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Abstract: The stress–strain behavior of nano magnesia-cement-reinforced seashore soft soil (Nmcs)
under different circumstances exhibits various characteristics, e.g., strain-hardening behavior, falling
behavior, S-type falling behavior, and strong softening behavior. This study therefore proposes a
REP (reinforced exponential and power function)-based mathematical model to simulate the various
stress–strain behaviors of Nmcs under varying conditions. Firstly, the mathematical characteristics
of different constitutive behaviors of Nmcs are explicitly discussed. Secondly, the conventional
mathematical models and their applicability for modeling stress–strain behavior of cemented soil
are examined. Based on the mathematical characteristics of different stress–strain curves and the
features of different conventional models, a simple mathematical REP model for simulating the
hardening behavior, modified falling behavior and strong softening behavior is proposed. Moreover,
a CEL (coupled exponential and linear) model improved from the REP model is also put forth for
simulating the S-type stress–strain behavior of Nmcs. Comparisons between conventional models
and the proposed REP-based models are made which verify the feasibility of the proposed models.
The proposed REP-based models may facilitate researchers in the assessment and estimation of
stress–strain constitutive behaviors of Nmcs subjected to different scenarios.

Keywords: seashore soft soil; cement; sulfuric acid erosion; stress–strain behavior; mathematical model

1. Introduction

Soft soil is widely distributed in coastal areas with many defects such as large natural moisture
content, excessive compression capacity, and poor bearing capacity [1–3]. In geotechnical engineering,
deep mixing method is generally adopted to improve the strength of soil by adding cement to the
soil [4–8]. The soft soil is reinforced to impart higher strength through a series of reactions between
raw materials and curing agent [9–16]. In addition to the traditional cement curing agent, researchers
are constantly looking for some novel materials such as nano materials to improve the bearing capacity
of the soft soil layer [2,3,14,15,17–20].

Nano cemented soil refers to the cement-soil mixture which is improved by adding nano materials
as admixtures into the mixture of water, cement and soil [20–22]. At present, the nano materials for
enhancing cemented soil mainly include nano titanium oxide, nano montmorillonite, nano magnesia,
nano silicon, nano alumina, etc. Previous experimental results show that adding nano admixtures
can improve the performances of cemented soil such as its soil strength and anticorrosive properties.

Mathematics 2020, 8, 456; doi:10.3390/math8030456 www.mdpi.com/journal/mathematics1
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Based on some recent studies [2,3], nanometer magnesia (Nm) can be added into cemented soil to
improve its mechanical performance.

In the past few years, mathematical models have been adopted to study the stress–strain response of
soils [23–31]. In term of the stress–strain behaviors of cemented soil, a large number of researches have
been reported [2,3,5,6,13–18,32–37]. However, the reported mathematical models have some limitations
particularly in the modeling of the constitutive behavior of nano magnesia-cement-reinforced seashore soft
soil (Nmcs) which manifests different stress–strain behaviors under varying conditions [2–4,17,18,38,39].

This study aims to propose a REP (reinforced exponential and power function)-based mathematical
model to simulate the various stress–strain behaviors of Nmcs under varying circumstances. The
mathematical characteristics of different constitutive behaviors are firstly examined. Then, the
conventional mathematical models for stress–strain behavior of cemented soil are discussed. Based on
the mathematical characteristics of various stress–strain curves and the features of different conventional
models, a new REP model for characterizing hardening behavior, modified falling behavior and strong
softening behavior is proposed. Furthermore, a CEL (coupled exponential and linear) model improved
from the REP model is also proposed which is able to simulate the S-type stress–strain behavior of
Nmcs. Comparisons between conventional models and the proposed REP-based models are made
which verifies the feasibility of the proposed models.

2. Mathematical Characteristics of Stress–Strain Constitutive Relations of Nmcs

2.1. Materials and Samples

The seashore soft soil discussed in this study was collected from coastal areas in Shaoxing, Zhejiang
Province, China. Its specific gravity, liquid limit, and plastic limit were 2.6, 43.5%, and 30%, respectively.
According to American Society of Testing Materials, ASTM (1994), it belongs to silty clay [2]. In direct
shear test, the thickness of the shear plane is assumed to be zero which means the corresponding
shear strain cannot be calculated; thus in this case shear displacement is applied to represent the strain
behavior. In the following, a more general symbol δ is therefore used to represent shear deformation
characteristics, i.e., shear displacement or shear strain.

The soil samples were prepared under a standard maintenance temperature of 20 ◦C with a
relative humidity of 95%. The mechanical tests were performed after 28 days’ standard curing time.
For the tests considering sulfuric acid erosion, after the standard curing the samples were immersed in
sulfuric acid solution for another 14 days.

2.2. Mathematical Characteristics of τ-δ Behavior

The shear stress–shear strain (τ-δ) behavior of Nmcs typically comprises four types [2,3,17,18].
They are strain-hardening behavior, falling behavior, S-type falling behavior and strain-softening
behavior. According to Wang et al. [17] the strain-softening behavior can be well captured using a
generalized mathematical model, so it will not be discussed in this study. In order to establish the
constitutive model characterizing the shear stress-displacement curve, it is necessary to analyze the
mathematical characteristics.

2.2.1. Strain-Hardening τ-δ Behavior

The typical shear stress-shear strain (τ-δ) curve for strain-hardening behavior of Nmcs is shown
in Figure 1. As can be seen, the strain-hardening process can be divided into three stages: elastic stage
(OA), plastic stage (AB), and failure stage (BC). In the elastic stage, the τ-δ curve shows a straight line
and the shear stress increases linearly with the shear strain at a gradient of initial elastic modulus
E0. In the plastic stage, the tangent modulus Ei reduces gradually as strain accumulates, leading
to a nonlinear τ-δ curve. In the failure stage, the τ-δ curve flattens out and the shear stress reaches
the ultimate shear strength τp with a corresponding shear strain δp. In this stage, the shear stress
is mainly contributed by the friction resistance at the failure surface of the soil sample. In sum, the
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strain-hardening curve includes four mathematical features: through the origin, monotone increasing,
convex to τ-axis, and infinite convergence.

Figure 1. Strain-hardening τ-δ curve.

2.2.2. Falling τ-δ Behavior

In the direct shear test of seashore soft soil after adding Nm, the cohesive force was lost after
failure and hence the shear stress decreased dramatically. The falling τ-δ curve after the elastic stage
shows an evident softening behavior. As shown in Figure 2, the typical τ-δ curve can be divided into
four stages. Stage 1 is the elastic stage (OA) which is similar to that of strain-hardening curve. In this
stage, the shear stress increases with the gradient of initial elastic modulus until reaching the failure.
The corresponding shear stress and strain at point A denote the failure displacement δp and shear
strength τp, respectively. Stage 2 is the falling stage (AB), which evidently shows the falling of shear
stress after the soil fails. This falling of shear stress is attributed to the loss of cohesion and the tangent
modulus of the τ-δ curve gives a negative value. Stage 3 is the plastic stage (BC) wherein the friction
resistance starts to dominate after the loss of cohesion. In this stage, the tangent modulus of the curve
approximates the initial elastic modulus at the beginning which subsequently decreases due to the
occurrence of plastic shear stress. Stage 4 is the residual shear stress stage (CD) where the tangent
modulus approaches zero and the shear stress is equal to residual shear stress. It should be noted that
the τ-δ falling curve can be modified by ignoring Stages 2 and 3 (AB and BC), then it returns to the
strain-hardening behavior. However, the shear strength in the falling curve refers to the shear stress at
the end of Stage 1 which is different from its counterpart in the strain-hardening curve.

Figure 2. Falling τ-δ curve.

3
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2.2.3. S-Type Falling τ-δ Behavior

Based on the τ-δ response of Nmcs in the scenario with high corrosion, the typical S-type falling
curve is shown in Figure 3. As can be seen, the S-type falling curve consists of five stages. Stage
1 refers to the erosion softening stage (OA) where the surface of the sample is eroded by highly
corrosive sulfuric acid and becomes relatively soft. Initially, the increment in the shear stress is
relatively small as the displacement increases, giving rise to a relatively small initial modulus. As
the shearing develops and enters the hard soil, which is less corroded, the tangent modulus tends to
increase until stabilizing when accessing Stage 2, i.e., linear elastic stage (AB). The shear strength τp

and corresponding displacement δp at failure occur at the end of Stage 2, i.e., point B. After reaching
failure, the falling stage (BC), the frictional plastic stage (CD) and the residual shear stress stage (DE)
emerge continuously. These three stages are similar to those in the above falling behavior. Thus, the
S-type falling curve can be modified in a similar way as that for the above falling curve. However, the
obtained modified curve is still unlike the strain-hardening curve which is convex to τ-axis; namely, an
inflection point occurs on the curve, e.g., before this point, the curve is convex to δ-axis, while after this
point, it is convex to τ-axis.

Figure 3. S-type Falling τ-δ curve.

2.3. Mathematical Characteristics of σ-δ Behavior

Based on the UCS (unconfined compression strength test) results, the stress–strain curve under
uniaxial compression exhibits a strong softening and brittle failure behavior, as shown in Figure 4.
As can be seen, the stress–strain curve is hump-shaped where the peak point of the curve gives the
unconfined compressive strength σp corresponding to a strain of εp. This curve comprises three
stages. In the hardening stage (OP), the stress initially increases linearly with strain; the gradient of
which represents the initial elastic modulus E0. This gradient starts to decrease in the later phase of
the hardening stage until arriving at the peak, i.e., point P where the brittle failure takes place and
the tangent modulus equals to zero. After that the stress reduces monotonically with strain in the
softening stage (PM) and remains unchanged when entering the residual stress stage (MN). In sum,
the mathematical features of the curve include: through the origin, having extreme value point, and
converging at residual stress.

4
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Figure 4. Axial stress–strain curve.

3. Established Mathematical Model

The characteristics of modified falling τ-δ curve are almost consistent with those of strain-hardening
τ-δ curve. Therefore, this study attempts to establish a simple, mathematical constitutive model which
is applicable for modeling both strain-hardening and modified falling τ-δ behaviors of Nmcs.

3.1. Conventional Shear Stress-Displacement (τ-δ) Models

The conventional shear stress-displacement models have three types: hyperbolic model,
exponential model and power function model.

3.1.1. Hyperbolic Model

The most classical nonlinear model describing hardening curve is hyperbolic model, which is
widely applied to the nonlinear modeling in various fields because of its simple expression, convenient
simulation and easy determination of parameters. The hyperbolic model was proposed by Duncan
and Chang [40] and its expression is

τ =
δ

1/E0 + δ/τp
, (1)

where τ is the shear stress (kPa), δ is the shear displacement (mm), E0 is the nominal elastic modulus
(kPa/mm) and τp is the shear strength (kPa).

According to the τ-δ curves of shear test on the soil-structure contact surface, the hardening curve
is rigid and plastic, and the hyperbolic model is difficult to meet this condition. In contrast, the strain
in the τ-δ curve of Nmcs is mostly elastic before failure and only a small amount of plastic strain occurs
after failure. In addition, the hyperbolic curve produces a large error in fitting the softening curve,
which causes the deviation between the fitting results and the measured data due to its mathematical
characteristics. Therefore, the hyperbolic model may be not suitable for modeling both hardening and
softening behaviors.

3.1.2. Exponential Model

The exponential model converges faster, and it is suitable for the τ-δ curves with elastoplastic
strain. Hence, it is superior to the hyperbolic model for hardening curves. The exponential model
was firstly proposed based on the one-dimensional consolidation theory of Terzaghi, and was mainly
applied to describe the stress–strain curve of soil. The mathematical constitutive function is

τ = τp
(
1− e−E0δ/τp

)
. (2)

5
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Cai et al. [41] investigated the mathematical defects of the exponential model using the half-value
strength index. The results showed that the half-value strength index of both the exponential and the
hyperbolic function is a fixed value which is only related to the peak strength and the initial elastic
modulus. In this regard, the simulated stress–strain curve is only applicable for specific cases. In
contrast, the half-value strength index of the power function is a parameter with a non-fixed value.
The shape of its curve varies with the variation of the parameters, and hence it is widely applicable.

3.1.3. Power Function Model

Due to the mathematical characteristics of the power function model, its simulation effect is
remarkable in modeling plastic curves. In addition, the power function model of the nonlinear
constitutive model of clay has the parameter of tangent modulus index. The expression of the power
function model is

τ = τp

⎧⎪⎪⎨⎪⎪⎩1−
[
1 +

(θ− 1)E0

τp
δ

] 1
1−θ
⎫⎪⎪⎬⎪⎪⎭, (3)

where the value of θ is larger than 1; when θ = 2, the power function becomes the hyperbolic shear
stress-displacement constitutive equation, so the hyperbolic function is only a special case of the power
function. The first derivative of Equation (3) is given as

dτ
dδ

= E0

[
1 +

(θ− 1)E0

τp
δ

] θ
1−θ

. (4)

Since θ > 1, the first derivative of the power function is always greater than 0 in the domain of
definition, and the curve increases monotonically. As the parameter θ changes, it is more applicable to
the hardening curve and modified falling curve.

The second derivative of Equation (3) leads to

d2τ

dδ2 = −E0
2θ
τp

[
1 +

(θ− 1)E0

τp
δ

] 2θ−1
1−θ

. (5)

It can be found that the second derivative of power function is always less than zero, meeting the
characteristic of hardening and modified falling curves, i.e., convex to τ-axis. However, the inflection
point occurs on the S-type τ-δ curve under a highly corrosive environment. Therefore, the second
derivative of power function cannot be equal to zero.

3.2. Mathematical REP Model for τ-δ Behavior

Based on the above conventional mathematical models, a new REP (reinforced exponential and
power function) mathematical model for modeling the shear stress-displacement behavior of Nmcs
under acid erosion environment is proposed in this study. This model combines exponential and
power functions, which is expressed as

τ = a
[
1− e−bδ(1 + kδ)−λ

]
, (6)

where a, b, λ, and k are parameters to be determined, and a ≥ 0, b > 0, λ > 0, k > 0. When k = 0, Equation
(6) degrades into exponential function.

Taking the limit and the first derivative of Equation (6) leads to

⎧⎪⎪⎨⎪⎪⎩
τ
∣∣∣δ=+∞ = a

dτ
dδ

= abe−bδ(1 + kδ)−λ + aλke−bδ(1 + kδ)−λ−1 . (7)

6
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The progressive limit of τ-δ curve is shear strength, i.e., τp. Hence,

a = τp. (8)

The first derivative of the new model with δ=0 is the initial modulus of elasticity, i.e., E0. Combining
with Equation (8) gives

τpb + τpλk = E0, (9)

where
b =

E0

τp
− λk. (10)

According to Equation (10), (E0/τp − λk) > 0 if b > 0.
Based on the above, the REP model for the hardening τ-δ curve can be expressed as

τ = τp
[
1− e−(E0/τp−λk)δ(1 + kδ)−λ

]
. (11)

In order to analyze whether REP model satisfies the mathematical characteristics of hardening
curve, the zero point, the limit, the first derivative and the second derivative are discussed as below

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ|δ=0 = 0
τ
∣∣∣δ=+∞ = τp

dτ
dδ

= E0
(
E0/τp − λk

)
e−(E0/τp−λk)δ(1 + kδ)−λ + E0λke−(E0/τp−λk)δ(1 + kδ)−λ−1

d2τ

dδ2 = −E0
(
E0/τp − λk

)2
e−(E0/τp−λk)δ(1 + kδ)−λ

−2E0
(
E0/τp − λk

)
λke−(E0/τp−λk)δ(1 + kδ)−λ−1 − E0λ(λ+ 1)k2(1 + kδ)−λ−1

(12)

When δ = 0, the shear stress equals to 0 so the curve passes through the origin, satisfying the
first characteristic of the hardening curve. The coefficients in the first-order derivative equation are
all positive, and the first-order derivative is always greater than 0 in the domain of definition, which
satisfies the characteristic of monotonic increase. When the displacement δ approaches infinity, shear
stress gradually gets close to shear strength of τp. Therefore, the new model goes through the origin
and has both upper and lower bounds. The coefficients of the second derivative equation are all
negative, and the second derivative of the new model is always less than 0. Hence, the REP model is
theoretically suitable for the hardening and modified falling curves.

3.3. Mathematical Models for Stress-Displacement (σ-δ) Behavior

Likewise, the conventional mathematical model for the constitutive relation of stress- displacement
(σ-δ) behavior also has many types such as hyperbolic, exponential function, power function, piecewise
function and quadratic function. As aforementioned, the power function model has a better fitting effect
than hyperbolic and exponential functions, while the piecewise function has some defects, e.g., it is
troublesome to fit and has many parameters. Therefore, in the study of models for stress-displacement
(σ-δ) behavior, only power function, quadratic function, and the proposed REP function are discussed.

For the power function of σ-δ behavior, it can be easily modified from Equation (3), that is

σ = σp

⎧⎪⎪⎨⎪⎪⎩1−
[
1 +

(θ− 1)E0

σp
ε

] 1
1−θ
⎫⎪⎪⎬⎪⎪⎭, (13)

where ε is the strain (%), σ is the stress (kPa) and σp is the peak value of the stress–strain curve (UCS).

7
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The quadratic model is able to simulate the stress–strain curve of compacted cement soil with an
obvious peak value; its expression is

σ = σp

⎡⎢⎢⎢⎢⎣A εεp
− B
(
ε
εp

)2⎤⎥⎥⎥⎥⎦, (14)

where σp and εp are the maximum stress and the corresponding strain, respectively. A and B are the
fitting parameters to be determined.

When ε = 0, the stress of power and quadratic models is 0, which satisfies the characteristic of the
stress–strain curve passing through the origin. As aforementioned, in the process of power function
fitting, it is unable to converge in the failure stage, while the strong softening stress–strain curve will
soften immediately after reaching the peak failure. Therefore, the convergence of the power function
may be not timely, which may lead to a large deviation from the measured curve. Although the
quadratic model is able to converge in time after the peak value; when the strain approaches infinity,
the stress is also infinite, which theoretically does not meet the characteristics of infinite convergence of
the stress–strain curve.

The expression of REP model for the σ-δ behavior is slightly different from that for the τ-δ behavior,
i.e., Equation (11)

σ = a
[
1− e−bε(1 + kε)−λ

]
, (15)

where a, b, λ, and k are parameters to be determined, and the value range of each parameter should
be suitable for the hump curve. When ε = 0, the σ value of the REP model also equals to zero which
satisfies the characteristic of passing through the origin.

The first and second derivatives of the stress–strain curve are as follows
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dσ
dδ

= abe−bε(1 + kε)−λ + aλke−bε(1 + kε)−λ−1

d2σ

dδ2 = −ab2e−(E0/τp−λk)δ(1 + kε)−λ − 2abλke−bε(1 + kε)−λ−1 − aλ(λ+ 1)k2(1 + kε)−λ−1
. (16)

It can be observed that the first and second derivatives of REP model are affected by the value of
each parameter, and the positive and negative signs are uncertain which enables its adaptability to
complex strain-softening curves. The specific value range of each parameter and the judgment of the
positive and negative sign of the first derivative and the second derivative need further study.

3.4. Application and Analysis

3.4.1. Hardening τ-δ Behavior

Based on the measured data of direct shear test, comparisons of using hyperbolic, exponential
and power function models as well as the proposed REP model are made. Two cases with 5% and 7%
cement mixture ratio were examined. To determine the aforementioned model parameters, e.g., λ and
k, four tests with vertical pressures of 100, 200, 300, and 400 kPa were carried out respectively. The
comparison results for the cases under a vertical pressure of 400 kPa are shown in Figures 5 and 6.
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Figure 5. τ-δ curve for mix ratio with 5% cement content.

Figure 6. τ-δ curve for mix ratio with 7% cement content.

As shown in Figure 5, on the whole, the four models have a good fitting effect, but the elastic stage
of the measured curve is not smooth, and there is a prominent inflection point locally. In this stage, the
four models have a large deviation from the measured value. The tangent modulus of the measured
curve decreases gradually in the plastic stage, and the hyperbolic, exponential and power functions
converge slowly, all of which appear below the curve while the fitting effect of REP model is very
evident. When entering failure stage, both the hyperbolic and exponential fittings cannot converge
to τp, and lie in the upper part of the measured curve with big difference. In contrast, the power
function converges well, and the fitting effect is better than the hyperbolic and exponential functions,
although the end of the curve still appears above the measured curve. The REP model also has a good
convergence effect and the whole fitted failure stage is very close to that of the measured curve.

As shown in Figure 6, the linearity of the measured curve in the elastic stage is not obvious while
the hyperbolic, exponential, and power function curves are linear, deviating slightly from the measured
curve. In the plastic deformation stage, the three functions appear below the measured curve, and the
difference between the power function and the measured curve is the smallest. Similar to that observed
in Figure 5, in the failure stage, the three models generally appear at the top of the curve. In contrast,
the REP model is very close to the measured curve and shows an evidently favorable fitting effect.

9
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Among the conventional models, the power function model is relatively superior in modeling
τ-δ curves, particularly in the plastic stage where the computed results are closer to the measured
curve and failure, and in the failure stage showing a faster convergence speed. Compared with the
hyperbolic model, the exponential model has a better simulation effect. Moreover, the REP model
shows superior fitting accuracy than the conventional mathematical models.

3.4.2. Modified Falling τ-δ Behavior

After adding Nm, the τ-δ curve exhibits modified falling type. In the comparison of different
mathematical models, two cases with Nm mixing ratios of 10%� and 20%� under a vertical pressure of
400kPa were selected. The results are shown in Figures 7 and 8.

Figure 7. τ-δ curve for mix ratio with 10%� Nm content.

Figure 8. τ-δ curve for mix ratio with 20%� Nm content.

As can be seen, the shape of the two measured curves is similar. Before failure, the modified
curve is mostly elastic stage and there is no plastic transition stage showing significant linearity. In this
stage, the conventional models produce non-linear curves, while the measured curve approximates a
horizontal line in the failure stage. The curves of conventional models locate below the measured curve
in the former part and above the measured curve in the later part. In the two stages, the conventional
model intersects with the measured curve, exhibiting two “X” shapes. In general, the difference
between conventional models and measured curve is relatively big while the REP model fits fairly well
with the measured curve. Therefore, the proposed REP model has significant advantage in modeling
the modified τ-δ curve. In contrast, it is easy for a double-“X” type discrepancy to appear in the
conventional mathematical model simulation.

10
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3.4.3. Strong Softening σ-δ Behavior

To compare the performance of the power function and quadratic function models as well as
the REP model, UCS experimental results for cases with 0 mol/L and 0.08 mol/L H2SO4 erosion were
adopted, Figure 9. As can be seen, the power function model behaves the worst in the modeling
of the hump-shaped σ-δ curve. For instance, it is convex at the rising stage of the curve, which is
contrary to the characteristic of concave in the measured curve. In addition, it cannot simulate the
softening behavior as the measured curve although it converges to an almost constant value in the end.
The quadratic function model performs better than the power function model. It is able to simulate
the softening behavior and give a peak stress value. However, the shape of the quadratic curve is
convex in all stages, which differs with the shape of measured curves. Worse still, there exists a large
discrepancy in the maximum stress value and its corresponding strain value between the results of
quadratic model and the measured results. This may raise an adverse effect in predicting UCS results.
In contrast, the results of proposed REP model agree incredibly well with the measured results. The
REP model not only shows consistent shapes, but also predicts a fairly close maximum stress value and
a corresponding strain value. This is of great engineering value in predicting the compressive strength.

Figure 9. Comparison of stress–strain curves: (a) pure water condition (0 mol/L H2SO4); (b) 0.08 mol/L H2SO4.

To further examine the performance of the REP model, a series of comparisons for cases with
varying erosion concentrations (i.e., 0.00 mol/L, 0.02 mol/L, 0.04 mol/L, 0.06 mol/L and 0.08 mol/L) is
conducted, Figure 10. As can be seen, in the stress rising stage, the REP model fits fairly well with
measured results; in the reducing stage, slight discrepancy occurs for the cases with 0.00 mol/L and
0.02 mol/L erosion concentrations. This could be attributed to the scattered data of the measured results.
In the final residual stage, the REP model deviates from the measured data when the convergent
residual stress was relatively large, such as the cases in pure water (i.e., 0.00 mol/L) and 0.02 mol/L acid
erosion environment. When the residual stress was relatively small in the environment with a high
concentration of acid erosion, the REP model gives better performance in fitting. Therefore, it can be
found that the REP model can adapt to the measured curve under different acid erosion concentrations,
with relatively high fitting accuracy. The fitting effect is more evident under a high concentration
erosion environment. Table 1 provides the values of the four parameters in the REP model for these
five cases.
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Figure 10. Comparison of stress–strain curves of different H2SO4 erosion concentrations with REP
model fittings.

Table 1. Four parameter values of REP model under different erosion concentrations.

H2SO4 Erosion
Concentrations

Parameter

a b k λ

0.00 mol/L 223.23 16.62 0.08 131.20
0.02 mol/L 83.33 5.95 0.18 19.76
0.04 mol/L 100.70 7.53 0.12 48.53
0.06 mol/L 79.73 2.36 0.25 3.60
0.08 mol/L 40.00 2.93 0.12 14.04

In order to study the influence of erosion concentration on REP model parameters, an acid erosion
factor was introduced

ω(x, y, z, as) =
π2x

2πy + 4zas
, (17)

where x, y, and z are the parameters to be determined; αs is the concentration of sulfuric acid solution.
In accordance with Table 1, substituting the acid erosion factor and acid erosion concentration αs

into the four parameters of REP model leads to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a = 8ϕ tan[ωa(as) + 1.84c] − 1.84c
b = −0.45c− 2.18ϕ cos[ωb(as) + 2.18ϕ]
k = 0.11 tan[ωk(as) + 0.16] − 0.16
λ = −2.2c− as − 2.1c sin[ωλ(as) + 2.2c]

, (18)

where c and ϕ are the cohesion and internal friction angle of silty clay in the experiment, respectively.
Hence, the acid erosion factors of the four parameters can be obtained

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ωa(as) = ω(−7.96ϕ, 0.881, 1.84c, as)

ωb(as) = ω(2.18217ϕ,−0.100816, 0.44586c, as)

ωk(as) = ω
(
0.1111,−6.592ϕ× 10−6, 0.158, as

)
ωλ(as) = ω(2.095c, 2.1927c,−105.507c, as)

. (19)
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Combining with Equations (15) and (19), the damage model of sulfuric acid erosion can be
expressed as

σ = a[ωa(as),as]

[
1− e−b[ωb(as),as ]ε

(
1 + k[ωk(as),as]ε

)−λ[ωλ(as),as ]
]
. (20)

As shown in Equation (20), the damage model only contains parameters of sulfuric acid
concentration (αs), cohesion (c) and internal friction angle (ϕ), making the new model more suitable for
acid erosion environment.

4. Mathematical CEL Model for Modified S-Type Falling τ-δ Behavior

As discussed above, the REP model has fairly good fitting effect which can be used for different
types of stress–strain curves. However, for the S-type curve which has inflection points, it is
time-consuming to calculate the zero point of the second derivative equation of REP model and
determine the position of inflection points. To solve this, the REP is therefore simplified and a new
CEL (coupled exponential and linear) model is put forth.

4.1. Mathematical CEL Model

The CEL model is actually a coupled exponential and linear function model.
Setting λ = −1, Equation (6) can be simplified as

τ = a
[
1− e−bδ(1 + kδ)

]
, (21)

where α ≥ 0, b > 0 and k > 0; k is defined as the inflection factor.
Taking the limit of Equation (21) gives

τ
∣∣∣δ=+∞ = a

[
1− e−bδ(1 + kδ)

]∣∣∣δ=+∞ = a(1− 0) = a. (22)

Since the S-type curve eventually converge to the shear strength τp so

a = τp. (23)

Taking the first derivative of Equation (21) leads to

dτ
dδ

= abe−bδ(1 + kδ) − ake−bδ. (24)

If δ = 0, then
dτ
dδ
|δ=0 = a(b− k). (25)

The first derivative of the new model is the initial elastic modulus when the displacement is 0, i.e.,
δ = 0. Combining with Equation (23) gives

τp(b− k) = E0. (26)

Hence, the parameter b can be derived

b =
E0

τp
+ k, (27)

and the CEL model can be expressed as

τ = E0

[
1− e

−( E0
τp +k)δ

(1 + kδ)
]
. (28)
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In order to explore whether the CEL model satisfies the mathematical characteristics of the S-type
curve, its zero point, limit, first derivative, and second derivative are discussed

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ
∣∣∣δ=0 = E0[1− 1 · (1− 0)] = 0
τ
∣∣∣δ=+∞ = τp

dτ
dδ

= τp

(
E0

τp
+ k
)
e
−(E0

τp
+k)δ

(1 + kδ) − τpke
−(E0

τp
+k)δ

d2τ

dδ2 = −τp

(
E0

τp
+ k
)2

e
−(E0

τp
+k)δ

(1 + kδ) + 2τp

(
E0

τp
+ k
)
ke
−(E0

τp
+k)δ

. (29)

According to Equation (29), the CEL model goes through the origin and converges to τp at infinity.
Combining the similar items in the first derivative of Equation (29) gives

dτ
dδ

=
(
E0 + E0kδ+ τpk2δ

)
e
−( E0
τp +k)δ

> 0. (30)

Hence, the first derivative of CEL model is always greater than 0 in the domain of definition, and
the curve increases monotonically.

The displacement at zero point of the second derivative of Equation (29) is obtained by

δc =
τpk− E0

τpk2 + E0k
. (31)

To analyse the concavity of CEL model at zero point of second derivative, the relations are

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d2τ

dδ2 > 0,
(
δ <

τpk− E0

τpk2 + E0k

)

d2τ

dδ2 < 0,
(
δ >

τpk− E0

τpk2 + E0k

) . (32)

When δ < δc, τ” > 0 and the curve is convex to the δ-axis; when δ > δc, τ” < 0 and the curve is
convex to the τ-axis.

4.2. Application and Analysis

Comparisons of hyperbolic, exponential and power function models and the above CEL model
are carried out based on the experimental results of two cases with 0.09 mol/L H2SO4 erosion under
vertical pressures of 300 kPa and 400 kPa, respectively. The results are shown in Figures 11 and 12.
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Figure 11. τ-δ curve under 300 kPa vertical pressure.

Figure 12. τ-δ curve under 400 kPa vertical pressure.

As can be seen, the curves of conventional models are well banded which are above the measured
curve before the inflection point and below the measured curve after the inflection curve. In contrast,
the fitting effect of CEL model is obviously better than that of the other conventional models. It is
basically consistent with the measure curve in the S-shaped range and converges faster and closer to
τp than the other models in the failure stage. However, at the initial stage, the CEL curve is slightly
lower than the measure curve, while in the failure stage, the difference between the CEL curve and the
measured curve is relatively evident.

5. Conclusions

This study analyses the experimental data of τ-δ and σ-δ constitutive relationships of Nmcs, and
examines its characteristics under various conditions. Two mathematical models, i.e., REP (reinforced
exponential and power function) and CEL (coupled exponential and linear) models, are proposed to
overcome the shortcomings of conventional models in the modeling of hardening, modified falling,
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S-type falling, and strong softening stress–strain behaviors. Some key findings are summarized
as below:

• The τ-δ curves with varying cement mixing ratio, Nm mixing ratio and acid erosion concentrations
exhibit different behaviors. For example, hardening behavior occurs with low cement mixing ratio;
falling behavior takes place after adding Nm and S-type happens with acid erosion environment.

• The proposed REP model is able to satisfy the mathematical characteristics of the stress–strain
curves with hardening and modified falling behaviors as well as strong softening behavior.
Compared with conventional hyperbolic model, exponential and power function models which
easily produce double-“X” discrepancies, the REP model has an evidently higher fitting accuracy
in modeling both hardening and modified falling curves. In the modeling of strong softening
behavior, the REP model also performs the best. In addition, by introducing an acid erosion factor,
the REP model can be further expressed as a sulfuric acid erosion damage model which includes
only three typical parameters, i.e., sulfuric acid concentration, cohesion of silty clay, and internal
friction angle.

• In the modeling of S-type stress–strain behavior, the conventional models are unable to simulate
the characteristic with inflection point and produce even bigger “X” discrepancy than that in the
modeling of hardening and falling behavior. In contrast, the proposed CEL model performs much
better especially in modeling the range around the inflection point at the early stage.

The applicability of the proposed method of this study in practice mainly include two parts.
As introduced in the study, the seashore soft soil discussed herein was collected from coastal areas
in Shaoxing, Zhejiang Province, China. Thus, for the regions with similar seashore soft soil, e.g.,
the Yangtze river delta region of China, the reported methods in this study could be used directly.
On the other hand, for regions with different seashore soft soil (i.e., the soil specific gravity, LL, PL
vary a lot), the proposed expressions are still applicable if the specific soil stress–strain behavior was
exhibited, e.g., strong softening behavior. However, it should be noted that, for the latter scenario, the
corresponding calculation parameters should be re-calibrated through laboratory tests.
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Abstract: Since industrial control systems are usually integrated with numerous physical devices,
the security of control systems plays an important role in safe operation of industrial chemical
processes. However, due to the use of a large number of control actuators and measurement
sensors and the increasing use of wireless communication, control systems are becoming increasingly
vulnerable to cyber-attacks, which may spread rapidly and may cause severe industrial incidents.
To mitigate the impact of cyber-attacks in chemical processes, this work integrates a neural network
(NN)-based detection method and a Lyapunov-based model predictive controller for a class of
nonlinear systems. A chemical process example is used to illustrate the application of the proposed
NN-based detection and LMPC methods to handle cyber-attacks.

Keywords: industrial cyber-physical systems; cyber-attacks; neural network; model predictive
control; nonlinear chemical processes

1. Introduction

Recently, the security of process control systems has become crucially important since control
systems are vulnerable to cyber-attacks, which are a series of computer actions to compromise the
security of control systems (e.g., integrity, stability and safety) [1,2]. Since cyber-physical systems (CPS)
or supervisory control and data acquisition (SCADA) systems are usually large-scale, geographically
dispersed and life-critical systems where embedded sensors and actuators are connected into a network
to sense and control the physical devices [3], the failure of cybersecurity can lead to unsafe process
operation, and potentially to catastrophic consequences in the chemical process industries, causing
environmental damage, capital loss and human injuries. Among cyber-attacks, targeted attacks are
severe threats for control systems because of their specific designs with the aim of modifying the
control actions applied to a chemical process (for example, the Stuxnet worm aims to modify the data
sent to a Programmable Logic Controller [4]). Additionally, targeted attacks are usually stealthy and
difficult to detect using classical detection methods since they are designed based on some known
information of control systems (e.g., the process state measurement). Therefore, designing an advanced
detection system (e.g., machine learning-based detection methods [5,6]) and a suitable optimal control
scheme for nonlinear processes in the presence of targeted cyber-attacks is an important open issue.
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Due to the rapid development of computer networks of CPS in the past two to three decades,
the components (e.g., sensors, actuators, and controllers) in a large-scale process control system are
now connected through wired/wireless networks, which makes these systems more vulnerable to
cyber-attacks that can damage the operation of physical layers besides cyber layers. Additionally,
since the development of most of the existing detection methods still depends partly on human
analysis, the increased use of data and the designs of stealthy cyber-attacks pose challenges to the
development of timely detection methods with high detection accuracy. In this direction, the design
of cyber-attacks, the anomaly detection methods focusing on physical layers, and the corresponding
resilient control methods have received a lot of attention. A typical method of detection [4] is using
a model of the process and comparing the model output predictions with the actual measured outputs.
In [7], a dynamic watermarking method was proposed to detect cyber-attacks via a technique of
injecting private excitation into the system. Moreover, four representative detection methods were
summarized in [3] as Bayesian detection with binary hypothesis, weighted least squares, χ2-detector
based on Kalman filters and quasi-fault detection and isolation methods.

Besides the detection of cyber-attacks, the design of resilient control schemes also plays an
important role in operating a chemical process reliably under cyber-attacks. To guarantee the process
performance (e.g., robustness, stability, safety, etc.) and mitigate the impact of cyber-attacks, resilient
state estimation and resilient control strategies have attracted considerable research interest. In [2,8],
resilient estimators were designed to reconstruct the system states accurately. An event-triggered
control system was proposed in [9] to tolerate Denial-of-service (DoS) attacks without jeopardizing the
stability of the closed-loop system.

On the other hand, as a widely-used advanced control methodology in industrial chemical plants,
model predictive control (MPC) achieves optimal performance of multiple-input multiple-output
processes while accounting for state and input constraints [10]. Based on Lyapunov methods
(e.g., a Lyapunov-based control law), the Lyapunov-based model predictive control (LMPC) method
was developed to ensure stability and feasibility in an explicitly-defined subset of the region of
attraction of the closed-loop system [11,12]. Additionally, process operational safety can also be
guaranteed via control Lyapunov-barrier function-based constraints in the framework of LMPC [13].
At this stage, however, the potential safety/stability problem in MPC caused by cyber-attacks has
not been studied with the exception of a recent work that provides a quantitative framework for the
evaluation of resilience of control systems with respect to various types of cyber-attacks [14].

Motivated by this, we develop an integrated data-based cyber-attack detection and model
predictive control method for nonlinear systems subject to cyber-attacks. Specifically, a cyber-attack
(e.g., a min-max cyber-attack) that aims to destabilize the closed-loop system via a sensor tamper is
considered and applied to the closed-loop process. Under such a cyber-attack, the closed-loop system
under the MPC without accounting for the cyber-attack cannot ensure closed-loop stability. To detect
potential cyber-attacks, we take advantage of machine learning methods, which are widely-used in
clustering, regression, and other applications such as model order reduction [15–17], to build a neural
network (NN)-based detection system. First, the NN training dataset was obtained for three conditions:
(1) The system without disturbances and cyber-attacks (i.e., nominal system); (2) The system with
only process disturbances considered; (3) The system with only cyber-attacks considered. Then, a NN
detection method is trained off-line to derive a model that can be used on-line to predict cyber-attacks.
In addition, considering the classification accuracy of the NN, a sliding detection window is employed
to reduce false cyber-attack alarms. Finally, a Lyapunov-based model predictive control (LMPC)
method that utilizes the state measurement from secure, redundant sensors is developed to reduce the
impact of cyber-attacks and re-stabilize the closed-loop system in finite time.

The rest of the paper is organized as follows: in Section 2, the class of nonlinear systems considered
and the stabilizability assumptions are given. In Section 3, we introduce the min-max cyber-attack,
develop a NN-based detection system and a Lyapunov-based model predictive controller (LMPC) that
guarantees recursive feasibility and closed-loop stability under sample-and-hold implementation
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within an explicitly characterized set of initial conditions. In Section 4, a nonlinear chemical
process example is used to demonstrate the applicability of the proposed cyber-attack detection
and control method.

2. Preliminaries

2.1. Notation

Throughout the paper, the notation |·| is used to denote the Euclidean norm of a vector,
the notation |·|Q denotes a weighted Euclidean norm of a vector (i.e., |x|2Q = xTQx where Q is
a positive definite matrix). xT denotes the transpose of x. R+ denotes the set [0, ∞). The notation
L f V(x) denotes the standard Lie derivative L f V(x) := ∂V(x)

∂x f (x). For given positive real numbers β

and ε, Bβ(ε) := {x ∈ Rn | |x − ε| < β} is an open ball around ε with a radius of β. Set subtraction is
denoted by "\", i.e., A\B := {x ∈ Rn | x ∈ A, x /∈ B}. �x� maps x to the least integer greater than or
equal to x and �x� maps x to the greatest integer less than or equal to x. The function f (·) is of class C1

if it is continuously differentiable in its domain. A continuous function α : [0, a) → [0, ∞) is said to
belong to class K if it is strictly increasing and is zero only when evaluated at zero.

2.2. Class of Systems

The class of continuous-time nonlinear systems considered is described by the following
state-space form:

ẋ = f (x) + g(x)u + d(x)w, x(t0) = x0 (1)

where x ∈ Rn is the state vector, u ∈ Rm is the manipulated input vector, and w ∈ W is the
disturbance vector, where W := {w ∈ Rq | |w| ≤ θ, θ ≥ 0}. The control action constraint is
defined by u ∈ U = {umin ≤ u ≤ umax} ⊂ Rm, where umin and umax represent the minimum and the
maximum value vectors of inputs allowed, respectively. f (·), g(·) and d(·) are sufficiently smooth
vector and matrix functions of dimensions n × 1, n × m and n × q, respectively. Without loss of
generality, the initial time t0 is taken to be zero (t0 = 0), and it is assumed that f (0) = 0, and thus,
the origin is a steady-state of the system of Equation (1) with w(t) ≡ 0, (i.e., (x∗s , u∗s ) = (0, 0)). In the
manuscript, we assume that every measured state is measured by multiple sensors that are isolated
from one another such that if one sensor measurement is tampered by cyber-attacks, a secure network
or some secure way can still be used to send the correct sensor measurements of x(t) to the controller.
This can also be viewed as secure, redundant sensors or just having an alternative, secure network
to send the sensor measurements to the controller. However, if this assumption does not hold, i.e.,
no secure sensors are available, then the system has to be shut down after the detection of cyber-attacks,
or to be operated in an open-loop manner thereafter with an accurate process model.

2.3. Stabilizability Assumptions and Lyapunov-Based Control

Consider the nominal system of Equation (1) with w(t) ≡ 0. We first assume that there exists
a stabilizing feedback control law u = Φ(x) ∈ U such that the origin of the nominal system of
Equation (1) can be rendered asymptotically stable for all x ∈ D1 ⊂ Rn, where D1 is an open
neighborhood of the origin, in the sense that there exists a positive definite C1 control Lyapunov
function V that satisfies the small control property and the following inequalities:

α1(|x|) ≤ V(x) ≤ α2(|x|), (2a)

∂V(x)
∂x

F(x, Φ(x), 0) ≤ −α3(|x|), (2b)∣∣∣∣∂V(x)
∂x

∣∣∣∣ ≤ α4(|x|) (2c)
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where αj(·), j = 1, 2, 3, 4 are class K functions. F(x, u, w) is used to represent the system of Equation (1)
(i.e., F(x, u, w) = f (x) + g(x)u + d(x)w).

An example of a feedback control law that is continuous for all x in a neighborhood of the origin
and renders the origin asymptotically stable is the following control law [18]:

ϕi(x) =

⎧⎨⎩ − p +
√

p2 + |q|4
|q|2 q, if q �= 0

0, if q = 0
(3a)

Φi(x) =

⎧⎪⎨⎪⎩
umin

i , if ϕi(x) < umin
i

ϕi(x), if umin
i ≤ ϕi(x) ≤ umax

i
umax

i , if ϕi(x) > umax
i

(3b)

where p denotes L f V(x) and q denotes (LgV(x))T = [Lg1 V(x) · · · Lgm V(x)]T . ϕi(x) of Equation (3a)
represents the ith component of the control law Φ(x) before considering saturation of the
control action at the input bounds. Φi(x) of Equation (3b) represents the ith component of
the saturated control law Φ(x) that accounts for the input constraints u ∈ U. Based on the
controller Φ(x) that satisfies Equation (2), the set of initial conditions from which the controller
Φ(x) can stabilize the origin of the input-constrained system of Equation (1) is characterized as:
φn = {x ∈ Rn | V̇ + κV(x) ≤ 0, u = Φ(x) ∈ U, κ > 0}. Additionally, we define a level set of V(x)
inside φn as Ωρ := {x ∈ φn | V(x) ≤ ρ}, which represents a stability region of the closed-loop system
of Equation (1).

3. Cyber-Attack and Detection Methodology

From the perspective of process control systems, cyber-attacks are malicious signals that
can compromise actuators, sensors or their communication networks. Specifically, among sensor
cyber-attacks, DoS attacks, replay attacks and deception attacks are the three most common and easily
implementable ones by attackers [5]. On the other hand, since stealthy cyber-attacks are designed to
damage the performance of CPS (e.g., stability and safety), developing more reliable detection and
control methods that can detect, locate and mitigate cyber-attacks in a timely fashion and control the
damage within a tolerable limit is imperative.

In this section, the min-max cyber-attack designed to damage closed-loop stability of the system
of Equation (1) is first introduced. Subsequently, a general model-based detection method [4] and the
corresponding stealthy cyber-attacks that can evade such detection are presented. Therefore, to better
detect different types of cyber-attacks, the data-based detection scheme that utilizes machine learning
methods is finally developed with a sliding detection window.

3.1. Min-Max Cyber-Attack

In this subsection, we first consider a deception sensor cyber-attack, in which the minimum
or maximum allowable sensor measurement values are fed into process control systems
(e.g., a Lyapunov-based control system with a stability region Ωρ defined by a level set of Lyapunov
function V(x)) to drive the closed-loop states away from their expected values and finally ruin the
stability of the closed-loop system. Since ∀x ∈ Ωρ, there exists a feasible control action u = Φ(x) such
that V̇ < 0, closed-loop stability is maintained within the stability region Ωρ under Φ(x). Assuming
that attackers know the stability region of the system of Equation (1) in advance and have access to some
of the sensors (but not all), to remain undetectable by a simple stability region-based detection method
(i.e., the cyber-attack is detected if the state is out of the stability region), the min-max cyber-attack is
designed with the following form such that the fake sensor measurements are still inside Ωρ:

x̄ = arg max
x∈R

{V(x) ≤ ρ} (4)
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where x̄ is the tampered sensor measurement. Since the controller needs to get access to true state
measurements to maintain closed-loop stability in a state feedback control system, wrong state
measurements under cyber-attacks can affect control actions and eventually drive the state away
from its set-point. In the section “Application to a chemical process example”, it is shown that
if attackers apply a min-max cyber-attack to safety-critical sensors (e.g., temperature or pressure
sensors in a chemical reactor) in process control systems, closed-loop stability may not be maintained
(i.e., the closed-loop state goes out of Ωρ) and the system may have to be shut down.

3.2. Model-Based Detection and Stealthy Cyber-Attack

Based on the known process model of Equation (1), a cumulative sum (CUSUM) statistic detection
method [4] can be developed to minimize the detection time when a cyber-attack occurs. Specifically,
the CUSUM statistic method detects cyber-attacks by calculating the cumulative sum of the deviation
between expected and measured states. The method is developed by the following equations:

S(k) = (S(k − 1) + z(k))+, S(0) = 0 (5a)

D(S(k)) =

{
1, if S(k) > STH
0, otherwise

(5b)

where S(k) is the nonparametric CUSUM statistic and STH is the threshold of the detection of
cyber-attacks. (S)+ = S, if S ≥ 0 and (S)+ = 0 otherwise. D is the detection indicator where D = 1
indicates that the cyber-attack is confirmed or there is no cyber-attack if D = 0. z(k) is the deviation
between expected states x̃(tk) and measured states x(tk) at time t = tk: z(k) := |x̃(tk)− x(tk)| − b
where x̃(tk) is derived using the known process model, the state and the control action at t = tk−1,
and b is a small positive constant to reduce the false alarm rate due to disturbances.

With a carefully selected STH , the model-based detection method can detect many sensor
cyber-attacks efficiently. However, the above model-based method may be evaded and becomes
invalid for stealthy cyber-attacks if attackers know more about the system (e.g., the system model
and the principles of the detection method). For example, three advanced stealthy cyber-attacks were
proposed in [4] to damage the system without triggering the threshold of the model-based detection
method. Specifically, a surge cyber-attack is designed to maximize the damage for the first few steps
(similar to min-max cyber-attacks) and switch to cyber-attacks with small perturbations for the rest of
time when S(k) reaches STH . The form of a surge cyber-attack is given by the following equations:

x(tk) =

{
x(tk)

min, if S(k) ≤ STH
x̃(tk)− |STH + b − S(k − 1)|, otherwise

(6)

The above surge cyber-attack is able to maintain S(k) within its threshold and therefore is
undetectable by the above detection method. In this case, the defenders should either develop more
advanced detection methods for stealthy cyber-attacks (i.e., it becomes an interactive decision-making
process between an attacker and a defender [19]), or develop a detection method from another
perspective, for example, a data-based method. Since the purpose of any type of stealthy cyber-attack is
to change the normal operation and destroy the performance of the system of Equation (1), the dynamic
operation of the system of Equation (1) (e.g., dynamic trajectories in state-space) under cyber-attacks
becomes different from that of the nominal system of Equation (1). The deviation of the data can
be regarded as an intrinsic indicator for detection of cyber-attacks. In this direction, a data-based
detection system is developed via machine learning methods in the next subsection.

3.3. Detection via Machine Learning Techniques

Machine learning has a wide range of applications in classification, regression, and clustering
problems. To detect cyber-attacks, classification methods can be utilized to determine whether there

23



Mathematics 2018, 6, 173

is a cyber-attack on the system of Equation (1) or not. The data-based learning problems are usually
categorized into unsupervised learning and supervised learning.

Unsupervised learning (e.g., k-means clustering) uses unlabeled data to derive a model that
can split the data into different categories. On the other hand, supervised learning aims to develop
a function that maps an input to an output based on labeled dataset (input-output pairs). There are
two types of supervised learning tools, (1) classification tools (e.g., k-nearest neighbor (k-NN), support
vector machine (SVM), random forest, neural networks) are used to develop a function based on
labeled training datasets to predict the class of a new set of data that was not used in the training
stage; (2) regression tools (e.g., linear regression, support vector regression, etc.) aim to predict
the outcome of an event based on the relationship between variables obtained from the training
datasets (labeled input-output pairs) [20]. Since supervised learning concerns labeled training data,
we utilize a neural network (NN) algorithm to predict whether the system of Equation (1) is nominally
operating, under disturbances or under cyber-attacks. Subsequently, a Lyapunov-based model
predictive controller is proposed to stabilize the closed-loop system during the absence and presence
of cyber-attacks.

3.4. NN-Based Detection System

Since the evolution of the closed-loop state from the initial condition x(0) = x0 ∈ Ωρ is determined
by both the nonlinear system model of Equation (1) and the design of process control systems, it is
difficult to distinguish normal operation from the operation under cyber-attacks. Moreover, even if
a detection method is developed for a specific cyber-attack (e.g., min-max cyber-attack), the detection
strategy is not guaranteed to identify a different type of cyber-attack. Motivated by these concerns,
this work proposes a data-based detection system for different types of cyber-attacks by using machine
learning methods.

As a widely-used machine learning method, neural networks build a general class of
nonlinear functions from input variables to output variables. The basic structure of a feed-forward
multiple-input-single-output neural network with one hidden layer is given in Figure 1, where Nuj,
j = 1, 2,. . . , n denotes the input variables in the input layer, θ1i, i = 1, 2,. . . , h denotes the neurons in the
hidden layer and Ny denotes the output in the output layer. Specifically, the hidden neurons θ1i and
the output Ny (i.e., the classification result) are obtained by the following equations, respectively [21]:

θ1i = σ1(
n

∑
j=1

N(1)
wij Nuj + N(1)

wi0) (7)

Ny = σ2(
h

∑
j=1

N(2)
wj θ1j + N(2)

w0 ) (8)

where σ1, σ2 are nonlinear activation functions, N(1)
wij and N(2)

wj are weights, and N(1)
wi0, N(2)

w0 are biases.
For simplicity, the input vector Nu will be used to denote all the inputs Nuj, and the weight matrix
Nw will be used to represent all the weights and biases in Equations (7) and (8). The neurons in the
hidden layer receive the weighted sum of inputs and use activation functions σ1 (e.g., ReLu function
σ(x) = max(0, x) or sigmoid function σ(x) = 1/(1 + e−x)) to bring in the nonlinearity such that the
NN is not a simple linear combination of the inputs. The output neuron generates the class label via
a linear combination of hidden neurons and an activation function σ2 (e.g., sigmoid function for two
classes or softmax function σi(x) = exi / ∑K

k=1 exk for multiple classes where K is the number of classes).
Given a set of training data including the input vectors Ni

u, i = 1, 2,. . . NT and the corresponding
classified labels (i.e., target vectors Ni

t), the NN model is trained by minimizing the following error
function (i.e., loss function):

E(Nw) =
1
2

NT

∑
i=1

|Ni
y(N

i
u, Nw)− Ni

t|2 (9)
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where Ni
y(N

i
u, Nw) is the predicted class for the input Ni

u under Nw. The above nonlinear optimization
problem is solved using the stochastic gradient descent (SGD) method, in which the backpropagation
method is utilized to calculate the gradient of E(Nw). Meanwhile, the weight matrix Nw is updated
by the following equation:

Nw := Nw − η∇E(Nw) (10)

where η is the learning rate to control the speed of convergence. Additionally, to avoid over-fitting
during the training process, k-fold cross-validation is employed to randomly partition the original
dataset into k − 1 subsets of training data and 1 subset of validation data, and early-stopping is
activated once the error on the validation set stops decreasing.

Finally, the classification accuracy of the validation dataset is utilized to demonstrate the
performance of the neural network since the validation dataset is independent of the training dataset
and is not used in training the NN model. Specifically, the classification accuracy (i.e., the test accuracy)
of the trained NN model is obtained by the following equation:

Nacc =
nc

nval
(11)

where nc is the number of data samples with correct predicted classes, and nval is the total number
of data samples in the validation dataset. In general, the NN performance depends on many factors,
e.g., the size of dataset, the number of hidden layers and nodes, and the intensity and the amount of
disturbance applied [22–24]. In Remark 1, the method of determining the number of layers and nodes
is introduced.

Figure 1. Basic structure of a feed-forward neural network used for cyber-attack detection.

In this paper, the NN is developed to derive a model M to classify three classes: the nominal
closed-loop system, the closed-loop system with disturbances, and the closed-loop system under
cyber-attacks. A large dataset of time-varying states for various initial conditions (i.e., dynamic
trajectories) of the above three cases is used as the input to the neural network. The output of the
neural network is the classified class. Since the feed-forward NN is a static model with a fixed input
dimension (i.e., fixed time length) but the detection method should be applied during the dynamic
operation of the system of Equation (1), multiple NN models with various sizes of input datasets
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(i.e., various time lengths) are used for the detection of cyber-attacks in real time until the time length
corresponding to the available data since the beginning of the time of operation becomes equal to
the time length that is preferred to be utilized for the remainder of the operating time. Specifically,
given a training dataset of time-series state vectors (i.e., closed-loop trajectories): Nu ∈ Rn×T where
n is the number of states and T is the number of sampling steps of each trajectory, the NN model is
obtained and applied as follows: (1) the NN is trained with data corresponding to time lengths from
the initial time to T sampling steps in intervals of Na sampling steps, i.e., the ith NN model Mi is
trained using data from t = 0 to t = iNa, where i = 1, 2,. . . , T/Na and T is a multiple integer of Na;
(2) when incorporating the NN-based detection system in MPC, real-time state measurement data can
be readily utilized in the corresponding NN model Mi to check if there is a cyber-attack so far.

Remark 1. With an appropriate structure (i.e., number of layers and hidden neurons) of the neural network,
the weight matrix Nw is calculated by Equation (10) and will be utilized to derive the classification accuracy of
Equation (11). However, in general, there is no systematic method to determine the structure of a neural network
since it highly depends on the number of training data samples and also the complexity of the model needed for
classification. Therefore, in practice, the neural network is initiated with one hidden layer with a few hidden
neurons. If the classification result is unsatisfactory, we increase the hidden neurons number and further layers
with appropriate regularization are added to improve the performance.

Remark 2. It is noted that the above classification accuracy of the NN model represents the ratio of the number
of correct predictions to the total number of predictions for all classes. If we only consider the case of binary
classification (i.e., whether the system is under cyber-attacks or not), sensitivity (also called recall or true positive
rate) and specificity (also called true negative rate) are also useful measures. Specifically, sensitivity measures the
proportion of actual cyber-attacks that are correctly identified as such, while specificity measures the proportion
of actual non-cyber-attacks that are correctly identified as such. Therefore, in the presence of multiple types of
cyber-attacks or disturbances, it becomes straightforward to learn the performance of the NN-based method to
detect true cyber-attacks via sensitivity and specificity.

3.5. Sliding Detection Window

Since the classification accuracy of a NN is not perfect, false alarms may be triggered based on
a one-time detection (i.e., non-cyber-attack case may be identified as cyber-attack). In order to reduce
the false alarm rates, a detection indicator Di generated by each sub-model Mi and a sliding detection
window with length Ns are proposed as follows:

Di =

{
1, if attack is detected by Mi
0, if no attack is detected by Mi

(12)

Based on the detection indicator Di at every Na sampling steps, the weighted sum of detection
indicators within the sliding detection window DI shown in Figure 2 at t = tk = kΔ is calculated
as follows:

DI =
�k/Na�

∑
j=�(k−Ns+1)/Na�

γ� k
Na �−jDj (13)

where γ is a detection factor that gives more weight to recent detections within the sliding window
because the classification accuracy of the NN increases as more data is used for training. If DI ≥ DTH ,
where DTH is a threshold that indicates a real cyber-attack in the closed-loop system, then the
cyber-attack is confirmed and reported by the NN-based detection system; otherwise, the detection
system remains silent and the sliding window will be rolled one sampling time. To balance false alarms
and missed detections, the threshold DTH is determined via extensive closed-loop simulations under
cyber-attacks to derive a desired detection rate.
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Additionally, since there is no guaranteed feasible control action that can drive the state back
towards the origin once the state of the system of Equation (1) is outside the stability region Ωρ due to
the way of characterizing φn and Ωρ, it is also necessary to check whether the state is in Ωρ, especially
when cyber-attacks occur but have not been detected yet. Therefore, to prevent the system state from
entering a region in state-space where closed-loop stability is not guaranteed, the boundedness of the
state vector within the stability region is also checked using the state measurement from redundant,
secure sensors at the time when Di = 1. If the state x has already left Ωρ, closed-loop stability is no
longer guaranteed and in this case further safety system components (e.g., physical safety devices)
need to be activated to avoid dangerous operations [25]. However, if x ∈ Ωρ, the state measurement
will be read from redundant, secure sensors instead of the original sensors to avoid deterioration of
stability under the potential cyber-attack indicated by Di = 1.

Figure 2. The sliding detection window with detection activated every Na sampling steps,
where triangles represent the detection indicator Di and the box with length Ns represents the sliding
detection window.

Remark 3. The sliding window with length Ns is employed to reduce false alarm rates. Considering that the
classification accuracy derived is not perfect, the idea behind the sliding detection window is that a cyber-attack
is confirmed only if it has been detected for a few times continuously instead of a one-time detection. The length
of sliding window Ns will balance the efficiency of detection and false alarm rates. Specifically, a larger Ns and
a higher detection threshold DTH (DI ≥ DTH within the sliding detection window represents the confirmation
of a cyber-attack) lead to longer detection time but a lower false alarm rate, while a smaller Ns and a lower DTH
have the opposite effect. Therefore, Ns and DTH should be determined well to achieve a balanced performance
between detection efficiency and false alarm rate.

Remark 4. The above supervised learning-based cyber-attack detection method is able to distinguish the normal
operation of the system of Equation (1) from the abnormal operation under cyber-attacks, provided that there
is a large amount of labeled data available for training. However, for those unknown cyber-attacks which are
never used for training, the detection is not guaranteed. Specifically, if there exists an unknown cyber-attack
that is distinct from the trained cyber-attacks, the NN-based detection method may not be able to identify it as
a cyber-attack. In this case, an unsupervised learning-based detection method may achieve better performance by
clustering unknown cyber-attack data into a new class. However, if the unknown cyber-attack shares similar
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properties (e.g., similar attack mechanism) with a trained cyber-attack, the NN method may still be able to detect
it and classify it as one of the available classes. For example, it is demonstrated in the section “Application to
a chemical process example” that the unknown surge cyber-attack can still be detected by the NN-based detection
system that is trained for min-max cyber-attacks because of the similarity between these two cyber-attacks.

Remark 5. Since different types of cyber-attacks may have various purposes, targeted sensors and attack
duration, the dynamic behavior of a closed-loop system varies with different cyber-attacks, which can be
eventually reflected by the data of states. Besides the detection of cyber-attacks, the above NN-based detection
method is also able to recognize the types of cyber-attacks by training the NN model with data of various types
of cyber-attacks labeled as different classes. As a result, the NN model can not only detect the occurrence of
cyber-attacks, but also can identify the type of a cyber-attack if the data of that particular cyber-attack has been
utilized for training.

4. Lyapunov-Based MPC (LMPC)

To cope with the threats of the above sensor cyber-attacks, a feedback control method that accounts
for the corruption of some sensor measurements should be designed by defenders to mitigate the
impact of cyber-attacks and still stabilize the system of Equation (1) at its steady-state. Based on
the assumption of the existence of a Lyapunov function V(x) and a controller u = Φ(x) that satisfy
Equation (2), the LMPC that utilizes the accurate measurement from redundant, secure sensors is
proposed as the following optimization problem:

J = min
u∈S(Δ)

∫ tk+N

tk

Lt(x̃(t), u(t))dt (14a)

s.t ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t) (14b)

x̃(tk) = x(tk) (14c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (14d)

V̇(x(tk), u(tk)) ≤ V̇(x(tk), Φ(x(tk))),

if V(x(tk)) > ρmin, (14e)

V(x̃(t)) ≤ ρmin, ∀ t ∈ [tk, tk+N)

if V(x(tk)) ≤ ρmin (14f)

where x̃(t) is the predicted state trajectory, S(Δ) is the set of piecewise constant functions with period
Δ, and N is the number of sampling periods in the prediction horizon. V̇(x(tk), u(tk)) represents the
time derivative of V(x), i.e., ∂V

∂x ( f (x̃(t)) + g(x̃(t))u(t)). We assume that the states of the closed-loop
system are measured at each sampling time instance, and will be used as the initial condition in the
optimization problem of LMPC in the next sampling step. Specifically, based on the measured state
x(tk) at t = tk, the above optimization problem is solved to obtain the optimal solution u∗(t) over
the prediction horizon t ∈ [tk, tk+N). The first control action of u∗(t), i.e., u∗(tk), is sent to the control
actuators to be applied over the next sampling period. Then, at the next sampling time tk+1 := tk + Δ,
the optimization problem is solved again, and the horizon will be rolled one sampling time.

In the optimization problem of Equation (14), the objective function of Equation (14a) that is
minimized is the integral of Lt(x̃(t), u(t)) over the prediction horizon, where the function Lt(x, u)
is usually in a quadratic form (i.e., Lt(x, u) = xT Rx + uTQu, where R and Q are positive definite
matrices). The constraint of Equation (14b) is the nominal system of Equation (1) (i.e., w(t) ≡ 0)
to predict the evolution of the closed-loop state. Equation (14c) defines the initial condition of the
nominal process system of Equation (14b,14d) defines the input constraints over the prediction horizon.
The constraint of Equation (14e) requires that V(x̃) for the system decreases at least at the rate under
Φ(x) at tk when V(x(tk)) > ρmin. However, if x(tk) enters a small neighborhood around the origin
Ωρmin := {x ∈ φn | V(x) ≤ ρmin}, in which V̇ is not required to be negative due to the sample-and-hold
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implementation of the LMPC, the constraint of Equation (14f) is activated to maintain the state inside
Ωρmin afterwards.

When the cyber-attack is detected by Di = 1 but not confirmed by DI ≥ DTH yet, the optimization
problem of the LMPC of Equation (14) uses the state measurement from redundant, secure sensors
instead of the original sensors as the initial condition x(tk) for the optimization problem of Equation (14)
until the next instance of detection. However, if the cyber-attack is finally confirmed by DI ≥ DTH ,
the misbehaving sensor will be isolated, and the optimization problem of the LMPC of Equation (14)
starts to use the state measurement from secure sensors instead of the compromised state measurement
as the initial condition x(tk) for the optimization problem of Equation (14) for the remaining time
of process operation. The structure of the entire cyber-attack-detection-control system is shown in
Figure 3.

Figure 3. Basic structure of the proposed integrated NN-based detection and LMPC control method.

If the cyber-attack is detected and confirmed before the closed-loop state is driven out of the
stability region, it follows that the closed-loop state is always bounded in the stability region Ωρ

thereafter and ultimately converges to a small neighborhood Ωρmin around the origin for any x0 ∈ Ωρ
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under the LMPC of Equation (14). The detailed proof can be found in [11]. An example trajectory is
shown in Figure 4.

Figure 4. A schematic representing the stability region Ωρ and the small neighborhood Ωρmin around the
origin. The trajectory first moves away from the origin due to the cyber-attack and finally re-converges
to Ωρmin under the LMPC of Equation (14) after the detection of the cyber-attack by the proposed
detection scheme.

Remark 6. It is noted that the speed of detection (which depends heavily on the size of the input data to the
NN, the number of hidden layers and the type of activation functions) plays an important role in stabilizing the
closed-loop system of Equation (1) since the operation of the closed-loop system under the LMPC of Equation (14)
becomes unreliable after cyber-attacks occur. In other words, if we can detect cyber-attacks in a short time,
the LMPC can switch to redundant, secure sensors and still be able to stabilize the system at the origin before it
leaves the stability region Ωρ. Additionally, the probability of closed-loop stability can be derived based on the
classification accuracy of the NN-based detection method and its activation frequency Na. Specifically, given the
classification accuracy pnn ∈ [0, 1], if the NN-based detection system is activated every Na = 1 sampling step,
the probability of the cyber-attack being detected at each sampling step (i.e., Di = 1) is equal to pnn, which implies
that the probability of closed-loop stability ∀x0 ∈ Ωρ is no less than pnn. Moreover, for safety reasons,
the region of initial conditions can be chosen as a conservative sub-region (i.e., Ωρe := {x ∈ φn | V(x) ≤ ρe},
where ρe < ρ) inside the stability region to avoid the rapid divergence of states under cyber-attacks and
improve closed-loop stability. For example, let ρe = max{V(x(t)) | V(x(t + Δ)) ≤ ρ, u ∈ U} such that
∀x(tk) ∈ Ωρe , x(tk+1) still stays in Ωρ despite a miss of detection of cyber-attacks. Therefore, the probability of
closed-loop stability ∀x0 ∈ Ωρe under the LMPC of Equation (14) reaches 1− (1− pnn)2 (i.e., the probability
of cyber-attacks being detected within two sampling periods).

Remark 7. It is demonstrated in [11] that in the presence of sufficiently small bounded disturbances
(i.e., |w(t)| ≤ θ), closed-loop stability is still guaranteed for the system of Equation (1) under the sample-and-hold
implementation of the LMPC of Equation (14) with a sufficiently small sampling period Δ. In this case, it is
undesirable to treat the disturbance as a cyber-attack and trigger the false alarm. Therefore, the detection system
should account for the disturbance case and have the capability to distinguish cyber-attacks from disturbances
(i.e., the system with disturbances should be classified as a distinct class or treated as the nominal system).
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5. Application to a Chemical Process Example

In this section, we utilize a chemical process example to illustrate the application of the proposed
detection and control methods for potential cyber-attacks. Consider a well-mixed, non-isothermal
continuous stirred tank reactor (CSTR) where an irreversible first-order exothermic reaction takes place.
The reaction converts the reactant A to the product B via the chemical reaction A → B. A heating
jacket that supplies or removes heat from the reactor is used. The CSTR dynamic model derived from
material and energy balances is given below:

dCA
dt

=
F

VL
(CA0 − CA)− k0e−E/RTCA (15a)

dT
dt

=
F

VL
(T0 − T)− ΔHk0

ρCp
e−E/RTCA +

Q
ρCpVL

(15b)

where CA is the concentration of reactant A in the reactor, T is the temperature of the reactor, Q denotes
the heat supply/removal rate, and VL is the volume of the reacting liquid in the reactor. The feed
to the reactor contains the reactant A at a concentration CA0, temperature T0, and volumetric flow
rate F. The liquid has a constant density of ρ and a heat capacity of Cp. k0, E and ΔH are the
reaction pre-exponential factor, activation energy and the enthalpy of the reaction, respectively.
Process parameter values are listed in Table 1. The control objective is to operate the CSTR at
the equilibrium point (CAs, Ts) = (0.57 kmol/m3, 395.3 K) by manipulating the heat input rate
ΔQ = Q − Qs, and the inlet concentration of species A, ΔCA0 = CA0 − CA0s . The input constraints for
ΔQ and ΔCA0 are |ΔQ| ≤ 0.0167 kJ/min and |ΔCA0| ≤ 1 kmol/m3, respectively.

Table 1. Parameter values of the CSTR.

T0 = 310 K F = 100× 10−3 m3/min
VL = 0.1 m3 E = 8.314× 104 kJ/kmol
k0 = 72× 109 min−1 ΔH = −4.78× 104 kJ/kmol
Cp = 0.239 kJ/(kg K) R = 8.314 kJ/(kmol K)
ρ = 1000 kg/m3 CA0s = 1.0 kmol/m3

Qs = 0.0 kJ/min CAs = 0.57 kmol/m3

Ts = 395.3 K

To place Equation (15) in the form of the class of nonlinear systems of Equation (1), deviation
variables are used in this example, such that the equilibrium point of the system is at the origin
of the state-space. xT = [CA − CAs T − Ts] represents the state vector in deviation variable form,
and uT = [ΔCA0 ΔQ] represents the manipulated input vector in deviation variable form.

The explicit Euler method with an integration time step of hc = 10−5 min is applied to numerically
simulate the dynamic model of Equation (15). The nonlinear optimization problem of the LMPC of
Equation (14) is solved using the IPOPT software package [26] with the sampling period Δ = 10−3 min.

We construct a Control Lyapunov Function using the standard quadratic form V(x) = xT Px,
with the following positive definite P matrix:

P =

[
9.35 0.41
0.41 0.02

]
(16)

Under the LMPC of Equation (14) without cyber-attacks, closed-loop stability is achieved for
the nominal system of Equation (15) in the sense that the closed-loop state is always bounded in the
stability region Ωρ with ρ = 0.2 and ultimately converges to Ωρmin with ρmin = 0.002 around the origin.
However, if a min-max cyber-attack is added to tamper the sensor measurement of temperature of
the system of Equation (15), closed-loop stability is no longer guaranteed. Specifically, the min-max
cyber-attack is designed to be of the following form:
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x̄1 = x1 (17a)

x̄2 = min{arg max
x2∈R

{xT Px ≤ ρ}} (17b)

where x1 = CA − CAs, x2 = T − Ts, and x̄1, x̄2 are the corresponding state measurements under
min-max cyber-attacks. In this example, the min-max cyber-attack of Equation (17) is designed such
that the measurement of concentration remains unchanged, and the measurement of temperature is
tampered to be the minimum value that keeps the state at the boundary of the stability region Ωρ.

In Figures 5 and 6, the temperature sensor measurement is intruded by a min-max cyber-attack at
time t = 0.067 min. Without any cyber-attack detection system, it is shown in Figure 5 that the LMPC
of Equation (14) keeps operating the system of Equation (15) using false sensor measurements blindly
and finally drives the closed-loop state out of the stability region Ωρ.

CA − CAs
(kmol/m3)

T
−

T
s
(K

)

Ωρ

Sensor measurement x̄
T rue state x

Figure 5. The state-space profile for the CSTR of Equation (15) under the LMPC of Equation (14) and
under a min-max cyber-attack for the initial condition (−0.25, 3).

Time (min)
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Sensor measurement x̄2

True state x2

Figure 6. The true state profile (x2 = T − Ts) and the sensor measurements (x̄2 = T̄ − Ts) of the
closed-loop system under the LMPC of Equation (14) and under a min-max cyber-attack for the initial
condition (−0.25, 3), where the vertical dotted line shows the time the cyber-attack is added.

To handle the min-max cyber-attack, the model-based detection system of Equation (5) and
the NN-based detection method are applied to the system of Equation (15). The simulation results
are shown in Figures 7–13. Subsequently, the application of the NN-based detection method to the
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system under other cyber-attacks and the presence of disturbances is demonstrated in Figures 14–16.
Specifically, we first demonstrate the application of the model-based detection system of Equation (5)
and of the LMPC of Equation (14), where STH = 1 and b = −0.5 are chosen through closed-loop
simulations. In Figure 7, the min-max cyber-attack of Equation (17) is added at 0.06 min and is detected
at 0.1 min before the closed-loop state comes out of Ωρ. The variation of the CUSUM statistic S(k) is
shown in Figure 8, in which S(k) remains at b when there is no cyber-attack and exceeds STH at 0.1 min.
After the min-max cyber-attack is detected, the true states are obtained from redundant, secure sensors
and the LMPC of Equation (14) drives the closed-loop state into Ωρmin .

Time (min)

T
−

T
s
(K

)

Sensor measurement x̄2

True state x2

Figure 7. Closed-loop state profiles (x2 = T − Ts, x̄2 = T̄ − Ts) for the initial condition (−0.25, 3) under
the LMPC of Equation (14) and the model-based detection system.

Time (min)

S
(k
)

STH

Figure 8. The variation of S(k) for the initial condition (−0.25, 3) under the LMPC of Equation (14) and
the model-based detection system.

Next, the NN-based detection system and the LMPC of Equation (14) are implemented to mitigate
the impact of cyber-attacks. The feed-forward NN model with two hidden layers is built in Python
using the Keras library. Specifically, 3000 time-series balanced data samples of the closed-loop states of
the nominal system, the system with disturbances, and the system under min-max cyber-attacks from
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t = 0 to t = 1 min are used to train the neural network to generate the classification of three classes,
where class 0, 1, and 2 stand for the system under min-max cyber-attacks, the nominal system and the
system with disturbances, respectively. It is demonstrated that 3000 time-series data is sufficient to
build the NN for the CSTR example because dataset size smaller than 3000 leads to lower classification
accuracy while the increase of dataset size over 3000 does not significantly improve the classification
accuracy but brings more computation time as found in our calculations. 3000 data samples are split
into 2000 training data, 500 validation data and 500 test data, respectively. V(x) = xT Px is utilized as
the input vector to the NN model. The structure of the NN model is listed in Table 2. Additionally,
to improve the performance of the NN model, batch normalization is utilized after each hidden layer
to improve the performance of the NN algorithm.

Table 2. Feed-forward NN model.

Neurons Activation Functions

First Hidden Layer 120 ReLu
Second Hidden Layer 100 ReLu

Output Layer 1 Softmax

To apply the NN-based detection method, we first investigate the relationship of the classification
accuracy of the NN with respect to the size of the dataset. Specifically, assuming that the min-max
cyber-attack occurs at a random sampling step before 0.1 min, the first NN model M0.1 is trained at
t = 0.1 min using the data of states from t = 0 to 0.1 min. As shown in Figure 9, early-stopping
is activated at the 8th iteration (epoch) of training when validation accuracy ceases to increase.
The averaged classification accuracy at t = 0.1 min is obtained by training the same model Mt=0.1 for
10 times independently. The above process is repeated by increasing the size of the dataset by 0.02 min
every time to derive the models for different time instances (i.e., Mt=0.12, Mt=0.14, . . .). The minimum,
the maximum and the averaged classification accuracy at each detection time instance are shown in
Figure 10.

Epoch

Training accuracy
Validation accuracy

Figure 9. The variation of training accuracy and validation accuracy for the NN model M0.1,
where early-stopping is activated at the 8th epoch of training.

Figure 10 shows that the averaged test accuracy increases as more state measurements are
collected after the cyber-attack occurs, and is up to 95% with state measurements for a long period of
time. This suggests that the detection based on recent models is more reliable and deserves higher
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weights in the sliding window. The confusion matrix of the above NN for three classes: the system
under min-max cyber-attack, the nominal system, and the system with disturbances is given in
Table 3. Additionally, besides the NN method, other supervised learning-based classification methods
including k-NN, SVM and random forests are also applied to the same dataset and obtained the
averaged test accuracies, sensitivities and specificities within 0.28 min as listed in Table 4.
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Figure 10. The test accuracy of neural network with respect to the size of training and test data.

Table 3. Confusion matrix of the neural network.

Actual Class 0: Actual Class 1: Actual Class 2:
Min-Max Cyber-Attack Nominal System The System with Disturbances

Predicted Class 0: 198 1 3
Predicted Class 1: 0 140 10
Predicted Class 2: 0 0 148

Table 4. Comparison of the performance of different detection models.

Models Test Accuracy Sensitivity Specificity

k-NN 71.1% 90.9% 99.5%
SVM 83.0% 93.0% 87.8%

Random Forest 96.2% 100.0% 96.2%
Neural Network 95.8% 98.0% 98.6%

When the detection of cyber-attacks is incorporated into the closed-loop system of Equation (15)
under the LMPC of Equation (14), the detection system is called every Na = 5 sampling periods.
The sliding window length is Ns = 15 sampling periods and the threshold for the detection indicator
is DTH = 1.6. The detection system is activated from t = 0.1 min such that a desired test accuracy
is achieved with enough data. The closed-loop state-space profiles under the NN-based detection
system with the stability region Ωρ check and the detection system without the Ωρ check are shown in
Figures 11 and 12.

Specifically, in Figure 11, it is demonstrated that without the stability region check, the closed-loop
state leaves Ωρ before the cyber-attack is confirmed. However, under the detection system with the
boundedness check of Ωρ, the closed-loop state is always bounded in Ωρ by switching to redundant
sensors at the first detection of min-max cyber-attacks. In Figure 12, it is shown that after the min-max
cyber-attack is confirmed at t = 0.115 min, the misbehaving sensor is isolated and the LMPC of
Equation (14) starts using the measurement of temperature from redundant sensors and re-stabilizes
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the system at the origin. The simulations demonstrate that it takes around 0.8 min for the closed-loop
state trajectory to enter and remain in Ωρmin under the LMPC of Equation (14) once the min-max
cyber-attack is detected. The corresponding input profiles for the closed-loop system of Equation (1)
under the NN-based detection system with the Ωρ check are shown in Figure 13, where it is observed
that a sharp change of ΔCA0 occurs from t = 0.095 min to t = 0.115 min due to the min-max
cyber-attack.
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Figure 11. The state-space profile for the closed-loop CSTR with the initial condition (0.24, −2.78),
where a min-max cyber-attack is detected by the NN-based detection system and mitigated by the
LMPC of Equation (14).
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Figure 12. Closed-loop state profiles (x2 = T − Ts, x̄2 = T̄ − Ts) for the initial condition (0.24, −2.78)
under the LMPC of Equation (14) and the NN-based detection system.
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Figure 13. Manipulated input profiles (u1 = ΔCA0, u2 = ΔQ) for the initial condition (0.24, −2.78)
under the LMPC of Equation (14) and the NN-based detection system.

Additionally, when both disturbances and min-max cyber-attacks are present, it is demonstrated
that the NN-based detection system is still able to detect the min-max cyber-attack and
re-stabilize the closed-loop system of Equation (15) in the presence of disturbances by following
the same steps as in the pure-cyber-attack case. The bounded disturbances w1 and w2 are
added in Equation (15a,15b) as standard Gaussian white noise with zero mean and variances
σ1 = 0.1 kmol/(m3 min) and σ2 = 2 K/min, respectively. Also, the disturbance terms are bounded as
follows: |w1| ≤ 0.1 kmol/(m3 min), and |w2| ≤ 2 K/min, respectively. The closed-loop state and input
profiles are shown in Figures 14–16. Specifically, in Figure 15, it is demonstrated that the min-max
cyber-attack occurs at 0.08 min and is confirmed at 0.115 min before the closed-loop state leaves Ωρ.
In the presence of disturbances, the misbehaving sensor is isolated and the closed-loop states are
driven to a neighborhood around the origin under the LMPC of Equation (14). In Figure 16, it is
demonstrated that the manipulated inputs show variation around the steady-state values (0, 0) when
the closed-loop system reaches a neighborhood of the steady-state due to the bounded disturbances.
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Figure 14. The state-space profiles for the closed-loop CSTR with bounded disturbances and the
initial condition (0.25, −3), where a min-max attack is detected by the NN-based detection system and
mitigated by the LMPC of Equation (14).
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Figure 15. State profiles (x2 = T − Ts, x̄2 = T̄ − Ts) for the closed-loop CSTR with bounded
disturbances and the initial condition (0.25, −3) under the LMPC of Equation (14) and the NN-based
detection system.
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Figure 16. Manipulated input profiles (u1 = ΔCA0, u2 = ΔQ) for the closed-loop CSTR with bounded
disturbances and the initial condition (0.25, −3) under the LMPC of Equation (14).

Lastly, since the surge cyber-attack of Equation (6) is undetectable by the model-based detection
method, we also test the performance of the NN-based detection on the surge cyber-attack due to the
similarity between surge cyber-attacks and min-max cyber-attacks (i.e., the surge cyber-attack works
as a min-max attack for the first few sampling steps). It is demonstrated in simulations that 89% of
surge cyber-attacks can be detected by the NN-based detection system that is trained for min-max
cyber-attacks only, which implies that the NN-based detection method can be applied to many other
cyber-attacks with similar properties.

