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Table 2. Details of debris flow occurrence.

Case Start Time End Time2

1 7 Jun 2017 16:21:00 7 Jun 2017 17:00:00
2 20 Jun 2017 16:35:00 20 Jun 2017 18:05:00
3 24 Jun 2017 19:03:01 24 Jun 2017 20:05:00

Subsequently, we show the parameter settings of the proposed monitoring system. The sampling
frequency of accelerometer data was set to 50 Hz, and streaming data analysis window length is fixed
to 5-min. At the anomaly detection stage, the contribution rate  is set as 0.99 to construct the normal
vibration pattern subspace. To produce spectrogram of vibration data clips, we set the Fourier analysis
window length to 1024 with 3/4 overlapping. To classify the input spectrogram of accelerometer
data, we employ a deep convolution neural network (CNN) demonstrated in Section 4.3. During
model training, we set the initial learning rate and mini-batch sizeas 1.0 10 3 and 96, respectively.
To avoid overfitting, we employ L2 regularization with the regularization parameter set to 0.01; and
the maximum updating epoch was set to 40. Besides, as suggested in many previous studies, the
momentum parameter is set to 0.9 in stochastic gradient descent optimizer. At the evaluation stage,
we performed a particular case of cross-validation called Leave-one-debris flow-out (LODO) scheme.
Concretely, at each validation iteration, only one time of debris flow data is used for testing; while the
model is trained on all the other debris data collections. As iteration goes, all the debris flow-induced
vibration data can be tested. As a result, we obtain the predicted labels to the whole dataset.

4.2. Anomaly Detection Result

This section covers the anomaly detection results for debris flow monitoring. We first present
the wind and rain gauge data collected from 3 June to 4 July in Figure 10a,b, respectively. Those
climate observations are essential because rainfall event had been deemed to be a significant factor
that triggers a debris flow at Sakurajima [5]. Moreover, during the period three debris flow occurred,
which were highlighted with pink color. By examining the data, we can see that heavy rain and
strong winds often hit together; furthermore, we find that rain falls are necessary for inducing a
debris flow, but not sufficient, such as in the case on 10 June. Such fact suggests that rain/wind gauge
data cannot provide adequate information for debris flow prediction. Figure 10c shows the anomaly
detection result generated by the algorithms demonstrated in Section 3. The whole dataset includes
8835 clips with 5-min length. According to the detection result, 619 segments are marked as suspicious
of debris flow occurrence. As a result, the proposed anomaly detection scheme achieved a favorable
93% redundant data reduction without missing any debris flow occurrence. It is noteworthy that there
existed much of false alarms which are resort to hostile weather conditions. To suppress such issue,
we carry out further content-based classification with machine learning.
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Figure 10. Anomaly detection result for debris flow monitoring, confirming with environmental
conditions.

4.3. Debris Flow Identification Performance

Aiming at achieving high precision debris flow-induced vibration data pattern recognition, we
conducted an extensive experimental comparison between conventional statistical classifiers and
the devised deep learning model. It is noteworthy that those supervised algorithms require both
data set and corresponded data labels. To this end, we investigated surveillance video data and
assigned 3-valued class labels, in which label 1, 2 and 3 represent regular pattern, raining/wind,
and debris flow occurrence on each 5 min data clip, respectively. We applied the convolution neural
network demonstrated in Section 3.2.3 to assess the data membership belonging to the three categories.
Subsequently, multi-accelerometer score fusion is applied, as explained in Section 3.2.4. We present
the prediction results (fusion score) and data annotations on all 619 data clips in Figure 11. It is
evident that debris flows can be discerned with a higher fusion scores ranging from 2 to 3. In contrast,
non-hazardous data will get fusion scores lower than 2. Upon such observation, we further set the
threshold to 2 on fusion score series for debris identification with binary outputs.
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Figure 11. Validation of debris flow identification result, in which the scores above 2 indicate debris
flow occurrence.

Moreover, to demonstrate the effectiveness of our approach, we conducted extensive comparison
studies by using various feature/classifier combinations for the task. Precisely, in addition to adopting
spectrogram of accelerometer data classification by using convolution neural networks, we evaluated
the conventional approach by using various summary statistical features shown in Table 1 together
with three primary conventional machine learning classifiers, including Logistic regression (LR),
regularized discriminant analysis (RDA) and support vector machine (SVM). As for result comparison,
receiver operating characteristic (ROC) curve was employed to demonstrate both false alarm and
miss detection issues, simultaneously. Figure 12 illustrates all the results under comparison, where
summary stat. indicates using the conventional features shown in Table 1. The comparison results
clarify that using accelerometer spectrogram with CNN model outperformed all other methods with a
significant margin, and thus the effectiveness of the proposed approach had been validated.
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Figure 12. Debris flow identification performance comparison between various data pattern

classification methods.
5. Discussion

This study demonstrated that automatic debris flow detection could be achieved by using
low-cost wireless accelerometer networks with an advanced machine learning algorithm. According
to experimental validations, the proposed approach achieved favorable detection performance; that
is, all the three debris flows can be successfully detected. Besides, we investigated the processing
efficiency since the provision of timely and effective debris flow progress information are crucial to
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avoid or reduce the damages. Through evaluation, we confirmed that the developed wireless sensor
networks are able to collect vibration data and transmit the data to local analysis workstation in real
time even under extreme weather conditions. Subsequently, our debris flow detection algorithm is
used to examine the multichannel vibration data clips with a fixed length of 5 min. In other words,
the system can take at maximum of 5 min to analyze the latest data while recording the following
streaming data. We evaluated the proposed algorithm by using a desktop PC with i9-7900K CPU with
128 GB memory and a laptop PC with i7-7500U CPU with 24 GB memory. Both hardware specifications
can complete the data analysis process within a minute. In other words, the system can run for
in-situ early detection of debris flow in a near real-time manner. Besides, with the increase of massive
accelerometer data collection, the data-driven machine learning algorithm, such as deep convolution
networks, is anticipated to achieve superior detection precision. Moreover, in our plan, we also expect
to expand the current system by adding a new type of sensors for high precision and robust debris
flow monitoring.

