Order Convergence

Janak Raj Sharma 1,*, Sunil Kumar 1 and Lorentz Jäntschi 2,3,*

1 Department of Mathematics, Sant Longowal Institute of Engineering and Technology,
Longowal Sangrur 148106, India; sfageria1988@gmail.com

2 Department of Physics and Chemistry, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
3 Institute of Doctoral Studies, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
* Correspondence: jrshira@yahoo.co.in (J.R.S.); lorentz.jantschi@gmail.com (L.J.)

Received: 14 June 2020; Accepted: 2 July 2020; Published: 3 July 2020

Abstract: A number of optimal order multiple root techniques that require derivative evaluations
in the formulas have been proposed in literature. However, derivative-free optimal techniques
for multiple roots are seldom obtained. By considering this factor as motivational, here we
present a class of optimal fourth order methods for computing multiple roots without using
derivatives in the iteration. The iterative formula consists of two steps in which the first step is
a well-known Traub–Steffensen scheme whereas second step is a Traub–Steffensen-like scheme.
The Methodology is based on two steps of which the first is Traub–Steffensen iteration and the second
is Traub–Steffensen-like iteration. Effectiveness is validated on different problems that shows the
robust convergent behavior of the proposed methods. It has been proven that the new derivative-free
methods are good competitors to their existing counterparts that need derivative information.

Keywords: multiple root solvers; composite method; weight-function; derivative-free method;
optimal convergence

MSC: 65H05; 41A25; 49M15

1. Introduction

Finding root of a nonlinear equation ψ(u) = 0 is a very important and interesting problem
in many branches of science and engineering. In this work, we examine derivative-free numerical
methods to find a multiple root (say, α) with multiplicity μ of the equation ψ(u) = 0 that means
ψ(j)(α) = 0, j = 0, 1, 2, ..., μ− 1 and ψ(μ)(α) �= 0. Newton’s method [1] is the most widely used basic
method for finding multiple roots, which is given by

uk+1 = uk − μ
ψ(uk)

ψ′(uk)
, k = 0, 1, 2, . . . , μ = 2, 3, 4, (1)

A number of modified methods, with or without the base of Newton’s method, have been
elaborated and analyzed in literature, see [2–14]. These methods use derivatives of either first order or
both first and second order in the iterative scheme. Contrary to this, higher order methods without
derivatives to calculate multiple roots are yet to be examined. These methods are very useful in the
problems where the derivative ψ′ is cumbersome to evaluate or is costly to compute. The derivative-free
counterpart of classical Newton method (1) is the Traub–Steffensen method [15]. The method uses
the approximation

ψ′(uk) " ψ(uk + βψ(uk))− ψ(uk)

βψ(uk)
, β ∈ R− {0},

Mathematics 2020, 8, 1091; doi:10.3390/math8071091 www.mdpi.com/journal/mathematics91

Mathematics 2020, 8, 1091

or
ψ′(uk) " ψ[vk, uk],

for the derivative ψ′ in the Newton method (1). Here, vk = uk + βψ(uk) and ψ[vk, uk] =
ψ(vk)−ψ(uk)

vk−uk
is

a first order divided difference. Thereby, the method (1) takes the form of the Traub–Steffensen scheme
defined as

uk+1 = uk − μ
ψ(uk)

ψ[vk, uk]
. (2)

The Traub–Steffensen method (2) is a prominent improvement of the Newton method because it
maintains the quadratic convergence without adding any derivative.

Unlike Newton-like methods, the Traub–Steffensen-like methods are difficult to construct.
Recently, a family of two-step Traub–Steffensen-like methods with fourth order convergence has been
proposed in [16]. In terms of computational cost, the methods of [16] use three function evaluations
per iteration and thus possess optimal fourth order convergence according to Kung–Traub conjecture
(see [17]). This hypothesis states that multi-point methods without memory requiring m functional
evaluations can attain the convergence order 2m−1 called optimal order. Such methods are usually
known as optimal methods. Our aim in this work is to develop derivative-free multiple root methods
of good computational efficiency, which is to say, the methods of higher convergence order with
the amount of computational work as small as we please. Consequently, we introduce a class of
Traub–Steffensen-like derivative-free fourth order methods that require three new pieces of information
of the function ψ and therefore have optimal fourth order convergence according to Kung–Traub
conjecture. The iterative formula consists of two steps with Traub–Steffensen iteration (2) in the
first step, whereas there is Traub–Steffensen-like iteration in the second step. Performance is tested
numerically on many problems of different kinds. Moreover, comparison of performance with existing
modified Newton-like methods verifies the robust and efficient nature of the proposed methods.

We summarize the contents of paper. In Section 2, the scheme of fourth order iteration
is formulated and convergence order is studied separately for different cases. The main result,
showing the unification of different cases, is studied in Section 3. Section 4 contains the basins
of attractors drawn to assess the convergence domains of new methods. In Section 5, numerical
experiments are performed on different problems to demonstrate accuracy and efficiency of the
methods. Concluding remarks about the work are reported in Section 6.

2. Development of a Novel Scheme

Researchers have used different approaches to develop higher order iterative methods for solving
nonlinear equations. Some of them are: Interpolation approach, Sampling approach, Composition
approach, Geometrical approach, Adomian approach, and Weight-function approach. Of these, the
Weight-function approach has been most popular in recent times; see, for example, Refs. [10,13,14,18,19]
and references therein. Using this approach, we consider the following two-step iterative scheme for
finding multiple root with multiplicity μ ≥ 2:

zk = uk − μ
ψ(uk)

ψ[vk, uk]
,

uk+1 = zk − G(h)
(

1 +
1
yk

) ψ(uk)

ψ[vk, uk]
,

(3)

where h = xk
1+xk

, xk = μ

√
ψ(zk)
ψ(uk)

, yk = μ

√
ψ(vk)
ψ(uk)

and G : C → C is analytic in the neighborhood of zero.

This iterative scheme is weighted by the factors G(h) and
(

1 + 1
yk

)
, hence the name weight-factor or

weight-function technique.
Note that xk and yk are one-to-μ multi-valued functions, so we consider their principal analytic

branches [18]. Hence, it is convenient to treat them as the principal root. For example, let us consider

92

Mathematics 2020, 8, 1091

the case of xk. The principal root is given by xk = exp
[1

μ Log
(ψ(zk)

ψ(uk)

)]
, with Log

(ψ(zk)
ψ(uk)

)
= Log

∣∣ ψ(zk)
ψ(uk)

∣∣+
i Arg

(ψ(zk)
ψ(uk)

)
for −π < Arg

(ψ(zk)
ψ(uk)

) ≤ π; this convention of Arg(p) for p ∈ C agrees with that of Log[p]
command of Mathematica [20] to be employed later in the sections of basins of attraction and numerical
experiments. Similarly, we treat for yk.

In the sequel, we prove fourth order of convergence of the proposed iterative scheme (3).
For simplicity, the results are obtained separately for the cases depending upon the multiplicity
μ. Firstly, we consider the case μ = 2.

Theorem 1. Assume that u = α is a zero with multiplicity μ = 2 of the function ψ(u), where ψ : C → C

is sufficiently differentiable in a domain containing α. Suppose that the initial point u0 is closer to α; then,
the order of convergence of the scheme (3) is at least four, provided that the weight-function G(h) satisfies the
conditions G(0) = 0, G′(0) = 1, G′′(0) = 6 and |G′′′(0)| < ∞.

Proof. Assume that εk = uk − α is the error at the k-th stage. Expanding ψ(uk) about α using the
Taylor series keeping in mind that ψ(α) = 0, ψ′(α) = 0 and ψ(2)(α) �= 0,, we have that

ψ(uk) =
ψ(2)(α)

2!
ε2

k
(
1 + A1εk + A2ε2

k + A3ε3
k + A4ε4

k + · · ·), (4)

where Am = 2!
(2+m)!

ψ(2+m)(α)

ψ(2)(α)
for m ∈ N.

Similarly, Taylor series expansion of ψ(vk) is

ψ(vk) =
ψ(2)(α)

2!
ε2

vk

(
1 + A1εvk + A2ε2

vk
+ A3ε3

vk
+ A4ε4

vk
+ · · ·), (5)

where εvk = vk − α = εk +
βψ(2)(α)

2! ε2
k
(
1 + A1εk + A2ε2

k + A3ε3
k + A4ε4

k + · · ·).
By using (4) and (5) in the first step of (3), we obtain

εzk = zk − α

=
1
2

(βψ(2)(α)

2
+ A1

)
ε2

k −
1
16
(
(βψ(2)(α))2 − 8βψ(2)(α)A1 + 12A2

1 − 16A2
)
ε3

k +
1
64
(
(βψ(2)(α))3

− 20βψ(2)(α)A2
1 + 72A3

1 + 64βψ(2)(α)A2 − 10A1
(
(βψ(2)(α))2 + 16A2

)
+ 96A3

)
ε4

k + O(ε5
k).

(6)

In addition, we have that

ψ(zk) =
ψ(2)(α)

2!
ε2

zk

(
1 + A1εzk + A2ε2

zk
+ · · ·). (7)

Using (4), (5) and (7), we further obtain

xk =
1
2

(βψ(2)(α)

2
+ A1

)
εk − 1

16
(
(βψ(2)(α))2 − 6βψ(2)(α)A1 + 16(A2

1 − A2)
)
ε2

k +
1

64
(
(βψ(2)(α))3

− 22βψ(2)(α)A2
1 + 4

(
29A3

1 + 14βψ(2)(α)A2
)− 2A1

(
3(βψ(2)(α))2 + 104A2

)
+ 96A3

)
ε3

k

+
1

256
(
212βψ(2)(α)A3

1 − 800A4
1 + 2A2

1(−7(βψ(2)(α))2 + 1040A2) + 2A1(3(βψ(2)(α))3 − 232βψ(2)(α)A2

− 576A3)− ((βψ(2)(α))4 + 8βψ(2)(α)A2 + 640A2
2 − 416βψ(2)(α)A3 − 512A4)

)
ε4

k + O(ε5
k)

(8)

and

yk = 1 +
βψ(2)(α)

2
εk

(
1 +

3
2

A1εk +
1
4
(

βψ(2)(α)A1 + 8A2
)
ε2

k +
1

16
(
3βψ(2)(α)A2

1 + 12βψ(2)(α)A2 + 40A3
)
ε3

k

+ O(ε4
k)
)

.
(9)

93

Mathematics 2020, 8, 1091

Using (8), we have

h =
1
2

(βψ(2)(α)

2
+ A1

)
εk − 1

8
(
(βψ(2)(α))2 − βψ(2)(α)A1 − 2(4A2 − 5A2

1)
)
ε2

k +
1

32
(− βψ(2)(α)A2

1 + 94A3
1

− 4A1((βψ(2)(α))2 + 34A2) + 2((βψ(2)(α))3 + 6βψ(2)(α)A2 + 24A3)
)
ε3

k +
1

128
(
54βψ(2)(α)A3

1 − 864A4
1

+ A2
1(1808A2 − 13(βψ(2)(α))2) + 2A1(6(βψ(2)(α))3 − 68βψ(2)(α)A2 − 384A3)− 4((βψ(2)(α))4

+ 5(βψ(2)(α))2 A2 + 112A2
2 − 28βψ(2)(α)A3 − 64A4)

)
ε4

k + O(ε5
k).

(10)

Taylor expansion of the weight function G(h) in the neighborhood of origin up to third-order
terms is given by

G(h) ≈ G(0) + hG′(0) + 1
2

h2G′′(0) + 1
6

h2G′′′(0). (11)

Using (4)–(11) in the last step of (3), we have

εk+1 = − G(0)εk +
1
4
(

βψ(2)(α)(1 + 2G(0)− G′(0)) + 2(1 + G(0)− G′(0))A1
)
ε2

k +
2

∑
n=1

φnεn+2
k + O(ε5

k), (12)

where φn = φn(β, A1, A2, A3, G(0), G′(0), G′′(0), G′′′(0)), n = 1, 2. The expressions of φ1 and φ2 being
very lengthy have not been produced explicitly.

We can obtain at least fourth order convergence if we set coefficients of εk, ε2
k and ε3

k simultaneously
equal to zero. Then, some simple calculations yield

G(0) = 0, G′(0) = 1, G′′(0) = 6. (13)

Using (13) in (12), we will obtain final error equation

εk+1 = − 1
192

(βψ(2)(α)

2
+ A1

)(
(G′′′(0)− 42)(βψ(2)(α))2 + 4(G′′′(0)− 45)βψ(2)(α)A1 + 4(G′′′(0)− 63)A2

1

+ 48A2
)
ε4

k + O(ε5
k).

(14)

Thus, the theorem is proved.

Next, we prove the following theorem for case μ = 3.

Theorem 2. Using assumptions of Theorem 1, the convergence order of scheme (3) for the case μ = 3 is at
least 4, if G(0) = 0, G′(0) = 3

2 , G′′(0) = 9 and |G′′′(0)| < ∞.

Proof. Taking into account that ψ(α) = 0, ψ′(α) = 0, ψ
′′
(α) = 0 and ψ(3)(α) �= 0, the Taylor series

development of ψ(uk) about α gives

ψ(uk) =
ψ(3)(α)

3!
ε3

k
(
1 + B1εk + B2ε2

k + B3ε3
k + B4ε4

k + · · ·), (15)

where Bm = 3!
(3+m)!

ψ(3+m)(α)

ψ(3)(α)
for m ∈ N.

Expanding ψ(vk) about α

ψ(vk) =
ψ(3)(α)

3!
ε3

vk

(
1 + B1εvk + B2ε2

vk
+ B3ε3

vk
+ B4ε4

vk
+ · · ·), (16)

where εvk = vk − α = εk +
βψ(3)(α)

3! ε3
k
(
1 + B1εk + B2ε2

k + B3ε3
k + B4ε4

k + · · ·).

94

Mathematics 2020, 8, 1091

Then, using (15) and (16) in the first step of (3), we obtain

εzk = zk − α

=
B1
3

ε2
k +

1
18
(
3βψ(3)(α)− 8B2

1 + 12B2
)
ε3

k +
1
27
(
16B3

1 + 3B1
(
2βψ(3)(α)− 13B2

)
+ 27B3

)
ε4

k + O(ε5
k).

(17)

Expansion of ψ(zk) about α yields

ψ(zk) =
ψ(3)(α)

3!
ε3

zk

(
1 + B1εzk + B2ε2

zk
+ B3ε3

zk
+ B4ε4

zk
+ · · ·). (18)

Then, from (15), (16), and (18), it follows that

xk =
B1

3
εk +

1
18
(
3βψ(3)(α)− 10B2

1 + 12B2
)
ε2

k +
1

54

(
46B3

1 + 3B1
(
3ψ(3)(α)β− 32B2

)
+ 54B3

)
ε3

k −
1

486
(
610B4

1

− B2
1(1818B2 − 27βψ(3)(α)) + 1188B1B3 + 9

(
(βψ(3)(α))2 − 15βψ(3)(α)B2 + 72B2

2 − 72B4
))

ε4
k + O(ε5

k)

(19)

and

yk = 1 +
βψ(3)(α)

3!
ε2

k

(
1 +

4
3

B1εk +
5
3

B2ε2
k +

1
18

(βψ(3)(α)B1 + 36B3)ε
3
k + O(ε4

k)
)

. (20)

Using (19), we have

h =
B1

3
εk +

1
6
(

βψ(3)(α)− 4B2
1 + 4B2

)
ε2

k +
1
54

(
68B3

1 + 3B1
(

βψ(3)(α)− 40B2
)
+ 54B3

)
ε3

k −
1

2916
(
6792B4

1

− 108B2
1(159B2 + 2βψ(3)(α)) + 9072B1B3 − 27

(− 5(βψ(3)(α))2 + 6βψ(3)(α)B2 − 192B2
2 + 144B4

))
ε4

k

+ O(ε5
k).

(21)

Developing weight function G(h) about origin by the Taylor series expansion,

G(h) ≈ G(0) + hG′(0) + 1
2

h2G′′(0) + 1
6

h3G′′′(0). (22)

By using (15)–(22) in the last step of (3), we have

εk+1 = −2G(0)
3

εk +
1
9
(3 + 2G(0)− 2G′(0))B1ε2

k +
2

∑
n=1

ϕnεn+2
k + O(ε5

k), (23)

where ϕn = ϕn(β, B1, B2, B3, G(0), G′(0), G′′(0), G′′′(0)), n = 1, 2.
To obtain fourth order convergence, it is sufficient to set coefficients of εk, ε2

k, and ε3
k simultaneously

equal to zero. This process will yield

G(0) = 0, G′(0) = 3
2

, G′′(0) = 9. (24)

Then, error equation (23) is given by

εk+1 = − B1

972
(
27βψ(3)(α) + 4(G′′′(0)− 99)B2

1 + 108B2
)
ε4

k + O(ε5
k). (25)

Hence, the result is proved.

Remark 1. We can observe from the above results that the number of conditions on G(h) is 3 corresponding to
the cases μ = 2, 3 to attain the fourth order convergence of the method (3). These cases also satisfy common
conditions: G(0) = 0, G′(0) = μ

2 , G′′(0) = 3μ. Their error equations also contain the term involving the
parameter β. However, for the cases μ ≥ 4, it has been seen that the error equation in each such case does not
contain β term. We shall prove this fact in the next section.

95

Mathematics 2020, 8, 1091

3. Main Result

We shall prove the convergence order of scheme (3) for the multiplicity μ ≥ 4 by the following theorem:

Theorem 3. Using assumptions of Theorem 1, the convergence order of scheme (3) for μ ≥ 4 is at least four,
provided that G(0) = 0, G′(0) = μ

2 , G′′(0) = 3μ and |G′′′(0)| < ∞. Moreover, error in the scheme is given by

εk+1 =
1

6μ4

(
(3μ(19 + μ)− 2G′′′(0))F3

1 − 6μ2F1F2
)
ε4

k + O(ε5
k),

where Fm = μ!
(μ+m)!

ψ(μ+m)(α)

ψ(μ)(α)
for m ∈ N.

Proof. Taking into account that ψ(i)(α) = 0, i = 0, 1, 2, ..., μ − 1 and ψ(μ)(α) �= 0, then Taylor series
expansion of ψ(uk) about α is

ψ(uk) =
ψ(μ)(α)

μ!
ε

μ
k
(
1 + F1εk + F2ε2

k + F3ε3
k + F4ε4

k + · · ·). (26)

Taylor expansion of ψ(vk) about α yields

ψ(vk) =
ψ(μ)(α)

μ!
ε

μ
vk

(
1 + F1εvk + F2ε2

vk
+ F3ε3

vk
+ F4ε4

vk
+ · · ·), (27)

where εvk = vk − α = εk +
βψ(μ)(α)

μ! ε
μ
k
(
1 + F1εk + F2ε2

k + F3ε3
k + F4ε4

k + · · ·).
Using (26) and (27) in the first step of (3), we obtain

εzk =

⎧⎨⎩
F1
4 ε2

k +
1
16
(
8F2 − 5F2

1
)
ε3

k +
1
64
(
4βψ(4)(α) + 25F3

1 − 64F1F2 + 48F3
)
ε4

k + O(ε5
k), if μ = 4,

F1
μ ε2

k +
1

μ2

(
2μF2 − (1 + μ)F2

1
)
ε3

k +
1

μ3

(
(1 + μ)2F3

1 − μ(4 + 3μ)F1F2 + 3μ2F3
)
ε4

k + O(ε5
k), if μ ≥ 5,

(28)

where εzk = zk − α.

Expansion of ψ(zk) around α yields

ψ(zk) =
ψ(μ)(α)

μ!
ε

μ
zk

(
1 + F1εzk + F2ε2

zk
+ F3ε3

zk
+ F4ε4

zk
+ · · ·). (29)

Using (26), (27) and (29), we have that

xk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1
4 εk +

1
8
(
4F2 − 3F2

1
)
ε2

k +
1

128
(
8βψ(4)(α) + 67F3

1 − 152F1F2 + 96F3
)
ε3

k +
1

768
(− 543F4

1 + 1740F2
1 F2

+4F1(11βψ(4)(α)− 312F3) + 96(−7F2
2 + 8F4)

)
ε4

k + O(ε5
k), if μ = 4,

F1
5 εk +

1
25
(
10F2 − 7F2

1
)
ε2

k +
1

125
(
46F3

1 − 110F1F2 + 75F3
)
ε3

k +
(βψ(5)(α)

60 − 294
625 F4

1 + 197
125 F2

1 F2 − 16
25 F2

2

− 6
5 F1F3 +

4
5 F4
)
ε4

k + O(ε5
k), if μ = 5,

F1
μ εk +

1
μ2

(
2μF2 − (2 + μ)F2

1
)
ε2

k +
1

2μ3

(
(7 + 7μ + 2μ2)F3

1 − 2μ(7 + 3μ)F1F2 + 6μ2F3
)
ε3

k

− 1
6μ4

(
(34 + 51μ + 29μ2 + 6μ3)F4

1 − 6μ(17 + 16μ + 4μ2)F2
1 F2 + 12μ2(3 + μ)F2

2

+12μ2(5 + 2μ)F1F3
)
ε4

k + O(ε5
k), if μ ≥ 6

(30)

and

yk = 1 +
βψ(μ)(α)

μ!
ε

μ−1
k

(
1 +

(μ + 1)F1
μ

εk +
(μ + 2)F2

μ
ε2

k +
(μ + 3)F3

μ
ε3

k +
(μ + 4)F4

μ
ε4

k + O(ε5
k)
)

. (31)

96

Mathematics 2020, 8, 1091

Using (30), we obtain that

h =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1
4 εk +

1
16
(
8μF2 − 7F2

1
)
ε2

k +
1

128
(
8βψ(4)(α) + 93F3

1 − 184F1F2 + 96F3
)
ε3

k

+
(− 303

256 F4
1 + 213

64 F2
1 F2 − 9

8 F2
2 + F1(

5
192 βψ(4)(α)− 2F3) + F4

)
ε4

k + O(ε5
k), if μ = 4,

F1
5 εk +

1
25
(
10F2 − 8F2

1
)
ε2

k +
1

125
(
61F3

1 − 130F1F2 + 75F3
)
ε3

k

+
(− 457

625 F4
1 + 11

5 F2
1 F2 − 36

25 F1F3 +
1

60 (βψ(5)(α)− 48F2
2 + 48F4)

)
ε4

k + O(ε5
k), if μ = 5,

F1
μ εk +

1
μ2

(
2μF2 − (3 + μ)F2

1
)
ε2

k +
1

2μ3

(
(17 + 11μ + 2μ2)F3

1 − 2μ(11 + 3μ)F1F2 + 6μ2F3
)
ε3

k

− 1
6μ4

(
(142 + 135μ + 47μ2 + 6μ3)F4

1 − 6μ(45 + 26μ + 4μ2)F2
1 F2 + 12μ2(5 + μ)F2

2

+24μ2(4 + μ)F1F3
)
ε4

k + O(ε5
k), if μ ≥ 6.

(32)

Developing weight function G(h) about origin by the Taylor series expansion,

G(h) ≈ G(0) + hG′(0) + 1
2

h2G′′(0) + 1
6

h3G′′′(0). (33)

Using (26)–(33) in the last step of (3), we get

εk+1 = − 2G(0)
μ

εk +
1

μ2

(
(2G(0)− 2G′(0) + μ)F1

)
ε2

k +
2

∑
n=1

χnεn+2
k + O(ε5

k), (34)

where χn = χn(β, F1, F2, F3, G(0), G′(0), G′′(0), G′′′(0)) when μ = 4, 5 and χn =

χn(F1, F2, F3, G(0), G′(0), G′′(0), G′′′(0)) when μ ≥ 6 for n = 1, 2.
The fourth order convergence can be attained if we put coefficients of εk, ε2

k and ε3
k simultaneously

equal to zero. Then, the resulting equations yield

G(0) = 0, G′(0) = μ

2
, G′′(0) = 3μ. (35)

As a result, the error equation is given by

εk+1 =
1

6μ4

(
(3μ(19 + μ)− 2G′′′(0))F3

1 − 6μ2F1F2
)
ε4

k + O(ε5
k). (36)

This proves the result.

Remark 2. The proposed scheme (3) achieves fourth-order convergence with the conditions of weight-function
G(h) as shown in Theorems 1–3. This convergence rate is attained by using only three functional evaluations viz.
ψ(uk), ψ(vk) and ψ(zk) per iteration. Therefore, the iterative scheme (3) is optimal according to Kung–Traub
conjecture [17].

Remark 3. Note that the parameter β, which is used in vk, appears only in the error equations of the cases
μ = 2, 3 but not for μ ≥ 4 (see Equation (36)). However, for μ ≥ 4, we have observed that this parameter
appears in the terms of ε5

k and higher order. Such terms are difficult to compute in general. However, we do not
need these in order to show the required fourth order of convergence. Note also that Theorems 1–3 are presented to
show the difference in error expressions. Nevertheless, the weight function G(h) satisfies the common conditions
G(0) = 0, G′(0) = μ

2 , G′′(0) = 3μ for every μ ≥ 2.

Some Special Cases

Based on various forms of function G(h) that satisfy the conditions of Theorem 3, numerous
special cases of the family (3) can be explored. The following are some simple forms:

97

Mathematics 2020, 8, 1091

(1) G(h) =
μ h(1 + 3 h)

2
, (2) G(h) =

μ h
2− 6h

, (3) G(h) =
μ h(μ− 2h)

2(μ− (2 + 3μ)h + 2μh2)
,

(4) G(h) =
μ h(3− h)

6− 20h
.

The corresponding method to each of the above forms can be expressed as follows:

Method 1 (M1) :

uk+1 = zk − μ h(1 + 3 h)
2

(
1 +

1
yk

) ψ(uk)

ψ[vk, uk]
.

Method 2 (M2) :

uk+1 = zk − μ h
2− 6h

(
1 +

1
yk

) ψ(uk)

ψ[vk, uk]
.

Method 3 (M3) :

uk+1 = zk − μ h(μ− 2h)
2(μ− (2 + 3μ)h + 2μh2)

(
1 +

1
yk

) ψ(uk)

ψ[vk, uk]
.

Method 4 (M4) :

uk+1 = zk − μ h(3− h)
6− 20h

(
1 +

1
yk

) ψ(uk)

ψ[vk, uk]
.

Note that, in all the above cases, zk has the following form:

zk = uk − μ
ψ(uk)

ψ[vk, uk]
.

4. Basins of Attraction

In this section, we present complex geometry of the above considered method with a tool,
namely basin of attraction, by applying the method to some complex polynomials ψ(z). Basin of
attraction of the root is an important geometrical tool for comparing convergence regions of the iterative
methods [21–23]. To start with, let us recall some basic ideas concerned with this graphical tool.

Let R : C → C be a rational mapping on the Riemann sphere. We define orbit of a point z0 ∈ C

as the set {z0, R(z0), R2(z0), . . . , Rn(z0), . . .}. A point z0 ∈ C is a fixed point of the rational function
R if it satisfies the equation R(z0) = z0. A point z0 is said to be periodic with period m > 1 if
Rm(z0) = z0, where m is the smallest such integer. A point z0 is called attracting if |R′(z0)| < 1,
repelling if |R′(z0)| > 1, neutral if |R′(z0)| = 1 and super attracting if |R′(z0)| = 0. Assume that z∗ψ is
an attracting fixed point of the rational map R. Then, the basin of attraction of z∗ψ is defined as

A(z∗ψ) = {z0 ∈ C : Rn(z0) → z∗ψ, n → ∞}.

