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1. Introduction

Multiscale entropy (MSE) measures have been proposed from the beginning of the 2000s to
evaluate the complexity of time series, by taking into account the multiple time scales in physical
systems. Since then, these approaches have received a great deal of attention and have been used in a
large range of applications. Multivariate approaches have also been developed.

The algorithms for a MSE approach are composed of two main steps: (i) a coarse-graining
procedure to represent the system’s dynamics on different scales; and (ii) the entropy computation
for the original signal and for the coarse-grained time series to evaluate the irregularity for each
scale. Moreover, different entropy measures have been associated with the coarse-graining approach,
each one having its advantages and drawbacks: approximate entropy, sample entropy, permutation
entropy, fuzzy entropy, distribution entropy, dispersion entropy, etc.

In this Special Issue, we gathered 24 papers focusing on either the theory or applications of
MSE approaches. These papers can be divided into two groups: papers that propose either new
developments on entropy-based measures or improve the understanding of existing ones (nine papers);
and papers that propose new applications of existing entropy-based measures (14 papers), as described
below. Moreover, one paper proposes a review on cross-entropy methods and their multiscale
approaches [1].

2. New Developments in Entropy-Based Measures

Lee et al. proposed a multiscale distribution entropy based on a moving averaging multiscale
process and distribution entropy to study short-term heart rate variability (HRV) [2]. The authors show
that the new entropy-based measure outperforms MSE and multiscale permutation entropy as it is
insensitive to the length of signals. The new measure shows a decrease in the complexity of HRV with
aging and for congestive heart failure patients.

Zhao et al. proposed the multiscale entropy difference (MED) to assess the predictability of
nonlinear financial time series on several time scales [3]. MED quantifies the contributions of the
past values by reducing the uncertainty of the forthcoming values in signals on several time scales.
The algorithm has been validated on simulated data and then applied to the analysis of Chinese
stock markets.

Cheng et al. proposed a method based on multimodal multiscale dispersion entropy for the
biometric characterization of heart sounds [4]. The work relies on the use of the improved complete
ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and refined composite
multiscale dispersion entropy. The authors show that the proposed method is effective for heart sound
biometric recognition.

Entropy 2020, 22, 644; doi:10.3390/e22060644 1 www.mdpi.com/journal/entropy
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Dong et al. proposed a method, KeepSampEn, to minimize the error due to missing values in
sample entropy calculation [5]. For this purpose, they modified the computation process but not the
data. The results reveal that KeepSampEn shows a consistent lower average percentage error than
other methods as skipping the missing values, linear interpolation and bootstrapping.

Tiwari et al. investigated the multiscale features of the mental workload for ambulant users [6].
Features that outperform benchmark ones are proposed and they exhibit complementarity when
used in combination. Thus, the authors reported that composite coarse-graining via a new second
moment moving average scaling method, combined with the modified permutation entropy method,
outperforms other combinations.

From a Taylor series expansion, Davalos et al. developed an explicit expression for the multiscale
permutation entropy (MPE) estimator’s variance as a function of the time scale and ordinal pattern
distribution [7]. They also determined the Cramér—Rao lower bound of the MPE. The results show that
MPE variance is related to the MPE measurement and increases linearly with time scale, but not when
the MPE measure reaches its maximum value. Moreover, for short time scales compared to the signal
length, the MPE variance resembles the MPE Cramér-Rao lower bound.

Bajic et al. proposed a method that enables an application of MSE to an arbitrary number of
signals [8]. The authors also wanted to test whether their method recognizes the changes of the
dependency level (coupling strength, level of interaction) of joint multivariate signals in different
biomedical experiments. For this purpose, they use the copula density to determine the coupling
strength. Moreover, the authors apply the composite MSE to the systolic blood pressure, the pulse
interval, and the body temperature of rats exposed to different ambient temperatures.

Azami et al. introduced the multivariate multiscale dispersion entropy (mvMDE) to quantify the
complexity of multivariate time series [9]. When applied to different kinds of signals, the results show
that mvMDE has some advantages over multivariate multiscale entropy (mvMSE) and multivariate
multiscale fuzzy entropy (mvMFE).

Martins et al. introduced a new method to assess the complexity of multivariate time series [10].
This new method takes into account the presence of short-term dynamics and long-range correlations
and uses vector autoregressive fractionally integrated (VARFI) models. This leads to a linear parametric
representation of the vector’s stochastic processes. Then, an analytical formulation is obtained to derive
the MSE measures. The authors tested this new approach on cardiovascular and respiratory signals to
assess the complexity of the heart period, the systolic arterial pressure, and the respiration variability in
different physiological conditions. The results show that, by taking into account long-range correlations,
the method proposed by the authors overcomes the existing ones as it captures significant variations in
the complexity that are not observed with standard existing methods.

3. Applications of Existing Entropy-Based Measures

In this Special Issue, 14 papers propose to use existing entropy-based measures for different kinds
of applications, as mentioned below.

Harezlak et al. studied eye movement signal characteristics [11]. For this purpose, the authors
used several methods: approximate entropy, fuzzy entropy, and the largest Lyapunov exponent.
For these three methods, multilevel maps are defined. The results show better accuracy for saccadic
latency and saccade, than previous studies using eye movement dynamics.

Liau et al. evaluated the changes in the complexity of the center of pressure (COP) during walking
at different speeds and for different durations [12]. For this purpose, the MSE was used. The authors
show that both the walking speed and walking duration factors significantly affect the complexity
of COP.

Based on ensemble empirical mode decomposition (EEMD) and MSE and using an accelerometer,
Nurwulan et al. proposed a measure, the postural stability index (PSI), to distinguish different stability
states in healthy subjects [13]. PSIis able to discriminate between normal walking and walking with
obstacles in healthy subjects.
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McDonough et al. were interested by post-encoding memory consolidation mechanisms in a
sample of young, middle-aged and older adults [14]. For this purpose, they tested a novel measure of
information processing, network complexity and studied if it was sensitive to these post-encoding
mechanisms. Network complexity was determined by assessing the irregularity of brain signals within
a network over time. This was performed through MSE. The results show that network complexity is
sensitive to post-encoding consolidation mechanisms that enhance memory performance.

Menon and Krishnamurthy mapped neuronal and functional complexities from the MSE of
resting-state functional magnetic resonance imaging (rfMRI) blood oxygen-level dependent (BOLD)
signals and BOLD phase coherence connectivity [15].

De Wel et al. proposed a novel unsupervised method to discriminate quiet sleep from non-quiet
sleep in preterm infants, from the decomposition of a multiscale entropy tensor [16]. This was
performed according to the difference in the electroencephalography (EEG) complexity between the
neonatal sleep stages.

Jelinek et al. investigated the efficacy of applying multiscale Renyi entropy on heart rate
variability (HRV) to obtain information on the sign, magnitude, and acceleration of the signals with
time [17]. The results show that their quantification using multiscale Renyi entropy leads to statistically
significant differences between the disease classes of normal, early cardiac autonomic neuropathy
(CAN), and definite CAN.

El-Yaagoubi et al. studied the dynamics, the consistency and the robustness of MSE, multiscale
time irreversibility (MTI), and multifractal spectrum in HRV characterization in long-term scenarios
(7 days) [18]. The results show that congestive heart failure (CHF) and atrial fibrillation (AF) populations
show significant differences at long-term and very long-term scales (thus, MSE is higher for AF while
MTI is lower for AF).

For an early Alzheimer’s disease (AD) diagnosis, Perpetuini et al. used sample entropy and the
MSE of functional near infrared spectroscopy (fNIRS) in the frontal cortex of early AD and healthy
controls during three tests that were used to assess visuo-spatial and short-term-memory abilities [19].
A multivariate analysis revealed promising results (good specificity and sensitivity) in the capabilities
of fNIRS and complexity for an early diagnosis.

Keshmiri et al. studied the effect of the physical embodiment on older people’s prefrontal cortex
(PEC) activity when they are listening to stories [20]. For this purpose, they used MSE. Their results
show that, in older people, physical embodiment leads to a significant increase of MSE for PFC activity.
Moreover, this increase reflects the perceived feeling of fatigue.

Xu etal. used the short-time series MSE (sMSE) to study the complexities and temporal correlations
of Wikipedia page views of four selected topics [21]. The goal was to understand the complexity of
human website searching activities. The results show that sMSE is useful to analyze the temporal
variations of the complexity of page view data for some topics. Nevertheless, the regular variations of
sample entropy cannot be accepted as is when different topics are compared.

Lin et al. developed an entropy-based structural health monitoring system to solve the problem
of unstable entropy values observed when multiscale cross-sample entropy was used to assess damage
in laboratory-scale structure [22]. The results could be interesting for long-term monitoring.

Ge et al. proposed a bearing fault diagnosis technique using the local robust principal component
analysis (to remove background noise: it decomposed the signal trajectory matrix into multiple low-rank
matrices) and multiscale permutation entropy that identified the low-rank matrices corresponding to
the bearing’s fault feature [23]. The latter matrices are then combined into a one-dimensional signal
and represents the extracted fault feature component.

Shang et al. used variational mode decomposition and multiscale dispersion entropy to propose
a novel feature extraction method for partial discharge fault analysis [24]. Moreover, a hypersphere
multiclass support vector machine was used for partial discharge pattern recognition.

Let us now hope that these papers will bring other interesting applications and lead to new ideas
to further improve the study of the irregularity and complexity of data (1D, 2D, n-D).
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Abstract: Cross-entropy was introduced in 1996 to quantify the degree of asynchronism between
two time series. In 2009, a multiscale cross-entropy measure was proposed to analyze the dynamical
characteristics of the coupling behavior between two sequences on multiple scales. Since their
introductions, many improvements and other methods have been developed. In this review we offer
a state-of-the-art on cross-entropy measures and their multiscale approaches.
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1. Introduction

To quantify the asynchronism between two time series, Pincus and Singer have adapted the
approximate entropy algorithm to a cross-approximate entropy (cross-ApEn) method [1]. Then, other
cross-entropy methods—that improve the cross-ApEn—have been developed [2-7]. Furthermore,
additional cross-entropy methods have been introduced to quantify the degree of coupling between
two signals, or the complexity between two cross-sequences [8-10]. Cross-entropy methods have
recently been used in different research fields, including medicine [5,11,12], mechanics [13], and
finance [7,10].

The multiscale approach of entropy measures was proposed by Costa et al. in 2002 to analyze
the complexity of a time series [14]. In 2009, Yan et al. proposed a multiscale approach for
cross-entropy methods to quantify the dynamical characteristics of coupling behavior between two
sequences on multiple scale factors [15]. Then, other multiscale procedures have been published with
different cross-entropy methods [16,17]. Multiscale cross-entropy methods have recently been used
in different research fields, including medicine [18-21], finance [6,9], civil engineering [22], and the
environment [23].

Cross-entropy methods and their multiscale approaches are used to obtain information on the
possible relationship between two time series. For example, Wei et al. applied percussion entropy
to the amplitude of digital volume pulse signals and changes in R-R intervals of successive cardiac
cycles for assessing baroreflex sensitivity [18]. Results showed that the method is able to identify
the markers of diabetes by the nonlinear coupling behavior of the two cardiovascular time series.
Moreover, Zhu and Song computed cross-fuzzy entropy on a vibration time series to assess the
bearing performance degradation process of motor [13]. Results showed that the method detects
trend for bearing degradation process over the whole lifetime. In addition, Wang et al. applied
multiscale cross-trend sample entropy to analyze the asynchrony between air quality impact factors
(fine particulate matters, nitrogen dioxide, ...), and air quality index (AQI) in different regions of
China [23]. Results showed that the degree of synchrony between fine particulate matter and AQI is

Entropy 2020, 22, 45; doi:10.3390/22010045 7 www.mdpi.com/journal/entropy
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higher than the other air quality impact factor which reveals that fine particulate matter has become
the main source of air pollution in China.

Our paper presents a state-of-the-art in three sections: First, the cross-entropy methods are
introduced. We detail, in the second section, different multiscale procedures. A multiscale
cross-entropy generalization is presented and other specific multiscale cross-entropy algorithms
are proposed in the third section.

2. Cross-Entropy Methods

In this section, we classify cross-entropy methods according to their entropy measures:
Cross-approximate entropy, cross-sample entropy, and cross-distribution entropy. Other methods that
use different cross-entropy-based measures are also detailed. Table 1 shows the twelve measures that
are detailed in this section.

Table 1. Cross-entropy measures, in chronological order, that are presented in this review. Authors,
year, reference, and section location are indicated for each item.

Method Authors Year Ref. Section
Cross-approximate entropy Pincus and Singer 1996  [1]  Section2.1.1
Cross-conditional entropy Porta et al. 1999  [8]  Section2.4.1
Cross-sample entropy Richman and Moorman 2000  [2]  Section 2.2.1
Cross-fuzzy entropy Xie et al. 2010  [3]  Section2.4.2
Modified cross-sample entropy Yin and Shang 2015 [4]  Section2.2.2
Binarized cross-approximate entropy Skori¢ et al. 2017 [5]  Section2.1.2
Modified cross-sample entropy
based on symbolic Wu et al. 2018 [6]  Section2.2.3
representation and similarity
Kronecker-delta based cross-sample entropy He et al. 2018 [7]  Section2.2.4
Permutation based cross-sample entropy He et al. 2018 [7]  Section2.2.5
Cross-distribution entropy Wang and Shang 2018 [9]  Section 2.3.1
Permutation cross-distribution entropy Heetal 2019 [10]  Section 2.3.2
Cross-trend sample entropy Wang et al. 2019 [23] Section 2.2.6
Joint permutation entropy Yin et al. 2019 [24] Section2.4.3

2.1. Cross-Approximate Entropy-Based Measures

2.1.1. Cross-Approximate Entropy

Cross-approximate entropy (cross-ApEn), introduced by Pincus and Singer [1], allows to quantify
asynchrony between two time series. For two vectors u and v of length N, cross-ApEn is computed as:

cross-ApEn(m,t,N)(v||u) = ®" (r) (v||u) — @"+1(r)(v||u), 1)

where @™ (r)(v||u) = ﬁlﬂ YN log C'(r) (v]|u) and C!*(r)(v||u) is the number of sequences,
of m consecutive points, of u that are approximately (within a resolution r) the same as sequences,
of the same length, of v. One major dawback of this approach is that C/(r)(v||u) should not be
equal to zero. This is why cross-ApEn is not really adapted for a short time series. Furthermore,
it is direction-dependent because often ®" () (v||u) is generally not equal to its direction conjugate
@™ (r)(u||v) [2]. The value of cross-ApEn computed from two signals can be interpreted as a degree of
synchrony or mutual relationship.

2.1.2. Binarized Cross-Approximate Entropy

Binarized cross-approximate entropy (XBinEn), introduced by Skori¢ et al. [5] in 2017, is an
evolution of cross-ApEn to quantify the similarity between two time series. It has the advantage of
being faster than cross-ApEn. XBinEn encodes a time series divided into vectors of length . For two
vectors u and v of length N, the XBinEn algorithm follows these six steps:
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1. Binary encoding series are obtained as:

Xi =

{O ifu,-Hfu,-gO i_{O ifv,-va,-gO (2)

1 ifujq—u; >0 1 ifvjq—0;>0

wherei =1,2,..,N = 1,x € X3 = [x;,Xi 1, . Xit(m-1)t) and y; € Y = Wi Vit ts oo Yiemo1t])-
The time lag t allows a vector decorrelation to be performed;
2. Vector histograms N)({m) (k) and N)(,m) (n) are computed as:

(m) N—=(m=1)t  m—1 . () N=(m=1)t  m—1 ;
Ny (k) = 2 K Z X1t X2 =k}, Ny '(n) = Z K Z Yirie x2 =n}, (3)
i=1 =0 j=1 1=0

where k,n = 0,1,...,2" — 1, and I{-} is a function that is equal to 1 if the indicated condition
is fulfilled;
3. The probability mass functions are obtained as:

(m) (m)
(m) oy — __Nx (k) )y = Ny (1)
Py (k) = N—(m—1 oY (n) = N—(m—1)t’ @
where k,n =0,1,...,2™" —1;
4. A distance measure is applied:
d(Xii, X Z Wikt # ik}, 5)

wherei,j=1,.,N— (m—1)t;
5. The probability pj(r) that a vector is within the distance r from a particular vector is estimated:

PR (r) = Pr{d(X}}), o) < r); ®)
6.  XBinEn is finally obtained as:
XBinEn(m,r, N, t) = @™ (r,N, t) — ®" 1) (1, N, ¢), @)

where ®(") (1, N, t) = sz e P m) (k) - In (pj*(r)).

This method gives almost the same results as cross-ApEn for a non-short time series. However, it
is computationally more efficient than cross-ApEn. Its main disadvantage is that it cannot identify
small signal changes. XBinEn is adapted to environments where processor resources and energy are
limited but it is not a substitute to cross-ApEn [5]. It is proposed when the cross-ApEn procedure
cannot be applied. The value of XBinEn computed from two signals can be interpreted as a degree of
relationship between a related pair of time series.

2.2. Cross-Sample Entropy-Based Measures

2.2.1. Cross-Sample Entropy

Cross-sample entropy (cross-SampEn) quantifies the degree of asynchronism of two time series.
This method was introduced by Richman and Moorman in 2000 to improve the cross-ApEn limitations
(see Section 2.1.1) [2]. Cross-SampEn is a conditional probability measure that quantifies the probability
that a sequence of m consecutive points (called sample) of a time series u—that matches another
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sequence of the same length of another time series v—will still match the other sequence when their
length is increased by one sample (11 + 1). For two vectors u and v, cross-SampEn is computed as:

A

cross-SampEn(m, r, N)(v||ju) = —In 5 8)

where m is the sample length, N is the vectors (u and v) length, A" (r)(v||u) and B"(r)(v||u) are,

respectively, the probability that a sequence of u and a sequence of v will match for m 4 1 and m points

(within a tolerance r).
For two time series u and v of length N, cross-SampEn can also be described as:

p(m+1)
cross-SampEn(u, v, m,r,N) = —In T )
where 1n(") represents the total number of sequences of m consecutive points of u that match with
other sequences of m consecutive points of v.

The main difference between cross-ApEn and cross-SampEn is that cross-SampEn shows
relative consistency whereas cross-ApEn does not. Unlike cross-ApEn, cross-SampEn is not
direction-dependent. However, cross-SampEn generates, sometimes, undefined values for short
time series. The value of cross-SampEn computed from two time series can be interpreted as a measure
of similarity of the two time series.

