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Preface to ”Dislocation Mechanics of Metal Plasticity

and Fracturing”

We begin with a historical description beginning at the start of the 20th century, with a new

focus on the effect of surface steps, notches, internal holes, and cracks in reducing the strength

of engineering structures. In that first decade, Inglis reported pioneering mechanics calculations

of the strength reduction produced by sharp notches and cracks; and, in the second decade,

Griffith produced an inverse square root of crack size prediction for the fracture stress of a

pre-cracked material. In the third decade, new model analyses were reported of smaller, atomic-scale

“dislocation” defects determining the (permanent) plastic deformation behaviors of crystalline

materials. That such dislocation defects in localized slip band “pile-ups” behave similarly to Griffith

cracks on a continuum mechanics level was described both theoretically and experimentally at the

beginning of the fifth decade.

In a complementary manner, the use of optical reflection microscopy to study the crystal

microstructures of sectioned metal surfaces was developed by Sorby just before the beginning of

the 20th century, and the follow-on discovery of crystal X-ray diffraction in the first decade of the

new century led, by the middle of the 20th century, to the use of transmission electron microscopy for

observing dislocations in deformed metal foils and, subsequently, to the multiple electron microscope

methods that are employed today in modern research investigations probing beneath the surfaces

of all types of crystals, almost all of which are full of dislocations. Such dislocations played a

counterpart-biological “nematode” role in underlying the new 20th century subject of “Materials

Science and Engineering”.

Building onto such historical descriptions, the aim of the present Metals Special Issue is to

provide a valuable sampling of updated research reports focusing on the strength and/or fracturing

properties of a variety of modern engineering metals and their alloys. In the introductory article

is given a description, based on dislocation mechanics, of the influences of polycrystalline grain

size on the hardness, yield stress, and fracture stress of metals and alloys, and which influences

are related to an analogously associated crack size dependence. The subsequent all-important

research articles begin with a report on the serrated plastic stress–strain behavior exhibited in an

aluminum–zinc–magnesium–copper alloy and analyzed in terms of mobile dislocation and atomic

solute interactions. Then comes a report on crystallographic grain textures associated with elastic

anisotropy measurements in steel materials, followed by an article on the evaluation of Charpy impact

test measurements employed to evaluate steel loading rate and notch sensitivity dependencies.

Tandem reports are given on dislocation-based assessments of severely deformed copper–zirconium

alloy material strength dependencies on applied loading rate. Next, a computational model

simulation is described at microscale dimensions of deformation twinning and detwinning in

nanograin-sized gold–copper alloy crystals. Two reports follow: first, on the statistical aspects

of dislocations tracked in small (fcc) crystal micropillars and, then, on fractal characterizations of

dislocations relating to (bcc) iron micropillar test specimens. At the opposite dimensional scale,

Weibull characterization of the strength of steel wires as employed in transportation-based bridge

cables is reported. This subject connects with the next report on a fracture mechanics description of

crack tip plasticity. Lastly, a holistic description is given of the dynamics of dislocation pile-ups in

iron and steel materials as related to plastic yielding behavior, creep, and fatigue crack growth rate

results. This Special Issue project has been an informative and appreciative effort for me as Guest

ix
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Dislocation Mechanics Pile-Up and Thermal
Activation Roles in Metal Plasticity and Fracturing
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Abstract: Dislocation pile-up and thermal activation influences on the deformation and fracturing
behaviors of polycrystalline metals are briefly reviewed, as examples of dislocation mechanics
applications to understanding mechanical properties. To start, a reciprocal square root of grain size
dependence was demonstrated for historical hardness measurements reported for cartridge brass,
in line with a similar Hall-Petch grain size characterization of stress-strain measurements made on
conventional grain size and nano-polycrystalline copper, nickel, and aluminum materials. Additional
influences of loading rate (and temperature) were shown to be included in a dislocation model
thermal activation basis, for calculated deformation shapes of impacted solid cylinders of copper and
Armco iron materials. Connection was established for such grain size, temperature, and strain rate
influences on the brittle fracturing transition exhibited by steel and other related metals. Lastly, for
AISI 1040 steel material, a fracture mechanics based failure stress dependence on the inverse square
root of crack size was shown to approach the yield stress at a very small crack size, also in line with a
Hall-Petch dependence of the stress intensity on polycrystal grain size.

Keywords: dislocation mechanics; yield strength; grain size; thermal activation; strain rate; impact
tests; brittleness transition; fracturing; crack size; fracture mechanics

1. Historical Background Leading to Dislocation Mechanics

A substantial improvement to the strength properties of metals by means of refining their internal
crystal or grain size has been known for centuries [1]. An example is shown in Figure 1 of early
20th century measurements on the Brinell Hardness Number (BHN) of alpha brass materials, being
shown in later work to follow a reciprocal square root of grain diameter dependence [2].

Figure 1. The Brinell Hardness Number (BHN) of alpha brass materials as a function of the reciprocal
square root of polycrystalline grain size, �−1/2; see Reference [2] for references, 1.0 kg/mm2 = 9.81 MPa.

Metals 2019, 9, 154; doi:10.3390/met9020154 www.mdpi.com/journal/metals1
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In Figure 1, the BHN is defined by the load applied to a ball indenter divided by the surface
area of the (assumed) spherical cap of the residual permanent indentation. The hardness is more
often specified as a Meyer hardness (MH), for which the projected surface area of the residual indent
is employed. The MH would show essentially the same grain size dependence as has now been
established for many metals and alloys.

The hardness relates to the compressive or tensile flow stress at true strain, ε, through the
relationship: MH ≈ 3 σε and ε = ~7.5%. Thus, explanation of a grain size dependent hardness follows
from association of the hardness with a unidirectional flow stress in which grain size dependence,
known as a Hall-Petch relationship, has been explained in terms of dislocation pile-ups in slip bands
behaving similarly to shear cracks when blocked at grain boundaries [3]:

σε = σ0ε + kε�−1/2 (1)

In Equation (1), σ0ε is the ordinate axis intercept stress taken to apply for plastic flow within the
grain volume, kε is the microstructural stress intensity required for overcoming the grain boundary
resistance, and � is average grain diameter generally measured by a line intercept method. Very
interestingly in Figure 1, the prominent metallurgist, Champion Mathewson, proposed that the
hardness measurements could be approximated by an �−1/4 dependence if the hardness was required
to be zero for a single crystal. Otherwise, the finite ordinate intercept, σ0ε, has been correlated in a
number of cases with single crystal plastic flow stress measurements.

2. Nanopolycrystal Hall-Petch Grain Size Strengthening

Many experimental and theoretical investigations have been reported on H-P dependence [4].
Current interest centers on the achievement of an order of magnitude increase in yield strength,
that is achieved at nano-scale grain size dimensions. Figure 2 provides a log/log representation of
conventional and nano-polycrystalline H-P measurements following Equation (1) for copper, nickel,
and aluminum, also at different values of strain [5]. An approximate order of magnitude grain
size strengthening effect is observed. The indicated low k0.14 value for nickel at large strain and
conventional grain sizes, compared to the nano-scale kε obtained from hardness measurements, is an
anomalous result. At smaller proof strains, nickel kε has been shown to be near to that of copper.

Figure 2. Comparison of Hall-Petch grain size dependent strengthening results at conventional
and nano-polycrystalline grain sizes for Al, Cu, and Ni materials; the referenced data are given in
Reference [5].
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The near-equivalence of copper and nickel kε values, along with a significantly lower value
for aluminum, has been explained in terms of the calculated shear stress at the pile-up tip, τC,
being correlated with the need for cross-slip in effecting transmission of plastic flow across grain
boundaries [5]; see Equation (2):

kε = mT[πmSGbτC/2α’]1/2 (2)

In Equation (2), mT and mS are Taylor and Sachs orientation factors, G is shear modulus, b is
Burgers vector, and α’ ≈ 0.8 is for an average dislocation character. A nearly equivalent numerical
value of GbτC is obtained for copper and nickel, thus explaining their nearly same kε values and, also,
is consistent for aluminum with observation of a much lower kε value controlled by easy cross-slip.
The indicated increase in kε in Figure 2 for aluminum when exhibiting a well-defined yield point, (yp),
is correlated also with the well-established measurement of a much larger kyp for yield point behavior,
for example, in steel.

3. Thermally-Activated Dislocation Mobility Relations

Jeffries reported in 1919 pioneering measurements on the combination of grain size, temperature,
and strain rate dependencies of the mechanical properties of annealed and deformed copper
materials [6]. A considerable number of other reports have followed on the topic, particularly involving
the deformation of metal single crystals first produced during the same beginning period of the
20th century. Seeger reported in 1958 a summary description of fcc crystal deformation properties in
terms of thermally-activated dislocation motion [7]. The report was followed in 1973 by the inclusion
of an H-P dependence for polycrystals [8]. The single crystal/polycrystal topic was reviewed in 2008,
with emphasis given to constitutive relations developed for deformation dynamics calculations under
condition of high rate loading [9].

3.1. Thermally-Activated FCC Strain Hardening

The thermal dependence is in the strain hardening, dσε/dε, for fcc metals and alloys. One of
several dislocation mechanics based constitutive equations proposed for σε is given by [10]:

σε = σGε + B0{εr·[1 − exp(−ε/εr)]}1/2exp(−αT) + kε�−1/2 (3)

In Equation (3), σGε is an athermal stress for elastic interactions within the polycrystal grain
volumes, εr is a reference strain for dynamic recovery, and α = α1 − α2ln(dε/dt) is a temperature
coefficient including strain rate, (dε/dt), dependence that is rooted in the thermally-activated
dislocation rate description. The first two terms are included within σ0ε in Equation (1). At small ε
values, σε follows a parabolic Taylor-type strain dependence.

An example calculation employing Equation (3) to describe the deformation shape of an impacted
solid cylinder in comparison with the experimental shape is shown in Figure 3. The computed
deformation shape, obtained with use of separately determined material constants from reference
stress–strain tests, was achieved with the Elastic Plastic Impact Calculation (EPIC) code [11]. A slight
improvement in the calculated deformation profile was obtained over another calculation applied to
the same test result employing the eponymous Johnson-Cook numerical equation developed jointly
with invention of the EPIC code.

3
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Figure 3. Comparison of calculated (continuous curve) and (dotted) experimental shapes for a
longitudinal section of an impacted copper solid cylinder, including internal iso-strain profiles [10].

3.2. Thermal BCC Yield Stress

For bcc metals and alloys, the thermal dependence is in the lower yield point stress, σlyp = σε,
and the strain hardening is athermal. The counterpart constitutive equation for the behavior is given
in Reference [10]:

σε = σGε + Bexp(−βT) + Aεn + kε�−1/2 (4)

In Equation (4), β = β0 − β1ln(dε/dt) and A and n are experimental constants describing a
power law dependence for the strain hardening and the other parameters are the same as defined in
Equation (3). Figure 4 shows an example deformation shape for an Armco iron solid cylinder impacted
in the same manner as was done for copper in Figure 3, which the result has included the additional
complication of deformation by twinning in the early stage of impact [11].

Figure 4. Experimental and Elastic Plastic Impact Calculation (EPIC) modeled solid cylinder impact
test result on Armco iron as a result of initial athermal deformation twinning then followed by
thermally-activated slip [10].

A previous report on solid cylinder impact tests made on α-iron material had revealed in the region
close to the impact surface the occurrence of deformation twins, then called Neumann bands, after their
observation in meteorites [12]. Sequential EPIC calculations applied to the result shown in Figure 4
revealed that a limited amount of essentially athermal twinning occurred first on impact and hardened
the material, in part, by grain size reduction, and then further deformation followed afterward by
thermally-activated slip. Such twinning is known to follow an H-P dependence with constants,
σ0T < σ0ε and kT > kε, thus indicating a transition at smaller grain size when total deformation by slip

4



Metals 2019, 9, 154

is preferred to twinning. The profile of Figure 4 was shown to be essentially identical to the originally
reported longitudinal section view containing the Neumann band structure [10,12].

4. Brittle Fracturing and Fracture Mechanics

At lower temperatures or higher plastic strain rates, brittle cleavage fracturing intervenes in
tensile tests of steel and related bcc metals and alloys. The tensile cleavage fracture stress also follows
an H-P dependence with a higher value of kC > kT. The characteristic temperature, TC, for the transition
in behavior has been modeled on a dislocation mechanics basis [13]. The topic also relates importantly
to the sudden onset of brittle failure that may occur due to the presence of a sharp crack, as included
in the subject of fracture mechanics.

4.1. The Ductile-to-Brittle Transition Temperature (DBTT)

The brittleness transition behavior is depicted in Figure 5 for a compilation of measurements
made on two steel materials with different grain sizes, and including measurements made of tensile
yield stress, brittle fracture stresses in bend tests, and Charpy v-notch impact energy tests [13]. In the
figure, the effective yield stress in the Charpy test has been raised by a notch factor, α = 1.94, to take
account of the influence of hydrostatic component of stress and a small value of β has been employed
(appropriate to an effective strain rate of 400 s−1); see Equation (4). The effective H-P klyp associated
with the difference in yield stresses for the two grain sizes is seen to be a much smaller effect than the
corresponding larger effect of kC on the fracture stress, σC, so producing a lower value of transition
temperature for the smaller grain size material. The predicted transition for the smaller grain size was
found to be raised somewhat because of easier cracking associated with the presence of carbide plates
at the grain boundaries.

Figure 5. The ductile-to-brittle transition temperatures for two steel materials with different grain sizes
of 65 and 10 μm as determined in tensile tests and via Charpy v-notch (CVN) impact tests [13].

4.2. Plastic Zone and Grain Size in Fracture Mechanics

The notch effect in relatively small-scale Charpy impact tests relates to the role of crack size in
fracture mechanics tests at micro- to macro-scale dimensions, and to the progression from Griffith’s
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pioneering work on a reciprocal square root of crack size dependence for the fracture stress as extended
on a continuum mechanics basis by Irwin [14]. The importance of the plastic zone size in the Charpy
test is not obviated by any cracks, no matter how sharp, which are able to be put into a fracture
mechanics test specimen [15]. Bilby, Cottrell, and Swinden employed a continuum dislocation pile-up
model both for a crack and strip-type plastic zone at the crack tip [16]. The transcendental equation
obtained for critical growth of the crack was shown to be closely approximated by the relationship [17]:

σF = Aσy[s/(c + s)]1/2 (5)

In Equation (5), A is a numerical constant near unity, c is the half-length of an internal crack,
and s is the length of the plastic strip. Figure 6 shows application of the relationship with A = 1.0 to
measurements recently reported for the American Society for Testing and Materials (ASTM) specified
fracture mechanics measurements made on AISI 1040 steel material [18].

Figure 6. Comparison of fracture mechanics specified stress dependence on crack size for AISI 1040
steel obtained from results reported by Hu and Liang and matched with calculated plastic zone, s.

The extended continuous curve shown in Figure 6 was established by Hu and Liang for an AISI
1040 plate material of length 40 mm including crack size to length ratios between 0.1 and 0.7, and with
the separate measurements indicated for the yield stress and plane strain determined stress intensity,
KIC, value. At large crack size, a linear dependence of fracture stress, σF, on the reciprocal square
root of crack size is obtained, as predicted. The indicated fit of x-marked points on the curve were
obtained with Equation (5), with s = 3.5 mm that corresponds in the Hu and Liang calculation of a
critical reference crack length of 4.04 mm. A deviation from the predicted linear fracture mechanics
relationship is seen to occur at relatively smaller (c/s) < ~3 than might have been expected, for example,
proceeding onward from σF ≥ 0.5 σy.

The yield stress dependence in the fracture mechanics description has been extended in the same
type analysis to description of the fracture mechanics stress intensity dependence on grain size in
the relationship:

KIC = (8/3π)1/2[σ0C + kC�
−1/2]s1/2 (6)

In many cases, s is relatively constant and therefore KIC follows an H-P type dependence [15].

5. Discussion

The examples given of dislocation mechanics based relationships for hardness, fcc and bcc
plastic flow stresses, impact, and fracturing properties constitute only a relatively limited number
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of connections being currently researched for a wide variety of metals and their alloys. An example
is provided by hardness measurements being investigated in micro- and nano-indentation tests of
nano-dimensional grain size nickel materials [5], and such measurements are being extended to
indentation fracture mechanics measurements made on relatively more brittle materials [19].

In addition, the very positive influence of grain size on strengthening metals is being investigated
in terms of a variety of material processing methods, in particular, by the method of severe plastic
deformation (SPD) [20]. Both an increase in σ0ε and decrease in � contribute to increasing σε. The
method has historical connection with wire drawing of patented (eutectoid) steel wire known as piano
wire, and which material is more recently being employed in the strengthening of automotive tires at
nano-scale iron and iron carbide phase separations [21].

For fcc and hcp metals, there is an important magnification of the plastic strain rate sensitivity
measured at nano-scale dimensions in that the pile-up stress, τC, in Equation (2) is sufficiently small as
to be affected by thermal activation, thus producing a grain size dependence for the activation area,
A* = v*/b = (kBT/b)(Δln[dε/dt]/ΔτTh)T in which v* is the frequently employed activation volume, kB

is the Boltzmann constant, and τTh = σTh/mT is strain dependent. As a consequence, (1/v*) follows a
H-P type dependence:

(1/v*) = (1/v*0) + (kε/2mTτCv*C)�−1/2 (7)

In Equation (7), (1/v*0) applies to strain rate sensitivity within the polycrystal grain volumes, and
τCv*C ≈ τCThv*C is constant [5]. At very small grain sizes, say <20 nm, there is a reversal in the H-P
dependence but the value of v* is substantially decreased even more to a size of atomic dimensions,
coincident with grain size weakening attributed to atomic diffusion mechanisms.

Important strain rate sensitivity is involved also in the ductile–brittle transition behavior described
in connection with Figure 5, as is true for the important influence of grain size dependence. However,
greater emphasis is given normally to specifying as accurately as possible the fracture mechanics stress
intensity parameter, KIC, employed to characterize the propensity of the material for the sudden onset
of catastrophic failure. In this case, hardness testing again provides a useful method of characterizing
the indentation fracture mechanics properties of relatively more brittle materials [19].

6. Summary

A brief description has been given of hardness, grain size, flow stress, temperature, strain rate,
and crack size aspects of dislocation mechanics based descriptions of metal plasticity and fracturing.
The purpose of the description has been to provide several examples among the many investigations
already reported or being underway, in order to characterize the corresponding mechanical properties
of metals and their alloys.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Serration phenomena, in which stress fluctuates in a saw-tooth shape, occur when a uniaxial
test is performed on an aluminum alloy containing a solid solution of solute atoms. The appearance
of the serrations is affected by the strain rate and temperature. Indentation tests enable the evaluation
of a wide range of strain rates in a single test and are a convenient test method for evaluating
serration phenomena. Previously, the serrations caused by indentation at room temperature were
clarified using strain rate as an index. In this study, we considered ambient temperature as another
possible influential factor. We clarify, through experimentation, the effect of temperature on the
serration phenomenon caused by indentation. An Al–Zn–Mg–Cu alloy (7075 aluminum alloy) was
used as the specimen. The aging phenomenon was controlled by varying the testing temperature
of the solution-treated specimen. Furthermore, the material properties obtained by indentation
were evaluated. By varying the testing temperature, the presence and amount of precipitation were
controlled and the number of solute atoms was varied. Additionally, the diffusion of solute atoms
was controlled by maintaining the displacement during indentations, and a favorable environment
for the occurrence of serrations was induced. The obtained results reveal that the variations in the
serrations formed in the loading curvature obtained via indentation are attributed to the extent of
interaction between the solute atoms and the dislocations.

Keywords: indentation; serration; temperature; strain rate; dislocation; artificial aging; solid solution;
loading curvature; aluminum alloy

1. Introduction

A phenomenon called serration—stress fluctuations in a saw-tooth shape—occurs when a uniaxial
test (e.g., tensile test) is performed on aluminum alloys containing solute atoms in the solid solution [1–4].
Dynamic strain aging gives rise to the Portevin–Le Chatelier effect [3,5,6]. One of the manifestations of
this effect is the serration that occurs when dislocations are pinned or released from the atmosphere
of a solute atom. For example, in Al–Mg alloys (5000 series aluminum alloys), significant serrations
are generated, as well as a strain pattern similar to a Luder’s band on the surface of the alloy, thereby
impairing its appearance. Many studies on the serration phenomena have been conducted, primarily
involving the 5000 series aluminum alloys. Existing studies identified serration behavior as an
interaction between dislocations and the solute Mg [3,5,6]. This phenomenon was reported to be
affected by strain rate and temperature because the velocity of dislocation motion and the diffusion
rate of Mg are affected by the strain rate and the temperature, respectively [3,5].

Previous studies have demonstrated that the serration behavior varies with change in the strain
rate. The classifications of serrations are briefly summarized below [7]. Figure 1 shows an example
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of variations in the serration behavior with a change in strain rate [8]. It shows an A-type stress
fluctuation that repeatedly rises and falls (the wavy stress fluctuation at a relatively high strain rate,
.
εA) and B-type saw-tooth-like stress fluctuations generated at intermediate strain rate (

.
εB,

.
εA+B).

Serrations sometimes occur as a result of a combination of behaviors. For example, an A + B-type—a
combination of A and B-type stress—has been reported. The serrations observed at low strain rates
(

.
εC) are classified as C-type stress (the CA and CB types depending on the frequency of fluctuation),

in which the fluctuations are irregular. At a strain rate above
.
εA or below

.
εC, serrations do not occur,

rather, a smooth stress–strain relationship is obtained.

 
Figure 1. Examples of different serration behaviors for different strain rate regimes [8].

To date, serrations have been evaluated primarily by uniaxial assessments such as compression
and tensile tests. The strain rate in the uniaxial test is defined by the following equation:

.
εu =

dεu
dt

, (1)

where
.
εu is the strain rate and εu is the strain during the uniaxial test. However, present authors [8]

have, through experiment, proved that serration phenomena can be evaluated through indentation
tests. Through continuous measurement of the load and the corresponding displacement, while
loading and unloading in an indentation test, some mechanical properties that cannot be obtained
through hardness tests could possibly be evaluated [9]. Therefore, the indentation test is also a vital
non-destructive test for metals. The mechanical properties obtained through indentation test are
evaluated using the loading curvature C, as shown below:

P = Ch2, (2)

where P and h are the load and displacement during indentation, respectively. The loading curvature
is given by the following relational expression:

C = f (E, Y, n, α, T,
.
εi
)
, (3)

where E is Young’s modulus, Y the yield stress, n the work hardening index, α the indenter angle, T the
temperature, and

.
εi the strain rate of the indentation. Doerner and Nix [10] proposed the following
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empirical equation for determining the value of
.
εi using a triangular pyramid indenter with the same

area to depth ratio as the Vickers pyramid:

.
εi = k

⎛⎜⎜⎜⎜⎝
.
h
h

⎞⎟⎟⎟⎟⎠, (4)

where k is the material constant and
.
h is the displacement velocity. This equation does not include the

effect of indenter angle. It should be noted here that the concepts of the representative stress (σr) and
strain (εR) for indentation analysis in order to normalize the load–displacement curves [11–13]. In the
indentation test, σr is the flow stress of the uniaxial test at a particular strain εr. The representative
strain is given the formula [13]:

εR = 0.0638 cot α, (5)

where α is a half-apex angle. For example, εR is approximated as 0.023 when using a conical indenter
with a half-apex angle of 70.3◦ (described later). Therefore, Equation (4) expresses the strain rate at this
representative strain value.

The
.
εi has the same dimension as

.
εu, however, the definition of strain rate for indentation tests

differs from that of uniaxial tests. The strain rate of indentation is distributed inside the test materials
in a complex manner [14]. Thus, existing studies have proposed the concept of effective strain rate,
.
εe, to consider the effect of the distribution of the strain rate on the indentation [15–17]. The effective
strain rate is given by the formula:

.
εe = β

⎛⎜⎜⎜⎜⎝
.
h
h

⎞⎟⎟⎟⎟⎠, (6)

where β is a material constant. Equations (4) and (6) have the same form. However, it has been shown
that the value of β correlates the strain rate in indentation with that in uniaxial tests [15–17].

Previous studies [8,18] indicated that the serration phenomenon in indentation could possibly be
evaluated using the concept of effective strain rate. Indentation is performed using a sharp indenter,
hence, a complicated deformation field is generated in the test material, whose deformation mechanism
has only recently been clarified [19]. Through the indentation tests, it was also discovered that there is
a test evaluation limit called critical strain [19] and that serrations could be used as an index to evaluate
this effect [18]. However, these previous studies were conducted only in an ambient temperature
environment, hence, the effect of temperature on the serration behavior during indentation was not
investigated. There are many unknown factors that could affect the behavior of the serrations obtained
from indentation.

Until now, the strengths of most metals are evaluated through uniaxial tensile tests. However,
next-generation metals are expected to have micro- and nano-scale properties. Therefore, there is
a need to adopt such tests as an indentation test that can non-destructively evaluate the strength
of a small area with accuracy comparable to that of uniaxial tests. In this study, we extend our
previous work [8,18] to clarify the effects of testing temperature on the serration behavior during
indentation tests. The microstructural changes in the Al–Zn–Mg–Cu alloy (7075 aluminum alloy) due
to natural and artificial aging were employed [20]. In addition, indentation was established as a new
method of evaluating material properties through the evaluation of the serration behavior related to
the microstructure.

2. Materials and Methods

2.1. Specimen

A 7075 aluminum alloy (hereafter referred to as the 7075 alloy) specimen was used in this study.
Table 1 lists the chemical composition of the 7075 alloy. The dimensions of the cylindrical specimen
were 40 mm (diameter) and 40 mm (height), and the end face was finished by lathing. The solution
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treatment was conducted at 753 K for 3600 s, followed by water-cooling. Indentation tests were
performed on this solution-treated specimen.

Table 1. Chemical composition of the investigated 7075 alloy (wt%).

Alloy Si Fe Cu Mn Mg Cr Zn Ti Al

7075 0.09 0.19 1.6 0.04 2.6 0.20 5.6 0.02 Bal.

2.2. Indentation

2.2.1. Testing Conditions

A universal testing machine (Instron, series 5982, Norwood, MA, USA) attached with a jig was
used for the indentation. Approximately 1 mm was loaded into the lathe-machined surface of the
specimen as milli-indentation. A conical indenter (Figure 2a) made of a WC–Co superalloy was
used. The radius of the tip (referred to as the roundness) of the indenter was 8.63 μm. The indenter
angle was measured to be 141.02◦ using a laser microscope. This angle is almost equal to that of a
conical indenter (140.6◦) that has the same indentation projection area at the same indentation depth
as those of the Berkovich indenter (a triangular pyramid with a ridge angle of 115◦; see Figure 2b).
In the existing studies, the effects of the roundness of indenters up to the initial stage of indentation
(approximately 1 μm) were reported, where the roundness of the indenter was approximately 10 μm.
However, the effect was obtained to be negligible when the indentation was higher than 1 μm [21].
In this study, we assumed an indentation of 1 mm. Therefore, the effect of the roundness of the indenter
was minimal.

 
Figure 2. Schematic diagram of a cone-type indenter: (a) conical type and (b) Berkovich (triangular
pyramid) type. Here α is the indenter angle and the shaded section is the projection area.

In this study, the temperature at which the Guinier–Preston (GP) zones and the η′ phase precipitate
in 7075 alloys was adopted as the testing temperature (described later). First, a temperature of 343 K at
which GP zones have been confirmed to precipitate (or nucleate) [20,22] was chosen. The η′ phase
has often precipitated under the condition of aging at 393 K for 24 h (T6 temper). In this study,
however, a temperature of 443 K at which the η′ phase has been reported to precipitate within a
short time (600 to 3600 s) [20] was adopted. Figure 3 shows a schematic diagram of the indentation
test at high temperatures. A home-built electric furnace was used. A thermocouple was attached
to the specimen surface and was controlled to a predetermined temperature using a temperature
controller (CHINO, SY2111, Tokyo, Japan). The arrival times at 343 and 443 K were approximately
1800 and 3600 s, respectively. The specimen was held for 900 s at each of the temperatures, after which
indentation was performed. Furthermore, the specimen was held at 77 K in a liquid nitrogen where the
low-temperature indentation was performed. At this temperature, aging takes place at a very low rate.
Unlike the high-temperature test, the low-temperature indentation test was performed in a container
using waterproof paper. The specimen was also indented at room temperature (293 K), thus, the test
was performed in four different temperature environments. For each of the temperature conditions,
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the test preparation was initiated within 300 s of the solution treatment. Therefore, the effect of natural
aging was small, except at room temperature.

Figure 3. A schematic diagram of milli-indentation at high temperatures (343 and 443 K).

2.2.2. Indenter Control

The control methods for indenters can be classified into two: loading rate and displacement rate
controls. In this study, a commercial universal testing machine was used, hence, displacement rate
control was employed. During indentation, the strain rate was varied by varying the displacement
rate (see Figure 4). Previous studies have shown that serrations are being affected by the diffusion of
Mg in the solid solution [5]. The time required for Mg atoms in the solid solution to sufficiently pin
stagnant dislocations is given by the following equation [23,24]:

ta =

(
C1

3C0

) 3
2 kTb2

3DUm
, (7)

where C1 is the concentration of solid solution atoms required for serrations to occur, C0 the concentration
of solid solution atoms in the material, k the Boltzmann’s constant, T temperature, D the diffusion rate,
and Um the binding energy between the solid solution atoms and dislocations. When clusters and
GP zones are formed by aging, the amount of Mg in the solid solution decreases, and accordingly,
C0 decreases. D also increases as temperature increases [25,26]. It is difficult to measure the diffusion
rate of solute atoms at low temperatures. Therefore, we predicted using the following equation:

D = D0 exp
(
− Q

RT

)
, (8)

where D0 is the frequency factor, Q is the activation energy and R is the gas constant. Table 2 shows the
prediction of the diffusion rate of solute atoms in aluminum at the testing temperature [27–29]. Hence,
to promote the diffusion of solute atoms, a constant displacement is maintained. As shown in Figure 4,
the displacement was held constant at two different values, for 20 s each, during the indentation test.
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Table 2. Prediction of the diffusion rate of solute atoms in aluminum at the testing temperature using
Equation (8).

Solute Atom D0 (m2/s) Q (kcal/mol) Testing Temperature (K) D (m2/s) Reference

Zn 1.77 × 10−5 28.0

77 7.74 × 10−85

[27]293 2.47 × 10−26

343 2.71 × 10−23

443 2.85 × 10−19

Mg 6.23 × 10−6 27.5

77 7.11 × 10−84

[28]293 2.05 × 10−26

343 1.98 × 10−23

443 1.77 × 10−19

Cu 1.5 × 10−5 30.2

77 3.81 × 10−91

[29]293 4.81 × 10−28

343 9.14 × 10−25

443 1.99 × 10−20

Figure 4. A schematic diagram of the time history of displacement.

3. Results

Figure 5 shows the load–displacement relationships for all the tests at different temperatures.
For the tests at temperatures above room temperature, the load increased with an increase in temperature
regardless of the change in the displacement rate. This increase in the load is attributed to the precipitates
formed by artificial aging. At 77 K, a decrease in the displacement rate lowered the increase rate of the
load as the displacement increased as compared to the other temperatures.

The effective strain rates for the indentations were calculated using Equation (6). Herein, β = 0.1
was used, based on previous studies [8,18]; the effective strain rate–displacement relationship is shown
in Figure 6. The effective strain rate under displacement rate control, given by Equation (6), decreased
as the displacement increased. The indentations were performed at three different rates by varying
the indenter speed (see Figure 4). A wide range of effective strain rates (from 10−4 to 100 s−1) was
obtained during the indentations. There was no significant difference in the effective strain rate, even
when the testing temperature changed. Aluminum alloys are known to have high strength–strain rate
sensitivity at lower temperatures [30,31]. This implies that at extremely low temperatures, the strength
of aluminum alloys decreases as the strain rate decreases. Therefore, during the cryogenic indentation,
the decrease in the increase rate of the load was as a result of the decrease in the effective strain rate
with increasing displacement.
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Figure 5. Load–displacement curves at 77, 293, 343, and 443 K. The change in displacement rate during
indentation is shown in Figure 4.

Figure 6. Effective strain rate–displacement relationship at each testing temperature.

We calculated the loading curvature-displacement relationship from the load–displacement
relationship using Equation (2) (see Figure 7). The effect of temperature and strain rate on the
indentation was confirmed by the change in the loading curvature. When testing temperatures
greater than the room temperature, the loading curvature was observed to increase as the temperature
increased regardless of the change in the displacement rate. At 293 and 343 K, an increase in the
loading curvature was observed after holding as compared with that before holding. By contrast, there
was a decrease in the loading curvature after holding for the test conducted at 77 and 443 K. At 77 K,
not only the time in which the displacement rate increases but also the loading curvature decreases
with increasing displacement.
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Figure 7. (a) Loading curvature-displacement curves at 77, 293, 343, and 443 K; (b) enlarged view.
The change in displacement rate during indentation is as shown in Figure 4.

4. Discussion

4.1. Effect of Aging on the Material Strength

The precipitation process of 7075 alloys established in previous research is as follows: [32–34].

Supersaturated solid solution (ssss)→ vacancy-rich clusters (VRC)→ GP zone→ η′ → η. (9)

A cluster or GP zone is an aggregate of atoms with a diameter of the order of nanometres. Herein,
η′ denotes the metastable phase, whereas η denotes the stable phase. Clusters and GP zones are formed
during the natural and artificial aging, indicating an increase in material strength. After additional
aging, η′ precipitates and the strength of the material reaches its climax (peak aged). However, as η′
continues to grow and η starts to precipitate, there is a decrease in the strength of the sample (over-aged).
Therefore, increasing the testing temperature increases the strength as a result of the formation of
precipitates until the peak-age condition is reached. The amount of solute atoms is also decreased. The
succeeding sections discuss each testing temperature based on the above findings.

4.1.1. Temperature of 77 K

In [15], when the load was held during indentation at room temperature, the loading curvature
after holding was obtained to be higher than that before the holding. This is attributed to the fact that
an amount of solute atoms in solid solution diffuses into the dislocations during the holding period,
thereby, causing the pinning of dislocations. At 77 K, which is a very low-temperature environment,
the above-mentioned precipitation process was not observed and the sample probably remained in a
solid solution. Therefore, solute atoms were in the solid solution during the indentation. However,
there was no increase in the loading curvature after holding. This indicates that solute atoms have not
segregated (or diffused) to the dislocations and pinned them in this low-temperature environment
because solute atom diffusion is very slow as shown in Table 2, i.e., no time for diffusion.

4.1.2. Temperature of 293 and 343 K

In agreement with the results obtained in a previous study [18], an increase in the value of the
loading curvature after holding was observed at 293 and 343 K as a result of dislocation pinning caused
by the diffusion of solute atoms into the dislocations. At 343 K, the GP zone formed inside the material
as a result of aging. However, a sufficient number of solute atoms to cause dislocation pinning was
expected to be retained in the solution.

4.1.3. Temperature of 443 K

In contrast to the results obtained in the tests conducted at 293 and 343 K, at 443 K, the value of
the loading curvature after holding was smaller than that before holding. This could be attributed to
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the fact that the amount of solute atoms must have been significantly reduced by aging, hence, the
dislocation pinning effect was less likely to occur.

4.2. Effect of Testing Temperature on the Serration Behavior

Figure 8 shows an enlarged view of the region of the curve that is indicated by the arrow in
Figure 7b as a means to investigate the details of the loading curvature-displacement relationship.
Serrations were observed at 293 and 343 K but not at 77 and 443 K. The effective strain rate was
approximately 7 × 10−4 s−1 at all testing temperatures (see Figure 6). It has been stated that the
serrations observed in uniaxial tests were affected by the strain rate and the testing temperature.
To discuss the effect of testing temperature on the serration behavior observed in this study, the testing
temperatures related to indentation were investigated.

Figure 8. Enlarged view of Figure 7b: (a) 77 K, (b) 239 K, (c) 343 K, and (d) 443 K.

4.2.1. Temperature of 77 K

At 77 K, no fluctuation was observed in the loading curvature, as shown in Figure 8a, hence,
serrations did not occur at this temperature. Because serrations occur at room temperature, it is
assumed that the effect was not due to strain rate. This indicates that aging does not occur at very
low temperatures. It also shows that there was barely any interaction between the dislocations and
solute atoms.

4.2.2. Temperature of 293 K

As shown in Figure 8b, there was a significant fluctuation in the loading curvature. The occurrence
of B-type serrations was confirmed (see Figure 1). There was a large number of solid solution atoms in
the sample as 293 K corresponds to the early stage of aging. Consequently, there was a tendency for
interaction between dislocations and solute atoms in solid solution to occur. Thus, the occurrence of a
significant number of serrations was confirmed.
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4.2.3. Temperature of 343 K

At 343 K, as shown by the arrow in Figure 8c, the interval at which the loading curvature dropped
is greater than that at 293 K (see Figure 8b). Therefore, A- and B-type serrations (see Figure 1) were
confirmed to have occurred. As the strain rate was constant, other causes of change in the serration
phenomenon were observed. These are inferred to be the formation of GP zones, thus, a decrease in
the number of solute atoms, and the increase in testing temperature. When the amount of solute atoms
decreases, the chance of interaction with dislocations decreases, hence, serrations barely occur.

4.2.4. Temperature of 443 K

No serration was observed at 443 K because of the formation of η′ and the increase in the strength
of the material. The amount of solute atoms was, therefore, greatly reduced compared with other
testing temperatures. Thus, the interaction between dislocations and solid solution atoms was less
likely to occur. In addition, the diffusion rate of solute atoms at 443 K is higher than that at 343 K, hence,
it is inferred that the remaining solid solution solute atoms were pinned to dislocations and deviates
from the conditions at which serrations could occur. Therefore, it is believed that the interaction
between dislocations and solid solution atoms does not appear in the loading curvature.

5. Conclusions

In this study, to clarify the effect of temperature change on the resulting serrations during
indentation tests, we performed milli-indentations on an aluminum alloy (7075 alloy) at various
temperatures. The serration phenomenon during indentation was varied by controlling the number of
precipitated phases based on the effect of natural and artificial aging. This variation was as a result of
the interaction between dislocations and the solid solution atoms observed under the different testing
temperatures and strain rate on indentation, similar to that observed in previously reported uniaxial
test results. Therefore, the serration phenomenon can be investigated via sharp indentation tests,
which is considered valuable as a non-destructive testing technique for evaluating the dynamic strain
aging of next-generation metals.

This study focused on the interaction between dislocations and the number of solute atoms based
on the varying temperature and strain rate in indentation tests. Thus, the effect of the number of
solute atoms and the testing temperature cannot be separated. Therefore, qualitative evaluations
(e.g., microstructure evaluation by transmission electron microscopy or X-ray diffraction) to study the
conditions that may separate these effects is recommended for future studies.
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Abstract: The influence of grain shape and crystallographic orientation on the global and local
elastic and plastic behaviour of strongly textured materials is investigated with the help of full-field
simulations based on texture data from electron backscatter diffraction (EBSD) measurements.
To this end, eight different microstructures are generated from experimental data of a high-strength
low-alloy (HSLA) steel processed by linear flow splitting. It is shown that the most significant
factor on the global elastic stress–strain response (i.e., YOUNG’s modulus) is the crystallographic
texture. Therefore, simple texture-based models and an analytic expression based on the geometric
mean to determine the orientation dependent YOUNG’s modulus are able to give accurate
predictions. In contrast, with regards to the plastic anisotropy (i.e., yield stress), simple analytic
approaches based on the calculation of the TAYLOR factor, yield different results than full-field
microstructure simulations. Moreover, in the case of full-field models, the selected microstructure
representation influences the outcome of the simulations. In addition, the full-field simulations,
allow to investigate the micro-mechanical fields, which are not readily available from the analytic
expressions. As the stress–strain partitioning visible from these fields is the underlying reason for the
observed macroscopic behaviour, studying them makes it possible to evaluate the microstructure
representations with respect to their capabilities of reproducing experimental results.

Keywords: anisotropy; linear flow splitting; crystal plasticity; DAMASK; texture; EBSD

1. Introduction

The plastic deformation induced during processing of metallic materials typically results in strong
crystallographic textures and, thereby, macroscopically anisotropic mechanical properties. The prime
example for such a process is the cold rolling of metal sheets, which is used for processing such
diverse materials as aluminum, magnesium and steel. As the anisotropic elastic and plastic behaviour
induced by texture and grain morphology has a significant influence on formability and dimensional
accuracy, it is imperative to account for the anisotropy when conducting high-precision metal forming
simulations [1]. However, the direct multi-scale inclusion of all microstructure details is usually
computationally prohibitive. Approaches to reduce the computational efforts include model order
reduction schemes [2,3], the use of Statistically Similar Representative Volume Elements (SSRVEs) [4]
and homogenization methods like the Relaxed Grain Cluster (RGC) scheme by Tjahjanto et al. [5].
Despite these efforts to include microstructure details, usually analytic yield surface descriptions are
employed to include plastic anisotropy. The superior execution speed of analytic yield descriptions,
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though, comes often at the price of significant experimental efforts associated with calibrating their
constitutive parameters. Especially for complex yield surface descriptions (Banabic [6] gives a detailed
overview), which require to probe the materials response in multiple deformation modes, it is therefore
desirable to (partly) replace experiments by micro-mechanical simulations using numerical methods
such as the Finite Element Method (FEM) [7] or Fast FOURIER Transform (FFT) based spectral
methods [8]. Gawad et al. [9] extended this concept in their “Hierarchical Multi-Scale Model” (HMS)
by performing on-the-fly yield surface computations.