The set of points whose orbits tend to an attracting fixed point z∗ψ is called the Fatou set.
The complementary set, called the Julia set, is the closure of the set of repelling fixed points, which
establishes the boundaries between the basins of the roots. Attraction basins allow us to assess those
starting points which converge to the concerned root of a polynomial when we apply an iterative
method, so we can visualize which points are good options as starting points and which are not.

We select z0 as the initial point belonging to D, where D is a rectangular region in C containing
all the roots of the equation ψ(z) = 0. An iterative method starting with a point z0 ∈ D may converge
to the zero of the function ψ(z) or may diverge. To assess the basins, we consider 10−3 as the stopping
criterion for convergence restricted to 25 iterations. If this tolerance is not achieved in the required
iterations, the procedure is dismissed with the result showing the divergence of the iteration function
started from z0. While drawing the basins, the following criterion is adopted: A color is allotted to

98

Mathematics 2020, 8, 1091

every initial guess z0 in the attraction basin of a zero. If the iterative formula that begins at point z0

converges, then it forms the basins of attraction with that assigned color and, if the formula fails to
converge in the required number of iterations, then it is painted black.

To view the complex dynamics, the proposed methods are applied on the following three problems:

Test problem 1. Consider the polynomial ψ1(z) = (z2 + z + 1)2 having two zeros {−0.5 −
0.866025i,−0.5 + 0.866025i} with multiplicity μ = 2. The attraction basins for this polynomial are
shown in Figures 1–3 corresponding to the choices 0.01, 10−4, 10−6 of parameter β. A color is assigned
to each basin of attraction of a zero. In particular, red and green colors have been allocated to the
basins of attraction of the zeros −0.5− 0.866025i and −0.5 + 0.866025i, respectively.

� �

�

M-1
� �

�

�

M-2
� �

�

M-3
� �

�

�

M-4

Figure 1. Basins of attraction by M-1–M-4 (β = 0.01) for polynomial ψ1(z).

� �

�

�

M-1
� �

�

�

M-2
� �

�

�

M-3
� �

�

�

M-4

Figure 2. Basins of attraction by M-1–M-4 (β = 10−4) for polynomial ψ1(z).

� �

�

�

M-1
� �

�

�

M-2
� �

�

�

M-3
� �

�

�

M-4

Figure 3. Basins of attraction by M-1–M-4 (β = 10−6) for polynomial ψ1(z).

Test problem 2. Consider the polynomial ψ2(z) =
(
z3 + 1

4 z
)3 which has three zeros {− i

2 , i
2 , 0} with

multiplicities μ = 3. Basins of attractors assessed by methods for this polynomial are drawn in
Figures 4–6 corresponding to choices β = 0.01, 10−4, 10−6. The corresponding basin of a zero is
identified by a color assigned to it. For example, green, red, and blue colors have been assigned
corresponding to − i

2 , i
2 , and 0.

� �

�

�

M-1
� �

�

M-2
� �

�

M-3
� �

�

�

M-4

Figure 4. Basins of attraction by M-1–M-4 (β = 0.01) for polynomial ψ2(z).

99

Mathematics 2020, 8, 1091

� �

�

�

M-1
� �

�

�

M-2
� �

�

�

M-3
� �

�

M-4

Figure 5. Basins of attraction by M-1–M-4 (β = 10−4) for polynomial ψ2(z).

� �

�

�

M-1
� �

�

�

M-2
� �

�

�

M-3
� �

�

�

M-4

Figure 6. Basins of attraction by methods M-1–M-4 (β = 10−6) for polynomial ψ2(z).

Test problem 3. Next, let us consider the polynomial ψ3(z) =
(
z3 + 1

z
)4 that has four zeros

{−0.707107 + 0.707107i,−0.707107 − 0.707107i, 0.707107 + 0.707107i, 0.707107 − 0.707107i} with
multiplicity μ = 4. The basins of attractors of zeros are shown in Figures 7–9, for choices of the
parameter β = 0.01, 10−4, 10−6. A color is assigned to each basin of attraction of a zero. In particular,
we assign yellow, blue, red, and green colors to −0.707107 + 0.707107i, −0.707107 − 0.707107i,
0.707107 + 0.707107i and 0.707107− 0.707107i, respectively.

� �

�

�

M-1
� �

�

�

M-2
� �

�

�

M-3
� �

�

�

M-4

Figure 7. Basins of attraction by M-1–M-4 (β = 0.01) for polynomial ψ3(z).

� �

�

M-1
� �

�

�

M-2
� �

�

�

M-3
� �

�

�

M-4

Figure 8. Basins of attraction by M-1–M-4 (β = 10−4) for polynomial ψ3(z).

� �

�

�

M-1
� �

�

�

M-2
� �

�

�

M-3
� �

�

�

M-4

Figure 9. Basins of attraction by M-1–M-4 (β = 10−6) for polynomial ψ3(z).

100

Mathematics 2020, 8, 1091

Estimation of β values plays an important role in the selection of those members of family (3)
which possess good convergence behavior. This is also the reason why different values of β have been
chosen to assess the basins. The above graphics clearly indicate that basins are becoming wider with
the smaller values of parameter β. Moreover, the black zones (used to indicate divergence zones) are
also diminishing as β assumes small values. Thus, we conclude this section with a remark that the
convergence of proposed methods is better for smaller values of parameter β.

5. Numerical Results

In order to validate of theoretical results that have been shown in previous sections,
the new methods M1, M2, M3, and M4 are tested numerically by implementing them on
some nonlinear equations. Moreover, these are compared with some existing optimal fourth
order Newton-like methods. For example, we consider the methods by Li–Liao–Cheng [7],
Li–Cheng–Neta [8], Sharma–Sharma [9], Zhou–Chen–Song [10], Soleymani–Babajee–Lotfi [12], and
Kansal–Kanwar–Bhatia [14]. The methods are expressed as follows:

Li–Liao–Cheng method (LLCM):

zk = uk − 2μ

μ + 2
ψ(uk)

ψ′(uk)
,

uk+1 = uk −
μ(μ− 2)

(μ
μ+2
)−μ

ψ′(zk)− μ2ψ′(uk)

ψ′(uk)−
(μ

μ+2
)−μ

ψ′(zk)

ψ(uk)

2ψ′(uk)
.

Li–Cheng–Neta method (LCNM):

zk = uk − 2μ

μ + 2
ψ(uk)

ψ′(uk)
,

uk+1 = uk − α1
ψ(uk)

ψ′(zk)
− ψ(uk)

α2ψ′(uk) + α3ψ′(zk)
,

where

α1 = − 1
2

(μ
μ+2
)μ

μ(μ4 + 4μ3 − 16μ− 16)

μ3 − 4μ + 8
,

α2 = − (μ3 − 4μ + 8)2

μ(μ4 + 4μ3 − 4μ2 − 16μ + 16)(μ2 + 2μ− 4)
,

α3 =
μ2(μ3 − 4μ + 8)(μ

μ+2
)μ
(μ4 + 4μ3 − 4μ2 − 16μ + 16)(μ2 + 2μ− 4)

.

Sharma–Sharma method (SSM):

zk = uk − 2μ

μ + 2
ψ(uk)

ψ′(uk)
,

uk+1 = uk − μ

8

[
(μ3 − 4μ + 8)− (μ + 2)2

(μ

μ + 2

)μ ψ′(uk)

ψ′(zk)

×
(

2(μ− 1)− (μ + 2)
(μ

μ + 2

)μ ψ′(uk)

ψ′(zk)

)] ψ(uk)

ψ′(uk)
.

101

Mathematics 2020, 8, 1091

Zhou–Chen–Song method (ZCSM):

zk = uk − 2μ

μ + 2
ψ(uk)

ψ′(uk)
,

uk+1 = uk − μ

8

[
μ3
(μ + 2

μ

)2μ(ψ′(zk)

ψ′(uk)

)2 − 2μ2(μ + 3)
(μ + 2

μ

)μ ψ′(zk)

ψ′(uk)

+ (μ3 + 6μ2 + 8μ + 8)
] ψ(uk)

ψ′(uk)
.

Soleymani–Babajee–Lotfi method (SBLM):

zk = uk − 2μ

μ + 2
ψ(uk)

ψ′(uk)
,

uk+1 = uk − ψ′(zk)ψ(uk)

q1(ψ′(zk))2 + q2ψ′(zk)ψ′(uk) + q3(ψ′(uk))2 ,

where q1 = 1
16 μ3−μ(μ + 2)μ, q2 = 8−μ(μ+2)(μ2−2)

8μ , q3 = 1
16 (μ− 2)μμ−1(μ + 2)3−μ.

Kansal–Kanwar–Bhatia method (KKBM):

zk = uk − 2μ

μ + 2
ψ(uk)

ψ′(uk)
,

uk+1 = uk − μ

4
ψ(uk)

(
1 +

μ4 p−2μ
(

pμ−1 − ψ′(zk)
ψ′(uk)

)2
(pμ − 1)

8(2pμ + n(pμ − 1))

)

×
(4− 2μ + μ2(p−μ − 1)

ψ′(uk)
− p−μ(2pμ + μ(pμ − 1))2

ψ′(uk)− ψ′(zk)

)
,

where p = μ
μ+2 .

Computations are performed in the programming package of Mathematica software [20] in a PC
with specifications: Intel(R) Pentium(R) CPU B960 @ 2.20 GHz, 2.20 GHz (32-bit Operating System)
Microsoft Windows 7 Professional and 4 GB RAM. Numerical tests are performed by choosing the
value −0.01 for parameter β in new methods. The tabulated results of the methods displayed in
Table 1 include: (i) iteration number (k) required to obtain the desired solution satisfying the condition
|uk+1 − uk|+ |ψ(uk)| < 10−100, (ii) estimated error |uk+1 − uk| in the consecutive first three iterations,
(iii) calculated convergence order (CCO), and (iv) time consumed (CPU time in seconds) in execution
of a program, which is measured by the command “TimeUsed[]”. The calculated convergence order
(CCO) is computed by the well-known formula (see [24])

CCO =
log |(uk+2 − α)/(uk+1 − α)|

log |(uk+1 − α)/(uk − α)| , for each k = 1, 2, . . . (37)

102

Mathematics 2020, 8, 1091

Table 1. Comparison of numerical results.

Methods k |u2 − u1| |u3 − u2| |u4 − u3| CCO CPU-Time

ψ1(u)

LLCM 6 7.84× 10−2 6.31× 10−3 1.06× 10−5 4.000 0.0784
LCNM 6 7.84× 10−2 6.31× 10−3 1.06× 10−5 4.000 0.0822

SSM 6 7.99× 10−2 6.78× 10−3 1.44× 10−5 4.000 0.0943
ZCSM 6 8.31× 10−2 7.83× 10−3 2.76× 10−5 4.000 0.0956
SBLM 6 7.84× 10−2 6.31× 10−3 1.06× 10−5 4.000 0.0874
KKBM 6 7.74× 10−2 5.97× 10−3 7.31× 10−6 4.000 0.0945

M1 6 9.20× 10−2 1.16× 10−2 1.16× 10−4 4.000 0.0774
M2 6 6.90× 10−2 3.84× 10−3 1.03× 10−6 4.000 0.0794
M3 6 6.21× 10−2 2.39× 10−3 7.06× 10−8 4.000 0.0626
M4 6 6.29× 10−2 2.54× 10−3 9.28× 10−8 4.000 0.0785

ψ2(u)

LLCM 4 2.02× 10−4 2.11× 10−17 2.51× 10−69 4.000 0.7334
LCNM 4 2.02× 10−4 2.12× 10−17 2.54× 10−69 4.000 1.0774

SSM 4 2.02× 10−4 2.12× 10−17 2.60× 10−69 4.000 1.0765
ZCSM 4 2.02× 10−4 2.15× 10−17 2.75× 10−69 4.000 1.1082
SBLM 4 2.02× 10−4 2.13× 10−17 2.62× 10−69 4.000 1.2950
KKBM 4 2.02× 10−4 2.08× 10−17 2.31× 10−69 4.000 1.1548

M1 4 1.01× 10−4 1.08× 10−18 1.43× 10−74 4.000 0.5612
M2 4 9.85× 10−5 4.94× 10−19 3.13× 10−76 4.000 0.5154
M3 4 9.85× 10−5 4.94× 10−19 3.13× 10−76 4.000 0.5311
M4 4 9.82× 10−5 4.35× 10−19 1.67× 10−76 4.000 0.5003

ψ3(u)

LLCM 4 4.91× 10−5 5.70× 10−21 1.03× 10−84 4.000 0.6704
LCNM 4 4.91× 10−5 5.70× 10−21 1.03× 10−84 4.000 0.9832

SSM 4 4.92× 10−5 5.71× 10−21 1.04× 10−84 4.000 1.0303
ZCSM 4 4.92× 10−5 5.72× 10−21 1.05× 10−84 4.000 1.0617
SBLM 4 4.92× 10−5 5.73× 10−21 1.06× 10−84 4.000 1.2644
KKBM 4 4.91× 10−5 5.66× 10−21 1.00× 10−84 4.000 1.0768

M1 3 6.35× 10−6 2.73× 10−25 0 4.000 0.3433
M2 3 4.94× 10−6 6.81× 10−26 0 4.000 0.2965
M3 3 5.02× 10−6 7.46× 10−26 0 4.000 0.3598
M4 3 4.77× 10−6 5.66× 10−26 0 4.000 0.3446

ψ4(u)

LLCM 4 1.15× 10−4 5.69× 10−17 3.39× 10−66 4.000 1.4824
LCNM 4 1.15× 10−4 5.70× 10−17 3.40× 10−66 4.000 2.5745

SSM 4 1.15× 10−4 5.71× 10−17 3.44× 10−66 4.000 2.5126
ZCSM 4 1.15× 10−4 5.72× 10−17 3.47× 10−66 4.000 2.5587
SBLM 4 1.15× 10−4 5.83× 10−17 3.79× 10−66 4.000 3.1824
KKBM 4 1.15× 10−4 5.63× 10−17 3.21× 10−66 4.000 2.4965

M1 4 4.18× 10−4 6.03× 10−19 2.60× 10−74 4.000 0.4993
M2 4 3.88× 10−5 2.24× 10−19 2.45× 10−76 4.000 0.5151
M3 4 3.92× 10−5 2.57× 10−19 4.80× 10−76 4.000 0.4996
M4 4 3.85× 10−5 1.92× 10−19 1.18× 10−76 4.000 0.4686

ψ5(u)

LLCM 4 2.16× 10−4 3.17× 10−17 1.48× 10−68 4.000 1.9042
LCNM 4 2.16× 10−4 3.17× 10−17 1.47× 10−68 4.000 2.0594

SSM 4 2.16× 10−4 3.16× 10−17 1.45× 10−68 4.000 2.0125
ZCSM 4 2.16× 10−4 3.15× 10−17 1.43× 10−68 4.000 2.1530
SBLM 4 2.16× 10−4 3.01× 10−17 1.15× 10−68 4.000 2.4185
KKBM 4 2.16× 10−4 3.24× 10−17 1.63× 10−68 4.000 2.2153

M1 4 2.48× 10−4 7.62× 10−21 6.81× 10−83 4.000 1.6697
M2 4 2.15× 10−5 2.03× 10−21 1.63× 10−85 4.000 1.7793
M3 4 2.19× 10−5 2.51× 10−21 4.35× 10−85 4.000 1.7942
M4 4 2.11× 10−5 1.66× 10−21 6.29× 10−86 4.000 1.6855

The problems considered for numerical testing are shown in Table 2.

103

Mathematics 2020, 8, 1091

Table 2. Test functions.

Functions Root (α) Multiplicity Initial Guess

ψ1(u) = u3 − 5.22u2 + 9.0825u− 5.2675 1.75 2 2.4
ψ2(u) = − u4

12 + u2

2 + u + eu(u− 3) + sin u + 3 0 3 0.6

ψ3(u) =
(

e−u − 1 + u
5

)4
4.9651142317. . . 4 5.5

ψ4(u) = u(u2 + 1)(2eu2+1 + u2 − 1) cosh4
(

πu
2

)
i 6 1.2 i

ψ5(u) =
[

tan−1 (√5
2

)− tan−1(
√

u2 − 1) +
√

6
(

tan−1 (√ u2−1
6

)
− tan−1 (1

2

√
5
6

))− 11
63

]7 1.8411294068. . . 7 1.6

From the computed results in Table 1, we can observe the good convergence behavior of the
proposed methods. The reason for good convergence is the increase in accuracy of the successive
approximations as is evident from values of the differences |uk+1 − uk|. This also implies to stable
nature of the methods. Moreover, the approximations to solutions computed by the proposed methods
have either greater or equal accuracy than those computed by existing counterparts. The value 0 of
|uk+1 − uk| indicates that the stopping criterion |uk+1 − uk|+ |ψ(uk)| < 10−100 has been satisfied at
this stage. From the calculation of calculated convergence order as shown in the second last column
in each table, we have verified the theoretical fourth order of convergence. The robustness of new
algorithms can also be judged by the fact that the used CPU time is less than that of the CPU time by
the existing techniques. This conclusion is also confirmed by similar numerical experiments on many
other different problems.

6. Conclusions

We have proposed a family of fourth order derivative-free numerical methods for obtaining
multiple roots of nonlinear equations. Analysis of the convergence has been carried out under standard
assumptions, which proves the convergence order four. The important feature of our designed scheme
is its optimal order of convergence which is rare to achieve in derivative-free methods. Some special
cases of the family have been explored. These cases are employed to solve some nonlinear equations.
The performance is compared with existing techniques of a similar nature. Testing of the numerical
results have shown the presented derivative-free method as good competitors to the already established
optimal fourth order techniques that use derivative information in the algorithm. We conclude this
work with a remark: the proposed derivative-free methods can be a better alternative to existing
Newton-type methods when derivatives are costly to evaluate.

Author Contributions: Methodology, J.R.S.; Writing—review & editing, J.R.S.; Investigation, S.K.; Data Curation,
S.K.; Conceptualization, L.J.; Formal analysis, L.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schröder, E. Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 1870, 2, 317–365.
[CrossRef]

2. Hansen E.; Patrick, M. A family of root finding methods. Numer. Math. 1977, 27, 257–269. [CrossRef]
3. Victory, H.D.; Neta, B. A higher order method for multiple zeros of nonlinear functions. Int. J. Comput. Math.

1983, 12, 329–335. [CrossRef]
4. Dong, C. A family of multipoint iterative functions for finding multiple roots of equations. Int. J.

Comput. Math. 1987, 21, 363–367. [CrossRef]
5. Osada, N. An optimal multiple root-finding method of order three. J. Comput. Appl. Math. 1994, 51, 131–133.

[CrossRef]

104

Mathematics 2020, 8, 1091

6. Neta, B. New third order nonlinear solvers for multiple roots. App. Math. Comput. 2008, 202, 162–170.
[CrossRef]

7. Li, S.; Liao, X.; Cheng, L. A new fourth-order iterative method for finding multiple roots of nonlinear
equations. Appl. Math. Comput. 2009, 215, 1288–1292.

8. Li, S.G.; Cheng, L.Z.; Neta, B. Some fourth-order nonlinear solvers with closed formulae for multiple roots.
Comput Math. Appl. 2010, 59, 126–135. [CrossRef]

9. Sharma, J.R.; Sharma, R. Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 2010,
217, 878–881. [CrossRef]

10. Zhou, X.; Chen, X.; Song, Y. Constructing higher-order methods for obtaining the multiple roots of nonlinear
equations. J. Comput. Appl. Math. 2011, 235, 4199–4206. [CrossRef]

11. Sharifi, M.; Babajee, D.K.R.; Soleymani, F. Finding the solution of nonlinear equations by a class of optimal
methods. Comput. Math. Appl. 2012, 63, 764–774. [CrossRef]

12. Soleymani, F.; Babajee, D.K.R.; Lotfi, T. On a numerical technique for finding multiple zeros and its dynamics.
J. Egypt. Math. Soc. 2013, 21, 346–353. [CrossRef]

13. Geum, Y.H.; Kim Y.I.; Neta, B. A class of two-point sixth-order multiple-zero finders of modified
double-Newton type and their dynamics. Appl. Math. Comput. 2015, 270, 387–400. [CrossRef]

14. Kansal, M.; Kanwar, V.; Bhatia, S. On some optimal multiple root-finding methods and their dynamics.
Appl. Appl. Math. 2015, 10, 349–367.

15. Traub, J.F. Iterative Methods for the Solution of Equations; Chelsea Publishing Company: New York, NY,
USA, 1982.

16. Sharma, J.R.; Kumar, S.; Jäntschi, L. On a class of optimal fourth order multiple root solvers without using
derivatives. Symmetry 2019, 11, 766. [CrossRef]

17. Kung, H.T.; Traub, J.F. Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 1974, 21,
643–651. [CrossRef]

18. Geum, Y.H.; Kim, Y.I.; Neta, B. Constructing a family of optimal eighth-order modified Newton-type
multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points.
J. Comp. Appl. Math. 2018, 333, 131–156. [CrossRef]

19. Benbernou, S.; Gala, S.; Ragusa, M.A. On the regularity criteria for the 3D magnetohydrodynamic equations
via two components in terms of BMO space. Math. Meth. Appl. Sci. 2016, 37, 2320–2325. [CrossRef]

20. Wolfram, S. The Mathematica Book, 5th ed.; Wolfram Media: Champaign, IL, USA, 2003.
21. Vrscay, E.R.; Gilbert, W.J. Extraneous fixed points, basin boundaries and chaotic dynamics for Schröder and

König rational iteration functions. Numer. Math. 1988, 52, 1–16. [CrossRef]
22. Varona, J.L. Graphic and numerical comparison between iterative methods. Math. Intell. 2002, 24, 37–46.

[CrossRef]
23. Argyros, I.K.; Magreñán, Á.A. Iterative Methods and Their Dynamics with Applications; CRC Press: New York,

NY, USA, 2017.
24. Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third-order convergence.

Appl. Math. Lett. 2000, 13, 87–93. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

105

mathematics

Article

Finite Integration Method with Shifted Chebyshev
Polynomials for Solving Time-Fractional
Burgers’ Equations

Ampol Duangpan 1, Ratinan Boonklurb 1,* and Tawikan Treeyaprasert 2

1 Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University,
Bangkok 10330, Thailand; ty_math@hotmail.com

2 Department of Mathematics and Statistics, Faculty of Science, Thammasat University, Rangsit Center,
Pathum Thani 12120, Thailand; tawikan@tu.ac.th

* Correspondence: ratinan.b@chula.ac.th

Received: 21 October 2019; Accepted: 3 December 2019; Published: 7 December 2019

Abstract: The Burgers’ equation is one of the nonlinear partial differential equations that has been
studied by many researchers, especially, in terms of the fractional derivatives. In this article, the
numerical algorithms are invented to obtain the approximate solutions of time-fractional Burgers’
equations both in one and two dimensions as well as time-fractional coupled Burgers’ equations
which their fractional derivatives are described in the Caputo sense. These proposed algorithms
are constructed by applying the finite integration method combined with the shifted Chebyshev
polynomials to deal the spatial discretizations and further using the forward difference quotient to
handle the temporal discretizations. Moreover, numerical examples demonstrate the ability of the
proposed method to produce the decent approximate solutions in terms of accuracy. The rate of
convergence and computational cost for each example are also presented.

Keywords: finite integration method; shifted Chebyshev polynomial; Caputo fractional derivative;
Burgers’ equation; coupled Burgers’ equation

1. Introduction

Fractional calculus has received much attention due to the fact that several real-world phenomena
can be demonstrated successfully by developing mathematical models using fractional calculus.
More specifically, fractional differential equations (FDEs) are the generalized form of integer order
differential equations. The applications of the FDEs have been emerging in many fields of science and
engineering such as diffusion processes [1], thermal conductivity [2], oscillating dynamical systems [3],
rheological models [4], quantum models [5], etc. However, one of the interesting issues for the FDEs
is a fractional Burgers’ equation. It appears in many areas of applied mathematics and can describe
various kinds of phenomena such as mathematical models of turbulence and shock wave traveling,
formation, and decay of nonplanar shock waves at the velocity fluctuation of sound, physical processes
of unidirectional propagation of weakly nonlinear acoustic waves through a gas-filled pipe, and so
on, see [6–8]. In order to understand these phenomena as well as further apply them in the practical
life, it is important to find their solutions. Some powerful numerical methods had been developed
for solving the fractional Burgers’ equation, such as finite difference methods (FDM) [9], Adomian
decomposition method [10], and finite volume method [11]. Moreover, in 2015, Esen and Tasbozan [12]
gave a numerical solution of time fractional Burgers’ equation by assuming that the solution u(x, t)
can be approximated by a linear combination of products of two functions, one of which involves only
x and the other involves only t. Recently, Yokus and kaya [13] used the FDM to find the numerical
solution for time fractional Burgers’ equation, however, their results contained less accuracy. In 2017,

Mathematics 2019, 7, 1201; doi:10.3390/math7121201 www.mdpi.com/journal/mathematics107

Mathematics 2019, 7, 1201

Cao et al. [14] studied solution of two-dimensional time-fractional Burgers’ equation with high and
low Reynolds numbers using discontinuous Galerkin method, however, the method involves the
triangulations of the domain which usually gives difficulty in terms of devising a computational
program. There are more numerical studies on time- and/or space-fractional Burgers’ equations which
can be found in many researches.

In this article, we present the numerical technique based on the finite integration method (FIM)
for solving time-fractional Burger’ equations and time-fractional coupled Burgers’ equations. The FIM
is one of the interesting numerical methods in solving partial differential equations (PDEs). The idea
of using FIM is to transform the given PDE into an equivalent integral equation and apply numerical
integrations to solve the integral equation afterwards. It is known that the numerical integration is
very insensitive to round-off errors, while numerical differentiation is very sensitive to round-off errors.
It is because the manipulation task of numerical differentiation involves division by small step-size
but the process of numerical integration involves multiplication by small step-size.

Originally, the FIM has been firstly proposed by Wen et al. [15]. They constructed the integration
matrices based on trapezoidal rule and radial basis functions for solving one-dimensional linear
PDEs and then Li et al. [16] continued to develop it in order to overcome the two-dimensional
problems. After that, the FIM was improved using three numerical quadratures, including Simpson’s
rule, Newton-Cotes, and Lagrange interpolation, presented by Li et al. [17]. The FIM has been
successfully applied to solve various kinds of PDEs and it was verified by comparing with several
existing methods that it offers a very stable, highly accurate and efficient approach, see [18–20].
In 2018, Boonklurb et al. [21] modified the original FIM via Chebyshev polynomials for solving
linear PDEs which provided a much higher accuracy than the FDM and those traditional FIMs.
Unfortunately, the modified FIM in [21] has never been studied for the Burgers’ equations and coupled
Burgers’ equations involving fractional order derivatives with respect to time. This became the major
motivation to carry out the current work.

In this paper, we improve the modified FIM in [21] by using the shifted Chebyshev polynomials
(FIM-SCP) to devise the numerical algorithms for finding the decent approximate solutions of
time-fractional Burgers’ equations both in one- and two-dimensional domains as well as time-fractional
coupled Burgers’ equations. Their time-fractional derivative terms are described in the Caputo sense.
We note here that the FIM in [21] is applicable for solving linear differential equations. With our
improvement in this paper, we propose the numerical methods that are applicable for solving
time-fractional Burgers’ equations. It is well known that Chebyshev polynomial have the orthogonal
property which plays an important role in the theory of approximation. The roots of the Chebyshev
polynomial can be found explicitly and when the equidistant nodes are so bad, we can overcome the
problem by using the Chebyshev nodes. If we sample our function at the Chebyshev nodes, we can
have best approximation under the maximum norm, see [22] for more details. With these advantages,
our improved FIM-SCP is constructed by approximating the solutions expressed in term of the shifted
Chebyshev expansion. We use the zeros of the Chebyshev polynomial of a certain degree to interpolate
the approximate solution. With our work, we obtain the shifted Chebyshev integration matrices in one-
and two- dimensional spaces which are used to deal with the spatial discretizations. The temporal
discretizations are approximated by the forward difference quotient.