2.2.2. Modified Cross-Sample Entropy

Modified cross-sample entropy (mCSE), introduced by Yin and Shang in 2015, has been developed
to detect the asynchrony of a financial time series [4]. Inspired by the generalized sample entropy,
proposed by Silva and Murta, Jr. [25], the authors proposed to adapt this method to cross-SampEn.
The method combines cross-SampEn and nonadditive statistics. For two vectors u and v of length N,
mCSE is computed as:

L

mCSE(m,r,N) = flogq (10)

L™
where m is the sample length, g is the entropic index, and ngm) is the number of times that the
distance between vectors y,, = {v(i),v(i+1),..,0(i+m—1) : 1 <i < N-m+1} and x,, =
{u(@),u(i+1),..,u(i+m—1):1<i< N—m+1}isless than or equal to the tolerance r. The distance
is calculated with d(x, (1), ym(i)) = max{|u(i + k) —v(j+ k)| : 0 <k <m—1}.

The value of mCSE computed from two time series can be interpreted as a degree of synchrony
between the two time series and it can illustrate some intrinsic relations between the two time series.

2.2.3. Modified Cross-Sample Entropy Based on Symbolic Representation and Similarity

Modified cross-sample entropy based on symbolic representation and similarity (MCSEBSS),
introduced by Wu et al. in 2018, has been developed to quantify the degree of asynchrony of two
financial time series with various trends (stock markets from different areas [6]). In comparison with
cross-SampkEn, this method reduces the probability of including undefined entropies and it is more
robust to noise. For two vectors u and v of length N, MCSEBSS is computed as:

p(m+1)
MCSEBSS(u, v, n,7,N) = —In o 11)
n

10
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where 1 is the sample length and (™) is the number of template matches by comparing st (), vy ()
and r. Foru, = {u(i+k)}and v, = {v(i+k)} (0 <k <m—1and1 < i< N —m), the similarity
function s(ut,, (1), v, (j)) is calculated as:

#of 1 in count(7, j)

s(um (D), om(j)) = ——— =, 1<ij<N-—m, 12)

where count(i, j) is obtained by the function f defined as:
1 if i +k) = i+ k
po b Ry =onGrk) g ) (13)
0 ifum(i+k)#om(+k)
The parameter r must be fixed between =% and
obtained with count(i, j) to consider u and v similar.
The value of MCSEBSS computed from two time series can be interpreted as a degree of
asynchrony of the two time series. A low cross-entropy value indicates a strong synchrony between
two signals.

m=n where n is the maximum number of zeros

m

2.2.4. Kronecker-Delta-Based Cross-Sample Entropy

The Kronecker-delta-based cross-sample entropy (KCSE), introduced by He et al. in 2018, has been
developed to define the dissimilarity between two time series [7]. KCSE is based on the Kronecker-delta
function 6y, that returns 1 if two variables are equal and 0 otherwise. For two vectors u and v of length
N, KCSE is calculated as:

pm+1
KCSE(m) = ~In ~, 14)
—m N- , ,
where B" — " KDy (1), om ) and B! — Lo KrD”“l“”)"’"’“(’). The dissimilarity, between u,, (i) =

N—-m+1 N—m
u@@),u(i+1),..,u(i+m—1)] and v, (i) = [v(i),v(i + 1), ...,v(i + m — 1)], is calculated as:

Ot N0y i T o
KDy, (i) om(i) = tm (i) 0m (i) um(l+1),vm(z+1)n s (im—1) o (itm—1) s)

Authors show that KCSE is better to classify financial data than multidimensional scaling based
on the Chebyshev distance method [7]. The value of KSCE computed from two time series can be
interpreted as a degree of irregularity between the two time series.

2.2.5. Permutation-Based Cross-Sample Entropy

The permutation-based cross-sample entropy (PCSE), introduced by He et al. in 2018, is quite
similar to KCSE (see Section 2.2.4) [7]. A permutation step has only been added. For two vectors u and
v of length N, PCSE is calculated as:

Bm+1
PCSE(m) = —In 5, (16)
N— 1 N—
):’_:]m+ Kerermuxm(x‘),permqu(i) and Bm+1 _ Zi:1mKerermuXm+1(i),permqufl(x‘) . The KrD function

where B" = N_mi1 N—m
is defined in Section 2.2.4. The two vectors permuX,,, (i) and permuY,, (i) are obtained by a permutation
algorithm defined with the permutation entropy [26]. The Video S1 shows an example of a
permutation algorithm.

PCSE shows better results than KCSE for synthetic data (ARFIMA model) [7]. However, the two
approaches give the same results for financial data [7]. Authors show that KCSE is better to classify
financial data than multidimensional scaling based on the Chebyshev distance method [7]. The value

11
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of PCSE computed from two time series can be interpreted as degree of irregularity between the two
time series.
2.2.6. Cross-Trend Sample Entropy

Inspired by MCSEBSS (see Section 2.2.3), Wng et al. developed the cross-trend sample entropy
(CTSE) to quantify the synchronism between two time series with strong trends [23]. For two time
series u and v of length N, CTSE is calculated with the following four steps algorithm:

1. The two time series are symbolized as:

ugy = {1 D ) UG )
0 otherwise ’ 0 otherwise SoE

where @ and ¥ are, respectively, the trend of u and v obtained by polynomial fitting (linear,
quadratic or higher order).
2. The template vectors u,;, and v;, are constructed as:

wy(i) ={U(+K)}, () ={V(i+K)}, (18)

where0 <k<m—-—1land1<i<N—m.
3. The similarity between x,, (i) and y,, (i) is calculated as:
_ #0f 1in Cy(i)

d(xm(i)/ym(i)) I — 1<i<N-m, (19)

where the i-th symbol vector Cy, is determined with f, a symbolic function between two template
vectors uy, and vy, as:

feo 1 1fum(z+k):vm(l+k), o<k<m—1. 20)
0 otherwise
4. CTSE is finally computed as:
p(m+1)

CTSE(u,v,7,N) = —In (21)

nm) 7
where n(") is obtained by comparing d(x,; (i), y (j)) within a tolerance r for 1 < i < N — m.

CTSE has two advantages over MCSEBSS: It is more sensitive to the difference of dynamical
characteristic between two signals, and it works well with signals with trends (linear, quadratic, cubic,
and sinusoidal) [23]. The value of CTSE computed from two time series can be interpreted as an
indicator of dynamical structure regarding the two time series with potential trends.

2.3. Cross-Distribution Entropy-Based Measures

2.3.1. Cross-Distribution Entropy

In 2018, Wang and Shang introduced the cross-distribution entropy (cross-DistEn) to quantify
the complexity between two cross-sequences [9]. To generalize the standard statistical mechanics, the
authors replaced the standard distribution entropy (DistEn) based on Shannon entropy by DistEn
based on Tsallis entropy [9]. The authors showed that cross-DistEn better illustrates the relationships
between two vectors than cross-SampEn does [9]. For two times series u and v of length N cross-DistEn
follow these four steps:

12
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1. The state-space is reconstructed by building (N — m + 1) vectors X(i) and Y(i) with X(i) =
{u(@),u(i+1),.,u(i+m-1)}1<i< N-—m, and Y(j) = {v(j),v(j+1),..0(G+m—1)},
1 <j < N —m. mis the intended size of the vectors X(i) and Y(i);

2. The distance matrix is built by defining the distance matrix D = {d;;} with d;; being the
Chebyshev distance between the vectors X(7) and Y(j) defined as:

djj :max{|u§?k—vf+k|,0gkgm—l}; (22)

3. The probability density is estimated by computing the empirical probability density function of
the matrix D by applying the histogram approach. If the histogram has M bins, the probability of
each bin will be Py with1 <t < M;

4. The cross-distribution entropy based on the Tsallis entropy is computed as:

M
—(1-Y_ P, (23)

crossDistEn(u,v) = -

where g is the order of the Tsallis entropy and a the logarithm base of the entropy computation.

The main advantage of cross-DistEn is that it is adapted for short time series. With financial
data, cross-DistEn illustrates better the relationship between signals than cross-SampEn [9]. The value
of cross-DistEn computed from two time series can be interpreted as a degree of linkage of the two
time series.

2.3.2. Permutation Cross-Distribution Entropy

The permutation cross-distribution entropy (PCDE), introduced by He et al. in 2019, is a variant of
cross-DistEn (see Section 2.3.1) [10]. The permutation allows to characterize fluctuations and prevents
the impact of spatial distances on results. The PCDE algorithm is the same as the one of cross-DistEn,
detailed in Section 2.3.1. However, an additional step is added before step 2 to permute X(i) and
Y(j) with the permutation algorithm mentioned in Section 2.2.5. The distance matrix is therefore
constructed with the permuted vectors. The value of PCDE computed from two time series can be
interpreted as a degree of dissimilarity between the two time series.

2.4. Other Cross-Entropy-Based Measures

2.4.1. Cross-Conditional Entropy

Cross-conditional entropy (CCE), introduced by Porta et al. in 1919, quantifies the degree of
coupling between two signals [8]. A corrected conditional entropy has been introduced to improve the
approximate entropy that suffers from limitations when a finite number of sample is considered [27].
CCE is an adaptation of the corrected conditional entropy. For two signals u = {u(i), i=1,..,N}
andv = {v(i), i=1,.. N}, CCEiscomputed as:

CCEyy(L) = — LZI plur_1) /LZ p(o(i)/ur—1) x log p(v(i) /ur-1), (24)
- i/

where L is the length of the pattern extracted to be compared, p(u;_1) is the joint probability of the
patternuy 1 (i) = (u(i),up_1(i — 1)), and p(v(i)/ur_1) is the probability of the sample v(i) given the
pattern u; 1 (7). If a mixed pattern, composed by L — 1 samples, of u and v: (v(7), u(i), ..., u(i — L +
2)) = (v(i),ur_1), is defined and with the Shannon entropy E(ur) = — Y1 p(ur)log p(ur), CCE can
also be described as:

CCEy/u(L) = E(v(i),ur—1) — E(ur—1). (25)

13
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For a limited amount of samples, the approximation of CCE always decreases to zero while
increasing L. To solve this problem, a modification has been introduced as:

CCEy/y(L) = CCEy (L) + perc, (L) x E(v), (26)

v/u

where perc,, is the ratio of mixed patterns found only once over the total number of mixed

v/u
patterns, CfET/u(L) and E(v) are, respectively, the estimates of the CCE,, su(L) and E(v) based on the
considered limited dataset.

CCE can be defined as a measure of unpredictability of one signal when the second is observed
because it quantifies the amount of information carried by one signal which cannot be derived from
the other. It is not fully a measure of synchronization. The main disadvantage of CCE is that it is not

totally adapted for short time series.

2.4.2. Cross-Fuzzy Entropy

Cross-fuzzy entropy (C-FuzzyEn), introduced by by Xie et al. in 2010 [3], is an adaptation of fuzzy
entropy, introduced by Chen et al. [28], that quantifies the synchrony or similarity of patterns between
two signals [3]. C-FuzzyEn is an improvement of cross-SampEn that is more adapted for short time
series and more robust to noise. For two times series u and v of length N, C-FuzzyEn is obtained with
the following three steps algorithm:

1.  The distance d;;’ between X" and Y}” is computed as:

di =d[X{",Y]"| = max_[u(i+k)—u(i)—o(j+k)—2(i)], (27)
ke(0,m—1)
where m is the number of consecutive data to compare, X" = {u(i),u(i+1),...,u(i +m —

),
1)} —u(i), and Y/ = {ov(i),o(i +1),..,u(v+m— 1)} —o(i). u(i) and o(i) are calculated as:
u(i) = Lymtu(i+1),and o(i) = Ly to(i+1);
2. The synchrony or similarity degree D} is computed as: Djj = y(dZ’, n,1), where y(d?;, n,r) is the
fuzzy function obtained as:
()"

;(d,],n r) =exp— P (28)

where 7 and n determine the width and the gradient of the boundary of the exponential function,
respectively;
3. Finally, C-FuzzyEn is computed as:

C-FuzzyEn(m,n,r) = In®" —In o+l (29)

where " = ﬁzi; (N mZN m Dm) and ®"+1 — N _ ZN m(N mZN mDm+1)'

The value of C-FuzzyEn computed from two time series can be interpreted as the synchronicity
of patterns.

2.4.3. Joint-Permutation Entropy

Joint permutation entropy (JPE), introduced by Yin et al. in 2019, quantifies the synchronism
between two time series. It is based on permutation entropy that consists of comparing neighboring
values of each point and mapping them to ordinal patterns to quantify the complexity of a signal [26].
For two signals u and v, JPE is computed as the Shannon entropy of the d! x d! distinct motif

combinations { (7] ,nft)}

JPE(d, ) =— Y, p(e, 7l np(nd, mi), (30)

14
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where d is the embedded dimension and p(7?, 71]91) is the joint probability of {(n;i’t, nf’t)} appearing

in the Xf’t = {ug, gy ey iy g1y} and Y’lj't = {v, V14t s U1 (a—1)¢ } and it is defined as:

[|1:1< T, type(XH,Y¥) = (2, 7))
(i, ) = R 61

where T = N — (d — 1)¢, type(+) corresponds to the map from pattern space to symbol space, and || - ||
corresponds to the cardinality of a set.

The main advantages of JPE are the simplicity, the robustness, and the low computational cost.
The value of JPE computed from two time series can be interpreted as a degree of correlation between
the two time series [29].

3. Multiscale Procedures

To study entropy or cross-entropy measures of time series across scales, a multiscale procedure can
be used. In this part we detail, in chronological order, three multiscale methods: The coarse-grained,
the time-shift, and the composite coarse-grained approaches.

3.1. Coarse-Graining Procedure

In 2002 Costa et al. introduced the coarse-graining procedure to analyze the complexity, defined
by the analysis of the irregularity through scale factors [14]. This method is an improvement, more
adapted for a biological time series, of the coarse-graining procedure introduced by Zhang [30].
This procedure has been used in multiscale entropy and cross-entropy methods [6,9,15,20,31-33].
For each scale factor, this procedure derives a set of vectors illustrating the system dynamics. For a
monovariate discrete signal x of length N, the coarse-grained time series y(?) is calculated as:

r)_l ki

wW=- Y (32)
Tic(i D41

where T is the scale factor and 1 < j < % The length of the coarse-grained vector is % An example of
coarse-graining procedure is presented in Figure 1A.

(A) ©

Zy® N X X X Xs X X7 X Xo X
L

[ Xy X; X3 X4 X5 Xg X7 Xg Xg X
R RS x=yM X1 Xz X3 X4 X5 Xo X7 Xg Xo X0

\ \ /L@ Xt X R L v
/ \/ /N _ W, » ) W
=2 y® W, w, W, W W [Yienp=T ® ¥. ¥ .\'ii/ \/ .\\/ @ _Xitxg
R CIC Y1 (2) @ @ Vo Wyl Yiwne="3
x=y® ¥ X X3 X X5 Xe X7 X Xo Xio -2 Y11 Yiz Y13 Yia Yis
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(B) L Y21 Y22
X1 Xy X3 X4 Xs Xg X7 Xg Xg X [ v X X, X3 X4 Xs X¢ X7 Xg Xo X1o
x= y(l) 1 X2 X3 X4 X5 Xe X7 Xg X9 Xpg x=y® o R 4 Xs ¥ 9 %
1 ®= ® ® E m ®E E E E N N \I/
(3) [ » Xy + Xppq + Xpgg
2 3) 3 - (2) _x +1 1+2
y(1 ) :ﬁ :fs 3.‘5 ):7 zg Y1 oW ¥ ¥ | Vi 3
T=2
1) X Xp X3 X4 X5 Xg X7 Xg Xg X
(2) Xy X4 Xg Xg X10 x =y’ 1 42 A3 A4 X5 Ae L7 48 A9 A10
Y2 1] ] ] ] ] Yoo > /' L.
T=3 (3) N 1 | Xi + Xigg + Xirz
y® g La X% Lo Y2 ¥S o | R S S—
1 g 22 23
oD X Xy X3 X4 X5 Xg X7 Xg Xg X
T = 3 (3) XZ xS XB X=y .l .Z 3 -4 5 .6 7 8 .‘) .ll)
Y2 1] L] ] i/. N /
) (3) { X+ Xpaq + Xpe2
(3) X X X V3 ©) 3 @) =SSttt
b2 e o6 2 L Y31 Y32 Y3,1/3) 3

Figure 1. Examples of multiscale procedures for the ten first points of a time series x. (A) represents the
coarse-graining procedure (modified from [34]), (B) shows the time-shift procedure, and (C) illustrates
the composite coarse-graining procedure (modified from [35]).
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3.2. Time-Shift Procedure

As for the coarse-grained procedure, the time-shift procedure is used to decompose a signal
through different scale factors and to perform a multiscale analysis. While coarse-graining procedure
uses the averaging of time series on several interval scales, the time-shift procedure applies time
shifting in time series. The main disadvantage of a coarse-graining procedure is the loss of pattern
information hidden in the time series. To overcome this limitation, Pham used the Higuchi’s fractal
dimension (HFD) [36] and proposed a new multiscale analysis [37]. The time-shift procedure illustrates
the fractal dimension of a signal. This method has been recently used with entropy and cross-entropy
measures [17,37-39]. HFD shows stable numerical results for stationary, non-stationary, deterministic,
and stochastic time series [40]. For a monovariate discrete signal x of length N, the B time-shift signal
v\ is calculated as:

(T):(

y XBs Xpyts-eer xﬁHNT,gﬁ). (33)

For each time scale 7, B time-shift time series are computed (8 = 1,2, ..., 7). An illustration of the
time-shift procedure is presented in Figure 1B.

3.3. Composite Coarse-Graining Procedure

The coarse-graining procedure, introduced by Costa et al. [14], increases the variance of estimated
entropy values at large scale. To overcome this limitation, by Wu et al. introduced in 2013 a
composite coarse-graining procedure [35]. This method has been used with entropy and cross-entropy
measures [16,32]. For a monovariate discrete signal x of length N, the k-th composite coarse-grained

(1)

time series y, ’ is computed as:

1 jT+k—1
Vej=— Y, %, (34)
Tim(i D)tk

where 1 < j < ¥ For each time scale 7, k composite coarse-grained time series are computed
(1 <k < 7). Anillustration of the composite coarse-graining procedure is presented in Figure 1C.

4. Multiscale Cross-Entropy Methods

4.1. Generalization

Multiscale cross-entropy (MCE) methods consist of applying a cross-entropy measure for each
scale factor obtained by a specific procedure. For each scale factor T, MCE is computed as:

MCE(X®, Y™y =

1=

k
Z crossEn(X;;), YéT) ), (35)
p=1

where X(¥) and Y(*) are computed with a multiscale procedure (see Section 3), k is the number of
time series that are generated by the multiscale procedure (k = 1 for the coarse-graining procedure
and k = 7 for the time-shift and the composite coarse-graining procedures), and crossEn is the
cross-entropy method used (see Section 2). Table 2 shows the multiscale cross-entropy methods
that can be generalized with Equation (35). Before the computation of MCE, a pre-treatment can be
performed. For example, the asymetric multiscale cross-SampEn (AMCSE) method [33] decomposes
each signal into two, one for the positive trends and the other for the negative trends, before applying
a coarse-graining procedure and cross-SampEn.
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Table 2. Multiscale cross-entropy methods, in chronological order, that can be generalized with
Equation (35). For each method, the multiscale procedure and the cross-entropy measure used and the
reference are mentioned.

