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Since its inception, logic has studied the acceptable rules of reasoning, the rules that allow us to
pass from certain statements, serving as premises or assumptions, to a statement taken as a conclusion.
The first kinds of such rules were distilled by Aristotle and are known as moduses. Stoics ramified
Aristotle’s system, and for centuries, the syllogistic remained the main tool for logical deduction.
With the birth of formal logic, new types of deduction emerged, and to support this new kind of
inference, the deductive systems were used. Since then, the deductive systems have been at the heart
of logical investigations. In one form or the other, they are used in all branches of logic.

Contemporary understanding of science, as a theory of a high degree of exactness, requires
treating it as a deductive theory (a deductive system). Generally speaking, such a theory (system) is
a set of its sentential expressions which are derivable (deducible) from some expressions of the set
selected as axioms, by means of deduction (inference) rules. The expressions obtained as a result of
derivation from a given set of expressions are consequences; that is, they have a proof. The principal
feature of deductive systems (theories) is the deducibility or provability of their theorems. From a very
general point of view, there are two methods of deduction: (a) the axiomatic method (Hilbert style
method) and (b) the natural deduction method (Jaśkowski–Słupecki–Borkowski, Gentzen or semantic
tableaux). Method (b) leads to natural deduction systems, while the most often used method (a) leads to
presentation (or characterization) of logical and mathematical theories as axiomatic deductive systems.
Methods (a) and (b) are used in different scientific disciplines, such as physics, chemistry, sociology,
philosophical and psychological sciences, information sciences, discursive sciences, computer science,
and some technical sciences.

Deductive sciences have not always been built explicitly as axiomatic systems. Depending on
the degree of methodological precision, three of their forms have been distinguished: pre-axiomatic,
non-formalized axiomatic, and formalized axiomatic. As we know, a pre-axiomatic form was commonly
used in arithmetic and geometry, and later in set theory and probability theory. Their axiomatization
was carried out only at the end of the 19th century and the beginning of the 20th century. In contrast,
such mathematical theories as the Boolean system and theories of groups, rings, and fields were built
as formalized axiomatic systems since inception. The deductive method (calculi) is most often used for
formalizations of theories, but these theories also admit formalization as natural deductive systems.

Formalized axiomatic systems are rooted in a tradition originated by G. Frege (1891, 1903), but the
first axiomatic system (non-formalized) in the history of science—as it was disclosed by Jan Łukasiewicz in
his seminal monograph on Aristotle’s syllogistic (1951)—was Aristotle’s syllogistic system. J. Łukasiewicz
initiated the construction of the first systems of syllogistic satisfying the contemporary requirements,
and thus, the requirements of formalized axiomatic systems. He constructed a formalization of syllogistic
logic on two levels using (in addition to the commonly used axiomatic method by means of proof) a new
axiomatic method by means of rejection—the so-called axiomatic rejection, or refutation, method. He and
his disciples (mainly J. Słupecki and his collaborators) applied this method to the bi-level formalization of
some classical and non-classical logical deductive systems of sentences or names. This approach allows

Axioms 2020, 9, 108; doi:10.3390/axioms9030108 www.mdpi.com/journal/axioms1
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one to define two disjoint sets of language expressions of a given system: the set of all its theses (theorems),
which are asserted, accepted, intuitively true expressions (called the assertion system), and the set of
all the other expressions—non-accepted, or intuitively false, refuted, rejected expressions of the system
(called the rejection or the refutation system). In such a way, the bi-level formalization of deductive
systems provides some new inspiration to build different sciences.

This book is a collection of articles included in the special issue “Deductive Systems” of Axioms
regarding mainly the logical deductive system. They are ordered in accordance with the well-known
division of logic into term logic (logic of names) and propositional logic (propositional calculus),
which correspond to two historical stages of the development of logic, namely, Aristotelian logic and
the logic of stoics, with the latter being a contemporary counterpart of propositional logic. Deductive
systems for classical propositional logic are broadly known, and one of them is most often assumed
for the term logics. Systems for non-classical propositional logics, which are inspired by philosophy,
are introduced in the book later than systems related to term logics. Term logic can be interpreted
in predicate logic, that is, the second part of contemporary logic. Predicate logic is the basis of
mathematical deductive systems (theories).

The volume is opened with paper [1] by P. Kulicki in which he looks back to the roots of
Western logic and compares what we have achieved today with the legacy of Aristotle. Somehow
surprisingly, we can find many features of today’s mature deductive systems in Aristotle’s system of
syllogism. The paper discusses some of these features, focusing on Aristotle’s approach to the issue of
completeness reconstructed by J. Łukasiewicz.

In [2], P. Simons considers term logic (logic of names) which is a successor of Aristotle’s syllogistic
along with 19th century algebraic logic. This is a very natural medium for representing many inferences
of ordinary discourse. The axiomatic term logic proposed by P. Simons is intuitive and easy to
understand without deeper knowledge of predicate logic.

The paper [3] by J.-M.Castro-Manzano introduces an idea of a distribution model for Sommers’
and Englebretsen’s term logic. It provides some alternative formal semantics to aforementioned logic.

In his paper [4], E. Wojciechowski makes a reference to the differentiation between Zahl and
Anzahl, which is present in the works of Frege and formulates Peano’s axiomatic for arithmetic of
natural numbers, following Leśniewski on the grounds of the names calculus. This differentiation
corresponds syntactically to the name (of natural number)-functor (category n/n). This functor
(equivalent of Anzahl) is a primitive term of the proposed axiomatic system.

In [5], V. Goranko introduces hybrid deduction–refutation systems, which are deductive systems
intended to derive both valid and non-valid, i.e., semantically refutable, formulae of a given logical
system, by employing together separate derivability operators for each of these and combining “hybrid
derivation rules” that involve both deduction and refutation. The concept is illustrated with a hybrid
deduction–refutation system of natural deduction for classical propositional logic, for which soundness
and completeness for both deductions and refutations are proved.

In [6], K. Mruczek-Nasieniewska and M. Nasieniewski analyze the so called discussive logic
introduced by Stanisław Jaśkowski, and this is probably the first fully formally formulated system
of paraconsistent logic. In 1974 Jerzy Kotas gave an axiomatization of discussive logic. In the paper,
Kotas’ style axiomatization of the minimal discussive logic is presented.

In [7], J. Ciuciura presents an alternative axiomatization for the hierarchy of paraconsistent
systems. The main idea behind it is to focus explicitly on the (in)validity of the principle of ex
contradictione sequitur quodlibet. This makes the hierarchy less complex and more transparent,
especially from the paraconsistency standpoint.

In [8], A. Citkin studies the deductive systems with multiple conclusion rules which admit the
introduction of meta-disjunction. Using the defined notion of the inference with multiple-conclusion
rules, it is shown that in the logics enjoying the disjunction property, any derivable rule can be inferred
from the single-conclusion rules and a single multiple-conclusion rule, which represents the disjunction
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property. Additionally, the conversion algorithm of single- and multiple-conclusion deductive systems
into each other is studied.

In his paper [9], D. Surowik constructs and studies properties of the minimal temporal logic
systems built on the basis of classical logic and intuitionistic logics.

In [10], J. Golińska-Pilarek and M. Welle study deductive systems defining the weakest, extensional
two-valued, non-Fregean propositional logic, the language of which is obtained by endowing the
language of classical propositional logic with a new binary connective that expresses the identity of
two statements.

In [11], S. Pkhakadze and H. Tompits present axiomatizations in terms of the well-known sequent
method for two variants of default logic, which is a nonmonotonic formalism relevant for artificial
intelligence. The distinguishing feature of the calculi is the usage of rejection systems which axiomatize
non-theorems.

In [12], H. Antunes, W. Carnielli, A. Kapsner, and A.Rodrigues construct Kripke-style semantics
for the natural deduction systems of the logics of evidence and truth LETJ and LETF introduced earlier
by W. Carnielli and A. Rodrigues. Such logics were conceived to express the deductive behavior
of positive and negative evidence, which can be conclusive or non-conclusive. Here, the logics are
interpreted in terms of positive and negative information, which can be either reliable or unreliable.

The paper [13] by A. Malec studies the classical first-order predicate logic. This logic is a sufficient
and desirable basis for deontic theories which are free-from paradoxes inherent in propositional deontic
logics that are adequate to the domain of law. The specific axioms of these theories proposed in the
paper refer to Bogusław Wolniewicz’s “Ontology of Situations” and reflect: (i) relations between sets
of legal events, (ii) properties of simple acts, and (iii) properties of compound acts.

In [14], D. Leszczyńska-Jasion and S. Chlebowski develop a proof method (synthetic tableaux
method) for a class of the first-order theories axiomatized by universal axioms. Completeness of the
system is demonstrated, and some similarities between the method of synthetic tableaux and the
axiomatic method are discussed.

The paper [15] by U. Wybraniec-Skardowska presents two equivalent axiomatic systems of
arithmetic of natural numbers: Peano’s (P) and Wilkosz’s (W), and two intuitive axiomatic extensions
of integer arithmetic modeled on them. All these systems of arithmetic are based on second-order
predicate calculus, and the systems P and W differ mainly in that while in both categorical systems P
and W, the primitive concept is a set of natural numbers, in the former, the primitive concepts are also
zero and a successor of the natural number; in the latter, the primitive concept is the inequality relation.

In [16], J-P. Desclés and A. Pascu study mathematical models of the logic of the determination of
objects (LDO) and the logic of typical and atypical instances of concept (LTA). The novelty of the model
presented in this book is that it describes the structural level of LDO in the framework of preordered
sets and lattices. A mathematical model of LTA is constructed as an extension of LDO model. In the
case of LTA, a set of objects related to a concept gets equipped with a quasi-topological structure.

A review [17] of the book “The Significance of the New Logic” by Willard Van Orman Quine,
contributed by R. Freire, completes the volume.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Aristotle’s syllogistic is the first ever deductive system. After centuries, Aristotle’s ideas
are still interesting for logicians who develop Aristotle’s work and draw inspiration from his results
and even more from his methods. In the paper we discuss the essential elements of the Aristotelian
system of syllogistic and Łukasiewicz’s reconstruction of it based on the tools of modern formal
logic. We pay special attention to the notion of completeness of a deductive system as discussed by
both authors. We describe in detail how completeness can be defined and proved with the use of
an axiomatic refutation system. Finally, we apply this methodology to different axiomatizations of
syllogistic presented by Łukasiewicz, Lemmon and Shepherdson.

Keywords: Aristotle’s logic; syllogistic; Jan Łukasiewicz; axiomatic system; axiomatic refutation;
completeness

1. Introduction

Deductive systems of different kinds are the heart of contemporary logic. One could even state
that logic itself, as it is understood nowadays, is just a collection of deductive systems appropriate
for different kinds of reasoning. Even when ways of reasoning that are usually distinguished from
deduction, such as induction or abduction, are considered, they are finally presented in a deduction-like
form of a strict system. The theory and methodology of deductive systems is established and well
developed, and so is the folklore spread through the community of logicians.

While discussing deductive systems in contemporary logic, it is however still interesting to look
back to the roots of Western logic and compare what we have achieved today with the legacy of
Aristotle. Somehow surprisingly, we can find many features of today’s mature deductive systems
in his system of syllogistic. Robin Smith in his entry in the Stanford Encyclopedia of Philosophy [1]
notices that “scholars trained in modern formal techniques have come to view Aristotle with new
respect, not so much for the correctness of his results as for the remarkable similarity in spirit between
much of his work and modern logic. As Jonathan Lear has put it, ‘Aristotle shares with modern
logicians a fundamental interest in metatheory’: his primary goal is not to offer a practical guide
to argumentation but to study the properties of inferential systems themselves.” Thus, analysing
Aristotle’s syllogistic allows us to reflect on the most essential features of a deductive system and
abstract them from their exact content, context and the terminology used.

No wonder that in recent decades we can observe a significant interest in the logical works of
Aristotle. Klaus Glashoff in 2005 [2] (p. 949) stated that “[u]nlike several decades ago, Aristotelian
logic meets with growing interest today. Not only philosophers, but also specialists in information
and communication theory employ ideas which can be explicitly traced back to Aristotle’s work on
categories and syllogisms. [...] Independently of these rather recent developments, there has been
a renewed interest in matters of formalization of Aristotelian logic by a small group of logicians,
philosophers and philologists.” Since then, many new works have been published either directly on
the writings of Aristotle [3–5] or on extensions or technical aspects of his syllogistic [6–19], to mention
only a few.

Axioms 2020, 9, 56; doi:10.3390/axioms9020056 www.mdpi.com/journal/axioms5
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After Aristotle, syllogistic was for many centuries the dominant form of logic attracting interest
of many generations of scholars. There were at least a few important contributions to the theory before
the rise of modern mathematical logic in the twentieth century, including the medieval systematisation
of traditional syllogistic, several mathematical interpretations of syllogistic presented by Gottfried
Wilhelm Leibniz and the diagrammatic approach to the theory introduced by Leonard Euler and
John Venn. In this paper we are, however, interested mostly in modern reconstructions of syllogistic
starting from the works of Jan Łukasiewicz and some of the ideas inspired by Aristotle presented in
this context.

We will start our considerations with some remarks on the original presentation of syllogistic
given by Aristotle mainly to trace his methodology of deductive systems. Then, we will look at
the system presented by Łukasiewicz. From the perspective of almost a century we trace and
assess the choices he made while formalizing syllogistic. We will be especially interested in the
way Łukasiewicz developed the Aristotelian discussion of the completeness of the system of syllogistic.
Moreover, we will compare this approach with theory and practice of completeness investigations in
contemporary logic. Finally we will present how Łukasiewicz’s methodology works on the several
variants of the system of syllogistic.

The technical results presented in the paper are not novel. The most interesting from the technical
point of view is perhaps the refutation counterpart of Shepherdson’s axiomatization of syllogistic.
The main contribution of the paper lies in its methodological discussion of the issue of correctness of a
deductive system. The paper is also rich in references covering sources that present different attempts
at the formalization of syllogistic, as well as selected recent works on the subject.

2. Original Presentation

To obtain the right perspective in order to discuss some details of the modern formalizations
of syllogistic let us start from a few remarks on its original, Aristotelian presentation. Innocenty M.
Bocheński expressed a very strong, but in principle right, opinion on its role in the history of thought
that “[t]he assertoric syllogism is probably the most important discovery in all the history of formal
logic, for it is not only the first formal theory with variables, but it is also the first axiomatic system ever
constructed” [20] (p. 46). This claim takes into account the significance of the Aristotelian system not
only for logic. Formal theories and formal modelling are ubiquitous in modern science. Mathematics
and mathematically founded physics have been using these tools for the longest time but many other
disciplines of natural and social science build their own formalized theories which share the same
crucial features. It was Euclidean geometry that in the modern era gained the position of the icon of a
deductive system (c.f. famous Spinoza’s more geometrico but it was syllogistic that earlier had set the
standard and prepared the basic conceptual framework for formal techniques in science.

Bocheński justifying his claim on the importance of syllogistic mentioned two issues: the use of
variables and the form of an axiomatic system. While the former is simple, understanding the latter
requires a reflection on what an axiomatic system is. To acknowledge that a theory forms an axiomatic
system two things are required. One is a division of the elements of the system into two groups: axioms
and theorems. Some propositions (let us at this point skip the issue, to which we will come back in the
following section, of whether syllogisms are indeed propositions, since the same construction can be
designed for objects other than propositions, like valid rules or designated modes of reasoning) are
treated in a special way and are accepted as axioms and other propositions are derived from them.
The other requirement concerns the relation between axioms and theorems. Theorems are derived and
the derivation must be deductive. This is the point where maturity of deduction methodology can be
observed. In mature systems rules of deduction are explicit and formal.

In the Aristotelian presentation of syllogistic the syllogisms of the first figure are perfect (they
are axioms) and the syllogisms of the two other figures are imperfect (i.e., derived from axioms).
Bocheński [20] (pp. 46–47) points out three rules of deduction used by Aristotle in his axiomatic system
of syllogistic: the direct reduction, the reductio ad impossible and the ecthesis. These rules are deductively
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valid and recognized in contemporary logic. In modern terminology we can call the direct reduction
strengthening of a premise, the reductio ad impossible—transposition, and the ecthesis—reasoning by
example. Since we are interested only in the fact of axiomatization and the level of formalization
we are not going to present the precise formulation of rules and details of derivations here (for the
reconstructions of proofs of all syllogism see [20] (pp. 49–54)).

In a series of loose notes placed throughout Posterior Analytics, we can also find general rules of
construction of an axiomatic theory. Bocheński reconstructs them in the following way [20] (p. 46):

1. there must be some undemonstrated claims: axioms, and other claims: theorems are deduced
([21], 72b),

2. axioms must be intuitively evident ([21], 99b),
3. the number of steps of deduction in proofs of theorems must be finite ([21], 81b).

Aristotle’s approach to axiomatization is similar but not identical to the contemporary one.
The main difference lies in the above point 2 regarding axioms. Conditions such as self-evidence,
certainty and ontological priority are no longer imposed on them. An axiom differs from other
statements of a system only in the fact that it is not derived (c.f. [22] (pp. 70–71)). There are different
axiomatizations of the same theories and they are equally correct provided they define the same set
of accepted objects. Still some choices of axioms may be evaluated higher than others. What are the
criteria applied by contemporary logicians here? The answer is not straightforward. Surely, most of
them are not strict and formal. Some of them are similar to what Aristotle required. Sometimes we
value higher axioms that are intuitively clear or self-evident. Similar to these criteria is the simplicity of
axioms, which is sometimes stressed as an advantage. On the other hand, sometimes axiomatizations
with a smaller number of axioms are evaluated higher.

There are some more metalogical notions whose presence (or at least traces) in the Aristotelian
system of syllogistic is pointed out by some authors. We will discuss the notion of completeness in
detail in the following sections, now let us just briefly mention the notion of compactness.

The issue of compactness of Aristotle’s syllogistic was raised by Lear [23]. He claimed that in
Posterior Analytics I.19-22 Aristotle discusses a proof-theoretic analogue of compactness. Compactness
itself is a model theoretical property of a system stating that if a proposition α is a semantic consequence
of an infinite set of propositions ϕ, then there exists a finite set ϕ1 ⊂ ϕ such that α is a semantic
consequence of ϕ1. What is then the proof-theoretic analogue of compactness? It is a property stating
that every demonstrable conclusion can be demonstrated from finitely many premises. In other words,
there are no valid ways of deductive reasoning that effectively use infinitely many premises.

The question arises whether what Aristotle discusses is really related to compactness in the sense
used in contemporary metalogic or it is just a misinterpretation of Aristotle. The second opinion is
presented by Michael Scanlan [24], who states that introducing compactness in the context of syllogistic
is anachronistic since Aristotle did not use model theory at all. An interesting and balanced discussion
of the issue is presented by Adam Crager in [4]. In the context of the present paper it is enough to
ascertain that some contemporary logicians want to find traces of modern logical ideas in Aristotelian
works even if they are not quite clear there, and that these logicians might be right.

3. Łukasiewicz’s Reconstruction of Syllogistic: Formalization Choices

3.1. Preliminaries

It is hard to tell whether Łukasiewicz was aware of the different possibilities he could use when
he was formalizing syllogistic using the tools of modern formal logic. “the” in the title of his book:
Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic may suggest that in his opinion his point
of view concerning the theory was the only one.

Now, taking into account later works on syllogistic we can see that it is not that simple. There are
many possible formal tools that can be applied to construct a system of syllogistic and many variants
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of the content of the theory. Looking from today’s perspective the most fundamental decision is the
choice of a kind of object a syllogism should be. In the later literature (see e.g., [25,26]) at least three
interpretations of a (correct) syllogism are discussed: (1) valid premise-conclusion argument, (2) true
proposition or (3) cogent argumentation or deduction. In terms of the formal structure that leads
to two clear possibilities: inference rules for (1) and implication propositions for (2). Interpretation
(3) requires a less direct formal account of syllogism.

Łukasiewicz constructed a theory where syllogisms are represented as propositions.
This approach seems to be in accordance with the spirit of the 30s in logic. The hype was for
axiomatisation in, what we would call now, the Hilbert style. Natural deduction, being an alternative
to it, had just been invented by Gentzen and Jaśkowski and only budding. It is less known that Gödel
in his Notre Dame lectures in 1939 [27] also presented a formalization of syllogistic with the use of
mathematical logic and his system was constructed in a way similar to Łukasiewicz’s system. The main
difference was in the choice of axioms and in the fact that while Łukasiewicz presented a full-fledged
theory, Gödel presented only a sketch.

Another important issue where approaches to syllogistic may vary is connected with the sort
of names that can be used within categorical sentences that are the components of syllogisms.
Two distinctions are relevant here for individual/common names and empty/nonempty ones.
This issue was also discussed extensively after Łukasiewicz and different proposals are now available
here. In the following sections we will discuss Łukasiewicz’s approach in detail.

3.2. Axiomatic Theory Based on the Classical Propositional Logic

What is shared by all the aforementioned interpretations of Aristotelian logic is that the purpose
of syllogistic is to study reasoning in which categorical propositions are both premises and conclusions.
As we have mentioned, such reasoning can be formalized with the tools available to modern formal
logic, in several ways, for example as sentences of language with the implication structure or as
inference rules or schemata.

In the former case, the premises for reasoning can be treated as factors of the conjunction
constituting the antecedent of implication, and the conclusion as the consequent of implication.
What results are formulas that can be converted into rules in a natural way. To view syllogisms as
such implications requires an interpretation of implication and conjunction. Łukasiewicz adopted the
simplest solution available for him, where these operators are taken from the classical propositional
calculus. The classical interpretation of operators is, however, by no means obvious. The definition of
syllogism itself, as derived from Prior Analytics: “[a] syllogism is an argument in which, certain
things being posited, something other then what was laid down results by necessity because
these things are so”, [21] (24b, 20) suggests two features of syllogisms that the classical calculus
ignores—non-tautologicality “something other then what was laid down” and relevance: “because
these things are so” (see e.g., [3] for a discussion of the issue of relevance).

Łukasiewicz went further to assume that syllogistic is built over the whole classical propositional
calculus and thus allows structures other than those in the form of syllogism. In this way, the direct
relationship with rules is lost. This element of his approach to Aristotle’s syllogistic seems to be
particularly controversial.

Therefore, to provide a better understanding of the essence of Łukasiewicz’s approach to
syllogistic, three elements can be separated: (1) the formalization of reasoning by sentences of language
with an implication structure, (2) the use of the classical understanding of propositional operators,
(3) the use of propositional calculus operators in any configuration to build complex formulas.

Łukasiewicz’s approach was strongly criticized by John Corcoran [28,29]. His criticism concerned
mainly point (1) above. Instead, Corcoran proposed to formalize syllogisms as rules within a system of
natural deduction. From the further perspective, however, the difference between the two approaches
is not that essential. When propositions in the form of implication are considered, there is a close
relation between the truth of sentences and the soundness of inference rules. True implications are the
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basis of correct rules, and correct rules can be transformed into corresponding true sentences. Such a
proposition-rule duality of implications reveals itself especially in the context of logic programming.
Logic programs are sets of Horn clauses. In a declarative interpretation clauses are implications in
which ancetedents are conjunctions of atoms and consequents are atoms. In a procedural interpretation
they are rules with multiple premises that are triggered in certain situations. It is easy to see that
syllogisms have the same structure and therefore they also can be interpreted dually.

Indeed, the other aspects of Łukasiewicz’s approach seems to be more controversial. Classical
propositional calculus is probably not the logic which can adequately describe the Aristotelian way of
thinking. Moreover, Aristotle did not use any structures other than standard syllogisms and sorites
(syllogism with more than two premises). Again these discrepancies between the Aristotelian theory
and its reconstruction by Łukasiewicz does not seriously undermine Łukasiewicz’s practice. That is
because he does not really make use of propositional logic more than it is necessary to reconstruct
arguments confluent with the ones acceptable by Aristotle, mainly proving one syllogisms on the basis
of others.

3.3. Admissible Types of Names

In logical semiotics, there are two divisions of names that are interesting from the point of view
of the formalization of the syllogistic. The first is made by the type of reference and distinguishes
between common and proper (individual) names. Common names designate objects because they meet
some conditions and can always be linked with appropriate predicates that represent these conditions.
Individual names designate specific objects under a language convention. The other division is made
by the number of designates and distinguishes between empty names, i.e., having no designates,
particular names, i.e., having exactly one designate, and general names, i.e., those having more than
one designate. Note that empty and particular names can be common or proper. As an example of
a common empty name we can take “unicorn” or “square circle”, as an example of a proper empty
name we can take “Pegasus” or “Santa Claus”.

While building a system of logic of names such as syllogistic one can narrow the range of names
that can be used to selected categories based on the above divisions. Such postulates have had various
motivations and justifications. In his famous work “On Sense and Reference” [30], Gottlob Frege
proposed that empty names be eliminated from the language of science. In his justification, Frege
uses reasoning that can be summarized in the claim that the use of names without denotation leads to
pointless discussion and manipulation. Aristotle permits names without denotation, assuming that
atomic sentences in which such names appear are false. Łukasiewicz’s formalization of syllogistic
assumes that all names are non-empty. However, many systems built in his style, like [31–34], allow the
use of empty names.

Łukasiewicz also eliminates individual names from the language of syllogistic. A similar
narrowing can be observed in Peter Geach, who in combining individual and proper names in
traditional syllogistic sees an important source of the “corruption of logic” [35]. The position of
Aristotle himself on this issue is not quite clear. When he presents valid syllogisms in Prior Analitics
(26a–46b) he always uses general names like “animal”, “man” and “white”. However further in
Prior Analitics 47b while discussing some invalid forms, where “no syllogism is possible” he puts in
these forms individual (proper) names: Aristomenes and Miccalus. It is not obvious, and Aristotle
does not state clearly, whether the use of proper names is the reason why syllogisms are not possible or it
is a coincidence.

The admissibility of propositions in which the same argument appears twice raises yet another
type of doubt. In modern logic, such formulas are natural and can be created by substituting the same
value (constant or variable) in any expression. In his system formalizing the syllogistic of Aristotle,
Łukasiewicz even uses the formulas “each S is S” and “certain S is S” as axioms. Such sentences,
however, do not appear in the description of syllogistic modes given by Aristotle.
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This fact can be associated with the requirement mentioned above, according to which syllogism
should lead to new knowledge. On its basis, one can derive “something else than assumed”,
and, on the other hand, what is derived “must result because it was assumed”. In this context,
the sentences “every S is S” and “certain S is S” are not useful, because with the normal use of
syllogisms nothing new results from them, nor can they constitute new knowledge resulting from
certain assumptions. Łukasiewicz does not set out any restrictions on substitution.

4. Completeness

The basic criterion for assessing the quality of a formal system is its adequacy with respect to
underlying intuitions. Adequacy consists of two properties: soundness and completeness. In the
case of an axiomatic system, soundness means that all theorems of the system follow underlying
intuitions, and completeness that all formulas that are intuitively accepted are also accepted in the
system. In the literature one can find many embodiments of this fundamental intuition which differ in
important details. We will cite some of them below. In the first two, completeness directly refers to sets
of formulas, and the truth of these formulas (sentences) is adopted as the intuitive acceptance criterion.
Kazimierz Ajdukiewicz uses the concept of completeness understood as follows:

“each true sentence that can be formulated in the language of this theory can be proved
(unless it is an axiom of this theory) by the means of evidence at its disposal.” [36] (p. 215)

Ludwik Borkowski gives the following definitions of completeness:

“The S system is complete if and only if each true expression of the S system is a thesis of the
S system.” [37] (p. 378)

In metalogical considerations, the classical correspondence concept of truth is usually used.
In Ajdukiewicz’s formulation it is as follows:

“Any declarative sentence is true when it is just as it says; it is false when it is not what it
proclaims.” [36] (p. 29)

The above framings have, however, a disadvantage. Not all formal systems that logic deals
with refer to truthfulness. An example would be intuitionistic logic, where the goal is to capture
what is constructively provable rather than true. However, the same method can still be applied to
consider completeness in relation to formal approaches to this type of logic. In general, the concept of
completeness in the above approaches may be retained, only the term “true” should be replaced with
the term “accepted” or “admissible”.

Other definitions associate completeness with sets of inference or reasoning methods and refer to
their soundness or reliability, which corresponds to the truthfulness of sentences. Andrzej Grzegorczyk
writes about completeness:

“The natural, historical development of logic has indeed led to the creation of such a logic
system, which can be proved to contain all logical methods (schemata) of correct inference
on any subject. We call this property completeness.” [38] (p. 121)

Witold A. Pogorzelski phrases this concept as follows:

“The problem of completeness can be formulated as a question of whether all reliable ways
of reasoning are actually based on the laws of formal logic.” [39] (p. 366)

As we noted earlier, there is a close relationship between the truth (acceptance) of sentences
and the soundness of reasoning (rules of inference). True sentences can in fact form the basis for the
construction of correct reasoning, and correct reasoning can be transformed into corresponding true
sentences. This fact allows us to assume that all the above definitions express in their own way the
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same intuition, which does not give rise to controversy. In all definitions, completeness is semantic in
the sense that it refers a formal system to something external, to reality, or at least to a way of thinking
about reality.

How to verify which sentences are true remains a problem, and in particular, how to do it precisely
enough to be able to use this validation in logical research. Most often formal models are used for
this purpose and truthfulness is defined as truthfulness in a model, which is defined by the formal
conditions imposed on objects in the model. As a result, in practice the truthfulness of sentences
is usually equated with their truthfulness in a formal model or a class of models. Consequently
models directly appear in the definition of completeness, as in the definition below from the Small
Encyclopedia of Logic edited by Witold Marciszewski:

“The deductive logic system is complete if and only if all sentences that are true sentences in
each model can be derived from its axioms.” [40] (p. 236)

However, by adopting this position, we give up the semantic character of completeness.
We consider the mutual relations between the two formal systems, i.e., the axiomatic system and
the system defining the formal model. Two formal approaches undoubtedly give a more complete
picture of a formal theory, but it does not connect the theory with reality. The problem of completeness
of the axiomatic system with respect to the underlying intuitions is not solved by demonstrating
completeness in relation to a model, but is only put aside. Another problem arises, one of adequacy
of the formal model in relation to reality or the way of thinking which the formal system under
consideration is to capture. Sometimes a model theoretical structure is intuitive, but in some cases, as
relevance logic, linear logic, or even intuitionistic logic, a proof-theoretical approach is much closer to
intuitions then models constructed to match the systems.

In the case of syllogistic, set-theoretical models are quite intuitive and seems to be natural,
especially for contemporary people, who are accustomed to thinking in terms of sets from kindergarten.
However, there are reasons to consider a theory of syllogism that is not dependent on set-theoretical
models. One of them is historical: Aristotle himself did not know set theory. Thus, it is good to be able
to conduct metalogical considerations concerning syllogistic without sets just to avoid anachronisms.
The other reason is that some researchers claim that set-theoretical approach used in modern logic
does not fit to the way we use natural language and use alternative approaches like Leśniewski’s
ontology [41].

Following and referring to Aristotle, Łukasiewicz proposed a different solution. In Prior Analytics
Aristotle shows that syllogistic schemata other than the syllogisms that he accepted should not be
accepted. In this way, he proves completeness of his system of syllogistic. He considers all possible
schemata with two premises belonging to each of the three figures. In most cases, he justifies the
rejection of a schema by providing a counter-example, as in the following passage:

“Nor will there ever be a syllogism if both intervals are particular, whether positive or
privative, or if one is stated positively, the other privatively, or one indeterminate, the other
determinate, or both indeterminate. Common terms for all cases: animal, white, horse;
animal, white, stone.” [21], (26b)

Showing examples falsifying all unacceptable formulas is labour-intensive, and in many cases
impossible due to their unlimited number, e.g., if one were to consider reasoning with any number
of premises (factors in the antecedent of implications). Already in Aristotle, however, one can find a
hint regarding a different way of rejecting such formulas, which Łukasiewicz extracts and expands.
The following text occurs in Aristotle:

“For since it is true that M does not belong to some X even if it belongs to none, and there
was no syllogism when it belonged to none, it is evident that there will not be one in this
case either.” [21], (27b)
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Out of this short note of Aristotle, Łukasiewicz derived an idea of axiomatic refutation that
was first further developed by Słupecki and his collaborators and then entered into the wider logic
community. A substantial theory concerning the logic of rejected propositions is presented in [42].
Recently the achievements in the field were recapitulated in [43] and the Łukasiewicz-Słupecki
approach to the issue was discussed in [44].

The basic ideas of Łukasiewicz are as follows. In addition to usual axioms and rules, rejected
axioms and rules of refutation are introduced. Rejected axioms should not be valid and rules of
refutation also produce non-valid formulas. A system is said to be refutationaly complete if each
formula of its language is either a theorem or a rejected formula. In his writings Łukasiewicz, and also
Słupecki, stressed that under certain conditions refutationaly complete systems are decidable.

In the opinion of the Author of the present paper, even more interesting is the argument that
refutationaly complete systems are adequate (sound and complete) in the very basic sense of adequacy
discussed above. In the following section we will present how refutation works in Łukasiewicz’s
system and in some other axiomatizations of syllogistic constructed in his style.

5. Axiomatic Systems of Syllogistic with Refutation Counterparts

The language of all the systems discussed in this section is the same. It contains name variables
S, P, M, N, ..., propositional operators and the two primitive operators a and i specific for syllogistic
read in a usual way: SaP is read as “every S is P” and SiP—as “some Ss are Ps” or “certain S is P”.
We will call formulas like SaP and SiP atoms. Formally, a formula of the language can be defined in
the following way (using Backus–Naur notation):

α = SaS | SiS | ¬α | α ∧ α | α ∨ α | α → α | α ≡ α

The usual negative syllogistic operators e and o (where SeP is read as “no S is P” and SoP—as
“some Ss are not Ps ” or “certain S in not P”) can be defined as negations of the primitive operators:

SeP � ¬SiP,

SoP � ¬SaP.

In all the systems any substitution of a classical tautology is an axiom. The common derivation
rules are Modus Ponens MP and substitution Sub of the following schemata:

� α → β;� α

� β

� α

� e(α)
,

where e is a substitution for name variables.

5.1. Łukasiewicz

Let us start with the Łukasiewicz’s system. Its specific axioms of are as follows:

SaS, (1)

SiS, (2)

MaP ∧ SaM → SaP, (3)

MaP ∧ MiS → SiP. (4)

The negative (rejected) part of the system is defined by the following three rules (� marks an
accepted formula and 	 a rejected one):
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• rejection by detachment MP−1:
� α → β;	 β

	 α
,

• rejection by substitution Sub−1:
	 e(α)
	 α

,

where e is a substitution for name variables,
• decomposition rule Comp−1:

	 α → β1; . . . ;	 α → βn

	 α → β1 ∨ . . . ∨ βn
, n ≥ 1,

where α is a conjunction of atoms and βi(1 ≤ i ≤ n) are atoms.

The last rule is a variant from [45] of the rule of Słupecki, used by Słupecki, Łukasiewicz and
Shepherdson, that reflects in its shape a more general result on Horn theories from [46]

The following formula is the sole rejected axiom:

PaM ∧ SaM → SiP. (5)

To see how the axiomatic system works let us give a proof of the following conversion law
for general negative sentences (for the application of the laws of propositional calculus we use the
abbreviation “PC”, to abbreviate substitutions like e(M) = P we will write M/P):

SeP → PeS

1. MaP ∧ MiS → SiP axiom (4)
2. PaP ∧ PiS → SiP Sub : 1 (M/P)
3. PaP → (PiS → SiP) PC: 2
4. MaM axiom (1)
5. PaP Sub : 4 (M/P)
6. PiS → SiP MP: 3, 5
7. ¬SiP → ¬PiS PC: 6

SeP → PeS definition of SeP: 7

As an example of a negative derivation let us give a refutation of the analogous conversion of
general positive sentences:

SaP → PaS

1. � MaP ∧ SaM → SaP axiom (3)
2. � MaP ∧ MiS → SiP axiom (4)
3. � SiS axiom (2)
4. � SaP ∧ SiS → SiP Sub: 2 (M/S)
5. � SiS → (SaP → SiP) PC: 4
6. � SaP → SiP MP: 5,3
7. � MaP ∧ SaM → SiP PC 1, 6
8. � (MaP ∧ SaM → SiP)→ ((PaM → MaP)→ (SaM ∧ PaM → SiP)) PC
9. � (PaM → MaP)→ (SaM ∧ PaM → SiP) MP: 8, 7
10. 	 PaM ∧ SaM → SiP rejected axiom (5)
11. 	 PaM → MaP MP−1: 9, 10

	 SaP → PaS Sub−1: 12 (S/P, P/M)

Łukasiewicz shows that all the Aristotelian assertoric syllogisms and all the one-premise valid
reasoning schemata mentioned by Aristotle have their counterparts in the form of implications provable
in Łukasiewicz’s system. Moreover, since the system incorporates the whole classical propositional
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calculus, many formulas that are not directly connected to the reasoning schemata discussed by
Aristotle, or are not implications e.g.,:

SaP → SaP,

SiP ∨ SoP,

¬(SaP ∨ SeP)

are provable.
Łukasiewicz’s system is refutationally complete, i.e., every formula of the language is either a

theorem or can be rejected. The proof of that fact is well known (see [47,48]) and we will not repeat it.
Let us just mention that the proof relies on the observation that a formula of a form α → SaP, where α

is a conjunction of atoms, is a theorem if and only if α contains a chain connecting S with P, and such a
formula is rejected whenever it is not a theorem. A chain is a conjunction of the following form:

SaM1 ∧ M1aM2 ∧ . . . ∧MnaP (n ≥ 0).

The result is then extended to all formulas of the language on the basis of propositional calculus
derivations on the accepted side, and the refutations based on the rules MP−1 and Comp−1 on the
rejected side.

5.2. Lemmon

Let us now look at systems without restriction to non-empty names. Many different
axiomatizations adequate for that idea were introduced. They differ, beyond just the choice of axioms,
in two main points. One of them is the set of primitive notions: some of them use the same operators
a and i as Łukasiweicz, some other use nominal negation instead of i. The other difference is the
interpretation of the operator a, which can be strong or weak. In both of them, obviously, for SaP to be
true S must be contained in P, but in the strong interpretation S must be non-empty, while in the weak
one it is not so.

The strong interpretation is adopted, among others, by Wedberg, Menne and Lemmon [32,33,49].
We start from it because the refutation part of this variant of theory is much simpler than the one for
the weak interpretation. We use a variant of Lemmon’s system from [45] with Equations (3) and (4),

SaP → SiP, (6)

and
PiS → SaS (7)

as axioms.
The refutational counterpart of the system consists of the same rules as for Łukasiewicz’s system,

and Equation (5) and

PaP → SiS (8)

as rejected axioms. The proof of refutation completeness of the system similar to the one for
Łukasiewicz’s system can be found in [50].

5.3. Shepherdson

Now we can pass to Shepherdson’s system [34], also called the Brentano style syllogistic [51]
(p. 311). The speciffic axioms of the system are in Equations (1), (3) and (4),

SiP → SiS, (9)
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and
SaP ∨ SiS. (10)

Assuming the correctness of Lemmon’s system we can obtain correctness result for Shepherdson’s
by embedding it into Lemmon’s. To define the relation between Shepherdson’s and Lemmon’s systems
let us for this purpose distinguish two variants of operator a: aS and aL occurring in the two systems,
respectively. With this convention we can formulate the following equivalences that may be used to
mutually define one operator by another:

SaSP ≡ SaLP ∨ ¬(SiS),

SaLP ≡ SaSP ∧ SiS.

Let us, however, introduce the refutational counterpart of Shepherdson’s system. The system was
first presented in [50] where full proof is given (it is lengthy and laborious but quite predictable). Here
we will just sketch the proof and use the final result to comment on the usefulness of the refutation
approach for the discussion of completeness.

Let us start with the easier part: the refutation system for the Horn fragment of the Shepherdson’s
system, i.e., the system with Equations (1), (3), (4) and (9), as axioms.

Here the rules of rejection are the same as in Łukasiewicz’s system and the rejected axioms are:

SiS ∧ PiP ∧ SaM ∧ PaM → SiP (11)

PiP ∧ SaP → SiS. (12)

The proof of refutation completeness is analogous to the one for Łukasiewicz’s system.
Now, let us come back to the full system of Shepherdson, and its refutation counterpart. To define

it we will use the rules MP−1, Sub−1, as in the Łukasiewicz’s system and the following modified
version of Comp−1, Comp−1

2 :

	 α → βi ∨ β j, for each i, j, such that: 1 ≤ i < j ≤ n
	 α → β1 ∨ . . . ∨ βn

, n ≥ 2,

where α is a conjunction of atoms and βi (1 ≤ i ≤ n) are atoms.
The sole rejected axiom is as follows:

MaS ∧ MaP ∧ MaQ ∧ SaR ∧ PaR ∧ RaN ∧QaN ∧ SiS ∧ PiP ∧QiQ → SiP ∨ RiQ. (13)

The choice of rejected axiom is mainly technical: it is chosen as sufficient to prove completeness.
In the following section we will show by giving an example that it is not valid and for that reason it
should be rejected. The role of the Comp−1 rule is similarly technical: to enable the proof of refutational
completeness. In the following section we will try to justify its validity.

First let us notice that Equations (11) and (12) are rejected: it can be proved that from each of the
formulas separately we can derive the rejected axiom in Equation (13). For Equation (11) to derive
Equation (13) from it after substituting R for M we just need to strengthen the antecedent and weaken
the consequent. In Equation (12) we first need to substitute S for P and M for S. Then, using the fact,
that MiM ∧ MaS ∧ MaP → SiP is a theorem of the system we can use classical proposition calculus to
derive Equation (13). Thus, each Horn formula of the system is either a theorem or a rejected formula.

Now, we need to prove the same fact for the formulas of the form:

α → β1 ∨ β2, (14)

where α is a conjunction of atoms, and β1 and β2 are atoms.
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For this purpose it will be useful to note that the rejected axiom is equivalent to the following
longer formula:

MaM ∧ MaS ∧ MaP ∧ MaR ∧ MaQ ∧ MaN ∧ SaS ∧ SaR ∧ SaN∧
PaP ∧ PaR ∧ PaN ∧ RaR ∧ RaN ∧QaQ ∧QaN ∧ NaN∧

SiS ∧ SiR ∧ RiS ∧ SiN ∧ NiS ∧ PiP ∧ PiR ∧ RiP ∧ PiN ∧ NiP∧
RiR ∧ RiN ∧ NiR ∧QiQ ∧QiN ∧ NiQ ∧ NiN → (15)

SaM ∨ SaP ∨ SaQ ∨ PaM ∨ PaS ∨ PaQ ∨ RaM ∨ RaS ∨ RaP ∨ RaQ∨
QaM ∨QaS ∨QaP ∨QaR ∨ NaM ∨ NaS ∨ NaP ∨ NaR ∨ NaQ∨
MiM ∨ MiS ∨ SiM ∨ MiP ∨ PiM ∨ MiR ∨ RiM ∨ MiQ ∨QiM∨
MiN ∨ NiM ∨ SiP ∨ PiS ∨ SiQ ∨QiS ∨ PiQ ∨QiP ∨ RiQ ∨QiR.

The intuitive meaning of the formula is not straightforward. It is a maximal combination of atoms
built from six variables put on the both sides of the implications that does not allow one to derive
consequent from antecedent, needed from the technical point of view to prove the completeness result.

The derivation from Equations (13) to (15) is valid since both the antecedent and consequent
of Equation (13) are included in respectively the antecedent and the consequent of Equation (15).
The derivation from Equation (15) to Equation (13) is based on the theorems of the system of the form
of:

• implications with elements of the antecedent of Equation (15) not present in the antecedent of
Equation (13) as the consequent and the antecedent of Equation (13) (or its fragment) as the
antecedent, e.g.,

MaS ∧ SaR → MaR,

• and implications with the elements of the consequent of Equation (15) not present in the
consequent of Equation (13) and the antecedent of Equation (13) (or its fragments) as antecedents
and elements of the antecedent of Equation (15) not present in the antecedent of Equation (13) as
consequents, e.g.,

SaM ∧ SiS ∧ MaS ∧ MaP → SiP.

Thus, all the elements of Equation (15) not included in Equation (13) can be eliminated.
Now we can move on to the main point of this part of the proof: the analysis of all possible forms

of Equation (14). Its consequent may take one of the three following forms (with possibly different
variables): (i) SiP ∨ RiQ, (ii) SiP ∨ RaQ, (iii) SaP ∨ RaQ.

In case (i), any formula of the discussed shape α → SiP∨ RiQ is a theorem if α → SiP or α → RiQ
is a theorem. In case (ii), a formula is a theorem when one of the following conditions is fulfilled:

• α → SiP is a theorem,
• α → RaQ is a theorem,
• the following conditions are satisfied: (I) α contains a chain connecting R with S (or in the place of

both S and R the same variable occurs), and (II) α contains a chain connecting R with P (or in the
place of both P and R the same variable occurs).

In case (iii), any formula of the discussed shape α → SaP ∨ RaQ is a theorem if α → SaP or
α → RaQ is a theorem.

In all cases (i)–(iii), if a formula is not the theorem described above, after renaming the variables
when needed, it contain only elements of the antecedent of Equation (15) in the antecedent and only
elements of the consequent of Equation (15) in the consequent. All formulas fulfilling this condition
are rejected. Thus, each formula of the shape seen in Equation (14) is a theorem or is rejected.
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It remains to prove that the set of theorems and the set of rejected formulas are disjoint. For that
we need to show (a) that the rules of rejection lead from non-theorems to other non-theorems and (b)
that the rejected axiom is not a theorem.

As for (a) since for rules MP−1 and Sub−1 that fact is obvious, the interesting case is the weak
version of Comp−1. Here we need to show that if a formula α → β1 ∨ β2 ∨ β3, where α is a conjunction
of atoms and β1, β2 and β3 are atoms, is a theorem of the system, then at least one of the α → βi ∨ β j
(i, j ∈ {1, 2, 3}) is also a theorem. The proof of that fact is based on the constatation that the only
non-Horn axiom of the system in Equation (10) cannot be effectively used twice in any derivation
in the system, so the only way to obtain a formula of the form α → β1 ∨ β2 ∨ β3 is by adding a new
element of the consequent on the basis of the appropriate law of the classical propositional calculus.

To show that the rejected axiom is not a theorem of the system we can use the following matrices:

a n1 n2 n3 n4 n5 n6

n1 1 1 1 1 1 1
n2 0 1 0 1 0 1
n3 0 0 1 1 0 1
n4 0 0 0 1 0 1
n5 0 0 0 0 1 1
n6 0 0 0 0 0 1

i n1 n2 n3 n4 n5 n6

n1 0 0 0 0 0 0
n2 0 1 0 1 0 1
n3 0 0 1 1 0 1
n4 0 1 1 1 0 1
n5 0 0 0 0 1 1
n6 0 1 1 1 1 1

The matrices indicate the truth values of atoms when values ni (1 ≤ i ≤ 6) are substituted for
nominal variables in formulas. Checking that Shepherdson’s axioms receive always the value 1 is a
usual routine. Rejected axiom in Equation (13) receives the value 0 when we put n1 for M, n2 for S, n3

for P, n4 for R, n5 for Q and n6 for N.

5.4. Refutation and Adequacy

Let us stress that in the presentation of systems in the previous section we did not mention at
all set-theoretical models of categorical sentences. That allows us to see syllogistic as a theory on its
own, largely independent from the set-theoretical intuitions that are contemporarily usually applied in
order to understand syllogistic.

The refutationaly complete axiomatic presentation of syllogistic may be an alternative way to
control the correctness of the formalization. To check that a system is correct we need to show that
axioms are intuitively correct and rejected axioms are not, and that rules used to deduce theorems from
axioms and rejected formulas from rejected axioms (and theorems) work properly. Since correctness
is not with respect to another formal system (like a set of models) the argumentation here cannot be
strictly formal.

As for axioms of the three systems let us first look at their common part consisting of axioms in
Equations (3) and (4). They come from Aristotle and seem to be intuitively very clear and convincing.
The remaining parts of the system have much to do with empty names. In Łukasiewicz’s system
empty names are not allowed. Thus, if we only accept that using the same name twice in positive
categorical sentences, like SaS and SiS, makes sense at all, we should also accept that such sentences
are true. In the case of Lemmon’s system both specific axioms in Equations (6) and (7) express the core
of the strong interpretation of SaP in combination with the existential commitment of i. In the case of
Shepherdson’s system we got SaS accepted in the axiom in Equation (1) as the weak interpretation of a
makes it true also for empty names. Equation (9) similarly to Equation (7) is based on the existential
commitment of i. Finally, Equation (10) expresses the fact that a name S is either empty (then SaP has
to be true under the weak interpretation of a) or non-empty (then SiS is true). Thus, we can say that
the axioms of each system correctly reflect their background intuitions.

To show that a rejected axiom should be rejected it is enough to find a counterexample since
we just need to confirm that it is not valid. That is the way that Aristotle worked. Let us look
at the formulas used as rejected axioms in the axiomatic systems of syllogistic we have discussed.
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For Equation (5) we can take a cat for S, a dog for P and an animal for M. Both dogs and cats are
animals but no cat is a dog. For Equation (8) we can take a cat for P and a unicorn for S (assuming that
unicorns do not exist and the sentence ‘some unicorns are unicorns’ is therefore false). Even if every
cat is a cat it is not the case that some unicorns are unicorns. As Equation (13) is more complicated the
counterexample for it is a bit more difficult to follow. Let us put a unicorn for M, a cat for S, a dog
for P, a mammal for R, a parrot for Q and an animal for N. Then all the elements of the antecedent
of Equation (13) are true: every unicorn is a cat (since there are no unicorns), every unicorn is a dog,
every unicorn is a parrot, every cat is a mammal, every dog is a mammal, every mammal is an animal,
every parrot is an animal, some cats are cats, some dogs are dogs and some parrots are parrots, but
neither any cat is a dog nor any mammal is a parrot.

The rules MP and Sub, and their refutational counterparts MP−1 and Sub−1 seem to be very
natural and common in logic. The justification of decomposition rules is less obvious. In its stronger
version Comp−1 reflects the simplicity of syllogisms as single-conclusion schemata giving unequivocal
result. It’s modified version Comp−1

2 is weaker, because the Shepherdson’s system has Equation (10) as
an axiom and, because of this, Comp−1 is not valid there. Thus, the system allows for two alternative
conclusions of a syllogism but no more than two. This principle can be understood as acknowledging
Equation (10) and its consequences as an exception, which is limited by Comp−1

2 .
To sum up, all conditions required for the discussed systems to be a correct representation of the

intuitions they formalize are fulfilled. That gives us an example of how to discuss the correctness
(soundness and completeness) of logic without models on the basis of refutation techniques having
their sources in Aristotelian logic.

6. Conclusions

Aristotle and contemporary logicians share the same aspiration to give intuitions about correct
reasoning a precise formulation. We have presented how Łukasiewicz’s ideas of an axiomatic refutation
system, inspired by Aristotle, work as a tool of assessment of such a formulation. In particular we have
discussed the issue of correctness of three axiomatic systems of syllogistic introduced by Łukasiewicz,
Lemmon and Shepherdson.

Let us point out the main conclusions of these considerations. Firstly, we should acknowledge
that syllogistic is a fully-fledged deductive system and that Aristotle conducted interesting metalogical
studies concerning it. Secondly, when investigating modern reconstructions of syllogistic, it is
more interesting, in my opinion, to look at the content of the theories than at the particular tools
of formalization. Thirdly, to assess the quality of the content of a theory, including such reconstructions,
the most important feature is their adequacy consisting of correctness and completeness. Axiomatic
refutation is an interesting method of showing adequacy. It can be used as an alternative to the
model-theoretical approach commonly used in contemporary logic.

Finally, as for the three systems of Łukasiewicz’s style syllogistic considered within the paper we
can see that it is possible to construct refutation counterparts for all of them. All three refutational
formalizations allow us to show adequacy of the systems with respect to the intuitions they follow.
However, for Shepherdson’s system which includes an axiom in a form of disjunction of atomic
formulas, the refutation system itself and the proof of adequacy are much more complicated.
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Abstract: The predominant form of logic before Frege, the logic of terms has been largely neglected
since. Terms may be singular, empty or plural in their denotation. This article, presupposing
propositional logic, provides an axiomatization based on an identity predicate, a predicate of
non-existence, a constant empty term, and term conjunction and negation. The idea of basing term
logic on existence or non-existence, outlined by Brentano, is here carried through in modern guise.
It is shown how categorical syllogistic reduces to just two forms of inference. Tree and diagram
methods of testing validity are described. An obvious translation into monadic predicate logic shows
the system is decidable, and additional expressive power brought by adding quantifiers enables
numerical predicates to be defined. The system’s advantages for pedagogy are indicated.

Keywords: term logic; Franz Brentano; Lewis Carroll; logic trees; logic diagrams

1. Terminology

A term logic is one in which the only categorematic expressions are terms, that is to say, nominal
expressions. Examples of terms from ordinary language are: singular terms, such as ‘Socrates’, ‘the
North Pole’, ‘Vulcan’; plural terms, such as ‘the Beatles’, ‘the signatories to the Geneva Convention’;
and general terms, such as ‘planet’, ‘black dog’, ‘negatively charged particle’. From this, it will be seen
that the presence or absence of a definite article makes no difference to whether an expression is a term
or not. It will further be seen that terms may be simple or complex. In term logic itself, we will employ
mainly term variables: there will be only two constant terms, given below. All other expressions in
a term logic are formal, or what were once called syncategorematic. They are the logical constants
needed to form sentences using terms, and such operators on terms as may form complex terms from
simpler ones, and the logical connectives of propositional logic. Quantifiers will be added later.

The syllogistic of Aristotle and his successors was a term logic, as was that of such logical
algebraists as Leibniz, Boole, Jevons, Venn and Neville Keynes. Term logic was augmented by relational
expressions in De Morgan, Peirce and Schröder, but terms, except for singular terms, disappeared
altogether from the predicate logic of Frege, Russell and their successors. An exception was the logical
system of Leśniewski, who retained plural and general terms, though Leśniewski’s system was also a
predicate logic rather than a purely term logic. Term logic is a very natural medium for representing
many inferences of ordinary discourse, more natural indeed than standard predicate logic. Though
it has much less expressive power than predicate logic, being in its elementary form equivalent to
monadic predicate calculus, it has much to recommend it from a pedagogical point of view, a fact
recognised by Łukasiewicz, whose university textbook Elements of Mathematical Logic [1] augmented
propositional calculus not with predicate calculus but with Aristotelian syllogistic.

The version of term logic we shall present owes much in inspiration to the logical reforms of Franz
Brentano [2–4] with some influence from the logical writings of Lewis Carroll.
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2. Language

2.1. Grammar

The grammar of our language will be categorial, with two basic categories: sentence (s) and term
(n). (It is standard in categorial grammars to notate the nominal category by ‘n’ for ‘name’ rather
than ‘t’ for ‘term’. We are following this tradition notationally, though we call the category by the
older expression ‘term’.) A functor category, the category of functor expressions taking arguments
of categories β1, . . . , βn as arguments and forming an expression of category α, will be denoted as
α〈β1 . . . βn〉.
2.2. Basic Vocabulary

The Table 1 Basic Vocabulary below gives the basic expression used, together with their syntactic
categories, categorial indices, and how we describe them.

Table 1. Basic Vocabulary.

Category Index Expressions Description

Monadic Connective s〈s〉 ~ Sentential negation
Dyadic Connectives s〈ss〉 ∧ ∨ →↔ [Standard]

Term Variables n a, b, c, a1, a2, . . .
Term Constant n Λ Empty term

Monadic Term Functor n〈n〉 ’ Term negation
Dyadic Term Functor n〈nn〉 [juxtaposition] Term conjunction

Monadic Predicate s〈n〉 N Non-existence predicate
Dyadic Predicate s〈nn〉 = Identity predicate

The intended meanings of the term-logical constants are given in the Table 2 below:

Table 2. Meanings of Basic Term-Logical Constants.

Expression Meaning Example

Λ Non-existing thing

a’ non-a non-animal

ab a which is a b doctor who is a musician

Na there are no a there are no unicorns

a = b to be a is (the same thing as) to be b to be a widow is to be a woman
whose husband has died

2.3. Basic Syntax

In the interest of simplicity and brevity of expression, we delicately abuse the use/mention
distinction and do not introduce special metavariables.

2.4. Terms

Any term variable or term constant is a term
If a is a term, so is (a)′
If a and b are terms, so is (ab)
Nothing else is a term except as allowed by definitions.

2.5. Sentences

If a and b are terms, a = b is a sentence

22



Axioms 2020, 9, 18

If a is a term, Na is a sentence
If p is a sentence, so is ~(p)
If p and q are sentences, so are (p ∧ q), (p ∨ q), (p→ q) and (p↔ q)
Nothing else is a sentence except as allowed by definitions.
We will omit parentheses where no ambiguity results. Propositional connectives are assumed to

bind in the order negation, conjunction, disjunction, implication, equivalence.

3. Axioms

3.1. Propositional Logic Background

We presuppose without mention axioms sufficient for classical bivalent propositional logic, with
substitution and modus ponens as inference rules.

3.2. Term-Logical Axioms

3.2.1. Intensional

for =
ID a = a (Identity)
LEIB a = b→ (p[a]→ p[b]) (Leibniz)

where p[x] is any sentential context containing the term x.

Justification

Self-identity and Leibniz’s Law are standardly characteristic of identity.
for = and term conjunction

IDEM aa = a (Idempotence)
COMM ab = ba (Commutativity)
ASSOC a(bc) = (ab)c (Associativity)

Justification

For idempotence: to be an a which is an a is the same thing as to be an a
For commutativity: to be an a which is a b is the same thing as to be a b which is an a
For associativity: to be an a which is a (b which is a c) is the same thing as to be an (a which is a b)

which is a c.
for = and ’

DN a”= a (Term Double Negation)

Justification

To be a non-non-a is the same thing as to be an a.
for =, ’ and term conjunction

DIST a(bc)’ = ((ab’)’(ac’)’)’ (Distribution)

Justification

This is the least self-evident of our axioms. It can be made more evident by considering an empty
Venn or Carroll diagram for three terms and their negations: the three out of eight cells indicated by
the left-hand side of the identity are the same as those picked out by the right-hand side, namely the
cells for abc’, ab’c and ab’c’. Given the De Morgan definition of Term Addition ADD below, it permits
the derivation of the desirable distribution laws DIST1 and DIST2 below.

3.2.2. Extensional

for N and Λ
HEID NΛ (Heidegger’s Law)

23



Axioms 2020, 9, 18

Justification

There is no thing which does not exist.
for N and term conjunction

NWK Na→ Nab (N-Weakening)

Justification

If there are no as, there are no as which are bs.
for N, term conjunction and ’

TNC Naa’ (Term Non-Contradiction)

Justification

There are no as which are non-as. This is the term-logical version of the Principle of (Excluded)
Contradiction, going back to Aristotle.

NEXH Nab ∧ Nab’→ Na (N-Exhaustion)

Justification

If there are no as which are bs, and no as which are non-bs, then there are no as (at all).

3.3. Definitions

The Table 3. below gives definitions of the constant expressions we define using the basic ones.
The form is either an identity for terms or a propositional equivalence for functors.

Table 3. Definitions.

Name Definition Description Reading

UN V = Λ’ Universal Term thing; object
ADD a + b = (a’b’)’ Term Addition a or b

EX Ea↔ ~Na Existence There are a; a exist
NO a | b↔ Nab Universal Negative No a are b
ALL a ⊂ b↔ Nab’ Universal Positive All a are b
SOM a Δ b↔ Eab Particular Positive Some a are b
AEQ a ≡ b↔ Nab’ ∧ Nba’ Term Equivalence The a are the b

These readings should be self-evident. The definitions NO, ALL and SOM are due to Brentano [2]
(p.121) [4,5].

4. A Few Theorems

IDAEQ a = b→ a ≡ b NC, LEIB, aeq AEQ
(Identity entails Equivalence)
EWK Eab→ Ea NWK, contrap., EX
(Existential Weakening)
EEXH Ea→ Eab ∨ Eab’ NWK, contrap., EX
(Existential Exhaustion)
TDS Ea ∧ Nab→ Eab’ NEXH, contrap., EX
(Term Disjunctive Syllogism)
DIST1 a(b + c) = ab + ac
(Distribution, First Form)
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Proof.

a(b + c) = a(b’c’)’ ADD
= ((ab”)’(ac”)’)’ DIST
= ((ab)’(ac)’)’ DN
= ab + ac ADD
DIST2 a + bc = (a + b)(a + c)
(Distribution, Second Form) �

Proof.

a + bc = (a’(bc)’) ADD
= (((a’b’)’(a’c’)’)’)’ DIST
= ((a’b’)’(a’c’)’)” rewrite
= (a’b’)’(a’c’)’ DN
= (a + b)(a + c) ADD
EXCL N(ab)’↔ Na’ ∧ Nb’
(Exclusion) �

Proof.

1. N(ab)’ A for CP (assumption for conditional proof)
2. N(ab)’→ Na’(ab)’ nwk
3. Na’(ab) nc, nwk, assoc, comm
4. Na’(ab)’ 1, 2, MP
5. Na’ 3, 4, NEXH
6. Nb’ similiter
7. Na’ ∧ Nb’ 5, 6
8. N(ab)’→ Na’ ∧ Nb’ 1–7 CP
9. Na’ ∧ Nb’ A for CP
10. E(ab)’ A for RAA (assumption for reductio ad absurdum)
11. Ea(ab)’ ∨ Ea’(ab)’ 10, EEXH
12. Ea(ab)’ 2nd disjunct incompatible with Na’ from 9
13. Eab(ab)’ ∨ Eab’(ab)’ 12, EEXH, term shuffling
14. Contradiction: first disjunct by TNC, second contradicts Nb’ from 9
15. N(ab)’ 10, 14, reductio
16. Na’ ∧ Nb’→ N(ab)’ 9–15 CP
17. N(ab)‘↔ Na’ ∧ Nb’ 8, 16 �

Corollary. N(a + b)↔ Na ∧ Nb
Some Sample Syllogisms BARBARA b ⊂ c, a ⊂ b � a ⊂ c

Proof.

1. b ⊂ c A
2. a ⊂ b A
3. Nbc’ 1, ALL
4. Nab’ 2, ALL
5. Nabc’ 3, NWK
6. Nab’c’ 4, nwk
7. Nac’ 5, 6, NEXH
8. a ⊂ c 7, all
DARII b ⊂ c, a Δ b � a Δ c �
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Proof.