The rest of this paper is organized as follows. In Section 2, we provide the basic definitions and the
necessary notations used throughout this paper. In Section 3, the improved FIM-SCP of constructing the
shifted Chebyshev integration matrices, both for one and two dimensions are discussed. In Section 4,
we derive the numerical algorithms for solving one-dimensional time-fractional Burgers’ equations,
two-dimensional time-fractional Burgers’ equations, and time-fractional coupled Burgers’ equations.
The numerical results are presented, which are also shown to be more computationally efficient and
accurate than the other methods with CPU time(s) and rate of convergence. The conclusion and some
discussion for the future work are provided in Section 5.

108

Mathematics 2019, 7, 1201

2. Preliminaries

Before embarking into the details of the FIM-SCP for solving time-fractional differential equations,
we provide in this section the basic definitions of fractional derivatives and shifted Chebyshev
polynomials. The necessary notations and some important facts used throughout this paper are
also given. More details on basic results of fractional calculus can be found in [23] and further details
of Chebyshev polynomials can be reached in [22].

Definition 1. Let p, μ, and t be real numbers such that t > 0, and

Cμ = {u(t) | u(t) = tpu1(t), where u1(t) ∈ C[0, ∞) and p > μ} .

If an integrable function u (t) ∈ Cμ, we define the Riemann–Liouville fractional integral operator of order
α ≥ 0 as

Iαu(t) =

⎧⎨⎩
1

Γ(α)

∫ t
0

u(s)
(t−s)1−α ds for α > 0,

u(t) for α = 0,

where Γ(·) is the well-known Gamma function.

Definition 2. The Caputo fractional derivative Dα of u(t) ∈ Cm
−1, with u(t) ∈ Cm

μ if and only if u(m) ∈ Cμ,
is defined by

Dαu(t) = Im−αDmu(t) =

⎧⎨⎩ 1
Γ(m−α)

∫ t
0

u(m)(s)
(t−s)1−m+α ds for α ∈ (m− 1, m),

u(m)(t) for α = m,

where m ∈ N and t > 0.

Definition 3. The shifted Chebyshev polynomial of degree n ≥ 0 for L ∈ R+ is defined by

T∗n (x) = cos
(

n arccos
(

2x
L
− 1
))

for x ∈ [0, L]. (1)

Lemma 1. (i) For n ∈ N, the zeros of the shifted Chebyshev polynomial T∗n (x) are

xk =
L
2

[
cos
(

2k − 1
2n

π

)
+ 1
]

, k ∈ {1, 2, 3, ..., n}. (2)

(ii) For x ∈ [0, L], the single layer integrations of the shifted Chebyshev polynomial T∗n (x) are

T∗0(x) =
∫ x

0
T∗0 (ξ) dξ = x,

T∗1(x) =
∫ x

0
T∗1 (ξ) dξ =

x2

L
− x,

T∗n(x) =
∫ x

0
T∗n (ξ) dξ =

L
4

[
T∗n+1(x)

n + 1
− T∗n−1(x)

n− 1
− 2(−1)n

n2 − 1

]
, n ∈ {2, 3, 4, ...}.

(iii) Let {xk}n
k=1 be a set of zeros of T∗n (x) defined in (2), and define the shifted Chebyshev matrix T by

T =

⎡⎢⎢⎢⎢⎣
T∗0 (x1) T∗1 (x1) · · · T∗n−1(x1)

T∗0 (x2) T∗1 (x2) · · · T∗n−1(x2)
...

...
. . .

...
T∗0 (xn) T∗1 (xn) · · · T∗n−1(xn)

⎤⎥⎥⎥⎥⎦ .

109

Mathematics 2019, 7, 1201

Then, it has the multiplicative inverse T−1 = 1
n diag(1, 2, 2, ..., 2)T#.

3. Improved FIM-SCP

In this section, we improve the technique of Boonklurb et al. [21] to construct the first and higher
order integration matrices in one and two dimensions. We note here that Boonklurb et al. used
Chebyshev polynomials to construct the integration matrices and obtained numerical algorithms for
solving linear differential equations, whereas in this work, we use the shifted Chebyshev polynomials to
construct first and higher order shifted Chebyshev integration matrices to obtain numerical algorithms
that are applicable to solve time-fractional Burgers’ equations on any domain [0, L] rather than [−1, 1].

3.1. One-Dimensional Shifted Chebyshev Integration Matrices

Let M ∈ N and L ∈ R+. Define an approximate solution u(x) of a certain PDE by the linear
combination of shifted Chebyshev polynomials (1), i.e.,

u(x) =
M−1

∑
n=0

cnT∗n (x) for x ∈ [0, L]. (3)

Let xk, k ∈ {1, 2, 3, ..., M}, be the grid points generated by the zeros of the shifted Chebyshev
polynomial T∗M(x) defined in (2). Substituting each xk into (3), then (3) can be expressed as⎡⎢⎢⎢⎢⎣

u(x1)

u(x2)
...

u(xM)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
T∗0 (x1) T∗1 (x1) · · · T∗M−1(x1)

T∗0 (x2) T∗1 (x2) · · · T∗M−1(x2)
...

...
. . .

...
T∗0 (xM) T∗1 (xM) · · · T∗M−1(xM)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

c0

c1
...

cM−1

⎤⎥⎥⎥⎥⎦ ,

and we let it be denoted by u = Tc. The coefficients {cn}M−1
n=0 can be obtained by computing c = T−1u.

Let U(1)(xk) denote the single layer integration of u from 0 to xk. Then,

U(1)(xk) =
∫ xk

0
u(ξ) dξ =

M−1

∑
n=0

cn

∫ xk

0
T∗n (ξ) dξ =

M−1

∑
n=0

cnT∗n(xk)

for k ∈ {1, 2, 3, ..., M} or in matrix form:⎡⎢⎢⎢⎢⎣
U(1)(x1)

U(1)(x2)
...

U(1)(xM)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
T∗0(x1) T∗1(x1) · · · T∗M−1(x1)

T∗0(x2) T∗1(x2) · · · T∗M−1(x2)
...

...
. . .

...
T∗0(xM) T∗1(xM) · · · T∗M−1(xM)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

c0

c1
...

cM−1

⎤⎥⎥⎥⎥⎦ .

We denote the above equation by U(1) = Tc = TT−1u := Au, where A = TT−1 := [aki]M×M is
called the “shifted Chebyshev integration matrix” for the improved FIM-SCP in one dimension. Next,
let us consider the double layer integration of u from 0 to xk that denoted by U(2)(xk). We have

U(2)(xk) =
∫ xk

0

∫ ξ2

0
u(ξ1) dξ1dξ2 =

M

∑
i=1

aki

∫ xi

0
u(ξ1) dξ1 =

M

∑
i=1

M

∑
j=1

akiaiju(xj)

for k ∈ {1, 2, 3, ..., M}, it can be written in matrix form as U(2) = A2u. The mth layer integration of u
from 0 to xk, denoted by U(m)(xk), can be obtained in the similar manner, that is,

U(m)(xk) =
∫ xk

0
· · ·
∫ ξ2

0
u(ξ1) dξ1 · · · dξm =

M

∑
im=1

· · ·
M

∑
j=1

akim · · · ai1 ju(xj)

110

Mathematics 2019, 7, 1201

for k ∈ {1, 2, 3, ..., M}, or written in the matrix form as U(m) = Amu.

3.2. Two-Dimensional Shifted Chebyshev Integration Matrices

Let M, N ∈ N and L1, L2 ∈ R+. Divide the domain [0, L1]× [0, L2] into a mesh with M nodes by N
nodes along the horizontal and the vertical directions, respectively. Let xk, where k ∈ {1, 2, 3, ..., M}, be
the grid points generated by the shifted Chebyshev nodes of T∗M(x) and let ys, where s ∈ {1, 2, 3, ..., N},
be the grid points generated by the shifted Chebyshev nodes of T∗N(y). Thus, there are M × N grid
points in total. For computation, we index the numbering of grid points along the x-direction by the
global numbering system (Figure 1a) and along y-direction by the local numbering system (Figure 1b).

Let U(1)
x and U(1)

y be the single layer integrations with respect to the variables x and y, respectively.

For each fixed y, we have U(1)
x (xk, y) in the global numbering system as

U(1)
x (xk, y) =

∫ xk

0
u(ξ, y) dξ =

M

∑
i=1

akiu(xi, y). (4)

For k ∈ {1, 2, 3, ..., M}, (4) can be expressed as U
(1)
x (·, y) = AMu(·, y), where AM = TT−1 is the

M × M matrix. Thus, for each y ∈ {y1, y2, y3, ..., yN},⎡⎢⎢⎢⎢⎢⎣
U

(1)
x (·, y1)

U
(1)
x (·, y2)

...

U
(1)
x (·, yN)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
AM 0 · · · 0

0 AM
. . .

...
...

. 0
0 · · · 0 AM

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

N blocks

⎡⎢⎢⎢⎢⎣
u(·, y1)

u(·, y2)
...

u(·, yN)

⎤⎥⎥⎥⎥⎦ ,

we shall denote it by U
(1)
x = Axu, where Ax = IN ⊗AM is the shifted Chebyshev integration matrix

with respect to x-axis and ⊗ is the Kronecker product defined in [24]. Similarly, for each fixed x,
U(1)

y (x, ys) can be expressed in the local numbering system as

U(1)
y (x, ys) =

∫ ys

0
u(x, η) dη =

N

∑
j=1

asju(x, yj). (5)

For s ∈ {1, 2, 3, ..., N}, (5) can be written as U
(1)
y (x, ·) = ANu(x, ·), where AN = TT−1 is the

N × N matrix. Therefore, for each x ∈ {x1, x2, x3, ..., xM},⎡⎢⎢⎢⎢⎢⎣
U

(1)
y (x1, ·)

U
(1)
y (x2, ·)

...

U
(1)
y (xM, ·)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
AN 0 · · · 0

0 AN
. . .

...
...

. 0
0 · · · 0 AN

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

M blocks

⎡⎢⎢⎢⎢⎣
u(x1, ·)
u(x2, ·)

...
u(xM, ·)

⎤⎥⎥⎥⎥⎦ .

We shall denote the above matrix equation by Ũ
(1)
y = Ãyũ, where Ãy = IM ⊗AN . We notice that

the elements of u and ũ are the same but different positions in the numbering system. Thus, we can

111

Mathematics 2019, 7, 1201

transform Ũ
(1)
y and ũ in the local numbering system to the global numbering system by using the

permutation matrix P = [pij]MN×MN , where each pij is defined by

pij =

⎧⎪⎪⎨⎪⎪⎩
1 ;

{
i = (s− 1)M + k,

j = (k − 1)N + s,

0 ; otherwise,

(6)

for all k ∈ {1, 2, 3, ..., M} and s ∈ {1, 2, 3, ..., N}. We obtain that U
(1)
y = PŨ

(1)
y and u = Pũ.

Therefore, we have U
(1)
y = Ayu, where Ay = PÃyP−1 = P(IM ⊗ AN)P

is the shifted Chebyshev
integration matrix with respect to y-axis in the global numbering system.

Remark 1 ([21]). Let m, n ∈ N, the multi-layer integrations in the global numbering system can be represented
in the matrix forms as follows,

• the mth layer integration with respect to x is U
(m)
x = Am

x u,

• the nth layer integration with respect to y is U
(n)
y = An

y u,

• the multi-layer integration with respect to both x and y is U
(m,n)
xy = Am

x An
y u.

1 2 3 . . . M

M+1 M+2 M+3 . . . 2M

2M+1 2M+2 2M+3 . . . 3M

...
...

(N-1)M+1 (N-1)M+2 (N-1)M+3 . . . MN

(a) Global numbering system

1 N+1 2N+1 . . . (M-1)N+1

2 N+2 2N+2 . . . (M-1)N+2

3 N+3 2N+3 . . . (M-1)N+3

...
...

N 2N 3N . . . MN

(b) Local numbering system

Figure 1. Global and local grid points.

4. The Numerical Algorithms for Time-Fractional Burgers’ Equations

In this section, we derive the numerical algorithms based on our improved FIM-SCP for solving
time-fractional Burgers’ equations both in one and two dimensions. The numerical algorithm for
solving time-fractional coupled Burgers’ equations is also proposed. To demonstrate the effectiveness
and the efficiency of our algorithms, some numerical examples are given. Moreover, we find the time
convergence rates and CPU times(s) of each example in order to demonstrate the computational cost.
We note here that we implemented our numerical algorithms in MatLab R2016a. The experimental
computer system is configured as: Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz. Finally, the graphically
numerical solutions of each example are also depicted.

4.1. Algorithm for One-Dimensional Time-Fractional Burgers’ Equation

Let L and T be positive real numbers and α ∈ (0, 1]. Consider the time-fractional Burgers’ equation
with a viscosity parameter ν > 0 as follows.

∂αu
∂tα

+ u
∂u
∂x

− ν
∂2u
∂x2 = f (x, t), x ∈ (0, L), t ∈ (0, T], (7)

112

Mathematics 2019, 7, 1201

subject to the initial condition
u(x, 0) = φ(x), x ∈ [0, L], (8)

and the boundary conditions

u(0, t) = ψ1(t) and u(L, t) = ψ2(t), t ∈ (0, T], (9)

where f (x, t), φ(x), ψ1(t), and ψ2(t) are given functions. Let us first linearize (7) by determining the
iteration at time tm = m(Δt), where Δt is the time step and m ∈ N. Then, we have

∂αu
∂tα

∣∣∣
t=tm

+ um−1 ∂um

∂x
− ν

∂2um

∂x2 = f (x, tm), (10)

where um = u(x, tm) is the numerical solution at the mth iteration. For the Caputo time-fractional
derivative term defined in Definition 2, we have

∂αu
∂tα

∣∣∣
t=tm

=
1

Γ(1− α)

∫ tm

0

us(x, s)
(tm − s)α

ds =
1

Γ(1− α)

m−1

∑
i=0

∫ ti+1

ti

us(x, s)
(tm − s)α

ds. (11)

Using the first-order forward difference quotient to approximate the derivative term in (11),
we get

∂αu
∂tα

∣∣∣
t=tm

≈ 1
Γ(1− α)

m−1

∑
i=0

∫ ti+1

ti

(tm − s)−α

(
ui+1 − ui

Δt

)
ds

=
1

Γ(1− α)

m−1

∑
i=0

(
ui+1 − ui

Δt

) [
(tm − ti)

1−α − (tm − ti+1)
1−α

1− α

]

=
1

Γ(2− α)

m−1

∑
i=0

(
ui+1 − ui

Δt

) [
(m− i)1−α − (m− i − 1)1−α

]
(Δt)1−α

=
(Δt)−α

Γ(2− α)

m−1

∑
j=0

(um−j − um−j−1)
[
(j + 1)1−α − j1−α

]
=

m−1

∑
j=0

wj(um−j − um−j−1), (12)

where wj =
(Δt)−α

Γ(2−α)

[
(j + 1)1−α − j1−α

]
. Thus, (10) becomes

w0(um − um−1) +
m−1

∑
j=1

wj(um−j − um−j−1) + um−1 ∂um

∂x
− ν

∂2um

∂x2 = f (x, tm). (13)

In order to eliminate the derivative terms in (13), we apply the modified FIM by taking the double
layer integration. Then, for each shifted Chebyshev node xk, k ∈ {1, 2, 3, ..., M}, we obtain

w0

∫ xk

0

∫ η

0
(um − um−1)dξdη +

m−1

∑
j=1

wj

∫ xk

0

∫ η

0
(um−j − um−j−1)dξdη

+
∫ xk

0

∫ η

0

(
um−1 ∂um

∂ξ

)
dξdη − νum + d1xk + d2 =

∫ xk

0

∫ η

0
f (ξ, tm)dξdη, (14)

113

Mathematics 2019, 7, 1201

where d1 and d2 are the arbitrary constants of integration. Next, we consider the nonlinear term in (14).
By using the technique of integration by parts, we have

q(xk) :=
∫ xk

0

∫ η

0

(
um−1 ∂um

∂ξ

)
dξdη

=
∫ xk

0
um−1(η)um(η) dη −

∫ xk

0

∫ η

0

∂um−1(ξ)

dξ
um(ξ) dξdη

=
∫ xk

0
um−1(η)um(η) dη −

∫ xk

0

∫ η

0

M−1

∑
n=0

cm−1
n

dT∗n (ξ)
dξ

um(ξ) dξdη

=
∫ xk

0
um−1(η)um(η) dη −

∫ xk

0

∫ η

0
T′(ξ)T−1um−1um(ξ) dξdη, (15)

where T′(ξ) =
[

dT∗0 (ξ)
dξ , dT∗1 (ξ)

dξ , dT∗2 (ξ)
dξ , ...,

dT∗M−1(ξ)
dξ

]
. Thus, for k ∈ {1, 2, 3, ..., M}, (15) can be expressed

in matrix form as⎡⎢⎢⎢⎢⎣
q(x1)

q(x2)
...

q(xM)

⎤⎥⎥⎥⎥⎦ = A

⎡⎢⎢⎢⎢⎣
um−1(x1)um(x1)

um−1(x2)um(x2)
...

um−1(xM)um(xM)

⎤⎥⎥⎥⎥⎦−A2

⎡⎢⎢⎢⎢⎣
T′(x1)T

−1um−1um(x1)

T′(x2)T
−1um−1um(x2)

...
T′(xM)T−1um−1um(xM)

⎤⎥⎥⎥⎥⎦ .

For computational convenience, we reduce the above equation into the matrix form:

q = Adiag
(

um−1
)

um −A2diag
(

T′T−1um−1
)

um := Qum, (16)

where q = [q(x1), q(x2), q(x3)..., q(xM)], Q = Adiag(um−1)−A2diag(T′T−1um−1), and

T′ =

⎡⎢⎢⎢⎢⎣
T′(x1)

T′(x2)
...

T′(xM)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

dT∗0 (ξ)
dξ

∣∣
x1

dT∗1 (ξ)
dξ

∣∣
x1

· · · dT∗M−1(ξ)
dξ

∣∣
x1

dT∗0 (ξ)
dξ

∣∣
x2

dT∗1 (ξ)
dξ

∣∣
x2

· · · dT∗M−1(ξ)
dξ

∣∣
x2

...
...

. . .
...

dT∗0 (ξ)
dξ

∣∣
xM

dT∗1 (ξ)
dξ

∣∣
xM

· · · dT∗M−1(ξ)
dξ

∣∣
xM

⎤⎥⎥⎥⎥⎥⎥⎦ . (17)

Consequently, for k ∈ {1, 2, 3, ..., M} by hiring (16) and the idea of Boonklurb et al. [21], we can
convert (14) into the matrix form as

w0A2(um − um−1) +
m−1

∑
j=1

wjA
2(um−j − um−j−1) + Qum − νum + d1x + d2i = A2fm

[
w0A2 + Q− νI

]
um + d1x + d2i = A2fm + w0A2um−1 −

m−1

∑
j=1

wjA
2(um−j − um−j−1), (18)

where I is the M × M identity matrix, i = [1, 1, 1, ..., 1]#, um = [u(x1, tm), u(x2, tm), ..., u(xM, tm)]#,
x = [x1, x2, x3, ..., xM]#, fm = [f (x1, tm), f (x2, tm), ..., f (xM, tm)]# and A = TT−1. For the boundary
conditions (9), we can change them into the vector forms by using the linear combination of the shifted
Chebyshev polynomial at the mth iteration as follows.

u(0, tm) =
M−1

∑
n=0

cm
n T∗n (0) =

M−1

∑
n=0

cm
n (−1)n := tlc

m = tlT
−1um = ψ1(tm), (19)

u(L, tm) =
M−1

∑
n=0

cm
n T∗n (L) =

M−1

∑
n=0

cm
n (1)

n := trcm = trT−1um = ψ2(tm), (20)

114

Mathematics 2019, 7, 1201

where tl = [1,−1, 1, ..., (−1)M−1] and tr = [1, 1, 1, ..., 1].
From (18)–(20), we can construct the following system of iterative linear equations that contains

M + 2 unknowns⎡⎢⎣ w0A2 + Q− νI x i

tlT
−1 0 0

trT−1 0 0

⎤⎥⎦
⎡⎢⎣ um

d1

d2

⎤⎥⎦ =

⎡⎢⎣ A2fm + w0A2um−1 − s

ψ1(tm)

ψ2(tm)

⎤⎥⎦ , (21)

where s = ∑m−1
j=1 wjA

2(um−j − um−j−1) for m > 1, and s = 0 if m = 1. Thus, starting from the

initial condition u0 = [φ(x1), φ(x2), φ(x3), ..., φ(xM)]#, the approximate solution um can be obtained
by solving the system (21). We note here that, for any fixed t ∈ (0, T], the approximate solution u(x, t)
for each arbitrary x ∈ [0, L] can be computed from

u(x, t) =
M−1

∑
n=0

cnT∗n (x) = txcm = txT−1um,

where tx = [T∗0 (x), T∗1 (x), T∗2 (x), ..., T∗M−1(x)] and um is the final iterative solution of (21).

Example 1. Consider the time-fractional Burgers’ Equation (7) for x ∈ (0, 1) and t ∈ (0, 1] with

f (x, t) =
2t2−αex

Γ(3− α)
+ t4e2x − νt2ex,

subject to the initial condition
u(x, 0) = 0, x ∈ [0, 1]

and the boundary conditions
u(0, t) = t2, u(1, t) = et2, t ∈ (0, 1].

The exact solution given by Esen and Tasbozan [12] is u∗(x, t) = t2ex. In the numerical test, we choose
the kinematic viscosity ν = 1, α = 0.5 and Δt = 0.00025. Table 1 presents the exact solution u∗(x, 1),
the numerical solution u(x, 1) by using our FIM-SCP in Algorithm 1, and the solution obtained by the quadratic
B-spline finite element Galerkin method (QBS-FEM) proposed by Esen and Tasbozan [12]. The comparison
between the absolute errors Ea (as the difference in absolute value between the approximate solution and the
exact solution) of the two methods shows that our FIM-SCP is more accurate than QBS-FEM for M = 10
and similar accuracy for other M. Algorithm 1 acquires the significant improvement in accuracy with less
computational nodal points M and regardless the time steps Δt and the fractional order derivatives α. With the
selection of α = 0.5 and M = 40, Table 2 shows the comparison between the exact solution u∗(x, 1) and the
numerical solution u(x, 1) using Algorithm 1 for various values of Δt ∈ {0.05, 0.01, 0.005, 0.001}. Table 3
illustrates the comparison between the exact solution u∗(x, 1) and the numerical solution u(x, 1) by our method
for Δt = 0.001, M = 40, and α ∈ {0.1, 0.25, 0.75, 0.9}. Moreover, the convergence rates are estimated by
using our FIM-SCP with the discretization points M = 20 and step sizes Δt = 2−k for k ∈ {4, 5, 6, 7, 8}.
In Table 4, we observe that these time convergence rates for the �∞ norm indeed are almost O(Δt) for the different
α ∈ (0, 1). Then, we also find the computational cost in term of CPU time(s) in Table 4. Finally, the graph of our
approximate solutions, u(x, t), for different times, t, and the surface plot of the solution under the parameters
ν = 1, M = 40, and Δt = 0.001, are provided in Figure 2.

115

Mathematics 2019, 7, 1201

Algorithm 1 The numerical algorithm for solving one-dimensional time-fractional Burgers’ equation

Input: α, ν, x, L, T, M, Δt, φ(x), ψ1(t), ψ2(t), and f (x, t).
Output: An approximate solution u(x, T).

1: Set xk =
L
2
[

cos
(2k−1

2M π
)
+ 1
]

for k ∈ {1, 2, 3, ..., M}.

2: Compute x, i, A, tl , tr, tx, I, T, T, T−1 and u0.

3: Set t0 = 0 and m = 0.

4: while tm ≤ T do

5: Set m = m + 1.

6: Set tm = mΔt.
7: Set s = 0.

8: for j = 1 to m− 1 do

9: Compute wj =
(Δt)−α

Γ(2−α)

[
(j + 1)1−α − j1−α

]
.

10: Compute s = s + wjA
2(um−j − um−j−1).

11: end for

12: Compute fm = [f (x1, tm), f (x2, tm), f (x3, tm), ..., f (xM, tm)]#.

13: Find um by solving the iterative linear system (21).

14: end while

15: return u(x, T) = txT−1um.

Table 1. Comparison of absolute errors Ea between QBS-FEM and FIM-SCP for Example 1.

M x u∗(x, 1)
QBS-FEM [12] FIM-SCP Algorithm 1

u(x, 1) Ea u(x, 1) Ea

10

0.2 1.221403 1.222203 8.00× 10−4 1.221462 5.9578× 10−5

0.4 1.491825 1.493437 1.61× 10−3 1.491934 1.0910× 10−4

0.6 1.822119 1.824294 2.18× 10−3 1.822258 1.3933× 10−4

0.8 2.225541 2.227650 2.11× 10−3 2.225666 1.2511× 10−4

20

0.2 1.221403 1.221644 2.41× 10−4 1.221462 5.9578× 10−5

0.4 1.491825 1.492287 4.62× 10−4 1.491934 1.0910× 10−4

0.6 1.822119 1.822727 6.08× 10−4 1.822258 1.3933× 10−4

0.8 2.225541 2.226118 5.77× 10−4 2.225666 1.2511× 10−4

40

0.2 1.221403 1.221493 9.00× 10−5 1.221462 5.9578× 10−5

0.4 1.491825 1.491996 1.71× 10−4 1.491934 1.0910× 10−4

0.6 1.822119 1.822342 2.03× 10−4 1.822258 1.3933× 10−4

0.8 2.225541 2.225747 2.06× 10−4 2.225666 1.2511× 10−4

Table 2. Absolute errors Ea at different Δt for Example 1 by FIM-SCP with α = 0.5 and M = 40.

x u∗(x, 1)
Δt = 0.05 Δt = 0.01 Δt = 0.005 Δt = 0.001

u(x, 1) Ea u(x, 1) Ea u(x, 1) Ea u(x, 1) Ea

0.1 1.1051 1.1116 6.44× 10−3 1.1064 1.25× 10−3 1.1057 6.22× 10−4 1.1052 1.23× 10−4

0.3 1.3498 1.3677 1.78× 10−2 1.3533 3.48× 10−3 1.3515 1.73× 10−3 1.3502 3.44× 10−4

0.5 1.6487 1.6750 2.63× 10−2 1.6538 5.17× 10−3 1.6512 2.57× 10−3 1.6492 5.11× 10−4

0.7 2.0137 2.0423 2.86× 10−2 2.0194 5.67× 10−3 2.0165 2.82× 10−3 2.0143 5.63× 10−4

0.9 2.4596 2.4763 1.67× 10−2 2.4629 3.36× 10−3 2.4612 1.68× 10−3 2.4599 3.35× 10−4

116

Mathematics 2019, 7, 1201

Table 3. Absolute errors Ea at different α for Example 1 by FIM-SCP with Δt = 0.001 and M = 40.

x u∗(x, 1)
α = 0.1 α = 0.25 α = 0.75 α = 0.9

u(x, 1) Ea u(x, 1) Ea u(x, 1) Ea u(x, 1) Ea

0.1 1.1051 1.1053 1.28× 10−4 1.1052 1.26× 10−4 1.1052 1.24× 10−4 1.1053 1.37× 10−4

0.3 1.3498 1.3502 3.60× 10−4 1.3502 3.54× 10−4 1.3502 3.45× 10−4 1.3502 3.77× 10−4

0.5 1.6487 1.6492 5.34× 10−4 1.6492 5.26× 10−4 1.6492 5.11× 10−4 1.6492 5.54× 10−4

0.7 2.0137 2.0143 5.86× 10−4 2.0143 5.77× 10−4 2.0143 5.62× 10−4 2.0143 6.05× 10−4

0.9 2.4596 2.4599 3.46× 10−4 2.4599 3.42× 10−4 2.4599 3.35× 10−4 2.4599 3.58× 10−4

Table 4. Time convergence rates and CPU time(s) for Example 1 by FIM-SCP with M = 20.