Moreover, when cyber-attacks with different properties are taken into account, for example,
the replay attack (i.e., x̄ = X, where X is the set of past measurements of states), the NN-based detection
system can still efficiently distinguish the type of cyber-attacks and disturbances by re-training the NN
model. The new NN model is built with labeled training data for the case of min-max, replay, nominal
and with disturbances, for which the classification accuracy within 0.28 min is up to 85%. As a result,
the NN-based detection model can be readily updated with the data of new cyber-attacks without
changing the entire structure of detection or control systems.
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6. Conclusions

In this work, we proposed an integrated NN-based detection and model predictive control
method for nonlinear process systems to account for potential cyber-attacks. The NN-based detection
system was first developed with the sliding detection window to detect cyber-attacks. Based on that,
the Lyapunov-based MPC was developed with the stability region check triggered by the detection
indicator to achieve closed-loop stability in the sense that the closed-loop state remained within
a well-characterized stability region and was ultimately driven to a small neighborhood around
the origin. Finally, the proposed integrated NN-based detection and LMPC method was applied
to a nonlinear chemical process example. The simulation results demonstrated that the min-max
cyber-attack was successfully detected before the state exited the stability region, and the closed-loop
system was stabilized under the LMPC by using the measurements from redundant secure sensors.
The good performance of the proposed approach with respect to surge and replay cyber-attacks was
also demonstrated. The value and importance of the NN-based detection method is twofold. First,
the NN-based detection method is able to detect cyber-attacks without having to know the process
model if a large amount of past data is available. This is very important as nowadays most SCADA
systems are large-scale networks with complicated process models, while the big data processing
becoming available in both storage and computation. Second, compared to other detection methods,
the NN-based detection is easy to implement. The proposed detection and control method can improve
the safeness of processes by effectively detecting known (or similar to known) cyber-attacks and also
can be readily updated to handle new, unknown cyber-attacks. However, NN-based detection method
also has its limitations. Although it achieves desired performance for a trained, known cyber-attack,
it is not guaranteed to work for an unknown, new cyber-attack unless it shares similar properties with
known cyber-attacks.
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Abstract: Machine learning has attracted extensive interest in the process engineering field, due to
the capability of modeling complex nonlinear process behavior. This work presents a method for
combining neural network models with first-principles models in real-time optimization (RTO) and
model predictive control (MPC) and demonstrates the application to two chemical process examples.
First, the proposed methodology that integrates a neural network model and a first-principles model
in the optimization problems of RTO and MPC is discussed. Then, two chemical process examples are
presented. In the first example, a continuous stirred tank reactor (CSTR) with a reversible exothermic
reaction is studied. A feed-forward neural network model is used to approximate the nonlinear
reaction rate and is combined with a first-principles model in RTO and MPC. An RTO is designed
to find the optimal reactor operating condition balancing energy cost and reactant conversion, and
an MPC is designed to drive the process to the optimal operating condition. A variation in energy
price is introduced to demonstrate that the developed RTO scheme is able to minimize operation
cost and yields a closed-loop performance that is very close to the one attained by RTO/MPC using
the first-principles model. In the second example, a distillation column is used to demonstrate an
industrial application of the use of machine learning to model nonlinearities in RTO. A feed-forward
neural network is first built to obtain the phase equilibrium properties and then combined with
a first-principles model in RTO, which is designed to maximize the operation profit and calculate
optimal set-points for the controllers. A variation in feed concentration is introduced to demonstrate
that the developed RTO scheme can increase operation profit for all considered conditions.

Keywords: real-time optimization; nonlinear processes; process control; model predictive control;
chemical reactor control; distillation column control

1. Introduction

In the last few decades, chemical processes have been studied and represented with different
models for real-time optimization (RTO) and model predictive control (MPC) in order to improve the
process steady-state and dynamic performance. The available models range from linear to nonlinear
and from first-principles models to neural network models, among others [1]. For many applications,
first-principles models are the preferable choice, especially when applied with process systems
methodologies [2]. However, first-principles models are difficult to maintain due to the variation of
some parameters. Furthermore, it could be difficult or impractical to obtain first-principles models for
large-scale applications [3]. As a well-tested alternative, machine learning method, especially neural
network models are able to represent complicated nonlinear systems [4,5]. Neural networks fit the data
in an input-output fashion using fully-connected layers within the hidden output layers [6]. However,

Mathematics 2019, 7, 890; doi:10.3390/math7100890 www.mdpi.com/journal/mathematics41



Mathematics 2019, 7, 890

due to their general structures, neural networks lack physical knowledge in their formulation. To
alleviate the above problem, this work integrates neural network models with first-principles models.
Specifically, first-principles models are used to represent the well-known part of the process and
embedding physical knowledge in the formulation, while the complex nonlinear part of the process is
represented with neural networks. This proposed hybrid formulation is then applied in the context of
real-time optimization and model predictive control in two chemical processes.

The machine learning method has been part of process system engineering for at least 30 years
in which the feed-forward neural network is the most classical structure found in the literature [7].
For instance, neural networks have been proposed as an alternative to first-principles models for
the classical problems of process engineering [7], such as modeling, fault diagnosis, product design,
state estimation, and process control. The neural network model has also gained much interest in the
chemical engineering field, and more comprehensive reviews with detailed information on neural
networks in chemical processes are available in [7,8]. For example, an artificial neural networks was
applied to approximate pressure-volume-temperature data in refrigerant fluids [9]. Complex reaction
kinetic data have been fitted using a large experimental dataset with neural networks to approximate
the reaction rate and compared with standard kinetics methods, showing that neural networks can
represent kinetic data at a faster pace [10]. Reliable predictions of the vapor-liquid equilibrium has been
developed by means of neural networks in binary ethanol mixtures [11]. Studies on mass transfer have
shown good agreements between neural network predictions and experimental data in the absorption
performance of packed columns [12].

Since the applications with standard neural networks rely on fully-connected networks,
the physical interpretation of the obtained model can be a difficult task. One solution is to integrate
physical knowledge into the neural network model. For example, the work in [13] proposed a learning
technique in which the neural network can be physically interpretable depending on the specifications.
Similarly, the work in [14] designed a neural network with physical-based knowledge using hidden
layers as intermediate outputs and prioritized the connection between inputs and hidden layers based
on the effect of each input with the corresponding intermediate variables. Another method to add
more physical knowledge into neural networks is to combine first-principles models with neural
networks as hybrid modeling [15]. For instance, biochemical processes have been represented with
mass balances for modeling the bioreactor system and with artificial neural networks for representing
the cell population system [16]. Similarly, an experimental study for a bio-process showed the benefits
of the hybrid approach in which the kinetic models of the reaction rates were identified with neural
networks [17]. In crystallization, growth rate, nucleation kinetics, and agglomeration phenomena
have been represented by neural networks, while mass, energy, and population balances have been
used as a complement to the system’s behavior [18]. In industry, hybrid modeling using rigorous
models and neural networks has also been tested in product development and process design [19].
However, most of the applications with hybrid modeling are limited to the open-loop case.

Real-time optimization (RTO) and model predictive control (MPC) are vital tools for
chemical process performance in industry in which the process model plays a key role in their
formulations [20,21]. RTO and MPC have been primarily implemented based on first-principles
models, while the difference is that RTO is based on steady-steady models and MPC is based on
dynamical models [20,21]. In both RTO and MPC, the performance depends highly on the accuracy of
the process model. To obtain a more accurate model, machine learning methods have been employed
within MPC [6] and within RTO [22], as well. In practice, it is common to use process measurements to
construct neural network models for chemical processes. However, the obtained model from process
operations may lack robustness and accuracy for parameter identification, as was shown in [23]. As
a consequence, there has been significant effort to include hybrid models in process analysis, MPC,
and process optimization [24–30] in order to reduce the dependency on data and infuse physical
knowledge. At this stage, little attention has been paid to utilizing the full benefit of employing hybrid
modeling in both the RTO and MPC layers.
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Motivated by the above, this work demonstrates the implementation of a hybrid approach of
combining a first-principles model and a neural network model in the RTO and MPC optimization
problems. Specifically, the nonlinear part of the first-principles model is replaced by a neural network
model to represent the complex, nonlinear term in a nonlinear process. We note that in our previous
works, we developed recurrent neural network models from process data for use in MPC without
using any information from a first-principles model or process structure in the recurrent neural
network model formulation [4,5,31]. Furthermore, the previous works did not consider the use of
neural network models to describe nonlinearities in the RTO layer and focused exclusively on model
predictive control. In the present work, we use neural networks to describe nonlinearities arising
in chemical processes and embed these neural network models in first-principles process models
used in both RTO (nonlinear steady-state process model) and MPC (nonlinear dynamic process
model), resulting in the use of hybrid model formulations in both layers. The rest of the paper is
organized as follows: in Section 2, the proposed method that combines neural network with the
first-principles model is discussed. In Section 3, a continuous stirred tank reactor (CSTR) example is
utilized to illustrate the combination of neural network models and first-principles models in RTO and
Lyapunov-based MPC, where the reaction rate equation is represented by a neural network model. In
Section 4, an industrial distillation column is co-simulated in Aspen Plus Dynamics and MATLAB. A
first-principles steady-state model of the distillation column is first developed, and a neural network
model is constructed for phase equilibrium properties. The combined model is then used in RTO to
investigate the performance of the proposed methodology.

2. Neural Network Model and Application

2.1. Neural Network Model

The neural network model is a nonlinear function y = fNN(x) with input vector x = [x1, x2, ..., xn]

and output vector y = [y1, y2, ..., ym]. Mathematically, a neural network function is defined as a series
of functional transformations. The structure of a two-layer (one hidden-layer) feed-forward neural
network is shown in Figure 1, where h1, h2, ..., hp are hidden neurons [32,33]. Specifically, the hidden
neurons hj and the outputs yk are obtained by Equation (1):

hj = σ1(
n

∑
i=1

w(1)
ji xi + w(1)

j0 ), j = 1, 2, ..., p (1a)

yk = σ2(
p

∑
i=1

w(2)
ki hi + w(2)

k0 ), k = 1, 2, ..., m (1b)

where parameters w(1)
ji and w(2)

ki are weights in the first and the second layer and parameters w(1)
j0

and w(2)
k0 are biases. σ1 and σ2 are nonlinear element-wise transformations σ : R1 → R1, which are

generally chosen to be sigmoid functions such as the logistic sigmoid S(x) = 1/(1+ e−x) or hyperbolic
tangent function tanh(x) = 2/(1 + e−2x)− 1. Each hidden neuron hj is calculated by an activation
function σ1 with a linear combination of input variables xi. Each output variable yk is also calculated
by an activation function σ2 with a linear combination of hidden neurons hi. Since the neural network
models in this work are developed to solve regression problems, no additional output unit activation
functions are needed. All the neural network models in this work will follow the structure discussed
in this section.
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Figure 1. A feed-forward neural network with input x1, ..., xn, hidden neurons h1, h2, ..., hp, and outputs

y1, y2, ..., ym. Each weight w(k)
ji is marked on the structure. Neuron “1” is used to represent the biases.

Given a set of input vectors {xn} together with a corresponding set of target output vectors {ŷn}
as a training set of N data points, the neural network model is trained by minimizing the following
sum-of-squares error function [33]:

E(w) =
1
2

N

∑
n=1

‖y(xn, w)− ŷn‖2 (2)

The proper weight vectors w are obtained by minimizing the above cost function via the gradient
descent optimization method:

wτ+1 = wτ − η∇E(wτ) (3)

where τ labels the iteration, η > 0 is known as the learning rate, and ∇E(wτ) is the derivative of the
cost function with respect to weight w. The weight vectors are optimized by moving through weight
space in a succession of Equation (3) with some initial value w(0). The gradient of an error function
∇E(w) is evaluated by back propagation method. Additionally, data are first normalized, and then,
k-fold cross-validation is used to separate the dataset into the training and validation set in order to
avoid model overfitting.

2.2. Application of Neural Network Models in RTO and MPC

In the chemical engineering field, model fitting is a popular technique in both academia and
industry. In most applications, a certain model formulation needs to be assumed first, and then,
the model is fitted with experiment data. However, a good approximation is not guaranteed since
the assumed model formulation may be developed based on deficient assumptions and uncertain
mechanism, which lead to an inaccurate model. Alternatively, neural network model can be employed
to model complex, nonlinear systems since neural networks do not require any a priori knowledge
about the process and are able to fit any nonlinearity with a sufficient number of layers and neurons
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according to the universal approximation theorem [34]. The obtained neural network model can be
used together with existing first-principles models. Specifically, the combination of the neural network
model and first-principles model can be used in optimization problems, such as real-time optimization
(RTO) and model predictive control (MPC).

2.2.1. RTO with the Neural Network Model

Real-time optimization (RTO) maximizes the economic productivity of the process subject to
operational constraints via the continuous re-evaluation and alteration of operating conditions of a
process [35]. The economically-optimal plant operating conditions are determined by RTO and sent to
the controllers to operate the process at the optimal set-points [36].

Since RTO is an optimization problem, an explicit steady-state model is required in order to obtain
optimal steady-states. First-principles models are commonly used in RTO; however, first-principles
models may not represent the real process well due to model mismatch, and thus lead to non-optimal
steady-states or even infeasible steady-states. In these cases, the machine learning method becomes
a good solution to improve model accuracy. Specifically, a neural network model can be used to
replace the complicated nonlinear part of the steady-state model to increase the accuracy of the
first-principles model.

In general, the RTO problem is formulated as the optimization problem of Equation (4), where x ∈
Rn is the state and x̂ ∈ Rm is part of the state. g(x̂) is a nonlinear function of x̂, which is a part of the
steady-state model.

min
x

cost f unction(x)

s.t. F(x, g(x̂)) = 0

other constraints

(4)

Since it is difficult to obtain an accurate functional form of g(x̂), a neural network FNN(x̂) is
developed using simulation data to replace g(x̂) in Equation (4). Therefore, the RTO based on the
integration of first-principles model and neural network model is developed as follows:

min
x

cost f unction(x)

s.t. F(x, FNN(x̂)) = 0

other constraints

(5)

2.2.2. MPC with Neural Network Models

Model predictive control (MPC) is an advanced control technique that uses a dynamic process
model to predict future states over a finite-time horizon to calculate the optimal input trajectory.
Since MPC is able to account for multi-variable interactions and process constraints, it has been widely
used to control constrained multiple-input multiple-output nonlinear systems [37]. Since MPC is
an optimization problem, an explicit dynamic model is required to predict future states and make
optimal decisions. First-principles models can be developed and used as the prediction model in MPC;
however, first-principles models suffer from model mismatch, which might lead to offsets and other
issues. Therefore, machine learning methods can be used to reduce model mismatch by replacing the
complicated nonlinear part of the dynamic model with a neural network model.

In general, MPC can be formulated as the optimization problem of Equation (6), where the
notations follow those in Equation (4) and ẋ = F(x, g(x̂)) is the first-principles dynamic process model.

min
u

cost f unction(x, u)

s.t. ẋ = F(x, g(x̂), u)

other constraints

(6)
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Similar to Equation (5), a neural network FNN(x̂) is developed using simulation data to replace g(x̂) in
Equation (6). As a result, the MPC based on the integration of the first-principles model and neural
network model is developed as follows:

min
u

cost f unction(x, u)

s.t. ẋ = F(x, FNN(x̂), u)

other constraints

(7)

Remark 1. To derive stability properties for the closed-loop system under MPC, additional stabilizing
constraints can be employed within the MPC of Equation (7) (e.g., terminal constraints [38] and Lyapunov-based
constraints [39]). In this work, a Lyapunov-based MPC (LMPC) is developed to achieve closed-loop stability in
the sense that the close-loop state is bounded in a stability region for all times and is ultimately driven to the
origin. The discussion and the proof of closed-loop stability under LMPC using machine learning-based models
can be found in [4,31].

Remark 2. All the optimization problems of MPC and RTO in this manuscript are solved using IPOPT,
which is an interior point optimizer for large-scale nonlinear programs. The IPOPT solver was run on the OPTI
Toolbox in MATLAB. It is noted that the global optimum of the nonlinear optimization problem is not required
in our case, since the control objective of MPC is to stabilize the system at its set-point, rather than to find the
globally-optimal trajectory. The Lyapunov-based constraints can guarantee closed-loop stability in terms of
convergence to the set-point for the nonlinear system provided that a feasible solution (could be a locally-optimal
solution) to the LMPC optimization problem exists.

Remark 3. In the manuscript, the MPC is implemented in a sample-and-hold fashion, under which the control
action remains the same over one sampling period, i.e., u(t) = u(x(tk)), ∀t ∈ [tk, tk+1), where tk+1 represents
tk + Δ and Δ is the sampling period. Additionally, one possible way to solve the optimization problems
of Equations (6) and (7) is to use continuous-time optimization schemes. This method has recently gained
researchers attention and can be found in [40,41].

Remark 4. In this work, the neural network is used to replace the nonlinear term in the first-principles model,
for which it is generally difficult to obtain an accurate functional form from first-principles calculations. It
should be noted that the neural network FNN(x̂) was developed as an input-output function to replace only a
part (static nonlinearities) of the first-principles model, and thus does not replace the entire steady-state model or
dynamic model.

3. Application to a Chemical Reactor Example

3.1. Process Description and Simulation

The first example considers a continuous stirred tank reactor (CSTR), where a reversible
exothermic reaction A ↔ B takes place [42,43]. After applying mass and energy balances, the following
dynamic model is achieved to describe the process:

dCA
dt

=
1
τ
(CA0 − CA)− kAe

−EA
RT CA + kBe

−EB
RT CB

dCB
dt

= − 1
τ

CB + kAe
−EA

RT CA − kBe
−EB
RT CB

dT
dt

=
−ΔH
ρCP

(kAe
−EA

RT CA − kBe
−EB
RT CB) +

1
τ
(T0 − T) +

Q
ρCPV

(8)

In the model of Equation (8), CA, CB are the concentrations of A and B in the reactor, and T is
the temperature of the reactor. The feed temperature and concentration are denoted by T0 and CA0 ,
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respectively. kA and kB are the pre-exponential factor for the forward reaction and reverse reaction,
respectively. EA and EB are the activation energy for the forward reaction and reverse reaction,
respectively. τ is the residence time in the reactor; ΔH is the enthalpy of the reaction; and CP is the heat
capacity of the mixture liquid. The CSTR is equipped with a jacket to provide heat to the reactor at rate
Q. All process parameter values and steady-state values are listed in Table 1. Additionally, it is noted
that the second equation of Equation (8) for CB is unnecessary if CA0 is fixed due to CB = CA0 − CA.
This does not hold when CA0 is varying, and thus, the full model is used in this work for generality.

Table 1. Parameter values and steady-state values for the continuous stirred tank reactor (CSTR)
case study.

T0 = 400 K τ = 60 s
kA = 5000 /s kB = 106 /s

EA = 1× 104 cal/mol EB = 1.5× 104 cal/mol
R = 1.987 cal/(mol K) ΔH = −5000 cal/mol

ρ = 1 kg/L CP = 1000 cal/(kg K)
CA0 = 1 mol/L V = 100 L

CAs = 0.4977 mol/L CBs = 0.5023 mol/L
TAs = 426.743 K Qs = 40386 cal/s

When the tank temperature T is too low, the reaction rate is maintained as slow such that the
reactant A does not totally reacted during the residence time, and thus, the reactant conversion
(1 − CA/CA0 ) is low. When the tank temperature T is too high, the reversible exothermic reaction
equilibrium turns backwards so that the reactant conversion (1 − CA/CA0 ) also drops. As a result,
there exists a best tank temperature to maximize the reactant conversion. Figure 2 shows the variation
of the CSTR steady-state (i.e., concentration CA and temperature T) under varying heat input rate
Q, where Q is not explicitly shown in Figure 2. Specifically, the minimum point of CA represents the
steady-state of CA and T, under which the highest conversion rate (conversion rate = 1− CA/CA0 ) is
achieved. Therefore, the CSTR process should be operated at this steady-state for economic optimality
if no other cost is accounted for.

400 410 420 430 440 450 460 470
0.49

0.5

0.51

0.52

0.53

0.54

0.55
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0.57

Figure 2. Steady-state profiles (CA and T) for the CSTR of Equation (8) under varying heat input rate
Q, where the minimum of CA is achieved at Q= 59,983 cal/s.
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3.2. Neural Network Model

In the CSTR model of Equation (8), the reaction rate r = kAe
−EA

RT CA − kBe
−EB
RT CB is a nonlinear

function of CA, CB, and T. To obtain this reaction rate from experiment data, an assumption of the
reaction rate mechanism and reaction rate function formulation is required. In practice, it could be
challenging to obtain an accurate reaction rate expression using the above method if the reaction
mechanism is unknown and the rate expression is very complicated.

In this work, a neural network model is built to represent the reaction rate r as a function of CA,
CB, and T (i.e., r = FNN(CA, CB, T)), and then, the neural network model replaces the first-principles
rate equation in the process model. Specifically, around eight million data were generated by the

original reaction rate expression r = kAe
−EA

RT CA − kBe
−EB
RT CB with different values of CA, CB, and

T. The dataset was generated such that various reaction rates under different operating conditions
(i.e., temperature, concentrations of A and B) were covered. The operating conditions were discretized
equidistantly. Specifically, we tried the activation functions such as tanh, sigmoid, and ReLU for
hidden layers and a linear unit and softmax function for the output layer. It is demonstrated that
the choice of activation functions for the output layer significantly affected the performance of the
neural network in a regression problem, while those for the hidden layers achieved similar results.
tanh(x) = 2/(1 + e−2x)− 1 was ultimately chosen as the activation function for the hidden layers,
and a linear unit was used for the output layer since they achieved the best training performance
with the mean squared error less than 10−7. Data were first normalized and then fed to the MATLAB
Deep Learning toolbox to train the model. The neural network model had one hidden layer with 10
neurons. The parameters were trained using Levenberg–Marquardt optimization algorithm. In terms
of the accuracy of the neural network model, the coefficient of determination R2 was 1, and the error
histogram of Figure 3 demonstrates that the neural network represented the reaction rate with a high
accuracy, as can be seen from the error distribution (we note that error metrics used in classification
problems like the confusion matrix, precision, recall, and f1-score were not applicable to the regression
problems considered in this work). In the process model of Equation (8), the first-principles reaction

rate term kAe
−EA

RT CA − kBe
−EB
RT CB was replaced with the obtained neural network FNN(CA, CB, T). The

integration of the first-principles model and the neural network model that was used in RTO and MPC
will be discussed in the following sections.

Figure 3. Error distribution histogram for training, validation, and testing data.

Remark 5. The activation function plays an important role in the neural network training process and may
affect its prediction performance significantly. Specifically, in the CSTR example, since it is known that the
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reaction rate is generally in the form of exponential functions, we tried tanh and sigmoidactivation functions. It
is demonstrated that both achieved the desired performance with mean squared error less than 10−7.

3.3. RTO and Controller Design

3.3.1. RTO Design

It is generally accepted that energy costs vary significantly compared to capital, labor, and other
expenses in an actual plant. Therefore, in addition to productivity, it is important to account for energy
cost in the real-time optimization of plant operation. Specifically, in this example, the heating cost was
regarded as the entire energy cost since other energy costs may be lumped into the heating energy cost.
The overall cost function is defined as follows:

total cost =
CA
CA0

+ heat price × Q (9)

Equation (9) attempts to find the balance between the reactant conversion and heat cost. A simple
linear form was taken between Q and CA in this case study since it was sufficient to illustrate the
relationship between energy cost and reactant conversion. The above total cost was optimized in real
time to minimize the cost of the CSTR process, by solving the optimization problem of Equation (10).

min
CA ,CB ,T,Q

total cost =
CA
CA0

+ heat price × Q (10a)

s.t. 0 =
1
τ
(CA0 − CA)− FNN(CA, CB, T) (10b)

0 = − 1
τ

CB + FNN(CA, CB, T) (10c)

0 =
−ΔH
ρCP

FNN(CA, CB, T) +
1
τ
(T0 − T) +

Q
ρCPV

(10d)

CA ∈ [0, 1] (10e)

CB ∈ [0, 1] (10f)

T ∈ [400, 500] (10g)

Q ∈ [0, 105] (10h)

The constraints of Equation (10b), Equation (10c), and Equation (10d) are the steady-state models
of the CSTR process, which set the time derivative of Equation (8) to zero and replace the reaction rate
term by the neural network model built in Section 3.2. Since the feed concentration CA0 is 1 mol/L, CA
and CB must be between 0 and 1 mol/L. The temperature constraint [400, 500] and energy constraint
[0, 105] are the desired operating conditions. At the initial steady-state, the heat price is 7× 10−7, and
the CSTR operates at T = 426.7 K, CA = 0.4977 mol/L and Q = 40,386 cal/s. The performance is not
compromised too much since CA = 0.4977 mol/L is close to the optimum value CA = 0.4912 mol/L,
while the energy saving is considerable when Q = 40,386 cal/s is compared to the optimum value
Q = 59,983 cal/s. In the presence of variation in process variables or heat price, RTO recalculates the
optimal operating condition, given that the variation is measurable every RTO period. The RTO of
Equation (10) is solved every RTO period, and then sends steady-state values to controllers as the
optimal set-points for the next 1000 s. Since the CSTR process has a relatively fast dynamics, a small
RTO period of 1000 s is chosen to illustrate the performance of RTO.

3.3.2. Controller Design

In order to drive the process to the optimal steady-state, a Lyapunov-based model predictive
controller (LMPC) is developed in this section. The controlled variables are CA, CB, and T, and the
manipulated variable is heat rate Q. The CSTR is initially operated at the steady-state [CAs CBs Ts] =
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[0.4977 mol/L 0.5023 mol/L 426.743 K], with steady-state Qjs = 40, 386 cal/s. At the beginning
of each RTO period, a new set of steady-states are calculated, and then, the input and the states are
represented in their deviation variable form as u = Q − Qs and xT = [CA − CAs CB − CBs T − Ts],
such that the systems of Equation (8) together with FNN(CA, CB, T) can be written in the form of ẋ =

f (x) + g(x)u. A Lyapunov function is designed using the standard quadratic form V(x) = 100,000x2
1 +

100,000x2
2 + x2

3, and the parameters are chosen to ensure that all terms are of similar order of magnitude
since temperature is varying in a much larger range compared to concentration. We characterize the
stability region Ωρ as a level set of Lyapunov function, i.e., Ωρ =

{
x ∈ R3 | V(x) ≤ ρ

}
. For the system

of Equation (8), the stability region Ωρ with ρ = 1000 is found based on the above Lyapunov function
V and the following controller h(x) [44]:

h(x) =

⎧⎨⎩ − L f V+
√

L f V2+LgV4

LgV2 LgV if LgV �= 0

0 if LgV = 0
(11)

where L f V(x) denotes the standard Lie derivative L f V(x) := ∂V(x)
∂x f (x). The control objective

is to stabilize CA, CB, and T in the reactor at its steady-state by manipulating the heat rate
Q. A Lyapunov-based model predictive controller (LMPC) is designed to bring the process to
the steady-state calculated by the RTO. Specifically, the LMPC is presented by the following
optimization problem:

min
u∈S(Δ)

∫ tk+N

tk

(‖x̃(τ)‖2
Qc

+ ‖u(τ)‖2
Rc
) dτ (12a)

s.t. ˙̃x(t) = f (x̃(t)) + g(x̃(t))u(t) (12b)

x̃(tk) = x(tk) (12c)

u(t) ∈ U, ∀ t ∈ [tk, tk+N) (12d)

∂V(x(tk))

∂x
( f (x(tk)) + g(x(tk))u(tk)) ≤ ∂V(x(tk))

∂x
( f (x(tk)) + g(x(tk))h(x(tk))) (12e)

where x̃ is the predicted state, N is the number of sampling periods within the prediction horizon,
and S(Δ) is the set of piece-wise constant functions with period Δ. The LMPC optimization problem
calculates the optimal input trajectory over the entire prediction horizon t ∈ [tk, tk+N), but only applies
the control action for the first sampling period, i.e., u(t) = u(x(tk)), ∀t ∈ [tk, tk+1). In the optimization
problem of Equation (12), Equation (12a) is the objective function minimizing the time integral of
‖x̃(τ)‖2

Qc
+ ‖u(τ)‖2

Rc
over the prediction horizon. Equation (12b) is the process model of Equation (8)

in its deviation form and is used to predict the future states. A neural network FNN(x1, x2, x3) is

used to replace kAe
−EA

RT CA − kBe
−EB
RT CB in Equation (8). Equation (12c) uses the state measurement

x(tk) at t = tk as the initial condition x̃(tk) of the optimization problem. Equation (12d) defines the
input constraints over the entire prediction horizon, where U = [0− Qs 105 − Qs]. The constraint of
Equation (12e) is used to decrease V(x) such that the state x(t) is forced to move towards the origin.
It guarantees that the origin of the closed-loop system is rendered asymptotically stable under LMPC
for any initial conditions inside the stability region Ωρ. The detailed proof of closed-loop stability can
be found in [39].

To simulate the dynamic model of Equation (8) numerically under the LMPC of
Equation (12), we used the explicit Euler method with an integration time step of hc = 10−2 s.
Additionally, the optimization problem of the LMPC of Equation (12) is solved using the solver
IPOPT in the OPTI Toolbox in MATLAB with the following parameters: sampling period Δ = 5 s;
prediction horizon N = 10. Qc =

[
1 0 0; 0 1 0; 0 0 5 × 10−5] and Rc = 10−11 were chosen such that

the magnitudes of the states and of the input in ‖x̃(τ)‖2
Qc

and ‖u(τ)‖2
Rc

have the similar order.
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3.4. Simulation Results

In the simulation, a variation of heat price is introduced to demonstrate the performance of the
designed RTO and MPC. Since the heat price is changing as shown in Figure 4, the initial steady-state
is no longer the optimal operating condition. The RTO of Equation (10) is solved at the beginning
of each RTO period to achieve a set of improved set-points, which will be tracked by the MPC of
Equation (12). With the updated set-points, the CSTR process keeps adjusting operating conditions
accounting for varying heat price. After the controller receives the set-points, the MPC of Equation (12)
calculates input u to bring x to the new set-point, and finally, both state x and input u are maintained
at their new steady-states. The concentration profiles, temperature profile, and heat rate profile are
shown in Figures 5–7.
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Figure 4. Heat price profile during the simulation, where the heat price first increases and then
decreases to simulate heat rate price changing.

Figure 5. Evolution of the concentration of A and B for the CSTR case study under the proposed
real-time optimization (RTO) and MPC.
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Figure 6. Evolution of the reactor temperature T for the CSTR case study under the proposed RTO and
MPC scheme.

Figure 7. Evolution of the manipulated input, the heating rate Q, for the CSTR example under the
proposed RTO and MPC scheme.

During the first half of the simulation, heat price rises up to a doubled value. Considering the
increasing heat price, the operation tends to decrease the heat rate to reduce the energy cost, while
compromising the reactant conversion. Therefore, the energy cost and reactant conversion will be
balanced by RTO to reach a new optimum. As demonstrated in Figure 5, CA increases and CB decreases
during the first half of simulation, which implies that less reactant A is converted to product B in the
tank. The reactor temperature also drops as shown in Figure 6, which corresponds to the reducing
heat rate as shown in Figure 7.

Total cost is calculated by Equation (9) using state measurements of CA and Q from the closed-loop
simulation and is plotted in Figure 8. The total cost with fixed steady-state is also calculated and
plotted for comparison. After the heat price starts to increase, both total costs inevitably increase.
Since RTO keeps calculating better steady-states compared to the initial steady-state, the total cost
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under RTO increases less than the simulation without RTO. The total cost is integrated with time to
demonstrate the difference in cost increment, using Equation (13).

cost increase =
∫ t f inal

0
‖total cost − initial cost‖ dt (13)

where initial cost = 0.526 and t f inal = 10,000 s. The ratio of cost increment between simulations with
RTO and without RTO is 195 : 241. Although the operating cost increases because of rising heat
price, RTO reduces the cost increment by approximately a factor of 1/5, when compared to the fixed
operating condition without RTO.
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Figure 8. Comparison of the total operation cost for the CSTR example for simulations with and
without RTO adapting to the heat rate price changing.

The combination of neural network models and first-principles models works well in both
RTO and MPC. Additionally, it is shown in Figures 5–7 that the RTO with the combined
first-principles/neural-network model calculates the same steady-state when compared to the RTO
with a pure first-principles model. Moreover, the MPC also drives all the states to the set-points without
offset when the MPC uses the combination of a neural network model with a first-principles model.
In this case study, the neural network model is accurate such that the combination of neural network
and first-principles model attains almost the same closed-loop result as the pure first-principles model
(curves overlap when plotted in the same figure as is done in Figures 5–7, where the blue curve denotes
the solution under MPC with the combined first-principles/neural network model, the red curve
denotes the solution under MPC with the first-principles model, the green curve denotes the set-points
calculated by RTO with the hybrid model, and the black curve denotes the set-points calculated by
RTO with the first-principles model). Additionally, we calculated the accumulated relative error

(i.e., E =
∫ t=10,000s

t=0 |Tf −Th |dt∫ t=10,000s
t=0 Tf dt

) between the temperature curves (Figure 6) under the first-principles model

(i.e., Tf ) and under the hybrid model (i.e., Th) over the entire operating period from t = 0 to t = 10,000 s.
It was obtained that E = 4.98× 10−6, which is sufficiently small. This implies that the neural network
successfully approximated the nonlinear term of reaction rate. In practice, neural network could be
more effective when the reaction rate is very complicated and depends on more variables and the
reaction mechanism is unknown.
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4. Application to a Distillation Column

4.1. Process Description, Simulation, and Model

4.1.1. Process Description

A simple binary separation of propane from isobutane in a distillation column was used for
the second case study [45]. Aspen Plus (Aspen Technology, Inc., Bedford, MA, USA) and Aspen
Plus Dynamics V10.0 were utilized to perform high-fidelity dynamic simulation for the distillation
column. Specifically, Aspen Plus uses the mass and energy balances to calculate the steady-state of the
process based on a process flowsheet design and carefully-chosen thermodynamic models. After the
steady-state model is solved in Aspen Plus, it can be exported to a dynamic model in Aspen Plus
Dynamics, which runs dynamic simulations based on the obtained steady-state models and detailed
process parameters [46,47].

A schematic of the distillation process is shown in Figure 9. The feed to the separation process
was at 20 atm, 322 K and 1 kmol/s, with a propane mole fraction of 0.4 and an isobutane mole fraction
of 0.6. After a valve controlling the feed flow rate, the feed enters the distillation column at Tray 14.
The feed tray is carefully chosen to achieve the best separation performance and minimum energy
cost, as discussed in [45]. The column has 30 trays with a tray spacing of 0.61 m, and the diameter
of the tray is 3.85 m and 4.89 m for the rectifying section and stripping section, respectively. At the
initial steady-state, the distillate product has a propane mole fraction 0.98 and a flow rate 0.39 kmol,
while the bottom product has a propane mole fraction 0.019 and a flow rate 0.61 kmol. The reflux ratio
is 3.33, together with condenser heat duty −2.17 × 107 W and reboiler heat duty 2.61 × 107 W. The
pressure at the top and bottom is 16.8 atm and 17 atm. Both the top and bottom products are followed
by a pump and a control valve. All the parameters are summarized in Table 2.

Figure 9. A schematic diagram of the distillation column implemented in Aspen Plus Dynamics.

In our simulation, the involved components of propane and isobutane were carefully chosen, and
the CHAO-SEA model was selected for the thermodynamic property calculation. The steady-state
model was first built in Aspen Plus using the detailed information as discussed above and the
parameters in Table 2. Then, the achieved steady-state simulation was exported to the dynamic model
as a pressure-driven model, based on additional parameters such as reboiler size and drum size. After
checking the open-loop response of the dynamic model, controllers will be designed in Section 4.3.2.
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Table 2. Parameter values and steady-state values for the distillation column case study.

F = 1 kmol xF = 0.4
TF = 322 K PF = 20 atm

q = 1.24 NF = 14
NT = 30 Diameterreboiler = 5.08 m

Lengthreboiler = 10.16 m Diameterre f lux drum = 4.08 m
Lengthre f lux drum = 8.16 m

steady-state condition: R = 3.33
xB = 0.019 xD = 0.98

Pbottom = 17 atm Ptop = 16.8 atm
B = 0.61 kmol/L D = 0.39 kmol/L

Qtop = −2.17× 107 W Qbottom = 2.61× 107 W

4.1.2. Process Model

In order to calculate the steady-state of the distillation process, an analytic steady-state model is
developed in this section. Since the Aspen model cannot be used in the optimization problem explicitly,
this analytic steady-state model will be used in the RTO.

The analytic steady-state model consists of five variables, which are the reflux ratio R, the
distillate mole flow rate D, the bottom mole flow rate B, the distillate mole fraction xD, and the bottom
mole fraction xB. For clarification, x is denoted as the mole fraction for the light component propane.
Other parameters include feed conditions: feed molar flow rate F, feed mole fraction xF, feed heat
condition q; column parameters: total number of trays NT , feed tray NF; component property: relative
volatility α. Three equations were developed for the steady-state model.

The first equation F1(D, B) = 0 is the overall molar balance between feed and products, as shown
in Equation (14).

F = D + B (14)

The second equation F2(D, B, xD, xB) = 0 is the overall component balance of light component
propane, as shown in Equation (15):

FxF = DxD + BxB (15)

The third equation applies the binary McCabe–Thiele method. The constant molar overflow
assumptions of the McCabe–Thiele method were held in this case study: the liquid and vapor flow
rates were constant in a given section of the column. Equilibrium was also assumed to be reached
on each tray. The top tray was defined as the first tray. To apply the McCabe–Thiele method, the
rectifying operating line (ROL), stripping operating line (SOL), and phase equilibrium were developed
as follows:

Rectifying operating line (ROL):

yn+1 =
R

R + 1
xn +

xD
R + 1

(16)

Stripping operating line (SOL):

yn+1 =
RD + qF

(R + 1)D − (1− q)F
xn +

F − D
(R + 1)− (1− q)F

xB (17)

Phase equilibrium:

xn =
yn

α − (α − 1)yn
(18)

where α = yC3/xC3
yC4/xC4

= 1.79 is the approximate relative volatility between propane and isobutane at a
pressure 16.9 atm, which is the mean of the top and bottom pressure.
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The third equation F3(R, D, xD, xB) = 0 is expressed in Equation (19) below:

y1 = xD (19a)

xn =
yn

α − (α − 1)yn
n = 1, 2...NT (19b)

yn+1 =
R

R + 1
xn +

xD
R + 1

n = 1, 2...NF − 1 (19c)

yn+1 =
RD + qF

(R + 1)D − (1− q)F
xn +

F − D
(R + 1)− (1− q)F

xB n = NF, NF + 1...NT − 1 (19d)

xNT = xB (19e)

The third equation F3(R, D, xD, xB) = 0 ties the distillate mole fraction xD to the bottom mole
fraction xB by calculating both liquid and vapor mole fractions through all trays from top to bottom.
Equation (19a) defines the vapor mole fraction y1 on the first tray as the distillate mole fraction xD.
Then, the liquid mole fraction x1 on the first tray can be calculated by the phase equilibrium of
Equation (19b). Subsequently, the vapor mole fraction y2 on the second tray is calculated by the ROL
of Equation (19c). The calculation is repeated until x14 and y14 are obtained. Then, y15 is calculated by
the SOL of Equation (19d), instead of ROL. Then, x15 can be calculated again by the phase equilibrium
of Equation (19b). The above calculations are repeated until x30 and y30 are obtained, and x30 = xB
since the liquid on the last tray is the bottom product. In this way, all the variables (i.e., R, D, xD, xB)
have values that satisfy F3(R, D, xD, xB) = 0.

There are five variables R, D, B, xD, xB and three equations F1, F2, F3, which implies that there
are two degrees of freedom. In order to determine the whole process operating condition, two more
states need to be fixed, potentially by RTO. It is necessary to point out that the concentrations xi and
yi on each tray can be calculated by Equation (19) if all five variables R, D, B, xD, xB are determined.
Additionally, if the equilibrium temperature-component curve T = fe(x) (bubble point curve) or
T = fe(y) (dew point curve) are provided, then the temperature on each tray Ti can also be calculated
by simply using Ti = fe(xi) or Ti = fe(yi).

4.2. Neural Network Model

Phase equilibrium properties are usually nonlinear, and the first-principles models are often found
to be inaccurate and demand modifications. In the above steady-state model, the phase equilibrium
xn = yn

α−(α−1)yn
of Equation (19b) assumes that relative volatility α is constant; however, the relative

volatility α does not hold constant with varying concentration and pressure. Therefore, a more accurate
model for phase equilibrium x ∼ y can improve the model performance. Similarly, dew point curve
T ∼ y can be built from first-principles formulation upon Raoult’s Law and the Antoine equation.
However, the Antoine equation is an empirical equation, and it is hard to relate saturated pressure
with temperature accurately, especially for a mixture. As a result, the machine learning method can be
used to achieve a better model to represent the phase equilibrium properties.

In this case study, a neural network (x, T) = FNN(y) was built, with one input (vapor phase
mole fraction y) and two outputs (equilibrium temperature T and liquid phase mole fraction x). One
thousand five hundred data of T, x, and y were generated by the Aspen property library and were
then normalized and fed into the MATLAB Deep Learning toolbox. tanh(x) = 2/(1 + e−2x) − 1
was chosen as the activation function. The neural network model had one hidden layer with five
neurons. The parameters were trained according to Levenberg–Marquardt optimization, and the mean
squared error for the test dataset was around 10−7. It is demonstrated in Figure 10 that the neural
network model fits the data from the Aspen property library very well, where the blue solid curve
is the neural network model prediction and the red curve denotes the Aspen model. Additionally,

we calculated the accumulated relative error (i.e., E =

∫ y=1
y=0 |Tf −Th |dy∫ y=1

y=0 Tf dy
) between the temperature curves
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(Figure 10) under the Aspen model (i.e., Tf ) and under the neural network model (i.e., Th) and
E = 2.32 × 10−6; the result was similar for the liquid mole fraction curves. This sufficiently small
error implies that the neural network model successfully approximated the nonlinear behavior of
the thermodynamic properties. Additionally, the coefficient of determination R2 was 1, and the error
histogram of Figure 11 demonstrated that the neural network model represented the thermodynamic
properties with great accuracy.
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Figure 10. Comparison of the neural network model and the Aspen model.
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Figure 11. Error distribution histogram for training, validation, and testing data.

After training the neural network model, the first-principles phase equilibrium expression xn =
yn

α−(α−1)yn
in Equation (19b) is replaced by the neural network phase equilibrium expression xn =

FNN,1(yn), and then, the integrated model of first-principles model and neural network model is used
in RTO as discussed in the following sections. In addition, the second output of the neural network
model Tn = FNN,2(yn) can be combined together with Equation (19) to calculate the temperature on
each tray, which will be used later to calculate the set-points for the controllers.
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4.3. RTO and Controller Design

4.3.1. RTO Design

Since the process has two degrees of freedom, the operating condition has not been determined.
An RTO was designed for the distillation process to obtain the optimal operating condition. Since RTO
needs an objective function, a profit was developed to represent the operation profit. According to the
products, feed, and energy price in [45], the profit is defined by Equation (20).

Pro f it = pricetopD + pricebottomB − price f eedF − priceenergyQ

= pricetopD + pricebottomB − price f eedF − priceenergy(L(R + 1)F)

= Pro f it(R, D, B, xD, xB)

(20)

The profit equals the profit of product subtracting the cost of feed and energy. The profit that will
be used in RTO is represented as a function of R, D, B, xD,xB. As a result, heat duty Q of both the
condenser and reboiler is approximated by Q = L(R + 1)F, where L = 1.29 × 107 J/kmol is the molar
latent heat of the mixture. Moreover, mass-based prices are changed to mole-based prices because all
flow rates are mole-based. The price of the top distillate rises linearly as the mole fraction xD increases
in order to demonstrate that the higher purity product has a higher price.

pricetop = (0.528 + (xD − 0.97))$/kg × 44.1kg/kmol = 23.29 + 44.1(xD − 0.97) $/kmol

pricebottom = 0.264$/kg × 58.1kg/kmol = 15.34 $/kmol

price f eed = 0.264$/kg × 52.5kg/kmol = 13.86 $/kmol

priceenergy = 6.11 × 10−8 $/J

(21)

To maximize the operation profit, the RTO problem is formulated as Equation (22).

min
R,D,B,xD ,xB

− Pro f it(R, D, B, xD, xB) (22a)

s.t. F1(D, B) = 0 (22b)

F2(D, B, xD, xB) = 0 (22c)

F3(D, xD, xB, R) = 0 (22d)

R ∈ [0, ∞] (22e)

D ∈ [0, 1] (22f)

B ∈ [0, 1] (22g)

xD ∈ [0, 1] (22h)

xB ∈ [0, 1] (22i)

Equation (22a) minimizes the negative profit with respective to five optimization variables R, D,
B, xD,xB. The first three constraint Equation (22b), Equation (22c), and Equation (22d) are the
steady-state model of Equation (14), Equation (15) and Equation (19), as discussed in Section 4.1.2. The
neural network model xn = FNN,1(yn) replaces xn = yn

α−(α−1)yn
in Equation (19). Constraints on the

optimization variables are determined based on process parameters. Specifically, reflux ratio R can be
any positive number; D and B should be between 0 and 1 because the feed had only 1 kmol/s; xD and
xB should be also between zero and one because they are mole fractions. Since there are two degrees of
freedom in the optimization problem, two steady-state values are sent to the controllers as set-points.

4.3.2. Controller Design

Six controllers were added in the distillation column, four of which had fixed set-points and two
of which received set-points from RTO. The control scheme is shown in Figure 12.
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Figure 12. A schematic diagram of the control structure implemented in the distillation column.
Flow rate controller FC, pressure controller PC, and both level controllers LC1 and LC2 have fixed
set-points, and concentration controller CC and temperature controller TC receive set-points from
the RTO.

(1) A flow rate controller FC is controlling the feed mole flow rate at 1 kmol/s by manipulating feed
valve V1. A fixed feed flow rate helps to fix the parameters in the first-principles steady-state model.

(2) A pressure controller PC is controlling the column top pressure at 16.8 atm by manipulating
condenser heat duty Qtop. A fixed column pressure helps to operate the process with fixed
thermodynamic properties.

(3) A level controller LC1 is controlling the reflux drum liquid level at 5.1 m by manipulating the
distillate outlet valve V2. A certain liquid level in the condenser is required to avoid flooding or drying.

(4) A level controller LC2 is controlling the reboiler liquid level at 6.35 m by manipulating the
bottom outlet valve V3. A certain liquid level in the reboiler is required to avoid flooding or drying.

(5) A concentration controller CC is controlling the distillate C3 mole fraction by manipulating the
reflux mole flow rate. A time delay of 5 min was added to simulate the concentration measurement
delay. At the beginning of each RTO period, RTO sends the optimized distillate C3 mole fraction xD to
concentration controller CC as the set-point. Then, controller CC adjusts the reflux flow to track the
mole fraction to its set-point.

(6) A temperature controller TC is controlling temperature T7 on Tray 7, by manipulating reboiler
heat duty Qbottom. A time delay of 1 min was added to simulate the temperature measurement delay.
Tray temperature control is common in industry, and two methods were carried out to determine the
best tray temperature to be controlled. A steady-state simulation was used to obtain the temperature
profile along the tube to find out that the temperature changes among Tray 6, Tray 7, and Tray 8
were greater than those among other trays. One more simulation was performed to get the gain of
tray temperature as a response to a small change in the reboiler heat duty. It was also found that the
temperature on Tray 7 had a greater gain than those on other trays. As a result, Tray 7 was chosen as
the controlled variable.
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At the beginning of the RTO period, RTO optimizes the profit and calculates a set of steady-states.
Given the optimum value of R, D, B, xD,xB, the steady-state model of F1 = 0, F2 = 0, and F3 = 0
were used again to obtain the concentration profile in the distillation column. Then, the neural
network model Tn = FNN,2(yn) was used to calculate the temperature on Tray 7. After that, the tray
temperature T7 was sent to the controller TC and will be tracked to its set-point by manipulating the
reboiler heat duty.

Flow rate controller FC, pressure controller PC, and both level controllers LC1 and LC2 had
fixed set-points, which stabilized the process to operate at fixed operation parameters. Concentration
controller CC and temperature controller TC received set-points from RTO at the beginning of RTO
period and drove the process to more profitable steady-state. All the PI parameters were tuned by the
Ziegler–Nichols method and are shown in Table 3.

Table 3. Proportional gain and integral time constant of all the PI controllers in the distillation
case study.

KC τI /min

FC 0.5 0.3
PC 15 12
LC1 2 150
LC2 4 150
CC 0.1 20
TC 0.6 8

4.4. Simulation Results

To demonstrate the effectiveness of RTO, a variation in feed mole fraction xF was introduced to
the process, as shown in Figure 13. At the beginning of each RTO period (20 h), one measurement of
feed mole fraction xF was sent to RTO to optimize the profit. Then, a set of steady-states was achieved
from RTO and was sent to the controllers as set-points.
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0.395
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Figure 13. The feed concentration profile of the distillation column, which is changing with respect
to time.

The simulation results are shown in Figures 14 and 15. In Figure 14, the set-point of xD increases as
feed concentration xF increases at the beginning of simulation, because higher distillate concentration
is more profitable and more feed concentration xF allows further separation to achieve a higher
concentration in the distillate. The set-point for xD also decreased later when feed concentration xF
decreased. At the beginning of the simulation, reflux flow increased to reach higher xD set-points,
and reflux flow never reached a steady-state during the whole simulation because the feed component
kept changing as shown in Figure 13. In some cases, the mole fraction xD did not track exactly the
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set-point because of the ever-changing feed, too small set-point change, and coupled effect with other
variables and controllers.

Figure 15 illustrates the performance of temperature controller TC. When the feed xF increased,
the set-point for Tray 7 temperature T7 decreased according to RTO. The controller then manipulated
the reboiler heat duty to track the tray temperature with a good performance as shown in Figure 15.
It is noted in Figure 15 that the reboiler heat duty increased as tray temperature decreased at the
beginning of the simulation. The reason is that the reboiler heat duty mainly dependent on the liquid
flow into the reboiler and the vapor flow leaving the reboiler. Since the reflux flow was increased by
the concentration controller CC at the beginning of simulation, both the liquid flow into the reboiler
and vapor leaving the reboiler increased, thus increasing reboiler heat duty.
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Figure 14. Controlled output xD and manipulated input re f lux f low for the concentration controller
CC in the distillation process under the proposed RTO scheme.
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Figure 15. Controlled output T7 and manipulated input reboiler heatfor the temperature controller TC
in the distillation process under the proposed RTO scheme.

Other controllers stayed at the fixed set-points throughout the simulation by adjusting their
manipulated inputs. Therefore, we are not showing the plots for other controllers. It is demonstrated
in Figure 16 that the RTO increased the operation profit when distillation column had a varying
feed concentration. The profit in Figure 16 was calculated by the profit definition of Equation (20),
using the closed-loop simulation data for variables D, B, F, and R. The black line is the operation
profit calculated by the closed-loop simulation where the four controllers (FC, PC, LC1, and LC2) had
fixed set-points and the two controllers (CC and TC) had varying set-points from RTO. The blue line
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is the simulation where the set-points of all controllers were fixed at the initial steady-state and the
controlled variables stayed at the initial set-point by adjusting manipulated variables in the presence
of the same feed variation in Figure 13. Although the feed concentration kept changing each second
and RTO updated the steady-state only each 20 h, the profit was still improved significantly by RTO,
as shown in Figure 16.
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Figure 16. Comparison of the operation profit for the distillation process for closed-loop simulations
with and without RTO adapting for change in the feed concentration.

In this case study, a neural network model was combined only with the steady-state first-principles
model, not the dynamic model. Additionally, it was demonstrated that the steady-states calculated by
RTO using a combination of models were very close to the steady-state values in the Aspen simulator,
which means that the combination of the neural network model and first-principles model was of high
accuracy. The neural network model was used to represent the phase equilibrium properties for RTO
to calculate the optimal steady-state in this work. Neural network models can be useful when the
phase equilibrium is highly nonlinear such that the first-principles model is inaccurate. Additionally, it
can be used when a large number of states are included in thermodynamic equations, such as pressure
or more concentrations for the multi-component case.

5. Conclusions

In this work, we presented a method for integrating neural network modeling with first-principles
modeling in the model used in RTO and MPC. First, a general framework that integrates neural network
models with first-principle models in the optimization problems of RTO and MPC was discussed.
Then, two chemical process examples were studied in this work. In the first case study, a CSTR
with reversible exothermic reaction was utilized to analyze the performance of integrating the neural
network model and first-principles model in RTO and MPC. Specifically, a neural network was first
built to represent the nonlinear reaction rate. An RTO was designed to find the operating steady-state
providing the optimal balance between the energy cost and reactant conversion. Then, an LMPC
was designed to stabilize the process to the optimal operating condition. A variation in energy price
was introduced, and the simulation results demonstrated that RTO minimized the operation cost and
yielded a closed-loop performance that was very close to the one attained by RTO/MPC using the
first-principles model. In the second case study, a distillation column was studied to demonstrate an
application to a large-scale chemical process. A neural network was first trained to obtain the phase
equilibrium properties. An RTO scheme was designed to maximize the operation profit and calculate
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the optimal set-points for the controllers using a neural network model with a first-principles model.
A variation in the feed concentration was introduced to demonstrate that RTO increased operation
profit for all considered conditions. In closing, it is important to note that the two simulation studies
only demonstrated how the proposed approach can be applied and provided some type of “proof of
concept” on the use of hybrid models in RTO and MPC, but certainly, both examples yield limited
conclusions and cannot substitute for an industrial/experimental implementation to evaluate the
proposed approach, which would be the subject of future work.
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Abstract: Target detection plays a key role in the safe driving of autonomous vehicles. At present,
most studies use single sensor to collect obstacle information, but single sensor cannot deal with the
complex urban road environment, and the rate of missed detection is high. Therefore, this paper
presents a detection fusion system with integrating LiDAR and color camera. Based on the original
You Only Look Once (YOLO) algorithm, the second detection scheme is proposed to improve the
YOLO algorithm for dim targets such as non-motorized vehicles and pedestrians. Many image
samples are used to train the YOLO algorithm to obtain the relevant parameters and establish the
target detection model. Then, the decision level fusion of sensors is introduced to fuse the color image
and the depth image to improve the accuracy of the target detection. Finally, the test samples are used
to verify the decision level fusion. The results show that the improved YOLO algorithm and decision
level fusion have high accuracy of target detection, can meet the need of real-time, and can reduce the
rate of missed detection of dim targets such as non-motor vehicles and pedestrians. Thus, the method
in this paper, under the premise of considering accuracy and real-time, has better performance and
larger application prospect.

Keywords: autonomous vehicle; target detection; multi-sensors; fusion; YOLO

1. Introduction

To improve road traffic safety, autonomous vehicles have become the mainstream of future traffic
development in the world. Target recognition is one of the fundamental parts to ensure the safe driving
of autonomous vehicles, which needs the help of various sensors. In recent years, the most popular
sensors include LiDAR and color camera, due to their excellent performance in the field of obstacle
detection and modeling.

The color cameras can capture images of real-time traffic scenes and use target detection to
find where the target is located. Compared with the traditional target detection methods, the deep
learning-based detection method can provide more accurate information, and therefore has gradually
become a research trend. In deep learning, convolutional neural networks combine artificial neural
networks and convolutional algorithms to identify a variety of targets. It has good robustness
to a certain degree of distortion and deformation [1] and You only look once (YOLO) is a target
real-time detection model based on convolutional neural network. For the ability to learn massive data,
capability to extract point-to-point feature and good real-time recognition effect [2], YOLO has become
a benchmark in the field of target detection. Gao et al. [3] clustered the selected initial candidate boxes,
reorganized the feature maps, and expanded the number of horizontal candidate boxes to construct the
YOLO-based pedestrian (YOLO-P) detector, which reduced the missed rate for pedestrians. However,
the YOLO model was limited to static image detection, making a greater limitation in the detection of
pedestrian dynamic changes. Thus, based on the original YOLO, Yang et al. [4] merged it with the
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detection algorithm DPM (Deformable Part Model) and R-FCN (Region-based Fully Convolutional
Network), designed an extraction algorithm that could reduce the loss of feature information, and then
used this algorithm to identify situations involving privacy in the smart home environment. However,
this algorithm divides the grid of the recognition image into 14 × 14. Although dim objects can be
extracted, the workload does not meet the requirement of real-time. Nguyen et al. [5] extracted the
information features of grayscale image and used them as the input layer of YOLO model. However,
the process of extracting information using the alternating direction multiplier method to form the
input layer takes much more time, and the application can be greatly limited.

LiDAR can obtain three-dimensional information of the driving environment, which has unique
advantages in detecting and tracking obstacle detection, measuring speed, navigating and positioning
vehicle. Dynamic obstacle detection and tracking is the research hotspot in the field of LiDAR.
Many scholars have conducted a lot of research on it. Azim et al. [6] proposed the ratio characteristics
method to distinguish moving obstacles. However, it is only uses numerical values to judge the type of
object, which might result in the high missed rate when the regional point cloud data are sparse, or the
detection region is blocked. Zhou et al. [7] used a distance-based vehicle clustering algorithm to identify
vehicles based on multi-feature information fusion after confirming the feature information, and used a
deterministic method to perform the target correlation. However, the multi-feature information fusion
is cumbersome, the rules are not clear, and the correlated methods cannot handle the appearance and
disappearance of goals. Asvadi et al. [8] proposed a 3D voxel-based representation method, and used
a discriminative analysis method to model obstacles. This method is relatively novel, and can be
used to merge the color information from images in the future to provide more robust static/moving
obstacle detection.

All of these above studies use a single sensor for target detection. The image information of color
camera will be affected by the ambient light, and LiDAR cannot give full play to its advantages in
foggy and hot weather. Thus, the performance and recognition accuracy of the single sensor is low in
the complex urban traffic environment, which cannot meet the security needs of autonomous vehicles.

To adapt to the complexity and variability of the traffic environment, some studies use color
camera and LiDAR to detect the target simultaneously on the autonomous vehicle, and then provide
sufficient environmental information for the vehicle through the fusion method. Asvadi et al. [9] uses
a convolutional neural network method to extract the obstacle information based on three detectors
designed by combining the dense depth map and dense reflection map output from the 3D LiDAR
and the color images output from the camera. Xue et al. [10] proposed a vision-centered multi-sensor
fusion framework for autonomous driving in traffic environment perception and integrated sensor
information of LiDAR to achieve efficient autonomous positioning and obstacle perception through
geometric and semantic constraints, but the process and algorithm of multiple sensor fusion are too
complex to meet the requirements of real-time. In addition, references [9,10] did not consider the
existence of dimmer targets such as pedestrians and non-motor vehicle.

Based on the above analysis, this paper presents a multi-sensor (color camera and LiDAR)
and multi-modality (color image and LiDAR depth image) real-time target detection system. Firstly,
color image and depth image of the obstacle are obtained using color camera and LiDAR, respectively,
and are input into the improved YOLO detection model frame. Then, after the convolution and pooling
processing, the detection bounding box for each mode is output. Finally, the two types of detection
bounding boxes are fused on the decision-level to obtain the accurate detection target.

In particular, the contributions of this article are as follows:

(1) By incorporating the proposed secondary detection scheme into the algorithm, the YOLO target
detection model is improved to detect the targets effectively. Then, decision level fusion is
introduced to fuse the image information of LiDAR and color camera output from the YOLO
model. Thus, it can improve the target detection accuracy.

(2) The proposed fusion system has been built in related environments, and the optimal parameter
configuration of the algorithm has been obtained through training with many samples.
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2. System Method Overview

2.1. LiDAR and Color Camera

The sensors used in this paper include color camera and LiDAR, as shown in Figure 1.

Figure 1. Installation layout of two sensors.

The LiDAR is a Velodyne (Velodyne LiDAR, San Jose, CA, USA) 64-line three-dimensional radar
system which can send a detection signal (laser beam) to a target, and then compare the received signal
reflected from the target (the echo of the target) with the transmitted signal. After proper processing,
the relevant information of the target can be obtained. The LiDAR is installed at the top center of a
vehicle and capable of detecting environmental information through high-speed rotation scanning [11].
The LiDAR can emit 64 laser beams at the head. These laser beams are divided into four groups and
each group has 16 laser emitters [12]. The head rotation angle is 360◦ and the detectable distance is
120 m [13]. The 64-line LiDAR has 64 fixed laser transmitters. Through a fixed pitch angle, it can
get surrounding environmental information for each Δt and output a series of three-dimensional
coordinate points. Then, the 64 points (p1, p2, . . . , p64) acquired by the transmitter are marked, and the
distance from each point in the scene to the LiDAR is used as the pixel value to obtain a depth image.
The color camera is installed under the top LiDAR. The position of the camera is adjusted according
to the axis of the transverse and longitudinal center of the camera image and the transverse and
longitudinal orthogonal plane formed with the laser projector, so that the camcorder angle and the yaw
angle are approximated to 0, and the pitch angle is approximately to 0. Color images can be obtained
directly from color cameras, but images output from LiDAR and camera must be matched in time and
space to realize the information synchronization of the two.

2.2. Image Calibration and Synchronization

To integrate information in the vehicle environment perceptual system, information calibration
and synchronization need to be completed.

2.2.1. Information Calibration

(1) The installation calibration of LiDAR: The midpoints of the front bumper and windshield
can be measured with a tape measure, and, according to these two midpoints, the straight line of
central axis of the test vehicle can be marked by the laser thrower. Then, on the central axis, a straight
line perpendicular to the central axis is marked at a distance of 10 m from the rear axle of the test
vehicle; the longitudinal axis of the radar center can be measured by a ruler, and corrected by the
longitudinal beam perpendicular to the ground with a laser thrower, to make the longitudinal axis and
the beam coincide, and the lateral shift of the radar is approximately 0 m. The horizontal beam of the
laser thrower is coincided with the transverse axis of the radar, then the lateral shift of the radar is
approximately 0 m.
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(2) The installation calibration of camera: The position of the camera is adjusted according
to the axis of the transverse and longitudinal center of the camera image and the transverse and
longitudinal orthogonal plane formed with the laser projector, so that the camcorder angle and the
yaw angle are approximated to 0. Then, the plumb line is used to adjust the pitch angle of the camera
to approximately 0.

2.2.2. Information Synchronization

(1) Space matching
Space matching requires the space alignment of vehicle sensors. Assuming that the Velodyne

coordinate system is Ov − XvYvZv and the color camera coordinate system is Op − XpYpZp,
the coordinate system is in translational relationship with respect to the Velodyne coordinate
system. The fixing angle between the sensors is adjusted to unify the camera coordinates to the
Velodyne coordinate system. Assuming that the vertical height of the LiDAR and color camera is Δh,
the conversion relationship of a point “M” in space is as follows:⎡⎢⎣ Xm

V
Ym

V
Zm

V

⎤⎥⎦ =

⎡⎢⎣ Xm
P

Ym
P

Zm
P

⎤⎥⎦+

⎡⎢⎣ 0
0

Δh

⎤⎥⎦ (1)

(2) Time matching
The method of matching in time is to create a data collection thread for the LiDAR and the camera,

respectively. By setting the same acquisition frames rate of 30 fps, the data matching on the time
is achieved.

2.3. The Process of Target Detection

The target detection process based on sensor fusion is shown in Figure 2. After collecting
information from the traffic scene, the LiDAR and the color camera output the depth image and the
color image, respectively, and input them into the improved YOLO algorithm (the algorithm has been
trained by many images collected by LiDAR and color camera) to construct target detection Models
1 and 2. Then, the decision-level fusion is performed to obtain the final target recognition model,
which realizes the multi-sensor information fusion.

Figure 2. The flow chart of multi-modal target detection.
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3. Obstacle Detection Method

3.1. The Original YOLO Algorithm

You Only Look Once (YOLO) is a single convolution neural network to predict the bounding
boxes and the target categories from full images, which divides the input image into S × S cells and
predicts multiple bounding boxes with their class probabilities for each cell. The architecture of YOLO
is composed of input layer, convolution layer, pooling layer, fully connected layer and output layer.
The convolution layer is used to extract the image features, the full connection layer is used to predict
the position of image and the estimated probability values of target categories, and the pooling layer is
responsible for reducing the pixels of the slice.

The YOLO network architecture is shown in Figure 3 [14].

Figure 3. The YOLO network architecture. The detection network has 24 convolutional layers followed
by two fully connected layers. Alternating 1 × 1 convolutional layers reduce the features space from
preceding layers. We pre-train the convolutional layers on the ImageNet classification task at half the
resolution (224 × 224 input images) and then double the resolution for detection.

Assume that B is the number of sliding windows used for each cell to predict objects and C is the
total number of categories, then the dimensions of output layer is S × S × (B × 5 + C).

The output model of each detected border is as follows:

T = (x, y, w, h, c) (2)

where (x, y) represents the center coordinates of the bounding box and (w, h) represents the height
and width of the detection bounding box. The above four indexes have been normalized with respect
to the width and height of the image. c is the confidence score, which reflects the probability value of
the current window containing the accuracy of the detection object, and the formula is as follows:

c = Po × PIOU (3)

where Po indicates the probability of including the detection object in the sliding window, PIOU indicates
the overlapping area ratio of the sliding window and the real detected object.

PIOU =
Area

(
BBi ∩ BBg

)
Area

(
BBi ∪ BBg

) (4)

In the formula, BBg is the detection bounding box, and BBg is the reference standard box based on
the training label.
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For the regression method in the YOLO, the loss function can be calculated as follows:

F(loss) = λcoord
S2

∑
i=0

B
∑

j=0
1obj

ij [(xi − ∧
xi)

2
+ (yi − ∧

yi)
2
] + λcoord

S2

∑
i=0

B
∑

j=0
1obj

ij [(
√

ωi −
√

∧
ωi)

2

+ (
√

hi −
√∧

hi)

2

]

+
S2

∑
i=0

B
∑

j=0
1obj

ij (Ci −
∧
Ci)

2
+ λnoobj

S2

∑
i=0

B
∑

j=0
1noobj

ij (Ci −
∧
Ci)

2
+

S2

∑
i=0

1obj
i ∑
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(pi(c)− ∧

pi(c))
2

(5)

1obj
i denotes that the grid cell i contains part of the traffic objects. 1obj

ij represents the j bounding

box in grid cell i. Conversely, 1noobj
i represents the j bounding box in grid cell i which does not contain

any part of traffic objects. The time complexity of Formula (5) is O
(
(k + c)× S2), which is calculated

for one image.

3.2. The Improved YOLO Algorithm

In the application process of the original YOLO algorithm, the following issues are found:

(1) YOLO imposes strong spatial constraints on bounding box predictions since each grid cell only
predicts two boxes and can only have one class. This spatial constraint limits the number of
nearby objects that our model can predict.

(2) The cell division of the image is set as 7 × 7 in the original YOLO model, which can only detect
large traffic objects such as buses, cars and trucks, but does not meet the requirements of cell
division of the picture for dim objects such as non-motor vehicles and pedestrians. When the
target is close to the safe distance from the autonomous vehicle and the confidence score of the
detection target is low, it is easy to ignore the existence of the target to cause security risk.

Based on the above deficiencies, this paper improves the original YOLO algorithm as follows:
(1) To eliminate the problem of redundant time caused by the identification of undesired targets,
and according to the size and driving characteristics of common targets in traffic scenes, the total
number of categories is set to six types, including {bus, car, truck, non-motor vehicle, pedestrian and
others}. (2) For the issue of non-motor vehicle and pedestrian detection, this paper proposes a
secondary image detection scheme. Then, the cell division of the image is kept as 7 × 7, the sliding
window convolution kernel is set as 3 × 3.

The whole target detection process of the improved YOLO algorithm is shown in Figure 4, and the
steps are as follows:

(1) When the target is identified, the confidence score c is higher than the maximum threshold
τ1, indicating that the recognition accuracy is high, and the frame model of target detection is
directly output.

(2) When the recognition categories are {bus, car and truck}, and the confidence score is τ0 ≤ c < τ1

(τ0 is the minimum threshold), indicating such targets are large in size and easy to detect, and they
can be recognized at the next moment, the current border detection model can be directly output.

(3) When the recognition categories are {non-motor vehicle and pedestrian}, the confidence score is
τ0 ≤ c < τ1. Due to the dim size and mobility of such targets, it is impossible to accurately predict
the position of the next moment. At this time, this target is marked as {others}, indicating that it
is required to be detected further. Then, the next steps need to be performed:

(3a) When the distance l between the target marked as {others} and the autonomous vehicle is
less than the safety distance l0 (the distance that does not affect decision making; if the
distance exceeds it, the target can be ignored), i.e., l ≤ l0, the slider region divided as
{other} is marked, and the region is subdivided into 9 × 9 cells. The secondary convolution
operation is performed again. When the confidence score c of the secondary detection is
higher than the threshold τ1, the border model of {others} is output, and the category is
changed from {others} to {non-motor vehicle} or {pedestrian}. When the confidence score
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c of the secondary detection is lower than the threshold τ1, it is determined that the target
does not belong to the classification item, and the target is eliminated.

(3b) When l > l0, this target is kept as {others}. It does not require a secondary
convolution operation.

Figure 4. The flow chart of secondary image detection program. Object ∈ large means that targets are
{bus, car, truck}.

The original YOLO algorithm fails to distinguish and recognize the targets according to their
characteristics, and may lose some targets. The improved YOLO algorithm can try to detect the target
twice in a certain distance according to the characteristic of dim of pedestrians and non-motor vehicles.
Thus, it is can reduce the missing rate of the target and output a more comprehensive scene model and
ensure the safe driving of vehicles.

4. Decision-Level Fusion of the Detection Information

After inputting the depth image and color image into the improved YOLO model algorithm,
the detected target frame and confidence score are output, and then the final target model is output
based on the fusion distance measurement matrix for decision level fusion.

4.1. Theory of Data Fusion

It is assumed that multiple sensors measure the same parameter, and the data measured by
the i sensor and the j sensor are Xi and Xj, and both obey the Gaussian distribution, and their pdf
(probability distribution function) curve is used as the characteristic function of the sensor and is
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denoted as pi(x), pj(x). xi and xj are the observations of Xi and Xj, respectively. To reflect the deviation
between xi and xj, the confidence distance measure is introduced [15]:

dij = 2
∫ xj

xi

pi(x/xi)dx (6)

dji = 2
∫ xi

xj

pj(x/xj)dx (7)

Among them:

pi(x/xi) =
1√

2πσi
exp{−1

2
[
x − xi

σi
]
2
} (8)

pj(x/xj) =
1√

2πσj
exp{−1

2
[
x − xj

σj
]
2
} (9)

The value of dij is called the confidence distance measure of the i sensor and the j sensor
observation, and its value can be directly obtained by means of the error function erf (θ), namely:

dij = erf[
xj − xi√

2σi
] (10)

dji = erf[
xi − xj√

2σj
] (11)

If there are n sensors measuring the same indicator parameter, the confidence distance measure
dij (i, j = 1, 2, ..., n) constitutes the confidence distance matrix Dn of the multi-sensor data:

Dn =

⎡⎢⎢⎢⎢⎣
d11 d12 · · · d1n
d21 d22 · · · d2n

...
...

...
dn1 dn2 · · · dnn

⎤⎥⎥⎥⎥⎦ (12)

The general fusion method is to use experience to give an upper bound βij of fusion, and then the
degree of fusion between sensors is:

rij =

{
1, dij ≤ βij

0, dij > βij
(13)

In this paper, there are two sensors, i.e., LiDAR and color camera, so i, j = 1, 2. Then,
taking βij = 0.5 [16], r12 is set as the degree of fusion between the two sensors. Figure 5 explains
the fusion process.

(1) When r12 = 0, it means that the two sets of border models (green and blue areas) do not completely
overlap. At this time, the overlapping area is taken as the final detection model (red area).
The fusion process is shown in Figure 5a,b.

(2) When r12 = 1, it indicates that the two border models (green and blue areas) basically coincide
with each other. At this time, all border model areas are valid and expanded to the standard
border model (red area). The fusion process is shown in Figure 5b,c.
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Figure 5. Decision-level fusion diagram of detection model. Blue area (BB1) is the model output from
the depth image. Green area (BB2) is the model output from the color image. Red area (BB’) is the
final detection model. When r12 = 0, the fusion process is shown in (a). The models not to be fused are
shown in (b). When r12 = 1, the fusion process is shown in (c).

Simple average rules between scores are applied in confidence scores. The formula is as follows:

c =
c1 + c2

2
(14)

where c1 is the confidence score of target Model 1, and c2 is the confidence score of target Model 2.
In addition, it should be noted that, when there is only one bounding box, to reduce the missed
detection rate, this bounding box information is retained as the final output result. The final target
detection model can be output through decision-level fusion and confidence scores.

4.2. The Case of the Target Fusion Process

An example of the target fusion process is shown in Figure 6, and the confidence scores obtained
using different sensors can be seen in Table 1.

(1) Figure 6A is a processed depth image. It can be seen that the improved YOLO algorithm identifies
two targets, a and b, and gives the confidence scores of 0.78 and 0.55, respectively.

(2) Figure 6B is a color image. It can be seen that three targets, a, b, and c, are identified and the
confidence scores are given as 0.86, 0.53 and 0.51, respectively.

(3) The red box in Figure 6C is the final target model after fusion:

(1) For target a, according to the decision-level fusion scheme, the result r12 ≤ 0 is obtained;
then, the overlapping area is taken as the final detection model, and the confidence score
after fusion is 0.82, as shown in Figure 6C (a’).

(2) For target b, according to the decision-level fusion scheme, the result r12 ≥ 0 is obtained;
then, the union of all regions is taken as the final detection model, and the confidence
score after fusion is 0.54, as shown in Figure 6C (b’).

(3) For target c, since there is no such information in Figure 6A, and Figure 6B identifies
the pedestrian information on the right, according to the fusion rule, the bounding box
information of c in Figure 6B is retained as the final output result, and the confidence score
is kept as 0.51, as shown in Figure 6C (c’).
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(A) 

 
(B) 

 
(C) 

Figure 6. An example of target detection fusion process. (A) is a processed depth image. The models
detected a and b are shown with blue. (B) is a color image. The models detected a, b and c are shown
with green. (C) is the final target model after fusion. The models fused a’, b’ and c’ are shown with red.

Table 1. Confidence scores obtained using different sensors.

Sensor
Confidence Score (Detected Object from Left to Right)

a (a’) b (b’) c (c’)

LiDAR 0.78 0.55 –
Color camera 0.86 0.53 0.51

The fusion of both 0.82 0.54 0.26

5. Results and Discussion

5.1. Conditional Configuration

The target detection training dataset included 3000-frame resolution images of 1500 × 630 and
was divided into six different categories: bus, car, truck, non-motor vehicle, pedestrian and others.
The dataset was partitioned into three subsets: 60% as training set (1800 observations), 20% as
validation set (600 observations), and 20% as testing set (600 observations).

The autonomous vehicles collected data on and off campus. The shooting equipment included
a color camera and a Velodyne 64-line LiDAR. The camera was synchronized with a 10 Hz spining
LiDAR. The Velodyne has 64-layer vertical resolution, 0.09 angular resolutions, 2 cm of distance
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accuracy, and captures 100 k points per cycle [9]. The processing platform was completed in the PC
segment, including the i5 processor (Intel Corporation, Santa Clara, CA, USA) and GPU (NVIDIA,
Santa Clara, CA, USA). The improved YOLO algorithm was accomplished by building a Darket
framework and using Python (Python 3.6.0, JetBrains, Prague, The Czech Republic) for programming.

5.2. Time Performance Testing

The whole process included the extraction of depth image and color image, and they were,
respectively, substituted into the improved YOLO algorithm and the proposed decision-level fusion
scheme as the input layer. The improved YOLO algorithm involved the image grid’s secondary
detection process and is therefore slightly slower than the normal recognition process. The amount of
computation to implement the different steps of the environment and algorithm is shown in Figure 7.
In the figure, it can be seen that the average time to process each frame is 81 ms (about 13 fps).
Considering that the operating frequency of the camera and Velodyne LiDAR is about 10 Hz, it can
meet the real-time requirements of traffic scenes.

Figure 7. Processing time for each step of the inspection system (in ms).

5.3. Training Model Parameters Analysis

The training of the model takes more time, so the setting of related parameters in the model has a
great impact on performance and accuracy. Because the YOLO model involved in this article has been
modified from the initial model, the relevant parameters in the original model need to be reconfigured
through training tests.

The training step will affect the training time and the setting of other parameters. For this
purpose, eight steps of training scale were designed. Under the learning rate of 0.001 given by
YOLO, the confidence prediction score, actual score, and recognition time of the model are statistically
analyzed. Table 1 shows the performance of the BB2 model, and Figure 7 shows the example results
of the BB2 model under D1 (green solid line), D3 (violet solid line), D7 (yellow solid line) and D8
(red solid line).

Table 2 shows that, with the increase of training steps, the confidence score for the BB2 model is
constantly increasing, and the actual confidence level is also in a rising trend. When the training step
reaches 10,000, the actual confidence score arrives at the highest value of 0.947. However, when the
training step reaches 20,000, the actual confidence score begins to fall, and the recognition time also
slightly increases, which is related to the configuration of model and the selection of learning rate.

Table 2. Performance of BB2 model under different steps.

Mark Number of Steps Estimated Confidence Actual Confidence Recognition Time (ms)

D1 4000 0.718 0.739 38.42
D2 5000 0.740 0.771 38.40
D3 6000 0.781 0.800 38.33
D4 7000 0.825 0.842 38.27
D5 8000 0.862 0.885 38.20
D6 9000 0.899 0.923 38.12
D7 10,000 0.923 0.947 38.37
D8 20,000 0.940 0.885 38.50
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Figure 8 shows the vehicle identification with the training steps of 4000, 6000, 10,000, and 20,000.
The yellow dotted box indicates the recognition rate when the learning rate is 10,000. Clearly, the model
box basically covers the entire goal and almost no redundant area. Based on the above analysis,
the number of steps set in this paper is 10,000.

 

Figure 8. Performance comparison of BB2 model under 4 kinds of training steps.

The learning rate determines the speed at which the parameters are moved to the optimal value.
To find the optimal learning rate, the model performances with the learning rate of 10−7, 10−6, 10−5,
10−4, 10−3, 10−2, 10−1 and 1 are estimated, respectively, when the training step is set to 10,000.

Table 3 shows the estimated confidence scores and final scores of the output detection models
BB1 and BB2 under different learning rates. Figure 9 shows the change trend of the confidence score.
After analyzing Table 3 and Figure 9, we can see that, with the decrease of learning rate, all of the
confidence prediction score and actual score of model experienced a rising trend firstly and then
decreasing. When the learning rate reaches D3 (10−2), the confidence score reaches a maximum value,
and the confidence level remains within a stable range with the change of learning rate. Based on
the above analysis, when the learning rate is 10−2, the proposed model can obtain a more accurate
recognition rate.

Table 3. Model performance under different learning rates.

Mark Learning Rate
Estimated Confidence Actual Confidence

BB1 BB2 BB1 BB2

D1 1 0.772 0.73 0.827 0.853
D2 10−1 0.881 0.864 0.911 0.938
D3 10−2 0.894 0.912 0.932 0.959
D4 10−3 0.846 0.85 0.894 0.928
D5 10−4 0.76 0.773 0.889 0.911
D6 10−5 0.665 0.68 0.874 0.892
D7 10−6 0.619 0.62 0.833 0.851
D8 10−7 0.548 0.557 0.802 0.822

  

Figure 9. Performance trends under different learning rates.
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5.4. Evaluation of Experiment Results

The paper takes the IOU as the evaluation criteria of recognition accuracy obtained by comparing
the BBi (i = 1, 2) of output model and the BBg of actual target model, and defines three evaluation grades:

(1) Low precision: Vehicle targets can be identified within the overlap area, and the identified
effective area accounts for 60% of the model total area.

(2) Medium precision: Vehicle targets are more accurately identified in overlapping areas, and the
identified effective area accounts for 80% of the model’s total area.

(3) High precision: The vehicle is accurately identified in the overlapping area, and the identified
effective area accounts for 90% of the model total area. Figure 10 is used to describe the definition
of evaluation grade. The red dotted frame area is the target actual area and the black frame area
is the area BBi output from the model.

Figure 10. The definition of evaluation grade. The yellow area is the identified effective area. The black
frame area is model’s total area. The above proportion is the ratio between yellow area and black area.