1. b ⊂ c A
2. a Δ b A
3. Nbc’ 1, all
4. Eab 2, SOM
5. Nabc’ 3, NWK
6. Eabc 4, 5, TDS, DN
7. Eac 6, EWK
8. a Δ c 7, som
DARAPTI Eb, b ⊂ c, b ⊂ a � a Δ c �

Proof.

1. Eb A
2. b ⊂ c A
3. b ⊂ a A
4. Nbc’ 2, ALL
5. Nba’ 3, ALL
6. Eab 1, 5, tds, dn, comm
7. Nabc’ 4, NWK
8. Eabc 6, 7, TDS, DN
9. Eac 8, EWK
10. a Δ c 9, SOM �

DARAPTI is one of those syllogisms whose validity is dependent on existential import of the
subject term of the two premises: this is made explicit as the first premise.

In fact, every valid categorical syllogism has one of just three forms. We let * be a toggle operator
taking positive terms to negative terms and vice versa, that is, if a is positive a* = a’, while if a is
negative, a = b’, a* = b. Then every syllogism has as its core one of the three valid inference forms

POSITIVE Eab, Nbc* � Eac (cf. DARII)
NEGATIVE Nab*, Nbc � Nac (cf. CELARENT)
IMPORT Ea, Nab*, Nbc* � Eac (cf. BARBARI)

All can be derived from one of these by choosing b or c to be positive or negative, relabelling,
swapping the order of premises, and applying commutativity (ab = ba) to obtain simple conversion.
Furthermore, either POSITIVE or NEGATIVE is derivable from the other via partial contraposition
and relabelling, so in the end Aristotelian categorical syllogistic owes its validity to just two forms of
syllogistic inference, with a little propositional help.

Before concluding this section, a word about the ironic designation ‘Heidegger’s Law’. The basic
non-existence predicate ‘N’ is best read as “Nothing is (a)”, and the definitionally empty term ‘Λ’ can
often be read as ‘nothing’. The axiomatic formula ‘NΛ’ can then be read as ‘Nothing is (a) nothing’, or,
with a little linguistic chivvying, ‘Nothing noths’ or Das Nichts nichtet. Of course, Heidegger did not
intend to say anything so straightforward or trivial, but it does refute Carnap’s claim that the sentence
has to be nonsense. Au contraire: suitably understood, it is a logical law.

It may seem a little perverse to have based this logic on the negative idea of non-existence rather
than the positive one of existence. Of course, it is possible to do it the other way around, but in general
the axioms for N are more satisfyingly elegant than those for E.

5. Intension and Extension

One of the standard principles of the Boolean algebra that emerged from Boole’s and others’ work
on the algebra of terms in the nineteenth century is that all empty terms are identical: we have, e.g.,
that aa’ = bb’, Na ∧ Nb→ a = b, Na→ a = Λ. These are not theorems of our system and it is important
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to see why. Their analogues with equivalence ‘≡’ replacing identity ‘=‘ are theorems, and if we were to
add an axiom of extensionality

EXT a ≡ b→ a = b
they would be theorems, and there would be no distinction between identity and equivalence. Most
nineteenth century algebraic logicians understood their logic extensionally, so would be happy with this
simplification. However, Brentano was not, and nor am I. The axioms involving identity = and those
involving non-existence N are distinct in intent. Existence and non-existence have to do, for the most
part, with contingent facts: there are narwals; there are no unicorns. There are some non-contingent
principles involving N, obviously, our axioms such as term non-contradiction, but the premises in
syllogisms and the antecedents in NWK and NEXH are typically contingent in application to actual
propositions and actual inferences.

As will be seen more clearly when we consider diagrammatic representation, the axioms governing
identity have to do not with contingent propositions but with the framework of discourse within
which propositions and inference are employed. In any of the syllogisms considered, we are looking
at three terms, their negations and conjunctions. For three terms, there are eight maximally specific
combinations of conjunction and negation, for example ab’c, and the question may then arise whether
N or E is true of this term. The axioms governing identity (and conjunction and negation) are formal
synonymies, there to tell us, in advance of any statements about what does or does not exist, when
term expressions relate to the same possibilities. Of these, the most obvious perhaps is a = a”, term
double negation. No contingent facts have any bearing on these two expressions’ relating to the same
possibility of existence or non-existence. For this reason, I call the principles governing ‘=‘ intensional
and those governing ‘N’ extensional. That does not mean I here endorse a modal logic or possible
worlds, simply that the role played by framework description is different from and prior to that played
by questions of existence and non-existence.

6. Consistency

The system is consistent. In the empty universe, every term is empty, and the extensional axioms
are trivially true. Interpreting identity as equivalence, so are the intensional axioms. The empty
universe is expressly not ruled out by the system: the dual to Heidegger’s Law, namely.

EV There is something (rather than nothing) is not a theorem, because it is false for the
empty universe.

7. Decidability

It is well known that first-order monadic predicate logic is decidable [6]. We may interpret the
term logic in monadic predicate logic by associating each term a with a monadic predicate A

a �→ Ax

the term Λ with a necessarily empty predicate, for example

Λ �→ ~(x = x)

with complex terms as follows
a’ �→ ~(Ax)

ab �→ Ax ∧ Bx

and the predicates as follows
a = b �→ ∀x(Ax↔ Bx)

Na �→ ~∃x(Ax).
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In this way, each formula of the term logic is correlated with a formula of monadic predicate logic.
The interpretation validates extensionality. It can be seen that all the axioms of the term logic system
are valid formulas of monadic first-order predicate logic, and the validity of a formula or inference
with finitely many premises containing n term variables may be decided on a domain of no more than
2n individuals.

8. Tree Proof Techniques

Formulas and inferences with finitely many premises may be tested for validity or invalidity
using tree techniques. The basic ideas were presented earlier for a slightly simpler system, so we can
be brief [7]. We assume that all rules for trees for propositional logic are available, and we confine
attention to term formulas using only the basic vocabulary of term variables, Λ, =, ’, conjunction,
and N, as well as propositional connectives. Any defined constants are eliminated first as per their
definitions. The counterexample set of an inference to be tested consists of the premises together with
the negation of the conclusion, or the negation of a formula if that formula’s validity is to be tested.
A tree starts with the counterexample set. It may then be extended according to the following rules:

1. In a formula, terms may be replaced by terms identical to them according to the intensional axioms.
2. Any sentence N(ab)’ may be replaced by the two sentences Na’, Nb’ by EXCL.
3. These and DN may be used to drive term negations inwards so they only occur singly and modify

term letters only.
4. A branch containing ~Nab may be extended by ~Na, or ~Nb, or both. (In the next two rules, b is a

term occurring in the premises but not occurring in a.)
5. A branch containing Na may be extended by Nab and by Nab’
6. A branch containing ~Na splits and continues with ~Nab in one branch and ~Nab’ in the other.
7. Open branches are extended until all variables from the premises occur in any remaining branch,

with term negations inmost, i.e., modifying a single term letter or constant term. Branches close
under the following conditions:

8. The branch contains two contradictory formulas, for example Eab’c and Nab’c
9. The branch contains a formula ~NΛ
10. The branch contains a formula ~Naa’.

If all branches close, the formula or inference is valid; if any branch remains open, the formulas
along it may all be true and constitute a counterexample.

9. Diagram Techniques

Diagrams for deciding the validity of logical inferences go back centuries, but the first effective
ones are due to John Venn [8]. The idea, as applied to term logic, is to start with a diagram consisting of
as many areas, or cells, as there are conjunctions of all simple terms and their negations contained in an
inference. If there are n simple terms, that will be 2n cells. Venn’s own curvilinear diagrams are inferior
to the rectilinear ones proposed by Lewis Carroll, who ingeniously constructed diagrams for up to
eight different simple terms, and indicated how to extend these further [9] (p. 245 ff.: “My Method of
Diagrams”. Carroll was incidentally the first to use trees as an aid for solving logic problems: ibid.,
279 ff. Since one of his problems (“Froggy’s Problem”, ibid., 338 ff.) is a sorites in 18 terms, which
would require a diagram with 262,144 cells, taxing human capacity to solve, further aids were clearly
needed.) The method for term logic as for syllogistic is to shade out those cells corresponding to N
propositions, and indicate by crosses those cells corresponding to E propositions. The chief difficulty is
that an E proposition whose term is not a maximal compound of simple terms and their negations must
straddle several cells disjunctively, a problem compounded in any term-logical formula or inference
employing disjunction or its equivalent. For this reason, diagrams are practicable only for relatively
small and straightforward problems. Trees branch easily, but the only way to branch a diagram is to
treat several diagrams disjunctively.
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An unfilled diagram for n term variables, with its 2n cells, represents the framework within which
N and E propositions employing these variables are to be represented, and is neutral with respect
to such propositions. The axioms for identity are then to be understood as indicating different but
formally equivalent ways in which cells or groups of cells are indicated. This is why they play a
different role in the logic from the N and E propositions.

10. Quantifiers

It is natural to extend the term logic employed to date with variable-binding quantifiers. One
reason is simply to enhance the representative scope of the system. Quantifiers binding term variables
do not affect the decidability of the resulting system, (Ackermann, loc.cit.) but they bring greater
expressive power. We take the universal quantifier as primitive and add the following axiom schemes,
where A and B are sentences:

QDIST ∀a(A→ B)→ (A→ ∀a(B))

where a is any term variable which is not free in A;

QINST #x2200;a(A)→ A[t/a]

where t is a term expression (variable, constant or compound), A[t/a] is the result of substituting t for
all free occurrences of a in A, and no free occurrence of a in A is in a well-formed part of A of the form
∀t(B) [10] (p. 172).

The particular quantifier may then be introduced in the standard way as dual of the universal:

FORSOME ∃a(A)↔ ~∀a(~A)

It should be noted that the particular quantifier does not in this system carry existential import.
Since it is a theorem that ~EΛ, it follows that ∃a(~Ea), so the quantifier cannot very well mean ‘there
exists’, but must mean, neutrally, ‘for some’. If we wish to talk about existing things, we have the
predicate ‘E’ to hand.

One of the ways in which quantifiers introduce greater expressive power is that they facilitate
expressions of number. Hitherto, expressions of the form Ea only said that there is some a. This is
compatible with there being one, two, . . . any number of as, and this is why the cells of any diagram
for finitely many propositions need only be finite in number. Indeed, the terms need not denote
individuals or pluralities of individuals at all: they could denote numberless stuffs, as do mass terms
in ordinary language. The syllogism in Darii

All morphine is highly addictive
Some pain medication is morphine:

therefore Some pain medication is highly addictive
is no less valid for being about stuffs (“substances”) rather than individuals. If we wish to introduce
numbers, to count individuals or also consignments of stuff, we need quantifiers. Here is how to define
‘at least two’:

≥2 E≥2a↔ ∃x(Eax ∧ Eax’)

So we can define ‘exactly one’ as
=1 E=1a↔ Ea ∧ ~E≥2a

11. Pegagogical Advantages of Term Logic

For students coming to logic with little or no background except in propositional calculus, term logic
is quite natural and easy to understand. It is close to natural language (no bound variables, quantifiers
as phrases not operators, logical and grammatical form closely similar); by comparison with predicate
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logic, there is minimal paraphrasing required; it has a straightforward and intuitive denotational
semantics requiring no set theory, and is easy to do without special symbols. It can be treated by
methods building easily on those of propositional logic: semantic diagrams, natural deduction proofs,
axioms and trees. It has an accessible metalogic: it is sound, complete, and decidable, uses finitistic
methods, affords a variety of approaches and good illustration of basic concepts. In difficulty, it is only
slightly more complex than truth-tables and natural deduction for propositional logic, and is readily
scriptable should one wish to write suitable computer programs. For an introduction to the history of
logic, it allows much greater scope for comparison than post-Fregean predicate logic. It allows a variety
of bases, apart from the one we have chosen. Alternative bases are equational (Leibniz, Boole, Jevons),
subsumptional (Leibniz, Peirce, Schröder), existential (Leibniz, Brentano, Carroll), traditional (Aristotle,
Łukasiewicz), or based on the singular copula (Leśniewski, Słupecki). It admits of various extensions,
most obviously by introducing predicates, especially relational predicates, but also modal [11], towards
Leśniewskian logic [3,12], and introducing higher types, up to and including full simple type theory.

On the negative side, it delays students’ encounter with ∀ and ∃, with relations and multiple
generality, has rather few links to modern mathematics, and being now unorthodox, suffers from a
modern textbook gap. Most textbooks highlighting term logic (Łukasiewicz excepted) are antiquated
attempts to keep pre-Fregean logic alive, often for non-logical reasons.

Nevertheless, I hope enough has been shown in this paper to suggest that term logic, whether
done this way or in some other way, remains worthy of the attention of logicians and teachers of logic.
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1. Introduction

The concept of distribution is a concept within traditional logic that is applied when a term
appears under the scope of a universal quantifier. Thus, for example, in the proposition “All men
are mortal” we say the term “men” is distributed whereas the term “mortal” is not. In spite of its
simplicity, the importance of this concept is far from being overstated, given that it allows us to define
rules essential to syllogistic, a term logic at the core of traditional logic; however, specially since the
objections raised by Geach [1], distribution—as traditional logic—is seemingly out of favor.

Nevertheless, distribution serves a logical purpose (cf. [2–5]) that has been fundamental for the
syntactic development of Sommers and Englebretsen’s term functor logic, a logic that recovers the term
syntax of traditional logic [4,6,7]. The issue here, however, is that the formal semantics counterpart
of distribution for this logic is still in the making. Of course, it goes without saying that Sommers
and Englebretsen have already provided semantic standards for their logic, but such semantics are
philosophical rather than formal, so to speak (cf. [6,8]). Consequently, given this disparity between
syntax and semantics, in this contribution we adapt some ideas of term functor logic tableaux [9]
to develop models of distribution, thus providing some alternative formal semantics to help close
this breach.

In order to reach this goal we proceed in the following way. First we expound some preliminaries
about syllogistic, distribution, and term functor logic and its tableaux; then we develop our main
contribution by exploring some links between the rules of term functor logic and the concept
of the model.

2. Preliminaries

2.1. Syllogistic

Syllogistic is a logic term at the core of traditional logic that deals with inference between
categorical propositions. A categorical proposition is a proposition composed by two terms, a quantity,
and a quality. The subject and the predicate of a proposition are called terms: the term-schema S denotes
the subject term of the proposition and the term-schema P denotes the predicate. The quantity may
be either universal (All) or particular (Some), and the quality may be either affirmative (is) or negative
(is not). These categorical propositions have a type denoted by a label (either a (universal affirmative,
SaP), e (universal negative, SeP), i (particular affirmative, SiP), or o (particular negative, SoP)) that
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allows us to determine a mood, that is, a sequence of three categorical propositions ordered in such a
way that the first two propositions are premises (major and minor) and the last one is a conclusion.
A categorical syllogism, then, is a mood with three terms one of which appears in both premises but
not in the conclusion. This particular term, usually denoted with the term-schema M, works as a link
between the remaining terms and is known as the middle term. According to the position of this
middle term, four figures can be set up in order to encode the valid syllogistic moods (Table 1) (for sake
of brevity, but without loss of generality, we omit the syllogisms that require existential import).

Table 1. Valid syllogistic moods.

First Second Third Fourth
Figure Figure Figure Figure

aaa eae iai aee
eae aee aii iai
aii eio oao eio
eio aoo eio

2.2. Distribution

Now, in order to determine the validity of the previous moods we can invoke the concept of
distribution since, as we mentioned before, it allows us to define rules instrumental for showing the
validity of such inferences. These rules state (i) that a syllogistic inference is valid if and only if for
every term A, if A is distributed in the conclusion, then A is distributed in the premises as well; and (ii)
that a syllogistic inference is valid if and only the middle term M is distributed once in the premises.
Thus, for instance, the following inference (Table 2) is valid since the term “dogs” is distributed in the
conclusion and in the minor premise; and the middle term, “mammals,” is distributed once in the
premises (at the major premise).

Table 2. A valid syllogism: aaa-1.

Proposition

1. All mammals are animals.
2. All dogs are mammals.
� All dogs are animals.

Previously we claimed that the concept of distribution is applied when a term appears under the
scope of a universal quantifier, but the very concept of distribution is far from being clear, given that
there are several accounts of it. For example, according to some medieval theories of supposition a
term is said to be distributed in a proposition when such a term refers to all that it means, as when
a term is under the scope of a universal quantifier. In this sense we can understand, for instance,
the notion of Peter of Spain [10], who talks of distribution as multiplicatio termini communis per signum
universale facta (i.e., [distribution is] the multiplication of the common term made by a universal sign
(translation and emphasis are ours)) or the notion advanced by the Port-Royal tradition [11] that
claims that to say that a term is distributed in a proposition is to say that such a term doit être pris
universellement (i.e., must be taken universally (translation and emphasis are ours)).

Nevertheless, the notion of distribution developed by Keynes [12]—and well defended by
Sommers [3] and Wilson [5], in our opinion—is probably worth mentioning, since this is the one
that Geach [1] discusses. Keynes’ idea is that a term is said to be distributed when reference is made to
all the items denoted by it; and it is said to be undistributed when they are only referred to partially.
More formally, and following [3], we assume that a term A is distributed in a proposition p in the
next sense:

• A is distributed in p if and only if p entails a proposition of the form “every A is . . .”
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• A is not distributed in p if and only if A is distributed in the contradictory of p.

Hence for syllogistic we say that, given its quantity and its quality, a categorical proposition
distributes its terms if and only if they have a universal quantity or a negative quality: this will be
formalized in the next section with the help of term functor logic.

2.3. Term Functor Logic

Term Functor Logic (TFL, for short) is a plus-minus algebra [4,6,7,13–15] that employs terms
rather than first order language elements such as individual variables or quantifiers (cf. [4,16–19]).
According to this algebra—or “logibra”, as Sommers dubbed it—, the four categorical propositions
can be represented by the following syntax [6], where “−” indicates that a term is distributed, and “+”
that a term is not distributed:

• SaP := −S+ P = −S− (−P) = −(−P)− S = −(−P)− (+S)

• SeP := −S− P = −S− (+P) = −P− S = −P− (+S)

• SiP := +S+ P = +S− (−P) = +P+ S = +P− (−S)

• SoP := +S− P = +S− (+P) = +(−P) + S = +(−P)− (−S)

Given this representation, this plus-minus algebra provides a simple rule for syllogistic inference:
a conclusion follows validly from a set of premises if and only if (i) the sum of the premises is
algebraically equal to the conclusion and (ii) the number of conclusions with particular quantity (viz.,
zero or one) is the same as the number of premises with particular quantity ([6] p. 167). This rule is an
algebraic rendition of the dictum de omni et nullo (this is the principle that states that everything that
is affirmed (or denied) of a whole can be affirmed (or denied) of a part (cf. [4,6,7,14,20]))—hence its
name, DON—and can be formally deployed as follows:

Γ � φ i f f

⎧⎨
⎩

(i) ∑
alg
(Γ) = ∑

alg
(φ), and

(ii) |particulars(Γ)| = |particulars(φ)|

where Γ stands for a (possibly empty) set of premises; φ stands for a conclusion; ∑alg for an algebraic
sum; and |particulars| for a function that returns the number of particular propositions in a set of terms.

Thus, for instance, if we consider a valid syllogism, say the mood aaa from the first figure (i.e.,
aaa-1), we can see how the application of DON produces the right conclusion (Table 3).

Table 3. A valid syllogism: aaa-1.

Proposition TFL

1. All mammals are animals. −M+ A
2. All dogs are mammals. −D+M
� All dogs are animals. −D+ A

Indeed, in the previous example we can clearly see how the rule works: (i) if we add up the
premises we obtain the algebraic expression (−M+ A) + (−D+M) = −M+ A−D+M = −D+ A,
so that the sum of the premises is algebraically equal to the conclusion and the conclusion is −D+ A,
rather than +A−D, because (ii) the number of conclusions with particular quantity (zero in this case)
is the same as the number of premises with particular quantity (zero in this case). Additionally, we
must mention that this algebraic approach is not only capable of representing syllogistic, since it can
also represent relational, singular, and compound propositions with ease and clarity while preserving
its main idea, namely, that inference is a logical procedure between terms [14].
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2.4. TFL Tableaux

Now, since alternative proof methods for TFL are still in the making, [9] has developed tableaux
for it. So, following [21,22] we say a tableau is an acyclic connected graph determined by nodes
and vertices, or more precisely, a labeled directed rooted tree. The node at the top is called the root.
The nodes at the bottom are called tips. Any path from the root down a series of vertices is a branch.
To test an inference for validity we construct a tableau which begins with a single branch at whose
nodes occur the premises and the rejection of the conclusion: this is the initial list. We then apply the
rules that allow us to extend the initial list (Scheme 1).

−A± B

−Ai ±Bi

+A± B

+Ai

±Bi

Scheme 1. Term Functor Logic (TFL) tableaux rules.

In Scheme 1, from left to right, the first rule is the rule for a (e) propositions, and the second
rule is the rule for i (o) propositions. Notice that, after applying a rule, we introduce some index
i ∈ {1, 2, 3, . . .}. For propositions a and e, the index may be any number; for propositions i and
o, the index has to be a new number if they do not already have an index. In addition, following
TFL tenets, we assume the followings rules of rejection: −(±A) = ∓A, −(±A ± B) = ∓A ∓ B,
and −(−− A−−A) = +(−A) + (−A).

As usual, a tableau is complete if and only if every rule that can be applied has been applied.
A branch is closed if and only if there are terms of the form ±Ai and ∓Ai on two of its nodes; otherwise
it is open. A closed branch is indicated by writing a ⊥ at the end of it; an open branch is indicated by
writing ∞. A tableau is closed if and only if every branch is closed; otherwise it is open. So, again as
usual, A is a logical consequence of the set of terms Γ (i.e., Γ � A) if and only if there is a complete
closed tableau whose initial list includes the terms of Γ and the rejection of A (i.e., Γ ∪ {−A} � ⊥).
Accordingly, up next we provide proofs of the valid syllogistic moods of the first figure (Scheme 2).

−M+ P
−S+M
� −S+ P
−(−S+ P)
+S− P

+S1

−P1

−S1

⊥
+M1

−M1

⊥
+P1

⊥

−M− P
−S+M
� −S− P
−(−S− P)
+S+ P

+S1

+P1

−S1

⊥
+M1

−M1

⊥
−P1

⊥

−M+ P
+S+M
� +S+ P
−(+S+ P)
−S− P

+S1

+M1

−M1

⊥
+P1

−S1

⊥
−P1

⊥

−M− P
+S+M
� +S− P
−(+S− P)
−S+ P

+S1

+M1

−M1

⊥
−P1

−S1

⊥
+P1

⊥

Scheme 2. Moods aaa-1, eae-1, aii-1, and eio-1.
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To describe the process we follow to unfold each tableaux consider the first one. The first three
lines are the premises (major and minor) and the conclusion, and the fourth line is the rejection of the
conclusion: all these lines but the conclusion define the initial list. Then the fifth line is the result of
applying a rule of rejection to the conclusion. Then the next couple of lines is the result of applying
the rule for an i proposition to the fifth line, picking index 1. Then the first split results from applying
the rule for an a proposition to the second line (i.e., the minor premise), also picking index 1, since
we want the indexes to unify. This split produces two branches, one of which (the leftmost) includes
terms +S1 and −S1 on two of its nodes, and hence is closed; the remaining branch is not closed yet,
so we continue with the same process: we split the last available premise (the major one) to obtain,
again, a couple of branches, one of which (the leftmost) includes terms −M1 and +M1 on two of its
nodes, and hence is closed; and the other (the rightmost) that contains terms +P1 and −P1 on two of
its nodes, and hence is closed as well.

More precisely, we can state this general procedure as follows (cf. [23]): given a syllogism Γ � φ,
a tableau T for such a syllogism is defined as a tableau constructed by following the next steps: (1)
Initiate the tableau for Φ = Γ ∪−φ (in order to produce the initial list). (2) Let T be a tableau for Φ,
let B be a branch of T, and let A be a term in Φ ∪ B. Take an arbitrary instance of a tableau rule in
Scheme 1 with premise A and n extensions. Obtain the tree T′ by extending B with n new subtrees
whose nodes are the terms in the extensions of the rule instance. Then T′ is a tableau for Φ (in order to
expand the tableaux). (3) Let T be a tableau for Φ, B a branch of T, ±A and ∓A terms in B ∪Φ, and let
σ be a substitution from terms to indexes such that σ±Ai = ±Aσi. If ±Ai and ∓Ai are unifiable with a
most general unifier σ, and T′ is constructed by applying σ to all terms in T, then T′ is a tableau for
Φ (in order to close a tableau). As pointed out in [23], the most general unifiers are used instead of
arbitrary substitutions as to avoid infinite or useless expansions.

As expected, this method is reliable in the sense that what can be proven using the inference rules
of TFL produces closed complete tableaux, and vice versa (cf. [9]), but for the purposes of this study
we need only the following:

Lemma 1. An application of DON produces a closed complete tableau.

Namely, that when we correctly apply DON to a syllogism we can also produce a closed complete
tableau from said syllogism. We will refer to this result later.

3. Distribution Models

Broadly speaking, in modern predicate logic (MPL) we say an interpretation is a function that
gives meaning to its symbols. Now, since, on the one hand, TFL avoids some important syntactic
features of MPL but, on the other hand, TFL cannot escape the typical notions of syntax and semantics,
and since TFL’s formal semantics is not as developed as its philosophical semantics, here we adapt
the usual notion of interpretation to build an analogous concept of interpretation for TFL. In short,
the idea is that, since TFL tableaux make use of certain numbers, then maybe those numbers have an
interpretation role in TFL.

Hence, with the previous background in mind, let us suggest that an interpretation in TFL is a
triad J = 〈I, T, v〉 where I = {1, 2, 3, . . .} is a set of indexes, T = {±A,±B,±C, . . .} is a set of terms,
and v is a function that assigns terms a finite set of indexes. To exemplify this notion of interpretation
let us consider tableaux for some invalid inferences (Scheme 3) and let us focus on the open branches,
since those branches, as usual, induce said interpretations.
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+M+ P
+S+M
� +S+ P
−(+S+ P)
−S− P

+M1

+P1

+S2

+M2

−S2

⊥
−P2

−S1

∞
−P1

⊥

−M− P
−S−M
� −S− P
−(−S− P)
+S+ P

+S1

+P1

−S1

⊥
−M1

−M1

∞
−P1

⊥

Scheme 3. Moods iii-1 and eee-1.

So, from left to right, the first tableau corresponds to the invalid inference iii-1 and thus has an
open branch. The first five lines define the initial list. The next couple of lines results from applying the
rule for an i proposition to the major premise; similarly, the next couple of lines results from applying
the same rule but to the minor premise. Then the first split comes from applying the rule for an a
proposition to the fifth line; and the second split is the result of the same process.

As we can see, after performing this process we obtain three branches, one of which will not
close. This branch defines an interpretation I such that I = {1, 2} (because those are the indexes
associated to the open branch); and v(+S) = {2}, v(+M) = {1, 2}, v(+P) = {1}, and v(−P) = {2}.
Consequently, if we add up a subset of the values of this interpretation—say v(+S) = {2}, v(+M) =

{1}, and v(+P) = {1}—we obtain the following arithmetic sum of the inference:
As we can observe in Table 4, the arithmetic sum of the premises, which amounts to 5, is not equal

to the arithmetic sum of the conclusion, which is equal to 3.

Table 4. An interpretation of iii-1.

Proposition Arithmetic Sum

1. +M+ P 1 + 1 = 2
2. +S+M 2 + 1 = 3
� +S+ P 2 + 1 = 3

By following a similar process, we find that the second tableau defines the interpretation I

such that I = {1}, v(−S) = {i|i /∈ I}, say v(−S) = {2} (since v(+S) = {1}), v(−M) = {1},
and v(−P) = {i|i /∈ I}, say v(−P) = {2} (since v(+P) = {1}). Consequently, if we add up the values
of this interpretation we obtain the arithmetic sum shown in Table 5:

Table 5. An interpretation of eee-1.

Proposition Arithmetic Sum

1. −M− P 1 + 2 = 3
2. −S−M 2 + 1 = 3
� −S− P 2 + 2 = 4
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As in the previous case, the arithmetic sum of the premises in Table 5, which amounts to 6, is not
equal to the arithmetic sum of the conclusion, which is equal to 4.

Since we can see a pattern in these cases we suggest that the next definition is worthy of exploring:

Γ |= φ i f f ∑
arit

(Γ) = ∑
arit

(φ),

namely, that φ is a consequence of Γ if and only if the arithmetic sum (i.e., ∑arit) of the premises is
equal to the arithmetic sum of the conclusion, given an interpretation I. Since this notion would be the
semantic counterpart of Γ � φ, we can imagine that there must be a relation between Γ |= φ and Γ � φ:
let us entertain this relation by exploring the following propositions.

Proposition 1. If Γ � φ then Γ |= φ.

Proof. For reductio, suppose Γ � φ but Γ �|= φ. If Γ � φ then φ follows from Γ by an application of
DON. Then, by Lemma 1, there is a closed complete tableau of Γ ∪−φ such that for every branch of
the tableau there are two terms +A and −A whose indexes are equal. Now, if Γ �|= φ, then there is
an interpretation I that assigns a set of indexes in such a way that at least one arithmetic sum of the
premises is not equal to the arithmetic sum of the conclusion, but if this is the case is because there is a
branch in the tableau in which there is no pair of opposing terms or there is a pair of opposing terms
that do not have equal indexes. In either case, there are no two terms +A and −A whose indexes are
equal, in which case Γ ∪ −φ would not produce a closed complete tableau, but this contradicts the
initial assumption.

Proposition 2. If Γ |= φ then Γ � φ.

Proof. Take the contrapositive of the original proposition: if Γ �� φ then Γ �|= φ. Now suppose,
for reductio, that Γ �� φ but Γ |= φ. If Γ �� φ then there is an open tableaux for Γ ∪−φ such that there are
no two terms +A and −A whose indexes are equal. Now, we have to consider four cases in which this
situation would occur, two in which there is a pair of opposing terms that do not have equal indexes,
and two in which there is no pair of opposing terms.

For the first case consider the first tableau displayed in Scheme 4, from left to right, that induces
the intepretation I with I = {i} and v(+S) = v(∓P) = {i}, so that v(−S) = v(±P) = {j|j �= i} in
such a way that ∑arit(φ) = 2j, but since Γ |= φ, then ∑arit(Γ) = 2j as well. However, the only way this
can be is if Γ includes something of the form {. . . ,−S± P, . . .} or {. . . ,−S+M,−M± P . . .}, given
that the intepretation I would assign v(−S) = v(±P) = {j}, in which case −S ∈ Γ and ±P ∈ Γ,
but that would contradict the assumption that there are no such terms in Γ.

Γ
� −S± P
−(−S± P)
+S∓ P

+Si

∓Pi

∞

Γ
� +S± P
−(+S± P)
−S∓ P

−Si

∞
∓Pi

∞

Scheme 4. General cases.

Similarly, for the second case consider the second tableau that induces the intepretation I with
I = {i} and v(−S) = v(∓P) = {i}, so that v(+S) = v(±P) = {j|j �= i} in such a way that ∑arit(φ) =

2j, but since Γ |= φ, then ∑arit(Γ) = 2j. However, the only way this can be is if Γ includes something
of the form {. . . ,+S± P, . . .}, given that the intepretation I would assign v(+S) = v(±P) = {j},
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in which case +S ∈ Γ and ±P ∈ Γ, but again, that would contradict the assumption that there are no
such terms in Γ.

For the remaining cases in which there is no pair of opposing terms consider that any interpretation
I would result from an open tableau, in which case there would never be two terms +A and −A whose
indexes are equal, and that would render ∑arit(Γ) �= ∑arit(φ) since there will be an extra index in Γ or
an extra index in φ.

As expected, the conjunction of these propositions suggests that Γ |= φ if and only if Γ � φ, that is
to say, that the algebraic proof method of TFL (i.e., TFL’s syntax), namely the algebraic sum, is related to
an arithmetic interpretation, namely an arithmetic sum given an interpretation of (un)distributed terms.

4. Conclusions

To better explain what we have tried to accomplish in this contribution let us wrap up what
we have done. TFL’s syntax, which recovers the term syntax of syllogistic, relies on the notion of an
algebraic sum that depends upon the concept of distribution (hence the use of plus and minus). In turn,
the notion of an algebraic sum finds a reliable proxy in TFL tableaux. However, since TFL tableaux
induce numerical interpretations, we have noticed that TFL’s semantics may rely on arithmetic, rather
than algebraic, sums. The idea is, then, that the syntactic notion of algebraic sum has a correspondent
notion of arithmetic sum, but since these sums are dependant upon distribution, rather than truth
values, we have called these interpretations distribution models.

We think that this result, albeit simple, is worthy of exploring since it promotes the revision and
revival of term logics as tools that might be more interesting and powerful than once they seemed
(contra [1,24,25])). Of course, we need to check if these results hold for more general cases, but if our
intuitions are correct then we have found a link between the algebraic rules of term functor logic and a
natural interpretation or model of TFL in terms of arithmetic sums. We believe, thus, that by assuming
the traditional stance of distribution we still can obtain interesting results. We still are, as Sommers
once said, friends of distribution.
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Abstract: The starting point is Peano’s expression of the axiomatics of natural numbers in the
framework of Leśniewski’s elementary ontology. The author enriches elementary ontology with
the so-called Frege’s predication scheme and goes on to propose the formulations of this axiomatic,
in which the original natural number (N) term is replaced by the term Anzahl (A). The functor of the
successor (S) is defined in it.
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1. Introduction

The term Anzahl functions in German in various numerical phrases, more or less defined. It appears
in such contexts as “Anzahl der Äpfel” (i.e., “number of apples”) or “neun ist Anzahl der Planeten des
Sonnensystems” (i.e., “nine is the number of planets of the Solar System”). In numerical phrases of
the indefinite type, we use the combination of the number name (Zahl), which is an abstract object,
and the general name, which is the product of a general name (here, the word apple/apples) with a
name present only implicitly, which somehow characterizes the objects falling within the extension of
the first name (usually a general name referring to the place they occupy). However, number phrases
of the definite type (v. gr. “neun ist Anzahl den Planeten des Sonnensystem”or “Anzahl... ist gleich
dem Anzahl...”) are discussed in Gottlob Frege’s works. Number phrases of the definite type are
generally given to us through elementary expressions of the type “a is Ax”, where a is a number and x
a (definite) general name. There is a specific functor A (from “Anzahl”) of the n/n category. In Frege,
“Anzahl” refers to a concept determined by a single-argument predicate (Begriffswort). Given these
remarks, we enrich the framework of elementary ontology with the so-called Frege’s predication
scheme, to propose the formulations of these axiomatics in which the original natural number (N) term
is replaced by the term Anzahl (A), and we present an original depiction of the arithmetic of natural
numbers with Anzahl as a primitive term.

2. Preliminaries

2.1. Elementary Ontology

The specific axiom of elementary ontology (OE) is:

A0 xεy↔ Σz(zεx) ∧Πzu(zεx∧ uεx→ zεu) ∧Πz(zεx→ zεy)
The secondary rules, which are direct consequences of axiom A0 include:

R1 xεy/xεx
R2 xεy∧ yεz/xεz
R3 xεy∧ yεz/yεx

Axioms 2020, 9, 6; doi:10.3390/axioms9010006 www.mdpi.com/journal/axioms41
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The nominal constants of object and contradictory object are defined as follows:

DV xεV↔ xεx x is an object;
DΛ xεΛ↔ xεx∧ ∼ xεx x is a contradictory object.

The functors of existence, singularity, being an object, weak inclusion, strong inclusion, extension
identity, identity, and negation are also introduced by definition:

Dex ex(x)↔ Σz(zεx) x exists;
Dsol sol(x)↔ Πzu(zεx∧ uεx→ zεu) at most one object is x;
Dob ob(x)↔ xεx is object x;
D⊂ x ⊂ y↔ Πz(zεx→ zεy) x is included in y (weak inclusion);
D� xy↔ Σz(zεx) ∧Πz(zεx→ zεy) x is included in y (strong inclusion);
D� xy↔ Πz(zεx↔ zεy) x is extension identical with y;
D= x = y↔ xεy∧ yεx x is identical with y;
Dn xεny↔ xεx∧ ∼ xεy x is non y.

We also adopt the definition of the of satisfying functor:

Dsts f xεsts f (φ)↔ xεx∧φ(x) x is satisfying φ

The system of elementary ontology can be founded on the calculus of predicates without identity.
Jerzy Słupecki’s work [1] may serve as an introduction to elementary ontology.

2.2. Peano’s Axiomatics

The system of arithmetic of natural numbers can be founded on the axiomatics given by Peano [2].
The formulation of these axiomatics in the framework of elementary ontology can be found in
Leśniewski’s works ([3], chapter 4, p. 129):

LA1 1εN
LA2 aεN→ SaεN
LA3 aεN→ ∼ Saε1
LA4 aεN ∧ bεN ∧ Sa = Sb→ a = b
LA5 1εx∧Πb(bεN ∧ bεx→ Sbεx ) ∧ aεN→ aεx

The last axiom is theaxiom of mathematical induction. Axioms A1–A5, as depicted below in
Section 4, are equivalent to the axioms given by Peano.

2.3. Elementary Ontology with Frege’s Predication Scheme

Here, the system of elementary ontology is extended with the functor sub of then/n category.
The elementary expression “xεsub(y)” is read here as: “x is subordinated to y”. The specific axioms of
this system (OEsub) have the following shapes (see [4]):

SA1 xεsub(y)→ sub(x) ⊂ sub(y)
SA2 xεsub(y)→ ∼ y ⊂ sub(x)
SA3 xεsub(y)→ yεy
SA4 sub(x)sub(y)→ yy

The functor of concept is introduced by definition:

DC xεCy↔ xεx∧Πz(zεy↔ zεsub(x)) x is a concept y

The key theses with functors sub and C include:

xεsub(Cy)→ xεy If x is subordinated to the concept y, then x is y,

and:
Cxεsub(Cy)→ x ⊂ y If the concept x is subordinated to the concept y, then x is included in y
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3. Idea

The term “Anzahl” functions in German in various numerical phrases, more or less defined.
The word Anzahl appears in such contexts as: Anzahl der Äpfel (number of apples), Anzahl von Freuden
(number of friends), fünf is Anzahl der Bäumen in meinem Garten (five is the number of trees in my garden),
or neun ist Anzahl der Planeten des Sonnensystems (nine is the number of planets of the Solar System).

3.1. An Indefinite Numerical Phrase with the Term Anzahl

In number phrases of the indefinite type we have to deal with the combination of the number
name (Zahl) being an abstract object with the general name, which is the product of a general name
(e.g., apple/apples) and a name present only implicitly, which somehow characterizes the objects falling
within the extension of the first name (usually a general name referring to the place they occupy).
For example, “five apples” occupy a certain place on the table.

A phrase of this type, which is a nominal expression, can be rendered as follows:

a ◦ x,

where a is a number (Anzahl) and x is the name of object of a given sort, which, in combination with a
hidden name characterizing these objects, gives us our universe of discourse. Since a and x are names,
a ◦ x is also a name, then ◦ is a functor of the—n/nn category.

3.2. A Definite Numerical Phrase with the Term Anzahl

Numerical phrases of the definite type (“neun ist Anzahl den Planeten des Sonnensystem” or
“Anzahl... ist gleich dem Anzahl...”) are discussed in Gottlob Frege’s works (see [5], p. 20 and [6],
p. 88). In number phrases of the definite type, we use an elementary expression of the type:

aεAx

where a is a number, ε is a functor (of the s/nn category), and x is a (definite) general name. A specific
functor A (from Anzahl) of the n/n category appears here.

In Frege, “Anzahl” refers to a concept designated by a single-argument predicate (Begriffswort),
but also a functorof the n/(s/n) category. The elementary phrase with this functor could be expressed
in the following way: aεA(P), where the (single-argument) predicate P is equivalent to the name x
(from the phrase “aεAx”). Our expression existing in the framework of the calculus of names is closer
to natural language, in which the category of names is understood broadly (individual and general
names), as opposed to only individual names, as in Frege’s language (Namen=Eigennamen).

We will continue to deal with definite number phrases with the term Anzahl. We shall return to
indefinite phrases with this term in the final part of the present paper.

4. Arithmetic of Natural Numbers

As our starting point, we shall adopt the following five axioms given by Leśniewski, including 0
in natural numbers, which is in accordance with the contemporary formulations of Peano’s axiomatics:

A1 0εN
A2 aεN→ SaεN
A3 aεN→ ∼ Saε0
A4 aεN ∧ bεN ∧ Sa = Sb→ a = b
A5 0εx∧Πb(bεN ∧ bεx→ Sbεx ) ∧aεN→ aεx

Our initial system is OEsub enriched with these axiomatics. The language of this system
(OEsub[A1,A2,A3,A4,A5]) is extended with number nominal variables (a,b,c), referring to natural
numbers. Apart from the standard rule of detachment (MP):
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MP α,α→ β/β
we shall adopt the rule of substitution:

RS α/α[x/t] ,

where t is a nominal variable/constant or (in particular) a number nominal variable/constant:

α/α[a/t] ,

where t is a number nominal variable/constant.
Having adopted the definition of the natural number:

DN aεN↔ aεa∧ Σx(aεAx) ,

we can eliminate constant N by means of functor A:

B1 0εAΛ
B2 aεAx→ Σz(SaεAz)
B3 aεAx→ ∼ SaεAΛ
B4 aεAx∧ bεAy∧ SaεSb→ aεb
B5 0εx∧Πby(bεx∧ bεAy→ Sbεx ) ∧aεAz→ aεx

Axioms A1–A5 are consequences of Axioms B1–B5:

(A1) 0εN [B1,DN]
(A2) aεN→ SaεN [DN,B2]
(A3) aεN→ ∼ Saε0 [DN,B1,R2,B3]
(A4) aεN ∧ bεN ∧ Sa = Sb→ a = b [DN,D=,B4]
(A5) 0εx∧Πb(bεN ∧ bεx→ Sbεx ) ∧aεN→ aεx [DN,B5]

Next, we shall eliminate from axiomatics the functor of the successor (S) by introducing it by
definition. We shall leave it only in the last axiom, for the purpose of shortening.

We shall adopt the axiomatics:

C1 aεa
C2 aεAx→ ex(nx)
C3 ∼ ex(x)→ 0εAx
C4 aεAx∧ bεAx→ aεb
C5 0εx∧Πby(bεx∧ bεAy→ Sbεx ) ∧aεAz→ aεx (=B5)

We shall introduce the functor of the successor by definition:

DS aεSb↔ aεnb∧Πxz(bεAx∧ zεnx↔ aεA(x∪ z) ∧ zεnx) ∧Πxz(0εAx∧ zεnx→ aεAz)∧
Πyz(aεAz∧ ∼ ex(z)→ ∼ bεAy) ∧Πz(aεAz∧ zεz→ b = 0)

T1.1 sol(Ax) [C4,Dsol]
T1.2 AΛ = 0 [OE,C3,T1.1,R3,D=]
T1.3 aεAx∧ bεAx→ a = b [C4,D=]

T1.4

SaεSa↔ Saεna ∧Πxz(aεAx∧ zεnx
↔ SaεA(x∪ z) ∧ zεnx)

∧Πxz(0εAx∧ zεnx→ SaεAz)
∧Πyz(SaεAz

∧ ∼ ex(z)→ ∼ aεAy) ∧Πz(SaεAz∧ zεz→ a = 0)

[DS]

T1.5 SaεA(x∪ z) ∧ zεnx→ aεAx [R1,T1.4]
T1.6 SaεAx∧ xεx→ a = 0 [R1,T1.4]
T1.7 ∼ Saεa [R1,T1.4.Dn]
T2.1 0εAΛ (=B1) [OE,C3]
T2.2 aεAx→ Σz(SaεA) (=B2) [C2,C1,Dex,T1.4]
T2.3 aεAx→ ∼ SaεAΛ (=B3) [R1,T1.4,OE]
T2.4 aεAx∧ bεAy∧ SaεSb→ aεb (=B4) [OE,T1.4,C2,Dex,T1.5,T1.3]
T2.5 φ(0) ∧Πb(bεN ∧φ(b)φ(Sb) ) ∧aεN→ φ(a) [C1,Dstsf,DN,C5]
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Of these, T2.5 is a typical formulation of an induction axiom.

5. Addition and Multiplication: Logical and Philosophical Analysis

Addition and multiplication as operations on numbers—with the numerical functor (Anzahl) as a
primary functor—is, from a logical and philosophical point of view, an operation more complex than it
usually appears.

5.1. Addition

The addition of numbers in the context of a numerical functor (Anzahl) establishes the number
of objects of the same sort. For example, withfive trees in the front garden and seven trees in the
back garden, we reach the conclusion that we have 12 trees altogether. Using names y and z so
that ya tree in the f ront garden and za tree in the back garden, and taking into account the fact that the
extensions of these names have no common elements (∼ ex(y∩ z)), we create in this case a common
name xa tree in the garden, so that xy∪ z—in order to state the following: 12εAx with 5εAy and 7εAz,
where between x, y, and z there are the connections described before. The operation of addition in this
context can be generally defined as follows:

D + aεb + c↔ aεa∧ Σxyz(xy∪ z∧ ∼ ex(y∩ z) ∧ aεAx∧ bεAy∧ cεAz)

5.2. Multiplication

The multiplication of numbers in the context of the numerical functor (Anzahl) is more complicated.
Let us take a similar example. Let us assume that in the garden we have trees which are grouped in four
groups, each comprising five trees. There are two groups in front of the house (on the left and on the
right) and two groups behind the house (one on the left and one on the right, too). We beginour operation
by distinguishing four groups, which we treat as distributive classes determined by four names: y, z, u,
and v, which are, respectively a tree in the f ront garden on the le f t, a tree in the f ront garden on the right,
a tree in the back garden on the le f t, and a tree in the back garden on the right.

We shall mark these classes, respectively, as: Cy, Cz, Cu, and Cv. This distinction is accom- panied
by an ascertainment that for a certain name x with the extension—xy∪ z∪ u∪ v (xa tree in the garden),
these names are separate in terms of extension—∼ ex(y∩ z), ∼ ex(z∩ u), and ∼ ex(u∩ v). Next, we
state that there are four such groups/classes of trees—4εAw 4εAw, where w is a shortening of the name
“a group o f trees in the garden”, and we finally state that each group of trees comprises five trees and each
tree in the garden can be characterized as belonging strictly to one of these groups and as one of five trees
belonging to this group. This last sentence can be shortly expressed as follows: each tree in the garden
is characterized by a pair [one o f the groups, one o f the trees o f a given bank o f trees assigned to this group],
to be eventually able to say that the number of trees in the garden is identical to the number of such
pairs. Symbolically, it can be briefly expressed as follows:

D
⊙

aεb
⊙

c↔ aεa∧ Σxyz(aεAx∧ bεAy∧ cεAz∧Πu(uεy↔ Σv(uεCv∧ v ⊂ x)) ∧ xεy× z)

where × is a functor of Cartesian product of the n/nn category.

6. The New Formulation of the Arithmetic of Natural Numbers

We shall replace axiom C3 with a more intuitive one:

C3* xy→ AxAy

The system of arithmetic of natural numbers in this formulation is: OEsub[C1,C2,C3*,C4,C5].
In the formulation of axiom C5, the functor of successor occurs, which we are introducing similarly,
by means of the already given definition DS.

Here, the term C from OEsub is interpreted in terms of class (see [7]):
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DC xεCy↔ xεx∧Πz(zεy↔ zεsub(x)) x is a distributive class (of objects which are) y.
In addition to the rules of substitution and detachment (MP), we shall also adopt the rules of

omission and introduction for the list operator in the form (see [8]):

OL xε[z1, . . . , zn]/xεz1 ∨ . . .∨ xεzn [x1, . . . , xn]εy/x1εy∧ . . .∧ znεy if y is not list
IL xεz1 ∨ . . .∨ xεzn/xε[z1, . . . , zn] x1εy∧ . . .∧ znεy/[x1, . . . , xn]εy

and the rule:

RL [x1, . . . , xn]ε[z1, . . . , zn]/x1εz1 ∧ [x2, . . . , xn]ε[z2, . . . , zn] [x]ε[z]/xεz

Thanks to this rule, we obtain the property for two-element lists, [x, y] = [z, u]→ x = z∧ y = u ,
which is the equivalent of property for an orderly pair in the framework of the set theory.

Now, let us define the functor of Cartesian product (compare [9], p. 176):

D× xεy× z↔ xεx∧Πuvw(uε[u, w] ∧ vεy∧wεz↔ uεsub(x))

Now, we can—quite formally—adopt the definitions of the operations of addition (+) and
multiplication (

⊙
) in accordance with their interpretation:

D+ aεb + c↔ aεa∧ Σxyz(xy∪ z∧ ∼ ex(y∩ z) ∧ aεAx∧ bεAy∧ cεAz)
D
⊙

aεb
⊙

c↔ aεa∧ Σxyz(aεAx∧ bεAy∧ cεAz∧Πu(uεy↔ Σv(uεCv∧ v ⊂ x)) ∧ xεy× z)

According to D+, addition is a symmetrical operation: aεb + c↔ c + b (a + b = b + a).
The operation of multiplication in the sense

⊙
, in accordance with the definition D

⊙
, is not

symmetrical. We shall introduce multiplication as a symmetrical operation (·) by definition:

D· aεb·c↔
(
aεb
⊙

c
)
∨ aεc

⊙
b)

The theses which are consequences of definition D0 and axiom A3* include:

T2.6 0AΛ [D0,D�]
T2.7 ∼ ex(x)→ 0εAx (=C3) [Dex,OE,Dd,D�,C3*,R1,T2.6,R2]

7. The Term Anzahl in the Indefinite Sense

We shall now deal with number phrases with the term “Anzahl” in the indefinite sense, where,
“Numbers (Anzahlen) are always numbers (Anzahlen) of something. They can be added (five apples
and two apples make seven apples). However, it is impossible to multiply numbers (Anzahlen) by
numbers (Anzahlen)” (see [10], p. 7).

Compounds such as five apples or two dogs fall, in accordance with the previous arrangements,
under the scheme a◦x. We shall introduce the functor ◦ by definition:

D◦ xεa ◦ y↔ xεx∧ Σz(aεA(y∩ z))

The numbers (Anzahlen) in this sense behave like the so-called denominate numbers (like, for
example: 5 m or 2 kg) present in the so-called dimensional analysis, which appears in physics. They can
be added, provided that the same unit is preserved. Addition in such contexts can be defined as follows:

D
⊕

xε(a ◦ y)
⊕

(b ◦ y)↔ xε(a + b) ◦ y

Denominate numbers (benannte Zahlen) are the subject of analysis in one of Hermann von
Helmholtz’s works (see [11], p. 12).

The numbers (Anzahlen) in the indefinite sense cannot be multiplied, as opposed to denominate
numbers in dimensional analysis.
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8. Conclusions

A new, original depiction of arithmetic of natural numbers with Anzahl as a primitive term has
been presented. The basis of this depiction is the calculus of names, which is a certain extension of
elementary ontology (OEsub). The notion of a pair (list) was introduced by means of rules OL, IL,
and RL, the last of them playing a significant role. I have recently noticed that it is possible to define an
ordered pair in the framework of the OEsub system.
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Abstract: Hybrid deduction–refutation systems are deductive systems intended to derive both
valid and non-valid, i.e., semantically refutable, formulae of a given logical system, by employing
together separate derivability operators for each of these and combining ‘hybrid derivation rules’
that involve both deduction and refutation. The goal of this paper is to develop a basic theory and
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derivation system of natural deduction for classical propositional logic, for which I show soundness
and completeness for both deductions and refutations.
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1. Introduction

1.1. Semantic vs. Deductive Refutability

Consider a generic logical system L, comprising a formal logical language with a given semantics.
The basic semantic notion is that of L-validity: an L-formula A is said to be L-valid in L, denoted |=L A,
iff it is true in every L-model. Respectively, an L-formula A is said to be refutable in L (L-refutable),
or L-falsifiable, denoted �|=L A, iff there is an L-model falsifying A, i.e., if it is not L-valid. (Note that in
the usual logical semantics “not L-valid" means the same as “L-falsifiable", but, in some non-classical
logical systems, such as paraconsistent logic, the semantics may allow the same formula to be both
true and false, hence it may turn out both valid and falsifiable. This leads, inter alia, to terminological
complications. To avoid these, I will exclude from consideration such paraconsistent semantics here,
but will briefly discuss that case in Remark 6.)

Now, consider a deductive system D for L, with a derivation relation �D. Then, the basic
deductive notion associated with D is provability in D of a given L-formula A, denoted as usual by
�D A. If D is sound and complete for L, then �D A corresponds precisely to validity, i.e., |=L A.
In general, this may not be the case, but, still, provability is the intended syntactic counterpart of
validity (and, more generally, of logical consequence).

Then, what is the precisely matching syntactic notion to semantic refutability? One can argue
that it is not “non-provability" but is rather the notion of “deductive refutability”, i.e., existence of a
formal derivation in a suitable derivation system for L-refutable formulae. Following Łukasiewicz, a new
symbol, 	L, can be introduced for that notion, where 	L A means “A is deductively refutable in L”, i.e.,
“the non-validity of A in L is established deductively”, or “the refutation of A in L is formally derived/derivable”.

Thus, the notion of formal (deductive) refutation arises. The idea goes far back in history, already to
Aristotle, who essentially applied that idea to ‘derive’ some non-valid syllogisms from others, but it
was not pursued further, until Łukasiewicz revived it in the early-mid 20th century and introduced
the notion of (deductive) refutation system. For further details on the origins and history of refutation
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systems, see [1–3]. For a recent comprehensive overview on the research and literature on refutation
systems, see [4].

It should, of course, be noted that the idea of formally proving unprovability in a given formal
deductive system has been crucial for the development of Proof Theory since its very inception by
Gentzen and others, and has been fundamental in Logic since Gödel’s incompleteness theorems.
Moreover, results in Structural Proof Theory (see [5]), such as normalisation results for systems of
Natural Deduction (see [6,7]) make it possible to obtain precise mathematical proofs of unprovability
in such system, which can be appropriately formalised. What the theory of refutation systems proposes
further is to consider the concept of deductive refutability as a first-class citizen and treat it as an object
of study in its own right.

1.2. Related Work and Main Contributions

The overall development of refutations systems so far has been driven by the ideas to employ and
‘simulate’ traditional deductive systems, rather than to interact with them. In particular, a commonly
pursued goal has been to design pure refutations systems, involving only the relation of refutability,
but not at all that of provability. Even in the cases of refutations systems involving both refutability and
provability, the latter is typically used as an auxiliary, ‘black box’ operator, to enable the applications
of some ‘mixed’ rules of refutation inference, such as Modus Tollens (see further).

An alternative philosophy, promoted in the present work, is to treat both notions of provability and
refutation on a par and to seek to develop combined deductive systems where both notions not only
coexist, but actually interact and cooperate with each other, for the sake of ultimately deriving the
correct validity/non-validity status of the formula or logical consequence in question.

Related Work

The idea of combining deductions and refutations in common systems of derivations, here called
hybrid (The use of the term “hybrid” in the context of this work is not related to deduction in the
so-called “hybrid logic”). I hope that the use of that term here would not create terminological
confusion in the literature) deduction–refutation systems (also, for short, hybrid derivation systems), can be
traced back implicitly to some works of Łukasiewicz and Carnap. However, to my knowledge, it was
first explicitly proposed in [3] but apparently not pursued further since then. Still, several similar
or related ideas have been proposed and discussed (though not as follow-up works to [3]) in the
meantime, including (chronologically):

• The idea of ’complementary systems’ for sentential logic, suggested by Bonatti and Varzi in [8]
is related in spirit, though technically different from the idea of hybrid refutation systems, as it
considers the complementary systems, for deductions and for refutations, acting separately.

• Similarly, in [9], Skura studies ‘symmetric inference systems’, that is, pairs of essentially
non-interacting inference systems, and shows how they can be used for characterizing maximal
non-classical logic with certain properties. In particular, the method is applied there to
paraconsistent logic.

• In [10], Wybraniec-Skardowska and Waldmajer explore the general theory of deductive systems
employing the two dual consequence operators, the standard logical consequence, inferring
validities, and the refutation consequence, inferring non-validities. Again, no interaction of these
consequence operators is considered there.

• In [11], Caferra and Peltier, motivated by potential applications to automated reasoning, take a
unifying perspective on deriving accepting or rejecting propositions from other, already accepted
or rejected, propositions, thus considering separately each of the four consequence relations
arising as combinations.

• In [12], Goré and Postniece combine derivations and refutations to obtain cut-free complete
systems for bi-intuitionistic logic.
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• In [13], Negri explores the duality of proofs and countermodels in labelled sequent calculi and
develops a method for unifying proof search and countermodel construction for some modal and
intuitionistic propositional logic over classes of Kripke frames with suitable frame conditions.
In particular, for some of this logic, the method provides a decision procedure.

• In [14], Citkin considers essentially multiple-conclusion generalisations of hybrid inference
rules studied here. Citkin discusses consequence relations and inference systems employing
such rules and proposes a meta-logic for formalising propositional reasoning about such
systems. Even though with different motivation and agenda, and with no technical results
of the type pursued here, this work appears to be the closest in spirit to the idea of hybrid
deduction–refutation systems studied in the present work.

• Likewise, in [15], Fiorentini and Ferrari explore the duality between unprovability and provability
in forward proof-search for intuitionistic propositional logic and develop a refutation-complete
sequent-based forward refutation calculus for it, following on their previous work [16].

• In [17], Rumfitt considers “reversals” of the rules of propositional Natural Deduction, to formalise
derivations between “accepted” and “rejected” sentences. While the motivation is different from
the one related to refutation systems, most (but not all!) resulting rules are essentially the same as
the “hybrid refutation rules” obtained by contrapositive inversion of the rules of propositional
Natural Deduction considered in Section 4. See Remark 7 on the distinction between the two
types of rules.

Contributions and Structure of the Paper

The goal of this paper is to develop a basic proof theory and ‘meta-proof’ theory of hybrid
deduction–refutation systems. After a brief description of refutation rules and systems in the
preliminary Section 2, I present in Section 3 a basic theory of hybrid derivation rules and systems,
including the notion of inversion of deduction and refutation rules and canonical hybrid extensions
of deductive and refutation systems. In Section 4, I then illustrate these concepts on the natural
deduction system for classical propositional logic NDPL, for which I develop a ‘standard hybrid
extension’ Hs(NDPL), for which I prove soundness and completeness with respect to both deductions
and refutations in Section 5. Then, Section 6 discusses the ‘meta-theory’ of hybrid derivation systems.
The paper ends with some concluding remarks on potential applications and further work on hybrid
derivation systems in Section 7.

2. Preliminaries

I will assume that the reader is familiar with basic logical notation and terminology for proof
systems for classical logic. If necessary, see, e.g., [5,7], or [18].

2.1. Refutation Rules and Systems: Basic Concepts

Let us consider and fix a logical system L, comprising a formal logical language with a given
semantics, defining the notion of validity and, respectively, logical consequence. Here, I will introduce
the basic concepts of (axiomatic) refutation systems, generally (but not fully) following notation
and terminology from [3,19], to which the reader is referred for further details; see also [4] for a
bibliographic overview on refutation systems.

A pure rule of refutation inference is a rule scheme of the type

	 ψ1, . . . ,	 ψn

	 γ
,

where ψ1, . . . , ψn, γ are propositional formulae. (This definition can be naturally extended to first-order
languages. (Here, and further: the commas used to separate premises in the rules should not be
considered as part of the formal syntax, but rather as typographical indication to separate these
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premisses. That way, derivations can be regarded as trees, as usual.) The intuitive meaning of that
rule with respect to the logical system L is that, for any uniform substitution σ of formulae for the
propositional variables occurring in the formulae ψ1, . . . , ψn, γ, if each of the formulae σ(ψ1), . . . , σ(ψn),
has been derived as non-valid (in L), then σ(γ) is derived as non-valid (in L) too. In that sense, the rule
is actually a rule scheme, and this will apply likewise for all propositional inference rules considered
further in the paper.

A typical example of a pure rule of refutation inference is the Disjunction rule:

	 ϕ, 	 ψ

	 ϕ ∨ ψ
.

Another important example is Łukasiewicz’s Reverse substitution rule scheme:

	 τ(ϕ)

	 ϕ
,

where τ is a uniform substitution. (Note that this is a substitutional scheme in two senses.)
Usually, pure refutation rules do not suffice to capture adequately semantic refutability in a

refutation system, so we also consider a more general type of refutation rules, called mixed refutation

rules, which are relativised to a given underlying deductive system D for the logical system L,
as follows:

�D ϕ1, . . . ,�D ϕm, 	 ψ1, . . . ,	 ψn

	 γ
,

where ϕ1, . . . , ϕm, ψ1, . . . , ψn, γ are (here, propositional) formulae. The intuitive meaning of that
rule with respect to the logical system L is that, for any uniform substitution σ of formulae for the
propositional variables occurring in the formulae ϕ1, . . . , ϕm, ψ1, . . . , ψn, γ, if each of the formulae
σ(ϕ1), . . . , σ(ϕm) is derived by D (hence, assuming soundness of D, proved valid in L) and each
σ(ψ1), . . . , σ(ψn) has been derived as non-valid in L, then σ(γ) is derived as non-valid in L too.
A typical example is Łukasiewicz’s rule Reverse modus ponens (aka, Modus Tollens):

�D ϕ → ψ,	 ψ

	 ϕ
.

A refutation system (associated with a given underlying deductive system D) is a set R of
(generally, mixed) refutation rules (where � is indexed with D). Refutation rules with no premises are
called structural refutation axioms, and I will write them simply as 	 θ.

Remark 1. Substitution closure of inference rules is a standard structurality condition in most non-classical
propositional logic. However, in the case of mixed refutation rules, it has a rather non-trivial nature, as it makes
an interesting connection with the notions of unification and unifiability of propositional formulae; see [20].
Indeed, a refutation axiom is sound under substitution instances precisely when it is not unifiable. In particular,
this will make it necessary further to consider more general, not closed under substitutions’ refutation axiom
schemes, in addition to structural ones. Furthermore, unifiability of formulae is closely related to admissibility of
rules. On the connections of these with refutation rules and systems, see [21].

The issue of substitution closure of inferences will come up again later when hybrid inference rules
are considered.

When defining refutation derivations in R , one typically assumes that the necessary derivations
in the underlying deductive system D are done separately, in advance or “on demand”, whenever
needed for the derivation of the target refutation, and as part of that derivation. In either case, the
deductive system D is assumed to play only an auxiliary role for the functioning of the refutation
system R. Formally, a refutation derivation in R, or just an R-derivation, for a formula θ is a
sequence S1, ..., St, where St is 	 θ and every Si is either a refutation axiom, or is of the form �D ψ
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or is obtained from some already listed items in the sequence by applying a refutation rule from R,
by deriving the conclusion from suitable substitution instances of the premises. We now say that a
formula θ is refutable in R (or, just R-refutable) iff there is a refutation derivation for θ in R.