6. Conclusions

The main objective of this work was to design a computerized debris flow detection system,
which consists of wireless accelerometer network hardware and machine learning algorithms to detect
debris flows with high accuracy in real time. The proposed system renders a batch of favorable features
for debris flow monitoring as follows. First, we devised an efficient wireless triaxial displacement
sensor with a self-contained electrical power supply. The sensor is favorably low-cost and thus,
allows us to perform (dense) sensor net-based debris flow detection. Secondly, monitoring data is
anticipated to be highly redundant since extreme events such as debris flow rarely occur. To get rid of
non-hazardous data efficiently, we extracted a list of statistical features from the massive accelerometer
signal, and then, performed anomaly detection by using the subspace method. Third, we adopted the
latest deep learning scheme to process accelerometer data for precise debris flow identification among
other interferences, including strong wind and heavy rain. Furthermore, we integrated all individual
sensor’s judgment to achieve more accurate and reliable debris flow detection. Experimental results
on real data demonstrated the effectiveness of the proposed debris flow monitoring approach. Besides,
the developed data pattern investigation framework can be generalized to deal with multi-modal
sensory data, such as audio data and geophone signals; and we plan to expand the sensing data source
to enhance the monitoring performance further.
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Abstract: Total precipitable water (TPW), a column of water vapor content in the atmosphere,
provides information on the spatial distribution of moisture. The high-resolution TPW, together with
atmospheric stability indices such as convective available potential energy (CAPE), is an effective
indicator of severe weather phenomena in the pre-convective atmospheric condition. With the advent
of high performing imaging instrument onboard geostationary satellites such as Advanced Himawari
Imager (AHI) onboard Himawari-8 of Japan and Advanced Meteorological Imager (AMI) onboard
GeoKompsat-2A of Korea, it is expected that unprecedented spatiotemporal resolution data (e.g.,
AMI plans to provide 2 km resolution data at every 2 min over the northeast part of East Asia) will be
provided. To derive TPW from such high-resolution data in a timely fashion, an efficient algorithm is
highly required. Here, machine learning approaches—random forest (RF), extreme gradient boosting
(XGB), and deep neural network (DNN)—are assessed for the TPW retrieved from AHI over the
clear sky in Northeast Asia area. For the training dataset, the nine infrared brightness temperatures
(BT) of AHI (BT8 to 16 centered at 6.2, 6.9, 7.3, 8.6, 9.6, 10.4, 11.2, 12.4, and 13.3 um, respectively), six
dual channel differences and observation conditions such as time, latitude, longitude, and satellite
zenith angle for two years (September 2016 to August 2018) are used. The corresponding TPW is
prepared by integrating the water vapor profiles from InterimEuropean Centre for Medium-Range
Weather Forecasts Re-Analysis data (ERA-Interim). The algorithm performances are assessed using
the ERA-Interim and radiosonde observations (RAOB) as the reference data. The results show that
the DNN model performs better than RF and XGB with a correlation coefficient of 0.96, a mean bias
of 0.90 mm, and a root mean square error (RMSE) of 4.65 mm when compared to the ERA-Interim.
Similarly, DNN results in a correlation coefficient of 0.95, a mean bias of 1.25 mm, and an RMSE of
5.03 mm when compared to RAOB. Contributing variables to retrieve the TPW in each model and the
spatial and temporal analysis of the retrieved TPW are carefully examined and discussed.

Keywords: total precipitable water; Himawari-8 AHIL; machine learning; random forest; deep neural
network; XGBoost

1. Introduction

Water vapor, one of the most influential constituents of the atmosphere, is responsible for
determining the amount of precipitation that a region can receive [1]. Total precipitable water (TPW)
is a meteorological factor that shows the amount of water vapor contained in the column of air per
unit area of the atmosphere in terms of the depth of liquid [2]. Although TPW does not represent
the vertical structure of moisture, it describes horizontal gradients of integrated water vapor content.
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Furthermore, the amount of water vapor contained in the troposphere has significant implications
for determining the strength and severity of a severe weather event [3]. Therefore, TPW is one of the
critical variables used by forecasters when severe weather conditions are expected [4].

Himawari-8, Japan’s geostationary (GEO) meteorological satellite launched in October 2014,
includes a primary instrument called Advanced Himawari Imager (AHI). AHI has 16 channels—four
visible (VIS), two near-infrared (NIR), and 10 infrared (IR) channels—with a temporal resolution of
10 min for the full disk (less than 10 min for limited areas) and a spatial resolution of 2 km at nadir
for the infrared channels (less than 2 km for the visible channels) [5]. Unlike low earth orbit (LEO)
satellites, which have limited temporal resolution, GEO satellites can produce data more timely and
frequently. The retrieved high temporal resolution TPW from GEO satellite sensor data can be utilized
to monitor pre-convective environments and predict heavy rainfall, convective storms, and clouds that
may cause serious damage to human life and infrastructure [6-8]. For example, Lee et al. [8] showed
that the 10-min interval measurements from the AHI sensor successfully provided information about
the pre-landfall environment for typhoon Nangka that occurred in 2015.