To avoid the influence caused by the imbalance of all kinds of samples, the precision and recall
were introduced to evaluate the box model under the above three levels:

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

In the formula, TP, FP, and FN indicate the correctly defined examples, wrongly defined
examples and wrongly negative examples, respectively. The Precision–Recall diagram for each model
BBi (i = 1, 2) is calculated, as shown in Figure 11a,b.

When the recall is less than 0.4, all the accuracy under the three levels is high; when the recall
reaches around 0.6, only the accuracy of the level hard decreases sharply and tends to zero, while the
accuracy of the other two levels is basically maintained at a relatively high level. Therefore, when the
requirements of level for target detection is not very high, the method proposed in this paper can fully
satisfy the needs of vehicle detection under real road conditions.
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(a) Performance relationship of BB1 (b) Performance relationship of BB2 

Figure 11. Detection performance of the target. (A) is the performance relationship of model BB1.
(B) is the performance relationship of model BB2.

5.5. Method Comparison

The method proposed in this paper is compared with the current more advanced algorithms.
The indicators are mainly mAP (mean average precision) and FPS (frames per second). The results
obtained are shown in Table 4.

Table 4. Comparison of the training results of all algorithms.

Algorithms mAP FPS

YOLO [17] 63.4 45
Fast R-CNN [18] 70.0 0.5

Faster R-CNN [19] 73.2 7
Projection [20] 96.2 8
3D FCN [21] 64.2 0.2
Vote3D [22] 47.9 2

the improved YOLO algorithm 82.9 13

In Table 4, the recognition accuracy of the improved algorithm proposed in this paper is better
than that of the original YOLO algorithm. This is related to the fusion decision of the two images and
the proposed secondary image detection scheme. To ensure the accuracy, the detection frame number
of the improved YOLO dropped from 45 to 13, and the running time increased, but it can fully meet
the normal target detection requirements and ensure the normal driving of autonomous vehicles.

6. Conclusions

This paper presents a detection fusion system with integrating LiDAR and color camera. Based on
the original YOLO algorithm, the second detection scheme is proposed to improve the YOLO algorithm
for dim targets such as non-motorized vehicles and pedestrians. Then, the decision level fusion of
sensors is introduced to fuse the color image of color camera and the depth image of LiDAR to improve
the accuracy of the target detection. The final experimental results show that, when the training step
is set to 10,000 and the learning rate is 0.01, the performance of the model proposed in this paper is
optimal and the Precision–Recall performance relationship could satisfy the target detection in most
cases. In addition, in the aspect of algorithm comparison, under the requirement of both accuracy and
real-time, the method of this paper has better performance and a relatively large research prospect.

Since the samples needed in this paper are collected from several traffic scenes, the coverage
of the traffic scenes is relatively narrow. In the future research work, we will gradually expand
the complexity of the scenario and make further improvements to the YOLO algorithm. In the
next experimental session, the influence of environmental factors will be considered, because the
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image-based identification method is greatly affected by light. At different distances (0–20 m, 20–50 m,
50–100 m, and >100 m), the intensity level of light is different, so how to deal with the problem of light
intensity and image resolution is the primary basis for target detection.
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Abstract: This paper presents the control of a quadrotor with a cable-suspended payload.
The proposed control structure is a hierarchical scheme consisting of an energy-based control
(EBC) to stabilize the vehicle translational dynamics and to attenuate the payload oscillation,
together with a nonlinear state feedback controller based on an linear matrix inequality (LMI)
to control the quadrotor rotational dynamics. The payload swing control is based on an energy
approach and the passivity properties of the system’s translational dynamics. The main advantage of
the proposed EBC strategy is that it does not require excessive computations and complex partial
differential equations (PDEs) for implementing the control algorithm. We present a new methodology
for using an LMI to synthesize the controller gains for Lipschitz nonlinear systems with larger
Lipschitz constants than other classical techniques based on LMIs. This theoretical approach is
applied to the quadrotor rotational dynamics. Stability proofs based on the Lyapunov theory for
the controller design are presented. The designed control scheme allows for the stabilization of
the system in all its states for the three-dimensional case. Numerical simulations demonstrating
the effectiveness of the controller are provided.

Keywords: energy-based control; payload swing attenuation; linear matrix inequalities; quadrotor;
larger Lipschitz constants

1. Introduction

In recent years, systems for the transportation of suspended-payload using unmanned aerial
vehicles (UAVs) have attracted research interest. Some important applications are described in [1].
Quadrotor vehicles exhibit complex dynamic behavior, and if a cable-suspended payload is added to
a quadrotor, it increases the complexity of the system because additional degrees of freedom (DOFs)
due to the payload oscillation are introduced. Moreover, if uncontrolled, a cable-suspended payload
changes the dynamics of the flying vehicle and it can result in an unstable system.

Recently, some control methodologies have been developed to attenuate the payload swing and to
solve the general problem of a quadrotor carrying a cable-suspended payload. For example, a control

Mathematics 2019, 7, 1090; doi:10.3390/math7111090 www.mdpi.com/journal/mathematics83
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algorithm based on a backstepping strategy is obtained in [2], that ensures trajectory tracking of
the quadrotor regardless of the payload swing. However, attitude control of the UAV is not considered.
Additionally, a control design for a two-dimensional quadrotor with a cable-suspended payload that
enables tracking of the vehicle rotation, the payload rotation, or the payload position is presented
in [3], and it was extended to the three-dimensional case in [4].

In [5], the authors develop a nested saturation controller capable of driving the vehicle to
a specified position while simultaneously limiting the payload dynamic effect. For this work,
Nicotra et al. considered the design for the two-dimensional case only and the attitude control of
the vehicle was not considered. Moreover, a feed-forward control algorithm for reducing or canceling
the payload’s oscillation is introduced in [6]. This controller was designed by implementing the input
shaping theory. In [7], the authors present a geometric controller to exponentially stabilize the aerial
robot position while aligning the links vertically below the vehicle. Similarly, a tracking control law
for a UAV with a load attached by a cable represented as successively-attached inflexible links was
designed in [8]. A fixed-gain geometric PD control strategy is developed to reach the desired goal for
a nominal load. An adaptive control law for an aerial robot carrying a payload attached using a cable
was presented in [9]. In [10], an algorithm for parameterizing aerial vehicles transporting a payload
employing a complementary constraint is presented. A nonlinear attitude controller is developed
in [11] to stabilize the altitude, and the translational dynamics control law is introduced by converting
the vehicle velocity and position error into rotation control. Rego and Raffo [12] address trajectory
tracking for a two-dimensional aerial robot transporting a payload. A discrete-time mixed H2/H∞
linear control strategy is presented. In [13], an active-model-based linear controller is designed for
a UAV transporting a payload. A linear model is obtained considering the vehicle in hover flight
mode. In [14], a path tracking controller is developed based on existing Lyapunov-based path tracking
control laws for free-flying aerial vehicles, which are further backstepped through the vehicle rotation
dynamics.

A passivity-based control technique is used in [15] to control the UAV such that cable-suspended
payload swing reduction is achieved for the planar case. Here, the attitude control of the vehicle is
not considered. Also, interconnection and damping assignment passivity-based control (IDA-PBC)
without total energy-shaping for a UAV transporting a cable-suspended payload for planar maneuvers
is developed in [16,17]. Two control laws with total energy-shaping are presented in [18],
where the closed-loop inertia matrices are modified. These works compute PDEs for synthesizing
the control law. For this reason, the control strategy is only designed within the longitudinal plane.
The control design for the three-dimensional case yields complex partial differential equations (PDEs).

In the literature, unmanned aerial vehicles have been controlled using energy-based controllers.
In [19], the design of two nonlinear controllers to stabilize an aerial vehicle characterized with
quaternions and their axis-angle depiction is studied. Also, [20] introduces a PBC for a vertical
take-off and landing (VToL) vehicle. An estimator of unmodelled dynamics and external wrench
acting on the UAV and based on the momentum of the system is used to compensate such disturbance
effects. Moreover, [21] develops an IDA-PBC methodology that is able to change the apparent vehicle
dynamical parameters, while [22] proposes a robust control of underactuated aerial manipulators
via IDA-PBC.

On the other hand, some works apply control strategies based on linear matrix inequalities to
UAVs. In [23], a method for using LMIs to synthesize controller gains for a UAV system is presented.
In [24], a nonlinear state feedback controller based on LMIs, and a technique with pole placement
constraint (PDC) is synthesized. The requirements of stability and pole placement in the linear matrix
inequality (LMI) region are formulated based on the Lyapunov direct method.

In this work, the control approach is based on a hierarchical scheme considering the well-known
time-scale separation between rotational and translational dynamics of the quadrotor. On one hand,
the objective of this paper was to design an energy-based control law for the outer-loop (i.e., for the
underactuated dynamics of the system). This control law is proposed for the three-dimensional case,
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and it is based on the translation dynamics, which is able to lead the vehicle to a desired position while
simultaneously reducing the payload swing. Compared with similar works that present control laws
based on passivity and energy, particularly for underactuated systems, the proposed controller avoids
solving complex PDEs to obtain the control law. On the other hand, a feedback controller based on
an LMI for the inner loop which is fully actuated is presented. The controller based on an LMI for
the rotational dynamics results in a control algorithm with relative simplicity and with an easy analysis
to demonstrate its stability.

The contribution of this paper is the synthesis of a new controller for a class of Lipschitz nonlinear
systems. An important limitation of the classic results for Lipschitz nonlinear systems is that they
perform well only for small values of the Lipschitz constant. In the case when the Lipschitz constant
is large, most of the existing controller design approaches fail to contribute a solution to the LMI.
This article introduces an algorithm that operates for larger Lipschitz constants compared with classical
results in the literature.

This paper is organized as follows. Section 2 describes the dynamical model for
a three-dimensional aerial vehicle carrying a payload. Section 3 presents an approach for LMI-based
Lipschitz nonlinear systems. This theoretical approach is applied to stabilize the quadrotor rotational
dynamics. Section 4 proposes an energy-based control to stabilize the vehicle translational dynamics
and to attenuate the payload swing. Section 5 presents numerical simulations and results. Finally,
Section 6 gives conclusions and perspectives.

2. Dynamic Model

In this section, we present the mathematical model of a quadrotor transporting a payload
connected by a cable. The aim is to present a dynamic model that mathematically describes
the relationship between the quadrotor, the cable, and the payload. For this purpose, consider
a rigid body with mass m, being transported by a quadrotor as shown in Figure 1. Note that in addition
to the six DOFs of the UAV, the payload adds another two DOFs, resulting in a system with eight
DOFs and four inputs.

β

e2

e1

e3

ααx

αy

Mg
mg

θ

ψ

φ
f2

f1

f3
f4

l

d

ez

ey
ex

B

O

Figure 1. Three-dimensional quadrotor with a cable-suspended payload.

The following assumptions were made for modeling the quadrotor with a cable-suspended payload:

(a) The cable is attached to the center of mass of the quadrotor and the air drag is negligible.
(b) The cable connecting the payload and the quadrotor fuselage is considered rigid, massless,

and inelastic.
(c) The payload can be considered as a mass point.
(d) Mass distribution of the quadrotor is symmetrical in the x-y plane.

As shown in Figure 1, the body-fixed frame is defined by B = {e1, e2, e3} and the inertial frame

by O =
{

ex, ey, ez
}

. The location of the mass center of the vehicle relative to O is represented by
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ξ =
[

x y z
]T

, the attitude of the quadrotor is denoted by η =
[

ψ θ φ
]T

(i.e., yaw, pitch,
and roll, respectively). α defines the payload swing angle in space and has two components αx and αy,

μ =
[

αx αy

]T
. αx is the swing angle projected on the XZ plane and αy is the swing angle projected

on the YZ plane, β represents the angle of the X axis and the projected line of the cable to the Y plane.

Thus, the state vector is denoted by q =
[

x y z ψ θ φ αx αy

]T ∈ R8. The control input is

represented by u =
[

f τ
]T ∈ R4, where f = f1 + f2 + f3 + f4 defines the total thrust magnitude

and τ =
[

τψ τθ τφ

]T
denotes the input torques.

The mass of the quadrotor and the payload are defined by M and m, respectively. The length
of the cable is represented by l, the gravitational acceleration by g. Finally, the distance between
the motors and the gravity center is equal to d.

In this work, the system is modeled using the Euler–Lagrange formulation.

2.1. Euler–Lagrange Formulation

Let ξp =
[

xp yp zp

]T ∈ R3 be the payload position in the inertial frame. Thus, the quadrotor

and payload positions are related by
ξp = ξ + lp,

where
p = [ sin(αx) cos(αy) sin(αy) − cos(αx) cos(αy) ]T .

The equations of motion are obtained using the Euler–Lagrange method. The kinetic energy of
the payload-quadrotor system is given by

KQ−P =
1
2

Mξ̇T ξ̇ +
1
2

mξ̇T
p ξ̇p +

1
2

η̇T Jη̇, (1)

where J = diag[Ixx, Iyy, Izz]3×3 is a symmetric positive definite constant inertia matrix of the quadrotor
with respect to B.

The total potential energy is defined by

VQ−P = (M + m)gz − mgl cos(αx) cos(αy). (2)

From (1) and (2), the Lagrangian is given by

L =
1
2

Mξ̇T ξ̇ +
1
2

mξ̇T
p ξ̇p +

1
2

η̇T Jη̇ − (M + m)gz + mgl cos(αx) cos(αy). (3)

Using the Lagrangian and the derived formula for the equations of motion:

M(q)q̈ + C(q, q̇)q̇ + G(q) = B̄u, (4)

where M(q) ∈ R8×8 denotes the inertia matrix, which is symmetric and positive definite, C(q, q̇) ∈
R8×8 the Coriolis and centrifugal matrix, G(q) ∈ R8 the gravitational vector, and the matrix B̄ ∈ R8×4
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is determined by the manner in which the control u ∈ R4 is the input of the system. These matrices are
defined as

M(q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m + M 0 0 0 0 0 mlcαx cαy −mlsαx sαy

0 m + M 0 0 0 0 0 mlcαy

0 0 m + M 0 0 0 mlsαx cαy mlcαx sαy

0 0 0 Ixx 0 0 0 0
0 0 0 0 Iyy 0 0 0
0 0 0 0 0 Izz 0 0

mlcαx cαy 0 mlsαx cαy 0 0 0 ml2c2
αy 0

−mlsαx sαy mlcαy mlcαx sαy 0 0 0 0 ml2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C(q) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 (Iyy − Izz)θ̇

0 0 0 0 0 JrΩr + (Izz − Ixx)ψ̇

0 0 0 0 (Ixx − Iyy)ψ̇ − JrΩr 0
0 0 0 0 0 0
0 0 0 0 0 0

−ml(sαx cαy α̇x + cαx sαy α̇y) −ml(sαx cαy α̇y + cαx sαy α̇x)

0 −mlsαy α̇y

ml(−sαx sαy α̇y + cαx cαy α̇x) ml(−sαx sαy α̇x + cαy cαx α̇x)

0 0
0 0
0 0

−ml2sαy cαy α̇y −ml2sαy cαy α̇x

ml2sαy cαy α̇x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
G(q) =

[
0 0 (M + m)g 0 0 0 mglsαx cαy mglcαx sαy

]T

B̄(q) =

⎡⎢⎢⎢⎣
sφsψ + cφcψsθ cφsθsψ − cψsφ cθcφ 0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 l 0 0 0
0 0 0 0 0 l 0 0

⎤⎥⎥⎥⎦
T

where sθ = sin(θ), cθ = cos(θ).
We can see in the above expressions that the cable-suspended payload affects the translational

motion, but the rotational motion is not affected. Then, the vehicle attitude dynamics is decoupled
from the payload–quadrotor translational dynamics. Thus, the quadrotor with a cable-suspended
payload model can be divided into payload–quadrotor translational and quadrotor rotational dynamics.
The following subsections show the translational and rotational dynamics.

2.2. Translational Dynamics

From (1) the model considering the translational motion is

M̃ (q̃) ¨̃q + C̃ (q̃, ˙̃q) ˙̃q + G̃(q̃) = B̃ũ, (5)

where q̃ =
[

ξ μ
]T

, ũ =
[

Fx Fy Fz

]T
=

[
f
(
sφsψ + cφcψsθ

)
f
(
cφsθsψ − cψsφ

)
f cθcφ

]T
,
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the matrices are given by

M̃(q̃) =

⎡⎢⎢⎢⎢⎢⎣
m + M 0 0 mlcαx cαy −mlsαx sαy

0 m + M 0 0 mlcαy

0 0 m + M mlsαx cαy mlcαx sαy

mlcαx cαy 0 mlsαx cαy ml2c2
αy 0

−mlsαx sαy mlcαy mlcαx sαy 0 ml2

⎤⎥⎥⎥⎥⎥⎦ (6)

C̃(q̃, ˙̃q) =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 −ml(sαx cαy α̇x + cαx sαy α̇y) −ml(sαx cαy α̇y + cαx sαy α̇x)

0 0 0 0 −mlsαy α̇y

0 0 0 ml(−sαx sαy α̇y + cαx cαy α̇x) ml(−sαx sαy α̇x + cαy cαx α̇y)

0 0 0 −ml2sαy cαy α̇y −ml2sαy cαy α̇x

0 0 0 ml2sαy cαy α̇x 0

⎤⎥⎥⎥⎥⎥⎦ (7)

G̃(q̃) =
[

0 0 (M + m)g mglsαx cαy mglcαx sαy

]T
(8)

B̃ũ =
[

Fx Fy Fz 0 0
]T

(9)

where sθ = sin(θ), cθ = cos(θ).

2.3. Rotational Dynamics

From (1) the model considering the rotational motion is

M∗ (η) η̈ + C∗ (η, η̇) η̇ = B∗τ,

where
M∗(η) = dig

[
Ixx, Iyy, Izz

]
3×3, B∗ = I3×3

C∗(η) =

⎡⎢⎣ 0 0 (Iyy − Izz)θ̇

0 0 JrΩr + (Izz − Ixx)ψ̇

0 (Ixx − Iyy)ψ̇ − JrΩr 0

⎤⎥⎦ ,

where Jr is the rotational moment of inertia.

3. LMI-Based Approach for Lipschitz Nonlinear Systems

In this section, we propose a nonlinear state feedback controller based on a linear matrix inequality
to stabilize the quadrotor rotational dynamics.

Taking the state vector of the attitude dynamics as δ(t) =
[

ψ ψ̇ θ θ̇ φ φ̇
]T

, one obtains

δ̇ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 −a1Ωr

0 0 0 0 0 1
0 0 0 a2Ωr 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
δ +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
b1 0 0
0 0 0
0 b2 0
0 0 0
0 0 b3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
τ +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
I1θ̇φ̇

0
I2ψ̇φ̇

0
I3ψ̇θ̇

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

Therefore, we can represent the rotational dynamics as a particular nonlinear system of the form

δ̇ = Aδ + Bτ + ϕ(δ, t),
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where A and B are constant matrices, B is chosen such that (A, B) is controllable, and ϕ(δ, t) denotes
the nonlinearities of the system. The parameters are given by:

I1 =
Izz − Iyy

Ixx
, I2 =

Ixx − Izz

Iyy
, I3 =

Iyy − Ixx

Izz
, a1 =

Jr

Iyy
, a2 =

Jr

Izz
, b1 =

1
Ixx

, b2 =
d

Iyy
, b3 =

d
Izz

.

Now, we consider that the following assumptions and lemmas are accomplished.

Assumption 1. The function ϕ(δ, t) is Lipschitz w.r.t. δ, with a Lipschitz constant γ, if:

‖ϕ(δ, t)− ϕ(δ̃, t)‖ ≤ γ‖δ − δ̃‖. (11)

Lemma 1. Let ϕ : [ā, b̄]×D → Rn be continuous for some domain D ⊂ Rn. Suppose that
[
∂ϕ/

∂δ

]
(δ, t)

exists and is continuous on [ā, b̄]×D. If, for a convex subset W ⊂ D, there is a constant γ � 0 such that∥∥∥∥∂ϕ

∂δ
(t, δ)

∥∥∥∥ � γ

on [ā, b̄]×W, then
‖ϕ(δ, t)− ϕ(δ̃, t)‖ ≤ γ‖δ − δ̃‖

for all t ∈ [ā, b̄], δ ∈ W, and δ̃ ∈ W.

Lemma 2. If ϕ(δ, t) and
[
∂ϕ/

∂δ

]
(δ, t) are continuous on [ā, b̄]× Rn, then ϕ is globally Lipschitz in δ on

[ā, b̄]×Rn if and only if
[
∂ϕ/

∂δ

]
(δ, t) is uniformly bounded on [ā, b̄]×Rn.

Lemma 3. If ϕ(δ, t) and
[
∂ϕ/

∂δ

]
(δ, t) are continuous on [ā, b̄]×D, for some domain D ⊂ Rn, then ϕ is

locally Lipschitz in δ on [ā, b̄]×D [25].

Assumption 2. For a and b ∈ Rn and ε > 0 we have

2aTb ≤ ε−1aTa + εbTb. (12)

3.1. Classical LMIs for the Quadrotor’s Orientation

We propose a controller u = −Kδ based on an LMI. Firstly, one introduces a classical LMI
approach, which states the following lemma.

Lemma 4. Consider system (10) and Assumption 1. Assume also that the nonlinearity ϕ is locally Lipschitz
(Lemma 3) with Lipschitz constant γ (Lemma 1). Then, there exist a constant ϑ > 0, matrices X = XT > 0,
and W with appropriate dimensions such that the following LMI is satisfied:[

AX + XAT − BWT −WBT + 2(ϑ − γ)X γIn + X
γIn + X −In

]
< 0, (13)

with the feedback gain K = WTX−1. The system (10) is exponentially stable when the control input is u = −Kδ.

We now need to obtain the value of the Lipschitz constant γ of the nonlinearities of the rotation
system function ϕ(δ, t). From the rotational dynamics model (10), the function ϕ(δ, t) is given by

ϕ(δ, t) =
[
0 I1θ̇φ̇ 0 I2ψ̇φ̇ 0 I3ψ̇θ̇

]T .
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We are interested in calculating a Lipschitz constant for ϕ(δ, t) over the convex set

W =
{
(ψ, ψ̇, θ, θ̇, φ, φ̇) | (|ψ| ≤ lψ, |ψ̇| ≤ lψ̇, |θ| ≤ lθ , |θ̇| ≤ lθ̇ , |φ| ≤ lφ, |φ̇| ≤ lφ̇)

}
.

Applying Lemma 1, one gets:

sup
δ∈W

∣∣∣∣∂ϕ(δ, t)
∂δ

∣∣∣∣ = sup
x∈W

∣∣∣∣∣∣∣∣∣∣∣∣∣

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 I1φ̇ 0 I1θ̇

0 0 0 0 0 0
0 I2ψ̇ 0 0 0 I2φ̇

0 0 0 0 0 0
0 I3θ̇ 0 I3ψ̇ 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣
� γ

= max {|I1φ̇| + ∣∣I1θ̇
∣∣ , |I2ψ̇|+ |I2φ̇| ,

∣∣I3θ̇
∣∣+ |I3ψ̇|}

= I2 {|ψ̇|+ |φ̇|} = I3
{∣∣θ̇∣∣+ |ψ̇|}

� I2

(
lψ̇ + lφ̇

)
= I3

(
lθ̇ + lψ̇

)
.

Then,
γ = I2

(
lψ̇ + lφ̇

)
= I3

(
lθ̇ + lψ̇

)
.

The velocities are bounded as lψ̇ = lθ̇ = lφ̇ = 13π
9 rad/s because the rotors are driven by DC

permanent magnet motors, which support a maximum voltage of 9 V. This implies that the torque input
vector τ is bounded and that the rotation speed capability of the motors has a maximum. When 9 V is

applied to the motor the angular speed reaches lψ̇ = lθ̇ = lφ̇ = 13π
9 rad/s. Considering these bounded

values and the values of the Table 1, we can compute the Lipschitz constant as γ = 26π
9 . Then, ϕ is

locally Lipschitz.

Table 1. Parameters.

Parameter Value [Units]

d 0.25 [m]
Ixx 7.6566e−3 [kgm2]
Iyy 3.8278e−3 [kgm2]
Izz 3.8278e−3 [kgm2]
Jr 28.385e−6 [kgm2]

With γ = 26π
9 , we try to solve the LMI (13) using the LMI Toolbox R© in MATLAB R© software.

However, the LMI is infeasible. It may happen that the classical LMI controller can deal with
the problem only for smaller values of the Lipschitz constant. Thus, we propose an LMI following
some ideas from [26]. The LMI presented in [26] is conceived for observer design. The new LMI design
techniques are significantly less conservative than the classical LMI design technique.

3.2. Rotational Subsystem Control

Based on the linear-state-feedback approach, the control law for the attitude dynamics is u(t) =
−Kδ̃(t). Therefore, the orientation dynamics can be constructed as follows:

˙̃δ = Aδ̃(t) + Bu(t) + ϕ(δ̃(t), t)

= Aδ̃(t)− BKδ̃(t) + ϕ(δ̃(t), t). (14)
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The goal is to find a suitable B and K, such that δ → δ̃. Thus, the attitude error dynamics e(t) is
represented as:

ė(t) = δ̇ − ˙̃δ

= (A − BK)e(t) + ϕ(δ(t))− ϕ(δ̃(t)). (15)

The following assumptions are needed for the derivation of the control law.

Assumption 3. There exists a matrix G with appropriate dimensions such that:

‖ϕ(δ, t)− ϕ(δ̃, t)‖ ≤ ‖G(δ − δ̃)‖. (16)

This matrix G is a sparsely populated matrix. ‖G(δ − δ̃)‖ can be much smaller than the constant
γ‖(δ − δ̃)‖ used earlier in Equation (11) for the same nonlinear function.

Let us now consider a larger Lipschitz constant of the nonlinear system. We can achieve a state
feedback controller that is able to bring the state of the nonlinear system δ(t) to the desired state δ̃(t).
This controller is given in the following statement:

Theorem 1. For attitude error dynamics (15), assume that Assumption 1, Lemmas 1 and 3 are satisfied
and there exist a constant ε > 0, matrices X = XT > 0, and W with suitable dimensions, such that
the following LMI holds:[

A X + XAT − BWT −WBT + 2ϑX + XGT + GX εIn + XGT

εIn + GX −εIn

]
< 0, (17)

where In denotes an identity matrix with appropriate dimensions, ϑ > 0 is a constant, and W = (KTX)−1,
the matrix K is a suitable feedback gain. Then, system (15) is exponentially stable, implying that the systems
(10) and (14) are exponentially stable, then δ(t) → δ̃(t).

Proof. Define the Lyapunov function V = eT Pe. From the trajectory error (15), one gets:

V̇ = eT Pė + ėT Pe

= eT
(

P(A − BK) + (A − BK)T P
)

e + 2eT P
(

ϕ(δ(t))− ϕ(δ̃(t))
)

. (18)

From Assumption 3, one gets:

‖2eT(t)P(ϕ(u(t), δ(t))− ϕ(u(t), δ̃(t)))‖ ≤ 2‖eT(t)P‖‖ϕ(δ(t))− ϕ(δ̃(t))‖
≤ 2‖eT(t)P‖‖Ge‖. (19)

According to Assumption 2, a = ‖Pe(t)‖ and b = ‖Ge‖, one can rewrite (19) as follows:

‖2eT(t)P(ϕ(δ(t))− ϕ(δ̃(t)))‖ ≤ ε−1
1 eT PPe + ε1eTGTGe. (20)

Now, replacing (20) into (18), one gets:

V̇ ≤ eT(t)
(

P(A − BK) + (A − BK)T P + ε−1
1 PP + ε1GTG

)
e(t). (21)

If V̇ ≤ −2ϑeT(t)Pe(t) < 0, where ϑ > 0, one can rewrite (21) as:

V̇ ≤ eT(t)
(

P(A − BK) + (A − BK)T P + ε−1
1 PP + ε1GTG + 2ϑP

)
e(t). (22)

91



Mathematics 2019, 7, 1090

Indeed, the attitude error dynamics (15) is exponentially stable, and hence the two coupled
systems (10) and (14) are exponentially stable. Using the Schur complement, Equation (22) can be
easily represented in an LMI as:[

P(A − BK) + (A − BK)T P + 2ϑP + GT P + PG P + ε1GT

P + ε1GT −ε1 In

]
< 0. (23)

Multiplying the above inequality by

[
P−1 0

0 ε−1
1 In

]
from the left-hand and right-hand sides,

respectively, and letting X = P−1, ε = ε−1
1 , and W = (KP−1)T , then the above inequality is further

transformed into the following LMI:[
A X + XAT − BWT −WBT + 2ϑX + XGT + GX εIn + XGT

εIn + GX −εIn

]
< 0. (24)

If suitable X > 0 matrix and W are selected such that the LMI (17) is satisfied, then the attitude
error dynamics (15) with the feedback gain K = WTX−1 is exponentially stable, implying that
the coupled systems (10) and (14) are exponentially synchronized.

Now, we apply the main result of this paper (Theorem 1) to system (10). Then, we compute
a controller for the rotational dynamics of the vehicle with guaranteed stability. Using Theorem 1,

the LMI is then solved to obtain the control gain matrix K with ε = 1, ϑ = 25, and γ = 26π
9 . Therefore,

one easily obtains K from (24) by using the MATLAB R© LMI Toolbox R©:

K =

⎡⎢⎣ 3.281× 108 2.235× 106 0 0 0 0
0 0 38.75 1.16 −0.0114 −2.27× 10−4

0 0 0.0114 2.27× 10−4 38.75 1.16

⎤⎥⎦ . (25)

The results of the state feedback controller with the gain matrix (25) are shown in Figures 2 and 3.
Figure 2 displays the quadrotor attitude (roll, pitch, and yaw) with δ0 =

[
0◦ 0◦ 1◦ 0◦ 2◦ 0◦

]
.

Note that the stabilization time is about 0.2 s, thus the state feedback controller with the gain matrix K
calculated by LMI provides good transient performance. Figure 3 shows the input torques. Here we
can observe that they are smooth.

Figure 2. Quadrotor attitude.
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Figure 3. Control inputs.

4. Energy-Based Control

In this section, we propose an energy-based strategy to control the quadrotor’s translation
movements and to attenuate the payload oscillation.

4.1. Planar Case

In order to show the energy-based control law design in a simple manner, let us consider
the system as a planar system operating in the XZ axis, as illustrated in Figure 4. The controller
synthesis for the three-dimensional case is presented in Section 4.2.

In this case, y = ψ = φ = αy = 0, then q̃ =
[

x z α
]T

, ũ =
[

Fx Fz

]T
=[

f sin θ f cos θ
]T

and the matrices of the model (5) for the translational dynamics are defined as

M̃(q̃) =

⎡⎢⎣ M + m 0 mlcα

0 M + m mlsα

mlcα mlsα ml2

⎤⎥⎦ , C̃(q̃, ˙̃q) =

⎡⎢⎣ 0 0 −mlsαα̇

0 0 mlcαα̇

0 0 0

⎤⎥⎦ (26)

G̃(q̃) =

⎡⎢⎣ 0
(M + m)g

mlgsα

⎤⎥⎦ , B̃ũ =

⎡⎢⎣ Fx

Fz

0

⎤⎥⎦ . (27)
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Figure 4. Two-dimensional quadrotor with a cable-suspended payload.

The total energy of the translational dynamics can be described by

H(q̃, ˙̃q) =
1
2

˙̃qTM̃ ˙̃q + V(q̃)

=
1
2

˙̃qTM̃ ˙̃q + (M + m)gz − mgl cos(α). (28)

Differentiating (28) along the trajectories of the system, we obtain

Ḣ(q̃, ˙̃q) = ˙̃qTM̃(q̃) ¨̃q +
1
2

˙̃qT ˙̃M(q̃) ˙̃q + ˙̃qTG̃(q̃).

Substituting (5) into the above yields

Ḣ(q̃, ˙̃q) = ˙̃qT (ũ − C̃(q̃, ˙̃q) ˙̃q − G̃(q̃)
)
+

1
2

˙̃qT ˙̃M(q̃) ˙̃q + ˙̃qTG̃(q̃).

Taking into account that the skew-symmetric relationship ˙̃qT
(

1
2

˙̃M(q̃) ˙̃q − C̃(q̃, ˙̃q)
)

˙̃q = 0
is satisfied, we obtain

Ḣ(q̃, ˙̃q) = ˙̃qTũ

= ẋFx + żFz.

Considering x̄ = x − x̃ and z̄ = z − z̃, the total energy in terms of the error is given by

˙̄H = ˙̄xFx + ˙̄zFz. (29)

We propose the following Lyapunov candidate function:

E =
1
2

H̄2 +
kvx

2
˙̄x2 +

kvz

2
˙̄z2 +

kpx

2
x̄2 +

kpz

2
z̄2, (30)

where kpx, kpz are proportional constant gains and the kvx, kvz constants inject damping into the system.

Differentiating (30) with respect to time, we have

Ė = H̄ ˙̄H + kvx ˙̄x ¨̄x + kvz ˙̄z ¨̄z + kpxx̄ ˙̄x + kpzz̄ ˙̄z

= ˙̄x
(

H̄Fx + kvx ¨̄x + kpxx̄
)
+ ˙̄z (H̄Fz + kvz ¨̄z + kvzz̄) . (31)
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We can obtain ¨̄x and ¨̄z from (5), (26), and (27):

¨̄x =
M
(

lm sin ᾱ ˙̄α2 + Fx

)
+ Fxmcos2ᾱ + Fzm cos ᾱ sin ᾱ

M2 + Mm
,

¨̄z = −g +
Fzm + M

(
Fz − lm ˙̄α2 cos ᾱ

)
− Fzmcos2ᾱ + Fxm cos ᾱ sin ᾱ

M2 + Mm
.

Introducing the above into (31), we get

Ė = ˙̄x

⎡⎣H̄Fx +
kvx M

(
lm sin ᾱ ˙̄α2 + Fx

)
+ kvxmFxcos2ᾱ + kvxmFz cos ᾱ sin ᾱ

M(M + m)
+ kxx x̄

⎤⎦+

˙̄z

⎡⎣H̄Fz +
kvz M

(
−lm cos ᾱ ˙̄α2 + Fz

)
+ kvzmFz − kvzmFzcos2ᾱ + kvzmFx cos ᾱ sin ᾱ

M(M + m)
+ kxzz̄ − kvzg

⎤⎦ .

We propose a control law such that⎡⎣ E + kvx
M+m + kvxmcos2α

M(M+m)
kvxm cos α sin α

M(M+m)
kvzm cos α sin α

M(M+m)
E + kvz

M − kvzmcos2α
M(M+m)

⎤⎦ [ Fx

Fz

]
=

[
− kvxlm sin αα̇2

M+m − kxxx − kix ẋ
kvzlm cos αα̇2

M+m − kxzz + kvzg − kizż

]
. (32)

The matrix that multiplies the vector
[

Fx Fz

]T
is a nonsingular matrix. Which leads to

Ė = −kix ˙̄x2 − kiz ˙̄z2.

From (32) we can obtain

Fx =
−kix ˙̄x − kxxx̄ − kvxlm sin ᾱ ˙̄α2

M+m −
kvxm cos ᾱ sin ᾱ

(
kvzlm cos ᾱ ˙̄α2

M+m −kxzz̄+kvzg−kiz ˙̄z
)

M(M+m)H̄+kvz(M+m)−kvzmcos2ᾱ

H̄ + kvx
M+m + kvxmcos2ᾱ

M(M+m)
− kvxkvzm2cos2ᾱsin2ᾱ

M(M+m)(M(M+m)H̄+kvz(M+m)−kvzmcos2ᾱ)

,

Fz =
−kiz ˙̄z − kxzz̄ + kvzlm cos ᾱ ˙̄α2

M+m + kvzg +
kvzm cos ᾱ sin ᾱ

(
kvx lm sin ᾱ ˙̄α2

M+m +kxx x̄+kix ˙̄x
)

M(M+m)H̄+kvx M+kvxmcos2ᾱ

H̄ + kvz
M − kvzmcos2ᾱ

M(M+m)
− kvxkvzm2cos2ᾱsin2ᾱ

M(M+m)(M(M+m)H̄+kvx M+kvxmcos2ᾱ)

.

4.2. Three-Dimensional Case

The mathematical model for the three-dimensional case is presented in (5)–(9). The total energy
of the system is

H(q̃, ˙̃q) =
1
2

˙̃qTM̃ ˙̃q + V(q̃)

=
1
2

˙̃qTM̃ ˙̃q + (M + m)gz − mgl cos(αx) cos(αy). (33)

In a similar way to the planar case, differentiating (33) along the trajectories of the system,
we obtain

Ḣ(q̃, ˙̃q) = ˙̃qTũ

= ẋFx + ẏFy + żFz. (34)
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The total energy in terms of the error can be rewritten as

˙̄H = ˙̄xFx + ˙̄yFy + ˙̄zFz. (35)

Consider the following Lyapunov candidate function:

E(q̃, ˙̃q) =
1
2

H̄2 +
kvx

2
˙̄x2 +

kvy

2
˙̄y2 +

kvz

2
˙̄z2 +

kpx

2
x̄2 +

kpy

2
ȳ2 +

kpz

2
z̄2. (36)

Differentiating (36) along the trajectories of the system, it follows that

Ė = H̄ ˙̄H + kvx ˙̄x ¨̄x + kvy ˙̄y ¨̄y + kvz ˙̄z ¨̄z + kpxx̄ ˙̄x + kpyȳ ˙̄y + kpzz̄ ˙̄z

= ˙̄x
(

H̄Fx + kvx ¨̄x + kpxx̄
)
+ ˙̄y

(
H̄Fy + kvy ¨̄y + kpyȳ

)
+ ˙̄z

(
H̄Fz + kvz ¨̄z + kpzz̄

)
. (37)

From (5)–(9) we can obtain ¨̄x, ¨̄y and ¨̄z. These expressions are defined as:

¨̄x =
Fx

(
(M + m)

(
s2

ᾱy
c4

ᾱx
+ c2

ᾱx
c2

ᾱy

)
+ Mc4

ᾱy
s2

ᾱx

)
− Fymc2

ᾱx
c2

ᾱy
sᾱx sᾱy + Fzmsᾱx cᾱx c3

ᾱy
+ λ(μ, μ̇)

(M2 + Mm)
(

s4
ᾱx

s2
ᾱy
+ s2

ᾱx
s4

ᾱy
− 3s2

ᾱx
s2

ᾱy
+ 1

) ,

¨̄y =
Fy

(
(M + m)

(
s2

ᾱx
c4

ᾱy
+ c2

ᾱx
c2

ᾱy

)
+ Mc4

ᾱx
s2

ᾱy

)
− Fxmc2

ᾱx
c2

ᾱy
sᾱx sᾱy + Fzmsᾱy cᾱy c3

ᾱx
+ κ(μ, μ̇)

(M2 + Mm)
(

s4
ᾱx

s2
ᾱy
+ s2

ᾱx
s4

ᾱy
− 3s2

ᾱx
s2

ᾱy
+ 1

) ,

¨̄z =
Fz

(
(M + m)

(
s2

ᾱy
c4

ᾱx
− s2

ᾱx
c4

ᾱy

)
− Mc2

ᾱx
c2

ᾱy

)
− Fxmc3

ᾱy
cᾱx sᾱx − Fymsᾱy cᾱy c3

ᾱx
+
(

M2 + Mm
)

go(μ) + χ(μ, μ̇)

(M2 + Mm)
(

s4
ᾱx

s2
ᾱy
+ s2

ᾱx
s4

ᾱy
− 3s2

ᾱx
s2

ᾱy
+ 1

) ,

where

λ(ᾱx, ᾱy) = Mlm
(

sᾱx c2
ᾱx c4

ᾱy

(
˙̄αx

2 + ˙̄αy
2
)
+ c2

ᾱx c2
ᾱy sᾱx s2

ᾱy
˙̄αy

2 + 2cᾱx c3
ᾱy s2

ᾱx sᾱy
˙̄αx ˙̄αy + c4

ᾱy s3
ᾱx

˙̄αx
2
)

,

κ(μ̄, ˙̄μ) = Mlm
(

sᾱy c2
ᾱy c4

ᾱx

(
˙̄αx

2 + ˙̄αy
2
)
+ c2

ᾱx c2
ᾱy sᾱy s2

ᾱx
˙̄αx

2 + 2cᾱy c3
ᾱx s2

ᾱy sᾱx
˙̄αx ˙̄αy + c4

ᾱx s3
ᾱy

˙̄αy
2
)

,

χ(μ̄, ˙̄μ) = Mlm
(

c3
ᾱy c3

ᾱx

(
˙̄αx

2 + ˙̄αy
2
)
+ cᾱx c3

ᾱy s2
ᾱx

˙̄αx
2 − 2sᾱy c2

ᾱx c2
ᾱy sᾱx

˙̄αx ˙̄αy − c3
ᾱx s2

ᾱy cᾱy
˙̄αy

2
)

,

o(μ̄) =
(

c4
ᾱy s2

ᾱx + c2
ᾱx c2

ᾱy − s2
ᾱy c4

ᾱx

)
.

Substituting ¨̄x, ¨̄y, and ¨̄z into (37) yields

Ė = ˙̄x

⎡⎣H̄Fx+kvx
Fx

(
(M + m)

(
s2

ᾱy
c4

ᾱx
+ c2

ᾱx
c2

ᾱy

)
Mc4

ᾱy
s2

ᾱx

)
− Fymc2

ᾱx
c2

ᾱy
sᾱx sᾱy + Fzmsᾱx cᾱx c3

ᾱy
+ λ(μ̄, ˙̄μ)

(M2 + Mm)
(

s4
ᾱx

s2
ᾱy
+ s2

ᾱx
s4

ᾱy
− 3s2

ᾱx
s2

ᾱy
+ 1

) +kpx x̄

⎤⎦+
˙̄y

⎡⎣H̄Fy+kvy
Fy

(
(M + m)

(
s2

ᾱx
c4

ᾱy
+ c2

ᾱx
c2

ᾱy

)
+ Mc4

ᾱx
s2

ᾱy

)
− Fxmc2

ᾱx
c2

ᾱy
sᾱx sᾱy + Fzmsᾱy cᾱy c3

ᾱx
+ κ(μ̄, ˙̄μ)

(M2 + Mm)
(

s4
ᾱx

s2
ᾱy
+ s2

ᾱx
s4

ᾱy
− 3s2

ᾱx
s2

ᾱy
+ 1

) +kpyȳ

⎤⎦+
˙̄z

⎡⎣H̄Fz + kvz
Fz

(
(M + m)

(
s2

ᾱy
c4

ᾱx
− s2

ᾱx
c4

ᾱy

)
− Mc2

ᾱx
c2

ᾱy

)
− Fxmc3

ᾱy
cᾱx sᾱx − Fymsᾱy cᾱy c3

ᾱx

(M2 + Mm)
(

s4
ᾱx

s2
ᾱy
+ s2

ᾱx
s4

ᾱy
− 3s2

ᾱx
s2

ᾱy
+ 1

)
+kvz

(
M2 + Mm

)
go(μ̄) + χ(μ̄, ˙̄μ)

(M2 + Mm)
(

s4
ᾱx

s2
ᾱy
+ s2

ᾱx
s4

ᾱy
− 3s2

ᾱx
s2

ᾱy
+ 1

) + kpzz̄

⎤⎦ .

We propose a control law such that

Ė = −kix ˙̄x2 − kiy ˙̄y2 − kiz ˙̄z2.
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Finally, we solve the following system of equations to obtain Fx, Fy, and Fz.

Fx

⎛⎝H̄ +
kvx

(
(M + m)

(
s2

ᾱy
c4

ᾱx
+ c2

ᾱx
c2

ᾱy

)
+ Mc4

ᾱy
s2

ᾱx

)
δ(μ̄)

⎞⎠− Fy
kvxmc2

ᾱx
c2

ᾱy
sᾱx sᾱy

δ(μ̄)
+ Fz

kvxmsᾱx cᾱx c3
ᾱy

δ(μ̄)

+
λ(μ̄, ˙̄μ)

δ(μ̄)
+ kpx x̄ = −kix ˙̄x,

(38)

Fy

⎛⎝H̄ +
kvy

(
(M + m)

(
s2

ᾱx
c4

ᾱy
+ c2

ᾱx
c2

ᾱy

)
+ Mc4

ᾱx
s2

ᾱy

)
δ(μ̄)

⎞⎠− Fx
kvymc2

ᾱx
c2

ᾱy
sᾱx sᾱy

δ(μ̄)
+ Fz

kvymsᾱy cᾱy c3
ᾱx

δ(μ̄)

+
κ(μ̄, ˙̄μ)

δ(μ̄)
+ kpyȳ = −kiy ˙̄y,

(39)

Fz

⎛⎝H̄ +
kvz

(
(M + m)

(
s2

ᾱy
c4

ᾱx
− s2

ᾱx
c4

ᾱy

)
− Mc2

ᾱx
c2

ᾱy

)
δ(μ̄)

⎞⎠− Fx
kvzmc3

ᾱy
cᾱx sᾱx

δ(μ̄)
− Fy

kvzmsᾱy cᾱy c3
ᾱx

δ(μ̄)

+

(
M2 + Mm

)
go(μ̄)

δ(μ̄)
+

χ(μ̄, ˙̄μ)
δ(μ̄)

+ kpzz̄ = −kiz ˙̄z,

(40)

where
δ(μ̄) =

(
M2 + Mm

) (
s4

ᾱx s2
ᾱy + s2

ᾱx s4
ᾱy − 3s2

ᾱx s2
ᾱy + 1

)
.

5. Numerical Simulations and Results

In order to check the performance of the designed control scheme, some simulations were carried
out. The objective was to move the vehicle transporting a payload to the desired position of a square
of 1 m length at 1 m height. The desired trajectory is then defined by,

ξd =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 0 1

]T
, t < 2[

0 1 1
]T

, 2 <= t < 14[
1 1 1

]T
, 14 <= t < 26[

1 0 1
]T

, 26 <= t < 38[
0 0 1

]T
, 38 <= t <= 50

The values of the model parameters used for the simulation were the following: M = 0.4 kg,
m = 0.03 kg, l = 0.35 m, g = 9.81 m/s2.

These parameters are close to real aerial platforms. The corresponding simulation results are
presented in the following figures.

Figure 5 illustrates the x, y, and z positions of the vehicle during the validation. We can see that
the position for each axis was stabilized according to the desired reference points. The position z was
regulated in less than 2 s, the performance of the x and y positions dynamics were similar and were
regulated in less than 5 s.

Figure 6 displays the payload swing angles α and β. It is clear that the proposed control law
exhibited good performance, since the payload swing angles were regulated to 0◦ at around 5 s
and the maximum overshoot was ±2.2◦.

The simulation results of the feedback controller based on LMI (inner-loop of the system) show
the quadrotor’s orientation dynamics in Figure 7. We can see that the attitude converged to the desired
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points with a null steady-state error. The evolution of the control inputs f , τψ, τθ , and τφ are presented
in Figure 8. Finally, a three-dimensional view of the path followed by the vehicle is depicted in Figure 9.

Figure 5. Quadrotor position.

Figure 6. Swing angles.

Figure 7. Quadrotor attitude.
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Figure 8. Control inputs.

Figure 9. Three-dimensional trajectory.

One more numerical experiment was carried out. Figures 10–13 illustrate the tracking of
an ascending circular trajectory to prove the efficiency of the proposed controller in a scenario that
involves simultaneous variations of both α and β angles. These figures show that the proposed
control strategy was capable of achieving accurate trajectory tracking since the aircraft converged to
the reference trajectory while attenuating the swing angles of the payload.

In summary, these numerical experiments show that the proposed control scheme presented
a satisfactory performance in position control and the attenuation of cable-suspended payload swing.
It succeeded in transporting the payload to a desired position with attenuation of the oscillation
angles. In contrast, the algorithm of [18] involves solving complicated partial differential equations for
obtaining the control law, and they cannot be solved for the 3D case.
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Figure 10. Quadrotor position.
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Figure 11. Swing angles.
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Figure 12. Quadrotor attitude.
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6. Conclusions

This work presents an energy-based control strategy and a nonlinear state feedback controller
based on a linear matrix inequality to solve the problem of transporting a cable-suspended payload
by an unmanned aerial vehicle. On one hand, a new methodology based on an LMI for stabilizing
the orientation dynamics is proposed. The main contribution is that we can employ the proposed
methodology for Lipschitz nonlinear systems with larger Lipschitz constants than other classical
techniques based on LMIs. Moreover, the LMI-based controller results in a control algorithm with
relative simplicity and guaranteed stability. In addition, the design of the LMI-based control takes
into account physical limits of the system such as the maximum motor voltage or its rotation speed
capability through the velocity and torque bounds which are used to calculate the Lipschitz constant,
while with the energy-based control these limits are not part of the controller design. On the other
hand, an energy-based control to stabilize the quadrotor’s translational dynamics and to attenuate
the cable-suspended payload swing is designed in this work. This strategy is based on an energy
approach and the passivity properties of the translational dynamics. Passivity-based control is
employed, as this part of the system is underactuated. The main contribution is that the computation of
excessive and complex partial differential equations is not needed to obtain the control law. The results
showed an excellent performance of the proposed control scheme. Thus, the new approach achieves
precise payload positioning with rapid oscillation attenuation.

Future work will extend the energy-based control method in order to consider variations in
the payload. In addition, the methodology will be extended so that the linear matrix inequality can be
replaced by an algebraic Riccati equation.
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Abstract: Springs are critical components in mining vibrating screen elastic supports. However,
long-term alternating loads are likely to lead to spring failures, likely resulting in structural damages
to the vibrating screen and resulting in a lower separation efficiency. Proper dynamic models provide
a basis for spring failure diagnosis. In this paper, a six-degree-of-freedom theoretical rigid body
model of a mining vibrating screen is proposed, and a dynamic equation is established in order to
explore the dynamic characteristics. Numerical simulations, based on the Newmark-β algorithm,
are carried out, and the results indicate that the model proposed is suitable for revealing the dynamic
characteristics of the mining vibrating screen. Meanwhile, the mining vibrating screen amplitudes
change with the spring failures. Therefore, six types of spring failure are selected for simulations,
and the results indicate that the spring failures lead to an amplitude change for the four elastic
support points in the x, y, and z directions, where the changes depend on certain spring failures.
Hence, the key to spring failure diagnosis lies in obtaining the amplitude change rules, which can
reveal particular spring failures. The conclusions provide a theoretical basis for further study and
experiments in spring failure diagnosis for a mining vibrating screen.

Keywords: mining vibrating screen; theoretical rigid body model; spring failures diagnosis;
amplitudes change

1. Introduction

Mining vibrating screens are important equipment for mine washing and processing, and are
widely used for mine grading, dehydration, and desliming in China [1,2], working as a forced vibration
system under alternating loads [3–5]. The SLK3661W double-deck linear mining vibrating screen is
shown in Figure 1, and its main structures include a screen box and four elastic supports, designed
using principles of symmetry. As shown in Figure 2, the screen box is assembled from an exciter,
a lateral plate, an exciting beam, reinforcing beams, upper-bearing beams, under-bearing beams,
an upper-screen deck, and an under-screen deck. Additionally, each elastic support is composed of
several metal helical springs. These springs are critical components in a mining vibrating screen’s
elastic supports, which directly affect the working performance of the mining vibrating screen [6,7].
However, long-term alternating loads are highly likely to lead to spring failure through spring stiffness
decrease [8], causing a negative influence on the mining vibrating screen. On one hand, spring
failures could lead to structural damages, such as beam fracture or lateral plate cracks [9–11]. On the
other hand, spring failures could produce a loss of particle separation efficiency, thus hardly meeting

Mathematics 2019, 7, 246; doi:10.3390/math7030246 www.mdpi.com/journal/mathematics105
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practical process demands [12,13]. Therefore, it is necessary to diagnose the spring failures of a mining
vibrating screen for routing maintenance, which can help to ensure safety and reliability.

 
Figure 1. The SLK3661W double-deck linear mining vibrating screen, unloading side view.

Reinforcing beam ×2

Exciting beam Exciter

Spring (×4)

Under bearing 
beam(×6)

Spring(×3)

Upper bearing 
beam (×6)

Upper screen deck

Lateral plate

Under screen deck

Loading side
Unloading side

Figure 2. Structures of the SLK3661W double-deck linear mining vibrating screen.

Proper dynamic models provide a basis for diagnosing spring failures. In recent years, even
though many studies have reported vibrating screen dynamic models on optimization [14–16],
separation [17,18], and particle motion [19], there has been very little research reported on spring
failure diagnosis. Aimed at spring failure diagnosis, Rodriguez et al. developed a two-dimensional,
three-degree-of-freedom nonlinear model that considered one angular motion and damping, which
allowed for the prediction of the behavior of a vibrating screen when there was a reduction in
spring stiffness, and they used this model to determine a limit on spring failures before separation
efficiency was affected [20]. Peng et al. presented a three-degree-of-freedom rigid plate structure to
describe the isolation system, and they also proposed the method of stiffness identification by stiffness
matrix disassembly; the numerical simulation results demonstrated the feasibility of the developed
method [21]. However, each elastic support of a mining vibrating screen could have spring failures
with spring stiffness decreases. The mining vibrating screen operating mode becomes spatial motion
with very complicated dynamic characteristics, including multiple degrees of freedom.

The purpose of the present study is to explore the mining vibrating screen dynamic characteristics
with spring failures, providing a theoretical basis for spring failure diagnosis. In this paper, a theoretical
rigid body of a mining vibrating screen is proposed, the dynamic equation is established, and the
steady-state solutions are obtained. Numerical simulations were carried out, and the results showed
that the proposed model is feasible. In addition, spring failure simulations were also carried out, and
the results indicated that the x, y, and z direction amplitude change rules for all the elastic supports
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were strongly related to spring failures. Hence, the key for spring failure diagnosis lies in obtaining
the amplitude change rules, which can reveal the certain spring failures.

2. Theoretical Rigid Body Model

2.1. The Model

As shown in Figure 3, a six-degree-of-freedom theoretical rigid body model of spatial motion
considering three rotations (Roll, Pitch, and Yaw) is proposed for exploring the mining vibrating screen
dynamic characteristics with spring failures. The list of symbols is shown in abbreviations section.
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o o
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3zk

1yk
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2xk
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y′
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z′

z
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Figure 3. Spatial motion dynamic model of the mining vibrating screen, including three translational
degrees of freedom and three rotational degrees of freedom.

The screen box is simplified to a rigid body, and the four elastic support points are individually
simplified as three mutually perpendicular springs kix, kiy, kiz, (where i is the elastic support point
number, i = 1, 2, 3, 4). The movement of a rigid body is expressed by the position of a body frame
o’x′y′z′ relative to the inertial frame oxyz. The ox-axis and oz-axis are mutually perpendicular and
located in the horizontal plane, and the oy-axis is perpendicular to the horizontal plane. The origin o’
of the body frame is located at the mass center of the rigid body, at all times. The o’x′-axis and o’z′-axis
are mutually perpendicular and located in the rigid body plane, and the o’y′-axis is perpendicular to
the rigid body plane. Initially, the origin o of the inertial frame and the origin o’ of the body frame
are coincident. The distances between the mass center of the rigid body and the four elastic support
points of spring are r1, r2, r3, r4 and, furthermore, the angles between them and oz-axis are α1, α2, α3, α4.
Suppose that the rigid body′s mass is m, and the moments of inertia are Jx, Jy, Jz. Define x, y, z as the
translation displacements of the rigid body and γ, ϕ, θ as the angular displacements in the inertial
frame. The exciting force f is exerted on the rigid body as an alternating load, with included angles
βx, βy, βz between exciting force and the o’x′-axis, o’y′-axis, and o’z′-axis, respectively.

The dynamic equation is established by adopting the Lagrange method, and the processes are as
follows. The three rotation angles are small, define cos γ = cos ϕ = cos θ = 1, sin γ = γ, sin ϕ = ϕ,
and sin θ = θ.

107



Mathematics 2019, 7, 246

2.2. System Potential Energy

The dynamic system includes three translation motions and three rotation motions. According to
the Tait–Bryan angles in the literature [22], the rotation matrix between the body frame and the inertial
frame was derived using the rotation system shown in Figure 4.

γ

γ

y′

xo o o

z′

y′

x

x′

z′ z′′

y

z
z′′

ϕ

ϕ

θ
θ

y′

y′′

x′
x′′

(a) (b) (c)

Figure 4. (a) Rotation of the inertial frame oxyz around the ox-axis by angle γ; (b) Rotation of the
instantaneous system around the oy′-axis by angle ϕ; (c) Rotation of the instantaneous system around
the oz′ ′-axis by angle θ.

As the three rotation angles of the rigid body are small, they can be simplified as rotations around
the oxyz axis. When rotating the rigid body around the ox-axis by the new angle of roll γ, the moment
of inertia is Jx, and the rotation matrix is written as:

Tx =

⎡⎢⎣ 1 0 0
0 cos γ sin γ

0 − sin γ cos γ

⎤⎥⎦. (1)

When rotating the rigid body around the oy′-axis by the new angle of yaw ϕ, the moment of
inertia is Jy, and the rotation matrix is written as:

Ty =

⎡⎢⎣ cos ϕ 0 − sin ϕ

0 1 0
sin ϕ 0 cos ϕ

⎤⎥⎦. (2)

When rotating the rigid body around the oz′ ′-axis by the new angle of pitch θ, the moment of
inertia is Jz, and the rotation matrix is written as:

Tz =

⎡⎢⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤⎥⎦. (3)

When rotating the rigid body in the sequence oz-oy-ox, the rotation matrix between the body
frame and the inertial frame is obtained as:

R = TzTyTx =

⎡⎢⎣ cos θ cos ϕ sin θ cos γ + cos θ sin ϕ sin γ sin θ sin γ − cos θ sin ϕ cos γ

− sin θ cos ϕ cos θ cos γ − sin θ sin ϕ sin γ cos θ sin γ + sin θ sin ϕ cos γ

sin ϕ − cos ϕ sin γ cos ϕ cos γ

⎤⎥⎦. (4)
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Supposing that the coordinate of the mass center is (x, y, z) in an inertial frame, and any point
of the rigid body is (x′, y′, z′) in the body frame, the coordinate of any point of the rigid body in an
inertial frame is written as: ⎡⎢⎣ xd

yd
zd

⎤⎥⎦ =

⎡⎢⎣ x
y
z

⎤⎥⎦+ R ·

⎡⎢⎣ x′d
y′d
z′d

⎤⎥⎦. (5)

Moreover, the coordinates of the four spring support points in the body frame can be written as:⎡⎢⎣ x′1
y′1
z′1

⎤⎥⎦ =

⎡⎢⎣ −s1

0
c1

⎤⎥⎦,

⎡⎢⎣ x′2
y′2
z′2

⎤⎥⎦ =

⎡⎢⎣ s2

0
c2

⎤⎥⎦,

⎡⎢⎣ x′3
y′3
z′3

⎤⎥⎦ =

⎡⎢⎣ −s3

0
−c3

⎤⎥⎦,

⎡⎢⎣ x′4
y′4
z′4

⎤⎥⎦ =

⎡⎢⎣ s4

0
−c4

⎤⎥⎦. (6)

In (6), s1 = r1 sin α1, c1 = r1 cos α1, s2 = r2 sin α2, c2 = r2 cos α2, s3 = r3 sin α3, c3 = r3 cos α3,
s4 = r4 sin α4, and c4 = r4 cos α4.

In the initial state, the coordinate of the mass center is (0, 0, 0) in the inertial frame, and the
rotation matrix is R0 = [1, 0, 0; 0, 1, 0; 0, 0, 1]T. Thus, the coordinates of the four spring support
points in the inertial frame can be written as:⎡⎢⎣ x1

y1

z1

⎤⎥⎦ = R0

⎡⎢⎣ −s1

0
c1

⎤⎥⎦,

⎡⎢⎣ x2

y2

z2

⎤⎥⎦ = R0

⎡⎢⎣ s2

0
c2

⎤⎥⎦,

⎡⎢⎣ x3

y3

z3

⎤⎥⎦ = R0

⎡⎢⎣ −s3

0
−c3

⎤⎥⎦,

⎡⎢⎣ x4

y4

z4

⎤⎥⎦ = R0

⎡⎢⎣ s4

0
−c4

⎤⎥⎦. (7)

In a motion state, the coordinate of the mass center is (x, y, z) in the inertial frame. Thus, the
coordinates of the four spring support points in the inertial frame can be written as:⎡⎢⎣ Δx1

Δy1

Δz1

⎤⎥⎦ =

⎡⎢⎣ x
y
z

⎤⎥⎦+ (R − R0)

⎡⎢⎣ −s1

0
c1

⎤⎥⎦,

⎡⎢⎣ Δx2

Δy2

Δz2

⎤⎥⎦ =

⎡⎢⎣ x
y
z

⎤⎥⎦+ (R − R0)

⎡⎢⎣ s2

0
c2

⎤⎥⎦,

⎡⎢⎣ Δx3

Δy3

Δz3

⎤⎥⎦ =

⎡⎢⎣ x
y
z

⎤⎥⎦+ (R − R0)

⎡⎢⎣ −s3

0
−c3

⎤⎥⎦,

⎡⎢⎣ Δx4

Δy4

Δz4

⎤⎥⎦ =

⎡⎢⎣ x
y
z

⎤⎥⎦+ (R − R0)

⎡⎢⎣ s4

0
−c4

⎤⎥⎦. (8)

The results in (8) are equivalent to the spring compression and, therefore, the system potential
energy is obtained as:

U = 1
2 k1x[x − c1(ϕ − γθ)]2 + 1

2 k2x[x − c2(ϕ − γθ)]2 + 1
2 k3x[x + c3(ϕ − γθ)]2

+ 1
2 k4x[x + c4(ϕ − γθ)]2 + 1

2 k1y[y + c1(γ + ϕθ) + s1θ]2

+ 1
2 k2y[y + c2(γ + ϕθ)− s2θ]2 + 1

2 k3y[y − c3(γ + ϕθ) + s3θ]2

+ 1
2 k4y[−y + c4(γ + ϕθ) + s4θ]2 + 1

2 k1z(z − s1 ϕ)2 + 1
2 k2z(z + s2 ϕ)2

+ 1
2 k3z(z − s3 ϕ)2 + 1

2 k4z(z + s4 ϕ)2

. (9)

2.3. System Kinetic Energy

According to the literature [23,24], there is a relation expressing a rigid body′s spatial motion,
which is written as: ⎧⎪⎨⎪⎩

ωx =
.
γ −

.
θ cos ϕ tan ϕ

ωy =
.
ϕ cos γ +

.
θ cos ϕ sin γ

ωz = − .
ϕ sin γ +

.
θ cos ϕ cos γ

. (10)
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Therefore, the system’s kinetic energy is obtained as:

E = 1
2 m

.
x2

+ 1
2 m

.
y2

+ 1
2 m

.
z2

+ 1
2 Jxωx

2 + 1
2 Jyωy

2 + 1
2 Jzωz

2

= 1
2 m

.
x2

+ 1
2 m

.
y2

+ 1
2 m

.
z2

+ 1
2 Jx

( .
γ −

.
θϕ
)2

+ 1
2 Jy

( .
ϕ +

.
θγ
)2

+ 1
2 Jz

(
− .

ϕγ +
.
θ
)2

.
(11)

2.4. System Force Vector

The mining vibrating screen in this study is equipped with two groups of counter-rotating
vibrators, with each group having two pairs of eccentric blocks. Due to manufacturing errors and
installation errors, the resultant force f typically does not pass through the center of mass of the screen
box in practice. The resultant force f can be equivalent to a force vector. In the body frame, the force
vector is written as: ⎡⎢⎣ f ′x

f ′y
f ′z

⎤⎥⎦ =

⎡⎢⎣ f cos βx sin ωt
f cos βy sin ωt
f cos βz sin ωt

⎤⎥⎦. (12)

On account of the force vector changing with the rigid body motion, the force vector in a body
frame is written as: ⎡⎢⎣ fx

fy

fz

⎤⎥⎦ = R ·

⎡⎢⎣ f ′x
f ′y
f ′z

⎤⎥⎦. (13)

Meanwhile, supposing that the coordinate of the point exerting force is (x′f , y′f , z′f ) in a body frame,
the coordinate of the point exerting force in an inertial frame can be written as:⎡⎢⎣ x f

y f
z f

⎤⎥⎦ =

⎡⎢⎣ x
y
z

⎤⎥⎦+ R ·

⎡⎢⎣ x′f
y′f
z′f

⎤⎥⎦. (14)

According to the literature [23,24], there is a relation expressing a rigid body′s spatial motion,
which is written as: ⎡⎢⎣ Mx

My

Mz

⎤⎥⎦ =

⎡⎢⎣ 0 −z f y f
z f 0 −x f
−y f x f 0

⎤⎥⎦ ·

⎡⎢⎣ fx

fy

fz

⎤⎥⎦. (15)

In an inertial frame, the system’s force vector is obtained as:

F =
[

fx fy fz Mx My Mz
]T. (16)

2.5. Dynamic Equation

After linearizing, the dynamic equation can be written as:

Mẍ + Kx = F. (17)

In (17), ẍ is the acceleration column vector:

ẍ =
[

..
x

..
y

..
z

..
γ

..
ϕ

..
θ
]T

. (18)

x is the displacement column vector:

x =
[

x y z γ ϕ θ
]T

. (19)
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M is the mass matrix:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Jx 0 0
0 0 0 0 Jy 0
0 0 0 0 0 Jz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (20)

and K is the stiffness matrix:

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

K11 0 0 0 K15 0
0 K22 0 K24 0 K26

0 0 K33 0 K35 0
0 K42 0 K44 0 K46

K51 0 K53 0 K55 0
0 K62 0 K64 0 K66

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (21)

In (21), K11 = k1x + k2x + k3x + k4x,
K15 = −c1k1x − c2k2x + c3k3x + c4k4x,
K22= k1y + k2y + k3y − k4y,
K24 = c1k1y + c2k2y − c3k3y + c4k4y,
K26 = s1k1y − s2k2y + s3k3y + s4k4y,
K33 = k1z + k2z + k3z + k4z,
K35 = −s1k1z + s2k2z − s3k3z + s4k4z,
K42 = c1k1y + c2k2y − c3k3y − c4k4y,
K44 = c2

1k1y + c2
2k2y + c2

3k3y + c2
4k4y,

K46 = c1s1k1y − c2s2k2y − c3s3k3y + c4s4k4y,
K51 = −c1k1x − c2k2x + c3k3x + c4k4x,
K53 = −s1k1z + s2k2z − s3k3z + s4k4z,
K55 = c2

1k1x + c2
2k2x + c2

3k3x + c2
4k4x + s2

1k1z + s2
2k2z + s2

3k3z + s2
4k4z,

K62 = s1k1y − s2k2y + s3k3y − s4k4y,
K64 = c1s1k1y − c2s2k2y − c3s3k3y + c4s4k4y,
K66 = s2

1k1y + s2
2k2y + s2

3k3y + s2
4k4y.

Additionally, F is the force column vector:

F =
[

fx fy fz Mx My Mz
]T. (22)

According to the dynamic theory [20], the steady-state solutions of a forced vibration system can
be written as: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x = X0 sin ωt
y = Y0 sin ωt
z = Z0 sin ωt
γ = Γ0 sin ωt
ϕ = Φ0 sin ωt
θ = Θ0 sin ωt

. (23)

In (23), ω is the angular speed. It should be noted that the relations are valid for a constant
rotational velocity of counter-rotating vibrators, for which there exists a resultant force acting along
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a straight line towards the body of vibrating screen. Taking the derivative of both sides of (23), the
acceleration can be written as: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

..
x = −ω2X0 sin ωt
..
y = −ω2Y0 sin ωt
..
z = −ω2Z0 sin ωt
..
γ = −ω2Γ0 sin ωt
..
ϕ = −ω2Φ0 sin ωt
..
θ = −ω2Θ0 sin ωt

. (24)

Bringing Equations (23) and (24) into Equation (22), the steady-state solutions can be obtained as:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

X0

Y0

Z0

Γ0

Φ0

Θ0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

K11 − ω2m 0 0 0 K15 0
0 K22 − ω2m 0 K24 0 K26

0 0 K33 − ω2m 0 K35 0
0 K42 0 K44 − ω2 Jx 0 K46

K51 0 K53 0 K55 − ω2 Jy 0
0 K62 0 K64 0 K66 − ω2 Jz

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−1⎡⎢⎢⎢⎢⎢⎢⎢⎣

fx

fy

fz

Mx

My

Mz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (25)

The dynamic equation of a mining vibrating screen in spatial motion, shown above, gives the
dynamic characteristics. In the following section, numerical simulations are carried out to verify the
proposed model.

3. Simulations

3.1. Numerical Simulations Results

In this paper, numerical simulations are carried out using Matlab, and the programs are available
in supplementary materials online. In order to ensure the physical significance of the dynamic equation,
the damping is significant. Generally, the damping matrix can be regarded as a linear combination
of the mass matrix (Equation (20)) and the stiffness matrix (Equation (21)) in a mechanical system
dynamics equation, and can be written as:

C = 0.02M + 0.02K. (26)

After inserting the damping matrix (Equation (26)) into the dynamic Equation (17), the system
dynamic equation can be written as:

Mẍ + C
.
x + Kx = F. (27)

In (27),
.
x is the velocity vector:

.
x =

[ .
x

.
y

.
z

.
γ

.
ϕ

.
θ
]T

. (28)

This paper intends to use the SLK3661W double-deck linear mining vibrating screen as an
exploration object, which has certain parameters, such as screen box mass (18,944 kg), spring stiffness
of each unloading side (1,242,400 N/m), spring stiffness of each loading side (931,800 N/m), screen
deck dimension (3.6 × 6.1 m), processing capacity (350–400 t/h), motor speed (1480 r/min), and electric
power (55 kW). Numerical simulations were carried out, based on the Newmark-β algorithm, and the
main parameters used in the simulation are shown in Table 1. Additionally, the coordinate of force
action point was (−0.2, 0, 0) in the body frame. The total time of the simulation was tm, while the time
step was dt.
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Table 1. Simulation parameters table.

Parameters m/kg Jx/(kg·m2) Jy/(kg·m2) Jz/(kg·m2)

value 18,900 35,200 30,650 32,600
parameters k1x/(N/m) k2x/(N/m) k3x/(N/m) k4x/(N/m)

value 353,010 470,680 353,010 470,680
parameters k1y/(N/m) k2y/(N/m) k3y/(N/m) k4y/(N/m)

value 931,800 1,242,400 931,800 1,242,400
parameters k1z/(N/m) k2z/(N/m) k3z/(N/m) k4z/(N/m)

value 353,010 470,680 353,010 470,680
parameters k1z/(N/m) k2z/(N/m) k3z/(N/m) k4z/(N/m)

value 353,010 470,680 353,010 470,680
parameters r1/(m) r2/(m) r3/(m) r4/(m)

value 3 3 3 3
parameters α1/(◦) α2/(◦) α3/(◦) α4/(◦)

value 53.13 53.13 53.13 53.13
parameters βx/(◦) βy/(◦) βz/(◦) ω/(rad/s)

value 45 45 90 93.12
parameters f /(N) tm/(s) dt/(s) -

value 1,800,000 20 1/10,240 -

Under normal conditions, the system vibrations included x, y, and θ, while z = ϕ = γ = 0.
The displacement curves of the mass center are shown in Figure 5.

Figure 5. Displacement curves of the mass center under normal conditions, including two translational
displacements (x, y) and one angular displacement (θ). Additionally, z = ϕ = γ = 0.

As shown in Figure 5, the displacements are large initially, then gradually decrease to a stable
range. The stable state amplitudes (peak to peak values of displacement) are as follows:

x = 7.82 mm, y = 7.80 mm, θ = 4.79 × 10−4 rad.

Under spring failure conditions, the value of k1y was decreased to 652,260 N/m and the simulation
was run again. The system vibrations include x, y, and z, as well as γ, ϕ, and θ. The displacement
curves of the mass center are shown in Figure 6.
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Figure 6. Displacement curves of the rigid body mass center under spring failure conditions, including
three translational displacements (x, y, z) and three angular displacements (γ, ϕ, θ).

As shown in Figure 6, the displacements are large initially, then gradually decrease to a stable
range. The stable state amplitudes (peak to peak values of displacement) are as follows:

x = 7.82 mm, y = 7.79 mm, z = 0.96 mm, γ = 0.2 × 10−4 rad, ϕ = 0.75 × 10−4 rad, θ = 9.40 × 10−4 rad.

According to the analysis of the simulations above, the results showed that the four elastic
supports of the whole system were symmetric on the x-y plane under normal conditions. The system
vibrations included two translations and one rotation; namely, the rigid body only moved in the x–y
plane. In addition, the system vibrations changed into a very complicated spatial motion with spring
stiffness decrease, which included three translations and three rotations. Meanwhile, the amplitudes
changed at the same time.

Therefore, the proposed six-degree-of-freedom model is feasible for exploring the mining vibrating
screen dynamic characteristics with spring stiffness decrease caused by spring failures, and vice versa.

3.2. Spring Failure Simulations Results

Under normal conditions, the four elastic support points were symmetrical (point 1 = point 3, point
2 = point 4) in the proposed model. However, this symmetry broke under spring failure conditions,
and hence six types of failure were selected for the simulation analysis, as shown in Table 2. Aimed
at obtaining the influence rule of the spring failures, only the spring stiffness in the y direction was
changed in the simulations.

Table 2. Types of spring failure.

Failures Type k1 k2 k3 k4

Single spring failure × 1 √ 2 √ √
√ × √ √

Double spring failure

× × √ √
× √ × √
× √ √ ×√ × √ ×

Notes: 1 failure; 2 normal.

Due to the difference of each spring’s stiffness and stiffness change, the stiffness variation
coefficient (SVC) for normalization was defined as:

Δki =
kij0 − kij

kij0
× 100%, (i = 1, 2, 3, 4 ; j = 1, 2, . . . , n). (29)
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In (29), i is the elastic support point sequence number, j is the stiffness sequence number, kij0 is the
normal spring stiffness in the y direction (as shown in Table 2), and kij is the various spring stiffness in
the y direction.

Setting the value of βz as 89◦ in Table 2, the amplitudes of the four elastic support points in
all directions were selected to be normal amplitudes. Due to the difference of each amplitude and
amplitude change, the amplitude variation coefficient (AVC) for normalization was defined as:

Δλid =
λid0 − λid

λid0
× 100%, (i = 1, 2, 3, 4; d = x, y, z). (30)

In (30), i is the elastic support point sequence number, d is one of the three directions, λid0 is the
normal amplitude of one elastic support point, and λid is the various amplitudes of the same elastic
support point.

3.2.1. Single Spring Failure Simulations Results

In the case of k1 failures, the spring stiffness variation coefficient (Δk1) was changed from 0 to
30%, and hence the amplitude variation coefficients of the four elastic support points in all directions
changed together.

As shown in Figure 7, if the spring stiffness variation coefficient (Δk1) increased, the amplitude
variation coefficients of all elastic support points in the x direction decreased, while all amplitude
variation coefficients in the z direction increased. In the y direction, the amplitude variation coefficients
of points 2 and 4 increased, while the amplitude variation coefficients of points 1 and 3 decreased.

Figure 7. The amplitude variation coefficient curves of four elastic support points, including the
amplitude variation coefficients in the x, y, and z directions.

3.2.2. Double Spring Failures Simulations Results

In the case of k1 and k2 failures, the spring stiffness variation coefficient (Δk1 and Δk2) was
changed from 0% to 30%, and hence the amplitude variation coefficients of four elastic support points
in all directions changed together.

As shown in Figure 8, if the spring stiffness variation coefficient increased, the amplitude variation
coefficients of the four elastic support points in the x direction decreased, increased, or stayed the
same (i.e., indeterminate) under the coupling action of k1 and k2 failures. The amplitude variation
coefficients of all elastic support points in the x direction decreased, increased, or stayed the same (i.e.,
indeterminate) under the coupling action of k1 and k2 failures as well. Meanwhile, the amplitudes of
variation coefficients in the z direction always increased, as well as Δλ1z = Δλ3z and Δλ2z = Δλ4z.
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Figure 8. The amplitude variation coefficient surfaces of four elastic support points, including the
amplitude variation coefficients in the x, y, and z directions.

3.3. Discussion

Many simulations were carried out with differing failure types, as shown in Table 2, and the
change rules between the spring stiffness coefficient and the amplitude variation coefficient were
obtained, as shown in Table 3.

Table 3. The change rules between the spring stiffness coefficient and the amplitude variation coefficient.

Stiffness
Variation

Coefficient

Amplitude Variation Coefficient

Δλ1x Δλ2x Δλ3x Δλ4x Δλ1y Δλ2y Δλ3y Δλ4y Δλ1z Δλ2z Δλ3z Δλ4z

Δk1 − 1 − − − − + 2 − + + + + +
Δk2 + + + + + − + − + + + +

Δk1, Δk2 ± 3 ± ± ± ± ± ± ± + + + +
Δk1, Δk3 − − − − ± ± + + ± ± ± ±
Δk1, Δk4 ± ± ± ± ± ± ± ± ± ± ± ±
Δk2, Δk4 + + + + + − + − ± ± ± ±

1 decrease; 2 increase; 3 indeterminate.

As shown in Table 3, the amplitude variation coefficient probably increased, decreased or was
indeterminate under different spring failures. The change rules of the amplitude variation coefficient
are the same as the change rules of the amplitudes, according to Formula (30). Hence, the change rules
of the amplitudes of four elastic support points in the x, y, and z directions can be summarized, as
follows:

• In the case of spring k1 failure, the amplitudes of all points in the x direction will decrease, while
all amplitudes increase in the z direction. In the y direction, the amplitudes of points 2 and 4
increase, while the amplitudes of points 1 and 3 decrease.

• In the case of spring k2 failure, all amplitudes will increase in both the x and z directions. In the
y direction, the amplitudes of points 1 and 3 increase, while the amplitudes of points 2 and
4 decrease.

• In the case of spring k1 and spring k2 failure, all amplitudes will increase in the z direction. In the
other directions, the change rules of all amplitudes are indeterminate.

• In the case of spring k1 and spring k3 failure, all amplitudes will decrease in the x direction. In the
y direction, the amplitudes of points 3 and 4 increase, while the change rules of the amplitudes
of points 1 and 2 are indeterminate. In the z direction, the change rules of all amplitudes
are indeterminate.

• In the case of spring k1 and spring k4 failure, the change rules of all amplitudes are indeterminate
in all directions.

• In the case of spring k2 and spring k4 failure, all amplitudes will increase in the x direction. In the
y direction, the amplitudes of points 1 and 3 increase, while the amplitudes of points 2 and 4
decrease. In the z direction, the change rules of all amplitudes are indeterminate.
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The change rules for amplitudes, obtained above, indicated that the spring failures would lead to
amplitude change of the four elastic support points in the x, y, and z directions, and the amplitude
change rules can reveal certain spring failures. Hence, the amplitude change rules can provide useful
information for spring failure diagnosis.

