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Extreme weather/climate events have been increasing partly due to on-going climate change. Such
events become disasters where people live. In a sustainable society, the rapid detection and monitoring
of natural disasters are required. Remote sensing techniques are suitable for dealing with natural
disasters that have various characteristics in multiple spatial and temporal domains. Continued efforts
in finding ways to operationally-monitor and assess disastrous events such as heavy rains, floods,
drought, heatwave, and forest fires are consistently rewarded by integrating advanced remote sensing.
However, the development of robust disaster monitoring and assessment methods from regional
to national scales of disasters is still challenging as disastrous events typically result from complex
mechanisms. A multitude of data from visible to microwave remote sensing have been used for
conducting comprehensive monitoring and assessment solutions for disasters. Disaster monitoring and
assessment are the areas that have benefited most by recent advances in satellite, airborne, and ground
remote sensing. Novel techniques in image analysis and the scheduled launch of a series of new sensors
with enhanced specifications are also promising for disaster monitoring and assessment, which aims
at reducing the risks caused by disasters. This special issue aims at finding novel approaches using
various satellite-based images and airborne/ground instruments for the monitoring and assessment of
natural disasters including floods, droughts, cyclones, landslides, and land subsidence.

1. Overview of Contributions

Myoung et al. [1] modeled live fuel moisture (LFM) using the enhanced vegetation index (EVI)
of the moderate resolution imaging spectroradiometer (MODIS). The LFM is a conventional index
for indicating the danger level of wildfires. Linear models between EVI and other meteorological
factors and in situ LFM observations in California were developed in the study. There was a stronger
relationship between LFM and EVI when ancillary meteorological predictors were considered together
when compared to the model that only used the EVI. It was confirmed that the temporal discrepancy
between in situ measurements and satellite data has substantial impact on the accuracy of LFM
estimation. Furthermore, the spatial consistency between the in situ and satellite-based datasets were
examined. The proposed method was tested with the Coby fire that occurred in January 2014 in
California, USA. The fire ignition point and the burnt area were well matched with the place where the
LFM showed under 60%, which was considered as highly dangerous for wildfires.

Ryu et al. [2] investigated the usefulness of satellite-based burned ratios and vegetation indices
to explore post-fire recovery processes. Normalized burned ratio (NBR) and the difference between
pre- and post-fire NBRs were calculated using a MODIS product (i.e., MOD09 collection 6) of Terra.
The burned ratio of wildfire not only affects the loss of carbon resource, but also the carbon assimilation
ratio. For that, the gross primary production (GPP) of MODIS (MOD17A2H) was additionally compared
to monitor the post-fire recovery processes. These metrics were able to visualize the phenomena of
forest recovery in South Korea, which experienced a severe fire event in 2004.

Remote Sens. 2019, 11, 2181; doi:10.3390/rs11182181 www.mdpi.com/journal/remotesensing1
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Yang et al. [3] investigated the relationship between urban structures and land subsidence using
the Envisat advanced synthetic aperture radar (ASAR) and TerraSAR-X high resolution SAR data.
In Beijing, an intensively developed urban area, the high-rise building areas showed significant land
subsidence when compared to the areas of low-rise buildings. The permanent scatter interferometric
synthetic aperture radar (PS-InSAR) technique was harmonized with high resolution SAR data and in
situ observations to reveal the mechanisms of land subsidence under the urban areas. The novelty of
this study lies in the block scale analysis with the advantage of using high resolution SAR.

Lim and Lee [4] simulated flood damage areas (FDAs) in North Korea by taking advantage of
satellite-based information derived from inaccessible areas. Expert-based multiple remote sensing
and GIS approaches were chosen for the delineation of flood inundated areas (FIAs) referenced to
visible Google Earth high resolution imagery. Sentinel-1 radar images were used to detect the FIAs.
The stream flows along the geomorphology were modeled by the Geomorphon model. The originality
of this study was included in the model selection by using multiple combinations of input variables.
Finally, the most robust model was able to delineate FDAs, which agreed well with the damage
information in the reports provided by the North Korean government.

Ma et al. [5] established a flash flood risk model in Yunnan Province in China, a typical
flood-prone area. Unlike typical floods, flash floods are known to be highly risky, making it difficult
for people to evacuate their residences. The model was developed using satellite-based meteorological,
topographical, hydrological, and anthropological indices as the input factors affecting flash floods by
using an artificial intelligence algorithm, named the least squares support vector machine (LSSVM).
The highest model performance in terms of accuracy was achieved by the LSSVM with a radial basis
function (RBF) kernel. In particular, the curve number in the topographical factors was the most
contributing factor to the flash flood risk model. The choice of model input variable and model
verification were carefully conducted and high risk areas were identified through the risk analysis.

Jang et al. [6] developed a forest fire detection model using geostationary satellite images,
Himawari-8 AHI, over South Korea. The model consisted of thresholding, random forest machine
learning, and post-processing. In South Korea, wildfires frequently occur at a small scale. For this
reason, accurate and rapid forest fire detection using high spatial and temporal resolution satellite data
is crucial. However, existing approaches have several critical limitations including a very high false
alarm rate. The three-step fire detection model proposed in this study focused on maintaining a high
probability of detection (>90%) without increasing a false alarm rate (i.e., significant reduction of a
false alarm rate when compared to the existing approaches). The proposed model was validated with
real fire events, resulting in a good performance even for small scale fires.

Zhang et al. [7] proposed a new dryness monitoring indicator, the ratio dryness monitoring
index (RDMI). Surface dryness monitoring is important to assess water deficiency as a disaster to
harm human lives and ecosystems. The RDMI was developed using distances from the “Edges on
the triangle” on the near-infrared (NIR) and Red reflectance feature space since the NIR and Red
wavelengths are closely related to moisture and vegetation. In particular, defining wet and dry edges
using NIR and Red reflectance is a novel component when compared to existing surface dryness
indices. The proposed approach was demonstrated in Xinjiang, China, where the biggest desert in
Asia is located. The results showed a conspicuous agreement with the distribution of landcover types.

Zuo et al. [8] combined two SAR data, Envisat ASAR and Radarsat-2, with the PS-In SAR method
to capture the temporal patterns of land subsidence and demonstrated the stage of land subsidence in
terms of temporal evolution in the east of the Beijing Plain in China, which is known as an area that has
largely subsided. A permutation entropy method was used to reverse the temporal evolution pattern
of land subsidence. The rate of subsidence results from the SAR timeseries was validated with in situ
data resulting in high accuracy (R2 = 0.94). The time-series of land subsidence showed uneven patterns
and agreed well with the decreasing pattern of groundwater, although the subsidence would progress
along with the geological conditions. Finally, the overexploitation of groundwater was considered as
the main cause of land subsidence from this temporal analysis.
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Tropical cyclones (TCs) are one of the most risky disasters in terms of casualties and economic
losses. However, the determination of TC initiation still requires human interpretation. Several studies
have been conducted to automate the process of identifying whether a TC will develop. Kim et al. [9]
developed an automatic TC initiation detection model with machine learning (ML) approaches and
compared those methods using four metrics: heat rate, false alarm rate, Peirce skill score, and lead
time. The ocean surface wind and precipitation from WindSat were used to build three ML-based
models—decision trees (DT), random forest (RF), and support vector machine (SVM)—and linear
discriminant analysis (LDA) as a conventional model. Both cases of developing and non-developing
tropical disturbances from the Joint Typhoon Warning Center (JTWC) best track were collected to train
the models. The results of all accuracy metrics showed a higher performance for the ML models than
for the LDA model. In particular, the ML models were able to detect TC initiation 26–30 h before a TC
was diagnosed as a tropical depression, which was 5–9 h earlier than the detection by LDA.

Ye et al. [10] proposed an original monitoring system for detecting debris flow by building a
wireless accelerometer network and evaluated it over a mountainous area in Japan. Defining the
phenomena of debris flow is challenging because of its drastic ignition and difficult access. A two-stage
data analysis process with anomaly detection and debris flow identification was implemented in the
framework. Signals were detected using a state-of-the-art machine learning approach, convolutional
neural networks. The network of connected sensors was able to provide a process of debris flow from
the initial to final stages. The system developed suggested an alternative method to detect the disaster
and the related analytical method.

Lee et al. [11] developed machine learning models to estimate the total precipitable water (TPW)
from Himawari-8 data using the ERA-Interim TPW as a reference for Northeast Asia under the clear
sky condition. The radiative transfer model was used for cloud screening. TPW, a column of water
vapor content in the atmosphere, can be a critical variable to delineate hydrological conditions. It is
also related to the intensity of disasters regarding the convective available potential energy (CAPE).
Machine learning methods, RF, extreme gradient boosting (XGB), and deep neural network (DNN)
were evaluated and compared. The DNN result outperformed the other models when validated using
ERA-Interim and radiosonde observation (RAOB) data. TPWs retrieved from geostationary satellite
images with a 10 min interval can provide valuable input to a disaster management system focusing
on heavy rains and floods.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The goal of the research reported here is to assess the capability of satellite vegetation indices
from the Moderate Resolution Imaging Spectroradiometer onboard both Terra and Aqua satellites,
in order to replicate live fuel moisture content of Southern California chaparral ecosystems.
We compared seasonal and interannual characteristics of in-situ live fuel moisture with satellite
vegetation indices that were averaged over different radial extents around each live fuel moisture
observation site. The highest correlations are found using the Aqua Enhanced Vegetation Index for
a radius of 10 km, independently verifying the validity of in-situ live fuel moisture measurements
over a large extent around each in-situ site. With this optimally averaged Enhanced Vegetation
Index, we developed an empirical model function of live fuel moisture. Trends in the wet-to-dry
phase of vegetation are well captured by the empirical model function on interannual time-scales,
indicating a promising method to monitor fire danger levels by combining satellite, in-situ, and model
results during the transition before active fire seasons. An example map of Enhanced Vegetation
Index-derived live fuel moisture for the Colby Fire shows a complex spatial pattern of significant live
fuel moisture reduction along an extensive wildland-urban interface, and illustrates a key advantage
in using satellites across the large extent of wildland areas in Southern California.

Keywords: wildfire; satellite vegetation indices; live fuel moisture; empirical model function;
Southern California; chaparral ecosystem

1. Introduction

Wildfires in Southern California (SoCal) are part of the natural cycle under Mediterranean climatic
conditions. However, excessive urban growth in SoCal significantly increases the wildland-urban interface,
and thus seriously compounds wildfire hazards, resulting in loss of human life and property [1,2].
Thus, improving fire danger assessment systems with a high spatial resolution and a wide coverage across
the vast wildland is essential for decision makers and fire agencies to develop and implement pro-active
policies. To assess wildfire danger, the United States Forest Service (USFS) has developed and utilized
the National Fire Danger Rating System (NFDRS) [3], for which vegetation moisture is a key input.

While the moisture content of dead vegetation in NFDRS can be rather easily obtained from
weather-dependent models since dead fuels are dependent on atmospheric variability [4], estimating
the moisture content of live vegetation is more complicated because it depends on physiological
properties that may significantly vary among different plant species [5]. To quantify moisture content

Remote Sens. 2018, 10, 87; doi:10.3390/rs10010087 www.mdpi.com/journal/remotesensing5



Remote Sens. 2018, 10, 87

of live vegetation, live fuel moisture (LFM) is defined as the percentage ratio of the difference between
wet and dry weight to the dry weight of a vegetation sample [6].

In general, LFM is closely related to fire ignition, propagation, and intensity [7–9]. LFM has
been incorporated into many fire behavior models (e.g., Fire Area Simulator or FARSITE model).
Per Weise et al. [5], wildfire danger can be categorized with LFM levels (e.g., low: greater than 120%,
moderate: between 80% and 120%, high: between 60% and 80%, and critical; less than 60%).
Dennison et al. [9] have suggested that LFM lower than 77% appears to be historically associated
with large fires in the Santa Monica Mountains of Los Angeles County, CA. Understanding seasonal
trends of LFM can improve seasonal outlooks of LFM change and help to improve effective wildfire
management as fire agencies operationally rely on field observations of LFM [6].

Currently, spatial coverage and temporal sampling of LFM data are severely limited as fieldwork
for LFM measurements is labor intensive. LFM is manually measured weekly, biweekly, or monthly at
a limited number of sampling sites across SoCal. For example, the Los Angeles County Fire Department
typically samples LFM only at 11 disparate sites in its jurisdiction once every two weeks, leaving
large data voids in areas where weather and geophysical variations can substantially affect LFM.
In this regard, the capability of satellite data to observe LFM in each area around a given LFM site on
a nearly daily basis, as compared to the weekly-monthly data from the manual method, can be a major
advantage that is beneficial to fire agencies.

A potential approach to overcome the spatial and temporal limitations of manual measurements
of LFM is to use vegetation indices (VIs) derived from satellite data. Satellite VI-based LFM estimations
that have been attempted in the past were mostly for chamise ecosystems in California [10–13] and
in Spain [8]. However, many studies were based on short-term records and statistical relationships
without investigating seasonal and interannual characteristics of LFM and VIs based on obsolete
satellite data collections with an inaccurate calibration.

Physically, LFM is dependent on precipitation, soil moisture, evapotranspiration, and the physiology
of plants [6,14]. VIs retrieved from satellite remote sensing measurements are related to surface greenness
and biomass of vegetation represented by the green leaf area index [15], which are impacted by and
thereby correlated with LFM. Thus, VI and LFM are interdependent variables with similar seasonal and
interannual trends, which suggest a possible estimation of LFM from remotely sensed VI. However,
dissimilarities between them also exist. For example, plant growth requires not only moisture, but also
optimal temperature and solar radiation, and vegetation moisture can also vary during the complex
photosynthetic and xylem embolism processes in different plant species [16,17]. Therefore, to retrieve
LFM from satellite VI data, it is necessary to conduct a careful investigation of LFM and VI characteristics
by utilizing decadal datasets of in-situ and satellite measurements.

Previous studies have attempted to make a point-to-point comparison between LFM and VI or
a combination of other VIs (e.g., [10–13]). Here, we examine the validity of multiple remotely sensed
products used to estimate LFM, and thus we will investigate confounding factors and additional
physical parameters necessary in the development of LFM model functions. Moreover, a review of
past analyses raised concerns in remotely sensed LFM products [18]; however, many past results
based on Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 or earlier versions
suffered from serious calibration problems [19,20], which caused significant errors in the remotely
sensed VI products as recently published by Zhang et al. [21]. Such calibration problems necessitate
a re-evaluation of the use of remotely sensed products to estimate LFM. Our novel approach is to
test the LFM relationship with enhanced vegetation index (EVI) that is averaged over various spatial
extents centered at each in-situ LFM sampling location. The objectives of this study are to: (1) Compare
seasonal and interannual characteristics of LFM with those of VIs calculated from satellite data in
SoCal; (2) develop an empirical model function of LFM based on an optimal vegetation index together
with temperature data; and, (3) evaluate the feasibility, as well as limitations of the empirical model for
wildfire danger assessments.

6



Remote Sens. 2018, 10, 87

2. Methods and Materials

2.1. Live Fuel Moisture

Moisture content in live biomass is quantitatively characterized by LFM. LFM is defined
as the percentage difference between wet and dry vegetation material over the dry mass of
vegetation. Explicitly,

LFM(%) =
mw − md

md
× 100, (1)

where mw is weight of the sampled vegetation, and md is the dry weight of the same sample.
Our analysis was carried out primarily on chamise chaparral (Adenostoma fasciculatum), the most
common shrub in the chaparral and regarded as an important fuel component in SoCal. The in-situ
LFM dataset was obtained from the national live fuel moisture database (http://www.wfas.net/index.
php/national-fuel-moisture-database-moisture-drought-103). LFM data are collected regularly every
one or two weeks; however, the intervals can be longer during wet seasons when leaves and twigs
remain wet after rainfall events. In these cases, fire agencies postpone their LFM sampling by a few
days to avoid errors in LFM caused by excessive rainwater onto vegetation. To be compared to VIs,
the LFM dataset was linearly interpolated at a daily time scale.

Among the 24 LFM sampling sites in Los Angeles, Ventura, and Orange County, 16 sites had
data coverage for more than three years (Table 1). The data from these 16 sites were selected for
the regression analysis between LFM and VIs. For the longer-term analysis, data were selected from
seven sites having more than 10 years of record from 2002 (bold characters in Table 1 and Figure 1).
Four sites (Bitter, Placerita, La Tuna, and Laurel) were in inland areas (inland sites, hereafter), whereas
the other three sites (Trippet, Schueren, and Clark) were in coastal areas (coastal sites, hereafter).
Bitter and Schueren sites had corresponding meteorological stations, called Remote Automatic
Weather Stations (RAWS); therefore, LFM and EVI comparisons with their corresponding atmospheric
conditions were also investigated at these two sites. While utilizing LFM data at all of the sites to
investigate and determine an overall universal LFM-EVI function may be desirable in principle, it is
cautious that long-term data records at all the sites are required to ensure sufficient statistical sampling
over the vast wildland in SoCal.

Figure 1. 16 live fuel moisture sampling sites overlaid on a Fire and Resource Assessment Program
vegetation map. The colors indicate dominant vegetation species; only chamise-dominant areas
(e.g., shrubland and scrubland) are shown. Two circles at La Tuna Canyon with a radius of 5 km and
10 km are also shown.
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Table 1. Live fuel moisture (LFM) stations used in the study. Underlines indicate short names of
the seven main research sites.

Name Site Number Latitude Longitude Fire Agency

Bitter Canyon 15 34.510000 −118.594444 LA County
Placerita Canyon 1 34.375278 −118.438889 LA County
La Tuna Canyon 19 34.246667 −118.302778 LA County
Laurel Canyon 20 34.124722 −118.368889 LA County
Trippet Ranch 5 34.093333 −118.597778 LA County
Schueren Road 4 34.078889 −118.644722 LA County

Clark Motorway 6 34.084444 −118.862500 LA County
Peach Motorway 2 34.355556 −118.534722 LA County
Bouquet Canyon 16 34.486111 −118.472778 LA County
Glendora Ridge 3 34.165278 −117.865000 LA County

CircleX 7 34.110833 −118.937222 Ventura County FD
Laguna Ridge 8 34.400000 −119.378889 Ventura County FD

Los Robles 9 34.171667 −118.882222 Ventura County FD
Tapo Canyon 11 34.306389 −118.710278 Ventura County FD
Sisar Canyon 10 34.447500 −119.135278 Ventura County FD

Black Star 21 33.754722 −117.670833 Orange County FD

2.2. Remote Sensing Data

The present study focuses on the two most relevant VIs among an array of many VIs defined and
used for different purposes: the normalized difference vegetation index (NDVI) and the EVI. NDVI and
EVI were derived from the MODIS’ Vegetation Indices 16-Day L3 Global 250 m (MOD13Q1 and
MYD13Q1)’ products from both the Terra and Aqua satellites [22]. The datasets were provided by
the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC) at the USGS/Earth
Resources Observation and Science (EROS) Center. The analysis period covered 10 years between
October 2002 and September 2012, as VIs from MODIS have been available since 2001 for Terra and
since 2002 for Aqua. We also investigated other VIs derived from MODIS land surface reflectance
products (MOD09A1) for the same sites, including normalized difference water index (NDWI),
normalized difference infrared index (NDII), and visible atmospherically resistant index (VARI) [23]
(e.g., Table S1). These three VIs were recognized as effective indicators of vegetation water content and
soil moisture [24,25].

To test the sensitivity of the LFM relationship with different areal averages of VIs, the values
of the VIs were averaged over circular areal extents with various radii, ranging from 0.5 to 25 km.
Then, the averaged VIs were used to correlate with LFM. This method allows for an independent
assessment of the spatial extent where the in-situ LFM measurements are valid beyond the central
sampling point. This is important because fire agencies intentionally select their LFM sampling
locations to be representative of the surrounding vegetation conditions as far as possible so that
measured LFM values are representative over an extensive area instead of being valid only at each
sampling site. The sensitivity test results showed that a slightly higher correlation is observed at
the 10-km radius (correlation coefficient of about 0.79) than that at 0.5-km radius (about 0.72 correlation
coefficient). This suggests that a spatial average of VIs over a larger extent (~10-km radius) around each
LFM location includes a larger ensemble of VI data, which statistically reduces satellite measurement
noises as well as the effects of heterogeneous mixtures of different plant species within each sampling
area. Thus, in this study, results for the areal extent of a 10-km radius, having the highest correlations,
were selected to carry out the analysis.

2.3. Empirical Model

First, the Pearson correlation analysis is carried out to investigate the relationship between LFM
and multiple VIs at 16 LFM sites to find the VI with the highest correlation against LFM. This VI is
later employed as the major MODIS-derived indicator of vegetation water content for further analysis.

8



Remote Sens. 2018, 10, 87

LFM data available at the seven LFM sites in a 10-year period were separated into two different groups,
representing the inland region and coastal region. Regional characteristics of LFM and EVI between
inland and coastal regions were investigated together with their interannual variations. We then
examined possible reasons for the different regional characteristics.

Next, linear regression models of VIs for LFM at the seven sites with decadal records were
developed and evaluated across the 10-year data period with respect to the averages and inter-annual
variability of maxima, minima, and transitional levels of LFM. We also tested non-linear models with
a quadratic term or log transformation of the predictor, but a substantial improvement was not found.
Therefore, in this study, two linear models are developed and tested. The first model uses each VI
as a sole predictor (Equation (2)), while the second model includes a composite of collocated and
contemporaneous VI and meteorological variables as predictors to account for the environmental
dependence of LFM (Equation (3)), as follows:

LFMi = β0 + β1 VIi + εi, (2)

LFMi = β0 + β1 VIi + β2 MIi + εi, (3)

where MI is a meteorological factor with index i refers to various observations (i = 1, . . . , N), and εi is
a residual error term.

VIs alone may not be sufficient to fully replicate LFM since using them is an indirect approach to
infer the vegetation moisture. The other factors that were related to the dryness of vegetation conditions
were selected for a test as an independent variable in addition to VIs. In this study, meteorological
observations such as daily temperature (minimum, maximum and mean), relative humidity,
and precipitation are chosen as additional variables in the composite estimation model. Due to
large fluctuations in daily data, we used a 15-day running mean on LFM, EVI, and meteorological
data in our analyses.

Finally, the capability of our satellite derived LFM model is tested in the case of the 2014 Colby
Fire. The Colby Fire was ignited by an illegal campfire along the Colby Truck Trail in the San Gabriel
Mountains of the Angeles National Forest on 16 January 2014 [26]. Fanned by dry and powerful
Santa Ana winds, it burned over 1962 acres by 25 January at 98% containment. The fire destroyed
five homes, damaged 17 other structures, injured one person, and forced an evacuation of 3600 people
in the cities of Glendora and Azusa, California.

3. Results

3.1. Comparison of LFM and VIs

In-situ LFM and VIs showed similar interannual patterns with different amplitudes (Figure S1).
Among the VIs, EVI showed the highest correlation (Figure S2). In fact, MODIS EVI was developed to
enhance the sensitivity to a wider range of vegetation conditions and to improve vegetation monitoring
through a decoupling of the canopy background signal and a reduction in atmospheric influences.

Regarding the difference between Aqua and Terra, the highest correlation to in-situ LFM was
EVI derived from Aqua data when compared to the Terra data, and the lowest correlation with
NDVI resulted from Terra data. In-situ LFM measurements were collected between 12 p.m.–4 p.m.,
spanning the local overpass time of Aqua (around 1:30 p.m.), while the data acquisition local time
of Terra (around 10:30 a.m.) caused a mismatch with the timing of LFM sampling. Another issue
was the gain drift problem in Terra data [19], which was corrected in MODIS Collection 6; however,
the residual error remained larger in Terra products. Thus, we primarily used EVI from Aqua in
the subsequent analyses in this paper.

Presented in Figure 2 are 10-year records of daily averaged LFM and the corresponding EVI at
the coastal and inland sites. The results show distinctive differences between the two regional sites.
For example, the moisture level of chamise at the coastal sites was higher than that at the inland
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sites, particularly in the moist-up phase (November-April) when LFM increased over the growing
season (Figure 2a). Both coastal and inland LFMs attained their minima at the same time around
the day-of-year (hereafter DOY) of 275. However, the coastal LFM reached its maximum earlier
than that of the inland LFM, at DOY 87 and DOY 133, respectively.

Figure 2. A 10-year daily mean of (a) live fuel moisture and (b) enhanced vegetation index for
the inland sites (solid line) and the coastal sites (dashed line). The x-axis represents months
from November to October. Error bars are indicated by vertical bars for the inland sites only.

Regarding EVI, the coastal EVI was consistently higher than the inland EVI, which was attributed
to higher vegetation fractions at the coastal sites than those at the inland sites. The maxima occur
almost simultaneously around DOY 105 in both regions, but date of minimum EVI at the costal sites
was DOY 260, about 40 days earlier than that at the inland sites. While LFM exhibited strong variations
in the moist-up phase, EVI had a more definitive peak toward the end of the growth period (Figure 2).
These results reflected intrinsic differences between LFM and EVI characteristics.

The time series of LFM and EVI show significant interannual variations at both inland and coastal
sites (Figure 3). Limited fuel moisture in chamise was most prevalent in 2007, and the vegetation
at the inland sites experienced a greater moisture deficit than that at the coastal sites. In contrast,
there was relatively higher fuel moisture in 2003 and 2005. Similar features were consistently found in
EVI in both wet and dry years. In addition to the overall pattern, EVI also replicated the differences of
LFM between the inland and coastal sites; e.g., higher LFM values at the coastal sites as compared to
those at the inland sites during the 2011–2012 winter.

Figure 3. 10-year time series (2003–2012) of live fuel moisture (a,c) and enhanced vegetation index
(b,d) at the inland sites (a,b) and the coastal sites (c,d); The arrow in (a) indicates the period of live fuel
moisture that was less than 75% in the 2011–2012 fire season.

The time series also reveal different interannual characteristics of LFM and EVI (Figure 3).
First, LFM showed higher values of maxima for most years, even during dry years, except for 2007.
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For example, during the two dry years, 2004 and 2012 (77% and 27% winter precipitation received with
respect to the 1950–2000 mean, respectively), maximum LFM values were close to those in wetter years.
In these two years, the start of LFM growth period was delayed and began decreasing earlier, and these
changes induced an enhanced kurtosis shape of the LFM time series, and vice versa in the wetter year.
The variations in the LFM kurtosis were more pronounced at the inland sites. When compared to LFM,
the kurtosis of EVI did not vary substantially, but maximum values fluctuated more interannually,
while the rate of EVI seasonal change did not have a strong variation from year to year.

Minimum values of LFM stayed in the 50% range even in dry years (e.g., 2004, 2007, and 2012),
albeit that EVI value dropped below normal in those years. Near minimum LFM values at the inland
sites continued for seven months during the 2011–2012 fire season (e.g., the arrow in Figure 3a).
The persistently low LFM values occurred as the plants sustained a minimal level of moisture for
survival by tightly closing their stomata during dry and hot summers to minimize water loss through
transpiration [8]. While there was an overall similarity in seasonal and interanual behavior of LFM
and EVI, detailed differences in LFM and EVI characteristics would contribute to the uncertainty when
estimating LFM from EVI to be discussed in the next section.

To investigate the responses of LFM and EVI to precipitation, we overlaid a time series of
precipitation on the LFM and EVI records at Bitter (one of the inland sites) and Schueren (one of
the coastal sites) as presented in Figure 4. The intensity and timing of rainfall were closely related
with LFM behaviors. LFM started to increase after rainfall and peaked in early summer. LFM showed
minimum in fall until rain would start in the next winter. When compared to the Bitter site,
the precipitation rate at Schueren was higher and attributable to the higher levels of LFM in fall and
winter. Minute amounts of precipitation in 2007 and 2012 caused abnormally low LFM. These results
suggested that LFM would directly respond to the water availability from rainfall.

Figure 4. 10-year time series (November 2002–October 2012) of live fuel moisture (solid black) and
enhanced vegetation index (dashed) with precipitation (solid gray) at (a) Bitter and (b) Schueren.
The 15-day running mean is applied to each variable. Vertical dashed lines indicate beginning of
each year.

EVI exhibits similar characteristics as LFM, except for a delayed response to initial precipitation
events in some years. For example, there was a tendency for an increase of LFM prior to an increase
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of EVI in the early wet season, supported by consistent negative values of the difference between
minimum LFM dates and minimum EVI dates, as shown in Figure 5a, for the difference of minimum
dates (LFM-EVI). Ranging from −4 to −123 days, this pattern was observed in 68% of the cases at
the Bitter and Schueren sites and more obvious at Schueren. When precipitation in a rainy season
is significantly reduced, and thus seasonality of LFM becomes vague, the minimum date difference
tends to be large (e.g., 2007/08 and 2012/13 cases in Schueren). Regarding the maxima, the timings of
the EVI maxima were slightly earlier or later without any consistent bias of sign, compared to those of
the LFM ranging from −39 to +68 days (Figure 5b). These results indicate that EVI captures the general
seasonal trend of LFM. However, the discrepancy in the timing of minimum and maximum of EVI
and LFM suggested that additional factors would be necessary in combination with EVI to accurately
capture the seasonal behavior of LFM.

Figure 5. (a) Differences between minimum live fuel moisture and enhanced vegetation index dates for
each year of the 10 years at Bitter (dark gray bar) and Schueren (light gray bar); (b) Same as (a) except
differences between maximum dates.

3.2. Empirical Model for LFM Estimation

A linear regression model relating LFM to EVI, termed an empirical model function (EMF),
was developed at each site, and the results are shown in Table 2. With EVI as a single predictor,
constants and coefficients of the EMF were similar among several different sites. Figure 6a,c present
time series of in-situ LFM and EVI-based estimates at Schueren and Bitter, respectively. These results
highlighted the overall consistency across the 10-year period between in-situ LFM and EVI-estimated
LFM. However, because of the significant discrepancies in the maxima and minima, it was necessary to
quantitatively evaluate the performance of the EMF in characterizing 10-year averages and interannual
variability of the timing, as well as in obtaining magnitudes of maxima and minima. In addition,
the date when LFM reached 90% level was also examined. The 90% LFM value represents a transitional
stage that approaches high fire danger and an active fire season [5].
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Figure 6. 10-year time series of (a) enhanced vegetation index (EVI)-estimated live fuel moisture
(solid line) and in-situ live fuel moisture (dashed line) at Schueren; (b) is same as (a), except EVI and
Tmin-estimated live fuel moisture (solid line).

Table 2. Results of the linear regressions between LFM and EVI.

Site Name Coefficient (β1) Constant (β0) R2 Significance

Bitter 477.93 −3.98 0.73 <0.001
Placerita 669.43 −49.67 0.76 <0.001
La Tuna 538.50 −42.72 0.79 <0.001
Laurel 501.36 −38.76 0.70 <0.001
Trippet 468.59 −27.74 0.65 <0.001

Schueren 479.77 −33.36 0.67 <0.001
Clark 475.74 −27.73 0.74 <0.001

Table 3 represents the differences (estimated LFM minus in-situ LFM) of the 10-year mean values
at each site. The results showed that the EVI-based model underestimated maximum LFM values by
10–20% when compared to in-situ LFM. The differences of the date of maximum LFM were usually less
than 16 days without any systematic bias in signs, which were consistent with the lack of any systematic
bias in the maximum dates of LFM and EVI (Figures 4 and 5). In contrast, EVI slightly overestimated
minimum values by 0–7% of the in-situ LFM. Nevertheless, the differences in the minimum dates were
significant (2~43 days), corresponding to the temporal lag or delay in EVI minima as compared to that
of in-situ LFM minima.

Table 3. 10-year mean of differences between estimation and in-situ LFM for value and date of
maximum and minimum LFM, and date of 90% LFM value at each site.

Site Name
Maximum LFM Minimum LFM 90% LFM

Value (%) Date (Day) Value (%) Date (Day) Date (Day)

Bitter −16.7 −0.7 1.6 17.4 1.2
Placerita −20.5 −16.2 1.8 10.3 −6.8
La Tuna −10.7 1.1 1.0 28.8 −3.1
Laurel −13.5 −3.0 0.5 26.9 −5.5
Trippet −15.3 5.2 4.2 22.8 9.2

Schueren −16.7 −6.7 7.0 42.7 1.5
Clark −15.4 12.0 5.6 2.4 −4.9

With regards to the 10-year correlation (Table 4), interannual maximum values of in-situ LFM were
significantly correlated with those of the estimates only in the inland regions (Bitter, Placerita, La Tuna,
and Laurel) at the 95% confidence level. For the minimum values, only three sites (Placerita, Schueren,
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and Clark) showed statistically significant correlations. With respect to dates, the maximum dates of
in-situ LFM matched well with those of the EVI-estimates for most of the sites, but minimum dates did
not, as indicated by the low or negative correlation coefficients at most of the sites, except Placerita and
Clark. These results reflected limitations of the EMF using EVI alone to replicate extrema (especially
minima) in LFM values and dates.

Table 4. Interannual correlations between the estimated and in-situ LFM with respect to values and
dates of maximum and minimum of LFM, and 90% LFM. Asterisks (*) indicate statistically significant
correlations at the 95% confidence level.

Site Name
Maximum LFM Minimum LFM 90% LFM

Value Date Value Date Date

Bitter 0.84 * 0.45 0.32 0.57 0.85 *
Placerita 0.79 * 0.19 0.72 * 0.69 * 0.72 *
La Tuna 0.66 * 0.63 * 0.48 0.34 0.61 *
Laurel 0.70 * 0.82 * 0.42 0.12 0.78 *
Trippet 0.44 0.82 * 0.53 0.42 0.69 *

Schueren 0.27 0.71 * 0.63 * −0.20 0.80 *
Clark 0.35 0.69 * 0.78 * 0.69 * 0.87 *

Regarding the issue of the underestimation of LFM maxima, a contributing factor was the small
interannual variation observed in the maximum values of in-situ LFM (i.e., the large variations of
LFM kurtosis in Figure 3) when compared to those of the EVI. The small variation in in-situ LFM
maxima was likely a consequence of the LFM sampling practice of fire agencies during wet seasons;
that is, when it rains during the period, the two-week interval of LFM measurements was often delayed
by a few days to avoid errors that are caused by rainwater-residue on plants during or after rainfall
events. Therefore, when fire agencies measure LFM after rainfall, LFM values were generally larger
as the time delay allowed more absorption of ample moisture from precedent rainfall. As a result,
high values of the LFM maxima were consistently observed for most of the years except for excessively
dry years, such as 2007. In contrast, EVI is responsive to canopy physiological variation rather than just
vegetation moisture. Furthermore, EVI values are less sensitive to precipitation owing to the spatial
averages across large areas where precipitation may occur in different subsectors at different times.
Because of the combined effects of these two factors, it is likely that LFM more directly and rapidly
reacts to precipitation compared to the EVI response.

Our results also indicate that the estimation error of the EMF for minima is not negligible.
Two reasons likely responsible for these limitations were: (1) The presence of the threshold of minimum
LFM value (e.g., 50% range), unlike the behavior of the EVI; and, (2) the delayed increases of EVI when
compared to LFM in early transition into the growing season, as presented in the previous section.
In contrast, the 90% dates were well identified by EVI at all of the sites with respect to both the 10-year
mean and variability. The 10-year average differences of the 90% dates were less than 10 days without
any systematic bias (Table 3). As a result, the interannual correlations between the 90% LFM date and
the corresponding estimates from the EMF were consistently and significantly high.

We also examined correlations between the modeled LFM and in-situ LFM where changing
periods of the in-situ LFM reached at 100 to 70% (Table 5). The highest correlations at each site ranged
between 0.78 and 0.92 and occurred at either a 90% or 80% wet-to-dry transitional threshold except at
Placerita. The 90% and 80% LFM are related to the moderate or high fire danger levels in the 10-year
analysis period, the dates of these thresholds varied significantly year to year. Therefore, the high
correlation results validated a considerable capability of the LFM EMF to capture the dry vegetation
transition into the high fire danger range. A previous study had pointed out that 77% of LFM is
a threshold for large historical wildfires in SoCal [27]. This would indeed support that EVI-based
estimations in this study could provide valuable information for determining the actual start dates of
a fire season and potential dangers of large wildfires.
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Table 5. Interannual correlations between the estimated and in-situ LFM with respect to of the dates of
various LFM thresholds. Asterisks (*) indicate statistically significant correlations at the 95% confidence
level. The highest correlation among the four LFM thresholds at each site is indicated in bold.

Site Name
Dates of In-Situ LFM Thresholds

100% 90% 80% 70%

Bitter 0.78 * 0.85 * 0.81 * −0.03
Placerita 0.64 * 0.72 * 0.68 * 0.90 *
La Tuna 0.58 * 0.61 * 0.78 * 0.60 *
Laurel 0.62 * 0.78 * 0.68 * 0.40
Trippet 0.68 * 0.69 * 0.80 * 0.69 *

Schueren 0.67 * 0.80 * 0.59 * −0.29
Clark 0.91 * 0.87 * 0.92 * 0.64 *

3.3. Modified Empirical Model Using Temperature

As indicated in the previous section, EVI alone might not be sufficient to fully replicate LFM
due to other factors that are involved in causing dryness of vegetation conditions. To improve
the LFM EMF, we tested the EMF model using several meteorological variables from RAWS station as
an independent variable in addition to EVI. The results indicate that among the daily temperatures,
humidity, and precipitation, the model improvement was highest with the use of daily minimum
temperature (Tmin) (Table S2). It is notable that daily maximum and average temperature and humidity
also result in the model improvement, while daily precipitation does not. The EMF using both EVI
and Tmin at Schueren is described in Table 6. The inclusion of Tmin together with EVI substantially
improved the results, especially for lower values (Figures 6 and 7), although the improvement in term
of R2 was not large.

Figure 7. Daily time-scale scatter plots of the in-situ LFM in x-axis with (a) EVI-estimated LFM and
(b) EVI and Tmin-estimated LFM in y-axis at Schueren; (c) Comparison of 80% LFM dates of in-situ
LFM (black), EVI-estimated LFM (light gray), and EVI and Tmin-estimated LFM (dark gray) at Schueren.
There were no values for the EVI-estimated LFM in 2006 and 2007 since EVI-alone estimated LFM
values were higher than 80% the entire wet-dry season.
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Table 6. Results of the linear regressions of LFM at Schueren.

Independent Variable Coefficient (β1, β2) Constant (β0) Significance R2

EVI 478.801 −32.9543 <0.001 0.68
EVI, Tmin 429.641, −1.100 40.5482 <0.001 0.73

In our modified EVI-Tmin model, the coefficient of Tmin was negative (−1.1), implying that
a higher temperature was associated with lower LFM value for the same values of EVI. This suggested
two possible processes that could be responsible: (1) Leaves closed their stomata under extremely
hot conditions and surface temperatures consequently increased due to a lack of transpiration from
the leaves [8]; and/or, (2) plants lost their moisture under hot and dry weather conditions through
evaporation at their stomata or on the surface of their leaves. Anyway, the additional information
carried in the minimum air temperature variable certainly enhanced the model performance, especially
in the dry season. This is also supported by the closer association of the EVI-Tmin derived values
with the one-to-one line than that of the EVI-alone derived values (Figure 7a,b), especially for drier
conditions, represented by LFM values lower than 110%.

Furthermore, wet-to-dry transition timing is better related to the EVI-Tmin estimation.
For example, 80% dates from the EVI-Tmin estimation were better correlated with those from in-situ
sampling than those from the EVI-alone estimation (Figure 7c). In particular, the EVI-alone model failed
to detect the 80% date in 2006 and 2007, as the EVI-alone estimated LFM values that were were higher
than 80% during the entire wet-dry season. In contrast, the EVI-Tmin model significantly reduced
errors in identifying the 80% date in 2006 and 2007 when compared to the results from the EVI-alone
model. EVI-Tmin model is also better suited for monitoring the transitional levels of LFM.

The improvement attained by adding the temperature variable was not uniform. For example,
adding temperature as an additional independent variable at the Bitter site only slightly improved
the performance of the EMF. Nevertheless, as low values of LFM signify higher fire danger levels,
any improvement in the estimation of LFM, especially during dry seasons, can be valuable in enhancing
the capability for fire danger assessment.

3.4. Applying LFM Model to a Real-Life Wildfire Case

The capability of satellite EVI to replicate LFM presented a potentially powerful methodology
that could enable daily LFM observations over vast wildland areas in SoCal as well as similar climatic
regions that are prone to wildfires around the world. Such capability would set forth a new era for fire
danger assessment, one that uses satellite-estimated LFM validated by in-situ LFM. These data products
enabled an improvement of more than one order of magnitude of temporal and spatial coverage as
compared to the labor-intensive, manual methods currently conducted by fire agencies in their standard
bi-weekly in-situ LFM sampling at sparsely selected local locations.

To demonstrate the satellite utility for LFM observations, the real-life case of the 2014 Colby
Fire is highlighted as an example here. A quantitative measurement of LFM changes between
25 February 2013 and 8 January 2014 was illustrated over the regional topography in three dimensions,
as shown Figure 8. This type of measurement was derived from Aqua MODIS EVI based on the EMF
at Glendora Ridge, located within the burned area, i.e., LFM = (417.602 × EVI) + 6.78061. The EMF was
developed in the same manner as EMFs were developed in Table 2, except using a nine-year dataset.
This is due to the substantial amount of LFM data missing at Glendora Ridge in 2005. The red areas,
pervasive mostly in the mountains, corresponded to a sharp decrease of over 80% in LFM on 8 January
(Figure S3) from an LFM level of 140% on 25 February 2013. This happened during the 2013 fire season,
which was anomalously prolonged into the first quarter of 2014 due to the severe winter drought
of California in 2013 and 2014 [28]. Such a drastic plunge in LFM took the normally pre-fire season
LFM levels in January in 2014 to below 60% by the week before the Colby Fire ignited. Note that 60%
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LFM would be considered the critical fire danger level [5] as being used by fire agencies to implement
pro-active fire preparedness measures.

The ignition point (flame symbol, Figure 8) of the Colby Fire was located on the east side of the fire
perimeter (yellow contour, Figure 8) within vegetation with critically low LFM values, as observed by
MODIS. Fortunately, the Colby Fire did not spread to many critical danger areas around the immediate
vicinity due to the aggressive firefighting efforts of the Los Angeles County Fire Department (LACoFD).
The LACoFD proactively decided to extend its normal fire season, typically ending around December,
due to the extremely low LFM values that were measured throughout the wildlands in the county.
The road network overlaid on the satellite LFM map (Figure 8) highlights the encroaching urban growth
from several cities (Irwindale, Citrus, Azusa, Glendora, and San Dimas) sprawling into the Los Angeles
County wildland. Note that Interstate 210, Route 66, and Route 57 clearly intersect the rough terrain
where satellite LFM indicated critical red fire danger levels. This kind of map could be very useful
for the National Weather Service (NWS), as well as for local fire agencies in SoCal for fire danger
assessment in real-life operational environments. It could also be used by the commercial and private
sectors, such as electric utility companies who might have power lines running over critical wildlands,
and everyday homeowners who could use such a map to readily check their addresses for potential
wildland fire danger in their local community [29].

Figure 8. The case of the Colby Fire in January 2014: Fuel dry-up map derived from MODIS data acquired
on 8 January 2014 from the satellite Aqua over the San Gabriel Mountains, CA, USA. It clearly shows
adjacent cities encroaching into surrounding wildland at multiple wildland-urban interfaces because of
urbanization. Red represents severe dry-up due to a ~80% decrease in LFM from a level of 140% on
25 February 2013 resulting in an LFM below 60%, the critical fire danger threshold. The ignition location
is marked with the flame symbol on the east side of the fire perimeter denoted by the yellow contours.
Since the LFM color map is made translucent to see the landscape features, the accurate full color bar and
true LFM map are shown in Figure S3 in the supporting information.

4. Discussion

In this study, we have analyzed climatological, seasonal, and interannual characteristics of LFM
and satellite VIs in SoCal in order to develop empirical model functions of LFM based on VIs together
with air temperature data based on statistical analyses. Correlation results between LFM and various
VIs indicated that LFM was most strongly correlated with EVI from Aqua. Unlike previous studies
attempting a point-to-point comparison, we tested the LFM relationship with EVI averaged over
different areal coverages in chamise-dominant grids (i.e., 0.5 km to 25 km radius circles), and found
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that LFM was well correlated with EVI averaged over large areas. It was most strongly correlated with
the area of a 10-km radius centered around each in-situ LFM site. As LFM measurements represented
information over a large spatial extent, LFM could have high correlations between the time-series
data records at different locations as indicated in the high cross correlations. In addition, we found
that the higher the cross correlation, the longer the distance between the LFM sampling sites (Table S3).
This was an independent verification that measured LFM values at in-situ sites, strategically selected by
fire agencies, are indeed a good representation of moisture levels over the extensive neighboring area.

A possible explanation of the better correlation between EVI and LFM is the co-varying leaf
pigment concentrations with the change of vegetation water content in Southern California [18].
When plants are under water stress, depletion of chlorophyll may produce a decrease in reflectance in
visible and NIR bands. Such change can be prominent in Mediterranean plants as they have a quick
response under dehydration. This change may produce a stronger signal than the response in SWIR
bands due to the change of vegetation water content.

We have developed the EMF models based on the actual relationship with in-situ LFM,
and evaluated the model performance with respect to the 10-year averages and interannual variability.
The EVI-alone model showed a limited ability in estimating the timings and magnitudes of annual
maxima and minima of LFM primarily because of consistently high in-situ LFM values, even in dry
years for the maxima and the delayed response of EVI to precipitation when compared to LFM for
the minima. However, seasonal variations, especially wet-to-dry trends of LFM (e.g., 90% LFM date
in spring and early summer), were well estimated even on an interannual time scale. This result
was consistent with the fact that vegetation greenness represented by EVI was also sensitive to
environmental dryness [30]. The study here also found that the EMF model performance for low
LFM values during summer and fall could be improved by including an air temperature variable as
an additional predictor. This implies that excessive loss of moisture in vegetation on extremely hot
days is better captured with the temperature parameter in addition to EVI.

While the 15-day running averaged data were utilized during our model development, a partial
autocorrelation error might become non-negligible. We have investigated a transformation method
using the Cochrane-Orcutt procedure to adjust the excessive correlation introduced by the temporal
autocorrelation at lag 1 [31]. The transformed model showed some reduction in adjusted values
of R2. However, the outcome indicated a similar pattern as results of non-transformed model,
thus the temporal autocorrelation will not affect the overall conclusion of this study.

The high correlation results of time-series data at different locations supported the significance of
high-resolution satellite data in advancing the capability for fire danger assessment. This is because
high-resolution satellite data would enable: (1) A selection of the appropriate vegetation type while
eliminating irrelevant land-use classes (e.g., lakes, bare soil, urban areas, etc.); and, (2) an estimation of
vegetation moisture condition over the vast extent where in-situ LFM measurements would not
be extensively and frequently possible. Moreover, the correlations of time-series data between
different locations, while characterizing the seasonal behavior consistently pertaining to the chaparral
ecosystem, would not necessarily imply a homogenous spatial pattern of the vegetation conditions.
In fact, as shown in Figure 8, the spatial distribution of LFM, as enabled by satellite observations,
could be quite variable across the vast wildland. Such observations clearly and independently
justified efforts by fire agencies to make LFM measurements at multiple sites critical to fire danger
assessment. This result indicates that satellite-derived vegetation data could provide useful information
in estimating vegetation moisture levels in SoCal after reducing multiple errors by spatial averaging,
and also that in-situ LFM measurements were valid over a large extent beyond the intermediate
vicinity of individual sampling sites.

5. Conclusions

The example of LFM map derived by the EMF shown in Figure 8 demonstrates the utility of
satellite-based vegetation information for fire danger assessment with a high spatial resolution in SoCal.
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Such capability would improve more than one order of magnitude the current temporal and spatial
coverage of the in-situ LFM measurement method conducted by fire agencies. The quality of such
a kind of map could be further enhanced by LFM observations over the north-facing slopes and their
modeling. Note that current LFM sampling sites were typically located in south-facing slopes, and thus
the EMF model based on these data may be skewed towards the warmer and generally drier conditions
that may result in an overestimation of fire risks. Therefore, LFM observations over the north-facing
slopes and their modeling would be necessary for a more complete representation of LFM over
complex terrain. Additional effective predictor(s), such as rainfall and soil moisture [32], should also
be considered and tested for further improvement of the EMF model. Remotely sensed high-resolution
soil moisture data, such as data from the Soil Moisture Active Passive (SMAP) mission [33], might
provide additional information about regional soil moisture for synergistic enhancement of LFM
estimation models.

There are uncertainties in both in-situ LFM and satellite VI data. First, a small sample size of
the in-situ LFM may be insufficient for statistical analysis, resulting in large uncertainty. Weise et al. [5]
reported that the uncertainty of LFM measurements varies significantly from ±20 to ±100%, depending
on particular sites. Second, because of more intense insolation on the south sides of mountains,
vegetation samples were only collected at south-facing mountain slopes; however, actual sample
locations could change in different sampling excursions within an approximate three-acre lot selected
by fire agencies where the topographic complexity might introduce more uncertainty. Regarding
satellite data, VIs might have residual errors due to contaminations from clouds and aerosols that
are not completely removed by the processing algorithms. Moreover, minor vegetation species might
coexist within the chamise-dominant grid cells. There could be also uncertainties in the spatial coverage
mismatch between LFM and VI data.

This study is only focused on the chaparral ecosystem in SoCal. However, the results can be
applied to the Mediterranean region in Europe and elsewhere having similar climatic conditions
via cross-validation process. In addition, our research framework can be adapted for applications to
other wildfire-prone areas in the world with different climate conditions. Moreover, a universal model
function approach should be considered in a future research, and such effort can be a key objective
when sufficient statistical sampling across the extensive wildland and in-situ data records become
sufficiently lengthened.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/10/1/87/s1,
Figure S1: Time series of vegetation indices and live fuel moisture measurements at Bitter Canyon station,
Figure S2: Correlation between LFM and VIs at Bitter Canyon station, Figure S3: same as Figure 8 but with
the full-scale color code for the EVI and LFM differences between 25 February 2013 and 8 January 2014, a week
before the Colby Fire occurred, Table S1: Equations applied to calculate vegetation indices from MODIS MOD09A1
land surface reflectance product, Table S2: Results of the linear regressions of LFM using EVI and meteorological
variables at Schueren, Table S3: LFM cross correlation coefficients among the 7 live fuel moisture sites.
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Abstract: The worst forest fire in South Korea occurred in April 2000 on the eastern coast. Forest recovery
works were conducted until 2005, and the forest has been monitored since the fire. Remote sensing
techniques have been used to detect the burned areas and to evaluate the recovery-time point of the
post-fire processes during the past 18 years. We used three indices, Normalized Burn Ratio (NBR),
Normalized Difference Vegetation Index (NDVI), and Gross Primary Production (GPP), to temporally
monitor a burned area in terms of its moisture condition, vegetation biomass, and photosynthetic
activity, respectively. The change of those three indices by forest recovery processes was relatively
analyzed using an unburned reference area. The selected unburned area had similar characteristics
to the burned area prior to the forest fire. The temporal patterns of NBR and NDVI, not only showed
the forest recovery process as a result of forest management, but also statistically distinguished
the recovery periods at the regions of low, moderate, and high fire severity. The NBR2.1 for all
areas, calculated using 2.1 μm wavelengths, reached the unburned state in 2008. The NDVI for
areas with low and moderate fire severity levels became significantly equal to the unburned state
in 2009 (p > 0.05), but areas with high severity levels did not reach the unburned state until 2017.
This indicated that the surface and vegetation moisture conditions recovered to the unburned state
about 8 years after the fire event, while vegetation biomass and health required a longer time to
recover, particularly for high severity regions. In the case of GPP, it rapidly recovered after about
3 years. Then, the steady increase in GPP surpassed the GPP of the reference area in 2015 because
of the rapid growth and high photosynthetic activity of young forests. Therefore, the concluding
scientific message is that, because the recovery-time point for each component of the forest ecosystem
is different, using only one satellite-based indicator will not be suitable to understand the post-fire
recovery process. NBR, NDVI, and GPP can be combined. Further studies will require more
approaches using various terms of indices.

Keywords: forest fire; forest recovery; satellite remote sensing; vegetation index; burn index;
gross primary production; South Korea
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1. Introduction

A forest fire is one of the major disturbances in the ecological diversity, forest succession,
the carbon cycle, and hydrological processes of a forest’s ecosystem [1–4]. Habitats are altered [5],
carbon is released to the atmosphere [6], and runoff and erosion are increased due to the loss of forest
from severe forest fires [7,8]. After a forest fire, the evaluation of the damage severity, implications,
and spatial patterns is important for forest recovery planning, which plays a critical role in the
sustainability of the forest ecosystem and carbon cycle [1,9–11]. It is also necessary to analyze the
growth patterns and responses to forest fire disturbance using time series data [12,13]. Thus, the process
of forest recovery and the ecological and physiological functions of the burned forest area should be
continuously monitored.

The attributes of forest fires, such as fire severity and total area burned, have been conventionally
investigated by field observation. The severity of damage to vegetation and soil is generally classified
into three levels of low, moderate, and high severity [1,14,15]. However, the field survey has limitations
due to frequency of forest fire, assessment difficulty, and the large size of burned areas. For continuous
monitoring, field investigators must visit the site multiple times.

Remote sensing techniques, such as satellite imaging, can be useful to regularly observe the burned
area and damage severity in real time [16]. The burned area can be measured by the combination
of the reflectance values of the visible and infrared channels. Many satellite sensors, such as those
of Landsat, Aqua, Terra, Envisat, and SNPP, are capable of identifying forest fires and measuring
damage severity in burned areas [17–20]. For example, forest fires can be detected by the brightness
temperature of infrared (IR) radiation [21]. In particular, the mid-infrared (MIR) and thermal-infrared
(TIR) band are effective to detect forest fire [22]. The burned area and damage severity can be measured
using reflectance of near infrared (NIR) and short-wave infrared (SWIR) radiation [23] because the
reflectance from living plants and burnt wood are noticeably different. Furthermore, the burned area
was extracted from both NIR and the detected forest fire data [19].

