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Preface to ”Advances in Large Scale Flood Monitoring

and Detection”

Changes related to climate, land use, population growth, and urbanization are deeply affecting

river basin hydrology. The evolution of such factors is making more and more complex the

understanding of hydrological processes amplifying impact of extremes. In this context, floods are

increasing in number, magnitude and impact, because several of the mentioned factors are concurring

in a systematic growth of floods risk.

Among these aspects, climate change is certainly one of the most controversial and difficult to

quantify. At the same time, the steady growth of impervious surfaces and reduction of forested areas

amplifies undoubtedly the magnitude of floods. Moreover, the exponential expansion of urban areas,

frequently placed nearby rivers, makes this issue even more critical.

As a result, in the last few decades floods have exhibited a rapid upward trend worldwide. This

is inducing the international community to invest significant effort for understanding the changed

dynamics and projecting them in future flood frequency, in order to guarantee proper planning,

management and real-time forecasts.

As the environment evolves, strategies and methods of analysis related to flooding events and

their impacts also have to keep up with the changing scenarios. In this framework, the challenge of

this book is to describe the state-of-the-art on flood studies using innovative methods and identify

the frontier of this research branch. With this aim, we stimulated a discussion on this topic collecting

a number of manuscripts recently published on the journal Hydrology which focused on the benefit

obtained by the use of new algorithms, new measurement systems and EO data for flood assessment,

monitoring, and management.

Salvatore Manfreda, Caterina Samela, Alberto Refice, Valerio Tramutoli, Fernando Nardi

Editors
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Abstract: The last decades have seen a massive advance in technologies for Earth observation
(EO) and environmental monitoring, which provided scientists and engineers with valuable spatial
information for studying hydrologic processes. At the same time, the power of computers and newly
developed algorithms have grown sharply. Such advances have extended the range of possibilities for
hydrologists, who are trying to exploit these potentials the most, updating and re-inventing the way
hydrologic and hydraulic analyses are carried out. A variety of research fields have progressed
significantly, ranging from the evaluation of water features, to the classification of land-cover,
the identification of river morphology, and the monitoring of extreme flood events. The description of
flood processes may particularly benefit from the integrated use of recent algorithms and monitoring
techniques. In fact, flood exposure and risk over large areas and in scarce data environments have
always been challenging topics due to the limited information available on river basin hydrology,
basin morphology, land cover, and the resulting model uncertainty. The ability of new tools to carry
out intensive analyses over huge datasets allows us to produce flood studies over large extents and
with a growing level of detail. The present Special Issue aims to describe the state-of-the-art on flood
assessment, monitoring, and management using new algorithms, new measurement systems and
EO data. More specifically, we collected a number of contributions dealing with: (1) the impact of
climate change on floods; (2) real time flood forecasting systems; (3) applications of EO data for
hazard, vulnerability, risk mapping, and post-disaster recovery phase; and (4) development of tools
and platforms for assessment and validation of hazard/risk models.

Keywords: hydroinformatics; flood mapping; flood monitoring; floodplains; rivers dynamics;
DEM-based methods; geomorphology; data scarce environments

Introduction to the Special Issue

The impact of flooding is becoming increasingly pressing worldwide for several reasons [1,2].
Population growth, urbanization in alluvial areas, land use change and climate change are only
some of the key factors impacting on a potential growth of floods risk. Therefore, the international
community is struggling to better understand the dynamics of floods in order to provide proper
planning, management and real-time forecasts.

One of the most disputed aspects is certainly climate change, whose impact is controversial and
difficult to quantify. On the other hand, the steady growth of impervious surfaces and reduction

Hydrology 2018, 5, 49; doi:10.3390/hydrology5030049 www.mdpi.com/journal/hydrology1
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of forested areas produces an undoubted increase of floods. Moreover, the exponential expansion
of urban areas, frequently placed nearby rivers, makes this issue even more complex (e.g., [3,4]).
Therefore, there is a huge need for new modelling applications in order to quantify and forecast floods
and also to evaluate the impact of such events.

Recent studies have offered a number of innovative strategies in order to support the derivation of
flood quantiles (e.g., [5–7]); to provide large scale flood mapping with simplified procedures applicable
also in data scarce environments [8–16], to support flood risk management over large scales [17,18]
and also to improve flood inundation monitoring with new remote sensing algorithms or exploiting
social media (e.g., [19–21]). All these topics are crucial to advance our capacity to cope with floods in a
changing environment.

The present special issue was promoted with the aim to provide an overview on the experiences
that researchers from different parts of the world have on large scale flood monitoring, prediction and
risk. The collection of papers selected introduces several these aspects, presenting novel techniques,
reviews and case studies. In the following, we summarize the contents of each specific manuscript and
its contribution to the topic.

The first manuscript is the one by Perera et al. [22], that explores the changes of flood impact in
future climatic scenarios. The authors modelled the entire hydrological system of the Mekong basin
with the TOPMODEL (BTOP) hydrological model at 20 km resolution, and the Lower Mekong Basin
(LMB) area with a rainfall-runoff-inundation (RRI) model at 2 km resolution. This latter model was
used to specifically analyze floods under the aforementioned climatic conditions in order to support
flood management and water policy of the LMB.

The impact of climate change on rainfall statistics is introduced in the manuscript by
De Paola et al. [23], which analyzed historical and projected time series of two African cities, Dar Es
Salaam (TZ) and Addis Abeba (ET). The authors showed that both time series have non-stationary
behavior that should be considered for engineering applications.

An important and relevant research subject is related to flood risk in ungauged basins or large
scales that share the common problem of data unavailability. In this regard, an interesting contribution
is presented by Ekeu-wei and Blackburn [24], who outlined a review of flood modelling and mapping
processes, and the data required by these techniques. They also offer an analysis about potentials,
limits and uncertainties of currently available remotely sensed datasets, highlighting how essential
these open-access datasets are especially in ungauged basins of developing countries.

The problem of flood management on large metropolitan areas is also tackled also by
Moufar et al. [25]. They investigate the feasible countermeasures to mitigate the floods in the Metro
Colombo area providing baseline for future flood risk management and mitigation in the area. It must
be mentioned that the studied area is a densely populated area of the world (with approximately
3400 inhabitants per square kilometer).

On a similar note, Papaioannou et al. [26] propose a methodological approach for implementing
the EU Floods Directive in ungauged basins, with a specific focus on relatively small catchments
mainly affected by fluvial flash floods. The proposed approach was applied on the Volos metropolitan
area (central Greece) and validated against the flood event of 9 October 2006, using observed flood
inundation data. Results highlighted that although typical engineering practices for ungauged basins
introduced major uncertainties in flood risk management in urban areas, the hydrological experience
may counterbalance the missing information ensuring quite realistic outcomes.

In this context, Peña and Nardi [27] investigated on a DEM-based interpolation method for
upscaling flood inundation models. Results indicate the possibility of performing large scale
inundation simulations in seconds maintaining a consistent representation of major flooding dynamics.
The proposed method taking advantage of largely available DTMs for cost-effective parsimonious
flood hazard modelling and mapping.

Besides flood extent, the inundation depth is also a key parameter for flood property
damage/human losses. Hydrologic and hydraulic models are traditionally used for predicting these
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depth values, although their reliability depends strictly on the underlying assumptions in the model
adopted. Javaheri et al. [28] propose a framework to improve flood depth estimates and reduce the
error between model predictions and observations. The overall scope of the authors is to improve
streamflow predictions of the National Water Model (NWM) by using a data assimilation scheme to
dynamically update water level estimates in rivers.

Oddo et al. [29] introduce a simple geomorphic approach for flood depth assessment with remote
sensing. This information, coupled with detailed land use data, provides rapid initial estimates of flood
impacts which can provide valuable information to decision makers in the wake of extreme events.

Nowadays, the extent of inundated areas and the evolution of water expansion and regression
can be effectively monitored using remotely sensed data acquired by aircraft and satellites. In this
regard, Lacava et al. [30] present a sensor-independent multi-temporal approach called RST-FLOOD,
where Robust Satellite Techniques (RST) are applied to detect flooded areas. In particular, the
application of the RST-FLOOD methodology for the flood event that affected Basilicata and
Puglia regions (southern Italy) in December 2013 is illustrated. Moderate Resolution Imaging
Spectroradiometer (MODIS) and, for the first time, Suomi National Polar-orbiting Partnership
(Suomi-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) imagery have been used, highlighting
the great usefulness of an integrated system for a continuous monitoring of flood phenomena at large
spatial scale.

In conclusion, this special issue provides a wide spectrum of results and a good overview of the
research activities carried out in Large Scale Flood Monitoring and Detection.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: Hydraulic modeling is a fundamental tool for managing and mitigating flood risk.
Developing low resolution hydraulic models, providing consistent inundation simulations with
shorter running time, as compared to high-resolution modeling, has a variety of potential applications.
Rapid coarse resolution flood models can support emergency management operations as well as the
coupling of hydrodynamic modeling with climate, landscape and environmental models running
at the continental scale. This work sought to investigate the uncertainties of input parameters and
bidimensional (2D) flood wave routing simulation results when simplifying the terrain mesh size.
A procedure for fluvial channel bathymetry interpolation and floodplain terrain data resampling
was investigated for developing upscaled 2D inundation models. The proposed terrain processing
methodology was tested on the Tiber River basin evaluating coarse (150 m) to very coarse (up to 700 m)
flood hazard modeling results. The use of synthetic rectangular cross sections, replacing surveyed
fluvial channel sections, was also tested with the goal of evaluating the potential use of geomorphic
laws providing channel depth, top width and flow area when surveyed data are not available.
Findings from this research demonstrate that fluvial bathymetry simplification and DTM resampling
is feasible when the terrain data resampling and fluvial cross section interpolation are constrained to
provide consistent representation of floodplain morphology, river thalweg profile and channel flow
area. Results show the performances of low-resolution inundation simulations running in seconds
while maintaining a consistent representation of inundation extents and depths.

Keywords: DTM; terrain analysis; hydraulic geometry; large scale; 2D hydraulic modeling; scaling
in hydrology

1. Introduction

Floodplain landscape morphology and roughness represent the governing factors of flood
flow propagation dynamics [1–4]. Recent technological advancements, such as geomatics and
remote sensing (or Earth Observation (EO)) sectors, allow for more efficient data gathering of
fluvial bathymetry, floodplain topography and surface roughness. EO tools use both ground-based
and airborne sensors, providing unprecedented conditions for effective inundation modeling and
mapping [5].

Global flood hazard modeling is now possible [6] with hyper-resolution hydraulic modeling
that are being implemented [7] taking advantage of remotely sensed data from large (i.e., satellite
and aerial sensors) to small scale (i.e., drones) fluvial feature and process observation systems [8,9].
In addition, advancements of numerical hydraulic algorithms, super computational power and data
rich hydrology are paving the way for hyper-resolution simulations of flood events from regional
to continental domains. Nonetheless, several challenges and uncertainties impact high-resolution
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numerical models of flood events [10,11]. The quest for always more accurate and detailed flood
models prompts the need for investigations identifying an optimal balance between hydraulic model
output details and topographic input data resolution [8].

We argue that the downscaling of the flood model resolution—i.e., decreasing the size of the
mesh elements that characterize the Digital Terrain Model (DTM) of the inundation domain—has
to be properly developed considering the scale and properties of the flood event of interest. As a
result, hyper-resolution flood models are not always strictly needed, especially when the size of
the flood wave and associated dynamics (i.e., inundation depths and floodplain flow velocities)
can be consistently analyzed by coarse resolution (i.e., from tens to hundreds of meters) numerical
models. The upscaling of flood models represents a viable solution for flood risk assessment in several
applications, especially when high resolution distributed topographic data and super-performing
computers are not available or when a very fast inundation simulation is needed.

Additionally, large scale flood models are still suffering the lack of effective EO-based fluvial
bathymetric data gathering technologies that are impacted by the disturbances affecting remotely
sensed data in densely vegetated channels. Flood prediction and management in most remote or
ungauged basins still require a significant degree of flexibility of numerical models in applying open
source DTMs at 30 �= 90 m resolution (e.g., the NASA SRTM DTM) for terrain analysis. Even though it
is foreseen that global satellite mission for DTM production will soon provide the capacity of digitizing
the earth’s morphology at higher resolution, from 10 m to 1 m scale, the issue of missing river
bathymetry information will still impact DTM-based large scale numerical models for flood hazard
simulations. While few studies attempt to investigate procedures for developing coarse resolution
flood models, it is noted that there are several cases where large to continental scale flood modeling
applications are needed. Notable examples are applications related to coupling hydro-modeling
with climatic, landscape and environmental models or rapid inundation mapping for emergency
management [12,13].

The use of synthetic cross sections, in replacing missing surveyed bathymetry, was used in
previous studies, but the validity of this method was tested only in small scale or local studies [14–16].
At larger scales, we posit that the use of geomorphological laws, depicting the hydraulic geometry
of stream channels [17], may provide solid means for surrogating to the lack of surveyed river cross
sections and bathymetric information. Geomorphic laws to support large scale hydraulic modeling
are investigated as a mean for improving flood routing model performances [18–22]. Nevertheless,
DTM-based terrain analysis for implementing the use of geomorphic laws for large scale hydraulic
models is still a challenging and active research issue.

This research investigated a floodplain DTM data processing procedure aiming to produce a
coarse resolution bidimensional (2D) hydraulic model for fast inundation mapping. A performance
assessment was developed comparing different coarse resolution inundation models in terms of
simulated inundation extent, water surface levels and floodplain flow depths. The goal of this research
was to test the effectiveness of a floodplain terrain and channel bathymetry data processing procedure
in producing computationally efficient and consistent inundation models. A synthetic representation
of channel geometry, using a rectangle morphology, was used and floodplain DTMs were resampled
to derive seven coarse resolution floodplain topographic scenarios (150 m, 200 m, 300 m, 400 m, 500 m,
600 m and 700 m). The seven different scenarios were compared by evaluating the comparison between
simulated inundation extents and depths as respect to a reference higher resolution flood model.

This paper is organized as follows. In Section 2, the selected data and methods are presented with
specific regard to the study basin, the 2D hydraulic model and the boundary and input conditions.
The proposed methodology for floodplain terrain processing for coarse resolution inundation modeling
is described in Section 3. Results of the application are provided and described in Section 4, with a
discussion on the presented research results inserted in Section 5.
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2. Data and Methods

2.1. Study Area

The Tiber River in central Italy, selected as case study, is the second largest river basin in Italy,
draining an area of 17,800 km2. The floodplain domain is located in the downstream portion of the
catchment, south of the Umbria–Lazio regional boundary. The inundation domain goes along the
river channel for about 120 km between Orte (12◦23′39.52” E, 42◦27′27.08” N) and Castel Giubileo
(12◦29′59.34” E; 41◦59′40.29” N), just upstream of the city of Rome, before the river flows out into
the Tyrrhenian Sea (Figure 1). The Tiber River—the third longest in Italy—is the subject of frequent
overflow, considering that the conveyance of the incised channel in the selected reach is approximately
900 m3/s, as stated in the flood risk management plan issued by the Tiber River Basin Authority
(TRBA) [23], and that floods with peak discharges greater than 2000 m3/s occurred frequently in the
last decade [24]. The river floodplain, which is predominantly developed, but mainly characterized
by agricultural activities, is often the subject of channel overbank flows inundating the floodplain,
with damages and service interruption to economic activities and minor urban settlements [25,26].
Rail and road embankments, which follow the floodplain main direction, act as levees, limiting the
floodplain extent, which has an average width of 2–3 km, while the average top width of the channel
is 100–120 m, as observed by aerial images.

 

Figure 1. Map of the study basin of the Tiber River in central Italy.
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2.2. Data

The data used for this study include topographic, hydrologic, and base cartographic dataset.
A LIDAR aerial survey was gathered from the Italian Ministry of Environment National Cartographic
Portal (PCN) and projected in the Universal Transverse Mercator (UTM) (WGS 1984, Zone 33N)
coordinate system. The available LIDAR dataset included a Digital Surface Model (DSM) and a Digital
Elevation Model (DEM) at 1 m resolution. The LIDAR DEM, capturing the land surface characteristics
of the floodplain with the exception of river bathymetry and water bodies, was used to characterize
the bare earth information needed to represent the topography of the floodplain. LIDAR data were
processed to produce a Digital Terrain Model (DTM) of the study domain at 5 m resolution. The term
DTM is used in this paper to distinguish the processed 5 m data from the original source LIDAR DEM.
Surveyed cross sections were obtained from a validated set of fluvial bathymetry GPS surveying,
provided by the Tiber River Basin Authority [25], covering the entire floodplain domain. The hydrology
for the flood model was obtained by the TRBA flood risk management plan. In particular, the 200-year
return period hydrograph was selected as design inflow condition for the upstream node (at Orte)
of the Tiber River. Aerial imageries, gathered from the PCN and TRBA database, were used mainly
for visualization purposes, as cartographic base supporting the flood modeling analysis, but also for
evaluating the channel top width analysis implemented in the hydraulic model geometry construction.
A 2D hydraulic model input parameter set up was gathered from the TRBA flood risk management
plan that included calibrated and validated topographic data, distributed roughness parameters and
rating curves for bridges and culverts that characterized the floodplain domain. This 2D flood model,
calibrated and validated within the TRBA studies using real events, was used as reference model for
the presented research work.

2.3. Hydraulic Model: FLO-2D

FLO-2D [27] is a Quasi-2D hydraulic model based on flood volume conservation and hydraulic
routing scheme simulating channel–floodplain exchange, flood wave attenuation, and the alteration
of inundation dynamics due to artificial obstructions (levees, buildings, streets, etc.) on a gridded
topographic surface. The surface water propagation in the incised channel is simulated with a 1D
unsteady flow model until the capacity of the channel is exceeded. The 2D floodplain flow model is
coupled with the 1D channel hydrograph routing model for simulating the channel overbank flow and
the initiation of shallow surface water flow propagation from channel overbank flow conditions. The 2D
surface flow is routed in eight potential flow directions, four cardinal (north, east, south and west) and
four diagonal directions (NE, NW, SE and SW), over the floodplain topographic model that is produced
using a gridded surface. The FLO-2D numerical scheme implements the full dynamic wave momentum
equation and a central finite difference routing scheme with an automatic time step adjusting algorithm,
always preserving the continuity of flood volume at the domain scale. The hydraulic core algorithm
is governed by topography and a roughness parameter expressed using the Manning coefficient.
The channel geometry is provided associating cross sections to a predefined set of floodplain cells
that are flagged as channels and sketched to represent the upstream to downstream channel link 1D
domain. The fluvial bathymetry can be either schematized using natural, rectangular or trapezoidal
cross sections. The FLO-2D model input data are the floodplain topographic DTM, channel geometry,
inflow and outflow boundary conditions as well as grid cell parameters representing the presence of
artificial features on the bare earth (levees, building, bridges, etc.) [28].

2.4. Topographic Data Processing and Floodplain Grid Resolution

The FLO-2D hydraulic model requires a grid of square cells to represent the topography of
the floodplain domain. The size of the grid cell defines the resolution of the hydraulic model.
The 5 m LIDAR DTM was used as source floodplain topographic information and an interpolation
algorithm was implemented to produce a resampled DTM floodplain model to be used as input
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geometry of the hydraulic model. Nearest neighbor interpolation was selected for this study to
interpolate the high resolution 5 m DTM to the desired coarser resolution [29–32]. It is noted that
different interpolation methods (e.g., Inverse distance weighting and ordinary kriging) would produce
different DTMs. Here, we posit that the resampling model selection is not biasing the hydraulic
modeling result comparison analysis, since the different flood model resolution scenarios are all
developed with the same interpolation model [33]. The resampling was performed to test the effect
of morphologic information upscaling process, smoothing out microtopographic floodplain features,
on inundation simulations.

Urban features such as levees, bridges or streets were also not represented in the input DTM, but
inserted as additional artificial features of the hydraulic model geometry. The floodplain topographic
model, used by the FLO-2D model, represents the bare earth, while the impact of artificial obstructions
and features on the flood wave overbank propagation was accounted for using area and width
reduction factors [28]. These reduction factors account for the decreasing of available storage,
expressed by the obstructions modifying the available grid cell width and area, in the cell-to-cell
surface water routing downstream.

Fluvial terrain processing for supporting large scale flood models has been investigated in several
works that tested optimal methods for interpolating DTMs and cross sections. Those studies evaluate
the impact of floodplain bathymetry processing on performances of hydraulic models [16,34–38].
The issue of lack or uncertainty of fluvial cross section data was the subject of several attempts
to surrogate the missing bathymetric information in hydraulic modeling [16]. Investigation on
different performances of flood hazard studies with changing resolution of floodplain DTMs have
also highlighted the importance of identifying the optimal balance between accuracy and efficiency of
inundation models. Resampling of DTMs from high to low resolution impacts the spatial and vertical
accuracy of the simulated floodplain terrain, including mismatches of channel banks location and
height, and underestimation (or overestimation) of the fluvial and floodplain conveyance capacity.
Figure 2 illustrates a sample case of floodplain cross section processing with resampling from the
high resolution 5 m DTM to produce a coarse 150 m and very coarse 400 m grid resolution floodplain
topographic model. The approximation and loss of topographic information is significant, but this does
not directly imply that the loss of flood modeling result accuracy is of the same order of magnitude.

Figure 2. The impact of varying resolution represented by floodplain topographic plan view and
cross sections. The 5 m floodplain terrain model is compared to interpolated 150 m (left) and 400 m
(right) resolution DTMs. The upper and bottom plots show, respectively, the horizontal and vertical
displacement of the interpolated floodplain grid schematization and cross section as respect to the high
resolution DTM.
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2.5. Boundary Conditions and Roughness Parametrization

The 200-year return time hydrograph was used as the upstream inflow condition. The peak
discharge was 3600 m3/s and simulation time was approximately 350 h corresponding to the
hydrograph total duration. The downstream boundary condition was characterized by the exiting of
the flood wave in undisturbed conditions by assuming uniform flow conditions at the channel and
floodplain outflow nodes. Manning’s roughness coefficient for channel cells was set constant to 0.04,
while distributed roughness conditions for the floodplain domain were gathered from the reference
TRBM 2D flood model.

2.6. Fit Index Analysis

The quantitative comparison of the different inundation extents simulated by flood models
with varying resolutions is developed using a measure-to-fit index F [39–42] expressed with the
following formula:

F =
Are f ∩ Amod

Are f ∪ Amod

where Aref ∩ Amod represents the matching area between reference map and model results (A = true
positive area) and Aref ∪ Amod is the union of the overlapping, underestimated (B = false positive) and
overestimated (C = false negative) areas. The F parameter can thus be expressed as:

F − index =
A

(A + B + C)

The F-index varies from F = 0 when the spatial intersection of models is null to a maximum of 1
(100% fit between model results and reference map).

3. Procedure

The presented methods are integrated to develop a floodplain terrain and fluvial bathymetry
processing procedure that is implemented to produce a very coarse resolution (up to 700 m) flood
model. The procedure aimed to test the effect of channel and floodplain topography upscaling on
simulated inundation extent and dynamics comparing coarse resolution flood models with a reference
higher resolution 2D hydraulic model. The original inundation model, at 150 m resolution, was used
as reference case considering it was previously calibrated and validated and included surveyed natural
cross sections to represent channel bathymetry. The presented tests evaluated, firstly, the possibility of
replicating the reference model results at the same resolution (150 m), but substituting natural cross
sections with synthetic rectangular cross section calibrated using information related to flow area and
thalweg profile. Then, the upscaling of the 2D floodplain terrain model was performed producing
coarser resolution inundation models (from 200 m to 700 m) evaluating differences in the hydraulic
modeling results.

The implemented procedure was based on the following four steps:

(i) Building the 2D flood reference model at 150 m resolution

The high resolution 5 m DTM was interpolated at 150 m. The simulated inundation dynamics
of the 150 m simulation were consistent to the original FLO-2D model gathered from the TRBM that
was originally implemented at 50 m resolution. The 1D HEC-RAS model developed by the TRBA
was used to gather the available 92 fluvial cross sections. The cross sections were imported into the
FLO-2D model to assign a cross section to each of the 712 river channel grid cells. The FLO-2D channel
geometry was created by linear interpolation of the original Hec-Ras cross sections. The 150 m flood
model was evaluated to check that the floodplain DTM, channel cross section geometry and thalweg
profile accurately match the original 50 m TRBM model.
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(ii) Interpolation of natural cross sections to produce a synthetic rectangular channel bathymetric model

The 712 river channel grid cell elevations and associated cross sections were analyzed to estimate
the channel cell-by-cell flow area, top width and channel maximum depth. The cross section depth
characterizes the distance from top of the banks to minimum channel elevation defining the simulated
thalweg profile of the fluvial channel. A rectangle was created to approximate each cross section.
The channel bed elevation of the rectangle was estimated by subtracting the channel maximum
depth from the DTM cell elevation to preserve the thalweg profile of the reference hydraulic model.
The rectangle width was then varied to preserve the flow area estimated from the original cross section.
Basically, the hypothesis was to define a rectangle that best approximates the surveyed cross section
giving priority to the conservation of the channel slope (i.e., thalweg profile) and conveyance (i.e., flow
area). The top width was used as calibration parameter in this channel bathymetry interpolation.

(iii) Upscaling flood model to coarser resolutions

The reference 150 m flood model DTM was upscaled to 200 m, 300 m, 400 m, 500, 600 m and
700 m resolution. The terrain analysis process generated coarser floodplain DTM resolutions based
on the following steps: (1) Use high resolution 5 m DTM as input terrain model to interpolate the
digital floodplain terrain for the flood model at the desired coarser resolution. (2) Identify the channel
cells by proximity analysis of the 150 m reference channel model with the new coarser channel grid.
(3) Associate to each channel cell the rectangle depth and height that preserve the average slope and
flow area of the channel cells intersecting the coarser channel grid cell (as in Step (ii) above).

(iv) Inundation model runs and postprocessing of simulated water surface simulations

The coarse resolution model set up was used to perform the design event simulation representing
the impact of the 200-year event on the fluvial domain. Flood modeling results were processed to
depict the simulated water surface elevation, depth and velocities at the simulation resolution (200 m,
300 m, 400, 500 m, 600 m, and 700 m). The coarse resolution water surface elevation was interpolated
at reference model resolution of 150 m. The simulated water surface was intersected with the high
resolution DTM to produce the final inundation extent and flood depths. A postprocessing routine
tool (freely available at https://github.com/antonioannis/FLO-2D-Processing-Tools) was used to
interpolate and intersect the simulated coarse resolution water surface with the high resolution DTM.
This analysis automatically downscaled the coarse resolution model inundating those floodplain cells
that underlay the water surface elevation. Final results were plotted at 30 m resolution to allow better
visualization of results. Figure 3 provides a schematic representation of the proposed procedure.

 
Figure 3. Flow chart describing the procedure implemented for interpolating the fluvial bathymetry
and resampling floodplain terrain data to support coarse resolution flood modeling.

4. Results

The procedure is applied and results are presented in this section to depict the effect of the
proposed floodplain terrain processing on flood modeling results with varying performances when
upscaling the model from coarse to very coarse resolutions.
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Figure 4 presents the results of Steps (i) and (ii) of the procedure by showing the cross section
width, depth and flow area associated to interpolated synthetic rectangular cross sections at varying
resolution with respect to surveyed cross sections of the reference model. It is shown how the channel
bed elevation and flow area are preserved in all models for adjusted channel top width.

(a) 

 
(b) 

(c) 

Figure 4. Plots of channel top width (a), depth (b) and flow area (c) using the different model set ups:
from the 150 m reference model using the naturally surveyed cross sections to the seven realizations of the
synthetic rectangular channel flood model for 150 m, 200, 300 m, 400 m, 500, 600 m and 700 m resolutions.
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The simulated flood profile along the river channel is represented in Figure 5. The visual
comparison shows that the six upscaled models have a consistent Water Surface Elevation (WSE) with
discrepancies increasing with decreasing resolution. It is noted that the simulated surface seems always
consistent even in some segments of the river reach where the spatial adjustment determines notable
differences in the location of the bed profile. An underestimation of the water surface elevation is also
noted when the channel slope is steep, while in the flat downstream valleys the differences decrease.

Figure 5. River channel flow profile with simulated maximum water surface level at 150 m and
coarser resolutions.

The simulated channel maximum discharge is reported in Figure 6. Here, the impact of the
resolution on simulated floodplain flow dynamics is evident, considering that the expected impact
of the different floodplain DTM realizations on the flood wave attenuation process. The use of
synthetic cross section provides notable differences as well as the approximation of the channel bank
elevation that plays here a major role, considering the importance of accurate river–floodplain exchange
simulations. This result shows the significant impact of the resampling procedure on the simulation of
flood wave propagation dynamics (i.e., discharge, velocities).

Figure 6. River channel flow profile with simulated maximum peak discharge at 150 m and
coarser resolutions.
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Results presented in Figures 5 and 6 show that inundation simulations for the Tiber case study are
not driven by peak discharge, but are mainly governed by flood volumes transiting along the valley.
The maximum conveyance of the Tiber is not greater than 1000 m3/s, while the 200-year peak discharge
is greater than 3000 m3/s for the entire domain. The consistency of flood profiles is motivated by
the fact that, once the channel has reached its maximum conveyance capacity, the floodplain of the
Tiber River acts as a large storage. The presented tests support the validity of consistent simulations of
coarse to very coarse resolution models even in cases where the topography is represented using only
1–3 grid cells per floodplain cross sections. While it is expected that results of very coarse resolution
will not match the accuracy of high resolution models for the reconstruction of flood wave dynamics,
we posit that inundation extent and depths can be reasonably captured.

A significant advantage of the coarse resolution is the speed of the simulation and the
computational efficiency. Table 1 shows the varying simulation computational performance with
varying DTM resolutions. A summary of the main specifications of the different model set ups is
provided with results also evaluating the total inundated area. The run time decreased from 37 min to
2.5 min using the same computer power (a regular workstation). Table 1 also includes the results of
the measure-to-fit analysis with the F-index results.

Table 1. Performance metrics of running time, maximum simulated inundated area and F-index
comparing reference model with upscaled flood models at different DTM resolutions.

Grid Size (m) Number of Cells Running Time (min) Inundated Area (m2) F-Index (-)

REF 11,191 36.97 125,370,000
150 11,191 34.25 115,267,500 0.917
200 11,169 23.17 116,880,000 0.868
300 2838 6.53 122,400,000 0.825
400 1588 3.46 108,000,000 0.744
500 838 3.99 120,250,000 0.796
600 561 2.05 119,880,000 0.761
700 498 2.49 118,580,000 0.720

The visual comparison of simulated inundation depths is represented in Figures 7–9. Figure 7
shows the differences between the simulated maximum floodplain flow depths at coarse (150 m)
to very coarse (700 m) resolution compared to the reference model. The flood model resolution is
maintained with no postprocessing here developed to show the visual effect of the varying resolutions.
Figure 8 presents the spatial distribution of differences between floodplain maximum flow levels of
the reference model compared to the upscaled flood simulation at different resolutions. Figure 9 shows
the results of the simulated maximum flow depths from the reference 2D hydraulic model simulation
for the entire study domain. Three insets are inserted into Figure 9 for zooming in on an upstream,
central and downstream area of the model visualizing the comparison of simulated inundation depths
for the different flood model resolutions. Note in Figures 8 and 9 the use of the postprocessing tool of
Step (iv) of the presented procedure for plotting high resolution simulated inundation maps.
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Figure 7. Distribution of inundation flow depths for: (a) reference model at 150 m and natural cross
sections; as compared to upscaled flood models synthetic rectangular cross section at resolution of:
(b) 150 m; (c) 200 m; (d) 300 m; (e) 400 m, (f) 500 m; (g) 600 m; and (h) 700 m.

Figure 8. Distribution of simulated surface water elevation differences for coarser resolution models
against the reference model using the model resolution (top) and the postprocessed 30 m resolution
(bottom) with: (a) 150 m; (b) 200 m; (c) 300 m; (d) 400 m, (e) 500 m; (f) 600 m; and (g) 700 m.
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Figure 9. Distribution of inundation flow depths of the reference model at 150 m resolution (full scale
map) and three selected subdomains where inundation depths are depicted using the postprocessing
geospatial algorithm for visualizing the different flood modelling scenario at 30 m model resolution
comparing (a) reference model; (b) 150 m; (c) 200 m; (d) 300 m; (e) 400 m; (f) 500 m; (g) 600 m;
and (h) 700 m.

5. Discussion

This research investigated the development of very coarse resolution 2D inundation numerical
models supporting large scale flood mapping. A procedure for interpolating floodplain terrain and
bathymetric data is proposed and tested with the goal of producing consistent inundation models
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using coarse resolution floodplain topography and synthetic representation of channel morphology.
Results were evaluated compared to validated reference 2D flood models quantifying performance
metrics of running time and distributed inundation extents and depths of coarse (150 m) to very coarse
(700 m) hydraulic model simulations.

The proposed floodplain terrain analysis procedure for creating coarse resolution 2D inundation
models, that are able to consistently simulate the inundation extent at large scale, may be beneficial
for flood risk management in multiple ways. Fast and reasonably accurate 2D flood simulations,
running in seconds or minutes at large scales, pave the way for the use of 2D models in early warning
systems that commonly use 1D models. Coarse inundation models are also needed for implementing
cross-disciplinary applications where hydrodynamic models are coupled with climatic (e.g., Global
Circulation Models (GCM)), landscape evolution or ecologic models.

This research contributes to the development of alternative cost-effective parsimonious flood
modeling approaches that can produce consistent results using largely available data, considering that
floodplain morphology, and channel bathymetry specifically, is in constant change and measurements
cannot be afforded periodically, becoming a challenge for both gauged and ungauged basins [43].
Results show that naturally surveyed cross sections can be replaced by synthetic geometry cross
sections of rectangular shape maintaining a correct representation of channel slope (i.e., thalweg
profile) and channel conveyance (i.e., channel flow area). This result links this research with large scale
flood hazard modeling based on the use of geomorphic laws or literature values for providing valid
estimation of morphologic parameters (river/floodplain width, depth and flow area) associated to
varying climatic, geomorphic and hydrologic regimes [20–22].

This study also highlights the value of floodplain terrain analysis for processing high resolution
DTMs to produce upscaled geometry for 2D inundation mapping. Flood model upscaling follows
scaling principles that characterize inundation dynamics. The DTM scale (i.e., grid size resolution)
shall be defined according to the scale of the simulated flood processes. A major river defining a large
floodplain domain with flooding dynamics characterized by inundation widths and flow depths that
are in the order of, respectively, kilometer (1–3 km) and meter (1–10 m) scale requires a proportional
scale for the topographic and bathymetric representation. If this scaling principle is correctly applied,
we argue that the loss of details in floodplain DTMs at coarser resolutions does not necessarily imply
that simulated inundations will be affected by major errors. Fluvial bathymetry interpolation and
floodplain terrain resampling, also using synthetic channel geometry, allow fast and accurate flood
models (Figures 5 and 6). Nevertheless, we cannot neglect that floodplain interpolation are difficult to
be automated, but semi-automatic procedures are needed that require flood modeler interpretation,
calibration and validation, especially when converting natural to rectangular shape cross sections.

The proposed procedure still requires, in fact, manual processing work by the flood analyst.
Therefore, results can be sensitive to errors, time consuming activities and to subjectivity impacting
the replicability and generalization of results. The full automatization of this procedure, integrating an
objective analysis of the proper scale and resolution, for creating upscaled inundation models require
further investigations using geomorphological laws for estimating rectangular cross sections. Moreover,
the behavior of different numerical scheme of 2D flood modeling and the development of an extended
set of case studies in other climatic and morphologic settings characterize future work needed for the
generalization of the proposed procedure.

6. Conclusions

In this paper, a procedure of floodplain terrain analysis was introduced for supporting the
development of coarse resolution inundation models. The procedure was tested for the 120 km domain
of the Tiber River in central Italy to evaluate the consistency of simulated inundation extent and
depth distributions, derived from 2D hydraulic models applying different floodplain DTM resolutions,
as compared to a reference flood model that was validated in previous studies. The main conclusive
remarks of this research are as follows:
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(1) The proposed floodplain terrain analysis procedure does not aim to replicate the performances
of accurate high-resolution flood modeling that requires surveying of fluvial bathymetry and
floodplain morphology. Flood hazard management for safe urban planning and risk mitigation
requires detailed modeling of floodplain and urban features exposed to inundation risk. The aim
of this research was to produce consistent coarse resolution flood models, running in seconds,
for investigating applications where 2D inundation modeling is actually not used for its
computational and data need burden. For example, this research may pave the way to the use of
2D inundation modeling in large scale real time emergency management operations or in the
coupling of hydrodynamic models with climatic global circulation models, landscape evolution
models or in continental ecologic modeling applications.

(2) Results show the tests related to the substitution of surveyed natural fluvial cross sections with
synthetic rectangular cross sections. The use of a synthetic channel geometry is a valid working
hypothesis if the channel thalweg profile and flow area are preserved. The impact of channel
geometry simplification on the inundation dynamics is evident, considering the importance
of channel morphology on flood wave routing, with significant misinterpretation of simulated
discharge and velocities. Nevertheless, simulated inundation extents and depths are modeled in
the range of flood modeler expectations.

(3) Visual representation of water depths and quantitative analyses, based on the use of a
measure-to-fit F index, for evaluating the potential overestimation or underestimation of the
flooding extent, show that the upscaling procedure produces consistent results of decreasing
accuracy with increasing floodplain DTM grid size. Consistent inundation simulation results are
obtained interpolating the floodplain DTM resolution from 150 m to 700 m. The running time of
simulations is reduced by one order of magnitude from approximately 30 min to 3 min for the
700 m simulation.

(4) The proposed procedure for flood model upscaling still requires expert knowledge and subjective
manual processing of reference data for correctly interpolating DTM floodplain topographic and
bathymetric data. Further research is needed for flood model calibration and validation towards
the replicability and generality of the proposed procedure in other case studies.

Author Contributions: Francisco Peña (FP) and Fernando Nardi (FN) jointly conceptualized the research
experiment, from the design of the procedure, to the presentation of results. FP gathered and processed the case
study data, developed the floodplain terrain analysis and 2D flood modelling, wrote initial version of manuscript
with tables and figures. FP and FN jointly produced the final version of the manuscript, figures and tables.

Funding: This work was funded by Regione Lazio Grant No. A11598 (Research grant “Media Valle del fiume Tevere”).

Acknowledgments: Reviewers and editors are acknowledged for their valuable comments that helped authors in
significantly improving this manuscript. Antonio Annis is also acknowledged for providing technical assistance
in the use of the FLO-2D postprocessing tool and for his support in the development of the Fit index analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bates, P.D.; Horritt, M.S.; Aronica, G.; Beven, K. Bayesian updating of flood inundation likelihoods
conditioned on flood extent data. Hydrol. Process. 2004, 18, 3347–3370. [CrossRef]

2. Pappenberger, F.; Beven, K.; Horritt, M.; Blazkova, S. Uncertainty in the calibration of effective roughness
parameters in HEC-RAS using inundation and downstream level observations. J. Hydrol. 2005, 302, 46–69.
[CrossRef]

3. Merwade, V.; Olivera, F.; Arabi, M.; Edleman, S. Uncertainty in flood inundation mapping: Current issues
and future directions. J. Hydrol. Eng. 2008, 13, 608–620. [CrossRef]

4. Di Baldassarre, G.; Schumann, G.; Bates, P.D.; Freer, J.E.; Beven, K.J. Flood-plain mapping: A critical
discussion of deterministic and probabilistic approaches. Hydrol. Sci. J. 2010, 55, 364–376. [CrossRef]

18



Hydrology 2018, 5, 52

5. Domeneghetti, A.; Schumann, G.J.P.; Frasson, R.P.M.; Wei, R.; Pavelsky, T.M.; Castellarin, A.; Brath, A.;
Durand, M.T. Characterizing water surface elevation under different flow conditions for the upcoming
SWOT mission. J. Hydrol. 2018, 561, 848–861. [CrossRef]

6. Ward, P.J.; Jongman, B.; Salamon, P.; Simpson, A.; Bates, P.; De Groeve, T.; Muis, S.; De Perez, E.C.; Rudari, R.;
Trigg, M.A.; et al. Usefulness and limitations of global flood risk models. Nat. Clim. Chang. 2015, 5, 712–715.
[CrossRef]

7. Neal, J.; Dunne, T.; Sampson, C.; Smith, A.; Bates, P. Optimisation of the two-dimensional hydraulic model
LISFOOD-FP for CPU architecture. Environ. Model. Soft. 2018, 107, 148–157. [CrossRef]

8. Schumann, G.J.-P.; Bates, P.D.; Apel, H.; Aronica, G.T. Global Flood Hazard: Applications in Modeling, Mapping
and Forecasting; American Geophysical Union and John Wiley & Sons: Hoboken, NJ, USA, 2018.

9. Tauro, F.; Selker, J.; Van De Giesen, N.; Abrate, T.; Uijlenhoet, R.; Porfiri, M.; Manfreda, S.; Caylor, K.;
Moramarco, T.; Benveniste, J.; et al. Measurements and observations in the XXI century (MOXXI): Innovation
and multi-disciplinarity to sense the hydrological cycle. Hydrol. Sci. J. 2018, 63, 169–196. [CrossRef]

10. Trigg, M.A.; Birch, C.E.; Neal, J.C.; Bates, P.D.; Smith, A.; Sampson, C.C.; Yamazaki, D.; Hirabayashi, Y.;
Pappenberger, F.; Dutra, E.; et al. The credibility challenge for global fluvial flood risk analysis.
Environ. Res. Lett. 2016, 11, 094014. [CrossRef]

11. Jung, Y.; Merwade, V. Uncertainty quantification in flood inundation mapping using generalized likelihood
uncertainty estimate and sensitivity analysis. J. Hydrol. Eng. 2012, 17, 507–520. [CrossRef]

12. De Frasson, R.P.M.; Wei, R.; Durand, M.; Minear, J.T.; Domeneghetti, A.; Schumann, G.; Williams, B.A.;
Rodriguez, E.; Picamilh, C.; Lion, C.; et al. Automated river reach definition strategies: Applications for the
surface water and ocean topography mission. Water Resour. Res. 2017, 53, 8164–8186. [CrossRef]

13. Vorogushyn, S.; Bates, P.D.; de Bruijn, K.; Castellarin, A.; Kreibich, H.; Priest, S.; Schröter, K.; Bagli, S.;
Blöschl, G.; Domeneghetti, A.; et al. Evolutionary leap in large-scale flood risk assessment needed.
WIREs Water 2017. [CrossRef]

14. Price, R.K. An optimized routing model for flood forecasting. Water Resour. Res. 2009, 45, 1–15. [CrossRef]
15. Gichamo, T.Z.; Popescu, I.; Jonoski, A.; Solomatine, D. River cross-section extraction from the ASTER global

DEM for flood modeling. Environ. Model. Soft. 2012, 31, 37–46. [CrossRef]
16. Bhuyian, M.N.M.; Kalyanapu, A.J.; Nardi, F. Approach to digital elevation model correction by improving

channel conveyance. J. Hydrol. Eng. 2014, 20. [CrossRef]
17. Leopold, L.; Maddock, T. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications;

Geological Survey Professional Paper; U.S. Department of the Interior: Washington, DC, USA, 1953.
18. Lehner, B.; Verdin, K.; Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos 2008,

89, 93–94. [CrossRef]
19. Pappenberger, F.; Dutra, E.; Wetterhall, F.; Cloke, H.L. Deriving global flood hazard maps of fluvial floods

through a physical model cascade. Hydrol. Earth Syst. Sci. 2012, 16, 4143–4156. [CrossRef]
20. Andreadis, K.M.; Schumann, G.J.P.; Pavelsky, T. A simple global river bankfull width and depth database.

Water Resour. Res. 2013, 49, 7164–7168. [CrossRef]
21. Sampson, C.C.; Smith, A.M.; Bates, P.D.; Neal, J.C.; Alfieri, L.; Freer, J.E. A high-resolution global flood

hazard model. Water Resour. Res. 2015, 51, 7358–7381. [CrossRef] [PubMed]
22. Domeneghetti, A. On the use of SRTM and altimetry data for flood modeling in data-sparse regions.

Water Resour. Res. 2016, 52, 2901–2918. [CrossRef]
23. Tiber River Basin Authority. Piano Direttore dell’Autorità di Bacino del fiume Tevere (Flood Risk Management

Plan); Autorità di Bacino del fiume Tevere: Rome, Italy, 2010. (In Italian)
24. Spada, E.; Sinagra, M.; Tucciarelli, T.; Barbetta, S.; Moramarco, T.; Corato, G. Assessment of river flow with

significant lateral inflow through reverse routing modeling. Hydrol. Process. 2017, 31, 1539–1557. [CrossRef]
25. Manfreda, S.; Nardi, F.; Samela, C.; Grimaldi, S.; Taramasso, A.; Roth, G.; Sole, A. Investigation on the use of

geomorphic approaches for the delineation of flood prone areas. J. Hydrol. 2014, 517, 863–876. [CrossRef]
26. Tauro, F.; Olivieri, G.; Petroselli, A.; Porfiri, M.; Grimaldi, S. Flow monitoring with a camera: A case study on

a flood event in the Tiber River. Environ. Monit. Assess. 2016, 188, 1–11. [CrossRef] [PubMed]
27. O’Brien, J.S.; Julien, P.Y.; Fullerton, W.T. Two-dimensional water flood and mudflow simulation. J. Hydrol.

Eng. 1993, 119, 244–261. [CrossRef]
28. O’Brien, J.S. FLO-2D Users Manual; FLO-2D Software, Inc.: Nutrioso, AZ, USA, 2011.
29. Sibson, R. A Brief Description of Natural Neighbor Interpolation; John Wiley & Sons: New York, NY, USA, 1981.

19



Hydrology 2018, 5, 52

30. ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011.
31. Grimaldi, S.; Teles, V.; Bras, R.L. Sensitivity of a physically based method for terrain interpolation to initial

conditions and its conditioning on stream location. Earth Surf. Proc. Land. 2004, 29, 587–597. [CrossRef]
32. Grimaldi, S.; Teles, V.; Bras, R.L. Preserving first and second moments of the slope area relationship during

the interpolation of digital elevation models. Adv. Water Resour. 2005, 28, 583–588. [CrossRef]
33. Merwade, V.; Cook, A.; Coonrod, J. GIS techniques for creating river terrain models for hydrodynamic

modeling and flood inundation mapping. Environ. Model. Soft. 2008, 23, 1300–1311. [CrossRef]
34. Brandt, S.A. Resolution issues of elevation data during inundation modeling of river floods. In Proceedings

of the XXXI International Association of Hydraulic Engineering and Research Congress, Seoul, Korea, 11–16
September 2005.

35. Da Paz, A.R.; Collischonn, W.; Tucci, C.E.M.; Padovani, C.R. Large-scale modelling of channel flow and
floodplain inundation dynamics and its application to the Pantanal (Brazil). Hydrol. Process. 2011, 25,
1498–1516. [CrossRef]

36. Jung, H.C.; Hamski, J.; Durand, M.; Alsdorf, D.; Hossain, F.; Lee, H.; Azad Hossain, A.K.M.; Hasan, K.;
Khan, A.S.; Zeaul Hoque, A.K.M. Characterization of complex fluvial systems using remote sensing of
spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra rivers. Earth Surf. Proc.
Land. 2010, 35, 294–304. [CrossRef]

37. Biancamaria, S.; Bates, P.D.; Boone, A.; Mognard, N.M. Large-scale coupled hydrologic and hydraulic
modelling of the Ob river in Siberia. J. Hydrol. 2009, 379, 136–150. [CrossRef]

38. Merwade, V.; Saksena, S. Incorporating the effect of DEM resolution and accuracy for improved flood
inundation mapping. J. Hydrol. 2015, 530, 180–194.