4. Conclusions

The proposed theoretical rigid body model can reveal the dynamic characteristics of a mining
vibrating screen, with or without spring failures. From the numerical simulation results, using the
Newmark-β method, there are certain relationships between the system amplitudes and different
spring failures, which can be used for spring failure diagnosis. This information is useful for operations
and maintenance staff, to determine whether it is necessary to change one or more springs. However,
further study and experiments need to be done to verify the accuracy of this approach.
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Abbreviations

The list of symbols is as follows:
k1 Spring of the elastic support point 1 in y direction
k2 Spring of the elastic support point 2 in y direction
k3 Spring of the elastic support point 3 in y direction
k4 Spring of the elastic support point 4 in y direction
k1x Spring stiffness of the elastic support point 1 in x direction
k1y Spring stiffness of the elastic support point 1 in y direction
k1z Spring stiffness of the elastic support point 1 in z direction
k2x Spring stiffness of the elastic support point 2 in x direction
k2y Spring stiffness of the elastic support point 2 in y direction
k2z Spring stiffness of the elastic support point 2 in z direction
k3x Spring stiffness of the elastic support point 3 in x direction
k3y Spring stiffness of the elastic support point 3 in y direction
k3z Spring stiffness of the elastic support point 3 in z direction
k4x Spring stiffness of the elastic support point 4 in x direction
k4y Spring stiffness of the elastic support point 4 in y direction
k4z Spring stiffness of the elastic support point 4 in z direction
i Elastic support points number
o Origin of the inertial frame
x x-axis
x Translation displacement of the rigid body in x direction
x Coordinate of the mass center in the inertial frame
xd Coordinate of one point of the rigid body in the inertial frame
x Displacement column vector
.
x Velocity column vector
ẍ Acceleration column vector
y y-axis
y Translation displacement of the rigid body in y direction
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y Coordinate of the mass center in the inertial frame
yd Coordinate of one point of the rigid body in the inertial frame
z z-axis
z Translation displacement of the rigid body in z direction
z Coordinate of the mass center in the inertial frame
zd Coordinate of one point of the rigid body in the inertial frame
o’ Origin of the body frame
x′ x′-axis
x′ Coordinate of the mass center in the body frame
y′ y′-axis
y′ Coordinate of the mass center in the body frame
z′ z′-axis
z′ Coordinate of the mass center in the body frame
r1 Distance between the mass center of the rigid body and the elastic support point 1
r2 Distance between the mass center of the rigid body and the elastic support point 2
r3 Distance between the mass center of the rigid body and the elastic support point 3
r4 Distance between the mass center of the rigid body and the elastic support point 4
α1 Angle between r1 and z-axis
α2 Angle between r2 and z-axis
α3 Angle between r3 and z-axis
α4 Angle between r4 and z-axis
m Mass of rigid body
Jx Moment of inertia of the rigid body rotation around ox-axis
Jy Moment of inertia of the rigid body rotation around oy-axis
Jz Moment of inertia of the rigid body rotation around oz-axis
γ Angular of the rigid body rotation around ox-axis
ϕ Angular of the rigid body rotation around oy-axis
θ Angular of the rigid body rotation around oz-axis
f Exciting force
F System force vector
βx Angle between exciting force vector and o’x′-axis
βy Angle between exciting force vector and o’y′-axis
βz Angle between exciting force vector and o’z′-axis
Tx Rotation matrix of the rigid body rotation around ox-axis
Ty Rotation matrix of the rigid body rotation around oy-axis
Tz Rotation matrix of the rigid body rotation around oz-axis
R Rotation matrix of the rigid body in the sequence of oz-oy-ox
s1 = r1 sin α1

s2 = r2 sin α2

s3 = r3 sin α3

s4 = r4 sin α4

c1 = r1 cos α1

c2 = r2 cos α2

c3 = r3 cos α3

c4 = r4 cos α4

U System potential energy
E System kinetic energy
M Mass matrix
K Stiffness matrix
C Damping matrix
ω Circular frequency of exciting force
ωx Angular velocity of the rigid body rotation around ox-axis
ωy Angular velocity of the rigid body rotation around oy-axis
ωz Angular velocity of the rigid body rotation around oz-axis
X0 Steady state solution of the forced vibration system
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Y0 Steady state solution of the forced vibration system
Z0 Steady state solution of the forced vibration system
Γ0 Steady state solution of the forced vibration system
Φ0 Steady state solution of the forced vibration system
Θ0 Steady state solution of the forced vibration system
tm Total time of simulation
dt Time step of simulation
Δk1 Spring stiffness variation coefficient of spring k1

Δk1 Spring stiffness variation coefficient of spring k2

Δk1 Spring stiffness variation coefficient of spring k3

Δk1 Spring stiffness variation coefficient of spring k4

Δk1 Spring stiffness variation coefficient of spring k1

Δk1 Spring stiffness variation coefficient of spring k2

Δk1 Spring stiffness variation coefficient of spring k3

Δk1 Spring stiffness variation coefficient of spring k4

Δλ1x Amplitude variation coefficient of elastic support point 1 in x direction
Δλ1y Amplitude variation coefficient of elastic support point 1 in y direction
Δλ1z Amplitude variation coefficient of elastic support point 1 in z direction
Δλ2x Amplitude variation coefficient of elastic support point 2 in x direction
Δλ2y Amplitude variation coefficient of elastic support point 2 in y direction
Δλ2z Amplitude variation coefficient of elastic support point 2 in z direction
Δλ3x Amplitude variation coefficient of elastic support point 3 in x direction
Δλ3y Amplitude variation coefficient of elastic support point 3 in y direction
Δλ3z Amplitude variation coefficient of elastic support point 3 in z direction
Δλ4x Amplitude variation coefficient of elastic support point 4 in x direction
Δλ4y Amplitude variation coefficient of elastic support point 4 in y direction
Δλ4z Amplitude variation coefficient of elastic support point 4 in z direction
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Abstract: Modern kinematics derives directly from developments in the 1700s, and in their current
instantiation, have been adopted as standard realizations . . . or templates that seem unquestionable.
For example, so-called aerospace sequences of rotations are ubiquitously accepted as the norm for
aerospace applications, owing from a recent heritage in the space age of the late twentieth century.
With the waning of the space-age as a driver for technology development, the information age
has risen with the advent of digital computers, and this begs for re-evaluation of assumptions
made in the former era. The new context of the digital computer defines the use of the term
“information age” in the manuscript title and further highlights the novelty and originality of the
research. The effects of selecting different Direction Cosine Matrices (DCM)-to-Euler Angle rotations
on accuracy, step size, and computational time in modern digital computers will be simulated and
analyzed. The experimental setup will include all twelve DCM rotations and also includes critical
analysis of necessary computational step size. The results show that the rotations are classified into
symmetric and non-symmetric rotations and that no one DCM rotation outperforms the others in
all metrics used, yielding the potential for trade space analysis to select the best DCM for a specific
instance. Novel illustrations include the fact that one of the ubiquitous sequences (the “313 sequence”)
has degraded relative accuracy measured by mean and standard deviations of errors, but may be
calculated faster than the other ubiquitous sequence (the “321 sequence”), while a lesser known
“231 sequence” has comparable accuracy and calculation-time. Evaluation of the 231 sequence also
illustrates the originality of the research. These novelties are applied to spacecraft attitude control in
this manuscript, but equally apply to robotics, aircraft, and surface and subsurface vehicles.

Keywords: Phoronomics; mechanics; kinetics; kinematics; direction cosines; Euler angles; space
dynamics; digital computation; control systems; control engineering

1. Introduction

The discipline of kinematics in its current form has a lengthy history that hark back to at least
1775 with Euler’s formulations [1], with almost immediate expansion throughout the nineteenth [2–4]
and twentieth centuries [5–29]. There was a particular renaissance in the late twentieth century
accompanying the race between the then-Soviet Union and the United States to spaceflight, and its
accompanying application toward nuclear deterrence, where considerable lessons from that period
(both technical and non-technical) have been expressed in subsequent literature [30–62]. From this
distinguished lineage, terminology has converged to refer to sequential rotation sequences (e.g., xyz or
123); which are called aerospace sequences about non-repeating axes (also referred to as “Tait-Bryan
angles”), while the orbit sequences have an axis repeated in the rotation sequence (e.g., xyx or 121,
also referred to as “proper Euler angles”), [63]. One non-repeating sequence in particular (commonly
called either a 321 or 123 sequence) has become the ubiquitous aerospace sequence. These cited
manuscripts substantiate specific technical applications of the orbital and aerospace sequences,
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and those technical applications are the focus of this research in hopes of improved performance.
With the rise of digital computation in the Information Age, this research critically evaluates the
options (seeking diverging truths for the modern times) by addressing such questions as: Is the
ubiquitous aerospace sequence (123 or alternatively 321) the best rotation sequence? Evaluation
will be driven by two figures of merit: (1) mean and standard deviations of errors indicating how
well each rotation sequence represents true roll, pitch, and yaw angles, and (2) computation time to
reveals relative numerical superiority in the context of digital computers of the current state of the art.
Analysis and results demonstrate the fact that 321 and 123 rotation sequences result in disparate errors
and computation time, with the former being relatively superior. Furthermore, the 123 rotation was
significantly slower than all the other rotations. Secondly, the symmetric rotations were on average
slower than the non-symmetric rotations, despite the same mathematical process and number of steps
to solve for the Euler Angles. Lastly, the fastest non-symmetric rotation was the 321 and the fastest
symmetric was the 232, slightly faster than the 121 rotation. Taking all Direction Cosine Matrices
(DCM) rotations into account, the 232 rotation was the fastest.

The significance of this research cannot be overstated. The current state of the art uses rotational
sequences borne from a different era under a different paradigm, but the success of spaceflight has
solidified those older results into the current psyche. This manuscript illustrates that improved errors
and computational speed are both possible; and in keeping with the acceptance of the older paradigm
by evolution of spaceflight, the context of this research is rotational mechanics [62] applied to spacecraft
attitude control systems. These advancements complement advanced algorithms [37–45] for nonlinear
adaptive system identification [55–59] and control [46–54] permitting improved performance of space
missions [35,36,60] in a time when the United States has a pre-occupation with low-end conflicts in the
middle east amidst an increasing belligerent world of threats [30–34]. This realization culminated in
the recent edict to create a new military service in the US. purely dedicated to space [61].

2. Materials and Methods

The goal of a spacecraft’s Attitude Control System (ACS) is to have a functional system that
can move to and hold a specific orientation in three dimensional space, relative to an inertial frame.
With regard to classical and rigid body mechanics, the ACS takes into account the Kinetics, Kinematics,
Orbital Frame, and Disturbances to control this motion. Figure 1 depicts this process and details
the computational steps from desired angle inputs to Euler Angle outputs in the sequence of inputs
(from the white blocks in Figure 1) through light grey calculations to dark grey outputs: ϕ, θ, and ψ.
Section 2 will explain the theory behind this control system, Section 3 will detail the experimental
setup, and Section 4 will show the results and analysis.

Figure 1. Overall technical roadmap of the overall process: Euler Angle for Euler’s Moment Equation
driven by a trajectory-fed feedforward controller.
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2.1. Theory of Dynamics

Dynamics is synonymous with Mechanics. Newton called dynamics the science of machines
which may be divided into two parts: statics (later called kinematics) and kinetics [2]. Chasle’s
Theorem articulates how a complete description of motion may be described as a screw displacement
comprised of translation in accordance with Newton’s Law and rotations in accordance with Euler’s
Moment Equations T = J

.
ω + ω × Jω [6], where [J] is a matrix of mass moments of inertia explained

by Kane [23]. Investigation of motion without consideration of the nature of the body that is moved or
how the motion is produced is called Phoronomics, or “the laws of going”, or more commonly but less
properly kinematics [13], to be elaborated in Section 2.1.2. The rotation maneuver from one position
to another is measured from the inertial reference frame or [XI, YI, ZI] to the final position, the body
reference frame or [XB, YB, ZB]. For this simulation, a model was created to rotate from orientation A,
[XA, YA, ZA] to orientation B, [XB, YB, ZB]. Since the dot product of two unit vectors is the cosine of
the angle between them [25], it is referred to in older works as a direction cosine, which may also be
used to describe a satellite in an inclined earth orbit [17] or to express the orientation of the perifocal
reference frame with respect to the geocentric-equatorial reference frame [26]. Direction angles are
the angles between each coordinate axis and the individual components of the vector. The direction
cosines are simply the cosines of these angles [28]. The nature of direction cosines matrices is merely
to assemble the direction cosines which completely specify the relative orientation of two coordinate
systems [18], thus their appeal as universally applicable tools of kinematics.

2.1.1. Kinetics

Kinetics, or Dynamics, is the process of describing the motion of objects with focus on
the forces involved. In the inertial frame, Newton’s F = ma is applied but becomes Euler’s
T = J

.
ω when rotation is added, where T = J

.
ω is expressed in the inertial reference frame’s

coordinates, while T = J
.

ω + ω × Jω from above is still measured in the inertial frame, but expressed
in body coordinates.

Combining the Euler and Newton equations, we can account for all six degrees of freedom.
In application, when an input angle [ϕd, θd, ψd] is commanded, the feedforward control uses (1) as
the ideal controller with (2) as the sinusoidal trajectory to calculate the required torque [Tx, Ty, Tz]
necessary to achieve the desired input angle. The Dynamics calculator then uses (3) to convert the
torques into ωB values, where ωB is defined as the angular velocity of the body. In order to calculate
this, the non-diagonal terms in (4) are neglected, removing coupled motion and leaving only the
principle moments of inertia. Then, the inertia matrix J is removed from J

.
ω, and the remaining

.
ω is

integrated into [ωx, ωy, ωz], which is fed into the Kinematics block of the model to finally determine
the outputted Euler Angles.

Td = J
.

ωd + ωd × Jωd (1)

θ =
1
2

(
A + Asin

(
ω f t + ϕ

))
(2)

T =
.

Hi = J
.

ωi + ωi × Jωi (3)

2.1.2. Kinematics, Phoronomics, or “The Laws of Going”

Formulation of spacecraft attitude dynamics and control problems involves considerations of
kinematics, especially as it pertains to the orientation of a rigid body that is in rotational motion.
The subject of kinematics is mathematical in nature, because it does not involve any forces associated
with motion. The kinematic representation of the orientation of one reference frame relative to
another reference can also be expressed by introducing the time-dependence of Euler Angles.
The so-called body-axis rotations involve successive rotations three times about the axes of the rotated
body-fixed reference frame resulting in twelve possible sets of Euler angles. The so-called space-axis
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rotations instead involve three successive rotations using axes fixed in the inertial frame of reference,
again producing twelve possible sets of Euler angles. Because the body-axis and space-axis rotations
are intimately related, only twelve Euler angle possibilities need be investigated; and the twelve sets
from the body-axis sequence are typically used [26]. Consider a rigid body fixed at a stationary point
whose inertia ellipsoid at the origin is an ellipsoid of revolution whose center of gravity lies on the
axis of symmetry. Rotation around the axis of symmetry does not change the Lagrangian function, so
there must-exist a first integral which is a projection of an angular momentum vector onto the axis of
symmetry. Three coordinates in the configuration space special orthogonal group (3) may be used to
form a local coordinate system, and these coordinates are called the Euler angles.

Key tools of kinematics from which the Euler angles may be derived include direction cosines
which describe orientation of the body set of axes relative to an external set of axes. Euler’s angles may
be defined by the following set of rotations: “rotation about x axis by angle and θ, rotation about z’
axis by an angle ψ, then rotation about the original z-axis by angle ϕ”. Eulerian angles have several
“conventions: Goldstein uses [22] the “x-convention”: z-rotation followed by x’ rotation, followed by z’
rotation (essentially a 3-1-3 sequence). Quantum mechanics, nuclear physics, and particle physics the
“y-convention” is used: essentially a 3-2-3 rotation). Both of these have drawbacks, that the primed
coordinate system is only slightly different than the unprimed system, such that, ϕ and ψ become
indistinguishable, since their respective axes of rotation (z and z’) are nearly coincident. The so-called
Tait-Bryan convention in Figure 2 therefore gets around this problem by making each of the three
rotations about different axes: (essentially a 3-2-1 sequence) [22].

Figure 2. Execution of a 3-2-1 rotation from CA to CB (left to right); blue-dotted arrows denote angle
rotations. A direct rotation from CA to CB can be made about the Euler Axis, q4 in red. The set of three
rotations may be depicted as four rectangular parallelepipeds, where each contains the unit vectors of
the corresponding reference frame [29].

Kinematics is the process of describing the motion of objects without focus on the forces involved.
The [ωx, ωy, ωz] values from the Dynamics are fed into the Quaternion Calculator where (5) and (6)
yield q, the Quaternion vector. The Quaternions define the Euler axis in three dimensional space using
[q1, q2, q3]. About this axis, a single angle of rotation [q4] can resolve an object aligned in reference
frame A into reference frame B. The Direction Cosine Matrix (DCM) then relates the input ω values to
the Euler Angles using one of 12 permutations of possible rotation sequences, where multiple rotations
can be made in sequence. Therefore, the rows of the DCM show the axes of Frame A represented
in Frame B, the columns show the axes of Frame B represented in Frame A, and ϕ, θ, and ψ are the
angles of rotation that must occur in each axis sequentially to rotate from orientation A to orientation
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B, turning CA to CB. Figure 2 depicts a 3-2-1 sequence to rotate from CA to CB, where the Euler Axis is
annotated by the thickest line.

⎡⎢⎣ Jxx
.

ωx + Jxy
.

ωy + Jxz
.

ωz − Jxyωxωz − Jyyωyωz − Jyzω2
z + Jxzωxωy + Jzzωzωy + Jyzω2

y
Jyx

.
ωx + Jyy

.
ωy + Jyz

.
ωz − Jyzωxωy − Jzzωxωz − Jxzω2

x + Jxxωxωz + Jxyωzωy + Jxzω2
z

Jzx
.

ωx + Jzy
.

ωy + Jzz
.

ωz − Jxxωxωy − Jxzωyωz − Jxyω2
y + Jyyωxωy + Jyzωzωx + Jxyω2

x

⎤⎥⎦ =

⎡⎢⎣ Tx

Ty

Tz

⎤⎥⎦ (4)

⎡⎢⎢⎢⎣
.
q1.
q2.
q3.
q4

⎤⎥⎥⎥⎦ = 1
2

⎡⎢⎢⎢⎣
0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

q1

q2

q3

q4

⎤⎥⎥⎥⎦ = 1
2

⎡⎢⎢⎢⎣
q4 −q3 q2 q1

q3 q4 −q1 q2

−q2 q1 q4 q3

−q1 −q2 −q3 q4

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

w1

w2

w3

0

⎤⎥⎥⎥⎦ (5)

⎡⎢⎣ 1− 2
(
q2

2 + q2
3
)

2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q2q1 − q3q4) 1− 2
(
q2

1 + q2
3
)

2(q2q3 + q1q4)

2(q3q1 + q2q4) 2(q3q2 − q1q4) 1− 2
(
q2

1 + q2
2
)
⎤⎥⎦ =

⎡⎢⎣ C2C3 C2S3 −S2

S1S2C3 − C1S3 S1S2S3 + C1C3 S1C2

C1S2C3 − S1S3 C1S2S3 − S1C3 C1C2

⎤⎥⎦ (6)

2.1.3. The Orbital Frame

In order to more completely represent a maneuvering spacecraft, orbital motion must be included
with the Kinematics. This relationship is represented in Figure 1, where the output of the DCM is fed
into the Orbital Frame Calculator, and the second column of the DCM is multiplied against the orbital
velocity of the spacecraft. The second column of the DCM represents the Y axis of Frame B projected
in the X, Y, and Z axes of Frame A. This yields ωNO, the orbital velocity relative to the Inertial Frame.
Using (7), this velocity is removed from the velocity of the body relative to the Inertial Frame, leaving
only the velocity of the body relative to the Orbital Frame for further calculations.

ωOB = ωNB − ωNO (7)

2.1.4. Disturbances

Multiple disturbances torques exist that effect the motion of a spacecraft in orbit, two of which
are addressed in this paper. The first is the disturbance due to gravity acting upon an object in orbit,
where the force due to gravity decreases as the distance between objects increases. The force is applied
as a scaling factor to the mass distribution around the Z axis of a spacecraft. This force applied to a
mass offset from the center of gravity is calculated through the cross product found in (8) and yields
an output torque about the Z axis.

The second disturbance is an aerodynamic torque due to the force of the atmosphere acting upon
a spacecraft, which also decreases as the altitude increases. In (9), the force due to air resistance is
calculated by scaling the direction of orbital velocity by the atmospheric density, drag coefficient,
and magnitude of orbital velocity. This force then acts upon the center of pressure, which is offset from
the center of gravity, and yields a torque about the Z axis, due to the cross product in (9).

The disturbances are additive and act upon the dynamics in Figure 1. Because the ideal
feedforward controller is the dynamics, an offsetting component equal to the negative anticipated
disturbances can be used to negate the disturbance torque. This results in nullifying the disturbances
when the two are summed to produce ωOB, the velocity of the body relative to the Inertial Frame.

Tg = 3
μ

R3 ẑ × Jẑ (8)

Ta = Cp × fa = Cp ×
[(

ρaVR
2 Ap

)
V̂R

]
(9)
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2.2. Experimental Setup

This experiment implemented and compared the 12 DCM to Euler Angle rotations using a variable
step size. An angle of [ϕ, θ, ψ] = [30, 0, 0] was commanded, with the quaternion and torques initialized
as T = [0, 0, 0] and q = [0, 0, 0, 1]. The spacecraft had an inertia matrix of J = [2, 0.1, 0.1; 0.1, 2, 0.1; 0.1,
0.1, 2]. The orbital altitude was set at 150 km with a drag coefficient of 2.5. Both orbital motion and
torque disturbances were turned off.

Each simulation executed over a 5 s quiescent period, 5 s maneuver time, and 5 s post maneuver
observation period, totaling 15 s. The sinusoidal trajectory was calculated to have ω f = π/2 and
ϕ = π/2.

The model was built in Matlab and Simulink, where integrations were calculated using the
Runge–Kutta solver (ode4) with variable time steps of 0.1, 0.001, and 0.0001 s. Euler Angles were
resolved using the 12 unique DCM rotation sequences with the atan2 function.

Three Figures of Merit were used to assess performance. The first two were the mean and standard
deviation between the Euler Angles and Body Angles. The third was the calculation time for each
rotation as a measure of complexity.

3. Experimental Results and Analysis

3.1. Euler Angle Calculations and Post-Processing

Each of the Euler angles was derived using the DCM and rotation matrices, creating a relationship
like (7), but unique to each rotation. ϕ, θ, and ψ were isolated in this relationship as a method to
calculate the Euler Angles. Once calculated, the Euler Angles were implemented in the simulation.
However, when a [30, 0, 0] maneuver was commanded, discontinuities due to trigonometric quadrant
error manifested. Post-processing removed the error, but yielded output rotation did not match
the input command. In order to correct this, the derivations for each Euler Angle were revised to
correlate six of the 12 rotations, yielding the results in Figure 3. Therefore, the rotations in Figure 3 are
classified into two groups: the upper six non-symmetric rotations and lower six symmetric rotations.
An example of symmetric rotations is 121, while a 132 is non-symmetric rotation. The commanded
input and output maneuvers were not correlated for the 6 symmetric rotations.

Figure 3. Corrected Euler Angles vs time for all 12 DCM rotations.
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3.2. Euler Angle to Body Angle Accuracy

The output Euler Angles are not the same as the commanded Body Angles, but measuring this
delta is a method of determining accuracy. Figure 4 depicts the deviation over time and Table 1
provides the associated mean values and standard deviations for each of the rotations.

Figure 4. Euler and Body Angle deviation, using a 0.1 step size.

Table 1. Mean and standard deviation for all 12 rotations, using a 0.1 step size.

Mean Standard Deviation

DCM φ θ ψ φ θ ψ

123 0.413 0.011 0.011 0.462 0.015 0.014
132 0.413 0.010 0.013 0.462 0.013 0.016
213 0.413 0.011 0.005 0.462 0.015 0.006
231 0.413 0.014 0.005 0.462 0.018 0.005
312 0.413 0.016 0.013 0.462 0.021 0.016
321 0.413 0.014 0.005 0.462 0.018 0.005
121 27.544 0.015 2.869 25.804 0.019 2.823
131 2.456 0.015 2.869 2.680 0.019 2.823
212 14.977 15.413 0.010 13.726 14.150 0.010
232 15.010 15.413 0.010 13.757 14.150 0.010
313 14.980 15.413 0.028 13.728 14.150 0.034
323 14.977 15.413 0.010 13.725 14.150 0.010

The six non-symmetric rotations show consistent error in ϕ, and only begin to deviate beyond
the fifth decimal place in both mean error and standard deviation. While ϕ is commanded to change
to 30◦, θ and ψ are expected to remain at zero, but show non-zero values due to error incurred by
step size.

The six symmetric rotations are substantially harder to draw conclusions from because of the
uncorrelated rotations. The mean error and standard deviation values are drastically different from
each other in Table 1 and visibly deviate in Figure 4. Therefore, further correlation is required to
analyze accuracy. Table 1 values were calculated over the 15 s simulation time, noting that some
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sequences had not reached steady-state values making their error values even larger compared to
others in Table 1 if the simulations has been run until steady state was reached.

3.3. Step Size Versus Accuracy

The simulation step size was altered to determine the effects on accuracy for the 12 rotations.
If variable step-size were used, there would be no way to assure a certain level of accuracy, thus fixed
step size was utilized and iterated smaller-and-smaller until no discernable accuracy improvement is
noted. Figure 5 shows the results of reducing the step size from 0.1 to 0.001 s. Figures 4 and 5 remain
comparable, with the 102 order of magnitude decrease in step size yielded a comparable 102 order
of magnitude increase in accuracy. When a step size of 0.0001 s was used, the accuracy increased by
another order of magnitude, denoting the trend. Comparing against the accuracy of the rotations,
they maintained their relative accuracy; the 132 and 312 remained the most accurate rotations when the step
size decreased, and therefore has limited to no effect.

Figure 5. Euler and Body Angle deviation, using a 0.001 step size.

3.4. DCM to Euler Angle Timing

The execution time of each maneuver was standardized at 15 s across all scenarios. Therefore,
runtime deviations for each of the 12 rotations are attributable to the complexity of the calculations.
Table 2 shows the results for three different step sizes and the runtimes for each rotation. Because the
step size affected the simulation timing, comparisons were only valid between rotations of a similar
step size; however, relative comparisons between step sizes were valid.

Analyzing the results yields several observations. Firstly, the 123 rotation was significantly slower
than all the other rotations. Secondly, the symmetric rotations were on average slower than the
non-symmetric rotations, despite the same mathematical process and number of steps to solve for the
Euler Angles. Lastly, the fastest non-symmetric rotation was the 321 and the fastest symmetric was the
232, slightly faster than the 121 rotation. Taking all DCM rotations into account, the 232 rotation was
the fastest.
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Table 2. Simulation run times for all 12 Direction Cosine Matrices (DCM) rotations for a 30◦ roll
maneuver, using 0.1, 0.001, and 0.0001 step sizes.

Simulation Execution Time [S]

DCM 0.1 Step size 0.001 Step size 0.0001 Step size

123 8.408 11.836 28.433
132 1.533 6.789 22.187
213 1.419 6.978 22.102
231 1.188 4.436 23.259
312 1.549 4.302 20.971
321 1.018 3.475 21.420
121 0.952 3.715 20.505
131 1.190 4.082 23.331
212 1.015 3.860 21.005
232 0.931 3.710 21.410
313 0.939 3.789 20.908
323 1.091 3.955 22.044

4. Conclusions

This experiment implemented and compared the 12 DCM to Euler Angle rotations using
a variable step size. The effects on accuracy, step size, and timing were observed, and the
simulation results showed that the DCMs were classified into symmetric and non-symmetric rotations.
The non-symmetric rotations were easier to correlate and compare, while the symmetric rotations were
not, limiting analysis. Furthermore, no one rotation was the ideal in the analyzed categories. This is
beneficial, because trade space analysis can be conducted to determine accuracy, timing, and other high
priority design criteria to select the appropriate DCM. The lowest roll mean error is obtained by using
any of the 123, 132, 213, 231, 312, or 321 rotation sequences, while the lowest pitch mean error cannot be
achieved by the ubiquitous 321 sequence, instead the 132 sequence must be used; while the lowest yaw mean
error may be achieved with the 213, 231, and 321 sequences. Standard deviations show similar options
for selecting different rotation sequences for specific applications. Regarding computational efficiency,
the 232 sequence was best, followed by the 313, and then the 121 sequence. The ubiquitously accepted
standard 321 sequence was found to be fifth fastest, with four other rotation sequences bearing less
computational burden. Novel illustrations include the fact that one of the ubiquitous sequences (the
“313 sequence”) has degraded relative accuracy measured by mean and standard deviations of errors,
but may be calculated faster than the other ubiquitous sequence (the “321 sequence”), while a lesser
known “231 sequence” has comparable accuracy and calculation-time. Evaluation of the 231 sequence
also illustrates the originality of the research. These novelties are applied to spacecraft attitude control
in this manuscript, but can equally be applied to robotics, aircraft, and surface and subsurface vehicles.

Lastly, future research would refine the correlation for symmetric rotations, but furthermore
experimental validation will be performed on free-floating spacecraft simulator hardware at the
Naval Postgraduate School. The validation will be performed by duplicating one of the specifically
cited technical applications (e.g., any of the technical applications in [35–45]) seeking to validate
performance improvement.
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Abstract: The Richards equation plays an important role in the study of agro-hydrological systems.
It models the water movement in soil in the vadose zone, which is driven by capillary and
gravitational forces. Its states (capillary potential) and parameters (hydraulic conductivity, saturated
and residual soil moistures and van Genuchten-Mualem parameters) are essential for the accuracy of
mathematical modeling, yet difficult to obtain experimentally. In this work, an estimation approach
is developed to estimate the parameters and states of Richards equation simultaneously. In the
proposed approach, parameter identifiability and sensitivity analysis are used to determine the most
important parameters for estimation purpose. Three common estimation schemes (extended Kalman
filter, ensemble Kalman filter and moving horizon estimation) are investigated. The estimation
performance is compared and analyzed based on extensive simulations.

Keywords: state estimation; parameter estimation; moving horizon estimation; extended kalman
filter; ensemble kalman filter; richards equation; agro-hydrological systems

1. Introduction

Water and food scarcities are becoming serious issues worldwide due to population growth and
climate change. According to United Nations statistics [1], approximately 70% of all available fresh
water is consumed for agricultural activities, with the main consumer being irrigation. Currently,
the average water-use efficiency in irrigation worldwide is about 50% as reported in Fischer et al. [2].
Therefore, it is of vital importance to improve irrigation water-use efficiency, in order to address the
water crisis. Currently, it is still a common practice to use open-loop irrigation, which leads to excessive
consumption of water resources. Closed-loop irrigation is a promising alternative to reduce water
consumption and to better maintain the health of crops [3]. In the development of such a closed-loop
irrigation system, it is important to have the soil moisture information of the entire field, which is
in general very difficult to obtain. One way to overcome this challenge is to estimate the field’s soil
moisture based on limited sensor measurements. However, this depends on the accuracy of the
agro-hydrological model. In this work, we aim to develop a systematic parameter and state estimation
scheme that can provide accurate estimates of soil moisture.

Specifically, in this work, we consider simultaneous state and parameter estimation based on
agro-hydrological systems modeled using the Richards equation, which describes soil water dynamics.
Richards equation is a partial differential equation (PDE) which falls in the family of porous medium
equation (PME). The estimation and control problems of this kind of equation were widely studied in
chemical engineering [4–7] and meteorology [8,9]. The Richards equation is essentially composed of the
continuity equation and Darcy’s law, which is incorporated with two algebraic equations of hydraulic
conductivity and capillary capacity (derivative of soil-water retention curve) [10]. The parameters
of Richards equation are related to soil properties. Different approaches have been developed to
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estimate soil properties. Soil properties may be estimated in a soil lab by directly fitting the soil-water
retention curve and hydraulic conductivity curve using collected field data of soil moisture, hydraulic
conductivity and corresponding capillary pressure head [10]. However, soil properties may change
over time and it would be expensive to take frequent soil samples for lab analysis especially when a
big field is considered. Moreover, the hydraulic conductivity is difficult to measure. As an alternative
to direct lab analysis soil parameters can be estimated indirectly based on the Richards equation
and some easily-accessible field measurements such as soil moisture or capillary pressure head by
minimizing the difference between measured values and model predicted values. This type of indirect
approaches are referred to as inverse estimation [11]. Inverse estimation has been widely applied
and its applications can be generally classified into two groups: methods based on measurements
observed from one-step or multi-step outflow experiments [12–15] or methods based on time-series
in-situ measurements [16–20]. These inverse estimation methods can only estimate soil parameters but
not soil moisture or capillary pressure head. Moreover, they are mainly applicable to pre-collected
datasets and cannot be used for online parameter estimation.

Sequential data assimilation is another widely used approach in estimating soil parameters
online, which only requires the current measurement and prior knowledge of the system. In general,
it consists of two steps, which are prediction and update steps. In the first step, a dynamical system
model is initialized to describe a real process. Due to the limited knowledge about the process,
the model may not predict the process accurately. Then, in the update step, an algorithm is designed
to determine how to correct the prediction, based on field measurements and the dynamical model.
Moreover, sequential data assimilation has the ability to deal with uncertainties in the measurements
and the model. Particle filters (PF) [21], extended Kalman filters (EKF) [22] and ensemble Kalman
filters (EnKF) [23–27] are common and widely used algorithms in sequential data assimilation for
soil parameter estimation. Li and Ren [23] studied parameter estimation by augmenting parameters
as states and used EnKF as the estimation algorithm. They also studied the possible factors that
affect the performance of EnKF. In Reference [24], dual ensemble Kalman filter (DEnKF) was used to
first estimate the states using a standard KF and then to estimate the parameters using an unscented
Kalman filter. In Reference [25], two EnKFs were used to estimate the states and parameters, separately,
which neglected the complex nonlinear interaction between states and parameters. In Reference [26],
the authors compared three ensemble-based simultaneous state and parameter estimation methods,
augmented ensemble Kalman filter, DEnKF and simultaneous optimization and data assimilation
(SODA) to improve the soil moisture estimation accuracy. It concluded that the augmented EnKF was
the most robust method for general conditions and SODA was better at handling complex conditions.
However, it was pointed out that SODA required the highest computational resources.

However, one limitation of the above discussed methods is that they cannot handle constraints on
the states or parameters and the estimation performance deteriorates when the noise is not Gaussian
or the initial guess is not good. Constraints on the states and parameters are important information
and may be used to significantly improve estimation performance as will be demonstrated in the
simulations of this work. To address the above discussed problem, we can consider the optimization
based moving horizon estimation (MHE) method, which is widely used in state estimation of nonlinear
systems with explicit constraints taken into account [28–30].

In this work, we first introduce the investigated system and the formulation of the mathematical
model in Section 2. The formulations of the estimation methods, MHE, EKF and EnKF for the
augmented system are introduced in Section 3. Section 4 includes the methods of identifiability and
sensitivity, used to study the significance of parameters. Section 5 shows the synthetic experimental
setup, determination of significant parameters and MHE estimation results compared with EKF and
EnKF, followed by concluding remarks in Section 6. Some preliminary results of this work were
reported in Reference [31]. Compared with Reference [31], this paper provides significantly expanded
explanations and significantly extended simulation results.
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2. System Description and Problem Formulation

An agro-hydrological system describes the water movements between soil, crop and atmosphere.
Figure 1 shows a schematic of an agro-hydrological system, which is a modified version from
Reference [32]. The water movements usually involve water transportation within the soil, root water
extraction, transpiration and evaporation from the soil and leaves to the air and precipitation including
rain and irrigation.

Evaporation

Rain

Interception

Irrigation
(center pivot)

Root water 
extraction

Ground water

Capillary rise

Vadose zone

Transpiration

Leaching + 
groundwater 
recharge

Infiltration

Figure 1. A schematic diagram of an agro-hydrological system.

In this work, we focus on soil that is above the water table (i.e., soil in the vadose zone). Within the
vadose zone, the water movement is mainly driven by capillary and gravitational forces and the water
dynamics can be modeled using Richards equation under the assumptions: (1) soil properties are
spatially homogeneous within the system; (2) irrigation is uniformly applied on the surface of the
system; and (3) the horizontal water dynamics are much smaller than the vertical dynamics due to the
gravity force and the horizontal water dynamics can be neglected. Then, the 1D Richards equation
modeling the vertical water dynamics is shown below [33]:

c (h)
∂h
∂t

=
∂

∂z

[
K (h)

(
∂h
∂z

+ 1
)]

. (1)

In Equation (1), h (m) is the capillary potential in the unsaturated soil, K(h) (m/s) and c(h)
(1/m) denote hydraulic conductivity and capillary capacity of the soil, respectively. Note that in
Richards equation, the value 1 on the right-hand-side denotes the impact of gravitational force
on water in the vertical (z) direction. The upward z-direction is defined as the positive direction.
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The van Genuchten-Mualem soil hydraulic model K(h) and c(h), as functions of the capillary potential
h, are shown as follows [10]:

K (h) = Ks

[(
1 + (−αh)n)−(1− 1

n )
] 1

2

⎡⎣1−
[

1−
[(

1 + (−αh)n)−(1− 1
n )
] n

n−1
]1− 1

n
⎤⎦2

(2)

c (h) = (θs − θr) αn
(

1− 1
n

)
(−αh)n−1 [1 + (−αh)n]−(2− 1

n ) , (3)

where Ks (m/s), θs (m3/m3) and θr (m3/m3) are saturated hydraulic conductivity, saturated soil
moisture and residual soil moisture, respectively. The van Genuchten-Mualem parameters α (1/m)
and n characterize the properties of the soil, which are proportional to the inverse of the soil air entry
pressure and of soil porosity, respectively. These two closed-form expressions are derived by van
Genuchten based on his expression of soil-water retention curve and Mualem’s open-form expression
of hydraulic conductivity. Since Mualem’s expression is not studied further, in this work, only van
Genuchten’s soil-water retention equation is shown below [10]:

θ (h) = (θs − θr)

[
1

1 + (−αh)n

]1− 1
n
+ θr, (4)

where θ (m3/m3) denotes volumetric water content in soil.
The five parameters θs, θr, α, n and Ks determine the properties of a type of soil. With sufficient

soil samples, θs, θr, α and n can be estimated by fitting the soil-water retention curve Equation (4)
utilizing soil moisture and capillary potential data sets. Then Ks can be estimated by fitting hydraulic
conductivity and capillary potential data sets into Equation (2). By using this approach, we can only
get a snapshot of the soil properties at one time instant, however, soil properties do slowly change
over time due to agricultural activities [34]. While the experiments can be repeated to get parameter
estimates at different times, it is very time consuming and expensive, especially when the investigated
field is large and has various soil types over the field. Therefore, online state and parameter estimation
based on ease-to-access field measurements provides a favorable approach to estimate soil properties.

In this work, we study the estimation of soil properties based on real-time field measurements:
capillary potential h.

Finite Difference Model Development

Richards equation is a nonlinear partial differential equation (PDE) with respect to both the
temporal and spatial variables. Because of its complex structure, it is difficult to have a closed-form
solution. Therefore a finite difference method is implemented to find a numerical approximation of its
solution. Two-point forward difference scheme and two-point central difference scheme are used to
approximate the derivatives with respect to the temporal and spatial variables, respectively:

∂hi (k)
∂t

=
hi (k + 1)− hi (k)

Δt
(5)

∂

∂z

[
Ki (h (k))

(
∂hi (k)

∂z
+ 1

)]
=

Ki− 1
2
(h (k))

(
hi−1(k)−hi(k)
1
2 (Δzi−1+Δzi)

+ 1
)
− Ki+ 1

2
(h (k))

(
hi(k)−hi+1(k)
1
2 (Δzi+Δzi+1)

+ 1
)

Δzi
, (6)

where k ∈ [0, Nt] ⊂ Z and i ∈ [1, Nx] ⊂ Z, representing time and position indices, respectively.
Nt and Nx are the total number of time instants and states investigated. Δt = t(k + 1)− t(k) and Δzi
represents compartment thickness of compartment i. The state i is at the center of the compartment i.
The hydraulic conductivity, for example, Ki− 1

2
, is linearized explicitly as Ki− 1

2
(h) = K( hi−1+hi

2 ).
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The discrete-time finite difference model at node i and time instant k + 1 can be obtained by
substituting Equations (5) and (6) into Equation (1) as follows:

hi(k + 1) = hi(k) + Δt
Ki− 1

2
(h(k))

(
hi−1(k)−hi(k)
1
2 (Δzi−1+Δzi)

+ 1
)
− Ki+ 1

2
(h(k))

(
hi(k)−hi+1(k)
1
2 (Δzi+Δzi+1)

+ 1
)

Δzici(h(k))
, (7)

where ci(h(k)) is defined as c(hi(k)).
The Neumann boundary condition is utilized to characterize the top and bottom boundaries of

the system and are shown below, respectively:

∂h (k)
∂z

∣∣∣∣
T
= −1− qT(k)

K (h (k))
(8)

∂ (h (k) + z)
∂z

∣∣∣∣
B
= 1, (9)

where the subscripts T and B represent the top and bottom boundary conditions, respectively.
The qT (m/s) is the irrigation rate which is considered as the input of the system and free drainage
boundary condition is applied at the bottom.

Before introducing estimation methods, for the sake of simplicity, we obtain the compact form
of the model by combining Nx Equation (7) for all spatial nodes and the boundary conditions,
Equations (8) and (9). It is shown below:

x (k + 1) = F (x (k) , u (k) , p (k)) + ωx (k) (10)

where x(k) ∈ X ⊂ RNx represents the state vector containing Nx capillary pressure values for
corresponding spatial nodes, at the defined time instant k. p(k) ∈ P ⊂ R

Np , represents the parameter
vector containing the parameters to be estimated. u(k) ∈ U ⊂ RNu , ωx(k) ∈ Wx ⊂ RNωx denote the
input and the model disturbances, respectively.

The general output function, with the measurement noise taken into account, is shown below:

y (k) = G (x (k) , p (k)) + ν (k) , (11)

where y(k) ∈ Y ⊂ R
Ny and ν(k) ∈ V ⊂ RNν denote the measurement vector and measurement

noise. If the volumetric soil moisture θ is measured by the soil moisture sensor, Equation (11) is
the general form of Equation (4). On the other hand, if tensiometers are used to measure the water
potential h in the soil, Equation (11) simply represents a matrix indicating which states are measured
by the tensiometers.

Furthermore, in order to estimate the states and parameters simultaneously, the parameter vector
is augmented at the end of the state vector and treated as a part of the augmented state vector,
X = [x, p]T . An estimation of the augmented state vector X brings the benefit to estimate the
states and parameters at the same time. The augmented model can be constructed by augmenting
Equation (10) with the following equation:

p (k + 1) = p (k) + ωp (k) , (12)

where ωp(k) ∈ Wp ⊂ R
Nωp . When the parameter vector p is assumed to be constant during the study,

ωp is equal to 0.
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At last, the augmented model and output function used for simultaneous parameter and state
estimation are shown below:

X (k + 1) = Fa (X (k) , u (k)) + ωa (k)

y (k) = Ga (X (k)) + ν (k)
(13)

where X(k) ∈ Xa ⊂ R
Nx+Np , ωa(k) ∈ Wa ⊂ R

Nw+Np and the subscript a of F(·) and G(·) denotes the
augmentation.

3. Estimation Methods

In this work, three common estimation schemes, MHE, EKF and EnKF are applied to the
augmented model to estimate the states and parameters. The design of these methods are detailed next.

3.1. Moving Horizon Estimation

MHE is an online optimization based estimation method [28]. The MHE optimization problem
used in this work is formulated as follows:

min
X̂(k−N),··· ,X̂(k),ω̂a(k−N),··· ,ω̂a(k−1)

∥∥X̂(k − N)− X̄(k − N)
∥∥2

P−1 + ∑k−1
j=k−N ‖ω̂a(j)‖2

Q−1 + ∑k
j=k−N ‖ν̂(j)‖2

R−1 (14)

s.t. X̂(j + 1) = Fa(X̂(j), u(j)) + ω̂a(j), j ∈ [k − N, k − 1] ⊂ Z (15)

ν̂(j) = y(j)− Ga(X̂(j)), j ∈ [k − N, k] ⊂ Z (16)

X̄(k − N) = X̂(k − N|k − N) (17)

X̂(j) ∈ Xa, ν̂(j) ∈ V, j ∈ [k − N, k] ⊂ Z (18)

ω̂a(j) ∈ Wa, j ∈ [k − N, k − 1] ⊂ Z (19)

In the MHE optimization, the objective is to minimize the distance between the predicted and
observed measurements which is measured by the term ‖ν̂‖2

R−1 as shown in Equation (14), where the
term ν̂ is defined in Equation (16). The caret signˆindicates that the variable is estimated. The model
uncertainty or the process disturbance is taken into account and represented by ‖ω̂a‖2

Q−1 , where the

term ω̂a is defined in Equation (15). The arrival cost,
∥∥X̂ − X̄

∥∥2
P−1 summarizes the information from

the initial state of the model up to the beginning of the estimation window of the MHE. N denotes
the length of the estimation window. After each optimization, only the last estimated state within the
estimation window is used. X̂ and ω̂a within the moving window are the decision variables of the
optimization problem. The term X̄ follows the definition of Equation (17). X̂(k − N|k − N) represents
the estimated state X̂ at time instant k − N, which is estimated at time instant k − N. Matrices P, Q,
R are positive definite matrices and they are the covariance matrices of state uncertainty, process noise
ωa and measurement noise ν, respectively. In addition, MHE takes into account constraints on the
states, parameters and model uncertainties as expressed in Equations (18) and (19).

3.2. Extended Kalman Filter

EKF is a common method used for state estimation of nonlinear systems based on successively
linearizing the nonlinear system. It can be divided into two steps, which are prediction and update
steps. The prediction step predicts the state X and the state covariance matrix P. When a new
measurement is available, the Kalman gain K is calculated first and then X and P are updated.
The detailed steps are shown below:

1. Prediction step
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(a) State prediction:
X̂(k|k − 1) = Fa(X̂(k − 1|k − 1), u(k − 1))

The model disturbance are not propagated as the states and parameters. Instead, it is
explicitly included in the state covariance prediction.

(b) State covariance prediction:

P(k|k − 1) = Aa(k)P(k − 1|k − 1)Aa(k)T + Q

where Aa(k) = ∂Fa
∂X

∣∣∣
X̂(k−1|k−1)

and Q is the covariance matrix of the model disturbance
ωa.

2. Update step

(a) Kalman gain calculation:

K(k) = P(k|k − 1)Ca(k)T [Ca(k)P(k|k − 1)Ca(k)T + R]
−1

where Ca(k) = ∂Ga
∂X

∣∣∣
X̂(k|k−1)

and R is the covariance matrix of the measurement noise ν.

(b) State update:
X̂(k|k) = X̂(k|k − 1) + K(k)

(
y(k)− Ga(X̂(k|k − 1))

)
The augmented state and parameter vector X is updated when a new measurements y(k)
is available.

(c) State covariance update:

P(k|k) = (I − K(k)Ca(k)) P(k|k − 1)

State covariance matrix P is updated. I is the identity matrix with dimension Nx + Np.

3.3. Ensemble Kalman filter

The EnKF is a method developed by Evensen [35] based on Monte Carlo method. An ensemble of
trajectories of the system is generated based on the priori probability distribution of the case. A practical
implementation scheme which estimated the probability distribution based on the information
embedded within ensembles, instead of propagation of the state covariance matrix P, is discussed
in Reference [36]. Unlike EKF, it directly utilizes the nonlinear model Equation (13), which does not
require frequent model linearization. In addition, the model disturbance and measurement noise are
taken into account at the same time as the states and parameters propagate. It starts with generating
the ensembles, then follows with the two steps as the same as in EKF.

1. Initialization step

(a) Generating ensembles:

X̂m(0|0) ∼ N (X(0), P(0)), m ∈ [1, M] ⊂ Z

where an ensemble containing M initial states X̂m(0|0), m = 1, . . . , M, is generated and m
is the index of the ensemble. The ensemble follows the multivariate normal distribution
with mean, X(0) and covariance matrix of the initial state, P(0).

2. Prediction step
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(a) State prediction:

X̂m(k|k − 1) = Fa(X̂m(k − 1|k − 1), u(k − 1)) + ωm
a (k − 1), m ∈ [1, M] ⊂ Z

where ωm
a (k − 1) ∼ N (0, Q). Just like generating the ensemble of X̂m, a normally

distributed set of ωm
a are generated with the mean 0 and the covariance matrix Q.

Overall M trajectories propagate, with model disturbance explicitly considered.

3. Update step

(a) Kalman gain calculation:

K(k) = Pxy(k|k − 1)Pyy(k|k − 1)−1

where Pxy(k|k − 1) = 1
M−1 ∑M

m=1[(X̂m(k|k − 1)− X̄(k|k − 1))(ŷm(k|k − 1)− ȳ(k|k − 1))]
Pyy(k|k − 1) = 1

M−1 ∑M
m=1[ŷ

m(k|k − 1)− ȳ(k|k − 1)]2, X̄(k|k − 1) = 1
M ∑M

m=1 X̂m(k|k − 1)
and ȳ(k|k − 1) = 1

M ∑M
m=1 ŷm(k|k − 1). Pxy is the cross-covariance matrix of the state

and measurement vectors and Pyy is the auto-covariance matrix of the measurement
vector. The mean of the state or measurement vector is calculated based on the
corresponding ensembles.

(b) State update:

X̂m(k|k) = X̂m(k|k − 1) + K(k)
[
y(k) + νm(k)− Ga(X̂m(k|k − 1))

]
, m ∈ [1, M] ⊂ Z

where νm(k) ∼ N (0, R). All M state vectors are updated, when the new measurement y(k)
is available. The measurement uncertainty is taken into account by generating a normally
distributed ensemble of measurement noises νm(k), which has mean 0 and covariance
matrix R. At last, the estimated state X̂(k|k) is obtained as the mean of the corresponding
ensembles X̂m(k|k), m = 1, . . . , m.

4. Proposed Procedure to Determine Significant Parameters and Number of Sensors

In reality, it is nearly impossible to measure all states and the parameters can not be determined
easily. First, according to Reference [37], it states that the original system of Equation (10) is observable
using limited number of measurements. That means the states can be recovered. However, for this
work the augmented system of Equation (13) is studied. For this case, it is necessary to ensure
that the parameters are also identifiable since they are estimated with the states simultaneously.
The proposed procedure to check the identifiability of the parameters, to select appropriate parameters
for estimation and to determine the minimum number of sensors is shown in Figure 2. The key steps
are explained below.
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Augmented system 
construction and candidate 

parameter sets determination

Candidate selection based on 
sensitivity analysis

Minimum number of sensors 
selection

More than 1 candidate?

Parameter and state 
estimation design

No

Yes

Figure 2. A flowchart of the procedure to determine the significant parameters and number of sensors.

4.1. Determine Candidate Parameter Sets for Estimation

After augmenting the original nonlinear system with the parameters, the entire system may not
be observable. In order to determine which parameters can and should be estimated online, we resort
to observability analysis [38]. In this step, we assume that all the soil moisture states are measured;
that is, y = x. This ensures that the observability analysis results depend only on the parameters. If the
augmented system is not observable, then the unobservability is caused by the augmentation of the
parameters in the state vector.

When checking the observability of the augmented system, we start with the system with all
the parameters augmented. If the augmented system is not observable, then one of the parameters is
removed from the augmented system. If there are Np parameters, then there are Np different ways
to remove the one parameter. All these Np cases are considered. If after removing one parameter
and upon finding that the new augmented system is observable, we continue to the next step to
determine which parameter set to estimate (described in the next subsection). If we can still not find an
observable augmented system after removing one parameter, we continue to remove two parameters
from the original augmented system. Again, all the possible cases should be considered. If we can still
not find an observable system, we continue to remove three parameters from the original augmented
system. This continues until we find at least a system that is observable.
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When checking the observability, we propose to use the Popov-Belevitch-Hautus (PBH)
observability theory. Other observability tests may also be used. Since the augmented system is
a nonlinear system, it should be linearized before PBH can be applied. It is recommended that instead
of linearizing the system at one point, it should be linearized at different point along typical operating
trajectories as used in Reference [39].

Note that the observability analysis described in this step may generate more than one candidate
parameter sets that can be estimated through augmentation of the original agro-hydrological system.

4.2. Sensitivity Analysis

If there is only one candidate parameter set from the previous step, we can continue with the
candidate and move to the next subsection to find the minimum number of sensors. However, if there
are more than one candidates, we need to determine which parameter set to choose. We propose to
use sensitivity analysis to determine the importance of these parameters and pick the set containing
the most important parameters for further analysis.

The sensitivity analysis measures how the outputs respond when there is a change in one
parameter. The sensitivity matrix Sy(k) shown below contains the information about, at time instant k,
how each output is affected by X(0) which is constituted of the initial state x(0) and the parameters p.

Sy(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂y1
∂X1(0)

∂y1
∂X2(0)

· · · ∂y1
∂XNx (0)

∂y1
∂XNx+1(0)

· · · ∂y1
∂XNx+Np (0)

∂y2
∂X1(0)

∂y2
∂X2(0)

· · · ∂y2
∂XNx (0)

∂y2
∂XNx+1(0)

· · · ∂y2
∂XNx+Np (0)

...
...

...
...

...
...

...
∂yNy

∂X1(0)
∂yNy

∂X2(0)
· · · ∂yNy

∂XNx (0)
∂yNy

∂XNx+1(0)
· · · ∂yNy

∂XNx+Np (0)

.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k

The detailed steps to derive the sensitivity matrix is explained below and is inspired by
Reference [40]. When performing this sensitivity analysis, we consider the augmented system of
Equation (13) without considering the disturbance ωa and ν but with X(0) explicitly expressed as
shown below:

X(k + 1) = Fa(X(k), u(k), X(0))

y(k) = Ga(X(k), X(0)),
(20)

where X(0) is considered as an independent variable.
The objective is to check how a change in the initial state x0 and the parameters p affects

the prediction error e, which comes from the difference between the predicted y and the observed
measurements yM. We can represent this as:

∂e
∂X(0)

=
∂ (y − yM)

∂X(0)
=

∂y
∂X(0)

− ∂yM
∂X(0)

. (21)

Because the observed measurement yM is not affected by the initial state and parameters, the above
expression is simplified as below:

∂e
∂X(0)

=
∂y

∂X(0)
. (22)

Equation (22) can be derived by taking the partial derivative of Equation (20) with respect to the
augmented state vector X(0). And the sensitivity equations with respect to X(0) are shown below:

∂X(k + 1)
∂X(0)

=
∂

∂X(0)
Fa(X(k), u(k), X(0))

∂y(k)
∂X(0)

=
∂

∂X(0)
Ga(X(k), X(0)).

(23)
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Because the intermediate variable X(k) depends on the independent variable X(0) as well,
the chain rule is applied on the right hand sides of Equation (23) and we can further get that

∂X(k + 1)
∂X(0)

=
∂Fa

∂X(k)
· ∂X(k)

∂X(0)
+

∂Fa

∂X(0)
∂y(k)
∂X(0)

=
∂Ga

∂X(k)
· ∂X(k)

∂X(0)
+

∂Ga

∂X(0)
.

(24)

By defining SX(k) =
∂X(k)
∂X(0) and Sy(k) =

∂y(k)
∂X(0) , the above equations can be converted to ordinary

differential equations, which are shown below:

Sx(k + 1) =
∂Fa

∂X(k)
· SX(k) +

∂Fa

∂X(0)

Sy(k) =
∂Ga

∂X(k)
· SX(k) +

∂Ga

∂X(0)
.

(25)

Therefore, by giving the initial states of Equations (20) and (25) and solving them at the same
time, the sensitivity matrix Sy(k) can be obtained. Sy(k) may be normalized to obtain the normalized
sensitivity matrix SN :

SN(k) =
∂y(k)
∂X(0)

· X(0)
y(k)

. (26)

Once the sensitivity matrix is obtained, we can use it to determine the relative importance of
different parameters. Specifically, we can exam the magnitudes of the elements in the sensitivity
matrix. Each parameter corresponds to one column in the sensitivity matrix. We can use, for example,
the summation of the absolute values of the elements of each column to compare the relative importance
of parameters. A bigger value implies a more important parameter in terms of its impact on the outputs.
Among all the candidate parameter sets, we keep the parameter set with the highest sensitivity values.

4.3. Minimum Number of Sensors

After the parameter set to be estimated is determined, the original system is augmented with
the parameters, as illustrated in Reference [37], we can use the maximum multiplicity theory [41] to
determine the minimum number of sensors required to ensure the observability of the entire system.
Then, state estimation techniques can be used to estimate the states and parameters simultaneously.

5. Simulation Results and Discussion

5.1. System Description

In this work, a total length (L) of 67 cm loam soil column is investigated, which is shown in
Figure 3. The soil column is equally partitioned into 32 compartments. Correspondingly, Richards
equation is spatially discretized into 32 states (Nx) in the z-direction, with each state centered at the
corresponding compartment. At the surface of the soil, the irrigation, qT , is performed at the rate of
2.50 cm/day, from 12:00 PM to 4:00 PM daily. At the bottom, the free drainage boundary condition
is used, which means the gradient between the last state and the state at the bottom boundary is 0.
The soil column has the homogeneous initial condition (x(0)) of −0.514 m capillary pressure head
and the parameters of the soil are shown in Table 1 [42].

Table 1. The initial condition and parameters of the investigated loam soil column.

x(0) (m) Ks (m/s) θs (m3/m3) θr (m3/m3) α (1/m) n

Loam −0.514 2.89 × 10−6 0.430 0.0780 3.60 1.56
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Figure 3. A schematic diagram of the investigated loam soil column.
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5.2. Determination of Significant Parameters and Number of Sensors

The augmented system (Equation (13)) is utilized to achieve simultaneous parameter and state
estimation. First without knowing the observability of the augmented system, all 5 parameters (Ks,
θs, θr, α and n) are augmented; that is, Np = 5. In addition, all 32 states are assumed to be measured.
A 10-day state trajectory, without considering the process and measurement noise, is used in the rest
of the subsection for selecting appropriate parameters for estimation and determining the minimum
number of sensors. It is assumed that the measurements are available every 1 h.

Following the procedure as discussed in Section 4.1, we apply the PBH observability test on the
augmented system to check the identifiability of the parameters. The test is conducted every sampling
time, which requires the system to be linearized accordingly. According to the results, the augmented
system is not observable. This implies that it is impossible to identify the 5 parameters simultaneously.
In order to look for an observable system, parameters are removed from the augmented system.
We start with removing only 1 of the parameters and this results in 5 different augmented systems
with each one augmented with 4 parameters. Then, the observability of the 5 augmented systems
is checked. It was found that 2 of the 5 systems are observable. In these two systems, either θs or θr

is removed. Since observable systems are found, we proceed to the next step to determine the final
parameter set.

To determine which parameter set to use, the significance of θs and θr is compared based on the
sensitivity analysis described in Section 4.2. Sensitivity analysis is conducted based on the original
augmented system with all the parameters. The initial state of Equation (25) is an identity matrix of
size Nx + Np. By comparing the summation of the absolute values of the elements of each column
of the normalized sensitivity matrices SN , it can be found that the summation corresponding to the
column ∂yi

∂θs
(82,674) is much bigger than the one for ∂yi

∂θr
(14,997). Based on this, θs is considered as a

more important parameter because it has more impact on the output than θr. Therefore, the parameter
set containing θr is removed and the final parameter set will be used in the remaining analysis is
{Ks, θs, α, n}.

In the above analysis, it was assumed that all the states (soil moisture) are measured for the
purpose of determining the parameters for estimation. When the set of parameters is determined,
we remove this assumption to determine the minimum number of sensors (measurements) needed to
ensure the observability of the augmented system with 4 parameters. Following the method described
in Section 4.3, the maximum multiplicity method is conducted, and it can be found that the minimum
number of sensors is 4.

5.3. Simultaneous Parameter and State Estimation

According to the minimum number of sensors found above, it is assumed that 4 tensiometers
(Ny) are installed. Specifically, we assume that these sensors are installed at 7.30 cm, 24.1 cm, 40.8 cm
and 57.6 cm below the surface, which measure the 4th, 12th, 20th and 28th states, respectively. In the
simulations, the actual parameter values used are shown in Table 1 and they are assumed to be
constant within the investigated temporal domain. Process noise and measurement noise (ωx and ν)

are considered in the simulations and they have zero mean and standard deviations 3× 10−6 m and
8× 10−3 m, respectively.

In the design of the state and parameter filters (EKF, EnKF) and estimator (MHE), the model
augmented with 4 parameters (Ks, θs, α and n) is used. The initial guesses of the initial states and
parameters in the filters and estimator are listed in Table 2 and compared with those used in the
actual system.

For the EKF and EnKF, the weighting matrices Q and R are designed as the auto-covariance
matrices of ωx and ν with the standard deviations mentioned before. However, the diagonal elements
of Q corresponding to augmented parameters are 0, because the parameters are assumed to be constant.
In simulations, 10−20 is used to approximate the value 0 and to ensure the positive definiteness of
the matrix. The diagonal elements of P corresponding to the states are configured as the square of

145



Mathematics 2020, 8, 134

3 × 10−3 and those of parameters are configured as the square of 3 × 10−2. For the designed EnKF,
100 ensembles are used.

Table 2. True values of initial states and parameters of the process and the initial guesses used in filters
and estimator.

x(0) (m) Ks (m/s) θs (m3/m3) α (1/m) n θr (m3/m3)

Loam (true value) −0.514 2.89 × 10−6 0.430 3.60 1.56 0.0780
Initial guess −0.617 3.18 × 10−6 0.387 3.24 1.72 0.0780

For the design of MHE, the estimation window size is selected to be 8 h. The weighting matrices
P, Q, and R retain the same ratio with respect to those used in EKF and EnKF but with a much bigger
magnitude to ensure the numerical stability of the associated optimization problem. In addition,
the P matrix is constant for all the optimizations. The constraints of the states, parameters and the
model uncertainty are listed in Table 3. The upper and lower bounds of the term ω̂p are 0 because the
parameters are constant.

Table 3. Lower and upper bounds used in moving horizon estimation (MHE).

x̂ (m) K̂s (m/s) θ̂s (m3/m3) α̂ (1/m) n̂ ω̂x ω̂p

Lower bounds −1.00 2.31 × 10−6 0.344 2.88 1.25 −∞ 0.00
Upper bounds −1.00× 10−4 3.47× 10−6 0.516 4.32 1.87 ∞ 0.00

In the following simulations, the root mean square error (RMSE) will be used to evaluate the
performance of the MHE, EKF and EnKF. The estimation performance in terms of the states and
parameters are evaluated separately. Their equations are shown below:

RMSEx(k) =

√
∑Nx

i=1(x̂i (k)− xi (k))2

Nx
(27)

RMSEp(k) =

√√√√∑
Np
i=1( p̂i (k)− pi (k))2

Np
. (28)

First, we performed simulations assuming that the parameter θr (which is not estimated) is known
and is the same as the value used in the actual system. Figures 4 and 5 show some representative
estimated states and all the parameters using MHE, EKF and EnKF, which are also compared with
their true values. Figure 4 shows the state trajectories of the top node and a few middle nodes and one
bottom node. From the figure, it can be seen that the top node has more dynamics because it takes
time for irrigated water to pass from the upper part and to the lower part. In terms of state estimation
performance, from Figure 4, it can be seen that MHE and EnKF give very much more accurate state
estimates than the EKF. Note that from Figure 4, it can also be seen that the estimates of the 12th state
(h12) converge faster than the other estimates. This is because it is a sensor node.

In terms of parameter estimation, Figure 5 shows the results. From the figure, it can be seen that
only MHE is capable of estimating the parameters, whereas those estimated by EKF and EnKF diverge
from their true values. This may be because of the constraints used in MHE. These constraints provide
more useful information to MHE in addition to the measurements.

The trajectories of the performance indices RMSEx and RMSEp associated with the MHE,
EnKF and EKF are shown in Figure 6. These trajectories further confirm that the MHE and EnKF have
better performance than EKF in estimation of the states and the MHE outperforms both EnKF and
EKF in parameter estimation.
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Figure 4. Selected trajectories of the process state and estimated states using MHE, extended Kalman
filter (EKF) and ensemble Kalman filter (EnKF).

In the previous set of simulations, the parameter θr is assumed to be accurately known and is
used in the MHE, EnKF and EKF. However, this assumption may not hold in practice. In this set of
simulations, we study how an inaccurate θr may affect the state and parameter estimation performance.
In this set of simulations, the value of θr used in the MHE, EnKF and EKF is assumed to be 10% off
from the actual value. The tuning parameters used in the filters and estimator are the same as the
ones used in the previous simulations. In this case, the EnKF and EKF cannot give accurate parameter
estimates as in the previous case, either. The MHE is still the only estimation method that can give
good parameter estimates. Table 4 summarizes the estimated parameters using the MHE in the two
sets of simulations. The reported estimated values are the mean estimated values after the estimates
have converged. According to the results, a 10% difference of θr does not affect the estimation results
of other parameters when MHE is used. This verifies that the removal of θr has a minor impact on the
overall state and parameter estimation performance. This further implies that the proposed method in
parameter selection is applicable.

In this work, the spatial heterogeneity in soil properties is not considered. When parameter
heterogeneity presents, a 3D Richards equation is needed to describe the water dynamics. The studied
MHE algorithm can be extended to handle heterogeneous parameters in a straightforward manner.
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It is expected that the weighting matrices should be tuned taking into account the spatial heterogeneity.
Also, a system with different soil types may be decomposed into a few subsystems with each subsystem
having the same type of soil and distributed or decentralized estimation may be used accordingly.
MHE may still be used in the design of the subsystem estimators.

Figure 5. Trajectories of estimated parameters using MHE, EKF and EnKF, compared with their
actual values.

Table 4. Comparison of estimated parameters using MHE with their true values, when θr is assumed
to be accurate and 10% off.

Cases θr (m3/m3) K̂s (m/s) θ̂s (m3/m3) α̂ (1/m) n̂

θr (true value) 0.0780 2.89 × 10−6 0.430 3.60 1.56
θ̂r (= θr) 0.0780 2.89× 10−6 0.430 3.60 1.56

θ̂r (= 90%θr) 0.0702 2.89× 10−6 0.430 3.60 1.56
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Figure 6. Trajectories of RMSE measuring the estimation performance of MHE, EKF, and EnKF.

5.4. Effects of the Simulation Parameters

In this subsection, we further study the performance of MHE in terms of number of measurements
and size of estimation window of MHE.

5.4.1. Effects of Number of Measurements

First, we study the effects of number of measurements on the estimation performance of MHE.
In addition to the case with 4 measurements, we also consider cases with 8 and 12 measurements.
Figure 7 shows how the two performance indices RMSEx and RMSEp evolve over time. From the top
plot, it can be seen that the more sensors are used, the faster state estimates converge. This is because
the sensors are directly measuring the states. When there are more sensors, it implies that we have more
information of the states. For the parameter, there is no obvious difference between the convergence
speeds with different number of measurements. Comparing the convergence speed between the state
estimates and parameter estimates, the state estimates converge much faster within one day while the
parameter estimates take longer time to converge (about 2 days). Overall, from this set of simulations,
it can be concluded that 4 sensors are sufficient to estimate all states and parameters accurately.
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Figure 7. Trajectories of RMSE measuring the error between actual model and estimated states and
parameters of MHE using 4, 8 and 12 measurements.

5.4.2. Effects of MHE Estimation Window Size

The effects of the size of the estimation window of MHE on estimation performance are also
studied assuming that there are 4 measurements. Figure 8 shows how the two performance indices
RMSEx and RMSEp evolve over time with different estimation window sizes. From the figure, it can
be seen that from both plots that a window size of 8 is sufficient and further increase of the estimation
window size does not bring significant performance improvement.
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Figure 8. Trajectories of RMSE measuring actual model and estimated states and parameters of MHE
with window sizes of 8, 12, 16 and 20.

6. Conclusions

In this work, we have investigated simultaneous state and parameter estimation using moving
horizon estimation (MHE), extended Kalman filter (EKF) and ensemble Kalman filter (EnKF) applied
to an infiltration process in an agro-hydrological system. First, a procedure was proposed to find
the appropriate parameter set for estimation based on the observability of the augmented system
and the sensitivity of the outputs to the parameters. It was found that only 4 out of 5 parameters
(hydraulic conductivity, saturated soil moisture and van Genuchten-Mualem parameters) can be
considered in simultaneous state and parameter estimation. The less important parameter (residual
soil moistures) was not considered in parameter estimation. After determining the parameter set
for estimation, the minimum number of sensors was also found based on the maximum multiplicity
theory. Simulation results showed that the MHE has an overall the best state and parameter estimation
performance due to the inclusion of state and parameter constraints in the estimation. It was also
found that the uncertainty in the residual soil moisture (which was not estimated) does not affect the
overall estimation performance too much. The effects of number of measurements and estimation
window size of the MHE were also studied through simulations. It was found that 4 measurements
and a window size of 8 for MHE are sufficient to provide accurate state and parameter estimates.
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Abstract: The velocity and thermal slip impacts on the magnetohydrodynamics (MHD) nanofluid
flow and heat transfer through a stretched thin sheet are discussed in the paper. The no slip condition
is substituted for a new slip condition consisting of higher-order slip and constitutive equation.
Similarity transformation and Lie point symmetry are adopted to convert the derived governed
equations to ordinary differential equations. An approximate analytical solution is gained through
the homotopy analysis method. The impacts of velocity slip, temperature jump, and other physical
parameters on flow and heat transfer are illustrated. Results indicate that the first-order slip and
nonlinear slip parameters reduce the velocity boundary layer thickness and Nusselt number, whereas
the effect on shear stress is converse. The temperature jump parameter causes a rise in the temperature,
but a decline in the Nusselt number. With the increase of the order, we can get that the error reaches
10−6 from residual error curve. In addition, the velocity contours and the change of skin friction
coefficient are computed through Ansys Fluent.

Keywords: velocity-slip; temperature-jump; homotopy analysis method; nanofluids; power-law fluids

1. Introduction

In a heat transfer mechanism, fluid is a main medium as a heat transfer carrier. Therefore,
improving the thermal transfer efficiency of the fluid used is a vital challenge in the industry.
Certain experiments have shown that the thermal conductivity of fluids containing metal and oxide
particles is higher than that of traditional base liquids such as oil, water, and ethylene glycol [1–3].
For the sake of improving the heat transfer efficiency of the fluid, researchers have added metal
and non-metallic nanoparticles into the traditional base liquid to form a new compound “nanofluid”.
Nanofluids are made up of base fluids and nanoparticles, but not a simple mixture, which are composed
of nano-sized solid particle or tubes suspended in the base fluids, are solid–liquid composite materials.
Nanoparticles have high surface-activity and tend to aggregate together with time. The idea was
first proposed by Choi and Eastman [4]. Nanofluids are important in the fields of energy, chemical,
microelectronics, and information. Recently, the flow and conduct heat of nanofluids have been studied
by certain scholars. A quick overview is given here. Sheremet et al. [5] discussed natural convection of
alumina-water nanofluid in an inclined wavy-walled cavity. Nanofluids flow in microchannels with
heat conduction was discussed by Bowers et al. [6]. Hashim et al. [7] discussed the mixed convection
and heat conduction of Williamson nanofluids under unsteady condition. Mahdy [8] presented
the effects of magnetohydrodynamics (MHD) and variable wall temperature on non-Newtonian
Casson nanofluid flow. Asadi et al. [9] presented the latest progress of preparation methods and
thermophysical properties of oil-based nanofluids. Pourfattah et al. [10] simulated water/CuO
nanofluid fluid flow and heat transfer inside a manifold microchannel. Alarifi et al. [11] investigated
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the effects of solid concentration of nanoparticles, temperature, and shear rate on the rheological
properties of nanofluid. For a traditional base fluid, there are two main types: Newtonian fluids
and non-Newtonian fluids. In industry, non-Newtonian fluids play an important role, such as juices,
starch solutions, egg whites, and apple pulp. To understand behavious of non-Newtonian fluids,
certain models have been presented. Power law model is relatively simple, widely used among
these models. Researchers have further investigated the flow and conduct heat of power law fluids.
Javanbakht et al. [12] studyed the heat conduction on the surface of a power law fluid. Turan et al. [13]
discussed mixed convection of power-law liquids in enclosures. The heat conduction of power law
liquid in various section tubes was considered by Zhang et al. [14]. Ahmedet et al. [15] addressed
MHD power law liquid flow in a Darcy–Brinkmann porous medium.

In this paper, the base fluid of a nanofluid is power law fluid. When nanoparticles are added
into the traditional base liquid, local velocity slip may happen as an effect of high shear force between
the fluid and the wall, and the slip condition is no longer negligible in the nanometer or micro
scales. The velocity slip is a finite velocity boundary condition between the fluid and the solid [16].
Researchers have done certain studies on the slipping problems of nanofluids. Ramya et al. [17]
studied the viscous flow and heat transfer of nanofluid through a stretched sheet with the effect of
magnetic field, velocity, and thermal slip. Abbas et al. [18] discussed the stagnation flow of micropolar
nanofluids through a cylinder with slip. The effect of heat and velocity slip on the flow of Carson
nanofluids through a cylinder was discussed by Usman et al. [19]. Babu et al. [20] investigated the
three-dimensional MHD nanofluid flow over a variable thickness slendering stretching sheet with
the effect of thermophoresis, Brownian motion, and slip parameter. The above studies all discussed
the first-order slip model, whereas higher-order slips should be considered when the velocity and
temperature profiles of an average free path are nonlinear. It is now known that the inclusion of
higher-order slip yields results closer to those by experiments [21]. Thus, various investigations on
higher-order slip flows were published by Uddin et al. [22], Kamran et al. [23], Farooq et al. [24],
and Yasin et al. [25]. These all suggest that the power law constitutive equation should be considered
on the basis of high order slip for a power law nanofluid.

In the aforementioned literature, there are few papers about the flow and heat transfer of
magnetic nanofluids with higher-order slip parameters. Therefore, a new mathematical model is
proposed. With the help of similarity transformation variables, governing equations are converted to
ordinary differential equations, whose solution is solved using homotopy analysis method. The effects
of nanofluid velocity, temperature, concentration, skin friction coefficient and Nusselt number on
various physical parameters are simulated. In addition, the fluid flow situation is visualized by the
computational fluid dynamics (CFD) software Ansys Fluent.

2. Mathematical Modelling Formulation

2.1. Flow Behavior

Consider a steady, two-dimensional, incompressible MHD fluid flow with copper through a
stretching thin plate. All variables mentioned are presented in Tables 1 and 2 [26] gives some physical
capabilities of the base liquid and nanoparticles. Meanwhile, a transverse magnetic field is utilized,
where the strength is Bx and the presence of surface tension is also considered. Given the above
hypotheses, the governing equations composed of continuity equation and momentum equation can
be given as

∂U
∂X

+
∂V
∂Y

= 0, (1)

U
∂U
∂X

+ V
∂U
∂Y

= − 1
ρn f

∂P
∂X

+
∂SXX

∂X
+

∂SXY
∂Y

+
σB2

ρn f
(Ue −U), (2)
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U
∂V
∂X

+ V
∂V
∂Y

= − 1
ρn f

∂P
∂Y

+
∂SYX
∂X

+
∂SYY
∂Y

, (3)

Sij = 2μn f (2Dml Dml)
n−1

2 Dij, Dij =
1
2

(
∂Ui
∂Xj

+
∂Uj

∂Xi

)
. (4)

Table 1. Nomenclature.

Symbol Description Symbol Description

Bx magnetic field strength cp heat capacity
U field velocity Ue free stream speed
T temperature in the boundary layer T∞ temperature far away from the sheet

Tw unified temperature C concentration
C∞ fluid concentration in the free stream Cw unified concentration
Sij deviatoric part of the stress tensor δij unit tensor
Dij rate-of-strain tensor σ electrical conductivity
DT thermophoresis diffusion coefficient λ1, λ2, λ3 slip parameters of velocity
ϕ nanoparticle volume fraction ρ density
α thermal diffusivity k thermal conductivity
P pressure μ dynamic viscosity

Nu Nusselt number Cf skin friction coefficients
Pr Prandtl number Nt thermophoresis parameter
Nb Brownian motion parameter Sc Schmidt number
M Hartmann number Re Reynolds number
DB Brownian diffusion Sh Sherwood number

f fluid phase s solid phase
n f nanofluid η similarity variable

U, V velocity components X, Y Cartesian coordinates

In the above, X and Y are the Cartesian coordinates along and normal to the extension sheet,
respectively. U is the velocity field. U and V are the x and y components of U. P is the pressure,
σ the electric conductivity, Bx the magnetic field along the forward direction of Y-axis, Ue the free
stream speed, Sij the deviatoric part of the stress tensor ςij = −Pδij + Sij, δij the unit tensor, and Dij
the rate-of-strain tensor. ρn f the effective density and μn f the effective dynamic viscosity given by [27]

ρn f = (1− ϕ)ρ f + ϕρs, μn f =
μ f

(1− ϕ)2.5 . (5)

The other parameters of nanofluid (ρCp)n f , αn f , kn f are given [27]

(ρCp)n f = (1− ϕ)(ρCp) f + ϕ(ρCp)s, αn f =
kn f

(ρCp)n f
, (6)

kn f

k f
=

ks + 2k f − 2ϕ(k f − ks)

ks + 2k f + ϕ(k f − ks)
, (7)

where subscripts s, f , and n f represent the solid particle, base liquid, and the thermophysical properties
of nanofluid, respectively. ϕ is the solid volume fraction of nanoparticles, (ρCp)n f the effective heat
capacity. The thermal conductivity is kn f and the thermal diffusivity is αn f .

For the sake of analyzing the boundary layer in a better way, the following nondimensional
variables are introduced,

x =
X
L

, y =
Y
δ

, u =
U

Uw
, v =

LV
δUw

, p =
P

ρ f U2
w

, τij =
Sij

ρ f U2
w

, (8)
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where L and δ represent the characteristic length in the X and Y direction, respectively. Uw denotes the
velocity in the X-direction.

Thus, Equations (1)–(4) become

∂u
∂x

+
∂v
∂y

= 0, (9)

u
∂u
∂x

+ v
∂u
∂y

= − ρ f

ρn f

∂p
∂x

+
∂

∂y
(

μn f ρ f

ρn f

∣∣∣∣∂u
∂y

∣∣∣∣n−1 ∂u
∂y

) +
ρ f σB2

ρn f
(ue − u), (10)

∂p
∂y

= 0. (11)

From Equation (11), it can be concluded that the pressure p is identical with the pressure of
mainstream flow.

− ∂p
∂x

= ue
∂ue

∂x
. (12)

For a power law nanofluid, velocity slip effect need be considered. In many investigations,
the first-order model is adopted widely. The model is suitable under the assumption that temperature
and velocity profiles are linear through a average free path. However, when temperature and
velocity profiles are nonlinear through a average free path, higher-order slip would become possible.
Mitsuya [28] has obtained a second-order slip model from a physical phenomenon by considering the
accommodation coefficient:

F = α f1m1[(
2
3

λ)
∂u
∂y

+
1
2
(

2
3

λ)2 ∂2u
∂y2 + uslip]|y=0, (13)

where F is the shear stress, α an accommodation coefficient relative to momentum, f1 the frequency of
molecular bombardment, m1 the molecular mass density, and λ the local molecular average free path.

In this paper, as the base fluid is a power flow fluid, namely, the shear stress F = μn f

∣∣∣ ∂u
∂y

∣∣∣n−1
∂u
∂y ,

the constitutive equation of a power flow fluid with a higher-order slip is considered. The enhanced
slip model is written as

u(x, 0) = Uw +

(
A1

∂u
∂y

+ A2
∂2u
∂y2 + A3

∣∣∣∣∂u
∂y

∣∣∣∣n−1 ∂u
∂y

)
|y=0, (14)

v(x, 0) = 0, u(x, ∞) = ue = axm, (15)

where A1, A2, and A3 denote the velocity slip coefficients; Uw is the the speed of the stretch plate; and
Uw = cxm.

For the sake of deriving a simplified model by converting governing equations into ordinary
differential equations, a stream function ψ(x, y) is introduced in this paper such that u = ∂ψ

∂y , v = − ∂ψ
∂x .

Then Lie-group transformationsis also introduced to obtain a new set of similar variables.

Γ :x∗ = xeεα1 , y∗ = yeεα2 , ψ∗ = ψeεα3 , u∗ = ueεα4 , v∗ = veεα5 , u∗e = ueeεα6 . (16)

Equation (16) can be considered as a point-transformation of coordinates (x, y, ψ, u, v, ue) into
coordinates (x∗, y∗, ψ∗, u∗, v∗, u∗e ). Substituting Equation (16) in Equation (10), we get
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eε(α1+2α2−2α3)(
∂ψ∗

∂y∗
∂2ψ∗

∂x∗∂y∗ −
∂ψ∗

∂x∗
∂2ψ∗

∂y∗2 )

= −eε(α1−2α6)
ρ f
ρn f

u∗e
du∗e
dx∗ + eε(3α2−α3)

μn f ρ f
ρn f

∂3ψ∗

∂y∗3 eε(n−1)(2α2−α3)(−∂2ψ∗

∂y∗2 )
n−1

+
ρ f σB2

ρn f
(e−α6εu∗e − e(α2−α3)ε

∂ψ∗

∂y∗ ).