All approaches that aim at improving the quality of component-scale simulations by taking
the average material response from the homogenized polycrystal response are based on two
ingredients: a description of grain morphology and texture as well as a suitable model for the single
crystal behaviour. In this study, different approaches for microstructure and texture representation
(i.e., the first ingredient) are compared with respect to their ability to correctly predict the elastic and
plastic anisotropy of a strongly textured material. The materials constitutive behaviour (i.e., the second
ingredient) is described with a crystal plasticity formulation that is classified as “phenomenological”
by Roters et al. [10].

It should be noted that CPFEM studies with similar aims have already been performed
20 to 30 years ago [11–14]. While most of these studies were focused on the investigation of texture
development, the ability of the CPFEM approach to predict average mechanical properties was also
shown. However, the increase in computational capacities allows now to redo such investigations
with much higher spatial resolution. In this study, more than two million discrete points—each
with its directly measured orientation—are used for each individual simulation while in the early
days of CPFEM modeling even a few hundreds of thousands elements was associated with long
computation times.

The material investigated here is a high-strength low-alloy (HSLA) steel processed by linear
flow splitting. The linear flow splitting process, presented in detail by Groche et al. [15], is used
to produce bifurcated profiles in an integral style. It enables the manufacturing of sheet metal
products with improved quality at lower costs [16] in comparison to conventional, multistep production
routes. From previous investigations by Bruder et al. [17] it is known that the microstructure of the
produced profile has a crystallographic texture and grain morphology that resembles that of cold rolled
body-centred cubic (bcc) steels [18]. With regards to further processing of parts produced by the novel
linear flow splitting technique, an accurate description of the resulting anisotropic material properties
and their implementation in metal forming simulations is of great importance for exploiting the full
potential of this technique. In a previous study by Niehuesbernd et al. [19], the elastic anisotropy
induced by linear flow splitting in the investigated HSLA steel has been characterized experimentally
and compared to predictions from analytic models based on the measured crystallographic texture.
It was shown that the effective orientation dependent YOUNG’s modulus can be accurately predicted
from the crystallographic information when the geometric mean is used to calculate the polycrystalline
average from the the single crystal stiffness/compliance tensor. The values obtained from the geometric
mean lie well in-between the upper bound resulting from the assumption of spatially constant strains
introduced by Voigt [20] and the lower bound based on the assumption of spatially constant stress
by Reuss [21]. In addition—and in contrast to other approaches such as the Hill [22] average—this
averaging scheme gives the same results regardless whether the stiffness or the compliance tensor is
used. However, the complete omission of the grain morphology might render this approach invalid for
the elongated grains of the probed material (compare the work of Jöchen et al. [23]). The present study
therefore aims at evaluating the impact of the grain aspect ratio on the elastic and plastic behaviour
of strongly textured microstructures by means of full-field simulations. To this end, results from
numerical simulations employing microstructure representations of different degrees of sophistication
are compared to simple analytic, texture-based models.

The study is structured as follows—First, details of the investigated material, including
production steps and employed characterization methods, are given. The following section deals with
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the used numerical simulation method and the employed approaches for constructing microstructure
representations from experimental data. The results are presented in Section 4 and compared
and discussed with respect to the performance of the various simulation approaches in Section 5.
After that, the conclusions that can be drawn from the results and the associated discussion are
presented. The study finishes with an outlook on how to improve the predictive quality of crystal
plasticity simulations.

2. Material: Composition, Processing and Characterization

The investigated material is an H480LA HSLA steel with a carbon content of 0.07 wt.%; details of
the material are presented by Niehuesbernd et al. [19]. The microstructure of the material in as-received
condition consists of ferrite grains and small cementite particles at the grain boundaries. Linear flow
splitting was carried out continuously in 10 stages to produce double-Y-profiles with 12 mm long and
1 mm thick flanges (see Figure 1) from the initial sheet with a thickness of 2 mm.

Figure 1. Upper half of the double-Y-profile produced by linear flow splitting with marked positions
of the tensile samples (left) and their geometry (right).

Three mutually perpendicular cross sections parallel to normal direction (ND), rolling direction
(RD) and transverse direction (TD) of the flanges were produced (see Figure 1) for texture and
microstructure investigations. Sample preparation for Electron Backscatter Diffraction (EBSD) was
performed using standard metallographic grinding and polishing techniques followed by an additional
polishing step with an aqueous suspension of 0.05 μm Al2O3 particles. Subsequent EBSD
measurements were carried out on all three samples with a Tescan Mira3 feg scanning electron
microscope at a distance of 170 μm from the flange top surface. The size of the characterized area was
adapted to the microstructure so that the maps contained at least 2000 grains and about 2.5 million
measurement points to ensure an accurate representation of texture data and grain morphologies
at the same time. The three obtained microstructure maps are shown in Figure 2 with color code
assigned according to the inverse pole figure (IPF) in the respective sample surface normal direction.
It can be seen that the material exhibits a microstructure with highly elongated, “pancake shaped”
grains (see Figure 2) with average grain dimensions of 0.2 μm in ND, 0.8 μm in TD and 1.4 μm
in RD. The apparent grain aspect ratios in the cross sectional measurements are therefore about
6.9 in the RD-section, 4.0 in the TD-section and 1.7 in the ND-section. The microstructure features
a strong bcc-rolling texture including a distinct α-fiber (〈1 1 0〉 ‖ RD) with a dominant rotated cube
orientation ({0 0 1}〈1 1 0〉 (the {0 0 1} crystal planes are parallel to the sheet plane (ND) and the 〈1 1 0〉
crystallographic directions are parallel to the rolling direction (RD).) having maximum intensity of
about 20 times random and a typical γ-fiber (〈1 1 1〉 ‖ ND). The ϕ2 = 45°-section of the orientation
distribution function (ODF) of the texture data from the TD-section is shown in Figure 3.
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(a) (b) (c)

Figure 2. Microstructure maps in three mutually perpendicular directions of the material after linear
flow splitting. Crystallographic orientation is given in terms of the inverse pole figure parallel
to the measurement direction. Note the lower magnification of the normal direction (ND)-section
in comparison to the rolling direction (RD)- and transverse direction (TD)-section. (a) ND-section.
(b) RD-section. (c) TD-section.

18.70.0

ϕ1 (0.0° to 90.0°)

Φ (0.0° to 90.0°)
ϕ2 = 45.0°

Figure 3. ϕ2-section of the orientation distribution function (ODF) calculated from the TD-section
using a harmonic series expansion approach. ϕ1, Φ and ϕ2 are the BUNGE–EULER angles.

Tensile tests were performed on the flange material in order to obtain experimental data
on the plastic behaviour. For this purpose, dogbone-shaped tensile samples along TD, RD and under
45° between these directions were prepared (see Figure 1). The samples were ground from the flange
top surface by 90 μm and afterwards from the lower surface to a final thickness of 130 μm in order to
perform the tests at approximately the same positions as the microstructure investigations.

Without using numerical simulations, the orientation dependent YOUNG’s modulus was directly
estimated from the measured texture by computing the geometric mean of the stiffness tensor as:

Cgeom = exp

(
1
N

N

∑
i=1

ln
(

TT
i C Ti

))
. (1)

Here, N is the number of measurement points, C the stiffness tensor in crystal coordinates
(cube orientation) and T are rotation matrices obtained from the EBSD measurements. The YOUNG’s
modulus in any given direction is then calculated from this tensor for each direction. As shown
by Niehuesbernd et al. [19], values provided by this approach fall well into the range determined from
ultrasonic measurements, which is therefore preferred over more involved approaches [22,24].

Given the success of this averaging approach when calculating the elastic response, it was also
used to calculate the average Taylor [25] factor M for prediction of the average plastic behaviour.
To this end, the individual TAYLOR factor Mi for uniaxial tension in the considered loading direction
was calculated assuming slip on 〈1 1 1〉{1 1 0} and 〈1 1 1〉{1 1 2} slip systems with equal critical shear
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stresses on all slip systems for all orientations. Then, the geometric mean of these N TAYLOR factors is
calculated according to the following equation:

Mgeom = exp

(
1
N

N

∑
i=1

ln (Mi)

)
. (2)

The proof stress at 0.05% plastic deformation, σy, from the tensile test along TD was selected to
determine the apparent critical resolved shear stress τCRSS. With the TAYLOR factor from the combined
texture data of all three EBSD measurements a value of τCRSS = 268 MPa was determined via
τCRSS = σy/M. This calculation is, however, only a rather rough approximation since it is based
on the assumption of a homogeneous deformation of all points, irrespective of their crystallographic
orientation. Moreover, this approximation does not take into account that different types of slip
systems can have different critical resolved shear stresses. Nevertheless, this approach enables to
analytically estimate the yield strength distribution for comparison with values obtained by numerical
simulations and tensile tests.

3. Simulation Setup

The simulation setup, consisting of a microstructure representation, a constitutive law
and a numerical solver for solving mechanical equilibrium under given boundary conditions,
is outlined in the following.

3.1. Microstructure Representation

To investigate the influence of grain morphology and crystallographic texture on the global
and local stress–strain behaviour, different microstructure representations are created based
on the EBSD measurements presented in Section 2. While the first series of representations (I) is
based on the individual data per measurement, all three measurements are combined for the second
series (II) to increase the statistical reliability.

The five microstructure representations of series I based on the the three individual measurements
are the following:

I a Direct takeover 2D: These 2D full-field models are based on a direct takeover of the measured
crystallographic orientation on each of the 1601 × 1600 = 2,561,600 points (see Figure 2).

I b Random orientation assignment 2D: By randomly shuffling the measured crystallographic
orientations among the points, a second set of 1601 × 1600 resolved 2D microstructures has
been created.

I c Random orientation assignment 3D: The random distribution of almost all (Less than 2%
of the discrete crystallographic orientations had to be discarded when distributing them
on an equi-gridded cube (1363 < 1601 × 1600 < 1373).) measured orientations on a 3D grid with
136 × 136 × 136 = 2,515,456 points gives a third set of microstructure variants.

The latter two microstructure variants lack any information on grain morphology but contain
the full information of the crystallographic texture. This can be clearly seen in Figure 4a, where the 3D
model (I c) based on the ND-section data is shown. When applied to a component scale simulation, this
approach results in microstructure representations similar to the ones used in the “Texture-Component
Crystal Plasticity FEM” (TCCP-FEM) introduced by Roters and Zhao [26] and Böhlke et al. [27].
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(a) (b) (c)
Figure 4. Microstructural models created from the measured crystallographic orientation. ND is
aligned with the vertical direction, morphologically there is no difference between RD and TD for all
three models. (a) Microstructure I c: Point-wise random orientation distribution, exemplarily shown
for the ND-section. The legend is shown in Figure 2a. (b) Microstructure I e: 1000 globular grains
with homogeneous crystallographic orientation, exemplarily shown for the RD-section. The legend is
shown in Figure 2b. (c) Microstructure II c: 1000 elongated grains with homogeneous crystallographic
orientation. The legend is shown in Figure 2c.

The orientation information, that is, texture, for the fourth and fifth set of microstructure
representation is created in the following way: First, a discrete ODF with a bin size of 5.0° is created
from the BUNGE–EULER angle representation of the crystallographic orientations without taking
the sample symmetry into account. Second, using the HYBRIDIA method developed by Eisenlohr and
Roters [28], the 1000 orientations that best represent the whole ODF are selected (see Reference [29]
for a different approach to reduce the orientation data.). A comparison of texture index and entropy
using MTEX 4.5.0 by Bachmann et al. [30] between the full texture and the selected orientation reveals
a good approximation, especially there is no significant sharpening or weakening of the texture when
using the approximation by 1000 orientations. This reduced texture is used for the following two
representations in the first series:

I d 2D VORONOI tessellation: A regular grid of 2024 × 2024 = 4,096,576 pixel is divided into
1000 grains with a periodic VORONOI tessellation. Each grain gets a homogeneous initial
orientation assigned.

I e 3D VORONOI tessellation: Similarly, a 160 × 160× 160 = 4,096,000 voxel grid is divided into
1000 equiaxed grains with a periodic VORONOI tessellation. The resulting microstructure
for the RD-section is shown in Figure 4b.

Three more microstructure representations are generated from the combined texture information
of all three measurements to increase the statistical reliability. The same approach to reduce the texture
data to 1000 orientations as for microstructures I d and I e is employed:

II a 3D microstructure without grain information: This TCCP-FEM model is conceptually
a combination of variant I c (Random orientation assignment 3D) and I e (3D VORONOI

tessellation): 1000 orientations are assigned to the points of a 10 × 10 × 10 grid.
II b 3D microstructure with globular grains: The same geometric representation as for variant I e

(3D VORONOI tessellation) is used but the 1000 orientations represent the texture of all three
measurements. To investigate the influence of the grain shape separately from the influence
of the strong crystallographic texture present in the probed material, a variant of this
microstructure is created in which 1000 randomly sampled orientations are assigned to the grains.

II c 3D microstructure with elongated grains: To generate elongated grains, a standard VORONOI

tesselation of 1000 seed points is performed on a 160× 160× (160 · 8) grid from which only every
eights plane along the last direction is used. The resulting grain structure with a grain aspect
ratio of 8:8:1 (RD:TD:ND) and initial homogeneous orientation per grain is shown in Figure 4c.
To investigate the influence of the grain shape separately from the influence of the strong
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crystallographic texture present in the probed material, a variant of this microstructure is created
in which 1000 randomly sampled orientations are assigned to the grains.

Preliminary control simulations have shown that the artificially created microstructures (I b to I e
and II a to II c) are representative, that is, the statistical and macroscopic results considered here do
not differ significantly. This finding is in agreement with a similar study on Dual Phase (DP) steels
by Diehl [31] where measured microstructures where systematically coarsened.

3.2. Constitutive Model for Crystal Plasticity

A viscoplastic phenomenological formulation for crystal plasticity, introduced in similar form
by Hutchinson [32] and Peirce et al. [33], is used in combination with an elastic stiffness tensor
with cubic symmetry to describe the behaviour of the bcc material. This crystal plasticity model
is based on the assumption that plastic slip γ occurs on a slip system α when the resolved shear
stress τα exceeds a critical value ξα. The critical shear stress on each of the 24 slip systems is
assumed to evolve from an initial value, ξ0 to a saturation value ξ∞ due to slip on the 12 〈1 1 1〉{1 1 0}
and 12 〈1 1 1〉{1 1 2} systems according to the relation ξ̇α = h0 |γ̇β| |1 − ξβ/ξ

β
∞|a sgn(1 − ξβ/ξ

β
∞) hαβ

with initial hardening h0, interaction coefficients hαβ, a numerical parameter a and β = 1, . . . , 24.
The shear rate on system α is then computed as γ̇α = γ̇0|τα/ξα|n sgn(τα/ξα) with the inverse
shear rate sensitivity n and reference shear rate γ̇0. The sum of the shear rates on all systems
determines the plastic velocity gradient Lp in the employed finite strain formulation. Values for
the single crystal stiffness tensor of iron at room temperature are known with good precision from
experiments [34,35]. Here the values from the latter reference, given in Table 1a, are used. Parameters
for the plastic behaviour (Table 1b) are based on parameters used by Tasan et al. [36], however, ξ0 and
ξ∞ have been re-scaled by a constant factor such that model II c (3D microstructure with elongated
grains) loaded in TD-direction reproduces the experimentally obtained proof stress. The constitutive
formulation is implemented in the Düsseldorf Advanced Material Simulation Kit (DAMASK, presented
in detail by Roters et al. [37,38]) where it can be used with different solvers for mechanical equilibrium,
i.e., the commercial finite element solvers MSC.Marc and Abaqus and an efficient FFT-based spectral
solver. The latter one is used in this study, details are given in the following.

Table 1. Constitutive parameters for the phenomenological crystal plasticity description.
(a) Elastic behaviour. (b) Plastic behaviour.

(a)

Property Value Unit

C11 230 GPa
C12 134 GPa
C44 116 GPa

(b)

Property Value Unit

γ̇0 1.0 mms
τ0,{1 1 0} 354 MPa
τ∞,{1 1 0} 837 MPa
τ0,{1 1 2} 361 MPa
τ∞,{1 1 2} 1538 MPa

h0 1.0 GPa
Coplanar hαβ 1.0

Non-coplanar hαβ 1.4
n 20.0
a 2.0
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3.3. Numerical Solver and Boundary Conditions

An FFT-based spectral solver is employed to solve for static mechanical equilibrium. It is based
on the finite strain extension by Lahellec et al. [39] of the well-established formulation by Moulinec
and Suquet [40], Lebensohn [41]; details regarding formulation, implementation and numerical
performance are presented in References [42,43]. This solver operates on a regular grid, which
allows the direct point-wise takeover of the EBSD data. Since an infinite medium is assumed, the data
is periodically repeated in all three directions, which introduces artifacts at the boundary if the
investigated microstructure is not periodic. For an infinite body, the applied boundary conditions
are volume averages which in the employed large-strain formulation are given in mutually exclusive
components of deformation gradient F and first PIOLA–KIRCHHOFF stress P. Uniaxial loading along
16 different directions at a rate of 0.0002 s−1 was applied in 25 increments of 1 s duration, i.e., until
a final technical strain of 0.5% was reached. In case of loading the ND-section (Figure 2a), loading
varied from θ = 0.0° (along RD, horizontal) to θ = 168.75° in 11.25° steps, i.e., θ = 90.0° corresponds
to loading along TD (vertical direction) and a rotation by θ = 180.0° is equivalent to no rotation
(θ = 0.0°). The corresponding deformation gradient, first PIOLA–KIRCHHOFF stress tensor and rotation
matrix read as

F =

⎛
⎜⎝1.0 + x 0.0 0.0

0.0 ∗ 0.0
0.0 0.0 ∗

⎞
⎟⎠ (3a)

P =

⎛
⎜⎝∗ ∗ ∗
∗ 0.0 ∗
∗ ∗ 0.0

⎞
⎟⎠ (3b)

R =

⎛
⎜⎝+ cos(θ) − sin(θ) 0.0
+ sin(θ) + cos(θ) 0.0

0.0 0.0 1.0

⎞
⎟⎠ . (3c)

Here, the symbol “*” indicates an undefined component since values in F and P are mutually
exclusive. The strain x in the (11) component of F is set to 0.005 (0.5%) and θ measures the angle
between RD and TD along ND.

4. Results

The simulation results are presented in the following. First, to quantify the average elastic and
plastic behaviour, the orientation dependent YOUNG’s modulus (E) and yield stress (σy) are given
and compared to the corresponding results from the analytic calculations (Section 4.1). Then the local
stress–strain distribution of selected simulations is presented in Section 4.2 to investigate in detail
the differences at the micro-scale caused by the very different model assumptions.

4.1. Average Behaviour

YOUNG’s modulus E resulting from the simulations is calculated as E = σ/ε where σ is the average
second PIOLA–KIRCHHOFF stress and ε the average GREEN–LAGRANGE strain along the loading
direction at the first, purely elastic loading step.

Table 2 gives an overview of the obtained values for loading along ND, RD and TD. Table 2a
shows that the simulation results obtained from the individual sections differ by at most +4 GPa and
−3 GPa from the analytic results and Table 2b reveals even slightly smaller differences when using
the combined texture (+3 GPa and −2 GPa). For both, analytic calculation and simulated results,
the YOUNG’s modulus along ND calculated from the RD-section is approximately 10 GPa higher than
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the value obtained from the TD-section. The differences between these sections are, hence, significantly
higher than among all full-field simulation approaches.

Table 2. YOUNG’s modulus E along ND, RD and TD. Niehuesbernd et al. [19] determined
END = (204 ± 10)GPa, ERD = (212 ± 10)GPa and ETD = (232 ± 10)GPa by ultrasonic measurements.
(a) Results from the geometric mean calculation using the texture of the individual measurements.
The highest and lowest values from simulations I a (direct takeover 2D), I b (random orientation
assignment 2D), I c (random orientation assignment 3D), I d (2D VORONOI tessellation) and I e (3D
VORONOI tessellation) are given as superscript and subscript, respectively. (b) Results from the
geometric mean calculation and from simulations using the combined texture information. II a:
3D microstructure without grain information, II b: 3D microstructure with globular grains, II c: 3D
microstructure with elongated grains.

(a)

ND-Section RD-Section TD-Section

END/GPa - 205206
202 194195

191

ERD/GPa 217220
219 - 215217

214

ETD/GPa 233237
234 231235

231 -

(b)

Geometric Mean Simulation

All Orientations 1000 Orientations II a II b II c

END/GPa 198 198 199 198 196

ERD/GPa 215 215 216 216 215

ETD/GPa 233 234 235 234 236

Figure 5 displays the course of YOUNG’s modulus over the three mutually perpendicular sections
corresponding to the measurements. As the symmetry of grain shape and crystallographic texture
allows to average the values of loading directions with an angular difference of 90° around the sample
normal, only values for half of the considered loading direction range (0° to 180°) are shown. A cubic
spline interpolation was performed to obtain values between the rotation angles for which a simulation
was conducted. The analytic calculation has been performed at steps of 1°, making an interpolation
unnecessary. Figure 5a compares the results of the analytic calculation to both 2D simulations using
the full set of orientations from the individual measurements (i.e., microstructure sets I a and I b).
Additionally, the range observed among all five simulations (I a to I e) is given as a background color.
Figure 5b shows results from the analytic and numerical calculations from the combination of the full
texture information and the cases of a random texture (models II b and II c only).
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Figure 5. YOUNG’s modulus in dependence of loading direction. Left: ND-section, Center: RD-section,
Right: TD-section. (a) Results from simulations and the geometric mean calculation using the data
of the individual measurements. The range between highest and lowest simulation result from all
five microstructure variants (model I a to I e) is indicated by the background color (b) Results from
the simulations and the geometric mean calculations using the combined texture data.

Among all simulation results obtained from the individual measurements (Figure 5a) the relative
difference computed as (max(ai) − min(ai))/ avg(∑ ai) is smaller than 2.0%, 3.0% and 4.0% for
the RD-section, ND-section and the TD-section, respectively. Results obtained by the analytic
calculation are very close to the simulation not taking the grain shape into account (microstructure
variant I b). The largest deviations between the two simulation approaches in Figure 5a can be seen for
loading along ND (RD-section at 90°, TD-section at 0°), where the values obtained from the simulation
including grain shape are lower by 4 GPa and at 45° between ND and RD where the simulation
including grain shape is higher by 4 GPa. Overall, the influence of the grain morphology is rather
small, a finding in agreement with a study by Jöchen et al. [23].

There are virtually no differences observable between the results from the analytic calculations
using the complete orientation information obtained from all three measurements and its sample
consisting of 1000 representative orientations, see Figure 5b. The same holds for the 3D models, where
the use of globular (II b) and elongated (II c) grain shapes gives virtually the same results. Moreover,
the differences between the simulations and the analytic calculations are smaller than 3 GPa (less than
1.5%) for the whole orientation range (Figure 5b).

The results from the tensile tests of the three samples from the flange material (Figure 1) are
given in Figure 6; Figure 6a shows the engineering stress–strain curves and Figure 6b the extracted
flow curves together with the 0.05% proof stress used to approximate the yield point. A clear
influence of the loading direction can be seen: the sample oriented under 45° between RD and
TD shows a significantly higher uniform elongation as well as a slightly higher strain hardening rate
in comparison to the samples oriented in RD and TD, respectively. To determine the yield stress from
the stress–strain curve, first the elastic portion of the strain is subtracted and the flow curves are plotted
(Figure 6b). Then, the stress at 0.05% plastic strain was defined as the proof stress/yield point σy.
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The values determined in this manner amount to about 895 MPa in RD, 890 MPa in TD and 845 MPa
under 45° rotation between RD and TD.
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Figure 6. Experimental results of the tensile tests from the samples cut from the flange material.
(a) Engineering stress–strain curves. (b) Flow curves the with 0.05% proof stress indicated.
ϕ: Plastic deformation.

A similar but automated procedure was employed to define the yield stress of each of the
384 crystal plasticity simulations. For the automatic determination, first a continuous representation
has been created with a spline interpolation from the 25 stress–strain values per simulation. From this
smooth stress–strain curve, the elastic part has been subtracted to evaluate the stress at 0.05% plastic
strain. A comparison with results obtained by the method proposed by Christensen [44] and the direct
calculation of a plastic strain offset from the constitutive model (i.e., the plastic strain calculated
from Lp) revealed only quantitative but no qualitative differences. It should be noted that adjusting
the phenomenological constitutive parameters allows to reproduce the yield point or proof stress for
any other method or threshold value as well.

Table 3 gives an overview of the obtained yield point values for loading along ND, RD and TD.
In this table, the microstructure representations used to adjust the parameters are also indicated; those
are the full orientation set for the TAYLOR factor calculation and variant II c for the full-field simulations.
An influence of both, orientation data and modeling approach, is observed:

• The yield stress calculated for the individual sections with the analytic approach depends slightly
on the data set, it differs by 30 MPa (i.e., 3.4%) for the yield stress in TD direction σy,TD, see Table 3a.

• The various microstructure models used for the individual data (I a to I e) predict differences of
up to 38 MPa (σy,TD calculated from ND-section data), see Table 3a.

• The yield stress in RD, σy,RD, predicted by all simulations is lower than the value obtained from
the analytic expression.

• Sampling 1000 orientations from the combined texture results in an increase of the predicted
yield stress by 4 MPa to 12 MPa when employing the analytic approach, see Table 3b.

• Employing the simpler models (II a: 3D microstructure without grain information and II b: 3D
microstructure with globular grains) lowers σy,TD and σy,ND and increases σy,RD in comparison to
model II c (3D microstructure with elongated grains) which has the most realistic grain geometry,
see Table 3b.
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Table 3. Yield stress σy along ND, RD and TD. The experimental values are σy,RD = 895 MPa and
σy,TD = 890 MPa. (a) Results from the geometric mean calculation using the texture of the individual
measurements. The highest and lowest values from simulations I a (direct takeover 2D), I b (random
orientation assignment 2D), I c (random orientation assignment 3D), I d (2D VORONOI tessellation)
and I e (3D VORONOI tessellation) are given as superscript and subscript, respectively. (b) Results
from the geometric mean calculation and simulations using the combined texture information. II a:
3D microstructure without grain information, II b: 3D microstructure with globular grains, II c: 3D
microstructure with elongated grains. The results used to determine the scaling factor for the analytic
expression and the crystal plasticity parameters from the experimental reference value are underlined.

(a)

ND-Section RD-Section TD-Section

σy,ND/MPa - 786902
876 769862

832

σy,RD/MPa 889873
844 - 873837

818

σy,TD/MPa 904911
873 874898

885 -

(b)

Geometric Mean Simulation

All Orientations 1000 Orientations II a II b II c

σy,ND/MPa 778 782 857 853 877

σy,RD/MPa 874 883 842 837 825

σy,TD/MPa 890 902 888 885 890

The course of σy is presented in Figure 7 in a similar fashion as for the YOUNG’s modulus
in Figure 5. For σy, however, only results obtained from the combined texture data are presented as
the inaccuracies resulting from the use of the individual measurements are already known. It can be
seen that the two considered simulation approaches (II b and II c) form a narrow band (less than 15 MPa
deviation) of yield point values and cross at four rotation angles. Although both analytic results are
also close to each other, a clear difference to the simulation results can be seen. More precisely,
the simulations predict a rather constant yield point from TD to ND (RD-section) and a peak between
ND and RD whereas the TAYLOR factor calculation results in a decrease from TD to ND followed by
a leveling-off increase between ND and RD. Qualitatively, the minimum at 45° between RD and TD
is similarly predicted by the simulations and the analytic expression but the latter forecasts a higher
value at RD. Comparison to the experimental results reveals a closer agreement for the crystal plasticity
simulation at 45° between RD and TD and for the analytic expression at RD. When comparing the
results of the simulations using a random texture, it can be seen that the grain morphology has
only an effect when loading along ND, that is, perpendicular to the flat side of the elongated grains.
More precisely, σy of the microstructure with elongated grains is higher by approximately 40 MPa
in comparison to the microstructure having globular grains.

To investigate how the grain morphology influences the materials response at higher strain levels,
the LANKFORD coefficient R, that is, the ratio between in-plane strain (perpendicular to the loading
direction) and the out of plane strain (normal to the normal direction) is computed at a total strain of
10% in loading direction. Only 3D models using the combined and downsampled texture information
are compared. The results are shown in Figure 8. It can be seen that the incorporation of the grain shape
results in a reduced R value, while there is no significant difference whether spatially resolved globular
grains or individual orientations per material point are used. It should be noted that the values of R
depend critically on the used method, that is, which strain level is selected and whether the strain
increments or the total strain is used for the determination.
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Figure 7. Yield point in dependence of loading direction. Left: ND-section, Center: RD-section, Right:
TD-section. Results from the combined simulations obtained from the individual measurements and
from the geometric mean calculations.

Figure 8. LANKFORD coefficient in dependence of the loading direction in the ND section. Results for
the 3D models using the combined texture information (II a–c) are shown.

4.2. Micro-Mechanical Behaviour

The micro-mechanical behaviour presented in the following is based on the simulation results
at step 20, that is, a strain of approximately 0.04%. This strain level corresponds to a stress just below
the proof stress.

The spatial distribution of stress and strain in loading direction is shown exemplarily for
the TD-section Figure 9, that is, a model of type I a. In this figure, the local stress and strain
in loading direction is shown at 0.0°, 45.0°, 90.0° to ND. The grain structure is clearly visible, where
the elongated grains are most obvious in the strain map when loaded perpendicular to the long grain
axis and in the stress map when loaded along the long axis. A similar pattern can be observed for
the RD-section (not shown in this study). The clear patterning ranging over the whole microstructure
is less pronounced for equiaxed grains, that is, the ND section and VORONOI tessellated structures
with globular grain morphology in two and three dimensions (I d, I e and II b). The pattern is totally
missing for the random spatial distribution of crystallographic orientations (I b, I c and II a).
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Figure 9. Stress (top row) and strain (bottom row) in loading direction for the TD-section (direct
takeover, microstructure representation I a). The left image shows loading along ND (vertical direction),
the right image loading along RD (horizontal direction) and the central loading aligned at Θ = 45°
in-between ND and RD. A logarithmic mapping from value to color is employed for stress and strain.

For a more quantitative inspection that also enables to systematically investigate the 3D
microstructures, “heat maps” of the stress–strain response of each voxel of the employed
microstructures are plotted. In Figure 10, such maps are shown for the 2D microstructure models
generated from all measured crystallographic orientations in the RD-section sample (model type
I a and I b). Figure 10a,c show the stress–strain response for loading along TD, that is, along the
elongated grains, for the model including grain morphology and the model with random distribution,
respectively. The corresponding plots for loading along ND, that is, perpendicular to the long axis
of the grains are given in Figure 10b,d. Independently of the microstructure model, a characteristic
unimodal distribution results from the loading along TD while a bimodal distribution results from
the loading along the ND. This bimodal distribution is approximately parallel to the strain axis and,
hence, results in unimodal stress distributions (shown on the right side of the heat maps). In contrast,
the shape of the strain distributions (shown on the top of the heat maps) depends on the microstructure
model. Taking the grain shape into account (I a, Figure 10a) results in a bimodal distribution while the
minimum deteriorates to a plateau for the random orientation assignment (I b, Figure 10d).

Figure 11 shows the heat maps for loading along ND from model variants I c (Random
orientation assignment 3D), I d (2D VORONOI tessellation), I e (3D VORONOI tessellation) created
from the RD-section and II c (i.e., using the combined texture information). Comparing Figure 11a with
Figure 10d shows that for texture component modeling a difference in the stress–strain partitioning
between the 2D and the 3D model (model I b and I c) is hard to ascertain. In contrast, using a 2D or
a 3D model makes a difference for spatially resolved grains: The 2D variant of the model with 1000
grains (I d, Figure 11b) shows significantly stronger clustering than the 3D counterpart (I e, Figure 11c).
The use of a realistic grain shape (II c, Figure 11d) narrows the strain distribution in comparison to the
use of globular grains (I d, Figure 11c). The strain distribution is even more narrow when the measured
microstructure is directly imported (I a, Figure 10b).
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Figure 10. Distribution of the stress–strain correlation (“heat map”) in models created from all
crystallographic orientations measured in the RD-section for loading along TD and ND using a kernel
density estimation. Note: Modeling the response by an isostrain assumption would result in a vertical
line, the isostress assumption would result in an horizontal line. (a) Direct takeover 2D (I a), loading
along TD. (b) Direct takeover 2D (I a), loading along ND. (c) Random orientation assignment 2D (I b),
loading along TD. (d) Random orientation assignment 2D (I b), loading along ND.
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Figure 11. Distribution of the stress–strain correlation (“heat map”) in models created from
the measurement in the RD-section and in a model created from the combination of all three
measurements for loading along ND using a kernel density estimation. Note: Modeling the response
by an isostrain assumption would result in a vertical line, the isostress assumption would result
in an horizontal line. (a) Random orientation assignment 3D (I c), created from the RD-section. (b) 2D
VORONOI tessellation (I d), created from the RD-section. (c) 3D VORONOI tessellation (I e), created from
the RD-section. (d) 3D model with elongated grains (II c).

5. Discussion

Based on the results presented in the previous section, the different approaches for predicting
the global and local material response from experimental orientation data are discussed here.
This discussion is based mainly on the local behaviour as it allows to quantify the factors influencing
the internal stress and strain distribution which in turn determines the global response.

As revealed by the micro-mechanical investigations, the stress–strain distribution resulting from
the full-field simulations has a characteristic shape for the different loading directions—a bimodal
distribution results from loading along ND while unimodal distributions arise from loading along
TD and RD. This behaviour is vastly independent of the selected microstructure representation,
i.e., all presented numerical approaches result qualitatively in a similar distribution. It can, hence, be
concluded that the materials response caused by crystallographic alignment with respect to the loading
direction has a much stronger influence on the stress–strain response than the grain morphology.
For the small strains (0.5%) and the rather isotropic plastic behaviour assumed in this study, the elastic
constants are dominating the constitutive response. The local stress–strain behaviour can therefore be
explained by the spread of the YOUNG’s modulus in the respective direction. For loading in ND, most
grains have either their 〈0 0 1〉 or 〈1 1 1〉 direction aligned with the loading direction. Since these crystals
directions have vastly different directional YOUNG’s moduli of 130 GPa and 275 GPa, respectively;
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the overall YOUNG’s modulus distribution is characterized by two peaks. In contrast, for loading in
RD, most grains have either their 〈1 1 0〉 or 〈1 1 2〉direction aligned with the loading direction. These
crystallographic directions possess virtually the same directional YOUNG’s modulus of around 210 GPa.
Thus, in RD the overall YOUNG’s modulus distribution shows only one narrow peak. The same holds
true for loading along TD, however, the spread is slightly broader in this direction due to the presence
of {1 1 2}〈1 1 0〉 orientations with a directional YOUNG’s modulus of 275 GPa. As these characteristics
of the elastic properties are fully taken into account when using the analytic expression to compute E.
Therefore, this approach (Equation (1)) gives very accurate predictions and no improvement can be
achieved by utilizing full-field methods that additionally consider the grain shape.

The deviations between the predictions from the different EBSD measurements have shown
that the key factor for accurate predictions is the precise determination of the crystallographic
texture. This usually requires probing a large volume of the material and computationally expensive
simulations. However, the number of orientations required for the actual calculation can be
drastically reduced by the use of an appropriate sampling strategy. Here it was shown that sampling
1000 orientations to approximate the 12,000,000 measurement points suffices to predict the YOUNG’s
modulus with an accuracy that exceeds the precision of ultrasonic measurements [19].

When predicting the plastic behaviour in terms of the yield stress, the choice of the microstructure
model has a higher influence than in the elastic case. This can be attributed to the non-linear and
rate-dependent plastic behaviour which is strongly influenced by the level and direction of plastic
shear in the neighboring material points. These interactions are completely ignored when using
the analytic expression based on the TAYLOR factor (Equation (2)). Hence, the observed deviations
between this simple approach and the numerical predictions are to be expected. The largest deviation
is seen for loading along ND, where the upper bound prediction of the analytic expression significantly
exceeds the simulation results. The reason for this observation is the very inhomogeneous strain
state which renders the underlying isostrain assumption of the analytic expression not suitable
in this case. This holds especially for the prediction of the LANKFORD coefficient which is obtained
at a significantly higher strain value. In contrast, the combination of a crystallographic texture with
a unimodal distribution of elastic stiffness and a grain structure resembling an array of stacked disks,
lead to an almost ideal isostress situation. Therefore, approaches that are not based on the isostrain
assumption [45–47] or self-consistent approaches as introduced by Molinari et al. [48] and Lebensohn
and Tomé [49] are expected to improve the prediction without relying on computationally costly
full-field simulations. In that context, it should be mentioned that the increase of the yield strength
for elongated grains in comparison to globular grains observed for the random texture (Figure 7) can
not be explained by reasoning in terms of isostrain or isostress models. While the isostress model
gives the lower bound for the elastic modulus, here a higher yield stress is observed for the more
isostress-like situation of elongated grains. Analysis of the stress–strain data has shown that this is
a result of the initially higher hardening rate of the microstructure with elongated grains which results
in a higher proof stress for the (relatively large) offset of 0.05% strain.

Even though the full-field simulations are largely consistent among each other, the predicted
yield stress for loading along RD is lower by 50 MPa in comparison to the experimental results.
One possible reason for this discrepancy is the underlying assumption of a homogeneous initial
material hardening state when setting up the simulation. To investigate how far this assumption
is violated, the geometrically necessary dislocations (GNDs) in the ND-section microstructure were
estimated using the approach of Field et al. [50]. Based on the median of the TAYLOR factor for
the TD (reference direction for parameter adjustment) and the RD loading directions, the average
GND density for low and high TAYLOR factors was computed. For loading along TD, no difference
in the GND density between grains with low and high M values could be found. More precisely,
the difference was less than 1%. In contrast, for loading along RD, the orientations with a lower M
value showed an increase of the GND density by approximately 8% (As the GND density calculation
from EBSD measurements is associated with multiple sources for errors, it is discussed here only
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in relative terms.). This indicates that the nominally “soft” grains for loading along RD are hardened
more than their “hard” counterparts and, hence, the yield stress is underestimated in the simulations
due to the assumption of a homogeneous initial material behaviour.

6. Conclusions

In the present study, the viability of simple analytical texture-based models is discussed and
evaluated by comparing them with different numerical microstructure models and experimental data.
As the model material used is a HSLA steel processed by linear flow splitting, special attention is
paid to the characteristics of this material—namely the grain morphology and the cold rolling-type
crystallographic texture—and their effect on the global and local stress–strain behaviour. The obtained
results lead to the following conclusions:

• The grain morphology only has a minor impact on anisotropic elastic and plastic properties,
with differences of less than 3% between microstructure based and solely texture based
numerical models.

• Statistically sufficient orientation measurements are more important than grain morphology.
Even measuring 2000 grains does not ensure obtaining a representative orientation data.

• The HYBRIDIA method enables a significant reduction of the orientation data that is required
to accurately represent the texture.

• The simple analytic approach based on the geometric mean is suitable for estimating anisotropic
elastic properties, since it yields very similar results as more complex numerical simulations.

• The underlying isostrain assumption of the TAYLOR model renders it an unsuitable choice
for materials consisting of non-equiaxed grains with very strong anistropic behaviour.

These results indicate that full-field simulations are not required for predicting the YOUNG’s
modulus in dependence of the orientation. Even the simple averaging scheme used in this study predict
values in agreement with experiments and full field simulations. Hence, more advanced averaging
schemes Hill [22], Kiewel and Fritsche [24], Kiewel et al. [51] are unlikely to give better predictions. This
finding holds also to a large extend for the plastic behaviour. Moreover, as full-field crystal plasticity
simulations are often based on microstructures consisting of only a few hundred grains in an attempt
to minimize the computational efforts, there is a danger of using “non-representative volume
elements”. Established mean-field homogenization approaches [52] such as the Grain Interaction
Model (GIA) [53], the (A)LAMEL model [54], the Relaxed Grain Cluster (RGC) model [55,56] or
self-consistent approaches [48,49] are, therefore, better suited as their computational performance
does not require significant compromises on the number of crystallographic orientations. In many
cases they also correctly predict the texture evolution after large deformation in good agreement
with experimental results [49,54], a task that is especially challenging for full-field approaches due
to the severe mesh deterioration. It should be noted, however, that the underlying assumptions
of mean-field homogenization models make them less suited for materials with a high contrast
in stiffness or strength, such as dual phase (DP) steels [57] or α + β-titanium alloys [58].