39. Pappenberger, F.; Frodsham, K.; Beven, K.J.; Romanovicz, R.; Matgen, P. Fuzzy set approach to calibrating
distributed flood inundation models using remote sensing observations. Hydrol. Earth Syst. Sci. 2007, 11,
739–752. [CrossRef]

40. Nardi, F.; Morrison, R.R.; Annis, A.; Grantham, T.E. Hydrologic scaling for hydrogeomorphic floodplain
mapping: Insights into human-induced floodplain disconnectivity. River Res. Appl. 2018. [CrossRef]

41. Horritt, M.S.; Bates, P.D. Effects of spatial resolution on a raster based model of flood flow. J. Hydrol. 2001.
[CrossRef]

42. Aronica, G.; Bates, P.D.; Horritt, M.S. Assessing the uncertainty in distributed model predictions using
observed binary pattern information within GLUE. Hydrol. Process. 2002, 16, 2001–2016. [CrossRef]

43. Nardi, F.; Annis, A.; Biscarini, C. On the impact of urbanization on flood hydrology of small ungauged
basins: The case study of the Tiber river tributary network within the city of Rome. J. Flood Risk Manag. 2018,
11, S594–S603. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

20



hydrology

Article

Analyzing the December 2013 Metaponto Plain
(Southern Italy) Flood Event by Integrating Optical
Sensors Satellite Data

Teodosio Lacava 1,*, Emanuele Ciancia 2, Mariapia Faruolo 1, Nicola Pergola 1, Valeria Satriano 1

and Valerio Tramutoli 2

1 National Research Council, Institute of Methodologies for Environmental Analysis, C. da S. Loja,
85050 Tito Scalo (PZ), Italy; mariapia.faruolo@imaa.cnr.it (M.F.); nicola.pergola@imaa.cnr.it (N.P.);
valeria.satriano@imaa.cnr.it (V.S.)

2 School of Engineering, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy;
emanuele.ciancia@imaa.cnr.it (E.C.); valerio.tramutoli@unibas.it (V.T.)

* Correspondence: teodosio.lacava@imaa.cnr.it; Tel.: +39-0971-427242

Received: 5 July 2018; Accepted: 5 August 2018; Published: 7 August 2018

Abstract: Timely and continuous information about flood dynamics are fundamental to ensure
an effective implementation of the relief and rescue operations. Satellite data provided by optical
sensors onboard meteorological satellites could have great potential in this framework, offering
an adequate trade-off between spatial and temporal resolution. The latest would benefit from the
integration of observations coming from different satellite systems, also helping to increase the
probability of finding cloud free images over the investigated region. The Robust Satellite Techniques
for detecting flooded areas (RST-FLOOD) is a sensor-independent multi-temporal approach aimed at
detecting flooded areas which has already been applied with good results on different polar orbiting
optical sensors. In this work, it has been implemented on both the 250 m Moderate Resolution
Imaging Spectroradiometer (MODIS) and the 375 m Suomi National Polar-orbiting Partnership
(SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS). The flooding event affecting the Basilicata
and Puglia regions (southern Italy) in December 2013 has been selected as a test case. The achieved
results confirm the RST-FLOOD potential in reliably detecting, in case of small basins, flooded areas
regardless of the sensor used. Flooded areas have indeed been detected with similar performance by
the two sensors, allowing for their continuous and near-real time monitoring.

Keywords: flood; remote sensing; data integration; RST-FLOOD; MODIS; VIIRS; optical data

1. Introduction

Among natural disasters, floods are more easily investigable using satellite data. In 2016, among
the 36 activations of the International Charter “Space & Major Disasters”, 17 (i.e., 44%) of them were
related to floods [1], demonstrating the effectiveness of the information that satellite remote sensing
can provide in this context. Several indications can be furnished in all the phases (i.e., mitigation,
preparedness, response, recovery) of the flood risk management cycle. In particular, among the
different possible contributions, information about flood mapping and monitoring activities can
be useful for all the above-mentioned phases [2–4]. A flood map is prepared during/after a flood
occurrence in order to delineate the inundated areas, while flood maps of different times are suitable
for monitoring water expansion and regression [2,3]. Moreover, multi-temporal maps can aid in
detecting critical spatial changes in flood hazards and vulnerability over time. These products can be
used for flood prone area delineation in order to prevent future floods, providing crucial information
to identify appropriate protection measures and strategies for risk mitigation and producing efficient
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response plans [5]. Once a flood event occurs, emergency planners and rescuers can use inundation
maps to detect the most affected areas, then identify evacuation routes and plan the assistance and aid.
During the recovery stage, flood maps can support the identification of places for reconstruction and
multi-date maps aid in the monitoring of community rebuilding [6].

Microwave and optical-band data have been widely used to produce flooding maps, exploiting
the specific advantages of each spectral band and technology used [7,8]. Microwave sensors enable an
all-day (i.e., 24 h) and all-weather detection capability, with spatial resolution ranging from few meters
to dozens of kilometers when moving from active to passive technologies, respectively [5]. On the
other hand, active sensors (e.g., Synthetic Aperture Radar (SAR)) allow for medium-long temporal
frequency (up to five to six days), while passive radiometers have sub-daily temporal resolution [5].
Therefore, SAR data can provide infrequent detailed information about small-scale flooded areas, while
passive microwave data could represent the most suitable solution if timely information is required for
investigating large-scale flooding events [9]. Optical sensors onboard polar satellites, usually deployed
in satellite constellation, can assure the better trade-off among spectral/spatial/temporal resolutions
useful for a near real-time and continuous monitoring of flooded areas [10,11]. Obviously, cloud cover
can fully hamper any kind of acquisition in this spectral region, limiting the applicability of this data.
Hence, the integration of data acquired by sensors operating at different wavelengths is preferred to
avoid such an issue, as well as to make the most of their potential [12].

The Robust Satellite Techniques (RST) [13] is a general multi-temporal satellite data analysis
methodology that has already been applied for detecting flooded areas (RST-FLOOD [12,14]) on Advanced
Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS)
data. Both of these sensors acquire data in the Visible (VIS) and Near Infrared (NIR) regions, allowing
for flooded area detection thanks to the particular spectral behavior of water at these wavelengths.
Compared to other common land cover and features (like bare or vegetated soils), water generally shows a
reflectance (R) in the NIR lower than in the VIS region, with the latter that corresponds for both sensors
to the Red (RED) portion of the electromagnetic spectrum. Therefore, in the presence of water bodies or
flooded areas, values lower than the surroundings have to be expected for the combinations of spectral
reflectances acquired in the VNIR (VIS and NIR) region, like the ratio RNIR/RVIS [15,16] or the difference
RNIR-RVIS [17].

In this paper, we further assess the RST-FLOOD performance in detecting flooded areas by
investigating a few days of the flood event that affected the Basilicata and Puglia regions (southern
Italy—Figure 1) in December 2013 [18–23]. In order to investigate this event, we firstly implemented
the MODIS-based approach using data acquired in its first two channels at 250 m of spatial resolution.
In the previous work [12], the feasibility of this data providing reliable information about flooded areas
was only preliminarily explored, referring to a much larger event than the one analyzed here in terms
of flood extent. Then, exploiting the RST-FLOOD inherent characteristics, we exported the proposed
approach on Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer
Suite (VIIRS) imagery. The VIIRS instrument extends and improves upon a series of measurements
initiated by its operational and research predecessors, the AVHRR flown on board multiple National
Oceanic and Atmospheric Administration (NOAA) and Meteorological Operational (Metop) satellites,
and the National Aeronautics and Space Administration (NASA) MODIS, aboard the Terra and Aqua
satellites, due to its better spatial and spectral resolution as well as radiometric accuracy and stability.
The accuracy of the achieved results has been evaluated through a comparison analysis with a Landsat
Enhanced Thematic Mapper Plus image (ETM+ on Landsat 7) acquired concurrently with MODIS and
VIIRS data.

The main aim of this study is to assess the potential of RST-FLOOD, when implemented on
medium spatial resolution images, in effectively analyzing floods occurring within small catchments.
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Figure 1. Localization of the Region of Interest (ROI). In the background, the Landsat Enhanced
Thematic Mapper Plus (Landsat 7 ETM+) false-color (R = Short Wave InfraRed-SWIR; G = NIR;
B = RED) composite image of 5 December 2013 at 9:31 GMT. The red box is the area used in the text.

2. Study Area

A flood event affected a large portion of the Metaponto plain, in the southeastern part of the
Basilicata region (southern Italy), including a subset of the Puglia region (Figure 1), in the first week
of December 2013 [18,19,23]. This event was caused by a significant amount of rainfall due to the
“Ciclone Nettuno” storm that occurred in the Basilicata region between 30 November and 3 December
2013 [24]. A medium cumulative precipitation value of 150 mm was registered for the whole Basilicata
Region between 1 and 2 December 2013, with peaks above 200 mm in the Metaponto plain [18,21].
The Sinni, Agri, Cavone, Basento and Bradano rivers in Basilicata and the Lato River in Puglia flooded
in several points along their path, as well as in correspondence of the freeway “Strada Statale 106”,
causing its closure and serious damage to farms and agricultural crops [18]. All the rivers involved
in the event are strongly seasonally dependent, with maximum hydrometric levels usually reached
between the late fall and the early spring, and minimum levels reached in summer at cross-sections
lower than 100 m [25]. Therefore, the studied event represents a suitable test case for evaluating the
potential of medium-resolution optical sensors in investigating small-scale floods.

3. Data and Methods

3.1. Satellite Data

MODIS data acquired in the first two bands (i.e., channel 1, VIS, at 0.62–0.67 μm and channel 2, NIR,
at 0.841–0.876μm) at 250 m of spatial resolution were used in this work. In more detail, imagery acquired by
the sensor onboard the Aqua satellite in the 12:00–14:00 GMT temporal range, for the month of December
in the 2002–2016 period have been investigated. MODIS Level 1B (MYD02QKM) and geolocation (MYD03)
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data directly produced at the satellite receiving station of the Institute of Methodologies for Environmental
Analysis (IMAA), located in Tito Scalo (Basilicata region, southern Italy), have been processed. These data
have been produced by running the Community Satellite Processing Package (CSPP) software with antenna
data directly acquired. Level 1B and geolocation data downloaded from the Level-1 and Atmosphere
Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC) archive [26] have
been also used to fill any gaps in the analyzed historical series.

Similarly, for VIIRS, data collected in the first two imagery bands (i.e., I1, VIS, at 0.60–0.68 μm
and I2, NIR, at 0.85–0.88 μm) and the thermal infrared (TIR) imagery one (I5, TIR, at 10.5–12.4 μm)
at 375 m of spatial resolution were investigated. In particular, acquisitions coming from the SNPP
satellite in the same daily temporal range of Aqua were considered for the month of December
in the 2012–2016 period. Also for VIIRS, the SNPP Sensor Data Record (SDR) and the I-band
terrain-corrected geolocation (GITCO) data directly produced at the Institute of Methodologies
for Environmental Analysis (IMAA) receiving station, which was downloaded from the NOAA
Comprehensive Large Array-data Stewardship System (CLASS) archive [27], have been exploited to
populate the historical series.

Finally, in absence of in situ ground truth data, the Landsat 7 ETM+ image acquired on 5 December
2013 at 9:31 GMT over the ROI and downloaded from the U.S. Geological Survey (USGS) portal [28]
(Figure 1), was used to assess the accuracy of the achieved results. The RGB false color (R = SWIR,
1.55–1.75 μm; G = NIR, 0.775–0.90 μm; B = RED, 0.63–0.69 μm) of such an image, related to the
ROI, is shown in Figure 1. In order to better highlight the area most affected by the water presence,
the Normalized Difference Vegetation Index (NDVI) has been computed, looking for values below zero,
which should correspond to water affected areas [29], including both flooded pixels and permanent
water. A Boolean (water/no water) mask was produced and shown in Figure 2.

An area of about 105 km2 has been recognized as affected by water presence, including permanent
waters related both to rivers and the San Giuliano Lake included within the ROI.

 

Figure 2. In green, the pixels of the Landsat 7 ETM+ image, shown in Figure 1, recognized as water
affected are depicted (see text).
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3.2. RST-FLOOD

The RST-FLOOD approach has already been implemented on AVHRR and MODIS data exploiting
the above cited particular spectral behaviour of water in the VNIR (VIS and NIR) region of the
electromagnetic spectrum [12,14]. This has led to the development of the two following Absolutely
Local Index of Change of the Environment (ALICE—[13]) indices:

ALICENIR−VIS(x, y, t) =
RNIR−VIS(x, y, t)− μNIR−VIS(x, y)

σNIR−VIS(x, y)
, (1)

ALICENIR/VIS(x, y, t) =
RNIR/VIS(x, y, t)− μNIR/VIS(x, y)

σNIR/VIS(x, y)
, (2)

where RNIR−VIS(x, y, t) (or RNIR/VIS(x, y, t)) is the reflectance difference (ratio) signal measured at time
t for each pixel (x,y) of the analyzed satellite scene, μNIR−VIS(x, y) (or μNIR/VIS(x, y)) and σNIR−VIS(x, y)
(or σNIR/VIS(x, y)), the named reference fields, are, respectively, the “normal” value expected for the
signal and its natural variability. They are both computed by processing a multi-year dataset of
co-located cloud-free imagery, collected under homogeneous observational conditions (e.g., around
the same time of day and during the same month of the year). For its inherent formulation, each
ALICE provides, at the pixel level, a measure of the deviation of the recorded signal from its expected
(in unperturbed or normal conditions) value and automatically compares this deviation with its normal
variability, which includes all the possible noise sources not related to the event being monitored.
For example, the normal signal variability (i.e., the standard deviation reference field) is high for those
pixels characterized both by the presence of water and land, because they are likely to be affected by a
high signal fluctuation due to both residual geo-location errors and the natural cross-section changes.
Therefore, for those areas, anomalous ALICE values will only be detected when high signal deviation
from the expected one will be measured. In any case, in correspondence to flooded areas, negative
ALICENIR-VIS(x,y,t) (and ALICENIR/VIS(x,y,t)) values should be observed.

Moreover, for their construction, both ALICE indices are standardized variables that, as the number
(N) of the records increases, tend toward a Gaussian like distribution. Under this hypothesis, values of
ALICENIR/VIS (or ALICENIR-VIS) <−2 can be associated to rare events (probability of occurrence less than
2.5%) and values <−3 to very rare events (probability of occurrence less than 0.13%). Hence, statistically
significant signal anomalies are expected for ALICENIR/VIS (or ALICENIR-VIS) <−2 at least, with an
increasing level of confidence when moving to the lowest ones (i.e., −3, −4) [12,14,24].

In order to investigate the selected flood event, the above-cited MODIS and VIIRS historical
temporal series were separately processed, firstly generating their corresponding reference fields
(i.e., temporal mean and standard deviation) for both difference and ratio signals, and then looking for
signal anomalies in the event images.

During the generation of the reference fields and during the change detection step, cloudy pixels
were identified and discarded from the detection step by implementing the One Channel Algorithm
(OCA) method [30,31]. Such an approach, still based on the RST prescriptions, analyzes the historical
series of MODIS channel 2 to identify clouds as statistically high reflectivity objects, or VIIRS I5 data
to identify them as statistically cold bodies. With regards to cloud shadows, after a visual inspection
of images within the used dataset, a simple 2 km (i.e., five-and six-pixel for MODIS and VIIRS,
respectively) buffer around the detected clouds has been applied, thus ensuring a good trade-off
between the possibility to produce false positives and omission errors.

4. Results

Two almost concurrently acquired imagery for the first two cloud-free days over the ROI by MODIS
and VIIRS have been analyzed in terms of ALICE indices computation (Equations (1) and (2)). In detail,
the results investigating the MODIS imagery of 4 December 2013 at 12:25 GMT and 5 December
at 11:30 GMT are presented and discussed in Section 4.1, while those referring to the VIIRS sensor,
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4 December at 12:10 GMT and 5 December at 11:50, are shown in Section 4.2. Finally, Section 4.3 is
focused on the comparison analysis among results achieved in the previous two sections with the
Landsat 7 ETM+ image shown in Figure 1.

4.1. MODIS RST-FLOOD

The RST-FLOOD maps produced by analyzing the two above-mentioned MODIS data are
shown in Figure 3, where in the top panels (Figure 3a,b), the areas flagged as anomalous using
the ALICENIR-VIS index (i.e., Equation (1)) are shown, while those related to the ratio index
(i.e., Equation (2)) are plotted in Figure 3c,d. In all the maps, indices values less than −2 are depicted
in violet and orange colors when the difference and ratio indices have been applied, respectively.

Several anomalous pixels have been detected by the RST-FLOOD indicators in all the output maps.
These pixels are mostly located along the Basento and Lato rivers and are in good agreement with the
local information about the flood localization [18,21,22,32], thus indicating that it can be associated to
the inundated zones. Moreover, a difference between the two indicators can be observed, with a higher
sensitivity of the ALICENIR-VIS to the flood inundated area (see areas along the Basento and Lato rivers),
as well as to the effect of turbid waters in the San Giuliano lake (see Table 1). Concerning flood dynamics,
a lesser number of anomalous pixels has been identified in the maps of 5 December 2013 by both indices
(Table 1). In more detail, an area of about 16 km2 was detected as flooded on 4 December 2013, decreasing
to 12 km2 the next day.

In order to provide a deeper view of the achieved results, a magnification of the area within the
red box of Figure 1 is plotted in Figure 4, where for each of the analyzed MODIS images, the results
achieved by combining both the indices are highlighted. This aggregation allowed for the better
definition of the potentially flooded areas, while the common detections (namely the pixels flagged
as anomalous by both indices—green pixels in Figure 4), may be associated to the definitely flooded
areas. Furthermore, in these maps, the temporal persistence of the anomalous area is evident, as well
as the better sensitivity of the ALICENIR-VIS index than the ALICENIR/VIS one.

Table 1. Number of anomalous pixels identified by the two ALICE indices in the two analyzed
MODIS imagery.

ALICENIR-VIS ALICENIR/VIS

4 December 2013 219 98
5 December 2013 185 58

 
(a) 

 
(b) 

Figure 3. Cont.
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(c) 

 
(d) 

Figure 3. Anomalous pixels detected by Moderate Resolution Imaging Spectroradiometer (MODIS)-based
Robust Satellite Techniques for detecting flooded areas (RST-FLOOD) using: (a) Absolutely Local Index
of Change of the Environment Near Infrared-Visible (ALICENIR-VIS), (b) ALICENIR/VIS on 4 December
2013 at 12:25 GMT and (c) ALICENIR-VIS, (d) ALICENIR/VIS on 5 December 2013 at 11:30 GMT.

(a) 

(b) 

Figure 4. Anomalous pixels detected within the red box shown in Figure 1 by MODIS-based
RST-FLOOD on (a) 4 December 2013 at 12:25 GMT and (b) 5 December 2013 at 11:30 GMT using
ALICENIR-VIS (violet pixels) and ALICENIR/VIS (orange pixels). In green, the pixels detected as
anomalous by both indices are highlighted.
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4.2. VIIRS RST-FLOOD

Figure 5 shows the anomalous pixels identified within the ROI by implementing RST-FLOOD
on VIIRS data. First, it is interesting to note that, when compared to MODIS, the two RST-FLOOD
indices seem to show a higher sensitivity to flooding and to not significantly differ in terms of detected
anomalies, as revealed by the analysis of the numbers reported in Table 2. In detail, an averaged area
of approximately 52 km2 was detected as flooded, almost three times higher than the one previously
identified using MODIS. Although the VIIRS VNIR bands had lower spatial resolution than the MODIS
one, the implementation of RST-FLOOD on VIIRS allowed for the detection of a larger number of
anomalous pixels, not only along the Basento and Lato rivers, but also close to Cavone, Agri and
Sinni, most likely due to the flooding. The almost equivalent number of detected pixels in two days
confirm this high sensitivity, indicating that the effect of the flood was still detectable on 5 December.
Concerning the San Giuliano Lake, the effect of suspended sediments is still present, even with a
reduced impact. Finally, some spurious effects are also observable in the correspondence of a few pixels
not close to riverbeds, disappearing when higher confidence levels of RST-FLOOD indices are used.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Anomalous pixels detected by Visible Infrared Imaging Radiometer Suite (VIIRS)-based
RST-FLOOD using: (a) ALICENIR-VIS, (b) ALICENIR/VIS on 4 December 2013 at 12:10 GMT and
(c) ALICENIR-VIS, (d) ALICENIR/VIS on 5 December 2013 at 11:50 GMT.
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Table 2. Number of anomalous pixels identified by the two ALICE indices in the two analyzed
VIIRS imagery.

ALICENIR-VIS ALICENIR/VIS

4 December 2013 214 272
5 December 2013 262 243

The magnification of the areas mainly affected by the event as detected by VIIRS have been taken
into account and reported in Figure 6. The maps shown in this figure provide a clear confirmation of
the considerations discussed above for MODIS, emphasizing the advantage in coupling the detections
provided by the two RST-FLOOD indices, both in detecting the definitely flooding affected areas (green
pixels in Figure 6) and improving the delimitation of their extent.

(a) 

(b) 

Figure 6. Anomalous pixels detected within the red box shown in Figure 1 by VIIRS-based RST-FLOOD
on (a) 4 December 2013 at 12:10 GMT and (b) 5 December 2013 at 11:52 GMT using ALICENIR-VIS

(violet pixels) and ALICENIR/VIS (orange pixels). In green, the pixels detected as anomalous by both
indices are highlighted.

4.3. Comparison with Landsat

To assess the reliability of the proposed approach, the Landsat 7 ETM+ image of 5 December 2013,
at 9:31 GMT, was exploited (Figure 1). In Figure 7a, a magnification of the area within the red box
in Figure 1 is plotted, using the Boolean mask already plotted in Figure 2 in the background, where
water affected areas are clearly visible along the Basento and Lato rivers, notwithstanding no data
acquisition due to the Landsat 7’s Scan Line Corrector (SLC) failure. An area of about 28 km2 was
identified as water affected within the investigated box (green pixels in Figure 7a).

The RST-FLOOD results carried out for 5 December 2013 have been superimposed on those areas
aggregating MODIS and VIIRS detections (at 11:30 GMT and 11:52 GMT, respectively) achieved with
the same ALICE index (Figure 7b,c), estimating an area ranging between 15 and 18 km2 when the
ratio (Figure 7c) and the difference (Figure 7b) index is used, respectively. Considering all the Landsat
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7 water affected pixels depicted in Figure 7a as a benchmark for assessing the extension of flooded
areas, a maximum underestimation of about 46% was computed for RST-FLOOD. The large difference
in terms of spatial resolution among ETM+ and the two optical sensors used in this work forms the
basis of this result [12]. Spurious and isolated ETM+ water affected pixels cannot be detected at the
spatial resolution allowed by MODIS and VIIRS. Moreover, even when those pixels are aggregated,
their total contribution in terms of sub-pixel effect can provide a result lower than the expected value as
defined by RST-FLOOD, and therefore they are not identified as anomalous. On the other hand, such
an outcome is quite relevant, because it confirms the potential of the proposed approach in effectively
detecting the presence of flooded areas notwithstanding the medium spatial resolution of the used
data. Furthermore, concerning Landsat 7 water affected pixels, it is worth mentioning that they also
take into account permanent water, as well as other effects not directly ascribable to water presence.

 
(a) 

(b) 

(c) 

Figure 7. (a) Subset of the image shown in Figure 2 highlighting water affected pixels; (b) anomalous
pixels detected by ALICENIR-VIS on 5 December 2013 at 11:30 GMT for MODIS (pink) and at 11:52 GMT
for VIIRS (violet); (c) anomalous pixels detected by ALICENIR/VIS on 5 December 2013 at 11:30 GMT
for MODIS (orange) and at 11:50 GMT for VIIRS (brown).
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In any case, such a comparison shows the satisfactory capability of the proposed approach in
detecting flooded areas regardless of the sensors used, and the different sensitivities of RST-FLOOD
indicators when implemented on MODIS and VIIRS imagery. These aspects assume great relevance in
detecting flooded areas by optical satellite data, reinforcing the great usefulness of implementing an
integrated satellite system within the flood hazard management cycle, allowing for a more detailed
identification of flooded areas and a continuous monitoring of the ongoing phenomenon on a large
spatial scale. Advantages arising from such an integration are clearly observable when analyzing
Figure 8, where the outputs produced by applying the same index on both of the sensors for the two
available images are shown. An area of about 80 km2 has been recognized as flooded in the two days
examined by both MODIS and VIIRS sensors through the ALICENIR-VIS index implementation, while
72 km2 has been detected by the ALICENIR/VIS index, with the main difference due to the pixel issues
related to the San Giuliano turbid waters.

 
(a) 

 
(b) 

Figure 8. (a) Flooded areas detected within the Region of Interest (ROI) by integrating results achieved
by ALICENIR-VIS implemented on MODIS and VIIRS data for the two investigated days; (b) as in (a)
using the ALICENIR/VIS.

5. Discussion

Timely and continuous information about flood dynamics is fundamental to ensure an effective
implementation of relief and rescue operations. Using data acquired by optical sensors onboard
meteorological satellites for flood detection and monitoring may be detrimental due to cloud cover that
can hamper any kind of acquisition. Despite this limitation, there are several advantages that make
optical data a good complement to other satellite-based systems, such as: (i) the large swath that allows
for both large area coverage and high temporal resolution; (ii) a medium spatial resolution (in the order
of hundreds of meters) useful for detecting medium-major flood events; and (iii) the deployment in
satellites constellation that further enables an increase in revisiting time. In addition, sensors operating
in different spectral regions that can complement the information acquired using optical data are often
present aboard meteorological satellites [33]. Both MODIS and VIIRS, the optical sensors considered in
this work, show almost all of the above-cited features, making them suitable for flooded area detection.
While the MODIS capability in this framework has been largely demonstrated [11], there are only a
few works based on VIIRS I-band data [9,34,35].

In this work, we implemented the RST-FLOOD approach on MODIS and VIIRS daytime data to
analyze a few days of the flooding event that occurred in the Metaponto plain (southern Italy) in the
first week of December 2013. RST-FLOOD has been already applied using 1 km MODIS visible and
near infrared data, with only a preliminarily feasibility analysis of the potential of the same data when
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acquired at 250 m of spatial resolution [12]. In this work, we further assess the capability of this latter
specific configuration of RST-FLOOD in detecting flooded areas, and also test its performance when
implemented on VIIRS imagery data at 375 m of spatial resolution.

The main advantages of RST-FLOOD with respect to traditional techniques are: (i) the use of
local (i.e., at the pixel scale) adaptive and dynamic thresholds; and (ii) no dependence on any kind
of auxiliary/ancillary information [12]. Ancillary datasets or fixed thresholds on the signal under
investigation are often used to face the main challenges, such as cloud and terrain shadows and the
discrimination of flooded areas [34,35], limiting flood detection reliability. The accuracy/availability of
auxiliary information can directly affect the quality of the achieved results, while fixed thresholds may
suffer from sensitivity/accuracy limits because of the signal variability due to the specific site/local
setting of the scene under investigation [14].

The only constraint for RST-FLOOD implementation is the availability of a satellite historical
series long enough to guarantee a consistent identification of the expected values in terms of temporal
mean and standard deviation. An independent work focusing on RST [36] found that such a historical
series should consist of at least of 80 images to produce reliable reference fields, corresponding to at
least three years of data, considering a monthly temporal window and a daily frequency of observation.

Results achieved by applying the RST-FLOOD indices on the two sensors suggest the benefit of
their integration for a continuous monitoring of the ongoing phenomenon at large spatial scale. Such an
integration enables a clear increase in the observational frequency, improving the flood evolution
monitoring capability of each single sensor. This result is fundamental for decision makers, especially
during the crisis, in order to better identify critical situations and ensure an effective implementation of
relief and rescue operations. Furthermore, hydrological models would also benefit from the integration
of continuous and updated information about the real-time situation, having the opportunity to check
the quality of their setup as well as improving the quality of their outputs. Finally, the integration of
multi-sensor datasets will generally increase the probability of clear sky acquisitions, reducing the
impact of clouds, which are the main limitations of optical satellite observations, especially for this
kind of application. It is worth mentioning that cumulated flooded maps of the event, allowed by
high temporal resolution weather satellites, could help for a better delineation of the involved area,
enabling an assessment and relative updating of the flooded risk map.

Basilicata rivers are representative of small hydrological basins, with small-size cross-sections
(<100 m); therefore, the achieved results indicate that data acquired by medium-resolution optical
sensors, if adequately analyzed, can also be profitable for flood detection monitoring of watersheds.
In the near future, other test cases should be studied to further confirm the quality of the results
achieved here by investigating a different scenario from the one considered here. For example,
flood events of a smaller size (in terms of both channel width and floodplain extension) than the
ones analyzed here should be investigated to better understand the sensitivity limit of the proposed
approach when applied to data at 375 m of spatial resolution. Events occurring in urban areas should
also be analyzed to confirm the feasibility of the methodology presented here. Furthermore, it is worth
mentioning that while the proposed indices are almost “mandatory” for MODIS data, considering the
spatial resolution constraints, VIIRS has other imagery bands, such as the I3 (SWIR: 1.58–1.64 μm),
which will enable other combinations currently under investigation.

6. Conclusions

In this paper, RST-FLOOD has been applied to analyze the flood event that affected the Basilicata
and Puglia regions in the first week of December 2013. Two different indicators, based on the difference
and ratio between NIR and VIS reflectance (i.e., channel 2 and channel 1 for MODIS, I2 and I1 for
VIIRS), respectively, have been used to detect flooded areas.

When implemented on MODIS data, the RST-FLOOD indices showed a behavior similar to the
one observed when studying a different test case. A similar behavior between the two ALICE indices
has been recognized, with the one based on the difference being more exposed to a few false positives
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due to suspended sediments flown into the San Giuliano lake. A better sensitivity of the VIIRS-based
indices was observed. This aspect, which needs more investigation, can be preliminarily justified by
considering the different specific spectral and radiometric accuracies of the two sensors and the longer
historical series of MODIS data.

The flood maps provided by both RST-FLOOD indices, aggregating the MODIS and VIIRS
detections, are in good geographical agreement with the one derived using Landsat 7 ETM+ data
of 5 December 2013. Such an integration allowed for the discrimination of a flood area extent up
to 80 km2, lower than that potentially detectable by using a high spatial resolution sensor like the
ETM+ (about 24% greater). Despite this, the double advantage of an integrated system in effectively
supporting flood risk management is clearly demonstrated. The high temporal revisiting capability
offered by optical sensors aboard weather satellites allows for the improvement of the observational
capability of an operational monitoring system, while the combined use of different indices improves
the accuracy in flood extent mapping.
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Abstract: Nowadays, increased flood risk is recognized as one of the most significant threats in
most parts of the world, with recurring severe flooding events causing significant property and
human life losses. This has entailed public debates on both the apparent increased frequency of
extreme events and the perceived increases in rainfall intensities within climate changing scenarios.
In this work, a stationary vs. Non-Stationary Analysis of annual extreme rainfall was performed with
reference to the case studies of the African cities of Dar Es Salaam (TZ) and Addis Ababa (ET).
For Dar Es Salaam (TZ) a dataset of 53 years (1958–2010) of maximum daily rainfall records
(24 h) was analysed, whereas a 47-year time series (1964–2010) was taken into account for Addis
Ababa (ET). Both gauge stations rainfall data were suitably fitted by Extreme Value Distribution
(EVD) models. Inference models using the Maximum Likelihood Estimation (MLE) and the Bayesian
approach were applied on EVD considering their impact on the shape parameter and the confidence
interval width. A comparison between a Non-Stationary regression and a Stationary model was also
performed. On this matter, the two time series did not show any Non-Stationary effect. The results
achieved under the CLUVA (Climatic Change and Urban Vulnerability in Africa) EU project by the
Euro-Mediterranean Centre for Climate Change (CMCC) (with 1 km downscaling) for the IPCC
RCP8.5 climatological scenario were also applied to forecast the analysis until 2050 (93 years for
Dar Es Salaam TZ and 86 years for Addis Ababa ET). Over the long term, the process seemed
to be Non-Stationary for both series. Moreover, with reference to a 100-year return period, the
IDF (Intensity-Duration-Frequency) curves of the two case-studies were estimated by applying the
Maximum Likelihood Estimation (MLE) approach, as a function of confidence intervals of 2.5% and
97.5% quantiles. The results showed the dependence of Non-Stationary effects of climate change to
be conveniently accounted for engineering design and management.

Keywords: climate change; IDF curves; Bayesian analysis; Non-Stationary process

1. Introduction

Nowadays, the increased flood risk is recognized as one of the most important threats, from
both the actual and, more importantly, the climate change scenario, with frequent severe flooding at
the global scale causing significant loss of property and life. In 2009 (Messina, Sicily Region), 2010
(Atrani, Campania Region) and 2011 (Genova, Liguria Region), the Italian territory was forced to
face widespread flooding events, highlighting the significant vulnerability of the territory and the
inadequacy of early warning and flood protection systems. According to the official report of the
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Italian Environmental Ministry, over 1000 buildings and businesses were flooded, causing 40 deaths.
Nevertheless, worldwide flooding events caused by extreme rainfall events are causing the degradation
of water quality, damages and potential loss of life [1,2].

These events prompted public debates on the apparent causes of the increased frequency of
extreme events. Indeed, scientists are querying the changing statistics of rainfall intensity, especially
considering the climate model predictions of increasing frequency and intensity of heavy rainfall in the
high latitudes under enhanced greenhouse conditions. In 2007, the United Nations Intergovernmental
Panel on Climate Change (IPCC) issued a report [3] stating that “It is very likely that hot extremes,
heat waves, and heavy precipitation events will continue to become more frequent”, with the “very
likely” assertion indicating an occurrence probability greater than 90%. Thus, the actual and recent
observations and future predictions are pointing out the importance of suitable assessments of the
probability occurrence of extreme events related to long return periods T.

A comprehensive review of trend analysis and climate change projections of extreme precipitations
in Europe is given by [4]. Many studies demonstrate changes in seasonal extreme precipitations in
some parts of Europe [5–8].

To estimate extreme value statistics for frequency analysis of extreme precipitation, the assumption
of stationarity is valid if we do not consider changes in climate that affect the hydrological regime.
In this matter, during the last decade, several studies adopted Non-Stationary frequency analysis
for extreme precipitation in different parts of the world [9–11]. On the other hand, simplified
indexes [12,13] or Innovative Trend Analysis [14] have also been applied and tested for identifying
potential trends in extreme precipitations.

Extreme Value Distributions (EVDs) are usually able to accurately represent the frequency
of hydrologic over-threshold physical processes. Parameter estimation through Likelihood-based
methods allows extreme quantiles to be calculated, providing the appraisal of the parameter and the
associated dynamic for given return period T (e.g., 100 years). However, EVD parameters are typically
estimated from the extremes of a dataset (e.g., annual maxima), which may result in characterizing
unrealistic values. A possible solution to improve the reliability of statistical analysis concerns the
application of a Bayesian framework, which allows us to constrain the estimates as a function of
predefined information, which could realistically reproduce the hydrologic processes governing the
available data. Further essential points regard the potential Non-Stationarity that could involve
meaningful variation of the mean value of the distribution, with corresponding variation of the return
levels related to a return period T.

This work first investigated the behaviour of the GEV distribution to estimate the annual maxima
of rainfall depths adopting both MLE and Bayesian methods, evaluating their relative impacts on the
confidence interval widths. Moreover, stationary and Non-Stationary analyses of extreme rainfall were
applied to historical time series (with a relative limited extension), and the extended ones used climate
models, thus evaluating potential Non-Stationary effects induced by the climate models.

Maximum daily (24 h) rainfall data series for the cities of Dar Es Salaam (TZ) with a 53-year dataset
(1958–2010), and Addis Ababa (ET) with a 47-year dataset (1964–2010) were analysed to evaluate the
Goodness of Fit (GoF) of EVD models. Specifically, a comparison was realized between Maximum
Likelihood Estimation (MLE) and Bayesian models. Moreover, results gathered from the CLUVA
(Climatic Change and Urban Vulnerability in Africa) EU project by the Euro-Mediterranean Centre
for Climate Change (CMCC) (with 1 km downscaled resolution) for the IPCC RCP8.5 climatological
scenario were also considered, extending the rainfall dataset to 2050 (93 years for Dar Es Salaam TZ
and 87 years for Addis Ababa ET).

The impact of the actual versus changing hydrologic forcing scenarios was evaluated, with
reference to a 100-year return period, estimating the Intensity-Duration-Frequency (IDF) curves
through the Maximum Likelihood Estimation (MLE) as a function of confidence intervals of 16% and
84% quantiles, respectively.
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2. Methodology

2.1. Extreme Value Theory

The Generalized Extreme Value (GEV) distribution was proposed by [15] following the original
formulation of [16]. The GEV approach is widely applied to model extremes of hydrologic processes
such as floods [17], rainfall [18] and sea waves [19]. Further applications also include different subjects
such as financial market risk modelling [20].

By supposing X1, X2, . . . , Xn as a sequence of independent random variables from a common
distribution function F, the statistic order of interest is Mn = max{X1, X2, . . . , Xn}, namely, the maximal
value of the independent identically distributed (i.i.d.) random variables. Here, Xi represents the daily
rainfall amount (mm) and n the number of observations in one year (365 or 366), so that Mn is the
annual maximum. When the parent distribution function F is known, the distribution of Mn can be
derived from statistical theory such that P(Mn ≤ z) = [F(z)]n.

With F unknown, a limit distribution for Fn as n → ∞ is searched for, in a way similar to how the
application of the Central Limit Theorem (CLT) allows approximation of the distribution of samples
by means of the Normal distribution. Considering the linearly renormalized variable M*

n:

M∗
n =

Mn − bn

an
(1)

for sequences an > 0 and bn, Mn should be normalized because Fn(z) → 0 as n → ∞ for fixed z lower
than the upper end-point of F. This causes the degeneration of the distribution to a point mass on the
upper end-point of F (i.e., the smallest z such that F(z) = 1).

The whole range of limit distributions for M*
n is given by the Extremal Types Theorem [21].

If a series of constants {an > 0} and {bn} exists, such that P(M*
n ≤ z) → G(z) as n → ∞ (with G a

non-degenerate distribution function), then G must be included into one of the following three families:
(I) Gumbel; (II) Fréchet and (III) Weibull distributions.

Families I, II and III can be combined into a single family named the Generalized Extreme Value
(GEV) distribution [4], given by the following Equation (2):

G(z) = exp

{
−
[

1 + ξ

(
z − μ

σ

)]− 1
ξ

}
−∞ < μ < ∞, σ > 0, −∞ < ξ < ∞ (2)

defined as {z: 1 + ξ(z − μ)/σ > 0}, where μ, σ, ξ are the location, scale and shape parameters, respectively.
The shape parameter ξ governs the tail behaviour of the distribution at its upper end. The Weibull

class has a finite upper endpoint, whereas the Gumbel and Fréchet classes provide relatively different
rates of decay in the tail. The Fréchet is a more heavy tailed distribution because it decays polynomially
with respect to the Gumbel class, which decays exponentially instead. The tail behaviour is strongly
significant, as it corresponds to quite different characteristics of extreme value behaviour. To perform
the unification to a single GEV distribution, making a choice about the best model before parameter
estimation is required. The key advantage of the GEV distribution over the three EV types derives
from the assertion that the estimation of the ξ parameter via inference methods allows the data to select
which family (and tail behaviour) to adopt without any prior decision. Moreover, the uncertainty in
the estimated value of ξ measures the uncertainty correlated with the effectiveness of the three types
for the available data set.
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By inverting Equation (2), an estimation of extreme quantiles can be obtained, being the pth-upper
quantile of the z distribution given by G(zp) = 1 − p. A zp estimation is achieved by substituting the
estimates of μ, σ and ξ (for 0 < p < 1):

�
z p =

⎧⎨
⎩

�
μ −

�
σ
�
ξ

[
1 − (− log(1 − p))−ξ̂

]
f or

�
ξ �= 0

�
μ −�

σ log(− log(1 − p)) f or
�
ξ = 0

(3)

where zp is the return level correlated to the return period T = 1/p. Return levels represent usual
estimation parameters for extreme events, resulting in the “100-year flood” widely applied in
hydrological applications for civil engineering. Loosely speaking, zp is the level expected to be
meanly exceeded once every 1/p years (assuming G as the annual maximum). More formally, for
extreme rainfall, zp is the daily rainfall amount exceeded by the annual maximum for any year with a
probability equal to p.

The plot of zp against 1/p is known as the return level plot, resulting in an effective tool to
graphically observe the return levels. The sign of the shape parameter takes on an important role
when extrapolating to long return periods. Indeed, a small error in estimating the ξ parameter can
lead to a much larger error in the return level estimation. Thus, accurate evaluation of the GEV shape
parameter is essential to plan and develop flood protection models [22].

2.2. Bayesian Approach

The Bayesian approach allows us to make inferences from the Likelihood function, overcoming
the limitation of the usually small size of the time series characterized by the annual maxima.

According to this approach, as opposed to the MLE, a parameter θ of a distribution is not an
unknown constant but it is treated as a random variable related to a prior normal pdf f (θ) with zero
mean and a certain variance vθ .

If we consider x = (x1, . . . , xn) as independent realizations of a random variable so that
{ f (x; θ) : θ ∈ Θ}, according to the Bayes Theorem:

f (θ/x) =
f (θ) f (x/θ)∫

θ f (θ) f (x/θ)dθ
(4)

where f (θ|x) is the posterior distribution, f (θ) is the abovementioned prior distribution and

f (x|θ) =
n
∏

i = 1
f (xi|θ) is the Likelihood. In case of many parameters such as the GEV distribution, the

denominator of Equation (4) can be computationally complex. To overcome this issue, Markov Chain
Monte Carlo (MCMC) techniques, based on multiple simulations, are usually adopted [21].

The sequences of simulated values of the parameters can be generated with the
Metropolis-Hastings algorithm, e.g., applying the evdbayes package within R software [23].
The algorithm generates a sequence of parameters adopting a random-walk characterized by a normal
distribution with a mean equal to the previous value of the parameter in the chain and a given variance.
After a burn-in period, the sequence of the parameters is approximately stationary and the estimate of
the parameter is computed as the mean of the sequence excluding the values within the burn-in period.

2.3. Non-Stationary Frequency Model

Under the climate change context, the intensity and/or the frequency of extreme rainfall events
can change with time, so that the hypothesis of stationarity of the series of annual maxima is not
satisfied [24].

The Non-Stationary behavior of an extreme value distribution can be expressed in different ways,
such as changing its average values, the variability of its variables or both of them simultaneously [25].
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More complex cases of Non-Stationarity could involve changes in distribution asymmetry or even in
the parametric form [24].

Most studies look at trends induced by average variables [26] or extreme values indicators [27]
without considering the variation of the shape of the distribution or of its variability. Following this
simplest hypothesis, in this work, the GEV distribution for a Non-Stationary frequency model is
expressed as GEV(μi, σ, ξ), where μi = μ0 + μtrend ti, with ti the counter of the year from the analysed
time series (see Section 3.1.1).

3. Case Studies

The extreme value statistics for frequency analysis of extreme precipitation were performed for
Dar Es Salaam (TZ) and Addis Ababa (ET) case studies for both cases of historical data and extended
time series using the COSMO CLM model by Euro-Mediterranean Centre for Climate Change (CMCC).
Table 1 shows the basic statistics of the mentioned time series. Kolmogorov-Smirnov, Anderson-Darling
and Chi-Square GoF tests have been performed on the GEV distribution application for both case
studies related to the historical and extended time series. Results of the GoF were positive for each test,
considering the rejection of the null hypothesis at the level a = 0.01.

Table 1. Basic statistics of the times series for both cases studies of Dar Es Salaam and Ababa.

Basic Statistics
Dar Es Salaam Addis Ababa

Historical Data Hist. + CMCC Data Historical Data Hist. + CMCC Data

Mean [mm] 78.8 71.3 52.1 54.2
Standard deviation [mm] 23.6 26.8 18.4 20.2

Skewness 1.20 0.97 1.20 1.19
Kurtosis 0.98 0.59 0.94 0.96

3.1. Dar Es Salaam (TZ) Rainfall Data

3.1.1. Historical Data

The first analysis was based on the data series of daily rainfall observations recorded at Dar Es
Salaam (TZ) Airport, Tanzania (Latitude: −6.87 N; Longitude: 39.20 E; Elevation: 53 m a.s.l.) with
reference to the time span 1 January 1958–31 December 2010. Annual maxima are plotted in the
following Figure 1.

Figure 1. Annual maximum 24 h rainfalls recorded at Dar Es Salaam TZ (1958–2010).
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The assumption of data as independent observations from the GEV distribution was applied.
Based on the Maximum Likelihood Estimation (MLE) method (by using the eXtremes [28] and
evd [29] packages in R software [30]), the following estimation of μ, σ and ξ parameters was
obtained (μ̂, σ̂, ξ̂) = (68.25, 16.93, 0.039), with standard errors equal to 2.55, 1.83 and 0.083, respectively.
Approximate 95% confidence intervals for each parameter were [63.25, 73.25], [13.35, 20.52] and
[−0.124, 0.202] for μ, σ and ξ, respectively. This showed that the 95% confidence interval is well
extended for values lower than zero, although the estimation of the shape parameter was positive,
pointing out the uncertainty of the performed evaluation.

The survey for the 100-year return level was ẑ0.01 = 153.6 mm, with a 95% confidence interval
of [129, 208] mm, and the return level plot in Figure 2 shows the linear trend of the function as a
consequence of the estimation of the ξ parameter tending towards 0. Diagnostic plots (not shown for
the sake of brevity), such as probability plot and quantile plots, showed that each set of plotted points
are roughly linear, validating the use of the GEV model.

 

Figure 2. Return Level (in mm) plot using maximum likelihood surveys.

A more reliable survey using a Bayesian approach was implemented by applying the evdbayes
package in R software [23]. The algorithm provides functions for the Bayesian analysis of extreme
value models, using the Markov Chain Monte Carlo (MCMC) method. The solely genuine prior
information available referred to the GEV shape parameter; thus, prior information about μ and σ

parameters were not-informative normal distributions with variance 104. In the Bayesian analysis,
more specific empirical evidence provided by Koutsoyiannis [31,32] was applied, as a function of
ξ ≈ 0.15 for Europe.

A normal distribution around 0.15 with variance 0.2 was formed, restricting the ξ variation to
a physically reasonable range [22]. By applying the MLEs as the initial vector θ0 = (μ̂, σ̂, ξ̂) = (68.25,
16.93, 0.039) and the proposal standard deviations psd = (6.191, 0.230, 0.216) (identified with some
pilot runs), a Markov Chain Monte Carlo (MCMC method) was generated with a length of 100,000,
satisfying mixing properties (Figure 3). By graphically examining the chain (Figure 3) and using the
Geweke diagnostic [33], a burn-in period of 10 iterations was found.

The sample means and standard deviations of each marginal component of the chain were:

μ̂ = 68.22 (2.65); σ̂ = 17.74 (1.98); ξ̂ = 0.04716 (0.0834) (5)
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whereas the 95% reasonable intervals were [63.10, 73.52], [14.32, 22.12] and [−0.11, 0.22] for μ, σ,
and ξ, respectively.

The sequence of simulated (μi, σi, ξi) values was transformed, leading to a sample from the
corresponding posterior distribution of the 100-year return level (Figure 4). This gave a ẑ0.01 estimation
equal to 161.8 mm with 95% reasonable interval of [131.6, 219.1] mm. The plot of the posterior return
level given in Figure 5 shows the upper 95% interval to be more remote than the lower interval from
the median level.

This was due to the heavier upper tail of the posterior distribution (Figure 4), achieved for the
non-negative prior on ξ. The summary of Dar Es Salaam (TZ) data is given in Table 2.

Moreover, μ was estimated to be 68 mm; nevertheless, MLE returned a lower estimation of the
scale parameter σ, with respect to that derived from the Bayesian method. In terms of credibility
intervals, the estimation of the shape parameter was more precise using the Bayesian method.

Figure 3. MCMC realizations of the GEV parameters with a Bayesian analysis of the Dar Es Salaam
(TZ) rainfall data.
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Figure 4. Estimated posterior density of the 100-year return level.