(17)

The boundary condition Equations (14) and (15) become

∂ψ∗
∂y∗ (x∗, 0) = eε(α3−α2−mα1)cx∗m + A1eεα2

∂2ψ∗

∂y∗2 + A2eεα2
∂3ψ∗

∂y∗3

+ A3e(nε(2α2−α3)+α3−α2)(−∂2ψ∗

∂y∗2 )
n−1(−∂2ψ∗

∂y∗2 ), at y∗ = 0;
(18)

∂ψ∗

∂x∗ (x∗, 0) = 0, at y∗ = 0; (19)

∂ψ∗

∂y∗ (x∗, ∞) = eε(α3−α2−mα1)ax∗m, at y∗ → ∞. (20)

The system will remain unaltered under the group of transformations Γ, so the parameters have
the following relations, namely,

α2 + α4 − α3 = α1 + α5 − α3 = α3 − α1 − mα2 = α3 − α2 − mα1 = 0, (21)

2α2 − 2α3 + α1 = n(2α2 − α3) + α2 = (n + 1)α2 − nα4 = α2 − α4 − α5. (22)

Thus, Equation (16) becomes

Γ : x∗ = xeεα1 , y∗ = ye
mn−2m+1

n+1 α1ε, ψ∗ = ψe
2mn−m+1

n+1 α1ε,

u∗ = uemα1ε, v∗ = ve
2mn−m−n

n+1 α1ε.
(23)

Based on the above Lie-group transformations, the stream function and similar parameter can be
prescribed as follows,

η =

(
c2−n

μ f

) 1
n+1

x
2m−mn−1

n+1 y, ψ =

(
μ f

c1−2n

) 1
n+1

x
2mn+1−m

n+1 f (η). (24)

After further similarity transformations, a nonlinear ordinary differential equation is obtained.

n f ′′′| f ′′|n−1 + mϕ1(d2 − f ′ f ′) + ϕ1 ϕ2
2mn − m + 1

n + 1
f f ′′ + ϕ1M(d − f ′) = 0. (25)

The boundary condition Equations (14) and (15) now develop into

f (0) = 0, f ′(∞) = d, (26)

f ′(0) = 1 + λ1 f ′′(0) + λ2 f ′′′(0) + λ3
∣∣ f ′′(0)

∣∣n−1 f ′′(0), (27)

where d = a
c , M is the Hartmann number with M =

σB2
0

c , λ1, λ2, and λ3 are velocity slip parameters;
these parameters and ϕ1, ϕ2 [27] can now be written as
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λ1 = A1(
c2−n

μ f
)

1
n+1 x

2m−mn−1
n+1 , λ2 = A2(

c2−n

μ f
)

2
n+1 x

2(2m−mn−1)
n+1 , (28)

λ3 = A3

(
cxm(

c2−n

μ f
)

1
n+1 x

2m−mn−1
n+1

)n

, (29)

ϕ1 = (1− ϕ)2.5, ϕ2 = 1− ϕ + ϕ
ρs

ρ f
, (30)

where A1, A2, and A3 are arbitrary positive constants.

2.2. Heat and Mass Transfer Behavior

The heat and mass equations can now be formulated as follows,

U
∂T
∂X

+ V
∂T
∂Y

=
∂

∂Y

(
k(T)

∂T
∂Y

)
+

τ

μ f
Cf

3
n + 1

(C3x3m−1)

n − 1
n + 1

(
DB

∂C
∂Y

∂T
∂Y

+
DT
T∞

(
∂T
∂Y

)2
)

,
(31)

U
∂C
∂X

+ V
∂C
∂Y

= μ f
2

n+1 (C3x3m−1)
n−1
n+1

(
DB

∂2C
∂Y2 +

DT
T∞

∂2T
∂Y2

)
, (32)

k(T) =
kn f

(ρCp)n f
(Tw − T∞)1−nUn−1

w

∣∣∣∣ ∂T
∂Y

∣∣∣∣n−1
. (33)

The boundary conditions are as follows,

T(X, 0) = Tw + kn f (Tw − T∞)1−n
∣∣∣∣ ∂T
∂Y

∣∣∣∣n−1 ∂T
∂Y

|y=0, (34)

C(X, 0) = Cw, T(X, ∞) = T∞, C(X, ∞) = C∞, (35)

where T shows temperature in the boundary layer, T∞ denotes the temperature away from the sheet
and is a constant, and Tw indicates the unified temperature of the fluid. C is the concentration of the
fluid, C∞ is the fluid concentration in the free stream, and Cw the unified concentration of the fluid.

For the sake of gaining the similarity solutions of equations, the following similarity variables
are introduced,

θ(η) =
T − T∞

Tw − T∞
, φ(η) =

C − C∞

Cw − C∞
. (36)

Then, Equations (31)–(33) become

nϕ4θ′′|θ′|n−1 +
2mn − m + 1

n + 1
Prϕ3 f θ′ + PrNbϕ3φ′θ′ + PrNtϕ3θ′2 = 0, (37)

φ′′ + 2mn + 1− m
n + 1

Sc f φ′ + Nt
Nb

θ′′ = 0. (38)

The boundary conditions Equations (34) and (35) are converted to

θ(0) = 1 + βθ′(0)|θ′(0)|n−1, θ(∞) = 0, (39)

φ(0) = 1, φ(∞) = 0, (40)

where Pr denotes Prandtl number, Nt represents thermophoresis parameter, Sc is Schmidt number,
and Nb is Brownian motion parameter. The above parameters, ϕ3, ϕ4, and β, are defined as
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Pr =
μ f

α f
, Nb =

τDB(Cw − C∞)

μ f
, Nt =

τDT(Tw − T∞)

μ f T∞
, (41)

ϕ3=1− ϕ + ϕ
(ρCp)s
(ρCp) f

, ϕ4 =
ks + 2k f − 2ϕ(k f − ks)

ks + 2k f + ϕ(k f − ks)
, (42)

β =
kn f

μ
n

n+1
n f

(C2n−1X2mn−n−m)
1

n+1 , Sc =
μ f

DB
. (43)

Momentous physical parameters are expressible as follows,

Cf =
μn f | ∂u

∂y |n−1 ∂u
∂y |y=0

1
2 ρ f u2

w
=

| f ′′(0)|n−1 f ′′(0)
(1− ϕ)2.5 Rex

− 1
n+1 , (44)

Cf Rex
− 1

n+1 =
| f ′′(0)|n−1 f ′′(0)

(1− ϕ)2.5 , (45)

Nux = −
xkn f

∂T
∂y |y=0

k f (Tw − T∞)
= − ks + 2k f − 2ϕ(k f − ks)

ks + 2k f + ϕ(k f − ks)
Rex

1
n+1 θ′(0), (46)

NuxRex
− 1

n+1 = − ks + 2k f − 2ϕ(k f − ks)

ks + 2k f + ϕ(k f − ks)
θ′(0), (47)

Shx = −
xDB

∂C
∂y |y=0

DB(Cw − C∞)
= −Rex

1
n+1 φ′(0), (48)

ShxRex
− 1

n+1 = −φ′(0). (49)

3. Solution Procedures

In this section, the homotopy analysis method (HAM) [29] is used to solve this problem.
The initial guess solutions of velocity, temperature, and concentration, based on boundary conditions,
are, respectively,

f0 = B1 + B2e−η + B3η, θ0 = Be−η , φ0 = e−η . (50)

Three linear operators are selected as

L f = f ′′′ + f ′′, Lθ = θ′′ + θ′, Lφ = φ′′−φ. (51)

These operators satisfy some properties:

L f (C1 + C2e−η + C3η) = 0, Lθ(C4e−η + C5) = 0, Lφ(C6e−η + C7eη) = 0 (52)

where Ci(i = 1, 2, · · · , 7) are arbitrary constants.
The 0-th order deformation equations and its boundary conditions are derived and the expressions

are written as

(1− p)L[F(η, p)− f0(η)] = ph f Hf (η)Nf [F(η, p)], (53)

(1− p)L[Θ(η, p)− θ0(η)] = phθ Hθ(η)Nθ [F(η, p), Θ(η, p), Φ(η, p)], (54)

(1− p)L[Φ(η, p)− φ0(η)] = phφ Hϕ(η)Nφ[F(η, p), Θ(η, p), Φ(η, p)]; (55)
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F(0, p) = 0, F′(∞, p) = d, Θ(∞, p) = 0, Φ(0, p) = 1, Φ(∞, p) = 0, (56)

F′(0, p) = 1 + λ1F′′(0, p) + λ2F′′′(0, p) + λ3|F′′(0, p)|n−1F′′(0, p), (57)

Θ(0, p) = 1 + βΘ0
′(0, p)|Θ0

′(0, p)|n−1. (58)

In the above equations, p ∈ [0, 1] is the embedding parameter; h f , hθ , and hφ are auxiliary non-zero
parameters; and Hf (η), Hθ(η), and Hϕ(η) are nonzero auxiliary functions [30]. Obviously, for p = 0
and p = 1, we have

F(η, 0) = f0(η), F(η, 1) = f (η),
Θ(η, 0) = θ0(η), Θ(η, 1) = θ(η),
Φ(η, 0) = φ0(η), Φ(η, 1) = φ(η).

(59)

As p increases from 0 to 1, F(η, p) is from the initial guess f0(η) to the exact solution f (η), Θ(η, p)
is from the initial guess θ0(η) to the exact solution θ(η), and Φ(η, p) is from the initial guess φ0(η) to
the exact solution φ(η) [30]. With Taylor’s theorem, they can write

F(η, p) = F(η, 0) +
+∞
∑

k=1
fk(η)pk, fk(η) =

1
k!

∂kF(η, p)
∂pk |p=0, (60)

Θ(η, p) = Θ(η, 0) +
+∞
∑

k=1
θk(η)pk, θk(η) =

1
k!

∂kΘ(η, p)
∂pk |p=0. (61)

Φ(η, p) = Φ(η, 0) +
+∞
∑

k=1
φk(η)pk, φk(η) =

1
k!

∂kΦ(η, p)
∂pk |p=0. (62)

Assuming that the auxiliary parameters h f , hθ , and hφ are appropriate chosen, we can obtain
convergent solutions in the following form.

f (η) = f0(η) +
∞

∑
k=1

fk(η), θ(η) = θ0(η) +
∞

∑
k=1

θk(η), φ(η) = φ0(η) +
∞

∑
k=1

φk(η). (63)

For the sake of getting the higher order deformation equation, differentiating the 0-th order
deformation Equations (53)–(55) k times with regard to p, set p = 0 and divide by k!, to attain

L f ( fk(η)− χk fk−1(η)) = h f Hf (η)R f ,k(η), (64)

Lθ( fθ(η)− χθ fθ−1(η)) = hθ Hθ(η)Rθ,k(η), (65)

Lφ( fφ(η)− χφ fφ−1(η)) = hφHφ(η)Rφ,k(η), (66)

where R f ,k(η), Rθ,k(η), and Rφ,k(η) are, respectively,

R f ,k(η)

= χk
k−2
∑

l=0
fl
′′′ k−l

∑
j=2

k−1
∑

i1,i2,··· ,ik=0
i1+i2+···ik−1=j−1

i1+2i2+···+(k−1)ik−1=k−1−l

n(n−1)···(n−j+1)
i1!i2!···ik−1! | f0

′′|n−j
k−1
∏

q=1
| fq

′′|iq

+n fk−1
′′′| f0

′′|n−1 − mϕ1 ϕ2
k−1
∑

i=0
fi
′ fk−1−i

′

+ϕ1 ϕ2
2mn−m+1

n+1

k−1
∑

i=0
fi fk−1−i

′′ − ϕ1M fk−1
′,

(67)
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Rθ,k(η)

= χk
k−2
∑

l=0
θl
′′ k−l

∑
j=2

k−1
∑

i1,i2,··· ,ik=0
i1+i2+···ik−1=j−1

i1+2i2+···+(k−1)ik−1=k−1−l

n(n−1)···(n−j+1)ϕ4
i1!i2!···ik−1! |θ0

′|n−j
k−1
∏

q=1
|θq

′|iq

+nϕ4θk−1
′′|θ0

′|n−1 + 2mn−m+1
n+1 Pr ϕ3

k−1
∑

i=0
fiθk−1−i

′

+Pr Nbϕ3
k−1
∑

i=0
φiθk−1−i

′ + Pr Ntϕ3
k−1
∑

i=0
θi
′θk−1−i

′,

(68)

Rφ,k(η) = φk−1
′′ + 2mn + 1− m

n + 1
Sc

k−1

∑
i=0

fiφk−1−i
′ + Nt

Nb
θk−1

′′, (69)

χk =

{
0 k ≤ 1,
1 k > 1.

(70)

Boundary conditions Equations (56)–(58) become

fk(0) = 0, fk
′(∞) = 0, θk(∞) = 0, φk(0) = 0, φk(∞) = 0, (71)

fk
′(0)

=
k−1
∑

l=0
fl
′′(0)

k+1−l
∑

j=2

k
∑

i1,i2,··· ,ik=0
i1+i2+···+ik=j−1

i1+2i2+···+kik=k−l

λ3(n−1)(n−2)···(n−j+1)
i1!i2!···ik ! | f0

′′(0)|n−j
k

∏
q=1

| fq
′′(0)|iq

+λ3 fk
′′(0)| f0

′′(0)|n−1 + λ1 fk
′′(0) + λ2 fk

′′′(0),

(72)

θk(0)

=
k−1
∑

l=0
θl
′(0)

k+1−l
∑

j=2

k
∑

i1,i2,··· ,ik=0
i1+i2+···+ik=j−1

i1+2i2+···+kik=k−l

β(n−1)(n−2)···(n−j+1)
i1!i2!···ik ! |θ0

′(0)|n−j
k

∏
q=1

|θq
′(0)|iq

+βθk
′(0)|θ0

′(0)|n−1.

(73)

4. Results and Discussion

In homotopy analysis, the h-curves are ploted to select the effective region of parameter h. For the
sake of obtaining the convergent parameters h f , hθ , and hφ, Figures 1–3 plot the h-curves of various
orders for f ′′(0), θ(0) and φ(0). Ranges of h-curves are [−0.4, 0], [−0.5,−0.3], [−0.5, 0.3], that is,
the horizontal segment of the curves, which is called the effective region, so h f = hθ = hφ = h = −0.35
is selected in the paper.

For the sake of proving the accuracy and effectiveness of homotopy analysis after determining
values of h f , hθ , and hφ, Figure 4 plots the error curves of various power law index by the “BVPh2.0”
procedure software package. As can be seen from Figure 4, the errors have reached 10−4 in the
second order, meeting the standards of engineering calculation. The larger the order, the smaller the
error becomes. Further, surface friction coefficients are compared with the literature [31] for various
first-order slip parameter λ1 in Table 3.
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Table 2. The physical capabilities of base fluid and nanoparticles [26].

Base Fluid (0.0–0.4%) Cu

Cp/(J· kg−1· K−1) 4179 385
ρ/(kg· m−3) 997.1 8933

k/(W· m−1· K−1) 0.613 400
σ/(Ω−1· m−1) 0.05 5.96 × 107

Table 3. Comparisons of Cf R
1

n+1
e for various λ1 as n = 1, m = 1, d = 1.5, λ2 = λ3 = 0, ϕ = 0.

λ1
Cf R

1
2
e

Ul Haq et al. [31] Present Research Percent Difference

0.5 0.34153 0.341678 0.043%
1 0.34153 0.341215 0.092%

� � � � �

�

�

�
�
�
�

Figure 1. h f -curves.

� � � � �

�

�

�

�

Θ

Θ
�
�
�

Figure 2. hθ-curves.

After attesting the accuracy and effectiveness of homotopy analysis, the impacts of various
physical parameters are analyzed, such as nondimensional velocity f ′(η), temperature θ(η), etc.
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Meanwhile, the flow of power law nanofluid is numerically simulated by the widely used software
Ansys Fluent to further explore the flow properties.

� � �

�

�

�

�

Φ

Φ
�
�
�

Figure 3. hφ-curves.

Figure 4. Total error of approximation for various powers n.

4.1. Behavior of Velocity Profiles

Figures 5 and 6 demonstrate effects of power law exponential of the plate m and Hartmann
number M on nondimensional velocity f ′(η). The velocity distribution for various m is showed in
Figure 5. By increasing the power exponent of the plate m, the tensile speed of the plate increases.
Greater deformation is effected in the fluid, leading to the increase of f ′(η). As pointed out in [32],
the effects of M on f ′(η) are visible in Figure 5. Recall that Hartmann number M expresses the ratio of
electromagnetic force to viscous force. Due to the fact that greater Hartmann number corresponds to
larger Lorenz force, the velocity f ′(η) increases.

When the fluid is pseudoplastic and expansive, impacts of d on f ′(η) are illustrated in Figure 7.
In Figure 7, the velocity of the fluid has upward tendency for various d. Whereas, the velocity
of expansive fluid increases slower than that of pseudoplastic fluid due to the increase of the
fluid viscosity.
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� � � � �

Η

�
�Η
�

Figure 5. Impacts of m on f ′(η).

� � � � �

Η

Figure 6. Impacts of M on f ′(η).

n < 1 n > 1

Figure 7. Impacts of d on f ′(η) for n < 1 and n > 1.

Figure 8 clearly presents the impacts of various power law index n on f ′(η). As seen in Figure 8,
the buoyancy becomes larger as the power law index n increases, which causes the increase of velocity.

Influences of different velocity slip parameters λ1, λ2, and λ3 on f ′(η) are illustrated in
Figures 9–11, respectively. Velocity slip mainly affects slip loss and, in a cascade, fluid velocity.
With the increases of the second-order slip parameter λ2, velocity f ′(η) also increases; however,
the results are contradictory when the first-order linear slip parameter λ1 and nonlinear slip parameter
λ3 increase.
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Figure 8. Impacts of n on f ′(η).

η

λ

Figure 9. Effects of λ1 on f ′(η).

Figure 10. Effects of λ2 on f ′(η).
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η

λ

Figure 11. Effects of λ3 on f ′(η)).

4.2. Behavior of Temperature Profiles

Figures 12 and 13 indicate various temperature behavior for different Nb and Nt. Figure 12
displays the effects of Nb on temperature. Fluid particles generate more heat through random motions
when Nb increases, which causes the rise in temperature. Figure 13 clearly shows temperature
distribution for various thermophoresis parameter Nt. Thermophoresis indicates that particles move
from a high temperature part to a low temperature one in a fluid with temperature gradient. Thus,
the temperature increases with the enhancement of the parameter Nt.

Figure 12. Impacts of Nb on θ(η).

Figure 13. Impacts of Nt on θ(η).
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Figures 14 and 15 show temperature distribution for diverse temperature jump parameter β and
power law index n. Figure 14 plots the temperature curves for diverse β. Increasing temperature jump
parameter β leads to a rise in the thickness of temperature boundary layer. Thus, the temperature has an
upward tendency. Figure 15 demonstrates the temperature distribution for various n. The temperature
diminish when the power law index rises. In other words, temperature boundary layer becomes
thinner with the enhancement of n.

Figure 14. Impacts of β on θ(η).

Figure 15. Impacts of n on θ(η).

4.3. Behavior of Concentration Profiles

Figures 16 and 17 show the concentration distribution for diverse values of the Brownian
motion parameter Nb and the thermophoresis parameter Nt. From Figure 16, the collision of fluid
particles rises with the stronger Brown motion, which leads to the reduction of fluid concentration.
Figure 17 indicates the concentration field for various thermophoresis parameter Nt. The magnitude
of concentration variation is greater under the influence of thermophoresis parameter.
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Figure 16. Impacts of Nb on φ(η).

Figure 17. Impacts of Nt on φ(η).

4.4. Analysis of Skin Friction and Nusselt Number

In the study of fluids, vital physical parameters, such as skin friction coefficient and local Nusselt
number, are discussed. In this paper, the impacts of various parameters on these two parameters
are demonstrated in Table 4. Skin friction coefficients have ascending behavior with the increase of
ϕ, λ1 and λ3. On the contrary, the downward trend is seen with the raise of λ2. For local Nusselt
number, when ϕ and λ2 rise, the local Nusselt numbers have an upward trend, whereas the local
Nusselt numbers diminish with the rise of λ1, λ3 and β.

4.5. Simulated Behavior

In this subsection,the laminar model is used to solved governing equations. Ansys Fluent uses the
Gauss-–Siedel point-by-point iterative method combined with the algebraic multigrid (AMG) method
to solve the algebraic equations. The effects of various parameters on the flow of power-law nanofluid
over a stretched thin sheet are simulated. The computational results obtained by using CFD solver are
compared with the available results of Chen [33] for some limiting conditions. The present results are
proved to be in good agreement as shown in Table 5. The effects of various parameters such as power
law exponential of the plate m, nanoparticle volume fraction ϕ, and power law index n on Nusselt
number Nu and skin friction coefficient are shown in Figures 18–22.
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Table 4. Effects of ϕ, λ1, λ2, λ3, and β on Cf Re
1

n+1
x and NuxRe

− 1
n+1

x for n = 1/2, m = 0, M = 1, d = 1,
Pr = 1, Nb = 1, Nt = 1, and Sc = 1.

ϕ λ1 λ2 λ3 β Cf Re
1

n+1
x NuxRe

− 1
n+1

x

0 2 1 1 0 0.499647 0.187766
1.5% 2 1 1 0 0.515072 0.194264
3% 2 1 1 0 0.541362 0.200764
0 1/4 5 1 0 0.28862 0.209897
0 3/4 5 1 0 0.366794 0.209846
0 1 5 1 0 0.396051 0.20919
0 1 5 1 0 0.396051 0.20919
0 1 21/4 1 0 0.359076 0.210207
0 1 22/4 1 0 0.297825 0.210503
0 1 5 1 0 0.396051 0.20919
0 1 5 5/4 0 0.452515 0.201034
0 1 5 6/4 0 0.493526 0.188581
0 2 1 1 0 0.499647 0.187766
0 2 1 1 1.5 0.499647 0.137537
0 2 1 1 8/3 0.499647 0.0804748

Table 5. Comparisons of Cf R
1

n+1
e for various n with m = 0.5.

n Cf R
1

n+1
e

Chen [33] Present Research Percent Difference

0.5 −1.831551 −1.831768 0.012%
1 −1.54073 −1.54079 0.003%

1.5 −1.39441 −1.39578 0.098%

The velocity contours for nonlinear slip are simulated in Figure 18. From these diagrams, the flow
produces velocity boundary layer near the entrance. Besides, the velocity boundary layer of the
pseudoplastic fluid is thicker than that for a Newton and expansive fluid.

n = 0.5 n = 1 n = 1.5
Figure 18. Velocity contours with n = 0.5, n = 1, n = 1.5.

Figures 19 and 20 present the effect of nanoparticle volume fraction on Nusselt number Nu
and skin friction coefficient Cf at fixed values of inlet velocity, power law index. From Figure 19,
the local Nusselt number increases at any x-location When nanoparticles are added to the base fluid.
This is because a lower local temperature difference between the sheet walls and fluid can be achieved.
Therefore, the high thermal conductivity of Cu nanoparticles enhances the thermal performance of the
fluid. As the viscosity of the liquid can be increased by adding Cu nanoparticles into the base fluid,
the Cf along the thin sheet increases when using higher concentrations of nanoparticles, as shown in
Figure 20.
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Figure 19. Effect of ϕ on Nu.

Figure 20. Effect of ϕ on Cf .

Figure 21 shows the effect of power law index n on skin friction coefficient Cf . The skin
friction coefficient decreases with the increase of x-location for a given power law index. However,
for a constant x-location, the skin friction coefficient have an upward tendency as the power law
index increases.

Figure 22 demonstrates the skin friction coefficient distribution for various ϕ. The skin friction
coefficient increases as the fluid behavior changes from shear-thinning to shear-thickening for a certain
ϕ. As the ϕ increases the skin friction coefficient increases for a constant power law index.
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Figure 21. Effect of n on skin friction coefficient.

Figure 22. Variation of the skin friction coefficient at different ϕ.

5. Conclusions

The flow and heat transfer of magnetic nanofluid through a stretched thin sheet with higher-order
slip parameters are discussed in the paper. The model contains the influences of Brown motion and
thermophoresis impacts. Simplified ODEs are obtained by a series of similarity transformations.
The similar solutions are solved through homotopy analysis theory and the stability of the solutions is
analyzed. Moreover, the current results are shown to be in good agreement with the literature results,
the error of Nusselt number and skin friction coefficient is less than 0.1%. The key conclusions follow.

• Velocity, temperature, and concentration have an upward tendency as the second-order velocity
slip parameter, thermophoresis parameter, and temperature jump parameter increase, but a
downward trend like the first-order linear slip parameter and nonlinear slip parameters.

• The rise of power law index causes the enhancement of velocity and reduction of temperature.
• Skin friction has increasing behavior due to the enhancement of volume fraction of nanoparticles,

the first-order linear slip parameter and nonlinear slip parameter, but decreasing behavior as a
result of the second order slip parameter.
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• The Nusselt number is found to rise upon the rise of the second order slip parameter, volume
fraction, whereas impacts of the first-order linear slip parameter, temperature jump parameter,
and nonlinear slip parameter are converse.

• The skin friction coefficient have an upward tendency as the power law index increase at a certain
volume fraction of nanoparticles, and also increases as volume fraction of nanoparticles increases
at a constant power law index.
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Abstract: A Micro Grid is an aggregate of many small-scale distributed energy resources (DERs);
loads and can be operated independently or together with the existing power grid as a local power
grid. The operator of such a grid takes charge of the energy supply and consumption of these
resources and loads available in the grid. Meanwhile, the system operator of the grid considers the
entire Micro Grid system to be a single load or a generator and assigns the responsibility of its internal
management to the operator. The power production from a passive production resource is largely
influenced by external environmental factors such as weather conditions, rather than operating
conditions. Thus, this study conducted simulations for the cases where four kinds of conditional
expressions had not been applied at all or one of them had been applied to compare and evaluate the
effectiveness of each expression. As a result, the conditional equations were found to be effective
when attempting to optimize the Micro Grids efficiently.

Keywords: Micro Grid; optimization theory; optimization; smart grid; MATLAB simulation

1. Introduction

Many small-scale DERs and loads form a Micro Grid, a local power grid that can be operated
independently or by tying with the existing power grid [1]. The operator of such grid takes charge of
energy supply and consumption for these resources and loads existing within the Micro Grid, whereas
the system operator of the grid considers the entire Micro Grid system to be a single load or a generator
and assigns the responsibility of its internal management to the operator [2–4].

The energy resources in the Micro Grid are largely divided into passive resources that cannot be
controlled by the grid operator and active resources controllable by him/her [5]. These resources are also
classified as production, consumption or storage resources in terms of their applications [6]. Typical
examples of a passive resource include new and renewable energy resources such as solar rays, wind, etc.
The power production using these passive resources can be largely affected by external environmental
conditions like weather situations rather than the operator-controlled production process.

Although it would be possible to interrupt power production by disconnecting with the Micro
Grid’s internal power grid, implementing some kind of control to increase power production arbitrarily
is almost impossible as it depends on the external environmental conditions. Even though passive
resources have a disadvantage in terms of inability to control, they also have an advantage of being
able to achieve eco-friendly power generation without much extra cost after the initial installation
cost in majority of the cases. For this reason, these resources are being used as a major power supply
resource of a Micro Grid. Their issue of inability to control raises a problem in the balance between
power demand and supply, causing sharp fluctuations in it such that an ancillary active resource is
often required to solve the problem. One of the most popular passive resources, photovoltaic power
generation, has a problem of production variability or excessive production due to its characteristic of
insolation-based production. Thus, this study conducted simulations for cases wherein none of the
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four kinds of conditional equations (i.e., conditional equations for peak control, power use flattening,
power demand response and operation of net zero Energy or one of them had been applied to compare
them and evaluate the effectiveness of each equation. The result showed that the conditional equations
were effective when attempting to optimize the Micro Grids efficiently.

2. Related Research

Typical examples of passive consumption resources of Micro Grid include loads such as household
appliances used by the residents on the Micro Grid. Although there are some controllable loads,
most of them are used to meet the requirements of residents and beyond the control of Micro Grid
operators [7,8].

The active production resources of Micro Grid include fuel cells, combined heat and power
generation and most of the other generating facilities that are able to produce power according to
the operator’s control. Although these resources require some additional costs (fuel expenses) when
generating power, they are indispensable in the operation of a Micro Grid wherein power supply
and demand or quality issues should be considered as their power output level can be controlled
arbitrarily [9–11].

On the other hand, the active consumption resources of Micro Grid include some
operator-controllable loads such as lighting fixtures, air-conditioning equipment, etc. Control can be
implemented in a way that will not make the residents uncomfortable when attempting to reduce
excessive power use in the Micro Grid. Moreover, the active storage resources are useful in keeping
the balance between power supply and demand or securing power quality or economy by storing or
releasing surplus power. These active storage resources can store or release the desired amount of
power in any desired time zone. Likewise, as many of them have rapid responsiveness, it is possible to
deal with the variability in power production. Typical examples of these resources include energy
storage systems such as batteries, flywheels, combined air energy storage, etc. [12,13].

Meanwhile, Micro Grids are divided into system-connected type or independent type depending
on whether they are operating with an external system (power grid) [14]. The grid-connected Micro
Grid is operated in a state of establishing a connection with another power system and is able to
exchange surplus power to supplement each other. The independent-type Micro Grid (a.k.a. island
grid) is operated in a state of separating itself with another power grid and managing the quality (i.e.,
supply and demand or voltage/current, etc.) by itself. The former can sell the surplus or purchase the
power amount lacking by connecting with an external system and some of the typical examples are
small-scale building, home and campus Micro Grids. If it is impossible to meet the demand from a
consumption resource, these Micro Grids buy the system’s surplus power or sell their own surplus to
the system when their production is more than enough.

In addition, an external power rates provision system (e.g., KEPCO or Korea Power Exchange)
is necessary to settle the power bills incurred from these transactions, further requiring a metering
device connected with an outside system along with the external system or market that will be able to
pass on the signals in case of blackout or demand response (DR) [15].

The independent Micro Grid manages the power supply and demand balance or power quality
within the grid by itself. One of the most typical examples of such grid is one that is being operated in
an island, disconnecting itself from a large-scale inland power system and managing its power through
its own power production, storage and consumption resources within the Micro Grid to supply power
on demand.

There have been a quite number of studies for the optimization of Micro Grids and energy
management systems and planning an optimal operating schedule is one of the essential parts of
the management: J. Li et al. [16] dealt with the design and implementation of Green Home Service
for energy management whereas A. R. Al-Ali et al. [17] focused on the design, implementation and
test operation of a smart home using an energy storage system. Y. Zhang et al. [18] presented an
optimization algorithm that can be used for a home energy management system in a smart grid whereas
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D. I. H Rodriguez et al. [19] and A.C. Luna et al. [20] dealt with the Micro Grid operating system
using an optimization algorithm or vice versa and the energy management system for the Micro Grid
having its own power generation facility and connected to the existing power grid, respectively. Also,
H. Li et al. [21] discussed energy management for the industrial Micro Grid being connected to the
existing power grid or operated independently. Further, D. Arcos-Aviles et al. [5] and C. Ju et al. [22]
introduced a design of a fuzzy logic-based energy management system for the Micro Grid having new
and renewable energy resources and its own energy storage while being connected to the existing
power grid and a 2-tier prediction energy management system, respectively.

Meanwhile, for the deduction of schedule [22], H. Kim et al. [8] discussed the minimization of
operating costs based on a basic model. F. A. Mohamed et al., [23] and F. A. Mohamed [24] focused on
a Micro Grid system model having battery storage and its online management, aiming to minimize
the costs while satisfying the demands in a respective system where wind/diesel/ PV generator or
fuel cell or battery storage existed. A. Parisio [25] presented a Micro Grid management method based
on a model-based predictive control which was to improve calculation results or reduce calculation
load by applying mixed-integer linear programming. P. Malysz et al. [26] dealt with the minimization
of operating costs of energy storage connected to a grid, predicting future power usage and energy
production by using mixed-integer linear programming.

On the other hand, H. Hori et al. [13] and W. Shi et al. [27] proposed a method of using
an additional control to deal with the expected errors and the management of distributed energy,
respectively. Y. Zhang et al. [15] discussed the model-based predictive control and the operation
considering uncertainties.

K. Hoffmann et al. [28] and S. Zhai et al. [29] dealt with the requirements of energy management
system information and the flexibility of home appliances used in a household energy management
system using smart plugs, respectively. M. M. Eissa et al. [30] discussed the demand-response based
on a commercial energy management system. Chee Lim Nge et al. [31] described their real-time energy
management system for a PV facility having battery storage. Amin Shokri Gazafroudi et al. [32]
introduced their bidding strategy for the automatic housing energy management system. Feras Alasali
et al. [33] described their energy management algorithm for the energy storage and crane network.
Spyridon Chapaloglou et al. [34] and J. M. G Lopez [35] presented an energy management algorithm
for load flattening and peak-reduction and a simulator for the household energy management system
loads, respectively.

Yujie Wang et al. [36] presented their rule-based energy management strategy based on the
power prediction of a lithium-ion battery and a supercapacitor. Farid Farmani et al. [37] proposed
a conceptual model for the residential building energy management system having CCHP. F. Wang,
Lidong Zhou et al. [38] introduced their building energy management system considering the unit-price
demand-response and other factors such as energy resources, load or storage that change according to
time zones.

Meanwhile, Dimitrios et al. [39] proposed an energy management system for the smart building
connected to a power system considering the uncertainties of PV generation and the operation schedule
of electric vehicles. D. van der Meer et al. [40] described his energy management system that predicts
PV generations for charging electric vehicles by detailing the PV generation system. And, H. S. V. S.
K Nunna et al. [41] present their energy management strategy when electric vehicles and/or power
system are being connected for use. A. Azizvahed et al. [42] dealt with a multi-purpose energy
management system that operates a distributed network when there were distributed resources along
with energy storage. V. Indragandhi et al. [43] discussed multi-purpose energy management for a
new and renewable energy resource-based AC/DC microgrid. V. Pilloni et al. [44] proposed an energy
management system for the operation or operating time of home appliances considering the aspect
of not only energy cost-saving but also enhancement of user experience quality. I. Ali and S. M
Suhail Hussain et al. [45] presented their communication system design for the automated energy
management of the Micro Grid involving various types of distributed energy sources. Lastly, W. Ma
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and J. Wong et al. [46] dealt with the distributed energy management for a networked Micro Grid
having uncertainties due to distributed energy resources.

The system operator of a Micro Grid system regards the entire grid as a single load or generator
and delegates its internal management responsibility to the grid operator. The power generations
based on a passive production resource can be largely affected by the external environmental condition
such as weather. Thus, a series of simulations were conducted in this study for evaluation to optimize
the efficiency of the Micro Grid. Each one of the four conditional expressions (i.e., peak-zero, power-use
flattening, demand-response and net zero operation) was applied to the simulations to compare with
the case where any of these expressions were applied. Each performance was evaluated, and the
validity of the expressions was determined through MATLAB simulations.

3. Micro Grid Optimization Theory

A Micro Grid consists of new and renewable energy, load and energy storage system. Although
there are a number of new and renewable energy resources now available, only photovoltaic power
generation was indicated as a representative system for convenience. The power generated by the
photovoltaic (PV) system will be consumed by the load or stored in energy storage system (ESS).
Their data are saved in the data storage for the estimation of their future values [47–49].

The power grids supply electricity to the ESS or load, whereas the unit cost of power is provided
at the power exchange. The event server assumes the role of notifying the situation wherein DR or net
zero operation is required. There will be no information about the external operating conditions from
the event server in a scenario that does not include any special conditions; otherwise, the constraints
and objective function will be changed after receiving external operating condition information.

This section focuses on the operating schedule calculation and prediction functions of ESS in
the EMS. The constants used for the calculation of an ESS operating schedule include the PV/load
data obtained through prediction, unit price data set by the power exchange, capacity of ESS,
maximum/minimum charging/discharging power, etc. The constraints are then set based on these
data and charging/discharging schedule, SoC limitations, etc. Lastly, appropriate individual objective
functions are set to output an ESS operating (charging/discharging) schedule that minimizes each
objective function by using an optimization technique. The resulting schedule presents a method
with which the ESS charging/discharging power level in the Micro Grid can be determined in each
time zone.

The system flow diagram is shown in Figure 1, where the red arrows show the directions of power
to be supplied and the blue arrows represent the movement of each data (information). The system
consists of Micro Grid, power grid, power exchange and event server; originally, however, EMS and
data storage are also included in such system.

The red arrow in the system diagram (Figure 1) indicates the supply of power whereas the blue
arrow is showing the flow of information. The system largely consists of a Micro Grid, power grid,
power exchange and event-generating server. The variables used to explain the supply of power in
the diagram are as follows: It is assumed that all kinds of powers in each time zone are constant and
the time interval is one hour. Although both energy management system (EMS) and data storage
belong to the Micro Grid, the Micro Grid, in this case, is one that consists of new and renewable energy
sources, loads and energy storage. There are a number of new and renewable energy sources such
as photovoltaic (PV) and wind turbine (WT) but only PV was indicated for convenience. The power
produced by PV will be stored in the ESS or consumed by the load. Also, PV/Load data are used to
predict the future PV/load value after being stored in data storage.
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Figure 1. System diagram (red arrow: supply of power; blue arrow: flow of information).

The target Micro Grid consists of new and renewable energy, load and energy storage system.
Although there are a number of new and renewable energy resources now available, only photovoltaic
power generation was indicated as a representative system for convenience. The power generated by
the PV system will be consumed by the load or stored in ESS. Their data are saved in the data storage
for the estimation of their future values.

Table 1 below describes the variables to be used to explain (definition) individual cases of
supplying power, assuming that all kinds of power in each time zone (one hour) are constant.

Table 1. Definitions of Variables (1).

Variables Definitions

PPV[k] Power (kW) obtained with new and renewable energy generation in time zone k
PPV, ESS[k] Power (kW) transmitted from PV to ESS in time zone k
PPV, Load[k] Power (kW) transmitted from PV to load in time zone k

EESS[k] Amount of power (kWh) stored in time zone k
Pdis

ESS[k] Power (kW) discharged in time zone k
Pdis

ESS,Load[k] Power (kW) transmitted from ESS to load in time zone k
Pdis

ESS,g[k] Power (kW) transmitted from ESS to power grid in time zone k

Pchg
ESS[k] Power (kW) charged to ESS in time zone k

Pg,1[k] Power (kW) received from power grid in time zone k
Pg,ESS[k] Power (kW) transmitted from power grid to ESS in time zone k
Pg,Load[k] Power (kW) transmitted from power grid to load in time zone k

Pg,2[k] Power (kW) transmitted from power grid to in time zone k
PLoad[k] Power (kW) consumed by load in time zone k

The relationship between individual variables can be expressed by Equations (1)–(7):

PPV [k] = PPV,ESS[k] + PPV,Load[k] (1)
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Equation (1) indicates that the power generated by PV will be “charged to ESS” or “consumed
by load.”

Pdis
ESS[k] = Pdis

ESS,Load[k] + Pdis
ESS,g[k] (2)

Equation (2) indicates that the power discharged from ESS will be “consumed by load” or “sold
to the power grid.”

Pchg
ESS[k] = Pg,ESS[k] + PPV,ESS[k] (3)

Equation (3) indicates that the power used to charge ESS had been “received (bought) from the
power grid” or “generated by PV.”

Pg,1[k] = Pg,ESS[k] + Pg,Load[k] (4)

Equation (4) indicates that the power received (bought) from the power grid will be “charged to
ESS” or “consumed by load.”

Pg,2[k] = Pdis
ESS,g[k] (5)

Equation (5) indicates that the power transmitted (sold) to the power grid had been discharged
from ESS.

PLoad[k] = PPV,Load[k] + Pdis
ESS,Load[k] + Pg,Load[k] (6)

Equation (6) shows the balance between demand (right side) and supply (left side) and that the
power consumed by load had been supplied from PV, ESS or power grid.

EESS[k + 1] = EESS[k] + Pchg
ESS[k] · 1h− Pdis

ESS[k] · 1h (7)

Equation (7) explains that the amount of power stored in ESS is determined by adding the charged
power to the current power and subtracting the discharged power amount from it.

The variables that will be used to explain (definition) the movement of information in Table 2 are
as follows:

Table 2. Definitions of Variables (2).

Variables Definitions

dPV [k] PV data in time zone k
dLoad[k] Load data in time zone k

DPV [k] =
{
dPV [1], dPV [2], . . . , dPV [k− 1]

}
PV data set in time zone 1–(k-1)

DLoad[k] =
{
dLoad[1], dLoad[2], . . . , dLoad[k− 1]

}
Load data set in time zone 1–(k-1)

D[k] = DPV [k] ∪DLoad[k] Data storage in time zone k
fprd,PV Function (or algorithm) to predict PV
fprd,Load Function (or algorithm) to predict load

PVprd[k] PV value calculated based on PV prediction in time zone k
Vprd(k, n):DPV [k] n PV data predicted based on D_PV [k]

Loadprd[k] Load value calculated based on load prediction in time zone k
Loadprd(k, n):DLoad[k] n load data predicted based on DLoad[k]

C Set of constants
Icost Power unit price info
Iext External operating conditions info
Ispec ESS performance info

Iext
Other constants including SoC range setting in each time
zone, etc.

f Objective function coefficient vector
M Set of matrices or vectors representing constraints
fo Function (or algorithm) for the calculation of optimal solutions
x ESS operation schedule
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The relationship between individual variables can be expressed as:

DPV [k] ∪ {dPV [k]} = {dPV [1], dPV [2], . . . , dPV [k− 1]} ∪ {dPV [k]}
= {dPV [1], dPV [2], . . . , dPV [k− 1], dPV [k]}
= DPV [k + 1]

(8)

Equation (8) indicates that the data set in time zone 1–k will be generated by adding Kth PV data
to the PV data set in time zone 1–(k-1).

DLoad[k] ∪ {dLoad[k]} = {dLoad[1], dLoad[2], . . . , dLoad[k− 1]} ∪ {dLoad[k]}
= {dLoad[1], dLoad[2], . . . , dLoad[k− 1], dLoad[k]}
= DLoad[k + 1]

(9)

Similar to Equation (8) load data set 1–k can be obtained when Kth load data are added to the PV
load data set in time zone 1–(k-1).

D[k] ∪ ({dPV [k]} ∪ {dLoad[k]}) = (DPV [k] ∪DLoad[k]) ∪ ({dPV [k]} ∪ {dLoad[k]})
= (DPV [k] ∪ {dPV [k]}) ∪ (DLoad[k] ∪ {dLoad[k]})
= (DPV [k + 1] ∪DLoad[k + 1])
= D[k + 1]

(10)

Equation (10), which can be obtained by using both Equations (8) and (9), indicates that data
storage k+1 can be created by adding both PV and load data generated in the same time zone to the
data storage in time zone k.

fprd,PV(DPV [k]) = {PVprd[k], PVprd[k + 1], . . . , PVprd[k + n− 1]}
= PVprd(k, n)

(11)

Equation (11) shows that the PV data collected so far can be used to predict the future PV in n
time zone.

fprd,Load(DLoad[k]) = {Loadprd[k], Loadprd[k + 1], . . . , Loadprd[k + n− 1]}
= Loadprd(k, n)

(12)

Similar to Equation (11), Equation (12) indicates that the load data collected so far can be used to
predict future load in n time zone.

C = PVprd(k, n) ∪ Loadprd(k, n) ∪ Icost ∪ Iext ∪ Ispec ∪ Ietc (13)

Equation (13) shows that the union of future PV data, load data, power unit price, external
operating conditions, ESS performance information and other constant sets becomes a set of constants.

x = fo(M(C), f (C)) (14)

Equation (14) shows that an ESS operating schedule can be established by entering the constraints
and objective function (coefficient vector) in the optimization function. Nonetheless, it is important to
understand that the constraints and objective function are determined by the set of coefficients.

Figure 2 is a diagram that shows how system power usage (blue line) and ESS charging/discharging
power (red line) change depending on the external conditions applied. The picture on the upper left is
a basic setting and the rest of the pictures in order of bottom left, bottom center, upper left and bottom
right show the change when peak control, net zero operation, flattening and demand response have
been applied, respectively. A detailed explanation for each diagram will be provided later.
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Figure 2. Diagram showing the changes in system power usages, ESS charging/discharging according
to the external operating conditions.

Meanwhile, performance evaluations were conducted by comparing a simulation wherein none
of the four conditions above had been applied with the simulations to which each of those conditions
was applied. For the simulations, MATLAB R2015a was used; the constraints resulting from individual
constants and objective functions were used as inputs for the mixed-integer linear programming
of MATLAB to show the resultant system power usage, ESS charging/discharging power and total
demand with the graphs using a plot function.

The basic setting that does not have any special conditions is as follows: the ranges of ESS
charging/discharging and state of charge (SoC) were set at 3–19.5kW and 0.05–0.95, respectively,
whereas the ESS capacity was set at 40 kW. The conditions are shown in Table 3.

Table 3. Basic setting for the simulation.

Range of ESS Charging Power
Range of ESS

Discharging Power
SoC by Time Zone ESS Capacity

3–19.5 kW 3–19.5 kW 0.05–0.95 40 kWh

The virtual data in Tables 4–6 is used as load prediction, PV (generation) prediction and power unit
cost data. (n)–(n+1) are the time zones for integer (n), ranging from 0 to 23. For example, 1–2 indicates
the time zone of 1 o’clock to 2 o’clock. In Table 4, the time zones having low power unit cost and
high-power unit cost are denoted in red and blue, respectively. It was also assumed that the power
was constant in each time zone (24 time zones/day). In this case, no external conditions were applied.

Table 4. Forecast prices of power demand schedule (virtual data) (kW).

Time Zone 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12

Demand
(kW) 5.5 5.8 5.6 5.2 3.6 4 5.9 7.9 11.4 16.8 25.5 26.7

Time Zone 12–13 13–14 14–15 15–16 16–17 17–18 18–19 19–20 20–21 21–22 22–23 23–24

Demand
(kW) 24.7 23 23.8 23.5 23.6 24.6 22.7 16.6 13.3 11.9 8.8 8.5
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Table 5. Forecast prices of power supply schedule (virtual data) (kW).

Time Zone 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12

Supply
(kW) 0 0 0 0 0 0 0 6 9 12 18 18

Time Zone 12–13 13–14 14–15 15–16 16–17 17–18 18–19 19–20 20–21 21–22 22–23 23–24

Supply
(kW) 18 21 15 15 9 6 0 0 0 0 0 0

Table 6. Power unit price schedule (virtual data) (Korean won/kWh).

Time Zone 0–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10 10–11 11–12

Unit Price for
Purchase 66.1 66.1 66.1 66.1 66.1 66.1 66.1 66.1 66.1 96.5 111.3 111.3

Unit Price for
Sales 66.1 66.1 66.1 66.1 66.1 66.1 66.1 66.1 66.1 96.5 111.3 111.3

Time Zone 12–13 13–14 14–15 15–16 16–17 17–18 18–19 19–20 20–21 21–22 22–23 23–24

Unit Price for
Purchase 96.5 96.5 96.5 96.5 96.5 111.3 111.3 111.3 96.5 96.5 111.3 66.1

Unit Price for
Sales 96.5 96.5 96.5 96.5 96.5 111.3 111.3 111.3 96.5 96.5 111.3 66.1

The simulation result from the basic setting is shown in Figure 3, where grid (blue line), ESS (red
line) and net demand (yellow line) indicate the system power usage, ESS charging/discharging power
and total demand, respectively. Since power demand and supply have to be balanced, the condition
net demand-ESS-Grid = 0 must be satisfied. When the grid sign is (+), power is purchased from the
system; if the sign is (-), it means that power is sold to the system.

Figure 3. Simulation result when there were no special conditional equations included.

At the same time, the (+) and (−) signs of ESS indicate charging and discharging, respectively.
As shown in Figure 4, (n)-(n+1) on the horizontal axis is the time zone for integer n (0–23).
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Figure 4. Simulation result when the conditional equation for peak control was included.

Since the value of ESS in time zones 0–1, 1–2, 2–3 and 3–4 was 0, it can be assumed that there
was no charging or discharging in these time zones. Moreover, the overlapping yellow and blue lines
satisfy the condition net demand = grid, indicating balanced demand and supply. As the sign of the
ESS in time zone 4–5 was (−), it can be assumed that charging was required and that power was bought
from the system having a (+) grid sign. There was no ESS charging/discharging in time zones 5–6,
6–7 and 7–8 and power demand and supply were balanced out as the condition net demand = grid
was satisfied. The same balance was achieved in time zones 9–10 and 10–11 as the individual grid
and ESS signs were (+) and (−), respectively, satisfying the conditions net demand = grid and net
demand = ESS, respectively. For the latter time zone, it can be understood that power was discharged
from ESS as the sign was (+). The ESS sign in time zone 11–12 was also (+), but the grid sign was (−);
this means that power was sold to the system. Meanwhile, there was no ESS charging or discharging
in time zones 12–13, 13–14, 14–15, 15–16, 16–17, 17–18, 18–19, 19–20, 20–21, 21–22 and 22–23, indicating
that power demand and supply have been balanced; thus satisfying the condition net demand = grid.
Lastly, the ESS sign in time zone 23–24 was (−), whereas the grid sign was (+), meaning power was
purchased from the system.

Figure 3, where no additional conditions have been applied, shows that the ESS was charged in
the time zones having the lowest power unit cost of 66.1 (time zones 4–5, 8–9 and 23–24) but discharged
in time zones (10–11 and 11–12) having the highest power unit cost of 111.3.

4. Conditional Equation

4.1. Conditional Equation for Peak Control

The following equation should be added to the objective function when the conditional equation
is included: ∑

i∈PCg,buy

[−c
gbuy

PC,1{1 + (c
gbuy

PC,2)
i}dt · δgbuy

PC (i) + c
gbuy

PC,3dt · pgbuy

PC (i)] (15)

where c
gbuy

PC,1, c
gbuy

PC,2, c
gbuy

PC,3 are the penalty constants for peak control. The possibility of success of peak
control will be reflected to the objective function by adding this equation. Likewise, i∈Pg,buy means
that time zone i will be included in the time zones performing peak control. Since the condition
δ

gbuy

PC (i)=1 can be satisfied when peak control is successful, the value of objective function will be

decreased (−c
gbuy

PC,1{1+(c
gbuy

PC,2)
i}dt·1). In such case, the possibility of success of peak control will be largely

reflected when the value of c
gbuy

PC,1 is large (c
gbuy

PC,3dt·pgbuy

PC (i)=0 as 0 ≤ p
gbuy

PC (i)≤0). In contrast, the value

of the objective function will not be decreased when peak control fails (−c
gbuy

PC,1{1+(c
gbuy

PC,2)
i}dt·0=0 as
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δ
gbuy

PC (i)=0). This indicates that the value will be increased by c
gbuy

PC,3dt·pgbuy

PC (i) as 0≤p
gbuy

PC (i). Moreover,

the possibility of success of peak control will be highly reflected when the value of c
gbuy

PC,3 is large.
Figure 4 shows the result of the simulation to which an external operating condition limiting

system power usage to 15 kW in time zone 17–20 has been added to the basic setting (Table 7).
The conditional equation for peak control seems to be valid as the system power usages in time zone
c

gbuy

PC,3 were the same or below 15 kW compared to time zones 17–18, 18–19 and 19–20, where the usages
were the same or above 15 kW (note that the blue line indicating system power usage and the yellow
line representing total demand are overlapping).

Table 7. Peak control operating condition.

Time Zone Peak Setting

Condition 17–18, 18–19, 19–20 15 kW

In Figure 4, there was no charging/discharging in time zones 0–1 and 1–2 as the ESS values were
0. In addition, power demand and supply were balanced as net demand = grid was achieved (i.e.,
overlapping blue and yellow lines). It can be deduced that ESS has been charged as the sign was (−) in
time zone 2–3. In this case, the (+) grid sign means that power was purchased from the system. Power
demand and supply were balanced (net demand = grid) in time zones 3–4, 4–5, 5–6, 6–7 and 7–8 where
there was no charging/discharging activity. The (+) grid sign and (−) ESS sign in time zone 8–9 indicate
that power was purchased from the system to charge ESS. Next, no ESS charging/discharging was
performed in time zones 9–10, 10–11, 11–12, 12–13, 13–14, 14–15, 15–16 and 16–17 and power demand
and supply were balanced, thus satisfying net demand = grid. The same can be said for time zones
20–21, 21–22 and 22–23, but ESS was charged in time zone 23–24 as its sign was (−), buying power
from the system.

In Figure 4, where a condition for peak control was included, it can be deduced that ESS was
charged in time zones 2–3 and 8–9 due to their low power unit cost (66.1) and discharged in time zones
17–18, 18–19 and 19–20 where the condition was applied to satisfy it.

4.2. Conditional Equation for Power Usage Flattening

The maximum power demand, as well as power charges, can be reduced by improving the quality
of power through power usage flattening, the efficiency of new and renewable energy-based generation
and the use of off-peak electricity for the peak time hours during the day.

The following equation should be added to the objective function when the conditional equation
is included

cflat
g

(
pmax

g −pmin
g

)
T (16)

where cflat
g is a penalty constant for flattening. When this equation is added, the difference between the

maximum and minimum system powers pmax
g −pmin

g will be reflected to the objective function. The value

of pmax
g −pmin

g is reduced to minimize the value of the objective function and system power usage will

be flattened. The flattening effect will be largely reflected when the value of cflat
g becomes larger.

The result of a simulation wherein a flattening condition has been added to the present setting is
shown in Figure 5. When comparing it with the simulation result that does not include any conditional
equation, as the difference between the maximum and minimum system power usages was reduced
from 38.68[ = 28 − (−10.68)] kW to 9.8( = 14.6–4.8) kW, the conditional equation for power flattening
can be considered to be valid. The differences were calculated based on the maximum (minimum)
values of 28 (−10.68) and 14.6 obtained from time zones 23–24 (11–12) and 8–9, 16–17, 17–18 and 18–19
(9–10), respectively, in Figures 3 and 5.
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Figure 5. Simulation result when the conditional equation for system power flattening (power use)
was included.

In Figure 5, the ESS value in time zones 0–1, 1–2, 2–3 and 3–4 was 0, so there was no ESS
charging/discharging at all. Moreover, in these zones, power demand and supply were balanced as the
condition net demand = grid was satisfied. The ESS signs in time zones 4–5 and 5–6 were (−), so the
ESS was charged. At this time, it can be deduced that power had been purchased from the system as
the grid sign was (+). There was no ESS charging/discharging in time zone 6–7, so power demand and
supply were well-balanced, thus satisfying the same condition. In addition, the (+) sign of the grid
and the (−) sign of the ESS in time zones 7–8 and 8–9 showed that power was purchased from the
system to charge the ESS. Power demand and supply were balanced in time zones 9–10 and 10–11
so there was no ESS charging/discharging, but demand and supply were balanced as the condition
was satisfied. In time zone 11–12, the sign was (+) for both ESS and grid, so power was purchased
from the system for charging. There was no ESS charging/discharging in time zone 12–13 and power
demand and supply were balanced as the condition was satisfied. Accordingly, the power transactions
for charging/discharging activities in each time zone can be grasped by checking the signs or finding
out whether the condition has been satisfied or not.

As such, the flattening operations described in Figure 5 showed that the ESS was charged in time
zones 4–5, 5–6, 7–8 and 8–9 when the power unit cost was low (66.1) and discharged in time zones
11–12, 17–18, 18–19 and 19–20 when the cost was high (111.3) to consider cost reduction.

4.3. Conditional Equation for Demand Response Power

Demand response is an activity by the electricity users to control their energy usages by
shifting themselves from a passive power-user system to an active one, changing their normal
power consumption patterns in response to the incentive(s) obtainable by saving power or the
differentiated power rates depending on time zones.

The following equation should be added to the objective function when the conditional equation
is included:

−cDR,1{1+(cDR,2)
i}·δDR+cDR,3·PDR (17)

cDR,1, cDR,2, cDR,3 are the penalty constants of demand response. The possibility of success
of demand response will be reflected to the objective function by adding this equation. When it
becomes successful, the value of the objective function will be decreased based on the calculation
−cDR,1{1+(cDR,2)

i}dt·1, δDR=1.
The possibility of success largely depends on the cDR,1: cDR,3·PDR=0 to be established when cDR,1:

cDR,3·PDR=0. The value will not decrease when demand response fails (−cDR,1{1+(cDR,2)
i}dt·0=0,

δDR=0) but will increase instead by cDR,3·PDR (0≤PDR). This suggests that the possibility of failure
largely depends on the scale of cDR,3.
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The result of a simulation wherein the external operating condition listed in Table 8 has been
added to time zone 17–20 where 10 kW power is to be discharged is shown in Figure 6. By comparing
it with the result obtained from the same time zones in Figure 3 where no conditional equations have
been included, this conditional equation for demand response can be considered to be valid as the ESS
discharging power in time zone 19–20 was 10 kWh (10 kW*1 h).

Table 8. Demand response operating condition.

- Time Zone Demand Response Setting

Condition 17–18, 18–19, 19–20 10 kWh

Figure 6. Simulation result when the conditional equation for demand response (power usage)
was included.

In Figure 6, there was no ESS charging/discharging in time zones 0–1 and 1–2 as the ESS value was
0. In addition, power demand and supply were balanced as the yellow and blue lines were overlapping
(net demand = grid). The (−) ESS sign in time zone 2–3 shows that the ESS had been charged by
purchasing power from the system [(+) grid]. Power demand and supply in time zones 3–4, 4–5, 5–6,
6–7 and 7–8 were balanced (net demand = grid) and there was no ESS charging/discharging. Similar to
all the other conditions mentioned above, the (+) and (−) signs of either the ESS or the grid explain the
power transactions, power balance or ESS charging/discharging events that had taken place.

Added with a demand response condition, Figure 6 also shows that the ESS was charged in time
zones 2–3, 8–9 and 23–24 when the power unit cost was low (66.1) and discharged in time zones 10–11
and 19–20 when the cost was high (111.3) to consider cost reduction.

4.4. Conditional Equation for Net Zero Operation

Although achieving net zero energy by utilizing now available new and renewable energy
resources or energy-saving equipment is a desirable direction in energy management, establishing a
system to realize it can be quite costly.

The following equation should be added to the objective function when the conditional equation
is included: ∑

i∈IOg

[−cg
IO,1{1 + (cg

IO,2)
i}dt · δg

IO(i) + cg
IO,3dt · pg

IO(i)] (18)

where cg
IO,1, cg

IO,2, cg
IO,3 are the penalty constants for peak control. The possibility of success of net

zero operation will be reflected to the objective function by adding this equation. In addition, i∈IOg

means that time zone i will be included in the time zones performing the operation. Since the condition
δg

IO(i)=1 can be satisfied when the operation is successful, the value of the objective function will
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be decreased (−cg
IO,1{1+(c

g
IO,2)

i}dt·1). In such case, the possibility of success of the operation will be

largely reflected when the value of cg
IO,1 is large. In contrast, the value of the objective function will

not be decreased when the operation fails (−cg
IO,1{1+(c

g
IO,2)

i}dt·0=0, δg
IO(i)=0). This indicates that

the value will be increased by cg
IO,3dt·pg

IO(i) as 0≤pg
IO(i). Moreover, the possibility of success of the

operation will be highly reflected when the value of cg
IO,3 becomes larger.

The result of a simulation wherein the external operating condition listed in Table 9 has been
added to time zone 3–5 for a net zero operation is shown in Figure 7. By comparing it with the
result obtained from the same time zones in Figure 3 where system power usage was larger than 0,
this conditional equation for the net zero operation can be considered to be valid as the system power
usages in time zones 3–4 and 4–5 were 0.

Table 9. Net Zero operating condition.

- Time Zone

Condition 3–4, 4–5

Figure 7. Simulation result when the conditional equation for net zero operation was included.

5. Performance Evaluation

Performance evaluations were conducted by comparing a simulation wherein none of the four
conditions above had been applied with the simulations to which each of those conditions was applied.
For the simulations, MATLAB R2015a was used; the constraints resulting from individual constants
and objective functions were used as inputs for the mixed-integer linear programming of MATLAB to
show the resultant system power usage, ESS charging/discharging power and total demand with the
graphs using a plot function. Thus, for the optimization of microgrid, four environmental conditions
have been put to simulations to find the actual conditions that actually have an impact on improving
the optimization performance.

Figure 7 shows all power transactions and operations according to the (+) and (−) signs of both
the ESS and grid, whereas the overlapping yellow and blue lines indicate successful establishment of
the condition net demand = grid. It is possible to understand what had happened in each time zone.

As such, Figure 7 also shows that the ESS was charged in time zones 0–1, 8–9 and 23–24 when
the power unit cost was low (66.1) and discharged in time zone 10–11 when the cost was high (111.3)
to achieve net zero operation. The system power usages obtained from a simulation conducted by
changing the capacity of ESS from 40 to 120 kW (+10 kW per simulation) are shown in Figures 8–10
and their discharging powers, in Figures 11–13.
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Figure 8. System power usage by ESS capacity (1).

Figure 9. System power usage by ESS capacity (2).
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Figure 10. System power usage by ESS capacity (3).

Figure 11. Discharging power by ESS capacity (1).
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Figure 12. Discharging power by ESS capacity (2).

Figure 13. Discharging power by ESS capacity (3).
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Figures 9, 10, 12 and 13 are the pictures of Figures 8 and 11, respectively, when viewed from other
angles. The vertical axis in Figures 8–10 indicates the system power usages (Grid), whereas the same
axis in Figures 11–13 is the ESS charging(-)/discharging(-) power. A long axis, “Time Slot,” shows the
time zones, with “ESS Capacity” indicating the capacity of the ESS. The bar3 function of MATLAB
R2015a was used for graphing.

Observing time zones 4–5 and 8–9 in Figures 8–10, it is possible to recognize the tendency of
increasing system power usages in proportion to the ESS capacity. This would mean that the grid is
pursuing an economic gain by charging its ESS when the power unit cost is low and selling or reducing
its purchase during the time zones when the cost is high.

The time zones where power unit cost is at the lowest or highest level are 9–10 and 12–17.
Observing these time zones in Figures 11–13, there were no charging/discharging operations. This also
proves that the grid is considering gaining profit by discharging its ESS when the power unit cost is
highest and vice versa.

Being a local power grid, a Micro Grid consists of a series of DERs along with loads
and is self-sustainable or runs with the existing power grid. In such a power grid, the system
operator/administrator managing the entire supply and consumption of these resources assigns some
of his/her sublevel tasks to individual operators under him/her. The passive production resources are
often affected by the natural environments beyond the control of operators such as weather. A series of
simulations were conducted in this study for evaluation to optimize the efficiency of the Micro Grid.
Each one of the four conditional expressions (i.e., peak-zero, power-use flattening, demand-response
and net zero operation) was applied to the simulations to compare with the case where none of these
expressions were applied. Each performance was evaluated, and the validity of the expressions was
determined through simulations which proved their effectiveness for the optimization of Micro Grids
as a result.

6. Conclusions

This study conducted simulations for cases wherein none of the four kinds of conditional
equations (i.e., conditional equations for peak control, power use flattening, power demand response
and operation of net zero Energy) or at least one of them had been applied to compare them and
evaluate the effectiveness of each equation. The result showed that the conditional equations were
found to be effective when attempting to optimize the microgrid’s performance efficiently.

The peak-control conditional equation was found to be effective in the simulation as system power
usage was decreased below the peak level set at 15 kW. ESS was charged during the daytime when the
power cost was low and discharged in the time zones when peak control was implemented.

In the simulation applied with the conditional equation for flattening power use, this equation
was found to be effective as the difference between the maximum and minimum system power usages
was decreased from 38.68 kW to 9.8 kW. ESS charging was carried out during the daytime when the
power cost was low, whereas discharging was performed in the time zones when it was high.

In the simulation applied with the conditional equation for power demand-response, the equation
was found to be effective as the power set to be discharged (10 kW) in a fixed time zone was achieved
successfully. In this case, ESS was charged during the daytime when the power cost was low.

In the simulation applied with the conditional equation for net zero energy operation, the equation
was found to be effective as the system power usage became 0 in a designated time zone, despite
the fact that the power cost in that time zone (daytime) was low. As for the rest of the time zones,
ESS charging was performed during the daytime, but discharging was carried out in the time zones
when the power cost was high.

The results above showed that all the equations were effective in every case and it can be confirmed
that all the ESS operating schedules, except net zero energy operation, had been adjusted in such a way
that power is charged during the daytime and discharged or sold when the power cost was highest.
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Abstract: It is now known that more information can be leaked into the smart grid environment than
into the existing environment. In particular, specific information such as energy consumption data
can be exposed via smart devices. Such a phenomenon can incur considerable risks due to the fact
that both the amount and the concreteness of information increase when more types of information
are combined. As such, this study aimed to develop an anonymous signature technique along with a
signature authentication technique to prevent infringements of privacy in the smart grid environment,
and they were tested and verified at the testbed used in a previous study. To reinforce the security of
the smart grid, a password and anonymous authentication algorithm which can be applied not only
to extendable test sites but also to power plants, including nuclear power stations, was developed.
The group signature scheme is an anonymous signature schemes where the authenticator verifies
the group signature to determine whether the signer is a member of a certain group but he/she
would not know which member actually signed in. However, in this scheme, the identity of the
signer can be revealed through an “opener” in special circumstances involving accidents, incidents,
or disputes. Since the opener can always identify the signer without his/her consent in such cases,
the signer would be concerned about letting the opener find out his/her anonymous activities. Thus,
an anonymous signature scheme where the signer issues a token when entering his/her signature to
allow the opener to confirm his/her identity only from that token is proposed in this study.

Keywords: opening capability; security; smart grid; group signature; anonymous signature

1. Introduction

The smart grid is a newly evolving next-generation intelligent power grid, and many technological
research works were conducted in different countries over the last decade to increase the efficiency of
their power grids. The primary consideration in adopting the smart grid should be protection of the
users′ privacy [1–3]. In other words, unlike existing security measures, the smart grid system should
basically focus on the security of users rather than suppliers. More personal and specific information
can be exposed in the smart grid environment by smart devices or hacking attacks when diverse
types of information are combined [4–6]. The major issue of personal information protection in the
distribution of smart grid technology is that it is possible to infer a user’s behavioral pattern based
on his/her energy consumption data by collecting and analyzing more detailed personal data, such
as the characteristics of the user’s energy usage or the frequency of energy production obtained, by
applying the latest electric meters and other related equipment and technologies. In addition, the
data read by smart meters inevitably require a certain monitoring or surveillance scheme as they are
electronically collected and transmitted, rather than manually processed as in the past. The capacity
of a meter capable of assessing consumer patterns or types of appliance depends on the frequency
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with which it collects data and the types of data being collected. Also, the user’s behavior at home can
make it is easier to infer his/her activity patterns in other places.

The factors associated with privacy intrusion scenarios in a smart grid environment include the
following: (1) information concerning the use of a particular medical device or piece of electronic
equipment which indicates their activation times and personal patterns, segmented data pertaining
to the power consumption of each household appliance and its measurement location, and detailed
information on the use of the appliances or equipment in use at a specific location; (2) the possibility of
tracking a physical location through newly consumed energy, for instance, the charging of an electric
automobile; (3) the activities in a certain house or building can be inferred from the electronic signature
or use time pattern upon activation of a device or piece of equipment, which can form the basis for
understanding a specific user’s activities. Thus, the collection of a consumer’s energy use data by a
third party should be limited to the information required to serve the third party’s purpose and which
is authorized by the consumer.

The anonymous signature scheme comprises a function for authenticating signed messages while
hiding the actual identity of the signer, which in itself is a common method in current systems that
require the input signature to be authenticated. This scheme was developed by Chaum and Heyst
in 1991 [7]. As for the group signature scheme, a member of a certain group is able to attach his/her
signature in a message to prove that he is actually a member, and the verifier of the message will be
able to confirm that person’s membership only, without actually identifying the signer. However,
it is possible for the opener, who authenticates the input signature, to identify the signer with the
information of the signer previously stored in the system. The opener can be an organization or
institution that deals with incidents associated with signatures. The group signature scheme is widely
used as an anonymous signature scheme because of its reliability [8]. Despite its reliable performance,
however, the security of personal information is called into question as many users consider that
the opener has sufficient power to identify the signer and obtain the latter’s personal information
or information on anonymous activities for other purposes. To resolve this problem, Sakai et al. [9]
introduced a complementary scheme by adding an “admitter” to the anonymous signature scheme.
Thus, Sakai added the admitter and limited the opener’s access to the signer’s identification only by
obtaining the consent of the admitter. In 2013, Ohara et al. [10] resolved the problem raised by Sakai
(2012), which was the admitter’s limited amount of token issuance.

The group signature scheme is often used when it is necessary for the authenticator to verify that
the signer is a member of a particular group without revealing the actual identity. The real identity of
the signer can be disclosed to the authenticator only if there are incidents or disputes that need to be
solved. Nevertheless, it is quite clear that the signer will feel the burden of revealing his/her identity
or anonymous activities to the authenticator without his/her consent and consider that the authority
of the authenticator is too great. Thus, to limit the authority of the authenticator while maintaining
the effectiveness of the group signature schemes, an anonymous signature scheme which authorizes
the authenticator to identify the signer only with the token issued by the signer him/herself when
generating a signature is proposed in this study.

2. Related Research

In a conventional power grid where electric power is delivered to the end users via substations
(Figure 1), the power generation and distribution processes are centralized by the system, which
assumes the role of mapping and visualizing the routine operations while controlling these processes
to meet the power supply/demand schedule and its storage.
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Figure 1. A typical power grid structure.

However, following the rapid development of information technology (IT), such a grid architecture
transformed in a way that can provide a more efficient and effective means of power management
by integrating with Internet Protocol (IP)-based technologies. The network convergence based on
these technologies [11] allows the grid to interwork with an external network(s) by adopting the
Transmission Control Protocol (TCP)/IP for a more efficient power management and provision of
flexible but efficient service operations.

For the last decade, the development in the hardware, software, and communication technologies
led to more advanced and sophisticated information and communications technology (ICT) which
were the major factor of widespread mobile smart devices, software applications, or communication
architectures [12,13].

The next-generation (21st century) power grid being called the smart grid (Figure 2) enables a
smarter, interactive, and dynamic grid management and services based on the ubiquitous computing
and advanced ICT technology to respond to the era of the fourth industrial revolution. One of the
major advantages of the smart grid is that its bi-directional communication capability can not only
improve the power management or operating process but also be utilized for establishing an Internet
of things (IoT) system for the users’ residences.

The conceptual smart grid model developed by the United States (US) National Institute of
Standards and Technology (NIST) defined a smart grid as a complex infrastructure based on a
set of seven chief domains [14], namely bulk generation, energy distribution, power transmission,
operation and control, market, service providers, and customers and individual domains, composed
of heterogeneous elements (e.g., organizations, buildings, individuals, and systems, including system
resources and other entities). Also, the backhaul network is essential for achieving smooth but efficient
communications between customers and utility companies when advanced power management
systems such as advanced metering infrastructure (AMI) are to be embedded into the smart grid [15,16].

Figure 2. The architecture of a smart grid.
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The problem pertaining to breach of privacy is one of the major issues when people are using
a service which requires the user to be authenticated. A series of privacy protection schemes were
introduced to let users remain anonymous by allowing only encrypted information or minimum
user information to be disclosed to the system administrators; however, the security levels and the
means of protection provided by those schemes vary and can be inadequate sometimes. The blind
signature [17] or the homomorphic encryption [18] scheme is mainly used [19]. To simply describe
them, for instance, the former is a scheme where the first party (Party 1) attaches his signature to the
message generated by the second party (Party 2) without having any knowledge about the content of
the message. Then, the third party (Party 3) can receive the message but the identity of the message
sender (Party 2) will remain secure as his/her signature will not be authenticated. Meanwhile, in the
latter scheme, a specific mathematical or a computational manipulation is applied to the message or
the text to create a ciphertext so that only the authorized party with the right decryption key will be
able to decipher the encrypted message. The smart meters usually adopt the latter scheme to encrypt
and transmit their requirements to their central control system (utility company administrator) along
with a specific encryption function to let the system to decrypt the contents of the requirement with
an appropriate decryption key. These schemes were originally developed for the electronic voting
systems to conceal the voters’ information in the application layer but did not consider the possibility
leaking the information from the lower layers (i.e., link layer or network layer) of the protocol stack.
It is quite possible that the repeated use of the same IP address overtime may provide access to the
identities of the communicating parties or a means for hackers to analyze the traffic [20].

Nonetheless, it is also true that such benefits may be provided at the cost of breaching privacy.
That is, a large volume of generated data and its high granularity in which more information is
contained would allow any third party with malicious intent to grasp the lifestyles of the customers.
Also, there were some claims in some countries that the use of smart meters further endangered the
security/privacy of the customers [21]. The balance between achieving an efficient and effective smart
metering and guaranteeing the adequate level of personal information protection is always the focus
of such a controversy. Using the terminology from Reference [22], the solutions that aim to protect
the privacy should guarantee the customers a suitable level of anonymity together with a temporary
unlinkability which disconnects them from the metering infrastructure (i.e., disabling power usage
reading, etc.). However, the question here is whether the unlinkability can or should be fully achieved
even when customers are required to settle their bills at some time or another. The same question
can be addressed to unobservability, which refers to the condition where one’s power usage cannot
be observed by others. Although it is possible to keep the record of the total aggregated amount of
one’s power usage at the substation level, it still needs to be delivered to the main system for the smart
metering system to be fully functional [22,23].

2.1. Anonymous Authentication and Anonymous Signature Schemes

The term “anonymous authentication” refers to a cryptographic technology that allows the person
or entity requesting authentication to authenticate him or herself as a legitimate entity while remaining
anonymous. Commonly, simple aliases designed to preserve anonymity cannot be used for this type
of authentication as the user trail can be traced easily; thus, using them cannot be considered an
anonymous authentication scheme. A group signature, anonymous letter of credit, and more were
introduced for the purpose of anonymous authentication in a number of research works. The group
signature is an electronic signature scheme which the signer can verify him/herself as a member
of a particular group without having to reveal his/her identity, thus enabling the authenticator to
determine that the person concerned is actually a member without being able to identify him/her.
Also, the group signature scheme often involves a credible third-party organization referred to as
an “opener”, e.g., the police or an internet-related authority. The opener is authorized to identify a
signer from the group signature and can track the identity of any user who displays inappropriate
behavior (or commits illegal acts) while using anonymous services. The group signature scheme is
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currently considered the most practical for real-world applications such as web application services as
it offers traceable anonymity. In general, the group signature scheme offers anonymity, traceability,
and linkability.

Figure 3 shows a schematic representation of the group signature scheme, whose members are
normally distinguished as the group manager who sets the parameters, the opener who is authorized
to trace a specific signature in a group, the signer, and the authenticator. Each signer in the same group
has his/her own private signature key, whereas the authenticator can verify the signatures with an
open group key. Also, information that can be used to identify a signer is encrypted in the signature
value so that only the opener can trace the identity of a group signer with his open group key.

Figure 3. Diagram of the group signature scheme.

Figure 4 represents a group signature scheme that provides linkability, which was studied with a
view of applying it to a variety of applications. Linkability is a basis for determining uniformity in
a number of signatures so as to determine whether the signatures were written by the same person.
Although the linker may detect uniformity in the signatures, he/she is not able to identify the signer.

Figure 4. Diagram of group signature scheme with linkability.

In the smart grid environment, service providers can enhance the quality of their services by
performing big data analyses of users’ data, such as their real-time power usage patterns, etc., and then
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processing them into meaningful information. Thus, the level of privacy protection can be increased
by offering anonymity through group signatures, while the service providers are able to provide
flexible services by linking with the data of an anonymous user (signer). Jeong-Yeon Hwang et al.
introduced a group signature scheme that provides local linkability [6]; however, in this study, the
linker refers to an organization or institution that has a linking key generated by the group manager so
that, in general, it becomes the service provider. The linker has the authority to check the link status
for all signature values.

Figure 5 shows a group signature scheme offering limited linkability. Unlike existing group
signature schemes where the opener is a credible third-party organization, the linker in this scheme is
the service provider itself or the organization or institution designated by the service provider, with
could result in privacy violations of the service users. For example, let us assume that an anonymous
user in the smart grid environment uses a power usage analysis service along with an IoT service.
In this case, the service provider will be able to link the power usage information of person A (who
just entered his/her signature with the group signature key) with the information about his/her IoT
service use. At this time, the service provider does not know the identity of A but it is able to determine
whether the user currently using these two services is one and the same, potentially leading to an
undesirable breach of privacy. As such, while studies related to existing group signature schemes
focused on managing the system for the designated linker so as to be able to test the linkability
of all signature values, this study aims to secure a fundamental technology capable of preventing
unnecessary information exposures by developing a group signature scheme that allows the designated
linker to test the linkability only for those signatures desired by the signer. Thus, in the example shown
above, an anonymous signer A can transfer the power usage values to the linker for the linkability
test, using a group signature key while transmitting the IoT usage information separately with the
same key for the same test. Thus, this scheme can provide a more secure method of preventing privacy
breaches by minimizing the level of personal information exposure.

Figure 5. Diagram of group signature scheme with limited linkability.

3. Anonymous Signature with Signer-Controlled Opening Capability

The anonymous signature scheme allows authentication of the signer without revealing his/her
identity, whereas the group signature scheme is a method of verifying that the signer is a member of a
certain group, also without exposing the signer’s identity. Nevertheless, it is possible for an opener to
identify an anonymous signer based on the information of the signer, which is neither desirable nor
favorable for the signer who wishes his/her signature to be authenticated but does not want to reveal
his/her actual identity. Thus, this section discusses a solution whereby the signer obtains a (security)
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token upon entering his/her signature so that the opener is not able to find the information of the
signer without permission.

3.1. Application

The proposed anonymous signature scheme prevents the opener from identifying the signer
without his/her permission so that the opener has to obtain a token specifically issued for the signature
that the signer wishes to be identified. For example, this scheme can be applied to an anonymous
donation system. The identities of the donors are hidden to ensure that the fundraiser cannot know
who donated the funds. However, if the donors wish to apply for an income tax deduction, all they
have to do is issue a token to the relevant tax administration to prove their donations through signature
authentication. Currently, many countries operate an anonymous reporting system against corruption
among civil servants, but the problem is that the filed reports and the identity of a whistle-blower or
an accuser can be leaked while processing the report, thus endangering that person or making the
system useless. The proposed anonymous signature scheme can prevent such an incident by offering a
more secure protection mechanism that makes it almost impossible for an intruder or a report handler
to find the identity of the person filing the report. If the reporting system requires the accuser to be
identified, and if he/she agrees to disclose his/her identity for a final confirmation or compensation,
all he/she has to do is issue a token allowing the relevant authority to confirm the true identity.

3.2. Formal Model

The proposed method has the following four algorithms:

GKg(1λ, 1n): This is the algorithm where the group manager puts the security parameter λ and the
number of anonymous signers n to create the signer’s signing key gski, the opener’s opening key ok,
and the public parameters gpk for the system.

GSig(gpk, i, gski, M): This is the algorithm where the anonymous signer uses the group public key
gpk, the signer’s index i, the signer’s signing key gski, and the message M to create the anonymous
signature σ, and the token TKM that permits disclosure.

GVf(gpk, i, gski, M): This is the algorithm where the verifier puts the group public key gpk, the message
M, and the anonymous signature σ to verify the signature.

Open(gpk, ok, M, σ, TKM): This is the algorithm where the opener puts the group public key gpk, the
opener’s opening key ok, the message M, the anonymous signature σ, and the token TKM to check the
signer’s identification.

3.3. Security Notion

The four security concepts based on the definition of a general security model [12,13] for the
group signature schemes proposed by Mihir Bellare et al. are introduced in the proposed group
signature scheme.

- Full anonymity: The identity of a signer should not be accessed unless a token is issued by the
signer. Then, the opener, upon receiving the token, is allowed to trace the signer’s identity.

- Correctness: A correct signature and a token issued in the proper way should be used for
verification when identifying the signer.

- Unforgeability of signature: A valid anonymous signature can only be written by the signer
him/herself to attach it to a specific message.

- Unforgeability of token: A valid token can be created and issued to allow the opener to access a
specific message or a signature.
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3.4. Proposed Scheme

GKg(1λ, 1n)

- Define two hash functions: H1: {0, 1}*→ G, H2: {0, 1}*→ Zp.
- Select a parameter of the bilinear group (p, G, GT, e, g).
- Select a random element u, v, h ∈ G\{1}, a random integer ξ1, ξ2, ξ3, γ ∈ Zp, and calculate

g1 = uξ1hξ3, g2 = vξ2hξ3, ω ← gλ.
- Select a random xi ∈ Zp for each signer i (1≤ i ≤ n), then calculate Ai ← g1/(γ+xi).
- Print out the group public key gpk ← (p, G, GT, e, g, gz, u, v, h, g1, g2, ω, H1, H2), the opener’s

opening key ok ← (ξ1, ξ2, ξ3, e(Ai, g)1≤i≤n), and each signer’s signing key gski(1≤i≤n) ← (Ai,
xi)1≤i≤n.