In the remote sensing field, there are several approaches for the retrieval of TPW from IR channels
of GEO satellite observations, including (1) a physical method using the one-dimensional variational
system, (2) a split-window algorithm, and (3) machine learning algorithms. The physical modeling
based on a nonlinear optimal estimation method has been traditionally used for vertical profiles of
temperature and humidity (T-q profile) [9]. While the TPW derived from the T-q profile retrieved with
a physical method usually has high accuracy, it does not fully use the original resolution information
from satellite observations due to the high computing load. The split-window method is based on a
different absorptive response to the water vapor content at two channels (near 11.0 and 12.0 pm) [10-12].
This method can be classified into the linear approach, look-up table approach, physical approach, and
covariance-variance ratio approach [13-16]. These approaches have limitations which are easily affected
by uncertainties in the surface emissivity, errors in first guess field, and the instrument noise [16,17]. On
the other hand, machine learning approaches such as random forest (RF), extreme gradient boosting
(XGB), and deep neural network (DNN) are capable of predicting the nonlinear relationship between
the parameters [18] when compared to the other methods. Since these approaches have been often
adopted as ways for the fast and reliable calculation of a target variable, various machine learning
techniques have been used to derive TPW from satellite sensor data. For instance, Wang et al. [19]
used a multi-layer perceptron neural network with NIR radiances from Moderate-resolution Imaging
Spectro-radiometer (MODIS) as input to retrieve TPW. Zhang et al. [20] also employed a radial basis
function neural network algorithm using infrared data from the hyperspectral sounder, Atmospheric
Infrared Sounder, to retrieve TPW. Although these machine learning based models have shown good
performance, there has been little exploration in comparison of multiple machine learning techniques
especially for GEO satellite data-based TPW retrievals.

In this study, machine learning based approaches for the retrieval of TPW from GEO satellite
data over clear sky pixels are proposed. The objectives of this study are to (1) develop the TPW
retrieval algorithms from Himawari-8 AHI data using RF, XGB, and DNN over Northeast Asia, (2)
quantify and examine relative variable importance and contribution by model, and (3) analyze the
temporal and spatial distribution of the errors compared to ERA-Interim in Northeast Asia for 2 years.
Section 2 describes the study area and data used for the algorithm development and Section 3 explains
the retrieval methods (RF, XGB, and DNN) based on the machine learning approaches. Variable
importance, validation results, and discussion are described in Section 4. The conclusions are presented
in Section 5.

2. Data

Himawari-8 launched on October 7, 2014 carries out a meteorological mission on a GEO orbit
(centered on 140.68°E). The considerably improved AHI sensor in temporal, spatial, and spectral
resolutions over its predecessors is now better suited for nowcasting and has improved the accuracy of
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numerical forecasts [21]. AHI has a total of 16 spectral channels (0.47-13.3 um) consisting of VIS, NIR,
and IR—short-wavelength infrared (SWIR), mid-wavelength infrared (MWIR) and thermal infrared
(TIR) channels (Table 1). AHI collects data every 10 min from the full disk and every 2.5 min from
the north-eastern and south-western areas of Japan. The brightness temperature (BT) data from
Himawari-8 AHI infrared channels are used as input variables to develop machine learning-based
models to retrieve TPW.

Table 1. Himawari-8 Advanced Himawari Imager (AHI) specifications.

Spatial Resolution at

Channel Number  Central Wavelength (um) Band Width (um) Sub Satellite Point (km)
1 0.47 0.05 1
2 0.51 0.02 1
3 0.64 0.03 0.5
4 0.86 0.02 1
5 16 0.02 2
6 23 0.02 2
7 39 0.22 2
3 6.2 0.37 2
9 6.9 0.12 2
10 73 0.17 2
11 8.6 0.32 2
12 9.6 0.18 2
13 10.4 0.30 2
14 11.2 0.20 2
15 12.4 0.30 2
16 133 0.20 2

ERA-Interim, the reanalysis of the global atmospheric dataset, has been released by the European
Centre for Medium-range Weather Forecasts (ECMWF). The data have been continuously updated
and provided since 1979 with one month to two months delay. The data consist of analysis fields
provided four times (00, 06, 12, and 18 UTC) a day and forecasts fields provided with 3, 6, 9,
and 12 h steps at 00 and 12 UTC [22]. ERA-Interim TPW covering both ocean and land with a
spatial resolution of 0.125° x 0.125° (Table 2) are selected as a target variable corresponding to
the input variables [23,24]. TPW of ERA-Interim can be downloaded from the ECMWEF website
(https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/).

Table 2. Description of the reference data and usage.

Reference Data Temporal and Spatial Resolution Period and Usage
September 2016-August 2018
. 6 h/ Four days per month (5th, 10th, 15th, 20th)
ERA-Interim 0.125° x 0.125° Training data (90%)/test data (10%)

September 2016-August 2018
Two days per month (1st, 25th)
Validation data

September 2016-August 2018
Two days per month (1st, 25th)
Validation data

1 The nominal time of a radiosonde launch is 0000 or 1200 UTC. Occasionally, this launches at 0600 and 1800 UTC.

12hY/

RAOB 13 sites over Northeast Asia

Radiosondes measure the state of the atmosphere at each altitude level and thus the
radiosonde-derived water vapor content can be considered as true reference data. For the quantitative
validation of the retrieved TPW, radiosonde observations (RAOB) from the University of Wyoming
were used (Table 2). However, it should be noted that there might be uncertainty in RAOB, especially
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humidity profiles, depending on the type of the sensor used. Most sensors used in the study are
located in Northeast Asia and have high biases compared to the humidity profiles from ECMWE [25].
Thus, only the data from 13 observation stations (Figure 1) located in Northeast Asia (mainly in Japan)
having the same sensor types (i.e., Vaisala RS92 and Meisei RS-11G) with generally good accuracy
are used to assess the retrieved TPW. These radiosonde data are available on the website from the
University of Wyoming (http://weather.uwyo.edu/upperair/sounding.html).