Δt α = 0.1 α = 0.5 α = 0.9

‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s)

2−4 3.65× 10−2 1.1926 0.2502 3.60× 10−2 1.1912 0.2879 4.04× 10−2 1.1607 0.2651
2−5 1.83× 10−2 1.0890 0.2195 1.79× 10−2 1.0902 0.2014 2.00× 10−2 1.0770 0.1979
2−6 9.18× 10−3 1.0438 0.4783 8.92× 10−3 1.0448 0.5042 9.88× 10−3 1.0379 0.4535
2−7 4.59× 10−3 1.0217 1.3092 4.44× 10−3 1.0221 1.4068 4.88× 10−3 1.0189 1.3392
2−8 2.30× 10−3 1.0108 4.3165 2.21× 10−3 1.0110 4.5113 2.42× 10−3 1.0097 4.6495

(a) u(x, t) at different times t (b) Surface plot of u(x, t)

Figure 2. The graphical results of Example 1 for ν = 1, M = 40, and Δt = 0.001.

Example 2. Consider the time-fractional Burgers’ Equation (7) over (0, 1)× (0, 1] with f (x, t) = 0, subject to
the initial condition

u(x, 0) =
[
−1 + 5 cosh

(x
2

)
− 5 sinh

(x
2

)]−1
, x ∈ [0, 1],

and the boundary conditions

u(0, t) =
[
5e−

tα
4Γ(1+α) − 1

]−1
and u(1, t) =

[
5e−

(
1
2+

tα
4Γ(1+α)

)
− 1
]−1

, t ∈ (0, 1].

The exact solution given by Yokus and Kaya [13] is u∗(x, t) =
[
5e−
(

x
2 +

tα
4Γ(1+α)

)
− 1
]−1. In our numerical

test, we choose the kinematic viscosity ν = 1, α = 0.8, M = 50 and Δt = 0.001. Table 5 presents the exact
solution u∗(x, 0.02), the numerical solution u(x, 0.02) by using our FIM-SCP in Algorithm 1, and the solution
obtained by using the expansion method and the Cole–Hopf transformation (EPM-CHT) proposed by Yokus and
Kaya in [13]. The error norms L2 and L∞ of this problem between our FIM-SCP and EPM-CHT with α = 0.8
for the various values of nodal grid points M ∈ {5, 10, 20, 25, 50} and step size Δt = 1/M are illustrated in
Table 6. We see that our Algorithm 1 achieves improved accuracy with less computational cost. Furthermore,

117

Mathematics 2019, 7, 1201

we estimate the convergence rates of time for this problem by using our FIM-SCP with the discretization nodes
M = 20 and step sizes Δt = 2−k for k ∈ {4, 5, 6, 7, 8} which are tabulated in Table 7. We observe that these rates
of convergence for the �∞ norm indeed are almost linear convergence O(Δt) for the different values α ∈ (0, 1).
Then, we also calculate the computational cost in term of CPU time(s) as shown in Table 7. Figure 3a,b depict
the numerical solutions u(x, t) at different times t and the surface plot of u(x, t), respectively.

Table 5. Comparison of the exact and numerical solutions for Example 2 for α = 0.8 and M = 50.

x u∗(x, 0.02)
EPM-CHT [13] FIM-SCP Algorithm 1

u(x, 0.02) Ea u(x, 0.02) Ea

0.02 0.256906 0.256321 5.84566× 10−4 0.256913 6.7146× 10−6

0.04 0.260159 0.259566 5.93809× 10−4 0.260173 1.3390× 10−5

0.06 0.263463 0.262860 6.03243× 10−4 0.263483 2.0005× 10−5

0.08 0.266817 0.266204 6.12874× 10−4 0.266844 2.6539× 10−5

0.10 0.270223 0.269601 6.22707× 10−4 0.270256 3.2970× 10−5

Table 6. Comparison of the error norms L2 and L∞ for Example 2 with α = 0.8 and Δt = 1/M.

M EPM-CHT [13] FIM-SCP Algorithm 1

L2 L∞ L1 L2 L∞

5 4.2568× 10−2 7.0345× 10−2 3.6257× 10−4 1.8745× 10−4 1.1494× 10−5

10 4.2708× 10−3 6.3200× 10−3 1.4701× 10−4 5.1150× 10−5 2.1754× 10−5

20 1.1366× 10−3 1.9300× 10−3 2.9688× 10−4 7.2352× 10−5 2.1754× 10−5

25 7.8890× 10−4 1.4410× 10−4 3.7153× 10−4 8.0893× 10−5 2.1754× 10−5

50 2.7690× 10−4 6.6400× 10−4 7.4421× 10−4 1.1440× 10−5 2.1755× 10−5

Table 7. Time convergence rates and CPU time(s) for Example 2 by FIM-SCP with M = 20.

Δt α = 0.1 α = 0.5 α = 0.9

‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s)

2−4 3.25× 10−3 1.0396 0.2123 1.22× 10−2 0.9895 0.2128 1.88× 10−2 1.0299 0.2052
2−5 3.39× 10−3 1.0106 0.3159 6.05× 10−3 0.9951 0.3192 9.44× 10−3 1.0150 0.2836
2−6 4.25× 10−3 1.0037 0.4858 3.01× 10−3 0.9976 0.4624 4.74× 10−3 1.0075 0.4753
2−7 4.41× 10−3 1.0015 1.4507 2.91× 10−3 1.0089 1.4495 2.37× 10−3 1.0037 1.4213
2−8 4.50× 10−3 1.0007 4.7479 3.35× 10−3 1.0037 4.3760 1.18× 10−3 1.0019 4.5449

(a) u(x, t) at different times t (b) Surface plot of u(x, t)

Figure 3. The graphical solutions of Example 2 for ν = 1, M = 40, and Δt = 0.001.

118

Mathematics 2019, 7, 1201

4.2. Algorithm for Two-Dimensional Time-Fractional Burgers’ Equation

Let L1 and L2 be positive real numbers, Ω = (0, L1) × (0, L2), and α ∈ (0, 1]. Consider the
two-dimensional time-fractional Burgers’ equation with a viscosity ν > 0,

∂αu
∂tα

+ u
(

∂u
∂x

+
∂u
∂y

)
− ν

(
∂2u
∂x2 +

∂2u
∂y2

)
= f (x, y, t), (x, y) ∈ Ω, t ∈ (0, T], (22)

subject to the initial condition
u(x, y, 0) = φ(x, y), (x, y) ∈ Ω, (23)

and the boundary conditions

u(0, y, t) = ψ1(y, t), u(L1, y, t) = ψ2(y, t), y ∈ [0, L2], t ∈ (0, T],

u(x, 0, t) = ψ3(x, t), u(x, L2, t) = ψ4(x, t), x ∈ [0, L1], t ∈ (0, T],
(24)

where f , φ, ψ1, ψ2, ψ3, and ψ4 are given functions. As ∂
∂x (

u2

2) = u ∂u
∂x and ∂

∂y (
u2

2) = u ∂u
∂y , we can

transform (22) to

∂αu
∂tα

+
∂

∂x

(
u2

2

)
+

∂

∂y

(
u2

2

)
− ν

(
∂2u
∂x2 +

∂2u
∂y2

)
= f (x, y, t). (25)

Let us linearize (25) by imposing the iteration at time tm = m(Δt) for m ∈ N and Δt is an arbitrary
time step. Thus, we have

∂αu
∂tα

∣∣∣
t=tm

+
∂

∂x

(
um−1

2
um
)
+

∂

∂y

(
um−1

2
um
)
− ν

(
∂2um

∂x2 +
∂2um

∂y2

)
= f m, (26)

where f m = f (x, y, tm) and um = u(x, y, tm) is the numerical solution at the mth iteration. Next,
consider the fractional order derivative in the Caputo sense as defined in Definition 2, by using (12),
then (26) becomes

m−1

∑
j=0

wj(um−j − um−j−1) +
∂

∂x

(
um−1

2
um
)
+

∂

∂y

(
um−1

2
um
)
− ν

(
∂2um

∂x2 +
∂2um

∂y2

)
= f m,

where wj =
(Δt)−α

Γ(2−α)

[
(j + 1)1−α − j1−α

]
. The above equation can be transformed to the integral equation

by taking twice integrations over both x and y, we have

m−1

∑
j=0

wj

∫ y

0

∫ η2

0

∫ x

0

∫ ξ2

0
(um−j − um−j−1)dξ1dξ2dη1dη2 +

1
2

∫ y

0

∫ η2

0

∫ x

0
(um−1um)dξ2dη1dη2

+
1
2

∫ y

0

∫ x

0

∫ ξ2

0
(um−1um)dξ1dξ2dη2 − ν

∫ y

0

∫ η2

0
umdη1dη2 − ν

∫ x

0

∫ ξ2

0
umdξ1dξ2

+ xg1(y) + g2(y) + yh1(x) + h2(x) =
∫ y

0

∫ η2

0

∫ x

0

∫ ξ2

0
f (ξ1, η1, tm)dξ1dξ2dη1dη2, (27)

where g1(y), g2(y), h1(x), and h2(x) are the arbitrary functions emerged in the process of integration
which can be approximated by the shifted Chebyshev polynomial interpolation. For r ∈ {1, 2}, define

hr(x) =
M−1

∑
i=0

h(i)r T∗i (x) and gr(y) =
N−1

∑
j=0

g(j)
r T∗j (y), (28)

where h(i)r and g(j)
r , for i ∈ {0, 1, 2, ..., M − 1} and j ∈ {0, 1, 2, ..., N − 1}, are the unknown values of

these interpolated points. Next, we divide the domain Ω into a mesh with M nodes by N nodes along x-

119

Mathematics 2019, 7, 1201

and y-directions, respectively. We denote the nodes along the x-direction by x = {x1, x2, x3, ..., xM} and
the nodes along the y-direction by y = {y1, y2, y3, ..., yN}. These nodes along the x- and y-directions
are the zeros of shifted Chebyshev polynomials T∗M(x) and T∗N(y), respectively. Thus, the total number
of grid points in the system is P = M × N, where each point is an entry in the set of Cartesian product
x × y ordering as global type system, i.e., (xi, yi) ∈ x × y for i ∈ {1, 2, 3, ..., P}. By substituting each
node in (27) and hiring Ax and Ay in Section 3.2, we can change (27) to the matrix form as

m−1

∑
j=0

wjA
2
xA2

y(u
m−j − um−j−1) +

1
2

AxA2
ydiag(um−1)um +

1
2

A2
xAydiag(um−1)um

−νA2
yum − νA2

xum + XΦyg1 + Φyg2 + YΦxh1 + Φyh2 = A2
xA2

yfm.

Simplifying the above equation yields

Kum + XΦyg1 + Φyg2 + YΦxh1 + Φyh2 = A2
xA2

yfm + w0A2
xA2

yum−1 − s, (29)

where each parameter contained in (29) can be defined as follows.

K = w0A2
xA2

y +
1
2 AxA2

ydiag(um−1) + 1
2 A2

xAydiag(um−1)− νA2
y − νA2

x,

s = ∑m−1
j=1 wjA

2
xA2

y(u
m−j − um−j−1),

X = diag(x1, x2, x3, ..., xP),

Y = diag(y1, y2, y3, ..., yP),

hr = [h(0)r , h(1)r , h(2)r , ..., h(M−1)
r]# for r ∈ {1, 2},

gr = [g(0)r , g(1)r , g(2)r , ..., g(N−1)
r]# for r ∈ {1, 2},

fm = [f (x1, y1, tm), f (x2, y2, tm), f (x3, y3, tm), ..., f (xP, yP, tm)]#,

um = [u(x1, y1, tm), u(x2, y2, tm), u(x3, y3, tm), ..., u(xP, yP, tm)]#.

From (28), we obtain Φx and Φy, where

Φx =

⎡⎢⎢⎢⎢⎣
T∗0 (x1) T∗1 (x1) · · · T∗M−1(x1)

T∗0 (x2) T∗1 (x2) · · · T∗M−1(x2)
...

...
. . .

...
T∗0 (xP) T∗1 (xP) · · · T∗M−1(xP)

⎤⎥⎥⎥⎥⎦ and Φy =

⎡⎢⎢⎢⎢⎣
T∗0 (y1) T∗1 (y1) · · · T∗N−1(y1)

T∗0 (y2) T∗1 (y2) · · · T∗N−1(y2)
...

...
. . .

...
T∗0 (yP) T∗1 (yP) · · · T∗N−1(yP)

⎤⎥⎥⎥⎥⎦ .

For the boundary conditions (24), we can transform them into the matrix form, similar the idea
in [21], by employing the linear combination of the shifted Chebyshev polynomials as follows,

• Left & Right boundary conditions: For each fixed y ∈ {y1, y2, y3, ..., yN}, then

u(0, y, tm) =
M−1

∑
n=0

cm
n T∗n (0) := tlT

−1
M um(·, y) = ψ1(y, tm) ⇒ (IN ⊗ tlT

−1
M)um = Ψ1 (30)

u(L1, y, tm) =
M−1

∑
n=0

cm
n T∗n (L1) := trT−1

M um(·, y) = ψ2(y, tm) ⇒ (IN ⊗ trT−1
M)um = Ψ2 (31)

• Bottom & Top boundary conditions: For each fixed x ∈ {x1, x2, x3, ..., xM}, then

u(x, 0, tm) =
N−1

∑
n=0

cm
n T∗n (0) := tbT−1

N um(x, ·) = ψ3(x, tm) ⇒ (IM ⊗ tbT−1
N)P−1um = Ψ3 (32)

u(x, L2, tm) =
N−1

∑
n=0

cm
n T∗n (L2) := ttT

−1
N um(x, ·) = ψ4(x, tm) ⇒ (IM ⊗ ttT

−1
N)P−1um = Ψ4 (33)

120

Mathematics 2019, 7, 1201

where IM and IN are, respectively, the M × M and N × N identity matrices, T−1
M and T−1

N are,
respectively, the M × M and N × N matrices defined in Lemma 1, P is defined in (6), and the other
parameters are

tr = [1, 1, 1, ..., 1M−1],

tt = [1, 1, 1, ..., 1N−1],

tl = [1,−1, 1, ..., (−1)M−1],

tb = [1,−1, 1, ..., (−1)N−1],

Ψi = [ψi(y1, tm), ψi(y2, tm), ψi(y3, tm), ..., ψi(yN , tm)]# for i ∈ {1, 2},

Ψj = [ψj(x1, tm), ψj(x2, tm), ψj(x3, tm), ..., ψj(xM, tm)]# for j ∈ {3, 4}.

Finally, we can construct the system of iterative linear equations from Equations (29)–(33) for a
total of P + 2(M + N) unknowns, including um, g1, g2, h1 and h2, as follows,⎡⎢⎢⎢⎢⎢⎣

K XΦy Φy YΦx Φx

IN ⊗ tlT
−1
M 0 0 · · · 0

IN ⊗ trT−1
M 0 0 · · · 0

(IM ⊗ tbT−1
N)P−1 ...

...
. . .

...
(IM ⊗ ttT

−1
N)P−1 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
um

g1

g2

h1

h2

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
A2

xA2
y(f

m + w0um−1)− s

Ψ1

Ψ2

Ψ3

Ψ4

⎤⎥⎥⎥⎥⎥⎦ . (34)

Thus, the approximate solutions um can be reached by solving (34) in conjunction with the
initial condition (23), that is, u0 = [φ(x1, y1), φ(x2, y2), ..., φ(xP, yP)]

#, where for all (xi, yi) ∈ x × y.
Therefore, an arbitrary solution u(x, y, t) at any fixed time t can be estimated from

u(x, y, t) = tyT−1
N (IN ⊗ txT−1

M)um,

where tx = [T∗0 (x), T∗1 (x), T∗2 (x), ..., T∗M−1(x)] and ty = [T∗0 (y), T∗1 (y), T∗2 (y), ..., T∗N−1(y)].

Example 3. Consider the 2D time-fractional Burgers’ Equation (22) for (x, y) ∈ Ω = (0, 1)× (0, 1) and
t ∈ (0, 1] with the forcing term

f (x, y, t) = (x2 − x)(y2 − y)
[

2t1−α

Γ(2− α)
+ t2(x + y− 1)(2xy− x − y)

]
− 2νt(x2 + y2 − x − y),

subject to the both homogeneous of initial and boundary conditions. The analytical solution of this problem is
u∗(x, y, t) = t(x2 − x)(y2 − y). For the numerical test, we pick ν = 100, α = 0.5, Δt = 0.01, and M = N = 10.
In Table 8, the solutions approximated by our FIM-SCP Algorithm 2 are presented in the space domain Ω for
various times t. We test the accuracy of our method by measuring it with the absolute error Ea. In addition,
we seek the rates of convergence via �∞ norm of our Algorithm 2 with the nodal points M = N = 10 and
different step sizes Δt = 2−k for k ∈ {4, 5, 6, 7, 8}, we found that these convergence rates approach to the
linear convergence O(Δt) as shown in Table 9 together with the CPU times(s). Also, the graphically numerical
solutions are provided in Figure 4.

Table 8. Exact and numerical solutions of Example 3 for α = 0.5, M = N = 10 and Δt = 0.01.

(x, y) t = 0.25 t = 0.50 t = 0.75 t = 1.00

u(x, y, t) Ea u(x, y, t) Ea u(x, y, t) Ea u(x, y, t) Ea

(0.2,0.2) 0.00641 6.73× 10−6 0.0128 9.52× 10−6 0.0192 1.17× 10−5 0.0256 1.35× 10−5

(0.4,0.4) 0.01442 1.70× 10−5 0.0288 2.41× 10−5 0.0432 2.95× 10−5 0.0576 3.41× 10−5

(0.7,0.7) 0.01104 1.25× 10−5 0.0221 1.77× 10−5 0.0331 2.16× 10−5 0.0441 2.50× 10−5

(0.9,0.9) 0.00203 1.90× 10−6 0.0041 2.68× 10−6 0.0061 3.28× 10−6 0.0081 3.79× 10−6

121

Mathematics 2019, 7, 1201

Algorithm 2 The numerical algorithm for solving two-dimensional time-fractional Burgers’ equation

Input: α, ν, x, y, T, M, L1, L2, Δt, φ(x, y), ψ1(y, t), ψ2(y, t), ψ3(x, t), ψ4(x, t) and f (x, y, t).
Output: An approximate solution u(x, y, T).

1: Set xk =
L1
2
[

cos
(2k−1

2M π
)
+ 1
]

for k ∈ {1, 2, 3, ..., M}.

2: Set ys =
L2
2
[

cos
(2k−1

2N π
)
+ 1
]

for s ∈ {1, 2, 3, ..., N}.

3: Compute X, Y, P, tx, ty, tl , tr, tb, tt, IM, IN , TM, TN , T−1
M , T−1

N , Ax, Ay and u0.

4: Calculate the total number of grid points P = M × N.

5: Construct xi and yi in the global numbering system for i ∈ {1, 2, 3, ..., P}.

6: Set t0 = 0 and m = 0.

7: while tm ≤ T do

8: Set m = m + 1.

9: Set tm = mΔt.
10: Set s = 0.

11: for j = 1 to m− 1 do

12: Compute wj =
(Δt)−α

Γ(2−α)
[(j + 1)1−α − j1−α].

13: Compute s = s + wjA
2
xA2

y(u
m−j − um−j−1).

14: end for

15: Compute K, Ψ1, Ψ2, Ψ3, Ψ4 and fm.

16: Find um by solving the iterative linear system (34).

17: end while

18: return u(x, y, T) = tyT−1
N (IN ⊗ txT−1

M)um.

Table 9. Time convergence rates and CPU time(s) for Example 3 by FIM-SCP with M = N = 10.

Δt α = 0.1 α = 0.5 α = 0.9

‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s)

2−4 3.69× 10−3 0.99950 0.9472 3.68× 10−3 0.99969 0.9694 3.68× 10−3 0.99994 0.9947
2−5 1.83× 10−3 0.99950 1.3985 1.82× 10−3 0.99969 1.5196 1.83× 10−3 0.99994 1.6522
2−6 8.97× 10−4 0.99949 3.7041 8.94× 10−4 0.99969 4.0292 8.96× 10−4 0.99994 4.4597
2−7 4.32× 10−4 0.99947 13.718 4.29× 10−4 0.99968 12.710 4.32× 10−4 0.99994 12.606
2−8 2.00× 10−4 0.99943 39.703 1.97× 10−4 0.99965 43.573 1.99× 10−4 0.99994 40.684

(a) u(x, y, t) at different times t (b) Surface plot of u(x, y, 1)

Figure 4. The graphical solutions of Example 3 for ν = 100, M = N = 15, and Δt = 0.01..

122

Mathematics 2019, 7, 1201

Example 4. Consider the 2D Burgers’ Equation (22) for x ∈ Ω = (0, 1)× (0, 1) and t ∈ (0, 1] with the
homogeneous initial condition and the forcing term

f (x, y, t) =
6t3−α(1− x2)2(1− y2)2

Γ(4− α)
+ 4t6(1− x2)3(1− y2)3(x2y + xy2 − x − y)

−0.4t3
[
(y2 − 1)2(3x2 − 1) + (x2 − 1)2(3y2 − 1)

]
,

subject to the boundary conditions corresponding to the analytical solution given by Cao et al. [14] is u∗(x, y, t) =
t3(1− x2)2(1− y2)2. By picking the parameters ν = 0.1, α = 0.5, and M = N = 10, the comparison of error
norm L2 between our FIM-SCP via Algorithm 2 and the discontinuous Galerkin method combined with finite
different scheme (DGM-FDS) presented by Cao et al. [14] are displayed in Table 10 at time t = 0.1. We can see
that our method gives a higher accuracy than the DGM-FDS at the same step size Δt. Next, we provide the CPU
times(s) and time convergence rates based on �∞ norm of our algorithm for this problem in Table 11. Then, we
see that they converge to the linear rate O(Δt). Finally, the graphical solutions of this Example 4 are provided in
Figure 5.

Table 10. Error norms L2 between DGM-FDS and FIM-SCP of Example 4 for M = N = 10.

Δt α = 0.7 α = 0.8 α = 0.9

DGM-FDS [14] Algorithm 2 DGM-FDS [14] Algorithm 2 DGM-FDS [14] Algorithm 2

0.0001 1.46× 10−4 3.0477× 10−7 1.46× 10−4 7.2386× 10−7 1.48× 10−4 1.6700× 10−6

0.00005 7.83× 10−5 1.2387× 10−7 7.76× 10−5 3.1525× 10−7 7.79× 10−5 7.7930× 10−7

0.000025 4.28× 10−5 5.0314× 10−8 4.23× 10−5 1.3726× 10−7 3.97× 10−5 3.6361× 10−7

Table 11. Time convergence rates and CPU time(s) for Example 4 by FIM-SCP with M = N = 10.

Δt α = 0.1 α = 0.5 α = 0.9

‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s)

2−4 1.76× 10−4 1.1426 0.9535 1.76× 10−4 1.1426 1.0627 1.75× 10−4 1.1428 1.0036
2−5 9.08× 10−5 1.0666 2.0538 9.08× 10−5 1.0666 1.7050 9.06× 10−5 1.0667 1.6107
2−6 4.61× 10−5 1.0323 4.3500 4.61× 10−5 1.0323 4.5234 4.60× 10−5 1.0323 3.9589
2−7 2.33× 10−5 1.0159 12.655 2.32× 10−5 1.0159 12.406 2.32× 10−5 1.0159 11.924
2−8 1.67× 10−5 1.0079 42.025 1.17× 10−5 1.0079 39.778 1.16× 10−5 1.0079 41.899

(a) u(x, y, t) at different times t (b) Surface plot of u(x, y, 1)

Figure 5. The graphical solutions of Example 4 for ν = 0.1, M = N = 15, and Δt = 0.01.

123

Mathematics 2019, 7, 1201

4.3. Algorithm for Time-Fractional Coupled Burgers’ Equation

Consider the following coupled Burgers’ equation with fractional time derivative for α ∈ (0, 1]

∂αu
∂tα

=
∂2u
∂x2 + 2u

∂u
∂x

− ∂(uv)
∂x

+ f (x, t), x ∈ (0, L), t ∈ (0, T]

∂βv
∂tβ

=
∂2v
∂x2 + 2v

∂v
∂x

− ∂(uv)
∂x

+ g(x, t), x ∈ (0, L), t ∈ (0, T]

(35)

subject to the initial conditions
u(x, 0) = φ1(x), x ∈ [0, L],

v(x, 0) = φ2(x), x ∈ [0, L],
(36)

and the boundary conditions

u(0, t) = ψ1(t), u(L, t) = ψ2(t), t ∈ (0, T],

v(0, t) = ψ3(t), v(L, t) = ψ4(t), t ∈ (0, T],
(37)

where f (x, t), g(x, t), φ1 (x) , φ2 (x), ϕ1 (t), ϕ2 (t) , ϕ3 (t) , and ϕ4 (t) are the given functions.
The procedure of using our FIM for solving u and v are similar, we only discuss here the details
in finding the approximate solution u.

We begin with linearizing the system (35) by taking the an iteration of time tm = m(Δt) for m ∈ N,
where Δt is a time step. We obtain

∂αu
∂tα

∣∣∣
t=tm

=
∂2um

∂x2 + 2um−1 ∂um

∂x
− ∂(vm−1um)

∂x
+ f (x, tm),

∂βv
∂tβ

∣∣∣
t=tm

=
∂2vm

∂x2 + 2vm−1 ∂vm

∂x
− ∂(um−1vm)

∂x
+ g(x, tm),

where um = u(x, tm) and vm = v(x, tm) are numerical solutions of u and v in the mth iteration,
respectively. Next, let us consider the fractional time derivative for α ∈ (0, 1] in the Caputo sense by
using the same procedure as in (12), by taking the double layer integration on both sides, we obtain

m−1

∑
j=0

wα
j

∫ xk

0

∫ η

0
(um−j − um−j−1)dξdη = um(xk) + 2

∫ xk

0

∫ η

0

(
um−1 ∂um

∂ξ

)
dξdη

−
∫ xk

0
(vm−1um)dη +

∫ xk

0

∫ η

0
f (ξ, tm)dξdη + d1xk + d2, (38)

m−1

∑
j=0

wβ
j

∫ xk

0

∫ η

0
(vm−j − vm−j−1)dξdη = vm(xk) + 2

∫ xk

0

∫ η

0

(
vm−1 ∂vm

∂ξ

)
dξdη

−
∫ xk

0
(um−1vm)dη +

∫ xk

0

∫ η

0
g(ξ, tm)dξdη + d3xk + d4, (39)

where wγ
j = (Δt)−γ

Γ(2−γ)

[
(j + 1)1−γ − j1−γ

]
for γ ∈ {α, β}, and d1, d2, d3, and d4 are arbitrary constants of

integration. For the nonlinear terms in (38) and (39), by using the same process as in (15), we let

q1(xk) :=
∫ xk

0

∫ η

0

(
um−1 ∂um

∂ξ

)
dξdη =

∫ xk

0
um−1umdη −

∫ xk

0

∫ η

0
T′(ξ)T−1um−1umdξdη,

q2(xk) :=
∫ xk

0

∫ η

0

(
vm−1 ∂vm

∂ξ

)
dξdη =

∫ xk

0
vm−1vmdη −

∫ xk

0

∫ η

0
T′(ξ)T−1vm−1vmdξdη.

124

Mathematics 2019, 7, 1201

For computational convenience, we express q1(xk) and q2(xk) into matrix forms as

q1 = Adiag(um−1)um −A2diag(T′T−1um−1)um := Q1um, (40)

q2 = Adiag(vm−1)vm −A2diag(T′T−1vm−1)vm := Q2vm, (41)

where T′ is defined in (17) and other parameters obtained on (40) and (41) are

Q1 = Adiag(um−1)−A2diag(T′T−1um−1),

Q2 = Adiag(vm−1)−A2diag(T′T−1vm−1),

um = [u(x1, tm), u(x2, tm), u(x3, tm), ..., u(xM, tm)]#,

vm = [v(x1, tm), v(x2, tm), v(x3, tm), ..., v(xM, tm)]#,

qi = [qi(x1), qi(x2), qi(x3), ..., qi(xM)]# for i ∈ {1, 2}.