Method Multiscale Procedure Cross-entropy Measure Reference
Multiscale cross-SampEn Coarse-grained cross-SampEn Yan et al., 2009 [15]
Multiscale cross-ApEn Coarse-grained cross-ApEn Wu et al,, 2013 [31]
Asymetric multiscale cross-SampEn Coarse-grained cross-SampEn Yin and Shang, 2015 [33]
Composite multiscale cross-SampEn  Composite coarse-grained cross-SampEn Yin et al., 2016 [16]
Multiscale cross-DistEn Coarse-grained cross-DistEn Wang and Shang, 2018 [9]

Modified multiscale cross-SampEn
based on symbolic Coarse-grained MCSEBSS Wuetal., 2018 [6]
representation and similarity

Modified multiscale cross-SampEn Coarse-grained mCSE Castiglioni et al., 2019 [20]
Time-shift multiscale cross-SampEn Time-shift cross-SampEn Jamin et al., 2019 [17]
Time-shift multiscale cross-DistEn Time-shift cross-DistEn Jamin et al., 2019 [17]
Multiscale cross-trend SampEn Coarse-grained CTSE Wang et al., 2019 [23]
Multiscale joint permutation entropy Coarse-grained JPE Yin et al., 2019 [24]

4.2. Particular Cases

Some multiscale cross-entropy methods cannot follow the generalization previously introduced.
In this part we detail three particular methods, in chronological order: The adaptive multiscale
cross-SampEn, the refined composite multiscale cross-SampEn, and the percussion entropy.

4.2.1. Adaptive Multiscale Cross-Sample Entropy

The adaptive multiscale cross-sample entropy (AMCSE), introduced by Hu and Liang in 2011,
assesses the nonlinear interdependency between different visual cortical areas [41]. The method uses
the multivariate empirical mode decomposition (MEMD), introduced by Rehman and Mandic [42], to
decompose two time series into intrinsic mode functions (IMFs) that represent the oscillation mode
embedded in the data. For two time series u and v, AMCSE is calculated with the following three
steps algorithm:

1. The MEMD on u and v is performed to obtain N IMFs;
2. The scales of data are computed in two directions, fine-to-coarse S}z . and coarse-to-fine SCT2 fr with
the following two equations:

N
She =) IMF;, (T<N), (36)
i=T
N+1-7
BYES Y IMF;, (r<N). (37)
i=1

The two directions can be used separately or used in tandem to reveal the underlying dynamics
of complex time series;

3. For each scale factor 7, the cross-SampEn (see Section 2.2.1) is applied between the two scales of
data (SJEZC and S}, f) extracted from vectors u and v.

4.2.2. Refined Composite Multiscale Cross-Sample Entropy

Yin et al. introduced in 2016 the composite multiscale cross-sample entropy (CMCSE) that follows
the generalization (see Section 4.1), where the composite coarse-graining procedure and cross-SampEn
are used [16]. The main disadvantage of this method is that cross-SampEn generates some undefined
values when the number of matched sample is zero. To overcome this limitation, Yin et al. introduced
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the refined CMCSE (RCMCSE). This method leads to better results with short time series. For two
times series u and v of length N, RCMSE is computed with the following three steps algorithm:

1. Coarse-grained time series are obtained with the composite coarse-graining procedure detailed

in Section 3.3;

m+1

ke - are calculated for all

2. For a scale factor 7, the number of matched vector pairs, nj’_ and n
coarse-grained vectorsl
3. For each scale factor T, RCMCSE is computed as:
21.571 nm-H
RCMCSE(u, v, 7, m,7) = — In L kT (38)
Z:k:1 nk,'r
where m is the dimension and of the matched vector pairs and r is the distance tolerance for the
matched vector pairs.

4.2.3. Percussion Entropy

Wu et al. introduced, in 2013, the multiscale small-scale entropy index (MEIgs) that is obtained by
summing the values of entropy for the first five scale factors [43]. Percussion entropy, introduced by
Wei et al. in 2019, allows one to quantify a percussion entropy index (PEI) [18]. The method has been
introduced to assess baroreflex sensitivity. PEI compares the similarity in tendency of change between
two time-series. This index has been compared to MEIss. For two time series u and v of length N, PEI
is computed with the following three steps algorithm:

1. A binary transformation of u and v is used to obtain x = {x1,xp,..,xy_1} and y =
{2 yn—1h:

xi{o u(i+1)<u(i; yi{o v(i-i—l)gv(i); @)

1 u(i+1) > u(i 1 o(i+1)>0(i)
2. The percussion rate for each scale factor T is computed as:
1 n—m—t+1

n—m-t+1 l;

P = count(7), (40)

where m is the embedded dimension vectors and count(i) represents the match number between
A(i) = {xi, xis1, - Xigm-1} and B(i +T) = {¥ito Yitrr1, - Yivorm—1}s
3. PElis calculated as:
PEI(m, ne) = ™" — ¢ "1, (41

where ¢ = In 22;1 P* and n+ is the number of scales to consider. Wei et al. [18] have chosen
n¢ = 5 in accordance with MEIgs.

This algorithm is a generalization of the method developed by Wei et al. [18] for a specific time
series, amplitudes of successive digital volume pulse signals and changes in R-R intervals of successive
cardiac cycles. At the moment, it has not been used to process other kinds of signals.

5. Conclusions

In this review we proposed a state-of-the-art of cross-entropy measures, multiscale procedures,
and multiscale cross-entropy methods. Multiscale cross-entropy methods offer other interesting
perspectives for time series analysis. Furthermore, all the cross-entropy methods, detailed in this
review, can be translated into multiscale cross-entropy methods with the multiscale procedures
presented in this review.
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Abstract: Electrocardiogram (ECG) signal has been commonly used to analyze the complexity of
heart rate variability (HRV). For this, various entropy methods have been considerably of interest.
The multiscale entropy (MSE) method, which makes use of the sample entropy (SampEn) calculation
of coarse-grained time series, has attracted attention for analysis of HRV. However, the SampEn
computation may fail to be defined when the length of a time series is not enough long. Recently,
distribution entropy (DistEn) with improved stability for a short-term time series has been proposed.
Here, we propose a novel multiscale DistEn (MDE) for analysis of the complexity of short-term
HRV by utilizing a moving-averaging multiscale process and the DistEn computation of each
moving-averaged time series. Thus, it provides an improved stability of entropy evaluation for
short-term HRV extracted from ECG. To verify the performance of MDE, we employ the analysis of
synthetic signals and confirm the superiority of MDE over MSE. Then, we evaluate the complexity of
short-term HRV extracted from ECG signals of congestive heart failure (CHF) patients and healthy
subjects. The experimental results exhibit that MDE is capable of quantifying the decreased complexity
of HRV with aging and CHF disease with short-term HRV time series.

Keywords: electrocardiogram; heart rate variability; multiscale distribution entropy; RR interval;
short-term inter-beat interval

1. Introduction

An electrocardiogram (ECG) is a record of electrical activity caused by the heart. ECG is
a non-invasive tool that is effective for a variety of biomedical applications such as heart rate
measurement, diagnosis of heart failure, emotion recognition, and so on [1]. One of the main areas of
need for ECG analysis is the diagnosis of heart diseases. Since ECG is closely related to cardiac activity,
it can play an important role in the diagnosis of heart diseases. Among the causes of many heart
diseases, congestive heart failure (CHF) is a collective term for heart disease that causes congestion in
the systemic venous system due to heart pumping dysfunction [2]. Since heart failure diseases may
cause death to many people all over the world every year, the diagnosis of CHF is of great interest and
remains challenging issue.

Among the features that can be extracted from the ECG recordings, variabilities in heart
beat-to-beat intervals controlled by the autonomic nervous system (ANS) is usually used, which
is referred to as heart rate variability (HRV) [3]. The HRV analysis helps us to represent CHF
symptoms and is widely used to identify CHF patients [4]. In practice, the HRV analysis using
short-term inter-beat (RR) interval is of greatly important because of its suitability for short-term patient
monitoring and the need for almost immediate reception of test results. Therefore, the complexity
analysis of HRV is mainly utilized for the distinction between healthy people and those with heart
disease, such as CHF patients. Recently, it is known that HRV of a healthy person exhibits dynamic
fluctuations and it is characterized by a decrease in the incidence of CHF heart disease and aging [5,6].

Entropy 2018, 20, 952; doi:10.3390/e20120952 23 www.mdpi.com/journal/entropy
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Quantitative analysis of the complexity of a time series is promising in analyzing physical,
mechanical, and biological systems that exhibit non-static, nonlinear, and complex behaviors [7,8].
A quantitative measure of physiological signal plays an important role for computer-aided diagnosis
in clinical applications [9]. In this regard, various entropy approaches have attracted attention in
the complexity analysis [10]. Conventional entropy measures such as sample entropy (SampEn) [11],
fuzzy entropy (FuzzyEn) [12], and permutation entropy (PE) [13] have been utilized for the complexity
analysis of HRV [14-17]. However, since these methods measure the irregularity of the time series,
the resultant quantifications may fail to characterize the complexity of the underlying time series.
For example, the SampEn value of white Gaussian noise is assigned to be higher than that of 1/f noise,
which is not consistent with the complexity analysis in the sense that 1/f noise has higher complexity
owing to its long-range correlations [18]. Along this line, though the complexity of HRV of healthy
person is higher compared to that of patients, the conventional entropy approaches may fail to reflect
the higher complexity of HRV of healthy over diseased status.

To address this issue, Costa et al. [5,19] have proposed a multiscale entropy (MSE) method that
consists of a coarse-graining process and SampEn computation to measure the complexity of a time
series at different temporal scales. It is generally effective in identifying characteristics over multiple
temporal scales because the biological system possesses distinct properties over several spatial and
temporal scales [19]. Therefore, various studies using this MSE method have been performed to analyze
the complexity of HRV on various temporal scales [20,21]. Subsequently, the coarse-graining process
has been applied to the FuzzEn and PE methods, yielding the multiscale fuzzy entropy (MFE) [22]
and multiscale permutation entropy (MPE) [23], respectively. However, the coarse-graining process
reduces the length of the coarse-grained time series as scale increases, thus resulting in inaccurate or
undefined entropy computation. This behavior of MSE makes it unsuitable for computing entropy
of a short-term time series. Wu et al. [24] have proposed a modified multiscale procedure that uses
a moving-averaging process instead of a coarse-graining process. The authors have shown that the
use of a moving-averaging process leads to better capability to reflect long-range correlations of a
short-term time series than a coarse-graining one. Thus, it can provide more reliable computation of
entropy values in situations in which a short-term time series is given.

Moreover, the MSE and MFE methods have drawbacks of high dependency on predetermined
parameters because they do not fully make use of the distance information between vectors in the
state space during computation. Recently, the distribution entropy (DistEn) proposed by Li et al. [25]
has been developed from the fact that the inherent information of the distances between vectors in
the state space is maximized through the probability density estimation, leading to relatively lower
sensitivity to predetermined parameters and data length. While SampEn makes use of uses only a
fraction of the distance vector information, DistEn is capable of quantifying full distance information.
It gives DistEn improved sensitivity and consistency. However, DistEn only considers the complexity
computation at single scale.

Here, we proposed an effective way to quantify HRV using the short-term RR interval of
ECG signals. The proposed method is based on a computation of DistEn over multiple scales by
a moving-averaging process, which is referred to as the multiscale distribution entropy (MDE).
The computation of the MDE, which inherits the merits of the DistEn, is able to address the shortcoming
of the conventional MSE which may fail to capture the long-range correlation of the short-term time
series. We compare the performance of MDE to the conventional MSE using several synthetic data by
evaluating the stability and characteristics over multiple temporal scales for the short-term time-series.
Then, the capability of the proposed MDE is examined for the RR intervals with various lengths
extracted from actual ECG signals of the healthy subjects and the CHF patients.

The remainder of this paper is organized as follows: In Section 2, we describe the conventional
entropies and the proposed MDE. In Section 3, the results on synthetic data and real ECG data are
presented. Section 4 presents the conclusions of this work.

24



Entropy 2018, 20, 952

2. Materials and Methods

2.1. Sample Entropy

The SampEn method is a modified entropy computation from the approximate entropy (ApEn)
method [8]. SampEn computes the conditional probability that quantifies that the similarity of two
sequences of different length m and m + 1 is maintained. Here, m denotes the length of sequences that
are compared to each other. More specifically, the SampEn method consists of four steps: reconstruction,
definition of distance, definition of the criterion for similarity, and entropy calculation.

First, for a N points time series xy = {x1, x2, ..., xx}, it is to reconstruct xy into
multidimensional vectors as follows:

XrTn(l) = {X,‘, Xigts «ony xi+(mfl)7} (1)

where m denotes the embedding dimension and T denotes the time delay factor.
Next, define the distances between two different vectors as the maximum difference of their
corresponding components as follows:

15, (1), X5, (7)) = max{ i ke = Xjke

:ogkgm—l} )

where i and j are not equal and the distance d[X}, (i), X7, (j)] is referred to as the Chebyshev distance.
Third, if the distance d[X7, (i), X}, (j)] is less than a threshold parameter r, a match occurs and
we count the number of vector pairs that satisfy this condition. This process proceeds when the

embedding dimension is 1 and m + 1, which are called B}" and B{”H, respectively.
B" — N jmr ii}anB?” Bl — N jmT Zil\i—lm‘rB;rHr] 3)
Finally, SampEn is defined by
B+l
SampEn(xy, m,r,T) = — ln{ B } 4)

In general, 7 is selected in the range of [0.1c, 0.25¢], where ¢ is the standard deviation of original
time series xn [11].

2.2. Distribution Entropy

The DistEn method quantifies the amount of information in the state space of the univariate
time series by estimating the distribution characteristic of the distances between vectors [25].
The computation of DistEn consists of four steps: reconstruction, construction of a distance matrix,
probability density estimation, and entropy calculation.

First, for N points of a time series x,, we reconstruct multidimensional vector X}, (i) =
{xi, Xitgs ons xi+(mfl)'r}/ where m is the embedding dimension.

Next, construct the distance matrix D = {d[X},(i), X},(j)]}, where the d[X}, (i), X}, (j)] is the
Chebyshev distance.

Third, the distribution characteristics of d[X7, (i), X7, (j)] should completely quantify the
information reflecting the distances matrix D. To do this, we estimate the empirical probability
density function (ePDF) of the matrix D by using the histogram approach. Since i and j are different,
the diagonal components of the matrix D are excluded. In addition, since the d[X}, (i), X7, (j)] and
the d[X7,(j), X}, (7)] are the same, only the upper or lower triangular part of the matrix D needs to be
considered. If the histogram has B bins, the probability p; of each bin is obtained, where t = 1,2,...,B.
The value of B is usually selected as an integer value in a range of [512, 1024].

25



Entropy 2018, 20, 952

Finally, DistEn is calculated as

B

DistEn(xy, m, B, T) = f@ ; pilog,(pr) (5)
Figure 1 shows the ePDF of the distance matrix D for the white noise (N = 1000) for exploiting
the difference between the SampEn and DistEn methods in terms of distance information. The SampEn
method uses only a fraction of the distance information (less than the threshold parameter r), and it
corresponds to the left area of the red dotted line in Figure 1. On the other hand, since the DistEn
method takes full advantage of the distance information, it is able of reflecting the complexity that the

SampEn method can’t measure.

ePDF(histogram) of white noise with length = 1000

probability

o 01 02 03 04 05 06 0.7 08 09 1
distance
Figure 1. Empirical probability density function (ePDF) of white noise with length N = 1000
(m = 2, r=0.150).

2.3. Multiscale Distribution Entropy

The coarse-graining procedure generates a number of sets of time series on a time scale s by
considering different starting points of the time series. Therefore, the coarse-graining multiscale
process can lead to inaccurate entropy values by reducing the length of the time series. To alleviate this
drawback, we used the moving-averaging multiscale process, which has a better effect on short-term
time series analysis [24]. Figure 2 shows the progress of two multiscale processes. It can be seen that
the moving-averaging process (Figure 2b) leads to longer multiscale processed time series compared
to the coarse-graining process (Figure 2a).

The moving-averaging multiscale process is composed of two procedures. First, for a N point
time series xy and a given scale factor s, we divide the original time series into several smaller time
series overlapped of length scale factor s. Then, the continuous moving-averaged time series are
constructed by averaging the number of data points on the scale s as follow:

i+s—1
y?:g Zx]-,lgiSNfstl (6)
]:l

The moving-averaging process generates multiple sets of time series on the time scale factor s. At
the scale factor s = 1, the moving-averaged time series y° is equal to the original time series.

Second, set the time delay factor T of the DistEn to the scale factor s, and calculate the entropy
value of MDE. In other words, the moving-averaged time series on each scale is used as an input signal
for entropy calculation of DistEn as follows:
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MDE(xy, m, B,s) = DistEn(y®,m,B, T =) 7)
Scale 3
EEEEER HE N
X1 X2 X3 Xy Xg Xe e Xi Xit1  Xit2
1
Y1 Y2 Yi+1)/2 = i(xi + Xig1 + Xig2)
(a)
Scale 3
EEEEER EEEN
X1 X2 X3 Xy X5 Xe e Xi-1 X Xit1 Xis2
Y1 Y2 Y3 Ya yi= §(Xi + Xip1 + Xi2)
(b)

Figure 2. Progress of two multiscale processes: (a) coarse-graining; (b) moving-averaging.

2.4. Evaluation Data

2.4.1. Synthetic Data

To verify the performance of the MSE and MDE methods with respect to the length of data,
we first employed entropy calculation on synthetic data. The synthetic data used in this work
are the chaotic series, white Gaussian noise (or simply white noise), periodic signals, and MIX(p)
processes. The chaotic series and periodic series are generated from the Logistic attractor x(n + 1) =
w x x(n) x (1 —x(n)) with w = 4.0 and w = 3.5, respectively. The MIX process is a kind of stochastic
signal that is superimposed on a deterministic component, and randomly selected points of N x p are
replaced by independent identically distributed random noise in a sinusoidal signal of length N [26].
Finally, white noise is that the values at any pair of times are identically distributed and statistically
independent, and it is the case of uncorrelated noise.

For each signal, 100 realizations were randomly generated with data length of N = 100, 300, and
1000, and used for the evaluation of the MSE and MDE.