RAOB Station for Validation in Northeast Asia
100 110 120 130 140

10
oF

30
0e

0 10 20 30 40 50 [mm]

Figure 1. The red asterisks indicate 13 radiosonde observations (RAOB) sites with high accuracy for
validation within the study area. The averaged ERA-Interim total precipitable water (TPW) from
October 2016 to August 2018 was used as a background image.

For a comparison between two reference data (i.e., RAOB and ERA-interim TPW), ERA-Interim TPW
was collocated at the grid-point near the 13 radiosonde stations in Northeast Asia during the validation
period. The comparison result is shown in Figure 2. The error metrics were calculated from 130 collocated
matches over clear sky regions. Specifically, the two reference data agree with each other with mean bias
(ERA-Interim TPW—RAOB TPW) of —0.56 mm and root mean square error (RMSE) of 2.78 mm.

RAOB vs. ERA-Interim TPW (Clear Sky)

100 [ N: 130 ' ' '
slope: 0.93
intercept: 1.12
go FR: 0.99
bias: -0.56
RMSE: 2.78

[mm]

ERA-Inteim_TPW

0 20 40 60 80 100
RAOB TPW [mm]
I
—2 3 4 5

Figure 2. Comparison between RAOB TPW and ERA-Interim TPW in Northeast Asia during the
validation period (1st, 25th per month from September 2016 to August 2018). ERA-Interim TPW is
collocated with the 13 RAOB stations over a clear sky region. Scatter plots are colored by density: the
x-axis is RAOB TPW and the y-axis is ERA-Interim TPW. The red line represents a regression line.
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3. Methods

3.1. Preparation of Training Dataset

Himawari-8 AHI infrared BTs and ERA-Interim TPW were used as the input variables and the
target variable of machine learning models, respectively. Table 3 shows the input variables used in
model training. The channel centered at 3.9 um among the AHI IR channels was excluded from the
input variables due to the contamination problem by solar radiation during the daytime [26]. The BT
at each channel used as the training data contributes to the models at a different level. For example,
the window channels (i.e., BT11, BT13, BT14, and BT15) are related to the temperature of land and
sea surfaces, while the water vapor channels (i.e., BT8, BT9, and BT10) have characteristics related
with the distribution of water vapor in three different vertical layers. BT12 and BT16 channels, which
correspond to O3 and CO,; absorption bands respectively, are related to the information of atmospheric
air mass [26]. In addition, dual channel differences (DCD), including the difference between the
window channel and water vapor channel (i.e., DCD BT14-BT8, DCD BT14-BT9, DCD BT14-BT10),
the difference between window channels (i.e., DCD BT14—-BT11, DCD BT14—BT15), and the difference
between water vapor channels (i.e., DCD BT10-BTS8) carry information on the column water vapor
amount. The DCDs tend to increase as TPW increases except for DCD BT14-BT15, which shows an
opposite tendency.

Table 3. Summary of the physical characteristics of input variables in the retrieval models of TPW.
Here, each brightness temperature (BT) of channels 8 to 16 are named BT8 to BT16, respectively.

Input Variable Physical Characteristics
Cyclic_day Temporal characteristics
Latitude Spatial characteristics
Longitude Spatial characteristics
Satellite zenith angle Optical depth
BT8 (IR 6.2 um) Upper tropospheric water vapor
BT9 (IR 6.9 um) Mid and upper tropospheric water vapor
BT10 (IR 7.3 um) Mid tropospheric water vapor
BT11 (IR 8.6 um) Total water for stability, dust, SO,, rainfall
BT12 (IR 9.63 um) Total ozone
BT13 (IR 10.4 um) Surface
BT14 (IR 11.2 um) Sea surface temperature and rainfall
BT15 (IR 12.4 um) Total water and SST
BT16 (IR 13.3 um) Air temperature
DCD BT14-BT8 Upper tropospheric moisture
DCD BT14-BT9 Mid and upper tropospheric moisture
DCD BT14-BT10 Mid tropospheric moisture
DCD BT14-BT11 Amount of water vapor
DCD BT14-BT15 Split-window channels (amount of water vapor)
DCD BT10-BT8 Difference between water vapor channels

Training data were collected in Northeast Asia region, four days a month (5th, 10th, 15th, and
20th of each month) and four times a day (00, 06, 12, and 18 UTC for each day) from September
2016 to August 2018. The study area over Northeast Asia centered at 37.588 N, 124.044 E (4300 km
in E-W direction and 2900 km in the N-S direction) is covering South Korea, North Korea, Japan,
Taiwan, and parts of China and Russia (Figure 1). To prevent cloud contamination, cloudy pixels were
removed based on the empirical cloud mask algorithm proposed by Lee et al. (2019) [27]. When 5 x 5
neighboring pixels of a grid of target data (ERA-Interim TPW) are all clear, the AHI data are averaged
to consider different spatial scales. The construction of the representative training data is crucial to
develop successful retrieval models using machine learning [28-30]. Since the raw data have a skewed
distribution toward low TPW (Figure 3a), it is necessary to adjust them to have a balanced distribution
to avoid biased training [30]. Thus, the original dataset was randomly divided into the training dataset
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(80%, 698,033 samples) and the testing dataset (20%, 174,510 samples) with the same number of data
for each bin (i.e., 1 mm in TPW) as shown in Figure 3b,c. Here, each subset has the same distributions
of the original dataset for the balanced samples. For the validation, data that are not used for the
training are selected from two days a month (1st and 25th of each month), four times a day (00, 06, 12,
and 18 UTC for each day) from September 2016 to August 2018.