Given a logical system L, we say that a refutation system R is:

• refutation-sound, or Ł-sound, for L, if only non-valid in L-formulae (more generally, logical
consequences in L) are R-refutable,

• refutation-complete, or Ł-complete, for L, if all non-valid in L-formulae (more generally, logical
consequences in L) are R-refutable.

2.2. Basic Refutation Systems for Classical Logic

The most common type of deductive systems are axiomatic (aka, Hilbert style)
systems—respectively, the most common type of refutation systems are axiomatic refutation systems.
Here is such a refutation system RefCPC, for any fixed sound and complete deductive system CPC for
the Classical Propositional Logic PL, due to Łukasiewicz:

Refutation axiom: 	 ⊥.
Refutation rules:

Reverse Substitution RS:
	 σ(ϕ)

	 ϕ

for any uniform substitution σ.
Modus Tollens MT:

�CPC ϕ → ψ, 	 ψ

	 ϕ
.

Remark 2. Note that a refutation system can be Ł-complete for more than one logic. Indeed, RefCPC is
Ł-complete not only for the CPC, but also for both maximal normal modal logic K +�⊥ and K + (p ↔ �p)
(see [3]), provided that the deductive system CPC in �CPC in MT is replaced by one for the respective modal logic.

Besides those in axiomatic style, some refutation systems have also been constructed for sequent
calculi and in natural deduction style. In [22], Tiomkin constructed a sequent-style refutation calculus
for FOL without function symbols and with the only logical connectives being ∨,¬, ∀, and sketched
a proof of its Ł-completeness for the formulae refutable in finite models. Independently, Goranko
developed in [3] an Ł-complete sequent refutation calculi for the full language of PL, also extended
there to some important normal modal logic. In [2], Tamminga developed a system of natural deduction
for deriving the non-theorems of PL, proved there to be Ł-sound and Ł-complete.

3. Hybrid Derivation Systems: Basic Theory

3.1. Hybrid Deduction–Refutation Rules and Systems

Again, let us consider and fix a logical system L, comprising a formal propositional logical
language with a given semantics defining the notion of L-validity and, more generally, logical
consequence in L.

For greater generality and for the purposes of Section 4, the basic notions of hybrid
deduction–refutation systems will be given here in terms of sequents of formulae, readily reducible to
single formulae. By a (single-conclusion) sequent, we mean an expression of the type Γ � θ, where
Γ is a list (treated as a set) of formulae in L, θ is a formula in L, and �∈ {�,	}. Sequents of the type
Γ � θ will be called deductions, while those of the type Γ 	 θ will be called refutations. (From a
general perspective, both deductions and refutations in our sense are treated syntactically as logical
deductions, but we need a more differentiating and unambiguous terminology here.)
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Semantically, Γ � θ is meant to claim that the logical consequence Γ |= θ is valid in L, whereas
Γ 	 θ is meant to claim that Γ |= θ is falsifiable, hence not valid in L, i.e. that Γ �|= θ holds in L. Thus,
we say that a sequent Γ � θ is sound in L if Γ |= θ is a valid logical consequence in L. Respectively,
a sequent Γ 	 θ is sound in L if Γ |= θ is a non-valid logical consequence in L.

Remark 3. Note an important semantic distinction between deduction and refutation sequents: Γ |= θ is
typically monotone by inclusion with respect to Γ, meaning that, if Γ |= θ and Γ ⊆ Γ′, then Γ′ |= θ; on the
other hand, by contraposition, Γ �|= θ is typically anti-monotone with respect to Γ, i.e., if Γ �|= θ and Γ′ ⊆ Γ,
then Γ′ �|= θ but generally not vice versa. This will have the practical consequence that all inferences that
involve refutation sequents Γ 	 θ are sensitive, and generally intolerant, to adding extra formulae to Γ. See also
Remark 1.

Now, we will extend the refutation rules to hybrid deduction–refutation rules, also by adding
premises as contexts, which now becomes essential in view of the remark above. These rules fall in
two complementary types, defined below, where ϕ1, . . . , ϕm, ψ1, . . . , ψn, θ are (generally) schemes of
formulae and Γ, Γ1, ..., Γm, Δ, Δ1, ..., Δn are sets of schemes of formulae in L. In the propositional case
treated here, one can alternatively assume that all these are concrete formulae, but the rules employ
uniform substitutions; see further. Because of the opposite monotonicity properties of the deduction
and refutation sequents (see Remark 3), the hybrid rules generally have to employ sequents with
different sets of premises.

A hybrid deduction rule of inference (based on a given deductive system D) is a rule of the type:

HDR
Γ1 � ϕ1, . . . Γm � ϕm, Δ1 	 ψ1, . . . , Δn 	 ψn

Γ � θ
.

A hybrid refutation rule of inference (based on a given deductive system D) is a rule of the type:

HRR
Γ1 � ϕ1, . . . Γm � ϕm, Δ1 	 ψ1, . . . , Δn 	 ψn

Δ 	 θ
.

The two types of rules above will be called collectively hybrid rules of inference. Hybrid rules
with no premises will be called respectively deduction axioms and structural refutation axioms, and
we write them simply as sequents Γ � θ, respectively Δ 	 θ.

These hybrid rules of inference will be regarded as rule schemes under substitution, like the earlier
defined refutation rules, in the following sense. Every uniform substitution of formulae for the
propositional variables occurring in the sequents in the rule creates an instance of the rule. For any
such uniform substitution σ if all sequents resulting from applying σ to the premises of the rule,
viz. σ(Γ1) � σ(ϕ1), . . . , σ(Γm) � σ(ϕm), σ(Δ1) 	 σ(ψ1), . . . , σ(Δn) 	 σ(ψn) are derivable / have
been derived, then the rule allows the derivation of the sequent resulting from applying σ to the
conclusion, i.e., σ(Γ) � σ(θ) in the case of HDR, resp. σ(Δ) 	 σ(θ) in the case of HRR. The respective
semantic interpretation of the hybrid rules above in the case of propositional logical systems can
be given as follows: for any uniform substitution σ, if each of the logical consequences σ(Γ1) |=
σ(ϕ1), . . . , σ(Γm) |= σ(ϕm) is derived as valid and each of σ(Δ1) |= σ(ψ1), . . . , σ(Δn) |= σ(ψn) has
been derived as non-valid, then σ(Γ) |= σ(θ) is derived as valid in the case of HDR, respectively
σ(Δ) |= σ(θ) derived as non-valid in the case of HRR, as defined above.

In addition (see Remark 1), we also need to allow more general, non-structural refutation axiom

schemes of the type Γ 	 θ, where closure under substitution is not assumed, but syntactic constraints
are imposed on Γ and θ. A simplest example is a scheme p 	 q, where p �= q. Clearly, allowing
closure under substitution would produce unsound refutation sequents, such as p 	 p. Of course,
structural refutation axioms are special kinds of refutation axiom schemes, but it would be helpful
to consider both types separately. Structural refutation axioms and refutation axiom schemes will
be called collectively just refutation axioms. Note that, to make the general hybrid rules applicable,
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they must act in combination with some rules with no premises, i.e., deduction and refutation axioms,
which provide an initial stock of derived sequents.

Remark 4. Note that, unlike in standard refutation systems, in hybrid derivation systems, we will no longer
assume that these rules act in the context of a separately pre-defined, purely deductive system D, which provides
the initial stock of derived sequents Γ � θ only, but rather that they define the notions of deduction derivations
and refutation derivations on a par, by a mutual induction defined as expected, which I combine in one notion of
hybrid derivation, defined further.

A hybrid inference rule is sound for a given logical system L if it respects the intuitive
interpretation above, i.e., whenever applied to sound premises in L, it produces a sound conclusion
in L.

Here are some examples of hybrid rules:

• All standard deduction rules (in particular, axioms) are particular cases of hybrid deduction rules.
In particular, such are all rules of sequent calculi and systems of natural deduction.

• The refutation rules defined in Section 2.1 are particular cases of hybrid refutation rules.
• In addition, suitable meta-properties of the given logical system L can be used to extract and justify

specific new hybrid inference rules for it. An important example is the Deductive consistency rule

(Cons)
� ϕ

	 ¬ϕ
,

which is justified (‘sound’) whenever the underlying deductive relation � is sound (hence
consistent) for L. More generic examples will be given further.

A hybrid deduction–refutation system, or (for shorter) a hybrid derivation system, is a set
H of hybrid rules of inference for a given logical language. A hybrid derivation in H, or just an
H-derivation, for a sequent Γ � θ is a sequence of sequents S1, ..., St, where St is Γ � θ and every Si is
either a deduction axiom or a refutation axiom, or is obtained from some already listed sequents in
the sequence by applying a hybrid rule of inference from H. Then, we say that the sequent Γ � θ is
derivable in H. Furthermore, we say that the logical consequence Γ |= θ is deduced/deducible in H
if Γ � θ is derivable in H, and that Γ |= θ is refuted/refutable in H if Γ 	 θ is derivable in H.

In particular, H may contain all axioms and rules of a given traditional deduction system D

(which can be an axiomatic system, a sequent calculus, a system of natural deduction, or a system
of semantic tableaux). In such case, the derivations in H extend those in D, by enabling not only
derivations of refutations based on D, but also possibly of some deductions not derivable in D

(esp. in case D is incomplete).

Remark 5. Note that hybrid derivation systems do not employ separate rules of uniform substitution, even to
derived sequents Γ � θ because of the non-preservation of refutations (that may have been used in the derivation)
under such substitutions. (A similar remark is made in [14].) Still, uniform substitutions are used here for
generating instances of the inference rules, as explained earlier..

Some basic terminology will be needed in what follows. Recall (see footnote 1) the assumption
that “not valid” and “non-valid” means “falsifiable” (but see also Remark 6). Given a logical system L,
we say that a hybrid derivation system H is:

• deductively sound for L, or D-sound for L, if only logical consequences that are valid in L are
H-deducible.

• refutationally sound for L, or R-sound for L, if only logical consequences that are non-valid in L
are H-refutable.
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• Ł-sound for L, if it is both D-sound and R-sound for L.
• Ł-consistent, if there is no Γ and θ such that both Γ � θ and Γ 	 θ are derivable in H.
• deductively complete for L, or D-complete for L, if all logical consequences that are valid in L

are H-deducible.
• refutationally complete for L, or R-complete for L, if all logical consequences that are non-valid

in L are H-refutable.
• Łukasiewicz-complete for L, or Ł-complete for L, if it is both D-complete and R-complete for L.
• Ł-saturated, if for all Γ and θ, either Γ � θ or Γ 	 θ (possibly both) is derivable in H.
• Ł-adequate for L, if it is both Ł-sound and Ł-complete for L.
• Ł-balanced, if it is both Ł-consistent and Ł-saturated.

Proposition 1. Let L be a logical system and H a hybrid deduction–refutation system for L. Then:

1. If H is Ł-sound for L, then H is Ł-consistent.
2. If H is Ł-complete for L, then H is Ł-saturated.
3. If H is Ł-adequate for L, then H is Ł-balanced.
4. If H has a recursive set of rules and is Ł-adequate for L, then it provides a decision procedure for the valid

logical consequences in L.

Proof. Here, 1 and 2 are straightforward, since, for any Γ and θ, the logical consequence Γ |= θ is either
valid or non-valid, but not both. Then, 3 follows immediately.

Likewise, 4 is immediate, as the recursiveness of H implies that all derived sequents in H can
be recursively enumerated, the Ł-completeness of H means that, for every Γ and φ, either Γ � φ or
Γ 	 φ (but not both) will eventually appear in that enumeration, and the Ł-soundness guarantees that,
whatever the case is, it will correctly imply validity, resp. non-validity, of Γ |= φ.

Remark 6. All notions defined above are meant to apply, in particular, to most general cases of derivation
systems, which may possibly extend unsound, or even to paraconsistent deductive systems. (In a similar spirit,
Citkin defines in [14] a more general motion of a logical system, as a pair consisting of a set of accepted and a
set of rejected propositions, without assuming that these must be complementary, nor even disjoint.) However,
in the case of paraconsistent semantics where a formula or logical consequence can be both valid and falsifiable,
the term “non-valid" in the definitions of R-soundness and R-completeness should be replaced by “falsifiable",
without assuming that the latter implies the former. Still, claims 1 and 3 in Proposition 1 will no longer
hold for such semantics. (Thanks to the reviewer who pointed that out.) Still, note that, even if the deduction
fragment of a hybrid derivation system may be D-unsound, or D-incomplete, for the given logical system,
its refutation fragment may still be R-sound, or R-complete, and vice versa. An interesting example is the simple
Ł-complete refutation system for Medvedev’s logic of finite problems (for which no recursive axiomatization is
known yet, but it has a co-r.e. set of validities) designed in [23], employing as the underlying deductive system
the weaker Kreisel–Putnam’s logic KP. Thus, the resulting hybrid system is D-incomplete but R-complete for
Medvedev’s logic.

3.2. Inversion of Rules and Derivative Hybrid Rules

New hybrid rules can be defined in a uniform way as derivative rules from existing ones by using
inversion: swapping one premise with the conclusion of the given rule and swapping � with 	 in
both sequents. (The use of the term ‘inversion’ here is different from ‘inversion principle’ widely used
in proof theory, see [5], but related to the term ‘inversion’ used in [2], when applied to single-premise
rules. In addition, the idea of inverting inference rules was essentially used in the design and proof of
completeness of the sequential refutation system for PL in [3].) For example, applying inversion to the
rule Modus Ponens

Γ � φ, Γ � φ → ψ

Γ � ψ
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produces the following derivative rules:

Γ 	 ψ, Γ � φ → ψ

Γ 	 φ
and

Γ � φ, Γ 	 ψ

Γ 	 φ → ψ
.

Likewise, the Disjunction rule:
Γ 	 ϕ, Γ 	 ψ

Γ 	 ϕ ∨ ψ

produces the following derivative rules:

Γ � ϕ ∨ ψ, Γ 	 ψ

Γ � ϕ
and

Γ 	 ϕ, Γ � ϕ ∨ ψ

Γ � ψ
.

The general definitions follow.

3.2.1. Inversion of Deduction Rules

The deduction rule

Γ1 � ϕ1, . . . , Γi � ϕi, . . . , Γm � ϕm, Δ1 	 ψ1, . . . , Δj 	 ψj, . . . , Δn 	 ψn

Γ � θ

produces each of the following derivative rules

Γ1 � ϕ1, . . . , Γ 	 θ, . . . , Γm � ϕm, Δ1 	 ψ1, . . . , Δj 	 ψj, . . . , Δn 	 ψn

Γi 	 ϕi

for each i = 1, ..., m, and

Γ1 � ϕ1, . . . , Γi � ϕi, . . . , Γm � ϕm, Δ1 	 ψ1, . . . , Γ 	 θ, . . . , Δn 	 ψn

Δj � ψj

for each j = 1, ..., n.
In particular, a deduction rule with no premises, i.e., a deduction axiom Γ � θ, will be

regarded—without essential effect—as the rule

� �
Γ � θ

.

Thus, it has one derivative rule:
Γ 	 θ

	 � .

3.2.2. Inversion of Refutation Rules

Likewise, the refutation rule

Γ1 � ϕ1, . . . , Γi � ϕi, . . . , Γm � ϕm, Δ1 	 ψ1, . . . , Δj 	 ψj, . . . , Δn 	 ψn

Δ 	 θ

produces each of the following derivative rules

Γ1 � ϕ1, . . . , Δ � θ, . . . , Γm � ϕm, Δ1 	 ψ1, . . . , Δj 	 ψj, . . . , Δn 	 ψn

Γi 	 ϕi

for each i = 1, ..., m, and

Γ1 � ϕ1, . . . , Γi � ϕi, . . . , Γm � ϕm, Δ1 	 ψ1, . . . , Δ � θ, . . . , Δn 	 ψn

Δj � ψj
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for each j = 1, ..., n.
A refutation rule with no premises, i.e., a structural refutation axiom Γ 	 θ, will be

regarded—again without essential effect—as the rule

	 ⊥
Γ 	 θ

.

Respectively, it also has one derivative rule

Γ � θ

� ⊥ .

3.2.3. Soundness of Derivative Rules

Proposition 2. Let L be a logical system and let R be a hybrid inference rule in the language of L, which is
sound for L. Then, every derivative rule of R is sound for L too.

Proof. Suppose first that R is a hybrid deduction rule

Γ1 � ϕ1, . . . , Γi � ϕi, . . . , Γm � ϕm, Δ1 	 ψ1, . . . , Δj 	 ψj, . . . , Δn 	 ψn

Γ � θ
.

Consider the derivative refutation rule

Γ1 � ϕ1, . . . , Γ 	 θ, . . . , Γm � ϕm, Δ1 	 ψ1, . . . , Δj 	 ψj, . . . , Δn 	 ψn

Γi 	 ϕi

for i ∈ {1, ..., m}. To prove its soundness, consider any uniform substitution σ and suppose that all
premises obtained after applying σ are sound, i.e., each of the logical consequences σ(Γk) |= σ(ϕk),
for k = 1, ..., i− 1, i + 1, ..., m, is valid and each of σ(Δk) |= σ(ψk), for k = 1, . . . , n, as well as σ(Δ) |=
σ(θ), is non-valid. Then, σ(Γi) |= σ(ϕi) must be non-valid too; otherwise, the soundness of R would
imply the validity of σ(Δ) |= σ(θ).

The argument for the soundness of derivative deduction rules is similar.
The proof when R is a hybrid refutation rule is completely analogous.

3.3. Canonical Hybrid Extensions of Deductive Systems

Given any deductive system D, its canonical hybrid extension H(D) is obtained by adding to D

the derivative rules of all deduction rules (incl. axioms) of D.
Note that the sequent refutation systems proposed for PL and FOL in [3,22] are essentially

constructed as (subsystems of) the canonical hybrid extensions of respective standard sequent
deduction systems for these logic.

Proposition 2 implies that, if D is D-sound for a given logical system L, then H(D) is Ł-sound
for L. If D is also D-complete for L, then H(D) cannot add more derivable deduction sequents, so it
is D-complete too. In this case, H(D) extends D conservatively with respect to deductions, but it
generally does add derivable refutation sequents. However, even then H(D) may generally not be
R-complete, hence not Ł-complete, either. In particular, it cannot be R-complete if L is not decidable.
The question of when H(D) is Ł-complete is one of the main questions of the general theory of hybrid
derivation systems.

Likewise, given any refutation system R, its canonical hybrid extension H(R) is obtained by
adding to R the derivative rules of all refutation rules (incl. axioms) of R. Again, by Proposition 2,
if R is R-sound for a logical system L, then H(R) is Ł-sound for L. The question of Ł-completeness of
H(R) is, again, generally open.
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As for Ł-soundness, using Proposition 2, a straightforward induction on derivations proves
the following.

Corollary 1. Let D be a sound deductive system for a given logical system L. Then, H(D) is Ł-sound for L.

4. Hybrid Extensions of the System of Natural Deduction for PL

I will illustrate here the concept of canonical hybrid extension, applied to the system of Natural
Deduction for the classical propositional logic PL.

4.1. Hybrid Derivatives of the Rules for Natural Deduction for PL

Let us fix a standard version NDPL of a sound and complete system of Natural Deduction (ND)
for PL (see [6], or [7], or [18]).

Every pure inference rule of NDPL produces one or two derivative hybrid rules. Note that the
derivatives of introduction rules for � typically become hybrid elimination rules for 	 and vice versa.

Note also that the open assumptions must be explicitly listed in the rules because of the
anti-monotonicity of the refutations (see Remark 3). For that reason and for better readability, the rules
are presented further as rules over sequents.

4.2. Hybrid Derivatives of the Introduction Rules of NDPL

For the record, here are the derivative rules produced from the introduction rules of NDPL,
where the arrows⇒ below indicate the respective transformations of deduction rules to their derivative
hybrid rules:

(∧I)
Γ � φ, Γ � ψ

Γ � φ ∧ ψ

⇓ ⇓

(∧HEl)
Γ 	 φ ∧ ψ, Γ � ψ

Γ 	 φ
(∧HEr )

Γ � φ, Γ 	 φ ∧ ψ

Γ 	 ψ
,

(∨Il)
Γ � φ

Γ � φ ∨ ψ
(∨Ir)

Γ � ψ

Γ � φ ∨ ψ

⇓ ⇓

(∨HEl)
Γ 	 φ ∨ ψ

Γ 	 φ
(∨HEr)

Γ 	 φ ∨ ψ

Γ 	 ψ
,

(→ I)
Γ, φ � ψ

Γ � φ → ψ
(¬I)

Γ, φ � ⊥
Γ � ¬φ

⇓ ⇓

(→ HE1)
Γ 	 φ → ψ

Γ, φ 	 ψ
(¬HE1)

Γ 	 ¬φ

Γ, φ 	 ⊥ .

4.3. Hybrid Derivatives of the Elimination Rules of NDPL

Here are the derivative rules produced from the elimination rules of NDPL, where, again,
the arrows ⇒ below indicate the respective transformations of deduction rules to their derivative
hybrid rules:

(∧El)
Γ � φ ∧ ψ

Γ � φ
(∧Er)

Γ � φ ∧ ψ

Γ � ψ

⇓ ⇓
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(∧HIl)
Γ 	 φ

Γ 	 φ ∧ ψ
(∧HIr)

Γ 	 ψ

Γ 	 φ ∧ ψ
,

(∨E)
Γ, φ � θ, Γ, ψ � θ

Γ, φ ∨ ψ � θ

⇓ ⇓

(∨HIl)
Γ, φ ∨ ψ 	 θ, Γ, ψ � θ

Γ, φ 	 θ
, (∨HIr)

Γ, φ � θ, Γ, φ ∨ ψ 	 θ

Γ, ψ 	 θ
,

(→ E)
Γ � φ, Γ � φ → ψ

Γ � ψ

⇓ ⇓

(→ HE2)
Γ 	 ψ, Γ � φ → ψ

Γ 	 φ
, (→ HI)

Γ � φ, Γ 	 ψ

Γ 	 φ → ψ
,

(¬E)
Γ � φ, Γ � ¬φ

Γ � ⊥
⇓ ⇓

(¬HE2)
Γ 	 ⊥, Γ � ¬φ

Γ 	 φ
, (¬HI)

Γ � φ, Γ 	 ⊥
Γ 	 ¬φ

.

4.4. Hybrid Derivatives of “Ex Falso” and “Reductio ad Absurdum”

The hybrid derivative of “Ex falso quodlibet” is produced as follows:

(EFQ)
Γ � ⊥
Γ � φ

⇓

(HEQF)
Γ 	 φ

Γ 	 ⊥ .

Respectively, here is the hybrid derivative of “Reductio ad absurdum”:

(RAA)
Γ,¬φ � ⊥

Γ � φ

⇓

(HRAA)
Γ 	 φ

Γ,¬φ 	 ⊥ .

Note that this refutation rule is sound for PL, but not for the inuitionistic logic.

Remark 7. Rumfitt considers in [17] (thanks to an anonymous reviewer for this reference) “reversals” of the
rules of NDPL to formalise derivations between “signed sentences” +A and −A used “to abbreviate Smiley’s
amalgams of questions with answers ‘Is it the case that A? Yes’ and ‘Is it the case that A? No’ " (ibid.). While the
motivation is different from the one coming from refutation inference rules, most (but not all) resulting rules are
essentially the same as the hybrid derivative rules for ND obtained here. However, there is an essential distinction
between the meanings of the two types of rules, e.g.,: whereas rejection of a sentence implies acceptance of its
negation, and deductive refutation of the validity of a sentence does not imply deduction of the validity of its
negation. That distinction is manifested e.g., by the rules +¬I and −¬E in [17] as compared to the hybrid
derivative rules for ¬ obtained and employed here.
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4.5. Atomic Refutations and Monotonicity Rules

The canonical extension H(NDPL) constructed above is easily seen to be too weak for deriving
refutations, as it does not contain any refutation axioms nor hybrid refutation rules that only have
deduction sequents as premises; hence, it cannot enable derivation of any refutation sequents yet.
In order to compensate for that, we also need to add the following atomic refutation axiom scheme

RefAxPL:
Γ 	 φ,

where φ is a literal or ⊥, all formulae in Γ are literals, Γ does not contain a complementary pair of
literals, and φ /∈ Γ. Note that RefAxPL is a non-structural refutation axiom scheme, i.e., not closed
under uniform substitution.

In addition, the rules of H(NDPL) do not enable explicitly removing formulae from the left-hand
side of a refutation sequent. To solve that deficiency and to streamline the hybrid derivation system,
we also add the following two monotonicity rules:

• The rule Mon�: Monotonicity of �
Γ � φ, Γ ⊆ Γ′

Γ′ � φ
,

(Usually this rule is implicitly assumed in any traditional system of natural deduction.)
• The rule Mon	: Anti-monotonicity of 	

Γ 	 φ, Γ′ ⊆ Γ
Γ′ 	 φ

.

Let us denote by Hs(NDPL) the extension of H(NDPL) obtained by adding the rules RefAxPL,
Mon�, and Mon	. The system Hs(NDPL) will be called the standard hybrid extension of NDPL.

5. Some Results about the Standard Hybrid Extension of NDPL

5.1. Soundness and Some Properties of Hs(NDPL)

Proposition 3.

1. Every rule of Hs(NDPL) is sound.
2. Hs(NDPL) is Ł-sound for PL and hence Ł-consistent.
3. If Γ is a satisfiable set of formulae, then Γ � ⊥ is not derivable in Hs(NDPL).

Proof. 1. The soundness of all derivative rules for PL follows from the D-soundness of ND for PL and
Proposition 2. Proving the soundness of RefAxPL, Mon�, and Mon	 for PL is quite routine, and I leave
out the details.

2. Now, the Ł-soundness of Hs(NDPL) for PL follows by a straightforward induction on hybrid
derivations (Corollary 1). In particular, Hs(NDPL) extends conservatively NDPL with respect to
deduction sequents.

3. Follows immediately from 2.

Lemma 1.

1. If Γ 	 φ is derivable in Hs(NDPL), then Γ,¬φ 	 φ is derivable in Hs(NDPL).
2. If Γ, φ 	 ψ is derivable in Hs(NDPL), then Γ 	 φ → ψ is derivable in Hs(NDPL).
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3. If Γ � φ → ψ is derivable in Hs(NDPL) and Γ, φ 	 θ is derivable in Hs(NDPL), then Γ, ψ 	 θ is
derivable in Hs(NDPL).

Consequently, if Γ � φ ↔ ψ is derivable in Hs(NDPL), then Γ, φ 	 θ is derivable in Hs(NDPL) iff
Γ, ψ 	 θ is derivable in Hs(NDPL).

4. If Γ � φ ↔ ψ is derivable in Hs(NDPL), then Γ, θ 	 φ is derivable in Hs(NDPL) iff Γ, θ 	 ψ is derivable
in Hs(NDPL).

5. Γ, ψ1, ..., ψk 	 θ is derivable in Hs(NDPL) iff Γ, ψ1 ∧ ...∧ ψk 	 θ is derivable in Hs(NDPL).

Proof.

1. Let Γ 	 φ be derived in Hs(NDPL).

Then, Γ,¬φ 	 ⊥ is derived in Hs(NDPL), by (HRAA).

Hence, Γ,¬φ 	 φ is derived in Hs(NDPL), by (¬HE2).
2. Suppose Γ, φ 	 ψ is derivable in Hs(NDPL). Since Γ, φ � φ is derivable in Hs(NDPL), we derive

Γ, φ 	 φ → ψ by (→ HI). Then, by the Anti-Monotonicity rule Mon	, Γ 	 φ → ψ is derived in
Hs(NDPL).

3. Let Γ � φ → ψ be derivable in Hs(NDPL).

Since (φ → ψ)→ ((ψ → θ)→ (φ → θ)) is a classical tautology,
Γ � (φ → ψ)→ ((ψ → θ)→ (φ → θ)) is derivable in Hs(NDPL).

Hence, by Modus Ponens, Γ � (ψ → θ)→ (φ → θ) is derivable in Hs(NDPL). (*)

Now, suppose that Γ, φ 	 θ is derivable in Hs(NDPL).

Then, by item 2, Γ 	 φ → θ is derivable in Hs(NDPL).

Therefore, Γ 	 ψ → θ is derivable in Hs(NDPL) by (→ HE2) applied to the latter and (*). Then,
finally, Γ, ψ 	 θ is derivable in Hs(NDPL), by (→ HE1).

4. Let Γ � φ ↔ ψ be derivable in Hs(NDPL).

Suppose that Γ, θ 	 φ is derivable in Hs(NDPL).

Then, Γ,	 θ → φ is derivable in Hs(NDPL), by claim 2. (**)

Since (φ ↔ ψ)→ ((θ → ψ)→ (θ → φ)) is a classical tautology,
Γ � (φ ↔ ψ)→ ((θ → ψ)→ (θ → φ)) is derivable in Hs(NDPL).

Therefore, Γ � (θ → ψ)→ (θ → φ) is derivable in Hs(NDPL).

Hence, Γ,	 θ → ψ is derivable in Hs(NDPL), by (→ HE2) applied to the latter and (**).

Then, finally, Γ, θ 	 ψ is derivable in Hs(NDPL), by (→ HE1).
5. It suffices to prove the claim when k = 2 and then apply a straightforward induction.

Suppose Γ, ψ1, ψ2 	 θ is derivable in Hs(NDPL).

Then, Γ 	 (ψ1 → (ψ2 → θ)) is derivable in Hs(NDPL), by applying claim 2 twice.

Since (ψ1 → (ψ2 → θ))↔ ((ψ1 ∧ψ2)→ θ) is a classical tautology, Γ 	 (ψ1 ∧ψ2)→ θ is derivable
in Hs(NDPL), by claim 4.

Then, finally, Γ, ψ1 ∧ ψ2 	 θ is derivable in Hs(NDPL), by (→ HE1).

The converse direction is similar.

Given a truth assignment δ : Prop→ {f, t}, for any propositional variable p ∈ Prop, let us define
pδ := p if δ(p) = t, else pδ := ¬p.
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Lemma 2. Let Γ be a finite set of propositional formulae and let {p1, ..., pn} contain all propositional variables
occurring in formulae in Γ. Suppose δ is a truth assignment satisfying Γ and let Γδ = Γ ∪ {pδ

1, ..., pδ
n}.

Then, Γδ 	 ⊥ is derivable in Hs(NDPL).

Proof. By items 3 and 5 of Lemma 1, it suffices to prove the claim assuming that all formulae in Γ
are transformed to equivalent ones in CNF and then replaced by the list of elementary disjunctions
occurring as conjuncts in that CNF. Thus, without loss of generality, we can assume that Γ = {γ1, ..., γk},
where all γi are elementary disjunctions.

Take the satisfying assignment δ. By definition, δ also satisfies all literals in {pδ
1, ..., pδ

n}.
Furthermore, pδ

1, ..., pδ
n 	 ⊥ is an atomic refutation axiom, hence derivable in Hs(NDPL).

Now, select from each γi in Γ a literal disjunct αi that is satisfied by δ. Then, αi must be in
{pδ

1, ..., pδ
n}. Hence, {pδ

1, ..., pδ
n, α1, ..., αn} = {pδ

1, ..., pδ
n}.

Therefore, pδ
1, ..., pδ

n, α1, ..., αn 	 ⊥ is an atomic refutation axiom, hence derivable inHs(NDPL). (*)
In addition, � αi → γi is derivable in Hs(NDPL), for each i = 1, ..., n. Therefore, by applying

repeatedly item 3 of Lemma 1, we can replace successively each αi by γi in (*), thereby eventually
proving the claim.

By Anti-Monotonicity of 	, Lemma 2 immediately implies the following.

Corollary 2. Let Γ be a finite satisfiable set of propositional formulae. Then, Γ 	 ⊥ is derivable in Hs(NDPL).

5.2. Ł-Completeness and Ł-Adequacy of Hs(NDPL)

Theorem 1. The hybrid derivation system Hs(NDPL) is Ł-complete for the classical propositional logic PL.

Proof. Due to the deductive completeness of NDPL, of whichHs(NDPL) is a deductively conservative
extension, it suffices to prove the R-completeness of Hs(NDPL), i.e., that the refutation of every
non-valid in PL sequent is derivable there. Let Γ �|= θ. Then, there is a truth assignment δ satisfying
Γ and falsifying θ. Therefore, δ satisfies Γ ∪ {¬θ}. By Corollary 2, it follows that Γ,¬θ 	 ⊥ is
derivable in Hs(NDPL). Then, by Rule (¬HE2), Γ,¬θ 	 θ is derivable in Hs(NDPL). Finally, by the
Anti-Monotonicity Rule Mon	, we obtain that Γ 	 θ is derivable in Hs(NDPL). QED.

Proposition 3 and Theorem 1 together imply the following.

Corollary 3. The hybrid derivation system Hs(NDPL) is Ł-adequate for PL and, therefore, it provides a
syntactic decision procedure for PL.

The system Hs(NDPL) and the ND-style refutation system developed in [2] are equivalent in
terms of formal refutability, by virtue of the respective Ł-soundness and Ł-completeness results. Still,
they are fairly different in style and it would be instructive to compare their proof-theoretic features,
strengths and weaknesses, for the sake of possibly designing a better structured system of practical
derivations based on Hs(NDPL).

Remark 8. Note that only some of the derived hybrid refutation rules were used in the proofs of Ł-soundness
and Ł-completeness, hence the others must be derivable, or at least admissible, in the reduction of Hs(NDPL)

obtained by removing them. I leave the question of identifying a minimal Ł-complete subsystem of Hs(NDPL) to
future investigation. In particular, however, the rule HRAA is used in the proof of Lemma 1, hence that proof is
not applicable to the system Hs(NDPL) of Natural Deduction for the intuitionistic propositional logic IPL. Of
course, it should not be applicable for IPL, e.g., because the refutation axiom 	 (p ∨ ¬p) ought to be derivable
there, while it is not in Hs(NDPL).
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6. Towards a Meta-Proof Theory of Hybrid Derivation Systems

Adding the relation 	 for syntactic refutation and building systems of formal derivations that
involve it together with the standard provability relation � can be regarded as first steps towards
internalising the notion of hybrid derivation into the logical language and then developing a theory
for that notion that mirrors the proof theory of �. In particular, derivability and refutability can now
be treated on a par, as two related primitive concepts rather than as complementary ones where
refutability is to be represented syntactically by non-provability. (Note, however, that, for any complete
logic or theory, � and 	 applied to sequents of sentences are readily inter-reducible as complementary
relations.) Thus, a proof theory of hybrid derivation systems emerges, extending and combining both
the traditional proof theory and the theory of refutation systems.

Furthermore, the basic logical concepts of soundness, completeness, consistency, and satisfiability
that relate syntax and semantics of a given logical system can now be all expressed and treated purely
syntactically in terms of � and 	. Thus, a “meta-proof theory” of hybrid derivation systems now
emerges too, studying the meta-logic of these concepts respective to the given logical system L. Here, I
will only set the stage for development of such meta-proof theory and will raise some generic questions,
but I leave its systematic study to future work.

To begin with, let us add a new meta-symbol F, for “absurd”, “falsum”, or “contradiction”, to
the meta-language of hybrid derivation systems. Now, new hybrid derivation rules can be added to
the thus extended framework, in order to reflect basic meta-properties of the given hybrid derivation
system:

� Cons, stating consistency:
� φ, 	 φ

F
,

� “Ex (meta-)falso quodlibet”, EFQ:

F

� φ
,

F

	 φ
,

� Ł-Comp: “Ł-completeness”:

[� φ]
...
F

	 φ
,

� Ł-RAA: “Ł-Reductio ad absurdum”

[	 φ]
...
F

� φ
.

Deductive completeness and Ł-completeness can now be internalised and stated as additional
hybrid rules:

(Ded)

[	 φ]
...
� ψ

[� φ]
...
� ψ

� ψ
(Ref)

[	 φ]
...
	 ψ

[� φ]
...
	 ψ

	 ψ
.
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Some natural questions arise:

1. Can any of these meta-rules strengthen the deductive power of a given (not complete) hybrid
derivation system?

2. In particular, can any of these bring about deductive completeness or Ł-completeness, when it
does not hold without them?

A next natural step would be to strengthen the meta-language even further, to a full-fledged logical
meta-language, involving meta-variables and quantification over derivable and refutable formulae
(or, sequents). Then, for instance, the semantic relationship between � and 	 can be postulated in
the meta-language as Γ � φ ⇔ ∼ Γ 	 φ (where ∼ is the meta-negation). (Some initial steps into
studying propositional meta-theory of acceptance and rejection of formulae (sequents with empty lists
of premises) in a similar spirit can be found in [14].) I leave the general study of the meta-proof theory
of hybrid derivation system to future work.

Remark 9. It should be noted that what I call here ‘meta-proof theory’ has essentially been studied in great
depth for theories of the arithmetic in the context of Gödel’s incompleteness theorems and, more generally, in the
context of axiomatic theories of truth; see [24]. However, the general meta-proof theory proposed here makes
no assumptions about the expressiveness of the object logic regarding definability of truth predicates in it, or in
general, and consequently it has a much wider scope.

7. Conclusions

7.1. Some Applications of Hybrid Derivation Systems

Arguably, hybrid derivation systems have a number of potential applications, both conceptual
and technical, including:

• Hybrid derivation systems put proofs and refutations on equal footing and thus enable their
comparative study and of the development of meta-proof theory, where the interaction of the
concepts of deduction and syntactic refutation for a given logic is the object of study.

• Hybrid derivation systems can yield purely deductive decision procedures, as indicated in
Proposition 1 and illustrated for PL in Section 5.

• Hybrid derivation systems can capture important classes of non-valid formulae in recursively
axiomatizable but undecidable logic, such as FOL. They can also provide complete refutation
systems for logical theories with co-r.e. validity. Typically, this is logic defined over a class of finite
models, such as FOL in the finite or Medvedev’s logic of finite problems (see respectively [23,25]
for R-complete refutation systems for these).

• Hybrid derivation systems can possibly provide more succinct proof systems. This hypothesis is
yet to be tried and tested.

7.2. Current and Future Work

Due to space and time limitations, this paper leaves many open ends and related questions,
some of which have already been mentioned so far. In addition, here are some topics of current and
follow-up work:

• Develop and understand the general meta-proof theory of hybrid derivation systems.
• Design Ł-complete hybrid derivation systems for the intuitionistic propositional logic and for

some important modal logic (extending such results from [3]) and for other non-classical logic.
• Extend/modify Hs(NDPL) to hybrid derivation systems for classical and intuitionistic FOL that

are R-complete for the non-validities in the finite. Characterise the set of refutable non-validities
in these systems.
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• Relate more explicitly hybrid derivation systems with tableaux systems. As the latter are designed
to check satisfiability, i.e., non-validity of the negated input, they are naturally related to refutations
and, hence, to hybrid derivation systems.

• Analyze the relation of the present work with Negri’s work on proofs and countermodels in [13,26]
and explore the interaction of these two approaches to develop systems combining proofs,
refutations, and counter-model constructions for various non-classical logic.

• Another potentially interesting direction (suggested by an anonymous referee) for related further
research is to explore the relation between hybrid derivation systems and methods for proof
certification [27].

• Last but not least: a challenge worth pursuing in this area would be to obtain new decidability
results by designing Ł-adequate hybrid deductive systems for logic that is not yet known to be
decidable, such as Medvedev’s logic.
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Abstract: In this paper, we discuss a version of discussive logic determined by a certain variant
of Jaśkowski’s original model of discussion. The obtained system can be treated as the minimal
discussive logic. It is determined by frames with serial accessibility relation. As the smallest one, this
logic can be treated as a basis which could be extended to richer discussive logics that are obtained
by varying accessibility relation and resulting in a lattice of discussive logics. One has to remember
that while formulating discussive logics there is no one-to-one determination of discussive logics by
modal logics. For example, it is proved that Jaśkowski’s logic D2 can be expressed by other than S5
modal logics. In this paper we consider a deductive system for the sketchily described minimal logic.
While formulating the deductive system, we apply a method of Kotas that was used to axiomatize
D2. The obtained system determines a logic D0 as a set of theses that is contained in D2. Moreover,
any discussive logic that would be expressed by means of the provided model of discussion would
contain D0, so it is the smallest discussive logic.

Keywords: discussive logics; the smallest discussive logic; discussive operators; seriality; accessibility
relation; Kotas’ method; modal logic

1. Introduction

Stanisław Jaśkowski’s aim was to propose a calculus that would allow for explication of
inconsistent theories by means of some consistent framework. As a result Jaśkowski developed
a logic denoted as D2 that was meant to be a basis for calculus that would not lead in general to
overfull set of conclusions when applied to inconsistent set of premisses. He used the scenario of
a discussion as a model case. Intuitively, during discussions participants can contradict each other,
but a possible external observer as well as particular participants would not conclude that everything
follows from such discussion. (Some analysis on this matter can be found in [? ].)

Interactions that take place between participants of a discussion are expressed formally by
discussive counterparts of implication, conjunction and equivalence. Moreover, in Jaśkowski’s intuitive
model, operators take only auxiliary role and modal operators are not present in the object language of
the discussive logic. Such a variant seems to be natural and has been considered in [? ].

Our aim is to indicate the weakest logic that arises from a natural variant of Jaśkowski model of
discussion and moreover, give an adequate deductive system for such a logic.

2. D2 and the Minimal Variant of Discussive Logic

In the original formulation, Jaśkowski considered a situation in which there is no restriction on
possible reactions of participants of a discussion, in other words he considered a model, where every
two participants of the discussion are connected. It corresponds to the full accessibility relation that
semantically allows to determine the logic S5. However, it is known that not every thesis is in fact
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used or needed to express discussive theses. What is only used, is the so-called M-counterpart of the
logic S5 (for investigations on this notion see [? ]). In various papers it has been shown (see [? ? ? ? ?

]) that to be able to formulate D2, one can use various modal logics. (Jaśkowski’s logic was meant to
be a basis for a consequence relation and also in this case there can be given other systems than S5
which also allow to express D2-consequence relation (see [? ]).) Moreover, one can introduce a general
discussive consequence relation framework, in which D2 would be the set of theses of one of its special
cases (for details see [? ]). However, this does not mean that any modal logic would be equally good to
obtain D2.

We will keep original Jaśkowski’s meaning of discussive connectives of implication and
conjunction. Jaśkowski’s discussive implication denoted here as →d, is meant to be read as “if anyone
states that p, then q” (see [? ] p. 150, 1969), in modal terms: ♦p → q. Discussive conjunction is usually
interpreted as saying “p and someone said q”, in the modal Jaśkowski’s interpretation it is read as
p ∧ ♦q. (The disjunction conjunction was introduced in the second Jaśkowski paper on discussive
logic [? ].) In both cases ♦ is originally interpreted as possibility that can refer to any participant of
discussion. In our interpretation it will refer only to those participants, who are connected by the
accessibility relation. In particular, it means that statements of participants, who are not connected
to any disputant, make the whole discussion (since we are interested in expressing what logically
follows, so we ought to consider each world — or in the nomenclature of the model of the discussion
— each point of view) meaningless. As Jaśkowski says, every thesis of the discussive system during
its interpretation ought to be preceded by the reservation: “in accordance with the opinion of one of
the participants in the discourse”, so “if a thesis is recorded in a discursive system, its intuitive sense
ought to be interpreted so as if it were preceded by the symbol Pos” ([? ] p. 149, 1969), which nowadays
is denoted standardly by ‘♦’. Taking into account what has been said, the minimal requirement
for the considered model of discussion is that the ‘outer’ possibility ought to be ruled by a serial
accessibility condition. From the formal point of view, the underlying modal logic that will be used for
the formulation of the proposed variant of discussive logic, will be the deontic normal logic D. As it
is known, it is semantically expressed by the class of frames with serial accessibility relation (where
seriality means that for every world w there is a world v such that wRu).

To strictly formulate the presented idea we will need two formal languages: modal and discussive.

3. Modal and Discussive Languages

Throughout the paper we will use modal formulas that are formed in the standard way from
propositional letters: ‘p’, ‘q’, ‘r’, ‘s’, ‘t’, ‘p0’, ‘p1’, ‘p2’, . . . ; truth-value operators: ‘¬’, ‘∨’, ‘∧’, ‘→’,
and ‘↔’ (connectives of negation, disjunction, conjunction, material implication and material
equivalence, respectively); modal operators: the necessity and possibility operators ‘�’ and ‘♦’;
and the brackets. Let Form denote the set of all modal formulas. Of course, the set Form includes
the set of all classical formulas (without the use of ‘�’ and ‘♦’), in particular the set of all classical
tautologies denoted as CL. The modal language plays only an auxiliary role in the formulation of
discussive logic. Its object language is built again from propositional letters, truth-value operators
‘¬’ and ‘∨’ and discussive implication (→d), discussive conjunction (∧d) and discussive equivalence
(↔d). The set of all discussive formulas is denoted by ‘Ford’.

Basics of Normal Modal Logics

A normal modal logic is a set M ⊆ Form that fulfils the following conditions:

1. CL ⊆ M,
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2. M is closed under modus ponens (??), uniform substitution (??) and necessitation rule (??):

if ϕ and (ϕ → ψ) belong of M, so does ψ. (mp)

if ϕ ∈ M then s(ϕ) ∈ M, (us)

if ϕ ∈ M then �ϕ ∈ M, (rn)

3. M contains formulas (??) and (??)

♦p ↔ ¬�¬p (df♦)

�(p → q)→ (�p → �q) (K)

As it is known, every normal modal logic contains the following formulas

�(p → q)→ (♦p → ♦q) (1)

(�p → ♦q)→ ♦(p → q) (2)

♦(p → q)→ (�p → ♦q) (3)

D is the smallest normal logic containing (??):

�p → ♦p (D)

Standardly, K is the smallest normal modal logic and S5 := KT5, that is, S5 is the smallest normal
modal logic containing (??) and (??), where

�p → p (T)

♦p → �♦p (5)

4. Discussive Logics

In the original formulation every two participants are connected one to another—in fact, for the
explication of discussive implication one reads: ‘if anyone states that p’. The same idea is applied for
the modality that is corresponding to possibility expressing the point of view of an external observer.
Hence, Jaśkowski’s discussive logic D2 is defined by means of S5 as follows:

D2 := { A ∈ Ford : ♦i1(A) ∈ S5 } ,

where i1 is a translation of discussive formulas into the modal language, that is, i1 is a function from
Ford into Form such that:

1. i1(a) = a, for any propositional letter a,
2. for any A, B ∈ Ford:

(a) i1(¬A) = ¬i1(A),
(b) i1(A ∨ B) = i1(A) ∨ i1(B),
(c) i1(A ∧d B) = i1(A) ∧ ♦i1(B),
(d) i1(A →d B) = ♦i1(A)→ i1(B).
(e) i1(A ↔d B) = (♦i1(A)→ i1(B)) ∧ ♦(♦i1(B)→ i1(A)).

One can also consider a more general case. Let S be any normal modal logic. Now, we can define

DS := { A ∈ Ford : ♦i1(A) ∈ S } . (4)

We easily see that in the case where there is no formula of the form ♦(A) that would belong to a
given modal logic S, then we have DS = ∅. In particular, for any modal logic S that is determined by a
class of Kripke frames, whose accessibility relation does not fulfil seriality condition, we obtain DS = ∅.
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(We use standard results from modal logic, for details see for example, References [? ? ].) Of course,
if for a given normal modal logic S, we have (??) ∈ S, then D ⊆ S. It is known (see Reference [? ]) that
one can consider various accessibility relations but the resulting discussive logic would be still the
same. By definition, DS5 = D2. We easily see that

Fact 1. For any modal logics S1 and S2, if S1 ⊆ S2, then

DS1 ⊆ DS2

By induction on the complexity of a formula ϕ ∈ Form, we can obtain:

Fact 2. For every ϕ ∈ Form, there is A ∈ Ford such that i1(A)↔ ϕ ∈ K.

In this paper we focus on the case where in the condition (??), D is taken as the modal system S.
We denote the resulting system as D0. Thus, by definition

D0 := { A ∈ Ford : ♦i1(A) ∈ D } . (5)

In the context of the definition of D0, first, let us observe that:

Lemma 1. For any A, A1, . . . , An ∈ Ford and any variables a1, . . . , an,

(i1(A))(a1/i1(A1), . . . , an/i1(An)) = i1(A(a1/A1, . . . , an/An)) ∈ D.

Proof. The proof goes by induction on the complexity of a formula A.
For the initial case, let A = ai. We have: (i1(ai))(a1/i1(A1), . . . , an/i1(An)) = i1(Ai) = i1(ai(a1/A1,
. . . , an/An)). If A is a variable that does not belong to {a1, . . . , an}, we have (i1(A))(a1/i1(A1), . . . ,
an/i1(An)) = A = i1(A(a1/A1, . . . , an/An)).
For the inductive step assume that inductive hypothesis holds for B and C. For the
case of discussive conjunction observe that the following equations hold: (i1(B ∧d
C))(a1/i1(A1), . . . , an/i1(An)) = (i1(B) ∧ ♦i1(C))(a1/i1(A1), . . . , an/i1(An)) =

(i1(B))(a1/i1(A1), . . . ,an/i1(An)) ∧ (♦i1(C))(a1/i1(A1), . . . , an/i1(An)). Using
inductive hypothesis and features of substitution, we have (i1(B))(a1/i1(A1), . . . ,
an/i1(An)) ∧ (♦i1(C))(a1/i1(A1), . . . , an/i1(An)) = (i1(B))(a1/i1(A1), . . . , an/i1(An)) ∧
♦((i1(C))(a1/i1(A1), . . . , an/i1(An))) = i1(B(a1/A1, . . . , an/An)) ∧ ♦i1(C(a1/A1, . . . ,
an/An)) = i1((B(a1/A1, . . . , an/An) ∧d C(a1/A1, . . . , an/An))) = i1((B ∧d C)(a1/A1, . . . , an/An)).
Similarly, also the proofs for ¬, ∨, →d and ↔d are straightforward.

Fact 3. The set D0 is closed under substitution and modus ponens with respect to →d.

Proof. Let A ∈ D0 and A → B ∈ D0, that is ♦i1(A) ∈ D and ♦i1(A → B) ∈ D, so ♦(♦i1(A) →
i1(B))) ∈ D, by the distributivity of ♦ with respect to → �♦i1(A)→ ♦i1(B) ∈ D, but by normality
�♦i1(A) ∈ D, hence ♦i1(B))) ∈ D and by definition (??), B ∈ D0.
Assume now that A ∈ D0, that is ♦i1(A) ∈ D. Let us consider a result of uniform substitution
s(A) into A of formulas Ai for variables in A, where 1 � i � n, for some n, that is, s(A) =

A(a1/A1, . . . , an/An), where ai are all variables in A. By Lemma ?? we know that i1(s(A)) =

(i1(A))(a1/i1(A1), . . . , an/i1(An)). Since D is a logic, so it is closed on substitution, so also
(♦i1(A))(a1/i1(A1), . . . , an/i1(An)) ∈ D. But the following equations hold (♦i1(A))(a1/i1(A1),
. . . , an/i1(An)) = ♦(i1(A)(a1/i1(A1), . . . , an/i1(An))) = ♦i1(s(A)), therefore s(A) ∈ D0.
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A Comparison with Some Classical Theses

As one can easily see, none of the classical cases given below belong to D0, although each of these
formulas belong to D2. To stress discussive interpretation we use the formulas from Ford.

p →d p

p →d p ∨ q

p ∧d q →d p

p →d (q →d (p ∧d q))

(p →d (q →d r))→d ((p →d q)→d (p →d r))

(p →d q)→d ((q →d r)→d (p →d r))

¬¬p →d p

p →d ¬¬p

Each of these formulas can be rejected semantically. We use standard completeness theorem with
respect to Kripke semantics for the logic D. As an example, let us consider the fifth formula, known as
Frege syllogism. One can easily see that the respective translation:

♦(♦(♦p → (♦q → r))→ (♦(♦p → q)→ (♦p → r)))

is not a thesis of D, so the formula (p →d (q →d r)) →d ((p →d q) →d (p →d r)) does not belong
to D0. Similarly one falsifies the other cases.

5. A Kotas Style Deductive System for the Smallest Discussive Logic

We will characterise a discussive logic being a result of the given variant of the discussive model;
that is in the case that the relation is serial and no other condition is assumed as regards accessibility
relation. We will give an adequacy result for the given deductive system.

We will adopt a method of Kotas (see Reference [? ]) that was used for indicating the way in
which D2 could be axiomatized. (There are other axiomatisations of D2. In Reference [? ] there is an
axiomatisation of discussive logic but in a version with left discussive conjunction. For not so straight
history of axiomatisation of D2 see References [? ? ].) The same method was used inter alia in Reference
[? ] to axiomatize a variant of D2 with modal operators.

Let us use the following notation:

(�Ai) denotes �φ, for (Ai) denoting φ (6)

♦-S = {A ∈ Form : ♦A ∈ S} (7)

♦-S is called an M-counterpart of S (see Reference [? ] (p. 70)). By definitions, for any normal logic
S ⊇ D:

S ⊆ ♦-S

It is known that (see Reference [? ] (p. 68)):

Fact 4.

♦-D = D (8)
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Consider the following axiomatisation of CL:

p → (q → p) (A1)

(p → (q → r))→ ((p → q)→ (p → r)) (A2)

p ∧ q → p (A3)

p ∧ q → q (A4)

p → (q → p ∧ q) (A5)

p → p ∨ q (A6)

q → p ∨ q (A7)

(p → q)→ ((r → q)→ (p ∨ r → q)) (A8)

(p ↔ q)→ (p → q) (A9)

(p ↔ q)→ (q → p) (A10)

(p → q)→ ((q → p)→ (p ↔ q)) (A11)

(¬p → ¬q)→ (q → p) (A12)

and formulas

�(♦p ↔ ¬�¬p) (�df♦)

�(�(p → q)→ (�p → �q)) (�K)

�(�p → ♦p) (�D)

�(�p → p) (�T)

�(♦p → �♦p) (�5)

Let Ω := {(�Ai) : 1 � i � 12} ∪ {(??), (??), (??)} and let Ω1 := {(�Ai) : 1 � i � 12} ∪
{(??), (??), (??), (??)}

Let us recall a theorem that allows to formulate S5 syntactically with the use of the above
mentioned formulas and rules.

Fact 5 ([? ]).

1. S5 is the smallest set including Ω1 and closed under (??) and the following rules:

�ϕ, �(ϕ → ψ)

�ψ
(�mp)

�ϕ

��ϕ
(�rn)

�ϕ

ϕ
(rn⇐)

2. �S5 is the smallest set including Ω1 and closed under (??), (??) and (??).
3. ♦-S5 is the smallest set including Ω1 and closed under (??), (??), (??), (??) and (??):

♦ϕ

ϕ
(rp⇐)

But in a quite similar way, one can formulate the logic D. Let D� denote the smallest set including
Ω and closed under substitution, (??), (??), (??) and (??)

ϕ, �(ϕ → ψ)

ψ
(�mp−)
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We will follow a custom used for modal logics of calling elements of D� theses of a deductive system.
So D� is the set of theses with respect to a deductive system � determined by the given axioms
(�Ai) : 1 � i � 12 and rules (??), (??), (??), (??) and an substitution.

Lemma 2. D = D�.

Proof. We show that D� ⊆ D. First, by the standard formulation of D and (??) we see that Ω ⊆ D—it
is enough to use necessitation for respective axioms of D. Besides by (??), D is closed on (??). We will
prove that D is closed on (??). Assume that ϕ,�(ϕ → ψ) ∈ D. By (??), �ϕ ∈ D, while by (??), we have
♦(ϕ → ψ) ∈ D hence using (??) we obtain �ϕ → ♦ψ ∈ D. Thus, by modus ponens ♦ψ ∈ D and by
(??), ψ ∈ D. The fact that D is closed on (??) follows by axiom (??) and modus ponens. Finally, D is
closed on (??) by necessitation.
For the reverse direction let us assume that ϕ ∈ D. We can consider a proof ϕ1,. . . , ϕk = ϕ of ϕ in
the standard axiomatisation of D. First observe that by (??) and �Ai, where, 1 � i � 12 we obtain
�ψ, for any classical tautology ψ — it is enough to consider a prove of ψ and the basis of the system
with {Ai : 1 � i � 12} as axioms, with modus ponens and substitution as rules of inference and next
precede every element of the proof by � and observe that the obtained sequence �ϕ1,. . . , �ϕk is a
proof of �ψ on the basis of the given system of D�. Second, we see that any other axiom of D preceded
by � becomes an axiom of D�; besides, rules of (??) and (??) correspond respectively to necessitation
and modes ponens in the original proof of ϕ. Hence, using induction on the length of the proof we
see that �ϕ has a mentioned proof in D�. We extend the sequence �ϕ1,. . . , �ϕk = �ϕ to infer ϕ. By
(�??) we have �(�ϕ → ♦ϕ) and so using (??) and �ϕ we get ♦ϕ, hence by (??) we infer ϕ.
Let us finally add that both sets are closed in substitution.

In Reference [? ] two translations were considered. i1 is a natural version of the first one adjusted
to the considered here language. The translation i2 : Form −→ Ford given below is a version of i2
defined in Reference [? ] where the case of ♦ is added:

1. i2(a) = a, for any propositional letter a,
2. for any ϕ, ψ ∈ Form:

(a) i2(¬ϕ) = ¬i2(ϕ),
(b) i2(�ϕ) = ¬((¬p ∨ p) ∧d ¬i2(ϕ)),
(c) i2(♦ϕ) = (¬p ∨ p) ∧d i2(ϕ),
(d) i2(ϕ ∨ ψ) = i2(ϕ) ∨ i2(ψ),
(e) i2(ϕ ∧ ψ) = ¬(¬i2(ϕ) ∨ ¬i2(ψ)),
(f) i2(ϕ → ψ) = ¬i2(ϕ) ∨ i2(ψ),
(g) i2(ϕ ↔ ψ) = ¬(¬(¬i2(ϕ) ∨ i2(ψ)) ∨ ¬(¬i2(ψ) ∨ i2(ϕ))).

The below Lemma is being proved similarly as Lemma 4.2 in Reference [? ].

Lemma 3. For any ϕ ∈ Form, i1(i2(ϕ))↔ ϕ ∈ D.

Proof. The proof goes by induction on the complexity of a given formula.
If ϕ is a variable, we have i1(i2(ϕ)) = ϕ, thus the thesis holds trivially.
Assume that the inductive thesis holds for formulas simpler than a given formula. Firstly, we have
i1(i2(ϕ ∨ ψ)) = i1(i2(ϕ) ∨ i2(ψ)) = i1(i2(ϕ)) ∨ i1(i2(ψ)). Thus, i1(i2(ϕ ∨ ψ)) ↔ (ϕ ∨ ψ) ∈ D,
by CL. Similarly by definition, i1(i2(¬ϕ)) = i1(¬i2(ϕ)) = ¬i1(i2(ϕ)), so the required equivalence
holds by CL.
For the case of �, we have: i1(i2(�ϕ)) = i1(¬((¬p ∨ p) ∧d ¬i2(ϕ))) = ¬((¬p ∨ p) ∧
♦¬i1(i2(ϕ))), so the required equivalence holds by normality, in particular, by CL, extensionality and
due to the fact that ¬♦¬p ↔ �p ∈ K.
For the case of ‘♦’, we have: i1(i2(♦ϕ)) = i1((¬p ∨ p) ∧d i2(ϕ)) = (¬p ∨ p) ∧ ♦i1(i2(ϕ)) so again,
the required equivalence holds by normality.
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Secondly, by CL and due to the following equations and equivalences, the inductive thesis holds for
‘∧’, ‘→’ and ‘↔’.
For ‘∧’: i1(i2(ϕ ∧ ψ)) = i1(¬(¬i2(ϕ) ∨ ¬i2(ψ))) = ¬(¬i1(i2(ϕ)) ∨ ¬i1(i2(ψ))). But, of course,
¬(¬i1(i2(ϕ)) ∨ ¬i1(i2(ψ)))↔ (i1(i2(ϕ)) ∧ i1(i2(ψ))) ∈ D.
For the case of ‘→’: i1(i2(ϕ → ψ)) = i1(¬i2(ϕ) ∨ i2(ψ)) = ¬i1(i2(ϕ)) ∨ i1(i2(ψ)).
But ¬i1(i2(ϕ)) ∨ i1(i2(ψ))↔ i1(i2(ϕ))→ i1(i2(ψ)) ∈ D.
For ‘↔’: i1(i2(ϕ ↔ ψ)) = i1(¬(¬(¬i2(ϕ) ∨ i2(ψ)) ∨ ¬(¬i2(ψ) ∨ i2(ϕ)))) = ¬(¬(¬i1(i2(ϕ))

∨ i1(i2(ψ))) ∨ ¬(¬i1(i2(ψ)) ∨ i1(i2(ϕ)))). However, ¬(¬(¬i1(i2(ϕ)) ∨ i1(i2(ψ))) ∨
¬(¬i1(i2(ψ)) ∨ i1(i2(ϕ))))↔ (i1(i2(ϕ))↔ i1(i2(ψ))) ∈ D.

Due to Fact ??, we also have a connection similar to the relation between D2 and ♦-S5:

Lemma 4.

1. For any A ∈ Ford: A ∈ D0 iff i1(A) ∈ D.
2. For any ϕ ∈ D, we have i2(ϕ) ∈ D0.
3. If ϕ ∈ D and ϕ ↔ ψ ∈ D, then ψ ∈ D.

Proof. Ad 1. Let A ∈ D0. By the definition of D0 it means that ♦i1(A) ∈ D, that is, i1(A) ∈ ♦-D. Thus,
by Fact ??, i1(A) ∈ D.
If i1(A) ∈ D, then by necessitation and (??), ♦i1(A) ∈ D, so A ∈ D0.
Ad 2. Let ϕ ∈ D, that is, ♦ϕ ∈ D. Then, by Lemma ?? and extensionality for D, we have ♦i1(i2(ϕ)) ∈ D.
Thus, i2(A) ∈ D0.
Point 3 is obvious.

To make the following consideration easier to follow, for A, B ∈ Ford, let us denote the formula
¬A ∨ B as A →c B, and ¬((¬p ∨ p) ∧d ¬A) as �d A, (¬p ∨ p) ∧d A as ♦d A, and �d(A →c B)), that
is ¬((¬p ∨ p) ∧d ¬(¬A ∨ B)) as A �d B.