Consequently, using (40), (41), and the procedure in Section 3.1, we can convert both (38) and (39)
into the matrix forms as

m−1

∑
j=0

wα
j A2(um−j − um−j−1) = um + 2Q1um −Adiag(vm−1)um + A2fm + d1x + d2i,

m−1

∑
j=0

wβ
j A2(vm−j − vm−j−1) = vm + 2Q2vm −Adiag(um−1)vm + A2gm + d3x + d4i.

Rearranging the above system yields[
I + 2Q1 −Adiag(vm−1)− wα

0A2
]
um + d1x + d2i = s1 − wα

0A2um−1 −A2fm, (42)[
I + 2Q2 −Adiag(um−1)− wβ

0 A2
]
vm + d3x + d4i = s2 − wβ

0 A2vm−1 −A2gm, (43)

where I is the M × M identity matrix and other parameters are defined by

s1 = ∑m−1
j=1 wα

j A2(um−j − um−j−1),

s2 = ∑m−1
j=1 wβ

j A2(vm−j − vm−j−1),

fm = [f (x1, tm), f (x2, tm), f (x3, tm), ..., f (xM, tm)]#,

gm = [g(x1, tm), g(x2, tm), g(x3, tm), ..., g(xM, tm)]#.

The boundary conditions (37) are transformed into the vector forms by using the same process as
in (19) and (20), that is,

tlT
−1um = ψ1(tm) and trT−1um = ψ2(tm), (44)

tlT
−1vm = ψ3(tm) and trT−1vm = ψ4(tm), (45)

where tl = [1,−1, 1, ..., (−1)M−1] and tr = [1, 1, 1, ..., 1]. Finally, starting from the initial guesses

u0 = [φ1(x1), φ1(x2), φ1(x3), ..., φ1(xM)]# and v0 = [φ2(x1), φ2(x2), φ2(x3), ..., φ2(xM)]#,

we can construct the system of the mth iterative linear equations for finding numerical solutions.
The approximate solutions of u can be obtained from (42) and (44) while the approximate solutions of
v can be reached by using (43) and (45):⎡⎢⎣ I + 2Q1 −Adiag(vm−1)− wα

0A2 x i

tlT
−1 0 0

trT−1 0 0

⎤⎥⎦
⎡⎢⎣ um

d1

d2

⎤⎥⎦ =

⎡⎢⎣ s1 − wα
0A2um−1 −A2fm

ψ1(tm)

ψ2(tm)

⎤⎥⎦ , (46)

125

Mathematics 2019, 7, 1201

and ⎡⎢⎣ I + 2Q2 −Adiag(um−1)− wβ
0 A2 x i

tlT
−1 0 0

trT−1 0 0

⎤⎥⎦
⎡⎢⎣ vm

d3

d4

⎤⎥⎦ =

⎡⎢⎣ s2 − wβ
0 A2vm−1 −A2gm

ψ3(tm)

ψ4(tm)

⎤⎥⎦ . (47)

For any fixed t, the approximate solutions of u(x, t) and v(x, t) on the space domain
can be obtained by computing u(x, t) = txT−1um and v(x, t) = txT−1vm, where tx =

[T∗0 (x), T∗1 (x), T∗2 (x), ..., T∗M−1(x)].

Example 5. Consider the time-fractional coupled Burgers’ Equation (35) for x ∈ (0, 1) and t ∈ (0, 1] with the
forcing terms

f (x, t) =
6xt3−α

Γ(4− α)
and g(x, t) =

6xt3−β

Γ(4− β)

subject to the homogeneous initial conditions and the boundary conditions corresponding to the analytical
solution given by Albuohimad and Adibi [25] is u∗(x, t) = v∗(x, t) = xt3. For the numerical test, we choose
the kinematic viscosity ν = 1, α = β = 0.5 and M = 40. Table 12 presents the exact solution u∗(x, 1) and the
numerical solutions u(x, 1) together with v(x, 1) by using our FIM-SCP through Algorithm 3. The accuracy is
measured by the absolute error Ea. Table 13 displays the comparison of the error norms L∞ of our approximate
solutions and the approximate solutions obtained by using the collocation method with FDM (CM-FDM)
introduced by Albuohimad and Adibi in [25]. As can be seen from Table 13, our FIM-SCP Algorithm 3 is
more accurate. Next, the time convergence rates based on �∞ and CPU times(s) of this problem that solved by
Algorithm 3 are demonstrated in Table 14. Since the approximate solutions u and v are the same, we only present
the graphical solution of u in Figure 6.

Algorithm 3 The numerical algorithm for solving 1D time-fractional coupled Burgers’ equation

Input: α, β, x, L, T, M, Δt, φ1(x), φ2(x), ψ1(t), ψ2(t), ψ3(t), ψ4(t), f (x, t) and g(x, t).
Output: The approximate solutions u(x, T) and v(x, T).

1: Set xk =
L
2
[

cos
(2k−1

2M π
)
+ 1
]

for k ∈ {1, 2, 3, ..., M}.

2: Compute x, i, tl , tr, tx, A, I, T, T′, T, T−1, u0 and v0.

3: Set t0 = 0 and m = 0.

4: while tm ≤ T do

5: Set m = m + 1.

6: Set tm = mΔt.
7: Set s1 = 0 and s2 = 0.

8: for j = 1 to m− 1 do

9: Compute wα
j = (Δt)−α

Γ(2−α)
[(j + 1)1−α − j1−α].

10: Compute wβ
j = (Δt)−β

Γ(2−β)
[(j + 1)1−β − j1−β].

11: Compute s1 = s1 + wα
j A2(um−j − um−j−1).

12: Compute s2 = s2 + wβ
j A2(vm−j − vm−j−1).

13: end for

14: Calculate Q1, Q2, fm and gm.

15: Find um by solving the iterative linear system (46).

16: Find vm by solving the iterative linear system (47).

17: end while

18: return u(x, T) = tx(T∗)−1um and v(x, T) = tx(T∗)−1vm.

126

Mathematics 2019, 7, 1201

Table 12. Comparison of exact and numerical solutions of Example 5 for α = β = 0.5, M = 40.

Δt x u∗(x, 1) u(x, 1) Ea(u) v(x, 1) Ea(v)

0.005 0.2 0.2 0.200014 1.3637× 10−5 0.200014 1.3637× 10−5

0.4 0.4 0.400024 2.4030× 10−5 0.400024 2.4030× 10−5

0.6 0.6 0.600028 2.7782× 10−5 0.600028 2.7782× 10−5

0.001 0.2 0.2 0.200001 1.2398× 10−6 0.200001 1.2398× 10−6

0.4 0.4 0.400002 2.1845× 10−6 0.400002 2.1845× 10−6

0.6 0.6 0.600003 2.5250× 10−6 0.600003 2.5250× 10−6

0.0005 0.2 0.2 0.200000 4.4002× 10−7 0.200000 4.4002× 10−7

0.4 0.4 0.400001 7.7529× 10−7 0.400001 7.7529× 10−7

0.6 0.6 0.600001 8.9611× 10−7 0.600001 8.9611× 10−7

Table 13. Comparison of error norms L∞ of Example 5 for α = β = 0.5, M = 5 and t = 1.

Δt CM-FDM [25] FIM-SCP Algorithm 3

L∞(u) L∞(v) L∞(u) L∞(v)

0.03125 3.96243489× 10−4 3.96243489× 10−4 2.0275× 10−4 2.0275× 10−4

0.015625 1.46199451× 10−4 1.46199451× 10−4 7.3260× 10−5 7.3260× 10−5

0.0078125 5.30198057× 10−5 5.30198057× 10−5 2.6297× 10−5 2.6297× 10−5

0.00390625 1.90424033× 10−5 1.90424033× 10−5 9.3967× 10−6 9.3967× 10−6

0.001953125 6.80038150× 10−6 6.80038150× 10−6 3.3472× 10−6 3.3472× 10−6

Table 14. Time convergence rates and CPU time(s) for Example 5 by FIM-SCP with M = 20.

Δt α = β = 0.1 α = β = 0.5 α = β = 0.9

‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s)

2−4 1.41× 10−3 1.1426 0.3901 1.41× 10−3 1.1426 0.4008 1.40× 10−3 1.1427 0.4801
2−5 7.26× 10−4 1.0666 0.4064 7.26× 10−4 1.0666 0.4292 7.25× 10−4 1.0667 0.4895
2−6 3.69× 10−4 1.0323 0.8505 3.69× 10−4 1.0323 0.9028 3.68× 10−4 1.0323 0.8715
2−7 1.86× 10−4 1.0159 2.5623 1.86× 10−4 1.0159 2.4748 1.86× 10−4 1.0159 2.7062
2−8 9.32× 10−5 1.0079 8.8157 9.32× 10−5 1.0079 8.2575 9.32× 10−5 1.0079 8.4962

(a) u(x, t) at different times t (b) Surface plot of u(x, t)

Figure 6. The graphical solutions of Example 5 for α = β = 0.5, M = 40, and Δt = 0.001.

Example 6. Consider the time-fractional coupled Burgers’ Equation (35) for x ∈ (0, 1) and t ∈ (0, 1] with the
forcing terms

f (x, t) =
[

Γ(4)t−α

Γ(4− α)
+ 1
]

t3sin(x) and g(x, t) =
[

Γ(4)t−β

Γ(4− β)
+ 1
]

t3sin(x)

127

Mathematics 2019, 7, 1201

subject to the homogeneous initial conditions and the boundary conditions corresponding to the analytical
solution given by Albuohimad and Adibi [25] is u∗(x, t) = v∗(x, t) = t3sin(x). For the numerical test, we
choose the viscosity ν = 1, α = β = 0.5 and M = 5. Table 15 provides the comparison of error norms L∞

between our FIM-SCP and the CM-FDM in [25] for various values of Δt and M, it show that our method is
more accurate. Moreover, Table 16 illustrates the rates of convergence and CPU times(s) for M = 20. Figure 7a,b
show the numerical solutions u(x, t) at different times t and the surface plot of u(x, t), respectively. Note that
we only show the graphical solution of u(x, t) since the approximate solutions u(x, t) and v(x, t) are the same.

Table 15. Comparison of error norms L∞ between CM-FDM and FIM-SCP for Example 6.

M Δt
CM-FDM [25] FIM-SCP Algorithm 3

L∞(u) L∞(v) L∞(u) L∞(v)

5 1/4 2.38860019× 10−3 2.38860019× 10−3 1.3600× 10−3 1.3600× 10−3

5 1/16 3.68124891× 10−4 3.68124891× 10−4 1.5995× 10−4 1.5995× 10−4

5 1/32 1.33717524× 10−4 1.33717524× 10−4 5.3813× 10−5 5.3813× 10−5

3 1/128 2.16075055× 10−3 2.16075055× 10−3 2.7726× 10−3 2.7726× 10−3

4 1/128 1.41457658× 10−4 1.41457658× 10−4 1.6397× 10−4 1.6397× 10−4

5 1/128 4.69272546× 10−5 4.69272546× 10−5 1.7565× 10−5 1.7565× 10−5

Table 16. Time convergence rates and CPU time(s) for Example 6 by FIM-SCP with M = 20.

Δt
α = β = 0.1 α = β = 0.5 α = β = 0.9

‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s) ‖u∗ − u‖∞ Rate Time(s)

2−4 1.18× 10−3 1.1427 0.4041 1.18× 10−3 1.1427 0.3873 1.18× 10−3 1.1427 0.3982

2−5 6.11× 10−4 1.0667 0.4902 6.11× 10−4 1.0667 0.4468 6.11× 10−4 1.0667 0.4245

2−6 3.11× 10−4 1.0323 0.8941 3.11× 10−4 1.0323 0.8829 3.11× 10−4 1.0323 0.8873

2−7 1.57× 10−4 1.0159 2.5981 1.57× 10−4 1.0159 2.6828 1.57× 10−4 1.0159 2.4627

2−8 7.91× 10−5 1.0079 7.9922 7.91× 10−5 1.0079 8.3994 7.90× 10−5 1.0079 8.2681

(a) u(x, t) at different times t (b) Surface plot of u(x, t)

Figure 7. The graphical results of Example 6 for α = β = 0.5, M = 40 and Δt = 0.001.

5. Conclusions and Discussion

In this paper, we applied our improved FIM-SCP to develop the decent and accurate
numerical algorithms for finding the approximate solutions of time-fractional Burgers’ equations
both in one- and two-dimensional spatial domains and time-fractional coupled Burgers’ equations.
Their fractional-order derivatives with respect to time were described in the Caputo sense and

128

Mathematics 2019, 7, 1201

estimated by forward difference quotient. According to Example 1, even though, we obtain similar
accuracy, however, it can be seen that our method does not require the solution to be separable among
the spatial and temporal variables. For Example 2, the results confirm that even with nonlinear FDEs,
the FIM-SCP provides better accuracy than FDM. For two dimensions, Example 4 shows that even
with the small kinematic viscosity ν, our method can deal with a shock wave solution, which is not
globally continuously differentiable as that of the classical Burgers’ equation under the same effect of
small kinematic viscosity ν. We can also see from Examples 5 and 6 that our proposed method can be
extended to solve the time-fractional Burgers’ equation and we expect that it will also credibly work
with other system of time-fractional nonlinear equation. We notice that our method provides better
accuracy even when we use a small number of nodal points. Evidently, when we decrease the time
step, it furnishes more accurate results. Also, we illustrated the time convergence rate of our method
based on �∞ norm, we observe that it approaches to the linear convergence O(Δt). Finally, we show the
computational cost in terms of CPU time(s) for each example. An interesting direction for our future
work is to extend our technique to solve space-fractional Burgers’ equations and other nonlinear FDEs.

Author Contributions: Conceptualization, A.D., R.B., and T.T.; methodology, R.B.; software, A.D.; validation, A.D.,
R.B. and T.T.; formal analysis, R.B.; investigation, A.D.; writing—original draft preparation, A.D.; writing—review
and editing, R.B. and T.T.; visualization, A.D.; supervision, R.B. and T.T.; project administration, R.B.; funding
acquisition, A.D.

Funding: This research was funded by The 100th Anniversary Chulalongkorn University Fund for Doctoral
Scholarship.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript.

CM-FDM collocation method with finite difference method
DGM-FDS discontinuous Galerkin method with finite different scheme
EPM-CHT expansion method with Cole–Hopf transformation
FDE fractional differential equation
FDM finite difference method
FIM finite integration method
FIM-SCP finite integration method with shifted Chebyshev polynomial
PDE partial differential equation
QBS-FEM quadratic B-spline finite element Galerkin method

References

1. Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach.
Phys. Rep. 2000, 339, 1–77. [CrossRef]

2. Kumar, D.; Singh, J.; Baleanu, D. A fractional model of convective radial fins with temperature-dependent
thermal conductivity. Rom. Rep. Phys. 2017, 69, 1–13.

3. Agila, A.; Baleanu, D.; Eid, R.; Irfanoglu, B. Applications of the extended fractional Euler-Lagrange equations
model to freely oscillating dynamical system. Rom. J. Phys. 2016, 61, 350–359.

4. Yang, X.J.; Gao, F.; Srivastava, H.M. New rheological models within local fractional derivative. Rom. Rep. Phys.
2017, 69, 1–12.

5. Laskin, N. Principles of fractional quantum mechanics. In Fractional Dynamics; World Scientific: Singapore,
2011; pp. 393–427.

6. Burgers, J.M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1948, 1, 171–199.
7. Esen, A.; Yagmurlu, N.M.; Tasbozan, O. Approximate analytical solution to time-fractional damped Burgers

and Cahn-Allen equations. Appl. Math. Inf. Sci. 2013, 7, 1951–1956. [CrossRef]

129

Mathematics 2019, 7, 1201

8. Su, N.; Watt, J.; Vincent, K.W.; Close, M.E.; Mao, R. Analysis of turbulent flow patterns of soil water under
field conditions using Burgers’ equation and porous suction-cup samplers. Aust. J. Soil Res. 2004, 42, 9–16.
[CrossRef]

9. Zhang, Y.; Baleanu, D.; Yang, X.J. New solutions of the transport equations in porous media within local
fractional derivative. Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 2016, 17, 230–236.

10. Wang, Q. Numerical solutions for fractional KdV-Burgers equation by Adomian decomposition method.
Appl. Math. Comput. 2006, 182, 1048–1055.

11. Guesmia, A.; Daili, N. Numerical approximation of fractional Burgers equation. Commun. Math. Appl.
2010, 1, 77–90.

12. Esen, A.; Tasbozan, O. Numerical solution of time fractional Burgers equation. Acta Univ. Sapientiae Math.
2015, 7, 167–185. [CrossRef]

13. Yokus, A.; Kaya, D. Numerical and exact solutions for time fractional Burgers’ equation. J. Nonlinear Sci. Appl.
2017, 10, 3419–3428. [CrossRef]

14. Cao, W.; Xu, Q.; Zheng, Z. Solution of two-dimensional time-fractional Burgers equation with high and low
Reynolds numbers. Adv. Differ. Equ. 2017, 338, 1–14. [CrossRef]

15. Wen, P.; Hon, Y.; Li, M.; Korakianitis, T. Finite integration method for partial differential equations.
Appl. Math. Model. 2013, 37, 10092–10106. [CrossRef]

16. Li, M.; Chen, C.; Hon, Y.; Wen, P. Finite integration method for solving multi-dimensional partial differential
equations. Appl. Math. Model. 2015, 39, 4979–4994. [CrossRef]

17. Li, M.; Tian, Z.; Hon, Y.; Chen, C.; Wen, P. Improved Finite integration method for partial differential
equations. Eng. Anal. Bound. Elem. 2016, 64, 230–236. [CrossRef]

18. Li, Y.; Hon, Y.L. Finite integration method with radial basis function for solving stiff problems. Eng. Anal.
Bound. Elem. 2017, 82, 32–42.

19. Li, Y.; Li, M.; Hon, Y.C. Improved finite integration method for multi-dimensional nonlinear Burgers’
equation with shock wave. Neural Parallel Sci. Comput. 2015, 23, 63–86.

20. Yun, D.L.; Wen, Z.L.; Hon, Y.L. Adaptive least squares finite integration method for higher-dimensional
singular perturbation problems with multiple boundary layers. Appl. Math. Comput. 2015, 271, 232–250.
[CrossRef]

21. Boonklurb, R.; Duangpan, A.; Treeyaprasert, T. Modified finite integration method using Chebyshev
polynomial for solving linear differential equations. J. Numer. Ind. Appl. Math. 2018, 12, 1–19.

22. Rivlin, T.J. Chebyshev Polynomials, From Approximation Theory to Algebra and Number Theory, 2nd ed.; John Wiley
& Sons: New York, NY, USA, 1990.

23. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
24. Zhang, H.; Ding, F. On the Kronecker products and their applications. J. Appl. Math. 2013, 2013, 296185.

[CrossRef]
25. Albuohimad, A.; Adibi, H. The Chebyshev collocation solution of the time fractional coupled Burgers’

equation. J. Math. Comput. Sci. 2017, 17, 179–193. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

130

mathematics

Article

Orhonormal Wavelet Bases on The 3D Ball
Via Volume Preserving Map
from The Regular Octahedron

Adrian Holhoş and Daniela Roşca *

Department of Mathematics, Technical University of Cluj-Napoca, str. Memorandumului 28,
RO-400114 Cluj-Napoca, Romania; Adrian.Holhos@math.utcluj.ro
* Correspondence: Daniela.Rosca@math.utcluj.ro

Received: 13 May 2020; Accepted: 12 June 2020; Published: 17 June 2020

Abstract: We construct a new volume preserving map from the unit ball B3 to the regular 3D
octahedron, both centered at the origin, and its inverse. This map will help us to construct refinable
grids of the 3D ball, consisting in diameter bounded cells having the same volume. On this 3D
uniform grid, we construct a multiresolution analysis and orthonormal wavelet bases of L2(B3),
consisting in piecewise constant functions with small local support.

Keywords: wavelets on 3D ball; uniform 3D grid; volume preserving map

1. Introduction

Spherical 3D signals occur in a wide range of fields, including computer graphics, and medical
imaging (e.g., 3D reconstruction of medical images [1]), crystallography (texture analysis of crystals) [2,3]
and geoscience [4–6]. Therefore, we need suitable efficient techniques for manipulating such signals,
and one of the most efficient technique consists in using wavelets on the 3D ball (see e.g., [4–10] and
the references therein). In this paper we propose to construct an orthonormal basis of wavelets with
small support, defined on the 3D ball B3, starting from a multiresolution analysis. Our wavelets will
be piecewise constant functions on the cells of a uniform and refinable grid of B3. By a refinable
(or hierarchical) grid we mean that the cells can be divided successively into a given number of smaller
cells of the same volume. By a uniform grid we mean that all the cells at a certain level of subdivision
have the same volume. These two very important properties of our grid derive from the fact that it is
constructed by mapping a uniform and refinable grid of the 3D regular octahedron, using a volume
preserving map onto B3. Compared to the wavelets on the 3D ball constructed in [8,10], with localized
support, our wavelets have local support, and this is very important when dealing with data consisting
in big jumps on small portions, as shown in [11]. Another construction of piecewise constant wavelets
on the 3D ball was realized in [7], starting from a similar construction on the 2D sphere. The author
assumes that his wavelets are the first Haar wavelets on the 3D ball which are orthogonal and symmetric,
even though we do not see any symmetry, neither in the cells, nor in the decomposition matrix. Moreover,
his 8× 8 decomposition matrices change in each step of the refinement, the entries depending on the
volumes of the cells, which are, in our opinion, difficult to evaluate and for this reason they are not
calculated explicitly in [7]. Another advantage of our construction is that our cells are diameter bounded,
unlike the cells in [7] containing the origin, which become long and thin after some steps of refinement.

The paper is structured as follows. In Section 2 we introduce some notations used for the
construction of the volume preserving map. In Section 3 we construct the volume preserving maps
between the regular 3D octahedron and the 3D ball B3. In Section 4 we construct a uniform refinable
grid of the regular octahedron followed by implementation issues, and its projection onto B3 . Finally,
in Section 5 we construct a multiresolution analysis and piecewise constant wavelet bases of L2(B3).

Mathematics 2020, 8, 994; doi:10.3390/math8060994 www.mdpi.com/journal/mathematics131

Mathematics 2020, 8, 994

2. Preliminaries

Consider the ball of radius r centered at the origin O, defined as

B
3 =

{
(x, y, z) ∈ R

3, x2 + y2 + z2 ≤ r2
}

and the regular octahedron K of the same volume, centered at O and with vertices on the
coordinate axes

K =
{
(x, y, z) ∈ R

3, |x|+ |y|+ |z| ≤ a
}

.

Since the volume of the regular octahedron is 4a3/3, we have

a = r 3
√

π. (1)

The parametric equations of the ball are

x = ρ cos θ sin ϕ,

y = ρ sin θ sin ϕ, (2)

z = ρ cos ϕ,

where ϕ ∈ [0, π] is the colatitude, θ ∈ [0, 2π) is the longitude and ρ ∈ [0, r] is the distance to the origin.
A simple calculation shows that the volume element of the ball is

dV = ρ2 sin ϕ dρ dθ dϕ. (3)

The ball and the octahedron can be split into eight congruent parts (see Figure 1), each part being
situated in one of the eight octants I±i , i = 0, 1, 2, 3,

I+0 = {(x, y, z), x ≥ 0, y ≥ 0, z ≥ 0}, I−0 = {(x, y, z), x ≥ 0, y ≥ 0, z ≤ 0},

I+1 = {(x, y, z), x ≤ 0, y ≥ 0, z ≥ 0}, I−1 = {(x, y, z), x ≤ 0, y ≥ 0, z ≤ 0},

I+2 = {(x, y, z), x ≤ 0, y ≤ 0, z ≥ 0}, I−2 = {(x, y, z), x ≤ 0, y ≤ 0, z ≤ 0},

I+3 = {(x, y, z), x ≥ 0, y ≤ 0, z ≥ 0}, I−3 = {(x, y, z), x ≥ 0, y ≤ 0, z ≤ 0}.

Let Bs
i and Ks

i be the regions of B3 and K, situated in Is
i , respectively.

Figure 1. The eight spherical zones obtained as intersections of the coordinate planes with the ball B3.

Next we will construct a map U : B3 → K which preserves the volume, i.e., U satisfies

vol(D) = vol(U (D)), for all D ⊆ B
3, (4)

132

Mathematics 2020, 8, 994

where vol(D) denotes the volume of a domain D. For an arbitrary point (x, y, z) ∈ B3 we denote

(X, Y, Z) = U (x, y, z) ∈ K. (5)

3. Construction of the Volume Preserving Map U and Its Inverse

We focus on the region B
+
0 ⊂ I+0 where we consider the points A = (r, 0, 0), B = (0, r, 0),

C = (0, 0, r) and the vertical plane of equation y = x tan α with α ∈ (0, π/2) (see Figure 2 (left)).
We denote by M its intersection with the great arc ÃB of the sphere of radius r. More precisely,
M = (r cos α, r sin α, 0). The volume of the spherical region OAMC equals r3α/3.

B(0, r, 0)

M (r cosα, r sinα, 0)

α

O

C(0, 0, r)

A(r, 0, 0)
B′
(
0,

L√
2
,0
)

M’

β

O

C′
(
0,0,

L√
2

)

A′
(L√

2
,0,0

)

Figure 2. The spherical region OAMC and its image OA′M′C′ = U (OAMC) on the octahedron.

Now we intersect the region K
+
1 of the octahedron with the vertical plane of equation y = x tan β

and denote by M′(m, n, 0) its intersection with the edge A′B′, where A′ (a, 0, 0) , B′ (0, a, 0) (see Figure 2
(right)). Then m + n = a and from n = m tan β we find

m = a · 1
1 + tan β

, n = a · tan β

1 + tan β
.

The volume of OA′M′C′ is

V(OA′M′C′) = OC′ · A(OA′M′)
3

=
a
3
· OA′ · n

2
=

a3 tan β

6(1 + tan β)
.

If we want the volume of the region OAMC of the unit ball to be equal to the volume of OA′M′C′,
we obtain

α =
π

2
· tan β

1 + tan β
, whence tan β =

2α

π − 2α
.