Histogram of All Dataset Histogram of Selected Training Dataset Histogram of Selected Testing Dataset

12000

8000

Number of Data
Number of Data
Number of Data

l
60 80 0 20

60 80 0 20 60 80

40 40 10
TPW [mm] TPW [mm] TPW [mm]

(@) (b) (0

Figure 3. Histograms of training data for machine learning in Northeast Asia for two years (i.e.,
September 2016 to August 2018). The x-axis is the TPW range (0-80 mm) and the y-axis is histogram
density. The bin size is 1 mm. (a) Histogram of all TPW during the period, (b) histogram of the selected
TPW (13,500 datasets per bin size) for training, and (c) histogram of the selected TPW (1500 datasets
per bin size) for testing.

3.2. Machine Learning Approaches

Machine learning-based approaches have been widely applied in the field of remote sensing for
both classification and regression [4,6,19,20,23,24,31-47]. Here, three machine learning models (i.e.,
RF, XGB, and DNN) for TPW retrieval using AHI data are assessed. The process flow of the TPW
retrieval based on machine learning algorithms is illustrated in Figure 4. For the cloud screening,
the radiative transfer model (RTM) BT simulation was conducted and here, the Radiative Transfer
for TIROS Operational Vertical Sounder (RTTOV) version 11.2 [48] was used to simulate BT from the
unified model analysis data. Through an empirical thresholding test [27] using the simulated BT and
the observed AHI BT, the clear-sky data were selected. If data were cloud free, TPW was retrieved by
the machine learning models.

RF is an ensemble of rule-based algorithm based on classification and regression trees (CART) [49].
RF has been widely applied to various fields such as remote sensing and geographic information
science [31-38]. Each independent tree in RF is created by the randomly selected subsets of training
samples and input variables. The results from a multitude of independent trees are averaged to
produce the final output of RE. For a fast implementation of RF in the R environment, a method of
“ranger” is used to take advantage of the parallel processing of RF especially suited for the large and
high dimensional dataset [50]. The RF has two basic model parameters to tune: the number of trees
(num.trees) and the number of variables sampled in random when splitting at each node (mtry). The
other parameters except for the two most representative parameters are used by applying default
values. To find two optimum parameters, mtry is tested with 2, 4, 8, 10, and 19 and num.trees is tested
with 100, 250, 500, and 1000. The parameter optimization is conducted based on the mean square error
(MSE). The mtry and num.trees were determined at the 10 and 1000, respectively.
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Figure 4. Process flow of the proposed machine learning (random forest (RF), extreme gradient boosting
(XGB), and deep neural network (DNN))-based TPW retrieval models from AHI observations under
clear-sky conditions.

Extreme gradient boosting (XGB) is a kind of tree-based boosting method, which is a sequential
ensemble learning model of a decision tree. XGB weighs data with unexpected error from training to
make the model better predict such data iteratively. The XGB based algorithm has been widely used
in the latest studies [38,51,52]. The algorithm is highly effective in reducing the computing time and
provides optimal use of memory resources because of parallel and distributed computing [51]. XGB
has produced higher classification accuracy and faster execution time when compared to other models
in several studies [41-43]. The XGB model is developed in the Python environment using XGBoost
packages, here. For parameter optimization of the XGB model, Bayesian optimization is used as an
effective tool for optimizing parameters in machine learning models [52]. Four parameters—number
of trees used (n_trees), maximum depth of a tree (max_depth), minimum loss reduction required to
make a further partition on a leaf node of the tree (gamma), and the subsample ratio of columns when
constructing each tree (colsample_bytree)—were empirically tuned based on root mean square error
(RMSE). The optimum n_trees, gamma, colsample_bytree, and max_depth were 4553, 0.7, 1.0, and
10, respectively.

Artificial neural network (ANN) is a biologically inspired machine learning approach that consists
of neurons showing particularly good performance at modeling the nonlinear relationships between
input and target data using a backpropagation [53]. Backpropagation adjusts the connection strength
(weight) between neurons by minimizing the prediction error iteratively. ANN has been used for
various purposes in remote sensing fields [42,43]. DNN is a subset of ANN with multiple hidden layers.
Here, the DNN is developed with “Keras” which is a high-level Python library for deep learning.
The DNN model has parameters including the number of hidden layers and neurons, optimizer, and
activation function. The DNN parameters were adjusted to achieve high performance for the prepared
training dataset. The activation functions, i.e., linear, sigmoid, tanh, and rectified linear unit (ReLU),
hidden layers with 1 to 4 and neurons with 5 to 30 in five intervals in each hidden layer were tested.
Besides, several widely used optimizers (i.e., stochastic gradient descent, rmsprop, and Adam) that
update the weights in the direction that error decreases were tested by comparing the calculated results
with the target value per iteration. The other parameters of the DNN are set as follows: batch_size =
256, dropout_rate = 0.5, stop_steps = 100 (if there is no improvement within n steps, training will be
terminated), and learning rate = 0.001. Through the empirical testing, ReLU was set as the activation
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function with the number of the hidden layers = 4, and the number of the hidden neuron = 60 using
Adam optimizer.