Let �D0 be the consequence relation determined by the set i2(Ω) and the following formulas:

i2(i1(q ∧d r)) �d (q ∧d r) (B1)

(i2(i1(q →d r)) �d (q →d r)) (B2)

(i2(i1(q ↔d r)) �d (q ↔d r)) (B3)

((q ∧d r) �d i2(i1(q ∧d r))) (C1)

((q →d r) �d i2(i1(q →d r))) (C2)

((q ↔d r) �d i2(i1(q ↔d r))) (C3)

as axioms together with substitution and the following rules:

�d A (A �d B)
�d B

(�d mpstr)

A (A �d B)
B

(�d mp′str)

�d A
�d �d A

(�d rn)

♦d A
A

(rpd
⇐)

The proof of the following lemma is straightforward by induction on the complexity of a modal
formula ϕ.
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Lemma 5. Let ϕ, ψ1, . . . , ψn be modal formulas and ψ be a result of substitution of ψ1, . . . , ψn respectively
for atoms a1, . . . , an in ϕ. Then the formula i2(ψ) equals the result of substitution of i2(ψ1), . . . , i2(ψn) for
atoms a1, . . . , an in i2(ϕ).

Directly from definitions and used notation, we have:

Fact 6. For any ϕ, ψ ∈ Form

1. i2(�(ϕ)) = �d(i2(ϕ)),
2. i2(♦(ϕ)) = ♦d(i2(ϕ)),
3. i2(�(ϕ → ψ)) = i2(ϕ) �d i2(ψ).

Lemma 6.

1. For any ϕ ∈ CL, we have �D0 �d i2(ϕ).
2. For any ϕ ∈ D, we have �D0 i2(ϕ).

Proof. Ad 1. Assume that ϕ ∈ CL. Then there is a proof χ1, . . . , χn, of ϕ = χn on the basis of (??)–(??),
(??) and substitution. Consider the sequence �d i2(χ1), . . . , �d i2(χn). By induction on the length of
the sequence one can see that it is a proof on the basis of �D0 , since its elements are either elements of
i2(Ω) or arise by the application of (??) or substitution. For the case of substitution it is enough to use
Lemma ?? and apply the substitution of i2(ψ1), . . . , i2(ψm) for a1, . . . , am in �d i2(χi), if in the initial
proof a substitution of formulas ψ1, . . . , ψm for atoms a1, . . . , am in χi was applied.
Ad 2. Assume that ϕ ∈ D. Then there is a proof χ1, . . . , χn of ϕ, in the sense of the consequence
relation �. Consider i2(�χ1), . . . , i2(�χn), (�d i2(χn) �d ♦d i2(χn)), ♦d i2(χn), i2(χn) = i2(ϕ).
By induction on 1 � i � n, by the point 1 of this lemma and Fact ??, we can easily show that
�D0 i2(�χi), that is, �D0 �d i2(χi), while (�d i2(χn) �d ♦d i2(χn)) is an instance of i2(??), ♦d i2(χn)

follows from i2(�χn) and (�d i2(χn) �d ♦d i2(χn)) by (??); and i2(ϕ) follows from ♦d i2(χn) by
(??).

Thus, we obtain that:

Fact 7. The following formulas are theses with respect to �D0 :

(i2(i1(¬p)) �d ¬p) (9)

(i2(i1(p ∨ q)) �d p ∨ q) (10)

Proof. For (??), observe that (i2(i1(¬p)) �d ¬p) = �d(i2(i1(¬p)) →c ¬p) = �d(¬p →c ¬p) =

�d i2(¬p →c ¬p). So (??) follows by Lemma ??.??.
For (??), one can see that (i2(i1(p ∨ q)) �d p ∨ q) = �d(i2(i1(p) ∨ i1(q)) →c p ∨ q) =

�d(i2(i1(p)) ∨ i2(i1(q)) →c p ∨ q) = �d(p ∨ q →c p ∨ q). So again, the condition is obtained by
Lemma ??.??.

The above fact can be extended for the case of any formulas used instead of p and q. Moreover,
it can be generalised to any compound formula which results in the below Lemma. Its proof goes
similarly as the proof of Reference [? ] (Fact 4.6). However, there are essential changes for the case of
discussive operators, so we present it for the sake of completeness of considerations.

Fact 8. For any A ∈ Ford,

�D0 �d(i2(i1(A))→c A) (11)

�D0 �d(A →c i2(i1(A))). (12)
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Proof. The proof goes simultaneously for both theses by induction on the complexity of a formula A.
The case of atoms follows by Lemma ??.??.
Assume that the inductive hypothesis holds for any formula of complexity smaller than the complexity
of A. That is, for the following cases A = ¬B, A = B ∨ C, A = B ∧d C, A = B →d C and A = B ↔d C,
where B, C ∈ Ford we assume that:

�D0 (i2(i1(B)) �d B),

�D0 (i2(i1(C)) �d C),

�D0 (B �d i2(i1(B))),

�D0 (C �d i2(i1(C))).

in other words

�D0 �d(i2(i1(B))→c B), (13)

�D0 �d(i2(i1(C))→c C), (14)

�D0 �d(B →c i2(i1(B))), (15)

�D0 �d(C →c i2(i1(C))). (16)

For the case of ‘¬’ let us notice that �D0 �d i2
(
(p → q) → (¬q → ¬p)

)
, by Lemma ??(??), that

is, �D0 ((p →c q) �d (¬q →c ¬p)). So, since ¬i2(i1(B)) = i2(i1(¬B)), using the substitution p/B,
q/i2(i1(B)), (??) and (??), we get:

�D0 �d(i2(i1(¬B))→c ¬B).

Similarly, using the substitution p/i2(i1(B)), q/B, (??) and (??) we obtain:

�D0 �d(¬B →c i2(i1(¬B))).

For the case of ‘∨’ notice that �D0 �d(i2
(
(p → q) → (

(
r → s) → ((p ∨ r) → (q ∨ s)))

))
,

by Lemma ??(??), that is, �D0 �d((p →c q)→c ((r →c s)→c ((p ∨ r)→c (q ∨ s)))) or equivalently

(p →c q) �d ((r →c s)→c ((p ∨ r)→c (q ∨ s))) (17)

is a thesis with respect to �D0 . Thus, since i2(i1(B)) ∨ i2(i1(B)) = i2(i1(B ∨ C)), using the
substitution p/i2(i1(B)), q/B, r/i2(i1(C)), s/C into (??), by (??) and (??), we get:

�D0 �d((i2(i1(C))→c C)→c ((i2(i1(B)) ∨ i2(i1(C)))→c (B ∨ C)))

that is,
�D0 (i2(i1(C))→c C) �d ((i2(i1(B)) ∨ i2(i1(C)))→c (B ∨ C))

And again, by (??) and (??), we obtain:

�D0 �d(i2(i1(B ∨ C))→c (B ∨ C)
)
.

Similarly, using the substitution p/B, q/i2(i1(B)), r/C, s/i2(i1(C)), to (??), we obtain:

(B →ci2(i1(B))) �d

�d ((C →c i2(i1(C)))→c ((B ∨ C)→c (i2(i1(B)) ∨ i2(i1(C)))))
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hence, by (??) and (??), and again by (??) and (??) we get:

�D0 �d((B ∨ C)→c i2(i1(B ∨ C))
)
.

For the case of ‘∧d’ first let us observe that

i2(i1(B ∧d C)) = i2(i1(B) ∧ ♦i1(C)) =

¬(¬i2(i1(B)) ∨ ¬i2(♦i1(C))) = (18)

¬(¬i2(i1(B)) ∨ ¬((¬p ∨ p) ∧d i2(i1(C)))).

Hence by (??) and definitions of i1 and i2 we get �D0 ¬(¬q ∨ ¬((¬p ∨ p) ∧d r)) �d (q ∧d
r). While by (??), similarly we obtain: �D0 (q ∧d r) �d ¬(¬q ∨ ¬((¬p ∨ p) ∧d r)). Therefore,
by substitution we obtain

�D0 ¬(¬B ∨ ¬((¬p ∨ p) ∧d C)) �d (B ∧d C) (19)

and
�D0 (B ∧d C) �d ¬(¬B ∨ ¬((¬p ∨ p) ∧d C)) (20)

Notice that �((t → q) → (�(r → s) → (t ∧ ♦r → q ∧ ♦s))) ∈ D, so by Lemma ??(??) and Fact
??, �D0 �d(i2((p → q)→ (�(r → s)→ (t ∧ ♦r → q ∧ ♦s)))), that is,

�D0 (t →c q) �d

((r �d s)→c (¬(¬t ∨ ¬((¬p ∨ p) ∧d r))→c ¬(¬q ∨ ¬((¬p ∨ p) ∧d s)))).
(21)

By substitution: t/i2(i1(B)), q/B, r/i2(i1(C)), s/C, (??) and (??), we get:

�d((i2(i1(C)) �d C)→c

(¬(¬i2(i1(B)) ∨ ¬((¬p ∨ p) ∧d i2(i1(C))))→c ¬(¬B ∨ ¬((¬p ∨ p) ∧d C))))

But by (??) applied to (??) we have

�D0 �d(i2(i1(C)) �d C)

Therefore, again by (??):

�d(¬(¬i2(i1(B)) ∨ ¬((¬p ∨ p) ∧d i2(i1(C))))→c ¬(¬B ∨ ¬((¬p ∨ p) ∧d C)))

But by Lemma ??(??) we have

�D0 (p →c q) �d ((q →c r)→c (p →c r)), (22)

so by substitution p/¬(¬i2(i1(B)) ∨ ¬((¬p ∨ p) ∧d i2(i1(C)))), q/¬(¬B ∨ ¬((¬p ∨ p) ∧d C))
and r/(B ∧d C), using (??) we obtain:

�d((¬(¬B ∨ ¬((¬p ∨ p) ∧d C))→c (B ∧d C))→c

(¬(¬i2(i1(B)) ∨ ¬((¬p ∨ p) ∧d i2(i1(C))))→c (B ∧d C)))

that is,

(¬(¬B ∨ ¬((¬p ∨ p) ∧d C))→c (B ∧d C)) �d

(¬(¬i2(i1(B)) ∨ ¬((¬p ∨ p) ∧d i2(i1(C))))→c (B ∧d C))
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Thus, from (??) using (??) we infer

�d(¬(¬i2(i1(B)) ∨ ¬((¬p ∨ p) ∧d i2(i1(C))))→c (B ∧d C))

what is the required formula due to the observation (??).
For the reverse implication, using (??) but substituting t/B, q/i2(i1(B)), r/C, s/i2(i1(C)) and next
appyling (??) and (??) we infer

�d((C �d i2(i1(C)))→c

(¬(¬B ∨ ¬((¬p ∨ p) ∧d C))→c ¬(¬i2(i1(B)) ∨ ¬((¬p ∨ p) ∧d i2(i1(C))))))

While applying (??) for (??) we obtain

�D0 �d(C �d i2(i1(C)))

Thus, by (??):

�d(¬(¬B ∨ ¬((¬p ∨ p) ∧d C))→c ¬(¬i2(i1(B)) ∨ ¬((¬p ∨ p) ∧d i2(i1(C)))))

Using an instance of (??), where p/(B ∧d C), q/¬(¬B ∨ ¬((¬p ∨ p) ∧d C))
and r/¬(¬i2(i1(B)) ∨ ¬((¬p ∨ p) ∧d i2(i1(C)))), by (??) and (??), and then thanks to the above
formula and again (??) we obtain

�d((B ∧d C)→c ¬(¬i2(i1(B)) ∨ ¬((¬p ∨ p) ∧d i2(i1(C)))))

which is the required formula by the observation (??).
The case of ‘→d’. By definitions, we have:

i2(i1(B →d C)) = i2(♦i1(B)→ i1(C)) =

¬((¬p ∨ p) ∧d i2(i1(B))) ∨ i2(i1(C))
(23)

Thus, by (??) and (??) we have

¬((¬p ∨ p) ∧d q) ∨ r �d (q →d r))

(q →d r) �d ¬((¬p ∨ p) ∧d q) ∨ r

So by substitution we have

¬((¬p ∨ p) ∧d B) ∨ C �d (B →d C)) (24)

(B →d C) �d ¬((¬p ∨ p) ∧d B) ∨ C (25)

Let us notice that �(��(q → r) → �(♦q → ♦r)) ∈ K ⊆ D. Hence, by Lemma ??(??): �D0

i2(�(��(q → r)→ �(♦q → ♦r))), that is, by definition of i2 and by Fact ??:

�D0 �d(�d �d(q →c r)→c �d(♦d q →c ♦d r)).

or equivalently

�D0 �d �d(q →c r) �d �d(((¬p ∨ p) ∧d q)→c ((¬p ∨ p) ∧d r)). (26)
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so by substitution q/B, r/i2(i1(B)), we obtain that

�d �d(B →c i2(i1(B))) �d

�d(((¬p ∨ p) ∧d B)→c ((¬p ∨ p) ∧d i2(i1(B)))).
(27)

is a thesis of D0. Applying (??) to (??) we get �d �d(B →c i2(i1(B))), hence by (??) we infer

�d(((¬p ∨ p) ∧d B)→c ((¬p ∨ p) ∧d i2(i1(B)))).

By a substitution q/C, r/i2(i1(C)) in (??) and by (??) applied for (??) instead of (??) and finally
by (??) we obtain:

�d(((¬p ∨ p) ∧d C)→c ((¬p ∨ p) ∧d i2(i1(C)))). (28)

As one can see, �((♦q → ♦t) → ((r → s) → ((♦t → r) → (♦q → s)))) ∈ K ⊆ D. Hence by
Lemma ??(??) we obtain

(((¬p ∨ p) ∧d q)→c ((¬p ∨ p) ∧d t)) �d

((r →c s)→c ((((¬p ∨ p) ∧d t)→c r)→c (((¬p ∨ p) ∧d q)→c s)))
(29)

Now, we use the substitution: q/B, t/i2(i1(B)), r/i2(i1(C)), s/C and applying (??) to (??) we
infer

(i2(i1(C))→c C) �d

((((¬p ∨ p) ∧d i2(i1(B)))→c i2(i1(C)))→c (((¬p ∨ p) ∧d B)→c C))

and next by (??) applied to (??) we have

(((¬p ∨ p) ∧d i2(i1(B)))→c i2(i1(C))) �d (((¬p ∨ p) ∧d B)→c C)

But by (??) it means that

�D0 i2(i1(B →d C)) �d (((¬p ∨ p) ∧d B)→c C) (30)

Now, we use (??), (??) and the above formula and act similarly as in the case of ‘∧d’, we conclude
that:

�D0

(
i2(i1(B →d C)) �d (B →d C)

)
.

For the reverse implication we apply the following substitution to (??): q/i2(i1(B)), t/B, r/C,
s/i2(i1(C)) and we receive:

(((¬p ∨ p) ∧d i2(i1(B)))→c (¬p ∨ p) ∧d B)) �d

�d ((C →c i2(i1(C)))→c

((((¬p ∨ p) ∧d B)→c C)→c (((¬p ∨ p) ∧d i2(i1(B)))→c i2(i1(C)))))

(31)

Similarly as (??) we obtain �d(((¬p ∨ p) ∧d i2(i1(B)))→c ((¬p ∨ p) ∧d B)). Hence, applying
(??) to (??) we infer

(C →c i2(i1(C))) �d

((((¬p ∨ p) ∧d B)→c C)→c (((¬p ∨ p) ∧d i2(i1(B)))→c i2(i1(C))))
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So again by (??) and (??) we obtain

(((¬p ∨ p) ∧d B)→c C) �d (((¬p ∨ p) ∧d i2(i1(B)))→c i2(i1(C)))

So acting as previously, by (??), (??), (??) and (??) we obtain

�D0 �d((B →d C)→c i2(i1(B →d C))
)
.

For the case of ‘↔d’ notice that by Lemma ??(??), �D0 �d(i2((p → q)→ ((q → p)→ (p ↔ q)))),
that is, �D0 �d((p →c q) →c ((q →c p) →c ¬(¬(p →c q) ∨ ¬(q →c p)))). Thus, by substitutions,
inductive hypotheses (??), (??), (??), (??) and applying (??) and definition of i2 we get:

�d ¬(¬(B →c i2(i1(B))) ∨ ¬(i2(i1(B))→c B)) (32)

�d ¬(¬(C →c i2(i1(C))) ∨ ¬(i2(i1(C))→c C)) (33)

Hence, by the use of the following thesis of K ⊆ D:

�
(
(r ↔ s)→

(
�(t ↔ q)→

(
��(r ↔ s)→

(
((♦q → s) ∧ ♦(♦s → q))

→ ((♦t → r) ∧ ♦(♦r → t)))
)))

,

by Lemma ??(??), Fact ??, (??), (??) and substitution r/C, s/i2(i1(C)), t/B, q/i2(i1(B)) we get:

�d(�d ¬(¬(B →c i2(i1(B))) ∨ ¬(i2(i1(B))→c B))→c(
�d �d ¬(¬(¬C ∨ i2(i1(C))) ∨ ¬(¬i2(i1(C)) ∨ C))

→c
(
¬((¬♦d i2(i1(B))→c i2(i1(C))) ∨ ¬♦d(♦d i2(i1(C))→c i2(i1(B))))

→c ¬(¬(♦d B →c C) ∨ ¬♦d(♦d C →c B)))
))

By the result of application of (??) to (??) and again (??) we infer

�d(�d �d ¬(¬(¬C ∨ i2(i1(C))) ∨ ¬(¬i2(i1(C)) ∨ C))

→c
(
¬((¬♦d i2(i1(B))→c i2(i1(C))) ∨ ¬♦d(♦d i2(i1(C))→c i2(i1(B))))

→c ¬(¬(♦d B →c C) ∨ ¬♦d(♦d C →c B)))
)

Now we twice apply (??) to (??) and again use (??), as a result we get:

�d(¬(¬(♦d i2(i1(B))→c i2(i1(C))) ∨ ¬♦d(♦d i2(i1(C))→c i2(i1(B))))→c

¬(¬(♦d B →c C) ∨ ¬♦d(♦d C →c B))).

Thus, since by definitions of the functions i1 and i2, ¬(¬(♦d i2(i1(B)) →c i2(i1(C))) ∨
¬♦d(♦d i2(i1(C)) →c i2(i1(B)))) = i2((♦i1(B) → i1(C)) ∧ ♦(♦i1(C) → i1(B))) = i2(i1(B ↔d
C)), we get:

�d(i2(i1(B ↔d C))→c ¬(¬(♦d B →c C) ∨ ¬♦d(♦d C →c B))).

From axiom (??) we obtain:

�d(¬(¬(♦d B →c C) ∨ ¬♦d(♦d C →c B))→c (B ↔d C)).

Thus, again by a substitution to i2
(
�
(
(p → q)→

(
(q → r)→ (p → r))

))
and the application of

(??), we get:
�D0 �d(i2(i1(B ↔d C))→c (B ↔d C)

)
.
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Similarly we show:
�D0 �d((B ↔d C)→c i2(i1(B ↔d C))

)
.

By induction on the complexity of formulas, we obtain (??) and (??).

Theorem 1. The set of theses with respect to the consequence relation �D0 equals D0.

Proof. Let A ∈ D0. By Lemma ??, i1(A) ∈ D. Thus, by Lemma ??, there is a proof χ1, . . . , χn = i1(A)

such that for each i ∈ {1, . . . , n}, χi is one of the formulas (�??)–(�??), (�??), (�??), (�??) or χi
is a result of the application of substitution, (??), (??), (??), (??), for some formulas preceding χi in
the sequence. Let us consider the following sequence of formulas i2(χ1), . . . , i2(χn−1), i2(i1(A)),
�d(i2(i1(A)) →c A), A. By induction on i we see that the fragment of the sequence i2(χ1), . . . ,
i2(χn) = i2(i1(A)) is a proof in the given axiomatic system, while the formula �d(i2(i1(A))→c A)

is a thesis of the system, by Fact ??. So the formula A completes the proof as a result of application of
the rule (??) to two preceding formulas. Thus, �D0 A
Now, for the reverse direction, assume that for a given formula A there is a proof C1, . . . , Cn = A of
the formula A within the considered deductive system. By the definition of D0, it is enough to prove
that for any i ∈ {1, . . . , n}, ♦i1(Ci) ∈ D or, equivalently, i1(Ci) ∈ D.
Firstly, let us consider the case of axioms. Suppose that Ci ∈ i2(Ω). For the case (�??)–(�??)

that is, when Ci = i2(�ϕ), for some ϕ ∈ CL ⊆ D—it is enough to apply Lemma ??(??). Then
i1(i2(�ϕ)) ↔ �ϕ ∈ D, by Lemma ??. Therefore, by Lemma ??(3), i1(i2(�ϕ)) = i1(Ci) ∈ D. In the
case of other axioms from the set i2(Ω), we act similarly.
Ad(??): i1(�d(i2(i1(q ∧d r)) →c (q ∧d r))) = i1(�d(i2(q ∧ ♦r) →c (q ∧d r))) = i1(¬((¬p ∨ p) ∧d
¬(¬(¬q ∨ ¬((¬p ∨ p) ∧d r)) →c (q ∧d r)))) = ¬((¬p ∨ p) ∧ ♦¬(¬(¬q ∨ ¬((¬p ∨ p) ∧ ♦r)) →c

(q ∧ ♦r))). But ¬((¬p ∨ p) ∧ ♦¬(¬(¬q ∨ ¬((¬p ∨ p) ∧ ♦r)) →c (q ∧ ♦r)))↔ �((q ∧ ♦r) →c (q ∧
♦r)) belongs to D. Thus, (??) ∈ D0, thanks to Lemma ??.
Ad (??): i1(�d(i2(i1(q →d r)) →c (q →d r))) = i1(¬((¬p ∨ p) ∧d ¬(((¬p ∨ p) ∧d q →c r) →c

(q →d r)))) = ¬((¬p ∨ p) ∧ ♦¬(((¬p ∨ p) ∧ ♦q →c r) →c (♦q → r))). However, ¬((¬p ∨ p) ∧
♦¬(((¬p ∨ p) ∧ ♦q →c r) →c (♦q → r))) ↔ �((♦q →c r) →c (♦q → r)) is a thesis of D. Thus,
(??) ∈ D0, by Lemma ??.
Ad (??): i1(�d(i2(i1(q ↔d r))→c (q ↔d r))) = i1(�d(i2((♦q → r) ∧ ♦(♦r → q))→c (q ↔d r))) =
i1(¬((¬p ∨ p) ∧d ¬(¬(¬((¬p ∨ p) ∧d q →c r) ∨ ¬((¬p ∨ p) ∧d ((¬p ∨ p) ∧d r →c q))) →c (q ↔d
r)))) = ¬((¬p ∨ p) ∧ ♦¬(¬(¬((¬p ∨ p) ∧ ♦q →c r) ∨ ¬((¬p ∨ p) ∧ ♦((¬p ∨ p) ∧ ♦r →c q))) →c

((♦q → r) ∧ ♦(♦r → q)))). Notice that ¬((¬p ∨ p) ∧ ♦¬(¬(¬((¬p ∨ p) ∧ ♦q →c r) ∨ ¬((¬p ∨
p) ∧ ♦((¬p ∨ p) ∧ ♦r →c q))) →c ((♦q → r) ∧ ♦(♦r → q)))) ↔ �((♦q →c r) ∧ ♦(♦r →c q) →c

((♦q → r) ∧ ♦(♦r → q))). Thus, (??) belongs to D0, similarly, by Lemma ??.
Ad (??): i1(�d((q ∧d r)→c i2(i1(q ∧d r)))) = ¬((¬p ∨ p) ∧ ♦¬((q ∧ ♦r)→c ¬(¬q ∨ ¬((¬p ∨ p) ∧
♦r)))). Thus again, (??) ∈ D0.
Ad (??): i1((q →d r) �d i2(i1(q →d r))) = ¬((¬p ∨ p) ∧ ♦¬((♦q → r) →c ((¬p ∨ p) ∧ ♦q →c r))).
Hence (??) ∈ D0.
Ad (??): i1((q ↔d r) �d i2(i1(q ↔d r))) = ¬((¬p ∨ p) ∧ ♦¬(((♦q → r) ∧ ♦(♦r → q)) →c

¬(¬((¬p ∨ p) ∧ ♦q →c r) ∨ ¬((¬p ∨ p) ∧ ♦((¬p ∨ p) ∧ ♦r →c q))))). As one can see (??) ∈ D0.
Ad (??). Assume that �d A and �d(A →c B) belong to D0, that is, ♦i1(¬((¬p ∨ p) ∧d ¬A))

and ♦i1(¬((¬p ∨ p) ∧d ¬(A →c B))) are theses of D. By Fact ?? equivalently, (¬((¬p ∨ p) ∧
♦¬i1(A))) ∈ D and (¬((¬p ∨ p) ∧ ♦¬(i1(A) →c i1(B)))) ∈ D, in other words �i1(A) ∈ D and
�(i1(A) →c i1(B)) ∈ D, hence of course �i1(B) ∈ D. Equivalently, ¬♦¬i1(B) ∈ D and ¬((¬p ∨
p) ∧ ♦¬i1(B)) ∈ D, but by definition of i1, ¬((¬p ∨ p) ∧ ♦¬i1(B)) = i1(¬((¬p ∨ p) ∧d ¬B), hence
also i1(¬((¬p ∨ p) ∧d ¬B)) ∈ D, therefore �d B ∈ D0.
Ad (??). Suppose that A and �d(A →c B) belong to D0, that is, ♦i1(A) and ♦i1(�d(A →c B)) belong
to D; and so ♦(¬((¬p ∨ p) ∧ ♦¬(¬i1(A) ∨ i1(B)))) ∈ D. Therefore, ♦�(i1(A) → i1(B)) ∈ D
and by Fact ??: �(i1(A)→ i1(B)) ∈ D. Hence ♦i1(B) ∈ D, so B ∈ D0. by definition of D.
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Ad (??): Let �d A ∈ D0, that is, ♦i1(¬((¬p ∨ p) ∧d ¬A)) ∈ D; and in other words ♦(¬((¬p ∨ p) ∧
♦¬i1(A))) ∈ D. But this means that ♦�i1(A) ∈ D and by Fact ??, also �i1(A) ∈ D. Hence by
necessitation ��i1(A) ∈ D, so again by necessitation and (??) also ♦��i1(A) ∈ D. Equivalently,
♦¬♦¬¬♦¬i1(A) ∈ D. This can be rewritten as ♦¬((¬p ∨ p) ∧ ♦¬¬((¬p ∨ p) ∧ ♦¬i1(A))) ∈
D. That is ♦i1(¬((¬p ∨ p) ∧d ¬¬((¬p ∨ p) ∧d ¬A))) ∈ D. Hence ♦i1(�d �d A) ∈ D, that
is, �d �d A ∈ D0.
Ad (??): Let ♦d A ∈ D0, that is, ♦i1((¬p ∨ p) ∧d A) ∈ D, equivalently ♦(¬p ∨ p) ∧ ♦i1(A) ∈ D,;
and so ♦♦i1(A) ∈ D. Then by Fact ??, also ♦i1(A) ∈ D; and so A ∈ D0.
Finally, we consider the case of substitution. Assume that A belongs to D0, that is, ♦i1(A) is a thesis
of D. Now, let us consider a substitution of formulas A1,. . . , An for variables a1,. . . , an in A. Let
us also consider i1(A)(a1/i1(A1), . . . , an/i1(An)) the result of substitution of i1(A1),. . . , in/An for
variables a1,. . . , an in i1(A). By Lemma ?? the following holds: (i1(A))(a1/i1(A1),. . . , an/i1(An)) =

i1(A(a1/A1,. . . , an/An)). Since D as a modal logic is closed on substitution, (♦i1(A))(a1/A1,. . . ,
an/An) ∈ D, but by the last equation and the features of substitution, (♦i1(A))(a1/i1(A1),. . . ,
an/i1(An)) = ♦((i1(A))(a1/i1(A1),. . . , an/i1(An))) = ♦i1(A(a1/A1,. . . , an/An)). By definition
of D0, it means that A(a1/A1,. . . , an/An) ∈ D0.

6. Conclusions

We gave a syntactic characterisation of the minimal discussive logic. This is as an initial step
in our investigations on other variants of discussive logics obtained by other cases of relations that
connect participants of a discussion.
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D2-consequence. Bull. Sect. Log. 2012, 41, 215–232.

. Nasieniewski, M.; Pietruszczak, A. A method of generating modal logics defining Jaśkowski’s discussive
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. Omori, H.; Alama, J. Axiomatizing Jaśkowski’s Discussive Logic D2. Studia Logica 2018, 106, 1163–1180.
[CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

85





axioms

Article

A Note on Fernández–Coniglio’s Hierarchy of
Paraconsistent Systems

Janusz Ciuciura

Department of Logic and Methodology of Science, Institute of Philosophy, Faculty of Philosophy and History,
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Abstract: A logic is called explosive if its consequence relation validates the so-called principle of
ex contradictione sequitur quodlibet. A logic is called paraconsistent so long as it is not explosive.
Sette’s calculus P1 is widely recognized as one of the most important paraconsistent calculi. It is not
surprising then that the calculus was a starting point for many research studies on paraconsistency.
Fernández–Coniglio’s hierarchy of paraconsistent systems is a good example of such an approach.
The hierarchy is presented in Newton da Costa’s style. Therefore, the law of non-contradiction plays
the main role in its negative axioms. The principle of ex contradictione sequitur quodlibet has been
marginalized: it does not play any leading role in the hierarchy. The objective of this paper is to
present an alternative axiomatization for the hierarchy. The main idea behind it is to focus explicitly
on the (in)validity of the principle of ex contradictione sequitur quodlibet. This makes the hierarchy
less complex and more transparent, especially from the viewpoint of paraconsistency.

Keywords: paraconsistent logic; paraconsistency; Sette’s calculus; the law of explosion; the principle
of ex contradictione sequitur quodlibet

1. Introduction

Let var denote a (non-empty) denumerable set of all propositional variables. The set of formulas
F is inductively defined in the following way:

ϕ ::= p | ∼α | α → α

where p ∈ var, α ∈ F and the symbols ∼, → denote negation and implication, respectively. A logic
is a pair 〈L,�〉 consisting of a sentential language L and a consequence relation � defined on the
(non-empty) set of formulas F . A logic is called explosive if its consequence relation validates
the principle of ex contradictione sequitur quodlibet, i.e., {α,∼α} � β, for any formulas α, β.
“Paraconsistent logic is defined negatively: any logic is paraconsistent as long as it is not explosive”
(cit.per [? ]), or, to be more precise,

Definition 1. A logic 〈L,�〉 is said to be paraconsistent if {α,∼ α} � β, for some formulas α, β.

Already at first glance, it is striking that the definition is very broad as it includes some logics
that have potentially nothing in common with paraconsistency (cf. [? ], p. 19). Nonetheless, the
definition reveals a tendency to view paraconsistent logic through the lens of negation understood
as a connective symbol rather than a truth-function (cf. [? ]. For a more extensive discussion on the
paraconsistency, see, e.g., [? ? ? ].).

In the early 1970s of the Twentieth Century, Sette published a paper devoted to one of the most
remarkable paraconsistent calculi. The calculus, denoted as P1, has some unusual properties: it behaves

Axioms 2020, 9, 35; doi:10.3390/axioms9020035 www.mdpi.com/journal/axioms87



Axioms 2020, 9, 35

in a paraconsistent way only at the level of propositional variables, that is a pair of the formulas α and
∼ α yields any β if, and only if the formula α is not a propositional variable.

The calculus P1 is axiomatized by the following axiom schemas:

(A1) α → (β → α)

(A2) (α → (β → γ))→ ((α → β)→ (α → γ))

(A3) (∼α → ∼β)→ ((∼α → ∼∼β)→ α)

(A4) ∼(α → ∼∼α)→ α

(A5) (α → β)→ ∼∼(α → β)

and the rule of detachment (MP) α → β, α / β.
The connectives of ∼ and → are taken here as primitives. As for the other connectives such as the

conjunction, disjunction, and equivalence, they are introduced via the definitions ([? ], pp. 178–179):

α ∧ β =d f (((α → α)→ α)→ ∼((β → β)→ β))→ ∼(α → ∼β)

α ∨ β =d f (α → ∼∼α)→ (∼α → β)

α ↔ β =d f (α → β) ∧ (β → α).

The definitions are complex and often too awkward to handle. More user-friendly definitions are given
in [? ] (pp. 8–9 of the preprint) and [? ] (p. 59):

α ∧ β =d f ∼(α → ∼(∼β → β))

α ∨ β =d f ∼(∼α → α)→ β

α ↔ β =d f (α → β) ∧ (β → α).

It is noteworthy that the disjunction connective can be also defined as in the three-valued Lukasiewicz
logic, namely, α ∨ β =d f (α → β)→ β (cf. [? ], Section 2).

Many important theorems, which hold in the classical propositional calculus, can be proven for
Sette’s system, too. Below we recall some of them needed for our further discussion.

Theorem 1. The deduction theorem holds for P1.

Proof. It is enough to observe that P1 includes (A1), (A2), and the sole rule of inference in P1 is
(MP).

Theorem 2. For every Γ, Δ ⊆ F and α, β, γ ∈ F , we have:

1. if α ∈ Γ, then Γ �P1 α,
2. if Γ ⊆ Δ and Γ �P1 α, then Δ �P1 α,
3. if Δ �P1 α and, for every β ∈ Δ it is true that Γ �P1 β, then Γ �P1 α,
4. if Γ ∪ {α} �P1 γ and Δ �P1 α, then Γ ∪ Δ �P1 γ

(in particular, if Γ ∪ {α} �P1 γ and ∅ �P1 α, then Γ �P1 γ),
5. Γ �P1 α iff for some finite Δ ⊆ Γ, Δ �P1 α.

Proof. The proof proceeds analogously to that of the classical propositional calculus. We refer the
reader to [? ? ] for details.

Theorem 3. Some (weaker) variants of the indirect deduction theorem hold for P1, viz.:

1. if Γ, α �P1 {∼β,∼∼β}, then Γ �P1 ∼α,
2. if Γ,∼α �P1 {∼β,∼∼β}, then Γ �P1 α,
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3. if Γ, α → β �P1 {γ → δ,∼(γ → δ)}, then Γ �P1 ∼(α → β),
4. if Γ,∼(α → β) �P1 {γ → δ,∼(γ → δ)}, then Γ �P1 α → β,

for every Γ ⊆ F and α, β, γ, δ ∈ F . Note that the notation Γ � {φ, ψ} is an abbreviation of ‘Γ � {φ} and
Γ � {ψ}’.

Sette’s calculus is sound and complete with respect to the matrix MP1 =
〈
{T0, T1, F}, {T0, T1},∼

,→
〉
, where {T0, T1, F} and {T0, T1} are the sets of logical and designated values, respectively. The

connectives of → and ∼ are defined by the truth tables:

→ T0 T1 F
T0 T0 T0 F
T1 T0 T0 F
F T0 T0 T0

∼
T0 F
T1 T0
F T0.

A P1-valuation is any function v from the set of formulas to the set of logical values (v : F −→
{T0, T1, F}, in symbols) compatible with the above truth-tables (see [? ], pp. 176–178). A P1-tautology
is a formula that under every valuation v takes on the designated values {T0, T1}.

The logical meaning of the P1-valuation is clear, but it was never stated in [? ] how to interpret
philosophically the three-valued semantics. This gave an impulse for further research, and several
new semantics for the calculus were proposed (see, e.g., [? ? ? ? ? ]). Notice that the principle of ex
contradictione sequitur quodlibet does not play any significant part in P1. Metaphorically speaking,
paraconsistency is hidden somewhere between the lines of Sette’s paper. Only at one point in his whole
paper does Sette refer to paraconsistency: “(...) N.C.A da Costa presents a hierarchy Cn (1< n < ω)
of propositional calculi which can be used as subjacent propositional logics for inconsistent (but not
absolutely inconsistent) formal systems. The purpose of this note is to present a new propositional
calculus P1 which can be used as subjacent logic for inconsistent (but not absolutely inconsistent)
formal systems (...)”. ([? ], p. 173.). In [? ], we proposed an alternative axiomatization for P1. The
idea behind it was to focus explicitly on the (in)validity of ex contradictione sequitur quodlibet, or
equivalently, the so-called law of explosion (DS) α → (∼α → β). This concept is directly reflected
below in the axiomatization.

Remark 1. The calculus P1 can be axiomatized by the set of formulas:
(A1) α → (β → α)

(A2) (α → (β → γ))→ ((α → β)→ (α → γ))

(PL) ((α → β)→ α)→ α

(DS∼) ∼α → (∼∼α → β)

(DS→) (α → β)→ (∼(α → β)→ γ))

(CM) (∼α → α)→ α

with (MP) as the only primitive rule (see [? ], for details).

In [? ], an interesting hierarchy of the paraconsistent calculi starting from P1 was proposed. It is
based on a language more expressive than that which was given in Remark 1 and used by Sette. The
hierarchy is obtained from the system Cω of Newton da Costa, i.e.,

(A1) α → (β → α)

(A2) (α → (β → γ))→ ((α → β)→ (α → γ))

(A3) (α ∧ β)→ α

(A4) (α ∧ β)→ β

(A5) α → (β → (α ∧ β))

(A6) α → (α ∨ β)

(A7) β → (α ∨ β)

(A8) (α → γ)→ ((β → γ)→ (α ∨ β → γ))
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(NN) ∼∼α → α

(ExM) α ∨∼α

(MP) α → β, α / β, (See [? ], p. 501.)

by adding to it

(dC) ∼(β∧ ∼ β)→ ((α → β)→ ((α → ∼β)→ ∼α))

(nC‡) ∼((α ‡ β) ∧∼(α ‡ β)), where ‡ ∈ {∧,∨,→}

(nC∼n) ∼(∼n α∧ ∼n+1 α), where n ∈ N and ∼n α denotes
n−times︷ ︸︸ ︷∼∼ ... ∼ α,

as new axiom schemas. Obviously, if n = 0, then P0 is the classical propositional calculus; if n = 1,
then P1 is Sette’s system (see [? ], p. 9 of the preprint, for details). For a positive integer n, let Pn denote
the calculus of the Fernández–Coniglio’s hierarchy (Pn-hierarchy), henceforth.

Fernández and Coniglio proposed both a matrix and the so-called society semantics for the
Pn-calculi. The former may be viewed as a generalization of MP1 given by Sette in [? ] (see p. 176),
and da Costa in [? ] (see, p. 499), that is,

MPn =
〈

X, D,∼,→
〉
,

where X = {T0, T1, T2, . . . Tn, F} and D = X − {F} = {T0, T1, T2, . . . Tn}, n ∈ N, are the sets of logical
and designated values, respectively. The connectives of → and ∼ are defined in the following way
(i, k ∈ N, i � n):

→ T0 Ti F
T0 T0 T0 F
Tk T0 T0 F
F T0 T0 T0

∼
T0 F
Tk Tk−1
F T0.

A Pn-valuation is any function v : F −→ X compatible with the above truth-tables.
A Pn-tautology is a formula that under every valuation v takes on the designated values.

2. A New Axiomatization

The hierarchy discussed in this section is based on different criteria than those used to determine
the Pn-hierarchy. Firstly, we assume that the connectives of conjunction, disjunction, and equivalence
are treated as useful abbreviations, which formally do not appear in formulas; whereas ∼ and → will
be taken as primitives. Secondly, the law of explosion is assumed to play a crucial role in defining the
new hierarchy. The hierarchy will be obtained from that of Remark 1 by replacing (DS) with a more
general schema, i.e.,

(DS∼n)∼nα → ( ∼n+1α → β),

where n ∈ N and ∼nα is an abbreviation for
n︷ ︸︸ ︷∼∼ ... ∼ α; and adding to it the law of double negation,

∼∼α → α, as a new axiom schema. It is worth mentioning at this point that (NN) is provable in P1

(see [? ], pp. 174–175, and [? ], p. 271), but it is not in any Pm, where m > 1. To put it more precisely, for
each n ∈ N, let Sn result from the implicational fragment of propositional intuitionistic logic by adding
to it the following axiom schemas:

(PL) ((α → β)→ α)→ α

(DS∼n) ∼nα → ( ∼n+1α → β)

(DS→) (α → β)→ (∼(α → β)→ γ))

(CM) (∼α → α)→ α

(NN) ∼∼α → α
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The other sentential connectives can be introduced by the definitions. Observe that if n = 0, then S0 is
the classical propositional calculus, and the axioms (DS→), (NN) become redundant (cf. [? ], p. 437);
but if n = 1, then S1 is equivalent to Sette’s calculus, and (NN) is provable in S1 (see [? ], p. 268).

Definition 2. Let α ∈ F and Γ ⊆ F . A formula α is provable from Γ within Sn (Γ �Sn α, in symbols) iff
there is a finite sequence of formulas, β1, β2, ..., βm, such that βm = α, and for each i ≤ m, at least one of the
following is true:

1. βi ∈ Γ,
2. βi is an axiom of Sn,
3. βi is obtained from some of the previous β j by application of the rule of detachment.

Definition 3. A formula α is a thesis of Sn iff ∅ �Sn α.

In what follows, we will need two lemmas to prove the key theorem:

Lemma 1. Let n ∈ N. Then:

1. The deduction theorem holds for Sn.
2. Some variants of the indirect deduction theorem hold for Sn, viz.:

a. if Γ, α �Sn {∼nβ,∼n+1β}, then Γ �Sn ∼α

b. if Γ,∼α �Sn {∼nβ,∼n+1β}, then Γ �Sn α

c. if Γ, α → β �Sn {γ → δ,∼(γ → δ)}, then Γ �Sn ∼(α → β)

d. if Γ,∼(α → β) �Sn {γ → δ,∼(γ → δ)}, then Γ �Sn α → β

for every Γ ⊆ F and α, β, γ, δ ∈ F .

Proof. 1. The proof is exactly the same as in Theorem 1.
2.a. Assume that Γ, α �Sn {∼nβ,∼n+1β}. Then, by the deduction theorem, we have Γ �Sn {α →

∼nβ, α → ∼n+1β}. Since ∅ �Sn (α → ∼nβ) → ((α → ∼n+1β) → ∼α) (to prove this claim, apply the
deduction theorem, (DS∼n), (HS), (C), (CM2), and (MP)), then {α → ∼nβ, α → ∼n+1β} �Sn ∼α by
the deduction theorem. The relation �Sn is transitive, so Γ �Sn ∼α.

2.b. Suppose that Γ,∼α �Sn {∼nβ,∼n+1β}, then Γ �Sn ∼∼α (by 2.a). Since ∅ �Sn ∼∼α → α, thus
{∼∼α} �Sn α, and consequently, Γ �Sn α.

2.c., 2.d. The proofs are similar to those of 2.a and 2.b.

Lemma 2. The (schemas of the) formulas:
(IL) α → α

(LoC) (α → (β → γ))→ (β → (α → γ))

(HS) (α → β)→ ((β → γ)→ (α → γ))

(C) (α → (α → β))→ (α → β)

(LoE) ((α → β)→ γ)→ (α → (β → γ))

(CM2) (α → ∼α)→ ∼α

(DD→) (∼φ → ψ)→ ((∼φ → ∼ψ)→ φ), where φ := α → β, ψ := γ → δ

are provable in Sn, n ∈ N.

Proof. (IL), (LoC), (HS), and (C) immediately follow from the deduction theorem and (MP); (LoE)
follows from the deduction theorem, (A1) and (MP); (CM2) from the deduction theorem, (NN) (HS),
(CM), and (MP); and finally, (DD→) can be easily obtained by the indirect deduction theorem and
(MP).
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The lemmas will be particularly useful for proving the main result of this section.

Theorem 4. Sn = Pn, where n ∈ N.

Proof. The proof is divided into two steps. The first is to demonstrate that each axiom schema of Sn

is a Pn-tautology, and the rule (MP) preserves validity. This can be easily done with the help of the
semantics for Pn. To illustrate the point, we show that (PL), (DS→), and (DS∼n) are valid in MPn .

(PL). Suppose that ((α → β)→ α)→ α is not a Pn-tautology. Thus, there is a Pn-valuation v such
that v(((α → β)→ α)→ α) = F. There are two main cases to consider. Either v((α → β)→ α) = T0

and v(α) = F, or v((α → β) → α) = Tn and v(α) = F, where n � 1. Case 1. If v((α → β) → α) = T0

and v(α) = F, then, no matter which value is assigned to β, v(α → β) = T0, and consequently,
v((α → β) → α) = F. But this gives a contradiction since v((α → β) → α) = T0. Case 2. It follows
from the truth-table for implication that v((α → β) → α) = T0 or v((α → β) → α) = F, for any
α, β ∈ F and every Pn-valuation v. So it is not possible that v((α → β) → α) = Tn, where n �= 0.
Consequently, there is no Pn-valuation v such that v(((α → β) → α) → α) = F, which means that
(PL) is a Pn-tautology.

(DS→). Assume that (α → β) → (∼(α → β) → γ)) is not a Pn-tautology. So there is
a Pn-valuation v such that v((α → β) → (∼(α → β) → γ)) = F. Hence, either v(α → β) = T0 and
v(∼(α → β)→ γ) = F, or v(α → β) = Tn and v(∼(α → β)→ γ) = F. The latter is impossible due to
the truth table for implication. Therefore, if v(α → β) = T0, then v(∼(α → β)) = F, and consequently,
v(∼(α → β) → γ) = T0. But this results in a contradiction because v(∼(α → β) → γ) = F.
As a consequence, there is no Pn-valuation v such that v((α → β) → (∼(α → β) → γ)) = F.
The formula (DS→) is a Pn-tautology.

(DS∼n). Suppose that ∼nα → (∼n+1α → β) is not a Pn-tautology, where n � 1. Then, there
is a Pn-valuation v such that v(∼nα → (∼n+1α → β)) = F. As a result, either v(∼nα) = T0 and
v(∼n+1α → β) = F, or v(∼nα) = Tn−1 and v(∼n+1α → β) = F. Let v(∼nα) = T0 and v(∼n+1α →
β) = F. Hence, v(∼n+1α) = F by the truth tables for negation. Since v(∼n+1α) = F, then, no matter
which value is assigned to β, v(∼n+1α → β) = T0. But this entails a contradiction since v(∼n+1α →
β) = F. Now, let v(∼nα) = Tn−1 and v(∼n+1α → β) = F. Consequently, either v(∼n+1α) = T0 and
v(β) = F, or v(∼n+1α) = Tn and v(β) = F. If v(∼n+1α) = T0, then, according to the truth table for
negation, v(∼nα) = F. But v(∼nα) = Tn−1. On the other hand, if v(∼n+1α) = Tn, then v(∼nα) = Tn+1.
But v(∼nα) = Tn−1. Therefore, there is no Pn-valuation v such that v(∼nα → (∼n+1α → β)) = F. The
formula (DS∼n) is a Pn-tautology.

For the second part of the proof, we have to demonstrate that each axiom schema of Pn is provable
in Sn and (MP) is its admissible rule, where n ∈ N. To begin with, notice that (A1), (A2), and (NN)

are the axiom schemas of Sn, and (MP) is its sole rule of inference.
(A3). We show that (α ∧ β) → α is a thesis of Sn, or, to be more precise, that ∼(α → ∼(∼β →

β))→ α is provable in Sn. To see that this claim is true, consider the following sequence of formulas:

1. ∼(α → ∼(∼β → β)) by the deduction theorem,
2. (α →∼ (∼ β → β))→ (∼ (α →∼ (∼ β → β))→ α) by (DS→),
3. ∼ (α →∼ (∼ β → β))→ ((α →∼ (∼ β → β))→ α) by (LoC), 2, (MP),
4. (α →∼ (∼ β → β))→ α by 1, 3, (MP),
5. α by (PL), 4, (MP),
6. ∼ (α →∼ (∼ β → β))→ α by the deduction theorem,

and finally,
7. (α ∧ β)→ α by the definition of ∧.

(A4). We prove that (α ∧ β) → β, i.e., ∼(α → ∼(∼β → β)) → β, is a thesis of Sn. To see this,
consider the sequence of formulas:

92



Axioms 2020, 9, 35

1. ∼(α → ∼(∼β → β)) by the deduction theorem,
2.–5. Proceed as in the preceding case,
6. (α →∼ (∼ β → β))→ (∼ (α →∼ (∼ β → β))→ (∼ β → β)) by (DS→),
7. (α →∼ (∼ β → β))→ (∼ β → β)) by (LoC), 6, 1, (MP),
8. α → (∼ (∼ β → β)→ (∼ β → β)) by (LoE), 7, (MP),
9. ∼ (∼ β → β)→ (∼ β → β) by 5, 8, (MP),
10. ∼ β → β by (CM), 9, (MP),
11. β by (CM), 10, (MP),
12. ∼ (α →∼ (∼ β → β))→ β by the deduction theorem,

and consequently,
13. (α ∧ β)→ β by the definition of ∧.

(A5). We show that α → (β → (α ∧ β)), i.e., α → (β → ∼(α → ∼(∼β → β)), is provable in Sn.
Consider the sequence of formulas:

1. α,
2. β,
3. ∼∼(α →∼ (∼ β → β)) by the indirect deduction theorem,
4. α →∼ (∼ β → β) by (NN), 3, (MP),
5. ∼ (∼ β → β) by 1, 4, (MP),
6. ∼ β → β by (A1), 2, (MP),

a contradiction (5, 6). This entails that:
7. ∼ (α →∼ (∼ β → β),
8. α → (β →∼ (α →∼ (∼ β → β)) by the deduction theorem 1, 2, 7, (MP),

and finally,
9. α → (β → (α ∧ β)) by the definition of ∧.

(A6). We demonstrate that α → (α ∨ β), i.e., α → (∼(∼α → α)→ β), is a thesis of Sn. To see that
this claim holds, consider the sequence of formulas:

1. α,
2. ∼(∼α → α) by the deduction theorem,
3. ∼ α → α by (A1), 1, (MP),
4. (∼ α → α)→ (∼ (∼ α → α)→ β)) by (DS→),
5. β by 4, 3, 2, (MP),
6. α → (∼ (∼ α → α)→ β) by the deduction theorem,

and consequently,
7. α → (α ∨ β) by the definition of ∨.

(A7). We show that β → (α ∨ β), i.e., β → (∼(∼α → α) → β), is provable in Sn. To see this,
consider the sequence of formulas:

1. β,
2. ∼(∼α → α) by the deduction theorem,
3. β by 1,
4. β → (∼ (∼ α → α)→ β)) by the deduction theorem,

and finally,
5. β → (α ∨ β) by the definition of ∨.

(A8). We prove that (α → γ)→ ((β → γ)→ (α ∨ β → γ)), i.e., (α → γ)→ ((β → γ)→ ((∼ (∼
α → α)→ β)→ γ), is a thesis of Sn. To see that this claim is true, consider the following sequence of
formulas:
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1. α → γ,
2. β → γ,
3. ∼ ((∼ (∼ α → α)→ β)→ γ) by the indirect deduction theorem,

Let φ := (∼ (∼ α → α)→ β)→ γ. Then,
4. φ → (∼ φ → (∼ (∼ α → α)→ β)) by (DS→),
5. φ → (∼ (∼ α → α)→ β) by (LoC), 4, 3, (MP),
6. (φ → (∼ (∼ α → α)→ β))→ (∼ (∼ α → α)→ β) by (PL),
7. ∼ (∼ α → α)→ β by 5, 6, (MP),
8. φ → (∼ φ →∼ (∼ (∼ α → α)→ β)) by (DS→),
9. φ →∼ (∼ (∼ α → α)→ β)) by (LoC), 8, 3, (MP).

If φ := (∼ (∼ α → α)→ β)→ γ, then,
10. ((∼ (∼ α → α)→ β)→ γ)→∼ (∼ (∼ α → α)→ β)),
11. (∼ (∼ α → α)→ β)→ (γ →∼ (∼ (∼ α → α)→ β)) by (LoE), 10, (MP),
12. γ →∼ (∼ (∼ α → α)→ β) by 11, 7, (MP),
13. β →∼ (∼ (∼ α → α)→ β) by (HS), 2, 12, (MP),
14. ∼ (∼ α → α)→∼ (∼ (∼ α → α)→ β) by (HS), 7, 13, (MP),
15. β → (∼ (∼ α → α)→ β) by (A1),
16. ∼ (∼ α → α)→ (∼ (∼ α → α)→ β) by (HS), 7, 15, (MP),

Let χ := ∼ α → α and ψ := ∼ (∼ α → α)→ β, then,
17. (∼ χ → ψ)→ ((∼ χ →∼ ψ)→ χ) by (DD→),
18. (∼ χ →∼ ψ)→ χ by 17, 16, (MP),
19. χ by 18, 14, (MP).

If χ := ∼ α → α, then,
20. ∼ α → α,
21. α by (CM), 20, (MP),
22. γ by 21, 1, (MP),
23. γ → ((∼ (∼ α → α)→ β)→ γ) by (A1),
24. (∼ (∼ α → α)→ β)→ γ by 23, 22, (MP),

a contradiction (3, 24). This yields that:
25. (∼ (∼ α → α)→ β)→ γ,
26. (α → γ) → ((β → γ) → ((∼ (∼ α → α) → β) → γ) by the deduction theorem, and

consequently,
27. (α → γ)→ ((β → γ)→ (α ∨ β → γ)) by the definition of ∨.

(ExM). We show that α∨ ∼ α, i.e., ∼(∼α → α)→ ∼α, is provable Sn.

1. ∼(∼α → α) by the deduction theorem,
2. (∼ α → α)→ (∼ (∼ α → α)→∼ α) by (DS→),
3. (∼ α → α)→∼ α by (LoC), 2, 1, (MP),
4. ((∼ α → α)→∼ α)→∼ α by (PL),
5. ∼ α by 4, 3, (MP),
6. ∼ (∼ α → α)→∼ α by the deduction theorem,

and finally,
7. α∨ ∼ α by the definition of ∨.

(dC). We prove that ∼(β ∧ ∼β) → ((α → β) → ((α → ∼β) → ∼α)), i.e., ∼∼(β → ∼(∼∼β →
∼β))→ ((α → β)→ ((α → ∼β)→ ∼α)), is a thesis of Sn.
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1. ∼∼(β → ∼(∼∼β → ∼β)),
2. α → β,
3. α →∼ β by the deduction theorem,
4. (∼∼ β →∼ β)→ (∼ (∼∼ β →∼ β)→∼ α) by (DS→),
5. β →∼ (∼∼ β →∼ β) by (NN), 1, (MP),
6. β → (∼ (∼∼ β →∼ β)→∼ α) by (HS), 4, 5, (MP),
7. α → (∼ (∼∼ β →∼ β)→∼ α) by (HS), 2, 6, (MP),
8. ∼ (∼∼ β →∼ β)→ (α →∼ α) by (LoC), 7, (MP),
9. β → (α →∼ α) by (HS), 5, 8, (MP),

10. α → (α →∼ α) by (HS), 2, 9, (MP),
11. α →∼ α by (C), 10, (MP),
12. ∼ α by (CM2), (11), (MP),
13. ∼∼ (β →∼ (∼∼ β →∼ β))→ ((α → β)→ ((α →∼ β)→∼ α)) by the deduction theorem, and

consequently,
14. ∼ (β∧ ∼ β)→ ((α → β)→ ((α →∼ β)→∼ α)) by the definition of ∧.

(nC‡). We demonstrate that∼((α ‡ β) ∧∼(α ‡ β)), i.e.,∼∼((α ‡ β)→ ∼(∼∼(α ‡ β)→ ∼(α ‡ β)))

and ‡ ∈ {∧,∨,→}, is provable in Sn. Let φ := α → β, if ‡ is →; φ :=∼ (∼ α → α) → β, if ‡ is ∨; and
φ :=∼ (α →∼ (∼ β → β)), if ‡ is ∧. As a result, we have:

1. ∼∼∼ (φ →∼ (∼∼ φ →∼ φ)) by the indirect deduction theorem,
2. ∼ (φ →∼ (∼∼ φ →∼ φ)) by (NN), 1, (MP),
3. (φ →∼ (∼∼ φ →∼ φ)→ (∼ (φ →∼ (∼∼ φ →∼ φ))→ φ)) by (DS→),
4. (φ →∼ (∼∼ φ →∼ φ))→ φ by (LoC), 3, 2, (MP),
5. ((φ →∼ (∼∼ φ →∼ φ))→ φ)→ φ by (PL),
6. φ by 5, 4, (MP),
7. (φ →∼ (∼∼ φ →∼ φ))→ (∼ (φ →∼ (∼∼ φ →∼ φ))→∼∼ (∼∼ φ →∼ φ)) by (DS→),
8. (φ →∼ (∼∼ φ →∼ φ))→∼∼ (∼∼ φ →∼ φ) by (LoC), 7, 2, (MP),
9. φ → (∼ (∼∼ φ →∼ φ)→∼∼ (∼∼ φ →∼ φ)) by (LoE), 8, (MP),

10. ∼ (∼∼ φ →∼ φ)→∼∼ (∼∼ φ →∼ φ) by 6, 9, (MP),
11. (∼ (∼∼ φ →∼ φ)→∼∼ (∼∼ φ →∼ φ))→∼∼ (∼∼ φ →∼ φ) by (CM2),
12. ∼∼ (∼∼ φ →∼ φ) by 10, 11, (MP),
13. ∼∼ φ →∼ φ by (NN), 12, (MP),
14. ∼ φ by (CM), 13, (MP),

a contradiction (6, 14). This entails that,
15. ∼∼ (φ →∼ (∼∼ φ →∼ φ)),

and finally,
16. ∼ (φ∧ ∼ φ).

However, if φ := α → β, then ∼ ((α → β)∧ ∼ (α → β)); if φ :=∼ (∼ α → α) → β, then
∼ ((α ∨ β)∧ ∼ (α ∨ β)); and if φ :=∼ (α → ∼ (∼ β → β)), then ∼ ((α ∧ β)∧ ∼ (α ∧ β)). Hence,
∼ ((α ‡ β)∧ ∼ (α ‡ β)), where ‡ ∈ {∧,∨,→}.

(nC∼n). We show that∼(∼nα ∧∼n+1α), that is, ∼∼(∼nα → ∼(∼n+2α → ∼n+1α)), where n ∈ N,
is provable in Sn.

1. ∼∼∼ (∼n α →∼ (∼n+2 α →∼n+1 α)) by the indirect deduction theorem,
2. ∼ (∼n α →∼ (∼n+2 α →∼n+1 α)) by (NN), 1, (MP),

Let φ := ∼n α →∼ (∼n+2 α →∼n+1 α). Then,
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3. ∼ φ,
4. φ → (∼ φ →∼n α) by (DS→),
5. φ →∼n α by (LoC), 4, 3, (MP),
6. (∼n α →∼ (∼n+2 α →∼n+1 α))→∼n α by φ,
7. ∼n α by (PL), 6, (MP),
8. φ → (∼ φ →∼∼ (∼n+2 α →∼n+1 α)) by (DS→),
9. φ →∼∼ (∼n+2 α →∼n+1 α) by (LoC), 8, 3, (MP),

10. (∼n α →∼ (∼n+2 α →∼n+1 α))→∼∼ (∼n+2 α →∼n+1 α) by φ,
11. ∼n α → (∼ (∼n+2 α →∼n+1 α)→∼∼ (∼n+2 α →∼n+1 α)) by (LoE), 10, (MP),
12. ∼ (∼n+2 α →∼n+1 α)→∼∼ (∼n+2 α →∼n+1 α) by 11, 7, (MP),
13. ∼∼ (∼n+2 α →∼n+1 α) by (CM2), 12, (MP),
14. ∼n+2 α →∼n+1 α by (NN), 13, (MP),
15. ∼n+1 α by (CM), 14, (MP),
16. ∼n α → (∼n+1 α → φ) by (DS∼n),
17. φ by 16, 15, 7, (MP),

a contradiction (3, 17). This entails that,
18. ∼∼ (∼n α →∼ (∼n+2 α →∼n+1 α)), and consequently,
19. ∼ (∼n α∧ ∼n+1 α) by the definition of ∧.

This finishes the proof of Theorem 4.

3. Conclusions

In this paper, we proposed a new axiomatization for the Pn-hierarchy. The main idea behind it
was to focus directly on the principle of ex contradictione sequitur quodlibet. This is a remarkable
difference between Fernández–Coniglio’s and our proposal, which makes the hierarchy less complex
and more transparent from the viewpoint of paraconsistency. Additionally, we followed Sette’s idea
and the connectives of negation and implication were taken as primitives. In conclusion let us also
mention that the several other hierarchies can be easily generated from Pn-hierarchy. For instance,
by dropping (DS→), we get the CBn-hierarchy of the paraconsistent calculi (cf. [? ]). The interested
reader can also find a slightly different hierarchy in [? ] (the so-called Bn-hierarchy).
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Abstract: Using the defined notion of the inference with multiply-conclusion rules, we show
that in the logics enjoying the disjunction property, any derivable rule can be inferred from the
single-conclusion rules and a single multiple-conclusion rule, which represents the disjunction
property. Also, the conversion algorithm of single- and multiple-conclusion deductive systems into
each other is studied.
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1. Introduction

The question “What is inference rule?” is almost as profound as the question “What is truth?.”
Speaking very generally, inference rules are the acceptable means of reasoning. They give us a way to
go from a set of accepted statements (propositions, judgments) to an acceptable statement (proposition,
judgment). Rules can be given in different forms: Aristotle used rules in a form of moduses like [1]
(§1 (6))

If A is predicated of all B premise
and B is predicated of all C, premise
then A is predicated of all C. conclusion

Nowadays, we would write such a rule as

A is predicated of all B, B is predicated of all C
A is predicated of all C

.

In this paper, we consider only propositional logics. Thus, the premises and conclusions are
propositions (propositional formulas). But even in this case, one may consider different forms of
modus ponens [2]:

A, A → B/B or A, A entails B/B.

As we see, the former rule is about conditional, while the latter rule is about entailment. Clearly,
the second form of modus ponens is a rule of meta-logic rather than a rule of logic. In this paper
we confine ourselves to rules of the first form: a finitary structural inference rule or a modus rule is
given by an ordered pair (Γ, A), where Γ is a finite (maybe empty) set of formulas and A is a formula,
and we use Γ/A or Γ

A to denote such a pair. Any pair Γ/A constitutes the modus rule that allows for
any substitution σ, to infer σ(A) from σ(Γ).

Let us note that curiously enough, the rule of substitution “for any substitution, σ, from A infer
σ(A)” is not structural: it allows to infer formula q from formula p, where p and q are propositional
variables, but the structural rule p/q would allow to infer any formula from any formula.