GSig(gpk, i, gski, M)

- Select a random integer α, β, ρ, η, μ ∈ Zp.
- Calculate (T1, T2, T3, T4) ← (uα, vβ, hα+β, g1

αg2
βAigη) and (T5, T6) ← (gρ, e(gμ, H1(M))ρ).

- Select a random integer rα, rβ, rρ, rη , rx, rαx, rβx, rρx, rηx ∈ Zp.

- Calculate R1 ← urα; R2 ← vrβ; R3 ← hrα+rβ R4 ← e(T4, g)rx e(g1, ω)−rα e(g1, g)−rαx e(g2, ω)−rβ

e(g2, g)−rβx e(g, ω)−rη e(g, g)−rηx R5 ← grρ; R6 ← e(g μ, H1(M))rρe(g, g)−rη R7 ← T1
rxu−rαx; R8

← T2
rxu−rβx; R9 ← T5

rxu−rρx R10 ← T6
rxe(gμ, H1(M))rρxe(g, g)−rηx c ← H2(M, T1, . . . , T6, R1,

. . . , R10) sα ← rα + cα; sβ ← rβ + cβ; sρ ← rρ + cρ sη ← rη + cη; sx ← rx + cxi; ← sαx ← rαx +
cαxi sβx ← rβx + cβxi; sρx ← rρx + cρxi; sηx ← rηx + cηxi.

- Print out a signature σ ← (gμ, T1, . . . , T6, c, sα, sβ, sρ, sη , sx, sαx, sβx, sρx, sηx).

- In addition, calculate and print out the opening-allowed token TKM = H1(M)μ.

GVf(gpk, M, σ)

- Calculate R1’ ← usαT1
−c; R2’ ← vsβT2

−c; R3’ ← hsα+sβT3
−c R4’ ← e(T4, g)sx e(g1, ω)−sα e(g1,

g)−sαx e(g2, ω)−sβ · e(g2, g)−sβx e(g, ω)−sη e(g, g)−sηx (e(g, g)/e(T4, ω))−c R5’ ← gsρT5
−c;

R6’← e(g μ, H1(M))sρe(g, g)−sη T6
−c R7’ ← T1

sxu−sαx; R8’ ← T2
sxv−sβx; R9’ ← T5

sxg−sρx R10’
← T6

sxe(gμ, H1(M))−sρx e(g, g)sηx.
- Print out “valid” if the equation c ← H2(M, T1, . . . , T6, R1’, . . . , R10’) is completed, or “invalid”

if the equation is not completed.

Open(gpk, ok, M, σ, TKM)

- Verify the signature’s validity first using the GVf algorithm. Print out ⊥ when invalid.
- Verify the token’s validity using e(gμ, H1(M)) = e(g, TKM). Print out ⊥ when invalid.
- Identify the signer i, who satisfies the equation below when the signature and the token are valid.

e(T4/(T1
ξ 1T2

ξ 2T3
ξ 3), g)·(T6/e(T5,TKM)) = e(Ai, g).

- Print out i if there is an i that satisfies the equation. Print out ⊥ if not.

Based on the assumption that the correctness of the proposed scheme is adequate while the
decisional bilinear Diffie–Hellman problem and the decisional linear problem are difficult to solve,
full anonymity can be achieved with a random oracle model. Also, the unforgeability of a signature
(token) can be dealt with using the same model by assuming that the q-strong (computational)
Diffie–Hellman problem is difficult to solve. The details of proof were omitted as they deviate from
the research purpose.

In the following section, an anonymous signature scheme is proposed whereby a signer allows
the opener to trace his/her identity by accessing his/her information or message to which he/she gave
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permission by issuing a token. The proposed scheme is expected to raise the level of privacy protection
for the signer and can be used in a variety of systems, such as anonymous donation or corruption
reporting systems.

4. Group Signature with Signer-Controlled Opening Capability: Separate Token Generator

Group signature schemes are considered a high-security cryptographic signature authentication
system for protection of the signer′s privacy. The authenticator or the verifier of a signature is provided
with a limited amount of information or authority when he/she verifies the signer’s affiliation with a
certain group without knowing the latter’s true identity. Nevertheless, it is still possible for the opener
to trace the identity when the situation makes it necessary to deal with malicious accesses. However,
concerns about breaches of the signer’s privacy through the exposure of his/her personal information
still remain. This chapter deals with such a problem by allowing the signer to issue a token with which
the opener can access only those messages or items of information, including the signer′s identity,
whose disclosure is approved.

4.1. Formal Model

The proposed anonymous signature method is composed of the following four algorithms:

KGen(1λ): This is an algorithm where a trusted third party puts a security parameter λ to create public
parameters for the running system gpk, an issuing key for the key issuer ik, and an opening key for the
opener ok.

ISS/Join: This is an interactive algorithm between users and issuers that functions as an issuer issues
gski to a user in response to a user request.

GSig(gpk, i, gski, M): This is an algorithm where an anonymous signer creates a signature σ using a
group public key gpk, an index of the signer i, a signing key of the signer i, gski, and a message M.

TKGen(gpk, i, gski, M): This is an algorithm where an anonymous signer creates an opening-permission
token TKM using a group public key gpk, and an index of a signer i.

GVf(gpk, i, gski, M): This is an algorithm where a signature verifier performs a verification of an
anonymous signature using a group public key gpk, a message M, and an anonymous signature σ.

Open(gpk, ok, M, σ, TKM): This is an algorithm where an opener checks the identity of an
anonymous signer from an anonymous signature using an opening key of an opener ok, a message M,
an anonymous signature σ, and a token TKM.

4.2. Security Notion

Mihir Bellare et al. defined the general security model of a group signature method [12,13]. This
paper suggests the following four security notions based on Bellare’s definition:

Correctness: The proper signature and proper token are always valid when verifying, and the opener
with the right signature and the right token can always check the identification from the signature.

Full anonymity: The identity on the anonymous signature must remain inaccessible until the
anonymous signer issues a token. When a token is issued, the identity must be inaccessible except by
the opener with the token.

Signature unforgeability: Only the proper signer can create a valid anonymous signature for a
specific message.

Token unforgeability: Only the proper signer can create a valid token for a specific signature.
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4.3. Proposed Scheme

GKg(1λ, 1n)

- Define the two hash functions: H1: {0, 1}*→ G, H2: {0, 1}*→ Zp.
- Select a parameter of the bilinear group (p, G, GT, e, g, gz).
- Select a random element u, v, h ∈ G\{1}, a random integer ξ1, ξ2, ξ3, γ ∈ Zp, and calculate

g1 = uξ1hξ3, g2 = vξ2hξ3, ω ← gλ.
- Print out the group public key gpk ← (p, G, GT, e, g, gz, u, v, h, g1, g2, ω, H1, H2), and issue key λ,

the opener’s opening key ok ← (ξ1, ξ2, ξ3, e(Ai, g)1≤i≤n).

ISS/Join

- User i selects random yi ∈ Zp and calculates Si ← gz
yi.

- User i sends Si to the issuer.
- Issuer selects random xi ∈ Zp and calculates Ai ← (ggz

yi)1/(γ+xi).
- Issuer sends Ai, xi to user i.
- User i obtains the signing key gski = (Ai, xi, yi).

GSig(gpk, i, gski, M)

- Select a random integer α, β, ρ, η ∈ Zp.
- Calculate (T1, T2, T3, T4) ← (uα, vβ, hα+β, g1

αg2
βAigη) and (T5, T6, T7) ← (gρ, e(T5, g)yi, e(T5,

H1(M))yie(g, g)−η).
- Select a random integer rα, rβ, ry, rη , rx, rαx, rβx, rηx ∈ Zp.

- Calculate R1 ← urα; R2 ← vrβ; R3 ← hrα+rβ R4 ← e(T4, g)rx e(g1, ω)−rα e(g1, g)−rαx e(g2, ω)−rβ

· e(g2, g)−rβx e(g, ω)−rη e(g, g)−rηx e(gz, g)−ry R5 ← e(T5, g)ry; R6 ← e(T5, H1(M))rye(g, g)−rη R7

← T1
rxu−rαx; R8 ← T2

rxu−rβx; R9 ← T6
rxe(T5, g)−ryx R10 ← T7

rxe(T5, H1(M))ryxe(g, g)−rηx c ←
H2(M, T1, . . . , T7, R1, . . . , R10) sα ← rα + cα; sβ ← rβ + cβ; sy ← ry + cy sη ← rη + cη; sx ← rx

+ cxi; sαx ← rαx + cαxi sβx ← rβx + cβxi; sρx ← rρx + cρxi; sηx ← rηx + cηxi.

- Print out σ ← (T1, . . . , T7, c, sα, sβ, sy, sη , sx, sαx, sβx, sρx, sηx).

TKGen(gpk, i, gski, M)

- Print out TKM = H1(M)yi.

GVf(gpk, M, σ)

- Calculate R1’ ← usαT1
−c; R2’ ← vsβT2

−c; R3’ ← hsα+sβT3
−c R4’ ← e(T4, g)sx e(g1, ω)−sα e(g1,

g)−sαx e(g2, ω)−sβ e(g2, g)−sβx · e(g, ω)−sη e(g, g)−sηx e(gz, g)−sy (e(g, g)/e(T4, ω))−c R5’ ←
e(T5, g)syT6

−c; R6’ ← e(T5, H1(M))sye(g, g)−sη T7
−c R7’ ← T1

sxu−sαx; R8’ ← T2
sxu−sβx; R9’ ←

T6
sxe(T5, g)−syx R10’ ← T7

sxe(T5, H1(M))syxe(g, g)−sηx.
- Print out “valid” if the equation c ← H2(M, T1, . . . , T7, R1’, . . . , R10’) is completed, or “invalid”

if the equation is not completed.

Open(gpk, ok, M, σ, TKM)

- Verify the signature’s validity first using the GVf algorithm. Print out ⊥ if invalid.
- Find out the signer i, who satisfies the equation below, when the signature and the token are valid.

e(T4/(T1
ξ 1T2

ξ 2T3
ξ 3), g)·(T7/e(T5,TKM)) = e(Ai, g).

- Print out i if there is an i that satisfies the equation. Print out ⊥ if not.
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Determining correctness in an anonymous signature scheme is not that difficult in the proposed
scheme when compared to proving the level of full anonymity. Nevertheless, it can be proven with a
random oracle model when an assumption is made that the decisional bilinear Diffie–Hellman problem
is not easy to solve. The unforgeability of a signature can be proven with the same model as above
when it is assumed that the q-strong Diffie–Hellman problem is not easy to prove. The problem of the
unforgeability of a token can be solved in a similar way, but the assumption should be made that the
computational Diffie–Hellman problem is not easy to solve. The details of proof were omitted as they
deviate from the research purpose.

This chapter provides a solution to signers’ concerns about the exposure of their identities in the
anonymous signature schemes. The issues pertaining to the excessive authority of the openers were
covered by another study in which an admitter was added to the scheme to limit the power of the
openers. However, as the possibility of successfully tracing the signer’s identity still remained, this
study proposed a method by which the signer issues a token him/herself without the intervention of
the admitter. It is expected that, if the proposed method is applied to the existing anonymous signature
schemes, their level of security will be improved significantly, thus alleviating the users’ concerns.

5. Efficiency Comparison

A comparison of theoretical computational costs involved in the algorithms for the generation and
verification of the group signatures is shown in Table 1. The group signature scheme in Reference [24]
is a sort of a pairing-based group signature scheme which does not offer linkability, and is used for the
comparison as a reference scheme. On the other hand, the group signature scheme in Reference [6]
offers linkability by allowing the pre-defined linker to check the linkability of all the relevant signatures.
Reference [25] introduced a scheme where the signer can control the linkability. When generating
the random elements, the respective coefficients (integers) of variables G1, G2, and Zp indicate the
individual number of generated random elements (i.e., 2 G1 + 1 G2 + 2 Zp indicates that two random
elements were generated for G1, one random element for G2, and two random for Zp). Also, in the
calculation formula, P represents the pairing operation; MG1 (or MG2) is the scalar multiplication
operation for the group G1 (or G2); EGT is the exponentiation operation in the group GT. As such, the
expression 6 P + 9 MG1 + 1 MG2 + 6 EGT implies that six pairings and nine scalar multiplications for
G1, one scalar multiplication for G2, and six exponentiations for GT were performed by the algorithm
which mainly focuses on the pairing tasks (Table 2), where the pairing operations were performed
approximately six times more than the scalar multiplications.

Table 1. The computational costs of the group signatures calculated with the algorithms used by the
major group signature schemes.

Cost [24] [6] [25] Our Scheme 1 Our Scheme 2

Parameter
generation

Elements 2 G1 + 1 G2 +
3 Zp

6 G1 + 1 G2 +
5 Zp 3 G1 + 2 G2 + 3 Zp 3 G1 + 5 Zp 3 G1 + 4 Zp

Computation 2 MG1 + 1 MG2 4 MG1 + 3 MG2 2 MG1 + 1 MG2 5 MG1 5 MG1

Key
generation

Elements 1 Zp 3 Zp 2 Zp 1 Zp 2 Zp

Computation 1 MG1 3 MG1 2 MG1 1 MG1 2 MG1

Signature
generation

Elements 7 Zp 9 Zp 9 Zp 14 Zp 12 Zp

Computation 3 P + 9 MG1 +
3 EGT

7 P + 16 MG1 +
7 EGT

5 P + 9 MG1 + 6
EGT + 2 MG2

11 P + 22 MG1
+ 10 EGT

17 P + 16 MG1
+ 16 EGT

Verification Computation 5 P + 8 MG1 +
4 EGT

7 P + 16 MG1 +
4 EGT

7 P + 9 MG1 +
7 EGT

13 P + 16 MG1
+ 12 EGT

16 P + 14 MG1
+ 15 EGT
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Table 2. Performance comparison.

[24] [6] [25] Our Scheme 1 Our Scheme 2

Parameter generation 0.0306 s 0.0645 s 0.0443 s 0.0151 s 0.0146 s

Key generation 0.0020 s 0.0057 s 0.0038 s 0.0018 s 0.0037 s

Signature generation 0.0498 s 0.1051 s 0.0997 s 0.1579 s 0.2153 s

Verification 0.0653 s 0.0933 s 0.0910 s 0.1653 s 0.1959 s

The operation of each group signature scheme (Table 2) was simulated with the computer (Intel
Sandy Bridge i3 2330M 2.2-GHz processor, 4 GB random-access memory (RAM), Ubuntu 12.04),
whereas the operations (pairing) were performed using the Python Pairing-Based Cryptography
(PYPBC) Library, adopting the d224 curve, specifically. The resulting values are the averages of
100 simulations conducted for the individual schemes. The time required for the proposed scheme
to generate and verify the signature was similar to that of References [6,24,25] and the same level
of similarity was found in the computational costs. This means that the function “signer-controlled
opening capability” being added to the computation process did not actually affect the computational
costs much. Meanwhile, the proposed algorithm in this study was developed in a way that it can be
adopted in previous research [26–32] pertaining to smart grids.

6. Conclusions

The group signature scheme is an electronic signature scheme with which a signer can prove
that he/she is a member of a certain group without revealing his/her own identity, and which allows
the authenticator to make a judgment on whether the signature is written by the same person or not,
but which does not allow the authenticator to know the identity of the signer. A number of previous
studies flexibly applied group signature schemes to various applications.

Meanwhile, the proposed algorithm in this study was developed in a way that it can be adopted
in previous research [26–32] pertaining to smart grids.

Thus, two anonymous signature schemes in a smart grid environment were proposed in this
study: a scheme where the anonymous signer issues a token to let the opener identify him/her only
for the designated signature, and another scheme which requires the signer’s consent for identification.
In the former, the signer generates the token along with his/her signature using a short-term secret
key, whereas, in the latter, the token is generated using a long-term secret key only when the signer
agrees to disclose his/her identity after entering the signature. Although there is a possibility of
compromising the security a little when the latter scheme is adopted, the burden of the signer having
to issue and keep the token all the time can be lightened, improving the convenience of the scheme.
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Abstract: There is an increasing push to make automated systems capable of carrying out tasks which
humans perform, such as driving, speech recognition, and anomaly detection. Automated systems,
therefore, are increasingly required to respond to unexpected conditions. Two types of unexpected
conditions of relevance in the chemical process industries are anomalous conditions and the responses of
operators and engineers to controller behavior. Enhancing responsiveness of an advanced control design
known as economic model predictive control (EMPC) (which uses predictions of future process behavior
to determine an economically optimal manner in which to operate a process) to unexpected conditions of
these types would advance the move toward artificial intelligence properties for this controller beyond
those which it has today and would provide new thoughts on interpretability and verification for the
controller. This work provides theoretical studies which relate nonlinear systems considerations for
EMPC to these higher-level concepts using two ideas for EMPC formulations motivated by specific
situations related to self-modification of a control design after human perceptions of the process response
are received and to controller handling of anomalies.

Keywords: economic model predictive control; chemical processes; responsive control; artificial intelligence;
interpretability; controller verification

1. Introduction

The buzz around artificial intelligence (AI), machine learning, and data in recent years has sparked
both excitement and skepticism from the process systems engineering community [1,2]. Some of the most
prevalent uses of data in the process systems field have included its use in developing models of various
processes (e.g., Reference [3]) with potential applications in model-based control [4], in learning control
laws [5,6], and in process monitoring [7,8]. Control engineers have debated about whether control itself
should be considered to be artificial intelligence, particularly as control laws become more advanced.
For example, a particularly intelligent form of control (known as economic model predictive control
(EMPC) [9–12]) is an optimization-based control strategy that determines the optimal manner in which to
operate a chemical process in the sense that the control actions optimize a profit metric for the process
over a prediction horizon, subject to process constraints. The significant potential benefits of this control
law for next-generation manufacturing have prompted a wide range of investigations in the context of
EMPC, including how it may be used for building temperature regulation [13], wastewater treatment [14],
microgrid dispatch [15], and gas pipeline networks [16]. Though chemical processes have traditionally
been operated at steady-state, EMPC does not necessarily enforce steady-state operation in its efforts to
optimize process economic performance. This has raised key questions for this control design regarding

Mathematics 2020, 8, 259; doi:10.3390/math8020259 www.mdpi.com/journal/mathematics
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important properties of intelligent systems such as interpretability of its operating strategy and verification
that it will work correctly for the real environment that it will need to control and interact with.

Interpretability is a desirable property for artificially intelligent systems. It has been considered
in a variety of contexts; for example, the issue of building interpretable data-driven models has been
considered to be enhanced by sparse regression, where a model with a small number of available possible
terms which could be utilized to build it is derived (with an underlying assumption being that simpler
models are more physically realistic and therefore should be more interpretable) [17]. Models identified via
sparse regression techniques have been utilized in model predictive control for hydraulic fracturing [18].
Interpretability of other model-building strategies has also been a consideration; for example, for neural
networks, where interpretability may be considered to be multidimensional, but to generally constitute
whether a human can trace how a neural network obtained its conclusions via how the input information
was processed [19], recurrent neural networks with long short-term memory were analyzed for how their
cells processed different aspects of character-level language models [20].

It is recognized that interpretability of the control actions computed by an EMPC will be a major
determining factor in the adoption of EMPC in the process industries (because, if operators and engineers
do not know if the process is in an upset condition, they will likely disable features of the controller
that make it difficult to understand due to the need to be sure that safety is maintained at all times).
Interpretability for EMPC has not yet received significant focus in the literature. The subset of EMPC
formulations which track a steady-state [21] possess a form of interpretability in that the reference behavior
is understood by engineers and operators. Reference [22] developed an EMPC formulation in which the
desired closed-loop process response specified or restricted by an operator or engineer is tracked by the
controller. However, developing the best means for ensuring interpretability for EMPC to appropriately
trade off end user understanding with economic optimality remains a largely open question. This work
provides new perspectives on this important issue, suggesting that a controller formulation that bridges
the human–machine interface by allowing the adjustment of constraints in response to human opinions
about the process behavior under the EMPC may provide new avenues of both democratizing advanced
control and allowing end users to adjust the response to their liking from an interpretability standpoint.

Another important topic for intelligent control systems is enabling their verification (i.e., certifying
that they will perform in practice as intended). Verification can take a significant amount of engineering
time and expense, and methods for reducing the time required to validate the controller’s performance
could reduce the cost of advanced control, could promote operational safety, and could make the controller
more straightforward to implement (a lack of ability to verify can prevent an intelligent system from
being placed online at all). In the control community, a traditional approach to verification is to design
controllers with guaranteed robustness to bounded uncertainty and to use this as a certificate that the
controller will be able to maintain closed-loop stability in practice (e.g., References [23–25]). This requires
some knowledge of the disturbance characteristics (e.g., upper bounds), which may be difficult to fully
determine a priori but is important for EMPC, as the controller could drive the closed-loop state to operate
at boundaries of safe operating regions to optimize profits, where the uncertainty in the disturbance
characteristics could lead to unsafe conditions. Additional conservatism to account for the uncertainty
could lead to over-conservatism that could decrease profits. Other methods for handling disturbances in
EMPC have been developed, including methods that account for disturbances probabilistically (making
assumptions on their distribution) [26] or adapting models used by the predictive controller online
(e.g., References [27–29]). Results on the use of adapting models in EMPC have even included closed-loop
stability guarantees when a recurrent neural network that is updated via error triggering is used as the
process model [30]. An example of an adaptive control strategy which handles uncertain dynamics in batch
processing is that in Reference [31], which uses model predictive control equipped with a probabilistic
recursive least squares model parameter update algorithm with a forgetting factor to capture batch process
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dynamics. In addition, Reference [32] analyzed a learning-based MPC strategy with a terminal constraint
for systems with unmodeled dynamics, where performance is enhanced by using a learned model in the
MPC but safety goals are met by ensuring that control actions computed via the MPC are stabilizing.

Another direction that has received attention for handling uncertainty is fault tolerance in the sense of
controller reconfigurations upon detection of an actuator fault/anomaly (e.g., Reference [33]) or anomaly
response cast in a framework of fault-tolerant control handled via fault/anomaly detection followed by
updating the model used by a model-based controller [34]. In Reference [35], fault-tolerant control for
nonlinear switched systems was analyzed in the context of safe parking for model predictive control
with a steady-state tracking objective function for actuator faults. For EMPC, Reference [36] handled
faults through error-triggered data-driven model updates in the controller, and the uniting of EMPC with
driving the state into safety-based regions in state-space (e.g., References [37,38]) also constitutes a form
of fault-handling. Despite these advances in handling anomalies and uncertainty, which are critical for
addressing moving toward a verification paradigm for EMPC, verifying the controller today would still be
expected to be time-consuming; additional work is needed to explore further ways of considering and
establishing verification for the control design.

Another approach in verification of controllers has been online verification via data-driven models
complemented by detection algorithms for problematic controller behavior leading to bounds on the time
that would elapse before detection of problematic controller behavior [39]. A feature of this direction
in verification, therefore, is the combination of data-driven modeling for control (to address model
uncertainty) with guarantees that problematic behavior due to model inaccuracies can be flagged within
a given time period. In the present work, we take a conceptually similar approach to verification for
EMPC using online anomaly handling with a conservative Lyapunov-based EMPC (LEMPC) [24] design
approach that facilitates guaranteed detection of significant plant/model mismatch under sufficient
conditions and allows upper bounds on the amount of time available until the mismatch would need to be
compensated via model updates without compromising closed-loop stability (as well as the characteristics
of the resulting control law after model reidentification required to obtain these theoretical results) to be
presented. The development of theoretical guarantees on closed-loop stability with data-driven models
that can be updated online in LEMPC has some similarities to References [30,40] but is pursued from
a different angle that allows the underlying process dynamics to suddenly change and also allows for more
general nonlinear data-driven models to be considered (i.e., we do not restrict the modeling methodology
to neural networks as in References [30,40]). It also has similarities to the framework for accounting for
faults in LEMPC via model updates in Reference [41] but considers a theoretical treatment of anomaly
conditions with data-driven LEMPC, which was not explored in that work.

Motivated by the above considerations, this work focuses on advancing both interpretability and
verification for EMPC. These are important considerations for human–machine interaction and can
be viewed as different aspects of a “responsive” control design in the sense that the controller is
made responsive to changing or unexpected conditions like a human would be. We first address the
interpretability concept suggested above in an LEMPC framework in which we elucidate conditions under
which an LEMPC could be made responsive to potentially inaccurate metrics reflecting the reactions
of end users to the LEMPC’s behavior without loss of closed-loop stability. We subsequently move in
the direction of addressing verification considerations for LEMPC by developing theoretical guarantees
which can be made for the controller in the presence of process dynamics anomalies/changes when
potentially adapting data-driven models are used in the controller. We evaluate the conditions under
which closed-loop stability may be lost in such circumstances, with exploration of bounds on times
before which detection and accommodation of the anomaly could be stabilized to avoid potential plant
shutdown. Numerical examples utilizing continuous stirred tank reactors (CSTRs) are presented to
illustrate major concepts. Throughout, we highlight cases where the proposed methods could interface
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with other artificial intelligence techniques (e.g., sentiment analysis or image-based sensing) without
compromising closed-loop stability, highlighting the range of intelligent techniques which can be used to
enhance next-generation control within an appropriate theoretical framework.

This work is organized as follows: in Section 2, preliminaries are presented. These are followed by
the main results in Section 3, which consist of controller formulations and implementation strategies,
with demonstration via numerical examples, where (1) the controller constraints can be adjusted online
in response to potentially inaccurate stimuli without closed-loop stability being lost (Section 3.1) and
(2) the control strategy has characterizable properties in the presence of process anomalies resulting
in unanticipated changes in the underlying process dynamics (Section 3.2). Section 4 concludes and
provides an outlook on the presented results. Proofs for theoretical results associated with the second
control strategy noted above are provided in the Appendix. This manuscript is an extended version of
Reference [42].

2. Preliminaries

2.1. Notation

The operator | · | denotes the vector Euclidean norm. A function α : [0, a) → [0, ∞) is in class
K if it is continuous, if it strictly increases, and if α(0) = 0. The notation Ωρ defines a level set of
a scalar-valued function V (i.e., Ωρ := {x ∈ Rn : V(x) ≤ ρ}). The operator ′/′ signifies set subtraction
(i.e., A/B := {x ∈ Rn : x ∈ A, x /∈ B}). xT represents the transpose of the vector x. We define a sampling
time with the notation tk := kΔ, k = 0, 1, . . ..

2.2. Class of Systems

This work considers switched nonlinear systems of the following form:

ẋa,i = fi(xa,i(t), u(t), wi(t)) (1)

where xa,i ∈ X ⊂ Rn denotes the state vector, u ∈ U ⊂ Rm denotes the input vector (u = [u1, . . . , um]T),
and wi ∈ Wi ⊂ Rz denotes the disturbance vector, where Wi := {wi ∈ Rz : |wi| ≤ θi, θi > 0}, for
i = 1, 2, . . .. In this notation, the ith model is used for t ∈ [ts,i, ts,i+1), where xa,i(ts,i+1) = xa,i+1(ts,i+1)

and ts,1 = t0. The vector function fi is assumed to be a locally Lipschitz function of its arguments
with f1(0, 0, 0) = 0 and fi(xa,i,s, ui,s, 0) = 0 for i > 1 (i.e., the steady-state of the updated models when
wi = 0 is at xa,i = xa,i,s, u = ui,s). The system of Equation (1) with wi ≡ 0 is known as the nominal
system. Synchronous measurement sampling is assumed, with measurements available at every tk = kΔ,
k = 0, 1, . . .. It is noted that ts,i, i = 1, 2, . . ., is not required to be an integer multiple of tk. We define
x̄a,i = xa,i − xa,i,s and ūi = u − ui,s and define f̄i as fi rewritten to have its origin at x̄a,i = 0, ūi = 0,
wi = 0. Similarly, we define Ui to be the set U in deviation variable form from ui,s and Xi to be the set X in
deviation variable form from xa,i,s.

We assume that there exists an explicit stabilizing (Lyapunov-based) control law hi(x̄a,i) =

[hi,1(x̄a,i) . . . hi,m(x̄a,i)]
T that renders the origin of the nominal system of Equation (1) asymptotically

stable in the sense that the following inequalities hold:

α1,i(|x̄a,i|) ≤ Vi(x̄a,i) ≤ α2,i(|x̄a,i|) (2)

∂Vi(x̄a,i)
∂x̄a,i

f̄i(x̄a,i, hi(x̄a,i), 0) ≤ −α3,i(|x̄a,i|) (3)
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∣∣∣ ∂Vi(x̄a,i)
∂x̄a,i

∣∣∣ ≤ α4,i(|x̄a,i|) (4)

hi(x̄a,i) ∈ Ui (5)

for all x̄a,i ∈ Di ⊆ Rn and i = 1, 2, . . ., where Di is an open neighborhood of the origin of f̄i, and for
a positive definite, sufficiently smooth Lyapunov function Vi. The functions α1,i, α2,i, α3,i, and α4,i are of class
K. A level set of Vi denoted by Ωρi ⊂ Di is referred to as the stability region of the system of Equation (1)
under the controller hi(x̄a,i). We consider that Ωρi is selected to be contained within X. The Lyapunov-based
controller is assumed to be Lipschitz continuous such that the following inequalities hold:

|hi,j(x)− hi,j(x′)| ≤ Lh,i|x − x′| (6)

for a positive constant Lh,i for all x, x′ ∈ Ωρi , and i = 1, 2, . . ., with j = 1, . . . , m.
Lipschitz continuity of fi and sufficient smoothness of Vi provide the following inequalities,

for positive constants Mi, Lx,i, Lw,i, L′x,i, and L′w,i:

| f̄i(x, u, wi)| ≤ Mi (7)

| f̄i(x, u, wi)− f̄i(x′, u, 0)| ≤ Lx,i|x − x′|+ Lw,i|wi| (8)∣∣∣ ∂Vi(x)
∂x f̄i(x, u, wi)− ∂Vi(x′)

∂x f̄i(x′, u, 0)
∣∣∣ ≤ L′x,i|x − x′|+ L′w,i|wi| (9)

for all x, x′ ∈ Ωρi , u ∈ Ui, and wi ∈ Wi.
As this work considers responses to unexpected conditions, we consider that there may be cases in

which the nonlinear model of Equation (1) may not be available, though an empirical model with the
following form may be available:

ẋb,q(t) = fNL,q(xb,q(t), u(t)) (10)

where fNL,q is a locally Lipschitz nonlinear vector function in xb,q ∈ Rn and in the input u ∈ Rm with
fNL,1(0, 0) = 0 and fNL,q(xb,q,s, uq,s) = 0 for q > 1 (i.e., the steady-state of the updated models is at
xb,q = xb,q,s, u = uq,s). Here, q = 1, 2, . . ., to allow for the possibility that, as the underlying process
dynamics change (i.e., the value of i increases in Equation (1)), it may be desirable to switch the empirical
model used to describe the system. However, we utilize the index q instead of i for the empirical model
to signify that we do not assume that the empirical model must switch with the same frequency as the
process dynamics. When the model of Equation (10) does switch, we assume that the switch occurs at
a time ts,NL,q+1 in a manner where xb,q(ts,NL,q+1) = xb,q+1(ts,NL,q+1). We define x̄b,q = xb,q − xb,q,s and
ūq = u − uq,s and define f̄NL,q as fNL,q, rewritten to have its origin at x̄b,q = 0, ūq = 0, as follows:

˙̄xb,q(t) = f̄NL,q(x̄b,q(t), ūq(t)) (11)

Similarly, we define Uq to be the set U in deviation variable form from uq,s and Xq to be the set X in
deviation variable form from xb,q,s.

We consider that, for the empirical models in Equation (10), there exists a locally Lipschitz explicit
stabilizing controller hNL,q(x̄b,q) that can render the origin asymptotically stable in the sense that:
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α̂1,q(|x̄b,q|) ≤ V̂q(x̄b,q) ≤ α̂2,q(|x̄b,q|) (12a)

∂V̂q(x̄b,q)

∂x̄b,q
f̄NL,q(x̄b,q, hNL,q(x̄b,q)) ≤ −α̂3,q(|x̄b,q|) (12b)∣∣∣∣∂V̂q(x̄b,q)

∂x̄b,q

∣∣∣∣≤ α̂4,q(|x̄b,q|) (12c)

hNL,q(x̄b,q) ∈ Uq (12d)

for all x̄b,q ∈ DNL,q (where DNL,q is a neighborhood of the origin of f̄b,q contained in X), where V̂q : Rn →
R+ is a sufficiently smooth Lyapunov function, α̂i,q, i = 1, 2, 3, 4, are class K functions, and q = 1, 2, . . ..
We define Ωρ̂q ⊂ DNL,q as the stability region of the system of Equation (10) under hNL,q and Ωρ̂sa f e,q as
a superset of Ωρ̂q contained in DNL,q and X. Lipschitz continuity of fNL,q and sufficient smoothness of V̂q

imply that there exist ML,q > 0 and LL,q > 0 such that

| f̄NL,q(x, u)| ≤ ML,q (13a)∣∣∣∣∂V̂q(x1)

∂x
f̄NL,q(x1, u)− ∂V̂q(x2)

∂x
f̄NL,q(x2, u)

∣∣∣∣≤ LL,q|x1 − x2| (13b)

∀x, x1, x2 ∈ Ωρ̂q , u ∈ Uq, and q = 1, 2, . . ..
Furthermore, we define x̄a,i,q = xa,i − xb,q,s as the variable representing the deviation of each xa,i from

the steady-state of the qth empirical model of Equation (10) and f̄i,q as the right-hand side of Equation (1)
when the model is rewritten in terms of the deviation variables x̄a,i,q and ūq, as follows:

˙̄xa,i,q = f̄i,q(x̄a,i,q(t), ūq(t), wi(t)) (14)

We assume that the following holds:

| f̄i,q(x, u′, w)− f̄i,q(x′, u′, 0)| ≤ Lx,i,q|x − x′|+ Lw,i,q|w| (15)∣∣∣∣ ∂V̂q(x)
∂x f̄i,q(x, u′, w)− ∂V̂q(x′)

∂x f̄i,q(x′, u′′, 0)
∣∣∣∣ ≤ L′x,i,q|x − x′|+ L′w,i,q|w| (16)

for all x, x′, u′, u′′ and w such that x + xb,q,s − xa,i,s ∈ Ωρi , x′+ xb,q,s − xa,i,s ∈ Ωρi , u′+ uq ∈ U, u′′+ uq ∈ U,
and w ∈ Wi. We define a level set of V̂q contained in Ωρ̂sa f e,q that is also contained in Ωρi to be Ωρ̂q,i , and
Lx,i,q, Lw,i,q, L′x,i,q, L′w,i,q > 0

2.3. Economic Model Predictive Control

Economic model predictive control (EMPC) [12] is an optimization-based control design formulated
as follows:

minūi∈S(Δ)
∫ tk+N

tk
Le( ˜̄xa,i(τ), ūi(τ))dτ (17)

s.t. ˙̄̃xa,i(t) = f̄i( ˜̄xa,i(t), ūi(t), 0) (18)

˜̄xa,i(tk) = x(tk) (19)

ūi(t) ∈ Ui, ∀ t ∈ [tk, tk+N) (20)

˜̄xa,i(t) ∈ Xi, ∀ t ∈ [tk, tk+N) (21)
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where Le(·, ·) represents the stage cost of the EMPC, which can be a general scalar-valued function that is
optimized in Equation (17). The notation u ∈ S(Δ) signifies that u is a piecewise-constant input trajectory
with period Δ. The prediction horizon is denoted by N. Equation (18) represents the nominal process
model, with predicted state ˜̄xa,i for the ith model. Equations (20) and (21) represent the input and state
constraints, respectively. We denote the optimal solution of an EMPC at tk by u∗p(tj|tk), p = 1, . . . , m,
j = k, . . . , k + N − 1, where each u∗p(tj|tk) holds for t ∈ [tj, tj+1) within the prediction horizon. x(tk)

in Equation (19) signifies that the state measurement represents the actual system state at tk placed in
deviation variable form with respect to x̄a,i,s. Due to the potential switching of the underlying process
dynamics before the model in Equation (18) is updated, the measurement may come from a dynamic
system different than the ith model used in Equation (18).

2.4. Lyapunov-Based Economic Model Predictive Control

A variety of variations on the general EMPC formulation in Equations (17)–(21) have been developed.
One such variation which will receive focus in this paper is Lyapunov-based EMPC (LEMPC) [24], which
is formulated as in Equations (17)–(21) but with the following Lyapunov-based constraints added as well:

Vi( ˜̄xa,i(t)) ≤ ρe,i, ∀ t ∈ [tk, tk+N), if tk ≤ t′ and Vi(x(tk)) ≤ ρe,i (22)

∂Vi(x(tk))

∂x
f̄i(x(tk), u(tk), 0) ≤ ∂Vi(x(tk))

∂x
f̄i(x(tk), hi(x(tk)), 0),

if tk > t′ or Vi(x(tk)) > ρe,i

(23)

where Ωρe,i ⊂ Ωρi is selected such that the closed-loop state is maintained within Ωρi over time when the
process of Equation (1) is operated under the LEMPC of Equations (17)–(23). t′ is a time after which the
constraint of Equation (23) is always applied, regardless of the value of Vi(x(tk)). The activation conditions
of the LEMPC with respect to Vi(x(tk)) ensure that the LEMPC can maintain closed-loop stability within
Ωρi as well as recursive feasibility.

2.5. Lyapunov-Based Economic Model Predictive Control with an Empirical Model

Several prior works have developed LEMPC formulations including empirical models [43,44] when
the model of Equation (1) is either unknown or undesirable for use (e.g., more computationally intensive
than an empirical model). They have the following form:

min
ūq(t)∈S(Δ)

∫ tk+N

tk

[Le(x̄b,q(τ), ūq(τ))]dτ (24a)

s.t. ˙̄xb,q = f̄NL,q(x̄b,q(t), ūq(t)) (24b)

x̄b,q(tk) = x(tk) (24c)

x̄b,q(t) ∈ Xq, ∀ t ∈ [tk, tk+N) (24d)

ūq(t) ∈ Uq, ∀ t ∈ [tk, tk+N) (24e)

V̂q(x̄b,q(t)) ≤ ρ̂e,q, ∀ t ∈ [tk, tk+N) if x(tk) ∈ Ωρ̂e,q (24f)

∂V̂q(x(tk))

∂x
( f̄NL,q(x(tk), u(tk))) ≤

∂V̂q(x(tk))

∂x
( f̄NL,q(x(tk), hNL,q(x(tk)))) if x(tk) /∈ Ωρ̂e,q

or tk ≥ t′ (24g)
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where the notation follows that found in Equations (17)–(23) except that the predictions from the nonlinear
empirical model are denoted by x̄b,q (Equation (24b)) and are initialized from a measurement of the state
of the ith system of Equation (1) (i.e., from the state measurement of whichever model describes the
process dynamics at tk). Regardless of which dynamic model describes the underlying process dynamics,
the qth empirical model along with the state (Equation (24d)) and Lyapunov-based stability constraints
corresponding to that model are used.

3. Responsive Economic Model Predictive Control Design

The next sections present two concepts for moving toward interpretability and verifiability goals for
EMPC, cast within a framework of making EMPC more responsive to “unexpected” behavior.

3.1. Automated Control Law Redesign

In this section, we focus on a case in which the process model used does not change over time
(i.e., the i = 1 process model in Equation (1) is used for all time) and consider the problem that, despite
the pushes toward next-generation manufacturing, many companies that may benefit from automation
can have difficulty implementing the appropriate advances if they do not have a knowledgeable control
engineer on site due to both a lack of knowledge of advanced control as well as a lack of interpretability
of the controller’s actions. We present one idea for making an LEMPC easier to work with by giving it
a “self-design” capability that allows the controller to update its formulation in a manner that satisfies
end-user requirements without requiring understanding of the control laws on the part of the end users.
Critically, closed-loop stability and recursive feasibility guarantees are retained. This can be considered to
be a case in which the human response to the operating strategy is “unexpected” (in the sense that it is not
easily predictable by the control designer), but the controller must have the ability to adjust its control law
in response to the human reaction.

The first step toward designing an appropriate controller for this scenario is to recognize that the
human response to the process behavior is some function of the pattern observed in the state and input
data and that the pattern is dictated by the control formulation. For EMPC, for example, it is dictated
by the constraints and objective function (though the process model of Equation (18) also plays a role
in determining the response, we consider that the model must represent the process at hand and that
therefore it cannot be tuned to impact the state/input behavior). Conceptually, then, the solution to
handling the “unexpected” response of the end user of the controller is to learn the mapping between the
end user’s satisfaction with the response and the constraint/objective function formulation and then to use
that mapping to find the constraint/objective function formulation that provides “optimal” satisfaction to
the end user.

An open question is how to do this and, in particular, how to do it in a manner that provides theoretical
guarantees on feasibility/closed-loop stability. To demonstrate this challenge, consider the LEMPC of
Equations (17)–(23). The theoretical results for LEMPC which guarantee closed-loop stability and recursive
feasibility under sufficient conditions when no changes occur in the underlying process dynamics rely
on the constraints of Equations (22) and (23) being present in the control design [24]. Therefore, ad hoc
constraint development in an attempt to optimize end-user “satisfaction” with the process response would
not be a means for providing closed-loop stability and recursive feasibility guarantees. Instead, any
modification of constraints must take place in a more rigorously defined manner.

One approach would be to develop constraints for EMPC which allow “tuning” of the process
response but impact neither closed-loop stability nor feasibility as the tuning parameter in these constraints
is adjusted. They thus offer some flexibility to the end user in modifying the response but also ensure that
the end user’s power to adjust the control law is appropriately restricted for feasibility/stability purposes.
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An example of constraints which meet this requirement is the input rate of change constraints added to
LEMPC in Reference [45]. In the following section, we will discuss in detail how these constraints may
be incorporated within the proposed framework for providing an end user with a restricted flexibility in
adjusting the process response without losing theoretical properties of LEMPC.

Remark 1. The question of how the human response may be accurately sensed is outside the scope of the present
manuscript. A process example will be provided below in which the end user is assumed to take time to rank his or
her “satisfaction” with the process behavior under a number of different controllers to develop a mapping between
satisfaction and the tuning parameter of the control law. However, human responses could also be considered to be
obtained through other machine learning/artificial intelligence methods, such as sentiment analysis [46].

Remark 2. Potential benefits of an approach that adjusts the controller’s behavior based on the end user’s response
(rather than assuming that some type of standard metric for evaluating control performance (e.g., settling time,
rise time, or overshoot of the steady-state) is able to capture the desired response) are that (1) EMPC may operate
processes in a potentially time-varying fashion, meaning that the closed-loop state may not be driven to a steady-state
and that the behavior of the process under the EMPC may not be easily predictable a priori (e.g., without running
closed-loop simulations). Therefore, determining what metrics to use to state whether performance under EMPC
is acceptable or not may not be intuitive or easily generalizable, unlike in the case where steady-state operation is
desired. (2) Again, unlike the steady-state case, not all end users of a given EMPC formulation may have the same
definition of “good” behavior. Ideally, the “best” behavior is the one computed by the EMPC when it optimizes the
process economics over the prediction horizon in whatever manner is necessary to ensure that the constraints are
met but profit is maximized. However, an end user may not find this to constitute the “best” behavior due to other
considerations that are perhaps difficult or costly to include in the control law (for example, the most profitable input
trajectories from the perspective of the profit metric being used in Equation (17) may be expected to lead to more
actuator wear than is desirable, which will be the subject of the example below). Therefore, it may be difficult to set
a general metric on “good” behavior under EMPC, as the additional considerations defining “goodness” that are
not directly included in the control law may vary between processes. (3) The concept of designing a controller that
is responsive to unexpected evaluations of its behavior could have broader implications, if appropriately developed,
than the initial goal of achieving desired process behavior for a given control law. Ideally, developments in this
direction would serve as a springboard for reducing a priori control design efforts while increasing flexibility for
next-generation manufacturing such that end users are able to achieve many goals during production that they
may conceive over time as being important to their operation but without needing to interface extensively with
vendors or even needing to update their software to achieve these updated process responses. The vision is one where
modifications for manufacturing could become as flexible and safe through new responsive and intelligent controller
formulations as modifications to codes are for computer scientists who do not work with physical processes and
therefore can readily test and evaluate new protocols to advance the field quickly.

3.1.1. LEMPC with Self-Designing Input Rate of Change Constraints

In Reference [45], an LEMPC formulation with input rate of change constraints was designed with
the form in Equations (17)–(23) but with the following rate of change constraints added on the inputs:

|up(tk)− h1,p(x(tk))| ≤ εr, p = 1, . . . , m (25)

|up(tj)− h1,p( ˜̄xa,i(tj))| ≤ εr, p = 1, . . . , m, j = k + 1, . . . , k + N − 1 (26)
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where εr ≥ 0. This formulation is demonstrated in Reference [45] to maintain closed-loop stability and
recursive feasibility under sufficient conditions and to cause the following constraints to be met:

|u∗p(tk|tk)− u∗p(tk−1|tk−1)| ≤ εdesired, ∀ p = 1, . . . , m (27)

|u∗p(tj|tk)− u∗p(tj−1|tk)| ≤ εdesired, ∀ p = 1, . . . , m, j = k + 1, . . . , k + N − 1 (28)

where εdesired > 0. The goal of this formulation of LEMPC is to utilize input rate of change constraints
to attempt to reduce variations in the inputs between sampling periods that have the potential to cause
actuator wear.

However, as noted in Reference [47], despite the intent of the method to prevent actuator wear,
there is no explicit relationship between εdesired or εr and the amount of actuator wear. Therefore, a control
engineer seeking to prevent actuator wear for a given process under the LEMPC of Equations (17)–(23),
(25), and (26) might design the value of εr by performing closed-loop simulations of the process under
various values of εr and then by selecting the one that gives the response that the engineer judges to
present a sufficient tradeoff between optimizing economic performance and reducing actuator wear.
A company with little control expertise on hand, however, may have difficulties with tuning εr without
vendor assistance. The fact that controllers today cannot readily “fix” their response if engineers who do
not have control expertise would like the response to have different characteristics presents a hurdle to the
adoption of even simple control laws, let alone the more complex designs which we would like to move
into widespread use as part of the next-generation manufacturing paradigm.

These potential negative responses to a lack of on-site control expertise might be prevented by
allowing the controller itself to be responsive to end-user preferences. For example, the value of εr might
be designed by allowing a short period of operation under the control law of Equations (17)–(23), (25),
and (26) with different values of εr. The engineers at the plant could then look at time periods in the plant
data during which each of the values of εr were used and could evaluate the performance of the plant
through some metric that can be recorded. Then, the value of εr that is predicted to provide the highest
rate of satisfaction (based on some relationship between the value of εr and the evaluation metrics which
can be derived through techniques for fitting appropriate models to the kind of data generated, such as
regression or other techniques of machine learning) could be selected for use (and further updated over
time through a similar mechanism as necessary).

Remark 3. One could argue that the algorithm by which a control engineer judges whether a given value of εr is
preferable could be represented mathematically (e.g., as an optimization problem with an objective function representing
a tradeoff between penalties on input variation and loss of profit). However, for the reasons noted in Remark 2 above and
also with the goal of developing an algorithm which may facilitate interpretability of LEMPC by allowing its control law to
be self-adjusted based on how end users feel about the response of the process under the controller, we handle this within the
general case of “unexpected” scenarios to which we would like to make EMPC responsive.

LEMPC with Self-Designing Input Rate of Change Constraints: Theoretical Guarantees

The methodology proposed above incorporates human judgments on the process response for
different values of εr for setting εr in Equations (17)–(23), (25), and (26). Despite the fact that human
judgment is imprecise, the LEMPC formulations of Equations (17)–(23), (25), and (26), by design, maintains
closed-loop stability and recursive feasibility under sufficient conditions (proven in Reference [45]) that are
unrelated to the value of εr, demonstrating that the combination of control theory and data-driven models
for “unexpected” behavior or human intuition may be possible to achieve with theoretical guarantees.
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When the proposed strategy for evaluating εr online via human responses to different values of the
parameter εr is used, closed-loop stability and feasibility still hold; however, it may not be guaranteed
that Equations (27) and (28) hold. Since εdesired is arbitrary in many respects since it is indirectly tied to
actuator wear (primarily though human evaluation), the satisfaction of Equations (27) and (28) may not be
significant during the time period that an operator or engineer is evaluating εr.

There is no guarantee that the proposed method will produce a value of εr that gives “optimal
satisfaction” to the end user. However, this is not considered a limitation of the method, as the end user’s
satisfaction is subjective and various methods for modeling the relationship between εr and the end user’s
satisfaction could be examined if one is found to produce an inadequate result. The value of εr can also
be adjusted further over time if the response after an initial value of εr is chosen is determined not to be
preferable. Reference [45] does guarantee however that, throughout all of the time of operation (both when
various values of εr are tested and when a single value of εr is selected), closed-loop stability and recursive
feasibility can be guaranteed. This is because the value of εr only impacts whether Equations (27) and (28)
are satisfied under the LEMPC of Equations (17)–(23), (25), and (26), and Equations (27) and (28) are
only of potential concern for actuator wear and not closed-loop stability or feasibility. Furthermore,
because Reference [45] demonstrates that hi( ˜̄xa,i(tq)), ∀ t ∈ [tq, tq+1), q = k, . . . , k + N − 1 is a feasible
solution to Equations (17)–(23), (25), and (26) at every sampling time regardless of the value of εr because
Equations (25) and (26) can be satisfied by hi( ˜̄xa,i(tq)), t ∈ [tq, tq+1), q = k, . . . , k + N − 1 for any εr ≥ 0,
the value of εr can change between two sampling periods as εr is being evaluated and recursive feasibility
(and therefore closed-loop stability, since closed-loop stability depends on Equations (22) and (23) and not
on Equations (25) and (26)) will be maintained. Finally, though when εr is being evaluated, the process
profit or actuator wear level may not be the same as they would be after the value of εr is selected, this is
not expected to pose significant problems for many processes if it is performed over a short period of
time. Furthermore, if there are hard process constraints defined by Xi that must be met in order to ensure
that the product produced during the time when εr is evaluated can be sold, these can be met even as
various values of εr are tried because x̄a,i(t) ∈ Ωρi ⊆ Xi according to Reference [45] for any value of εr.
Furthermore, Reference [45] also guarantees that, even as the values of εr are adjusted, the closed-loop
state can be driven to a neighborhood of a steady-state to avoid production volume losses as εr is adjusted
if necessary.

Remark 4. The fact that the above stability analysis holds regardless of the value of εr indicates that the accuracy of
the method used in obtaining εr does not impact closed-loop stability. This is particularly important if the method
used in obtaining εr involves, for example, performing sentiment analysis of human speech data to determine how
well humans like a given value of that parameter. We overcome the limitation of interfacing humans with machines
by ensuring that the only parameter of the control law design which is modified in response to the algorithm that
carries uncertainty is one which, deterministically, does not impact closed-loop stability.

Remark 5. Though this section on automated control law redesign has explored only input rate of change constraints,
other online redesigns may also be possible in control. For example, in the LEMPC formulation of Equations (17)–(23),
the value ρe,i could be modified over time if an appropriate implementation strategy was developed. Specifically,
there exist bounds on ρe,i given in Reference [24] which are required for closed-loop stability to be maintained for
the process of Equation (1) operated under the LEMPC of Equations (17)–(23). Given this, a similar strategy to
that presented for the selection of εr could be utilized to adjust the value of ρe,i within its bounds online without
impacting closed-loop stability. This holds because a value of ρe,i between the minimum and maximum at a given
time would always be utilized. According to Reference [24], the consequence of this is that, at the next sampling
time, x̄a,i(tk) ∈ Ωρi . If x̄a,i(t) ∈ Ωρi at the end of every sampling period for any ρe,i between its minimum and
maximum, x̄a,i(t) ∈ Ωρi at all times. If both εr and ρe,i were to be simultaneously varied, for example, closed-loop
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stability would again hold, as the value of εr does not impact closed-loop stability for the reasons noted above and the
value of ρe,i can vary between its minimum and maximum value as just described without impacting closed-loop
stability. Recursive feasibility would also not be impacted. This suggests that it may be possible to design more
complex control laws with multiple self-tuning parameters that are simultaneously optimized based on human
response to develop control laws that behave in a desirable manner online without posing a safety concern due to loss
of closed-loop stability.

EMPC with Self-Designing Input Rate of Change Constraints: Application to a Chemical Process Example

In this section, we employ a process example that demonstrates the concept of self-designing input
rate of change constraints. For simplicity, in this example, we do not employ the Lyapunov-based stability
constraints of Equations (22) and (23); therefore, no theoretical stability guarantees can be made for this
example. However, this does not present problems for illustrating the core concepts of the method of
integrating human responses to operating conditions with EMPC.

The process under consideration is an ethylene oxidation process in a continuous stirred tank reactor
(CSTR) from Reference [48] with reaction rates from Reference [49]. The following three reactions are
considered to occur in the CSTR:

C2H4 +
1
2 O2 → C2H4O (29)

C2H4 + 3O2 → 2CO2 + 2H2O (30)

C2H4O + 5
2 O2 → 2CO2 + 2H2O (31)

Mass and energy balances for the reactor, in dimensionless form, are as follows:

˙̄x1 = ū1(1− x̄1 x̄4) (32)

˙̄x2 = ū1(ū2 − x̄2 x̄4)− A1eγ1/x̄4(x̄2 x̄4)
0.5 − A2eγ2/x̄4(x̄2 x̄4)

0.25 (33)

˙̄x3 = −ū1 x̄3 x̄4 + A1eγ1/x̄4(x̄2 x̄4)
0.5 − A3eγ3/x̄4(x̄3 x̄4)

0.5 (34)

˙̄x4 = ū1
x̄1
(1− x̄4) +

B1
x̄1

eγ1/x̄4(x̄2 x̄4)
0.5 + B2

x̄1
eγ2/x̄4(x̄2 x̄4)

0.25 + B3
x̄1

eγ3/x̄4(x̄3 x̄4)
0.5 − B4

x̄1
(x̄4 − Tc) (35)

where the process model parameters are listed in Table 1; the state vector components x̄1, x̄2, x̄3,
and x̄4 (i.e., x̄ = [x̄1 x̄2 x̄3 x̄4]

T) are dimensionless quantities corresponding to the gas density, ethylene
concentration, ethylene oxide concentration, and temperature in the CSTR, respectively; and the input
vector components ū1 and ū2 are dimensionless quantities corresponding to the feed volumetric flow rate
and the feed ethylene concentration. The process of Equations (32)–(35) has a steady-state at x̄1 = 0.998,
x̄2 = 0.424, x̄3 = 0.032, x̄4 = 1.002, ū1 = 0.35, and ū2 = 0.5.

Table 1. Parameters for the continuous stirred tank reactor (CSTR) of Equations (32)–(35).

Parameter Value

γ1 −8.13
γ2 −7.12
γ3 −11.07
A1 92.80
A2 12.66
A3 2412.71
B1 7.32
B2 10.39
B3 2170.57
B4 7.02
TC 1.0
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An EMPC is designed to control this process by maximizing the yield of ethylene oxide, which is
defined by the following equation over a time interval from the initial time (t0 = 0) to the final time of
operation t f :

Y(t f ) =
∫ t f

0 ū1(τ)x̄3(τ)x̄4(τ)dτ∫ t f
0 ū1(τ)ū2(τ)dτ

(36)

However, it is assumed that, in addition to the following bounds on the inputs,

0.0704 ≤ ū1 ≤ 0.7042 (37)

0.2465 ≤ ū2 ≤ 2.4648 (38)

there is also a constraint on the total amount of material which can be fed to the CSTR over time:

∫ t f
0 ū1(τ)ū2(τ)dτ = 0.175t f (39)

As Equation (39) fixes the denominator of Equation (36), the stage cost to be minimized using the
EMPC is as follows:

Le(x, u) = −ū1(t)x̄3(t)x̄4(t) (40)

To attempt to avoid actuator wear, input rate of change constraints will also be considered. The general
form of the EMPC for this example is therefore as follows:

minū1,ū2∈S(Δ)
∫ tk+Nk

tk
−ū1(τ) ˜̄x3(τ) ˜̄x4(τ)dτ (41)

s.t. Equations (32)–(35) (42)

˜̄x(tk) = x̄(tk) (43)

0.0704 ≤ ū1(t) ≤ 0.7042, ∀ t ∈ [tk, tk+Nk
) (44)

0.2465 ≤ ū2(t) ≤ 2.4648, ∀ t ∈ [tk, tk+Nk
) (45)

1
tv

∫ tk
rtv

ū∗1(τ)ū
∗
2(τ)dτ + 1

tv

∫ tk+Nk
tk

ū1(τ)ū2(τ)dτ = 0.175 (46)

|ūp(tj)− ūp(tj−1)| ≤ ε, j = k, . . . , k + Nk − 1, p = 1, 2 (47)

In this formulation, no Lyapunov-based stability constraints are employed and no closed-loop stability
issues arose in the simulations (i.e., the closed-loop state always remained within a bounded region of
state-space). Furthermore, due to the lack of Lyapunov-based stability constraints, the input rate of change
constraints of Equations (27) and (28) are enforced directly on input differences (i.e., they have the form
of Equations Equations (27) and (28) rather than the form of Equations (25) and (26)). ˜̄x represents the
predicted value of the process state according to the model of Equation (42). ū∗1 and ū∗2 represent the optimal
values of ū1 and ū2 that have been applied in past sampling periods (i.e., ū∗1 = ū1(tk−1), and ū∗2 = ū2(tk−1)).
The values of ū1(tk−1) and ū2(tk−1) for k = 0 are assumed to be the steady-state values of these inputs. Nk is
a shrinking prediction horizon in the sense that, at the beginning of every operating period of length tv = 46.8,
the value of Nk is reset to 5 but is then reduced by 1 at each subsequent sampling time of the operating period.
This shrinking horizon allows the constraint of Equation (39) to be enforced within every operating period to
ensure that, by the end of the time of operation, Equation (39) is met. In Equation (46), r signifies the operating
periods completed since the beginning of the time of operation (e.g., in the first tv time units, r = 0 because
no operating periods have been completed yet).
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We assume that the engineers and operators do not know the value of ε that they would like to
impose in the EMPC of Equations (41)–(46) but plan to determine an appropriate value by assessing the
process behavior from the same initial condition under EMPC’s with different values of ε and by selecting
a value that they expect will give the optimal tradeoff between economic performance and actuator wear
reduction. To represent the process behavior as ε is varied in these experiments, we performed eight
closed-loop simulations of the process of Equations (32)–(35) under the EMPC of Equations (41)–(46)
from the same initial condition x̄I = [x̄1I x̄2I x̄3I x̄4I ]

T = [0.997 1.264 0.209 1.004]T using eight different
input-rate-of-change constraint formulations (the simulations were performed both with no input rate
of change constraints and with ε values of 0.01, 0.05, 0.1, 0.3, 0.5, 1, and 3). The simulations lasted
for 10 operating periods and used a sampling period of Δ = 9.36, an integration step for the model of
Equation (42) (i.e., the model used by the controller) of 10−4 and an integration step for the model of
Equations (32)–(35) (i.e., the model of the plant) of 10−5. The open-source interior point solver Ipopt [50]
was used to solve all optimization problems. Figures 1 and 2 show the state and input trajectories for each
of the values of ε chosen. Table 2 shows how the yield varies with the choice of ε. To express the engineer’s
or operator’s judgment of the relative “goodness” of the response that they see when both profit and input
variations are considered, the engineers and operators are considered to have ranked the response for
a given ε on a scale of 1 to 10 as shown in Table 2, with 1 being the worst and 10 being the best.

Figure 3 shows the rankings as a function of ε as solid blue circles. From this figure, we postulate that
a model that may fit this data has the following form:

Ranking = c1e(−c2ε)εc3 + c4 (48)

Using the MATLAB function lsqcurvefit, the data from Table 2 for the various values of ε reported
was fit to the function in Equation (48), resulting in c1 = 68.8901, c2 = 3.8356, c3 = 0.8480, and c4 = 0.7933.
The plot of the function fit to the data is shown as the red curve on Figure 3. A more rigorous method could
have been utilized to fit the model and the data (involving, for example, more samples and an evaluation
of the deviation of the model from the data), but the present method is sufficient for demonstrating the
concepts developed in this work.

The utility of the function in Equation (48) is that it provides a mathematical representation of the
model that an engineer or operator is using within his or her mind to determine the best value of ε

to utilize when this engineer or operator is not aware of the model himself or herself. This makes the
advanced control design more tractable for the operator or engineer to utilize without advanced control
knowledge by fitting the “mind of the human” to a function that can then be utilized in optimizing the
control design automatically. To demonstrate this, we determine the “optimal” value of ε based on the
model of Equation (48) by differentiating the equation with respect to ε and by setting it to 0. This gives
an “optimal” value of ε of c3/c2 or 0.22. Simulations were performed for 10 operating periods of the
process of Equations (32)–(35) under the EMPC of Equations (41)–(46) with this value of ε and initialized
from x̄I , and the resulting state and input trajectories are shown in Figures 4 and 5. The yield is 8.33%.

Table 2. Yield variation with ε.

ε Yield (%) Ranking

0.01 7.17 2
0.05 7.93 5
0.1 8.23 8
0.3 8.37 8
0.5 8.44 7
1 9.03 2
3 9.61 1

No input rate of change constraint 9.61 Not ranked
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Figure 1. x̄1, x̄2, x̄3, and x̄4 trajectories under economic model predictive controllers (EMPCs) with different
values of ε specified in the legend (the gray trajectory labeled “None” corresponds to no input rate of
change constraint applied).

ū
1

Time

ū
2

0.01 0.05 0.1 0.3 0.5 1 3 None

Figure 2. ū1 and ū2 trajectories under EMPCs with different values of ε specified in the legend (the gray
trajectory labeled “None” corresponds to no input rate of change constraint applied).
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ε

a

Figure 3. Scatter plot reflecting rankings in Table 2 (solid blue circles) and the curve fit using lsqcurvefit
(solid red line).

x̄
1

x̄
2

x̄
3

Time

x̄
4

Figure 4. State trajectories under EMPC with ε = 0.22.

Remark 6. The rankings in Table 2 are fabricated to demonstrate the concept that a human judgment could be
translated to a modification of an EMPC formulation parameter. They were contrived to display a form to which
a reasonable model could be readily fit using lsqcurvefit and, furthermore, are highly simplified (e.g., only a single
ranking is provided for each value of ε rather than an average ranking with additional information such as standard
deviation that might be expected if more than one individual was to rank the response). For an actual process,
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the transformation of human opinion on the response to a function of ε would therefore be expected to be more
complex and to potentially involve statistics-based techniques or other methods for obtaining models from process
data; however, an investigation of such methods is outside of the scope of this paper, and therefore, a simplified
ranking model was used to demonstrate the concept that a control law parameter might be decided upon by evaluating
characteristics of a response where there is a tradeoff between competing operating objectives where at least one of
them (in this case, the actuator wear) is more difficult to quantify with a simple model such that the incorporation of
human judgment can make the control law design potentially simpler (than if, for example, a detailed actuator wear
model was to be developed to allow the controller to more accurately predict the wear itself to then prevent it through
a constraint on wear rather than input rate of change).

ū
1

Time

ū
2

Figure 5. Input trajectories under EMPC with ε = 0.22.

3.2. EMPC Response to Unexpected Scenarios via Model Updates

A second case for which we will explore EMPC designs which are responsive to unexpected events
considers these “unexpected” events to be defined by a change in the underlying process dynamics
(i.e., the value of i increases in Equation (1)). This class of problems covers anomaly responses for EMPC,
for which we will adopt the common anomaly-handling strategy (as described in the Introduction section)
of updating the process model. Mathematically, we assume that the process model was known with
reasonable accuracy before the anomaly (i.e., there is an upper bound on the error between the model used
in the LEMPC and the model of Equation (1) with i = 1).

We make several points with respect to model updates in this section. First, if the underlying dynamics
change, it is possible that the structure of the underlying dynamic model has fundamentally changed. When
identifying a new model, it may therefore be preferable to identify the parameters of one with a revised
structure; this is a case of seeking to identify a more physics-based model from process data [51]. In keeping
with the prior section where the potential was shown for integrating machine learning algorithms known to
not be guaranteed to provide accurate data with control, we here highlight that, if machine learning-based
sensors (e.g., image-based sensors) are utilized with the process, they may aid in suggesting how to update
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a process model’s structure over time to attempt to keep the structure physically relevant. Because such
sensing techniques may not provide correct suggestions, however, a model with a structure suggested by such
an algorithm does not need to be automatically implemented in model-based control; instead, engineers could
consider multiple models after a machine learning-based algorithm suggests that an anomaly/change in the
underlying process model has occurred, where one model to be evaluated is that used until this point and the
second is a model that includes any updates implied by the sensing techniques. Subsequently, the prediction
accuracy of the two models could be compared, and whichever is most accurate can be considered for use
in the LEMPC [52]. Like the methodology in Section 3.1.1, this method limits the ability of any attempts to
integrate machine learning (in the sensors) and control from impacting closed-loop stability by using it to
complement a rigorous control design approach rather than to dictate it.

Second, at a chemical plant, anomalies may be considered to be either those which pose an immediate
hazard to humans and the environment and are considered to require plant shutdown upon detection or
those which do not. When the anomaly detected requires plant shutdown, generally the safety system is
used to take extreme actions like cutting feeds to shut down the plant as quickly as possible; these generally
have a prespecified nature (e.g., closing the feed valve). Anomalies that do not present immediate hazards
to humans may either result in sufficiently small plant/model mismatch that the controller is robust
against or the plant/model mismatch could cause subsequent control actions to drive the closed-loop
state out of the expected region of process operation (at which point, the anomaly may be a hazard). We
consider that characterizing conditions under which closed-loop stability is not lost in the second case may
constitute steps in moving toward verification of EMPC for the process industries with adaptive model
updates in the presence of changing process dynamics.

3.2.1. Automated Response to Anomalies: Formulation and Implementation Strategy

In the next section, we will present theoretical results regarding conditions under which an LEMPC
could be conservatively designed to handle anomalies of different types in the sense that closed-loop
stability would not be lost upon the occurrence of an anomaly or that impending loss of closed-loop
stability could be detected by defining a region Ωρ̂samp,q (a superset of Ωρ̂q ) which the closed-loop state
should not leave unless the anomaly has been significant and the model used by the LEMPC should be
attempted to be reidentified to try to maintain closed-loop stability. If the closed-loop state leaves Ωρ̂samp,q ,
however, it has also left Ωρ̂q , so that the LEMPC of Equation (24) may not be feasible. For this reason,
the implementation strategy below suggests that, if the closed-loop state leaves Ωρ̂samp,q , hNL,q should be
applied to the process so that a control law with no feasibility issues is used.

The implementation strategy proposed below relies on the existence of two controllers hNL,q and
hNL,q+1, where hNL,q can stabilize the origin of the nominal closed-loop system of Equation (10) and hNL,q+1

can stabilize the origin of the nominal closed-loop system of Equation (10) with respect to the q+ 1th model.
Specifically, before the change in the underlying process dynamics that occurs at ts,i+1 is detected at td,q,
the process is operated under the LEMPC with the qth empirical model. After the change is detected (in
a worst case via the closed-loop state leaving Ωρ̂q ), a worst-case bound th,q is placed on the time available
until the model must be updated at time tID,q to the q + 1th empirical model to prevent the closed-loop
state from leaving a characterizable operating region.

We consider the following implementation strategy for carrying out the above methodology:

1. At t0, the i = 1 first-principles model (Equation (1)) describes the dynamics of the process. The q = 1
empirical model (Equation (10)) is used to design the LEMPC of Equation (24). An index ihx is set to 0.
An index ζ is set to 0. Go to step 2.
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2. At ts,i+1, the underlying dynamic model of Equation (1) changes to the i + 1th model. The LEMPC is
not yet alerted that the anomaly has occurred; the model used in the LEMPC is not changed despite
the change in the underlying process dynamics. Go to step 3.

3. While ts,i+1 < tk < ts,i+2, apply a detection method to determine if an anomaly has occurred. If
an anomaly is detected, set ζ = 1 and td,k = tk. Else, ζ = 0. If x(tk) /∈ Ωρ̂q but ζ = 0, set ζ = 1 and
td,k = tk. Go to step 4.

4. If ihx = 1, go to step 4a. Else, if ζ = 1, go to step 4b, or if ζ = 0, go to step 4c. If tk > ts,i+2, go to step 5.

(a) If x(tk) ∈ Ωρ̂q+1 , operate the process under the LEMPC of Equation (24) with q ← q + 1 and set
ihx = 0. Else, apply hNL,q+1(x(tk)) to the process. Return to step 3. tk ← tk+1.

(b) If (tk+1 − td,q) < th,q, gather online data to develop an improved process model as well as
updated functions V̂q+1 and hNL,q+1(x) and an updated stability region Ωρ̂q+1 around the
steady-state of the new empirical model but do not yet update the LEMPC and control the
process using the prior LEMPC. Else, if (tk+1 − td,q) ≥ th,q, set ihx = 1 and apply hNL,q+1(x(tk)).
Return to step 3. tk ← tk+1.

(c) Operate the process under the LEMPC of Equation (24) that was used at the prior sampling time.
Return to step 3. tk ← tk+1.

5. If tk > ts,i+2, a process dynamics change occurred at ts,i+2. Set ts,i+1 ← ts,i+2 and tk ← tk+1. Return to
step 2 with ζ = 0 and ihx = 0. Else, if tk < ts,i+2, tk ← tk+1; return to step 3.

We note that we do not specify the detection method to be used in step 3, but the use of a sufficiently
conservative Ωρ̂q (in a sense to be clarified in the following section) allows a worst-case detection
mechanism to be that the closed-loop state exits Ωρ̂q in step 3. We consider that each ts,i+1 and ts,i+2
are separated by a sufficient period of time such that no second change in the underlying process dynamics
occurs before the first change has resulted in an update in the dynamic model and the closed-loop state is
within Ωρ̂q+1 .

Remark 7. A significant difference between the proposed procedure and that in References [53,54], which also
involves switched systems under LEMPC, is that Reference [53] assumes that the time at which the model is to
be switched is known a priori. In handling of anomalies, this cannot be known; therefore, the proposed approach
corresponds to LEMPC for switched systems with unknown switching times. We place bounds in the next section on
a number of properties of the LEMPC of Equation (24) for this case to demonstrate the manner in which closed-loop
stability guarantees depend on, for example, how large the possible changes in the process model could be when they
occur. The goal is to provide a perspective on the timeframes available for detecting various anomalies without loss of
closed-loop stability, which could aid in verification and self-design studies for EMPC.

3.2.2. Automated Response to Anomalies: Stability and Feasibility Analysis

According to the implementation strategy above, when an anomaly occurs that changes the underlying
process dynamics, one of two things will happen: (1) the model used in Equation (24b) remains the same
or (2) the change in the underlying process dynamics is detected and the model used in Equation (24b) is
changed within a required timeframe to a new model (i.e., q is incremented by one in Equation (10)). In this
section, we present the conditions under which closed-loop stability can be maintained in either case. For
readability, proofs of theorems presented in this section are available in the Appendix.

We first present several propositions. The first defines the maximum difference between the process
model of Equation (1) and that of Equation (10) over time when the two models are initialized from the
same state, as long as the states of both systems are kept within a level set of V̂q which is also contained
within the stability region around the steady-state for the model of Equation (1) and as long as there is no
change in the underlying dynamics. The second sets an upper bound on the difference between the value
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of V̂q at any two points in Ωρ̂q . The third provides the closed-loop stability properties of the closed-loop
system of Equation (10) under the controller hNL,q.

Proposition 1 ([51]). Consider the systems

˙̄xa,i,q = f̄i,q(x̄a,i,q(t), ūq(t), wi(t)) (49a)

˙̄xb,q = f̄NL,q(x̄b,q(t), ūq(t)) (49b)

with initial states x̄a,i,q(t0) = x̄b,q(t0) = x̄(t0) contained within Ωρ̂q,i , with t0 = 0, ūq ∈ Uq, and wi ∈ Wi.
If x̄a,i,q(t) and x̄b,q(t) remain within Ωρ̂q,i for t ∈ [0, T], then there exists a function fW,i,q(·) such that:

|x̄a,i,q(t)− x̄b,q(t)| ≤ fW,i,q(t) (50)

with:
fW,i,q(t) :=

Lw,i,qθi + Merr,i,q

Lx,i,q
(eLx,i,qt − 1) (51)

where Merr,i,q > 0 is defined by:
| f̄i,q(x, u, 0)− f̄NL,q(x, u)| ≤ Merr,i,q (52)

for all x contained in Ωρ̂q,i and u ∈ Uq.

Proposition 2 ([24,55]). Consider the Lyapunov function V̂q(·) of the nominal system of Equation (10) under the
controller hNL,q(·) that meets Equation (12). There exists a quadratic function fV,q(·) such that:

V̂q(x) ≤ V̂q(x′) + fV,q(|x − x′|) (53)

for all x, x̄′ ∈ Ωρ̂sa f e,q with
fV,q(s) := α̂4,q(α̂

−1
1,q (ρ̂q))s + Mv,qs2 (54)

where Mv,q is a positive constant.

Proposition 3 ([51]). Consider the closed-loop system of Equation (10) under hNL,q(x̄b,q) that satisfies the
inequalities of Equation (12) in sample-and-hold. Let Δ > 0, ε̂W,q > 0, and ρ̂sa f e,q > ρ̂q > ρ̂e,q > ρ̂minq > ρ̂s,q > 0
satisfy the following:

−α̂3,q(α̂
−1
2,q (ρ̂s,q)) + LL,q ML,qΔ ≤ −ε̂W,q/Δ (55)

ρ̂minq := max{V̂q(x̄b,q(t + Δ)) : V̂q(x̄b,q(t)) ≤ ρ̂s,q}. (56)

If x̄b,q(0) ∈ Ωρ̂sa f e,q , then,
V̂q(x̄b,q(tk+1))− V̂q(x̄b,q(tk)) ≤ −ε̂W,q (57)

for x̄b,q(tk) ∈ Ωρ̂sa f e,q /Ωρ̂s,q and the state trajectory x̄b,q(t) of the closed-loop system is always bounded in Ωρ̂sa f e,q

for t ≥ 0 and is ultimately bounded in Ωρ̂minq
.

The next proposition bounds the error between the actual process state and a prediction of the process
state using an empirical model initialized from the same value of the process state over a period of time in
which the underlying process dynamics change, but the empirical model is not updated. This requires overlap
in stability regions for the ith and i + 1th models of Equation (1) and for the qth model of Equation (10) within
Ωρ̂q,i while the qth model is used. The proof of this proposition is available in Appendix A.
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Proposition 4. Consider the following systems:

˙̄xa,i,q = f̄i,q(x̄a,i,q(t), ūq(t), wi(t)) (58)

˙̄xb,q = f̄NL,q(x̄b,q(t), ūq(t)) (59)

˙̄xa,i+1,q = f̄i+1,q(x̄a,i+1,q(t), ūq(t), wi+1(t)) (60)

with initial states x̄a,i,q(t0) = x̄b,q(t0) ∈ Ωρ̂q,i with t0 = 0, ūq ∈ Uq, wi ∈ Wi, and wi+1 ∈ Wi+1.
Also, x̄a,i,q(ts,i+1) = x̄a,i+1,q(ts,i+1). If x̄a,i,q(t), x̄b,q(t), x̄a,i+1,q(t) ∈ Ωρ̂q,i for t ∈ [0, t1] and

| f̄i+1,q(x̄a,i+1,q(s), ūq(s), wi+1(s))− f̄i,q(x̄a,i,q(s), ūq(s), wi(s))| ≤ Mchange,i,q (61)

for all x̄a,i,q, x̄a,i+1,q ∈ Ωρ̂q,i , ūq ∈ Uq, wi ∈ Wi, and wi+1 ∈ Wi+1, then

|x̄a,i,q(t)− x̄b,q(t)| ≤ fW,i,q(t) (62)

where fW,i,q(t) is defined in Equation (51) for t ∈ [0, ts,i+1] and

|x̄a,i+1,q(t)− x̄b,q(t)| ≤ fW,i,q(ts,i+1 − t0) + (Mchange,i,q)(t − ts,i+1) +
Lw,i,qθi+Merr,i,q

Lx,i,q
(eLx,i,qt − eLx,i,qts,i+1 ) (63)

for t ∈ [ts,i+1, t1].

The following theorem provides the conditions under which, when no change in the underlying
dynamic model occurs throughout the time of operation and x(tk) ∈ Ωρ̂q , the LEMPC of Equation (24)
designed based on hNL,q and the qth empirical model of Equation (10) guarantees that the closed-loop
state is maintained within Ωρ̂q over time and is ultimately bounded in a neighborhood of the origin of the
model of Equation (10).

Theorem 1 ([51]). Consider the closed-loop system of Equation (1) under the LEMPC of Equation (24) based
on the controller hNL,q(x) that satisfies the inequalities in Equation (12). Let εW,i,q > 0, Δ > 0, N ≥ 1,
and ρ̂q > ρ̂e,q > ρ̂min,i,q > ρ̂s,q > 0 satisfy the following:

− α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q MiΔ + L′w,i,qθi ≤ −εW,i,q/Δ (64)

ρ̂e,q ≤ ρ̂q − fV,q( fW,i,q(Δ)) (65)

If x(0) ∈ Ωρ̂q and Proposition 3 is satisfied, then the state trajectory x̄a,i,q(t) of the closed-loop system is always
bounded in Ωρ̂q for t ≥ 0. Furthermore, if t > t′ and

− α̂3,q(α̂
−1
2,q (ρ̂s,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q MiΔ + L′w,i,qθi ≤ −εW,i,q/Δ (66)

then the state trajectory xa,i(t) of the closed-loop system is ultimately bounded in Ωρ̂min,i,q and defined as follows:

ρ̂min,i,q := max{V̂q(x̄a,i,q(t + Δ)) | V̂q(x̄a,i,q(t)) ≤ ρ̂s,q} (67)

The prior theorem provided conditions under which the closed-loop state is maintained within Ωρ̂q in
the absence of changes in the dynamic model. In the following theorem, we provide sufficient conditions
under which the closed-loop state is maintained in Ωρ̂q after ts,i. The proof of this result is presented
in Appendix B.
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Theorem 2. Consider the closed-loop system of Equation (1) under the LEMPC of Equation (24) with hNL,q meeting
Equation (12), where the conditions of Propositions 3 and 4 hold and where Ωρ̂sa f e,q is contained in both Ωρi and
Ωρi+1 . If ts,i+1 ∈ [tk, tk+1), such that, after ts,i+1, the system of Equation (1) is controlled by the LEMPC of
Equation (24), where xa,i(ts,i+1) = xa,i+1(ts,i+1) ∈ Ωρ̂q , and if the following hold true,

− α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,p,q + L′x,p,q MpΔ + L′w,p,qθp ≤ −εW,p,q/Δ (68)

ρ̂e,q ≤ ρ̂q − fV,q( fW,p,q(Δ)) (69)

for both p = i and p = i + 1, and

ρ̂e,q + fV,q( fW,i,qΔ + (Mchange,i)Δ +
Lw,i,qθi + Merr,i,q

Lx,i,q
(eLx,i,qΔ − eLx,i,qts,i+1)) ≤ ρ̂q (70)

−α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q MiΔ + L′w,i,qθi + α̂4,q(α̂

−1
1,q (ρ̂q))Mchange,i,q + L′x,i+1,q Mi+1Δ

+L′w,i+1,qθi+1 ≤ −ε′W,i,q/Δ
(71)

then the closed-loop state is bounded in Ωρ̂q for all t ≥ 0.

We highlight that these conditions are conservative and not intended to form the least conservative
bounds possible. However, they do help to elucidate some of the factors which impact whether a model
used in an LEMPC will need to be reidentified to continue to maintain closed-loop stability when the
underlying dynamics change, such as the extent to which the dynamics change. The above theorem
indicates that, if Ωρ̂q is initially chosen in a sufficiently conservative fashion and the empirical model
is sufficiently close to the underlying process dynamics before the model change, closed-loop stability
may be maintained even after the underlying dynamics change if the model changes are such that the
empirical model remains sufficiently close to the new dynamic model after the change. In general,
anomalies may occur that could violate the conditions of Theorem 2. The result of this could be that the
closed-loop state may leave Ωρ̂q . In this case, it is helpful to characterize conditions under which changes
in the underlying dynamics that could be destabilizing could be detected, triggering a model update and
controller redesign for the new dynamic model to stabilize the closed-loop system. Therefore, the following
theorem characterizes the length of time that the closed-loop state can remain in Ωρ̂sa f e,q after a change in
the underlying process dynamics occurs if the conditions of Theorem 2 are not met. This can be used in
determining how quickly a model reidentification algorithm would need to successfully provide a new
model for the LEMPC of Equation (24) for closed-loop stability to be maintained as a function of factors
such as the extent that the new model deviates from the empirical model used in the LEMPC when the
underlying dynamics change, the sampling period, and the conservatism in the selection of ρ̂q. The proof
of this theorem is presented in Appendix C.