2.4.2. Real ECG Data

Two real ECG datasets in PhysioNet are used [27]. Dataset I includes ECG data from Fantasia
and BIDMC CHF. In addition, Dataset II includes other CHF RR Interval and Normal Sinus Rhythm RR
Interval data. BIDMC CHF data includes ECG records from 15 patients with CHF (NYHA classes III,
IV) consisting of 11 men aged 22-71 years and 4 women aged 54-63 years. Each record was measured
for approximately 20 hours and contains two ECG signals sampled at 250 Hz. Fantasia data were
measured from 20 healthy people aged 21-34 years and 20 elderly people aged 68-85 years. Each
record was measured for approximately 2 hours, and the sampling frequency was 250 Hz. CHF RR
Interval consists of beat annotation for 29 ECG signals (sampled at 128 Hz) of CHF (NYHA classes I, II,
III) patients aged 34-79. In addition, Normal Sinus Rhythm RR Interval data consists of beat annotation
for 54 ECG signals (sampled at 128 Hz) of subjects in normal sinus rhythm (NSR).

To find the R peak points from the ECG signals of Dataset I, we used a Pan-Tompkins algorithm [28].
Then, RR interval time series are constructed from the distances between two consecutive R peak
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points and can be seen in Figure 3. Figure 3 shows the representative RR intervals of CHF patient,
healthy elderly, and healthy young subjects, respectively.

In this work, we used the RR interval time series of lengths of 100, 300, and 1000 extracted from
ECG signals, respectively. Each time series was used for evaluation of the MSE, MPE, and MDE.
Firstly, CHF patients (BIDMC CHF), healthy elderly, and healthy young groups’ data (Fantasia) were
analyzed. We then analyzed other CHF patients (CHF RR Interval) and NSR subject data (NSR RR
Interval) to further evaluate the performance of discrimination between CHF patients and normal
subjects. The parameters of the MSE and MPE were set tor = 0.2c and m =2,and m =4and t =1,
respectively. The parameters of the MDE were set to m = 2 and B = 512.

RRinterval (s)

I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

Sample points

RR interval (s)

RRinterval (s)

] 50 100 150 200 250 300 350 400 450 500
Sample points

Figure 3. Examples of inter-beat (RR) interval time series extracted from the electrocardiogram (ECG)
signals of Dataset I: Congestive heart failure (CHF) patient (top panel); Healthy elderly subject (middle
panel); Healthy young subject (bottom panel).

3. Results

3.1. Simulation Result Using Synthetic Data

The results of the MDE and MSE evaluation of synthetic data are shown in Figure 4. Figure 4a,b
shows the entropy values of the MSE and MDE for time series of length N = 100, respectively.
Figure 4a shows that chaotic series has the highest values of MSE in the scales less than 3 and the
periodic signal has entropy values of almost zero. Notably, the MSE values are mostly only defined on
small scales. For instance, the white noise and the chaotic series are defined only on scale 1 and 2, with
a large standard deviation. Compared with the MSE results, in Figure 4b, it is evident that the entropy
values of MDE become smaller in order of chaotic series, Gaussian white noise, MIX (0.2), MIX (0.1),
and periodic series. As the scale increases, the entropy values of MDE for white noise and chaotic
series are comparable and higher than those of other synthetic data. The MDE values of MIX (0.1)
and MIX (0.2) rise as scale factor increases and remain constant, while the periodic signal keeps the
lowest entropy values. In the case of the periodic signal, due to the use of a period of 4 samples, lowest
entropy values are repeated on scales of the multiples of 4.

Next, Figure 4c,d shows the MSE and MDE results for time series of length N = 300, respectively.
In Figure 4c, white noise has the highest MSE values in a range of small scales. In the range of small
scales, the entropy values of chaotic series, MIX (0.2), MIX (0.1), and periodic series follow in order.
However, the MSE values of those synthetic data are still undefined over large scale factors, especially
for white noise and chaotic series. As can be seen in Figure 4d, the similar results of Figure 4b are
observed in Figure 4d in the sense that MDE computation leads to same order of entropy values on
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small scale factors and stable evaluation over all scales. In addition, it exhibits that the signals, except
for the periodic signal, converge to almost similar entropy values on large scales, unlike the result of
the data length N = 100 in Figure 4b.

Figure 4e,f shows the results of the MSE and MDE calculation for time series of length N = 1000,
respectively. Here, since all values are defined in range of all scale, it is available to compare the
entropy evaluation of the MDE and MSE. Both the MDE and MSE results have a smaller standard
deviation at each scale than the results of length N = 100 and 300. For the MSE result of Figure 4e,
as the scale becomes larger than scale 5, the entropy values of chaotic series and white noise gradually
decrease and are comparable on large scales. Compared to Figure 4c, it results in reduced standard

deviation at each scale.

3 MSE of Synthetic data with N = 100 ; MDE of Synthetic data with N = 100
—&— Chaotic series o ROBP
25 —<— White noise 08 i &
—&— MIX(0.2) -
2 —F— MIX(0.1) T A
® —&— Periodic signal o 06 |
215 =
o} ) B -
> > 04 T /
1 \ \|/ N
0 = 8 A\ 0
0 5 10 15 20 0 5 10 15 20
Scale Scale
(a) (b)

MSE of Synthetic data with N = 300

PEE BER FEE pEE EER
¥ ¥ ¥ ¥ ¥
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(d)

L MDE of Synthetic data with N = 1000
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§04
FEg pEE FEE EFEEY EEY
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Figure 4. Entropy values for synthetic data: (a) multiscale entropy (MSE) value for N = 100;
(b) multiscale distribution entropy (MDE) value for N = 100; (¢) MSE value for N = 300; (d) MDE
value for N = 300; (e) MSE value for N = 1000; (f) MDE value for N = 1000. Scales between 1 and 20
are used and the value at each scale represents a mean =+ standard deviation.

The MDE results in Figure 4f indicate similar behaviors in the results in Figure 4d with the
decreased standard deviation. Notably, the results of Figure 4b,d,f show that the MDE method leads
to similar results in the complexity analysis for short-term and long-term time series, implying its
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insensitivity to the length of time series. In addition, MDE shows the smaller standard deviation than
that of MSE and defined over all scales, indicating its superior stability and reliability over MSE.

3.2. Experiment Results Using Real Data

3.2.1. ECG Dataset I

We show the experimental results using RR interval time series extracted from the ECG signal
database measured for CHF patients, healthy elderly and healthy young groups in Figure 5. Figure 5a—c
shows the MSE, MPE, and MDE results for time series of length N = 100, respectively. In Figure 5a,
the MSE values are not defined on most part of scales, indicating the shortcoming of MSE in analyzing
a short-term RR interval time series. As for the results of MPE analysis in Figure 5b, the MPE values
are present at all scales, but the entropy values decrease since the length of the time series get shorter
as the multiscale process progresses. The distinction between CHF patients and healthy subjects seems
to be difficult. On the other hand, the results of the MDE analysis in Figure 5c shows that the entropy
values are defined over all scales for RR interval time series of length N = 100. In addition, MDE is
capable of reflecting the difference of the complexity of RR interval time series not only between CHF
patients and healthy subjects, but also between healthy subject groups, i.e., between the elderly and
the young groups. As the scale increases, the MDE values of three groups get higher.

Next, Figure 5d—f shows the MSE, MPE, and MDE results for RR interval time series of length
N = 1000, respectively. In Figure 5d, in a situation where the length of the time series is long enough,
the result of the MSE values are defined over most scales except for healthy elderly group on scales
19 and 20. The distinction between CHF patients and healthy subject groups appears to be available
over most scales. However, the entropy values of the healthy young group are higher than those of the
healthy elder one until the scale 7, but after that the distinction between the two groups is difficult.
As for the results of MPE analysis in Figure 5e, the MPE values show a slight decrease, which is less
than the result (N = 100) in Figure 5b, and the distinction between the three groups seems possible.
However, since the complexity of healthy subjects must be greater than the complexity of a CHF
patients, it is possible to discriminate between CHF patients and healthy elderly group after the scale 5,
and between CHF patients and healthy young group after the scale 2. In addition, the mean entropy
values of the healthy young group are higher than those of the healthy elder group only on scales
between 2 and 9, and the distinction is difficult on other scales. On the other hand, the MDE result
in Figure 5f shows a similar evaluation results to Figure 5c in a situation where the length N = 100.
In addition, as the scale gets larger, the entropy values reached is larger than those for the short-term
time series with reduced variance. The MDE behaviors shown in Figure 5 are closely consistent with
the previous finding of the decreased complexity with aging and pathological status, whereas the MSE
and MPE results do not agree with known behaviors of physiological complexity [6].

MSE of RR interval data with N = 100 MPE of RR interval data with N = 100 | MDE of RR interval data with N = 100

Value
Value

05 t
o & CHF patents 04 —5—CHF patients
ot —&— Heatiny eiderly group —E—Heallhy elderly group
B Heaithy young group |—&— Healthy young group
o oal . . n s

0 5 10 15 20 o s 10 15 20 0 5 10 15 2
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Figure 5. Cont.

30



Entropy 2018, 20, 952

MSE of RR interval data with N = 1000 E MPE of RR interval data with N = 1000 s MDE of RR interval data with N = 1000
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Figure 5. MSE, multiscale permutation entropy (MPE), and MDE results using real data (RR interval)
for CHF patients, healthy elderly and healthy young groups: (a) MSE for N = 100; (b) MPE for
N = 100; (c) MDE for N = 100; (d) MSE for N = 1000; (e) MPE for N = 1000; (f) MDE for N = 1000.
Scale range of 1-20 were used and the value at each scale represents a mean =+ standard deviation.

3.2.2. ECG Dataset II

Figure 6 shows the results of entropy computation for RR interval time series obtained from
CHEF patients and NSR subject datasets to further evaluate the distinction performance between CHF
patients and normal individuals. Figure 6a—c shows the MSE, MPE, and MDE results for time series of
length N = 100, respectively. MSE is not defined on most scales except scale 1 and MPE results show a
dramatic decrease in entropy value as the scale becomes larger, indicating weak sensitivity of MPE on
the length of a time series. Compared to conventional measures, MDE is able to reflect differences in
the complexity of the RR interval time series between CHF patients and NSR group. Note that the
MDE values increase as the scale gets higher, indicating robustness to the length of a time series. Next,
in Figure 6d-f, the results of the MSE, MPE, and MDE are defined on most scales in situations where
the length of the time series is long enough (N = 1000).
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Figure 6. Cont.
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Figure 6. MSE, MPE, and MDE results using real data (RR interval) for other CHF patients and normal
sinus rhythm (NSR) subjects: (a) MSE for N = 100; (b) MPE for N = 100; (c) MDE for N = 100; (d) MSE
for N = 1000; (e) MPE for N = 1000; (f) MDE for N = 1000. Scale range of 1-20 were used and the
value at each scale represents a mean =+ standard deviation.

3.2.3. Statistical Analysis for CHF Patients, Healthy Elderly, and Healthy Young Groups

To verify the distinction capability of entropy results between CHF patients, healthy elderly, and
healthy young groups in Dataset I, statistical analysis was conducted. First, the Kolmogorov-Smirnov
test is used to check whether the MDE and MSE results satisfy the normal distribution. If they follow a
normal distribution, the t-test method was conducted to test the statistical difference between three
datasets, and if not, the Mann-Whitney U test method was performed. Generally, if the p-value is less
than 0.05, statistical significance is accepted. The analysis results are shown in Tables 1-3.

Table 1 shows the p-value of the MSE comparison result of RR interval time series when the length
N is 100, 300, and 1000, respectively. As can be seen, for N = 100 and 300, p-value computation is not
available over most scales. For N = 1000, the distinction using MSE values between CHF patients
and healthy elderly group in scales from 1 to 18 and CHF patients and healthy young group over all
scales are statistically significant. However, it fails to differentiate healthy elderly group from healthy
young one over most scales (p-value > 0.05). The shadows represent the cases which the distinction is
statistically insignificant.

In Table 2, the MPE results show that the shorter the length of the time series (N = 100),
the more difficult it is to distinguish between subject groups. As the length of RR interval increases,
the discrimination performance gets better. However, even in N = 1000, the distinction between
groups fails in several cases. In addition, similar to the MSE results, the distinction between CHF
patients and healthy subjects for N = 1000 is statistically significant at most scales, but the distinction
between healthy young and healthy elderly groups is available in limited scales.

The statistical results of MDE in Table 3 exhibit that the distinctions using the MDE values between
three groups are statistically significant for all three lengths of RR interval, i.e., N = 100, 300, and 1000.
Compared to the results of MSE and MPE, the MDE is capable of discriminating the complexities
of different physiological groups for all scale values, implying its superiority over the conventional
methods and insensitivity to the length of a time series.
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4. Conclusions

We have presented an improved multiscale entropy, named MDE, for capturing the complexity of
short-term HRV time series. For analysis of short-term HRYV, the conventional MSE method suffers
from unreliable computation due to its dependency to the length of time series. On the other hand,
the proposed MDE method is capable of quantifying the complexity even for short-term time series
by integrating DistEn with the moving-averaging process. The use of DistEn and moving-averaging
multiscale approach leads to improved stability and reliability of entropy evaluation for short-term
time series. Thus, the proposed MDE outperforms the conventional MSE and MPE in the sense that
MDE is insensitive to the length of time series. Through synthetic data analysis, the proposed MDE is
shown to be effective for describing the complexity of various time series such as chaotic series, white
noise, MIX process, and periodic series. The experimental results using real ECG recordings from
CHEF patients and healthy subjects indicate that MDE is useful to reflect the degree of the decreased
complexity of HRV accompanied by aging and disease. Through this work, the proposed MDE has
shown its potential to be a promising solution for short-term HRV analysis.
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Abstract: Making predictions on the dynamics of time series of a system is a very interesting
topic. A fundamental prerequisite of this work is to evaluate the predictability of the system over
a wide range of time. In this paper, we propose an information-theoretic tool, multiscale entropy
difference (MED), to evaluate the predictability of nonlinear financial time series on multiple time
scales. We discuss the predictability of the isolated system and open systems, respectively. Evidence
from the analysis of the logistic map, Hénon map, and the Lorenz system manifests that the MED
method is accurate, robust, and has a wide range of applications. We apply the new method to
five-minute high-frequency data and the daily data of Chinese stock markets. Results show that the
logarithmic change of stock price (logarithmic return) has a lower possibility of being predicted than
the volatility. The logarithmic change of trading volume contributes significantly to the prediction
of the logarithmic change of stock price on multiple time scales. The daily data are found to have a
larger possibility of being predicted than the five-minute high-frequency data. This indicates that the
arbitrage opportunity exists in the Chinese stock markets, which thus cannot be approximated by the
effective market hypothesis (EMH).

Keywords: predictability; multiscale analysis; entropy rate; memory effect; financial time series

1. Introduction

Making predictions on the dynamics of time series of a system is a very interesting topic. Up to
now, over thousands of methods have been proposed for the prediction of the systems” evolution [1].
A fundamental prerequisite of these works is to evaluate the predictability of the system over a wide
range of time. For an isolated system, which does not exchange information with other systems,
the predictability of the output time series is only determined by the degree of memory from the past
values. In such a case, the time series in unpredictable if it is purely random, like Gaussian white
noise; whereas, information can be extracted for prediction by analyzing the temporal structure of a
time series with memory. In another way, examples of irreversible processes include typically chaotic
dissipative processes, nonlinear stochastic processes, and processes with memory, operating away
from thermodynamic equilibrium. One should be able to make easier predictions on irreversible
processes, where the arrow of time is playing a role, than on reversible ones [2,3]. For a real-world
system that may exchange information with other systems, the past values of other systems can also
be utilized for prediction, except the past values of the underlying system itself [4,5].

In time series analysis, the multiscale analysis of time series has been broadly studied, which relies
on the fact that the time series of complex systems, associated with a hierarchy of interacting regulatory
mechanisms, usually generate complex fluctuations over multiple time scales. Analyzing the financial
time series by amplification in different proportions with a coarse-graining algorithm [6] makes it
possible to reveal both small-scale information and large-scale information at multiple resolutions.

Entropy 2019, 21, 684; doi:10.3390/e21070684 39 www.mdpi.com/journal/entropy
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This paper contributes to evaluating the multiscale predictability of financial time series. Another
piece of evidence of this consideration is that the multiscale complexity (a tool of time series analysis
that is associated with factors of the degree of memory, the temporal structure, and auto-correlations)
have been measured [6,7], and hence, the predictability of time series, which is also closely related to
those factors, can be analyzed on multiple time scales as well.

Financial time series analyses have played an important role in developing some of the
fundamental economic theories. Furthermore, the understanding and analysis of financial time
series, especially the evolution of stock markets, has been attracting the close attention of economists,
statisticians, and mathematicians for many decades [8-14]. Recent research mostly focuses on the
long-term average behavior of a market, and thus sheds little light on the temporal changes of a market.
This type of method for analyzing financial time series may lead to a lack of analysis on the short-term
predictability of time series, thus ignoring the critical information that is contained in the financial
data, which may be used for the portfolio selection and pursuing an arbitrage opportunity [15].

If the efficient market hypothesis (EMH) is of some relevance to reality, then a market would be
very unpredictable due to the possibility for investors to digest any new information instantly [16].
When a market behaves as the EMH stipulates, the market will be purely random without memory,
and the variation of price will be very unpredictable. For an extensive review of the EMH, please
see [17]. However, new evidence challenges the EMH with many empirical facts from observations,
e.g., the leptokurtosis and fat tail of the non-Gaussian distribution, especially the fractal market
hypothesis (FMH) [18]. The FMH asserts that (i) a market consists of many investors with different
investment horizons, and (ii) the information set that is important to each investment horizon is
different. As long as the market maintains this fractal structure, with no characteristic time scale,
the market remains stable. When the market’s investment horizon becomes uniform, the market
becomes unstable because everyone is trading based on the same information set. In addition,
Beben and Orlowski [19] and Di Matteo et al. [20,21] found that emerging markets were likely to have
a stronger degree of memory than developed markets, suggesting that the emerging markets had a
larger possibility of being predicted.

In this paper, we incorporate the multiscale analysis with an information-theoretic approach for
characterizing the degree of memory of time series, so as to evaluate the predication of financial time
series. We make use of the entropy rate in order to test the predictability of some synthetic data and of
the Chinese stock markets. It is an interesting alternative to regression models, which are often used
in financial time series. One advantage is that the method proposed is mainly model independent;
another is that it deals with nonlinear systems, as well as with linear ones. The remainder of the paper
is organized as follows. In the Methodology Section, we introduce a new entropy difference (ED) and
its multiscale case, multiscale entropy difference (MED). We then apply these new methods to the
numerical analysis of artificial simulations, including the logistic map, the Hénon map, the Lorenz
system, and most importantly, the financial time series analysis. Finally, we give a brief conclusion.