The Normalized Burn Ratio (NBR), which uses both NIR and SWIR bands, is widely used to detect
burned areas [24]. The Normalized Difference Vegetation Index (NDVI), which uses both red and
NIR bands, can identify unhealthy vegetation in burned areas, and has been used to monitor post-fire
recovery of forests [25–27]. Thus, these vegetation and burn indices are suitable not only to detect
forest fire regions and measure damage severity, but also to evaluate the forest’s recovery progress.
Van Leeuwen [28] showed that forest fire recovery could be evaluated using moderate-resolution
satellite imagery to measure the difference in the NDVI between the burned area and the unburned
area every year. Caccamo [29] used the NDVI, Enhanced Vegetation Index (EVI), and Normalized
Difference Infrared Index (NDII) to analyze post-fire vegetation recovery. Storey [16] evaluated the
sensitivity of vegetation and burn indices to the post-fire recovery of shrubland using seven indices
including NBR and NDVI, which were used to evaluate forest recovery.

Previous studies that investigated forest fires using remote sensing indices focused on ecological
changes, but the physiological states of plants are also important for understanding the newly
established forest ecosystem. Generally, the physiological state of a forest can be obtained by examining
the carbon dynamics linked to photosynthesis [11]. For example, gross primary production (GPP)
can be useful to interpret the physiological state in a forest post-fire because it is strongly related to
photosynthetic activities [30,31].

In this study, we use satellite-based remote sensing data to evaluate forest recovery processes and
physiological activity. The worst forest fire in South Korea from 7–15 April 2000 was selected as a case
study, and satellite-based vegetation and burn indices and GPP data were used to diagnose both the
damage severity and the ecological and physiological recovery levels, depending on the severity level
of the forest fire. Further analysis was conducted to minimize the annual variation of meteorological
effects. The restoration process was evaluated by comparing the affected areas with an unburned
reference area.
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2. Materials and Methods

2.1. Satellite Data

Satellite-based NBR and NDVI were used to detect the area affected by forest fire and evaluate
post-fire recovery [32]. The NBR was calculated using the reflectance of the NIR and SWIR wavelengths
(ρ) as shown in Equation (1):

NBR =
ρNIR − ρSWIR
ρNIR + ρSWIR

(1)

The NIR band is an effective spectral band for vegetation monitoring, and the SWIR spectral
band effectively represents moisture in soil and vegetation. Sudden changes can occur in the NBR of
burned areas because of alterations to the canopy structure and moisture content by forest fires [33],
while NBR change is close to zero for unburned areas [32]. Thus, areas affected by the forest fire were
identified using the difference between pre-fire and post-fire NBR:

dNBR = NBRpre−fire − NBRpost−fire (2)

The NBR was computed using Terra/MODIS (Moderate Resolution Imaging Spectroradiometer)
surface reflectance data (MOD09 collection 6). The spatial and temporal resolution for MODIS NBR
indices was 500 m and 1 day, respectively. MODIS Band 2 (NIR, 0.86 μm) and Band 7 (SWIR, 2.1 μm)
were used to calculate the NBR (NBR2.1), and Band 6 (SWIR, 1.6 μm) and Band 2 were also used
to calculate another NBR that was defined as NBR1.6. In other research fields, NBR1.6 is called the
Normalized Difference Water Index (NDWI) or NDII [29,34]. NBR2.1 is similar to the NBR originally
used by Garcia and Caselles [35]. Although 1.6 μm is not commonly used to estimate NBR, this study
compared NBR1.6 with NBR2.1 for monitoring the post-fire forest.

Vegetation health can be represented by the NDVI, a widely used vegetation index [36,37].
The NDVI was computed using NIR and red wavelengths as follows:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(3)

Reflectance of red wavelengths is low when vegetation is healthy and has vital chlorophyll
elements [38]. Contrarily, reflectance of NIR wavelengths is higher under such vegetative conditions.
The NDVI was calculated from the MOD13A3 data collected by Terra/MODIS from 2000 to 2017.
The Terra/MODIS NDVI data’s spatial (temporal) resolution was 1 km (1 month). However,
there was no Terra/MODIS data available for 1999 to represent the vegetative conditions before
the forest fire damage in 2000. Thus, SPOT/Vegetation data from 1999 was used to estimate the
NDVI. SPOT/Vegetation NDVI is known be in good agreement with Terra/MODIS NDVI [39].
Weekly SPOT/Vegetation NDVI data was collected in July–August of 1999, with a spatial resolution
of 1 km.

To understand the photosynthetic activity of the post-fire forest, the data obtained from
Terra/MODIS GPP (MOD17A2H collection 6) was used. Spatial and temporal resolutions were
500 m and 8 days, respectively. MODIS GPP is useful for explaining seasonal vegetation patterns,
but it exhibits a slight overestimation when compared with the GPP of flux sites in South Korea [40].
Jung et al. [41] showed that the correlation coefficient of MODIS GPP of three flux sites with forests
and croplands was 0.55–0.60.

RGB composite images was calculated using Landsat-5 TM (Thematic Mapper) and Landsat-8/OLI
(Operational Land Imager) surface reflectance data. Landsat-5 Band 1 (Blue, 0.49 μm), Band 2 (Green,
0.56 μm), Band 3 (Red, 0.66 μm), and Landsat-8/OLI Band 2 (Blue, 0.48 μm), Band 3 (Green, 0.56 μm),
Band 4 (Red, 0.65 μm) were used to compute RGB composite images. The spatial and temporal
resolution of the index was 30 m and 8 days.

25



Remote Sens. 2018, 10, 918

Forest pixels were extracted from the MODIS Land Cover product. Forest, crop, city, and other
land types were divided according to the IGBP (International Geosphere-Biosphere Program) land
cover classification scheme (Figure 1c).

Figure 1. (a) Study area; (b) Three-band composite image of Landsat-5 consisting of Band 7 (short-wave
infrared (SWIR)), Band 4 (near infrared (NIR)), and Band 3 (Red) in 13 August 2000; (c) Land type
according to the International Geosphere-Biosphere Program (IGBP) land cover classification scheme
of MODIS Land Cover.

To match the Terra/MODIS data at a 500 m resolution with the Spot/Vegetation data and
MOD13A3, the Terra/MODIS NBR2.1, NBR1.6, and GPP data were unified to 1 km spatial resolution,
and a geometric projection was used. The July and August data were averaged for each year because
that is the most active vegetation growth period in South Korea (Table 1).

Table 1. Satellite data.

Satellite Sensor Band/Product Spatial Resolution Period

Terra MODIS

NIR (Band 2)
SWIR1.64 μm (Band 6)
SWIR2.13 μm (Band 7)

NDVI (MOD13A3)
GPP (MOD17A2H)

1 km
May 2000
May 2012

July–August, 2000–2017

SPOT Vegetation NDVI 1 km July–August, 1999

Landsat TM
OLI

Blue (Band 1 or 2)
Green (Band 2 or 3)
Red (Band 3 or 4)

30 m

August 1999
August 2000
August 2004
August 2007
August 2010
August 2016

Terra & Aqua MODIS Land Cover 1 km 2013
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2.2. Forest Fires in South Korea and the Study Area

Based on data from 2010, approximately 63% of the land area in South Korea was forest [42].
59% of forest fires occurred in spring (March–May), and the area damaged by forest fires during spring
accounted for approximately 83% of the total area burned that year. Gangwon Province in South Korea
often has a dry spring because the air crossing a mountain often changes into dry conditions according
to the Föhn phenomenon. Thus, many forest fires have occurred in this area. On 7–15 April 2000,
the worst forest fire in South Korean history occurred in this area (the East Coast fire). The forest fire
occurred in seven different places and the damaged area covered approximately 23,448 ha. Strong wind
speeds (maximum 26.8 m/s) and low relative humidity (minimum 7%) accelerated the spread of the
forest fire during this period [15]. After the East Coast fire, the Korea Forest Service (KFS) conducted
forest management activities, such as tree planting and artificial regeneration, to aid forest recovery
until 2005 [43].

To monitor the post-fire state of the forest, the three severely burned areas (12,697 ha; 4054 ha;
and 2244 ha) were investigated. The biggest forest fire happened near the coastline, and the smallest
forest fire was in the upper area of our study (Figure 2). The burned areas consisted mainly of forests,
but croplands and cities on the coastline were also included. The study area was set from 36.99◦N to
37.6◦N, and 128.75◦E to 129.50◦E (Figure 1a,b). Meteorological information in this study is as follows.
The average annual air temperature is 12.6 ◦C, and annual cumulative precipitation is 1278.9 mm,
based on 2016 data collected by a meteorological station located in Donghae city. The maximum air
temperature is 37.1 ◦C and the minimum air temperature is −14.0 ◦C, since May 1992. It rains heavily
from July to September.

Figure 2. Forest fire areas detected using dNBR of Terra/MODIS. Yellow-Orange-Red pixels indicate
forest fire severity divided into three groups using MODIS-based dNBR. Green pixels indicate reference
area. Non-forest areas, indicated by grey pixels, were eliminated.

Before the forest fire, the forest was dominated by pine (Pinus densiflora) [43,44], which covered
approximately 69.5% of the study area. Pine-hardwood and hardwood covered approximately 27.6%
and 3% of the study area, respectively [1]. Further, before the forest fire, 20–30 and 30–40 year old trees
were spread across 54.44% and 22.62% of the study area, respectively [1].
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2.3. Extraction of the Burned Area

The area of forest burned by the East Coast fire was extracted using satellite-based NBR and
NDVI. The process of extracting the burned area was as follows. First, Terra/MODIS data from
1999 for the pre-fire forest were unavailable. Through careful study of our preliminary vegetation
index analysis output, we assumed that, according to previous studies [16], the moisture condition
in the burned area would have mostly recovered after 10 years from the forest fire event and that
the vegetative conditions would significantly differ from those immediately after the East Coast fire
of 2000. Additionally, we considered the meteorological conditions affecting that area. Mean air
temperature was 15.5 (16.3) ◦C and cumulative precipitation was 63.8 (38.9) mm in May 2000 (2012).
Both air temperature and precipitation in 2012 were similar to those in 2000. Thus, the NBR2.1 of 2012
was selected as the pre-fire condition for the estimation of dNBR, and MODIS dNBR2.1 was calculated
in the coastline over Donghae-si, Samcheok-si, and Uljin-gun. The burned area was extracted for a
dNBR value greater than 0.10 and excluded for a dNDVI value less than 0.0. The extracted burned area
was confirmed using previous studies, and it was consistent with reports in related literature [1,15,45].
Supplementary material shows the availability of this MODIS-derived burned area through comparison
with some burned area from Landsat dNBR of more higher-resolution (Figure S1). Second, the burned
area identified using MODIS dNBR2.1 was classified into three severity levels based on MODIS
dNBR2.1 values: low, moderate, and high. The ranges of dNBR values for fire severity were flexible and
changed according to surface conditions, season, and the interval between data used for calculating
the dNBR [33,46–48]. We defined the MODIS dNBR ranges of 0.10–0.15, 0.15–0.20, and 0.20+ as low,
moderate, and high levels of severity, respectively. In this study, high level means most of the trees
killed in a pixel. Partially or seriously damaged areas in a pixel are defined as moderate level and low
level, which might include burned and unburned areas in a pixel. The burned area from Terra/MODIS
was expressed by serious damage to the coastline larger rather than in inland, similar to previous
studies [45]. Finally, the land types in the burned areas were classified as forest and non-forest using
IGBP MODIS land cover data. The non-forest areas were excluded in order to solely monitor changes
in forest recovery.

2.4. Definition of the Reference Area

To critically evaluate the forest recovery process, the annually varying meteorological effects on
the temporal changes in vegetation and burned indices and GPP were minimized. Meteorological
events, such as drought or heavy rainfall, can influence vegetation indices related to forest recovery.
Thus, a reference area was necessary to evaluate the recovery of vegetation. The reference area needed
to be unburned by the East Coast fire, and the vegetative conditions needed to be similar to the burned
area before the fire. In 1999, SPOT/Vegetation NDVI near the burned area was examined. The reference
area was selected because the unburned pixels had similar NDVI values to the pixels in the burned area
in 1999. The same number of pixels were used for the defined reference area and for the burned area
for statistical analysis. An independent two-sample t-test for the burned area and reference area was
conducted with IBM SPSS Statistic 23. The P-value was 0.536 at a confidence level of 0.05, indicating
that a significant difference did not exist between the two areas. The dominant species in the reference
area was similar to that in the burned area. Pinus densiflora was dominant in the selected reference
area (http://www.forest.go.kr/images/data/down/gispdf_030201_03_5.pdf). The forest age in the
reference area was 20~30 years before forest fire. This implied that the two areas had similar surface
characteristics in 1999, which was one year before the East Coast fire.

3. Results

3.1. Damage Severity of the Forest Fire

NBR2.1, NBR1.6, NDVI, and GPP were analyzed to evaluate the damage severity of the East Coast
fire. Figure 3 shows the results acquired in May 2000, immediately after the forest fire. The mean
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of NBR2.1 values was 0.480 in the reference area, and NBR2.1 values in areas with low, moderate,
and high levels of fire severity gradually decreased and were 0.432, 0.381, and 0.321, respectively
(Figure 3a). The values in the areas with low, moderate, and high fire severity decreased by 10.03%,
20.52%, and 33.13%, respectively, in comparison with the reference area values. The mean of NBR1.6

values was 0.243 in the reference area, which was lower than that of NBR2.1 (Figure 3b). NBR1.6 values
of the burned area decreased when fire severity increased (low: 0.199; moderate: 0.166; high: 0.163);
the same trend was observed for NBR2.1. NBR1.6 values were lower than those of NBR2.1, but the
percentage decreases in the low, moderate, and high burned area compared to the reference area were
18.14%, 31.72%, and 32.78%, respectively. These results showed that NBR1.6 was better at detecting
differences between the burned and reference areas than NBR2.1, particularly for low and moderate
severity levels. However, the difference between low and high damage levels was more distinguished
with NBR2.1 than with NBR1.6.

Figure 3. Vegetation indices and gross primary production (GPP) based on forest fire severity.
Red circles indicate average values, and blue dash lines indicate median values: (a) NBR2.1; (b) NBR1.6;
(c) NDVI; and (d) GPP.
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NDVI values were noticeably different depending on the damage severity of the forest fire
(Figure 3c). The decreasing pattern of the NDVI with increase in damage severity was similar to that
of the NBR. The mean NDVI values in the reference area was 0.710. The percentage decrease of NDVI
values in the burned areas was 9.84%, 24.90%, and 35.56% in low, moderate, and high severity areas,
respectively. Change in GPP due to the forest fire showed a steeper decline than the NBR2.1, NBR1.6,
and NDVI (Figure 3d). The percentage decrease of GPP in areas with low severity levels (13.67%) was
not noticeably different compared with other variables, but the percentage decrease in areas with high
severity levels (56.17%) was the largest.

3.2. Temporal Analysis of Forest Recovery

The temporal changes in the study areas were displayed using RGB composite images from
Landsat-5/TM and Landsat-8/OLI, which were created from visible red (Band 3 or Band 4), green (Band 2
or Band 3), and blue (Band 1 or Band 2) data (Figure 4). August is the month when the most active
plant growth occurs in South Korea. In the 1999 image of the pre-fire forest, the RGB composite image
had pixels with a similar green color in the forest areas (Figure 4a). However, brown colored pixels
increased immediately after the forest fire (Figure 4b). In images from 2004, four years after the East
Coast fire, there were still a large number of brown colored pixels (Figure 4c). Over time, as seen in the
2007 and 2010 images, the brown colored pixels gradually decreased, while the green colored pixels in
the burned areas increased. The RGB composite image in 2016 showed that most of the burned area
pixels changed from brown to green (Figure 4f).

Figure 4. The RGB composite images of Landsat-5 and Landsat-8: (a) 8 August 1999; (b) 13 August
2000; (c) 8 August 2004; (d) 17 August 2007; (e) 9 August 2010; (f) 25 August 2016.

The values of NBR2.1, NBR1.6, NDVI, and GPP immediately dropped after the forest fire. The extent
of the change depended on the severity of the forest fire. However, the initial differences compared with
the reference values decreased over time (Figure 5). NBR2.1 and NBR1.6 showed a similar time series
patterns, but the NBR2.1 and NBR1.6 values in the areas of all damage severity reached the averaged
reference value in different years (Figure 5a,b). The recovery-time points were statistically evaluated
using an independent two-sample t-test (Table 2). In low (high) fire severity areas, NBR2.1 was
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significantly different (p < 0.05) compared with the reference area until 2003 (2007), but NBR1.6 was
significantly different until 2005 (2014). Otherwise, there was significant difference (SD) between
NBR2.1 and the reference area, and between NBR1.6 and the reference area, in areas with low and
moderate fire severity after 2014. This was because the values of NBR2.1 and NBR1.6 in burned areas
surpassed those in the reference area.

Figure 5. Forest restoration indicated by the time series of the vegetation indices and GPP. Green circles
and shadings indicate average and standard deviation values in the unburned reference area,
respectively. Blue triangles, yellow squares, and red stars indicate average values in the low, moderate,
and high severity burned areas, respectively: (a) NBR2.1; (b) NBR1.6; (c) NDVI; and (d) GPP.

Table 2. Statistically significant differences between the reference area and the burned area calculated
using an independent two-sample t-test. L, M, and H indicate the low, moderate, and high severity
burned areas, respectively. First ‘ns’ for each variable indicates the year where the reference area values
were reached.

Year
NBR2.1 NBR1.6 NDVI GPP

L M H L M H L M H L M H

2000 *** *** *** *** *** *** *** *** *** *** *** ***
2001 *** *** *** *** *** *** *** *** *** ns ns **
2002 *** *** *** *** *** *** *** *** *** ** *** ***
2003 *** *** *** *** *** *** *** *** *** ns ns *
2004 ns *** *** *** *** *** *** *** *** * ns ns
2005 *** *** *** *** *** *** *** *** *** ns ns ns
2006 ns ns *** ns *** *** ** *** *** * ns ns
2007 *** *** *** *** *** *** *** *** *** ns ns **
2008 ns ns ns ns ns *** ** *** *** * ns ns
2009 ns ns * ns ** *** ns ns *** * ns ns
2010 ns ns ns * ** *** ** *** *** ns * **
2011 ns ns ** ns ** *** ** ** *** ns ns ns
2012 *** *** ** * * ** ns ns *** ns * ns
2013 ns ns ns ns ns *** ns ns *** * ns ns
2014 ** ** * *** *** *** ** * *** ns ns *
2015 *** *** *** * ** ns ns ns *** *** ** ***
2016 *** *** *** ** *** ns * ns *** ** *** ***
2017 *** ** ns ns ns ns ns * ** *** ** *

ns: Not significant at the p < 0.05 level. *, **, ***: Significant at the p < 0.05, 0.01, and 0.001 levels, respectively.
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The NDVI was nearly constant in the reference area (Figure 5c). NDVI trends increased continually
for 18 years in the burned area, and the rate of increase was greater in areas with high fire severity
levels. SD in the NDVI between areas with low and moderate fire severity and the reference area was
shown until 2009. There was also no SD between these values in 2012, 2013, 2015, 2016 (moderate),
and 2017 (low). However, in areas with high fire severity levels, SD was shown until 2017.

In the first July–August period after the forest fire, the GPP differences of the areas with low,
moderate, and high severity levels existed as NBR2.1, NBR1.6, and NDVI (Figure 5d). However, the SD
between these values ceased earlier than for other indices. In areas with low and moderate fire severity,
there was no SD (0.848, 0.134; p < 0.05) between GPP in those areas and in the reference area in 2001,
which was one year after the forest fire. GPP in areas with high fire severity reached GPP levels in the
reference area (0.614; p < 0.05) in 2004. Recent GPP in the burned areas was higher than GPP in the
reference area, and a significant difference appeared earlier in areas with high forest fire severity.

3.3. Relative Change in Recovery of the Forest

To distinguish the effects of the meteorological conditions from the temporal changes in forest
recovery, the ratios of variables (NBR2.1, NBR1.6, NDVI, and GPP) in July–August in the burned areas
were compared with the reference area and investigated. These ratios can accurately express the
process of forest recovery (Figure 6). Average values of indices in the unburned forest area were
ideal criteria for indicating complete forest recovery. The ratios of NBR2.1 in burned areas showed
an increase after the forest fire (Figure 6a). Immediately after the forest fire, ratios of NBR2.1 were
0.940, 0.875, and 0.806 in areas with low, moderate, and high fire severity, respectively. They reached
the criteria level (1.0) in 2004, 2006, and 2008 in areas with low, moderate, and high fire severity,
respectively (Table 3). These results were consistent with the independent two-sample t-test results.
After 2008, the ratios of NBR2.1 in all areas exceeded the confidence interval of the criteria level. Ratios
of NBR1.6 showed similar patterns to those of NBR2.1. For example, ratios of NBR2.1 and NBR1.6

rapidly increased during the first three years after the forest fire, although the initial values and overall
temporal changes were different (Figure 6b).

Table 3. Recovery-time point (year) indicated by four indices (i.e., NBR2.1, NBR1.6, NDVI, and GPP) in
regions of three fire severity levels during 18 years. L, M, and H represent the low, moderate, and high
severity burned areas, respectively.

Indices Meaning of Monitoring
Recovery-Time Point (Year)

L M H

NBR2.1 Moisture condition 2004 2006 2008

NBR1.6 Moisture condition 2006 2008 2015

NDVI Vegetation biomass 2009 2009

GPP photosynthetic activity 2001 2001 2004

NDVI ratios were 0.942, 0.867, and 0.785 in areas with low, moderate, and high fire severity in
July–August 2000, respectively. The ratios increased, particularly during the first three years after
the forest fire. These patterns were consistent with the ratios of NBR2.1 and NBR1.6. The NDVI ratios
reached the confidence interval values of the criteria level in 2006 and 2009 for areas with low and
moderate fire severity, respectively. After 2009, ratios of NDVI in areas with low and moderate severity
levels remained between 0.97 and 1.0. However, in areas with high fire severity, the ratio of NDVI
barely met the recovery level in 2017.

Ratios of GPP showed different patterns compared to the NBR and NDVI ratios. The GPP in
burned areas reached the confidence interval values of the recovery level in 2001, 2001, and 2003 for
areas with all levels of fire severity. Across the whole study period (2001 to 2017), the slope of the GPP
ratio in areas with low fire severity was 0.004. However, the slopes of the GPP ratios in areas with
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moderate and high fire severity were 0.009 and 0.014, respectively. The GPP in these areas exceeded
the criteria level (1.0) after 2015, and it, in areas with high severity levels, largely exceeded the GPP in
the reference area.

Figure 6. Relative change in vegetation indices and GPP in the burned area compared with the
reference area. Green lines indicate average value and green shadings indicate confidence intervals
in the unburned forest area. Lines and error bar for blue triangles, yellow squares, and red stars
indicate average values and confidence intervals in the low, moderate, and high severity burned areas,
respectively: (a) NBR2.1; (b) NBR1.6; (c) NDVI; and (d) GPP.

4. Discussion

Forest biomass recovery began immediately after the forest fire in 2000, and gradually continued
through to 2017. Although the July–August period is the most active forest growing season in South
Korea, the vegetative activity in July–August 2000 is remarkable because it was so close to the time the
forest fire occurred (May 2000). Indeed, in July–August 2000, vegetation increased in all damaged areas.
In addition, the rate of recovery of areas with high fire severity was greater than that of areas with low
fire severity. According to KFS reports and ground-survey data in the existing literature about the East
Coast fire, the natural appearance of vegetation was observed in damaged areas in the first year after
the forest fire [1,49]. About 80% of the recovery was caused by the re-growth of surviving sprouts [49].
Also, Lee and Chow [50] showed that there was a rapid recovery for three years after the forest fire.
However, the re-growth of surviving sprouts cannot fully explain the faster re-vegetation in areas with
high fire severity. Armesto and Pickett [51] concluded that when larger disturbances such as forest fires
occur, abundance in certain foliage is observed during the recovery period because of the enhanced
re-growth made possible by less competition. The dominant tree type changed from pine to hardwood,
such as oak species, after the forest fire [1]. Indeed, pine-hardwood and hardwood trees regenerated
relatively rapidly compared to pine trees. The KFS conducted recovery efforts, such as tree planting,
until 2005 [42]. For example, about 2-ha pine stand was planted in June 2003 [52]. The NBR2.1, NBR1.6,
NDVI, and GPP data obtained during this study represented the integration of these phenomena.
The relative ratio of variables in moderate (high) burned areas increased from about 8.0% (7.3%) to
about 11.6% (14.1%) during the first 3–4 months after the fire in 2000. Also, the forest recovery trends
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for 5 years after the forest fire showed quick changes in four variables (Figure 6). These results mean
that the remote sensing based variables effectively indicate the progress of forest recovery.

The NBR can indicate conditions of water and vegetation, and the NDVI can detect the amount of
vegetation biomass. GPP is a measure of the rate of photosynthetic activity in vegetation chlorophyll.
Therefore, these variables are governed by meteorological conditions. The seasonal variations of
vegetation activity and water conditions in a forest are greatly influenced by the annual meteorological
variation; this would affect the temporal patterns of forest recovery indicated by NBR, NDVI, and GPP.
For example, in the spring drought in 2001, both the NBR2.1 and NBR1.6 in summer (July–August)
2001 were lower because the water deficit from the spring drought continued into the summer
(Figure 5). Oppositely, the NDVI and GPP in summer 2001 were higher, possibly because of the higher
photosynthetic activity caused by the reduction of clouds during the drought period [53].

To minimize the annual variation of the meteorological effects, a comparison between the burned
and reference areas was carried out (Figure 6). All values of the indicators of forest recovery (i.e.,
NBR2.1, NBR1.6, NDVI, and GPP), which represented the conditions of the burned area, gradually
became closer to the values of the reference forest. However, the time that it took for the values
of the burned area to match the reference area values was different. This means that the complete
recovery-time point can be evaluated differently depending on the monitoring indicators chosen.
The NBR2.1 and NBR1.6 values exceeded the levels of the reference area in 2017, but NBR2.1 reached
the reference level earlier than NBR1.6. Given that the 2.1 μm wavelength is more sensitive to water at
low moisture levels than the 1.6 μm wavelength [54], NBR2.1 might be able to detect the recovery of
moisture conditions in a forest earlier.

On the other hand, the NDVI almost reached the reference level in 2017, but it did not exceed the
level during our analysis period. Therefore, the complete recovery-time point indicated by the NBR was
faster than that of the NDVI. This result is consistent with the results of previous studies [16]. Ahn [44]
compared two camera images taken immediately after and six years after the East Coast fire, and a lot of
the area had been recovered by vegetation, but canopy height was still low. Although surface moisture
conditions are generally preserved under vegetation cover, the complete recovery of vegetation
biomass and health conditions will be achieved after the recovery of the moisture conditions in the
forest. Polychronaki [55] showed that the complete recovery of vegetation after a severe forest fire
required more than 20 years.

Immediately after the East Coast fire, GPP was reduced to an extent dependent on the severity
of the fire. This was consistent with the result of a previous study [56]. The GPP in the burned areas
reached reference levels in 2004. This was the fastest recovery among NBR2.1, NBR1.6, and NDVI.
Further, after 2015, the GPP in burned areas was much higher than the GPP in the reference
area, particularly in areas with high fire severity. This result could have been caused by technical
and ecological factors. First, the fraction of absorbed photosynthetically active radiation (fAPAR),
estimated based on the relationship with NDVI, is an important parameter for calculating MODIS
GPP. However, the recovery pattern shown by the NDVI was different than that of the GPP. We did
not test the GPP algorithm in this study, but Bolton [11] argued that satellite-based GPP can be
influenced by canopy structure. Second, the GPP of young forests after disturbances, such as forest
fire, shows dramatic growth, while GPP in older forests slightly declines [57,58].

5. Conclusions

NBRs, NDVI, and GPP in terms of properties of moisture condition, vegetation biomass,
and photosynthetic activity were applied to monitor the temporal patterns of forest recovery and
identify the recovery-time point after the worst forest fire in South Korean history, according to three
levels of fire severity. Further, the change of moisture condition was separately evaluated by two NBR
types of 2.1 and 1.6 μm bands, and those NBRs were also used to detect the burned areas. These four
remote-sensing variables on the forest recovery progress had similar temporal patterns representing
ecological functions. However, their recovery rate was different in the region of each fire severity level.
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In NBR2.1 (NBR1.6), the burned area became close to the unburned reference area after 4, 6, and 8 (6, 8,
and 15) years in low, moderate, and high levels (Table 3). In NDVI, 9 years were required to recover in
the low and moderate levels, but the burned area in the higher level needed more time. On the other
hand, the GPP in the burned area continuously increased during our whole study period, and excessed
the value in the reference area after 15 years. Thus, we concluded that the application using those
indices of different properties could be suitable for evaluating the progress of forest recovery from a
variety of perspectives. A single remote-sensing indictor should be not necessary for decision-making
in forest management.

GPP is the outcome of complex biogeochemical processes of a forest ecosystem. Thus, it is commonly
considered as a useful indicator of the ecological condition of a forest. However, the ground-based
GPP in the post-fire region is not well appropriately interpreted because spatio-temporal data are not
rarely produced. Satellite-based GPP is useful to monitor photosynthetic activity over a large area,
but it is relatively difficult to estimate, unlike the simple calculations for NBR and NDVI from the
satellite sensors. A process-based biogeochemical model for GPP estimation might be one of the
effective ways to understand the cause and effect of the forest recovery processes in a time series.
In addition, the satellite derived NBR and NDVI observational data should contribute to the model
performance. In this study, we identified the possibility of using NBR2.1, NBR1.6, NDVI, and GPP to
evaluate the recovery of burned areas. In future work, an integrated approach of satellite observation
and biogeochemical modeling will be necessary and further long-term monitoring will be required.
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Abstract: Beijing is severely affected by land subsidence, and rapid urbanisation and building
construction might accelerate the land subsidence process. Based on 39 Envisat Advanced Synthetic
Aperture Radar (ASAR) images acquired between 2003–2010, 55 TerraSAR-X images acquired
between 2010–2016, and urban building information, we analysed the relationship between land
subsidence and buildings at the regional, block, and building scales. The results show that the surface
displacement rate in the Beijing urban area ranged from −109 mm/year to +13 mm/year between
2003–2010, and from −151 mm/year to +19 mm/year between 2010–2016; two subsidence bowls
were mainly distributed in the eastern part of the Chaoyang District. The displacement rate agreed
well with the levelling measurements, with an average bias of less than six mm/year. At the regional
scale, the spatial pattern of land subsidence was mainly controlled by groundwater extraction,
compressible layer thickness, and geological faults. Subsidence centres were located in the area
around ground water funnels with a compressible layer depth of 50–70 m. The block-scale analysis
demonstrated a clear correlation between the block construction age and the spatial unevenness of
subsidence. The blocks constructed between 1998–2005 and after 2005 showed considerably more
subsidence unevenness and temporal instability than the blocks constructed before 1998 during both
time periods. The examination of the new blocks showed that the spatial unevenness increased
with building volume variability. For the 16 blocks with a high building volume, variability, and
subsidence unevenness, the building-scale analysis showed a positive relationship between building
volume and settlement in most blocks, although the R2 was lower than 0.5. The results indicate that
intense building construction in urban areas could cause differential settlement at the block scale
in Beijing, while the settlement of single buildings could be influenced by the integrated effects of
building volume, foundation structures, and the hydrogeological background.

Keywords: land subsidence; PS-InSAR; uneven settlement; building construction; Beijing urban area

1. Introduction

Land subsidence, a phenomenon of gradual land surface settling, is a geological hazard
caused mainly by anthropogenic activities such as subsurface fluid extraction, underground mining,
and engineering construction. Currently, more than 50 cities in China have faced land subsidence issues,
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and of these, Beijing has been among the most seriously affected cities since the 1950s [1]. Uneven land
surface settlement has been reported to cause damages to urban infrastructures, such as wall cracks
and pipeline ruptures, leading to losses in the national economy [1]. It is known that land subsidence
on the Beijing plains is mainly caused by an excessive withdrawal of groundwater and is controlled
by lithological and geological structures such as clay layer thickness, active faults, and aquifer types.
Chen et al. [2] investigated land subsidence processes between 2003–2010 in the Beijing plains area
and reported that land subsidence in this area is greatest where the compressible layer thickness is
approximately 50–70 m, and that the distribution of subsidence bowls is controlled by Quaternary
faults. Chen et al. [3] and Lei et al. [4] reported that groundwater-level variations in the second confined
aquifer had the greatest impact on the development of land subsidence, and significant differences
in the deformation gradient were found on both sides of the faults. Zhou et al. [5,6] investigated
the relationship between land-use types and subsidence rates and found that serious subsidence
occurred mainly in wetland, paddy fields, upland soils, vegetable land, and peasant-inhabited land.
Gao et al. [7] revealed that the inelastic and permanent compaction of the Beijing aquifer system was
due to the continuous decline in the water level of the northern subsidence area in Beijing, and elastic
deformation outside the subsidence area.

Although subsurface fluid extraction, e.g., groundwater over-exploitation, is a major factor
contributing to regional land subsidence in many cities in China and other countries [8,9], research has
shown that rapid urbanisation can also be a contributing factor, as building construction and space
utilisation usually develop consolidation processes [10]. A case study by Solari et al. [11] demonstrated
the correlation between the age of the construction of buildings and the subsidence rates in two small
urban areas in Pisa, Italy. Pretesi et al. [12] detected ground subsidence that was caused by the soil
consolidation process of a newly constructed building in Florence, Italy. Chen et al. [13] found that
land subsidence in the Loess Plateau region of China exhibited a high correlation with the distribution
of building land, and that subsidence rates increased with building density.

The investigation of the relationship between buildings and land subsidence requires the
continuous monitoring of land surface displacement over a large area. Compared to traditional
geodetic methods such as Global Positioning System (GPS) and levelling and deep soil settlement
surveys, the permanent scatterer interferometric synthetic aperture radar (PS-InSAR) technique has
become widely recognised for monitoring ground displacement over large areas in a timely and
cost-efficient way [14–16]. Studies have also found that the PS-InSAR technique has the capability to
obtain high-density and precise measurements of the construction area and linear objects in urban
areas based on high-resolution synthetic aperture radar (SAR) data. Liao et al. [17] determined the
long-term subtle deformation of large man-made structures in Shanghai with millimetre-scale accuracy
using the Persistent Scatterer Interferometry (PSI) method based on TerraSAR-X images. Qin et al. [18]
applied the PS-InSAR technique and 26 TerraSAR-X images to monitor surface deformation along
a rail transit in Shanghai. Chen et al. [19] monitored land surface deformation around the Beijing
Subway Line 6 area based on Radarsat-2 data between 2009–2012. Solari et al. [20] derived a time
series of ground subsidence in an urban area in Pisa, Italy during 1992 and 2010 based on European
Remote Sensing satellites (ERS) 1/2 and Envisat Advanced Synthetic Aperture Radar (ASAR) datasets
and identified the deformation of city buildings. Tapete et al. [21] monitored the deformation of linear
structures using measurement points from the InSAR technique based on Radarsat-1 data and GPS
measurements, and analysed the uncertainty of the measurements. The utilisation of multi-source
datasets has demonstrated the capability of facilitating an analysis of the long-term temporal evolution
of ground deformation over urban areas.

During the last few decades in Beijing, urban areas have been rapidly expanding, and the land
surface has been intensely developed and utilised. Buildings impose extra loads on the land, and the
construction of buildings alters the natural processes of consolidation [22–24]. To date, only a few
studies have examined the relationship between land subsidence and urban development in Beijing.
Chen et al. [25] found a weak positive correlation between Landsat-derived urban indices and land
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subsidence between 2003–2010. Chen et al. [26] reported that the complexity of urban space utilisation
may affect uneven settlement at five settlement centres. Both studies only analysed settlement funnel
areas in which groundwater withdraw was the major control factor of land subsidence, and it is hard
to attribute land subsidence to the urbanisation in these areas. Jiao et al. [27] studied the western
Central Business District—a very small urban area—and found the skyscrapers with volumes over
3 × 105 m3 showed a higher land subsidence rate than smaller buildings.

The aforementioned literature review shows that the impact of building construction on land
subsidence have not been fully investigated in Beijing urban areas. How building construction impacts
the subsidence processes at different spatial scales is not clear. The present study aims to fill this gap.
The objective is to evaluate the relationship between building construction and land subsidence in
Beijing urban areas at regional, block, and building scales using the PS-InSAR technique. Building
characteristics, including the age of building construction and building volume, are considered. The
Chaoyang District, where both urbanisation and land subsidence have developed rapidly over the
past few decades, was selected as the study area. Five hydrogeological regions were partitioned
over the study area, with each demonstrating a similar groundwater level and compressible layer
thickness. Land subsidence data between 2003–2016 were derived based on 39 Envisat ASAR images
and 55 TerraSAR-X images. For each hydrogeological region, the relationships between building
characteristics, namely, the age of construction and building volume, with land subsidence, were
evaluated at both the block scale and the single-building scale. A detailed description of the study
area, datasets, and methodology is seen in Sections 2 and 3. Sections 4 and 5 present and discuss the
results. The main conclusions are summarised in Section 6.

2. Study Area and Dataset

2.1. Study Area

Beijing (39◦28′–40◦05′N and 115◦25′–117◦30′E) is an international metropolitan city with rapid
urban sprawl and a high intensity of human activities. In 2016, the population of Beijing reached
21,729 million, inhabiting an area of approximately 16,410 km2, of which 1410 km2 was built-up
area. Beijing is affected by a monsoon-influenced semi-arid and semi-humid continental climate.
The temporal and spatial distribution of annual precipitation occurs unevenly, and 60.4% of the
precipitation is concentrated in the summer (July–September). Two thirds of the water sources for the
Beijing municipality come from groundwater. Groundwater is mainly withdrawn from the shallow
confined aquifer layer in single-layered structure areas, and the middle confined aquifer layer and
deep confined aquifer layer in multi-layered structure zones [4]. Since 1950, the Beijing plain area
has formed five major ground subsidence funnels in the Chaoyang, Tongzhou, Shunyi, Changping,
and Daxing Districts.

In this paper, we chose the Dongbalizhuang–dajiaoting settlement funnel and its surrounding area
in the Chaoyang District as the study area (205 km2). The groundwater level at the second confined
aquifer varies from −37 m to −10 m, and the thickness of the clay layer in the first 100 m depth ranges
from less than 50 m to 70 m. The Nanyuan–Tongxian geological fault is located across the study area
(Figure 1), and rapid urbanisation has occurred in this area since the 1980s. Currently, the development
in the study area is typical of urban areas in Beijing, with complex and intensive urban land use with
mixed low-rise and high-rise buildings, historic and modern buildings, and commercial and residential
buildings. Urban villages with considerable numbers of single-storey houses still exist.
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Figure 1. Study area and dataset coverage.

2.2. SAR Images and Validation Datasets

To determine the land subsidence evolution in the study area, two sets of SAR images comprising
39 descending single look complex (SLC) scenes collected by Envisat ASAR from 18 June 2003 to
25 August 2010 and 55 ascending scenes collected by the TerraSAR-X satellite with Stripmap mode
from 13 April 2010 to 24 May 2016 were utilised in this study (Figure 1). The spatial resolutions of the
Envisat ASAR and TerraSAR-X images were approximately 30 m and 3 m on the ground, respectively.
Although high spatial resolution SAR datasets such as the TerraSAR-X imagery are preferable for
identifying permanent scatterers in urban areas, this type of high-resolution satellite was not available
before 2008. Thus, Envisat ASAR images were used to derive surface deformation between 2003–2010.
The external Digital Elevation Model (DEM) that was applied for PS-InSAR processing to remove the
topographic phase and flatten effects came from Shuttle Radar Topography Mission (SRTM) with a
spatial resolution of 90 m (http://dds.cr.usgs.gov/srtm/).

Land surface deformation measurements collected from 12 levelling benchmarks from 2003 to
2010, five levelling benchmarks between 2010–2013, and 13 levelling benchmarks between 2015–2016
were used for validation (Figure 1). Due to the limited availability of long-term observations, none of
the in situ datasets covered the whole time span from 2010 to 2016.

2.3. Building Properties

From Google Earth, high-resolution images, and Baidu Street Map (map.baidu.com), the block
locations were visually interpreted and manually outlined in ArcGIS software. In our study, a “block”
refers to a gated community that is usually surrounded by main streets or roads. In the study area,
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a total of 178 blocks were identified. Most of the blocks were residential communities, and among them,
some communities had one or two commercial buildings. Apart from the residential communities,
several school campuses and commercial business districts were also located in the area. Sixteen blocks
were urban villages with similar low-rise buildings. It has been reported that many of these villages
have private wells, which may affect the local groundwater level. Previous research has shown that
the subsidence rate increases as the distance to the pumping well decreases [2]. Twenty-four blocks
were located within a 50-m buffer area of the Nanyuan–Tongxian geological fault. To minimise the
influence of local groundwater level variation and the fault on the uneven subsidence within the blocks,
we eliminated these blocks from further analysis. As a result, 138 blocks were selected with a total
of 6023 buildings. For each building, properties such as building height, base area, and construction
age were acquired from real estate companies. Building volume was estimated as the product of the
building base area and height. Volume was used to represent the load of the buildings.

3. Methodology

First, land surface deformation over the study area from 2003 to 2016 was derived from
Envisat ASAR and TerraSAR-X datasets using the PS-InSAR technique. The results were evaluated
by a comparison with levelling measurements. The study area was then partitioned into five
hydrogeological regions. Each region had a similar groundwater level and compressible thickness
of the clay layer. For each region, the spatiotemporal pattern of land subsidence was analysed. The
relationship between land subsidence and building characteristics, including construction age and
building load, was then evaluated at both the block scale and building scale.

3.1. Land Subsidence Monitoring Using the PSI Technique

The PSI method is capable of detecting points with strong and stable radiometric characteristics
based on a stack of SAR data and deriving surface deformation information. In this study, the Stanford
method for persistent scatterers (StaMPS) PSI method developed by Hooper et al. [28] was used to
retrieve time series deformation from the Envisat ASAR images. First, the image acquired on 18 April
2007 was selected as the master image. The StaMPS selected initial persistent scatterer (PS) candidates
with a small dispersion index value (lower than 0.4 in this study). The phase stability analysis was
then performed for each PS candidate, and the probability that each pixel was a PS pixel was refined
based on the stability indicator. For PS pixels, the wrapped phase was corrected, and unwrapping
was then applied. The spatially correlated errors were eliminated with the aid of a high-pass filter in
time, and a low-pass filter in space. Finally, the time series deformation along the line-of-sight (LOS)
direction was derived.

The PSI method presented by Ferretti et al. [29,30] in SARPROZ software was used to obtain a
deformation time series from the 55 TerraSAR-X images. First, the TerraSAR-X image acquired on
1 November 2013 was selected as the master image by considering a shorter spatial baseline and
temporal baseline. Other images were co-registered to the master image. Second, a series of differential
interferograms were constructed with the aid of SRTM DEM and precise orbital data. Third, persistent
scatterer candidates (PSCs) were obtained with an amplitude difference dispersion index lower than
0.3. Then, multi-image grid phase unwrapping was conducted, and an atmospheric phase screen (APS)
was estimated and removed. Afterwards, PS points with a temporal coherence index greater than 0.75
were selected. This ensures that the selected PS points have a high coherence and show phase stability
over a long period of time. Finally, the displacement time series for each PS point along the LOS were
derived by separating the phase components of the interferometric phase. Research has shown that
use of the StaMPS and the PSI method in SARPROZ software yields consistent results for the same
datasets [31,32], while we found that StaMPS was more computationally intensive. Therefore, we used
SARPROZ software to process the high amount of TerraSAR-X datasets. Note that we used the same
reference points with known zero deformation in the overlapped area of two data frames. The vertical
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deformation rate was then estimated from the LOS deformation rate by assuming that the horizontal
movement of the land surface can be neglected [2,7].

3.2. Multi-Scale Analysis of the Relationship between Building Characteristics and Land Subsidence

In Beijing, lithology provides the geological background for land subsidence, and the spatial
variation in the groundwater level is closely related to the regional distribution of subsidence rates. To
minimise the impact of hydrogeological conditions on the subsidence-building relationship analysis,
the study area was partitioned into five hydrogeological regions based on the compressible thickness
of the clay layer and groundwater level at the second confined aquifer (Table 1 and Figure 2).
Compressible layer thickness was classified into three classes, including <50 m, 50–60 m and 60–70 m.
Groundwater level at the second confined aquifer was classified into four classes, including −37
to −32 m, −32 to −27 m, −27 to −22 m, and −22 to −17 m. Blocks were grouped based on the
construction age. There were a total of 25 blocks built prior to 1998, 65 blocks built between 1998–2005,
and 48 blocks built after 2005 (Table 1).

Table 1. Compressible layer thickness, groundwater level, and number of blocks within each region.

Region I II III IV V

Compressible Layer
Thickness (m) 50–60 50–60 60–70 60–70 <50

Groundwater Level (m)
at Second Confined Aquifer −37–32 −32–−27 −32–−27 −27–−22 −22–−17

Number of
Blocks

Before 1998 7 0 3 7 8
1998–2005 21 4 8 13 19
After 2005 22 6 0 12 8

Total 50 10 11 32 35

Figure 2. Location and extent of five regions.
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For each region, the spatiotemporal pattern of the vertical deformation rate during the two
observation periods was analysed. The spatial unevenness and temporal instability of the ground
deformation within the blocks and their relationship with the block construction age and building
volume variation was analysed. Further, the relationship between building-scale characteristics and
settlement was analysed.

4. Results

4.1. Land Surface Deformation Derived from the PSI Techniques and Validation

A total of 167,690 pixels and 1,099,639 pixels were detected as PS points from the Envisat ASAR
and TerraSAR-X datasets, respectively. As illustrated in Figure 3, the deformation rate ranged
from −109.1 mm/year to +13.1 mm/year during 2003–2010 for the Envisat ASAR datasets and
from −150.5 mm/year to +19 mm/year during 2010–2016 for the TerraSAR-X datasets. Figure 3a
clearly shows five settlement funnels in the Chaoyang, Shunyi, and Changping districts in the
Beijing plain. The two settlement funnels with the highest subsidence rates were located within
the TerraSAR-X data frame (Figure 3b). At the Laiguangying settlement funnel, the maximum
deformation rate reached −92 mm/year from 2003 to 2010, and −151 mm/year from 2010 to
2016. At the Dongbalizhuang-dajiaoting settlement funnel, the maximum deformation rate reached
−109.1 mm/year and −141.5 mm/year from 2003 to 2010 and 2010 to 2016, respectively.

Figure 3. Average displacement rate derived from the (a) Envisat Advanced Synthetic Aperture Radar
(ASAR) datasets during 2003–2010 and (b) TerraSAR-X datasets during 2010–2016. The red outline
shows the boundary of the study area.

The deformation rates during the two periods were further assessed by 30 in situ levelling
measurements collected from 2003 to 2010, 2010 to 2013, and 2015 to 2016. The PS pixels closest to the
levelling benchmarks were selected. As there were no measurements available throughout the time
period from 2010 to 2016, we calculated the average displacement rate during 2010–2013 and 2015–2016
from the cumulative displacement time series derived from the TerraSAR-X datasets. Figure 4 shows
that the deformation rate measurements from the PSI techniques and levelling benchmarks are in good
agreement. The average biases of the estimates from the PSI techniques are −1.57 mm/year (root mean
square error (RMSE) = 2.45 mm/year, R2 = 0.90) for 2003 to 2010, 4.53 mm/year (RMSE = 8.01 mm/year,
R2 = 0.98) for 2010 to 2013, and 5.00 mm/year (RMSE = 9.06 mm/year, R2 = 0.86) for 2015 to 2016. The
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StaMPS method applied to Envisat ASAR datasets and the SAR PROcessing tool by periZ (SARPROZ)
method applied to TerraSAR-X datasets have different procedures; for example, StaMPS does not
require any priori assumptions for the temporal nature of the deformation for PS selection. However,
the validation results using levelling measurements indicate that reliable land deformation results
were derived from both PSI methods. This supports the following analysis on the relationship between
land subsidence and building characteristics.

 

Figure 4. Comparison of the displacement rates derived from the permanent scatterer interferometric
synthetic aperture radar (PS-InSAR) technique and levelling measurements.

4.2. Spatiotemporal Characteristics of Land Subsidence at Each Region

Tables 2 and 3 list the deformation rate statistics in each region and within the blocks during
2003–2010 and 2010–2016. There were a total of 14,729 PS pixels (90 pixels/km2) and 163,072 PS pixels
(939 pixels/km2) detected by the Envisat ASAR and TerraSAR-X datasets, respectively, in the five
regions. Note that the point density from the TerraSAR-X datasets was over 10 times that from the
Envisat ASAR datasets. This is mainly due to the differences in spatial resolution of the two datasets.
The StripMap mode of TerraSAR-X acquisition provides up to 3-m resolution, while Envisat ASAR
acquisition provides 30-m resolution imagery. During both time periods, the mean deformation rate
in region I (−75.2 mm/year and −93.1 mm/year), region II (−68.1 mm/year and −94.0 mm/year),
and region III (−53.8 mm/year and −64.1 mm/year) were much higher than those in regions IV and
V. Regions I, II, and III also had higher deformation rate standard deviations (SDs) (>15 mm/year)
than regions IV and V, indicating a greater unevenness in the subsidence of regions I, II, and III. Thus,
we considered regions I, II, III, i.e., the regions with most severe subsidence, as the subsidence centre.

Table 2. Deformation rate of persistent scatterer (PS) points during 2003–2010 within regions and
blocks. SD: standard deviations.

Region I II III IV V

Total Number of PS points 3288 2305 2103 2520 4513
Mean Deformation Rate of PS points

(mm/year) −75.2 −68.1 −53.8 −26.4 −13.8

SD of Deformation Rate of PS Points
(mm/year) 16.7 11.0 11.9 10.6 8.5

Number of PS Points within Blocks 975 261 254 968 1727
Mean Deformation Rate within Blocks

(mm/year) −69.6 −64.8 −60.1 −25.9 −10.8

SD of Deformation Rate within Blocks
(mm/year) 20.2 8.6 10.4 9.4 5.7
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Table 3. Deformation rate of PS points during 2010–2016 within regions and blocks.

Region I II III IV V

Total Number of PS Points 35,159 20,743 18,348 29,687 59,135
Mean Deformation Rate of PS Points

(mm/year) −93.1 −94.0 −64.1 −30.4 −13.6

SD of Deformation Rate of PS Points
(mm/year) 22.3 16.4 18.4 13.4 10.7

Number of PS Points within Blocks 15,023 5710 2527 16,419 25,978
Mean Deformation Rate within

Blocks (mm/year) −89.0 −91.6 −82.0 −30.0 −11.2

SD of Deformation Rate within Blocks
(mm/year) 25.2 12.4 12.9 13.2 8.9

We further selected the PS pixels within the blocks. The number of PS pixels within the blocks
accounted for approximately 29% (Envisat ASAR) and 40% (TerraSAR-X) of the PS pixels in the whole
region. However, the density of the PS pixels in the blocks was higher than the overall PS pixel density
due to the existence of buildings (120 pixels/km2 from Envisat ASAR and 1876 pixels/km2 from
TerraSAR-X). Although the Envisat ASAR PS pixel density is much lower than the TerraSAR-X PS
pixel density, there is still an average of over 30 PS pixels within each block, enabling further statistical
analysis within the blocks. For each region, the mean and SD of the deformation rate within the blocks
had a similar pattern as those of the whole region, indicating that the subsidence rates in these blocks
can represent the overall regional situation (Tables 2 and 3).

A comparison between Tables 2 and 3 shows that the settlement rate increased significantly
from 2003–2010 to 2010–2016 in all of the regions and blocks except for in region V. The SD of the
settlement increased in all of the regions and blocks. In the subsidence centre area (regions I, II, and
III), the increments in the mean and SD of the subsidence rates were even more notable. Specifically,
the mean settlement rate increased from 75.2 mm/year to 93.1 mm/year in region I, from 68.1 mm/year
to 94.0 mm/year in region II, and from 53.8 mm/year to 64.1 mm/year in region III. Figure 5 also
shows that the spatial distribution of the subsidence rate is similar during the two time periods at each
region, while the magnitude of the subsidence rate during 2010–2016 is significantly higher than that
during 2003–2010.

(a) (b)

Figure 5. Deformation rates of each region during (a) 2003–2010 and (b) 2010–2016.
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4.3. Block-Scale Building Characteristics and Subsidence

From the two SAR datasets, the PS pixels within the blocks were extracted, and the average
and range of the cumulative settlement were calculated for each block. In this study, we define the
range, denoted as R(s), as the difference between the 95th percentile and the 5th percentile of the
cumulative settlement within a given block during 2003–2010 based on the ASAR datasets or during
2010–2016 based on the TerraSAR-X datasets. The 95th percentile and 5th percentile were used in order
to eliminate the outliers of PS-InSAR-derived cumulative settlement. R(s) was utilised to represent the
spatial variation or unevenness of the land subsidence within each block. For each PS point derived
from the ASAR dataset, we found the closest PS point derived from the TerraSAR-X dataset within
a 5-m buffer area. The settlement velocity change, which was denoted as Δv, from 2003–2010 to
2010–2016 was then calculated for the pairs of PS points. The range of the velocity change R(Δv), i.e.,
the difference between the 95th percentile and 5th percentile velocity change within each block, was
calculated to represent the stability of the block settlement. The basic assumption was that blocks are
relatively stable if there was no change in the displacement velocity during the two periods, or if the
velocity change was similar across the block area; a high R(Δv) within the block indicates poor stability.