Theorem 3. Consider the closed-loop system of Equation (1) under the LEMPC of Equation (24) with hNL,q
meeting Equation (12) and Proposition 3, where Ωρ̂sa f e,q is contained in both Ωρi and Ωρi+1 . If at t = ts,i+1, where
ts,i+1 ∈ [tk, tk+1), such that, after ts,i+1, the system of Equation (1) is controlled by the LEMPC of Equation (24),
where xa,i(ts,i+1) = xa,i+1(ts,i+1) ∈ Ωρ̂sa f e,q , then if the following hold true with ρ̂sa f e,q > ρ̂samp,q > ρ̂q > ρ̂q,e,
ρ̂q,e > ρ̂min,q,i > ρ̂s,q > 0, and ρ̂q,e > ρ̂min,i+1,q > ρ̂s,q > 0:

− α̂3,q(α̂
−1
2,q (ρ̂s,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i+1,q + L′x,i+1,q Mi+1Δ + L′w,i+1,qθi+1 ≤ εW,i+1,q/Δ (72)

ρ̂e,q + fV,q( fW,i,qΔ + (Mchange,i,q)Δ +
Lw,i,qθi + Merr,i,q

Lx,i,q
(eLx,i,qΔ − eLx,i,qts,i+1)) ≤ ρ̂samp,q (73)
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ρ̂q + fV,q( fW,i,qΔ + (Mchange,i,q)Δ +
Lw,i,qθi + Merr,i,q

Lx,i,q
(eLx,i,qΔ − eLx,i,qts,i+1)) ≤ ρ̂samp,q (74)

ρ̂e,q + fV,q( fW,i+1,q(Δ)) ≤ ρ̂samp,q (75)

ρ̂q + εW,i+1,q ≤ ρ̂samp,q (76)

as well as Equations (65)–(67), then if x(ts,i+1) ∈ Ωρ̂q and Ωρ̂min,i+1,q ⊂ Ωρ̂samp,q and the change to the model is not
detected until a sampling time td,q with x̄(td,q) ∈ Ωρ̂sa f e,q /Ωρ̂q (x̄(td,q) ∈ Ωρ̂samp,q ⊂ Ωρ̂sa f e,q ) after which hNL,q is
used to control the system in sample-and-hold, then the number of sampling periods between tID,q and td,q within
which the model in the LEMPC can be updated to a new model meeting Equation (65) with i replaced by i + 1 and q

replaced by q + 1 without the closed-loop state exiting Ωρ̂sa f e,q is given by th,q = floor(
(ρ̂sa f e,q−ρ̂samp,q)

ε′W,i,q
), where floor

represents the “floor” function that returns the largest integer less than the value of the argument. x̄(t) refers either
to x̄a,i+1,q(t) or x̄a,i,q(t), depending on whether ts,i+1 is within the sampling period preceding the closed-loop state
exiting Ωρ̂q .

The following theorem provides the conditions under which the closed-loop state is maintained
within Ωρ̂sa f e,q+1 for all times after tID,q and is driven into Ωρ̂q+1 after the model reidentification. The proof
of the result is presented in Appendix D.

Theorem 4. If Ωρ̂sa f e,q ⊂ Ωρ̂sa f e,q+1 and if both Ωρ̂sa f e,q and Ωρ̂sa f e,q+1 are contained in Ωρi and Ωρi+1 , then if hNL,q+1

is used to control the system after tID,q while x(tk) ∈ Ωρ̂sa f e,q+1 /Ωρ̂q+1 with the conditions of Equations (65) and (66)
met for the q + 1th empirical model for the i + 1th dynamic system and the LEMPC of Equation (24) using the
q + 1th empirical model of Equation (10) is used to control the system for all times after x(tk) ∈ Ωρ̂q+1 , then the
closed-loop state is then maintained within Ωρ̂sa f e,q+1 until it enters Ωρ̂q+1 and is then maintained in Ωρ̂q+1 for all
subsequent sampling times.

Remark 8. From a verification standpoint, the proofs above move toward addressing the question of what may
happen if a controller is designed and even tested for certain conditions, but the process dynamics change. It provides
a theoretical characterization of conditions under which action would subsequently need to be taken as well as
indications of the time available to take the subsequent action. However, the results above may be difficult to utilize
directly in developing an online monitoring scheme, as many of the theoretical conditions rely on knowing properties
of the current and updated models that would likely not be characterizable or would not be known until after the
anomaly occurred. However, these still may aid in gaining an understanding of different possibilities. For example,
a conservative stability region Ωρ̂q suggests that larger anomalies could still be detected and mitigated by a combined
detection and reidentification procedure without loss of closed-loop stability. Earlier detection may provide more time
for reidentification.

Remark 9. If there is an indication from detection methods that are not based on the closed-loop state leaving
the stability region that the underlying dynamics may have changed but that the closed-loop state has not yet left
Ωρ̂q , then until the closed-loop state leaves Ωρ̂q , online experiments (e.g., modifying the objective function as in
Reference [51]) could be performed if they do not impact the constraint set to attempt to probe whether the dynamics
are more consistent with the prior process model or the potential model postulated after the anomaly is suggested.
This may be a method for attempting to detect the changes before the closed-loop state leaves Ωρ̂q , which could allow
larger changes in the process model to be handled practically than could be guaranteed to be handled in the theorems
above, as the magnitude of the deviations in the dynamic model allowed above without loss of closed-loop stability
depends on the distance between Ωρ̂sa f e,q and Ωρ̂samp,q . However, it is also highlighted that the above is a conservative
result, meaning that, in general, larger changes may be able to be handled without loss of closed-loop stability.
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Remark 10. The above results can be used to comment on why giving greater flexibility to the process after
an anomaly to handle it could introduce additional complexity. Specifically, consider the possibility that some
actuators may not typically be used for control but could be considered for use after an anomaly (similar to how safety
systems activate for chemical processes, but in this case, they would not act according to a prespecified logic but
might be able to be manipulated in either an on-off or continuous manner to give the process additional capabilities
for handling the anomaly). It is noted that this would constitute dynamics not previously considered. According to
the proofs above, one way to guarantee closed-loop stability in the presence of sufficiently small disturbances is to
cause the dynamics after they change to not differ too radically from those assumed before the change and used in the
prior dynamic model in the EMPC. If additional flexibility is given to the system, this would be an additional model
that would have to match up well.

Remark 11. The results above suggest that, if a model identification algorithm could be guaranteed to provide an
accurate model with a small amount of data that could be gathered between when the closed-loop state leaves Ωρ̂q but
before it leaves Ωρ̂sa f e,q (where the amount of data available in that timeframe could be known a priori by the number
of measurements available in a given sampling period), then the model could be reidentified and placed within the
LEMPC in a manner that is stabilizing.

Remark 12. Instead of changes to the underlying dynamic model, anomalies may present changes in the constraint
set (e.g., anomalies may change equipment material limitations (e.g., maximum shear stresses, which can change
with temperature) used to place constraints on the state in an LEMPC). Because the above results assume that the
stability region is fully contained within the state constraint set, the detection and response procedure above would
need to ensure that there is no time at which the stability region is no longer fully included within the state constraint
set under the new dynamic model. This may be handled by making Ωρ̂sa f e,q sufficiently conservative such that the
closed-loop state never exits a region where the state constraints can be met under different dynamic models.

3.2.3. Automated Response to Unexpected Hazards: Application to a Chemical Process Example

In this section, we demonstrate concepts described above through a process example. This example
considers a nonisothermal reactor in which an A → B reaction takes place, but the reactant inlet
concentration CA0 and the heat rate Q supplied by a jacket are adjusted by an LEMPC. The process
model is as follows:

ĊA = F
V (CA0 − CA)− k0e

− E
RgT C2

A (77)

Ṫ = F
V (T0 − T)− ΔHk0

ρLCp
e
− E

RgT C2
A + Q

ρLCpV (78)

where the parameters are listed in Table 3 and include the reactor volume V, inlet reactant temperature
T0, pre-exponential constant k0, solution heat capacity Cp, solution density ρL, feed/outlet volumetric
flow rate F, gas constant Rg, activation energy E, and heat of reaction ΔH. The state variables are the
reactant concentration CA and temperature T in the reactor, which can be written in deviation form from
the operating steady-state vector CAs = 1.22 kmol/m3, Ts = 438.2 K, CA0s = 4 kmol/m3, and Qs = 0
kJ/h as x = [x1 x2]

T = [CA − CAs T − Ts]T and u = [u1 u2]
T = [CA0 − CA0s Q − Qs]T . The model of

Equations (77) and (78) has the following form:

ẋ = f̃ (x) + g(x)u (79)

where f̃ represents a vector function derived from Equations (77) and (78) that is not multiplied by
u and where g(x) = [g1 g2]

T = [ F
V 0; 0 1

ρLCpV ]T represents the vector function which multiplies u in
these equations.

236



Mathematics 2020, 8, 259

Table 3. Parameters for the CSTR model of Equations (77) and (78).

Parameter Value Unit

V 1 m3

T0 300 K
k0 8.46× 106 m3/h·kmol
Cp 0.231 kJ/kg·K
ρL 1000 kg/m3

F 5 m3/h
Rg 8.314 kJ/kmol·K
E 5× 104 kJ/kmol

ΔH −1.15 × 104 kJ/kmol

The EMPC utilized to adjust the manipulated inputs CA0 and Q utilizes the following stage cost
(to maximize the production rate of the desired product) and physical bounds on the inputs:

Le = −k0e−E/(RgT(τ))CA(τ)
2 (80)

0.5 ≤ CA0 ≤ 7.5 kmol/m3 (81)

−5× 105 ≤ Q ≤ 5× 105 kJ/h (82)

Lyapunov-based stability constraints are also enforced (where a constraint of the form of Equation (22)
is enforced at the end of every sampling time if x(tk) ∈ Ωρ̂e , and the constraint of the form of Equation (23)
is enforced at tk when x(tk) ∈ Ωρ̂/Ωρ̂e but then followed by a constraint of the form of Equation (22) at
the end of all sampling periods after the first).

We will consider several simulations to demonstrate the developments above. In the first, we explore
several aspects of the case in which there is a change in the underlying dynamics while the process is
operated under LEMPC that is minor such that the closed-loop state does not leave Ωρ̂ after the change in the
underlying dynamics. For this case, the Lyapunov function selected was V̂q = xTPx, with P given as follows:

P =

[
1200 5

5 0.1

]
(83)

The Lyapunov-based controller hNL,1(x) was designed such that its first component hNL,1,1(x) = 0
kmol/m3 and its second component hNL,1,2(x) is computed as follows (Sontag’s formula [56]):

hNL,1,2(x) =

⎧⎪⎨⎪⎩− L f̃ V̂q+
√

L f̃ V̂2
q +Lg̃2 V̂4

q

Lg̃2 V̂q
, if Lg̃2 V̂q �= 0

0, if Lg̃2 V̂q = 0
(84)

Then, it is saturated at the input bounds of Equation (82) if they are met. L f̃ V̂q and Lg̃2 V̂q are Lie derivatives

of V̂q with respect to the vector functions f̃ and g̃2, respectively. ρ̂ and ρ̂e were taken from Reference [57]
to be 300 and 225, respectively. The process state was initialized at xinit = [−0.4 kmol/m3 8 K]T , with
controller parameters N = 10 and Δ = 0.01 h. The process model of Equations (77) and (78) was integrated
with the explicit Euler numerical integration method using an integration step size of 10−4 h within the
LEMPC and of 10−5 h to simulate the process.

For this first simulation, we assume that a change in the underlying process dynamics occurs at 0.5 h
that does not compromise closed-loop stability. Specifically, at 0.5 h, it is assumed that an additional source
of heat arises outside the reactor such that the right-hand side of Equation (78) is modified by the addition
of another term Qextra = 300 K/h. Figures 6 and 7 show the process responses when the LEMPC is not
aware of the change in the process dynamic model when it occurs and when it is aware of the change in
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the process dynamic model after it occurs such that it is fully compensated (i.e., an accurate process model
is used in the LEMPC at all times, even after the dynamics change). In both cases, the closed-loop state was
maintained within the stability region at all times. These simulations were carried out in MATLAB R2016b
using fmincon with the default settings except for the increased iterations/function evaluations allowed,
scaling u2 down by 105 and providing the steady-state input values as the initial guess for the optimization
problem solution at each sampling time. No attempt was made to check whether the LEMPCs in the
simulations located globally optimal solutions to the LEMPC optimization problems. However, the profit
was higher than that at the steady-state around which the LEMPC was designed.

Figure 6. State trajectories under Lyapunov-based EMPC (LEMPC) with Qextra = 300 K/h starting at 0.5 h,
where the LEMPC has not been made aware (“Unaware”) and has been made aware (“Aware”) of the
change in the energy balance.

Figure 7. Input trajectories under LEMPC with Qextra = 300 K/h starting at 0.5 h, where the LEMPC has not
been made aware (“Unaware”) and has been made aware (“Aware”) of the change in the energy balance.
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The oscillatory behavior of the states before 0.5 h is caused by the fact that the profit is maximized
for this process at the boundary of Ωρ̂e . Without plant-model mismatch, the LEMPC is able to maintain
the closed-loop state exactly on the boundary of Ωρ̂e and therefore always operates the process using
the constraint of Equation (22); however, when the plant-model mismatch occurs (induced by the use of
different integration steps to simulate the process dynamic model within the LEMPC and for the simulation
of the process under the computed control actions), the closed-loop state then exits Ωρ̂e when the LEMPC
predicts it will stay inside of it under the control actions computed by the controller. The result is that
the constraint of Equation (23) is then activated until the closed-loop state reenters Ωρ̂e . This process of
entering Ωρ̂e , attempting to operate at its boundary, and then being kicked out only to be driven back in
is the cause of the oscillatory response of the states and inputs in Figures 6 and 7. It is noted, however,
that though this behavior may be undesirable from, for example, an actuator wear perspective, it does not
reflect a loss of closed-loop stability or a malfunction of the controller. The controller is in fact maintaining
the closed-loop state within Ωρ̂ as it was designed to do; the fact that it does so in perhaps a visually
unfamiliar fashion means that we have not specified in the control law that it should not do that, so it is not
aware that an end user would find that behavior strange (if the oscillatory behavior is deemed undesirable,
one could consider, for example, input rate of change constraints and potentially the benefits of the human
response-based input rate of change strategy in the prior section for handling unexpected events).

In the case that the LEMPC is not aware of the change in the process dynamics, the profit is 32.7103,
whereas when the LEMPC is aware of the change in the dynamics, the profit is 32.5833. Though these
values are very close, an interesting note is that the profit when the LEMPC is not aware of the change in
the underlying dynamics is slightly higher than when it is aware. Intuitively, one would expect an LEMPC
with a more accurate process model to be able to locate a more economically optimal trajectory for the
closed-loop state to follow than an LEMPC that cannot provide as accurate predictions. Part of the reason
for the enhanced optimality in the case without knowledge of the change in the underlying dynamics,
however, comes from the two-mode nature of LEMPC. In the case that the LEMPC is aware of the change
in the underlying dynamics, it drives the closed-loop state to an operating condition that remains closer to
the boundary of Ωρ̂e after 0.5 h than when it is not aware of the change in the underlying dynamics due to
the plant/model mismatch being different in the different cases. The result is that the process accesses
regions of state-space that lead to higher profits when the LEMPC does not know about the change in the
dynamics than if the LEMPC knows more about the process dynamics.

The remainder of this example focuses on elucidating the conservativeness of the proposed approach.
Specifically, we now consider the Lyapunov function selected as V̂q = xT Px, with P given as follows:

P =

[
2000 −10
−10 3

]
(85)

Again, hNL,1(x) is designed such that hNL,1,1(x) = 0 kmol/m3, and hNL,1,2(x) is computed via
Sontag’s formula but saturated at the input bounds of Equation (82) if they are met. ρ̂ and ρ̂e were
taken to be 1300 and 975, respectively, and ρ̂sa f e was set to 1800. The process state was initialized at
xinit = [0 kmol/m3 0 K]T , with controller parameters N = 10 and Δ = 0.01 h. The process model
of Equations (77) and (78) was integrated with the explicit Euler numerical integration method using
an integration step size of 10−4 h within the EMPC and with an integration step size of 10−5 h to simulate
the process. The constraint of the form of Equation (23) is enforced at tk when x(tk) ∈ Ωρ̂/Ωρ̂e but then
followed by a constraint of the form of Equation (22) at the end of all sampling periods.

At 0.5 h, it is assumed that an additional source of heat arises outside the reactor such that the
right-hand side of Equation (78) is modified by the addition of another heat term Qextra = 500 K/h.
In this case, with no change in the process model used by the EMPC or even in the control law

239



Mathematics 2020, 8, 259

(i.e., in contrast to the implementation strategy in Section 3.2.1, hNL,1 is not employed when the closed-loop
state exits Ωρ̂), the behavior in Figure 8 results. Notably, the closed-loop state does not leave Ωρ̂sa f e , and no
infeasibility issues occurred. In contrast, if we begin to utilize hNL,1 when the closed-loop state leaves Ωρ̂,
the closed-loop state will eventually leave Ωρ̂sa f e (Figure 9). While we can obtain a new empirical model
(in this case, we assume that the dynamics become fully known at 0.54 h and are accounted for completely
to demonstrate the result) and can use that to update hNL,1 to hNL,2 (i.e., hNL,1 but with modified saturation
bounds to reflect design around the new steady-state of the system with QAdded = 500 K/h) before the
closed-loop state leaves Ωρ̂sa f e as suggested in the implementation strategy in Section 3.2.1 (creating the
profile shown in Figure 10 corresponding to 2 h of operation in which the closed-loop state is driven back
to the origin under hNL,2), the fact that the closed-loop state would not have left the stability region if the
controller had not been adjusted illustrates the conservativeness of the approach. We note that Figure 10
does not complete the implementation strategy in Section 3.2.1 (which would involve the use of a new
LEMPC after the closed-loop state reenters Ωρ̂ for this example) because that part of the implementation
strategy will be demonstrated in the discussion for a slightly different LEMPC presented below.

Finally, we provide a result where the LEMPC computes a time-varying input policy due to
the desire to enforce a constraint on the amount of reactant available in the feed over an hour
(i.e., a material/feedstock constraint) as follows:

1
1 h

∫ t=1 h
t=0 h u1(τ)dτ = 0 kmol/m3 (86)

This constraint is enforced via a soft constraint formulation by introducing slack variables s1 and s2

that are penalized in a modified objective function as follows:

∫ tk+N
tk

[
−k0e

− E
RgT(τ) CA(τ)

2
]

dτ + 100(s2
1 + s2

2) (87)

They are used in the following constraints:

k−1

∑
i=0

(u∗1(ti|ti)) +
k+Nk

∑
i=k

(u1(ti|tk))− 3.5δ(100− tk
Δ
− N) ≤ s1 (88)

−
k−1

∑
i=0

(u∗1(ti|ti))−
k+Nk

∑
i=k

(u1(ti|tk))− 3.5δ(100− tk
Δ
− N) ≤ s2 (89)

where Nk = N and δ = 1 when tk < 0.9 h and where δ = 0 and Nk is the number of sampling periods
left in a 1 h operating period when tk ≥ 0.9 h. These constraints are developed based on Reference [12].
u∗1(ti|ti) signifies the value of u1 applied to the process at a prior sampling time, and u1(ti|tk) reflects
the value of u1 predicted at the current sampling time tk to be applied for t ∈ [ti, ti+1), i = k, . . . , k + Nk.
The upper and lower bounds on s1 and s2 were set to 2 × 1019 and −2× 1019, respectively, to allow them
to be effectively unbounded. The initial guesses of the slack variables were set to 0 at each sampling time.

When the LEMPC with the above modifications is applied to the process with QAdded = 500 K/h
starting at 0.5 h, the closed-loop state again exits Ωρ̂ for some time after 0.5 h but reenters it and also does
not exit Ωρ̂sa f e , once again reflecting the conservatism from a closed-loop stability standpoint of a strategy
that updates the process model whenever the closed-loop state leaves Ωρ̂. Furthermore, if hNL,1 is utilized
after it is detected that the closed-loop state leaves Ωρ̂ (the first sampling time at which this occurs is
0.51 h), then it exits Ωρ̂sa f e by 0.52 h, showing that the length of the sampling period or the size of Ωρ̂ with
respect to Ωρ̂sa f e is not sufficiently small enough to impose model updates before closed-loop stability
is jeopardized because measurements are only available every sampling time. If instead, however, ρ̂ is
updated to be 1200 and ρ̂e is set to 900, then the closed-loop state remains in Ωρ̂ between 0.51 and 0.52 h.
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If at 0.52 h, we assume that the new dynamics (i.e., with QAdded = 500 K/h) become available and are
used in designing hNL,2 (used from 0.52 h until the first sampling time at which x(tk) ∈ Ωρ̂ again) and that
a second LEMPC designed based on the updated model is used after the closed-loop state has reentered
Ωρ̂, the state-space trajectory in Figure 11 results.
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Figure 8. State-space plot under LEMPC with Qextra = 500 K/h starting at 0.5 h and no change in the
control law or model in response.
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Figure 9. State-space plot under LEMPC with Qextra = 500 K/h starting at 0.5 h and the control law
switched to hNL,1 in response to the closed-loop state leaving Ωρ̂.
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Figure 10. State-space plot under LEMPC with Qextra = 500 K/h starting at 0.5 h and the control law
switched to hNL,1 in response to the closed-loop state leaving Ωρ̂ and then switched to hNL,2 at 0.54 h.
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Figure 11. State-space plot under LEMPC with Qextra = 500 K/h starting at 0.5 h and the control law switched
to hNL,1 in response to the closed-loop state leaving Ωρ̂, then switched to hNL,2 at 0.52 h, and finally switched
back to an LEMPC incorporating an updated process model after the closed-loop state reenters Ωρ̂.

4. Conclusions

This work developed a Lyapunov-based EMPC framework for handling unexpected considerations of
different types. One of the types of considerations handled was end-user response to how a control
law operates a process, providing a controller self-update capability through input rate of change
constraints that allows even uncertain or imprecise information about the end-user response to be used
in optimizing the controller formulation without loss of closed-loop stability or feasibility. The second
type of consideration was the occurrence of anomalies, where conditions which would guarantee that
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the closed-loop state can be stabilized in the presence of an anomaly that changes the underlying process
dynamics as long as a detection method identifies a new process model sufficiently quickly, were presented
that uses the LEMPC stability properties in developing an anomaly detection mechanism. Chemical
process examples were presented for both cases to demonstrate the proposed approach.

The work above provides insights into interpretability and verification considerations for EMPC from
a theoretical perspective. However, these remain significant challenges for this control design. For example,
there is no guarantee that adjusting a given constraint (e.g., adjusting the upper bound on an input rate of
change constraint) will cause process behavior to appear interpretable to an end user before it approaches
steady-state behavior, which may reduce the benefits of using EMPC. Furthermore, the results related to
anomaly handling were demonstrated via process examples to be highly conservative. No methods were
presented for practically ascertaining time (online) until an anomaly would result in the closed-loop state
leaving a known region of state-space after detection to facilitate appropriate actions to be taken. Further
work on these issues needs to be undertaken to develop practical EMPC designs with appropriate safety
and interpretability properties with low time required to verify the designs before putting them into the
field for different processes.
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Appendix A. Proof of Proposition 4

Proof. The result in Equation (62) is stated in Proposition 1; therefore, it remains to prove that Equation (63)
holds. To derive the result of Equation (63), Equations (59) and (60) are integrated as follows:

x̄a,i+1,q(t) = x̄a,i,q(ts,i+1) +
∫ t

ts,i+1
f̄i+1,q(x̄a,i+1,q(s), ūq(s), wi+1(s))ds (A1)

x̄b,q(t) = x̄b,q(ts,i+1) +
∫ t

ts,i+1
f̄NL,q(x̄b,q(s), ūq(s))ds (A2)

for t ∈ [ts,i+1, t1]. Subtracting Equation (A2) from Equation (A1) and taking norms of both sides of the
resulting equation gives the following:

|x̄a,i+1,q(t)− x̄b,q(t)| = |x̄a,i,q(ts,i+1)− x̄b,q(ts,i+1) +
∫ t

ts,i+1
[ f̄i+1,q(x̄a,i+1,q(s), ūq(s), wi+1(s))− f̄NL,q(x̄b,q(s), ūq(s))]ds|

≤ |x̄a,i,q(ts,i+1)− x̄b,q(ts,i+1)|+
∫ t

ts,i+1
| f̄i+1,q(x̄a,i+1,q(s), ūq(s), wi+1(s))− f̄NL,q(x̄b,q(s), ūq(s))|ds

≤ fW,i,q(ts,i+1 − t0) +
∫ t

ts,i+1
| f̄i+1,q(x̄a,i+1,q(s), ūq(s), wi+1(s))− f̄i,q(x̄a,i,q(s), ūq(s), wi(s))

+ f̄i,q(x̄a,i,q(s), ūq(s), wi(s))− f̄NL,q(x̄b,q(s), ūq(s))|ds

≤ fW,i,q(ts,i+1 − t0) +
∫ t

ts,i+1
| f̄i+1,q(x̄a,i+1,q(s), ūq(s), wi+1(s))− f̄i,q(x̄a,i,q(s), ūq(s), wi(s))|ds

+
∫ t

ts,i+1
| f̄i,q(x̄a,i,q(s), ūq(s), wi(s))− f̄NL,q(x̄b,q(s), ūq(s))|ds

(A3)

From Equations (15), (52), and (61), we have the following:

|x̄a,i+1,q(t)− x̄b,q(t)| ≤ fW,i,q(ts,i+1 − t0) +
∫ t

ts,i+1
Mchange,i,qds +

∫ t
ts,i+1

| f̄i,q(x̄a,i,q(s), ūq(s), wi(s))− f̄i,q(x̄b,q(s), ūq(s), 0)

+ f̄i,q(x̄b,q(s), ūq(s), 0)− f̄NL,q(x̄b,q(s), ūq(s))|ds

≤ fW,i,q(ts,i+1 − t0) + Mchange(t − ts,i+1)

+
∫ t

ts,i+1
| f̄i,q(x̄a,i,q(s), ūq(s), wi(s))− f̄i,q(x̄b,q(s), ūq(s), 0)|ds

+
∫ t

ts,i+1
| f̄i,q(x̄b,q(s), ūq(s), 0)− f̄NL,q(x̄b,q(s), ūq(s))|ds

≤ fW,i,q(ts,i+1 − t0) + Mchange(t − ts,i+1) +
∫ t

ts,i+1
(Lx,i,q|x̄a,i,q(s)− x̄b,q(s)|+ Lw,i,q|wi(s)|)ds

+
∫ t

ts,i+1
Merr,i,qds

(A4)
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Using Equation (50) we get the following,

|x̄a,i+1,q(t)− x̄b,q(t)| ≤ fW,i,q(ts,i+1 − t0) + Mchange,i,q(t − ts,i+1) + (Lw,i,qθi + Merr,i,q)
∫ t

ts,i+1
(eLx,i,qs − 1)ds

+
∫ t

ts,i+1
(Lw,i,qθi + Merr,i,q)ds

≤ fW,i,q(ts,i+1 − t0) + Mchange,i,q(t − ts,i+1) + (Lw,i,qθi + Merr,i,q)
∫ t

ts,i+1
(eLx,i,qs − 1)ds

+(Lw,i,qθi + Merr,i,q)(t − ts,i+1)

≤ fW,i,q(ts,i+1 − t0) + Mchange,i,q(t − ts,i+1) +
(Lw,i,qθi+Merr,i,q)

Lx,i,q
(eLx,i,qt − eLx,i,qts,i+1 )

(A5)

Appendix B. Proof of Theorem 2

Proof. To guarantee the results, recursive feasibility of the LEMPC must hold. Feasibility of the LEMPC
of Equation (24) follows from Theorem 1 when x(tk) ∈ Ωρ̂q . Subsequently, closed-loop stability must be
proven both when ts,i+1 = tk and when ts,i+1 ∈ (tk, tk+1).

Consider first the case that ts,i+1 = tk. In this case, if Equation (68) holds with p = i + 1 and
x(tk) ∈ Ωρ̂q , then x(t) ∈ Ωρ̂q from Theorem 1 for t ≥ 0. Consider second the case that ts,i+1 ∈ (tk, tk+1).
In this case, until ts,i+1, if Equations (68) and (69) hold for p = i, the closed-loop state is maintained within
Ωρ̂q from Theorem 1. To guarantee that the closed-loop state is maintained in Ωρ̂q after ts,i+1 until tk+1,
it is first noted that, if x(tk) ∈ Ωρ̂e,q and ts,i+1 ∈ (tk, tk+1), then from Proposition 2, we have the following:

V̂q(x̄a,i+1,q(t)) ≤ V̂q(x̄b,q(tk+1)) + fV,q(|x̄a,i+1,q(t)− x̄b,q(tk+1)|) (A6)

if x̄a,i+1,q(t), x̄b,q(t) ∈ Ωρ̂q for t ∈ [tk, tk+1]. If Proposition 4 holds, then from Equation (24f), we have
the following:

V̂q(x̄a,i+1,q(t)) ≤ ρ̂e,q + fV,q( fW,i,q(ts,i+1 − tk) + (Mchange,i,q)(t − ts,i+1) +
Lw,i,qθi+Merr,i,q

Lx,i,q
(eLx,i,qt − eLx,i,qts,i+1 )) (A7)

If Equation (70) holds, then V̂q(x̄a,i+1,q(t)) ≤ ρ̂q for t ∈ [ts,i+1, tk+1].
If instead x(tk) ∈ Ωρ̂q /Ωρ̂e,q and if Equations (68) and (69) hold, the closed-loop state is maintained

within Ωρ̂q from Theorem 1 until ts,i+1. To guarantee that the closed-loop state is maintained in Ωρ̂q after
ts,i+1 until tk+1, it is first noted that the following is true:

∂V̂q(x(tk))

∂x
( f̄NL,q(x(tk), ūq(tk)))

≤ ∂V̂q(x(tk))

∂x
( f̄NL,q(x(tk), hNL,q(x(tk)))) ≤ −α̂3,q(|x(tk)|)

(A8)

from Equation (12b) and Equation (24g). When tk ≤ t < ts,i+1, then from Reference [51], if Equation (68)
and the conditions of Theorem 2 hold with p = i, the following is true:

∂V̂q(x̄a,i,q(τ))

∂x
( f̄i,q(x̄a,i,q(τ), ūq(tk), wi(τ)))

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q MiΔ + L′w,i,qθi

(A9)

for τ ∈ [tk, ts,i+1), and
V̂q(x̄a,i,q(ts,i+1)) ≤ V̂q(x(tk)) (A10)
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Given that x̄a,i,q(ts,i+1) = x̄a,i+1,q(ts,i+1), the following holds:

∂V̂q(x̄a,i+1,q(ts,i+1))

∂x ( f̄i+1,q(x̄a,i+1,q(ts,i+1), ūq(tk), 0))

=
∂V̂q(x̄a,i+1,q(ts,i+1))

∂x ( f̄i+1,q(x̄a,i+1,q(ts,i+1), ūq(tk), 0)) +
∂V̂q(x̄a,i,q(ts,i+1))

∂x ( f̄i,q(x̄a,i,q(ts,i+1), ūq(tk), 0))

− ∂V̂q(x̄a,i,q(ts,i+1))

∂x ( f̄i,q(x̄a,i,q(ts,i+1), ūq(tk), 0))

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q MiΔ + L′w,i,qθi +

∣∣∣∣ ∂V̂q(x̄a,i+1,q(ts,i+1))

∂x ( f̄i+1,q(x̄a,i+1,q(ts,i+1), ūq(tk), 0))

− ∂V̂q(x̄a,i,q(ts,i+1))

∂x ( f̄i,q(x̄a,i,q(ts,i+1), ūq(tk), 0))
∣∣∣∣

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q MiΔ + L′w,i,qθi

+

∣∣∣∣ ∂V̂q(x̄a,i,q(ts,i+1))

∂x

∣∣∣∣ ∣∣ f̄i+1,q(x̄a,i+1,q(ts,i+1), ūq(tk), 0)− f̄i,q(x̄a,i,q(ts,i+1), ūq(tk), 0)
∣∣

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q MiΔ + L′w,i,qθi + α̂4,q(|x̄a,i,q(ts,i+1)|)Mchange,i,q

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q MiΔ + L′w,i,qθi + α̂4,q(α̂

−1
1,q (ρ̂q))Mchange,i,q

(A11)

where the last inequality follows from the fact that x̄a,i,q(ts,i+1) ∈ Ωρ̂q if x(tk) ∈ Ωρ̂q when Equations (68)
and (69) hold according to Theorem 1.

Finally, for τ ∈ [ts,i+1, tk+1),

∂V̂q(x̄a,i+1,q(τ))

∂x ( f̄i+1,q(x̄a,i+1,q(τ), ūq(tk), wi+1(τ))

=
∂V̂q(x̄a,i+1,q(τ))

∂x ( f̄i+1,q(x̄a,i+1,q(τ), ūq(tk), wi+1(τ)) +
∂V̂q(x̄a,i+1,q(ts,i+1))

∂x ( f̄i+1,q(x̄a,i+1,q(ts,i+1), ūq(tk), 0))

− ∂V̂q(x̄a,i+1,q(ts,i+1))

∂x ( f̄i+1,q(x̄a,i+1,q(ts,i+1), ūq(tk), 0))

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q MiΔ + L′w,i,qθi + α̂4,q(α̂

−1
1,q (ρ̂q))Mchange,i,q

+

∣∣∣∣ ∂V̂q(x̄a,i+1,q(τ))

∂x ( f̄i+1,q(x̄a,i+1,q(τ), ūq(tk), wi+1(τ))− ∂V̂q(x̄a,i+1,q(ts,i+1))

∂x ( f̄i+1,q(x̄a,i+1,q(ts,i+1), ūq(tk), 0))
∣∣∣∣

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q MiΔ + L′w,i,qθi + α̂4,q(α̂

−1
1,q (ρ̂q))Mchange,i,q

+L′x,i+1,q|x̄a,i+1,q(τ)− x̄a,i+1,q(ts,i+1)|+ L′w,i+1,qθi+1

≤ −α̂3,q(α̂
−1
2,q (ρ̂e,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i,q + L′x,i,q MiΔ + L′w,i,qθi + α̂4,q(α̂

−1
1,q (ρ̂q))Mchange,i,q

+L′x,i+1,q Mi+1Δ + L′w,i+1,qθi+1

(A12)

If Equation (71) holds, then integrating Equation (A12) gives that V̂q(x̄a,i+1,q(t)) ≤ V̂q(x̄a,i,q(ts,i+1)),
for all t ∈ [ts,i+1, tk+1]. Since x̄a,i+1,q(ts,i+1) ∈ Ωρ̂q , this guarantees that the closed-loop state remains in
Ωρ̂q even after the switch in the process model occurs, regardless of whether it occurs at a sampling time
or throughout a sampling period, when the conditions of the theorem hold.

Appendix C. Proof of Theorem 3

Proof. This proof consists of several parts. First, recursive feasibility of the LEMPC of Equation (24)
until td,q is presented. Second, it is demonstrated that, after ts,i+1 and before td,q, the closed-loop state
is maintained in Ωρ̂samp,q under the conditions of the theorem. Third, it is demonstrated that, after td,q,
the closed-loop state will be maintained in Ωρ̂q for a number of sampling periods given by th,q.

Part 1. Until td,q, each state measurement provided to the LEMPC of Equation (24) is within Ωρ̂q . From
Reference [51], under the conditions of Equations (65) and (66), this guarantees feasibility of the LEMPC of
Equation (24). After td,q, when the closed-loop state exits Ωρ̂q , feasibility is no longer guaranteed for the
LEMPC of Equation (24) but hNL,q is then used instead according to the statement of the theorem so that
a characterizable control law is always used.

Part 2. Until ts,i+1, closed-loop stability within Ωρ̂q is guaranteed under the LEMPC of Equation (24)
under the conditions in Equations (65) and (66) from Reference [51]. Subsequently, until td,q, it must be
demonstrated that, if the state measurement is contained within Ωρ̂q at tk, then x(t) ∈ Ωρ̂samp,q ⊂ Ωρ̂sa f e,q ,
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t ∈ [tk, tk+1]. Here, one of two cases holds: either x(tk) ∈ Ωρ̂e,q or x(tk) ∈ Ωρ̂q /Ωρ̂e,q . The state of the
underlying model before ts,i+1 is denoted by x̄a,i,q and, after, is x̄a,i,q+1.

If x(tk) ∈ Ωρ̂e,q and if ts,i+1 ∈ [tk, tk+1), from Propositions 1 and 2 and Equation (24f), we have
the following:

V̂q(x̄a,i,q(t)) ≤ V̂q(x̄b,q(t)) + fV,q(|x̄a,i,q(t)− x̄b,q(t)|)
≤ ρ̂e,q + fV,q( fW,i,q(Δ)) ≤ ρ̂q

(A13)

for t ∈ [tk, ts,i+1) when Equation (65) holds, and

V̂q(x̄a,i+1,q(t)) ≤ V̂q(x̄b,q(t)) + fV,q(|x̄a,i+1(t)− x̄b,q(t)|)

≤ ρ̂e,q + fV,q( fW,i,q(ts,i+1 − tk) + (Mchange,i,q)(t − ts,i+1) +
Lw,i,qθi + Merr,i,q

Lx,i,q
(eLx,i,qt − eLx,i,qts,i+1))

(A14)

for t ∈ [ts,i+1, tk+1) from Proposition 4. From the conditions in Equation (73), this gives that V̂q(x(t)) is
maintained within Ωρ̂samp,q for all t ∈ [tk, tk+1).

If instead ts,i+1 occurs before or at tk, then x̄b,q(tk) = x̄a,i+1,q(tk) and Propositions 1 and 2 and
Equation (24f) give the following:

V̂q(x̄a,i+1,q(t)) ≤ V̂q(x̄b,q(t)) + fV,q( fW,i+1,q(Δ))

≤ ρ̂e,q + fV,q( fW,i+1,q(Δ))
(A15)

for all t ∈ [tk, tk+1). From the conditions in Equation (75), this gives that V̂q(x(t)) is maintained within
Ωρ̂samp,q for all t ∈ [tk, tk+1).

If x(tk) ∈ Ωρ̂q /Ωρ̂e,q , then the constraint of Equation (24g) is used. In this case, we consider the cases
where ts,i+1 ∈ [tk, tk+1) and the case where ts,i+1 occurs before tk, separately.

When ts,i+1 ∈ [tk, tk+1), then before ts,i+1, Equation (24g) holds. From Reference [51], Equation (66)
with Equation (67) cause x̄a,i,q(t) ∈ Ωρ̂q for t ∈ [tk, ts,i+1). Subsequently, this result no longer holds because
the underlying dynamic model changed so that Equation (24g) no longer provides an indication of the
conditions which the closed-loop state meets, and a worst-case scenario in which the closed-loop state could
subsequently move out of Ωρ̂q is considered. Specifically, the first inequality in Equation (A14) continues
to hold. Equation (24f) does not necessarily hold but instead it is guaranteed [51] that x̄b,q(t) ∈ Ωρ̂q under
Equations (66) and (67), so that V̂q(x̄b,q) ≤ ρ̂q. Then, if Equation (74) holds, extending the first inequality
in Equation (A14) guarantees that V̂q(x̄a,i+1,q(t)) ≤ ρ̂samp,q, for t ∈ [ts,i+1, tk+1). Therefore, throughout
a sampling period containing ts,i+1, the closed-loop state does not leave Ωρ̂samp,q . If instead ts,i+1 is before
tk, then Equation (24g) is activated at tk and when x̄a,i+1,q(tk) ∈ Ωρ̂q /Ωρ̂s,q [51]:

∂V̂q(x̄a,i+1,q(τ))

∂x
( f̄i+1,q(x̄a,i+1,q(τ), ūq(tk), wi+1(τ))

≤ −α̂3,q(α̂
−1
2,q (ρ̂s,q)) + α̂4,q(α̂

−1
1,q (ρ̂q))Merr,i+1,q + L′x,i+1,q Mi+1Δ + L′w,i+1,qθi+1

(A16)

When Equation (72) is satisfied,

∂V̂q(x̄a,i+1,q(τ))

∂x
( f̄i+1,q(x̄a,i+1,q(τ), ūq(tk), wi+1(τ)) ≤ εW,i+1,q/Δ (A17)

or
V̂q(x̄a,i+1,q(t)) ≤ V̂q(x̄a,i+1,q(tk)) +

εW,i+1,q
Δ (t − tk) (A18)
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This indicates that V̂q is guaranteed to increase at a worst-case rate along the closed-loop state
trajectories under the control actions determined by the LEMPC of Equation (24) if the condition of
Equation (72) is satisfied after an anomaly occurs. To ensure that, at the end of the sampling period,
V̂q(x̄a,i+1,q(t)) ≤ ρ̂samp,q, given that V̂q(x̄a,i+1,q(tk)) ≤ ρ̂q, Equation (76) must hold. If ts,i+1 is before tk but
x̄a,i+1,q(tk) ∈ Ωρ̂s,q , then if ρ̂min,i+1,q ⊂ ρ̂samp,q, then x̄a,i+1,q(t) ∈ Ωρ̂samp,q from Equation (67).

Thus, whether x(tk) ∈ Ωρ̂e,q or x(tk) ∈ Ωρ̂q /Ωρ̂e,q , x(tk+1) ∈ Ωρ̂samp,q . Applying this recursively
indicates that, from ts,i+1 until td,q, the closed-loop state is maintained within Ωρ̂samp,q . This also indicates
that V̂q(x̄a,i+1,q(td,q)) ≤ ρ̂samp,q. Because Ωρ̂samp,q ⊂ Ωρ̂sa f e,q , x̄a,i+1,q(td,q) ∈ Ωρ̂sa f e,q as well.

Part 3. At td,q, hNL,q in sample-and-hold begins to be used to control the process. Again,
Equations (A16)–(A18) hold.

The time tout,q at which the closed-loop state reaches Ωρ̂sa f e,q (i.e., when V̂q(x̄a,i+1,q(tout,q)) = ρ̂sa f e,q)

when initialized from V̂q(x̄a,i+1,q(tk)) = ρ̂samp,q, where ρ̂samp,q ≤ ρ̂sa f e,q, is at least
(ρ̂sa f e,q−ρ̂samp,q)Δ

εW,i+1,q
+ tk.

To ensure that the time between tk and tout,q is no greater than
(ρ̂sa f e,q−ρ̂samp,q)Δ

εW,i+1,q
, the number of sampling

periods available after td,q until the model needs to be updated with one which meets the conditions in

Equation (66) with i set to i + 1 and q set to q + 1 is floor(
(ρ̂sa f e,q−ρ̂samp,q)

εW,i+1,q
).

Appendix D. Proof of Theorem 4

Proof. If hNL,q+1 is used to control the system after tID,q and the conditions of Theorem 4 are met,
then xa,i+1,q(tID,q) = xa,i+1,q+1(tID,q), which lies in both Ωρ̂sa f e,q and in Ωρ̂sa f e,q+1 so that the closed-loop
state has not left either region. From Reference [51], if Equation (66) is met for the q + 1/i + 1 model
combination, then hNL,q+1 causes V̂q+1 to decrease so that it will not leave Ωρ̂sa f e,q+1 before the closed-loop
state enters Ωρ̂q+1 . Once the closed-loop state enters Ωρ̂q+1 , then the LEMPC of Equation (24) is used
with the q + 1 model, and if Equations (65) and (66) are met for the q + 1/i + 1 model combination, the
closed-loop state is maintained in Ωρ̂q+1 from Reference [51].
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Abstract: Division of labor plays a critical role in many parts of agriculture. For example, a specialized
division of labor can lead to the improvement of labor productivity, the reduction of production
costs, and the innovation of production technology and organization. At the heart of agricultural
management is how the comparative advantages of farmers impact their production decision-making
behavior, and, consequently, influence the division of labor structure. In this paper, we apply an
infra-marginal model to interpret the selection logic of heterogeneous farmers’ specialized production
with exogenous comparative technical advantages and transaction costs. Solving the nonlinear
programming problem of the utility function within each respective labor structure leads to a corner
equilibrium. Under reasonable assumptions of the model, we reduced the number of possible
production–consumption decision modes from the maximum of 64 to an optimal of 3. Through this
analysis, we discovered the ranges for transaction efficiency coefficients and preference parameter
under which each structure can achieve general equilibrium. Our theoretical model thereby explains
the structural evolution of agricultural division of labor.

Keywords: comparative advantage; transaction cost; specialized production; infra-marginal model;
agricultural division of labor

1. Introduction

In agriculture, each farmer behaves as a limited and rational production decision maker; farmers
allocate resources rationally similar to entrepreneurs. In the traditional agriculture where profit
maximization is the farmers’ ultimate behavioral goal, it is relatively rare to see an inefficient allocation
of production factors [1]. As long as farmers prefer the principle of manufacturer in management,
they may allocate resources to the most efficient production field, thus bringing specialization and
division of labor. Specialized division of labor has a direct impact on economics that leads to the
improvement of labor productivity and the reduction of production costs, and an indirect impact that
leads to the innovation of production technology and organization. Together, these impacts lead to the
saving of factor resources and the improvement of labor efficiency [2]. Under the appropriate external
economic conditions, the development of the division of labor within the household will naturally
devote labor and capital on a few business activities, or even one. As a result, farmers generally
increase the amount of capital, technology, or land input in the original factor combination, forming an
intensive management based on a certain factor. Therefore, the rational production decision of farmers
is to pursue the division of labor economy formed by the comparative advantage.

China’s current policies focus on promoting moderate scale and specialized agricultural operation
to improve the scale economy and division of labor economy, and promoting the transformation of
agricultural management methods. An underlying aspect of such policies is to encourage farmers
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to switch from small and full to specialized management. The heterogeneity of the farmers is
assumed in the heart of agricultural management. That is, the farmers have their own comparative
advantages under the conditions of open management. With this assumption, we study the effect of
the comparative advantages on the production decision-making behavior, which then influences the
kind of division of labor structure we present. This forms the basis of our paper.

Our study uses the Ricardian model [3–5] to include the comparative advantages of farmers
and market transaction costs. David Ricardo’s theory of comparative advantage is considered the
cornerstone of modern trade theory. However, due to the presence of corner solutions, traditional
marginal analysis cannot be applied to the Ricardo model [6]. For this reason, the model has not
received its due attention [4]. If we used the absolute separation between pure consumers and
enterprises, we would generate multiple general equilibria based on multiple corner and interior
point solution structures. However, under the Walras system, companies do not care which structure
they choose, and pure consumers cannot choose the production structure. Hence, partial equilibrium
may be a general equilibrium in each structure. This multiplicity of the general equilibrium makes
comparatively static analysis of general equilibrium impossible [7]. Now, if the Smith framework
is used for analysis, each individual can be a producer–consumer, and can choose its level of
specialization. That is, the general equilibrium is one of the multiple corner equilibria. The general
equilibrium is an effective compromise between the division of labor economies generated by
exogenous comparative technological advantages and transaction costs [6].

In the literature, there are exogenous and endogenous comparative advantages, as well
as comprehensive comparative advantages [8–10]. Based on the Ricardo model, we construct
a mathematical model on farmers’ participation in the division of labor with exogenous comparative
technical advantages and transaction costs by taking into consideration the simplification of the model
and the simplicity of the structure. In our work, we pioneer the use of the infra-marginal model to
study the evolution of agricultural division of labor, which is about farmers’ specialization and the
change of their agricultural economic organization.

The infra-marginal model provides a powerful tool to study the division of labor and
professionalization of the economy. The concept was initiated in the 1950s and 1960s [11–13] and
further developed by Yang [14,15]. In such a model, it is assumed that business decisions can be
categorized into two classes: marginal and infra-marginal. Marginal decisions are concerned with
the extent to which resources are allocated to a pre-determined set of activities, while infra-marginal
decisions are about what activities to engage in (or whether or not to engage in an activity). In the
context of social division of labor, the infra-marginal decisions of individuals allow the formation
of a network division of labor of various sizes. The infra-marginal analysis is concerned with
the optimal infra-marginal network decisions and the outcome of these decisions. The optimal
infra-marginal network decisions rely on the total cost–benefit analysis across different network
patterns of specialization and trade connections as well as the marginal analysis of resource allocation
for a given network pattern. Mathematically speaking, infra-marginal analysis transcends into
non-classical mathematical programming problems (e.g., linear and nonlinear programming, mixed
integer programming, dynamic programming, and control theory) that allow corner solutions [16].

The infra-marginal model finds a variety of applications. For example, it can be coupled with
the Ricardian model to study the mechanisms for economic development as well as the evolution of
trade policy regimes [3–5,17]. Infra-marginal analysis was applied to the Dixit–Krugman model to
explain the evolution of trade pattern determined by the interplay between endogenous and exogenous
comparative advantages [18]. It was also used in the Dixit–Stiglitz model to predict the tests of scale
effects [19]. The aforementioned applications are all on international trade. Moreover, dynamic
infra-marginal analysis was applied in the Yang and Borland (Y–B) model to obtain the dynamic
general equilibrium based on corner solutions. It can also be seen in the areas of economic growth
and development theory [8,20]. More applications of the infra-marginal model can be found in the
studies of the firm, contract and property rights, insurance, e-business, money, capital and business
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cycle [21–27], and urbanization and industrialization such as the relationships among the division
of labor, agglomeration, and land rentals [28,29]. Despite the rich applications of the infra-marginal
model, its application to the special topic of agricultural division of labor is generally lacking. A major
contribution of our work is the development of a framework that helps to explain the selection logic of
farmers’ specialized production and the structural evolution of agricultural division of labor through
the construction of an infra-marginal model.

The rest of the paper is organized as follows. In Section 2, we construct an infra-marginal model
by considering agricultural comparative advantages. The model consists of four possible division of
labor structures. In Section 3, we set up and develop the corner equilibrium solutions to the nonlinear
utility optimization problems that are associated with the four structures. In Section 4, we analyze the
conditions in the parameter space that lead to various general equilibria as well as explain the division
selection logic and decision mechanism of farmers with comparative advantage. We conclude our
work with a summary and discussion in Section 5.

2. Materials and Methods—An Infra-Marginal Model

Based on the Ricardo model with exogenous comparative technical advantages and transaction
cost, we construct an infra-marginal model of farmers’ comparative advantage and specialization
choice, which reveals the selection logic of farmers’ specialized production and the structural evolution
rule of agricultural division of labor.

2.1. Model Definition

Our mathematical model inherits a set of reasonable assumptions. The economy is composed
of two producer–consumer integrated farmers and each farmer has a comparative advantage due to
their heterogeneity. Two different farmers, Farmers 1 and 2, both consume two agricultural products x
and y (x and y may also be labor services in agricultural production links) and determine their own
patterns of production and trading activities.

With these assumptions, the farmer production system (as a production–consumer integration
in the model) can be constructed. In general, we have at our disposal many utility functions (e.g.,
linear, Leontief, constant elasticity substitution, Cobb–Douglas (C-D), etc.). Each comes with a set
of restrictions. In our agricultural model, the two labor services or products are both necessary
and indispensable to the final product. This assumption is enforced with a zero utility if one of the
necessary services or products has a value of zero. Since C-D utility function is the only one among
those described above that satisfies this requirement, it is used in our model.

The utility function of farmer i (i = 1, 2) is:

Ui = (xi + kxd
i )

β(yi + kyd
i )

1−β, (1)

where xi and yi are the respective self-sufficiency quantities of agricultural products (or production
link), xd

i and yd
i are the respective demand quantities of farmers, k is the transaction efficiency coefficient,

and β is the preference parameter of farmers.
The production functions of farmer i (i = 1, 2) are:

xp
i = xi + xs

i = aixlix, and yp
i = yi + ys

i = aiyliy. (2)

Here, xp
i and yp

i are, respectively, the output level of two kinds of agricultural products produced
by farmers (or labor services engaged in two production links); and xs

i and ys
i are, respectively,

the supply quantity of farmers’ products or labor service. Moreover, lij (i = 1, 2; j = x, y) is the amount
of labor used by farmer i to produce agricultural product (or labor services) j, which is called the level
of specialization of farmer i when producing agricultural product (or labor services) j. In addition,
coefficient aij is the labor productivity of farmer i when producing agricultural product (or labor
services) j.
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Under these definitions, the case where Farmer 1 has a comparative advantage in the production
of agricultural product (or labor services) x can be represented mathematically by a1x/a1y > a2x/a2y.
It means that, compared to Farmer 2, Farmer 1 has a higher relative productivity on x over y; therefore,
Farmer 1’s opportunity cost for product x is smaller.

Moreover, we can use the labor endowment constraint to measure farmers’ level of specialization.
In particular, the labor endowment constraint of farmer i is given by lix + liy = 1. For example, lix = 0
means that farmer i devotes all of their labor to produce product y, making them a specialized producer
of y.

Farmers’ consumption, production, and trading decisions involve six non-negative variables
xi, xs

i , xd
i , yi, ys

i , and yd
i , resulting in a total of 26 = 64 combinations.

With market clearing (supply equals demand), the budget constraint reads pxxs
i + pyys

i = pxxd
i +

pyyd
i . To avoid needless trade cost, it is prohibited to buy and sell the same product (or service).

As a result, xs
i and xd

i cannot be positive at the same time, i.e., xs
i xd

i = 0. The same holds true for
product y to arrive at ys

i yd
i = 0. Overall, the budget constraint simplifies to (ys

i = xd
i = 0, pxxs

i = pyyd
i )

or (xs
i = yd

i = 0, pxxd
i = pyys

i ).

2.2. Optimal Decision Mode and Division of Labor Structure

Based on the budget constraint and the other constraints that we present next, most of the optimal
decisions from the 64 possible combinations can be excluded. Consequently, only a few division of
labor structures are deduced. In all cases, any combination of the six variables should meet the budget
constraints and the condition of positive utility.

For the convenience of the analysis, we write the variables into a 6-tuple Zi = (xi, xs
i , xd

i , yi, ys
i , yd

i ).
We use the notations 0 or + inside the 6-tuple to denote zero or positive values. For example,
( , 0,+, , , ) denotes the case xs

i = 0 and xd
i > 0. The cases that violate budget constraint are:

( , 0, , , ,+), ( ,+, , , , 0), ( , , 0, ,+, ), and ( , ,+, , 0, ). There are a total of 24 + 23 + 24 + 23 = 48
such combinations. Moreover, there are four cases with ( ,+,+, ,+,+) that involve selling and buying
the same product, which are inefficient cases, because they introduce unnecessary transaction costs.
In the remaining 12 combinations, there are seven combinations with either the form (0, , 0, , , )

or ( , , , 0, , 0), which do not meet the positive utility constraint Ui > 0. The remaining five cases
can be summarized into three decision modes: self-sufficient mode (+, 0, 0,+, 0, 0), semi-specialized
mode ((+,+, 0,+, 0,+) and (+, 0,+,+,+, 0)), and complete-specialization mode ((+,+, 0, 0, 0,+)

and (0, 0,+,+,+, 0)). These three decision modes are assigned to Farmer 1 or Farmer 2. We call
a combination of modes for both farmers a structure. With the comparative advantage assumption of
Farmer 1 producing product x, certain structures need to be avoided. For example, the structures with
either Z1 = (0, 0,+,+,+, 0) (meaning Farmer 1 specializes in production y) or Z2 = (+,+, 0, 0, 0,+)

(meaning Farmer 2 specializes in production x) violate the comparative disadvantage of individual
farmers, hence need to be excluded from consideration. Now, we analyze in detail the three modes
that make up the various types of structures.

1. Self-sufficiency mode is generally expressed as (xy)i and defined as Zi = (+, 0, 0,+, 0, 0), for i =
1, 2. This indicates that all agricultural products or labor services are self-sufficient. With an
economy of two farmers, this kind of social organization structure is called self-sufficiency
Structure A.

2. Semi-specialized mode is when farmers produce products or services with comparative
advantages, generally expressed as (xy/y)1 and (xy/x)2. The mode (xy/y)1 corresponds to
the case where Z1 = (+,+, 0,+, 0,+), meaning that Farmer 1 produces certain self-sufficient
quantities of products x and y, sells products x, and purchases products y. Consider the example
of the labor of plant protection and weeding in agricultural production. Farmer 1 purchases
a small portable spraying machine to spray chemicals on his own and others’ crops and he
takes care of his own weeding partially. In addition, he also purchases weeding labor services
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from other farmers. Namely, he outsources the labor services of weeding. The mode (xy/x)2

corresponds similarly to Z2 = (+, 0,+,+,+, 0).
3. Complete-specialization mode is when farmers produce products or services with comparative

advantage, expressed as (x/y)1 and (y/x)2. The mode (x/y)1, or Z1 = (+,+, 0, 0, 0,+),
represents the case where Farmer 1 specializes in producing goods or services x and is
self-sufficient in selling x and buying goods or services y. The mode (y/x)2, or Z2 =

(0, 0,+,+,+, 0), represents that Farmer 2 specializes in producing goods or services y and is
self-sufficient in selling y and buying goods or services x.

In addition to self-sufficiency Structure A, the decisions of Farmers 1 and 2 to their own production
and trading activities also involve two partial division of labor structures: Ba, composed of (xy/y)1

and (y/x)2; Bb, composed of (x/y)1 and (xy/x)2; and a complete division of labor Structure C, which
is composed of (x/y)1 and (y/x)2. The above modes and structures are demonstrated in Figure 1.

Figure 1. A schematic view of the four possible division of labor structures, under the assumption
of Farmer 1 being comparative advantageous in production of x. A self-looping arrow indicates that
a farmer consumes the products that he/she makes. A forward arrow from farmer i to farmer j means
that farmer i produces certain products (indicated by the symbol above or below the arrow) and sells
them to farmer j.

3. Optimization Analysis—Decision and Corner Equilibrium

To analyze the comparative advantages of exogenous technology of farmers and how the
transaction costs affect the division of labor, that is, how the social organization structure evolves from
self-sufficiency to partial division of labor and then to complete division of labor, it is necessary to
analyze the decision-making strategies by first maximizing individual utility based on the infra-margin,
to obtain partial or corner equilibriums for each given structure. The general equilibrium is one of
the four corner equilibria with the maximum utility. To do this, we first use nonlinear programming
to solve the problem of maximization of farmers’ individual benefits, then use the market clearing
conditions to solve the partial equilibrium of each of the four structures, and finally use the total
return-cost analysis method to determine the general equilibrium.

3.1. The Selection of Self-Sufficiency Mode

The selection of self-sufficiency mode (xy)1 can be formulated as:

max
x1,y1,l1x ,l1y

U1 = xβ
1 y1−β

1 (3)

s.t. x1 = a1xl1x, y1 = a1yl1y, l1x + l1y = 1 (4)

We use the marginal analysis method to solve this problem by first substituting the constraints into
the objective function, and then setting the first derivative to zero. This yields the solution l1x = β,
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l1y = 1 − β, x1 = a1xβ, y1 = a1y(1 − β), with the utility of self-sufficient Farmer 1 being UA1 =

ββ(1− β)1−βaβ
1xa1−β

1y . Similarly, the utility of self-sufficient Farmer 2 is UA2 = ββ(1− β)1−βaβ
2xa1−β

2y .

3.2. The Selection of Semi-Specialized Mode

Given the partial division of labor Structure Ba, the utility maximization problem for
semi-specialized mode (xy/y)1 is:

max
x1,y1,xs

1,yd
1,l1x ,l1y

U1 = xβ
1 (y1 + kyd

1)
1−β (5)

s.t. x1 + xs
1 = a1xl1x, y1 = a1yl1y, l1x + l1y = 1, yd

1 = pxs
1, (6)

where p ≡ px/py is the relative price of product or service x compared to y. Similarly, to solve
this problem, we substitute all the variables in the objective function with l1x and xs

1 using the four
constraints. The first-order derivatives are

∂U1

∂xs
1
=

(
− β

a1xl1x − xs
1
+

kp(1− β)

a1y(1− l1x) + kpxs
1

)
U1 (7)

∂U1

∂l1x
=

(
a1xβ

a1xl1x − xs
1
− a1y(1− β)

a1y(1− l1x) + kpxs
1

)
U1 (8)

Setting both derivatives zero then requires p = a1y/(ka1x). It then follows naturally that x1 = βa1x,

xs
1 = a1x(l1x − β), y1 = a1y(1 − l1x), yd

1 = a1y(l1x − β)/k, and U1 = ββ(1 − β)1−βaβ
1xa1−β

1y . We refer
the interested reader to Appendix A.1 for more details. Interestingly, the maximizer variables xs

1, y1,
and yd

1 are functions of l1x, while the maximal utility U1 is independent of l1x. The above equilibrium
solution relies on a fixed relative market price p. Our analysis in the following remarks shows that this
relative market price determines the mode choice of Farmer 1.

Remark 1. If p > a1y/(ka1x), with the optimal value of xs
1 given by ∂U1/∂xs

1 = 0, we have ∂U1/∂l1x > 0.
This means the utility of Farmer 1 can always be improved by improving l1x. That is, the utility of Farmer 1 will
always increase with the increase of labor allocation to x (the specialization level generating x). Therefore, the
optimal value of l1x is its upper limit value. Due to the constraint of farmers’ endowment of working hours, if the
upper limit l1x = 1 is taken, the farmer should not produce y, but should be specialized in the production of x.
That is, when p > a1y/(ka1x), Farmer 1 will choose the mode (x/y)1 instead of the mode (xy/y)1. Similarly,
when p < a1y/(ka1x), Farmer 1 will choose the mode (xy)1 instead of the mode (xy/y)1. Only when the
relative price of market p is a1y/(ka1x) will Farmer 1 select mode (xy/y)1. This condition is similar to the
zero-profit condition in the standard general equilibrium with the same scale return.

Remark 2. It is seen that, if the relative price p of the transaction cost, after any discount, in the market is lower
than the marginal conversion rate a1y/(ka1x) of Farmer 1 in self-sufficiency, the optimal decision of farmers
is to be self-sufficient and produce two products or services x and y at the same time. If p > a1y/(ka1x), the
marginal utility of the level of specialization of the Farmer 1 always increases with the increase of l1x, so the
optimal decision is to specialize in producing x. However, when p is a1y/(ka1x), self-sufficiency mode and
semi-specialized mode (xy/y)1 produce the same effect. Thus, if the market clearing conditions in the general
equilibrium can ensure that demand and supply can be achieved in mode (xy/y)1, the farmer will choose this
mode. In this decision-making solution, the optimal value of l1x is uncertain, and its equilibrium value will be
determined by the conditions for market clearing.
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3.3. The Selection of Complete-Specialized Mode

The utility maximization problem for Farmer 2 with mode (y/x)2 is:

max
xd

2,y2,ys
2

U2 = (kxd
2)

βy1−β
2 (9)

s.t. y2 + ys
2 = a2yl2y, ys

2 = pxd
2, l2y = 1. (10)

In the context of Structure Ba, (y/x)2 is selected jointly with (xy/y)1, and p = a1y/(ka1x) is the
equilibrium relative price. The system yields the optimal solution xd

2 = kβa2ya1x/a1y, y2 = (1− β)a2y,
ys

2 = βa2y. The market clearing conditions xs
1 = xd

2 lead to l1x = β + kβa2y/a1y. The condition l1x < 1
is met if and only if a2y/a1y < (1− β)/(kβ), in which case Structure Ba is selected. At this point, the
maximum utility of Farmer 2, that is, the real income per capita, is U2 = ββ(1 − β)1−β(k2a1x/a1y)

βa2y.
In the context of Structure C, the maximization utility problem for Farmer 1 with mode (x/y)1 is:

max
x1,xs

1,yd
1

U1 = xβ
1 (kyd

1)
1−β, (11)

s.t. x1 + xs
1 = a1xl1x, yd

1 = pxs
1, l1x = 1, (12)

with solution x1 = βa1x, xs
1 = (1 − β)a1x, and yd

1 = (1 − β)pa1x. Similarly, we can establish the
maximization problem for Farmer 2 with mode (y/x)2. The market clearing condition xs

1 = xd
2 sets

the equilibrium relative price p =
βa2y

(1−β)a1x
. Under this condition, the maximum utility of Farmer 1 in

Structure C is Uc
1 = βaβ

1x(ka2y)
1−β and the maximum utility of Farmer 2 is Uc

2 = (1 − β)(ka1x)
βa1−β

2y .
For more details about the derivation, see Appendix A.2.

The comparative advantage of farmers and the equilibrium of four corner points in the model of
division of labor selection are summarized in Table 1.

Table 1. Four corner equilibria of the model of farmers’ comparative advantage and division of
labor selection.

Structure Relative
Price p

Relative Parameter
Interval

Real Income per Capita (Utility)

Farmer 1 Farmer 2

A N.A.
U1(A) =

ββ(1− β)1−βaβ
1xa1−β

1y

U2(A) =

ββ(1− β)1−βaβ
2xa1−β

2y

Ba
a1y

ka1x

k < k1 < 1 with

k1 =
(1− β)a1y

βa2y

U1(A) (1− β)1−β

(
βk2a1x

a1y

)β

a2y

Bb
ka2y

a2x

k < k2 < 1 with

k2 =
βa2x

(1− β)a1x

ββ

(
(1− β)k2a2y

a2x

)1−β

a1x U2(A)

C
βa2y

(1− β)a1x
β(ka2y)

1−βaβ
1x (1− β)(ka1x)

βa1−β
2y

4. Selection Logic and Structural Evolution of Division of Labor

If heterogeneous farmers have exogenous comparative technical advantages, under the influence
of market transaction cost, the choice of production and consumption will be made in the four
division of labor structures listed above. As each of the four division of labor structures leads to
a corner equilibrium (cf. Table 1), general equilibrium is among the corner equilibria. Under this
corner equilibrium relative price, no farmer has incentive to deviate from the model he/she chooses.
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To explore the influence of comparative advantage and transaction cost on the division of labor
choice of farmers, we find the conditions for each division of labor structure that lead to the general
equilibrium. This can be accomplished using the total cost–benefit analysis method and the definition
of general equilibrium. Furthermore, by studying the relationship between comparative advantage and
transaction efficiency coefficient, we can deduce the varying relationships in farmers’ equilibrium in
their division of labor. These analyses help explain the division selection logic and decision mechanism
of farmers with comparative advantage.

4.1. General Equilibrium and Comparative Static Analysis

Let us take the partial division of labor Structure Ba as an example. If the following conditions are
met, Structure Ba is a general equilibrium.

1. With the corner equilibrium relative price p = a1y/(ka1x) for this structure, Farmer 2 prefers
(y/x)2, rather than mode (xy)2 or (x/y)2, given that: (1) U2(y/x) > U2(A), which is equivalent
to k > k0 =

√
a2xa1y/a1xa2y; and (2) U2(y/x) > U2(x/y), which is equivalent to k > k3 =

2β
√

a2xa1y/a1xa2y.
2. Farmer 1 prefers mode (xy/y)1 than any other mode. This requires: (1) U1(xy/x) > U1(x/y),

which is true if a1y/a1x > kp; and (2) U1(xy/x) > U1(y/x), which is true if k < 1.
3. Farmers are semi-specialized rather than fully specialized in producing products or services.

This requires l1x < 1, which is equivalent to k < k1 = (1− β)a1y/(βa2y).

Notice that k3 < k0 and k0 < k1 are true if and only if (1− β)/β >
√

a2xa1y/a1xa2y. Hence, when

k ∈ (k0, k1), the three conditions above are true, and the corner equilibrium in Structure Ba is the
general equilibrium. In this case, although Farmer 1 has an exogenous technological comparative
advantage in the production of product or service x, he is unwilling to give up production of product
or service y, because his relative preference for product or service y is greater than a threshold, which
is the square root of the reciprocal of comparative advantage. Meanwhile, farmers are faced with
a low market transaction efficiency coefficient, that is, farmers need to pay higher transaction costs to
purchase the products or services they need, which sets farmers’ preference to produce a part of their
own products or services. The comparative static analysis for other structures (A, Bb, and C) can be
carried out in a similar way, which is summarized in Table 2 with

k0 =
√

a2xa1y/a1xa2y, k1 = (1− β)a1y/βa2y, and k2 = βa2x/ ((1− β)a1x) . (13)

Table 2. General equilibrium and infra-marginal comparative static analysis of farmers’ comparative
advantage and division of labor.

Parameter
Interval

k < k0

k > k0

1− β

β
>

(
a2xa1y

a1xa2y

) 1
2 1− β

β
<

(
a2xa1y

a1xa2y

) 1
2

k0 < k < k1 k1 < k < 1 k0 < k < k2 k2 < k < 1

Equilibrium
Structure

A Ba C Bb C
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4.2. The Logic and Decision Mechanism of Farmers Participating in the Division of Labor

Comparing various structures in the corresponding parameter subspace, as shown in Table 2,
we can obtain relevant conclusions about the division of labor selection logic and decision mechanism
of farmers with comparative advantages. In summary:

1. If k < k0 (k is the transaction efficiency coefficient between farmers), the general equilibrium
structure is self-sufficient, and the farmers produce two products or services themselves.

2. If k > k0 and (1 − β)/β >
√

a2xa1y/a1xa2y, Ba or C is selected. When k < k1, the general
equilibrium structure is Ba, in which Farmer 1 produces both products or services, while Farmer 2
specializes in producing y, and the transaction is carried out between Farmer 1 selling x and
Farmer 2 selling y. When k > k1, the general equilibrium structure is C, in which Farmers 1 and 2
specialize in the production of products or services x and y, respectively, forming a pair of trading
partners through market transactions.

3. If k > k0 and (1 − β)/β <
√

a2xa1y/a1xa2y, Bb or C is selected. When k < k2, the general
equilibrium structure is Bb, in which Farmer 1 specializes in the production of comparative
advantage products or services x and Farmer 2 produces both products, and the transaction
is carried out between Farmer 1 selling x and Farmer 2 selling y. When k > k2, the general
equilibrium structure is C.

According to the table of the general equilibrium of marginal comparative static analysis
(the equilibrium structure and the endogenous parameters with the parameter changes and the
discontinuous jump between different corner points equilibrium), as the transaction efficiency
coefficient between farmers increases from a low value to k0, and then to k1 or k2, the general
equilibrium jumps from self-sufficiency to partial division of labor, and then to complete division
of labor. As for whether the intermediate transformation structure is Ba or Bb, it depends on the
comparison of relative preferences and relative productivity among farmers.

4.3. The Function Logic of Comparative Advantage on the Choice of Farmer Specialization

It is also worth mentioning how the farmers’ exogenous technology comparative advantages
play a role in choosing division of labor and structure. It has been assumed in the model that
a1x/a2x > a1y/a2y, that is, Farmer 1 has a comparative advantage in the production of product or
service x. The degree of comparative advantage of exogenous technologies is denoted as r = r1r2, with
r1 = a1x/a2x and r2 = a2y/a1y.

The three critical values for transaction efficiency coefficient in the parameter subspace in
Equation (13) are obtained via partial differentiations. The results are as follows.

1. From the fact that ∂k0/∂r1 < 0 and ∂k0/∂r2 < 0, we observe that the higher is the degree
of farmers’ exogenous technology comparative advantage, the smaller is the critical value of
transaction efficiency coefficient. That means that, if the “threshold” of crossing the self-sufficient
structure is lowered, it urges the division of labor to take place under the condition of low
transaction efficiency. In this way, farmers can strive for the benefits of comparative advantage and
division of labor to make up for the loss of advantages and benefits in the self-sufficient structure.

2. With ∂k1/∂r2 < 0 and ∂k2/∂r1 < 0, we know that, in the structural selection of partial and
complete division of labor, the higher is the degree of farmers’ exogenous technology comparative
advantage, the more likely it is to have k > ki(i = 1, 2) for a given transaction efficiency coefficient,
that is, the equilibrium level of division of labor may be higher. That means that farmers are
more likely to choose the production modes that allow them to maximize their comparative
advantages and specialize in producing superior products or services, to avoid the efficiency loss
of resource allocation in the partial division of labor structure and gain more comparative benefits
and division of labor economy.
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3. The level of specialization in Structure C is higher than that of Structure Ba or Structure Bb.
Since the level of division of labor is positively correlated with individual specialization level,
the division of labor in Structure C is obviously higher than that in other structures. Therefore,
the complete division of labor Structure C becomes a general equilibrium, that is the farmers
choose to specialize in the production of products or services with the comparative advantages of
exogenous technology, satisfying√

a2xa2y/(a1xa1y) < (1− β)/β < a2y/a1y, or a2x/a1x < (1− β)/β <
√

a2xa2y/(a1xa1y).

This means that the greater is the degree of balance between farmers’ relative preference and
relative productivity, the higher is the level of division of labor, and the more inclined farmers are
to specialize in division of labor.

Finally, in the equilibrium, the productivity level selected by the farmers will be improved
endogenously with the improvement of the trading conditions, so that even if there is no scale economy
in the model, there is a division economy with the “one plus one greater than two” effect [30,31].
This means that the overall equilibrium productivity of an economy will improve as the size of the
equilibrium labor division network increases.

5. Summary

The division of labor in agriculture is influenced by factors such as the innate characteristics of
the crops, variations of the seasons, duration of a product’s shelf life, and the interconnectedness of
the production process; these are all heavily interlinked, making it difficult to completely separate the
factors in searching for farmer’s maximum profit. Moreover, marginal analysis in economics cannot
be used to model the division of labor mathematically. Our work here is the first attempt to analyze
the division of labor using infra-marginal model in agriculture by treating heterogeneous farmers as
a single producer–consumer integrated unit.

One of our major contributions in this study is to apply the corner equilibrium analysis in
studying farmers’ selection logic. When we impose reasonable budget constraints, positive utility,
and comparative advantage, the number of possible production–consumption decision modes can
be reduced from the maximum of 64 to an optimal of 3. If we assume that at least one of the farmers
selects a specialized mode and each farmer prefers a different production–consumption mode, then
four division of labor structures can be derived. Solving the nonlinear programming problem of the
utility function within each respective labor structure leads to a corner equilibrium. We discovered
the ranges for transaction efficiency coefficients, k, and preference parameter, β, under which each
structure can achieve general equilibrium. Our work is concluded by showing how farmers’ exogenous
comparative advantage influence the way labor is divided and labor structures are selected.

The general equilibrium is determined by the relative productivity, relative preferences, and
transaction efficiency levels of the two farmers. When other parameters are set, the improvement of
transaction efficiency causes the general equilibrium to jump from self-sufficiency to partial division
of labor and then to complete division of labor. Given the terms of the transaction and the relative
preference for the two products, the greater is the comparative advantage of the farmer, the higher
is the level of division of labor. Given the conditions of trade, the more balanced are the relative
preferences compared with relative productivity, the higher is the equilibrium division of labor. With
the improvement of the level of equilibrium division of labor, the equilibrium aggregate productivity of
the economy in which the farmer is located increases. The aforementioned super-marginal comparative
static analysis of general equilibrium explains the selection logic and decision path for the participation
of superior farmers in the division of labor, and also provides a general equilibrium mechanism for
the development of agricultural economy. In this mechanism, exogenous comparative advantage and
transaction efficiency are the driving forces of agricultural economic development.

260



Mathematics 2019, 7, 1152

It is worth pointing out that our simplified model only takes into consideration the exogenous
comparative technical advantages in understanding farmers’ decision-making and selection logic.
Further research to investigate the role of endogenous comparative advantages, which are obtained
through one’s practices and experiences, with the improvement of production and trading environment
is much needed. On the other hand, the applicability of our work can be strengthened and validated
with numerical studies of actual field data. Data that are currently collected from large-scale
agricultural production activities in China will be extremely useful for this purpose.

In reality, there are many critical factors such as the demographic population and the factor
endowment of the farmers, the level of expertise in the agricultural production, and the market
transaction efficiency that can influence the selection space of farmers and the ultimate division of
labor structure. A brand new set of mathematical models and accompanying analysis would most
likely be needed to provide a more comprehensive result in this area.
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Appendix A

Appendix A.1

In this section, we provide the details to the derivation of solution to the utility maximization
problem for semi-specialized mode (xy/y)1, as presented in Section 3.2. Note that the case (xy/y)1

corresponds to Zi = (xi, xs
i , xd

i , yi, ys
i , yd

i ) = (+, 0,+,+,+, 0). Hence, the constrained utilities
maximization problem can be formulated as

max
x1,y1,xs

1,yd
1,l1x ,l1y

U1 = xβ
1 (y1 + kyd

1)
1−β (A1)

s.t. x1 + xs
1 = a1xl1x, y1 = a1yl1y, l1x + l1y = 1, yd

1 = pxs
1, (A2)

Note that the four constraints allow us to express the variables x1, y1, l1y, and yd
1 in terms of xs

1
and l1x. Then, the constraint optimization problem in Equations (A1) and (A2) can be rewritten as

max
xs

1, l1x
U1 = (a1xl1x − xs

1)
β(a1y(1− l1x) + kpxs

1)
1−β (A3)

s.t. 0 ≤ xs
1 ≤ a1xl1x, and 0 ≤ l1x ≤ 1. (A4)

First-order derivatives on the utility function U1 gives us

∂U1

∂xs
1
=

(
− β

a1xl1x − xs
1
+

kp(1− β)

a1y(1− l1x) + kpxs
1

)
U1, (A5)

∂U1

∂l1x
=

(
a1xβ

a1xl1x − xs
1
− a1y(1− β)

a1y(1− l1x) + kpxs
1

)
U1. (A6)
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Setting both derivatives equal to zero yields the condition on relative price p = a1y/(ka1x).
With this relative price, Equation (A5) then simplifies to xs

1 = a1x(l1x − β). Moreover, the constraints
in Equation (A4) are equivalent to β ≤ l1x ≤ 1. Furthermore, the original constraints in Equation (A2)
lead to

x1 = a1xl1x − xs
1 = βa1x (A7)

y1 = a1yl1y = a1y(1− l1x) (A8)

yd
1 = pxs

1 =
a1y(l1x − β)

k
. (A9)

Substituting the appropriate variables in the utility function leads to

U1 = ββ(1− β)1−βaβ
1xa1−β

1y (A10)

Appendix A.2

In this section, we explain the solution derivation to the utility maximization problem for fully
specialized mode (x/y)1, in the context of Structure C, i.e.,

max
x1,xs

1,yd
1

U1 = xβ
1 (kyd

1)
1−β, (A11)

s.t. x1 + xs
1 = a1xl1x, yd

1 = pxs
1, l1x = 1. (A12)

Replacing x1 and yd
1 in terms of xs

1, the constrained optimization problem in Equations (A11)
and (A12) may be reformulated as

max
0≤xs

1≤a1x
U1 = (a1x − xs

1)
β(kpxs

1)
1−β. (A13)

The first-order derivative of the utility function reads

dU1

dxs
1
=

(
− β

a1x − xs
1
+

1− β

xs
1

)
U1. (A14)

At the critical point, the first-order derivative vanishes, and this implies

xs
1 = (1− β)a1x. (A15)

Furthermore, we have

x1 = βa1x and yd
1 = (1− β)pa1x. (A16)

The value of the utility function is

U1 = ββ(1− β)1−β(pk)1−βa1x. (A17)

In the context of Structure C, we have the market clearing condition xs
1 = xd

2, which sets the

equilibrium relative price p =
βa2y

(1−β)a1x
. Hence, the critical utility value for Farmer 1 in Structure C is

Uc
1 = βaβ

1x(ka2y)
1−β. The corresponding utility of Farmer 2 is Uc

2 = (1− β)(ka1x)
βa1−β

2y .
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Abstract: In order to solve all or some eigenvalues lied in a cluster, we propose a weighted block
Golub-Kahan-Lanczos algorithm for the linear response eigenvalue problem. Error bounds of the
approximations to an eigenvalue cluster, as well as their corresponding eigenspace, are established
and show the advantages. A practical thick-restart strategy is applied to the block algorithm to
eliminate the increasing computational and memory costs, and the numerical instability. Numerical
examples illustrate the effectiveness of our new algorithms.
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1. Introduction

In this paper, we are interested in solving the linear response eigenvalue problem (LREP):

Hz :=

[
0 M
K 0

] [
u
v

]
= λ

[
u
v

]
= λz,

where K and M are N × N real symmetric positive definite matrices. Such a problem arises from
studying the excitation energy of many particle systems in computational quantum chemistry and
physics [1–3]. It also known as the Bethe-Salpeter (BS) eigenvalue-problem [4] or the random phase
approximation (RPA) eigenvalue problem [5]. There has immense past and recent work in developing
efficient numerical algorithms and attractive theories for LREP [6–15].