7. Outlook

The presented findings allow also to draw conclusions for the further use of crystal plasticity
simulations aiming at investigating the material response at the microstructure scale. As obvious
from the investigated stress–strain correlations, the use of 2D microstructures results in more
pronounced localization than in corresponding 3D microstructures and—as shown by [59,60]—makes
any investigation of the local environment impossible. Given the fact that 3D characterizations,
i.e., serial sectioning EBSD [61] or synchrotron measurements [62] are rather costly, the creation of
artificial microstructures is a good compromise that takes both aspects, crystallographic orientation
and grain morphology, into account. Decisive for such approaches is the approximation of the ODF
with a rather small number of distinct orientations. The HYBRIDIA scheme by Eisenlohr and Roters [28]
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has shown a good performance for this task. The microtexture, however, was not taken into account
in the present study. As preferential orientation relations between neighboring grains are present
in most textured materials, considering the misorientation distribution function (MODF) introduced
by Pospiech et al. [63] following the approach of Miodownik et al. [64] can further increase the similarity
between real and synthetic microstructures. The same holds for the incorporation of in-grain orientation
scatter. In the present study, the most realistic microstructure model considered only the average grain
elongation. Even though this results already in a significantly improved local stress–strain response,
taking the full grain size distributions into account would result in a significantly more realistic grain
morphology. DREAM.3D, a software developed by Groeber et al. [65,66], Groeber and Jackson [67]
provides tools for this purpose; the generated microstructures can be directly imported into DAMASK
as shown by Diehl et al. [68]. Last but not least, the preexisting inhomogeneity of the hardening
state among the different orientations/grains should be considered when setting up the simulation.
While this is conceptually also possible with the employed phenomenological description, the use
of a dislocation density-based model would allow to use directly the GND density from the EBSD
measurements as an input parameter without additional fitting. The employed DAMASK package [38]
offers a variety of such physics-based models for bcc materials [69], fcc steels [70] and Tungsten [71].
More advanced modeling approaches that allow to investigate in detail the influence of dislocation
movement and interaction with grain boundaries [72] or the role of damage [73–75] are additionally
available. However, the challenge remains to increase the computational performance of these models
drastically before they can be employed to polycrystals that contain a sufficient number of grains to be
statistically representative.
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Abstract: In this study, gas metal arc welding (GMAW) was used to construct a thin wall structure in
a layer-by-layer fashion using an AWS ER70S-6 electrode wire with the help of a robot. The Charpy
impact test was performed after extracting samples in directions both parallel and perpendicular
to the deposition direction. In this study, multiple factors related to the resulting absorbed energy
have been discussed. Despite being a layered structure, homogeneous behavior with acceptable
deviation was observed in the microstructure, hardness, and fracture toughness of the structure in
both directions. The fracture is extremely ductile with a dimpled fibrous surface and secondary
cracks. An estimate for fracture toughness based on Charpy impact absorbed energy is also given.

Keywords: Charpy impact test; GMAW; additive manufacturing; secondary cracks

1. Introduction

Additive manufacturing can be used to create a near-net shape for complex parts using the
layer-by-layer deposition method. Powder or wire is melted using different energy sources, including
electron beam, laser beam, or electric arc [1–3]. Integrated machinery, such as computer numerical
control gantries or robots, can be used to create parts using wire and arc additive manufacturing.
The mechanical properties of the manufactured materials generally depend on the welding parameters
selected—they have been shown to have better properties than casted materials [4,5]. Researchers have
studied different techniques for the process, including conventional gas tungsten arc welding (GTAW),
gas metal arc welding (GMAW), and cold metal transfer (CMT) [6,7]. This includes studies on topology,
build-up geometry, and material properties of structures made by these methods [8,9]. Comprehensive
studies have been conducted on defects in microstructure and methods to improve them by controlling
deposition strategies and incorporating ancillary processes for quality enhancement [10–12]. A lot
of research is being carried out to control problems related to GMAW-based additive manufacturing,
including dimension control at the start and end of the weld bead [13,14]. The height difference at
the extreme ends is significant for multi-layer single-pass manufacturing, where the height difference
is exaggerated with each layer being deposited, terminating the welding process [15]. Different
techniques have been used to control the welding parameters and attain a maximum effective area in
the resulting structure [13,16]. The resulting structure has different mechanical and material properties
owing to the heat cycles of multiple layer depositions [17].

While studies have been conducted on mechanical properties, including tensile strength and
hardness of materials created by additive manufacturing, little work can be found on the impact
toughness of these materials. Toughness is an important characteristic that can help study the ability
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to absorb energy as well as the ductile or brittle behavior of the structure [18]. Toughness may or
may not be anisotropic, based on the welding process, microstructure, and grain size [19,20]. Charpy
impact testing is one of the most common methods to measure impact toughness. According to a study,
the scatter might be lesser at room temperature, as compared to lower temperatures [21].

The results from the Charpy impact test should be studied in more depth, along with the
microstructure and fracture analysis of the test specimens, to validate the absorbed impact energy [22].
As the fractography recognizes the mechanism of material failure, the behavior of crack propagation
can identify the reasons for higher or lower energy absorbed by the ductile or brittle material. Ductile
fractures have a dimpled surface due to tearing of the material and plastic deformation, while brittle
fractures are evident from cleavage facets and almost no plastic deformation [23]. Moreover, in the
case of ductile fracture, secondary cracks depict the indication of crack deflection with the absorption
of more energy, resulting in better toughness [24].

This research focuses on the impact toughness of components made by GMAW and the possible
factors responsible for the absorbed energy. The microstructure of the specimens is discussed, along
with the fractography of the specimens, after impact testing. The deformation of the broken samples
and intrinsic toughening mechanism are discussed in relation to the absorbed energy. An estimate of
fracture toughness is also presented.

2. Method and Experiment

A thin wall was constructed by robot-assisted GMAW after controlling the welding parameters
at the onset and end of the weld bead. The onset of the weld bead will be referred to as arc-striking,
the end will be termed as arc-extinguishing, and the central part will be referred to as the steady stage;
a schematic diagram is given in Figure 1. Low carbon steel electrode wire ER70S-6 with a diameter of
1.2 mm has been used to carry out the experiments with the following composition (Table 1).

Table 1. Typical chemical composition for electrode wire ER70S-6 (weight percentage).

Elements C Mn Si S P Ni Cr Mo V Cu Fe

wt. % 0.1 1.56 0.88 0.012 0.011 0.01 0.02 <0.01 <0.01 0.24 Bal.

The welding parameters have been controlled on the basis of welding energy profile optimization
for uniform height throughout the weld bead. The travel speed is reduced as the weld bead approaches
a steady stage to control the bulging shape at the arc-striking region. The decreasing slope at the
arc-extinguishing area is controlled by reducing all of the parameters, including current, voltage, and
travel speed. In the current study, the samples were extracted from the steady stage with constant
welding energy of 660 J/mm and a two-minute delay before deposition of subsequent layers to prevent
the process from terminating due to pool flow. This part of the deposition offers equilibrium in
terms of height of the deposition and heat dissipation. The details of the same can be found in
published literature mentioned in [16]. Deposition parameters for the steady stage part of the layer
after equilibrium are provided in Table 2.

Table 2. Deposition parameters for the steady stage part of the layer.

Parameters Current Voltage Welding Energy Travel Speed

Value (units) 120 (A) 19 (V) 660 (J/mm) 3.5 (mm/s)

Absorbed energy was obtained at room temperature using an automatic impact testing machine
JBS-300 (Jinan Kehui Testing Instrument Co., Ltd., Jinan, China) with a maximum capacity of 300 J,
as shown in Figure 2. The pre-lift angle was 150◦, while the impact velocity was 5.2 m/s. The Brinell
hardness test was performed using Huayin 320HBS-3000 (Laizhou Huayin Testing Company Limited,
Laizhou, China) to check the macro hardness of the specimens. Optical microscopy was carried out
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using OLYMPUS GX-71 (Olympus Corporation, Tokyo, Japan), while scanning electron microscopy and
fractography was conducted using TESCAN VEGA (Oxford Instruments Technology, Beijing, China).
X-ray diffraction (XRD) was performed using X’Pert PRO (PANalytical, Eindhoven, Netherlands) with
a copper anode and generator settings of 40 mA and 40 KV.

(a) 

(b) 

Figure 1. (a) Schematic representation of the robot-assisted welded thin wall, highlighting important
areas and the direction of specimen extraction. (b) An as-built wall with depiction of the steady stage
from where samples were extracted for this study.

 

Figure 2. Charpy impact testing machine with a hammer having pre-lift angle of 150◦.

The samples were obtained in directions both parallel to the deposition (hereafter referred to as
horizontal) and perpendicular to the deposition (hereafter referred to as vertical). Due to the limitation
of the available thickness of the thin wall structure, sub-size samples were extracted with dimensions of
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55 × 10 × 5 mm3 in accordance with the specifications mentioned in standard test methods for notched
bar impact testing of metallic materials [25]. Eight samples were extracted in both horizontal and
vertical directions. The extracted sample, along with the impact direction used, is shown in Figure 3.

 

Figure 3. Placement of sample and impact direction.

3. Results and Discussion

Absorbed energy results for both horizontal and vertical samples are given in Figure 4, along with
a comparison of absorbed energy of steel with similar carbon content (i.e., 0.11% C) [26]. The values
for the absorbed energy have been normalized for the full-size sample. The explanation for the
normalizing is provided later in the article. The average value for horizontal specimens (X1 to X8) is
approximately 189 J, while it is approximately 202 J for the vertical specimens (Y1 to Y8).

Figure 4. Absorbed impact energy in joules for horizontal and vertical specimens.

Various methods can be adopted to increase the strength of materials, including cold work
hardening, precipitate or dispersion hardening, and grain refinement [27]. Strengthening is identified
by obstruction in lattice dislocations in all the cases. However, cold working and precipitation hardening
increase the brittleness of the material, while grain refinement has a different effect that enhances
ductility in terms of percentage elongation [28]. The pre- and post-heat effect of each layer being
welded results in the refinement of the grains, causing a higher percentage elongation. The amount
of energy absorbed is comparable to the upper shelf absorbed energy of ferritic structure from the
reference [26], portraying the material’s ability to undergo a large amount of plastic deformation, hence
good ductility. Grain structure is depicted in Figure 5 for different directions and magnification levels.
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Although the structure of the grains is similar within the layer and between the two successive layers,
a difference in size can be observed, as shown in Figure 5a. Higher magnification images are presented
in Figure 5b,c for the intralayer and interlayer microstructures, respectively. The same difference is also
visible in SEM images in Figure 6a,b. Histogram for a part of each SEM image is given in Figure 6c,d
for intralayer and interlayer grain diameter, respectively. As the samples have been taken from the
steady stage area where equilibrium has been achieved, the grain structure is mostly ferritic equiaxed,
as shown in Figure 5. The average grain size number was found to be 10.5, calculated following ASTM
standard E112 [29].

 
(a) 

(b) (c) 

Figure 5. Microstructure attained by an optical microscope. (a) Intralayer microstructure with
slightly more refined grains. Microstructure with a higher magnification for (b) intralayer and
(c) interlayer grains.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Microstructure attained by an SEM with a slight difference in grain size for the (a)
intralayer and (b) interlayer microstructure. Histogram of grain diameter for the (c) intralayer
and (d) interlayer microstructure.

Although hardness varies in direct proportion to the carbon content, fine grain size results in
higher values of hardness [30]. The average hardness value of horizontal samples is approximately
149 BHN with a standard deviation of 1.35, while it is approximately 148.7 BHN with a standard
deviation of 0.71 for vertical samples, as shown in Figure 7. Values are comparable to steel with similar
carbon content.

 

Figure 7. Brinell hardness for horizontal and vertical specimens.
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Low carbon steel with a uniform microstructure is considered to have better toughness because of
its ferritic structure. High carbon steel with a martensitic structure has more brittle sites, providing
lesser resistance to crack propagation [31,32]. However, in this case, a uniform microstructure with a
mostly ferritic structure proves to be a hindrance to dislocations in all directions, resulting in a slanted
fracture in each plane, as shown in Figure 8. This slanted plane was identical in both the horizontal and
vertical specimens, proving that the structure is uniform in both directions with decent penetration of
each layer into the subsequent one.

 

Figure 8. Fractured sample after separation by joining the hinges (three views of the same sample).

The energy absorbed by the material in the plastic region is of importance, especially for structural
steel; thus, maximum strength can be estimated by observing deformation ability before the final
fracture in the inelastic region. Figure 9 shows the amount of deformation that each sample has
undergone before the final fracture. Regardless of deposition direction, each sample has been deformed
in a similar fashion with quite a large deformation before failure. This t includes lateral expansion of
the specimen, which has been normalized for the sub-size sample (Figure 10). Average values for the
horizontal and vertical specimens are approximately 46% and 51%, respectively.

 

(a) 

 

(b) 

Figure 9. (a) Multiple samples with identical fracture behavior. (b) SEM to show the twist in the
deformed sample.
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Figure 10. Normalized lateral expansion in percentage for the horizontal and vertical specimens.

The deformation behavior with an almost 45◦ fracture plane depicts shear stress that exceeds
the shear strength of the structure, resulting in plastic yielding. The fibrous appearance and large
deformation before fracture, along with the shear plane fracture, point towards the pure ductile fracture.
The specimens had to be separated after being closed once at the hinges, according to instructions
set by standard test methods for notched bar impact testing of metallic materials ASTM E23-07a [25].
There was no cleavage in the broken specimen; thus, it is considered a pure shear fracture, according to
the mentioned standard. The coalescence of voids results in the development of a shear lip, which
is responsible for a higher upper shelf energy fracture. Fractography of the specimens displays a
dimpled surface with a fibrous fracture, as shown in Figure 11. Generally, brittle fracture in carbon
steel is initiated by martensitic sites; however, the microstructure shown in Figure 5 shows that the
structure obtained in this case is equiaxed and mostly ferritic. The fractography depicts pure ductile
behavior, the reason why the results have been normalized by a factor of two, as presented in Figure 4.

 
(a) 

 
(b) 

Figure 11. Dimpled fracture surface with a fibrous tearing, showing it to be ductile. (a) Horizontal
specimen, (b) vertical specimen.

The X-ray diffraction analysis supports the presence of a ferritic structure with mostly pure iron
in the central part of the constructed wall, as shown in Figure 12. The trace elements were mostly
evaporated or dragged to the extreme ends of the wall. In this kind of fully ferritic structure, microvoid
nucleations generate at the grain boundary and deep equiaxed dimples are formed [33].
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Figure 12. XRD pattern.

Another important factor responsible for the high absorbed energy is the formation of secondary
cracks. The creation and motion of dislocations in the crystal lattice are responsible for the plastic
deformation. The material dissipates energy during the dislocation movements and crack tip dislocation
nucleation leads to intrinsic ductility [34]. The secondary cracks might also have been generated
due to the stacked layers, which act as a crack divider, as depicted in Figure 13. This delamination
phenomenon can occur even without a substantial difference between the interlayer and intralayer
microstructures [35].

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 13. (a) Macro-level secondary cracks, (b,c) micro-level secondary cracks, (d) enlarged view of
secondary cracks.
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As the fracture was purely in the upper shelf region and was ductile in nature, fracture toughness
can be estimated using the relation [36,37]:

KIC = 0.804 σys (CVN/σys − 0.0098)0.5 (1)

where KIC is the fracture toughness in MPa·m1/2, σys is the yield strength in MPa, and CVN is the
Charpy impact absorbed energy in J. Using the average yield strength (330 MPa) of the structure
from [16], the fracture toughness was found to be approximately 199 MPa·m1/2 and 206 MPa·m1/2 for
the horizontal and vertical specimens, respectively.

4. Conclusion

This study presents an analysis to explain the different factors related to the Charpy impact energy
absorbed by a structure made by GMAW additive manufacturing. The average absorbed energy in
the horizontal and vertical direction was found to be 189 J and 202 J, respectively. The difference in
the amount of energy in both directions is not substantial, which is also in conformance with the
observed microstructure. The microstructure was found to be mostly equiaxed with a grain size
number of about 10.5. The broken samples exhibit a large amount of deformation in all directions,
thus absorbing a high amount of energy. Fractography of the broken samples reveals a highly fibrous
fracture with dimples, suggesting a pure ductile fracture. The generation of secondary cracks is also
indicative of high absorbed energy. As the fracture is in the upper shelf region, the estimated value for
fracture toughness was calculated to be 199 MPa·m1/2 and 206 MPa·m1/2 for the horizontal and vertical
specimens, respectively.
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Abstract: During quasi-stationary tensile deformation of ultrafine-grained Cu-0.2 mass%Zr at 673 K
and a deformation rate of about 10−4 s−1 load changes were performed. Reductions of relative load by
more than about 25% initiate anelastic back flow. Subsequently, the creep rate turns positive again and
goes through a relative maximum. This is interpreted by a strain rate component ε̇− associated with
dynamic recovery of dislocations. Back extrapolation indicates that ε̇− contributes the same fraction of
(20 ± 10)% to the quasi-stationary strain rate that has been reported for coarse-grained materials with
high fraction of low-angle boundaries; this suggests that dynamic recovery of dislocations is generally
mediated by boundaries. The influence of anelastic back flow on ε̇− is discussed. Comparison
of ε̇− to the quasi-stationary rate points to enhancement of dynamic recovery by internal stresses.
Subtraction of ε̇− from the total rate yields the rate component ε̇+ related with generation and storage
of dislocations; its activation volume is in the order expected from the classical theory of thermal glide.

Keywords: Cu–Zr; ECAP; ultrafine-grained material; deformation; dynamic recovery; transient;
load change tests

1. Introduction

In materials science one is used to think in terms of strain hardening and recovery: The dislocation
density increases with plastic strain so that the material hardens; recovery decreases this density with
time so that the material softens. However, this view is too simple as the recovery processes get biased
under stress so that dynamic recovery, i.e., recovery under stress, also causes strain. Recovery by
cross slip is an early and well known example. When the rate of strain due to recovery decreases,
the material may seem to harden even though it recovers. The present work deals with this surprising
effect in an ultrafine-grained material with high content of high-angle boundaries (HABs).

In a companion paper the quasi-stationary (qs) deformation strength of ultrafine-grained (ufg)
Cu–Zr has been described. In qs deformation storage and recovery of dislocations approximately
balance each other so that the dislocation density ρ remains approximately constant, i.e.,

ρ̇+ ≈ ρ̇−. (1)

Metals 2019, 9, 1150; doi:10.3390/met9111150 www.mdpi.com/journal/metals55



Metals 2019, 9, 1150

Storage occurs after expansion of dislocation loops on slip planes (Figure 1: ’dislocations in’).
Dynamic recovery is coagulation of dislocation loops after dipole capture (Figure 1: ’dislocations out’).
The recovery processes may be spatially concentrated at crystallite boundaries or may be more equally
distributed as in solid solutions of class I-type with solute drag on dislocations [1,2]. Recovery generally
requires dislocation motion outside the primary slip plane by climb or cross slip [3].

dislocations
in out

glide recovery

view 
parallel  

to slip plane

perpendicular 
to slip plane

Figure 1. Scheme of dislocation glide with generation and storage of dislocations (’dislocations in’) and
dynamic recovery of dislocations (’dislocations out’) viewed perpendicular and parallel to glide plane.

In the view in a direction parallel to the glide plane, where dislocations appear as points
(Figure 1), recovery seems to make a negligible contribution to strain during annihilation of dislocation
dipoles. Therefore, dynamic recovery is usually not considered as a process generating strain. Rather,
the models regard strain as a result of thermally activated expansion of slipped areas bounded
by dislocation lines with positive curvature that have to overcome a significant athermal stress
component (forest dislocations, long-range back stresses from boundaries). In this picture the existing
dislocations act as obstacles to dislocation glide. However, the view in a direction perpendicular to the
slip plane shows that strain may well be generated during the process of coagulation of dislocation
loops in recovery as negatively curved dislocation segments straighten [4,5]. Here, the interaction of
dislocations supports the expansion of slipped areas by glide rather than opposing it. The difference
in driving forces means that the kinetics of generation of dislocation length by glide of positively
curved dislocations moving through the existing dislocation structure differs from that of decrease
of dislocation length by motion of negatively curved dislocations. Therefore, it makes sense to treat
the rate ε̇pl of plastic deformation as sum of storage strain occurring at a rate ε̇+ and recovery–strain
occurring at a rate ρ̇− [4,5]:

ε̇pl = ε̇+ + ε̇−. (2)

In the literature, there are a couple of examples of processes of type ε̇−, where recovery is coupled
with glide or glide is associated with recovery (class I alloys with viscously moving dislocations [1,2,6],
knitting-out of dislocations from LABs [7–9], accommodation processes at HABs [10], strain coupled
with migration of LABs (e.g., [11]) and HABs (e.g., [12]). Compared to ε̇+ the recovery–strain rate ε̇−

has received little attention (see e.g., [3,13]). In monotonic qs deformation, the two terms ε̇+ and ε̇− are
coupled via condition Equation 1. To investigate recovery of dislocation lines separately from storage
of dislocations, one must decouple the two processes. This can be done by perturbing monotonic
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flow by a sudden change of the force F at which the specimen deforms. Such a perturbation abruptly
changes the forces exerted per length of dislocations and triggers reversible time-dependent dislocation
motions (e.g., bowing/unbowing). The strains caused by those motions are called anelastic. So the
total inelastic strain rate is

ε̇inel = ε̇pl + ε̇anel. (3)

Figure 2 schematically shows the response to a change from F0 to Fr ≡ R F0 at a time t0 and
an inelastic strain εr,0. Consider relatively small changes of the relative load R (cases a and b in
Figure 2). These cause relatively small changes in inelastic deformation rates from the value ε̇r,0

before the R-change to a new value ε̇r,1. Anelastic strains are negligible. Just after the R-change, the
dislocation structure and the rest of the microstructure are virtually the same as before (’constant
structure’), but the glide velocity of dislocations has changed due to the change of the stresses acting
on the dislocations. The ratio ε̇r,1/ε̇r,0 is widely used to get a measure of the activation volume V+ of
thermally activated dislocation glide as described in more detail in Appendix B. A particularly large
body of ’constant structure’ data of ε̇r,1/ε̇r,0 has been collected for various metals and alloys by Milička
in stress change tests during creep at elevated temperatures [14–16].

Now we consider relatively large F-changes (cases c and d in Figure 2). Anelastic strains are
no longer negligible and diminish ε̇inel compared to ε̇pl (Equation (3)). At sufficiently low R, the
forces acting on the dislocations initially get negative so that ε̇inel becomes negative directly after
the R-reduction [17]. This is a consequence of internal stresses of short- and long-range nature
acting on the dislocations [17] and opposing thermally activated glide of type ε̇+. As the back
flow relaxes the internal back stresses created before the R-reduction, the absolute magnitude of the
rate ε̇anel declines, ε̇pl becomes dominant again, and forward deformation is reestablished at a rate
ε̇pl = ε̇r,2. The preceding anelastic back flow is expected to cause only subtle changes of the dislocation
arrangement and the rest of the microstructure; therefore, the rate ε̇r,2, measured short after the period
of back flow, has also been adressed as ’constant structure’ rate. However, it is clear that this is not
fully correct (see Equation (4)).

In the further course of the transient after large R-reductions, ε̇anel becomes negligible so that
ε̇inel ≈ ε̇pl. A remarkable result is that ε̇inel generally decreases for long times as schematically indicated
by the dashed curve. This behavior is not well known in the community, although it is regularly found
whenever investigated, independent of materials and pretreatment. It is distinct from the so-called
inverse transient behavior where the decrease of ε̇inel with strain after R-reduction occurs in the whole
interval 0 < R < 1, and not only at small R. One reason for the lack of knowledge about decreasing
ε̇inel after large R-reductions is, that long-term tests are required for such observations, covering test
times distinctly beyond the extended period of back flow. Such tests have been done by Blum and
coworkers on a number of materials including e.g., Al–5Mg (class I alloy) [18,19], Al–Zn (class II
alloy) [20], and pure LiF [21] and by Van Swygenhoven and coworkers on nanocrystalline Ni and
Ni-Fe [10,22,23]. In these tests direct evidence for ongoing net recovery of dislocations was obtained.
A natural explanation of the decrease of ε̇inel after perturbation of plastic flow by a large R-reduction is
that the recovery rate component ε̇− decreases, because the driving force for recovery declines during
the decrease of ρ and other crystal defects to the lower level in the new qs state at the lower stress.

The same process of net recovery must also be expected when a deformed specimen is simply
unloaded to R = 0 and subsequently annealed at elevated temperature higher than the deformation
temperature. This type of experiment has been done by Hasegawa, Yakou and Kocks on pure
Al [24,25] that was deformed at ambient temperature and then quickly heated to elevated temperature.
The result was qualitatively the same as the result of unloading at fixed temperature described before:
net back flow due to anelastic strains was followed by net forward flow at declining rate. This forward
flow at zero stress after predeformation was interpreted by the authors as consequence of recovery;
the recovery was suggested to result from reaction of neighboring polarized dislocation walls.

So far, comprehensive studies of the transient response to stress reductions are missing in the case
of ECAP-processed ufg materials. Two tests performed on ufg Cu [26] showed a decrease of creep rate
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after relative stress reductions to R = 0.77 and 0.70 that could be explained in terms of decreasing
recovery–strain rate. The present study of transient deformation after qs deformation of ufg Cu–Zr
has these main objectives:

• demonstrate that the transient response to load changes can be studied in standard tensile creep
machines with load control,

• advertise a new type of plot [27] (Figure 3e) displaying the full strain-time evolutions of all tests
of a series with different degrees of unloading at reasonable resolution,

• show that the transient behavior of an ufg material is qualitatively the same as that of cg materials,
including an initial period of strain mainly due to recovery,

• discuss the mechanism of dynamic recovery in qs and transient deformation with special regard
to the influence of internal stresses.

inelastic 
strain

time t

·ϵr,0

·ϵr,1

·ϵr,2

R = 1

1 > R > 0

t0

·ϵinel
R > 1

ϵr,0

rate at  
load F0

time of  
load reduction

rate after  
load change  
to  Fr = R F0

rate at  
after back flow

Fr

a b c d

Figure 2. Response of inelastic strain to fast changes of creep load from F0 to Fr = R F0 during
deformation at time t0 and strain εr,0 for (a) small R-increase, (b) small R-decrease, (c) medium
R-decrease causing ε̇r,1 = 0, (d) large R-decrease causing net back flow.

2. Experimental Details

As described in more detail in the companion paper [28], our particle-stabilized material,
called pCu–Zr, was produced by severe predeformation at ambient temperature in p passes of equal
channel angular pressing (ECAP) on route BC. Its material parameters are approximated by those of
pure Cu provided in the data compilation of Frost and Ashby [29]: Burgers vector b = 2.56 × 10−10 m,
elastic shear modulus G = 3.58 × 104 MPa, melting point Tm = 1356 K. The test temperature was
T = 673 K = 0.5 Tm.

Deformation was started by applying tensile loads F to flat specimens with initial values of gauge
length l0 = 10 mm and cross section S0 of usually ≈ 12 mm2. The standard creep machines used in this
work were designed for long-term measurements of creep strain accumulation at constant load, not for
precisely following small strain changes after load changes. The reproducibility of measurements of
back flow was worse than in Milička’s tests [14–16], but better than originally expected, although some
artifacts from unmotivated jumps in the extensometer system or errors in σeng occasionally seem to
have occurred (see e.g., the black curve in Figure 3b after unloading). In the periods of deformation
(creep) at constant load the inelastic strain rate is practically identical to the measured total strain rate
ε̇tot as the elastic strain rate ε̇el is negligible. In the periods of fast changes of load F this is no longer
so. Appendix A explains the procedure taken to get the inelastic strain εinel at acceptable accuracy.
The inelastic strain rate follows from εinel as ε̇inel = Δεinel/Δt where Δεinel must be chosen larger than
the experimental noise. This was achieved by data smoothing with the open software SmooMuDS [30].
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3. Results

3.1. Transients as Function of Time

A change of load from a start value F0 corresponding to an engineering stress σeng = F0/S0 to
a new value F = R F0 at time t0 and inelastic strain ε0 initiates a transient response. To display all
transients of largely different durations in the same plot, a logarithmic time scale is used in Figure 3;
the constants 10 s in the time-scale and 0.01 in the εinel-scale serve to bring the start of transient
into the field of view. Figure 3a–c shows three tests with relative load reductions to by 60% to
R = 0.4. The reductions deliberately were performed in steps to explore the behavior at intermediate
stresses (Figure 3a). The strain evolution varies with step height and step length. In some cases net
forward deformation continued during the first unloading steps (Figure 3b). However, the strains
accumulated there were small and no significant effect on the values of ε̇inel > 0 after the reductions
was observed. This is different in the periods of back flow (ε̇inel < 0). Such a difference must be
expected because back flow relaxes the internal stresses driving it. However, our work does not focus
on back the flow triggered by the perturbation by R-reductions, but on the subsequent forward flow
(see Figure 3b). Figure 3c displays the forward strain rates ε̇inel > 0 after R-reduction that reappear
after about 20 to 30 ks when back flow has faded, ε̇anel has become negligible and ε̇inel ≈ ε̇pl. In the
beginning, the uncertainty in ε̇inel is large, because relatively small strain intervals Δεinel were used in
determination of ε̇inel (compare Equation (2)).

Two of the ε̇inel-curves in Figure 3c still appear somewhat noisy. Yet further smoothing of data
was avoided because the ε̇inel-variations seem to have a real origin in slow T-fluctuations caused by
the control system. The two gray curves for 8Cu–Zr in subfigure b show the measured ε̇inel-extremes.
They differ by a factor of 3 to 4 in ε̇inel. We ascribe that to the aforementioned inhomogeneity of
the grain structure of 8Cu–Zr. The upper gray curve for 8Cu–Zr is quite similar to the black curve
for 12Cu–Zr. We conclude from this result that, apart from the scatter of the initial microstructure
produced by the thermomechanical history, there is no significant difference between the ufg materials
8Cu–Zr and 12Cu–Zr.

Figure 3d-f gives the overview of all R-reduction tests performed in this work. Again, we focus
on the forward flow observed after the anelastic back flow. The curves in Figure 3f derived from
Figure 3e are arranged in a fairly consistent sequence corresponding to the loads shown in Figure 3d.
This underscores the quality of the length measurements in our creep machines although these were
not built for load change tests. For R ≤ 0.3 a transient decrease of the (forward) strain rate ε̇inel > 0
is evident.

Figure 4 shows the times tback (circles) for anelastic back flow taken from the length-time
recordings. Due to differences in unloading histories and uncertainties in length measurement the
scatter is large. The dashed line corresponds to the dashed curve from Figure 3f approximating the
boundary of back flow. For R > 0.75 the time interval of back flow is immeasurably small. So back
flow becomes negligible here and deformation goes on at positive rate directly after the load reduction.
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Figure 3. (a) Stress σ, (b) strain εinel, and (c) strain rate ε̇inel as function of time t in tests for 8Cu–Zr and
12Cu–Zr with stepwise load reduction to (a–c) R = 0.4 and (d–f) all R; dashed line in (f) approximates
boundary of back flow.
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Figure 4. Times tback for anelastic back flow (circles, from Figure 3e) compared to lower bound t′rec of
times trec for dynamic recovery toward the new qs state as function of R for σr,0 = 275 MPa; dashed line
corresponds to dashed line in Figure 3f.

3.2. Transients as Function of Strain

Dislocation generation needs strain. Therefore, the strain εinel is much more closely related to the
microstructural evolution than the testing time t. So the evolution of deformation strength (σ, ε̇inel) is
commonly displayed on a strain scale. Figure 5 exhibits the transients of Figure 3f as function of εinel.
As σ increases at constant load F, ε̇inel increases even if the microstructure is constant. This effect was
eliminated by correcting ε̇inel (see caption). The corrected curves in Figure 5 should be horizontal in
the qs state if the grain and phase structure remains constant. This is indeed found for large R near 1.
For smaller R the curves exhibit a positive slope in the whole strain interval. This means that slow
microstructural changes are going on throughout the test. Comparison of the dotted and the solid
curves at R = 0.4 and 0.3 shows that these changes are the same in tests with and without R-reduction.
At the lowest R of 0.2 (80% unloading) deformation is slowest and the structural changes including
dislocations are largest. Consequently, softening is most pronounced here. The curve for R = 0.2 was
followed for 42 days before it was interrupted without any indications of fracture; note that the ε̇(ε)
curve is concave, not convex as in fracture. In [28] the softening has been shown to be a consequence
of microstructural coarsening, in particular grain coarsening. This means that only the short-term
portions of the curves after R-reduction show the transient response to perturbance of the dynamic
equilibrium of storage and recovery of dislocations in the qs state at t0.

Note that the character of this short-term portion of the transients changes significantly with R.
For small R-reductions to R ≥ 0.5 there is a relative increase of ε̇inel compared to the qs curve at reduced
R. This is known as normal transient behavior: the material softens due to coarsening of the cellular
dislocation structure towards the new dynamic equilibrium state. However, for large R-reductions to
R < 0.5 and ε̇inel ≤ 10−7 s−1 there is an initial decrease of ε̇inel.

Figure 6 displays the constant structure rates ε̇r,1 and ε̇r,2 that were measured at the beginning of
the transients and after anelastic back flow, respectively (see Figure 2). Figure 6a shows that ε̇r,1 falls to
zero near R = 0.76 and becomes negative (back flow) for lower R. Following Milicka [14], the data
were approximated by a sinh-expression

ε̇r,1 = k1 sinh(V (σ − σi)/(M kB T) k1 = 0.0885, σi = 0.76 σr,0, (4)

giving the solid grey line with change from positive to negative (back flow) rates ε̇r,1. Figure 6b shows
the positive rates ε̇r,2 after back flow.
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Figure 5. Normalized strain rate as a function of normalized strain after load reduction from
σeng = 250 MPa to a relative load R for 12Cu–Zr (grey lines) and 8Cu–Zr (black lines); the increase of
qs ε̇ ∝ σnqs was eliminated with nqs = 6 from [28].

Figure 6. Normalized constant structure strain rate ε̇r after qs deformation of 8/12Cu–Zr at
σr,0 ≈ 275 MPa as function of relative creep load R: (a) ε̇r,1, grey dotted lines connect data from
same test with stepwise load reduction, (b) ε̇r,2 (symbols connected by solid grey line); on log scale
with estimates of ε̇−cs (dotted black) and ε̇+cs (dash-dotted black); see text.

4. Discussion

Our results for ufg Cu–Zr are qualitatively quite similar to the general behavior observed for
crystalline materials after a perturbation of monotonic plastic flow by load changes. For small
R-reductions deformation goes on at reduced rate in forward direction according to the applied
stress and the material softens with strain in parallel to the recovery of the dislocation structure.
For large R-reductions deformation first goes backward before it returns to positive direction again
and then continues at decreasing rate. As mentioned in Equation (1), this rate decrease parallels that of
recovery and therefore may be directly linked to dynamic recovery. This can be understood from the
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view that the strain rate term ε̇+ leading to storage of dislocations disappears for small R so that the
strain rate term ε̇− related with dynamic recovery dominates. These transient phenomena disappear
while the new qs state corresponding to R is approached.

The two terms ε̇+ and ε̇−, corresponding to the cases ’dislocations in’ and ’dislocations out’ of
Figure 1, have different kinetics. This difference should become apparent in those ranges of R where
either ε̇+ or ε̇−dominate. This is in line with the different R-dependences of the lines for ε̇+ and ε̇− in
Figure 6b. Milička [14–16] restricted his measurements to the R-range with ε̇r,1 ≥ 0. In spite of this
restriction, he discovered that a single mechanism of deformation obeying Equation (4) is not sufficient
to describe the variation of ε̇r,1 with R. So he proposed to express ε̇r,1 as a sum of two terms [15,16].
This parallels the separation of ε̇pl into ε̇+ and ε̇− in Equation (2).

4.1. Strain Related with Storage of Defects

From the preceding discussion we surmise that for R ≤ 0.7 the rate ε̇r,2 approximately equals ε̇−.
Extrapolating the ε̇r,2-curve for R < 0.7 in Figure 6 yields ε̇−qs-values at R = 1 in the range of 10% and
30% of ε̇r,0. In other words: the recovery–strain rate ε̇−qs contributes about (20 ± 10)% to the qs strain
rate. ε̇+cs follows as the difference of ε̇r and ε̇−cs (Equation (2)). The stress exponent of this curve at R = 1
is n+

cs = 17 at R = 1. This is close to the estimate 21 derived from the theory of thermally activated
glide (Equation A15). In view of the simplifications and assumptions involved, we conclude from this
result that an interpretation of ε̇+cs in terms of the classical theory of thermally activated glide over
fixed repulsive obstacles in pure materials (e.g., forest dislocations) may be possible.

4.2. Strain Related with Recovery of Defects

We now turn attention to the recovery–strain rate ε̇−. Figure 7a compares the recovery–strain
rates ε̇−cs at (approximately) constant structure from Figure 6b (dotted line) to the recovery–strain
rate ε̇−qs at qs structure (solid line) as function of stress σ. The latter is obtained from the qs strain
rates ε̇qs ∝ σ6 reported in the companion paper [28] under the assumption that the fraction ε̇−qs/ε̇qs

in qs deformation equals ≈ 0.2 independent of stress. ε̇−cs is larger than ε̇−qs. This can be qualitatively
explained by the higher defect density and higher local stresses in the cs states inherited from the
preceding deformation at the high stress σr,0 ≈ 275 MPa compared to the qs states established at lower
stresses σ < σr,0. So far there is no accepted detailed model of dynamic recovery and its strain rate
contribution ε̇−. Strain contributions from recovery of individual dislocations stored at recovery sites,
probably internal crystal boundaries (LABs, HABs), and from recovery of boundaries by migration
need to be considered.

One may ask to which extent the recovery–strain rate gets reduced in the period of back flow
before ε̇r,2 is measured. It is clear that anelastic back flow relaxes internal stresses. Also, some fast
recovery processes of the kind shown in Figure 1 will happen already during the period of net back flow
and thereby reduce the density of recovery sites. This indicates that use of the term ’constant structure’
for ε̇−cs becomes increasingly problematic with declining R with regard to the dislocation structure and
raises the question whether the constant structure assumption is wrong and anelastic back flow may
even be lasting long enough to modify not only the internal stresses, but also allow the dislocation
structure to evolve close to the new qs state at reduced stress. In this case ε̇r,2 should become equal
to the qs rate ε̇qs for low R and correspondingly low stresses. And this is in fact observed around
100 MPa, as Figure 7a shows. To answer the question we estimate a lower limit t′rec of the time trec for
full recovery into the new qs state. The estimate is based on the assumptions that (i) no dislocation
generation takes place during the anelastic back flow even though the new qs state is based on dynamic
equilibrium of generation and recovery and (ii) the maximal rate of dislocation recovery pertains
throughout the back flow period even though the driving force for recovery must decrease. In the
literature there is very little direct information on the evolution of the density ρ of dislocations during
dynamic recovery. The reasons are that dynamic recovery is generally accompanied by dislocation
glide of type ε̇+ and that reliable observations can only be made if the dislocations can safely be
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pinned up to microscopic observation. A set of data was measured in [20] for the alloy Al–Zn where
pinning is possible by precipitation of particles. The data were obtained in the qs state characterized
by Equation (1). It was found that the measured dislocations recovery rates ≈ ρ̇− were in accord with
Equation (1) when the dislocation generation rate is expressed as

ρ̇− ≈ ρ̇+ =
M fΛ

b
ε̇+

Λ
. (5)

where Λ is proportional to the mean free path of dislocations and fΛ is a numerical factor near 1. For a
rough estimate we set Λ = d0, ε̇r,0 = 10−4 s−1, fΛ = 1. This yields the rate ρ̇−0 of dynamic dislocation
recovery just before the R-reduction as 2 × 10−12 m2 s−1. The initial qs dislocation spacing is estimated
as ρqs = (b G/σr,0)

2 at σr,0 = 275 MPa. The solid line in Figure 4 shows the result for t′rec. The data
symbols represent the experimental data for the time period tback where anelastic back flow occurs or
cannot be excluded due to experimental inaccuracy. The result of this estimate is that in a large R-range
the time period tback available for recovery during back flow is smaller than the lower bound t′rec of the
time period trec of recovery needed to reach the new qs state of dislocation density. This corresponds
to the observation made in situ on nanocrystalline Ni that recovery of X-line widths continues after the
period of back flow [22]. So we conclude that ε̇−cs in Figure 6b mainly represents the recovery–strain
rate due to ρ̇−, and not the qs strain rate resulting from ρ̇+-ρ̇−-balance (Equation (1)).

