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Preface to ”Modelling, Simulation and Control of

Thermal Energy Systems”

Against a background of ever-increasing resource scarcity and environmental regulations, recent

decades have experienced rapid growth in the development of various renewable energy sources,

such as wind, tidal and solar power. The variable and uncertain nature of these energy sources

is well known, and greater utilization of power electronic converters presents new challenges for

power system stability. Consequently, across both industry and the research community, a range of

control and operational strategies have been proposed and implemented, recognizing the increasing

flexibility, ramping and load regulation requirements being placed on conventional thermal power

generation. Similarly, thermal engines, particularly those based on diesel and gasoline, are also

facing greater environmental concerns, such that efficient control, which fulfills requirements of high

efficiency, low pollution and high durability, is an emerging requirement.

It follows that modelling, simulation and control are key aspects for thermal energy systems

to provide innovative and effective solutions. A detailed understanding of the thermal conversion

mechanism(s) can be achieved through detailed dynamic modelling, which can then inform the

design of advanced control strategies to improve system performance, both in economic and

environmental terms. Simulation studies, and experimental test beds, can play a very important

role here before proceeding to field tests. Consequently, this Special Issue is dedicated to exploring

the state of the art in modelling and control of thermal energy systems, and to provide a practical

and comprehensive forum for exchanging novel research ideas and empirical practices. After

a detailed review process, 12 papers were accepted for publication, covering general themes of

enhanced process control, optimization of performance against cost and emissions-based objectives,

and modelling of thermally sensitive equipment performance, with applications in thermal power

generation, district heating systems and electric vehicle batteries, to name but a few. A summary of

the accepted papers is provided as follows.

The paper ”On the flexible operation of supercritical circulating fluidized bed: burning carbon

based decentralized active disturbance rejection control” by Fan Zhang et al. [1] investigates the

ability of a supercritical circulating fluidized bed (CFB), as a prominent clean coal technology, to

improve its operational flexibility using decentralized active disturbance rejection control. A CFB

plant presents the advantages of high efficiency, fuel flexibility, and low-cost emission control, but

the large inertia, strong nonlinearity, and multivariable coupling make it a challenging task to

harmonize the boiler’s slow dynamics with the turbine’s fast dynamics. Since burning carbon in

the furnace responds faster than throttle steam pressure when the fuel flow rate changes, this is

utilized to provide dynamic compensation. Simulations are presented for a 600-MW supercritical

CFB unit, to verify the load following and disturbance rejection merits of the proposed method:

https://www.mdpi.com/1996-1073/12/6/1132.

The paper ”Optimization of dispatching electricity market with consideration of a solar-assisted

coal-fired power generation system” by Rongrong Zhai et al. [2] investigates multi-objective

optimization for load dispatch of a solar-assisted coal-fired power generation system, considering

coal consumption, NOx emissions, and power purchase cost. Based upon a test system

consisting of one coal-fired unit which is retrofitted to be solar-assisted, it is concluded that

the loading of the solar-assisted unit is increased, particularly with increased solar irradiation.

In addition, coal consumption, NOx emissions and power costs are reduced, and based upon
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on-grid power tariff variations, a reduction in electricity purchase costs can be achieved:

https://www.mdpi.com/1996-1073/12/7/1284.

The paper ”Transient analysis and execution-level power tracking control of the concentrating

solar thermal power plant” by Xiufan Liang and Yiguo Li [3] studies an execution-level power

tracking control strategy for a concentrating solar plant (CSP), primarily aimed at coordinating

control of the sluggishly responding steam generator and the fast responding steam turbine.

Concentrating solar power is a promising technology for exploiting solar energy, given its ability

to integrate with thermal energy storage, and so offer similar operability to that of fossil-fired power

plants. The power output of such plants is generally scheduled to maximize operating revenue,

but this can result in frequent changes in power reference signal and introduces challenges for

real-time power tracking. After analyzing the transient behavior of a CSP plant to gain insight

into the system dynamic characteristics and control difficulties, two control strategies are studied

through simulation experiments, based on heuristic PI control, and advanced model predictive

control: https://www.mdpi.com/1996-1073/12/8/1564.

The paper ”Thermal fatigue modelling and simulation of flip chip component solder joints

under cyclic thermal loading” by Liangyu Wu et al. [4] develops a model, based on the Darveaux

energy method, to investigate influential factors which affect thermal fatigue of flip chip component

solder joints in thermal energy systems. Under cyclic thermal loading, a theoretical heat transfer

and thermal stress model is developed, which is then used to show the effects of environmental and

power parameters on thermal fatigue life. It is indicated that solder joints located at the outer corner

point of an array tend to have the shortest life, and increments in either power density or ambient

temperature, or reductions in power conversion time or ambient pressure, will result in a reduced

thermal fatigue life for the key solder joints: https://www.mdpi.com/1996-1073/12/12/2391.

The paper ”Development of engine efficiency characteristic in dynamic working states” by

Piotr Bera [5] applies an artificial neural network (ANN) method to represent the efficiency

characteristic of a combustion engine in dynamic working states. The model comprises engine

speed, angular acceleration, engine torque, torque change intensity, and fuel mass flow parameters,

measured on a test bed of a spark ignition engine in static and dynamic working states.

Detailed analysis is presented of the ANN design, data preparation, and training method, with

a simplified ANN subsequently created to represent a two-dimensional efficiency characteristic:

https://www.mdpi.com/1996-1073/12/15/2906.

The paper ”Temperature dependent parameter estimation of electrical vehicle batteries” by

Anna Pózna et al. [6] presents a parametric temperature dependent battery model, based upon

static relationships. The proposed method is intended as a computationally effective way of

determining key battery parameters at a given temperature from actual estimated values, and

previously determined static temperature dependence. A two-step method is employed which

includes a parameter estimation step of the key parameters at different temperatures, followed

by a static optimization step that determines the temperature coefficients of the corresponding

parameters. The effectiveness of the method was verified by simulation experiments on a more

complex battery model, which also describes the detailed dynamic thermal behavior of the battery:

https://www.mdpi.com/1996-1073/12/19/3755.

The paper ”Stacked auto-encoder modeling of an ultra-supercritical boiler-turbine system” by

Hao Zhang et al. [7] presents a deep neural network framework using stacked auto encoders (SAEs)

to model an ultra-supercritical (USC) coal-fired boiler turbine unit. Such units are widely used in
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modern power plants due to their high efficiency and low emissions, but it is also a multivariable

system with large inertia, severe nonlinearity, and strong coupling, such that building an accurate

system model using traditional identification methods is almost impossible. Maximum correntropy

is chosen as the loss function for training of the SAE, with real-time measurement data from an USC

unit used for training and validation. When compared against a traditional multilayer perceptron

network model, the SAE model is seen to be superior in both forecasting plant dynamic behavior as

well as eliminating the influence of outliers: https://www.mdpi.com/1996-1073/12/21/4035.

The paper ”Modelling and analysis of plate heat exchangers for flexible district heating systems”

by Serafym Chyhryn [8] develops a temperature dependent overall heat transfer coefficient (OHTC)

model of a plate heat exchanger, based on a linear approximation of thermophysical components

of the forced convection coefficient (FCC). Heat transfer in a plate heat exchanger is regulated

by mass flows, but flexible operation and demand variations cause shifts in temperature levels,

which need to be accounted for as part of efficient system operation. The presented modelling

approach accounts for temperature variations, avoids the iterative lookup of thermophysical

properties and requires fewer inputs. Experimental model verification is performed on a laboratory

plate heat exchanger, and a practical estimation procedure is proposed based on component

data. Finally, operational optimization test cases for a basic district heating system are used

to demonstrate the superior performance of the proposed approach against existing models:

https://www.mdpi.com/1996-1073/12/21/4141.

The paper ”Supplementary control of air–fuel ratio using dynamic matrix control for thermal

power plant emission” by Taehyun Lee et al. [9] applies dynamic matrix control (DMC) to the

supplementary control of existing combustion control loops within thermal power plants in order to

reduce environmental emissions. The conventional double cross limiting algorithm for combustion

safety is formulated as constraints within the proposed DMC. Simulation results are presented for

a 600-MW drum-type power plant and a 1000-MW ultra-supercritical once-through boiler power

plant, and in both cases tight control of the air–fuel ratio is seen to be effective in reducing emissions:

https://www.mdpi.com/1996-1073/13/1/226.

The paper ”Uncertainties in the testing of the coefficient of thermal expansion of overhead

conductors” by Miren Bedialauneta et al. [10] analyzes the effect of some of the uncertainty

sources in the testing of the thermal expansion coefficient of overhead line conductors. Utilities

and conductor manufacturers usually carry out verification of the thermal expansion coefficient of

overhead conductors on an actual size span, based on observation of changes in conductor length as

a result of conductor temperature variations. However, additional factors can affect the coefficient

value. Subsequently, the thermal expansion process for line conductors is described and sources

of uncertainty are identified, before their effect on coefficient testing for high temperature low sag

(HTLS) conductors is quantified: https://www.mdpi.com/1996-1073/13/2/411.

The paper ”Multiresolution GPC-structured control of a single-loop cold-flow chemical

looping testbed” by Shu Zhang et al. [11] develops a self-tuning controller design methodology,

encompassing a spatiotemporal, multi-resolution, deadbeat control loop for a chemical looping

process. Chemical looping is a near-zero emission process for coal-fired generation, based on

multi-phase gas–solid flow, but with extremely challenging nonlinear, multi-scale dynamics with

jumps. Consequently, traditional robust control techniques are largely inapplicable, so temporal

and spatiotemporal multi-resolution modelling is applied to address the process complexity, along

with corresponding model-based control laws. A nonlinear autoregressive with exogenous input
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model structure, nonlinear in the wavelet basis, but linear in parameters, is used to identify

the dominant temporal process dynamics. The effectiveness of the proposed methodology in

producing fast recursive real-time algorithms for controlling highly uncertain nonlinear multi-scale

processes is then demonstrated for a difficult chemical looping cold flow tracking control problem:

https://www.mdpi.com/1996-1073/13/7/1759.

The paper ”Multi-objective optimal operation for steam power scheduling based on economic

and exergetic analysis” by Yu Huang et al. [12] evaluates the thermodynamic efficiency of steam

supply, based on exergetic analysis, in order to formulate a mixed-integer linear programming

(MILP) optimal scheduling model. Steam supply scheduling plays an important role in providing

reliable energy supply to meet heat and electricity demand in both the industrial and residential

sectors, but system complexity makes it challenging to operate efficiently. Contradictory operational

objectives, in terms of economic cost and thermodynamic efficiency, make online scheduling even

more intractable. An epsilon constraint-based method is used to obtain the Pareto front of the

multi-objective optimization model, while a fuzzy approach is introduced to determine the actual

operational strategy. Results from single-period and multi-period multi-objective optimal scheduling

are used to verify the effectiveness of the model, and the proposed solution, relative to single objective

approaches: https://www.mdpi.com/1996-1073/13/8/1886.

These papers collectively offer a wide range of approaches for modelling, simulation and control

development, supported by detailed analysis and discussion, as applied to a range of applications

within the domain of thermal energy systems. The Editors of this Special Issue would like to express

thanks to all the authors who submitted their work, for the careful attention of all the reviewers in

assessing the papers, and to the MDPI staff for their diligent support in preparing this Special Issue.

Kwang Y. Lee, Damian Flynn, Hui Xie, Li Sun

Editors
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Abstract: Supercritical circulating fluidized bed (CFB) is one of the prominent clean coal technologies
owing to the advantages of high efficiency, fuel flexibility, and low cost of emission control. The fast
and flexible load-tracking performance of the supercritical CFB boiler-turbine unit presents a
promising prospect in facilitating the sustainability of the power systems. However, features such as
large inertia, strong nonlinearity, and multivariable coupling make it a challenging task to harmonize
the boiler’s slow dynamics with the turbine’s fast dynamics. To improve the operational flexibility
of the supercritical CFB unit, a burning carbon based decentralized active disturbance rejection
control is proposed. Since burning carbon in the furnace responds faster than throttle steam pressure
when the fuel flow rate changes, it is utilized to compensate the dynamics of the corresponding
loop. The parameters of the controllers are tuned by optimizing the weighted integrated absolute
error index of each loop via genetic algorithm. Simulations of the proposed method on a 600 MW
supercritical CFB unit verify the merits of load following and disturbance rejection in terms of less
settling time and overshoot.

Keywords: supercritical circulating fluidized bed; boiler-turbine unit; active disturbance rejection
control; burning carbon; genetic algorithm

1. Introduction

Circulating fluidized bed (CFB) technology has demonstrated its ability to efficiently utilize a
wide variety of fuels, including high sulfur coal to coal gangue and coal slurries [1]. Taking coal-water
slurries containing petrochemicals fuels for example, through experiments and calculations the
advantages are much lower anthropogenic emissions and ash residue, low cost of the components,
positive economic performance indicators of storage, transportation, and combustion, as well as higher
fire and explosion safety [2,3]. It is believed that a combination with supercritical steam cycle to
increase the efficiency of energy conversion is one of the futures of CFB combustion technology [4].
The first 600 MW supercritical CFB boiler demonstration project was put into commercial operation
in 2013 [5]. By the end of 2017, more than eighty-two supercritical CFB boilers were in operation or
under construction in China [6].

As Lyu pointed out [4], in the demonstration the control of the 600 MW supercritical CFB boiler
was the heart of the matter. Some factors attribute to the difficulties of the coordinated control
of the unit:

Energies 2019, 12, 1132; doi:10.3390/en12061132 www.mdpi.com/journal/energies1
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1. Higher requirement for operational flexibility. With increasing intermittent renewable energy
integrated in the grid, thermal power plants are required to operate in a wider range [7].
Supercritical CFB boilers can regulate their load from 30% to 100%, which extends 20% more in
the low load region compared with pulverized coal-fired boilers [8]. However, the considerable
quantities of bed materials in furnace result in large inertia of the CFB boiler. In addition, dynamics
of the boiler vary at different operation conditions, leading to strong nonlinearity. Both of these
factors make it hard to design controllers of coordinated control system (CCS) to harmonize
the boiler’s slow dynamics with the turbine’s fast dynamics so as to follow the command from
grid promptly.

2. Capability to reject disturbance in fuel. Since the CFB boiler works with a variety of fuels, the
variability of fuel brings in disturbance for the unit operation. In addition, the amounts of fuel
that enter the boiler sometimes fluctuate due to mechanical reasons. Consequently, it is necessary
to design advanced controllers so as to suppress the influence of disturbance from fuel.

3. Complex dynamics of the supercritical CFB unit. Besides the thermal inertia, strong nonlinearity,
and time delay of supercritical CFB unit, multivariable coupling has a significant impact on
the controller design [9]. The adjustments of manipulated variables would cause changes in
all controlled variables. Furthermore, the unit would become more complicated when the bed
temperature of the CFB boiler is taken into consideration [10].

As can be anticipated, a well-designed control system of the supercritical CFB unit can yield
potential environmental and economic benefits.

Much of the literature has paid particular attention to this problem. Among them, investigation
of the dynamic characteristic and mechanism-based modeling for supercritical CFB boilers lays the
groundwork. Prior knowledge about subcritical CFB boilers is essential to the modeling research.
Majanne and Köykkä presented a dynamic model which consisted of the air-flue gas and the
water-steam systems [11]. The model was based on the first principles mass, energy, and momentum
balances and experimental correlations about reaction kinetics and heat transfer, and was finally tested
against measured process data. Furthermore, a mechanism-based control model in the form of transfer
functions for the CCS of the subcritical coal-fired 300 MW CFB unit was established based on the
dynamic characteristics in [12]. The research has been extended to the supercritical CFB unit. In [13] a
hybrid dynamic model was developed to characterize the main physical and chemical processes in a
supercritical CFB boiler. Steady-state verification was made to evaluate the accuracy of the model while
step responses of different manipulate variables were tested. Through some reasonable simplification,
a nonlinear control model of supercritical CFB unit was established in [14], and the parameters of the
system model were identified by steady-state derivation, function fitting, and optimization algorithm.
The correctness of the model structure and validity of the identification method were verified by
operation data of a 600 MW supercritical CFB unit in service.

Based on the derived dynamic model of CFB unit, a variety of control methods are adopted for
the coordinated control purpose. The proportional-integral-derivative (PID) control is the most widely
used control strategy in real control engineering. Hultgren and Hao et al. analyzed the relative gain
and designed a decentralized PID control structure for the CFB unit [15,16]. The controllers in [16]
were devised based on desired dynamic equation (DDE) while an heuristic algorithm was used to
optimize the PID controllers for the CFB unit in [17]. In [18], dynamic feedforward was employed to
improve the performance of PID controllers. on basis of decentralized PI control, two disturbance
observers (DOBs) were designed to estimate and compensate the effect of coupling in the CFB unit [19].
However, higher requirements are imposed for the supercritical CFB unit which the conventional
decentralized PID control can hardly satisfy. Some advanced control methods have been discussed,
such as fuzzy control [20–22], neural network based control [23,24], etc. Although good performances
were observed in simulations, these methods could seldom be used in the real CFB power plant due to
the restrictions in the distributed control system.
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Due to the ability to deal with uncertainty, active disturbance rejection control (ADRC) has
received increased attention across a number of disciplines in recent years, such as gasoline engines [25],
proton exchange membrane fuel cell [26], electromechanical actuator [27], pendulum cart system [28],
piezo-driven positioning stage [29], flight control [30], and so on. The basic principle of ADRC is
the estimation and actively compensation via extended state observer (ESO). The stability analysis
of ADRC and the convergence of ESO have been studied by many researchers [31,32]. ADRC has
also been employed for the process control of CFB unit, such as the superheated steam temperature
control [33], primary air control [34], secondary air control [35], combustion system control [36], and
control of boiler-turbine unit [37]. However, none of them have taken control problems of supercritical
CFB unit into consideration. The increase in inertia aggravates the difficulty of the supercritical CFB
unit. Recent studies show that combination of burning carbon in the furnace of CFB with heat signal
can improve the control performance [9]. To make use of the burning carbon, Gao et al. added the rate
of heat released in combustion of burning carbon as the feedforward signal on basis of decentralized
PI controllers. However, detailed analysis of the control structure should be undertaken.

The primary aim of this research is to provide reasonably consistent evidence of an association
between burning carbon and operation performance and to explore the enhancement of the operation
performance of the supercritical CFB unit, making the following contributions:

• Burning carbon is integrated into the control framework to accelerate the load following;
• The disturbance rejection performance is improved via the design of decentralized ADRC controllers;
• Genetic algorithm (GA) is employed to tune the parameters of the ADRC controllers.

The remaining part of the paper proceeds as follows: Section 2 introduces the 600 MW supercritical
CFB boiler-turbine unit and analyzes its dynamics. In Section 3, the decentralized ADRC framework is
proposed for the supercritical CFB unit, in which burning carbon information is utilized. In order to
achieve satisfying performance, GA is used to tune the controllers for both traditional decentralized
controllers and the proposed method in Section 4. In Section 5, simulation results are given to verify
the merits of the proposed method. Finally, some conclusions are drawn in Section 6.

2. Performance Analysis of Supercritical Circulating Fluidized Bed Boiler-Turbine Unit Model

Gao et al. investigated the dynamics of supercritical CFB unit and established the nonlinear model
for control purposes [14]. The model represented the behavior of the boiler-turbine unit in the 600 MW
supercritical CFB power plant located at Baima, China, and was validated by its operation data.

Simplified working process of the supercritical CFB boiler-turbine unit is illustrated in Figure 1.
The essential working principle of the boiler-turbine unit is energy conversion. The chemical energy
stored in coal is transformed into steam thermal energy by the boiler, then it is transformed into
rotational mechanical energy by the turbine, and finally it is transformed into electric energy by the
turbogenerator.

In the derived model, the manipulate variables are the fuel flow rate command uB (u1, kg/s),
feedwater flow rate Df w (u2, kg/s), and turbine throttle valve opening ut (u3, %); the controlled
variables are the throttle steam pressure Pst (y1, MPa), separator steam enthalpy hm (y2, kJ/kg),
and active electric power generated by the turbogenerator Ne (y3, MW), respectively. Some typical
operating conditions are shown in Table 1.

Table 1. Typical steady-state operation conditions of the supercritical circulating fluidized bed
(CFB) unit.

y1 (MPa) y2 (kJ/kg) y3 (MW) u1 (kg/s) u2 (kg/s) u3 (%)

High (100%) 23.93 2609.53 600 32.79 485.98 91.51
Medium (70%) 19.30 2669.29 420 24.54 335.60 79.40
Low (40%) 12.53 2804.35 240 15.28 184.10 69.91

3



Energies 2019, 12, 1132

Figure 1. Simplified diagram of a supercritical circulating fluidized bed (CFB) boiler-turbine unit.

Since the purpose of modeling is to design and test advanced control algorithms suited for the
supercritical CFB boiler-turbine unit, many simplifications are made during the modeling, however,
for the most important variables of the unit, the model can capture both the steady-state and dynamic
properties of the unit well thus is very suited for controller design and test.

Large inertial, nonlinear, and strong multivariable coupling behavior of the unit can be clearly
indicated through step response tests. Taking uB for example, Figure 2 shows the step response at
typical operation conditions. The evidence from this test suggests that unit takes more than 4000 s to
reach steady-state when an increase in fuel command uB is occurred. Meanwhile, it is also of interest
to note uB has an effect on all the outputs. Multivariable coupling should be taken into consideration
when the control system is designed. Furthermore, the unit exhibits signs of nonlinearity since the
amplitudes and time constants at different operation conditions are quite different from each other.
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Figure 2. Outputs of a supercritical CFB unit when uB increases by 5%.

We also investigate the character of burning carbon when the unit changes its load, as shown in
Figure 3. Researchers have discussed the model of burning carbon in CFB unit [14,38]. Here we follow
the model proposed in [14] because it can reflect the change tendency and is simple enough to satisfy
the fast calculation requirement in real-time operation. Figure 3 indicates that burning carbon in the
furnace is strongly related to the operation condition of the unit. Once the fuel flow command changes,
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the burning carbon varies accordingly. The second major finding is that burning carbon will reach
the steady-state earlier than the throttle steam pressure when the fuel flow rate changes. This fact
motivates us to make use of the burning carbon information to design the control system for the unit.
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Figure 3. Performance of burning carbon in a supercritical CFB unit when uB increases by 5% at 1000 s
and decreases by 5% at 6000 s.

3. Burning Carbon Based Decentralized Active Disturbance Rejection Control of a Supercritical
CFB Unit

As mentioned previously, large inertial and unknown disturbances are the two main problems
in the operation of the supercritical CFB boiler-turbine unit, therefore we propose a burning carbon
based decentralized ADRC method to deal with both issues simultaneously.

3.1. Linear Active Disturbance Rejection Control

Without loss of generality, a class of nonlinear plant can be depicted by the following equation:

y(n) = bu + f
(

y(n−1), y(n−2), · · · , y
)
+ d (1)

where y is the measurable system output, u is the measurable control input, d is the unknown external
disturbance, f (·) is the unknown internal (state-dependent and potentially nonlinear) dynamics of the
process, and b is the unknown input scaling factor.

In order to design the input signal to make the output track the desired reference regardless of
the unmodeled/unknown disturbance, the above system can be firstly augmented using a virtually
extended state:

{
y(n) = b0u + σ

σ̇ = h
(2)

where b0 is the approximation of b, σ represents the lumped disturbance including the unmodeled
dynamics and external disturbance [32]:

σ = f (·) + d + (b − b0) u (3)

It is assumed that σ is differentiable.
If the lumped disturbance is regarded as one dimensional state, we can define x =

[x1, · · · , xn, xn+1]
T =

[
y, y(1), · · · , y(n), σ

]T
. So plant (2) can be described in the state space

representation as {
ẋ = Ax + Bu + Eσ

y = Cx
(4)
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where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦
(n+1)×(n+1)

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...
0
b0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
(n+1)×1

, E =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦
(n+1)×1

C =
[

1 0 · · · 0
]

1×(n+1)

For the extended system model (4), (n + 1)-th order extended state observer (ESO) is designed to
estimate the unknown lumped disturbance σ [39]:

{
ż = Az + Bu + L(y − ŷ)

ŷ = Cz
(5)

where z = [z1, · · · , zn, zn+1]
T = [x̂1, · · · , x̂n, σ̂]T is the estimate of state x, L = [β1, · · · , βn+1]

T is
the observer gain. If the gains β1, · · · , βn+1 are chosen properly, the lumped disturbance σ can be
estimated as well as the states x.

Then, the control law is designed as

u =
−zn+1 + u0

b0
(6)

where u0 is to be determined to meet the specific type of application. Since the estimate of the extended
state zn+1 approximates the lumped disturbance σ, i.e., zn+1 ≈σ, when combining control law (6) with
the plant (4) we get

y(n) ≈ u0 (7)

which reduces the uncertain plant (4) to a cascade form of integrators. The canonical form of cascade
of integrators makes the system trivial to govern due to inherent robustness against any perturbation
in the system [40,41]. One should notice that the plant is still under the influence of uncertainties,
however, the impact on output is removed [40].

The derived model (7) can be effectively controlled by state feedback law [42]:

u0 = k1(r − z1) + k2(ṙ − z2) + · · ·+ kn(r(n−1) − zn) (8)

where r is the desired reference.
For convenience in industrial applications, the 1st and 2nd order linear ADRC are commonly

used [33]. Taking the 1st order ADRC for example, it can be reduced from the general form (5), (6),
and (8) to the following: {

ż1 = z2 + b0u + β1(y − z1)

ż2 = β2(y − z1)
(9)

u =
u0 − z2

b0
(10)

u0 = kp(r − y) (11)
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Thus, for the 1st order ADRC we have four parameters to be determined, namely kp, b0, β1, and
β2. Once the ADRC is well tuned, the system output can track the reference while overcoming the
uncertainties. The structure of the 1st order ADRC is illustrated by Figure 4, where Gp denotes the
transfer function of the controlled plant.

Figure 4. Structure of 1st order active disturbance rejection control.

3.2. Burning Carbon Based Decentralized ADRC for Supercritical CFB Boiler-Turbine Unit

Decentralized control is widely used in the industry process due to its simplicity. Instead of
decentralized PID control, we propose the decentralized ADRC control for the supercritical CFB unit
to improve the capability to follow load command in large-scale and enhance the capacity to unknown
fuel variation. Figure 5 shows the designed control structure.

Figure 5. Structure of the burning carbon based decentralized active disturbance rejection control
(ADRC) for a supercritical CFB unit.

In the proposed control structure, three ADRC controllers are devised for the individual loops.
The ADRC controllers can not only alleviate the coupling of different loops, but also enhance the
disturbance rejection performance. Fuel feedforward is included in this structure so that the output
power can track the load command promptly. It is noted that we design the dynamic compensation for
the fuel-main steam pressure loop based on the load-burning carbon signal. In the following, control
of fuel-main steam pressure loop is analyzed. Its structure is shown in Figure 6.
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--

Supercritical CFB Unit
Fuel-Main Steam Pressure Loop+

+

Figure 6. Control structure of fuel-main steam pressure loop based on load-burning carbon signal.

To illustrate the effectiveness of the dynamic compensation, the transfer function from coal to

burning carbon is identified and used for analysis. The identified model G1 =
K

Ts + 1
e−τs at 100% and

40% operation conditions are:

G1(100) =
6.0567

306.1587s + 1
e−28s

G1(40) =
29.6893

591.5113s + 1
e−28s

(12)

The dynamics of G1 varies considerably at different operation conditions, including the gain
coefficient and time constant. The large time constant in G1 indicates the huge inertial in CFB boiler,

especially when it is at low load operation condition. In addition, since
τ

T + τ
< 0.08 the effect of

time delay can be ignored when we analyze the control structure. The load-burning carbon signal is
precalculated based on past operation data.

The equivalent transfer function from ADRC’s output to burning carbon in (12) is

B′(s) ≈ K (KcK + 1)
Ts + KcK + 1

u (13)

Compared with the original transfer function from burning carbon to ADRC’s output,

B(s) =
K

Ts + 1
u (14)

The pole is shifted left from − 1
T

to −KcK + 1
T

when Kc > 0. Also, both (13) and (14) have the same
static gain K. Thus, the compensated burning carbon could be accelerated. Figure 7 shows the unit
step response of the compensated burning carbon and throttle steam pressure model at different loads,
in which Kc = 0.03. It can be found that dynamics at low load is more compensated.
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32

Output of burning carbon model at 100% load
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Compensated output of burning carbon model at 40% load

(a) Unit step response of the compensated burning carbon

Figure 7. Cont.
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(b) Unit step response of the compensated throttle steam pressure

Figure 7. Unit step response of the compensated burning carbon and throttle steam pressure model at
different loads.

The load-burning carbon signal is constructed according to the steady-state values of burning
carbon at different operation conditions in advance. Based on the compensated fuel-main steam
pressure loop, we design the decentralized ADRC controllers for the multi-input-multi-output (MIMO)
supercritical CFB unit.

4. Tuning of ADRC Controllers

The performance of the ADRC controller is greatly affected by parameters b0 in (10), kp in (11),
and β1, β2 in (9). Therefore, there are overall twelve parameters for the decentralized controllers
to be optimized.

Genetic algorithm is a global search method that mimics the process of natural selection. It is
one of the most well-known heuristic optimization methods, and has been used in various research
areas [43]. In this research, the parameters in the decentralized ADRC controllers are optimized by GA.

To evaluate the control performance, the integrated absolute error (IAE) index is used,

IAE =
∫ T

0
|e(t)|dt (15)

where e(t) is the tracking error of the controlled variable. IAE tends to produce responses with less
sustained oscillation. For the MIMO CFB unit, there are three controllers to be optimized. To obtain
the trade-off between different loops, the fitness function for GA is defined as the weighted sum of
each IAE,

J =
3

∑
i=1

ωi · IAEi (16)

where i denotes the i-th loop in CFB unit.
The optimization flowchart can be depicted as Figure 8.
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Figure 8. Flowchart of genetic algorithm based ADRC controller.

5. Simulations

In this section, the proposed burning carbon based decentralized ADRC is employed to control the
supercritical CFB unit. Simulations under different scenarios, i.e., load tracking at different operation
conditions and disturbance rejection, are performed to test the proposed method.

The simulation configuration of the burning carbon based decentralized ADRC of supercritical
CFB unit is shown in Figure 5. The nonlinear dynamic model developed in [14] functions as the
real plant since its dynamics has been tested by operation data. The fuel feedforward plays an
important role in the boiler-turbine unit control. We design this feedforward signal based on the history
steady-state data of the supercritical CFB unit so that it corresponds to the target load. The load-burning
carbon signal is constructed based on the steady-state values of burning carbon at different operation
conditions. The compensated gain Kc equals 0.03. As analyzed in Section 3.2, the introduced burning
carbon can compensate the dynamics of the fuel-main steam pressure loop. The distributed ADRC
controllers has been devised according to Equations (9) to (11). The parameters of the ADRC controllers
are tuned by GA, the procedures of which are depicted in Section 4. The settings of GA are such that
population size is chosen as 100, generation is 50, crossover fraction is 0.6, and individuals that are
guaranteed to survive to the next generation are 10.

The proposed method is compared with two others, namely decentralized PI [16] and
decentralized ADRC [37]. Both of them have the same fuel feedforward used in the proposed method.
In addition, the controllers in these two methods are separately tuned by GA with the same settings.
The differences in performance are expected to be found among the above three methods.

5.1. Load Tracking

The first case is designed to test the wide range load following performance of the controllers.
The unit is assumed to decrease and increase at the rate of 2%/MCR/min at high (100%)/medium
(70%)/low (40%) operation conditions, respectively. The results are shown in Figures 9 and 10.
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(a) Controlled variables (solid line: burning carbon based decentralized ADRC, dash-dotted line: decentralized ADRC, dotted line:
decentralized PI, dashed line: reference).
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Figure 9. Load following performance of supercritical CFB unit at typical conditions (load decrease).
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Figure 10. Load following performance of supercritical CFB unit at typical conditions (load increase).

The simulation results indicate that all three decentralized control methods can regulate the
supercritical CFB unit and make the unit follow the command from grid. When the controllers are well
tuned, both the output power Ne and separator steam enthalpy hm can closely track the references.
The major difference is the control performance in throttle steam pressure Pst, and the transient
response criteria are listed in Tables 2 and 3.
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Table 2. Transient response criteria of throttle steam pressure for the supercritical CFB unit at typical
conditions (load decrease).

Decentralized PI Decentralized ADRC
Burning Carbon Based
Decentralized ADRC

High Medium Low High Medium Low High Medium Low

Overshoot (%) 1.20 2.30 4.02 0.23 0.55 1.14 0.28 0.84 0.62
Settling time (s) 793.4 798.8 829.0 487.4 492.6 508.7 397.1 397.1 405.3

Table 3. Transient response criteria of throttle steam pressure for the supercritical CFB unit at typical
conditions (load increase).

Decentralized PI Decentralized ADRC
Burning Carbon Based
Decentralized ADRC

High Medium Low High Medium Low High Medium Low

Overshoot (%) 1.16 2.15 3.62 0.20 0.49 0.98 0.25 0.80 0.50
Settling time (s) 789.3 794.7 823.8 484.1 488.7 504.6 398.9 396.0 404.3

Decentralized PI control [16] with fuel feedforward is widely used in the real power plant.
However, it takes the longest time for the throttle steam pressure to reach the steady-state. On the
contrary, decentralized ADRC control [37] with fuel feedforward provides notable improvement. Since
the coupling between the loops is regarded as disturbance and compensated by ADRC, its settling
time is shortened while the overshoot is reduced.

The settling time of throttle steam pressure can be further improved under the proposed burning
carbon based decentralized ADRC. As analyzed in Section 3.2, the burning carbon based compensated
method ameliorates the dynamics of fuel-main steam pressure loop. The devised ADRC controller
can result in a faster tracking performance. According to Tables 2 and 3, the settling time is about 50%
less than that of decentralized PI method [16], and about 19% less than that of decentralized ADRC
method [37]. In addition, it can be observed that the improvements of settling time at low load region
is larger than that at high/medium load region. This is due to the fact that dynamics at low load are
more compensated, as shown in Figure 7.

5.2. Disturbance Rejection

To further verity the disturbance rejection performance, a significant unknown step-type
disturbance in fuel is considered in this case. This disturbance is common in coal-fired power plants
because of the variability of coal. The unit is assumed to operate at 100% condition, and at t = 500 s the
step-type disturbance d = 3 kg/s is acted on uB, at t = 2000 s the step-type disturbance d = −3 kg/s
is acted on uB. The controllers are the same with those optimized in last case. The results are shown in
Figure 11.

The results show that all these methods can remove the impact of the fuel disturbance, especially
on the throttle steam pressure. However, decentralized PI [16] provides the slowest response because
the integral action works on the bias between the output and the reference. Both decentralized
ADRC [37] and the proposed burning carbon based decentralized ADRC method use the ESO to
estimate the lumped disturbance and reject it according the principle of ADRC. Thus, the disturbance
rejection is prompt and effective. The proposed burning carbon based decentralized ADRC is lightly
better in terms of less settling time and overshoot.
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Figure 11. Disturbance rejection of the supercritical CFB unit under unknown fuel variation.
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6. Conclusions

To achieve a sustainable future for renewable energy and integrate more renewable energy into
the power grid, increasing the operational flexibility of supercritical power plants plays a crucial role
in power systems.

The coordinated control system of the supercritical CFB unit is designed to harmonize the boiler’s
slow dynamics with the turbine’s fast dynamics so as to meet the power grid’s demand and maintain
the parameters of the unit within the safe range. Since the burning carbon circulates in the boiler
and releases the energy gradually, it can affect the change of the heat provided by the boiler and the
impact of fuel variation on unit load. To this end, we make use of the burning carbon information to
compensate the dynamics of the fuel-throttle pressure loop and reduce the regulating time.

In this research, we propose the burning carbon based decentralized ADRC for the operation
of the supercritical CFB unit. The dynamics of the supercritical CFB unit, including the controlled
variables and burning carbon in furnace, are analyzed on the basis of step response. One interesting
finding is that burning carbon responds faster than the throttle steam pressure when the fuel flow
rate changes. We utilize the burning carbon information to design the decentralized ADRC to reduce
the influence of the large inertia of the supercritical CFB unit. A genetic algorithm is employed to
optimize the controllers of the multivariable unit using a weighted integrated absolute error index.
Through simulations of the supercritical CFB unit, it is demonstrated that the proposed method can
notably reduce the settling time and maintain the disturbance rejection capability. These advantages
benefit from the capacity of the well-tuned active disturbance rejection controllers and the utilization of
burning carbon information. Consequently, a particular attention should be paid to the fast calculation
of the burning carbon, as well as the steady-state values.

Applying the proposed method to the realistic supercritical CFB unit will be our future interest.
Some practical issues should be taken into consideration, e.g., the implementation of the proposed
method in the distributed control system of the power plant, and the tracing and undisturbed switching
logic between controllers.
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CCS Coordinated Control System
DDE Desired Dynamic Equation
DOB Disturbance Observer
ESO Extended State Observer
GA Genetic Algorithm
IAE Integrated Absolute Error
MIMO Multi-Input-Multi-Output
PID Proportional-Integral-Derivative
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Abstract: This study investigates the multi-objective optimization of load dispatch of a solar-assisted
coal-fired power generation system. The improved environmental/economic load dispatch model
considers coal consumption, NOx emissions, and power purchase cost. The singular weighted
method is utilized to solve this multi-objective and multi-constraint optimization problem. A power
system that includes five power generators, one of which is retrofitted to a solar-assisted coal-fired
unit, is also analyzed. It can be concluded that the loads of solar-assisted coal-fired units are higher
than the original coal-fired unit, and with the increase of solar radiation, the gap between the loads
of two units also increases. In addition, after retrofitting, the coal consumption, the NOx emission,
and power costs of units reduce by about 2.05%, 0.45%, and 0.14%, respectively. From the study on the
on-grid power tariff, where the tariff drops from 16.29 cents/kWh to 3.26 cents/kWh, NOx emissions
drop from 12.31 t to 11.28 t per day, a reduction of about 8.38%. The cost of purchasing electricity
decreases from $ 2,982,161.8 to $ 2,020,505.0 per day, a decrease of 32.25%. Therefore, when both
coal-fired units and solar-assisted coal-fired units exist in a region, the use of solar-assisted coal-fired
power generation units should be prioritized.

Keywords: Solar-assisted coal-fired power generation system; Singular weighted method;
load dispatch

1. Introduction

The load dispatch of a power generation system is defined, on the basis of the efficiency, power,
and other properties of each unit, as the arrangement of loads for the units [1]. The traditional load
dispatch problem is to find the best way to arrange the power output from all types of generating plants
to realize the maximum economic benefits. However, air pollution poses a serious threat to human
health and the environment [2]. In China, the government has pressed various policies to address
these problems. In terms of reducing pollutant emissions, the government has focused on industries.
Pollutant emissions of the industries mostly come from coal-fired power generation. By the end of
2018, approximately 70% of the electricity in China was still derived from coal-fired power generation
systems [3]. One way to deal with this situation is to exploit renewable energy to replace coal-fired
power generation. Solar energy is a clean, renewable energy that can meet the energy demands of
people. Solar-assisted coal-fired units that utilize various types of solar thermal systems for coupling
traditional coal-fired power plants not only reduce pollutants and greenhouse gas emissions but also
reduce the investment of solar energy facilities. Research by Wang et al. [4] showed the local influence
on solar-assisted coal-fired power generation system (SCPGS) performance due to the substitution
of chemical exergy by solar thermal exergy and the global influence on SCPGS performance jointly
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determines the final coal-savability for a SCPGS in a superposition manner. The superposition effect
(the interaction of local influence and global influence) shows that the overall coal saving capability of
SCPGS depends not only on the direct benefits brought by the local integration of solar energy, but also
on the overall superposition effect of the integration on the system components. The comprehensive
evaluation factor (f) is proposed on the premise of giving consideration to both the coal-savability and
efficiency-promotability. By the end of 2018, the power generating capacity of grid-connected solar
power was 174.63 million kW, an increase of 33.9% year-on-year [3].

Previous studies demonstrated that solar thermal technology is mature enough and that the
combination of solar energy and coal-fired units is feasible. Desai et al. [5] proposed a method to
determine a thermodynamic and cost-effective design for solar power plants without hybridization
and storage. Some studies mainly focused on the use of thermal storage systems in solar thermal
energy generation systems. Raul et al. [6] conducted experiments on a single spherical capsule and
a lab-scale setup to investigate melting, and analyzed the effect of capsule diameter and porosity on
the LHTES (based latent heat thermal energy storage). The results showed that the energy stored and
extraction are faster for a smaller capsule diameter and higher porosity. Lakhani et al. [7] considered
a multitube shell and tube latent heat thermal storage system, and found that the LHTES system with
a lower overall diameter and longer length provides better overall performance for a solar thermal
power plant. Corgnale et al. [8] studied solar power plants from the aspect of thermal energy storage
systems and found that the selected storage systems with metal hydride high-temperature materials
can achieve and exceed the requirements, such as volumetric energy density (25 kWhth/m3) and
operating temperature (600 ◦C). Yogev et al. [9] researched an operating strategy based on thermal
storage with the latent heat of phase change materials (PCMs) and indicated that these PCMs can
achieve stable power output without any heat transfer enhancement. Therefore, these materials can
reduce the complexity and cost of the storage system. Ehrhart et al. [10] found a large gap between the
design point with annual average performance (mainly due to the solar field and receiver subsystems)
and energy losses because of the thermal energy storage being full to capacity. Eduard et al. [11]
used life-cycle assessment to compare the environmental impacts of different thermal energy storage
systems and found that the systems based on solid and liquid media exerted the lowest and the highest
environmental impact per kWh stored, respectively. Other scholars studied the operating performance
of solar-assisted coal-fired power generation systems. Eric et al. [12] proposed the concept of the
solar-assisted coal-fired unit, which increases the efficiency and reduces the greenhouse gas emission
of the traditional power plant. Yang et al. [13] took a 200 MW unit as an example and found that using
medium- or low-temperature solar heat to replace the extraction can achieve a solar heat-to-power
conversion efficiency of 36.5% for solar heat at 260 ◦C. Hong et al. [14] studied a 330 MW coal-fired
power plant hybridized with solar heat in Sinkiang Province, China, and found that the levelized cost
of electricity generation could be 20% to 30% lower than that of the solar-only thermal power plant.

Some studies proposed different methods to solve the problem of load distribution. Bhattacharjee
et al. [15] proposed the real coded chemical reaction algorithm to solve the economic emission load
distribution problem. In this method, they considered NOx emissions, power demand equality
constraint, and operating limit constraint. Jeddi et al. [16] proposed a new modified harmony search
algorithm to solve the economic load dispatch problem and combined the economic emission load
dispatch problem. Leena et al. [17] proposed use of Artificial Neural Networks, which are based
on Levenberg Marquardt backpropagation Algorithm (LMBP), to make rapid decisions in the load
scheduling center and solve the economic load dispatch problem. Coelho et al. [18] proposed particle
swarm optimization approaches to solve the economic load dispatch problem. Another researcher
studied the problem of electricity load distribution by considering wind power. Li et al. [19] proposed
a stochastic multi-objective optimization method to solve the security-constrained optimal power
flow problem with wind power and distributed load changing. This method considers the minimum
expectation of fuel costs, the maximum wind power penetration with wind speed, and distributed load
changes. Mondal et al. [20] proposed the gravitational search algorithm to solve the economic emission
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load dispatch problem by considering both thermal generators and wind turbines with the minimum
amount of NOx emissions and fuel costs. Aghaei et al. [21] presented a scenario-based stochastic
programming framework to model the random nature of load demand and wind forecast errors. Taking
empirical data as input, Modarresi et al. [22] formulated the look-ahead real-time economic dispatch
problem using the scenario approach, which generated a quantifiable risk level in real-time economic
scheduling and generated direct benefits to both real-time and intra-day decision making processes.
Zhu et al. [23] proposed a decomposition-based multi-objective evolutionary algorithm to optimize the
load distribution problem. Rizk et al. [24] proposed a new improved search algorithm based on parallel
hurricane search optimization for non-smooth constrained economic emission dispatch problems to
solve the nonlinear constrained economic emission dispatch problem. The results show that this
method is superior to other optimization methods. Roy [25] gave the formulation of the maximum
likelihood load dispatch, as well as Karush-Kuhn-Tucker conditions of its optimal solution, in order to
reduce the impact of the instability of solar energy on grid connection; it is also a method for making
certain operation reserves for solar energy. However, operating reserves may lead to a significant
increase in solar grid connection costs. Modarresi et al. [26] introduced a new method of quantifying
operation reserves in power systems with high intermittent resource utilization rate, and introduced
an intuitive and rigorous risk diagram, which will help to obtain more cost-effective operation reserves
while ensuring system reliability, load probability loss, and other performance indexes.

Only a few studies have analyzed solar-assisted coal-fired units from the aspect of load dispatch
of the power generation system. In our previous work, we have done a lot of research on solar-assisted
coal-fired power units on their unit features, performances analysis, integration optimization, and so
on. Based on the previous work, how to make solar-assisted coal-fired power generation adapt to
the complex and changeable environment of a power grid is further considered. In the present study,
a coal-fired unit is retrofitted into a solar-assisted coal-fired unit, and the other remaining units are
not changed. Under the given power demand, the multi-objective model considers coal consumption,
NOx emissions, and power purchase cost. The original and retrofitted units are compared and analyzed.
This study may be used as a guide to propose appropriate policies that encourage and promote the
development of solar-assisted coal-fired units.

2. Problem Description

The load dispatch of the power generation system is that the administrative office arranges
loads for the power generating units on the basis of the efficiency, power, and other properties of
each unit. Load distribution on the distribution of the energy and the operation of an electric power
system is highly important. The load dispatch of the power generation changes with the operational
characteristic of a unit. Therefore, the load dispatch of the power generation in this area changes
when a solar-assisted coal-fired unit is introduced to the energy supply system. This study analyzes
the changes in load dispatch when the coal-fired unit is retrofitted to a solar-assisted coal-fired unit.
The diagram of the solar-assisted coal-fired system is shown in Figure 1. The system mainly contains
“solar side” and “coal-fired side” parts. The “solar side” is composed of a solar collector system and
heat exchange system. Solar collector plant is though collector plant form, in which the working
medium is thermal oil. The heat exchanger is an oil–water heat exchanger. When the oil passes
through the heat exchanger, its temperature decreases. When the water passes through the exchanger,
its temperature increases. The solar collectors are produced by LUZ International, Ltd. A solar collector
assembly is 47.1 m long with an aperture width of 5 m. The heat is absorbed in a steel absorber tube
which is 66/70 mm in diameter, surrounded by an evacuated glass envelop which is 115/120 mm in
diameter. The concentration ratio is about 71 and the collector focal length is 1.49 m. The parabolic
trough axes are oriented due north-south to track the sun from east to west.

In the coal-fired side, the unsaturated feedwater from the condenser enters into the boiler after
going through the condensate pump, four low-pressure reheaters (H5, H6, H7, and H8), a deaerator,
a feedwater pump, and three high pressure reheaters (H1, H2, and H3). Then the feedwater absorbs
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heat in the boiler and becomes superheated steam. The superheated steam from the boiler is transported
to the high-pressure cylinder in the turbine to produce power. The steam from the high-pressure
cylinder goes into the boiler and is reheated in order to improve work capacity. Then, the reheated
steam is transported to intermediate pressure and lower pressure cylinders to produce power. In the
end, the final exhaust is condensed in the condenser.

As shown in the diagram, feed water from the deaerator enters the heat exchanger and absorbs the
solar heat. Four modes of operation are available according to the heat exchanger outlet temperature
of the feedwater.

Figure 1. Diagram of solar-assisted coal-fired system.

(1) When the temperature of feed water out of the oil–water heat exchanger is lower than that of
the original third heater. The feed water enters the third heater. This mode is shown in (a) position.

(2) When the temperature of the feed water out of the oil–water heat exchanger is lower than that
of the original second heater but higher than that of the original third heater. The feed water enters the
second heater. This mode is shown in (b) position.

(3) When the temperature of feed water out of the oil–water heat exchanger is lower than that of
the original first heater but higher than that of the original second heater. The feed water enters the
first heater. This mode is shown in (c) position.

(4) When the temperature of feed water out of the oil–water heat exchanger is higher than that of
the original first heater. The feed water enters the boiler. This mode is shown in (d) position.

3. Methodology

Under certain constraints, multi-objective optimization aims to have more than one goal to
achieve an optimal solution. One of the easiest ways to obtain the optimal solution is called standard
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quantization or the singular weighted method. A weight is assigned to each target. All the targets
with their own weights are positioned together, and then the problem is solved under the same
constraints of the original problem. The obtained solution is a solution to the original problem (called
the Pareto solution). The weight arrangement is constantly changed; hence, different optimal solutions
are obtained. The present study takes the units in a particular area as an example, simultaneously
considering coal consumption, nitrogen oxide emissions, and electricity purchase. Then, the optimal
solution and the load dispatch of each unit are obtained under the power demand in this region.

3.1. Objective Function

3.1.1. Minimum Coal Consumption

Coal consumption is a commonly used index in the evaluation of coal-fired power plants.
Therefore, minimizing the coal consumption of coal-fired power plants is crucial in modern
energy systems.

min f1 =
N

∑
j=1

[
ajP2

j (t) + bjPj(t) + cj

]
(1)

where N is the number of units; aj, bj, and cj are the coefficients of coal consumption; and Pj(t) is the
current output of the power plant.

3.1.2. Minimum Pollutant Emissions

Pollutant emission performance during power production is considered, and the function of
minimum pollutant emissions is established in various energy systems by fitting the discharge curves of
various energy systems. In this study, all the units are equipped with desulphurization equipment with
an efficiency of above 98%. Therefore, the main consideration emissions of units are NOx emissions.

min f2 =
N

∑
j=1

[
ujP2

j (t) + vjPj(t) + wj

]
(2)

where uj, vj, and wj are the coefficients of pollutant emission.

3.1.3. Minimum Power Costs

min f3 =
N

∑
j=1

ρj(t)Pj(t) (3)

where ρj(t) is the current power purchase cost.

3.2. Constraints

3.2.1. Load Balance between Supply and Demand

Load balance between supply and demand means that the power output and the electricity should
be equal at any time.

N

∑
j=1

Pj(t) = PD(t) + PL(t) (4)

where PL(t) stands for the grid loss and PD(t) stands for the grid power requirement.

3.2.2. Upper and Lower Limits for the Units

The power generation of the units is deeply influenced by the characteristics of the units.
For example, a coal-fired power plant should work least at the load ratio of approximately 30%
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to avoid extra oil consumption. The characteristics of different types of units should be considered to
determine the upper and lower limits for the units.

Pjmin ≤ Pj(t) ≤ Pjmax (5)

where Pjmin and Pjmax represent the lower and upper limits for the units, respectively.