Axioms 2019, 8, 100; doi:10.3390/axioms8030100 www.mdpi.com/journal/axioms99
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By logic L we understand a (finitary structural) consequence relation ∣−L defined in the following
way; for all sets of formulas Γ, Δ, and every formula A

(R) ∶ if A ∈ Γ, then Γ ∣−L A reflexivity
(M) ∶ if Γ ⊆ Δ and Γ ∣−L A, then Δ ∣−L A monotonicity
(T) ∶ if Γ ∣−L B and Γ, B ∣−L A, then Γ ∣−L A transitivity - cut
(F) ∶ if Γ ∣−L A, then Δ ∣−L A for some finite Δ ⊆ Γ finitarity
(S) ∶ if Γ ∣−L A, then σ(Γ) ∣−L σ(A), for every σ structurality

(1)

Given a logic L, we define a set of theorems Th(L) of L to be

Th(L) ∶= {A ∶ ∅ ∣−L A}.

It is customary to define a logic L by a deductive system—a set of rules R and axioms.
Because axioms can be viewed as rules without premises, we assume that a deductive system is
a set of rules and a procedure for derivation such that Γ ∣− LA if and only if A can be derived from Γ by
rules R.

We extend the notion of the deductive system by allowing to use multiple-conclusion rules.
This requires to extend the notion of derivation, and we discuss this generalization in Section 3. Let us
stress out that we do not consider multiple-conclusion logics in the sense of Shoesmith and Smiley [3],
Carnap’s logics of junctives [4], or hyperformulas [5]. Instead, we study regular logics defined by the
deductive systems that admit multiple-conclusion rules. For instance, one can use the following rules
to define the classical logic [3] (2.3) and further discussions in Chapter 18 of this book):

A,A→B
B

B
A→B

∅
A,A→B

A∧B
A

A∧B
B

A,B
A∧B

A
A∨B

B
A∨B

A∨B
A,B

A,¬A
∅

∅
A,¬A

The idea of using multiple-conclusion rules can be traced back at least to Carnap [6]. Much
earlier, Peirce introduced the dialogisms, which are essentially the multiple-conclusion rules, but he
preferred to replace them with the single-conclusion rules [7]. Gentzen’s sequent also can be viewed
as a multiple-conclusion construction. The following quotation from the authors of [3] explains why
Carnap, and not Gentzen, perhaps, should be regarded as the one who introduced multiple-conclusion
rules: “Its germ can be found in Gerhard Gentzen’s celebrated Untersuchungen über das logische
Schliessen (1934) if one is prepared to interpret his calculus of ‘sequents’ as a metatheory for a
multiple-conclusion logic, but this is contrary to Gentzen’s own interpretation, and it was Rudolf
Carnap who first consciously broached the subject in his book Formalization of logic (1943)” [3]
(Section 2.1, the historical note).

Carnap’s motivation for introducing multiple-conclusion rules was as follows: if we want to
syntactically characterize a two-valued classical semantics, this syntactical system should be valid
(up to matrix isomorphisms) only in the two-element Boolean matrix. Let us consider matrices depicted
in Figure 1 (the designated elements are marked by a bullet). It is not hard to see that any rule which is
valid in matrix B1, is valid in all matrices Bn for all n ≥ 0.
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●
1

○
●
1

○

●
○○α β

1

○

○
○○ ○

●
○○α β

1

⋯

B0 B1 B2 B3 . . .

Figure 1. Boolean matrices.

Carnap’s solution was to employ the rules of a different kind: a (structural) multiple-conclusion
rule (or multiple-alternative rule, or m-rule for short) is an ordered pair Γ/Δ of finite sets of formulas.
m-rule Γ/Δ is valid in a logical matrix (A, D) if for any valuation ν such that ν(A) ∈ D for all A ∈ Γ,
there is B ∈ Δ such that ν(B) ∈ D, that is,

ν(Γ) ⊆ D, entails ν(Δ) ∩D ≠ ∅. (2)

Let us consider the m-rules

t ∶= p,¬p/∅ and de ∶= p ∨ q/p, q.

Then, if we consider logical matrices (20,{1}), (2,{1}), (2n,{1}), n ≥ 2 from Figure 1, we can
see that

(20,{1}) /∣= t because 1∧¬1 = 0 = 1, while there is no
conclusion taking value 1

(2,{1}) ∣= t and (2,{1}) ∣= de left for the reader to verify
(2n,{1}) /∣= de for all n > 1 if ν(p) = α and ν(q) = β, then α ∨ β = 1, while α ≠ 1 and β ≠ 1,

that is, the premise takes a designated value,
although both conclusions take the not-designated values cf. (2).

Thus, if we employ m-rules t and de as inference rules together with modus ponens and axioms
of the Classical Logic Cl, there is only one logical matrix in which all these rules and axioms are valid,
namely (2,{1}).

In 1932 Gödel stated without proof (the proof is due to Gentzen) that intuitionistic propositional
logic enjoys the disjunction property: for any formulas A, B, if formula A ∨ B is a theorem, then at
least one of the formulas A, B must be a theorem. It is not true for the classical propositional logic:
formula p ∨¬p is a theorem, while neither p, nor ¬p are theorems. Let us point out that even though
the classical logic does not enjoy the disjunction property, the rule de can be used as an inference rule
without expanding the set of theorems.

In what follows, rule de plays a special role. In the setting of natural deduction, ∨-elimination
rule is as depicted in Figure 2:

A ∨ B

[A]
⋮
C

[B]
⋮
C

C

Figure 2. ∨-Elimination as a natural deduction rule.

That is, if we can derive A ∨ B and we can derive C separately from A and from B, then we can
derive C.

In the multiple-conclusion setting (with the use of de) ∨-elimination can be expressed in a more
natural way as depicted below in Figure 3:
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A ∨ B

A

C

B

C

de

Figure 3. ∨-Elimination as a multiple-conclusion rule.

In this paper, we study how admissibility of de can be used to construct bases of admissible rules.
Let us recall that a rule Γ/A is called admissible for a given logic L if for every substitution σ,

σ(Γ) ⊆ Th(L) entails σ(A) ∈ Th(L).

It is not hard to see that a rule r is admissible for logic L defined by rules R if and only if rules
R∪ {r} define a logic L′ such that Th(L) = Th(L′).

We can extend the notion of admissibility to m-rules as follows; an m-rule Γ/Δ is admissible for
a given logic L if every substitution σ,

σ(Γ) ⊆ Th(L) entails σ(Δ) ∩ Th(L) ≠ ∅.

The topic of the paper is the relations between the m-rules t and de and admissibility of rules.
We divide m-rules into three categories: if r ∶= Γ/Δ is an m-rule, then

r is conclusive if Δ consists of a single formula;
r is inconclusive if Δ consists of more then one formula;
r is terminating if Δ = ∅.

A rule that has a nonempty set of alternatives is called proper. For instance,

mp = p, p → q/q is a conclusive rule;
de = p ∨ q/p, q is an inconclusive rule;
t = p ∧¬p/∅ is a terminating rule,

and mp and de are proper m-rules.
Successive application of rules leads to a notion of inference: from a given set of formulas

Γ—assumptions—we infer a formula, A. Inferences from the empty set of assumptions (or from the
axioms) are proofs.

In this paper, we focus on logics for which the ∨-elimination m-rule de is admissible (for instance, it
is admissible for the intuitionistic logic and it is not admissible for the classical logic). Additionally, we
will show that all m-rules except, perhaps, for de and t, can be eliminated from any base of admissible
m-rules for such a logic.

2. Preliminaries

Let Fm be a set of all (propositional) formulas built in a usual way from a denumerable set of
(propositional) variables Var and a finite set of connectives C. The maps σ ∶ Var �→ Fm are called
substitutions. Given a substitution σ and a formula A, σ(A) denotes the result of replacing each
variable p occurring in A with formula σ(p), and if Γ is a set of formulas, then σ(Γ) ∶= {σ(A) ∶ A ∈ Γ}.

Let RFm be a class of all ordered pairs of finite (possibly empty) subsets of Fm. The members
ofRFm are called multiple-conclusion rules, or multiple-alternative rules (m-rules for short). In the
sequel, Γ ⋐ Fm means that Γ is a finite subset of Fm, and if Γ, Δ ⋐ Fm, the rule (Γ, Δ) is denoted
as Γ/Δ. The members of Γ are called premises, while the members of Δ are called alternatives
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or conclusions. If {A0, . . . , An−1}/{B0, . . . , Bm−1} is an m-rule, we drop curly brackets and write
A0, . . . , An−1/B0, . . . , Bm−1. Also, if Γ, Γ′ ⋐ Fm, we write Γ, Γ′ to denote Γ ∪ Γ′.

If r ∶= Γ/Δ is an m-rule and σ is a substitution, then σ(Γ)/σ(Δ) is again an m-rule which is called
an instance of r.

Let us note that m-rules allow empty sets of premises and alternatives/conclusions, and ∅ has
a different meaning depending on whether it is a set of premises or a set of conclusions. To make it
easier, we use ▾ for ∅ as a premise and we use ▴ for ∅ as a conclusion. We also assume that for every
substitution σ, σ(▾) = ▾ and σ(▴) = ▴. Symbols ▾ are ▴ are merely notations and they are not elements
of the language or metalanguage.

Formula A is valid in a given logic L (L-valid for short) or A is a theorem of L if ∣−L A (or A ∈ Th(L)),
otherwise, A is called refuted in L.

We call logic L consistent if not every formula from Fm is a theorem of L. Let us note that because
of structurality, i.e., because ∣−L obeys (S) from (1), a logic L is consistent if and only if /∣− L q, where q
is a variable.

Let us observe that a rule r ∶= Γ/A is admissible for logic L (in symbols, Γ ∣∼L A) if any substitution
that refutes A, refutes at least one member of Γ. If Γ = ∅, then rule Γ/A is admissible for L if and
only if A ∈ Th(L) [8]. For m-rules, an m-rule Γ/Δ is admissible for ∣−L (in symbols Γ ∣∼L Δ) if every
substitution σ that refutes all formulas from Δ, refutes at least one formula from Γ [8]. Thus, the rule
▾/▴ is not admissible in any logic.

If R is a set of all conclusive rules admissible for logic L, then R defines a logic L̃ that has the
same set of theorems as L. It is not hard to see that L̃ is the biggest logic that has the same theorems
as L, and we call L̃ an admissible completion of L. In the book by Rybakov [9] (Definition 1.7.3), the
term “admissible closure” is used; in our view, the latter term is a bit ambiguous, because “admissible
closure” can refer to a consequence closure operator. Let us note that if R is a set of all conclusive
rules admissible for L and Rm is a set of all m-rules admissible for L, then ∣−R and ∣− Rm define the
same logic, namely, L̃. Indeed, it is clear that a conclusive rule r is admissible for L if and only if r is
admissible for L as m-rule.

If L is a logic defined by m-rules and r is a rule, by L+ r we denote the smallest logic extending L

and containing r. It is not hard to see that if r is admissible for L, then Th(L+ r) = Th(L).
Admissibility of a rule can be expressed in terms of L-unifiability. A set of formulas Γ is unifiable in

L (or L-unifiable) if Γ ∣/∼L ▴, otherwise Γ is nonunifiable in L. In other words, formulas Γ are L-unifiable
if and only if there is such a substitution σ, that σ(Γ) ⊆ Th(L), and in this case, σ is said to be an
L-unifier of Γ. Thus, an m-rule Γ/Δ is admissible for L if and only if every L-unifier of Γ unifies at least
one formula from Δ.

Logic L is strongly consistent if there is a finite set of formulas Γ such that Γ ∣∼L ▴, that is, Γ
is nonunifiable in L. Note that if Γ is a nonunifiable in L finite set of formulas, then any rule Γ/Δ
(including Γ/▴) is trivially admissible in L. The m-rules with nonunifiable set of premises are called
passive (passive rules were introduced in [10]).

Example 1. Throughout the paper we will use the examples from the following well-known logics.

Int intuitionistic propositional logic;
Pos positive fragment of Int;
KP Kreisel-Putnam’s logic;
ML Medvedev’s logic;
Jhn Johansson’s (or minimal) logic;

and normal modal logics S4,D4,GL,K4,K4.1,S4,S4.1,Grz, Int,Dn [11]. All these logics are consistent: formula
p, where p is a propositional variable, is not a theorem. And all of them, except for Pos, are strongly consistent:
formula p∧¬p is not unifiable, while in Pos every nonempty set of formulas is unifiable (substitute each variable
with p → p).
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3. Derivation

An m-inference (or m-derivation) of an m-rule from a given set of m-rules will be a generalization
of a regular notion of Hilbert style inference (for instance, like in [12]). Since we allow to use the
multiple-conclusion rules, inference cannot be a sequence anymore, and it is a tree: application of any
inconclusive rule triggers branching. Each derived alternative shall be considered individually, like
a separate case in a proof by cases. The introduced below notion of m-inference with use of m-rules
reflects our everyday practice of making derivations from a set of assumptions: at each step we either
refer to an assumption, or we apply a rule of inference and derive an (intermediate) conclusion, or we
use a proof by cases and we lay down a set of alternatives that will be considered separately. The latter
is captured by application of some inconclusive rule, when instead of a single conclusion we arrive at
a set of alternatives to be considered (for different flavors of formalization of the proofs by cases can be
fond in [13]). Our definition of m-inference slightly differs from the definition in [8,14]. An alternative
approach to derivation in the multiple conclusion setting the reader can find in [15].

3.1. Basic Definitions: Derivation Trees

By (finite) tree we understand a partially ordered set (Nd,≤) that has the biggest element (called a
root) and for each n ∈ Nd, the segment {n′ ∈ Nd ∶ n ≤ n′} is a chain. Labeling of a tree (Nd,≤) is a map
λ ∶ Nd �→ {A ∶ A ∈ Fm ∪ {▾,▴}}, where ▾ is allowed only in the root and ▴ is allowed only in a leaf.
Moreover, the root is always labeled by ▾. A tree together with labeling (that is the pair tree-labeling)
is called a labeled tree. When we draw a labeled tree, to simplify notation, instead of node n we will
use its label λ(n). For instance, instead of left-hand side tree depicted in Figure 4 with labeling λ

node n0 n1 n2 n3 n4

λ A B C A ▴

we use the right-hand side tree

n0

n1 n2

n3 n4

A

B C

A ▴

Figure 4. Labeling.

If n is a node of a labeled tree, we let n↑ ∶= {n′ ∈ Nd ∶ n ≤ n′} and n↓ ∶= {n′ ∈ Nd ∶ n′ < n}. Nodes
from n↑ are predecessors of n and nodes from n↓ are successors of n. A successor n′ of a node n is
called immediate if there are no nodes strongly between n′ and n. By lv(Nd)we denote the set of all
leaves of Nd, that is, lv(Nd) is the set of all minimal elements of (Nd,≤).

If Nd′ ⊆ Nd, then λ(Nd′) ∶= ⋃{λ(n) ∶ n ∈ Nd′}. For instance, λ(n↑) is a set of all formulas labeling
all predecessors of n, and λ(lv(Nd)) is a set of all formulas labeling all leaves of the tree (Nd,≤).

A leaf labeled by ▴ is a terminal leaf, otherwise, the leaf is called extendable.

3.2. Definition of m-Inference

Now, we can introduce the notion of m-inference in the setting of m-rules. Our definition of
m-inference is slightly different from the one introduced in works by the authors of [3,14], but as
Theorem 2 shows, the classes of derivable m-rules coincide.

Definition 1. Let R be a set of m-rules and Γ be a set of formulas (which may be empty). An m-inference from
Γ by R (or (Γ,R)-inference for short) is a finite labeled tree, defined by induction:

(a) A tree containing only a root labeled by ▾ is a (Γ,R)-inference;
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(b) If I is a (Γ,R)-inference, then a tree obtained from I by adjoining to an extendable leaf an immediate
successor labeled by a formula from Γ is a (Γ,R)-inference;

(c) If I is a (Γ,R)-inference, and n is an extendable leaf, then a tree, obtained from I by adjoining to n immediate
successors n0, . . . ,nm−1 labeled by formulas B0, . . . , Bm−1, is (Γ,R)-inference, provided there is an instance
Δ/Π of a rule from R such that

Δ ⊆ λ(n↑) and Π = {B0, . . . , Bm−1}.

(d) If I is a (Γ,R)-inference and n is an expendable leaf, then a tree, obtained from I by adjoining to n immediate
successors n0 labeled by ▴, is (Γ,R)-inference, provided there is an instance Δ/▴ of a rule from R such that

Δ ⊆ λ(n↑).

For instance, suppose Γ = {C0, . . . , Ck−1} and A0, . . . , An−1/B0, . . . , Bm−1 is an instance of a rule
from R. Then, if a tree depicted in Figure 5 is a (Γ,R)-inference,

▾

D0 . . . Dl−1

Figure 5. Initial inference.

then the trees depicted in Figure 6 are (Γ,R)-inferences, provided for (a) that 0 ≤ j < k, and for (b), that
all premises Ai, i < n can be found on the branch between leaf D0 and the root.

▾

D0

Cj

. . .

(a) by premise

Dl−1

▾

D0

B0 . . . Bm−1

(b) by m-rule

. . . Dl−1

Figure 6. Examples of Inferences.

Let us observe the following simple but important property of m-inferences.

Proposition 1. Suppose that I and I′ are (Γ,R)-inferences. Then the following assertions hold:

(a) a labeled tree obtained from I by omitting all successors of a given node is a (Γ,R)-inference;
(b) if we remove the root of I′ and adjoin the remainder of I′ to a leaf of I, the obtained labeled tree is

a (Γ,R)-inference;
(c) for any substitution σ, the tree σ(I) obtained from I by replacing in every node the labeling formula A by

σ(A), is a σ(Γ),R-inference.

The proof follows immediately from the definition of m-inference.

3.3. Derivations of m-Rules

Using the notion of m-inference from assumptions, we can define the notion of m-inference
of m-rule.
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Definition 2. Let R be a set of m-rules and r ∶= Γ/Δ be an m-rule. We say that r is derivable from rules R (in
symbols R ∣− r) if there is a (Γ,R)-inference I such that λ(lv(I)) ⊆ Δ∪{▴}, i.e., every leaf is labeled by a formula
from Δ or by ▴.

The following proposition is an immediate consequence of the definition.

Proposition 2. Let Γ be a finite set of formulas and R be a set of m-rules. Then any (Γ,R)-inference I is
a derivation of m-rule Γ/Δ where Δ = λ(lv(I)), i.e., Δ is a set of all formulas labeling all leaves of I.

Corollary 1. Suppose that I is an m-inference of an m-rule Γ/Δ from a set of m-rules R. Then if a formula
A ∈ Δ labels a node n that is not a leaf, the tree I′ obtained from I by omitting all nodes strongly below n, is also
an m-inference of Γ/Δ from R.

In other words, if R ∣− Γ/Δ, then there is a (Γ,R)-inference, such that formulas from Δ label
only leaves.

Theorem 1. Suppose that R and R′ are sets of m-rules, while r and r′ are m-rules. Then the following hold;

(i) if r ∈ R, then R ∣− r;
(ii) if R ∣− r, then R∪R′ ∣− r;

(iii) if R ∣− r and R′, r ∣− r′, then R,R′ ∣− r′.

Proof. The proofs of (i) and (ii) are straightforward. Let us prove (iii).
Suppose that r = Γ/Δ, r′ = Γ′/Δ′ and Δ = {D0, . . . , Dm−1}. By assumption, there is a (Γ,R)-inference

of Δ, which we denote by I, and there is a (Γ′,R′, r)-inference of Δ′, which we denote by I′. To prove
(iii) it suffices to observe that any application of rule r in I′ can be replaced by an instance of the proof
I (see Figure 7).

▾

D0 . . .

I

(a) R ∣− r

Dk

▾

σ(D0)

I′0

. . .

(b) R′, r ∣− r′

σ(Dm−1)

I′m−1

▾

σ(D0)

I′0

. . .

(c) R,R′ ∣− r′

σ(Dk)

I′k

σ(r) σ(I)

Figure 7. Proof of (iii).

Let us observe that the set of leaves of the proof depicted in Figure 7c is a subset of the set of
leaves of the proof depicted in Figure 7b. Thus, all the leaves of the proof depicted in Figure 7c contain
formulas only from Δ′.

Properties of m-Inference

Theorem 2. Let R be a set of m-rules, Γ/Δ be an m-rule and A be a formula. Then

R ∣− A/A; (R)
R ∣− Γ/Δ entails R ∣− Γ′/Δ′ for any Γ′ ⊇ Γ and Δ′ ⊃ Δ; (M)
if R ∣− Γ/Δ, A and R ∣− Γ, A/Δ, then R ∣− Γ/Δ; (T)
if R ∣− Γ/Δ, A, then R ∣− σ(Γ)/σ(Δ) for any substitution σ (S).

Proof. Indeed, if A is a formula, then the tree that consists of a root, labeled by ▾, and its single
immediate successor, labeled by A, is an m-inference of the rule A/A from R. Thus, (R) holds.
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It follows immediately from the definition of inference that if I is an inference of a rule Γ/Δ from
R, then I is at the same time an inference of the rule Γ ∪ Γ′/Δ ∪Δ′ for any finite sets of formulas Γ′, Δ′.
That is, (M) holds.

Also straight from the definition it follows that if I is an inference of a rule Γ/Δ from R and σ is
a substitution, then the tree σ(I), obtained from I by replacing every label A with σ(A), is an inference
of σ(Γ)/σ(Δ) from R. Thus, (S) holds.

To demonstrate (T) we will show that, given an m-inferences of rules Γ, A/Δ and Γ/A, Δ from R,
we can construct an m-inference of the rule Γ/Δ.

Suppose Δ = {D0, . . . , Dm−1} and we have inferences of Γ, A/Δ and Γ/A, Δ from R depicted
respectively in Figure 8a,b:

▾

A D0 . . .

(a) Inference of Γ/A, Δ

Dm−1

▾

D0 . . .

(b) Inference of Γ, A/Δ

Dm−1

Figure 8. Proof of (T): the premises.

By Corollary 1, we can assume that A labels only leaves. Then we can construct an inference of Δ
from Γ by adjoining inference (b) to every leaf labeled by A as depicted below in Figure 9:

▾

A

D0 . . . Dm−1

D0 . . . Dm−1

Figure 9. Proof of (T): the result.

and in such a way to obtain an m-inference of Γ/Δ.

Let us also note the following property of passive rules which immediately follows from (M).

Corollary 2. Let R be a set of m-rules containing rule Γ/▴. Then, for any finite set of formulas Δ,

R ∣− Γ/Δ.

Corollary 3. If R is a set of m-rules admissible for logic L and r is an m-rule such that R ∣− r, then r is also
admissible for L.

Proof. Suppose that r = Γ/Δ and σ is a substitution such that σ(Γ) ∈ Th(L). By virtue of (S), there is
an m-inference of σ(Γ)/σ(Δ) from R. From the definition of m-inference and admissibility of rules
from R, any application of rule from R has at least one conclusion, which is a theorem of L. Hence,
σ(Δ) contains a theorem of L, and hence rule Γ/Δ is admissible for L. Let us note that if some rule from
R is terminating, its admissibility entails that L is not consistent and hence, every rule is admissible
for it.

3.4. m-Deductive Systems

Theorem 2 ensures that for any set of m-rules R, the restriction of ∣− R to the single-conclusion
relation is a consequence relation. Thus, every set of m-rules R can be regarded as an m-deductive
system ∣− R. Recall that Th(R) is the set of theorems: Th(R) = {A ∈ Fm ∶ ∣− RA}.
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Let us point out that m-deductive systems lack some properties of regular deductive systems.
For instance, a join of m-deductive systems with the same sets of theorems may be an m-deductive
system with a strongly larger set of theorems. That is,

Th(R0) = Th(R1) /�⇒ Th(R0) = Th(R1) = Th(R0 ∪R1).

We assume that the reader is familiar with Heyting algebras as models of intermediate logics.
Let us consider deductive system R defined by all formulas valid in algebra C depicted in Figure 10

and the rule mp (we regard formulas as rules of type ▾/A); we constructed two m-deductive systems:

R0 ∶= R+ de+ dil and R1 ∶= R+ r + dir, where

r ∶= (¬¬p → p) → (p ∨¬p)/¬p ∨¬¬p, dil ∶= p/q ∨ p and dir ∶= p/p ∨ q.

Our goal is to verify that Th((R)) = Th((R0)) = Th((R1)) and formula A ∶= (¬p∨¬¬p)∨(¬¬p → p)
is not a theorem of R0 and R1, while A is a theorem of R0 ∪R1, that is, Th(R0) = Th(R1) ⊊ Th(R0 ∪R1).

We start with an observation that algebra C′ (see Figure 10) is (isomorphic to) a Lindenbaum
algebra of R on one variable. Hence, both algebras C and C′ are models for R.

Next, we observe (and we left for the reader to perform this routine check) that (a) rules de and dil

are valid in C, hence, C is a model of R0; (b) rules r and dir are valid in C′, hence, C′ is a model of R1;
and (c) all three m-logics have the same sets of theorems, that is,

Th(L) = Th(L0) = Th(L1).

Also, as we can see in Figure 10, formula A is refuted in C and hence, A ∉ Th(R0) and A ∉ Th(R1).
Thus, we only need to show that A ∈ Th(R0 ∪R1).

●
●

●
●
●

●
●

p
¬p ∨¬¬p¬¬p → p

(¬p ∨¬¬p) ∨ (¬¬p → p)

C

●
●

●
○
●

●●
●
●
●

p

(¬¬p → p) ∨ ((¬¬p → p) → (p ∨¬p))

¬¬p → p
(¬¬p → p) → (p ∨¬p)

C′

Figure 10. Example.

Indeed, because algebra C′ is a Lindebaum algebra of R on one variable and any formula in
one variable is a theorem of R precisely when it is valid on the generator of C′ depicted as ○. Thus,
because formula ((¬¬p → p) → (p ∨ ¬p)) ∨ (¬¬p → p) is valid on this generator, it is a theorem
of R, as well as it is a theorem of R0 and R1. Thus, we can construct an m-inference of A from
((¬¬p → p) → (p ∨¬p)) ∨ (¬¬p → p), which is presented in Figure 11.

▾

((¬¬p → p) → (p ∨¬p)) ∨ (¬¬p → p)

((¬¬p → p) → (p ∨¬p))

(¬p ∨¬¬p)

(¬p ∨¬¬p) ∨ (¬¬p → p)

(¬¬p → p)

(¬p ∨¬¬p) ∨ (¬¬p → p)

de

r

dir

dil

Figure 11. m-Inference of formula A.
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Thus, formula A is a theorem of L′.

3.5. Admissible Bases

Suppose that L is a logic, R is a set of m-rules and r is an m-rule. We say that r is derivable from
m-rules R relative to m-logic L (in symbols R ∣−L r) if R∪ L ∣− r.

Let us observe that, by Corollary 3, if R is a set of admissible for L m-rules and R ∣− Lr, then r is
admissible for L m-rule. Thus, we can use m-inferences to axiomatize admissible completion of logics.

Definition 3. Suppose L is a logic and R is a set of admissible for L conclusive rules. Then R is an admissible
relative to L base if every admissible for L conclusive rule r is derivable from R relative to L, that is,

R ∣− Lr for every conclusive admissible for L rule r.

Example 2. For Int the Visser rules

vn ∶=
A(n) → (pn ∨ qn)

⋁n
i=0(A

(n) → pi)
,

where A(n) ∶= ⋀n−1
i=0 (pi → qi), n ≥ 1, form a relative admissible base (cf. the work by the authors of [16]).

In a natural way, the notion of admissible base can be extended to m-rules.

Definition 4. Suppose L is a logic and R is a set of admissible for L m-rules. Then R is an admissible relative to
L m-base if every admissible for L m-rule r is derivable from R relative to L, that is,

R ∣− Lr for every admissible for L m-rule r.

And an admissible m-base R for L is independent if neither proper subset of R is an admissible m-base for L.

Definition 5. Suppose L is a logic and R is a set of admissible for L m-rules. Then R is an admissible relative to
L extended base if every admissible for L conclusive rule r is derivable from R relative to L, that is,

R ∣− Lr for every admissible for L m-rule r.

And an admissible extended base R for L is independent if neither proper subset of R is an admissible m-base
for L.

In Sections 5 and 6 we see that in the logics with the disjunction property, the admissible bases
and m-bases are closely related.

Remark 1. There is a difference in the properties of admissible conclusive and inconclusive rules. Namely,
in contrast to conclusive rules, an inconclusive rule can be derivable and not admissible. Indeed, if Cl is the
logic defined by axiom schemes of the classical logic and mp as a single inference rule and Clv ∶= Cl+ de, then,
Th(Cl) = Th(Clv): it is clear that Th(Cl) ⊆ Th(Clv), on the other hand, every theorem of Clv is valid in the
two-element Boolean algebra, because all axioms and rules of Clv are valid in it. Thus, rule de is trivially
derivable in Clv but it is not admissible: ∣− Clv p ∨¬p, while /∣− Clv p and /∣− Clv ¬p.

4. Introducing Meta-Disjunction

If our language contains disjunction with regular properties, m-Rule

de ∶=
A ∨ B
A, B
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plays a very special role in constructing deductive systems. Indeed, if R is a set of proper m-rules such
that R ∣− de, we can replace the set of m-rules R by de and the set of conclusive rules

R(1) ∶= {Γ/⋁Δ ∶ Γ/Δ ∈ R},

where ⋁Δ ∶= ⋁A∈Δ A. Indeed, if in an inference we apply m-rule Γ/Δ, instead, we can apply rule
Γ/⋁Δ, and then apply n − 1 times m-rule de (where n = ∣Δ∣). In this section, we discuss the sufficient
conditions for logics to have an analog of ∨-elimination.

4.1. m-Protodisjunction

Let ∇(p, q) be a formula (a nonempty finite set of formulas) in two variables (in the sequel we
write p∇q to make the meaning more transparent). Then we let

de ∶= p∇q/p, q (Disjunction Elimination)
dir ∶= p/p∇q (Disjunction Introduction-Right)
dil ∶= q/p∇q (Disjunction Introduction-Left)

In the case when ∇ contains more then one formula,

de ∶= p∇q/p, q (Disjunction Elimination)
dir ∶= p/D(p, q) for each D ∈ ∇ (Disjunction Introduction-Right)
dil ∶= q//D(p, q) for each D ∈ ∇ (Disjunction Introduction-Left)

We will use the following rules capturing the properties of ∇.

dc ∶= (p∇q)/(q∇p) (Commutativity)
dra ∶= ((p∇q)∇r)/(p∇(q∇r)) (Right associativity)
dla ∶= ((p∇q)∇r)/(p∇(q∇r)) (Left associativity)
dd ∶= ((p∇r)∇(q∇r))/(p∇(q∇r)) (Self-distributivity)
di ∶= (p∇p)/p (Idempotency)

Let
D ∶= {dc,dra,dla,dd,di} (3)

be the set of rules representing the properties of ∇.

Proposition 3. The following hold;
DC ∶ de,dir,dil ∣− dc

DRA ∶ de,dir,dil ∣− dra
DLA ∶ de,dir,dil ∣− dla

DD ∶ de,dir,dil ∣− dd
DI ∶ de,dir,dil ∣− di

Proof. The proofs of (DC), (DRA), and (DD) are depicted in Figure 12. Proof of (DLA) is similar to the
proof of (DRA), and (DI) is an immediate consequence of de and the definition of m-inference.
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▾

(p∇q)

p

(q∇p)

q

(q∇p)

de

dir dil

▾

((p∇q)∇r)

(p∇q)

p

(p∇(q∇r))

q

(q∇r)

(p∇(q∇r))

r

(q∇r)

(p∇(q∇r))

de

de

dir dir

dir

dil

dil

▾

((p∇r)∇(q∇r))

(p∇r)

p

(p∇(q∇r))

r

(q∇r)

(p∇(q∇r))

(q∇r)

(p∇(q∇r))

de

de

dir dil

dil

dil

Figure 12. Proof of (DC), (DRA), (DD).

Definition 6. A set of m-rules R is m-disjunctive if for some formula ∇(p, q) (some nonempty finite set
of formulas) in two variables, rules dir,dil, and de are derivable from R, and we call formula(s) ∇ an
m-protodisjunction for R (comp. with the notion of protodisjunction in works by the authors of [13,17]).

Definition 7. An m-logic L has the disjunction property (DP for short) if rules dir , dil, and de are admissible
in L, that is, if L̃ is m-disjunctive.

For instance, modal logic S4 has the Disjunction property relative to m-protodisjunction
∇ ∶= (◻p ∨◻q).

Let us observe that if R is an m-disjunctive set (or L enjoys the DP), then rules dc,dra,dla,dd,di are
derivable from R (or respectively, these rules are admissible for L).

It is important that m-protodisjunction is defined uniquely up to R-equivalence in the
following sense.

Let R be a set of m-rules. Sets of formulas Γ and Δ are said to be R-equivalent if

Γ ∣− RD, for each D ∈ Δ and Δ ∣− RA, for each A ∈ Γ.

Proposition 4. Let R be an m-disjunctive set of rules, and ∇0 and ∇1 be m-protodisjunctions for R. Then ∇0

and ∇1 are R-equivalent.

Proof. Suppose that D ∈ ∇1 and ∇0 = {Di, i < n}. An m-inference of D from ∇0 is depicted in
Figure 13.
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▾

D0(p, q)

Dn−1(p, q)

p

D(p, q)

q

D(p, q)

de

dil dir

Figure 13. Proof of Proposition 4.

Let us note, that if a logic has conjunction with regular properties, ∇ can be reduced to
a single formula.

Note 1. In order not to add an extra layer of complexity, in this paper we consider only the case when ∇
consists of a single formula, even though the main results hold in a general case.

If R is an m-disjunctive set of m-rules or if ∣−L is an m-logic with the DP, we always assume that
meta-disjunction is expressible by a formula ∇ .

Example 3. Let us consider intuitionistic propositional logic Int and normal modal logic S4. For Int we can take
p∇ q = p ∨ q. For S4 we can take p∇ q = ◻p ∨◻q. It is clear that rules dir and dil are derivable in these logics,
that is, p ∣−L p∇ q and q ∣−L p∇ q, where L ∈ {Int,S4}, and all three rules (dir , dil, and de) are admissible for Int
and S4 [11]. For logic BCK one can take p∇ q = (p → q) → q. Let us point out that rule dc ∶= p∇ q/q∇ p is
admissible for BCK, but it is not derivable [18] (Theorem 4.2).

4.2. Properties of m-Protodisjunction

In this section, we prove that with respect to ∣∼ , m-protodisjunction has the properties which
disjunction is expected to have.

Proposition 5. Suppose ∇ is an m-protodisjunction for a set of m-rules R. Then for any formulas A, B ∈ Fm,
and any Γ, Δ ⋐ Fm,

Γ, A ∣−R Δ and Γ, B ∣−R Δ entails Γ, A∇B ∣−R Δ. (4)

Proof. One can apply de to Γ, A∇B and obtain two cases to consider: Γ, A and Γ, B. In each of these
cases one can derive Δ.

Immediately from Proposition 5 it follows that if ∣−L is an m-logic enjoying the DP, then for any
formulas A, B ∈ Fm and any Γ, Δ ⋐ Fm,

Γ, A ∣∼L Δ and Γ, B ∣∼L Δ entails Γ, A∇B ∣∼L Δ (5)

and consequently,
Γ, A ∣∼L C and Γ, B ∣∼L C entails Γ, A∇B ∣∼L C, , (6)

and
A ∣∼L C and B ∣∼L C entails A∇B ∣∼L C. (7)
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If Δ ∶= {B0, . . . , Bm−1} is a finite set of formulas, we let

∇(∅) ∶= ∅ , when m = 0
∇({B0}) ∶= B0 , when m = 1
∇(Δ) ∶= B0∇ . . . ∇Bm−1 , when m > 1.

(8)

Thus, ∇ converts any finite nonempty set of formulas into a single formula.
m-Protodisjunction has the following property.

Corollary 4. Suppose Δ is a nonempty finite set of formulas and R is a set of m-rules with m-protodisjunction
∇ (or ∣−L is an m-logic with the DP). Then

∣−R∇(Δ) if and only if ∣−R B for some B ∈ Δ

(accordingly, ∣∼L ∇(Δ) if and only if ∣∼L B for some B ∈ Δ).

Proof. The corollary can be proven by a simple induction on cardinality of Δ.

Let us introduce the following notations: suppose that A is a formula, Γ, Δ are sets of formulas,
r ∶= Γ/Δ, and q is a variable not occurring in A and formulas from Γ and Δ. Then

(a) Aq ∶= A∇ q;
(b) if Γ ≠ ∅, then Γq ∶= {Aq ∶ A ∈ Γ};
(c) ▾q ∶= ▾∇ q = ▾ (because ▾ represents meta-truth);
(d) ▴q ∶= ▴∇ q = q (because ▴ represents meta-falshood);
(e) rq ∶= Γq/Δq;
( f ) ∇(r) ∶= Γ/∇(Δ);
(g) ř ∶= Γq/∇(Δq), i.e., ř = ∇(rq).

(9)

If R is a set of m-rules and q is a variable not occurring in any m-rule from R,

Rq ∶= {rq ∶ r ∈ R} and Ř ∶= {ř ∶ r ∈ R}

Remark 2. Note that if r ∶= Γ/▴ is a terminating rule and q ∉ Var(r), then, rq = Γq/q and the latter is
a conclusive rule. Thus, for any m-rule r ∶= Γ/Δ and any q ∉ Var(r), the rule ř = Γq/∇(Δq) is always a
conclusive rule: even if Δ = ∅, we have ▴q = q and ∇(q) = q (cf. Equation (8)). If r is a conclusive rule, the rules
rq and ř coincide. Hence, if R is a set of conclusive rules, Rq = Ř.

Example 4. If r ∶= (¬p0 → (p1 ∨ p2))/((¬p0 → p1) ∨ (¬p0 → p2)), then

rq ∶=
(¬p0 → (p1 ∨ p2)) ∨ q

((¬p0 → p1) ∨ (¬p0 → p2)) ∨ q
.

Rule r is admissible for any extension of Int [19], while rule rq is admissible for any extension of Int enjoying the
disjunction property.

If r ∶= ◇p ∧◇¬p/▴, then

rq ∶=
(◇p ∧◇¬p)∇ q

q
, where ∇ is the strong disjunction: A∇B ∶= ◻A ∨◻B.

Rule r is admissible for any normal modal logic extending D4 [10], while rule rq is admissible for any normal
modal logic extending D4 enjoying the disjunction property.
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Proposition 6. Let R be a set of conclusive rules, Γ be a finite set of formulas and A, B, C be formulas. Then,

R ∣−
Γ, A

C
entails D,Rq ∣−

Γ, A∇B
C∇B

.

Proof. Let I be a single-conclusion inference of C from Γ, A. Then C is the last formula in I. There are
three cases to consider: (a) C = A; (b) C ∈ Γ; (c) C is obtained from some preceding formulas by
a conclusive rule from R.

Case (a). Is trivial.

Case (b). If C ∈ Γ, then by the definition of m-inference, R ∣− Γ/C. Thus, R ∣− Γ, A∇B/C and, by dir,
we get ∣− Γ, A∇B/C∇B.

Case (c). Suppose C is obtained by an instance C0, . . . , Cm−1/C of some rule r ∈ R. Then,

C0∇B, . . . , Cm−1∇B/C∇B

is an instance of rq and we can easily convert inference I into the inference of C∇B (see Figure 14).

C0

. . .

Cm−1

C

by r

C0

. . .

Cm−1

C0∇B

. . .

Cm−1∇B

C∇B

by dir

by dir

by rq

Figure 14. Proof of Prop. 6.

Corollary 5. Let R be a set of conclusive rules, Γ be a finite set of formulas and A0, . . . , Am−1, C be formulas.
Then, for any i < m,

R ∣−
Γ, Ai

C
entails D,Rq ∣−

Γ, A0∇ . . . ∇Am−1

A0∇ . . . ∇Ai−1∇C∇Ai+1∇ . . . ∇Am−1
.

Proof. Indeed, for i = 0 we can take B = A1∇ . . . ∇Am−1 and use Proposition 6. In the case when i > 0,
we can use commutativity and associativity of ∇ and reduce this case to the case i = 0.

5. From Admissible m-Base to Admissible Base

Our goal is to demonstrate that for any consistent m-logic with the DP, the problem of admissibility
of any given proper m-rule can be reduced to the problem of admissibility of some conclusive rule.

Theorem 3. Suppose ∣−L is a consistent m-logic with the DP. Let r ∶= Γ/Δ be a proper m-rule and q be a
variable not occurring in r. Then the following are equivalent.

(a) m-Rule r is admissible for ∣−L ;
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(b) m-Rule rq is admissible for ∣−L ;
(c) Rule ř = Γq/∇(Δq) is admissible for ∣−L ;
(d) Rule ∇(r) = Γ/∇(Δ) is admissible for ∣−L .

Proof. (a) �⇒ (b). Assume that proper m-rule r ∶= Γ/Δ is admissible for ∣−L . Because r is proper,
Δ ≠ ∅. Let us consider the three following cases:

Γ = ∅, that is, r = ▾/Δ and rq = ▾/Δq;
Γ ≠ ∅, that is rq = Γq/Δq.

Case Γ = ∅. Admissibility of ▾/Δ entails that there is B ∈ Δ such that ∣−L B and consequently,
for every substitution σ, ∣−L σ(B). Hence, because dir is admissible for ∣−L , for every substitution σ, we
have ∣−L σ(B)∇σ(q) and therefore, rule ▾/Δq is admissible for ∣−L .

Case Γ ≠ ∅. We need to prove that for any substitution σ,

if ∣−L σ(A)∇σ(q) for all A ∈ Γ, then there is B ∈ Δ such that ∣−L σ(B)∇σ(q).

Let σ be a unifier of Γq, that is ∣−L σ(A)∇σ(q) for all A ∈ Γ. Let us consider two subcases:

(i) σ unifies Γ;
(ii) σ does not unify Γ.

Proof of (i). Recall that r is admissible for ∣−L . Therefore, if σ unifies Γ, that is, ∣−L σ(A) holds for all
A ∈ Γ, by admissibility, there is B ∈ Δ such that ∣−L σ(B). Hence, because rule dir is admissible for ∣−L ,
we can apply it and obtain ∣−L σ(B)∇σ(q).

Proof of (ii). Suppose that σ does not unify Γ. Then, there is A ∈ Γ such that /∣− L σ(A). On the other
hand, σ unifies Γq and hence, ∣−L σ(A)∇σ(q). Then, by the Disjunction Property, ∣−L σ(q). Rule dil is
admissible for ∣−L , hence, ∣−L σ(q) entails ∣−L σ(B)∇σ(q) for every B ∈ Δ.

(b) �⇒ (c). Suppose m-rule rq ∶= Γq/Δq is admissible for ∣−L . We need to prove that rule
Γq/∇(Δq) is admissible for ∣−L . Let σ be a substitution which unifies Γq, that is, σ makes all premises
Γq derivable. Then, our assumption entails that ∣−L σ(Bq) holds for some B ∈ Δ. Hence, by virtue of
Corollary 4, ∣−L∇(σ(Δq))which means that ∣−L σ(∇(Δq)) holds.

(c) �⇒ (d). Suppose that rule Γq/∇(Δq) is admissible for ∣−L . We need to prove that rule
Γ/∇(Δ) is admissible for ∣− L. Let us consider two cases: Γ = ∅ and Γ ≠ ∅.

Case Γ = ∅, that is, rule ▾/∇(Δq) is admissible for ∣−L . Hence, if Δ consists of a single formula B,
we have ∣−L Bq. If Δ contains more than one formula, by the disjunction property, there is a formula
B ∈ Δ such that ∣−L Bq. If we take into account that /∣− L q and apply the disjunction property to ∣−L B∇ q,
we can conclude that ∣−L B holds and hence, ∣−L σ(B) holds for every substitution σ. Thus, rule ▾/∇(Δ)
is admissible for ∣−L .

Case Γ ≠ ∅ and we need to show that rule Γ/∇(Δ) is admissible for ∣−L . Let σ be a substitution
that unifies Γ, that is ∣−L σ(A) for all A ∈ Γ.

Recall that ∣−L is consistent, therefore there is a formula C such that /∣− L C. Take the substitution

σ′(p) =
⎧⎪⎪
⎨
⎪⎪⎩

σ(p), if p ≠ q

C otherwise.

Because q does not occur in formulas from Γ, for all A ∈ Γ, σ′(A) = σ(A), and, consequently,
σ′(Aq) = σ(A)∇C. By the assumption, ∣−L σ(A), and hence by dir, ∣−L σ(A)∇C, that is,
∣−L σ′(Aq). Thus, σ′ unifies Γq. Now, we can apply the assumption that rule Γq/Δq is
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admissible, and we can conclude that for some formula B ∈ Δ, formula σ′(Bq) is derivable.
Thus, because σ′(Bq) = σ′(B∇ q) = σ′(B)∇C, formula σ′(B)∇C is a theorem. Recall that we selected
C not to be a theorem, hence, by the Disjunction Property, formula σ′(B) is a theorem. And because
variable q does not occur in B, we have σ′(B) = σ(B), and it means that σ(B) is a theorem and rule Γ/Δ
is admissible.

(d) �⇒ (a). Suppose that the rule Γ/∇(Δ) is admissible for ∣−L . Let σ be a unifier for Γ. Then,
by the admissibility of Γ/∇(Δ), we have ∣− σ(∇(Δ)). Now, we can apply Corollary 4 and conclude
that for some B ∈ Δ, ∣−L σ(B). Thus, the rule Γ/Δ is admissible in ∣−L .

Remark 3. For any consistent m-logic ∣−L with the disjunction property, the rules r and rq are either both
admissible, or both not admissible. Moreover, r can be derived from rq, while the converse needs not to be true:
the restricted Visser rule V−n is derivable from the Visser rule Vn [20], while the converse does not hold [21]
(Corollary 2). If the m-rules dir , dil , and de are not just admissible (which is required by the disjunction
property), but they are derivable in ∣−L , then rq is derivable from r.

Logic L is a-decidable if the problem of admissibility of conclusive rules in L is decidable, and logic
L is am-decidable if the problem of admissibility of m-rules in L is decidable.

Corollary 6. For every consistent m-logic with the DP, the problems of a- and am-admissibility are equivalent.

Example 5. It is well known from [11] that logics Int,S4,K4,Grz,GL enjoy the DP. Therefore, because the
problem of a-admissibility for them is decidable [22–24], the problem of m-admissibility for these logics is
decidable too. In algebraic terms, for each of these logics, the universal theory of the Lindenbaum algebra is
decidable [24] (Theorem 10).

5.1. A Note on Terminating Rules

The goal of this section is to show that terminating rules can be eliminated from any m-inference
of any proper rule.

If R is a set of m-rules, by R we denote a set of proper m-rules obtained from R by replacing every
terminating rule t ∶= A1, . . . , An/▴ ∈ R with conclusive rule t ∶= A1, . . . , An/q, where q does not occur in
any of formulas Ai, i = 1, . . . , n.

Proposition 7. Suppose that there is an m-inference I of a proper rule Γ/Δ from R. Then, there is an inference
I of Γ/Δ from R that does not contain terminal leaves.

Proof. Let I be an m-inference of Γ/Δ from R. By assumption, rule Γ/Δ is proper, hence, Δ is not empty.
Suppose that B ∈ Δ.

Let us observe that, by the definition of m-inference, application of any terminating rule gives a
leaf of this m-inference. Thus, if t = A1, . . . , An/▴ ∈ R and σ(A1), . . . , σ(An)/▴ is an instance of t that
we have been used in I, instead, we can use the instance σ(A1), . . . , σ(An)/B of a proper rule t that
belongs to R. And in such a way, we can eliminate all applications of the terminating rules from I .

From Proposition 7 it immediately follows that for strongly consistent logics any m-base (finite
m-base) can be converted into an m-base (finite m-base) containing at most one terminating m-rule.

Proposition 8. Let R be an m-base (a relative m-base) of strongly consistent m-logic in which formula A is not
unifiable and let R′ ∶= R∪ {A/▴}. Then R′ is an m-base (relative m-base).

116



Axioms 2019, 8, 100

Proof. First, from Proposition 7, it follows that every conclusive admissible rule is derivable from R.
Next, if m-rule Γ/▴ is admissible, then rule Γ/A is admissible too, and hence it is derivable from R.
Thus, m-rule Γ/▴ is derivable from R.

5.2. Converting Admissible m-Base into Admissible Base

To convert a given relative admissible m-base R of a given logic L with the DP into a relative base,
one can do the following: convert every rule r = Γ/Δ from R into rule Γq/∇(Δq); the obtained set of
rules we denote Ř. The set Ř consists of conclusive rules (cf. Remark 2). From Theorem 3 we know
that each rule from Ř remains admissible. Below, we show that every admissible for L conclusive rule
can be derived from Ř. Let us note that as a result of such a conversion some m-rules become trivial,
for instance, d̂e:

p1∇ p2/p1, p2 becomes p1∇ p2∇ q/p1∇ p2∇ q.

Theorem 4. Suppose that L is a logic with the DP and R is an admissible m-base (a relative m-base) of L, then,
Ř is an admissible base (respectively, a relative base) of L.

To prove Theorem 4, we prove a bit more general Theorem 5, which holds not only for the logics
enjoying the DP. Recall from Proposition 3 that all rules from D (cf. Equation (3)) representing the
properties of ∇ are derivable in any logic with the DP. Hence, we can take Δ in Theorem 5 to be a
singleton, and we will obtain Theorem 4 as a corollary.

Theorem 5. Suppose R is a set of proper m-rules, and r ∶= Γ/Δ is a proper rule. If

R ∣− Γ/Δ,

then
D, Ř ∣− Γ/∇(Δ).

In other words, any m-inference of Γ/Δ from R can be converted into inference of Γ/∇(Δ) from Ř

which is a single-conclusion inference, because all rules from D and Ř are conclusive.

Proof. Let I be a (Γ,R)-inference and Δ is a set of formulas which appear in the leaves of I.
Without loss of generality we can assume that each formula from Δ appears in a leaf of the inference: if
λ(lv(I)) = Δ′ ⊊ Δ, after we have derived ∇(Δ′), we can apply (multiple times if necessary) rule dir and
derive ∇(Δ).

Let k be the number of nodes of I having more than one immediate successor (in other words, k
represents the number of applications of inconclusive rules). By induction on k we prove that for any
(Γ,R)-inference, such that λ(lv(I)) = Δ, there is a (Γ,D∪ Ř)-inference, I′, such that λ(lv(I′)) = ∇(Δ).
Let us note that because all members of D∪ Ř are conclusive rules, I′ is a linear inference and has a
single leaf labeled by ∇(Δ).

Basis. If k = 0, then I is a linear inference. By the assumption, R is a set of proper m-rules and
therefore, it does not contain any terminating rules. Hence, the leaf of I contains a formula D from Δ,
and using the rules from D one can easily extend I to derive ∇(Δ).

Assumption. Assume that for any (Γ,R)-inference I having less than k branching nodes, there is
an (D∪ Ř, Γ)- inference I′ the leaf of which contains ∇(Δ).

Step. Let I be a (Γ,R)-inference having k branching nodes. Let n be a branching node having
no branching successors. Suppose that B0, . . . , Bm−1 is a list of formulas in the leaves below n,
and Bm, . . . , Bn−1 is a list of all formulas in the leaves that are not successors of n. Assume also
that λ(n) = B (see Figure 15) and alternatives C0, . . . , Cm−1 are obtained by application of inconclusive
rule r ∶= A0, . . . , As−1/C0, . . . , Cm−1 from R.
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▾

. . .

B

C0

B0

. . .

. . .

Cm−1

Bm−1

. . .

Bm . . . Bn−1

r

Figure 15. Prop. 5: Initial Inference.

Let us remove all successors of n from I. By Proposition 1(a), the resulting tree is also a
(Γ,R)-inference with B, Bm, . . . , Bn−1 in its leaves (see the left-hand side of Figure 16).

Observe that ř = A0∇q, . . . , An−1∇q/C0∇ . . .∇Cm−1∇q, hence

A0∇C, . . . , As−1∇C/C0∇ . . .∇Cm−1∇C, (10)

where C ∶= C0∇ . . .∇Cm−1, is an instance of ř. As all formulas A0, . . . , As−1 are in the nodes preceding n,
we can extend the reduced inference (see Figure 16).

By Corollary 5, from C0∇C1∇ . . .∇Cm−1 we can derive

B0∇C1∇ . . .∇Cm−1.

Then we can apply Corollary 5 again and get

B0∇B1∇ . . .∇Cm−1.

And so on, until we got
B0∇B1∇ . . .∇Bm−1

In such a way we obtain the inference depicted in Figure 17.

▾

. . .

B

. . .

Bm . . .

Reduction

Bn−1

▾

. . .

B

A0∇C

. . .

As−1∇C

C0∇ . . .∇Cm−1∇C

C0∇ . . .∇Cm−1

Extension

. . .

Bm . . . Bn−1

dir

dir

rq

di

Figure 16. Theorem 5: Step.
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▾

. . .

B

A0∇C

. . .

As−1∇C

C0∇ . . .∇Cm−1∇C

C0∇ . . .∇Cm−1

. . .

B0∇ . . .∇Bm−1

. . .

Bm . . . Bn−1

dir

dir

rq

di

Figure 17. Theorem 5: Finishing Step.

Let us observe that the obtained inference contains k − 1 branching nodes, therefore we can apply
the induction assumption and convert the obtained inference into an inference of B0∇ . . .∇Bn−1, using,
if necessary, rules from D.

Corollary 7. Suppose that L is a logic enjoying the DP. Then, if L has a finite admissible m-base (relative
m-base), then, L has a finite admissible base (relative base).

Example 6. It was proven in [22] by Rybakov that logics Int and S4 have no finite relative admissible bases.
Hence, these logics have no finite relative admissible m-bases either.

6. From Admissible Base to Admissible m-Base

In the previous section we saw how to convert a given (relative) admissible m-base R of a logic
with the DP into a (relative) admissible base Ř. In this section, we show how to convert a given
(relative) admissible base into a (relative) admissible m-base.

Theorem 6. Suppose that L is a logic and R is an admissible base (relative base). Then, if L is strongly consistent
and there is a nonunifiable in L finite set of formulas Ξ, the set R∪ {DP, Ξ/▴} is an admissible m-base (relative
m-base); otherwise, R∪ {DP} is an admissible m-base (relative m-base).

Proof. First, let us prove that every proper admissible rule is derivable from R∪ {DP} for L. Indeed,
suppose that r ∶= Γ/Δ is a proper m-rule admissible in L. If Δ consists of a single formula, m-rule r is a
conclusive rule, and hence by the definition of the base, r is derivable from R. Suppose ∣Δ∣ > 1. Let us
consider rule Γ/∇(Δ). By Theorem 3(d), Γ/∇(Δ) is admissible for L, and hence, Γ/∇(Δ) is derivable
from R. Now, we can ∣Δ∣ − 1 times apply de and obtain Γ/Δ. Thus, Γ/Δ is derivable from R∪ {DP}.

For relative bases one can take a set of conclusive rules L∪R and repeat the preceding argument.
Next, we prove that if Ξ is a finite nonunifiable in L set of formulas, then every admissible for L

terminating m-rule can be derived from R∪ {Ξ/▴}.
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Indeed, suppose that m-rule r = Γ/▴ is admissible for L. Then, Γ is a nonunifiable in L finite set of
formulas and hence, conclusive rule Γ/A is admissible in L for every formula A. In particular, m-rules
Γ/B are admissible for each B ∈ Ξ. Therefore, because R is a base, rule Γ/B is derivable from R for each
B ∈ Ξ. Thus, each premise of rule Ξ/▴ is derivable from Γ and by transitivity of consequence relation,
Γ/▴ is derivable from R, Ξ/▴.

For relative bases one can take a set of conclusive rules L ∪ R and repeat the preceding
argument.

Corollary 8. Suppose that L is a logic enjoying the DP. Then, if L has a finite admissible base (relative base),
then L has a finite admissible m-base (relative m-base).

Combining together Corollaries 7 and 8, we obtain the following.

Corollary 9. A logic with the DP has a finite admissible base (relative base) if and only if it has a finite admissible
m-base (relative m-base).

7. Some Applications

(1) Logics K4,K4.1,S4,S4.1,Grz, Int,Dn, n ≥ 1 are a-decidable [9]. Hence, by Corollary 6, all these
logics are am-decidable.

(2) Logics Pos and Jhn are a-decidable [25]; hence, by Corollary 6, these logics are am-decidable.
(3) A relative admissible base for conclusive rules for Int was established in [16]. Adding m-rules

p∨ q/p, q and p,¬p/▴ to this relative base (or any relative base for this matter) gives us a relative m-base
described in [26].

(4) It is known from [19] that Medvedev’s logic ML (which enjoys the DP) is structurally complete.
Hence, m-rules p ∨ q/p, q and p,¬p/▴ form a relative to ML admissible m-base.

(5) Gabbay-de Jongh logics BBn, n > 1 enjoy the DP [27]. The relative m-bases for these logics
have been constructed in [28] (Theorem 5.36):

rn ∶= (∨n
i=1(pi → p) → ∨n

j=1 pj)/ ∨
n
j=1 ((∨

n
i=1 pi → p) → pj),de, t,

where t ∶= p,¬p/▴. By Theorem 4, řn (or rq
n, because rules rn are conclusive) gives a relative admissible

base for BBn:
ř ∶= (∨n

i=1(pi → p) → ∨n
j=1 pj) ∨ q/ ∨n

j=1 ((∨
n
i=1 pi → p) → pj) ∨ q.

Note that we did not include ďe and ť because these rules are trivial:

ďe = p1 ∨ p2 ∨ q/p1 ∨ p2 ∨ q and ť = p ∨ q,¬p ∨ q/q.
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1. Temporal Logic

Temporal logic is the logic in which they appear, as logical constants, expressions whose meaning
is determined by a reference to time. In its wide sense, temporal logic includes all logical problems of
temporal representation of information. The task of temporal logic is to define and systematize inference
rules for reasoning carried out in a language in which the same expression in terms of shape is used to
pronounce sentences whose logical value may not be the same in different temporal contexts of their use.

The precursor of temporal logics was A. N. Prior. One of Prior’s basic concepts was the temporal
interpretation of modal operators. The enriched language of temporal logic was to enable formalization of
reasoning regarding situations changing in time. Originally, temporal logic was to be a tool for formalizing
philosophical, linguistic and semiotic considerations. Currently, apart from these applications, temporal
logic is also widely used in computer science.

Among temporal logics, tense logic stands out, i.e., logic in a language whose only specific time
operators are grammatical operators.

2. Kt—Minimal Tense Logic

The basic deductive system of logic of time is the Kt system (Kt is a temporal analogue of the K system
(minimal deductive system for modal logic).). Kt is a tense logic system built over classical propositional
calculus by enriching this logic with specific axioms and rules. This is the minimal system. Therefore,
the theses of this system are all and only those sentences that are true regardless of what properties time
has (In fact, one assumption is made about the structure of time, namely it is assumed that a semantic time
in the Kt has a point structure.).

The Kt system, as a minimal system, can be expanded by adding additional rules and specific axioms.
In this sense, the minimality of Kt means that any other temporal logic system built above classical
propositional logic is richer than the Kt. In the tense logics we have the tense operators: F, G, P, H
understood as follows:

Axioms 2020, 9, 67; doi:10.3390/axioms9020067 www.mdpi.com/journal/axioms
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Fϕ - it will be that ϕ,

Pϕ - it was that ϕ,

Gϕ - it always will be that ϕ,

Hϕ - it always was that ϕ.

However, usually the operators F and G and operators P and H are mutually definable (The mutual
definability of operators F and G as well as P and H occur in temporal logic systems based on classical
logic. In temporal logic systems based on intuitionistic or multi-valued logic, the mutual definability of
these operators usually does not take a place.).

Definition 1 (The alphabet of the language LKt ).

• countable set of propositional letters AP ,
• connectives: ¬,→,
• temporal operators: G, H (In some tense logic systems, as a primary operators are assumed F and P.),
• brackets: ), (.

A set of sentences is defined as follows:

Definition 2 (A set of sentences ). The set of sentences is the smallest set FOR(LKt) such that:

• AP ⊆ FOR(LKt),
• if ϕ, ψ ∈ FOR(LKt), then ¬ϕ, ϕ → ψ, Gϕ, Hϕ ∈ FOR(LKt).

In the language LKt , all boolean symbols retain their meaning. However, there are additional specific
operators in this language. Therefore, when we speak about the validity of propositions due to the meaning
of classical propositional connectives, then we mean the sentences in which new operators occur.

We accept the following abbreviations:

(a) ϕ ∨ ψ ≡ ¬ϕ → ψ,

(b) ϕ ∧ ψ ≡ ¬ (ϕ → ¬ψ) ,

(c) ϕ ↔ ψ ≡ ¬ [(ϕ → ψ)→ ¬ (ψ → ϕ)] ,

(d) Fϕ ≡ ¬G¬ϕ,

(e) Pϕ ≡ ¬H¬ϕ.

Axioms

The Kt system is axiomatizable (The axiomatic system is one of many possible forms of a deductive
system. This approach to construction of a deductive system has many advantages when it comes to
methodological research. However, in case of axiomatic systems, we have some problems when it comes
to practical command. This is due to the unstructured axiomatic systems. The structure of the sentence
does not indicate the method of proving this sentence. In the case of other approaches to construction of a
deductive system, e.g., sequent calculus, natural deduction or semantic tables, it is different.). Various
sets of axioms and rules of this system were proposed. These differences are primarily due to the decision
on a set of specific primitive symbols. Usually, the set of these symbols consists of the symbols G and
H, while F and P are defined. When building a set of axioms for invariant systems, i.e., systems without
the rule of substitution for sentence letters, apart from specific axiom schemes, either all tautologies of
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classical propositional logic or only selected tautology schemes are taken, but they are selected in such a
way that all tautologies of classical propositional logic can be obtained. In this work, we used the second
option and for the purposes of our considerations regarding Kt we will adopt the following set of axioms:

Axioms:

For any sentences ϕ, ψ ∈ LKt (Kt can be axiomatizable in many ways. The completeness of the Kt

with respect of these set of axioms was demonstrated by J. F. A. K. van Benthem [? ].).

1. All tautologies of the classicall propositional calculus of the language LKt ,
2. G(ϕ → ψ)→ (Gϕ → Gψ),
3. H(ϕ → ψ)→ (Hϕ → Hψ),
4. ϕ → GPϕ,
5. ϕ → HFϕ.

Rules

MP :
ϕ → ψ, ϕ

ψ
. RG :

ϕ

Gϕ
RH:

ϕ

Hϕ
.

The specific Kt axioms are the 2–5 axioms. Axioms 2–3 are temporal equivalents of the K axiom for
modal logics. These axioms apply only to the properties of G and H, respectively. Axioms 4–5 bind the
operators G and P as well as H and F respectively.

The proof in Kt is understood in the usual way.