2. Methodology

2.1. Entropy Difference

(i) For an isolated system, which does not exchange information with other systems, the degree of
predictability of the time series can only be explained by the memory effects of its past values.

As the output of the underlying system, a time series {x;}, t = 1,---, T is considered. First,
the uncertainty of the time series at time ¢ can be quantified by the Shannon entropy:

Hlx = ) p(x)logap(xt). 1

x€0

p(x:) represents the probability distribution of x;; © is the space of samples; and H[x;| describes the
information of x at time ¢ in bits.
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The entropy rate measures the net information generated by the system at time ¢, given by
Hlx¢|x1,x2,+ -+ ,x;—1]. We assume that the underlying system can be approximated by a p-order
Markov process. That is to say, the value of the output time series at time ¢ is only related to its nearest
p neighbors and is independent of further values. Therefore, we obtain H[x|xy, xp, -+, x1] =
Hxt|xt—p, Xt—py1,- - X—1] = H[xf|xt(f>1}, where:

()
xt, X,
H[xt\xfﬁ)l] = Z p(xt,xff)l)logzw. (2)

xf,x@le@ P(x§f>1)
The uncertainty of the time series at time f is non-increasing given the past values, and hence,
the entropy rate is no larger than the entropy itself: H|x¢ \xif )1] < Hx¢].

The difference between the Shannon entropy and the entropy rate represents the contributions of
the past values to reducing the uncertainty (and improving the predictability) of the time series at time
t. It is given by:

D = H[x,] - Hx|x")]. 6)

We name D the entropy difference (ED). For any (nonlinear) time series, D > 0. For a random
walk process, the contribution of past values is negligible; hence, H [xt|xt(f )1} = H[x], and H[x;] —
H [x,|xt(f )1} = 0. D equal to zero indicates that the time series cannot be predicted at all, as no past
information can be utilized; whereas, if there exist autocorrelations/memory effects within the time
series, the past values can be used to reduce the uncertainty of time series at time t, so D > 0.

The entropy difference D is non-negative, while the upper bound of D is uncertain. Thus, we
further normalize D to the range of [0, 1], divided by its maximum value H[x;]:

_Ha]—HxlxP)) o Hul?)
D= Hl] =1 Hpo] 4

Here, 0 < D < 1. The normalized ED, D, quantifies the degree of predictability of the time series.
Similarly, when D is approximately 0, the time series is unpredictable. When D attains a value of one,

H [xt|xt(f >1] is approximately 0. Therefore, there exists no uncertainty of x; in the presence of the past

values xt(f)l, and the time series is completely specified (well predicted) at time f.

(ii) Next, consider a real-world system that exchanges information with other systems.
Except the past values of the underlying system itself, the past values of other systems can also
be exploited. Revisit the Granger causality, which is a statistical concept of causality that is based
on prediction [22,23]. If a signal y “Granger-causes” a signal x, then past values of y should contain
information that helps predict y above and beyond the information contained in past values of x alone.
In the Granger causality, the value of x; is predicted by two equations, respectively,

p
Xy = Z K;Xp_j+ €1
i=1

©)

P q
Xt =Y Bixe—i+ Y ViVi-j+ €
i=1 =1

The Granger causality is normally tested in the context of linear regression models. If the second
forecast is found to be more successful, according to standard cost functions, then the past of y appears
to contain information helping in forecasting x; that is not in past xiﬁ )14 The Akaike information
criterion (AIC) or Bayesian information criterion (BIC) can be adopted to determine the lagged ranks

p and q. The residual terms €1; and €y, as a matter of fact, contain the information generated by the
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system at time ¢. A nonlinear extension of the Granger causality is the information-theoretic tool of
transfer entropy [24,25], which measures the information flow from y to x:

Ty—x H[xt\xgﬂ] — H[xt\xiﬂ,yﬁ‘l)l]

(» @
Xt|X LY,

2 p(xt’xg)l’yiz)l)logZMW.
anE@leG P(x:|xt7])

%@163

(6)

Both the Granger causality and the transfer entropy indicate that the past values of another related
system can be used to infer the trajectory of the underlying system. Hence, the ED of the isolated
system can be extended to the multiple systems case.

The entropy rate of one system in the presence of another coupled system is given by
H [x,|xt<t:11), ygt:lw]. We further assume that these two systems can be approximated by the generalized

Markov processes [24], that is H [x; \xgt:ll), yt(:l)] =H [xt\ng )1, yt@l], and:

Hlx Py, vy ] = Hlxe, 2P,y ] = HIxP, i)

(9) )

(p)
p(xe, x, 2, Y,
= L p("ffxfﬂfyﬁ@l)logz%.
(q) (xz ,y,z )
x,x,7, €@ AT

whes

@)

The uncertainty of system x can be given by the conditional probability distribution

p(xt|x£f)l,yﬂ)l). The conditional probability distribution p(xt\xt(f)l,yii)l) describes the data range

(p) ()

and the occurrence probability of x; by knowing the past values of x,”,y,”; . Consider an extreme case.
If p(xy = c|xt(f >1'y£'1>1)' where c is a constant, then x; is fixed at point ¢ with no uncertainty. Further,
when the conditional distribution is fixed within a narrow range, the system is more deterministic at
time f by knowing xff )1, yﬁ)l, which can thus be well predicted. If the conditional distribution is still
wide in the range, the system is full of uncertainty at time ¢ and has a low possibility of being predicted.
The reduced uncertainty by knowing the past values of both x and y is estimated by the ED:

D = Hlx/] — H[x;|x",, y\7.]. ®)
Further, the ED is normalized by:

p = Hiul = Hll? ] Hil, y0)

Hx] Hlx] )

D ranges between 0 and 1. D being approximately 0 indicates a low degree of predictability of the
time series, and D close to 1 indicates a large degree of predictability. In addition, to set the ED in a
fixed range, the normalization of ED also has other merits. Below is the explanation.

The predictability of a system is mainly subjected to the contributions of two aspects:

(i) The degree of the memory of the underlying system, that the past information can be well
utilized to infer the future evolution of the system;

(ii)  Whether a system is more deterministic than other systems. This is related to the range of the
fluctuations of the time series, which can be partly explained by the variance of the time series.
A time series with large variance (entropy) tends to be more difficult to predict than a time
series with much small variance. Both the variance and the entropy reflect the diversity of the
system. A system with more diverse states is likely to have large variance and entropy, whereas
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a system with few states tends to have small ones. Obviously, a system with fewer states is
easier to predict than that with diverse states.

Therefore, the normalization of ED by dividing D by H|[x;] makes it possible to compare the
degree of predictability between different systems, even if they have different ranges of fluctuations.
Moreover, regarding the estimation of entropy values from time series, there may exist biases for
different estimators. The normalization can offset those biases caused by the estimation of entropy if
the numerator and the denominator use the same estimator.

Further, for a more complicated case of multiple subsystems (larger than 2 subsystems), e.g.,
the Lorenz system, the predictability of the time series can be given by:

!
_ Hix] - H[xf|x£ﬁ)1/ygi)1fzfjl]
Hix¢]
_H e Py, 20
Hlx] ’

: (10)

O]

when the past values of x, y, and z can be used to predict x;. Here, Z;
explanatory variables.

1 could be a vector of possible

2.2. Multiscale Entropy Difference

The predictability of time series estimated by ED and the normalized version is given on a unique
time scale, on which the data are sampled. Here, we further evaluate that the multiscale predictability
of time series relies on the fact that the time series of complex systems, associated with a hierarchy of
interacting regulatory mechanisms, usually generate complex fluctuations over multiple time scales.
There exist many approaches for the multiscale analysis in the framework of fractal theory [26], e.g.,
the data segments of detrended fluctuation analysis (DFA) [27], coarse-graining [6], and the time delay
of phase space reconstruction [28,29], where the coarse-graining is one of the simplest methods.

We coarse grained the original data onto multiple time scales with a scale parameter s [2,6,7].
By the non-overlapping coarse-graining, the original time series x (with length T) is rescaled to X(s):

1 ts
Xt(S) = - Z X (11)

S k=(f—1)s+1

t ranges from 1 to T/s. X;(s) represents the moving average of the system x at time  on the temporal
scale s. The coarse-graining process is a low-pass filter, where the high-frequency fluctuations are
filtered out. At small time scales, the details of the time series can be reserved, while at large scales, the
details are ignored and only the profile of the time series is retained.

The procedure of the multiscale entropy difference (MED) mainly includes 3 steps:

Step 1. Coarse grain the original time series {x;} (t = 1,- -, T) to the coarse-grained time series
{Xi(s)} ¢t =1,---,T/s), with a time scale s.

Step 2. Estimate the ED and the normalized ED for the coarse-grained time series {X;(s)}
(t=1,---,T/s), respectively.

Step 3. Change the time scale s and observe the changes of ED, and the normalized ED,
on different time scales.

When the scale s is equal to 1, the MED method retrieves back the ED method. For other scales,
the MED can evaluate the multiscale predictability of the time series. To be noted, for a short time
series of length T, the multiscale analysis may be affected by the finite size effects at large time scales,
which can be solved by the refined entropy estimators during the coarse-graining process. For more
details, please see [5,30,31].
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3. Numerical Simulations

In this section, we consider three examples to test our new methods, including one isolated system
and two open systems.

We first consider the logistic map. It is a polynomial mapping of degree two, which consists of
only one nonlinear system: x¢ = px;_1(1 — x;_1). For Vi, x; € [0,1] can be used to represent the ratio
of existing population to the maximum possible population in ecology. The values of interest for the
parameter y are those in the interval [0, 4]. Complex, chaotic behavior can arise from this very simple
non-linear dynamical equation. Most values of y beyond 3.56995 exhibit chaotic behavior. Here, we set
# = 3.7 and let the data length T = 10°. The initial value of xo was set to 0.5.

As only one equation is described in the logistic map, x; changes no information with other
variables. We added Gaussian white noises on the original time series x; with different strengths to
obtain a composite time series: y; = x; + A€;. €; is the Gaussian white noise (with zero mean and unit
variance). A > 0 is a parameter that tunes the strength of noises. x; is the real signal corrupted by the
external noise €;, and A determines the signal-noise ratio. The larger A, the smaller the signal-noise
ratio is.

We used k-means clustering [32] to discretize the original data into k symbols, so as to estimate the
entropies. k is a pre-defined parameter that determines the number of clusterings. Here, the parameter
k for the k-means clustering was 10, i.e., we symbolized the original continuous time series as 10 discrete
symbols. In Figure 1, we show the values of normalized ED D on multiple time scaless = 1,2,- - -, 10,
with the noise strength parameter A from 0.01 to 0.1 with a step of 0.01, since the variance of the
original time series x of the logistic map (T = 10°) was only 0.0412, the original data length was
T = 105, therefore, even at s = 10, this ensured that the coarse-grained data length was 10%. Fors = 1
and A = 0, corresponding to the original time series x, the degree of predictability was larger than 0.7.
This indicates that the logistic map had a large possibility of being predicted, which coincides well
with what the equation describes. When the scale increased, the predictability of the coarse-grained
time series decreased, since the relationship between X;(s) and X;_1(s) became weaker on large scales.
Moreover, the predictability of the time series also decreased with increasing A, as the signal-noise
ratio became lower. D reached a value very close to zero when A = 0.1, so the composite time series
could not be predicted. We also tested other values of k, for which it turned out that the values of
larger k gave more reliable results; however, this was limited by the original data length. We further
generated several groups of Gaussian white noises to add on the original time series and obtained
very similar results, which verified the robustness of our new methods.

Figure 1. The values of D (Equation 4, lagged rank p = 1) on multiple time scales s = 1,2,---,10,
with the noise strength parameter A = 0.01,0.02, - - - ,0.1 for the logistic map.
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Next, we considered the Hénon map, which consists of two subsystems: x; = 1 —ax?_; +y;_1
and y; = bx;_1. The map depends on two parameters, a and b. For the classical Hénon map, it has
values of 2 = 1.4 and b = 0.3. There exists nonlinear information flow from x;_; and y;_; to x, i.e.,
a one-step transition from the past data of one variable y to the current the data of another variable x.
The initial values were set to (1,0).

We generated data with the classical Hénon map, with the data length T = 105. In Figure 2,
we show the values of normalized ED D on multiple time scales s = 1,2,---,10. Fors = 1,
which corresponds to the original time series x and y, the degree of predictability was 0.77. This
indicates that x; can be well predicted by using the past values of x and y. When the scale increased,
the predictability of the coarse-grained time series decreased, as the relationship among X;(s),
X;-1(s), and Y;_1(s) became weaker on large scales. We also compare Dx, |5y, ;(s)=X(s) = 1 —
H[X¢(s)|Xs-1(5), Yi-1(s)]/ H[X¢(s)] with Dy, | (s)5x,(s) = 1 — H[X¢(s)|Xi-1(s)]/ H[X;(s)] in Figure 2.
Here, the lagged ranks p and g were both set to one. Obviously, if we only used the past values of
x to predict x;, the predictability of the time series would be much lower than if we incorporated
both the past values of x and y. Therefore, we always obtained Dy, | (s)y, ,(s)=Xi(s) = PX,_1(s)= X (s)-
Actually, Dy, (5),Y, 1(s)=Xi(s) — Px,_1(s)=Xi(s) 1S just the normalized multiscale transfer entropy [5],
and its unique scale case Dy, , y,_;—x, — Dx,_,—x, is the normalized transfer entropy [24,33], from y
to x.

1.0
=@ Dx,_y(s). Ys-1(s) = Xls)
081 @ B Dx._y(5)-Xds)
\
0.61 L N
LI
S \ \.
041 \ N
% b
u h §
021 - L
00 L
: 1 2 3 4 5 6 7 8 9 10
S

Figure 2. The values of D on multiple time scales s = 1,2, - - ,10. The parameter k for the k-means
clustering is 20. We compare Dy, | (s)y,_,(s)—sX,(s) With Dy, (s)5x,(s) and find that Dy, (5 x,(s) is
always smaller than Dy, () y,_,(s)x,(s) On each time scale. This indicates that the predictability of x
can be improved by incorporating the past values of y more than the past values of x alone. Therefore,
the past values of i contain information for predicting x, which coincides well with the equations of
the map.

Third, we studied the Lorenz system [34], which consists of three subsystems: dx/dt = o(y — x),
dy/dt = x(r —z) —y, and dz/dt = xy — bz. Here, x, y, and z make up the system states, ¢ time, and o,
7, and b the parameters: ¢ = 10, r = 28, b = 8/3. We integrated these equations numerically, applying
a fourth-order Runge-Kutta method with the initial values of (0.1,0,0).

We used the Lorenz system to generate data of length T = 10°. In Figure 3, we give the values of
normalized ED on multiple time scales s = 1,2, - - - ,10. For s = 1, which corresponds to the original
time series x, y, and z, the degree of predictability of y; reached 0.88. This indicates that y; can be well
predicted by using the past values of x, i, and z. When the scale increased, the predictability of the
coarse-grained time series decreased, as the relationship among Y;(s), X;_1(s), Y;—1(s) and Z;_4(s)
became weaker on large scales. We also compared Dy, | (s)y, 1(s),2:_1(s)=Yi(s) WHh DX, 1 (6), v 1(s)=Yi(s)”
Dy, \(s),2,1(s)~Yi(s)- and Dy, | (), (s)- Here, the lagged ranks p, g, and [ were all set to one. We found
that y; can be well predicted giving the past values of x and y. Interestingly, the past values of z
contributed much less to predicting y, although in the second equation of the Lorenz system, the change

45



Entropy 2019, 21, 684

of y (dy/dt) is also explained by z. This can be explained as follows. In the x—y phase plane, x is closely
related to y in the “diagonal” direction, as shown in Figure 3. However, in the y—z phase plane, no
obvious relationship appears between y and z. Therefore, both the past values of x and y contribute to
predicting v, rather than z. To predict other variables like x and z, we obtained very similar results.

@ D (5), Yeor(5),Zi-(5) +Vils)
W Dy, (), Vieals) Vi)

Dy, _(s),Ze-1(5) +Yi(s)
N~ Dy, (5)-vds)

20 -5 -10 -5 0 5 10 15 20 20 -10 0 10 20 30
X v
Figure 3. Upper left panel: A sample solution in the Lorenz system when ¢ = 10, # = 28, and b = 8/3,
with initial values (0.1,0,0). The data length is T = 10°. Upper right panel: the values of D on multiple
time scales s = 1,2, - - - ,10. The parameter k for the k-means clustering is 20. Lower left panel: the x-y
phase plane. Lower right panel: the y—z phase plane.

4. Financial Time Series Analysis

The emerging stock markets have been found to have memory with the past values [35]; thus,
the stock prices are not purely random. Past values can be used for the prediction of future stock
prices. In this section, we study the predictability of the stock data of Shanghai and Shenzhen stock
markets in China. We analyze the Shanghai Composite Index (SSE) and Shenzhen Composite Index
(SZSE), both including the trading price and trading volume. At time ¢, the data related to trading
price are given by x;, and the data related to trading volume are given by y;. Except the original data,
we also analyzed the logarithmic change of stock price (i.e., logarithmic return): log(x;) — log(x¢—1),
the logarithmic change of trading volume: log(y;) — log(y;—1), the volatility (absolute return) of stock
price: |log(x¢) — log(x;—1)|, and the volatility of trading volume: |log(y:) — log(y;—1)|, respectively.

4.1. Five-Minute High-Frequency Data Analysis

We first analyzed the predictability of five-minute high-frequency data of SSE and SZSE. The data
ranged from 3 March 2016 to 9 October 2018. In Figure 4, the left panels show the predictability of the
stock price, logarithmic return, and price volatility for SSE, respectively. The right panels show the
predictability of the stock price, logarithmic return, and price volatility for SZSE, respectively.
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Figure 4. The multiscale entropy difference (MED) for the five-minute high-frequency stock data
for the Shanghai and Shenzhen markets. Left panels show the results of the stock price (upper left),
logarithmic return (middle left), and price volatility (lower left) for the Shanghai Composite Index
(SSE), respectively. Right panels are those for the Shenzhen Composite Index (SZSE), respectively.
The data related to the trading price are given by X, and the data related to trading volume are given
by Y. X* and Y* represent the shuffled data.

For the original non-stationary stock prices, the predictability was very high on multiple time
scales (as shown on the left panels of Figure 4), with D larger than 0.8, in the presence of either X;
alone or X;_1&Y;_1. The reason is that we can just use X;_; as the predicted value of X;. The prediction
error would be very small, because neighboring stock prices are very close. This explains why D was
so large, but such a prediction is meaningless for the arbitrage. What makes investors more interested
are the logarithmic return, which indicates the price going up or down, and the price volatility, which
is the indicator of risk.