3.3. Multi-Objective Optimization

The method for solving multi-objective function has rapidly developed. Some scholars
proposed multi-objective differential evolution algorithms to solve problems [27–31]. Ghasemi [32]
proposed improved multi-objective interactive honey bee mating optimization to solve the
environmental/economic power dispatch problem. In this method, the fuel costs, pollutant emissions,
and system loss should be minimized while satisfying certain system constraints. Boyhina et al. [33]
proposed a trust region algorithm to solve the multi-objective economic emission load dispatch
problem. The approach they proposed is efficient for solving ill-defined systems and non-convex
multi-objective optimization problems.

The aim of conventional generation planning is to minimize the cost of power generation under
conditions that meet the system constraints and electricity demand. Considering the lowest operating
costs, fuel cost, or electricity purchase is a single objective function.

3.3.1. Singular Weighted Method

In accordance with the weight of the original objective function, a new objective function g(x) is
constructed. The solution of the single-objective optimization function can be the efficient solution of
the problem.

g(x) = w1
f1

f min
1

+ w2
f2

f min
2

+ . . . + wm
fm

f min
m

(6)

where f min
i = min

x∈s
fi(x), (i = 1,2, . . . ,m) is the lowest solution of the single objective function; f min =(

f min
1 , f min

2 , . . . , f min
m

)
is the optimal solution vector with all the elements denoting the optimal solution

for each objective function; w = (w1, w2, . . . , wm) is the weighted vector, and
N
∑

j=1
wi = 1, wi ≥ 0, i = 1,2,

. . . ,m. In this model, fi
f min
i

is used to convert the different objective functions to the same magnitude.

The effective solution of the multi-objective function can be solved by solving the single objective
function min

x∈s
g(x).

3.3.2. Realization of the Algorithm Using MATLAB

According to the singular weighted method, objective functions (1) to (3) can be converted to

g(x) = w1
f1

f min
1

+ w2
f2

f min
2

+ w3
f3

f min
3

(7)

where f min
1 , f min

2 , and f min
3 stand for the optimal values of objective functions (1) to (3), respectively,

and can be derived by solving the corresponding single-objective functions; and w1, w2 and w3 stand
for specified weight coefficients and known quantities. Equation (7) is simplified by removing the
constant term to obtain

g(x) = w1
∑N

j=1

[
ajP2

j (t)+bjPj(t)
]

f min
1

+ w2
∑N

j=1

[
ujP2

j (t)+vjPj(t)
]

f min
2

+ w3
∑N

j=1 ρj(t)Pj(t)

f min
3

=
N
∑

j=1

[(
w1aj

f min
1

+
w2uj

f min
2

)
P2

j (t)
]
+

N
∑

j=1

[(
w1bj

f min
1

+
w2vj

f min
2

+
w3ρj

f min
3

)
Pj(t)

] (8)
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Therefore, the original problem can be solved by solving the objective function (8) under
constraints (4) and (5). Quadprog function, a toolbox in MATLAB, can be used to solve quadratic
programming problems.

General quadratic programming problems can be described as [34]

Objective Function : min(
1
2

xT Hx + f Tx) (9)

Constraints :

⎧⎪⎨
⎪⎩

Ax ≤ B
Aeq = Beq

xm ≤ x ≤ xM

(10)

Equation (9) can be solved by MATLAB.
Syntax: [

x, fopt, flag, c
]
= quadprog

(
H, f , A, B, Aeq, Beq, xm, xM, x0

)
(11)

where H is the Hessian matrix of the quadratic programming objective function, f is the vector
of the coefficients of x, A is the matrix for linear inequality constraints, B is the vector for linear
inequality constraints, Aeq is the matrix for the linear equality constraints, Beq is the vector for the
linear equality constraints, xm is the vector of lower bounds, xM is the vector of upper bounds, and x0

is the initial point for x. If the constraint of matrix does not exist, an empty matrix is used to replace it.
After the optimized operation finishes, the results will be returned in variable x, and the result of the
optimization objective function will be returned in fopt. If the flag is a positive number, the equation is
solved successfully. The number of iterations and the number of function calls, algorithms, and other
information will be returned in variable c.

4. Case Study

4.1. Basic Data

The area has five coal-fired units. No. 4 is retrofitted to solar-assisted coal-fired units.
The retrofitted system is fictitious based on the real parameters. The parameters of five units are
shown in Table 1.

Table 1. Parameters for the case study.

Unit No.

Coal Consumption
Coefficients

Nox Emission Coefficients
Lower and Upper

Limits
On-grid Power

Tariff

(th−1) (10e−7th−1) (MW) (Cent/kWh)

aj bj cj uj vj wj Pjmin Pjmax -

1 0.000175 0.11 3 6.49 5.554 4.091 310 570 4.40
2 0.00023 0.15 5 5.638 6.047 2.543 250 425 3.26
3 0.000116 0.07 7 4.586 5.094 4.257 350 700 4.07
4a −0.000039 0.29 5.3 3.718 3.905 5.859

260 680 3.264b a b 6.43 3.624 −3.55 5.739
5 0.00012 0.12 5 4.586 5.094 4.258 325 660 4.40

Note: a = −(0.000005662+0.00000003497DNI), b = 0.2707 − 0.00004014DNI + 0.00000003023DNI2, DNI is the Direct
Normal Irradiance, 4a stands for the original unit, 4b stands for the retrofitted unit.

On the basis of the parameters of No. 4 unit and collector and the values of DNI (direct normal
insolation), the parameters of No. 4 unit are fitted to the function of load and DNI by using MATLAB.
The results are presented in Table 1. The system of the retrofitted unit is the same as the solar-assisted
coal-fired system in Figure 1. The parameters of No. 4 unit and collector are shown in Tables 2
and 3, respectively.
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Table 2. Parameters of No. 4 unit.

Parameters Units Values

Load % 100 85 75 50 45
Capacity MW 600.00 561.09 495.00 330.00 264.00

Parameters of main steam Mpa/°C 24.2/566 24.2/566 23.5/566 15.9/566 13.3/566
Reheat temperature °C 566 566 566 566 566

Feedwater mass flowrate t/h 1836.5 1552.2 1360.1 899.0 733.3
Condenser pressure kpa 4.9 4.9 4.9 4.9 4.9

Exhaust specific enthalpy kJ/kg 2314.7 2347 2369.4 2440.1 2469.1
Designed coal consumption rate g/kWh 270.9 275.7 278.8 293.3 298.3

Table 3. Parameters of collector.

Parameters Units Values

Width/Length m 5/47.1
The number of Loop - 70

The number of SCA (solar collector assembly) in Loop - 8
Collector array pitch m 15

Collector area m2 263,200
The total area m2 1,052,800

This study was based on the DNI value in Lhasa at a latitude of 29.60 N, longitude of 91.10 E,
and elevation of 3658 m in Tibet Province, one of the highest solar irradiation areas in China. In this
paper, the values of DNI in June 25 are used to calculate the coal consumption of the units. The DNI
values are shown in Figure 2.
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Figure 2. Values of DNI within 24 h.

The power load demands in this area are shown in Figure 3; w is chosen as w = (1/3, 1/3, 1/3).
To simplify the calculation, the loss of grid is ignored.
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Figure 3. Power load demands within 24 h.

4.2. Results

When the results of w = (1/3, 1/3, 1/3), the parameters of this No. 4 original unit (OU) and
retrofitted unit (RU) are shown in Table 4. More detailed values of each unit load allocation are shown
in Table A1 in the Appendix A.

Table 4. Parameters of this No. 4 original unit (OU) and retrofitted unit (RU).

No. 4 Unit
Coal Consumption NOx Emission Power Costs

td−1 td−1 $d−1

OU 10,924.4 11.33 2,023,434.1
RU 10,699.9 11.29 2,020,505.0

Table 4 shows that the coal consumption of units is reduced by approximately 2.05% from 10924.4 t
to 10699.9 t per day. The NOx emission decreases by approximately 0.45% from 11.33 t to 11.29 t per
day. The power costs are reduced by approximately 0.14% from $ 2,023,434.1 to $ 2,020,505.0 per day.
Therefore, coal consumption has a greater degree of decline, while NOx emissions and power cost
decline are not obvious. This result demonstrates that the development of solar-assisted coal-fired
units can effectively deal with resource exhaustion, environmental pollution, and other issues from
energy, environmental, and economic aspects.

The loads of the original and retrofitted units are shown in Figure 4.
Figure 4 shows that the loads of units changing with time are both consistent with the power

demand in this region. In periods 1 to 6, the loads of the original and retrofitted units are basically the
same because the value of DNI is 0 in both original and retrofitted units. In periods 7 to 18, the loads
of the retrofitted unit are higher than those of the original unit. With the increase or decrease in
DNI, the difference between the loads of two units also shows a corresponding change. In period 11,
the difference between the loads of the two units decreases because the load of the retrofitted unit
has reached the upper limit of the unit. In period 14, DNI reaches a maximum of 1143.96 MW/m2.
The gap between two units also reaches a maximum of 40.64 MW. In periods 19 and 20, the loads of
the original and retrofitted units have reached the upper limit of the unit. In periods 21 to 24, DNI is 0,
and the loads of the original and retrofitted units are similar.
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Figure 4. Load curves of No. 4 unit before and after reconstruction.

In periods 7 to 20, the loads for the units changing between the original and retrofitted units is
shown in Figure 5.

Figure 5 shows that the load of No. 4 unit is higher after the coal-fired unit is retrofitted into the
solar-assisted coal-fired unit in the presence of solar radiation. Nevertheless, the loads are lower for the
remaining units. Thus, under the multi-objective optimal condition, the advantages of the solar-assisted
coal-fired unit are higher than those of the coal-fired unit. Therefore, the use of solar-assisted coal-fired
power generation units should be prioritized when both coal-fired units and solar-assisted coal-fired
units are present in a region.

For periods 7, 11, and 14, load ratios of five units are shown in Figure 6.
As shown in Figure 6, in periods 7, 11, and 14, the loads of No. 4 unit have increased by 1.27%,

1.57%, and 1.79%, respectively. With increasing DNI values, the gap of loads between the coal-fired
unit and solar-assisted coal-fired unit also increases.
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Figure 5. Load of units changing before and after reconstruction.
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Figure 6. Load ratio of five units.

5. Uncertainty Analysis

Uncertainty analysis analyzes every factor that affects the project. Most of the basic data used in
the evaluation process, such as investment, production, capital, revenue, and so on, are based on the
calculation of forecasts and estimates, and it is assumed that these parameters remain unchanged in
the calculation period. Decisions made on the basis of these conditions are called decisive decisions.
However, due people’s awareness of the limitations of predictions and the limited availability of
information, these data and the actual situation may be different, thus leading to uncertainty. To reduce
the risk of uncertainty and mistakes in the project, the impact of various uncertainties on the project
must be analyzed. In the model building and solving process, some parameters are assumed. To match
the model with the actual situation, the model requires uncertainty analysis.

5.1. Effects of Weighted Coefficients

The weighted coefficients are decided by the importance of different objectives. In this study,
three weighted vectors are considered: (1/3, 1/3, 1/3), (0.5, 0.25, 0.25), and (0.8, 0.1, 0.1). The results
are shown in Table 5.

Table 5. Effects of weighted vector on the results.

Weighted Vector

Coal Consumption NOx Emission Power Costs

td−1 td−1 $d−1

OU RU OU RU OU RU

(1/3,1/3,1/3) 10,924.4 10,699.9 11.33 11.29 2,023,434.1 2,020,505.0
(0.5,0.25,0.25) 10,824.4 10,597.7 11.42 11.38 2,033,382.7 2,028,780.6

(0.8,0.1,0.1) 10,626.9 10,433.4 12.00 11.85 2,065,198.3 2,051,382.3

As shown in Table 5, the coal consumption, NOx emissions, and power costs decline after the
No. 4 unit is retrofitted under different weighted vectors. When the weighted vector transforms from
(1/3, 1/3, 1/3) to (0.8, 0.1, 0.1), the coal consumption of the original unit declines by 2.72%, and the
NOx emissions and power costs increase by 5.91% and 2.06%, respectively. The coal consumption of
the retrofitted unit declines by 2.49%, and the NOx emissions and power costs increase by 5.00% and
1.53%, respectively. A comparison of the two data sets show that the change in the parameters of the
retrofitted unit is less than that in the parameters of the original unit. This shows that small changes in
the parameters of the solar-assisted coal-fired units are conducive to the operation stability of the unit.
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The impact of weighting coefficients for the optimal solution is shown in Figure 7.
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Figure 7. Impact of weighting coefficients for the optimal solution.

Figure 7 shows that the optimal solution of the solar-assisted coal-fired unit is less than that of
the coal-fired unit with the same weighted vectors. The smaller the optimal solution, the better the
performance of the unit. Thus, the performance of the solar-assisted coal-fired unit is better than that
of the coal-fired unit. As the weight coefficients of coal consumption increase, the optimal solution
decreases. This shows that among these three weighting coefficients, the weighting coefficients of coal
consumption have the most important influence on the optimal solution.

5.2. Effects of on-Grid Power Tariff

In China, solar thermal power generation has not entered the commercial stage. The current
on-grid power tariff of solar-assisted coal-fired units is not clearly defined. However, a large number of
photovoltaic power generators have been put into use, so uncertainty analysis calculation refers
to the PV (solar photovoltaic) on-grid power tariff. This paper selected 3.26, 6.52, 9.77, 13.03,
and 16.29 cent/kWh as the on-grid power tariff for solar-assisted coal-fired units. The results are
shown in Table 6.

Table 6. Effects of the on-grid power tariff on the results.

On-grid Tariff Coal Consumption NOx Emission Power Costs

Cent/kWh td−1 td−1 $d−1

3.26 10,699.9 11.28 2,020,505.0
6.52 10,681.9 11.39 2,416,605.0
9.77 10,677.2 11.74 2,655,308.3
13.03 10,689.8 12.07 2,825,889.1
16.29 10,699.5 12.31 2,982,161.8

Table 6 shows a nonlinear relationship between coal consumption and on-grid tariff, but power
purchase costs and NOx emissions increase with increasing tariff amount. When the tariff decreases
from 16.29 cent/kWh to 3.26 cent/kWh, NOx emissions drop by approximately 8.38% from 12.31 t to
11.28 t per day. In addition, the cost of purchasing electricity decreases by 32.25% from $ 2,982,161.8 to
$ 2,020,505.0 per day.

The impact of the on-grid power tariff on the optimal solution is shown in Figure 8.
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Figure 8. Impact of on-grid power tariff on the optimal solution.

As the tariff increases, the optimal solution also increases. The optimal solution finally stabilizes
near 1.39. As the technology of the solar-assisted coal-fired units mature, their tariff gradually reduces.
Therefore, the advantage of solar-assisted coal-fired units will become more apparent.

6. Conclusions

In this study, a coal-fired unit in a particular area is retrofitted to solar-assisted coal-fired units.
The other remaining units are not changed. Under the given power demand, the multi-objective model
considers coal consumption, NOx emissions, and power purchase cost. The singular weighted method
combined with the MATLAB toolbox is used to find the optimal solution in the multi-objective function.
Thus, the changes in each unit’s load before and after the No. 4 unit is retrofitted are compared and
analyzed under optimal solution conditions.

The original and retrofitted unit loads are compared over 24 h. Results show that the loads of
the solar-assisted coal-fired unit are higher than those of the coal-fired unit. With the increase in solar
radiation, the gap between the loads of the two units also increases. The loads of five units before and
after the No. 4 unit is retrofitted are compared under the solar radiation. The loads of the No. 4 unit
increase, and the loads of the other units decrease.

In addition, uncertainty analysis in this section discusses the impact of weighting coefficients
and on-grid power tariff changes on the results. With the increase in the weighted coefficient of coal
consumption, the optimal solution decreases. Investigation of the on-grid power tariff shows that the
optimal solution gradually declines as the tariff decreases.

Through this study, compared to coal-fired units, solar-assisted coal-fired units have an advantage
in terms of energy saving and emission reduction. Therefore, the government should encourage and
support the development of solar-assisted coal-fired units. The methods described in this paper may
also be used to solve other problems. In real life, this method can be used to solve the load dispatch
problem of this area according to the specific circumstances of units, DNI values, and power load.
Then, recommendations on the regional distribution of load between units can be proposed.
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Nomenclature

aj, bj, cj coal consumption coefficients H symmetric matrix
uj, vj, wj pollutant emission coefficients A matrix for linear inequality constraints
ρj power purchase costs B vector for linear inequality constraints

Pj
power output of the existing power
generating units

Aeq matrix for linear equality constraints
Beq vector for linear equality constraints

PD electricity demand for the grid xm vector of lower bounds
PL grid loss Xm vector of upper bounds
Pjmin lower limit for units x0 initial point for x
Pjmax upper limit for units OU original unit
f vector RU retrofitted unit

Appendix A Appendix

Table A1. Each unit load allocation of No. 4 original unit (OU) and retrofitted unit (RU).

Unit No. P1(MW) P2(MW) P3(MW) P4(MW) P5(MW)

Time OU RU OU RU OU RU OU RU OU RU

1 310 310 291 292 429 430 478 474 373 375
2 310 310 313 314 459 461 528 522 403 405
3 310 310 286 287 422 423 467 464 367 368
4 310 310 275 276 407 408 442 440 352 353
5 310 310 279 280 413 414 451 449 358 359
6 310 310 289 290 427 428 475 471 372 373
7 310 310 286 279 422 413 466 490 366 358
8 310 310 294 286 433 422 485 514 378 367
9 310 310 313 304 459 447 528 559 403 392

10 310 310 320 311 469 456 544 578 413 401
11 340 334 366 360 532 524 651 680 476 468
12 322 314 347 339 506 494 607 647 450 439
13 317 310 342 333 499 487 595 634 443 431
14 327 319 353 344 514 502 620 661 458 446
15 332 323 357 349 520 508 630 671 464 452
16 332 324 357 349 520 508 630 670 464 453
17 326 318 351 343 512 500 616 654 456 445
18 331 324 357 349 519 508 629 665 463 453
19 402 402 425 425 621 621 680 680 565 565
20 410 410 425 425 632 632 680 680 576 576
21 404 404 425 425 624 623 680 680 567 567
22 377 377 405 405 585 585 680 680 529 529
23 351 354 378 381 548 552 677 665 492 496
24 316 318 341 343 498 500 593 584 442 445

References

1. Yongping, Y.; Rongrong, Z.; Liqiang, D.; Masek, O.; Oakey, J. Study on multi-objective optimization of load
dispatch including renewable energy and CCS technologies. Int. J. Energy Res. 2010, 34, 702–715. [CrossRef]

2. Bakos, G.C.; Tsechelidou, C. Solar aided power generation of a 300 MW lignite fired power plant combined
with line-focus parabolic trough collectors field. Renew. Energy 2013, 60, 540–547. [CrossRef]

3. China Electric Council. 2018. Available online: http://www.cec.org.cn/d/file/guihuayutongji/tongjxinxi/
niandushuju/2019-01-22/4fedb4c956f6059c5998913b10a6233a.pdf (accessed on 16 February 2019).

4. Ruilin, W.; Jie, S.; Hui, H.; Hongguang, J. Comprehensive evaluation for different models of Solar-aided
coal-fired power generation system under common framework regarding both Coal-savability and
efficiency-promotability. Energy 2018, 143, 151–167.

5. Desai, N.B.; Kedare, S.B.; Bandyopadhyay, S. Optimization of design radiation for concentrating solar
thermal power plants without storage. Sol. Energy 2014, 107, 98–112. [CrossRef]

32



Energies 2019, 12, 1284

6. Raul, A.; Jain, M.; Gaikwad, S.; Saha, K. Modelling and experimental study of latent heat thermal energy
storage with encapsulated PCMs for solar thermal applications. Appl. Therm. Eng. 2018, 143, 415–428.
[CrossRef]

7. Lakhani, S.; Raul, A.; Saha, S. Dynamic modelling of ORC-based solar thermal power plant integrated with
multitube shell and tube latent heat thermal storage system. Appl. Therm. Eng. 2017, 123, 458–470. [CrossRef]

8. Corgnale, C.; Hardy, B.; Motyka, T.; Zidan, R.; Teprovich, J.; Peters, B. Screening analysis of metal hydride
based thermal energy storage systems for concentrating solar power plants. Renew. Sustain. Energy Rev. 2014,
38, 821–833. [CrossRef]

9. Yogev, R.; Kribus, A. Operation strategies and performance of solar thermal power plants operating from
PCM storage. Sol. Energy 2013, 95, 170–180. [CrossRef]

10. Ehrhart, B.; Gill, D. Evaluation of Annual Efficiencies of High Temperature Central Receiver Concentrated
Solar Power Plants with Thermal Energy Storage. Energy Procedia 2014, 49, 752–761. [CrossRef]

11. Oró, E.; Gil, A.; de Gracia, A.; Boer, D.; Cabeza, L.F. Comparative life cycle assessment of thermal energy
storage systems for solar power plants. Renew. Energy 2012, 44, 166–173. [CrossRef]

12. Hu, E.; Yang, Y.; Nishimura, A.; Yilmaz, F.; Kouzani, A. Solar thermal aided power generation. Appl. Energy
2010, 87, 2881–2885. [CrossRef]

13. Yang, Y.; Yan, Q.; Zhai, R.; Kouzani, A.; Hu, E. An efficient way to use medium-or-low temperature solar
heat for power generation–integration into conventional power plant. Appl. Therm. Eng. 2011, 31, 157–162.
[CrossRef]

14. Hong, H.; Peng, S.; Zhao, Y.; Liu, Q.; Jin, H. A Typical Solar-coal Hybrid Power Plant in China. Energy
Procedia 2014, 49, 1777–1783. [CrossRef]

15. Bhattacharjee, K.; Bhattacharya, A.; Halder nee Dey, S. Solution of Economic Emission Load Dispatch
problems of power systems by Real Coded Chemical Reaction algorithm. Int. J. Electr. Power Energy Syst.
2014, 59, 176–187. [CrossRef]

16. Jeddi, B.; Vahidinasab, V. A modified harmony search method for environmental/economic load dispatch of
real-world power systems. Energy Convers. Manag. 2014, 78, 661–675. [CrossRef]

17. Leena, D.; Krishna, T.C.; Mohan, L.K. Dynamic Economic Load Dispatch using Levenberg Marquardt
Algorithm. Energy Procedia 2018, 144, 95–103.

18. Coelho, L.D.S.; Lee, C.S. Solving economic load dispatch problems in power systems using chaotic and
Gaussian particle swarm optimization approaches. Int. J. Electr. Power Energy Syst. 2008, 30, 297–307.
[CrossRef]

19. Li, M.S.; Wu, Q.H.; Ji, T.Y.; Rao, H. Stochastic multi-objective optimization for economic-emission dispatch
with uncertain wind power and distributed loads. Electr. Power Syst. Res. 2014, 116, 367–373. [CrossRef]

20. Mondal, S.; Bhattacharya, A. Multi-objective economic emission load dispatch solution using gravitational
search algorithm and considering wind power penetration. Int. J. Electr. Power Energy Syst. 2013, 44, 282–292.
[CrossRef]

21. Aghaei, J.; Niknam, T.; Azizipanah-Abarghooee, R.; Arroyo, J.M. Scenario-based dynamic economic emission
dispatch considering load and wind power uncertainties. Int. J. Electr. Power Energy Syst. 2013, 47, 351–367.
[CrossRef]

22. Modarresi, M.S.; Xie, L.; Campi, M.G.; Simone, C.; Algo, T.; Anupam, K. PR Scenario-based Economic
Dispatch with Tunable Risk Levels in High-renewable Power Systems. IEEE Trans. Power Syst. 2018, 1.
[CrossRef]

23. Zhu, Y.; Wang, J.; Qu, B. Multi-objective economic emission dispatch considering wind power using
evolutionary algorithm based on decomposition. Int. J. Electr. Power Energy Syst. 2014, 63, 434–445.
[CrossRef]

24. Rizk-Allah, R.M.; El-Sehiemy, R.A.; Wang, G.G. A novel parallel hurricane optimization algorithm for secure
emission/economic load dispatch solution. Appl. Soft Comput. 2018, 63, 206–222. [CrossRef]

25. Roy, S. The maximum likelihood optima for an economic load dispatch in presence of demand and generation
variability. Energy 2018, 147, 915–923. [CrossRef]

26. Modarresi, M.S.; Xie, L. An operating reserve risk map for quantifiable reliability performances in renewable
power systems. In Proceedings of the 2014 IEEE PES General Meeting | Conference & Exposition, National
Harbor, MD, USA, 27–31 July 2014.

33



Energies 2019, 12, 1284

27. Li, J.F.; Zhang, B.H.; Liu, Y.F.; Wang, K.; Wu, X.S. Spatial evolution character of multi-objective evolutionary
algorithm based on self-organized criticality theory. Phys. A Stat. Mech. Its Appl. 2012, 391, 5490–5499.
[CrossRef]

28. Lu, Y.; Zhou, J.; Qin, H.; Wang, Y.; Zhang, Y. Environmental/economic dispatch problem of power system
by using an enhanced multi-objective differential evolution algorithm. Energy Convers. Manag. 2011, 52,
1175–1183. [CrossRef]

29. Wu, L.H.; Wang, Y.N.; Yuan, X.F.; Zhou, S.W. Environmental/economic power dispatch problem using
multi-objective differential evolution algorithm. Electr. Power Syst. Res. 2010, 80, 1171–1181. [CrossRef]

30. Siddiqi, U.F.; Shiraishi, Y.; Dahb, M.; Sait, S.M. A memory efficient stochastic evolution based algorithm for
the multi-objective shortest path problem. Appl. Soft Comput. 2014, 14, 653–662. [CrossRef]

31. Peng, C.; Sun, H.; Guo, J. Multi-objective optimal PMU placement using a non-dominated sorting differential
evolution algorithm. Int. J. Electr. Power Energy Syst. 2010, 32, 886–892. [CrossRef]

32. Ghasemi, A. A fuzzified multi objective interactive honey bee mating optimization for
environmental/economic power dispatch with valve point effect. Int. J. Electr. Power Energy Syst.
2013, 49, 308–321. [CrossRef]

33. El-sobky, B.; Abo-elnaga, Y. Multi-objective economic emission load dispatch problem with trust-region
strategy. Electr. Power Syst. Res. 2014, 108, 254–259. [CrossRef]

34. Hunt, B.R.; Lipsman, R.L.; Rosenberg, J.M.; Coombes, K.R.; Osborn, J.E.; Stuck, G.J. A Guide to MATLAB:
For Beginners and Experienced Users; Cambridge University Press: Cambridge, UK, 2006.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

34



energies

Article

Transient Analysis and Execution-Level Power
Tracking Control of the Concentrating Solar Thermal
Power Plant

Xiufan Liang and Yiguo Li *

Key laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University,
Nanjing 210096, China; 676615246@qq.com
* Correspondence: lyg@seu.edu.cn; Tel.: +86-13913970596

Received: 25 March 2019; Accepted: 12 April 2019; Published: 25 April 2019

Abstract: Concentrating solar power (CSP) is a promising technology for exploiting solar energy.
A major advantage of CSP plants lies in their capability of integrating with thermal energy storage;
hence, they can have a similar operability to that of fossil-fired power plants, i.e., their power output
can be adjusted as required. For this reason, the power output of such CSP plants is generally
scheduled to maximize the operating revenue by participating in electric markets, which can result
in frequent changes in the power reference signal and introduces challenges to real-time power
tracking. To address this issue, this paper systematically studies the execution-level power tracking
control strategy of an CSP plant, primarily aiming at coordinating the control of the sluggish steam
generator (including the economizer, the boiler, and the superheater) and the fast steam turbine. The
governing equations of the key energy conversion processes in the CSP plant are first presented
and used as the simulation platform. Then, the transient behavior of the CSP plant is analyzed to
gain an insight into the system dynamic characteristics and control difficulties. Then, based on the
step-response data, the transfer functions of the CSP plant are identified, which form the prediction
model of the model predictive controller. Finally, two control strategies are studied through simulation
experiments: (1) the heuristic PI control with two operation modes, which can be conveniently
implemented but cannot coordinate the control of the power tracking speed and the main steam
parameters, and (2) advanced model predictive control (MPC), which overcomes the shortcoming of
PI (Proportional-Integral) control and can significantly improve the control performance.

Keywords: CSP plant model; transient analysis; power tracking control; two-tank direct energy storage

1. Introduction

In recent years, solar energy has become the second-largest energy source after wind energy
among the renewable energy sources that are used for electricity production [1]. The concentrating
solar power (CSP), which uses either organic oil or molten salt as its heat transfer fluid (HTF) to absorb
and transfer solar energy, is currently the most commercially attractive solar thermal-based power
generation technology [2].

To fill the generation gaps in intermittent solar energy, the CSP plant is generally integrated with
thermal energy storage (TES), which enables the CSP plant to control its power output flexibly in the
presence of solar uncertainty [3]. Actually, the TES enables the CSP plant to be partly independent
from constantly changing solar radiation [4], reducing the short-term load variation and extending or
shifting the power supply period [5]. Therefore, the CSP plant is potentially capable of supplying the
power on demand, participating in electricity markets by scheduling the power production throughout
each day [6], and providing ancillary services such as regulating the grid frequency [7]. By participating
in electricity markets, the revenue of the CSP plant can be significantly improved [1]. For this reason,
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power scheduling is required to maximize the revenue, which is known as the decision-level power
generation control [8]. Additionally, when the CSP plant serves as the load-following power plant,
it must be able to regulate the power output rapidly in response to the changing demand for power
supply [9].

The demand for the flexible operation of the CSP plant brings a high requirement to its
execution-level dynamic control. The CSP plant must be able to rapidly adjust its power output in
a wide operation range and simultaneously maintain the stability of the main steam pressure and
temperature for safety and economic reasons. To achieve this goal, it is necessary to perform a thorough
investigation of the system dynamic behavior, and on this basis find an appropriate execution-level
control strategy for controlling power tracking.

Existing research works related to the execution-level control of CSP plants integrated with TES
mainly focused on the control of the HTF temperature in collector field. Cirre et al. used a feedback
linear control scheme to control the HTF temperature, which can reduce the influence of process
nonlinearity [10]. Gallego and Camacho proposed a state-space model predictive control to reject
external disturbance on the HTF temperature [11]. Alsharkawi and Rossiter developed an improved
gain scheduling predictive control, incorporating a feed-forward strategy to improve the temperature
control performance [12]. Nevado Reviriego, Hernández-del-Olmo, and Álvarez-Barcia studied a
nonlinear adaptive control scheme for the HTF temperature, which can cope with the time-varying
nature of the process [13].

However, few of these research works have focused on the execution-level power tracking control
of CSP plants, which is even more challenging than the HTF temperature control. In fact, power
tracking is not a stand-alone control problem. The control action that changes the power output
can bring significant disturbances to the main steam (steam flowing into the turbine) pressure and
temperature. Accelerating the power tracking rate can easily result in significant fluctuation in the
main steam parameters, which imposes a negative effect on the safe and economic operation of the
CSP plant. Furthermore, in CSP plants, the steam generator dynamics are much slower than the steam
turbine dynamics, and it is challenging to coordinate the control of two systems with completely
different response speeds.

Considering these issues, this paper proposes an execution-level power tracking control strategy
for CSP plants that aims at achieving the dual tasks of fast power tracking and small fluctuation in the
main steam parameters by coordinating the operation of the steam generator and the turbine. The
heuristic PI control strategy with two operation modes, i.e., the fast power tracking mode (FT mode)
and the smooth operation mode (SO mode), is first studied based on our knowledge about the process.
However, each operation mode of heuristic PI can only satisfy one of the two control tasks. Therefore,
the advanced model predictive control (MPC) strategy is further proposed to enhance the coordinating
strategy and achieve both of the control tasks.

The remainder of this paper is organized as follows. The description and modeling of the CSP plant
are presented in Section 2. Section 3 includes the transient analysis and process model identification.
In Section 4, the heuristic PI control strategy and the MPC strategy are formulated, and their control
performance is evaluated. Section 5 contains the conclusions.

2. Simulation Model of the CSP Plant

This section presents the simplified simulation model of a CSP plant with two-tank direct TES.
Figure 1 shows the simplified scheme of the plant considered in this study, and its working principle
is described as follows. The HTF (orange line in Figure 1) from the cold molten salt tank absorbs
the solar radiation in the solar field, which comprises a set of single-axis tracking parabolic trough
concentrators, and is then stored in the hot molten salt tank. In the meantime, the hot tank releases
the stored HTF, which sequentially flows through the superheater, the boiler, and the economizer.
In the economizer, the working fluid in the Rankine cycle is in liquid phase (blue line) and preheated
close to its saturation temperature. In the boiler, the working fluid undergoes a phase change and
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evaporates from liquid to saturated steam. In the superheater, the saturated steam is further heated
into superheated steam. Finally, the superheated steam (main steam) passes through the main steam
valve and drives the steam turbine to produce electric power. To control the main steam temperature,
an attemperator, which can spray feed water, is installed before the last-level superheater.

 

Figure 1. System configuration of the concentrating solar power (CSP) plant with two-tank direct
thermal energy storage (TES) (the arrows represent the fluid flow direction).

2.1. Solar Collector Model

The solar collector consists of a parabolic mirror, a glass envelope, and an absorber tube. The
sunlight entering the mirror aperture is focused on the focal line, where the absorber tube is positioned.
The absorber tube is enclosed by an evacuated glass envelope to prevent the heat loss to the environment.
The dynamics of the HTF, the absorber tube, and the glass envelope can be described using a piecewise
lumped parameter model discretized along the focal line (see Figure 2).

 

Figure 2. A side view of the solar collector.

A. Energy balance of the i-th HTF volume element:

ρHCHÂHΔxA
dT(i)

HA
dt

= qH,coldCH(T
(i−1)
HA − T(i)

HA) + hH,TPTA,i(T
(i)
TA − T(i)

HA), (1)
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where ΔxA is length of the volume element, qH,cold is the mass flowrate of the HTF outflowing
from the cold tank, and hH,T is the heat transfer coefficient between the HTF and the tube, which
can be determined using empirical correlations developed in [14].

B. Energy balance of the i-th absorber tube volume element:

ρTCTÂT
dT(i)

TA
dt = hH,TPTA,i(T

(i)
HA − T(i)

TA) − σ
1
εTA

+
1−εG
εG

( rTA,o
rG,i

)PTA,o((T
(i)
TA)

4 − (T(i)
G )

4
) + ICηopticalw (2)

where ηoptical is the optical efficiency of the solar collector.

C. Energy balance of the i-th glass envelope volume element:

ρGCGÂG
dT(i)

G
dt = σ

1
εTA

+
1−εG
εG

( rTA,o
rG,i

)PG,i((T
(i)
TA)

4 − (T(i)
G )

4
) − σεGPG,o((T

(i)
G )

4 − (Tsky)
4) − hG,airPG,o(T

(i)
G − Tair) (3)

where Tsky is the temperature of the sky, and Tair is the ambient air temperature.

2.2. Storage Tank Model

The dynamics of the hot tank and the cold tank are modeled using the same equations. The mass
and energy balance of the storage tanks are established as:

ρH
dVSt

dt
= qH,in − qH,out (4)

ρHCH
d(VStTSt)

dt
= CHTH,inqH,in −CHTStqH,out (5)

where the derivative of VStTSt is used instead of TSt, because the volume of the molten salt in the
storage tanks can be varying.

2.3. Economizer Model

The function of the economizer is to preheat the feed water. The economizer in the CSP plant is
generally a cross-flow shell-and-tube heat exchanger of one-shell pass and one-tube pass [15], and its
overall heat transfer rate can be calculated as [16]:

QE = FAEhE·LTMD (6)

where LTMD is the logarithmic mean temperature difference, F is the correction factor, which can be
calculated analytically based on the geometry and fluid temperature of the heat exchanger [16], and hE

can be calculated using the empirical correlations presented in [16]. The dynamics of the outlet feed
water and HTF temperature are determined from the overall heat transfer rate QE:

A. Feed water temperature:

ρLCLVL
dTLE

dt
= qLE(HFw −HLE) + QE, (7)

B. HTF temperature:

ρHCHVH
dTHE

dt
= CHqH,hot(THB − THE) −QE (8)
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2.4. Boiler Model

The boiler is the place where the feed water is heated into saturated steam. It has been demonstrated
that the energy stored in the metal and liquid water dominates the dynamics of the boiler pressure.
The boiler model can be developed as [17]:

KB
dPB

dt
= QB − qSB(HSB −HLE) (9)

where:

KB = ρSwVSw
∂HSw
∂PB

+ CMBMMB
∂TB

∂PB
(10)

VSw can be assumed to be constant because the liquid level in the boiler is generally well controlled [17].
The dynamics of the HTF in the boiler tube are described using the same piecewise lumped parameter
model developed for the HTF in the absorber tube. The boiler tube temperature TTB can be assumed to
be equal to the boiler temperature TB [18]; then, the heat exchange between the HTF in the boiler tube
and the boiler tube is calculated as:

QB =
NB∑
i=1

hH,TPHB,i(T
(i)
HB − TB)ΔxB (11)

where NB is the number of the boiler tube’s volume elements. The saturated steam outflowing from
the boiler mainly depends on the boiler pressure and the downstream superheater pressure. It can be
calculated using the empirical formula developed in [19]:

qSB = κBP0.9
B

√
PB − PSh, (12)

where κB is the fitting constant.

2.5. Superheater Model

Generally, the superheaters in CSP plants are also tube-and-shell heat exchangers, and their heat
transferring analysis is similar to that of the economizer. In superheaters, the overall heat transfer rate
QSh and the dynamics of the HTF at the tube side can be determined using the same models developed
for the economizer. However, the dynamics of the superheated steam (the main steam) at the shell
side must be reconsidered, because it is a compressible non-ideal gas featuring a completely different
characteristic from the incompressible liquid in the economizer. The general mass and energy balance
equation of the superheated steam can be formulated as [17]:

VSh
∂ρS

∂pS

dpSh

dt
+ VSh

∂ρS

∂TSh

dTSh
dt

= qSB + qLA − qSSh, (13)

VSh
∂(ρSHSSh)
∂pSh

dpSh
dt + (VSh

∂(ρSHSSh)
∂TSh

+ MMShCMSh)
dTSh

dt = qSBHSB + qLAHFw + QSh − qSShHSSh (14)

where the partial derivatives of the steam properties are solved using the XSteam Packages developed
for Matlab.

2.6. Turbine Model

The mass flowrate of the main steam is mainly affected by its thermal–physical properties and the
main steam valve opening at the governing stage. Their relationship can be described by the following
equation [20]:

qSSh = κShδ(pSh)
1−γ(ρSh)

γ 0 ≤ γ ≤ 0.5 (15)
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where κSh and γ are fitting constants. The range of γ goes from 0, meaning that the steam is just
saturated, to 0.5, meaning that the steam is highly superheated and behaves similar to ideal gas.
Generally, γ = 0.3 can have a good fit to the real process [20]. The power output of the steam turbine
can be calculated based on the practical enthalpy drop of the main steam. The ideal enthalpy drop and
the practical enthalpy drop are bridged by the turbine’s relative internal efficiency ηTu:

HSSh −H∗Ex = ηTu(HSSh −HEx), (16)

H∗Ex −H∗Tu,out = ηTu(HEx −HTu,out), (17)

where HEx is the enthalpy of the extracted steam that drops along the isentropic enthalpy curve, HTu,out

is the enthalpy of the turbine exhaust steam that drops along the isentropic enthalpy curve, and the
superscript “*” represents the enthalpy of the actual process. Considering the Rankine cycle with a
single-stage regenerator, the final power output of the turbine can be calculated using the product of
the ideal enthalpy drop, turbine relative internal efficiency, and the main steam mass flowrate:

Ne = ηTuqSSh[α(HSSh −HEx) + (1− α)(HEx −HT,out)], (18)

where α is the ratio of the extracted steam mass flowrate to the main steam mass flowrate. Assuming
that the feed water temperature and condenser pressure are constant, α can be calculated as:

α =
HFw −HCond,out

H∗Ex −HCond,out
(19)

2.7. Parameter Settings of the Simulation Model

The parameters of the simulation model are set according to the parameters of a real 5-MW CSP
plant reported in [15]. The geometric design data as well as the steady-state operating points of the
CSP plant, which are related to the construction and simulation of the model, are presented in Table 1.
The nominal operating points of the model show good agreement with the plant data, indicating that
the parameter setting is reasonable and the model can be used to simulate the real process.

Table 1. Partial data of the model and the CSP plant reported in [15]. HTF: heat transfer fluid.

Parameters Model Plant Data Parameters Model Plant Data

Absorber tube diameter 0.07 m 0.07 m Total length installed (collector) 5400 m 5400 m

Parallel collector assemblies 9 9 Collector number in each
assembly 6 6

Heat transfer area of the
economizer 145 m2 150 m2 Heat transfer coefficient of the

economizer 0.96 kW/m2/K 1.04 kW/m2/K

Heat transfer area of the boiler 322 m2 330 m2 Heat transfer coefficient of the
boiler 1.21 kW/m2/K 1.04 kW/m2/K

Heat transfer area of the
superheater 72 m2 31 m2 Heat transfer coefficient of the

superheater 0.79 kW/m2/K 0.88 kW/m2/K

Direct solar radiation 1.9 kW/m2 1.9 kW/m2 Power output 4.80 MW 4.77 MW
HTF temperature in cold tank 304.6 ◦C 290.0 ◦C HTF temperature in hot tank 567.8 ◦C 555.2 ◦C

Main steam temperature 403.6 ◦C 404.6 ◦C Main steam pressure 8.84 MPa Not given
HTF mass flowrate

outflowing the hot tank 135 kg/s 135.8 kg/s HTF mass flowrate outflowing
the cold tank 135 kg/s 135.8 kg/s

Main steam mass flowrate 19.7 kg/s 18.5 kg/s Feed water mass flowrate 18.8 kg/s 18.6 kg/s
Boiler pressure 9.37 MPa 9.03 MPa Boiler temperature 306.37 ◦C 311.4 ◦C

HTF volume in hot tank 2000 m3 1990 m3 HTF volume in cold tank 6000 m3 6158 m3

Feed water temperature 240 ◦C 243.2 ◦C Economizer temperature (outlet
liquid water) 300.1 ◦C 298.5 ◦C

3. Transient Analysis and Process Model Identification of the CSP Plant

To identify the control difficulties and find appropriate strategies for the power tracking control
problem, the transient behavior of the CSP plant should be analyzed in order to understand how the
manipulating variables and external disturbances can influence the controlled variables.
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Since the step response can present the dynamic information of the CSP plant in a clear manner,
including the settling time of the process, the coupling effect between the operating variables, and
the influence of external disturbances, etc., the step response experiment of the key input variables
that have a significant influence on the operation of the CSP plant is performed for transient analysis.
In addition, using the step-response data, we can identify the transfer function of the CSP plant as the
prediction model of the MPC controller.

3.1. Open-Loop Step Response Analysis

Step response simulation is carried out on the exogenous input d(IC) and manipulating variables
ui through five cases (u1: the mass flowrate of the HTF outflowing from the hot tank qH,hot; u2: opening
of the main steam valve δ; u3: the mass flowrate of the spraying water qLA; u4: the mass flowrate of the
HTF outflowing from the cold tank qH,cold).

The step increase value of the step variables are shown as follows: in case I, u1 steps increase from
135 kg/s to 150 kg/s; in case II, u2 steps increase from 80% to 90%; in case III, u3 steps increase from
0.8 kg/s to 1.0 kg/s; in case IV, u4 steps increase from 135 kg/s to 150 kg/s; and in case V, d steps increase
from 1.9 kW/m2 to 2.1 kW/m2. In each case, there is only one signal step, and the step signal starts at
200 s. The simulation results are plotted in Figure 3.

Case I represents the situation where the hot tank releases the stored energy to generate more
electricity. The increment in the mass flowrate of the HTF outflowing from the hot tank (u1) significantly
enhances the heat transfer from the HTF to the working fluid in the Rankine cycle and produces
more superheated steam. Meanwhile, the feed water mass flowrate will increase with the steam mass
flowrate to maintain a constant boiler liquid level. Although the main steam temperature initially
increases because of the enhanced heat transfer, it is later cooled down by the increasing feed water
and finally falls below the initial value. The main steam pressure also increases drastically as more
steam is generated. In this case, the settling time of the main steam pressure and power output is
approximately 150 s, which is shorter than that of the main steam temperature (about 500 s).

In case II, increasing the opening of the main steam valve (u2) causes an instant boost in the power
output, which is much faster than manipulating the mass flowrate of the HTF outflowing from the
hot tank (u1). This indicates that the turbine dynamics is faster than the steam generator and can
be operated to enforce an immediate change in the power output. However, manipulating u2 does
not change the thermal energy flowing into the power generation system; therefore, the final power
output almost drops to its initial value. As u2 increases, the flow resistance of the main steam reduces
rapidly, causing a significant drop in the main steam pressure with a similar setting time as that in case
I (about 150 s).

In case III, the increment in the mass flowrate of spraying water (u3) greatly lowers the main steam
temperature, while it only has a minor influence on the main steam pressure, because the increased
amount of the spraying water is very small compared to the main steam flow. Since the spraying
water increases the irreversible loss and reduces the thermal efficiency, the turbine power output is
slightly reduced, as shown in Figure 3. In this case, the setting time of the main steam temperature is
approximately 500 s.

Case IV shows that increasing the HTF flowing through the collector (u4) significantly reduces the
HTF temperature at the collector outlet: from 567.5 ◦C to 514.5 ◦C within 400 s. However, it has little
influence on the temperature of the HTF stored in the hot tank, owing to the large heat capacity of the
stored HTF. Therefore, both the temperature and the mass flowrate of the HTF flowing into the steam
generator remain unchanged, demonstrating that the manipulation of u4 almost has no influence on
the steam generation side.

In case V, with the increase of direct solar irradiance incident (d), the HTF temperature in the solar
collector rapidly rises from 567.5 ◦C to 595 ◦C in 600 s; however, the temperature of the hot storage
tank only increases by 0.4 ◦C in the same timescale, which indicates that the influence from the solar
irradiance on the power generation side is also significantly attenuated by the storage tanks.
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Figure 3. Simulation results of the step response (the legend on the top right side is applied to all the
pictures in Figure 3).

3.2. Process Model Identification

From the step-response analysis, we find a strong coupling effect between the manipulating
variables and the controlled variables. To quantify this effect, we introduce the maximal relative
deviation of the controlled variable:

μi j =

∣∣∣∣Δymax
j

∣∣∣∣/∣∣∣∣y∗j∣∣∣∣∣∣∣∣Δustep
i

∣∣∣∣/∣∣∣u∗i ∣∣∣ , (20)
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where u∗i and y∗j are the initial value of the step variable ui and the controlled variable yj, respectively.

Δustep
j is the step increase value of ui. Δymax

j is the maximal deviation of yj from y∗j in the step response.
All the μi j values are listed in Table 2 (y1: power output; y2: main steam pressure; y3: main steam
temperature; y4: HTF temperature at the collector outlet). In the same row in Table 2, a higher value of
μi j means that ui has a relatively stronger influence on yj than the other input variables.

Table 2. The value of μi j (“-” means μi j is too small and can be ignored).

Controlled Variables u1 u2 u3 u4 d

y1 0.8832 0.8639 - - -
y2 0.8437 0.8118 - - -
y3 0.0581 0.0814 0.0457 - -
y4 - - - 0.4300 0.4838

According to the results in Table 2, we can ignore the dynamics between the weakly interacted
input variables and the controlled variables. Then, the following process model structure can be used
to describe the dynamics of the CSP plant:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g11(s) g12(s) 0 0
g21(s) g22(s) 0 0
g31(s) g32(s) g33(s) 0

0 0 0 g44(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

gd(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦d (21)

where gij(s) is the transfer function from the j-th manipulating variable to the i-th controlled
variable. This model structure indicates that the original five-input–four-output control system
can be decomposed into two independent control systems: a three-input–three-output power control
system (u1, u2, u3 and y1, y2, y3) and a two-input–one-output HTF temperature control system (u4, d,
and y4). Therefore, the control of the solar collector side and the power generation side are unrelated to
each other, and we can design the power tracking controller regardless of the HTF temperature control
in the solar collector. Using the step-response data, the transfer function models are identified in the
System Identification toolbox in MATLAB (R2017a, The MathWorks, Inc., Natick, MA, USA) and the
result is presented in Equation (22):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
y1 − y∗1
y2 − y∗2
y3 − y∗3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.001
s+0.035

5.2(s+0.0015)
s+0.053 0

0.0018
s+0.032

−0.526
s+0.06 0

0.01(s−0.0017)
s2+0.043s+0.0003

−3.199(s+0.0025)
s2+0.0705s+0.0005

−0.18
s+0.0077

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1 − u∗1
u2 − u∗2
u3 − u∗3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
y4 − y∗4 = −0.00014

s2+0.017s+7.8×10−5 ·(u4 − u∗4) +
0.00027(s+0.013)

s2+0.0068s+2.7×10−5 ·(d− d∗)

(22)

where the terms with superscript “*” represent the initial values of the step variables. The model
fitness to the step-response data is shown in Table 3. The high fitness value indicates that the identified
model captures the key dynamics of the CSP plant.

Table 3. The model fitness to the step-response data.

g11(s) g12(s) g21(s) g22(s) g31(s) g32(s) g33(s) g44(s) gd(s)

Fit to
data 94.18% 87.19% 93.54% 91.44% 93.71% 90.31% 94.2% 91.19% 94.06%
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4. Power Tracking Control System Design

This section investigates the power tracking strategy of the CSP plant. The heuristic PI control
with two operation modes is first developed; then, the advanced MPC strategy is studied to further
improve the control performance.

4.1. Heuristic PI Control

The PI control strategy is widely used in industrial processes owing to its convenience in parameter
tuning, low implementation cost, and good robustness. In practice, PI controllers are implemented in
discrete form:

u(tk) = u(tk−1) + Kp

[(
1 +

Δt
Ti

)
(yr(tk) − y(tk)) − (yr(tk−1) − y(tk−1))

]
(23)

where Δt is the sample time, tk is the present sample time instance, tk−1 is the last sample time instance,
yr is the reference signal, y is the measurement of the controlled variable, Kp is the controller gain, and
Ti is the integral time constant.

Based on heuristic knowledge, the PI control strategy with two operation modes is proposed for
the CSP plant, taking account of the power tracking speed and the main steam parameter fluctuations.

A. Fast power tracking mode

In FT mode, the turbine maintains the power demands and the steam generator maintains the
main steam pressure. This mode gives a fast power tracking rate, because the turbine has very fast
dynamics and can immediately respond to the change of the power reference signal. However, this
leads to a violent manipulation on the main steam valve, which brings substantial disturbance to the
main steam pressure. This disturbance cannot be well compensated, because the steam generator has a
large process inertia, and cannot generate enough steam in a timely manner to maintain the main steam
pressure. In this mode, the power output, the main steam pressure, and the temperature are regulated
by the opening of the main steam valve, the mass flowrate of the HTF outflowing from the hot tank,
and the mass flowrate of the spraying water, respectively, via three independent PI controllers.