3.3. Accuracy Metrics

For the selection of model configuration, K-fold cross-validation is used [54]. This method has
been widely used to estimate overall performance. When a specific value for k is chosen (here, k is
10), datasets are randomly and equally distributed into k groups. One group is the test fold and the
(k—1) groups are the training folds. In total k-times validation, performance is calculated by using
the different test folds for each validation. Finally, the averaged validation results are used to tune
the hyperparameters of each model. Typical accuracy metrics including correlation coefficient (R),
mean bias, and RMSE are used (Equations (1) to (3), respectively). These statistical error metrics are
calculated between the target TPW value (or reference data) and averaged TPW using the retrieved
value based on the collocation criteria (Table 4).

LA A5-D)

R= , 1)
N s
bias = %Z (Ai - Bi)z, (2)
i=1
n _p)2
RMSE = #. @)

Table 4. Description of reference data and collocation criteria for the validation of the proposed models.

Reference Data Temporal Resolution Spatial Resolution Collocation Criteria
. o o Averaging one or more retrieved
ERA-Interim 6h 0-1257 > 0.125 TPW within a 0.1-degree radius
RAOB 12h! 13 sites over Northeast Asia Averaging one or more retrieved

TPW within a 0.1-degree radius
1 The nominal time of a radiosonde launch is 0000 or 1200 UTC. Occasionally, this launches at 0600 and 1800 UTC.

Additionally, to determine the contribution of each input variable to the performance of the three
models, relative variable importance indicating how much a given model uses that variable to make
accurate predictions is analyzed. To measure variable importance in a tree-based model for regression,
the impurity reductions are summed over all split nodes in the tree [43]. In contrast to tree models,
there is no clear way to assess the variable importance in the DNN model. For the same criterion for
relative importance, the RMSE difference between the results obtained using all variables and the
results calculated through the ‘leave-one-variable-out’ method is utilized. This method starts with all
variables and removes each variable iteratively to determine the performance and robustness of the
model [55].

4. Results and Discussion

4.1. Model Performance

Figure 5 illustrates the averaged model performance using 10-fold cross-validation with the
accuracy metrics (Table 2). The XGB model shows the highest accuracy with the RMSE of 2.46 mm
(Figure 5b), followed by RF with 2.63 mm (Figure 5a) while the DNN model results in relatively less
accurate performance with the RMSE of 2.69 mm (Figure 5c). The mean biases are under the absolute
value of 0.15 mm for all models (0.03 mm for RF, 0.00 mm for XGB, and 0.13 mm for DNN) and the

212



Remote Sens. 2019, 11, 1741

correlation coefficients are 0.99 in all models. In all statistical results, the RF and XGB models are very
similar and show higher performance than the DNN model. These model performances using the test
dataset imply that the rule-based algorithms (i.e., RF and XGB) are more suitable for the retrieval of
TPW. Overall, the XGB model outperforms the RF and DNN models. This might be because the XGB
models highly weigh the weak learner.

RF vs. target TPW XGB vs. target TPW DNN vs. target TPW
100 100 100
g N N o
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Figure 5. Model performance of machine learning models (RF, XGB, and DNN) using the test dataset.
Scatter plots are colored by density: the x-axis is the target TPW (ERA-Interim TPW) and the y-axis is
the retrieved TPW using each machine learning model (a) RF, (b) XGB, and (c) DNN.

4.2. Variable Importance

Figure 6a—c shows the summary of calculated variable importance results of the RF, XGB, and
DNN. BT16 is identified as the most contributing variable to the retrieval of TPW in all models while
the cyc_day and longitude are considered next significant in the RF and XGB and BT12, cyc_day, and
latitude are considered next significant in the DNN. The BT16, which is a sensitive channel to carbon
dioxide, is used for the estimation of mean tropospheric air temperature. The cyc_day reflects natural
variations of TPW considering seasonal characteristics [56]. The longitude and latitude represent the
spatial distribution of TPW. The BT12 is a channel sensitive to water vapor as well as ozone. Unlike the
variable importance results identified in the DNN, some variables in the RF and XGB show improved
accuracy when they are excluded (i.e., negative RMSE difference in Figure 6a,b). This implies that the
variables might have redundant information and not be necessary for the RF and XGB to produce the
best performance [38].

The ensemble tree models (RF and XGB) provide variable importance during model training,
while DNN does not provide such information. Figure 6d,e shows the variable importance identified
by using the provided library from RF and XGB. While the BT12 and the difference of window channels
(i.e., BT14-BT11 and BT14-BT15) are identified to be very significant for the RF model, the cyc_day
and longitude are used as the most important variables in the XGB model. The BT14-BT11 and
BT14-BT15, differences between two window channels, imply that the amount of atmospheric water
vapor calculated by the difference in absorption coefficients is directly related to TPW. While the
provided XGB variable importance (Figure 6e) has a similar pattern to the variable importance in
terms of RMSE difference (Figure 6b), in RF, the rank of variable importance shows different patterns
among the variables. This might be because the optimized RF model learns using randomly collected
variables (here, mtry is 10) at each split time unlike XGB (1.0 for colsample_bytree) and DNN (use all
variables). To identify the linearity of the input variables to TPW, the correlation coefficients between
TPW and each input variable (Figure 6f) are examined. If a high correlation variable has a high value
in the variable importance identified by the model, it might indicate that the linearity between the
input variables and TPW is relatively strong. In contrast, the nonlinearity is strong in the opposite
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case. Interestingly, despite the lowest correlation of cyc_day and longitude with TPW, they have the
highest variable importance in the XGB model. These results imply that the XGB model well utilizes
the nonlinear characteristics of the variables when compared to the other two models.