This give us a first relation between (x, y, z) and (X, Y, Z):

Y
X

=
2 arctan y

x
π − 2 arctan y

x
.

Using the spherical coordinates (2) we obtain

Y =
2θ

π − 2θ
· X. (6)

In order to obtain a second relation between (x, y, z) and (X, Y, Z), we impose that, for an arbitrary
ρ̃ ∈ (0, r] the region

{
(x, y, z) ∈ R

3, x2 + y2 + z2 ≤ ρ̃2, x, y, z ≥ 0
}

of volume
πρ̃3

6

133

Mathematics 2020, 8, 994

is mapped by U onto

{
(X, Y, Z) ∈ R

3, X + Y + Z ≤ �, X, Y, Z ≥ 0
}

of volume
�3

6
.

Then, the volume preserving condition (4) implies � = a · ρ̃/r, with a satisfying (1). Thus,

X + Y + Z =
a
r

√
x2 + y2 + z2

and in spherical coordinates this can be written as

X + Y + Z =
aρ

r
. (7)

In order to have a volume preserving map, the modulus of the Jacobian J(U) of U must be 1, or,
equivalently, taking into account the volume element (3), we must have

J(U) =

∣∣∣∣∣∣∣
X′

ρ X′
ϕ X′

θ

Y′
ρ Y′

ϕ Y′
θ

Z′
ρ Z′

ϕ Z′
θ

∣∣∣∣∣∣∣ = ρ2 sin ϕ. (8)

Taking into account formula (7), we have

J(U) =

∣∣∣∣∣∣∣
X′

ρ X′
ϕ X′

θ

Y′
ρ Y′

ϕ Y′
θ

a/r − X′
ρ −Y′

ρ −X′
ϕ −Y′

ϕ −X′
θ −Y′

θ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

X′
ρ X′

ϕ X′
θ

Y′
ρ Y′

ϕ Y′
θ

a/r 0 0

∣∣∣∣∣∣∣ =
a
r

∣∣∣∣∣X′
ϕ X′

θ

Y′
ϕ Y′

θ

∣∣∣∣∣ .
Further, using relation (6) we get

J(U) = a
r

∣∣∣∣∣ X′
ϕ X′

θ
2θ

π−2θ · X′
ϕ

2θ
π−2θ · X′

θ +
2π

(π−2θ)2 · X

∣∣∣∣∣ = a
r

∣∣∣∣∣X′
ϕ X′

θ

0 2π
(π−2θ)2 · X

∣∣∣∣∣ = 2πa
r(π − 2θ)2 XX′

ϕ.

For the last equality, we have multiplied the first row by −2θ/(π − 2θ) and we have added it to the
second row. Then, using the expression for J(U) obtained in (8) we get the differential equation

2X′
ϕ · X =

rρ2

πa
(π − 2θ)2 sin ϕ.

The integration with respect to ϕ gives

X2 = − r(π − 2θ)2

πa
ρ2 cos ϕ + C(θ, ρ),

and further, for finding C(θ, ρ) we use the fact that, for ϕ = π/2 we must obtain Z = 0. Thus,
for ϕ = π/2 we have

X2 = C(θ, ρ), so Y =
2θ

π − 2θ

√
C(θ, ρ), and

Z =
aρ

r
− X −Y =

aρ

r
− π

π − 2θ

√
C(θ, ρ).

Thus, Z = 0 is obtained for

C(θ, ρ) =
a2ρ2

π2r2 (π − 2θ)2,

134

Mathematics 2020, 8, 994

and finally, the map U restricted to the region I+0 is

X =

√
2

π2/3 · ρ(π − 2θ) sin
ϕ

2
, (9)

Y =

√
2

π2/3 · ρ · 2θ sin
ϕ

2
, (10)

Z = π1/3ρ
(
1−

√
2 sin

ϕ

2
)
. (11)

In the other seven octants, the map U can be obtained by symmetry as follows. A point (x, y, z) ∈
B3, can be written as

(x, y, z) = (sgn(x) · |x|, sgn(y) · |y|, sgn(z) · |z|), with (|x|, |y|, |z|) ∈ I+0 .

Therefore, if we denote by (X, Y, Z) = U (|x|, |y|, |z|), then we can define U (x, y, z) as

U (x, y, z) = (sgn(x) · X, sgn(y) ·Y, sgn(z) · Z). (12)

Next we deduce the formulas for the inverse of U . First, from (6) we obtain

θ =
πY

2(X + Y)
,

and from (7) we have
ρ =

r
a
(X + Y + Z) = π−1/3(X + Y + Z).

Adding (9) and (10), after some more calculations we obtain

sin
ϕ

2
=

X + Y√
2(X + Y + Z)

,

and further

cos ϕ =
Z(2X + 2Y + Z)
(X + Y + Z)2 , sin ϕ =

X + Y
X + Y + Z

√
2−
(

X + Y
X + Y + Z

)2
.

Finally, the inverse U−1 : K → B3 is defined by

x = π−1/3(X + Y)

√
2−
(

X + Y
X + Y + Z

)2
cos

πY
2(X + Y)

, (13)

y = π−1/3(X + Y)

√
2−
(

X + Y
X + Y + Z

)2
sin

πY
2(X + Y)

, (14)

z = π−1/3 Z(2X + 2Y + Z)
(X + Y + Z)

. (15)

for (X, Y, Z) ∈ K
+
0 , and for the other seven octants the formulas can be calculated as in (12).

4. Uniform and Refinable Grids of the Regular Octahedron and of the Ball

In this section we construct a uniform refinement of the regular octahedron K of volume vol(K),
more precisely a subdivision of K into 64 cells of two shapes, each of them having the volume
vol(K)/64. This subdivision can be repeated for each of the 64 small cells, the resulting 642 cells
of volume vol(K)/642 being of one of the two types from the first refinement. Next, the volume
preserving map U will allow us the construction of uniform and refinable grids of the 3D ball B3 by

135

Mathematics 2020, 8, 994

transporting the octahedral uniform refinable 3D grids, and further, the construction of orthonormal
piecewise constant wavelets on the 3D ball.

4.1. Refinement of the Octahedron

The initial octahedron K consists in four congruent cells, each situated in one of the octants
I+i ∪ I−i , i = 0, 1, 2, 3 (see Figure 3). We will say that this type of cell is T0, the index 0 of T0 being the
coarsest level of the refinement. For simplifying the writing we denote by N0 the set of positive natural
numbers and by Nn = {1, 2, . . . , n}, for n ∈ N0.

X

Y

Z

O

A
B

C

D

M
N

P

Q R

Figure 3. Left: one of the four cells of type T0 constituting the octahedron. Right: each cell of type T0

can be subdivided into six cells of type T1 and two cells of type M1.

4.1.1. First Step of Refinement

The cell T0 = (ABCD) ∈ I+0 ∪ I−0 , with A(a, 0, 0), B(0, a, 0), C(0, 0, a), D(0, 0,−a) (see Figure 3),
will be subdivided into eight smaller cells having the same volume, as follows: we take the mid-points
M, N, P, Q, R of the edges AC, BC, AB, AD, BD, respectively. Thus, one obtains t1 = 6 cells of type
T1 (MQOP, MQAP, NROP, NRBP, ODQR and COMN), and m1 = 2 other cells, OMNP and OPQR,
of another type, say M1. The cells of type T1 have the same shape with the cells T0. Their volumes are

vol(T1) = vol(M1) =
vol(T0)

8
.

Figures 4 and 5 also show the eight cells at the first step of refinement.
Similarly we refine the other three cells situated in I+i ∪ I−i , i = 1, 2, 3, therefore the total number

of cells after the first step of refinement is 32, more precisely 24 of type T1 and 8 of type M1.

136

Mathematics 2020, 8, 994

Figure 4. The subdivision of a T cell.

Figure 5. The first step of the refinement: the cell T0 is divided into two cells of type M1 (yellow) and
six cells of type T1: two red, two blue and two green.

4.1.2. Second Step of Refinement

A cell of type T1 will be subdivided in the same way as a cell of type T0, i.e., into six cells of type
T2 and two cells of type M2. Their volumes will be

vol(T2) = vol(M2) =
vol(T0)

82 .

Therefore, from the subdivision of the 6 cells of type T1 we have 36 cells of type T2 and 12 cells of
type M2.

For a cell (OMNP) of type M1, which is a regular tetrahedron of edge �1 = a
√

2/2, we take the
mid-points of the six edges (see Figures 6 and 7). This will give four cells of type T2 in the middle and

137

Mathematics 2020, 8, 994

four cells of type M2, i.e., regular tetrahedrons of edge �2 = a
√

2/22. From the subdivision of the two
cells of type M1 we have 8 cells of type T2 and 8 cells of type M2.

Figure 6. The four cells of type T of the subdivision of a cell of type M.

Figure 7. The subdivision of a cell of type M1 into four cells of type M: the four tetrahedrons at the
corners and four cells of type T in the middle, forming an octahedron.

In conclusion, the second step of subdivision yields in I+0 ∪ I−0 t2 = 44 cells of type T2 and
m2 = 20 cells of type M2, each having the volume vol(T0)/64, therefore the total number of cells after
the second refinement will be 4 · 82, more precisely 76 of type T2 and 80 of type M2.

4.1.3. The General Step of Refinement

Let mj and tj denote the numbers of cells of type Mj and Tj, respectively, resulted at the step j
of the subdivision, starting from one cell of type T0. At this step, each of the tj−1 cells of type Tj−1 is
subdivided into 6 cells of type Tj and 2 cells of type Mj, and each of the mj−1 cells of type Mj−1 is
subdivided into 4 cells of type Tj and 4 cells of type Mj. This implies

tj = 6tj−1 + 4mj−1,

mj = 2tj−1 + 4mj−1,

or (
tj
mj

)
= A

(
tj−1

mj−1

)
= A2

(
tj−2

mj−2

)
= . . . = Aj

(
t0

m0

)
,

138

Mathematics 2020, 8, 994

with t0 = 1, m0 = 0 and A =

(
6 4
2 4

)
. After some calculations we obtain

Aj =
1
3

(
2j(22j+1 + 1) 2j+1(22j − 1)

2j(22j − 1) 2j(22j + 2)

)
, whence

tj =
2j

3
(22j+1 + 1), mj =

2j

3
(22j − 1),

the total number of cells of K+
1 ∪K

−
1 at step j being tj + mj = 8j, and 4 · 8j for the whole octahedron K.

Each of the cells of type Tj and Mj has the volume vol(T0)/8j.

4.2. Implementation Issues

Every cell of the polyhedron is identified by the coordinates of its four vertices. We have two
types of cells, which will be denoted by T and M.

A cell of type T has the same coordinates x and y for the first two vertices. The z coordinate of
the first vertex is greater than the z coordinate of the second vertex and the mean value of these z
coordinates gives the value of the z coordinate of the third and fourth vertices of T.

A cell of type M has two pairs of vertices at the same altitude (the same value of the z coordinate).
At every step of refinement, every cell T is divided into 6 cells of type T and two cells of

type M. Suppose [p1, p2, p3, p4] is the array giving the coordinates of the four vertices of a T cell.
The coordinates of the vertices of the next level cells are computed as follows

next level cell number 1 :
1
2
[p1 + p1, p1 + p2, p1 + p3, p1 + p4],

next level cell number 2 :
1
2
[p2 + p1, p2 + p2, p2 + p3, p2 + p4],

next level cell number 3 :
1
2
[p3 + p1, p3 + p2, p3 + p3, p3 + p4],

next level cell number 4 :
1
2
[p4 + p1, p4 + p2, p4 + p3, p4 + p4],

next level cell number 5 :
1
2
[p1 + p3, p2 + p3, p3 + p4, p1 + p2],

next level cell number 6 :
1
2
[p1 + p4, p2 + p4, p1 + p2, p3 + p4],

next level cell number 7 :
1
2
[p1 + p2, p1 + p3, p1 + p4, p3 + p4],

next level cell number 8 :
1
2
[p1 + p2, p2 + p3, p2 + p4, p3 + p4].

The cells 1–6 are of type T and the cells 7 and 8 are of type M (see Figure 4).
Every cell M consists in 4 cells of type T and 4 cells of type M. Suppose [p1, p2, p3, p4] is the

array giving the coordinates of the four vertices of the cell M and let pk =
(

pkx, pky, pkz

)
, k = 1, 2, 3, 4.

We rearrange these four vertices in ascending order with respect to the z coordinate. Let [q1, q2, q3, q4]

be the vector [p1, p2, p3, p4] sorted ascendingly with respect to the z coordinate of the vertices, i.e., q1z ≤
q2z ≤ q3z ≤ q4z. Similarly, let [r1, r2, r3, r4] be the rearrangement of vertices p1, . . . , p4 such that
r1x ≤ r2x ≤ r3x ≤ r4x. Let, also, [s1, s2, s3, s4] be the array of rearranged vertices with respect to the y

139

Mathematics 2020, 8, 994

coordinate in ascending order. The coordinates of the vertices of the cells at the next level are computed
as follows:

next level cell number 1 :
1
2
[q3 + q4, q1 + q2, r3 + r4, s3 + s4]

next level cell number 2 :
1
2
[q3 + q4, q1 + q2, s3 + s4, r1 + r2]

next level cell number 3 :
1
2
[q3 + q4, q1 + q2, r1 + r2, s1 + s2]

next level cell number 4 :
1
2
[q3 + q4, q1 + q2, s1 + s2, r3 + r4]

next level cell number 5 :
1
2
[p1 + p1, p1 + p2, p1 + p3, p1 + p4]

next level cell number 6 :
1
2
[p2 + p1, p2 + p2, p2 + p3, p2 + p4]

next level cell number 7 :
1
2
[p3 + p1, p3 + p2, p3 + p3, p3 + p4]

next level cell number 8 :
1
2
[p4 + p1, p4 + p2, p4 + p3, p4 + p4].

To verify whether a point p = (px, py, pz) is inside a cell with vertices [p1, p2, p3, p4], we compute the
following numbers:

d1 = sgn

∣∣∣∣∣∣∣∣∣
p1x p2x p3x px

p1y p2y p3y py

p1z p2z p3z pz

1 1 1 1

∣∣∣∣∣∣∣∣∣ , d2 = sgn

∣∣∣∣∣∣∣∣∣
p1x p2x px p4x
p1y p2y py p4y
p1z p2z pz p4z
1 1 1 1

∣∣∣∣∣∣∣∣∣ , d3 = sgn

∣∣∣∣∣∣∣∣∣
p1x px p3x p4x
p1y py p3y p4y
p1z pz p3z p4z
1 1 1 1

∣∣∣∣∣∣∣∣∣ ,

d4 = sgn

∣∣∣∣∣∣∣∣∣
px p2x p3x p4x
py p2y p3y p4y
pz p2z p3z p4z
1 1 1 1

∣∣∣∣∣∣∣∣∣ , d5 = sgn

∣∣∣∣∣∣∣∣∣
p1x p2x p3x p4x
p1y p2y p3y p4y
p1z p2z p3z p4z
1 1 1 1

∣∣∣∣∣∣∣∣∣ .
We calculate v = |d1|+ |d2|+ |d2|+ |d3|+ |d4|+ |d5|. If |d1 + d2 + d3 + d4 + d5| = v, then for v = 5
the point p is in the interior of the cell, for v = 4 the point p is on one of the faces of the cell, for v = 3
the point p is situated on one of the edges of the cell, and for v = 2 the point p is one of the vertices of
the cell. If |d1 + d2 + d3 + d4 + d5| �= v, the point p is located outside the cell. Since the vertices pk are
different we have v ≥ 2.

4.3. Uniform and Refinable Grids of the Ball B3

If we transport the uniform and refinable grid on K onto the ball B3 using the volume preserving
map U−1, we obtain a uniform and refinable grid of B3. Figures 8–10 show the images on B3 of
different cells of K.

Besides the multiresolution analysis and wavelet bases, which will be constructed in Section 5,
another useful application is the construction of a uniform sampling of the rotation group SO(3),
by calculations similar to the ones in [3]. This will be subject of a future paper.

140

Mathematics 2020, 8, 994

Figure 8. Left: a cell of M in red and a cell of T type in green from the octahedron Middle and right:
the corresponding cells of the ball.

Figure 9. Left: the image on the ball of the positive octant; Right: the same image rotated.

Figure 10. The image on the ball of the cells of the octahedron corresponding to Figure 7.

5. Multiresolution Analysis and Piecewise Constant Orthonormal Wavelet Bases of

L2(K) and L2(B3)

Let D = D0 = {D1, D2, D3, D4} be the decomposition of the domain K considered in Section 4.1,
consisting in four congruent domains (cells) of type T0. For D ∈ D, let RD denote the set of the eight
refined domains, constructed in Section 4.1.1. The set D1 = ∪D∈D0RD is a refinement of D0, consisting
in 4 · 8 congruent cells. Continuing the refinement process as we described in Section 4, we obtain a
decomposition D j of K, for j ∈ N0, |D j| = 4 · 8j.

For a fixed j ∈ N0 we assign to each domain Dj
k ∈ D j, k ∈ Nj := N4·8j , the function ϕ

Dj
k

: K → R,

ϕ
Dj

k
= (2

√
2)j 2√

vol(K)
χ

Dj
k
,

141

Mathematics 2020, 8, 994

where χ
Dj

k
is the characteristic function of the domain Dj

k. Then we define the spaces of functions

Vj = span{ϕ
Dj

k
, k ∈ Nj} of dimension 4 · 8j, consisting of piecewise constant functions on the domains

of D j. Moreover, we have ‖ϕ
Dj

k
‖L2(K) = 1, the norm being the usual 2-norm of the space L2(K).

For Aj ∈ D j = {Dj
k, j ∈ Nj}, let Aj+1

k , k ∈ N8, be the refined subdomains obtained from Aj. One has

ϕAj =
1

2
√

2

(
ϕ

Aj+1
1

+ ϕ
Aj+1

2
+ . . . + ϕ

Aj+1
8

)
,

in L2(K), equality which implies the inclusion Vj ⊆ Vj+1, for all j ∈ N0. With respect to the usual inner
product 〈·, ·〉L2(K), the spaces Vj are Hilbert spaces, with the corresponding usual 2-norm ‖ · ‖L2(K).
In conclusion, the sequence of subspaces Vj has the following properties:

1. Vj ⊆ Vj+1 for all j ∈ N0,
2. closL2(K)

⋃∞
j=0 Vj = L2(K),

3. The set {ϕ
Dj

k
, k ∈ Nj} is an orthonormal basis of the space Vj for each j ∈ N0,

i.e., the sequence {Vj, j ∈ N0} constitutes a multiresolution analysis of the space L2(K). Let Wj denote
the orthogonal complement of the coarse space Vj in the fine space Vj+1, so that

Vj+1 = Vj ⊕Wj.

The dimension of Wj is dim Wj = 28 · 8j. The spaces Wj are called wavelet spaces and their elements
are called wavelets. In the following we construct an orthonormal basis of Wj. To each domain Aj ∈ D j,
seven wavelets supported on Dj will be associated in the following way:

ψ�
Aj = a�1 ϕ

Aj+1
1

+ a�2 ϕ
Aj+1

2
+ . . . + a�8 ϕ

Aj+1
8

, for � ∈ N7,

with a�j ∈ R, � ∈ N7, j ∈ N8. We have to find conditions on the coefficients a�j which ensure that the
set {ψ�

Aj , � ∈ N7, Aj ∈ D j} is an orthonormal basis of Wj. First we must have

〈ψ�
Aj , ϕSj〉 = 0, for � ∈ N7 and Aj, Sj ∈ D j. (16)

If Aj �= Sj, the equality is immediate, since supp ψ�
Aj ⊆ supp ϕAj and supp ϕAj ∩ supp ϕSj is either

empty or an edge, whose measure is zero. If Aj = Sj, evaluating the inner product (16) we obtain

〈ψ�
Aj , ϕSj〉 = 〈a�1 ϕ

Aj+1
1

+ a�2 ϕ
Aj+1

2
+ . . . + a�8 ϕ

Aj+1
8

, ϕAj〉

=
1

2
√

2
(a�1 + a�2 + . . . + a�8).

Then, each of the orthogonality conditions

〈ψ�
Aj , ψ� ′

Aj〉 = δ�� ′ , for all Aj ∈ D j,

is equivalent to a� ′1a�1 + a� ′2a�2 + . . .+ a� ′8a�8 = δ�� ′ , �, � ′ ∈ N7. In fact, one requires the orthogonality
of the 8× 8 matrix M =

(
aij
)

i,j with the entries of the first row equal to 1/(2
√

2).

142

Mathematics 2020, 8, 994

A particular case was considered in [12], where the authors divide a tetrahedron into eight small
tetrahedrons of the same area using Bey’s method and for the construction of the orthonormal wavelet
basis they take the Haar matrix

1
2
√

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Alternatively, we can consider the symmetric orthogonal matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c c c c c c c c
c a b b b b b b
c b a b b b b b
c b b a b b b b
c b b b a b b b
c b b b b a b b
c b b b b b a b
c b b b b b b a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with

a =
±24−√

2
28

, b =
∓4−√

2
28

, c =
1

2
√

2
,

or the tensor product H ⊗ H ⊗ H of the matrix

H =
1√
2

(
1 1
1 −1

)
, which is

1
2
√

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
or, more general, we can generate all orthogonal 8× 8 matrices with the entries of the first row equal to
1/(2

√
2) using the method described in [13], where we start with the well known Euler’s formula for

the general form of a 3× 3 rotation matrix. It is also possible to use different orthogonal matrices for
the wavelets associated to the decomposition of the cells of type T and M.

Next, following the ideas in [14] we show how one can transport the above multiresolution
analysis and wavelet bases on the 3D ball B3, using the volume preserving map U : B3 → K

constructed in Section 3.
Consider the ball B3 is given by the parametric equations

ξ = ξ(X, Y, Z) = U−1(X, Y, Z) = (x(X, Y, Z), y(X, Y, Z), z(X, Y, Z)) ,

143

Mathematics 2020, 8, 994

with (X, Y, Z) ∈ K. Since U and its inverse preserve the volume, the volume element dω(ξ) of B3

equals the volume element dX dY dZ = dx of K (and R3). Therefore, for all f̃ , g̃ ∈ L2(B3) we have

〈 f̃ , g̃〉L2(B3) =
∫
B3

f̃ (ξ)g̃(ξ) dω(ξ)

=
∫
U (B3)

f̃ (U−1(X, Y, Z)) g̃(U−1(X, Y, Z)) dX dY dZ

= 〈 f̃ ◦ U−1, g̃ ◦ U−1〉L2(K),

and similarly, for all f , g ∈ L2(K) we have

〈 f , g〉L2(K) = 〈 f ◦ U , g ◦ U〉L2(B3). (17)

If we consider the map Π : L2(B3) → L2(K) induced by U , defined by

(Π f̃)(X, Y, Z) = f̃
(
U−1(X, Y, Z)

)
, for all f̃ ∈ L2(B3),

and its inverse Π−1 : L2(K) → L2(B3),

(Π−1 f)(ξ) = f (U (ξ)), for all f ∈ L2(K),

then Π is a unitary map, that is

〈Π f̃ , Πg̃〉L2(K) = 〈 f̃ , g̃〉L2(B3), (18)

〈Π−1 f , Π−1g〉L2(B3) = 〈 f , g〉L2(K). (19)

Equality (17) suggests us the construction of orthonormal scaling functions and wavelets defined
on B3. The scaling functions ϕ̃

Dj
k

: B3 → R will be

ϕ̃
Dj

k
= ϕ

Dj
k
◦ U =

{
1, on U−1(Dj

k),
0, in rest.

(20)

and the wavelets will be defined similarly,

ψ̃�
Aj = ψ�

Aj ◦ U .

From equality (17) we can conclude that the spaces

Ṽ j := span {ϕ̃
Dj

k
, k ∈ Nj}

constitute a multiresolution analysis of L2(B3), each of the set {ϕ̃
Dj

k
, k ∈ Nj} being an orthonormal

basis for the space Ṽ j. Moreover, the set

{ψ̃�
Aj , � ∈ N7, Aj ∈ Dj}

is an orthonormal basis of W̃j.

144

Mathematics 2020, 8, 994

6. Conclusions and Future Works

The 3D uniform hierarchical grid constructed here can find applications in texture analysis
of crystalls, by constructing a grid in the space of 3D rotations, using the technique used in [3].
A comparison of these grids is subject of a future paper.

Another interesting topic which we are going to approach in the future is to compare our wavelets
with other 3D wavelets on the ball, listed in the introduction.

Author Contributions: Conceptualization, writing, visualization, A.H. and D.R. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moons, T.; van Gool, L.; Vergauwen, M. 3D reconstruction from multiple images part 1: Principles.
Found. Trends Comput. Graph. Vis. 2010, 4, 287–404. [CrossRef]

2. Kendrew, J.C.; Bodo, G.; Dintzis, H.M.; Parrish, R.G.; Wyckoff, H.; Phillips, D.C. A Three-Dimensional Model
of the Myoglobin Molecule Obtained by X-Ray Analysis. Nature 1958, 181, 662–666. [CrossRef] [PubMed]

3. Roşca, D.; Morawiec, A.; de Graef, M. A new method of constructing a grid in the space of 3D rotations and
its applications to texture analysis. Model. Simul. Mater. Sci. Eng. 2014, 22, 075013. [CrossRef]

4. Flenger, M.; Michel, D.; Michel, V. Harmonic spline-wavelets on the 3D ball and their application to the
reconstruction of the Earth’s density distribution from gravitational data and arbitrary shaped satellite orbits.
ZAMM J. Appl. Math. Mech. 2006, 86, 856–873.

5. Simons, F.J.; Loris, I.; Nolet, G.; Daubechies, I.; Voronin, S.; Judd, J.S.; Vetter, P.A.; Charléty, J.; Vonesch, C.
Solving or resolving global tomographic models with spherical wavelets, and the scale and sparsity of
seismic heterogeneity. Geophys. J. Int. 2011, 187, 969–988. [CrossRef]

6. Simons, F.J.; Loris, I.; Brevdo, E.; Daubechies, I. Wavelets and wavelet-like transforms on the sphere and
their application to geophysical data inversion. In Wavelets and Sparsity XIV; Papadakis, M., Van de Ville, D.,
Goyal, V.K., Eds.; International Society for Optics and Photonics: San Diego, CA, USA, 2011; Volume 81380,
pp. 1–15.

7. Chow, A. Orthogonal and Symmetric Haar Wavelets on the Three-Dimensional Ball. Master’s Thesis,
University of Toronto, Toronto, ON, Canada, 2010.

8. Leistedt, B.; McEwen, J.D. Exact wavelets on the ball. IEEE Trans. Signal Process. 2012, 60, 6257–6269.
[CrossRef]

9. Loris, I.; Simons, F.J.; Daubechies, I.; Nolet, G.; Fornasier, M.; Vetter, P.; Judd, S.; Voronin, S.; Vonesch, C.;
Charléty, J. A new approach to global seismic tomography based on regularization by sparsity in a novel
3D spherical wavelet basis. In Proceedings of the EGU General Assembly Conference Abstracts, ser. EGU
General Assembly Conference Abstracts, Vienna, Austria, 2–7 May 2010; Volume 12, p. 6033.

10. Michel, V. Wavelets on the 3 dimensional ball. Proc. Appl. Math. Mech. 2005, 5, 775–776. [CrossRef]
11. Roşca, D. Locally supported rational spline wavelets on the sphere. Math. Comput. 2005, 74, 1803–1829.