B. Smooth operation mode

In SO mode, the turbine maintains the main steam pressure and the steam generator maintains
the power demands. This mode gives a slow power tracking rate, but a smooth operation of the main
steam parameters. On one hand, it is not feasible to force aggressive control action on the sluggish
steam generator to accelerate the power tracking speed, because this will cause the control system
to be oscillatory and even unstable. Hence, the power tracking rate will inevitably reduce. On the
other hand, when the control action on the steam generator is not strong, the main steam pressure and
temperature are less disturbed and can be more easily controlled by manipulating the turbine and
the attemperator. In this mode, the power output, the main steam pressure, and the temperature are
regulated by the mass flowrate of the HTF outflowing from the hot tank, the opening of the main steam
valve, and the mass flowrate of the spraying water, respectively, via three independent PI controllers.

4.2. Model Predictive Control Strategy

MPC is an advanced control technique that employs a model to predict the future response of
the plant to the manipulating variables and minimizes the error between the plant response and the
reference signal. At each sample time, the MPC solves a finite horizon optimization problem yielding a
finite sequence of control actions, and only the first control action in the sequence is applied to the
plant. Since MPC can automatically coordinate several control loops with strong interactions, it is
recommended for the control of multivariable systems.
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In this section, the state-space model-based MPC is employed to enhance the power tracking
performance, and the controller design consists of three steps.

A. Construction of prediction model

A state-space model that can facilitate the design of a multivariable controller is used as the
prediction model: {

xk+1 = Axk + Buk
yk = Cxk + Duk

(24)

where xk, uk =
[

u1(k) u2(k) u3(k)
]T

and yk =
[

y1(k) y2(k) y3(k)
]T

are the state vector, the
input vector, and the output vector at time k, respectively. A, B, C, and D are the system matrixes. The
state-space matrixes can be obtained by converting the identified transfer function model using the
MATLAB command “tf2ss”.

Then, the prediction model (24) is transformed into the augmented style to impose integral action
on the MPC, so that an offset-free tracking performance can be obtained in the presence of model–plant
mismatch [21]: ⎧⎪⎪⎨⎪⎪⎩

�
x k+1 =

�
A·�x k +

�
B ·Δuk

yk =
�
C·�x k + D·Δuk

(25)

where
�
A =

[
A 0
C I3

]
,
�
B =

[
B
D

]
,
�
C =

[
C I3

]
,
�
x k =

[
xk − xk−1

yk−1

]
, Δuk = uk − uk−1, I3 is the

three-order unit matrix.
By stacking up Equation (25) for Ny steps, the prediction of future output sequences can be

obtained: yp =
[

yT
k+1 yT

k+2 · · · yT
k+Ny

]T
, which can be expressed using Nu(Nu < Ny) future

control sequences Δup =
[

ΔuT
k ΔuT

k+1 · · · ΔuT
k+Nu−1

]T
:

yp = Φx
�
x k + Φu

⎡⎢⎢⎢⎢⎢⎢⎣ Δup 01×3 · · · 01×3︸�����������������︷︷�����������������︸
(Ny−Nu)items

⎤⎥⎥⎥⎥⎥⎥⎦
T

(26)

where:

Φx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
C·�A
�
C·�A

2

...
�
C·�A

Ny

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(27)

Φu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
C·�B D 0 0 · · · 0
�
C·�A·�B �

C·�B D 0 · · · 0
...

...
...

...
. . . 0

�
C·�A

Nu−1
·�B �

C·�A
Nu−2
·�B · · · �

C·�A·�B �
C·�B D

�
C·�A

Nu ·�B CANu−1B · · · �
C·�A

2
·�B �

C·�A·�B �
C·�B

...
...

...
...

...
...

CANy−1B CANy−2B · · · �
C·�A

Ny−Nu+1
·B �

C·�A
Ny−Nu ·�B �

C·�A
Ny−Nu−1

·�B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

Note that the future control sequence beyond Nu (the control horizon) is assumed to be constant, i.e.,
ΔuT

k+Nu, · · ·ΔuT
k+Ny−1 = 0.
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B. Estimation of immeasurable states

Since the state-space model is developed via data identification, its state vector does not have
physical meanings, and cannot be measured. Therefore, it is necessary to estimate its value via a state
observer on the basis of measured inputs and outputs:

x̂k+1 =
�
A·x̂k +

�
B ·uk + K

(
yk −

�
C·x̂k −Duk

)
(29)

where the superscript “ˆ” means the estimated value. The observer gain K can be calculated if the
matrix H and G and a symmetric positive definite matrix X exist, such that the following LMI (linear
matrix inequality) problem is feasible [22]:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ HT + H −X

(
H
�
A + G

�
C
)T

H
�
A + G

�
C X

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ > 0 (30)

And the observer gain is K = H−1G. At each sample time, we replace the states of xaug
k in Equation (26)

with the estimated states to update the prediction model.

C. Calculation of optimal control moves

The objective function of MPC is designed to achieve an optimal trade-off between the rapidity of
set-point tracking and the intensity of control actions; hence, the MPC controllers can achieve good
performance more easily than conventional PI controllers that cannot ensure the optimality of control
actions. By minimizing the quadratic objective function with the consideration of actuator constraints,
the control moves of the MPC can be calculated:

J(Δup) =
(
yp − r

)T
Q
(
yp − r

)
+ ΔuT

p RΔup

s.t. Δumin ≤ Δup ≤ Δumax

umin ≤ up ≤ umax

(31)

where r =
[

rT
k+1 rT

k+2 · · · rT
k+Ny

]T
is the reference signal of the controlled variables, Δumin and

Δumax are the rate constraints of the actuators, and umin and umin are the amplitude constraints of
the actuators. Q and R are the adjustable weighting matrixes for the tracking error and the control
actions, respectively.

4.3. Case Study

This section presents the simulation study of power tracking control. The heuristic PI tuned
using the conventional Ziegler–Nichols method is compared with MPC. The sample time for the
PI controller and MPC is set at 1 s. The prediction horizon and control horizon of the MPC
are Ny = 500 and Nu = 10, respectively. The weighting matrixes in MPC are given as follows:
Q = diag

{
1 30 35

}
and R = diag

{
0.08 15 15

}
. The physical constraints of the actuator are:

Δumax = −Δumin =
[

1.5 0.01 0.02
]
, umin =

[
0 0.4 0

]
, and umax =

[
200 1 2

]
. The tuning

parameters of the heuristic PI are shown in Table 4.

Table 4. Tuning parameters of the heuristic PI.

Modes of the
Heuristic PI

Power Control Loop
Main Steam Pressure

Control Loop
Main Steam TEMPERATURE

Control Loop

Kp Ti Kp Ti Kp Ti

Smooth operation 0.3 2.3 0.05 27 0.04 18
Fast power tracking 1.2 2.1 0.26 15 0.04 18
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The simulation case is designed as follows: initially, the power reference signal (regarded as the
power generation schedule) is set at 4.78 MW. At 200 s and 1000 s, it changes from 4.78 MW to 5.5 MW
and to 3.0 MW, respectively. The direct solar irradiance incident on the solar collector is initially set at
1.9 kW/m2; at 1500 s, it reduces to 1.0 kW/m2. The reference signal of the main steam temperature and
pressure are set as 402.8 ◦C and 8.79 MPa, respectively. The simulation results are shown in Figure 4.
Note that since the control of the HTF temperature at the collector outlet is not studied in this paper,
we use a well-tuned PI controller to control it in the simulation cases. The status of the TES system is
also presented to analyze the energy flow of the CSP plant.

As shown in Figure 4a–c, the MPC has the best performance: a fast power tracking rate and the
least fluctuation in main steam parameters. When the power reference signal increases/decreases, the
MPC increases/decreases the mass flowrate of the HTF outflowing from the hot tank and the main
steam valve opens on time, controlling the power output of the CSP plant rapidly to follow the power
generation schedule, as shown in Figure 4a. Since the MPC can anticipate the interactions between the
different control loops, the change rate of the main steam valve opening and spraying the water mass
flowrate is well coordinated with the change rate of the mass flowrate of the HTF from the hot tank, so
that the pressure and temperature of the main steam are closely maintained to their set points.

However, the PI controllers cannot achieve a fast power tracking and a smooth operation
simultaneously. In FT mode, the heuristic PI attains a similar power tracking rate to the MPC, while there
are significant fluctuations in the main steam parameters. As shown in Figure 4b, the main steam valve
quickly opens to instantly generate the power required by the generation schedule. This brings significant
disturbance to the steam pressure. However, unlike the MPC, the heuristic PI (FT mode) cannot predict
the influence of such incoming disturbance, and it only uses the sluggish steam generator to regulate the
rapidly changing pressure, which inevitably results in an untimely adjustment. Additionally, the main
steam temperature is also disturbed by the frequent regulation in the main steam pressure, which results
in an oscillatory transient and is difficult to be compensated by the single-looped PI.

In SO mode, the heuristic PI has a smooth transient of main steam parameters but a much lower
power tracking rate (approximately 200 s slower than the PI of the FT mode and the MPC). The control
moves for power tracking are quite conservative so that it does not cause substantial variations in
the main steam parameters. This low-level disturbance can be timely eliminated by the PI controller.
However, even with such a mild control action, the fluctuation of the main steam parameters is still
more intensive than that of the MPC.

In summary, although the trend of the control actions is reasonable, the single loop-based heuristic
PI does not consider the strong interactions between the multiple loops, and hence is unable to give
the best control action. Additionally, owing to the past error-based mechanism, it is difficult for the PI
controller to satisfy the prompt control requirement of the CSP plant with slow dynamics. Therefore,
the MPC can achieve an improved performance to the heuristic PI.

Figure 4d,e, presents the status of the TES system. The temperature of the HTF in the storage tanks
almost has no variation; hence, the volume of the HTF stored in the hot tank alone can be regarded
as the indicator of the amount of the stored thermal energy. In the starting 200 s, the received solar
energy (1.9 kW/m2) is in perfect balance with the generated power (4.78 MW), and hence, the HTF
volume in the hot tank is kept constant. Then, from 200 s to 1000 s, the power reference signal increases
to 5.5 MW while the received solar energy is still equivalent to 4.78 MW. The hot tank must release
the stored energy to compensate for the insufficient solar energy input, which results in a gradual
reduction in the HTF volume. From 1000 s to 1500 s, the power output changes to 3 MW, which is
smaller than the received solar energy (4.78 MW), and the HTF volume of the hot tank increases in
order to store the excessive solar energy. After 1500 s, the direct solar irradiance incident reduces to
1.0 kW/m2, which is insufficient to provide 3 MW power output, leading to a reduction in the HTF
volume in hot tank. The results show that via manipulating the storage system, both the heuristic PI
and MPC can automatically adjust the energy balance between the received solar energy, the stored
thermal energy, and the power output.
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(a) 

(b) 

(c) 

(d) 

(e) 

Figure 4. Simulation results of the control system (the legend on the top right side is applied to all
the pictures in Figure 4). (a) Manipulating variable u1 and controlled variable y1; (b) manipulating
variable u2 and controlled variable y2; (c) manipulating variable u3 and controlled variable y3; (d) HTF
stored in the hot tank and HTF stored in the cold tank; (e) HTF temperature in the hot tank and HTF
temperature in the cold tank.
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5. Conclusions

The execution-level power tracking control is significant to the economic, safe, and flexible
operation of the CSP plant, which is challenging and had not yet been studied in previous research.

To address this issue, this paper proposes two control strategies: heuristic PI control with two
operation modes, and advanced model predictive control. Step response analysis of the CSP plant
is first performed, and we find that: (1) there is a strong coupling effect between the system inputs
and outputs, (2) the external disturbance (the change of solar radiation) has little influence on the
power generation side, and (3) in the sense of execution-level control, the design of the power tracking
controller is completely independent from the HTF temperature control at the solar collector side.
Then, the performance of the heuristic PI control and MPC control are compared through simulation
study. The results show the following. (1) The heuristic PI with FT mode can achieve a fast power
tracking rate; however, this causes a considerable fluctuation in the main steam parameters. (2) The
heuristic PI with SO mode can achieve a smooth operation of the main steam parameters; however, it
has a much slower power tracking rate. (3) The MPC can well handle the strong interactions between
the control loops, and hence achieves the dual task of fast power tracking and smooth operation of the
main steam parameters. (4) Both the heuristic PI and MPC can automatically balance the energy flow
of the CSP plant.

Within the proposed MPC control scheme, the power generation schedule from the decision-level
controller can be timely tracked, which guarantees the economic operation of the CSP plant.
Additionally, the main steam parameters are maintained around the designed operating range,
ensuring the safe operation of the plant.

Future works on the power tracking control of the CSP plant will be extended to the widely used
two-tank indirect TES system, which is even more challenging because the change of solar radiation
can directly influence the power output, and it is difficult to compensate for this disturbance.
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Abbreviations

A overall area, m2

Â cross sectional area, m2

C specific heat, kJ/(kg·K)
H specific enthalpy, kJ/kg
h heat transfer coefficient, W/(m2·K)
I direct solar irradiance incident, W/m2

k thermal conductivity, W/(m·K)
M mass, kg
P perimeter, m
PI proportional-integral
p pressure, MPa
Q transferred heat, kJ
q mass flowrate, kg/s
T temperature, ◦C
V volume, m3

w aperture width of the solar collector, m
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Greek letters
δ main steam valve opening
ε emissivity
η efficiency
μ dynamic viscosity, Pa·s
ρ density, kg/m3

σ the Stefan-Boltzmann constant, W/(m2·K4)

Subscripts
B boiler
C collector
Cond condenser
cold cold tank
E economizer
Ex extracted steam
Fw feed water
G glass envelope
H heat transfer fluid (HTF)
HA HTF outflowing the absorber
HB HTF outflowing the boiler
HE HTF outflowing the economizer
HSh HTF outflowing the superheater
hot hot tank
i inner
in inlet
L liquid water
LA liquid water outflowing the attemperator
LE liquid water outflowing the economizer
MB metal in the boiler
MSh metal in the superheater
o outer
out outlet
S steam
SB steam outflowing the boiler
St storage tank
Sh superheater
Sw saturated water
SSh steam outflowing the superheater
T tube
TA tube in the absorber
TB tube in the boiler
TE tube in the economizer
Tu turbine
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Abstract: Thermal Fatigue of flip chip component solder joints is widely existing in thermal energy
systems, which imposes a great challenge to operational safety. In order to investigate the influential
factors, this paper develops a model to analyze thermal fatigue, based on the Darveaux energy method.
Under cyclic thermal loading, a theoretical heat transfer and thermal stress model is developed for the
flip chip components and the thermal fatigue lives of flip chip component solder joints are analyzed.
The model based simulation results show the effects of environmental and power parameters on
thermal fatigue life. It is indicated that under cyclic thermal loading, the solder joint with the shortest
life in a package of flip chip components is located at the outer corner point of the array. Increment
in either power density or ambient temperature or the decrease in either power conversion time
or ambient pressure will result in short thermal fatigue lives of the key solder joints in the flip
chip components. In addition, thermal fatigue life is more sensitive to power density and ambient
temperature than to power conversion time and ambient air pressure.

Keywords: electronic device; flip chip component; thermal stress; thermal fatigue; life prediction

1. Introduction

With the rapid development of microelectronics, microelectronic devices with variable thermal
loads have been extensively used in the thermal energy system [1–3], chemical production [4–6],
biomedical detection [7–9], deep space exploration fields [10–12], and in microelectromechanical
systems (MEMS) [13–16]. The flip chip technology is widely applied in MEMS, in which solder joints
are used as both mechanical supports and interconnections between electronic components [17,18].
However, under cyclic thermal loads, solder joints always tend to fatigue failure resulting from the
mismatched thermal expansion of the materials in the solder joints [14,19]. Therefore, the thermal
fatigue life of a solder joint under cyclic thermal loads is directly related to the safe operation and
reliability of the entire electronic device [20]. In this context, the thermal fatigue mechanism and
prediction of thermal fatigue life are essential to the designs and reliabilities of electronic products.

Recently, several theoretical efforts to investigate the thermal fatigue mechanism and predict the
thermal fatigue life have been undertaken [21,22]. Cheng et al. [17] examined the reliability of the
solder interconnect of an advanced ultrafine-pitch integrated circuit chip through three-dimensional
finite element (FE) numerical simulations and experimental tests. Incorporating the fatigue criteria
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based on energy, Chen et al. [23] conducted the improvement of the geometric simplification methods.
The accuracy of simulation results depends on the parameters of the local model, including the mesh
density, step size, as well as cut boundaries. Jiang et al. [24] compared the prediction results of the
fatigue life solder balls in ball grid array (BGA) packaging obtained by the Darveaux model and
the Coffin–Manson model, which are energy-based and strain-based, respectively. In either model,
the fatigue life increases with height and decreases with diameter. However, the thermal stress
distributions for the solder joints in a BGA product is usually nonuniform, which gives rise to uneven
thermal fatigue lives for them. It is of significance finding the key solder joint that determines the
thermal fatigue life of a BGA product.

In addition, the thermal fatigue life of an electronic device depends on the ambient
environment [25–27] and cooling condition [28,29]. Considering the environmental conditions of
Mars, the reliability of the plastic BGA was experimentally studied under four different thermal
cycles (−55 to 100 ◦C, −55 to 125 ◦C, −65 to 150 ◦C, and −120 to 85 ◦C) [30]. Ghaffarian has taken
the optical photomicrographs of BGA to record the progression and characteristics of damage with
numerous thermal cycle intervals. Under the thermal cycles with extreme-temperature conditions,
the reliabilities of surface-mounted electronic package test boards were assessed for future long-term
deep space missions in extreme-temperature environments [31]. The highly accelerated life testing
(HALT) technique was applied by Ramesham [32] to assess electronic packaging during long-term
deep-space explorations with the extreme temperature ranging from −150 ◦C to +125 ◦C in order to
achieve optimized design. During this accelerated test within 12 h, an abnormal electrical continuity
occurred in the plastic BGA. However, the underlying relationship between the extreme ambient
environment and thermal fatigue life of an electronic device is still unclear. In particular, limited
attempts have been made to reveal the coupled effects of extreme ambient environments and cyclic
thermal loads on thermal fatigue lives.

Although there are several attempts to interpret the thermal fatigue life of an electronic device with
the extreme ambient environment via experimental investigations, numerical attempts in exploring
the thermal fatigue lives of electronic devices is less available, especially when the electronic devices
are operating under low temperature and pressure. Therefore, based on the Darveaux energy method,
a theoretical heat transfer and thermal stress model for flip chip components in the cavity of an
initial static air flow field and the finite boundary temperature under cyclic thermal loading was
developed in an attempt to predict the thermal fatigue lives of flip chip component solder joints.
The location of the critical solder joint in a flip chip component with the shortest thermal fatigue
life that determines the safety of the entire electronic device is examined. The effects of ambient
environment conditions and thermal loads on the thermal fatigue life of the critical solder joint are
discussed. This work can provide a further insight into the thermal reliability of an electronic device
under extreme ambient environments.

2. Mathematical Model

In this paper, a model consist of a 4 × 4 solder joint array of a flip chip component is developed,
as shown in Figure 1. The model mainly includes a silicon chip, a circuit board, a copper sheet,
and solder joints, as shown in Figure 2. There are 16 solder joints in the 4 × 4 array. Each solder joint has
a height of 0.3 mm, a surface area of 4.847 × 10−7 m2, and a volume of 3.035 × 10−11 m3. The shape of
the silicon chip is a rectangular parallelepiped with a length of 2 mm, a width of 2 mm, and a height of
0.5 mm. The shape of the copper sheet is a rectangular parallelepiped with a length of 2.7 mm, a width
of 2.7 mm, and a height of 0.07 mm. The shape of the circuit board is a rectangular parallelepiped with
a length, width and height of 2.7 mm, 2.7 mm, and 1.23 mm, respectively. In this paper, the following
assumptions are made: (1) the influences of the printed copper wire, filler and other components on
the model are neglected; (2) any residual stress and strain that may occur during the manufacturing
process are ignored; (3) the materials in each part are ideally connected; and (4) when the temperature
varies, the heat conduction between each kind of material in the model is considered.
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Figure 1. Geometry model of a flip chip component.

Figure 2. Schematic of the flip chip component assembly material.

2.1. Governing Equations

In this paper, the circuit board, copper sheet, and silicon chip are regarded as isotropic, linear
elastic materials. The stress and strain have a simple one-to-one correspondence, and the constitutive
equation can be expressed as follows [24]:

{σ} = [D]{εel}, (1)

where {σ} is the stress component, [D] is the elastic stiffness matrix, and {εel} is the elastic
strain component.

When the ambient temperature of the material is greater than half of its own melting point,
viscoplastic behaviors should be considered. Since the mechanical parameters and properties of
tin-lead solder are affected by temperature and time, the unified viscoplastic Anand constitutive
equation [24] gives the stress-strain response of tin-lead solder under thermal loading.

To further study the influence of the working environment of on the thermal fatigue life,
the coupled effects of the air flow, thermal convection, heat conduction, and structural mechanics are
considered to investigate the thermal characteristics and failure mechanisms of electronic devices in
extreme environments. In this paper, cyclic thermal loading of electronic devices is used to simulate
the normal working/idle process of an electronic package. In addition, the Darveaux energy method is
applied in predicting the thermal fatigue lives. To study the influences of ambient temperature on the
thermal fatigue lives of electronic devices, a silicon chip with a cyclic thermal load is considered as a
heat source, which conducts heat between each part of the electronic devices. The time-dependent
function of the cyclic thermal load is:

P = P0(t), (2)

where P0 is the power per unit volume of the flip chip component chip heat source. The cyclic thermal
load under typical conditions is shown in Figure 3, where the maximum power density of the silicon
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chip is Pmax = 5 × 107 W·m−3 and the minimum power density is Pmin = 1 × 107 W·m−3. The conversion
time of the chip power is ttrans = 600 s.

 
Figure 3. Power density of a cyclic thermal load.

2.2. Boundary Conditions

At the beginning of every process, the whole zone of the computational domain is at thermal
equilibrium state with a constant temperature and pressure. As shown in Figure 4, the boundaries of
the computational domain are assumed to be open faces of constant pressure and temperature through
which air can flow, which means the boundaries has the identical temperature and pressure with the
ambient. Thus, the boundary conditions of the computational domain can all be written as:

Tw = Ta; Pw = pa, (3)

where, the subscripts a and w represent the ambient and the boundaries of computational domain.
In this simulation, the ambient temperature and pressure are fluctuant parameters, and the typical
ambient temperature and pressure of the whole computational domain is Ta = 20 ◦C and pa = 1 bar,
respectively. Additional, the boundary of the solid mechanics field is set to limit the rigid displacement:

ω(x, y, z) = 0 (x = 2.8 mm, y = 0.1 mm, z = 1.41 mm), (4)

where ω is the displacement of the copper sheet.

Figure 4. Power density of the cyclic thermal load.
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The number of breakdown cycles of the electronic component is calculated to predict the thermal
fatigue life of the flip chip component. Therefore, the thermal fatigue life of a solder joint in the flip
chip component is predicted based on the Darveaux failure model [24].

N = K1ΔWK2
ave +

a

K3ΔWK4
ave

, (5)

ΔWave =

∫
ΔWdδV∫
δV

, (6)

ΔWd = W′d −Wd =
1
2
(ε′σ′ − εσ), (7)

where N denotes the cyclic number. In this study, the duration of one cycle is 6 h. ΔWave is the increment
in the density of average viscoplastic strain energy. ΔWd is the viscoplastic strain energy density
increase. W′d and Wd are the strain energy densities of adjacent cycles. ε′ and ε are the equivalent
strains of adjacent cycles. σ′ and σ are the equivalent stresses of adjacent cycles. a = 2.65 × 10−4 m is
the characteristic fracture length, which can be regarded as the diameter of the interface between the
solder joint and other materials. K1, K2, K3, and K4 are related physical property parameters, and their
specific values are shown in Table 1.

Table 1. Material failure parameters.

Parameter Value Description

K1 3.25 cycles·Pa−1 Initial crack energy coefficient
K2 −1.52 Initial crack energy index
K3 4.04 × 10−3 Pa·cycle−1 Crack growth energy coefficient
K4 0.98 Crack growth energy index

In this paper, a grid independence test is performed by calculating the thermal fatigue lives at
different grid numbers. The specific grid data and calculation results are shown in Table 2.

Table 2. Computational grid data of the flip chip component model.

Number of Grids Thermal Fatigue Life (h)

12981970 17484
2783059 17520
1072916 17598
543249 17706
219631 17880
103691 18744
56625 19248
34138 20124

As shown in Table 2, after the number of grids reaches 1 × 106, the predicted thermal fatigue life
is basically stable. Considering the calculation accuracy and calculation time, it is suitable to select the
calculation grid with a grid number of 1,072,916.

2.3. Model Validation

To validate the model, the finite element numerical simulation of the uniaxial tensile test under the
two working conditions of 313 K and 353 K is carried out, and the stress parameters are compared with
the experimental results from the literature [33], as shown in Figure 5. In the simulations, the strain rate
is constant at 0.5% s−1 during uniaxial tensile testing. The two-dimensional geometry of the sample
used is illustrated in Figure 5a, and the three-dimensional model is given in Figure 5b. The stress at
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the tapered collar obtained by the numerical simulation are compared with the experimental results.
The mechanical properties of the 63Sn–37Pb solder are shown in Table 3.

 
(a) (b) 

Figure 5. Uniaxial tensile test finite element numerical calculation model: (a) two-dimensional diagram
and (b) three-dimensional diagram.

Table 3. Performance parameters of 63Sn–37Pb tin-lead solder at a strain rate of 0.5% s−1.

Temperature (K) Elastic Modulus (MPa)

313 41350
353 38540
398 34568

Figure 6 shows the good agreement between the numerical simulation and experimental results
for the stresses at 313 K and 353 K, which indicates that our model is able to sufficiently describe the
mechanical characteristics of the solder at various working temperatures.

(a) (b) 

σ

ε  

σ

ε  

Figure 6. Comparison of the numerical results and experimental data of the 63Sn–37Pb solder:
(a) operating temperature of 313 K and (b) operating temperature of 353 K.
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3. Results and Discussion

The thermal fatigue life distributions in the flip chip component under typical working conditions
is obtained using the Darveaux energy method, where the maximum power density of the silicon chip
is Pmax = 5 × 107 W·m−3 and the minimum power density is Pmin = 1 × 107 W·m−3. The conversion
time of the chip power is ttrans = 600 s. As illustrated in Figure 7, the solder joint with the shortest
thermal fatigue life in the flip chip component appears at the outer corner point, which experience
19,055 (104.28) cycles. Since the malfunction of one solder joint in the flip chip component can lead
to the failure of the whole flip chip component, the solder joint with the shortest thermal fatigue life
in the flip chip component is regarded as the key solder joint. The thermal fatigue life of this key
solder joint is regarded as the final life of the flip chip component under typical conditions. In this
paper, the thermal fatigue lives of the flip chip components under various working conditions are
investigated, and the dependence of the thermal fatigue life on the maximum power density of the
device Pmax and the power conversion time ttrans, ambient temperature T0, ambient pressure p0, and t
is analyzed.

(a) 

(b) 

Figure 7. Thermal fatigue life distributions in the flip chip component under typical operating
conditions: (a) three-dimensional view and (b) top view.

The temperature and stress distribution of the flip chip component is shown in Figure 8. The highest
temperature appears at the silicon chip and the solder joint during the high power dissipation period.
The stress at the connections between the solder joint and the silicon chip is the maximum. The stress
inside the solder joint is much smaller than the stress at the connections.

To describe the mechanism that lead to thermal failure of the electronic devices in detail,
the evolution of the temperature and the stress data at the connections between the key solder joint and
the silicon chip are shown in Figure 9, under the same typical condition in Figure 3. Once the power
dissipation transfers from high value to low value or from low value to high value, the variation rate
of the temperature at the connection is very high and the stress at the connection suddenly increases.
When the temperature of the solder joint is nearly stable, the stress at the connection decreases evidently.
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The variation of the stress can be attributed to the variation rate of the temperature field, which
obviously depends on the maximum heating power and the power conversion time.

 
(a) (b) 

 
(c) (d) 

Figure 8. Temperature and stress distribution of the flip chip component at the vertical section of
key solder point: (a) temperature distribution in the high power dissipation period (t = 4.11 h);
(b) temperature distribution in the low power dissipation period (t = 6.11 h); (c) stress distribution in
the high power dissipation period (t = 4.11 h); and (d) stress distribution in the low power dissipation
period (t = 6.11 h).

 
Figure 9. Temperature and the stress data at the connections between the key solder joint and the
silicon chip. (Pmax = 5 × 107 W·m−3, Pmin = 1 × 107 W·m−3, and ttrans = 600 s).
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3.1. Effects of the Maximum Power Density

The maximum power density Pmax plays a key role in the thermal fatigue lives. To study the effect
of Pmax, the parameters of the operating conditions are set as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ttrans = 600 s
p0 = 1 bar
T0 = 20 ◦C

. (8)

The other parameters are set to be the same as those under typical operating conditions.
As shown in Figure 10a, when Pmax is less than 50 MW·m−3, the thermal fatigue lives decreases

rapidly with Pmax. When Pmax is greater than 50 MW·m−3, the rate of decrease in the thermal fatigue
lives in slows down as Pmax increases. In particular, the thermal fatigue lives are reduced to 1/10,730
when Pmax increases from 20 MW·m−3 to 100 MW·m−3 indicating that high heat load is not beneficial
for the safe operation. Figure 10b shows that the temperatures of the silicon and solder joint increase
with Pmax.

 
(a) (b) 

Figure 10. Effects of the maximum power density on (a) thermal fatigue lives of the key solder joints
and (b) silicon temperatures and maximum of solder temperatures.

3.2. Effects of the Power Conversion Time

The dependence of thermal fatigue lives on the power conversion time ttrans is analyzed.
The parameters of the operating conditions are set as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pmax = 50 MW·m−3

p0 = 1 bar
T0 = 20 ◦C

. (9)

The other parameters are set to be the same as those under typical operating conditions.
As shown in Figure 11, as ttrans increases, the thermal fatigue lives increase gradually. When ttrans

is less than 500 s, the thermal fatigue lives are particularly short, which indicates that the thermal shock
generated by the fast conversion from high power to low power bring forth disadvantage in the safe
operation of electronic device. Therefore, the conversion rate from high power to low power needs to
be carefully controlled.
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Figure 11. Effects of the power conversion time on the thermal fatigue lives of the key solder joints.

3.3. Effects of the Ambient Temperature

The temperature difference between flip chip component and the ambient air determines whether
the heat can be brought away from the flip chip component. The variation of thermal fatigue lives of
the key solder joints versus the ambient air temperature is plotted in Figure 12. The parameters of the
operating conditions are set as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pmax = 50 MW·m−3

p0 = 1 bar
ttrans = 600 s

. (10)

The other parameters are set to be the same as those under typical operating conditions.
As seen from Figure 12, when the ambient temperature is less than −20 ◦C, the thermal fatigue

lives remain at high values because of the large temperature difference between the key solder joint
and ambient environment. These results indicate that the good heat dissipation effect caused by the
low ambient temperature can improve the thermal fatigue lives. When the ambient temperature rises
and is greater than −20 ◦C, the heat dissipation is reduced, which leads to a drastic decrement in the
thermal fatigue lives. When T0 rises from −20 ◦C to 20 ◦C, the thermal fatigue lives are reduced to
approximately 1/107. These results show that the working lives of electronic devices decrease with
increasing ambient temperature under normal working conditions.

 
Figure 12. Effects of the ambient temperature on the thermal fatigue lives of the key solder joints.
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3.4. Effects of the Ambient Pressure

The ambient pressure p0 also have significance during the heat transfer between the flip chip
component and the ambient environment as illustrated in Figure 13. The parameters of the operating
conditions are set as follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pmax = 50 MW·m−3

T0 = 20 ◦C
ttrans = 600 s

. (11)

The other parameters are set to be the same as those under typical operating conditions.

Figure 13. Effects of the ambient pressure on the thermal fatigue lives of the key solder joints and the
maximum temperature of the key solder joints at the time t = 7 min.

In Figure 13, as p0 decreases, the thermal fatigue lives gradually decrease. As p0 decreases
from 1 bar to 0.1 bar, the thermal fatigue lives decrease by approximately 37.4%. The intermediate
temperature of the solder joint at the time t = 7 min increases as the ambient pressure drops. These
results indicate that under natural convection conditions, the heat dissipation of an electronic device is
weakened by decreases in the ambient air pressure, which leads to quick increases in the temperature
and larger stress variation of the solder joint. Therefore, the thermal fatigue life of the key solder joint
decreases. For the ambient pressure p0 = 0.05 bar, which is nearly a vacuum environment, the natural
convection is extremely weak at this ambient pressure, the heat dissipation of the electronic devices
mainly depends on the heat conduction and the heat radiation. So the temperature of the electronic
device is relatively high and the thermal fatigue life of the key solder joint is relatively short.

4. Conclusions

In this paper, based on the Darveaux energy method, a theoretical model for BGA products under
cyclic thermal loading is developed in an effort to predict the thermal fatigue lives of solder joints in flip
chip component. Based on the simulation, the effects of power load factors and environmental factors
on thermal fatigue life are analyzed. The main conclusions drawn from the results are as follows:

1. Under the condition of cyclic thermal load, the location of the solder joint with the shortest
life in a flip chip component is at the outer corner point in the array. The final life of the flip chip
component under typical conditions is equal to the thermal fatigue life of this key solder joint.
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2. For the properties of the thermal load, an increase in the power density or a decrease in the
power conversion time will result in a short thermal fatigue life of the key solder joint in the flip chip
component. Moreover, the thermal shock generated by the fast conversion from high power to low
power will have a great disadvantage in the safe operation of the device.

3. When the ambient temperature is lower than −20 ◦C, the thermal fatigue life of the key solder
joint is notably sensitive to the variation in ambient temperature. As a result of the relatively large
temperature difference between the ambient environment and the key solder joint, the thermal fatigue
life of the key solder joint is high which is beneficial for the reliability of the device. When the ambient
temperature rises and is greater than −20 ◦C, the heat dissipation from the flip chip component to
the environment is reduced, which leads to a rapid decrease in the thermal fatigue lives of the key
solder joints.

4. Under the condition of natural convection, the heat dissipation of an electronic device is
weakened with decreases in the ambient air pressure, which leads to increases in the temperature and
failure potential of an electronic device.
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Abstract: The objective of this paper is to present a new approach to the problem of combustion
engine efficiency characteristic development in dynamic working states. The artificial neural network
(ANN) method was used to build a mathematical model of the engine comprising the following
parameters: Engine speed, angular acceleration, engine torque, torque change intensity, and fuel
mass flow, measured on a test bed on a spark ignition engine in static and dynamic working states.
A detailed analysis of ANN design, data preparation, the training method, and the ANN model
accuracy are described. The paper presents conducted calculations that clearly show the suitability of
the approach in every aspect. Then, a simplified ANN was created, which allows a two dimensional
characteristic in dynamic states, including 4 variables, to be determined.

Keywords: combustion engine efficiency; dynamic states; artificial neural network

1. Introduction

The overall efficiency of the internal combustion engine is one of its most important operational
parameters. It directly influences fuel consumption, which is an extremely important factor both for
drivers and car manufacturers who have to meet the strict EU regulations [1].

The overall engine efficiency is defined as the quotient of the mechanical power on the flywheel
to the power of the fuel injected into the cylinders. It takes into account all losses related to both
thermodynamic processes, internal friction mainly among moving parts in the crank and piston system,
as well as losses in the alternator drive, the coolant pump, and other accessories.

Currently, the efficiency of internal combustion engines is up to 40% for spark ignition (SI)
naturally aspirated engines [2] and up to 36% for SI turbocharged engines [3]. Over the last 20 years,
efficiency has grown by about 10%, due to numerous factors. The main ones are as follows: The use of
fuel injection systems, modern lubricants, coatings on pistons and cylinders [4], optimization of the
valve timing [5], the use of the Atkinson cycle [2], improved fuels, increased compression ratio and
many others.

A well-known method for presenting the efficiency of engines is with the specific fuel consumption,
which has been used for many years [6]. It represents isolines of specific fuel consumption as a function
of engine rotational speed and torque. It illustrates the efficiency of the engine in the whole working
range and makes it possible to compare different constructions. An important limitation of this
characteristic is the possibility of applying it only to steady states of engine operation, where the
rotational speed and torque are constant and the throttle position is fixed. Therefore, its use in
simulations of vehicle fuel consumption is dedicated to significant errors, because vehicle engines work
dominantly in dynamic working states [7], where energy accumulation in rotating masses, mixture
enrichment at throttle opening, and fuel cut off during deceleration significantly influence engine
efficiency. Despite this big disadvantage, this characteristic is often used in simulations of vehicle
fuel consumption in different driving cycles. However, it can only be used with sufficient accuracy
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in comparative simulations, e.g., concerning gear ratio selection [8], allowing differences between
different constructions to be shown, rather than nominal values of fuel consumption to be calculated.

A technical problem, where many factors that influence other factors can often be solved with
the ANN method, which is capable of approximating non-linear relationships based on a data set
from performed measurements. The applications of the ANN method for solving engine performance
problems are numerous. The authors of Reference [9] have developed dynamic models of the engine,
where speed, throttle angle, and angular acceleration are considered as ANN inputs and engine
torque and fuel consumption are the outputs. In References [7,10], the author undertook another
attempt. The inertia-related engine features are included in the ANN model enabling fuel flow
calculation in dynamic states. In contrast with Reference [9], this model includes not only engine speed,
torque, and angular acceleration, but also torque increase over time, which is an important factor
including air-fuel mixture enrichment. This method is very precise, but no 2D or 3D characteristic
was presented, thus a simple and quick assessment of the engine dynamic parameters is impossible
in this case. Computational simulations must be performed to obtain engine efficiency for each
particular engine working state. In Reference [11], the ANN method was used to predict the exhaust
emissions and performance (e.g., brake specific fuel consumption) of a compression ignition engine
based on engine load, engine speed, and the percentage of biodiesel fuel derived from waste cooking
oil in diesel fuel. Although this article provides relationships between engine speed, load, and
performance, it refers only to static working states. Very similar problems and approaches are
presented in References [12,13], however, in these cases the fuel blends are as follows: Diethyl ether
diesel fuel mixtures and Jatropha biodiesel, respectively. Artificial intelligence can also be used in
more sophisticated problems concerning the efficiency of a combustion engine working in a hybrid
drivetrain [14]. The literature shows that, apart from the ANN method, other approaches are also
possible when solving the problems of engine efficiency (specific fuel consumption). In Reference [15],
the authors’ approach was to analytically calculate energy expenditure and fuel consumption, taking
into account the instantaneous specific fuel consumption, approximated by two generalized single
dimension polynomial functions. The authors of Reference [16] developed a dynamic model based on
the static characteristic complemented by a factor including vehicle speed and acceleration. This model
provides a closer characteristic to real engine behaviour, however, such an attempt also includes vehicle
features such as gear ratios. The authors of Reference [17] used the mean value model representing the
engine. A non-linear model includes air flow and engine inertia, however fuel-air mixture composition
is assumed constant and values of some efficiencies are assumed, not measured. The authors of
Reference [18] invented the new transient fuel consumption model whose basic structure is steady-state
estimation plus transient correction, including engine speed and torque change resulting from the
instantaneous speed and acceleration of the vehicle in specific driving cycles.

The need to reduce research costs and shorten the time of prototype preparation leads to the use
of computer simulations to the widest possible extent. This, in turn, involves the need to develop more
and more accurate mathematical models that reflect the physical construction as closely as possible.
The above examples present different approaches to the problem of combustion engine efficiency and
the use of different calculation methods. Unfortunately, the development of a graphic representation
of combustion engine efficiency in dynamic states is complex, because it requires a multidimensional
relationship to be developed. Taking the above into consideration, the author used the ANN to develop
a novel method that allows graphical representations to be created with the highest possible match
with measurement data from dynamic engine working states.

The rest of the manuscript is organized as follows. Section 2 describes the basics of engine
efficiency, including the well-known specific fuel consumption characteristic as well as the problem
of engine inertia influencing efficiency in dynamic working states. Section 3 provides information
concerning engine tests and the measurement system in static and dynamic states. All the aspects of the
ANN (creating mathematical dependency between engine speed, torque, and its efficiency) concerning
its architecture, data scaling, and training method, are precisely described. Section 4 presents a novel

68



Energies 2019, 12, 2906

approach to the problem of drawing engine efficiency in dynamic working states and, finally, shows
two dimensional characteristics, allowing engine efficiency to be quickly and precisely calculated.
Section 5 presents the simulation results, which prove the correctness of the adopted approach.

2. Problem Formulation

Engine efficiency can be measured for every point in the whole field of work, however, only the
maximum values of individual engines are usually given. The efficiency of the engine in the entire
work area shows the specific fuel consumption, where, in the coordinate system, torque M vs. the
rotational speed n, the contours of specific fuel consumption are presented. Such a characteristic is
presented in Figure 1.
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Figure 1. Engine specific fuel consumption characteristic.

The graph in Figure 1 is created based on a method presented in Reference [8], where the
algorithm of drawing such a characteristic, based on only 4 operating points, is described in detail.
This characteristic can be directly converted to a characteristic of engine efficiency:

η =
N

G·Wd
=

3600
ge·Wd

, (1)

where N is the engine power in kW, G is fuel mass flow in g/s, and Wd is the heat value of the fuel in
MJ/kg.

As mentioned in the Introduction, these characteristics are based on measurements in static states.
In dynamic states, the efficiency of the engine can vary significantly. This results from the following
factors: Enrichment of the mixture during load increase (in relation to static states), delay of the system
response to the control signal, and accumulation of combustion energy in moving parts of the engine
(Figure 2). Although this energy can be partially recovered during deceleration with engine braking, it
is usually lost in the form of pumping losses when the throttle is closed and the engine speed is reduced.

It is therefore important to determine the characteristics that, as well as the engine speed n and
torque M, also take into account the angular acceleration and the increase in the torque over time,
which significantly affect efficiency, as shown in Figure 3.

Such an attempt is strongly desired, because car engines work for a predominant percentage of
time in dynamic working conditions, which results from the specificity of road traffic, especially in
the area of large urban agglomerations, the impact of road resistance, wind resistance, or the driver’s
own operation of the vehicle. It turns out that, in such working conditions, the efficiency of the
engine is even smaller. In the WLTP homologation test (Worldwide harmonized light duty vehicle test
procedure), the phases in which the engine operates with a constant load are only under 17% of the
entire test time. This clearly shows that the use of fuel consumption characteristics in dynamic work
states is insufficiently accurate.
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Figure 2. Main parts of the combustion engine influencing its overall inertia: 1—crankshaft,
2—connecting rod, 3—piston, 4—valve-train chain, 5—camshaft, 6—variable valve timing, 7—valve,
8—dual mass fly-wheel, 9—clutch cover, 10—pressure plate, 11—diaphragm spring, 12—coolant pump,
13—accessories pulley, 14—oil pump, 15—turbocharger, 16—oil, 17—coolant, and 18—throttle valve.
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Figure 3. Engine efficiency in dynamic states.

3. Methodology

3.1. Measurements in Dynamic Working States

The presented engine efficiency characteristic, using the ANN, is determined based on
measurement data from the engine test bench, which allows measurements of the fuel consumption
in dynamic operating states to be performed. This is necessary to ensure an appropriate training set
for the ANN. Such a set must contain measurement data from all the possible operating states of
the engine, covering the entire engine work field, in this case n = 1000–5500 rpm and M = 0–65 Nm.
The measurement methodology is described in detail in Reference [7]. Measurements were performed
on an SI engine with a displacement of 899 cm3, a nominal power of 29 kW at 5500 rpm, and a nominal
torque of 65 Nm at 3000 rpm. Resistant torque was generated by a hydraulically controlled friction
brake enabling smooth and rapid load changes (Figure 4). Two parameters, the brake load and throttle
opening angle (in the full range 0–90◦), were controlled so all the engine working states could be
realized. Measurements were performed at a nominal engine temperature. No warm-up period
was included. The engine speed was measured with the use of a Tacho GT 3.10 L/405 tachometer.
To match the measurement range of the data acquisition device (0–10 V), an additional tooth belt drive,
with a ratio of 2.909, was used. The fuel flow was measured indirectly. A Bosch 0 280 217 123 air

70



Energies 2019, 12, 2906

mass flow meter measured the airflow and an LSU-4.1 Innovate Motorsport LC-1 wideband oxygen
sensor (measurement range of λ = 0.5 ÷ 1.523), with a controller, constantly measured the air-fuel
ratio. The brake caliper was pivoted and the reaction force was generated by a compression spring,
whose shortening was measured by a potentiometer, and a lever system. Such a system measured the
moment of resistance, taking into account both the contact pressure between the pads and the disc, as
well as the friction coefficient between these elements. The moment of inertia of all elements is known
and is taken into account at the stage of building the training set for the ANN. All 4 sensors generated
analog voltage signals and were connected to a National Instruments NI USB-6009 data acquisition
device. LabVIEW software was used to collect the data on the computer.

Figure 4. Test stand used for measurements in dynamic states: 1—engine, 2—friction brake,
3—compression spring, 4—potentiometer, 5—tachometer, 6—tooth belt gear, 7—mass air flow
meter, 8—wideband oxygen sensor, 9—oxygen sensor controller, 10—throttle valve, 11—NI
USB-6009, 12—computer.

All the possible engine states that might occur during normal engine operation in a vehicle must
be performed during measurements. All of them are presented in Figure 5.
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Figure 5. Possible engine working states.

Figure 5 represents all the situations that might occur during driving. The first one is driving at
constant speed on a flat road, the second one is sudden throttle opening—a demand for acceleration,
the third one is acceleration with constant torque, the fourth case is engine braking, and the fifth one is
slow acceleration with torque and speed increase.

3.2. Data Analysis with the Use of ANN

To use the ANN for measurement data approximation, the ANN architecture, data scaling, transfer
functions, and training methods must be defined. The aim is to calculate engine efficiency (resulting
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from fuel mass flow), which is a function of 4 parameters, as follows: Engine speed n, torque M and
angular acceleration εn, and torque increase over time εM. Thus, the considered ANN must have 4
inputs and one output. Only one hidden layer can be used because, with a proper number of hidden
neurons, such a network is capable of approximating non-linear relationships with high accuracy [19].
The non-linear function in the hidden layer was set to logsig, which is one of the transfer functions
available. It ensures similar results to other functions (e.g., tansig), however, it can be calculated
quickly, thus accelerating calculations [19]. Data scaling for all inputs and the output is proportional,
because an increase of every single input results in an increase of the output. The ANN used for
calculations is presented in Figure 6.

Figure 6. ANN used for computing engine efficiency in dynamic states.

The number of hidden neurons depends on many factors, e.g., the data number (in this case, the
training set contained nearly 13,800 data parts from measurements in dynamic and static states), the
homogeneity of measurement data, and the method of data scaling, and thus cannot be set up front.
The author verified mean squared error (mse) for subsequent numbers of hidden neurons, as presented
in Figure 7.

Figure 7. Mean squared error vs. hidden neurons number H.

The mse decreases with increasing numbers of hidden neurons H, however, the higher the H the
higher the possibility of data overfitting (mse < 0.00200), resulting in discontinuities on the graph
(Figure 7), which are created based on the ANN. Taking these two factors into consideration, it turned
out that H = 5 is optimal, because it ensures high accuracy and does not lead to data overfitting.

The ANN approximates measurement data, thus setting the dependency between engine speed
torque and fuel mass flow. The input data vector X0 are engine parameters given in their basic units, as
follows: Engine speed n in rpm, engine angular acceleration εn rpm/s, engine torque M in Nm, engine
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torque increase εM in Nm/s, and the fuel flow G in g/s. The parameters εn and εM are considered in the
time interval 0.3 s [7]. The input vector,

X0 =
[
x0

1, x0
2, x0

3, x0
4

]T
= [n(t0), εn(t0÷0.3), M(t0), εM(t0÷0.3)]

T, (2)

must be scaled to the range (−1; 1) resulting in the vector X1:

X1 =
[
x1

1, x1
2, x1

3, x1
4

]T
. (3)

To ensure proper ANN training, data scaling is conducted according to the following formulas
(with regard to Figure 6):

x1
1 = 0.0004338·x0

1 − 1.4686
x1

2 = 0.0004012·x0
2 − 0.2800

x1
3 = 0.0277800·x0

3 − 1.0000
x1

4 = 0.0062300·x0
4 − 0.1713

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭, (4)

The ANN output Y0, which is the fuel mass flow G.

Y0 = y0
1 = G(t0), (5)

was also scaled to the range (−1; 1) according to the following formula:

y2
1 = 0.717·y0

1 − 1.136. (6)

The hidden layer weights matrix is:

W1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
w1

1,1 . . .

. . .w1
h,in . . .

. . . w1
H,IN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (7)

and hidden layer biases are:

b1 = [b1
1 . . . b

1
h . . . b

1
H]

T
, (8)

where h (h = 1 . . . H) is the number of a hidden neuron, and in is the number of the input (in = 1 . . . IN
= 4). In a summing member, the input, multiplied by its weights, is summed with bias:

p1
h =

IN∑
in=1

1w1
h,in·x1

in + b1
h. (9)

The sum ph
1 is then calculated with the use of the non-linear logsig transfer function f 1:

y1
h = f 1(p1

h) =
1

1 + e−p1
h

, (10)

and multiplied by the output layer weights:

W2 = [w2
1,1 . . . w2

1,h . . . w2
1,H]

T
. (11)

The sum of p1
2 is converted with the use of the simple linear transfer function f 2:

y2
1 = f 2(p2

1) = p2
1. (12)
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The output layer bias matrix is:
b2 = [b2

1]. (13)

The whole training set was divided as follows: 60% training set, 20% validation set, and 20% test
set. The ANN was trained with the Lavenberg–Marquardt algorithm [19,20]. The training process took
49 epochs, which resulted in the mean squared error of 0.00224. Its graph during the learning process
is presented in Figure 8.
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Figure 8. Mean squared error vs. training epochs and regression plot.

Achieving the expected value of mse is equivalent to the completion of the ANN training.
The matrices W1, b1, W2, b2, which represent the result of the network learning and represent the
ANN engine dynamic model, are the following:

W1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−2.9957 −2.9347 −0.4181 1.5487
−0.6117 0.8342 0.6878 −0.8130
−1.9564 −0.9297 −0.8992 −2.3007
3.3275 −1.5137 −0.4126 −2.1666
−1.3134 −2.1830 −2.5913 −4.4844

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (14)

b1 = [3.9769 2.2505− 0.5819 3.5082 3.1910]T, (15)

W2 = [−1.4632 2.2144− 1.2476 0.7342− 1.9261]T, (16)

b2 = [b2
1] = 0.9945. (17)

After ANN training, engine torque is re-scaled from the (−1; 1) range to the basic range (0.1897 ÷
2.979 g/s), based on the following relationship:

Y0 = G(t0) =
y2

1 + 1.136

0.717
. (18)

By simulation of such an ANN, a static efficiency characteristic can be obtained. It is shown in
Figure 9.
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Figure 9. Engine efficiency characteristic in static states.

The characteristic, which is entangled in weights, biases (Equations (14)–(17)), transfer functions
(Equations (10) and (12)), and scaling factors (Equation (4) and (6)), can be used in different simulations
for precise calculations of engine efficiency. However, the engine efficiency cannot be assessed in a
straightforward manner, as in the case of graphic representation. As a consequence of this, the author’s
method for graphical representation of such a characteristic is presented in the next chapter.