RF Variable Importance XGB Variable Importance DNN Variable Importance
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Figure 6. Relative variable importance identified by (a) RE, (b) XGB, and (c) DNN. Bar plots using
input variables of the training dataset: the x-axis is the difference of root mean square error (RMSE) and
the y-axis is the corresponding name of input variables. The difference in RMSE (the original RMSE —
new RMSE) is calculated using the leave-one-variable-out method. The original RMSE of RF, XGB, and
DNN are 2.63, 2.46, 2.69 mm, respectively. The variable importance is calculated after the construction
of ensemble trees for the rule-based models (d) RF and (e) XGB. The longer the length of the bar is, the
more important the variable is. (f) summarizes correlation coefficients between the input variables
and TPW.

4.3. Validation Results

To validate the developed RE, XGB, and DNN models, the observed Himawari-8 AHI data that
were not used for both the training and testing were utilized (validation dataset in Section 3.1). Table 5
shows the quantitative validation results between ERA-Interim TPW and the retrieved TPW from
each model over Northeast Asia region during the validation period (Table 2). Approximately 500,000
collocated data are used for each model over the ‘all’, ‘land’, ‘sea’, and ‘coast’ regions as categorized in
the table. In all areas, the DNN model yields the highest performance in terms of RMSE, followed by
the XGB and RF models. The algorithms tend to overestimate TPW. To analyze the spatial distribution
of the averaged errors (i.e., bias and RMSE), the retrieved TPW and the ERA-Interim TPW for two
years (September 2016 to August 2018) are mapped over Northeast Asia (Figure 7). The mean biases of
the RF, XGB, and DNN are about 1.60, 1.30, and 1.47 mm, respectively. The mean RMSE value is 5.02
mm for RF, 4.79 mm for XGB, and 4.56 mm for DNN. The spatial distributions of the averaged bias and
RMSE show the characteristics of the discontinuity between land and sea. The lowest performance
along the coastal regions (Table 5) can be attributed to these characteristics in the ERA-Interim grid.
Additionally, the averaged errors of the RF, XGB, and DNN models appear relatively high in the black
circled regions as shown in Figure 7g. These regions have relatively lower surface pressures when
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compared to the surrounding areas and the models tend to overestimate TPW over these regions with
low surface pressure. It is clear that the relatively lower surface pressure is related to the relatively
higher terrain elevation and this is the main cause for the overestimated TPW in the region. Thus,
further study will need to consider including elevation as one of the predictors. In the meantime, the
XGB model has a lower bias in the region with lower surface pressure compared to the RF and DNN
model since the XGB model learns repetitively to generate the weighted mean of weak learners [44].

Table 5. Accuracy assessment based on ERA-Interim TPW for the RF, XGB, and DNN in Northeast Asia
(1st, 25th per month from September 2016 to August 2018). Validation metrics (i.e., bias and RMSE) are
calculated over the “all’, ‘land’, ‘sea’, and ‘coast’ regions, respectively.

All Land Sea Coast
bias RMSE bias RMSE bias RMSE bias RMSE

RF 0.62 5.09 0.66 4.94 0.55 5.29 0.88 598
XGB 0.70 4.85 0.67 4.63 0.72 5.14 1.04 5.65
DNN  0.90 4.65 0.94 4.50 0.83 4.86 1.20 522

In the validation results (Table 5), the overall accuracies of three models decrease compared to the
results of the model performance as shown in Section 4.1. For example, the retrieved TPW using test
datasets from all models agrees well with the ERA-Interim TPW overall both on land and sea within
0.15 mm in terms of bias while they have positive bias ranging from 0.62 to 0.90 in the validation results.
The datasets randomly selected for the evaluation of the model performance can be different from those
used for the validation of retrieval accuracy, and this discrepancy might be caused by overfitting since
the optimal model is not chosen based on the final validation result. The model performance is used as
an index to internally validate each model and to optimally tune the model that is sufficiently learned.
The model accuracy needs to be evaluated with a dataset that is not used for the training or testing.
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Figure 7. Mean error maps of TPW in Northeast Asia for two years (September 2016 to August 2018).
The upper figures represent mean bias (ERA-Interim TPW - retrieved TPW) maps (a—c) and the lower
figures represent mean RMSE maps (d—f). The left, middle, and right figures are the retrieved results
from the RF, XGB, and DNN, respectively. (g) is the averaged surface pressures using ERA-Interim
data from October 2016 to August 2018 in the study region. The black dotted circles indicate relatively
lower surface pressures when compared to the surrounding areas.

To verify the performance of the models, a quantitative validation was carried out using RAOB
from the University of Wyoming with an untrained dataset (Table 2). In addition to the ERA-interim
data, RAOB data were also utilized for quantitative validation of model performance using an untrained
dataset (Figure 8). Since only RAOB stations with high accuracy sensors were used, the number of in
situ measurements used for the validation is relatively small (130 collocation data over the clear sky).
The comparisons of TPW from the DNN, XGB, and RF models with RAOB and ERA-Interim show
good performance in the order of RMSE during the validation period. The results from all models yield
positive bias (2.39, 1.76, and 1.25 mm, respectively). This implies that all models tend to overestimate
the TPW values concerning RAOB, which is similar to the validation results using ERA-Interim. The
biases (retrieved TPW - reference TPW) using RAOB are smaller than the bias using ERA-Interim. The
averaged difference value (about 0.56 mm) coincides with the difference between the two reference
data (Figure 2). Additionally, the RMSE over the coastal region is larger compared to other regions
(Table 5) since RAOB is collected mainly over land and coastal locations and also over islands as shown
in Figure 1. The DNN is identified as the most optimal model for the retrieval of TPW through both
validation results using ERA-Interim and RAOB. The RMSE value is comparable to or even better
than the performance of TPW retrieval based on optical sensor data. For example, the neural network
model developed from the MODIS near-infrared data over Western Europe and western Africa shows
a validation RMSE of 6.4 mm when compared to RAOB [19].
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Figure 8. Accuracy assessment results of the retrieved TPW from the DNN, RF, and XGB using RAOB
(a—c) and ERA-Interim (d—f) in Northeast Asia (1st, 25th per month from September 2016 to August
2018). The retrieved TPW from each model and ERA-Interim TPW is collocated with the 13 RAOB
stations over clear sky regions. Scatter plots are colored by density: the x-axis is the reference data
(RAOB and ERA-Interim) and the y-axis is the retrieved TPW from each model. The red lines are the

regression lines.