Table 4 summarises the average cumulative settlement and velocity change within the blocks
constructed before 1998, between 1998–2005, and after 2005. In the subsidence centre area (regions I–III),
the average cumulative settlement ranged from 563.2 mm to 574.3 mm between 2003–2010, and from
552.9 mm to 612.8 mm during 2010–2016; the average velocity change ranged from 14.5 mm/year to
17.5 mm/year. In the areas far from the subsidence centre (regions IV and V), the average cumulative
settlement ranged from 144.8 mm to 176.2 mm between 2003–2010, and from 126.7 mm to 134.6 mm
between 2010–2016; the velocity change varied from 6.1 mm/year to 7.4 mm/year. Note that there
were six blocks constructed after 2005 in region I that had no PS pixels detected in the Envisat
ASAR dataset due to the lack of permanent scatterers; hence, we did not include these blocks in the
statistical calculation based on the Envisat ASAR dataset. The blocks constructed during the three time
periods did not have considerably different settlements, regardless of the dataset used (Envisat ASAR
TerraSAR). The velocity changes were also similar.

Table 4. The average cumulative settlement (s), average settlement velocity change (Δv), average
range of cumulative displacement (R(s)), and average range of velocity change (R(Δv)) of PS pixels
within blocks.

Region Construction age (N)
s (mm) Δv

(mm/year)

R(s) (mm) R(Δv)
(mm/year)2003–2010 2010–2016 2003–2010 2010–2016

I–III
Before 1998 (10) 574.3 612.8 17.5 52.1 47.7 5.8
1998–2005 (33) 596.9 552.9 14.5 86.2 93.2 11.0

After 2005 (28) * 563.2 * 578.6 15.8 82.1 * 92.5 10.5

IV, V
Before 1998 (15) 144.8 130.2 7.4 63.3 64.5 7.0
1998–2005 (32) 165.8 126.7 6.1 70.1 73.7 7.2
After 2005 (20) 176.2 134.6 6.2 68.9 78.8 8.7

*: Among the 28 blocks constructed after 2005 in regions I–III, six blocks had no PS pixels detected by the Envisat
ASAR dataset. Thus, they were not considered in the statistical calculation based on the Envisat ASAR dataset.

Table 4 compares the average R(s) and R(Δv) within the blocks constructed during the three time
periods. The spatial unevenness of the subsidence in the newly constructed blocks was higher than
that in the old blocks, as shown by both the Envisat ASAR and TerraSAR-X datasets. In the subsidence
centre area, the blocks that were built prior to 1998 had an average unevenness of 52.1 mm between
2003–2010, and 47.7 mm between 2010–2016; the blocks built after 2005 had an average unevenness of
82.1 mm between 2003–2010 and 92.5 mm between 2010–2016. In addition, the newer blocks had a
greater increase in displacement unevenness from 2003–2010 to 2010–2016. For example, in regions IV
and V, the subsidence unevenness of the old blocks (constructed before 1998) increased from 63.3 mm
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to 64.5 mm, and that of the new blocks (constructed after 2005) increased from 68.9 mm to 78.8 mm.
Figure 6 illustrates the percentage of blocks with each interval of R(s). As illustrated in Figure 6, in the
subsidence centre area, only 20% of the old blocks had a subsidence unevenness over 80 mm between
2003–2010; in contrast, the unevenly subsiding blocks (R(s) > 80 mm) accounted for 48.4% and 40.9%
of the newer blocks, respectively. Between 2010–2016, the percentage of unevenly subsiding old blocks
decreased to 10%, while for newer blocks, the percentages were 48.4% and 43%. Similarly, in regions IV
and V, the percentage of unevenly subsiding old blocks was lower than that of the unevenly subsiding
new blocks. In the study area, there were four groups of adjacent blocks with new blocks close to old
blocks. The described pattern, that is, that newer blocks had greater spatial unevenness and temporal
instability than older blocks, was more evident at the local scale (Figure 7). Figure 7e illustrates
the settlement range for each block of each group. The figure clearly shows that blocks constructed
between 1998–2005 and after 2005 had greater R(s) values than the neighbouring old blocks.

In addition, Table 4 shows that newer blocks have greater R(Δv) values than older blocks. In
regions I, II, and III, none of the old blocks had R(Δv) values greater than 15 mm/year, while 24.2% of
the blocks that were constructed between 1998–2005, and 13.6% of the blocks constructed after 2005,
had R(Δv) values greater than 15 mm/year. Similarly, the old blocks had lower R(Δv) values than
the newer blocks in regions IV and V. The percentages of blocks with R(Δv) >15 mm/year were 0%,
9.4%, and 5% for old blocks, blocks constructed between 1998–2005, and blocks constructed after 2005,
respectively (Figure 8). As R(Δv) represents the spatial variability of changes in subsidence velocity
within the blocks, these results show that the new blocks were less stable than the old blocks.

Figure 6. Percentage of blocks with different intervals of R(s) within blocks in (a) regions I, II, and III
derived from the ASAR datasets; (b) regions I, II, and III derived from the TerraSAR-X datasets;
(c) regions IV and V derived from the ASAR datasets; and (d) regions IV and V derived from the
TerraSAR-X datasets.
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Figure 7. Four groups of neighbouring blocks ((a) group a, (b) group b, (c) group c, and (d) group d)
and (e) the range of cumulative settlement derived from TerraSAR-X datasets for each group.

Figure 8. Percentage of blocks with different intervals of R(Δv) within blocks in (a) regions I, II, and III,
and (b) regions IV and V.

We further focussed on the 48 blocks constructed after 2005 (28 blocks in regions I, II, and III,
and 20 blocks in regions IV and V) and analysed the relationship between subsidence and building
volume for these blocks. The 48 blocks were selected because they had a greater spatial unevenness
and temporal instability of land subsidence than the old blocks. Compared with the blocks that were
constructed between 1998–2005, they also had a greater increase in R(s) from 2003–2010 to 2010–2016;
therefore, we speculated that the ground settlement within these blocks was more susceptible to the
impact of building construction. Figure 9 shows the relationship between the range of cumulative
displacement (R(s)) derived from the TerraSAR-X datasets and the range of building volume within
the 48 new blocks in regions I, II, IV, and V. Note that there were no new blocks in region III. Except
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for in region I, R(s) increased with the building load range, i.e., greater differences in building load
corresponded to greater unevenness in the settlement within the blocks. For example, in region V, three
blocks had building volume differences greater than 2 × 105 m3 and average R(s) values that reached
93 mm, which was a greater value than that of the blocks with small differences in building volume.

Figure 9. Average range of cumulative settlement (R(s)) between 2010–2016 for blocks with different
building volume ranges in (a) region I, (b) region II, (c) region IV, and (d) region V. The numbers above
each bar denote the number of blocks.

4.4. Building-Scale Subsidence and Building Volume

A building-scale analysis was performed on the 16 new blocks (seven in region I, 1 in region II, 5
in region IV and 3 in region V) with building volume differences greater than 105 m3 since they have
relatively high subsidence unevenness. We calculated the cumulative displacement of each building
from 2010 to 2016 using the co-registered PS points derived from the TerraSAR-X datasets, and analysed
the relationship between building volume and displacement. Table 5 lists the coefficient, intercept, and
R2 values of the linear regression model with building volume (105 m3) as the explanatory variable,
and building cumulative displacement as the response variable. Despite low R2 values (0.1–0.43), most
of the blocks (13 out of 16) showed a negative relationship (negative coefficient) between building
volume and displacement; that is, building settlement increased with the magnitude of building
volume. For example, in the Dafangju block community in region II, the buildings in the west subsided
by approximately 740 mm between 2010–2016, while those in the east only subsided by approximately
635 mm in the same period. The volume of the western buildings was approximately 3.3 × 105 m3,
and that of the eastern buildings was approximately 0.3 × 105 m3 (Figure 10a). In the Jintaixianfeng
block community, there was a building cluster in the southeast with a greater subsidence rate than
that of the other buildings. An examination of the building cluster showed that the buildings were
commercial high rises with a volume of approximately 1.5 × 105 m3, while the other buildings had a
volume of approximately 0.4 × 105 m3 (Figure 10b). However, in the remaining three blocks, a similar
pattern was not found. For example, in the Huamao block of region V, there were three high-rise
buildings constructed between 2005–2008 with 28–36 floors above the ground and four basement floors
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comprising a commercial centre. However, the displacement rate of these skyscrapers was obviously
lower than that of the surrounding low-rise buildings.

Table 5. Parameters of the linear regression model between building volume and building deformation.
Deformation = a × volume (105) + b.

Region I II

a −149.5 −36.0 −216.4 −17.9 0.35 −4.9 −1.8 −10.5
b −335.4 −366.5 −319.6 −841.1 −840.4 −400.2 −665.1 −679.0

R2 0.43 0.10 0.12 0.23 0.21 0.11 0.11 0.35

Region IV V
a 11.4 −5.80 −9.4 −7.8 −16.5 4.5 −6.2 −10.0
b −165.5 −113.9 −66.8 −280.9 −83.0 −69.9 −48.6 −45.7

R2 0.12 0.10 0.15 0.24 0.13 0.24 0.08 0.33

(a) (b)

Figure 10. Cumulative displacement within the (a) Dafangju block and (b) Jintaixianfeng block.

5. Discussion

5.1. Causes of Land Subsidence at the Regional Scale

As illustrated in Tables 2 and 3 and Figure 5, land subsidence between 2003–2010 and 2010–2016
presented similar spatial patterns. The settlement funnels in the Chaoyang district were clearly present
in both time periods, and the deformation rates in regions I, II, and III were significantly higher than
those in regions IV and V. We overlaid the contour map of the average groundwater table in the second
confined aquifer between 2003–2010 and 2010–2016 on the displacement map, and found that the
spatial variation in the land subsidence rate was generally consistent with the groundwater level
contours (Figure 11a,b). However, the distribution of the subsidence bowl did not exactly align with
the groundwater depression cone, which may be affected by the compressibility of the soil structure
and the geological fault zone [7]. The comparison between Figure 11a,b shows that the groundwater
level decreased considerably from 2003–2010 to 2010–2016. Correspondingly, the subsidence bowls
expanded, and the subsidence rate increased during the two time periods. By comparing the land
surface displacement time series derived from the TerraSAR-X data with the confined groundwater
level changes at two observation wells between 2005–2014 [33], we found that the land subsidence
trend was closely related to temporal variations in the groundwater level (Figure 11c,d). When
the groundwater level declined, the magnitude of displacement increased correspondingly. Intense
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groundwater withdraw is the predominant cause of subsidence in the Beijing plain area, since regional
drops in piezometric levels could reduce pore pressure and increase effective stresses [4].

The thickness of the soft clay layer provides the lithology and structural background for land
subsidence in the Beijing plain area. In our study area, the highest deformation rate occurred in regions
I, II, and III, where the compressible clay layer thickness reached 50–70 m. Thicker compressible soil
tends to have a relatively high deformation rate when piezometric levels decrease. For each region,
the mean and SD of the deformation rate within the blocks had similar patterns as those of the whole
region, indicating that the subsidence rate of these blocks can represent the overall regional situation
(Table 1). The spatial–temporal deformation rate pattern revealed that regional-scale land subsidence
was mainly caused by drops in the groundwater level and mainly controlled by structures, including
the compressible thickness of the clay layer and faults.

(a) (b)

(c) (d)

Figure 11. (a) Compressible thickness and groundwater level at the second confined aquifer
superimposed onto an interpolated cumulative land deformation map. (b) Cumulative displacement
derived by PS-InSAR and groundwater level at (c) the eastern Chaoyang and (d) eastern Balizhuang
observation wells.
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5.2. Effects of Building Characteristics on Block-Scale Subsidence Unevenness

The spatiotemporal evolution of land subsidence in the study area was mainly controlled by the
aforementioned hydrogeological factors at the regional scale. Therefore, no substantial differences
in cumulative settlement (s) and the subsidence rate change (Δv) were discovered among the three
types of blocks classified by the age of construction in either the subsidence centre area (regions I, II,
and III) or the area far from the subsidence centre (regions IV and V). However, we did find that newer
blocks had a higher spatial unevenness of subsidence than older blocks. In addition, the increase
in displacement unevenness from 2003–2010 to 2010–2016 and the spatial variation of the velocity
change in the new blocks were higher than those in the old blocks. In contrast, the old blocks were
more stable than the new blocks. These observations were the most obvious in the four groups of
blocks with new blocks and old blocks near each other (Figure 7). At such a local scale, the lithology
features and groundwater conditions were similar; thus, the contribution of groundwater variations to
displacement unevenness was limited. On the other hand, the construction of buildings could lead to
significant load changes, thus resulting in uneven subsidence within blocks. As the old blocks had
been built more than 10 years before the TerraSAR-X data acquisition time, the primary consolidation
processes may had completed before this period; thus, the old blocks were more stable than the nearby
new blocks.

Solari et al. [11] reported a positive relationship between the building construction age and
settlement rate in small urban areas in Pisa, Italy. Dong et al. [34] also presented that the construction
of urban infrastructure induces local-scale uneven subsidence in Shanghai, China. Stramondo et al. [10]
detected some local areas affected by subsidence rates greater than 10 mm/year in Rome, and revealed
the effect of building construction on land subsidence. Pratesi et al. [12] reported that the subsidence
of newly constructed building displayed a sharp slope of displacement velocities during the first
year of completion of construction in Florence, Italy. In these studies, regional subsidence showed
homogeneous spatial patterns in urban areas, while localised high deformation rates were detected
in some newly developed buildings or districts. Unlike these studies, the urban area in our study
showed great spatial variation in deformation associated with variations in the groundwater level
and geological condition. Even within the same region, spatial subsidence gradients were visible.
Therefore, it is difficult to attribute the difference in the deformation rate of the new and old blocks to
the contribution of building construction, because these differences may also be caused by groundwater
variations. Nonetheless, a comparison of the settlement unevenness across the blocks, instead of the
settlement itself, could minimise the impact of groundwater in such a small area. From our results,
the higher spatial unevenness and temporal instability within the new blocks confirmed that the effect
of building construction on subsidence could be revealed at a local scale.

For the new blocks that were constructed after 2005, the deformation unevenness was found
to be related to the variations in building loads within the blocks. In the study area, most of the
residential buildings in the blocks had a construction period less than five years. The intense building
construction in a small area disturbed the balance of stresses in the overlying strata. Greater building
load variation indicated greater differences in building structures or founding techniques, and thus
differential settlement [10]. Skyscrapers may produce greater downward pressure, which consolidates
the soft clay layer, than low-rise buildings, and thereby may cause greater subsidence.

5.3. Effects of Building Volume on Building-Scale Subsidence

The magnitude of the imposed building load has been demonstrated as a factor promoting
consolidation and high displacement rates [11]. In our study area, the analysis of the 16 blocks showed
that building settlement increased with building volume in most blocks. Similarly, Jiao et al. [18]
reported that buildings with a volume of over 3 × 105 m3 had higher subsidence rates than
small-volume buildings in the western CBD area. We also found that the R2 of the positive relationship
was relatively low, and a few blocks, such as those in the Huamao Centre, even showed an opposite
trend. A possible explanation for this is that the load contribution to ground settlement also depended
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on the type of foundation and corresponding depth [10]. For example, the three high-rise buildings in
the Huamao Centre had four basement floors that each had a depth of at least 18 m. The foundation
piles of these buildings may reach down to the substrate. The use of long piles or super long piles in
high or super high buildings can effectively reduce settlement, and the increase in the building load
does not cause the same proportion of ground settlement. Nonetheless, pile foundation construction
may cause ground deformation in surrounding areas as a result of the stress transfer effect [34],
and thus affect the spatial unevenness of the subsidence within a block.

6. Conclusions

In this study, we analysed the relationship between ground subsidence and building characteristics
in the Beijing Chaoyang and Tongzhou districts using the PS-InSAR technique. First, 39 Envisat ASAR
images between 2003–2010 and 55 TerraSAR-X images between 2010 to 2016 were used to obtain surface
deformation. The results showed that the ground deformation rate in the Beijing urban area ranged
from −109 mm/year to +13.1 mm/year from 2003 to 2010, and from −151 mm/year to +19 mm/year
from 2010 to 2016. There were two obvious subsidence bowls in the eastern part of the Chaoyang
District. The displacement rates that were estimated by the PS-InSAR datasets agreed well with the
levelling observations, and the average biases were 1.57 mm/year at 12 levelling benchmarks from 2003
to 2010, 4.53 mm/year at five levelling benchmarks from 2010–2013, and 5.01 mm/year at 13 levelling
benchmarks from 2015–2016. The study area was partitioned into five hydrogeological regions with
similar groundwater levels at the second confined aquifer and compressible layer thicknesses. A total
of 138 blocks with 6023 buildings were selected and analysed in the five regions. Based on the land
subsidence monitoring results, we analysed the land subsidence pattern and its relationship with
different building characteristics at regional, block, and building scales, and the following conclusions
were drawn:

(1) At the regional scale, the spatiotemporal evolution of land subsidence was mainly controlled by
declines in the groundwater level, compressible layer thickness, and geological faults. The spatial
pattern of the land subsidence rate distribution was consistent with groundwater level contours
during the two time periods, and the highest deformation rate occurred in regions I, II, and III,
where the compressible clay layer thickness reached 50–70 m. Geological faults also affected the
subsidence unevenness at a regional scale. The mean and SD of ground displacement increased
significantly from 2003–2010 to 2010–2016 in almost all of the regions. For each region, the mean
and SD of ground displacement within the blocks showed a similar spatiotemporal pattern as
that within the whole region.

(2) At the block scale, we analysed the relationship between the age of block construction and
the deformation at the subsidence centre area (regions I, II, and III) and the area far from the
subsidence centre (regions IV and V). Interestingly, we found that newly constructed blocks
(constructed between 1998–2005 and after 2005) had a considerably higher spatial unevenness
of ground settlement than the old blocks (constructed before 1998), especially during the time
period of 2010–2016, as shown by the TerraSAR-X dataset. This pattern was more obvious for
the block cluster with adjacent new and old blocks. The temporal instability of the deformation
within the new blocks was also greater than that within the old blocks. For the new buildings,
we found that subsidence unevenness was related to the variation in building volume within the
block. Greater variations in building volume corresponded to greater subsidence unevenness.
The block-scale results indicated that intense building construction within a small area could
disturb the balance of stresses in the overlying strata, and thus cause differential settlement.

(3) At the building scale, an analysis of 16 new blocks with a building volume range over 105 m3

demonstrated a weak positive relationship between single-building settlement and building
volume in 13 blocks. However, in the remaining three blocks, we found the settlement rates
of some high-rise buildings were lower than those of low-rise buildings. Single-building
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settlement can be caused by the combined effects of load magnitude, foundation structure,
and foundation depth.

In summary, the impact of building construction on land subsidence was difficult to determine
at the regional scale in a Beijing urban area, as hydrogeological conditions are the main drivers of
subsidence, as reported in previous research. At the block scale and single-building scale, we found
block construction age and building volume could affect the spatial unevenness and instability of
subsidence. As the urban area in Beijing is characterised by complex land use and varied building
properties, the impact of building construction on subsidence might be a combination of effects from
these factors. Nevertheless, our conclusion implies that building construction contributed to the spatial
unevenness of ground displacement at the local scale, and attention should be paid to those uneven
settlement blocks.
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Abstract: Flooding is extremely dangerous when a river overflows to inundate an urban area.
From 1995 to 2016, North Korea (NK) experienced extensive damage to life and property almost
every year due to a levee breach resulting from typhoons and heavy rainfall during the summer
monsoon season. Recently, Hoeryeong City (2016) experienced heavy rain during Typhoon Lionrock,
and the resulting flood killed and injured many people (68,900) and destroyed numerous buildings
and settlements (11,600). The NK state media described it as the most significant national disaster
since 1945. Thus, almost all annual repeat occurrences of floods in NK have had a severe impact,
which makes it necessary to figure out the extent of floods to restore the damaged environment.
However, this is difficult due to inaccessibility. Under such a situation, optical remote sensing
(RS) data and radar RS data along with a logistic regression were utilized in this study to develop
modeling for flood-damaged area delineation. High-resolution web-based satellite imagery was also
interpreted to confirm the results of the study.

Keywords: floodplain delineation; inaccessible region; machine learning

1. Introduction

Flooding is extremely dangerous when a river overflows to inundate an urban area. North Korea
(NK) has suffered flood damage almost every year since 1995, so the region has come to be known
as a natural disaster zone [1]. In particular, in 1995, 2007, and 2012, flash floods wreaked havoc
on crop fields, human settlements, and infrastructure, thereby killing or displacing thousands of
people. In these three years, the rate of deaths and injuries was 5.2 million, 900,000 and 298,000,
respectively, and the number of destroyed buildings and settlements was 98,000, 240,000 and 87,000,
respectively [1]. More recently, Raseon City (2015) and Hoeryeong City (2016) experienced typhoons
(Goni and Lionrock, respectively) with heavy rainfall. Both areas are in North Hamgyeong Province,
and the resulting floods killed and injured many people (11,000; 68,900) and destroyed numerous
buildings and settlements (1000; 11,600) [2,3]. In particular, NK state media described the 2016 flood at
Hoeryeong City as the biggest national disaster since 1945. Thus, it is necessary to develop a way to
delineate Flood Damaged Areas (FDAs) in NK. However, it is difficult to conduct field investigations
due to political divisions.

Under such a situation, remote sensing (RS) data can be used to delineate FDAs in NK. Several
researchers have used optical RS data to assess floodplain delineations [4–9] and radar RS data, which is
more immune to the presence of clouds, to detect flood inundations [8,10–14]. With these technologies,
flooding can be monitored in inaccessible areas by ensuring repetitive coverage of the area of concern,
especially before and after a disaster event.
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A few studies have been conducted on NK flooding using RS data. Okamoto et al. [15] estimated
the economic loss of a 1995 flood in terms of rice production in NK using optical RS data. Kim et al. [16]
used Normalized Difference Vegetation Index (NDVI) values to elucidate the impact of the flood on
the crop recovery conditions in agricultural areas in post-flood Japanese Earth Resources Satellite
(JERS)-1 Optical Sensor (OPS) imagery. They also used JERS-1 Synthetic Aperture Radar (SAR) data as
reference data to evaluate flooded crop fields in a classified land-cover map. However, they did not
use satellite images taken near the day of the flood occurrence. Lim and Lee [17] found that the largest
portion of NK flooding occurred in rice paddies with a low elevation. They also found that floods
occur in NK even though the precipitation is similar to South Korea (SK), which does not experience
floods. However, radar RS data were not used due to its unavailability.

Although radar RS data provides the benefits of data collection regardless of weather conditions,
it is limited insofar as radar only recognizes a distributed target [10]. Thus, it is necessary to
complement this data with water flow simulations using a Geographic Information System (GIS)
to delineate the FDAs more accurately. Prior studies have used RS data and GIS integration models to
detect and predict FDAs [8,10–12,14,18]. These models can be used in areas without field hydrologic
data [14]. Therefore, they can be applied to study FDAs in otherwise-inaccessible areas of NK.

Recently, machine-learning techniques have been used for flood modeling and prediction.
The popular methods in natural hazard modeling are Artificial Neural Networks (ANNs) [19–22],
the Analytical Hierarchy Process (AHP) [23–27], Frequency Ratio (FR) [28–36], and Logistic Regression
(LR) [8,14,30,34,37–39].

The LR model in GIS processing in this study is frequently used because of its straightforward and
understandable concepts [28,33,39]. In addition, LR can explain the role of factors and it shows a strong
prediction ability when compared to other machine-learning techniques [37]. Pradhan [8] progressed
flood susceptible mapping and risk area delineation using LR, GIS and RS within Kelantan River in
Malaysia. He used RADARSAT data for RS, and topographical map, geological map, hydrological map,
Global Positioning System (GPS) data, land cover map, geological map, precipitation data, and Digital
Elevation Model (DEM) for GIS data. His results showed that delineated flood prone areas can be
performed at 1:25,000 scale which is comparable to some conventional flood hazard map scales. Chubey
and Hathout [14] developed a geomatics-based approach for flood prediction method. They integrated
RADARSAT and GIS modelling for estimating future Red River flood risk. They used LR with the
following five independent variables: elevation; proximity to rivers and streams; proximity to roads;
proximity to railways; and distance from already-flooded land. They insist that the methodology used
in this research would be easily transferable to other areas, and may provide the basis for a viable
alternative to conventional hydrologic-based flood prediction approaches. Nandi, Mandal, Wilson
and Smith [38] progressed flood hazard mapping in Jamaica using principal component analysis and
LR. They used fourteen factors, and of these factors, seven explained 65% of the variation in the data:
elevation, slope angle, slope aspect, flow accumulation, a topographic wetness index, proximity to a
stream network, and hydro-stratigraphic units.

Previously, modeling methods that used LR were tested for FDA delineation in an NK
environment, finding limited value in this study. During heavy rainfall, debris flows occurred on
terraced crop fields [40,41]. It is assumed that terraced crop fields in mountainous regions caused
some errors. Therefore, based on these considerations we developed an FDA delineation model using
multiple RS data with LR for heterogeneous mountainous regions in NK, where this model reflects the
characteristics of the North Korean topography and identifies the critical factors for the NK flooding
model. Ultimately, the study sought to provide basic information to mitigate flood risks in NK.
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2. Materials and Methods

2.1. Study Area

The study area is Hoeryeong City (42◦26′N, 129◦45′E) in northern NK. It is adjacent to the Tumen
River, which flows between Hoeryeong City and the Jilin Province in China. Being a border city, it is a
traffic trade center of North Hamgyeong Province in NK. Since NK’s great famines of the 1990s, food
and other necessities have been imported from China by trade or smuggling. In addition, Hoeryeong
City is a distribution and information communication channel in a closed NK society. Accordingly,
there are many NK refugees in SK from the North Hamgyeong Province in NK, and most of these
refugees are from Hoeryeong City (about 2000, 10%) [42]. Historically, Hoeryeong City has also been
an important military hub area for national defense due to its location [43]. Its main industries are
mining machinery and paper milling [44]. The study area is typically mountainous, with an elevation
ranging from 210 m to 1450 m (Figure 1a). Hoeryeong City is surrounded by mountainous areas
with an altitude of approximately 1000 m, and this excludes the Tumen River and adjacent villages,
which are relatively low flat areas.

In terms of topography, the southeast portion of the Hoeryeong Basin is surrounded by mountains
and the northwest is open to the Tumen River. The geology consists of Paleozoic sedimentary rock and
granitic rock layers in the southeastern mountainous area whose elevation is equal to 500 m or more.
The lower region of Hoeryeong City is composed of tertiary sedimentary rock layers. This region is
used for agriculture since it is highly weathered and has relatively low elevations [45].

The study area has a continental climate with four distinct seasons: spring (March–May), summer
(June–August), fall (September–November), and winter (December–February). The summer is hot and
humid due to moist air coming from the Pacific Ocean. More than 60% of the annual precipitation
occurs in the summer due to the East Asian monsoon winds [46]. The winter is dry and cold due to air
masses coming from Siberia [47]. The annual mean precipitation and mean temperature from 1979 to
2016 were 1077 mm (±184 mm) and 3.8 ◦C (±0.8 ◦C), respectively (Figure 1b). Annual precipitation
and temperature data were provided in the form of Climate Forecast System (CFS) Reanalysis data
through Climate Engine ( http://clim-engine.appspot.com/) by the National Weather Service (NWS)
at the National Oceanic and Atmospheric Administration (NOAA) and the National Centers for
Environmental Prediction (NCEP).

On 30 August 2016, the area experienced torrential rains brought by Typhoon Lionrock, which
overflowed the Tumen River and brought huge amounts of water into the plains at least once.
Consequently, North Korean state media distributed photographs of damage related to our study
area. As previously mentioned, the media described the flood as the biggest national disaster since
1945, and casualties reached several hundred, including those dead and missing. Some 68,900 people
had lost their homes, and there were also reports that “about 11,600 houses were destroyed, and that
some 29,800 other houses suffered huge damage” [2]. Figure 2 shows images of the flood damage in
Hoeryeong City.
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Figure 1. Elevation map and annual precipitation and annual mean temperature in the study area.
(a) Elevation map (unit: m), (b) annual precipitation (mm) and annual mean temperature (◦C).

 

Figure 2. Flood damage in Hoeryeong City in August of 2016 ( http://kp.one.un.org/content/unct
/dprk/en/home/emergency-response/floods-2016.html, http://www.bbc.com/news/world-asia-
37335857).

2.2. Database Established

GIS databases were created to implement this research (Table 1). To delineate the FDA, Flood
Inundated Areas (FIAs) were first derived using Sentinel-1 Single Look Complex (SLC) data obtained
during pre-and post-flood instances. Radar data were obtained from the European Space Agency
(ESA) Sentinels Scientific Data Hub ( https://scihub.copernicus.eu/dhus/#/home). Then, digital
topographic data of NK provided by the South Korean National Geographic Information Institute
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(NGII) were used to produce a digital elevation map, slope gradient map, landform map, a map of
the Distance from the Nearest Stream (DNS), a flow accumulation map, and a flow direction map.
They were used together with FIAs to delineate FDAs using binary LR. This model was made using
the R software. A land use map was produced using Landsat 8 data gathered on 28 May 2016, obtained
from the United States Geological Survey (USGS) Landsat homepage ( http://earthexplorer.usgs.gov/).
Level 1T data were processed using radiometric and geometric corrections. To confirm the results of
the study, high-resolution Google Earth images were used. They were derived from GeoEye-1 data,
which have 1.65 m spatial resolution, and they were taken on 16 October 2015, before flooding and on
15 September 2016, fourteen days after flooding.

Table 1. Databases in this study. DNS: distance from the nearest stream, ESA: European space agency,
GIS: geographic information system, NGII: national geographic information institute, RS: remote
sensing, USGS: United States geological survey.

Data Period or Year Spatial Resolution Source

RS

Optical Landsat 8 28 May 2016 30 m USGS

GeoEye-1 16 October 2015
15 September 2016 1.65 m Google Earth

Radar Sentinel-1 6 August 2016
30 August 2016 Range 5 m Azimuth 20 m ESA

GIS

Elevation map

1:25,000
NGII

Digital topographic data

Slope map
DNS map

Landform map
Flow accumulation map

Flow direction map

2.3. Study Methods

This study consists of two parts. First, an LR model based on GIS was used to delineate FDAs
and spatial characteristics of the FDAs were investigated. In the model, the FIA maps derived from
the radar backscattering coefficient difference, elevation map, slope map, DNS map, land use map,
landform map, flow accumulation map and flow direction map were used. After that, study results
were confirmed via comparison with Google Earth images taken after the typhoon (Figure 3).

 

Figure 3. Flow chart of this study. DNS: distance from the nearest stream, FDA: flood damaged area,
FIA: flood inundated area, SLC: single look complex, UNRCDPRK: United Nations resident coordinator
for Democratic People’s Republic of Korea.
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Delineation of Flood Damaged Areas

Delineation of FDAs consists of three parts. The first is FIA delineation from radar data and the
second part is to generate an elevation map, slope map, DNS map, landform map, flow accumulation
map and flow direction map from digital topographic data provided by NGII. In addition, land cover
classification was performed to generate a land use map. The third part is FDA delineation using LR,
which integrates the above data to generate FDA maps in this study.

First, FIA maps from radar processing were derived by comparing the backscattering coefficient of
the Sentinel-1 data. The backscattering coefficient of a radar data is sensitive to floods; therefore, it can
be used to determine the extent of flooding. Giacomelli, Mancini and Rosso [10] assessed flooded areas
from ERS-1 PRI data with DEM data in Northern Italy. Their density-slicing method result showed
that SAR data are sufficient for delineating flood areas. Brivio, Colombo, Maggi and Tomasoni [12]
proposed an integration method for RS data and GIS to accurately map flooded areas in Regione
Piemonte, Italy. They used ERS-1 SAR data and DEM data with visual interpretation, and thresholding
techniques. Their proposed procedure was suitable for mapping flooded areas, even when satellite
data were acquired some days after the event.

Before comparing backscattering coefficients, Sentinel-1 SLC data needs to be processed. Sentinel-1
SLC data has burst images, so a de-burst step was needed. Then, speckle filtering and terrain correction
should be processed. All of these were processed using SNAP v. 3.0 by ESA, and ENVI 5.3.1.

There was only a VV (vertical transmit and vertical receive) polarization image of Hoeryeong
City. Therefore, a VV polarization image was used for Hoeryeong City. To derive the backscattering
coefficient, radar images should be converted to a decibel (dB) scale using logarithmic formation
(Equation (1)).

σ0
dB = 10 × log10(IntensityVV) (1)

here, σ0
dB is the backscattering coefficient in a dB scale, and Intensity_VV is the original intensity value

of the VV polarization image. To delineate FIAs, a backscattering coefficient difference (Δσ0) map was
derived by the following:

Δσ0 = σ0
a f ter f lood − σ0

be f ore f lood (2)

where Δσ0 is the backscattering coefficient difference, σ0
after flood is the backscattering coefficient after a

flood, and σ0
before flood is the backscattering coefficient before a flood.

The Δσ0 image was reclassified by the standard deviation. A standard deviation of-2 sigma or
less was reclassified as an FIA. The slope map was then used to mask misclassified pixels in FIAs.
Flooding occurred in SK in areas with a slope below 4◦ [48]. Since the topography of NK is similar to
that of SK, areas with a slope of 4 degrees or more were masked.

However, this map could not represent FDAs clearly because SAR data can only recognize a
distributed target [10]. Thus, the second part is to generate an elevation map, slope map, DNS
map, landform map, flow accumulation map and flow direction map using digital topographic data
from NGII. NK floods occur not only in the mainstream of river waterways, but also in middle- and
upper-stream trajectories. Thus, the nearest-feature method of GRASS GIS 7.0.3 was used to delineate
the nearest stream orders of FDAs and thereby determine whether flooding occurs in the mainstream
or its branches. This information can be used to establish an improvement scheme [17]. The DEM was
used to determine the stream order according to Hack’s stream ordering method [49,50] using GRASS
GIS 7.0.3. The mainstream was classified as number 1, and all tributaries were classified sequentially
using subsequent numbers (2, 3, and so on). To produce a DNS map, virtual points were generated for
every pixel in the study area. After that, the distances between virtual points and the nearest stream
were calculated using the “Near” function in ArcGIS. Then, point data were converted to grid data to
generate a DNS map. Flow accumulation and flow direction maps were produced using Arc Hydro
Tools 10.3 in ArcGIS.

A landform map was produced using Geomorphon [51]. It was used as an input variable in an
LR model to investigate the landform of the FDAs. Tak [52] generated a landform map of the Korean
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Peninsula using Geomorphon. This system classifies landforms into 10 classes by determining cell
patterns in relation to height comparisons between center cells and surrounding cells (Figure 4) [51].
The system calculates zenith and nadir angles to determine the correct principal compass directions
among the eight possible directions. In this study, the landform map of NK was produced from
1:25,000 digital topographic maps from NGII using GRASS GIS 7.0.3.

Figure 4. Landform classes in the Geomorphon model [51].

To investigate the land use of the FDAs, a land use map was derived using the land cover
classification with Landsat 8 data using ISODATA. The classification result accuracy was assessed
using reference data which were selected by visual interpretation of the high-resolution Google Earth
images. The land use map has four classes based on the Korea National Environment Information
Network System’s (KNEINS) land cover classification scheme: crop field, forest, urban, and water.
The classification result showed 98.7% in overall accuracy with a Kappa coefficient of 0.97, indicating a
satisfactory level of accuracy.

Lastly, an FDA delineation model was developed using an LR model. Ten models were tested to
select the best model for FDA delineation. Model 1 used only an elevation map for modeling. Model 2
used a slope map, model 3 used elevation and slope maps, and model 4 used slope and DNS maps.
Model 5 used elevation, slope and DNS maps, model 6 used elevation, slope, DNS and land use
maps, and model 7 used elevation, slope, DNS and landform maps. Model 8 used elevation, slope,
DNS, land use and landform maps, model 9 used elevation, slope, DNS, land use, landform and flow
accumulation maps, and model 10 used elevation, slope, DNS, land use, landform, flow accumulation
and flow direction maps (Figure 5). The R software was used to delineate FDAs.

 

Figure 5. Algorithmic flow diagram of logistic regression.
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The LR equation is as follows:

ln
(

p
1 − p

)
= α + β1x1 + β2x2 + ... + βpxp (3)

where p is the dependent variable (i.e., the probability that the event happened), α is the intercept, x1 ...
xp are the independent variables, and β1 ... βp are the coefficients of the independent variables.

The coefficients are estimated using maximum likelihood estimation. The equation is as follows:

lnL = l(β0, β1) =
n

∑
i=1

(
yilnp(xi)β0,β1

+ (1 − yi) ln
(

1 − p
(

xi
)

β0,β1

))
(4)

to find β0, β1 that maximize the logarithmic likelihood of Equation (4), the partial derivative of
Equation 4 is taken with respect to β0, β1, and the β0, β1 values that make it 0 are determined.

Independent variables were added to the model one at a time, using a statistical method to
reduce the Akaike’s Information Criterion (AIC). AIC was developed by Akaike [53]. The AIC ranges
from 0 to ∞, with smaller values indicating a better fit. AIC is often used to compare models across
different samples. The model with the smaller AIC is considered the better fitting model. In this
step, an elevation map, slope map, DNS map, landform map, land use map, flow accumulation map,
and flow direction map were used in ten combinations to find the best-fitting model. After running
several tests in this step, the most explainable independent variables (maps) were selected for the
model of best fit. In addition, McFadden’s R2 [54] was calculated in order to test the goodness of fit.
It can be viewed as a corresponding indictor of R2 of the linear regression model. Receiver Operating
Characteristic (ROC) curve was used to assess the predictive ability of the model. The ROC curve was
generated by plotting the true positive rate against the false positive rate at various threshold settings.
If a model has an Area Under the Curve (AUC) closer to 1 and is greater than 0.5, this indicates that
the model has good predictive ability [55]. In addition, the binomial deviance was compared between
ten models to select the best-fitting model. The binomial deviance is as follows [56]:

D = 2
n

∑
i=1

(
yiln

(
yi
μ̂i

)
+ (1 − yi)ln

(
1 − yi
1 − μ̂i

))
(5)

if yi = μ̂i for all future observations, the D value is zero. If yi �= μ̂i is always true, the value of D is
infinite. Therefore, the smaller the D, the more accurate the model [56–60].

3. Results and Discussion

3.1. Flood Damaged Area Delineation

An FIA map was derived using radar processing. Backscattering coefficient values were decreased
at sites A and B of Hoeryeong City. The average difference of the backscattering coefficient was
−2.9 dB for site A and −5.2 dB for site B. These results provide clear evidence that the difference in
the backscattering coefficients can be used to derive FIA maps. Therefore, it was used to produce FIA
maps in this study.

FIA maps from radar processing and GIS data were integrated through a binary LR analysis to
generate the FDA maps in this study. Model 7 exhibited the best fit for the data, with a low AIC (2722)
and the lowest binomial deviance (820.23). In addition, model 7 showed the highest McFadden’s R2

(0.67) and AUC (0.97) among the ten models in the study area. This model had an AUC value of 0.97,
indicating a good predictive ability (Table 2). After running several tests, the elevation map, slope
map, DNS map and landform map were selected as independent variables in the LR.
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Table 2. Logistic regression model comparison. AIC: Akaike’s information criterion, AUC: area
under curve.

Model No. AIC McFadden’s R2 AUC Binomial Deviance

Model 1 5594 0.27 0.87 1860.31
Model 2 3635 0.55 0.94 1118.90
Model 3 3452 0.58 0.96 1028.13
Model 4 3542 0.56 0.95 1089.82
Model 5 3408 0.58 0.96 1022.68
Model 6 3391 0.58 0.96 1016.07
Model 7 2722 0.67 0.97 820.23
Model 8 2705 0.67 0.97 821.65
Model 9 2706 0.67 0.97 821.94

Model 10 2705 0.67 0.97 822.93

Table 3 shows the LR coefficient for each variable. As shown in Table 3, the elevation, slope, and
DNS have negative values. In addition, peak, ridge, and spur have large negative values. These are
areas where common sense floods do not occur. This means that the developed model can reflect
terrain properties when predicting FDAs.

Table 3. Logistic regression coefficients.

Coefficients of Logistic Regression

(Intercept) 2.840
ELEVATION −4.254 × 10−4

SLOPE −0.325
DNS −6.535 × 10−4

LANDFORM@Flat 0
LANDFORM@Peak −18.170

LANDFORM@Ridge −4.598
LANDFORM@Shoulder −0.024

LANDFORM@Spur −3.164
LANDFORM@Slope −1.540

LANDFORM@Hollow −1.315
LANDFORM@Footslope 0.115

LANDFORM@Valley −0.025
LANDFORM@Pit 0.017

Based on the model, coefficient values were applied to produce FDA maps. The equation is
as follows:

P =
1

1 + e−(2.840−4.254e−04[ELEVATION]−0.325[SLOPE]−6.535e−04[DNS]+LANDFORMC)
(6)

where P is the spatial probability of a flood occurrence, ELEVATION is the elevation map, SLOPE is
the slope map, DNS is the map of the distance from the nearest stream and LANDFORMC denotes the
LR coefficient values listed in Table 3.

Finally, the result of the LR was generated in the range between 0 to 1 (100%). To select a threshold
value, values from 0.5 to 0.9 were tested and compared with FIAs. After that, a threshold value of 0.7
showed the highest concordance rate by 89.1%. Therefore, this value was used to delineate the FDAs.
Figure 6 shows an FDA map derived for the study area.
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Figure 6. Flood-damaged area map of the study area.

In this study, an FDA map from 30, August 2016, had an area of 106.63 km2 (7.81%) inundated
in Hoeryeong City. The largest amount of flooding occurred in crop fields, followed by forests,
and urbanized areas. The area of the crop field inundation was of 74.71 km2, and the area of the forest
and urban inundation was 19.25 km2 and 12.67 km2, respectively. However, 57.95% of the entire urban
area was flooded the most while 31.96% of crop fields and 1.78% of forest areas were inundated.

When we look at the landform of the FDAs, the flooding occurred mostly in flat areas (55.04 km2,
51.62%) followed by a valley (25.15 km2, 23.59%), footslope (20.07 km2, 18.82%), shoulder (3.20 km2,
3.00%), pit (1.14 km2, 1.07%), hollow (1.08 km2, 1.01%), and slope (0.95 km2, 0.89%). This result shows
that the developed model reflected terrain properties when deriving the flooded area. However,
when the DNS and landform were not used for predictions, the result showed some FDAs on unlikely
landforms (e.g., hollows, spurs, peaks). During heavy rainfall, debris flows occurred on a terraced crop
field [40,41] and this phenomenon can affect the backscattering coefficients of SAR data. Thus, floods
can be detected on ridges, spurs or peaks. It is assumed that the terraced crop field on the mountainous
region caused some errors. To correct these errors, we used the DNS and landform map to delineate
FDAs in this study. In addition, we reduced some errors. The landform was found to be an important
factor in delineating FDAs using a logical expression in the study area, which is different from other
study results [8,14,38].

In Hoeryeong City, the FDAs near stream orders 1, 2, 3, 4, 5, 6, and 7 accounted for 5.44 km2

(5.11%), 34.19 km2 (32.06%), 25.83 km2 (24.22%), 20.26 km2 (19.00%), 16.41 km2 (15.39%), 3.66 km2

(3.43%), and 0.85 km2 (0.80%) of the inundation, respectively. The inundations occurred mainly in a
lower-order stream (1 and 2; 37.17%) and middle-order stream (3, 4 and 5; 58.61%). Therefore, it is
once again confirmed that the DNS is an important factor in delineating FDAs in NK [17].

Water was assumed to flow over the banks of the main river or lower stream in flat areas, and it
was assumed that streambeds in the middle-stream channels in valleys and footslope areas were
elevated by erosion materials transported from terraced crop fields [40,41,61].

After the collapse of the Soviet Union in 1989, NK could not receive food support from them.
To solve the food shortage, the NK government began deforestation of steep slopes to make room
for farms that would enhance agricultural output. In a 2004 report released by the South Korean
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government [62], 7.9% (972,000 ha) of NK’s total area (12,298,000 ha) was classified as deforested (i.e., as
terraced crop fields). This condition makes land structures vulnerable to flooding and landslides in the
summer monsoon season because land use changes can affect the occurrence of floods [63–66].

The riverbank drainage capacity was assumed to have been reduced due to the rise in the riverbed
elevation, resulting from sediment carried and then deposited by heavy rainfall in NK monsoon
events [40,42]. In 2016, the study area also experienced levee breaches that contributed to extreme
flooding damage.

Based on all these findings (1) increased sediment deposits derived from upper streams
contributed to a rise in riverbeds and a decrease in drainage capacity, and (2) levee breaches resulted
in extreme flood damage within the study area. Thus, the transformation of mountain and hill forests
to terraced crop fields in NK over the past years (Figure 7) has increased the risk of flood disasters.

 

Figure 7. Terraced crop fields in North Korea (Source: http://www.forest.go.kr/newkfsweb/html/Ht
mlPage.do?pg=/partic/partic_1104_con02. html&mn=KFS_02_08_06_03_04).

3.2. Study Result Confirmation

To confirm the study results, the developed FDA delineation model was tested using the 1993
Paju City flood site in SK. A flood map of Paju City was provided by Water Resources Management
Information System (WAMIS). There was a typhoon with heavy rainfall in Paju City; it caused a levee
breach and 7.47 km2 of the test site were inundated [67]. Table 4 shows a comparison of the results
from the FDA map from this study model and the flood map from WAMIS. Table 4 shows that the
developed model had more than 88.5% overall accuracy with a Kappa coefficient of 0.8, indicating that
the model has reasonable FDA delineation accuracy. As shown in the table, the model has reasonable
FDA delineation accuracy.

Table 4. Comparison of results from flood map model and official flood map.

Observed Model Flood (km2) No Flood (km2) Total (km2) User Accuracy (%)

Flood (km2) 6.88 0.86 7.74 89.0
No flood (km2) 0.59 4.22 4.81 87.8

Total (km2) 7.47 5.08 12.55
Producer accuracy (%) 92.2 83.2

Kappa: 0.8
Overall accuracy: 88.5
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High-resolution Google Earth images helped the authors overcome the limitations of not having
any field observations. In the past, researchers have used aerial photographs to delineate FIAs or to
confirm the results of their study [12,68]. Recently, high-resolution satellite imagery has been used
as ground reference data [69]. To confirm the results of the study, a visual interpretation image was
produced using high-resolution Google Earth images taken on 15 September 2016, fourteen days
after flooding. It was overlaid with the FDA map derived from the model in this study (Figure 8).
White lines show the FDA boundary visually interpreted by the authors, and the black lines show the
FDA boundary from the study model. The comparison shows that 92.6% of both FDA maps are the
same (Table 5).

 

Figure 8. FDA map confirmation through a visual interpretation using Google Earth image.

Table 5. Comparison of FDA maps for verification via Google Earth image.

Area of FDA-Visual Interpretation Area of FDA-Model Matching Ratio

35.5 km2 38.3 km2 92.6%

Figure 9 shows pre- and post-flood conditions around the main stream in the study area. Buildings
were destroyed (Figure 9 Circle A) and crop fields were inundated (Figure 9 Circle B). According to the
United Nations Resident Coordinator for Democratic people’s Republic of Korea (UNRCDPRK) team
report, the level of the Tumen River rose between 6 and 12 meters on 30 August 2016 [61]. As illustrated
in Figure 9, the river overflowed the levee (Circle C), causing a breach (Circle D). It is presumed that
the levee breach resulted from the increased riverbed elevation caused by the deposition of erosion
materials coming from terraced crop fields.
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Figure 9. High-resolution Google Earth images of the study area.

The UNRCDPRK team reported that 2700 houses were directly affected by the flood [61] in the
survey area of Hoeryeong City. Our estimation of inundated housing units in the corresponding
area showed that 2577 houses were directly affected, yielding a 95.4% compatibility rate with the
field observation proffered by the UNRCDPRK team (Table 6). For the entirety of Hoeryeong City,
the NK government announced that over 10,000 households were damaged (Figure 10) while our study
estimated that 10,726 households were damaged (Table 6). Building data were derived by digital maps
of NK provided by NGII. The maps were produced by visual interpretation using high-resolution
satellite data. These comparisons demonstrate the validity of the study results.

Table 6. Comparison of damaged buildings in the study area.

UNCDPRK Report NK Government Study Results

Part of Hoeryeong City 2700 (UNCDPRK) 2577
Hoeryeong City >10,000 (NK) 10,726

 

Figure 10. Flood-damaged residential houses in the study area (source: http://kp.one.un.org/conten
t/unct/dprk/en/home/emergency-response/floods-2016.html).
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4. Conclusions

This research investigated FDA mapping of Hoeryeong City, NK using multiple RS data and an
LR machine-learning model. The results of the study were confirmed by a comparison with a visual
interpretation of high-resolution web-based satellite images. The following conclusions were derived
from this study:

(1) On 30 August 2016, an area of 106.63 km2 (7.81%) in Hoeryeong City was inundated. Most floods
occurred in flat areas adjacent to lower- and middle-order streams.

(2) The DNS map and landform map developed in the model in this study are important factors for
delineating FDAs because these two factors reflect NK topography, which is a heterogeneous
mountainous region.

(3) High-resolution web-based satellite imagery can be used as ground-truth data in inaccessible regions.

In conclusion, erosion materials coming from terraced crop fields during heavy rainfall were
deposited in streambeds, increasing the elevation of the riverbed, reducing the stream drainage capacity,
and causing levee breaches. The totality of these effects resulted in serious floods. Accordingly, the NK
government should develop stream-drainage improvement measures to prevent flood damages caused
by terraced crop fields and priority recovery areas need to be assessed to restore FDAs.
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Abstract: Flash flood, one of the most devastating weather-related hazards in the world, has become
more and more frequent in past decades. For the purpose of flood mitigation, it is necessary to
understand the distribution of flash flood risk. In this study, artificial intelligence (Least squares
support vector machine: LSSVM) and classical canonical method (Logistic regression: LR) are used
to assess the flash flood risk in the Yunnan Province based on historical flash flood records and 13
meteorological, topographical, hydrological and anthropological factors. Results indicate that: (1)
the LSSVM with Radial basis function (RBF) Kernel works the best (Accuracy = 0.79) and the LR
is the worst (Accuracy = 0.75) in testing; (2) flash flood risk distribution identified by the LSSVM
in Yunnan province is near normal distribution; (3) the high-risk areas are mainly concentrated in
the central and southeastern regions, where with a large curve number; and (4) the impact factors
contributing the flash flood risk map from higher to low are: Curve number > Digital elevation >
Slope > River density > Flash Flood preventions > Topographic Wetness Index > annual maximum
24 h precipitation > annual maximum 3 h precipitation.

Keywords: flash flood; risk; LSSVM; China

1. Introduction

Flash flood is one of the most devastating natural disasters with characteristics of high-velocity
runoff, short lead-time and fast-rising water [1]. Economic losses caused by flash flood increase year
by year with the increase of population and infrastructure in flood-prone areas [2]. For instance, a
total of 28,826 flash flood events happened in the United States between 2007 and 2015 and 10% of
flash flood resulted in damages exceeding $100,000 [3]. According to the China Floods and Droughts
Disasters Bulletin of 2015, an average of 935 people dies each year by flash flood disasters from 2000
to 2015. Owing to the impact of climate change, the flash flood risk is predicted to increase with the
frequent extreme precipitation and sea level rise [4]. Therefore, an accurate risk assessment is critical
for flash flood prevention.

Flash floods risk is a combination of flood hazard and vulnerability of an area [5,6]. Flood risk is
widely assessed by hydrological models or data-driven model based on historical flood inventories.
The hydrological model has a clear physical mechanism that reflects the process of flood generation and
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transportation. One of the most widely used models is 1–2-dimension routing model such as MIKE 21,
which can truly reflect the flooding scope and water depth during flooding. The flood risk is assessed
by combining water depth and local vulnerability [7,8]. However, since the simulation of the actual
hydrological process is affected by many factors (e.g., model’s parameter, structure, input data), the
model accuracy and uncertainty need to be further explored [9]. Meanwhile, different regions require
different types of hydrological models, resulting in high data requirements and time-consuming on
model development [10,11].

In terms of this, data-driven models were proposed for flood risk assessment. Data-driven models
adopt black-box models and uses various intelligent algorithms to establish optimal mathematical
relationships between disaster and explanatory factors, such as analytic hierarchy process (AHP), set
pair analysis method (SPAM) and so forth. AHP is a simple and effective multi-criteria decision-making
method, which effectively solves the lack of quantitative data in flood risk assessment and the complex
relationship involving multiple risk factors [12]. SPAM is a method for systematic analysis of uncertain
problems, effectively dealing with the incompleteness of information for flood risk prediction [13].
However, AHP and SPAM are all based on expert opinions in choosing the indicator weighting
that introducing uncertainty and subjectivity in assessment [14]. With the development of artificial
intelligence, machine learning (ML) models, including support vector machine (SVM), Random Forest
(RF) and Decision Tree (DT), has been proposed and applied in flood risk assessment. Machine learning
models avoid the subjective determination of weights by learning the relationship between flood
risk and explanatory factors. Among them, SVM is a popular ML model that can solve linear and
nonlinear regression problems and has gained extensive applications in pattern recognition, data
mining and speech recognition [15]. Least Squares Support Vector Machine (LSSVM) is a simple SVM
that uses least squares and linear equations to improve model efficiency [16]. Flash flood data is often
complex and incomplete and the relationships between variables can be strongly nonlinear and involve
high-order interactions. Therefore, it is of great value to explore the flash flood risk assessment by
LSSVM method.

Nowadays, with the in-depth application of 3S technologies (Remote Sensing, Geography
Information Systems and Global Positioning Systems) in hydrology, the acquisition of spatial
information on the underlying surface of the basin have been significantly improved [17]. Meanwhile,
a series of intelligent algorithms based on big data have been proposed that are valuable to use in
hydrology. In this study, we developed a flash flood assessment framework based on machine learning
models. We utilize the LSSVM method with three kernel functions (linear: LN; radial basis function:
RBF; polynomial: PL) and classical logistic regression (LR) method to assess flash flood risk based on
the official statistics of flash flood events. The performances of our proposed method are evaluated
with five indices and ROC curve in Section 3.1. The distribution of flash flood risk in the study area
and the relationship between flood risk and flood trigger factors are discussed in Section 3.2.