4. Development of the Graphic Engine Efficiency Characteristic

The ANN presented in Section 3 can be used in computer simulations, because it ensures high
accuracy. However, it does not allow a simple 2D or 3D characteristic to be obtained. Thus, a modified
ANN, with a new architecture, will be used in this chapter to develop such a characteristic. First of
all, an ANN with only one hidden neuron will be used. Secondly, it will differ from the previous
one, because, in this case, engine efficiency is directly the ANN output. The logsig shape of the
transfer function f 1 will be the base for the characteristic. All of the 4 variables must be presented
simultaneously, because they influence each other. The architecture used is presented in Figure 10.

Figure 10. ANN used for engine efficiency graph development.

The fact that the output is engine efficiency means that the 2nd and 4th inputs must be scaled
inversely proportionally (different than in the first ANN with 5 hidden neurons (Figure 6)), because
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both high angular acceleration and increased torque reduce engine efficiency. The input values remain
the same:

X0 =
[
x0

1, x0
2, x0

3, x0
4

]T
= [n(t0), εn(t0÷0.3), M(t0), εM(t0÷0.3)]

T. (19)

They are scaled to the range (−1; 1), thus creating the vector X1:

X1 =
[
x1

1, x1
2, x1

3, x1
4

]T
. (20)

Data scaling is the following:

x1
1 = 0.0004338·x0

1 − 1.4686
x1

2 = −0.0004012·x0
2 + 0.2800

x1
3 = 0.0277800·x0

3 − 1.0000
x1

4 = −0.0062300·x0
4 + 0.1712

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭. (21)

The ANN output Y0 is the engine efficiency η [%]:

Y0 = y0
1 = η(t0). (22)

It was also scaled to the range (−1; 1), according to the following formula:

y2
1 = 0.0606·y0

1 − 1. (23)

The training process took 18 epochs this time, which resulted in the mean squared error of 0.00854.
Its graph during the learning process is presented in Figure 11.

Figure 11. Mean squared error vs. training epochs and regression plot.

The matrices W1, b1, W2, b2 are now the following:

W1 = [−0.0463 0.2889 1.6809 0.2402 ], (24)

b1 = [3.2176], (25)

W2 = [11.2440], (26)

b2 = [−10.3915]. (27)
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After ANN training, engine torque is re-scaled from the (−1; 1) range to the basic range (0–33%)
based on the following relationship:

Y0 = η(t0) =
y2

1 + 1

0.0606
. (28)

Then, it must be verified if only one hidden neuron is capable of approximating the whole data
set, because it is essential to create a characteristic with reasonable accuracy. Based on the two neural
networks above, static characteristics are created. The result obtained with the use of the ANN with
one hidden neuron differs no more than 5% for 95% of the engine working field from the ANN with
5 neurons. Thus, the accuracy is reasonable and the ANN with 1 neuron can be used further for 2D
characteristic development.

To obtain a simple and direct relationship between the engine parameters and its efficiency
scaling coefficients (Equation (21)), its input weights are multiplied and simplified, according to the
following equations:

Σ1 =
(
a1·x0

1 + c1
)
·w1

1,1 +
(
a2·x0

2 + c2
)
·w1

1,2 +
(
a3·x0

3 + c3
)
·w1

1,3 +
(
a4·x0

4 + c4
)
·w1

1,4 + b1
1. (29)

After transformation:

Σ1 =
(
a1·x0

1 + c1
)
·w1

1,1 +
(
a2·x0

2 + c2
)
·w1

1,2 +
(
a3·x0

3 + c3
)
·w1

1,3 +
(
a4·x0

4 + c4
)
·w1

1,4 + b1
1, (30)

Σ1 = A1·x0
1 + A2·x0

2 + A3·x0
3 + A4·x0

4 + S. (31)

The final coefficients are the following: A1 = −0.0000200, A2 = −0.0001159, A3 = 0.0467000, A4 =

−0.0015000, S = 1.7265.
Taking into account (Equation (2)), this results in the final dependency, which can be directly

moved further on the graph:

Σ1 = A1·n(t0) [rpm] + A2·εn(t0÷0.3) [rpm/s] + A3·M(t0) [Nm] + A4·εM(t0÷0.3) [Nm/s] + S. (32)

Finally, the logsig function is converted by the output layer weight W2, and then by rescaling the
output data. This is presented in Figure 12.
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Figure 12. Operations on the logsig function inside the AN.

To create a graphic representation, the coefficients are scaled to specific lengths in a graph. This
allows a simple and quick assessment of engine efficiency. The final characteristic is presented in
Figure 13.
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Figure 13. A new engine efficiency characteristic.

This characteristic allows a simple assessment of engine efficiency in the whole working range.
The length of the measurement sections clearly shows the influence of individual components on the
overall efficiency of the engine and, in particular, how it decreases where angular acceleration or torque
increase occur. The main advantage of the characteristic is that it is a continuous and differentiable
function, which allows the efficiency to be calculated at any working point.

5. Simulation Results and Comparison of Dynamic and Static Characteristic

The ANN network with 5 hidden neurons can be used, as mentioned, in simulations of vehicle
fuel consumption in WLTP homologation tests, for example. Based on vehicle speed and vehicle
parameters (wheel radius, gearbox ratios, and vehicle weight), one can calculate engine speed and
torque, and the ANN will calculate engine efficiency at every moment. A sample course of engine
parameters is presented in Figure 14, which allows the newly developed characteristic ηdyn to be
compared with the static characteristic ηstat.
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Figure 14. Engine efficiency in different working states based on the ANN characteristic (ηdyn) and
static characteristic (ηstat).
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It can be clearly seen that the engine efficiency drops by 10% during sudden throttle opening
(2). In phase (3) when the torque is constant, the increase in engine speed decreases the efficiency
by up to 15%. An unusual situation occurs in phase (4–5). Sudden throttle closing results in air-fuel
mixture depletion, however, the engine generates torque (due to the speed decrease). This leads to
the situation that the engine efficiency reaches up to 42%, whereas its maximum efficiency in steady
states is 33%. Phase (7) represents slow engine load and speed increase. In this situation, the difference
between characteristics is only 4%. Phases (1,4,6,8) represent static states, so ηdyn = ηstat. This proves
that static characteristics (specific fuel consumption characteristic) can only be used in quasi-static
conditions. Taking into consideration the accuracy requirements of modern simulation programs, as
well as the wide range of engine operation, this is not enough. Only the newly developed characteristic
can calculate engine efficiency in any working state with high accuracy.

6. Summary and Conclusions

The article presents a detailed algorithm for developing the combustion engine efficiency
characteristic, both in a full version with 5 hidden neurons, dedicated for computer simulations,
and a simplified one with only one hidden neuron, which visually describes the engine properties
with the accuracy of 5% with regard to the detailed characteristic. Both methods describe every step
exactly, including the coefficients of data scaling and weights and biases of both networks, which can
be recreated by any researcher. ANN design and the training method prove the correctness of the
presented attempt. The mse and regression plots are correct and R > 0.98, which also means that the
network architecture and scaling methods were assumed correctly. However, one should remember
that the specific values of weights and lengths reflect the specificity of the tested engine. With different
propulsion, the weight and length coefficients will be different; however, the methodology remains the
same. The example presented in Section 5 shows that the discrepancy between the static characteristic
and the new characteristic can reach up to 15% in the case of high angular acceleration and sudden
throttle opening. Scaling lengths (Figure 13) clearly show the influence of each component (n, εn, M,
and εM) on the overall efficiency in the whole working range and allow a quick and precise assessment
of the engine properties.
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Abstract: Parameter estimation of electrical vehicle batteries in the presence of temperature effect is
addressed in this work. A simple parametric temperature dependent battery model is used for this
purpose where the temperature dependence is described by static relationships. A two-step method
is used that includes a parameter estimation step of the key parameters at different temperatures
followed by a static optimization step that determines the temperature coefficients of the corresponding
parameters. It was found that the temperature dependent parameter characteristics can be reliably
estimated from charging profiles only. The proposed method can be used as a computationally effective
way of determining the key battery parameters at a given temperature from their actual estimated
values and from their previously determined static temperature dependence. The proposed parameter
estimation method was verified by simulation experiments on a more complex battery model that also
describes the detailed dynamic thermal behavior of the battery.

Keywords: dynamic modeling; thermal management; parameter estimation; energy storage operation
and planning; electric and solar vehicles

1. Introduction

Lithium-ion batteries are popular energy sources of our everyday life because of their high energy
density, low self-discharge and lightweight. Portable electronic devices (mobile phones and laptops),
home electronics, electronic tools and electric vehicles (EVs) all run on some type of lithium-ion battery. In
applications such as electrical vehicles, batteries are connected in parallel and series to meet the power
needs. The optimal performance and safe operation of the set of battery cells are managed by the battery
management system (BMS). Another essential role of the BMS is the state of charge (SOC) and state of
health (SOH) estimation. The former quantity informs the driver on the remaining charge of the battery
bank (i.e., the remaining mileage that can be traveled with the electrical vehicle), while the latter shows the
the ratio between the capacity of a new battery in relation to the actual capacity of the battery. Similar to
any other battery, the performance of the lithium-ion battery is not constant but slowly degrades during
the operation and strongly depends on the ambient temperature. The battery health conditions cannot be
measured directly therefore it should be estimated based on measurable quantities.

Energies 2019, 12, 3755; doi:10.3390/en12193755 www.mdpi.com/journal/energies
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Thermal modeling and the analysis of lithium-ion batteries under different temperatures has been
addressed by several authors. The thermal modeling of batteries as well as the modeling without
temperature dependency can be classified based on the scientific background (e.g., equivalent circuit
models and electrochemical models). The review by Madani et al. [1] gives a thorough analysis of not only
the different electrochemical models but also the parameter identification methods.

In such applications where the computational complexity (i.e., time) is crucial, e.g., in BMSs (battery
management systems), equivalent circuit models are widely used [2]. The authors of [3] addressed the
study of open circuit voltage-state of charge (OCV-SOC) characterization under the influence of different
temperatures. The results show that the OCV-SOC characteristics curve highly depends on the temperature.
An online estimation method for model parameters and SOC is proposed in [4], for applications in EVs
under various temperatures. Their model is based on the RC circuit equivalent of the investigated battery.
In [5], a design of experiment approach is used for the development of the electro-thermal model of electric
vehicle batteries. The basis of their work is also an equivalent circuit model of the battery. The authors
of [6] investigated the influence of thermal effect on the performance of their dual Kalman filter based
(state and parameter estimation) method.

Another class of battery models is the electrochemical models where the chemical reactions and
mechanisms taking place in the battery serves as a basis for the modeling equations. An electro-thermal
model is developed and validated experimentally in [7], where electronic conduction, heat transfer,
energy balance and electrochemical mechanisms are included in the model. A computationally more
efficient electrochemical lithium-ion battery model is proposed in [8]. The simplified single particle
model is compared with more complicated electrochemical models as well as experimental data.
Hosseinzadeh et al. [9] gave a systematic approach for the development of thermal electrochemical models
of large lithium-ion batteries for EV applications. An et al. [10] addressed the problem of non-uniformity of
heat generation and electrochemical reaction increase with the discharge rate in an electrochemical-thermal
coupled lithium-ion battery model.

Pure thermal models are also present in the literature; the authors of [11] developed a lumped parameter
thermal model of the widely used LiFePO4 lithium-ion battery. Using thermal measurements and the model,
they determined the heat transfer coefficient and the heat capacity of the examined battery.

Due to the above mentioned thermal effects taking place in lithium-ion batteries, the previously
mentioned roles of BMSs are usually extended with thermal management. The most frequently used thermal
management solutions of lithium-ion batteries (used either in HEVs or in EVs) are reviewed in [12].
Temperature dependence of the key battery parameters and variables motivated the authors of [13] to
develop a two stage battery capacity estimation method. In the first stage, battery core temperature is
estimated and, afterwards, SOC and capacity are estimated by a sliding model observer.

Due to the nonlinear nature of parametric lithium-ion battery models and the fact that parameters
might also depend on time and/or external variables, the computational complexity of battery parameter
estimation can be demanding. Wang et al. [14] overcame this problem by a parallel Java algorithm
implemented on GPU (CUDA) architecture. The authors of [15] developed and compared three different
solutions for the internal resistance estimation of lithium-ion batteries (direct resistance estimation,
Extended Kalman Filter (EKF), and recursive least squares) and concluded that EKF approach performed
the best in terms of computational efficiency.

In our previous work [16], we proposed a parameter estimation for lithium ion batteries based on
their first-order equivalent circuit model. The aim of the present paper is to generalize that work to the
case when the temperature dependence of the parameters are also taken into account in such a way that a
computationally effective way of temperature dependent parameters important from the viewpoint of
applicability (e.g., actual capacity) could be given for implementation in future BMSs.
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Therefore, the method presented in this paper proposes temperature dependent static characteristics
for the battery parameters using a very simple dynamic model. The obtained characteristics can be used
for determining the estimated parameter values for given thermal circumstances. Since the characteristics
are determined for the parameters independently as static functional relationships, they can be calculated
effectively in a real-time environment, e.g., a battery management system.

The paper is organized as follows. Section 2 introduces the parametric lithium-ion battery model
that is used as the basis of our further steps. In Section 3.3, the parameter sensitivity analysis of the
model is performed together with the discussion of its results. Section 3 is the main contribution of
this paper and proposes our novel parameter estimation method for lithium-ion batteries. In Section 4,
the proposed parameter estimation method is analyzed by simulation experiments, and the paper is closed
by concluding remarks.

2. Parametric Battery Model

The parametric lithium-ion battery model is an important basis of the methods proposed in the sequel,
thus it is presented here. This is a modified version of that used in [16].

2.1. Modeling Assumptions

The following assumptions were made for the battery model [17] with temperature dependency:

• The capacity of the battery does not change with the amplitude of the current (no Peukert effect).
• The self-discharge of the battery is not represented.
• The battery has no memory effect (no ageing is assumed).
• The voltage and the current can be influenced.
• The capacity depends on the ambient temperature.
• The constant potential, the polarization coefficient, the polarization resistance and the internal

resistance depend on the internal (cell) temperature of the battery.

2.2. Temperature Dependent Battery Model

From the potential modeling methodologies, the equivalent electrical circuit type was selected to
create the basic battery model. The selected model is originally developed in [17]; in our previous work,
we described that model without temperature effect [18].

The structure of the model can be seen in Figure 1.

R

i(t)

vocv(t) vb(t)

Figure 1. Equivalent electrical circuit model of the battery. Voltage vocv(t) of the controlled voltage source
is different in the case of charge and discharge.
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The input of the model is the battery current (i) and the output is the battery voltage (vb). The open
circuit voltage (vocv) is represented by a controlled voltage source, and it is different during charging
and discharging. The model was extended with temperature effects as it can be found in the Matlab
Simulink Battery block (Simscape/Electrical/Specialized Power Systems/Electric Drives/Extra Sources).
The difference with respect to the basic model is that some of the parameters depend on the ambient or
cell temperature. As a result, the temperature dependent state space model of the battery is obtained in
the form of Equations (1)–(6) as follows [17].

State equations:
d
dt

q(t) =
1

3600
i(t) (1)

d
dt

i∗(t) = − 1
τ

i∗(t) + 1
τ

i(t) (2)

The state variables have the following meaning:

• q is the actual extracted capacity of the battery. The initial values of q are q(t0) = 0, if the battery is
fully charged and q(t0) = Q, if the battery is fully discharged.

• i∗ is the polarization current. It can be computed by applying a low-pass filter to the battery current i,
where τ is the time constant of the filter (see Equation (2)).

Output equations:

• Charge model

vch
ocv(t, T, Ta) =E0(T)− K1(T)

Q(Ta)

q(t) + 0.1Q(Ta)
i∗(t)

− K2(T)
Q(Ta)

Q(Ta)− q(t)
q(t) + A exp(−Bq(t))− Cq(t)

(3)

vch
b (t, T) = vch

ocv(t, T, Ta)− R(T)i(t) (4)

• Discharge model

vdch
ocv(t, T, Ta) =E0(T)− K1(T)

Q(Ta)

Q(Ta)− q(t)
i∗(t)

− K2(T)
Q(Ta)

Q(Ta)− q(t)
q(t) + A exp(−Bq(t))− Cq(t)

(5)

vdch
b (t, T) = vdch

ocv(t, T, Ta)− R(T)i(t) (6)

The output of the model is the battery voltage vX
b that is composed of the open circuit voltage (vX

ocv)
and the voltage drop across the internal resistance (R(T)i(t)). The open circuit voltage is the voltage of the
battery when no external load is connected to it. X = {ch, dch} denotes the charge/discharge mode of
the battery.

The variables of the model with their meaning and units can be seen in Table 1.
The indirect temperature dependency of the model defined by Equations (1)–(6) is realized through a

static temperature dependence of the model parameters. The temperature dependency of the parameters can
be described with the following equations [19]:
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• The change of polarization coefficient, polarization resistance and internal resistance with the battery
temperature T can be derived from the Arrhenius law:

K1(T) = K1|Tre f exp

(
α1

(
1
T
− 1

Tre f

))
(7)

K2(T) = K2|Tre f exp

(
α2

(
1
T
− 1

Tre f

))
(8)

R(T) = R|Tre f exp

(
β

(
1
T
− 1

Tre f

))
(9)

• The temperature dependency of the capacity and the constant potential can be written in the
following form:

Q(Ta) = Q|Tre f +
ΔQ
ΔT

(Ta − Tre f ) (10)

E0(T) = E0|Tre f +
∂E
∂T

(T − Tre f ) (11)

The parameters of the temperature dependent battery model with their meaning and nominal values
can be found in Table 1. Our examined battery is a Samsung INR18650-20Q type battery (Cheonan, Korea)
with 2000 mAh nominal capacity and 3.6 V nominal voltage. The nominal parameters of the battery were
extracted from the datasheet and the Matlab Simulink model [20].

Table 1. Variables and parameters of the examined Samsung INR18650-20Q Li-ion battery.

Name Type Meaning Unit Value

i input variable battery current A -
i∗ state variable polarization current A -
q state variable extracted capacity Ah -
t independent variable time s -

vocv variable open circuit voltage V -
vb output variable battery voltage V -
T external variable battery cell temperature K -
Ta external variable ambient temperature K -

Tre f parameter nominal ambient temperature K 298.15
τ parameter time constant of the filter s 0.003
E0 parameter constant potential of the electrodes V -

E0|Tre f parameter constant potential of the electrodes at nominal ambient temperature V 3.9388
∂E/∂T parameter reversible voltage temperature coefficient V/K 0.002

R parameter internal resistance Ω -
R|Tre f parameter internal resistance at nominal ambient temperature Ω 0.005

β parameter Arrhenius rate constant for the internal resistance K 3839.8
K1 parameter polarization constant V/Ah -

K1|Tre f parameter polarization constant at nominal ambient temperature V/Ah 0.0018
α1 parameter Arrhenius rate constant for the polarization coefficient K 8415.3
K2 parameter polarisation resistance Ω -

K2|Tre f parameter polarization resistance at nominal ambient temperature Ω 0.0018
α2 parameter Arrhenius rate constant for the polarization resistance K 8415.3
Q parameter battery capacity Ah -

Q|Tre f parameter battery capacity at nominal ambient temperature Ah 2.0
ΔQ/ΔT parameter maximum capacity temperature coefficient Ah/K 0.016

A parameter exponential voltage V 0.1589
B parameter exponential capacity (Ah)−1 15.0
C parameter nominal discharge curve slope V/Ah 0.2362
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Remark on the battery cell temperature:

To obtain a simple model for parameter estimation, we have omitted the energy balance and
considered the battery cell temperature T as an external variable that does not change too much during a
charge or discharge operation.

3. Parameter Estimation Methodology

Based on the modeling and analysis results of Sections 2 and 3.3, the parameter estimation method is
presented in this section.

3.1. Input Signal

The pseudo-random binary sequence (PRBS) is chosen as the input signal for the parameter estimation.
It is a widely used signal in the field of parameter estimation [21] because it is easy to generate and provides
sufficient excitation. The PRBS has only two values in between the signal changes randomly. The two
parameters of the PRBS are the range (the upper and lower level of the signal) and the frequency of
the change that should be chosen considering the system dynamics. In our case, the clock frequency of
the PRBS was chosen to be five times the time constant of the system; the latter can be approximately
determined from a step input to the system (see in Section 3.3).

An other important factor of our parameter estimation method is the ambient temperature. At each
experiment, the ambient temperature is chosen to be constant, thus we hold the ambient temperature
constant during an experiment.

The minimum and maximum battery temperatures of the experiments should be chosen according to
the recommended operating temperatures of the examined battery. Then, this range is evenly divided to
get the list of ambient temperatures at which the experiments should be carried out.

3.2. Simulation Setup

The parameter estimation methods were implemented and tested by simulation experiments in
Matlab. To simulate the heat dissipation of the battery during charge/discharge, the battery model in
Simulink/Simscape/Electrical/Specialized Power Systems/Electric Drives/Extra Sources (an extended model)
was used. This model contains additional energy balance equations that describe the temperature effects of the
battery [22]. This means that the cell temperature and the heating/cooling effects of the battery (including
self-heating) during the operation can be simulated. It is important to note that the model that we used for
parameter estimation (Equations (1)–(11)) is much simpler, as it does not contain the internal energy balance
equation. The advantage of the Simulink model is that the battery cell temperature can be directly extracted from
the model, which can be used as measurement data for the cell temperature.

The simulated battery was a Samsung INR18650Q-20Q battery with 2000 mAh capacity. The nominal
parameters of the battery can be seen in Table 1. The operating temperatures of the battery from the
datasheet are 0–50 ◦C for charge and −20–75 ◦C for discharge. Based on these values, we decided to
simulate the battery in the range 0–50 ◦C. The charge and the discharge of the battery was simulated at 11
different ambient temperatures with PRBS input signal of 1–99% state of charge. The simulation setup in
case of charge and discharge can be seen below.

Simulation setup for charge:

• PRBS input: Imin = −2A, Imax = −0.5A, Ts = 160s
• initial values: q(t0) = 0.99Q, i∗(t0) = 0, T = Ta

• ambient temperatures: Ta = 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 ◦C
• stopping criterion: q(t) = 0;
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Simulation setup for discharge:

• PRBS input: Imin = 0.5A, Imax = 2A, Ts = 160s
• initial values: q(t0) = 0.01Q, i∗(t0) = 0, T = Ta

• ambient temperatures: Ta = 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 ◦C
• stopping criterion: q(t) = 0.99Q;

All simulations were performed on a PC (Intel i5 CPU with 4GB RAM) (Intel, Santa Clara, CA, USA).

3.3. Parameter Sensitivity Analysis

As a first step of the parameter estimation, the parameter sensitivity of the charge and discharge
model of the battery was analyzed. It is important to note that the temperature has an indirect effect on
the model output through the parameters directly depend on the temperature. We used our previously
described method [16] for the sensitivity analysis, i.e., the parameter values were changed one by one
with ±10% with respect to the nominal values, then the difference between the nominal and the perturbed
model was evaluated using a quadratic loss function:

Ws(θ̃) =
1
N

N

∑
k=1

1
2
(
vb(θ; k)− vb(θ̃; k)

)2 (12)

where θ denotes the parameter vector, and θ̃ is the perturbed parameter vector. First, the step response of
the model was simulated to get the time constant of the system (τs). The sample time of the PRBS signal
(Ts) was chosen to be Ts = τs/5. The sensitivity analysis was repeated at six different temperatures: 0 ◦C,
10 ◦C, 20 ◦C, 30 ◦C, 40 ◦C and 50 ◦C. The battery was charged/discharged between 0% and 100% state
of charge with PRBS current input (amplitude: charge {−2 A, −0.5 A} and discharge {0.5 A, 2 A}; and
sample time: 160 s). Both the charge and the discharge models were analyzed. The nominal model was the
charge/discharge model at the nominal ambient temperature Tre f = 25 ◦C.

The models were simulated in Matlab using the model equations (Equations (1)–(6)). At each
temperature, the nominal parameters were perturbed one-by-one and the value of the loss function was
computed. The result of the sensitivity analysis of the charge and the discharge model can be seen in
Tables 2 and 3. The graphical representation of the results is depicted in Figure 2.

Table 2. Values of the loss function in case of the parameter sensitivity analysis of the charge model.

Parameter Change 0 ◦C 10 ◦C 20 ◦C 30 ◦C 40 ◦C 50 ◦C

E0
−10% 0.1100 0.0710 0.0728 0.0837 0.0922 0.0999
+10% 0.1342 0.0939 0.0830 0.0721 0.0652 0.0592

K1
−10% 0.0437 0.0047 0.0003 0.0003 0.0011 0.0020
+10% 0.0455 0.0051 0.0004 0.0003 0.0011 0.0020

K2
−10% 0.0365 0.0041 0.0003 0.0003 0.0011 0.0020
+10% 0.0537 0.0059 0.0004 0.0003 0.0011 0.0020

Q −10% 0.0376 0.0069 0.0028 0.0013 0.0005 0.0007
+10% 0.0562 0.0054 0.0016 0.0025 0.0039 0.0055

R −10% 0.0446 0.0049 0.0003 0.0003 0.0011 0.0020
+10% 0.0446 0.0049 0.0004 0.0003 0.0011 0.0020
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Table 3. Values of the loss function in case of the parameter sensitivity analysis of the discharge model.

Parameter Change 0 ◦C 10 ◦C 20 ◦C 30 ◦C 40 ◦C 50 ◦C

E0
−10% 0.3795 0.1374 0.0912 0.0687 0.0591 0.0517
+10% 0.1305 0.0581 0.0680 0.0886 0.1013 0.1119

K1
−10% 0.1641 0.0184 0.0018 0.0011 0.0026 0.0042
+10% 0.1913 0.0220 0.0022 0.0011 0.0026 0.0042

K2
−10% 0.1578 0.0182 0.0017 0.0011 0.0026 0.0042
+10% 0.1982 0.0223 0.0023 0.0010 0.0026 0.0042

Q −10% 0.1362 0.0408 0.0020 0.0002 0.0023 0.0042
+10% 0.1852 0.0346 0.0004 0.0015 0.0027 0.0042

R −10% 0.1769 0.0200 0.0200 0.0011 0.0026 0.0042
+10% 0.1780 0.0203 0.0020 0.0011 0.0026 0.0042

0 10 20 30 40 50

0
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0.3

0.4

Temperature [◦C]

W
s(

θ̃ )

E0 − 10% E0 + 10% K1 − 10% K1 + 10% K2 − 10%
K2 + 10% Q − 10% Q + 10% R − 10% R + 10%

(a) Sensitivity of the charge model
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θ̃)

(b) Sensitivity of the discharge model

Figure 2. Results of the parameter sensitivity analysis of the charge and the discharge model.

It can be seen that the discharge model is a bit more sensitive to the change of the parameters as the
magnitude of the error is greater in that case. Both the charge and the discharge models have similar
characteristics with respect to the parameter sensitivity:

• The models are highly sensitive to the constant potential E0.
• The models are less sensitive to K1, K2 and Q.
• The rate of sensitivity is similar in the case of K1, K2 and Q.
• The sensitivity of the models increases as the temperature decreases.
• At ambient temperatures greater than the nominal temperature, the effect of changing the parameters

is really small (except for E0), especially in case of the discharge model.
• The change of the internal resistance R at different temperatures has no effect on the models, as

the errors related to the ±10% change are the same. In these cases, only the temperature affects
the models.
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Based on these statements, the parameters E0, K1, K2 and Q will be estimated while R is fixed to its
nominal value.

3.4. Methods for Parameter Estimation

Our parameter estimation method consists of two steps. At first the battery is charged or discharged
at different constant ambient temperatures. At each temperature, the parameters E0, K1, K2 and Q of the
battery are estimated. In the second step, the temperature coefficients of these parameters are estimated.

3.4.1. Estimation of the Battery Parameters

The first step of our method is the estimation of the battery parameters at different constant ambient
temperatures to see how these parameters change with that temperature. The inputs of the parameter
estimation are the battery current and voltage at different temperatures during a full charge or discharge
process. The result of the estimation is a set of battery parameters at different temperatures.

It can be seen from Equations (1)–(6) that the battery model has a nonlinear output equation and four
parameters to be estimated as we fixed the internal resistance R to its nominal value. Therefore, a suitable
nonlinear parameter estimation method should be chosen. In our work, the nonlinear least-squares method
is chosen. Nonlinear parameter estimation problems are usually solved as nonlinear optimization problems
where a suitable cost function should be minimized. In our case, the cost function is the sum of squared
deviation between the model and the measurement data at every time instance (see Equation (13) below).

W(θ) =
N

∑
k=1

(
v̂X

b (k)− vX
b (θ; k)

)2
(13)

X ∈ {ch; dch}
where v̂X

b (k) = v̂X
b (k Ts) is the measured value of the battery voltage at the kth sample, vX

b (θ; k) is the
output of the model (Equation (4) or Equation (6)) with the parameter vector θ = [E0, K1, K2, Q], and N is
the total number of samples.

As all of the parameters to be estimated have physical meaning, the range and scale of the parameter
values are usually known in advance. Therefore, upper and lower bounds for the parameters can
be defined that is useful to limit the searching space of the optimization. As a result, a constrained
nonlinear optimization problem should be solved. From the potential algorithms, the trust region reflective
algorithm [23] is chosen in our work.

3.4.2. Estimation of the Temperature Dependency of the Parameters

The second step of the parameter estimation method is the estimation of the reference values and the
temperature dependency coefficients of the parameters. The inputs of this parameter estimation problem
are the estimated parameters at different temperatures from the previous step (Section 3.4.1). It can be
seen from the temperature dependent battery model that the battery parameters can be divided into two
groups based on the type of their temperature dependency:

• Parameters with linear temperature dependency: E0, Q.
• Parameters with nonlinear (exponential) temperature dependency: K1, K2.

Moreover, it can be seen from Equations (7)–(11) that some of the parameters (Q) depend on the
ambient temperature and others (E0, K1, K2) depend on the battery cell temperature. The problem
is that the cell temperature usually cannot be measured. To overcome this, we made the following
additional assumptions:
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• The cell temperature does not change a lot during charge/discharge (maximum ±2 ◦C).
• The cell temperature is substituted by the average surface temperature during charge/discharge.
• Initially, the cell temperature and the ambient temperature are equal.
• The surface temperature of the battery is measured.

With the above assumptions, the temperature coefficients of the parameters can be estimated.
The coefficients to be estimated are:

• E0|Tre f and ∂E/∂T for the temperature dependency of E0

• Q|Tre f and ΔQ/ΔT for the temperature dependency of Q
• K1|Tre f and α1 for the temperature dependency of K1

• K2|Tre f and α2 for the temperature dependency of K2

The coefficients of E0(T) and Q(Ta) can be estimated with the simple linear least squares method
because Equations (11) and (10) are linear.

The coefficients of K1(T) and K2(T) can also be estimated by the least squares method by transforming
the equations and their dependent variables.

4. Simulation Results

In this section, the results of the simulation based experiments are introduced and analyzed.
In Section 4.1, the results of the estimation of the battery parameters at 11 different temperatures are
presented. Then, in Section 4.2, the results of the estimation of the temperature dependency of the battery
parameters are described.

4.1. Estimated Battery Parameters

The battery parameters at different temperatures were estimated using the lsqnonlin function from
Matlab Optimization Toolbox [24]. This function needs at least two input arguments: a function to
minimize and the vector of initial parameter values. Additional input arguments such as lower and upper
bounds of the parameters and other options can be also defined. In our case, the following bounds were
defined for the parameters: 0 ≤ E0 ≤ 5, 0 ≤ Q ≤ 3, 0 ≤ K1 ≤ 0.1, 0 ≤ K2 ≤ 0.1.

The function to minimize is the cost function in Equation (13) and the parameters to be estimated are
θ = [E0, Q, K1, K2]

T . The initial values of the parameters were set to the nominal parameter values (see in
Table 1).

The results of the parameter estimation can be seen in Tables 4 and 5. It can be noticed in the second
row of Table 4 that above 35 ◦C the battery reached its maximum capacity during charge.

Table 4. Estimated battery parameters at different temperatures during charge.

Ta [◦C] 0 5 10 15 20 25 30 35 40 45 50

E0 [V] 3.9175 3.9154 3.9190 3.9259 3.9343 3.9436 3.9532 3.9631 3.9651 3.9783 3.9893
Q [Ah] 1.6001 1.6800 1.7599 1.8399 1.9201 2.0004 2.0811 2.1623 2.1576 2.1579 2.1582
K1 [V/Ah] 0.0169 0.0099 0.0059 0.0036 0.0023 0.0015 0.0010 0.0007 0.0012 0.0008 0.0007
K2 [Ω] 0.0246 0.0140 0.0082 0.0049 0.0030 0.0019 0.0012 0.0008 0.0000 0.0000 0.0000
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Table 5. Estimated battery parameters at different temperatures during discharge.

Ta [◦C] 0 5 10 15 20 25 30 35 40 45 50

E0 [V] 3.8877 3.8980 3.9083 3.9185 3.9286 3.9388 3.9490 3.9591 3.9693 3.9795 3.9884
Q [Ah] 1.6010 1.6801 1.7599 1.8393 1.9188 1.9980 2.0764 2.1540 2.2300 2.3035 2.1583
K1 [V/Ah] 0.0239 0.0138 0.0081 0.0048 0.0029 0.0018 0.0011 0.0007 0.0004 0.0003 0.0000
K2 [Ω] 0.0243 0.0139 0.0081 0.0048 0.0029 0.0018 0.0011 0.0007 0.0005 0.0003 0.0000

It can be seen from the estimated values that they are in good agreement with the nominal parameters
of the investigated battery type, and coincide well with the parameters in the detailed dynamic battery
model in Simulink/Simscape/Electrical/Specialized Power Systems/Electric Drives/Extra Sources.

The accuracy of the parameter estimation can be characterized by the covariance matrix of the
estimation. In our results, the elements of the covariance matrices are really small (with orders between
10−8 and 10−12) in both charge and discharge cases. This means that the parameter estimation is very
accurate. Note that the experimental data were obtained from the simulation of the model equations of the
extended model with energy balance equation and not from real measurements, therefore no external noise or
modeling errors are included.

The confidence region of the estimated parameters can be approximated by the 1.05·Wmin contour
line of the cost function W. To analyze and illustrate the confidence regions, we analyzed the parameters
in pairs. We fixed two parameters and computed the value of the cost function when changing the other
two parameter values around their estimated value. The two parameters pairs were chosen as E0, Q and
K1, K2. Some examples of the confidence regions in the case of charge/discharge at different temperatures
are illustrated on Figures 3 and 4. The order of magnitude on the x and y axes are the same in Figures 3a–d
and 4a–c respectively. In Figure 4d, the axes are magnified for better visibility. Comparing the confidence
regions at different temperatures and operating modes, the following conclusions can be drawn:

• In the case of both charge and discharge, the confidence of Q increases while E0 decreases as the
temperature rises (see Figure 3a–d).

• E0 and Q are uncorrelated because the axes of the ellipse are almost parallel with the x and y axes.
• In the case of charge, the confidence region of K1, K2 becomes smaller as the temperature rises (see

Figure 4a,b).
• A linear relationship between K1 and K2 can be assumed in the case of discharge (see Figure 4c,d).

(a) Charge at 5 ◦C (b) Charge at 30 ◦C

Figure 3. Cont.
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(c) Discharge at 5 ◦C (d) Discharge at 30 ◦C

Figure 3. Confidence regions of the estimated parameters E0, Q during charge/discharge at different
temperatures. x axis, E0; y axis, Q; x axis range, 1 × 10−3; y axis range, 3.5 × 10−4; −, confidence region; ×,
estimated parameter value.

(a) Charge at 5 ◦C (b) Charge at 30 ◦C

(c) Discharge at 5 ◦C (d) Discharge at 30 ◦C
Figure 4. Confidence regions of the estimated parameters K1, K2 during charge/discharge at different
temperatures. x axis, K1; y axis, K2; x axis range, 1.25 × 10−4; y axis range, 7 × 10−5; −, confidence region;
×, estimated parameter value.
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Looking at Figures 5 and 6, it is apparent that the estimated values of E0 and Q are more uncertain in
the case of charge. This phenomenon can be explained by the confidence regions depicted in Figure 3. It can
be seen that the confidence region is wider in the case of charge, hence the uncertainty of the parameters
are greater. It can be also noticed that the shape of the confidence region changes with temperature. At low
temperatures, the confidence of the estimated Q is smaller than the confidence of E0. On the contrary, at
high temperatures, the confidence of Q becomes greater while the confidence of E0 decreases. That is why
we can better estimate Q at low temperatures and E0 at high temperatures. Additionally, the estimates are
results of nonlinear optimization, which is affected by the initial values, stopping criteria, and the shape of
the cost function.
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(b) The fitted thermal characteristics of parameter E0

from the discharge data. r2 = 0.9999
Figure 5. Estimation of the temperature dependency of E0.
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Figure 6. Estimation of the temperature dependency of Q.
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Figure 7. Estimation of the temperature dependency of K1.
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(b) The fitted thermal characteristics of parameter K2(T)
from the discharge data. r2 = 0.9988

Figure 8. Estimation of the temperature dependency of K2.

4.2. Estimated Temperature Dependent Parameters

Having estimated the battery parameters at different ambient temperatures, the temperature
dependency of the parameters was estimated with the help of the Matlab Curve Fitting Toolbox [25]. Each
parameter has two coefficients that describe the temperature dependency: the parameter value at the
reference temperature and the temperature coefficient. The independent variables of the four different
parameter estimation tasks are the following:
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• T − Tre f , in case of E0(T);
• Ta − Tre f , in case of Q(Ta);
• 1

T − 1
Tre f

in case of K1(T) and K2(T).

As mentioned in Section 3.4.2, the cell temperature T was substituted by the average surface
temperature of the battery. The dependent variables are the estimated parameter values of the previous
step that can be seen in Tables 4 and 5.

The coefficients of the temperature dependency were estimated during both charge and discharge.
The results of the estimation can be seen in Tables 6 and 7. The 95% confidence bounds shows the
uncertainty of the estimated coefficients.

It can be seen that the estimated temperature dependency of E0 and Q is close to the nominal values
in both charge and discharge cases. The estimation of Q|Tre f and ΔQ/ΔT is better in the case of charge
because the differences between the nominal and estimated parameter are smaller. However, the estimation
of the other parameters is better in the case of discharge.

The fitted curves of the temperature dependency can be seen in Figures 5–8 with red line.
The goodness of fit was characterized by the r2 value that is computed by:

r2 = 1 − ∑i(ŷi − yi)
2

∑i(ŷi − ȳ)2

where ŷ is the measured data, y is the model predicted value, and ȳ is the mean of the measured data.
The results can be seen in Table 8.

It can be seen that the curve fitting is a bit more accurate in case of discharge, except Q.

Table 6. Estimated parameters of the temperature dependency of the battery parameters during charge.

Parameter Nominal Value Estimated Value 95% Confidence Bounds Unit

E0|Tre f 3.9388 3.943 (3.94, 3.946) V
∂E/∂T 2.0 × 10−3 1.518 × 10−3 (1.314 × 10−3, 1.723 × 10−3) V/K
Q|Tre f 2.0 2.001 (2.0, 2.001) Ah

ΔQ/ΔT 1.6 × 10−2 1.605 × 10−2 (1.601 × 10−2, 1.610 × 10−2) Ah/K
K1|Tre f 1.8 × 10−3 2.735 × 10−3 (1.866 × 10−3, 3.604 × 10−3) V/Ah

α1 8415 5989 (4684, 7294) K
K2|Tre f 1.8 × 10−3 1.545 × 10−3 (1.866 × 10−3, 1.987 × 10−3) Ω

α2 8415 9785 (8706, 10,860) K

Table 7. Estimated parameters of the temperature dependency of the battery parameters during discharge.

Parameter Nominal Value Estimated Value 95% Confidence Bounds Unit

E0|Tre f 3.9388 3.939 (3.938, 3.939) V
∂E/∂T 2.0 × 10−3 2.025 × 10−3 (2.009 × 10−3, 2.041 × 10−3) V/K
Q|Tre f 2.0 1.995 (1.993, 1.997) Ah

ΔQ/ΔT 1.6 × 10−2 1.568 × 10−2 (1.554 × 10−2, 1.581 × 10−2) Ah/K
K1|Tre f 1.8 × 10−3 1.588 × 10−3 (1.418 × 10−3, 1.757 × 10−3) V/Ah

α1 8415 8908 (8528, 9289) K
K2|Tre f 1.8 × 10−3 1.661 × 10−3 (1.542 × 10−3, 1.781 × 10−3) Ω

α2 8415 8793 (8538, 9048) K
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Table 8. Goodness of curve fitting characterized by the r2 value.

E0 Q K1 K2

charge 0.9691 1 0.9656 0.9925
discharge 0.9999 0.9999 0.9995 0.9988

5. Conclusions and Future Work

An optimization based lithium-ion battery parameter estimation method is proposed in this paper
that is capable of describing the thermal behavior of batteries. The basis of the method is a nonlinear charge
and discharge model that describes the temperature dependency as a parametric function of temperature
as an external variable.

Parameter sensitivity analysis was carried out on the model to find the parameters to be estimated,
which are the electrode potential, the battery capacity, and two polarization constants. The internal
resistance was found to be non-sensitive to the model output, thus it was not estimated.

The proposed parameter estimation method contains two steps. At first, the parameters E0, Q, K1, K2

are estimated from measured data of charging/discharging at different constant ambient temperatures.
In the second step, the temperature coefficients of these parameters are estimated.

The proposed parameter estimation method was verified by a set of simulation experiments on an
electro-thermal battery model capable of describing the energy balance (i.e., the thermal behavior) of the
battery. The temperature dependent parameter characteristics obtained generated by the proposed method
can be used as a computationally effective way of determining the key battery parameters at a given
temperature. The novelty of the method is that the temperature dependent parameter characteristics can be
estimated from charging profiles by the proposed method can be used as a computationally effective way
of determining the key battery parameters at a given temperature. The proposed parameter estimation
method was verified by simulation experiments on a more complex battery model that also describes the
thermal behavior of the battery.

Further research directions include the use of this parameter estimation method for determining the
state of health of the battery, and to estimate the temperature dependent state of charge during its life
cycle. This is possible through a suitable experiment policy that estimates the battery capacity from well
chosen charging operations under different thermal conditions. Therefore, extensive climate chamber
experiments will be performed to validate the results of the present work.
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Abstract: The ultra-supercritical (USC) coal-fired boiler-turbine unit has been widely used in modern
power plants due to its high efficiency and low emissions. Since it is a typical multivariable system
with large inertia, severe nonlinearity, and strong coupling, building an accurate model of the system
using traditional identification methods are almost impossible. In this paper, a deep neural network
framework using stacked auto-encoders (SAEs) is presented as an effective way to model the USC
unit. In the training process of SAE, maximum correntropy is chosen as the loss function, since it can
effectively alleviate the influence of the outliers existing in USC unit data. The SAE model is trained
and validated using the real-time measurement data generated in the USC unit, and then compared
with the traditional multilayer perceptron network. The results show that SAE has superiority both
in forecasting the dynamic behavior as well as eliminating the influence of outliers. Therefore, it can
be applicable for the simulation analysis of a 1000 MW USC unit.

Keywords: ultra-supercritical unit; deep neural network; stacked auto-encoder; maximum correntropy

1. Introduction

With the fast development of China’s economy in the 21st century, the demand for electricity is
growing rapidly. Although the installed capacity of renewable energy, such as wind power and solar
power, have increased in recent years, coal-fired power generation still accounts for a large proportion
of the power generation. In China, the coal-fired installed capacity reached 921.2 GW by the end of
2017, accounting for nearly 72% of the total electricity generation [1]. In the process of coal burning,
many air pollutants may be released, e.g., sulfur dioxide (SO2), nitrogen oxides (NOX), and carbon
dioxide (CO2), which are extremely dangerous to the global climate [2]. In this case, the Chinese
government pledges to reduce the CO2 emissions per unit of GDP by 60–65% in 2030 compared to
2005 levels [3]. To meet the above requirement, it is an inevitable trend to develop coal-fired power
generation technology with large-capacity, low-pollution, and high-efficiency.

At present, most power plant designers are attempting to improve the boiler-turbine efficiency by
increasing steam parameters [4]. Thus, ultra-supercritical (USC) coal-fired power plants operating at
higher temperature and pressure levels have been gaining increasing attention worldwide. Theoretically,
every 20 ◦C rise in the main steam temperature can result in an approximately 1% increase in efficiency [5].
The cycling heat efficiency of the USC units is up to 49%, which is approximately 10% higher than
that of subcritical units. Meanwhile, the release of CO2 and SO2 can be reduced by 145 g/kWh and
0.4 g/kWh, respectively [6]. In the past decades, the USC power plants have been greatly promoted in
China, with more than one hundred 1000 MW USC units put into operation by the end of 2017.

While the USC units enjoy higher efficiency and lower emissions, they are also more complicated
than subcritical units. For instance, there is no obvious boundary between water and steam under the
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once-through operation, resulting in the strong coupling effect among boiler parameters. In addition,
the load-cycling operation of USC units lead to the operating point changing in a wide range, making the
nonlinearity of the plant variables even more serious. Due to the high-complexity as well as the
nonlinearity, multi-variable, strong-coupling characteristics, the modeling and control of USC units
faces greater challenges.

The modeling of power plants can be categorized into two groups: first-principle modeling [7–9]
and experimental modeling [10]. A classical nonlinear dynamic model derived from first-principles
for a natural circulation 160 MW drum-boiler was presented in [11], which was developed on the
basis of several fundamental physical laws. Due to its clear physical structure, this model has been
widely used for controller design [12–14]. In [15], a mathematical simulation model was developed to
study the stability of a steam boiler drum subjected to all of the possible initial operating conditions,
including both stable and unstable. Papers [16,17] present the static and dynamic mathematic model
of a supercritical power plant and its application to improve the load changes and start-up processes.
In [18], three different flexible dynamic models of the same single-pressure combined-cycle power
plant have been successfully developed, and based on these models, an evaluation of the drum lifetime
reduction was performed. However, owing to the complexity of the USC unit, it is hardly possible to
build an accurate first-principle model, and experimental modeling offers a good framework. In [6],
the dynamic model of a 1000 MW power plant was established by combining the experimental modeling
approach and the first-principle modeling approach, which can be feasible and applicable for simulation
analysis and testing control algorithms. Based on this model, a sliding mode predictive controller
was proposed in [19] to achieve excellent load tracking ability under wide-range operation. In [20],
this model was further improved with added closed-loop validations and more reasonable structure.

In 1995, Irwin originally developed a feedforward neural network (NN) to model a 200 MW
oil-fired and drum-type turbo-generator unit [21]. Due to its practicability and flexibility, NNs become
useful tools for power plant modeling [22,23]. In [24], an effective NN modeling method for a steam
boiler was proposed: this model maps the influence of flue gas losses and energy losses due to
unburned combustibles on the main operational parameters of the boiler. In [25], two separate NN
models were developed for the boiler and the steam turbine, which are eventually integrated into a
single NN model representing a 210 MW real power plant. Subsequently, some other methods were
also introduced in NN, such as fuzzy logic. In [26], Liu et al. firstly presented a model of a USC unit
using a fuzzy neural network, the results showing that the model’s built-in fuzzy neural network had
satisfactory accuracy and performance. In [27], a fuzzy model of the USC unit was firstly developed,
and then based on the model, an extended state observer-based model predictive control was proposed.
In [28], an improved Takagi-Sugeno fuzzy framework was applied to the modeling of a 1000 MW
USC unit, the parameters were identified by a k-means++ algorithm and an improved stochastic
gradient algorithm.

During the past decades, computer technology has been widely used in USC power plants.
The supervisory information system, which provides comprehensive optimization for the plant’s
real-time production, collecting all the process data and storing the data in the historical database.
These massive datasets are of great value since they can reflect the actual operational condition
of the USC unit and embody the unit’s complex physical and chemical characteristics. The big
data generated in the USC power plant are generally characterized by massiveness, multi-source,
heterogeneity, and high-dimension. Developing an advanced modeling technology based on big data
is of great significance to the USC unit. Traditional NNs with shallow architecture have low efficiency
in digging and extracting effective information from big data, since they often suffer from uncontrolled
convergence speed and local optima. Meanwhile, it is more difficult to optimize the parameters of
NNs as the number of hidden layers and the training sample size increase.

The deep neural network (DNN), proposed by Hinton et al. in 2006 [29], provides an effective
tool to deal with the big data modeling problem. In the DNN, layer-by-layer unsupervised learning
is performed for pre-training before the subsequent supervised fine-tuning [30]. The lower layers
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represent the low-level features from inputs while the upper layers extract the high-level features
that explain the input samples. Through layer-wise-greedy-learning, DNNs can effectively extract
the compact, hierarchical, and inherently abstract features in the original data and, thus, are able to
achieve high-performance modeling with big data. As one of the commonly used DNN architectures,
a stacked auto-encoder (SAE) is constructed by stacking several shallow auto-encoders (AE) [31],
which learns features by first encoding the input data and then reconstructing it. Due to its remarkable
representation ability, SAE has been successfully applied in fault diagnosis [32], electricity price
forecasting [33], and wind speed forecasting [34].

During the training procedure of SAE, the mean square error (MSE) has been widely used as the
loss function, owing to its simplicity and efficiency. SAE under MSE usually performs well when the
training data are not disturbed by outliers. However, in practical application, the dataset obtained
from a USC power plant will inevitably contain outliers due to various reasons, which makes the
performance of the SAE deteriorate rapidly. Therefore, it is quite important to develop a new loss
function. Unlike MSE, maximum correntropy (MC) [35] is a Gaussian-like weighting function, it is a
local criterion of similarity and thus can be very useful for cases when the measurement data contains
outliers. Since it could attenuate the large error terms effectively, the outliers would have a less impact.

Accordingly, the main contributions of this paper are summarized as follows:

(1) In order to establish an accurate USC unit model using generated big data, SAE is adopted as the
DNN model structure in this paper. The SAE model can generalize very well and yield better
performance when compared to conventional shallow architectures. The SAE model is concise
and suitable for big data analysis.

(2) In order to reduce the bad influence of outliers on the modeling, a loss function using MC is
developed in this paper.

The rest of the paper is organized as follows: Section 2 presents a brief description for the USC
unit. Section 3 proposes the USC power plant modeling using SAE. The simulation results are given in
Section 4. Finally, conclusions are drawn in Section 5.

2. The Ultra-Supercritical Coal-Fired Boiler-Turbine Unit

2.1. Brief Description of USC Unit

The power plant considered in this paper is a pulverized coal firing, once-through steam-boiler
generation unit with a power rate of 1000 MW. The maximum steam consumption of the power plant
is 2980 T/h with a superheated steam pressure and temperature of 26.15 MPa and 605 ◦C, respectively.
Figure 1 shows the simplified diagram of the USC boiler-turbine unit. The boiler mainly includes the
economizer, the waterwall, the separator, the superheater, and the reheater. The tandem compound
triple turbine consists of a high-pressure (HP) turbine, an intermediate-pressure (IP) turbine, and a
low-pressure (LP) turbine.