Since all the eigenvalues of H are real nonzero and appear in pairs {λ,−λ} [6], thus we order the
eigenvalues in ascending order, i.e.,

−λ1 ≤ · · · ≤ −λN < λN ≤ · · · ≤ λ1.

In this paper, we focus on a small portion of the positive eigenvalues for LREP, i.e., λi,
i = k, k + 1, · · · , � with 1 ≤ k ≤ � ≤ N and � − k + 1 � N, and their corresponding eigenvectors.
We only consider the real case, all the results can be easily applied to the complex case.

The weighted Golub-Kahan-Lanczos method (wGKL) for LREP was introduced in [16].

It produces recursively a much small projection Bj =

[
0 Bj

BT
j 0

]
of H at j-th iteration, where Bj ∈ Rj×j

is upper bidiagonal. Afterwards, the eigenpairs of H can be constructed by the singular value

Mathematics 2019, 7, 53; doi:10.3390/math7100890 www.mdpi.com/journal/mathematics265
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decomposition of Bj. The convergence analysis performs that running k iterations of wGKL is
equivalently running 2k iterations of a weighted Lanczos algorithm for H [16]. Actually, Bj can
be also a lower bidiagonal matrix, and the same discussion can be taken place as in the case of Bj is
upper bidiagonal. In the following, we only consider the upper bidiagonal case.

It is well known that the single-vector Lanczos method is widely used for searching a small
number of extreme eigenvalues, and it may encounter very slow convergence when the wanted
eigenvalues stay in a cluster [17]. Instead, a block Lanczos method with a suitable block size is capable
of computing a cluster of eigenvalues including multiple eigenvalues very quickly. Motivated by this
idea, we are going to develop a block version of wGKL in [16] in order to find efficiently all or some
positive eigenvalues within a cluster for LREP. Based on the standard block Lanczos convergence theory
in [17], the error bounds of approximation to an eigenvalue cluster, as well as their corresponding
eigenspace are established to illustrate the advantage of our weighted block Golub-Kahan-Lanczos
algorithm (wbGKL).

As the increasing size of the Krylov subspace, the storage demands, computational costs, and
numerical stability of a simple version of a block Lanczos method may be affected [18]. Several kinds of
efficiently restarting strategies to eliminate these effects are developed for the classic Lanczos method,
such as, implicitly restart method [19], thick restart method [20]. In order to make our block method
more practical, and using the special structure of LREP, we consider the thick restart strategy to our
block method.

The rest of this paper is organized as follows. Section 2 gives some necessary preliminaries for
our later use. In Section 3, the weighted block Golub-Kahan-Lanczos algorithm (wbGKL) for LREP is
presented, and its convergence analysis is discussed. Section 4 proposed the thick restart weighted
block Golub-Kahan-Lanczos algorithm (wbGKL-TR). The numerical examples are tested in Section 5
to illustrate the efficiency of our new algorithms. Finally, some conclusions are given in Section 6.

Throughout this paper, Rm×n is the set of all m × n real matrices, Rn = Rn×1, and R = R1. In (or
simply I if its dimension is clear from the context) is the n × n identity matrix, and 0m×n is an m × n
matrix of zero. The superscript “T” denotes transpose. ‖ · ‖F denotes the Frobenius norm of a matrix,
and ‖ · ‖2 denotes the 2-norm of a matrix or a vector. For a matrix X ∈ Rm×n, rank(X) denotes the
rank of X, and R(X) = span(X) denotes the column space of X; the submatrices Xi:j,: and X:,k:� of X
composed by the intersections of row i to row j and column k to column �, respectively. For matrices
or scalars Xi, diag(X1, · · · , Xk) denotes the block diagonal matrix with the i-th diagonal block Xi.

2. Preliminaries

For a symmetric positive definite matrix W ∈ RN×N , the W-inner product is defined as following

〈x, y〉W := yTWx, ∀x, y ∈ R
N .

If 〈x, y〉W = 0, then we denote it by x ⊥W y, and call it with x and y are W-orthogonal.
The projector ΠW is called the W-orthogonal projector onto Y if for any y ∈ RN ,

ΠWy ∈ Y , (I − ΠW)y ⊥W Y .

For two subspaces X ,Y ⊆ RN , and suppose k = dim(X ) ≤ dim(Y) = �, if X ∈ RN×k and
Y ∈ RN×� are W-orthonormal basis of X and Y , respectively, i.e.,

XTWX = Ik, X = R(X) and YTWY = I�, Y = R(Y),

and νj for j = 1, · · · , k with ν1 ≤ · · · ≤ νk are the singular values of YTWX, then the W-canonical

angles θ
(j)
W (X ,Y) from X to Y are defined by

0 ≤ θ
(j)
W (X ,Y) = arccos νj ≤ π/2, for j = 1, · · · , k.
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If k = �, these angles can be said between X and Y . Obviously, θ
(1)
W (X ,Y) ≥ · · · ≥ θ

(k)
W (X ,Y). Set

ΘW(X ,Y) = diag(θ(1)W (X ,Y), · · · , θ
(k)
W (X ,Y)).

Especially, if k = 1, X is a vector, there is only one W-canonical angle from X to Y . In the following,
we may use a matrix in one or both arguments of ΘW(·, ·), i.e., ΘW(X, Y) with the understanding that
it means the subspace spanned by the columns of the matrix argument.

The following two lemmas are important to our later analysis, and for proofs and more details,
the reader is referred to [12,16].

Lemma 1. ([12] Lemma 3.2). Let X and Y be two subspaces in RN with equal dimensional dim(X ) =

dim(Y) = k. Suppose θ
(1)
W (X ,Y) < π/2. Then, for any set y1, y2, · · · , yk1 of the basis vectors in Y where

1 ≤ k1 ≤ k, there is a set x1, x2, · · · , xk1 of linearly independent vectors in X such that ΠW xj = yj for
1 ≤ j ≤ k1, where ΠW is the W-orthogonal projector onto Y .

Lemma 2. ([16] Proposition 3.1). The matrix MK has N position eigenvalues λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
N with

λj > 0. The corresponding right eigenvectors ξ1, · · · , ξN can be chosen K-orthonormal, and the corresponding
left eigenvectors η1, · · · , ηN can be chosen M-orthonormal. In particular, for given {ξ j}, one can choose
ηj = λ−1

j Kξ j, and for given {ηj}, ξ j = λ−1
j Mηj, for j = 1, · · · , N.

3. Weighted Block Golub-Kahan-Lanczos Algorithm

3.1. Weighted Block Golub-Kahan-Lanczos Algorithm

In this section, we plan to introduce the weighted block Golub-Kahan-Lanczos algorithm
(wbGKL) for LREP, which is a block version of the weighted Golub-Kahan-Lanczos algorithm [16].
Algorithm 1 gives the process of recursively generating the M-orthonormal matrix Xn,
the K-orthonormal matrix Yn, and the block bidiagonal matrix Bn. Giving Y1 ∈ Rn×nb with
YT

1 KY1 = Inb , denoting ET
n = [0nb×(n−1)nb

, Inb ], and

Xn = [X1, · · · , Xn], Yn = [Y1, · · · , Yn], Bn =

⎡⎢⎢⎢⎢⎢⎣
A1 B1

A2
. . .
. . . Bn−1

An

⎤⎥⎥⎥⎥⎥⎦ ,

then we have the relation from Algorithm 1:

KYn = XnBn, MXn = YnBT
n + Yn+1BT

n ET
n , (1)

and
X T

n MXn = Innb = YT
n KYn.

Remark 1. In Algorithm 1, we only consider the case that rank(X̃j) = rank(Ỹj+1) = nb, no further treatment
is provided for the cases rank(X̃j) < nb or rank(Ỹj+1) < nb. Because K and M are both symmetric positive
definite, thus the two W in Step 2 are both reversible.

Remark 2. With j increasing in Step 2, the M-orthogonality of Xj and the K-orthogonality of Yj will slowly
lose. Thus, in practice, we can add a re-orthogonalization process in each iteration to eliminate the defect.
The same strategy is executed in the following algorithms.
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Algorithm 1: wbGKL

1. Choose Y1 satisfying YT
1 KY1 = Inb , and set W = Inb , B0 = Inb , X0 = 0n×nb . Compute

F = KY1.
2. For j = 1, 2, · · · , n

X̃j = FW − Xj−1Bj−1

F = MX̃j

Do Cholesky decomposition X̃T
j F = WTW

Aj = W, W = inv(W), Xj = X̃jW %W = inv(W) means W = W−1

Ỹj+1 = FW −Yj AT
j

F = KỸj+1

Do Cholesky decomposition ỸT
j+1F = WTW

Bj = WT , W = inv(W), Yj+1 = Ỹj+1W
End

From (1), we have[
0 M
K 0

] [
Yn 0
0 Xn

]
=

[
Yn 0
0 Xn

] [
0 BT

n
Bn 0

]
+

[
Yn+1

0

]
BT

n ET
2n

with ET
2n = [0nb×(2n−1)nb

, Inb ]. Then, the approximate eigenpairs of H can be obtained by solving a

small eigenvalue problem of
[

0 BT
n

Bn 0

]
. Suppose Bn has an singular value decomposition

Bn = ΦΣnΨT , (2)

where Φ = [φ1, φ2, · · · , φnnb ], Ψ = [ψ1, ψ2, · · · , ψnnb ], Σn = [σ1, σ2, · · · , σnnb ] with σ1 ≥ · · · ≥ σnnb > 0.
Thus, we can take ±σj(1 ≤ j ≤ nnb) as the Ritz values of H and

z̃j =
1√
2

[
Ynψj
±Xnφj

]
, 1 ≤ j ≤ nnb,

as the corresponding K-orthonormal Ritz vectors, where K =
[ K 0

0 M
]
.

3.2. Convergence Analysis

In this section, we first consider the convergence analysis when using the first few σj as
approximations to the first few λj. Then, the similar theories are presented if using the last few
σj as approximations to the last few λj. Since a block Lanczos method with a suitable block size which
is not smaller than the size of an eigenvalue cluster can compute all eigenvalues in the cluster. Now,
we are considering the i-th to (i + nb − 1)-st eigenpairs of LREP, in which the k-th to �-th eigenvalues
form a cluster as in the following figure with 1 ≤ i ≤ k ≤ � ≤ i + nb − 1 ≤ nnb and k ≤ n.

λ2
N λ2

i+nb−1 λ2
� λ2

k λ2
i λ2

1

cluster

Here, the squares of the eigenvalues for LREP are listed. Hence, motivated by [12,17], we analyze
the convergence of the cluster eigenvalues and their corresponding eigenspace, and give the error
bounds of the approximate eigenpairs belonging to eigenvalue cluster together, instead of separately
for each individual eigenpair.
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We first give some notations and equations, which are critical in our main theorem. Note that
from (1), we get

MKYn = YnBT
nBn + Yn+1BT

n AnET
n . (3)

Since (2) is the singular value decomposition of Bn, thus the eigenvalues of BT
nBn are σ2

j with the
associated eigenvectors ψj for 1 ≤ j ≤ nnb.

From Lemma 2, if we let Ξ = [ξ1, · · · , ξN ], and Γ = [η1, · · · , ηN ], then Γ = KΞΛ−1, and

MKΞ = ΞΛ2. (4)

Write Ξ and Λ2 as

i − 1 nb N − nb − i + 1[ ]
Ξ = Ξ1 Ξ2 Ξ3 ,

i − 1 nb N − nb − i + 1⎡⎣ ⎤⎦i − 1 Λ2
1

Λ2 = nb Λ2
2

N − nb − i + 1 Λ2
3

.

Let Ξ̌2 = Ξ(:,k:�) and Λ̌2
2 = diag(λ2

k , · · · , λ2
�). Denote Cj the first kind Chebyshev polynomial with

j-th degree, and 0 ≤ j ≤ n.
In the following, we assume

θ
(1)
K (Y1, Ξ2) < π/2, (5)

i.e., rank(YT
1 KΞ2) = nb, then from Lemma 1, we have ∃ Z ∈ RN×(�−k+1) with R(Z) ⊆ R(Y1), s.t.,

Ξ2ΞT
2 KZ = Ξ̌2. (6)

Theorem 1. Suppose θ
(1)
K (Y1, Ξ2) < π/2, and Z satisfy (6), then we have

‖diag(λ2
k − σ2

k , · · · , λ2
� − σ2

� )‖F ≤ (λ2
k − λ2

N)
π2

i,k,�

C2
n−k(1 + 2γi,�)

‖ tan2 ΘK(Ξ̌2, Z)‖F (7)

with

γi,� =
λ2
� − λ2

i+nb

λ2
i+nb

− λ2
N

, πi,k,� =

max
i+nb≤j≤N

k−1
∏

m=1
|σ2

m − λ2
j |

min
k≤t≤�

k−1
∏

m=1
|σ2

m − λ2
t |

,

and

‖ sin ΘK(Ξ̌2,YnΨ(:,k:�))‖F ≤
πi,k

√
1 + c2‖AT

n Bn‖2
2/δ2

Cn−i(1 + 2γi,�)
‖ tan ΘK(Ξ̌2, Z)‖F (8)

with constant c lies between 1 and π/2, and c = 1 if k = �, and

δ = min
k ≤ j ≤ �

p < k or p > �

|λ2
j − σ2

p |, πi,k =
i−1

∏
j=1

λ2
j − λ2

N

λ2
j − λ2

k
.

Particularly if σ2
k−1 ≥ λ2

k, then

πi,k,� =
k−1

∏
m=1

|σ2
m − λ2

N |
|σ2

m − λ2
k |

.
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Proof. Multiplying LT from left, (4) can be rewritten as LT ML(LTΞ) = (LTΞ)Λ2, so, (λ2
j , LTξ j) is the

eigenpair of LT ML, for j = 1, · · · , N, and LTξ1, · · · , LTξN are orthonormal. Do the same process to (3),
we have

LT MLVn = VnBT
nBn + Vn+1BT

n AnET
n , (9)

where Vn = LTYn, Vn+1 = LTYn+1, and VT
n Vn = Innb , which can be seen as the relation generalize by

using standard Lanczos process to LT ML. Thus, σ2
1 , · · · , σ2

nnb
are the Ritz values of LT ML, with the

corresponding orthonormal Ritz vectors Vnψ1, · · · ,Vnψnnb .
Premultiplying LT to Equation (6), we have LTΞ2ΞT

2 L(LTZ) = LTΞ̌2. Consequently, the conditions
of the block Lanczos convergence Theorem 4.1 and Theorem 5.1 in [17] are satisfied. Thus, using the
results Theorem 5.1 in [17], one has

‖diag(λ2
k − σ2

k , · · · , λ2
� − σ2

� )‖F ≤ (λ2
k − λ2

N)
π2

i,k,�

C2
n−k(1 + 2γi,�)

‖ tan2 Θ(LTΞ̌2, LTZ)‖F.

Then the bound (7) can be easily got by using ([21] Theorem 4.2)

Θ(LTΞ̌2, LTZ) = ΘK(Ξ̌2, Z). (10)

Let Πn = VnVT
n , then Πn is the orthogonal projection onto Kn(LT ML, LTZ), thus from (9), we have

‖ΠnLT ML(I − Πn)‖2 = ‖VnVT
n LT ML(I − VnVT

n )‖2

= ‖Vn(BT
nBn + En AT

n BnVT
n+1)− VnBT

nBnVT
n ‖2

= ‖Vn AT
n BnVT

n+1‖2

= ‖AT
n Bn‖2.

Consequently, applying the results of Theorem 4.1 in [17], we get

‖ sin Θ(LTΞ̌2,VnΨ(:,k:�))‖F ≤
πi,k

√
1 + ‖ΠnLT ML(I − Πn)‖2

2/δ2

Cn−i(1 + 2γi,�)
‖ tan Θ(LTΞ̌2, LTZ)‖F

=
πi,k

√
1 + ‖AT

n Bn‖2
2/δ2

Cn−i(1 + 2γi,�)
‖ tan Θ(LTΞ̌2, LTZ)‖F.

Then the bound (8) can be derived by using Θ(LTΞ̌2,VnΨ(:,k:�)) = ΘK(Ξ̌2,YnΨ(:,k:�)) and (10).

Theorem 1 is used to bound the errors of the approximate eigenvalues to an eigenvalue cluster
including the multiple eigenvalues. It can be also applied to the single eigenvalue case, the following
corollary is derived by setting k = � = i, except the left equality of (10), which needs to be proved.

Corollary 1. Suppose θ
(1)
K (Y1, Ξ2) < π/2, then for 1 ≤ i ≤ nnb, there exits a vector y ∈ R(Y1), s.t.,

Ξ2ΞT
2 y = ξi, and

λ2
i − σ2

i ≤ (λ2
i − λ2

N)
π2

i,j

C2
n−i(1 + 2γi)

tan2 θK(ξi, y)

with

γi =
λ2

i − λ2
i+nb

λ2
i+nb

− λ2
N

, πi,j = max
i+nb≤j≤N

i−1

∏
m=1

|σ2
m − λ2

j |
|σ2

m − λ2
i |

,
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and (
(1− σ2

i
λ2

i
) +

σ2
i

λ2
i

sin2 θM(ηi,Xnφi)

)1/2

= sin θK(ξi,Ynψi) ≤
πi

√
1 + ‖AT

n Bn‖2
2/δ2

Cn−i(1 + 2γi)
tan θK(ξi, y)

(11)

with

δ = min
i �=j

|λ2
j − σ2

i |, πi =
i−1

∏
j=1

λ2
j − λ2

N

λ2
j − λ2

i
.

Proof. We only proof the left equality of (11). From (4) and Lemma 2, we have Ξ = MKΞΛ−2 =

MΓΛ−1. If we let Z1 = (Ynψi)
TKξi, and Z2 = (Xnφi)

T Mηi, then we can get Z1 = σi
λi

Z2 by using
KYnΨ = XnBnΨ = XnΦΣn. Thus

sin2 θK(ξi,Ynψi) = 1− cos2 θK(ξi,Ynψi)

= 1− ZT
1 Z1

= 1− σ2
i

λ2
i

ZT
2 Z2

= 1− σ2
i

λ2
i

cos2 θM(ηi,Xnφi)

= 1− σ2
i

λ2
i
+

σ2
i

λ2
i

sin2 θM(ηi,Xnφi).

Then,

sin θK(ξi,Ynψi) =

(
1− σ2

i
λ2

i
+

σ2
i

λ2
i

sin2 θM(ηi,Xnφi)

)1/2

.

Next, we are going to consider the last few σj to approximate as the last few λN−nnb+j,
j = k, · · · , �, and λN−nnb+k to λN−nnb+� form a cluster in λî to λî+nb−1, which is described in the

following figure, where N + 1 − nnb ≤ î ≤ k̂ ≤ �̂ ≤ î + nb − 1 ≤ N, nnb − �+ 1 ≤ n, k̂ � N − nnb + k,
and �̂ � N − nnb + �.

λ2
N λ2

î+nb−1
λ2
�̂

λ2
k̂

λ2
î

λ2
1

cluster

Similar to the above discussion for the first few eigenvalues, we can also obtain the error bounds
of the approximate last few eigenpairs belongs to eigenvalue cluster together. We use the same notion,
except Λ̂2

2 = diag(λ2
k̂
, · · · , λ2

�̂
) and Ξ̂2 = Ξ(:,k̂:�̂). Assuming θ

(1)
K (Y1, Ξ2) < π/2, then from Lemma 1,

there ∃ Ẑ ∈ RN×(�−k+1) with R(Ẑ) ⊆ R(Y1), s.t.,

Ξ2ΞT
2 KẐ = Ξ̂2. (12)
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Theorem 2. Suppose θ
(1)
K (Y1, Ξ2) < π/2 and Ẑ satisfy (12), then we have

‖diag(σ2
k − λ2

k̂ , · · · , σ2
� − λ2

�̂
)‖F

≤(λ2
1 − λ2

�̂
)

π̂2
î,k̂,�̂

C2
n−N+�̂−1

(1 + 2γ̂î,k̂)
‖ tan2 ΘK(Ξ̂2, Ẑ)‖F

(13)

with

γ̂î,�̂ =
λ2

î−1
− λ2

k̂

λ2
1 − λ2

î−1

, π̂î,k̂,�̂ =

max
1≤j≤î−1

nnb
∏

m=�+1
|σ2

m − λ2
j |

min
k̂≤t≤�̂

nnb
∏

m=�+1
|σ2

m − λ2
t |

,

and

‖ sin ΘK(Ξ̂2,YnΨ(:,k:�))‖F ≤
π̂î,�̂

√
1 + ĉ2‖AT

n Bn‖2
2/δ̂2

Cn+î+nb−N−2(1 + 2γ̂î,k̂)
‖ tan ΘK(Ξ̂2, Ẑ)‖F (14)

with constant ĉ lies between 1 and π/2, and ĉ = 1 if k = �, and

δ̂ = min
k̂ ≤ j ≤ �̂

p < k or p > �

|λ2
j − σ2

p |, π̂î,�̂ =
N

∏
j=î+nb

λ2
1 − λ2

j

λ2
�̂
− λ2

j
.

Remark 3. Similar to Corollary 1, Theorem 2 can also be applied to the single eigenvalue case, here we omit the detail.

Remark 4. In Theorem 1 and 2, we use the Frobenius norm to estimate the accuracy of eigenpairs
approximations, in fact, any unitary invariant norm can be used to measure.

Remark 5. Compared with the single-vector type of the weighted Golub-Kahan-Lanczos method in [16],
our convergence results show the superiority of the block version. For instance, in Corollary 1, the convergence

rate of the approximate eigenvalues σj is proportional to C−2
n−i(1+ 2γi) with γi =

λ2
i − λ2

i+nb
λ2

i+nb
− λ2

N
, which is obviously

better than C−2
n−i(1 + 2γ̃i) with γ̃i =

λ2
i − λ2

i+1
λ2

i+1 − λ2
N

in ([16] Theorem 3.4). While the additional cost caused from

the block version can be paid by the improvements generated by γi, especially when the desired eigenvalues lie in
a well-separated cluster [12].

4. Thick Restart

As the number of iterations increases, Algorithm 1 may encounter the dilemma that the amount
of calculation and storage increases sharply and the numerical stability gradually weakens. In this
section, we will apply the thick restart strategy [20] to improve the algorithm. After running n
iterations, Algorithm 1 derives the following relations for LREP:{

KYn = XnBn,

MXn = YnBT
n + Yn+1BT

n ET
n ,

(15)

with X T
n MXn = Innb = YT

n KYn.
Recall the SVD (2), let Φk and Ψk be the first knb columns of Φ and Ψ, respectively, i.e.,

Φk = [φ1, φ2, · · · , φknb
], Ψk = [ψ1, ψ2, · · · , ψknb

].

Thus it follows that
BnΨk = ΦkΣk and BT

n Φk = ΨkΣk, (16)
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where Σk = diag(σ1, · · · , σknb
).

By using the approximate eigenvectors of H for thick restart, we post-multiply Ψk and Φk to the
Equation (15), respectively, and get{

KYnΨk = XnBnΨk,

MXnΦk = YnBT
n Φk + Yn+1BT

n ET
n Φk,

(17)

From (16), and let Ŷk = YnΨk, X̂k = XnΦk, B̂k = Σk, Ŷk+1 = Yn+1, UT = ET
n Φk, B̂k = Bn, then (17)

can be rewritten as {
KŶk = X̂kB̂k,

MX̂k = ŶkB̂T
k + Ŷk+1B̂T

k UT ,
(18)

and X̂ T
k MX̂k = Iknb

= ŶT
k KŶk.

Next, X̂k+1 and Ŷk+2 will be generalized. Firstly, we compute

X̃k+1 = KŶk+1 − X̂kX̂ T
k MKŶk+1

= KŶk+1 − X̂kUB̂k.

From the second equation in (18), we know X̃T
k+1MX̂k = 0. Do Cholesky decomposition

X̃T
k+1MX̃k+1 = WTW, and set Âk+1 = W, W = inv(W). Compute X̂k+1 = X̃k+1W, and let

X̂k+1 = [X̂k, X̂k+1], B̂k+1 =

[
B̂k UB̂k
0 Âk+1

]
,

we have
KŶk+1 = X̂k+1B̂k+1 with X̂ T

k+1MX̂k+1 = I(k+1)nb
. (19)

Secondly, from the above equation, we can compute

Ỹk+2 = MX̂k+1 − ŶkŶT
k KMX̂k+1 − Ŷk+1ŶT

k+1KMX̂k+1

= MX̂k+1 − Ŷk+1 ÂT
k+1.

Again using (19), it is easily got that ỸT
k+2KŶk+1 = 0. Similarly, do Cholesky decomposition

ỸT
k+2KỸk+2 = WTW, and let B̂k+1 = WT , W = inv(W). Compute Ŷk+2 = Ỹk+2W, and let Ŷk+1 =

[Ŷk, Ŷk+1], we get

MX̂k+1 = Ŷk+1B̂T
k+1 + Ŷk+2B̂T

k+1ET
k+1 with ŶT

k+1MŶk+1 = I(k+1)nb
.

Continue the same procedure for X̂k+2, · · · , X̂n and Ŷk+3, · · · , Ŷn+1, we can obtain the new
M-orthonormal matrix X̂n ∈ RN×nnb , the new K-orthonormal matrix Ŷn ∈ RN×nnb , and the new
matrix B̂n ∈ Rnnb×nnb , and relations{

KŶn = X̂nB̂n,

MX̂n = ŶnB̂T
n + Ŷn+1B̂T

n ET
n ,

(20)

with X̂ T
n MX̂n = Innb = ŶT

n KŶn, and

B̂n =

⎡⎢⎢⎢⎢⎣
B̂k UB̂k

Âk+1 B̂k+1
. . . B̂n−1

Ân

⎤⎥⎥⎥⎥⎦ .

273



Mathematics 2019, 7, 53

Note that B̂n is no longer a block bidiagonal matrix. Algorithm 2 is our thick-restart weighted block
Golub-Kahan-Lanczos algorithm for LREP.

Remark 6. Actually, from the construction of B̂n, we can know the procedure for getting X̂k+2, · · · , X̂n and
Ŷk+3, · · · , Ŷn+1 is the same as applying Algorithm 1 to Ŷk+2 for n − k − 1 iterations, thus we use Algorithm 1
directly in restarting Step 2 of the following Algorithm 2.

Algorithm 2: wbGKL-TR

1. Given an initial guess Y1 satisfying YT
1 KY1 = Inb , a tolerance tol, an integer k that the k

blocks approximate eigenvectors we want to add to the solving subspace, an integer n the
block dimension of solving subspace, as well as w� the desired number of eigenpairs;
2. Apply Algorithm 1 from the current point to generate the rest of Xn, Yn+1, and Bn. If it is the
first cycle, the current point is Y1, else Yk+2;
3. Compute an SVD of Bn as in (2), select w�(w� ≤ nnb) wanted singular values σj, and their
associated left singular vectors φj and right singular vectors ψj. Form the approximate
eigenpairs for H, if the stopping criterion is satisfied, then stop, else continue;
4. Generate new X̂k+1, Ŷk+2 and B̂k+1:
Compute Ŷk = YnΨk, X̂k = XnΦk, B̂k = Σk, Ŷk+1 = Yn+1, UT = ET

n Φk, B̂k = Bn;
Compute X̃k+1 = KŶk+1 − X̂kUB̂k, do Cholesky decomposition X̃T

k+1MX̃k+1 = WTW, set
Âk+1 = W, W = inv(W), X̂k+1 = X̃k+1W;

Compute Ỹk+2 = MX̂k+1 − Ŷk+1 ÂT
k+1, do Cholesky decomposition ỸT

k+2KỸk+2 = WTW, set
B̂k+1 = WT , W = inv(W), Ŷk+2 = Ỹk+2W;

Let Xk+1 = X̂k+1 = [X̂k, X̂k+1], Bk+1 = B̂k+1 =

[
B̂k UB̂k
0 Âk+1

]
, Yk+2 = Ŷk+2 = [Ŷk, Ŷk+1, Ŷk+2],

and go to Step 2.

Remark 7. In Step 3, we compute the harmonic Ritz pairs after n iterations. In practice, we do the computation
for each iterations j = 1, · · · , n. When restarting, the information chosen to add to the solving subspaces are
the wanted w� singular values of Bn with their corresponding left and right singular vectors. Actually, we use
MATLAB command “sort” to choose the w� smallest ones or the w� largest ones, and which singular values to
choose depends on the desired eigenvalues of H.

In the end of this section, we list the computational costs in a generic cycle of four
algorithms, which are weighted block Golub-Kahan-Lanczos algorithm, thick-restart weighted block
Golub-Kahan-Lanczos algorithm, block Lanczos algorithm [12], and thick-restart block Lanczos
algorithm [12], and denoted by wbGKL, wbGKL-TR, BLan, and BLan-TR, respectively. The detail
pseudocodes of BLan and BLan-TR are be found in [12].

The comparisons are presented in Tables 1 and 2. Here, we denote “block vector” a N × nb
rectangular matrix, denote “mvb” the product number of a N × N matrix and a block vector. “dpb”
denotes the dot product number of two block vectors X and Y, i.e., XTY. “saxpyb” denotes the number
of adding two block vectors or multiplying a block vector to a nb × nb small matrix. “Ep(2n × 2n)(with
sorting)” means the number of 2n × 2n size eigenvalue problem with sorting eigenvalues and their
corresponding eigenvectors in one cycle. Similarly, “Sp(n × n)” denotes the number of n × n size
singular value decomposition in one cycle. Because wbGKL and BLan are non-restart algorithms, we
just count the first n Lanczos iterations.
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Table 1. Main computational costs per cycle wbGKL and wbGKL-TR.

wbGKL
wbGKL-TR wbGKL-TR
(1-st Cycle) (Other Cycle)

mvb 2n + 1 2n + 1 2(n − k)
dpb 2n + 1 2n + 1 2(n − k)

saxpyb 8n 8n 8(n − k) + 2k(2n + 1)
block vector updates 2n + 2 2n + 2 2n + 2

Ep(2n × 2n)(with sorting) 0 0 0
Sp(n × n) 1 1 1

Table 2. Main computational costs per cycle BLan and BLan-TR.

BLan
BLan-TR BLan-TR

(1-st Cycle) (Other Cycle)

mvb 2n + 1 2n + 1 2(n − k)
dpb 2n + 1 2n + 1 2(n − k)

saxpyb 6n 6n 6(n − k) + 2k(2n + 1)
block vector updates 2n + 2 2n + 2 2n + 2

Ep(2n × 2n)(with sorting) 1 1 1
Sp(n × n) 0 0 0

5. Numerical Examples

In this section, two numerical experiments are carried out by using MATLAB 8.4 (R2014b) on a
laptop with an Intel Core i5-6200U CPU 2.3 GHz memory 8 GB under the Windows 10 operating system.

Example 1. In this example, we check the bounds established in Theorem 1 and 2. For simplicity, we take
N = 100, the number of weighted block Golub-Kahan-Lanczos steps n = 20, K = M as diagonal matrix
diag(λ1, λ2, · · · , λN), where

λ1 = 11 + ρ, λ2 = 11, λ3 = 11− ρ,

λN−2 = 1 + ρ, λN−1 = 1, λN = 1− ρ,

λj = 5 +
5(N − j + 1)

N − 3
, j = 4, · · · , N − 3,

and i = k = 1, � = 3, î = k̂ = N − 2, �̂ = N, nb = 3. There are three positive eigenvalue clusters:
{λ1, λ2, λ3}, {λ4, · · · , λN−3}, or {λN−2, λN−1, λN}. Obviously, Ξ = Γ = K− 1

2 .

We seek two groups of the approximate eigenpairs, the first is related to the first cluster, the
second is related to the last cluster, i.e., {σ1, σ2, σ3} approximate {λ1, λ2, λ3}, and {σnnb−2, σnnb−1, σnnb}
approximate {λN−2, λN−1, λN}. In order to see the affect that generated from ρ to the upper bounds
of the approximate eigenpairs errors in weighted block Golub-Kahan-Lanczos method for LREP,
we change the parameter ρ > 0 to overmaster the tightness among eigenvalues within {λ1, λ2, λ3}
and {λN−2, λN−1, λN}. First, we choose the same matrix Y0 as in [12,17], i.e.,

Y0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
1
N sin1 cos1
...

...
...

N−nb
N sin(N − nb) cos(N − nb)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Obviously, rank(Y0) = nb and rank(YT
0 KΞ(:,1:3)) = nb. Since K symmetric positive definite, thus do

Cholesky decomposition YT
0 KY0 = WTW, let Y1 = Y0W−1, hence, Y1 satisfies (5), i.e., YT

1 KΞ(:,1:3) is singular.
We take Z = Y1(ΞT

(:,1:3)KY1)
−1, then Z satisfies (6). We execute the weighted block Golub-Kahan-Lanczos

method with full re-orthogonalization for LREP in MATLAB, and check the bounds in (7), (8), (13), and (14).
Since the approximate eigenvalues are {σ1, σ2, σ3} and {σnnb−2, σnnb−1, σnnb}, thus πi,k,� = πi,k = π̂î,k̂,�̂ =

π̂î,�̂ = 1, c = ĉ = 1, and we measure the following two groups of errors:

ε11 = ‖diag(λ2
1 − σ2

1 , λ2
2 − σ2

2 , λ2
3 − σ2

3 )‖F,

ε21 =
λ2

1 − λ2
N

C2
n−1(1 + 2γ1,3)

‖ tan2 ΘK(Ξ(:,1:3), Z)‖F,

ε31 = ‖ sin ΘK(Ξ(:,1:3),YnΨ(:,1:3))‖F,

ε41 =

√
1 + ‖AT

n Bn‖2
2/δ2

Cn−1(1 + 2γ1,3)
‖ tan ΘK(Ξ(:,1:3), Z)‖F,

and

ε12 = ‖diag(σ2
N−2 − λ2

N−2, σ2
N−1 − λ2

N−1, σ2
N − λ2

N)‖F,

ε22 =
λ2

1 − λ2
N

C2
n−1(1 + 2γ̂N−2,N)

‖ tan2 ΘK(Ξ(:,N−2:N), Z)‖F,

ε32 = ‖ sin ΘK(Ξ(:,N−2:N),YnΨ(:,nnb−2:nnb)
)‖F,

ε42 =

√
1 + ‖AT

n Bn‖2
2/δ̂2

Cn−i(1 + 2γ̂N−2,N)
‖ tan ΘK(Ξ(:,N−2:N), Z)‖F.

Actually, ε21 and ε41 are upper bounds of ε11 and ε31, and ε22 and ε42 are upper bounds of ε12 and
ε32. Tables 3 and 4 report the results of εij, i = 1, · · · , 4, j = 1, 2 with the parameter ρ goes to 0. From the
two tables, we can see that the bounds for the eigenvalues lie in a cluster and their corresponding
eigenvectors are sharp, and they are not sensitive to ρ when ρ goes to 0.

Table 3. ε11, ε31 together with their upper bounds ε21, ε41 of Example 1.

ρ ε11 ε21 ε31 ε41

10−1 4.0295× 10−13 2.6773× 10−10 1.2491× 10−10 2.6260× 10−6

10−2 5.1238× 10−14 5.4555× 10−11 6.1184× 10−11 1.1407× 10−6

10−3 7.1054× 10−14 4.6711× 10−11 5.7698× 10−11 1.0520× 10−6

10−4 2.4449× 10−13 4.5993× 10−11 5.7370× 10−11 1.0436× 10−6

10−5 2.1552× 10−13 4.5922× 10−11 5.7338× 10−11 1.0427× 10−6

Table 4. ε12, ε32 together with their upper bounds ε22, ε42 of Example 1.

ρ ε11 ε21 ε31 ε41

10−1 7.1089× 10−16 6.0352× 10−11 1.9393× 10−10 8.8823× 10−7

10−2 1.3688× 10−15 3.5913× 10−11 1.9562× 10−10 6.8797× 10−7

10−3 3.9968× 10−15 3.4113× 10−11 1.9580× 10−10 6.7081× 10−7

10−4 4.8495× 10−15 3.3938× 10−11 1.9582× 10−10 6.6912× 10−7

10−5 8.1221× 10−15 3.3920× 10−11 1.9582× 10−10 6.6895× 10−7

Example 2. In this example, we are going to test the effectiveness of our weighted block Golub-Kahan-Lanczos
algorithms. Four algorithms are tested, i.e., wbGKL, wbGKL-TR, BLan, and BLan-TR. We choose 3 test
problems used in [12,13], which are listed in Table 5. All the matrices K and M in the problems are symmetric
positive definite. Specifically, Test 1 and Test 2, which are derived by the turboTDDFT command in QUANTUM
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ESPRESSO [22], are from the linear response research for Na2 and silane (SiH4) compound, respectively.
The matrices K and M in Test 3 are from the University of Florida Sparse Matrix Collection [23], where the
order of K is N = 9604, and M is the leading N × N principal submatrix of f inan512.

Table 5. The matrices K and M in Test 1–3.

Problems N K M

Test 1 1862 Na2 Na2
Test 2 5660 SiH4 SiH4
Test 3 9604 f v1 f inan512

We aim to compute the smallest 5 positive eigenvalues and the largest 5 eigenvalues, i.e., λi for
i = 1, · · · , 5, N − 4, · · · , N, together with their associated eigenvectors. The initial guess is chosen
as V0 = eye(N, nb) with block size nb = 3, where eye is the MATLAB command. The same as in
Example 1, since K is symmetric positive definite, thus do Cholesky decomposition YT

0 KY0 = WTW,
let Y1 = Y0W−1, hence, Y1 satisfies YT

1 KY1 = Inb . In wbGKL-TR and BLan-TR, we select n = 30,
k = 20, i.e., the restart will occur once the dimension of the solving subspace is larger than 90, and
the information of 60 Ritz vectors are kept. For wbGKL and BLan, because there is no restart, then
we compute the approximate eigenpairs when the Lanczos iterations equals to 30 + 10 × (j − 1),
j = 1, 2, · · · , hence, the Lanczos iterations are as the same amount as in wbGKL-TR and BLan-TR. The
following relative eigenvalue error and relative residual 1-norm for each 10 approximate eigenpairs
are calculated:

e(σj) :=

⎧⎨⎩
|λj − σj |

λj
, j = 1, · · · , 5,

|λn+j−k − σj |
λn+j−k

, j = nnb − 4, · · · , nnb,

r(σj) :=
‖Hz̃j − σj z̃j‖1

(‖H‖1 + σj)‖z̃j‖1
, j = 1, · · · , 5, nnb − 4, · · · , nnb,

where the “exact” eigenvalues λj are calculated by the MATLAB code eig. The calculated approximate
eigenpair (σj, z̃j) is regarded as converged if r(σj) ≤ tol = 10−8.

Tables 6 and 7 give the number of the Lanczos iterations (denote by iter) and the CPU time in seconds
(denote by CPU) for the four algorithms, and Table 6 is for the smallest 5 positive eigenvalues, Table 7
is for the largest 5 eigenvalues. From Table 6, one can see that, no matter the smallest or the largest
eigenvalues, the iteration number of the four algorithms are competitive, but wbGKL and wbGKL-TR

cost significant less time than BLan and BLan-TR, especially, wbGKL-TR consumes the least amount of
time. Because BLan and BLan-TR need to compute the eigenvalues of

[
0 Tn

Dn 0

]
, which is a nonsymmetric

matrix, thus the two algorithms slower than wbGKL and wbGKL-TR. Due to the saving during the
orthogonalization procedure and solving a much smaller Bn, wbGKL-TR is the faster algorithm.

Table 6. Compute 5 smallest positive eigenvalues for Test 1–3.

Algorithms
Test 1 Test 2 Test 3

CPU iter CPU iter CPU iter

wbGKL 1.5070 149 25.7848 319 15.9308 379
wbGKL-TR 1.0746 179 20.3593 359 5.1302 589

BLan 4.6739 149 87.1670 349 43.9506 379
BLan-TR 2.1243 163 39.1306 393 19.9677 592
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Table 7. Compute 5 largest eigenvalues for Test 1–3.

Algorithms
Test 1 Test 2 Test 3

CPU iter CPU iter CPU iter

wbGKL 0.6387 79 12.4658 179 1.0639 109
wbGKL-TR 0.5284 79 9.9093 179 0.8774 109

BLan 1.4634 79 27.4028 179 6.7574 109
BLan-TR 1.0151 82 18.3415 186 4.1298 113

The accuracy of the last two approximate eigenpairs in Test 1 are shown in Figure 1. From the
figure, we can see that, for the last two eigenpairs, wbGKL and BLan require almost the same
iterations to obtain the same accuracy, and the case of wbGKL-TR and BLan-TR also need almost the
same iterations, which are one or two more restarts than wbGKL and BLan. On one hand, without
solving a nonsymmetric eigenproblem, wbGKL and wbGKL-TR can save much more time than BLan

and BLan-TR. On the other hand, since the dimension of the solving subspace for wbGKL-TR is
bounded by nnb, the savings in the process of orthogonalization and a much smaller singular value
decomposition problem is sufficient to cover the additional restart steps.

e(σnnb
) by wbGKL

e(σnnb
) by wbGKL-TR

e(σnnb
) by BLan

e(σnnb
) by BLan-TR

r(σnnb
) by wbGKL

r(σnnb
) by wbGKL-TR

r(σnnb
) by BLan

r(σnnb
) by BLan-TR

Figure 1. Errors and residuals of the 2 smallest positive eigenvalues for Test 1 in Example 2.

6. Conclusions

In this paper, we present a weighted block Golub-Kahan-Lanczos algorithm to solve the desired
small portion of smallest or largest positive eigenvalues which are in a cluster. Convergence
analysis is established in Theorems 1 and 2, and bound the errors of the eigenvalue and eigenvector
approximations belonging to an eigenvalue cluster. These results also show the advantages of the block
algorithm over the single-vector version. To make the new algorithm more practical, we introduced a
thick-restart strategy to eliminate the numerical difficulties caused by the block method. Numerical
examples are executed to demonstrate the efficiency of our new restart algorithm.
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Abstract: It is shown that the set of all networks of fixed order n form a semigroup that is
isomorphic to the semigroup BX of binary relations on a set X of cardinality n. Consequently,
BX provides for Green’s L, R, H, and D equivalence classifications of all networks of fixed order n.
These classifications reveal that a fixed-order network which evolves within a Green’s equivalence
class maintains certain structural invariants during its evolution. The “Green’s symmetry problem” is
introduced and is defined as the determination of all symmetries (i.e., transformations) that produce
an evolution between an initial and final network within an L or an R class such that each symmetry
preserves the required structural invariants. Such symmetries are shown to be solutions to special
Boolean equations specific to each class. The satisfiability and computational complexity of the
“Green’s symmetry problem” are discussed and it is demonstrated that such symmetries encode
information about which node neighborhoods in the initial network can be joined to form node
neighborhoods in the final network such that the structural invariants required by the evolution are
preserved, i.e., the internal dynamics of the evolution. The notion of “propensity” is also introduced.
It is a measure of the tendency of node neighborhoods to join to form new neighborhoods during a
network evolution and is used to define “energy”, which quantifies the complexity of the internal
dynamics of a network evolution.

Keywords: network classification; network evolution; network symmetries; Green’s symmetry
problem; network invariants; network internal dynamics; symmetry ensembles; propensities; energy

1. Introduction

Symmetry is a principle which has served as a guide for the spectacular advances that have been
made in modern science, especially physics. For example, the continuous translational symmetry of
ordinary space and time guarantees the invariance of the laws of physics under such translations.
Thus, any mathematical expression describing a physical system, whether subatomic or macroscopic,
must be invariant under space and time translations.

Group theory is the mathematical language used to describe symmetry and its associated invariant
properties (recall that an abstract group is a set S of elements together with a law of composition “ ◦ ”
such that for x, y, z ∈ S (i) x ◦ y ∈ S; (ii) x ◦ (y ◦ z) = (x ◦ y) ◦ z; (iii) there is an identity element e ∈ S
such that x ◦ e = e ◦ x = x; and (iv) for x ∈ S there is an inverse x−1 ∈ S such that x ◦ x−1 = x−1 ◦ x = e).
As a simple example, the set S of 0◦, 90◦, 180◦, and 270◦ rotations in the plane of a square about
its fixed center under “composition of rotations” form a symmetry group for the square (0◦ is the
identity element and the inverse of an X◦ ∈ S rotation is a 360◦ − X◦ rotation). Each of these
rotations is a symmetry which brings the square into coincidence with itself, i.e., they preserve the
invariant shape of the square. A much more complicated example are the so called gauge symmetries
of the standard model of physics which classify and describe three fundamental forces of nature
(i.e., the electromagnetic, weak, and strong forces) in terms of groups (specifically, the unitary group
U(1) of degree 1 and the special unitary groups SU(2) and SU(3) of degree 2 and 3, respectively).
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In recent years, the notion of generalized symmetry has been introduced to further describe
graph symmetry [1,2]. The generalized symmetries of a graph are a generalization of the notion of the
automorphism group of a graph and are derived from the application of Green’s equivalence relations
to the endomorphism monoid of the graph (the automorphism group is a subgroup of the graph’s
endomorphism monoid). Since these symmetries and invariant properties are strictly associated with
a single graph, they do not address properties that remain fixed when the connection topology of the
graph changes.

An important problem in network theory is identifying those properties of networks that remain
fixed (invariant) as the network’s connection topology changes with time. It was shown in [3] that
the set of all networks (i.e., all connection topologies) on a fixed number of nodes also forms a
semigroup. There it was also shown that the application of Green’s equivalence relations to this
semigroup partitions the associated set of networks into equivalence classes, each of which contains
many fixed node number networks with various connection topologies, such that all networks within
each class share some identifiable invariant connectivity property. If the connection topology of a
network changes such that its initial and final configurations are in the same equivalence class, then the
initial and final configurations share a common invariant property. It follows that, in this context,
Green’s equivalence classifications can be useful for identifying invariant properties of networks which
evolve within an equivalence class. Such connectivity invariants can be used, for example, to identify
important actors in evolving social networks and to select communication network reconfigurations
that will retain a desired connectivity between specific node sets.

Transformations between networks within an equivalence class which preserve the associated
invariant connectivity properties are called “Green’s symmetries”. Here, in addition to reviewing the
Green’s classification of networks [3], the “Green’s symmetry problem” is introduced and defined.
This problem is to determine (by calculation) the ensemble set of all the Green’s symmetries which
evolve an initial network configuration into a final configuration within a fixed Green’s R equivalence
class or within a fixed Green’s L equivalence class. As discussed below, each such symmetry encodes
information about the internal dynamics of the evolution, i.e., how node neighborhoods in the initial
network configuration are joined to form node neighborhoods in the final configuration such that the
invariant properties are preserved.

Since the cardinality of such ensembles can be large, the statistical notion of propensity is
introduced. This quantity provides measures of the overall tendency of node neighborhoods
in an initial network configuration to associate and form node neighborhoods in the final
network configuration. Propensities are used to define “propensity energies”, which quantify the
overall complexity of the internal dynamics of a network evolution, and “energies of evolution”,
which quantify the complexity of internal dynamical activity for an evolution produced by a specific
ensemble symmetry.

The objective of this paper is to motivate the application of Green’s symmetry principles to
network science by demonstrating how Green’s equivalence relations can be applied to: classify
networks; identify associated structural invariants; determine symmetries that preserve these
invariants; and define associated measures that quantify aspects of the internal dynamics of network
evolutions. The remainder of this paper is organized as follows: To make this paper reasonably
self-contained, the relevant definitions and terminology from semigroup theory are summarized in
the next section (for additional depth and clarification the reader is invited to consult such standard
references as [4,5]). The semigroup BX of all binary relations on a finite set X and the semigroup
Bn of n × n Boolean matrices are defined and shown to be isomorphic to one another in Section 3.
The semigroup of networks NV on a fixed set V of nodes is introduced and is shown to be isomorphic
to BV in Section 4. This isomorphism provides for the Green’s equivalence classifications of NV
given in Section 5. Green’s evolutions of networks and their associated invariant properties are
discussed in Section 6. The “Green’s symmetry problem” is defined in Section 7 and its satisfiability
and computational complexity are discussed in Section 8. The information encoded in symmetries
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as internal dynamics is detailed in Section 9. Symmetry “ensembles” and their “propensities” and
“energies” are introduced in Section 10. A simple example illustrating aspects of the theory is presented
in Section 11. Concluding remarks comprise the final section of this paper.

2. Semigroups

A semigroup S ≡ (S, ◦) is a set S and an associative binary operation “ ◦ ” called multiplication
defined upon the set (contrast this with the above definition of a group and note that a group is a
semigroup endowed with the additional special properties given by items (iii) and (iv)). The one-sided
right (one-sided left) multiplication of x ∈ S by y ∈ S is the product x ◦ y ∈ S (y ◦ x ∈ S). An element
e ∈ S is an identity if x ◦ e = e ◦ x = x for x ∈ S. An identity can be adjoined to S by setting S1 = S∪ {e}
and defining x ◦ e = e ◦ x = x for x ∈ S1. Semigroup S ≡ (S, ◦) and the semigroup T ≡ (T, ∗) on set T
with associative binary operation “ ∗ ” are isomorphic (denoted S ≈ T) when there is a bijective map
(i.e., an isomorphism) θ : S → T such that θ(x ◦ y) = θ(x) ∗ θ(y) for all x, y ∈ S.

The well-known L, R, H, and D Green’s equivalence relations on a semigroup S partition
S into a highly organized “egg box” structure using their relatively simple algebraic properties.
In particular, the equivalence relation L(R) on S is defined by the rule that xLy (xRy) if and only if
S1x = S1y

(
xS1 = yS1) for x, y ∈ S and the equivalence relation H = L ∩ R is similarly defined so

that xHy if and only if xLy and xRy. The relations L and R commute under the composition “•” of
binary relations and D≡ L•R = R•L is the smallest equivalence relation containing L and R.

For x ∈ S and X ∈{L, R, H, D} denote the X class containing x by X(x) where X = L, R, H,
or D when X = L, R, H, or D, respectively. Thus, xXy if and only if X(x) = X(y). If x, y ∈ S and
R(x) = R(y)(L(x) = L(y)), then there exist elements s (t) in S1 such that xs = y (tx = y) (hereafter
the juxtaposition xy will also be used for the multiplication x ◦ y).

3. The Semigroups Bn and BX

The semigroup Bn of Boolean matrices is the set of all n × n matrices over {0, 1} with Boolean
composition γ = α ◦ β defined by

γij = ∨k∈J

(
αik ∧ βkj

)
, (1)

as the semigroup multiplication operation. Here J = {1, 2, · · · , n}, where n ≥ 1 is a counting number,
∧ denotes Boolean multiplication (i.e., 0∧ 0 = 0∧ 1 = 1∧ 0 = 0, 1∧ 1 = 1), and ∨ denotes Boolean
addition (i.e., 0∨ 0 = 0, 0∨ 1 = 1∨ 0 = 1∨ 1 = 1).

The rows (columns) of any α ∈ Bn are Boolean row (column) n, vectors, i.e., row (column) n,
tuples over {0, 1}, and come from the set Vn(Wn) of all Boolean row (column) n-vectors. These vectors
can be added coordinate-wise using Boolean addition. If u, v ∈ Vn(Wn), then u # v when the ith
coordinate ui = 1 implies the ith coordinate vi = 1, 1 ≤ i ≤ n (# is a partial order).

Let 0(1) be either the zero (unit) row or zero (unit) column vector (the context in which 0(1) is
used defines whether it is a row or column vector). The matrix with 0 in every row, i.e., the zero matrix,
is denoted by “Z” and the matrix with 1 in every row is denoted by “ω”. For α ∈ Bn, the row space
Γ(α) of α is the subset of Vn consisting of 0 and all possible Boolean sums of (one or more) nonzero
rows of α. Γ(α) is a lattice (Γ(α),#) under the partial order #. The row (column) basis r(α) (c(α)) of α

is the set of all row (column) vectors in α that are not Boolean sums of other row (column) vectors in α.
Please note that each vector in r(α) (c(α)) must be a row (column) vector of α. The vector 0 is never a
basis vector and the empty set ∅ is the basis for the Z matrix [6,7].

The semigroup BX of binary relations on a set X of cardinality n (denoted |X| = n) is the power
set of X × X with multiplication a = bc being the “composition of binary relations” defined by

a = {(x, y) ∈ X × X : (x, z) ∈ b, (z, y) ∈ c, when z ∈ X}. (2)
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It is easy to see that a bijective index map f : X → J induces an isomorphism λ : BX → Bn

defined by λ(a) = α, where αij = 1 if
(

f−1(i), f−1(j)
) ∈ a and is 0 if

(
f−1(i), f−1(j)

)
/∈ a. Bn is

therefore the Boolean matrix representation of BX [8].

4. The Semigroup NV

A network E of order n is the pair E = (V, C), where V is a nonempty set of nodes with |V| = n,
and the binary relation C ⊆ V ×V is the set of directed links connecting the nodes of the network. Thus,
E is both a digraph and a binary relation. If (x, y) ∈ C, then node x(y) is an in(out)-neighbor of node
y(x). The in-neighborhood of x ∈ V is the set I(E; x) of all in-neighbors of x and the out-neighborhood of
x ∈ V is the set O(E; x) of all out-neighbors of x.

Let NV be the set of networks on V and define “multiplication of networks” by EF = G ≡ (
V, C#),

where E = (V, C), F = (V, C′), and

C# =
{
(x, y) ∈ V × V : (x, z) ∈ C, (z, y) ∈ C′, when z ∈ V

}
. (3)

Lemma 1. NV is a semigroup that is isomorphic to BV.

Proof. The operation “multiplication of networks” is the same as the operation “composition of binary
relations”. Since it is clearly an associative binary operation on NV , then NV is a semigroup under the
operation “multiplication of networks”. Also, the bijective map ϕ : NV → BV defined by ϕ(E) = C
preserves multiplication. Thus, ϕ is a semigroup isomorphism and NV ≈ BV .

Lemma 2. If |V| = n, then NV ≈ Bn.

Proof. This follows from the facts that NV ≈ BV (Lemma 1) and BV ≈ Bn [8].

Thus, Bn is also a Boolean matrix representation of NV .

5. Green’s Equivalence Classifications of NV

Let θ : NV → Bn be the isomorphism of Lemma 2 and f : V → J be an associated index bijection.
If αi∗ is the ith Boolean row vector and α∗j is the jth Boolean column vector in the matrix α = θ(E)
corresponding to network E, then αi∗ encodes the out-neighbors of node f−1(i) in E as the set

O
(

E; f−1(i)
)
=
{

f−1(k) : αik = 1, k ∈ J
}

(4)

and α∗j encodes the in-neighbors of node f−1(j) in E as the set

I
(

E; f−1(j)
)
=
{

f−1(j) : αkj = 1, k ∈ J
}

. (5)

When αi∗ ∈ r(α) and α∗j ∈ c(α), then Or
(
E; f−1(i)

) ≡ O
(
E; f−1(i)

)
is a basis out-neighborhood

and Ic
(
E; f−1(j)

) ≡ I
(
E; f−1(j)

)
is a basis in-neighborhood for network E. Thus, a basis neighborhood

in E is a nonempty neighborhood in E which is not the set union of other neighborhoods in E.
Let Or(E) be the set of basis out-neighborhoods and Ic(E) be the set of basis in-neighborhoods in

network E. Also, define P(E) as the set whose elements are ∅ and the sets generated by the closure
under set union of the out-neighborhoods in E and let (P(E),⊆) be the poset ordered by the set
inclusion relation “ ⊆ ”. Thus, when θ(E) = α, it may be formally stated that:

Lemma 3. (P(E),⊆) is a lattice that is isomorphic to (Γ(α),#).

Proof. The proof for this Lemma is the same as that given as the proof of Lemma 3.3 in [3].
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In what follows, (P(E),⊆) will be referred to as the Π lattice for E.
The following major theorem provides complete L, R, H, and D equivalence classifications of

all fixed-order networks:

Theorem 1. Let E, F ∈ NV. Then

i. L(E) = L(F) if and only if Or(E) = Or(F);
ii. R(E) = R(F) if and only if Ic(E) = Ic(F);
iii. H(E) = H(F) if and only if Or(E) = Or(F) and Ic(E) = Ic(F);
iv. D(E) = D(F) if and only if (P(E),⊆) and (P(F),⊆) are lattice isomorphic.

Proof. The proof of this result is the same as the proof of Theorem 3.4 in [3].

Thus, the Green’s L, R, and H equivalence classifications of the networks in NV
depend entirely upon their having (generally distinct) nodes with identical out-neighborhoods,
identical in-neighborhoods, and both identical out-neighborhoods and in-neighborhoods, respectively,
whereas the D equivalence classification of networks in NV depends entirely upon their having
isomorphic Π lattices which are generated by their out-neighborhoods. As an illustration of this
theorem the reader is invited to consult the simple example given in [3] which corresponds to the
complete Green’s equivalence classification of (and the associated “egg box” structure for) all order
two networks.

6. Green’s Evolutions of Fixed-Order Networks

For E, F ∈ NV , let E → F denote the evolution of a network during a time interval
[t1, t2], where E is the initial network at t1 and F is the final network at t2 > t1.
If L(E) = L(F)(R(E) = R(F))[H(E) = H(F)] {D(E) = D(F)}, then the evolution E → F is a Green’s
L(R)[H]{D} evolution. It is important to note that since D = L•R = R•L and H = L ∩ R, then L
and R evolutions are also D evolutions, whereas H evolutions are both L and R evolutions, as well
as D evolutions.

Theorem 2. The following statements are true for network evolutions in NV:

i. L evolutions preserve basis out-neighborhood sets and Π lattice isomorphism;
ii. R evolutions preserve basis in-neighborhood sets and Π lattice isomorphism;
iii. H evolutions preserve basis out-neighborhood and in-neighborhood sets and Π lattice isomorphism;
iv. D evolutions preserve Π lattice isomorphism.

Proof. This is a direct and obvious consequence of the definitions of Green’s evolutions and Theorem 1.

To illustrate this theorem, consider the order two networks ψ ≡ (
V, Cψ

)
and μ ≡ (

V, Cμ

)
in the

example in [3], where V = {a, b}, Cψ = {(a, a)}, and Cμ = {(a, a), (b, a)}. As can be seen from the
associated Green’s equivalence classification performed there, since L(ψ) = L(μ) and D(ψ) = D(μ),
the evolution ψ → μ is both a Green’s L evolution and a Green’s D evolution. Theorem 2 (i) is
satisfied, since, from Table 1 and the discussion in [3], it is also seen that Or(ψ) = {{a}} = Or(μ) and
that the Π lattices are isomorphic undirected paths of length 1.

7. The Green’s Symmetry Problem

In general, a symmetry associated with a “situation” is defined as an “immunity to change” for
some aspect of the “situation”. For a “situation” to have a symmetry: (a) the aspect of the “situation”
remains unchanged when a change is performed; and (b) it must be possible to perform the change,
although the change does not actually have to be performed [9].
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Recall from Section 2 that for an R(L) evolution E → F in NV , there exists at least one
A ∈ NV (T ∈ NV) such that EA = F (TE = F). Although A(T) does not have to be applied to
E, it can produce the desired evolution when applied as a right (left) multiplication of E. In so
doing, this multiplication not only preserves Ic(E) (Or(E)), but also E’s Π lattice structure. Thus,
(a) and (b) above are satisfied and both Ic(E)(Or(E)) and the associated Π lattice structure can
be considered as the invariant properties associated with the symmetries A (T) which produce the
evolution. Symmetries such as A (T) are Green’s R(L) symmetries.

The “Green’s symmetry problem” is defined here as the determination of all symmetries that produce
an evolution from an initial to a final network within an R or an L class such that each symmetry
preserves the structural invariants required by Theorem 2. As will be discussed below, such symmetries
encode information about which node neighborhoods in the initial network can be joined to form
neighborhoods in the final network such that the structural invariants required by the evolution
are preserved.

8. Satisfiability and Computational Complexity of the Green’s Symmetry Problem

The Green’s symmetry problem for an evolution is m− satisfiable if there are m symmetries which
can produce the evolution.

Theorem 3. The Green’s symmetry problem is at least 1− satisfiable for both Green’s R and L evolutions.

Proof. Semigroup theory guarantees the existence of at least one Green’s symmetry in NV that can
produce a Green’s R evolution and at least one Green’s symmetry in NV that can produce a Green’s
L evolution.

8.1. Green’s R Evolutions

The isomorphism established in Lemma 2 provides for computational solutions to the Green’s
symmetry problem. In particular, if E → F is a Green’s R evolution, then, since E and F are
known, the equation EA = F can be solved for A for each i, j ∈ J using the disjunctive normal
form logical expression

∨k∈J

(
Eik ∧ Akj

)
= Fij, (6)

where use is now made of the Boolean matrix representations of E, F, and A. This expression for fixed
j and all i ∈ J defines a system of |J| equations for node j.

This system of equations is column-j satisfied if there exists a column vector A∗j ∈ Wn for which (1)
is a true statement for each i ∈ J. For each j ∈ J, let G∗j be the set of all A∗j for which the associated
system of equations is satisfied and define γ ≡ ∏j∈J

∣∣G∗j
∣∣. Clearly, if γ > 0, then EA = F is column-j

satisfied for each j ∈ J and the evolution E → F is γ-satisfiable. Each instantiation of A is represented by
a Boolean matrix in Bn which has an x ∈ G∗j as its jth column.

Let Mi = {k ∈ J : Eik = 1} index the unit valued entries in the row vector Ei∗ ∈ Vn.

Lemma 4. Let Fij = 0 for some i, j ∈ J and Mi �= ∅. If A∗j ∈ Wn column- j satisfies EA = F, then A∗j has
Akj = 0 when k ∈ Mi.

Proof. Assume for some j ∈ J that A∗j ∈ Wn column-j satisfies EA = F. If Fij = 0 and Mi �= ∅ for some
i ∈ J, then (1) is true and zero valued for A∗j and that i value, and the following implication chain is valid:

∨k∈J

(
Eik ∧ Akj

)
= 0 ⇒ ∨l∈J−Mi

(
0 ∧ Alj

)
∨k∈Mi

(
1 ∧ Akj

)
= 0 ⇒ ∨k∈Mi

(
1 ∧ Akj

)
= 0 ⇒ Akj = 0,

k ∈ Mi. However, since A∗j ∈ Wn column-j satisfies EA = F, it must also satisfy (1) for all k ∈ J ⇒ A∗j
has Akj = 0 when k ∈ Mi.

Corollary 1. If E = ω, then A∗j = 0.

Proof. E = ω ⇒ Mi = J ⇒ ∨k∈J

(
1∧ Akj

)
= 0 ⇒ Akj = 0, k ∈ J ⇒ A∗j = 0.
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The computational complexity CR of the Green’s symmetry problem for Green’s R evolutions
is the number of remaining combinations of Akj ∈ {0, 1} values which must be checked for EA = F
satisfiability after the Akj = 0 assignments specified by Lemma 4 have been made. Assume that
E �= ω, z and for each j ∈ J let Q(j) =

{
i ∈ J : Fij = 0

}
index the zero valued Boolean equations of

form (1).

Theorem 4. CR = ∑j∈J

[
2n−|∪i∈Q(j) Mi |

]
.

Proof. For each j ∈ J, the set ∪i∈Q(j)Mi (which can possibly be empty) indexes all row locations k ∈ J
in A∗j for which Akj = 0 in every A∗j that column-j satisfies EA = F. The set J −∪i∈Q(j)Mi indexes all
k ∈ J for which Akj must be evaluated to determine the column-j satisfiability of an associated A∗j.

Since there are Zj = 2n−|∪i∈Q(j) Mi | such evaluations for each j ∈ J, then for all j ∈ J there are a total of
CR = ∑j∈J Zj evaluations required to determine all A∗j ∈ Wn which column-j satisfy EA = F.

8.2. Green’s L Evolutions

If E → F is a Green’s L evolution, then, since TE = F, it can be solved for T for each i, j ∈ J using
the disjunctive normal form logical expression

∨k∈J

(
Tik ∧ Ekj

)
= Fij, (7)

which, for fixed i and all j ∈ J, defines a system of |J| equations for node i. This system is row-i satisfied
if there exists a row vector Ti∗ ∈ Vn for which (2) is a true statement for each j ∈ J. For each i ∈ J,
let Hi∗ be the set of all Ti∗ for which the associated system of equations is row-i satisfied and define
δ ≡ ∏i∈J |Hi∗|. If δ > 0, then TE = F is row-i satisfied for each i ∈ J and the evolution E → F is δ−
satisfiable. Each instantiation of T is represented by a Boolean matrix in Bn which has a y ∈ Hi∗ as its
ith row.

Let Kj =
{

k ∈ J : Ekj = 1
}

index the unit valued entrees in the column vector E∗j ∈ Wn.

Lemma 5. Let Fij = 0 for some i, j ∈ J and Kj �= ∅. If Ti∗ ∈ Vn row-i satisfies TE = F, then Ti∗ has Tik = 0
when k ∈ Kj.

Proof. Assume for some i ∈ J that Ti∗ ∈ Vn row, i satisfies TE = F. If Fij = 0 for some j ∈ J and Kj �= ∅,
then (2) is true and zero valued for Ti∗ and that j value, and the following implication chain is valid:
∨k∈J

(
Tik ∧ Ekj

)
= 0 ⇒ ∨l∈J−Kj(Til ∧ 0) ∨k∈Kj (Tik ∧ 1) = 0 ⇒ ∨k∈Kj(Tik ∧ 1) = 0 ⇒ Tik = 0, k ∈ Kj.

However, since Ti∗ row-i satisfies TE = F, it must also satisfy (2) for all j ∈ J ⇒ Ti∗ has Tik = 0 when
k ∈ Kj.

Corollary 2. If E = ω, then Ti∗ = 0.

Proof. E = ω ⇒ Kj = J ⇒ ∨k∈J(Tik ∧ 1) = 0 ⇒ Tik = 0, k ∈ J ⇒ Ti∗ = 0 .

The computational complexity CL of the Green’s symmetry problem for Green’s L evolutions
is the number of remaining combinations of Tik ∈ {0, 1} values which must be checked for TE = F
satisfiability after the Tik = 0 assignments specified by Lemma 5 have been made. Assume that
E �= ω, z and for each i ∈ J let Y(i) =

{
j ∈ J : Fij = 0

}
index the zero valued Boolean equations of

form (2).

Theorem 5. CL = ∑i∈J

[
2n−|∪j∈Y(i) Kj |

]
.

Proof. For each i ∈ J, the set ∪j∈Y(i)Kj (which can possibly be empty) indexes all column locations
k ∈ J for which Tik = 0 in every Ti∗ that row-i satisfies TE = F. The set J −∪j∈Y(i)Kj indexes all k ∈ J
for which Tik must be evaluated to determine the row-i satisfiability of an associated Ti∗. Since there
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are Zi = 2n−|∪j∈Y(i) Kj | such evaluations for each i ∈ J, then for all i ∈ J there are a total of CL = ∑i∈J Zi
evaluations required in order to determine all Ti∗ ∈ Vn which row-i satisfy TE = F.

9. Symmetries: Instantiations of Internal Dynamics

Since Green’s symmetries are themselves effectively elements of Bn, they correspond to special
binary relations between network nodes that encode aspects of the internal dynamics of a Green’s
evolution E → F . In particular, they generally identify many-to-one correspondences between
neighborhood sets in E that are joined by set union to produce a neighborhood in F. Each of these
correspondences occurs in such a way as to preserve the structural invariants required by Theorem 2.
These correspondences are the internal dynamics of the evolution.

Consider a Green’s R evolution E → F where each symmetry A satisfies EA = F and is one
instantiation of a possible set of symmetries which produce the evolution and preserve the required
invariants. If j ∈ J is a column in A with a 1 in each of the rows in the set Ψj = {i1, i2, · · · , ik} and
zeros in every other row location (i.e., there are

∣∣Ψj
∣∣ = k 1’s and n − k 0’s), then this column encodes

an internal dynamic of the evolution where the in-neighborhoods of nodes i1, i2, · · · , ik in E are joined
together as ∪i∈Ψj I(E∗i) and associated with the in-neighborhood I

(
F∗j

)
in F according to

∪i∈Ψj I(E∗i) ⊆ I
(

F∗j
)
. (8)

This expression is called a Ψj internal R dynamic of the evolution and the set Ψj is the associated
motion of the dynamic. Clearly, for the special case where Ψj = {i},

I(E∗i) = I(F∗i).

If E → F is a Green’s L evolution, a symmetry T which produces the invariant preserving
evolution satisfies TE = F. If i is a row in T with a 1 in each of the column locations in
Φi = {j1, j2, · · · , jl}, then this row encodes an internal dynamic of the evolution where the
out-neighborhoods of nodes j1, j2, · · · , jl in network E are joined by set union and associated with the
out-neighborhood O(Fi∗) in network F according to

∪j∈Φi O
(
Ej∗

) ⊆ O(Fi∗). (9)

This expression is a Φi internal L dynamic of the evolution and the set Φi is the associated motion
of the dynamic. When Φi = {j}, then

O
(
Ej∗

)
= O(Fi∗).

These notions will be clarified below using a simple example.

10. Symmetry Ensembles, Propensities, and Energies

Since the symmetry which produces a Green’s evolution is not necessarily unique, it can be
unclear as to how to assign a specific symmetry to an evolution. However, the collection of symmetries
obtained from Green’s symmetry problem, i.e., the symmetry ensembles, can be used to construct
propensities. Propensities can be viewed as weighted symmetries which, in some sense, represent their
respective ensembles.

Let IR (IL) �= ∅ index the symmetries which are solutions to the Green’s symmetry problem for
some Green’s R(L) evolution E → F . The sets

ER =
{

A(i) : i ∈ IR, EA(i) = F
}
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and
EL =

{
T(i) : i ∈ IL, T(i)E = F

}
are the associated symmetry ensembles. The propensities associated with each ensemble are defined as

A ≡ |IR|−1 ∑i∈IR
A(i)

and
T = |IL|−1 ∑i∈IL

T(i).

Thus, A∗j is a measure of the tendency of the nodes in column j in network E to form motions Ψj
that associate in-neighborhoods in E with in-neighborhoods in network F according to the internal
dynamic (3). Similarly, Ti∗ is a measure of the tendency of nodes in row i in E to form motions Φi that
associate out-neighborhoods in E with out-neighborhoods in F according to the internal dynamic (4).

Propensities can be used to associate energies with both ensembles and specific symmetries.
These energies quantify in a directly proportional manner the complexity level of the internal dynamical
activity that is associated with an evolution. The propensity energies provide a representative measure
of the “overall” complexity of internal dynamical activity for an evolution based upon ensemble
propensity. The propensity energies for ensembles ER and EL are defined as

ER ≡ ∑i,j∈J Aij

and
EL ≡ ∑i,j∈J Tij,

respectively.
The energies of evolution for the specific symmetries in an ensemble measure the complexity

of internal dynamical activity for an evolution produced by a specific symmetry in an ensemble.
In particular, if A(k) ∈ ER and B(k) ∈ EL, then the associated energies of evolution are defined as

ER
[
A(k)] ≡ ∑i,j∈J A(k)

ij Aij

and
EL

[
T(k)] ≡ ∑i,j∈J T(k)

ij Tij.

The following Lemma guarantees that the energy of evolution for a symmetry never exceeds the
propensity energy for the associated ensemble.

Lemma 6. For any Green’s R or L evolution, Ex ≥ Ex[y], where y = A(k) or T(k) when x = R or L .

Proof. A(k)
ij , T(k)

ij ∈ {0, 1} ⇒ Aij ≥ A(k)
ij Aij, Tij ≥ T(k)

ij Tij ⇒ ∑i,j∈J Aij ≥ ∑i,j∈J A(k)
ij Aij, ∑i,j∈J Tij≥

∑i,j∈J T(k)
ij Tij ⇒ ER ≥ ER

[
A(k)], EL ≥ EL

[
T(k)].

Recall that internal R and L dynamics are strictly defined by their motions. These motions also
have energies that provide a measure of the level of internal dynamical activity induced by the motion.
Since the symmetries A and T encode R and L internal dynamics with motions Ψj and Φi, respectively,
then the associated energies of motion are the quantities

ER
[
A; Ψj

] ≡ ∑i∈Ψj
Aij Aij

and
EL[T; Φi] ≡ ∑j∈Φi

TijTij.

The energies of motion are related to their energies of evolution by the following theorem:
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Theorem 6 (Conservation of Energy of Evolution). The energy of evolution of a Green’s symmetry is
conserved by the energies of motion of its internal dynamics.

Proof. Let A ∈ ER and set M index all the Ψj internal R dynamics encoded by A. Then
∑j∈M ER

[
A; Ψj

]
= ∑j∈M ∑i∈Ψj

Aij Aij = ∑i,j∈J Aij Aij = ER[A], where use has been made of the
fact that ∑j∈M ∑i∈Ψj

is equivalent to ∑i,j∈J because Aij = 0 when i ∈ J − Ψj and j ∈ J − M. It is similar
for the L dynamics.

11. Example

Let E → F be a Green’s R evolution in NV , V = {1, 2} (or equivalently in B2), where (in B2)

E =
[ 0 0

1 0

]
, F =

[ 0 0
1 1

]
,

with Ic(E) = {2} = Ic(F) (note that this evolution corresponds to the τ → λ Green’s R evolution
in [3]). Theorem 3 guarantees the existence of at least one A such that

EA =
[ 0 0

1 0

]
◦
[ a11 a12

a21 a22

]
=
[ 0 0

1 1

]
= F.

The disjunctive normal form logical expression (1) for this equation yields the following system
of equations

(0∧ a11) ∨ (0∧ a21) = 0 (0∧ a12) ∨ (0∧ a22) = 0

(1∧ a11) ∨ (0∧ a21) = 1 (1∧ a12) ∨ (0∧ a22) = 1

which can be used to solve the associated Green’s symmetry problem.
For the two equations in the second row of this system to be satisfied requires the assignment

a11 = 1 = a12. By inspection it is seen that the complete system is satisfied when, in addition to these
assignments, a21 and a22 each assume both values from the set {0, 1}. Thus,

G∗1 = G∗2 =
{[ 1

0

]
,
[ 1

1

]}
so that γ = |G∗1||G∗2| = 2·2 = 4 = |IR| and the evolution E → F is 4-satisfiable. The associated
symmetry ensemble is the set

ER =
{[ 1 1

0 0

]
,
[ 1 1

0 1

]
,
[ 1 1

1 0

]
,
[ 1 1

1 1

]}
≡ {

A(1), A(2), A(3), A(4)}.

To calculate the computational complexity of this Green’s symmetry problem, refer to Section 8.1
and observe that M1 = ∅, M2 = {1}, and Q(1) = {1} = Q(2). Application of Theorem 4 yields
CR = 22−|M1| + 22−|M1| = 22 + 22 = 8, i.e., four combinations of value assignments must be checked
for each j since, according to Lemma 4, aij values cannot be assigned when Fij = 0 because Mi = ∅.

The propensity and propensity energy for the ensemble are

A =
[ 1 1

1⁄2 1⁄2

]
and ER = 3, respectively, and the energies of evolution are ER

[
A(1)] = 2, ER

[
A(2)] = 2 = ER

[
A(3)],

and ER
[
A(4)] = 3. Please note that this validates Lemma 6. These energies also indicate that A(1)

produces the least energy of evolution in the sense that the evolution involves simpler internal
dynamical activity than evolutions produced by the other symmetries in the ensemble.
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To illustrate this further, first observe that I(E∗1) = {2}, I(E∗2) = ∅, and I(F∗1) = {2} = I(F∗2)

(here the jth column vector is set directly equal to the nodes in the in-neighborhood of node j). It is also
easily determined that the motions of the dynamics for: A(1) are Ψ1 = {1} = Ψ2; A(2) are Ψ1 = {1}
and Ψ2 = {1, 2}; A(3) are Ψ1 = {1, 2} and Ψ2 = {1}; and A(4) are Ψ1 = {1, 2} = Ψ2. By inspection it
is found that each of these motions satisfies (3). Using A(4) as an example, it is seen that (3) yields
the correct set theoretic relationship I(E∗1) ∪ I(E∗2) ⊆ I(F∗1) ∪ I(F∗2) or {2} ∪∅ ⊆ {2} ∪ {2} or
{2} ⊆ {2} for both Ψ1 and Ψ2. Also note that the internal dynamics for A(1) are simpler than those
for the other symmetries in the ensemble, in the sense that both of the A(1) motions are singleton sets,
whereas at least one of the motions for the other symmetries is a doubleton set. This is consistent with
the fact mentioned above that A(1) produces the least energy of evolution.

Now consider the energies of motion for each ensemble symmetry. They are easily calculated
from the theory and are found to be:

ER
[
A(1); Ψ1

]
= 1 = ER

[
A(1); Ψ2

]
;

ER
[
A(2); Ψ1

]
= 1, ER

[
A(2); Ψ2

]
= 1;

ER
[
A(3); Ψ1

]
= 1, ER

[
A(3); Ψ2

]
= 1;

and
ER

[
A(4); Ψ1

]
= 1 = ER

[
A(4); Ψ2

]
.

Thus, the motions associated with an A(1) evolution are the least energetic since

ER
[
A(1); Ψj

] ≤ ER
[
A(k); Ψj

]
, k = 2, 3, 4; j = 1, 2.

This is also consistent with the fact that an A(1) induced evolution is the least energetic and
involves the least complex internal dynamics.

Finally, observe that these results validate Theorem 6. In particular,

ER
[
A(1); Ψ1

]
+ ER

[
A(1); Ψ2

]
= 2 = ER

[
A(1)];

ER
[
A(2); Ψ1

]
+ ER

[
A(2); Ψ2

]
= 2 = ER

[
A(2)];

ER
[
A(3); Ψ1

]
+ ER

[
A(3); Ψ2

]
= 2 = ER

[
A(3)];

and
ER

[
A(4); Ψ1

]
+ ER

[
A(4); Ψ2

]
= 3 = ER

[
A(4)].

12. Concluding Remarks

The research documented in [3] was inspired by earlier research performed by Konieczny [6]
and Plemmons et al. [7]. This paper has reviewed the results developed in [3], i.e., that the set of
all networks on a fixed number of nodes can be classified using the Green’s equivalence relations of
semigroup theory and that all networks within a Green’s equivalence class have a common structural
invariant (neighborhoods or poset relationships between node sets generated by neighborhoods).
By extension, it was deduced in this paper from these results that if a network evolves from an initial
network configuration to a final network configuration such that both the initial and final networks are
in the same Green’s equivalence class, then the structural invariants for the class are preserved by the
evolution. In addition, the Green’s symmetry problem was also defined in this paper. This problem is to
determine by computation all symmetries which produce a network evolution within a Green’s R or a
Green’s L equivalence class (i.e., a symmetry ensemble). These symmetries were shown to be solutions
to special Boolean equations whose form is dictated by semigroup theory. Each such symmetry encodes
information about the internal dynamics of the associated evolution and an ensemble associated with
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an evolution was used to define propensities and energies which quantify aspects of the internal
dynamics of the evolution. However, it should be noted that a practical limitation exists for solving
the Green’s symmetry problem. This occurs because the cardinality of symmetry ensembles associated
with large real networks can be quite large, thereby requiring the use of considerable computational
resources to solve such problems (see future research suggestions below).

In conclusion, it is believed that the results of this paper are new and not in general use (perhaps
having the closest resemblance to these results are the applications of Green’s relations to social
networks [10] and automata theory, e.g., [11]). However, the results of this paper are important and
should be of general interest to network science researchers and those working in areas of applied
network theory. In addition to applications similar to those mentioned in Section 1 (actor identification
in social networks and communication network reconfiguration), contemporary areas of frontier
research, such as identifying emerging scientific disciplines, e.g., [12], analyzing brain connectivity,
e.g., [13–15], and finding symmetries in engineering processes [16], could also benefit from the results
of this paper.

Before closing it is worthwhile to mention several directions for related future research. First,
because of the computational resources required to solve the Green’s symmetry problem, it would
be useful to investigate how sampling and statistics can be used to obtain symmetry sub-ensembles
that effectively yield the same information about propensities and energies as the associated full
ensemble. A second research area involves understanding symmetries and their computation for
network evolutions occurring within Green’s H and D equivalence classes. A third and potentially
very interesting research area concerns determining the relationships (if any) between the theory
developed in this paper and the relatively new theory of persistence that is used to analyze large data
sets, e.g., [17].
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