[CrossRef]
12. Boscardin, L.B.; Castro, L.R.; Castro, S.M. Haar-Like Wavelets over Tetrahedra. J. Comput. Sci. Technol. 2017,

17, 92–99. [CrossRef]
13. Pop, V.; Roşca, D. Generalized piecewise constant orthogonal wavelet bases on 2D-domains. Appl. Anal.

2011, 90, 715–723. [CrossRef]
14. Roşca, D. Wavelet analysis on some surfaces of revolution via area preserving projection. Appl. Comput.

Harm. Anal. 2011, 30, 272–282. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

145

mathematics

Article

A Simple Method for Network Visualization

Jintae Park, Sungha Yoon, Chaeyoung Lee and Junseok Kim *

Department of Mathematics, Korea University, Seoul 02841, Korea; jintae2002@korea.ac.kr (J.P.);
there122@korea.ac.kr (S.Y.); chae1228@korea.ac.kr (C.L.)
* Correspondence: cfdkim@korea.ac.kr

Received: 16 May 2020; Accepted: 19 June 2020; Published: 22 June 2020

Abstract: In this article, we present a simple method for network visualization. The proposed method
is based on distmesh [P.O. Persson and G. Strang, A simple mesh generator in MATLAB, SIAM Review
46 (2004) pp. 329–345], which is a simple unstructured triangular mesh generator for geometries
represented by a signed distance function. We demonstrate a good performance of the proposed
algorithm through several network visualization examples.

Keywords: Network; graph drawing; planar visualizations

1. Introduction

Since the formation of society, the relationships between its components have been significant.
These relationships become more complex as society progresses; in addition, the components of
society have also diversified. In sociology, a bundle of relationships is referred to as a network,
which became a central concept in sociology in the 1970s. In a modern society called an information
society, we have information regarding networks that has been transformed into concrete data. With a
vast amount of information, information visualization has been used to analyze network and is gaining
popularity. Techniques for information visualization have evolved, and they vary depending on
the type of data [1–4]. Among the methods, visualization using graphs is one of the most helpful
for understanding data and their relationships. The authors in [5] showed various graphs used
in information visualization including tree layouts, H-tree layouts, balloon layout, radial layout,
hyperbolic trees, fisheye graphs, and animated radial layouts (see Figure 1 as an example of network
plot). Furthermore, toolkits for information visualization such as Prefuse, Protovis, and GUESS
have been developed and widely used [1,6–8]. In several studies, nodes represent subjects, such as
people and businesses, whereas edges represent relationships, such as friendships and partnerships.
The scope of a network is not limited to people and institutions: if something is in an interactive
relationship, we can call it a network, and networks can be also graphically identified by data. Network
visualization is therefore being used in a variety of fields. For example, analysis for social and personal
networks [9], pharmacological networks [10], biological networks [11,12], financial networks [13],
and street networks [14] have been actively conducted.

Mathematics 2020, 8, 1020; doi:10.3390/math8061020 www.mdpi.com/journal/mathematics147

Mathematics 2020, 8, 1020

Figure 1. Example of a circular network. Reprinted from Salanti et al. [15] with permission from
PLoS ONE.

Automatically drawing a network diagram requires algorithms. One of such algorithms is a
classical force-directed algorithm that employs straight-edges. The force-directed algorithm treats
edges as springs [16]. This algorithm turned the graph representation problem into a mathematical
optimization problem. In other words, by reducing the energy generated by the spring system, we can
find the equilibrium of the graph. The force-directed method has advantages such as simplicity to
use and a good theoretical basis. As a result, many new methods of graph representation have been
developed based on the method. As a typical example, Kamada and Kawai introduced an ideal distance
for drawing graphs [17]. Let {X1, X2, . . . , Xn} be n-vertices and assume that they are spring-connected.
The total energy of the spring is then expressed as follows:

E =
n−1

∑
i=1

n

∑
j=i+1

kij

2
(|Xi − Xj| − lij)2,

where lij is the desirable length of the spring between Xi and Xj, kij is a parameter representing the
strength of this spring, and | · | is the Euclidean norm. The desirable length represents the final length
after executing the algorithm, and the strength of the spring refers to the tension of the spring keeping
certain distance. The best graph is determined by minimizing E . Please refer to [17] for more details
about the algorithm and parameter definition. Another approach for automatically drawing a network
diagram is based on the algorithm presented by Hall [18]. The main idea of this algorithm is to find
the position of nodes {X1, X2, . . . , XN} which minimizes

E =
N

∑
i<j

aij|Xi − Xj|2, (1)

where aij ≥ 0 is the connection weight between Xi and Xj. This algorithm is suitable for application
to a structured data such as polyhedron [19]. However, it may not work well on actual data [20].
Rücker and Schwarzer et al. [20] introduced a method of automatically drawing network diagrams
using graph theory and studied network meta-analysis. Furthermore, the algorithm was applied to a
variety of examples from the literature. Another representative method for drawing network diagrams
is the stress majorization [21]. The objective function is defined as follows:

148

Mathematics 2020, 8, 1020

E =
N

∑
i �=j

wij(|Xi − Xj| − dij)
2, (2)

where wij is the weight between Xi and Xj, and dij is an ideal distance. For additional details about the
algorithm, please refer to [21]. This algorithm was applied to real networks related to diseases and
implemented by using the function netgraph in the R package netmeta [20].

We propose a simple algorithm for network visualization based on the distmesh algorithm [22]
in this paper. The proposed method employs a distance dij, which is given by a reciprocal of weight
wij, hence the computing process is essentially simple. Furthermore, the position of nodes is renewed
proportionally by the net force, which is based on the gradient, therefore one can obtain an optimal
diagram to the given data. A two-step stopping criterion is applied to further maximize the visual
effect of the network diagram. Compared to other methods based on the gradient to optimize total
level of movements, for instance, the force-directed method, the stress majorization method, etc.,
our proposed algorithm is simple to implement.

The contents of this article are organized as follows. In Section 2, the proposed algorithm is
described. In Section 3, specific examples of network visualization are presented. Conclusions are
presented in Section 4.

2. Numerical Algorithm

2.1. Distmesh Algorithm

A brief introduction to the distmesh algorithm [22], which is employed to generate the triangular
mesh in domain with the level set representation, is presented in this section. We define the level set
representation in the two-dimensional domain which imposes that the interface structure is treated as
the zero-level set. The following procedure depicts the whole algorithm of the distmesh. A function
ψ(x, y) =

√
x2 + y2 − 1 is adopted to a sample level set description. Figure 2 depicts the overall

process of distmesh algorithm quite in detail.

Step 1. Generate the random nodes X0 in domain.
Step 2. Generate a level set function ψ in the bounding box which includes the domain. The boundary

of domain is regarded as the zero-level set.
Step 3. Perform the Delaunay triangulation with Xn if the maximal arrangement of nodes is greater

than certain level. If n = 0, an initial Delaunay triangulation is accomplished. For the next
step, compute the net force F in order to update the position of nodes.

Step 4. Renew the position of nodes to Xn+1/2 by adding ΔtF.
Step 5. Push back the nodes that are pushed out to the boundary into the interface using the

following equation

Xn+1
i = χ(Xn+1/2

i)

(
Xn+1/2

i − ∇ψ(Xn+1/2
i)

|∇ψ(Xn+1/2
i)|2 ψ(Xn+1/2

i)

)
, (3)

where χ(Xn+1/2
i) is 1 if Xn+1/2

i is placed outside of the boundary; otherwise 0.
Step 6. Repeat Step 3–5 until the level of the total movement of nodes is less than a given tolerance.

149

Mathematics 2020, 8, 1020

-1 0 1
-1.5

-1

-0.5

0

0.5

1

1.5

(a) (b)
-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

(c)

-1 0 1
-1.5

-1

-0.5

0

0.5

1

1.5

(d) (e)
-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

(f)

Figure 2. Schematic illustration of generating the distmesh. (a) Generated random nodes in the domain.
(b) Signed distance function ψ in bounding box. The boundary of domain is regarded as the zero-level
set. (c) Net force F in current triangulation. (d) Arrangement of nodes via ΔtF. (e) Projection of the
nodes located outside ψ > 0 into the boundary ψ ≈ 0 using Equation (3). (f) Final result of unstructured
mesh by using the distmesh algorithm.

Using the distmesh algorithm, triangular mesh generation can be performed nonuniformly on
domain of various shapes. The following Figure 3 is an example of such generated mesh.

Figure 3. Example of nonuniformly generated mesh: the airfoil.

2.2. Proposed Algorithm for Network Visualization

The proposed algorithm for network visualization seeks to find {X1, X2, . . . , XN} that minimize
the objective function

E =
N

∑
i<j

wij||Xi − Xj| − dij|2, (4)

150

Mathematics 2020, 8, 1020

where wij and dij are the weighting value and the desired distance between nodes Xi
and Xj, respectively. The proposed algorithm is based on distmesh [22], which is a simple
unstructured triangular mesh generator for geometries represented by a signed distance function.
Let {Xn

1 , Xn
2 , . . . , Xn

N} be given node positions at iteration n. For simplicity of exposition, we assume
0 ≤ wij ≤ 1. We then propose the following distance function:

dij = d(wij) =
1

wp
ij

, for wij > 0, (5)

where p is a constant. Let minW be the minimum positive value of wij, i.e.,

minW = min
1≤i,j≤N

wij>0

wij.

As shown in Figure 4, by setting the minimum distance minD = 1 when wij = 1 and the maximum
distance maxD when wij = minW, we obtain

p = − ln(maxD)

ln(minW)
. (6)

Figure 4. Illustration of distance function dij related to weighting value wij. minD = 1 and maxD are
set to appear when wij = 1 and wij = minW, respectively.

Figure 5a,b show repulsive and attractive forces at nodes Xn
i and Xn

j when |Xn
i − Xn

j | < dij and
|Xn

i − Xn
j | > dij, respectively.

(a) (b)

Figure 5. Two possible forces at nodes Xn
i and Xn

j : (a) repulsive force and (b) attractive force.

We loop over all the line segments connecting two nodes and compute the net force vector Fn
i at

each node point Xn
i :

Fn
i =

N

∑
j=1, j �=i

wij>0

(|Xn
i − Xn

j | − dij)
Xn

j − Xn
i

|Xn
j − Xn

i |
.

151

Mathematics 2020, 8, 1020

Then, we update the position of the node points as

Xn+1
i = Xn

i + ΔtFn
i , for 1 ≤ i ≤ N, (7)

where Δt is an artificial time step. Upon updating the position of the node points, the network diagram
is drawn automatically. The iterative algorithm has reached an equilibrium state if√√√√ 1

N

N

∑
i=1

|Fk
i |2 < tol1 (8)

after k iterations.
As a concrete example, we consider three points X1, X2, and X3. Assume that the weighting

matrix between Xi and Xj is given as

W =

⎛⎜⎝ 0 2 4
2 0 1
4 1 0

⎞⎟⎠ .

We scale the matrix W by dividing the elements by the maximum value among elements and
redefine W as

W =

⎛⎜⎝ 0 0.5 1
0.5 0 0.25
1 0.25 0

⎞⎟⎠ .

Let X0
1 = (3

4 , 3
√

3
4), X0

2 = (0, 0), and X0
3 = (3

2 , 0), where the superscript 0 denotes the starting index.
Here, we use Δt = 0.3, minD= 1, maxD= 2, minW= 0.25, and tol1 = 0.01. Consequently, we get
p = 0.5 and ⎛⎜⎝ d12 d13

d21 d23

d31 d32

⎞⎟⎠ =

⎛⎜⎝
√

2 1√
2 2

1 2

⎞⎟⎠ .

Figure 6a indicates the position of the three points with red markers, and the non-zero elements of
W are represented by gray lines. In particular, the values of each element is expressed by the thickness
of the line. The red arrows are net force vectors F0

1, F0
2 and F0

3. Using these net force vectors, we update
the positions as

X1
1 = X0

1 + ΔtF0
1, X1

2 = X0
2 + ΔtF0

2, X1
3 = X0

3 + ΔtF0
3,

which are shown in Figure 6b. Figure 6c–e show the network diagrams after 2, 3, and 6 iterations,
respectively. The equilibrium state of the network diagram is obtained after 10 iterations as shown in
Figure 6f. Even though the nodes are initially arranged in an equilateral triangle with sides of length
1.5, the network diagram in equilibrium is drawn according to the given weights.

152

Mathematics 2020, 8, 1020

(a) (b)

(c) (d)

(e) (f)

Figure 6. Schematic of the proposed algorithm. (a) initial condition, (b) after 1 iteration, (c) after
2 iterations, (d) after 3 iterations, (e) after 6 iterations, and (f) equilibrium state after 10 iterations.

3. Numerical Results

In this section, we present the generation of a network diagram with more data to confirm the
efficiency and robustness of the proposed method. Specifically, we select 19 nodes and 19× 19 matrix
W, which are given in Appendix A. The matrix is created based on the dialogue between the characters
in William Shakespeare’s play, ‘The Venice Merchant’. Each element wij of the matrix is the cumulative
number of conversations between person i and person j. The parameters used are Δt = 0.01, minD = 1,
maxD = 2, and tol1 = 0.01. The value of p is then approximately 0.1879. Figure 7 shows process of
the network visualization by our proposed method. The equilibrium state of the network diagram
appears after 1985 iterations.

After 1985 iterations, each node is appropriately located according to the weights between the
nodes in the network. This means that even if the nodes are initially randomly arranged, the network
diagram is well drawn by our distance function. While the network plot is drawn, we can see that the
objective function E is decreasing. As shown in Figure 8, E decreases and converges as time goes by.
This shows that our proposed method has a mathematical basis for drawing the network diagram.

153

Mathematics 2020, 8, 1020

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

(a)

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

(b)

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16

17

18

19

(c)

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

(d)

Figure 7. Snapshots of the network visualization process for ‘The Venice Merchant’: (a) initial condition,
(b) after 20 iteration, (c) after 40 iterations, and (d) equilibrium state after 1985 iterations.

Figure 8. E decreases and converges while each node is moving.

However, the equilibrium state network diagram is not visually good. This is due to the nodes
(9, 13, 15, 16, 17, 18) that have only one connection. Therefore, we further update the location of the
nodes that have only one connection while fixing the other nodes. Let Ωs be the index set of the nodes
having only one connection. We compute the net force vector Fn

i at each node point i ∈ Ωs as follows:

Fn
i =

N

∑
j=1, j �=i

wij>0

Xn
i − Xn

j

|Xn
i − Xn

j |
.

154

Mathematics 2020, 8, 1020

Then, we temporally update the node points as

X∗
i = Xn

i + ΔtFn
i for i ∈ Ωs, (9)

where Δt = 10 is used. Finally, we set

Xn+1
i = Xn

j + dij
X∗

i − Xn
j

|X∗
i − Xn

j |
for i ∈ Ωs and Xn+1

i = Xn
i for i /∈ Ωs, (10)

where Xn
j is the unique node connecting X∗

i . We define that the equilibrium state of the second step
has been attained if √

1
|Ωs| ∑

i∈Ωs

|Xk+1
i − Xk

i |2 < tol2 (11)

after k iterations, where |Ωs| is the counting measure. Here, tol2 = 0.002 is used. Therefore, the second
step effectively rotates the node that has only one connection around the connecting node so that the
overall distribution of the nodes is scattered.

Figure 9 illustrates the process of updating the position of nodes (red makers) that have only one
connection. Figure 9a–d shows the network in the equilibrium state of the first step, after 1 iteration of
the second step, after 2 iterations of the second step, and in the equilibrium state of the second step
after 75 iterations.

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

9

13

15

16

17

18

(a)

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

9

1315

16

17

18

(b)

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

1

2 3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

9

13

15

16

17

18

(c)

1

2 3

4

5

6

7
8

9

10

11

12

13

1415

16

17

18

19

1

2 3

4

5

6

7
8

9

10

11

12

13

1415

16

17

18

19

9
13

15

16

17

18

(d)

Figure 9. Updating the position of nodes with only one connection: (a) Equilibrium state of the
first step, (b) after 1 iteration, (c) after 2 iterations, and (d) equilibrium state of the second step after
75 iterations.

Next, we consider another example ‘Romeo and Juliet’ which is a play written by William
Shakespeare. Matrix W is defined by counting the number of conversations between 27 characters.
The parameters used are minD = 1, maxD = 3, and tol1 = tol2 = 0.002, and then the value of p is
approximately 0.2493. In particular, time step Δt = 0.2 and Δt = 10 are used in the first step and the

155

Mathematics 2020, 8, 1020

second step, respectively. Figure 10a–c illustrate the character network at the initial condition, after the
first step, and after the second step, respectively. From the results, we can find the main characters and
relatively small parts.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1819 20

21

22

23

24

25

26

27

(a)

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26

27

(b)

1
2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

17

18
19

20

21

22

23

24

25

26

27

(c)

Figure 10. Snapshots of network visualization for ‘Romeo and Juliet’: (a) the initial condition, (b) after
230 iterations of the first step, and (c) after 20 iterations of the second step.

4. Conclusions

In this paper, we have proposed a simple method based on distmesh for network visualization.
We have demonstrated the good performance of the proposed algorithm through network visualization
examples. We can provide the MATLAB source code of this method for the interested readers. In future
work, we plan to investigate effective network diagrams for character networks from novels and movies.
We may further speed up the computation of the proposed method by using a Gauss–Newton–secant
type method [23].

Author Contributions: All authors contributed equally to this work; J.P., S.Y., C.L. and J.K. critically reviewed the
manuscript. All authors have read and agree to the published version of the manuscript.

Funding: The corresponding author (J. Kim) expresses thanks for the support from the BK21 PLUS program.

Acknowledgments: The authors thank the editor and the reviewers for their constructive and helpful comments
on the revision of this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this appendix, we provide the MATLAB source codes for network visualization. The following
code is for ‘The Merchant of Venice’. The code for ‘Romeo and Juliet’ is available on the following website:

http://elie.korea.ac.kr/~cfdkim/codes/

156

Mathematics 2020, 8, 1020

Listing A1: Matlab Code for the network visualization.

% The f i r s t s tep
c l e a r ;

W=[0 21 24 16 0 0 0 2 0 7 4 5 0 0 0 0 0 0 1
21 0 27 32 0 0 0 0 0 2 0 11 2 3 2 0 0 0 0
24 27 0 40 0 0 7 0 12 6 0 2 0 5 0 0 0 0 2
16 32 40 0 36 3 0 7 0 0 0 10 0 0 0 3 13 2 0
0 0 0 36 0 2 0 0 0 0 0 4 0 0 0 0 0 0 0
0 0 0 3 2 0 15 0 0 0 0 4 0 0 0 0 0 0 0
0 0 7 0 0 15 0 0 0 0 0 0 0 3 0 0 0 0 0
2 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 2 6 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0
5 11 2 10 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 5 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] ;
N= s i z e (W, 1) ; rand (" seed " , 3 7 7 3) ; t =rand (N, 1) ;
xy =[cos (2∗ pi∗ t) , s i n (2∗ pi∗ t)] ; W=W/max(max(W)) ;
minW=min (min (W(W>0))) ; minD=1; maxD=2; p=−log (maxD) /log (minW) ;
f o r i =1:N
f o r j =1 :N
i f W(i , j) >0
d (i , j) =1/W(i , j) ^p ;
end
end
end
dt = 0 . 0 1 ; t o l = 0 . 0 1 ; n=0; e r r o r =2∗ t o l ;
while e r r o r ≥ t o l
n=n+1; F = zeros (N, 2) ;
f o r i =1 :N
f o r j = i +1:N
i f W(i , j) >0
vt = xy (j , :)−xy (i , :) ;
F (i , :) = F (i , :) + (norm (vt)−d (i , j)) ∗vt/norm (vt) ;
F (j , :) = F (j , :) − (norm (vt)−d (i , j)) ∗vt/norm (vt) ;
end
end
end
xy = xy + dt∗F ; e r r o r =norm (F) / s q r t (N) ;
i f n==1 || mod(n , 1 0) ==0 || error < t o l
f i g u r e (1) ; DrawNetwork (xy ,W) ; pause (0 . 1)
end
end

% The second step
z=f ind (sum(W>0) ==1) ; M=length (z) ;
f o r k =1:M
s (k) =f ind (W(z (k) , :) >0) ;

157

Mathematics 2020, 8, 1020

end
xy0=xy ; n=0; dt = 1 0 . 0 ; t o l = 0 . 0 0 2 ; e r r o r =2∗ t o l ;
while e r r o r ≥ t o l
n=n+1; F = zeros (N, 2) ;
f o r k =1:M
v=[0 0] ;
f o r j =1 :N
vt = xy (z (k) , :)−xy (j , :) ;
i f norm (vt) >0
v=v+vt/norm (vt) ;
end
end
F (z (k) , :) =v/norm (v) ;
end
xy = xy + dt∗F ;
e r r o r =0;
f o r k =1:M
v=xy (z (k) , :)−xy (s (k) , :) ;
xy (z (k) , :) =xy (s (k) , :) +d (z (k) , s (k)) ∗v/norm (v) ;
e r r o r = e r r o r +norm (xy (z (k) , :)−xy0 (z (k) , :)) ^2 ;
end
e r r o r = s q r t (e r r o r /M) ; xy0=xy ;
f i g u r e (2) ; DrawNetwork (xy ,W) ; pause (0 . 1)
end

Listing A2: Function code for DrawNetwork.

funct ion DrawNetwork (xy ,W)
N=length (xy) ; c l f ; hold on
f o r i =1:N
f o r j = i +1:N
i f W(i , j) >0
p l o t (xy ([i , j] , 1) , xy ([i , j] , 2) , " b " , " l inewidth " ,15∗W(i , j) ^2+1) ;
end
end
end
s c a t t e r (xy (: , 1) , xy (: , 2) , 4 0 0 , " g " , " f i l l e d ") ;
f o r i = 1 :N
t e x t (xy (i , 1) −0.04 , xy (i , 2) , num2str (i)) ;
end
a x i s o f f ; a x i s image ;
end

References

1. Heer, J.; Card, S.K.; Landay, J.A. Prefuse: A toolkit for interactive information visualization. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, Portland, OR, USA, 2–7 April 2005;
pp. 421–430.

2. Keim, D.A. Information visualization and visual data mining. IEEE Trans. Vis. Comput. Graph. 2002, 8, 1–8.
[CrossRef]

3. McGuffin, M.J. Simple algorithms for network visualization: A tutorial. Tsinghua Sci. Technol. 2012, 17,
383–398. [CrossRef]

158

Mathematics 2020, 8, 1020

4. Van Wijk, J.J.; Van de Wetering, H. Cushion treemaps: Visualization of hierarchical information.
In Proceedings of the 1999 IEEE Symposium on Information Visualization (InfoVis’ 99), San Francisco,
CA, USA, 24–29 October 1999; pp. 73–78.

5. Herman, I.; Melançon, G.; Marshall, M.S. Graph visualization and navigation in information visualization:
A survey. IEEE Trans. Vis. Comput. Graph. 2000, 6, 24–43. [CrossRef]

6. Adar, E. GUESS: A language and interface for graph exploration. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, Montréal, QC, Cananda, 22–27 April 2006; pp. 791–800.

7. Bostock, M.; Heer, J. Protovis: A graphical toolkit for visualization. IEEE Trans. Vis. Comput. Graph. 2009, 15,
1121–1128. [CrossRef] [PubMed]

8. Wylie, B.; Baumes, J. A unified toolkit for information and scientific visualization. In Visualization and Data
Analysis 2009; SPIE: San Jose, CA, USA, 2009; p. 72430H.

9. McCarty, C.; Molina, J.L.; Aguilar, C.; Rota, L. A comparison of social network mapping and personal
network visualization. Field Methods 2007, 19, 145–162. [CrossRef]

10. Nüesch, E.; Häuser, W.; Bernardy, K.; Barth, J.; Jüni, P. Comparative efficacy of pharmacological and
non-pharmacological interventions in fibromyalgia syndrome: Network meta-analysis. Ann. Rheum. Dis.
2013, 72, 955–962. [CrossRef] [PubMed]

11. Wu, L.; Li, M.; Wang, J.X.; Wu, F.X. Controllability and Its Applications to Biological Networks. J. Comput.
Sci. Technol. 2019, 34, 16–34. [CrossRef]

12. Xia, M.; Wang, J.; He, Y. BrainNet Viewer: A network visualization tool for human brain connectomics.
PLoS ONE 2013, 8, e68910. [CrossRef] [PubMed]

13. Dolfin, M.; Knopoff, D.; Limosani, M.; Xibilia, M.G. Credit Risk Contagion and Systemic Risk on Networks.
Mathematics 2019, 7, 713. [CrossRef]

14. Pueyo, O.; Pueyo, X.; Patow, G. An overview of generalization techniques for street networks. Graph. Models
2019, 106, 101049. [CrossRef]

15. Chaimani, A.; Higgins, J.P.; Mavridis, D.; Spyridonos, P.; Salanti, G. Graphical tools for network meta-analysis
in STATA. PLoS ONE 2013, 8, e76654. [CrossRef] [PubMed]

16. Eades, P. A heuristic for graph drawing. Congr. Numer. 1984, 42, 149–160.
17. Kamada, T.; Kawai, S. An algorithm for drawing general undirected graphs. Inf. Process. Lett. 1989, 31, 7–15.

[CrossRef]
18. Hall, K.M. An r-dimensional quadratic placement algorithm. Manag. Sci. 1970, 17, 219–229. [CrossRef]
19. Spielman, D. Spectral Graph Theory. In Combinatorial Scientific Computing (No. 18); CRC Press: Boca Raton,

FL, USA, 2012.
20. Rücker, G.; Schwarzer, G. Automated drawing of network plots in network meta-analysis. Res. Synth.

Methods 2016, 7, 94–107. [CrossRef] [PubMed]
21. Gansner, E.R.; Koren, Y.; North, S. Graph drawing by stress majorization. In International Symposium on

Graph Drawing; Springer: Berlin/Heidelberg, Germany, 2004; pp. 239–250.
22. Persson, P.O.; Strang, G. A simple mesh generator in MATLAB. SIAM Rev. Soc. Ind. Appl. Math. 2004, 46,

329–345. [CrossRef]
23. Argyros, I.; Shakhno, S.; Shunkin, Y. Improved Convergence Analysis of Gauss-Newton-Secant Method for

Solving Nonlinear Least Squares Problems. Mathematics 2019, 7, 99. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

159

mathematics

Article

Numerical Solution of the Cauchy-Type Singular
Integral Equation with a Highly Oscillatory
Kernel Function

SAIRA
1,†

, Shuhuang Xiang
1,

*
,†

and Guidong Liu
2

1 School of Mathematics and Statistics, Central South University, Changsha 410083, China;
sairahameed@csu.edu.cn

2 School of Statistics and Mathematics, Nanjing Audit University, Nanjing 211815, China; liugd@nau.edu.cn
* Correspondence: xiangsh@csu.edu.cn; Tel.: +86-1397-314-3907
† Current address: School of Mathematics and Statistics, Central South University, Changsha 410083, China.

Received: 16 August 2019; Accepted: 18 September 2019; Published: 20 September 2019

Abstract: This paper aims to present a Clenshaw–Curtis–Filon quadrature to approximate the
solution of various cases of Cauchy-type singular integral equations (CSIEs) of the second kind
with a highly oscillatory kernel function. We adduce that the zero case oscillation (k = 0) proposed
method gives more accurate results than the scheme introduced in Dezhbord et al. (2016) and
Eshkuvatov et al. (2009) for small values of N. Finally, this paper illustrates some error analyses and
numerical results for CSIEs.