As shown in Figure 1, the pulverizing system transforms the raw coal into the pulverized coal so
that it can fully burn in the furnace. The feedwater is first warmed by the economizer, and further
heated in the waterwall which surrounds the furnace vertically and spirally. Eventually, it turns into
steam with high temperature and pressure. There is a separator on top of the furnace, and the steam
passes through the separator and superheats in the superheater. The superheater consists of four parts:
primary, division, platen, and finish. The turbine governor valve controls the quantity of superheated
steam delivered to the HP turbine. The extraction steam from the HP turbine goes to the reheater.
The reheated steam is used to drive the IP/LP turbine.
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Figure 1. The layout of the 1000 MW boiler-turbine unit.

2.2. Determination of Input-Output Variables

In the once-through operation of the USC unit, there is no obvious boundary between water
and steam. The feedwater is continuously heated, evaporated, and superheated from the inlet of the
economizer. Without the buffering of the steam drum, the USC unit will suffer greater disturbances
than a subcritical unit. This leads to the strong non-linearity and coupling of the USC unit, which can
be seen as a complicated system with multiple inputs and multiple outputs.

In order to reduce the impact of external disturbances and simplify the model structure of the
USC unit, the following assumptions are made:

1. The fuel flow and the forced draft volume are balanced to ensure the combustion stability.
2. The ratio between the forced draft volume and the induced draft volume remains constant, to

ensure that the pressure in the furnace is stable.
3. The control of the main steam temperature is relatively independent.

If the above assumptions are satisfied, the USC unit can be depicted as a three-input, three-output
nonlinear system, as shown in Figure 2. The inputs u1, u2, u3 are the fuel flow rate, the turbine
governor valve opening, and the feedwater flow rate, respectively. The outputs y1, y2, y3 are the electric
power, the main steam pressure, and the separator outlet steam temperature, respectively. The direct
correlation property between water and steam causes the strong coupling between the inputs and
the outputs.

Figure 2. The three-input, three-output system of the USC unit.

3. Stacked Auto-Encoder

The SAE adopts a multi-layer structure, which is hierarchically stacked by a series of AEs,
as shown in Figure 3. Denote the kth hidden layer to be hk, and then the AE associated with hk−1 and
hk(k = 1, 2, · · · , l) is indicated as AEk.
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Figure 3. The architecture of the SAE.

3.1. Auto-Encoder

The AE is a one-hidden-layer feedforward NN with an encoder and a decoder. The encoder
converts the input data from a high-dimensional representation into a low-dimensional abstract
representation. Then the decoder reconstructs the input data from the corresponding codes. The main
purpose of the AE is to learn an approximation in the hidden layer so that the input data can be
perfectly reconstructed in the output layer. The structure of AEk is shown in Figure 4.

Figure 4. The kth auto-encoder.

Given the input hk−1 of AEk, the hidden representation hk can be obtained through the encoder
based on Equation (1), and then maps back to a reconstructed vector z by the decoder as in Equation (2):

hk = f (Wk
1hk−1 + bk

1), (1)

zk = g(Wk
2hk + bk

2), (2)

where the function f (x) = g(x) = 1/(1 + e−x), Wk
2 and bk

1 represent the weight matrix and bias term
of the encoder, and Wk

2 and bk
2 represent the weight matrix and bias term of the decoder, respectively.

The parameter set in AEk is θk =
{
Wk

1, bk
1, Wk

2, bk
2

}
.

The parameter set θk can be optimized by minimizing the reconstruction error:

JAE(θ
k) =

1
m

m∑
i=1

L(hk−1
i , zk

i ), (3)
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where m is the sample size and L is the mean square error (MSE) expressed as:

LAE−MSE
(
hk−1

i , zk
i

)
=

1
2

∥∥∥hk−1
i − zk

i

∥∥∥2
, (4)

3.2. New Loss Function Design Using Maximum Correntropy

Usually large amounts of operating data are captured continuously by the online plant
data acquisition system in the USC power plant. Before using these data for network training,
data preprocessing is required, since they will always contain some outliers. The generation of outliers
may include faulty sensors, human errors, errors in data capturing system, etc. However, it is very
difficult to remove all outliers manually since the sample size is too large.

During the training procedure of AEk (k = 1, 2, · · · , l), the MSE is used as the loss function,
owing to its simplicity and efficiency. The AE under MSE usually performs well when the training
data are not disturbed by outliers. However, when the outliers are mixed within the training data,
the performance of the AE under MSE may deteriorate greatly.

Notice that the MSE function is a quadratic function in the joint space with a valley along the
hk−1 = zk line. The quadratic term has the net effect of amplifying the contribution of samples which
are far away from the hk−1 = zk line, so that the outliers would have a great impact on the normal
training of the model.

Unlike MSE, MC [35] uses a Gaussian-like weighting function so that it is a local criterion of
similarity and, thus, can be very useful for cases when the measurement data contains large outliers.
Since it could attenuate the large error terms effectively, the outliers would have less of an impact.
The MC function to be maximized is expressed as:

LAE−MC(hk−1
i , zk

i ) =
1
d

d∑
i=1

Kσ(hk−1
i , zk

i ), (5)

where d is the number of the output units, and Kσ(·, ·) is the Gauss kernel, which is defined as:

Kσ(a, b) =
1√
2πσ

exp

⎛⎜⎜⎜⎜⎝− (a− b)2

2σ2

⎞⎟⎟⎟⎟⎠, (6)

where σ is the kernel size.
Owing to the effectiveness of MC function, it is chosen as the loss function of each AE in this paper.

3.3. SAE Model Structure and Learning Algorithm

The SAE model can be established by stacking several AEs. Figure 5 shows the structure of
the SAE used for USC modeling. Due to the inertia and delay of the system, the historical data of{
u1(k), u2(k), u3(k), y1(k− 1), y2(k− 1), y3(k− 1)

}
in the last two steps are also adopted as the inputs of

the model. Thus, the total number of inputs and outputs are 18 and three, respectively. In this model,
multiple AEs are used to obtain the intrinsic features from the original USC data, while the regression
layer is responsible for outputting the expected normal behaviors of the system along the time axis.
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Figure 5. Structure of the SAE used for USC modeling.

The training of the SAE includes two steps: an unsupervised layer-wise pre-training step and
a supervised fine-tuning step, as shown in Figure 6. In Figure 6a, with the original training data,
the AE at the bottom layer is first trained by minimizing the reconstruction error in Equation (3) using
the gradient descent method. Then, the generated hidden representation can be used as the input
for training the higher-level AE. In this way, multiple AEs can be stacked hierarchically. After the
layer-wise pre-training, all the obtained hidden layers are stacked, and the regression layer can be
added on top of the SAE to generate the final outputs, as shown in Figure 6b. The parameters of the
whole SAE network can be fine-tuned in a supervised way using the gradient descent method.

Figure 6. (a) Unsupervised layer-wise pre-training of the SAE. (b) Supervised fine-tuning of the SAE.

4. USC Unit Modeling

4.1. Experimental Settings

Training of the SAE with a dataset including all possible variations in the range of working
conditions is very crucial. The dataset used for training was carefully selected from the very large
amount of data logged in the historical database, during which the working condition varies frequently.
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Twenty thousand sets of continuous I/O data with 1 s sampling were selected for training, with load
changing conditions ranging from 550 MW to 1000 MW. Another 3000 sets of I/O data were selected
for validation.

Within the datasets, there exist outliers that need to be removed in advance. In practice, the outliers
can be identified in different ways. Usually, the data points which deviate substantially from the
general trend of variations of its neighboring points can be considered as outliers. Additionally,
the outliers can be found by checking the relationship between trends of data for highly correlated
parameters. For example, the increase of fuel flow must correspond to the effect on that of the electric
power, with a regular correspondence. By using these method, the detected outliers are listed in Table 1.
As for the identified outliers in the dataset, they are replaced by the data from their neighboring points.
These datasets used for training and validation, after preprocessing the outliers, are shown in Figure 7.
All the preprocessed data are normalized in the range of [0,1] before establishing the SAE model.
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Figure 7. The datasets used for training (a) and validating (b).
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Table 1. The number of outliers in training and validating sample sets.

Parameter Training Sample Set Validating Sample Set

u1 36/20,000 14/3000
u2 24/20,000 8/3000
u3 34/20,000 11/3000
y1 28/20,000 14/3000
y2 23/20,000 12/3000
y3 29/20,000 9/3000

The root mean squared error (RMSE) in Equation (7) is employed as the evaluation metric:

RMSE =

√∑K
k=1 (y∗k − yk)

2

K
, (7)

where y* is the model output and y is the plant output, K is the total data number. Notice that y* and
y are normalized values. There are several parameters that have to be defined for the SAE model,
such as the nodes in each layer, the number of AEs, learning rate, momentum, etc. These parameters
are determined through cross-validation only on the training set. The initial weights and biases of
each AE were chosen to be small random values sampled from a zero-mean Gauss distribution with a
standard deviation of 0.01. The maximum number of epochs is set to 100 and the fine-tuning stage
terminates when the variation in RMSE of the validation set is less than 10−3. This criterion will reduce
the model complexity and, thus, result in a better generalization by avoiding overfitting.

In order to determine the optimal structure of SAE model, i.e., the number of AEs and hidden
layer units in each AE, experiments were repeatedly done by choosing the number of AEs ranging from
1 to 10, while the number of units in hidden layers from ϕ = [18, 17, · · · , 5, 4]. The optimal structure is
found from different configurations considering the RMSE value.

The relationship between the number of AEs and the RMSE of the learning network is shown in
Figure 8. The network is unable to generalize well when the number of AEs is too small because of the
insufficient number of tunable parameters in the model. The performance of the network gradually
improves as the number of AEs increases, especially when the number reaches 8. However, when the
number of AEs increase further, the improvement seems to be very little, as using more AEs will lead to
more complex structures that are prone to overfitting. Moreover, the vanishing gradient problem also
imposes negative impacts on the fine-tuning of the SAE when the number of AEs increases. Therefore,
the network structure of SAE is set to be eight hidden layers.

Figure 8. The relationship between the number of AEs and the RMSE value.

4.2. The Modeling Results

Figure 9 shows the modeling results with the 20,000 sets of training data. Then, this training
model was validated by the 3000 sets of validating data, as shown in Figure 10. When adopting very
different sets of operating data, the SAE model is still able to achieve good performance. From both the
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training and validating, it is clearly seen that the SAE model can predict the USC dynamic accurately
over a wide range of loads.
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Figure 9. A comparison of the boiler system and the SAE model (training).

0 500 1000 1500 2000 2500 3000
350

360

370

380

390

n

Te
m

pe
ra

tu
re

 a
t o

ut
le

t o
f s

ep
ar

at
or

 (d
eg

.C
)

SDAE
Plant

n

M
ai

n 
st

ea
m

 p
re

ss
ur

e 
(M

Pa
)

0 500 1000 1500 2000 2500 3000
600

650

700

750

800

850

n

El
ec

tr
ic

 p
ow

er
 o

ut
pu

t (
M

W
)

SDAE
Plant

Figure 10. A comparison of the boiler system and the SAE model (validating).
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This SAE model was then compared with a general multi-layer perceptron (MLP) network
adopting the structure in [26], under the same I/O data. Table 2 lists the comparing results. It is found
that the performance of the MLP network is lower than that of the SAE network, as it is a shallow
architecture which often suffers from uncontrolled convergence speed and local optimality, especially
when the training sample size grows too large.

Table 2. The root mean square errors of three adopted models.

Temperature Pressure Power

MLP
Training 0.0039 0.0022 0.0034

Validating 0.0076 0.0065 0.0072

SAE
Training 0.0016 0.0007 0.0015

Validating 0.0031 0.0019 0.0034

4.3. The Modeling Using Maximum Correntropy

As listed in Table 1, there exists outliers in both the training and validating sample sets. In order
to disclose the essential influence of these outliers on the modeling effect, the simulation is repeated
without the preprocessing process. It can be found that the modeling performance soon deteriorates,
as shown by the green line in Figures 11 and 12.

Figure 11. A comparison of SAE models using different loss functions without the preprocessing
process (training).
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Figure 12. A comparison of SAE models using different loss functions without the preprocessing
process (validating).

The simulation using the MC loss function is shown by the red line of Figures 11 and 12. Table 3
lists the RMSE values under these two methods, which clearly shows the advantage of the SAE model
incorporating the MC function in alleviating the influence of outliers.

Table 3. The root mean square errors of SAE without the preprocessing process.

RMSE Temperature Pressure Power

MSE
Training 0.0231 0.0301 0.0307

Validating 0.0529 0.0476 0.0559

MC
Training 0.0185 0.0209 0.0169

Validating 0.0217 0.0275 0.0248

5. Conclusions

For the modeling of a 1000 MW USC coal-fired boiler-turbine unit, a DNN framework using an
SAE was proposed in this paper. Real-time measurement big data generated from a wide range of
operating points were used for the network training and validating. To evaluate the effectiveness of
the proposed model, a comparative analysis of the SAE and MLP network was constructed. From the
results, the following conclusions can be summarized.

(1) Compared with the shallow-layer NN, the DNN architecture adopting the SAE model trained
by an unsupervised greedy layer-by-layer pre-training and a supervised fine-tuning is very efficient
to deal with the big data modeling problem since it can effectively extract the compact, hierarchical,
and inherent abstract features in the original USC unit data through the layer-wise-greedy-learning.

(2) MC is a local criterion of similarity which could attenuate the large error terms effectively.
The proposed SAE model adopting MC as the loss function reduces the poor influence of outliers
effectively, compared with adopting MSE as the loss function.
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In summary, the proposed SAE model can be suitably applied for analyzing the dynamic behaviors
of the 1000 MW USC boiler-turbine system.
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NN Neural network
DNN Deep neural network
AE Auto-encoder
MSE Mean square error
MC Maximum correntropy
HP High-pressure
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LP Low-pressure
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Abstract: Seamless integration of district heating (DH) and power systems implies their flexible
operation, which extends their typical operational boundaries and, thus, affects performance of
key components, such as plate heat exchangers (PHXs). Despite that the heat transfer in a PHX is
regulated by mass flows, flexible operation and demand variations cause shifts in temperature levels,
which affects the system operation and must be efficiently accounted for. In this paper, an overall heat
transfer coefficient (OHTC) model with direct relation to temperature is proposed. The model is based
on a linear approximation of thermophysical components of the forced convection coefficient (FCC).
On one hand, it allows to account for temperature variations as compared to mass flow-based models,
thus, improving accuracy. On the other hand, it does not involve iterative lookup of thermophysical
properties and requires fewer inputs, hence, reducing computational effort. The proposed linear model
is experimentally verified on a laboratory PHX against estimated correlations for FCC. A practical
estimation procedure is proposed based on component data. Additionally, binding the correlation to
one of varying parameters shows reduction in the heat transfer error. Finally, operational optimization
test cases for a basic DH system demonstrate better performance of the proposed models as compared
to those previously used.

Keywords: heat exchanger; forced convection; film coefficient; heat transfer; water properties;
integrated energy system; operational optimization

1. Introduction

Ongoing energy systems integration requires additional flexibility from district heating (DH)
to enhance accommodation of intermittent energy sources. However, DH systems have operational
constraints imposed by components. Mathematical models of these components are used in
optimization procedures to achieve a minimal operation cost at a specific quality of heat supply,
reflected in sufficient consumer temperature levels. Provision of flexibility to power system will
entail greater fluctuations in temperatures and mass flows, thus, affecting operational boundaries
and the efficiency of the system. Heat exchangers (predominantly of the plate type) are the key
components in DH systems operation, allowing controllable heat exchange between transmission and
distribution pipelines. Since return temperatures in a transmission system affect heat source efficiency
and distribution, supply temperatures reflect the quality of the heat supply, and effective modelling of
plate heat exchangers (PHXs) becomes crucial.

Models for PHXs can be classified on how estimation of the overall heat transfer coefficient (OHTC)
is addressed. Models for DH operational optimization are considered in several works, for instance,
in [1] an OHTC is modelled as dependent on mass flows and compared to its constant version, while the
focus is on dynamic optimization of supply temperatures and optimal load distribution. In [2], a mass
flows model is described to obtain a solution for the primary return temperature with the further
focus on minimization of the heat loss and pumping cost, whereas the thermophysical component
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is also constant. In a more recent study [3], the coefficient is assumed constant, whilst the goal is to
minimize the heat loss and pumping cost in a steady state. The problem of optimal combined power
and heat dispatch is addressed in [4], involving dynamic variations of both temperatures and mass
flows in a district heating network to provide flexibility to a power system utilizing a pipeline for
energy storage. However, physical limitations of heat transfer in heat exchangers are not considered
and the end nodes are merely represented by their heat demands. A dynamic simulation study was
conducted in [5] to evaluate PHXs performance in a ring DH network, where the heat transfer was
modelled dynamically and OHTC calculated using thermophysical properties. Besides system level
studies, in [6] the coefficient model includes recalculated thermophysical components for the purpose
of stability analysis in a DH substation. The same model was used in [7] for robust control design,
as well as in [8] for a proportional-integral control design. In [9], performance of a PHX in a small
geothermal heating system was analysed based on a thermophysical model, while a mass flow-only
model was concluded to be more appropriate for the system conditions. Finally, in [10] OHTC was
modelled in order to predict the temperature of cooling water. Temperature dependence of OHTC was
accounted for and the thermophysical part was recalculated iteratively. Additionally, estimation of all
correlation values was performed by constrained nonlinear optimization.

Since modern DH systems are needed to operate with variable temperatures and mass flows to
provide flexibility, temperature variations must be accounted for in OHTC models in order to achieve
better performance of the PHX control. The existing OHTC models require lookup of thermophysical
properties to account for those variations, thus, increasing computational effort, especially when
operational optimization is performed. A direct relation with temperature in an OHTC model can
improve its computational efficiency, especially when addressing flexible DH system problems, such as
described in Section 2.

In this paper, it is shown that OHTC can be directly related to temperature, as forced convection
coefficients (FCCs) of water have a temperature dependence close to linear. This allows approximating
the FCCs directly from temperature, without involving thermophysical properties. The approximation
is described in Section 3 and then experimentally verified in Section 4 against previously used models
on a laboratory PHX. Additionally, a simplified estimation procedure of a better fitting correlation
for a particular PHX is proposed. Performance of the proposed models is demonstrated in Section 5
on optimization test cases for simple DH systems, where the aim is to find such hot circuit mass
flow, supply and return temperatures that would yield the minimum electric power consumed.
Besides the DH sector, the obtained results can be useful in other applications, for instance, wastewater
heat recovery.

2. Flexible District Heating Systems and the Main Operational Problem

Operation and design of a flexible DH system, as well as the main operational problem
description are given in this section. A flexible DH system is defined in the first subsection as
capable of providing auxiliary services to the power system by varying temperatures and mass flows.
This capability is essential for DH system functioning within an integrated energy system as a whole
and limited by physical constraints from system components, which are reflected in their models.
Mathematical formulation of the objective function and constraints for the nonlinear optimization
problem, which contain component models, are given in the second subsection.

2.1. Description of a Flexible District Heating System in an Integrated Energy System Context

District heating combines heat sources, heat transmission systems and heat distribution systems
to which end consumers are connected. DH coupling with an electric power system in an integrated
energy system context is shown in Figure 1.
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Figure 1. Integrated energy system including district heating (DH) and power systems.

The transmission system is hydraulically decoupled from each distribution system by a heat
exchanger, typically of plate type and counter-current flow arrangement. This decoupling is necessary
due to the need to control temperature at sources depending on the expected demand, hydraulic
stability, too high temperature of supply water, etc. [11]. The system with such a decoupling allows
greater flexibility in the transmission part, meaning that the electric power consumption can be
altered to provide auxiliary services to electric power system, while satisfying DH system operational
constraints and the heat demand.

In the distribution system, end consumers regulate mass flows according to their demands. At the
time, their supply temperature is kept constant via flow control on the transmission side of the heat
substation. The setpoint of the temperature depends on the distribution system design and preferences
of the end consumers, as indicated in [12]. The return temperature level reflects the behaviour of end
consumers and the distribution network. In the case of diverse consumption patterns, end equipment
and complex distribution networks, this temperature is challenging to predict, unless the distribution
part is fully modelled. Numerous works contribute to solving this problem, for instance, in [13] DH
temperature dynamics are addressed and modelling of an existing DH system was performed.

Besides demand changes, deviations in the secondary supply temperature are caused by changes
in the primary inlet temperature. These are caused by output temperature changes at the heat source
or fluctuations of heat loss in the transmission pipeline due to the mass flow control. All the described
processes consequently affect the primary return temperature. Badly optimized supply temperatures
will lead to frequent flow control actions in order to maintain the necessary temperature level in the
distribution network. Such processes can yield in unpredictable behaviour of the system and cause
additional wear on components.

Both supply and return temperatures, as well as the mass flow affect in a non-linear fashion the
efficiency of different power-to-heat sources, such as large heat pump (HP) systems or combined heat
and power plants (CHP). For electrically driven HPs the ratio of heat output (

.
Q) to electric power input

(Php) is commonly considered, called the total coefficient of performance (COPt). Given in its simplest
form, it is sufficient to express the nonlinearity of the process [14]:

COPt =

.
Q

Php
=

cp
.

m(Ts − Tr)

Php
=

Ts+Tr
2 ηhp(

Ts+Tr
2 − T0

) , (1)

noting that the temperatures in Equation (1) must be used in the absolute scale (Kelvin).
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The power consumption of circulation pumps is significantly lesser than that of heat sources.
Their output is controlled against the pressure changes caused by flow control valves at substations.
Nevertheless, their power consumption contributes to operational costs and is approximately related
to the mass flow rate cubed. Pumping power required for low temperature systems is usually higher,
as the supply temperature level at the end consumer has to be maintained.

One of the key problems in DH operation is to find such optimal temperatures and mass flows
for the transmission part of the system. This is an operational optimization problem. To formulate
the problem mathematically, the following components are the most relevant to model: heat sources,
circulation pumps, supply and return pipelines, as well as plate heat exchangers.

2.2. Operational Optimization Problem

Operational optimization in district heating is often regarded as a time-dependent process due
to delays (which comprise the flow history) in the network. Moreover, the return temperature is not
only affected by delay and demand, but also defined by the past supply temperature. This makes the
process of optimization computationally heavy when the mass flow, as well as both supply and return
temperatures, are optimized in short time steps (dictated by flexibility provision with power-to-heat
solutions) over a certain time horizon.

For the sake of simplicity, in test cases the demand and the price for the electric power are assumed
as constants, so the problem transforms into minimization of consumption power in a steady state. This
power is divided into power for hot water production (Php) and pumping power (Pcirp), which together
form the objective function. The optimized variables are supply and return temperatures at the source
and the transmission mass flow. All three of those variables are essential to include in the optimization
as they are essential to quantify available power for system flexibility.

The objective function for the optimization problem is formed as

min(P) = Php + Pcirp. (2)

The power required to produce heat can be obtained from the expression for coefficient of
performance (1) as

Php =

.
Q

COPt
=

cp
.

mh(Ts − Tr)(Ts + Tr − 2T0)

(Ts + Tr)ηhp
. (3)

Power of the circulation pump is the sum of pressure drops over components of the system,
including the PHX, supply and return pipes, as well as the condenser of the HP. For the sake of
simplicity, the return pipe is assumed to have the same pressure drop as the supply and the condenser
is assumed to have the same pressure drop as in the PHX, consisting of port and channel pressure
drops. A general expression given as follows:

Pcirp = 2
.

mh
ηcirpρw

(Δppipe + Δpch + Δpport). (4)

The pressure drop in pipes is obtained via the Darcy-Weisbach equation, where the friction factor
for pipes is determined by an approximation given in [15]. Equations for the pressure drop in a circuit
of PHX are found in [16]. Thus, Equation (4) can be re-written as follows:

Pcirp = 2
.

mh
ηcirpρw

⎛⎜⎜⎜⎜⎜⎝ f
8L

.
mh

2

π2D5ρw
+ fch

2Lch
Dhydrρw

( .
mh
Ach

)2

+ 1.4
8

.
mh

2

π2D4
portρw

⎞⎟⎟⎟⎟⎟⎠. (5)
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The objective is subjected to constraints, which include maximum and minimum limits for the
mass flow and temperatures, as well as heat transfer capability of the heat exchanger and the energy
balance between primary and secondary sides:

min(
.

mh) ≤ .
mh ≤ max(

.
mh)

min(Ts) ≤ Ts ≤ max(Ts)

min(Tr) ≤ Tr ≤ max(Tr)

UATLMTD −
.

Qd = UA (Thi−Tco)−(Tho−Tci)

ln
(

Thi−Tco
Tho−Tci

) − .
Qd = 0,

(Thi − Tho)
.

mhcph −
.

Qd = 0.

(6)

The constraints indicating minimum and maximum limits of optimized mass flow and
temperatures are of linear inequality type. The non-linear equality constraints represent the transferred
heat and the heat balance between the sides. The inlet and outlet temperatures of the hot circuit
are related to the optimized supply and return temperatures at the heat source via the equation for
temperature drop in the pipe, which also includes the mass flow as a part of time delay calculation [1,2]
as follows:

Thi = Tamb + (Ts − Tamb)·e
−Kpipe· L.

mhCps ,

Tho = Tamb + (Tr − Tamb)·e
Kpipe· L.

mhCpr .
(7)

Thermophysical properties, especially viscosity, vary depending on the temperature of water.
These variations cause changes in OHTC U, which must be efficiently accounted for. An inaccurate
OHTC model can result in non-optimal system operation and frequent control actions, which can
further cause temperature and flow oscillations in the system. Thus, detailed modelling and analysis
of this coefficient is given in the following section.

3. Modelling and Analysis of Heat Transfer in Plate Heat Exchangers

Modelling and analysis of OHTC is essential to identify models, relevant for the application.
The first subsection defines two models, with the difference in whether both cold and hot circuits
are treated separately or not, resulting in four approaches to OHTC calculation, two iterative and
two with constant thermophysical properties. The second subsection gives analysis on FCC of a
circuit, which shows that the thermophysical component can be related directly with temperature.
Finally, the third subsection describes the two new models based on results of FCC analysis.

3.1. Modeling of Overall Heat Transfer Coefficient

The calculation of OHTC comprises FCCs from each circuit (Hc and Hh) and thermal resistances
of plate material and fouling. A complete equation can be written as [16]:

U =
1

1
Hh

+ 1
Hc

+ Rtot
. (8)

Forced convection coefficients Hc and Hh are related to mass flows and mean temperatures
(via thermophysical properties) in cold and hot circuits, respectively. Using a generalized form of
the Dittus-Boelter equation for the correlation of Nusselt number, the expression for the convection
coefficient [16] is

H =
Nu·k
Dhydr

=
CRenPrmk

Dhydr
=

C
( .

mDhydr
Achμ

)n( cpμ
k

)m
k

Dhydr
. (9)

Different values for m, n and C are used depending on plate design and prevailing flow conditions.
Typically, transition to turbulence in PHX occurs at a low Reynold number. Even at low mass flow rate,
the Reynolds number is quite high.
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Similar to [6], after rearranging Equation (9) to get temperature dependent and mass flow
dependent parts separated, the expression becomes

H =
C

An
chD1−n

hydr

(μ−n+mcp
mk1−m)

.
mn

= K·B· .
mn, (10)

where
B = μ−n+mcp

mk1−m. (11)

Following the stated, OHTC Equation (8) can be re-written as

U =
K·Bh(

.
mh)

nBc(
.

mc)
n

Bh(
.

mh)
n
+ Bc(

.
mc)

n
+ K·Bh(

.
mh)

nBc(
.

mc)
nRtot

. (12)

Consequently, if thermophysical properties are assumed to be found for the mean temperature
between circuits (“coupling” their mean temperatures into one), Equation (12) turns into

U =
K·B (

.
mh)

n
(

.
mc)

n

(
.

mc)
−n

+ (
.

mh)
−n

+ K·B·( .
mc)

−n
(

.
mh)

−nRtot
. (13)

Both Equations (12) and (13) can be used iteratively in the optimization problem. Therefore,
(12) and (13) are yielding four approaches for calculation:

- Non-iterative coupled based on (13): approach 1.1;
- Iterative coupled based on (13): approach 1.2;
- Non-iterative decoupled based on (12): approach 2.1;
- Iterative decoupled based on (12): approach 2.2.

Approaches 1.1 and 2.1, applied in a district heating context, do not account for temperature
changes in the system and define B for the most common temperatures. approaches 1.2 and 2.2 will
adjust U iteratively for every temperature change. Lookup tables are used to link temperatures with
thermophysical properties, which are further complicating the calculation procedure. It is also worth
noting that the resistance component can often be neglected as in [1].

Direct relation of FCC to a temperature would be more convenient to use. To obtain it,
the temperature dependent part (denoted as B) is investigated to use temperature directly instead of
thermophysical properties.

3.2. Temperature Dependency of Forced Convection Coefficient

Given the values of the thermophysical properties for water [17] and applicable values of n and
m [18] we can evaluate the function B from temperature. The behavior of B for m = 0.4 and n = (0.6, 0.7,
0.8, 0.9) is demonstrated in Figure 2. Note that thermophysical properties remain nearly constant for
the same temperature for any possible pressure in the DH system (the values are taken for p = 1 atm).
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Figure 2. Temperature dependent component of the forced convection coefficient (FCC) (a) and the
relative error of its linear fit (b).

As it can be seen from the Figure 2, the behaviour of function B is very close to linear.
Linear regression of B can be applied:

Bl = α+ βT. (14)

A similar relation for water is described, for instance, in [19] using the original Dittus–Boelter
equation for the case of flow in a circular pipe, where n = 0.8 and m = 0.4. Linearization coefficients α
and β for different n and m combinations are summarized in the Table 1.

Table 1. Linearization coefficients for different m and n.

n m = 0.3 m = 0.4 m = 0.5

α β α β α β

0.6 57.27 0.538 73.84 0.435 94.39 0.290
0.7 107.08 1.436 139.45 1.263 179.65 1.099
0.8 197.82 3.666 260.98 3.390 339.53 2.963
0.9 359.62 9.082 482.70 8.683 636.00 7.999

To characterize the goodness of the fit, coefficient of determination R2 can be found for each
approximation (summarized in Table 2) as

R2 = 1−
∑20

i=1 (Bl − B)2∑20
i=1 (B− B)

2 . (15)

The R2 values confirm that the approximation is very close to the original as they are approaching
1, especially for higher values of n.
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Table 2. The relative error and R2 for different n and m.

n m = 0.3 m = 0.4 m = 0.5

mean e, % R2 mean e, % R2 mean e, % R2

0.6 1.025 0.9962 0.9918 0.9928 0.715 0.9889
0.7 0.810 0.9985 0.9924 0.9962 0.938 0.9931
0.8 0.419 0.9997 0.7945 0.9985 0.958 0.9963
0.9 0.496 0.9998 0.4143 0.9997 0.778 0.9985

Thus, it is reasonable to consider that the FCC depends linearly on temperature, while relation
with the mass flow is the power of n, which gives us the following expression:

H = K
.

mnBl = K
.

mn
(α+ βT). (16)

This expression can be used for the FCC estimation using temperature directly, without considering
thermophysical properties.

The FCC of a circuit to be found as mean of inlet and outlet coefficients, which in their turn are
calculated using inlet and outlet temperatures or directly from the mean temperature of the circuit.

3.3. Resulting Models for Overall Heat Transfer Coefficient

The obtained Equation (16) for the direct relation of FCC with temperature, mapped through
a fixed PHX design (represented by K, α and β coefficients) allows transforming temperature decoupled
(12) and coupled models (13), respectively:

U =
K(

.
mh)

n
(

.
mc)

n
(α+ βTc)(α+ βTh)

((
.

mc)
n
(α+ βTc) + (

.
mh)

n
(α+ βTh) + K(

.
mh)

n
(

.
mc)

n
(α+ βTc)(α+ βTh)Rtot)

, (17)

U =
K(

.
mh)

n
(

.
mc)

n
(α+ βTm)

((
.

mc)
n
+ (

.
mh)

n
+ K(

.
mh)

n
(

.
mc)

n
(α+ βTm)Rtot

) , (18)

where
Th =

(Thi + Tho
2

)
, Tc =

(Tci + Tco

2

)
, Tm =

(Tci + Tco + Thi + Tho
4

)
Therefore, two approaches in addition to abovementioned four (1.1, 1.2, 2.1, 2.2) can be outlined:

- Coupled linear (18): approach 1.3;
- Decoupled linear (17): approach 2.3.

Since the correlations used for the coefficients are approximate in their nature, they perform
differently from one system to another. All the described and obtained heat transfer models require
experimental verification before applying them in practice. Such verification is provided in the
following section.

4. Experimental Verification of Heat Transfer Models

In this section focus is brought to the laboratory PHX as the main component of the setup and
the subject of the study. The first subsection describes the setup, measurement sets and datasheet
parameters, further continued to the estimation procedure for the correlation and its results in the
second subsection. The verification of the models is provided in the third subsection and the simplest
means to reduce the correlation error are given in the last subsection.

4.1. Experimental Setup, Parameters and Measured Data

The experimental setup (Figure 3) consists of a laboratory PHX (Figure 4) of the counter-flow type,
operating in a small heat substation. Hot water in the primary circuit is supplied from the “oil stove”
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heat source and the heat load (on the secondary side) is represented by two small houses, as well as
two small and one large air coolers (dump loads).

Figure 3. Layout of the experimental setup.

 

Figure 4. Small laboratory plate heat exchanger (PHX).

PHX parameters, given in the datasheet (manufacturer SPXFlow APV) along with that
calculated [16] and found in the manufacturer’s handbook [18] are summarized in Table 3.

Since manufacturers typically do not provide exact values for n, m and C, they have to be estimated
within the given range, based on datasheet values and measurements. These include the heat supplied
(Figure 5) and all four temperatures and mass flow in the cold circuit (Figure 6), collected by a
Kamstrup Multical 602 meter in one-second intervals. Temperatures were measured by thermocouples
745690-J001 (Iron/Constantan).
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Table 3. PHX parameters.

Parameters from Manufacturer’s Datasheet Calculated and Handbook Parameters

Effective area, m2 1.127 Enlargement factor (calculated) 1.0678
Number of plates 65 Plate gap, mm (calculated) 1.422

Plate thickness, mm 0.4 Fouling resistance, m2·K/W 8 × 10−6

Plate material SS AISI 316 C (range) 0.15–0.45
Plate conductivity, W/m·K 16.3 n (range) 0.65–0.85

Port radius, mm 19.05 (3/4 in) m (range) 0.3–0.45
Plate (chevron) angle, degree 30

Plate pack length, mm 117
Horizontal port distance, mm 54

Vertical port distance, mm 220
Design thermal power, kW 25

 

Figure 5. Measured temperatures (a) and mass flow (b) for all the demand situations (concatenated).

Figure 6. Demand values for all the demand situations (concatenated).

The whole data consists of five datasets, each obtained over approximately five-hour intervals on
a separate day. The datasets were concatenated together. Every time step of the data (1 s) corresponds
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to a different heat demand situation, and every situation lasts one second and is independent from
the other.

The oscillatory behaviour is caused by the heat source operation due to features of the system
and crude control. One period corresponds to travel time of water through the primary circuit of the
PHX, pipeline and heat source, and can last up to 10 min. The travel time of the secondary circuit
(transient) can last from 10 to 30 min, or even more as the circuits of the houses are the longer ones and
the circuitry of coolers is the shorter one. The very low secondary inlet (primary outlet) temperature is
due to all loads operating during a cold day together with the most powerful cooler.

For estimation purposes, measurements from Datasets 1–3 are used, and for verification
purposes—from Datasets 4 and 5.

4.2. Estimation of the Correlation Values

The estimation procedure involves setting up a nonlinear constrained optimization problem
(Figure 7). It was concluded previously that n has a greater effect on the calculation process than the
other two parameters [9]. It also can be seen from Equation (10) that m does not affect the mass flow
contribution to heat transfer calculation, while C is a multiplier for both mass flow and thermophysical
components. Based on that, we can simplify the procedure by specifying them as constant for all
measured sets, i.e., C = 0.15 and m = 0.375. Thus, the problem is limited to finding optimal n. A more
general and complex approach is used in [10], where all three values are optimized.

Figure 7. Estimation procedure to obtain optimal n for each demand situation.

For that purpose, the MATLAB (R2017b, MathWorks, Natick, MA, USA) function fmincon [20]
was used and the objective is to minimize the difference between the transferred heat calculated by
Model (12) and the measured demand.

Resulting optimal values of n for all demand situations are displayed on Figure 8.

Figure 8. Optimized values of n.

Values of n vary from 0.65 to 0.78 and the weighted mean for estimation datasets is n = 0.71,
which corresponds to β = 1.4465 and α = 138.9041 after the regression. Those will be used in the
following subsection for model verification.
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4.3. Verification of Models

To verify the models, the relative errors calculated by each approach of transferred heat power
were compared to the measured one on the secondary side, which is the actual demand. In terms of
the relative error,

q =
Qtrans f<Model> −Qdemand

Qdemand
·100% (19)

Performance of each approach in terms of a relative error is shown in Figure 9, using the demand
situations from the verification datasets.

 
Figure 9. Relative error of calculated transferred heat for each model: (a) whole range and (b)
zoomed region.

The calculated transferred heat differs from the actual values for the following reasons:

- The correlation is an approximation of the complex process of heat transfer;
- Measurements themselves have smalls error;
- Variable time delay between inlets and outlets in both circuits.

The relative errors between the models almost do not differ:

- Thermophysical approach 2.1, a mean temperature for each circuit separately—10.91%;
- Thermophysical approach 1.1, one mean temperature for both circuits—10.63%;
- Linear regression approach 2.3, a mean temperature for each circuit separately—10.65%;
- Linear regression approach 1.3, one mean temperature for both circuits—10.54%.

A negligible difference between all models confirms that linear regression models can be used
in practice.

Despite the error being quite high, in general, it can be reduced by collecting more data to cover
the whole demand range as well as setting up a “cleaner” experiment overall, e.g., well-tuned controls
and properly sized equipment. This is, unfortunately, impossible for the current system due to limited
additional demand options, time of the year and continuous operation during certain season.

Further error reduction under existing conditions, without significant complications of the models,
can be achieved by changing the value n depending on one of the varying parameters.
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4.4. Variable Correlation as a Way to Improve Accuracy

One way to improve accuracy is to further relate n with one or more of varying parameters:

- One of mass flows when temperature variations are not significant;
- One of circuit temperatures when mass flows variations are not significant;
- Mass flow and temperature on one side when parameters on another side vary correspondingly;
- Heat load itself, in case most of temperatures and flows are affected by fluctuations.

Since the system behaviour is quite unstable and all parameters are affected by large variations,
the value n is related to the heat demand. To relate n with the transferred heat, let us first re-arrange
the obtained values of n from Datasets 1–3 correspondingly to values of the heat load in an ascending
order, as shown in Figure 10.

Figure 10. Re-arranged values of n (a) according to respective demand in ascending order (b).

Similar to the previous section, linear regression (since simplified solutions are sought) of n from
Q will result in the expression

nl = 0.0396· Q
Qmax

+ 0.6899 = nl2· Q
Qmax

+ nl1. (20)

Consequently, values α and β can be tied to demand for this particular PHX to enable the use of
regression models. Using five points from min (20%) to max (100%) heat load in the expression (20),
the respective α and β are summarized in the Table 4.

Table 4. Calculated coefficients varying with the heat demand.

n Q α β

0.6978 20% 128.91 1.285
0.7057 40% 135.49 1.391
0.7137 60% 142.40 1.504
0.7216 80% 149.66 1.627
0.7295 100% 157.27 1.759

This correlation is shown to be nearly linear as we can see from Figure 11.
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Figure 11. Alpha and beta are changing almost linearly with the demand.

A further linear regression will yield

βl = 0.5924· Q
Qmax

+ 1.1578 = βl2· Q
Qmax

+ βl1,

αl = 35.4464· Q
Qmax

+ 121.4771 = αl2· Q
Qmax

+ αl1.
(21)

Since Equation (20) is a very “specific” approximation, as well as derived Equation (21), the fit
will obviously be poor; however, the relative error for models with those expressions is evaluated and
displayed Figure 12 along with errors from previous models.

Figure 12. Relative error of calculated transferred heat for each model: (a) whole range and (b)
zoomed region.

The mean relative errors for the variable exponent model with linear regression:

- Thermophysical approach 2.4, a mean temperature for each circuit separately—7.40%;
- Thermophysical approach 1.4, one mean temperature for both circuits—7.45%;
- Linear regression approach 2.6, a mean temperature for each circuit separately—7.67%;
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- Linear regression approach 1.6, one mean temperature for both circuits—7.61%.

For the variable exponent model with thermophysical properties the error is approximately the
same. The iterated versions of approaches 1.4 and 2.4 are denoted as 1.5 and 2.5, respectively.

Mean values of relative errors show that varying the correlation exponent n with a certain parameter
(in our case it is heat load) can yield better accuracy. The typical error interval for correlations is ±10%.

The ways of improving heat transfer models remain an open research area and the proposed
model is situational. To find the most accurate model, extensive tests are required, covering the entire
range for each varying parameter.

5. Results and Discussion on an Operational Optimization Test Case

To demonstrate performance of the obtained models on DH operation, an operational optimization
(2) and (6) was performed in a basic heat transmission system under several demand situations. In the
first subsection, parameters, configurations and heat demand situations were described. The second
subsection presented optimization results, containing values from the reference approach and absolute
errors of other approaches as compared to the reference one. The obtained results were followed by a
discussion. Finally, the computational performance of each approach is evaluated in the last subsection
by optimizing the system with an increasing number of branches.

5.1. System Parameters of the Test Case

The diagram of the test system is shown in Figure 13. In the first configuration, the PHX is
connected to the source via a pipeline and in the second configuration, two identical PHXs are connected
via identical separate pipelines and circulation pumps.

Figure 13. HP-pipeline-PHX heat transmission test system.
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Parameters of the test system are listed in the Table 5. The supply and return pipes are connecting
the inlet and outlet of a (each) PHX. A large HP system (power-to-heat source) is extracting heat from
the heat source at 6.85 ◦C (for instance, sea or lake water). The maximum mass flow in all circuits is
equally limited (this corresponds to full valve opening). For any PHX in both configurations return
cold inlet temperatures and cold mass flows are assumed to get three values as indicated in Table 5 to
comprise a heat demand (thermal load).

Table 5. Parameters for components.

Plate Heat Exchangers, Mass Flows and Heat Demand Parameters

Lch, m Wpl, m b, m N Tco, ◦C Enlargement
Factor

Fouling,
m2·K/W

Conductivity,
W/m·K(Plate)

1.5 0.7 0.004 141 50 1.12 0.000006 16.3

Thickness,
m (plates)

.
mcLOW,

kg/s

.
mcCOM,

kg/s

.
mcmax,
kg/s

.
mhmax,

kg/s
TciLOW,
◦C

TciHIGH,
◦C TciCOM, ◦C

0.0005 20 37 74 74 15 35 25

Pipelines

L, m D, m
Kpipe,

W/◦C·m Tamb, ◦C krough,
mm

1000 0.25 0.51 8 0.5

Heat Pump and Circulation Pumps

T0, (◦C) ηhp ηcirp

6.85 0.7 0.75

Thus, five cases of heat demand are considered for a PHX in Configuration 1:

- Common heat demand, when temperature is medium, as well as mass flow;
- (2 cases) unbalanced heat demand, when secondary return temperatures and mass flows are both

low and high, respectively;
- (2 cases) low or high heat demand, which are low mass flow and high temperature or high mass

flow and low temperature, respectively.

As for Configuration 2, in order to observe how PHX models perform when several components
are present, the following five heat demand cases are considered:

- Common heat demand at both PHXs;
- (2 cases) unbalanced heat demand with low or high temperatures/flows at one PHX and common

at another;
- unbalanced heat demand at each PHX, low temperature at one and low mass flow at another;
- low heat demand at one PHX and high heat demand at another.

The optimization is performed by each approach, given in previous sections. Since it has been
demonstrated that the variable correlation model is the most accurate, it is used as a reference. All the
correlation values are taken the same as in previous section and applied for a larger PHX.

Firstly, approach 2.5 is run for the common demand and obtained temperatures are used to find
mean temperatures (Tci + Tco + Thi + Tho)/4 and (Thi + Tho)/2 (defining thermophysical properties) for
approaches that do not account for temperature variation. This will yield better performance for them.

5.2. Optimization Results

Optimization procedure is performed using the fmincon function in MATLAB. The procedure
follows the problem, described in Section 2. We will consider approach 2.5 as our reference since it
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was shown that thermophysical models with variable correlation are performing better than others.
Optimization results for Configurations 1 and 2 are shown in Table 6.

Other models’ approaches are compared in relation to the reference. Two key indicators are the
absolute deviation from the secondary (cold) supply temperature setpoint Tco = 50, assumed ideally
coinciding with approach 2.5, and the absolute deviation of total electric power consumed as compared
to the one for approach 2.5. Obviously, the deviation of the cold outlet (secondary) temperature will
cause a respective deviation of the hot outlet and, moreover, control actions to bring the temperature
back to 50 ◦C (in case of a poorly performing approach) will cause a hot return temperature to further
rise and, consequently, affect total electric power consumed.

Procedure of temperature deviation calculation for other approaches related to approach 2.5:

1. Calculating the OHTC using the complete Equation (12) from provided optimization results,
cold side temperatures and mass flow;

2. Finding the logarithmic mean temperature difference from the given demand, surface area and
the OHTC;

3. Finally, finding such outlet temperatures, which yield equality of the expression for logarithmic
mean temperature difference to the found one.

For convenience, two plots are used per one indicator per configuration: for variable correlation
approaches and for a fixed correlation. Thus, for Configuration 1 with one PHX and one source there
will be four plots total, displayed in Figure 14.

Figure 14. Configuration 1: Temperature (a,b) and total power (c,d) deviations.

As we can see from the Figure 14, the non-variable correlation approaches perform poorly at the
second load situation (highest demand), overheating the water by up to 2.5 ◦C (at least 1 ◦C for iterative
approach 2.2) and drawing up to 100 kW more of electric power. Performance at temperature unbalanced
(high cold return temperature/low flow) heat demand is better, but still the temperature deviation is
between 0.5 and 1 ◦C, this time under the setpoint. For common and low heat demands, the temperature
deviation is within 0.5 ◦C, and for mass flow and unbalanced heat demand its deviations are minimal.
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All the non-variable correlation approaches perform inconsistently, but approach 2.2 is more
robust due to being a non-variable version of the reference approach 2.5.

Variable correlation approaches perform significantly better than their non-variable versions.
The maximum temperature deviation is 0.4 ◦C by approach 1.4 at Unbal.1M heat demand. For 1.4 and
2.4 the temperature dependence is not included (thermophysical properties are constant, similar to
approaches 1.1 and 2.1) and they perform generally worse.

Amongst other approaches, iterative 1.5 performs better, but has a 0.2 ◦C deviation at high load,
whilst approaches 1.6 and 2.6 are more consistent. The highest deviation in electric power consumption
among all five is 10 kW by approach 2.4 at high heat demand (corresponds to around a −0.27 ◦C
temperature deviation).

For Configuration 2, there are six plots total, displayed in Figure 15. This study case is
demonstrating how approaches perform in a system. Four of them are temperature deviations
at two PHXs and two are the deviations of total electric power consumption.

Figure 15. Configuration 2: Temperature (a–d) and total power (e,f) deviations.

For non-variable correlation approaches, the temperature and power consumption deviations look
similar when both PHX are at common heat demand, also for Configuration 1. Similar to Configuration
1. the trend exhibits PHX (#2) at an unbalanced heat demand with a high temperature difference,
which was even amplified by another PHX (#2), unbalanced the other way around and having a low
temperature difference but high mass flow on its secondary side. Highest deviations are occurring at
high heat demands, at least at one of the PHXs. The magnitude of the deviation is approximately the
same as in Configuration 1, with approach 2.2 performing better than other approaches.

For variable correlation approaches, the pattern is similar to Configuration 1, with 1.6 and 2.6
performing the best, 1.4 performing the worst, and 1.5 and 2.4 are being inconsistent.

Generally, the magnitude of errors in Configuration 2 is slightly higher than in Configuration
1, for unbalanced heat demands in particular. Relative errors would be nearly of the same values.
Nevertheless, in a real DH system all the pipeline and pumping system, as well as secondary side values
and PHXs themselves can differ a lot to one another. Note, those are study aspects (number of which
can be dramatically high) for every particular system and will certainly affect approaches performance.
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5.3. Computational Performance

Another important criterion (if not the most) is computation time for each approach used. This is
becoming crucial when the system is optimized on a short time scale over a greater time horizon
(the travel times remain very large). Therefore, the faster we are able to optimize our system, the more
flexible it becomes for integration with other energy systems.

We will calculate computation time for each approach versus the system with a number of identical
branches with PHX at the end, having the same heat demand for each.

The times can be evaluated in MATLAB using tic-toc commands around the optimization code for
each approach. The obtained computation times trend is displayed in Figure 16: (a) for non-variable
correlation approaches and (b) for variable correlation approaches.

Figure 16. Comparison of computation times: (a) constant correlation and (b) variable correlation.

As we can see, optimization time grows exponentially with the number of branches in the system.
Both variable and fixed correlation approaches take nearly the same time to converge, which favours
relating the correlation to a varying parameter, in the case of a heat demand.

Thermophysical iterative approaches (1.2, 2.2, 1.5, 2.5) take twice longer to converge, which means
they need at least one more iteration. On the other hand, approaches with linear approximation
of temperature dependence take nearly the same time as thermophysical non-iterative approaches,
while accuracy is higher and close to the iterative versions as mentioned early in this work.

Additionally, each provided branch has a specific design and setpoints, and the difference in
approaches can further raise in favour of the ones with a linear approximation.

6. Conclusions

Flexible operation of DH systems entails significant variations in parameters of DH transmission
systems. Defining optimal parameters for the transmission system is the key to maintain sufficient
heat quality and minimal operation costs. Even in a relatively small DH system, precise modelling of
each individual component can become crucial as the optimization problem includes such models as
constraints. Precise modelling of PHX is the most critical for the operation of a transmission system.
The better the model fits the reality, the less control effort is required at the heat transfer station
afterwards and, therefore, secondary temperature deviations from setpoints will be minimal, especially
when demand is unpredictable and flexibility is provided (altering of setpoints). This also means that
the primary return temperature and mass flow will be more predictable. Poorly performing models
can cause frequent control actions, which result in oscillations in the system, as was seen from the
experimental part of this work.

132



Energies 2019, 12, 4141

Both mass flows and temperatures affect heat transfer capability of plate heat exchangers.
Thus, at various demands plate heat exchangers will produce different return temperatures, which in
its turn affects the efficiency of a power-to-heat source (e.g., the heat pump). Especially, this has a
greater effect when mass flows and temperatures vary across a wide range, and PHXs, as well as
their respective distribution systems, differ significantly in their design (for instance, rating) and
demand patterns.