 

Figure 5. Posterior return level plot in Bayesian analysis of Dar Es Salaam (TZ) rainfall data: the
median (solid line) and the 95% intervals of the posterior probability (dashed lines).

The Bayesian estimates were relatively insensitive to the prior distributions, as shown by the
similar parameter and quantile estimates. The computational efforts of the Bayesian approach by
using the R software (evdbayes package) were significantly short, requiring very short extra processing
time with respect to the MLE. The sole prejudices, in terms of required computational time, regarded
both the prior setting up and ensuring that the Markov Chain Monte Carlo had desirable properties.
The inclusion of genuine prior information was a compelling factor in favour of the Bayesian inference.
This, together with the limited amount of historical data available for the Dar Es Salaam (TZ) analysis,
provided significant evidence to prefer the Bayesian analysis instead of the MLE one.

In Figure 6, the autocorrelations for all three parameters after a 5 lag period decreased rapidly.
Therefore, it is shown that the result has good mixing.

Table 3 shows the results of the 3 diagnostics according to the Gelman–Rubin, Geweke
and Raftery–Lewis methods, as reported in [34] for checking the convergence of the algorithm.
The Gelman–Rubin diagnostic is equal to 1.000 for both μ, σ, and ξ. Therefore, it is known that
the chains could be accepted, and this indicates the estimates come from a state space of the parameter,
as depicted in Figure 7. In Table 3, Geweke’s test statistics are 0.4307, 0.6353 and 0.9895 for μ, σ

and ξ, respectively. Therefore, also in this case, the chain is acceptable, as shown in Figure 8. The last
quantitative diagnostic is the Raftery–Lewis method. In Table 3, the dependence factors I are 4.320,
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3.860 and 3.85 for μ, σ and ξ, respectively. According to this method, high dependence factors (>5)
show significant correlations between estimates, indicating poor mixing. Therefore, the estimated
values have good mixing.

 

Figure 6. Behaviour of autocorrelations for all three parameters of the GEV distribution with lag effects.

Table 2. Summary of results obtained from different methods of estimation (Dar Es Salaam TZ data).

Method MLE Bayesian ξ ~N(0.15, 0.20)

Estimates
μ (mm) 68.25 68.22
σ (mm) 16.93 17.74

ξ 0.039 0.047

95% intervals
μ (mm) [63.25, 73.25] [63.10, 73.52]
σ (mm) [13.35, 20.52] [14.32, 22.12]

ξ [−0.124, 0.202] [−0.110, 0.220]

100-year return level
Estimates (mm) 153.6 161.8

95% intervals (mm) [129, 208] [132, 219]

Table 3. Diagnostics by Gelman–Rubin method, Geweke method, and Raftery–Lewis method.

Parameter Gelman–Rubin (R) Geweke (Z0.025 = ±1.96) Raftery–Lewis (I)

μ 1 0.4307 4.320
σ 1 0.6353 3.860
ξ 1 0.9895 3.850

Parameter Gelman–Rubin (R) Geweke (Z0.025 = ±1.96) Raftery–Lewis (I)
μ 1 0.4307 4.320
σ 1 0.6353 3.860
ξ 1 0.9895 3.850

Figure 7. Gelman plot diagnostic for the three parameters μ, σ, and ξ of Dar Es Salaam (TZ)
historical data.
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Figure 8. Geweke plot diagnostic for the three parameters μ, σ, and ξ of Dar Es Salaam (TZ)
historical data.

After analyzing the historical data with a stationary approach, the analysis was performed to
verify the feasibility of Non-Stationarity data by applying both the GEV and assuming a linear trend
for the location parameter.

The GEV log-Likelihood is based on the assumption that the data to be fitted are the observed
values of independent random variables X1, . . . , Xn, where Xi ~GEV(μ, σ, ξ) for each i = 1, . . . , n.
This assumption can be extended to Xi ~GEV(μi, σ, ξ), where μi = μ0 + μtrend ti. The parameters
(μ, μtrend) are estimated, and the vectors of covariates t = (t1, . . . , tn) are specified by the user.

In this case study, the MLE fit for the location parameter was μ̂ = 61.34 + 0.25·ti (where ti = 0,
1, 2, . . . , 52 years) and associated standard errors were 4.92 and 0.15 for μ0 and μtrend (Figure 9),
respectively. The σ̂ and ξ̂ estimates were 16.22 and 0.071 with standard errors of 1.81 and 0.091,
respectively. As shown in Figure 9, this resulted once again in a satisfactory fit. The observed trend
of the fitted data with the GEV distribution can be considered a relevant result and suggests further
analysis be performed on extended time series with climatic models. An analytic approach to determine
the better fit between stationary and Non-Stationary approaches is the Likelihood-Ratio test (eXtremes
package [28]). In this test case, the Likelihood-Ratio was equal to about 2.4897, i.e., lower than the
95% quantile of the X1

2 distribution of 3.8415, suggesting that the covariate ti model did not provide a
significant improvement to the model without a covariate. This assumption was also supported by the
estimation of the p-value, equal to 0.114.

Figure 9. Observed data fitted with the GEV distribution with a trend.
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3.1.2. Historical Data with CMCC Simulation Data

In this section, the analysis is extended by integrating the rainfall observations recorded at Dar Es
Salaam (TZ) Airport with the simulated data until year 2050, derived from the climatic forecasting
simulations performed by the Euro-Mediterranean Centre for Climate Change (CMCC) for the IPCC
scenario RCP8.5, using the COSMO CLM model. Data were downscaled to 1 km spatial precision.
Thus, the total dataset was composed of 93 annual maximum rainfall events, 53 observed and 40
simulated data points (Figure 10).

A similar analysis was performed for the historical data, and the results are summarized in Table 4.
For the Bayesian analysis, the MLE was applied as the initial vector θ0 = (μ̂, σ̂, ξ̂) = (59.62, 20.96,
−0.00645) by using proposal standard deviations psd = (5.931, 0.193, 0.194). A Markov Chain
Monte Carlo (MCMC method) was generated, with a length of 100,000 and good mixing properties.
By examining the chain graphically and using the Geweke diagnostic, a burn-in period of very few
iterations (about 50) was found to be satisfactory. As in the previous analysis, once a stationary
approach was applied, the verification of possible Non-Stationarity of the data was done by using the
GEV, as a function of a linear trend for the location parameter. In this case, the MLE fit for the location
parameter was μ̂ = 72.46 − 0.273·ti (where ti = 0, 1, 2, . . . , 92 years), and associated standard deviations
were 3.88 and 0.0683 for μ0 and μtrend, respectively. The σ̂ and ξ̂ estimations were 18.83 and 0.0542
with associated standard deviations of 1.60 and 0.074, respectively. The Likelihood-ratio was about
13.3543, resulting in a greater 95% quantile of the X1

2 distribution of 3.8415. The latter suggested that
the covariate ti model was a significant improvement over the model without a covariate, obtaining a
small p-value of 0.000258.

Figure 10. Annual maximum 24 h rainfall recorded at Dar Es Salaam TZ (1958–2010, blue circles) and
simulated by CMCC (2011–2050, red circles).

The posterior return level plot represented in Figure 11 shows once again how the upper 95%
interval was farther from the median than the lower one.

A naive Bayesian analysis was thus performed, taking near-flat priors that reflected the absence
of external information. Indeed, prior on μtrend was a non-informative normal distribution, in a way
similar to μ and σ parameters, with a standard deviation of 100. Using MLEs as the initial vector
θ0 = (μ̂0, σ̂, ξ̂, μ̂trend) = (72.46, 18.83, 0.0542, −0.27), and using proposal standard deviations psd = (5.679,
0.202, 0.187, 0.095), a Markov Chain Monte Carlo (MCMC method) was generated with a length of
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100,000 and good mixing properties. As usual, the proposal standard deviation was determined by
pilot runs. By examining the chain graphically (Figure 12) and using the Geweke diagnostic plot
through the coda package in R [35] (Figure 13), a burn-in period of only 100 iterations was estimated.

The sample means and standard deviations of each marginal component of the chain were:

μ̂0 = 71.81 (3.93); σ̂ = 19.46 (1.72); ξ̂ = 0.0592 (0.0743); μ̂trend = −0.266 (0.0701) (6)

whereas the 95% reasonable intervals were [64.14, 79.58], [16.42, 23.15], [−0.0792, 0.211] and
[−0.405, −0.129] for μ0, σ, ξ and μtrend, respectively.

Table 4. Summary of results for the different methods of estimation (Dar Es Salaam, TZ).

Method MLE Bayesian ξ ~N(0.15, 0.20)

Estimates
μ (mm) 59.62 59.46
σ (mm) 20.96 21.41

ξ −0.00645 0.00756

95% intervals
μ (mm) [54.82, 64.42] [54.61, 64.41]
σ (mm) [17.49, 24.43] [18.12, 25.39]

ξ [−0.158, 0.145] [−0.136, 0.171]

100-year return level
Estimates (mm) 154.6 161.6

95% intervals (mm) [133, 202] [135, 211]

 

Figure 11. Posterior return level plot in Bayesian analysis of the Dar Es Salaam (TZ) rainfall data: the
median (solid line) and the 95% intervals of the posterior probability (dashed lines).

In this case, the estimate for the 100-year return level ẑ0.01 was not feasible because of the linear
trend of the location parameter. In Figure 14, the ẑ0.1, ẑ0.01 and ẑ0.001 return levels are plotted against
time from year 1958 to year 2050, as a function of the applied Bayesian analysis. Moreover, the 95%
credible intervals are plotted with dashed and dotted lines.
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Figure 12. MCMC realizations of the GEV parameters in a Bayesian Non-Stationary Analysis of Dar Es
Salaam (TZ) rainfall data.

In Figure 14, the linear variation over time (although improving the distribution pattern) of the
mean parameter was observed, leading towards return level estimations being insignificant over time.
As an example, for the 100-year return level, in 1958, 175 mm was achieved with 95% reasonable
intervals of [127, 259] mm, becoming 150 mm in 2050 with 95% reasonable intervals of [90, 248] mm.
A reduction of only 25 mm was thus observed. In Table 5, the whole set of results for the Non-Stationary
Analysis is summarized.

Considering the two methods, the μ0 parameter was estimated to be approximately 72 mm.
Nevertheless, as shown in the Maximum Likelihood simulations, it returned a lower estimate of the σ

scale parameter than that from the Bayesian method. The estimation of the shape parameter was more
precise for the Bayesian method, whereas the estimation of the μtrend parameter was equally precise
with both approaches.
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Figure 13. Geweke plot showing the good properties of the performed chain.

Figure 14. ẑ0.1, ẑ0.01 and ẑ0.001 return levels plotted with 95% credible intervals.
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Table 5. Summary of results for the different methods of estimation (Non-Stationary Analysis, Dar Es
Salaam, TZ).

Method MLE Bayesian ξ ~N(0.15, 0.20)

Estimates

μ0 (mm) 72.46 71.81
σ (mm) 18.83 19.46

ξ 0.0542 0.0592
μtrend −0.273 −0.266

95% intervals

μ0 (mm) [64.71, 79.69] [64.14, 79.58]
σ (mm) [15.70, 21.97] [16.42, 23.15]

ξ [−0.0911, 0.199] [−0.0792, 0.211]
μtrend [−0.407, −0.139] [−0.405, −0.129]

3.2. Addis Ababa (ET) Rainfall Data

3.2.1. Historical Data

The second case study regarded the data series of daily rainfall observations recorded at Addis
Ababa (ET) Bole, Ethiopia (Latitude: 9.03 N; Longitude: 38.75 E; Elevation: 2354 m a.s.l.), referring
to the time span from 1 January 1964 to 31 October 2010. The annual maxima rainfalls are plotted
in Figure 15.

Figure 15. Annual maximum 24 h rainfalls recorded at Addis Ababa ET (1964–2010).

The same assumptions of the Dar Es Salaam (TZ) case study were applied. Table 6 summarizes
the results of the stationary analysis for Addis Ababa (ET).

Similarly to the Bayesian analysis, the same hypotheses were assumed. By using MLEs as
initial vector θ0 = (μ̂0, σ̂, ξ̂) = (42.76, 11.11, 0.234) and the proposal standard deviations psd = (3.373,
0.323, 0.365), an MCMC method was generated with a length of 100,000, showing satisfactory
mixing properties. By examining the chain graphically and using the Geweke diagnostic, a burn-in
period of insignificant iterations was found.

The sequence of simulated values (μi, σi, ξi) was transformed, leading towards a sample from the
corresponding posterior distribution of the 100-year return level. This gave an estimate ẑ0.01 = 147.3 mm
with 95% credible interval [97, 268] mm. The posterior return level plot represented in Figure 16 shows
how the upper 95% interval was farther than the lower interval with respect to the median trend.
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Table 6. Summary of results for the different methods of estimation (Addis Ababa, ET).

Method MLE Bayesian ξ ~N(0.15, 0.20)

Estimates
μ (mm) 42.76 42.92
σ (mm) 11.11 11.79

ξ 0.234 0.229

95% intervals
μ (mm) [39.08, 46.44] [39.27, 47.05]
σ (mm) [8.09, 14.12] [8.92, 15.57]

ξ [−0.039, 0.506] [−0.014, 0.501]

100-year return level
Estimates (mm) 134.43 147.30

95% intervals (mm) [95, 237] [97, 268]

Considering the two methods, μ was estimated to be approximately equal to 43 mm; nevertheless,
as confirmed by the Maximum Likelihood simulations, it returned a lower estimate of the scale
parameter σ than that from the Bayesian method. The estimation of the shape parameter was more
precise for the Bayesian method in terms of the credibility intervals, whilst the opposite was true for
the quantile intervals, as a consequence of the greater estimation of ξ parameter.

 

Figure 16. Posterior return level plot in Bayesian analysis of the Addis Ababa (ET) rainfall data: the
median (solid line) and the intervals containing 95% of the posterior probability (dashed lines).

Once the historical data were analysed with a stationary approach, analysis was also performed
to verify a feasible Non-Stationarity of the data, by applying both the GEV and assuming a linear trend
for the location parameter. The parameters (μ, μtrend) were estimated, and the vector of covariates
t = (t1, . . . , tn) was specified by the user. In this case, the MLE fit for the location parameter was
μ̂ = 43.67 − 0.047·ti (where ti = 0, 1, 2, . . . , 52 years) and associated standard errors were 2.58 and 0.088
for μ0 and μtrend, respectively. The σ̂ and ξ̂ estimate parameters were 10.93 and 0.258, corresponding to
associated standard errors of 1.56 and 0.151, respectively. Here again, the Likelihood-ratio was about
0.2575, lower than the 95% quantile of the X1

2 distribution of 3.8415. This suggested the covariate ti
model is not a significant improvement with respect to the model without a covariate. The p-value of
0.612 was in fact estimated.

3.2.2. Historical Data with CMCC Simulation Data

As for the Dar Er Salaam (TZ) case study, the analysis was improved by considering the rainfall
observations recorded at Addis Ababa (ET) Bole joined with the simulated data until 2050 performed
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by Euro-Mediterranean Centre for Climate Change (CMCC) for the IPCC scenario RCP8.5, by using the
COSMO CLM model. Data were downscaled to 1 km spatial precision again. Thus, the total dataset
contained 87 annual maximum rainfall events: 47 observed and 40 simulated data points (Figure 17).

Figure 17. Annual maximum 24 h rainfalls recorded at Addis Ababa ET (1964–2010, blue circles) and
simulated by CMCC (2011–2049, red circles).

The same analysis, already performed for the historical data, was developed, reaching results
summarized in Table 7. For the Bayesian analysis, again using MLEs as the initial vector θ0 = (μ̂0, σ̂,
ξ̂) = (43.93, 12.58, 0.214), and the proposal standard deviations psd = (3.11, 0.206, 0.234), the MCMC
method with length 100,000 provided good mixing properties.

The posterior return level plot given in Figure 18 shows that, also in this case, the upper 95%
interval was more remote than the lower interval from the median.

Once the data were analysed with a stationary approach, the analysis was devoted to verify
a feasible Non-Stationarity of the data, using the GEV as a function of the linear trend for the
location parameter. Here, the MLE fit for the location parameter was μ̂ = 44.02 − 0.00236·ti (where ti = 0,
1, 2, . . . , 85 years) and associated standard errors were 2.46 and 0.496 for μ0 and μtrend, respectively.
The estimates of parameters σ̂, and ξ̂. were 12.57 and 0.216 with associated standard errors of 1.31 and
0.112, respectively. The Likelihood-ratio was about 0.002, i.e., lower than the 95% quantile of the X1

2

distribution of 3.8415. Thus, the covariate ti model was not able to significantly improve the model
without a covariate. The p-value of 0.965 was in fact estimated.

Table 7. A summary of results for the different methods of estimation (Addis Ababa, ET).

Method MLE Bayesian ξ ~N(0.15, 0.20)

Estimates
μ (mm) 43.94 43.97
σ (mm) 12.58 12.97

ξ 0.214 0.218

95% intervals
μ (mm) [40.82, 47.05] [40.91, 47.22]
σ (mm) [10.06, 15.10] [10.54, 15.85]

ξ [0.0050, 0.423] [0.0287, 0.435]

100-year return level
Estimates (mm) 142.5 151.6

95% intervals (mm) [108, 224] [109, 238]
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Figure 18. Posterior return level plot in Bayesian analysis of the Addis Ababa rainfall data: the median
(solid line) and the intervals containing 95% of the posterior probability (dashed lines).

4. Evaluation of Intensity-Duration-Frequency (IDF) Curves

The Intensity-Duration-Frequency (IDF) curves were introduced in hydrology to synthetically
define, for a fixed return period T, a generic duration d of a rainfall event and for a given
location, information about the maximum rainfall height h and the maximum rainfall intensity i.
Through knowledge of these characteristics, synthetic rainfall graphs can be represented, which are
useful to reconstruct flood hydrographs.

The analysis was carried out considering the rainfall observations recorded at Dar Es Salaam
(TZ) and Addis Ababa (ET), joined with the data until 2050 provided by CMCC for the IPCC Scenario
RCP8.5, referring to a downscaling of 1 km spatial precision. The total dataset defined in the previous
paragraphs was taken into account.

Generally, IDF curves can be characterized by two or three parameters expressions:

h(d, T) = a(T)dn (7)

where a(T) and n are the parameters to be estimated through a probabilistic approach.
To define the extreme values in a smaller time steps (10′, 30′, 1 h, 3 h, 6 h, 12 h), the generation

of a synthetic sequence of rainfall was required, with statistical properties equal to those for the
observed rainfall data. To calculate the extreme values in a smaller time window, the daily rainfall was
successively disaggregated by using two models:

• cascade-based disaggregation model
• short-time intensity disaggregation method

These methods have already been validated in Africa [36].
Assuming that daily rainfalls derive from a marked Poisson process, rainfall lag and depths are

drawn from exponential Probability Distribution Functions (PDFs) (whose parameters are calculated
from the observed rainfall series), using a simple stochastic model, able to describe the occurrence
of rainfall as a compound Poisson process with frequency of events λ. The distribution of times τ

between precipitation events is an exponential function with mean 1/λ, and exponentially distributed
rainfall amounts h with mean γ. This model satisfactory fitted the observed daily rainfall data for
individual seasons. Specifically:

• in a cascade-based disaggregation model [37], precipitation data of daily resolution are converted into
either 12-hourly, 6-hourly, or 3-hourly values, based on the principles of multiplicative cascade
processes. For each year, known γ, λ, it is possible to generate some years of disaggregated values
and from these is taken the maximum value for each time window (3 h, 6 h, 12 h);
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• in a short-time intensity disaggregation model [38], three fine-resolution time intervals of 1-h, 1/2-h
and 10-min are considered.

The μ̂, σ̂ and ξ̂ parameters for the different time steps (10′, 30′, 1 h, 3 h, 6 h, 12 h and 24 h) were
evaluated, also considering the 2.5% and 97.5% percentiles, applying a GEV-Bayesian analysis and the
zp related to the 100-year return period, calculated through Equation (3).

The IDF curves for T = 100 years for historical data for Dar Es Salaam (TZ) and Addis Ababa (ET)
are shown in Figure 19a,b, respectively. In Figure 20a,b IDF curves by combining the historical data
and the projected ones are plotted instead. The a and n are summarized in Table 8, with reference to 5,
50, 100 and 500-year return periods.

From a comparison between Tables 8 and 9, it was observed that, for the Dar Es Salaam (TZ) case
study, similar uncertainties were evaluated from both historical and historical plus projected data.
Nevertheless, the IDF derived from the projected data provides greater rainfall intensities values than
the historical ones for the whole set of considered durations.

For Addis Ababa (ET), Tables 6 and 7 show that the uncertainties estimated from historical data
are significantly greater than those derived from historical plus projected ones. This implied less
uncertainty in the simulated data. In this case, the IDF derived from the projected data provided
greater rainfall intensities than the historical only for durations longer than 16 h.

The Non-Stationary effect, considered in the evaluation with a linear trend of the GEV location
parameter, in all the considered situations, i.e., both historical and historical plus projected, did not
show significant improvement with respect to the model without a covariate (stationary case).

 
(a) (b) 

Figure 19. IDF curves for historical data of: (a) Dar Es Salaam (TZ) and (b) Addis Ababa (ET) cities,
with reference to the estimated data (continuous lines), the 2.5% (dotted lines) and 97.5% quantiles
(dashed lines).

 
(a) (b) 

Figure 20. IDF curves for historical data combined with projected ones of: (a) Dar Es Salaam (TZ) and
(b) Addis Ababa (ET) cities, with reference to the estimated data (continuous lines), the 2.5% (dotted
lines) and 97.5% quantiles (dashed lines).
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5. Conclusions

In this paper the effectiveness of the GEV distribution to estimate the annual maxima of rainfall
depths is assessed. The shape parameter ξ of such a distribution resulted in the essential parameter
to evaluate the properties of extreme value behaviour, namely, the tail of the distribution at its
upper end-point.

Estimation of GEV parameters by using methods, such as the Maximum Likelihood, can be
unreliable, due to the small length of rainfall records, typically not longer than 30–50 years.

In this study, rainfall data from both Dar Es Salaam (TZ) and Addis Ababa (ET) were analysed, by
performing statistical analysis as a function of the 100-year return level.

With regard to Dar Es Salaam (TZ), the confidence intervals for such long return periods were
significantly large due to the uncertainty of the extrapolation procedure. With reference to the Addis
Ababa (ET) case study, the results were quite different, with a higher shape parameter. In this case, the
use of a Bayesian framework to incorporate prior knowledge could improve the estimation reliability
by restricting the ξ variation to a physically reasonable range. The Bayesian method showed similar
values for the 100-year return level, in spite of wider reasonable intervals at the 95% observed level.

The analysis of the historical data joined with those yielded by the climate model of the CMCC
allowed us to estimate the shape parameter with the related standard errors for both test cases.

By applying the Likelihood-ratio test, the Non-Stationary effect was observed for Dar Es
Salaam (TZ).

Considering the MLE and Bayesian methods, the μ0 parameter estimated by using the Bayesian
method was more precise, whereas the estimation of the μtrend parameter for Dar Es Salaam (TZ) was
comparable with both methods.

Results achieved for the two test cases showed that the time series, even though not very
numerous, were well represented by stationary GEV. Taking into account additional data from
climate models, as a consequence of the sample size increase, the distribution model was forced
to be represented by a Non-Stationary GEV.

From these results, it was shown that the Non-Stationary effects are frequently induced by
climate models. Indeed, using this trend to analyse the return levels zp, the influence of linear trends in
location parameters was observed.

Finally, aiming to answer possible questions about the climate models capability to induce any
possible Non-Stationarity in the rainfall series, in future work, further case-studies will be analysed to
assess the effectiveness of observed results for different forcing rainfall conditions.
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Abstract: An operational framework for flood risk assessment in ungauged urban areas is
developed within the implementation of the EU Floods Directive in Greece, and demonstrated for
Volos metropolitan area, central Greece, which is frequently affected by intense storms causing
fluvial flash floods. A scenario-based approach is applied, accounting for uncertainties of key
modeling aspects. This comprises extreme rainfall analysis, resulting in spatially-distributed
Intensity-Duration-Frequency (IDF) relationships and their confidence intervals, and flood simulations,
through the SCS-CN method and the unit hydrograph theory, producing design hydrographs at the
sub-watershed scale, for several soil moisture conditions. The propagation of flood hydrographs
and the mapping of inundated areas are employed by the HEC-RAS 2D model, with flexible
mesh size, by representing the resistance caused by buildings through the local elevation rise method.
For all hydrographs, upper and lower estimates on water depths, flow velocities and inundation
areas are estimated, for varying roughness coefficient values. The methodology is validated against
the flood event of the 9th October 2006, using observed flood inundation data. Our analyses indicate
that although typical engineering practices for ungauged basins are subject to major uncertainties,
the hydrological experience may counterbalance the missing information, thus ensuring quite
realistic outcomes.

Keywords: EU Floods Directive; flood risk management; extreme rainfall; SCS-CN; 2D hydraulic
modelling; HEC-RAS; building representation; urban floods; ungauged streams; uncertainty

1. Introduction

Natural hazards have caused significant damages to natural and manmade environments
during the last few decades. Floods are among the most destructive water-related hazards and
are mainly responsible for the loss of human lives, infrastructure damages and economic losses [1].
Nowadays, there is a rising global awareness of flood damage mitigation due to the increase
in frequency, magnitude, and intensity of flood events [2,3]. In the Mediterranean region, there are
many small-medium sized watersheds, which have significant elevation changes (from mountainous
areas to plains and even coastal areas). Many of these watersheds have urban and sub-urban
areas in the lowland areas that are prone to floods. Furthermore, intense rainfall events typically
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generate flash floods events. Urban flooding is extremely difficult to manage due to different flood
generation mechanisms and the diverse climatic, topographic, hydrologic and hydraulic conditions.
In particular, Greece is a country with significantly varying geomorphological, physiographic
and climatic conditions, all affecting the hydrological processes and the generation of floods [4].
According to the EM-DAT database, during the period 1900–2017 Greece experienced 26 major floods
that caused 113 fatalities, affected about 23,000 people and cost $2.0 billion [5].

Rainfall (or flood) frequency estimation for the design of hydraulic structures is usually performed
as a univariate analysis of extreme rainfall (flood) event magnitudes [6]. Evaluation of flood inundation
areas and subsequently flood hazard is estimated by deterministic and/or probabilistic hydraulic
approaches [7–11]. This is based on three modelling components: (i) synthetic storm generator;
(ii) hydrological simulation model; and (iii) hydraulic simulation model.

In the context of the everyday engineering practice, the estimation of design flood hydrographs is
typically employed by combining the Intensity-Duration-Frequency (IDF) approach with standard
time profiles, for constructing synthetic rainfall events of a certain probability, the SCS-CN method
for extracting the excess from the gross rainfall, and the unit hydrograph theory, for propagating
the surface runoff to the basin outlet. In particular, the SCS-CN method, developed by the Soil
Conservation Service [12] (currently referred to as Natural Resources Conservation Service, NRCS)
is considered the prevailing modelling approach for ungauged basins. The overall scheme contains
few parameters, which are generally extracted by regional formulas accounting for characteristic
lumped properties of the study area [13]. In the event-based approach, the probabilistic measure of the
return period, T, is set a priori to represent the acceptable risk for all relevant quantities (peak flow,
flood volume, flow depths and velocities, inundated areas, etc.). Apparently, in ungauged areas the
risk of the aforementioned flood-related quantities cannot be estimated statistically, i.e. on the basis
of observed data. Therefore, the return period is assigned to the input, i.e. the rainfall, for which
there are available records of observed rainfall maxima at several time scales. Nevertheless, this key
assumption has been strongly criticized (i.e., [14]), since the total flood risk is in fact a joint probability
of multiple, complex and interrelating mechanisms. Moreover, its estimation is strongly influenced
by uncertainties that span over all facets of the simulation procedure, i.e. inputs, initial conditions
(i.e., antecedent soil moisture), parameters and underlying modelling structures.

According to the EU Directive on floods (E.C. 2007/60), flood inundation modelling and
mapping and associated flood risk assessment should be applied using suitable and efficient tools.
These requirements have been mainly assessed using one-dimensional (1D) and two-dimensional
(2D) hydraulic models (e.g., [7,10,15,16]). However, the selection of 1D-modelling approach can
be misguided, leading to erroneous outcomes when applied in areas with composite river topography.
Thus, under composite flow conditions, further investigation is needed in the selection of the
modelling approach. In such cases, the use of a 2D-modelling approach is generally suggested due
to the provision of more accurate or realistic results [10,11,17–26]. These models are able to simulate
floodplain inundation and river hydraulics, as demonstrated in many studies (e.g., [9,15,27–30]).
However, most of them have been carried out at gauged watersheds, taking advantage of hydrometric
information, i.e., discharge data and stage/discharge relationships, which ensures accurate estimation
of flood spatial extent. On the other hand, under limited data the applicability of these models
becomes a difficult task [31,32], especially in urban and suburban areas. Similar to hydrological
modelling, hydraulic modelling of floods is also affected by multiple sources of uncertainty (i.e.,
input data, model structure, model parameters) [33]. Furthermore, several factors in each source (type)
of uncertainty affect the flood modelling process and the mapping results that increase/decrease the
uncertainty of the outcome. Thus, the uncertainty of flood risk management implementations can be
really high. The main input uncertainty factors that affect the flood inundation accuracy are: (a) river
and riverine geometry determination-DEM accuracy; (b) roughness coefficient determination; (c) flood
hydrograph estimation and accuracy.
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An operational framework for flood inundation mapping in ungauged urban areas is proposed,
developed and demonstrated in this study. The framework is developed in the context of the
implementation of the EU Floods Directive in Greece and is demonstrated for Volos metropolitan area of
Thessaly, Greece, where frequent flood episodes are observed due to intense storms. The methodology
developed in this study will help us to better estimate and map flood inundation areas, evaluate the
uncertainty in flood inundation mapping, to provide guidance for professionals involved in the flood
management process and to apply design measures and policies for the protection of human life,
property and economic activities.

2. Study Area

The study area consists of three watersheds, Xerias, Krafsidonas and Anavros, and is
located in the region of Thessaly, Mangesia prefecture, Greece (Figure 1). The area of each
watershed is approximately 117 km2, 36 km2 and 14 km2 for Xerias, Krafsidonas and Anavros,
respectively. The hydraulic-hydrodynamic modelling application involves three reaches that belongs to
Xerias watershed, while Krafsidonas and Anavros streams consist of one reach per watershed (Figure 1).
All selected streams drain through the city of Volos and contain multiple hydraulic structures and flood
protection works. We point out that the city of Volos has experienced frequent flood events (e.g., 2003,
2006, 2009, 2012) due to heavy precipitation episodes that occurred in the last decades [4,10,25,26,34,35].
In particular, the extreme flash flood event that occurred in October of 2006 involved strong debris flow
and mudslides that caused severe impacts on transportation networks, other technical infrastructures
and agricultural areas. That specific event lasted from 06:00 UTC to 18:00 UTC, 9 October 2006, and
generated a total rainfall amount of 232 mm [36].

Figure 1. Study watersheds of Xerias, Krafsidonas and Anavros and the junction points and stream
reaches that have been selected for flood inundation modelling and mapping.

Within hydrologic and hydraulic model simulations, we employed a semi-distributed
schematization for each watershed of the study area, which allowed accounting for heterogeneities
of modelling inputs and parameters. As an example, we have divided the river basin of Xerias
into ten sub-basins, and configured a main hydrographic network comprising six reaches and seven

63



Hydrology 2018, 5, 24

junctions (Figure 2). The hydrological simulations spanned the full system, while the hydraulic
simulations were employed across the downstream reaches, crossing the urbanized part of the basin.

Figure 2. Map of Xerias watershed and modelling components (sub-basins, reaches, junctions).

3. Methodology

3.1. Overview of Flood Modelling Approach

In this study, an integrated flood hazard and risk modelling and mapping framework has been
developed and implemented at ungauged urban and suburban streams/catchments. The main goal
is to highlight the possible disastrous effect of fluvial floods on human health, economic activities,
cultural heritage, and the environment for three typical design return periods (T = 50, 100, 1000 years).
The single event-based deterministic approach is adopted, based on three modelling components:
(i) synthetic storm generator; (ii) hydrological simulation model; and (iii) hydraulic simulation model.
The major assumption of the framework is that the flood risk is connected to the determination of the
input rainfall return period. Finally, the outcome of the framework is the flood risk maps (for T = 50, 100,
1000 years) corresponding to the “average” hydrological scenario as well as two “extreme” scenarios,
which allow providing lower and upper uncertainty bounds of the estimated flood quantities for each
return period of interest. The proposed framework, described in the next paragraphs, is expected to
help water resource managers and decision makers to improve the design procedures for flood risk
management of urban areas (ungauged streams/catchments) and flood mitigation strategies.

3.2. Design Rainfall

A key assumption of the event-based approach is that the flood risk is determined in terms of
return period, T, of the design rainfall (hyetograph). The latter represents the temporal evolution
of a hypothetical storm event of a certain duration D and time resolution Δt, which corresponds
to the given return period. In this study, we have investigated a number of rainfall scenarios,
setting D = 24 h (which is about five times larger than the time of concentration of the basin) and
Δt = 15 min. Moreover, following the semi-distributed approach, we assigned spatially-varying rainfall
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inputs across sub-basins, thus accounting for the heterogeneity of the storm regime over the study
basin, which is due to climatic reasons as well as relief and orography effects.

The computational procedure for extracting design hyetographs across sub-basins comprised
three steps: (a) estimation of partial rainfall depths for all temporal scales and return periods of interest,
on the basis of spatially-averaged IDF relationships; (b) derivation of a synthetic hyetograph, by placing
the partial depths at specific time intervals across the given duration (i.e., 24 h); and (c) application of
an empirical reduction formula, to transform point to areal estimations.

The IDF relationships (also referred to as ombrian curves) have been extracted within the
implementation of the EU Flood Directive 2007/60 across the River Basin District of Thessaly [37].
The associated study comprised extensive collection, control and statistical analysis of observed
extreme rainfall data from 71 meteorological stations over Thessaly. The raw data comprised annual
series of maximum daily and two-day rainfall depths, as well as annual series of maximum intensities
at 15 recording stations (pluviographs), that were available for time scales ranging from 5 min
up to 48 h. The ombrian curves were expressed in terms of parameter values of a generalized
statistical formula, providing estimations of point rainfall intensities for given time scale (duration)
and return period. According to Flood Directive specifications (common for the whole of Greece),
at each station we assigned the expression proposed by [38], representing the average rainfall intensity
i over a certain time scale (also referred to as duration) d, and a given return period T, as the ratio of a
probability function, a(T), to a function of time scale, b(d). i.e.,

i(d, T) =
a(T)
b(d)

=
λ′ (Tκ − ψ′)
(1 + d/θ)η (1)

In particular, the nominator a(T) is the mathematical expression of a Generalized Extreme Value
(GEV) distribution for rainfall intensity over some threshold at any time scale. The above formula
contains five parameters (λ′, ψ′, κ, η, θ) that have been estimated through the following procedure:

Step 1: Global estimations of parameters η and θ were extracted on the basis of pluviographic data,
by optimizing the fitting metric known as Kruskal-Wallis statistic [39] against the compound
(unified) sample of extreme rainfall intensities for all available time scales.
Step 2: At each station, the shape parameter κ is initially obtained by fitting the GEV model to
the maximum 24 h data and estimating its parameters by the L-moments method [40,41]. Next,
we employ the correction technique developed by [42], in order to adjust the biased estimations
of κ, thus prohibiting both the use of too high values and the generation of negative values,
which are unfeasible, since the maximum rainfall cannot be bounded. We remark that such
inconsistencies are mainly due to sample uncertainties, which are induced due to the small size
of the observed rainfall maxima, the existence of outliers as well as measurement errors.
Step 3: Based on their point values of parameter κ, we employed a geographical
classification of the stations to obtain regional values that are associated with climatic and
topographic characteristics.
Step 4: For given parameters κ, η and θ, we employed the L-moments method to estimate the
scale and location parameters, λ′ and ψ′, at each station.

In order to extract the confidence intervals of rainfall estimations, we employed a generalized
Monte Carlo framework, since for the GEV distribution (as made for most of distributions) there are
no analytical formulas [43]. Let X be a random variable following a distribution function FX, θ the
parameters of this distribution that have been estimated by a sample of n values of X, and u and γ are
the desirable exceedance probability and confidence level, respectively. The computational procedure
is the following:
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Step 1: Using an appropriate generator of random numbers following the desirable
distribution FX , we produce m synthetic samples xi = {xi1, xi2, . . . , xin}, where n is the length of
the historical data.
Step 2: From each synthetic sample xi we estimate its statistical characteristics and the
corresponding sample parameters θi of FX , by applying the same procedure with the historical
data (e.g., method of moments, L-moments, maximum likelihood, etc.).
Step 3: For the desirable probability u, we generate m synthetic values using the inverse
cumulative distribution function, i.e.:

xi(u) = F−1
X (θi, u) (2)

Step 4: We estimate the confidence limits xU(u) and xL(u), by computing the larger m (1 − γ)/2
and smaller m (1 + γ)/2 values of the sorted sample of xi(u).

In the context of our analyses, at each station we initially extracted the compound sample of
rainfall maxima, derived by multiplying each individual set of duration d by the duration function
b(d) = (1 + d/θ)η . According to Equation (1), the derived data follows a Pareto distribution function,
with parameters λ′, ψ′, κ, given by:

FX = 1 − (
x/λ′ + ψ′)−1/κ (3)

In the context of Monte Carlo simulations, for each station we employed the inverse function of
Equation (3) to generate 20,000 sets of synthetic rainfall data from the Pareto distribution, with length
equal to the historical one. This function is given by:

x(u) = F−1
X (u) = λ′

[
1

(1 − u)κ − ψ′
]

(4)

Next, from each set we estimated the parameter values λ′, ψ′, κ, and associated confidence limits
xU(u) and xL(u) for T = 50, 100 and 1000 years (or u = 0.980, 0.990 and 0.999, equivalently). By setting
γ = 80%, we obtained the 2000th smallest and largest value, respectively. Given that the confidence
values refer to the compound sample, they are standardized against the duration. In order to obtain the
desirable rainfall value for a specific duration, the derived values of xU(u) and xL(u) are multiplied by:

ξ(d) =
d

(1 + d/θ)η (5)

Using averaged IDF parameters and associated confidence limits per sub-basin we formulated the
design storm hyetographs of 24 h duration, by employing two typical time profiles, i.e., the alternating
block method, for T = 50 and 100 years, and the worst profile method, for T = 1000 years [44–46].
Both approaches require the estimation of partial rainfall depths for durations Δt, 2Δt, . . . , N Δt = D,
which are appropriately allocated to formulate a hypothetical hyetograph that preserves the desirable
return period at all temporal scales.

3.3. Hydrological Model Assumptions and Representation of Uncertainties

For each return period of interest (T = 50, 100, 1000 years) we have formulated three scenarios
(herein referred to as low, average and high), in order to account for joint rainfall and hydrological
uncertainties. In particular, we assumed that the design rainfall estimations provided by the IDF
relationship correspond to the average scenario, while its 80% confidence limits, which are measure of
rainfall uncertainty (more precisely, parameter uncertainty of the IDF expression), correspond to the
two extreme scenarios. On the other hand, the hydrological uncertainty has been expressed in terms of
three typical antecedent soil moisture conditions (dry, moderate, wet) that are employed within the
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rainfall-runoff modelling approach, as explained next. In this respect, we have formulated 3 × 3 = 9
scenarios, in total.

The transformation of the hyetograph to flood runoff was made by subtracting the hydrological
deficits (i.e., the part of rainfall that is initially intercepted in the ground and by the canopy, and is
then either infiltrated or evaporated), thus obtaining the so-called effective rainfall or rainfall excess.
In this respect we employed the well-known SCS-CN approach, developed by the Soil Conservation
Service [12]. This method uses two parameters, i.e., the maximum potential retention, S, and the initial
abstraction, ha0, to estimate the evolution of effective rainfall through the empirical formula:

he =
(h − ha0)

2

h − ha0 + S
(6)

According to the standard SCS approach, we set ha0 = 0.20 S, which is the threshold for surface
runoff generation. Under this premise, the sole parameter of the method is the maximum potential
retention of each sub-basin, estimated by the well-known formula:

S = 254 (
100
CN

− 1) (7)

where CN is the spatially-averaged curve number value of each specific sub-basin. The latter has been
extracted on the basis of distributed soil and land cover information, following the typical classification
by NRCS [47], by means of detailed lookup tables. In order to account for the soil moisture present
in the soil profile before the start of an event, the SCS-CN method considers three antecedent soil
moisture conditions types (AMC I, AMC II, and AMC III), referring to dry, average or wet conditions,
respectively, which depend on the total 5-day antecedent rainfall and the season category (dormant
or growing). The CN values given in lookup tables (hereafter symbolized CN II) refer to average
conditions, while for the other two AMC types, SCS provides empirical conversion formulas to estimate
the parameter value for dry (CN I) and wet conditions (CN III) In the proposed framework, the CN
values for dry and wet conditions, combined with the low and upper confidence limits of rainfall,
were used to generate design hyetographs that have been used to quantify the uncertainty around the
“standard” (i.e., average) hydrological scenario.

For the transformation of the excess rainfall over the sub-basin to flood hydrograph at the
outlet junction, we applied the unit hydrograph (UH) approach, using the dimensionless curvilinear
unit hydrograph by NRCS (also referred to as Standard PRF 484), in which the time and discharge are
expressed as ratios of time to peak and peak discharge, respectively. Key assumptions are that 37.5%
of the total flood volume is produced within the rising limb, while the base time, tb, is considered
five times the time to peak, tp. The UH is fully determined in terms of lag time, tL, defined as the
time distance from the centroid of the unit hydrograph of duration d, from the centroid of unit rainfall,
which is by definition equal to d/2. Assuming also that tL = 0.6tc, where tc is the time of concentration,
and under the assumption that the centroid of the unit hydrograph is approximately located in the peak,
we approximate the time of peak by:

tp = d/2 + 0.6tc (8)

Moreover, given that tb = 5tp, and by employing the mass balance equation for total volume equal
to the effective rainfall volume, we can also estimate the peak discharge by:

qp = 2.08 A/tc (9)

where A is the basin area (in km2).
According to widespread flood modelling practices for ungauged basins, tc is characteristic time

quantity of a river basin, typically defined as the longest travel time of the surface runoff from the
hydraulically most remote point of a basin to its outlet, and computed by empirical formulas that
estimate the basin response time as function of its geomorphological characteristics. A widely used
empirical approach is the Giandotti formula, given by:
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tc =
4
√

A + 1.5L
0.8Δz

(10)

where tc is the time of concentration (h), A is the basin area (km2), L is the length of the longest runoff
distance across the basin (km), and Δz is the difference between the mean elevation of the basin and
the outlet elevation (m). This formula has been proved quite suitable for reproducing observed peak
flood flows in a number of small river basins in Cyprus; in particular, its predictive capacity was by
far superior with respect to other widely-used empirical formulas of the literature [13]. In the study,
we used the time of concentration, estimated by the Giandotti formula, as the reference response time
of each area of interest, i.e., the entire catchment and its sub-basins. The computation of the associated
geometric quantities A, L and Δz was estimated via typical processing tools in GIS environment. In the
case of complex river networks, i.e., with confluences, we considered the longest flow path across each
corresponding area.

Theoretical proof and empirical evidence imply that tc is definitely not a constant property of
the basin, but it varies significantly with the flow [13,48]. In fact, the variability of tc is explained by the
dependence of the kinematic wave celerity on the flow rate. Apparently, as surface runoff increases,
the flow velocity across the river network and its tributaries also increases, which results in a faster
response of the basin. For instance, [49] analyzed a large number of flood hydrographs and found
that tc varied by even one order of magnitude across flood events of different intensities. To account
for the dependence of the response time of the basin against runoff, we employed the following
semi-empirical formula, which arises from the kinematic wave theory, considering that tc is inversely
proportional to the design rainfall, i.e.,

tc(T) = tc

√
i(5)
i(T)

(11)

where i(5) is the design rainfall intensity for return period T = 5 years, for which the time
of concentration is estimated by the Giandotti formula, and i(T) is the intensity of any higher
return period, T. In this respect, the “reference” time of concentration by the Giandotti formula
is assumed valid for high and medium frequency flood events, yet for low-frequency events,
which interest hydrological design, this time has to be reduced. Evidently, as the time of
concentration reduces, all associated time quantities are similarly reduced, namely, the lag time,
the time to peak and the base time of the unit hydrograph. In fact, smaller lag times result in
much narrower unit hydrographs, which in turn results in increased peak discharge, in order
to preserve the unit flood volume. An example involving a hypothetical river basin is provided
in Figure 3. This approach is definitely more consistent with reality, since it accounts for nonlinearities
in runoff routing, which are ignored by the unit hydrograph theory.
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Figure 3. PRF484 unit hydrograph, corresponding to T = 5 years, and adjusted design hydrograph,
corresponding to T = 200 years, in a hypothetical basin of 100 km2, considering a reference time of
concentration of 3.0 h and adjusted time of 1.8 h.
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3.4. Hydraulic-Hydrodynamic Modelling

The two dimensional (2D) HEC-RAS model was developed by the Hydrologic Engineering Center
(HEC) of United States Army Corps of Engineers [50] and has been applied in many studies for flood
inundation modelling (e.g., [9,10,25–27,51–54]). Moreover, a benchmark analysis based on the two
dimensional modelling capabilities, conducted by the U.S. Army Corps of Engineers, proved that
HEC-RAS performed extremely well compared to the leading 2D models [55]. Therefore, the 2D
HEC-RAS hydraulic-hydrodynamic model has been selected for flood inundation and mapping.

The HEC-RAS 5.0.3 computational engine is based on the full 2D Saint-Venant equations or the
2D diffusive wave equations [50]. Shallow water equations are simplifications of the Navier-Stokes
equations. The basic assumptions that are followed in order to approximate the turbulent motion using
eddy’s viscosity are: (a) Reynolds averaged equation is used, (b) the flow is incompressible, (c) the
density and the hydrostatic pressure are uniform and d) the horizontal length scale is bigger than the
vertical length scale. Therefore, the application of these assumptions to the Navier-Stokes equations
results to the differential form of Shallow Water equations [50]. The advection, viscous, and unsteady
terms can be neglected in cases where the main terms of momentum equations are the bottom
friction terms and the barotropic pressure gradient (gravity) term, resulting in the transformation of
the momentum equation to a two-dimensional form of the Diffusion Wave Approximation. Thus,
the Diffusive Wave Approximation of the Shallow Water (DSW) equations can be derived through the
combination of mass conservation and the two-dimensional form of the Diffusion Wave Approximation.
Finally, HEC-RAS 2D solver is using the sub-grid bathymetry approach [50].

The combination of the above assumptions results in an almost hydrostatic pressure and minor
vertical velocity. In cases where strong wind forcing exists, the pressure is non-hydrostatic, and
the baroclinic pressure gradients (variable density) are absent, a vertically-averaged version of the
momentum equation is suitable. Given these conditions, the shallow water equations can be obtained
by excluding the terms of vertical derivative and the vertical velocity. Accordingly, the momentum
equations are expressed as follows [50]:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −g
∂H
∂x

+ vt

(
∂2u
∂x2 +

∂2u
∂y2

)
− c f u + fv (12)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −g
∂H
∂x

+ vt

(
∂2v
∂x2 +

∂2v
∂y2

)
− c f v + fu (13)

where u and v are the velocities in the Cartesian directions; g is the gravitational acceleration; vt is the
horizontal eddy viscosity coefficient; cf is the bottom friction coefficient; and f is the Coriolis parameter.