On the middle panels of Figure 4, the logarithmic return is more likely to be predicted given the
past values of logarithmic return and the logarithmic change of trading volume than given the past
values of logarithmic return alone, thatis Dy, (), ,(s)-X,_1(s) > Px,_,(s)X,_(s)- This indicates that
the trading volume contributes significantly to the prediction of the stock price. The close relationship
between the stock price and trading volume was also found in previous studies, e.g., [36]. We shuffled
the underlying data, represented by X* and Y*. The predictability for the shuffled data became much
lower, because the shuffling process broke the memory among neighboring values for prediction,
although it retained the distribution of the data.
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We also show the results of price volatility on the lower panels of Figure 4. The degree of the
predictability became larger than that of the logarithmic return. There existed long-range persistent
correlations in the volatility series [37], so that the clustering of extreme volatilities emerged. A larger
volatility was more likely to be followed by a large volatility, and vice versa [38,39]. The clustering of
extreme volatilities made it possible to predict the volatility series from the neighboring past values.
We found that the trading volume volatility can also help to predict the price volatility. The price
volatility of SZSE was more likely to be inferred than SSE as D was larger. This is consistent with
the previous findings [40]. The Shanghai market was relatively more stochastic than the Shenzhen
market (i.e., the Shenzhen market was a little more structured and predictable). This reflects the fact
that the Shenzhen market consists of most of the medium- to small-sized companies in China; they
are relatively less stable than the large companies. Moreover, the predictability of the price volatility
increased when the scale s increased.

4.2. Daily Data Analysis

We next analyze the predictability of the daily data of SSE and SZSE. The SSE data ranged
from 19 December 1990 to 9 October 2018. The SZSE data ranged from 3 April 1991 to 8 October
2018. The correlations between Chinese stock markets and other major stock markets in the world
were rather low most of the time. This indicates the fact that Chinese stock markets are relatively
independent of the other stock markets, and therefore, we treated the Chinese stock market as an
isolated system here. The left panels of Figure 5 show the predictability of the stock price, logarithmic
return, and price volatility for SSE, respectively. The right panels show those for SZSE, respectively.

For the non-stationary daily stock prices, the predictability on the upper panels of Figure 5 is high,
but meaningless, in the presence of either X;_; alone or X;_1&Y;_1. On the middle panels of Figure 5,
the daily logarithmic return is more likely to be predicted given the past values of the logarithmic
return and logarithmic change of trading volume than given the past values of the logarithmic return
alone: Dy, 1 (6),Y, 1(s)>Xi_1(s) > Px,_1(s)—X;_1(s)- However, the shuffled data showed a bit confusing
results, as Dy, | (5)y,_,(s)> X, (s) and DX!*—1<S)’Y;—1(S)*>X;‘—1(S) were very close to each other, especially
for the Shenzhen market.

We show the results of daily price volatility on the lower panels of Figure 5. The degree of the
predictability became larger than that of the daily logarithmic return. Moreover, the MED values
were much larger for the daily data than the five-minute data. This indicates that the daily data were
more deterministic and predictable than the high-frequency data. The Shanghai market and Shenzhen
market showed very similar results.

Our daily data results showed an average degree of predictability. However, they involved times
of both high and low volatilities, which implies a change in market behavior. During the times of high
volatility (e.g., the 2008 world economic crisis), we found that the degree of predictability increased;
while during the times of low volatility, the degree of predictability was much lower. This coincides
well with previous studies [40] that the economic crisis can reduce the complexity of stock time series,
making the volatility easier to predict.

To be noted, the reasons why we considered only one lag for each variable were two-fold:
(i) Suppose that the sampling frequency of the original time series is f. In the multiscale analysis,
the coarse-graining process, like a low-pass filter, can down sample the time series to f/s. Therefore,
for the five-minute high-frequency data, although we used one lag for each variable, we still considered
long-distance connections, which were much larger than five minutes. (ii) For most cases, we found
that the low-frequency daily data could be approximated by one-order Markov processes. This means
that major information could be be exposed by the current daily price and trading volume. Further,
past daily data contributed little to predicting the market behavior of the following day, in the presence
of the current data.
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Figure 5. The MED for the daily stock data in the Shanghai and Shenzhen markets. Left panels show

the results of the stock price (upper left), logarithmic return (middle left), and price volatility (lower

left) for SSE, respectively. Right panels are those for SZSE, respectively. The data related to trading

price are given by X, and the data related to trading volume are given by Y. X* and Y* represent the

shuffled data.

5. Conclusions

In this paper, we introduced a new information-theoretic tool of MED to evaluate the degree of
predictability for financial time series. The MED quantifies the contributions of the past values by
reducing the uncertainty of the forthcoming values in time series on multiple time scales. For the
isolated system, only the past values of the time series alone can be used. However, for the open
systems, the past values of the time series and the past values of other time series (which have a close
relationship with the underlying time series) can both be utilized. We performed several simulations
based on the method, including the logistic map, the Hénon map, and the Lorenz system. All these
simulations verified the accuracy and the robustness of our new method. We finally applied the MED
method to the analysis of Chinese stock markets. The analysis on the five-minute high-frequency data
and daily data of SSE and SZSE revealed that: (i) the logarithmic return had a lower possibility of
being predicted than the price volatility; (ii) the trading volume volatility contributed significantly to
the prediction of the stock price volatility on multiple time scales; (iii) the daily data were found to
have a larger possibility of being predicted than the five-minute high-frequency data.
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We note that our new evaluation methods of predictability were based on the assumption of
the generalized Markov processes of the underlying time series. However, there still exist many
other predicting methods that do not follow such a rule. For example, the k-nearest neighbors (KNN)
prediction method [41] and the recurrence quantification analysis (RQA) tool [42] trace out more
long-distance past values, so as to match them with the current states. In such a case, our methods
would not be applicable any more.
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Abstract: In this paper, a new method of biometric characterization of heart sounds based on
multimodal multiscale dispersion entropy is proposed. Firstly, the heart sound is periodically
segmented, and then each single-cycle heart sound is decomposed into a group of intrinsic mode
functions (IMFs) by improved complete ensemble empirical mode decomposition with adaptive noise
(ICEEMDAN). These IMFs are then segmented to a series of frames, which is used to calculate the
refine composite multiscale dispersion entropy (RCMDE) as the characteristic representation of heart
sound. In the simulation experiments I, carried out on the open heart sounds database Michigan,
Washington and Littman, the feature representation method was combined with the heart sound
segmentation method based on logistic regression (LR) and hidden semi-Markov models (HSMM),
and feature selection was performed through the Fisher ratio (FR). Finally, the Euclidean distance
(ED) and the close principle are used for matching and identification, and the recognition accuracy
rate was 96.08%. To improve the practical application value of this method, the proposed method
was applied to 80 heart sounds database constructed by 40 volunteer heart sounds to discuss the
effect of single-cycle heart sounds with different starting positions on performance in experiment
II. The experimental results show that the single-cycle heart sound with the starting position of the
start of the first heart sound (S1) has the highest recognition rate of 97.5%. In summary, the proposed
method is effective for heart sound biometric recognition.

Keywords: heart sound; ICEEMDAN; RCMDE; Fisher ratio; biometric characterization

1. Introduction

Heart sound is a complex, non-stationary and quasi-periodic signal that is consisted of multiple
heartbeats or cardiac cycles, which mainly contain components such as the first heart sound S1,
the second heart sound S2, systolic murmur and diastolic murmur. Heart sound originates from the
opening and closing of the heart valve and the turbulence of blood, which contains physiological
information, such as atria, ventricles, major vessels, cardiovascular vessels and functional status
of various valves, and could reflect mechanical activity and structure status of heart. As the
biometric characteristics, the biggest advantage of heart sound is universality, stability, uniqueness and
collectability [1]. So far, there have been studies that have verified the feasibility of heart sound signals
for biometric identification. The heart sound signal as an option for biometric identification was first
introduced by Beritelli and Spadaccini [2]. Their method needs to locate and describe S1 and S2, then
chirp-z transform (CZT) is performed to obtain the feature set, and finally, Euclidean distance (ED) is
used as classifier. In another study, Phua et al. [3] introduced linear frequency band cepstrum (LFBC) for
heart sound feature extraction and used two classifiers of vector quantization (VQ) and Gaussian mixture
model (GMM) for classification and recognition. Beritelli and Spadaccini [4] continued improving the
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performance of phonocardiogram (PCG), building a human recognition system based on 13 MFCC
extracted from S1and S2 for feature extraction and First-to-Second ratio distance (FSR), achieving an
equal error rate (EER) of 9% on 50 different people. Beritelli et al. [5] discussed that increasing the test
set from 50 to 80 did not give a negative impact on EER. Fatemian et al. [6] Proposed a PCG signal
identification and verification system. The system is based on wavelet preprocessing, feature extraction
using short-time Fourier transform (STFT), feature dimension reduction using linear discriminant
analysis (LDA) and majority voting using Euclidean distance for classification. Tran et al. [7] Used
eight feature sets such as temporal shape, spectral shape, Mel-frequency cepstral coefficients (MFCC),
linear frequency cepstral coefficients (LFCC), harmonic feature, rhythmic feature, cardiac feature,
GMM-super vector as heart sound biometric recognition features, using two feature selection techniques
and using support vector machine (SVM) for 52 users Classification recognition. Cheng et al. [8]
introduced a human feature extraction method based on an improved circular convolution (ICC) slicing
algorithm combined with independent subband function (ISF). The technology uses two recognition
steps to obtain different human heart sound characteristics to ensure validity, and then uses similar
distances for human heart sound pattern matching. Chen et al. [9] proposed a biometric recognition
system based on heart sounds. The system uses wavelet for noise reduction, MFCC for feature
extraction and Principal component analysis (PCA) for feature dimension reduction. Zhong et al. [10]
proposed a biometric method based on cepstrum coefficients combined with GMM. These cepstrum
coefficients are MFCC and LPCC, which are applied to 100 heart sounds of 50 people to test the
algorithm. Zhao et al. [11] proposed a heart sound system based on marginal spectrum analysis and the
classifier is based on VQ. Babiker et al. [12] present the design of a system for access control using a heart
sound biometric signature based on energy percentage in each wavelet coefficients and MFCC feature.
Db5 wavelet decomposition is used for noise reduction and ED is used for classification. The results
show that the MFCC feature has better performance than the wavelet coefficient energy percentage.
Akhter et al. [13] explored the possibility of using heart rate variability (HRV) in biometrics. They
designed hardware and software for data collection. They also developed software for HRV analysis
in Matlab, which uses various HRV Analysis techniques (such as statistics, spectrum, geometry, etc.)
generate 101 HRV parameters (features), and use five different wrapper algorithms for feature selection,
and obtain 10 reliable features from the 101 parameters, and finally use K Nearest Neighbor (KNN)
classifies objects. The above introduces the common methods of heart sound biometrics. It can be found
that the information entropy theory has not been applied in this field. At the same time, the information
entropy theory has shown good results in the biological recognition of electrocardiogram (ECG) and
electroencephalogram (EEG) signals [14-16]. In this paper, for the first time, multiscale entropy theory
is introduced for the study of heart sound biometrics.

Ensemble empirical mode decomposition (EEMD) is a widely-used tool for the analysis of
biomedical signals. It was proposed to overcome the deficiencies of ending effects and mode mixing in
non-stationary signal decomposition when applying Empirical mode decomposition (EMD) to the
time series. Recently, a new signal decomposition method based on the EEMD is presented, named
as improved complete ensemble empirical mode decomposition with adaptive noise ICEEMDAN),
which provides a better spectral separation of the modes and a lesser number of sifting iterations is
needed, reducing the computational cost. In this paper, ICEEMDAN is employed for heart sound signal
decomposition to extract effective intrinsic mode functions (IMFs). To quantify the feature information
of IMFs extracted from heart sound signals, dispersion entropy (DE), a new measure of uncertainty or
irregularity, is introduced. The method tackles sample entropy (SE) and permutation entropy (PE)
limitation. As a result of the relevance and the possible usefulness of DE in several signal analyses, it is
important to understand the behavior of the technique for various kinds of classical signal concepts
such as amplitude, frequency, noise power and signal bandwidth. In addition, the coarse-graining
process is introduced to improve DE performance in estimating the complexity at the multiple time
scales data, which is named as multiscale dispersion entropy (MDE). Recently, the refined composite

54



Entropy 2020, 22, 238

MDE (RCMDE) is proposed to improve the computing speed and stability, which is more applicable to
process the short and noisy signals in biomedical applications.

To avoid the error, the testing data should be consistent with the length of the corresponding
training data. Furthermore, the heart sound signal has pseudo-periodicity, and each cardiac cycle
contains the dynamic acoustic characteristics of the heart structure. The cardiac cycle is different for
each individual, which also reflects physiological characteristics between individuals. Therefore, this
work takes single-cycle heart sound as the input of the proposed method, and RCMDE is combined
with ICEEMDAN to quantify the important biometric information of the individual contained in every
cardiac cycle. For the heart sound signal more than one cycle, it is firstly periodically segmented,
and then the single cycle of heart sounds is decomposed into a group of IMFs by ICEEMDAN. These
IMFs are then segmented to a series of frames, which is used to calculate the RCMDE as a characteristic
representation of the heart sound. In addition, feature selection was performed to remove redundant
features through the Fisher ratio (FR), and then ED is used to metric and match the features, and finally
forming a new method based on ICEMDAN-RCMDE-FR-ED. At the same time, it can be considered
that ICEEMDAN-RCMDE-FR has generated a kind of biometric characterization of heart sounds,
which is named as the multimodal multiscale dispersion entropy. The feature generation flowchart of
the multimodal multiscale dispersion entropy is as Figure 1.

Heart d
eart soun *| BIMF 1 |—> -'| 1-th frame |" Feature
T Selection
S BIMF 2 Mo FR)
Preprocessing O M Erami RCMDE l
DAN Selection raming
Multimodal

Periodic N Multiscale

segmentation —'l BIMF K I—’ -'| M-th frame ]—i Entropy

Figure 1. The feature generation flowchart of the multimodal multiscale dispersion entropy.

2. Materials and Methods

2.1. Mathematical Model of Heart Sound

In heart sound biometric recognition, heart sound is a non-stationary and quasi-periodic signal
due to the rhythmicity of the heartbeat. Although the waveform of each cardiac cycle of heart sound
has slight differences in time and magnitude, heart sound can be approximated to the periodic signals
in the mathematics model. At the same time, since each cardiac cycle of heart sound contains four
main components, including the first heart sound S1, the second heart sound S2, systolic murmur and
diastolic murmur, cardiac cycles of heart sound are considered as the main objective of the biometric.
The mathematical model of heart sound can be described as follows:

N
x(i) = ;OxT(i—nL)

n= )
xr (i) = S1(i) 4+ Sysmur(i) 4+ S (i) + Diasmur (i)

In the first step of Formula (1), x7(i),i = 1,2,...,L, represents any period in the heart sound,
the length of heart sound is L = T = Fs, where T represents the cardiac cycle, Fs represents the sampling
frequency; x(i),i = 1,2,...,N = L, represents a heart sound signal containing N cardiac cycles. In the
second step of Formula (1), S (i) represents the first heart sound S1, Sysmur(i) represents the systolic
murmur, Sy (7) represents the second heart sound S2 and Diasmur(i) represents the diastolic murmur.
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2.2. ICEEMDAN Method

Empirical Mode Decomposition (EMD) is an adaptive method for analyzing non-stationary signals
originating from nonlinear systems. It decomposes the original signal into the sum of the intrinsic
mode functions (IMFs), which can be described as follows [17]:

(1) Setk = 0and find all extremums of ry = x.

(2) Interpolate between the minimum value (the maximum value) of 1y to obtain the lower (upper)
envelope emin (emax)-

(3) Calculate the average envelope: me = (emin + €max) /2.

(4) Calculate the candidate IMF: dy1 1= ry—me.

k
(5) Isdgyq an IMF? Yes, save d_(k+1), calculate the residual ry 1= x— ,Z d;, make k =k +1, and put

i=1
11 as input data in step (2). No, dy.;1 is taken as input data in step (2).
(6) Continue to cycle until the final residual ry meets some predefined stopping criteria.

The improved complete ensemble empirical mode decomposition with the adaptive noise
(ICEEMDAN) method has been proved to be suitable for the processing of biomedical signals.
The algorithm not only overcomes the mode mixing problem of EMD but also eliminates the spurious
mode in CEEMDAN. Let E;(-) denote the operator of the kth modal obtained by EMD, w(!) denotes
the realization of white noise with zero mean and unit variance and M(-) denotes the operator
for calculating the local mean of the signal. The realization steps of ICEEMDAN algorithm are as
follows [18,19]:

(1) Calculate the local mean of the signal by I-times realization of EMD: r, = r1 + ﬁlEZ(a)(i) ), get the

first residual r; = <M (x([))>, where (-) represents the average operator.

(2)  The first modal is calculated from the residual r; obtained in the step (1): d; = x —r1.

(3) The second residual is calculated by x® = x4+ PoE1 (a)<i)), and defines the second mode:
d=r-rn=r- (M(Vl +ﬁ1E2(w<i)))>.

(4) Fork=3,4,...,K, calculate the kth residual: r, = <M(7’k,1 + ﬁk,lEk(w(i))))

(5) Calculate the kth modal: t;l; = Tty — k-
(6) Go to the next k of step (4) until all modes are obtained.

The constant fi_ is selected to adjust the signal-to-noise ratio (SNR) between the residual and the
added noise. For k = 1, By = egstd(x) /std(E1 (w?))), where std(-) represents the standard deviation, &g
is the reciprocal of the required SNR between the input signal x and the first added noise. For k > 2,
B = eostd(rk).

2.3. RCMDE Method

Multiscale dispersion entropy (MDE) is a combination of coarse-grained and dispersion entropy,
and the refine composite multiscale dispersion entropy (RCMDE) improves MDE in that the different
starting time of the coarse-grained time series corresponding to the different scale factors 7 is adopted.
Based on multiscale techniques, the main steps for calculating RCMDE are as follows [20-22]:

(1) The first is to construct a continuous coarse-grained time series. For a univariate signal

(1)

x(i)(i=1,2,...,N), Its J-th coarse-grained time series AV = {x(T) Xy, } can be showed as follows:

J Jirg2re
@ 1 jr+]-1
X == Y, wmil<j<Ni1<]s<t 2)
i=(j-1)t+]

where 7 is the scale factor, and the original time series x is scaled by controlling the value of 7.
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(2) Map x( ) into y; 9 with the normal cumulative distribution function:

rp

TR

(T)

where ¢ and i represent the standard deviation and mean of X respectively.

(1)

(3) Assign each y); toan integer from Label 1 to c using a hnear algorithm. The mapped signal
can be defined as follows
Z;Tj’c) = round(c- y}T].) +0.5) 4)

(,0,m)

(4) Define embedding vector z 1 with embedding dimension m and time delay 4 as:

(,c,m)

— C C o
L= {ZLJ'ZIM' = 'Z/,j+<m—1>d} ®)
(t,c,m) .