Analysis of heat transfer through DH PHXs has shown that the temperature dependent component
of FCC for water has nearly linear behaviour. This persists for the whole range of possible temperatures
and covers most of the design correlations, as well as for a large range of pressure since it does not
affect thermophysical properties of DH water. This behaviour allows approximating it as a linear
function of temperature α+ βT where α and β are fixed and defined by the design, which was validated
experimentally on a laboratory PHX.

The described linear approximation eliminates the use of lookup tables for thermophysical
properties for the calculation of OHTC and, therefore, removes the iterative process from the
optimization problem. The approximation use is not limited to district heating only and can be
applied whenever the temperature dependent component of FCC for a fluid exhibits linear behaviour.

Correlation estimation procedures, outlined in the experimental part of the work, enables finding
the most suitable correlation for a particular PHX from temperature and mass flow measurements.
This can be used in practice when inspection of a PHX model is performed. It shows that the correlation
accuracy can be further improved by relating its coefficient to one (or several) of the varying parameters.

The two operational optimization study cases show that variable correlation models with linearized
temperature dependence perform generally better than the original fixed-temperature thermophysical
models, having the same computation time and higher accuracy. The proposed models require at least
a two-times lower computation time than variable temperature thermophysical models, while having
the same accuracy.

The choice between the models described is made depending on their performance for a specific
system and engineering judgement. These, due to some models, are not being consistently good at all
heat demands. In real systems, however, with dozens of heat exchangers and multiple power-to-heat
sources, the optimization (non-linear control) problem would result in a large number of simulations
if all constraints must be satisfied within one optimization interval (time step). Besides, the delays
in a DH transmission system can reach a dozen of hours, therefore yielding an enormous number of
optimization time steps within the given time horizon. Thus, computational performance is critical.

Detailed modelling and control of power to heat sources, i.e., the coupling units between the
sectors, is of high interest, which will be the focus of future work.
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Nomenclature

Abbreviations:
DH District Heating;
HP Heat Pump;
PHX Plate Heat Exchanger;
OHTC Overall Heat Transfer Coefficient;
FCC Forced Convection Coefficient;
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Additional terms:
Circuit a hydraulic path within a PHX;
Terminal where circuit meets external pipeline;
Hot/Cold circuit Primary/Secondary circuit;
Additional subscripts:
LMTD logarithmic mean;
c cold circuit;
h hot circuit;
i inlet of a circuit;
o outlet of a circuit;
l linearized quantity;
m arithmetic mean;
fch friction factor in a PHX channel;
Heat and circulation pump:
COPt total coefficient of performance [-];
Pcirp electric power consumption of a circulation pump [W];
Php HP electric power consumption [W];
.

Q thermal power output [W];
T0 mean temperature in the evaporator [◦C];
ηhp total efficiency of a HP [-];
ηcirp total efficiency of a circulation pump [-];
Pipeline:
D diameter [m];
L length [m];
Kpipe thermal conductivity [W·m/◦C];
Tamb ambient temperature of the soil [◦C];
krough roughness [m];
Δppipe pressure loss [Pa];
Plate heat exchanger:
A heat transfer area of the plate pack [m2];
Ach cross-section of a channel [m];
s supply (temperature at the HP);
r return (temperature at the HP);
Complex dimension numbers:

B
thermoph. component of FCC
[W·mn−2m+1·sn−m/kgn·◦C];

α
linearization coefficient (free)
[W·mn−2m+1·sn−m/kgn·◦C];

β
linearization coefficient
[W·mn−2m+1·sn−m/kgn·◦C];

K function of PHX design [1/mn−1];
Dimensionless numbers:
Nu Nusselt number;
Pr Prandt number;
Re Reynolds number;
C Nusselt number correlation constant;
f friction factor;
m Prandt number exponent;
n Reynolds number exponent;
Dhydr hydraulic diameter of a channel [m];
Dport diameter of the port [m];
H FCC [W/◦C·m2];
Lch length of a channel [m];
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.
Qd demand thermal power [W];
Rtot thermal resistance of plates [◦C/W·m];
T water temperature [◦C];
U OHTC [W/◦C·m2];
Wpl Plate width [m];
Δpch pressure loss in a channel [Pa];
Δpport pressure loss in the port [Pa];
b channel width [m];
v velocity of the flow in the channel [m/s];
Water properties and global variables:
cp specific heat [W/kg·◦C];
k thermal conductivity [W·m/◦C];
.

m water mass flow [kg/s];
μ dynamic viscosity [kg/m·s];
ρ density [kg/m3];

References

1. Benonysson, A. Dynamic Modelling and Operational Optimization of District Heating Systems. Ph.D. Thesis,
Laboratory of Heating and Air Conditioning, Technical University of Denmark, Lyngby, Denmark, 1991.

2. Pálsson, H.; Larsen, H.V.; Bøhm, B.; Ravn, H.F.; Zhou, J.J. Equivalent Models of District Heating Systems for
On-Line Minimization of Operational Costs of the Complete District Heating System; Technical University of
Denmark and Risø National Laboratory: Roskilde, Denmark, August 1999.

3. Jie, P.; Zhu, N.; Li, D. Operation optimization of existing district heating systems. Appl. Therm. Eng.
2015, 78, 278–288. [CrossRef]

4. Mitridati, L.; Taylor, J.A. Power systems flexibility from district heating networks. In Proceedings of the 2018
Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018.

5. Kuosa, M.; Aalto, M.; Assad, M.E.H.; Mäkilä, T.; Lampinen, M.; Lahdelma, R. Study of a district heating
system with the ring network technology and plate heat exchangers in a consumer substation. Energy Build.
2014, 80, 276–289. [CrossRef]

6. Wang, Y.; You, S.; Zhang, H.; Zheng, X.; Wei, S.; Miao, Q.; Zheng, W. Operation stability analysis of district
heating substation from the control perspective. Energy Build. 2017, 154, 373–390. [CrossRef]

7. Wang, Y.; You, S.; Zheng, W.; Zhang, H.; Zheng, X.; Miao, Q. State space model and robust control of plate
heat exchanger for dynamic performance improvement. Appl. Therm. Eng. 2018, 128, 1588–1604. [CrossRef]

8. Bastida, H.; Ugalde-Loo, C.E.; Abeysekera, M.; Qadrdan, M. Dynamic modeling and control of a plate heat
exchanger. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration
(EI2), Beijing, China, 26–28 November 2017.

9. Karlsson, T. Numerical evaluation of plate heat exchanger performance in geothermal district heating
systems. Proc. Inst. Mech. Eng. Part A J. Power Energy 1996, 210, 139–147. [CrossRef]

10. Guo, Y.; Wang, F.; Jia, M.; Niu, D. A novel modelling method for plate heat exchanger to predict the outlet
cooling water temperature. Can. J. Chem. Eng. 2019, 97, 1809–1820. [CrossRef]

11. Olsen, P.K. Guidelines for Low-Temperature District Heating. In EUDP 2010-II: Full-Scale Demonstration of
Low-Temperature District Heating in Existing Buildings; Cowi Holding A/S: Lyngby, Denmark, 2014.

12. Benonysson, A.; Boysen, H. Optimum control of heat exchangers. Danfoss technical paper. In Proceedings of
the 5th International Symposium on Automation of District Heating Systems, Helsinki, Finland, 20–23 August
1995; p. 10.

13. Larson, G. On Dynamics in District Heating Systems. Ph.D. Thesis, Chalmers University of Technology,
Gothenburg, Sweden, 1999.

14. Granryd, E.; Ekroth, I.; Lundqvist, P.; Melinder, Å.; Palm, B.; Rohlin, P. Refrigeration Engineering; Royal
Institute of Technology, KTH, Department of Energy Technology, Division of Applied Thermodynamics and
Refrigeration: Stockholm, Sweden, 2009.

15. Papaevangelou, G.; Evangelides, C.; Tzimopoulos, C. A new explicit equation for the friction coefficient in
the Darcy-Weisbach equation, Proceedings of the Tenth Conference on Protection and Restoration of the
Environment: PRE10, 6–9 July 2010. Greece Corfu. 2010, 166, 1–7.

135



Energies 2019, 12, 4141

16. Kakaç, S.; Liu, H. Heat Exchangers: Selection, Rating and Thermal Design, 2nd ed.; CRC PRESS: Boca Raton, FL,
USA, 2002; p. 501.

17. Schmidt, E. Properties of Water and Steam in SI-Units. 0-800 C, 0-1000 Bar; Springer: München, Germany, 1969;
p. 205.

18. SPXFlow. APV Heat Transfer Handbook. A History of Excellence; SPX: Charlotte, NC, USA, 2008; p. 66.
19. McAdams, W.H. Heat Transmission, 2nd ed.; McGRAW-HILL: Brooklyn, NY, USA, 1942; p. 459.
20. The MathWorks Inc. Nonlinear Programming Solver Fmincon. Available online: https://se.mathworks.com/

help/optim/ug/fmincon.html (accessed on 23 August 2019).

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

136



energies

Article

Supplementary Control of Air–Fuel Ratio Using
Dynamic Matrix Control for Thermal Power
Plant Emission

Taehyun Lee 1, Eungsu Han 2, Un-Chul Moon 2,* and Kwang Y. Lee 3

1 School of Mechanical System Engineering, ChungAng University, HukSuk-dong DongJak-Gu, Seoul 06974,
Korea; yu0744@naver.com

2 School of Electrical and Electronics Engineering, ChungAng University, HukSuk-dong DongJak-Gu,
Seoul 06974, Korea; dmdtnwkd@naver.com

3 Department of Electrical and Computer Engineering, Baylor University, Waco, TX 76798-7356, USA;
kwang_y_lee@baylor.edu

* Correspondence: ucmoon@cau.ac.kr; Tel.: +82-10-8775-0173

Received: 27 July 2019; Accepted: 6 September 2019; Published: 2 January 2020

Abstract: This paper proposes a supplementary control for tighter control of the air–fuel ratio (AFR),
which directly affects the environmental emissions of thermal power plants. Dynamic matrix control
(DMC) is applied to the supplementary control of the existing combustion control loops and the
conventional double cross limiting algorithm for combustion safety is formulated as constraints in the
proposed DMC. The proposed supplementary control is simulated for a 600-MW drum-type power
plant and 1000 MW ultra-supercritical once-through boiler power plant. The results show the tight
control of the AFR in both types of thermal power plants to reduce environmental emissions.

Keywords: air–fuel ratio; combustion control; dynamic matrix control; power plant control

1. Introduction

Currently, environmental emissions from thermal power plants have drawn much concern. Various
environmental emissions such as carbon monoxide (CO) and nitrogen oxide (NOx), are released from
thermal power plants. To meet the current stringent environmental standards, combustion conditions
should be maintained tightly to reduce these emissions [1,2].

Environmental emissions in thermal power plants, such as CO and NOx, are directly influenced
by the air-fuel ratio (AFR). Figure 1 shows the quantity of emissions and thermal efficiency as a function
of the AFR in a typical furnace combustion operation [3,4]. High CO is observed in the low AFR range
because of the incomplete combustion due to the lack of combustion air or excessive fuel. Meanwhile,
the stack heat loss in the high AFR range increases NOx.

 

Figure 1. Emissions and efficiency as a function of air–fuel ratio.
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An ideal AFR is a function of plant characteristics, condition and electric load. In practice, this
ideal AFR is predetermined and updated by offline experiments and used in the combustion control.
Therefore, maintaining the ideal AFR in the thermal power plant combustion is crucial in reducing the
environmental emissions of power plants.

In practice, many power plant manufacturers have similar philosophies for thermal power plant
control. For combustion control, the unit load demand and main steam pressure signal generate the
boiler master demand (BMD) signal. The BMD signal generates the air flow demand signal and fuel
flow demand signal based on the ideal AFR [5–7].

The concept of cross limiting technique is used in the conventional combustion control, which is
designed to limit the fuel demand in order to prevent the lack of combustion air and the extinguishing
of the boiler firing. That is, the fuel flow demand signal is limited by the current combustion air and
conversely, the air flow demand signal is limited by the current fuel in the furnace. This “AFR with
cross limiting override control” has been a standard concept for large capacity boilers [5,8,9]. Although
this conventional control system is well developed in practice, the performance of AFR control tends
to be degraded in the transient state [8].

Recently, Bhowmick and Bera [9] pointed out the weakness of the cross-limiting technique in
abnormal condition, and Liu, He, and Wang [10] and Zanoli et al. [11] proposed the double cross-limiting
(DCL) strategy that generalizes the cross limiting technique. In the DCL algorithm, the fuel and
air demand signals are limited within a reasonable band of corresponding combustion air and fuel,
respectively. Although DCL can assist the AFR control, because it is a simple static mapping, it has a
limitation to improve the transient or dynamic response of the AFR.

Most modern control technologies require a good-quality model for the object system, which is
not an easy task for a practical plant. One of the approaches to avoid this difficulty is model free control
(MFC) [12]. The main advantage of the MFC technique is that the process model is approximated
through a fast estimator using an approximation of the process model, which is locally valid and,
furthermore, on a relatively short time window. The MFC techniques were applied to a wide range of
processes, which include immune systems [13], robot systems [14,15], twin rotor aerodynamic systems
(TRASs) [16–18], aircraft system [19] and servo systems [20].

Another approach to avoid first principles or complex identification is dynamic matrix control
(DMC) with a step-response model which can be easily obtained by plant step test. DMC is a proven
algorithm in the model predictive control (MPC) for dynamic systems [21]. It computes optimized
control inputs using linear programming or quadratic programming while considering the constraints
at every sampling time [22,23]. Moon and Lee applied DMC to a simple thermal power plant model
in [24], and the DMC was also successfully applied to the power plant coordinated control [25,26].

Herein, a DMC was designed to generate supplementary signals to the existing combustion control
to maintain the ideal AFR. The optimal supplementary signals were generated in the optimization
window constrained by the DCL strategy. This supplementary control structure over the existing
combustion control is very practical and easy to implement because it can be easily bypassed in the
case of an emergency.

2. DMC Combustion Control

2.1. Conventional Boiler Combustion

Figure 2 shows a typical conventional combustion control with DCL strategy of a coal-fired
power plant [5,10,11]. In the figure, each block of F(x) represents a look-up table or static mapping
between the input and output. The BMD signal is the output of F1(x) corresponding to the power load
demand, electric power output and main steam pressure. Subsequently, F2(x) and F3(x) generate the
air flow demand signal and fuel flow demand signal, respectively, based on the predetermined ideal
AFR. From the air flow demand signal, the air controller drives the forced draft (FD) fan to control
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the amount of combustion air into the furnace. Further, with the fuel flow demand signal, the fuel
controller drives the primary air fan and pulverizer, accordingly.
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Figure 2. Typical power plant combustion with double cross-limiting strategy.

The feedback loops with dotted black lines in Figure 2 represent the DCL strategy that prevents
the incomplete burning and the excessive combustion air at various loads. Parameters α1, α2, α3 and
α4 are fixed constants of several percent to allow a small margin. This DCL structure is the updated
form of the conventional cross-limiting technique that uses α1 and α2 loops only, and α3 and α4 loops
are ignored [5].

The output of F2(x), the air flow demand, is compared with the output of F4(x), which is the
conversion of fuel flow to air flow. The larger value between the output of F2(x) and F4(x) × (1−α1)
was selected to prevent the lack of combustion air in the furnace. In addition, this selector output
was compared with F4(x) × (1 + α3) and the smaller value was finally selected as the air flow demand
to prevent the overfeeding of combustion air in the furnace. In the fuel side, the output of F3(x)
was similarly compared with the output of F5(x), which is the conversion of air flow to fuel flow.
Subsequently, the final fuel flow demand is determined between two margins, α2 and α4. The values
of α are typically selected between 2% and 5% [5,11]. Therefore, the DCL strategy prevents high or low
AFR by selecting appropriate air and fuel flow demands.

2.2. Supplementary DMC for AFR

We implemented the tighter control of the AFR while minimizing its effects on the performance of
the existing combustion control system. The DMC supplementary control is applied to the air and fuel
flow demands of the conventional multi-loop control, thereby adjusting the amounts of combustion air
and fuel to maintain the ideal AFR.
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Figure 3 shows the structure of the supplementary control for the AFR using DMC, which is a
replacement of the dotted red rectangle in Figure 2. In Figure 3, AFRk is the air-fuel ratio at the k-th
time step, which is the output or controlled variable (CV), and AFRref,k is the reference air-fuel ratio
at the k-th step; ũDMC

a,k and ũDMC
f ,k are the plant inputs or manipulated variables (MV) of the proposed

DMC, which are the supplementary air flow demand and supplementary fuel flow demand at the k-th
step, respectively.
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Figure 3. Proposed control system configuration.

These signals are added to ũBMD
a,k and ũBMD

f ,k , which are, respectively, the air flow and fuel flow

demands from the BMD of the conventional multi-loop control. Therefore, the air flow demand ũa,k and
fuel flow demand ũ f ,k are the sum of the BMD signals and the supplementary DMC signals as follows:

ũ a,k = ũBMD
a,k + ũDMC

a,k (1)

ũ f ,k = ũBMD
f ,k + ũDMC

f ,k (2)

The output, AFRk, is then defined as the ratio:

AFRk = ua,k/u f ,k (3)

where uf,k is the fuel flow at the k-th step, which is the output of the pulverizer, and ua,k is the air flow
at the k-th step, which is the sum of the two air flows, from FD fan and primary air fan in Figure 2.

From the viewpoint of practical implementation, this supplementary control structure over the
existing multi-loop control logic is very realistic and easy to implement. In an emergency, this type of
supplementary control can be easily removed and returned to the conventional multi-loop control
system, with which the plant operators are familiar.

Herein, the standard form of the DMC algorithm is used [27]. If we use the standard notation of
the plant input and plant output,

yk = AFRk (4)

uk = [ũDMC
a,k , ũDMC

f ,k ]
T

(5)

Subsequently, the prediction equation is:

Yk+1|k = Yk+1|k−1 + SΔUk + Y
d
k+1|k (6)

where
Yk+1|k = [AFRk+1|k AFRk+2|k · · · AFRk+p|k]T (7)
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Yk+1|k−1 = [AFRk+1|k−1 AFRk+2|k−1 · · · AFRk+p|k−1]
T (8)

ΔUk = [Δuk Δuk+1 · · · Δuk+m−1]
T

= [(ΔũDMC
a,k , ΔũDMC

f ,k ) · · · (ΔũDMC
a,k+m−1, ΔũDMC

f ,k+m−1)]
T (9)

Here, p is the prediction horizon and m is the control horizon; Yk+1|k is a p × 1 vector, the future
output of AFR trajectory at t = k; Yk+1|k−1 is a p × 1 vector, an open-loop prediction of the future

output when input u remains at the previous step value uk−1; Y
d
k+1|k is a p × 1 vector, an estimate of the

unmeasured disturbance; ΔUk is a 2 m × 1 input adjustment vector; and S is a p × 2 m dynamic matrix
including step responses as follows:

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 0 · · · 0

s2 s1
. . .

...
...

...
. . . s1

...
...

. . .
...

sp sp−1 · · · sp−m+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

si =
(
s a

i s f
i

)
(11)

where si
a and si

f are the step response coefficients of the AFR from the incremented air flow demand
and fuel flow demand, respectively, at the i-th sampling step.

To calculate the input adjustment vector, an online quadratic optimization with constraints was
performed at every sampling step:

min
ΔUk

‖Ek+1|k‖Λ + ‖ΔUk‖Γ (12)

where:
Ek+1|k = Yk+1|k −Rk+1|k = [ ek+1|k ek+2|k · · · ek+p|k ]

T
(13)

Rk+1|k = [ AFRre f ,k+1|k AFRre f ,k+2|k · · · AFRre f ,k+p|k ]
T

(14)

Here, Ek+1|k is a p × 1 error vector, and Rk+1|k is a p × 1 desired trajectory output vector, and Λ and
Γ are the weight matrices for the corresponding vectors in the quadratic optimization.

2.3. Constraints of Proposed DMC

An important benefit of using the DMC is the handling of constraints in optimization. Because the
DMC herein is supposed to be a supplementary control, additional large changes in the air and fuel
demand signal could significantly influence the power output and main steam pressure. Therefore, to
minimize its effect on the existing control, the output of the DMC is limited to:

−βa ≤ ũDMC
a,k ≤ βa k = 1 · · ·m (15)

−βf ≤ ũDMC
f ,k ≤ βf k = 1 · · ·m (16)

where, βa and βf are constants to limit the supplementary air and fuel adjustments, respectively.
It is noteworthy that this supplementary DMC could violate the conventional cross-limit or DCL

strategy in Figure 2. Therefore, herein, the DCL strategy is formulated as the constraint in the DMC
optimization, i.e., the DCL strategy in the proposed control system is represented as the optimization
window at the k-th step as follows:

(1−α1)F4(u f ,k) ≤ ũBMD
a,k + ũDMC

a,k ≤ (1 + α3)F4(u f ,k) (17)
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(1−α4)F5(ua,k) ≤ ũBMD
f ,k + ũDMC

f ,k ≤ (1 + α2)F5(ua,k) (18)

Combining (15)-(18), the two constraints at the k-th step are combined into the following form:

umin,k ≤ uk ≤ umax,k (19)

where:

umin,k =

⎛⎜⎜⎜⎜⎜⎜⎝ max
{
−βa, (1−α1)F4(u f ,k) − ũBMD

a,k

}
max

{
−βf, (1−α4)F5(ua,k) − ũBMD

f ,k

} ⎞⎟⎟⎟⎟⎟⎟⎠ (20)

umax,k =

⎛⎜⎜⎜⎜⎜⎜⎝ min{βa, (1 + α3)F4(u f ,k) − ũBMD
a,k

}
min{βf, (1 + α2)F5(ua,k) − ũBMD

f ,k

} ⎞⎟⎟⎟⎟⎟⎟⎠ (21)

Therefore, the constraints for the 2 m × 1 input vector is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

umin,k( −βa
−βf

)
...( −βa
−βf

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ Uk ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

umax,k(
βa
βf

)
...(
βa
βf

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

For the quadratic programming problem of (12), the constraints need to be changed into the
standard linear inequality form:

CkΔUk ≥ Dk (23)

where Ck and Dk are constant matrixes. Therefore, (22) should be represented in the form of (23). From
the definition of difference,

uk = uk−1 + Δuk (24)

uk+l = uk−1 +
l∑

i=0

uk+i, l = 0, 1, · · · , m− 1 (25)

(22) is represented as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

umin,k − uk−1

−
(
βa
βf

)
− uk−1

...

−
(
βa
βf

)
− uk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δuk
l∑

i=0
Δuk+i

...
l∑

i=0
Δuk+i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

umax,k − uk−1(
βa
βf

)
− uk−1

...(
βa
βf

)
− uk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26)

The middle term of (26) is represented as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δuk
1∑

i=0
Δuk+i

...
l∑

i=0
Δuk+i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I 0 · · · 0

I I 0
...

...
...

. . . 0
I I I I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Δuk

Δuk+1
...

Δuk+m−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = IL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Δuk

Δuk+1
...

Δuk+m−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (27)
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where I is a 2 × 2 identity matrix, and IL is a 2 m × 2 m matrix. Finally, (26) is represented as follows:

[
IL

−IL

]
ΔUk ≥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

umin,k −
⎛⎜⎜⎜⎜⎝ ũDMC

a,k−1
ũDMC

f ,k−1

⎞⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎝ −βa − ũDMC
a,k−1

−βf − ũDMC
f ,k−1

⎞⎟⎟⎟⎟⎠
...⎛⎜⎜⎜⎜⎝ −βa − ũDMC

a,k−1
−βf − ũDMC

f ,k−1

⎞⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎝ ũDMC
a,k−1

ũDMC
f ,k−1

⎞⎟⎟⎟⎟⎠− umax,k⎛⎜⎜⎜⎜⎝ ũDMC
a,k−1 −βa

ũDMC
f ,k−1 −βf

⎞⎟⎟⎟⎟⎠
...⎛⎜⎜⎜⎜⎝ ũDMC

a,k−1 −βa

ũDMC
f ,k−1 −βf

⎞⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(28)

Therefore, both the DCL strategy and the supplementary control limits are represented in the
standard form of (23) in the proposed DMC. The constraint of (28) in the proposed supplementary
DMC is used in the standard online optimization of (12) at every sampling step.

3. Applications to Power Plants

3.1. 600-MW Drum-Type Thermal Power Plant

Figure 4 shows the boiler system of a 600-MW oil-fired drum-type thermal power plant model.
Each component of the model is developed with mass, momentum, and energy balance equations.
This nonlinear power plant model was applied and validated in many studies [25,28,29].

Furnace 

Primary 
Superheater 

Waterwall 

Secondary 
Superheater 

Drum Reheater

Fuel 

Burner 
Tilt 

Fuel 
flow 

Gas 
Recirculatio

Feed water 
Turbine 

HP Turbine 

Reheat 
Spray 

Superheat 
Spray From 

Feedwater 

ID 
Fan 

Feed water 

HP Turbine 

IP Turbine 

Stack 

Air 
Damper 

Damper 
FD 
Fan 

Economizer 
& Air 

preheater 
Recir.
pump 

Figure 4. Boiler system of a 600-MW drum-type thermal power plant.

The combustion control system of this plant primarily follows the standard structure of the
coal-fired plant in Figure 2. Because this model is an oil-fired plant, the fuel flow demand signal
manipulates the fuel flow valve in Figure 4 instead of the pulverizer and primary air fan in Figure 2.
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Therefore, uf,k is the output of the fuel flow valve in this plant. The conventional cross-limiting
algorithm is equipped in this model, and both α1 and α2 were set to 5%.

Figure 5 shows the response of the AFR as a result of the step increments of ũDMC
a and ũDMC

f at
t = 0 from the steady state of 450 MW. The 1% of the normal operation range is used independently
for the two step inputs. Because this is a closed-loop test for supplementary control, these transient
responses include the dynamics of not only the power plant model but also the existing multi-loop
control logics. In Figure 5, from the initial value 15.35, the AFR is finally increased/decreased to
15.57/15.12 due to the increase in combustion air/fuel, respectively.
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Figure 5. Step responses in a 600 MW power plant.

The tuning of the DMC parameters is important. Theoretically, a small sampling time and a large
prediction and control horizons are desirable from the view point of control performance. However,
this increases the computational burden in practice. The sampling time is determined as 1 s. Therefore,
the responses of Figure 5 were sampled at every 1 s and stored in the step-response matrix S. The error
and input increments in (12) are:

‖ek+1|k‖ = [ek+1|k]T[Λ][ek+1|k] (29)

‖Δuk‖ =
⎡⎢⎢⎢⎢⎣ ΔũDMC

a,k
ΔũDMC

f ,k

⎤⎥⎥⎥⎥⎦T[
Γa 0
0 Γ f

]⎡⎢⎢⎢⎢⎣ ΔũDMC
a,k

ΔũDMC
f ,k

⎤⎥⎥⎥⎥⎦ (30)

where Λ is the weight of the AFR error; Γa is the weight of ΔũDMC
a,k ; and Γf is the weight of ΔũDMC

f ,k .
The DMC parameters are listed in Table 1. The p is selected as 300 [s] for AFR response to settle down
in Figure 5. The m is selected as 100 [s] considering computational burden. A small β limits the
performance of proposed supplementary control, while a large β can affect the other control loops.
By trial and error, to limit excessive control action, βa and βf were selected as 2% and 1.25% of their
normal operation ranges, respectively. Because of the small βf, this supplementary DMC primarily
manipulates the combustion air flow demand rather than the fuel demand.

Table 1. DMC parameters of 600 MW drum-type thermal power plant.

Λ Γa Γf p m βa βf

1 1 10 300 100 2% 1.25%

3.2. 1000-MW Once-Through Type Thermal Power Plant

Figure 6 is the dynamic boiler simulation model (DBSM) of the 1000 MW ultra-supercritical
(USC) coal-fired once-through type model. This nonlinear model was also developed based on mass,
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momentum, and energy balances. It is a field-proven simulator for the power plant control logic design
in industry [26,30,31].
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Figure 6. Schematic of a 1000 MW once-through-type thermal power plant.

In Figure 6, the secondary air fan represents the FD fan in Figure 2 to control the amount of
combustion air. The combustion control system of this plant primarily follows the standard structure
in Figure 2. The conventional cross-limiting algorithm is equipped in this model, and the values of α1

and α2 were set to 5%.
Figure 7 shows the step response of the AFR as a result of the step increase of ũDMC

a . One percent
of the normal operation range of ũDMC

a was applied at the steady state of 825 MW. The AFR increased
from 11.12 to 11.26 due to the increase in combustion air. A faster transient response was observed
compared to the response in Figure 5. This faster response can be interpreted as the faster dynamics of
the once-through-type boiler compared to that of the drum-type boiler.
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Figure 7. Response of air–fuel ratio in 1000 MW plant due to step increase of ũDMC
a .

Figure 8 shows the step response of the AFR for a 1% step increase of ũDMC
f in the steady state of

825 MW. The AFR is decreased from 11.12 to 10.97 in steady state. The slower response than that of
Figure 7 can be attributed to the slow dynamics of the pulverizer. Therefore, in this study, ũDMC

a is
primarily used for MV to achieve a fast control response.
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Figure 8. Response of air–fuel ratio in 1000 MW plant due to step increase of ũDMC
f .

The same structure of the DMC was applied to this plant. The sampling time was selected as
1 s and the DMC weight parameters are shown in Table 2. The p was selected as 300 s for AFR to
settle down in Figure 8. The m was also selected as 100 s considering computational burden. For this
plant, βa and βf were selected as 1.36% and 0.02% by trial and error, respectively. Because of the small
βf, this supplementary DMC primarily manipulates the combustion air flow demand rather than the
fuel demand.

Table 2. DMC parameters of 1000 MW once through-type thermal power plant.

Λ Γa Γf p m βa βf

10 1 0.1 300 100 1.36% 0.02%

4. Simulation Results

4.1. Simulation of 600-MW Drum-Type Thermal Power Plant

The DMC supplementary control is developed in the MATLAB environment. In this simulation,
the control performance (12) with constraints (28) is optimized by the quadratic programming, MATLAB
function “quadprog ( )”, at every sampling time.

The simulation scenario has two step changes for the electric power load demand in Figure 9.
The load demand change is limited to 0.5 MW/s, which is 5% per minute of the total load. In this
simulation, for simplicity, the ideal AFR of the drum-type plant model is assumed to be constant, i.e.,
15.35 at every electric power load.
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Figure 9. Comparison of electric power output of 600-MW plant.
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To confirm the effect of the proposed supplementary control on the main control loop, two
responses of the electric power output are compared in Figure 9, with and without DMC. Because the
supplementary control signal is limited by βa and βf, which are only 2% and 1.25% of their normal
operation ranges, respectively, two responses are almost the same, and the proposed supplementary
control does not affect the existing multi-loop control system operation.

Figure 10 shows the comparison of the AFR between the conventional multi-loop control and the
proposed DMC supplementary control during the transient. Although the responses of the electric
power output are similar, the AFR of the proposed DMC shows a tighter control during the transient
of the load changes. Table 3 shows that the squared error sum of the conventional control can be
significantly reduced, to 4.93%, by the proposed supplementary control. Therefore, the environmental
emissions by the conventional control during the transient of the load change can be effectively reduced
by the proposed supplementary DMC.
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Figure 10. Comparison of AFR in 600-MW plant.

Table 3. Squared error sum comparison of AFR in 600 MW plant.

Multi-Loop 23.069
DMC 1.137

Percentage of DMC/Multi-loop 4.93%

Figures 11 and 12 show the movements of the DMC control signals ũDMC
a,k and ũDMC

f ,k , respectively.
In the figures, supplementary control limits of ±2% and ±1.25% are represented as ±12.50 kg/s and
±0.51 kg/s, respectively. During the first 50 [s] in Figure 10, a large AFR was expected by the DMC
prediction of (6). Then, optimization of (12) with constraint of (28) was calculated to keep the AFR to
be 15.35, based on the step-response model of (10) which is developed from Figure 5. As a result of
optimization of (12), the supplementary signals ũDMC

a,k and ũDMC
f ,k were calculated. The ũDMC

a,k is negative

in Figure 11, while ũDMC
f ,k is positive in Figure 12 to reduce the AFR. This control process is repeated

at every sampling step in DMC. Accordingly, the AFR of the proposed control is reduced in the first
50 s as shown in Figure 10, and excessive NOx and stack heat loss can be reduced with the proposed
supplementary control.

To confirm the DCL logic of the proposed DMC, the air side optimization window (17) in the
first 200 s is represented in Figure 13. In the figure, the lower bound “DCL min” is (1−α1) F4(uf,k),
the upper bound “DCL max” is (1 + α3) F4(uf,k), and ũa,k is ũBMD

a,k + ũDMC
a,k . At approximately 10 s and

110 s, the amplitude of ũDMC
a,k was effectively restricted for ũa,k to stay within the optimization window

constrained by the DCL logic in (28).
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4.2. Simulation of 1000-MW Once-Through Type Thermal Power Plant

The DMC supplementary control was also developed for the 1000-MW once-through type unit in
MATLAB and linked with the DBSM simulator. The simulation scenario contains two step changes
of the power load demand, where the load demand is reduced from 825 MW to 750 MW at 0 s, and
increased to 950 MW at 1500 s. The load demand change at each sampling time is also restricted by the
internal logic of the DBSM. Unlike the 600-MW drum-type plant, the ideal AFR of the DBSM is not a
constant but is specified by the internal logic of the DBSM as a function of the load. In this simulation,
the ideal AFR of the DBSM is used as the AFRref,k for the DMC.
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Though they are not represented in this paper, the power output and main steam pressure of the
two controls are almost the same, therefore, the proposed supplementary control does not affect the
existing multi-loop control system operation. Figure 14 shows the ideal AFR of the DBSM, the AFR of
the conventional multi-loop control, and the AFR of the proposed DMC. Figure 15 shows the variation
of ũDMC

a,k . In the figure, the supplementary control of ũDMC
a,k is limited with ±14.30 kg/s, which is ±1.36%

of the normal operation range. The variation of ũDMC
f ,k is not represented because it is limited with a

small βf. Although it is not shown, the DMC controls satisfies the optimization window constrained
by the DCL logic in (28).
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In Figure 14, the responses of the second step change between 1500 s and 1750 s show the clear
comparison between the two controls. A large AFR of the conventional control can be reduced by
the proposed DMC. Accordingly, NOx emissions can be reduced at the same time. The numerical
comparison is shown in Table 4. For the once-through type plant, the squared error sum was reduced
to 14.36% with the proposed supplementary DMC.

Table 4. Squared error sum comparison of AFR in 1000 MW plant.

Multi-loop 8.613
DMC 1.237

Percentage of DMC/Multi-loop 14.36%
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5. Conclusions

In this paper, we proposed a supplementary DMC for tighter control of the AFR to reduce the
environmental emissions of thermal power plants. Two manipulated variables of the DMC are the
air flow demand and fuel flow demand. The amplitudes of the supplementary control signals are
limited by the DMC constraints to minimize the effect on the main control loops of power plants, while
optimized within the optimization window constrained by the conventional DCL logic.

Simulations considered two different types of power plants, which are 600-MW drum-type oil
fired plant and 1000 MW once-through type coal-fired plant. Without affecting existing power plant
operation, the proposed supplementary DMC shows very tight control of the AFR in transient period.
Therefore, the reduction in environmental emissions in various thermal power plants can be expected.

Because the supplementary structure maintains the existing multi-loop control, the proposed
control can be directly applied to the currently operating power plant. In addition, since the
plant operator can easily return to the original multi-loop control logic, it can cope easily with
emergency situations.

For practical implementation, the number of adjustable parameters of DMC is quite high and
an additional computer server might be necessary over the exiting DCS (distributed control system).
Therefore, future research could investigate a simpler control structure as a supplementary control
which can be implemented into DCS of practical power plant.
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Abstract: Overhead lines can be replaced by high temperature low sag (HTLS) conductors in order
to increase their capacity. The coefficients of thermal expansion (CTE) of the HTLS conductors
are lower than the CTE of conventional conductors. The utilities and conductor manufacturers
usually carry out the verification of the CTE of the overhead conductors in an actual size span.
The verification is based on the observation of the change of the conductor length as a result of the
conductor temperature change. This process is influenced by the coefficient of thermal expansion
to be verified. However, there are other factors that also affect it. This paper analyzes the effect of
some of the uncertainty sources in the testing of the coefficient of thermal expansion of the overhead
conductors. Firstly, the thermal expansion process is described and the uncertainty sources related to
the conductor and the line section are identified. Then, the uncertainty sources and their effect on the
CTE testing are quantified.

Keywords: high temperature low sag conductor; coefficient of thermal expansion; overhead conductor;
low sag performance

1. Introduction

Overhead lines can be replaced by high temperature low sag (HTLS) conductors in order to
increase their capacity without the need to reinforce the towers [1].

The conventional conductors work at lower temperatures than HTLS conductors, and their
coefficients of thermal expansion (CTE) are higher than the CTE of the HTLS conductors [2,3].

CIGRÉ has written a guide providing suggestions for methods and testing for qualifying HTLS
conductors [4]. One of the main characteristics to be checked is the low sag performance. The low
sag performance of HTLS conductors is due to a lower thermal expansion of the conductor. The CTE
value of the strands can be determined by tests that are carried out according to certain standards [5–7].
However, there is no standard test for checking the value of the whole conductor thermal expansion
coefficient. Usually, no verification is carried out and it is calculated by the method given in [8].
The conductor thermal expansion coefficient α (◦C−1) is obtained from the core and aluminum thermal
expansion coefficients αcore and αa (◦C−1), the elastic modulus Ecore and Ea (kg/m2), and the areas Acore

and Aa (m2) (1).
α = (Ea ×Aa × αa + Ecore ×Acore × αcore)/(EaAa + EcoreAcore) (1)

The verification of the thermal expansion of the conductors requires changing the conductor
temperature and measuring the related change of the conductor length. The conductor temperature
increases with the current intensity due to the heat generated by Joule losses. The utilities and conductor
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manufacturers usually carry out this verification with the conductor installed in an actual size span.
This span could be indoors, but due to the required size, it is usually outdoors. There are two types of
outdoor testing: the operating line tests and the outdoor laboratory tests. In an operating line test,
the conductor is at the total line voltage and the current through the line depends on the fluctuations of
the power consumed by the customers and cannot be controlled, whereas in an outdoor laboratory test
the conductor is at low voltage and it is possible to control the injected current. The best option for the
verification of the low sag performance is an outdoor laboratory, because it is possible to control the
injected current. This test is short because in a few hours the whole temperature range can be obtained.
An example of an outdoor laboratory is the Powerline Conductor Accelerated Testing facility (PCAT)
at Oak Ridge National Laboratory in USA [9]. For this verification the operating line test is also useful.
When a utility installs the HTLS conductor in a line, some sensors should be installed so that it can
evaluate the conductor performance. Moreover, the information provided by the same dynamic line
rating (DLR) systems that are installed for the evaluation of the ampacity can be used for the evaluation
of the conductor performance [10]. The dynamic line rating systems measure weather magnitudes
such as wind speed, air temperature and solar radiation, as well as the conductor temperature and the
conductor tension or sag values. The main disadvantage of the operating line test is that the current
intensity, and consequently the conductor temperature, depends on the power flow of the line. Some
examples of operating lines tests are shown in [11–14].

The estimation of the coefficient of thermal expansion requires quantifying the conductor length
change with temperature. It is difficult to measure directly the conductor length in the catenary.
When the conductor length increases, the conductor tension decreases and the sag increases. Therefore,
both the conductor tension and the sag can be used to quantify the conductor length change with
temperature. It is easier to measure the conductor tension, especially in an operating line. For this
reason, in the analysis presented in the paper, the tension is the chosen magnitude for representing the
conductor length change.

The low sag performance evaluation is achieved by comparing the conductor tension and
temperature measured values with the theoretical tension–temperature performance. Besides the CTE
influence of the conductor, other factors also affect the tension–temperature performance. For example,
an error in the conductor weight or in the span length can result in a deviation of the tension–temperature
performance that could be wrongly attributed to the CTE of the conductor if these errors are not
considered. Because of this, it is necessary identify and quantify the influence of the factors that affect
the tension–temperature performance.

The conductor tension and temperature measured by a monitoring system in a line section
depends on several factors (Figure 1). Obviously, the characteristics of the line section are the most
determinant factors. The conductor characteristics such as the weight, the modulus of elasticity and the
coefficient of thermal expansion affect the sag–tension performance. The span length and the number of
suspension towers between the two tension dead-ends also affect the sag–tension performance. Apart
from the physical configuration of the line, other factors affect the measured performance. The weather
conditions during the measurement period affect the measured tension values because of the overload
due to the wind, the rain and the ice. Finally, the uncertainties of the measurement systems influence
the measured performance.

Besides, some parameters such as the wind speed and the conductor temperature may vary along
the line section and, for this reason, the limitation of a local measurement should be taken into account.
Furthermore, midspan joints or conductor clamps may introduce a discontinuity in the conductor
temperature due to a distortion in the thermal balance.

This paper presents the results of the first analysis towards the quantification of the effects of the
uncertainties in the testing of the CTE of overhead conductors. It analyzes the effect of the uncertainties
due to the conductor and the line section in the testing of the CTE of the overhead conductors. Firstly,
the thermal expansion process is described and the uncertainty sources related to the conductor and
the line section are identified. Then, the uncertainty sources and their effect on the CTE testing are
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quantified. The objective of the study is to quantify the effect of these uncertainties so that they are
identified as important uncertainty sources or sources that can be neglected.

 

Figure 1. Line section monitoring.

2. The Thermal Expansion Process

Thermal expansion is the result of a temperature change of the conductor. This temperature
change is due to current intensity or weather magnitude changes. The thermal expansion process is
shown in Figure 2. The first result is a change of the conductor length (first step). The consequence
of the conductor length change is a change in the catenary shape that results in a tension change
(second step). The tension change affects the conductor length because of the elastic performance of
the conductor (third step). The elastic performance counteracts the thermal expansion length change.
For example, when the temperature increases, the conductor length increases (first step), the tension
decreases (second step) and the conductor length decreases (third step), reducing the initial conductor
length increase. As a result of the conductor length change (first step), a change in the catenary
shape occurs that results in a tension change (second step), that results in a conductor length change
(third step), that results in a catenary shape change (second step), etc.; in other words, the second and
third steps influence each other until some final tension and length values are obtained, where neither
more conductor length change nor catenary shape change occurs.

Figure 2. Conductor tension and length change due to the conductor temperature change.

The described process depends on the conductor characteristics. The parameters that affect each
step are shown in Table 1. The conductor characteristics that influence the thermal expansion process
are the weight, the CTE and the modulus of elasticity. In the case of non-homogeneous conductors,
the CTE and the modulus of elasticity have different values for the core and the outer aluminum.
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Table 1. Conductor parameters that affect the thermal expansion process.

Step Conductor Parameter Related to the Step

1. Conductor thermal expansion Coefficient of thermal expansion
2. Catenary shape change Weight

3. Conductor elastic performance Modulus of elasticity

The higher the coefficient of thermal expansion, the higher the increase in length of the first step.
As a result, the higher the coefficient of thermal expansion, the greater the influence of this parameter
in the expansion process. For the modulus of elasticity, the higher the value is, the lower the length
recovery of the third step. As a result, the higher the modulus of elasticity is, the lower the influence of
this parameter in the expansion process.

The catenary length L (m) is given by Equation (2). It depends on the horizontal tension H (kg),
the conductor weight per unit length ω (kg/m) and the span length a (m).

L = 2× c× sin h
(

a/2
c

)
(2)

c =
H
ω

(3)

The relation between the tension and the length of the catenary is not linear (Figure 3a). For a
certain length change, the tension change is higher for high tension values. As a consequence,
the same temperature change results in a lower tension decrease at lower tension values (Figure 3b).
In Figures 2 and 3b, the tension–length curve of the catenary is linearized around the initial
tension–length value in order to simplify the explanation of the process.

 

(a) (b) 

Figure 3. (a) Length–tension curve for a catenary (a = 200 m, ACSR Hawk). (b) Tension change due to
the same conductor temperature change.

3. Identifying Uncertainty Sources in the Tension–Temperature Performance

The measured tension and temperature values are compared with the values given by a theoretical
model. There is a deviation between the measured and calculated values if the parameter values
assumed in the model, such as the conductor weight or modulus of elasticity, differ from the actual
values. There is also a deviation if the model does not take into account the factors that affect the
tension–temperature performance.

3.1. Parameters

The parameters that are used in the sag–tension calculation methods are the conductor parameters
(weight, modulus of elasticity, CTE) and the span length [15].
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The influence of the error of each conductor parameter can be analyzed by taking into account the
process described in Figure 2. A higher CTE value (positive error) results in a higher change of the
conductor length (first step). As a consequence, the tension change due to the catenary shape change
is higher too, and the final tension change is also higher. A positive error in the weight results in
a lower change of the conductor tension due to a lower slope of the catenary length–tension curve.
As a consequence, the final tension change is lower. A positive error in the modulus of elasticity
results in a lower change in the conductor length (third step). As a consequence, the tension change
due to the catenary shape change is lower and the final tension change is higher. Table 2 shows the
relation between the positive and negative errors of the parameters and the lower and higher tension
change result.

Table 2. Tension deviation as a function of the parameter error.

Positive Error
(Higher Value)

Negative Error
(Lower Value)

Weight Lower tension change Higher tension change
Modulus of elasticity Higher tension change Lower tension change

CTE Higher tension change Lower tension change
Span length Lower tension change Higher tension change

According to Equation (2), the relation between the tension and the length depends on the span
length a. If there is an error in the assumed span length value, the observed tension change due to the
thermal expansion is different from the expected value. The results show that the effect of the span
length error is similar to the effect of the conductor weight (Table 2). This is because the same percentage
error in both cases causes a similar deviation of the slope of the catenary length–tension curve.

Supposing a tension–temperature reference, the tension value depends on the parameter error, at a
different conductor temperature (Figure 4). The solid curve corresponds to the performance without
errors. The dotted curve corresponds to a performance where the tension change with temperature
change is lower. This performance can be for example due to a positive error in the weight or the span
length. The dashed curve corresponds to a performance where the tension change with temperature
change is higher.

Figure 4. Tension–temperature curve with conductor parameter errors.

3.2. Model

Usually, some assumptions are made in order to simplify the sag–tension models. One assumption
assumes that the catenary end points are fixed: no movement of the strain towers is assumed. Another
assumption is the modelling of the whole catenary length with the conductor parameters: the insulating
string, midspan joints and conductor clamps are not taken into account.
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3.2.1. Strain Tower Deflection

In the second step of the thermal expansion process, the catenary shape change results in a
conductor tension change. This tension change is also noticed in the strain tower where the conductor
is attached. Several conductors are attached in a strain tower, three conductors per circuit and span.
The tension change can be different between contiguous spans due to different span lengths or
installation tensions. As a result, small movements on the cross-arms can occur. These movements
affect the catenary shape and the conductor tension.

3.2.2. Insulating Strings, Midspan Joints and Conductor Clamps

In the first step of the thermal expansion process, the conductor length changes as a result of a
temperature change. The length change is proportional to the conductor length. In a simplified model,
the conductor length is assumed to be the same as the catenary length. However, the insulating strings
are part of the catenary. As a result, the conductor length is lower than the catenary length. For this
reason, the length change that results from a temperature change is lower than that assumed in the
simplified model.

Besides, midspan joints or conductor clamps introduce a distortion in the temperature due to a
different thermal performance compared with the conductor [16].

4. Quantifying the Source Errors

Besides identifying the uncertainty sources that affect the sag–tension performance, it is important
to quantify the value of the uncertainty so that their effect can be quantified.

4.1. Conductor Weight

According [15], the conductor weight is one of the basic error sources. Typically, the conductor
weight exceeds the nominal value by 0.2% to 0.6%. Because of tarnishing effects, the conductor’s
weight increases slightly during its lifetime.

The conductor manufacturing norms limit the conductor weight deviation. In accordance [17–19],
the conductor linear weight cannot vary more than 2% from the nominal value. In the course of the
manufacturing process, the conductor weight is tested. According to the information provided by
different manufacturers, the weight typically does not vary from the nominal value more than 0.5%.
Besides, the deviation inside series production is around 0.2%.

4.2. Conductor Modulus of Elasticity

During the conductor manufacturing process, it is not mandatory to test the modulus of elasticity.
It is calculated according the method given in [8]. The conductor elastic modulus E (kg/m2) is obtained
from core Ecore (kg/m2) and aluminum Ea (kg/m2) elastic modulus and their respective areas, Acore and
Aa (m2) (4).

E = (Ea ×Aa + Ecore ×Acore)/(Aa + Acore) (4)

The conductor modulus of elasticity depends on the modulus of elasticity of the wires. However,
as the wires are helically wound, the strain in the conductor axis is higher than the strain in the wire
axis [8]. Therefore, the modulus of elasticity of the conductor is lower than the modulus of elasticity of
the wires. The manufacturing norms define a maximum and a minimum value for the pitch diameter
ratio of each conductor layer. According to the information obtained from a manufacturer, the modulus
of elasticity can vary 4% between two conductors with different pitch diameter ratios. The conductor
with the lower pitch diameter ratio has a lower modulus of elasticity value and vice versa.

The manufacturer and the purchaser, in order to verify the actual value of the modulus of elasticity,
can accord to carry out a stress–strain test [17,20]. In this test, the conductor is loaded increasing and
decreasing the load in several cycles. The modulus of elasticity is obtained from the stress–strain
slope of the load decreasing period. However, the obtained value of the modulus of elasticity is
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different depending on the load decreasing period chosen (30%, 50%, 70% or 80% of the Rated Breaking
Strength, (RBS)). The slope is higher if the load value of the cycle is low. In other words, the modulus of
elasticity obtained from the unloading of the 30% RBS cycle is higher than that obtained from the 80%
RBS cycle. Furthermore, it depends on the number of points taken in the decreasing period because
the slope is not constant. According to the information obtained from a manufacturer, the modulus of
elasticity can vary 5% depending on the period of the test considered for the calculation.

4.3. Span Length

The error in the span length is another typical error source. Because of changes associated with
the installation process, the actual span length can differ from the length of the original project design.
Therefore, it is recommended that a topographer measures the actual length and reflects it in a new
document. For this reason, it could be an error if the span length is taken from the line project
information given by the utility and the topographer correction is not included.

In this project, in order to evaluate the uncertainties of the testing of the conductor CTE, three
different lines in operation have been monitored. The number of monitored spans is four because in
one of the lines two contiguous spans have been monitored. Table 3 shows the span length values given
by the utility and the values measured by the topographer. In most of the cases the correspondence is
good but in one case an error of 16.8% has been obtained. This shows the assumed risk if the span
length is not measured. There are uncertainties in tower placing and it is necessary to have GIS map of
all towers.

Table 3. Measured span lengths.