One of the basic factors of input data uncertainty in flood inundation modeling and mapping,
especially when 2D hydraulic hydrodynamic models are used, is the Digital Elevation Model (DEM)
accuracy. The DEM estimation process involves several errors, especially in complex river and riverine
areas, due to the topographical technique used [10,25,26,56]. The most common approaches followed
for the river and riverine areas topography estimation and the DEM generation are ground surveying
topographic approaches and photogrammetric techniques. However, the use of such techniques in
flood inundation modelling, especially in complex river topographies involve some limitations such
as the small spatial extent and the possibility to produce several errors and affect the accuracy of
the produced DEM [57,58]. These limiting factors can be minimized with the use of high accuracy
aerial photographs or orthophotos. The high accuracy aerial photographs or orthophotos can produce
acceptable DEM resolutions for large scale flood inundation modelling and mapping at ungauged
urban areas [59]. In this study, the DEM resolution used is 5 m and has been provided by National
Cadastre and Mapping Agency S.A. (NCMA). The geometric resolution of the DEM is RMSEz ≤ 2.00 m
with absolute accuracy ≤ 3.92 m for 95% confidence level. The raw data consist of the Digital Surface
Model that includes canopy, manmade structures and other surface obstacles. First, the different DSMs
derived from the 1:5000 aerial photos have been merged to a continue DSM. Then, the entire DSM has
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been processed to fill/sink the erroneous areas. Finally, the DSM has been re-corrected using typical
elevation downgrading methods in order to create the DEM.

An important input data uncertainty factor in flood inundation modelling is the roughness
coefficient and the parameterization process that follows. A typical approach for large scale
applications that uses two-dimensional hydraulic models is the estimation of the roughness coefficient
using CORINE land cover data and standard roughness coefficient tables (e.g., [30]). Therefore,
in this study the average values of Manning’s roughness coefficient (Table 1) have been estimated
using CORINE land cover classification in combination with typical Manning’s roughness coefficient
tables [60]. Moreover, based on the EU Flood Directive guides the “upper” and “lower” boundaries of
Manning’s roughness coefficient were estimated. The “upper” and “lower” boundaries are estimated
as −50% and +50% of the average Manning’s roughness coefficient values (Table 1), respectively.
Furthermore, a significant factor in hydraulic-hydrodynamic modelling applications for engineering
purposes is the accurate representation of the river and riverine area hydraulic structures (bridges,
culverts, weirs, flood protection works, etc.). Thus, all hydraulic structures of the study area were
detected using aerial photographs, a GIS database of the technical works, field observations and
information collected by several authorities. Then, the important hydraulic structures have been
selected for accurate topographical survey based on the following guides:

• Hydraulic structures close to erroneous DEM area.
• Hydraulic structures close to historical flood points.
• Hydraulic structures inside the Potential High Flood Risk Areas [34].
• Hydraulic structures close to recently recorded flood episodes.
• Hydraulic structures that accurate topographical data are absent.
• Hydraulic structures within main water bodies.

Then, based on hydraulic structures geometry data, the entire DEM has been modified in order
to include the flood protection works and the geometry of all hydraulic structures. Moreover, the
two-dimensional HEC-RAS hydraulic-hydrodynamic model is capable of the representation of the
bridges as a combination of culverts and weirs and to calculate water surface profiles for several
system formulations [50].

Finally, flood inundation modelling and mapping at urban and suburban areas remains a
big challenge due to the complexity of the entire system. Also, the hazardous effect of floods in
urban and suburban areas has a significant social impact, big economic losses, and in some cases
fatalities [1]. One of the most important factors in flood inundation modelling in built up areas is the
building representation within the 2D hydraulic-hydrodynamic model. The most common building
representation methods assume that each cell of the mesh/grid that is located inside a building block
area is represented as [61–64]: (1) Solid object; (2) with local increase of the elevation; (3) with higher
roughness coefficient values. In the solid representation method of the building blocks, the flow
eliminates within the solid block. This can be achieved with several methods that depends on the
numerical scheme used. In the local increase of building block representation method, each building
block is modified in the DEM in order to have bigger elevation than the bare earth altitude. The third
approach of building representation involves either the local rise of roughness coefficient (i.e., Manning,
Chézy, Darcy-Weisbach) for the building blocks areas or by adding supplementary parameters of
porosity and building drag coefficient to the numerical scheme of the model [63]. Recent studies
concerning the building block methodologies [64] showed that all methods have advantages and
disadvantages and none of them prevail among the others. Therefore, in this study that deals with
large-scale applications, the second (local increase of the elevation) building block representation
method has been selected.
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Table 1. Average values of Manning’s roughness coefficient based on CORINE land cover data.

LABEL1 LABEL2 LABEL3 Mannings n

1 Artificial surfaces

1.1 Urban fabric
1.1.1 Continuous urban fabric

0.0131.1.2 Discontinuous urban fabric

1.2 Industrial, commercial and
transport units

1.2.1 Industrial or commercial units

0.013
1.2.2 Road and rail networks and associated land

1.2.3 Port areas
1.2.4 Airports

1.3 Mine, dump and
construction sites

1.3.1 Mineral extraction sites
0.0131.3.2 Dump sites

1.3.3 Construction sites

1.4 Artificial, non-agricultural
vegetated areas

1.4.1 Green urban areas
0.0251.4.2 Sport and leisure facilities

2 Agricultural areas

2.1 Arable land
2.1.1 Non-irrigated arable land

0.032.1.2 Permanently irrigated land
2.1.3 Rice fields

2.2 Permanent crops
2.2.1 Vineyards

0.082.2.2 Fruit trees and berry plantations
2.2.3 Olive groves

2.3 Pastures 2.3.1 Pastures 0.035

2.4 Heterogeneous
agricultural areas

2.4.1 Annual crops associated with permanent crops 0.04
2.4.2 Complex cultivation patterns 0.04

2.4.3 Land principally occupied by agriculture, with
significant areas of natural vegetation 0.05

2.4.4 Agro-forestry areas 0.06

3 Forest and semi natural areas

3.1 Forests
3.1.1 Broad-leaved forest

0.13.1.2 Coniferous forest
3.1.3 Mixed forest

3.2 Scrub and/or herbaceous
vegetation associations

3.2.1 Natural grasslands 0.04
3.2.2 Moors and heathland 0.05

3.2.3 Sclerophyllous vegetation 0.05
3.2.4 Transitional woodland-shrub 0.06

3.3 Open spaces with little or
no vegetation

3.3.1 Beaches, dunes, sands 0.025
3.3.2 Bare rocks 0.035

3.3.3 Sparsely vegetated areas 0.027
3.3.4 Burnt areas 0.025

3.3.5 Glaciers and perpetual snow 0.01

4 Wetlands

4.1 Inland wetlands
4.1.1 Inland marshes

0.044.1.2 Peat bogs

4.2 Maritime wetlands
4.2.1 Salt marshes

0.044.2.2 Salines
4.2.3 Intertidal flats

5 Water bodies

5.1 Inland waters
5.1.1 Water courses

0.055.1.2 Water bodies

5.2 Marine waters
5.2.1 Coastal lagoons

0.075.2.2 Estuaries
5.2.3 Sea and ocean

3.5. Hydraulic Simulation of Lower Course of Volos City Streams and Evaluation Procedure

The methodology developed for large-scale fluvial flood inundation modelling applications
for ungauged urban areas is applied in three streams (Xerias, Krafsidonas, Anavros) that cross
Volos city, Greece (Figure 1). Typical techniques and methods for ungauged streams were used for the
hydraulic-hydrodynamic modelling configuration. Because of severe lack of flood data, the proposed
methodology is validated using a simulated historical flood event only for Xerias stream reaches.
The application of the hydraulic simulation of the lower course of Volos city streams is described in
the next paragraphs.

Xerias model domain (Figure 2) extends downstream of junction J4, and involves three reaches
(J4-J2, J3-J2, J2-J1), while Krafsidonas and Anavros hydraulic model simulations extend downstream of
their respective junction J2, and involve one reach per stream (J2-J1). The total length of the simulated
stream reaches is approximately 8.5 km, 3.7 km, and 2.2 km for Xerias, Krafsidonas and Anavros,
respectively. All examined reaches are crossing urban areas of Volos city. The HEC-RAS 2D model
was used for flood inundation modelling and mapping with: (a) flexible mesh computation point
spacing (Xerias = 14 m/Krafsidonas = 5 m/Anavros = 5 m), (b) 2D diffusion wave solution, and (c)
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computation interval 2 s. The input DEM spatial resolution used in this study is 5 m and in some cases
where extensive flood mitigation works exist has been downgraded to 1 m. All building blocks of
Volos city were represented with a 30 m local increase of the elevation (elevation rise method).

A significant problem of flood mitigation works and hydraulic structures (bridges, culverts,
weir, etc.) representation in 2D flood inundation modelling is the pixel size and their false description
within the DEM. A non-detailed DEM spatial resolution (big pixel size) in combination with the
appearance of natural or artificial structures close to the flood mitigation works and hydraulic
structures can lead to distortions of the elevation and by extension to their false representation
within the DEM. In cases where the actual topography of the flood mitigation works and hydraulic
structures exist, the limitation mentioned above can be eliminated with DEM editing. This study uses
the XS interpolation surfaces module (HEC-RAS/RAS-Mapper) for DEM editing and by extension,
the precise representation of flood mitigation works and hydraulic structures (bridges, culverts,
weir, etc.) [65]. For better mesh resolution close to flood mitigation works and hydraulic structures,
several Breaklines elements have been added. During the mesh generation process, the Breaklines
elements force the orientation and the construction of cell faces along with them. Therefore, with the
use of Breaklines elements the mesh is enforced near to flood mitigation works, hydraulic structures,
and the building block areas [65].

Concerning the important hydraulic structures of the study areas, 10, 20 and 4 bridges have
been taken into account in flood inundation modelling for Xerias, Krafsidonas, and Anavros streams,
respectively. Inputs of hydraulic modeling were hydrographs provided by average hydrological
simulation scenarios, using “average” roughness coefficients that were estimated according to CORINE
2000 land use classes. For all return periods, apart from the hydrographs provided by the lower and
upper scenarios, we also perturbed the roughness values by −50% and +50%, respectively, to obtain
overall uncertainty bounds of inundated areas and associated hydraulic quantities, i.e., water depths
and velocities.

A typical process followed in cases where severe lack of flood data exist is the use of qualitative
criteria that are based on matching agreement of the 2 × 2 contingency table (Simulated vs.
Observed) [7,10,17,25,26,66,67]. In this study the qualitative criterion Threat Score (TS) or Critical
Success Index (CSI) [68] has been selected for the validation of the flood inundation modelling results.
CSI is estimated by the 2 × 2 contingency table for all grids as following:

CSI =
A

(A + B + C)
(14)

where A = Hit—event simulated to occur, and did occur, B = False alarm—event simulated to occur,
but did not occur and C = Miss—event simulated not to occur, but did occur. Recent studies identified
CSI as an efficient validation measure in flood inundation modelling and mapping when the focus
is on the flood extent spatial distribution [7,10,25,26,66,67]. In this study, simulated flood inundation
data that were derived from a historical flash flood event were used for validation and evaluation of
the proposed methodology [10,25,26,35]. The CSI is used for the comparison of the inundated area
between the constructed T = 100 year flood and the simulated historical flood event of approximately
T = 100 year.

4. Volos City: Application and Results of the Modelling Framework

4.1. Semi-Distributed Hydrological Modelling of Volos City Watersheds

The parameters of the ombrian curves (Equation 1) for the design rainfall were estimated on the
basis of extreme rainfall data at 57 meteorological stations across the River Basin District of Thessaly,
comprising 224 samples of annual maxima at several time scales. Initially, we estimated the two
parameters of the duration function, using finely-resolved rainfall maxima from the 15 recording
stations. The optimal values of the two parameters were θ = 0.042 και η = 0.639, which have been
considered constant over the broader Thessaly. On the other hand, the estimation of the three
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parameters of the return period expression was based on 24-h data at 56 stations. In Figure 4,
we contrast the initial and adjusted fitting of the GEV distribution to the daily rainfall maxima
at the closest stations of the study area, i.e., Makrynitsa and Agchialos. In the first station, the initial
estimation of parameter κ was −0.008, which has been corrected to 0.007, while in the second station
the initial estimation was 0.513 (which is attributed to the very high value of the largest observed
rainfall), which has been reduced to 0.190. The rainfall stations were next grouped into three climatic
zones and assigned a representative value of κ. In particular, the three study basins are located
at the median zone, with κ = 0.09. Accounting for the given values of parameters θ, η and κ, we
finally provided point estimations of scale and location parameters λ′ and ψ′, respectively, and we
also generated empirical 80% confidence intervals of point rainfall estimations for T = 50, 100 and
1000 years, by employing Monte Carlo simulations against the scale and location parameters λ′ and ψ′.

In Table 2 we show the point estimations at Makrynitsa and Agchialos, and the 80% confidence
limits for the 24 h rainfall, for the three return periods of interest. We assigned the same values for
parameters κ, θ and η, i.e., 0.092, 0.042 and 0.639, respectively, while for the rest two parameters of
the IDF relationship we used λ′= 881.0 and ψ′= 0.788 for Makrynitsa, and λ′= 565.2 and ψ′= 0.840
for Agchialos.

Table 2. Estimation of maximum 24-h rainfall at the two stations that are neighboring to Volos city, by
employing the IDF relationship, and 80% confidence intervals (low and up values).

Station
T = 50 Years T = 100 Years T = 1000 Years

20% low IDF 80% up 20% low IDF 80% up 20% low IDF 80% up

Makrynitsa 208.6 238.0 263.6 230.9 272.9 311.9 300.5 406.1 530.0
Agchialos 105.1 140.5 168.8 113.8 162.9 207.7 134.8 248.3 407.3

 
(a) (b) 

Figure 4. Fitting of GEV distribution to daily rainfall maxima and estimation of associated parameter
values through the L-moments method (resulting to biased values) and the correction technique by
Papalexiou and Koutsoyiannis [42], at the rainfall stations of (a) Makrynitsa; (b) Agchialos.

Using the point estimations of λ′ and ψ′, and the associated confidence limits of rainfall,
we provided maps of distributed parameters over Thessaly (Figure 5), which allowed extracting
spatially-distributed design rainfalls across the study catchments. In particular, we averaged the
associated IDF parameters and standardized confidence limits over each sub-basin area, and next
employed either the alternating block method (for T = 50 and 100 years) or the worst profile method
(for T = 1000 years) in order to formulate the corresponding hyetographs.

Since the parameters of IDF curves, which are inputs for the estimation of design storms, have been
estimated on the basis of the point data, they are valid at the point scale. However, it is well-known
that for any given return period and duration, the spatially averaged rainfall over a given area is
less than the maximum point rainfall depth. For this reason, we have reduced the point rainfall
estimations, to provide areal estimations over the corresponding sub-basins, by applying a commonly
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used adjustment approach, based on the so-called areal reduction factor, ϕ. The latter is a dimensionless
parameter, defined as the ratio of areal to point rainfall, which is decreasing function of the area
and increasing function of duration. To facilitate calculations, we used the analytical formula by
Koutsoyiannis and Xanthopoulos [69]:

ϕ = max

(
1

0.048A(0.36 0.01 ln A)

d0.35 , 0.25

)
(15)

where A is the area in km2 and d is the rainfall duration in h. The above empirical relationship has been
formulated on the basis of tabular data by UK-NERC [70], which captures a wide range of durations
(in particular, from 1 min to 25 days) and catchment sizes (from 1 to 30,000 km2). For instance, in the
study basin of Xerias, with A = 116.8 km2, we employed ϕ = 0.788 and 0.930, in order to reduce the
design rainfall estimations for durations 1 and 24 h, respectively.

 
(a) (b) 

Figure 5. Maps of distributed values of IDF parameters over the Water District of Thessaly: (a) scale
parameter λ′; (b) location parameter ψ′.

In Table 3 we present the CN values that have been applied across the ten sub-basins of Xerias for
the three AMC types, corresponding to the three hydrological scenarios of this study. It is interesting
to highlight that the basin exhibits significant heterogeneity, since their CN II values range from 50
to 82, while the uncertainty induced to AMC is amplified in the areas with low CNs.

Table 3. Characteristic geomorphological properties and input parameters of Xerias sub-basins (A:
sub-basin area; zm: mean elevation; zo: outlet elevation; Lmax: maximum flow length; λ′ and ψ′:
spatially-averaged scale and location parameters of IDF relationship; CNI, CNII, and CNIII: runoff
curve number values for AMC type I, II and III, respectively).

id A (km2) zm (m) zo (m) Lmax (km) λ′ ψ′ tc (h) CNI CNII CNIII

1 6.1 66.0 0.0 5.6 698.1 0.757 2.81 49.3 69.8 84.2
2 1.4 26.4 8.7 1.7 695.4 0.754 2.17 62.5 79.9 90.1
3 20.4 199.8 21.3 8.9 613.6 0.738 2.94 48.8 69.4 83.9
4 8.0 140.0 21.3 5.1 686.9 0.749 2.17 46.6 67.5 82.7
5 7.5 73.3 8.7 5.2 754.0 0.763 2.91 65.8 82.1 91.3
6 2.2 130.2 51.9 3.1 789.5 0.768 1.50 60.5 78.5 89.4
7 22.3 447.7 58.7 10.6 808.6 0.771 2.20 29.2 49.6 69.4
8 13.6 338.4 170.7 7.7 697.7 0.743 2.54 31.3 52.0 71.4
9 20.0 722.7 170.7 15.1 788.1 0.766 2.15 32.4 53.3 72.4

10 15.3 1236.7 800.1 7.0 825.0 0.775 1.57 49.3 69.8 84.2
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The application of the semi-distributed hydrological modelling procedure in the three watersheds
led in the estimation of design hydrographs at the junctions used for the hydraulic simulation for
all examined hydrologic conditions and return periods. For example, Figure 6 shows the design
hydrographs at the outlet of Xerias watershed (Junction J1) for average soil moisture conditions (CN II)
for the three study return periods. Similar design hydrographs were estimated for all examined
junctions at the study area with similar shapes, but with different peak magnitudes.

Figure 6. Design hydrographs at the outlet of Xerias river basin for average moisture conditions (CN II)
and the study return periods.

4.2. Hydraulic Modelling of Lower Course of Volos City Streams

An operational method for Floods Directive implementation in ungauged urban areas is applied
for different return periods (T = 50, 100, and 1000 years), three hydrologic conditions (AMCI, AMCII,
AMCIII) that correspond to lower, average and upper estimations of the design rainfall, respectively,
and three roughness values (−50%, average, +50%). The examined scenarios aim to quantify the
uncertainty induced to extreme rainfall analysis, antecedent soil moisture conditions and estimations
of the roughness coefficient. Thus, this study investigates nine (9) different operational scenarios that
incorporate important (yet not all) aspects of the total model uncertainty.

Due to lack of data, the methodology has been evaluated only for Xerias stream, based on the
historical flood event that occurred October 9th, 2006. The observed hydrograph was estimated in
previous works [10,25,26,35] and considered to correspond to an approximately 100 years flood event.
The comparison of the simulated historical flood event and the simulated average design flood scenario
(AMCII, T = 100, average roughness value) is examined in the validation procedure with the skill score
Critical Success Index. Table 4 presents the flooded areas (km2) per river reach and the total flooded
extent of Volos city for all examined hydrologic and hydraulic scenarios at the selected return periods.
Flood extent variations that are presented in Table 4, and depicted in Figures 7 and 8, show that the
hydrologic conditions scenarios, accounting for both rainfall and initial soil moisture uncertainty,
have much stronger impact on the flood extent than the return period itself, which is only an indicator
of the rainfall risk. Specifically, the flood extent ranges between 0.068 km2 and 2.76 km2 for dry (AMCI)
conditions, from 0.21 km2 to 6.01 km2 for average (AMCII) conditions, and from 0.77 km2 to 9.7 km2

for wet (AMCIII) conditions (Table 4, Figure 7). This outcome is not surprising and confirms that the
generation of a flood is strongly influenced by the soil moisture that is already stored at the beginning
of rainfall.

Furthermore, based on the return period discretization it is observed that flood extent results of 50
and 100 years are very close to each other and the highest flood extent values with significant difference
from the other return periods presented in 1000-year return period (Table 4, Figure 7). Specifically,
the flood extent of all examined scenarios ranges between 0.068 km2 and 5.3 km2 for T = 50 years,
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from 0.081 km2 to 6.34 km2 for T = 100 years, and from 0.21 km2 to 9.7 km2 for T = 1000 years
(Table 4, Figures 7 and 8). Figure 9 presents the simulated velocities only for average configurations of
input rainfall, soil moisture conditions and roughness coefficients of return period: (a) T = 50 years,
(b) T = 100 years, (c) T = 1000 years. Finally, the validation procedure that is based on the comparison
between Xerias stream flood extent of the designed flood of T = 100 by employing the average input
rainfall, soil moisture conditions and roughness coefficients and simulated flood extent of the 2006
historical flash flood event achieved a score in Critical Success Index of 0.77 and shown on Figure 10.
This high score of CSI justifies the accuracy of the proposed operational methodology for flood directive
implementation in urban and ungauged areas.

Table 4. Flooded areas (km2) per river reach and total flooded extent of Volos city for all examined
hydrologic and hydraulic scenarios at the selected return periods.

Code River Name
Hydrologic

Conditions/Roughness
Coefficient Conditions

Return Period (Years)

50 100 1000

GR0817FR00700 Xerias
Dry (AMCI)/ −50% 0.42 0.49 1.79

Average (AMCII)/ Average 2.15 2.63 4.84
Wet (AMCIII)/ +50% 3.69 4.49 6.33

GR0817FR00800 Krafsidonas
Dry (AMCI)/ −50% 0.085 0.087 0.75

Average (AMCII)/ Average 0.34 0.45 0.99
Wet (AMCIII)/ +50% 0.93 1.34 2.91

GR0817FR00900 Anavros
Dry (AMCI)/ −50% 0.068 0.081 0.21

Average (AMCII)/ Average 0.21 0.25 0.33
Wet (AMCIII)/ +50% 0.77 0.82 1.2

Entire Volos city Xerias & Krafsidonas
& Anavros

Dry (AMCI)/ −50% 0.57 0.66 2.76
Average (AMCII)/ Average 2.68 3.32 6.01

Wet (AMCIII)/ +50% 5.3 6.34 9.7

 

Figure 7. Box and Whisker plots of all examined scenarios according to flood extent (km2): (a) for all
return periods (50, 100, 1000 years) and, (b) for all hydrologic conditions (AMCI, AMCII, AMCIII).
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Figure 8. Flood extent and water depths for all configurations of input rainfall, soil moisture conditions
and roughness coefficients of return periods: (a) T = 50, (b) T = 100, and (c) T = 1000 years.
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Figure 9. Simulated velocities only for average configurations of input rainfall, soil moisture conditions
and roughness coefficients of return periods: (a) T = 50, (b) T = 100, and (c) T = 1000 years.
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Figure 10. Xerias stream flood extent of the designed flood of T = 100 years, by employing the average
input rainfall, soil moisture conditions and roughness coefficients and simulated flood extent of the
2006 historical flash flood event (CSI = 0.77).

Overall, in the context of flood inundation and mapping, this study tried to quantify the
following major sources of uncertainty: (1) statistical uncertainty associated with the parameters
of IDF relationships (i.e., scale and location parameters), originating from limited samples of observed
extreme rainfall data; (2) hydrologic uncertainty associated with the initial soil moisture conditions of
the hydrological model, resulting to a wide range of the key input parameter of the SCS-CN method,
i.e., the potential maximum retention; and (3) parametric uncertainty associated with Manning’s
roughness coefficient, which is a typical input in all hydraulic simulation models. Results are
quite diverse, since the uncertainty bounds of all key flood quantities (peak flows, flood volumes,
inundated areas, etc.) strongly overlap the risk expressed in terms of return period of rainfall, while for large
return periods, the lower and upper estimations may differ by one order of magnitude. Special attention
should be given to the developed methodology and its application only for specific return periods
and hydrologic-hydraulic conditions due to the great variability in the peak discharge estimation.
A comparison of several methods and conditions prior to the decision-making phase could be proven
useful flow flood management purposes. Hence, an ensemble of methods and scenarios should always
be applied for engineering purposes, in order to choose the most appropriate technique in relation to
the flood prone areas and proposed flood protection measures.
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5. Concluding Remarks

In order to reduce the risk and adverse consequences of floods, the EU issued the so-called
Flood Directive 2007/60/EC. Its implementation requires a proper estimation of flood hazards and
representation of potential risks, which in turn makes essential the use of reliable hydrological
methodologies for the estimation of associated flood quantities, as well as suitable and efficient
hydraulic simulation tools for flood inundation modelling and mapping. In ungauged basins of
relatively small extent that mainly affected by fluvial flash floods, which are the case in Greece,
data-driven approaches in flood risk assessment, based on statistical analysis of observed floods,
are not feasible. For this reason, flood estimations are exclusively estimated through classical
engineering approaches, following the event-based deterministic paradigm.

In this study, a methodological approach for implementing the EU Floods Directive in Greece
is developed, emphasized for flood risk management in urban areas, which is demonstrated for the
Volos city case, where frequent flood episodes are observed. The methodology is based on typical
hydrological and flood inundation modelling and mapping techniques for ungauged catchments.
Spatially-distributed design hyetographs are applied for hydrologic and hydraulic 2D modelling
of floods taking into account parametric and structural uncertainty. The average scenario against a
simulated historical flood extent data was validated through the objective qualitative criterion of CSI
that is counting the spatial distribution of the flooded area.

According to the flood extent values, it seems that the uncertainty induced in hydrological
modeling, with respect to extreme rainfall estimations and antecedent soil moisture conditions,
dominates against the return period. We remark that these two components are not the sole sources of
uncertainty within rainfall-runoff transformations. This makes it essential to move to more rigorous
methodological approaches (e.g., stochastic), instead of quantifying the flood risk on the basis of the
return period of rainfall.

The overall results also proved that sensitivity analysis should be a mandatory process in flood
modelling and mapping for urban areas due to the variation of the results because of the hydrologic
conditions or the selected return period that is used. Finally, the results indicate the uncertainty
introduced in flood risk management in urban areas using typical engineering practices.
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Abstract: Flood events pose a severe threat to communities in the Lower Mekong River Basin.
The combination of population growth, urbanization, and economic development exacerbate the
impacts of these events. Flood damage assessments, critical for understanding the effects of
flooding on the local population and informing decision-makers about future risks, are frequently
used to quantify the economic losses due to storms. Remote sensing systems provide a valuable
tool for monitoring flood conditions and assessing their severity more rapidly than traditional
post-event evaluations. The frequency and severity of extreme flood events are projected to increase,
further highlighting the need for improved flood monitoring and impact analysis. In this study we
integrate a socioeconomic damage assessment model with a near real-time flood remote sensing
and decision support tool (NASA’s Project Mekong). Direct damages to populations, infrastructure,
and land cover are assessed using the 2011 Southeast Asian flood as a case study. Improved land
use/land cover and flood depth assessments result in rapid loss estimates throughout the Mekong
River Basin. Results suggest that rapid initial estimates of flood impacts can provide valuable
information to governments, international agencies, and disaster responders in the wake of extreme
flood events.

Keywords: near real-time; Mekong Basin; hydro-economic; socioeconomic; damage
assessment; hydroinformatics

1. Introduction

Flood events are among the costliest natural disasters and pose significant threats to many
low-lying and coastal communities [1–3]. The Mekong River Basin (MRB) is one of the most flood-prone
regions in the world. Approximately 60 million people reside there, with many inhabiting areas along
flood plains or within a few meters of sea level [4,5]. As populations and economic growth continue
to increase, so do the expected damages from future events [6]. Nicholls et al. (2008) estimate that
by the year 2070 Vietnam and Thailand alone will account for 6% of global assets and 12% of global
population exposed to flooding [7].

The effects of climate change are also expected to exacerbate threats caused by flooding. Increased
frequency, severity, and variability of storm surge, combined with rising sea levels, pose significant
risks to coastal populations [6,8]. For inland areas, changes to precipitation patterns and monsoons
can disturb the delicate balance between the necessary seasonal flood cycles and destructive extreme
events [9]. In light of these potential risks, it is increasingly important for flood managers and decision
makers to understand the socioeconomic effects of flooding on communities.

Impact assessments are commonly used to quantify the socioeconomic effects of flooding.
Estimates of potential damages are critical to land-use planning and risk mapping, and serve as
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inputs for cost-benefit analyses of flood protection systems [3,10,11]. Post-event evaluations are
commonly formulated by national governments or international agencies like the United Nations
(UN), Red Cross, World Bank, or United States Agency for International Development (USAID) [12,13].
However, these evaluations often require a significant amount of time to produce, thereby delaying
insights which could otherwise reduce vulnerability to future flood events. The ability to acquire rapid
damage estimates can provide emergency responders, public administrators, and insurance companies
valuable information in the wake of a hazardous event [14,15].

Geographic information system (GIS) and remote sensing technologies offer a way to synthesize
geospatial and socioeconomic data more rapidly and efficiently. While several recent studies have
demonstrated the efficacy of structured flood damage assessments in the MRB, these analyses
were largely constrained to local or community-level evaluations (see: [16–18]). Impact evaluations
across broader scales can be complicated by the need for trans-boundary coordination between
countries, as is the case in the MRB [19]. Here, we propose a framework that couples the near
real-time (NRT) flood detection capabilities of an existing web application (NASA’s Project Mekong;
http://projectmekongnasa.appspot.com) with a rapid damage assessment module to estimate flood
impacts on a regional scale [2].

Project Mekong is a decision support tool that leverages the rapid revisit time and low latency
afforded by NASA’s Land, Atmosphere Near Real-Time Capability for Earth Observing Systems
(LANCE) system. Imagery from the Moderate-resolution Imaging Spectroradiometer (MODIS) sensors
on the Aqua and Terra satellites are obtained twice daily at 3-hr latency. Cloud filters are applied
and a dynamic surface water classifier identifies flooding using the spectral Normalized Difference
Vegetation Index (NDVI) signatures of permanent water bodies (MOD44W). For a more detailed
description of the flood detection scheme used in the tool, see [2].

In addition to producing operational flood conditions in NRT, the Project Mekong system has
previously been benchmarked against historical imagery. One notable example is the 2011 Southeast
Asia flood, which was an event of historic magnitude and the effects of which are well documented in
the literature [20–23]. Using the 2011 flood event as a case study, this analysis seeks to: (1) demonstrate
the feasibility of assessing and visualizing socioeconomic impacts on a regional scale and (2) use
readily-accessible data to establish a framework to produce damage estimates in NRT in conjunction
with the Project Mekong tool.

2. Background and Motivation

2.1. Study Area

The Mekong is the world’s 12th longest river and provides a critical source of water for one of the
world’s most densely populated landscapes. Originating in the Tibetan plateau, it extends over 4300 km
and spans parts of China, Laos, Myanmar, Thailand, Cambodia, and Vietnam (Figure 1A) [24,25].
The basin drains an area of approximately 795,000 km2 and can be divided into two primary catchments,
known as the Upper and Lower Mekong Basins (LMB) [4]. The LMB can be further characterized by
four physiographic regions: Khorat Plateau, Tonle Sap Basin, Northern Highlands, and Mekong Delta.
The delta itself covers 39,000 km2 and is home to over 18 million people [26]. The combination of
low-lying terrain and high population density make communities in the LMB prone to river and
coastal flooding [27].

The LMB is well adapted to seasonal inundation cycles, which typically occur between July
and November. In the Mekong Delta, regular flooding affects up to 50% of the land surface [28].
The influx of nutrient-rich waters from these cycles replenishes fertile sediment for agriculture,
recharges groundwater reservoirs, and provides habitat for aquaculture [21]. While many inhabitants
of the LMB rely on seasonal inundation for their livelihoods, they remain highly susceptible to extreme
events [29].
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Figure 1. (A) Map of Mekong River Basin countries with flood extent from 2011 event. (B) Study extent
showing results of the triangular interpolated network (TIN). (C) Depth raster produced by inundation
depth analysis.

2.2. The 2011 Southeast Asia Floods

During the 2011 monsoon season, record flooding caused by a confluence of natural and
human-made factors struck communities across Thailand, Myanmar, Cambodia, Laos, and Vietnam. La
Ninã meteorological conditions resulted in a 143% increase in rainfall in Northern Thailand alone [30].
This extended period of above-average precipitation coincided with the onset of the southwest
monsoon, which occurred between May and September over Thailand and the Andaman Sea [31].

Topography and land use played an important role in the distribution of flood damages.
The gently sloping landscape resulted in an inundation of large geographic areas. Reservoir capacities
were quickly overwhelmed and increased runoff channeled a high volume of water into the LMB [19].
Several densely-populated urban areas were significantly affected by these extreme hydrologic
conditions, despite the existence of flood management infrastructure like levees and water gates.
The area around Bangkok, Thailand, for instance, had subsided between 0.5–1.6 m during the preceding
several decades [30]. The combination of increased vulnerability and the dense concentration of people
and infrastructure is believed to have increased the resulting flood damages.
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2.3. Flood Impact Assessments

Impact assessments are a critical component of flood management plans. Most modern flood
management strategies rely on risk analyses that consider the probability of a given hazard (e.g.,
the 100-year flood) and its associated effects [10,32]. The expected damages from a flood event are
a function of the vulnerability of a given population. Many factors can affect the vulnerability of a
population, including socioeconomic variables like accumulated wealth, mobility, or the health status
of households; robustness of infrastructure; flood characteristics like depth, duration, or flow velocity;
and the existence of warning and response variables [16].

There are multiple ways to structure a flood impact assessment, all of which is subject to challenges
and assumptions. Flood impacts are often described using a framework that classifies damages as
‘direct vs. indirect’ and ‘tangible vs. intangible’ [33]. Direct, tangible damages are those that occur as
a result of direct contact with water and can be readily quantified by established metrics [3,10].
Other direct damages, such as the loss of human life, pose distinct ethical challenges when it
comes to assigning damage values, leading them to be considered intangible [34,35]. Examples of
indirect damages would be loss of income due to displacement, suspension of education, or issues of
intergenerational justice [32,36]. Here, we focus primarily on the direct, tangible damages associated
with flood inundation throughout the LMB.

Several countries have developed standardized flood impact frameworks which allow flood
events to be compared across time [10]. In the U.S., the Federal Emergency Management Agency
(FEMA) uses the Hazards U.S. (HAZUS) model for mitigation and recovery planning, as well as disaster
preparedness and response [37]. The model is highly detailed, and is used to calculate exposure for a
variety of different types of residential and commercial infrastructures. However, the most detailed
version of the multi-hazard module requires “extensive additional economic and engineering studies
by the user,” [3] (p. 3741). Performing such analyses on a regional scale can, therefore, pose nontrivial
practical and computational challenges. In the following section, we outline a streamlined workflow
to rapidly produce flood damage estimates across the MRB.

3. Materials and Methods

Here, we adapt and employ a damage assessment framework originally developed by civil
engineers in the Netherlands. This so-called “Standard Method,” as outlined in Kok et al. (2004),
calculates flood damages according to different land cover types and infrastructure categories [38].
Like the HAZUS model in the U.S., it relies on depth-dependent damage functions to determine
severity of flood impacts. While other studies consider additional flood characteristics such as flow
velocity or duration, this analysis considers only inundation depth as a simplifying assumption.
This assumption is supported by Tang et al. (1992), who found that inundation depth was the primary
driving variable for flood damages in the Bangkok area, particularly for commercial and agricultural
areas [27] (p. 55). For an extended discussion of assumptions and limitations, see the Discussion and
Conclusions section. The following sections describe how inundation depths are estimated and fed
into the model to assess damages.

3.1. Inundation Depth Estimation

To illustrate the workflow for the near real-time assessment, we consider the 2011 Southeast Asia
floods as a case study. Surface water extent estimates were obtained through The United Nations
Institute for Training and Research (UNITAR), which supports satellite data collection of natural
disasters through the Operational Satellite Applications Programme (UNOSAT). Imagery collected
by the European Space Agency’s ENVISAT Advanced Synthetic Aperture Radar Wide Swath Mode
(ASAR-WSM) shows the extent of the surface inundation between 27 and 30 September, 2011 at a
spatial resolution of 150-m [39] (Figure 1A). A geodatabase containing the vector data of the detected
2011 flood extent is available in [40].
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QGIS software was used to process the ASAR flood extent vectors according to the method
described in Cham et al. (2015) [41]. The flood extent polygon was converted to a polyline feature.
Sample points were generated around the boundary of the flood extent at 250-m intervals. Twelve tiles
from the “Multi-Error-Removed Improved-Terrain” digital elevation model (MERIT DEM) were
stitched together to produce a regional elevation layer at 3 arc-second (90-m) resolution [42]. The MERIT
DEM improves on many of the sources of error present in other global elevation datasets (e.g., speckling,
striping, and vegetation biases). However, its vertical accuracy is not without uncertainty, especially
when used in a flood modeling context. For a more detailed discussion of uncertainties see the
Discussion and Conclusions section.

At each of the sampled points, the land surface elevation from the MERIT DEM was extracted.
These elevation points were used to generate a triangular interpolated network (TIN) to serve as
an estimate for the flood surface elevation (Figure 1B). Finally, flood depths were determined by
subtracting the land surface elevation from the interpolated flood surface at each grid cell (Figure 1C).
A cross-section schematic of this process is illustrated in Figure 2.

Figure 2. Plan view (upper) and cross-section schematic (lower) illustrating flood depth estimation
using inundation extent. Figure adapted from Cham et al. (2015) [41]. DEM = digital elevation model.
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3.2. Land Use/Land Cover Map

An updated land use/land cover (LULC) map produced by the Mekong River Commission
(MRC) was used to determine damages according to different types of land cover. Land cover
classifications were derived using imagery from Landsat 5 Thematic Mapper to produce a map with
30-m spatial resolution. Field surveys were conducted on 9357 points across the LMB to validate
classifications [43]. In total, 19 unique land classifications were derived (Figure 3). The LULC map was
resampled to match the DEM resolution using nearest neighbor method and was exported as an array.
Arrays for land cover and inundation depths were imported in an R model to calculate damages on a
per-pixel basis.

3.3. Infrastructure and Population Density

Population data produced by NASA’s Socioeconomic Data and Applications Center (SEDAC)
provide global, gridded estimates of population density at a resolution of 30 arc-second (~1 km) [44].
SEDAC also provides global datasets for roadways. Road data were clipped to the study area and
classified as primary (highway), secondary (roadway), or residential/other according to the attribute
‘fclass’ designation (Figure 4) [45]. Road vectors were rasterized to match the resolution of the depth
raster. Rasterized roads were exported as an array with indices corresponding to road type.

Figure 3. (A) Land use/land cover (LULC) map produced by Mekong River Commission (MRC, 2010).
(B) Inset showing study extent and LULC details considered in this analysis. (C) Close view of the
Tonle Sap Lake region, Cambodia.
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Building infrastructure data were obtained from OpenStreetMap (OSM) [46,47]. Building locations
and footprints were collected for the entirety of Thailand, Cambodia, Laos, and Vietnam and merged
into a single dataset in QGIS. Building centroids were used to extract flood depths at point locations to
estimate flood damages on a per-structure basis. Individual buildings were classified as either ‘urban’
or ‘rural’ structures according to a population density threshold of 1000/km2 (Figure 4) [48].

Leveraging open-source data presents a unique opportunity for understanding
community-level impacts. However, since OSM data is user-generated, there are likely nontrivial data
gaps and inconsistencies. Over 955,000 digitized structures across the Mekong region are included
in this dataset, which would almost certainly underestimate the actual total number of residential
and commercial buildings. For locations where OSM data does not exist but was classified as ‘Urban’
on the MRC LULC map, we supplement our understanding of infrastructure damages using the
method described in Chen (2007). This approach calculates damages according to the area of urban
land affected and uses a 40% correction factor to estimate the proportion of urban land occupied by
infrastructure [49]. Damage estimates for both methods were combined to produce estimates for total
building infrastructure damages.

Figure 4. Population density (left), regional road networks (center), and building centroid and footprint
data (right, below) considered in this study.

3.4. Damage Model

Flood damages are calculated as a function of three variables: damage factor category, a; maximum
damage value, S; and the number of affected units, n

S =
n

∑
i=1

ainiSi (1)
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Damage factors for each category are determined by depth-damage functions (Figure 5). For each
affected grid cell, the associated inundation depth is fed into the appropriate damage curve for the
underlying land cover. The curves used in this study were derived primarily for use in the Huong River
Basin, Vietnam, but we assume validity for other communities throughout the MRB [49]. For some of
the land use classes considered in this study, no documented depth-damage relationship exists. In such
cases, we adopt the closest analogue in order to approximate damage values (e.g., use ‘forest’ curve for
‘orchard’ class). This is a noted limitation of this approach and can also be seen as a motivation for the
development of refined depth-damage curve datasets as well as more established land cover proxies.

Figure 5. Damage factor curves for agriculture, forest, and infrastructure classes (upper) and rice
varieties (lower) found in the Lower Mekong Basins (LMB). Curves digitized and adapted from Chen
(2007) [49].
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Maximum damage values, Si, are also regionally-derived from studies performed in Vietnam
and Thailand (Table 1) [16,17]. Maximum damage values indicate the total value assigned
to a land cover type or infrastructure class per a unit area (e.g., crop destruction/m2, roads
impacted/m). Specific damage amounts are calculated based on either cost of replacement or cost
of reconstruction [38,49]. For the purposes of this case study, we assume any crop that comes into
contact with flood waters is considered ‘totally destroyed.’ However, the literature provides alternative
damage values for partially destroyed crops. For a full table of the maximum damages values used in
this study, see Table A1.

Table 1. Maximum damage values (Si) used in this study.

Land Utility USD/m2 Source

Agriculture
Rice, totally destroyed 0.078

Leenders et al. (2009)

Crop, totally destroyed 0.109
Other plants, totally destroyed 0.147

Rice, partially destroyed 0.027
Crop, partially destroyed 0.030

Other plants, partially destroyed 0.030

Fishery
Farm ponds and paddy fields 0.639

Leenders et al. (2009)Shrimp and shell fish 1.706
Freshwater fish 0.048

Infrastructure
Urban area 29

Giang et al. (2009)

Rural area 22
Provincial road 80
National road 400

Railway 1000
Other crops 0.02

Forest 0.84

4. Results

4.1. Land Cover Damages

The majority of inundation for the 2011 case study example extends from Tonle Sap Lake south
toward the Mekong Delta (Figure 6). In total, approximately 23,000 km2 was found to be inundated,
with the majority (58%) classified as annual cropped rice. While rice paddies did comprise most
of the inundated land area, they were only found to account for around 14% of the total damages
(Table 2). The flooded forest belt surrounding the Tonle Sap Lake accounted for the majority of land
cover damages (64%), due to its comparatively higher maximum damage value for Forests (0.84 vs.
0.078 USD/m2), as well as the sensitivity of the ‘Forest’ damage curve to inundation depths between 0
and 0.5 m. The exact damage values for the forest class were derived from the Vietnamese Central
Region Urban Environment Improvement Project (CRUEIP) as the unit cost to replace forest in the
Thua Thien Hué Province [49,50]. As the expected damages for each land cover class are highly
dependent on the associated maximum damage value, it is worth evaluating whether local values
can be applied regionally. For a more detailed discussion of the limitations of this framework, see the
Discussion and Conclusions section.
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Figure 6. Results of damage assessment for land cover categories. Color gradient represents severity of
damages in USD/m2.

Table 2. Affected area and damage estimates for land utilities considered in this study.

Land Utility Area (km2) Damages (USD)

Rice Rotated with Annual Crop 13,355.05 645,235,056
Annual Crop 1502.03 126,696,853

Shifting Cultivation 38.02 3,073,550
Orchard 332.35 6,572,509

Flooded Forest 3542.54 2,889,181,644
Grassland 1938.22 44,535,518

Shrub Land 1398.63 34,103,750
Urban 275.17 710,538,630

Bare Land 68.65 0
Industrial Plantation 1.42 24,608

Deciduous Forest 8.43 2,905,977
Evergreen Forest 2.28 1,530,465
Forest Plantation - -
Bamboo Forest 11.35 8,798,317

Coniferous Forest - -
Mangrove 1.71 842,254

Marsh/Swamp 482.85 12,703,670
Aquaculture 8.32 211,169

Aquaculture Rotated with Rice 26.39 27,770
Total 22,993 4,486,981,740
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4.2. Infrastructure Damages

Over 275 km2 of ‘urban’ land and 29,170 individual structures were exposed to inundation across
the study area, according to the open source data. Total estimates of urban and residential damages
amounted to $710 million. Nearly 5000 km of roads were flooded with nearly all being classified as
either secondary roadways or residential streets. Roads were flooded at an average depth of 1.1 m,
with an upper 95% quantile depth of 3.63 m.

4.3. Populations Affected

The ASAR-WSM flood extent encompassed an area of roughly 40,500 km2. Based on population
densities of the SEDAC dataset, it was estimated that approximately 4.1 million people resided within
the inundated extent. Estimates from the United States Agency for International Development (USAID)
place the total number of ‘affected people’ at over 4.73 million across Thailand, Cambodia, Laos, and
Vietnam (USAID, 2011). Due to the satellite path, part of the inundated area along the Mekong
Delta was not included in this analysis, which could potentially explain the discrepancy between
these figures.

5. Discussion and Conclusions

The 2011 Southeast Asia flood provides a valuable case study for demonstrating the feasibility
of near real-time damage assessments. Our results demonstrate that GIS-based approaches to such
assessments can efficiently synthesize geospatial and economic data to produce damage estimates at
time scales useful for first responders and decision makers. Furthermore, the impact assessment
framework can be readily implemented at different spatial scales and locations, providing that
associated depth-damage relationships and maximum damage values are known. While the method
described here may have some advantages over traditional post-even evaluations, it is subject to
uncertainties surrounding the estimated flood depths as well as the damage factors used.

5.1. Flood Depth Estimates

Flood depth estimates serve as the primary driving variable for the damage curves used in
this study. While organizations like the MRC have an extensive network of hydrological monitoring
stations (e.g., discharge, meteorological, or rain gauge stations), there is a limited distribution of
real-time river gauges [51,52]. In the absence of widespread field-based observations of inundation
depths from the 2011 flood, we compared the output of the TIN-derived depths with modeled
estimates produced by the MRC. A simulation of a large flood event was generated using the
MIKE11 hydrodynamic model, which produced estimates of inundation extent and depth at 100-m
horizontal resolution. Geographic agreement between the ASAR-detected flood extent and the modeled
extent was fair, with the modeled output failing to capture flooding north of the Tonle Sap Lake
(Figure A1). Where inundation extents overlapped, the flood depths also showed good agreement
(Figure A2). For this comparison, TIN-derived depths less than one meter were binned up to one
meter, to match the MIKE11 output (the full distribution of the inundation depths produced by this
study can be seen in Figure A3).

As previously mentioned, the MERIT DEM used to generate the flood depth estimates is also
not without uncertainty. While this updated dataset achieves a nearly 20% improvement in land-area
mapped with ±2 m or better vertical accuracy, higher-resolution elevation datasets would prove more
useful for community-level flood assessment [42].

5.2. Damage Estimate Validation

Comparing modeled damages with government or agency estimates raises distinct
methodological challenges. In the case of the 2011 floods, multiple storms occurred over the course
of several anomalous months. It is, therefore, difficult to distinguish which damages were a direct
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result of specific flood events [30]. When damage figures are reported in post-event evaluations,
statistics detailing affected population and infrastructure are reported by a wide array of sources
(e.g., governments, agencies, and news outlets). Estimates can vary widely depending on the source
and the timing [53]. Limited documentation can also make it unclear whether reported damages
contain just direct tangible effects, or if estimates of indirect and intangible damages are included.
Furthermore, methods by which agencies formulate estimates can often be ambiguous and can be
based on little or no accurate information [49,50]. Therefore, we make no attempt to directly compare
the estimates in this study to those produced by any government agencies. Instead, we emphasize that
the lack of transparency surrounding many existing damage assessments highlights the benefits of
using structured, standardized frameworks like HAZUS or the Standard Method.