The results of the present work do not allow us to deduce details about the mechanism of
recovery–strain. Cross slip [31] and climb [32] are generally being considered as rate-controlling
mechanisms (compare [3]). Stress concentrations at boundaries by long-range internal stresses
have been used in descriptions of kinetics with the composite model [33]. LABs in coarse-grained
materials [11,21] and of HABs in nanocrystalline materials [34] are being discussed as sinks of
dislocations as well as of boundaries themselves (via recombination during migration). Measurements
on single-crystalline LiF have led to the conclusion that migration of LABs is responsible for most or
even all of the observed recovery strain [21]. (A different situation is encountered in class II alloys
like Al–Mg with viscous dislocation glide due to strong solute drag and spatially homogeneous
distribution of recovery events [2,18,19,35]; here long-range stresses seem to play only little role.)
The insensitivity of the relative recovery–strain contribution of recovery in the qs state to the boundary
misorientation is intriguing. The observation that LABs are the major carriers of recovery strain
in coarse-grained (cg) materials means that generation of recovery–strain by annihilation of single
dislocations (Figure 1) cannot be used to explain the recovery strain in both LAB- and HAB-dominated
structures. A boundary-mediated recovery mechanism, however, may be valid in both cases. It could
mean that the rates of dynamic recovery vary with the HAB-content, but the basic mechanism involving
free dislocations and boundaries is the same.

Better understanding of recovery–strain may be of profound value in technical application of
strong materials under conditions of varying stress σ, e.g., in stress relaxation and cyclic deformation.
The period of dominant recovery–strain rate ε̇− after load reductions gives the unique chance to
investigate the kinetics of dynamic recovery alone without influence of the storage strain rate ε̇+.
One option is to perform secondary load change tests in this period after a primary large load reduction.
Such secondary load changes have been started on Al [36] and recently continued on nc Ni [22,23].
The stress sensitivity in the period of ε̇−qs-dominance was found to be much smaller than the qs stress
sensitivity nqs. Another option is to develop a model of dynamic recovery describing both the stress
dependences of ε̇−cs(R) at constant structure and of ε̇−qs in the qs state.

An obvious question to be answered by a model is why the recovery–strain rate ε̇−cs at constant
structure is so similar to the qs strain rate ε̇qs (Figure 7a). At least part of the answer seems to lie in
internal stresses [37]. It is probable that recovery processes are concentrated at relatively hard regions,
in particular crystallite boundaries, where the local stress σh is enhanced relative to the applied stress
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by a local forward stress σf. In the following we apply the phenomenological approach used in [37] to
the present case. Assume that ε̇− varies with a power q of σh:

ε̇−cs = f−0 ε̇r,0

(
σh

σh,0

)q
; (6)

f−0 connects ε̇−cs to the strain rate ε̇r,0 before the stress reduction; σh is the sum of applied stress R σr,0

after R-reduction and local internal forward stress σf = frel σf,0, i.e., σh = R σr,0 + frel σf,0; here σf,0 is
the forward stress at R = 1 before the load reduction and frel describes the relaxation of the internal
forward stress during anelastic back flow before ε̇−cs is measured; σh,0 is the starting value of σh at R = 1
and frel = 1 before the R-change. To give an example, f−0 is set to 0.22, the exponent in Equation (6) is
chosen as q = 7, and σf,0 is assumed to be 1.5 σr,0. With these choices Figure 7a shows ε̇−cs as function
of R for two cases. The first case frel = 1, i.e. no relaxation of internal forward stress during anelastic
back flow, yields ε̇−cs-values lying distinctly higher than the measured ones, but is unrealistic. In the
second case frel is assumed to decreases with decreasing R as shown in Figure 7b. The thick dotted
curve in Figure 7a represents the result for ε̇−cs. It was made to perfectly match the measured ε̇−cs-curve
from Figure 6b. For comparison, the line for ε̇−qs shows the recovery–strain rate expected in the qs state,
if the ratio f−0 is independent of stress as suggested by numerous results obtained for cg materials. It is
seen that although the relaxation of the internal stresses during back flow may be significant, it always
keeps the recovery–strain rate generated from the dense defect structure at high stress σr,0 above the qs
strain rate expected at the lower stresses acting at R < 1 where the qs defect density is much lower.
That makes sense. The preceding exercise shows that the measured constant structure recovery–strain
rates can be understood on the basis of internal forward stresses of some kind acting at the recovery
sites. It must, however, naturally be expected that the decrease of the volume density of recovery sites
during back flow also contributes to the decline of ε̇−cs, qualitatively marked by the downward pointing
arrows in Figure 7.

Figure 7. (a) Recovery–strain rate ε̇−cs at constant structure after R-change from Figure 6b (black
dotted) compared to qs strain rate ε̇qs (grey solid) and recovery–strain rate ε̇−qs in the qs state (grey
dashed), (b) anelastic relaxation factor frel as function of σ ≈ R σr,0 required to model ε̇−cs from (a) with
Equation (6).

4.3. Comparison of Stress Dependences of ε̇+ and ε̇− at Constant Structure

One problem with measuring the recovery–strain rate ε̇− is that its separation from ε̇+ in
load/stress change tests is not trivial and sometimes impossible. The separation is easy and accurate if
the inflection point in the semilogarithmic ε̇r,2-curve (Figure 6b) is well pronounced. This depends
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strongly on the slope of this curve at R = 1. This slope is mostly given by the stress exponent n+
cs of

ε̇+ (see Equation A15), i.e., the rate associated with generation of defects leading to work hardening.
According to the estimate of Equation A14 n+

cs decreases inversely proportional to the temperature T.
On the other hand, the slope of the ε̇−-curve due to recovery is rather insensitive to T. Therefore,

the separation of ε̇− becomes increasingly problematic when T increases. Solid solution strengthening
leads to further reduction of n+

cs and the inflection point in the semilogarithmic ε̇r,2-curve (Figure 6b)
may disappear completely (e.g., in Al–5Mg [14,19] and Fe–Si [15]. Then the separation of ε̇+ and ε̇−

may be based on the fact that ε̇+ is driven by a thermal stress component lower than the applied stress,
whereas ε̇− is driven by a local stress that is enhanced by the interaction of the recovering defects; this
is an open task.

5. Summary

• In ufg Cu–Zr at 0.5 Tm recovery–strain ε− connected with dynamic recovery of strain-induced
crystal defects was found in tests with perturbation of the quasi-stationary (qs) state by load
reductions. ε− adds to the strain ε+ connected with dislocation generation and storage.

• The stress dependence of ε̇+ yields an activation volume consistent with the classical theory of
thermally activated glide.

• The recovery–strain rate ε̇− contributes 10% to 30% to the quasi-stationary strain rate ε̇qs.
This fraction for ufg Cu–Zr with high volume fraction of HABs is similar to the one commonly
reported for cg materials with high volume fraction of LABs. That could mean that boundaries play
qualitatively similar roles in mediating dynamic recovery independent of their misorientation.

• The values of ε̇−cs (at constant structure) and ε̇qs (at quasi-stationary structure) are relatively similar
for large load reductions, even though the microstructures, in particular the dislocation structures,
should differ significantly. This becomes understandable, if promotion of recovery by internal
forward stresses is taken into account.

• Combining the rates of recovery–strain in the qs state and after perturbation of monotonic flow
seems promising to better understand the mechanism of dynamic recovery of crystal defects,
limiting the deformation strength under monotonic as well as cyclic loading conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

qs quasi-stationary
ECAP equal channel angular pressing
cg coarse-grained
ufg ultrafine-grained
LAB low-angle boundary
HAB high-angle boundary

Appendix A. Determination of Inelastic Strain

The load F corresponding to an engineering stress

σeng = F/S0 (A1)
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was varied in steps. Figure A1a shows an example. Assuming volume constancy, the cross section
varies with the gauge length

l = l0 + Δl, (A2)

where Δl is the measured length change, as

S = S0 l0/l = S0 exp(−εtot), εtot = ln(l/l0) (A3)

where εtot is the total “true” strain. Figure A1b shows the variation of εtot with time t corresponding
to Figure A1a. The εtot-steps in Figure A1b result from the changes of the elastic strain related with
the changes of F. To eliminate these steps the elastic strain must be estimated. This was done in the
following straightforward manner. The elastic strain is composed from two components:

εel = εel,Cu + εmach. (A4)

εel,Cu is the elastic strain of the gauge length l of the specimen described by:

εel,Cu = σ/E (A5)

with
σ = Fc/S ≈ σeng exp(εtot) (A6)

as “true” stress acting in the gauge length and E ≈ 9 × 104 MPa as elastic tensile modulus (Young’s
modulus) of Cu. εmach is the elastic strain

εmach = Δlmach/l (A7)

resulting from all parts of specimen and machine entering the measured length change outside the
gauge length l. The unknown elastic machine length change was determined in an iterative manner so
that the elastic steps in the εtot–t plots like Figure A1b were optimally suppressed.

An analytical formulation with a power law:

Δlmach/mm ≈ c1 (Fc/N)c2 − c3. 0.001 < c3 < 0.006 (A8)

with c1 = 2.23 × 10−4, c2 = 0.74 and a constant c3 turned out to be comfortable and sufficiently exact.
The approximate inelastic strain then follows as:

εinel = εtot − εel. (A9)

Individual choice of c3 for each test proved reasonable to compensate systematic errors of the
Δl-signal near F = 0 before the motions of specimen and strain gages become uniaxial. In a final step
the stress was corrected by changing Equation (A6) to

σ ≈ Fc/S = σeng exp(εinel). (A10)

This has only marginal influence on the results. Figure A1c shows that the elastic steps from
Figure A1b have virtually disappeared. Some gaps in the curves are caused by data acquisition
problems. The test includes a small stress increase at t ≈ 300 s followed by stepwise unloading
within less than 30 s. It is seen how the (inelastic) strain εinel continues to increase till 307 s and then
starts to decrease. This decrease is called anelastic, because it is reversible on a macroscopic level.
The elimination of the elastic strain helps to visualize the anelastic response that is less pronounced
than the elastic one (also in comparison to the elastic response of the specimen). Equation (A7) may
cause an elastic overcorrection at stresses below 100 MPa. However, this is irrelevant for the inelastic
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strain rates in the periods of relatively constant load, where the major elastic strain component resulting
from Δlmach remains constant.

Figure A1. (a) Stress σ, (b) total strain εtot with elastic strains from machine and specimen, (c) inelastic
strain εinel versus time t in load change test on 8Cu–Zr at 673 K.

Appendix B. Activation Volume of Dislocation Glide

Glide in the course of expansion of dislocation loops bounding the slipped areas causes an inelastic
strain rate ε̇+. It is driven by the resolved shear stress σ/M, where M is the geometrical factor of
conversion from normal to shear stress and strain (for untextured face-centered polycrystals: Taylor
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factor = 3.06), kB is the Boltzmann constant, and is supported by thermally activated overcoming of
thermal obstacles. The operational activation volume is defined by

V+
op = kB T

d ln ε̇+

dσ/M
(A11)

To get a rough estimate of Vop
gl we tentatively use the classical model of thermally activated glide

through a field of point-like repulsive obstacles. According to this model the activation volume is

V+ = b λglΔxgl. (A12)

where λgl and Δxgl are obstacle spacing and width, respectively. Equation (A12) holds under the
condition that the microstructure including the internal stresses remains constant in the change test. If

• λgl is set equal to the expected spacing of free dislocations, bG/σ, and
• Δxgl is approximated by b,

V+ becomes a simple function of stress:

V+ ≈ b3 G/σ. (A13)

By approximating V+
op in Equation (A11) by V+ from Equation (A13) and using the mathematical

identity dσ = σ d ln σ one arrives at a simple estimate

n+
cs,est ≡

b3 G
M kB T

. (A14)

of the stress exponent of ε̇+ at constant structure:

n+
cs =

∂ ln ε̇+

∂ ln σ
. (A15)

(Meanwhile it has become customary to neglect the condition of constant structure; this leads to
a mix-up with the qs rate sensitivity [16,38].) The estimate n+

cs,est is independent of σ and inversely
proportional to temperature T for a given material.

citeyearref-journal-3b, p.475). This produces: Wong (1999, p. 328; 2000, p. 475)

References

1. Sherby, O.D.; Burke, P.M. Mechanical Behaviour of Crystalline Solids at Elevated Temperature.
Progr. Mater. Sci. 1968, 13, 323–390, doi:10.1016/0079-6425(68)90024-8. [CrossRef]

2. Takeuchi, S.; Argon, A. Steady-state creep of alloys due to viscous motion of dislocations. Acta Metall. 1976,
24, 883–889, [CrossRef]
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15. Milička, K. Constant structure experiments in high temperature primary creep of some metallic materials.
Metall. Mater. 1994, 42, 4189–4199. [CrossRef]
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Wolfgang Blum 1,*, Jiři Dvořák 2, Petr Král 2, Philip Eisenlohr 3 and Vaclav Sklenička 2
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Abstract: The influence of the grain structure on the tensile deformation strength is studied for
precipitation-strengthened Cu-0.2%Zr at 673 K. Subgrains and grains are formed by equal channel
angular pressing (ECAP) and annealing. The fraction of high-angle boundaries increases with
prestrain. Subgrains and grains coarsen during deformation. This leads to softening in the
quasi-stationary state. The initial quasi-stationary state of severely predeformed, ultrafine-grained
material exhibits relatively high rate-sensitivity at relatively high stresses. This is interpreted as a
result of the stress dependences of the quasi-stationary subgrain size and the volume fraction of
subgrain-free grains.

Keywords: Cu-Zr; ECAP; deformation; quasi-stationary; subgrains; grains; coarsening

1. Introduction

Deformation of single crystals and large-grained polycrystals leads to generation of dislocations
and subgrains with low-angle boundaries (LABs). Dynamic recovery counteracts the defect generation.
The state at which the rate ρ̇+ of increase of density ρ of free dislocations approximately equals the
rate ρ̇− of ρ-decrease,

ρ̇+ ≈ ρ̇−, (1)

is usually called steady state, stationary state or saturation stage (of flow stress) in the literature.
We prefer the term quasi-stationary (qs) state [1], because slow changes of microstructure parameters
(boundaries [2,3], particles, . . . ) lead to a drift of the quasi-equilibrium of the qs state that in turn
causes slow changes of the qs deformation strength. By definition, there is a spectrum of qs states,
depending on the microstructural parameters other than ρ. The qs states are important as upper limits
of deformation strength at given structure of grains and particles.

The present work deals with the strength of a Cu-Zr alloy that is stabilized by particles and
processed by equal channel angular pressing (ECAP). It is well known that ECAP processing leads into
a qs state with refined grains and saturated hardness (compare [4–7]). This holds also for Cu-Zr [8–10].
When the ECAP-processed material is subjected to creep at elevated temperature of 673 K, new qs states
are developed. The creep ductility is significantly enhanced compared to the coarse-grained (cg) alloy
while the creep rate remains fairly low and has relatively low stress sensitivity. In the following section,
we treat the evolution of deformation strength and microstructure of ECAP-processed Cu-Zr at 673 K
in detail on updated data basis with the goal to better understand how grain refinement influences
the qs deformation strength. We discuss the proposition that the qs strength of ultrafine-grained (ufg)
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Cu-Zr significantly depends on the stress-dependent qs fraction of subgrain-free grains. There are
indications that the variation of this fraction with stress may explain the relatively low stress sensitivity
(high rate sensitivity) of the qs strength of grain-refined ufg Cu-Zr.

2. Experimental Details

Processing, microstructure, and creep testing have been described before [10]. The starting
material was (cg) Cu-0.2 mass%Zr. Its material parameters are approximated by those of pure Cu
provided in the data compilation of Frost and Ashby [11]: Burgers vector b = 2.56 × 10−10 m, elastic
shear modulus G = 3.58 × 104 MPa, melting point Tm = 1356 K. The cg material was homogenized for
24 h at 1073 K and hot rolled. Billets of this material were solution treated at 1233 K for 1 h to give an
initial grain size of 3.5 × 10−4 m. The billets were predeformed by p passes of equal channel angular
pressing (ECAP, Figure 1) at room temperature on route BC to refine the grains. The predeformed
material is called pCu-Zr. Due to particle hardening the grain size of the material is stable against
static annealing at temperatures exceeding the test temperature 673 K [12]. The thermal treatment
consisted of storage of the predeformed material at room temperature for up to several years followed
by heating to and holding at T for a few hours before deformation.

Figure 1. From ECAP billet to tensile creep specimen (numbers: lengths/mm).

Flat tensile creep specimens with gauge length l0 and cross section S0 were prepared as illustrated
in Figure 1. Deformation in creep mode occurred in tension at temperature T = 673 K = 0.5 Tm

upon applying a load F, corresponding to an engineering stress σeng = F/S0. The change Δl of
the length was measured using LVDTs (from Hottinger Baldwin Messtechnik GmbH, Darmstadt,
Germany) attached to the tensile rods near the specimen. The “true” strain ε results as ln((l0 + Δl)/l0)
(Elastic contribution to Δl are neglected here because it is relatively small and nearly constant at
constant F so that the elastic contribution ε̇el to the measured rate ε̇ is generally negligible). Due to
volume constancy and under uniform deformation of the gauge length l = l0 + Δl, the cross section S
varies as S = S0 l0/l = S0 exp(−ε) and the “true” stress σ, given by F/S, increases with strain as

σ = σeng exp(ε). (2)

Observations of the grain structure were made by electron microscopy. Orientation maps derived
from electron backscatter diffraction (EBSD, device from Oxford Instruments, High Wycombe,
United Kingdom) were used to determine the grain size d as mean value of the spacings di,
i = 1, 2, 3, . . ., of HABs between crystallites with misorientations ≥ 15◦ determined along test lines.
Transmission electron microscopy (TEM) images (microscope from JEOL Ltd., Tokyo, Japan) were
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used to analogously determine the subgrain size w as mean value of the spacings wi of boundaries of
any kind.

3. Results

3.1. Influence of Predeformation

With increasing predeformation p the deformation strength of pCu-Zr saturates, because the
areal fraction fHAB of high-angle boundaries (HABs) increases up to a saturation level [9] where a
qs state is established due to dynamic equilibrium of storage and dynamic recovery of dislocations.
This statement is consistent with the observation that the Vickers hardness saturates with increasing
predeformation p at HV ≈ 180 [9]; using the formula σ/MPa ≈ 3 HV, this corresponds to a saturation
flow stress of 540 MPa in ECAP. An increase of fHAB enhances storage as well as recovery of dislocations
because HABs are stronger dislocation obstacles and better dislocation sinks than LABs. The net effect
on deformation strength depends on whether storage or recovery are the dominant factors (compare,
e.g., [13]).

Figure 2 shows exemplary curves of the evolution of deformation resistance with strain at constant
engineering stress σeng = 150 MPa for different amounts p of ECAP predeformation. Deformation
starts with application of the load F, and continues in creep mode when the creep stress σeng has been
reached. The starting phase of the tests is connected with work hardening as is visible from the sharp
decrease of strain rate ε̇ with ε. After strains of 0.02 to 0.05 the rate ε̇ increases. A trivial reason for
ε̇-increase lies in the increase of σ with ε (Equation (2)) causing the creep rate to increase in the qs state
as ε̇ ∝ σnqs where nqs is the qs value of the stress exponent. The dotted line in Figure 2 shows that
for severely predeformed Cu-Zr with p ≥ 8 practically all of the ε̇-increase can be attributed to the
increase of σ when nqs = 6 (as reported before [9]). This means that at σeng = 150 MPa

• the specimens of 8/12Cu-Zr begin to deform in their qs state right from low strains in the order of
0.02, and

• changes of boundary and particle structures are negligible.

At about half the fracture strain the ε̇-increase accelerates. This indicates formation of local stress
concentrations by external and internal necking during the fracture process.

Figure 2. ε̇ versus ε for pCu-Zr at 673 K, σ0 = 150 MPa in tension at constant load; dotted line: increase
of ε̇ expected from increase of σ for nqs = 6.

The less strongly predeformed specimens 4Cu-Zr and 2Cu-Zr exhibit a distinctly steeper increase
of ε̇ with ε. To find the reason for that, it is useful to display the creep process in the qs region near the
minimal creep rate, i.e., the creep between the work hardening period and the fracture period, in the
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log ε̇ − log σ-field (Figure 3). According to Equation (2), log σ increases linearly with ε. The scale-bars
in Figure 3 show the extension of a strain interval Δε of 0.5. Figure 3e confirms that most of the curves
for 8Cu-Zr have slopes near nqs = 6 in the qs range above 150 MPa and follow a common trend given
by the dashed black line. For 12Cu-Zr this behavior is even more perfectly pronounced, indicating
better homogeneity of the initial microstructure.

Figure 3. ε̇ versus σ for pCu-Zr at 673 K in tension at constant load.
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For lower stresses σ < 150 MPa and for pCu-Zr with p ≤ 4 the slopes in Figure 3 are distinctly
higher and different curves do not merge. One reason is tensile fracture. Figure 3a shows that fracture
occurs in cg Cu-Zr (i.e., pCu-Zr with p = 0), before a qs region has been developed. This means that
the qs deformation strength cannot be measured in tension. Thus, the experimental values of the
minimal creep rate are determined by fracture, and therefore constitute only upper bounds of the qs
deformation strength. The same holds for predeformed pCu-Zr with p = 1 to 4. (To determine the qs
deformation strength, compression tests would be required in these cases in order to delay or suppress
fracture). For ufg 8/12Cu-Zr the strains are too large to explain the non-merging of the curves at low σ

by fracture processes. Therefore this effect must be due to softening during creep. In Section 3.3 we
provide an explanation of the softening in terms of dynamic coarsening of the microstructure.

In summary, one sees from Figure 3 that the qs deformation strength of Cu-Zr decreases at the
test temperature 0.5 Tm when the material is severely predeformed, the grains are refined, and the
areal fraction fHAB of boundaries with high-angle character increases during creep.

3.2. Microstructure of 8Cu-Zr

3.2.1. Before Creep

Heating to and holding at test temperature before creep took a few hours. Figures 4 and 5a
illustrate the microstructure of 8Cu-Zr after annealing for a few hours at the test temperature. So these
microstructures are representative for the microstructure at start of creep. From a micrograph, such as
Figure 4, the initial grain size d0 of 8Cu-Zr was determined as 4.7 × 10−7 m. From the 8Cu-Zr sample of
Figure 5a the initial subgrain size w0 was determined as 1.5 × 10−7 m. Noting that these are local values
that may vary from place to place and from specimen to specimen, the agreement with previously
published data [10] and with data from the literature for severely predeformed ufg Cu-Zr [12,14,15]
data is considered to be satisfactory. From the empirical formula

wcg
qs ≈ 14 b G/σ (3)

for cg Cu [16] and the estimate 540 MPa for the saturation strength in ECAP given above one gets
a qs subgrain size of 2.4 × 10−7 m. In view of the uncertainty of the empirical factor 14 entering
Equation (3), the agreement with the measured w0 is considered satisfactory, too. This means that
w0 may be interpreted as the qs value of the subgrain size in ufg 8Cu-Zr before creep, that is only
marginally influenced by the heating to test temperature.

Figure 4. Grain structure map of 8Cu-Zr after 10 h of annealing at 673 K; thin and thick lines: traces of
boundaries with misorientation < and > 15◦, respectively. Insert: color code for crystallographic grain
normals in standard triangle.
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a b

Figure 5. TEM of subgrains and Cu5Zr-precipitates in 8Cu-Zr after (a) annealing for 8 h at 673 K,
(b) creep at 673 K, σeng = 150 MPa to a fracture strain of ≈0.5 (compare curve for p = 8 in Figure 2).

The Zr containing particles are essential in restricting grain coarsening [10,12,14]. They are present
in homogeneous distribution after SPD ([14] and Figure 5). Figure 6 shows electron diffraction patterns
of (a) the Cu matrix with particles and (b) a large particle of composition Cu5Zr. A rough estimate
based on Equations (7)–(13) in [17] (using a mean particle radius of 4 nm, number of particles per area
of TEM foil equal to 10, typical foil thickness of 200 nm) yields an Orowan stress for particle hardening
of about 150 MPa at room temperature. However, at the test temperature the tiny particles are easily
overcome by local and general climb of dislocations so that the particle hardening term is greatly
reduced [17]. In the following, we neglect the direct influence of particles on the stress sensitivity of
the deformation strength.

a b

Figure 6. Diffraction patterns of (a) Cu matrix (strong reflections) with Cu5Zr particles (weak reflections)
and (b) a large Cu5Zr particle.

The spacing plot of Figure 7 shows w0 and d0 together with the qs spacings ≈ bG/σ of dislocations
and wcg

qs of boundaries in cg Cu. We assume that the qs spacings for cg Cu are valid also for Cu-Zr.
It is interesting to note that at low stresses the (dotted) qs dislocation spacing would be similar to the
initial boundary spacing w0, meaning that the subgrains will tend to be virtually dislocation-free in
the beginning of creep. This will increase the mobility of boundaries. As w0 is smaller than wcg

qs(σ) in
the whole stress interval of creep (Figure 7), the subgrains will tend to coarsen with strain toward the
quasi-stationary value wcg

qs as long as the grains provide enough space, i.e., as long as w is smaller than
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d. The grey area marks the range of possible subgrain coarsening under the simplifying assumptions
that all grains are equiaxed and keep the same size d = d0 throughout deformation. The solid black
line marks the qs boundary spacing in ufg 8Cu-Zr under these conditions. If this line were exactly
valid, all grains would become subgrain-free during deformation for stresses < 270 MPa. However,
that is unrealistic because of (i) the wide distribution of HAB spacings (Figure 9) and (ii) dynamic
grain growth (see below).

Figure 7. Initial spacings w0 (all boundaries) and d0 (HABs only) in pCu-Zr with p ≥ 8 in comparison
to the qs spacings wcg

qs of subgrains (Equation (3)) and ≈ b G/σ of free dislocations expected in
coarse-grained Cu-base material; circles: HAB-spacings after deformation, triangles: HAB-spacings in
regions with relatively fine and coarse grains, respectively; grey area: range of subgrain coarsening for
d = d0.

3.2.2. After Creep

Figure 8 shows grain structures after creep at low σ. There is a mixture of large and fine grain
sections. The largest ones are much coarser than in the initial state (Figures 4 and 7). Coarsening
is also seen from the TEM micrograph of Figure 5b after fracture at σeng=150 MPa in comparison to
Figure 5a taken before creep. However, this is probably mainly due to subgrains growing from w0

(Figure 5a) in the attempt to attain the qs spacing wcg
qs. Figure 9 shows the distributions of individual

HAB-spacings determined from Figures 4 and 8. We will use them as rough experimental input to the
model presented in Section 4.

Comparison of Figure 5a,b shows no indications for significant coarsening of particles during
creep. So we assume that the stabilization of the grain structure by particles will essentially persist
in creep.
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a b

Figure 8. Coarsened grains after slow creep at σeng = (a) 75 MPa and (b) 50 MPa (grey triangles in
Figure 7); slight color variations in some coarsened grains indicate subgrain formation during creep;
insert: color code for crystallographic grain normals in standard triangle.

Figure 9. Individual HAB-spacings dl (l = 1, 2, . . .) versus cumulative spacing fraction Fl evaluated for
8Cu-Zr in annealed state from Figure 4 and after slow creep from Figure 8a,b. Grey dashed line: linear
approximation for annealed state.

3.3. Strength Evolution of 8/12Cu-Zr with Strain

Figure 10 displays the ε̇-evolution of ufg 8Cu-Zr from the overview of Figure 3e in greater detail as
function of strain ε. For comparison, the grey dotted lines show the increase of ε̇ with ε expected for qs
deformation with nqs ≈ 6 at constant σeng. The scatter in the series of tests at σeng = 250 MPa indicates
that the thermomechanical pretreatment was not perfect and led to some variations of microstructures
and strengths. The intermediate σeng-increase to 83 MPa in the test starting at 75 MPa causes a jump in
the qs level of ε̇ at ε ≈ 0.15 (see black squares) which corresponds to nqs = 5.3. This is in reasonable
agreement with nqs ≈ 6. At high (true) stresses σ > 270 MPa and strain rates > 10−4 s−1 the exponent
nqs appears to gradually increase with σ beyond 6. This is seen from the test of Figure 11 with a
series of load reductions compensating the increase of σ with ε (Equation (2)). When the abscissa ε

in Figure 11a is exchanged for σ in Figure 11b, all the branches with σeng < 250 MPa shift to the left
and superimpose. A common ε̇–ε line describes both the superimposed curves and their (dashed)
connection to the final branch with σeng = 250 MPa. The slope of the dashed connection is given by
nqs = 10.4 at σ > 275 MPa.
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Figure 10. ε̇ of 8Cu-Zr as function of ε at constant σeng; black circles: identified qs rates; grey: after
σeng-reduction of from 250 MPa; see Figure 8 for microstructure at black arrows.

Figure 11. ε̇-evolution of 8Cu-Zr as function of (a) ε, (b) σ = σeng exp(ε) in test with σeng-reductions
of increasing magnitude to keep σ = σeng exp(ε) about constant.

At low σ<150 MPa the qs strength evolution can no longer be explained only in terms of the
slow increase of σ at constant σeng and fracture (see Figures 3 and 10. Therefore changes in the
subgrain/grain structures must be invoked. This corresponds to the observed dynamic coarsening of
subgrains and grains (Figure 7, Sections 3.2.1 and 3.2.2).
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3.4. Quasi-Stationary Strength of 8/12Cu-Zr

The circles in Figure 10 indicate the quasi-stationary strengths of ufg Cu-Zr at the grain/phase
structure present at the beginning of creep. Their choice results from a compromise of

• providing enough strain to fill the material with a qs dislocation structure (spacing of free
dislocations and subgrain size) while

• avoiding grain coarsening at large strains.

Taking into account that subgrain growth by migration of LABs is a relatively fast process needing
strains in the order of 0.05 to 0.1 and that only limited subgrain growth is possible before all LABs
were absorbed at the HABs of mean spacing d0 (Figure 7), we expect that at the rather low strains
of the qs states marked by circles in Figure 10 only marginal grain coarsening will have happened
and that sufficiently small grains will have become subgrain-free by subgrain coarsening, except
perhaps at the lowest stresses. Figure 12a shows the circles from Figure 10 as function of stress σ for
ufg 8Cu-Zr. Within scatter, the qs strengths confirm the power law with a stress exponent nqs = 6,
already mentioned in Section 3.1, for the stress range 70 MPa < σ < 260 MPa. The square symbols
from the load change test demonstrate the moderate softening effect resulting from dynamic (sub)grain
coarsening mentioned before (Figure 7). An analogous procedure as for 8Cu-Zr leads to Figure 12b
for ufg 12Cu-Zr. There is no significant difference between 8Cu-Zr and 12Cu-Zr except lesser scatter
for 12Cu-Zr at (true) stresses near 270 MPa (corresponding to σeng = 250 MPa), probably due to better
homogeneity of the grain structure of 12Cu-Zr.

Figure 12. Quasi-stationary strengths of (a) 8Cu-Zr (symbols from Figure 7) and (b) 12Cu-Zr; grey
dotted lines connect data from the same test.

4. Discussion

The primary transients in ufg materials are usually small because the high density of HABs
limits the free path of dislocations effectively and leads to high rates of dislocation generation.
They are roughly estimated [18] as dρ+/dε = 2 M/(b Λ) with Λ≈ d0≈ 5 × 10−7 m and Taylor
factor M = 3 for polycrystals. Without concurrent dynamic recovery it needs a strain interval
Δε+≈ M−1 (b/d) (σ/G)2 Δρ+ to generate the full qs dislocation density ρqs ≈ b−2 (σ/G)2 in grains
of size d = d0. This means that at a stress of 150 MPa a plastic strain of Δε+ = 0.011 is sufficient to
generate the full qs dislocation density. This value is consistent with the primary transients extending
over strain intervals > 0.01 in creep at σeng = 150 MPa (Figure 10) and confirms that a qs state in the
sense of Equation (1) is reached shortly after the ε̇-minimum.

The aim of the present work is to learn more about the influence of the grain structure on
the qs strength. As shown above, the high value of fHAB has a softening effect (Section 3.1) and
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leads to a relatively high rate sensitivity (equivalent to low stress sensitivity nqs) of the qs strength
(Section 3.4). The qs stress exponent nqs ≈ 6 and a high activation energy remind one of the power
laws of steady state creep that are explained by specific mechanisms of qs creep, characterized by a
certain stress exponent nqs and rate sensitivity 1/nqs (see, e.g., [19–21]). For example, mechanisms 1
and 2 in Figure 13a might represent climb-controlled steady state creep and superplastic deformation,
respectively. Following this approach, the power law range in Figure 12 would correspond to some
mechanism 2.
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Figure 13. Mechanisms 1 and 2 of qs deformation with (a) abrupt, (b) smooth transition.

However, there is an alternative possibility [22]. The investigated region with relatively high
rate sensitivity may represent a smooth transition between a mechanism 1 dominating at high σ and
a mechanism 2 dominating at low σ (Figure 13b). A transition region must be expected from the
fact that the spacings of HABs have a wide distribution due to coexistence of small and large grains.
According to the microstructural data of Figure 7, mechanism 1 would represent qs deformation with
subgrain-bearing grains, while mechanism 2 would represent qs deformation with subgrain-free grains
(This makes a qualitative difference to Ghosh and Raj [23] who studied the influence of a distribution
of grain sizes in relation to the transition between superplastic and normal behavior, but assumed
that both mechanisms of deformation are concurrently active in each grain). In the (dashed) transition
region both types of grains would be present. In qualitative form this possibility has already been
applied to microcrystalline Cu at 0.35 Tm [24]. A semi-quantitative model was provided in [25] and
applied to microcrystalline Cu at 0.42 Tm [26]. To apply this model to the present case we need the qs
strengths of grains with and without subgrains and the distribution of grain volumes i = 1, 2, . . . with
spacings di between the HABs for ufg Cu-Zr at 0.50 Tm. This warrants assumptions based on educated
guesses. Following [25,26] we make these choices:

• The cumulative volume fraction Fd with HAB-spacings ≤ d is described by the thin straight line
in Figure 9 (grey, dashed).

• The qs strength of subgrain-free grains is quantified by the relation

ε̇ ∝ d4 σ8 (4)

from [27]; the f -factors were set to 0.19 ( f -factors = 1 apply in the limiting case where all
dislocations are lying at HABs, all are in dipolar configuration ready for recovery, and have
unrelaxed stress fields; as this is unrealistic, f -values distinctly less than 1 are sensible). This choice
yields the two dashed grey lines in Figure 14a for the present Fd and the limiting assumptions of
equal stress (iso-stress) or equal strain rate (iso-rate) in all grains.

• The qs strength of crystal volumes with subgrains of size wcg
qs(σ) is estimated by the power law

ε̇ ∝ σ15 (dotted line in Figure 14a). The exponent 15 is motivated by the increase of nqs with
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stress for σ > 270 MPa (Figure 12). The position of the line is supported by the result for 2Cu-Zr
in Figure 2: The grain size in 2Cu-Zr is so large that all grains contain subgrains; at 150 MPa
the upper bound of the initial qs strain rate of 2Cu-Zr is near 10−8 s−1 (Figures 2 and 3c); this is
consistent with the (grey dotted) estimate for subgrain-containing grains in Figure 14a.

Figure 14. (a) Strain rate and (b) volume fraction of subgrain-free grains as function of stress σ in qs
deformation; filled circles: qs data for 8/12Cu-Zr from Figure 12a,b, solid lines: model.

The solid black lines in Figure 14 show the result of the modeling. The iso-rate assumption enforces
a redistribution of stress; σ-concentration to hard grains reduces the stresses in soft grains. This stress
shielding hinders deformation of large, soft grains and so raises the flow stress level compared to the
iso-stress case. The realistic situation lies between the two limits of iso-stress and iso-rate. Comparison
of the model lines with the measured data shows reasonable agreement, in particular with regard to
the minimal stress sensitivity nqs (maximal rate sensitivity 1/nqs) in the transition from subgrain-free
to subgrain-containing grains.

We note that the difference between the two model lines is rather small in the transition region
and that the choice of the solid grey straight Fd-line in Figure 9 has relatively little influence there.
The reason may lie in a compensation effect. On the one hand, subgrain-free grains deform faster
at a given stress when their grain size d increases (Equation (4)). On the other hand, the fraction of
subgrain-free grains decreases with increasing d as more grains develop subgrains. This means that
grain coarsening may not always have the dramatic effect expected from the d4-term in relation (4).
At low σ and ε̇ the situation is unclear because subgrains as well as grains coarsen during creep and
the microstructural data are not precise enough for modeling. Therefore, we refrain from a detailed
discussion here.
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5. Summary

• The quasi-stationary (qs) strength of particle-strengthened ufg Cu-Zr prepared by ECAP and
annealing was determined at 0.5 Tm in deformation (creep) at constant load.

• At σeng = 150 MPa increase of the fraction fHAB of high-angle boundaries (HABs) leads to
softening and ductilization. So HABs have a net softening effect at test conditions.

• The (HAB) grain structure of ufg Cu-Zr is relatively stable at 0.5 Tm. At low ε̇ dynamic grain
coarsening sets in and leads to softening.

• The initial qs strength of ufg Cu-Zr measured before massive grain coarsening is described
by a power law ε̇ ∝ σn with stress exponent nqs ≈ 6, corresponding to a relatively high rate
sensitivity 1/nqs ≈ 1/6 = 0.17, around ε̇ = 10−4 s−1 and the relatively high stress σ = 170 MPa =

4.7 × 10−3 G.
• Analysis of the grain structure indicates that an increasing fraction of small grains becomes

subgrain-free in the qs state as the stress decreases.
• The relatively high qs rate sensivity of ufg Cu-Zr is modeled as a result of the variation of the

fraction of relatively soft subgrain-free grain volume with stress.
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Abstract: Hierarchical structures of 20 nm grains embedded with twins are realized in electrodeposited
Au–Cu alloys. The electrodeposition method allows refinement of the average grain size to 20 nm
order, and the alloying stabilizes the nanoscale grain structure. Au–Cu alloys are face-centered cubic
(FCC) metals with low stacking fault energy that favors formation of growth twins. Due to the
hierarchical structure, the Hall–Petch relationship is still observed when the crystalline size (average
twin space) is refined to sub 10 nm region. The yield strength reaches 1.50 GPa in an electrodeposited
Au–Cu alloy composed of 16.6 ± 1.1 nm grains and the average twin spacing at 4.7 nm.

Keywords: nanotwin; nanograin; Au–Cu alloy; micro-compression; yield strength

1. Introduction

The usage of precious metals in micro-components of microelectromechanical system (MEMS)
devices has been demonstrated to allow further enhancement in the sensitivity and miniaturization of
the device [1–3]. Among the precious metals, Au is a promising material owing to its advantageous
properties and process feasibility in electronic devices [4]. However, concerns regarding the structural
stability of gold-based components have been noticed due to the relatively low mechanical strength.
Although an improved yield strength (σy) of ~500 MPa [5] has been reported by refining the average
grain size (d) to nanoscale following the Hall–Petch relationship (HP) [6–8], the strength is still low
when compared with materials commonly used in electronic devices. For example, silicon materials
are often applied in MEMS devices and possess fracture strength of 1–3 GPa [9]. Besides, enhancement
in the strength along with the grain refinement reverses when the average grain size reaches ca.
20 nm [10–13], which is known as the inverse Hall–Petch relationship (iHP). Another strengthening
utilizing the HP can be achieved through introduction of twin boundaries into the grains [14], but iHP
still occurs when the average twin spacing (λ) reaches ca. 10 nm [15].

In addition to the mechanical properties, there are numerous reports on effects of nanoscale structure
on fundamental properties of the material, such as, superconductivity observed in nanostructured
HgBa2CuO4 + y [16], La2CuO4 + y [17], and Au–Ag [18]. The phonon density of states of Sn films
are reported to be affected by the morphology and grain sizes in nanoscale [19]. Furthermore,
electrodeposition is an effective method to control the structures in nanoscale [20].