Span Length Given by the Utility (m) Measured Span Length (m) Span Length Error (%)

202 168 −16.8
100 100.85 0.8
89 88.95 −0.1
284 282.49 −0.5

4.4. Strain Tower Deflection

Because of imbalances between adjacent spans the strain towers experience forces. These forces
origin deflections that depend on the stiffness of the attachment point. The strain tower deflection
calculation is complex. It depends on the design and characteristics of the tower and the characteristics
and operation performance of the conductors attached to it. It requires a detailed mechanical model of
the tower and the use of advanced calculation tools such as the PLS-CADD.

4.5. Insulating String, Midspan Joints and Conductor Clamps

The length of the insulating strings depends on the line voltage. The higher the voltage is,
the longer the insulation string. Similarly, the higher the voltage is, the longer the span. The relation
between the insulating string and the span length depends of each case, but the insulating string length
is usually around 2% of the span length.

The length of the midspan joints and conductor clamps is lower than the length of the insulating
strings. Compared with the length of the conductor, the length of the midspan joints and conductor
clamps is negligible.

5. Quantifying the Effect of the Source Errors: the Equivalent Coefficient of Thermal Expansion
(CTE) Error

In order to quantify and compare the effect of the different error sources, the equivalent CTE error
is defined. The equivalent CTE error of an error source is the CTE error value that results in the same
tension deviation. For example, the effect of a 2% positive error of the conductor weight is equivalent
to the effect of a 1% negative error of the CTE if both errors result in the same tension deviation.

159



Energies 2020, 13, 411

The equivalent CTE error is not a constant value. It depends on the span length value, the tension
value and the characteristics of the conductor. In the case of the span length, the effect of a certain
error—for example a 5% positive error in the modulus of elasticity—is different if the span length is
150 m or 300 m. The equivalent CTE error also depends on the tension value because when the tension
is low, the tension change is lower, as has been shown above (Figure 3) and this affects the effect of
the error source. Finally, the effect of a certain error is different depending on the characteristics of
the conductor.

A span of 200 m with an ACSR Hawk conductor has been chosen as the base case for the analysis.
Figure 5 shows the CTE equivalent error of the weight, the modulus of elasticity and the span length
errors, and the insulating string.

 
(a) (b) 

 
(c) (d) 

Figure 5. Equivalent coefficients of thermal expansion (CTE) error. (a) 2% weight error; (b) 5% modulus
of elasticity error; (c) 1% span length error; (d) 2% insulating string length.

In Figure 5a, the equivalent CTE error for a 2% error in the weight is shown. The tension range
corresponds to the tension values between −5 ◦C and 80 ◦C when the conductor is installed at the 15%
of the Rated Breaking Strength at 15 ◦C. Therefore, the average CTE equivalent error is 3.1%. If the
weight error is 0.2%, the average CTE equivalent error is 0.3%.

In this analysis, a value of 5% error has been assumed in order to quantify the effect of the modulus
of elasticity error. In Figure 5b, the equivalent CTE error for a 5% error in the modulus of elasticity is
shown. The average CTE equivalent error is 0.9%.

In Figure 5c, the equivalent CTE error for a 1% error in the span length is shown. The average
CTE equivalent error is 1.6%.

In order to quantify the effect of the insulating string, a modified model where the conductor
length and the catenary length are different is used. Then, the simplified model is used in order to
calculate the equivalent CTE error that gives the same result. In Figure 5d, the equivalent CTE error for
a 2% insulating string length is shown. The average equivalent CTE error is 1.6%.

Table 4 shows the equivalent CTE error for several error sources: weight error, modulus of elasticity
error, span length error, and insulating string length error. The average value and the change of the
equivalent CTE error in the temperature range between −5 ◦C and 80 ◦C is shown. The equivalent CTE
errors obtained for the same weight and span length errors are the same. There is also a relationship
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between the effect of these errors and the effect of the insulating string length. In this case, the effect of
a 2% insulating string length is equivalent to the effect of a 1% weight or span error.

Table 4. Equivalent CTE error.

Error Sources (%) Average Equivalent CTE Error (%)
Equivalent CTE Error Change in

Temperature Range (%)

Weight error
0.2 0.3 0.1
1 1.6 0.5
2 3.1 1

Modulus of elasticity
error

2.5 0.5 0.6
5 0.9 1.3

7.5 1.4 1.9

Span length error
1 1.6 0.5
2 3.1 0.9
3 4.6 1.4

Insulating string length
1 0.8 0.3
2 1.6 0.5
4 2.9 1.6

5.1. Equivalent CTE Error of the HTLS Conductors

The HTLS conductors have either low knee-point temperatures or core materials with low CTE
values. The knee-point temperature is the temperature where the aluminum gets slack. Above the
knee-point temperature, the modulus of elasticity and CTE values are those of the core. Hence, the CTE
and the modulus of elasticity of a conductor changes depending on the temperature value. For this
reason, the equivalent CTE error has different values above and below the knee-point.

In the case of the weight error, above the knee-point, the equivalent CTE error decreases. Figure 6a
shows the equivalent CTE error change for a GTACSR conductor in a 200 m span. The low tension
values correspond to the conductor above the knee-point temperature. Similar results are obtained for
the span length error and the insulating string (Figure 6c,d).

Figure 6b shows the equivalent CTE error change, assuming an error of 5% of the modulus
of elasticity both above and below the knee-point. Above the knee-point, the equivalent CTE
error increases.

Table 5 shows the equivalent CTE errors for different HTLS conductors, when they are installed at
15% RBS at 15 ◦C in a 200 m span. Although there are some differences, the obtained results are similar
for all the conductors.

 

(a) (b) 

Figure 6. Cont.
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(c) (d) 

Figure 6. Equivalent CTE error of a GTACSR (Gap Type Thermal-Resistant Aluminum Alloy Conductor
Steel Reinforced) conductor above and below the knee-point. (a) 2% weight error; (b) 5% modulus of
elasticity error; (c) 1% span length error; (d) 2% insulating string length.

Table 5. Equivalent CTE errors for different HTLS conductors.

2% Weight Error 5% Modulus of Elasticity Error 1% Span Length Error 2% Insulating String Length

Below the
Knee-Point

Above the
Knee-Point

Below the
Knee-Point

Above the
Knee-Point

Below the
Knee-Point

Above the
Knee-Point

Below the
Knee-Point

Above the
Knee-Point

ACSR 3 2.8 1.1 1.3 1.5 1.4 1.5 1.5
GTACSR 2.4 2.1 1.9 2 1.2 1 1.2 1.1
ACSS 3.3 3.1 0.7 1 1.7 1.6 1.7 1.6
ZTACIR 3 2.4 1.1 1.7 1.5 1.2 1.5 1.3
ACCR 2.7 2.7 1.5 1.4 1.4 1.4 1.5 1.4
ACCC 2.5 1.9 1.7 2.2 1.3 1 1.4 1.1

ACSR—Aluminium Conductor Steel Reinforced; GTACSR—Gap Type Thermal-Resistant Aluminum Alloy
Conductor Steel Reinforced; ACSS—Aluminum Conductor Steel Supported; ZTACIR—Super Thermal-Resistant
Aluminum Alloy Conductor Invar Reinforced; ACCR—Aluminum Conductor Composite Reinforced;
ACCC—Aluminum Conductor Composite Core.

5.2. Influence of Span Length Error in the Equivalent CTE Error

The effect of a certain error is different depending of the value of the span length.
In the case of the conductor weight error, the equivalent CTE error increases with the span length

(Figure 7a). However, the influence of the span length is low.
In the case of the conductor modulus of elasticity error, the equivalent CTE error decreases with

the span length (Figure 7b).
In the case of the span length error, the effect is double. On the one hand, a certain span length

deviation, for example 1 m, has a lower relative value for a long span. For example, it is a 1% error for
a 100 m span but a 0.5% error for a 200 m span. On the other hand, the same percentage error results in
a different equivalent CTE error depending on the span length (Figure 7c). However, the influence of
the span length is low.

In the case of the insulating string length, the effect is also double. On the one hand, for the same
insulating string, the relative value has a lower value for a long span. On the other hand, the same
percentage error results in a different equivalent CTE error depending on the span length (Figure 7d).
However, the influence of the span length is low.
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(a) (b) 

  
(c) (d) 

Figure 7. Equivalent CTE error as a function of the span length. (a) Weight error; (b) Modulus of
elasticity error; (c) Span length error; (d) Insulating string length.

5.3. Analysis of the Results

The results obtained for the conductor weight, modulus of elasticity and span length errors,
and the insulating string length are analyzed in order to obtain some practical conclusions.

In the case of the weight, the equivalent CTE error of a 2% weight error is around 3%. The obtained
result is similar for all the HTLS overhead conductors. The influence of the weight error increases at
high temperature (low tension) values but decreases above the knee-point temperature. The maximum
allowable temperature of high temperature conductor is between 150 and 250 ◦C [2]. Anyway,
the change in the equivalent CTE error for these reasons is low, below 1%. The influence of the span
length in the effect of the weight error is negligible. As a result, the only way to minimize the effect of
the weight error is to minimize the source error. This can be achieved if the weight is measured in the
manufacturing process. In this case, the source error is assumed to be around 0.2% and the equivalent
CTE error is reduced in proportion to the source error reduction.

In the case of the modulus of elasticity, the equivalent CTE error of a 5% error is around 1%.
The obtained result is similar for all the HTLS overhead conductors. The influence of the modulus
of elasticity decreases at high temperature (low tension) values but increases above the knee-point
temperature. Regardless, the change in the equivalent CTE error for these reasons is low, below 1%.
The influence of the span length in the effect of the modulus of elasticity error is high. The effect of the
modulus of elasticity error is reduced if a high span length is chosen for the test. Besides, a stress–strain
test of the conductor can be carried out in order to reduce the uncertainty of the error source. In this
case, the error is assumed to be around 5%.

In the case of the span length error, the influence is qualitatively and quantitatively the same
as the weight error. As a result, the only way to minimize the effect is to minimize the source error.
This can be achieved if the span length error is measured by a topographer. In this case, the source
error and its effect are negligible.

In the case of the insulating string effect, its influence is removed if it is taken into account in the
sag–tension model. Therefore, a model that takes it into account should be used. This model assumes
that the conductor is shorter than the catenary.
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As a result, if the conductor weight is tested (e.g., 0.2% error), the modulus of elasticity is tested
(e.g., 5% error) and the span length is measured (0% error), if the span length is at least 200 m, and the
insulating string is included in the model, the equivalent CTE error is around 1%. Therefore, the influence
of these error sources is low. However, if the conductor weight is not measured (e.g., 2% error), the modulus
of elasticity is not tested (e.g., 7.5% error), the span length is not measured (e.g., 1% error), if the span
length is 100 m, and the insulating string is not included in the model (e.g., 2% insulating string length),
then the equivalent CTE error is around 7%.

6. Conclusions

The thermal expansion process of an overhead conductor has been described in detail. As a
result, the uncertainty sources of the sag-tension performance related to the thermal expansion process
have been identified. The conductor weight, the conductor modulus of elasticity, the span length,
the insulating string and the tower deflection affect the sag-tension performance.

Once they have been identified, the uncertainty sources have then been quantified. The conductor
uncertainties are easy to quantify. The weight uncertainty is a manufacturing requirement.
The maximum accepted deviation is 2%. The modulus of elasticity can be tested too. However,
there is an uncertainty that is assumed to be below 5%. The span length uncertainty is removed if
a topographer measures its value. The tower deflection quantification requires a detailed model of
the tower and it is the most difficult to quantify. The insulating string length is usually a 2% of the
span length.

Once they have been quantified, their effect in the sag-tension performance has been analyzed.
The results related to the conductor weight, modulus of elasticity, span length and insulating string have
been presented. The quantification of the effect of the tower deflection requires a specific modelling of
the towers.

In order to quantify and compare the effect of the different error sources, the equivalent CTE
error of an error source is defined as the CTE error value that results in the same tension deviation.
The equivalent CTE error depends on the tension value, the span length value, and the characteristics
of the conductor. The influence of the tension value is low—below 1%. The obtained results are similar
for all the analyzed HTLS conductors, and although there is an influence of the knee-point, its influence
is low—below 1%. The span length value considerably affects the effect of the modulus of elasticity
error, and long spans decrease the effect of the modulus of elasticity error.

The analysis presented in the paper is the first step in evaluating the uncertainties in the testing of
the CTE of overhead conductors. The influence of the strain tower deflection, the weather and the
monitoring system has to be considered in order to obtain a whole picture of the testing uncertainties.
The authors have installed some pilot systems in order to address these issues. The obtained results
will be presented in a future paper.
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Abstract: Chemical looping is a near-zero emission process for generating power from coal.
It is based on a multi-phase gas-solid flow and has extremely challenging nonlinear, multi-scale
dynamics with jumps, producing large dynamic model uncertainty, which renders traditional
robust control techniques, such as linear parameter varying H∞ design, largely inapplicable. This
process complexity is addressed in the present work through the temporal and the spatiotemporal
multiresolution modeling along with the corresponding model-based control laws. Namely, the
nonlinear autoregressive with exogenous input model structure, nonlinear in the wavelet basis,
but linear in parameters, is used to identify the dominant temporal chemical looping process
dynamics. The control inputs and the wavelet model parameters are calculated by optimizing a
quadratic cost function using a gradient descent method. The respective identification and tracking
error convergence of the proposed self-tuning identification and control schemes, the latter using
the unconstrained generalized predictive control structure, is separately ascertained through the
Lyapunov stability theorem. The rate constraint on the control signal in the temporal control law is
then imposed and the control topology is augmented by an additional control loop with self-tuning
deadbeat controller which uses the spatiotemporal wavelet riser dynamics representation. The
novelty of this work is three-fold: (1) developing the self-tuning controller design methodology that
consists in embedding the real-time tunable temporal highly nonlinear, but linearly parametrizable,
multiresolution system representations into the classical rate-constrained generalized predictive
quadratic optimal control structure, (2) augmenting the temporal multiresolution loop by a more
complex spatiotemporal multiresolution self-tuning deadbeat control loop, and (3) demonstrating
the effectiveness of the proposed methodology in producing fast recursive real-time algorithms for
controlling highly uncertain nonlinear multiscale processes. The latter is shown through the data
from the implemented temporal and augmented spatiotemporal solutions of a difficult chemical
looping cold flow tracking control problem.

Keywords: chemical looping; wavelets; NARMA model; generalized predictive control (GPC)

1. Introduction

The current transition to clean power generation involves both the use of renewables, such as
hydrokinetics [1], and cleaner coal-based techniques. The latter are projected to still supply power
for the foreseeable future due to the abundance of coal in many industrialized and developing
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countries; however, they will be required to meet the hard caps on carbon emissions. Chemical
looping (CL) is a near-zero emission coal-based technology in which multiple interacting loops of
flowing, reactive, gas/solid mixtures produce energy via solid-oxygen carrier based combustion [2–4].
Chemical looping has remained an area of active research focused on improving its economic viability
and reducing environmental footprint [5,6]. To reduce waste stream volumes and required energy,
advanced optimizing control systems for the chemical looping process are required. However, the
process exhibits extremely challenging nonlinear multi-scale dynamics that are hard to characterize and
depend on a particular design. These features render traditional robust control techniques marginally
successful in experimental trials.

The goal of the present paper is to present the development of the real-time computational
control-oriented models and the corresponding model-based control design strategies found to provide
the desired chemical looping tracking performance. In particular, we demonstrate a novel model-based
process control methodology to control the pressure drop in the riser of a single loop chemical looping
process, where the air flow rate is the controlled variable. This control approach was implemented and
successfully tested on an industrial single loop cold gas/solid flow chemical looping testbed, where the
previously available techniques had exhibited difficulties.

Prior to being able to control the process, it is imperative to characterize the system’s response to
control inputs. Classically, this would be done by devising a physical model of the system from first
principles, but this often yields limited practical utility for increasingly complex nonlinear models
when viewed from the perspective of process control design. To meet this challenge, an alternative
technique, identification of a model constructed on the basis of the wavelet multiresolution analysis
(MRA), is used in the present work. MRA has become one of the major tools in neural networks [7–10]
and nonlinear system modeling [11–18]. Wavelet-based multiresolution decomposition has been
proven to constitute a universal approximator for a wide range of function spaces in terms of linear
combination of scaling and wavelet functions. Wavelet approximation has no smoothness requirement
on the target function, making it an appropriate candidate for identification of complex nonlinear
systems with multiscale dynamics, such as those encountered in chemical looping processes. Several
controller designs incorporating wavelet system representations have been proposed in the literature.
Reference [18] proposed adaptive adjustment of the model resolution and the corresponding structure
of the nonlinear adaptive controller. However, no optimality in controller synthesis was introduced
and no testing was done on the real multiresolution system. In [19] an optimal model predictive
multiresolution control law with constraints was derived. However, the controller was given as a
sequence of computational steps with no clear analytical formula for controller implementation and
therefore no guarantee of the acceptable real-time performance; also no adaptation was included.
In [20] utilization of wavelets in generalized predictive control (GPC)l has been proposed for reduction
of the computational demands on the constrained GPC, but the application was not addressing
multiresolution nonlinear system modeling and was restricted to linear systems only. Thus, there has
been a clearly identifiable gap in producing an optimal adaptive control law with rate constraints and
guaranteed real-time performance for systems with nonlinear multiscale dynamics.

The present work fills this gap through the development of the self-tuning wavelet MRA-based
topology that combines temporal and spatiotemporal loops into a single closed loop control system.
The GPC structure is employed for embedding into it the identified temporal nonlinear multiscale
model due to its real-timable recursive receding horizon calculation, local optimality by the virtue
of being a variant of LQG [21], relatively easy incorporation of rate constraints on the control signal,
tunable robustness properties (not pursued in this paper), and natural embedding of the integrator to
address setpoint step changes in the chemical looping based power generation.

The paper completes the brief presentation of the results of chemical looping project at Alstom
Thermal Power given in a conference publication [22] through the addition of the temporal controller
derivation, and presents the previously unreleased experimental data along with the corresponding
discussion, as well as the derivation and implementation of an additional spatiotemporal controller
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for the fast process dynamics related to the riser. The material presented is based in part on two
unpublished documents, an internal technical report [23] and the PhD thesis [24] of the first author;
however, the detailed controller derivation was not given in either and is presented here for the
first time.

Embedding highly nonlinear, but linear in parameters, adaptable multiresolution model into GPC
is a novel idea requiring nontrivial analytical effort presented in this paper. Several researchers have
successfully applied GPC proposed by Clark et al. [25,26] to many control areas [27–31]. GPC, however,
has limitations, some of which have been discussed by Grimble in [32]. Since GPC uses a linear
dynamic model to make predictions of process outputs over the prediction horizon, its performance
will significantly degrade when the real process has severe nonlinearities and runs in a wide range
of operating conditions, as is the case for a chemical looping process. Therefore, it is imperative to
incorporate a high fidelity nonlinear dynamic model into the GPC scheme. Accordingly, we embed a
wavelet MRA model of the nonlinear single loop cold flow of the chemical looping process into the
GPC scheme. Specifically, first, a single-input-single-output (SISO) nonlinear autoregressive exogenous
model (NARX) based on wavelet MRA is identified on-line using the chemical looping process test
rig. Then, a GPC-type performance index is formulated, which incorporates the MRA model, and a
gradient descent (GD) algorithm is developed for tuning both the weighting parameters of the wavelet
MRA model and the control sequence in the GPC scheme. Further, the Lyapunov function-based
theorems are proven to separately guarantee the convergence of the wavelet MRA identified model
and the stability of the proposed GPC scheme without constraint and provide a guidance on both
controller and identifier performance tuning. A rate constraint is then imposed on the control signal to
smooth out the CL process transients. The resulting controller is shown to yield a satisfactory closed
loop performance over a broad operating range, effectively meeting the challenge of handling the
chemical looping process complexity.

The resulting cold flow testbed control system was then further improved by augmenting the
temporal closed loop structure described above with the additional spatiotemporal control of fast
dynamics of the riser loop, which were not captured in the original low-frequency wavelet MRA
system model. The response time of the 2-partial differential equations (2-PDE) riser model used
for this purpose is much shorter than that of the identified NARX model, for which the sampling
time is 1 s. Therefore, the control-oriented riser representation was obtained through the use of the
2-PDE riser model as follows: The model was simulated to obtain the riser impulse response, the
latter was employed to approximate the faster dynamics of the system, and the result was used in a
convolution to obtain a model of the transients. To simplify the calculations, the impulse response was
approximated using Gaussian spatial and temporal wavelets. Simulation and experimental results
verified the validity of the spatiotemporal wavelet-based control system topology augmentation.

The paper is organized as follow: Section 2.1 provides the nomenclature for the main variables
and symbols used in the paper. Section 2.2 introduces the chemical looping process model. A NARX
model representation and a wavelet MRA representation are given in Section 2.3. Section 2.4 provides
derivation of a wavelet MRA-based GPC strategy for solving the tracking problem for a single loop
cold flow system. The convergence of the prediction error of the wavelet MRA model identification
algorithm and the tracking error of the proposed GPC control strategy are separately proven in
Section 2.5. An input-constrained GPC scheme is presented in Section 2.6. Experimental results are
discussed in Section 3. The closed loop topology augmentation with the spatiotemporal model-based
control to account for the pressure drop DP47 over the riser related to the fluidizing air flows is
presented in Section 4. The discussion of the results is presented in Section 5. A conclusion is provided
in Section 6.
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2. Materials and Methods

2.1. Nomenclature

φ j,k(x): orthonormal basis for Vj; ψ j,k(x): orthonormal basis for Wj; y(t): system output; u(t):
system input; w(t): system noise; e(t): model output estimation error; ny: maximum lag in the output;
nu: maximum lag in the input; θ: weighting parameter vector trained on-line; gi: multivariable scaling
or wavelet basis function of past inputs and outputs; γθ: adaptation gain for the control input vector;
U: control input vector; Δutarget: unconstraint control signal calculated by the predictive control law; μ:
design parameter; ε : voidage; us: solid velocity; Ug: superficial gas velocity; S1,w(t): control command
calculated by wavelet adaptive GPC control; yr(t): reference signal; ∇θ J1(n): gradient of loss function
J1 with respect to θ; ∇U J2(n): gradient of the loss function J2 with respect to U; ∇θe(n): sensitivity
derivative at time n.

2.2. Chemical Looping Process

The modeling and control methodologies proposed in this paper focus on the hybrid
combustion-gasification chemical looping (CL) process initially developed by Alstom Power. Chemical
looping is a two-step process which first separates oxygen (O2) from nitrogen (N2) in an air stream in
an air reactor. The O2 is transferred to a solid oxygen carrier. Next, the oxygen is carried by the solid
oxide and is then used to gasify or combust solid fuel in a separate fuel reactor. As shown in Figure 1,
a metal or calcium material (oxygen carrier) is burned in air forming a hot oxide (MeOx or CaOx) in
the air reactor (oxidizer). The oxygen in the hot metal oxide is used to gasify coal in the fuel reactor
(reducer), thereby reducing the oxide for continuous reuse in the chemical looping cycle. CL coal
power technology is an entirely new, ultra clean, low cost, high efficiency coal power plant technology
for the future power market. The concept promises to be the technological link from today’s steam
cycle power plants to tomorrow’s clean coal power plants, capable of high efficiency and CO2 capture.

Figure 1. Alstom’s combustion-gasification process.

The CL process with its multi-phase flows and complicated chemical reactions is characterized
by process nonlinearities and time delays due to mass transport and chemical reactions. The specific
operational characteristics are new and are still being studied. Hence, there is a need for further
investigation and the potential for advanced control solutions. In this paper, we have focused on
developing a control-oriented model for a single loop cold gas/solid flow test rig which omits all
chemical reactions and interactions with other loops.

The block diagram of a single loop cold flow CL process is shown in Figure 2. It consists of a
lower level pipeline, a riser pipeline, an upper level horizontal pipeline, a cyclone, a dip leg, seal pot
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control valves (SPCV), and a solid return leg. The lower level pipeline accepts air flow and solids
returned from both seal pot control valves and solids which are added manually. In the riser the
air-solid mixture (two-phase) flows upwards, turns into the horizontal pipeline, and then enters the
cyclone. The cyclone separates the solid particles from the air. The separated solids then drop into the
dip leg and enter the SPCV. The SPCV splits the solids between the return leg in its own loop and the
return leg in another loop. The SPCV also maintains a pressure control boundary.

Figure 2. Block diagram for a single-loop cold flow CL test rig.

In our test rig, the manipulated variables (MV) include S1, S2—two fluidizing air flow rates into
the SPCV, which change pressures in the SPCV and the flow conditions upstream and downstream
of the SPCV. The controlled variable (CV) of interest is DP47, which stands for the pressure drop
measured across the riser—a substantive indicator of solid/gas flow transport stability along the whole
loop. The performance of the test rig implementing the controller to track a reference command was
evaluated both under step-changes and cycling operation.

A wavelet MRA modelling and its embedding into a GPC-based predictive controller are described
in the next two subsections.

2.3. Wavelet MRA Model Structure

Wavelet multiresolution analysis [14] is a function approximation tool representing function
details at different scales of resolution in both the time and the frequency domains in terms of shifted
and dilated scaling and wavelet functions. In general, MRA consists of a sequence of successive
approximation closed subspaces Vj ∈ L2(R), j ∈ Z satisfying:

· · ·V−1 ⊂ V0 ⊂ V1 · · · , (1)

with the following properties:

∪ j∈ZVj is dense in L2(R); ∩ j∈ZVj = {0}, (2)

f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1 (3)

f (x) ∈ Vj ⇔ f (x− 2− jk) ∈ Vj , k ∈ Z, (4)

Vj = span{φ j,k, k ∈ Z}, (5)

where Z is the set of all integers, φ j,k(x) = 2 j/2φ(2 jx− k) is an orthonormal basis for Vj and L2(R) is
the space of square integrable functions of scalar real variable.

171



Energies 2020, 13, 1759

If we define Wj to be the orthogonal complement of Vj in Vj+1, then:

Vj+1 = Vj ⊕Wj, Vj⊥Wj, (6)

Wj = span{ψ j,k, k ∈ Z}, (7)

where ψ j,k(x) = 2 j/2ψ(2 jx− k) is an orthonormal basis for Wj. It follows from Equations (1) and (6)
that, any Vj can be written for any l < j as:

Vj+1 = Vl ⊕Wl ⊕Wl+1 ⊕Wl+2 ⊕ · · · ⊕Wj, (8)

where all the subspaces are orthogonal. Then this implies that:

L2(R) = ⊕ j∈ZWj (9)

The functions φ j,k and ψ j,k will be referred to as scaling and wavelet functions respectively.
According to Equations (8) and (9), any f (x) ∈ L2(R) can be represented as:

f (x) =
∑

n( f ,φJ,n)φJ,n +
∑

j≥J,n( f ,ψ j,n)ψ j,n (10)

The approximation starts from some lower resolution level J and can be truncated at certain higher
resolution level N when:

‖ f (x) − [
∑

n
( f ,φJ,n)φJ,n(x) +

N∑
j=J

∑
n

( f ,ψ j,n)ψ j,n(x)] ‖< ε, (11)

for any predefined small error ε > 0.
Multivariable wavelet bases can be constructed from the tensor product of a radial basis function

of a one-dimensional wavelet as described for images in [33]. Because wavelet MRA can approximate
any finite energy nonlinear function to any desired accuracy level, in this paper, the wavelet MRA will
be used to build the nonlinear empirical model for a single loop cold flow CL process, as shown in the
next subsection.

The NARX Model Structure

Many systems in a variety of applications contain nonlinearities which render linear model
incapable of capturing the complex dynamic system behavior. Therefore, it is of interest to develop
for these applications sufficiently accurate nonlinear dynamical models. An NARX model [34] is a
well-established input/output representation for nonlinear system identification. Under some mild
assumptions, a discrete-time stochastic nonlinear SISO system can be expressed as:

y(t) = f (y(t− 1), · · · , y(t− ny), u(t− 1), · · · , u(t− nu)) + w(t), (12)

where y(t), u(t), w(t) are the system output, input, and noise, and t is discrete time, respectively, ny

and nu are the maximum lags in the output and input, w(t) is assumed to be a zero mean, independent,
and bounded noise variable, and f (·) is some nonlinear function. Unless some prior knowledge of the
system dynamics is available, most methods use nonparametric regression to estimate the nonlinear
function f from the data. In our case, f is implemented as a linear expansion in terms of the scaling
and wavelet functions of regressors gi such that

f =
∑m

i=1
θigi (13)
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minimizes a pre-specified approximation adequacy criterion, where θ = {θi} is a parameter vector
trained on-line, gi ∈ {φ j,k,ψ j,k} is a multivariable scaling or wavelet basis function of past inputs and
outputs, and m is the number of basis functions to meet some given modeling accuracy requirement.

In the next subsection, the NARX model structure introduced above is embedded into the
parameter adaptation law and the GPC performance criterion, and the self-tuning MRA-based control
law is derived.

2.4. Wavelet MRA-Based GPC Scheme

The basic methodology of GPC is to calculate the current control actions on-line at each sampling
instant in order to solve a finite horizon, open-loop, optimal control problem where the first control in
the optimal control sequence is applied to the plant. In this section, we present both the online wavelet
MRA system identification algorithm and the GPC based predictive control strategy for the stable
tracking problem of a single loop CL system. To clearly illustrate the idea of the proposed control
scheme, we derive the algorithm for a SISO nonlinear dynamic system. The extension to a multi-input-
multi-output setting is straightforward.

Referring to Figure 2 and its description, let DP47 be the actual system output y and S1 be the
control input u, while S2 is set to a constant value. Let ŷ denote the approximated system output.
Then, the identified wavelet MRA based model is defined as follows:

ŷ(t) = f (y(t− 1), · · · , y(t− ny), u(t− 1), · · · , u(t− nu)), (14)

where f is defined in Equation (13). Then, the error between the real plant output y and the estimated
output ŷ is defined as:

e(n) = y(n) − ŷ(n). (15)

The weighting parameters θ in Equation (13) are trained online to minimize the loss function
defined as:

J1(n) =
1
2

e2(n), (16)

where n indicates discrete time. To make J1 small, we employ a parameter adaptation law in the form
of a gradient descent (GD) algorithm, which adjusts the weighting gains θ to keep the gradient of J1

negative, that is:
θ(n + 1) = θ(n) − γθ∇θ J1(n)= θ(n) − γθe(n)∇θe(n), (17)

where γθ is the adaptation gain, ∇θ J1(n) is the gradient of J1 with respect to θ at discrete time n,
and ∇θe(n) is the so-called sensitivity derivative at time n indicating how the error is influenced by
the weighting parameters θ. From Equations (13)–(15), the sensitivity derivative ∇θe can be derived
as follows:

∇θe = −∇θ ŷ = −∇θ f = −g⇒θ(n + 1) = θ(n) + γθe(n)g(n). (18)

Suppose the future set-point signals ym(n + k), k = 1, 2, · · · are available. In the context of GPC,
define another loss function as follows:

J2 =
1
2

{∑N2

k=N1
(ym(n + k) − ŷ(n + k))2+

∑Nu

k=1
ρkΔu(n + k− 1)2

}
, (19)

where N1 and N2 are the minimum and the maximum output prediction horizons, respectively, Nu is
the control horizon, Δ is the difference operator, Δu(n) = u(n) − u(n − 1), and ρk is the k-th control
weighting factor. Assuming N1 = 1, N2 = L = Np, and identical control weighing factor ρk = ρ,
Equation (19) can be rewritten in the vector form as:

J2 =
1
2

{
‖ Ym(n + 1) − Ŷ(n + 1) ‖2 + ρ‖ ΔU(n) ‖2

}
, (20)
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where:
Ym(n + 1) = [ym(n + 1), ym(n + 2), · · · , ym(n + L)]T,

Ŷ(n + 1) = [ŷ(n + 1), ŷ(n + 2), · · · , ŷ(n + L)]T,

U(n) = [u(n), u(n + 1), · · · , u(n + Nu − 1)]T,

ΔU(n) = [Δu(n), Δu(n + 1), · · · , Δu(n + Nu − 1)]T,

and ‖ · ‖ is the L2 norm of the n-dimensional real vectors.
The loss function J2 is now minimized to drive the system output y to the reference signal ym

given that the wavelet MRA identifier accurately approximates the real process dynamics on-line.
At each sampling instant, an optimal control sequence is calculated using future predicted output
values of the identified model, but only the first one is applied to the system. To minimize J2, the GD
method is implemented again to recursively calculate the Nu-dimensional control increment sequence
ΔU as follows:

ΔU(n) = −γu∇U J2(n), (21)

where γu is the adaptation gain for the control input vector U. Noting that for any vector y(x),
∇x‖ y ‖2 = 2(∇xy)y, from Equations (20) and (21), the gradient of the loss function J2 with respect to U
can be obtained as:

∇U J2(n) = 1
2∇U

{
‖ Ym(n + 1) − Ŷ(n + 1) ‖2 + ρ‖ ΔU(n) ‖2

}
= ∇U

{
Ym(n + 1) − Ŷ(n + 1)

}{
Ym(n + 1) − Ŷ(n + 1)

}
+ ρ∇U

{
ΔU(n)

}{
ΔU(n)

}
.

The first part of the expression above is evaluated as follows. First, we note that since ym(n)
are the reference signals, which are preset constants, we have ∂ym(n + 1)/∂u(n) = 0. Then, since
ŷ(n + k) = θTu, ŷ depends only on the past u, we have:

∂y(n + k)
∂u(n + l)

=

⎧⎪⎪⎨⎪⎪⎩ ∂ŷ(n+k)
∂u(n+l) , when k > l,

0, when k ≤ l.

This yields:
∇U

{
Ym(n + 1) − Ŷ(n + 1)

}
=⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂u(n)

{
ym(n + 1) − ŷ(n + 1)

} ∂
∂u(n)

{
ym(n + 2) − ŷ(n + 2)

} · · · ∂
∂u(n)

{
ym(n + L) − ŷ(n + L)

}
∂

∂u(n+1)
{
ym(n + 1) − ŷ(n + 1)

} ∂
∂u(n+1)

{
ym(n + 2) − ŷ(n + 2)

} · · · ∂
∂u(n+1)

{
ym(n + L) − ŷ(n + L)

}
...

...
. . .

...
∂

∂u(n+Nu−1)
{
ym(n + 1) − ŷ(n + 1)

} ∂
∂u(n+Nu−1)

{
ym(n + 2) − ŷ(n + 2)

} · · · ∂
∂u(n+Nu−1)

{
ym(n + L) − ŷ(n + L)

}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Nu×Np

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∂ŷ(n+1)
∂u(n) −∂ŷ(n+2)

∂u(n) · · · −∂ŷ(n+Nu)
∂u(n) · · · −∂ŷ(n+L)

∂u(n)

0 −∂ŷ(n+2)
∂u(n+1) · · · −∂ŷ(n+Nu)

∂u(n+1) · · · −∂ŷ(n+L)
∂u(n+1)

...

0 · · · 0 − ∂ŷ(n+Nu)
∂u(n+Nu−1) · · · − ∂ŷ(n+L)

∂u(n+Nu−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Nu×Np
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The second part of∇U J2(n) is evaluated by taking into account the relation Δu(n) = u(n)−u(n− 1),
so that ∂Δu(n)/∂u(n) = 1 and ∂Δu(n)/∂u(n− 1) = −1. The latter yields:

∇U
{
ΔU(n)

}
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Δu(n)
∂u(n)

∂Δu(n+1)
∂u(n)

∂Δu(n+2)
∂u(n) · · · ∂Δu(n+Nu−1)

∂u(n)
∂Δu(n)
∂u(n+1)

∂Δu(n+1)
∂u(n+1)

∂Δu(n+2)
∂u(n+1) · · · ∂Δu(n+Nu−1)

∂u(n+1)
...

...
...

. . .
...

∂Δu(n)
∂u(n+Nu−1) · · · ∂Δu(n+Nu−3)

∂u(n+Nu−1)
∂Δu(n+Nu−2)
∂u(n+Nu−1)

∂Δu(n+Nu−1)
∂u(n+Nu−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Nu×Nu

(22)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 · · · 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Nu×Nu

.

Combining the above expressions into:

∇U J2(n) = −G
(
Ym(n + 1) − Ŷ(n + 1)

)
+ ρHΔU(n),

and substituting into Equation (21) as:

ΔU(n) = −γu∇U J2(n) = γuG
(
Ym(n + 1) − Ŷ(n + 1)

)
− γuρHΔU(n), (23)

where:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ŷ(n+1)
∂u(n)

∂ŷ(n+2)
∂u(n) · · · ∂ŷ(n+Nu)

∂u(n) · · · ∂ŷ(n+L)
∂u(n)

0 ∂ŷ(n+2)
∂u(n+1) · · · ∂ŷ(n+Nu)

∂u(n+1) · · · ∂ŷ(n+L)
∂u(n+1)

...

0 · · · 0 ∂ŷ(n+Nu)
∂u(n+Nu−1) · · · ∂ŷ(n+L)

∂u(n+Nu−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Nu×Np

(24)

and:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

...
...

0 · · · 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Nu×Nu

(25)

yields the control law of the form:

ΔU(n) = (I + γuρH)−1γuG
(
Ym(n + 1) − Ŷ(n + 1)

)
, (26)

where I is the Nu ×Nu identity matrix. G can be computed from the chosen wavelet MRA model
structure. The proposed wavelet MRA model-based GPC control schematic is shown in Figure 3. As a
result, the tracking problem for a single loop cold flow system can be solved by the wavelet MRA-based
GPC control strategy using the convergence tuning guidelines developed in the next section.
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Figure 3. Schemetic of the wavelet MRA-based self-tuning GPC control system.

2.5. Convergence and Stability

In this section, we show the output error convergence of the wavelet MRA model identification
algorithm and the tracking error convergence of the proposed GPC-based control strategy. These
proofs serve to show that the system identification scheme will converge to the true system model of
the preselected resolution, while the predictive control scheme will provide tracking of the desired
output by the system output. The adaptive identification and control laws have one parameter each in
the form of the adaptation gains chosen by the user. It has been shown [35] that adaptation gains are
crucial to the stability and performance of an adaptive control system. Therefore, we have provided
analytic guidelines for selecting these gains. The validity of such separate convergence analysis is
certainly limited under significant coupling between identification and control (e.g., for aggressively
chosen gains), and the coupled analysis will be reported elsewhere. However, the results are well
supported by the actual implementation and testing.

2.5.1. Convergence of Wavelet MRA Identifier

Define a discrete-type Lyapunov function as:

V1(n) =
1
2

e2(n), (27)

where e(n) defined in Equation (15) represents the output modeling error. Then, the increment of the
Lyapunov function is given by:

ΔV1(n) = V1(n + 1) −V1(n)=
1
2

(
e2(n + 1) − e2(n)

)
. (28)

The error difference can be represented using the Jacobian matrix by:

Δe(n) = e(n + 1) − e(n) =
[
∂e(n)
∂θ(n)

]
Δθ(n) (29)

where Δθ(n) =
{
Δθi(n)

}m
i=1 represents a change in the arbitrary component of the weighting gain

vector θ. From Equation (18), Δθi(n) can be obtained by:

Δθ(n) = γθe(n)g(n), (30)[
∂e(n)
∂θ(n)

]
= −

[
∂ŷ(n)
∂θ(n)

]
= −gT(n), (31)

where g(n) = {gi(n)}mi=1.
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Theorem 1. Let γθ be the adaptation gain for the weights of the wavelet MRA identified model and gmax be
defined as gmax := maxn ‖ g(n) ‖, where g is the wavelet MRA basis function, n is the discrete time index, and
‖ · ‖ is the L2 norm of a real vector. Then convergence is guaranteed if γθ is chosen as:

0 < γθ <
2

g2
max

(32)

Proof. From Equations (28)–(31), ΔV1(n) can be represented as:

ΔV1(n) = Δe(n)
[
e(n) +

1
2

Δe(n)
]
=

[
∂e(n)
∂θ

]
γθe(n)g(n)×

{
e(n) +

1
2

[
∂e(n)
∂θ

]
γθe(n)g(n)

}

= −γθe2(n)‖ g(n) ‖2+1
2
γ2
θe2(n)‖ g(n) ‖4= −λe2(n), (33)

where:
λ =

1
2
γθ‖ g(n) ‖2(2− γθ‖ g(n) ‖2)≥ 1

2
γθ‖ g(n) ‖2(2− γθg2

max) > 0. (34)

From Equation (32) we obtain V1(n) ≥ 0 and ΔV1(n) < 0, then the convergence of the weighting
parameters of the identified wavelet MRA model is guaranteed. �

2.5.2. Stability Analysis of Wavelet MRA-Based GPC

Define a second discrete Lyapunov function as:

V2(n) =
1
2
‖ E(n + 1) ‖2, (35)

where E(n + 1) = Ym(n + 1) − Ŷ(n + 1). Then the change of the Lyapunov function is obtained as:

ΔV2(n) = V2(n + 1) −V2(n)=
1
2
(‖ E(n + 2) ‖2 − ‖ E(n + 1) ‖2). (36)

Similarly to Equation (29), the error difference can be represented using the Jacobian matrix by:

ΔE(n + 1) = E(n + 2) − E(n + 1)=
[
∂E(n + 1)
∂U(n)

]
ΔU(n), (37)

where ΔU(n) is defined in Equation (26) and ∂E(n+1)
∂U(n) = −GT. Then Equation (37) can be expressed as:

ΔE(n + 1) = −GT(I + γuρH)−1γuGE(n + 1). (38)

Theorem 2. Let γu be the adaptation gain for the GPC control input sequence. Assume a control weighting factor
ρ > 0. Then the stable tracking convergence of the wavelet MRA based GPC control system is guaranteed if:

0 < γu <
2

λmax(GGT)
, (39)

where λmax(·) is the maximum eigenvalue of the matrix.
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Proof. From Equations (36)–(38), ΔV2(n) can be represented as:

ΔV2(n) = 1
2

[
(E(n + 1) + ΔE(n + 1))T(E(n + 1) + ΔE(n + 1)) − E(n + 1)TE(n + 1)

]
= ΔET(n + 1)

[
E(n + 1) + 1

2 ΔE(n + 1)
]

= −(GE)Tγu((I + γuρH)−1)
T[

I − 1
2 GGT(I + γuρH)−1γu

]
GE

= −(GE)TR1R2GE,

(40)

where:
R1 = γu((I + γuρH)−1)

T
, (41)

R2 = I − 1
2
γuGGT(I + γuρH)−1. (42)

�

If R1 and R2 are both positive definite matrices, it follows that ΔV2(n) < 0. Together with
V2(n) > 0, the stable tracking of the reference signals is guaranteed.

From Equation (25) it can be shown that the eigenvalues of H are λH = {1, · · · , 1}Nu×1. Then the
eigenvalues of R1 can be derived as:

λR1 =
{
γu(1 + γuρ)

−1, · · · ,γu(1 + γuρ)
−1

}
Nu×1

(43)

Hence, all eigenvalues of R1 are positive if γu > 0. It follows that R1 > 0.
If 0 < γu < 2

λmax(GGT)
, then:

I − 1
2
γuGGT > 0. (44)

From Equation (25) we have:
γuρH > 0. (45)

Then from Equations (44) and (45)

I − 1
2
γuGGT + γuρH > 0. (46)

Similarly to the way it was done for Equation (43), we can prove that I + γuρH > 0. Then
Equation (46) can be rewritten as:

(I + γuρH)
(
I − 1

2
γuGGT(I + γuρH)−1

)
> 0. (47)

Since I + γuρH > 0,
(
I − 1

2γuGGT(I + γuρH)−1
)
> 0 follows. Now we have V2(n) ≥ 0 and

ΔV2(n) < 0. With this, the convergence of the prediction error of the wavelet MRA model identification
algorithm and the tracking error of the proposed GPC control strategy have been separately proven.

2.6. Wavelet MRA GPC with Input Constraints

The stability analysis in Section 2.5 does not account for constraints. In practice, all process
inputs are subject to certain constraints due to the actuation limits. In [36], two types of constraints
are considered in the GPC design procedure, namely the rate and the magnitude limits on the input
control signal, given, respectively, by:

Δumin ≤ u(n + k) − u(n + k− 1) ≤ Δumax, (48)

umin ≤ u(n + k) ≤ umax, (49)
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where 0 ≤ k ≤ Nu − 1. When constraints are included, the stability properties obtained above must be
reanalyzed. The stability analysis for constrained wavelet MRA–GPC architecture will be addressed
elsewhere. Taking into account the CL process actuator constraints, the control input u is subject to an
input magnitude constraint saturation:

u∗(n) = sat[u(n)] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
umin if u(n) < umin

umax if u(n) > umax

u(n) otherwise
. (50)

In the experiments, the latter constraints were seldomly attained, whereas control rate constraints
of the form of Equation (48) had to be introduced to achieve good experimental results, as presented in
the next section.

3. Results

3.1. MRA Temporal Modeling of the Chemical Looping Process Testbed

This section describes implementation of the proposed wavelet MRA model-based GPC scheme
on the single loop gas/solid cold flow CL process testbed developed at Alstom Power Inc. to carry out
experiments without consideration of the oxidation reaction. The experimental facility is shown in
Figure 4.

Figure 4. Experimental facility for control testing.

The controllers were developed in MATLAB/SIMULINK, compiled in C and run on the proprietary
ASTOM processing platform. The software used for wavelet identification was MATLAB Wavenet.
The system output y was selected to be the riser pressure drop DP47 (inch H2O). Fluidizing air flow S1
(standard cubic feet per hour, scfh), was used as the single control input u, while the other air flow
S2 (scfh) was set to a constant value of about 20 scfh. The characterization of the complex dynamic
behavior, to be obtained through the identification procedure, was chosen as a SISO NARX wavelet
multiresolution network model of the form:

ŷ(t) = f (y(t− 1), · · · , y(t− ny), u(t− 1), · · · , u(t− nu))=
m∑

i=1

θigi, (51)

where f is the unknown nonlinear mapping to be identified, u(t) and y(t) are the sampled input and
output sequences, ny and nu are the maximum lags in the output and the input to be determined,
respectively; θ = {θi} is the parameter vector trained on-line, gi ∈ {φ j,k,ψ j,k} is a multivariable scaling
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or wavelet basis function of past inputs and outputs, and m is the number of required basis functions
to meet satisfactory modeling accuracy requirements.

First, several offline experimental tests were performed to understand the process better and to
leverage the test results in tuning the identification structure and the model parameters. The input
signal S1 was generated in the form of a pseudo random binary signal (PRBS) changed about a nominal
value, and the pressure drop across the riser DP47 was measured as the output. All the sequences
used in the experiment were generated by MATLAB commands. The experimental results of the PRBS
test are shown in Figures 5 and 6 below, where the sampling period is 1 s.

Figure 5. PRBS test-input S1 and S2 (scfh).

Figure 6. PRBS test-Output DP47 (inch H2O).

The data set consists of 3961 input and output samples. The NARX multiresolution wavelet
MRA model was used to approximate the nonlinear relationship between S1 and DP47 based on the
experimental data. The regressor set was specified as:

y(t− 1), y(t− 2), u(t− 1), u(t− 2), · · · , u(t− 8). (52)

Hence ny = 2, nu = 8. For MRA model we chose radial Marr scaling and wavelet functions [12]:

φ(x) = exp(−0.5‖ x ‖2), ψ(x) = (dim(x) − ‖ x ‖2) exp(−0.5‖ x ‖2). (53)
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The initial coarse layer index J was chosen to be 3, with the number of basis functions doubling
when resolution was incremented by 1 starting with 10. The final resolution adopted was K = 6.
Figure 7 below shows how the model predicted output compares with the experimental results.

Figure 7. PRBS test-Simulation data vs. experimental data.

The one-step-ahead predicted output and the test data set are shown in Figure 8. From these
figures it is seen that the NARX wavelet MRA model obtained predicted the system outputs well. The
model was found to be sufficiently accurate and no finer resolution levels were needed to be added to
the model structure.

Figure 8. PRBS test-One-step-ahead predictions vs. experimental data.

3.2. MRA–GPC Scheme Implementation on a Chemical Looping Process Testbed

In order to make the wavelet MRA GPC applicable to the CL process, the control input u was
subjected to rate constraints of the form:

Δu = Δutarget × exp(1− μ ‖ Δutarget ‖), (54)

where Δutarget is the unconstraint control signal calculated by the predictive control law and μ > 0 is a
design parameter to adjust the rate of the control signal. The effectiveness of such input constrained
wavelet predictive controller on the CL process is demonstrated next through experimental results.
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The control objective of the GPC design is to ensure that the output of the system y asymptotically
tracks the reference signal ym. The cost function to be minimized is defined in (19). The design
parameters for GPC configuration were chosen as N1 = 1, N2 = 10, Nu = 8, ρ = 1. The adaptation
gains derived from Theorems 1 and 2, were chosen as γθ = 0.01, γu = 0.1. The system was initially
stable around level of y0 = 13 inch H2O. Two setpoint step change experiments were performed
consecutively. After 5 min, the setpoint was first increased to 16 inch H2O and stayed at the latter value
for about 7 min. Then it went back to the original level of 13 inch H2O. The air flow S2 was set to a
constant value of about 20 scfh. The tracking response of the system output and the corresponding
control efforts are shown in Figures 9 and 10, respectively. It can be seen from these figures that the
proposed wavelet MRA-based GPC method effectively tracks the setpoint changes for a single loop
CL process.

Figure 9. Pressure difference response of riser (DP47) during step setpoint changes.

Figure 10. Fluidizing air flow control (S1 and S2) during step setpoint changes.
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As can be seen in Figure 9, starting at a setpoint of 13 inH2O for the duration of five minutes,
responds to a setpoint change at 14:20 within roughly two minutes. While there is an initial overshoot,
this overshoot has a magnitude of one inH2O, and is quickly subdued; a similar phenomenon is seen at
14:27, when the setpoint is restored to 13 inH2O. This points to an adequate response to step-changes
in DP47 setpoint, which the process control methodology is capable of handling due to a sufficiently
accurate wavelet MRA model, and effective GPC tuning; the latter can be seen in Figure 10, where
controller rates are limited to within feasible bounds, and control efforts are limited, making for a
subdued control input history.

In the second test, reference signal was set to be a sinusoidal of the form ym(t) = 13 + 2 sin(2π×
0.01× t), while S2 (scfh) was still held at a constant value of about 20. The tracking response of system
output and the corresponding control effort, shown in Figures 11 and 12, respectively, demonstrate that
the controller satisfies the tracking performance requirement, with a time delay between the control
signal and system output potentially addressed through prediction adjustment.

Figure 11. Pressure difference response of riser during sinusoidal setpoint changes.

In particular, a relatively timely response to reference signal changes is clearly seen in Figure 11;
the controller effectuates the reference signal in about 50 s, with little overshoot, as was seen in
the previous setpoint step-change experiment. However, besides the phase difference between the
reference and true output, large values of undershoot are seen. This can be attributed to the presence
of overshoot; as GPC reacts to samples 10 s ahead of time, any overshoot is met with an overaggressive
response to lower it (see Figure 12), resulting in excessive undershoot. This issue may be addressed by
increasing the control weighing factor to penalize excessive actuation.

The next section presents the derivation and implementation of the spatiotemporal control law
for the fast riser dynamics to augment the temporal controller described above and tighten the closed
loop tracking performance.
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Figure 12. Fluidizing air flow control (S1 and S2) during setpoint changes.