2. Materials and Methods

2.1. Study Area

Yunnan Province (20◦8’–29◦16’N, 97◦31’–106◦12’E) is located in southwestern China with an
area of 383,210 km2. It is one of the most flooded provinces in China and the economy relies mainly
on natural resources. In 2016, Yunnan province had a population of 47.7 million, a gross domestic
product (GDP) of 1.49 billion yuan. Yunnan province is located in the low latitude plateau and the
terrain is dominated by mountains, with a canyon in the west, a plateau in the east and a major river
running through the deep valley. From the southeastern mountainous area to the northwest Hengduan
Mountains, the altitude ranges from less than 100 m to more than 6000 m, with an average elevation
of 1980 m. The mountainous area, plateau area and watershed area account for 80%, 12.5% and 7.5%
of the total area respectively. About 39% of slopes exceed 25◦ in mountainous areas and the slopes
of the northeast and northwest mountainous areas even reach 60–90%. The soil texture is loose, of
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which more than 50% is krasnozem. The climate is mainly affected by atmospheric circulation, which
is a low mountain monsoon climate. The annual average precipitation is 1102 mm, with significant
spatial-temporal differences [18]. Meanwhile, extreme weather events occur frequently, especially
during the summer flood season (June to September), with rainfall accounting for 85–95% between
May and October.

China has implemented the construction of non-structural measures for flash flood prevention
since 2011. In Yunnan Province, there are 206 flash floods events from 2011 to 2015, causing 237
deaths. Especially in 2014 and 2015, the number of deaths accounted for 22.2% and 8.1% of the national
total, respectively, which were the most affected by the flash floods. In order to defend against flash
flood, Yunnan has launched the construction of non-structural flood prevention measures covering
129 counties since 2010. The average construction fund is $0.87 million for each county. The preventive
measures implemented include: encrypting automatic rainfall stations to improve the quality of
monitoring data, installing simple rainfall equipment with alarms, building an alarm system consisting
of radio broadcasts and simple alarm devices. Obviously, although Yunnan Province already has a
certain defense base, it still suffers from severe flash flood disasters. Therefore, it is of great significance
to study the flash flood risk in Yunnan Province. Figure 1 shows the historical flash floods in Yunnan
Province from 2011 to 2015. Obviously, flash floods mainly occur on lower slopes, mainly because the
air rises on the windward slope and the water vapor condenses easily to form precipitation, which
causes runoff to accumulate in the valley and triggers flash floods. The leeward slope is not easy to
form precipitation due to the air sinking and the temperature moving downward [19].

Figure 1. Location of the study area and the distribution of flash flood inventories (red for training and
green for testing) from 2011 to 2015 in Yunnan Province, China.

2.2. Data

The flash flood records are mainly from official authoritative departments, such as the Ministry of
Water Resources (MWR), the Ministry of Land and Resources and some local government agencies in
Yunnan province. These data are divided into training and testing datasets, 70% of which are randomly
selected for training and the remaining 30% data for testing. The principle of the distribution ratio is
that the samples are evenly distributed and have certain representativeness (Figure 1). It is important
to emphasize that all the flash floods studied in this paper involve death or missing; regardless of
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incidents that do not cause casualties. The remote sensing data and other data covered in this paper
are shown in Table 1.

Table 1. Factors, flood inventories and data sources.

Name
Source Time

Abbreviation Meaning

3-H-P Annual maximum 3 h precipitation China Meteorological Forcing Dataset 2011–2015
24-H-P Annual maximum 24 h precipitation China Meteorological Forcing Dataset 2011–2015

AP Annual precipitation China Meteorological Forcing Dataset 2011–2015
DEM Digital elevation model Shuttle Radar Topography Mission (SRTM) 2000

SL Slope Shuttle Radar Topography Mission (SRTM) 2000
RD River density Basic vector format dataset of China -
VC Vegetation coverage MODIS products 2011–2015
CN Curve number NRCS CN global dataset 2011–2015
TWI Topographic wetness index Shuttle Radar Topography Mission (SRTM) 2000
SM Soil moisture ESA’s SMOS dataset 2011–2015

Pop Population Data Center for Resources and Environmental Sciences
Chinese Academy of Sciences (RESDC) 2010

GDP Gross domestic product Data Center for Resources and Environmental Sciences
Chinese Academy of Sciences (RESDC) 2010

FFP Flash flood preventions Statistic bulletin from the Ministry of Water Resources
and local governments 2012–2015

2.3. Flash Flood Triggering Factors

Flash flood disasters are mainly affected by meteorological, topographical hydrological,
anthropological factors. The related factors affecting flash flood risk are shown in Figure 2 and
are described as followed:

Figure 2. Explanatory factors affecting flash flood risk in this study.

(1) Meteorological factors

Three meteorological factors including 3-H-P, 24-H-P and AP are the main factors leading to
flash floods, with 3-H-P and 24-H-P reflecting the frequency and characteristics of short-term rainfall
and AP reflecting the characteristics of long-term rainfall. The precipitation data comes from the
China Meteorological Forcing Dataset (CMFD), produced by the Institute of Tibetan Plateau Research,
Chinese Academy of Sciences (hereafter ITPCAS). The dataset is based primarily on the existing
Princeton reanalysis data, Global Land Data Assimilation System (GLDAS) data, Global Energy and
Water cycle Experiment—Surface Radiation Budget (GEWEX-SRB) radiation data and Tropical Rainfall
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Measuring Mission (TRMM) precipitation data in the world, combined conventional CMA weather
observations were produced with temporal and spatial resolutions of 3 h and 0.1◦ × 0.1◦, respectively.

(2) Topographical factors

Digital elevation model (DEM) retrieved from NASA SRTM, a 90-m raster in 2000. DEM resolution
mainly affects the watershed topography, which in turn affects the accuracy of runoff generation and
convergence. The higher the DEM resolution, the higher the accuracy of the extracted watershed
features. However, high-resolution DEM over-emphasizes the computational burden of the model,
greatly restricting the runtime of the model [20]. Slope (SL) refers to the ratio of the vertical height of
the slope to the horizontal direction, which is suitable for the sensitivity analysis of floods. Generally,
the SL is calculated from the DEM data using the ArcGIS tool [17]. River density (RD) utilizes China’s
basic vector format dataset, which is related to the area of the grid and the length of the river in the
grid [21]. Vegetation coverage (VC) is calculated by an average multi-year normalized difference
vegetation index (NDVI) based on MODIS images. It represents vegetation distribution and biomass
levels from 2011 to 2015 [22].

(3) Hydrological factors

The Curve Number (CN) derived from the soil conservation service curve number (SCS-CN)
model is a comprehensive indicator calculated according to the National Engineering Handbook
of US, which primarily reflects the potential capacity of runoff generation in different grids. It is a
non-dimensional index with a theoretical value between 0 (no runoff) and 100 (no infiltration). For
details of CN, please refer to Zeng et al. (2017) [23]. The topographic wetness index (TWI), combined
with the local uphill contribution area and the entire slope, is widely used to quantify the topographical
control of flood concentration processes and can be calculated from DEM [24]. Soil moisture (SM) data
is from the European Space Agency (ESA) with a spatial accuracy of 50 km. It can estimate moisture
in the soil surface (down to 5 cm) which is important for hydrological modeling. SM indicates the
non-linear partitioning of the precipitation into infiltration and runoff, affecting runoff by affecting
infiltration [25].

(4) Anthropological factors

The effects of flood risks are often related to anthropology, manifested as loss of economic
property and casualties. The losses generally increase with the population growth in flood-prone
areas, especially in economically developed and densely populated areas. Therefore, Gross Domestic
Product (GDP) and population (Pop) are selected as anthropological factors for flash flood assessment.
DDP is defined as “an aggregate measure of production equal to the sum of the gross values
added of all resident and institutional units engaged in production (plus any taxes and minus any
subsidies, on products not included in the value of their outputs), mainly reflecting the economic
situation of the study area. Moreover, GDP is a total indicator, which basically organizes indicators
describing various aspects of the national economy through a series of scientific principles and
methods. Therefore, GDP contained contributing indicators such as over-exploitation [26]. The 1-km
gridded GDP and population of Yunnan Province are collected from the Data Center for Resources
and Environmental Sciences Chinese Academy of Sciences (RESDC). In 2010, the Chinese government
initiated the construction of national-level non-structural measures for flash flood prevention. This
investment is the largest non-structural project in China, involving a total area of 3.86 million km2 in
29 provinces (autonomous regions and municipalities). The preventive measures include the national
flash flood investigation and evaluation, the establishment of construction monitoring and early
warning platforms, automatic rainfall stations and water level stations, mass observations and mass
prevention and so forth. The FFP data is mainly from the MWR and local governments and utilizing
the investment funds to comprehensively reflect the flash flood prevention situation [27,28]. The
related factors affecting flash flood risk in the LSSVM method are shown in Figure 3.
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Figure 3. Explanatory factors of flash flood risk. (a) Annual Maximum 3 h Precipitation (b) Annual
Maximum 24 h Precipitation; (c) Annual Precipitation (d) Digital Elevation Model; (e) Slope (f) River
Density; (g) Vegetation Coverage (h) Curve Number; (i) Topographic Wetness Index (j) Soil Moisture;
(k) Population (l) Gross Domestic Product; (m) Flash Flood Preventions.

2.4. Methodology

(1) LSSVM

LSSVM utilizes a set of linear equations to minimize the complexity of the optimization process.
The constraint optimization problems can be solved using Lagrange multipliers. Consider a given
training set xi, yi, i = 1, 2, . . . , f with input data xi and output data yi, the LSSVM equation can be
indicated as follows:

minW(m, n) =
1
2

MH M +
1
2

β
f

∑
i=1

ni
2 (1)

Subject to
yi = mTΦ(xi) + b + ni, i = 1, 2, . . . , f (2)

where m is the weight vector, β is the penalty parameter, ni is the approximation error, f is the number
of autoregressive terms in the LR model, Φ(xi) is the nonlinear mapping function and b is the bias
term. The corresponding Lagrange function can be obtained by Equation (3):

W(m, n, α, b) = J(m, n)−
f

∑
i=1

αimTφ(xi) + b + ni − yi (3)

where αi is the Lagrange multiplier. Using the Karush-Kuhn-Tucker (KKT) conditions, the solutions
can be obtained by partially differentiating with respect to m, b, ni and αi:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂W
∂m = 0 → m =

f
∑

i=1
αiΦ(xi)

∂W
∂b = 0 →

f
∑

i=1
αi = 0

∂W
∂ni

= 0 → αi = βni
∂W
∂αi

= 0 → wTφ(xi) + b + ni − yi = 0

(1)

84



Remote Sens. 2019, 11, 170

By elimination w and ni, the equations can be changed into

[
b
α

]
=

[
0 Iv

T

Iv ψ + β−1 I

]−1[
0
y

]
(2)

where y =
[
y1, y2, . . . , y f

]T
, Iv = [1, 1, . . . 1]T , α= [α1, α2, . . . , α f ] and the Mercer condition has been

applied to the matrix Ωkm = φ(xk)
TΦ(xo), k, m = 1, 2, . . . , f . Therefore, the LSSVM for regression can

be obtained from Equation (6):

y(x) =
f

∑
i=1

αiK(xi, x) + b (3)

where K (x, xi) is the kernel function. For LSSVM, there are many kernel functions including linear
(Equation (7)), polynomial (ploy) (Equation (8)), radial basis function (RBF) (Equation (9)), sigmoid
and so forth. However, most widely used kernel functions are RBF and polynomial Kernel.

Linear (LN) Kernel: K (xi, x) = 〈xi, x〉 (4)

Polynomial (PL) Kernel: K (xi, x) = (γ 〈xi, x〉 + τ)d γ > 0 (5)

Radial basis function (RBF) Kernel: K (xi, x) = exp (−γ ‖xi − x‖2), γ > 0 (6)

where γ, τ and d are Kernel parameters.
The Matlab toolbox named LSSVMLab is used to implement LSSVM in this study. The parameters

of LSSVM are automatically calibrated during training with 10-fold cross-validation method. More
details regarding the principles and application of LSSVM can be found in the LSSVMLab Toolbox
User’s Guide [29,30].

(2) LR

LR is a probabilistic statistical classification procedure used to predict the dependent variable
based on one or more independent variables. The advantage is that the dependent variable has only
two cases, that is, occurrence and non-occurrence. In contrast, the stochastic gradient ascent algorithm
is generally used to reduce the periodic fluctuations and the computational complexity of the iterative
algorithm to further optimize the LR model, which can be calculated by the following equation [31]:

log it(y) = β0 + β1x1 + · · ·+ βixi + e (7)

where y is the dependent variable, xi is the i-th explanatory variable, β0 is a constant, βi is the i-th
regression coefficient and e is the error. The probability (p) of the occurrence of y is

p =
eβ0+β1x1+···βi xi

1 + eβ0+β1x1+···βi xi
(8)

If the estimated probability is greater than 0.5 (or other user-defined thresholds), the object is
classified as a successful group; otherwise, the object belongs to the failed group. In addition, we
train 1 for flash flood, 0 for no flash flood, the values scale from 0 to 1 corresponding to the flash
flood sensitivity of the basin from minimum to maximum. The result is the probability that each
point is assigned as 0 to 1 training set. Similarly, equal interval classification is used to categorize
the probability index of the flash flood into five risk zones of lowest (0–0.2), low (0.2–0.4), moderate
(0.4–0.6), high (0.6–0.8) and the highest (0.8–1).
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(3) Evaluation index

In the study, five indices including Precision(P), Recall(R), Accuracy (ACC), Kappa(K) and
F-score(F) are used to evaluate the results from four models. ACC is the proportion of correctly
classified cases to all cases in the set but there is no way to better deviate from the test data to evaluate
the model. P is the fraction of recognized instances that are relevant, while R is the fraction of relevant
instances retrieved. A better choice is the F-score, which can be interpreted as a weighted average of
recalls and precision. Equations (12)–(15) shows how each index calculated, to measure the accuracy
of model prediction.

Precision : P =
TP

TP + FP
(9)

Recall : R =
TP

TP + FN
(13)

Accuracy : A =
TP + TN

TP + FP + TN + FN
(14)

F − score : F =
(2 ∗ P ∗ R)
(P + R)

(15)

where TP, FN, TN and FP denote the number of true positive, false negative, true negative and false
positive, respectively.

Cohen’s kappa measures the observer’s consistency. It is used to assess the consistency between
two or more raters when categorizing a measurement scale. The values are between 1 and 0,
corresponding to a perfect agreement and no agreement, respectively. Equation (18) is calculated the
Kappa score:

Kappa : K =
pp − pexp

1 − pexp
(16)

where Pp is the relatively observed consistency among evaluators and Pexp is a hypothetical probability
of coincidence, using the observed data to calculate the probability that each observer randomly sees
each category. If the raters are in complete agreement, then k = 1. If, except by chance, no agreement is
reached among the raters (as given by Pexp), k ≤ 0.

3. Results and Discussion

3.1. Comparison of Results Obtained by Four Models

Table 2 shows model performances in the testing period. The accuracy, precision, recall, F-score
and kappa range are 0.75 to 0.79, 0.76 to 0.82, 0.74 to 0.77, 0.75 to 0.79 and 0.5 to 0.59, respectively.
Obviously, all models have relatively high precision. Although there is no significant difference
between the three different kernel functions of the LSSVM model. They are all better than the LR
method and the model 2 (LSSVM with RBF kernel) simulates the best.

Table 2. Result of models in testing period.

Index Model 1 Model 2 Model 3 Model 4

Accuracy 0.78 0.79 0.76 0.75
Precision 0.81 0.82 0.79 0.76

Recall 0.74 0.77 0.74 0.74
F-score 0.78 0.79 0.76 0.75
Kappa 0.56 0.59 0.53 0.50

Model 1: LSSVM + LN, model 2: LSSVM + RBF, model 3: LSSVM + PL, model 4: LR.

Receiver Operating Characteristics (ROC) curves, created by plotting the TP Rate against the FP
Rate, are graphical tools applied to the analysis of classification effects over the entire class distribution.
Area Under Curve (AUC) is the area under the ROC curve and usually in the range of 0.5 and 1. The
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AUC equal 0.5 and 1 are accidental classification and perfect classification, respectively. Figure 4 shows
the good AUC results obtained by four models but the LSSVM with the RBF kernel has the highest
AUC (0.81), followed by LSSVM + LN (0.80) and LSSVM + PL (0.80), the classic LR model (0.78) is
relatively poor.

(a) (b) 

Figure 4. ROC of four models in training (left) and testing (right). (Model 1: LSSVM + LN, model 2:
LSSVM + RBF, model 3: LSSVM + PL, model 4: LR). (a) training (b) testing.

3.2. Flash Flood Risk Map Comparison

Based on the LR model and the LSSVM model with three kernels of LN, RBF and PL, the flood
risk maps of Yunnan Province are generated in the GIS environment. As shown in Figure 5, the
high-risk areas are mainly concentrated in the south-central region, accounting for 32% of the total area.
Although LSSVM is not significantly better than LR in the training and testing, the risk distribution is
significantly different. Figure 6 shows that the flash flood risk obtained by LSSVM is approximately a
normal distribution, which is consistent with the previous study in Yunnan Province, China [32,33].
While the risk obtained by LR is a uniform distribution. Therefore, the flood risk maps obtained by
LSSVM are more reliable than LR.
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Figure 5. Flood risk index distribution of different models. (Model 1: LSSVM + LN, model 2: LSSVM +
RBF, model 3: LSSVM + PL, model 4: LR).

Figure 6. Histogram of Flood index in different models. (Model 1: LSSVM + LN, model 2: LSSVM +
RBF, model 3: LSSVM + PL, model 4: LR).
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Many studies have utilized some statistical methods to conduct flash flood risk assessments
in other areas. For example, Smith (2010) proposed the Flash Flood Potential Index (FFPI) model,
considering slope, land use, soil texture and so forth. FFPI values from 1 to 10 correspond to the risk
probability from the minimum to the maximum and has been tested in central Iowa, Colorado and
upstate New York and Pennsylvania [34,35]. Based on the AHP and information entropy theory, Zeng
et al. (2016) selected some relevant indicators (e.g., soil, slope, rainfall and flood control measures),
utilized expert scoring method to explore their different weights and finally obtained the risk map of
Yunnan Province [18]. In this study, the LSSVM method is firstly used for flash flood risk assessment.
LSSVM can directly assess flood risk without setting factor weights. The contribution of each factor
to flood risk is assessed by the correlation coefficient between factors and the flood risk, with a more
significant advantage.

Figure 7 showed the correlation coefficient of each factor with the flash flood risk from LSSVM-RBF.
The greater the correlation coefficient, the greater impact of this indicator on flash floods risk. Obviously,
the correlation coefficient of CN is the largest, exceeding 0.5, followed by 7 indicators (DEM, SL, RD,
FFP, TWI, 24-H-P, 3-H-P) between 0.1 and 0.5 and the remaining 5 indicators (AP, POP, SM, GDP, VC)
are less than 0.1. Combined with the previous analysis, CN identifies the runoff generation capacity.
DEM mainly responds to the topography of the study area and SL, RD and TWI all derived from
DEM. Therefore, the flash flood risk of Yunnan Province is mainly affected by local runoff capacity,
topography. Meanwhile, the correlation coefficient of FFP is 0.3, reflecting that positive man-made
measures can largely prevent the occurrence of flash floods. However, compared with topographical
factors, we found that the precipitation factor shows a relatively low correlation with the flash floods
risk. This mainly because flash floods are caused by intensive rainfall but casualties are usually
occurred and reported in low-lying areas. In addition, the effects of short-term precipitation (e.g.,
24-H-P, 3-H-P) are greater than the annual precipitation. Our proposed model can concern all flash
flood explanatory factors and give an accurate assessment for flash flood risk. In the future, we will
further combine water depth and flow as a more reasonable indicator for flood assessment.

Figure 7. The correlation coefficient between the flash flood risk and 13 indicators.

4. Conclusions

Flash floods have brought huge economic losses and casualties to China. An accurate flash flood
risk assessment can identify flood-prone areas and give people enough time to prevent flood disasters
in advance. In this study, LSSVM was selected to assess flash flood risk based on 13 explanatory factors.
The main conclusions are as follows:

(1) LSSVM can provide a more accurate risk assessment than LR and LSSVM with RBF kernel
evaluates best.
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(2) The risk of flash flood in Yunnan Province is shown as a normal distribution. The highest risk
areas are mainly concentrated in the central and western regions and the lowest risk areas are
distributed in the northwest regions.

(3) Flash floods are caused by the combination of various factors and the rank of various factors
affecting flash floods is as follows: CN > DEM > SL > RD > FFP > TWI > 24-H-P > 3-H-P > AP >
POP > SM > GDP > VC.

In conclusion, the paper utilized the LSSVM method to assess the flash flood risk for the first
time and verifies that LSSVM with RBF kernel is suitable for assessing flash floods risk at large or
medium scales. Since this method primarily collects explanatory factors and local flood records,
where the explanatory factors are mainly derived from public datasets (remote sensing images and
statistic bulletin) that can easily get for other areas. Thus, this method is feasible to apply in other
regions by collecting local historical flood inventories. This method is highly dependent on data and
lacks obvious physical mechanisms. Some problems, such as the shortage and uncertainty of flood
inventories, limited the accuracy of model results. In particular, the historical flood record in this
study was obtained through investigations by the authority of Yunnan Province, which limited the
application of the research results to other regions. With the development of data mining technology,
historical flood records from websites or media are desired to use for model development especially
for data sparse areas in future works.
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Abstract: Geostationary satellite remote sensing systems are a useful tool for forest fire detection
and monitoring because of their high temporal resolution over large areas. In this study, we
propose a combined 3-step forest fire detection algorithm (i.e., thresholding, machine learning-based
modeling, and post processing) using Himawari-8 geostationary satellite data over South Korea. This
threshold-based algorithm filtered the forest fire candidate pixels using adaptive threshold values
considering the diurnal cycle and seasonality of forest fires while allowing a high rate of false alarms.
The random forest (RF) machine learning model then effectively removed the false alarms from the
results of the threshold-based algorithm (overall accuracy ~99.16%, probability of detection (POD)
~93.08%, probability of false detection (POFD) ~0.07%, and 96% reduction of the false alarmed pixels
for validation), and the remaining false alarms were removed through post-processing using the forest
map. The proposed algorithm was compared to the two existing methods. The proposed algorithm
(POD ~ 93%) successfully detected most forest fires, while the others missed many small-scale forest
fires (POD ~ 50–60%). More than half of the detected forest fires were detected within 10 min, which
is a promising result when the operational real-time monitoring of forest fires using more advanced
geostationary satellite sensor data (i.e., with higher spatial and temporal resolutions) is used for rapid
response and management of forest fires.

Keywords: forest fire; Himawari-8; threshold-based algorithm; machine learning

1. Introduction

Forest fires can have a significant impact on terrestrial ecosystems and the atmosphere, as well
as on society in general. In order for a site to recover from a forest fire, a lot of time and effort are
required. According to the 2015 forest standard statistics, forest areas in South Korea cover 6,335,000 ha,
accounting for 63.2% of the national land. This forest-to-land ratio of South Korea is the fourth largest
among the Organization for Economic Co-operation and Development (OECD) countries [1]. Since
forests in South Korea are densely distributed, a forest fire can easily spread outwards, resulting in
huge amounts of damage. The forest growing stock of South Korea is 146 m3/ha, which is higher than
the average of OECD countries (131 m3/ha) [1]. Approximately 36.9% of forest in South Korea are
coniferous, and their growing stock reaches 172.7 m3/ha. Since coniferous forests have a large amount
of branches and leaves, those under the canopy dry easily. Thus, when a forest fire occurs, it can
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easily develop into a large one if early extinguishment fails, resulting in huge amounts of damage [2].
In 2017 in South Korea, the total area damaged by forest fires was 1,480 ha with the amount of
damage totaling 80,150,000,000 KRW (71,594,462 USD), while the number of casualties was 16 [3]. Most
forest fires that occur in South Korea are caused by anthropogenic factors and are thus unpredictable
and hard to control. To minimize forest fire damage, South Korea has been conducting forest fire
monitoring through tower systems and closed-circuit television (CCTV) [2]. An alternative to such field
monitoring is satellite-based monitoring, which can cover vast areas including inaccessible regions
with fine temporal resolution [4]. Satellite data have been widely used in forest fire management, such
as pre-fire condition management, forest fire hot spot detection, smoke detection, and burn severity
mapping [5]. Various satellite sensors have been used for forest fire detection, such as polar-orbiting
satellite sensors (Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High
Resolution Radiometer (AVHRR), the Landsat series, and the Visible Infrared Imaging Radiometer
Suite (VIIRS)), and geostationary satellite sensor systems (Geostationary Operational Environmental
Satellite (GOES), Spinning Enhanced Visible and Infrared Imager (SEVIRI), Communication, Ocean
and Meteorological Satellite (COMS), and Himawari-8).

Fires are typically detected through their high surface temperature, which is easily distinguishable
in mid-infrared and thermal remote sensing data [5]. One of the most widely used methods for
detecting forest fires is a simple threshold-based algorithm, which distinguishes fire pixels based
on given empirical threshold values applied to band radiance, brightness temperature (BT), or the
band ratio of specific wavelengths. However, this method produces a relatively high number of false
alarms and often misses fires because of the varied characteristics of forests, topography, and climate
between different regions [4]. Contextual algorithms, which were developed from the threshold-based
algorithm, use local maxima and other multispectral criteria based on the difference between fire
pixels and the background temperature [6–15]. Furthermore, the modeling of the fire pixel diurnal
temperature cycle (DTC), which shows a diurnal variation of the brightness temperature of the pixel,
has been also used [16–19]. Other ways to detect forest fires include using artificial neural networks
(ANN)-based modeling [20] and hierarchical object-based image analysis (OBIA), which classifies
active fire pixels using a ruleset based on image-specific object values [21]. Most existing forest fire
detection and monitoring algorithms along with their related products have been developed and
tested over Europe and the US. For example, MODIS active fire data is one of the most widely used
products for fire management in many countries [4]. However, these algorithms often produce a
very high false alarm rate in East Asia including South Korea. Collection 5 MODIS fire products
struggle to detect small fires because of the overly high global thresholds of regions such as East
Asia. Although the Collection 6 MODIS fire products slightly increased the probability of detection
(POD) ~1% [9], it is still not enough to detect small forest fires in South Korea. When we calculated the
accuracy of the Collection 6 MODIS active fire products (M*D14) in South Korea from March to May
(i.e., dry season) in 2017 (Appendix A), only 22 of the 145 forest fires were detected (POD ~ 15.2%).
In addition, 266 forest fires were falsely alarmed among the 288 MODIS-detected forest fires (false
alarm rate (FAR) ~ 92.4%). Consequently, the algorithms are not good at detecting small forest fires,
which frequently occur over rugged terrain in South Korea. Thus, there is a strong need to develop a
novel forest fire detection and monitoring algorithm suitable for South Korea.

Several studies have been conducted to develop forest fire detection algorithms focusing on fires
in South Korea. [22] developed an algorithm for detecting missed sub-pixel scale forest fires in MODIS
active fire data using a spectral mixed analysis. While it showed a POD ~ 70% and a FAR ~ 40%, it was
only tested with data in April for 2004 and 2005. [2] developed a forest fire detection model for South
Korea using the COMS Meteorological Imager (MI) data, which modifies the MODIS algorithm [8]
based on the spectral characteristics of MI. This algorithm was able to detect small-scale forest fires with
damaged areas ~1 ha at 15-min intervals, but resulted in a relatively high mis-detection rate. Another
forest fire detection method has been proposed, which is based on the negative relationship between
vegetation density and land surface temperature with a contextual approach using MODIS [23]. This
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method improves the previous MODIS contextual forest fire detection algorithm, but still has a low
temporal resolution.

In this study, we used Himawari-8 geostationary satellite data to detect and monitor forest fires in
South Korea. It is suitable for continuous forest fire monitoring and early detection because of its high
temporal resolution (<= 10 min), even though its spatial resolution is not as good as polar-orbiting
satellite sensor systems. Early detection and monitoring of forest fires are crucial to reduce damage and
save human lives and property. Recently, some researchers have used Himawari-8 to detect forest fires
over Asia and Australia using its multiple spectral bands and high temporal resolution [10,13,15,19].
These studies were based on contextual algorithms targeting large forest fires in East Asia and Australia,
which were not evaluated for detecting small fires in South Korea.

There is no official definition for small-scale forest fires in South Korea. In this study, we defined
small-scale forest fires considering the damaged areas and the spatial resolution of input Himawari-8
satellite data (4 km2 = 400 ha). Forest fires damaging areas measuring less than 8 ha (2% of the
Himawari-8 pixel size) were defined as ‘small-scale’ in this study. It should be noted that the real-time
detection of such small forest fires (<8 ha) using Himawari-8 data is possible because of the spread
of fire-induced heat and gaseous materials to the much larger surrounding area of a fire than the
damaging area recorded by the expert after the fire. Although small-scale forest fires are dominant
in South Korea, they often have a significant effect on people, infrastructure, and the environment.
Since the population density of South Korea is very high and many fires occur near farmhouses and
roads, even small-scale forest fires can result in costly damages. Thus, the detection and monitoring
of small-scale forest fires is crucial in South Korea. For example, on 19 April 2018, a small forest fire
(the damaged area ~3 ha) that occurred in Yangyang, Gangwon-do, required not only 387 firefighters
and 41 units of equipment to be mobilized, but also 9 evacuation helicopters to be dispatched to the
scene to extinguish and monitor the forest fire [24].

The forest fire detection algorithm proposed in this study consists of three steps: a threshold-based
algorithm, machine learning modeling, and post processing. First, we developed a threshold-based
algorithm optimized for detecting small forest fires in South Korea with the tradeoff of a relatively
high false alarm rate from Himawari-8 data. The proposed threshold-based algorithm adopted a
thresholding approach adaptive to corresponding satellite imagery to detect small-scale forest fires
considering the diurnal cycle and seasonality. Then, machine learning and post processing approaches
were applied to the potential fire pixels to effectively reduce false alarms. Existing threshold-based
forest fire detection algorithms often miss small forest fires, resulting in too many false alarms due
to the fixed thresholds. Our proposed approach is focused on increasing the detection of small-scale
forest fires and significantly reducing false alarms.

The objectives of this study were to (1) develop a machine learning-combined approach for
detecting small to large-scale forest fires in South Korea, (2) examine the feasibility of early detection of
forest fires based on the approach, and (3) monitor forest fires using Himawari-8 satellite data at high
temporal resolution. This study can provide a basis for the geostationary satellite-based operational
monitoring of forest fires in South Korea.

2. Data

2.1. Study Area

South Korea has an area of 10,030,000 ha, with forests covering 6,335,000 ha (about 63.2% of the
total area) [1,25]. South Korea has suffered forest fires every year especially during the spring and fall
seasons because of the large number of visitors to forests in May and October and the high frequency
of agricultural incinerations in Spring [3,26]. It belongs to the mid-latitude cold temperate region and
has a continental climate. When compared to other regions with similar latitudes, the range of annual
temperature is large. The average lowest monthly temperature is −6 to 3 ◦C, the average highest
temperature is 23 to 26 ◦C, and the annual average rainfall is 1000–1900 mm [27]. Approximately
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200–800 forest fires have occurred annually in South Korea and many of them were small-scale fires.
For example, 94% of the areas damaged by forest fires in 2017 were smaller than 1 ha [3]. Over the
last 10 years, more than 60% of forest fires have occurred in the spring season (March to May). More
than 80% of the forest fires that occurred in 2017 were caused by humans, for reasons including the
carelessness of hikers, and agricultural and waste incineration [3]. The study period is from July 2015
to December 2017 when Himawari-8 satellite data are available.

2.2. Forest Fire Reference Data

In situ forest fire occurrence data provided by the Korea Forest Service were used as reference
data in this study (Appendix B). Each forest fire case contains information about the starting and
extinguishing date/time, location (specific address), damaged area, and cause. When a forest fire
occurs in a region, the public officials in charge of the region confirm and report the fire in detail.
Damaged areas are calculated by trained forest fire experts based on visual observations, actual
measurements using Global Positioning System (GPS) survey equipment, aerial photographs, and/or
topographic maps with a scale of 1:25,000 [28]. Small forest fires damaging less than 0.7 ha of land
were not considered in this study because most of them did not show little spectral difference in the
Himawari-8 time-series data based on visual inspection of the images. It should be noted, though
that pixel radiance is affected by not only a fire, but also many other factors. Among the 114 forest
fires that resulted in damaged areas of over 0.7 ha during the study period, 64 cases that were clearly
distinguishable from the satellite data without being blocked by clouds were selected as reference
data, resulting in 2165 fire pixels and 18,085 non-fire pixels between 2015 and 2017. Note that the
non-fire pixels were randomly extracted from the forested areas from the images after excluding fire
and cloud pixels.

2.3. Himawari-8 AHI Satellite Data

Himawari-8, launched in October 2014, is the geostationary satellite sensor system operated by
the Japan Meteorological Agency (JMA), the latest line of Multifunctional Transport Satellite (MTSAT)
series. The Advanced Himawari Imager (AHI) sensor onboard Himawari-8 collects data every 10 min
as full disk images in 16 bands from visible to infrared wavelengths at a 500 m–2 km resolution,
covering from East Asia to Australia. From a monitoring perspective, geostationary satellite data with
a very high temporal resolution may be a better option than polar-orbiting satellite data even though
its spatial resolution is typically not as good. Tables 1 and 2 summarize Himawari-8 derived input
variables used in the threshold-based algorithm and machine learning modeling, respectively.

Table 1. Himawari-8 AHI-derived input variables used in the threshold-based algorithm.

Himawari-8 AHI Band Number
Central Wavelength

(μm)
Spatial Resolution

(km)

5 1.61 2
7 3.85

14 11.20
Input variables Band 5/Band 7

Band 7 brightness
temperature—Band 14
brightness temperature
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Table 2. Himawari-8 AHI bands and variables used in machine learning modeling in this study (Ch is
the radiance of each band and BT is the brightness temperature of each band).

Himawari-8 AHI Band Number
Bandwidth

(μm)
Central Wavelength

(μm)
Spatial Resolution

(km)

4 0.85–0.87 0.86 1
5 1.60–1.62 1.61 2
6 2.25–2.27 2.26
7 3.74–3.96 3.85
8 6.06–6.43 6.25
9 6.89–7.01 6.95
10 7.26–7.43 7.35
11 8.44–8.76 8.60
12 9.54–9.72 9.63
13 10.30–10.60 10.45
14 11.10–11.30 11.20
15 12.20–12.50 12.35
16 13.20–13.40 13.30

Input variables Ch07 BT07 BT13-BT14 BT07/BT14
Ch04-Ch07 BT07-BT11 BT13-BT15 BT07/BT15
Ch05-Ch07 BT07-BT12 BT07/BT09 BT07/BT16
Ch06-Ch07 BT07-BT13 BT07/BT10 BT09/BT16
Ch07-Ch12 BT07-BT14 BT07/BT11 BT13/BT15
Ch07-Ch15 BT07-BT15 BT07/BT12
Ch12-Ch15 BT12-BT16 BT07/BT13

2.4. Land Cover Data and Forest Map

Land cover data obtained from the Ministry of Environment of South Korea was used to identify
forest areas (Figure 1). The land cover data were produced using Landsat TM images collected in
2010 and the overall accuracy is reported as 75% [29]. It has 7 classes—built-up, agricultural land,
forest, grassland, wetland, barren land and water—at 30 m resolution. The land cover map was
upscaled to 2 km corresponding to the spatial resolution of the input AHI data using a majority
filtering. Considering many forest fires occurred along roads or agricultural land in the boundaries of
forests, one pixel (2 km)-buffered areas from the forest pixels were used as the forest mask.

Figure 1. The study area of this research (South Korea) and (a) land cover map from the Ministry
of Environment of South Korea and (b) forest region map with forest fires occurred during the
study period.
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3. Methodology

3.1. Forest Fire Detection Aalgorithm

The forest fire detection model proposed in this study consists of 3 steps. Figure 2 shows the
process flow diagram of the proposed approach. The first step is to identify the candidate pixels of
forest fires using infrared bands based on a threshold-based algorithm. The proposed threshold-based
algorithm uses multi-temporal analysis to consider the stationary heat sources and varied thermal
signals from the surface due to the diurnal cycle of forest fires. This first step tries to focus on
identifying potential fire pixels, regardless of a high false alarm rate. The following machine learning
and post-processing approaches, then, try to reduce false alarms effectively from the results of the
first step.

Figure 2. The process flow of detecting forest fire pixels based on the threshold-based algorithm,
machine learning, and post-processing approaches.

3.2. Threshold-Based Algorithm

To increase the probability of detection of small-scale forest fires, the threshold-based algorithm
of this study modified the existing threshold-based forest fire detection algorithms, which used 4
and 11 μm bands [9,13], considering the characteristics of forest fires in South Korea. Since average
temperatures of active fires range from 800 K to 1200 K, the fires are detectable in the mid-infrared
and thermal bands with high intensities [5]. Himawari-8 AHI band 5 (1.61 μm), 7 (3.85 μm) and 14
(11.2 μm) data were used in the threshold-based algorithm in this study (Table 1).
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Figure 3 summarizes the proposed threshold-based algorithm with multiple AHI channels and
their time series. In the first condition of the threshold-based algorithm, the band 7 radiance was
used to distinguish forest fire candidate pixels. The MIR band (i.e., band 7) is effective in observing
radiative emissions from objects radiating at temperatures similar to those of forest fires [13]. Thus,
it has been used in most existing fire detection algorithms [10,11,13,15,30]. Many factors such as land
cover type, topographic characteristics, time of day, and day of the year affect the threshold [4]. Unlike
with existing algorithms, the threshold in the proposed algorithm was not fixed to better identify
small-scale forest fires. Instead, the top 7% value in the forest region buffered by one-pixel in South
Korea for each image was assigned as an adaptive threshold through multiple empirical tests. In order
to identify heat sources other than forest fires, a multi-temporal component was considered in the
threshold-based algorithm. The multi-temporal component uses the difference between the radiance
of the target image and the averaged radiance for 7 days before the target image. In this way, it can
effectively remove stationary heat sources (e.g., industrial facilities), radiometrically bright objects
(e.g., hot and reflective rooftops such as solar cells on the roof) and other unique structures such as
solar farms, which can be classified as potential forest fire pixels. The other step in the threshold-based
algorithm is cloud masking. The cloud pixels usually have a negative effect on the multi-temporal
analysis and are classified as forest fires, because clouds have high albedo or reflectance in visible and
near infrared bands [15]. As Himawari-8 has not provided a publicly available cloud mask product yet,
cloud pixels were defined by the cloud masking algorithm developed by [31]. When the operational
Himawari-8 cloud mask product is available in the future, the proposed algorithm will be able to use
the product to more effectively remove clouds from images.

Figure 3. The threshold-based algorithm proposed in this study.

Secondly, the pixels which were classified as potential forest fire pixels in the first condition were
checked against another series of empirically selected parameters and thresholds that reflect forest
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fire characteristics (Figure 3). Shortwave infrared (1.58–1.64 μm) bands are used in cloud, sun glint
and water distinction in the existing fire detection algorithms [11]. The ratio of band 5 reflectance to
band 7 radiance was the most distinct parameter among several ratios and differences of bands based
on the reference data (forest fire vs. non-forest fire pixels). An optimum threshold for the ratio was
determined through empirical testing of multiple thresholds. Another parameter is the difference
between BTs of bands 7 and 14. The large difference between the BTs in the shortwave (3–4 μm) and
longwave (~11 μm) bands is related to fires [32]. Thus, it has been widely used in other fire detection
algorithms [9,15,33,34]. The threshold value of this parameter was also defined by empirical tests
using the reference data.

3.3. Random Forest

RF is widely used in various remote sensing applications for both classification and
regression [35–39]. RF is based on Classification and Regression Tree (CART) methodology [40],
which is a rule-based decision tree. RF adopts two randomization strategies to produce many
independent CARTs: a random selection of training samples for each tree, and a random selection of
input variables at each node of a tree [41–43]. Final output from RF is achieved through an ensemble of
individual CARTs. This ensemble approach can mitigate overfitting and the sensitivity to training data
configurations, which are major limitations of CART [44–46]. Using many independent decision trees,
RF makes a final decision by (weighted) averaging and majority voting approaches for regression and
classification, respectively. RF also provides useful information on the contribution of input variables
to the model, which is based on relative variable importance using out-of-bag (OOB) data [47–49].
OOB errors are the differences between the actual value and the decision value that is estimated using
data not used in training.

In this study, the 64 forest fire reference cases between 2015 and 2017 (2165 fire pixels and
18,085 non-fire pixels) were divided into two groups considering their damaged area, time and
location: 50 fire cases (80%; 1775 fire pixels and 15,043 non-fire pixels) to develop an RF model and the
remaining 14 cases (20%; 390 fire pixels and 3042 non-fire pixels) to validate the model.

First, a total of 191 input variables—band radiance, BT, band ratios, BT differences and BT ratios
of bands 4–16—(Appendix C) were used as the input parameters of the RF model. We used a simple
feature selection based on the relative variable importance provided by RF through iterative testing
with different sets of input variables. Finally, 26 parameters were selected (Table 2), which were used
to develop the RF model for effectively removing false alarms of forest fire detection.

3.4. Post Processing

In order to further refine forest fire detection results, additional post processing was applied.
The post processing was designed to effectively remove salt-and-pepper noise and fires from non-forest
areas. We applied a buffer to the forest boundary to effectively detect almost all forest fires that occurred
near roads or areas between agricultural land and forests (Section 2.4), but the buffered area inevitably
contains non-forest regions which results in salt-and-pepper noise (mostly fires from agricultural land
or hot spots in urban areas). We used the forest map (refer to the Ministry of Environment of South
Korea) in the post processing. If more than three out of the eight surrounding pixels of a pixel classified
as forest fire by the RF model were forest, they were then considered to be forest fire pixels. Otherwise,
the pixels were removed as non-forest area fires (e.g., agricultural fires).

3.5. Accuracy Assessment

The performance of the proposed approach was evaluated using the probability of detection
(POD; Correctly detected f orest f ire pixels

Correctly detected f orest f ire pixels + Mis-detected f orest f ire pixels × 100), the probability of false detection

(POFD; Miss detected f orest f ire pixels
Correctly detected non- f orest f ire pixels + Mis-detected f orest f ire pixels × 100) and the overall accuracy

(OA; Correctly detected f orest f ire and non- f ire pixels
Total pixels × 100).
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The accuracy of the proposed algorithm was further compared to those of the two existing forest
fire detection algorithms and the Collection 6 MODIS fire products (M*D14; [9]). One is the COMS
algorithm, which was proposed by [2]. The COMS algorithm is threshold-based, and is based on the
MODIS wildfire detection algorithm using COMS MI sensor data. It classified the forest fire candidate
pixels by the two thresholds and surrounding statistical values using the 3.7 and 10.8 μm wavelength
bands of COMS MI. The other algorithm is an AHI Fire Surveillance Algorithm (AHI-FSA), which
was developed by [13]. The AHI-FSA algorithm is based on three different wavelengths (RED-band 3;
NIR-band 4; MIR-band 7) of Himawari-8 AHI sensor to detect burnt areas and smoke.

4. Results and Discussion

4.1. Forest Fire Detectioin

The forest fire detection algorithm was evaluated using 14 reference forest fire cases among a total
of 64 reference cases (Section 2.2). More than 90% of the forest fires (i.e., 46 out of 50 in calibration
cases, and 14 out of 14 in validation cases) were detected by the threshold-based algorithm, and an
additional 5 forest fires were detected which were not included in the reference data due to their small
damage areas. Although the threshold-based algorithm detected most forest fires, it resulted in a high
rate of false alarms.

The final RF model was constructed using the 26 input variables (Table 2), which were selected
based on variable importance identified by RF among over 191 variables (Appendix C). When using
both BT differences and ratios, the RF model produced higher accuracy (OA = 98.75%, POD = 89.74%,
and POFD = 0.10%) than using either one of the sets (OA = 96.44%, POD = 70%, and POFD = 0.16%
when using only BT differences; OA = 98.60%, POD = 88.97%, and POFD = 0.16% when using only BT
ratios). Many of the selected input variables were related to band 7 (MIR band), which was used in
the threshold-based algorithm. This corresponds to the literature in that the MIR band (i.e., band 7) is
sensitive to forest fire temperature [13]. BT differences and ratios between band 7 and thermal bands
were considered important variables. While the peak radiation at thermal wavelengths (8–12 μm) is
related to a normal environmental temperature, hot temperature by forest fires can be detected at a
shorter wavelength than the Earth’s surface, especially 3–4 μm (band 7) [5]. The large BT difference
between the shortwave (3–4 μm) and thermal bands can be observed in fire pixels, and thus the
BT difference has been used in other fire detection algorithms [9,15,33,34]. High radiance values of
band 5 are related to near the center of fires [12], and 2.2 μm (band 6) wavelength is sensitive to
hot targets [50]. The NIR (0.846–885 μm; band 4) and the shortwave infrared (1.58–1.64 μm; band 5)
regions are used to discriminate cloud, sun glint and water in the fire detection algorithm [9,11]. The
reflectance values of band 4 are used to remove highly reflective surface and sun glint characteristics
from non-fire pixels [30]. These wavelengths (bands 4–6) are also used in existing wildfire detection
algorithms [11,12,50].

Figure 4 summarizes the relative variable importance of the selected 26 input variables provided
by the RF model. The difference between bands 5 and 7 was identified as the most contributing
variable to the model, followed by the difference between bands 6 and 7, and that between bands
4 and 7. The BT ratios and differences between bands 13 (10.45 μm) and 15 (12.35 μm) were also
identified as contributing variables. These variables are known to be effective for separating active
fires from fire-free background [11,30]. The usefulness of Himawari-8 AHI sensor data for forest fire
detection is largely unassessed because of the relatively young age of the sensor and the minimal
existing published work [17]. Thus, it is desirable to test various variable combinations to find an
optimum set of Himawari-8 derived input variables for forest fire detection.
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Figure 4. Variable importance for removal of false alarms using the RF model. Increase of mean
squared error (MSE) was calculated using out of bag (OOB) data. More detailed information about the
increase of MSE%) is given in Section 3.3.

Table 3 shows the accuracy assessment results of the RF model using the calibration and validation
data. The RF model resulted in 100% training accuracy. The validation accuracy was also high
(OA = 99.16%, POD = 93.08%, and POFD = 0.07%) with 27 forest fire pixels (7% of reference forest fire
pixels) being classified as non-fire pixels. From this result, one of the 14 forest fires (validation cases)
detected by the threshold algorithm were removed after the RF model was combined. Figure 5 shows
that the RF model effectively removed false alarms for the validation forest fire cases (Figure 5b,f)
when compared to the results of the threshold-based algorithm (Figure 5a,e,i,m). However, a few false
alarms (Figure 5j,n) still remained. For the validation cases, about 96% of the false alarmed pixels from
the thresholding results were successfully removed by RF.
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Figure 5. The maps of detected forest fires after each step: the threshold-based algorithm (a,e,i,m),
RF modeling (b,f,j,n), and post processing (c,g,k,o) and the MODIS active fire data (M*D14; d,h,l,p).
(1) the forest fire (Suncheon-si, Jeonnam; from 13:13 to 16:00 (KST) on 19th October 2015) occurred by
shaman rituals with the damaged area ~1 ha (a,b,c,d); (2) the forest fire (Andong-si, Gyeongbuk; from
13:10 to 15:20 (KST) on 28th February 2017) occurred due to an unknown reason with the damaged
area ~0.8 ha (e,f,g,h); (3) forest fire (Yeongcheon-si, Gyeongbuk; from 15:13 to 18:30 (KST) on 11th
March 2017) occurred due to the incineration of agricultural waste with the damaged area ~5.2 ha
(i,j,k,l); and (4) the forest fire (upper; Gangneung-si, Gangwon; from 15:32 on 6th to 6:34 (KST) on
9th May 2017) occurred for an unknown reason with the damaged area ~252 ha and the forest fire
(lower; Yeongdeok-gun, Gyeongbuk; from 14:45 on 7th to 7:00 (KST) on 8th May 2017) occurred due to
a cigarette with the damaged area ~5.9 ha (m,n,o,p). The red dots are the potential forest fire pixels
detected by the proposed algorithm, pink circles show actual forest fire cases from the reference data,
black dots are the potential forest fire pixels detected by the Collection 6 MODIS active fire data, blue
circles show actual forest fire cases which were not matched with Himawari-8 target time, and the
band 7 radiance of Himawari-8 AHI of each image is used as a background image. These five forest
fire cases of four dates come from the validation data, which were not used in training of the RF model.
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Table 3. Accuracy assessment results of best combinations of RF based on variable importance.
(OA = Overall accuracy (%); POD = Probability of detection (%)).

Reference

Fire No fire Sum

Calibration Fire 1775 0 1775
OA = 100%

POD = 100%
POFD = 0%

Non-fire 0 15,043 15,043
Sum 1775 15,043 16,818

Validation Fire 363 2 365
OA = 99.16%

POD = 93.08%
POFD = 0.07%

Non-fire 27 3040 3067
Sum 390 3042 3432

Finally, after the post processing using the forest region map, 13 of the 14 forest fires (validation
cases) were detected using the 3-step forest fire detection algorithm, and an additional 5 small-scale
forest fires (damaged areas were 0.02–0.3 ha), which were not included in the reference data, were
detected. About 64% of the remaining false alarms were further removed by incorporating the post
processing with the results of the threshold-based and RF approaches. Among 50 calibration forest fire
cases, two forest fires were removed when the post-processing was applied. The location of these two
fire cases were very close to the dense urban areas, and thus, removed due to the coarse resolution
of the AHI images. In addition, since the forest map used in this study is not 100% accurate, there
might be false alarms or mis-detection of forest fires caused by using the map. Nonetheless, the post
processing based on the forest map resulted in an increase in POD and a decrease in false alarms.
If more accurate and higher resolution forest data can be used, the performance of the proposed
approach could be further enhanced.

The final results of forest fire detection were compared to two existing algorithms (refer to
Section 3.5; Table 4). Among 14 validation forest fires, 13 forest fires were detected using the proposed
approach, while 7 and 8 forest fires were detected by the COMS algorithm and the AHI-FSA algorithm,
respectively (Table 4). Among the 12 validation small-scale forest fires (damaged area < 8 ha), 11 forest
fires were detected using the proposed 3-step algorithm, while 5 and 6 forest fires were detected
by the two existing algorithms respectively. The POD of the proposed 3-step algorithm was higher
than the two existing algorithms. Two of the five additional small-scale forest fires detected by the
proposed approach were also detected by the AHI-FSA algorithm. However, none of them was
detected by the COMS algorithm. This implies that the proposed approach works well for small-scale
fires when compared to the existing algorithms. The same Himawari-8 AHI sensor was used to detect
the same forest fire cases, but the algorithm proposed in this study detected the forest fires better
than the AHI-FSA algorithm. The final results of the proposed 3-step algorithm were also compared
to the Collection 6 MODIS fire products (Figure 5d,h,l,p). Among 14 validation data, 6 forest fires
(5 small-scale forest fires) were detected by MODIS. Among 8 forest fires which were not detected by
MODIS, 3 forest fires were not detected because MODIS didn’t pass at the time of forest fires. This
implies that the use of geostationary satellite data has great potential in the real time monitoring of
forest fires.
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Table 4. The number of detected forest fire and the detection rate of the proposed 3-step algorithm,
the COMS algorithm, and the AHI-FSA algorithm.

3-Step Algorithm COMS Algorithm AHI-FSA Algorithm

Validation forest fires
(14)

The number of
detected forest fire 13 7 8

Detection rate 93% 50% 57%
Average damaged area 13.29 ha 22 ha 20.14 ha

Small-scale validation
forest fires (12)

The number of
detected forest fire 11 5 6

Detection rate 92% 42% 50%

We further applied the 3-step algorithm to the Himawari-8 data collected from January to February
in 2018 (i.e., more recent than the research period used in the study), and the results were compared to
the Collection 6 MODIS active fire data (Table S1). Among new 18 reference forest fires, 12 forest fires
were detected using the proposed approach (the detection rate was 66.7%), while 6 forest fires were
detected by the Collection 6 MODIS active fire data (the detection rate was 33.3%). Among detected
12 forest fires, 9 forest fire cases were clearly detected without false alarms. Four of the 6 undetected
forest fires were detected by the threshold-based algorithm, but they were excluded when the RF
model was applied. The relatively lower detection rate of the proposed model when compared to
its results for the previous years can be explained by the fact that only a few training samples from
January and February were used to train the model. The detection rate can increase when the RF
model is improved with more training data. Please note that forest fires in other months in 2018 were
not tested because Himawari-8 time-series data were not always available to the public. The proposed
3-step algorithm was also applied to the East Asia and it detected reference fires well (pink circle in
Figure S1) and compared with the Collection 6 MODIS active fire data (M*D14). We got the information
about the reference forest fires in China from the website of the China Forest Fire Management [51].
The first forest fire (Figure S1b,c; [52]) was detected by both 3-step algorithm (Himawari-8 target time
was 17:50 (UTC)) and MODIS/Aqua active fire data (passing time was 17:55 (UTC)). The second forest
fire (Figure S1d,e; [53]) was detected by 3-step algorithm (Himawari-8 target time was 18:30 (UTC))
but not by MODIS/Aqua active fire data (passing time was 18:30 (UTC)). Other forest fires detected by
the 3-step algorithm and MODIS data have no reference data, and thus, their accuracy is unknown.