While the inclusion of open-source data from OSM can potentially provide some community-level
insight into flood impacts, the sparseness of user-generated data likely means that urban damage
figures are underestimated. In particular, critical infrastructure like healthcare facilities, schools,
transportation hubs, and energy infrastructure were all classified simply as ‘urban.’ The framework as
designed, however, can readily be updated with newer data as they are generated, allowing for more
granular valuations of high priority infrastructure.

As previously discussed, the lack of locally-specific depth-damage relationships can potentially
obscure our findings. While several of the damage curves and maximum damage values used in this
study are regionally-sourced, the diverse landscape in the LMB requires a more detailed understanding
of how to value flood impacts. The high magnitude of the damages surrounding the Tonle Sap region,
for example, illustrates the need for a more nuanced understanding of the unique depth-damage
relationships for each specific land cover class. In this analysis, all forest classes were considered using
the same damage curves, yet the specific morphology of the flooded forest ecosystem makes it highly
adapted to seasonal inundation. It is, therefore, unlikely flood levels of under 1-m would result in the
total losses assumed by the current ‘Forest’ damage curve.

Another potential limitation is the ethnography of the region. Mekong communities are
well adapted to seasonal flooding and have been living in floodplains for thousands of years.
Many residents have experienced periodic flooding in their lifetimes (e.g., in 2000), and are accustomed
to living in flood conditions or relocating in times of flood [28]. Further, houses in the LMB can be
semi-resilient to flooding by employing high stilts and sometimes being constructed as floating houses.
These factors complicate the estimation of “affected” population, and on-the-ground efforts as well as
higher-resolution remote sensing images should be employed where possible to fill these data gaps.
One possibility is to employ a probabilistic approach in which affected populations are assessed in
terms of possible ranges or likelihoods.

Ultimately, the damage values presented here require an explicit understanding of the limitations
of the analysis. The previously discussed uncertainties in both model parameters and structure make
it difficult to view the damages themselves as much more than rapid, initial estimates. However,
these estimates can still provide valuable information by pinpointing areas of interest for more
focused investigation. Several recent studies note that rapid assessments of economic losses can aid
in the allocation of potentially scarce resources during the recovery and reconstruction phases of a
flood event [54,55]. The case study application presented here illustrates how the damages could be
assessed using historical imagery, but the same process could also be applied to flood forecast maps,
further increasing its value for future risk planning.

6. Future Work

The aim of this analysis was to demonstrate the feasibility of a rapid damage assessment
framework to assess and visualize flood impacts of the 2011 Southeast Asia floods. The analysis
can be readily expanded to the entire Mekong region as it is integrated with the near real-time product,
Project Mekong. The damage model used in this analysis has a number of simplifying assumptions
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that could merit further investigation. While inundation depth was the only driver of flood damages
considered here, future analysis of time series data could provide insight into flood duration as a driver.

The updated LCLU maps provided by the LMB improve our understanding of damages to
different land classes but further refinement is still possible, particularly with respect to crop production.
The Mekong Delta is known as the “rice bowl” of Vietnam, and food security is an ongoing area of
research in such a densely-populated part of the world [21,28]. Crop rotations and planting calendars
play a large role in which varieties of rice are growing in any given month, so improved treatment of
crop distributions would better constrain our damage estimates.

Many of the socioeconomic datasets used here are static and could benefit from improved
spatial resolution. As new socioeconomic data (e.g., power lines, power plants, internet/cable
lines, etc.) and satellite data (e.g., Sentinel 1B) become available, the system should be updated
to include the most relevant and latest data.
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Appendix

Table A1. Land utilities with corresponding maximum damage values used in this study.

Land Utility Maximum Damage Value (Si)

Rice Rotated with Annual Crop 0.078
Annual Crop 0.109

Shifting Cultivation 0.109
Orchard 0.03

Flooded Forest 0.84
Grassland 0.03

Shrub Land 0.03
Urban 29

Bare Land -
Industrial Plantation 0.3

Deciduous Forest 0.84
Evergreen Forest 0.84
Forest Plantation 0.84
Bamboo Forest 0.147

Coniferous Forest 0.84
Mangrove 0.639

Marsh/Swamp 0.03
Aquaculture 1.706

Aquaculture Rotated with Rice 0.639
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Figure A1. Comparison of inundation extent between the MIKE11 hydrodynamic simulation of a large
flood event (A) and the Advanced Synthetic Aperture Radar (ASAR)-detected flooding (B).

Figure A2. Histogram comparing MIKE11 hydrodynamic model simulation of a large-scale flood event
(A) versus the TIN estimation from this study (B). For the purposes of this comparison, TIN estimations
less than one meter were binned up to one meter to match the MIKE11 convention.

Figure A3. Full distribution of inundation depths produced by TIN estimates.
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Abstract: A 15th-century canal system in the Metro Colombo area of Sri Lanka was studied to
identify its capacity in controlling floods. The canal system was modelled by MIKE FLOOD for 10, 25
and 50-year return periods of rainfalls to achieve respective floods. The impacts of the considered
rainfalls were analyzed considering the flood levels, inundation distributions and affected people.
Two simulation scenarios which were based on the river boundary conditions were carried out in
the study and they were categorized as favourable and least favorable. It was identified that under
the existing conditions, the canal system could handle only a 10-year rainfall flood event under the
favourable condition. Therefore, the canal system’s sustainability for future anticipated extreme
events is suspicious. To mitigate such floods, four countermeasures were introduced and their
impacts were analyzed. When the countermeasures were introduced one at a time, the flood water
levels were lowered locally and they were not up to the flood safety levels of the surrounding area.
When all four countermeasures were introduced together, the flood water levels were significantly
lowered below the flood safety levels for a 50-year design rainfall under the favourable condition.
The reduction of the inundated area was significant in the case of applying all four countermeasures
together. In that case, a 46% inundation area reduction and a 49% reduction in the number of affected
people were achieved.

Keywords: countermeasures; flood impacts; Metro Colombo canal system; Colombo city, Sri Lanka;
urban floods

1. Introduction

The most common water-related hazards in urban areas, which causes substantial damages to
human lives, health and infrastructures are urban floods. Urban flooding is a serious issue and a
challenge to the development of cities and their residents. Common reasons for urban flooding are lack
of drainage facilities, inadequate openings, inadequate water storage, intense rainfall, encroachment
and blocking in the drainage system and backwater effect at outfalls. Urban floods have adverse
impacts on the urban infrastructures such as transportation, electricity, water supply and drainage.
Moreover, it adversely affects the lives of residents. These lead to extreme damages and disorder in
the serviceability of urban infrastructures as well as transportation [1]. In recent years, more attention
has been paid to consider the ability of urban drainage measures to reduce urban flood risks [2–4].
Effective adaptation measures can be made only after the nature of the impact is well understood.
For urban planning and disaster preparedness, a quantitative assessment of the increase of flood
hazards is important [5]. Urban cities are generally located in the flat areas in the middle or lower
reaches of main rivers and much exposed to intensive floods. Urbanization in developing countries
has been taken place in an unsustainable way, with a consequent degradation of the quality of life and
the environment. It is essential to assess the impact of floods in urban areas and to prepare long-term
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plans for flood risk management through structural and non-structural countermeasures. This will
assist policymakers to better understand the vulnerability of the urban regions under socio-economic
and climatic changes because their contribution to the country’s economy is enormous. In this study,
we discuss a specific ancient canal system and related floods in the Metro Colombo area which is in
the heart of the commercial capital of Sri Lanka.

The study was carried out based on hydrological modelling, flood impact assessment and
estimating the efficiency of flood mitigation countermeasures. The main objective of this study was
to assess the extent of inundations and flood levels for design rainfalls within the Metro Colombo
area to identify the vulnerable areas and residents. Flood inundation maps were developed for the
design rainfalls of having return periods of 10-year, 25-year and 50-year. It was essential to have
flood inundation maps for the Metro Colombo canal basin to decide on new developments and
flood mitigation/protection activities. The structural countermeasures to reduce the floods can be
identified using the flood inundation maps. Also, the objective of this study extended to check the
effectiveness of selected countermeasures which could be introduced to the canal system to mitigate
floods. The feasibility of different countermeasures was assessed based on the reduction in inundation
area and their impacts on the residents of seven Divisional Secretary’s Divisions (DSDs).

To achieve these objectives, the entire canal system of the Metro Colombo area was modelled
using MIKE11, MIKE21 and MIKE FLOOD models. The Digital Elevation Model (DEM) of the 30 m
grid was introduced to MIKE21 as a two-dimensional domain. The DEM used in the study was a
specially produced DEM, after a Lidar survey which was carried out covering the Metro Colombo
area in 2011. Its horizontal accuracy was 1.0 m and the vertical accuracy was in the range of 0.15 m to
0.20 m. MIKE11 and MIKE21 models were coupled using MIKE FLOOD by defining the links between
channels and floodplains. Sea levels at the outlets to the Ocean and the Kelani River discharges were
used as boundary conditions for the model.

2. Study Area

The Metro Colombo canal system is in the Colombo city, in the wet zone of Sri Lanka. Colombo
city is a coastal city located in the western part of Sri Lanka and it is the commercial capital of the
country. The Metro Colombo canal system connects to the Kelani River which is the fourth largest
river in Sri Lanka. The Kelani River drains into the Indian Ocean through Colombo and it is a highly
influential river in Sri Lanka due to its economic and social importance. Figure 1 depicts the locations
of the Colombo city, Kelani River basin and the Metro Colombo canal system. The Colombo district has
a population of 2.3 million within 699 km2 of area. It has a high population density of 3400 people/km2

as of 2012 [6]. The Colombo city area is subjected to frequent floods during the south-west monsoon
when it coincides with localized depressions. Figure 2 illustrates the annual rainfall in Colombo for
30 years from 1981 to 2010. An increment in the annual rainfall was identified for 30 years from 1981
to 2010. For each 10-year period, 1981–1990, 1991–2000 and 2001 to 2010 the yearly average rainfalls
were 2113 mm, 2418 mm and 2377 mm respectively. Moreover, the maximum annual rainfalls were
2493 mm, 2888 mm and 3370 mm for each 10-year period. The increase in annual average rainfall and
maximum annual rainfall indicate the vulnerability of the Colombo city to floods.

The history of the Metro Colombo canal system is mostly discussed from the time of King Veera
Parakramabahu VII, who ruled Sri Lanka and established Kotte as the capital in the 15th-century.
The Portuguese who ruled some parts of Sri Lanka from the 16th-century to the 17th-century improved
the canal system for efficient transportation. The Dutch, who captured the island from the Portuguese,
established Colombo as the capital and they enhanced the waterways systematically by adding
structures and diversions in the 18th century. The British who ruled the island from the 18th-century to
the 20th-century added several openings to the sea (for example, outfall at Wellawatta canal, Dehiwela
canal) to control floods in the area [7].
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Figure 1. Study area: (a) Administrative districts of Sri Lanka; location of the Kelani River basin and
the Metro Colombo canal basin; (b) Kelani River basin and the location of Metro Colombo canal basin
and the canal system; (c) Metro Colombo canal system.

Figure 2. Annual average rainfall for Colombo for 30 years (1981–2010).

At present, the canal system acts as a passage to drain out flood water from the Metro Colombo
area. The total length of it is 67 km. It has five main outfalls, among them three outlets—Dehiwela
canal outlet, Wellawatta canal outlet and Mutwal tunnel outlet—drain the water into the Indian Ocean
(Figure 3a). The other two, named as St-Sebastian north canal outlet and Madiwela east diversion canal
outlet discharge flood water into the Kelani River. The water level measuring points are depicted in
Figure 3b. The canal system has a zero-bed slope and the bed level of the canals is −1.0 m MSL (meters
above Mean Sea Level). Figure 3c shows the schematic diagram of the canal system. There are three
main marshy lands acting as retention areas for floods which are named as Kotte Ela marsh, Heen Ela
marsh and Kolonnawa Ela marsh. Also, there are few detention ponds and lakes in the upper catchment
area which can store flood water such as; Parliament Lake, Diyawanna Lake, Thalawathugoda Lake,
Rampalawatta Lake, etc. The Metro Colombo basin, which is in the mostly urbanized area of Colombo,
has an extent of 105 km2. It is spread over seven DSDs named as Colombo, Thimbirigasyaya, Dehiwela,
Kolonnawa, Sri Jayawardanapura Kotte, Maharagama and Kaduwela (Figure 3d).
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Figure 3. (a) Description of the Metro Colombo canal basin; (b) Water level gauging stations;
(c) Schematic diagram of the Metro Colombo canal basin; (d) Divisional Secretary’s Divisions (DSDs)
in the basin.

106



Hydrology 2018, 5, 11

The Metro Colombo area is subject to frequent floods during heavy rainfalls which causes
economic losses and causalities. The situation is much worse when the water level of the Kelani
River rises due to rainfall in the upper catchment. The geographical terrain of the Metro Colombo
basin varies from 0 m MSL to 35 m MSL and a larger percentage of the basin sits below 3 m MSL.
Therefore, it is difficult to have a proper gradient in the channel bed towards the outfalls to drain out
the floods from the canal basin. Primary reasons for recent floods are increased surface runoff due
to urbanization, diminishing of retention areas, growing trend for rainfall intensity and inadequate
conveyance capacities of canals, structures and outfalls.

The Metro Colombo area has experienced severe floods in the recent past. On 14 May 2010 heavy
monsoon rain caused floods in the area submerging roads and interrupting transportation. 94,000
people of about 15,000 families were affected due to the flood [8]. Again, between 10 November and 11
of 2010, about 440 mm of rainfall fell within 14 h. Almost all of the social and commercial activities
were interrupted. The most severe consequences include the submergence of Sri Lankan Parliament
premises, the closure of schools in the city, 123,000 people of 26,850 affected families, and the damage
of approximately 257 households can be highlighted as the primary impacts [8]. Similar situations have
occurred in 2014 and 2016 as well. Therefore, all the affected groups urged to study and understand
the nature of floods in the Metro Colombo area.

3. Hydrological Modelling with MIKE FLOOD

3.1. Data Used for the Study

The catchment area of the Metro Colombo basin is 105 km2 and there is only one rainfall gauging
station located within the basin on the premises of the Metrological Department, Sri Lanka. The sea tide
is measured at the gauging station located in the Colombo harbour. The flow discharge of Kelani River
at Hanwella and the water levels at Nagalagam Street and Ambatale are measured by the Irrigation
Department of Sri Lanka. Figure 4 shows the locations of gauging stations where rainfall, sea tide and
river discharge are measured. The rainfall data of 15 min is available at the gauging station which is
maintained by the Department of Metrology, Sri Lanka. Water level data from five gauging stations
which had continuous data were used for model calibration and validation in this study. Figure 5
shows the locations of water level gauging stations. Design rainfalls for 5-year, 10-year, 25-year, 50-year
and 100-year return periods were assessed using the records from the past 30 years (Table 1). In the
analysis of design rainfalls, Generalized Extreme Value (GEV) distribution was employed by fitting
the annual maximum of observed rainfall.

Figure 4. Locations of the rainfall gauge (Sri Lanka Metrological Department), sea tide gauge (Colombo
harbour), water level and discharge gauging stations (Kelani River).
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Figure 5. Water level gauging stations in the Metro Colombo canal basin.

Table 1. Daily design rainfalls in the study area.

Return Period (Year) Design Rainfall (mm/Day)

5 197.3
10 256.4
25 363.4
50 476.5
100 626.1

3.2. MIKE Models

MIKE FLOOD is a hydrodynamic model, which consists of two sub-models: named as MIKE11and
MIKE21 [9]. MIKE FLOOD is the coupling model that links MIKE11 and MIKE21. The MIKE FLOOD
model combines best features and strengths of both MIKE11 and MIKE21 while minimizing the
limitations of each model. The 1-D modelling tool, MIKE11 solves the one-dimensional form of
the Saint-Venant equations along the channel [10]. The two-dimensional model MIKE21 is based
on the two-dimensional solution of the Saint-Venant equations along the floodplain. The MIKE21
flow model is a fully dynamic general numerical modelling system, used for the simulation of
hydraulic and environmental phenomenon in coastal areas, bays, lakes, etc. The mass conservation
equation and momentum conservation equation describe the flow and water level variation in the
MIKE21 model [11]. The MIKE11 model represents the conveyance along the channel while MIKE
21 exactly represents the 2D effects in out-of-bank flows in a floodplain. The model allows dynamic
exchange internally in both directions between the 1D channel and 2D floodplain flow components [12].
Figure 6 illustrates the coupling of MIKE11 and MIKE21 models. The MIKE model applies the fully
dynamic descriptions and solves vertically integrated equations such as the continuity equation
(conservation of mass) and momentum equation (Saint-Venant equations) as shown in Equations (1)
and (2) respectively [10].

∂Q
∂x

+
∂A
∂t

= 0 (1)

∂Q
∂t

+
∂
(

α Q2

A

)
∂x

+ gA
∂h
∂x

+
gQ|Q|
C2 AR

= 0 (2)

where Q = Discharge in m3/s, A = Wetted area in m2, x = Longitudinal distance in m, t = Time in s,
h = Water depth in m, g = Gravitational acceleration in m2/s, R = Hydraulic radius in m, C = Chézy
coefficient in m

1
2 /s.

108



Hydrology 2018, 5, 11

Figure 6. Schematic diagram of the model structure.

4. Methodology

The main goal of this study was to develop flood inundation maps showing flooded areas and
flood depths for several rainfall events within the Metro Colombo area. Also, to check the effectiveness
of selected countermeasures which were proposed to be introduced to the canal system. To achieve
these goals several steps were adopted. Figure 7 systematically explains the steps followed in the study.

Figure 7. Methodology of the study.

5. Results and Discussion

5.1. Model Calibration for the Flood Event in November 2010

The set-up model for the Metro Colombo basin was calibrated for the flood event in November
2010 considering the measured water levels. The Metro Colombo area experienced heavy rainfall of
440 mm within 14 h between 10 November and 11 of 2010. The maximum hourly rainfall of the event
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was 116 mm. A grid file of Manning numbers, M (inversely proportional to the Manning coefficient, n)
in the range of 15–25 m1/3/s were used for the resistance over the floodplain in the model. The model
was calibrated considering the simulated water levels and observed water levels at five gauging
stations along the canal system as shown in Figure 5.

Figure 8 shows the calibration results of simulated and observed water levels at the five gauging
locations. Table 2 describes the estimated error indicators for simulated results at these locations.
The error estimations indicate reasonably acceptable values for the simulation results. The model was
validated for the flood event that occurred in May 2010 between the 14 and 18. A prolonged rainfall
event was experienced in the Metro Colombo basin from the 13 of May 2010 up to the end of the
month. The hourly maximum rainfall that occurred during this event was 76 mm. The validation
results of simulated and observed water levels at the same five gauging locations are shown in
Figure 9. The flood inundation maps for the selected events of calibration and validation are depicted
in Figure 10. The non-availability of observed flood maps for the calibration and validation flood events
was a limitation of the study since there was not a direct way to justify the inundation distributions.
However, with the fact that the model showed accurate results for the water levels at five locations
distributed across the basin, it was assumed that the calibrated MIKE FLOOD model produced
agreeable inundations based on the given rainfalls and other boundary conditions.

Figure 8. Water level comparison for the model calibration: (a) Galle Road Bridge in Wellawatta canal;
(b) Galle Road Bridge in Dehiwela canal; (c) SLLRDC Bridge in Heen Ela canal; (d) Kirimandala Bridge
in Heen Ela canal; (e) Railway Bridge in Torrington canal.
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Figure 9. Water level comparison for the model validation: (a) Galle Road Bridge in Wellawatta canal;
(b) Galle Road Bridge in Dehiwela canal; (c) SLLRDC Bridge in Heen Ela canal; (d) Kirimandala Bridge
in Heen Ela canal; (e) Railway Bridge in Torrington canal.

Figure 10. Inundation distributions for the model: (a) calibration; (b) validation events.
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Table 2. Error estimators for the water level calibration.

Indices

Values from the Analysis

Galle Road
Bridge in

Wellawatta Canal

Galle Road
Bridge in

Dehiwela Canal

SLLRDC Bridge
in Heen Ela

Connection Canal

Kirimandala Road
Bridge in Heen

Ela Canal

Railway Bridge in
Torrington Canal

Relative Root Mean
Square Error (RRMSE) 0.175 0.640 0.211 0.189 0.088

N-S Coefficient
Efficiency (EF) 0.938 −0.099 0.888 0.868 0.990

Coefficient of
Determination (CD) 0.923 0.801 0.790 0.820 0.850

5.2. Simulation of Design Rainfall Floods

The calibrated model was employed to study the inundation distributions for different scenarios
of rainfall and discharge boundary conditions. Frequency analysis was conducted, and design rainfalls
were determined as shown in Table 1. In this study, we selected 10-, 25- and 50-year return period
rainfall events for the scenario analysis. The rainfall patterns for each design rainfall were determined
by the Alternating Block Method [13]. Two types of simulations were conducted with the design rainfall
considering two discharge boundary conditions at the Hanwella gauging station of the Kelani River
(Figure 4). Those two types were categorized as favourable and least favorable conditions. In both cases,
considered rainfall was same, however the discharge boundary conditions at the Hanwella gauging
station were different. In the favourable condition, a 30-year average river discharge (100 m3/s) was
used and for the least favorable case, a 30-year maximum discharge of 2000 m3/s was used as the river
boundary condition at Hanwella. The favourable condition represented the situation where the local
rainfall in the Colombo city was dominant while the upstream of the Kelani basin was not experiencing
considerable rain. The least favorable case represented the high rainfall in the upstream of Kelani basin
as well as in the Metro Colombo area. The favourable condition gave a more relax boundary conditions
at river outfalls of the canal system. There was a considerable backflow to the canal system from Kelani
River in the least favorable condition due to high river discharge and therefore the outfalls to the river
did not function in this situation. The model was simulated for several design scenarios considering
the design rainfalls and boundary conditions as follows and the respective flood inundation maps
were obtained.

1. Favourable/least favorable conditions with 10-year design rainfall.
2. Favourable/least favorable conditions with 25-year design rainfall.
3. Favourable/least favorable conditions with 50-year design rainfall.

Also, for each design scenario, the simulated water levels in the canal system at five important
locations were obtained and a comparison was made between favourable and least favorable conditions.
Those five locations are shown in Figure 5. Figure 11 compares the inundation distributions for the
favourable and least favorable conditions for the 10, 25 and 50-year design rainfalls. In all cases, higher
flood inundation areas were shown in the least favorable condition cases than the favourable conditions
due to a high discharge boundary condition applied at the Hanwella gauging station. Table 3 compares
the inundated areas for the considered cases. The Sri Jayawardenapura Kotte DSD showed the highest
inundated area among all the cases according to the obtained results. The Sri Jayawardenapura Kotte
city is the official capital of Sri Lanka and various governmental institutions are in this DSD including
the Sri Lanka Parliament. Maharagama, Kaduwela, Kolonnawa and Thimbirigasyaya DSDs showed
moderate inundations in all cases while the Colombo and Dehiwela DSDs showed a mild impact
according to the inundation area comparisons. Inundation area increment ratios for the 25 and 50-year
rainfalls for the favourable condition relative to the 10-year rainfall were 1.88 and 2.63. In the case of
the least favorable case, the same increment ratios relative to the 10-year rainfall were 1.22 and 1.41.
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Table 4 compares the water levels at the five locations under different cases. According to the
results shown in Table 4, the Parliament Road Bridge showed the highest water levels. In the case of
the 50-year rainfall, above 2 m water levels resulted in both favourable and least favorable cases. In the
50-year least favorable case scenario, the water levels in all five locations exceeded 2.5 m, increasing
the risk of high floods in the canal basin.

Table 3. Comparison of inundation areas for design rainfalls under favourable and worse conditions.

Divisional Secretary’s
Division (DSD)

Inundation Area (km2)
10 Years

Inundation Area (km2)
25 Years

Inundation Area (km2)
50 Years

Favourable
Condition

Least Favorable
Condition

Favourable
Condition

Least Favorable
Condition

Favourable
Condition

Least Favorable
Condition

Colombo 0.2 1.8 0.6 2.0 1.0 2.1
Thimbirigasyaya 0.4 1.7 1.0 2.1 1.7 2.5

Dehiwela (0.072) (0.073) (0.073) (0.078) (0.078) (0.082)
Kolonnawa 0.5 1.5 0.8 1.6 1.0 1.7

Sri Jayawardanapura Kotte 1.4 2.7 2.1 3.1 2.7 3.6
Maharagama 0.5 0.7 0.8 1.0 1.0 1.2

Kaduwela 0.5 1.2 1.3 1.9 1.8 2.4
Total 3.5 9.6 6.6 11.7 9.2 13.5

Table 4. Comparison of water levels for design rainfalls under favourable and least
favorable conditions.

Locations Where Flood
Levels Compared

Flood Level (m MSL)
10 Years

Flood Level (m MSL)
25 Years

Flood Level (m MSL)
50 Years

Favorable
Condition (m)

Least Favorable
Condition (m)

Favorable
Condition (m)

Least Favorable
Condition (m)

Favorable
Condition (m)

Least Favorable
Condition (m)

Parliament Road bridge 1.82 2.10 2.17 2.43 2.48 2.70
Kirimandala Road bridge 1.58 2.01 1.97 2.33 2.31 2.60

SLLRDC bridge 1.61 2.04 1.99 2.35 2.33 2.62
Babapulla Road bridge 1.50 2.26 1.87 2.42 2.17 2.61
Aluth Mw Road bridge 1.41 2.32 1.75 2.43 2.04 2.57

The affected residents in the seven DSDs under the considered cases are summarized in Table 5.
Calculation of the affected people was carried out assuming an equal distribution of the population
in each DSD area. The Dehiwela DSD showed a minimum impact due to its location in the Metro
Colombo basin and it experienced minor floods according to the simulation results. All other DSDs
showed high vulnerability for floods. The residents of the Sri Jayawardenapura Kotte, Kolonnawa and
Colombo DSDs had high vulnerabilities to the floods in all cases compared to other DSDs. Under the
favourable conditions, Sri Jayawardenapura Kotte DSD had the highest potential to be in the highly
vulnerable area since the number of affected people in that DSD showed high in number. However,
in the least favorable case, the Colombo DSD showed the highest number of affected people. As far as
the total number of affected people was concerned, increments relative to the 10-year rainfall under
favourable conditions, for 25-year and 50-year cases, were 1.65 and 2.35. Similar ratios for the least
favorable cases for 25-year and 50-year were 1.17 and 1.32.

Table 5. Comparison of affected people for design rainfalls under favourable and worse conditions.

Divisional Secretary’s
Division (DSD)

Affected People
10 Years

Affected People
25 Years

Affected People
50 Years

Favourable
Condition

Least Favorable
Condition

Favourable
Condition

Least Favorable
Condition

Favourable
Condition

Least Favorable
Condition

Colombo 3749 29,084 10,141 31,337 15,559 33,499
Thimbirigasyaya 4219 16,907 10,626 21,409 16,957 25,625

Dehiwela 29 33 42 50 88 129
Kolonnawa 3640 10,602 5608 11,220 7241 11,881

Sri Jayawardanapura Kotte 8854 17,009 13,367 19,647 16,983 22,358
Maharagama 2380 3449 3942 4921 5304 6069

Kaduwela 1504 3319 3537 5311 5003 6552
Total 28,594 80,403 47,263 93,895 67,135 106,113
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Figure 11. Inundation maps for different scenarios: (a) 10-year rainfall with favourable condition;
(b) 10-year rainfall with least favorable condition; (c) 25-year rainfall with favourable condition;
(d) 25-year rainfall with least favorable condition; (e) 50-year rainfall with favourable condition;
(f) 50-year rainfall with least favorable condition.

5.3. Flood Inundation Analysis with Countermeasures

The floods can be minimized by introducing feasible countermeasures to the canal system such
as diversions, lakes, tunnels, gates and pumps. Four feasible countermeasures as listed below were
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proposed to the Metro Colombo canal system in this study to understand their effectiveness in reducing
the floods (Figure 12).

Figure 12. Locations of the proposed countermeasures.

1. The Gothatuwa diversion canal was introduced to the model as an open rectangular canal of
50 m wide to the centre part of the canal system. This diversion canal was connected to the main
canal at Kolonnawa at its upstream and discharged water to the Kelani River. The bed level of
the Gothatuwa diversion canal was set up to −1.0 m MSL as same as the entire canal system and
the total length of the canal was 2.9 km approximately.

2. The St-Sebastian south diversion canal was introduced to the model as covered box drain of
8 m wide which connected the upstream end of the St-Sebastian South canal to the sea through
Colombo harbour. The total length of the diversion canal was around 1.5 km and the bed level
was set to −1.0 m MSL. The St-Sebastian South canal would flow through many commercial
areas and residential areas as well.

3. The New Mutwal diversion was modelled with 3.0 m diameter underground tunnel and open
rectangular canal of 6.0 m wide at both ends. The total length of this diversion canal was 900 m
and carried water from the main canal to the sea. The length of the tunnel was 700 m and
the invert levels were −1.5 m MSL and −2.0 m MSL at the upstream and downstream ends
respectively. The invert level at the sea outfall of the downstream rectangular canal was −1.0 m
MSL and therefore the water would flow from the underground tunnel through the rectangular
canal with syphon action.

4. The Madiwela south diversion scheme: The sub-catchment in the upstream of Parliament Lake
was divided from the Metro Colombo basin as shown in Figure 12 and the flood water of that
particular sub-catchment was diverted to the southern part. The area of this sub-catchment was
14 km2 and the model was reconstructed by removing this sub-catchment. The point where this
sub-catchment was divided from the main basin was much closer to the Parliament and therefore
by eliminating this sub-catchment, it was possible to reduce a certain amount of flow towards
Parliament Lake.

The above countermeasures were introduced to the model separately and the model was simulated
for the 50-year design rainfall under the favourable condition (when the Kelani River water level
was low) since the favourable condition was the most probable scenario. The flood inundation
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area which was obtained using model results after the introduction of each countermeasure were
compared with the model results of existing canal system. Then the model was set up by introducing
all countermeasures together and the flooded area and flood levels were compared with the results of
the existing condition. Table 6 summarizes the reduction of water levels at the five gauging stations
with the introduction of countermeasures to the model while Table 7 explains the efficiency of the
countermeasures in reducing the inundation area. The impact to the people in the basin with the
introduction of countermeasures is shown in Table 8. The inundations maps for the peak flood
distribution for each scenario are illustrated in Figure 13.

Figure 13. Comparison of the impact of the introduced countermeasures, inundation maps for
(a) existing condition; (b) with Gothatuwa diversion canal; (c) with St-Sebastian south canal; (d) with
Mutwal diversion; (e) with Madiwela south diversion; (f) with all four countermeasures.
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Table 6. Water level comparison of different countermeasures.

Water Level
Gauging
Stations

50-Year Favorable,
Existing Condition (m)

Gothatuwa
Diversion (m)

St-Sebastian South
Diversion (m)

New Mutwal
Diversion (m)

Madiwela South
Diversion (m)

All Countermeasures
(m)

Parliament
Road Bridge 2.48

2.37 2.46 2.47 2.26 2.07
(4.4%) (0.8%) (0.4%) (8.9%) (16.5%)

Kirimandala
Road Bridge 2.31

2.06 2.28 2.30 2.13 1.85
(10.8%) (1.3%) (0.4%) (7.8%) (19.9%)

SLLRDC
Bridge 2.33

2.07 2.30 2.32 2.15 1.86
(11.2%) (1.3%) (0.4%) (7.7%) (20.2%)

Babapulla
Road Bridge 2.17

1.93 1.98 2.12 2.05 1.56
(11.1%) (8.8%) (2.3%) (5.5%) (28.1%)

Aluth Mw
Road bridge 2.04

1.91 1.93 1.48 1.97 1.13
(6.4%) (5.4%) (27.4%) (3.4%) (44.6%)

Table 7. Inundation area comparison for different countermeasures.

Divisional Secretary’s
Division (DSD)

50-Year Favorable
Existing

Condition (km2)

Gothatuwa
Diversion

(km2)

St-Sebastian
South

Diversion
(km2)

New
Mutwal

Diversion
(km2)

Madiwela
South

Diversion
(km2)

All Countermeasures
(km2)

Colombo 1.0 0.7 0.7 0.9 0.8 0.3
Thimbirigasyaya 1.7 1.2 1.6 1.6 1.3 0.9

Dehiwela 0.0 0.0 0.0 0.0 0.0 0.0
Kolonnawa 1.0 0.8 0.9 1.0 0.9 0.6

Sri Jayawardanapura Kotte 2.7 2.2 2.6 2.7 2.4 1.8
Maharagama 1.0 1.0 1.0 1.0 0.5 0.4

Kaduwela 1.8 1.7 1.8 1.8 1.2 1.0

Total 9.2
7.6 8.6 9.0 7.1 5.0

(17%) (7%) (2%) (23%) (46%)

Table 8. Impact residents in DSDs comparison for different countermeasures.

Divisional Secretary’s
Division (DSD)

50-Year
Favorable

(km2)

Gothatuwa
Diversion

(km2)

St-Sebastian
South

Diversion
(km2)

New
Mutwal

Diversion
(km2)

Madiwela
South

Diversion
(km2)

All Countermeasures
(km2)

Colombo 15,559 11,193 12,001 14,114 13,121 4793
Thimbirigasyaya 16,957 12,115 16,107 16,496 13,589 9437

Dehiwela 88 88 88 88 88 88
Kolonnawa 7241 5792 6496 6832 6259 4363

Sri Jayawardanapura Kotte 16,983 13,991 16,657 16,831 14,959 11,057
Maharagama 5304 5174 5287 5297 2435 1900

Kaduwela 5003 4631 4923 4967 3348 2805

Total 67,136
52,984 61,559 64,625 53,799 34,443
(21%) (8%) (4%) (20%) (49%)

5.3.1. Introduction of the Gothatuwa Diversion Canal

The model was first simulated without the Gothatuwa diversion canal (with existing canal system)
for 50-year design rainfall with the favourable condition and the inundated area was obtained as
9.2 km2 (Figure 13). After introducing the Gothatuwa Diversion canal, the inundated area reduced
to 7.6 km2 and there was a 17% reduction in inundated area due to the introduction of this diversion
canal. Inundation area and the affected people in each DSD for a 50-year rainfall without and with
the Gothatuwa diversion are shown in Table 8. There was a reduction of 21.1% in affected people
within the entire basin with the introduction of Gothatuwa diversion. There were about 17.6%, 28%
and 28.5% reductions in the numbers of affected people in Sri Jayawardenapura Kotte, Colombo and
Thimbirigasyaya DSDs which were highly urbanized DSDs in the Metro Colombo area. The flood
water level in the canal system was lowered by a considerable level due to the introduction of the
Gothatuwa diversion canal. Approximately 11% of the reduction in water levels were achieved at
the Kirimandala Road Bridge, SLLRDC Bridge and the Babapulle Road Bridge water level gauging
stations after introducing the Gothatuwa diversion canal. These three locations are much closer to
several administrative, state and commercial institutes and flood safety level of these areas are around
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2.0 m MSL. Introduction of the Gothatuwa diversion would reduce the water level very close to the
flood safety level and thereby the area would be safer against floods.

5.3.2. Introduction of the St-Sebastian South Diversion Canal

The St-Sebastian South diversion canal was connected to the main canal system at the most
western part of the Metro Colombo basin and therefore the effectiveness of this diversion canal was
higher in the surrounding area of the diversion canal than other areas. Therefore, the total reduction
in the inundated area, considering the entire basin, was only 8%. However, a 30% local reduction
of the inundation area was achieved in the Colombo DSD with the introduction of the St-Sebastian
South diversion canal. The decrease in the number of affected people in the Colombo DSD showed
a high percentage (23%) while other DSDs did not show a significant decrease. As far as the water
level was concerned, the Babapulla Road bridge showed an 8.8% reduction while others did not show
significant reductions. The Babapulla Road Bridge is located very close to the connection point of the
St-Sebastian diversion canal. The surrounding area of the Babapulla Road Bridge is highly developed
with several commercial activities and there are some settlements of low-income people in the vicinity
of this location. The flood safety level of commercial places is around 2.0 m MSL while the flood safety
level of few settlements is 1.8 m MSL.

5.3.3. Introduction of the New Mutwal Diversion

According to the results shown in Tables 7 and 8, there was no significant reduction in inundation
area and affected people locally or in the entire basin due to the introduction of the New Mutwal
diversion. The New Mutwal diversion tunnel was connected to the Main drain canal of the Metro
Colombo canal system and the connection point was very near to the Aluth Mawatha Road Bridge.
Some low-level areas in the sides of the main drain canal are highly packed with houses and shanties
and these settlements are more vulnerable to floods. The flood safety level of some of the houses and
shanties is 1.5 m MSL. The flood level near the Aluth Mawatha Road Bridge was 2.04 m MSL for the
design event of 50-year return period with the favourable condition and was reduced to 1.48 m MSL
with the introduction of the New Mutwal Tunnel. The reduction in water level, therefore, was 27% in
this area and it can be said that the introduction of the New Mutwal diversion would reduce the flood
risk of this area enormously even though its influence on the other areas was less.

5.3.4. Implementation of the Madiwela South Diversion Scheme

The model was simulated by eliminating the sub-catchment area of 14 km2 from the Metro
Colombo basin in the upstream of Parliament Lake, where sub-catchment was entitled to the Madiwela
south diversion scheme. By eliminating this sub-catchment, the flood inundation area was reduced to
7.1 km2 from its original area of 9.2 km2. The percentage of the reduction in flood inundation area was
23% with the implementation of the Madiwela south diversion scheme. There was a 20% reduction
of affected people within the entire Colombo basin with the implementation of the Madiwela south
diversion scheme. The flood water level in the Parliament Lake was reduced by around 8.9% while
the reduction of water levels near the Kirimandala Road Bridge and SLLRDC Bridge were around
7.8%. Flood safety levels of Parliament and the area near the Kirimandala Road Bridge and SLLRDC
Bridge is 2.0 m MSL. However, this countermeasure did not reduce the water level up to the flood
safety level. The flood level could be further reduced up to the flood safety level by adding few more
countermeasures with the implementation of the Madiwela south diversion scheme.

5.3.5. Introduction of All Four Countermeasures

The model was simulated by introducing all four countermeasures together (Gothatuwa diversion,
St-Sebastian south diversion, New Mutwal diversion and Madiwela south diversion) for the design
rainfall of 50-year under the favourable condition. The inundation area reduced to 5.0 km2 from 9.2 km2

(existing condition) and the percentage of reduction was around 46%. There was a reduction of 49% of
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affected people within the entire Colombo basin with the introduction of all four countermeasures.
Also, it showed considerable reductions in inundation areas and affected people in each DSD with the
introduction of all four countermeasures.

Table 6 explains the flood levels for the existing condition, with the introduction of all four
countermeasures at selected locations and the percentage reduction in flood levels. The flood water
level in Parliament Lake was reduced to 2.07 m MSL from 2.48 m MSL (16.5% reduction) with the
introduction of all countermeasures. However, the flood safety level near the Parliament area is 2.0 m
MSL and therefore, it is still at risk from flooding with a 50-year rainfall event. There was a 20%
reduction in flood water levels near the Kirimandala Road Bridge (2.31 m MSL was reduced to 1.85 m
MSL) and the SLLRDC Bridge (2.33 m MSL was reduced to 1.86 m MSL) with the introduction of
all countermeasures. The surroundings of the Kirimandala Road Bridge and the SLLRDC Bridge
are more commercialized areas and would be much safer for floods with a 50-year design rainfall
since the flood levels were lower than the flood safety level of 2.0 m MSL. The area near to Babapulla
Road Bridge is highly commercialized and compacted with some residential settlements. The flood
water level near this area was reduced to 1.56 m MSL from 2.17 m MSL (28% reduction) with the
introduction of all countermeasures. The flood safety level of some housing settlements in this area is
1.80 m MSL and therefore the area would be safer against the floods of a 50-year rainfall event with the
favourable condition.

With the introduction of all countermeasures, the flood water level near the Aluth Mw Road
Bridge was reduced to 1.13 m MSL from 2.04 m MSL (45% of the reduction in water level) for a
50-year rainfall event. The surroundings of the Aluth Mw Road bridge are a highly residential area
with some settlements in low lying areas and therefore the flood safety level in this area is 1.50 m
MSL. Since the flood level was much reduced than the flood safety level with the introduction of all
countermeasures, the area would be safer against floods where rainfall would have a 50-year return
period and favourable condition in the Kelani River.

5.4. Introduction of All Countermeasures for the 2010 November High Rainfall Event

The Metro Colombo basin experienced heavy rainfall in a short period of time between the 10
and 11 of November 2010. The total rainfall amounted 440 mm and poured into the basin within
14 h. The total rainfall amount can be compared with a design rainfall with a 35-year return period.
The maximum hourly rainfall of the event was 116 mm. The model simulated the rainfall event of
November 2010 for the existing conditions and the flood inundation area was estimated as 9.0 km2.
The flood inundation area reduced to 5.5 km2 after introducing all four countermeasures to the canal
system for the event of November 2010. Figure 14 compares the inundations for the November 2010
rainfall under existing conditions and with countermeasures.

(a) (b) 

Figure 14. Inundation maps for 2010 rainfall: (a) with existing condition; (b) with all four countermeasures.
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Table 9 shows the inundation area and the number of affected people in each DSD division under
the existing conditions and with all four countermeasures for the past rainfall event of November 2010.
There was a reduction of 41.2% of affected people within the entire Colombo basin with the introduction
of all four countermeasures. Also, it shows considerable reductions in inundation areas and affected
people in each DSDs with the introduction of all four countermeasures. With the introduction of
all four countermeasures to the canal system, the flood level at selected locations were significantly
lowered as shown in Table 10. Therefore, it can be expressed that, if all four countermeasures had been
implemented before November 2010, a reasonable part of the basin would not have flooded to the
extend that it did.

Table 9. Inundation area and affected people in DSDs for 2010 November rainfall.

Divisional Secretary’s
Division (DSD)

Inundation Area (km2) Number of Affected People
Percentage

Reduction (%)Existing
Condition

With All Four
Countermeasures

Existing
Condition

With All Four
Countermeasures

Colombo 1.0 0.4 15,383 6754 56.1
Thimbirigasyaya 1.6 1.0 16,153 9771 39.5

Dehiwela 0.0 0.0 44 42 4.5
Kolonnawa 1.0 0.7 7084 4854 31.5

Sri Jayawardanapura Kotte 2.7 1.9 16,804 12,027 28.4
Maharagama 1.0 0.4 5256 2155 59.0

Kaduwela 1.8 1.1 4861 2989 38.5
Total 9.0 5.5 65,586 38,593 41.2

Table 10. Comparison of flood levels for 2010 November rainfall.

Locations Where Flood
Levels Compared

Flood Level (m MSL)
Percentage Reduction (%)

Existing Condition With All Four Countermeasures

Parliament Road bridge 2.50 2.17 13.2
Kirimandala Road bridge 2.30 1.92 16.2

SLLRDC bridge 2.31 1.93 16.7
Babapulla Road bridge 2.15 1.65 23.4
Aluth Mw Road bridge 2.06 1.22 40.7

6. Conclusions

The Metro Colombo canal system was modelled using the one-dimensional MIKE 11 and the
terrain of the entire basin was modelled using MIKE 21, the two-dimensional hydrodynamic model.
Then both the 1-D and 2-D models were coupled using MIKE FLOOD by defining the links between
them. The model was calibrated and validated against observed water levels at five gauging stations
located in the Metro Colombo canal basin for the rainfall events in 2010. The coupled model was
simulated for several scenarios considering rainfalls of 10-year, 25-year and 50-year return periods.
Sea level and river discharge boundary conditions were employed for the aforementioned scenarios.

The safety flood level in the basin is 2.0 m MSL and was satisfied only with the 10-year rainfall
event under the favourable condition according to the obtained results. In all the least favorable-case
simulations, the water levels at the observation locations exceeded the 2.0 m MSL. The most
vulnerable DSDs in the basin were Sri Jayawardenapura Kotte, Colombo and Thimbirigasyaya since
the number of affected people in those DSDs were significantly high according to the obtained results.
Sri Jayawardenapura Kotte could be ranked as the most vulnerable DSD in the context of the inundated
area. Dehiwela DSD was the least affected DSD in the basin according to the obtained results. In all
the considered cases, least favorable cases showed high impacts due to extremeness of the considered
boundary condition. Since the water level of Kelani River was high in the least favorable condition,
the river outfalls at Nagalagam Street and Ambatale did not discharge water at their full capacity due
to the backwater effect. Therefore, the extent of the inundation areas were greater in least favorable
condition than in the favourable condition in all the scenarios. Flood inundation maps expressed that
more areas were inundated closer to the river outfall in least favorable condition than the favourable
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condition. Also, the flood water levels were higher in least favorable condition than the favourable
condition in all five locations considered, and it was higher especially at the locations closer to river
outfall. The flood water levels for several scenarios at different locations were compared and it was
expressed that the existing canal system was only capable of carrying the flood water of a 10-year
rainfall event (favourable condition) without any inundation in the area.

To investigate the feasible countermeasures to mitigate the floods in the Metro Colombo basin,
four measures were tested in the study. The flood water level at different selected locations was reduced
when the countermeasures were introduced to the canal system. Each countermeasure gave a clear
reduction in water level at the location where that particular countermeasure had been introduced and
a limited reduction in other places. There was an estimated 11% reduction in flood water level at the
Kirimandala Road Bridge, the SLLRDC Bridge and the Babapulla Road Bridge with the introduction
of the Gothatuwa diversion, however in the other two locations (such as Parliament Road Bridge and
Aluth Mawatha Road Bridge) the reduction was relatively small. The introduction of the St-Sebastian
South diversion was a better proposal to lower the flood water level in the surrounding area of the
Babapulla Road Bridge while the introduction of the New Mutwal diversion reduces the flood water
level in the surroundings of the Aluth Mawatha Road Bridge. Implementation of the Madiwela
South diversion scheme was a feasible proposal to lower the flood water level in the Parliament area,
surroundings of the Kirimandala Road Bridge and the SLLRDC Bridge and there was a reduction in
floodwater levels of around 9% due to this countermeasure. However, countermeasures mentioned
above were not strong enough to reduce the water level lower than their respective flood safety levels
at five different locations when they were introduced individually. When all four countermeasures
were introduced together in the model, the outcomes were preferable, and the flood water levels were
lower than their respective flood safety levels. At the Aluth Mw Bridge, the reduction of water level
was about 44.6% while the other four locations also reductions were greater than 16%.

The reduction of inundated area was significant in the case of applying all four countermeasures
together. In that case, a 46% area reduction was achieved. In the case of individual effectiveness,
the Gothatuwa diversion showed a 17% reduction of inundation and the Madiwela south diversion
showed a 23% reduction while the other two countermeasures were able to achieve less than a 10%
area reduction. When the countermeasures were applied for the 2010 flood event, there was a 5.5%
reduction of inundated area and a 41.2% reduction of affected people was achieved.