4. Spatiotemporal Wavelet Decomposition

Since the empirically identified wavelet temporal model was obtained using data collected at a 1 s
sampling rate, some of the fast dynamics of the plant that gave rise to jumps were not recorded. The
fast dynamics comes primarily from the spatially distributed riser geometry. Hence, we simulated
the impulse response of the 2-PDE riser model [37], approximated the faster riser dynamics with the
transient spatiotemporal NARMA-L1 [38] model, and used the result in a convolution to obtain a
spatiotemporal model of the transients. We then put the empirical temporal NARX model and the fast
dynamics spatiotemporal model in parallel. Finally, we combined the temporal GPC control and the
spatiotemporal deadbeat control, each based on its respective model, into the closed loop dual-model
self-tuning configuration shown in Figure 13. In this configuration, the dynamic inter-loop coupling
is rather minimal due to significantly differing time scales of each elf-tuning loop, ideally requiring
two-sampling-rates hardware/software setting, not available for this experiment.

The nonlinear 2-PDE model governing the evolution of the variables (voidage and solid velocity)
in the riser can be represented [37] as:

∂ε
∂t = (1− ε) ∂us

∂x − us
∂ε
∂x ,

∂us
∂t = −us

∂us
∂x + C1ε−6.7 −C2ε−5.7us + C3ε−4.7u2

s + C4(1− ε)−0.54 −C5,
(55)

where ε is the voidage and us is the solid velocity. The other parameters are defined in [37]. From
simulations of this model, we could obtain a response h(x, t) to an impulse actuation in solid velocity
with area of 0.1.
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Figure 13. Block diagram of controller implementation with fast dynamics.

Then the response to an arbitrary inlet solid velocity u(t) can be calculated as:

y(x, t) =
∫ t

−∞
h(x, τ) · 10u(t− τ)dτ, (56)

where the scaling factor is necessary since the simulated input was not 1. The simulated impulse
responses are shown in Figure 14.

Figure 14. Simulated impulse response of the 2-PDE riser model: (a)—the solid velocity response,
(b)—the voidage response.

Since the impulse response is uniformly zero after 0.6 s, Equation (56) can be limited to:

y(x, t) =
∫ t

t−0.6
h(x, τ) · 10u(t− τ)dτ. (57)
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To obtain a low-order high fidelity finite-dimensional representation of the impulse response, a
wavelet decomposition [39,40] was used to approximate h(x, t). That is, the impulse response h(x, t)
was approximated as:

h(x, t) =
mmax∑
m=1

nmax∑
n=1

βm(x)cm,nαn(t), (58)

where
{
βm(x)

}
and

{
αn(t)

}
are wavelet basis functions.

Figure 15 is the resulting wavelet approximation of the impulse response. Here we chose Gaussian
wavelet functions specifically. In this case, 23 spatial and 22 temporal wavelets were used. The
coefficients cm,n were determined using a least-squares regression.

Figure 15. Wavelet-approximated impulse response h(x, t): (a)—the solid velocity response
approximation, (b)—the voidage response approximation.

The following notation is used to divide the impulse response into separate parts for voidage ε
and velocity us:

hus(x, t) =
mmax∑
m=1

nmax∑
n=1
βm(x)cm,nαn(t),

hε(x, t) =
mmax∑
m=1

nmax∑
n=1
βm(x)dm,nαn(t).

(59)

Then using the convolution:

Δus(x, t) = hus(x, τ) ∗ 10(u− τ) = 10
∫ 0.6

0

mmax∑
m=1

nmax∑
n=1

βm(x)cm,nαn(τ)u(t− τ)dτ. (60)

Since the online measurements were only available at 1 s intervals, it was assumed that:

u(t− τ) = (1− τ)u(t) + τu(t− 1), 0 ≤ τ ≤ 1, (61)

to linearly interpolate between the measurements. Then:

Δus(x, t) = 10
∫ 0.6

0

mmax∑
m=1

nmax∑
n=1
βmcm,nαn(τ)[(1− τ)u(t) + τu(t− 1)]dτ

= 10
mmax∑
m=1

nmax∑
n=1
βm(x)cm,n

∫ 0.6
0 αn(τ)[(1− τ)u(t) + τu(t− 1)]dτ

= 10
[

mmax∑
m=1

nmax∑
n=1
βm(x)cm,n

∫ 0.6
0 (1− τ)αn(τ)dτ

]
u(t) + 10

[
mmax∑
m=1

nmax∑
n=1
βm(x)cm,n

∫ 0.6
0 ταn(τ)dτ

]
u(t− 1).

(62)
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Denote:
αn,0 =

∫ 0.6
0 (1− τ)αn(τ)dτ,

αn,1 =
∫ 0.6

0 ταn(τ)dτ,
(63)

and:

γ0(x) = 10
mmax∑
m=1

nmax∑
n=1
βm(x)cm,nαn,0,

γ1(x) = 10
mmax∑
m=1

nmax∑
n=1
βm(x)cm,nαn,1.

(64)

Then Equation (62) simplifies to:

Δus(x, t) = γ0(x)u(t) + γ1(x)u(t− 1). (65)

Similarly, we have:
Δε(x, t) = η0(x)u(t) + η1(x)u(t− 1), (66)

where:

η0(x) = 10
mmax∑
m=1

nmax∑
n=1
βm(x)dm,nαn,0,

η1(x) = 10
mmax∑
m=1

nmax∑
n=1
βm(x)dm,nαn,1.

(67)

Omitting for brevity several routine manipulations (available in [23]), the output DP47 representing
the pressure drop across the riser can be given as:

P(5) − P(0) =
[
ρgε(0)u2

g(0) + ρs(1− ε(0))u2
s (0)

]
−
[
ρgε(5)u2

g(5) + ρs(1− ε(5))u2
s (5)

]
−∫ 5

0 g
[
ρgε(y) + ρs(1− ε(y))

]
dy,

(68)

where the riser length of 5 m is used, constant g is the gravity acceleration, u is the velocity, ρ is the

density, the subscripts s and g refer to solid and gas, respectively, and ug =
Ug

ε(x) where Ug is the
superficial gas velocity. Expanding Equation (68) yields:

P(5) − P(0) =
[
ρg

U2
g

ε(0) + ρs(1− ε(0))u2
s (0)

]
−
[
ρg

U2
g

ε(5) + ρs(1− ε(5))u2
s (5)

]
−∫ 5

0 g
[
ρgε(y) + ρs(1− ε(y))

]
dy

= ρg
U2

g

εss(0)+Δε(0) + ρs(1− εss(0) − Δε(0))(us(0) + Δus(0))
2

−ρg
U2

g

εss(5)+Δε(5) − ρs(1− εss(5) − Δε(5))(us(5) + Δus(5))
2

−gρg
∫ 5

0 (εss(y) + Δε(y))dy− gρs
∫ 5

0 (1− εss(y) − Δε(y))dy,

(69)

where the subscript ss designates the steady state. Now, substituting the wavelet model gives:

P(5) − P(0) = ρg
U2

g

εss(0)+η0(0)u(t)+η1(0)u(t−1)

+ρs[1− εss(0) − η0(0)u(t) − η1(0)u(t− 1)][us(0) + γ0(0)u(t) + γ1(0)u(t− 1)]2

−ρg
U2

g

εss(5)+η0(5)u(t)+η1(5)u(t−1)

−ρs[1− εss(5) − η0(5)u(t) − η1(5)u(t− 1)][us(5) + γ0(5)u(t) + γ1(5)u(t− 1)]2

−gρg
∫ 5

0 (εss(y) + η0(y)u(t) + η1(y)u(t− 1))dy

−gρs
∫ 5

0 (1− εss(y) − η0(y)u(t) − η1(y)u(t− 1))dy.
(70)
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Our goal was to use the model given by Equation (70) to account for the spatiotemporal behavior
of the CL system to the extent allowed by the available sampling rate, and also to develop the control
setting to be ready to employ much higher sampling rates for performance improvement, once they
become available on the test rig through the processor upgrades to the GPUs and FPGAs. It is also of
interest to calculate the steady-state pressure drop:

ΔP0 = ρg
U2

g

εss(0)+η0(0)u(t)+η1(0)u(t)

+ρs[1− εss(0) − η0(0)u(t) − η1(0)u(t)][us(0) + γ0(0)u(t) + γ1(0)u(t)]
2

−ρg
U2

g

εss(5)+η0(5)u(t)+η1(5)u(t)

−ρs[1− εss(5) − η0(5)u(t) − η1(5)u(t)][us(5) + γ0(5)u(t) + γ1(5)u(t)]
2

−gρg
∫ 5

0 (εss(y) + η0(y)u(t) + η1(y)u(t))dy

−gρs
∫ 5

0 (1− εss(y) − η0(y)u(t) − η1(y)u(t))dy.

(71)

This is the pressure drop predicted by this model for constant input u(t), as opposed to the linear
interpolation described above. We can then use this model to approximate the transient difference,
and the NARX wavelet model to approximate the steady state. The difference between the transient
pressure drop ΔP(t) and the eventual steady pressure drop ΔP0(t) is then equal to:

ΔP− ΔP0 = P(5) − P(0) − ΔP0. (72)

Linearizing Equation (72) about u(t) = u(t− 1) gives:

ΔP− ΔP0 ≈ f (u(t− 1))(u(t) − u(t− 1)), (73)

where:
f (y) = k1

(k2+k3 y)
(k2+k4 y)4 + k5(k6 + k7y)2

+k8(1− k2 − k4y)(k6 + k9y) + k10
(k11+k12 y)
(k11+k13 y)4

+k14(k15 + k16y)2 + k17(1− k11 − k13y)(k15 + k18y) + k19,

(74)

and:
k1 = ρgUgη1(0), k2 = εss(0), k3 = η0(0) + 2η1(0),
k4 = η0(0) + η1(0), k5 = ρsη1(0), k6 = us,ss(0),
k7 = γ0(0) + γ1(0), k8 = −ρsγ1(0), k9 = γ0(0) + 2γ1(0),
k10 = −ρgUgη1(5), k11 = εss(5), k12 = η0(5) + 2η1(5),
k13 = η0(5) + η1(5), k14 = −ρsη1(5), k15 = us,ss(5),
k16 = γ0(5) + γ1(5), k17 = ρsγ1(5), k18 = γ0(5) + 2γ1(5),

k19 = g(ρg − ρs)
∫ 5

0 η1(y) dy.

(75)

The input to the computational model was in terms of the velocity boundary condition, so that
u(t) = Δus(0, t). This can be connected to the inputs S1 and S2 via a quadratic model fitted to the test
data where:

u(t) ≈ 1
ε0
(2a1S1(t− 1) + a3S2(t) + a4)(S1(t) − S1(t− 1))

+ 1
ε0

(
a1S2

1(t− 1) + a2S2
2(t) + a3S1(t− 1)S2(t) + a4S1(t− 1) + a5S2(t) + a6

)
− us,ss(0)

= 1
ε0
(a1S1(t− 1) + a3S2(t) + a4)S1(t)

+ 1
ε0

(
a2S2

2(t) + a5S2(t) + a6
)
− us,ss(0).

(76)
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Then:

ΔP− ΔP0 ≈ 1
ε0

f (u(t− 1))(2a1S1(t− 1) + a3S2(t) + a4)S1(t)
+ f (u(t− 1))

[
1
ε0

(
a2S2

2(t) + a5S2(t) + a6
)
− us,ss(0) − u(t− 1)

]
= gΔP(S1(t− 1), S2(t− 1), S2(t))S1(t) + fΔP(S1(t− 1), S2(t− 1), S2(t)).

(77)

The NARX wavelet MRA model takes the form as in Equation (51):

yw(t) = f
(
y(t− 1), · · · , y(t− ny), S1_w(t− 1), · · · , S1_w(t− nu)

)
, (78)

where S1,w(t) is the control command calculated by wavelet adaptive GPC control. Then, the fast
transient behavior model of Equation (77) can be combined with Equation (78) to obtain a spatiotemporal
multiscale dynamic network representation of the entire CL process:

y(t) ≈ yw(t) − fΔP − gΔPS1(t). (79)

The sign change is necessary because the pressure drop across the riser is negative in the model
above, i.e., P(5)− P(0) < 0. Then, the deadbeat predictive controller taking account of fast dynamics is:

S1,fast(t) =
yr(t) − yw(t) + fΔP

gΔP
, (80)

where yr(t) is the reference signal. Hence, the final spatiotemporal wavelet controller S1(t) implemented
on the real CL process is given by:

S1(t) = S1,w(t) + S1,fast(t). (81)

This controller was also implemented in the single loop cold flow CL test rig. S1 was taken as
the single input and DP47 as the output, while S2 was mostly steady, but with jumps. The reference
signal was set to 16 initially and then reduced to 13 around time 17:01. The tracking response of
system output and the corresponding control efforts are shown in Figures 16 and 17, respectively. The
controller is seen to stabilize the system quite well under difficult operating conditions. The pressure
drop DP47 over the riser related to the fluidizing air flows was discussed based on the closed loop
topology augmentation with the spatiotemporal model-based control.

Figure 16. Pressure difference response of riser (DP47) during step setpoint changes.
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Figure 17. Fluidizing air flow control (S1 and S2) during setpoint changes.

5. Discussion

The control objective of developing the tracking controller for the CL test rig at ALSTOM Power
was addressed at the start of the project through both first-principles model development and empirical
system identification from the input/output experimental data record. The first approach resulted in the
analytical development and the numerical simulation of the 1D, 2D, and 3D partial differential equation
(PDE) networks—systems of coupled PDEs, each describing the testbed subsystem. On the basis of
these models, approximately tuned to the process through the experimental data, first, the linear finite
dimensional models were developed, after which robust controllers based on the H∞ approach were
designed. The latter were implemented on the test rig; however, no satisfactory performance was
obtained. The empirical approach initially involved a polynomial NARX model test fit with the use of
model predictive control (MPC) with constraints attained through the QP (quadratic programming)
based control signal calculation. At the same time the hypothesis was posed that the process is highly
multiscale and that a multiscale controller design should be attempted. The experimental data was then
subjected to multi-resolution decomposition and was indeed found to be highly multiscale [23]. After
some debate, it was suggested to refocus the effort from model-based robust controller improvement
and traditional constrained MPC to empirical multiresolution controller development. The initial step
was to fit a multiresolution nonlinear, but linear in parameters, temporal model to the input/output
data, with the subsequent steps involving the self-tuning GPC-type controller development, as shown
in Figure 3. After a number of prolonged experiments, the resulting controller was outfitted with rate
constraints and tuned to work on the test rig, showing performance noticeably superior to that of
the other techniques employed. Further on, since the underlying process dynamics was exhibited by
the intrinsically spatially distributed processes, a spatiotemporal multiresolution control component
was developed for the riser dynamics and combined with the temporal topology. The latter part was
implemented and tested, producing reasonable overall performance, but it could not be fully utilized
due to the computational real-time controller limitations. Subsequently, the results presented in this
paper were acknowledged by ALSTOM as making a real breakthrough in the project. The findings
and their implications in the broad context imply that if a robust linear controller does not work
well on a system, the system is likely rather complex, and the nonlinear multiresolution modeling in
combination with linear-type control structures under constraints could offer effective configurations
for high performance system control.
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The future theoretical effort in the temporal implementation in Section 3 should involve developing
the proof of the simultaneous error convergence of the coupled identifier/controller system under control
rate constraints—a challenging analytical task. Future research should also address spatiotemporal
controller development and implementation in more generality than that presented in Section 4. In the
present work, the latter controller had limited efficacy due to the low sampling/computation rate of the
test rig control processor, but the approach presented stands ready for further theoretical advancement
and applications involving more advanced hardware.

Due to the combination of the coarser temporal and the finer spatiotemporal control in the
overall control configuration, the results presented have a broad appeal in other applications involving
complex multiscale spatiotemporal dynamics, such as, for example, robotic electrosurgery [41]. In this
application, the motion of the cutting probe is strongly coupled to the spatiotemporal electrosurgical
impact of the latter on the target tissues, and the near-field probe-tissue interaction process is best
described by a complex time-fractional PDE [42]. These features make the technique proposed a good
match for this application.

6. Conclusions

In this paper, the following results have been presented:

• closing the gap between the actual system output data and that predicted by the
first-principles model of the complex chemical looping process through the empirically identified
wavelet multiresolution analysis model initially trained on-line to estimate the nonlinear
dynamic characteristics;

• embedding the multiresolution model into the generalized predictive control structure to obtain
self-tuning control strategy for stable tracking of a chemical looping process with complex process
dynamics under actuator rate constraints;

• showing boundedness of the adaptation gains for identification and control laws using the
Lyapunov function theorems, and providing a guidance for attainment of asymptotic stability of
the closed-loop system through the choice of these adaptation gains;

• using a spatiotemporal wavelet decomposition of the impulse response of the chemical looping
process riser for designing a deadbeat predictive controller for further enhancement of the closed
loop performance to account for fast system dynamics.

• experimentally confirming the effectiveness of the proposed controller design methods though
their implementation on the novel single loop chemical looping cold flow testbed with
complex dynamics,

Limitations of the present study lie in the insufficient spatiotemporal modeling and controller
design for the riser and the inability to fully utilize the designed spatiotemporal controller for it because
of the insufficient real-time performance of the control processor and the data acquisition system.
Future efforts should focus on the advancement of the spatiotemporal part of the design, the overall
controller robustness evaluation and enhancement, the development of the rigorous convergence
proofs for the coupled identification/control laws under control rate constraints for the temporal and
the entire spatiotemporal control topologies, and the implementation of the controller using advanced
processors. The proposed techniques is planned to be applied by the authors to other areas, such as
robotic electrosurgery.
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Abstract: Steam supply scheduling (SSS) plays an important role in providing uninterrupted reliable
energy to meet the heat and electricity demand in both the industrial and residential sectors. However,
the system complexity makes it challenging to operate efficiently. Besides, the operational objectives
in terms of economic cost and thermodynamic efficiency are usually contradictory, making the online
scheduling even more intractable. To this end, the thermodynamic efficiency is evaluated based on
exergetic analysis in this paper, and an economic-exergetic optimal scheduling model is formulated
into a mixed-integer linear programming (MILP) problem. Moreover, the ε-constraint method is used
to obtain the Pareto front of the multi-objective optimization model, and fuzzy satisfying approach
is introduced to decide the unique operation strategy of the SSS. In the single-period case results,
compared with the optimal scheduling which only takes the economic index as the objective function,
the operation cost of the multi-objective optimization is increased by 4.59%, and the exergy efficiency
is increased by 9.3%. Compared with the optimal scheduling which only takes the exergetic index
as the objective function, the operation cost of the multi-objective optimization is decreased by
19.83%, and the exergy efficiency is decreased by 2.39%. Furthermore, results of single-period and
multi-period multi-objective optimal scheduling verify the effectiveness of the model and the solution
proposed in this study.

Keywords: steam supply scheduling; exergetic analysis; multi-objective; ε-constraint method

1. Introduction

As the material basis of human survival and development, energy plays an increasingly important
role in promoting social and economic development as well as in improving people’s living standards [1].
The energy situation and environmental problems have recently attracted worldwide attention.
Steam supply scheduling (SSS) consumes primary energy to provide energy for an enterprise and
simultaneously produces a substantial number of pollutants. This paper focuses on optimizing
operation of the SSS to reduce the operation cost and improve the thermodynamic efficiency, thus the
economic–exergetic operation of the system can be realized [2,3].

Scholars have conducted in-depth studies on the operation optimization of SSS and have
made some achievements. Grossman proposed a mixed-integer linear programming (MILP) model
framework for utility systems [4], and a mixed-integer nonlinear programming (MINLP) problem
based on a successive MILP approach was solved [5]. Based on utility systems modeling, numerous
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scholars have focused on optimal operation strategy so as to achieve cost minimization and energy
distribution. In order to reduce operation cost, a model was established which integrated the start and
stop of utility operating units under different process requirements [6]. In [7], the multi-period with
different electricity or steam demand was introduced into the operation strategy of the utility system,
and the optimal choice of units for each period was determined by using the two-stage approach.
Based on the linear single-device models in public utility systems, the influence of the change of
external electricity price on the system operation scheduling was studied by taking into account the
steam equilibrium, fuel supply and devices operation constraints [8]. A multi-period MILP model for
byproduct gases, steam and power distribution optimization was proposed in steam power plants,
and the experimental results showed that the proposed model could effectively reduce system cost [9].
Given the uncertainty of device efficiency and process demand, a data-driven method was proposed
to achieve the tradeoff between optimality and robustness of operational decisions in utility system
optimization, and the experiments demonstrated the effectiveness of the method [10,11]. Besides,
a method for the simultaneous synthesis of heat exchanger networks and utility systems was presented,
and the two-stage algorithm was used to identify the best tradeoff between utility systems and heat
exchanger networks costs [12,13]. Due to the escalating environmental crisis, several scholars have
conducted extensive researches on the environmental issue. Central utility systems with adjoining
waste-to-energy networks were integrated to form an ecological friendly energy management system,
and the feasibility of the combination of the two networks was demonstrated from environmental and
economic perspectives through experiments [14]. By taking into account the impact of pollutants on
environment, the utility system consisting of boilers, gas turbines with heat recovery steam generators,
ST and CT has been developed [15]. Considering the environmental performance of the entire site
utility system, the structural design was optimized to minimize the total annual cost [16]. In addition,
the multimodal genetic algorithm was used in the exergoenvironmental analysis of a combined heat
and power plant [17]. In general, most studies have focused on the economic and environmental
operation that consider energy quantity saving in the SSS, without considering the quality distinction
between different energy resources.

In 1953, Rant put forward the concept of exergy, which is a physical quantity that synthesizes
the first and the second law of thermodynamics to measure working ability. This concept can focus
on the quality and quantity of energy [18–20], which provides a highly efficient method to evaluate
the energy efficiency of the system [21–23]. Certain scholars have recently studied the energy system
by means of the exergetic analysis. A kind of solid oxide fuel cell integrated with gas and steam
trigeneration systems was optimized, and the energy, exergy and economy of the system were analysed
in [24]. In addition, the influence of parameter changes on system performance was further studied.
An existing CHP system was analysed in terms of energy, exergy and environmental (3E) aspects [25].
In order to analyse the performance and optimize parameter of the geothermal power plant, a system
optimization model was formulated to maximize the exergy efficiency, which was solved through
the gravitational search algorithm [26]. A study was conducted to examine the energy and exergy
performance as well as multi-objective optimization of an exhaust air heat recovery system, which could
provide reference for system planning [27]. In [28], considering the total cost, carbon dioxide emission
and exergetic destruction, a multi-objective optimization of district heating system was carried out
and the Pareto front was obtained with the weighting method. By means of exergy, exergoeconomic
and exergoenvironmental analysis, the optimal integration of steam and power system with a steam
power plant as the source and a utility system as the sink was investigated, and the experimental
results reflected that the integration of steam power plant and utility system is a favorable option [29].
However, most studies have applied exergetic analysis to the performance evaluation and parameter
optimization of the energy system, while there are relatively few quality studies on the energy such as
heat and electricity in the SSS.

In this paper, exergy is introduced into the operation optimization of SSS. Firstly, the multi-objective
mixed-integer linear programming (MOMILP) model of SSS is established by using the exergetic
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analysis method to reduce the operation cost and exergy input for SSS. At the same time, the Pareto
front of the multi-objective optimization model is obtained with the ε-constraint approach, and the
compromise solution on the Pareto front was acquired with the fuzzy satisfying approach. Finally, the
effectiveness of the proposed model and solution method was verified by the results of single-period
and multi-period multi-objective optimal scheduling.

This paper is organized as follows: the MOMILP model of SSS is developed in Section 2.
In Section 3, the multi-objective operation strategy of SSS is presented to obtain the Pareto front, and a
tradeoff is conducted between these different objectives. Case studies are analysed in Section 4, and
the conclusion is summarised in Section 5.

2. Problem Formulation of Multi-objective Optimal Operation of SSS

The SSS converts primary energy (fuel coal, fuel gas, fuel oil) into secondary energy (electricity,
steam and hot water) to provide enterprises with the required process steam, thermal energy and
electricity, and its typical structure is illustrated in Figure 1. To realize the economic and efficient
operation of the SSS, the mathematical model of each equipment is built and the concept of exergy
is adopted to evaluate all types of energy. Subsequently, the MOMILP optimal model of the SSS
is formulated.

Figure 1. Steam supply scheduling (SSS) of a petrochemical enterprise.

2.1. Objectives

2.1.1. Economic Objective

Generally, the economic objective of SSS operation is to minimize the total cost of the entire
period, including fuel consumption cost, electricity or steam purchase cost, equipment operation and
maintenance cost, depreciation cost and equipment start/stop cost. The specific expression is as follows:
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2.1.2. Exergetic Objective

Exergy represents the maximum amount of useful work that can be obtained from a given form of
energy, that is, the quality of energy. For different kinds of energy, the quality of the same quantity of
energy is not necessarily the same. Hence, the quality of different energy of the SSS is evaluated with
the exergetic analysis method, and then the maximum exergy efficiency can be achieved. Among them,
exergy efficiency can be defined as the ratio of the total output exergy to the total input exergy [21],
and the formula is as follows:

ψ =

∑
t

.
Exout,t∑

t

.
Exin,t

(2)

Figure 1 shows that the energy types on the load side include electric energy and heat energy, and
the input energy includes fossil energy (fuel coal, fuel oil, fuel gas), purchased steam and electricity.
Therefore, the load demand exergy and the input exergy of the SSS are expressed as follows:⎧⎪⎪⎨⎪⎪⎩
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Fuel coal, fuel oil and fuel gas are all chemical fuels, and their specific exergy is generally expressed
by a lower heating value (LHV) and an exergy factor [30,31]. The exergy factors of different types of
fuels are slightly different, but basically the same [32]. The exergy in chemical fuels can be expressed
by the following formula: ⎧⎪⎪⎨⎪⎪⎩ αi = γi,LHVζi.

Exi
in,t = αiFBn,t,i/3.6

(4)

The exergy of electricity is equal to electricity because it can be completely converted into work.
However, the work done by heat energy is limited by the Carnot factor, and its heat exergy is equal
to the work done by the Carnot cycle. Therefore, the heat and electricity exergy of SSS are described
as follows:
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The energy demand of SSS is predictable, that is, the total output exergy can be calculated.
Therefore, the exergetic objective could be converted from maximum exergy efficiency to minimum
exergy input of the SSS. The formula is as follows:

f2 =
∑

t

.
Exin,t (9)

2.2. Constraints

2.2.1. Device Constraints

Industrial boilers generally convert the chemical energy in fuel into heat energy, and then transfer
this heat energy to water through different heating surfaces, and finally produce the high-pressure (HP)
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or medium-pressure (MP) steam required by the system. The model is represented by Equation (10).
Equation (11) indicates that the boiler load should be placed within a certain safety range:

FBn,t,iγi,LHV = aBnYBn,t + bBnGBn,t (10)

GL
BnYBn,t ≤ GBn,t ≤ GU

BnYBn,t (11)

The operation characteristics of a simple ST, including backpressure and CT, can be expressed by
the linear relationship between steam intake and power output, and the steam intake and output power
of ST should be placed within a certain safety range. The general constraints are detailed as follows:

PTn,t = dTnYTn,t + eTnGTn,in,t (12)

PL
TnYTn,t ≤ PTn,t ≤ PU

TnYTn,t (13)

GL
Tn,inYTn,t ≤ GTn,in,t ≤ GU

Tn,inYTn,t (14)

The double extraction CT generates steam with different pressure, and at the same time it can
generate the power required to meet the external electricity load. Its output power is related to steam
intake, industrial sectors or heating steam extractions. The model generally uses a linear function
to represent the relationship among steam intake, adjustable extraction and power of the double
extraction CT. It can be described as follows:

Pcn,t = gcnGcn,in,t −
∑

oj

hcn,ojGout
cn,oj,t − fcnYcn,t (15)

PL
cnYcn,t ≤ Pcn,t ≤ PU

cnYcn,t (16)

GL
cn,inYcn,t ≤ Gcn,in,t ≤ GU

cn,inYcn,t (17)

Gout,L
cn,oj Ycn,t ≤ Gout

cn,oj,t ≤ Gout,U
cn,oj Ycn,t (18)

The main function of the pressure reducer and attemperator is to adjust the steam from high
temperature and high pressure to the relatively low temperature and low pressure required by the
system. The general form of the model is shown in Equation (19) [10,33]. For a given steam system,
once the steam pressure and temperature of each level steam are specified, the enthalpy hLn,out, hLn,in,
and hLn,w are constant. By defining a parameter ηLn., the expression is shown in Equation (20):

GLn,in,t =
hLn,out,t − hLn,w,t

hLn,in,t − hLn,w,t
GLn,out,t (19)

GLn,in,t = ηLnGLn,out,t (20)

2.2.2. Balance Constraints

Electricity balance and steam balance should be considered to meet the energy demand and
energy distribution among various energy devices in the SSS should also be considered. Therefore, the
steam and electricity balance model are expressed as follows:

DSr,t = PSr,t +
∑
n

GBn,tYBn,t +
∑
n

Gout
cn,oj,tYcn,t +

∑
n

GLn,out,tYLn,t−∑
n

GTn,in,tYTn,t −∑
n

GLn,in,tYLn,t − Lossr (21)

DEt = PEt +
∑

n
PTn,tYTn,t +

∑
n

Pcn,tYcn,t (22)
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2.2.3. Logical Constraints on Device Start and Stop

Due to the different demand for steam and power in different periods, the equipment is easy to
start and stop in the adjacent two periods, thus resulting in the start and stop cost of the equipment.
In this study, Equations (23) and (24) are used to represent the start and stop logic of the equipment:

Zn,t = Yn,t −Yn,t−1, Yn,0 = 0 (23)

ZSn,t = Yn,t −Yn,t+1, Yn,t+1 = 0 (24)

In summary, the MOMILP optimal model of SSS can be represented as follows:

min obj1 = f1(xt, yt)

min obj2 = f2(xt, yt)

subject to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
g(xt, yt) ≤ 0
h(xt, yt) = 0
xt ∈ (xL, xU)

yt ∈ (0, 1)

(25)

3. Solution and Decision of the Optimal Condition

In order to achieve optimal operation of the economy and exergetics of the SSS, this section uses
the ε-constraint method to solve the proposed multi-objective problem, so as to obtain the Pareto front.
The Pareto curve is used to determine the optimal solution with the fuzzy satisfying approach.

3.1. ε-Constraint Based Solution

In the optimization problem of SSS, the two objectives of reducing the operation cost and exergy
input are considered to affect each other, that is, it is difficult for both sides to reach the optimal
simultaneously. Therefore, the ε-constraint method is used to solve this multi-objective optimal
problem. The ε-constraint method preserves one of the objectives in the objective function and
transforms the rest of the objective functions into constraints. Thereby the multi-objective optimization
problem is transformed into a series of single-objective optimization problems, which can be solved
by modifying the value range of the constraints condition step by step. The details are presented
as follows:

min f1{
subject to f2 ≤ ε
Equations (1) − (24)

(26)

where the value of ε is considered to be expressed by the following equation:

ε = f2,max − ( f2,max − f2,min)(a− 1)/(amax − 1) (27)

where a = 1,2, . . . , amax, amax is the maximum number of cycles; f 2,min and f 2,max are the maximum
and minimum values of f 2 obtained when f 2 and f 1 are considered as a single-objective function,
respectively. Furthermore, the economic objective is taken as f 1 as shown in Equation (1) and the
exergetic objective as f 2 as shown in Equation (9) in this paper.

3.2. Decision based on Fuzzy Satisfying Approach

To achieve the coordination and unification of the multi-objective of SSS, the fuzzy satisfying
approach [34] is introduced to help the operator establish a trade-off between the economic objective
and the exergetic objective. The target values of each operation strategy are normalized according to
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(28). Subsequently, the membership function value of each operation strategy is calculated according
to (29), and the best operation strategy is selected according to Equation (30):

μa
k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 f a

k ≤ fk,min
fk,max− f a

k
fk,max− fk,min

fk,min ≤ f a
k ≤ fk,max

0 f a
k ≥ fk,max

(28)

μa = min(μa
1,μa

2) (29)

μmax = max(μ1,μ2, . . . μamax) (30)

To make the fuzzy satisfying approach clearer, a small example is given in Table 1, and the
multi-objective optimization strategy selected is scheme 7, which is the bold part of Table 1. In addition,
Figure 2 summarizes the specific process of the multi-objective operation optimization.

Table 1. An example of the fuzzy satisfying approach.

a f 1 f 2 μ1 μ2 μmax

1 57883.09281 575814.554 1 0 0
2 58242.90797 560822.484 0.956601 0.105264 0.105264
3 58697.95742 545830.368 0.901716 0.210528 0.210528
4 59153.00687 530838.253 0.846831 0.315792 0.315792
5 59608.05632 515846.137 0.791946 0.421056 0.421056
6 60063.10577 500854.021 0.73706 0.52632 0.52632
7 60566.37947 485861.905 0.676359 0.631584 0.631584

8 61116.28338 470869.789 0.610033 0.736848 0.610033
9 61666.18728 455877.674 0.543707 0.842112 0.543707
10 66174.01862 433390.6 0 1 0
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Figure 2. Flowchart of the multi-objective optimization solution.

4. Case Study

To verify the effectiveness of the MILP model of SSS with economic and exergetic objectives,
the optimal model of single-period and multi-period of SSS are solved and results are analysed in
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this section. Moreover, it is necessary to declare the case studied in this paper does not consider
optimization situation of neighbouring enterprises, which is a partial optimization.

4.1. Case Description

This study takes the SSS of petrochemical enterprises as an example (Figure 1), which includes
four different levels of steam, namely, high-pressure steam (HP, 9.5 MPa and 535 ◦C), medium pressure
steam (MP, 3.5 MPa and 425 ◦C), low-pressure steam (LP, 1 MPa and 300 ◦C) and low and low-pressure
steam (LLP, 0.3 MPa and 200 ◦C). B1–B2 are coal-fired boilers that produce HP steam with a blowdown
rate of 8%; B3–B5 are dual fuel boilers, which burn oil and gas to produce MP steam. The amount of
gas is determined by the processing unit, and the maximum available gas import capacity is 12 t/h.
Double extraction CT (CC1, CC2) produces MP and LP steam as well as electric energy. T1 and T2
steam turbines generate power, and T3 produces LLP steam and electric energy. As can be seen from
Figure 1, the condensate is recycled and converted into boiler feed water. Furthermore, the minimum
value of condensing steam amount of steam turbine is 63 t/h, the maximum value of condensing steam
amount is 142 t/h, and the condensing pressure is 5.9 kPa. Pressure reducer and attemperator (L1, L2,
L3 and L4) can convert high-temperature and high-pressure steam into relatively low-level steam.
The study allows the maximum electricity import capacity from neighbouring enterprises of 50,000 kW.
The maximum MP steam, LP steam and LLP steam import capacity from neighbouring enterprises of
100, 50 and 50 t/h. The effects of device 1, device 2 and other devices on the system are not considered
in this study, and the loss of the system is neither considered, that is, lossr = 0. Table 2 indicates the
model parameters of boiler and steam turbine. Tables 3 and 4 list the equipment parameters, start/stop
costs and equipment operation costs of boilers and ST. Table 5 indicates the unit price of resources.
Table 6 shows the parameters of the resource, and Table 7 lists the start and stop time of the equipment.

Table 2. Model parameters of boiler and steam turbine (ST).

Parameter Value Parameter Value

aB1 95.8 fc1 −179
aB2 95.8 fc2 −179
aB3 19.47 gT3 73.37
aB4 5.818 gc1 252
aB5 5.159 gc2 252
bB1 0.8488 hc1,o1 −235
bB2 0.8488 hc1,o2 −102
bB3 0.931 hc2,o1 −235
bB4 1.021 hc2o2 −102
bB5 1.032 hT3 −23.3
dT1 −1459 ηL1 0.933
dT2 −1650 ηL2 0.933
eT1 86.2 ηL3 0.913
eT2 88.6 ηL4 0.923
fT3 −116.7

Table 3. Boiler equipment information.

Boiler B1 B2 B3 B4 B5

Rated evaporation (t/h) 320 320 140 75 65
Minimum evaporation (t/h) 160 160 80 35 50

Start and stop cost (�) 10,000 10,000 13,000 13,000 13,000
Equipment operation cost (�/h) 100 100 200 185 170

Steam temperature (◦C) 535 535 425 425 425
Steam pressure (MPa) 9.5 9.5 3.5 3.5 3.5

Feedwater temperature (◦C) 211.23 211.23 163 163 163
Feedwater pressure (MPa) 15.08 15.08 3.5 3.5 3.5
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Table 4. Steam turbine equipment information.

Equipment

Start and
Stop Cost

(�)

Equipment
Operation
Cost (�/h)

Power Rating (kW) Maximum
Steam Intake

(t/h)

Maximum
First

Extraction
Steam (t/h)

Maximum
Second

Extraction
Steam (t/h)Maximum Minimum

CC1 12,000 200 50,000 20,000 380 190 180

CC2 12,000 200 50,000 20,000 380 190 180
T1 6000 160 6500 1500 85 — —
T2 6000 140 6500 1500 85 — —
T3 6000 110 6000 3500 100 — —

Table 5. The unit price of resources.

Fuel Coal
(�/t)

Fuel Gas
(�/t)

Fuel Oil
(�/t)

Electricity
(�/kWh)

MP Steam
(�/t)

LP Steam
(�/t)

LP Steam
(�/t)

750 1200 3500 0.45 180 135 80

Table 6. Parameters of the resource.

Fuel
Lower Heating
Value (kJ/kg)

Exergy
Factor

/
Enthalpy
(kJ/kg)

Industrial Steam
Production

Value (t/h)

Coal 24,440 1.08 MP 3280.7 IMPSP 57
Gas 32,503 1 LP 3051.7 ILPSP 76.8
Oil 40,245 1.06 LLP 2865.9 ILLPSP 34.9

Water of Ln 632.2

Table 7. Start and stop time of equipment.

Equipment B1 B2 B3 B4 B5 CC1 CC2 T1 T2 T3

Start time (h) 10 10 7.5 7.5 7.5 3.3 3.3 3.3 3.3 3.3
Stop time (h) 10 10 7.5 7.5 7.5 3.3 3.3 3.3 3.3 3.3

4.2. Single-Period Case

Table 8 reports the demand for steam and electricity over a single period time, without considering
the start and stop costs of the equipment in the economic objective. During the solution process,
the maximum number of cycles n in the ε-constraint method is set to 20.

Table 8. Single-period steam and electricity demands.

Steam (t/h)
Electricity (kW)

MP LP LLP

180 125 150 64,400

Figure 3 shows the single-period Pareto front for the SSS, the points on it are all optimal values,
which can provide different operation strategies for operators. Furthermore, the multi-objective optimal
operation strategy can be obtained with the fuzzy satisfying approach, which is the point marked on
the Pareto curve in Figure 3. Tables 9 and 10 show the optimal scheduling results of boilers load and
purchased resources for SSS.
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Figure 3. Pareto front of single- period for SSS.

Table 9. Optimal scheduling results of boilers load for SSS.

Boilers Load
(t/h)/Situation

Multi-Objective
Operation (Standard)

Economic Operation Exergetic Operation

B1 steam production 320 0 0
B1 coal consumption 41.33 0 0
B2 steam production 0 320 247.03
B2 coal consumption 0 41.33 34.36
B3 steam production 0 103.00 0
B3 oil consumption 0 0 0
B3 gas consumption 0 8.55 0
B4 steam production 0 0 0
B4 oil consumption 0 0 0
B4 gas consumption 0 0 0
B5 steam production 0 0 0
B5 oil consumption 0 0 0
B5 gas consumption 0 0 0

Table 10. Optimal scheduling results of purchased resources for SSS.

Purchased
Resources/Situation

Multi-Objective
Operation (Standard)

Economic Operation Exergetic Operation

PMP steam (t/h) 21.74 0 100
PLP steam (t/h) 0 0 0

PLLP steam (t/h) 0 0 0
PE (kW) 19,838.62 743.04 19,838.62

Evidently, compared with the multi-objective operation, the energy conversion equipment such as
boilers and ST meets the demand for steam and most electricity in the economic operation. Consequently,
less steam and electricity are purchased. By contrast, exergetic operation purchases more steam from the
neighbouring enterprises. The multi-objective operation establishes a tradeoff between the economic
objective and exergetic objective to satisfy the multi-objective optimal operation by coordinating the
consumption of different types of energy (fossil energy, heat energy and electric energy).

Table 11 indicates the operation cost, input exergy and exergy efficiency in multi-objective
optimization and single-objective optimization. Based on the results of multi-objective optimization,
the growth rate of operation cost, input exergy and exergy efficiency in economic operation and
exergetic operation are calculated. Results reveal that compared with the multi-objective optimal
operation, the operation cost of the economic operation is decreased by 4.59%, while the input exergy
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is increased by 13.97%. On the contrary, for the exergetic operation, its input exergy is decreased by
3.06%, while its operation cost is increased by 19.83%.

Table 11. Comparison of multi-objective optimization results with single-objective optimization results.

Situation Indicator Value Growth Rates

Multi-objective operation
(standard)

Operation cost/� 44,667.83 0
Input exergy/kW 334,216 0

Exergy efficiency/% 75.83% 0

Economic operation
Operation cost/� 42,615.71 −4.59%
Input exergy/kW 380,921.40 13.97%

Exergy efficiency/% 66.53% −9.3%

Exergetic operation
Operation cost/� 53,526.94 19.83%
Input exergy/kW 323,989.8 −3.06%

Exergy efficiency/% 78.22% 2.39%

Compared with SSS optimal scheduling which only takes economic or exergetic as the
objective function, from the above calculated data, it can see that the multi-objective operation
can comprehensively consider energy efficiency from the point of view of economic and exergetic,
make a tradeoff between the economic index and exergetic index, and pay attention to the quality
and quantity of energy simultaneously, so as to achieve the purpose of reducing cost and increasing
efficiency. Furthermore, this paper is in line with the sustainable energy development strategy of the
world today.

4.3. Multi-Period Case

A multi-period case is established in this section to further verify the effectiveness of the proposed
multi-objective model and solution method. The multi-period model includes six periods, each with a
duration of 720 h, which is consistent with the solution method and the ε-constraint parameter setting
in Section 4.2. Table 12 indicates the steam and electricity demands of the six periods. The optimal
scheduling results are detailed as follows.

Table 12. Multi-period steam and electricity demands.

Period
Steam (t/h)

Electricity (kW)
MP LP LLP

1 180 125 150 64,400
2 350 165 75 73,700
3 320 185 60 85,700
4 250 200 95 58,700
5 200 175 105 67,600
6 335 300 120 78,300

Figure 4 depicts the steam distribution among the equipment. It can be seen that under the
premise of fully considering the steam purchase, the boiler and ST jointly produce steam, and the
system supplements the regulation of pressure reducer and attemperator, thus the integrated operation
of steam production and supply at all levels can be realized.
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Figure 4. Optimal scheduling results for steam: (a) high-pressure steam; (b) medium pressure steam;
(c) low-pressure steam; (d) low and low-pressure steam. (I, O indicate input and output of equipment,
respectively.).

Table 13 shows the optimal scheduling results of the start and stop of multi-period operation
equipment. Figure 5 describes the optimal scheduling results of fuel consumed in the system.
Evidently, changes in steam and electricity demand lead to the inevitably start and stop of equipment,
thus changing fuel consumption. Due to the relative high steam and electricity demand compared
with other periods, the B1 and B2 are in operation in periods 2, 3 and 6. Furthermore, since the MP
steam demand of period 1 is lower than that of periods 4 and 5, boilers producing MP steam are closed
in period 1. Moreover, considering that the energy of the system is converted from the HP steam
generated by B1 and B2, a large amount of coal is consumed.

Table 13. Optimal scheduling results of start/stop of multi-period operation equipment.

Equipment/Period 1 2 3 4 5 6

B1 1 1 1 0 0 1
B2 0 1 1 1 1 1
B3 0 0 0 0 0 0
B4 0 0 0 1 1 0
B5 0 0 0 0 0 0

CC1 1 1 1 1 1 1
CC2 1 1 1 1 1 1
T1 0 0 0 0 0 0
T2 0 0 0 0 0 0
T3 0 1 0 0 1 0
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Figure 5. Optimal scheduling results for fuel.

Figure 6 shows the optimal scheduling results of electricity. Under the premise of purchasing
electricity (Figure 6 PE), it can be observed that the coordinated operation of T1, T2, T3, CC1 and CC2
can meet the electricity demand. Besides, T1 and T2 are stopped in each period and double extraction
CT is used more frequently during the operation process. On the one hand, this is because CC1 and
CC2 can satisfy most of the electricity demand. Moreover, CC1 and CC2 can generate electricity and
produce both MP and LP steam to meet the steam demand by consuming HP steam. On the other,
T1 and T2 only generate electricity. In order to save operation costs, it is not necessary to maintain the
operation of all units. In addition, T3 is used more frequently than T1 and T2, partly because T3 can
generate electricity and LLP steam simultaneously. On the other hand, it can be seen from Table 4 that
the operation cost of T3 is lower than that of T1 and T2. Accordingly, this operation strategy can save
economic costs. Furthermore, in order to balance both economic and exergetic objectives, the system
neither over purchases energy, nor blindly consumes chemical fuel to meet the electricity demand,
thus realizing the primary energy saving and improving the thermodynamic efficiency of the system
in multi-period operation.
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Figure 6. Optimal scheduling results for electricity.
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Therefore, the multi-period case study in this section can provide guiding significance for the
actual operating system, and the corresponding unit output plan can be made from the two aspects of
system economy and thermodynamic efficiency. Furthermore, this study can help reduce greenhouse
gas emissions and improve the thermodynamic efficiency under the premise of meeting the power and
thermal demand of enterprises.

5. Conclusions

In order to achieve a good balance between enhancing energy efficiency and reducing system
cost, this paper adopts the exergetic analysis method in thermodynamics to evaluate the effective
energy contained in different kinds of energy. At the same time, the exergetic objective function
is built. Considering the cost of electricity and steam, combined with the mathematical model of
each equipment, an SSS optimal model based on economic index and exergetic index is further
built. Utilizing the ε-constraint method to obtain the Pareto front of multi-objective optimization
problems, the fuzzy satisfying approach is introduced to determine the optimal operation strategy.
Taking the single-period operation as an example, it can be seen that the multi-objective optimization
operation strategy can consider the economic and exergetic of the system by comparing with the
single- objective optimization results. Meanwhile, the single-objective optimization only takes the
economic or exergetic index as the objective function. Moreover, it can be verified by the results
of multi-period scheduling that the multi-objective model and solution is effective. In addition, to
deal with the multi-objective problem, the fuzzy satisfying approach is introduced to obtain the
optimal results. However, the optimal results may rely on the fuzzy satisfying approach. Therefore, to
get better multi-objective optimal results, our future work will focus on the effectiveness of various
multi-objective optimal methods.
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Nomenclature

aBn, bBn model comodel coefficients of Bn
CMn operation and maintenance of equipment (�)
CSTn start cost of equipment (�)
CSPn stop cost of equipment (�)
DEt demand electricity of the SSS (kW)
DSr,t demand steam of the SSS (t/h)
dTn, eTn model coefficients of Tn
.
Exout,t exergy output of SSS (kW)
.
Exin,t exergy input of SSS (kW)
.
Exe

out,t electricity exergy output (kW)
.
Exh

out,t heat exergy output (kW)
.
Excoal

in,t fuel coal exergy input (kW)
.
Exoil

in,t fuel oil exergy input (kW)
.
Exgas

in,t fuel gas exergy input (kW)
.
Exe

in,t electricity exergy input (kW)
.
Exh

in,t heat exergy input (kW)
FBn,t,i fuel consumed by the boiler (t/h)
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fcn, gcn, hcn,oj model coefficients of cn
f1 economic objective
f2 exergetic objective
GBn,t generated steam by Bn (t/h)
GTn,in,t flow rates of the inlet for Tn (t/h)
Gcn,in,t flow rates of the inlet for cn (t/h)

GLn,in,t,GLn,out,t
flow rates of the inlet and outlet
steam for Ln (t/h)

Gout
cn,oj,t adjustable steam extraction of cn (t/h)

GL
Bn, GU

Bn upper and lower limits of the steam generated by Bn (t/h)
GU

Tn,in, GL
Tn,in upper and lower limits of flow rates of the inlet for Tn (t/h)

Gout,U
cn,oj ,Gout,L

cn,oj upper and lower limits of adjustable steam extraction of cn (t/h)
GU

cn,in, GL
cn,in upper and lower limits of flow rates of the inlet for Tn cn (t/h)

g(xt,yt) inequality constraint equation
hr steam enthalpy (kJ/kg)
h(xt,yt) equality constraint equation
hLn,out,t enthalpy of outlet steam for Ln (kJ/kg)
hLn,in,t enthalpy of inlet steam for Ln (kJ/kg)
hLn,w,t enthalpy of water for Ln (kJ/kg)
Lossr loss stream at all levels
pi price of fuel (�/t)
pr price of purchased steam (�/t)
pe price of purchased electricity (�/kW)
PSr,t purchased steam of the SSS (t/h)
PEt purchased electricity of the SSS (kW)
Pcn,t generated electricity by cn (kW)
PTn,t generated electricity by Tn (kW)
PTn

U, PTn
L upper and lower limits of electricity generated by Tn (kW)

PU
cn, PL

cn upper and lower limits of electricity generated by cn (kW)
Ta ambient temperature (K)
Tr

h steam temperature (K)
xt continuous variable
xU, xL upper and lower limits of x
yt binary variables of the running state of the equipment
Yn,t binary variables of the running state of the equipment
Zn,t binary variables
ZSn,t binary variables
Subscripts

amax maximum number of cycles
Bn boiler equipment
cn double extraction condensing turbines equipment
i fuel type
k the number of objective functions
Ln pressure reducer and attemperator equipment
n equipment
r level for steam
Tn simple steam turbine equipment
Symbols

αi specific exergy of fuel (kJ/kg)
ψ exergy efficiency (%)
γi,LHV lower heating value of fuel (kJ/kg)
ζi exergy factor of fuel
ηLn conversion efficiency (%)
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Abbreviations

B1~ B5 boiler 1~5
BFW boiler feed water
CC1, CC2 double extraction condensing turbines 1~2
CC11 flow rates of first extraction steam for CC1
CC12 flow rates of second extraction steam for CC1
CC21 flow rates of first extraction steam for CC2
CC22 flow rates of second extraction steam for CC2
CT condensing turbines
HP high pressure
IMPSP medium pressure produced in industrial
ILPSP low pressure produced in industrial
ILLPSP low and low-pressure steam produced in industrial
L1~ L4 pressure reducer and attemperator 1~4
LP low pressure
LLP low and low-pressure steam
LHV lower heating value
MP medium pressure
MILP mixed-integer linear programming
MINLP mixed-integer nonlinear programming
PMP medium pressure purchased from neighbouring enterprises
PLP low pressure purchased from neighbouring enterprises
PLLP low and low-pressure steam purchased from neighbouring enterprises
ST steam turbines
T1~T3 simple steam turbine 1~3
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