4.2. Monitoring of Forest Fires

Since time series data with a 10 min interval (Himawari-8 AHI sensor) were used, the lead time
on how early the proposed algorithm detected fires was examined. Among the 52 forest fires detected
by the proposed approach, shows the number of forest fires with respect to initial detection time,
and 25 forest fires were detected within 10 min after fires occurred and 39 forest fires were detected
within 30 min. The Samcheok forest fire, which is the largest forest fire from the reference data (i.e.,
the damaged area was 765.12 ha and the duration was longer than 3 days), and other forest fires (with
a damaged area range from 0.8 to 252 ha) were detected within 10 min. This shows that detection
is generally possible within a short period of time after a forest fire has broken out. The average
initial detection time using the proposed approach was about 24 min (median value was 20 min).
The averaged initial detection time increased due to several forest fires with detection times of more
than 30 min. There was no significant correlation between the initial detection time and the starting
time, location, and size of the forest fires. When we carefully examined the high resolution Google
Earth images before and after the forest fires, many late-detected (with the initial detection time of
longer than 30 min) forest fires had little difference between the before and after images, which implies
that the forest fires occurred mostly under the canopy and did not show significant difference in
remotely sensed images at the canopy level during the initial period of fires. It should be noted that
Himawari-8 can scan the focus area including Japan and Korea about every 2 min, and thus, there is a
greater chance of reducing the initial detection time in the future using more dense time series data.
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Figure 6. Forest fire in Yeongju-si, Gyeongbuk and Geostationary Ocean Color Imager (GOCI) image
on the 4th March 2017. The fire monitoring results from 6:00 to 7:20 UTC by the proposed algorithm
(red and blue dots) are shown with the band 7 radiance of Himawari-8 AHI as the background.

4.3. Novelty and Limitations

This study proposed an integrated approach for the detection of small to large-scale forest fires in
South Korea. The proposed algorithm detected forest fires in South Korea better than the other two
existing algorithms, especially for small-scale forest fires. The proposed approach consists of three steps.
In the threshold-based algorithm, as the first step, an adaptive thresholding approach was adopted
for each image considering the diurnal cycle and seasonality, unlike the existing threshold-based
algorithm. While the first step resulted in very high POD and false alarms, the following RF model
and post processing effectively removed the false alarms (Figure 5). In particular, the post processing
using the forest map and the filtering approach was very useful for South Korea, which has a complex
and rugged terrain with small patches of land cover. This study showed promising results that more
advanced geostationary satellite sensor systems with higher spatial (<1 km) and temporal (~few
minutes) resolutions can be used to monitor even small forest fires, i.e., less than 1 ha. Since high
temporal resolution geostationary satellite data are used in the proposed approach, the early detection
and spreading direction of fires can be identified by the monitoring results (Figure 6), which can be
used to provide appropriate information for rapid response. [54] calculated a wildfire spread rate and
burned area using Himawari-8 satellite data and active fire data developed by [15]. They defined
the burned area and fire center using active fire data. This method demonstrates Himawari-8 data is
useful for computing the fire spread rate. The burned area mapping and fire spread rate calculation
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can be combined with active fire data produced by our proposed 3-step algorithm to better manage
forest fires. When approximately two-minute interval images by Himawari-8 or Geo-Kompsat-2A
(GK-2A) satellite sensor systems (rapid scan mode; GK2 satellite successfully launched on 5 December
2018) are available, the proposed approach can contribute to faster initial detection and monitoring of
forest fires.

However, there are some limitations in this study. First, clouds are always problematic when
optical sensor data are used, as is the case in the proposed approach. Second, adaptive threshold
values in the threshold-based algorithm might not work well for very small fires when large forest fires
occur at the same time. Local tuning of the adaptive thresholding should be conducted before applying
the proposed approach to different areas. Providing a certain range of the thresholds might improve
the performance of forest fire detection. Third, although the RF model showed good performance in
reducing false alarms, it did not detect a few forest fires. Such mis-detection by the RF model can be
improved by using additional forest fire and non-forest fire samples for training because the RF model
is an empirical model, and requires new training when applied to different areas. Although the locally
optimized algorithm has the disadvantage of being a time-consuming process, it can produce high
accuracy in the target study area. Fourth, two forest fires were not detected and were removed by the
post processing because they were not included in the forest map. Considering the complex terrain
and patched land cover in the small size of South Korea, a more precise forest map with a higher level
of accuracy can mitigate such a problem. Finally, very small forest fires (i.e., damaged areas less than
0.7 ha) are hard to detect due to the limitation of spatial resolution of input geostationary satellite data.
Higher spatial resolution (e.g., 500 m) thermal data from geostationary satellite sensor systems than
Himawari-8 may further improve the detection of very small forest fires especially from an operational
forest fire monitoring perspective in South Korea where small-scale forest fires frequently occur.

5. Conclusions

In this study, a combined 3-step algorithm (threshold-based algorithm, RF model, and post
processing) was proposed to detect and monitor forest fires in South Korea using Himawari-8
geostationary satellite data. Existing forest fire detection algorithms using satellite data are not
used in the operational monitoring system in South Korea due to the high rate of false alarms,
mis-detection of small-scale forest fires, and the low temporal resolution of satellite data. This proposed
3-step algorithm using geostationary satellite data provides a basis for use in the operational forest
fire monitoring system. The early detection and spreading direction of fires using high temporal
resolution of geostationary satellite data enables efficient rapid response. The active fire data resulting
from the 3-step algorithm can be used to calculate the size of the burned area and fire spread
rates. Such information is of great help for efficient forest fire monitoring, extinguishment, and
recovery management. Although the 3-step algorithm proposed in this study is locally optimized,
it is necessary to effectively detect and monitor forest fires in a study area such as South Korea, where
the environmental characteristics are unique in terms of land cover, topography, and climate. This
algorithm can be extended to the rest of East Asia after refining all three steps (i.e., tuning adaptive
threshold values, RF modeling with additional samples, and post-processing using a fine resolution
forest map of East Asia).

More than half of the detected forest fires were detected within 10 min, which is a promising
result when the operational real-time monitoring of forest fires using more advanced geostationary
satellite sensor data is considered for the rapid response and management of forest fires. The algorithm
proposed in this study can be optimized and used for the Geo-Kompsat-2 Advanced Meteorological
Imager (AMI), a new geostationary meteorological satellite, which was successfully launched on 4th
December 2018 by the Korean Meteorological Administration. The satellite has similar specifications
to the Himawari-8 AHI sensor, and provides data every 10 min in full disk, and approximately every
2 min in the focusing area around the Korean peninsula, which can be useful for continuous forest fire
detection and monitoring.
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Appendix A

List of Collection 6 MODIS fire products in South Korea from March to May in 2017.

Date Actual Fires
Detected Fires

by MODIS

Correctly

Detected by

MODIS

Falsely Detected

by MODIS

Miss Detected

Fires

2nd March 0 1 0 1 0

4th March 1 14 0 14 1

5th March 0 4 0 4 0

6th March 0 2 0 2 0

7th March 0 13 0 13 0

8th March 1 0 0 0 1

9th March 2 6 1 5 1

10th March 8 4 0 4 8

11th March 7 12 5 7 2

12th March 3 1 0 1 3

13th March 2 7 0 7 2

14th March 3 11 0 11 3

15th March 4 2 1 1 3

16th March 5 6 0 6 5

17th March 4 4 0 4 4

18th March 2 4 1 3 1

19th March 10 4 1 3 9

21st March 1 4 0 4 1

22nd March 1 3 0 3 1

23rd March 2 1 0 1 2

26th March 1 0 0 0 1

27th March 1 2 0 2 1

28th March 1 0 0 0 1

29th March 3 0 0 0 3

30th March 3 7 0 7 3
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Date Actual Fires
Detected Fires

by MODIS

Correctly

Detected by

MODIS

Falsely Detected

by MODIS

Miss Detected

Fires

1st April 1 1 0 1 1

3rd April 1 13 0 13 1

4th April 6 2 0 2 6

5th April 1 0 0 0 1

6th April 0 1 0 1 0

7th April 1 3 0 3 1

8th April 1 4 0 4 1

9th April 0 2 0 2 0

10th April 3 3 0 3 3

11th April 0 1 0 1 0

12th April 2 4 1 3 1

13th April 4 1 0 1 4

15th April 1 2 0 2 1

19th April 0 14 0 14 0

21th April 0 1 0 1 0

22th April 1 1 0 1 1

23th April 3 2 0 2 3

24th April 1 8 1 7 0

26th April 3 4 0 4 3

27th April 2 0 0 0 2

28th April 3 16 1 15 2

29th April 3 2 0 2 3

30th April 6 7 1 6 5

1st May 1 3 0 3 1

2nd May 1 4 0 4 1

3rd May 5 7 1 6 4

4th May 1 0 0 0 1

5th May 1 3 0 3 1

6th May 6 2 2 0 4

7th May 4 10 2 8 2

8th May 3 2 0 2 3

9th May 1 0 0 0 1

11th May 0 1 0 1 0

14th May 0 14 0 14 0

15th May 0 1 0 1 0

17th May 0 4 0 4 0

18th May 0 1 0 1 0

19th May 1 5 1 4 0

20th May 1 2 1 1 0

109



Remote Sens. 2019, 11, 271

Date Actual Fires
Detected Fires

by MODIS

Correctly

Detected by

MODIS

Falsely Detected

by MODIS

Miss Detected

Fires

21th May 3 3 1 2 2

23th May 0 2 0 2 0

24th May 0 2 0 2 0

25th May 1 1 0 1 1

26th May 2 4 0 4 2

27th May 2 2 0 2 2

28th May 1 10 1 9 0

29th May 1 0 0 0 1

30th May 2 1 0 1 2

Total 145 288 22 266 123

Appendix B

List of forest fires used as reference data in this study provided by the Korea Forest Service.

Location
Ignition

Date

Ignition

Time (UTC)

Extinguished

Date

Extinguished

Time (UTC)
Cause

Damaged

Area (ha)

64 reference forest fires

Yeongok-myeon,
Gangneung-si,
Gangwon-do

17th October
2015

0:20
17th October

2015
6:00 Unknown cause 0.8

Byeollyang-myeon,
Suncheon-si,
Jeollanam-do

19th October
2015

4:20
19th October

2015
6:10 Shaman rituals 1

Dong-myeon,
Chuncheon-si,
Gangwon-do

4th February
2016

4:40
4th February

2016
6:50 Other 1

Ucheon-myeon,
Hoengseong-gun,

Gangneung-si,
Gangwon-do

5th February
2016

7:00
5th February

2016
8:50

Waste
incineration

0.8

Buseok-myeon,
Yeongju-si,

Gyeongsangbuk-do

7th February
2016

6:30
7th February

2016
7:20

Agricultural
Waste

Incineration
1.5

Jungbu-myeon,
Gwangju-si,

Gyeonggi-do

26th
February

2016
1:00

26th February
2016

3:20 Arson 2.7

Geumgwang-myeon,
Anseong-si,

Gyeonggi-do

16th March
2016

6:50
16th March

2016
8:00

Waste
incineration

2

Yeongyang-eup,
Yeongyang-gun,

Gyeongsangbuk-do

27th March
2016

7:20
27th March

2016
8:10

Agricultural
Waste

Incineration
0.7

Gimhwa-eup,
Cheorwon-gun,

Gangwon-do

28th March
2016

4:10
28th March

2016
5:40

Climber
accidental fire

2

Namdong-gu,
Incheon Metropolitan

City

29th March
2016

21:00
29th March

2016
22:30 The others 1

Hwado-eup,
Namyangju-si,
Gyeonggi-do

30th March
2016

3:50
30th March

2016
6:30

Agricultural
Waste

Incineration
0.8
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Location
Ignition

Date

Ignition

Time (UTC)

Extinguished

Date

Extinguished

Time (UTC)
Cause

Damaged

Area (ha)

Oeseo-myeon,
Sangju-si,

Gyeongsangbuk-do

30th March
2016

5:50
31th March

2016
9:40

Paddy field
incineration

92.6

Sanae-myeon,
Hwacheon-gun,

Gangwon-do

31th March
2016

4:00
31th March

2016
5:00 The others 1.5

Jangheung-myeon,
Yangju-si,

Gyeonggi-do

31th March
2016

5:30
31th March

2016
9:30 The others 8.3

Nam-myeon,
Yanggu-gun,
Gangwon-do

1st April
2016

3:50 1st April 2016 5:50 The others 14.4

Gonjiam-eup,
Gwangju-si,

Gyeonggi-do

1st April
2016

2:20 1st April 2016 5:30
Paddy field
incineration

2.6

Seolseong-myeon,
Icheon-si,

Gyeonggi-do

1st April
2016

4:00 1st April 2016 6:40
Waste

incineration
1

Kim Satgat myeon,
Yeongwol-gun,
Gangwon-do

2nd April
2016

6:30 2nd April 2016 7:50 The others 1

Seo-myeon,
Hongcheon-gun,

Gangwon-do

2nd April
2016

5:20 2nd April 2016 7:50
Work place

accidental fire
3.9

Gapyeong-eup,
Gapyeong-gun,
Gyeonggi-do

2nd April
2016

6:00 2nd April 2016 9:00 The others 7

Opo-eup, Gwangju-si,
Gyeonggi-do

2nd April
2016

4:20 3rd April 2016 7:50
Ancestral tomb

visitor
accidental fire

2

Chowol-eup,
Gwangju-si,

Gyeonggi-do

2nd April
2016

5:50 2nd April 2016 8:00 The others 1

Dong-gu, Daejeon
Metropolitan City

2nd April
2016

6:00 3rd April 2016 8:00 The others 4.8

Mosan-dong,
Jecheon-si,

Chungcheongbuk-do

2nd April
2016

5:40 2nd April 2016 8:00
Ancestral tomb

visitor
accidental fire

4.7

Suanbo-myeon,
Chungju-si,

Chungcheongbuk-do

5th April
2016

6:10 6th April 2016 9:40
Waste

incineration
53.8

Nam-myeon,
Jeongson-Gun,
Gangwon-do

14th May
2016

6:20 14th May 2016 7:50
Work place

accidental fire
2

Yeongchun-myeon,
Danyang-gun,

Chungcheongbuk-do

22th May
2016

3:00 23th May 2016 12:20
Wild edible

greens collector
accidental fire

13

Dongi-myeon,
Okcheon-gun,

Chungcheongbuk-do

22th May
2016

4:40 22th May 2016 10:20 The others 1

Jinbu-myeon,
Pyeongchang-gun,

Gangwon-do

30th May
2016

4:50 22th May 2016 6:50
Waste

incineration
1

Jipum-myeon,
Yeongdeok-gun,

Gyeongsangbuk-do

4th February
2017

4:10
4th February

2017
7:10 The others 0.98

Iljik-myeon,
Andong-si,

Gyeongsangbuk-do

28th
February

2017
4:10

4th February
2017

6:20 The others 0.8
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Location
Ignition

Date

Ignition

Time (UTC)

Extinguished

Date

Extinguished

Time (UTC)
Cause

Damaged

Area (ha)

Buseok-myeon,
Yeongju-si,

Gyeongsangbuk-do

4th March
2017

6:00 4th March 2017 7:20
Agricultural

Waste
Incineration

2

Jangseong-eup,
Jangseong-gun,
Jeollanam-do

6th March
2017

8:00 4th March 2017 8:00 The others 1

Okgye-myeon,
Gangneung-si,
Gangwon-do

9th March
2017

1:30
10th March

2017
13:30 The others 160.41

Saengyeon-dong,
Dongducheon-si,

Gyeonggi-do

11th March
2017

1:30
11th March

2017
4:00

Waste
incineration

0.72

Hwanam-myeon,
Yeongcheon-si,

Gyeongsangbuk-do

11th March
2017

6:20
11th March

2017
7:40

Paddy field
incineration

5.2

Wolgot-myeon,
Gimpo-si,

Gyeonggi-do

18th March
2017

6:30
18th March

2017
7:20

Paddy field
incineration

3

Seojong-myeon,
Yangpyeong-gun,

Gyeonggi-do

18th March
2017

8:00
18th March

2017
8:50

Waste
incineration

2

Hanam-myeon,
Hwacheon-gun,

Gangwon-do

19th March
2017

2:00
19th March

2017
5:50

Agricultural
Waste

Incineration
1.5

Buk-myeon,
Gapyeong-gun,
Gyeonggi-do

19th March
2017

5:40
19th March

2017
7:30

Agricultural
Waste

Incineration
2

Baekseok-eup,
Yangju-si,

Gyeonggi-do

19th March
2017

4:10
19th March

2017
6:30

Climber
accidental fire

0.9

Beopjeon-myeon,
Bonghwa-gun,

Gyeongsangbuk-do

22th March
2017

7:10
22th March

2017
7:10 The others 2.2

Dain-myeon,
Uiseong-gun,

Gyeongsangbuk-do

23th March
2017

5:30
23th March

2017
6:00

Paddy field
incineration

1.5

Namyang,
Hwaseong-si,
Gyeonggi-do

3rd April
2017

5:50 3rd April 2017 8:00
Waste

incineration
2.5

Noseong-myeon,
Nonsan-si,

Chungcheongnam-do

3rd April
2017

7:30 3rd April 2017 9:10 The others 0.8

Buk-myeon,
Gapyeong-gun,
Gyeonggi-do

23th April
2017

3:40 23th April 2017 7:30
Climber

accidental fire
1.5

Goesan-eup,
Goesan-gun,

Chungcheongbuk-do

26th April
2017

8:20 26th April 2017 13:10 The others 2

Gonjiam-eup,
Gwangju-si,

Gyeonggi-do

28th April
2017

2:20 28th April 2017 6:50 The others 1

Jojong-myeon,
Gapyeong-gun,
Gyeonggi-do

29th April
2017

5:10 29th April 2017 7:20
Climber

accidental fire
2

Dogye-eup,
Samcheok-si,
Gangwon-do

6th May
2017

2:50 9th May 2017 13:30 The others 765.12

Seongsan-myeon,
Gangneung-si,
Gangwon-do

6th May
2017

6:40 9th May 2017 17:30 The others 252
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Location
Ignition

Date

Ignition

Time (UTC)

Extinguished

Date

Extinguished

Time (UTC)
Cause

Damaged

Area (ha)

Tongjin-eup,
Gimpo-si,

Gyeonggi-do

6th May
2017

6:50 6th May 2017 7:50 The others 1

Sabeol-myeon,
Sangju-si,

Gyeongsangbuk-do

6th May
2017

5:10 8th May 2017 13:30
Agricultural

Waste
Incineration

86

Gaeun-eup,
Mungyeong-si,

Gyeongsangbuk-do

6th May
2017

7:30 6th May 2017 9:30
Agricultural

Waste
Incineration

1.5

Yeonghae-myeo,
Yeongdeok-gun,

Gyeongsangbuk-do

7th May
2017

5:50 7th May 2017 9:00
Cigarette

accidental fire
5.9

Seonnam-myeon
Seongju-gun,

Gyeongsangbuk-do

4th June
2017

3:10 4th June 2017 11:50
Waste

incineration
2

Munui-myeon,
Sangdang-gu,
Cheongju-si,

Chungcheongbuk-do

11th June
2017

14:30 11th June 2017 17:50 The others 3.12

Miwon-myeon,
Sangdang-gu,
Cheongju-si,

Chungcheongbuk-do

14th June
2017

12:10 14th June 2017 15:10 The others 0.7

Hwanam-myeon,
Yeongcheon-si,

Gyeongsangbuk-do

23th
November

2017
20:40

23th November
2017

23:50 The others 0.8

Hyeonbuk-myeon,
Yangyang-gun,
Gangwon-do

4th
December

2017
10:40

4th December
2017

12:10
House fire

spread
1.86

Sicheon-myeon,
Sancheong-gun,

Gyeongsangnam-do

5th
December

2017
21:30

5th December
2017

3:50 The others 5

Buk-gu, Ulsan
Metropolitan City

12th
December

2017
14:50

12th December
2017

23:40 The others 18

Gogyeong-myeon,
Yeongcheon-si,

Gyeongsangbuk-do

16th
December

2017
8:30

16th December
2017

10:50 The others 1.89

Gaejin-myeon,
Goryeong-gun,

Gyeongsangbuk-do

19th
December

2017
5:00

19th December
2017

7:30
Climber

accidental fire
1.5

5 additionally detected forest fires

Bibong-myeon,
Wanju-gun,

Jeollabuk-do

16th March
2016

6:20
16th March

2016
8:30

Agricultural
Waste

Incineration
0.2

Dosan-myeon,
Andong-si,

Gyeongsangbuk-do

30th March
2016

8:47
30th March

2016
10:00

Paddy field
incineration

0.02

Sari-myeon,
Goesan-gun,

Chungcheongbuk-do

1st April
2016

5:10 1st April 2016 7:45 The others 0.3

Sosu-myeon,
Goesan-gun,

Chungcheongbuk-do

5th April
2016

7:20 5th April 2016 8:50
Waste

incineration
0.1

Hyeonsan-myeon,
Haenam-gun,
Jeollanam-do

19th March
2017

3:55
19th March

2017
5:25

Agricultural
Waste

Incineration
0.03
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Appendix C

List of 191 input variables—band radiance, BT, band ratios, BT differences and BT ratios of bands
4–16—which were used for identifying input data to the RF model.

Band radiance (13)

Ch04 Ch05 Ch06 Ch07
Ch08 Ch09 Ch10 Ch11
Ch12 Ch13 Ch14 Ch15
Ch16

Band ratios (78)

Ch04/Ch05 Ch04/Ch06 Ch04/Ch07 Ch04/Ch08
Ch04/Ch09 Ch04/Ch10 Ch04/Ch11 Ch04/Ch12
Ch04/Ch13 Ch04/Ch14 Ch04/Ch15 Ch04/Ch16
Ch05/Ch06 Ch05/Ch07 Ch05/Ch08 Ch05/Ch09
Ch05/Ch10 Ch05/Ch11 Ch05/Ch12 Ch05/Ch13
Ch05/Ch14 Ch05/Ch15 Ch05/Ch16
Ch06/Ch07 Ch06/Ch08 Ch06/Ch09 Ch06/Ch10
Ch06/Ch11 Ch06/Ch12 Ch06/Ch13 Ch06/Ch14
Ch06/Ch15 Ch06/Ch16
Ch07/Ch08 Ch07/Ch09 Ch07/Ch10 Ch07/Ch11
Ch07/Ch12 Ch07/Ch13 Ch07/Ch14 Ch07/Ch15
Ch07/Ch16
Ch08/Ch09 Ch08/Ch10 Ch08/Ch11 Ch08/Ch12
Ch08/Ch13 Ch08/Ch14 Ch08/Ch15 Ch08/Ch16
Ch09/Ch10 Ch09/Ch11 Ch09/Ch12 Ch09/Ch13
Ch09/Ch14 Ch09/Ch15 Ch09/Ch16
Ch10/Ch11 Ch10/Ch12 Ch10/Ch13 Ch10/Ch14
Ch10/Ch15 Ch10/Ch16
Ch11/Ch12 Ch11/Ch13 Ch11/Ch14 Ch11/Ch15
Ch11/Ch16
Ch12/Ch13 Ch12/Ch14 Ch12/Ch15 Ch12/Ch16
Ch13/Ch14 Ch13/Ch15 Ch13/Ch16
Ch14/Ch15 Ch14/Ch16
Ch15/Ch16

BT (10)

BT07 BT08 BT09 BT10
BT11 BT12 BT13 BT14
BT15 BT16

BT differences (45)

BT07-BT08 BT07-BT09 BT07-BT10 BT07-BT11
BT07-BT12 BT07-BT13 BT07-BT14 BT07-BT15
BT07-BT16
BT08-BT09 BT08-BT10 BT08-BT11 BT08-BT12
BT08-BT13 BT08-BT14 BT08-BT15 BT08-BT16
BT09-BT10 BT09-BT11 BT09-BT12 BT09-BT13
BT09-BT14 BT09-BT15 BT09-BT16
BT10-BT11 BT10-BT12 BT10-BT13 BT10-BT14
BT10-BT15 BT10-BT16
BT11-BT12 BT11-BT13 BT11-BT14 BT11-BT15
BT11-BT16
BT12-BT13 BT12-BT14 BT12-BT15 BT12-BT16
BT13-BT14 BT13-BT15 BT13-BT16
BT14-BT15 BT14-BT16
BT15-BT16
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BT ratios (45)

BT07/BT08 BT07/BT09 BT07/BT10 BT07/BT11
BT07/BT12 BT07/BT13 BT07/BT14 BT07/BT15
BT07/BT16
BT08/BT09 BT08/BT10 BT08/BT11 BT08/BT12
BT08/BT13 BT08/BT14 BT08/BT15 BT08/BT16
BT09/BT10 BT09/BT11 BT09/BT12 BT09/BT13
BT09/BT14 BT09/BT15 BT09/BT16
BT10/BT11 BT10/BT12 BT10/BT13 BT10/BT14
BT10/BT15 BT10/BT16
BT11/BT12 BT11/BT13 BT11/BT14 BT11/BT15
BT11/BT16
BT12/BT13 BT12/BT14 BT12/BT15 BT12/BT16
BT13/BT14 BT13/BT15 BT13/BT16
BT14/BT15 BT14/BT16
BT15/BT16
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Abstract: Soil moisture, as a crucial indicator of dryness, is an important research topic for dryness
monitoring. In this study, we propose a new remote sensing dryness index for measuring soil
moisture from spectral space. We first established a spectral space with remote sensing reflectance
data at the near-infrared (NIR) and red (R) bands. Considering the distribution regularities of soil
moisture in this space, we formulated the Ratio Dryness Monitoring Index (RDMI) as a new dryness
monitoring indicator. We compared RDMI values with in situ soil moisture content data measured at
0–10 cm depth. Results showed that there was a strong negative correlation (R = −0.89) between the
RDMI values and in situ soil moisture content. We further compared RDMI with existing remote
sensing dryness indices, and the results demonstrated the advantages of the RDMI. We applied the
RDMI to the Landsat-8 imagery to map dryness distribution around the Fukang area on the Northern
slope of the Tianshan Mountains, and to the MODIS imagery to detect the spatial and temporal
changes in dryness for the entire Xinjiang in 2013 and 2014. Overall, the RDMI index constructed,
based on the NIR–Red spectral space, is simple to calculate, easy to understand, and can be applied
to dryness monitoring at different scales.

Keywords: remote sensing; dryness monitoring; soil moisture; NIR–Red spectral space; Landsat-8;
MODIS; Xinjiang province of China

1. Introduction

Drought is a frequent natural phenomenon that influences social and economic development,
poses a series of environmental problems, and causes natural disasters, such as change of surface
water circulation, destruction of agricultural productivity, and desertification [1,2]. Since the middle of
the last century, there has been an extensive unanticipated land desertification in arid and semi-arid
regions, worldwide, which has threatened the population of many countries [3]. Moreover, according
to the Intergovernmental Panel on Climate Change (IPCC), the amount of severely dry land is predicted
to increase in the near future. This will be more serious in continental regions, during the summer
months [4]. In the current climate change scenario, the consequence of such dryness trends could
be catastrophic. Therefore, detecting drought areas, monitoring drought grade, and evaluating the
impacts of drought on agriculture, environment, and the economy are critical for regional drought risk
control and sustainable development policies [5].

Due to the complexity of drought occurrence, during the last few decades, a great quantity of
drought monitoring models and methods, based on ground observation sites, have been proposed [6,7],
which mainly use years of ground measured precipitation and evaporation data [8]. These indices,
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such as the Palmer Drought Severity Index (PDSI) [8], the Rainfall Anomaly Index (RAI) [9], the Crop
Moisture Index (CMI) [10], the Bhalme-Mooley Index (BMDI) [11], the Surface Water Supply Index
(SWI) [12], the Standardized Anomaly Index (SAI) [13], and the Standardized Precipitation Index
(SPI) [14], could accurately reflect the duration and intensity of drought. However, they are difficult
to be applied on a large-scale, due to the dependence on site data. Additionally, from a global
perspective, the number of observation sites and the duration of meteorological records in many
areas are insufficient to detect spatiotemporal variations of drought-related variables [15]. With the
development of meteorological grid data, these indices mentioned above have made a breakthrough
for large-scale applications, but the coarse spatial resolution of the data is still hard to meet the needs
of agricultural drought risk management.

The development of remote sensing technology has effectively compensated for the shortcomings
of the traditional site-based monitoring methods. Remote sensing data has become the main data
source for drought research because of its low acquisition cost, wide monitoring range, and strong
data continuity [16,17]. Over the past decades, a large number of remote sensing data on precipitation,
soil moisture, surface temperature, evapotranspiration, and water reserves, have played important
roles in drought research [18,19].

Precipitation and soil moisture are the important factors affecting the severity and duration of
drought. Currently, a variety of satellite precipitation data has been used for drought research [20–22].
The primary satellite precipitation products are shown in Table 1. Satellite soil moisture products are
also widely used in drought research, especially in arid and semi-arid regions. Soil Moisture Ocean
Salinity (SMOS) [23], Soil Moisture Active Passive (SMAP) [24], and Advanced Microwave Scanning
Radiometer–Earth Observing System (AMSR-E) [25] are the main sources of soil moisture monitoring
data based on satellite remote sensing. These data have been widely used in soil moisture inversion
and drought risk assessment [26–29]. However, due to the coarse spatial resolutions of the above
products, they are also hard to be applied on agricultural drought assessment.

Table 1. A summary of primary global satellite precipitation products.

Precipitation Spatial Resolution Temporal Resolution Launch Time References

TRMM-TMPA 0.25◦ 3 h 1998 [30,31]
CMORPH 0.25◦ 3 h 2002 [32]

GSMaP 0.10◦ 1 h 2005 [33]
PERSIANN 0.25◦ 3 h 2000 [34]

GPCP 0.25◦ monthly 1979 [35]

More than 99% of the soil spectral change information can be described by the red, near-infrared
and shortwave infrared bands [36], which provides an important theoretical support for the use of
optical remote sensing data for drought assessment. Researchers have proposed a variety of soil
moisture and drought assessment methods, based on hyper-spectral and multi-spectral data.

Studies have analyzed the relationship between hyper-spectral data and soil moisture, based
on physical and statistical models [37,38], and have proposed several soil moisture inversion
indices [39–41]. Avoiding the difference between complex conditions in the field and spectral data
obtained under laboratory conditions, is the main problem for a quantitative monitoring of soil
moisture in the future.

Multi-spectral data, which is abundant in source and has a high spatiotemporal resolution
compared with hyper-spectral data, has been widely used in drought monitoring. Table 2 shows
the major multi-spectral data sources for drought monitoring. However, due to limited number of
bands, drought or dryness monitoring can be achieved through band combinations or statistics only,
based on the sensitive bands of soil moisture or vegetation status. Gao established the Normalized
Difference Water Index (NDWI), based on Landsat/TM Channel 4 and 5, showing a good performance
on measuring liquid water molecules [42]. There are several indices based on Red(R) and Near Infrared
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(NIR), which were widely used in drought/dryness monitoring with different satellite data. Ghulam
proposed the Perpendicular Drought Index (PDI) [43] (which can reflect the soil moisture status) and
had it verified at the Beijing Shunyi Remote Sensing Experimental Base. The results showed that
there is a high correlation between PDI and in situ drought values calculated from 0–20 cm of soil
moisture, with correlation coefficients of R2 = 0.57 (r = 0.75). However, PDI might fail under conditions
of medium and high vegetation cover, because it does not consider the impact of vegetation cover.
Ghulam presented the Modified Perpendicular Drought Index (MPDI) through the elimination of the
influence of the vegetation fraction, by introducing the fractional vegetation coverage variable (fv)
which represents the proportion of ground covered by canopies [44]. After correlation analysis with
the drought values obtained from in situ soil moisture data, MPDI performed as well as PDI, in the
early stages of vegetation growth, with a correlation coefficient of R2 = 0.8134. MPDI showed a better
performance under dense vegetation cover conditions, since it considered the vegetation condition
in the modeling process. However, parameters such as the vegetation reflectances of red and near
infrared band and the soil line, are generally fixed by experience [45].

Table 2. The major multispectral data sources for drought monitoring.

Platform/Sensor
Number of

Bands
Spectral Range

(μm)
Spatial

Resolution
Temporal

Resolution
Launch

Time

Landsat/TM 7 0.4–2.35 30 m/120 m 16 d 1984
Landsat/ETM+ 8 0.45–2.35 15 m/30 m/60 m 16 d 1999

Landsat/OLI 9 0.43–1.39 30 m 16 d
2013Landsat/TIRS 2 10.6–12.5 100 m 16 d

Terra/ASTER 14 0.52–11.65 90 m 16 d 1999
HJ-1B/CCD 4 0.43–0.90 30 m 4d

2008HJ-1B/IRS 4 0.75–12.50 300 m 4 d
Aqura/MODIS

36 0.4–14.40 250 m/1000 m
0.5 d 2002

Terra/MODIS 0.5 d 2000
NOAA/AVHRR 5 0.55–12.50 1100 m 0.5 d 1979

Since dryness is often related to temperature and vegetation conditions, researchers established
several dryness indices based on one single factor or a combination of multiple factors, and the ability
of these indices to reflect dryness spatial distribution have been tested [46,47]. Temperature-Vegetation
Drought Index (TVDI) is a soil moisture monitoring index constructed on the basis of the Normalized
Difference Vegetation Index—Land Surface Temperature (NDVI-LST) feature space, which considered
the response of vegetation growth status and temperature, to the change of soil moisture. NDVI
is vulnerable to soil background for sparse vegetation, while being insensitive to dense vegetation.
As a result, TVDI might fail in areas with low or high NDVI values [48]. In addition, other researchers
have combined existing dryness indices as indicators for assessing soil moisture, with vegetation
indices or surface temperatures, to construct new indices. Amani developed a 3-Dimensional
(3D) space of LST, Perpendicular Vegetation Index (PVI), and soil moisture (SM) to construct the
Temperature–Vegetation–Soil Moisture Dryness Index (TVMDI) for dryness estimation and monitoring,
and MPDI is the indicator of SM [49]. TVMDI has been evaluated in Yanco, Australia, and the result
shows an acceptable correlation with in situ soil moisture data (r = −0.65). It was compared with
other dryness indices based on satellite data, such as PDI, MPDI, and TVDI, and the result showed
that TVMDI is the most accurate index. However, there are a few issues with this index. First, as an
important factor in TVMDI, LST was estimated using the Single Channel method, which often reduces
the accuracy of dryness assessment [50]. Second, PVI used in the TVMDI can be affected by soil
background, reducing its ability to accurately characterize vegetation moisture status. Furthermore,
TVMDI uses MPDI as the indicator of soil moisture. Similar to MPDI, there is the issue of using
empirical values for the soil line parameters.
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Through the analysis of the multi-indicator dryness indices and the indices based on the
NIR–Red spectral space, we find that these indices mainly have the following disadvantages: (1) Error
propagation during the inversion of each indicator in the multi-indicators index might reduce the
accuracy of the dryness index. (2) The impact of vegetation cover on soil moisture estimation is not
fully considered. (3) The effectiveness of these dryness indices in the arid and semi-arid regions have
not been fully investigated. To overcome these shortcomings, the main objective of this paper is to
propose a new operable dryness monitoring index—the Ratio Dryness Monitoring Index (RDMI)—and
to evaluate its applicability in semi-arid regions. We constructed RDMI based on the NIR–Red spectral
space, implemented it with Landsat-8 images, and validated it with field-measured soil moisture
sampling data. Furthermore, we applied RDMI with Landsat-8 imagery in the region around Fukang
of Xinjiang, China and with Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in the
entire Xinjiang province, in order to test its robustness at different scales.

2. Study Areas and Data

2.1. Study Area

The Xinjiang Uygur Autonomous Region, one of the driest regions on the earth, is located in
Northwestern China and the hinterland of the Eurasian continent [51]. The surface landscape includes
the Tianshan Mountains, Altai Mountains, and the Kunlun mountains, which are seperated by two
vast desert basins, the Tarim Basin, and the Junggar Basin [52].

Xinjiang has a temperate continental climate. The annual average precipitation is 158 mm, and the
annual mean temperature is 7.6 ◦C. In general, Xinjiang is divided into the Northern and Southern part,
by the Tianshan Mountains. There are climate differences between Northern Xinjiang and Southern
Xinjiang. Northern Xinjiang has a temperate, continental, arid, and semi-arid climate, affected by
the Western wind belt. The annual precipitation is about 150–200 mm. Southern Xinjiang has a
warm, temperate, continental, arid climate, and the warm and humid airflow is difficult to reach
due to the limitations of the terrain. The annual precipitation is about 25–100 mm. The annual
potential evaporation in Xinjiang is up to 1800 mm. The ecological environment in Xinjiang is fragile,
and the climatic characteristics of low precipitation and high evaporation can often easily lead to
drought events.

The second study area is a part of the main agricultural area on the Northern slope of the Tianshan
Mountains. Cotton, winter wheat, and spring corn are the main crops in this area. Meanwhile, this
area is connected to the Gurbantunggut Desert and is a typical oasis desert ecotone, where the main
soil type is sandy soil. This area contains a variety of surface landscapes, such as farmland, wetlands,
desert ephemerals, and deserts.

In order to verify the effectiveness of the proposed method, it is necessary to test its robustness
for monitoring and assessing dryness, over time and at different scales. We chose the region around
Fukang, located on the Northern slope of the Tianshan Mountains, to test the proposed method, at a
medium scale, and the entire Xinjiang region, to test it at a large scale (Figure 1).
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Figure 1. Study area (Xinjiang Uygur Autonomous Region, China). The inset image is the surrounding
area of the Fukang City and locations of fifty-one soil samples were taken.

2.2. Field Measurement Data

In the ground soil moisture sampling, taking into account the impact of the cloud cover on the data
quality, whenLandsat transits, we carried out multiple ground sampling experiments, according to the
satellite transit time, to ensure the matching of the ground sampling time and the high-quality Landsat
image. Therefore, from the end of April to mid-July 2014, soil moisture observation experiments were
set up at the Fukang Experimental Stations of the Chinese Academy of Sciences, and the surrounding
areas. The test sites were located in the surrounding areas of the Fukang City, on the Northern slope of
the Tianshan Mountains, as shown in Figure 2. The main soil types in this area are tidal soil and lime
desert soil.

In order to ensure the spatial consistency of the location of the sampling area and the Landsat
pixel, we used a GPS device to select sampling areas, based on a comprehensive consideration of the
sample land cover type and the Landsat pixel position. We selected a total of fifty-one sampling areas,
with a minimum interval of one kilometer, between each sampling area. These sampling areas had
different land cover types, including cotton (n = 19), winter wheat (n = 8), spring maize (n = 14), bare
land (n = 8), and desert (n = 2). The size of each sampling area was 30 m × 30 m, which coincided with
the Landsat pixel range, and five points were selected within each sampling area, including the center
point. In each sampling area, five points of the GPS position information were first recorded, and
then a soil drill was used to separately collect soil samples from 0−10 cm of the soil surface. Finally,
soil samples from the five points were mixed and weighed, on site. The weights of the soils in each
sampling area, were recorded. The soil samples were taken back into the laboratory, in sealed bags,
and dried for 12 hours, in a 105 ◦C, constant, temperature drying chamber [53]. Each soil sample
weight was measured after the drying process. Equation (1) was used to calculate the gravimetric soil
moisture content.

W =
W1 − W2

W2
× 100 (1)
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where W is the gravimetric soil moisture content (%), W1 is the weight of the wet soil, and W2 is the
weight of the dry soil.

Finally, through the screening of the Landsat images during the sampling period, the image data
of the cloud cover on 12 June 2014 was only 0.06%. Finally, we used the soil sampling experiment data
from 12 June 2014 for index verification.

 

 
Figure 2. The positions of the fifty-one soil moisture samples with different land cover types in the
surrounding areas of the Fukang City. Typical land cover types, such as desert, farmland, bare land,
wetlands, are marked with text in the map.

2.3. Satellite Image Data and Its Pre-Processing

In order to evaluate the dryness index proposed in this paper and to verify its applicability at
different scales, two types of satellite images were used in this study. The red (R) and near-infrared
(NIR) bands used in the study were obtained by the Landsat-8, with a medium resolution (30 m), and
the MODIS was obtained with a coarser resolution (250 m). The Landsat-8 image was used for the
evaluation of the proposed dryness index and dryness mapping in the surrounding areas of Fukang
City. In addition, MODIS data were used to generate a dryness map of Xinjiang, demonstrating the
applicability of the proposed index, on a large scale.

2.3.1. Landsat 8 Data

The cloud free Landsat-8/Operational Land Imager (OLI) L1T image, from 12 June 2014, was
downloaded from the United States Geological Survey (USGS) website to develop the proposed
index. The surface reflectance was calculated using the 6S atmospheric correction model. Due to the
calibration uncertainties of band 11 of the Landsat-8, the split window method is not recommended to
invert LST, as mentioned in Gerace et al., [54]. Band 10 of the Landsat-8 was used for the inversion of
LST, through the single-window algorithm in this research, as explained by USGS [55]. Furthermore,
the spatial resolution of Landsat-8’s thermal infrared bands was resampled to 30 meters, by the product
provider. Therefore, the spatial resolution of Landsat-8 imagery data used in this study was 30 meters.
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2.3.2. MODIS data

MODIS surface spectral reflectance products were used for mapping the dryness distribution
in Xinjiang, China. The Xinjiang Uygur Autonomous Region covers a large space and requires a
total of six scenes to achieve regional coverage (Path 23–25, Row 04–05). MOD09A1 contains surface
reflectance of Terra MODIS Bands 1–7, and its temporal granularity was eight days. All MODIS
products were geometrically and radiometrically corrected and were in a sinusoidal projection system,
downloaded from https://search.earthdata.nasa.gov/. The sinusoidal projection of the MODIS
products was converted to an Albers equal area projection with a WGS-84 datum, and the products
on the same date were mosaiced. All these processes were completed using the MODIS Reprojection
Tool (MRT). The georeferencing process was performed in ArcGIS 10.2, with a georeferencing error
less than 0.5–1 pixels. The products were extracted using the vector boundary of the Xinjiang Uygur
Autonomous Region. The spatial resolution of the MODIS09A1 reflectance product was 500 meters.

We selected 18 tiles of the MODIS image (h23v04, h23v05, h24v04, h24v05, h25v04, h25v05) from
2 June 2013, 2 June 2014, and 21 August 2014, to show the intra- and inter-annual differences in the
RDMI index, within the study area.

3. Method

Since the NIR–Red spectral space theory is the basis of the proposed dryness index, as well as
other indices, a brief explanation of the NIR–Red spectral space is provided in Section 3.1. Then,
the dryness indices based on the 2/3D space, which were used to compare the proposed index in the
surrounding areas of Fukang City, are discussed in Section 3.2. Finally, the new dryness monitoring
index is proposed in Section 3.3.

3.1. The NIR–Red Spectral Space

Due to vegetation canopies’ strong absorption in the red band and strong reflection in the
near-infrared band, the red and near-infrared bands in the remote sensing data are used to generate
various vegetation indices, such as the Ratio Vegetation Index (RVI), the Difference Vegetation Index
(DVI), and the NDVI. The NIR–Red spectral space and the spectral features were originally designed by
Richardson and Wiegand to construct the PVI [56]. Based on this theory, Price estimated the vegetation
amount from visible and near infrared reflectances [57].

In addition, Ghulam and Zhan found that the near-infrared spectral space contained information
on not only vegetation status, but also soil moisture [43]. PDI and MPDI were proposed on the basis
of this feature. In the triangular feature space (Figure 3a), because bare soils were not affected by
vegetation cover, their reflectivity in red and near-infrared bands are only affected by their moisture
content. With the decrease of soil moisture, the reflectivity of the red, and near-infrared bands increase,
forming one edge of the triangle in the NIR–Red spectral space, represented by the soil line (Figure 3a).
With the increase of vegetation coverage, the rate of increase of reflectance in the near-infrared band is
much higher than that in the red band. PVI uses the arbitrary, pixel to soil-line distance, to characterize
the degree of vegetation cover. The distribution characteristics of the pixels parallel to the soil line in
the triangular feature space are also used by Ghulam and Zhan to describe the connection with soil
moisture and to establish their dryness index. Zhan et al. developed the Soil Moisture Monitoring
by Remote Sensing (SMMRS) model, based on the distribution characteristics of the near-infrared
and red spectral spaces, for dryness monitoring [58]. This model is relatively simple, but the mixed
information of soil and vegetation was not considered.

PDI has been verified to be very effective in soil moisture monitoring over bare soils, but similar
to SMMRS its performance is greatly reduced in areas with dense vegetation. MPDI has been validated
with in-situ soil moisture measurements in the Henan province of China [45]. The characteristics
of vegetation and soil moisture in the NIR–Red spectral space were widely used in the studies of
Amani and Mobasheri [59,60]. In particular, TVMDI has been verified with Australia’s Yanco and
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Iran, as research areas. The above-mentioned indices, based on this feature space, are listed in Table 3.
From the application of this feature space, it has a good performance in practical applications, such as
vegetation conditions and soil moisture monitoring.

Table 3. The dryness monitoring indices based on 2/3D space.

Dryness Index Indicators Remote Sensors Verification Area References

PDI

Red band
(0.63–0.69 μm)
Near infrared
(0.77–0.90 μm)

Landsat-7 ETM+ The Shunyi Remote Sensing
Experimental Base, Beijing, China [61–63]

MPDI

Red band
(0.63–0.69 μm)
Near infrared
(0.77–0.90 μm)

Landsat-7 ETM+ The Shunyi Remote Sensing
Experimental Base, Beijing, China [64,65]

Red
(0.62–0.67 μm)
Near infrared
(0.84–0.87 μm)

MODIS Ningxia Huizu Autonomous
Region of China

TVDI NDVI and LST
NOAA-AVHRR Senegal river valley in Senegal

Sichuan Basin
[66,67]MODIS Fuxin, China

Landsat TM/ETM+ Northern China

TVMDI NDVI, LST and MPDI
Landsat-8 OLI Yanco

[49]MODIS AustraliaIran

Figure 3. (a) The triangle distribution characteristics in the near-infrared (NIR)–Red spectral space.
(b) The PVI and soil moisture (SM) iso-lines [49]. NIR and Red represent near-infrared and red band
reflectance, respectively.

3.2. Satellite-Based Dryness Indices

3.2.1. PDI

PDI is a dryness monitoring index considering the NIR–Red spectral space under different soil
moisture conditions, as follows:

PDI =
1√

M2 + 1
(Rred + MRNIR) (2)
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where Rred and RNIR are the reflectance values of the red and near-infrared bands, respectively, and M
indicates the slope of the soil line equation that is defined according to the conditions in the study area.
The definition of soil moisture in PDI development is explained by Figure 4. L is a line passing through
the origin of the spectral space and is perpendicular to the soil line. The distance from a random pixel
to L can be represented as the degree of dryness in the region that the pixel belongs to. Generally
speaking, as the distance of a random pixel is closer to L, the dryness value is closer to 0, indicating
that the regions are either water bodies or extremely wet areas.

Figure 4. The definition of PDI, the PDI value is defined as the distance of E and F in the NIR–Red
spectral space [43].

3.2.2. MPDI

In order to eliminate the influence of vegetation in the PDI, and improve soil moisture monitoring
accuracy, Ghulam et al. introduced the vegetation fraction concept and proposed MPDI, on the basis of
PDI. This index can effectively reflect soil moisture in areas with different kinds of vegetation coverage.
The equation of MPDI is calculated as follows:

MPDI =
Rred + MRNIR − fv(Rv,red + MRv,NIR)

(1 − fv)
√

M2 + 1
, (3)

where Rred and RNIR are the reflectance values of red and near-infrared bands, respectively; M indicates
the slope of the soil line equation which is defined according to the conditions in the study area; fv is the
vegetation cover fraction, which can be estimated with various methods, such as neural networks [68],
linear spectral mixture decomposition [69], and vegetation indices [70]; and Rv,red and Rv,NIR are the
red and near-infrared reflectances of vegetation, which are set to 0.05 and 0.5, by field measurements,
respectively [44].

3.2.3. TVDI

TVDI is a dryness index based on the empirical parameterization of the relationship between
the surface temperature and vegetation index in the NDVI-LST triangle space, as shown in Figure 5.
Its definition is as follows:

TVDI =
Ts − Tsmin

a + bNDVI − Tsmin

, (4)
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where Tsmin is the minimum surface temperature in the triangle space that represents the wet edge;
Ts and NDVI are the surface temperature and NDVI values for a given pixel, respectively, which are
estimated using remote sensing; a and b are the linear fitting parameters of the dry edge, which can be
calculated using the maximum surface temperature values, at a given NDVI, as follows:

Tsmax = a + bNDVI, (5)

Figure 5. The sketch map of the TVDI. TVDI is established in the two-dimensional space of NDVI and
LST, and the TVDI value is defined as the ratio of the distance from the pixel to the wet edge (A) to the
distance between the dry and wet edges (B). [46].

3.2.4. TVMDI

TVMDI is constructed in a three-dimensional space integrating normalized land surface
temperature (LSTnorm), normalized soil moisture (SMnorm), and vegetation status (PVI), which are
commonly used for dryness assessment (Figure 6), as follows:

TVMDI =

√√√√LST2
norm + SM2

norm +

(√
3

3
− PVI

)2

, (6)

SM are calculated as follows:

SM =
RNIR + Rred

M − b√
1 + 1

M2

, (7)

where Rred and RNIR are the reflectances of near-infrared and red bands, after atmospheric correction,
and M, b, are the slope and the intercept of the linear-fitting formula of the soil line, respectively.
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Figure 6. The definition of Temperature–Vegetation–Soil Moisture Dryness Index (TVMDI). TVMDI is
based on PVI, LST, and SM as the axis of the three-dimensional space. The TVMDI value is defined as
the square root of the square sum of PVI, LST, and SM at the pixel position [49].

All of the above-mentioned dryness indices have their own strengths and weaknesses. PDI and
MPDI make full use of the spectral characteristics of soil, under different water conditions, but the PDI
index does not take the impact of vegetation cover into account. MPDI introduces the vegetation cover
factor to overcome PDI’s shortcoming under medium and high vegetation cover conditions. However,
in practical applications, the vegetation coverage factor shows uncertainty, due to the use of empirical
parameters, in the calculation [62,71]. TVDI introduced land surface temperature and vegetation
indices to estimate dryness status, but underutilized the information of red and near infrared bands.
In addition, the estimation of TVDI is influenced by the uncertainties of land surface temperature and
the NDVI inversion process. TVMDI assesses dryness status by comprehensively considering the land
surface temperature, vegetation coverage, and soil moisture. However, the method of TVMDI for soil
moisture evaluation uses the theory of PDI, and uncertainties caused by the mixed information of
vegetation and soil still exist.

3.3. The Proposed Ratio Dryness Monitoring Index (RDMI)

As shown in Figure 3, the NIR–Red spectral space contains rich information on vegetation
coverage and soil moisture. The low reflectance in the red band and high reflectance in the near
infrared band is a typical spectral feature of a healthy vegetation. Richardson and Wiegand proposed
the PVI, based on the distance of a given pixel to the soil line in the NIR–Red spectral space, to express
the vegetation coverage. The distribution of the pixels on the PVI isoline that have the same vegetation
coverage condition, is mainly affected by soil moisture and leaf water content of the vegetation [43].
The lower the reflectance in the red and near infrared bands of a given pixel, the closer the pixel is to
the lower left in the PVI isoline and the less water stress the vegetation has, and vice versa.

As discussed above, it can be seen from Figure 7 that the line AB is the soil edge and that the line
AC represents the smallest water stress areas under various vegetation coverage conditions. AC and
BC are defined as the wet edge and the dry edge, respectively.

The position of a random pixel in the approximate triangle, formed by AB, AC, and BC, contains
two kinds of information. The first is the vegetation coverage conditions that are expressed as the
distance from a given pixel to the soil edge (AB). The second is the water stress status under the same
vegetation coverage conditions, which can be expressed as the ratio of the distance from a given pixel
to the wet edge (AC) and the distance from the wet edge to the dry edge (BC).
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Figure 7. The definition of the triangle edges. AB is the soil edge, AC is the wet edge, and BC is the dry
edge. All pixels are distributed in this triangular region in the NIR–Red spectral space.

3.3.1. The Edges of the Triangle Extractions

According to the above discussions, in order to express the water stress state under different
vegetation coverage conditions, it is necessary to extract the pixels on the three sides in the scatter plot,
for the fitting of the soil edge and the wet edge, respectively. The least squares linear regression was
used for the determination of the parameters of the three edges, so as to balance the accuracy of the
edge fitting and the performance of the algorithm.

(1) Soil edge:
In the case of the same reflectance in the red band, the reflectance of bare soil in the near infrared

band is always lower than that of the vegetation, because of the physical properties of the vegetation
leaves [43]. In order to determine the parameters used to describe the soil edge, pixels with the
minimum near-infrared reflectance values corresponding to each red reflectance value, were extracted
as the bare soil pixel set. Then, the parameters were calculated, using the least squares linear regression
method, with the extracted bare soil pixel set. The soil edge equation can be formed as the following:

RNIR = SsoilRred + Isoil , (8)

where RNIR and Rred are the reflectance values of the near infrared and red bands of the bare soil pixel
set, and Ssoil and Isoil are the slope and intercept of the soil edge equation, respectively.

(2) Wet edge:
It can be seen from Figure 7 that, due to the growth of vegetation and the expansion of vegetation

coverage in a given pixel, the near infrared band reflectance increases, and the red band reflectance
decreases. The reason for this can be analyzed in two aspects. First, the sufficient water content that
is required for the growth of vegetation has a strong absorption in the red band, reducing the red
band reflectance. Second, the leaf cell structure has a stronger reflection and transmission ability in the
near infrared band than the bare soil, increasing the reflectance value in the near infrared band [43].
From the above analysis, we can assume that pixels closer to the near infrared axis are not affected by
water stress, and are then defined as the “wet edge”. Pixels with the minimum red reflectance values
corresponding to each near infrared reflectance value were extracted as the wet pixel set. After that,
the least squares linear regression method was introduced to extract the parameters of the wet edge
equation, with the wet pixel set. The wet edge can be described as the following:

RNIR = SwetRred + Iwet, (9)
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where RNIR and Rred are the reflectance values of the near infrared and red band of the wet pixel set,
and Swet and Iwet are the slope and intercept of the wet edge equation, respectively.

(3) Dry edge:
To determine the dry edge, we must first define the positions of the three points of the

triangle. According to the application of the triangle characteristics in the spectral space in previous
studies [43,56], the following steps are used to determine the positions of the three vertices of the
triangle. First, point A, which represents the wettest bare soil, was the cross-point of the wet edge and
the soil edge. Second, point C, which represents the densest healthy vegetation canopies, was calculated
using the wet edge equation and the highest near-infrared reflectance in the wet boundary point set.
Third, point B, which represents the driest bare soil, was calculated using Equation (7) and the highest
red reflectance. According to the positions of B and C, the values of Sdry and Idry in Equation (10),
which define the dry edge, can then be calculated. Finally, the mathematical description of a triangle
space including all pixels was created.