Figure 9 displays the time series of the averaged mean bias and RMSE between the retrieved TPW
from the DNN model and ERA-Interim TPW per scene between October 2016 and August 2018 in
the Northeast Asia area. The variabilities of the mean bias and RMSE are relatively high during the
humid summer season, followed by fall and spring. On the other hand, both errors are relatively low
and consistently stable during the dry winter season. This is because humidity errors are larger under
moist conditions [57]. As described earlier, the study utilizes the criteria based on the single channel or
dual-channel differences to detect clouds and they may not effectively discriminate snow from clouds,
causing a low retrieval rate in the Northern Hemisphere winter [27]. The decreased retrieval rate can
lead to relatively poor performance of the retrieval algorithm in winter.
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Figure 9. Time series (1st, 25th per month from September 2016 to August 2018) of bias and RMSE of
the retrieved TPW from DNN for ERA-Interim TPW. The x-axis shows time and the y-axis shows the
value of errors. The blue line is RMSE and the green line is bias.

4.4. Novelty and Limitations

The machine learning approaches (RF, XGB, and DNN) for the TPW retrieval from Himawari-8
AHI data in Northeast Asia were compared and analyzed in terms of their spatial and temporal
characteristics of performances. The DNN model shows an overall good agreement with both types
of reference data (ERA-Interim and RAOB data) and the RF model showed the lowest performance.
The variable importance of each variable was calculated using the ‘leave-one-variable-out” method.
The retrieved TPW, provided every 10 min with 2 km resolution at nadir, together with atmospheric
stability indices such as the Lifted index or CAPE, plays a good predictor of severe weather phenomena
in the pre-convective atmospheric condition [4]. In addition to 10 min of AHI observations, the rapid
scanning mode (about 2 min) data are also available, which can be used to monitor details of the
temporal changes of the atmosphere. This near-real-time monitoring can give a promising result for
the severe weather forecast for a more smooth transition of the atmosphere and information between
cloudy scenes [8].

Aside from the novelties of this study, there are several limitations. One of the main limitations is
the relatively low accuracy of the cloud mask used. This problem can cause uncertainty in the retrieval
of TPW and validation results. As a result, there are little data during the wintertime especially over
land, leading to relatively high RMSE of the retrieved TPW. Another limitation is the robustness of the
model depending on the dataset. This is typically caused by overfitting [58] and makes the model
difficult to directly apply to other cases. One possible solution to mitigate the difference between
the accuracy of model tuning and validation is ‘online learning” keeping the up-to-date dataset by
constantly updating new data to the model [59]. This can help the model generalization since the
difference between the training, testing, and validation dataset is decreased. Another solution is to
combine different models. This is called ‘ensemble method” to create a new model with a various
model combination. This method has the advantage to complement the weaknesses of each other. It is
important to choose the model considering the given problem.

5. Conclusions

In this study, TPW retrieval models based on the machine learning approaches (RF, XGB, and
DNN) were developed for Himawari-8 AHI data over Northeast Asia. Nine AHI BTs (BT8 to BT16
centered at 6.2, 6.9,7.3,8.6,9.6,10.4, 11.2, 12.4, and 13.3 um), six kinds of dual channel differences,
time, location information (latitude and longitude), and satellite zenith angles were used as the input
variables while the TPW calculated from the atmospheric temperature and humidity profiles from
ERA-Interim were used as a target variable for the models. The parameters of each model were
optimized through 10-fold cross-validation with the testing dataset (10% of the training dataset).
The BT16, temperature sounding channel, is identified as the most contributing variable to the TPW
retrievals in all models. The ERA-Interim and in-situ data (i.e., RAOB) are used for the model validation
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and characterization of each model. The DNN model yields the highest accuracy metrics (R, mean
bias, and RMSE) regardless of the reference data used (i.e., R is 0.96, mean bias is 0.90 mm, and RMSE
is 4.65 mm when using ERA-Interim TPW and R is 0.95 mean bias is 1.25 mm, and RMSE is 5.03 mm
with respect to RAOB) and the RF model showed the lowest performance. The distribution of spatially
averaged errors of each model reveals that the TPW is overestimated particularly in the regions with
relatively lower surface pressures, mainly due to the relatively high elevations of the regions. This
suggests the importance of considering the elevation as a predictor in a TPW retrieval study using
machine learning techniques. The validation results also show a decreased accuracy compared to the
accuracy obtained during the model training, implying a tendency for the overfitting. Nevertheless, the
retrieved TPW with finer spatiotemporal resolution (2-min intervals with about 2 km spatial resolution)
together with atmospheric instability is expected to provide quite useful information for analyzing
and predicting possible severe weather phenomena such as convective storms and heavy rainfall in
pre-convective environments. In the future, the proposed models are going to be used for the TPW
retrievals from Advanced Meteorological Imager loaded in the Geostationary Korea Multi-Purpose
Satellite (GeoKompsat)-2A, a South Korea’s second geostationary meteorological satellite, which has
similar specifications to Himawari-8 AHIL
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