Enhancement of the mechanical strength by solid solution strengthening can be achieved by
alloying of the nanocrystalline Au [11–13]. The yield strength reaches 1.0 GPa in Au–Cu alloys prepared
by electrodeposition and evaluated by uniaxial micro-compression tests [21,22]. The high yield strength
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is a result of synergistic effects of grain boundary and solid solution strengthening mechanisms and the
sample size effect [23]. On the other hand, a continuous increase in σy of the electrodeposited Au–Cu
alloys is observed when the grain size is lower than 10 nm, which is against the iHP reported for
Au–Cu alloys when the grain size is in sub 10 nm region [10–13]. The grain sizes reported in previous
works were estimated by X-ray diffraction and the Scherrer equation. Grain sizes evaluated by the
Scherrer equation are recognized to be close to the real grain sizes observed by transmission electron
microscopy (TEM) [24,25] in homogeneous nanocrystalline metals. However, deviations between the
Scherrer equation and the TEM results could occur when there is another ordered crystalline structure
in the specimen. For instance, twins in face-center cubic (fcc) metals having medium-to-low stacking
fault energy (γsf) are commonly observed, such as gold [26,27] and copper [28], and electrodeposition
is an effective method to cause evolution of twins [28–30]. Although there is still no report on formation
of twins in Au–Cu alloys, it is necessary to investigate microstructures of the Au–Cu alloys via TEM
observation to elucidate the strengthening observed in the iHP region.

Furthermore, the Au–Cu micro-pillar with high copper content shows a gradual decrease in the
flow stress just after the yielding point in the stress-strain curve; while the flow stress steadily increases
after the yielding for the Au–Cu micro-pillar with a low copper concentration (below 15 at.%) [22].
Such a stress drop phenomenon is rarely reported in nanocrystalline face-centered cubic (fcc) metals
and should be clarified.

In this work, formation of twins in the electrodeposited Au–Cu alloys is verified to disclose the
continuous strengthening observed in the iHP region. In addition, microstructures of the Au–Cu
micro-pillar are evaluated to understand the stress drop observed in the stress–strain curve.

2. Materials and Methods

Au–Cu alloy films were electrodeposited with an electrolyte containing X3Au(SO3)2 (X = Na, K)
and CuSO4. Details of the electrodeposition procedures are reported in previous studies [21,22]. The
chemical composition and crystal structure were characterized by energy-dispersive spectroscopy in
a scanning electron microscope (SEM, Hitachi SU4300SE, Tokyo, Japan) and X-ray diffraction (XRD,
Rigaku Ultima IV, Tokyo, Japan). For characterization of the mechanical property and in consideration
of the sample size effect for MEMS applications, micro-pillars fabricated from the Au–Cu alloy films
were prepared. The Au–Cu alloy film electrodeposited specimens were first thinned down to less than
100 μm by mechanical polishing and cut into semicircle disk shapes by a mechanical punch machine.
Then micro-pillars with dimensions of 15 × 15 × 30 μm3 were fabricated using a focus ion beam (FIB,
Hitachi FB2100, Tokyo, Japan). Mechanical properties of the Au–Cu alloy micro-pillars were evaluated
by micro-compression tests with a displacement-control mode, and the strain rate was 5 × 10−3 s−1.
More details of the micro-mechanical testing equipment are described in a previous study [31].
Microstructures of the as-deposited Au–Cu alloys and the deformed micro-pillars were observed
using a scanning TEM (STEM, JEOL JEM-2100F, Tokyo, Japan) equipped with a high-resolution TEM
(HRTEM) operated at 200 kV. Specimens used in the STEM and TEM were prepared by MultiBeam
SEM-FIB (JEOL JIB-4500, Tokyo, Japan). For the deformed specimens, the milling direction of the Ga
ion beam in the FIB was parallel to the compression direction.

3. Results and Discussion

Electrodeposited Au–Cu alloys incorporated with nanotwins were confirmed by STEM and
HRTEM observation. Figure 1a,b shows the STEM images of the Au85Cu15 (15 at.% Cu) and Au68Cu32

(32 at.% Cu) alloys, respectively. Individual nanoscale crystal grains and the boundaries could be
distinguished from contrasts of the patterns. The average grain sizes were 25.6 ± 4.1 and 16.6 ± 1.1 nm
for the Au85Cu15 and Au68Cu32 alloys, respectively. Nanotwins were observed in the STEM images
as indicated by the arrows in Figure 1a,b. Figure 1c shows XRD patterns of the as-electrodeposited
Au85Cu15 and Au68Cu32 alloys. No diffraction peaks from other ordered structure (i.e., L12 Au3Cu
or L10 AuCu) were observed except the fcc diffraction peaks, indicating complete solid solution in
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the electrodeposited Au–Cu alloys. The average sizes of the ordered crystalline estimated by the
XRD results and the Scherrer equation were 7.8 and 4.7 nm for the Au85Cu15 and Au68Cu32 alloys,
respectively. The grain sizes observed in STEM (d) were much larger than the average sizes from
the Scherrer equation, which implied the average sizes were very likely to be average spacing of the
nanotwins (λ). Figure 1d is a representative HRTEM image of the Au85Cu15 alloy, which shows a
~30 nm grain containing a ~8 nm wide single band. The electron diffraction patterns converted by
fast Fourier transform (FFT) confirmed the nanotwin structure, and the twin is symmetrical to the
matrix with the twin boundary (TB) (111) plane. The grain can be divided into three individual bands
by the parallel TBs and the widths are all about 10 nm, which is very close to the λ estimated by the
Scherrer equation. On the other hand, grains containing only one TB were also observed. As shown in
Figure 1e, the TB located in the middle of the grain separates the grain into two equal parts. Illustration
of grains divided by one and two TBs is shown in Figure 1f.

 
Figure 1. (a,b) Bright-field scanning transmission electron microscopy (STEM) images of
as-electrodeposited Au85Cu15 and Au68Cu32 alloys. The arrows indicate the nanotwins inside the
nanograins. (c) XRD patterns of Au85Cu15 and Au68Cu32 alloys. The vertical bars at bottom indicate
the diffraction peaks of pure Au and Cu. (d,e) Two representative high-resolution transmission electron
microscopy (HRTEM) images taken from the Au85Cu15 alloy. Zone axis: [011]. The vertical bars at
bottom indicate the diffraction peaks of pure Au and Cu. (f) Illustration of two types of the nanotwin
in a nanograin.

For alloy electrodeposition, the applied current density plays an important role in controlling the
grain size and composition. In the case of Au–Cu alloys, the Cu concentration is increased by applying
a higher cathodic current density due to the difference in standard reduction potential between Au
and Cu ions [11,13]. Meanwhile, the higher current density can promote the nucleation rate resulting
in finer grains in electrodeposits [32]. The twin evolution is attributed to the lowered γsf by alloying
two fcc metals already with relatively low γsf. A strong decrease in the γsf as a result of alloying was
experimentally examined and revealed to have a semi-log relationship in most of fcc-based alloys (i.e.,
Ag, Cu, Ni) as expressed in the following [33,34]:
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ln
γs f

γ0
= kγ

( x
1 + x

)2
, (1)

where γ0 is the stacking fault energy of the solvent metal. kγ is a material constant. x is the expression
of c/c*, where c is the solute concentration, and c* is the solubility limit. For example, the stacking fault
energy of pure Cu reduces from ~70 mJ/m2 to a value lower than 10 mJ/m2 when forming Cu-based
alloys [33]. Wu et al. reported the formation of a nanotwinned structure in electrodeposited Ni–80Co
alloys with average grain size of ~30 nm, and the growth twins were reported to be affected by γsf of
the alloy [29]. Lucadamo et al. also observed the twinning features in electrodeposited Ni–Mn alloys
but with coarser grains of ~200 nm [30].

Micro-mechanical properties of the electrodeposited Au–Cu alloys were revealed by
micro-compression tests. Figure 2a–d shows SEM images of the as-fabricated Au85Cu15 and Au68Cu32

micro-pillars and after compression with 12%–14% plastic strain. Similar barrel-shape deformations
were observed in both micro-pillars, which were typical deformation behaviors for polycrystalline
metallic materials. The engineering stress–strain curves obtained from the compression tests are shown
in Figure 2e. The σy’s of the Au85Cu15 and Au68Cu32 micro-pillars were 0.95 and 1.16 GPa, respectively.
After the yielding point, the Au85Cu15 pillar exhibited a steady increase in the flow stress during the
plastic deformation until unloading. For the Au68Cu32 pillar, the flow stress declined in the early stage
of the plastic deformation for strain of ~2%. After that, the flow stress steadily increased similar to
that of the Au85Cu15 pillar. It should be noticed that there is still no report on the stress drop for pure
polycrystalline fcc micro-specimens.

 
Figure 2. SEM images of (a,b) Au85Cu15 and (c,d) Au68Cu32 micro-pillars (a,c) before and (b,d)
after the compression with 12%–14% strain. (e) Engineering stress–strain curves obtained from the
micro-compression tests.

90



Metals 2019, 9, 987

To understand the stress drop observed in the stress–strain curves, microstructures of the deformed
micro-pillars were further investigated by the STEM and HRTEM. Figure 3a shows a STEM image of
the Au68Cu32 alloy after compression of 13.8% plastic strain. Similar to the as-electrodeposited alloys
shown in Figure 1a,b, conspicuous nanotwins were observed inside the nanograins. In addition to the
growth twins, deformation twins inside highly deformed grains were observed as shown in Figure 3b.
In the image, a deformation TB next to a growth TB located at the left side of the grain was observed,
and the deformation TB was obstructed in the middle of the grain. Another deformation TB could be
observed at the right side of the grain. A magnified inverse fast Fourier transform (IFFT) image shown
in Figure 3c reveals the extremely complex interaction between the deformation twin and dislocation,
which forces the twinning to be interrupted inside the grain.

 
Figure 3. (a) A STEM image of the Au68Cu32 micro-pillar after ~13.8% compressive strain. (b) An
HRTEM image of a highly deformed grain showing deformation twin. T: twin, M: matrix, Zone axis:
[011], and (c) a magnified inverse fast Fourier transform (IFFT) image showing the deformation twin.

Deformation twinning is one of major deformation mechanisms not only in fcc metals with low
γsf, but also in nanocrystalline fcc metals with high γsf if deformed under extreme conditions [35,36].
Several deformation twinning mechanisms are proposed and observed in nanocrystalline fcc metals,
i.e., the random activation of partials mechanism [37], the dislocation rebound mechanism [38], or the
partial emissions from grain boundary [35,38]. When a twin structure initiates from the grain boundary
and terminates inside a grain, it can only be formed by the partial emissions from grain boundary.
Zhu et al. [39] observed similar results in nanocrystalline Ni and proposed the relative mechanisms for
Shockley twinning partials to multiply at grain boundary (GB). Furthermore, the γsf of the fcc metals
is usually reduced by alloying, especially for the Au–Cu alloys. Therefore, the reduction in γsf can
change the energy path (i.e., general planar fault energy [40]) and, thus, facilitates the deformation
twinning under the applied stress. The stress drop observed in the Au68Cu32 alloy pillar is reasonably
considered to be the lowered energy requirement for Shockley twinning partials threading into grains
to form deformation twins.

Mechanical strengths of polycrystalline metals are often affected by multiple strengthening
mechanisms taking place simultaneously. In the present case of electrodeposited Au–Cu alloys, the
obtained σy are considered to be the synergistic effects of grain boundary strengthening, twin boundary
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strengthening, and solid solution strengthening. The effect of grain size on the strength is known to be
the Hall–Petch relationship [6,7]:

σgb = σ0 + kHP·d−1/2, (2)

where σgb is the strength contributed from GB, σ0 is the friction resistance for dislocation movement within
the polycrystalline grains, kHP is the Hall–Petch coefficient, and d is the grain size. The twin boundary
could form barriers to the dislocation motion similar to the grain boundary. Lu et al. [15,28,41] reported
that the average twin width (λ) and strength of the specimen follows a Hall–Petch relationship-like
behavior in the columnar-grained Cu with high density nanotwins perpendicular to the growth
direction. On the other hand, the nanotwin in columnar grain structure is different from the ones
present Au–Cu alloys. The Au–Cu alloys evaluated in this study were composed of isotropic grains of
much smaller grain size, and because of the ~20 nm average grain size, each grain could accommodate
a low number (mostly one and two in this study) of the twin boundaries and resulted a sub 10 nm
average twin width. Figure 4a shows the Hall–Petch plot for Au–Cu alloys including the results of the
present study and literatures evaluated by Vickers hardness tests [10,12,13]. σy of the Au–Cu alloys
increased from 0.90 to 1.50 GPa, when the λ decreased from 4.7 to 9.1 nm.

Figure 4. (a) Hall–Petch plot of Au–Cu alloys. The yield strengths in the literatures were converted
from Vickers hardness. (b) A plot of yield strengths as a function of Cu content.

For the solid solution strengthening, the classical theories are well established in coarse-grained
alloys such as Fleischer model [42] and Labusch theory [43]. Rupert and Schuh et al. further proposed
enhanced models for nanocrystalline fcc alloys, in which the σy and the strength contributed from
nanocrystalline solid solution (Δσnc,SS) are expressed by [44,45]:

σy = A·E, (3)

Δσns,SS= A·
(
∂E
∂c

)
·C, (4)

where A is a fitting constant having a function of the applied strain rate and grain size, E is elastic
modulus of the alloy, c is composition in at.%. Equations (3) and (4) suggested that the strength in
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nanocrystalline alloys is not only dominated by the grain size but also affected by the elastic modulus
and composition. The copper concentration of the Au–Cu alloys prepared in this study ranged from
12.1 to 46.4 at.%. Here, we assume two conditions to approach the constant A: (i) grain sizes in
all Au–Cu alloys are similar and (ii) E follows a linear fashion with alloy composition and ranges
between the elastic modulus of Au (74 GPa) and Cu (117 GPa). By doing the assumptions, the fitting
constant A is equal to 0.0375, which is somewhat larger than the value reported for nanocrystalline
Cu alloys (0.024) [45]. Nevertheless, this modified model for nanocrystalline alloys is in line with our
experimental results as shown in Figure 4b.

Au–Cu alloys prepared in this study were confirmed to have ~20 nm as the average grain size and
sub 10 nm as the average twin spacing. Both values were still in the HP region and close to the critical
value for occurrence of the iHP, which demonstrated thorough utilization of the HP in strengthening
of Au–Cu alloys. Due to this, an ultrahigh yield strength of 1.5 GPa was obtained.

4. Conclusions

A hierarchical nanostructure of nanocrystalline Au–Cu alloys containing nanotwins was produced
by electrodeposition from sulfite-based electrolyte. Microstructure investigation revealed that average
grain sizes of the alloys were about 20 nm, and twin boundaries were observed in the nanograins.
Due to the fine grain size, average spacings of the twins were all less than 10 nm, and this confirmed
continuous strengthening was observed when the average twin spacing is thinned downed to sub
10 nm region. By making a hierarchical structure of twinned nanograins having the size in the HP
region but close to the iHP region, a high yield strength of 1.5 GPa was obtained. In addition, the stress
drop observed in the stress–strain curve was caused by evolution of the deformation twins, and the
deformation twins were formed because of the reduced stacking fault energy in the Au–Cu alloys.
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Abstract: Metals in small volumes display a strong dependence on initial conditions, which translates
into size effects and stochastic mechanical responses. In the context of crystal plasticity, this amounts
to the role of pre-existing dislocation configurations that may emerge due to prior processing.
Here, we study a minimal but realistic model of uniaxial compression of sub-micron finite volumes.
We show how the statistical correlations of pre-existing dislocation configurations may influence the
mechanical response in multi-slip crystal plasticity, in connection to the finite volume size and the
initial dislocation density. In addition, spatial dislocation correlations display evidence that plasticity
is strongly influenced by the formation of walls composed of bound dislocation dipoles.

Keywords: plasticity; representative volume element; dislocation structure; dislocation correlations;
dislocation avalanches

1. Introduction

Crystal plasticity modelling of a macroscopic cylinder typically requires elasto-plastic
constitutive laws. Usually, the onset of crystal plasticity is modeled through a smooth, continuous
transformation [1,2], even though in the rare absence of pre-existing mobile defects it is a fact that
the plasticity transition is discontinuous (see Figure 1). In contrast, during nanopillar compression,
mobile defects are suggested to be absent [3,4] and the transition is characterized by discontinuous
abrupt event sequences (nanoscale) [3,5–15]. Naively, one might expect that the averaging of an
abrupt nanopillar response would lead to a discontinuous average response at the nominal yield
point. However, unconventional size-dependent nonlinear ensemble average behavior emerges during
quasi-static nanopillar compression of crystals as size decreases [16,17].

In uniaxial compression of microscopic crystals, discontinuous plastic yielding may be realized
by considering a collection of randomly placed dislocation sources (pinned dislocation segments) in an
otherwise dislocation-free crystal (see Figure 1). However, even in such an idealistic case, after loading
to a finite strain, the unloading process to zero stress will leave a corresponding plastic strain and
dislocation structure. Reloading to the flow stress appears quasi-continuous, but the behavior is
typically nonlinear and “anelastic” [18–24], originating in locally irreversible but small deformations
that correspond to abrupt jumps of pre-existing dislocations. Experimentally in small volumes, it has
been found that uniaxial compression of crystalline nanopillars ranging from ∼100 nm to ∼10 μm is
characterized by the absence of mobile dislocation segments (“exhaustion” mechanisms), leading to
abrupt events and jerky loading responses [7,25–28].

The ensemble average of small-volume abrupt behavior, smooth and nonlinear, resembles macroscale
crystal plasticity. For uniaxial compression of cylinders, due to the absence of geometric gradients,
it is natural to consider crystal plasticity a a local phenomenon [29]. Thus, it is expected that the
ensemble average of nanopillar responses should equal the spatial average response of a macroscopic
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cylinder. Nevertheless, recent experiments [16,17] displayed strong size dependence for the average
mechanical response of copper single crystalline pillars with sizes decreasing from 3 μm to 300 nm,
showing increasing curvature during quasi-static loading [1,30–34]. At which scale does the micropillar
statistical ensemble averaged strength and hardening equal the spatially self-averaged ones?

(a)(a) (b)

Figure 1. Schematic of ensemble and spatial averaging in uniaxial compression of cylindrical
samples. (a) An annealed small volume yet with dislocation sources (pinned dislocation segments),
loaded to a certain strain, responds abruptly at the elastic-plastic transition (solid:load-control,
dashed:displacement-control). If the sample is pre-deformed, reloading (dashed line, reload) shows
nonlinearity before reaching the flow stress. (b) The uniaxial compression of a cylinder, at load P,
may be thought as a statistical collection of microscale pillars’ compression. However, at what scale
should each pillar compression be considered for such an averaging to be accurate?

In this paper, we investigate how the statistical ensemble average of plastic, abrupt mechanical
response of uniaxially stressed small volumes depends on the system size and pre-existing dislocation
microstructure. We perform an explicit but minimal discrete dislocation dynamics model study with
one and two active slip systems. Two typical initial dislocation microstructures are utilized: (i) annealed
(dislocation free) samples; (ii) “mobile-dislocation-rich” dislocation microstructures created by a prior
loading history. We demonstrate that the onset of plasticity and continuous nonlinearity of stress–strain
curves is caused by inhomogeneous dislocation microstructures that form under prior multislip
loading, composed of dislocation dipoles. We also show that, in this model of uniaxial compression,
the very observation of scale free power law avalanche behavior is connected to the emergence of
the statistically averaged stress–strain curvature. Based on this model evidence, we conclude that
single-slip plasticity may be ensemble averaged by compressed nanopillars with diameters even less
than 500 nm. However, multi-slip plasticity may be averaged only by finite volume pillar compression
with volumes larger than 2–4 μm.

The paper is organized as follows: Section 2 contains the model description and details of
our study; Section 3 is focused on the mechanical response of nanopillars of different sizes and
microstructures for multi-slip conditions. In Section 4, we focus on the nonlinearity of statistical
ensemble average and its connection to spatial edge dislocation-pair correlations. Avalanche statistics
is also discussed for different dislocation densities. In Section 5, we discuss our conclusions in the
context of the macroscopic constitutive relations derived by the small-volume response ensembles.

2. Model Description

The uniaxial compression of a nano/micro-pillar is carried out by two-dimensional (2D) discrete
dislocation dynamics, where only edge dislocations are considered in one or multiple slip systems.
This is an accurate model for thin films [11,12] and it can be considered as a phenomenologically
consistent model for uniaxial nanopillar compression [7,35]. The schematic of the uniaxial compression
is shown in Figure 2. Using small strain assumptions, plastic deformation is described through
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the framework developed in [36], where the material’s state determination employs strain/stress
superposition. Thus, shape asymmetries related to plastic deformation are effectively not considered.
Each edge dislocation is treated as a singularity in an infinite space with Young modulus E and
Poisson ratio ν. The application of the dislocation analytical solution, which is valid in an infinite
space, needs a smooth image field (ˆ) to ensure that actual boundary conditions are satisfied. Hence,
the displacements ui, strains εij, and stresses σij are written as

ui = ũi + ûi, εij = ε̃ij + ε̂ij, σij = σ̃ij + σ̂ij, (1)

where the (˜) field is the sum of the fields of all N dislocations in their current positions, i.e.,

ũi =
N

∑
J=1

ũ(J)
i , ε̃ij =

N

∑
J=1

ε̃
(J)
ij , σ̃ij =

N

∑
J=1

σ̃
(J)
ij . (2)

The image fields ˆ are obtained by solving a linear elastic boundary value problem using finite elements,
with boundary conditions that change according to the dislocation structure and the external load.

h

w
yy yy

y
x+

◦
◦

Figure 2. Schematic of the discrete dislocation model in this study. Red dots stand for dislocation
sources and blue dots represent dislocation obstacles. Black lines stand for slip planes. Slip planes that
cross loading edges are not considered to avoid possible numerical issues caused by dislocations pinned
at loading edges. This simplification/assumption does not alter the main mechanism of dislocation
interactions. The slip system angle are also indicated in the figure separated by the red dashed line.

Slip planes are spaced at 10b, where b is the Burgers vector magnitude of 0.25 nm. We do not
consider slip planes that cross the loading boundaries (see Figure 2) to avoid numerical difficulties
induced by dislocations hitting the boundaries. Such assumptions will not alter the plasticity
mechanism observed in the sample since the effective slip area is 85% of the sample geometry.
The crystal is initially stress and mobile-dislocation free. This stands for a well-annealed sample,
yet with pinned dislocation segments left that can act either as dislocation sources or as obstacles.
A dislocation source mimics the Frank–Read source in two dimensions [36]. Point obstacles are
included to account for the effect of blocked slip caused by precipitates and forest dislocations on
out-of-plane slip systems that are not explicitly described. Stress caused by the obstacles is not
considered in the model. The strength of the obstacles τobs is taken to be 150 MPa with 20% standard
deviation. Obstacles are randomly distributed over the slip planes with a density that is eight times
the source density [35], and a dislocation stays pinned until its Peach–Koehler force exceeds the
obstacle-dependent value τobsb.

A dipole will be generated from a source when the resolved shear stress τ at the source location
is sufficiently high (satisfying the condition τ > τnuc) for a sufficiently long time (tnuc). The sources
are randomly distributed over slip planes at a density ρnuc (60 μm−2), while their strength is selected
randomly from a Gaussian distribution with mean value τ̄nuc = 50 MPa and standard deviation
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10 MPa. Once the source is activated, a dipole is generated and put at a distance Lnuc. The initial
distance between the two dislocations in the dipole is

Lnuc =
E

4π(1 − ν2)

b
τnuc

, (3)

at which the shear stress of one dislocation acting on the other is balanced by the local shear stress
which equals τnuc. After a dislocation is nucleated, it can either exit the sample through the traction-free
surface, annihilate with a dislocation of opposite sign when their mutual distance is less than 6b or
become pinned at an obstacle when the dislocation moves to the obstacle site.

Glide is governed by the component of the Peach–Koehler force in the slip direction. For the I-th
dislocation, this force is given by

f (I) = n(I) ·
(

σ̂ + ∑
J �=I

σ̃(J)

)
· b(I), (4)

where n(I) is the slip plane normal and b(I) is the Burgers vector of dislocation I. The Peach–Koehler
force (Equation (4)) includes the stress contribution from all other dislocations in the system (sum of ˜
fields) and effective stress (ˆ), considering the external loading and correction fields of the superposition
method. Dislocations follow over-damped dynamics, therefore they are driven by their Peach–Koehler
forces, and the instantaneous velocity of the I-th dislocation is

v(I) =
f (I)

B
, (5)

where B is the drag coefficient. In this paper, its value is taken as B = 10−4 Pa·s, which is representative
of aluminum, with E = 70 GPa and ν = 0.33.

Simulations are carried out in an incremental manner, with a time step that is 20 smaller than
the nucleation time tnuc = 10 ns. At the beginning of every time increment, nucleation, annihilation,
pinning at and release from obstacle sites are checked. After updating the dislocation structure,
new stress fields in the sample are determined, using the finite element method [36]. The loading mode
is set up to be strain rate controlled at 104/s. We primarily focus on multi-slip loading (two active slip
systems oriented at ±30◦ relative to the loading direction), and compare our results with single-slip
systems, with slip orientation 30◦ relative to the loading direction.

3. The Mechanical Response of Finite Small Volumes in Multi-Slip Conditions

First, we investigate the behavior of samples for fixed total deformation strain (1%) in both
annealed and mobile-dislocation-rich samples for multi-slip loading conditions. Pre-existing
dislocation microstructures in mobile-dislocation-rich samples are altered through the prior
deformation of annealed samples at increasing total strain levels (1%, 5%, 10%), as shown in Figure 3
(example of 10% loading history). If uniaxial compression of “annealed” samples (only dislocation
sources initially present) is carried out (cf. Figure 3a), then we find a yield strength size effect and
stochastic plastic behavior (cf. Figure 3b) that are qualitatively consistent with experimental findings
for uniaxial crystal compression of nanopillars [7,28]. When the developed microstructures at certain
loading strain are unloaded to zero stress, a stable dislocation structure of a mobile-dislocation-rich
sample forms, as shown in Figure 3c. The mobile-dislocation-rich sample is then loaded to 1% strain
as shown in Figure 3d.

The direct comparison of mechanical responses for small finite volumes of different sizes (different
colors) and microstructures (dashed vs. solid) is shown in Figure 4. The statistical averages of
stress–strain curves based on 50 samples are plotted in Figure 4a. Loading of pre-existing dislocation
ensembles to 1% total strain leads to nonlinearity, i.e., a smooth and nonlinear response prior to
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reaching the flow stress. The average curvature drastically decreases as the sample size decreases i.e.,
a longer continuous transition from elastic to perfect plastic, in contrast to the expected discontinuous
yielding of annealed structures (dashed lines).

h

yy

y
x

w

yy

(a) (b) (c) (d)

Figure 3. Annealed vs. Mobile-Dislocation-Rich dislocation microstructures and uniaxial compression
in small finite volumes. (a) Initially annealed dislocation structure: large (red) dots stand for dislocation
sources, small (blue) dots stand for obstacles, and two slip systems are used. The pillar has aspect
ratio h/w = 4; (b) Examples of stress–strain curves of loading-unloading process for different sizes
w, 20 realizations each; for each w three of them are shown. (c) Dislocation structure after unloading
(one representative structure is shown for w = 2 μm), the average dislocation densities (1014/m2) for
decreasing w are 11, 10.6, 8.6. (d) Examples of reloading of the pre-existing dislocation microstructure.

The observed nonlinear behavior is evidently related to the yield strength size effect in small
volumes: while the ensemble average of the yield strength increases as w → 0 (see Figure 4b) for
either annealed or loaded microstructures, the yield strength distribution (see Figure 4b) becomes
drastically wider with system-size for loaded dislocation configurations, in a qualitative agreement
with nanopillar compression phenomenology [37]. By comparing Figure 4a,b, one may notice that
the yield stress distribution disparity mirrors the system-size dependence of the anelastic (nonlinear)
average behavior. The same exponent that controls the yield strength size effect (σY ∼ w−α with
α � 0.65) [35] is the one that controls the nonlinearity of the average stress–strain behavior (not shown).
This finding is consistent with recent observations (e.g., see Ref. [16]—Appendix Figure S4d).

(a) (b)(a) (bb)

Figure 4. “Annealed” vs. “Mobile-Dislocation-Rich” Ensemble Averages in Multi-Slip Conditions.
(a) Average stress–strain curves of different w (50 realizations each). The black dashed line indicates the
expected elastic behavior due to the material’s elastic modulus. Colored dashed lines are the average
stress–strain curves up to 1% strain shown in Figure 3b when loading the annealed microstructure.
Solid colored lines are the average stress–strain curves for pre-loaded 10% samples. (b) Yielding
(defined as 0.1% plastic strain) distribution for different w. The line type follows (a).
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4. Dislocation Pair Correlations and Single-Slip vs. Multi-Slip Loading Conditions

The effects seen in double-slip loading conditions are not generic. The observed nonlinearity
depends on the number of slip systems activated, so we compare results produced in single-slip
(oriented at −30◦, see Figure 2) and multi-slip loading conditions. The nonlinearity becomes clear
when the stress–strain curve is reconstructed by defining σr = σ − σf , where σf is the flow stress prior
to unloading. It is seen in Figure 5, where σr versus plastic strain εp, is plotted that the nonlinearity has
a dependence on the sample size for double-slip loading. In contrast, single-slip loading shows no clear
size dependent nonlinearity for mobile-dislocation-rich samples (see Figure 5a inset). This apparent
discrepancy between single-slip and multi-slip loading indicates a possible connection of this size
effect to certain spatial features of dislocation structures that are favorably formed under double
slip conditions.

(a) (b)

single slip

(c) (d)

Figure 5. Single-Slip vs. Multi-Slip Loading Conditions and Structural Correlations. (a) Reconstructed
stress–strain curves for different w with σr = σ − σf where σf is the flow stress prior to unloading.
The inset is the reconstructed stress–strain curves when single slip system is used in the modeling.
(b) Pair correlation g(r) of dislocation structure obtained by unloading. The inset shows g+−(r)
correlation. The color of each curve corresponds to w show in panel (a). (c) Pair correlation g(r) of
dislocation structure in double and single slip systems. (d) Pair correlation g(r) of dislocation structure
in samples of different aspect ratio α and fixed w = 1.0.

Spatial features of dislocation structures may be extracted by: (i) the study of pair correlation
functions gss′(r) where s, s′ ∈ {+,−}, as well as (ii) the sign-insensitive correlation function g(r),
with r =

√
(x − x′)2 + (y − y′)2 for two dislocations located at r = (x, y) and r′ = (x′, y′). Figure 5b

shows g(r) for different w, averaged over 20 realizations. A structural peak forms in g(r) at small
distances (∼2 nm, with the slip spacing being 2.5 nm), which signifies the formation of dislocation
dipoles. The clustered dislocations are not pile ups (at single slip planes) as we confirmed. The scatter
of the pair correlation (errorbar shown in Figure 5b) increases with decreasing sample size, consistently

102



Metals 2019, 9, 835

with the variability of yield stress shown in Figure 4b. The origin of the pairs can be traced in the
dynamical behavior of the model: Dislocations from different slip systems may mutually approach at
a very short distance without annihilation, at the intersection of their respective slip planes. There,
a stable structure can be formed by dislocations of opposite signs (see Figure 3c for example). The inset
shows the behavior of the average g+−(r): pairs of dislocations with opposite signs are clustered at
distances smaller than 3 nm with the peak of g+−(r) being higher as w → 0. Dislocation pairs of
opposite-signed dislocations may be viewed as a toy model of dislocation junctions [7], even though
such analogies should be considered with care. In single slip loading, as shown in Figure 5c, the peak
of the pair correlation function appears exactly at the slip plane spacing 2.5 nm, larger than that in
the double slip system. For consistency purposes, we also checked analogous results in samples of
different aspect ratios, one of them being shown in Figure 5d for w = 1 μm, and no clear difference is
found, thus we conclude that α = 4 is adequate for the purposes of this study.

The very formation of bound dislocation dipoles may not necessarily imply any size dependence
of the nonlinear mechanical response [3,6,7,38]. However, the origin of the correlated size-dependent
response is indeed tracked down to the stress-field imposed by these inter-slip dislocation pairs.
Namely, a single edge dislocation displays a long-range resolved shear stress that has stability lines
at 45◦ angle with respect to the slip system angle, and an opposite-signed dislocation can combine
to form a bound pair at a nearby slip plane. The inter-slip bound dislocation pairs, discussed in
this work, apply equally long-range dislocation stress, as the one originating in a single dislocation.
The dislocation pair can be regarded as a super-dislocation where the resolved shear stress along the
−30◦ slip system is plotted in Figure 6a. There are multiple stability lines that can lead to the kinetic
formation of stable but weak pairs, ultimately leading to a size-dependent correlated response. For each
such super-dislocation, the shear stress sign-changing locations are shown with green lines; along such
lines, it is probable to stochastically form a wall of such super-dislocation dipoles.

x

y

(a) (b)

(c) (d)

Figure 6. Spatial correlations and the origin of the stress-response dependence on initial dislocation
density. (a) Resolved shear stress (unit GPa) along −30◦ slip system from a +− dislocation pair that
typically form in the system, functioning as super-dislocations. (b) Zoom-in of typical dislocation
structure formed after unloading for w = 2 μm. (c) Reconstructed stress vs. plastic strain for structures
with different dislocation densities. The inset shows g+−(r) for different dislocation densities.
(d) Statistics of plastic events during reloading. Plastic event S is defined as S = ∑i ∈ eventsteps δσi/σmax.
The red line stands for well-annealed system (see Figure 3a left) loading to 1% strain.
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Naturally, the formation of the identified dipoles and the associated patterns should become more
probable as the dislocation density increases for the same system size (or as the sample size increases
for the same dislocation density). For this purpose, we investigate the effect of different dislocation
densities (for w = 2 μm) through creating dislocation ensembles by unloading at different strains (1%,
5% and 10%). We consider dislocation densities (1014/m2) that are 2.74, 7.78, 11.1 (see Figure 6c). It is
seen that larger initial dislocation density leads to a more pronounced nonlinearity. The g+−(r) is
shown in the inset, which signifies that the smaller dislocation density has a higher peak. Our model
is benchmarked with experimental data [35], i.e., and it predicts a realistic strengthening size effect
and dislocation avalanche statistics in FCC crystals even though at a much higher strain rate than
experiments. Assuming a sole dislocation density effect on the strength, we may estimate that the
pre-existing dislocation density of the samples in Ref. [16,17] to be 1013/m2.

The evolution of the average inelasticity may be tracked through the statistics of abrupt events
that caused it. The event size statistics is shown in Figure 6d. Event S is the normalized stress drop
defined as ∑i ∈ eventsteps δσi/σmax where δσi is the stress drop and σmax is the maximum stress in single
realization. It can be clearly seen that the increase of pre-existing dislocation density and inelasticity
leads to a power-law behaving ensemble with larger cutoff and decay exponent ∼1.23. For very
low pre-existing dislocation density, where crystal plasticity is dominated by dislocation nucleation,
one can see that the power-law behavior is almost invisible.

5. Conclusions

This result is in accordance with a wealth of prior work [7,39–45] that have pointed that critical
avalanche dynamics requires pre-existing random or “glassy” dislocation microstructures. However,
the current work represents a pioneering effort to identify the precise origin of such random structures
in small scales. The possible distinction of this work is the fact that realistic dislocation microstructure
formation, contrary to a purely random dislocation microstructure, may lead to clear power-law abrupt
event statistics and associated effects.

In summary, we identified and studied a nonlinearity in the stress–strain initial-condition ensemble
average response during uniaxial compression of small finite volumes. This nonlinear effect is an
outcome of small finite-volume avalanche responses [7] and its presence may challenge any possible
correspondence between large-scale mechanical response and ensemble averages of small finite
volumes (see Figure 1). We find that such correspondence is plausible and sensible for single-slip
loading conditions and sample widths down to 500 nm, but not for multi-slip loading conditions
with sample widths up to 2 μm. We track the very origin of this effect in the structural features of the
emerging dislocation structures and the formation of bound dislocation dipoles.

This dipole formation resembles dislocation junction formation in more detailed models of
dislocation dynamics [7]. We may consider a typical macroscopic phenomenological power law
strain hardening relation to model this effect in continuum plasticity modeling [1], by stating
that the post-yield stress, σ = Kεn with K the strength coefficient and n the hardening exponent.
We find that n (which is defined as logσ

logε ) is a function of the pre-existing dislocation density ρ,
leading to the constitutive relation n = 1 − (644 − 35.35ρ∗)ε, where ρ∗ = ρ/ρ0 with ρ0 being
1014/m2. Thus, our explicit discrete dislocation model study of uniaxial compression in small finite
volumes demonstrates that ubiquitous abrupt plastic events result into a dislocation density dependent
nonlinear dependence.

Together with strength size effects, the identified nonlinearity challenges any attempts for
“ensemble averaging” of small-volume responses into forming a representative volume element
average. The density dependence can be traced to the pattern formation of microscopic dislocation
dipoles, which are not easily formed in single-slip loading conditions. In this way, multi-slip loading
conditions are possibly key components to unveiling the role of critical, power-law abrupt events’ for
phenomenological crystal plasticity.
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Abstract: Three-dimensional (3D) discrete dislocation dynamics simulations are used to analyze
the size effect on the fractal dimension of two-dimensional (2D) and 3D dislocation microstructure.
2D dislocation structures are analyzed first, and the calculated fractal dimension (n2) is found
to be consistent with experimental results gleaned from transmission electron microscopy images.
The value of n2 is found to be close to unity for sizes smaller than 300 nm, and increases to a saturation
value of ≈1.8 for sizes above approximately 10 microns. It is discovered that reducing the sample
size leads to a decrease in the fractal dimension because of the decrease in the likelihood of forming
strong tangles at small scales. Dislocation ensembles are found to exist in a more isolated way at the
nano- and micro-scales. Fractal analysis is carried out on 3D dislocation structures and the 3D fractal
dimension (n3) is determined. The analysis here shows that (n3) is significantly smaller than (n2 + 1)
of 2D projected dislocations in all considered sizes.

Keywords: dislocation microstructure; fractal analysis; size effect

1. Introduction

Dislocations are the main carriers of plastic deformation in crystals. Within the framework
of crystal plasticity theory, dislocations are generally described by their density. Key mechanical
properties were found to correlate with the concept of density, for example the Taylor hardening law,
which states that the critical resolved shear stress is proportional to the square root of the dislocation
density. To account for size effects on plastic deformation, further refinements have led to the distinction
between geometrically necessary and statistically stored components. This distinction allows
consideration of the role of dislocation accumulation in accommodating an imposed deformation
gradient and the development of strain gradient plasticity theory. The spatial consideration of gradients
in the dislocation density resulted in successful interpretation of the size effect in micro-bending and
micro-torsion tests. Going beyond this mean-field description through the concept of dislocation
density, the complex spatial features of the dislocation structure have also attracted considerable
interest [1–9]. The formation of planar dislocation arrays is known to be a prelude to micro shear
banding, while the entanglement of dislocations can lead to greater work-hardening, and the size
of dislocation cells may be a reflection of creep strength [10–12]. Therefore, effective description
of the dislocation structure is important for building the relationship between microstructure and
the mechanical behavior. Some typically observed dislocation pattern morphology includes ladder,
labyrinth, wall, and cell structures, which depend on the material, loading condition, and temperature,
etc. Complete quantitative characterization of the dislocation structure is very difficult because the
large number of parameters that may be necessary [13]. Investigation of the common features from
a statistical perspective leads to a practical way to describe complicated dislocation structures in
a simple way. An interesting finding is the fractal nature of dislocation structures [13–16] as a measure
of structural complexity and spatial packing.
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Fractals generally reflect statistical self-similarity. Specifically, spatial features look similar at any
scale. This implies scale-free physics. In addition, geometrical structures have features at all length
scales. One typical example to gain an intuitive idea is the measurement of the length of a coastline [17].
When one uses a very large ruler to measure the length, one obtains a smaller estimate of the length
than using a fine ruler, which can capture more details on the smaller scale [18]. The measured
length L is expressed by the number of scale (ruler) units N(Δx). Here, each unit has the length of
the ruler size Δx. A power law relation is observed between N and the ruler size Δx as N ∝ Δx−n.
The absolute value of the corresponding power law exponent is defined as a fractal dimension n. n can
be non-integer values. This idea can be extended to two-dimensional (2D) and three-dimensional (3D)
systems, by tuning the dimensionality of the ruler. For ordinary geometric shapes, the theoretical
fractal dimension is equal to its topological dimension. For a fractal geometry, the fractal dimension
exceeds its topological dimension. The fractal dimension quantifies the complexity as a ratio of the
change in detail to the change in scale.