RNIR = SdryRred + Idry, (10)

3.3.2. Constructing RDMI

Based on the extracted triangular boundary, as shown in Figure 8, we can construct a line passing
through a given pixel P (Rnir, Rred), paralleling the soil line. According to the definition of PVI [56],
all the pixels on this line have the same PVI values, which means that they have the same vegetation
condition. This line intersects with the wet and the dry edges in D and E, respectively. Based on
the above discussion, the position of a point on this line depends on its soil moisture condition.
Point D represents the absence of water stress, under this vegetation condition, while point E can
represent the maximum water stress situation. The distance DP can represent the difference in the soil
moisture situation of point P with point D. Therefore, the degree of dryness, under a certain vegetation
coverage condition, can be expressed as the ratio of the distances of DP and DE, as shown in the
following formula:

RDMI = distDP/distDE, (11)

Pixels near point D representing the highest soil moisture of this PVI level, will have the minimum
dryness values (0), and point E represents the maximum dryness value (1). That is, a larger RDMI
value represents, more dryness and less soil moisture, and vice versa.

Figure 8. Development of the Ratio Dryness Monitoring Index (RDMI) based on the NIR–Red spectral
space. DP and DE are the lines passing through the pixel P that are parallel to soil edge (AB). The RDMI
value is the ratio of DP and DE.
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3.3.3. Implementing RDMI with Landsat-8

Taking the Landsat-8 data of 12 June 2014 as an example, the RDMI value can be calculated using
the band 4 and band 5 reflectance values of the Landsat-8, based on the following steps, as shown in
Figure 9.

(a) The pixels on the triangle boundary can be extracted according to the method mentioned
in Section 3.3.1. As shown in Figure 10, each pixel in the imagery can be represented by a point
which is described by its red and near infrared reflectance values. The pixels of the entire imagery
can be abstracted into a n*2 array (n is the number of pixels). According to the value of the red band
reflectance, the array is sorted and evenly divided into m groups and, m is decided using the quantity
of the imagery and computational efficiency. For each group, the point which has the minimum
near-infrared value is selected, and these points form the soil-edge point set. Using the same method,
according to the near infrared reflectance values of the points, the array is sorted and divided into
groups, and the points with the minimum red reflectance value in each group form the wet-edge
point set.

(b) Ssoil, Isoil, Swet, Iwet were calculated using the least squares method, based on the point sets
extracted. Based on the extracted points sets, Sdry, Idry can be calculated using Equation (9).

(c) For a random point P (RNIR,P, Rred,P) in the spectral space, we can define a line with a slope of
Ssoil passing through this point. The intersection points D and E with the dry edge and the wet edge
can be obtained by solving the intersection of Equations (9) and (10), respectively. distDP and distDE
can be calculated using Equation (12).

distp1,p2 =

√(
Rred,p1 − Rred,p2

)2
+

(
RNIR,p1 − RNIR,p2

)2, (12)

distp1,p2 is the distance of point p1 and point p2, Rred,p1 and Rred,p2 are the red band reflectances of
point p1 and point p2, and RNIR,p1 and RNIR,p2 are the near infrared band reflectances of p1 and point
p2. The RDMI value of point P can be calculated using Equation (11).
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Figure 9. Flowchart for calculating the RDMI. (a) Establishment of the NIR–Red spectral space,
(b) extracting the triangle boundary point set, and (c) the triangle boundary fit according to the point
set, and calculation of the RDMI.
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Figure 10. The triangle distribution of the NIR and red bands values in the NIR–Red spectral space
generated with real Landsat-8 OLI data. The yellow points represent the soil pixels and the blue points
represent the wet pixels.

In summary, PDI, MPDI, and TVMDI are based on the dryness index established by the
distribution characteristics of the soil moisture in the NIR–Red spectral space. Based on the same
spectral space, this paper discusses the distribution of soil moisture in the feature space and establishes
the RDMI index. TVDI is a simple land surface dryness index based on NDVI and LST, which is realized
by calculating the distance between a certain pixel and the cold and hot boundaries. The proposed
index is also established from the perspective of the distribution characteristics of soil moisture in
a two-dimensional space. Therefore, in this paper, PDI, MPDI, TVDI, and TVMDI, as the indices
based on multi-spectral data, are used to compare with RDMI, to evaluate the effectiveness of RDMI.
To evaluate the results, the Pearson correlation coefficients (r) were chosen to estimate the strength
of the linear relationship between in situ data and the estimated dryness index values, the r results
were assessed at 0.001 significance level (P indicates the P-value in this paper) [49]. By comparing the
correlation coefficients between the different indices and the measured data, the sensitivity to dryness
was compared.

4. Results and Discussions

4.1. RDMI Vs. In Situ Measured Data

In order to evaluate the sensitivity of RDMI, with the soil moisture, we used 26 soil moisture
samples from the in situ soil moisture data to analyze the correlation between RDMI and soil moisture.
The results showed that there was a significant negative correlation between RDMI and soil moisture
(r = –0.89, p < 0.001), as shown in Figure 11a. In other words, as the soil moisture decreases, the RDMI
value increases.

To further illustrate the relationship between RDMI and soil moisture, we performed a linear
fit between the RDMI and in situ data, to obtain a linear equation. Based on this linear equation, we
calculated the simulated soil moisture (SMestimate) for the remaining 25 sample locations. We assessed
the performance of this relationship between the SMestimate and the in situ soil moisture (SM), using
the root mean square error (RMSE) and coefficient of determination (R2). As shown in Figure 11b,
the RMSE was 2.99%, and the R2 was 0.76. SMestimate showed a strong correlation with in situ soil
moisture data, which means that a change in the RDMI value well reflected a change in the soil
moisture levels.
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(a) (b) 

Figure 11. (a) The relationship between the RDMI and in situ soil moisture (n = 26). (b) The correlation
between the estimated soil moisture content and the in situ soil moisture content.

4.2. RDMI Vs. Other Satellite-Based Dryness Indices

In this section, a comparative study among the RDMI and several existing dryness indices based
on remote sensing, including the PDI, MPDI, TVDI, and TVMDI is presented, by calculating each
correlation coefficient, slope, intercept, and RMSE of the linear regression, with in situ soil moisture
content data (Table 4).

Table 4. The correlation coefficients, slope, intercept, and RMSE of RDMI, Perpendicular Drought
Index (PDI), Modified Perpendicular Drought Index (MPDI), TVDI, and TVMDI, under different land
cover conditions (n is the amount of in-situ data under this land cover).

RDMI PDI MPDI TVDI TVMDI

Total
(n = 51)

r −0.89 −0.72 −0.74 −0.84 −0.87
Slope −0.04 −0.03 −0.03 −0.03 −0.03

Intercept 0.92 0.87 0.89 0.89 0.81
RMSE 0.09 0.17 0.14 0.11 0.11

Winter wheat
(n = 8)

r −0.76 −0.60 −0.65 −0.64 −0.73
Slope −0.03 −0.04 −0.04 −0.02 −0.03

Intercept 0.79 1.08 1.14 0.72 0.86
RMSE 0.08 0.19 0.15 0.09 0.09

Cotton
(n = 19)

r −0.64 −0.26 −0.47 −0.61 −0.62
Slope −0.05 −0.05 −0.02 −0.03 −0.03

Intercept 1.01 1.01 0.78 0.91 0.87
RMSE 0.09 0.17 0.13 0.11 0.10

Spring maize
(n = 14)

r −0.69 −0.50 −0.41 −0.55 −0.65
Slope −0.02 −0.02 −0.04 −0.02 −0.03

Intercept 0.77 0.80 1.09 0.84 0.75
RMSE 0.09 0.14 0.12 0.10 0.09

Bare land
(n = 8)

r −0.68 −0.56 −0.53 −0.41 −0.50
Slope −0.02 −0.01 −0.01 0.01 0.03

Intercept 0.76 0.81 0.85 0.79 0.87
RMSE 0.06 0.17 0.08 0.11 0.08

The number of samples with land cover for the desert was only 2, and the correlation coefficient was not calculated.

In order to distinguish the dryness monitoring ability of each index, we analyzed the correlation
between the values of each index and the in-situ soil moisture data, under different land cover
conditions, as shown in Table 4. The results for all samples indicated that the RDMI shows the
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strongest linear correlation with soil moisture content data measured in situ, with an r value of −0.89,
followed by TVMDI, with an r value of −0.87. The results of the samples under different land cover
conditions indicated that RDMI showed a strong correlation with in situ data, under both varied
vegetation cover and bare soil conditions. PDI and MPDI showed strong correlation with in situ data
under different bare soil conditions. The correlation between TVMDI and in situ data under different
vegetation coverages, was second only to RDMI, but, in varied bare soil conditions, the correlation
was weaker than in that of other indices. RDMI has a stable response to soil moisture under different
land cover conditions, which is better than other dryness indices. This result could be attributed to
two aspects. First, the RDMI is constructed on the basis of two variables which reflect the status of
vegetation and soil moisture intuitively. Second, the distribution of pixels in the NIR–Red spectral
space is mathematically determined.

TVMDI uses the three indicators of LST, NDVI, and SM for a regional dryness assessment.
The results showed a high correlation with the measured soil moisture, but there were three issues
to be considered. First, there was an inherent correlation between the three variables. A change
in one indicator would cause another indicator to change. The impact of this intrinsic correlation
on TVMDI should be explored further [49]. Second, TVMDI uses NDVI to characterize vegetation
status. A disadvantage of the NDVI, i.e., being saturated in areas with high vegetation coverage, will
affect the TVMDI result, over these areas. Third, the LST inversion uses a single-channel algorithm.
The real-time atmospheric profile data required in this algorithm is often difficult to obtain for most
study areas. Due to the spatial resolution differences between the thermal infrared sensors and visible
near infrared sensors, all LST products must be resampled to ensure consistency with other spatial
data resolutions [72]. Uncertainty in the LST inversion process can further accumulate in the TVMDI.

Other dryness indices, such as the TVDI, the PDI, and the MPDI showed a relatively weaker
correlation with the measured soil moisture data (Table 4). TVDI uses the vegetation index and
surface temperature as variables for constructing the LST-NDVI space.Thus, it is more sensitive to
the uncertainty of remote sensing-based inversion, as compared with TVMDI. Among all the indices
examined, PDI showed the least significant correlation with the measured soil moisture data (r = −0.72,
p < 0.001), and its application for vegetated surfaces is limited, due to the mixed pixel phenomenon [73].
Compared with PDI, MPDI showed a slightly stronger correlation (r = −0.74, p < 0.001) with measured
soil moisture data, which could be attributed to the mixed pixel decomposition elimination of the
vegetation component [45]. Soil types and properties are diverse in different areas, as are vegetation
types and conditions, but most studies using the MPDI method used fixed parameters, such as the
slope of the soil line and the vegetation reflectance of the red and near infrared bands [65]. Such
treatment greatly affects the practical applications of MPDI to different regions and at different scales.

Compared with the existing remote sensing-based dryness monitoring index, RDMI is calculated
based on the red and near-infrared band reflectance values, directly acquired using satellite sensors,
which avoids the accumulation of errors in LST, NDVI, and other inversion processes. Through the
mathematical description of the triangular feature space, RDMI explained the variation of soil moisture,
under different vegetation conditions.

4.3. RDMI Dryness Maps with Landsat 8 and MODIS Imagery

4.3.1. Dryness Indices Map with Landsat 8 Data

In order to analyze the difference in the dryness monitoring ability between RDMI and other
dryness indices, including PDI, MPDI, TVDI, and TVMDI, in the area around Fukang, we used the
Landsat-8 data to map the dryness indices in this area (Figure 12). In order to facilitate comparison
among these indices, all the mapping results were normalized using Equation (13).

Inormalized = (Xi − Xmin)/(Xmax − Xmin), (13)
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where Inormalized is the normalized dryness index value, is the dryness index value, and Xmax and Xmin
are the maximum and minimum of the dryness index values.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 12. The dryness maps of the surrounding area of Fukang City using Landsat-8 imagery on the
12 June 2014. (a) RDMI, (b) the false color composite image, (c) PDI, (d) MPDI, (e) TVDI, and (f) TVMDI.
(All the dryness values in these maps were normalized. The spatial resolution of these maps is 30 m).

Figure 12 shows the dryness of each index in the area around Fukang. The larger the index
value in these figures, the higher the surface dryness. Among them, RDMI, TVDI, and TVMDI can
clearly distinguish between different land cover types. As irrigation is the main supplier of soil
moisture under arid conditions [74], compared with bare land, desert, the cropland has been effectively
replenished with water. Therefore, its dryness value is low, and the soil is moist. The dryness values
of PDI and MPDI are not significantly different, under different land covers. Figure 13 shows the
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frequency distributions of the dryness map of these indices. From the statistical distribution of the
frequency, RDMI pixels were normally distributed in the range of 0.1–0.7, and the number of pixels
with a pixel value of 0.4 was the greatest. RDMI could describe the spatial difference of regional
dryness distribution. The pixel values of TVMDI were distributed between 0.1–1, but a large number of
pixels were concentrated in the high value range. There were two peaks in the frequency distribution
of TVDI. In combination with the information in Figure 12e, the TVDI value in the desert area was
abnormally high. PDI pixels were distributed in the value range of 0.5–0.9, and the dryness of this
region was significantly overestimated. MPDI was mainly concentrated between the range of 0.15 and
0.4, and the dryness of this region was significantly underestimated. The MPDI’s ability to distinguish
dryness under different land cover conditions, was limited.

Figure 13. A comparison of the frequency distributions of the RDMI, MPDI, PDI, TVDI, and the TVMDI
dryness maps.

It is worth noting that all dryness values of the TVDI in the Gurbantunggut desert, were high. In
fact, the soil moisture on the southern edge of the Gurbantunggut Desert was not as low as expected.
On one hand, due to the penetration of the snowmelt water in spring, the soil moisture content of
sand dunes might have been relatively high during this season. On the other hand, ephemeral plants
are widely distributed in this area, which is an important part of desert vegetation as it has a positive
effect on maintaining soil moisture [75]. This was faithfully displayed in the RDMI map. In summary,
the RDMI exhibited good dryness monitoring capabilities under different land covers, as compared to
other drought indices.

4.3.2. The RDMI Map with MODIS Data

To evaluate the applicability of the proposed RDMI over large-scale areas, two RDMI maps were
produced for the entire Xinjiang province, using two MODIS images that were acquired on 2 June 2013
and 2 June 2014.

Figure 14a shows the spatial distribution of RDMI on 2 June 2013. It can be seen that the RDMI
values are higher in the central area of the Tarim Basin and in the Northern Xinjiang Junggar Basin,
where the land surface is much drier than in other areas. Furthermore, the values are lower in the
Tianshan mountainous area and West of the Ili River Valley, which are relatively wetter than other areas.

As shown in Figure 15, the soil edge parameters of the three different dates were very stable,
the slopes of the soil edges were maintained between 0.91 and 0.92, and the intercept changes were
negligible. The slopes of the wet edges had tiny variations among these dates, but it is intuitively seen
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from Figure 16 that this change had an insignificant effect on the characteristic of the wet edges in the
spectral space.

The RDMI values in North of the Altay region, Tacheng, Yumin, and the Northern area of the
Kunlun Mountains were relatively low, which means that the soil in these areas was moist. Through the
analysis of the spatial distribution characteristics of RDMI in Xinjiang, it could be seen that the RDMI
values in the growing season of Xinjiang’s mountain forests and the main cultivated areas, maintained
a low level, indicating that the soil moisture remained relatively high. As the supply of water resource
in Xinjiang mainly comes from precipitation, snow, glaciers, and groundwater in mountain areas,
the spatial distribution of water resources in Xinjiang is extremely uneven [76]. The vertical zonal
distribution of dry and wet conditions in Xinjiang is relatively obvious [77]. The northern slope of the
Tianshan Mountains, the Ili River Valley, and the Southern slope of Altay were relatively humid, while
the Taklamakan Desert and the Gurbantunggut Desert were dry [78]. The dry and wet conditions
reflected by the RDMI mapping, based on the MODIS images were consistent with the actual dry and
wet patterns in Xinjiang.

Figure 14c shows the RDMI distribution on the 2 June 2014. In the spring and summer of 2014,
most areas of Xinjiang were dry, because the temperatures in Northern Xinjiang, the Tianshan Mountain
area, and the Southern Xinjiang, were higher than that in the previous years, and precipitation in the
whole region was lower in the spring of 2014. The Ili River Valley suffered the most severe drought
in the past 60 years, and the southern Xinjiang had the least precipitation for the same period of six
consecutive months [79]. As can be seen clearly, the RDMI values of 2014 in the Ili River Valley, Aksu,
Kashgar, and Hotan areas were higher than that on the same date of 2013. Figure 14d shows the RDMI
difference results, for the same period, between the two years. The RDMI spatial distribution of the
entire Xinjiang province in 2014, compared to 2013, Tacheng, Ili River Valley, the Northeastern Tarim
Basin, and the Eastern section of the Northern slope of the Tianshan Mountains, was significantly dry.
In contrast, the Northern part of the Tarim Basin obviously became wetter.

As shown in Figure 14e, since the end of August, the RDMI values in the Altay, Tacheng, Tianshan
North Slope Economic Zone, Ili River Valley, Hotan, and Aksu regions were low, indicating that
the soil moisture was high. The RDMI values were higher in the Gurbantunggut Desert and in the
Taklimakan Desert. Compared with June 2 of the same year (Figure 14f), the RDMI values in most
areas of the Xinjiang region did not change much. In the major agricultural areas, such as the Tacheng
area, the Northern slope of the Tianshan Mountains, the Ili River valley, the Hotan area, and the Aksu
area, the RDMI values became lower, which means the soil became wetter. This is related to irrigation
in Xinjiang, in mid-August.

To further illustrate the ability of RDMI for dryness monitoring, we performed a comparison of
the frequency distribution of RDMI maps, for the three dates. As shown in Figure 16a, the frequency
distribution of the RDMI values shifted to the high-value area on 2 June 2014, compared with 2 June
2013, and the number of high-value pixels was significantly higher than that on 2 June 2013. This shows
that Xinjiang, on 2 June 2014, was drier than that on 2 June 2013. As shown in Figure 16b, the frequency
distribution on 21 August 2014, was more evenly distributed between 0.2 and 0.6, compared to 2 June
2014, and the peak was significantly lower. This shows that Xinjiang’s dryness on 31 August 2014 had,
eased as compared to the dryness levels of 2 June 2014.
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Figure 14. The RDMI maps of the Xinjiang province and the differences in dryness in spatial
distributions. (a) RDMI map for June 2, 2013; (b) illustration of the Xinjiang area; (c) RDMI map
for June 2, 2014; (d) the RDMI difference on the same date of different years; (e) RDMI map for August
21, 2014; (f) the RDMI difference on the different date of the same year.
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Figure 15. The soil, wet edge pixels, and fitting parameters of the NIR–Red spectral spaces in Xinjiang
on three different dates (2 June 2013, 2 June 2014, and 21 August 2014). Ssoil, Isoil are the slopes and
intercepts of soil edge, Swet, Iwet are the slopes and intercepts of the wet edge.

 
(a) (b) 

Figure 16. A comparison of the RDMI frequency distribution on different dates. (a) A comparison
between 2 June 2013 and 2 June 2014; and (b) a comparison between 2 June 2014 and 21 August 2014.

Land cover, regional climate, and soil properties affected soil moisture, and land cover might be
the most crucial factor determining the short-term, and eventually long-term, evolution of the soil
moisture fields [80]. Different land cover has different evapotranspiration conditions, which affect
soil moisture over time [81]. Figure 17 shows the distribution of RDMI mean values in different land
cover conditions in Xinjiang. According to the average RDMI distribution under different land cover
conditions, the average RDMI of agricultural land, including dry cropland and irrigated cropland, was
between 0.2 and 0.4, indicating that cropland soil was wetter than other land covers. With the decrease
of grassland vegetation coverage, RDMI gradually increased, indicating that the lower the grassland
coverage, the drier the soil. The RDMI of bare land and desert was high, indicating that the soil
moisture content was extremely low in these areas. According to the RDMI changes at different times,
under the same land cover conditions, the RDMI average values on 2 June 2014 increased for various
land cover regions, as compared to 2 June 2013, which showed that the soil moisture in Xinjiang on
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2 June 2014 was higher than it was on 2 June 2013. Similarly, the RDMI value on 21 August 2014 was
lower than that on 2 June 2014.

Figure 17. The RDMI average values on different dates for different land cover conditions in Xinjiang.

5. Conclusions

Soil dryness poses serious health, social, economic, and political issues with far-reaching
consequences. Therefore, it is crucial to understand how soil dryness affects the environment. In this
regard, remote sensing methods have gained increasing attention, due to their larger spatial coverage
and frequent temporal sampling abilities. The combination of different bands of spectral reflectance
values can reflect the vegetation growth and soil moisture for a given region. Based on previous
studies on the spectral space, this paper proposed a new dryness monitoring index, named RDMI, and
verified it in the arid area. First, based on the NIR–Red spectral space, we analyzed the pixel triangular
distribution characteristics, proposed a fitting method for establishing triangle boundaries, and then
constructed a new dryness monitoring index. Second, we validated the proposed index using in-situ
soil moisture data. The results showed that the RDMI values had a strong correlation with the in situ
soil moisture values (r = −0.89, p < 0.001). Third, we used RDMI and other dryness indices, such as
PDI, MPDI, TVDI, and TVMDI to map the dryness spatial distribution of the surrounding areas of
Fukang City, with the Landsat-8 image. By comparing the correlation between the values of these
indices and the in-situ soil moisture data under different land cover conditions, we found that the
RDMI had a stable performance under various land covers. Finally, in order to verify the application of
this index on a large scale, MODIS data acquired from three dates were used to map and compare the
dryness spatial distribution in Xinjiang. The results showed that this index could reflect the changes in
dryness spatial distributions in Xinjiang, at different times.

The index proposed in this paper expressed the dryness state at a certain moment in a specific
region, and is an estimate of the dryness and wetness pattern at a specific time, taken with “snapshot”
characteristics. The comparative analysis of the dryness spatial distribution changes in Xinjiang, for the
three periods, showed that this index could reflect the change of regional dryness. In the future, we
will conduct a comparative study of the long-term sequence dryness spatial distribution, based on this
method, and will try to use this method to monitor the regional drought events. We can compare this
method with the widely used drought indices, such as PDSI and SPI, to expand the application scope
of this method. In addition, this paper used Landsat and MODIS data sources to verify the feasibility of
this method for medium resolution and coarse resolution remote sensing data. The results showed that
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this method had a good performance in dryness monitoring for different spatial resolutions. However,
because the acquisition times of these two data sources were different, and the soil moisture might
have changed in a short time, the correlation of the RDMI values on these two scales were not analyzed.
We will discuss this issue in a future long-term sequence study of RDMI.

In summary, the RDMI index could provide accurate surface dryness information and was robust,
for different scales and different surface cover conditions.
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Abstract: Land subsidence in the Eastern Beijing Plain has a long history and is always serious. In this
paper, we consider the time-series evolution patterns of the eastern of Beijing Plain. First, we use
the Persistent Scatterer Interferometric Synthetic Aperture Radar (PSI) technique, with Envisat and
Radarsat-2 data, to monitor the deformation of Beijing Plain from 2007 to 2015. Second, we adopt the
standard deviation ellipse (SDE) method, combined with hydrogeological data, to analyze the spatial
evolution patterns of land subsidence. The results suggest that land subsidence developed mainly
in the northwest–southeast direction until 2012 and then expanded in all directions. This process
corresponds to the expansion of the groundwater cone of depression range after 2012, although
subsidence is restricted by geological conditions. Then, we use the permutation entropy (PE)
algorithm to reverse the temporal evolution pattern of land subsidence, and interpret the causes of
the phenomenon in combination with groundwater level change data. The results show that the
time-series evolution pattern of the land subsidence funnel edge can be divided into three stages.
From 2009 to 2010, the land subsidence development was uneven. From 2010 to 2012, the land
subsidence development was relatively even. From 2012 to 2013, the development of land subsidence
became uneven. However, subsidence within the land subsidence funnel is divided into two stages.
From 2009 to 2012, the land subsidence tended to be even, and from 2012 to 2015, the land subsidence
was relatively more even. The main reason for the different time-series evolution patterns at these two
locations is the annual groundwater level variations. The larger the variation range of groundwater
is, the higher the corresponding PE value, which means the development of the land subsidence
tends to be uneven.

Keywords: land subsidence; SDE; PE; groundwater level; compressible sediment layer

1. Introduction

During the last few decades, interferometric synthetic aperture radar (InSAR) has become
an important tool for the mapping and monitoring deformation processes [1–4]. With the InSAR
technique, we can measure deformation over a large scale, from millimeters to centimeters. However,
this method faces the problems of spatial and temporal decorrelation and atmospheric distribution.
Persistent Scatterers InSAR (PSI) was proposed to overcome the limitations of InSAR [5,6]. The PSI
techniques has shown its potential for ground deformation monitoring in a number of applications,
including land subsidence [7–10], seismic faults [11–13], and landslide-prone slopes [14–16].

Since the 1960s, land subsidence has been found in the Beijing Plain, which has experienced rapid
development. Currently, land subsidence is extremely uneven, and it has formed two major settlements
centers in the north and south. The north settlement center has become the largest ground settlement
funnel group on the Beijing Plain. Many scholars study the spatiotemporal evolution characteristics
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of the settlement on the Beijing Plain. The studies indicate that the deformation has mainly occurred
in the eastern and northern part of the Beijing Plain, and Chaoyang and the northeastern part of
Tongzhou have experienced the most severe subsidence. Land subsidence shows an increasing trends
in the rate and extent over time [17–21]. The uneven settlement has developed rapidly, and the
changes in land subsidence in the north–south direction are more pronounced than those in other
directions [22]. The deformation of the Beijing Plain shows seasonal variations, and the spatial location
of land subsidence funnels is consistent with the location of the groundwater cone of depression,
although not entirely [23]. The spatial distribution of the deformation rate from 2003 to 2010 was
similar to that from 2010 to 2016, but the subsidence rate from 2010 to 2016 was higher that from 2003
to 2010 [24].

Most of these studies focus on the spatial distribution of land subsidence, however, fewer studies
examine the time-series evolution pattern. In this paper, we pay attention to the time series of the land
subsidence pattern. First we use the standard deviation ellipse (SDE) method to reveal the spatial
evolution pattern of land subsidence; then we adopt the permutation entropy (PE) algorithm in order
to determine how the land subsidence changes over time. PE is a complex parameter based on the
comparison of adjacent data in a long time series. It amplifies the imperceptible changes in the signal
by quantitatively describing the variations in signal spatial complexity [25,26]. This complexity shows
a difference. PE mainly compares the differences between the variations in settlement data in the former
time interval and those in the latter time interval. PE monitors the differences in the land subsidence
process in a long time series. More specifically, the difference reflects whether land subsidence develops
uniformly or not in the long time series. The process of PE value increase is the process of increasing
difference in land subsidence, which means land subsidence develops more unevenly over this period
of time. The process of PE value decrease is the process of decreasing difference in land subsidence,
which means land subsidence develops more evenly during this time. At present, many scholars
who have studied the PE method. The main applications of this method include medicine, biology,
climate, and image processing [27–30]. Most scholars approximately analyze the overall development
of deformation in the whole research period through the time-series settlement. Using the PE method,
we can reveal the different development processes of subsidence with time. PE amplifies the settlement
details, which are hard to determine using other methods.

This paper is organized as follows. The background of the study area and datasets used are
described in Section 2. The data methods are presented in Section 3. In Section 4, we use the SDE
method combined with the changes in the land subsidence funnel area, in the center of gravity,
and in the spatial distribution and range to reveal the spatial evolution pattern of land subsidence.
Meanwhile, we adopt the PE method to respond to the time-series evolution pattern. In Section 5,
we discuss the relationship between the spatial evolution pattern obtained by SDE and hydrogeologic
data. Moreover, we explore the causes of the different PE results for the land subsidence funnel and
funnel edge and find that this phenomenon is mainly due to the difference in the annual variations in
the groundwater level.

2. Study Area and Dataset

2.1. Study Area

The study area (Figure 1) is located in the eastern part of the Beijing Plain, which is an area with
serious land subsidence and a part of the warm temperate zone, with a semihumid and semiarid
continental monsoon climate and an annual average temperature of 11–12 ◦C. The precipitation
distribution in the study area is extremely uneven. The precipitation in summer is approximately 70%
of the annual precipitation, which is much higher than that in winter [31].

The groundwater system in the study area is composed of three water systems. They are
the Yongding River system, Wenyu River system, and Chaobai River system. According to the
groundwater supplementation, diameter, drainage conditions, groundwater exploitation horizon,
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and genesis type, the Quaternary aquifers in the study area are mainly divided into three main aquifer
groups [19,23]. The first group of aquifers is in Holocene and upper Pleistocene strata, which are
widely distributed. The depth of the floor is 35–75 m and it is a multilayer structure. The underground
water types include upper stagnant water, interlayer water, diving, and shallow confined water.
The lithologies includes fine sand, silt, silty sand, and sandy clay. The second aquifer group is
the middle Pleistocene strata. The types of groundwater mainly include variations in the shallow
groundwater level in the study area, which is mainly affected by the precipitation infiltration of
medium and deep confined water. The alluvial-diluvial fan floor of the Yongding River is buried as
deep as 150 m and that of the Chaobai River is as deep as 190 m. The lithologies include multiple
types of gravel, sand, and clay soil. The last aquifer group is in the lower Pleistocene strata, which are
composed of medium coarse and gray sand. The water-bearing group is distributed in the middle and
lower parts of the alluvial–diluvial fan with a multilayer structure. The groundwater type is mainly
deep confined water, and the roof is buried as deep as 190 m.

Figure 1. The geographical location of the study area. The violet box and blue box represent the ASAR
and Radarsat-2 data spatial coverage, respectively. The colored pushpins indicate the locations of the
leveling benchmarks. The red points represent the locations of wells and are named JingshunLu (JSL),
Dengfuzhuang (DFZ), Baliqiaocun (BLQ), Luhe middle school (LHZ), and Nanhuofa (NHF) in the
study area.

2.2. Dataset

The dataset used in this study comes from two different satellites. One set is the 31 C bands
descending track ASAR images acquired from January 2007 to August 2010, with a 35 day revisit
cycle, which was provided by the European Space Agency. The other set is the 48 C bands Radarsat-2
images acquired from Oct. 2010 to Nov.2015, with a 24 day revisit cycle, which was provided by the
Canadian Space Agency. The spatial resolutions of both Envisat ASAR and Radarsat-2 images were
30 m. The coverage of the SAR images is shown in Figure 1, and the detailed parameters of the SAR
images are summarized in Table 1.

We use the SARPROZ software to handle our SAR images. And we use the Shuttle Radar
Topography Mission (SRTM) digital elevation model (DEM) with a spatial resolution of 90 m to remove
the topographic phase and to geocode interferograms. The groundwater level contours are provided
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by the Beijing Water Authority and are used for comparing the relationship between the groundwater
levels and subsidence, and the well locations are shown in Figure 1a.

Table 1. The parameters of the interferometric synthetic aperture radar (In-SAR) data used.

Parameter. Envisat ASAR Radarsat-2

Band C C
Wavelength (cm) 5.6 5.5

Polarization VV VV
Orbit directions Descending Descending

Track no. 2218 60115
Incidence angle (◦) 22.9 27.6

Heading (◦) −164 −168.8
Spatial resolution (m) 30 30

No. of images 31 48
Data range January 2007–August 2010 October 2010–November 2015

3. Methods

3.1. PSI Method

The Persistent Scatterer Interferometric Synthetic Aperture Radar (PSI) was proposed by Ferretti [5].
The technique reduces the incoherence and atmospheric effects in the time and space domains. It is capable
of extracting the targets points with a strong and stable radiometric property, and of obtaining surface
deformation by separating the topographic phase of the ground targets. In this study, we use the SARPROZ
software to acquire the surface deformation information for the study area.

The surface deformation phase can be obtained using the PSI procedure by decomposing the
interferometric phase based on Equation (1):

Δφint = φ f lat + φtopo + φde f + φatmos + φnoise (1)

where Δφint is the interferometric phase, and φ f lat is the flat earth phase, which can be removed by the
precise orbital state vector of the satellite, obtained using the SARPROZ software, when reading SAR
images.φtopo is the topographic phase contributed by the topographic relief, and it can be removed by
the external DEM in the SARPROZ software; φde f is the deformation phase caused by the displacement
of the ground during the two image acquisitions. What we truly would like to obtain is the φde f . φatmos

is the atmospheric phase due to the contribution of atmospheric components, and APS processing in
the SARPROZ software can eliminate this phase. φnoise is the thermal noise and coregistration errors,
which can be removed by the linear models in APS processing. However, φde f is the deformation
phase in the radar line-of-sight (LOS) direction including the horizontal and vertical directions. Hence,
the LOS (dlos) can be converted into vertical displacement (dv) by the following Equation (2):

dv = dlos/ cos θ (2)

where θ is the incidence angle.

3.2. Standard Deviation Ellipse Method

The standard deviation ellipse (SDE) method was first proposed by Lefever in 1926 to analyze the
spatial distribution characteristics of discrete datasets [32]. In this study, we use numerous parameters
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of SDE, such as the ellipse center, long axis, and short axis, to analyze the spatial characteristics of land
subsidence. These parameters can be calculated as follows:

SDEx =

√
n
∑

i=1
(xi−X)

2

n

SDEy =

√
n
∑

i=1
(yi−Y)

2

n

(3)

where xi and yi are the coordinates of PSI points,
{

X,Y
}

is the mean center of PSI points, and n is the
total number of PSI points. The rotation angle is calculated as follows:
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where xi and yi are the deviation of xy and the mean center, respectively. The standard deviations of
the X and Y axes are given by:

σx =

√
n
∑

i=1
(xi cos θ−yi sin θ)2

n

σy =

√
n
∑

i=1
(xi sin θ−yi cos θ)2

n

(5)

where θ is the azimuth of the ellipse, indicating the direction of the north clockwise rotation angle to
the long axis of the ellipse, σx is the standard deviation of the X axis and σy is the standard deviation of
the Y axis.

3.3. Permutation Entropy Method

Christoph Bandt et al. [25], proposed an entropy parameter to measure the complexity of the
one-dimensional time series, called the permutation entropy (PE). It is similar to the LyaPullov index
in terms of performance reflecting one-dimensional time-series complexity. However, compared with
complex parameters such as the LyaPullov index and fractal dimension, PE has the characteristics of
simpler calculation and stronger anti-noise interference ability.

Given a land subsidence time series [x(i), i = 1, 2, . . . n], for various n, n increasing to ∞ [25],
any of the elements x(i) is a phase space reconstruction of the elements x(i), and then the following
is obtained:

X(i) = [x(i), x(i + 1), . . . , x(i + (m − 1)l)] (6)

In Equation (6), m and l are the embedded dimension and delay time, respectively. The m
components of { x(i), x(i + 1), . . . x[i + (m − 1)l]} are rearranged as:

{ x[i + (j1 − 1)l]} ≤ { x[i + (j2 − 1)l]} ≤ . . . ≤ { x[i + (jm − 1)l]} (7)

If x[i + (j1 + 1)l] = x[i + (j2 + 1)l] exists, these values are sorted by the size of the j value at this
time. This step means when ji1 < ji2, then x[i + (j1 + 1)l] ≤ x[i + (j2 + 1)l]. Thus, any vector xi can
produce a sequence of symbols:

A(g) = [j1, j2, . . . , jm] (8)
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In Equation (8), where g = 1, 2, . . . , k, and k ≤ m!, there are m! kinds of different arrangements
of m different symbols, which indicates that there are m! kinds of symbol sequences. The symbol
sequence of A(g) is one example. The occurrence probability of each symbol, such as p1, p2, . . . , pk is
calculated. Hence, the k kinds of symbol sequences of the time series can be defined in the form of the
Shannon information entropy:

Hp(m) = −
k

∑
v=1

pv ln pv (9)

When pv = 1/m!, Hp(m) is up to the maximum value ln(m!). For convenience, usually Hp(m)

can be labeled as:
0 ≤ Hp = Hp(m)/ ln(m!) ≤ 1 (10)

The value of Hp indicates the degree of randomness of the time series ([x(i), i = 1, 2, . . . , n]).
The smaller the value of Hp is, the more regular of the time series; the higher the value of Hp is,
the more random of the time series. With the various values of Hp, pamplifies the small variations in
the time series ([x(i), i = 1, 2, . . . , n]).

In this paper, we use the MATLAB software to realize the PE method. Because the study period is
relatively short (only nine years), we choose three embedded dimensions, and the delay time is two
years, which indicates that the cumulative land subsidence for the first two years is a training sample.
The sliding window step size is one, which ensures that the variations in the PE are due to the changes
in the state of settlement at the later time nodes.

4. Results

4.1. Land Subsidence Information Monitoring by PSI Validation

The Eastern Beijing Plain has two major deformation bowls, which are named the Laiguangying
(LGY) and Dongbalizhuang-Dajiaoting (DBL) land subsidence funnels. They are the places with the
earliest and most serious subsidence in Beijing, and the two subsidence funnels have been developing
since they were discovered in 1983 (Figure 1). The two subsidence funnels are located in Chaoyang
and Tongzhou Districts, respectively. Chaoyang is the industrial base of Beijing, and Tongzhou is the
subcenter of Beijing. Meanwhile, these districts are key areas for future planning and construction
in Beijing, including of the Central Business District (CBD), in the CBD east expansion zone. Hence,
understanding the spatial and temporal evolution of land subsidence in these two regions is important
for the urban development of Beijing.

We selected 11 leveling points in 2009, which were chosen to verify the PSI processing results
(Figure 2). In 2009, the maximum error of the two measurements was 19.91 mm, and the minimum
error was 1.18 mm. The error is caused by the deviation between the position of the PSI point and the
position of the leveling point. However, the correlation coefficient between the leveling point and the
PSI points is 0.94, which proves that the two sets of points show good consistency. The PSI monitoring
results are reliable.
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Figure 2. The comparison of land subsidence rates derived from the Persistent Scatterer Interferometric
Synthetic Aperture Radar (PSI) technique and from leveling measurements rates. The location of
benchmarks are shown in Figure 1.

4.2. Spatial Evolution Pattern by the SDE Method

The SDE is an effective approach, which can accurately reveal the geographical spatial
distributions and other characteristics using spatial statistical methods. We use the annual land
subsidence rate as the weight and adopt the spatial analysis method to obtain the SDE. Figure 3 shows
the cumulative land subsidence information and SDE shapes from 2007 and 2015 in the study area.
The maximum accumulated land subsidence reached 1.184 m by 2015. We can observe that land
subsidence was serious and the spatial distribution of land subsidence increased with time. The major
axis of the SDE is oriented northwest–southeast. This position reflects that the development of land
subsidence in the northwest–southeast direction is more obvious than those in other directions. We take
the annual subsidence of 60 mm as the dividing line and define the place with more than 60 mm
as the subsidence funnel areas. We find that after 2008, the LGY and DBL land subsidence funnels
evolves into a single area. We describe the spatial distribution of land subsidence in the eastern part of
Beijing Plain with respect to the following four factors: the changes in the land subsidence funnel area;
the changes in the center of gravity of land subsidence; the changes in the distribution range of land
subsidence and the changes in the distribution of land subsidence.
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Figure 3. Cumulative deformation in the study area from 2007 to 2015 measured by the PSI technique
using ASAR from 2007 to 2010 and Radarsat-2 data from 2010 to 2015. The red ellipse indicates the
standard deviation ellipse (SDE) of the study area. The amethyst cross represents the center of the SDE.

4.2.1. Changes in the land subsidence funnel area

We calculated the area of the land subsidence funnels from 2007 to 2015 (Figure 4). From Figure 4,
we can see the land subsidence funnel area was 253.28 km2 in 2008, which was the smallest value and
accounted for 10.97% of the total study area. The land subsidence funnel area was 312.04 km2 in 2011,
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which was the greatest value and accounted for 21.79% of the total study area. From 2007 to 2008,
the land subsidence funnel area decreased; then, it continued to increase rapidly until 2011, especially
from 2008 to 2009 and 2010 to 2011. Between 2011 and 2012, the area decreased, and from 2012 to 2015,
the area increased slowly. Therefore, we can find that the area of land subsidence in the study area is
still increasing, but the growth rate of the area has been lower, especially since 2012. This result means
that land subsidence in the study area is still slowly developing.

Figure 4. The area of the land subsidence funnels from 2007 to 2015.

4.2.2. Changes in the center of the gravity of land subsidence

The changes in the central migration trajectory of SDE from 2007 to 2015 are shown in Figure 5.
We find that the central coordinates of the SDE in 2007 were 116.584◦ E, 39.908◦ N and those in 2015
were 116.588◦ E, 39.913◦ N. The center of the SDE of the study area moved toward the northeast as
a whole. From 2007 to 2008, the center moved to the southeast; in 2008 and 2009, it moved to the
northeast; between 2009 and 2010, it moved to the southwest; between 2010 and 2014, it moved to
the north; and from 2014 to 2015, it moved to the southeast. Combining this information with that in
Figure 2, the SDE center of the study area has been changing toward the direction of the northern part
of the DBL land subsidence funnel. We estimate that this land subsidence funnel will still be the land
subsidence development center of the Chaoyang and Tongzhou Districts.

Figure 5. Changes in the SDE central migration trajectory from 2007 to 2015.
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4.2.3. Changes in the distribution range of land subsidence

The length of the long axis of the SDE represents the distribution range of land subsidence.
The spatial variation distributions of land subsidence in the study area from 2007 to 2015 is shown
in Figure 6. The long axis decreased from 154.438 m in 2007 to 119.448 m in 2015. From 2007 to 2008,
the long axis increased, suggesting that the spatial distribution range of land subsidence increased.
Combining this information with that in Figure 4, we can see that the land subsidence funnel area was
decreasing during this period, which means that the distribution of land subsidence was dispersed.
From 2008 to 2012, the long axis decreased rapidly, indicating that the distribution range of land
subsidence was reduced during this period. However, the land subsidence funnel area expanded in
2008 and 2012, which indicated that the land subsidence of the area was concentrated; meanwhile,
land subsidence showed a tendency to merge into one region during this time. From 2012 to 2015,
the long axis was increasing slowly, which indicated that the distribution range of land subsidence
was increasing. The area of the land subsidence funnel expanded, indicating that land subsidence
increased during this time.

Figure 6. Temporal changes in the length of the SDE long axis.

4.2.4. Changes in the distribution of land subsidence

The ratio of the short axis to the long axis of the SDE represents the spatial distribution shape of
land subsidence. When the ratio is close to 1, the spatial distribution shape of land subsidence is close
to a circle. That is, land subsidence evolves more uniformly in all directions. The spatial distribution
shape changes in the study area are shown in Figure 7. From 2007 to 2015, the spatial distribution shape
changed significantly. Between 2007 and 2008, the ratio of the short axis to the long axis decreased,
which means that land subsidence mainly changed toward the long axis in the northwest–southeast
direction. From 2008 to 2012, the ratio of the two axes increased rapidly, suggesting that during this
period, land subsidence intensified in the short axis direction (northeast–southwest direction). Between
2012 and 2015, the ratio of the two axes decreased slowly, indicating that land subsidence was relatively
uniform in all directions during this time. In short, the main direction of land subsidence development
was in the northwest–southeast direction before 2008. After 2008, land subsidence intensified in the
northeast–southwest direction and showed a trend of expansion.
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Figure 7. Changes in the SDE short axis/long axis ratio from 2007 to 2015.

4.3. Temporal Evolution Pattern by the PE Method

According to the LGY and DBL land subsidence funnel cumulative deformation rate, we selected
five wells and analyzed the time-series evolution pattern of land subsidence in the deformation funnels
and funnel edges using the PE method. The results are shown in Figure 8.

The PE results for well JSL are shown in Figure 8a. JSL lies at the edge of the LGY subsidence
funnel area. The cumulative land subsidence ranged from −50–450 mm between 2007 and 2015.
It showed a linear increasing trend from 2009 to 2010. After 2012, it showed an increasing trend with
volatility. In contrast to the PE result, since 2009, the PE value of JSL was increasing and reached
a maximum in April 2010. This phenomenon indicates that the land subsidence development was
relatively uneven during the period from 2009 to April 2010. The value continued to decrease from
April 2010 to October 2011, and it reached a minimum value in October 2011. This phenomenon
indicates that the state of the land subsidence development developed from a nonuniform state to
a uniform state during this period. After October 2011, the PE value increased, which means that land
subsidence developed toward a nonuniform state.

The PE results for well DFZ are shown in Figure 8b. DFZ belongs to the DBL subsidence funnel.
The cumulative land subsidence varied from 0 to −740 mm from 2007 to 2015. The cumulative land
subsidence showed a downward trend. However, the PE value continued decreasing from 2009 to
November 2013. This phenomenon indicates that land subsidence tended to develop toward a uniform
state after 2009. The value returned to zero during the period from November 2013 to 2015. This result
means that after this time, the cumulative land subsidence continued to increase, with no decrease.
This result indicates that the land subsidence in DFZ has been in a more uniform state since 2013.

The PE results for well BLQ are shown in Figure 8c. BLQ is located in the DBL subsidence funnel.
The cumulative land subsidence ranged from 0 to −740 mm between 2007 and 2015. The cumulative
land subsidence showed a linear rise in the study period. The PE value decreased from 2009, and the
minimum value appeared in August 2012. Then, in the following years, the value was zero. In other
words, land subsidence was moving toward a uniform trend from 2009 to 2012. In addition, after 2012,
the cumulative land subsidence continued to increase, which indicates that the land subsidence of this
well will was relatively more uniform.

The PE results for well LHZ are shown in Figure 8d. LHZ lies in the DBL subsidence funnel.
During the research period, the cumulative settlement was increasing linearly. The PE value, decreased
form 2009, until August 2012, when it reached its minimum. This result indicates that land subsidence
moved from a nonuniform state to a uniform state. After August 2012, the PE value became zero, which
showed that the state of land subsidence development was more uniform than that in August 2012.
This result reflected that the value of cumulative land subsidence was progressively increasing.
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The PE results for well NHF are shown in Figure 8e. NHF is located at the edge of the DBL
subsidence funnel. The cumulative land subsidence ranged from 20 to −90 mm during the period
from 2007 to 2015, with fluctuations. The value of PE increased from the beginning of January 2009
to April 2009. This phenomenon reflected that in this period, the development of land subsidence
was uneven. From April 2009 to July 2011, the value decreased significantly, which means that the
development of land subsidence in during this period trended to be even. The value increased between
July 2011 and 2015, which indicates that land subsidence developed unevenly.

According to the value of the PE, the development of land subsidence at the edge of the funnel is
different from that within the land subsidence funnel. The PE results at the edge of the funnel increased
first, then decreased, and finally increased, indicating that land subsidence developed nonuniformly
first, then uniformly, and nonuniform again during the research period. However, since 2009, the value
of PE for land subsidence decreased during the research period; even after 2012, the value was even
zero. This phenomenon indicates that, since 2009, land subsidence at these three wells trended to be
uniform. It became relatively more uniform after 2012.

Figure 8. The PE results for the five wells.The black lines indicate the PE values, and the red lines
represent the cumulative land subsidence from 2009 to 2015.
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Thus, based on the PE results, the state of land subsidence development at the edge of the land
subsidence funnel can be divided into three stages. The first stage was from 2009 to 2010, when the PE
value increased, which indicated that the land subsidence tended to be nonuniform. The second stage
was from 2010 to 2012, when the value of PE decreased, implying that land subsidence developed
from a nonuniform to a uniform state. In the third stage, from 2012 to 2015, the PE value increased,
indicating that land subsidence developed in a uniform state. The state of land subsidence development
in the land subsidence funnel can be arranged in two phases. During the first stage, the value of PE
continually decreased between 2009 and 2012, which means that land subsidence developed uniformly
in this period. The second stage was from 2012 to 2015, when the PE value returned to zero. This state
indicates that the land subsidence during this period developed more uniformly than it had during
the previous period.

5. Discussion

5.1. Relationship Between the Spatial Evolution Pattern by the SDE Method and Hydrogeologic Data

Combining the groundwater level contours and compressible sediment layer of the study area
from 2007 to 2015 with the SDE obtained by PSI during the period, the correlation between the
subsidence response patterns and the phreatic groundwater flow field was analyzed comprehensively
(Figure 9). Comparing the groundwater levels of 2015 with the 2007 levels shows that the groundwater
level declined by 15–25 m throughout the eastern part of the Beijing Plain.

When referring to the SDE, we find that it outlined two subsidence funnels. As times passed,
the extent of land subsidence in the northwest–southeast direction expanded after 2012; then, the SDE
started to develop in this direction. The expansion of land subsidence distribution was due to the
groundwater cone of depression. In 2007, the groundwater elevations varied from 10 to 20 m, and there
was a groundwater cone of depression in the LGY subsidence funnel. As time passed, the groundwater
contours in this area became more compact, as in 2015. This result means that the groundwater
consumption increased greatly. The LGY groundwater cone of depression expanded after 2012,
and correspondingly, the rate and range of land subsidence in this area increased. The DBL subsidence
funnel was not in the zone of the groundwater cone of depression bowl. However, land subsidence in
this area achieved a maximum value, and the deformation increased from 2007 to 2015. This effect
may have occurred due to soil consolidation, which causes hysteresis in the groundwater.

The stratum structure of the Beijing Plain is characterized by a transformation from a single
structure zone to a multilayered structure zone from the northwest to the southeast. The sediment
particles changed from coarse to fine, the thickness gradually increases, and the proportion of clay
soil increases gradually [33]. Note that the thickness of the loose Quaternary sediments in the study
area ranges from 80 to 210 m. The thickness of the compressible clay layer in LGY varies from 130 to
220 m and the thickness changed from 110 to 180 m in DBL. Meanwhile, land subsidence in these two
areas achieved the maximum values. This result means that the spatial distribution of land subsidence
and the thickness of the compressible sediment layer are significantly correlated. The greater the
cumulative thickness of the sediment layer is, the greater the total land subsidence.

From comprehensive groundwater and compressible soil data, we find that the spatial evolution
characteristics of land subsidence in the Eastern Beijing Plain are basically consistent with those of
groundwater, although subsidence is restricted by geological conditions. The compressible soil layer
provides the environment for land subsidence and the overexploitation of groundwater is the main
cause of land subsidence.
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Figure 9. The spatial evolution patterns of land subsidence obtained by the SDE method. The black
countours indicate the changing groundwater level data from 2007 to 2015. The heliotrope lines
represent the compressible sediment layer data. The red ellipses indicate the SDEs for every year.
In addition, the groundwater level is referenced to sea level.

5.2. Relationship Between the Temporal Evolution Pattern by the PE Method and Groundwater

From the permutation entropy results, we show that the results differed between the land
subsidence funnel and the edge of the funnel. Combining this information with the land subsidence
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rates, we can discover that the cumulative land subsidence rate at the edge of the land subsidence
funnel fluctuated after 2012, while the cumulative land subsidence rate in the land subsidence funnel
was increasing during this time. The PE describes the differences in the cumulative settlements. Thus,
these differences show that the PE is reliable.

As we know, the overextraction of groundwater is the main cause of settlement in the Beijing
Plain. Hence, comprehensive groundwater level variation data are used to discover the relationship
between the PE variations and groundwater level changes.

Only well JSL obtained groundwater level variation data from 2011 to 2015. Therefore, JSL was
selected to analyze the relationship between the changes in the groundwater level and the PE results
(Figure 10). The average annual variations in the groundwater level in well JSL were 6.71 m, 3.46 m
and 3.6m between 2009 and 2010, from 2010 to 2012, and from 2012 to 2015, respectively. Combining
the groundwater data with the PE results, indicates that between 2009 and 2010, the average annual
variation in groundwater was greater than that between 2010 and 2012, while the average annual
variation in the groundwater was smaller than that between 2012 and 2015. These results lead to
the conclusion that the average annual settlement fluctuation was more pronounced between 2009
and 2010 than between 2010 and 2012. Meanwhile, the average annual settlement fluctuation was
less pronounced between 2010 and 2012 than between 2012 and 2015. Therefore, the development of
the accumulative settlement between 2009 and 2010 was more uneven than that between 2010 and
2012. In addition, the development of the cumulative settlement between 2010 and 2012 was more
uniform than that between 2012 and 2015. This phenomenon corresponds to the process of the PE
value increasing between 2009 and 2010 and decreasing between 2010 and 2012. This feature also
explains, why PE increased between 2012 and 2015.

Figure 10. Comparison of the PE results for well JSL and the variations in the groundwater level.
The blue line indicates the groundwater level variations. The black line represents the PE results.
In addition, the groundwater level is referenced to sea level.

Wells DFZ, BLQ, and LHZ lie within the settlement funnel area of the research area, but BLQ
acquired the groundwater level variation data only from 2009 to 2013. Therefore, DFZ and LHZ are
selected to analyze the relationship between the variation in the groundwater level and the PE results
(Figure 11, Figure 12).

Figure 11 reveals the groundwater level variations in well BLQ. The average annual variation
in the groundwater level in well BLQ was 1.51 m between 2009 and 2012, and the groundwater level
average annual variation was 0.81 m between 2013 and 2015. Thus, the fluctuation in the groundwater
level between 2009 and 2012 was almost twice that between 2013 and 2015. This result indicates that
the settlement changes at well BLQ between 2009 and 2012 were faster than those between 2013 and
2015. Therefore, the PE value decreased. However, the groundwater fluctuation between 2013 and
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2015 was less than 1 m per year. Thus, during this period, the land subsidence rate fluctuated little,
and the accumulative land subsidence showed a slow increase. This result is expressed by the PE value
returning to zero.