In the present simulations, we used the available 30 m DEM and tested a limited number of
scenarios. Since the Metro Colombo basin is an urbanised area, with a fine resolution DEM with
detailed land use data and hydrological data, we would have achieved more accurate results than
the obtained results. Applying finer DEM, several patterns of rainfall and boundary conditions at
the Kelani River and seaside, the uncertainties would have been minimized. Another limitation of
the study was the lack of opportunity to verify the inundation areas with the simulated inundations.
In future, flood distribution observations should be conducted and utilised in these kind of studies
to validate flood models. However, despite the uncertainties, we were able to produce essential
information for the Metro Colombo canal basin to identify the vulnerable areas and communities.
The results of the study will provide a baseline for future studies.
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Abstract: Climatic variations caused by the excessive emission of greenhouse gases are likely
to change the patterns of precipitation, runoff processes, and water storage of river basins.
Various studies have been conducted based on precipitation outputs of the global scale climatic
models under different emission scenarios. However, there is a limitation in regional- and local-scale
hydrological analysis on extreme floods with the combined application of high-resolution atmospheric
general circulation models’ (AGCM) outputs and physically-based hydrological models (PBHM).
This study has taken an effort to overcome that limitation in hydrological analysis. The present
and future precipitation, river runoff, and inundation distributions for the Lower Mekong Basin
(LMB) were analyzed to understand hydrological changes in the LMB under the RCP8.5 scenario.
The downstream area beyond the Kratie gauging station, located in the Cambodia and Vietnam
flood plains was considered as the LMB in this study. The bias-corrected precipitation outputs of the
Japan Meteorological Research Institute atmospheric general circulation model (MRI-AGCM3.2S)
with 20 km horizontal resolution were utilized as the precipitation inputs for basin-scale hydrological
simulations. The present climate (1979–2003) was represented by the AMIP-type simulations while
the future (2075–2099) climatic conditions were obtained based on the RCP8.5 greenhouse gas
scenario. The entire hydrological system of the Mekong basin was modelled by the block-wise
TOPMODEL (BTOP) hydrological model with 20 km resolution, while the LMB area was modelled by
the rainfall-runoff-inundation (RRI) model with 2 km resolution, specifically to analyze floods
under the aforementioned climatic conditions. The comparison of present and future river
runoffs, inundation distributions and inundation volume changes were the outcomes of the study,
which can be supportive information for the LMB flood management, water policy, and water
resources development.

Keywords: climate change; flood hazards; high-resolution AGCM; inundation analysis; Lower Mekong
river basin

1. Introduction

Reports published by the Intergovernmental Panel on Climate Change (IPCC) [1,2] have
mentioned that the intensity and frequency of heavy precipitation will increase in the future due

Hydrology 2017, 4, 55; doi:10.3390/hydrology4040055 www.mdpi.com/journal/hydrology123



Hydrology 2017, 4, 55

to climate change. The projections given by the IPCC reports were based on simulation results from
several general circulation models (GCMs), and many studies have assessed changes in hydrological
characteristics due to climate change by using those GCM outputs. Such changes may be catastrophic
by the end of the 21st century due to climate change impacts unless sustainable mitigation actions
are not taken in a prompt manner. Researchers suggest that there is a high possibility that the
frequency and magnitude of flood disasters will increase globally [2–4]. Therefore, quantitative and
qualitative assessments of changes in flood characteristics under climate change in river basins are
critically important, and are strongly requested by policy-makers, river engineers, and flood fighters
for practical river basin management against increasing flood risk. In this context, a study of future
extreme flood events is essential. Overwhelming emissions of greenhouse gases are likely to alter the
global climate and, consequently, the hydrological characteristics of river basins would be affected
significantly, causing severe droughts and floods. Changes in patterns, intensity, and frequency of
precipitation should be assessed to understand future extreme floods more deeply because such climate
variations are threats to the existence of all ecosystems. Understanding of future rainfall and river
discharge variations, trends, and volumes is also essential, considering the impacts on river basins
from extreme floods, long-lasting droughts, water storage, and other events due to climate change.
Flood risk management procedures that are carefully designed will benefit communities vulnerable to
extreme floods in the future. Scientific understanding of climatic conditions and technical advances in
climatic and hydrological modelling can make climate change studies more sophisticated and rational.

GCMs are used as the main tool to produce climatic variables under various greenhouse gas
emission scenarios. Past, present, and future conditions of climatic variables can be produced
by GCMs under given various driving forces. Still, their future predictions remain uncertain
to some degree due to uncertainties in the emission scenarios [1]. Moreover, factors, such as
limited spatial resolutions, simplified physics and thermodynamic processes, numerical schemes,
or incomplete knowledge of climate system processes can increase the uncertainty of the GCM
outputs [5]. Uncertainties arising from GCMs and emission scenarios have been investigated by
several studies [6–9]. Despite uncertainties in GCM predictions, their approximations for future
climatic conditions are still useful to understand and prepare for possible future climatic hazards.

Studies have shown that possible impact of climate change varies significantly, depending on
the selection of emission scenarios [10,11]. The IPCC 5th Assessment Report (AR5), published in
2013, introduced “Representative Concentration Pathways (RCPs)” as a new set of greenhouse gas
emission scenarios. There are four RCPs, namely, RCP2.6, RCP4.5, RCP6.0, and RCP8.5. Those RCPs
were determined considering the possible range of radiative forcing values (W/m2) in the year 2100,
with their numbers referring to low, intermediate, moderate, and excessive levels of greenhouse gas
emissions. RCP8.5 corresponds to the highest greenhouse gas emissions pathway among the four.
Its main assumptions are relatively slow income growth, high population, modest rates of technological
advances, and high energy consumption which leads to long-term high emissions of greenhouse gases
in the absence of climate change policy [12]. It is termed as the ‘baseline’ scenario since no other
specific climate mitigation targets are included in RCP8.5. Therefore, the RCP8.5 scenario should be
used in a study where the most extreme disasters under climate change are analyzed.

GCMs are generally recognized as capable of producing global climatic parameters reasonably
well. However, they are not advanced enough to produce accurate climatic parameters on a local
or regional scale due to their coarse resolutions. Hence, the application of different downscaling
techniques is inevitable to use coarse-resolution GCM outputs. Basically, two categories of
downscaling techniques, i.e., statistical downscaling and dynamical downscaling, are commonly
used. Dynamical downscaling extracts regional-scale information from coarse-resolution GCMs and
produces regional climatic dynamics [13]. Statistical downscaling develops empirical relationships
between local climate variables (e.g., surface air temperature and precipitation) and large-scale
predictors (e.g., pressure fields), and applies those relationships to GCM outputs [14]. The comparison
of those two techniques and their merits and demerits are explained in several studies [15–17].
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Uncertainties caused by coarse-resolution GCMs and limitations of downscaling techniques
can be minimized by utilizing super high-resolution GCM outputs. To this end, the 20 km
high-resolution atmospheric general circulation model (AGCM), a state-of-art AGCM developed
by the Meteorological Research Institute of Japan and commonly called MRI-AGCM3.2S [18,19], can be
utilized to produce future climatic conditions without conducting downscaling. It covers the entire
globe with 20 km spatial resolution and its model output is highly expected to serve for improving
flood impact assessment.

Even though various studies have been conducted using climatic models, more research on
regional- and local-scale hydrology should be conducted through the combined application of
high-resolution AGCMs and physically-based hydrological models under extreme climatic conditions.
To this end, the application of high-resolution MRI-AGCM3.2S precipitation outputs for RCP8.5 with
a physically-based river runoff model and a flood simulation model is ideal to study future extreme
flood events. This study was planned to analyze future possible extreme floods by applying this
ideal combination to the Lower Mekong Basin (LMB). In the recent past, several studies discussed
the climate change impact on the Mekong basin [20–24]. However, those studies aimed to elaborate
climate change by only considering rainfall or river runoff variations under different climate scenarios,
and less effort has been devoted to simulating floods in the Mekong basin considering the RCP8.5
scenario, which projects extreme flood events. Moreover, previous studies have used climatic models
with coarse resolutions, which require downscaling. This study was conducted to overcome such
limitations in previous studies.

This study analyzed the climate change impact on the LMB in a cross-boundary region
of Cambodia and Vietnam, which lies downstream of the Kratie gauging station (Figure 1),
utilizing bias-corrected 20-km high-resolution MRI-AGCM3.2S precipitation outputs with two
physically-based hydrological models named the block-wise TOPMODEL (BTOP) [25] and the
rainfall-runoff-inundation (RRI) model [26]. We produced inundation maps for different climatic
conditions, and analyzed river runoffs, rainfalls, and inundations in the LBM for time durations
defined by MRI-AGCM3.2S, i.e., present (1979–2003) and future (2075–2099). Flooding in the LMB
causes intolerable difficulties to people living in vulnerable areas, causing human casualties in some
cases, and imposes damage to agriculture, fisheries and physical properties. Therefore, it is essential
to identify flood events in the future and assess the possible hydrological impacts they may cause.
Assessment results will provide insights to update existing plans and policies for agriculture, fisheries,
and future developers to build a more resilient basin community.

 

Figure 1. Study area and river gauging stations (a) Mekong River Basin (BTOP model domain) , (b)LMB
area (RRI model domain), and (c) LMB land use map used in RRI model.

2. Study Area

The Mekong River is the 12th largest river in the world with the largest river basin in
Southeast Asia, which expands across six riparian countries of China, Myanmar, Laos, Thailand,
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Cambodia, and Vietnam. It is also the seventh longest river in Asia with a length of about 4620 km.
The hydrological nature of the basin is governed by the monsoon climate, generating a mono-peak
flood pulse during the monsoon season from July to September. The Mekong River extends from
the Tibetan Plateau in China to the Mekong Delta in Vietnam. The river basin is located between the
latitudes of 8◦ N to 34◦ N and the longitudes of 94◦ E to 110◦ E. The alpine climate prevails in the
northern part of the basin, and a large tropical floodplain lies in the downstream part of the basin.
The basin area is approximately 795,000 km2 and its annual average discharge to the South China Sea
is 475 km3. Geographically, the basin can be divided into upper and lower parts. The upper part has a
steep slope from the headwaters, while the river bed is more or less flat along the slope from Kratie to
the ocean through the Mekong Delta shared by Cambodia and Vietnam. The lower part of the basin
belongs mostly to a tropical monsoon climate zone, where the year is divided into dry and wet seasons.
The wet season lasts from approximately early May to October, and the dry season from November
to April. The wet season climate is dominated by the summer monsoon, arriving partly from the
southwest and partly from the southeast. The uppermost part of the basin is located on the Tibetan
plateau, where the precipitation pattern is similar to that in the lower part of the basin with most
of the precipitation occurring during the summer. Due to lower temperatures at higher elevations,
the precipitation during winter falls mainly as snow. Due to the monsoonal climate and the steepness
of the river bed in the upper basin, the hydrograph of the Mekong River is single-peaked with large
differences between high and low flow values. Average annual precipitation from 1964–2005 in the
basin ranged from 850 mm to 2500 mm [27]. The flood season in the Mekong River Basin lasts from
June to November and accounts for 80–90% of the total annual flow [28]. The annual flood season
is especially important for the LMB because it shapes the environment and inhabitants in the basin.
The LMB, the focus area of the present study, is shown in Figure 1a,b, which also illustrates respective
model domains for the river runoff model of BTOP and the inundation simulation model of RRI.

3. Methodology and Models

3.1. Methodology

The most widely used approach in simulating the hydrological impacts of climate change is to
combine GCM outputs with hydrological models. The proposed methodology in this study employs
models with different scales to simulate climate change impact on the LBM. The global-scale AGCM,
the regional-scale BTOP model, and the local-scale RRI model were employed to analyze plausible
future extreme flood situations. Cascade linking of global-, regional-, and local-scale models has been
proven productive in carrying out inundation simulations and hydrological assessments for the LMB,
which is systematically explained in Figure 2.

The MRI-AGCM3.2S precipitation outputs based on the RCP8.5 scenario were utilized for the
future climate simulation in this study while the present climatic simulation was conducted using
MRI-AGCM3.2S under the AMIP-type scenario [29]. The horizontal grid size is about 20 km in
MRI-AGCM3.2S [19,30]. While the resolution is satisfactory for regional-scale hydrological modelling,
the MRI-AGCM3.2S precipitation still has bias. However, MRI-AGCM3.2S precipitation can be
bias-corrected without modification of its horizontal resolution, which is the main advantage of the
MRI-AGCM3.2S dataset. According to Chen [31], in the process of studying climate change impact,
the main uncertainties are from GCMs and downscaling. GCMs provide information at a resolution
that is too coarse to give results that can be used directly in hydrological modelling [32]. In this
study, however, that was not an issue due to the utilization of 20-km high-resolution AGCM outputs.
BTOP, a physically-based hydrological model, was used to simulate river runoff for the present and
future periods based on bias-corrected 20-km MRI-AGCM3.2S precipitations for the entire Mekong
Basin. BTOP-simulated daily river discharges for present and future at Kratie station were used as the
boundary condition for the RRI model, which simulated LMB floods with relevant rainfall. Considering
the computational time, available resources, and the physically-based nature of the BTOP model, it
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was selected to perform the simulation for the entire Mekong Basin at a 20-km regional scale. The RRI
model, which is more sophisticated in simulating river runoff and inundations under the diffusive
wave model framework, however, needs a longer computational time and, thus, was employed only
for the LMB area with a 2-km gridded model at a local scale. Figure 1a,b illustrates the respective model
domains for the BTOP and RRI models. The RRI model simulated the river flow system downstream
of the Kratie station. The flow system consisted of flow reversal in the Tonle Sap River, bank overflows,
flood occurrences due to river runoff and rainfall, and varying inflows from Kratie station (as the
boundary condition).

Figure 2. Flowchart of the modelling process.

The study utilized observed and calculated datasets for precipitation and river runoffs.
The observed precipitation data from the time period of 1951 to 2007 was obtained from the
Asian Precipitation—Highly-Resolved Observational Data Integration towards Evaluation of Water
Resources—APHRODITE [33], which is a gridded daily precipitation dataset based on rain gauges in
Asia. The data are in the resolution of 20 km. APHRODITE was developed by the Japan Meteorological
Agency and the Meteorological Research Institute of Japan, which succeeded the APHRODITE
project [33–35], an observational dataset of daily precipitation and the prototype of gridded daily rain
gauge datasets on the global land surface. The hydrological models used in this study were calibrated
to the observed daily discharge data received from the Mekong River Commission (MRC).

3.2. MRI-AGCM3.2S

MRI-AGCM3.2S has the finest AGCM resolution so far available and its outputs have been
used in several studies to project future climatic conditions [36–38]. The model is based on a
hydrostatic primitive equation system using a spectral transform method of spherical harmonics [19].
MRI-AGCM3.2S data were made available for the present and future, each of which was a 25-year
period of 1979–2003 and 2075–2099, respectively. An Atmospheric Model Inter-comparison Project
(AMIP)-type [29] simulation using the observed boundary conditions from 1979 to 2003 was treated
as the present climate experiment outputs, labelled as “SPA_m01” in this study for the present.
The sea surface temperature (SST) is used in the MRI-AGCM3.2S as the temperature boundary
condition. For the future climate experiments under the RCP8.5 greenhouse gas emission scenario, four
different SST distributions from 28 coupled models in Couple Model Inter-comparison Project Phase 5
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(CMIP5) [39] were considered. As explained in Mizuta [18], it is expected that an AGCM generates
different precipitation distributions as a response to different SST distribution. Considering different
SSTs, the SST uncertainty under the RCP8.5 emission scenario can be assessed.

The RCP8.5 future climate projections from 2075 to 2099 with the SST distributions were grouped
as Cluster 1, 2, 3, and Total (28-model average), which were respectively labelled as “SFA_rcp85_c1”,
“SFA_rcp85_c2”, “SFA_rcp85_c3”, and “SFA_rcp85” [18] in this study. These clusters represent different
sets of SSTs. Cluster 1 (eight-model average) is characterized by a nearly uniform warming in the
northern and southern hemispheres; Cluster 2 (14-model average) shows an El Nino-like pattern with
a larger warming belt in the central equatorial Pacific; Cluster 3 (six-model average) is dominated
by a larger warming in the northern hemisphere than in the southern hemisphere; and Total is the
intermediate between the clusters [18]. These characteristics of the four clusters are explained by
Mizuta [18].

MRI-AGCM3.2S precipitation outputs were corrected for their bias using a statistical method
developed by Inomata [40]. The statistical method appropriately corrects biases in both monthly and
extreme daily precipitations. The concept of the bias correction method is to adjust the probability
distribution of GCM daily precipitation to that of its observed counterpart. The method was tested for
the Yoshino River basin of Japan, and the results showed appropriate corrections of GCM biases in
both monthly and extreme daily precipitations. Datasets of daily precipitation bias-corrected using
this statistical method have been widely used for hydrological model simulations and risk assessments
to assess the climate impacts of floods and droughts in Asia [41–43].

3.3. BTOP Mode

The BTOP model is a distributed hydrological model, which was developed based on the
TOPMODEL [25,44,45]. This model uses a topographic index with a block-wise concept and simulates
watershed-scale rainfall runoff processes, including snowmelt, overland flow, soil moisture in the
root zone and unsaturated zones, subsurface flow, river flow routing, and dam operation. For
river flow routing, a modified Muskingum-Cunge (MC) routing method is integrated to conserve
water at each river segment [46]. The detailed description of the BTOP model is provided by
Takeuchi [25,45]. Until now, the BTOP model has been employed in various hydrological applications,
such as large-basin long-term simulations [47], poorly or ungauged basins [25,45], flood hazard
assessment [48], drought analysis with standardized indices [49], dam operation for flood and
drought reduction [49–51], now-casting, basin-scale scenario analyses of future projection on
hydro-meteorological conditions [52], and nutrient loading [53]. The BTOP model, employed in
the present study, covered the entire Mekong Basin under 20 km resolution, and it was calibrated and
validated for the river runoff at the Pakse gauging station (Figure 1).

3.4. RRI Model

The rainfall-runoff-inundation (RRI) model is a two-dimensional model which is capable of
simulating rainfall-runoff and flood inundation simultaneously. The model deals with slopes and
river channels separately [26,54]. At a grid cell, in which a river channel is located, the model assumes
that both the slope and river are positioned within the same grid cell. The channel is discretized
as a single line along its center line of the overlying slope grid cell. Figure 3 depicts a schematic
diagram of the RRI model’s concept of the river channel and the slope. The flow of the slope grid
cells is calculated with a two-dimensional diffusive wave model, while the channel flow is calculated
with a one-dimensional diffusive wave model. For better representation of rainfall-runoff-inundation
processes, the RRI model simulates lateral subsurface flow, vertical infiltration flow, and surface
flow. The lateral subsurface flow, which is typically more important in mountainous regions, is
treated in terms of the discharge-hydraulic gradient relationship, which considers both saturated
subsurface and surface flows. On the other hand, vertical infiltration flow is estimated by using
the Green-Ampt model [55,56]. The flow interaction between the river channel and the slope is
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estimated based on different overflowing formulae, depending on water-level and levee-height
conditions. A storage cell-based inundation model [57] was used to calculate lateral flows on
slope grid cells. The model equations were derived based on the following mass balance equation,
momentum equations, and gradually-varied unsteady flow. The RRI model setup and its equations
are explained in Sayama [26,54]. The various applications of the RRI model in hydrological studies can
be found in several studies [26,41,54,58,59].

Figure 3. Schematic diagram of rainfall-runoff-inundation (RRI) model.

The model equations are derived based on the following mass balance Equation (1) and
momentum Equations (2) and (3) for gradually varied unsteady flow:
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The second terms of the right side of Equations (2) and (3) are calculated with Manning’s
Equations (4) and (5).
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h = height of the water from the local surface
qx, qy = unit width discharges in x and y directions
u, v = flow velocity in x and y directions
r = rainfall intensity
f = infiltration rate
H = height of the water from the datum
ρw = density of water
g = gravitational acceleration
τx, τy = shear stress in x and y directions
n = Manning’s toughness parameter
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4. BTOP and RRI Model Setup for the Study Area

4.1. BTOP Model Application

Magome [42] calibrated and validated the BTOP model for the entire Mekong basin considering
the observed and simulated river runoff at the Pakse gauging station (Figure 1). The river network
dataset, used in the BTOP modelling for the whole Mekong basin, was up-scaled from 3-arcsec (~90 m)
HydroSHEDS [60] to 10 arcmin (~20 km), while preserving river network features, the up-stream
catchment area, and river length and slope calculated from the original HydroSHEDS, which employed
the river-network upscaling algorithm developed by Masutani and Magome [46]. Land cover data
from the USGS International Geosphere-Biosphere Program (IGBP) and soil type data from the Food
and Agriculture Organization soil map [61] were used for the root zone depth and soil properties.
Precipitation data were used from APHRODITE [34] for calibration and validation. The CRU TS3.1
climate forcing data [62], a fourteen-day global Normalized Difference Vegetation Index (NDVI) dataset
from the Global Inventory Modelling and Mapping Studies (GIMMS) [63], were used to simulate
long-term potential evapotranspiration using the Shuttleworth-Wallace model. Model parameters,
dischargeability D, decay factor m, drying function parameter α, Manning’s coefficient n, and the
groundwater parameter b, were tuned during the calibration for reasonable performance using
observed discharge time series of Pakse station, provided by the Mekong River Commission. The BTOP
model was calibrated for the period of 11 years from 1980 to 1990 and validated for a 10-year period
starting from 1991. The Nash-Sutcliffe Coefficient (NSC) was estimated to be 86.9% and 90.3% for
calibration and validation, respectively [43].

4.2. RRI Model Application

The resolution corresponded approximately to 2.0 km × 2.0 km in the RRI model developed
for the LMB. The model domain for the LMB was about 187,000 km2. As the model was being set
up, the digital elevation model (DEM), flow direction, and flow accumulation were delineated from
HydroSHED’s 30 s resolution [55] and up-scaled to a 60 s (~2 km) resolution [64]. Other model inputs
were precipitation, potential evapotranspiration, and river channel dimensions. Four land-use types,
i.e., forests, agricultural lands, wetlands, and water bodies, were considered in the LMB inundation
simulation as shown in Figure 1c.

The model parameters adjusted during the calibration process include: hydraulic conductivity k,
Manning’s roughness for the river bed nr, and Manning’s roughness for the slope ns. The Manning’s
roughness coefficients used in this study were based on the different land use types, as illustrated in
Chow [65]. RRI model parameters were manually tuned until the simulation discharges reasonably
matched the observed values. The RRI model was calibrated for river runoff and inundation
distribution. Figure 4 depicts simulated and observed daily discharges for the selected stations
named Kampong Cham, Prak Kdam, Chroy Changver, Neak Luoung, and Koh Khol (Figure 1).
The model performance for the calibration and validation processes was estimated using the relative
root mean squire error (RRMSE), Nash-Sutcliffe Coefficient (NSC), and coefficient of determination
(R2), as shown in Table 1. The estimated model performance indicators for the model calibration
and validation showed acceptable values relative to the optimal value of each index. The RRI model
was able to achieve the flood peak in all the simulated flood events reasonably. Prek Kdam is at a
special location, where the river flows towards the Tonle Sap Lake during the flood season, and in
the reverse direction during the dry season. Tonle Sap is the largest freshwater lake in Southeast
Asia which covers an area of 8800 km2. At Phnom Phen, Cambodia, it connects to the mainstream
of the Mekong River. According to the Cochrane [66], the volume of water flowing into Tonle Sap
from the Mekong mainstream during the rainy season (June to October) is nearly six times greater
than the volume of water during the dry season (November to May). The Prek Kdam’s discharge
direction varies according to the season and it was correctly simulated by the RRI model. The
discharge towards the Tonle Sap during the rainy season is indicated by negative values, while the
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discharge in the mainstream during the dry season is considered as positive, as shown in Figure 4.
The RRI model was able to simulate the water flow from the Tonle Sap Lake correctly according
to the obtained results for the Prek Kdan station. Since the river flow division of the Bassak River
was not exactly known, combined discharges of Koh Khel and Neak Luong were considered in the
calibration and validation. Kampong Cham, Chroy Changver, Neak Luong, and Koh Khol stations
show very good error estimations, while Prek Kdam shows relatively poor error estimations due to
the dynamic nature of its location. The justification of the inundation distribution simulated by RRI
was carried out by comparing the inundation maps published by MRC for 1998 (dry year) and 2000
(flood year). Comparison of the inundations in these two years showed reasonable matches with the
MRC published figures.

 

Figure 4. Comparison of observed and simulated discharges at the river gauging stations located in
the LMB.

Table 1. Performance indicators for RRI simulated river runoff of selected gauging stations in the LMB.

Performance
Indicators

Kampong Cham Prak Kdam Chroy Changver Neak Luoung + Koh Khol

Calibration Validation Calibration Validation Calibration Validation Calibration Validation

RRMSE 0.16 0.14 2.14 3.47 0.12 0.16 0.25 0.21
NSC 0.96 0.98 0.67 0.65 0.97 0.93 0.82 0.92
R2 0.96 0.99 0.72 0.72 0.97 0.97 0.93 0.95

5. Discussion

Variability, trends, and shifts in precipitation are crucial in assessing climate change impacts on
water availability, floods, droughts, and agricultural productivity. Several basic statistical and physical
properties of rainfall should be considered in characterizing the variability of rainfall in the context of
climate change [67]. As far as the inter-annual variability of the Mekong River Basin’s precipitation
is concerned, 25-year average and ±σ (standard deviation) were selected to illustrate the variability,
as shown in Figure 5. The variability increases as the precipitation increases. However, both in the
present and future cases, the maximum monthly averaged precipitation occurs in August and the
variability is higher in the future than in the present. The ratios of the maximum average values of the
precipitation in the future to that value in the present were calculated for SFA_rcp85, c1, c2, and c3
and achieved as 1.07, 1.02, 1.07, and 1.06 for the respective scenarios. A similar pattern occurs in the
25-year averaged monthly discharge at Kratie, as shown in Figure 6. The maximum monthly average
discharge for each scenario takes place in September. When the discharge increases, the variability also
rises. Among all the cases, SFA_rcp85 shows the highest peak average values. The increment ratios of
the monthly averaged discharges at the Kratie station for the future relative to those for the present
were 1.18, 1.09, 1.14, and 1.14. SFA_rcp85 and c2 scenarios show the highest ratios in both precipitation
and monthly averaged discharge at Kratie.
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Figure 5. Monthly precipitation variability for the considered present and future climatic durations
(cross: 25-year average, bar: ±1σ range).

Figure 6. Monthly Kratie discharge variability for the considered present and future climatic durations
(cross: 25-year average, bar: ±1σ range).

According to the RRI simulation results for the LMB, a significant increment in inundation
distribution can be observed in the RCP8.5 future inundation distribution outputs compared with
the AMIP-type present experiment. Each MRI-AGCM3.2S dataset comprises 25 years’ worth of data.
Figure 7a shows a 25-year averaged inundation distribution for the SPA, present case, while the
other four figures are on the order of (b–e) illustrate the 25-year averaged inundation distributions
for the scenarios of SFA_rcp85, c1, c2, and c3. The increment ratios in inundation extent in future
climatic conditions were calculated by dividing the future inundation areas (SFA) by the present (SPA)
inundation area. Compared to the present AMIP-type experiment, the future inundation areas are in
the ratios of 1.34, 1.26, 1.35, and 1.24, respectively, for RCP8.5 experiments with four SST distributions
(Table 2). The increment ratios for the inundation distributions provide an alarm for future extreme
flood events which may occur due to climate change. Figure 8 illustrates the maximum inundation
for each 25-year dataset. The SFA_rcp85 case shows the highest maximum inundation distribution
among the simulated datasets. The increase in inundation vulnerability of Phnom Penh, the capital of
Cambodia, is significant, according to the obtained inundation results for Future. The Mekong Delta
(MD), which is of ~55,000 km2 area and located downstream of Phnom Penh, will be at high flood
risk according to the obtained results. Of the 60 million people living in the LMB, about 40% live
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within a 15 km range along the Mekong River with most within a 5 km range from the mainstream.
The communities located within 5 km from the mainstream have high exposure to floods, and their
flood risk will be higher in the future, according to the obtained results. Although minor and moderate
floods are advantageous to agriculture and fisheries in the MD area, future extreme rainfalls and floods
may cause severe damage to infrastructure, agriculture, transportation, and community properties
in the MD area. The obtained flood increment ratios indicate possible future flood risk in the MD
and provide insights for policy-makers to take actions to protect communities in the MD through the
introduction of flood mitigation and risk reduction actions.

 

Figure 7. 25-year averaged inundation distributions: (a) SPA_m01; (b) SFA_rcp85; (c) SFA_rcp85-c1;
(d) SFA_rcp85-c2 and (e) SFA_rcp85-c3.

 

Figure 8. Maximum inundation out of 25 years simulation: (f) SPA_m01; (g) SFA_rcp85; (h) SFA_ rcp85-c1;
(i) SFA_ rcp85-c2 and (j) SFA_ rcp85-c3.

Table 2. Comparison of present and future hydrological features of the LMB.

SFA_rcp85
SPA_m01

SFA_rcp85c1
SPA_m01

SFA_rcp85c2
SPA_m01

SFA_rcp85c3
SPA_m01

Inundation area 1.34 1.26 1.35 1.24
Specific discharge volume at Kratie 1.25 1.16 1.21 1.21

Specific inundation volume 1.60 1.30 1.52 1.29
Cumulative rainfall 1.11 1.09 1.10 1.11

According to Figure 9, for the future experiments, the increase in cumulative rainfall is nearly the
same; however, the river runoff and inundation volumes show considerable increments. The main
reason for this situation is the intensity, distribution of rainfall across the basin, and the variability of
rainfall, as explained in Figure 5. Even the increment ratios of cumulative rainfall spread in a narrow
range due to their distributions and intensities, and the river runoff and inundation generations are
different. This phenomenon should be further analyzed as the next step of the study.

The specific discharge volume for Kratie’s river runoff was calculated by dividing the 25-year
averaged discharge volume by the upstream basin area of the Mekong. The Kratie’s river runoff
volume has a significant impact on the LMB flood generation. Therefore, understanding its increment
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in the future is a good indicator to identify extreme climatic conditions anticipated in the future.
Figure 10 illustrates the cumulative specific runoff volume at Kratie for the present and future climatic
experiments. The most important indicator of the LMB flood, and the inundation volume averaged for
25 years for the present and future experiments are also summarized in Figure 10. The total volume,
which can cause an inundation of over 0.5 m deep was considered in calculating the inundation
volume. This was converted to a specific volume by dividing the LMB basin area. The two figures
(Figures 9 and 10) show significant increments in rainfalls, river runoffs and inundation volumes
relative to the Present-SPA_m01 climatic condition. Among the four future climatic experiments,
SFA_rcp85 shows the highest increment compared to SPA_m01. The SFA_rcp85 cumulative basin
rainfall increased by 135 mm compared to SPA_m01. The increment in discharge at Kratie under
SFA_rcp85 was 115 mm, and the increment in inundation volume under SFA_rcp85 was 68 mm relative
to the present. Such increased water volumes are a very clear indicator to identify future extreme flood
conditions in the LMB region.

Figure 9. The 25-year averaged cumulative rainfall of the Mekong basin for the present and future
climate experiments.

Figure 10. The 25-year averaged cumulative specific river runoff volume at the Kratie station and
25-year averaged cumulative specific inundation volume (above 0.5 m) in the LMB.

Table 2 summarizes the comparison of present and future rainfall, Kratie’s river runoff, and LMB
inundation volume increments as ratios. The highest ratio in each category comes from the ratio of
the SFA_rcp85 scenario. The inundation increment ratio for SFA_rcp85 compared to SPA_m01 is 1.6,
which shows the vulnerability of the LMB area to inundation in future climate change. The ratio of
SFA_rcp85_c2 for future inundation is also critical compared to the present situation.
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One of the limitations of the study is that the flood assessments were only based on precipitation
outputs of MRI-AGCM3.2S for the RCP8.5 scenario, rather than several GCM or AGCM outputs.
Furthermore, consideration of other RCP scenarios would be beneficial for policy-makers and river
engineers to foresee future flood threats of different intensities. Different flood projections may result
if several GCM outputs are considered. In the case of flood risk assessment, fine resolution inundation
model would be beneficial to identify the floods more precisely. Unfortunately, this study had to limit
the resolution of the inundation model to 2 km because running large-scale and long-term inundation
simulations are still computationally expensive. In future research, it would be important to consider
several AGCMs’ outputs and other RCP scenarios, as well to view the future anticipated floods in the
LMB in a broad way.

6. Conclusions

The use of climate and hydrological models to better understand extreme floods is an important
method and widely used in the context of climate change impact studies. We adopted a methodology
to utilize global-, regional-, and local-scale models to produce future floods under extreme climatic
conditions. The impact of climate change on hydrological features in the LMB in the cross-boundary
region of Cambodia and Vietnam was analyzed by feeding MRI-AGCM3.2S precipitations projected
for the present and the future into two distributed hydrological models. The obtained results are
alarming and provide useful information for policy-makers and river engineers to understand future
extreme floods. Moreover, the results enable comparisons between present and future extreme floods
considering different hydrological aspects of floods, such as inundation area, inundation volume,
cumulative rainfall, and specific discharge. The results indicate a significant increase in flood severity
in the LMB, predicting extreme floods possibly disastrous to the paddy cultivation in the MD area,
which accounts for more than 50% of the rice production in Vietnam [68]. Although studies have been
conducted in the recent past on the climate change impact on the Mekong Basin, they have limited
the discussion to river runoffs. In the present study, we focused not only on river runoff, but also
inundation extent. The hydrological analysis was conducted based on the 25-year bias-corrected
precipitation datasets of the present and future. In the case of the future, we used four datasets of
the RCP8.5 scenario considering different SST boundary conditions. The 2 km-resolution RRI model
developed for the LMB area is a rather fine-resolution model applied to the Mekong Basin compared
with those used in past studies. Due to the fine resolution of the inundation model, the obtained
flood depths and distributions should be beneficial to understand the possible flood damage in the
future. According to the obtained results, the increment ratios of averaged flood area in the future
compared to that in the present are 1.34, 1.26, 1.35, and 1.24 for the SFA_rcp85 and the other three cases,
respectively. The specific inundation volumes for different cases were also estimated and presented
in this study. Those estimates are useful indicators to understand future extreme flood events in the
LMB basin. Further research should be conducted to analyze flood risk in the LMB considering other
AGCM outputs and other emission scenarios. The present study can be considered as the baseline for
future studies on the LMB for extreme floods and their impacts.
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Abstract: Flood modelling and mapping typically entail flood frequency estimation, hydrodynamic
modelling and inundation mapping, which require specific datasets that are often unavailable in
developing regions due to financial, logistical, technical and organizational challenges. This review
discusses fluvial (river) flood modelling and mapping processes and outlines the data requirements
of these techniques. This paper explores how open-access remotely sensed and other geospatial
datasets can supplement ground-based data and high-resolution commercial satellite imagery in
data sparse regions of developing countries. The merits, demerits and uncertainties associated with
the application of these datasets, including radar altimetry, digital elevation models, optical and
radar images, are discussed. Nigeria, located within the Niger river basin of West Africa is a typical
data-sparse country, and it is used as a case study in this review to evaluate the significance of
open-access datasets for local and transboundary flood analysis. Hence, this review highlights the
vital contribution that open access remotely sensed data can make to flood modelling and mapping
and to support flood management strategies in developing regions.

Keywords: open-access remotely sensed data; flood mapping and modelling; altimetry; synthetic
aperture radar; optical satellite; Digital Elevation Model (DEM); and transboundary floods

1. Introduction to Flood Modelling and Mapping

Managing floods effectively requires a good understanding of historical flood trends, future
expectations, and identification of locations likely to be impacted by flooding. Flood mapping provides
the baseline for acquiring such information, to ensure preparedness, response and recovery efficiently
undertaken to mitigate the impact of flooding [1]. Flood mapping is a process that describes the
expected extent of water inundation into dryland as a result of intense precipitation or river water level
rise driven by natural or anthropogenic factors [2]. Flood mapping processes differ considerably
from project to project, and/or country to country, depending on specific project requirements
and country-specific guidelines. In addition, the scale of flood mapping is influenced by available
data, resources, technical know-how and delivery timeline, and this can determine the approach
deployed [3–6]. Nevertheless, the sequence of activities that lead to the final flood hazard map
outcome is fundamentally the same, and involves (i) flood frequency estimation: the probability of
occurrence of a flood of specific magnitude over a certain period; (ii) hydrodynamic modelling: routing
of expected or known river discharge or catchment runoff over a landscape to determine water depth,
velocity and inundation extent; (iii) risk mapping: determining through overlay analysis, the landscape
properties (land use/cover, infrastructures, population density, socioeconomic activities, etc.) to be
impacted within flooded regions [7–11].

Typical flood mapping processes are presented in Table 1, including the basic data requirements,
expected outcomes and some reference case studies. These processes, if executed with reasonable
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accuracy, can provide the necessary information to underpin effective flood management decisions
such as floodplain planning, design of flood defence structures, and implementation of disaster
response and recovery measures to mitigate flood impact.

Table 1. Flood mapping process and fundamental data requirements, outcomes and case studies.

Process Data Outcomes
Reference

Case Studies

Flood frequency
estimation

Historical data: River discharge, water
levels and rating curves/equations.

Flood magnitude at specific return
periods (Direct and regional). [12–15]

Hydrodynamic
modelling

Flood frequency outcome River discharge
Digital elevation model Land use and cover

map Historical flood extent, and marks.

Inundation Extent Water depth
Flood velocity and travel time [16–19]

Flood risk and
vulnerability assessment

Hydrodynamic model outcomes,
demographic, socio-economic and

infrastructure data.

Exposure maps Vulnerability
maps Evacuation plan [19–21]

Going forward, this review highlights that the data required for flood modelling and mapping
is scarce in many developing regions (Table 1), and details how open-access remotely sensed
data can compensate for ground monitoring deficiencies in local and transboundary river basins.
The applications of remotely sensed data sets such as altimetry, digital elevation models, radar and
optical images in each flood mapping process are discussed. To further demonstrate the usefulness
of open-access remotely sensed data in developing regions, Nigeria is used as the case study for this
review, which is a typical data-sparse country that has experienced severe flooding in recent years,
the prospects for the use of remotely sensed data are discussed.

2. Data Limitations, Prediction of Ungauged Basins and Remote Sensing Advancements

In recent decades, floods have been perceived to be increasingly frequent, widespread and
more devastating. As such, existing spatial networks of hydrological gauging stations have become
inadequate for optimal data collection [22]. In some case, obsolete equipment, financial and technical
challenges hamper sufficient data collection for flood modelling and mapping [23–25]. Due to
increasing global data deficiency and the uncertainty associated with sparse data for hydrological and
hydrodynamic modelling, the International Association of Hydrological Sciences (IAHS) launched the
Prediction of Ungauged Basins (PUB) initiative to explore alternative data and techniques for improved
ungauged basin modelling [26]. One of the core objectives of the PUB is to “Advance the technological
capability around the world to make predictions in ungauged basins firmly based on local knowledge
of the climatic and landscape that controls hydrological processes, along with access to the latest
data sources, and through these means constrain the uncertainty in hydrological predictions” [27].
This objective aligns seamlessly with remote sensing (RS), considering that it provides an alternative
data source to improve our understanding of local hydrology and associated uncertainties in flood
mapping for data-sparse regions [28].

RS has advanced enormously in recent decades, and this has led to the availability of free datasets
in many parts of the world, thereby enabling developing countries to explore its potential at little to
no data acquisition cost [29]. This review focuses on the integration of open-access (freely available)
satellite data into fluvial (river) flood mapping processes to compensate for data sparsity faced in
developing regions, then uses a Nigerian case study to assess the possibility of leveraging on global
geospatial technology for local and transboundary flood management. Inferences are drawn from
previous reviews on low-cost Geographic Information System (GIS) and RS applications in hydrology,
hydrodynamic modelling and flood mapping [30–32]. However, a wider range of freely available
datasets and sources needed for every flood-mapping step listed in Table 1 are explored in this review.
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3. Open-Access Remotely Sensed Data Sources for Flood Modelling and Management

3.1. Radar Altimetry for Water Level and Elevation Measurements

River water levels are an essential data input (initial and boundary conditions) for hydrology and
hydrodynamic modelling [33], and advances in RS have improved the way changes in water surface
elevation and slope can be measured since the early 90’s [34]. Radar altimetry missions originally
developed for ocean water level measurements now routinely measure freshwater surface elevation
of large rivers [35,36]. Radar altimetry data is acquired via a process that measures the distance
between the orbiting satellite and water surface in relation to a reference datum, by estimating
the time it takes a sensor emitted echo pulse to be reflected by a water surface and return to
satellite [37,38], using Equations (1) and (2), and the schematic of this methodology is presented
in Figure 1. Altimetry water levels are usually measured at virtual stations located intermittently
where altimetry satellite tracks cross path with rivers [39,40], see Figure 2. When altimetry tracks
pass over dry land, the elevation of the surface intersected is measured; this is elaborated later in
Section 3.1.2. A sample of altimetry time series extracted from the surface monitoring by satellite
altimetry database [41] for the Niger River in Nigeria is presented in Figure 3.

Figure 1. Graphic illustration of satellite altimetry height measurement principle (adapted from [40]).

Figure 2. Illustration of a virtual station, where altimetry satellite tracks intersect the river Niger.
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Figure 3. Typical water level time-series extracted from an altimetry virtual station along the river
Niger (error bars indicate standard deviation from water level height (m), and are low during peak
flooding, as altimetry measurement accuracy is improved during this season [42].

The water level at a river of interest with reference to a predefined datum (such as Earth
Gravitational Model (EGM 2008)), is expressed as:

h = H − RCor (1)

RCor = R −
(

c
Δt
2

)
− ∑ Cor (2)

where, h = water surface elevation in relation to the reference ellipsoid, H = altitude of the satellite
(from satellite orbit to reference ellipsoid), R = range (distance between satellite and open surface water
body), RCor = corrected range, c = speed of light, Δt

2 = the dual direction travel time of radar signal,
and ∑ Cor = the sum of ionospheric, tidal, wet and dry tropospheric corrections.

The vertical accuracy of altimetry water levels contributes to hydrologic and hydraulic modelling
outcome uncertainties [43]. In comparison to ground (in-situ) measurements, altimetry water level
vertical accuracy ranges from approximately 0.01 to 0.05 metres, and Root Mean Squared Error (RMSE)
from 0.003 to 0.004 metres for watershed areas up to 100 km2 [36,44–46]. In some cases, the difference
between altimetry and in situ water levels can be as high as 2 metres [47]. Accuracies of altimetry water
level are presented in Table 2 and these variations in accuracies are attributed to the different sensor
types, the distance between in situ and virtual station, and location of altimetry track intersection with
the river [29]. Other factors that affect altimetry accuracy include ionosphere, troposphere, instrument
noise, geoid, tidal and water surface variations [38,48,49], as well as local topography and heterogeneity
of reflecting land surfaces [50]. The river width at the location of the virtual station overpass if lower
than the altimetry satellite track footprint and the presence of a tributary or distributary between in
situ and virtual station have also been identified as the external factors that can contribute to altimetry
water level discordancy from ground level measurements [37,51]. Despite these limitations, altimetry
has been widely applied in hydrology and the four key areas of deployment, particularly in the context
of hydrodynamic modelling in data-sparse regions, are discussed in the following sub-sections.
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Table 2. Altimetry characteristics adapted from [43].

S/N Mission
Ground

Footprint (m)
Revisit

Time (days)
Operation
Timeline

Accuracy
(m)

References

1 TOPEX/Poseidon ~600 9.9 1993–2003 0.35 [46]
2 ERS-1 ~5000 35 1991–2000 N/A [36]
3 ERS-2 ~400 35 1995–2003 0.55 [46]
4 ENVISAT ~400 35 2002–2012 0.28 [46]
5 Jason-1 ~300 10 2002–2009 1.07 [52]
6 ICE Sat/GLAS ~70 - 2003–2009 0.10 [53]
7 Cyrosat-2 ~300 369 2010 * <SRTM (30) [54]
8 Jason-2 ~300 10 2008 * 0.28 [52]
9 SARAL/Altika ~173 35 2013 * 0.11 [55]
10 Sentinel 3 SRAL ~300 27 2016 * 0.03 [36]
11 Jason-3 ~300 10 2016 * 0.03 [56]
12 SWOT ~10–70 21 2020 + 0.10 [57]

S/N = Sequential Number; Current = *, Future = +, SRTM = Shuttle Radar Topography Mission.

3.1.1. Altimetry for Discharge Estimation

River discharge and water level often used as initial/boundary conditions for hydrodynamic
and hydrological models are rarely available at most remote locations of many developing regions
due to factors previously highlighted in Section 2 [23,39]. Radar altimetry has been explored in
several studies to curb data limitation challenges and reduce the uncertainty associated with modelling
ungauged rivers.

Papa et al. [58] utilised TOPEX/Poseidon, ERS-2, ENVISAT and Jason 2 altimetry water levels
in combination with in situ rating curves to estimate discharge along the Ganga and Brahmaputra
rivers from 1993–2011. Accuracy levels of 0.17 (mean error) and 0.28 (standard error) metres in
comparison to in situ discharge at gauging stations were achieved. River discharge along the Godavari
river from 2001 to 2014 was derived by combining ENVISAT (2002–2010), Jason-2 (2008–2014) and
SARAL/Altika (2013–2014) radar altimeter water levels with in-situ rating curves at nearby gauging
stations. When validated against a hydrodynamic model a correlation coefficient (R2) of 0.9 and
a standard error varying from 0.15 to 0.40 metres were achieved [59]. In an Amazon River basin
study, Getirana and Peters-Lidard [60] explored the potential of estimating discharge using altimetry
data from ENVISAT (2002–2005). Using the relationship between in situ water level and discharge,
Getirana and Peters-Lidard, [60] successfully estimated discharge at 90 virtual stations with mean
relative errors varying from 15 to 84% for small and large and river basins respectively. Discharge
was estimated at transboundary rivers including the Danube (Austria, Romania, Bulgaria, Slovakia,
Hungary, Ukraine, Croatia, Germany, Serbia, and Moldova), Mekong (Thailand, Cambodia, Laos,
China, Myanmar (Burma and Vietnam), Amazon (Ecuador, Colombia, Peru, and Brazil), Brahmaputra
(India), Amur (China and Russia), Ob (Russia), Vistula (Poland) and Niger (Nigeria, Mali, Niger,
Benin, and Guinea), using a quantile function algorithm that exploits ENVISAT altimetry data [61].
This approach resulted in discharge outcomes similar to those derived from a conventional Forecast
Rating Curve (FRC) approach.

The studies presented above indicate that river discharge estimation from altimetry water levels
typically depends on the rating curve or river geometry data availability [62]. However, several studies
have been able to demonstrate direct river discharge estimation from altimetry water levels in the
absence of in situ measurements, using supplemental remotely sensed data or models. ENVISAT
altimetry data from six virtual stations along the Brahmaputra river from 2008 to 2010 were assimilated
into a Muskingum routing model driven by outputs of a calibrated Budyko type rainfall-runoff model
derived from Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis
(TMPA) 3B42RT real-time products. This integrated approach improved the model’s discharge
predictive accuracy (Nash-Sutcliffe (NS) efficiency) from 0.78 to 0.84. Additionally, Tarpanelli et al. [63]
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combined Moderate-resolution Imaging Spectroradiometer (MODIS) Terra and Aqua satellite images
with ENVISAT altimetry using a pixel to water level detection approach to estimate discharge with
a correlation coefficient of 0.96 and NS efficiency of 0.91 when compared to in situ discharge along
the Niger and Benue rivers. Similarly, Sichangi et al. [64] integrated MODIS satellite-derived river
width and altimetry water levels into Manning’s equation to estimate discharge at a continental scale.
The derived discharge NS efficiency varied from 0.60 to 0.97.

Although the discharge estimates derived from radar altimetry as presented above are perceived
to be within acceptable levels of uncertainty, factors such as the distance between virtual and ground
stations, contributing tributaries and the width of the river affect the accuracy of such estimates [51].
The studies discussed above also reveal that the availability of supplementary remotely sensed data
and hydrodynamic models can enable improved discharge estimation in ungauged river basins.

3.1.2. Altimetry for Digital Elevation Model Accuracy Assessment

Once the discharge and/or flood magnitude is estimated, it is propagated longitudinally along
river channels and laterally across floodplains using hydrodynamic models governed by continuity
and momentum equations [65]. The accuracy of the DEM that defines the river channel and floodplain
terrain upon which flow is propagated influences model outcome accuracy [66]. Therefore, in several
flood modelling studies the accuracy of the primary DEM is assessed prior to usage against a higher
accuracy DEM such a Light Detection and Ranging (LiDAR) or Differential Global Positioning System
(GPS) elevation points [67–70]. Acquiring such detailed topography datasets for [2complexity and
weather conditions that hinder logistics and field operations [71,72].