Each time series z 1 is mapped to a dispersion pattern 7ty0,..0,,,, Where:

(te) _ (te) _ (t,0)
U R R R

z 77]Lj+(m=1)d = Um-1

(5) For each dispersion pattern, the relative frequency can be obtained as:

Number{j‘j <SN-(m-1)d, z}T].’C’m)hus_type_vovl e vm_l}
N-(m-1)d

©)

P(Togoy...op ) =

where p(7tog0,..0,_, ) Tepresent the number of dispersion pattern which is assigned to Z;Tj’c’m) divided by
the total number of embedding signals with embedding dimension m.

(6) Based on Shannon'’s definition of entropy, multiscale dispersion entropy with embedding
dimension m, time delay 4, and the number of classes ¢ can be defined as:

o

RCMDE(x/m Crd T Zp nv(ﬂ’] Um— ])Inp(nvovl Um— 1) (7)

2.4. Feature Selection

Fisher Ratio (FR) is proposed on the basis of Fisher criterion. It is used to measure the classification
and recognition ability of features and has been successfully used by Pruzansky and Mathews in the
research of speech recognition [23]. In this paper, the Fisher ratio is used to select the optimal features
and the steps are as follows:

(1) Calculate the inter-class dispersion Opetween, Which is used to measure the degree of dispersion
of the r-dimensional feature parameters between the heart sound signals of various categories. The

calculation formula is:
M
; 2
Obetween — Z (”ﬁl) - IJF) (8)
i=1
where M represents the total number of heart sound samples, yﬁi) is the mean value of the r-dimensional
feature parameters of the i-th type heart sound signal, and y; is the mean value of the r-dimensional
feature parameters in all heart sound signals.
(2) Calculate the intra-class dispersion oyyithin, which is used to measure the degree of dispersion in
the r-dimensional feature parameters of a certain type of heart sound signal. The calculation formula is:
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M nj
1 . N2
owiin = 3, (-3 () =) ] ©)
i=1 j=1
where 1; is the number of heart sound samples of the i-th type heart sound signal, xﬁj ) is the r-dimensional
feature parameter of the j-th heart sound sample of the i-th heart sound signal.
(3) To calculate the Fisher ratio, the calculation formula is:

F, — Obetween (10)
Owithin
where F, is the Fisher ratio of the r-dimensional characteristic parameter.
(4) Sort the Fisher ratio of each dimension feature parameter in descending order:

Fi,Fy,...,FR > Fyy > Fpy > ...> Fpy 1)

wherer; €{1,2,...,R},i =1,2,...,R, Ris the dimension of the characteristic parameter.

(5) The larger the Fisher ratio, the stronger the classification and recognition ability of the feature
parameter of the dimension. According to this principle, the top N, dimensional feature parameters
ranked first in (4) is selected as the optimal features.

2.5. Matching Recognition

This paper adopts the Euclidean distance (ED) and the close principle to realize the pattern
recognition of the user’s heart sound. The idea of the algorithm is as follows: when the data and
labels in the training set are known, compare the one-dimensional feature vector of the test data with
the corresponding feature vector in the training set to find the one-dimensional feature vector most
similar to it in the training set, then the category corresponding to the test feature vector is the category
corresponding to the training feature vector. The algorithm steps are:

(1) Calculate the distance between the test data and each training data;

For the feature vector v of the test data and the feature vector v4 of the A-th training data in the
heart sound database, the Euclidean distance d4 in the D dimension Euclidean space is calculated
as follows:

(12)

where A =1,2,...,C, Cis the number of training data, and D is the dimension of the feature vector.
(2) Sort in increasing order of distance:

dy,dy, ... de = dy, > dyy > .. > dy 13)

where x; € {1,2,...,C},i =1,2,...,C.

(3) According to the selection principle, the closer the distance, the higher the degree of matching
between the two data. The category corresponding to the closest feature vector vy, is selected as the
prediction classification of the test data.

2.6. Evaluation Methods

This paper uses the following three indicators to evaluate the proposed algorithm [24]:

(1) Average test accuracy: The CRR obtained by averaging the CRR of ] experiments was used
as the final experimental result, as shown in Equation (9). Considering the calculation amount and
accuracy comprehensively, | = 200 is taken in the following experiment of parameter selection and
algorithm comparison.
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~ _ Number_of_correctly_identified_subjects_in_trial_j
CRR (]) - Total_number_of_subjects
L ] (14)
CRR =3 21 CRR(j)
=
(2) Kappa coefficient: Kappa coefficient is an index to measure the accuracy of multi-classification.
Its calculation formula is as follows: P
Kappa = =—— 15
PP 1-pe (15)
Among them, py is the sum of the number of correctly classified samples of each class divided by
the total number of samples, which is the overall classification accuracy. Suppose the number of true
samples in each class is a1, 4, . . ., 4., and the number of predicted samples in each class is by, by, ..., b,

and the total number of samples is num.

_ mby+asby + ... +ache
num-num

e (16)

The kappa coefficient is usually between 0 and 1 and can be divided into five groups to represent
different levels of classification accuracy: 0.0 to 0.20 extremely low classification accuracy, 0.21 to
0.40 general classification accuracy, 0.41 to 0.60 high classification accuracy, 0.61-0.80 very high
classification accuracy and 0.81-1 extremely high classification accuracy.

(3) t-test: t-test uses the t-distribution theory to infer the probability of a difference occurring,
thereby comparing whether the difference between the two averages is significant. This paper is
repeatedly training/testing by randomly dividing the training set/test set multiple times, therefore this
will get multiple test accuracy rates. Therefore, the t test can be used to verify whether the CRRy
selected in this paper can be used as generalization Accuracy. Assuming the generalization accuracy
to = CRRago, we get n test accuracy rates, CRR(i),i = 1,2,...,n, then the average test accuracy y and

variance o2 are: ,
1 .
p= ;; CRR(i) 17)
1 v N2
o? = - _1; (CRR(i) - ) (18)

Considering that the accuracy of these n tests can be regarded as independent sampling of the

generalization accuracy (o, then the variable t = w
freedom. This paper uses the following t-test steps:

(1) First establish hypotheses and determine the test level a:

Hy : u = po (zero hypothesis), Hy : u # g (alternative hypothesis), using bilateral hypothesis, a
commonly used values are 0.05 and 0.1, the test level is & = 0.05 in this paper.

(2) Calculate the test statistics: t = w

(3) Check the corresponding critical value table to determine the critical value ¢, ,) and conclude:
If the value of t is within the critical value range [~f(4 ), t(a,0)], you cannot reject the assumption that
Hy : g = po, you can think that the generalization accuracy is y, the degree of confidence is 1 - a;
otherwise, the hypothesis can be rejected, that is, under this significance degree, the generalization
accuracy (o can be considered to be significantly different from the average test accuracy u.

follows a t-distribution with n—1 degrees of

3. Results and Discussion

3.1. Data Sources

To verify the effectiveness of the proposed method, the open databases of heart sound recordings
and the heart sound database built by our research group are both analyzed. The open database
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used in this paper consists of 72 heart sounds from the three open heart sound databases Michigan,
Washington and Littman, including 18 normal heart sounds and 54 abnormal heart sounds. Among
them, 23 cases and 16 heart sounds were obtained from the Michigan and Washington heart sound
database, and 33 heart sounds were selected from 3M’s Littman heart sound database, because 3 heart
sounds that did not meet the experimental conditions (i.e., not satisfied should contain at least two
cardiac cycles) was abandoned. For the Michigan and Washington heart sound databases [25,26],
the sampling frequency is 44.1 kHz, and the acquisition time is about 60 s, respectively including 23
and 16 heart sounds. For the Littman heart sound database [27], the sampling frequency is 11.025 kHz,
and the acquisition time is about 3 s. The heart sound database built by our research group consisted
of 80 cases of heart sound recordings from college student and teacher volunteers, which are collected
by using the Q) shoulder-belt wireless heart sound sensor self-developed by our research group (patent
number: 201310454575.6) with sampling frequency of 11,025 Hz. Every volunteer is recorded twice at
least one-hour intervals, and every time keep approximately 5 s by properly contacting it with the skin
of the front chest wall of the subject, as shown in Figure 2. The heart sound recording is from the apex
located slightly inside the midline of the left intercostal bone of the fifth intercostal space obtained
from the valve area. In addition, the heart sound recordings obtained from the subjects are collected in
their calm state, and the recorded heart sound recordings are stored in a .wav format.

(b)

Figure 2. Heart sound database collected by our group: (a) () shoulder-belt wireless heart sound

sensor; (b) The processing of collecting heart sound.

3.2. Feature Extraction and Recognition

3.2.1. Pretreatment

The original signal is first preprocessed before performing feature extraction and matching
recognition. The preprocessing module includes set the labels for heart sounds, downsampling,
denoising, and cycle segmentation. Firstly, the 72 heart sound recordings of the three open heart sound
databases are set the labels of 1-72 separately to distinguish the individual corresponding to each heart
sound. Then the downsampling frequency is set to 2000 Hz, and the background noise when collecting
heart sounds is eliminated by using the wavelet packet multi-threshold denoising method. Wavelet
packet multi-threshold denoising is through setting a certain threshold value for each layer of wavelet
packet coefficients to quantify and analyze each wavelet coefficient, retain useful data and eliminate
unnecessary data. Different wavelets may cause different denoising effects, therefore, Biorthogonal HS
wavelets developed for heart sound signals [28] is used here to filter in this work. The specific process
is as follows:

(1) Performing four-layer HS wavelet packet transform on the noisy signal, and obtain a set of
wavelet packet coefficients wpt;, i = 1,2,...,16;

(2) To quantify the threshold of wpt; separately by selecting the Heursure function, and use the
threshold to remove the useless data in wpt;;

(3) To perform discrete wavelet reconstruction by using the denoised coefficient wpt;, and the
reconstructed signal is the denoised signal.
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3.2.2. Periodic Segmentation

Since the proposed feature extraction method is based on single-period heart sounds, the logical
regression (LR) and hidden semi-Markov model (HSMM) heart sound segmentation method proposed
by Springer et al. is used in this work, which has proven in the 2016 PhysioNet/CinC Challenge to
accurately segment heart sounds in noisy real heart sound recordings with good performance [29-31].
In this paper, the heart sound segmentation method is firstly used to assign four states such as S1
(the first heart sound), systole, S2 (the second heart sound) and diastole for the preprocessed heart
sound recordings. The time point of the first jump from the initial state of the current heart sound
recording to the next state is used as the initial split point. The following four situations may be
obtained: (1) a series of cardiac cycles segmented from the beginning of S1 to the beginning of the next
S1 of the current heart sound recording; (2) a series of cardiac cycles segmented from the beginning
of the systole to the beginning of the next systole of the current heart sound recording; (3) a series of
cardiac cycles segmented from the beginning of S2 to the beginning of the next S2 of the current heart
sound recording; (4) a series of cardiac cycles segmented from the beginning of the diastole to the
beginning of the next diastole of the current heart sound recording. The schematic diagram of the
heart sound cycle segmentation corresponding to these four cases is shown in Figure 3.
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Figure 3. Four methods of heart sound cycle segmentation. (a) A series of cardiac cycles segmented
from the beginning of S1 to the beginning of the next S1 of the current heart sound recording; (b) a
series of cardiac cycles segmented from the beginning of the systole to the beginning of the next systole
of the current heart sound recording; (c) a series of cardiac cycles segmented from the beginning of
S2 to the beginning of the next S2 of the current heart sound recording; (d) a series of cardiac cycles
segmented from the beginning of the diastole to the beginning of the next diastole of the current heart
sound recording.

By the above segmentation method, 72 heart sound recordings in the open heart sound databases
are divided into 2005 single-cycle heart sounds, where each heart sound recording is divided into
2-101 single-cycle heart sounds according to their length. In each of the following experiments,
a single-period heart sound was randomly selected from the single-cycle heart sounds from the same
heart sound recording as a test data, so that the test data contained 72 single-period heart sounds from
different individuals, and the remaining 1933 single-cycle heart sounds were used as training data.

3.2.3. Framing and Windowing

Similar to the speech signal, heart sound is also a non-stationary and time-varying signal. Therefore,
the heart sound signal is divided into a set of frames to analyze its characteristic parameters. For each
frame, the length of the frame is called the frame length. The standard speech frame length is 20 ms
to 25 ms, which is not suitable for heart sounds due to its pseudo-periodicity. Reference [32] thinks
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that the frame length of heart sounds should be longer than 20-25 ms, and it is best when the frame
length equals to 256 ms. In this paper, the frame length of the heart sound should be related to the
cardiac cycle, and frame lengths should be set different values according to the cardiac cycle. Further,
the distance from the start of the frame to the start of the subsequent frame is called the frameshift.
To smoothly change the feature parameters, a part of the overlap between adjacent frames is often
provided in the case of framing. To prevent spectrum leakage, windowing is usually performed for
each frame of heart sounds, usually a Hanning window or a Hamming window.

The single-cycle heart sound obtained after preprocessing and period segmentation is framed by
overlap windowing, and then the RCMDE features of each frame are calculated. Then, the RCMDE
features of each frame of the single-cycle heart sound are combined into a one-dimensional feature
vector. When calculating RCMDE, four important parameters in RCMDE that may have a greater
impact on the results, namely scale factor 7, categories ¢, embedding dimension r and delay time 7.
In this experiment, a large number of experiments show when the scaling factor 7 = 20, the categories
c = 3, the embedding dimension m = 2 and the delay time d = 1, the algorithm performance is the best.
In Figure 4a, the RCMDE characteristics of two different single-cycle heart sounds of the same person
after windowing and framing are compared. As can be seen from the figure, all feature points of the
two single-cycle heart sounds are distributed near the 45° line. It shows that the two single-cycle heart
sounds are close in their corresponding eigenvalues, and they are relatively matched. In Figure 4b,
the RCMDE characteristics of two single-cycle heart sounds of different people after windowing and
framing are compared. It can be seen that the two single-cycle heart sounds have more feature points
distributed farther from the 45° line, which indicates that the two single-cycle heart sounds have
relatively large differences in corresponding feature values, and are not well matched. In Figure 4,
the frame length is taken as T/4, the frameshift is taken as T/8 and the Hanning window is used.

the same person i the different persons

%

the single cycle heart sound HS2

-1 0 1 2 3
the single—cycle heart sound HSI the single—cycle heart sound HS1

(a) (b)

Figure 4. Comparison of refine composite multiscale dispersion entropy (RCMDE) characteristics of
single-cycle heart sounds after windowing and framing: (a) Comparison of RCMDE characteristics of
two single-cycle heart sounds of the same person; (b) comparison of RCMDE characteristics of two
single-cycle heart sounds of different persons.

From the above analysis, it can be known that the RCMDE feature of single-cycle heart sounds
after windowing and framing is feasible for the identification of different individuals. The effect of
setting different frame lengths and frameshifts on the performance of the algorithm based on the
cardiac cycle is discussed below. Here, adopting the control variable method, the above-mentioned
parameters remain unchanged. It is discussed that the frame length takes win =T/i (i=1,2, ..., 20)
respectively in the condition of no frame overlap, and the corresponding CRR is as shown in the left
half of Table 1. The result shows that the optimum frame length is T/4. Then, it is discussed that when
the frame length takes T/4 unchanged, the frameshift takes inc = win/i (i =1, 2, ..., 10) respectively,
and the corresponding CRR is as shown in the right half of Table 1. The result shows that when the
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frameshift is win/5, the best performance is achieved, and adding the frame overlap latter has not
improved CRR.

Table 1. Comparison of the recognition performance of setting different frame length and frameshift
based on the cardiac cycle on the three open heart sound databases.

Heart Sound Including 2005 Single-Cycle Heart Sounds from the Open Database Michigan,

Database Washington, and Littman
Algorithm RCMDE-ED
win (inc = win) CRR inc (win = T/4) CRR
T 45.16% win 84.55%
T/2 78.71% win/2 84.82%
T/3 82.52% win/3 88.88%
T/4 84.55% win/4 87.11%
T/5 81.09% win/5 90.08%
T/6 82.83% win/6 88.68%
T/7 81.56% win/7 88.20%
T/8 76.77% win/8 88.64%
T/9 75.13% win/9 89.66%
T/10 65.40% win/10 89.47%

3.2.4. ICEEMDAN-RCMDE-FR-ED Algorithm

To achieve a higher CRR, the ICEMDAN algorithm is used to decompose the training/test cycles
into a group of IMFs, and then the hamming window with the window size of T/4 and the window
shifting of T/20 is used to frame these IMFs. The training/test IMFs are segmented separately, and each
of the obtained heart frames is subjected to RCMDE calculations. The result is sent to the ED algorithm,
and the obtained CRR is shown in Table 2. Here, the parameters of the ICEEMDAN algorithm are
selected as follows, the noise standard deviation is Nstd = 0.2, the number of EMD implementations is
NR = 100, the maximum number of screening iterations allowed is MaxIter = 5000, and the SNRFlag
= 1 indicates that the signal-to-noise ratio (SNR) is incremental with EMD implementation. Since
ICEEMDAN is an adaptive decomposition algorithm, the number of modals obtained from different
heart sound cycles may be different. For comparison, only the least number of IMFs obtained by the
ICEEMDAN from the heart sound database is shown here.

Table 2. Comparison of the recognition performance of taking different intrinsic mode functions (IMFs)
as the input of the algorithm on the three open heart sound databases.

Heart Sound Including 2005 Single-Cycle Heart Sounds from the Open Database Michigan,
Database Washington, and Littman
Algorithm ICEEMDAN-RCMDE-ED
Input CRR Input CRR
IMF 1 90.04% IMF 5 41.08%
IMF 2 88.96% IMF 6 24.28%
IMF 3 82.68% IMF 7 14.94%
IMF 4 59.58% IMF 8 12.15%

It is found through experiments that the first three IMFs of the heart sound cycle, respectively
used as the algorithm input, can obtain a higher CRR compared with the others. It shows that the first
three IMFs not only contain the majority of the information in the heart sound cycle but also dig deep
the information in the entire heart sound cycle, which is expressed in a more detailed way. Therefore,
adding the features from the above three IMFs to one feature vector as a new heart sound feature is
considered. The original heart sound feature representation is shown in Figure 5a. The new heart
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sound feature representation is shown in Figure 5b. The red dot in the figure represents the single-cycle
feature as the training, and the green dot represents the single-cycle feature as the testing. Since the
single-cycle heart sounds as the training is much more than the single-cycle heart sounds as the testing,
it is shown in the figure below that the green dot is wrapped by the red dot.