Figure 11. Comparison of the PE results for well BLQ and the variations in the groundwater level.
The blue line indicates the groundwater level variations. The black line represents the PE results. The
groundwater data reference datum is the same as that in Figure 10.

Figure 12 shows the groundwater level variations in well LHZ. During the period from 2011 to
2012, the groundwater level fluctuated greatly, and the average annual variation in groundwater in
this period was 3.83 m. The average annual change in the groundwater level was 1.51 m between 2013
and 2015. From the above results, the groundwater level variation between 2011 and 2012 was more
than twice that between 2013 and 2015. This result proves that the fluctuation in the land subsidence
rate changed more quickly between 2011 and 2012 than that between 2013 and 2015, which means that
between 2011 and 2012, the PE value is greater than that between 2013 and 2015. Thus, this process
reflected the PE value decreasing. After 2013, the changes in groundwater were much smaller. Then,
the land subsidence rate showed little fluctuation. Hence, the cumulative settlement continued slowly
decreasing, which is expressed by the PE value becoming zero.

Figure 12. Comparison of the permutation entropy results for well LHZ and the variations in the
groundwater level. The blue line indicates the groundwater level variations. The black line represents
the PE results. The groundwater data reference datum is the same as that in Figure 10.
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The groundwater level variation data for the three wells clearly show that the PE value for JSL
was higher than those for DFZ and LHZ during the entire research time. This effect occurred because
the average annual change of groundwater in JSL was greater than 3 m, while the average annual
groundwater variation levels in DFZ and LHZ were approximately 1 m during the research period.

In summary, the groundwater level change is the main reason for why PE value for the five typical
wells differ and the groundwater level changes correlate with the variations in PE values. The larger
the variation range of groundwater is, the higher the corresponding PE value.

6. Conclusions

In this work, based on Envisat and Radarsat-2 data from 2007 to 2015, we detect the spatial and
temporal evolution patterns of the two most serious land subsidence funnels in the Beijing Plain based
on the SDE and PE methods. Integrating hydrogeological data, we conclude that the expansion of
the groundwater cone of depression led to the development of the SDE in all directions after 2012.
Moreover, the differences in the annual variations in the groundwater levels are the main reason for
the different PE values of the land subsidence funnel and the funnel edge.

First, we utilize the PSI technique to obtain the long-term displacement in the Eastern Beijing
Plain, China. The vertical displacement rates agree well with the measurements from ground leveling
surveys: the correlation coefficient is 0.94, which indicates that our PSI results are reliable.

Then, we adopt the SDE to analyze the spatial evolution pattern of land subsidence. The SDE
results suggest that the development of land subsidence in the southeast-northwest direction is more
obvious than those in other directions; however, land subsidence develops obviously in all directions
after 2012. Land subsidence is serious, and the spatial distribution of land subsidence increases
over time. However, after 2012, the rate of increase of land subsidence decreases. Comparing the
spatial evolution pattern using the SDE methods with the groundwater level changes and compressible
sediment thicknesses, we find that the groundwater cone of depression expands and the range increases
after 2012. At the same time, the compressible sediment thickness in the SDE range is large, providing
an environment for land subsidence.

Finally, we use the PE method to reveal the time-series evolution pattern of land subsidence,
and the results show that the time-series evolution pattern at the edge of the land subsidence funnel
is different from that within the land subsidence funnel. The settlement development process at the
edge of the land subsidence funnel is divided into three stages. From 2009 to 2010, the land subsidence
development is uneven. From 2010 to 2012, the land subsidence development is relatively uniform.
From 2012 to 2015, the development of land subsidence becomes nonuniform. We divide the land
subsidence development of the land subsidence funnel into two stages. From 2009 to 2012, land
subsidence tends to be uniform. From 2012 to 2015, land subsidence is more even than that in the
previous period. Comparing the PE results with the groundwater level change data, the value of the
PE increase corresponds to the process of increase in the groundwater level variations. This result
indicates that the process whereby land subsidence tends to be nonuniform. Conversely, the value of
PE decreases, corresponding to the process of decrease in the groundwater level variation. This result
shows that the process whereby land subsidence tends to be uniform. The larger the variation range of
the groundwater is, the higher the corresponding PE value.

In this paper, we use the PE method to discover the temporal evolution process of deformation
which can help us to better understand land subsidence. In the future, we will decompose the effects
of the groundwater on land subsidence to determine more details.
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Abstract: This study compared detection skill for tropical cyclone (TC) formation using models
based on three different machine learning (ML) algorithms-decision trees (DT), random forest (RF),
and support vector machines (SVM)-and a model based on Linear Discriminant Analysis (LDA).
Eight predictors were derived from WindSat satellite measurements of ocean surface wind and
precipitation over the western North Pacific for 2005–2009. All of the ML approaches performed better
with significantly higher hit rates ranging from 94 to 96% compared with LDA performance (~77%),
although false alarm rate by MLs is slightly higher (21–28%) than that by LDA (~13%). Besides,
MLs could detect TC formation at the time as early as 26–30 h before the first time diagnosed as
tropical depression by the JTWC best track, which was also 5 to 9 h earlier than that by LDA. The skill
differences across MLs were relatively smaller than difference between MLs and LDA. Large yearly
variation in forecast lead time was common in all models due to the limitation in sampling from
orbiting satellite. This study highlights that ML approaches provide an improved skill for detecting
TC formation compared with conventional linear approaches.

Keywords: tropical cyclone formation; WindSat; machine learning

1. Introduction

A tropical cyclone (TC) can lead to tremendous economic losses and casualties when it makes a
landfall [1,2]. Since any tropical disturbance with a sufficient magnitude has a potential to be developed
abruptly into a TC over the warm ocean, it is highly desirable to have an accurate forecast system for
TC formation for a timely warning to the public. There are several approaches to predict TC formation.
One is to use numerical weather prediction (NWP) models, which has been significantly improved
in the past years due to the advance in modeling techniques and physics parameterizations, more
available satellite data for the better initialization, and enhanced computing resource. For example,
Halperin et al. [3] investigated the forecast skill for TC genesis in the North Atlantic from 2004 to
2011 by five NWP models, and showed that their conditional probability of hit ranged from 26% to
44%. Nevertheless, it still remains challenging for most NWP models to predict whether a tropical
disturbance will develop to a TC or just decay as a non-developer [4,5].

An alternative is to use various types of statistical models that have been developed to predict
the TC formation based on large-scale meteorological conditions identified as important processes
for TC formation. Schumacher et al. [6] produced an estimation of 24-h probability of TC formation
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in each 5◦ × 5◦ sub-region of various ocean basins. They combined large-scale environmental
parameters derived from the National Center for Environmental Prediction (NCEP)-National Center for
Atmospheric Research (NCAR) reanalysis [7], and multiple geostationary satellites. Similarly, Hennon
and Hobgood [8] considered eight large-scale predictors such as latitude, daily genesis potential,
maximum potential intensity, moisture divergence, precipitable water, pressure tendency, surface
vorticity tendency, and 700-hPa vorticity tendency from 6-hourly global NCEP-NCAR reanalysis [7].
The foregoing studies [6,8] commonly used a Linear Discriminant Analysis (LDA) classifier in the
prediction of TC formation. Fan [9] applied a multi-linear regression method from large-scale
environmental factors based on NCEP-NCAR reanalysis data for detecting the Atlantic TC formation.

While the above-mentioned statistical methods require a linear statistical relationship between
predictors (e.g., large-scale environmental parameters) and predictand variables (e.g., tropical cyclone
formation possibility), TC formation involves complicated multi-scale interactions from large-scale
environmental to mesoscale convective processes [10]. Hennon et al. [11] pointed out limitations in the
use of the LDA or linear regression approaches due to the assumption of the linear relationship between
predictors and predictands. On the other hand, machine learning (ML) approaches do not require any
assumption in contrast to the conventional statistical techniques based on linear models [12]. There
are several ML approaches widely used such as decision trees (DT), random forest (RF), and support
vector machines (SVM). While DT is a simple classifier that recursively partitions data into subsets
based on tree-like decision rules, RF uses a bootstrapping method to make an ensemble of classification
trees [13]. SVM, which is a non-parametric statistical learning technique, builds a hyperplane to
separate the dataset into a discrete, predefined number of classes. The hyperplane is adjusted for
minimizing misclassifications during a training procedure [14]. Very recently, the ML approach has
been applied to the model for classifying TC formation [15,16]. Zhang et al. [16] utilized DT to classify
developing and non-developing tropical disturbances using several predictors (e.g., maximum 800-hPa
relative vorticity, sea surface temperature, precipitation rate, vertically averaged divergence, and air
temperature at 300 hPa) derived from the Navy Operational Global Atmospheric Prediction System
analysis data [17]. They showed that the accuracy in the forecast of TC formation prior to 24 h was
about 84.6%. Park et al. [15] also applied the DT technique for detecting TC formation. They trained
DT rules using system-representative parameters such as the symmetry of low-level circulation pattern,
intensity, and the organization indices that derived from the sea surface wind data from WindSat [18].

The dependency of ML approaches has been tested in various remote sensing applications. For
example, Han et al. [19] developed a convective initiation algorithm from the Communication, Ocean,
and Meteorological Satellite Meteorological Imager [20] based on the three ML approaches—DT, RF,
and SVM. Their results showed that RF produced a slightly higher hit rate (HR) than DT with a
comparable false alarm rate (FAR), while SVM resulted in relatively poor performance with much
higher FAR compared with the other two techniques. On the other hand, Sesnie et al. [21] compared
SVM with RF to classify 11 Costa Rican tropical rainforest type using the Landsat thematic mapper
bands and the normalized difference vegetation index, where they found that SVM performed better
with higher accuracy than RF. This suggests that there is no single best ML technique applicable to all
cases, and the performance of the ML algorithm depends not only on the technique but also on the
type of application and input data.

This study is an extension from the study of Park et al. [15]. Although it demonstrated a skill
level practically useful in detecting TC formation, it was limited by using a single ML algorithm (i.e.,
DT) and could not evaluate the room for further improvement when the other algorithms were tested.
In this study, three ML approaches have been tested to examine the dependence on the technique.
An identical dataset of predictors is applied to the ML algorithms and calibrated independently, and
then validated for comparing the detection skill. In addition, the performance is also compared
with that by LDA with a quantitative skill assessment. TC formation processes are complicatedly
involved with instability in the atmospheric and oceanic dynamics and thermodynamic processes
that are not necessarily linear [22]. This study hypothesizes that ML, which can account for nonlinear
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relationships among the predictors [23,24], should be more suitable than LDA for the application to
tropical cyclogenesis forecast.

The following section will describe data, methods for deriving predictors, and constructing the
models. Section 3 compares the performance of four TC formation detection models (i.e., LDA and
3 ML-based models). A summary of the study is given in Section 4.

2. Data and Methods

2.1. Data and Preprocessing

To characterize tropical disturbances at their formation stage of TC, this study used all-weather
wind speed and direction at 10 meter above the ocean surface and rain rate measured by the
WindSat polarimetric microwave radiometer (http://www.remss.com/missions/windsat) onboard the
Department of Defense Coriolis satellite developed by the Naval Research Laboratory, the Naval Center
for Space Technology for the U.S. Navy, and the National Polar-orbiting Operational Environmental
Satellite System (NPOESS) Integrated Program Office (IPO). The satellite was launched on 6 January
2003 and has been operating in the present time. Ocean surface wind vector product covers a wide area
with an average swath width of 950 km. Retrieving ocean surface wind signal under rainy conditions
has been a long-standing challenge for passive microwave radiometers due to the contamination
by rain. The WindSat radiometer uses fully-polarimetric channels at 10.7, 18.7, and 37.0 GHz and
dual-polarimetric channels at 6.8, and 23.8 GHz. Using multiple channels, particularly C-band (4
to 8 GHz) and X-band (8 to 12 GHz) where the atmospheric attenuation is relatively small, allows
developing an algorithm for retrieving wind speed in hurricanes even under heavy rain to a reasonable
degree of accuracy. The wind speed retrieval accuracy for tropical cyclones ranges from 2.0 m s−1 in
light rain to 4.0 m s−1 in heavy rain. It also shows no degradation of wind speed signal at wind speeds
up to 35 m s−1, well above the magnitude of the tropical depression. The liquid water precipitation
is derived by using 18.7, 23.8, and 37.0 GHz channels. The horizontal resolution of the WindSat
measurement is 39 km× 71 km for 6.8 GHz, 25 km× 38 km for 10.7 GHz, 16 km× 27 km for 18.7 GHz,
20 km× 30 km km for 23.8 GHz, and 8 km× 13 km for 37.0 GHz, respectively. The dataset has been
re-processed to 0.25◦ × 0.25◦ gridded data for the current analysis.

This study uses 1,325 WindSat overpass images including approximately 630 tropical disturbances
in the western North Pacific during the years of 2005–2009. The satellite observations are collocated
with the system track data from the Joint Typhoon Warning Center (JTWC) best track, and Tropical
Cloud Cluster [25]. A tropical disturbance is classified as a developing (DEV) disturbance when the
maximum sustained wind (MSW) speed will be larger than 13 m s−1 later to be denoted as a tropical
depression (TD) (announced by JTWC). In addition, the image needs to cover sufficiently large area
near the center of disturbance (at least 60% of non-missing data within 4-degree radius of circle) at
least once before TD stage and the data need to be sampled again no later than 72 h after TD stage.
The remaining disturbances are defined as non-developing disturbances (non-DEV). In the case of
non-DEV disturbance, all available satellite observations are collected.

Park et al. [15] used eight specific predictors that quantitatively describe dynamic and hydrological
characteristics related to TC formation, and determine either DEVs or non-DEVs based on the DT-based
rules. This study uses the same predictors, and a brief description of them is given here. Two indices,
“wind_ave” and “rain_ave”, are aimed to represent the intensity of low-level wind and rain rate near
the tropical disturbance center, respectively. To quantify the degree of symmetry in the low-level
circulation for developing cyclones, two indices are designed by calculating circular variance (CV),
“wind_cv_fix” and “wind_cv_mv”, in which the former calculated CV over a full domain (16◦ × 16◦
Lat./Lon.) centered at the target disturbance for characterizing synoptic-scale circulation, and the
latter over a smaller subdomain (4◦ × 4◦ Lat./Lon.) moving around the disturbance for characterizing
mesoscale circulation. The remaining four indices include “wind_ci”, “wind_pladj”, “rain_ci”, and
“rain_pladj”, which represent the clumpiness index (CI) and the percentage of like adjacencies (PLADJ)
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for wind and rain rate, respectively. These two measures are defined from Fragstats statistics [26]. Both
PLADJ and CI quantify the degree of organization of strong wind and heavy rainfall areas. Table 1
summarizes the eight predictors used in this study.

Table 1. Description of predictors that quantitatively describe dynamic and hydrological characteristics
related to tropical cyclone (TC) formation.

Predictor Description

wind_ave Average of wind speed over the disturbance

wind_cv_fix Circular variance (CV) of wind to measure the degree of symmetry in the circulation within a
16◦ × 16◦ fixed widnow

wind_cv_mv The maximum CV value found by moving a small (4◦ × 4◦) window over a larger area
wind_ci Clumpiness Index (CI) of the wind speed over 15 m s−1 in a large area

wind_pladj Percentage of Like ADJacency (PLADJ) of wind speed over 15 m s−1 in a large area
rain_ave Average of rain rates near the center of the disturbance
rain_ci Clumpiness Index (CI) of the rain rate exceeding 5 mm h−1 in a large area

rain_paldj Percentage of Like ADJacency (PLADJ) of the rain rate exceeding 5 mm h−1 in a large area

2.2. Sampling

Training a prediction model should not be significantly influenced by insufficient samples.
To examine the sample dependence, this study performed the k-fold cross validation, where all
available WindSat data archived for five years were divided into the training and the validating
sub-datasets [27]. Verification of the model fitted with different samples can help estimate the
uncertainty and the sample dependence of the statistical model in a quantitative manner as well as
evaluate the year-to-year variability of the prediction skill. Three-year data randomly selected out
of five years were used for training, and the remaining two-year data were used for validation. This
resulted in 10 different training-validation datasets to be tested. In the original dataset, the number
of non-DEV was about three times larger than that of DEV. As the training with the ML approaches
such as DT using unequal samples between DEV and non-DEV may cause a bias in the model [28],
non-DEVs were resampled randomly as much as DEVs for training. Resampling was repeated for 100
times for each 10 different k-folding datasets, leading to 1000 datasets total for model development
and validation for each TC formation detection model.

2.3. Model Construction

2.3.1. Linear Discriminant Analysis (LDA)

LDA has been widely used in a variety of classification studies [7,29,30]. LDA is a statistical
technique to classify objects into two groups based on a set of predictors with specific threshold values.
LDA projection has a known caveat that the classification ability is decreasing for the non-linear
relationship between predictors and the predictand [31]. To construct a model based on LDA, multiple
regression models were performed in this study given the eight potential predictors. The predictors
were tested following procedures to avoid overfitting problems. All the possible combinations of
predictors were tested in terms of the validating statistics using HR, FAR, and Peirce Skill Score [32]
(hereafter referred to as PSS) and then the predictors of less significance were eliminated one by one.

2.3.2. Decision Trees (DT)

DT has been introduced in many recent remote sensing studies for both classification and
regression [15,33–37], in which the data sample is subject to the partitioning into subdivisions
repeatedly based on decision rules, resembling branches in a tree [38]. The advantage of the DT is to
enable easy interpretation and physical insights to the classification rules as it provides visible if-then
rules with the relative importance of predictors. This study used the C5.0 program developed by
RuleQuest Research, Inc [39]. Unlike the LDA, DT (the other two ML approaches as well) selects an
optimal combination of predictors empirically by itself through training. To evaluate the degree of
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fitting for 1000 different training datasets, overall accuracy is calculated which represents the ratio of
samples correctly classified.

2.3.3. Random Forests (RF)

RF is an ensemble approach based on classification and regression trees (CART), which was
originally designed to improve the well-known problem of DT that is sensitive to training data
configuration [40]. RF has been widely used in remote sensing applications for both classification and
regression tasks [41–44]. RF adopts two randomization processes to develop numerous independent
decision trees and the final decision is made by majority voting (or weighted voting) strategy [19,45].
RF also provides the relative importance of a specific variable, as represented quantitatively by the
mean decrease of accuracy when the variable is permuted to random values. The critical predictor has
a higher variable importance than others. This study used the R software [46] to fit the data into the
RF algorithm.

As the RF model contains a random process in the training, each round of training was likely to
produce no identical result even with the same data. Each set of training dataset were repeated five
times to produce the RF model for obtaining reliable results.

2.3.4. Support Vector Machines (SVM)

SVM is one of the widely-used machine learning models in remote sensing applications in
recent years [47–51], which finds an optimal hyperplane to classify data [52]. SVM utilizes a kernel
function to transform the data dimension into a higher one in order to identify an optimal hyperplane
effectively [53]. Among the linear, polynomial, and radial basis functions, the radial basis function
was turned out to be the best as a kernel function in our test. The kernel and penalty parameters used
in the SVM model were automatically adjusted during the data training process to ensure the best
performance in detecting tropical cyclone formation. Before data training, each predictor variable was
linearly scaled to the range from 0 to 1 in order to consider the difference in magnitude across the
variables. This procedure also helps reduce computational time in optimizing SVM model parameters.
Compared with other machine learning algorithms, SVM does not provide the information on the
relative importance of predictors instantaneously. As an alternative, the F-score test is applied to
identify the major discriminating features that characterize the tropical cyclone formation based on
the SVM method. The F score, also called the F1 score or F measure, is a measure of a test’s accuracy,
which is defined as the weighted harmonic mean of the test’s precision and recall [54]. From the 2× 2
contingency table of observed versus the model-classified number of DEVs and non-DEVs, precision
is the number of correct DEV forecasts divided by all forecast DEVs, and recall is the correct DEV
forecasts divided by all observed DEVs. The SVM model can make different results according to the
kernel optimization procedure. Each sample was repeatedly trained five times to produce reliable
output from the SVM model. This study used the library for the SVM software package, LIBSVM [55]
version 3.22 available at http://www.csie.ntu.edu.tw/~{}cjlin/libsvm.

2.4. Verification Methods

The performance of the trained models is compared using HR, FAR, and PSS from the 2 × 2
contingency table of observed versus the model-classified number of DEVs and non-DEVs. HR is the
number of model-classified DEVs divided by the number of observed DEVs. FAR is defined as the
number of the model-classified DEVs divided by the number of observed non-DEVs. The PSS score [32]
is based on the proportion correct as the basic accuracy measure and it is defined as the relative
improvement over the reference forecast. The perfect score receives PSS =1, forecasts equivalent to the
reference forecast receive zero scores, and forecasts worse than the reference forecasts receive negative
scores. The reference accuracy measure is the proportion correct that would be achieved by unbiased
random forecasts. It can be easily shown that the PSS is simply the difference between HR and FAR,
and it provides a combined measure of the forecast skill. The detection lead time by model for each
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observed DEV was calculated, which was defined as a time difference between the first TC formation
detection and the time when it actually developed to TD according to the JTWC best track. Negative
(positive) lead time means that the model detection is made before (after) the actual TC formation.

3. Results

3.1. Model Calibration

Using eight predictors with the 1000 datasets, each TC formation model was trained independently
using LDA and the three ML approaches. In calibrating the LDA model, all the possible combinations
of potential predictors were tested in advance. Figure 1 compares the performance for various
combinations of predictors and the number of predictors. HR increases significantly by reducing the
number of predictors (Figure 1a). By contrast, FAR increased gradually in general. However, the lowest
(best) values were found when the number of input predictors is 3 or 4 (Figure 1b). As seen in Figure 1c,
PSS results indicated that the number of three predictors with the use of wind_ave, wind_cv_fix, and
wind_pladj showed the best performance among the all other sets. Table 2 shows the average and
standard deviation of coefficients for each predictor after applying the model for 1000 different training
datasets. This model in Table 2 was applied to the validation dataset.

Figure 1. (a) Hit rate (HR), (b) false alarm rate (FAR), and (c) the Peirce skill score (PSS) compared for
different selections of potential predictors in the Linear Discriminant Analysis (LDA) model. Each gray
dot shows the performance of a different combinations of predictors and the black dot represents the
highest performance in terms of PSS.
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Table 2. Average and standard deviation of coefficients in the linear discriminant analysis equation
using for training sample datasets.

LDA = R1 × wind_ave + R2 × wind_cvfix + R3 × wind_pladj − constant

R1 R2 R3 constant

Average 0.321 5.223 0.048 8.776
Standard deviation 4.517 0.806 0.124 1.215

The training results for 1000 different training datasets for the DT model showed the accuracy (i.e.,
the ratio of samples correctly classified) ranging from 72.9% to 91.1%. In each training, DT selected
a different set of predictors. Nevertheless, the wind_cv_fix was included in all tests and wind_ave
was included 83% of the tests. On the other hand, rain_ave and rain_ci were selected least as 33% and
30%, respectively. Although the major advantage of DT is to display its rules, each algorithm contains
different combination of predictors and thresholds. Figure 2 shows an example that consists of three
if-then decision rules used for binary classification of tropical disturbances into DEV or non-DEV. This
case selected only two variables of wind_cv_fix, and wind_ave. As mentioned, these are the most
frequent variables in the DT training process and they were also used in Park et al. [15].

 
Figure 2. An example of the decision tree that classify developing (DEV) or non-DEV tropical
disturbances, built by the decision trees (DT) model trained with a subset data for 2005, 2007, and
2009. The eclipses contained selected predictors and rectangles represented the number of corrected
classified and misclassified sample. Two predictors—wind_cv_fix, and wind_ave—were selected from
the training with the percentage value of importance 100%, and 68%, respectively.

In developing a RF model with eight predictors, Figure 3 showed the mean decrease accuracy for
each predictor obtained from training with 1000 sample datasets. The predictors of wind_cv_fix and
wind_ave were revealed to be most important with the mean decrease of the accuracy of 38.60 and
30.19, respectively. The accuracy of RF was 100% for all tested sample datasets. This is common in the
calibration stage for RF as it consists of not-pruned decision trees [40].
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Figure 3. The averaged relative importance of predictors in random forest (RF) using 1000 different
training datasets. The importance is measured as the mean decrease accuracy, which indicates the
accuracy decrease when a specific predictor is deselected.

As mentioned in the model construction part, three different types of kernel functions were tested
to figure out the best (Figure 4). In the case of HR, the radial basis function kernel showed much
higher HR (91.6%) than the other two kernels, with the lowest FAR (22.0%). As a result, it showed the
best performance based on PSS. Figure 5 shows F-score values from the SVM training results using
the radial basis function. Each F-score value was measured using seven predictors without denoted
target predictor so that a lower value of F-score indicates lower classification ability when the specific
predictor is excluded. As a result, wind_cv_fix and wind_ave were identified as the most important
predictors in detecting tropical cyclone formation which was consistent with the cases of other machine
learning models.
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Figure 4. The comparison of the kernel function selected as linear (green), polynomial (blue), and radial
basis function (yellow) in the support vector machines (SVM) model. Filled bars in (a) HR, (b) false
alarm rate (FAR), and (c) Peirce Skill Score (PSS) represents the median values from the calibration tests
for 1000 times. The 90 and 10 percentile values are also shown in each bar graph.
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Figure 5. The average of F-score values in the training of the SVM model with the radial basis
function. Each F-score value was obtained from the calibration using seven predictors without denoted
target predictor.

3.2. Verification

Figure 6 compared the performance skill for LDA and the three ML approaches from all cases of
validation (i.e., 1000 cases), in terms of HR, FAR, and PSS. Figure 6a is the comparison of HR for the
four different models, in which the total averaged HR of three ML approaches (94%) is consistently
higher HR than that from LDA (77%). The ML approaches produced relatively smaller HR variation
due to the different sample years compared with that in the LDA (16%), suggesting that LDA had
larger discrepancies along with the validation period. A few cases in ML approaches could hit TC
genesis perfectly (e.g., 0509 in DT and RF, 0507 in RF, and 0508 in SVM).

As shown in Figure 6b, LDA (13%) showed lower FAR than ML approaches, although a few cases
showed comparable values (e.g., 0506 in Figure 6b). The FAR in LDA changes relatively little with
1–11% variation using different validating data samples, while that in ML approaches vary more with
2–23% variation. FAR changes more at the change of validation samples, about 10% in LDA and 10–17%
in ML approaches, respectively. This result indicated that LDA could classify DEV and non-DEV with
small variances and little affected by the validating samples. There was a small difference among ML
approaches in the case of HR, but in contrast, FAR showed a large variation among ML approaches.
DT (28%) had the largest FAR compared with RF (23%) and SVM (21%).

In the case of HR, ML approaches had relatively higher performance than LDA, on the other hand,
LDA showed much lower FAR than ML approaches. To consider both HR and FAR simultaneously,
PSS was introduced in Figure 6c. The PSS, as mentioned above, estimated the goodness of a classifier
in the binary classification. The overall results showed that ML approaches, in general, had higher PSS
than LDA. Differences depending on the validation samples showed that ML approaches (10–17%)
produced less variation than LDA (20%), which is consistent with the case of model calibration results
(Section 3.1) exhibiting 7–17% variation for ML approaches and 18–29% for LDA. In the case of RF and
SVM, they gave a higher classifying ability between DEV and non-DEV. However, DT had comparable
skills with LDA.
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Figure 6. Forecast verification of (a) hit rate, (b) false alarm rate, and (c) Peirce skill score for LDA
(green), DT (yellow), RF (pink), and SVM (blue) from validation sets denoted on the x-axis. The upper
and lower bounds of each bar represent 90 and 10 percentile values, respectively.

To assess a prediction ability of each model, Figure 7 shows histograms of the lead time classified
as TC by LDA (green), DT (yellow), RF (pink), and SVM (blue), and of the first time the WindSat is
available (gray). In this figure, zero lead time represents the first time to reach an intensity of TD
according to the JTWC best track, and early detection of TC has negative (positive) lead time which
located left (right) relative to zero lead time. The frequency of the first observation from WindSat
showed the maximum between 0 and −24 h, and radically decreased in the early time before −72 h. A
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smaller observation number from WindSat in earlier developing stage was in part due to the fact that
the disturbance tracking backward in the time needed to be stopped in the premature or less-organized
stage of disturbances. The frequency of the first detected time by the WindSat observation (gray) and
that by the LDA and ML models showed a similar distribution. Although all models were able to
predict TC formation when the WindSat observation was available in advance, the result demonstrated
that ML approaches were able to detect TC formation earlier than LDA (Figure 7).

Figure 7. Frequency histogram of lead time for LDA (green), DT (yellow), RF (pink), and SVM (blue)
from 1000 validation sets, also shown with the first observed time of WindSat (gray). The zero lead
time is the actual time of TC formation that intensity reaches 13 m s−1 and negative (positive) values
present early (late) detecting the time of TC formation.

Figure 8 summarized the results of four different TC formation detecting models in terms of
HR, FAR, PSS, and lead time. Each box plot represented median values among 1000 tests and upper
and lower boundaries represented 90 and 10 percentiles, respectively. Median HR showed that ML
approaches (0.94–0.96) outperformed LDA (0.77). RF had the lowest (0.09) and LDA had the highest
(0.25) error boundary. Figure 8b showed that LDA (0.13) had a better FAR than ML approaches
(0.21–0.28) although they occasionally had the similar ability (e.g., 0506 in Figure 7b). Among the ML
approaches, they showed different FAR and variances. In particular, DT tends to have more missed
cases (28%) than RF (23%) and SVM (21%). The PSS results may be divided into two groups according
to their skill score. The RF (72%) and SVM (73%) showed relatively higher score than DT (65%) and
LDA (64%). The PSS is directly connected with HR and FAR in that is calculated by the difference
between HR and FAR. Two high PSS models had a high HR with low FAR, however, the two lower
models had different reasons that DT had the highest FAR although it had high HR and LDA had the
lowest FAR with lower HR (Figure 8). Nevertheless, DT had a lower variance of validating results
rather than LDA. In the case of lead time in Figure 8d, even though the same satellite observations
are given, ML approaches (26–30 h earlier) could have earlier detection of TC genesis than LDA (21 h
earlier). All models showed a large difference in lead time due to the infrequent WindSat sample. LDA
sometimes showed after detecting cases (positive lead time).
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Figure 8. The comparisons of (a) HR, (b) FAR, (c) PSS, and (d) lead time among TC formation detecting
models, LDA (green), DT (yellow), RF (pink), and SVM (blue). Median values are represented by box
plot with 90 and 10 percentiles from the verification tests. The zero lead time is actual time of TC
formation that intensity reached 13 m s−1 and negative (positive) values presented early (late) detecting
the time of TC formation.

As alternative ways to compare the performance of four TC genesis detection models,
two-dimensional histogram plot was made with FAR (x-axis) and HR (y-axis), which results were
given in Figure 9. A skillful model that achieves much higher HR and less FAR, so that it tends to be
located on the top left corner of the plot. A model which has no skill, on the other hand, lies along or
under the diagonal (i.e. the model has no skill better than arbitrary choice). Each distribution from
the three ML approaches (Figure 9b–d) was clearly separated from that of LDA (Figure 9a). The ML
approaches had the advantage of better HR, whereas LDA tended to have smaller FAR. It was also
noted that RF and SVM were located more to the left than DT, ensuring better performance in terms of
FAR. Because RF was made for complementing the defect of DT, RF outperformed DT in general. It is
possible that training procedures are affected by the lack of samples and quality even though applying
random sampling methodology. There are many studies suggesting that SVM performs better with
small samples [48,56–58], which is consistent with the results of this study.

179



Remote Sens. 2019, 11, 1195

Figure 9. Two-dimensional normalized histogram plot for (a) LDA, (b) DT, (c) RF, and (d) SVM of
different validation tests. The x-axis represents a false alarm rate versus y-axis represents a hit rate
from 2× 2 contingency table of observed and model-forecasted DEVs and non-DEVs.

4. Discussions

The formation of TC involves various dynamical and physical processes in multiple spatial
and time scales [5,10]. Previous regression-based models [6] may not be appropriate to deal with
complicated nonlinearities involved in the TC formation process. This study suggested an alternative
approach for calibrating such an intricate formation process based on the ML approaches. The HR by
ML approaches tested in this study was similar to values ranging from 94% to 96%, which were in
general higher than that by LDA. Despite the ML approaches showed a higher FAR ranging 21–28%
than that by LDA (~13%), they outperformed in the classification skill measured by PSS. The ML
approaches also demonstrated a useful skill in the detection time, which was 26–30 h earlier than actual
TC formation. The detection time by MLs was even earlier by 5–9 h compared with that by LDA.

The detection performance of the models developed from this study can be compared with those
from existing studies, although an exact comparison may not be possible due to the differences in data
and methods. The average hit rate of 95% by ML adopted in this study is obviously higher than that of
numerical TC forecast models. Multi-model numerical weather forecasts were reported to show an
average of 20% of the conditional probability of hit over the period of 2007–2011 [3], although they
were tested with more strict criteria for the detection of tropical cyclones such as the more limited
allowance of detection time and the genesis location. The results also exhibited a large dependence on
the numerical models tested. By and large the statistical models such as ones used in this study show
a more consistent and reliable performance than the numerical models. In our study, RF and SVM
showed comparable skills, although SVM slightly underpredicted the tropical cyclone formation.

Our results can be compared with the skills from other ML approaches. The DT model in this
study performed 93.5% of HR and 27.9% of FAR, while those from Park et al. [15] showed 95.3%
and 28.5%, respectively. Although both studies used the identical DT algorithm, the previous study
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tested with fewer samples compared with the current study. The overall accuracy of classification
by Zhang et al. [16] using DT was 84.6%, which was slightly lower than that from this study (~95%).
The skill difference seemed to be partly related to the difference in the number of samples, where
Zhang et al. [16] used approximately 2000 samples while this study used 1000 samples or more. The
lead time for detecting TC formation by DT was 26 h in this study, which was comparable to that by
Zhang et al. [16] with 24 h. Another reason for skill difference seemed to be related with the selection
of predictors, where Zhang et al. [16] used large-scale environmental predictors derived from global
atmospheric reanalysis and SST while this study used the direct information for disturbances in terms
of their surface wind and rain rate.

Due to the complexity of RF- and SVM-based algorithms, they are difficult to visualize in terms of
decision rules in detail. One can examine the relative importance of each input variable, instead, to
identify the important dynamical or physical characteristics in the TC formation. DT and RF commonly
revealed that the wind intensity average (wind_ave) and the degree of symmetry (wind_cv_fix) in the
ocean-surface wind pattern near the disturbance center were the most critical predictors, even though
their training procedures were independent. In the LDA model, the linear equation was composed with
the degree of the strong wind organization (wind_pladj) in addition to the foregoing two variables.

The lead time how early the model can predict the TC formation depends strongly on the time of
data availability. This study used the polar-orbiting satellite observations which were often missing or
too late for detecting the formation potential. There are at least two ways for further advancing TC
genesis prediction time such as 1) to advance the first observation time over a disturbance by utilizing
other sources of ocean surface wind measurements such as the ASCAT [59] and 2) to advance the
first time by developing an algorithm using a geostationary satellite for continuous monitoring of
tropical disturbances.

The comparison among the three ML approaches revealed a slight difference in the performance.
SVM exhibited less FAR compared with the other ML approaches, although all showed comparable
skill in terms of HR. The results are consistent with previous studies [19,36] in different application also
showed that RF performed better than DT. However, it is admitted that our result is still preliminary in
terms of limited sample datasets from satellite. More extensive studies are required for the performance
comparison between ML approaches, once more data are available in the near future.

5. Conclusions

This study constructed the TC formation detection models independently using the identical
dataset but differing the algorithm based on LDA and the three ML approaches—DT, RF, and SVM. The
primary purposes of this study were to evaluate the overall performance of each model depending on
the sample datasets, and to examine if ML approaches would outperform the conventional LDA-based
statistical method. Eight predictors quantifying the potential of TC formation were derived from
the WindSat surface wind and rain rate observations over 1325 tropical disturbances in the western
North Pacific during 2005–2009. The sample dependence was extensively tested by cross-validation
with multiple sets of calibration and validation datasets for five-year WindSat observations. The
performance skill was measured using HR, FAR, and PSS based on a 2× 2 contingency table, and the
detection lead time.

Overall, the ML algorithms showed better performance with significantly higher hit rates (~95%)
compared with that from the LDA-based model (~77%), although false alarm rates were slightly higher
in MLs (21–28%) than that by LDA (~13%). Combining HR and FAR, the ML approaches showed
higher PSS than LDA. In addition, the detection time of TC formation by the ML algorithms was as
early as 26–30 h before the actual time of TC formation, and it was also 5 to 9 h earlier than that by
LDA. The models showed large variation in detection skills and the lead time depending on the tested
sub-samples, presumably due to the limitation in sampling from the orbiting satellite. Nevertheless,
the detection skill was less dependent on the ML algorithms, showing relatively small skill differences
across MLs. The result obtained from this study demonstrates well that the ML approach provides
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skillful detection of TC formation with high accuracy and ahead of time before the actual TC formation,
and the approach could be practically useful for operational use, compared with conventional linear
approaches or numerical forecast models.

In operation by official TC centers, designating tropical cyclones remains quite subjective
depending on individual forecaster’s decision. Although the subjectivity in declaration could be
important and helps explain potentially complex variable interactions based on an expert’s own
intuition and long-term experiences, the subjective forecast is often incoherent and difficult to make
systematic improvement in the forecast skill. Officially, the U.S. JTWC initiates the warning of TC
formation when a tropical disturbance develops into the category of tropical depression, in which
“the maximum sustained surface wind speed (MSW)” within “a closed tropical circulation” meets or
exceeds 13 m s−1 in the North Pacific (http://www.usno.navy.mil). The ML methods approached in this
study all make use of the wind intensity average and the degree of symmetry. From the perspective
of using wind intensity, it is consistent with the conventional operation. What is different is that the
current ML-based methodology based on the WindSat observations uses the area-averaged wind speed
rather than MSW. The MSW is an important metric to identify TCs at many warning centers such as
JTWC and US National Hurricane Center. Although it is useful to characterize the stage of development
of tropical disturbances with no dependence on the storm size and shape by definition, this maximum
wind speed at a local point may contain large errors and uncertainties in the satellite-based wind
estimation. Alternatively, the area-averaged wind speed is used to minimize satellite retrieval errors as
used in the current study, and it makes the forecast system be more objective in declaring TC formation.

Based on our cross-validation results, this study suggests that an application of ML approaches
provides a detection model for TC formation with better accuracy and with more extended forecast
lead time compared with the conventional LDA-based model, regardless of the ML algorithms.
This indicates that MLs have an advantage for earlier detection of TC formation. However, further
investigations are needed with various sources of remote sensing observations (e.g., cloud, atmospheric
temperature sounding, and precipitation signals both from microwave and scatterometer) to explore
the full advantages in the ML models, rather than a single satellite observation of low-level circulation
and precipitation by WindSat.
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Abstract: Debris flow disasters pose a serious threat to public safety in many areas all over the
world, and it may cause severe consequences, including losses, injuries, and fatalities. With the
emergence of deep learning and increased computation powers, nowadays, machine learning
methods are being broadly acknowledged as a feasible solution to tackle the massive data generated
from geo-informatics and sensing platforms to distill adequate information in the context of
disaster monitoring. Aiming at detection of debris flow occurrences in a mountainous area of
Sakurajima, Japan, this study demonstrates an efficient in-situ monitoring system which employs
state-of-the-art machine learning techniques to exploit continuous monitoring data collected by
a wireless accelerometer sensor network. Concretely, a two-stage data analysis process had been
adopted, which consists of anomaly detection and debris flow event identification. The system had
been validated with real data and generated favorable detection precision. Compared to other debris
flow monitoring system, the proposed solution renders a batch of substantive merits, such as low-cost,
high accuracy, and fewer maintenance efforts. Moreover, the presented data investigation scheme
can be readily extended to deal with multi-modal data for more accurate debris monitoring, and we
expect to expend addition sensory measurements shortly.

Keywords: disaster monitoring; wireless sensor network; debris flow; anomaly detection; machine
learning; deep learning; accelerometer sensor

1. Introduction

Debris flow is a generic term describing the geological hazard that a large volume of a highly
concentrated viscous water–debris mixture rapidly flows downward of the hillslope. The phenomena
cause considerable damage throughout the world because it happens all of a sudden, destroys all
objects in the paths, and often strikes without a sign. Extensive research efforts have been carried out
to investigate debris flow from various aspects, such as material properties, movement mechanism,
and velocity [1], to achieve better disaster prevention and management. As a result, the most widely
accepted classification of debris flow has been developed [2], which expresses debris flow as a sediment
mixture of rocks, mud, and water flows rapidly flush a gully bed. Mountainous regions in Japan
are susceptible to debris flows, owing to the geographical features [3]. According to the report of
Ministry of Land, Infrastructure, Transport, and Tourism of Japan (MLIT), debris flow counts had
almost doubled over the past decade, i.e., jumped from 154 to 305 counts per year, which has caused
considerable loss of life and property [4]. Moreover, this trend is anticipated to continue in the future
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attribute to the urbanization process and abrupt climate change. As a result, in line with the demand
for disaster risk management, development of debris flow monitoring and early warning systems had
been a long-standing and challenging research theme through decades in Japan [5].

The ultimate objective of debris flow monitoring is to make time for taking practical actions
such as road closures and evacuations before disaster strikes the hazardous areas. Nowadays, debris
flow monitoring systems can be generally subdivided into two classes: 1. Pre-event warning systems
and in-progress early detection system.s The first category commonly performs statistical modeling
over geographic information system (GIS) data, including air, land and many other climate related
observations to predict the debris flow occurrence [6]. A warning would be issued while the estimate
exceeds a certain threshold before debris flow arrival. 2. On the other hand, it is commonly based
on another group of sensors installed onsite; and the system is designated to process the streaming
data in (near) real-time and raise the alarm immediately once debris flow being detected [7]. Clearly,
a pre-event warning system can win more time to avert the disaster. Nevertheless, the latter in-situ
monitoring system is superior due to lower false alarm rates.

Currently, with the aid of advanced machine learning and the Internet-of-Things (IoT), more
attention has been drawn to in-progress monitoring which allows immediate/dynamic disaster
information reporting to public safety officials and local inhabitant. An overview diagram of
in-situ debris flow monitoring system is shown in Figure 1, which commonly includes monitoring
data collection/transmission hardware and a data analysis unit for debris flow event detection.
A comprehensive set of sensors, such as rain gauge [8], X-band MP Rader, geophone [9], ultrasonic
water level transmitter [10], wired sensor [11], had been evaluated for the task. The sensors are
usually installed along the mountain slopes to capture debris flow-induced variations exhibited in
the measurements. Robust communications is another critical part that enables the collection of
streaming data. Wireless sensor network (WSN) is acknowledged as a viable solution according to
the latest literature [11,12]. Subsequently, statistical machine learning algorithms are employed to
analyze the captured sensory data to discern specific pattern arises by debris flow. The storage and
processing of large volumes of monitoring data are perhaps the biggest challenges throughout system
development [13]. Advancements in computing hardware and statistical machine learning algorithms
have given rise to possible solutions to characterize the massive sensory data and generate decision
supports in (near) real-time [14]. Concretely, data mining tools and techniques commonly convert
the raw sensor data into a compressed representation with significant information well retained,
such as summary statistics derived from time-series data [15], and Fourier and Wavelet spectrograms
extraction for image/audio data [16]. At debris flow detection stage, various statistical machine
learning techniques have been adopted to exploit the particular debris flow-induced patterns with the
extracted feature representations, including support vector machine (SVM) [17], decision trees [18],
and artificial neural networks (ANN) [19]. According to empirical studies, advanced machine learning
methods are deemed to be well suited to handle the multivariate sensor data, which usually exhibits
wide variability and complex non-linear distributions [20].

…

Figure 1. Overview diagram of in-situ debris flow monitoring system.
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This study aims at developing an in-situ debris flow monitoring system which integrates advanced
machine learning techniques to process massive data captured by the wireless accelerometer network.
We summarize the key features of the proposed debris flow monitoring network as follows.

† Hardware design. Sensors play a vital role in debris flow monitoring. This study presents a
novel design of vibration sensing device which equipped with a triaxial sensor, self-contained power
unit with a rechargeable battery and solar panel, and the wireless communication unit. All components
are available on the open market, and thus, the total price of one sensing unit is lower than 100 dollars.
In the debris monitoring network design, we deployed 20 sensors covering a hazardous area of Nojiri
river No.7 dam at Sakurajima, Japan. Through a wireless network, the sensing data were transmitted
to a remote computer for further event-based investigation. The total hardware cost is substantially
lower compared to other existed methods, such as wire sensor which demands high expense on wiring
installation and maintenance. Section 3.1 presents the details related to hardware development.

† Data investigation framework. To deal with massive sensor data efficiently, we proposed a
two-stage data processing flow, including anomaly detection phase and debris flow induced pattern
identification phase. The first stage is designated to screen out a large volume of monitoring data
contains no intensive dynamics induced by environmental hazards. It is noteworthy that there exists
one critical issue that heavy rain and strong wind can arise significant displacement of accelerometers
in addition to debris. To suppress false alarms, we perform a further investigation on the ‘suspicious’
data by using a deep learning algorithm to characterize the specific data patterns generated by debris
flow. To our best knowledge, it is the first attempt to introduce deep learning technique to debris flow
monitoring.

† Accelerometer data fusion. The above-introduced monitoring data gathering and analysis
process work in parallel on every channel of sensor output. Aggregation of multi-sensor data turns
out to be an efficient way to achieve more accurate and robust disaster monitoring. To this end, we
proposed a multi-sensor information fusion scheme, and the details are shown in Section 3.2.4.

The paper is structured as follows: Section 2 provides an introduction to studied area and disaster
background. Section 3 introduces sensing hardware design and data investigation framework for
debris monitoring. Next, Sections 4 and 5 outline the results of the case study with discussions. Finally,
Section 6 presents the concluding remarks.

2. Overview of the Study Area

The study area is located in a mountainous region near Nojiri river No.7 dam of Sakurajima,
which is an active volcano situated at 31◦35′ N, 130◦30′ E in the southern tip of Kyushu Island, Japan
and we present an overview of the area in Figure 2. Sakurajima is 12 km long in the east–west direction
and 9 km wide from north to south. It is a land-connected island with an area of about 80 km2 and the
circumference of 50 km. A particular characteristic of Sakurajima’s debris flows is that the presence of
large volumes of accumulated volcanic ash on the steep mountain slopes results in many debris-flow
disasters even when only a small amount of rainfall occurs. There had been plenty of efforts devoted
to managing the risk of debris flow at Sakurajima, such as deployment of multiple monitoring sensors
including wire sensor, optical sensor, and the acoustic sensor for the disaster detection. Meanwhile,
surveillance camera monitoring and mud-sampling are carried out as routine operations [5]. This study
attempts to devise a low-cost monitoring system while retaining high accuracy in debris flow detection.
Figure 3 shows two surveillance camera snapshots depicting the situation of non-hazardous and debris
flow strikes, respectively. It can be seen that even the rain is not very heavy, volcanic ash piled on the
steep mountain slopes is easily tuned to debris flow and traveled downhill to small basin areas.
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Figure 2. The map of study area: the debris monitoring site at Nojiri river No.7 dam (left). Sakurajima
island (middle). Location of Sakurajima in Japan (right).

Figure 3. Snapshots of monitoring camera: before (left) and during (right) debris flow.

3. Materials and Methods

3.1. Design and Implementation of the Debris Flow Monitoring System Hardware

In this section, we demonstrate the sensing hardware system which lays the fundamentals of
this research, which consists of three major parts: triaxial vibration sensor design, sensor deployment
scheme over the monitoring area of Nojiri river No.7 high dam, and, wireless communication
system settings.

3.1.1. Triaxial Accelerometer Sensing Unit

Figure 4 illustrates the internal design of accelerometer implemented through this study, which is
composed of three major components. We introduce those the detail of each part as follows. The power
supply has been a long-lasting issue, especially for monitoring systems. In the current design, we expect
the system to operate in a self-contained manner with the battery and solar power generator equipped.
To this end, three standard 18,650 lithium batteries were used, which reach up to 40 Wh total capacity;
meanwhile, we equipped a solar panel rated at 1.5 kWh per day. The operation power consumption is
10 mW, and thus, a vibration sensing unit can work continuously up to two weeks after fully charged.
The selection of triaxial vibration sensor is another critical matter to the hardware system. We choose
ADXL312 accelerometer developed at Analog Device Inc. At the wireless data transmission stage,
we set the carrier band to 920 MHz with GFSK modulation mode. The sampling frequency was fixed
to 50 Hz, which had been proved to be reliable for real-time data transmission even under hostile
environment conditions.
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Battery and power unit

Antenna 
connector

Triaxial Accelerometer

Figure 4. Internal design (left) and exterior look (right) of accelerometer unit.

3.1.2. Sensor Deployment Map

In the system design, debris flow monitoring is performed over an accelerometer network
with a series of distributed sensing nodes, each of which has data capture and communication
capabilities. Since the accelerometer unit dedicated to this task is not pricey, we are able to distribute
a batch of sensor nodes to achieve full coverage of the terrain monitored for regional vibration
information characterization. It is noteworthy that the positions of nodes can significantly affect
vibration observation, such as sensors located in a high place are more vulnerable to wind and rain
effects. Based on this consideration, we placed sensing units at both high or low places along the dam
tunnel to capture specific vibrations arise by debris flow progress and suppress environmental noises
as well. The detailed installation map is shown in Figure 5.

Nojiriri river r NooNo.7 7 7 dam m at Sakurajima

Figure 5. The deployment map of monitoring sensors, in which accelerometer sensors are marked with
white circles.

Figure 6 shows examples of 5 min vibration data clips collected by monitoring accelerometer
networks regarding environmental conditions. It is evident that the patterns, i.e., waveforms
(first column, red/green/blue colors represent x-/y-/z-axes) and time-frequency representations
(spectrogram) (2nd to 4th column for the triaxial data, respectively), are different—the first row of
normal data contains no environmental impact but only accelerometer sensor noise. In the middle
row, we can see raindrops would lead to active impulsive variations to monitoring signal. The last
row demonstrates debris flow induced data pattern. As the watery and rocky mud flowing down hills
and through the dam tunnel, intense vibration can be sensed. Those differences laid the foundations
for automatic disaster identification. Besides, to cope with environmental interferences, we devise an
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efficient fusion method to aggregate critical debris flow-related information from all sensing nodes.
The sensory data analysis system is introduced in the following section.

Figure 6. Examples of sensory data with respect to different environmental stimuli. The leftmost
column shows raw waveforms with red, green and blue indicating x-/y-/z-axis, respectively. Also
spectrogram (time-frequency distribution) plots of triaxial data are presented from 2nd to 4th column.

3.2. The Proposed Debris Flow Detection Algorithm

Within the context of debris flow monitoring, efficient content-level interpretation of input
vibration data is the most critical step. Content/event retrieval from accelerometer data series had been
a long-standing research theme in the field of signal processing and machine learning, such as in health
care [21] and security fields [22]. We demonstrate the vibration data mining approach developed for
debris flow monitoring in the following content.

Current accelerometer data investigation systems commonly have two major components:
1. Efficient feature extraction which converts the raw (dense) data to a compact form with discriminant
information well retained to the task. 2. Statistical machine learning algorithms which are employed to
perform content-based retrieval using extracted features. The latest advancement in machine learning
techniques, which enables to characterize nonlinear relationships and interactions between multivariate
data adequately, had been successfully adopted for modeling observations and measurements in
various environmental fields such as hydrological forecasting [23] and satellite data processing [24].
In this study, we develop state-of-the-art machine learning algorithms to deal with multi-channel
vibration data streams, and the overview diagram is presented in Figure 7. Concretely, first, we perform
anomaly detection of the overall sensory data to get rid of a large volume of normal data that carry
non-hazardous information in an unsupervised manner. Notably, there exists one major drawback
in the first-round screening which cannot distinguish debris flow induced sensory data patterns
from the ones generated by strong wind and heavy rain; and thus, we further devise a second-stage
classification that identifies debris flow induced patterns among others. At this stage, we conducted
an extensive comparative evaluation on a series of efficient machine learning algorithms, including
logistic regression, support vector machine (SVM) [25] and deep neural networks [26], on real data
and the results are exhibited in the validation section.
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Figure 7. The proposed two-phase accelerometer monitoring data investigation framework.

Before entering into the details of machine learning algorithm design, let us explain mathematical
notions. The triaxial data gathered from c-th accelerometer sensor at t time frame is noted as
sc

t = [sa, sb, sc]′t,c, where a, b, c denotes the triaxial measurements, respectively. To characterize the
continuous time-series data, we segment the data by using sliding windows with T data points.
The resultant i-th clip can be expressed as xc

i = [sc
1, sc

2, ..., sc
T ] for the sake of brevity. Meanwhile,

we perform error checking on sensor data to eliminate sensor faults. The resultant data clips are fed to
the above-mentioned two-stage data investigation process for debris flow event identification.

3.2.1. Feature Extraction from Accelerometer Data

Feature representation plays a critical role in event-based accelerometer data interpretation, i.e.,
discerning debris flow-induced patterns, among others. As shown in Figure 6, different environmental
stimuli, such as rain and debris flow, induce specific signal patterns, and feature extraction methods
are employed to characterize the signal by using statistics and probabilities. Concretely, the primary
purpose of accelerometer feature extraction is to find a set of characteristics such as, stationary property,
entropy as a measure of uncertainty, summary statistical attributes of an interquartile range, which
can adequately capture discriminant information presented in the observation window. Based on
previous studies of accelerometer data mining [27], we established a vibration data feature library
dedicated to the debris flow identification task. Table 1 demonstrates the detail list of the features and
we extract 12 types of time domain features from triaxial data waveforms. Moreover, to exploit the
physical displacement patterns of the sensor, we examine the cross-relational effects of different motion
axes, i.e., taking cross-correlation of binary combinations of a-, b-, and c- into account as features.
Time–frequency analysis is another efficient method to accelerometer pattern analysis [28], which is
preferable to get rid of noises stay at a specific band. In this study, we extracted two types of spectral
features for vibration data analysis. As a result, given one segmented data clip noted as xc

i , we obtain
a series of characteristic features through the methods shown in Table 1. Then, we concatenate all
feature values as the vector. In this study, the extracted feature is denoted as fc

i where c is an index of
sensor channel, and i represents ordinal number along time, respectively.
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Table 1. Feature list for accelerometer data characterization.