Data acquired by the National Aeronautics and Space Administration (NASA) between 12 January
2003 and 11 October 2009 using the Geoscience Laser Altimeter System (GLAS) onboard the Ice Cloud
and Land Elevation Satellite (ICE Sat) provides a worthy alternative to ground elevation data due to
its high accuracy in comparison to Kinematic GPS measurements [73]. The absolute accuracy of ICE
Sat has been shown to range from 0.002 to 0.005 m in Bolivia [74] and French Lake [75], respectively,
and depends on the slope of the terrain under scrutiny [76]. Over the years ICE Sat/GLAS has
been applied in assessing various DEM accuracies including SRTM [77–79], ASTER GDEM [76,80],
GPS elevation [81], Carto DEM [82], Canadian DEM [83], InSAR DEM [84], TanDEM [85] and
modified/corrected DEMs [52,86,87]. The 70-m ground footprint of ICE Sat [73] coupled with its
ability to penetrate gaps in vegetation canopy to capture underlying bare earth elevation [88] makes it
a useful alternative to ground survey for DEM accuracy assessment.

3.1.3. Altimetry for Bathymetry Delineation

Accurate digital elevation models combined with detailed river bathymetry delineation provides
the most accurate terrain data for flood routing [65,89]. Nevertheless, acquiring such data for remote
locations is usually difficult as discussed earlier (Section 3.1.2). Hence, flood modellers have resorted
to exploring alternative options to compensate for such deficiencies. In the Amazon and Napo Rivers
in Peru, Chávarri et al. [90], examined the applicability of altimetry (ENVISAT) in constraining river
cross-sections of a one-dimensional hydraulic model. The results showed reduced model uncertainty,
mostly for rivers with widths less than or equal to 2.5 km. The relationship between river width and
depths established using ENVISAT altimetry was combined with SRTM, Landsat, MODIS and satellite
rainfall data to derive an updated river network and adjusted bed profile used in the development
of Ganges, Brahmaputra, and Meghna (GBM) model suitable for large ungauged watersheds [33].
The GBM model data integration approach resulted in a reduced RMSE from 3.0 to 1.0 metres.

The proposed Surface Water and Ocean Topography (SWOT) scheduled for launch in 2020 is
expected to provide some of the best altimetry data for water resource monitoring and management
at a global scale [57,91]. A few studies have explored the potential of SWOT derived bathymetry for
improving the accuracy of hydrodynamic modelling. For example, Durand et al. [92] experimented
simulated data of the SWOT mission, applying data assimilation technique to estimate bathymetric
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depth and slope at five points along a 240 km reach along the Amazon river to within 0.50 m and
0.30 cm km−1 accuracies, respectively. These outcomes were then integrated into the LISFLOOD-FP
hydrodynamic model [93] to improve estimates of inundation extent and downstream water surface
elevation (WSE). SWOT WSE was also assimilated into the LISFLOOD-FP hydrodynamic model using a
local ensemble batch smoother (LEnBS) method by Yoon et al. [94], to generate bathymetry, depth and
discharge estimates. Bathymetry extracted from SWOT had a RMSE of 0.56 metres, improving
with the inclusion of more SWOT observations in the modelling process. The proposed SWOT and
recently launched Sentinel-3 provides a huge prospective dataset for future of hydrodynamic studies,
and their integration into hydrodynamic models can improve flood extent, discharge and water
levels predictions, particularly when multiple altimetry data are available along a modelled reach,
as Yoon et al. [94] suggested.

3.1.4. Altimetry for Hydrodynamic Model Calibration and Validation

Hydrodynamic model calibration is usually undertaken by adjusting various model parameters
such as floodplain roughness, channel roughness, river channel depth and river width in order to tune
model outputs (water level, discharge and/or inundation extent) to observations, derived from in situ
or remotely sensed measurements [38,42,95,96]. Validation, on the other hand, helps reveal how well
a model represents what is found in reality [97], and is directly linked to the confidence in the flood
management measures implemented as a result of the model outcome. Commercial high-resolution
optical and radar satellites images, aerial images and hydrological data have been largely established
as the optimal data sources for hydrodynamic model calibration and validation [98–101]. However,
the high cost of acquiring such data hinders their application in developing countries [102]. Hence,
radar altimetry over the past decade has been explored globally as an alternate source of data for
model calibration and validation [103].

Typically, in many developing regions river measurements are manually collected using staff
gauges and later converted to discharge using an established rating curve. At the peak of floods,
measurement equipment may be damaged, or access roads inundated, thus impeding the observation
process [32]. Therefore, radar altimetry provides an alternative river measurement option that supports
hydrodynamic model calibration and validation in the absence of observed records [103].

Water level data from three ENVISAT altimetry virtual stations along a 150 km reach of the
Danube river were applied in the calibration of a 2-D LISFLOOD-FP model to reconstruct the 2006
transboundary flood occurrence [104]. Yan et al. [104] achieved a Mean Average Error (MAE) of
1.53 m and 1.37 m for altimetry and in situ model calibration approaches, respectively, suggesting
that both datasets can be used interchangeably to improve flood modelling in sparsely gauged river
basins. Domeneghetti et al. [105] performed hydrodynamic model calibration for a 140 km reach
along the Po river using ERS-2 and ENVISAT altimetry data, resulting in RMSE of 0.85 m and
0.73 m respectively, and an improved NS efficiency when altimetry is combined with in situ data for
model calibration. An implementation of the Soil and Water Assessment Tool (SWAT) rainfall run-off
model for the sparsely gauged Okavango transboundary river of Angola, Namibia and Botswana
were calibrated using total water storage derived from Gravity Recovery and Climate Experiment
(GRACE) altimetry satellite and in situ data [106]. In addition, Sun et al. [42] assessed the uncertainty
associated with Hydrological Model (HYMOD) along the Mississippi River, calibrated against in situ
and altimetry data. NS efficiencies of 79.05 and 64.50 were reported for in situ stream flow and radar
altimetry (TOPEX/Poseidon), respectively, showing reduced uncertainty for streamflow calibration in
comparison to altimetry calibration.

Notwithstanding the value of radar altimetry for hydrodynamic model calibration and validation,
residual altimetry uncertainties are expected to affect flood model accuracy as Tommaso et al. [107]
demonstrated. This was further emphasised by Domeneghetti et al. [105], where ENVISAT proved to
provide higher accuracy than ERS-2 (See Table 2 for altimetry accuracy differences). Belaud et al. [38]
applied TOPEX/Poseidon (T/P) and ENVISAT altimetry data to calibrate a propagation model and
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disclosed that inherent altimetry uncertainties have an effect on the model outcome. Despite these
deficiencies, the importance of altimetry data in model calibration and validation in ungauged basins
cannot be dismissed. However, it is advised that altimetry is applied in combination with in-situ data
when available [105], and when there is a choice in situ data should take priority over altimetry [108].

3.2. Open-Access Digital Elevation Model Data and Applications in Flood Modelling

Topographical data is an essential requirement in hydrological and hydrodynamic modelling,
especially for ungauged river basins [29,109], and accounts for a substantial portion of the uncertainty
that propagates through to model outcomes [66,110]. The effect of terrain accuracy on hydrodynamic
models and the need for accuracy assessment have been discussed briefly in Sections 3.1.2 and 3.1.2,
revealing how improved river channel characterization using altimetry can improve flood model
outcomes [90,92,94]. High-resolution topographical data such as LiDAR, TanDEM, bathymetry
and differential Geographic Positioning System (dGPS) survey provides the best terrain depiction
with reduced uncertainty and error [19,89,111,112]. However, the cost of acquiring such data is
enormous [69] and in other cases, remote locations are inaccessible and security challenges add to the
complexity of field surveys [52]. Freely available DEMs have been widely used as an alternative to
commercial data in many developing regions where data is sparse, and resources limited [67,113].

The Shuttle Radar Topography Mission (SRTM) DEM is arguably one of the most widely used
topographical data in developing regions, applied in improving flood modelling in data-sparse
regions [52,69,103,114]. The 30 and 90 m resolution SRTM was collected during an 11-day mission in
February 2000, through a collaborative effort involving NASA, the National Geospatial-Intelligence
Agency (NGA) and the German Aerospace Centre (DLR), and provides near-global scale (80%)
elevation data [115,116]. The 15-m Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) Global Digital Elevation Model (GDEM) acquired by a joint mission of the NASA and
Japan’s Ministry of Economy, Trade, and Industry is also widely used in flood modelling and
mapping [70,117,118]. However, the ASTER GDEM is argued to be less accurate than SRTM due
to extensive elevation pixel voids [68,91].

Other open-access topographic data sets such as Altimeter Corrected Elevations 2 (ACE2) GDEM,
Global 30 Arc-Second Elevation (GTOPO30) and Global Multi-resolution Terrain Elevation Data 2010
(GMTED2010) are generally coarse in resolution and are therefore employed in large-scale models
only [114,119]. The recently released Advanced Land Observing Satellite (ALOS) DEM [120] has
been evaluated and established to provide more accurate elevation in comparison to SRTM and
ASTER [121]. A recent flood extent modelling study by Courty et al [122] revealed that the ALOS
DEM outperformed its SRTM counterpart. The properties of various open-access DEMs and some case
studies are presented in Table 3. The discrepancies between open-access DEM and ground surveyed
elevation presented in Table 3 can be attributed to inherent systemic and external factors [115]. For the
SRTM, system noise, as well as beam reflection off forest canopies, water bodies and rooftops in urban
areas contribute to DEM bias and elevation overestimation [66,78,123,124].

Table 3. Open source digital elevation models properties and case studies.

DEM Spatial Resolution (m) Vertical Error (m) Case Study Reference

SRTM 30, 90 ±16 Damoda River, India. [69,125]
ASTER GDEM 30 ±25 Lake Tana, Ethiopia. [126,127]
ACE 2 GDEM 1000 >10 Balkan Peninsula, Croatia [128]

GTOPO30 1000 9–30 Balkan Peninsula, Croatia [128]
ALOS 30 ±5 Sindh and Balochistan, Pakistan [120,129]

GMTED2010 250 26–30 Shikoku, Japan. [130,131]

Various methods have been adopted to curb the deficiencies and reduce the uncertainty
associated with open-access DEMs. For example, Baugh et al. [124] reduced STRM uncertainty
by combing vegetation canopy heights [132,133] and MODIS imagery to reduce vegetation height
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effects. Betbeder et al. [134] reduced SRTM bias by 64 percent by adopting a systematic approach
that combines vegetation height [132], Landsat land cover map and radar altimetry to produce
a hydrologically corrected DEM. SRTM derived river cross-sections were adjusted using limited
bathymetric surveys and applied in the one-dimensional MIKE11 model [67] and LISFLOOD-FP
two-dimensional model Sanyal et al. [69] to reduce model uncertainty. Neal et al. [114] adopted an
approach that reduced SRTM uncertainty by making hydrodynamic model parameters such as channel
width and depth calibratable in a sub-grid LISFLOOD-FP model, thereby improving simulated water
levels, wave propagation and flood extent. Biancamaria et al. [135] experimented by varying river
channel depth in the SRTM DEM by 5, 10 and 15 m when modelling Obi river, and identified 10 m
as the optimal average river channel depth for the best outcome. In a recent study in Australia,
Jarihani et al. [52] adopted the Hydrological Correction (HC) and Vegetation Smoothening (VS) [136]
approaches to reduce SRTM and ASTER DEM error and deduced that the HC DEM outperformed the
VS DEM for flood modelling.

Although the DEM modification techniques described above resulted in reduced DEM and
flood model uncertainty, they require specific skill sets, computational power and supplementary
data that are not always readily available. Hence, there is a need to identify globally available
off-the-shelf modified DEMs that can be readily applied in developing regions where such resources
are seldom available. At a global scale, errors emanating from satellite system noise, and sensor beam
reflection off vegetation canopy, water surfaces and urban rooftops have been treated with different
techniques, resulting in the development of freely available new data sets. O’Loughlin et al. [137]
reduced average vertical bias from 14.1 m to 5.9 m by systematically combining ICESat GLAS
ground elevation [73], vegetation height [132], MODIS-derived forest canopy density and climate
regionalization maps [138,139]. Sampson et al. [86] reduced SRTM sensor noise irregularities,
urban landscape and vegetation canopy elevation overestimations using a moving window filtering
technique [136]. Their approach reduced RMSE from 10.96 m to 6.05 m when compared to LiDAR,
and overall flood model bias from 15.08 m to −0.1 m. The EarthEnv-DEM90 was developed by
Integrating ASTER GDEM2, CGIAR-CSI SRTM V4.1 and Global Land Survey Digital Elevation Model
(GLSDEM) using a combined delta surface filling [140] and adaptive DEM noise smoothing [136]
methodology, resulting in minimised error compared to raw SRTM and ASTER GDEM2 [141]. A recent
DEM developed by Yamazaki et al [140] was developed using a multi-error removal approach that
removed error factors that include absolute bias, stripe noise, speckle noise, and tree height bias using
multiple satellite datasets and filtering techniques, resulting in Multi-Error-Removed Improved-Terrain
DEM (MERIT DEM). The properties of various modified SRTM DEMs and some case studies are
presented in Table 4.

Table 4. Globally available Modified SRTM DEM properties and case studies.

DEM Spatial Resolution (m) Vertical Error (m) Case Study Reference

Bare-Earth SRTM
(Veg/Urban) 90 6.05–12.64 Belize, Honduras [86]

Bare-Earth SRTM (Veg) 90 4.85–8.667 Global [87]
EarthEnv-DEM90 90 4.13–10.55 Johor River Basin, Malaysia [141,142]

MERIT DEM 90 ±2 Nile Basin, Congo and Ob rivers [140]

Since no study currently presents a comparison of all globally available modified SRTM DEMs
for a specific region, a comparative analysis of all the modified DEMs and raw SRTM is presented in
Table 5, evaluated against ICE Sat/GLAS altimetry data for the Niger-South river basin of Nigeria.
The result reveals that Bare-Earth SRTM corrected for vegetation provides the best elevation estimates
in comparison to the ICE Sat/GLAS altimetry dataset. This is expected to support the selection of
globally modified SRTM DEMs for flood modelling and mapping studies going forward.
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Table 5. SRTM and Modifications comparison with ICE Sat/GLAS altimetry elevation.

Elevation Min Max Mean Std. Dev. R2 RMSE

Bare-Earth SRTM (Urban and Veg) −3.89 151.00 29.65 37.66 0.99 3.21
Bare-Earth SRTM (Veg) 0.35 151.18 29.72 37.72 0.99 2.96

EarthEnv90 3.00 152.00 30.95 37.45 0.99 3.76
MERIT DEM −1.27 148.44 28.96 37.71 0.99 3.68
Raw-SRTM 2.00 153.00 30.33 37.48 0.99 3.27

ICE Sat/GLAS 0.30 148.35 30.28 37.64 - -

Std. Dev. = standard deviation, R2 = Correlation coefficient, Numbers of data Points = 522.

3.3. Open-Access Optical and Radar Satellite Images and Applications in Flood Modelling and Mapping

Optical and radar images also play a crucial role in flood modelling and mapping, being
used for a range of applications including (i) manning’s roughness derivation [143], (ii) river
width estimation [143], (iii) geomorphological properties extraction [143], (iv) inundation extent
mapping [112], (v) river discharge estimation [144,145], (vi) land use/cover derivation [146],
(vii) bathymetry estimation [147] and (viii) hydrodynamic model calibration and validation [148].
In this context, open-access images from Landsat, MODIS and ASTER have been widely used in
developing regions [32]. Until the launch of the free high-resolution C-Band Sentinel-1 SAR mission
by the European Space Agency (ESA) in 2014, the use of radar imagery in developing regions has been
limited due to the cost of acquisition [149,150]. Nevertheless, other low-cost radar satellite images
such as ERS-1, ERS-2, JERS1 and ALOS PALSAR have widely been applied for flood modelling [29].

Optical and radar RS each provide unique merits and demerits and are characterised based
on the source of energy employed during data collection. Optical (passive) RS relies on solar
energy, while radar (active) RS uses an inbuilt energy source onboard the satellite [32]. Therefore,
optical remotely sensed data can only be captured in the day-time and depends on cloud-free
skies [32]. However, its multispectral characteristics make it a suitable for land use/cover classification,
inundation delineation, drainage mapping and flood impact assessment [40,151,152]. Flood extent
is derived from the discrimination between the spectral signatures of water surface and the
surrounding landscape in single or multi-temporal images, using classification or spectral indices
approaches [151,153].

Radar RS has the ability to penetrate clouds and its ability to discrimination water makes it the
optimal data type for flood mapping when available [149,154]. Flood maps are usually extracted
by pixel discrimination, given that flooded pixels tend to have lower values of back-scatter, due to
the weak return signal associated with a smooth water surface [155]. The discrimination method
applied can strongly influence the accuracy of the derived flood extent [156]. Analytical techniques
for flood mapping using radar data include statistical active contouring, radiometric thresholding,
histogram thresholding, pixel-based segmentation, fractal dimensioning of multi-temporal images,
neural networks in a grid system, image segmentation and decision tree analysis [157,158]. Despite the
advantages of radar RS, sensor noise and backscatter from vegetation and buildings have been
identified as factors that hamper flood discrimination potential using radar data [157,159,160].
Furthermore, the temporal resolution, spatial accuracy and flood detection precision also affect the
usability of radar images, especial for near-real-time flood forecasting in data-sparse regions [161,162].

The properties of some open-access optical and radar data sources are presented in Table 6,
along with some case studies in flood modelling and mapping.
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Table 6. Optical and radar satellite imageries case studies.

Sat. Imagery Res. (m) Case Study References

Landsat 30
Floodplain inundation delineation for 2 and

1–dimensional model calibration and validation, Inner
Niger and Missouri River, Nebraska, USA

[114,163]

MODIS 200 Hydrodynamic model calibration and validation. [113,164]

Terra ASTER 15 Urban sprawl and flood management Dhaka, Bangladesh [113,164]

Sentinel-1 10 Sentinel-1 and Landsat-8 combination in mapping
flooding at river Evros, Greece [113,164]

Sentinel-2 10 Water bodies delineation [113,164]

Sat. = Satellite, Res = Spatial resolution

4. Case Study: Open-Access Remotely Sensed Data Applications in Flood Monitoring and
Management in Nigeria

Nigeria, used as the case study for this review is located downstream of the Niger Basin
(Figure 4) which collects run-off from a 2,156,000 km2 area and passes this through the Niger and
Benue rivers [165]. Thus, Nigeria is prone to fluvial flooding, which exposes floodplain dwellers
to diverse negative consequences [166–169]. Nigeria recently experienced unprecedented levels of
flooding attributed to poor dam water release management and risk communication, linked to data
unavailability for informed and prompt decision making [165].

Figure 4. Map showing Nigeria, Niger Basin, Africa and the main inflow rivers (Niger and Benue).

This section focuses on identifying the causes of data deficiencies in Nigeria and presents the
outcome of reviewed literature on the applications of open-access remotely sensed data in Nigeria,
to identify gaps and opportunities for research based on global trends discussed in the preceding
sections. This section builds upon previous reviews on GIS and RS in flood risk management in
Nigeria [170–174], then expands further on data challenges, solutions and prospects for regional and
national flood management using open-access remotely sensed data.

151



Hydrology 2018, 5, 39

4.1. Hydro-Meteorological Data Limitations in Nigeria

Similarly to many developing countries, the lack of hydro-meteorological data in Nigeria
has been widely documented, and the consequences for flood management decisions have been
identified [175]. Currently, existing hydrological and meteorological gauge distributions do not
meet the recommendations of the World Meteorological Organization [176] and Ngene [177],
i.e., 237 hydrological stations exist out of 384 recommended and 291 meteorological stations (rain
gauges) exist of 970 recommended. In addition, several of the established stations have been reported
to be inactive, decommissioned or discontinued (Figure 5), contributing to the data sparsity in the
country [175,176].

Figure 5. Status of some hydrological gauging stations in Nigeria (F = Functional, NF = Non-Functional, Unknown).

Lack of financial support, technical deficiency, poor institutional capacity and obsolete
infrastructure have been identified as factors responsible for data shortages in Nigeria [178–180].
Poor hydrological data management systems and lack of standards have led to unreliable and
inconsistent data (Maxwell, [24]; Ononiwu, [181]. Furthermore, Maxwell [24] and Olayinka [182]
argued that even when data is available, custodians store data in paper formats, thus reducing
transferability, applicability and long-term/sustainable data provision.

Hydro-meteorological data are essentially applied in estimating expected flood magnitudes based
on past trends, and a restricted length of available historical data contributes to the uncertainty in
the derived flood estimates [183,184] . Extended historical data result in more accurate estimates
and vice versa [13]. For the purposes of the present study, in 2016 a search was conducted within
the peer-reviewed literature on the Google scholar (https://scholar.google.com) database spanning
the years 2000 to 2016. A combination of the search terms and keywords including “hydrology”,
“flood modelling”, “hydrodynamic modelling”, “flood frequency analysis”, “vulnerability assessment”,
“rainfall frequency analysis”, “flood mapping”, and “GIS and Remote sensing of flooding”, were used,
with the results further refined with keywords such as “Nigeria”, to represent the country of interest.
A meta-analysis of these river and rainfall estimation studies (Figure 6) shows that rainfall data sets
are generally longer in duration than those of streamflow data. The majority of hydrological modelling
studies are based on historical data of lengths ranging from 10 to 20 years, hence there is a need for the
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adoption of an approach that leverages data from multiple gauging stations to reduce flood estimate
uncertainty and improve flood management decision making [185].

Figure 6. Rainfall and streamflow data length variation in years from previous studies in Nigeria.

4.2. Remote Sensing for Flood Management in Nigeria

RS has been applied in seven sub-categories of flood management in Nigeria: (i) vulnerability
assessment: integrating socio-economic and biophysical factors to ascertain a regions’ coping
capacity in relation to flood exposure [186–188]; (ii) flood frequency analysis: estimating expected
flood magnitudes by fitting historic flood time series to a suitable probability distribution or
combining hydrological data from regions of physiographic similarity [179,189,190]; (iii) rainfall
intensity-duration-Frequency: applying rainfall data to gives an idea on return period of rainfall
intensity which can be expected for a defined period [191,192]; (iv) hydrodynamic modelling: once
flood estimates are determined, the outcomes are routed in 1/2 dimensional models in combination
with terrain data to derive flood hazard information such as inundation extent, depths and /or
velocity [193]; (v) flood risk mapping: other than hydraulically modelling flood hazard, flood
depths and inundation extent for a particular point in time can be directly determined using
satellite images and digital elevations models [21,167]; (vi) floodplain encroachment analysis: the
increasing development of industries and settlements within the floodplain increases exposure and
vulnerability [188,194]; (vii) rainfall varibility assemment: understanding the degree to which the
amount of rainfall across an area varies through time and space [195,196]; and RS and GIS approaches
are used to monitor floodplain encroachment, to ensure adherence to, and enforcement of flood
management policies [197,198]; and (viii) water resource management: adoption of GIS and RS for
sustainable water resource management [199]. Figure 7 shows the flood studies application areas in
Nigeria, revealing vulnerability mapping, flood frequency assessment and risk assessment are the
main areas of interest.
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Figure 7. Flood studies in Nigeria showing specific application areas.

4.3. Applications of Open-Access Remotely Sensed Data for Flood Management in Nigeria

Meta-analysis of 100 flood research journal articles focused on Nigeria acquired from google
scholar using the methodology described in Section 4.1. shows the range of data applied in flood
management studies (Figure 8) and reveals high reliance on Landsat and SRTM. Various data sets
provide contrasting levels of accuracy and uncertainty [110], therefore high spatial resolution data such
as LiDAR and SAR are mostly recommended for flood modelling processes due to the advantages of
LiDAR’s ability to delineate complex terrains with high levels of details and the effective water surface
discrimination capacity of SAR imagery [150,200].

Figure 8. Remotely sensed data application in flood studies in Nigeria.
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Figure 9 further demonstrates the difference between flood extent extracted from radar and
optical images, revealing the optical satellite image’s deficiency in delineating flood extent, especially
in cloudy regions of tropical environments. The TerraSAR-X (radar) flood map was derived using a
histogram thresholding approach by the Disaster Charter consortium, while the MODIS (optical) flood
extent was automatically generated from the Modis Water Product (MWP) through a collaborative
effort between NASA and Dartmouth Flood Observatory, University of Colorado, USA, using an
algorithm that uses a ratio of MODIS 250-m Bands 1 and 2, and a threshold on Band 7 to provisionally
identify pixels as water [201].

Figure 9. Radar (TerraSAR-X) and optical (MODIS) flood extent comparison at Lokoja, Nigeria.

5. Open-Access Remotely Sensed Data in Transboundary Flood Management

Managing flood occurrences in a sovereign nation is challenging enough; the complexity
is increased when floods transcend borders. Floods sometimes originate from one country,
and if hydraulically connected to another country within a single catchment area, this travels
downstream [202] creating transboundary flooding. Poor management of excess water releases
from dams triggered by variable rainfall and other anthropogenic factors have been identified as
some of the leading causes of transboundary flooding [203–206]. In such situations, efforts need to
be coordinated between flood origin and destination countries to ensure effective flood management.
Approximately 2286 transboundary river basins exist globally (Figure 10), encircling 42% of the world’s
population within a 62 million Km2 area, and they are responsible for approximately 50% of global
river discharge [207,208].
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Figure 10. Global Transboundary River Basins (source: Transboundary Freshwater Dispute Database).

Coordinating the activities of individual countries within a transboundary water resource
management organisation is particularly challenging due to the diverse interests, policies and activities
of riparian countries [209–211], thereby prompting the need for a shift to RS approaches that enables
independent data collection by riparian countries without violating administrative protocols [212].
Several RS studies have been undertaken in this regard, using radar altimetry, optical/radar imagery
and hydrodynamic models to curb the data limitation challenges associated with poorly coordinated
transboundary flood management efforts.

Mallinis et al. [213] delineated the transboundary Evros river (Bulgaria/Turkey) flood extent and
damage caused by upstream dam water release using ENVISAT ASAR and post-flood multi-temporal
LANDSAT TM images. The effect of varying flood magnitudes released from upstream Ivaylovgrad
dam (Bulgaria) on the connecting Ardas River (Greece) was modelled using HEC-HMS, using in
situ gauge measurements and digital terrain data [214], thereby enabling effective downstream flood
planning and management. Mati et al. [215] investigated changing land use/cover impact on the Mara
transboundary river (Kenya/Tanzania) hydrological regime, using remotely sensed data (Landsat MSS,
TM/ETM, and SRTM), ground-collected land use/cover data, meteorological and streamflow data
integrated within the Geospatial Streamflow Model (GeoSFM). Biancamaria et al. [135] established
an empirical relation between downstream altimetry (TOPEX/Poseidon) water levels (India) and
upstream in situ measurements (Bangladesh) for forecasting purpose along the Ganges and
Brahmaputra transboundary river. Hossain et al. [216] in the same study area applied a forecasting
rating curve approach combined with HEC-RAS hydraulic model to forecast downstream water levels
using upstream JASON-2 altimetry, in situ water levels and rating curve. Seyler et al. [217] further
demonstrated the value of altimetry and SAR satellite missions in transboundary water resource
management, as remote locations along the Beni-Madeira river in the Amazon were monitored using
ENVISAT altimetry and JERS-1 radar images.

The case studies discussed above illustrate the wide range of applications of open-access remotely
sensed data in transboundary flood management, with radar altimetry, DEM, SAR, optical images,
as well as hydrodynamic models and empirical formulas identified as alternatives for improved
transboundary monitoring. These approached minimise or avoid the bureaucratic challenges of
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ground-based monitoring across country boundaries. In this way, RS makes it possible to forecast
expected floods, estimate flood exceedance probabilities and monitor how changes in riparian land
use/cover can affect downstream hydrology, across different countries.

5.1. Transboundary Flood Management Nigeria (Niger River Basin)

The unprecedented flood event of 2012 in Nigeria was attributed to (i) excess water release from
dams within and outside Nigeria due to intense precipitation; (ii) inadequate risk communication;
and (iii) poor stakeholder collaboration [218,219]. One instance of a lack of transboundary stakeholder
collaboration is evident in Nigeria’s inability to uphold part of the 1980 agreement with Cameroon,
to establish Dasin Hausa dam to buffer the effect of Lagdo dam built by Cameroon along the Benue
River [220,221].

The Niger transboundary river basin (Figure 11) encompasses 12 countries including Senegal,
Guinea, Côte D’Ivoire Mauritania, Mali, Burkina Faso, Algeria, Niger, Benin, Nigeria, Cameroon and
Chad. The basin hosts a human population of 93,617,850 within a 2,156,000 km2 area [165,208].

Figure 11. Map of the transboundary Niger River Basin, showing constituting countries and Dams.

Figure 11 also highlights the transboundary nature Niger River Basin, the constituent countries
and characteristics. The Niger basin is largely regulated by dams, housing approximately
69 dams [222] conceived mostly as national and local projects, but these have transboundary impacts
downstream [223]. To effectively manage transboundary water resource and impact on riparian
countries, the Niger River Commission (NRC) was established in 1963, now the Niger Basin Authority
(NBA) as reconstituted in 1980, to promote co-operation between member states and ensure sustainable
Integrated Water Resource Management [224]. The Niger basin is presently controlled by several
post-colonial agreements presented in Table 7.
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Table 7. Niger River Basin Agreement, Nigeria. Adapted from [207,225,226].

S/N Treaty Function Location Year

1
Act regarding navigation and

economic co-operation between the
states of the Niger Basin.

Navigation and
Joint management Niamey, Niger 1963

2
Agreement concerning the River Niger

Commission and the navigation and
transport on the River Niger.

Navigation, Joint
management,

information exchange
Niamey, Niger 1964

3

Agreement Revising the Agreement
Concerning the Niger River

Commission and the Navigation and
Transport on the River Niger.

Navigation, Joint
management,

information exchange
Niamey, Niger 1973

4 Convention Creating the
Niger Basin Authority (NBA)

Water resource mgt.
coordination Faranah, Guinea 1980

5 Protocol relating to the Development
Fund of the Niger Basin Planning funds for NBA Faranah, Guinea 1982

6 Agreement between Nigeria and Mali Co-operation on water
resource use in the Niger - 1988

7

Agreement Nigeria and the Republic of
Niger concerning the equitable sharing in
the development, conservation and use of

their common water resources

Environmental
conservation and water
resource management

Maiduguri 1990

8 Nigeria-Cameroon Protocol Agreement Coordinate dam
water release. - 2000

9 Niger Basin Water Charter. NBA review and update. Niamey, Niger 2008

10 African Risk Capacity Weather financial
risk management Pretoria, South Africa 2012

Despite these multiple cooperative frameworks, several factors have hindered effective
transboundary water resource management in the Niger Basin: (i) poor and fragmented data collection,
(ii) lack of coordination between riparian countries and organizations, (iii) poor communication
and knowledge of legal and institutional frameworks, (iv) Funding deficiency, (v) lack of clear
objectives, (vi) lingual differences, and (vii) technical limitations [226–228]. Grossmann, [229] also
lamented the deplorable state of the 65 gauging stations set-up by the NBA, through the “Hydro
Niger Project” initiative. Nevertheless, the emergence of the ongoing Niger-HYCOS (Hydrological
Cycle Observing System) program is expected to improve river monitoring networks in the Niger
river basin [178,230]. Nigeria, however, further faces specific challenges such as poor engagement,
varied risk perception, lack of interest, poor communication and commitment within the Nigeria Basin
Authority, which hinder effective coordination and integrated water resource implementation [178].

5.2. Application of Open-Access Remotely Sensed Data in Transboundary Flood Management, Nigeria

As transboundary floods become more prevalent and intense due to increased storms triggered
by climate change and anthropogenic factors [231], sufficient hydrological data is required for
planning interventions for flood impact mitigation. In addition, considering that transboundary flood
management institutions are facing recurring challenges that limit their functionality and sufficient
data acquisition, open-access remotely sensed data provide a low-cost and viable alternative to
enable transboundary flood monitoring and management without disrupting any sovereign nation’s
autonomy. Open-access satellite imagery such as Landsat and MODIS have been widely applied to
delineate flood extent across transboundary river basins, aiding flood impact quantification needed for
prompt response, as well as risk assessment and evaluation [213,232]. Radar altimetry, on the other
hand, can be applied independently or with satellite images to support planning, forecasting and flood
management in riparian countries [216,217].
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In Nigeria, Tarpanelli et al. [63] explored the potential of integrating MODIS imagery and
ENVISAT radar altimetry to predict and forecast discharge along the Niger-Benue river. The discharge
was derived from daily (MOD09GQ) and 8-day (MOD09Q1) 250 m resolution MODIS TERRA and
AQUA Image pixels (BAND 2-NIR), by establishing an empirical relationship between water-free land
pixels during peak flood, permanent water pixels within the river and known discharge values derived
from in situ measurements. Pandey and Amarnath [51] applied a combined forecasting rating curve
approach developed by Hossain et al. [216] and hydraulic (HEC-RAS) model techniques to estimate
discharge from ENVISAT, Jason-2 and AltiKa altimetry virtual station water levels along the Niger
and Benue rivers, resulting in NS and R2 values of 0.7 and 0.97 respectively.

In other closely related studies in the region, Salami and Nnadi, [233] monitored Kainji Lake
along the Niger river, using TOPEX/Poseidon and ENVISAT altimetry, revealing stronger correlation
between altimetry and in situ measurements in the wet season (R2 = 0.93) than the dry season
(R2 = 0.77), and RMSE varying from 0.50 m to 0.83 m for TOPEX/Poseidon and ENVISAT, respectively.
Sparavigna [234] studied the water level variability of Nasser, Tana, Chad and Kainji lakes using
TOPEX/POSEIDON and Jason-1 altimetry. Cretaux et al. [235] combined TOPEX/Poseidon (T/P) and
ENVISAT altimetry with 8-day MODIS near-infrared band images to monitor water level variations
and inundation along the Niger inner delta, Lake Tchad and Ganaga river delta.

The high correlation between altimetry and in situ water levels during the wet season along the
Niger river [233] suggests that altimetry can potentially be used in flood monitoring and management
in Nigeria and the Niger Basin. The varying accuracies of different altimetry missions imply that
altimetry data must be applied cautiously as earlier emphasized in Section 3.1.4, due to residual
uncertainty. With current radar altimetry tracks, such as Jason-2 (Figure 12), Sentinel 3A/B (Figure 13)
and future SWOT (Figure 14) passing across the Niger basin, the potential for long-term acquisition of
spaceborne altimetry data for flood management is considerable.

Figure 12. Jason-1/2/3/TP Altimetry Tracks within the Niger River Basin of West Africa.
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Figure 13. Sentinel 3A/B Altimetry Tracks within the Niger River Basin of West Africa.

Figure 14. SWOT Altimetry Tracks within the Niger River Basin of West Africa.

6. Providers of Data for Flood Emergency Management

Other than open-access remotely sensed data, in some instances, commercial, regional and
national satellite organisations collaboratively deliver high-resolution images and services to support
flood response and mitigation efforts. This section discusses some of the available satellite data
providers/consortia and disaster support services, as well as case study applications in Nigeria and
hydraulically connected rivers in the Niger River Basin in West Africa.

6.1. International Charter “Space and Major Disasters”

The international charter “space and major disasters” (ICSMD) was established by ESA and the
Centre National d’Etudes Spatiales (CNES) following the UNISPACE III conference held in Vienna
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in 1999 and was co-signed by the Canadian Space Agency (CSA) in 2001 [236]. The objective of the
Charter is to provide data to enable critical decision making during environmental or technological
disasters such as flooding, oil spills, fires, earthquake, volcanoes, hurricanes, landslides and ice
hazards, thereby minimizing the impact of disasters on people and infrastructures [237]. Between 2001
and 2012, several satellite agencies joined the consortium: Japan Aerospace Exploration Agency
(JAXA), Indian Space Research Organisation (ISRO), United States Geological Survey (USGS), National
Oceanic and Atmospheric Administration (NOAA), Argentinean National Commission on Space
Activities (CONAE), Exploration of Meteorological Satellite (EUMETSAT), German Space Agency
(DLR), National Institute for Space Research (INPE) of Brazil, China National Space Administration,
Disaster Monitoring Constellation International Imaging (DMCii) and Korean Aerospace Research
Institute (KARI). This expansion of the consortium enhanced the Charter’s ability to deliver prompt
high resolution optical and SAR images when disasters strike [238]. Between 2000 and 2016 the
ICSMD charter has been activated 500 times by more than 110 countries for various disasters [239].
An overview of disaster Charter activations for flood monitoring and management is presented in
Figure 15, with South America, Africa and Asia showing the highest number of activations.

Figure 15. Map showing International Disaster Charter Flood Activations (2000–2016) (Source:
Disaster Charter). Blue markers represent single activation areas, while numbers represent areas
of multiple activations.

The Nigerian satellite NigeriaSat-1 joined the ICSMD in 2003, followed by NigeriaSat-2 and
NigeriaSat-X in August 2011 [237] (all optical Sensors), to further enhance the Charter’s capacity
to deliver on its mission. Through this involvement, Nigeria provides its optical sensor images
for disaster-related activities at no cost, as well as data for research purposes, and sells imagery
to commercial ventures at a variable cost depending on the area of coverage. Some instances of
the Nigerian Satellite activation for disaster response include Peloponnese forest fires, Greece 2007
(call 175); Beichuan Landslide and Debris flow, China 2008 (call 204); Java earthquake, Indonesia
(call 269); Balkh, Kunduz, Takhar and Baghlan areas flooding, Afghanistan (call 255).

In Nigeria, the charter is usually activated by the National Emergency Management Agency’s
(NEMA) designated project manager. The activation follows five steps: (i) requisition by authorised
person, (ii) requestor identification and request verification by a 24/7 operator, (iii) request analysis and
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satellite tasking for data capture, (iv) data acquisition and delivery, and (v) support in data processing
throughout the emergency [240]. In Nigeria, activation of the disaster charter is relatively new, and only
6 activations have been made between 2010 and 2012 to monitor flooding events at Sokoto in 2010
(calls: 324 and 326), Ibadan in 2011 (call: 370), and in 2012 at Adamawa, Kogi and Bayelsa, (calls: 407,
415 and 416) [240]. Some of the images collected over the course of the activations in Nigeria include
RADARSAT-2, SPOT-5, TerraSAR-X/TanDEM-X, Landsat ETM, KOMPSAT, ENVISAT, UK-DMC, and
NIGERIASAT [219,239]. One of the lingering challenges of the Disaster Charter images is the strict
license and copyright policies that prohibit re-use and distribution of the raw data [240], thus limiting
the prospect of further data analysis and application in research. Nevertheless, finished products
are available via the Charter Activations webpage (https://www.disasterscharter.org/web/guest/
activations/charter-activations) as high-resolution maps for download, and can be digitized for use in
flood mapping processes.

6.2. International Water Management Institute Emergency Response Products for Water Disasters

This is a space-based information and rapid mapping platform for emergency response aimed
at providing support for disaster management in Africa and Asia. The platform was developed
from a collaboration amongst the International Water Management Institute (IWMI), Asia-Pacific
Regional Space Agency Forum (APRSAF), ESA, the United Nations Office for Outer Space Affairs
(UNOOSA) and the United Nations Platform for Space-based Information for Disaster Management
and Emergency Response (UN-SPIDER). This platform channels an impacted country’s data request
to the Disaster Charter, and also directly processes and analysis open-access images (i.e., Landsat,
Sentinel 1, MODIS and Global Precipitation Measurement) to deliver products needed for decision
making during a disaster [241]. So far, the platform has supported five countries including Sri Lanka,
Myanmar, India, Bangladesh, and Nigeria [242]. In addition, a total of 37 activations to support flood
information have deployed open-access satellites, as well as commercial TerraSAR-X, Radarsat-2,
RISAT-1, ALOS-2 PALSAR-2, and JAXA-2 ALOS-2 satellite images [242].

Between 27th September–4th October 2015 this platform delivered 10 Sentinel-1 flood maps to
support flood management efforts along the Niger and Benue rivers in Nigeria. This emanated from
a collaborative effort amongst IWMI, ESA, Federal Ministry of Agriculture and Rural Development
(FMARD) and Consortium of International Agricultural Research (CGIAR).

6.3. Copernicus Emergency Management Service

The European Union Copernicus Emergency Management Service (EMS) provide rapid (i.e., hours
or days) free satellite-based maps to inform decision-making before, during and after natural and
man-made disasters [243]. Although European nations are considered a priority for support provision,
other countries can activate the Copernicus EMS. Thus far, between 1 April 2012 and 19 August 2016,
the Copernicus EMS has been activated 175 times (Table 8), with flooding identified as the highest
cause of activation (40%), resulting in 68% of the delineation maps generated.

Table 8. Summary of the Copernicus Emergency Management Service (EMS)-Mapping Activations.

Type of Disaster Number of Activations Number of Reference Maps Number of Delineation Maps

Earthquake 9 83 31
Flood 71 358 692

Forest fire, wildfire 21 47 98
Industrial accident 5 12 3

Other 55 218 143
Wind storm 14 80 45

Total 175 798 1012
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The Copernicus EMS has not been activated for Nigeria yet, but has been activated three times
(EMSR018, EMSR019 and EMSR235) in Niger (Niamey) in 2012, Cameroon (Lake Maga, Garoua-Benue
River) in 2012 and Niger (Dosso, Maradi, Niamey, and Tillaberi) in 2017. These are riparian countries
within the transboundary Niger River Basin, and this could prove useful for transboundary flood
monitoring in Nigeria. Authorised users France|Centre Operationnel de Gestion Interministeriel
de Crises (C.O.G.I.C) and EC Services|DG JRC activated the Copernicus EMS for the countries
mentioned above, providing Radarsat-2, Rapid Eye, COSMO-SkyMed, and SPOT-5 satellite images
flood extent maps.

6.4. Digital Globe Open Data Program

More recently, Digital Globe, a commercial satellite company launched the Open Data Program
(ODP) initiative to provide high-resolution satellite imagery to support recovery from large-scale
natural disasters such as flooding [244]. ODP provides pre and post-disaster images, including
support via the Tomnod (http://www.tomnod.com) and Humanitarian OpenStreetMap Team (HOT,
https://hotosm.org) crowdsourcing platforms for damage assessment [245]. So far, the ODP has
been activated six times by Haiti, Nepal, Mexico, Ecuador, Caribbean/United States, and Madagascar,
to manage disasters including earthquakes, hurricanes, and cyclones. The prospects for this initiative
is substantial, as high-resolution imagery can considerably improve the detail of risk and damage
assessment in remote locations. Though the ODP is yet to be deployed in Nigeria, it was deployed
for post-disaster assessment of the 2017 Sierra Leone mudslide. This was the first application case
on the African continent, followed with the mapping of Ebola response the Democratic Republic of
Congo in 2018.

7. Synthesis

Flood disasters are becoming more frequent, intense and destructive, owing to climate change
and anthropogenic factors. Managing floods requires effective decision making based on up-to-date
and reliable hydrological information [8]. Typically, data needed for flood management include river
discharge, water levels, terrain and land use/cover characteristics, and these are traditionally collected
through the establishment of ground monitoring stations and field observations/surveys [246].
In situations where floods transcend administrative boundaries due to natural catchment delineations
or river network connectivity, transboundary corporations are often set up to enable collaborative
data collection, co-operation, risk communication, information sharing and planning to effectively
manage flood impact in riparian countries [202,211]. However, in many developing regions
both independent and transboundary data collection systems for flood management are flawed
by organisational, technical, institutional, infrastructural and financial challenges that limit their
effectiveness [178,202,205,247,248].

The potential of RS in supporting flood monitoring, planning and management are considerable,
as it enables data collection in remote, inaccessible and data sparse locations [40]. Open-access remotely
sensed data is particularly important for improving flood management in developing countries where
the ground monitoring network is limited and the cost of obtaining commercial satellite data is
prohibitive [29,135]. Datasets such as radar altimetry, DEMs, optical and radar imagery can be
applied independently, in combination with in situ measurements or integrated into hydrodynamic
models in order to reduce the uncertainty in flood estimation for ungauged river basins [39,69,89,98].
Furthermore, in the case of transboundary floods, RS allows data collection in an upstream country
where the flood originates by a downstream impacted country without the need for bureaucratic
authorization [59,203].

It is worth noting that the different freely available remotely sensed datasets provide varying
levels of accuracy, depending on multiple factors. Altimetry mission accuracies depend on the satellite
ground footprint, virtual station location, river width, tributaries discharging into the main river
and satellite sensor properties [29]. The inability of C and X-band radar to penetrate vegetation
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canopies, and backscattering from rooftops and water surfaces, can result in over-estimation of
elevation [40,66,249]. Optical imagery applications can be hampered by atmospheric conditions and
spatial resolution [250], while one of the core deficiencies of radar images is the inconsistency in
delineating floods in urban and forested areas [251].

Despite these deficiencies, the role of remotely sensed data in flood management is significant,
especially in developing regions, as it allows for the quantification of hydrological parameters at
previously undetected locations once a retrieval technique has been proven at a location where in-situ
data is available [63]. With RS technology continuously advancing and more data becoming freely
available, the reliance on ground observation data is expected to decline. Additionally, with commercial
satellite companies such as Digital Globe and other satellite consortia making high-resolution images
available for disaster management [237,244] will improve high-resolution flood modelling and
mapping in data-sparse regions. Despite the advantages of RS, the role of ground-based data collection
cannot be disregarded and must take priority or be applied in combination with remotely sensed data
for enhanced flood mapping [42,105].

Planning for flood management usually requires flood magnitude estimates at varying return
periods based on historical flood data. In many developing regions, such data are typically short
time series if gauging stations are newly established or discontinued and contain gaps (missing data
points) caused by equipment malfunction or poor data collation practices [24,182]. Altimetry can aid
historical river data reconstruction where newly established and old discontinued gauging stations
exist in proximity to virtual stations [252]. Nevertheless, the low revisit time of altimetry satellites [43]
can result in a failure to capture peak floods needed for flood magnitude estimation [104,105] and in
other instances, altimetry data is unavailable at certain locations [58]. Therefore, it is essential that the
use of altimetry data is evaluated against other approaches, such as statistical techniques for infilling
missing hydrological data, to ascertain the influence of both approaches on flood frequency estimates,
and to understand when these individual approaches can be used.

Although this review focused on fluvial flood modelling and mapping, it is important to note that
precipitation data (in situ and satellite) could also be vital in this process and has been widely applied,
especially in data-sparse regions for flood modelling and hazard mapping [253–256]. However, this
topic is beyond the scope of this review.

8. Conclusions

The potential of remotely sensed data such as altimetry, DEMs, optical and radar images has
been highlighted in this review, with the unique merits, demerits and achievable applications being
highlighted. In very remote locations of developing regions, data sparsity is so widespread that
uniform data is seldom available for a whole catchment area, owing to inadequate and declining
hydrological monitoring network [257]. Therefore, an integrated approach that enables the combination
of all available open-access remotely sensed data is recommended in such locations, leveraging the
merits of individual datasets to improve all phases of flood mapping processes, i.e., hydrological
modelling, hydrodynamic modelling and inundation mapping.

Data from consortia of providers have proven to be useful in flood risk assessment when a flood
occurs, where pre and post-flood images are provided for comparative analysis [219]. However, strict
license and copyright policies prohibit re-use and distribution of the data [240], and this can hamper
the important shift in focus from flood recovery to planning which is now imperative. Nevertheless,
3 end products (i.e., high-resolution inundation maps) are available via the Charter Activations web
page and can be applied to support flood-modelling processes to inform flood planning decisions.

The deficiencies of open-source remotely sensed data for flood modelling and mapping can
be quite pronounced in various landscapes, irrespective of the sensor type [157,258]. The private
sector has played a vital role in advancing geo-informatics in developing regions [259], investing
heavily in high-resolution satellite and airborne data needed for operational and disaster management
purposes [21,260]. A significant opportunity now exists for integrating commercially sourced remotely
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sensed data with open-access and crowd-sourced data [261–263] to improve flood modelling and
mapping in data sparse regions.