Definition 3 (Proof in Kt). Let Σ be any set of sentences of the language LKt . The sentence string ϕ0, ϕ1, ..., ϕn is
a proof of the sentence ϕ from the set Σ, (we write Σ �Kt ϕ) if and only if ϕ = ϕn and for any i such that 0 ≤ i ≤ n
at least one of the following conditions holds:

1. ϕi is an element of the set Σ,
2. ϕi is an axiom,
3. ϕi is obtained from their predecessors by MP, RG or RH, respectively.

The sentence ϕ, which is derived from the empty set Σ, or ∅ �Kt ϕ, is the thesis of the system Kt.
Instead of writing ∅ �Kt ϕ, we will write �Kt ϕ.

In the Kt system, if a subsentences ϕ of the sentence φ is equivalent to the sentence ψ, entering φ in
the place of the sentence ϕ as the inscription of the sentence ψ, φ(ψ/ϕ), gives the sentence equivalent to φ.

Theorem 1. If Σ �Kt ϕ ↔ ψ, then Σ �Kt φ ↔ φ(ψ/ϕ). (This theorem is not just the Kt theorem. It is the theorem
of tense priorist logic.)

Proof. We will prove by induction due to the length of the sentence φ. Let Σ �Kt ϕ ↔ ψ. Let φ be
a propositional letter p. The only subsentence of a sentence φ is the propositipnal letter p. Then ϕ is
equal p. Result of replacement ϕ in the φ by ψ will be the sentence ψ. Because by assumption we have
Σ �Kt ϕ ↔ ψ, then:

Σ �Kt φ ↔ φ(ϕ/ψ).

As an induction assumption, we assume that for any sentence φi witch length is not greater than k the
thesis is true, i.e.,

Σ �Kt φi ↔ φi(ϕ/ψ).
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We will show that this thesis is also true for sentences of length k + 1.
Let the string ϕ1, ϕ2, ..., ϕn(= φi ↔ φi(ψ/ϕ)) be a proof of the sentence: φi ↔ φi(ψ/ϕ). We add the

following sentences to this proof:

n+1. ¬φi(ϕ/ψ)↔ ¬φi TRANS, n
n+2. (¬φi(ϕ/ψ)↔ ¬φi)→ (φi ↔ φi(ϕ/ψ)) axiom 1
n+3. φi ↔ φi(ϕ/ψ) MP,n+1,n+2

The sentence ¬φi(ϕ/ψ) is (¬φi)(ϕ/ψ), then:

Σ �Kt ¬φi ↔ (¬φi)(ϕ/ψ).

Let it now φ will be according to the character φi → φj, with sentences φi and φj meet the induction
assumption, i.e.,

Σ �Kt φi ↔ φi(ϕ/ψ)

and

Σ �Kt φj ↔ φj(ϕ/ψ).

Let the string ϕ1, ϕ2, ..., ϕk(= φi ↔ φi(ψ/ϕ)) be a proof of the sentence φi ↔ φi(ψ/ϕ), while the
string ϕk+1, ϕk+2, ..., ϕn(= φj ↔ φj(ψ/ϕ)) be a proof of the sentence: φj ↔ φj(ψ/ϕ). To the sequence of
the sentences ϕ1, ϕ2, ..., ϕk, ϕk+1, ϕk+2, ..., ϕn we add sentences:

n+1. (φi ↔ φi(ψ/ϕ))→ {(φj ↔ φj(ψ/ϕ))→ [(φi → φj)↔ (φi(ψ/ϕ)→ φj(ψ/ϕ))]} axiom 1
n+2. (φj ↔ φj(ψ/ϕ))→ [(φi → φj)↔ (φi(ψ/ϕ)→ φj(ψ/ϕ))] MP,k,n+1
n+3. [(φi → φj)↔ (φi(ψ/ϕ)→ φj(ψ/ϕ))] MP,n,n+2

(φi(ψ/ϕ)→ φj(ψ/ϕ))] is the sentence (φi(ψ → φj(ψ/ϕ))], so we received proof that

Σ �Kt (φi → φj)↔ (φi → φj(ψ/ϕ)).

Now let us consider the case when the sentence φ is the sentence of the form Gφi, with the sentence
φi is a sentence satisfying the induction assumption, i.e., Σ �Kt φi ↔ φi(ϕ/ψ). Let the string ϕ1, ϕ2, ..., ϕn

be a proof of the sentence φi ↔ φi(ϕ/ψ) from the sentence Σ. To the proof we add:

n+1. Gφi ↔ Gφi(ϕ/ψ).

Gφi(ϕ/ψ) is the sentence (Gφi)(ϕ/ψ). So we received proof that

Σ �Kt Gφi ↔ Gφi(ϕ/ψ).

The case where the sentence φ is according to the form Hφi is similar to the case when φ is the sentence
Gφi.

The Theorem ?? will be used in the proof of the next Theorem, which says that one of the Kt inference
rules is the REQ replacement rule. This rule is a very useful rule in proving the theses of the Kt system.

Theorem 2 (Rule REQ). If Σ �Kt ϕ ↔ ψ, then
φ

φ(ψ/ϕ)
.

Proof. Let Σ �Kt ϕ ↔ ψ and Σ �Kt φ. According to the Theorem ?? there is a proof of the sentence
φ ↔ φ(ϕ/ψ) from the set Σ. To this proof we add the proof of the sentence φ. We add to the proof
sequence the sentence φ(ϕ/ψ), which is a result from applying the Modus Ponens rule to sentences: φ and
φ ↔ φ(ϕ/ψ).
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In addition to the three inference rules proposed in this version of the axiomatics of the Kt system can
be used to derive in this system the rules corresponding to the regularity rule for modal logics.

Theorem 3. The RRG rule :
ϕ → ψ

Gϕ → Gψ
is a rule of Kt.

Proof. To demonstrate that RRG is a secondary rule Kt, it must be demonstrated that

if Σ �Kt ϕ → ψ, then Σ �Kt Gϕ → Gψ.

Let Σ �Kt ϕ → ψ. Let the sequence ϕ1, ..., ϕn will prove the sentence ϕ → ψ from the set Σ. To this we
add the following sentences:

n+1. G(ϕ → ψ) RG,n
n+2. G(ϕ → ψ)→ (Gϕ → Gψ) axiom 2
n+3. Gϕ → Gψ MP,n+1,n+2.

The resulting sequence is a proof of the sentence Gϕ → Gψ from the set Σ.

Theorem 4. The RRH rule :
ϕ → ψ

Hϕ → Hψ
is a secondary rule of Kt.

Proof. Analogical to the proof of the previous theorem (using the axiom 3 and the rule RH).

Based on Theorems ?? and ?? two further inference rules can be derived in Kt.

Theorem 5. The RF rule :
ϕ → ψ

Fϕ → Fψ
is a secondary rule of Kt.

Proof. Let Σ �Kt ϕ → ψ. Let the sequence: ϕ1, ..., ϕn will prove the sentence ϕ → ψ from the set Σ. To this
we add the following sentences:

n+1. ¬ψ → ¬ϕ TRANS,n
n+2. G¬ψ → G¬ϕ RRG,n+1
n+3. ¬G¬ϕ → ¬G¬ψ TRANS,n+2
n+4. Fϕ → Fψ REQ(¬G¬ϕ/Fϕ), REQ(¬G¬ψ/Fψ).

The resulting sequence is proof of the sentence Fϕ → Fψ from the set Σ.

Theorem 6. The RP rule :
ϕ → ψ

Pϕ → Pψ
is a secondary rule of Kt.

Proof. Analogical to the proof of the Theorem ??.

Operators H,P and G,F have the Mirror Image Property.

Definition 4 (Mirror Image Property). The mirror image of the ϕ formula is created by simultaneously replacing
each instance of the H operator with the G operator and the G operator with the H operator in the ϕ formula,
and simultaneously replacing each instance of the P operator with the F operator and the F operator with the
P operator.

The Mirror Image of the ϕ we will mean by MI(ϕ). E.g: MI(ϕ → GPϕ) = ϕ → HFϕ. The mirror
image of the set of Σ is the mirror image set of the Σ elements. We mean the mirror image of Σ by MI(Σ)
and define as follows:
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Definition 5 (A mirror image of a set of formulas). M(Σ) = {MI(ϕ) : ϕ ∈ Σ}.

If ϕ is derivable from Σ, then mirror image of ϕ is derivable from mirror image of the Σ.

Theorem 7. For any Σ(⊂ FOR(LKt)): if Σ �Kt ϕ, then MI(Σ) �Kt MI(ϕ).

Proof. Let Σ �Kt ϕ. Let the sequence ϕ1, ϕ2, ..., ϕn will be a proof of ϕ from the Σ. We will show that
the sequence MI(ϕ1), MI(ϕ2), ..., MI(ϕn) is a prooof of the sentence MI(ϕ) from the MI(Σ), MI(Σ) �Kt

MI(ϕ). We will carry out the proof by induction due to the length of the proof of the sentence ϕ.
If ϕ1 is an axiom, then MI(ϕ1) is also an axiom. If ϕ1 is an element of Σ, then MI(ϕ1) is also

an element of MI(Σ). Then if Σ �Kt ϕ1, then MI(Σ) �Kt MI(ϕ1).
Let us assume that for i, i ≤ k :

if Σ �Kt ϕi, then MI(Σ) �Kt MI(ϕi).

We will show that if Σ �Kt ϕk+1, then MI(Σ) �Kt MI(ϕk+1). Let Σ �Kt ϕk+1. The sentence ϕk+1 can
be an axiom or an element of a set Σ. There are cases discussed for the sentence ϕ1. Now let us consider
the cases where the sentence ϕk+1 was obtained using one of the inference rules. Let them ϕk+1 will be a
sentence derived from sentences ϕm and ϕm → ϕk+1 by applying the rule MP. By induction, we have that

MI(Σ) �Kt MI(ϕm)

and

MI(Σ) �Kt MI(ϕm → ϕk+1).

Because MI(ϕm → ϕk+1) has the form MI(ϕm) → MI(ϕk+1), so applying the rule MP to the
sentences MI(ϕm)→ MI(ϕk+1) and MI(ϕm), we obtain MI(ϕk+1). Let it now ϕk+1 will be the sentence
derived from the sentence ϕm by applying the rule RG. By induction, we have that MI(Σ) �Kt MI(ϕm).
After applying the rule RH to the sentence MI(ϕm) we obtain HMI(ϕm). However, this sentence is equal
to the sentence MI(Gϕm). Then MI(Σ) �Kt MI(Gϕm). The case when the sentence ϕk+1 was obtained by
applying the RH rule to the sentence ϕk is similar to the previous case.

Corollary 1. Let MI(Σ) ⊆ Σ.

If Σ �Kt ϕ, then Σ �Kt MI(ϕ)

or
ϕ

MI(ϕ)

is a secondary rule.

Corollary 2. Let MI(Σ) ⊆ {ϕ : Σ �Kt ϕ}.

If Σ �Kt ϕ, then Σ �Kt MI(ϕ)

or
ϕ

MI(ϕ)

is a secondary rule.
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3. IKt—Minimal Intuitionistic Temporal Logic

Now we will discuss a system of temporal logic over intuitionistic propositional logic. It is a system
of minimal intuitionistic temporal logic IKt (IKt is the intuitionistic analogue of the system Kt - minimal
temporal logic built over classical propositional logic.).

This system can be used to formally describe knowledge that changes over time, although there are no
explicit epistemic operators in the language of this system. Knowledge representation is not implemented
at the syntactic level, but because of the properties of intuitionistic logic, knowledge is represented at the
semantic level. This is the result of semantics proposed for intuitionistic logic, using terms such as proof (It
was proposed by Kolmogorov.), information, or knowledge (Kripke-style semantics.).

Kripke-style semantics are proposed for intuitionistic temporal logic. Thus, in Kripke models we have
a set of worlds W and the relationship R. In the case of intuitionistic logic, we do not speak about elements
of the W set as possible worlds, but rather as information states, states of knowledge, etc. The reachability
relationship between the elements w and v (i.e., wRv) is interpreted as w has access to v, which means
that the v information state is available from the w information state. The key difference between Kripke
models for intuitionistic logic and Kripke models for modal logic built over classical logic lies in the fact
that in the case of modal logic built over classical logic, the R relation is only used to interpret modal
operators, and in the case of intuitionistic logic, this relation is used to interpret the intuitionistic negation
and implication.

The formula ¬ϕ is true (In intuitionistic logic the term forced is also used.) in some information state w
if and only if there is no information state available from w in which ϕ is true. In other words, the formula
¬ϕ is true in the state w if there is no possibility that ϕ is true in any information state accessible from the
state w.

The same is true with the intuitionistic implication. The formula ϕ → ψ is true in the information
state w, if and only if, in any information state available from the state w , the truth of ϕ implies the truth
of ψ. In addition, Kripke models assume monotonicity for intuitionistic logic. The formula fulfilled in a
given information state remains fulfilled in any extension of this state.

Modality in intuitionistic logic can be seen on the example of the syntactic definition of intuitionistic
negation. The ¬ϕ formula is equivalent to the ϕ → ⊥ formula. Intuitionistic negation can therefore be
seen as a kind of impossibility operator.

Kripke’s intuitionistic model is a triangle M = 〈W, R, V〉, where V : AP → 2W . The formula ϕ is
satysfied in the model M, in the state w, when:

M, w |= ϕ ≡ w ∈ V(ϕ), when ϕ ∈ AP ,

M, w |= ¬ϕ ≡ for any wRw′ : M, w′ � ϕ,

M, w |= ϕ ∧ ψ ≡ M, w |= ϕ and M, w |= ψ,

M, w |= ϕ ∨ ψ ≡ M, w |= ϕ or M, w |= ψ,

M, w |= ϕ → ψ ≡ for any w′ such that wRw′, if M, w′ |= ϕ, then M, w′ |= ψ.

In intuititionistic logic from the truth of the ¬ϕ formula in the current information state, we do not
only know that ϕ is not true in the current information state (such information is obtained in the case of
classical logic), but we also know that the formula ϕ will never be true, and our never applies to all available
extensions of the current information state. In addition to the information provided explicitly, we therefore
have an additional information in intuitionistic logic. This feature of intuitionistic logic van Benthem calls
knowledge implicite [? ]. No additional specific operators are needed to express it in intuitionistic logic.
Despite similar semantics, this feature definitely distinguishes intuitionistic logic from epistemic logic
built on classical logic. The language of epistemic logic is used to represent knowledge explicitly, and to
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represent it, in addition to classical sentence connectives, the epistemic operator K is used. The language
of intuitionistic logic allows expressing certain concepts without explicitly referring to epistemic operators.
For example, based on the truth of the formula ¬¬ϕ, we say that for each information state there is such
an extension in which ϕ is true. Apart from details, it is very close to that we know that ϕ must be true.

In Kripke semantics for epistemic logic built over classical propositional calculus, the formula Kϕ in
the M model, in the w information state, was defined as follows:

M, w |= Kϕ ≡ for any wRw′ : M, w′ |= ϕ.

Let us consider the truth of the formula K¬ϕ in the model M, in the state w. In accordance with the
condition of satisfy with the operator K we have:

M, w |= K¬ϕ ≡ for any wRw′ : M, w′ |= ¬ϕ.

Taking into account the condition of fulfilling of the negation in epistemic logic built over classical
logic, we have:

M, w |= K¬ϕ ≡ for any wRw′ : M, w′ � ϕ.

The condition of fulfilling of the intuitionistic negation, i.e.,

M, w |= ¬ϕ ≡ for any wRw′ : M, w′ � ϕ

Indicates that intuitionistic negation (¬) can be seen as a combination of the K operator and classical
negation (K¬). Similarly, it can be shown that the intuitionistic formula ϕ ⇒ ψ can be seen, aside from the
details, as modalized implication K(ϕ → ψ), i.e., a combination of the K epistemic operator and the classic
implication.

IKt (The construction of the IKt system and proof of the system’s completeness with respect to the
proposed semantics was provided by W.B. Ewald [? ].) is a system of temporal logic built over intuitionistic
propositional calculus. The language LIKt is the language of intuitionistic propositional logic enriched
with temporal operators: G, H, F, P.

Definition 6. The set of sentences FOR(LIKt) is the smallest set of finite sequences of elements of the language
alphabet LIKt such that:

1. if ϕ ∈ AP , then ϕ ∈ FOR(LIKt),
2. if ϕ, ψ ∈ FOR(LIKt), then ¬ϕ, Gϕ, Fϕ, Hϕ, Pϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), (ϕ ↔ ψ) ∈ FOR(LIKt).

In the IKt system, the operators G and F as well as H and P, unlike systems built over classical logic,
are not mutually definable.

4. Semantics for IKt Proposed by Ewald

The construction of semantics for IKt is based on a partially ordered set of states of knowledge,
which is considered by the cognitive subject. Each state of knowledge is assigned a set of time moments
and temporal order. When the cognitive subject reaches a greater state of knowledge (According to
Ewald [? ], the cognitive subject moves to a greater states of knowledge.), retains all the information that
he had in lower states of knowledge. To define semantics for this system, Ewald constructs an intuitionistic
temporal structure.
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Definition 7 (intuitionistic temporal structure [? ]). An intuitionistic temporal structure M is
an ordered quintuple

〈S,≤, {Ts}s∈S, {μs}s∈S, {Rs
t}s∈S,t∈Ts〉

where:

• (S,≤) is a partially ordered set,
• Ts is a non-empty set,
• μs is a binary relation to Ts,
• Rs

t is a formula relation that satisfies the conditions:

1. Rs
t (ϕ) ≡ Rs′

t (ϕ), when ϕ ∈ AP and s ≤ s′,

2. Rs
t (ϕ ∧ ψ) ≡ Rs

t (ϕ) and Rs
t (ψ),

3. Rs
t (ϕ ∨ ψ) ≡ Rs

t (ϕ) or Rs
t(ψ),

4. Rs
t (¬ϕ) ≡ for any s ≤ s′ it is not true that Rs′

t (ϕ),

5. Rs
t (ϕ → ψ) ≡ for any s ≤ s′ (if Rs′

t (ϕ), then Rs′
t (ψ)),

6. Rs
t(Fϕ) ≡ there is t′, tμst′ : Rs

t′ (ϕ),

7. Rs
t(Pϕ) ≡ there is t′, t′μst : Rs

t′ (ϕ),

8. Rs
t(Gϕ) ≡ for any s′, t′ such that: s ≤ s′, t′ ∈ Ts′ , tμs′ t′ : Rs′

t′ (ϕ),

9. Rs
t (Hϕ) ≡ for any s′, t′ such that: s ≤ s′, t′ ∈ Ts′ , t′μs′ t : Rs′

t′ (ϕ),

We will now give intuitions related to individual elements of the above structure. The (S,≤) pair
is a partially ordered set of states of knowledge. Ts is a set of time moments in the state s. μs is a binary
relation on the set Ts. In addition, to fulfill the postulate that the cognitive entity, achieving a greater
state of knowledge, retains all information from smaller states, it is required that for s ≤ s′ the following
conditions holds: Ts ⊆ Ts′ and μs ⊆ μs′ . In other words, a cognitive subject achieving a higher state of
knowledge maintains a set of time moments and temporal order from smaller states of knowledge.

The truth of a formula in an intuitionistic temporal structure and the truth of the formula are defined
as follows:

Definition 8 (the truth in an intuitionistic temporal structure). M |= ϕ, the formula ϕ is true in the
intuitionistic temporal structure M, if and only if for any s ∈ S and any t ∈ Ts : Rs

t(ϕ).

Definition 9 (the truth of the formula). |= ϕ, formula ϕ is true if and only if, for any M : M |= ϕ.

5. Axioms IKt

(1) ϕ, if ϕ is a tautology of the intuitionistic logic of the language LIKt .
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(2) G (ϕ → ψ)→ (Gϕ → Gψ) (2’) H (ϕ → ψ)→ (Hϕ → Hψ)

(3) G (ϕ ∧ ψ)↔ (Gϕ ∧ Gψ) (3’) H (ϕ ∧ ψ)↔ (Hϕ ∧ Hψ)

(4) F (ϕ ∨ ψ)↔ (Fϕ ∨ Fψ) (4’) P (ϕ ∨ ψ)↔ (Pϕ ∨ Pψ)

(5) G (ϕ → ψ)→ (Fϕ → Fψ) (5’) H (ϕ → ψ)→ (Pϕ → Pψ)

(6) (Gϕ ∧ Fψ)→ F (ϕ ∧ ψ) (6’) (Hϕ ∧ Pψ)→ P (ϕ ∧ ψ)

(7) G¬ϕ → ¬Fϕ (7’) H¬ϕ → ¬Pϕ

(8) FHϕ → ϕ (8’) PGϕ → ϕ

(9) ϕ → GPϕ (9’) ϕ → HFϕ

(10) (Fϕ → Gψ)→ G (ϕ → ψ) (10’) (Pϕ → Hψ)→ H (ϕ → ψ)

(11) F (ϕ → ψ)→ (Gϕ → Fψ) (11’) P (ϕ → ψ)→ (Hϕ → Pψ)

Rules: MP, RH, RG.

Ewald [? ] proves the adequacy of the IKt system with respect to the class of intuitionistic temporal
structures. For the purposes of proof of adequacy, the concept of consistent pair of sets is introduced.

Definition 10 (consistent pair of sets). The (X, Y) pair of set of sentences is consistent if and only if such finite
subsets do not exist X0(= {ϕ1, ϕ2, ..., ϕm}) ⊆ X and Y0(= {ψ1, ψ2, ..., ψn}) ⊆ Y such that � (ϕ1 ∧ ϕ2 ∧ ... ∧
ϕm)→ (ψ1 ∨ ψ2 ∨ ...∨ ψn)

In the IKt we can to prove the intuitionistic equivalent of the Lindenbaum lemma, namely:

Theorem 8. If the pair (X, Y) is consistent, then there is the consistent pair of (X′, Y′) such that:

1. X ⊆ X′ and Y ⊆ Y′,
2. X′ ∩Y′ = ∅,
3. for any formula ϕ : ϕ ∈ X′ or ϕ ∈ Y′.

The pair that fulfills these conditions is maximum consistent pair. Each (X, Y) maximum consistent pair
can be represented by a valuation v : v : FOR(IKt)→ {0, 1}, such that v(ϕ) = 1 iff ϕ ∈ X. Ewald proves
for the IKt system the strong completeness Theorem in the following version:

Theorem 9 (Adequacy IKt [? ]). For any IKt− valuation v there is an intuititionistic structure
M = 〈S,≤, {Ts}s∈S, {us}s∈S, {Rs

t}s∈S,t∈Ts〉, state on knowledge s ∈ S and moment t ∈ Ts such that for any
formula ϕ ∈ FOR(LIKt) holds Rs

t(ϕ) iff v(ϕ) = 1.

In the semantic of the IKt system, we did not impose any conditions on the temporal order in
intuitionistic temporal structures. The IKt system is therefore an analogue of the Kt system, i.e., it is
a minimal system of intuitionistic temporal logic.

6. Modified Semantics for IKt

We will consider the modified semantics for IKt and examine its basic properties. IKt is used to
describe states of knowledge that change as knowledge gains. Acquiring knowledge in IKt is understood
as moving to states of knowledge; however, as in the IKt system, it is assumed that all knowledge from a
given state of knowledge is available in any state of knowledge not lesser than contemplated. Therefore,
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the monotonicity of the knowledge acquisition process is assumed. We achieve knowledge by enriching
our knowledge with new facts. This can occur in several cases.

We can enrich our knowledge when by research we describe events from the past that took place at
times that were not known in a given state of knowledge. We did not have any information about these
events in this state of knowledge. In this case, the temporal structure in not lesser state of knowledge
expands into the past and is a superset of the temporal structure of a given state of knowledge. For the
same reasons, the time structure of the state of knowledge may expand into the future.

The expansion of the temporal structure (regardless of whether it takes place in the past or in the
future) causes a change in the domain of the relationship. Therefore, in the new state of knowledge,
the changed relation between moments of time should be considered.

Another possible option to achieve knowledge is the situation when the set of moments of time does
not change, but the powers of sets of formulas increase, which we can determine if they are fulfilled in
given time moments. Therefore, in this case there is no expansion of the time structure, neither into the past
nor into the future, but by getting to know the present, past or future better within the known temporal
structure, we attribute to moments more numerous sets of formulas fulfilled in these moments.

In the proposed semantics, the state of knowledge consists of a set of facts, which are semantic
correlates of formulas, a set of moments of time, and the relationship at the set of moments of time.
A subset of the set of facts assigned to a specific moment is understood as the set of facts known at
that moment.

Achievable states of knowledge are different in their level of knowledge. The level of knowledge is
determined by its constituent elements, namely: a set of moments of time , the temporal order relation and
sets of formulas fulfilled at individual time moments. We will say that the state of knowledge of m′′ has
not lesser level of knowledge than the state of knowledge of m′, if and only if the following conditions
are satisfied:

1. The set of moments of time in the state m′ is included in the set of moments of time in the state m′′.
(Changing the number of moments of time causes a change in the level of knowledge.)

2. In the m′′ , there are - occurring between moments of time - earlier-later relationships that existed in
the m′ state of knowledge. Also, in the m′′ , such relationships can occur that did not take place in
the state m′.

3. All events that are known in the state of knowledge m′ are also known in the state of knowledge m′′.
(What is known does not cease to be known also when new known events occur.) In addition at the
moments of time of the state of knowledge m′′, may be known some events that are not known in
the equivalents of these moments in the state of knowledge m′.

There are specific relationships between conditions 1, 2 and 3. Fulfillment of condition 1 implies
fulfillment of condition 2, because we skip situations in which new moments of time are not in any
relationship earlier-later with other moments. A change in the set of moments of time therefore entails a
change in the relationship between the moments of time. It is not the other way round. Changing the
relationship between the moments of time does not have to involve changing the set of time moments.
In the state of knowledge with no less level of knowledge, new relationships earlier-later can occur between
time moments in the state of knowledge with a lower level of knowledge. Therefore, fulfillment of
condition 2 does not entail fulfillment of condition 1. Similarly, fulfillment of condition 3 does not entail
fulfillment of condition 1 or 2, because new facts may be known without new time moments or new
relationships earlier-later.

Each moment is assigned a non-empty set of known events. If there are new moments, there are also
new facts known. The fulfillment of condition 1 implies the fulfillment of condition 3.
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The existence of new relationships earlier-later, on the other hand, entails the existence of new facts
known at the times in which new relationships earlier-later take place. Thus, as in the case of condition 1,
the fulfillment of condition 2 implies the fulfillment of condition 3.

We have two types of time. The first is the time that is assigned to the state of knowledge. It is a
structure consisting of a set of moments of time and relationship earlier-later of a given state of knowledge.
The other is time that is not relativized to any state of knowledge. This time is the sum of the times
assigned to all possible states of knowledge.

We write theese intuitions in a formal way.

• I is a non-empty set (indexes of state of knowledge).
• Ti (i ∈ I) is a non-empty set (of moments in the state of knowledge indexed by i).
• Ri(⊆ Ti × Ti) is a binary relation defined on a set of moments of time in the state of knowledge

indexed by i. Relation Ri is understood as the relation earlier-later on the set of moments of time of
state of knowledge indexed by i.

• Ti = 〈Ti, Ri〉. It is a time in the state of knowledge indexed by i.
• T =

⋃
i∈I

Ti is a set of all time moments existing in any state of knowledge.

• R =
⋃
i∈I

Ri is a binary relation on the set T. This relation is understood as the earlier-later relation for a

time not relativized to any state of knowledge. We note that R ⊆ T × T.
• T = 〈T, R〉 it is a time not relativized to any state of knowledge.
• Vi ⊆ Ti × 2AP , where i ∈ I. Vi is a function that assigns t ∈ Ti subsets Vi(t) to a set of sentence letters.
• F = {Vi : i ∈ I} is a set of valuations.
• mi = 〈Ti, Ri, Vi〉 where i ∈ I. (mi is the state of knowledge indexed by i.)

• M = {〈Ti, Ri, Vi〉 : Vi ∈ F , i ∈ I}, or M = {mi : i ∈ I}. M is a model based on the T and class
F function.

We define the relationship ≤ (⊆M×M)

Definition 11. For any i, j ∈ I :
mi ≤ mj iff

(
Ti ⊆ Tj and Ri ⊆ Rj and for any t ∈ Ti : Vi(t) ⊆ Vj(t)

)
.

That for the states of knowledge mi, mj the relation ≤ (mi ≤ mj) is understood as follows: state of
knowledge mj has no lower level of knowledge than the state of knowledge mi.

The relationship ≤ is determined by the inclusions of a set of moments of time, the relationship
between the moments of time and sets of events known at particular moments of time. The ≤ relation is
therefore reflexive and transitive.

Theorem 10 ([? ]). For any mi(∈M) : mi ≤ mi.

Theorem 11 ([? ]). For any mi, mj, mk(∈M) :

if (mi ≤ mj and mj ≤ mk), then mi ≤ mk.

The relationship ≤ partially organizes the set of states of knowledge. In the states of knowledge,
various relationships may occur between sets of time moments, earlier-later relations and valuations. Let
us consider some of them.

The first possible situation is:
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Ti = Tj and Ri = Rj and ∀
t∈Ti

(
Vi(t) ⊆ Vj(t)

)
.

This situation occurs when sets of time moments of states of knowledge mi and mj are the same(
Ti = Tj

)
. The relations

(
Ri = Rj

)
are the same in both states of knowledge. The state of knowledge mj,

as a state of knowledge with no lower level of knowledge than the state of knowledge mi, is created by
changing the value of the function Vi that assigns moments to subsets of the set AP . In other words,
in this case, the state of knowledge about a not lower level of knowledge is created by increasing the
amount of facts known at particular times.

The second possible situation may be as follows:

Ti ⊆ Tj, Ri ⊆ Rj and ∀
t∈Ti

(
Vi(t) = Vj(t)

)
.

In this case, the mj, as a state of knowledge with not lesser level of knowledge than the mi, is created
by adding to the structure of the state of knowledge mi new moments of time. For any time t (∈ Ti)

does not change the set Vi (t). The change in the level of knowledge is that in the state of knowledge mj
new time moments appear (in the future or in the past). Due to the new time moments, in the state of
knowledge mj all the components change. The set of time moments changes. The relation earlier-later is
changing, because certain time moments of the state of knowledge mi will be in relation earlier-later with
new time moments. The evaluating function is also changing, assigning subsets of the sentence letter set
to moments of time because its domain is changing (subsets of the set of sentence letters will be assigned
new time moments).

Yet another option is:

Ti = Tj, Ri ⊆ Rj and ∀
t∈Ti

(
Vi(t) ⊆ Vj(t)

)
.

It may also be that the change in the level of knowledge of the state of knowledge does not consist of
changing the set of time moments known in the state of knowledge mi but on the change of the property
of time in the state of knowledge mi. In other words, the change of ownership of the relationship in this
state of knowledge. Such a change, however, entails a change in the number of facts known at these times.

Further states of knowledge - with an increasingly higher level of knowledge—can arise by increasing
the level of knowledge regarding the various components of the state of knowledge.

To shorten the entries we will introduce the designation:
Mark

m∗
i (= 〈T∗i , R∗i , V∗

i 〉) (where i ∈ I ) is any mj (∈M) such that mi ≤ mj.

Definition 12 (the truth of a formula in the state of knowledge at some moment of time). The truth of the
formula ϕ(∈ FOR(LIKt)) in the model M, state of knowledge mi(= 〈Ti, Ri, Vi〉), at the moment t(∈ Ti) we define
as follows:
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1. M, mi, t |= ϕ ≡ ϕ ∈ Vi(t), if ϕ ∈ AP ,

2. M, mi, t |= ¬ϕ ≡ for any m∗
i ∈M : M, m∗

i , t � ϕ

3. M, mi, t |= ϕ ∨ ψ ≡ M, mi, t |= ϕ or M, mi, t |= ψ,

4. M, mi, t |= ϕ ∧ ψ ≡ M, mi, t |= ϕ and M, mi, t |= ψ,

5. M, mi, t |= ϕ → ψ ≡ for any m∗
i ∈M : (M, m∗

i , t � ϕ or M, m∗
i , t |= ψ),

6. M, mi, t |= Fϕ ≡ there exists t′ ∈ Ti, tRit′ : M, mi, t′ |= ϕ,

7. M, mi, t |= Gϕ ≡ for any m∗
i (∈M), for any t′(∈ T∗i ) such that tR∗i t′: M |= m∗

i , t′ϕ,

8. M, mi, t |= Pϕ ≡ there exists t′ ∈ Ti, t′Rit : M, mi, t′ |= ϕ,

9. M, mi, t |= Hϕ ≡ for any m∗
i (∈M), for any t′(∈ T∗i ) such that t′R∗i t: M |= m∗

i , t′ϕ,

The necessary condition for the sentence Fϕ to be true in the state of knowledge mi, at the time of t
(∈ Ti) is the existence in the time structute of the state of knowledge mi the moment t′ (∈ Ti) , later than t
(tRit′), in which the sentence ϕ is true. If such a moment exists in the structure of time of mi, then from the
definition of the relationship ≤ and the theory of multiplicative properties of inclusions it follows that
such a moment also exists in the structure of time of each state of knowledge with a level of knowledge
not less than the level of state of knowledge mi. Hence verification of the truth of the sentence Fϕ in the
state of knowledge mi can be limited to the state of knowledge mi. Please note that if the sentence Fϕ is
not true at the time t it does not mean that in t the sentence F¬ϕ is true.

For the G operator the situation is different. According to understanding the G operator, the sentence
Gϕ reads: it will always be in the future that ϕ. For the sentence Gϕ to be true in the state of knowledge mi
at t (∈ Ti), it is necessary that the sentence ϕ is true in any state of knowledge m∗

i at any time t′
(
∈ T∗i

)
later than t (tR∗i t′). The truth of the sentence Gϕ cannot be considered only within the temporal limits of
a given state of knowledge. Just because the sentence ϕ is always true in the future means that ϕ is true at
any point in the future. Since the state of knowledge mi is assigned only a certain fragment of the time
structure, when defining the concept of the truth for a sentence built using the operator G, all states of
knowledge with a level of knowledge not lower than the level of knowledge of state mi .

If the definition of the truth of the sentence Gϕ were in the form that was adopted in the system, e.g.,
in the system Tm [? ] (intuitionistic temporal logic of unchanging time (By unchanging time (in accepted
terminology) is understood a time such that for any i, j ∈ I: (Ti = Tj and Ri = Rj).)), i.e.,

M, mi, t |= Gϕ iff for any t′ ∈ Ti, such that tRit′ : M, mi, t′ |= ϕ

this would lead to contradictions. It would be possible that in some state of knowledge mi would occur at
the moment t

M, mi, t |= Gϕ. (1)

and at some level of knowledge mj, with a level of knowledge not lesser than the level of knowledge of
the state of knowledge mi, i.e., mi ≤ mj, there would be a moment t1

(
∈ Tj

)
such that: t1 /∈ Ti, tRjt1 and

M, mj, t1 � ϕ. Therefore, we have:
M, mj, t � Gϕ. (2)

What is known does not cease to be known when the level of knowledge increases. Since the state of
knowledge of mj is a state of knowledge with a level of knowledge of not less than the level of knowledge
of the state of mi, so that M, mi, t |= Gϕ we conclude that M, mj, t |= Gϕ. This is contrary to (2).
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The understanding of the truth of the formula Gϕ, in the state of knowledge mi, at the moment t
excludes the situation described above.

We will now give some basic definitions.

Definition 13. M |= ϕ, ϕ is true in the model M, iff for any state of knowledge mi(∈ M) and for any
t(∈ Ti) : M, mi, t |= ϕ.

Definition 14. T |= ϕ, ϕ is true in time T, iff ϕ is true in the model M for any non-empty class F (= {Vi : i ∈ I})
of function.

Definition 15. |= ϕ, ϕ is true iff for any T : T |= ϕ.

In some sciences (e.g., empirical sciences) it happens that sentences considered to be true at some time,
with the development of scientific theories, turn out to be false. It happens that certain laws of empirical
sciences in force in a given period are subject to verification and are changed, and sometimes even rejected,
as laws that inaccurately or even misrepresent the state of the world. Such verification is possible due
to the increase in the level of knowledge. In our terminology, we would write this fact as follows: the
sentence true in some state of knowledge mi, in some state of knowledge which level of knowledge is not
lesser than the level of knowledge of mi may not be true. In the IKt system, this is not possible. What is
true in the state of knowledge mi is also true in any state of knowledge, with a level of knowledge not
lesser than the level of knowledge of mi.

There are many differences between temporal logic systems based on classical logic and temporal
logic systems based on intuitionistic logic. One of them is that failing to the truth of ϕ does not entail the
truth of ¬ϕ.

Let us consider the following situation. The sentence ϕ is not known in the state of knowledge mi at
the moment t(∈ Ti), while is known at this moment in a state of knowledge mj, whose level knowledge is
not lesser than the level of knowledge in the state mi. If the sentence ϕ is not known at the time t in the state
mi, it would be considered that at the time t the sentence ¬ϕ is known, then—according to the accepted
condition of fulfilling ¬ϕ - the sentence ϕ could not be known at the time of t in any state of knowledge
with a level of knowledge not lesser than the level of knowledge of mi. In particular, the sentence ϕ could
not be known at the time t, in the state of knowledge mj. This leads to a contradiction, since we get that
ϕ is known at the time of t, in the state mj, and we conclude that it is known and unknown at the same
time. When the sentence ϕ is known at some moment of time, in some state of knowledge mi, then in any
state of knowledge with the level of knowledge not lesser than the level of knowledge of state mi at this
moment the sentence ϕ is known. However, when ¬ϕ is not known at some moment of time, it does not
mean that at this moment, in any state of knowledge with a level of knowledge no lesser than the level of
knowledge of mi, is known ϕ. It only means that it is not true that in every state of knowledge in which
the level of knowledge is not lesser than the level of knowledge of mi, ϕ is currently unknown.

We will prove a lemma that expresses the monotonicity of knowledge in the IKt system. What is
known in the state of knowledge mi is also known in every state of knowledge whose level of knowledge
is not lesser than the level of knowledge of the state mi.

Lemma 1. For any formula ϕ(∈ FOR(LIKt)), for any mi, mj(∈M) :

if (mi ≤ mj and M, mi, t |= ϕ), then M, mj, t |= ϕ.

Proof. We will prove by induction, due to the length of the formula ϕ. Suppose that mi ≤ mj.
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(ϕ ∈ AP) Let us first consider the case when ϕ is a sentence letter.
By Definition ?? if mi ≤ mj, then for any t ∈ Ti holds

Vi(t) ⊆ Vj(t). (3)

If M, mi, t |= ϕ, then from the Definition ??

ϕ ∈ Vi(t). (4)

From (3) and (4) we receive
ϕ ∈ Vj(t). (5)

Because ϕ is a sentence letter, so from (5) and the definition of ?? we have M, mj, t |= ϕ.

Induction assumption: Let ϕ, ψ be such that :

(a) if M, mi, t |= ϕ, then M, mj, t |= ϕ,
and
(b) if M, mi, t |= ψ, then M, mj, t |= ψ.

We will consider complex formulas built from the formulas ϕ, ψ using sentence connectives and
temporal operators.

(¬ϕ) Let us assume that M, mi, t |= ¬ϕ.
From the definition of the condition for negation (Definition ??) we have:

for any mk, such that mi ≤ mk : M, mk, t � ϕ. (6)

Let us consider any state of knowledge ml with a level of knowledge not lesser than the level of
mj, i.e.,

mj ≤ ml . (7)

From (7), the assumption that mi ≤ mj and the transitivity of the ≤, we have that mi ≤ ml . Therefore,
from (6) we have: M, ml , t � ϕ. Because ml is any state of knowledge whose level of knowledge is
not lesser than the level of knowledge of mj, we get:

for any ml such that mj ≤ ml we have: M, ml , t � ϕ. (8)

From (8) and the condition for negation (Definition ??) we have: M, mj, t |= ¬ϕ.
(ϕ ∧ ψ) Let us assume that M, mi, t |= ϕ ∧ ψ.

So from the condition for the conjunction (Definition ??) we have:

M, mi, t |= ϕ, (9)

and
M, mi, t |= ψ. (10)

From (9) and point a) of the induction assumption we get:

M, mj, t |= ϕ. (11)
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Similarly, from (10) and point b) of the induction assumption we get:

M, mj, t |= ψ. (12)

From (11), (12) and the condition for the conjunction (Definition ??) we get M, mj, t |= ϕ ∧ ψ.
(ϕ ∨ ψ) Reasoning analogous to conjunction.
(ϕ → ψ) Let us assume that M, mi, t |= ϕ → ψ.

From the condition for the implication (Definition ??) we have:

for any m∗
i (∈M) : (M, m∗

i , t � ϕ or M, m∗
i , t |= ψ), (13)

Let us consider the state of knowledge ml with a level of knowledge not lesser than the level of
knowledge of mj, i.e.,

mj ≤ ml . (14)

From (14), the assumption that mi ≤ mj and the transitivity of the relationship ≤ we get that mi ≤ ml .
From (13) we have: M, ml , t � ϕ or M, ml , t |= ψ. Because ml is any state of knowledge in which the
level of knowledge is not lesser than the level of knowledge in the state mj, we get:

for any ml such that mj ≤ ml : M, ml , t � ϕ or M, ml , t |= ψ. (15)

From (15) and the condition for the implications (Definition ??) we get M, mj, t |= ϕ → ψ.

(Gϕ) Suppose M, mi, t |= Gϕ. From the condition for the G operator (Definition ??) we have:

for any m∗
i (∈M), for any t1(∈ T∗i ) such that tR∗i t1 : M, m∗

i , t1 |= ϕ, (16)

Let us consider any state of knowledge ml witch a level of knowledge is not lesser than the level of
knowledge of the state mj, i.e.,

mj ≤ ml . (17)

From (17), the assumption that mi ≤ mj and the transitivity of the relationship≤, we get that mi ≤ ml .
Som from (16) we get :

for any t1(∈ Tl) such that tRlt1 holds: M, ml , t |= ϕ. (18)

Because the state of knowledge ml is a state of knowledge with a level of knowledge not lower than
the level of knowledge in the state mj we have:

for any ml , for any t1(∈ Tl) if (mj ≤ ml and tRlt1), then M, ml , t1 |= ϕ. (19)

From (19) and the condition for the G operator (Definition ??) we obtain: M, mj, t |= Gϕ
(Hϕ) Reasoning similar to the G operator.
(Fϕ) Let us assume that M, mi, t |= Fϕ. From the condition for the operator F (Definition ??) there is the

moment t1(∈ Ti), tRit1, such that:
M, mi, t1 |= ϕ. (20)

From (2) and point a) of the induction assumption we have:

M, mj, t1 |= ϕ. (21)
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Assuming that mi ≤ mj and the definition of ?? we get that:

t ∈ Tj, t1 ∈ Tj, tRjt1. (22)

From (21), (22) and the condition for the F operator (Definition ??) we obtain M, mj, t |= Fϕ.
(Pϕ) Reasoning similar to the F operator.

We have therefore shown that what is true in a given state of knowledge mi it is also true in any state
of knowledge in which the level of knowledge is not lesser than the level of knowledge in the state mi.

7. Simplified Axiomatics IKt

The axioms proposed by Ewald IKt are dependent axioms. Some axioms can be derived from other
axioms. Proofs of dependencies of selected axioms were provided by Surowik [? ]. We offer a simplified
set of axioms for IKt:

A1) ϕ, if ϕ is a tautology of the intuitionistic logic of the language LIKt .
(A2) G (ϕ → ψ)→ (Gϕ → Gψ) (A2’) H (ϕ → ψ)→ (Hϕ → Hψ)

(A3) F (ϕ ∨ ψ)→ (Fϕ ∨ Fψ) (A3’) P (ϕ ∨ ψ)→ (Pϕ ∨ Pψ)

(A4) G (ϕ → ψ)→ (Fϕ → Fψ) (A4’) H (ϕ → ψ)→ (Pϕ → Pψ)

(A5) Fϕ → ¬G¬ϕ (A5’) Pϕ → ¬H¬ϕ

(A6) FHϕ → ϕ (A6’) PGϕ → ϕ

9A7) ϕ → GPϕ (A7’) ϕ → HFϕ

(A8) (Fϕ → Gψ)→ G (ϕ → ψ) (A8’) (Pϕ → Hψ)→ H (ϕ → ψ)

Rules: MP, RH, RG.

We will prove that this axiomatics is equivalent to the axiomatics proposed by Ewald. To demonstrate
the derivability of some IKt axioms with the other axioms of this system, the following Theorems will
be useful.

Theorem 12.

(a) The RRG rule :
ϕ → ψ

Gϕ → Gψ
is a rule of IKt.

(b) The RRH rule :
ϕ → ψ

Hϕ → Hψ
is a rule of IKt.

Proof. We will prove only (a). Proof (b) is analogous.

(a)

1. �IKt ϕ → ψ assumption
2. �IKt G(ϕ → ψ) 1,RG
3. �IKt G(ϕ → ψ)→ (Gϕ → Gψ) A2
4. �IKt Gϕ → Gψ 2,3,MP
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Theorem 13.

(a) The RF rule :
ϕ → ψ

Fϕ → Fψ
is a rule of IKt.

(b) The RP rule :
ϕ → ψ

Pϕ → Pψ
is a rule of IKt.

The proof of this theorem is obtained in a manner analogous to the proof of the theorem of the
previous one, with the difference that instead of the axiom A2 (A2 ’) we use the A4 (A4’) axiom.

We will show that in IKt’ “old” axioms 3, 3′, 6, 6′, 7, 7′, 11, 11′ are inferable. The implications of the
“old” 4 and 4′ axioms are also inferable.

Lemma 2. �IKt G (ϕ ∧ ψ)↔ (Gϕ ∧ Gψ)

Proof.

(A) �IKt G (ϕ ∧ ψ)→ (Gϕ ∧ Gψ)

1. �IKt (ϕ ∧ ψ)→ ϕ A1
2. �IKt (ϕ ∧ ψ)→ ψ A1
3. �IKt G(ϕ ∧ ψ)→ Gϕ 1, RRG
4. �IKt G(ϕ ∧ ψ)→ Gψ 2,RRG

5. �IKt

(
G (ϕ ∧ ψ)→ Gϕ

)
→

((
G (ϕ ∧ ψ)→ Gψ

)
→

(
G (ϕ ∧ ψ)→ (Gϕ ∧ Gψ)

))
A1

6. �IKt

(
G (ϕ ∧ ψ)→ Gψ

)
→

(
G (ϕ ∧ ψ)→ (Gϕ ∧ Gψ)

)
3,5,MP

7. �IKt G(ϕ ∧ ψ)→ (Gϕ ∧ Gψ) 4,6,MP

(B) �IKt (Gϕ ∧ Gψ)→ G (ϕ ∧ ψ)

1. �IKt ϕ →
(
ψ → (ϕ ∧ ψ)

)
A1

2. �IKt Gϕ → G
(
ψ → (ϕ ∧ ψ)

)
1,RRG

3. �IKt G
(
ψ → (ϕ ∧ ψ)

)
→

(
Gψ → G(ϕ ∧ ψ)

)
A2

4. �IKt Gϕ →
(
Gψ → G(ϕ ∧ ψ)

)
2,3,SYLL

5. �IKt

(
Gϕ →

(
Gψ → G(ϕ ∧ ψ)

))
→

(
(Gϕ ∧ Gψ)→ G(ϕ ∧ ψ)

)
A1

6. �IKt (Gϕ ∧ Gψ)→ G(ϕ ∧ ψ) 4,5,MP

With (A) and (B) we get a thesis.

The next lemma is proved similarly.

Lemma 3. �IKt H (ϕ ∧ ψ)↔ (Hϕ ∧ Hψ)

Lemma 4. �IKt (Fϕ ∨ Fψ)→ F (ϕ ∨ ψ)

Proof.

1. �IKt ϕ → (ϕ ∨ ψ) A1
2. �IKt ψ → (ϕ ∨ ψ) A1
3. �IKt Fϕ → F (ϕ ∨ ψ) 1,RF
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4. �IKt Fψ → F (ϕ ∨ ψ) 2,RF

5. �IKt

(
Fϕ → F (ϕ ∨ ψ)

)
→

((
Fψ → F (ϕ ∨ ψ)

)
→

(
(Fϕ ∨ Fψ)→ F (ϕ ∨ ψ)

))
A1

6. �IKt

(
Fψ → F (ϕ ∨ ψ)

)
→

(
(Fϕ ∨ Fψ)→ F (ϕ ∨ ψ)

)
3,5,MP

7. �IKt (Fϕ ∨ Fψ)→ F (ϕ ∨ ψ) 4,6,MP

Lemma 5. �IKt (Pϕ ∨ Pψ)→ P (ϕ ∨ ψ)

Proof analogous to the proof of the previous lemma.

Lemma 6. �IKt (Gϕ ∧ Fψ)→ F(ϕ ∧ ψ)

Proof.

1. �IKt ϕ →
(
ψ → (ϕ ∧ ψ)

)
A1

2. �IKt Gϕ → G
(
ψ → (ϕ ∧ ψ)

)
1, RRG

3. �IKt G
(
ψ → (ϕ ∧ ψ)

)
→

(
Fψ → F (ϕ ∧ ψ)

)
A4

4. �IKt Gϕ →
(

Fψ → F (ϕ ∧ ψ)
)

2,3, SYLL

5. �IKt

(
Gϕ →

(
Fψ → F (ϕ ∧ ψ)

))
→

(
(Gϕ ∧ Fψ)→ F(ϕ ∧ ψ)

)
A1

6. �IKt (Gϕ ∧ Fψ)→ F(ϕ ∧ ψ) 4,5, MP

Lemma 7. �IKt (Hϕ ∧ Pψ)→ P (ϕ ∧ ψ)

Proof analogous to the proof of the previous lemma.

Lemma 8. �IKt G¬ϕ → F¬ϕ

Proof.

1. �IKt Fϕ → ¬G¬ϕ A5
2. �IKt (Fϕ → ¬G¬ϕ)→ (G¬ϕ → ¬Fϕ) A1
3. �IKt (G¬ϕ → ¬Fϕ) 1,2,MP

Lemma 9. �IKt H¬ϕ → ¬Pϕ

Proof analogous to the proof of the previous lemma.

Lemma 10. �IKt F (ϕ → ψ)→ (Gϕ → Fψ)

Proof.

1. �IKt ϕ →
(
(ϕ → ψ)→ ψ

)
A1

2. �IKt Gϕ → G
(
(ϕ → ψ)→ ψ

)
1,RRG

3. �IKt G
(
(ϕ → ψ)→ ψ

)
→

(
F (ϕ → ψ)→ Fψ

)
A4

4. �IKt Gϕ →
(

F (ϕ → ψ)→ Fψ
)

2,3, SYLL
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5. �IKt

(
Gϕ →

(
F (ϕ → ψ)→ Fψ

))
→

(
F (ϕ → ψ)→

(
Gϕ → Fψ

))
A1

6. �IKt F (ϕ → ψ)→
(
Gϕ → Fψ

)
4,5, MP

Lemma 11. �IKt P (ϕ → ψ)→ (Hϕ → Pψ)

Proof analogous to the proof of the previous lemma.
We will show that the ” new ” A5 and A5′ axioms are we can derive from the’ ’old’ ’8 and 8′ axioms.

Lemma 12. G¬ϕ → ¬Fϕ �IKt Fϕ → ¬G¬ϕ

Proof.

1. �IKt G¬ϕ → ¬Fϕ assumption
2. �IKt (G¬ϕ → ¬Fϕ)→ (Fϕ → ¬G¬ϕ) axiom 1
3. �IKt (Fϕ → ¬G¬ϕ) 1,2,MP

It is likewise proved that:

Lemma 13. H¬ϕ → ¬Pϕ �IKt Pϕ → ¬H¬ϕ

Thus, we have shown that the given axioms are equivalent. In further considerations we will use
“new” axiomatics of IKt.

8. The Adequacy of IKt Relative to Modified Semantics

The natural question is the question about the relationship between modified semantics and the
assumed set of axioms for IKt.

Theorem 14. The IKt axioms are true in any model, and the IKt inference rules are infallible.

Proof. We will prove only A2′, A4′ axioms and RH rule. Proofs for the other rules and axioms is carried
out in analogous manner.

A2’ For any M, mi(∈M), and t(∈ Ti): M, mi, t |= H (ϕ → ψ)→ (Hϕ → Hψ) .

Suppose for some M, mi (∈M) and t (∈ Ti) : M, mi, t � H (ϕ → ψ)→ (Hϕ → Hψ) .

Therefore, from the condition of the truth for the implications, there is a state of knowledge mj,
mi ≤ mj, such that:

M, mj, t |= H (ϕ → ψ) , (23)

M, mj, t � Hϕ → Hψ. (24)

From (24) and the condition of the truth for the implications, in a certain state of knowledge mk,
with a level of knowledge not lesser than the level of knowledge of the state mj, i.e., such that
mj ≤ mk:

M, mk, t |= Hϕ, (25)

M, mk, t � Hψ. (26)
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From (25) and the condition of the truth for the H operator we get:

for any state of knowledge ml such that mk ≤ ml and

for any t1 ∈ Tl such that t1Rlt holds: M, ml , t1 |= ϕ. (27)

From (26) and the condition of the truth for the H operator, there is a state mp sucht that mk ≤ mp)

and there is a moment t2 ∈ Tp such that t2Rpt, in which:

M, mp, t2 � ψ. (28)

Because mk ≤ mp and t2Rpt therefore from (27) we have that at the moment t2 holds M, mp, t2 |= ϕ.
Hence, from (28) and the condition of the truth of the implications we get:

M, mp, t2 � ϕ → ψ. (29)

From (23) and the condition of the truth of the operator H we have:

for any mr such that mj ≤ mr and

for any t3 ∈ Tr such that t3Rrt holds : M, mr, t3 |= ϕ → ψ. (30)

Because: mj ≤ mk, mk ≤ mp, so from the transitivity of the relationship ≤ we get mj ≤ mp.
The moment t2 is such that t2Rpt. Therefore, from (30) we have:

M, mp, t2 |= ϕ → ψ.

This is contrary to 29.
A4’ For any M, mi (∈M) and t (∈ Ti): M, mi, t |= H (ϕ → ψ)→ (Pϕ → Pψ) .

Suppose for some M, mi(∈M) and t (∈ Ti) M, mi, t � H (ϕ → ψ)→ (Pϕ → Pψ) .

Thus, from the condition of the truth of the implications, in a certain state of knowledge mj, such that
mi ≤ mj we have:

M, mj, t |= H (ϕ → ψ) , (31)

M, mj, t � Pϕ → Pψ. (32)

From (32) and the condition of the truth of the implications, in some state of knowledge mk, such that
mj ≤ mk :

M, mk, t |= Pϕ, (33)

and
M, mk, t � Pψ. (34)

From (33) and the condition of the truth of the P operator we have:

there exists t1 (∈ Tk) , t1Rkt such that M, mk, t1 |= ϕ. (35)

From (34) and the condition of the truth of the P operator we obtain:

does not exist moment of time t2 (∈ Tk) , t2Rkt, such that M, mk, t2 |= ψ. (36)
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Let us consider the moment t1 satisfying (35). Because t1Rkt, so from (36) we have:

M, mk, t1 � ψ. (37)

If M, mk, t1 |= ψ, it would be against (36).

From (35), (37) and the condition of the truth of the implications, we get that M, mk, t1 � ϕ → ψ.
From (31) and condition the truth of the operator H we have:

for any ml such that mj ≤ ml and for any t3 (∈ Tl) such that t3Rlt : M, ml , t3 |= ϕ → ψ. (38)

Because mj ≤ mk, t1Rkt and M, mk, t1 � (ϕ → ψ) , so we get a contradiction with (38).
RH If M |= ϕ, then M |= Hϕ.

Let us assume that M |= ϕ. So for any mi and for any t(∈ Ti) holds M, mi, t |= ϕ. So especially for
any t1(∈ Ti) such that t1Rit : M, mi, t1 |= ϕ. So for any t(∈ Ti) holds M, mi, t |= Hϕ. Because we
were considering any mi, therefore M |= Hϕ.

Adequacy IKt with respect to modified semantics was demonstrated by Surowik [? ].

Theorem 15. Σ �IKt ϕ iff Σ |=IKt ϕ.

The proof of this theorem is similar to the proof of the adequacy theorem demonstrated by Ewald
in [? ].

9. Mutual Undefinability in IKt Operators H, P and G, F

We will now prove theorems that show some special properties of the IKt system, essentially
distinguishing this system from systems built on the basis of classical logic. For the formula to be
the tautology of the IKt system, it needs to be true at any time, in any state of knowledge. To show that a
formula is not true, it is enough to indicate the state of knowledge and the moment in which this formula
is not true.

We will show that some relationships between the operators H and P and G and F holds in the system
Kt but do not occur between the equivalents of these operators in the system IKt.

Theorem 16.

(a) �IKt ¬P¬p → Hp,
(b) �IKt ¬H¬p → Pp
(c) �IKt ¬Hp → P¬p
(d) �IKt ¬F¬p → Gp
(e) �IKt ¬G¬p → Fp

Proof.

(a) Let T = {t1, t2} , R = {(t1, t2)} . Let I be a set of indexes. For any i: Ti = T, Ri = R. Let k, k > 1,
be a certain index of state of knowledge. Let F = {Vi}i∈I be a class of functions satisfied the
following conditions:

for any i such that i ≤ k holds p /∈ Vi(t1), (39)
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and
for any i such that k < i holds p ∈ Vi(t1). (40)

The Vi valuations are therefore selected so that the sentence p is true at the time of t1 in the states of
knowledge with index not greater than k and at the same time it was not true at the time of t1 in the
states of knowledge with index greater than k.

Let T = 〈T, R〉. Let M = {mi : i ∈ I} . From the construction of the M model, we get that there are
states of knowledge in the M which level of knowledge is not lesser than the level of knowledge of m1

in which at the moment t1 p is true and there are states of knowledge with a level of knowledge not
lesser than the level of knowledge of m1, in which at the moment t1 is not true that p. Therefore, it is not
true that in any state of knowledge m∗

1 (∈M) holds M, m∗
1, t1 � p. Therefore, by Definition ?? we get

M, m1, t1 � ¬p. From the construction of the M model we get that in any state of knowledge m∗
1 (∈M)

holds M, m∗
1, t1 � ¬p. Because t1R∗1t2, therefore, by the Definition ?? we have M, m∗

1, t2 � P¬p. By the
Definition ?? we get

M, m1, t2 � ¬P¬p. (41)

Because the moment t1 is such that t1R1t2 and M, m1, t1 � p so by the Definition ??

M, m1, t2 � Hp. (42)

From (41), (42) and the Definition ??: we have M, m1, t2 � ¬P¬p → Hp. Therefore �IKt ¬P¬p → Hp.

(b) The M model proposed in the proof of a) will be used to prove that ¬H¬p → Pp is not a tautology
of IKt. Please note that from the construction of the model and by Definition ?? we have M, m∗

1, t1 �

¬p. Because in any state of knowledge m∗
1 (∈M) the only time before t2 is the time t1, so by the

Definition ?? for any m∗
1 holds M, m∗

1, t2 � H¬p. Hence, by the Definition ??

M, m1, t2 � ¬H¬p. (43)

From the construction of the model M we have M, m1, t1 � p. Because t1R1t2, therefore by the
Definition ??

M, m1, t2 � Pp. (44)

From (43), (44) and the Definition of ?? we obtain: M, m1, t2 � ¬H¬p → Pp. Therefore
� IKt¬H¬p → Pp.

(c) We will now show that ¬Hp → P¬p is not a tautology of IKt. Let T1 = {t1, t2} , R1 = {(t2, t1)} .
Let the function V1 be such that p �∈ V1 (t2) . States of knowledge in which the level of knowledge is
not lower than the level of m1 we construct as follows:

Ti+1 = Ti ∪ {ti+2} , (45)

Ri+1 = Ri ∪ {(ti+2, t1)} . (46)

Vi+1 is such that for t �= ti+2 : p ∈ Vi+1 (t) , and for t = ti+2 : p /∈ Vi+1 (t) . (47)
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State of knowledge mi+1 is an ordered triple 〈Ti+1, Ri+1, Vi+1〉. Let F = {Vi}i∈I will be a class of
functions satisfying the condition (47), T = 〈⋃

i∈I
Ti,

⋃
i∈I

Ri〉, M = {mi : i ∈ I} , the states of knowledge

mi are constructed in accordance with conditions (45), (46) and (47). From the construction of the M

model we get that in every state of knowledge m∗
1 (∈M), there is a moment t, earlier than t1 such

that tR∗1t1 in which such that M, m∗
1, t � p. So by the Definition ?? for any state of knowledge m∗

1 we
have M, m∗

1, t1 � Hp. From the definition of ?? we have that:

M, m1, t2 � ¬Hp. (48)

From the construction of the model we have that if at some moment of time t, in any state of
knowledge mi (∈M) is that M, mi, t � p, then in every state of knowledge m∗

i (∈M) holds M, m∗
i , t �

p. In the state of knowledge m1 (∈M) the only time before t1 is the moment t2. The moment t2 is
such that p /∈ V1 (t2) . In the classical model, this would suffice to say that M, m1, t2 � ¬p. This is not
the case in the temporal logic model built upon intuitionistic logic. From the way of constructing
states of knowledge with no lower level of knowledge than the level of knowledge in the state m1 we
have p ∈ V2 (t2) . Therefore, by the Definition ??

M, m1, t2 � ¬p. (49)

By the Definition ?? we have M, m1, t1 � ¬Hp → P¬p.

We construct counter-examples for d), e) and f) in an analogous way.

In the IKt system, between the G and F and H and P operators there are no relationships usually
found in temporal logic systems that are based on classical logic. However, the above conclusion is
not sufficient to state that the operators G and F as well as H and P are not mutually definable in IKt.
The conclusion is only that they do not occur between these operators definition relationships the same
as those in classical tense logics. We will show that in intuitionistic temporal logic, temporal operators
are not definable as they are in temporal logics based on classical propositional logic. We will show that
intuitionistic temporal operators are not definable in any other way using sentence connectives and other
intuitionistic temporal operators.

To show that a temporal operator is not definable in the IKt, two structures should be indicated such
that the sentence with the considered operator at a moment t in one structure is true, and it is false in the
other. On the other hand, all sentences in which the operator does not appear have the same logical value
in both structures at the moment t.

Theorem 17 ([? ]). The intuitionistic temporal operators F and G as well as P and H are not each other definable
in the IKt.

Proof. We will show first that the operator F is not definable if we use of intuitionistic sentence connectives
and other temporal operators. We will show that Fp is not equivalent to any temporal formula in which
the F operator does not occur.