The plastic deformation of a material is a highly complex spatio-temporal phenomenon.
The complexity of the underlying dynamics is mainly associated with the nonlinear evolution of
collective dislocations. In the temporal scale, it is manifested as the emergence of strain burst
and dislocation avalanches [8]. In the spatial scale, this leads to a non-uniform, non-isotropic,
and non-random dislocation distributions [19]. Regular, periodic, or nearly periodic dislocation
patterns, such as persistent slip bands with a well-defined pattern wavelength [13], are not fractal
patterning. However, the widely observed dislocation cellular structure generally exhibits a clear
fractal geometry, which implies scale invariance of the spatial arrangement of dislocations at a given
deformation state. The fractal dimension measures the space-filling capacity and the complexity of
a dislocation pattern [7]. As summarized in Table 1, the fractal dimension of cellular dislocation
patterns depends on strain value [20] and stress level. During the initial stages of deformation,
the dislocation structure evolves significantly before a relatively stable dislocation structure is formed.
The fractal dimension gradually increases at first, and then reaches a relatively stable value with
increasing strain [16,20]. When the strain is close to the onset of necking, the fractal dimension of
the bulk dislocation structure starts to gradually drop, because the structure becomes progressively
more ordered as fracture is approached [20]. This leads to the possibility of linking the variation of the
fractal dimension of the dislocation structure with strain, which may contribute to the development
of a constitutive law. When the external size of the material decreases to several microns, the fractal
dimension also shows dependence on the sample size [16].

Table 1. Fractal dimension of dislocation cellular structures estimated through experiments or
theoretical models.

Fractal
Dimension n Remarks Reference

1.64∼1.79 TEM images of [100]-oriented Cu single crystal, n depends on stress. [13,21,22]
1.371∼1.695 STEM images of [011]-oriented Cu, n depends on sizes and strain. [16]
1.33 2D dislocation glide through obstacles. [23]
0.9∼1.8 Phase-field simulations, n initially increases with applied stress. [24]
1.5 Using 2D continuum model for mesoscale plasticity. [25]

1.87
2D dislocation pattern simulation for FCC single crystals oriented
for multiple slip without climb under cyclic loading. [26]

The fractal feature of the dislocation microstructure is generally studied based on the analysis
of transmission electron microscopy (TEM) or scanning transmission electron microscopy (STEM)
micrographs [13,16]. An analysis method based on box-counting will be described in detail in Section 2.
Other alternative measurement methods are referred to in reference Zaiser et al. [13]. As we know,
TEM or STEM images can be considered to be 2D projections of the actual 3D dislocation microstructure.
Most of existing theoretical model used to describe the fractal feature of dislocations also mainly
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focuses on 2D problems, as summarized in Table 1. Then, an interesting question is whether the
fractal behavior can be observed for the actual 3D dislocation microstructure? If yes, then a follow-up
question would be how the external size influences the fractal behavior of 3D dislocation structure?
Till now, reconstruction of the 3D dislocation microstructure through experimental data is still very
difficult. Only recently, some efforts of visualizing 3D dislocation structure have been spent by
using X-ray tomography [27], using the electron beam tomography method through tilting samples
while maintaining proper diffraction condition [28–30], or using scanning electron microscope
serial sectioning method [31]. However, the obtained 3D dislocation structure information is still
limited and not used to check their fractal behavior yet. On the other hand, discrete dislocation
dynamics (DDD) simulations represent a powerful tool to investigate the formation of dislocation
structure by considering the short-range and long-range dislocation interactions and external load
conditions [32–34]. 2D-DDD reproduces the fractal dislocation structures in multiple slip [15]. It is
also found that self-similar dislocation patterns form without dislocation climb, but cellular structures
with well-defined characteristic lengths are observed with dislocation climb [26]. To our knowledge,
3D-DDD is not used to investigate the fractal nature of dislocation structures yet due to the significant
computational expense when simulating highly tangled dislocation cells. Therefore, it is not clear
whether 3D dislocation structures self-organize into fractal features through junction formation,
pile-ups, cross-slip events, etc.

Based on the considerations above, the current work aims to answer two questions. The first is
whether a 3D dislocation structure exhibits well-defined fractal features. The second is how the sample
size influences the fractal behavior of 2D projected dislocation structures and actual 3D space-filling
tangles. In Section 2, the investigation method is described. Simulation results and discussions are
given in Section 3, while Section 4 summarizes the results of the present investigation.

2. Investigation Method

The computational method of 3D-DDD is employed here as one component of the MoDELib
(Mechanics of Defect Evolution Library) software system [35], described in detail in our previous
papers [36,37]. In this 3D-DDD approach, curved dislocation lines are discretized into a succession
of parametrized segments. Boundary conditions and image forces are considered by coupling with
an FEM solution of an elasticity problem using the superposition principle [37]. 3D-DDD simulations
of tension tests of Fe micropillars along the [001] direction at 320 K are carried out. Pillar diameter
varied in the range 300–1500 nm, with the ratio of height and diameter be equal to 2. To tune the
extent of deformation localization, we introduce irradiation defects, with defect density range of
1021–3 × 1022 m−3. Irradiation defects themselves are not considered when discussing the fractal
behavior of dislocation structures. More details on the simulation set-up and descriptions are given
in [33,38–40].

The fractal behavior is investigated by the box-counting method [13,16]. The basic idea of
box-counting method is that the space is discretized into a large amount of non-overlapping small
grids. If the dislocation line passes through a specific grid “pixel”, it is marked as 1, otherwise, the pixel
is marked as 0. For example, for the 2D case shown in Figure 1, the filled pixels are marked as 1,
and white pixels are marked as 0. In previous work, such information is mainly obtained by post
processing experimental images, which is limited by the image resolution. The calculation here is
directly based on the information of dislocation segment positions, which allows for very high spatial
resolution, and is also applicable to the 3D case. Please note that because we check the intersection
of the dislocation line with the grid pixel, instead of only using the information of the ending points
of dislocation segments, the calculation is not sensitive to the discretization of the dislocation lines.
In addition, we verified with this method the fractal dimension of a perfect circular dislocation
loop, and found its fractal dimension to be 1, which is the same as that of straight dislocation line.
This implies that the dislocation curvature itself does not have influence on the calculation of the
fractal dimension.
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Figure 1. Schematic showing how to convert the dislocation line information into pixel image in binary
format. The blue solid line is the dislocation line.

When analyzing the 2D dislocation structure, the 3D dislocation positions are projected along a
specific direction ([010] direction is chosen here) to a 2D plane, to compare with the results of TEM
images obtained experimentally. Here, we ignore the details of TEM imaging condition. For example,
when the dot product of diffraction vector and the burgers vector is zero, the dislocations are invisible.
In addition, the considered sizes are close to the allowable thickness of TEM samples, so it is reasonable
to consider the projection of all the dislocation structures. The current projected 2D dislocation
structure information should still be a very good approximation to the one that will be observed by
TEM. After obtaining this information, the number of grids N(Δx) those contain dislocations (grids
marked as 1) is calculated as a function of the grid size Δx. The fractal dimension can be calculated
according to the slope of double-logarithmic plot of N(Δx) vs. Δx.

3. Results and Discussion

The simulation results are given in Figure 2 for 2D and 3D dislocation structures in deformed Fe
pillars with different sizes, when the applied strain is 1.5%. In the following, we will first analyze the
results corresponding to 2D case, and compare with the available experimental results to validate the
effectiveness of our calculation and study the size effect.

It is found that when the sample size is as large as 1.5 microns, very good linear behavior is
observed in the double-logarithmic plot of N(Δx) versus Δx in Figure 2c for 2D box-counting data.
A scaling regime with fractional slope of 1.5 extends over almost three orders of magnitude (blue
dashed line in Figure 2c. This implies a fractal nature of the dislocation structure, and the corresponding
fractal dimension is 1.5. The corresponding dislocation configuration is shown in Figure 2b. One can
observe strong dislocation tangles, many small dislocation loops due to dislocation cross-slip and
jog formation, and some truncated dislocation lines around the free surface. Previous studies mainly
discussed the fractal behavior induced by the multiple dislocation cellular structures. In Figure 2b,
even though there are no traditional multiple dislocation cells, the highly tangled dislocation structure
exhibits a tree shape, which leads to its fractal behavior. This observation is similar to the experimental
image shown in Figure 3 in [16]. To check the sensitivity of the fractal dimensions on the initial
dislocation structure and the extent of deformation localization, two other cases are studied, as shown
in Figure 3. The results in Figure 3a for #1 is the one shown in Figure 2c. Figure 3a clearly show that
for large sample size, the fractal dimension is not sensitive to the initial dislocation structure.
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Figure 2. Effect of size and dimension on the fractal analysis of dislocation structure for irradiated Fe
pillar with diameter (a–c) 1500 nm (d–f)1000 nm, (g–i) 600 nm, (j–l) 300 nm.

111



Metals 2019, 9, 478

Figure 3. (a) Insensitivity of the fractal dimension of dislocation structure in irradiated Fe pillar with
diameter 1500 nm, (b) dislocation configuration #2, (c) dislocation configuration #3.

Figure 2e,f shows the results for an Fe pillar with diameter 1 micron. Compared with Figure 2b,
the extent of dislocation tangle is much weaker. The calculated fractal dimension also decreases to
1.2. With further reduction of the sample size, only isolated dislocation lines are observed, as shown
in Figure 2h,k. This kind of low dislocation line content is widely observed during compression
experiments of nanopillars [41]. This is a result of the ease of dislocation glide out of the crystal
through the free surface in such small materials. From Figure 2i,l, even though the double-logarithmic
plot of N(Δx) versus Δx still shows approximate linear behavior, the calculated exponent is close to
unity. When the exponent is close to unity for a 2D image, dislocations are essentially isolated lines,
and no fractal behavior exists anymore.

To further compare with the experimental results obtained from TEM images for similar sample
sizes, we plot the calculated fractal dimension as a function of sample sizes obtaining from our
simulations and recent experimental data in Figure 4. It can be seen that our calculation results agree
very well with the experimental results. This clearly demonstrates that reducing the sample size leads
to the decrease of the fractal dimension, and the fractal feature of dislocation structures disappears
when the sample size is smaller than about 600 nm. The analysis above implies that only when some
kind of tangled dislocation structures are observed, the fractal behavior is possible to exist.

Figure 4. Size effect on the fractal dimension of dislocation microstructure. Experimental data are
obtained from [16].

Now we check whether a similar trend exits for 3D dislocation structures as they fill space.
As shown in Figure 2c,f,i,l, the scaling regime identified for 3D dislocation structures is shorter
than that for the 2D case for the considered sizes. Moreover, the absolute value of the slope for the
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double-logarithmic plot of N(Δx) versus Δx is smaller than 2. Generally, if the fractal dimension is n
for 2D case, its corresponding fractal dimension is n + 1 for the 3D case, if the structure is extended
along the projection direction. This is also widely used to extract the fractal dimension of dislocation
structures from 2D results to 3D results [24]. This is true if one uses 2D-DDD, if the calculated fractal
dimension is n, its 3D corresponding dimension is n + 1, because each point in 2D-DDD correspond to
an infinite long straight edge dislocation lines. However, the actual 3D dislocation structure is not the
perfect elongation along the projection direction. Therefore, from Figure 2c,f,i,l, one observes that the
fractal dimension of 3D dislocation structure is much smaller than one plus the fractal dimension for
2D case, and the fractal behavior in 3D is not as well-defined as the 2D case.

When the sample size is as large as 1.5 microns, most of the 3D box-counting data follows the
scaling law with exponent −1.8. Therefore, it is reasonable to say that the fractal dimension of 3D
dislocation structure in 1.5 micron diameter pillar is 1.8. From Figures 2a and 3b,c, the highly tangled
dislocation configuration is similar to the feature of a tree (see Figure 2a) due to the formation of
numerous junctions and jogs, and the occurrence of cross-slip. Therefore, it is natural to think of
comparing the calculated fractal dimension with that of a tree. The fractal analysis of the 2D projected
and 3D actual tree structure is recently investigated in [42] using box-counting method. The fractal
dimension of the 2D projected tree in their studies ranges from 1.69 to 1.94, but the fractal dimension
of the corresponding 3D tree ranges from 1.86 to 2.32. This is similar to our observation that the fractal
dimension for 3D case is possible to be smaller than 2, and is much smaller than one plus the fractal
dimension in 2D. Going back to dislocation configurations, the transition from 2D projected image
to 3D dislocation structure is actually similar to the process of pulling up some tangled ropes on the
ground. For two dislocation lines, if they do not intersect with each other in 3D, it is still possible
to see that their 2D projected lines intersect. Due to 2D projection overlapping, some of the spatial
correlations observed in 2D projection image may actually do not exist in 3D. Therefore, it is difficult
to observe fractal dimension for 3D case is one plus that of 2D projected dislocations.

When the sample size decreases to be 1 micron, two power law scaling regimes are observed.
For the small box size regime, the power law exponent is close to that of 2D dislocations, because the
contribution of the isolated dislocation lines is independent of the observation dimensionality. For the
large box size regime, the power law exponent is −1.7, which is similar to the fractal dimension of the
1.5 micron diameter pillar. This is contributed by the tangled dislocation structures. For sample size
equal to or smaller than 600 nm, most of the scaling regime of the data for 3D dislocation structure has
the fractal slope similar to that of 2D projected dislocations. This is due to the lack of highly tangled
dislocation structure. Dislocation lines mainly exist in an isolated way.

4. Conclusions

In the current work, the fractal features of dislocation structures in deformed Fe pillars are
analyzed through three-dimensional DDD simulations using the box-counting method. It is found that
the fractal feature can be well observed for 2D projected dislocation structures, as a result of tangle
formation. The fractal dimension decreases with the decrease in the sample size, due to the smaller
extent of dislocation entanglement. The results of the current simulations for 2D projected dislocation
structures are consistent with experimental results obtained from TEM images. When the sample
size is smaller than 300 nm, the fractal feature disappears due to the absence of tangled dislocations.
Interestingly, 3D tangled dislocation structures are found to have fractal dimension of 1.7∼1.8, which
is significantly smaller than expected from 2D analysis alone! This is explained by the fact that 2D
projection overlapping leads to spurious dislocation intersections and correlation information that may
not be physical. When the external size is smaller than 1000 nm, the fractal slope of 3D box-counting
data is similar to that of 2D case, because the fractal dimension of an isolated line is independent of the
observation dimensionality.

Further efforts are required to investigate the fractal nature of 3D dislocation structures using
other kinds of statistical methods. The evolution of the fractal dimension as a function of strain
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and dislocation density and its relationship to pattern formation requires more intensive computer
simulations to reveal these connections. This requires studies of deformed crystals with larger size and
higher dislocation density. The effect of temperature and loading orientation on the fractal dimensions
of dislocation structures is also interesting and deserves further studies, especially in BCC crystals
where the temperature plays a more significant role.
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Abstract: This study examines the effects of size on the strength of materials, especially on high
strength pearlitic steel wires. These wires play a central role in many long span suspension bridges
and their design, construction, and maintenance are important for global public safety. In particular,
two relationships have been considered to represent strength variation with respect to length
parameters: (i) the strength versus inverse square-root and (ii) inverse length equations. In this study,
existing data for the strength of high strength pearlitic steel wires is evaluated for the coefficient of
determination (R2 values). It is concluded that the data fits into two equations equally well. Thus,
the choice between two groups of theories that predict respective relationships must rely on the merit
of theoretical developments and assumptions made.

Keywords: Hall-Petch equation; Griffith equation; size effect; mechanical strength; pearlitic steels;
suspension bridge cables

1. Introduction

Long span suspension bridges such as the Brooklyn Bridge (486 m main span, 1883) and Akashi
Kaikyo Bridge (1991 m main span, 1998) owe their existence to high strength steel wires. The 4.7-mm
diameter wires for the Brooklyn Bridge’s main cables attained the tensile strength of 1.1 GPa in 1883 [1].
Over a century later, 5-mm diameter Akashi wires reached 1.8 GPa in 1998. The strength level increased
to 1.9 GPa for 7-mm diameter steel wires used for the Hong Kong-Zhuhai-Macau Bridge of cable-stayed
type, which was completed in 2018, while 2 GPa cable wires of 5- or 7-mm diameter have been available
since 2015 [2]. Composition-wise, these wires are eutectoid carbon steels (with 0.8 to 1 wt % C) and
are heat-treated to produce fine pearlitic microstructures during the isothermal phase transformation,
known as patenting. The wires are next deformed during a series of cold drawing operations, resulting
in wires of high strength with moderate ductility. Wires for various applications can be drawn down to
smaller diameters, producing even higher strength. For example, ASTM A228 specifies music spring
wires up to 3.3 GPa level, as the wire diameter decreases to 0.100-mm. In laboratory, the maximum
strength reached 6.9 GPa for 1% C steel [3].

A recent article tracked the history of iron and steel usage for bridge construction [4]. Before the
era of these huge suspension bridges with high strength steel wires as main cables, engineers had to
use lower strength wrought iron wires for early suspension bridges. Examples from the US include the
Wheeling Bridge (finished in 1849 and rebuilt in the 1860s) and the Niagara Falls Railroad Bridge (1855).
Another choice for suspension members is the use of wrought iron chains. Truss and arch bridges
also used wrought iron and steel (e.g., Eads Bridge, 1874). The use of cast iron was limited due to its
structural deficiencies, but Iron Bridge at Coalbrookdale, UK (1781) remains a symbol of the Industrial
Revolution. Still, most of these bridges were built in the 19th century or later. In order to locate the
traces of pre-Industrial Revolution iron bridge building, researchers were required to go to China
and South/Central Asia, where 2000 years ago ferrous metallurgy was more developed compared to
the rest of the ancient world. Historical records exist in the form of travelogues written by Chinese
Buddhist monks, including Faxian and Xuanzang. They trekked from China to India in the 4th to 7th
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century, respectively, and had to travel through the Pamir and Hindu Kush mountains, where they
recorded their travel going over iron bridges or iron chain bridges. Western bridge engineers [1,5]
often cited a Chinese iron bridge built in 56 or 65 AD (based on a 17th century history book by Kircher),
but this has no support from Chinese bridge historians and no historical record exists [6]. Another
attribution was an iron bridge built in the year 206 BC as a part of war efforts for the succession of
the Qin Dynasty. However, the source, Sima’s historical volumes, only mentions that bridges were
built. Besides, no archaeological evidence has been uncovered. An iron bridge called Ji-Hong, built in
1475, was the most credible early example, but was destroyed in a 1986 landslide [7]. See details on the
history of iron bridges in [4].

Modern suspension bridges built in the US and Europe were possibly inspired by Pope’s 1811
book [8], which described a suspension bridge in Bhutan with a detailed illustration [4]. Several
15th century iron bridges existed in Bhutan until the 1960s, though only a reconstructed bridge is left
today. Pope was also remarkable for his technical foresight; he warned of the lack of redundancy
and of instability against vibration of suspension bridges, long before these became serious issues.
In 1816, a simple pedestrian bridge was built in Philadelphia, using two three-strand twisted cables
with wooden planks; it did not hold during its first winter storm due to inadequate design [5].
More durable suspension bridges were built in the early 1820s in Francophone Europe, one of which
still exists today [9]. These had parallel wire design for the main cables, which ensured a high loading
capacity. This technology spread in surrounding regions for the next 30 years and many similar
bridges were built. However, its weakness against wind-driven oscillations manifested as a major
disaster at Angers Bridge in 1850, which killed 226. A similar fate fell on the Wheeling Bridge in
1854 as it was built by Ellet using the French technology [5]. In the US, stiffening of bridge structures
allowed continual development of suspension bridges, which were particularly valued in the rapidly
developing western states.

These bridge constructions and other industrial activities spawned breakthroughs in wire-making
in mid-19th century England [4]. Strong iron wires for musical instruments were first made in
Augsburg, Germany in 1351 and German firms dominated the industry until 1834 [10]. Webster
of Birmingham, UK used Mn-containing steel and doubled the wire strength in 1825. In the late 1840s,
Horsfall, also from Birmingham, introduced isothermal phase transformation process, now known as
patenting, and raised the wire strength further. The name “patenting” originated from the fact that
the new process received British patents (at least three are on record) in the 1850s and Webster and
Horsfall (merged in 1855) marketed their wires as “patent steel wires”. They found many industrial
applications for the high strength steel wires at 1 GPa level, including 1860 trans-Atlantic telegraph
cables that required 1600 t per installation. This period also was the time of innovation in steelmaking
with Bessemer and open-hearth processes. By the 1880s, steel strength attained 1.4 GPa for 4.7-mm
diameter wires suitable for bridge cable uses [11].

One overlooked breakthrough in Horsfall’s invention is his choice of starting stocks for his wire
drawing. Conventional wisdom is to use more ductile annealed wire rods, but he chose to use patented
stocks of higher strength. Because of thinner cementite (iron carbide) layers in patented wires, higher
drawing strain can be imposed, producing stronger final wire products. It was remarkable that Horsfall
developed his process without the microstructural knowledge developed many years later; he deserves
our appreciation for this contribution as well.

The aforementioned historical background leads to the main subject of discussion, namely,
what makes the drawn wires strong. For more than 50 years, it has been clear that smaller pearlite
spacings results in higher strength [12]. Yet, discussion continues as to the origin either from theories
underlying the Hall-Petch equation for the tensile strength, σts(e),

σts (e) = σo + k/
√

d, (1)

or from those supporting the Griffith equation:

118



Metals 2019, 9, 240

σts (e) = A + B/d. (2)

Here, σo, k, A, and B are constants and d is a length parameter. For the Hall-Petch equation,
d is the grain size, while for the Griffith equation d is diameter of wire or fiber. Many studies and
reviews examined experimental observations and favor one or the other. However, most past data
evaluation lacked statistical aspects. The aim of this work is to provide data comparisons with statistical
parameters. Results indicate that currently available experimental data is inadequate to decide one or
the other equation to be the only valid relationship. Thus, a final decision rests on the robustness of
the theories that support a correlation.

2. Survey of General Size Effects

Strength increases with diametrical reduction of drawn wires were controlled by intermediate
(or interpass) annealing, even though the beginning of this procedure is obscure. Wright [13] suggested
that, by 5th century BC, Persians used iron draw plates and interpass annealing to make 0.55-mm
bronze wires. The size effects of iron wire strength were first recorded in 1824 by early suspension
bridge builders in France and Switzerland [8]. The Seguin brothers conducted 80 tests in France,
whereas Dufour conducted 22 in Switzerland using wires obtained locally. Wire diameter ranged from
0.59 to 5.94 mm. Dufour fitted his results of 22 tests to an inverse diameter relation in terms of the
tensile strength σts and diameter d (in mm) using Equation (2) with A = 411 MPa and B = 276 MPa-mm
(R2 = 0.887). The strength results for diameters less than 2.8 mm were plotted in Figure 1a by red
points. (Larger diameter data was inconsistent and omitted.)

Figure 1. Strength versus diameter of fibers or wires. (a) Dufour and Seguin brothers’ data (1824)
from [9]. (b) Griffith glass fiber data (1921) from [14]. (c) Log-log plots of five data sets as indicated
data from [4,9,14–16]. See text.
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In his monumental paper on fracture criterion, Griffith [14] cited Karmarsh [17], who in 1858,
obtained the same inverse diameter relation for metal strength. Griffith used the inverse diameter
relation or the Griffith equation for describing his results on the strength of freshly drawn glass fibers,
which are also plotted in Figure 1b by blue points. The strength levels reached much higher levels
and d values much smaller; the data fits to Equation (2) with A = 329 MPa and B = 11.56 MPa-mm
(R2 = 0.967). Iron wire and glass fiber data sets also fit a power law relation of

σts(e) = C d−n, (3)

with a constant, C, and an exponent, n. The 1824 iron wire data yields n = 0.372 (R2 = 0.892) and
Griffith glass fiber data gives n = 0.73 (R2 = 0.982). These are in red and blue points in Figure 1c.
Closeness of respective R2 values indicates each data set fits to either the Griffith equation or power
law. The strength values of ASTM A228 specification are plotted in Figure 1c as green points, giving
a power-law fit with n = 0.15 (R2 = 0.994). However, these points fail to follow the Griffith equation.
This plot represents five other data sets specified in ASTM A313 for 304, 316, 17-7PH (as-drawn or
with aging), and XM28 steels. These have slightly lower exponents of 0.09 to 0.12. The spring wires are
to be fabricated with additional deformation and the specified values are lower than their respective
upper limits. While not analyzed for power-law fit, several other ASTM standards cover alloy steels
and bronze wires in A229, A232, A877, and B159. Similar fits as in A228 and A313 are anticipated.

Another data set [15] for pearlitic steel wires (purple points in Figure 1c) fits to Equations (2) and
(3) with R2 levels of 0.99 for the Griffith equation and 0.987 for power law with n = 0.485. This Ochiai
data set (for steel F) is prototypical for all other pearlitic steel wires, as will be shown below [15].
In this case, each point represents an as-drawn condition from a single starting diameter and a smaller
diameter resulted from a higher drawing strain. Another data set was given in Ochiai (steel G) [15]
and has n = 0.195, comparable to the A228 data. The wires in this group were drawn with interpass
patenting to attain high drawing strain of up to 6.4.

Beyond the above cases (and those in Table 1), only a few studies dealt with the size effect on metal
wires. Rubenstein [18] examined size effects on Ni wires with different microstructures. However,
data scatters are large and it is difficult to draw definitive conclusions. Riesch et al. [19] studied size
effects on W wires and collected previous results from the literature. While the authors contend the
results fit the Hall-Petch relation, the data set also fits with the Griffith equation with comparable R2

values of 0.829 and 0.793, which may be called moderate fits at best. Metal conditions varied and the
data came from eight different articles. Thus, the low R2 values are expected and the tungsten results
hardly contribute to our discussion. Actually, two more sources of 19th century music wires exist,
but are omitted here as the ranges of diameters were limited [10,20].

Griffith’s glass fiber data has been explained in terms of existing flaws with Weibull statistics.
In this approach, the probability of failure P is given by

1 − P = exp{−(σ/σo)m·dh·L}, (4)

where m is the shape parameter (also called Weibull modulus), σo scale parameter, h diameter
dependency parameter, d diameter, and L sample length, respectively [21]. In the original Weibull
theory [22], h = 1 for surface flaw-controlled failure and h = 2 for volume-controlled failure.
From Equation (4), the average fiber strength <σ> is given by

<σ> = K·L−m·d−h/m, (5)

where K = σo·Γ(1 + 1/m) and Γ(x) is the gamma function. While <σ> value is easily deduced in
experiment, the importance of this equation comes from the correlation between the power-law
exponent n and the Weibull shape parameter. When both n and m are measured, h value is determined.
In order to clarify the physical meaning of h, it is desirable to collect more experimental data beyond
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Zhu’s study [21] though this task is challenging. As of now, the meaning of h is unclear when it is not 1
or 2.

For today’s common glass fibers for composite reinforcement, m is either 3 or 4. For the Griffith
fibers, surface flaws are assumed to be the fracture origins (h = 1) and the expected value of m = 1/n
= 1/0.76 = 1.3. This m value appears reasonable for hand-drawn fibers in the 1920s. When careful
process control is practiced, the size effects of glass fiber are absent, as demonstrated by Otto [23].
Current optical glass fibers that are well protected by polymer coating also exhibit no size effect of their
strength [16]; 18 samples of 0.125- to 0.4-mm diameter (L = 1 to 2.5 m) showed the average strength of
4.58 ± 0.29 GPa. These points are plotted in Figure 1c with dark blue points.

Zhu et al. [21] tested seven types of ceramic fibers, measuring m and h parameters. Their fibers
included alumina, sapphire, Si3N4, SiC, Nicalon, and Nextel fibers. The values of m ranged from
2.5 to 14 and those of h ranged from 1.4 to 19. Obviously, h values are not limited to 1 or 2 of the
original Weibull theory. However, in the two cases where h was 13 and 19 also showed a large m,
giving an h/m value of ~1. All the h/m values were between 0.5 and 1.3. Further work is needed if this
is significant. A recent study [24] on the synthesis of SiCN fibers with electron irradiation included
Weibull parameter determination as well as size effects. Fiber diameters ranged from 28 to 95 μm and
over 50 samples were used with each starting material. The value of m was 4.46, while a power-law fit
yielded n = 0.57 (they fitted the data with an exponential function, but large scatter in the data allows
fitting with either). From the m and n values, h = 2.54 resulted. This is close to volume-controlled flaw
effect of the Weibull theory. Since their fiber fabrication processes are always inside a vacuum chamber,
surface flaws may be minimized. This is consistent with h = 2. Other findings on the h parameter will
be discussed in Section 4.2.

Weibull analysis is infrequently conducted for metallic materials since m values have been
expected to be around 100, although definitive studies seem to be absent. An approximate method
for Weibull modulus estimation discussed in Appendix A found two sets of bridge cable wires,
before service, having m values of 110 and 124. A recent study obtained an m value of 56 to 72 for
stainless steels [25]. Bridge engineering guidelines [26] noted m of 70 for slightly corroded steel
cable wires. Cable wires, new and lightly damaged, have m values above 50, but more severely
corroded wires had reduced m, going down to m of 10 to 30. For the nearly 100-years old Williamsburg
Bridge cable wires, m was found to be 16.0 [4], while a still older data set from 1886 showed an m of
13.7 [11]. Thus, old or corroded wires have low m values, while undamaged high strength steel wires
possess high m values and size effects predicted by the Weibull theory are minimal. In the metal wire
cases, m is large and the power-law exponent corresponds to h/m. Although h values have not been
determined for metals, it is prudent to use Weibull’s unity value for surface flaw critical cases [22].
Then, the observed power-law exponents in Figure 1c are primarily contributed by plastic deformation,
not by the Weibull size effects.

3. Size Effects of Pearlitic Steels

The extremely high strength levels of patented and cold drawn eutectoid and hypereutectoid
steel wires have been studied for many years and resulted in numerous patent filings. The quest for
the clarification of their origins accelerated with the availability of transmission electron microscopy
(TEM) in the 1960s, atom probe microscopy (APM) in the 1980s, and 3D-APM since the 2000s [27–29].
Embury and Fisher [30] were the first to use TEM for correlating pearlite lamellar spacings to the
strength and drawing strain. They established the basic understanding of microstructural effects,
as well as the correlation between the lamellar spacings and wire diameter. For the correlation,
they chose to use the Hall-Petch relationship or Equation (1), but without excluding other possibilities.
Langford [31,32] provided more detailed examination of pearlite strengthening. Langford and
Cohen [33] examined deformed iron and they chose Equation (2) or the Griffith equation. They related
the strength and the inverse of dislocation cell size on the basis of the Frank-Read source operation.
Note that d in Equation (2) can be directly replaced with pearlite spacing (in the diametral directions
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only), as their equivalence was established earlier [30]. Marder and Bramfitt [34] used the Griffith
equation approach in describing the strengthening effects of thermally varied pearlite spacings. Some
subsequent studies followed Embury-Fisher’s choice of the Hall-Petch equation, most recently by
Borchers and Kirchheim [35], while others favored the Griffith equation [36,37]. One persistent
finding is that the Hall-Petch equation produces negative or low strength values when 1/

√
d term

decreases [34]. The differences between the two interpretive approaches are the underlying theories of
strength determination in microscopic lamellar structures. Unlike the grain sizes in the tens of μm,
however, TEM cannot provide clear-cut evidence in support of one theory from another in heavily
deformed pearlite. Besides, high dislocation densities always make it difficult to resolve critical events.
These uncertainties may be clarified if experimental size effects of strength can show one approach
giving a better fit. Surprisingly, all studies examined here did not conduct a direct comparison of data
fitting to the two equations. This is the main goal of the present evaluation of published strength
dependences on drawing strains, which correlate to the pearlite spacings.

In this part, 19 publications and one unpublished doctoral dissertation were examined [3,15,30–32,36–50].
From their graphical data, values of tensile strength σts and of drawing strain e (or diameter d) were
obtained. As such, 18 data sets of σts versus e are plotted in Figure 2. Several of them were already
given in tabular form, but most were estimated from figures. In some works, multiple results were
presented and two or three representative results were used. When the number of data points were less
than eight, these data sets were analyzed, but not plotted in Figure 2 or used in calculating averages.
These plots demonstrate consistency of observed hardening behavior, though deviations become large
when e values exceed 4. Most had the starting strength of 1.3–1.5 GPa, but two curves had low starting
strength (1–1.2 GPa) and one had a higher value (1.7 GPa). These plots show that all the data sets
behave as expected for high C steels. Table 1 presents the articles evaluated in chronological order,
represented by the first author and year of publication. Next column lists the sample counts. The fourth
column gives the exponent n, obtained by plotting the strength against diameter. When the starting
diameter is unknown, 5 mm was used. The next three columns provide R2 values obtained for n and
by plotting the strength against exp(e/2) = do/d or exp(e/4) = (do/d)0.5, where e represents the true
strain. The last two gives notes and reference number. The data for studies with small sample counts
are separated to the bottom as the data significance is lower and n values are omitted. In statistical
terms, even twenty samples are inadequate sample counts, but technically this is the typical upper
limit in wire drawing facilities.

Table 1. Statistical data for comparison among the three types of fitting.

Authors Year
Sample
Count

n for TS
Versus d−n R2 for n R2 for

TS-exp(e/2)
R2 for

TS-exp(e/4)
Notes Ref.

Embury 1966 12 0.551 0.975 0.969 0.981 - [30]
Langford 1970 17 0.469 0.995 0.971 0.995 - [31]
Langford 1970 13 0.482 0.990 0.990 0.990 w/o e > 4 [31]

Yamakoshi 1973 19 0.507 0.994 0.998 0.993 steel B [47]
Yamakoshi 1973 15 0.514 0.995 0.997 0.993 steel C [47]
Yamakoshi 1973 15 0.507 0.993 0.997 0.992 steel F [47]
Langford 1977 9 0.505 0.996 0.986 0.997 strip [32]
Kanetsuki 1991 10 0.397 0.980 0.991 0.982 - [37]

Ochiai 1993 18 0.485 0.987 0.990 0.987 steel F [16]
Nam 1995 13 0.504 0.978 0.978 0.986 - [41]
Choi 1996 10 0.562 0.972 0.965 0.968 - [38]
Makii 1997 22 0.459 0.989 0.994 0.992 bridge cable [48]
Makii 1997 15 0.396 0.976 0.973 0.974 tire cord [48]

Tashiro 1999 14 0.471 0.993 0.975 0.991 0.5 mm [36]
Tashiro 1999 10 0.480 0.988 0.996 0.985 w/o e > 5 [36]
Tashiro 1999 12 0.468 0.987 0.996 0.985 1.0 mm [36]
Buono 2002 9 0.488 0.994 0.991 0.994 - [46]
Zelin 2002 18 0.538 0.993 0.998 0.991 - [42]
Tarui 2010 16 0.507 0.992 0.964 0.990 - [49]
Tarui 2010 13 0.509 0.985 0.996 0.981 w/o e > 4 [49]

Li 2014 8 0.447 0.974 0.844 0.945 - [3]
Average of n and R2 - - 0.488 0.987 0.979 0.985 - -
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Table 1. Cont.

Authors Year
Sample
Count

n for TS
Versus d−n R2 for n R2 for

TS-exp(e/2)
R2 for

TS-exp(e/4)
Notes Ref.

Std deviation - - 0.042 0.008 0.033 0.012 - -
Pepe 1973 5 Linear fit - 0.936 0.957 - [45]
Kim 1992 7 0.544 0.990 0.991 0.982 - [43]

Maruyama 2002 5 0.508 0.991 0.987 0.996 w/o e > 4.5 [39]
Goto 2007 3 0.439 0.995 0.984 0.996 - [44]

Zhang 2011 4 0.526 0.990 0.998 0.992 - [40]
Zhang 2016 4 0.755 0.983 0.985 0.988 PS used [50]

Li 2014 5 0.538 0.995 0.990 0.996 w/o e > 5 [3]

Author: The first author only is shown; w/o e > 4: without data for e larger than 4; 0.5 (1) mm: Data for 0.5 (1) mm
diameter wires; PS: pearlite spacing; Ref.: reference number.

 
Figure 2. Tensile strength, σts versus drawing strain, e, for 18 data sets. (a) Data from [3,30,36,48].
(b) Data from [31,32,38,41,42]. (c) Data from [36,37,46,48,49]. (d) Data from [15,47]. See inserts for
symbols used.

Figure 3 plotted the data for Makii et al. [48] for the tensile strength of a pearlitic eutectoid steel
(0.8% C) against diameter d (in green), normalized inverse diameter do/d (in blue) and

√
(do/d) (in red).

The
√

(do/d) scale is doubled for a better comparison. This data set is shown first since its sample
count is 22, the largest. These plots are accompanied by a power-law (green) curve for σts versus d
with exponent n = 0.507 and linear fits for the other two (in blue and red). That is, red points are
represented by Equation (1) and blue points by Equation (2). While some deviations are observed,
all three length parameters provide excellent fits with R2 values (or coefficients of determination) of
0.992 (d), 0.994 (do/d) and 0.992 (

√
(do/d)), respectively. Thus, either Equations (1) or (2) can represent

the observed size dependence equally well. The power law fit represents the strength increase due to
cold drawing, their exponents and n values are also tabulated in Table 1 for all other data sets. The n
values ranged from 0.4 to 0.55, and their average was 0.488 with R2 value of 0.987. Therefore, the d
dependence (with R2 = 0.985) is essentially the same as the Hall-Petch equation.
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Figure 3. Tensile strength versus length parameters. Makii data [48]. Green plot: σts versus d; Red: σts

versus
√

(do/d), Blue: σts versus (do/d).

The remaining data sets also exhibited a similarly good match of R2 values, as shown in Table 1.
Plots with the same format as Figure 3 are given in Figure 4 for eight more data sets. These show
similar features observed in Figure 3. The average R2 values were 0.979 and 0.985 and the difference of
0.006 was much less than the standard deviation. Collectively and individually, no differentiation can
be made between Equations (1) and (2). In some cases, fits improved further when high strain data
(e > 4) were omitted. The strains above 4 produced less work hardening and this has been attributed to
cementite dissolution and other causes. Li et al. [3] observed a transition from lamellar structure to
nanosized subgrain structure at e = 3.8. This high strain effect was most pronounced in Li data, as it
included strains up to 6.5. When the highest three points are removed, R2 values become comparable
to other data sets (0.990 and 0.996), as the bottom line on Table 1 shows. The fits are shown on Figure 5.
Note that the

√
(do/d) scale is expanded five-fold.

From the comparison of available size effect data on pearlitic steel strength, it appears difficult
to distinguish fits to Equation (1) or (2). At the same time, the power-law fit is just as good as the
Hall-Petch or Griffith equations. While we have used a power-law expression for modeling stress-strain
relations for a long time, this has not been applied in connection to length parameters. This will be
examined next if a new way to evaluate the observed data can be found.
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Figure 4. Tensile strength versus length parameters. (a) Embury data [30], (b) Langford [32],
(c) Yamakoshi [47], (d) Ochiai [15], (e) Nam [41], (f) Tashiro [36], (g) Zelin [42], and (h) Tarui [49].
Green plot: σts versus d; Red: σts versus

√
(do/d), Blue: σts versus (do/d).
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Figure 5. Tensile strength versus length parameters. Fits improve substantially without high strain
data points. Li data [3].

4. Discussion

4.1. Diameter Dependence

When Equation (3) is rewritten with n = 0.5 as

σts(e) = Cd−0.5 = C′do
0.5d−0.5 = C′(do/d)0.5,

we get
σts(e) = C′[exp(e/2)]0.5 = C′·exp(e/4). (6)

That is, we arrive at Equation (1) since d ≤ do or exp(e/2) ≥ 1 and σts(1) = C′. Similarly, for n = 1,
we can rewrite the power law using C = C′′/do as

σts(e) = C′′·exp(e/2). (7)

This is a form of Equation (2). Note that both equations are not defined for do/d less than 1 and C
is the starting strength for the wire of diameter do. Equations (6) and (7) are plotted in Figure 6 with
blue and red curves. Considering these two expressions, when observed data fits to a power law with
the exponent of 0.5 as seen in the previous section, the Hall-Petch relation appears to be the proper
equation. This is because the strength-diameter plots in Figures 3 and 4 cannot be fitted to the inverse
diameter function or Equation (7). However, both Hall-Petch and Griffith equations have a constant
term, σo and A. An example of such a Griffith equation, or

σts = 0.75 + 0.3/d, (8)

is also plotted (in green points) in Figure 6. Here, the units are in GPa and mm. Equations (6) and (8)
are close and R2 value was 0.978. Even though this equation has not been optimized for a better fit,
this R2 is almost identical to the average R2 value for 1/d plots in Table 1. Therefore, it is necessary
to conclude that experimental size effects on strength can be represented by two different functional
forms. In fact, other functional forms have not been excluded.
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Figure 6. Strength versus diameter using three different representations.

4.2. Weibull Size Effects

The average strength of a data set that follows Weibull Equation (4) can be calculated by
Equation (5). This depends on the sample length as L−1/m and the diameter as d−h/m. For optical
fibers, tests of up to 20-m length were used to predict fiber strength for L = 100 km, relying on
the L−1/m-dependence [51]. For glass fibers used in cables, m < 10, while laboratory m values
are 50–70, reaching as high as 120. For carbon fibers made from polyacrylonitrile showing m = 4,
L−1/m-dependence was shown by Tagawa and Miyata [52]. In this case, diametral dependence was
found to follow d−1.18, giving h = 4.7 [52]. Separately, Tagawa found anisotropic size effects that
can best be interpreted by giving a different m value in the radial direction, or mr = 0.45. If this is
assumed to be valid, h becomes 2.63, which is comparable to the case of SiCN fibers [24]. Another
SiCN (Tyranno) fiber study [53] showed L−1/4.7, while the Weibull modulus was 4.3, giving a good
match. It is possible that a wide range of h values found in ceramic fibers [21] may come from different
fabrication methods, compared to the melt processing for glass fibers or the precursor pyrolyzing
processes of carbon (also Nicalon and Tyranno) fibers.