Author Contributions: I.T.E.-w. and G.A.B. conceived and designed this review study, while I.T.E.-w. undertook
the review and drafted the Manuscript, and G.A.B. reviewed the Manuscript and provided suggestions as well as
contributions to improve the Manuscript.

Funding: This research was funded by the Niger Delta Development Commission (NDDC), Nigeria, grant number
NDDC/DEHSS/2013PGFS/BY/5.

Acknowledgments: This review is a product of part of Ekeu-wei Iguniwari Thomas’s PhD research at Lancaster
University, United Kingdom, funded by NDDC, Nigeria. The authors acknowledge the input of the three
anonymous reviewers who provide valuable feedback that improved this review article enormously.

Conflicts of Interest: The Authors declare no conflict of interest

References

1. Plate, E. Flood risk and flood management. J. Hydrol. 2002, 267, 2–11. [CrossRef]
2. Merwade, V.; Olivera, F.; Arabi, M.; Edleman, S. Uncertainty in flood inundation mapping: Current issues

and future directions. J. Hydrol. Eng. 2008, 13, 608–620. [CrossRef]
3. Moel, H.; Jongman, B.; Kreibich, H.; Merz, B.; Penning-Rowsell, E.; Ward, P. Flood risk assessments at

different spatial scales. Mitig. Adapt. Strateg. Glob. Chang. 2015, 20, 865–890. [CrossRef]
4. Klijn, F.; Samuels, P.; Van Os, A. Towards flood risk management in the EU: State of affairs with examples

from various European countries. Int. J. River Basin Manag. 2008, 6, 307–321. [CrossRef]
5. Büchele, B.; Kreibich, H.; Kron, A.; Thieken, A.; Ihringer, J.; Oberle, P.; Merz, B.; Nestmann, F. Flood-

risk mapping: Contributions towards an enhanced assessment of extreme events and associated risks.
Nat. Hazards Earth Syst. Sci. 2006, 6, 485–503. [CrossRef]

6. Ologunorisa, T.E. An assessment of flood vulnerability zones in the Niger Delta, Nigeria. Int. J. Environ.
Stud. 2004, 61, 31–38. [CrossRef]

7. Valdes, H.M. Living with Risk: A Global Review of Disaster Reduction Initiatives; United Nations Publications:
New York, NY, USA, 2004; Volume 1.

8. Els, Z. Data Availability and Requirements for Flood Hazard Mapping. Master’s Thesis, Natural Sciences at
Stellenbosch University, Stellenbosch, South Africa, 2013.

9. Federal Ministry of Environment. Technical Guidelines on Soil Erosion, Flood and Coastal Zone Management;
Federal Ministry of Environment: Abuja, Nigeria, 2005.

10. Aerts, J.C.J.H.; Alphen, J.V.; Moel, H.D. Flood maps in Europe-methods, availability and use. Nat. Hazards
Earth Syst. Sci. 2009, 9, 289–301.

11. Martini, F.; Loat, R. Handbook on Good Practices for Flood Mapping in Europe; EXCIMAP: Brussels, Belgium, 2007.
[CrossRef]

12. Awokola, O.; Martins, O. Regional Flood Frequency Analysis of Osun Drainage Basin, South-Western
Nigeria. Niger. J. Sci. 2001, 35, 37–44.

13. Kjeldsen, T.R.; Smithers, J.C.; Schulze, R.E. Regional flood frequency analysis in the KwaZulu- Natal province,
South Africa, using the index- flood method. J. Hydrol. 2002, 255, 194–211. [CrossRef]

14. Leclerc, M.; Ouarda, T.B.M.J. Non- stationary regional flood frequency analysis at ungauged sites. J. Hydrol.
2007, 343, 254–265. [CrossRef]

15. Ahn, J.; Cho, W.; Kim, T.; Shin, H.; Heo, J.-H. Flood frequency analysis for the annual peak flows simulated
by an event-based rainfall-runoff model in an urban drainage basin. Water 2014, 6, 3841–3863. [CrossRef]

16. Sarhadi, A.; Soltani, S.; Modarres, R. Probabilistic flood inundation mapping of ungauged rivers: Linking
GIS techniques and frequency analysis. J. Hydrol. 2012, 458–459, 68–86. [CrossRef]

17. Di Baldassarre, G.; Schumann, G.; Bates, P.; Freer, J.; Beven, K. Flood- plain mapping: A critical discussion of
deterministic and probabilistic approaches. Hydrol. Sci. J. 2010, 55, 364–376. [CrossRef]

18. Muncaster, S.; Warwick, B.; McCowab, A. Design flood estimation in small catchments using two dimensional
hydraulic modelling—A case study. In Hydrology and Water Resource Symposium; TAS: Launceston, Australia,
2006; pp. 104–109.

165



Hydrology 2018, 5, 39

19. Neal, J.; Schumann, G.; Fewtrell, T.; Budimir, M.; Bates, P.; Mason, D. Evaluating a new LISFLOOD-FP
formulation with data from the summer 2007 floods in Tewkesbury, UK. J. Flood Risk Manag. 2011, 4, 88–95.
[CrossRef]

20. Taubenböck, H.; Wurm, M.; Netzband, M.; Zwenzner, H.; Roth, A.; Rahman, A.; Dech, S. Flood risks in
urbanized areas—Multi- sensoral approaches using remotely sensed data for risk assessment. Nat. Hazards
Earth Syst. Sci. 2011, 11, 431–444. [CrossRef]

21. Eyers, R.; Obowu, C.; Lasisi, B. Niger Delta Flooding: Monitoring, Forecasting & Emergency Response
Support from SPDC. In Proceedings of the FIG Working Week, Environment and Sustainability, Abuja,
Nigeria, 6–10 May 2013.

22. Nigeria Hydrological Services Agency; Ankle Foot Orthosis. Nigerian Hydrological Service Agency, 2014
Annual Flood Outlook (AFO); NIHSA: Sioux City, IA, USA, 2014.

23. Olayinka, D.N.; Nwilo, P.C.; Emmanuel, A. From Catchment to Reach: Predictive Modelling of Floods in Nigeria.
In Proceedings of the FIG Working Week, Environment for Sustainability, Abuja, Nigeria, 6–10 May 2013.

24. Maxwell, O. Hydrological Data Banking for Sustainable Development in Nigeria: An Overview. Aceh Int. J.
Sci. Technol. 2013, 2, 59–62. [CrossRef]

25. Ekeu-wei, I.T. Evaluation of Hydrological Data Collection Challenges and Flood Estimation Uncertainties in
Nigeria. Environ. Nat. Resour. Res. 2018, 8, 44–54. [CrossRef]

26. Sivapalan, M. Prediction in ungauged basins: A grand challenge for theoretical hydrology. Hydrol. Process.
2003, 17, 3163–3170. [CrossRef]

27. Sivapalan, M.; Takeuchi, K.; Franks, S.W.; Gupta, V.K.; Karambiri, H.; Lakshmi, V.; Liang, X.; McDonnell, J.J.;
Mendiondo, E.M.; Connell, P.E.; et al. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012:
Shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 2003, 48, 857–880. [CrossRef]

28. Hrachowitz, M.; Savenije, H.; Blöschl, G.; McDonnell, J.; Sivapalan, M.; Pomeroy, J.; Arheimer, B.; Blume, T.;
Clark, M.; Ehret, U. A decade of Predictions in Ungauged Basins (PUB)—A review. Hydrol. Sci. J. 2013,
58, 1198–1255. [CrossRef]

29. Yan, K.; Di Baldassarre, G.; Solomatine, D.P.; Schumann, G.J.P. A review of low-cost space-borne data for
flood modelling: Topography, flood extent and water level. Hydrol. Process. 2015, 29, 3368–3387. [CrossRef]

30. Schumann, G.; Bates, P.D.; Horritt, M.S.; Matgen, P.; Pappenberger, F. Progress in integration of remote
sensing- derived flood extent and stage data and hydraulic models. Rev. Geophys. 2009, 47. [CrossRef]

31. Mason, D.C.; Schumann, G.; Bates, P. Data utilization in flood inundation modelling. Flood Risk Sci.
Manag. 2011. [CrossRef]

32. Dano Umar, L.; Abdul-Nasir, M.; Ahmad Mustafa, H.; Imtiaz Ahmed, C.; Soheil, S.; Abdul-Lateef, B.;
Haruna Ahmed, A. Geographic Information System and Remote Sensing Applications in Flood Hazards
Management: A Review. Res. J. Appl. Sci. Eng. Technol. 2011, 3, 933–947.

33. Maswood, M.; Hossain, F. Advancing river modelling in ungauged basins using satellite remote sensing:
The case of the Ganges- Brahmaputra- Meghna basin. Int. J. River Basin Manag. 2016, 14, 103–117. [CrossRef]

34. Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Rev. Geophys. 2007,
45, RG2002. [CrossRef]

35. Koblinsky, C.; Clarke, R.; Brenner, A.; Frey, H. Measurement of river level variations with satellite altimetry.
Water Resour. Res. 1993, 29, 1839–1848. [CrossRef]

36. Da Silva, J.S.; Calmant, S.; Seyler, F.; Rotunno Filho, O.C.; Cochonneau, G.; Mansur, W.J. Water levels in the
Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sens. Environ. 2010,
114, 2160–2181. [CrossRef]

37. Sulistioadi, Y.B.; Tseng, K.H.; Shum, C.K.; Hidayat, H.; Sumaryono, M.; Suhardiman, A.; Setiawan, F.;
Sunarso, S. Satellite radar altimetry for monitoring small rivers and lakes in Indonesia. Hydrol. Earth Syst.
Sci. 2015, 19, 341–359. [CrossRef]

38. Belaud, G.; Cassan, L.; Bader, J.; Bercher, N.; Feret, T. Calibration of a propagation model in large river using
satellite altimetry. In Proceedings of the 6th International Symposium on Environmental Hydraulics, Athens,
Greece, 23–25 June 2010; pp. 23–25.

39. Birkinshaw, S.J.; Moore, P.; Kilsby, C.G.; Donnell, G.M.; Hardy, A.J.; Berry, P.A.M. Daily discharge estimation
at ungauged river sites using remote sensing. Hydrol. Process. 2014, 28, 1043–1054. [CrossRef]

166



Hydrology 2018, 5, 39

40. Musa, Z.; Popescu, I.; Mynett, A. A review of applications of satellite SAR, optical, altimetry and DEM data
for surface water modelling, mapping and parameter estimation. Hydrol. Earth Syst. Sci. Discuss. 2015,
12, 4857–4878. [CrossRef]

41. Crétaux, J.-F.; Jelinski, W.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.-C.;
Nino, F.; Del Rio, R.A.; Cazenave, A. SOLS: A lake database to monitor in the Near Real Time water level
and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [CrossRef]

42. Sun, W.; Ishidaira, H.; Bastola, S. Calibration of hydrological models in ungauged basins based on satellite
radar altimetry observations of river water level. Hydrol. Process. 2012, 26, 3524–3537. [CrossRef]

43. O’Loughlin, F.E.; Neal, J.; Yamazaki, D.; Bates, P.D. ICESat-derived inland water surface spot heights.
Water Resour. Res. 2016, 52, 3276–3284. [CrossRef]

44. Birkett, C.M. The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes.
J. Geophys. Res. Oceans 1995, 100, 25179–25204. [CrossRef]

45. Birkett, C.M.; Mertes, L.A.K.; Dunne, T.; Costa, M.H.; Jasinski, M.J. Surface water dynamics in the Amazon
Basin: Application of satellite radar altimetry. J. Geophys. Res. Atmos. 2002, 107, LBA 26-1–LBA 26-21.
[CrossRef]

46. Frappart, F.; Calmant, S.; Cauhopé, M.; Seyler, F.; Cazenave, A. Preliminary results of ENVISAT RA- 2-
derived water levels validation over the Amazon basin. Remote Sens. Environ. 2006, 100, 252–264. [CrossRef]

47. Birkinshaw, S.J.; Donnell, G.M.; Moore, P.; Kilsby, C.G.; Fowler, H.J.; Berry, P.A.M. Using satellite altimetry
data to augment flow estimation techniques on the Mekong River. Hydrol. Process. 2010, 24, 3811–3825.
[CrossRef]

48. Ponte, R.M.; Wunsch, C.; Stammer, D. Spatial mapping of time-variable errors in Jason-1 and
TOPEX/Poseidon sea surface height measurements. J. Atmos. Ocean. Technol. 2007, 24, 1078–1085. [CrossRef]

49. Chelton, D.B.; Ries, J.C.; Haines, B.J.; Fu, L.-L.; Callahan, P.S. Satellite altimetry. Int. Geophys. 2001, 69, 1–2.
50. Tourian, M.J.; Tarpanelli, A.; Elmi, O.; Qin, T.; Brocca, L.; Moramarco, T.; Sneeuw, N. Spatiotemporal

densification of river water level time series by multimission satellite altimetry. Water Resour. Res. 2016,
52, 1140–1159. [CrossRef]

51. Pandey, R.; Amarnath, G. The potential of satellite radar altimetry in flood forecasting: Concept and
implementation for the Niger-Benue river basin. Proc. IAHS 2015, 370, 223–227. [CrossRef]

52. Jarihani, A.A.; Callow, J.N.; McVicar, T.R.; Van Niel, T.G.; Larsen, J.R. Satellite- derived Digital Elevation
Model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low- gradient and
data- sparse catchments. J. Hydrol. 2015, 524, 489–506. [CrossRef]

53. Urban, T.J.; Schutz, B.E.; Neuenschwander, A.L. A survey of ICESat coastal altimetry applications:
Continental Coast, Open Ocean Island, and Inland River. Terr. Atmos. Ocean. Sci. 2008, 19, 1–19. [CrossRef]

54. Schneider, R.; Godiksen, P.N.; Villadsen, H.; Madsen, H.; Bauer-Gottwein, P. Application of CryoSat- 2
altimetry data for river analysis and modelling. Hydrol. Earth Syst. Sci. Discuss. 2016, 19, 1–19. [CrossRef]

55. Schwatke, C.; Dettmering, D.; Börgens, E.; Bosch, W. Potential of SARAL/AltiKa for Inland Water
Applications. Mar. Geodesy 2015, 38, 626–643. [CrossRef]

56. European Space Agency. Altimetry Instrument Payload. Available online: https://sentinel.esa.int/web/
sentinel/missions/sentinel-3/instrument-payload/altimetry (accessed on 26 April 2016).

57. Fu, L.-L.; Alsdorf, D.; Rodriguez, E.; Morrow, R.; Mognard, N.; Lambin, J.; Vaze, P.; Lafon, T. The SWOT
(Surface Water and Ocean Topography) mission: Spaceborne radar interferometry for oceanographic and
hydrological applications. Proc. Ocean. Obs. 2009, 9, 21–25.

58. Papa, F.; Durand, F.; Rossow, W.B.; Rahman, A.; Bala, S.K. Satellite altimeter- derived monthly discharge of
the Ganga- Brahmaputra River and its seasonal to interannual variations from 1993 to 2008. J. Geophys. Res.
Oceans 2010, 115. [CrossRef]

59. Sridevi, T.; Sharma, R.; Mehra, P.; Prasad, K.V.S.R. Estimating discharge from the Godavari River using
ENVISAT, Jason- 2, and SARAL/AltiKa radar altimeters. Remote Sens. Lett. 2016, 7, 348–357. [CrossRef]

60. Getirana, A.C.V.; Peters-Lidard, C. Estimating water discharge from large radar altimetry datasets.
Hydrol. Earth Syst. Sci. 2013, 17, 923–933. [CrossRef]

61. Tourian, M.; Sneeuw, N.; Bárdossy, A. A quantile function approach to discharge estimation from satellite
altimetry (ENVISAT). Water Resour. Res. 2013, 49, 4174–4186. [CrossRef]

62. Michailovsky, C.I.; McEnnis, S.; Bauer-Gottwein, P.A.M.; Berry, R.; Smith, P. River monitoring from satellite
radar altimetry in the Zambezi River basin. Hydrol. Earth Syst. Sci. 2012, 16, 2181–2192. [CrossRef]

167



Hydrology 2018, 5, 39

63. Tarpanelli, A.; Amarnath, G.; Brocca, L.; Moramarco, T. Discharge forecasting using MODIS and radar
altimetry: Potential application for transboundary flood risk management in Niger-Benue River basin.
In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 17–22 April 2016.

64. Sichangi, A.W.; Wang, L.; Yang, K.; Chen, D.; Wang, Z.; Li, X.; Zhou, J.; Liu, W.; Kuria, D. Estimating
continental river basin discharges using multiple remote sensing data sets. Remote Sens. Environ. 2016,
179, 36–53. [CrossRef]

65. Casas, A.; Benito, G.; Thorndycraft, V.R.; Rico, M. The topographic data source of digital terrain models as
a key element in the accuracy of hydraulic flood modelling. Earth Surf. Process. Landf. 2006, 31, 444–456.
[CrossRef]

66. Cook, A.; Merwade, V. Effect of topographic data, geometric configuration and modeling approach on flood
inundation mapping. J. Hydrol. 2009, 377, 131–142. [CrossRef]

67. Patro, S.; Chatterjee, C.; Singh, R.; Raghuwanshi, N. Hydrodynamic modelling of a large flood-prone river
system in India with limited data. Hydrol. Process. 2009, 23, 2774–2791. [CrossRef]

68. Wang, W.; Yang, X.; Yao, T. Evaluation of ASTER GDEM and SRTM and their suitability in hydraulic
modelling of a glacial lake outburst flood in southeast Tibet. Hydrol. Process. 2012, 26, 213–225. [CrossRef]

69. Sanyal, J.; Carbonneau, P.; Densmore, A. Hydraulic routing of extreme floods in a large ungauged river and
the estimation of associated uncertainties: A case study of the Damodar River, India. Nat. Hazards 2013,
66, 1153–1177. [CrossRef]

70. Ullah, S.; Farooq, M.; Sarwar, T.; Tareen, M.; Wahid, M. Flood modeling and simulations using hydrodynamic
model and ASTER DEM—A case study of Kalpani River. Arab. J. Geosci. 2016, 9, 1–11. [CrossRef]

71. Amans, O.C.; Beiping, W.; Ziggah, Y.Y. Assessing Vertical Accuracy of SRTM Ver. 4.1 and ASTER GDEM
Ver. 2 using Differential GPS Measurements–case study in Ondo State, Nigeria. Int. J. Sci. Eng. Res. 2013,
4, 523–531.

72. Isioye, O.A.; Yang, I.C. Comparison and validation of ASTER-GDEM and SRTM elevation models over parts
of Kaduna State, Nigeria. SASGI Proc. 2013, 1, 1–11.

73. Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.;
Harding, D.; et al. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn. 2002,
34, 405–445. [CrossRef]

74. Fricker, H.A.; Borsa, A.; Minster, B.; Carabajal, C.; Quinn, K.; Bills, B. Assessment of ICESat performance at
the salar de Uyuni, Bolivia. Geophys. Res. Lett. 2005, 32. [CrossRef]

75. Jean Stéphane, B.; Hani, A.; Nicolas, L.; Nicolas, B. The Relevance of GLAS/ICESat Elevation Data for the
Monitoring of River Networks. Remote Sens. 2011, 3, 708–720.

76. Satgé, F.; Bonnet, M.P.; Timouk, F.; Calmant, S.; Pillco, R.; Molina, J.; Lavado-Casimiro, W.; Arsen, A.;
Crétaux, J.F.; Garnier, J. Accuracy assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano watershed
using ICESat/GLAS data. Int. J. Remote Sens. 2015, 36, 465–488. [CrossRef]

77. Carabajal, C.C.; Harding, D.J. ICESat validation of SRTM C-band digital elevation models. Geophys. Res. Lett.
2005, 32, 117–137. [CrossRef]

78. Kon Joon Bhang, F.W.; Schwartz, A.; Braun, A. Verification of the Vertical Error in C- Band SRTM DEM Using
ICESat and Landsat- 7, Otter Tail County, MN. IEEE Trans. Geosci. Remote Sens. 2007, 45, 36–44. [CrossRef]

79. Du, X.; Guo, H.; Fan, X.; Zhu, J.; Yan, Z.; Zhan, Q. Vertical accuracy assessment of freely available digital
elevation models over low-lying coastal plains. Int. J. Dig. Earth 2016, 9, 252–271. [CrossRef]

80. Zhao, G.; Xue, H.; Ling, F. Assessment of ASTER GDEM performance by comparing with SRTM and
ICESat/GLAS data in Central China. In Proceedings of the 18th International Conference on Geoinformatics,
Beijing, China, 18–20 June 2010; pp. 1–5.

81. Braun, A.; Fotopoulos, G. Assessment of SRTM, ICESat, and survey control monument elevations in Canada.
Photogramm. Eng. Remote Sens. 2007, 73, 1333–1342. [CrossRef]

82. Rastogi, G.; Agrawal, R.; Ajai, R. Bias corrections of CartoDEM using ICESat- GLAS data in hilly regions.
GISci. Remote Sens. 2015, 52, 571–585.

83. Beaulieu, A.; Clavet, D. Accuracy assessment of Canadian digital elevation data using ICESat. Photogramm.
Eng. Remote Sens. 2009, 75, 81–86. [CrossRef]

84. Yamanokuchi, T.; Doi, K.; Shibuya, K. Comparison of Antarctic Ice Sheet Elevation between ICESat GLAS
and InSAR DEM. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote
Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 2712–2715.

168



Hydrology 2018, 5, 39

85. Mirzaee, S.; Motagh, M.; Arefi, H. Assessment of Reference Height Models on Quality of Tandem-X dem.
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 463–466. [CrossRef]

86. Sampson, C.C.; Smith, A.M.; Bates, P.D.; Neal, J.C.; Alfieri, L.; Freer, J.E. A high- resolution global flood
hazard model. Water Resour. Res. 2015, 51, 7358–7381. [CrossRef] [PubMed]

87. O’Loughlin, F.; Paiva, R.; Durand, M.; Alsdorf, D.; Bates, P. Development of a ‘bare-earth’ SRTM DEM product.
In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015.

88. Heyder, U. Vertical Forest Structure from ICESat/GLAS Lidar Data. Master’s Thesis, Department of
Geography, University College London, London, UK, 2005; pp. 12–50.

89. Trigg, M.A.; Bates, P.D.; Wilson, M.D.; Horritt, M.S.; Alsdorf, D.E.; Forsberg, B.R.; Vega, M.C. Amazon flood
wave hydraulics. J. Hydrol. 2009, 374, 92–105. [CrossRef]

90. Chávarri, E.; Crave, A.; Bonnet, M.-P.; Mejía, A.; Santos Da Silva, J.; Guyot, J.L. Hydrodynamic modelling of
the Amazon River: Factors of uncertainty. J. S. Am. Earth Sci. 2013, 44, 94–103. [CrossRef]

91. Bates, P.; Neal, J.; Alsdorf, D.; Schumann, G. Observing Global Surface Water Flood Dynamics. Surv. Geophys.
2014, 35, 839–852. [CrossRef]

92. Durand, M.; Andreadis, K.M.; Alsdorf, D.E.; Lettenmaier, D.P.; Moller, D.; Wilson, M. Estimation of
bathymetric depth and slope from data assimilation of swath altimetry into a hydrodynamic model. Geophys.
Res. Lett. 2008, 35. [CrossRef]

93. Bates, P.D.; De Roo, A.P.J. A simple raster-based model for flood inundation simulation. J. Hydrol. 2000,
236, 54–77. [CrossRef]

94. Yoon, Y.; Durand, M.; Merry, C.J.; Clark, E.A.; Andreadis, K.M.; Alsdorf, D.E. Estimating river bathymetry
from data assimilation of synthetic SWOT measurements. J. Hydrol. 2012, 464–465, 363–375. [CrossRef]

95. Van Wesemael, A.; Gobeyn, S.; Neal, J.; Lievens, H.; Van Eerdenbrugh, K.; De Vleeschouwer, N.;
Schumann, G.; Vernieuwe, H.; Di Baldassarre, G.; De Baets, B. Calibration of a flood inundation model
using a SAR image: Influence of acquisition time. In Proceedings of the EGU General Assembly Conference
Abstracts, Vienna, Austria, 17–22 April 2016.

96. Neal, J.C.; Odoni, N.A.; Trigg, M.A.; Freer, J.E.; Garcia-Pintado, J.; Mason, D.C.; Wood, M.; Bates, P.D. Efficient
incorporation of channel cross-section geometry uncertainty into regional and global scale flood inundation
models. J. Hydrol. 2015, 529, 169–183. [CrossRef]

97. Stephens, E.; Schumann, G.; Bates, P. Problems with binary pattern measures for flood model evaluation.
Hydrol. Process. 2014, 28, 4928–4937. [CrossRef]

98. Jung, H.C.; Jasinski, M.; Kim, J.W.; Shum, C.K.; Bates, P.; Neal, J.; Lee, H.; Alsdorf, D. Calibration of
two- dimensional floodplain modeling in the central Atchafalaya Basin Floodway System using SAR
interferometry. Water Resour. Res. 2012, 48. [CrossRef]

99. Dung, N.V.; Merz, B.; Bárdossy, A.; Thang, T.D.; Apel, H. Multi- objective automatic calibration of
hydrodynamic models utilizing inundation maps and gauge data. Hydrol. Earth Syst. Sci. 2011, 15, 1339–1354.
[CrossRef]

100. Pasquale, N.; Perona, P.; Wombacher, A.; Burlando, P. Hydrodynamic model calibration from pattern
recognition of non- orthorectified terrestrial photographs. Comput. Geosci. 2014, 62, 160–167. [CrossRef]

101. Wood, M.; Neal, J.; Hostache, R.; Corato, G.; Bates, P.; Giustarini, L.; Chini, M.; Matgen, P. Using time series of
satellite SAR images to calibrate channel depth and friction parameters in the LISFLOOD-FP hydraulic model.
In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 27 April–2 May 2014.

102. Andréfouët, S.; Ouillon, S.; Brinkman, R.; Falter, J.; Douillet, P.; Wolk, F.; Smith, R.; Garen, P.; Martinez, E.;
Laurent, V.; et al. Review of solutions for 3D hydrodynamic modeling applied to aquaculture in South Pacific
atoll lagoons. Mar. Pollut. Bull. 2006, 52, 1138–1155. [CrossRef] [PubMed]

103. Domeneghetti, A. On the use of SRTM and altimetry data for flood modeling in data- sparse regions.
Water Resour. Res. 2016, 52, 2901–2918. [CrossRef]

104. Yan, K.; Tarpanelli, A.; Balint, G.; Moramarco, T.; Baldassarre, G.D. Exploring the Potential of SRTM
Topography and Radar Altimetry to Support Flood Propagation Modeling: Danube Case Study. J. Hydrol.
Eng. 2015, 20, 04014048. [CrossRef]

105. Domeneghetti, A.; Tarpanelli, A.; Brocca, L.; Barbetta, S.; Moramarco, T.; Castellarin, A.; Brath, A. The use
of remote sensing- derived water surface data for hydraulic model calibration. Remote Sens. Environ. 2014,
149, 130–141. [CrossRef]

169



Hydrology 2018, 5, 39

106. Milzow, C.; Bauer-Gottwein, P.E.; Krogh, P. Combining satellite radar altimetry, SAR surface soil moisture
and GRACE total storage changes for hydrological model calibration in a large poorly gauged catchment.
Hydrol. Earth Syst. Sci. 2011, 15, 1729–1743. [CrossRef]

107. Tommaso, M.; Angelica, T.; Luca, B.; Silvia, B. River Discharge Estimation by Using Altimetry Data and
Simplified Flood Routing Modeling. Remote Sens. 2013, 5, 4145–4162.

108. Sun, W.; Song, H.; Cheng, T.; Yu, J. Calibration of hydrological models using TOPEX/Poseidon radar
altimetry observations. Proc. Int. Assoc. Hydrol. Sci. 2015, 368, 3–8. [CrossRef]

109. Grimaldi, S.; Petroselli, A.; Serinaldi, F. A continuous simulation model for design-hydrograph estimation in
small and ungauged watersheds. Hydrol. Sci. J. 2012, 57, 1035–1051. [CrossRef]

110. Jung, Y.; Merwade, V. Estimation of uncertainty propagation in flood inundation mapping using a 1- D
hydraulic model. Hydrol. Process. 2015, 29, 624–640. [CrossRef]

111. Mason, D.C.; Trigg, M.; Garcia-Pintado, J.; Cloke, H.L.; Neal, J.C.; Bates, P.D. Improving the TanDEM- X
Digital Elevation Model for flood modelling using flood extents from Synthetic Aperture Radar images.
Remote Sens. Environ. 2016, 173, 15–28. [CrossRef]

112. Bates, P.D.; Wilson, M.D.; Horritt, M.S.; Mason, D.C.; Holden, N.; Currie, A. Reach scale floodplain inundation
dynamics observed using airborne synthetic aperture radar imagery: Data analysis and modelling. J. Hydrol.
2006, 328, 306–318. [CrossRef]

113. Lewis, M.; Bates, P.; Horsburgh, K.; Neal, J.; Schumann, G. A storm surge inundation model of the northern
Bay of Bengal using publicly available data. Q. J. R. Meteorol. Soc. 2013, 139, 358–369. [CrossRef]

114. Neal, J.; Schumann, G.; Bates, P. A subgrid channel model for simulating river hydraulics and floodplain
inundation over large and data sparse areas. Water Resour. Res. 2012, 48. [CrossRef]

115. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.;
Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [CrossRef]

116. Farr, T.G.; Kobrick, M. Shuttle radar topography mission produces a wealth of data. EOS 2000, 81, 583–585.
[CrossRef]

117. Gichamo, T.Z.; Popescu, I.; Jonoski, A.; Solomatine, D. River cross- section extraction from the ASTER global
DEM for flood modeling. Environ. Model. Softw. 2012, 31, 37–46. [CrossRef]

118. Demirkesen, A. Flood hazard vulnerability for settlements of Turkey’s province of Edirne, using ASTER
DEM data and Landsat-7 ETM+ image data. Arab. J. Geosci. 2016, 9, 1–15. [CrossRef]

119. Schumann, G.P.; Neal, J.C.; Voisin, N.; Andreadis, K.M.; Pappenberger, F.; Phanthuwongpakdee, N.;
Hall, A.C.; Bates, P.D. A first large-scale flood inundation forecasting model. Water Resour. Res. 2013,
49, 6248–6257. [CrossRef]

120. Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by
ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-4, 71–76. [CrossRef]

121. Santillana, J.; Makinano-Santillana, M.; Ampayon, B.C.; del Norte, A. Vertical Accuracy Assessment of 30-M
Resolution Alos, Aster, and Srtm Global Dems Over Northeastern Mindanao, Philippines. ISPRS-Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B4, 149–156. [CrossRef]

122. Courty, L.G.; Soriano-Monzalvoa, J.C.; Pedrozo-Acuñaa, A. Evaluation of open-access global digital elevation
models (AW3D30, SRTM and ASTER) for flood modelling purposes. Zenodo 2017. [CrossRef]

123. Yamazaki, D.; Baugh, C.; Bates, P.D.; Kanae, S.; Alsdorf, D.; Oki, T. Adjustment of a spaceborne DEM for use
in floodplain hydrodynamic modeling. J. Hydrol. 2012, 436, 81–91. [CrossRef]

124. Baugh, C.A.; Bates, P.D.; Schumann, G.; Trigg, M.A. SRTM vegetation removal and hydrodynamic modeling
accuracy. Water Resour. Res. 2013, 49, 5276–5289. [CrossRef]

125. Rodriguez, E.; Morris, C.S.; Belz, J.E. A global assessment of the SRTM performance. Photogramm. Eng.
Remote Sens. 2006, 72, 249–260. [CrossRef]

126. Tarekegn, T.H.; Haile, A.T.; Rientjes, T.; Reggiani, P.; Alkema, D. Assessment of an ASTER- generated DEM
for 2D hydrodynamic flood modeling. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 457–465. [CrossRef]

127. Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.B.; Oimoen, M.J.; Zhang, Z.; Danielson, J.J.; Krieger, T.;
Curtis, B.; Haase, J. ASTER Global Digital Elevation Model Version 2-Summary of Validation Results; NASA:
Washington, DC, USA, 2011.
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Abstract: This study proposes a framework that (i) uses data assimilation as a post processing
technique to increase the accuracy of water depth prediction, (ii) updates streamflow generated by
the National Water Model (NWM), and (iii) proposes a scope for updating the initial condition of
continental-scale hydrologic models. Predicted flows by the NWM for each stream were converted
to the water depth using the Height Above Nearest Drainage (HAND) method. The water level
measurements from the Iowa Flood Inundation System (a test bed sensor network in this study)
were converted to water depths and then assimilated into the HAND model using the ensemble
Kalman filter (EnKF). The results showed that after assimilating the water depth using the EnKF, for
a flood event during 2015, the normalized root mean square error was reduced by 0.50 m (51%) for
training tributaries. Comparison of the updated modeled water stage values with observations at
testing locations showed that the proposed methodology was also effective on the tributaries with no
observations. The overall error reduced from 0.89 m to 0.44 m for testing tributaries. The updated
depths were then converted to streamflow using rating curves generated by the HAND model.
The error between updated flows and observations at United States Geological Survey (USGS) station
at Squaw Creek decreased by 35%. For future work, updated streamflows could also be used to
dynamically update initial conditions in the continental-scale National Water Model.

Keywords: data assimilation; ensemble Kalman filter; flood inundation maps; National Water
Model (NWM)

1. Introduction

Flooding is among the most destructive natural disasters globally. In the United States, based
on a U.S. National Weather Service (NWS) report, the average annual property/human losses are
estimated to be more than $8 billion [1–3] (Federal Emergency Management Agency (FEMA), 2013).
Flood inundation maps help to detect flood-prone regions and can prevent major catastrophe by
providing reliable information to the public about the flood-risk [4,5]. However, these maps are based
on predictions of water depth values in the stream and on the landscape for extreme rainfall events [6].
Hydrology and hydraulic models can be useful for predicting these depth values, although, like many
other models, these models are only as reliable as the underlying assumptions in the model’s structure
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and parameters [7,8]. The assimilation of water depth measurements, as a post-processing technique,
has the potential to reduce the error between model predictions and observations in order to generate
more reliable flood inundation maps [9].

Sequential data assimilation techniques are often used for updating a model’s state variables
when new observations become available [10]. A data assimilation process is also able to reduce
the uncertainty in prediction by integrating real-time observations from a variety of monitoring
technologies [11,12]. The Kalman filter [13] is a commonly used data assimilation technique that was
initially developed to update the state variables of linear systems [14]. However, this method has been
used for nonlinear problems as well [15]. The ensemble Kalman filter (EnKF) is another data assimilation
technique that was introduced by Evensen [16]. In the case of non-linear models for which the
assumption of linearity is not satisfied, EnKF can be used as an effective technique. Multiple studies have
also used this method in the past to update hydraulic, hydrologic, and hydrodynamic models [17–19]

The main objectives of this study include:

(1) Assimilating water depth measurements to dynamically update water level predictions.
(2) Improving streamflow predicted by the National Water Model (NWM) using updated water levels.
(3) Proposing a scope to update continental-scale hydrologic models (e.g., NWM).

2. Study Area and Methodology

2.1. Study Area Characteristics and Data Collection

The study domain is the Squaw Creek watershed (Hydrologic Unit Code (HUC) ID = 0708010503),
located in Jasper County, Iowa (Figure 1), which drains 40.3 km2 and discharges into the Skunk River.
It is located on Southern Iowa Drift Plain and characterized by steeply rolling hills and well developed
drainage [20]. This watershed has experienced several flooding events in the past [21], and it contains a
dense network of bridge sensors that measure the water level along the channel. Flow measurements
are collected at a USGS station (# 5470500) in this watershed. Water surface elevation were gathered
from the Iowa Flood Information System (IFIS). The Iowa Flood Center (IFC) developed and maintains
nearly 250 stream stage sensors across the state. Sensors are attached to the sides of bridges and are
designed to measure the distance from the sensor to the water surface. Data is transmitted automatically
and frequently to the Iowa Flood Information System. Water surface elevation at each time step can be
calculated by subtracting the sensor measurements from the elevation of each sensor.

 

Figure 1. Squaw Creek watershed (Iowa State).
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2.2. Proposed Approach

Figure 2 illustrates the overall proposed methodology:

 

Figure 2. Schematic methodology.

Hourly predicted flows for each tributary were first obtained from the NWM (Step 1). The Height
Above Nearest Drainage (HAND) [22] method was then used to predict the water depth in river channels
(Step 2). Incoming hourly water level observations from the Iowa Flood Information System (IFIS) were
converted to water depth (Step 3) to become consistent with HAND water depth predictions, and then
assimilated into the HAND model via an ensemble Kalman filter technique (Step 4). Finally, using
back calculation, updated water levels were converted to flow using rating curves generated by the
HAND (Step 5). For future work, results from Steps 4 and 5 can be used to create flood inundation
maps and update the initials conditions of the hydrologic model (NWM), respectively. Finally, updated
streamflows were validated using flow measurements at USGS stations (Step 6).

There are 85 tributaries and 20 bridge sensors that measure the water levels. Since the
cross-sections were not available for all of these sensor locations, measurements of only 10 sensors
were used for data assimilation. Six sensors were randomly selected for training and the other four
sensors were selected for testing to make sure that this approach is also suitable for tributaries with no
observation. The NWM predicts the flow at the outlet of each sub-basin, however, bridge sensors are
located upstream of outlets. Assuming equal soil type and land use for each sub-basin, the flow at the
outlet was linearly distributed along the river.

Qoutlet =
LTotal

LTotal − LPartial
× QB (1)

where Qoutlet is the flow at the outlet of each sub-basin, LTotal is the length of river, LPartial is the
river length from bridge sensor to the outlet of each sub-basin, and QB is the flow measured at each
bridge sensor.
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2.3. National Water Model

The National Water Model (MWM) is a continental-scale hydrologic model that generates
forecasts for multiple variables [23]. The NWM was released by the National Weather Service
(NWS) Office of Water Prediction (OWP) in collaboration with the National Center for Atmospheric
Research (NCAR) and the National Center for Environmental Prediction (NCEP). The model generates
streamflows for 2.7 million reaches of the National Hydrography Dataset (NHD) with four forecast
products (i.e., analysis and assimilation, short range forecast, medium range forecast, and long range
forecast) [24]. Table 1 shows the forecast step, frequency, and forecast duration of each product.

Table 1. National Water Model details (http://water.noaa.gov/about/nwm).

Forecast Product Forecast Latency Frequency Forecast Duration

Analysis and assimilation 1 h Hourly 0–3 h
Short range forecast 1 h Hourly 0–15 h

Medium range forecast 3 h Daily 0–10 days
Long range forecast 6 h 4× Daily 0–30 days

2.4. The HAND Method

The Height Above Nearest Drainage (HAND) [22] is a model generated by the National
Science Foundation (NSF) and the National Water Center for developing continental-scale inundation
mapping [25]. It is based on hydrological terrain analysis to produce flood inundation maps [26,27].
The Digital Elevation Model (DEM) of watershed is used to drive the flow direction and flow
accumulation area. A stream grid is then generated to be used as an input to Terrain Analysis
Using Digital Elevation Models [28], along with the flow-direction grid, to create the height of each
grid cell above the nearest drainage. The NWM predicts flow at the outlet, which can be converted to
water depth with a rating curve, and 10 sensors also provide information of water depth. The HAND is
a raster-based method and specifies the inundation zone according to the corresponding river segment.
It produces an inundation map according to the water depth of tributaries [25].

2.5. Ensemble Kalman Filter

The ensemble Kalman filter algorithm was used in the proposed methodology (Step 4) to
assimilate water depth observations into the model. In the ensemble Kalman filter, the prediction
model is represented by:

hk = F(Q) + wk (2)

where h denotes the vector of state variables (water depth), Q is the flows from the National Water
Model, wk is stationary zero-mean white noises, F represents the prediction model (HAND model),
and the subscript “k” denotes the time step. If an ensemble of n predicted state variables is available,
h f

k can be written as:

h f
k = (h f1

k , . . . , h fn
k ) (3)

where the superscript “ fi” represents the ith forecast ensemble member. Generally, initial condition
and inputs are perturbed and ensemble of predicted state variables is generated by running the model
for each initial condition. This technique needs to run the model several times for each realization.
However, due to computational cost, it is not possible to run the NWM several times to create the
ensemble. Instead of perturbing the initial conditions (IC) and inputs, ensemble was created by taking
several predicted flows by the NWM up to 4 h (outflow changes by 10% during this period) before
the selected events. Outflow was then converted to water depth using rating curves generated by
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the HAND. For this study, 10 realizations were created to estimate the error matrix in the model.
The average of the ensemble is defined by:

h
f
k =

1
n

n

∑
i=1

h fi
k (4)

Since true states are not known, we estimate them using the average of realizations in the ensemble.
Then the error matrix can be estimated by:

P f
k =

1
n − 1

〈(h f
k − hk)(h

f
k − hk)

T〉 (5)

The error matrix is then used to calculate the Kalman gain matrix by:

Kk = P f
k HT

k

(
HkP f

k HT
k + Rk

)−1
(6)

where H is the linear transformation which relates the state variables to observations. The updated state
vector (ha) is taken to be a linear combination of the forecast and the observations. The observations
should be treated as random variables to obtain consistent error propagation in the ensemble Kalman
filter [29]. Hence, the actual measurements were used as reference and random noise with zero mean
and covariance R was added to measurements. The updating equation is given by:

ha
k = h f

k + Kk

(
h∗

k − Hkh f
k

)
(7)

where h* is the water level observations after adding random noise.

2.5.1. Undersampling

The accuracy of the ensemble Kalman filter is highly dependent on the size of the ensemble.
However, due to the complexity of models and computational cost, it is not always possible to generate
a large ensemble. If the number of the ensemble is relatively small, it will not be able to accurately
estimate the model covariance matrix and system may be undersampled. Inbreeding, filter divergence,
and spurious correlation are the main issues caused by undersampling [30]. Covariance inflation and
covariance localization are the most common methods used to solve the undersampling problem [31].

2.5.2. Covariance Inflation

Equation (7) is used to inflate the underestimated covariance [32]:

h f
k ← r

(
h f

k − h
f
k

)
+ h

f
k (8)

where ← denotes the replacement of a previous value and r is the inflation factor. The optimal inflation
factor is related to the ensemble size and may vary between 1.01 and 1.07 [31]. Several methods have
been proposed to estimate the inflated forecast and observational error covariance matrices [33].
The adjusted forms of forecast and observational error covariance matrices are λkPk and μkRk,
respectively. Wu et al. (2013) proposed Equations (9) and (10) to estimate λk and μk [34].

λk =
Tr
(

dT
k HkPkHT

k dk

)
Tr
(
Rk

2)− Tr
(

dT
k Rkdk

)
Tr
(

HkPkHT
k Rk

)
Tr
(

HkPkHT
k HkPkHT

k

)
Tr(Rk

2)− Tr
(

HkPkHT
k Rk

)
2

(9)

μk =
Tr
(

HkPkHT
k HkPkHT

k

)(
dT

k Rkdk

)
− Tr

(
dT

k HkPkHT
k dk

)
Tr
(

HkPkHT
k Rk

)
Tr
(

HkPkHT
k HkPkHT

k

)
Tr(Rk

2)− Tr
(

HkPkHT
k Rk

)
2

(10)
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where dk ≡ h∗k − h
f
k .

2.5.3. Covariance Localization

Covariance localization indicated the cutting of the covariance matrix at a specific length [35].
Correlation function suggested by Gaspari and Cohn (1999) was applied to the covariance matrix by
using the Schur product to eliminate the spurious correlation [36,37]. The application of covariance
inflation and localization methods transform the updating Equation (7) to the one below (Equation (11).

ha
k = h f

k + [ρo(λkP f
k HT

k )][ρo(HkλkP f
k HT

k ) + μkRk]
−1

(h∗
k − Hkh f

k ) (11)

3. Results

Streamflow obtained from the NWM for all 85 tributaries were converted to water depth using
rating curves generated by the HAND model. Figure 3 shows examples of the rating curves derived
from the HAND for two tributaries in the watershed.

Figure 3. Rating curves created by the Height Above Nearest Drainage (HAND) for (a) Squaw Creek
River and (b) Prairie Creek River.

Water level measurements were assimilated into the model for seven bridge sensors selected as
training points. Figure 4 shows the water depth at the training locations (a) before data assimilation
and (b) after data assimilation, compared with observations from the IFIS. Green triangles are model
predictions from the HAND before data assimilation, red squares are updated water depths after data
assimilation, and blue dots are water depth observations from the IFIS.

We found that after the assimilation of water depth, the overall error for training locations reduced
from 98 cm to 48 cm. We also calculated the error for the testing locations to make sure that the Kalman
filter is able to improve the model accuracy for the sites with no observations. It was found that
the overall error decreased for testing locations as well (from 89 to 44 cm). Table 2 compares the
water depths before and after data assimilation with observations from IFIS for training and testing
tributaries. Results show that overall error for both training and testing locations decreased by 48 cm
(51%). However, the error has not been improved or error improvement is not significant in some of the
sensor locations. This could be due to a small ensemble size and error in the observations (especially
error in cross-sections of bridge sensor). The general Root Mean Square Error (RMSE) formula is
indicated in Equation (13).

Root Mean Square Error (RMSE) =

√√√√ 1
N

N

∑
n=1

(Predictedn − Observationn)
2 (13)
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Figure 4. Water depth at each sensor location.

Table 2. Water depth before and after data assimilation compared with water depth measurement from
the Iowa Flood Information System (IFIS) for training and testing tributaries.

Water Depth (m)

Observation Before Data Assimilation After Data Assimilation

Training Tributaries

0.85 0.24 0.55
1.34 0.37 0.52
0.72 0.36 0.81
0.85 0.44 1.27
0.48 0.69 0.84
2.00 0.49 1.25
2.39 0.71 2.26

Testing Tributaries

1.30 2.01 1.67
0.32 1.01 0.71
1.50 0.30 0.81
1.86 1.01 1.99

Overall RMSE (m) 0.95 0.47

Figure 5 illustrates the time series of flow predicted by the NWM versus flow observation at the
USGS station at Squaw Creek at Ames. Water depth observations were assimilated at 6:00, 11:00, and
17:00 on 24 June 2015. After updating the water depth at selected times, the rating curve from the
HAND was used to estimate the corresponding flow (green dots in Figure 5). It was found that the
overall error between USGS measurements and updated flows from the NWM was reduced by 35%
for selected times. Since continental-scale hydrologic models such as the National Water Model are
computationally expensive and it is not possible to run them several times to create a larger ensemble,
the proposed methodology can be used as an effective method for future studies to update the initial
condition of such models.

183



Hydrology 2018, 5, 9

 

Figure 5. River flow at a USGS station at Squaw Creek at Ames. Solid blue line shows the NWM
predictions, dashed-red line shows the observations at the USGS station, and green dots show the
updated flows.

4. Conclusions

The National Water Model provides flow rates for 85 tributaries in the study area. A data
assimilation framework was proposed to (i) reduce the error of water depth prediction in tributaries,
(ii) update the streamflow prediction, and (iii) introduce a scope for updating the initial conditions
of continental-scale hydrologic models. Streamflows from the NWM were first converted to water
depth using the HAND model and then assimilated to the model. After data assimilation, the root
mean square errors of the estimated depth were reduced by 50 cm (51%). However, the error was
not reduced at all sensor locations. The main reason for this is the error in bridge cross-sections.
For future works, it is highly recommended to collect accurate cross-sections of rivers at each bridge
equipped with a sensor. In this study, cross-sections were estimated based on measurements taken
downstream and upstream of each bridge. Another reason could be the small ensemble size. It was also
found that the proposed methodology is effective for the tributaries without observation. The model
predictions improved by 45 cm for tributaries for which observations were not assimilated to the
model. Finally, updated water depth at the outlet of the watershed was converted to streamflow using
rating curves generated by the HAND. The proposed methodology could also be used to dynamically
update initial conditions in the continental-scale National Water Model.
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