F: Let T1 = {t1, t2}, T2 = {t1, t2, t3}, R1 = {(t1, t2)}, R2 = {(t1, t2) , (t1, t3)}, T = T1 ∪ T2. Let V1 : T1 →
2AP be such that p �∈ V1 (t2) while V2 : T2 → 2AP will be such a function that: V2 (t1) = V1 (t1),
V2 (t2) = V1 (t2) ∪ {p}, V2 (t3) = V1 (t2) . Let F = {V1, V2} , m1 = 〈T1, R1, V1〉, m2 = 〈T2, R2, V2〉,
M = {m1, m2} .

By means of structural induction, it can be shown that for any ϕ without the F operator we have
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M, m1, t1 � ϕ iff M, m2, t1 � ϕ. (50)

At the same time, M, m2, t1 � Fp and M, m1, t1 � Fp. Therefore, the F operator is not definable in IKt.
G: We will now show that the operator G is not definable if we use of intuitionistic sentence connectives

and other temporal operators. We will show that Gp is not equivalent to any temporal formula in
which the G operator is not present.
Let T1 = {t1, t2, t3}, T2 = {t1, t2, t3} , R1 = {(t1, t2)}, R2 = {(t1, t2) , (t1, t3)} , T = T1 ∪ T2. Let V1 :
T1 → 2AP will be such a function that p �∈ V1 (t2) . Let V2 : T2 → 2AP will be such a function
that: V2 (t1) = V1 (t1) , V2 (t2) = V1 (t2) ∪ {p} , V2 (t3) = V1 (t3) , p ∈ V1 (t3) . Let F = {V1, V2} .
Let m1 = 〈T1, R1, V1〉, m2 = 〈T2, R2, V2〉. Let M = {m1, m2} . By means of structural induction, it can
be shown that for any ϕ sentence without the G operator we have:

M, m1, t1 � ϕ iff M, m2, t1 � ϕ. (51)

At the same time, M, m2, t1 � Gp and M, m1, t1 � Gp. So the G operator is not definable in IKt.

Similarly, we can to show that P and H are not each other definable in IKt.

It is not, however, that the operators G, F, H, P are completely independent of each other. Certain
relationships between the operators H and P and G and F occur in IKt. We will prove some of them:

Theorem 18.

(a) �IKt H¬ϕ → ¬Pϕ,
(b) �IKt Hϕ → ¬P¬ϕ,
(c) �IKt P¬ϕ → ¬Hϕ,
(d) �IKt G¬ϕ → ¬Fϕ,
(e) �IKt Gϕ → ¬F¬ϕ,
(f) �IKt F¬ϕ → ¬Gϕ.

Proof.

(a) �IKt (H¬ϕ → ¬Pϕ)

1. �IKt (Pϕ → ¬H¬ϕ)→ (H¬ϕ → ¬Pϕ) axiom 1,
2. �IKt H¬ϕ → ¬Pϕ A5’,1,MP.

(b) �IKt Hϕ → ¬P¬ϕ

1. �IKt ϕ → ¬¬ϕ axiom 1,
2. �IKt H(ϕ → ¬¬ϕ) 1,RH,
3. �IKt H(ϕ → ¬¬ϕ)→ (Hϕ → H¬¬ϕ) A2’,
4. �IKt Hϕ → H¬¬ϕ 2,3,MP,
5. �IKt H¬¬ϕ → ¬P¬ϕ case (a),
6. �IKt Hϕ → ¬P¬ϕ 4,5, SYLL.

(c) �IKt (P¬ϕ → ¬Hϕ)
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1. �IKt (Hϕ → ¬P¬ϕ)→ (P¬ϕ → ¬Hϕ) axiom 1,
2. �IKt P¬ϕ → ¬Hϕ 1, case (b),MP.

The proofs of the cases (d), (e) and (f) are similar, so we skip them.

10. Summary

Temporal logic systems can be built in a variety of ways. They can be based on classical logic, but also,
as we presented in this article, based on intuitionistic logic. The discussed systems are minimal systems,
which means that no properties have been imposed on the time structure. One can, however, enrich these
systems with additional specific axioms, build a temporal logic systems adequate to various time structures,
e.g., reflexive, symmetrical, transitive, linear or branched. However, while in tense logic systems based on
classical logic, the thesis of logical determinism can be rejected by modifying the structure of time and
assuming, as a semantic time, a branching time into the future, in tense logics based on intuitionistic logic,
modification of the time structure is not necessary. Formulas expressing the thesis of logical determinism
are not theses of the minimal system because of its basic properties, no matter what time structure is
adopted as a semantic time.

There is a relationship between the systems being discussed. Each thesis of the IKt system is also the
thesis of Kt, so:

IKt ⊂ Kt.

In addition, as we have shown in this article, intuitionistic temporal logic can be used to represent
knowledge that changes over time. Intuitionistic logic and knowledge are closely related. This epistemic
approach is the epicenter of Brouwer’s intuitionistic explanation of truth as provability by an ideal
mathematician, or more generally by an ideal cognitive subject. Kripke’s intuitionistic models are good
tools for modelling the evolutionary learning process of the cognitive subject.

The intuitionistic temporal logic IKt has many advantages when we understand it as a formal tool
for the logical representation of knowledge changing over time. Knowledge is implemented in this
system on a semantic level in a natural way. In a natural way, by means of a set of partially ordered
states of knowledge, the way of acquiring knowledge is also modeled. However, this system has some
imperfections and limitations. The first is the limited applicability of this system. Due to the adopted
monotonicity of knowledge, i.e., a fact recognized in a given state of knowledge is known in all states of
knowledge with a not lower level of knowledge, this system is a good tool for a modelling of mathematical
or logical knowledge that changes over time.
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Abstract: We study deduction systems for the weakest, extensional and two-valued non-Fregean
propositional logic SCI. The language of SCI is obtained by expanding the language of classical
propositional logic with a new binary connective ≡ that expresses the identity of two statements;
that is, it connects two statements and forms a new one, which is true whenever the semantic correlates
of the arguments are the same. On the formal side, SCI is an extension of classical propositional logic
with axioms characterizing the identity connective, postulating that identity must be an equivalence
and obey an extensionality principle. First, we present and discuss two types of systems for SCI

known from the literature, namely sequent calculus and a dual tableau-like system. Then, we present
a new dual tableau system for SCI and prove its soundness and completeness. Finally, we discuss
and compare the systems presented in the paper.
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1. Introduction

One of the tasks of formal logic is to provide adequate tools for the formal analysis of certain
fragments of natural language, as well as for the languages of particular fields of science. It is commonly
accepted that the theory of interpretation of a language is semantics. The choice of semantics determines
how we think about a given language and what meaning we assign to its components. It is often
acknowledged that the first precisely formulated semantic principles—that serves as a foundation for
contemporary formal logic and have determined its development—were presented by Frege in his
Begriffsschrift. According to Frege, a correct and adequate formal system of a given language should
meet the following conditions:

F1 All names and all sentences have meaning and denotation. Meaning is not the same as denotation.
F2 A name and a sentence are the proper names of their denotations.
F3 Only one logical value can be assigned to each sentence: true or false.
F4 If two expressions have the same denotation, then they are exchangeable in any propositional

context of a sentence without changing the logical value of that sentence.
F5 If two sentences are exchangeable in any propositional context of a sentence without changing its

logical value, then they have the same denotation.

Note that crucial notions for Frege’s account are the following: meaning, denotation, and logical
valuation. Frege admits that the meaning of a sentence is not the same as its denotation. Indeed,
the same holds for names: ‘Evening Star’ and ‘Morning Star’ denote the same object, but they
have different meanings. The meaning of a sentence should be understood as its sense that the
sentence expresses. Thus, we should ask what a sentence is referring to. From the formal point
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of view, the answer to this question requires, in particular, to decide what the denotation of a
propositional variable is.

Propositional variables have an unusual character due to the fact that, at the same time, they are
formulas. In classical logic, this ambiguity is removed as it identifies denotations of sentences with their
truth values. In other words, in classical logic, propositional variables occur only at the metalogical
level (they are not treated as real variables) or, as it holds in propositional calculus, variables range
over the two element set of logical values. Within such an account, only terms have a meaningful
ontological reference. Thus, the advocate of classical logic, if he is also a proponent of the Fregean
semantic principles, must accept that all true sentences have one and the same denotation, namely the
logical value Truth, and denotation of all false sentences is the logical value False.

The consequence of Frege’s semantic principles, according to which denotations of sentences are
logical values, is usually called the Fregean principle, and every logical system that adopts this principle
is called a Fregean system. The Fregean approach can be considered as philosophically justified in
the study of mathematical languages, but it is not obvious that such an approach is justified as a
foundation of a philosophically adequate semantics. The debatable cases of the applicability of the
Fregean account in the formalization of any language are, for instance, theories of meaning or ontology.
If we admit that the references of sentences are situations (states of affairs) that these sentences describe
(in analogy with the assumption that the semantic references of terms are objects named by these
terms), then the Fregean principle is not only a semantic principle, but also an ontological one which
imposes a quantitative restriction on the universe of situations: there are at most two situations
described by sentences. This is an extremely strong assumption. Note that the Fregean account does
not impose an upper limit on the universe of objects.

Roman Suszko in 1968 [1] proposed to change the Fregean paradigm and introduced the so-called
non-Fregean logic (see also [2]). The basic philosophical assumption underlying non-Fregean logic is the
thesis in reality to which the language is referring, and there exist semantic correlates of all expressions
that are not purely syntactic. Therefore, in the non-Fregean approach, it is assumed that the semantic
correlates of names are objects from the universe of objects, the semantic correlates of predicates are
appropriate sets, and the semantic correlates of sentences are situations described by these sentences.
Furthermore, a universe of situations cannot be quantitatively restricted, except that there are at least
two situations.

The construction of a propositional non-Fregean logic, which at the same time preserves all
properties of classical logic with respect to the classical connectives, is relatively simple. To make it
possible to express statements on situations and interactions between them, propositional calculus is
extended with the additional connective, named the identity connective and denoted by≡. The intended
interpretation of the identity connective is the following: φ ≡ ψ is true if and only if the semantic
correlates of φ and ψ are the same, that is, sentences ϕ and ψ describe the same situation (the same
state of affairs). Note that, in a general case, the identity connective is different than the classical
equivalence. Equivalent sentences, that is, sentences that do not have the same logical value, do not
have to refer to the same situation, and so they do not have to be identical. In other words, the logical
value of a sentence and the situation described by this sentence are two different things.

Suszko states that the identity connective is more primitive than other non-truth functional
connectives such as modal connectives of possibility and necessity. The identity connective is more
primitive in the sense that it cannot be eliminated without identifying it with the equivalence connective.
However, if we add the identity connective to classical logic, we do not lose two-valuedness. If a
non-Fregean system of logic would be constructed based on classical logic, extending its language
with the identity connective and constructing semantics in which classical connectives preserve their
classical meaning, we will obtain a two-valued system, in which each sentence is either true or false.
On the other hand, being logically two-valued, non-Fregean logics can be seen as systems that are
ontologically (referentially) many-valued.
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The weakest extensional and two-valued propositional non-Fregean logic is SCI (Sentential Calculus
with Identity). A detailed description of the philosophical assumptions of SCI can be found in [2].
Originally, logic SCI was defined as an extension of classical propositional logic with four axioms
expressing the following properties of the identity connective: (1) any sentence is identical with itself,
(2) if two sentences are identical, then so are their negations, (3) identical sentences are equivalent,
and (4) sentences that are identical are interchangeable in any propositional context. A sound and
complete semantics for SCI was designed by Suszko and Bloom in [3]. A models for SCI is a structure
that consists of a universe of situations, a distinguished subset of facts (situations that actually hold),
and operations that represent all the connectives. Furthermore, it is assumed that the operations satisfy
certain conditions with respect to the distinguished set of situations so that the classical connectives
gain their classical meaning, and the operation corresponding to the identity connective represents the
identity between situations. For details, see Section 2.

It is established that SCI has the finite model property and is decidable. Moreover, as shown
in [4], the class of different axiomatic extensions of SCI is uncountable. There is also some research on
non-standard (deviant) modifications of SCI obtained by rejecting some of its fundamental assumptions
or extending its language with additional operators. Recently, the most studied modifications of SCI are
Grzegorczyk’s non-Fregean logics, which are paraconsistent non-Fregean logics ([5–7]). Some research
has been also focused on first-order non-Fregean logics, in particular SCIQ. In [8], it has been proved
that the logic SCIQ, obtained by extending SCI with propositional quantifiers, is able to express
infiniteness and many well-known mathematical theories (e.g., the theories of groups and fields, Peano
arithmetic). Furthermore, SCIQ does not have the finite model property, is undecidable, satisfies the
Löwenheim-Skolem Theorem, and is an analog of Fagin’s Theorem (the class of sets of natural numbers
that are expressible in SCIQ is precisely the complexity class NP).

The non-Fregean approach has many philosophical and logical advantages as it offers a relatively
simple, natural and intuitive basis for exploring fundamental relationships between language and
situations. Moreover, non-Fregean logics can be seen as a general framework for representing and
comparing logics with different languages or semantics. Indeed, it turned out that many non-classical
logics can be equivalently translated into some extensions of SCI. For instance, modal logics S3, S4,
and S5 are equivalent to some extensions of SCI, that is, there are translations—from a non-Fregean
language to a modal one and the other way round—that preserve the satisfaction of formulas with
respect to the appropriate class of structures (see [9]). It has been also proved in [10] that SCI

can serve as a basis for expressing many-valued logics. Furthermore, it has been shown that the
weakest non-Fregean logic MGL (Minimal Grzegorczyk Logic) introduced in [11] is able to express most
non-classical logics, including uncountably many extensions of SCI and paraconsistent non-Fregean
Grzegorczyk’s logics. Thus, MGL can be treated as a generic non-Fregean logic.

The non-Fregean approach could be relevant in cognitive science applications as well as in
natural language processing. Last but not least, research on non-Fregean logics could lead to a better
understanding of the capabilities and relationships of logics with mutually incompatible languages
and semantics. Studies on various versions of non-Fregean logic may also shed light on which class of
logics offers the most adequate account of logical symbols from point of view of natural language.

In this paper, we focus on deduction systems for the logic SCI. The deduction system for SCI

was originally defined in a Hilbert-style. Since then, some other systems for SCI have been proposed:
Gentzen sequent calculus ([12–14]) and a dual tableau system ([15,16]). The aim of the paper is to
present a new dual tableau system for SCI, which is suitable for automated reasoning in SCI. The main
advantage of the new system is that, contrary to previously known systems, it is more efficient: it does
not involve any substitution rule, its rules for the identity connective do not branch a proof tree, and it
generates shorter and simpler proof trees.

The paper consists of five sections: in Section 2, we present the basics of the non-Fregean
propositional logic SCI, that is, its language, semantics, and axiomatization. In Sections 3 and 4,
we briefly survey sequent calculus and a dual tableau system for SCI, respectively. In Section 5,
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we present a new dual tableau system for SCI and prove its soundness and completeness. Finally,
in Section 6, we discuss and compare the systems presented in the paper.

2. The Non-Fregean Propositional Logic SCI

The vocabulary of the language of the non-fregean propositional logic, SCI, consists of the symbols
from the following pairwise disjoint sets:

• V = {p1, p2, p3, . . .}—a countable infinite set of propositional variables;
• {¬,∨,∧,→,↔,≡}—the set of propositional operations of negation ¬, disjunction ∨, conjunction

∧, implication →, equivalence ↔, and identity ≡.

The set FOR of all SCI-formulas is the smallest set including V and closed with respect to all
propositional operations.

An SCI-model is a structure M = (U,∼, ,!,⇒,⇔, ◦, D), where U is a non-empty set referred to
as a universe, D is any non-empty proper subset of U, and ∼, ,!,⇒,⇔, ◦ are operations on U with
arities 1, 2, 2, 2, 2, 2, respectively, such that, for all a, b ∈ U the following hold:

(SCI1) ∼a ∈ D iff (a �∈ D);
(SCI2) a  b ∈ D iff (a ∈ D or b ∈ D);
(SCI3) a ! b ∈ D iff (a ∈ D and b ∈ D);
(SCI4) a ⇒ b ∈ D iff (a �∈ D or b ∈ D);
(SCI5) a ⇔ b ∈ D iff (a ∈ D if and only if b ∈ D);
(SCI6) a ◦ b ∈ D iff a = b.

Let M be an SCI-model. A valuation in M is any mapping v : FOR → U such that v(p) ∈ D,
for every p ∈ V, and the following conditions hold for all SCI-formulas:

v(¬ϕ) = ∼v(ϕ)
v(ϕ ∨ ψ) = v(ϕ)  v(ψ)
v(ϕ ↔ ψ) = v(ϕ)⇔ v(ψ)

v(ϕ → ψ) = v(ϕ)⇒ v(ψ)
v(ϕ ∧ ψ) = v(ϕ) ! v(ψ)
v(ϕ ≡ ψ) = v(ϕ) ◦ v(ψ).

Given an SCI-model M and a valuation v in M, an SCI-formula ϕ is said to be satisfied in M by v
(in short M, v |= ϕ) whenever v(ϕ) ∈ D. An SCI-formula ϕ is true in M if and only if for every v in
M, M, v |= ϕ. A formula is SCI-valid if and only if it is true in all SCI-models. An SCI-formula ϕ is
said to be satisfiable in an SCI-model M whenever there exists a valuation v on M such that M, v |= ϕ.
A model is referred to as finite if its universe is finite.

The intended philosophical interpretation of an SCI-model M = (U,∼, ,!,⇒,⇔, ◦, D) is as
follows: U is the set of situations (denotations of sentences); D is the set of facts, that is, it consists of
those situations that correspond to true sentences; the operations correspond to the formation of new
formulas with connectives.

The logic SCI is two-valued. We may define the logical value of a formula ϕ in a model M as:

valM(ϕ)
df
=

{
true , if for every v in M, v(ϕ) ∈ D ,
false, otherwise.

The following proposition shows that SCI is extensional in the sense that any subformula ψ of an
SCI-formula ϕ can be replaced with another formula ϑ denoting the same as ψ without affecting the
denotation of ϕ.

Proposition 1. Let M be an SCI-model, let v be a valuation in M, let ϕ be an SCI-formula containing a
subformula ψ, and let ϕ′ be the result of replacing some occurrences of ψ in ϕ by a formula ϑ. Then, M, v |=
ψ ≡ ϑ implies M, v |= ϕ ≡ ϕ′.
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The proof of Proposition 1 is presented in [16]. It should be emphasized that two-valuedness
and extensionality concern different levels. Two-valuedness is a property of truth values, while
extensionality holds for denotations.

As shown in [3], the logic SCI has the finite model property and is decidable:

Theorem 1 (Finite model property and decidability of SCI). The logic SCI has the finite model property,
i.e., every satisfiable SCI-formula is satisfiable in a finite SCI-model. Furthermore, the logic SCI is decidable.

Corollary 1. Let T be a set of SCI-formulas such that T is true in all finite SCI-models. Then, T is true in all
infinite SCI-models as well.

The proof of the above corollary can be found in [8].
A Hilbert-style axiomatization of SCI consists of axiom schemas of classical propositional logic

PC, which characterize the operations ¬,∨,∧,→,↔, and the following axiom schemas for the identity
operation ≡:

(≡1) ϕ ≡ ϕ;
(≡2) (ϕ ≡ ψ)→ (¬ϕ ≡ ¬ψ);
(≡3) (ϕ ≡ ψ)→ (ϕ → ψ);
(≡4) [(ϕ ≡ ψ) ∧ (ϑ ≡ ξ)]→ [(ϕ#ϑ) ≡ (ψ#ξ)], for # ∈ {∧,∨,→,↔,≡}.

The only rule of inference is modus ponens. The notion of provability of a formula is defined
as usual. Thus, an SCI-formula ϕ is said to be SCI-provable whenever there exists a finite sequence
ϕ1, . . . , ϕn of SCI-formulas, n ≥ 1, such that ϕn = ϕ and each ϕi, i ∈ {1, . . . , n}, is an SCI-axiom or
follows from earlier formulas in the sequence by the modus ponens rule. It is easy to see that all
theorems of classical propositional logic are SCI-provable formulas.

Fact 2. For every PC-formula ϕ, the following conditions are equivalent:

1. ϕ is provable in the classical propositional logic.
2. ϕ is SCI-provable.

Soundness and completeness of SCI with respect to the class of SCI-models was proved in [3].

Theorem 2 (Soundness and Completeness of SCI). For every SCI-formula ϕ, the following conditions
are equivalent:

1. ϕ is SCI-provable.
2. ϕ is SCI-valid.

The logic SCI is very weak as it does not impose any specific assumptions on the cardinality
of the universe of situations (except that it has at least two elements). Furthermore, it does not
assume any specific assumptions on the identities of equivalent formulas—for instance, the formula
(ϕ ∧ ψ) ≡ (ψ ∧ ϕ) is not SCI-valid. Indeed, the reduct (U,∼, ,!) of an SCI-model is not necessarily a
Boolean algebra, since, for example, a ! b = b ! a is not true in all SCI-models. Consider an SCI-model
M = (U,∼, ,!,⇒,⇔, ◦, D), where U = {0, 1, 2}, D = {1, 2}, and the operations ∼, ,!,⇒,⇔, ◦
are defined by:

∼a df
=

{
0, if a �= 0,
1, otherwise,

a ⇒ b df
=

{
0, if a �= 0 and b = 0,
1, otherwise,

a  b df
=

{
0, if a = 0 and b = 0,
1, otherwise,

a ! b df
=

⎧⎪⎨
⎪⎩

0, if a = 0, or b = 0,
1, if b = 2 and a �= 0,
2, otherwise,
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a ⇔ b df
=

{
0, if a �= 0, b = 0 or a = 0, b �= 0,
1, otherwise,

a ◦ b df
=

⎧⎪⎨
⎪⎩

0, if a �= b,
a, if a = b and a �= 0,
1, otherwise.

It is easy to verify that such a structure is an SCI-model. Then, the following hold in the model
M: 2! 1 = 2 and 1! 2 = 1. Hence, a ! b = b ! a is not true in this model.

Therefore, if we remove from the SCI-language some of the classical propositional connectives
and define them equationally as usual, then the logic obtained in this way would not be a notational
variant of SCI. Indeed, suppose that we remove the connective ∨ from SCI-language, and we add the

definition ϕ ∨ ψ
df
= ¬ϕ → ψ. In such a logic, the formula (ϕ ∨ ψ) ≡ (¬ϕ → ψ) would be valid, while it

is not an SCI-valid formula.
However, in some applications, there may be a need to impose some specific properties of

situations or interactions between them. If we add additional assumptions on the universe of situations,
we will obtain an extension of SCI. For example, if we add to the set of SCI-axioms the so-called
Fregean axiom

(Fregean Axiom) (ϕ ↔ ψ)→ (ϕ ≡ ψ),

which identifies the denotations of sentences with their truth values, then we get classical propositional
logic. It is easy to see that classical propositional logic is the strongest among all propositional
extensions of SCI. As shown in [4], there are uncountably many different non-Fregean theories stronger
than SCI and weaker than classical propositional logic.

In the rest of the paper, we present and discuss two types of deduction systems for SCI:
a sequent-style and a tableau-like systems. Although, as mentioned above, any restriction of the
SCI-language leads to a different logic than the original SCI, to make the presentation more readable,
we will assume that SCI-language consists of three connectives: ¬, →, and ≡. In the context of
deduction systems, this restriction is minor because each of the presented system can be easily
extended to the full SCI-language without loss of soundness and completeness.

3. Sequent-Style Formalizations for SCI

Sequent calculi constitute an important type of deduction systems. They were designed by
Gerhard Gentzen for purely theoretical reasons, mainly as a theoretical framework for investigations
properties of logical consequence. However, it turned out that Gentzen sequent calculus is not only
another way of axiomatization of classical logic, but also a good alternative to Hilbert (axiomatic)
systems: it is much easier and more convenient to use in practice. Anyone who has tried to construct
an axiomatic proof of even a very simple formula knows that such a proof construction requires a lot
of effort and creativity. The reason lies in the very nature of Hilbert systems: to prove a formula we
must construct a sequence of formulas with this formula as the last element of the sequence. Thus, the
main challenge in building axiomatic proofs is: How can we find the way to the formula in question?
The Hilbert system itself does not provide any strategy on how to find proofs; it only says which
sequences of formulas are proofs. In Gentzen systems, this weakness is mitigated by changing the
notion of a proof: in order to build a proof of a formula, we start with that formula and decompose
it according to the rules of the system; if the last formulas satisfy certain conditions, then we can
conclude that a formula is a theorem. Thus, in each step of decomposition, a reasoner knows the
given formulas and can analyze their possible derivations. This means that sequent calculus is a
goal-oriented tool, and so it could be more easily implemented than Hilbert-style systems. In recent
decades, systems that could be easily automated have become increasingly important, mainly due
to growing interests in applications of logic and the rapid development of information technologies.
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Gentzen sequent calculus provides—among other systems like tableaux or resolution—a good tool for
automated theorem proving.

The first sequent calculus for the logic SCI was built by Michaels (see [12]); then, it has been
simplified by Wasilewska in [13]) and modified by Chlebowski in [14]. Below, we present the basics of
a sequent calculus for SCI, which is a version of systems from [12] and [13] adjusted to the well known
sequent axiomatization of classical propositional logic.

By Γ, Δ, Σ, with indices if necessary, we will denote finite (possibly empty) sequences of
SCI-formulas. If Γ and Δ are sequences ϕ1, . . . , ϕn and ψ1, . . . , ψm, respectively, then Γ, Δ denotes
a sequence ϕ1, . . . , ϕn, ψ1, . . . , ψm. Similarly, if ϕ is a formula and Γ = (ϕ1, . . . , ϕn) is a sequence of
formulas, then ϕ, Γ (resp. Γ, ϕ) denotes the sequence ϕ, ϕ1, . . . , ϕn (resp. ϕ1, . . . , ϕn, ϕ). A sequence
that contains only propositional variables (resp. identities of the form ϕ ≡ ψ) will be referred to as an
atomic sequence (resp. an identities sequence). If ϕ, ψ, ϑ are SCI-formulas, then, by ϕ[ψ/ϑ], we denote any
sequence consisting of all formulas, including ϕ, obtained from ϕ by replacing at least one occurrence
of ψ by ϑ. Clearly, given formulas ϕ, ψ, ϑ, a sequence ϕ[ψ/ϑ] is finite. If Γ is a finite sequence of

SCI-formulas and ψ, ϑ are SCI-formulas, then Γ[ψ/ϑ]
df
= {ϕ[ψ/ϑ] : ϕ ∈ Γ}.

A sequent is an expression of the form Γ � Δ, where Γ (Δ) is referred to as antecedent (resp. succedent)
of a sequent. Validity of a sequent Γ � Δ, for Γ = (ϕ1, . . . , ϕn) and Δ = (ψ1, . . . , ψm) is equivalent with
validity of a formula (ϕ1 ∧ . . . ∧ ϕn)→ (ψ1 ∨ . . . ∨ ψm). Thus, if a sequence of formulas is on the left
of the �, then it is considered conjunctively, while, if it is on the right of the �, the sequence of formulas
is considered disjunctively. Sequent rules can be divided on the left and right rules, which in general
correspond to valid formulas of the form (ϕ1 ∧ . . . ∧ ϕn) → (ψ1 ∨ . . . ∨ ψm). Sequent rules have the
following general forms:

(left rule)
ψ1, ϕ1, . . . , ϕn, Γ � Δ | . . . | ψm, ϕ1, . . . , ϕn, Γ � Δ

ϕ1, . . . , ϕn, Γ � Δ
,

(right rule)
Γ � Δ, ψ1, . . . , ψm, ϕ1 | . . . | Γ � Δ, ψ1, . . . , ψm, ϕn

Γ � Δ, ψ1, . . . , ψm
.

There are two major groups of sequent rules: logical and structural. A logical rule introduces a
new formula either on the left or on the right of the �. A structural rule operates on the structure of
the sequents, ignoring the exact shape of the formulas. Some sequents are distinguished as axioms.
In order to prove a sequent Γ � Δ, we write the sequent and then proceed to construct a tree in an
upward direction. In each step, we follow the rules of a sequent calculus until we reach a closing
sequent that is a sequent that is an axiom. If we apply a rule in which the symbol ‘|’ occurs, then the
tree splits. Each split in a tree adds a new branch. If a given branch has at its top an axiom, then it is
called closed; otherwise, it is open. If all branches are closed, then a derivation of a sequent is its proof.

The sequent calculus for SCI, denoted by GSCI, consists of logical rules for the classical connectives
from Table 1, the rule for the identity connective depicted in Table 2, and structural rules given in
Table 3. GSCI-axioms are sequents of either of the following forms, for any SCI-formula ϕ and any finite
sequences Γ, Γ′, Δ, Δ′ of SCI-formulas: Γ, ϕ, Γ′ � Δ, ϕ, Δ′ or Γ,� Δ, ϕ ≡ ϕ, Δ′.

Table 1. GSCI-rules for classical connectives.

(¬L)
Γ � ϕ, Δ

Γ,¬ϕ � Δ
(¬R)

Γ, ϕ � Δ
Γ � ¬ϕ, Δ

,

(→L)
Γ � ϕ, Δ | Γ′, ψ � Δ′

Γ, Γ′, ϕ → ψ � Δ, Δ′
(→R)

Γ, ϕ � ψ, Δ
Γ � ϕ → ψ, Δ

,

where ϕ, ψ are any SCI-formulas
Γ, Γ′, Δ, Δ′ are any finite (possibly empty) sequences of SCI-formulas

157



Axioms 2019, 8, 115

Table 2. GSCI-rule for the identity connective.

(≡GSCI
)

Γ, Σ, Γ′[ϕ/ψ] � Δ, Δ′[ϕ/ψ] | Γ, Γ′[ϕ/ψ] � Δ, Σ, Δ′[ϕ/ψ]

Γ, ϕ ≡ ψ, Γ′ � Δ, Δ′
,

where ϕ, ψ are any SCI-formulas and Σ is the sequence ϕ, ψ, ϕ ≡ ψ, ψ ≡ ϕ
Γ, Δ are atomic sequences and Γ′, Δ′ are identities sequences

Table 3. Structural rules of GSCI-calculus.

(WL)
Γ � Δ

Γ, ϕ � Δ
(WR)

Γ � Δ
Γ � ϕ, Δ

(CL)
Γ, ϕ, ϕ � Δ

Γ, ϕ � Δ
(CR)

Γ � ϕ, ϕ, Δ
Γ � ϕ, Δ

(PL)
Γ, ϕ, ψ, Γ′ � Δ
Γ, ψ, ϕ, Γ′ � Δ

(PR)
Γ � Δ, ϕ, ψ, Δ′

Γ � Δ, ψ, ϕ, Δ′

(cut)
Γ � ϕ, Δ | ϕ, Γ′ � Δ′

Γ, Γ′ � Δ, Δ′

where ϕ, ψ are any SCI-formulas
Γ, Γ′, Δ, Δ′ are any finite (possibly empty) sequences of SCI-formulas

An SCI-formula ϕ is said to be GSCI-provable if and only if there is a GSCI-proof for the sequent
� ϕ. As proved in [12] (cf. [13]), the system GSCI is sound and complete:

Theorem 3 (Soundness and Completeness of GSCI). Let ϕ be an SCI-formula. Then, the following conditions
are equivalent:

1. ϕ is SCI-valid;
2. ϕ is GSCI-provable.

Note that the rule (≡GSCI
) for the identity connective is a branching rule, and it can be applied

only if no other logical rule can be applied that is all formulas in sequents are either propositional
variables or identities. Furthermore, observe that the rule (≡GSCI

) corresponds to the extensionality
property as stated in Proposition 1. This means that the rule (≡GSCI

) reflects the following property of
the logic SCI: if ((ϕ ≡ ψ) ∧ ϑ)→ χ is SCI-valid, then ((ϕ ≡ ψ) ∧ ϑ′)→ χ′ is SCI-valid, where ϕ, ψ, ϑ, χ

are any SCI-formulas and ϑ′ (resp. χ′) is the result of replacing some occurrences of ϕ in ϑ (resp. χ) by
a formula ψ.

Clearly, the rule (≡GSCI
) uses substitution, thus it may produce many formulas which are not

necessary to close a tree. Chlebowski in 2018 proposed two sound and complete sequent calculi
for SCI whose rules for identity do not make use of substitution. The idea of Chlebowski’s systems
is to translate each of the SCI-axiom schemas (≡3)–(≡4) to sequent rules. For instance, a left rule
corresponding to the axiom schema (≡4) for → has the following form:

(ϕ → ϑ) ≡ (ψ → χ), ϕ ≡ ψ, ϑ ≡ χ, Γ � Δ
ϕ ≡ ψ, ϑ ≡ χ, Γ � Δ

.

For details of Chlebowski’s systems, we refer the reader to [14].
Figure 1 presents a closed GSCI-derivation of the formula (p1 ≡ p2) → (p1 → p2), which is an

instance of the axiom schema (≡3), while, in Figure 2, we show how to prove in GSCI the formula
(p1 ≡ p2)→ [(p2 ≡ p3)→ (p1 ≡ p3)], which expresses the fact that the identity connective represents
a transitive relation.
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closedclosed
p1, p1, p2, p1 ≡ p2, p2 ≡ p1 � p2 | p1 � p2, p1, p2, p1 ≡ p2, p2 ≡ p1

(≡GSCI
)

p1, p1 ≡ p2 � p2
(PL)

p1 ≡ p2, p1 � p2
(→R)

p1 ≡ p2 � p1 → p2
(→R)� (p1 ≡ p2)→ (p1 → p2)

Figure 1. A GSCI-proof of a formula (p1 ≡ p2)→ (p1 → p2).

closedclosed
p2, p3, p1 ≡ p3, . . . � p1 ≡ p3 | p1 ≡ p3, . . . � p2, p3, p1 ≡ p3, . . .

(≡GSCI
)

p2 ≡ p3, p1 ≡ p2 � p1 ≡ p3
(PL)

p1 ≡ p2, p2 ≡ p3 � p1 ≡ p3
(→R)

p1 ≡ p2 � (p2 ≡ p3)→ (p1 ≡ p3)
(→R)� (p1 ≡ p2)→ [(p2 ≡ p3)→ (p1 ≡ p3)]

Figure 2. A GSCI-proof of a formula (p1 ≡ p2)→ [(p2 ≡ p3)→ (p1 ≡ p3)].

4. Dual Tableau System DTSCI

Dual tableau systems are based on Rasiowa–Sikorski diagrams for classical predicate logic
(see [17]). They are top–down systems determined by the rules of inferences and axioms. Rules have
the following form (rule) Φ

Φ1 | ... |Φn
, n ≥ 1, where Φ, Φ1, . . . , Φn are finite sets of formulas. The set

Φ is called the premise of the rule. Sets Φ1, . . . , Φn are said to be conclusions. Some systems allow
infinitary rules with infinitely countable many conclusions. The rules are supposed to preserve the
validity of the sets of formulas to which they are applied, where the validity of a finite set of formulas
is understood as the validity of the disjunction of its elements. Thus, a comma in the sets of a rule
(rule) can be interpreted as the meta-disjunction, while branching ‘|’ as the meta-conjunction. The rules
apply to finite sets of formulas. A rule (rule) is applicable to a finite set X, whenever X = Φ, and there
is i ∈ {1, . . . , n} such that X �= Φi. Axioms are distinguished valid sets of formulas, also referred to as
axiomatic sets. The key notion in the methodology of dual tableau systems is a proof tree. A proof tree
for a formula ϕ is a (finitely) branching tree whose root consists of the set {ϕ} and each node of the
tree, except the root, is obtained by an application of a rule to its predecessor node. A formula ϕ is said
to be provable, whenever there is a proof tree for ϕ such that all of its branches ends with an axiom.

Dual tableau systems are validity checkers that are in order to prove a formula ϕ we build
a proof tree directly for that formula. It distinguishes dual tableaux from tableau systems, which are
unsatisfiability checkers, as in tableau systems in order to prove a formula a proof tree for its negation
is constructed.

Over the years, dual tableaux have been constructed for a great variety of logics, in particular for
modal, intuitionistic, relevant, many-valued, temporal, spatial, fuzzy, dynamic programming logics,
among others. A very recent comprehensive survey on the foundations and applications of dual
tableaux is the book [16].

The first sound and complete dual tableau for the fragment of SCI-language was presented in [15].
A dual tableau for the full SCI-language is described in [16]. The system presented in [15] (resp. [16])
was defined for SCI-language which among its classical connectives contains ¬, ∧, and ∨ (resp. ¬, ∧,
∨, →, ↔). In this section, we present the basics of a dual tableau from [16] adjusted to SCI-language
that contains only three connectives ¬, →, and ≡. For the simplicity of our presentation, we will write
ϕ �≡ ψ instead of ¬(ϕ ≡ ψ).

The dual tableau system for SCI, denoted by DTSCI, consists of DTSCI-axiomatic sets,
decomposition rules (¬), (→), (¬→) presented in Table 4, and the specific rule (≡) depicted in Table 5.
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Decomposition rules enable us to decompose formulas built by means of the classical connectives ¬
and →, while the specific rule reflects properties of the identity connective ≡. DTSCI-axiomatic sets
have either of the following forms, where ϕ is an SCI-formula and X is a finite (possible empty) set of
SCI-formulas: {ϕ ≡ ϕ} ∪ X or {ϕ,¬ϕ} ∪ X.

Table 4. DTSCI-decomposition rules.

(→)
{ϕ → ψ} ∪ X
{¬ϕ, ψ} ∪ X

(¬→)
{¬(ϕ → ψ)} ∪ X
{ϕ} ∪ X | {¬ψ} ∪ X

(¬)
{¬¬ϕ} ∪ X
{ϕ} ∪ X

where ϕ and ψ are any SCI-formulas,
and X is a finite (possibly empty) set of SCI-formulas.

Table 5. DTSCI-specific rule for the identity connective ≡.

(≡)
{ϕ(ψ)} ∪ X

{ψ ≡ ϑ, ϕ(ψ)} ∪ X | {ϕ(ψ/ϑ), ϕ(ψ)} ∪ X

where ϕ and ϑ are any SCI-formulas, ψ is any subformula of ϕ,
ϕ(ϑ) is obtained from ϕ(ψ) by replacing some occurrences of ψ with ϑ
and X is a finite (possibly empty) set of SCI-formulas.

A finite set of SCI-formulas {ϕ1, . . . , ϕn} is said to be SCI-valid whenever the disjunction of its
elements is SCI-valid that is for every SCI-model M and for every valuation v in M there exists
i ∈ {1, . . . , n} such that M, v |= ϕi. A DTSCI-proof tree for an SCI-formula ϕ is a finitely branching tree
whose nodes are sets of formulas satisfying the following conditions:

• the formula ϕ is at the root of this tree,
• each node except the root is obtained by an application of a DTSCI-rule to its predecessor node,
• a node does not have successors whenever it is a DTSCI-axiomatic set or none of the rules applies

to its set of formulas.

A branch of a DTSCI-proof tree is said to be closed whenever it contains a node with a
DTSCI-axiomatic set of formulas. A DTSCI-proof tree is closed whenever all of its branches are closed.
A formula ϕ is DTSCI-provable whenever there is a closed DTSCI-proof tree for ϕ, which is then referred
to as its DTSCI-proof.

Figure 3 presents a DTSCI-proof for the formula (p1 ≡ p2) → (p1 → p2), which is an instance
of the axiom schema (≡3). Figure 4 presents a closed DTSCI-proof tree for the formula (p1 ≡ p2) →
[(p2 ≡ p3)→ (p1 ≡ p3)]. In each node of the proof tree, we underline the formula to which a rule has
been applied during the construction of the proof tree, and we indicate only those formulas in a node
which are essential for this construction.

(p1 ≡ p2)→ (p1 → p2)

�(→)

p1 �≡ p2, p1 → p2

�(→)

p1 �≡ p2,¬p1, p2
����
����(≡) for ψ := p1 and ϑ := p2

p1 ≡ p2, p1 �≡ p2, . . .
closed

¬p2, p2, . . .
closed

Figure 3. A DTSCI-proof for the formula (p1 ≡ p2)→ (p1 → p2).
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(p1 ≡ p2)→ [(p2 ≡ p3)→ (p1 ≡ p3)]

�(→)

p1 �≡ p2, (p2 ≡ p3)→ (p1 ≡ p3)

�(→)

p1 �≡ p2, p2 �≡ p3, p1 ≡ p3
����
����(≡) for ψ := p1 and ϑ := p2

p1 ≡ p2, p1 �≡ p2, . . .
closed

p2 �≡ p3, p2 ≡ p3, . . .
closed

Figure 4. A DTSCI-proof for (p1 ≡ p2)→ [(p2 ≡ p3)→ (p1 ≡ p3)].

The proof of soundness and completeness of DTSCI-system is presented in [16] (cf. [15]):

Theorem 4 (Soundness and Completeness of DTSCI). Let ϕ be an SCI-formula. Then, the following
conditions are equivalent:

1. ϕ is SCI-valid;
2. ϕ is DTSCI-provable.

As in GSCI-system, the rule for the identity connective of the system DTSCI branches a tree and
involves use of substitution. In the next section, we present a new dual tableau that has no such
disadvantages.

5. A Substitution-Free Dual Tableau for SCI

In this section, we present the system DT∗SCI, which is a modification of DTSCI-system by replacing
the rule (≡) with several rules for the identity connective that do not involve substitutions. The system
DT∗SCI consists of DTSCI-decomposition rules presented in Table 4 (see Section 4) and the specific rules
presented in Table 6. The specific rule (ref) (resp. (sym), (tran)) expresses reflexivity (resp. symmetry,
transitivity) of a relation which in SCI-models corresponds to the identity connective. Thus, specific
rules (ref), (sym), and (tran) reflect the fact that the relation corresponding to the identity connective is
an equivalence relation. The specific rule (≡¬) (resp. (≡→), (≡≡)) expresses the instance of SCI-axiom
(≡2) (resp. (≡4) for → and (≡4) for ≡) presented in Section 2. Therefore, specific rules (≡¬), (≡→),
and (≡≡) correspond to the extensionality property for connectives ¬, →, and ≡ (see Proposition 1).
As the identity connective can be characterized as an operation that satisfies the extensionality property
and represents an equivalence relation, we will show that specific rules (ref), (sym), (tran), (≡¬),
(≡→), and (≡≡) are sufficient to prove completeness of the system DT∗SCI.

The axiomatic sets of DT∗SCI have either of the following forms, where ϕ, ψ are any SCI-formulas
and X is a finite (possible empty) set of SCI-formulas:

(Ax1
DT∗SCI

) {ϕ ≡ ϕ} ∪ X,

(Ax3
DT∗SCI

) {ϕ,¬ψ, ϕ �≡ ψ} ∪ X,

(Ax2
DT∗SCI

) {ϕ,¬ϕ} ∪ X,

(Ax4
DT∗SCI

) {¬ϕ, ψ, ϕ �≡ ψ} ∪ X.

The notions of an SCI-valid set of formulas, a DT∗SCI-proof tree, a closed branch of such a tree,
a closed DT∗SCI-proof tree, and DT∗SCI-provability are defined in a similar way as for DTSCI-system in
Section 4. Observe that none of the specific rules split a tree or use substitutions.

Now, we will prove the soundness and completeness of DT∗SCI-system.
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Table 6. DT∗SCI-specific rules for the identity connective.

(ref)
X

{ϕ �≡ ϕ} ∪ X
(sym)

{ϕ �≡ ψ} ∪ X
{ψ �≡ ϕ, ϕ �≡ ψ} ∪ X

(tran)
{ϕ �≡ ψ, ψ �≡ ϑ} ∪ X

{ϕ �≡ ϑ, ϕ �≡ ψ, ψ �≡ ϑ} ∪ X

(≡¬)
{ϕ �≡ ψ} ∪ X

{¬ϕ �≡ ¬ψ, ϕ �≡ ψ} ∪ X

(≡→)
{ϕ �≡ ψ, ϑ �≡ χ} ∪ X

{(ϕ → ϑ) �≡ (ψ → χ), ϕ �≡ ψ, ϑ �≡ χ} ∪ X

(≡≡)
{ϕ �≡ ψ, ϑ �≡ χ} ∪ X

{(ϕ ≡ ϑ) �≡ (ψ ≡ χ), ϕ �≡ ψ, ϑ �≡ χ} ∪ X
where ϕ, ψ, ϑ, χ are any SCI-formulas,
and X is a finite (possibly empty) set of SCI-formulas.

Proposition 3 (Correctness of DT∗SCI-rules). For every DT∗SCI-rule (rule), the premise of rule is SCI-valid if
and only if all of its conclusions are SCI-valid.

Proof. The proof for decomposition rules is straightforward, so we will prove the proposition for
the specific rules of DT∗SCI: (ref), (sym), (tran), (≡¬), (≡→), (≡≡). Let ϕ, ψ, ϑ, χ be any SCI-formulas
and let X be a finite (possibly empty) set of SCI-formulas. Observe that, in each of the specific
DT∗SCI-rules, the premise of a rule is a subset of its conclusion. Thus, if the premise is SCI-valid, then so
is its conclusion. Therefore, it suffices to show that SCI-validity of the conclusion of a rule implies
SCI-validity of its premise.

Correctness of the rule (ref)

Assume {ϕ �≡ ϕ} ∪ X is SCI-valid and suppose X is not SCI-valid. Then, there are an SCI-model
M and a valuation v in M such that, for every ξ ∈ X, M, v �|= ξ. Thus, since {ϕ �≡ ϕ} ∪ X is
SCI-valid and M, v �|= ξ for every ξ ∈ X, we obtain M, v |= ϕ �≡ ϕ, so M, v �|= ϕ ≡ ϕ. However,
all SCI-formulas, SCI-models M, and valuations satisfy M, v |= ϕ ≡ ϕ, a contradiction.

Correctness of the rule (sym)

Assume that {ψ �≡ ϕ, ϕ �≡ ψ} ∪ X is SCI-valid and suppose {ϕ �≡ ψ} ∪ X is not SCI-valid. Then,
there exist an SCI-model M and a valuation v in M such that M, v �|= ϕ �≡ ψ and, for every ξ ∈ X,
M, v �|= ξ. Thus, M, v |= ϕ ≡ ψ, which means that v(ϕ) = v(ψ). Furthermore, by the assumption, the
model M and the valuation v must satisfy the formula ψ �≡ ϕ, so v(ψ) �= v(ϕ), a contradiction.

Correctness of the rule (tran)

Assume {ϕ �≡ ϑ, ϕ �≡ ψ, ψ �≡ ϑ} ∪ X is SCI-valid and suppose {ϕ �≡ ψ, ψ �≡ ϑ} ∪ X is not
SCI-valid. Then, there exists an SCI-model M and a valuation v in M that do not satisfy any formula
from the set {ϕ �≡ ψ, ψ �≡ ϑ} ∪ X, so M, v |= ϕ ≡ ψ and M, v |= ψ ≡ ϑ. Hence, we obtain
v(ϕ) = v(ψ) = v(ϑ). However, by the assumption, it must hold that M, v |= ϕ �≡ ϑ, which imply
v(ϕ) �= v(ϑ), a contradiction.

Correctness of the rule (≡¬)
Assume {¬ϕ �≡ ¬ψ, ϕ �≡ ψ} ∪ X is SCI-valid and suppose {ϕ �≡ ψ} ∪ X is not SCI-valid. Then,

there exist an SCI-model M = (U,∼,⇒, ◦, D) and a valuation v such that M, v |= ϕ ≡ ψ that is
v(ϕ) = v(ψ). On the other hand, by the assumption, M, v |= ¬ϕ �≡ ¬ψ, which imply v(¬ϕ) �= v(¬ψ).
However, if v(ϕ) = v(ψ), then clearly v(¬ϕ) = ∼v(ϕ) = ∼v(ψ) = v(¬ψ), which contradicts
v(¬ϕ) �= v(¬ψ).
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Correctness of the rule (≡→)

Assume {(ϕ → ϑ) �≡ (ψ → χ), ϕ �≡ ψ, ϑ �≡ χ} ∪ X is SCI-valid and suppose {ϕ �≡ ψ, ϑ �≡ χ} ∪ X
is not SCI-valid. Then, there exist an SCI-model M = (U,∼,⇒, ◦, D) and a valuation v such that
M, v |= ϕ ≡ ψ and M, v |= ϑ ≡ χ, that is, v(ϕ) = v(ψ) and v(ϑ) = v(χ). Hence, due to the
definition of an SCI-model, we obtain: v(ϕ → ϑ) = v(ϕ) ⇒ v(ϑ) = v(ψ) ⇒ v(χ) = v(ψ → χ).
Therefore, M, v |= (ϕ → ϑ) ≡ (ψ → χ). However, by the assumption, M, v |= (ϕ → ϑ) �≡ (ψ → χ),
a contradiction.

Correctness of the rule (≡≡)
Assume {(ϕ ≡ ϑ) �≡ (ψ ≡ χ), ϕ �≡ ψ, ϑ �≡ χ} ∪ X is SCI-valid and suppose {ϕ �≡ ψ, ϑ �≡ χ} ∪ X

is not SCI-valid. Then, there exist an SCI-model M = (U,∼,⇒, ◦, D) and a valuation v such that
M, v |= ϕ ≡ ψ and M, v |= ϑ ≡ χ that is v(ϕ) = v(ψ) and v(ϑ) = v(χ). Thus, by the definition of an
SCI-model, we obtain that v(ϕ ≡ ϑ) = v(ϕ) ◦ v(ϑ) = v(ψ) ◦ v(χ) = v(ψ ≡ χ), and so M, v |= (ϕ ≡
ϑ) ≡ (ψ ≡ χ). By the assumption, M, v |= (ϕ ≡ ϑ) �≡ (ψ ≡ χ), a contradiction.

Proposition 4 (Validity of DT∗SCI-axiomatic sets). All the DT∗SCI-axiomatic sets are SCI-valid.

Proof. Let ϕ, ψ be any SCI-formulas and let X be any finite (possibly empty) set of SCI-formulas.
The proof of validity of sets (Ax1

DT∗SCI
) and (Ax2

DT∗SCI
) is obvious. By way of example, we will prove

validity of sets (Ax3
DT∗SCI

), since the proof for (Ax4
DT∗SCI

) is similar. Suppose a set {ϕ,¬ψ, ϕ �≡ ψ} ∪ X is
not SCI-valid. Then, there exist an SCI-model M = (U,∼,⇒, ◦, D) and a valuation v such that M, v �|=
ϕ, M, v �|= ¬ψ, and M, v �|= ϕ ≡ ψ. Thus, by the definition of an SCI-model, v(ϕ) �∈ D, ∼v(ψ) �∈ D,
and ∼(v(ϕ) ◦ v(ψ)) �∈ D. However, this means that v(ϕ) �∈ D, v(ψ) ∈ D, and v(ϕ) = v(ψ), which is
not possible since the latter implies v(ϕ) ∈ D iff v(ψ) ∈ D.

Due to Propositions 3 and 4, the soundness of DT∗SCI can be easily proved:

Theorem 5 (Soundness of DT∗SCI). If an SCI-formula is DT∗SCI-provable, then it is SCI-valid.

Proof. Let ϕ be a DT∗SCI-provable formula. Then, there exists a closed DT∗SCI-proof tree for ϕ that is
all of its branches end with DT∗SCI-axiomatic sets. By Proposition 4, all DT∗SCI-axiomatic sets are
SCI-valid, so the leaves in the closed DT∗SCI-proof tree for ϕ are SCI-valid sets of formulas. Moreover,
by Proposition 3, if conclusions of a rule are SCI-valid, then so is its premise. Therefore, going from the
leaves to the root of the tree, in each step, we obtain nodes that are SCI-valid. Hence, the root {ϕ} is
SCI-valid, and so we conclude that the formula ϕ is SCI-valid.

In order to prove completeness of DT∗SCI, we will construct an SCI-model and a valuation that
do not satisfy a formula, which is not DT∗SCI-provable. We call a branch b of a DT∗SCI-proof tree
DT∗SCI-complete whenever it satisfies the following completion conditions for all SCI-formulas ϕ, ψ, ϑ, χ:

Cpl(¬) If ¬¬ϕ ∈ b, then ϕ ∈ b.

Cpl(→) If ϕ → ψ ∈ b, then both ¬ϕ ∈ b and ψ ∈ b.

Cpl(¬→) If ¬(ϕ → ψ) ∈ b, then either ϕ ∈ b or ¬ψ ∈ b.

Cpl(ref) For every SCI-formula ϕ, ϕ �≡ ϕ ∈ b.

Cpl(sym) If ϕ �≡ ψ ∈ b, then ψ �≡ ϕ ∈ b.

Cpl(tran) If ϕ �≡ ψ ∈ b and ψ �≡ ϑ ∈ b, then ϕ �≡ ϑ ∈ b.

Cpl(≡¬) If ϕ �≡ ψ ∈ b, then ¬ϕ �≡ ¬ψ ∈ b.

Cpl(≡→) If ϕ �≡ ψ ∈ b and ϑ �≡ χ ∈ b, then (ϕ → ϑ) �≡ (ψ → χ) ∈ b.

Cpl(≡≡) If ϕ �≡ ψ ∈ b and ϑ �≡ χ ∈ b, then (ϕ ≡ ϑ) �≡ (ψ ≡ χ) ∈ b.
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A DT∗SCI-proof tree is said to be DT∗SCI-complete whenever each of its branches is either closed or
DT∗SCI-complete. The rules of DT∗SCI-system guarantee that, for every SCI-formula, there is a complete
DT∗SCI-proof tree. A non-closed branch that is DT∗SCI-complete will be referred to as open. The following
property can be easily proved:

Proposition 5 (Closed Branch Property). For every complete branch b of a DT∗SCI-proof tree and for every
SCI-formula ϕ, if both ϕ ∈ b and ¬ϕ ∈ b, then the branch b is closed.

Proof. Let b be a complete branch of DT∗SCI-proof tree and let ϕ be an SCI-formula such that both ϕ ∈ b
and ¬ϕ ∈ b. Suppose b is not closed. We will prove the proposition by the induction on complexity
of formulas. First, observe that all the DT∗SCI-rules preserves propositional variables, negations of
propositional variables, identities and negations of identities, that is, if a node contains ϕ or ¬ϕ,
for ϕ ∈ V∪ {ψ ≡ ϑ; ψ, ϑ ∈ FOR}, then all of its successors contain these formulas. Thus, if ϕ ∈ b and
¬ϕ ∈ b, then there exists a node t in branch b such that both ϕ ∈ t and ¬ϕ ∈ t, which means that a
node t is DT∗SCI-axiomatic, and branch b is closed. Hence, the proposition holds for formulas from the
set V∪ {ψ ≡ ϑ; ψ, ϑ ∈ FOR}. Assume the proposition holds for ϕ and ψ. We will show that it holds
for formulas ¬ϕ and ϕ → ψ. Assume ¬ϕ ∈ b and ¬¬ϕ ∈ b. Then, as b is a non-closed complete branch
and ¬¬ϕ ∈ b, by the completion condition Cpl(¬), ϕ ∈ b. Thus, we have ¬ϕ ∈ b and ϕ ∈ b, so by
the inductive hypothesis, b is closed. Now, let ϕ → ψ ∈ b and ¬(ϕ → ψ) ∈ b. Since b is a non-closed
complete branch and ϕ → ψ ∈ b, by the completion condition Cpl(→) , we obtain that both ¬ϕ ∈ b
and ψ ∈ b. Similarly, by the completion condition Cpl(¬→), we have that either ϕ ∈ b or ¬ψ ∈ b.
Therefore, either both ϕ ∈ b and ¬ϕ ∈ b or both ψ ∈ b and ¬ψ ∈ b. Hence, by the inductive hypothesis,
the branch b must be closed, which ends the proof.

Let b be an open branch of a DT∗SCI-proof tree and let R◦ be defined on the set of all SCI-formulas
as follows:

(ϕ, ψ) ∈ R◦
df⇐⇒ (ϕ �≡ ψ) ∈ b.

Proposition 6. For every open branch b of a DT∗SCI-proof tree, R◦ is an equivalence relation on the set of all
SCI-formulas.

Proof. Let b be an open branch of a DT∗SCI-proof tree and let ϕ be an SCI-formula. Then, by the
completion condition Cpl(ref), ϕ �≡ ϕ belongs to the branch b, and so (ϕ, ϕ) ∈ R◦, that is, R◦ is
reflexive. Assume ϕ and ψ are SCI-formulas such that (ϕ, ψ) ∈ R◦. Then, ϕ �≡ ψ ∈ b, and by the
completion condition Cpl(sym), ψ �≡ ϕ ∈ b. Thus, (ψ, ϕ) ∈ R◦, which means that R◦ is symmetric.
Now, assume that (ϕ, ψ) ∈ R◦ and (ψ, ϑ) ∈ R◦, that is, both formulas ϕ �≡ ψ and ψ �≡ ϑ are in b.
Therefore, by the completion condition Cpl(tran), ϕ �≡ ϑ ∈ b, so (ϕ, ϑ) ∈ R◦. Thus, the relation R◦ is
transitive. Hence, we have proved that R◦ is an equivalence relation.

Proposition 7. For every open branch b of a DT∗SCI-proof tree, the relation R◦ is compatible with all the
connectives of SCI.

Proof. Let b be an open branch of a DT∗SCI-proof tree and let ϕ, ψ, ϑ, χ be SCI-formulas. Assume
(ϕ, ψ) ∈ R◦, that is, ϕ �≡ ψ ∈ b. Then, due to the completion condition Cpl(≡¬), ¬ϕ �≡ ¬ψ ∈ b,
so (¬ϕ,¬ψ) ∈ R◦. Thus, R◦ is compatible with ¬. Now, let (ϕ, ψ) ∈ R◦ and (ϑ, χ) ∈ R◦, that is, ϕ �≡
ψ ∈ b and ϑ �≡ χ ∈ b. Then, by the completion condition Cpl(≡→), we obtain (ϕ → ϑ) �≡ (ψ → χ) ∈ b,
that is, ((ϕ → ϑ), (ψ → χ)) ∈ R◦, so R◦ is compatible with →. Finally, assume that (ϕ, ψ) ∈ R◦
and (ϑ, χ) ∈ R◦, that is, ϕ �≡ ψ ∈ b and ϑ �≡ χ ∈ b. Then, by the completion condition Cpl(≡≡),
we have (ϕ ≡ ϑ) �≡ (ψ ≡ χ) ∈ b, that is, ((ϕ ≡ ϑ), (ψ ≡ χ)) ∈ R◦, so R◦ is compatible with ≡, which
ends the proof.

Let p ∈ V and let ϕ, ψ be SCI-formulas. We define the depth of an SCI-formula as follows:
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d(p) = d(ϕ ≡ ψ) = 0 d(¬ϕ) = d(ϕ) + 1 d(ϕ → ψ) = max(d(ϕ), d(ψ)) + 1.

By FORn, we denote the set of all SCI-formulas of depth n. Given an SCI-formula ϕ, by [ϕ]R◦
we denote the equivalence class of R◦ determined by ϕ. Let b be an open branch of a DT∗SCI-proof tree
and let Mb = (Ub,∼b,⇒b, ◦b, Db) be the branch structure defined as follows:

Ub = {[ϕ]R◦ : ϕ ∈ FOR},
Db = {[ϕ]R◦ : ϕ ∈ ⋃

n∈N Dn}, where

D0 = {ϕ ∈ FOR0 : ¬ϕ ∈ b},
Dn+1 = D1

n+1 ∪ D2
n+1, for

D1
n+1 = {¬ϕ ∈ FORn+1 : ϕ �∈ Dn}

D2
n+1 = {ϕ → ψ ∈ FORn+1 : ϕ �∈ ⋃

k≤n Dk or ψ ∈ ⋃
k≤n Dk)},

operations ∼b, ⇒b, ◦b are defined as:

∼b[ϕ]R◦
df
= [¬ϕ]R◦ [ϕ]R◦ ⇒b [ψ]R◦

df
= [ϕ → ψ]R◦ [ϕ]R◦ ◦b [ψ]R◦ =

df
= [ϕ ≡ ψ]R◦ .

Proposition 8 (Branch Model Property). For every open branch b of a DT∗SCI-proof tree, the branch structure
Mb is an SCI-model.

Proof. Let b be an open branch of a DT∗SCI-proof tree. Clearly, Ub is not empty. Observe also that, for
every formula ϕ ∈ FORn, it holds that ϕ ∈ ⋃

n∈N Dn iff ϕ ∈ Dn. Hence, for every formula ϕ ∈ FORn,
[ϕ]R◦ ∈ Db iff ϕ ∈ Dn. Moreover, by the completion condition Cpl(ref), for every SCI-formula
ϕ, ϕ �≡ ϕ ∈ b, which means that ϕ ≡ ϕ ∈ D0, and so [ϕ ≡ ϕ]R◦ ∈ Db. Thus, Db �= ∅. Now,
as ϕ ≡ ϕ ∈ D0 and ϕ �≡ ϕ ∈ FOR1, by the definition of Dn, ϕ �≡ ϕ �∈ D1, and so [ϕ �≡ ϕ]R◦ �∈ Db.
Thus, Ub \ Db �= ∅.

Due to Proposition 7, operations ∼b, ⇒b, and ◦b are well defined. Indeed, assume [ϕ]R◦ =

[ψ]R◦ , that is, (ϕ, ψ) ∈ R◦. Then, by Proposition 7, (¬ϕ,¬ψ) ∈ R◦, and so [¬ϕ]R◦ = [¬ψ]R◦ .
Thus, since ∼b[ϕ]R◦ = [¬ϕ]R◦ and ∼b[ψ]R◦ = [¬ψ]R◦ , we get ∼b[ϕ]R◦ = ∼b[ψ]R◦ . Therefore,
if [ϕ]R◦ = [ψ]R◦ , then ∼b[ϕ]R◦ = ∼b[ψ]R◦ . Now, let # ∈ {→,≡} and let #b be defined as: #b = ⇒b,
if # =→; and #b = ◦b otherwise. Assume [ϕ]R◦ = [ψ]R◦ and [ϑ]R◦ = [χ]R◦ , that is, (ϕ, ψ) ∈ R◦
and (ϑ, χ) ∈ R◦. By Proposition 7, we obtain that ((ϕ#ϑ), (ψ#χ)) ∈ R◦, and so [ϕ#ϑ]R◦ = [ψ#χ]R◦ .
Therefore, we have:

[ϕ]R◦#b[ϑ]R◦ = [ϕ#ϑ]R◦ = [ψ#χ]R◦ = [ψ]R◦#b[χ]R◦ .

