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Figure 8. Received Signal Strength Indication (RSSI) values in dBm under cooperation scheme for
each technology.
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Figure 9. RSSI values in dBm under collaboration scheme for each technology.
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As mentioned above, one of the key metrics in any sensor network is energy consumption.
Figures 10 and 11 show a summary of the energy consumption for each protocol under the cooperative
and collaborative schemes.
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Figure 10. Energy in Joules under cooperation scheme for each technology.
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Figure 11. Energy in Joules under collaboration scheme for each technology.

Figure 10 shows that under the cooperative scheme the protocol with the lowest energy
consumption is ZigBee, where the minimum consumption value is 0.2 Joules, but most of the sensors
consume between 0.8 and 2.1 Joules, with the median being 1.5 Joules. Zigbee consumes about half
of the LoRa protocol, since the latter has an average value of 2.4 Joules; however, 50% of the sensors
consume between 2.4 and 4.3 Joules. On the other hand, BLE and WiFi have very scattered data,
reaching to consume values as low as 1.1 Joules up to 6.8 Joules as in the case of WiFi, with the median
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value of 3.2 Joules for BLE and 4.8 Joules for WiFi. In this way, it is clear that the protocol with the
best consumption is ZigBee, additionally it has less dispersed data so that a more exact battery life
calculation can be made, otherwise in WiFi the scattered data would cause different battery life time
for each sensor.

By contrast, Figure 11 shows the protocols under the collaborative scheme; however, the results
are very similar to those in Figure 10, with the ZigBee protocol having the lowest energy consumption.
It is important to mention that in a comparison between schemes, the cooperative has a lower energy
consumption in all protocols except for WiFi, in which values are very similar. The biggest difference is
the dispersion of the data, for the ZigBee protocol the range in the cooperative scheme is 3.6 Joules and
in the collaborative scheme is 0.7 Joules, something similar occurs for both LoRa and BLE. This low
dispersion indicates that all the sensors consume practically the same energy (at least in ZigBee), so that
the lifetime of their batteries will be very similar, being able to program a more efficient maintenance
of the network.

8. Conclusions

The main motivation of this work is to contrast low-consumption wireless technologies applied
to IoT that are characterized by transmitting small amounts of information in a reliable and flexible
way, consume little battery in devices, and have great scalability in the communications system.

Concerning data, we can control the information management of applications in our computers
such as photos, videos, mails, etc. But for IoT, it does not work in the same way. It captures information
at every moment it considers necessary, instead of capturing it when requested. People usually become
subjects for data collecting, instead of users of IoT services, and most cases they are not aware of it.
Because it is not easy for people to know when sensors are activated. The privacy stack framework
bridge of today’s Internet of Things between IoT and user, starts with awareness. It concerns on how
IoT services might open communication channels to users and subjects. The IoT protocol work has
not gone into privacy data standardization, in other words, the bridge between privacy and public
status is minimal. Second, the inference part proposes users to be conscious of the constantly grow of
inferences, because data and IoT learning techniques rise their capabilities every day. Inferences helps
users to understand what IoT devices learn about them and helps the system to improve privacy with
a natural language to understand which are our privacy preferences.
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