25 T

350

1000

Scale

(b)

Figure 5. The feature characterization based on the different algorithms (a) the feature characterization
based RCMDE; (b) the new feature characterization based on the combination of improved complete
ensemble empirical mode decomposition with adaptive noise ICEEMDAN) and RCMDE.

Tt can be found from Figure 5 that the merged features have twice as many feature dimensions
as the original features and have great redundancy. Therefore, the Fisher ratio (FR) is used for
feature selection. After the features are ranked according to the Fisher ratio, the features are selected.
The first N, feature dimensions are used as new heart sound features. After experimental verification,
when N, = 300, the recognition performance is optimal. The CRRay and Kappa coefficients of
respectively using the original heart sound feature and the new heart sound feature with ED and the
close principle are shown in Table 3.

Table 3. Comparison of the recognition performance of RCMDE and ICEEMDAN-RCMDE-Fisher ratio
(FR) algorithms on the three open heart sound databases.

Including 2005 Single-Cycle Heart Sounds from the Open Database Michigan,

Heart Sound Database Washington, and Littman
Feature Extraction Numbers of Feature CRR Kappa Coefficients
RCMDE 320 90.08% 0.8994
ICEEMDAN-RCMDE-FR 300 96.08% 0.9602
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It can be seen from Table 3 that the CRRag9 and Kappa coefficients on the three public heart sound
databases obtained from the feature extraction method based on ICEEMDAN-RCMDE-FR are higher
than the feature extraction method based on RCMDE, and can achieve an average recognition rate of
96.08%. The Kappa coefficient is between 0.8 and 1, which indicates that the classification accuracy is
extremely high. The following t-test is used to verify whether CRRypp = 96.08% obtained in the above
table can be regarded as the generalization accuracy. Here, n random experiments are performed,
where n = 10, 20, 30, 50, 100, 200, 300, 400, 500, 600, respectively, the average test accuracy u and
standard deviation o corresponding to n experiments are shown in the left half of Table 4. Here it is
assumed that the generalization accuracy 1o = CRRgpo, the test level a is 0.05 and then the t value of n
experiments is obtained according to the t-test steps in Section 2.6, and the corresponding critical value
range is also given.

Table 4. Comparison of average test accuracy p, standard deviation ¢ and t value corresponding to n
random trials.

n Random The Average Test Standard The Critical Value The D.egree of
. e t Value Confidence
Trials Accuracy y Deviation o Range [—t(q,m),t(a,n)] 1a
n=10 0.9681 0.0147 1.570 [-2.262,2.262] 0.95
n=20 0.9653 0.0146 1.378 [-2.093, 2.093] 0.95
n=230 0.9634 0.0144 0.989 [-2.045, 2.045] 0.95
n=>50 0.9639 0.0161 1.362 [-2.010, 2.010] 0.95
n =100 0.9603 0.0162 -0.309 [-1.984, 1.984] 0.95
n =200 0.9608 0.0162 0 [-1.972,1.972] 0.95
n =300 0.9606 0.0162 -0.214 [-1.968, 1.968] 0.95
n =400 0.9608 0.0162 0 [-1.966, 1.966] 0.95
n =500 0.9607 0.0162 —-0.138 [-1.965, 1.965] 0.95
n =600 0.9608 0.0162 0 [-1.964, 1.964] 0.95

It can be seen from Table 4 that the t values corresponding to n experiments are all within the
critical value range [~t(4 ), t(a,n)], and the average test accuracy u corresponding to n experiments can
be considered Both can be regarded as generalization accuracy of y and the degree of confidence is
0.95. It can also be found from Table 4 that when the number of experiments n is greater than 200,
the average test accuracy u has basically stabilized at 96.08% and the t value has basically stabilized
near 0. Therefore, considering the stability and calculation cost, the number of experiments is taken as
J =200, the best generalization accuracy is py = 96.08%.

In summary, the feature extraction method based on ICEEMDAN-RCMDE-FR proposed in this
paper can achieve a generalization accuracy of 96.08% on three public heart sound databases with a
confidence level of 0.95, which shows that the multimodal multiscale dispersion entropy generated by
the ICEEMDAN-RCMDE-FR algorithm has good characterization of heart sounds, and it is suitable
for the field of biometrics. Considering that the classifier currently used is rough, this may be one of
the reasons why the CRR cannot be further improved. Therefore, different classifiers such as SVM
and KNN are compared with ED, and the results are shown in Table 5. The SVM classifier used here
is parameter-tuned. The two main penalty parameters c and the kernel function parameter g are 64
and 0.001, and the nearest neighbors of the KNN classifier are taken as k = 5, 3, 2, respectively. From
the results in Table 5, the difference between the best performance of the three classifiers is within 1%.
It can be found that the smaller the parameter k of KNN is, the higher the CRR is. When k =1 or
2, KNN is the ED classifier. The heart sound recordings in the open database are different in length,
therefore the data distribution in the single-cycle heart sound database generated by the segmentation
is not balanced, which may be the reason that the classifier performance cannot be further improved.
Since the ED classifier is relatively simpler, the matching recognition time is also faster. Considering
the combination, the ED classifier is most suitable for the heart sound database.
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Table 5. Comparison of recognition performance of SVM, KNN and ED classifier on the three open
heart sound databases.

Including 2005 Single-Cycle Heart Sounds from the Open Database Michigan,

Heart Sound Database Washington, and Littman

Feature Extraction ICEEMDAN-RCMDE-FR
. Classifier — . .
Classifier Parameter Speed CRR Kappa Coefficients

SVM c=64,g=0.001 Slowest 95.91% 0.9585

k=5 73.14% 0.7276

KNN k=3 Medium 84.83% 0.8462

k=2 95.97% 0.9591

ED and the close principle None Fastest 96.08% 0.9602

3.3. Practical Application of ICEEMDAN-RCMDE-FR-ED Algorithm

Although it has been considered in the previous section that the single-cycle heart sound as
the test data should be aligned with the corresponding single-period heart sound in the database,
the position of the initial split point is not the same when the heart sound cycle is divided. In the
practical application of the heart sound biometric identification system, when the single-cycle heart
sound is to be segmented from the randomly collected heart sound signal, the position of the initial
segmentation point must be fixed and kept consistent. Therefore, the heart sound segmentation method
based LR-HSMM proposed by Springer et al. [31] is firstly used to assign the states of the heart sound
recording of 40 volunteers collected in the natural environment, and then the following four initial
dividing points are used to obtain four kinds of single-cycle heart sounds as training: (1) The starting
position of the first S1 appearing in the heart sound recording is taken as the initial dividing point;
(2) the starting position of the first systole appearing in the heart sound recording is taken as the
initial dividing point; (3) the starting position of the first S2 appearing in the heart sound recording
is taken as the initial dividing point; (4) the starting position of the first diastole appearing in the
heart sound recording is taken as the initial dividing point. At least one hour later, the heart sound
recordings of the 40 volunteers were collected again, and four single-cycle heart sounds as testing
are respectively obtained in the same manner as the single-cycle heart sounds obtained as training.
A schematic diagram of four heart sound cycle segmentation methods is shown in Figure 6.
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Figure 6. Cont.
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Figure 6. Four cardiac cycle segmentation methods based on different initial segmentation points.
(a) The starting position of the first S1 appearing in the heart sound recording is taken as the initial
dividing point; (b) the starting position of the first systole appearing in the heart sound recording is
taken as the initial dividing point; (c) the starting position of the first S2 appearing in the heart sound
recording is taken as the initial dividing point; (d) the starting position of the first diastole appearing in
the heart sound recording is taken as the initial dividing point.
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It is known from experiments that the four segments of (a), (b), (c) and (d) obtain the same number
of single-cycle heart sounds: 209 single-cycle heart sounds as training and 190 single-cycle heart
sounds as testing. Since the current data set is relatively balanced, the feature processing here adopts
another method different from the previous one: that is, one-to-one method, the feature vectors of all
single-period heart sounds as training\testing corresponding to each of the individual are averaged to
obtain an average feature vector, so that each individual corresponds to only one average feature vector
as the training\testing. Then, the average feature vector as training/testing obtained from (a), (b), (c)
and (d) is used as the input of the ICEMDAN-RCMDE-FR-ED algorithm for verification experiments.
The selected parameters of the experiment are still the selected parameters in the previous section.
The experimental results in Table 6 show that the first segmentation method (a) achieves the highest
CRR = 97.5%, which may be since the Springer algorithm is more accurate for S1 segmentation, so the
segmentation (a) makes the training and testing features closer. The difference in CRR obtained by the
four segmentation methods is between 0% and 5%, and the difference in Kappa coefficients obtained by
the four segmentation methods is between 0 and 0.0513. The overall is very close, which may be due to
the use of the average feature vector, which enhances the robustness of the algorithm and does not
affect the result due to some bad single-cycle heart sounds. Therefore, the ICEEMDAN-RCMDE-FR-ED
algorithm proposed in this paper combined with the heart sound segmentation method based on the
logistic regression and hidden semi-Markov model (HSMM) has high practical application value in the
field of biometric identification.

Table 6. The recognition effect of ICEEMDAN-RCMDE-FR-ED on the self-built heart sound database.

Including the 80 Heart Sound Recordings from the
Self-Built Heart Sound Database

Algorithm ICEEMDAN-RCMDE-FR-ED

Heart Sound Database

The Starting and Ending Position of the

Input Single-Cycle Heart Sound CRR Kappa Coefficients

the starting position of S1—the starting o
position of next S1 97:5% 09744

the starting position of systole—the starting o
position of next systole 92.5% 09231

the starting position of S2—the starting o
position of next S2 95:0% 09487
the starting position of diastole—the 95.0% 0.9487

starting position of next diastole

3.4. Comparison with Related Literature

Table 7 lists performance comparisons between the proposed study and other existing heart
sound biometric work. Phua et al. [3] introduced linear frequency band cepstrum (LFBC) for heart
sound feature extraction and used two classifiers of vector quantization (VQ) and Gaussian mixture
model (GMM) for classification and recognition. The database used Composed of 10 users, the correct
recognition rate is 96%. Fatemian et al. [6] proposed a PCG signal identification and verification system.
The system is based on wavelet preprocessing, feature extraction using short-time Fourier transform
(STFT), feature dimension reduction using linear discriminant analysis (LDA) and majority voting
using Euclidean distance (ED) for classification. As a result, the recognition result for 21 subjects was
100%, and the equal error rate (EER) verification result was 33%. Tran et al. [7] used eight feature sets
such as temporal shape, spectral shape, Mel-frequency cepstral coefficients (MFCC), linear frequency
cepstral coefficients (LFCC), harmonic feature, rhythmic feature, cardiac feature, GMM-super vector as
heart sound biometric recognition features, using two feature selection techniques, and using SVM
for 52 users classification recognition, the first experiment achieved more than 80% accuracy and
the second experiment achieved more than 90% accuracy. Jasper and Othman [32] applied wavelet
transform (WT) to analyze the signals in the Time-Frequency representation, then selected Shannon
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energy envelogram (SSE) as the feature set, and tested the performance of the feature set in a database
of 10 people with an accuracy of 98.67%. Cheng et al. [1] introduced a human feature extraction
method based on an improved circular convolution (ICC) slicing algorithm combined with independent
subband function (ISF). The technology uses two recognition steps to obtain different human heart
sound characteristics to ensure validity, and then uses similar distances for human heart sound pattern
matching. The method was verified using 10 recorded heart sounds. The results show that the two-step
recognition accuracy is 85.7%. Cheng et al. [8] used heart sound linear band frequency cepstrum
(HS-LBEC) for feature extraction and used similar distances for classification. The results were done
on 12 heart sound signals, with a verification rate as high as 95%, false acceptance rate = 1% to 8%,
and a false rejection rate of less than 3%. Zhao et al. [11] used the heart sound database of 280 samples
constructed by 40 users to test their proposed marginal spectrum (MS) features and validated them
using 80 samples randomly selected from the open database HSCT-11. Gautam and Deepesh [33]
proposed a new method for heart sound recognition, which is based on preprocessing using a low-pass
filter, using autocorrelation to detect the cardiac cycle, and segmenting S1 and S2 by windowing and
thresholding. The method used WT for feature extraction and back propagation multilayer perceptron
artificial neural network (BP-MLP-ANN) for classification and the accuracy rate on 10 volunteers
reached 90.52%, the EER reached 9.48%. Tan et al. [34] demonstrated a new method for heart sound
authentication. The pre-processing is based on low-pass filtering, and then the heart sounds are
segmented using zero-crossing rate (ZCR) and short-term amplitude (STA) techniques to extract S1 and
52 sounds. Features are extracted using MFCC, and features are classified using a sparse representation
classifier (SRC). Fifteen users were randomly selected, and the best effect of 85.45% can be achieved.
Verma and Tanuja [35] proposed a heart sound-based biometric recognition system that uses MFCC for
feature extraction and SVM for classification. They studied 30 topics with an accuracy rate of 96%. Abo
Zahhad et al. [36] proposed a heart sound recognition system based on 17 subjects with an accuracy
rate of 99%. Features were selected using MFCC, LFCC, bark frequency cepstral coefficients (BFCC)
and discrete wavelet transform (DWT), and fused using Cone Correlation Analysis (CCA). GMM and
Bayesian rules were used for classification. Abo Zahhad et al. [37] used HSCT-11 and BioSec. databases
to compare the biometric performance of MFCC, LECC, wavelet packet cepstral coefficient (WPCC)
and non-linear frequency cepstral coefficients (NLFCC), and the conclusion is that WPCC and NLFCC
have better biometric performance in high noise scenarios.

Compared with the above work using different feature extraction, classification methods and
heart sound database, we can conclude that our method has the best effect in the same size heart
sound database. The previous methods were performed on normal healthy subjects, without taking
into account heart disease, and this paper conducted research on the open pathological heart sound
library Michigan, Washington, and Littman. Different from the previous method, we first use
the LR-HSMM-based heart sound segmentation method proposed by Springer [31] to segment the
pre-processed heart sound record into a series of single-cycle heart sounds, and frame and window
based on each cycle length to ensure that Each single cycle heart sound can get the same number of
frames. Different from the previous method, we first introduced RCMDE features for heart sound
biometrics, and selectively combined RCMDE with ICEEMDAN, FR and ED methods, and strived
to improve the mixed Recognition rate of normal and pathological heart sounds with more fine
characterization. The proposed method not only achieved a correct recognition rate of 96.08% on the
open heart sound database, but also achieved a recognition rate of 97.5% on the 80 heart sound database
composed of 40 healthy subjects constructed by the research group, and draw the conclusion that the
single-cycle heart sound recognition rate from the first heart sound (S1) to the next S1 is the highest.
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Table 7. Compared with the related literature.

Comparative Heart Sound . .
Literature Database Feature Extraction Classifier Accuracy
vQ CRR = 94%
Phua etal. [3] 10 people LFBC GMM CRR = 96%
. . CRR = 100%
Fatemian et al. [6] 21 subjects STFT LDA and ED FER = 33%
temporal shape, spectral
shape, MFCC, LFCC, CRR = 80%
Tran et al. [7] 52 users harmonic feature, rhythmic RFE-SVM eds
. CRR =90%
feature, cardiac feature and
GMM-super vector
Jasper af‘;;]Othma“ 10 people WT-SSE Template matching ~ CRR = 98.67%
Cheng et al. [1] 12 people 300 HS HS-LBFC similar distances CRR =99%
Cheng et al. [8] 10 people ICC-ISF similar distances CRR = 85.7%
40 participants 280 _ o
Zhao et al. [11] samples MS VQ and ED CRR =94.16%
HSCT-11 80 CRR = 92%
subjects
segment S1 and S2 by _ o
g:stzzr;\ a[r;;i] 10 subjects windowing and BP-MLP-ANN CEI}{EII{{ — 9904%% //0
P o thresholding +WT TR
extract S1 and S2 by ZCR _ o
Tan et al. [34] 52 users and STA techniques + MFCC SRC CRR = 85.45%
Verma and Tanuja o
[35] 30 people MECC SVM CRR =96%
Abo Zahhad et al. . MFCC, LFCC, BFCC and GMM and 000
[36] 17 subjects DWT+ CCA Bayesian rules CRR = 99%
HSCT-11 206 WPCC CRR =90.26%
Abo Zahhad et al. subjects NLFCC LDA and Bayesian CRR =92.94%
[37] BioSec. 21 subjects WPCC Decision Rules CRR =97.02%
‘ ) NLFCC CRR = 98.1%
Michigan, segment cardiac cycle by SVM CRR =95.91%
Washington, and LR-HSMM + framing and KNN CRR = 95.97%
The proposed Littman 72 subjects windowing + ED an‘d the close CRR = 96.08%
method ICEEMDAN-RCMDE-FR principle
40 users 80 HS ED and the close CRR = 97.5%
principle

4. Conclusions

In the current research, based on the characteristics of the heart sound signal, the improved
ensemble empirical mode decomposition (ICEEMDAN), fine composite multiscale dispersion entropy
(RCMDE), Fisher ratio (FR) and Euclidean distance (ED) is used to study the mixed recognition of
normal and pathological heart sounds, the following conclusions were reached:

(1) Given the quasi-periodic and non-steady-state characteristics of heart sound signals, this paper
first uses LR-HSMM-based heart sound segmentation to divide heart sounds into a series of single-cycle
heart sounds, and framing and windowing based on each cycle length to ensure each single cycle heart
sound can get the same number of frames.

(2) To solve the problem of unified representation of heart sound frames with different lengths,
this paper first introduces RCMDE for heart sound biometric identification and selectively combines
RCMDE with ICEEMDAN, FR and ED methods for heart sound Biometric characterization.

(3) The recognition rate of this method on the open pathological heart sound database Michigan,
Washington and Littman reached 96.08%, that is, the method can effectively recognize normal and
pathological heart sounds.
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(4) To enhance its practical application value, this paper applies the proposed method to a self-built
heart sound database. Research shows that the single-cycle heart sound recognition rate from the first
heart sound (S1) to the next S1 is the highest, which is 97.5%.

Although the features of this article have been proven to have a good effect on heart sound
biometrics, we believe that each biometric has its limitations, and the future research direction is bound
to integrate the outstanding performance features, and then use the latest powerful classifiers, such as
deep learning methods, achieve optimal recognition. It is even possible to consider using a combination
of feature extraction techniques for different signals, such as Abo-Zahhad et al. [38] proposed to use both
ECG and PCG signals in a multimodal biometric authentication system, and Bugdol, M.D. et al. [39]
proposed the multimodal biometric system combining ECG and sound signals. Of course, we also need
to consider the impact of subject age, database size, race, gender and disease status on the performance
of the biometric system. In the future, we can use features that are less affected by these factors to fuse
or use only specific features to biometrically identify specific populations, such as using the method in
this article to biometrically identify people with heart disease, so the research in this article can be used
as a foundation for future biological identification research.
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