Accelerometer Features for Debris Flow Monitoring

Feature Type Feature Name Description

Time domain 1. Root mean square (RMS) RMSc =
√

1
T ∑ s2

t,c, t ∈ [1, T]

2. Mean absolute deviation (MAD) MADc = 1
T ∑T

1 st,c − μc, μc =
1
T ∑ st,c

3. Interquartile range (IQR) Descriptive statistics as the difference
between 75th and 25th percentiles

4. Tilt of the sensor tilt1
c = 1

T ∑ |sa
t |+ |sb

t |
tilt2

c = 1
T ∑ |sa

t |+ |sc
t |

tilt3
c = 1

T ∑ |sb
t |+ |sc

t |
5. Tilt ratio (TR) of the sensor TR1

c = tilt1
c /|sc

t |
TR2

c = tilt2
c /|sb

t |
TR3

c = tilt3
c /|sa

t |
6. Magnitude area (MA) MAc =

1
T ∑ |sa

t |+ |sb
t |+ |sc

t |
7. Motion intensity (MI) MIc =

1
T−1 ∑T−1

t=1 |sc
t+1 − sc

t |
8. Maxima/Minima (M2M) M2M =max(s2

t,c)/min(s2
t,c), t ∈ [1, T]

9. Binned distribution (BD) For input data, first calculate the range (R)
as maximum–minimium; then, R is divided
into 15 equal size bins which records the
fraction of data values falls in.

10. Zero cross rate (ZCR) Zero-crossing count of the waveform

11. Cross-axes correlation (CC) Calculated for each pair of axes as the ratio
of the covariance and the product of the
standard deviations.

12. Descriptive statistics entropy, skewness and kurtosis

Spectral domain 13. Average band power (ABP) Compute time-average of spectrogram
of data

14. Band standard deviation (BSD) Compute standard deviation of each band
along within observation window

3.2.2. Data Analysis Phase 1: Anomaly Detection

In general, debris flow monitoring is to find a particular event of interest that sparsely
superimposed in the continuous observation context. From this aspect, the monitoring data is
anticipated to be highly redundant since the majority renders no hazardous information at all.
To eliminate the data irrelevant to disaster monitoring with high efficiency and low computation
cost, we employ the subspace method that is favorable for various anomaly detection tasks [29].

Subspace method characterizes the highest variance of a multi-dimensional dataset by using a
lower dimensional linear subspace defined by a set of orthogonal eigenvectors. According to Figure 6,
the normal data that contains no environmental stimuli commonly exhibit stationary characteristic,
which can be effectively modeled by a subspace. On the contrary, heavy rain and debris flow can
lead to a higher variability signal that may not reside in the subspace. Anomaly detection can be
carried out by investigating deviation from input signal to the predominant pattern subspace. That is,
the first k principal components returned by eigendecomposition of the data covariance matrix are
used to form a “predominant pattern subspace,” since it captures the major patterns of normal data.
During anomaly detection, all normal data tends to have almost zero length projection on the normal
subspace. On the other hand, abnormal data induced by environmental impacts will exhibit significant
deviations. We introduce the computational procedure as follows, and it begins with the computing
correlation matrix of the input feature series Fc = [fc

1, ..., fc
n, ..., fc

N ]:
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CD =
1
N

N

∑
n=1

fnf�n , (1)

then, eigen decomposition is performed:

λv = CDv. (2)

Let P = [v1, ..., vK′ ] denotes subspace accommodating predominant textures, which is composed
of K′-th eigen vectors with highest eigenvalues. K′ is determined by contribution rate which is defined
as η′

K = ∑K′
k=1 λk/ ∑K

k=1 λk. Given input feature vector finThe deviation distance to subspace can be
computed by:

hin = fin
�fin − fin

�PP�fin. (3)

By examining the deviation distance hin, we are able to detect outliers in the accelerometer data.
Concretely, normal data, due to stationary characteristic, will generate quite low hin. In contrast,
intense vibrations aroused by environmental impacts will introduce distinct hin values; therefore,
hin can be treated as an anomalous score indicating some event may happen regarded to monitoring
area. By performing simple thresholding with a defined threshold τ and a gating function g(·),
we can convert continuous series of hin to discrete indexes, where 0 and 1 indicate normal and
abnormal, respectively:

g(hin) =

{
1 hin ≥ τ

0 otherwise
(4)

Above processing can be performed on each channel of sensor measurements, and then we further
integrate individual judgment to produce overall output. The fusion rule is straightforward here
that we employ logical AND overall channel’s anomaly detection results. In other words, we adopt
a hypothesis that debris flow would generate significant displacements to all monitoring sensors
installed along banks of the dam; and we had validated such assumption on real data. As a result,
the anomaly detection algorithm screens out a large portion of non-hazardous data.

However, one significant issue remained in the current result, that is, by using subspace method,
both debris flow and other extreme weather conditions such as heavy rain and strong wind will lead
to high hin values, and hence, a further distinction can not be made. To tackle debris flow identification
problem, we devised a second-stage pattern analysis process.

3.2.3. Data Analysis Phase 2: Debris Flow Identification

This section demonstrates the machine learning algorithm employed to discern the particular
debris flow-induced signal patterns among others. Recently, deep neural networks have emerged
as a series of learning models that are quite efficient to characterize complex/high-level abstractions
from raw data [26]. The architecture is composed of multiple layers which perform the nonlinear
transformation on the outputs of previous ones so that a hierarchy of computation interprets input data
from low-level raw data values to high-level concepts. Deep learning models had achieved remarkable
results in computer vision, and speech recognition [30], it has also been exploited for accelerometer
data investigation under the context of human activity recognition [31]. In this study, we introduce
deep convolution neural networks (CNN) to investigate the accelerometer signal for debris flow
identification, by which convolution operators are designated to deal with two-dimensional data, such
as vibration data spectrogram (time-frequency distribution) shown in Figure 6. Moreover, Figure 8
shows detail architecture of the proposed learning model which is composed of 5 convolution layers
(conv1 ∼ conv5), one full connected layer (fc6) and a classification layer (cl7). First, we denote the
computation model of deep neural networks as function H(·), which encodes hierarchical structures.
The mechanism of information propagation between layers, e.g., from k − 1 layer to k, complies with
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the same principle that performs convolution operation to obtain a convolved feature map. The process
can be expressed as follows:

h(k) = g(b(k) + W(k)h(k−1)) (5)

c
v

c
v

Figure 8. Flow chart of the deep convolution neural network applied for accelerometer data investigation.

It is noteworthy that the g(·), named as activation function, plays a critical role. We employ
Rectified linear unit (ReLU), defined by g(ρ, a(k)) = max(0, a(k)) + a(k)min(0, ρ), owing to two facts:
1. the embedded linear transform can effectively tackle gradient vanishing problem during model
updates. 2. The formula encourages sparse activations, which can further suppress overfitting. Batch
normalization (BN) is another efficient trick to facilitate deep learning and thus is adopted as a standard
process. Furthermore, to avoid the model overfits to training data, at a full connected layer (fc6),
we perform dropout on 40% weight of the whole deep model. Other key hyperparameters, such as
convolution kernel size, resultant feature map size, and the number of filter banks are also presented
in Figure 8.

The neural network training scheme is a vital issue throughout learning system development.
We present a general training algorithm pseudo code in Algorithm 1 where ∂L

∂θ is the derivative
induced by the loss of training data, ε is called the learning rate that governs the network update
step/speed. From the diagram, we can see the prediction error is iteratively minimized by performing
stochastic optimization, and we apply Adaptive Moment Estimation (ADAM) [30] due to the high
processing efficiency and low memory usage. It is noteworthy that the data collection is assumed to
highly imbalanced that usual observations greatly exceed the number of samples data with debris
flow presence. In such scenario, classification rule that predicts the small classes tend to be rare,
undiscovered or ignored; consequently, test samples belonging to the small classes, i.e., debris
flow-induced patterns, are misclassified more often than those belonging to the prevalent classes.
To deal with this issue, we employ penalized classification that imposes an extra cost on the model for
making classification mistakes on the minority class (debris flow) during training [32]. The penalization
weights for three classes of normal, rain or wind, and debris flow are set to [0.1, 0.2, 0.7], and it will
guide the model to make fewer mistakes on debris flow classification throughout the training. In a
practical scenario, the pre-trained deep learning system extracts critical information regarding disaster
occurrence from the spectrogram of vibration data and then computes the probability of debris flow
presence by using softmax function (cl7 layer). Furthermore, to validate the proposed approach,
we performed the extensive experimental comparison between the proposed approach with various
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conventional machine learning algorithms, including Logistic regression (LR), regularized discriminant
analysis (RDA) and support vector machine (SVM) [29].

Algorithm 1 Neural Network Training with back propagation

1: procedure TRAIN NEURAL NET(Mt, yt, Wt) � t=0
2: Initialization :W, θ

3: for t = 1, 2, ..., T do

4: Perform forward propagation :ŷt = H(Mt, WH(θ))
5: Compute the class − wise penalized prediction loss :L(yt, ŷt)

6: Update weights via back propagation :θt ← θt−1 − ε ∂L
∂θ

7: return WH(θt)

3.2.4. Efficient Sensor Fusion Scheme

Aiming at incorporating multi-channel sensory information for better debris flow monitoring,
we adopt an effective computational scheme to exploit varying (relative) contribution concerning the
sensor deployment locations. Fundamentally, the idea stems from the fact such as a sensor installed at
a higher place is more susceptible to wind noise compare to the ones stay at lower regions; and thus
it could be preferable to perform weighted averaging compared to arithmetic averaging. Precisely,
we firstly define fusion rule through convex combination as follows:

yFUSION =
1
C

C

∑
1

αc × yc, 0 ≤ αc ≤ 1 , (6)

where yc denote the judgment score estimated at c-th channel data. αc is the contribution weight with
respect to its location (indexed by c). The parameter of αc can be inferred at validation stage during
model training by using linear programming optimizer:

arg min
c

1
N

N

∑
n=1

(yn − (
1
C

C

∑
1

αc × yc))
2,

C

∑
c=1

αc = 1. (7)

4. Results

4.1. Data Collection and System Settings

To validate the proposed system for debris flow monitoring, we collected accelerometer data from
the 3 June to the 4 July 2017. Onsite rain gauge and anemometer had been used to monitor weather
condition. Besides, we applied wire sensors together with a surveillance camera to generate ground
truth annotations for debris flow occurrence. Wire sensors can detect the time of debris flow strikes
according to the level of the highest wire that has been broken by the flow. In Figure 9, we present three
snapshots of monitoring camera showing wire sensor utility. Then, upon an investigation of both wire
sensor output (time stamps of wire cut) and video clips, we collect the begin/end time annotations of
debris flow occurrence, which are presented in Table 2.

Figure 9. Snapshots of wire sensor utility. The conditions of before/during/after debris flow strikes
are shown from left to right, respectively.
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Table 2. Details of debris flow occurrence.

Case Start Time End Time2

1 7 Jun 2017 16:21:00 7 Jun 2017 17:00:00
2 20 Jun 2017 16:35:00 20 Jun 2017 18:05:00
3 24 Jun 2017 19:03:01 24 Jun 2017 20:05:00

Subsequently, we show the parameter settings of the proposed monitoring system. The sampling
frequency of accelerometer data was set to 50 Hz, and streaming data analysis window length is fixed
to 5-min. At the anomaly detection stage, the contribution rate η′

K is set as 0.99 to construct the normal
vibration pattern subspace. To produce spectrogram of vibration data clips, we set the Fourier analysis
window length to 1024 with 3/4 overlapping. To classify the input spectrogram of accelerometer
data, we employ a deep convolution neural network (CNN) demonstrated in Section 4.3. During
model training, we set the initial learning rate and mini-batch size as 1.0 × 10−3 and 96, respectively.
To avoid overfitting, we employ L2 regularization with the regularization parameter set to 0.01; and
the maximum updating epoch was set to 40. Besides, as suggested in many previous studies, the
momentum parameter is set to 0.9 in stochastic gradient descent optimizer. At the evaluation stage,
we performed a particular case of cross-validation called Leave-one-debris flow-out (LODO) scheme.
Concretely, at each validation iteration, only one time of debris flow data is used for testing; while the
model is trained on all the other debris data collections. As iteration goes, all the debris flow-induced
vibration data can be tested. As a result, we obtain the predicted labels to the whole dataset.

4.2. Anomaly Detection Result

This section covers the anomaly detection results for debris flow monitoring. We first present
the wind and rain gauge data collected from 3 June to 4 July in Figure 10a,b, respectively. Those
climate observations are essential because rainfall event had been deemed to be a significant factor
that triggers a debris flow at Sakurajima [5]. Moreover, during the period three debris flow occurred,
which were highlighted with pink color. By examining the data, we can see that heavy rain and
strong winds often hit together; furthermore, we find that rain falls are necessary for inducing a
debris flow, but not sufficient, such as in the case on 10 June. Such fact suggests that rain/wind gauge
data cannot provide adequate information for debris flow prediction. Figure 10c shows the anomaly
detection result generated by the algorithms demonstrated in Section 3. The whole dataset includes
8835 clips with 5-min length. According to the detection result, 619 segments are marked as suspicious
of debris flow occurrence. As a result, the proposed anomaly detection scheme achieved a favorable
93% redundant data reduction without missing any debris flow occurrence. It is noteworthy that there
existed much of false alarms which are resort to hostile weather conditions. To suppress such issue,
we carry out further content-based classification with machine learning.
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Figure 10. Anomaly detection result for debris flow monitoring, confirming with environmental
conditions.

4.3. Debris Flow Identification Performance

Aiming at achieving high precision debris flow-induced vibration data pattern recognition, we
conducted an extensive experimental comparison between conventional statistical classifiers and
the devised deep learning model. It is noteworthy that those supervised algorithms require both
data set and corresponded data labels. To this end, we investigated surveillance video data and
assigned 3-valued class labels, in which label 1, 2 and 3 represent regular pattern, raining/wind,
and debris flow occurrence on each 5 min data clip, respectively. We applied the convolution neural
network demonstrated in Section 3.2.3 to assess the data membership belonging to the three categories.
Subsequently, multi-accelerometer score fusion is applied, as explained in Section 3.2.4. We present
the prediction results (fusion score) and data annotations on all 619 data clips in Figure 11. It is
evident that debris flows can be discerned with a higher fusion scores ranging from 2 to 3. In contrast,
non-hazardous data will get fusion scores lower than 2. Upon such observation, we further set the
threshold to 2 on fusion score series for debris identification with binary outputs.
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Figure 11. Validation of debris flow identification result, in which the scores above 2 indicate debris
flow occurrence.

Moreover, to demonstrate the effectiveness of our approach, we conducted extensive comparison
studies by using various feature/classifier combinations for the task. Precisely, in addition to adopting
spectrogram of accelerometer data classification by using convolution neural networks, we evaluated
the conventional approach by using various summary statistical features shown in Table 1 together
with three primary conventional machine learning classifiers, including Logistic regression (LR),
regularized discriminant analysis (RDA) and support vector machine (SVM). As for result comparison,
receiver operating characteristic (ROC) curve was employed to demonstrate both false alarm and
miss detection issues, simultaneously. Figure 12 illustrates all the results under comparison, where
summary stat. indicates using the conventional features shown in Table 1. The comparison results
clarify that using accelerometer spectrogram with CNN model outperformed all other methods with a
significant margin, and thus the effectiveness of the proposed approach had been validated.

Figure 12. Debris flow identification performance comparison between various data pattern
classification methods.

5. Discussion

This study demonstrated that automatic debris flow detection could be achieved by using
low-cost wireless accelerometer networks with an advanced machine learning algorithm. According
to experimental validations, the proposed approach achieved favorable detection performance; that
is, all the three debris flows can be successfully detected. Besides, we investigated the processing
efficiency since the provision of timely and effective debris flow progress information are crucial to
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avoid or reduce the damages. Through evaluation, we confirmed that the developed wireless sensor
networks are able to collect vibration data and transmit the data to local analysis workstation in real
time even under extreme weather conditions. Subsequently, our debris flow detection algorithm is
used to examine the multichannel vibration data clips with a fixed length of 5 min. In other words,
the system can take at maximum of 5 min to analyze the latest data while recording the following
streaming data. We evaluated the proposed algorithm by using a desktop PC with i9-7900K CPU with
128 GB memory and a laptop PC with i7-7500U CPU with 24 GB memory. Both hardware specifications
can complete the data analysis process within a minute. In other words, the system can run for
in-situ early detection of debris flow in a near real-time manner. Besides, with the increase of massive
accelerometer data collection, the data-driven machine learning algorithm, such as deep convolution
networks, is anticipated to achieve superior detection precision. Moreover, in our plan, we also expect
to expand the current system by adding a new type of sensors for high precision and robust debris
flow monitoring.

6. Conclusions

The main objective of this work was to design a computerized debris flow detection system,
which consists of wireless accelerometer network hardware and machine learning algorithms to detect
debris flows with high accuracy in real time. The proposed system renders a batch of favorable features
for debris flow monitoring as follows. First, we devised an efficient wireless triaxial displacement
sensor with a self-contained electrical power supply. The sensor is favorably low-cost and thus,
allows us to perform (dense) sensor net-based debris flow detection. Secondly, monitoring data is
anticipated to be highly redundant since extreme events such as debris flow rarely occur. To get rid of
non-hazardous data efficiently, we extracted a list of statistical features from the massive accelerometer
signal, and then, performed anomaly detection by using the subspace method. Third, we adopted the
latest deep learning scheme to process accelerometer data for precise debris flow identification among
other interferences, including strong wind and heavy rain. Furthermore, we integrated all individual
sensor’s judgment to achieve more accurate and reliable debris flow detection. Experimental results
on real data demonstrated the effectiveness of the proposed debris flow monitoring approach. Besides,
the developed data pattern investigation framework can be generalized to deal with multi-modal
sensory data, such as audio data and geophone signals; and we plan to expand the sensing data source
to enhance the monitoring performance further.
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Abstract: Total precipitable water (TPW), a column of water vapor content in the atmosphere,
provides information on the spatial distribution of moisture. The high-resolution TPW, together with
atmospheric stability indices such as convective available potential energy (CAPE), is an effective
indicator of severe weather phenomena in the pre-convective atmospheric condition. With the advent
of high performing imaging instrument onboard geostationary satellites such as Advanced Himawari
Imager (AHI) onboard Himawari-8 of Japan and Advanced Meteorological Imager (AMI) onboard
GeoKompsat-2A of Korea, it is expected that unprecedented spatiotemporal resolution data (e.g.,
AMI plans to provide 2 km resolution data at every 2 min over the northeast part of East Asia) will be
provided. To derive TPW from such high-resolution data in a timely fashion, an efficient algorithm is
highly required. Here, machine learning approaches—random forest (RF), extreme gradient boosting
(XGB), and deep neural network (DNN)—are assessed for the TPW retrieved from AHI over the
clear sky in Northeast Asia area. For the training dataset, the nine infrared brightness temperatures
(BT) of AHI (BT8 to 16 centered at 6.2, 6.9, 7.3, 8.6, 9.6, 10.4, 11.2, 12.4, and 13.3 μm, respectively), six
dual channel differences and observation conditions such as time, latitude, longitude, and satellite
zenith angle for two years (September 2016 to August 2018) are used. The corresponding TPW is
prepared by integrating the water vapor profiles from InterimEuropean Centre for Medium-Range
Weather Forecasts Re-Analysis data (ERA-Interim). The algorithm performances are assessed using
the ERA-Interim and radiosonde observations (RAOB) as the reference data. The results show that
the DNN model performs better than RF and XGB with a correlation coefficient of 0.96, a mean bias
of 0.90 mm, and a root mean square error (RMSE) of 4.65 mm when compared to the ERA-Interim.
Similarly, DNN results in a correlation coefficient of 0.95, a mean bias of 1.25 mm, and an RMSE of
5.03 mm when compared to RAOB. Contributing variables to retrieve the TPW in each model and the
spatial and temporal analysis of the retrieved TPW are carefully examined and discussed.

Keywords: total precipitable water; Himawari-8 AHI; machine learning; random forest; deep neural
network; XGBoost

1. Introduction

Water vapor, one of the most influential constituents of the atmosphere, is responsible for
determining the amount of precipitation that a region can receive [1]. Total precipitable water (TPW)
is a meteorological factor that shows the amount of water vapor contained in the column of air per
unit area of the atmosphere in terms of the depth of liquid [2]. Although TPW does not represent
the vertical structure of moisture, it describes horizontal gradients of integrated water vapor content.
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Furthermore, the amount of water vapor contained in the troposphere has significant implications
for determining the strength and severity of a severe weather event [3]. Therefore, TPW is one of the
critical variables used by forecasters when severe weather conditions are expected [4].

Himawari-8, Japan’s geostationary (GEO) meteorological satellite launched in October 2014,
includes a primary instrument called Advanced Himawari Imager (AHI). AHI has 16 channels—four
visible (VIS), two near-infrared (NIR), and 10 infrared (IR) channels—with a temporal resolution of
10 min for the full disk (less than 10 min for limited areas) and a spatial resolution of 2 km at nadir
for the infrared channels (less than 2 km for the visible channels) [5]. Unlike low earth orbit (LEO)
satellites, which have limited temporal resolution, GEO satellites can produce data more timely and
frequently. The retrieved high temporal resolution TPW from GEO satellite sensor data can be utilized
to monitor pre-convective environments and predict heavy rainfall, convective storms, and clouds that
may cause serious damage to human life and infrastructure [6–8]. For example, Lee et al. [8] showed
that the 10-min interval measurements from the AHI sensor successfully provided information about
the pre-landfall environment for typhoon Nangka that occurred in 2015.

In the remote sensing field, there are several approaches for the retrieval of TPW from IR channels
of GEO satellite observations, including (1) a physical method using the one-dimensional variational
system, (2) a split-window algorithm, and (3) machine learning algorithms. The physical modeling
based on a nonlinear optimal estimation method has been traditionally used for vertical profiles of
temperature and humidity (T-q profile) [9]. While the TPW derived from the T-q profile retrieved with
a physical method usually has high accuracy, it does not fully use the original resolution information
from satellite observations due to the high computing load. The split-window method is based on a
different absorptive response to the water vapor content at two channels (near 11.0 and 12.0 μm) [10–12].
This method can be classified into the linear approach, look-up table approach, physical approach, and
covariance-variance ratio approach [13–16]. These approaches have limitations which are easily affected
by uncertainties in the surface emissivity, errors in first guess field, and the instrument noise [16,17]. On
the other hand, machine learning approaches such as random forest (RF), extreme gradient boosting
(XGB), and deep neural network (DNN) are capable of predicting the nonlinear relationship between
the parameters [18] when compared to the other methods. Since these approaches have been often
adopted as ways for the fast and reliable calculation of a target variable, various machine learning
techniques have been used to derive TPW from satellite sensor data. For instance, Wang et al. [19]
used a multi-layer perceptron neural network with NIR radiances from Moderate-resolution Imaging
Spectro-radiometer (MODIS) as input to retrieve TPW. Zhang et al. [20] also employed a radial basis
function neural network algorithm using infrared data from the hyperspectral sounder, Atmospheric
Infrared Sounder, to retrieve TPW. Although these machine learning based models have shown good
performance, there has been little exploration in comparison of multiple machine learning techniques
especially for GEO satellite data-based TPW retrievals.

In this study, machine learning based approaches for the retrieval of TPW from GEO satellite
data over clear sky pixels are proposed. The objectives of this study are to (1) develop the TPW
retrieval algorithms from Himawari-8 AHI data using RF, XGB, and DNN over Northeast Asia, (2)
quantify and examine relative variable importance and contribution by model, and (3) analyze the
temporal and spatial distribution of the errors compared to ERA-Interim in Northeast Asia for 2 years.
Section 2 describes the study area and data used for the algorithm development and Section 3 explains
the retrieval methods (RF, XGB, and DNN) based on the machine learning approaches. Variable
importance, validation results, and discussion are described in Section 4. The conclusions are presented
in Section 5.

2. Data

Himawari-8 launched on October 7, 2014 carries out a meteorological mission on a GEO orbit
(centered on 140.68◦E). The considerably improved AHI sensor in temporal, spatial, and spectral
resolutions over its predecessors is now better suited for nowcasting and has improved the accuracy of
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numerical forecasts [21]. AHI has a total of 16 spectral channels (0.47–13.3 μm) consisting of VIS, NIR,
and IR—short-wavelength infrared (SWIR), mid-wavelength infrared (MWIR) and thermal infrared
(TIR) channels (Table 1). AHI collects data every 10 min from the full disk and every 2.5 min from
the north-eastern and south-western areas of Japan. The brightness temperature (BT) data from
Himawari-8 AHI infrared channels are used as input variables to develop machine learning-based
models to retrieve TPW.

Table 1. Himawari-8 Advanced Himawari Imager (AHI) specifications.

Channel Number Central Wavelength (μm) Band Width (μm)
Spatial Resolution at

Sub Satellite Point (km)

1 0.47 0.05 1
2 0.51 0.02 1
3 0.64 0.03 0.5
4 0.86 0.02 1
5 1.6 0.02 2
6 2.3 0.02 2
7 3.9 0.22 2
8 6.2 0.37 2
9 6.9 0.12 2
10 7.3 0.17 2
11 8.6 0.32 2
12 9.6 0.18 2
13 10.4 0.30 2
14 11.2 0.20 2
15 12.4 0.30 2
16 13.3 0.20 2

ERA-Interim, the reanalysis of the global atmospheric dataset, has been released by the European
Centre for Medium-range Weather Forecasts (ECMWF). The data have been continuously updated
and provided since 1979 with one month to two months delay. The data consist of analysis fields
provided four times (00, 06, 12, and 18 UTC) a day and forecasts fields provided with 3, 6, 9,
and 12 h steps at 00 and 12 UTC [22]. ERA-Interim TPW covering both ocean and land with a
spatial resolution of 0.125◦ × 0.125◦ (Table 2) are selected as a target variable corresponding to
the input variables [23,24]. TPW of ERA-Interim can be downloaded from the ECMWF website
(https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/).

Table 2. Description of the reference data and usage.

Reference Data Temporal and Spatial Resolution Period and Usage

ERA-Interim 6 h/
0.125◦ × 0.125◦

September 2016–August 2018
Four days per month (5th, 10th, 15th, 20th)

Training data (90%)/test data (10%)
September 2016–August 2018

Two days per month (1st, 25th)
Validation data

RAOB 12 h 1/
13 sites over Northeast Asia

September 2016–August 2018
Two days per month (1st, 25th)

Validation data
1 The nominal time of a radiosonde launch is 0000 or 1200 UTC. Occasionally, this launches at 0600 and 1800 UTC.

Radiosondes measure the state of the atmosphere at each altitude level and thus the
radiosonde-derived water vapor content can be considered as true reference data. For the quantitative
validation of the retrieved TPW, radiosonde observations (RAOB) from the University of Wyoming
were used (Table 2). However, it should be noted that there might be uncertainty in RAOB, especially
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humidity profiles, depending on the type of the sensor used. Most sensors used in the study are
located in Northeast Asia and have high biases compared to the humidity profiles from ECMWF [25].
Thus, only the data from 13 observation stations (Figure 1) located in Northeast Asia (mainly in Japan)
having the same sensor types (i.e., Vaisala RS92 and Meisei RS-11G) with generally good accuracy
are used to assess the retrieved TPW. These radiosonde data are available on the website from the
University of Wyoming (http://weather.uwyo.edu/upperair/sounding.html).

Figure 1. The red asterisks indicate 13 radiosonde observations (RAOB) sites with high accuracy for
validation within the study area. The averaged ERA-Interim total precipitable water (TPW) from
October 2016 to August 2018 was used as a background image.

For a comparison between two reference data (i.e., RAOB and ERA-interim TPW), ERA-Interim TPW
was collocated at the grid-point near the 13 radiosonde stations in Northeast Asia during the validation
period. The comparison result is shown in Figure 2. The error metrics were calculated from 130 collocated
matches over clear sky regions. Specifically, the two reference data agree with each other with mean bias
(ERA-Interim TPW—RAOB TPW) of −0.56 mm and root mean square error (RMSE) of 2.78 mm.

Figure 2. Comparison between RAOB TPW and ERA-Interim TPW in Northeast Asia during the
validation period (1st, 25th per month from September 2016 to August 2018). ERA-Interim TPW is
collocated with the 13 RAOB stations over a clear sky region. Scatter plots are colored by density: the
x-axis is RAOB TPW and the y-axis is ERA-Interim TPW. The red line represents a regression line.
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3. Methods

3.1. Preparation of Training Dataset

Himawari-8 AHI infrared BTs and ERA-Interim TPW were used as the input variables and the
target variable of machine learning models, respectively. Table 3 shows the input variables used in
model training. The channel centered at 3.9 μm among the AHI IR channels was excluded from the
input variables due to the contamination problem by solar radiation during the daytime [26]. The BT
at each channel used as the training data contributes to the models at a different level. For example,
the window channels (i.e., BT11, BT13, BT14, and BT15) are related to the temperature of land and
sea surfaces, while the water vapor channels (i.e., BT8, BT9, and BT10) have characteristics related
with the distribution of water vapor in three different vertical layers. BT12 and BT16 channels, which
correspond to O3 and CO2 absorption bands respectively, are related to the information of atmospheric
air mass [26]. In addition, dual channel differences (DCD), including the difference between the
window channel and water vapor channel (i.e., DCD BT14−BT8, DCD BT14−BT9, DCD BT14−BT10),
the difference between window channels (i.e., DCD BT14−BT11, DCD BT14−BT15), and the difference
between water vapor channels (i.e., DCD BT10−BT8) carry information on the column water vapor
amount. The DCDs tend to increase as TPW increases except for DCD BT14−BT15, which shows an
opposite tendency.

Table 3. Summary of the physical characteristics of input variables in the retrieval models of TPW.
Here, each brightness temperature (BT) of channels 8 to 16 are named BT8 to BT16, respectively.

Input Variable Physical Characteristics

Cyclic_day Temporal characteristics
Latitude Spatial characteristics

Longitude Spatial characteristics
Satellite zenith angle Optical depth

BT8 (IR 6.2 μm) Upper tropospheric water vapor
BT9 (IR 6.9 μm) Mid and upper tropospheric water vapor
BT10 (IR 7.3 μm) Mid tropospheric water vapor
BT11 (IR 8.6 μm) Total water for stability, dust, SO2, rainfall
BT12 (IR 9.63 μm) Total ozone
BT13 (IR 10.4 μm) Surface
BT14 (IR 11.2 μm) Sea surface temperature and rainfall
BT15 (IR 12.4 μm) Total water and SST
BT16 (IR 13.3 μm) Air temperature
DCD BT14−BT8 Upper tropospheric moisture
DCD BT14−BT9 Mid and upper tropospheric moisture
DCD BT14−BT10 Mid tropospheric moisture
DCD BT14−BT11 Amount of water vapor
DCD BT14−BT15 Split-window channels (amount of water vapor)
DCD BT10−BT8 Difference between water vapor channels

Training data were collected in Northeast Asia region, four days a month (5th, 10th, 15th, and
20th of each month) and four times a day (00, 06, 12, and 18 UTC for each day) from September
2016 to August 2018. The study area over Northeast Asia centered at 37.588 N, 124.044 E (4300 km
in E-W direction and 2900 km in the N-S direction) is covering South Korea, North Korea, Japan,
Taiwan, and parts of China and Russia (Figure 1). To prevent cloud contamination, cloudy pixels were
removed based on the empirical cloud mask algorithm proposed by Lee et al. (2019) [27]. When 5 × 5
neighboring pixels of a grid of target data (ERA-Interim TPW) are all clear, the AHI data are averaged
to consider different spatial scales. The construction of the representative training data is crucial to
develop successful retrieval models using machine learning [28–30]. Since the raw data have a skewed
distribution toward low TPW (Figure 3a), it is necessary to adjust them to have a balanced distribution
to avoid biased training [30]. Thus, the original dataset was randomly divided into the training dataset

209



Remote Sens. 2019, 11, 1741

(80%, 698,033 samples) and the testing dataset (20%, 174,510 samples) with the same number of data
for each bin (i.e., 1 mm in TPW) as shown in Figure 3b,c. Here, each subset has the same distributions
of the original dataset for the balanced samples. For the validation, data that are not used for the
training are selected from two days a month (1st and 25th of each month), four times a day (00, 06, 12,
and 18 UTC for each day) from September 2016 to August 2018.

  
(a) (b) (c) 

Figure 3. Histograms of training data for machine learning in Northeast Asia for two years (i.e.,
September 2016 to August 2018). The x-axis is the TPW range (0–80 mm) and the y-axis is histogram
density. The bin size is 1 mm. (a) Histogram of all TPW during the period, (b) histogram of the selected
TPW (13,500 datasets per bin size) for training, and (c) histogram of the selected TPW (1500 datasets
per bin size) for testing.

3.2. Machine Learning Approaches

Machine learning-based approaches have been widely applied in the field of remote sensing for
both classification and regression [4,6,19,20,23,24,31–47]. Here, three machine learning models (i.e.,
RF, XGB, and DNN) for TPW retrieval using AHI data are assessed. The process flow of the TPW
retrieval based on machine learning algorithms is illustrated in Figure 4. For the cloud screening,
the radiative transfer model (RTM) BT simulation was conducted and here, the Radiative Transfer
for TIROS Operational Vertical Sounder (RTTOV) version 11.2 [48] was used to simulate BT from the
unified model analysis data. Through an empirical thresholding test [27] using the simulated BT and
the observed AHI BT, the clear-sky data were selected. If data were cloud free, TPW was retrieved by
the machine learning models.

RF is an ensemble of rule-based algorithm based on classification and regression trees (CART) [49].
RF has been widely applied to various fields such as remote sensing and geographic information
science [31–38]. Each independent tree in RF is created by the randomly selected subsets of training
samples and input variables. The results from a multitude of independent trees are averaged to
produce the final output of RF. For a fast implementation of RF in the R environment, a method of
“ranger” is used to take advantage of the parallel processing of RF especially suited for the large and
high dimensional dataset [50]. The RF has two basic model parameters to tune: the number of trees
(num.trees) and the number of variables sampled in random when splitting at each node (mtry). The
other parameters except for the two most representative parameters are used by applying default
values. To find two optimum parameters, mtry is tested with 2, 4, 8, 10, and 19 and num.trees is tested
with 100, 250, 500, and 1000. The parameter optimization is conducted based on the mean square error
(MSE). The mtry and num.trees were determined at the 10 and 1000, respectively.
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Figure 4. Process flow of the proposed machine learning (random forest (RF), extreme gradient boosting
(XGB), and deep neural network (DNN))-based TPW retrieval models from AHI observations under
clear-sky conditions.

Extreme gradient boosting (XGB) is a kind of tree-based boosting method, which is a sequential
ensemble learning model of a decision tree. XGB weighs data with unexpected error from training to
make the model better predict such data iteratively. The XGB based algorithm has been widely used
in the latest studies [38,51,52]. The algorithm is highly effective in reducing the computing time and
provides optimal use of memory resources because of parallel and distributed computing [51]. XGB
has produced higher classification accuracy and faster execution time when compared to other models
in several studies [41–43]. The XGB model is developed in the Python environment using XGBoost
packages, here. For parameter optimization of the XGB model, Bayesian optimization is used as an
effective tool for optimizing parameters in machine learning models [52]. Four parameters—number
of trees used (n_trees), maximum depth of a tree (max_depth), minimum loss reduction required to
make a further partition on a leaf node of the tree (gamma), and the subsample ratio of columns when
constructing each tree (colsample_bytree)—were empirically tuned based on root mean square error
(RMSE). The optimum n_trees, gamma, colsample_bytree, and max_depth were 4553, 0.7, 1.0, and
10, respectively.

Artificial neural network (ANN) is a biologically inspired machine learning approach that consists
of neurons showing particularly good performance at modeling the nonlinear relationships between
input and target data using a backpropagation [53]. Backpropagation adjusts the connection strength
(weight) between neurons by minimizing the prediction error iteratively. ANN has been used for
various purposes in remote sensing fields [42,43]. DNN is a subset of ANN with multiple hidden layers.
Here, the DNN is developed with “Keras” which is a high-level Python library for deep learning.
The DNN model has parameters including the number of hidden layers and neurons, optimizer, and
activation function. The DNN parameters were adjusted to achieve high performance for the prepared
training dataset. The activation functions, i.e., linear, sigmoid, tanh, and rectified linear unit (ReLU),
hidden layers with 1 to 4 and neurons with 5 to 30 in five intervals in each hidden layer were tested.
Besides, several widely used optimizers (i.e., stochastic gradient descent, rmsprop, and Adam) that
update the weights in the direction that error decreases were tested by comparing the calculated results
with the target value per iteration. The other parameters of the DNN are set as follows: batch_size =
256, dropout_rate = 0.5, stop_steps = 100 (if there is no improvement within n steps, training will be
terminated), and learning rate = 0.001. Through the empirical testing, ReLU was set as the activation
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function with the number of the hidden layers = 4, and the number of the hidden neuron = 60 using
Adam optimizer.

3.3. Accuracy Metrics

For the selection of model configuration, K-fold cross-validation is used [54]. This method has
been widely used to estimate overall performance. When a specific value for k is chosen (here, k is
10), datasets are randomly and equally distributed into k groups. One group is the test fold and the
(k−1) groups are the training folds. In total k-times validation, performance is calculated by using
the different test folds for each validation. Finally, the averaged validation results are used to tune
the hyperparameters of each model. Typical accuracy metrics including correlation coefficient (R),
mean bias, and RMSE are used (Equations (1) to (3), respectively). These statistical error metrics are
calculated between the target TPW value (or reference data) and averaged TPW using the retrieved
value based on the collocation criteria (Table 4).

R =

∑n
i=1

(
Ai −A

)(
Bi − B

)
√∑n

i=1 (Ai −A)
2∑n

i=1 (Bi − B)
2

, (1)

bias =
1
n

n∑
i=1

(Ai − Bi)
2, (2)

RMSE =

√∑n
i=1 (Ai − Bi)

2

n
. (3)

Table 4. Description of reference data and collocation criteria for the validation of the proposed models.

Reference Data Temporal Resolution Spatial Resolution Collocation Criteria

ERA-Interim 6 h 0.125◦ × 0.125◦ Averaging one or more retrieved
TPW within a 0.1-degree radius

RAOB 12 h 1 13 sites over Northeast Asia Averaging one or more retrieved
TPW within a 0.1-degree radius

1 The nominal time of a radiosonde launch is 0000 or 1200 UTC. Occasionally, this launches at 0600 and 1800 UTC.

Additionally, to determine the contribution of each input variable to the performance of the three
models, relative variable importance indicating how much a given model uses that variable to make
accurate predictions is analyzed. To measure variable importance in a tree-based model for regression,
the impurity reductions are summed over all split nodes in the tree [43]. In contrast to tree models,
there is no clear way to assess the variable importance in the DNN model. For the same criterion for
relative importance, the RMSE difference between the results obtained using all variables and the
results calculated through the ‘leave-one-variable-out’ method is utilized. This method starts with all
variables and removes each variable iteratively to determine the performance and robustness of the
model [55].

4. Results and Discussion

4.1. Model Performance

Figure 5 illustrates the averaged model performance using 10-fold cross-validation with the
accuracy metrics (Table 2). The XGB model shows the highest accuracy with the RMSE of 2.46 mm
(Figure 5b), followed by RF with 2.63 mm (Figure 5a) while the DNN model results in relatively less
accurate performance with the RMSE of 2.69 mm (Figure 5c). The mean biases are under the absolute
value of 0.15 mm for all models (0.03 mm for RF, 0.00 mm for XGB, and 0.13 mm for DNN) and the
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correlation coefficients are 0.99 in all models. In all statistical results, the RF and XGB models are very
similar and show higher performance than the DNN model. These model performances using the test
dataset imply that the rule-based algorithms (i.e., RF and XGB) are more suitable for the retrieval of
TPW. Overall, the XGB model outperforms the RF and DNN models. This might be because the XGB
models highly weigh the weak learner.

  
(a) (b) (c) 

 
Figure 5. Model performance of machine learning models (RF, XGB, and DNN) using the test dataset.
Scatter plots are colored by density: the x-axis is the target TPW (ERA-Interim TPW) and the y-axis is
the retrieved TPW using each machine learning model (a) RF, (b) XGB, and (c) DNN.

4.2. Variable Importance

Figure 6a–c shows the summary of calculated variable importance results of the RF, XGB, and
DNN. BT16 is identified as the most contributing variable to the retrieval of TPW in all models while
the cyc_day and longitude are considered next significant in the RF and XGB and BT12, cyc_day, and
latitude are considered next significant in the DNN. The BT16, which is a sensitive channel to carbon
dioxide, is used for the estimation of mean tropospheric air temperature. The cyc_day reflects natural
variations of TPW considering seasonal characteristics [56]. The longitude and latitude represent the
spatial distribution of TPW. The BT12 is a channel sensitive to water vapor as well as ozone. Unlike the
variable importance results identified in the DNN, some variables in the RF and XGB show improved
accuracy when they are excluded (i.e., negative RMSE difference in Figure 6a,b). This implies that the
variables might have redundant information and not be necessary for the RF and XGB to produce the
best performance [38].

The ensemble tree models (RF and XGB) provide variable importance during model training,
while DNN does not provide such information. Figure 6d,e shows the variable importance identified
by using the provided library from RF and XGB. While the BT12 and the difference of window channels
(i.e., BT14−BT11 and BT14−BT15) are identified to be very significant for the RF model, the cyc_day
and longitude are used as the most important variables in the XGB model. The BT14−BT11 and
BT14−BT15, differences between two window channels, imply that the amount of atmospheric water
vapor calculated by the difference in absorption coefficients is directly related to TPW. While the
provided XGB variable importance (Figure 6e) has a similar pattern to the variable importance in
terms of RMSE difference (Figure 6b), in RF, the rank of variable importance shows different patterns
among the variables. This might be because the optimized RF model learns using randomly collected
variables (here, mtry is 10) at each split time unlike XGB (1.0 for colsample_bytree) and DNN (use all
variables). To identify the linearity of the input variables to TPW, the correlation coefficients between
TPW and each input variable (Figure 6f) are examined. If a high correlation variable has a high value
in the variable importance identified by the model, it might indicate that the linearity between the
input variables and TPW is relatively strong. In contrast, the nonlinearity is strong in the opposite
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case. Interestingly, despite the lowest correlation of cyc_day and longitude with TPW, they have the
highest variable importance in the XGB model. These results imply that the XGB model well utilizes
the nonlinear characteristics of the variables when compared to the other two models.

(b) (c) (d) 

 
( ) (e) (f) 

Figure 6. Relative variable importance identified by (a) RF, (b) XGB, and (c) DNN. Bar plots using
input variables of the training dataset: the x-axis is the difference of root mean square error (RMSE) and
the y-axis is the corresponding name of input variables. The difference in RMSE (the original RMSE −
new RMSE) is calculated using the leave-one-variable-out method. The original RMSE of RF, XGB, and
DNN are 2.63, 2.46, 2.69 mm, respectively. The variable importance is calculated after the construction
of ensemble trees for the rule-based models (d) RF and (e) XGB. The longer the length of the bar is, the
more important the variable is. (f) summarizes correlation coefficients between the input variables
and TPW.

4.3. Validation Results

To validate the developed RF, XGB, and DNN models, the observed Himawari-8 AHI data that
were not used for both the training and testing were utilized (validation dataset in Section 3.1). Table 5
shows the quantitative validation results between ERA-Interim TPW and the retrieved TPW from
each model over Northeast Asia region during the validation period (Table 2). Approximately 500,000
collocated data are used for each model over the ‘all’, ‘land’, ‘sea’, and ‘coast’ regions as categorized in
the table. In all areas, the DNN model yields the highest performance in terms of RMSE, followed by
the XGB and RF models. The algorithms tend to overestimate TPW. To analyze the spatial distribution
of the averaged errors (i.e., bias and RMSE), the retrieved TPW and the ERA-Interim TPW for two
years (September 2016 to August 2018) are mapped over Northeast Asia (Figure 7). The mean biases of
the RF, XGB, and DNN are about 1.60, 1.30, and 1.47 mm, respectively. The mean RMSE value is 5.02
mm for RF, 4.79 mm for XGB, and 4.56 mm for DNN. The spatial distributions of the averaged bias and
RMSE show the characteristics of the discontinuity between land and sea. The lowest performance
along the coastal regions (Table 5) can be attributed to these characteristics in the ERA-Interim grid.
Additionally, the averaged errors of the RF, XGB, and DNN models appear relatively high in the black
circled regions as shown in Figure 7g. These regions have relatively lower surface pressures when
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compared to the surrounding areas and the models tend to overestimate TPW over these regions with
low surface pressure. It is clear that the relatively lower surface pressure is related to the relatively
higher terrain elevation and this is the main cause for the overestimated TPW in the region. Thus,
further study will need to consider including elevation as one of the predictors. In the meantime, the
XGB model has a lower bias in the region with lower surface pressure compared to the RF and DNN
model since the XGB model learns repetitively to generate the weighted mean of weak learners [44].

Table 5. Accuracy assessment based on ERA-Interim TPW for the RF, XGB, and DNN in Northeast Asia
(1st, 25th per month from September 2016 to August 2018). Validation metrics (i.e., bias and RMSE) are
calculated over the ‘all’, ‘land’, ‘sea’, and ‘coast’ regions, respectively.

All Land Sea Coast

bias RMSE bias RMSE bias RMSE bias RMSE

RF 0.62 5.09 0.66 4.94 0.55 5.29 0.88 5.98
XGB 0.70 4.85 0.67 4.63 0.72 5.14 1.04 5.65
DNN 0.90 4.65 0.94 4.50 0.83 4.86 1.20 5.22

In the validation results (Table 5), the overall accuracies of three models decrease compared to the
results of the model performance as shown in Section 4.1. For example, the retrieved TPW using test
datasets from all models agrees well with the ERA-Interim TPW overall both on land and sea within
0.15 mm in terms of bias while they have positive bias ranging from 0.62 to 0.90 in the validation results.
The datasets randomly selected for the evaluation of the model performance can be different from those
used for the validation of retrieval accuracy, and this discrepancy might be caused by overfitting since
the optimal model is not chosen based on the final validation result. The model performance is used as
an index to internally validate each model and to optimally tune the model that is sufficiently learned.
The model accuracy needs to be evaluated with a dataset that is not used for the training or testing.

   
(a) (b) (c) 

 
 

 

Figure 7. Cont.

215



Remote Sens. 2019, 11, 1741

   
(d) (e) (f) 

 
 

 

 

  

(g)   

Figure 7. Mean error maps of TPW in Northeast Asia for two years (September 2016 to August 2018).
The upper figures represent mean bias (ERA-Interim TPW – retrieved TPW) maps (a–c) and the lower
figures represent mean RMSE maps (d–f). The left, middle, and right figures are the retrieved results
from the RF, XGB, and DNN, respectively. (g) is the averaged surface pressures using ERA-Interim
data from October 2016 to August 2018 in the study region. The black dotted circles indicate relatively
lower surface pressures when compared to the surrounding areas.

To verify the performance of the models, a quantitative validation was carried out using RAOB
from the University of Wyoming with an untrained dataset (Table 2). In addition to the ERA-interim
data, RAOB data were also utilized for quantitative validation of model performance using an untrained
dataset (Figure 8). Since only RAOB stations with high accuracy sensors were used, the number of in
situ measurements used for the validation is relatively small (130 collocation data over the clear sky).
The comparisons of TPW from the DNN, XGB, and RF models with RAOB and ERA-Interim show
good performance in the order of RMSE during the validation period. The results from all models yield
positive bias (2.39, 1.76, and 1.25 mm, respectively). This implies that all models tend to overestimate
the TPW values concerning RAOB, which is similar to the validation results using ERA-Interim. The
biases (retrieved TPW – reference TPW) using RAOB are smaller than the bias using ERA-Interim. The
averaged difference value (about 0.56 mm) coincides with the difference between the two reference
data (Figure 2). Additionally, the RMSE over the coastal region is larger compared to other regions
(Table 5) since RAOB is collected mainly over land and coastal locations and also over islands as shown
in Figure 1. The DNN is identified as the most optimal model for the retrieval of TPW through both
validation results using ERA-Interim and RAOB. The RMSE value is comparable to or even better
than the performance of TPW retrieval based on optical sensor data. For example, the neural network
model developed from the MODIS near-infrared data over Western Europe and western Africa shows
a validation RMSE of 6.4 mm when compared to RAOB [19].
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Figure 8. Accuracy assessment results of the retrieved TPW from the DNN, RF, and XGB using RAOB
(a–c) and ERA-Interim (d–f) in Northeast Asia (1st, 25th per month from September 2016 to August
2018). The retrieved TPW from each model and ERA-Interim TPW is collocated with the 13 RAOB
stations over clear sky regions. Scatter plots are colored by density: the x-axis is the reference data
(RAOB and ERA-Interim) and the y-axis is the retrieved TPW from each model. The red lines are the
regression lines.

Figure 9 displays the time series of the averaged mean bias and RMSE between the retrieved TPW
from the DNN model and ERA-Interim TPW per scene between October 2016 and August 2018 in
the Northeast Asia area. The variabilities of the mean bias and RMSE are relatively high during the
humid summer season, followed by fall and spring. On the other hand, both errors are relatively low
and consistently stable during the dry winter season. This is because humidity errors are larger under
moist conditions [57]. As described earlier, the study utilizes the criteria based on the single channel or
dual-channel differences to detect clouds and they may not effectively discriminate snow from clouds,
causing a low retrieval rate in the Northern Hemisphere winter [27]. The decreased retrieval rate can
lead to relatively poor performance of the retrieval algorithm in winter.
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Figure 9. Time series (1st, 25th per month from September 2016 to August 2018) of bias and RMSE of
the retrieved TPW from DNN for ERA-Interim TPW. The x-axis shows time and the y-axis shows the
value of errors. The blue line is RMSE and the green line is bias.

4.4. Novelty and Limitations

The machine learning approaches (RF, XGB, and DNN) for the TPW retrieval from Himawari-8
AHI data in Northeast Asia were compared and analyzed in terms of their spatial and temporal
characteristics of performances. The DNN model shows an overall good agreement with both types
of reference data (ERA-Interim and RAOB data) and the RF model showed the lowest performance.
The variable importance of each variable was calculated using the ‘leave-one-variable-out’ method.
The retrieved TPW, provided every 10 min with 2 km resolution at nadir, together with atmospheric
stability indices such as the Lifted index or CAPE, plays a good predictor of severe weather phenomena
in the pre-convective atmospheric condition [4]. In addition to 10 min of AHI observations, the rapid
scanning mode (about 2 min) data are also available, which can be used to monitor details of the
temporal changes of the atmosphere. This near-real-time monitoring can give a promising result for
the severe weather forecast for a more smooth transition of the atmosphere and information between
cloudy scenes [8].

Aside from the novelties of this study, there are several limitations. One of the main limitations is
the relatively low accuracy of the cloud mask used. This problem can cause uncertainty in the retrieval
of TPW and validation results. As a result, there are little data during the wintertime especially over
land, leading to relatively high RMSE of the retrieved TPW. Another limitation is the robustness of the
model depending on the dataset. This is typically caused by overfitting [58] and makes the model
difficult to directly apply to other cases. One possible solution to mitigate the difference between
the accuracy of model tuning and validation is ‘online learning’ keeping the up-to-date dataset by
constantly updating new data to the model [59]. This can help the model generalization since the
difference between the training, testing, and validation dataset is decreased. Another solution is to
combine different models. This is called ‘ensemble method’ to create a new model with a various
model combination. This method has the advantage to complement the weaknesses of each other. It is
important to choose the model considering the given problem.

5. Conclusions

In this study, TPW retrieval models based on the machine learning approaches (RF, XGB, and
DNN) were developed for Himawari-8 AHI data over Northeast Asia. Nine AHI BTs (BT8 to BT16
centered at 6.2, 6.9, 7.3, 8.6, 9.6, 10.4, 11.2, 12.4, and 13.3 μm), six kinds of dual channel differences,
time, location information (latitude and longitude), and satellite zenith angles were used as the input
variables while the TPW calculated from the atmospheric temperature and humidity profiles from
ERA-Interim were used as a target variable for the models. The parameters of each model were
optimized through 10-fold cross-validation with the testing dataset (10% of the training dataset).
The BT16, temperature sounding channel, is identified as the most contributing variable to the TPW
retrievals in all models. The ERA-Interim and in-situ data (i.e., RAOB) are used for the model validation
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and characterization of each model. The DNN model yields the highest accuracy metrics (R, mean
bias, and RMSE) regardless of the reference data used (i.e., R is 0.96, mean bias is 0.90 mm, and RMSE
is 4.65 mm when using ERA-Interim TPW and R is 0.95 mean bias is 1.25 mm, and RMSE is 5.03 mm
with respect to RAOB) and the RF model showed the lowest performance. The distribution of spatially
averaged errors of each model reveals that the TPW is overestimated particularly in the regions with
relatively lower surface pressures, mainly due to the relatively high elevations of the regions. This
suggests the importance of considering the elevation as a predictor in a TPW retrieval study using
machine learning techniques. The validation results also show a decreased accuracy compared to the
accuracy obtained during the model training, implying a tendency for the overfitting. Nevertheless, the
retrieved TPW with finer spatiotemporal resolution (2-min intervals with about 2 km spatial resolution)
together with atmospheric instability is expected to provide quite useful information for analyzing
and predicting possible severe weather phenomena such as convective storms and heavy rainfall in
pre-convective environments. In the future, the proposed models are going to be used for the TPW
retrievals from Advanced Meteorological Imager loaded in the Geostationary Korea Multi-Purpose
Satellite (GeoKompsat)-2A, a South Korea’s second geostationary meteorological satellite, which has
similar specifications to Himawari-8 AHI.
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