Keywords: Clenshaw–Curtis–Filon; high oscillation; singular integral equations; boundary singularities

1. Introduction

Integral equations have broad roots in branches of science and engineering [1–6]. Cauchy-type
singular integral equations (CSIEs) of the second kind occur in electromagnetic scattering and quantum
mechanics [7] and are defined as:

au(x) + b
π ⨍ 1

−1

u(y)K(x, y)
y − x dy = f (x), x ∈ (−1, 1). (1)

A singular integral equation with a Cauchy principal value is a generalized form of an airfoil equation
[8]. Here a and b are constants such that a2 + b2 = 1, b ≠ 0 and K(x, y) = eik(y−x) are the highly oscillatory
kernel function. The function f (x) is the Hölder continuous function, whereas u(x) is an unknown function.
The solution to the above-mentioned Equation (1) contains boundary singularities w(x) = (x + 1)α(1− x)β,
i.e., u(x) = w(x)g(x) and g(x) is a smooth function [9,10]. Then the above Equation (1) transforms into:

aw(x)g(x) + b
π ⨍ 1

−1

w(y)g(y)eik(y−x)
y − x dy = f (x), x ∈ (−1, 1), (2)

where α, β ∈ (−1, 1) depend on a and b, such that:

α = 1
2πi

log (a − ib
a + ib

) − N , β = −1
2πi

log (a − ib
a + ib

) − M, (3)

κ = −(α + β) = M + N.

Here M and N are integers in [−1, 1], whereas the index of the integral equation is called κ,
analogous to a class of functions, wherein the solution is to be sought. It is pertinent to mention that to

Mathematics 2019, 7, 872; doi:10.3390/math7100872 www.mdpi.com/journal/mathematics161

Mathematics 2019, 7, 872

produce integrable singularities in the solution, the index κ is restricted to three cases, [−1, 0, 1], but
the addressed paper considers only two cases for κ, i.e., κ ≤ 0. The value of the index κ depends on
different values for M and N [11–13]. A great number of real life practical problems, e.g., for κ = −1,
the so-called natched half-plane problem and another problem of a crack parallel to the free boundary
of an isotropic semi-infinite plane, that can be reduced to Cauchy singular integral equations are
addressed in [14–17]. Writing Equation (2) in operator form, we get [18]:

Hg = f , (4)

where:

Hg = aw(x)g(x) + b
π ⨍ 1

−1

w(y)g(y)eik(y−x)
y − x dy.

Let us define another operator:

H′ f = aw∗(x) f (x) − b
π ⨍ 1

−1

w∗(y) f (y)eik(y−x)
y − x dy, (5)

further:

HH′ = I i f κ > 0

HH′ = H′H = I i f κ = 0

H′H = I i f κ < 0

(6)

where w∗(x) = (1 + x)−α(1 − x)−β.
It is worthy mentioning the fact that the solution for CSIE exists but unfortunately it is not unique,

as CSIE has three solution cases for different values of κ. The aforementioned theorem appertains to
the existence of the solution of CSIE for case κ = 0.

Theorem 1. [13,15] (Existence of CSIEs) Let the singular integral Equation (2) be equivalent to a Fredholm
integral equation, which implies that every solution of a Fredholm integral equation is the solution of a singular
integral equation and vice versa.

Proof. Based on Equations (4)–(6) the SIE (2) can be transforms into:

g = H
′

f .

Furthermore, it can be written as a Fredholm integral equation:

u(y) + ∫ 1

−1
N(y, τ)y(τ)dτ = F(y). (7)

where:

F(y) = b
π w(y)∫ 1

−1

w∗(x) f (x)
y − x dx,

and:

N(y, τ) = aK(x, τ)w−1 −
b
π w(y)∫ 1

−1

w∗(x)K(x, τ)
y − x dx.

Thus the claimed theorem is proven.

162

Mathematics 2019, 7, 872

Moreover, for Equation (1) we have three cases for κ:

κ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, α < 0,−1 < β, α ≠ β,

−1, 0 < β, α < 1, α ≠ β,

0, α = −β, ∣β∣ ≠ 1
2 .

(8)

Similarly, solution cases of the CSIE of the second type depending on values of κ are:

• 1: The solution u(x) for κ = 1 is unbounded at both end points x = ±1:

u(x) = a f (x) − bw(x)
π e−ikx ⨍ 1

−1

w∗(y) f (y)eiky

y − x dy + Cw(x), (9)

where C is an arbitrary constant such that:

∫ 1

−1
u(y)eikydy = C. (10)

Equation (2) gets infinitely many solutions but is unique for the above condition.

• 2: The solution u(x) is bounded for κ = 0 at x = ±1 and unbounded at x = ∓1:

u(x) = a f (x) − bw(x)
π e−ikx ⨍ 1

−1

w∗(y) f (y)eiky

y − x dy, (11)

Equation (2) gets a unique solution.

• 3: The solution u(x) is bounded at both end points x = ±1 for κ = −1:

u(x) = a f (x) − bw(x)
π e−ikx ⨍ 1

−1

w∗(y) f (y)eiky

y − x dy. (12)

Equation (2) has no solution unless it satisfies the following condition:

∫ 1

−1

f (y)eiky

w(y) dy = 0. (13)

For many decades researchers have been struggling to find an efficient method to get these
solutions. The Galerkin method, polynomial collocation method, Clenshaw–Curtis–Filon method and
the steepest descent method are some of the eminent methods among many others for the solution of
SIEs [19–24]. Moreover, Chakarbarti and Berge [25] for a linear function f (x) gave an approximated
method based on polynomial approximation and Chebyshev points. Z.K. Eshkuvatov [10] introduced
the method taking Chebyshev polynomials of all four kinds for all four different solution cases
of the CSIE. Reproducing the kernel Hilbert space (RKHS) method has been proposed by A.
Dezhbord et al. [26]. The representation of solution u(x) is in the form of a series in reproducing
kernel spaces.

This research work introduces the Clenshaw–Curtis–Filon quadrature to approximate the solution
for various cases of a Cauchy singular integral equation of the second kind, Equation (1), at equally
spaced points xi. So the integral equation takes the form:

uN(xi) = a f (xi) − bw(xi)
π e−ikxi ⨍ 1

−1

w∗(y) fN(y)eiky

y − xi
dy, (14)

163

Mathematics 2019, 7, 872

depending on the κ. Furthermore, the results of the numerical example are compared with [10,26] for
k = 0. Comparison reveals that the addressed method gives a more accurate approximation than these
methods, Section 4 provides this phenomena. The rest of the paper is organised as follows; Section 2
defines the numerical evaluation of the Cauchy integral in CSIE and approximates the solution at
equally spaced points xi. Section 3 represents some error analyses for CSIE. Section 4 concludes this
paper by giving numerical results.

2. Description of the Method

The presented Clenshaw–Curtis–Filon quadrature to approximate the integral term

I(α, β, k, x) = ⨍1
−1

w(y) f (y)eiky

y−x dy consists of replacing function f (y) by its interpolation polynomial PN(y)
at Clenshaw–Curtis point set, yj = cos jπ

N , j = 0, 1,⋯, N. Rewriting the interpolation in terms of the
Chebyshev series:

f (y) ≈ PN(y) = N

∑
n=0

′′cnTn(y). (15)

Here Tn(y) is the Chebyshev polynomial of the first kind of degree n. Double prime denotes a
summation, wherein the first and last terms are divided by 2. The FFT is used for proficient calculation
of the coefficient cn [27,28], defined as:

cn = 2
N

N

∑
j=0

′′ f (yj)Tn(yj).
Let it be that for any fixed x we can elect N s.t x ∉ {yj}; then the interpolation polynomial is

rewritten in the form of a Chebyshev series as:

P̄N+1(y) = N+1

∑
n=0

anTn(y)
where an can be computed in O(N) operations once cn are calculated [27,29]. The
Clenshaw–Curtis–Filon quadrature rule for integral I(α, β, k, x) is defined as:

I(α, β, k, x) = ⨍ 1

−1

w(y) f (y)eiky

y − x dy = ⨍ 1

−1

w(y)P̄N+1(y)eiky

y − x dy =
N+1

∑
n=0

an Mn(α, β, k, x), (16)

where Mn(α, β, k, x) = ⨍1
−1

w(y)Tn(y)eiky

y−x dy are the modified moments. The forthcoming subsection defines
the method to compute the moments Mn(α, β, k, x) efficiently.

Computation of Moments

A well known property for Tn(y) is defined as [30]:

Tn(y) − Tn(x)
y − x = 2

n−1

∑
j=0

′

Un−1−j(y)Tj(x) = 2
n−1

∑
j=0

′

Un−1−j(x)Tj(y), (17)

where the prime indicates the summation whose first term is divided by 2 and Un(y) is the Chebyshev
polynomial of the second kind.

164

Mathematics 2019, 7, 872

Mn(α, β, k, x) = ⨍ 1

−1

w(y)Tn(y)eiky

y − x dy

= ⨍ 1

−1

w(y)(Tn(y) − Tn(x) + Tn(x))eiky

y − x dy

= ⨍ 1

−1

w(y)(Tn(y) − Tn(x))eiky

y − x dy + Tn(x)⨍ 1

−1

w(y)eiky

y − x dy

= ∫ 1

−1
w(y)(2 n−1

∑
j=0

′

Un−1−j(x)Tj(y))eikydy + Tn(x)⨍ 1

−1

w(y)eiky

y − x dy

= 2
n−1

∑
j=0

′

Un−1−j(x)∫ 1

−1
w(y)Tj(y)eikydy + Tn(x)⨍ 1

−1

w(y)eiky

y − x dy

(18)

Piessens and Branders [31] have addressed the fourth homogenous recurrence relation for the
integral without singularity Mn(α, β, k) = ∫ 1

−1 w(y)Tj(y)eikydy.

ikMn+2 + 2(n + α + β + 2)Mn+1 − 2(2α − 2β + ik)Mn − 2(n − α − β − 2)Mn−1 + ikMn−2 = 0, n ≥ 2, (19)

along with four initial values:

M
0
0 = 2α+β+1e−ik Γ(α + 1)Γ(β + 1)

Γ(α + β + 2) F1(α + 1; α + β + 2; 2ik),
M

0
1 = M0(x, α + 1, β, k) − M0(x, α, β, k),

M
0
2 = i

k
[2(α + β + 2)M1 − (2α − 2β + ik)M0],

M
0
3 = i

k
[2(α + β + 3)M2 − (4α − 4β + ik)M1 + 2(α + β + 1)M0],

(20)

where F1(α + 1; α + β + 2; 2ik) stands for confluent hypergeometric function of the first kind.
Unfortunately the discussed recurrence relation for moments Mn(α, β, k) is numerically unstable
in the forward direction for n > k; in this sense by applying Oliver’s algorithm these modified moments
can be computed efficiently [31,32].

The integral ⨍1
−1

w(y)eiky

y−x dy is computed by the steepest descent method; the original idea was given
by Huybrenchs and Vandewalle [33] for sufficiently high oscillatory integrals.

Proposition 1. The Cauchy singular integral ⨍1
−1

w(y)eiky

y−x dy can be transformed into:

⨍ 1

−1

w(y)eiky

y − x dy = S−1 − S1 + iπw(x)eikx (21)

where:

S−1 = iα+1e−ik ∫ ∞

0

yα(2 − iy)β
−1 + iy − x

e−kydy

S1 = (−i)β+1eik ∫ ∞

0

yβ(2 + iy)α
1 + iy − x

e−kydy.

(22)

Proof. Readers are referred to [34] for more details.

165

Mathematics 2019, 7, 872

The generalized Gauss Laguerre quadrature rule can be used to evaluate the integrals S−1 and S1

in the above equation by using the command lagpts in chebfun [35]. Let {yα
j , wα

j }k

j=1
be the nodes and

weights of the weight functions yαe−y and {yβ

j , wβ

j }k

j=1
be the nodes and weights of the weight functions

yβe−y in accordance with the generalized Gauss Laguerre quadrature rule. Moreover, these integrals
can be approximated by:

S−1 ≈ Qk = (i
k
)α+1

e−ik
k

∑
j=1

wα
j

(2 − (i/k)yα
j)β(−1 + (i/k)yα

j − x)
S1 ≈ Qk = (i

k
)β+1

eik
k

∑
j=1

wβ

j

(2 + (i/k)yβ

j)α(−1 + (i/k)yβ

j − x) .
(23)

Mn(α, β, k, x) is obtained by substituting Equations (19) and (21) into the last equality of Equation
(18). Finally, together with Equations (16) and (14), the approximate solution:

uN(xi) = a f (xi) − bw(xi)
π e−ikxi

N+1

∑
n=0

an Mn(α, β, k, x), (24)

for CSIE (1) is derived for different solution cases at equally spaced points.

3. Error Analysis

Lemma 1. [36,37] Let f (x) be a Lipschitz continuous function on [−1, 1] and PN[f] be the interpolation
polynomial of f (x) at N + 1 Clenshaw–Curtis points. Then it follows that:

lim
N→∞

∥ f − PN[f]∥∞ = 0. (25)

In particular,

• (i) if f (x) is analytic with ∣ f (x)∣ ≤ M in an ellipse ερ (Bernstein ellipse) with foci ±1 and major and minor
semiaxis lengths summing to ρ > 1, then:

∥ f − PN[f]∥∞ ≤ 4M
ρN(ρ − 1) . (26)

• (ii) if f (x) has an absolutely continuous (κ0 − 1)st derivative and a κ0th derivative f (κ0) of bounded variation
Vκ0 on [−1,1] for some κ0 ≥ 1, then for N ≥ κ0 + 1:

∥ f − PN[f]∞∥ ≤
4Vκ0

κ0πN(N − 1)⋯(N − κ0 + 1) . (27)

Proposition 2. [29] Suppose that f (y) ∈ CR+2[−1, 1] with R = ⌈min{α, β}⌉, then the error of the
Clenshaw–Curtis–Filon quadrature rule for integral I[f] satisfies:

EN = ∣I(α, β, k, x) − IN(α, β, k, x)∣ = O(k−2−min{α,β}), k → ∞. (28)

Theorem 2. Suppose that uN(x) is the approximate solution of u(x) of CSIE for case κ ≤ 0, then for error∣u(x) − uN(x)∣, x ∈ (−1, 1), the Clenshaw–Curtis–Filon quadrature is convergent, i.e.:

lim
N→∞

∣u(x) − uN(x)∣ = 0. (29)

166

Mathematics 2019, 7, 872

Proof. Suppose that x ∉ YN+1, f ∈ C2[−1, 1] and let

Q(y) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
f (y)− f (x)

y−x , y ≠ x

f
′ (x), y = x.

It is stated that Q(y) ∈ C1[−1, 1] and ∥Q
′∥∞ ≤ 3

2∥ f
′′∥∞, in addition R(y) = PN+1(y)− f (x)

y−x is a
polynomial of degree at most N. Then error for solutions u(x) and uN(x) to CSIE for cases κ ≤ 0
is defined as:

u(x) = a f (x) − b
π e−ikxw(x)⨍ 1

−1

w∗(y) f (y)eiky

y − x dy,

uN(x) = a f (x) − b
π e−ikxw(x)⨍ 1

−1

w∗(y)P̄N+1(y)eiky

y − x dy.

Then:

∣u(x) − uN(x)∣ = ��������a(f (x) − f (x)) − b
π e−ikxw(x)∫ 1

−1
w∗(y)(Q(y) − R(y))eikydy

��������
≤ b

π w(x)∫ 1

−1
w∗(y)dy∥Q(y) − R(y)∥∞

= D∥Q(y) − R(y)∥∞.

where D = bw(x)2α+β+1Γ(α+1)Γ(β+1)
πΓ(α+β+2) .

4. Numerical Examples

Example 1. Let us consider the CSIE of the second kind:

u(x)√
2

+
1√
2π

e−ikx ⨍ 1

−1

u(y)eiky

y − x dy =
f (x)√

2
(30)

where f (x) = cos(x). For x = 0.5 and a = b = 1√
2
, we get values of α = 0.25 and β = 0.25 from Equation (3) for

κ = 0. The absolute error for u(x) is presented in Tables 1 and 2 below.

Table 1. Absolute error for κ = 0, bounded at x = 1.

k N = 5 N = 10 N = 20

50 4.6387 × 10−9 3.9207 × 10−14 1.1102 × 10−16

100 1.0881 × 10−9 4.9564 × 10−15 0
1000 3.8093 × 10−11 4.0030 × 10−16 2.4825 × 10−16

10,000 5.1593 × 10−13 2.2204 × 10−16 1.1102 × 10−16

Table 2. Absolute error for κ = 0, bounded at x = −1.

k N = 5 N = 10 N = 20

50 1.1156 × 10−9 9.1854 × 10−15 1.1102 × 10−16

100 3.2791 × 10−10 5.6610 × 10−16 1.1102 × 10−16

1000 1.7225 × 10−12 2.2204 × 10−16 2.2204 × 10−16

10,000 7.3056 × 10−15 3.3307 × 10−16 3.3307 × 10−16

167

Mathematics 2019, 7, 872

Example 2. The mixed boundary value problem is described in Figure 1.

Figure 1. The mixed boundary value problem.

Taken from [18], it has the analytic solution φ(x, t) = 2
π

arctan 2y
1−x2−t2 . It can further be reduced to the

following integral equation for κ = −1 and for α = β = 1
2 .

−1
π ⨍ 1

−1

u(y)
y − x dy = C1 +

1
π [1 − x

2
log(1 − x) + 1 + x

2
log(1 + x) − log(2 + x) − 1] (31)

Here C1 is a constant defined as C1 = 0.4192007182789807. Furthermore if u(x) is known, the solution of
the above boundary value can be derived as:

φ(μ, ν) = 1
π ∫ ∞

−∞

νu(y, 0)(y − μ)2 + ν2
dy

where:

u(y, 0) = ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u(y) + (1 − y)/2, ∣y∣ ≤ 1,

1 t ∈ [−2,−1],
0, otherwise.

(32)

So here we just solve u(x) for simplicity. Figure 2 illustrates the absolute error for u(x).

168

Mathematics 2019, 7, 872

Figure 2. The absolute error for u(x), for x = 0.6.

Figure 2 shows that absolute error for u(x) decreases for greater values of N.

Example 3. [10,26] For CSIE with k = 0:

∫ 1

−1

u(y)
y − x dy = x4 + 5x3 + 2x2 + x −

11
8

(33)

in the case a = 0 and b = 1, where α and β are derived from Equation (3) and the exact values of u(y) for cases
κ ≤ 0 for the solution bounded at x = −1, x = 1, x = ±1 are given as:

u(y) = 1
π

√
1 + y
1 − y

[y4 + 4y3 − 5/2y2 + y − 7/2]
u(y) = −1

π

√
1 − y
1 + y

[y4 + 6y3 + 15/2y2 + 6y + 7/2]
u(y) = −1

π

√
1 − y2[y3 + 5y2 + 5/2y + 7/2].

(34)

Table 3 presents the absolute error for the above three cases.

Table 3. Absolute error for case κ ≤ 0, k = 0.

x
Error

κ = −1 κ = 0, boundned atx = −1 κ = 0, boundned atx = 1

−0.6 0 1.1102 × 10−16 4.4409 × 10−16

−0.2 3.3307 × 10−16 2.2204 × 10−16 4.4409 × 10−16

0.2 2.2204 × 10−16 4.4409 × 10−16 0
0.6 0 2.2204 × 10−16 4.4409 × 10−16

169

Mathematics 2019, 7, 872

Clearly, Table 3 shows that obtained absolute errors are significantly good for really small values of N,
N = 5, that can never be achieved in [10,26]. The exact value for u(x) in the above examples is obtained through
Mathematica 11, while the approximated results are calculated using Matlab R2018a on a 4 GHz personal laptop
with 8 GB of RAM. For Example 2 Matlab code and Mathematica command is provided as supplementary
material.

5. Conclusions

In the presented research work, the Clenshaw–Curtise–Filon quadrature is used to get higher
order accuracy. Absolute errors are presented in Tables 1 and 2 for solutions of highly oscillatory CSIEs
for κ = 0. For larger values of N, Figure 2 shows the absolute error for u(x) for mixed the boundary
value problem, whereas for frequency k = 0, the proposed quadrature posseses higher accuracy than
the schemes claimed in [10,26]; Table 3 addresses this very well. This shows that the quadrature rule is
quite accurate with the exact solution.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-7390/7/10/872/s1,
for Example 2, Figure 2: The absolute error for u(x), for x = 0.6.

Author Contributions: Conceptualization, SAIRA, S.X. and G.L.; Methodology, SAIRA; Supervision, S.X.; Writing
(original draft), SAIRA; Writing (review and editing), SAIRA, S.X. and G.L.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Polyanin, A.D.; Manzhirov, A.V. Handbook of Integral Equations; CRC Press: Boca Raton, FL, USA, 1998.
2. Li, J.; Wang, X.; Xiao, S.; Wang, T. A rapid solution of a kind of 1D Fredholm oscillatory integral equation.

J. Comput. Appl. Math. 2012, 236, 2696–2705. [CrossRef]
3. Ursell, F. Integral equations with a rapidly oscillating kernel. J. Lond. Math. Soc. 1969, 1, 449–459. [CrossRef]
4. Yalcinbas, S.; Aynigul, M. Hermite series solutions of linear Fredholm integral equations. Math. Comput. Appl.

2011, 16, 497–506.
5. Fang, C.; He, G.; Xiang, S. Hermite-Type Collocation Methods to Solve Volterra Integral Equations with

Highly Oscillatory Bessel Kernels. Symmetry 2019, 11, 168. [CrossRef]
6. Babolian, E.; Hajikandi, A.A. The approximate solution of a class of Fredholm integral equations with a

weakly singular kernel. J. Comput. Appl. Math. 2011, 235, 1148–1159. [CrossRef]
7. Aimi, A.; Diligenti, M.; Monegato, G. Numerical integration schemes for the BEM solution of hypersingular

integral equations. Int. J. Numer. Method Eng. 1999, 45, 1807–1830. [CrossRef]
8. Beyrami, H.; Lotfi, T.; Mahdiani, K. A new efficient method with error analysis for solving the second kind

Fredholm integral equation with Cauchy kernel. J. Comput. Appl. Math. 2016, 300, 385–399. [CrossRef]
9. Setia, A. Numerical solution of various cases of Cauchy type singular integral equation. Appl. Math. Comput.

2014, 230, 200–207. [CrossRef]
10. Eshkuvatov, Z.K.; Long, N.N.; Abdulkawi, M. Approximate solution of singular integral equations of the

first kind with Cauchy kernel. Appl. Math. Lett. 2009, 22, 651–657. [CrossRef]
11. Cuminato, J.A. Uniform convergence of a collocation method for the numerical solution of Cauchy-type

singular integral equations: A generalization. IMA J. Numer. Anal. 1992 , 12, 31–45. [CrossRef]
12. Cuminato, J.A. On the uniform convergence of a perturbed collocation method for a class of Cauchy integral

equations. Appl. Numer. Math. 1995, 16, 439–455. [CrossRef]
13. Karczmarek, P.; Pylak, D.; Sheshko, M.A. Application of Jacobi polynomials to approximate solution of a

singular integral equation with Cauchy kernel. Appl. Math. Comput. 2006, 181, 694–707. [CrossRef]
14. Lifanov, I.K. Singular Integral Equations and Discrete Vortices; Walter de Gruyter GmbH: Berlin, Germany, 1996.
15. Ladopoulos, E.G. Singular Integral Equations: Linear and Non-Linear Theory and Its Applications in Science and

Engineering; Springer Science and Business Media: Berlin, Germany, 2013.
16. Muskhelishvili, N.I. Some Basic Problems of the Mathematical Theory of Elasticity; Springer Science and Business

Media: Berlin, Germany, 2013.

170

Mathematics 2019, 7, 872

17. Martin, P.A.; Rizzo, F.J. On boundary integral equations for crack problems. Proc. R. Soc. Lond. A Math.
Phys. Sci. 1989, 421, 341–355. [CrossRef]

18. Cuminato, J.A. Numerical solution of Cauchy-type integral equations of index- 1 by collocation methods.
Adv. Comput. Math. 1996, 6, 47–64. [CrossRef]

19. Asheim, A.; Huybrechs, D. Complex Gaussian quadrature for oscillatory integral transforms. IMA J.
Num. Anal. 2013, 33, 1322–1341. [CrossRef]

20. Chen, R.; An, C. On evaluation of Bessel transforms with oscillatory and algebraic singular integrands.
J. Comput. Appl. Math. 2014, 264, 71–81. [CrossRef]

21. Erdelyi, A. Asymptotic representations of Fourier integrals and the method of stationary phase. SIAM 1955,
3, 17–27. [CrossRef]

22. Olver, S. Numerical Approximation of Highly Oscillatory Integrals. Ph.D. Thesis, University of Cambridge,
Cambridge, UK, 2008.

23. Milovanovic, G.V. Numerical calculation of integrals involving oscillatory and singular kernels and some
applications of quadratures. Comput. Math. Appl. 1998, 36, 19–39. [CrossRef]

24. Dzhishkariani, A.V. The solution of singular integral equations by approximate projection methods.
USSR Comput. Math. Math. Phys. 1979, 19, 61–74. [CrossRef]

25. Chakrabarti, A.; Berghe, G.V. Approximate solution of singular integral equations. Appl. Math. Lett. 2004, 17,
553–559. [CrossRef]

26. Dezhbord, A.; Lotfi, T.; Mahdiani, K. A new efficient method for cases of the singular integral equation of
the first kind. J. Comput. Appl. Math. 2016, 296, 156–169. [CrossRef]

27. He, G.; Xiang, S. An improved algorithm for the evaluation of Cauchy principal value integrals of oscillatory
functions and its application. J. Comput. Appl. Math. 2015, 280, 1–13. [CrossRef]

28. Trefethen, L.N. C hebyshev Polynomials and Series, Approximation theorey and approximation practice.
Soc. Ind. Appl. Math. 2013, 128, 17-19.

29. Liu, G.; Xiang, S. Clenshaw Curtis type quadrature rule for hypersingular integrals with highly oscillatory
kernels. Appl. Math. Comput. 2019, 340, 251–267. [CrossRef]

30. Wang, H.; Xiang, S. Uniform approximations to Cauchy principal value integrals of oscillatory functions.
Appl. Math. Comput. 2009, 215, 1886–1894. [CrossRef]

31. Piessens, R.; Branders, M. On the computation of Fourier transforms of singular functions. J. Comput.
Appl. Math. 1992, 43, 159–169. [CrossRef]

32. Oliver, J. The numerical solution of linear recurrence relations. Numer. Math. 1968, 114, 349–360. [CrossRef]
33. Huybrechs, D.; Vandewalle, S. On the evaluation of highly oscillatory integrals by analytic continuation.

Siam J. Numer. Anal. 2006, 44, 1026–1048. [CrossRef]
34. Wang, H.; Xiang, S. On the evaluation of Cauchy principal value integrals of oscillatory functions. J. Comput.

Appl. Math. 2010, 234, 95–100. [CrossRef]
35. Dominguez, V.; Graham, I.G.; Smyshlyaev, V.P. Stability and error estimates for Filon Clenshaw Curtis rules

for highly oscillatory integrals. IMA J. Numer. Anal. 2011, 31, 1253–1280. [CrossRef]
36. Xiang, S.; Chen, X.; Wang, H. Error bounds for approximation in Chebyshev points. Numer. Math. 2010, 116,

463–491. [CrossRef]
37. Xiang, S. Approximation to Logarithmic-Cauchy Type Singular Integrals with Highly Oscillatory Kernels.

Symmetry 2019, 11, 728.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

171

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

MDPI
St. Alban-Anlage 66
4052 Basel
Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03943-319-3

	Blank Page