For organic fibers, such as polyethylene and Kevlar, more size effect studies were made, accompanied
by Weibull analysis of strength [54–57]. Wagner [54] examined nine types of fibers for their diametral
dependence, considering five functional behaviors (including Equations (1) and (2)). No preferred
dependence emerged, however. For ultra-high strength polyethylene fibers, Schwartz et al. [55] found
no length effect, while Smook et al. [56] fitted their data to 1/σts = A’ + B’

√
d relationship. Their data

can be described by Equation (2) with A = 1.55 GPa and B = 53.7 GPa-μm (R2 = 0.985). In another
study [57], four similar ultra-high strength polyethylene fibers (including Spectra 900 and 1000) showed
power-law fit (Equation (3)), but the exponents varied from 0.46 to 2.13. Most polymer fibers appear to
suffer from geometrical nonuniformity, which affects statistical comparison. No consensus view has
emerged on their size effect. It appears these fibers need to be treated separately from metallic wires.

Fracture problems related to corrosion and fatigue are as important as strength, but not covered
in this study. Four recent works are listed as references [58–62]. For example, most fracture started
from corrosion pits [60]. Unfortunately, a misconception introduced in the Silver Bridge disaster
investigation [63], i.e., steel corrosion induced by hydrogen sulfide, is still invoked as a source of
possible hydrogen embrittlement by bridge experts [62]. The hydrogen-sulfide hypothesis for bridge
steel fracture was shown to be untenable [4]. Zinc (or iron) and acidic aqueous environment are
adequate as hydrogen sources. Moreover, hydrogen embrittlement has been convincingly discounted
for cable wires by detailed studies and the level of hydrogen in corroded steel wires were shown to
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be less than 0.2 ppm, which is insufficient for causing delayed fracture [64–66]. An interdisciplinary
approach is essential.

4.3. Strength Partition

Since pearlite consists of ferrite and cementite lamella, its strength depends on both phases and
how the two phases are distributed. Embury and Fisher [30] examined and discarded the rule of
mixture approach as it was developed on the iso-strain assumption of fibrous mixtures. This was based
on the ferrite and cementite strength as the base strength. Since then, more possible strengthening
mechanisms have been proposed and reviewed [3,35,50]. Some critical issues, like the deformation
and fracture of cementite, have been studied further. Fang et al. [67] showed with high resolution
TEM dislocation induced shearing of cementite lamella at e below 1.5, while nano-size particulate
rotation within the cementite lamella contributes to their thinning at higher strain. These observations
give rational explanation of microstructural developments within deformed pearlite. Segregation of
freed C atoms to dislocations is another source of potential strengthening. As ferrite is of bcc structure,
Peierls barrier dictates dislocation mobility. The enhancement of the Peierls barrier by C interstitials
and by carbide precipitation [68] was theoretically shown in 1970 [69], by unifying the Peierls and
dispersed barrier strengthening mechanisms. Because of the complexity of multiple and interacting
strengthening effects, the development of a unified theory for deformed pearlitic wires will take more
time to develop. For analysis of what is known, an artificial intelligence approach may be of use.
However, a recent study using neural networks [70] is a variation of pattern recognition analysis [71].
The black-box nature of neural networks is unsuited for developing new theoretical understanding of
complex strengthening behavior.

4.4. Pearlite Spacings

Since the introduction of TEM in the materials research, earlier microscopic studies have often been
overlooked. Of interest for the present discussion are two papers by Gensamer et al. [72,73]. They used
optical microscopy (presumably with photographic enlargements) and determined pearlite spacings
varied by using different isothermal phase transformation temperatures. The magnification reached
2000 to 6000 times and the smallest pearlite spacing was slightly below 0.1 μm. This spacing data set
was corrected by a factor of 0.5 because of their use of the random intercept method [74]. Correlations
with the mechanical parameters were obtained in terms of the logarithm of pearlite spacing [73].
Their tensile strength data (in red points) is plotted against the pearlite spacing, the inverse pearlite
spacing, and the inverse square-root of pearlite spacing in Figure 7a–c. In addition, most of the available
data in the literature was plotted, leaving out low resolution studies. Among these works, two studies
varied transformation temperatures [34,75]. Others used cold drawing to reduce the pearlite spacings,
starting from Embury and Fisher [30] (in dark blue squares). Their pearlite spacing data was read
from the smallest spacings in TEM photographs since they only reported cell sizes. The cell size data
was about twice the pearlite spacings and not used here. Further given are data from Langford [32]
(in blue +), Tarui [49] (in green point), Zhang et al. [40,50] (in red and green X), Li et al. [3] (in green
triangles), and Takahashi et al. [29] (in red triangle). Most studies [3,30,32,40,49,50,75], used TEM,
while SEM [49], two-surface replica method [34], and atom probe microscope [3,29] were also used.

Figure 7a shows the tensile strength versus pearlite spacing from various studies using only the
data from direct determination. Data scatter is larger than those from strength and drawing strain,
reflecting experimental difficulties dealing with sub-micron dimensions. At 1 to 2 GPa strength levels,
a spread of a factor of four is found in terms of spacings (as the strength data is expected to behave more
consistently). Elsewhere, a factor of two to three is typical. Because of the proportionality between wire
diameter and pearlite spacing and the observed power-law relation between the diameter and tensile
strength, as observed in Section 3, a power law with an exponent of −0.5 (a straight line with slope of
−0.5 in the log-log plot) is expected. This is drawn as the fitting line (in green), resulting in R2 = 0.833.
The data fitting by regression yielded the slope of 0.529, with identical R2 = 0.833. Atom probe data [29],
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shown with a red triangle (plus several more points from [3] not shown) indicates consistency with
TEM studies, but two points from Embury [30] were off by 2x or more. (These three points are shown,
but were not included in R2 calculations.) Figure 7b gives plots of the tensile strength versus inverse
pearlite spacing. Identical symbols are used, as they are in Figure 7a, where most data points are
for the pearlite spacings larger than 50 nm. The least-square fit with Equation (2) (shown by a blue
line) resulted in R2 = 0.853, indicating a slightly better fit than the power-law fit. Figure 7c illustrates
the case using the variable of inverse square-root of pearlite spacing, again with identical symbols.
The least-square fitting line is drawn (in red), producing the best fit among three plots with R2 = 0.868.
This is the fit to Equation (1) or Hall-Petch relation. This 1/

√
(pearlite spacing)-fit is statistically close

to the inverse pearlite spacing fit (equation (2)) in Figure 7b with a difference in R2 of 0.015. As shown
in Table 1, it was 0.01 in previous comparison. Because of data scatter, data fittings again allow one to
support two groups of theories as found earlier.

This spacing data compilation relied on the published values. In most works, average pearlite
spacings were reported, while some used the average of finest ferrite spacings [40,49]. In the case
of Embury’s data [30] used in Figure 7, the two finest ferrite spacing values were read from their
TEM results. Ferrite spacings are around 90% of the corresponding pearlite spacing and this should
be used for strength calculations [49,50]. Among the published studies, Langford [32] conducted
most comprehensive TEM examination using 15 drawn wire samples. Recently, Zhang et al. [50]
reported advanced TEM studies on ten drawn wire samples. Results of these two studies overlap
well in Figure 7, especially below 60 nm. These data also agree well with the results of Marder and
Bramfitt [34] above 60 nm, who used 25 samples from heat treatment. These three studies provided
2/3 of the data examined here. Note that the strength data for Zhang data used for Figure 7 was
interpolated from four tensile strength values given in [50]. When only these three data sets are
used, R2 values increase to 0.874, 0.908 and 0.901, corresponding to the three plots in Figure 7. Thus,
the difference in R2 values between Equations (1) and (2) becomes 0.007 and supports the conclusion
of data equivalency.

Vander Voort and Roosz [76] examined several measurement methods for pearlite spacings and
concluded that the average values are consistent among four methods studied. They also noted
that the finest spacing values were 40–50% of the average. This explains the factor-of-two difference
observed in Figure 7 between high and low spacing groups. For the phase transformation studies,
the global averages are appropriate, but for the strength-pearlite spacing correlation, the finest spacings
control the maximum resistance to deformation. It is hoped that future pearlite studies consider this
aspect in addition to increasing sample counts for statistically robust measurements. Because of
ease in sample preparation, SEM methods are best for achieving adequate sampling. Tarui (private
communication) noted that when 20–30 SEM fields of view are analyzed for finest spacings using
Tashiro-Sato method [77], a convergence is obtained for a single finest ferrite spacing from about five
fields. He used this value as the ferrite spacing, which satisfies statistical requirements. The smallest
value reported using this method was 58 nm [49]. Since 100 nm range is routinely achievable, 5–10 nm
measurements should be feasible. For instance, an old SEM image of as-patented 0.8C steel was kindly
supplied by Toshimi Tarui of Nippon Steel Sumitomo Metals (NSSM). It was taken at 2000× with
400 DPI and was enlarged four times on screen. Even from this low magnification image, it is possible
to estimate apparent pearlite spacings of 70–80 nm with a ±20 nm resolution. A higher magnification
and better digital recordings are possible today, leading to the above cited 5–10 nm target value.
Comparable measurements using TEM or atom probe are practically impossible considering time
and cost.
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Figure 7. Tensile strength versus length parameters using data from [3,29,30,32,34,40,49,50,73,75].
(a) Pearlite spacings, in log-log scales. Data symbols are shown as insert. Green line is for a power-law
fit with the slope of −0.5 giving R2 = 0.833. (b) Inverse pearlite spacings. Same data symbols as in (a).
Blue line is the regression line with R2 = 0.853. (c) Inverse square-root of pearlite spacings. Same data
symbols as in (a). Green line is the regression line with R2 = 0.868.

5. Conclusions

This study was initiated to identify the suitability of using either the Hall-Petch or Griffith
equation for describing the size effects of high strength pearlitic steels, which have been examined
by many researchers. It is found that published size dependence data can be represented by both
equations equally well. The strength versus pearlite spacing correlation also indicated statistical
equivalence of the two relations, although improvements in data consistency are needed. A power-law

130



Metals 2019, 9, 240

equation was shown to be a form of the Hall-Petch equation, but even this can be approximated well
using the Griffith equation with properly chosen constants. Consequently, the choice between two
groups of theories that predict respective relationships must rely, for now, on the merit of theoretical
developments and assumptions made [12,33,35,49,50].
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Appendix A. An Approximate Method of Estimating Weibull Shape Parameter, m

It has been shown that the degradation of high strength cable wires of high C pearlitic steels can
be characterized by Weibull shape parameter or Weibull modulus [26]. New wires are expected to
have m values of more than 70 since m = 70.4 was found for wires of stage 2 corrosion damage. Actual
Weibull analysis of high strength cable wires is apparently unavailable in the literature. Perry [78]
reported old cable wires from the Williamsburg Bridge in New York (built in 1903) using wires removed
during its rehabilitation project. A set of 160 tensile tests was analyzed and m was found to be 16.0 [4]
(in the original report, a computational error was made and m was reported as 2.303 times higher
than the correct value.) Another data set was given by Percy [11] and m was found to be 13.7, using
the same method found in [4]. Weibull plots of these two cases are given in Figure A1 with the slope
of m, which are the only two available in the literature. Usually, values of the tensile strength of
high strength cable wires are reported collectively with an average value plus standard deviation.
Assuming the fracture behavior follows the Weibull statistics, it is possible to estimate an approximate
value of m. This is done by getting stress values in Equation (4) by supplying a set of P and m values.
By comparing the average and standard deviation of the stress values with the corresponding observed
values, m value can be estimated by iteration.

Figure A1. Weibull plots for steel wires. (a) Williamsburg Bridge (1903), data from [78], (b) Percy
(1886), data from [11].
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Suppose the average tensile strength (TS) and its standard deviation (SD) are given. When SD is
a few % of TS, m is expected to be higher than 50, while 5–10% level indicates m to be between 10 and
30. Pick a trial value of m and use TS as the scale parameter, σo. In addition, pick a large number, N
(e.g., 10,000). Using Excel, Col A should have 0.0001 (= 1/N) to 1. Col B is set to = LN(−LN(1 − Ann)),
nn being 1 to 10,000. This is to calculate values of m·ln(σ/σo). Col C is set to = σo·EXP(Bnn/m). This
gives values of σ that corresponds to P values in Col A. Compute <σ> = AVERAGE(C1:C10,000)
and <sd> = STDEV(C1:C10,000). Compare <σ> and <sd> to TS and SD. After several trials, these
two calculated values should approach TS and SD. At this stage, also change the input σo value,
by increasing TS with a factor F given by

F = 1 + 0.276 m−0.776, (9)

This empirical factor that depends on m is needed because σo and the average value or <σ>, given
by Equation (5), differ. The calculated average of the σ value, <σ>, quickly converges to TS, and when
the STDEV value, or <sd>, becomes close to SD, this m value is taken as an estimate. This procedure
was confirmed to provide valid m values for the data with known m, TS, and SD values. Five known
cases from [4,26] matched. The Percy’s 1886 data mentioned above showed a slightly higher m value
of 15.3, which is likely due to large scatter in the original data. Results are given in Table A1. Three
additional cases without m data are also examined. One data set was from the Mid-Hudson Bridge
main cable [79]. The wires had SD of 4.7% of TS and showed stage 2 and 3 level corrosion and gave
m = 30, comparable to the data in [26]. Two other cable wire data for TS and SD came from Japan,
through the search conducted by Toshimi Tarui of NSSM. One set was the actual test data for the main
cables of the Bisan Seto Bridge (1100 m main span, completed 1988) [80]. The sample count was 38,470
and the present method yielded an estimated m = 110. The second set was a supplemental data of
a Japanese Standard for bridge cable wires (5-mm galvanized steel wires) [81]. This wire test data with
sample count of 45 resulted in m = 124. These two estimated m values confirm the high quality being
achieved for the fabrication of suspension bridge cable wires.

Table A1. Input data and results of Weibull analysis.

m m est TS GPa SD GPa TS est GPa SD est GPa σo GPa σo/TS Sample Counts Ref.

9.1 9.1 1.3830 0.1815 1.3830 0.1820 1.4600 1.0557 15 [26]
13.7 15.3 1.0920 0.0878 1.0920 0.0876 1.1300 1.0348 35 [11]
16.0 16.0 1.4990 0.1130 1.5000 0.1150 1.5500 1.0340 160 [4]
N/A 30.0 1.6390 0.0773 1.6400 0.0680 1.6700 1.0189 N/A [79]
33.4 33.4 1.5950 0.0600 1.5950 0.0600 1.6215 1.0166 15 [26]
52.4 52.4 1.6280 0.0393 1.6270 0.0393 1.6450 1.0104 15 [26]
70.6 70.6 1.6490 0.0297 1.6490 0.0296 1.6620 1.0079 20 [26]
N/A 110 1.6530 0.0192 1.6540 0.0192 1.6630 1.0060 38470 [80]
N/A 124 1.6600 0.0171 1.6600 0.0170 1.6680 1.0048 45 [81]

Known values are in green, while those in red are estimated by the present method. N/A: Not available, est:
estimated; Ref.: reference number.

Omitted above in the steps for Weibull parameter calculation is another variable or ln(σ/σo).
For this, add Col D and set = Bnn/m. The Weibull plot can then be obtained by plotting Col D and Col
B. In the present case, it produces a straight line with the slope of m. Another useful plot for examining
the data characteristics is to plot stress (Col C) versus P(Col A), yielding the cumulative probability
distribution curve. This shows a skewed S-shaped curve. The present method can estimate the Weibull
modulus for common mechanical property data when it was obtained with statistically valid sample
counts. Usually, this may suggest counts of more than 30–50. However, only 15 to 20 samples were
used in [26] and still worthy m values were determined. Thus, the sample counts needed are within
normal engineering practice.
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Abstract: An understanding of the crack initiation and crack growth in metals spanning the entire
spectrum of conventional and advanced has long been a major scientific challenge. It is known
that dislocations are involved both in the initiation and propagation of cracks in metals and alloys.
In this review, we first describe the experimental observations of dislocation emission from cracks
under stress. Then the role played by these dislocations in fatigue and fracture is considered at a
fundamental level by considering the interactions of crack and dislocations emitted from the crack.
We obtain precise expression for the equilibrium positions of dislocations in an array ahead of crack
tip. We estimate important parameters, such as plastic zone size, dislocation free zone and dislocation
stress intensity factor for the analysis of crack propagation. Finally, we describe very recent novel
and significant results, such as residual stresses and relatively large lattice rotations across a number
of grains in front of the crack that accompanies fatigue process.

Keywords: crack tip dislocations; TEM; grain rotation; fatigue; dislocation configurations; residual stress

1. Introduction

The prediction of the fatigue properties of structural materials is rightly recognized as one
of the most important problems in engineering. Previous works suggest that fatigue is an very
complex phenomenon primarily because of the large number of variables spanning the aspects
of microstructure, alloy chemistry, processing treatment, intrinsic microstructural effects, and test
variables. The frequency of failure mechanisms of aircraft components as a result of corrosion, fatigue,
overload, high temperature corrosion, corrosion fatigue and wear/abrasion/erosion is 16%, 55%, 14%,
2%, 7% and 6%, respectively [1]. In fatigue phenomenon, the unsolved fundamental questions are:
(i) how cracks are created? (ii) Where do the dislocations originate? (iii) How do the cracks interact
with mobile and immobile dislocations? (iv) How cracks are able to grow at loads far less than that
needed for fracture? and (v) What are the effects microstructural features, such as: voids, interfaces,
grain boundaries, and second-phase particles? We will be able to predict the fatigue behavior in a
variety of materials and structures, once these questions have been addressed.

Basinski and Basinski [2] reported that cracks nucleate at persistent slip bands (PSBs) that are
generated immediately prior to fracture initiation. According to Mott [3], vacancies are generated
immediately below the surface and eventually coalesce to form fine microscopic cracks. This idea has
been extended by Antonopoulos et al. [4]. They proposed a model based on vacancy dipoles, which
develop in the PSBs. Essmann et al. [5] employed similar ideas for the nucleation of fine microscopic
cracks. However, Neumann [6] developed and put forward a model based on an activation of two
operating slip systems. It, therefore, appears that the crack nucleation process has been fairly well
understood for a wide spectrum of materials.

In the next section, we describe and discuss the emission of dislocations from the cracks and
provide some direct evidence for such emission. In Section 3, we discuss in detail used to predict
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various features of crack process. This forms the main part of this paper. In Section 4, we some other
features of the fatigue usually not considered that is, to determine characteristics of lattice rotation and
residual stresses around and in front of the crack , and relate it to fatigue plastic zone and dislocation
configurations, in high stacking fault energy materials, particularly in Al alloys. Finally, in Section 5,
we provide some discussion and concluding remarks. The objective of this brief review is:

(i) To establish that dislocation emission from cracks plays a major role in the fatigue process.
(ii) To point out the methodologies and recent progresses in analytical formulation of the dislocation

interactions, and the role they play in fatigue and fatigue processes.
(iii) To present some very recent results pertaining to the changes in grain morphology, orientations

and residual stresses as the materials undergo fatigue.

2. Dislocations Emission From Cracks

Significant efforts have been carried out to examine the crack-tip deformation behavior in metals
and alloys using in-situ tensile deformation in an electron microscope. It has been reported that
deformation occurs mostly by the emission of dislocations from the crack tip. The propagation of
cracks has been correlated with the behavior of dislocations ahead of the crack tip. The process
of dislocation emission from the crack tip have been examined theoretically by several authors,
considering the elastic interaction between a crack and a dislocation. Ohr et al. [7–9] have observed
dislocation emissions and the distribution of dislocations in the plastic zone during in-situ tensile
deformation in an electron microscope. They reported a region immediately ahead of the crack tip to
be free of dislocations and called this region as dislocation free zone (DFZ). Similar observations have
been made by Park and coworkers [10].

Transmission electron microscopy (TEM) was employed to investigate the spatial configuration of
dislocations emitted from crack tip in Cu and Al alloys. Figure 1a shows the emission of dislocation
from a crack in (111) oriented single crystalline Cu. In this case, the crack lies on one of the (111) planes,
and the dislocations are long and curved (see Figure 1b). Figure 2a is a bright-field TEM image showing
the dislocations emitted from a crack tip for Al and a dislocation free zone (DFZ) of ≈ 1.35 μm in length
ahead of the crack tip. A total of ≈ 90 dislocations was observed to emitted from the crack tip [11].
These dislocations were then migrated up to 3.85 μm from the crack tip. The plastic zone was found
to be elliptical, which is in agreement with the discrete dislocation model [12], and the distribution
of dislocations is approximately in the form of inverse pile-up configurations, which is consistent
with the previous observations for stainless steel, Cu, Ni, Al and Mo [13]. We have examined the
dislocations under different tilt conditions from 10 to 45◦ to investigate the dislocation configurations
(see Figure 2b–e) in the plastic zone, and determine the Burgers vector of the dislocations using the
g.b = 0 criterion. Figure 3a shows most of the dislocations with g = 1̄11̄ are invisible. Most dislocations
are, however, visible with g = 11̄1̄ and g = 002 as shown in Figure 3b. It suggests that the most dominant
dislocations have Burgers vector, b = a

2 [011]. For the case of thin foil, these dislocations around the
crack tip were emitted to accommodate mode-III stress intensity. Note that usually in mode-III loading,
most dislocations are of screw type, and in this case these dislocations lie on one parallel set of 111
planes. The estimated mean position of dislocations is in reasonably good agreement with models
of crack-dislocation configuration based on a continuum distribution dislocations. These models,
however, do not accurately predict the number of dislocations emitted by the crack tip.
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Figure 1. (a,b) A bright-field transmission electron microscopy (TEM) image close to the [111] zone in
Cu showing curved dislocations ahead of a sharp crack

Figure 2. (a) A TEM image showing dislocations ahead of a sharp crack and a dislocation free zone
(DFZ). (b–e) Dislocations configurations at different tilt angles of 10, 20, 30 and 45◦, respectively.

Figure 3. (a,b) Two beam bright field images showing dislocations with g = 1̄11̄ and g = 11̄1̄, respectively.
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3. Crack-Dislocation Interaction(s)

To understand of the fatigue phenomenon at the microscopic level, an investigation of
crack-dislocation interactions [14] is needed. In this regard, the most interesting work has been
the development of discrete modeling approach by Pippan et al. [15–18], Deshpande et al. [19], and
Mastorakos and Zbib [20]. They established that it is essential to concentrate on the initial stages
of fatigue process. In addition, to better understand the existence of a threshold in the fatigue,
an understanding of the stresses both at and near the crack tip, is required. The discrete dislocation
studies may deliver the changes in both the stresses and resultant displacements during cyclic loading,
and this model can convincingly show the crack propagation mechanism, which is appropriate
depending on the nature of loading. Note that most models related to the fatigue phenomenon are
two-dimensional in nature. Mastorakas and Zbib [20] employed a three-dimensional (3D) model,
which is more realistic to obtain a better understanding of the fatigue phenomenon. However, it does
not use of discrete dislocations concept. Several simulations using the discrete nature of dislocations
have been done before [18,21–34], which suggest that the fatigue threshold behavior can be related to
the discrete nature of plastic deformation.

As discussed before, considerable efforts have been made to experimentally investigate the
crack-tip deformation behavior using TEM [35–38]. All of these experimental observations show that
the crack tip acts as a possible source of dislocations. As a result the dislocation emission starts from
the crack tip, which is consistent with the fact that the crack tip is associated with the highest stress.
Such crack-tip dislocation emission process, on the other hand, have been theoretically [13,39–43]
investigated by several authors. Several dislocation models [13,39–45] have been proposed to
understand the initiation and propagation of cracks.

The initial model for the monotonically loaded cracks was first given by Bilby, Cottrell and
Swinden (BCS) [44], which considers a finite crack in an infinite isotropic elastic medium (Figure 4).
However, the BCS model does not consider for the existence of the DFZ in front of the crack tip, which
has been experimentally observed. The BCS has been applied by Weertman [46] to model fatigue
crack growth. This model has been modified by Chang and Ohr [13], Majumdar and Burns [39,40]
and Weertman et al. [46–49]. Majumdar and Burns [39,40] model considers a crack tip with a pile-up
of screw dislocation, and a dislocation free zone immediately after the crack. This model assumes
continuous distribution of dislocations in the plastic zone. Lin and Thomson (LT) [45] considered
two symmetrically inclined slip planes stemming from a semi-infinite crack tip, and they replaced
the dislocation arrays by a superdislocation and examined the emission of dislocation. In the next
section, we discuss another crack-tip dislocation model by Pande, Masumura and Chou [50,51], which
do not use the superdislocation approximation. In their model, Pande et al. provided an expression for
the length of DFZ, which cannot be obtained by the Lin-Thomson model because of the unrealistic
(not experimentally observed) approximation of superdislocation.

Figure 4. A schematic diagram showing the slit crack and the dislocation distribution.
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Pande, Masamura and Chou Model

This model examined emission of dislocations on two symmetrically inclined slip planes from a
semi-infinite crack tip in mode-I loading. The crack geometry is shown in Figure 5 for edge dislocations
on two inclined slip planes. In this condition, the forces on the ith dislocation on the slip plane are due
to (1) the crack tip stress field, (2) stress field due to other dislocations and the (3) image forces due to
the crack surface. The sum of the forces, at equilibrium, is equal to the lattice friction force, Ff ric. It can
be written as [51];

Ff ric = bτf ric = Fimage + Fcr + Fd

Fimage = − μb2

4π(1 − ν)ri

Fcr =
bKA√
2πri

sin
(

θ

2

)
cos2

(
θ

2

)

Fd =
n

∑
(k=1,k �=i)

Fk
d ,

(1)

where ν is Poissons ratio, KA is the stress intensity factor, and Ff ric, Fimage, Fcr and Fd are the forces due
to lattice friction, image, crack and dislocations, respectively.

Figure 5. The diagram showing the dislocation distribution for θ = 70.54◦ in front of a slit crack.

The force due to other dislocations, Fd, can be estimated by the superposition of forces of the
elastic field [52]. Zhang et al. [53] formulated the contribution of this force for an infinite slit crack and
a single edge dislocation on an inclined slip plane using the complex potential [52]. The force acting on
the ith dislocation due to the kth dislocation is given by the Peach-Koehler equation. It is written as;

Fk
d = bσk

rθ (2)

Thus, for the ith dislocation, the scaled force equilibrium condition is written as:

τ∗
i = − 1

2ρi
+

K∗
√

ρi
sin
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θ

2

)
cos2

(
θ

2

)
+

1
2

n

∑
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f k
d , (3)

where τ∗
i =

τf ric
A , f k

d =
σk

rθ
A , ρi =

ri
b , A = μ

2π(1−ν)
and K∗ = KA

A
√

2πb
. For n dislocations, Equation (3)

becomes a system of n equations, and the solution of these equations generates the equilibrium
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positions of dislocations, ri, for a given K∗ and τ∗
i . Utilizing the expressions given by Zhang et al. [53],

the set of n × n non-linear simultaneous equations has been numerically solved.
One could use this model to estimate the size of the DFZ. The first and the last equilibrium

positions are shown in Figure 6 as a function of the number of dislocations for K∗ = 10.0 and τ∗
i = 0.1.

In this geometry, the slip plane inclination is θ = 70.54◦, and the plastic zone size is the distance from
the crack tip to the last dislocation in the array. Similarly, the DFZ is the distance from the tip to the
first dislocation. One could observe that the plastic zone size increases as the number of dislocations
increases, while the DFZ decreases with the dislocation array. In this case, the greatest extent of the
plastic zone size occurs when θ = 70.54◦, which corresponds to the maximum of the total applied
stress field.

Figure 6. The diagram showing the equilibrium positions as a function of number of dislocations for
θ = 70.54◦ and τ∗

i = 0.1.

The centroid of the superdislocation in Figure 6 is calculated as a simple mean and is fairly linear
over a large range of dislocations. Furthermore, it has been observed that the various zones decrease
with decreasing K∗, for example, externally applied load. The elastic field at a crack tip is shielded
(b > 0) or enhanced (b < 0), depending on the sign of the Burgers vector, which can be characterized
by the stress intensity factor, KD due to the dislocations, and have been given by Lin and Thomson [45]
(see also Zhang et al. [53]). The stress intensity factor, KD, is written as;

KD = 6A
√

π

2
sin(θ)cos

(
θ

2

) [
(n − 1)√

ρmean
+

1√
ρl

]
, (4)

where ρl is the position of superdislocation and n is number of dislocations. Using Equations (3)
and (4), KD has been plotted as a function of number of dislocation (see Figure 7). Here ρmean was
considered as the arithmetic average of the dislocations positions. As K∗ increases from 10 to 15, the
externally applied tensile stress reduces the effect of shielding. Similarly, the decrease in friction stress,
τ∗ lowers the KD. All these effects can influence the response to fatigue loads and the subsequent crack
growth behavior. In some cases, the superdislocation computation can deviate significantly from the
actual KD, and the position of the superdislocation is somewhat arbitrary [50,51,54].
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Figure 7. KD as a function of number of dislocations. Note that the increase of K∗ reduces the effect of
shielding. The decrease of the friction stress lowers the KD.

The distribution of dislocations is shown in Figure 8 for several values of n, θ = 70.54◦ and
τ∗

i = 0.1. As can be seen from the figure, the distribution is considerably different from a regular pile
up of dislocation. The initial, final and equilibrium positions of dislocations [50,51,54] are shown in
Figure 9, and it is clearly observed that the DFZ size is proportional to log n, and the plastic zone is
proportional to the number of dislocations in the array.

The lower limit for K∗ and an equilibrium position, ρmin, for a given τ∗ and θ can be written as;

K∗
min =

√
2τ∗

sin
(

θ
2

)
cos2

(
θ
2

)
ρmin =

1
2τ∗ .

(5)

For θ = 70.53◦ and τ∗ = 0.1, the above equation gives a minimum K∗ = 1.16 and ρmin = 5.
This analysis shows a minimum value of K∗ is required for the emission of dislocation from the crack.
This minimum value of K∗ could be associated with one of the two fatigue thresholds [55].

Here we briefly discuss the crack tip deformation behavior in mode-III loading. For θ = 0, this
reduces to analysis presented by Dai and Li [41]. The stress intensity factor increases with the increase
in θ by a significant amount. For other parameters, such as length of pile up and DFZ, the estimates
are similar to the values obtained by Dai and Li. Thus if the dislocation arrays are inclined, they might
significantly affect the crack propagation, which is valid even if it is not exactly mode-III. These results
are useful in brittle and ductile fracture [56].
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Figure 8. The diagram showing the first and last equilibrium positions as a function of the number of
dislocations for θ = 70.54 and τ∗

i = 0.1.

Figure 9. The diagram showing initial, final and equilibrium positions of dislocations.

4. Experimental Verification

The theoretical distribution, position and number of dislocation in the plastic zone have been
compared here with the experimental observations of dislocations close to the crack. Here we use
Majumdar and Burns’ model to compare with the experimental observations as one can obtain the
mean position and number of emitted screw dislocations for mode-III loadings. The experimental
observations (see Figures 2 and 3) suggest they are mostly screw type. These experiments were carried
out on thin foils using in-situ tensile stage in the transmission electron microscope, and in this case the
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loading in the tensile stage on the thin foil conforms to mode-III loading [38]. The distance of the mean
position of dislocation, Xm, in front of the crack is given by Majumdar and Burns [39,40];

Xm = K
(

1 − c
d

)0.5
E
( c

d

)0.5
c

K =
π

2
+

mπ

8
+

9πm2

128
+ ...

E =
π

2
− mπ

8
− 3πm2

128
− ...,

(6)

where K and E are the elliptic integrals, the c and d are the length of DFZ and the plastic zone
size, respectively. The mean position, Xm, has been obtained from the experimentally measured
parameters, c and d (see Figure 2). For Al, the experimentally observed values of c and d [11] are
1.35 μm and 3.85 μm, respectively, and the Xm turned out to be 2.15 μm. This suggests that the
continuum approximation can adequately describe the plastic zone. One can now estimate the number
of emitted dislocations and compare with the theory. The stress intensity factor (kII I) is given by;

kII I = 0.75τf ric

(
2c
π

)0.5 [
ln
(

4d
c

)
+

4
3

]
. (7)

The total stress intensity factor (KIII) is written as;

KIII = kII I +
N

∑
j=1

kD
(j), (8)

where the second term, ∑N
j=1 kD

(j), is due to the contribution of N dislocations. Thus, the total stress
intensity factor, KIII ,can be written as [42];

KIII = 2τf ric

(
2d
π

)0.5
, (9)

From Equation (9), the total number of crack tip dislocations, N, is given by;

N =

(
KIII
μb

)(
2d
π

)0.5

N = 4
d

πμb
τf ric.

(10)

Considering τf ric = 20 MPa and μ = 27 GPa for Al, the number of emitted dislocations calculated
using Equation (10) turned out to be 13. TEM observations, however, showed that the observed
number of dislocations (see Figures 2 and 3) is approximately one order of magnitude greater than
this estimation. Although the mean position of the dislocation distribution in the plastic zone can
be predicted by the continuum dislocation models, they do not properly predict the total number
of emitted dislocations from a crack tip. This discrepancy could result from the assumption that all
dislocations lie on one plane is not a valid one. There are many other reasons also. The model itself is
two dimensional and the dislocations are considered straight and infinite in length. One important fact
observed in our experiments is that the crack has several sources of dislocations active at the same time.
The predictions are thus merely quantitative. But such a large discrepancy need further experimental
and theoretical investigations.

5. Effect of Dislocation Emissions

The emission of dislocations in fatigue results in significant lattice rotation and tensile residual
stresses around the fatigue crack [57–60]. The lattice rotation may be related to the size of the plastic
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zone and the redistribution of dislocations and slip processes in front of crack. To study the plastic
zone, the growth of the crack has been stopped at a different lengths. Fatigue tests were performed
in vacuum (<6 × 10−6 Pa) background pressure at a cyclic load frequency of 10 Hz with a load ratio
of 0.10 on compact tension (CT) specimens. Figure 10a shows the XRD patterns at different locations
from the crack. One could observe the relative variations of 111 and 200 Al peaks (see Figure 10b) as a
function of position from crack at either side of the crack for Al 7075 and Al 1100. For Al 7075, the
ratio of 111 to 200 increases from 1.20 to 2.2 close to the crack, implying a change approximately 130%.
This suggests that considerable lattice rotation across several grains takes place in front of the crack as
a result of fatigue crack growth at room temperature [57].

Figure 10. (a) X-ray diffraction (XRD) patterns as a function of distance from the crack showing the
relative variations of intensity of 111 and 200 peaks. (b) The integrated intensity ratio of 111 to 200 as a
function of position from crack for Al 1100 and Al 7075. The y-axis values for Al 7075 are shown on
the right side.

The compressive residual stress enhances the fatigue lifetime [61], however, the tensile residual
stress is highly damaging under fatigue loading [62]. Thus, the residual stress can affect the crack
growth by influencing the stress intensity factor, the mean stress and the fatigue life [63,64]. In addition,
the local residual stress could play a significant role than the overall large scale distribution of the
residual stresses. To estimate the residual stress, the elastic strain has been experimentally obtained
with the XRD technique around the crack. The residual stresses were obtained from the slope and the
intercept of the d vs. sin2(ψ) lines [59] as a function of distance from the crack. The slope has been
observed to be positive at a number of locations for Al 7075, indicating that the stress is tensile in most
places, and the residual stresses increase from 60 MPa to 195 MPa at 5 mm from the crack, and then
decreases to 165 MPa close to the crack for Al 7075 (see Figure 11). The stress measured in front of the
crack tip is ≈ 220 MPa. For Al 1100, the stresses decrease from 38 MPa tensile at 25 mm to 17 MPa
compressive at 5 mm from the crack. It is below 5 MPa tensile close to the crack (see Figure 11).

In Section 3, we have given a detailed description of analytical progress in developing dislocation
crack interaction. Although the very nature these analyses are often two dimensional and highly
idealized model of the fatigue process, they provide valuable insight of the interactions, and also
mathematical expressions of the various fatigue parameters, which can be experimentally tested.
As mentioned before in our opinion the most interesting work during the last few years has been
development of discrete modeling approach by Pippan et al. [26,27], Deshpande and co-workers [19],
and also continuum modeling by Mastorakos and Zbib [20]. They used a three- dimensional analysis,
which is more appropriate and realistic, but it does not make use of discrete dislocations. On the
experimental side, as seen in Section 4, there is need to use many sophisticated and, in some cases,
new analytical techniques to obtain a more realistic picture of the fatigue process. New direct evidence
is presented for the cracks as a major source of dislocations taking part in the fracture and fatigue

146



Metals 2020, 10, 473

process. From our model, we obtain the size of the plastic zone and an estimate of the critical threshold
for further dislocation emission.

A significant lattice rotation has been observed in the plastic zone of a fatigue crack. We ascribe
such rotation to glide of large number of dislocations in front of crack. As we approach the crack, the
residual stress increases gradually around the fatigue crack by ≈ 200% for Al-7075, and decreases by
≈ 80% for Al-1100. Such change in residual stress cannot be explained by the difference in dislocation
density alone. We demonstrate that the deformation associated with the lattice rotation is a major
factor controlling the residual stress [59].

Figure 11. The estimated residual stress as a function of position from crack.

This review, we hope, establishes the fact that cracks are the primary source of dislocations. In fact,
in our own work no secondary source of dislocation ahead of the crack was found. On the theoretical
side, it appears that analytical modeling of the dislocation-crack interaction is much more complex
than usually assumed. Firstly, there are more than one dislocation source at the crack tips. Secondly, the
3D nature of the process is hard to model and thirdly, the dislocations are curved. The superdislocation
model introduced by Lin and Thompson may simplify some of the analytic difficulties. A relatively
new result, that is, the rotation of the grains ahead of the crack, even when the grains are not in the
nano range (≤10 nm) was shown to be an important part of the fatigue process, and should be taken
into consideration in making fatigue predictions.

6. Concluding Remarks

The detailed picture of the deformation and fatigue processes has now been well described in
the literature. A semi-emperical understanding of various features involved in these processes is
also available. Using empirical techniques and experimental methods, fairly accurate predictions can
sometimes be made [14]. A macro picture of the process has also emerged, where dislocation density
and dislocation configurations play a significant part. For an excellent, but brief recent summary,
see the review by Mughrabi [65]. For most of the purposes the above described knowledge of the
phenomenon is sufficient.

Despite the progress so far made, our basic understanding of many features of the processes
is lacking. In the absence of the basic understanding, dislocation modeling has so far not become a
predictive tool. It has been mostly used in many cases to provide quantitative understanding of the
experiments or give some rule of thumb for practical applications. We want therefore to strive a more
basic understanding of the processes involved. In other words, we want to study the issues involved
at a more fundamental level using modern analytical techniques and to use as far as possible rigorous
mathematical techniques to analyze the dislocation configurations and their role.
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Towards this goal, some fundamental studies have been undertaken, which are briefly described
in this review. In 2001, Riemelmoser et al. [28] gave an overview of the dislocations modeling of cracks
and in 2003 Pipan et al. [66] published a chapter in much greater detail on dislocation models of fatigue
crack growth. Another review dealing with more applied aspects of the basic theoretical models,
published in 2011 by Bhat and Patibandla [67] is also very useful. A short review of 2D modeling,
which is most common, is provided by Olarnrithinun, in 2013 [68].

One aspect of the modeling not mentioned in our review is the atomistic modeling of the
fatigue process. This technique may be very useful in the future as the capacity of the computing
process increases. A review of this technique applied to nanostructurally small cracks is available
by Horstemeyer et al. [69]. In summary, much remains to be discovered and investigated before a
comprehensive methodology for predicting fatigue from first principles can be made available.
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Abstract: The simplified model of numerical analyses of discrete dislocation motion and emission
from a stressed source was applied to predict the yield stress, dislocation creep, and fatigue crack
growth rate of metals dominated by dislocation motion. The results obtained by these numerical
analyses enabled us to link various dynamical effects on the yield stress, dislocation creep, and fatigue
crack growth rate with the experimental results of macroscopic phenomena, as well as to link them
with theoretical results obtained by the concept of static, continuously distributed infinitesimal
dislocations for the equilibrium state under low strain or stress rate conditions. This will be useful to
holistic research approaches with concern for time and space scales, that is, in a time scale ranging
from results under high strain rate condition to those under static or low strain rate condition, and in a
space scale ranging from meso-scale to macro-scale mechanics. The originality of results obtained by
these analyses were found by deriving the analytical formulations of number of dislocation emitted
from a stressed source and a local dynamic stress intensity factor at the pile-up site of dislocations
as a function of applied stress or stress rate and temperature material constants. This enabled us
to develop the predictive law of yield stress, creep deformation rate, and fatigue crack growth rate
of metals dominated by dislocation motion. Especially, yielding phenomena such as the stress
rate and grain size dependence of yield stress and the delayed time of yielding were clarified as a
holistic phenomenon composed of sequential processes of dislocation release from a solute atom,
dislocation group moving, and stress concentration by pile-up at the grain boundary.

Keywords: holistic approach; dislocation group dynamics; dynamic factor; dislocation pile-up; yield
stress; dislocation creep; fatigue crack growth rate

1. Introduction

The purpose of the research of dislocation mechanics is considered to have two directionalities,
that is, application to the research of materials science and application to the research of the strength of
materials such as that of yielding and fatigue crack growth rate.

The former closely relates to micro plasticity, such as the conditions of dislocation emission,
annihilation, and cross slip, and this research was developed in the manner of the modern dislocation
dynamics [1].

The latter closely relates to connect problems of the strength and fracture of materials with the
macro scale [2–5].

This article is related to the fracture of materials. For this case, the numerical results of the number
of moving dislocations emitted from a stressed source and local stress concentration caused by a
dislocation pile-up were necessary to be formulated as an analytical function of applied stress or stress
rate, temperature, and material constants [2,3].
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Since the behaviors of dislocation group motion have a scale of μm at the meso-scale level, that is,
the intermediate scale of nm (an individual dislocation) and mm (crack length) scales, which is a
comparable scale with grain size. At this scale, the simplification of the model of analysis is considered
to be more convenient to derive a predictive law of the strength and fracture of metals.

To fulfil this purpose, in our research, the establishment of a predictive theory of strength and
fracture of materials was conducted by conducting the simplification of the model of analysis [3] and
verification with experimental results [3,6].

Yielding phenomena such as stress rate and grain size dependence of yield stress and delayed
time of yielding were especially clarified as a holistic phenomenon composed of sequential processes
of dislocation release from a solute atom [7,8], dislocation group moving [6], and stress concentration
by a pile-up at the grain boundary [2–4].

2. Dislocation Groups Dynamics Aimed for Applications to Problems of Yielding, Creep,
and Fatigue [2,9,10]

2.1. Model, Basic Equation and Method of Analysis [2,9,10]

Plastic deformation is caused by dislocation group motion emitted from a stressed source.
It closely relates to plastic yielding and fatigue crack growth dominated by discrete dislocations

emitted from a stressed source near a crack tip. Pioneering works on the analysis of discrete dislocation
group dynamics emitted from a stressed source have been conducted [4,11,12], but a power law
equation has been adopted between the isolated dislocation velocity and the stress for practical
application to the strength of materials such as the yield stress, creep rate, and fatigue crack growth
rate; this is given by Equation (1), which is related to experimental equations [4].

Equations of discrete moving dislocation groups are given by Equations (1) and (2).

Vi =
dxi
dt

= Mτe f f ,i
m (1)

τe f f ,i =
.
τt + A

n∑
j = 1
i � j

1
xi − xj

( i = 1 ∼ n) (2)

In the equations, Vi and xi are velocity and position of individual dislocations in a linear array,
respectively, and M and m are the material constants of an isolated dislocation given by the experimental
Equation (3) [13]. The calculation starts at the time of t = 0.0 s.

v = v0

(
τ
τ∗0

)m

V (3)

In Equation (3),
.
τ is the stress rate; t is the time of stress application; τe f f ,i is the effective stress

exerted on individual dislocations in terms of shear stress; and A = Gb
2π(1−ν) , where G is the shear

modulus, b is the Burgers vector, ν is the Poisson’s ratio, V0 = 1 cm/s, and τ∗0 is a constant representing
the stress required to give a dislocation velocity v = 1 cm/s (resistant stress against the dislocation
motion).

A free expansion model of linear dislocation motion emitted from a stressed source, S, is shown
in Figure 1 [9,10].

The numerical analyses were conducted as follows [9].
When the effective stress exerted on dislocation source (x = 0.0) takes the source activation stress,

the new dislocation is originated at x = 0.0, and these processes are iterated. Equations (2) and (1) were
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solved by the Runge–Kutta Merson method. The effective stress exerted on a dislocation source is
given by Equation (4).

τ =
.
τt

τe f f ,s =

.

.
τt−A

n∑
j=1

1
xj

(4)

 

Figure 1. Free expansion model of linear dislocation motion emitted from a stressed source, S.

2.2. Discrete Dislocation Groups Dynamics of Free Expansion and Similarity Law of Dislocation Flow [9,10]

From the analysis, the ratio of positions, velocity and effective stress of individual dislocation
in the dislocation array to those of an isolated dislocation, such as xi

xiso
, vi

viso
, and

τe f f i
τiso

, were found to

dominated by Θ =
( .
τ.
τ0

) (m+1)
(m+2)
θ, which is named the dynamic factor [9,10]. Here, τ is the applied stress

acting on dislocations in the dislocation array, θ is the non-dimensional time controlled by t0, and t0 is

the time of an isolated dislocation moving the distance, l. It is given by t0 =
[
(m+1)l
M

.
τ

m
0

] 1
(m+1)

[2,9,10] by

using Equation (3). In this analysis, l was taken as the length of 0.01 mm.
Furthermore, the number of dislocations emitted from a stressed source were also found to be

given by the dynamic factor, Θ, which is a non-dimensional character, as shown in Equation (5a); the
dimensional parameter η is shown in Equation (5b) [9,10].

N = AΘm+1 (5a)

N = A0η
m+1 (5b)

η =
.
τ

m+1
m+2 t = τ

.
τ
− 1

m+2

In the equation, A and A0 are non-dimensional and dimensional constants, respectively.
By dimensional analysis, N is given by Equation (6a) [9,10].

N = γ(m)
( M

Gb

)(m+1
m+2 )

ηm+1 (6a)

γ(m) = 1.4m−1.45 (6b)

In these equations, γ(m) is a non-dimensional function depending on m.
The velocity of an isolated dislocation is given by thermally activated process, as shown in

Equation (2) [14].

v = A1exp
(
− H

RT

)
(7)

H = Hk

⎛⎜⎜⎜⎜⎝1 + 1
4

ln
16τ0

p

πτ

⎞⎟⎟⎟⎟⎠ (8)

In these equations, A1 is a constant, Hk is the kink energy, τ is the applied stress, τ0
P is the Peierls

stress at 0◦ K, and T is the absolute temperature. By substituting Equation (8) into Equation (7) and
comparing Equation (7) with Equation (9), which is the experimental equation of an isolated dislocation,
Equations (10a) and (10d) could be obtained.

v = Mτm (9)
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m =
Hk
4kT

(10a)

M = v0

(
1
τ∗0

)m

(10b)

τ∗0 = τ00

(
A1

v0

)−1/m

(10c)

τ00 = e4
(16
π

)
τ0

P (10d)

Using Equations (10a)–(10d), Equation (6a) was able to be rewritten as Equation (11). From this
equation, the number of dislocations emitted from a stressed source was found to be dominated by a
thermally activated process [10].

N = A∗t
m;1

m+2
a

(
τ
G

) m;1
m+2

exp
{
−m + 1

m + 2
Hkln

(
τ00

τ

)
/4kT

}
(11)

where A∗ = γ(m)

(
b

A1

)−m+1
m+2

(12)

2.3. Dislocation Pile-Up Induced by Local Stress Field [2]

Some previous research has treated analyses of dislocation pile-up [4,11,15], but there has not
been so much research that has considered the application to fracture mechanics description.

In this section, numerical analyses were conducted on the dynamic piling-up of discrete dislocations
emitted from a stressed source and on the dynamic stress intensity factor caused by discrete moving
dislocations in a pile-up.

2.3.1. Model, Basic Equation and Analysis [2]

Until the lead dislocation in the array arrives at a barrier, such as grain boundary, dislocations
will emit from a stressed source and move freely except for the interactions between dislocations, as
shown in Figure 1. Equations of the motion of dislocation groups are given by Equations (1) and (2).
After the arrival of the lead dislocation at the barrier, it is locked and the trailing dislocations pile-up
against the barrier, as shown in Figure 2.

Figure 2. Discrete dislocation pile-up model with emission from a stressed source.

Equations of effective stress exerted on each dislocation in the array for the case of dislocation
group pile-up are given by Equation (13).

τe f f ,i =
.
τt + A(

1
xi − l

+
∑

n

j = 2
i � j

1
xi − xj

) i = 1~n (13)
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The equation of motion of each dislocation in the array is calculated by Equation (1).
The effective stress exerted on a dislocation source before and after the leading dislocation arrives

at the site of pile-up is given by Equations (14a) and (14b), respectively.

τe f f ,s =

.

.
τt−A

n∑
j=2

1
xj

, (x1 < l) (14a)

τe f f ,s =
.
τt−A(

1
l
+

.
n∑

j=2

1
xj
), (x1 = l) (14b)

The stress distribution, τ(x, t), caused by dynamical piling up in the region of x > l is shown in
Figure 3 and is given by Equation (15).

τ(x, t) =
A

x− l
+ A

n∑
i=2

1
x− xi

+
.
τt (15)

The dynamic stress intensity factor caused by dislocation pile-up formation is given by
Equations (2)–(16).

k(t) �
√

2π(x− l)τ(x, t)l<x<l(1+ε) (16)

where lε is the small distance in which the stress distribution has the characteristic of

1√
x∗
(x∗ = x− l = lε)

Figure 3. The stress distribution, τ(x, t), caused by dynamical piling up [3].

2.3.2. Results [2,3]

The numerical results of stress distribution on the slip line x > l near the site of pile-up (barrier)
were obtained by Equation (15), as shown in Figures 4 and 5, where s* = s− 1 is the non-dimensional
distance from the site of dislocation pile-up (O* in Figure 3), S is the non-dimensional value of x
controlled by l.

When the number of dislocations emitted is as small as shown in Figure 4, the stress distribution
near the barrier shows a 1/s* singularity, and with an increase in s*, a 1√

s∗ singularity appears but is

restricted within a narrow region. (3 × 10−3 < s∗ < 2 × 10−2) The characteristics of 1√S∗ take minor
portion in the stress distribution [2].
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On the other hand, when the number of emitted dislocations increases, as shown in Figure 5
(sixty emitted dislocations), the stress distribution shows a singularity of 1√

s∗ , which appears from the
vicinity of the barrier; this characteristic region extends up to 5% of the length of slip line [2].

 
Figure 4. The numerical results of stress distribution on the slip line, x > l (S*), near the site of pile-up
(barrier) obtained by Equation (15) for the case of N = 14 (Small number of dislocations) [2].

Figure 5. The numerical results of stress distribution on the slip line, x > l (S*), near the site of pile-up
(barrier) obtained by Equation (15) for the case of N = 60 (large number of dislocations) [2].

The numerical results of the dynamic stress intensity factor Kd(θ) due to pile-up by discrete
dislocation groups dynamics with emission were obtained, as shown in Figure 6, by using Equations (15)
and (16) and by the 1√

s∗ singularity of the stress distribution, as in Figure 5. A static solution, Ks(θ),
obtained by the concept of continuously distributed infinitesimal dislocations for the equilibrium

156



Metals 2020, 10, 1048

pile-up is given by Equation (17) and is also shown in Figure 6 for comparison with the dynamic stress
intensity factor, Kd(θ). Ks(θ) and the linear part of Kd(θ) in Figure 6 are written as follows.

Ks(θ) = 103θ (17)

Kd(θ) = 1.2× 103θ− 5.2 (18)

where θ =
t
t0

Figure 6. Numerical results of the dynamic stress intensity factor, Kd(θ), due to pile-up by dislocation
group dynamics with emission, as well as a comparison with that of a static solution [2].

The values of Kd(θ)/Ks(θ) were plotted against non-dimensional time, θ, as shown in Figure 7.
From these results, it can be seen that the dynamic stress intensity factor is smaller than the static one
and asymptotically approaches the static one as the number of emitted dislocations increases.

Figure 7. The values of Kd(θ)/Ks(θ) plotted against non-dimensional time, θ [2].

The calculated dynamic dislocation density distribution fd is shown in Figures 8–11 [3]. On the
other hand, the static dislocation density distribution fs and the number of dislocations N under
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equilibrium state without emitting are given by the continuous distributed infinitesimal dislocations
concept, assuming fs(s) = 0 at the dislocation source and fs(s)→∞ at the site of pile-up, respectively.
They are given by Equations (19) and (20).

fs(s) =
τa

πA∗

√
s

1− s
(19)

N =

∫ d

0
fs(s)ds =

τad
2A∗ (20)

 
Figure 8. The dynamic dislocation density distribution fd for grain size (d) = 0.01; non-dimensional
stress rate

(
τ́
τ́0

)
= 10 [3].

 

Figure 9. The dynamic dislocation density distribution fd for d = 0.005; τ́τ́0
= 10 [3].
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Figure 10. The dynamic dislocation density distribution fd for d = 0.01; τ́τ́0
= 105 [3].

Figure 11. The dynamic dislocation density distribution fd for d = 0.05; τ́τ́0
= 10 [3].

In Figures 8–11, fs is shown by the dotted line. These results showed when the stress application
rate,

.
τ, or grain size, d, is small, and a static equilibrium solution based on a continuous distribution

of infinitesimal dislocations gives a good approximation, as shown in Figures 8 and 9. However,
with increase in

.
τ or d, the dynamic effect becomes more remarkable and fd becomes smaller than fs [3],

as shown in Figures 10 and 11 [3].
The dynamic stress intensity factor Kd(θ) at the site of pile-up such as grain boundary in

non-dimensional form can be obtained using Equation (16). In Figure 12, Kd(θ)/Ks(θ) is plotted

against the non-dimensional dynamic factor Θ =
( .
τ.
τ0

) (m+1)
(m+2)
θ [9,10]. For the case of iron (m = 3 [13]),

the following equation was obtained [3].

Kd
Ks

= 1.0−Aexp(−BΘ) (21)
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Figure 12. The relationship between dynamic stress intensity factor controlled by static stress intensity
factor and the non-dimensional dynamic factor Θ [3].

By using the non-linear least square method, A and B in Equation (21) were obtained as a function
of

.
τ.
τ0

and d, respectively, as follows [3].

A = ϕ

( .
τ
.
τ0

, d
)
= 2.35− 0.0214

( .
τ
.
τ0

)−0.172

d−0.896 (22)

B = ψ

( .
τ
.
τ0

, d
)
= 1.08

( .
τ
.
τ0

)−0.0557

(23)

The results of Figures 13 and 14 show that Equations (22) and (23) well-represent numerical results.
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Figure 13. The relationship between a non-dimensional constant (A) and d [3].

 

Figure 14. The relationship between B and
.
τ
.
τ0

[3].

By substituting Equations (22) and (23) into Equation (21), Equation (24) can be obtained [3].

Kd
Ks

= 1.0−
⎧⎪⎪⎨⎪⎪⎩2.35− 0.0214

( .
τ
.
τ0

)−0.172

d−0.896

⎫⎪⎪⎬⎪⎪⎭exp

⎧⎪⎪⎨⎪⎪⎩−1.08
( .
τ
.
τ0

)0.75 t
t0

⎫⎪⎪⎬⎪⎪⎭ (24)

Figure 15 shows that the calculated values from Equation (24) were found to be in good agreement
with data obtained by numerical analyses.

By using dimensional analysis and determining the coefficient of the constant term using the
number of material constants, Equation (24) leads to Equation (25) [3].

Kd(t) =
√

2πd
( .
τt
)
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0−
{

2.35− 0.230
(

G
τ∗0

) m
(m+2) (GV0.

τb

) 1
(m+2)

(
b
d

) (m+1)
(m+2)

}

×exp

⎧⎪⎪⎨⎪⎪⎩−1.08
( .
τt
τ∗0

) m
(m+2)

(
V0t

(m+1)d

) 1
(m+1)

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(25)
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Figure 15. The relationship between dynamic stress intensity factor controlled by static stress intensity
and applied stress under constant stress rate condition [3].

2.4. Application to Problem of Yielding

2.4.1. Basic Equations

Cottrell and Bilby described the mechanism of yielding from the view point of dislocation trapping
mechanism by solute atoms of carbon [7]; however, the effect of strain rate and temperature have not
yet been fully formulized. Concerning ductile fracture of steels, the formulation of the upper yielding
point and delay time for yielding are important factors to be analyzed. Takeo Yokobori conducted the
formulation of the stress rate dependence of the upper yield point based on a stochastic model analysis
that analyzed the releasing process of solute atom from a dislocation [8].

On the other hand, on the basis of the concept that the velocity of an isolated dislocation is
proportional to the strain rate of a specimen given by Equation (26), Johnson [15] and Hahn [16]
described the yielding phenomenon from the view point of theory of dislocation [15,16]. However,
a cleared formulation of yielding phenomenon including the effect of temperature has not yet been
conducted. Furthermore, the researchers used the equation of velocity of an isolated dislocation motion
by considering that every dislocation moves at the same velocity without interaction between them, as
given by Equation (26) [16].

.
γ = ρbv (26)

In the equation, ρ is the dislocation density, b is the Burgers vector, and v is the mean velocity of a
dislocation in which the equation of velocity of an isolated dislocation was used.

In this section, instead of Equation (26), Equation (27) [4,17], which considers the interaction of
dislocations within groups starting with dislocation emission from a stressed source (as calculated by
Equations (1) and (2)) was adopted.

.
γ = ρb

n(t)∑
i=1

vi (27)

In Equation (27), n(t) is the number of dislocations emitted from a stressed source at the time of t, i
is the dislocate-ion number, and vi is the velocity of the i th dislocation in the dislocation groups.
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By conducting computer simulation using the physical model of Figure 1 and Equations (1)–(4),
the summation of non-dimensional velocity of each dislocation in the array was found to be written by
Equation (28) and is shown in Figure 16 [17].

n∑
i=1

vi(t)
viso

� n(t) (28)

Figure 16. The relationship between
n∑

i=1

vi(t)
viso

and the number of dislocation emitted from a stressed

source, n [17].

By substituting Equation (28) into Equation (27) and using Equation (29), the plastic strain rate is
given by Equation (30) [17].

ρ = ρ∗0Λ∗ (29)

In Equation (29), ρ is the area density dislocation, ρ∗0 is the volume density dislocation, and Λ∗ is
the average length of dislocation.

.
γ = ρ∗0Λ∗bn(t)v0

(
τ
τ0

)m

= ρ(t)bv (30)

In Equation (30), ρ(t) = ρ∗0Λ∗n(t), and v is given by Equation (3).

2.4.2. The Application of This Theory to Yielding of Steels

The Delay Time of Yielding

The delay time of yielding under rapid application of constant stress is calculated by Equation (31)
as the time of plastic strain, thus taking the specified value [16].

γP =

∫ t

0

.
γ dt = const (31)
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Using Equations (30) and (32), which are the number of dislocations emitted from a stressed source
under constant stress condition [6], and by substituting Equations (30) and (32) into Equation (31) and
integrating Equation (31), Equation (33) was obtained [17].

n(t) = 2.45m−0.865
(

b
v0t

)− (m+1)
(m+2)

(
τ∗0
G

)−m(m+1)
(m+2) (τa

G

) (m+1)2

(m+2)
(32)

where G is the shear modulus. τa = τY = σY
2 , where σY is the yield stress under uniaxial tensile load,

is assumed.

t =

⎛⎜⎜⎜⎜⎝ γP

ρ∗0Λb2
2m + 3
m + 2

m0.865

2.45

⎞⎟⎟⎟⎟⎠
m+2

2m+3 b
v0

(
G
τ∗0

) m+1
2m+3

(
σY
2τ∗0

)− (2m2+4m+1)
(2m+3)

(33)

By using Equations (7)–(10), Equation (33) was able to be written in the following manner as a
function of yield stress, temperature, and material constants [17].

t =

⎛⎜⎜⎜⎜⎝0.792γP

ρ∗0Λb2

⎞⎟⎟⎟⎟⎠
0.515( Hk

4kT

)0.446 b
A1

(
G
τ00

)0.485(
σY

2τ00

)−( Hk
4kT )

(34)

In Equation (34), σY is the yield stress under uniaxial tensile loading. As the criterion of yielding,
γp = 0.01 and ρ∗0Λ∗ = 108/m2 were selected [15], and G = 79.38 GPa, τ∗0 = 169.6 MPa [10], m = 10 [16]
were taken as those under room temperature and b = 3× 10−10m was selected. Furthermore, for m =
10~30 (for steel) [13],

(
2m2 + 4m + 1

)
/(2m + 3) ≈ m was approximately assumed.

A comparison of Equation (34) with experimental data is shown in Figure 17 [17]. Equation (34)
was found to well-predict experimental data [18,19]. Furthermore, this equation was in good agreement
with that obtained based on dislocation dynamics theory that defined yielding to occur when the
dislocation density takes some critical value [6] as follows.

t =
(

N0

ρ∗0Λ2.45

)1.06( Hk
4kT

)0.917 b
A1

(
G
τ00

)(
σY

2τ00

)−( Hk
4kT )

(35)

In Equation (35), N0 is critical dislocation density at the yielding.
This means that the γP criterion is identical to the N0 criterion.
Furthermore, Equation (34) was found to be in good qualitative agreement with theoretical

results [8] based on Cottrell-Bilby’s dislocation release mechanism [7] for locking by solute atoms
such as carbon or nitrogen, as given by Equation (36). This means that the locking mechanism closely
connects with the mechanism of dislocation group dynamics, as described in the following expression.

t = t0

(
σY
σ0

)− 1
nkT

(36)

where t0 and σ0 are material constants.
T. Yokobori found that adopting a friction stress, τi, to resist the motion of a dislocation in

Equation (36) was very effective in obtaining agreement with experimental results via equations [20].
In this theory, the effect of τi on delay time for yielding, as included in Equation (33), was extended to
then give Equation (37) [17].

t =

⎛⎜⎜⎜⎜⎝ γP

ρ∗0Λb2
2m + 3
m + 2

m0.865

2.45

⎞⎟⎟⎟⎟⎠
m+2

2m+3 b
v0

(
G

τ∗0 − τi

) m+1
2m+3

⎛⎜⎜⎜⎜⎜⎜⎝ σY

2
(
τ∗0 − τi

)
⎞⎟⎟⎟⎟⎟⎟⎠
− (2m2+4m+1)

(2m+3)

(37)
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By adopting τi = 86.3 MPa and using Equations (10a)–(10d), Equation (37) was found to
well-predict experimental results [19], as shown in Figure 18 [17].

 
Figure 17. The relationship between the delay time of yielding and yield stress based on dislocation
dynamics. Solid lines represent the theoretical results [17]. Dotted lines represent the experimental
results [19].

Figure 18. The relationship between the delay time of yielding and yield stress based on dislocation
dynamics by accounting for the effect of friction stress of dislocation on delay time. Solid lines represent
the theoretical results [17]. Dotted lines represent the experimental results [19].

Furthermore, a previous numerical analysis based on the pile-up behaviors of moving dislocations
emitted from a stressed source was conducted [4], and the theoretical relationship between delay time
of yielding and yield stress was derived for various grain size [4]. These results were found to be in
good agreement with experimental results and were also found to produce similar characteristics to
the results given by Figure 18 [17].
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From the results mentioned above, the criteria for the various cases of dislocation release from
locking by solute atom [8], critical plastic strain [16,17], critical dislocation density [6], and dislocation
pile-up at the grain boundary [4] were closely associated with the sequential processes involved in
determining the delay time for yielding. Thus, the theoretical results [8] based on Cottrell-Bilby’s
dislocation release mechanism [7] for dislocation locking by solute atoms (Equation (36)) are considered
to be the starting for understanding plastic yielding.

The Applied Stress Rate Dependence of Yield Stress [17]

Strain rate caused by applied stress,
.
γa, is given by the summation of plastic strain rate of the

specimen, γ́P, and elastic strain rate including those of grips and rigidity of testing machine,
.
γe,

as follows.
.
γa = γ́e +

.
γP (38)

For the case of a sharp yielding point,
.
γe ≈ 0 is satisfied at the yield point. Therefore,

.
γa is given

by Equation (39).
.
γa =

.
γP ≈ A∗ 1

G
.
τa (39)

where A* is a proportional constant. By using Equations (11) and (12) for the number of dislocations
emitted from a stressed source under constant stress rate condition and then substituting Equations (26)
and (27) into Equation (39), σY can be given by Equation (40) as a function of stress rate and material
constants. Furthermore, τa = τY = σY

2 and τ́ = σ́
2 were also assumed.

σY = 2τ∗0

⎛⎜⎜⎜⎜⎝m1.45

1.4
A∗
ρ∗0Λb2

⎞⎟⎟⎟⎟⎠
1

(2m+1)
(
τ∗0
G

)− 2(m+1)
(m+2)(2m+1)

(
σ́b

2v0G

) (2m+3)
(m+1)(2m+1)

(40)

Using Equations (7)~(10) and the following approximation for m = 10–30 (steel) [16], Equation (42)
was obtained.

2m + 1
(m + 2)(2m + 1)

≈ 1
m + 2

≈ 1
m + 1

≈ 1
m

(41)

σY = 2τ00

⎧⎪⎪⎨⎪⎪⎩ A∗
1.4

( Hk
4kT

)1.45 1
ρ∗0Λb2

(
τ00

G

)−1.9
⎫⎪⎪⎬⎪⎪⎭

2kT
Hk
(
σ́b

2A1G

) 4kT
Hk

(42)

As material constants, the following physically reasonable and almost equal values to those used for
the analysis of the delay time of yielding, ρ∗0Λ = 1.75× 106/m2 [16], G= 79.38 GPa, τ∗0 = 176.0 MPa [18],
and m = 10 [16] were taken at room temperature, with b = 3 × 10−10 m selected. Before yielding,
since τa = Gγa was almost satisfied, A∗ was considered to be almost equal to one.

A comparison of Equation (42) with experimental data is shown in Figure 19 [17]. Equation (42)
was found to agree well with experimental data [19]. Furthermore, this equation was in good agreement
with that obtained based on dislocation dynamics theory that defined yielding as occurring when
dislocation density takes some critical value [6] as follows.

σY = 2τ00

{
1

1.4

( Hk
4kT

)1.45 N0

ρ∗0Λ

} 4kT
Hk
⎛⎜⎜⎜⎜⎝ Gσ́b

2A1τ2
00

⎞⎟⎟⎟⎟⎠
4kT
Hk

(43)

This means that the γP criterion is identical to the N0 criterion. Furthermore, Equation (42) was
found to be in in good qualitative agreement with theoretical results [8] based on Cottrell-Bilby’s
dislocation release mechanism [7] for dislocation locking by solute atoms such as carbon or nitrogen,
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as given by Equation (44). This means that the locking mechanism closely connects with the mechanism
of dislocation group dynamics as the appropriate mechanism of locking.

σY = σ0

(
t0

nkT
σ́
σ0

)nkT

(44)

Furthermore, other results obtained based on a viscoplasticity model also showed the same type
of relationship between strain rate and yield stress [5].

From the total results mentioned above, it can be seen the criteria of dislocation release from locking
by the solute atom [8], critical strain rate [16,17], critical dislocation density [6], and viscoplasticity [5]
are closely connected with the sequential processes of plastic yielding. Furthermore, the theoretical
results [8] based on Cottrell-Bilby’s dislocation release mechanism [7] from locking by solute atom
(Equation (44)) are considered to be a starting process of yielding.

Figure 19. The relationship between upper yield point and constant stress rate based on dislocation
dynamics. Solid lines represent the theoretical results [17]. Dotted lines represent experimental
results [19].

T. Yokobori also found that the adoption of the friction stress, τi, of the motion of dislocation
in Equation (40) was very effective in predicting experimental results with the current equation [20].
In this theory for Equation (40), the effect of τi on yield stress carries on to lead to Equation (45) [17].

σY = σi + 2
(
τ∗0 − τi

)⎛⎜⎜⎜⎜⎝m1.45

1.4
A∗
ρ∗0Λb2

⎞⎟⎟⎟⎟⎠
1

(2m+1)
(
τ∗0 − τi

G

)− 2(m+1)
(m+2)(2m+1)

(
σ́b

2v0G

) (2m+3)
(m+1)(2m+1)

(45)

By adopting τi = 86.3 MPa and using Equations (10a)–(10d), Equation (45) was found to
well-predict experimental results [19], as shown in Figure 20 [17].
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Figure 20. The relationship between the upper yield point and constant stress rate based on dislocation
dynamics by accounting for the effect of friction stress of dislocation on upper yield point. Solid lines
represent the theoretical results [17]. Dotted lines represent experimental results [19].

The relationship between τ∗0 used for analyses of Figures 17–20 and temperature T is shown
in Figure 21. The results were in good agreement with the theoretical relationship given by
Equation (10c), thus showing the validity of the method of analysis.

Figure 21. The relationship between τ∗0, as used for this analysis, and temperature [17].

The Effect of Grain Size and Applied Strain Rate on Yield Stress Based on the Theory of Dislocation
Piling Up [2,3,21]

The effect of grain size d on lower yield point was obtained by the following experimental
relationship [22,23].

σl,y = σs + κd
−1
2 (46)

where σs and κ are material constants that are positive values.
Furthermore, many detailed studies have been conducted on this relationship [24,25].
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In this section, using the Equation (25), the calculated relationship between an applied stress, τ,
required for a dynamic Kd to take on a critical value over a range in grain size d is shown by the solid
line in Figure 22 [3], which is expressed by Equation (47).

τ = τ1 + k
1√
d

(47)

where τ1 and k are constants. The dashed line is a static solution given by Equation (48).

τ =
Ks√
2πd

(48)

where Ks is static stress intensity factor.

Figure 22. The relationship between yield strength and grain size, d. Solid line represents the results
obtained by the analysis of dislocation dynamic pile, as shown by dotted data [3]. Dotted line represents
the solution obtained by Equation (48).

It can be seen from Equation (47) that the dynamic yield strength also increases linearly with
respect to the inverse square root of grain size. Furthermore, by comparing Equations (47) and (48),
the yield stress corresponding to d− 1

2 ≈ 0 was found to be higher in dynamic yielding than that in the
static case, and this characteristic is in good agreement with the experimental data [26].

Concerning the effect of applied strain rate on yield stress, the rate-determining process of yielding
of iron and steel is considered to correspond to the dynamic piling up of emitted dislocations.

The dislocation pile-up at grain boundaries and yielding is considered to occur when Kd, given
by Equation (25) to measure the local stress concentration, takes on a critical value. A comparison of
results obtained by Equation (25) and experimental data [27] is shown in Figure 23 [3]. In Figure 23,
the solid line represents the calculated relation between the applied stress σ required for Kd to take the
critical value and applied strain rate that is in good agreement with experimental data [25]. In Figure 23,
έ is evaluated by the relationship of σ́ = 2τ́ = Eέ.

169



Metals 2020, 10, 1048

Figure 23. The relationship between strain rate and yield stress of mild steel. Dotted line represents the
numerical results [3].

From the total results presented in Section 2.4, it can be seen that the various criteria associated
with dislocation release from locking by solute atom [8], critical plastic strain [16,17], critical strain
rate or stress rate, critical dislocation density [6], viscoplasticity [5], and dislocation pile-up at a grain
boundary [3,4] characterized by local stress intensity factor [3] (Kd) all relate closely to the sequential
processes of yielding. Furthermore, the theoretical results [8] based on Cottrell-Bilby’s dislocation
release mechanism [7] for dislocation locking by solute atoms is considered to be a starting process
of yielding.

In addition to the relationship between yield stress and grain size, a theoretical relationship between
the yield stress and temperature was derived based on dislocation mechanics [28,29]. The present
description closely connects with the results given in Figures 18 and 20 [17].

2.5. Application to Problem of Creep

Previous descriptions of the creep rate have been dominated by the use of equations based on the
properties of an isolated dislocation [30].

In this section, instead of using the velocity of an isolated equation, the results of dislocation
group dynamics associated with emission from a stressed source under constant stress condition were
adopted, and a creep rate dominated by the grouped dislocation mechanism was formulated.

The maximum radius of dislocation loop is given by Equations (49) and (50) [30].

L =

√
2(τa − τi)

Gbρ∗0
(49)

Λ∗ = 3L (50)

By using Equations (27)–(29) and Equation (32), the creep rate, γ́, can be given by Equation (51).

γ́ = A1(τa − τi)
δ (51)

In (51), τa in Equation (32) is replaced by (τa − τi).

δ =
2m2 + 9

2 m + 2
m + 2

(52)
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A1 = 3

√
2ρ∗0b

G
× 2.45m−0.86

(
Gb
v0t

)−m+1
m+2

×
(
τ∗0
)−m(2m+3)

m+2 v0 (53)

Furthermore, when using Equations (7)–(10), the creep rate, γ́ is given by Equation (54) as an
equation of a thermally-activated process.

γ́ = C1(τa − τi)
α1exp

(
−Q1

kT

)
(54)

where

C1 = 3

√
2ρ∗0b

G
× 2.45m−0.86A1

(
Gb
A1t

)−m+1
m+2

× (G)−
m(2m+3)

m+2 (55)

α1 =
2m2 + 9

2 m + 2
m + 2

(56)

Q1 =
2m + 3

4(m + 2)
Hkln

τ00

G
(57)

Equation (54) is in good agreement with a pioneering experimental equation given for the creep
rate [31]. Since m = 1 is valid for Zn [13], α1 is 2.83 in Equation (54), which is in good agreement
with experimental data [31]. Thus, Equation (54) is a theoretical equation of a creep rate dominated
by a dislocation mechanism that incorporates the effect of dislocation dynamics corresponding to
dislocations being emitted from a stressed source.

2.6. Application to the Problem of Fatigue Crack Growth [32,33]

The fatigue crack growth rate da/dN for a crack blunting and re-sharpening model [34] is
approximately equal to 1

2 U, as shown in Figure 24 [32,33] and given by Equation (58).

da
dN
�

1
2

U = nb (58)

where U is the crack opening displacement caused by dislocation emission from a crack tip and is
equal to 2nb, b is the Burgers vector, and n is the number of dislocations emitted from a crack tip,
as shown in Figure 24.

Figure 24. Blunting and re-sharpening model of fatigue crack growth. (a) Before fatigue load cycle,
(b) maximum load of the fatigue cycle, (c) unloading process of the fatigue cycle, and (d) complete
unloading of the fatigue cycle. The crack increment of U/2 (crack opening displacement/2) is caused by
dislocation emission.
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Substituting Equations (6)–(10) into Equation (58) allows for the fatigue crack growth rate to be
expressed in terms of an apparent single thermal activated process that is given by Equations (59a) and
(59b) [32,33].

da
dN

= bγ(m)

(
4 f b
v0

)−m+1
m+2

(
τ∗0
G

)−m(m;1)
m+2

(
ΔK1√
εG

) (m+1)2

m+2

(59a)

= bA∗(4 f )−
m+1
m+2

(
ΔK1√
εG

)m+1
m+2

exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩−
(

m+1
m+2

)
Hkln

(
τ00
√
ε

ΔK1

)
4kT

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (59b)

where ΔK1 is the stress intensity factor, f is load frequency, and ε is the local distance from a crack tip,
e.g., 1.5× 10−4 mm. Local stress around a crack tip is characterized given by τa =

ΔK1√
ε

.

A∗ = 1.4m−1.45
(

b
A1

)−m+1
m+2

Equations (59a) and (59b) can be written as Equation (60).

ln
da
dN

= ln
(

A2

fλ

)
+ b0lnΔK1 − U2 − a2lnΔK1

kT
(60)

where A2, a2, and b0 are material constants.
Equations (59a) and (59b) can be expressed as:

da
dN

= B1ΔK1
δ (61)

Which is the well-known experimental Equation by Paris [35], where δ =
(m+1)2

(m+2) .

The experimental relationship between ln
(

da
dN

)
and 1/T is shown in Figure 25 [36] with the

parameter of stress intensity factor amplitude, ΔK1.

 
Figure 25. The thermally activated relationship between da/dN (fatigue crack growth rate) and the
inverse value of absolute temperature, 103

T , for 2024 aluminum alloys [36].

Figure 25 shows that these relationship were found to hold for the thermally activated process
in the range of higher values of ΔK1, in that the intercept values of the straight line of ln

(
da
dN

)
with
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the coordinate axis at 1/T = 0 were an approximately linear function of ln(ΔK1), which is in good

agreement with Equation (60), that is, ln
(

A2
fλ

)
+ b0lnΔK1 [32,33].

On the other hand, in the range of lower values of ΔK1, the intercept value is constant with stress
intensity factor amplitude, ΔK1, which is in good agreement with the model based on micro crack
nucleation at the crack tip [37], given by Equation (62).

ln
da
dN

= ln
(

A1

f

)
− U1 − a1lnΔK1

kT
(62)

where A1 and a1 are material constants. The same experimental tendencies were also found in the
relationship between ln

(
da
dN

)
and 1/T for stainless steel [38]. Furthermore, Equation (60) was found to

be in good agreement with the experimental relationship between ln
(

da
dN

)
and 1/T for high strength

steel at low temperatures [39].
Experimental data showed that da/dN is proportional to f−λ, and λ experimentally takes values

from 0.1 to 0.2 for steel [40] and 0.1 to 0.5 for aluminum alloys [41].
For the case of an elastic–plastic crack, the local stress around a crack tip is written by

Equation (63) [42].

σl = f (β)σcy

⎛⎜⎜⎜⎜⎝ ΔK1

σcy
√
ε

⎞⎟⎟⎟⎟⎠
2β

1+β

(63)

where σcy, β, and f (β) are the initial yield stress in cyclic straining, cyclic strain hardening exponent,
and some function of β, respectively.

Therefore, by comparing Equations (63), (61), and (59a), da/dN can be given by the following
equation [33].

da
dN
∝
⎛⎜⎜⎜⎜⎝ ΔK1√

2εσcy

⎞⎟⎟⎟⎟⎠
2β

1+β
(m+1)2

m+2

(64)

Furthermore, for the effect of multiple slip lines and strain hardening under cyclic loading,
Equation (64) can be rewritten as Equation (65) [33].

da
dN
∝
⎛⎜⎜⎜⎜⎝ ΔK1√

2εσcy

⎞⎟⎟⎟⎟⎠
2β

1+β
(m+1)2

m+2 + 1
1+β

(65)

For β = 0.08–0.3 and m = 4–10, which are reasonable values for steel and aluminum alloys, the
power exponent becomes δ = 2.0–5.0, which are also experimentally reasonable values.

In Equation (61), the following equation can be seen from Equation (59a).

B1 = B/
(√
εG

)δ
(66)

From Equation (66), Equation (67) can be obtained [43].

lnB1 = lnB− δ·ln
(√
εG

)
(67)

Equation (67) was found to be in good agreement with the experimental relationship [43] between
B1 and δ, as shown in Figure 26 [43].
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Figure 26. The experimental relationship between B1 and δ in Equation (67) [43].

3. Concluding Remarks and Future Problem

Analyses of discrete dislocation dynamics and emission from a stressed source were conducted.
The results obtained by these analyses enabled us to link various dynamical effects, such as load
frequency and temperature, on the yield stress, dislocation creep rate, and fatigue crack growth rate
with the experimental results of macroscopic phenomenon and to also link them with theoretical
results obtained by the concept of static, continuously distributed infinitesimal dislocations for the
equilibrium state under low strain or stress rate conditions.

This will be useful as a holistic research approach relating to the time scale—e.g., ranging from
results under high strain rate condition to those under static or low strain rate conditions—and the
space scale—e.g., ranging from meso-scale and macro-scale mechanics—that is, from the scale of
dislocation groups dynamics to fracture mechanics.

To establish a perfect link of mesoscopic mechanics with macro mechanics and for practical
applications to engineering structures, further nonlinear interactive treatments will be necessary,
e.g., effects of vacancy diffusion, different multiaxial stress in structures, and different scales of grain
boundary influences on dislocation group dynamics. For these study fields, the establishment of inter
disciplinary science between material science and structural engineering coupled with computational
mechanics is needed as one of future research problems involving the strength of materials.

Detailed research on the effects of grain size and temperature on the yield stress has been
systematically conducted, and many innovative results have been obtained [28,29].

The proposed research approach mentioned in this article will enable us to link mesoscopic
mechanical factors with macro-scale engineering results [28,29].

Concerning the problems of nano-scale fracturing and plasticity, many studies based on the
method of 3D discrete dislocation dynamics have already been successfully conducted [1]. These
studies would appear to directly connect with physical properties of dislocations and nano-scale
fracturing behaviors. The present results should lead to a wider establishment of fracture prediction in
the full range from the nano-scale to macro-scale.
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