Hence, operations ∼b, ⇒b, and ◦b are well defined. Now, we will prove that they satisfy semantic
conditions with respect to Db. Note that Db satisfy the following properties for every SCI-formula ϕ

and for all n, k ∈ N:

(*) If d(ϕ) = n, then [ϕ]R◦ ∈ Db iff ϕ ∈ Dn.
(**) If ϕ ∈ Dn, then d(ϕ) = n.
(***) If d(ϕ) = n and k �= n, then ϕ �∈ Dk.

Let [ϕ]R◦ ∈ Ub be such that d(ϕ) = n, for some n ∈ N. Assume ∼b[ϕ]R◦ ∈ Db, which by the
definition of the operation ∼b means that [¬ϕ]R◦ ∈ Db. Thus, since d(¬ϕ) = n + 1, by (*), we have
¬ϕ ∈ Dn+1. Then, by the definition of Db, it holds that ϕ �∈ Dn, and thus due to (*) we obtain that
[ϕ]R◦ �∈ Db. Now, assume that [ϕ]R◦ �∈ Db, that is, by (*), we obtain ϕ �∈ Dn. Thus, by the definition
of Db, we get ¬ϕ ∈ Dn+1, which due to (*) means that [¬ϕ]R◦ ∈ Db. Hence, by the definition of the
operation ∼b, we have ∼b[ϕ]R◦ ∈ Db. Therefore, we have proved that ∼b[ϕ]R◦ ∈ Db iff [ϕ]R◦ �∈ Db.

Let [ϕ]R◦ , [ψ]R◦ ∈ Ub. Assume [ϕ]R◦ ⇒b [ψ]R◦ ∈ Db. Then, by the definition of ⇒b, [ϕ →
ψ]R◦ ∈ Db. By the definition of Db, there exists n ∈ N such that ϕ → ψ ∈ Dn, which, by (**), implies
d(ϕ → ψ) = n, and clearly n ≥ 1. Since ϕ → ψ ∈ Dn, by the definition of Db, we obtain that either
ϕ �∈ ⋃

k<n Dk or ψ ∈ ⋃
k<n Dk. Clearly, d(ϕ) < n, so, if ϕ �∈ ⋃

k<n Dk, then, due to (*), we get [ϕ]R◦ �∈ Db.
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Moreover, d(ψ) < n, so, if ψ ∈ ⋃
k<n Dk, then, by (*), it holds that [ψ]R◦ ∈ Db. Hence, we have proved

that, if [ϕ]R◦ ⇒b [ψ]R◦ ∈ Db, then either [ϕ]R◦ �∈ Db or [ψ]R◦ ∈ Db. Now, let us assume that d(ϕ) = i,
d(ψ) = j, for some i, j ∈ N, and either [ϕ]R◦ �∈ Db or [ψ]R◦ ∈ Db. Thus, by (**), ϕ �∈ Di or ψ ∈ Dj.
Let n = max(i, j) + 1. If ϕ �∈ Di, then, by (***), it can be easily proved that ϕ �∈ ⋃

k<n Dk. If ψ ∈ Dj,
then, by (*), ψ ∈ ⋃

k<n Dk. Therefore, either ϕ �∈ ⋃
k<n Dk or ψ ∈ ⋃

k<n Dk. Then, by the definition of
Db, it follows that ϕ → ψ ∈ Dn, and, by (*), we have [ϕ → ψ]R◦ ∈ Db. Thus, by the definition of the
operation ⇒b, we obtain that [ϕ]R◦ ⇒b [ψ]R◦ ∈ Db. Hence, we have proved that [ϕ]R◦ ⇒b [ψ]R◦ ∈ Db

iff either [ϕ]R◦ �∈ Db or [ψ]R◦ ∈ Db.
Now, let [ϕ]R◦ , [ψ]R◦ ∈ Ub. Clearly, d(ϕ ≡ ψ) = 0. Then, the following can be easily shown:
[ϕ]R◦ ◦b [ψ]R◦ ∈ Db iff [ϕ ≡ ψ]R◦ ∈ Db iff ϕ ≡ ψ ∈ D0 iff ϕ �≡ ψ ∈ b iff (ϕ, ψ) ∈ R◦ iff

[ϕ]R◦ = [ψ]R◦ .
Hence, we have shown that [ϕ]R◦ ◦b [ψ]R◦ ∈ Db iff [ϕ]R◦ = [ψ]R◦ . Therefore, we have proved that

the branch structure Mb is an SCI-model.

Let Mb = (Ub,∼b,⇒b, ◦b, Db) be the branch structure for an open branch b of a DT∗SCI-proof tree.
Let vb : FOR → Ub be a function such that vb(ϕ) = [ϕ]R◦ , for all ϕ ∈ FOR. Due to the definition of
Mb, the following can be easily proved:

Proposition 9. Let b be an open branch of a DT∗SCI-proof tree and let Mb = (Ub,∼b,⇒b, ◦b, Db) be the
branch structure. Then, the function vb : FOR → Ub such that vb(ϕ) = [ϕ]R◦ , for all ϕ ∈ FOR, is an
SCI-valuation in Mb, that is, for all SCI-formulas ϕ and ψ, the following hold:

vb(¬ϕ) = ∼b[ϕ]R◦ vb(ϕ → ψ) = [ϕ]R◦ ⇒b [ψ]R◦ vb(ϕ ≡ ψ) = [ϕ]R◦ ◦b [ψ]R◦ .

The valuation vb will be referred to as the branch valuation. Now, we will prove the property that
will enable us to prove the completeness theorem.

Proposition 10 (Satisfaction in Branch Model Property). Let Mb = (Ub,∼b,⇒b, ◦b, Db) be the branch
structure for an open branch b of a DT∗SCI-proof tree and let vb be the branch valuation in Mb. Then, for every
SCI-formula ϕ, if Mb, vb |= ϕ, then ϕ �∈ b.

Proof. Let Mb = (Ub,∼b,⇒b, ◦b, Db) be the branch structure for an open branch b of a DT∗SCI-proof
tree and vb the branch valuation in Mb. We will prove the proposition by the induction on the depth
of SCI-formulas. Let ϕ be an SCI-formula such that d(ϕ) = 0.

Assume Mb, vb |= ϕ. Note that the following holds: Mb, vb |= ϕ iff vb(ϕ) = [ϕ]R◦ ∈ Db iff
ϕ ∈ D0 iff ¬ϕ ∈ b. Thus, by the assumption, we obtain ¬ϕ ∈ b, which, by Proposition 5, implies ϕ �∈ b.

Assume Mb, vb |= ¬ϕ. Then, Mb, vb |= ¬ϕ iff vb(¬ϕ) = [¬ϕ]R◦ ∈ Db iff ¬ϕ ∈ D1. Suppose
¬ϕ ∈ b. Then, ϕ ∈ D0, so, by the definition of D1, we have ¬ϕ �∈ D1, a contradiction.

Assume that the proposition holds for SCI-formulas ϕ and ψ and their negations. We will show
that it holds for formulas ¬¬ϕ, ϕ → ψ, and ¬(ϕ → ψ).

Let Mb, vb |= ¬¬ϕ. Since Mb is an SCI-model, by the assumption Mb, vb |= ϕ. Thus, by the
inductive hypothesis, ϕ �∈ b. Suppose ¬¬ϕ ∈ b. Then, by the completion condition Cpl(¬), ϕ ∈ b,
a contradiction.

Let Mb, vb |= ϕ → ψ. Then, either Mb, vb |= ¬ϕ or Mb, vb |= ψ. Then, by the inductive
hypothesis, either ¬ϕ �∈ b or ψ �∈ b. Suppose ϕ → ψ ∈ b. Then, by the completion condition Cpl(→),
both ¬ϕ ∈ b and ψ ∈ b, a contradiction.

Let Mb, vb |= ¬(ϕ → ψ). Then, both Mb, vb |= ϕ and Mb, vb |= ¬ψ. Then, by the inductive
hypothesis, both ϕ �∈ b and ¬ψ �∈ b. Suppose ¬(ϕ → ψ) ∈ b. Then, by the completion condition
Cpl(¬→), either ϕ ∈ b or ¬ψ ∈ b, a contradiction.

Now, we will prove completeness of an DT∗SCI-system:
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Theorem 6 (Completeness of DT∗SCI). If an SCI-formula is SCI-valid, then it is DT∗SCI-provable.

Proof. Let ϕ be SCI-valid and suppose that a closed DT∗SCI-proof tree for ϕ does not exist. Then, there
exists a complete DT∗SCI-proof tree for ϕ with an open branch, say b. Clearly, ϕ ∈ b, so by Proposition 10,
the branch structureMb and the branch valuation vb do not satisfy ϕ. However, by Proposition 8,Mb is
an SCI-model. Thus, ϕ is not true in some SCI-model, and hence ϕ is not SCI-valid, a contradiction.

Theorems 5 and 6 imply:

Theorem 7 (Soundness and Completeness of DT∗SCI). Let ϕ be an SCI-formula. Then, the following
conditions are equivalent:

1. ϕ is SCI-valid;
2. ϕ is DT∗SCI-provable.

Below, we present examples of DT∗SCI-proofs, namely DT∗SCI-proofs of (p1 ≡ p2) → (p1 → p2)

and (p1 ≡ p2) → [(p2 ≡ p3) → (p1 ≡ p3)] are presented in Figures 5 and 6, respectively. Note
that DT∗SCI-proofs are much shorter than the corresponding proofs of these formulas in the systems
GSCI and DTSCI. Furthermore, contrary to the proofs in GSCI and DTSCI, DT∗SCI-proofs of formulas in
question are one-branching proofs.

(p1 ≡ p2)→ (p1 → p2)

�(→)

p1 �≡ p2, p1 → p2

�(→)

p1 �≡ p2,¬p1, p2
closed

Figure 5. A DT∗SCI-proof for the formula (p1 ≡ p2)→ (p1 → p2).

(p1 ≡ p2)→ [(p2 ≡ p3)→ (p1 ≡ p3)]

�(→)

p1 �≡ p2, (p2 ≡ p3)→ (p1 ≡ p3)

�(→)

p1 �≡ p2, p2 �≡ p3, p1 ≡ p3

�(tran)

p1 �≡ p3, p1 �≡ p2, p2 �≡ p3, p1 ≡ p3
closed

Figure 6. A DT∗SCI-proof for (p1 ≡ p2)→ [(p2 ≡ p3)→ (p1 ≡ p3)].

6. Discussion

All the systems presented in the previous sections are sound and complete deduction systems for
SCI. Comparing with systems GSCI and DTSCI, the system DT∗SCI seems to be simpler, more intuitive,
and more effective. Its rules for the identity connective do not split a branch of a tree and do not make
use of substitution. It should also be emphasized that the only rule of DT∗SCI-system that may introduce
branching is the rule (¬→). Furthermore, although DT∗SCI contains nine rules, while GSCI-system has
12 rules, DT∗SCI-system generates proofs that are much simpler and shorter than corresponding proofs
in GSCI.

However, all the systems presented in this paper have one important disadvantage. The logic
SCI is decidable, while the systems in question are not decision procedures for SCI as, in particular,
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they may generate infinite trees. Although there is a decision procedure for SCI based on GSCI-system,
as shown in [13], but a procedure described in [13] contains external machinery that is not a part of the
system itself, so it provides rather another proof for decidability of SCI than a decision procedure itself.
Hence, further research on deduction systems for SCI should focus on seeking its decision procedure.
The system DT∗SCI seems to have a significant advantage over other systems GSCI and DTSCI, as its
relatively simple modification could provide a decision procedure for SCI. A possible modification
of DT∗SCI should restrict applicability of the rules for the identity connective as follows: (1) the rule
(ref) can be applied only for ϕ that are subformulas or negated subformulas of the initial formula; (2)
given the formulas ϕ, ψ, ϑ, the rules (sym) and (tran) can be applied only once; (3) the rules (≡¬),
(≡→), and (≡≡) can be applied to a finite set of formulas provided that the length of new formulas
introduced by rules is not greater than the length of the initial formula plus 1. Additionally, we should
also impose a general restriction on closeness of a branch, namely that, if a node is a ‘copy’ of some
earlier node, then the branch is closed. It seems that such a modification could guarantee termination
of proof trees, and thus it could provide a decision procedure for SCI.

7. Conclusions

We have presented and discussed two types of systems for SCI known from the literature: sequent
calculus GSCI and a dual tableau-like system DTSCI. Then, we presented the system DT∗SCI, which is
a new dual tableau system for the logic SCI. We proved soundness and completeness of DT∗SCI and
we showed that it is more efficient than GSCI and DTSCI: it does not involve any substitution rule,
its rules for the identity connective do not branch a proof tree, and it generates shorter and simpler
proof trees. Further research on deduction systems for non-Fregean logics should concentrate on
decision procedures for SCI and a methodology of designing deduction systems in tableuax style for
non-Fregean logics which are extensions and modifications of SCI.
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Abstract: Default logic is one of the basic formalisms for nonmonotonic reasoning, a well-established
area from logic-based artificial intelligence dealing with the representation of rational conclusions,
which are characterised by the feature that the inference process may require to retract prior
conclusions given additional premisses. This nonmonotonic aspect is in contrast to valid inference
relations, which are monotonic. Although nonmonotonic reasoning has been extensively studied in
the literature, only few works exist dealing with a proper proof theory for specific logics. In this
paper, we introduce sequent-type calculi for two variants of default logic, viz., on the one hand,
for three-valued default logic due to Radzikowska, and on the other hand, for disjunctive default logic,
due to Gelfond, Lifschitz, Przymusinska, and Truszczyński. The first variant of default logic employs
Łukasiewicz’s three-valued logic as the underlying base logic and the second variant generalises
defaults by allowing a selection of consequents in defaults. Both versions have been introduced to
address certain representational shortcomings of standard default logic. The calculi we introduce
axiomatise brave reasoning for these versions of default logic, which is the task of determining
whether a given formula is contained in some extension of a given default theory. Our approach
follows the sequent method first introduced in the context of nonmonotonic reasoning by Bonatti,
which employs a rejection calculus for axiomatising invalid formulas, taking care of expressing the
consistency condition of defaults.

Keywords: sequent-type calculi; nonmonotonic logics; default logic; rejection systems

1. Introduction

Most formal logics studied in the literature are monotonic in the sense that an increased set of
premisses never yields a reduced set of conclusions. An important class of logics, closely related
to the formalisation of human common-sense reasoning and important in the area of logic-based
artificial intelligence (AI), however, do not enjoy this property—they are nonmonotonic. A central
nonmonotonic-reasoning formalism is default logic, introduced by Raymond Reiter in 1980 [1]. In default
logic, conclusions may be asserted on the basis of having no evidence, making such inferences
unjustified. A typical argument schema along these lines is to assume a certain statement given no
evidence to the contrary. Such nonmonotonic conclusions are defeasible as they may be invalidated
by additional information. In general, nonmonotonic logics deal with the representation of rational
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arguments while traditional logics formalise valid conclusions. Other important nonmonotonic-reasoning
formalisms that have been introduced in the literature, besides default logic, are e.g., autoepistemic
logic [2], circumscription [3], logic programming under the answer-set semantics [4], and equilibrium logic [5].
The term of referring to a logical system as being “nonmonotonic” was first introduced by Marvin
Minsky in 1975 [6].

Given the large body of works devoted to nonmonotonic reasoning, only few investigations exist
dealing with concrete proof systems for it. Prominent among these are the sequent-type calculi
for default logic and autoepistemic logic introduced by Bonatti [7] and those for default logic,
autoepistemic logic, and circumscription by Bonatti and Olivetti [8]. In this paper, we introduce
sequent-type calculi for brave reasoning in the style of Bonatti [7] for two variants of default logic,
viz., on the one hand, for three-valued default logic, due to Radzikowska [9], and on the other hand,
for disjunctive default logic, due to Gelfond, Lifschitz, Przymusinska, and Truszczyński [10]. The first
variant of default logic employs Łukasiewicz’s three-valued logic [11] as the underlying base logic
and the second variant generalises default rules by allowing a selection of consequents in defaults,
closely related to the answer-set semantics of disjunctive logic programs [4]. Both versions have been
introduced to address certain representational shortcomings of standard default logic. Other variants
of default logic include, e.g., justified default logic [12], constrained default logic [13,14], rational default
logic [15], general default logic [16], and four-valued default logic [17] (an overview about different versions
of default logic is given by Antoniou and Wang [18]).

A distinguishing feature of the approach of Bonatti and Olivetti is the usage of a rejection
calculus for axiomatising invalid formulas, i.e., of non-theorems, taking care of formalising consistency
conditions, which makes these calculi arguably particularly elegant and suitable for proof-complexity
elaborations as, e.g., , recently undertaken by Beyersdorff, Meier, Thomas, and Vollmer [19]. In a
rejection calculus, the inference rules formalise the propagation of refutability instead of validity and
establish invalidity by deduction. Rejection calculi are also referred to in the literature as complementary
calculi or refutation calculi, and the first axiomatic treatment of rejection was done by Łukasiewicz in his
formalisation of Aristotle’s syllogistic [20].

Since a sound and complete axiomatisation of non-theorems is only possible for logics that are
decidable (or at least where the set of non-theorems is semi-decidable), Bonatti [7] considered only
propositional versions of the nonmonotonic logics for which he developed sequent calculi. The same
holds also for the subsequent calculi introduced by Bonatti and Olivetti [8], and this is what we follow
here too.

Analogous to the method of Bonatti [7], our calculi comprise three kinds of sequents each:

(i) assertional sequents for axiomatising validity in the respective underlying monotonic base logic;
(ii) anti-sequents for axiomatising invalidity for the underlying monotonic logics, taking care of the

consistency check of defaults; and
(iii) proper default sequents, for representing nonmonotonic conclusions.

Although it would be possible to use just one kind of sequents, this would be at the expense
of losing clarity of the structure of sequents. In addition, the usage of different types of sequents
also reflects the interactions between the underlying monotonic proof machinery and nonmonotonic
inferences in a much clearer manner.

As far as three-valued logics are concerned, different kinds of sequent-style systems exist in
the literature, like systems based on (two-sided) sequents [21,22] in the style of Gentzen’s original
work [23] and employing additional non-standard rules, or using hypersequents [24], which are tuples
of Gentzen-style sequents. In our sequent and anti-sequent calculi for Łukasiewicz’s three-valued
logic, we adopt the approach of Rousseau [25], which is a natural generalisation for many-valued
logics of the classical two-sided sequent formulation of Gentzen. The respective calculi are obtained
from a systematic construction for many-valued logics as described by Zach [26] and by Tompits and
Bogojeski [27].
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For the case of disjunctive default logic, the calculus we define employs the well-known
sequent-type calculus following Gentzen [23] and an anti-sequent calculus due to Bonatti [7].

Concerning rejection systems in general, its history goes back already to Aristotle who not
only analysed correct reasoning in his system of syllogisms but also studied invalid arguments,
where in particular he rejected arguments by reducing them to other already rejected ones. The first
usage of the term “rejection” in modern logic was done by Jan Łukasiewicz in his 1921 paper Logika
dwuwartościowa (“Two-valued logic”) in which he states that by doing so he follows Brentano [28].
An axiomatic treatment of rejection was then discussed in Łukasiewicz’s treatment of Aristotle’s
syllogistic [20,29] where he introduced a Hilbert-type rejection system. This was then further elaborated
by his student Jerzy Słupecki [30] and eventually extended to a theory of rejected propositions [31–35].
In general, work about axiomatic rejection methods comprise of not only investigations about classical
logic [36–38] but also for varieties of other logics, like intuitionistic logic [39–43], modal logics [38,44],
or description logics [45]. For an excellent survey on the development of rejection systems, we refer to
a paper by Wybraniec-Skardowska [46].

The paper is organised as follows. In the next section, we present the background on the
formalisms employed in our work, that is, on the underlying monotonic logics (Section 2.1) and
the two variants of default logic (Section 2.2). Afterwards, in Section 3, we introduce our sequent
calculus for three-valued default logic, and in Section 4, we discuss our calculus for disjunctive default
logic. The paper concludes with Section 5, providing a brief summary and an outlook for future work.

2. Background

2.1. Underlying Monotonic Logics

We start with setting down the basic definitions and notation for classical propositional logic and
Łukasiewicz’s three-valued logic [11], which are required for our subsequent elaborations.

2.1.1. Classical Propositional Logic

The alphabet of classical propositional logic, PL, consists of (i) a countable set P of propositional
constants, (ii) the truth constants “�” (“truth”) and “⊥” (“falsehood”), (iii) the primitive logical connectives
“¬” (“negation”) and “⊃ ” (“implication”), and (iv) the punctuation symbols “(“and”)”. The class
of formulas is built from elements of the alphabet of PL in the usual inductive fashion, whereby
the propositional constants and truth constants constitute the atomic formulas. Formulas which are
non-atomic are referred to as composite formulas.

Besides the primitive connectives ¬ and ⊃ , we also make use of the standard connectives “∨ ”
(“disjunction”), “∧ ” (“conjunction”), and “≡ ” (“equivalence”), defined in the usual way: (A ∨ B) :=
((¬A) ⊃ B)), (A ∧ B) := ¬(¬A ∨ ¬B), and (A ≡ B) := ((A ⊃ B) ∧ (B ⊃ A)).

In what follows, we will use the letters “P”, “Q”, “R”, . . . (possibly appended with subscripts
and/or with primes) or words from everyday English to refer to propositional constants, and use the
letters “A”, “B”, “C”, . . . (again possibly appended with subscripts and/or with primes) to refer to
arbitrary formulas (distinct such letters need not represent distinct formulas).

A (two-valued) interpretation is a mapping I assigning each propositional constant from P an
element from the set {t, f}, whose elements are referred to as truth values, where t represents truth
and f represents falsity. The truth value of a composite formula A under an interpretation I, denoted
by VI(A), is defined in terms of the usual truth-table conditions of classical propositional logic.
Accordingly, a formula A is true under I iff VI(A) = t, and false under I if VI(A) = f. If A is true under
I, then I is said to be a model of A, and if A is false under I, then I is a countermodel of A. If I is a
countermodel of A, then we also say that I refutes A. We call A satisfiable (in PL) if it has some model,
and falsifiable (in PL), or refutable (in PL), if it has some countermodel. Moreover, A is unsatisfiable
(in PL) if it has no model. Finally, A is a tautology, symbolically |=2 A, if it is true in every interpretation,
and refutable (in PL), symbolically �|=2 A, otherwise.
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A set of formulas is also referred to as a theory. An interpretation I is a model of a theory T if I is a
model of all elements of T, otherwise I is a countermodel of T. If a theory T has a model, then T is
satisfiable, and if T has a countermodel, then T is falsifiable. A theory is unsatisfiable if it has no model.

A formula A is a valid consequence of a theory T (in PL), or T entails A (in PL), in symbols T |=2 A,
iff A is true in any model of T. Two formulas, A and B, are (logically) equivalent (in PL) iff |=2 (A ≡ B).
In general, two theories are (logically) equivalent iff they have the same models.

As customary, we will write expressions like “T ∪ {A} |=2 B” as “T, A |=2 B”, and similarly for
finite sets of form {A1, . . . , An} instead of a singleton set {A}.

We denote by �2 the usual derivability operator of PL with respect to some fixed sound and
complete Hilbert-type system. The deductive closure operator of PL is given by:

Th2(T) := {A | T �2 A},

where T is a theory. A theory T is deductively closed iff T = Th2(T). As well known, the operator Th2(·)
enjoys the following properties (for any theory T and T′):

1. T ⊆ Th2(T). (“Inflationaryness”.)
2. Th2(Th2(T)) = Th2(T). (“Idempotency”.)
3. T ⊆ T′ implies Th2(T) ⊆ Th2(T′). (“Monotonicity”.)

If A is not derivable from T, then we indicate this by writing T ��2 A. Later on, we will define
proof systems axiomatising formulas that are not derivable from a given theory. Such axiom systems
are accordingly also referred to as complementary calculi as they axiomatise the complement of the
provable formulas of a logic.

We say that a theory T is consistent iff there is a formula A such that T ��2 A. Clearly, T is consistent
iff it is satisfiable. Moreover, a formula A is consistent with T iff T ��2 ¬A.

2.1.2. Łukasiewicz’s Three-Valued Logic

We now turn to the three-valued logic of Łukasiewicz [11] for the propositional case, henceforth
denoted by Ł3. Our presentation follows the one given by Radzikowska [9].

The alphabet of Ł3 consists of the alphabet of PL along with the additional truth constant  
(“undetermined”). Again, we assume P as a countable set of propositional constants. The class
of formulas of Ł3 is built similarly to the formulas of PL, except that  is counted as an additional
atomic formula.

A difference to the syntax of the logic PL concerns the defined connectives; while conjunction,
∧ , and material equivalence, ≡ , are defined as in propositional logic, disjunction in Ł3 is
defined differently:

(A ∨3 B) := ((A ⊃ B) ⊃ B).

Furthermore, there are also additional unary defined operators, viz.

• the connective “∼” (“weak negation”), given by

∼ A := (A ⊃ ¬A);

• the unary operators “L” (“certainty operator”) and “M” (“possibility operator”), defined by

LA := ¬(A ⊃ ¬A) and MA := (¬A ⊃ A),

which, according to Łukasiewicz [11], were first formalised in 1921 by Tarski; and
• the operator “I”, given by

IA := (MA ∧ ¬LA).
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Intuitively, LA expresses that A is certain, whilst MA means that A is possible. These operators
will be used subsequently to distinguish between certain knowledge and defeasible conclusions.
Furthermore, IA expresses that A is contingent or modally indifferent.

A (three-valued) interpretation is a mapping m assigning to each propositional constant from P
an element from {t, f, u}. Here, besides the truth values t and f, the symbol u represents a truth
value standing for “undetermined” or “indeterminacy”. As usual, m(P) is the truth value of P under
m, where now P is true under an interpretation m if m(P) = t, false under m if m(P) = f, and has
undetermined truth value if m(P) = u.

The truth value, Vm(A), of an arbitrary formula A under an interpretation m is given subject to
the following conditions:

1. If A = �, then Vm(A) = t.
2. If A =  , then Vm(A) = u.
3. If A = ⊥, then Vm(A) = f.
4. If A is an atomic formula, then Vm(A) = m(A).
5. If A = ¬B, for some formula B, or A = (C ⊃ D), for some formulas C and D, then Vm(A)

is determined according to the truth tables given in Figure 1 (there, the corresponding truth
conditions for the defined connectives are also given).

¬
t f
u u
f t

⊃ t u f

t t u f
u t t u
f t t t

∨3 t u f

t t t t
u t u u
f t u f

∧ t u f

t t u f
u u u f
f f f f

≡ t u f

t t u f
u u t u
f f u t

∼
t f
u t
f t

L

t t
u f
f f

M

t t
u t
f f

I

t f
u t
f f

Figure 1. Truth tables for the connectives of Ł3.

If Vm(A) = t, then A is true under m, if Vm(A) = u, then A is undetermined under m, and if
Vm(A) = f, then A is false under m. If A is true under m, then m is a model of A. If A is true in every
interpretation, then A is valid (in Ł3), written |=3 A.

Clearly, the classically valid principle of tertium non datur, i.e., the law of excluded middle, A ∨ ¬A,
as well as the corresponding law of non-contradiction, ¬(A ∧ ¬A), are not valid in Ł3. However,
their three-valued pendants, viz., the principle of quartum non datur, i.e., the law of excluded fourth,
A ∨ IA ∨ ¬A, and the corresponding extended non-contradiction principle, ¬(A ∧ ¬IA ∧ ¬A),
are valid in Ł3.

In classical logic, two formulas are logically equivalent if and only if, they have the same models,
where logical equivalence between formulas A and B is defined by the condition that |=2 (A ≡
B) holds. However, such a relation between logical equivalence and equality of models does not
hold in general in the three-valued logic case. Indeed, following Radzikowska [9], let us define
that two formulas A and B are strongly equivalent, symbolically A ⇔s B, iff |=3 (A ≡ B). That
is, A and B are strongly equivalent iff, for any three-valued interpretation m, Vm(A) = Vm(B).
Furthermore, let us call A and B equivalent (in Ł3), symbolically A ⇔ B, iff A and B have the same
models. Clearly, strong equivalence implies equivalence, but in general not vice versa. For instance, P
and LP, for an atom P, are equivalent but not strongly equivalent. In addition, strong equivalence is
an equivalence relation (i.e., reflexive, symmetric, and transitive) and enjoys a substitution principle,
similar to the one of classical logic, i.e., if a formula CA contains a subformula A, and CB is the result of
substituting at least one occurrence of A in CA by a formula B, then A ⇔s B implies CA ⇔s CB.
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Let us also note some strong equivalences which hold in Ł3:

1. (A ⊃ B)⇔s (M¬A ∨3 B) ∧ (MB ∨3 ¬A).
2. O(A ◦ B)⇔s (OA ◦OB), for O ∈ {L, M} and ◦ ∈ { ∧ , ∨ }.
3. OO′A ⇔s O′A, for O, O′ ∈ {L, M}.
4. ∼ A ⇔s M¬A.
5. ¬LA ⇔s M¬A.
6. ¬MA ⇔s L¬A.
7. ((A ∧ B) ∨3 C ⇔s (A ∨3 C) ∧ (B ∨3 C).
8. ((A ∨3 B) ∧ C ⇔s (A ∧ C) ∨3 (B ∧ C).

The notion of a theory in Ł3 is defined as in PL, i.e., a theory is a set of formulas. Likewise,
the notion of a model or of a countermodel of a theory, and of a theory being satisfiable, falsifiable (or
refutable), or unsatisfiable are defined in Ł3 mutatis mutandis as in PL. A theory T is said to entail a
formula A (in Ł3), or A is a valid consequence of T (in Ł3), symbolically T |=3 A, iff every model (in Ł3)
of T is also a model (in Ł3) of A.

Sound and complete Hilbert-style axiomatisations of the logic Ł3 can be readily found in the
literature [47,48]; the first one was introduced by Wajsberg in 1931 [49]. We write T �3 A if A has a
derivation (in some fixed Hilbert-style calculus) from T in Ł3. As well, the deductive closure operator of
Ł3 is given by

Th3(T) := {A | T �3 A},

where T is a theory. The notions of a theory being deductively closed and of being consistent, as well as
of a formula being consistent with a theory, are defined similarly as in PL. Moreover, the properties of
inflationaryness, idempotency, and monotonicity hold for Th3(·) like for Th2(·), and consistency of a
theory T in Ł3 is equivalent to the satisfiability of T in Ł3.

While in PL we have the well-known properties that (i) T �2 A iff T ∪ {¬A} is inconsistent and
(ii) T, A �2 B iff T �2 (A ⊃ B) (the “only if” part of the latter is generally referred to as the deduction
theorem), for a theory T and formulas A and B, in Ł3 sight variations thereof hold:

Proposition 1. Let T be a theory, and A and B formulas.

1. T �3 A iff T ∪ {M¬A} is inconsistent (in Ł3).
2. T, A �3 B iff T �3 (LA ⊃ B).

Note that, as a consequence, the consistency of a formula A with a theory T implies the consistency
of the theory T ∪ {MA}, but it does not necessarily imply the consistency of T ∪ {A}. For instance,
¬P is consistent with {MP}, for an atomic formula P, so {MP, M¬P} is consistent, but {MP,¬P}
is not.

Furthermore, although in Ł3 it always holds that T �3 A ⊃ B implies T, A �3 B, it is the converse
direction (i.e., the classical version of the deduction theorem) that fails in general.

2.2. Two Variants of Default Logic

We continue with the basic elements of three-valued default logic, due to Radzikowska [9], and of
disjunctive default logic, introduced by Gelfond, Lifschitz, Przymusinska, and Truszczyński [10].
Note that we deal here with propositional versions of the formalisms as our subsequent calculi
are defined for the propositional case only, similar to the undertaking of Bonatti [7,37] and of Bonatti
and Olivetti [8].

2.2.1. Three-Valued Default Logic

Radzikowska’s three-valued default logic [9], which in what follows we will denote by DL3,
differs from Reiter’s standard default logic [1] (henceforth referred to as DL) in two aspects; not only
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is in DL3 the deductive machinery of classical logic replaced with Ł3, but there is also a modified
consistency check for default rules employed in which the consequent of a default is taken into account
as well. The latter feature is somewhat reminiscent to the consistency checks used in justified default
logic [12] and in constrained default logic [13,14], where a default may only be applied if it does not lead
to a contradiction a posteriori.

Formally, a default rule, or simply a default, d, is an expression of the form

A : B1, . . . , Bn

C
,

where A is the prerequisite, B1, . . . , Bn are the justifications, and C is the consequent of d. The intuitive
meaning of such a default is:

if A is believed, and B1, . . . , Bn and LC are consistent with what is believed, then MC
is asserted.

Note that under this reading, by applying a default of the above form, it is assumed that C cannot
be false, but it is not assumed that C is true in all situations. It is only assumed that C must be true in at
least one such situation. This reflects the intuition that accepting a default conclusion, we are prepared
to rule out all situations where it is false, but we can imagine at least one such situation in which it is
true. As a consequence, we cannot conclude both MC and M¬C simultaneously.

In what follows, formulas of the form MC obtained by applying defaults will be referred to as
default assumptions. For simplicity, defaults will also be written in the form (A : B1, . . . , Bn/C).

A default theory, T, is a pair 〈W, D〉, where W is a set of formulas (i.e., a theory in Ł3), called the
premisses of T, and D is a set of defaults. An extension of a default theory T = 〈W, D〉 in the three-valued
default logic DL3 is defined thus: For a set S of formulas, let ΓT(S) be the smallest set K of formulas
obeying the following conditions:

1. K = Th3(K).
2. W ⊆ K.
3. If (A : B1, . . . , Bn/C) ∈ D, A ∈ K, ¬B1 �∈ S, . . . ,¬Bn �∈ S, and ¬LC /∈ S, then MC ∈ K.

Then, E is an extension of T iff ΓT(E) = E.
Note that the criterion of the applicability of a default in DL3 makes the two defaults:

d =
A : B1, . . . , Bn

C
and d′ =

A : MB1, . . . , MBn

C

equivalent in the sense that the application of d implies the application of d′ and vice versa. Thus, in a
default theory T = 〈W, D〉, we can replace every d ∈ D with its corresponding version d′ without
changing extensions.

Note further that, for obtaining extensions in the sense of Reiter [1], in the above definition,
instead of Th3(·) we use Th2(·), and the condition 3 is replaced by:

3’. If (A : B1, . . . , Bn/C) ∈ D, A ∈ K, and ¬B1 �∈ S, . . . ,¬Bn �∈ S, then C ∈ K.

There are two basic reasoning tasks in the context of default logic, viz., brave reasoning and
skeptical reasoning. The former task is the problem of checking whether a formula A belongs to at least
one extension of a given default theory T, whilst the latter task examines whether A belongs to all
extensions of T. Our aim is to give a sequent-type axiomatisation of brave default reasoning, following
the approach of Bonatti [7] for standard default logic.

To conclude our review of three-valued default logic, we give two examples, as discussed by
Radzikowska [9], showing the representational advantages of DL3.
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Example 1 ([50]). Consider the default theory T = 〈W, D〉, where

W = {Summer,¬Sun-Shining} and D =

{
Summer : ¬Rain

Sun-Shining

}
.

The only default of this theory is inapplicable since W �3 ¬LSun_Shining holds. Hence, T has a single
extension, viz. E = Th3(W). Note that T has no extension in Reiter’s default logic due to the weaker consistency
check which results in a vicious circle where the application of the default violates its justification for applying it.

Example 2 ([51]). Consider the default rules

d1 =
P : Q

Q
and d2 =

Q : R
R

,

where P, Q, and R stand for the following propositions:

• P: “Tony recites passages from Shakespeare”;
• Q: “Tony can read and write”;
• R: “Tony is over seven years old”.

Obviously, common sense suggests that, given P, there are perfect reasons to apply both defaults to infer
that Tony is over seven years old. Suppose now that we add the default rule

d3 =
S : Q

Q
,

where S stands for “Tony is a child prodigy”. Given S, it is reasonable to infer that Tony can read and write,
but the inference of R that Tony is over seven years old seems to be unjustified.

In standard default logic DL, a common way of suppressing R in the latter scenario would be to employ a
default rule with exceptions of the form

d′2 =
Q : R ∧ ¬S

R
.

However, this remedy is somewhat unsatisfactory as it requires that every default may possess a potentially
large number of conceivable exceptions which, each time a new default is added, the previous ones must be revised,
which is arguably ad hoc. In DL3, on the other hand, this can easily be accommodated by using the defaults

P : LQ
LQ

and
Q : LR

LR

instead of d1 and d2, as well as
MS : Q

Q

instead of d3.

Actually, the last example illustrates the difference between causal rules (“expectation-evoking
rules”) and evidential rules (“explanation-evoking rules”) [51]. An example of the first kind of rules
is “fire usually causes smoke” whilst “smoke usually suggests fire” is an instance of the second kind.
As argued by Pearl [51], an evidential rule should not be applied if its prerequisite is derived by
applying at least one causal rule. In DL3, this can be taken into account by formalising causal default
rules in the form of (MA : B/B), (LA : B/B), or (A : B/B), whilst evidential rules are formalised by
(LA : LB/LB) or, equivalently, by (A : LB/LB).

2.2.2. Disjunctive Default Logic

We now turn to the basics of disjunctive default logic [10], henceforth referred to as DLD.
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The main motivation for introducing disjunctive default logics was to address a difficulty
encountered when using defaults in the presence of disjunctive information, a problem which was
first observed by David Poole [52]. More specifically, the difficulty lies in the difference between a
default theory having two extensions, one containing a formula A and the other a formula B, and a
theory with a single extension, containing the disjunction A ∨ B. This problem was also noted by Lin
and Shoham [53], who gave an example of a theory in a modal-logic language, containing disjunctive
information, and observed that no default theory exists which corresponds to this theory.

Another nice feature of disjunctive default logic is that it provides a one-to-one correspondence
between answer-sets of disjunctive logic programs [4] and extensions of a corresponding disjunctive
default theory. Such a correspondence does likewise not directly hold for standard default logic—and
again the key problem lies in the presence of disjunctive information. More specifically, viewing P ∨ Q
as a rule in a logic program under the answer-set semantics, the default naturally corresponding to
this rule would be the default rule

d =
� :

P ∨ Q
.

Now, while the program consisting of the single rule P ∨ Q has two answer sets, viz. {P} and
{Q}, the default theory 〈∅, {d}〉 has only one extension, Th2({P ∨ Q}). As long as only programs
without disjunctions are considered, such a natural translation of program rules into defaults gives
rise to a one-to-one correspondence between answer sets of the given program and the extensions of
its translation.

To formally introduce DLD, by a disjunctive default rule, or simply a disjunctive default, d,
we understand an expression of the form

A : B1, . . . , Bn

C1| · · · |Cm
,

where A, B1, . . . ,Bn, and C1, . . . ,Cm are formulas from PL. Similar to DL3, we call A the prerequisite,
B1, . . . , Bn the justifications, and C1, . . . , Cn the consequents of d. Furthermore, following Baumgartner
and Gottlob [54], we refer to the symbol “|” as effective disjunction.

The intuitive meaning of such a default is:

if A is believed and B1, . . . , Bn are consistent with what is believed, then one of C1, . . . , Cm

is asserted.

Similar to conventions in standard default logic, if the prerequisite of a default d is �, then we
will omit it from d. If, additionally, d has no justifications, then d is simply written as

C1| · · · |Cm,

where C1, . . . , Cm are the consequents of d. For convenience, disjunctive defaults will also be written in
the form (A : B1, . . . , Bn / C1| · · · |Cm).

A disjunctive default theory, T, is a pair 〈W, D〉, where W is a set of formulas of PL (again referred
to as the premisses of T) and D is a set of disjunctive defaults.

For defining extensions of disjunctive default theories, we need some further notation: Let us
call a set S of formulas closed under propositional consequence if, whenever S �2 A, then A ∈ S. Clearly,
the deductive closure of a set S, Th2(S), is the smallest set of formulas closed under propositional
consequence containing S. Moreover, for a family F of sets, let min(F) denote the minimal elements of
F, where minimality is defined with respect to set inclusion, i.e.,

min(F) = {X | X ∈ F and there is no Z ∈ F such that Z ⊂ X}.

Consider now a disjunctive default theory T = 〈W, D〉. Given a set S of formulas of PL, let ClT(S)
be the collection of all sets K satisfying the following conditions:
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1. K = Th2(K).
2. W ⊆ K.
3. If (A : B1, . . . , Bn / C1| · · · |Cm) ∈ D, A ∈ K and {¬B1, . . . ,¬Bn} ∩ S = ∅, then Ci ∈ K, for some

i ∈ {1, . . . , m}.

Moreover, let ΔT(S) = min(ClT(S)), i.e., ΔT(S) consists of all minimal sets obeying conditions 1–3.
Then, a set E of formulas of PL is an extension of T if E ∈ ΔT(E).

The notion of a brave and a skeptical consequence given a disjunctive default theory is defined as
before mutatis mutandis.

Let us now discuss some examples showing the differences between disjunctive default logic and
standard default logic, following Gelfond, Lifschitz, Przymusinska, and Truszczyński [10].

Example 3 ([1]). Consider the default theory T = 〈W, D〉, for

W = {P ∨ Q} and D =

{
P : R

R
,

Q : S
S

}
,

where P, Q, R, and S are atomic formulas. Intuitively, given the disjunctive information P ∨ Q, we would
expect to derive R ∨ S, because, in case P holds, we could apply the first default, and in case Q holds, we could
accordingly apply the second default. However, in DL, neither of the two defaults is applicable and the single
extension of T is Th2(W).

Now, in disjunctive default logic, we can represent the information expressed by T in terms of a disjunctive
default theory T′ containing the three defaults

P|Q,
P : R

R
, and

Q : S
S

.

In contrast to the situation in DL, T′ possesses two extensions in DLD, viz. Th2({P, R}) and
Th2({Q, S}), and R ∨ S is contained in both, which is in accordance to our expectations.

We next discuss the example by Poole [52].

Example 4. Let us assume the following commonsense information: By default, a person’s left arm is usable,
the exception being when it is broken, and similarly for the right arm.

In standard default logic, we can express this by the following two defaults:

d1 :=
: Ul ∧ ¬Bl

Ul
and d2 :=

: Ur ∧ ¬Br

Ur
,

where “Ul” and “Ur” stand for that the left arm is usable and that the right arm is usable, respectively, and,
similarly, “Bl” and “Br” mean that the left arm or the right arm is broken.

If there is no further information about one’s hands, then one can conclude that both hands are usable.
Indeed, the default theory T = 〈∅, {d1, d2}〉 has a single extension in DL, containing both Ul and Ur.

However, if it is now known that the left arm is broken, i.e., Bl is asserted, then the application of d1 is
blocked and the extended default theory

T′ = 〈{Bl}, {d1, d2}〉

has again one extension, containing Ur.
But let us assume now that we only know that one arm is broken, but we do not remember exactly which

one. So, what we can assert now is the formula

Bl ∨ Br.
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Considering now the extensions of the default theory

T′′ = 〈{Bl ∨ Br}, {d1, d2}〉,

this default theory has still one extension, but unfortunately it contains both Ul ∨ Ur, which is contrary to
our intuition.

Using DLD, on the other hand, we can represent the information of T′′ by a disjunctive default
theory containing

Bl |Br

together with the two defaults d1 and d2. The resulting theory has two extensions, viz.

Th2({Bl , Ur}) and Th2({Br, Ul}),

both containing
Ul ∨ Ur,

which corresponds with our intuition.
Note that the difference between a formula A ∨ B and a disjunctive default A|B amounts to the difference

between the assertions “A or B is known” and “A is known or B is known”.

3. A Sequent Calculus for Three-Valued Default Logic

We now introduce our sequent calculus B3 for brave reasoning in DL3. Following the general
design of the approach of Bonatti [7,55], B3 involves three kinds of sequents, viz. assertional sequents
for axiomatising validity in Ł3, anti-sequents for axiomatising non-tautologies of Ł3, and special default
sequents representing brave reasoning in DL.

We start with laying down the postulates of B3 and then, in Section 3.2, we show soundness
and completeness.

3.1. Postulates of the Calculus

As far as sequent-type calculi for three-valued logics are concerned,—or, more generally,
many-valued logics—different techniques have been discussed in the literature [21,24,26,56–58]. Here,
we use an approach due to Rousseau [25], which is a natural generalisation for many-valued logics of
the classical two-sided sequent formulation as pioneered by Gentzen [23]. In Rousseau’s approach,
a sequent for a three-valued logic is a triple of sets of formulas where each component of the sequent
represents one of the three truth values.

3.1.1. A Sequent Calculus for Ł3

Formally, we introduce sequents for Ł3 as follows:

Definition 1. A (three-valued) sequent is a triple of the form Γ1 | Γ2 | Γ3, where each Γi, for i ∈ {1, 2, 3}, is a
finite set of formulas, called a component of the sequent.

For a (three-valued) interpretation m, a sequent Γ1 | Γ2 | Γ3 is true under m if, for at least one i ∈ {1, 2, 3},
Γi contains some formula A such that Vm(A) = vi, where v1 = f, v2 = u, and v3 = t. Furthermore, a sequent
is valid if it is true under each interpretation.

Note that a standard classical sequent Γ � Δ in the sense of Gentzen [23] corresponds to a pair
Γ | Δ under the usual two-valued semantics of PL.

As customary for sequents, we write sequent components comprised of a singleton set {A} simply
as “A”, and likewise we write Γ ∪ {A} as “Γ, A”.
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For obtaining the postulates of a many-valued logic in Rousseau’s approach, the conditions of the
logical connectives of a given logic are encoded in two-valued logic by means of a so-called partial
normal form [47] and expressed by suitable inference rules.

The calculus we employ for Ł3, which we denote by SŁ3, is taken from Zach [26], which is obtained
from a systematic construction of sequent-style calculi for many-valued logics and by applying some
optimisations of the corresponding partial normal forms.

Definition 2. The postulates of SŁ3 are as follows:

• axioms of SŁ3 are sequents of the form

– ⊥ | ∅ | ∅,
– ∅ |  | ∅,
– ∅ | ∅ | �, and
– A | A | A, where A is a formula;

and
• the inference rules of SŁ3 are comprised of the rules depicted in Figure 2.

Note that from the inference rules of SŁ3, we can easily obtain derived rules for the defined
connectives of Ł3. Furthermore, the last three rules in Figure 2 are also referred to as weakening rules.

Γ | Δ | Π, A Γ, B | Δ | Π
(⊃ : f)

Γ, A ⊃ B | Δ | Π

Γ | Δ, A, B | Π Γ, B | Δ | Π, A
(⊃ : u)

Γ | Δ, A ⊃ B | Π

Γ, A | Δ, A | Π, B Γ, A | Δ, B | Π, B
(⊃ : t)

Γ | Δ | Π, A ⊃ B

Γ | Δ | Π, A
(¬ : f)

Γ,¬A | Δ | Π
Γ | Δ, A | Π

(¬ : u)
Γ | Δ,¬A | Π

Γ, A | Δ | Π
(¬ : t)

Γ | Δ | Π,¬A

Γ | Δ | Π
(w : f)

Γ, A | Δ | Π
Γ | Δ | Π

(w : u)
Γ | Δ, A | Π

Γ | Δ | Π
(w : t)

Γ | Δ | Π, A

Figure 2. Rules of the sequent calculus SŁ3.

Soundness and completeness of SŁ3 follows directly from the method AS described by Zach [26]:

Proposition 2. A sequent Γ | Δ | Π is valid iff it is provable in SŁ3.

Note that sequents in the style of Rousseau are truth functional rather than formalising entailment
directly, but, by a general result for many-valued logics as shown by Zach [26], the latter can be
expressed simply as follows:

Proposition 3. For a theory T and a formula A, T �3 A iff the sequent T | T | A is provable in SŁ3.
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3.1.2. An Anti-Sequent Calculus for Ł3

As for axiomatising non-theorems of Ł3, a systematic construction of rejection calculi for
many-valued logics has been developed by Bogojeski and Tompits [27], based on adapting the
approach of Zach [26]. The refutation calculus we describe now for axiomatising invalid sequents in
Ł3, denoted by RŁ3, is obtained from the method of Bogojeski and Tompits [27].

Definition 3. A (three-valued) anti-sequent is a triple of form Γ1 � Γ2 � Γ3, where each Γi, for i ∈ {1, 2, 3}, is a
finite set of formulas, called a component of the anti-sequent.

For a (three-valued) interpretation m, an anti-sequent Γ1 � Γ2 � Γ3 is refuted by m, or m refutes Γ1 � Γ2 � Γ3,
if, for every i ∈ {1, 2, 3} and every formula A ∈ Γi, Vm(A) �= vi, where vi is defined as in Definition 1. An
anti-sequent Γ1 � Γ2 � Γ3 is refutable if there is at least one interpretation that refutes Γ1 � Γ2 � Γ3.

Clearly, an anti-sequent Γ1 � Γ2 � Γ3 is refutable iff the corresponding sequent Γ1 | Γ2 | Γ3 is
not valid.

Definition 4. The postulates of RŁ3 are as follows:

• the axioms of RŁ3 are anti-sequents of the form Γ1 � Γ2 � Γ3, where each Γi (i ∈ {1, 2, 3}) is a set of atomic
formulas such that Γ1 ∩ Γ2 ∩ Γ3 = ∅, � /∈ Γ1,  /∈ Γ2, and ⊥ /∈ Γ3; and

• the inference rules of RŁ3 are those given in Figure 3.

Note that, in contrast to SŁ3, the inference rules of RŁ3 have only single premisses. Indeed, this
is a general pattern in sequent-style rejection calculi: If an inference rule for standard (assertional)
sequents for a connective has n premisses, then there are usually n corresponding unary inference
rules in the associated rejection calculus. Intuitively, what is an exhaustive search in a standard sequent
calculus becomes nondeterminism in a rejection calculus.

Γ � Δ � Π, A
(⊃ : f1)r

Γ, A ⊃ B � Δ � Π
Γ, B � Δ � Π

(⊃ : f2)r
Γ, A ⊃ B � Δ � Π

Γ � Δ, A, B � Π
(⊃ : u1)r

Γ � Δ, A ⊃ B � Π
Γ, B � Δ � Π, A

(⊃ : u2)r
Γ � Δ, A ⊃ B � Π

Γ, A � Δ, A � Π, B
(⊃ : t1)r

Γ � Δ � Π, A ⊃ B
Γ, A � Δ, B � Π, B

(⊃ : t2)r
Γ � Δ � Π, A ⊃ B

Γ � Δ � Π, A
(¬ : f)r

Γ,¬A � Δ � Π
Γ � Δ, A � Π

(¬ : u)r
Γ � Δ,¬A � Π

Γ, A � Δ � Π
(¬ : t)r

Γ � Δ � Π,¬A

Figure 3. Rules of the anti-sequent calculus RŁ3.

Again, soundness and completeness of RŁ3 follow from the systematic construction as described
by Bogojeski and Tompits [27]. Likewise, non-entailment in Ł3 is expressed similarly as for SŁ3.

Proposition 4. An anti-sequent Γ � Δ � Π is refutable iff it is provable in RŁ3.

Proposition 5. For a theory T and a formula A, T ��3 A iff T � T � A is provable in RŁ3.

3.1.3. The Default-Sequent Calculus B3

We are now in a position to specify our calculus B3 for brave reasoning in DL3.
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Definition 5. A (brave) default sequent is an ordered quadruple of the form Γ; Δ ⇒ Σ; Θ, where Γ, Σ, and Θ
are finite sets of formulas and Δ is a finite set of defaults.

A default sequent Γ; Δ ⇒ Σ; Θ is true if there is an extension E of the default theory 〈Γ, Δ〉 such that
Σ ⊆ E and Θ ∩ E = ∅; E is called a witness of Γ; Δ ⇒ Σ; Θ.

The default sequent calculus B3 consists of three-valued sequents, anti-sequents, and default
sequents. It incorporates the systems SŁ3 for three-valued sequents and RŁ3 for anti-sequents, as well
as additional axioms and inference rules for default sequents, described as follows:

Definition 6. The postulates of B3 comprise the following items:

• all axioms and inference rules of SŁ3 and RŁ3;
• axioms of the form Γ; ∅ ⇒ ∅; ∅, where Γ is a finite set of formulas of Ł3; and
• the inference rules depicted in Figure 4.

Γ | Γ | A
Γ; ∅ ⇒ A; ∅

(l1)
Γ � Γ � A

Γ; ∅ ⇒ ∅; A
(l2)

Γ; ∅ ⇒ Σ1; Θ1 Γ; ∅ ⇒ Σ2; Θ2

Γ; ∅ ⇒ Σ1, Σ2; Θ1, Θ2
(mu)

Γ; Δ ⇒ Σ; Θ, A
Γ; Δ, (A : B1, . . . , Bn/C) ⇒ Σ; Θ

(d1)
Γ; Δ ⇒ Σ,¬Bi; Θ

Γ; Δ, (A : B1, . . . , Bi, . . . , Bn/C) ⇒ Σ; Θ
(d2)

Γ; Δ ⇒ Σ,¬LC; Θ
Γ; Δ, (A : B1, . . . , Bn/C) ⇒ Σ; Θ

(d3)

Γ; ∅ ⇒ A; ∅ Γ, MC; Δ ⇒ Σ; Θ,¬B1, . . . ,¬Bn,¬LC
Γ; Δ, (A : B1, . . . , Bn/C) ⇒ Σ; Θ

(d4)

Figure 4. Rules for default sequents of the calculus B3.

The informal meaning of the inference rules for the default sequents is the following:

(i) rules (l1) and (l2) combine three-valued sequents and anti-sequents with default sequents,
respectively;

(ii) rule (mu) is the rule of “monotonic union”—it allows the joining of information in case that no
default is present; and

(iii) rules (d1)–(d4) are the default introduction rules, where rules (d1), (d2), and (d3) take care of
introducing non-active defaults, whilst rule (d4) allows to introduce an active default.

Let us give an example to illustrate the functioning of the calculus.

Example 5. Consider the default theory T = 〈W, D〉 from Example 1, where

W = {Summer,¬Sun-Shining} and D =

{
Summer : ¬Rain

Sun-Shining

}
.

As we saw, the single default of this theory is inapplicable since W �3 ¬LSun-Shining and E = Th3(W)

is therefore the only extension of T. Consequently, Sun-Shining /∈ E also holds. Hence, the default sequent

Summer,¬Sun-Shining; (Summer : ¬Rain/Sun-Shining) ⇒ ¬LSun-Shining; Sun-Shining (1)

is true. We will give a proof of (1) in B3.
The proof of (1), depicted below and denoted by β, uses the proof α as subproof. For brevity, we will use “S”

for “Summer”, “R” for “Rain”, and “H” for Sun-Shining”.
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• Proof α:

¬H | ¬H | ¬H
¬H | S,¬H | ¬H

(w : u)

¬H, H | S,¬H | ¬H
(w : f)

¬H, H | S,¬H, H | ¬H
(w : u)

S,¬H, H | S,¬H, H | ¬H
(w : f)

¬H | ¬H | ¬H
¬H | S,¬H | ¬H

(w : u)

¬H, H | S,¬H | ¬H
(w : f)

S,¬H, H | S,¬H | ¬H
(w : f)

S,¬H | S,¬H | H ⊃ ¬H
(⊃ : t)

S,¬H,¬(H ⊃ ¬H) | S,¬H | ∅
(¬ : f)

S,¬H | S,¬H | ¬¬(H ⊃ ¬H)
(¬ : t)

S,¬H; ∅ ⇒ ¬LH; ∅
(l1), definition of L

• Proof β:

S � S, H � H
S � S,¬H � H

(¬ : u)r

S,¬H � S,¬H � H
(¬ : f)r

S,¬H; ∅ ⇒ ∅; H
(l2) α

S,¬H; ∅ ⇒ ¬LH; H
(mu)

S,¬H; (S : ¬R/H) ⇒ ¬LH; H
(d3)

3.2. Adequacy of the Calculus

We now show soundness and completeness of B3. To this end, we need some auxiliary results
first, dealing with alternative characterisations and properties of extensions.

3.2.1. Preparatory Characterisations: Residues and Extensions

We start with some properties of extensions concerning adding defaults to default theories
which provide the groundwork on which our adequacy proofs are built. In doing so, we first
introduce an alternative formulation of DL3 extensions, adapting a proof-theoretical characterisation
as described by Marek and Truszczyński [59] for standard default logic, and afterwards we provide
results concerning so-called residues, which are inference rules resulting from defaults satisfying
their consistency conditions. The latter endeavour generalises the approach of Bonatti [7] to the
three-valued case.

Definition 7. Let E be a set of formulas. A default (A : B1, . . . , Bn/C) is DL3-active in E iff E �3 A and
{¬B1, . . . ,¬Bn,¬LC} ∩ E = ∅.

Definition 8. Let D be a set of defaults and E a set of formulas. The DL3-reduct of D with respect to E,
denoted by DE, is the set consisting of the following inference rules:

DE :=
{

A
MC

∣∣∣∣ A : B1, . . . , Bn

C
∈ D and {¬B1, . . . ,¬Bn,¬LC} ∩ E = ∅

}
.

An inference rule A/MC is called DL3-residue of a default (A : B1, . . . , Bn/C).

Whenever it is clear from the context, we will allow ourselves to drop the prefix “DL3-” in
“DL3-active”, “DL3-reduct”, and “DL3-residue” to ease notation.

For a set R of inference rules, let �R
3 be the inference relation obtained from �3 by augmenting the

postulates of the Hilbert-type calculus for Ł3 underlying the relation �3 with the inference rules from
R. Let the corresponding deductive closure operator for �R

3 be given by

ThR
3 (W) := {A | W �R

3 A}.
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Clearly, Th∅
3 (W) = Th3(W).

We then obtain the following characterisation of the operator ΓT , mirroring the analogous property
for standard default logic as discussed by Marek and Truszczyński [59]:

Theorem 1. Let T = 〈W, D〉 be a three-valued default theory, E a set of formulas of Ł3, and DE the DL3-reduct
of D with respect to E. Then,

ΓT(E) = ThDE
3 (W).

Proof. The result follows by a straightforward adaption of the proof of the analogous result for the
case of standard default logic as given by Marek and Truszczyński [59]. ! 

By the definition of an extension, we thus obtain:

Corollary 1. Let T = 〈W, D〉 be a three-valued default theory and E a set of formulas. Then,

E is an extension of T iff ThDE
3 (W) = E.

Next, we give some properties of extensions with respect to active and non-active defaults which
underlay the construction of the default inference rules of B3. We start with two lemmata whose proofs
are obvious.

Lemma 1. Let R and R′ be sets of inference rules, and let W and W ′ be sets of formulas. Then, the following
properties hold:

1. W ⊆ ThR
3 (W).

2. ThR
3 (W) = ThR

3 (ThR
3 (W)).

3. If R ⊆ R′, then ThR
3 (W) ⊆ ThR′

3 (W).
4. If W ⊆ W ′, then ThR

3 (W) ⊆ ThR
3 (W ′).

Lemma 2. Let A and B be formulas, W a set of formulas, and R a set of inference rules. Then:

1. If A �∈ ThR
3 (W), then ThR

3 (W) = ThR∪ {A/B}
3 (W).

2. If A ∈ ThR∪ {A/B}
3 (W), then ThR∪ {A/B}

3 (W) = ThR
3 (W ∪ {B}).

For convenience, we employ the following notation in what follows: For a default

d =
A : B1, . . . , Bn

C
,

we write:

• p(d) := A;
• j(d) := {B1, . . . , Bn, LC}; and
• c(d) := MC.

Furthermore, for a set S of formulas, ¬S stands for {¬A | A ∈ S}.

Theorem 2. Let T = 〈W, D〉 be a default theory, E a set of formulas, and d a default not active in E. Then,

E is an extension of 〈W, D〉 iff E is an extension of 〈W, D ∪ {d}〉.

Proof. If ¬j(d) ∩ E �= ∅, then (D ∪ {d})E = DE. So,

Th(D∪{d})E
3 (W) = ThDE

3 (W)
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and the statement of the theorem holds quite trivially by Corollary 1.
For the rest of the proof, assume thus ¬j(d) ∩ E = ∅. Since d is not active in E, E ��3 p(d) must

then hold. Furthermore,
(D ∪ {d})E = DE ∪ {p(d)/c(d)} (2)

holds.
Suppose E is an extension of T = 〈W, D〉, i.e., E = ThDE

3 (W). Since E ��3 p(d) and E is deductively
closed, we obtain p(d) �∈ E, and so p(d) �∈ ThDE

3 (W). By part 1 of Lemma 2,

ThDE
3 (W) = ThDE∪{p(d)/c(d)}

3 (W).

But in view of (2), we have that,

ThDE
3 (W) = Th(D∪{d})E

3 (W).

Hence, since E = ThDE
3 (W), we obtain E = Th(D∪{d})E

3 (W) and E is an extension of 〈W, D ∪ {d}〉.
This proves the “only if” direction.

For the “if” direction, assume now that E is an extension of 〈W, D ∪ {d}〉. So, E = Th(D∪{d})E
3 (W).

Since we again have that p(d) �∈ E and (D ∪ {d})E = DE ∪ {p(d)/c(d)} by (2), it follows that p(d) �∈
ThDE∪{p(d)/c(d)}

3 (W). Part 3 of Lemma 1 implies that p(d) �∈ ThDE
3 (W) also holds, and thus, by part 1

of Lemma 2,
ThDE

3 (W) = ThDE∪{p(d)/c(d)}
3 (W). (3)

Since E = Th(D∪{d})E
3 (W) by hypothesis and Th(D∪{d})E

3 (W) = ThDE∪{p(d)/c(d)}
3 (W), by (3) we

get that E = ThDE
3 (W), i.e., E is an extension of T = 〈W, D〉. ! 

Theorem 3. Let E be a set of formulas and d a default. If E is an extension of 〈W, D ∪ {d}〉 and d is active in
E, then E is an extension of 〈W ∪ {c(d)}, D〉.

Proof. Suppose E is an extension of 〈W, D ∪ {d}〉 and d is active in E. Then,

E = Th(D∪{d})E
3 (W)

and, since d is active in E, ¬j(d) ∩ E = ∅. Therefore,

(D ∪ {d})E = DE ∪ {p(d)/c(d)}

and thus
E = ThDE∪{p(d)/c(d)}

3 (W).

But E �3 p(d) also holds (since d is active in E), and so,

p(d) ∈ ThDE∪{p(d)/c(d)}
3 (W).

Therefore, by part 2 of Lemma 2,

ThDE∪{p(d)/c(d)}
3 (W) = ThDE

3 (W ∪ {c(d)}).

Thus, E = ThDE
3 (W ∪ {c(d)}), and so E is an extension of 〈W ∪ {c(d)}, D〉. ! 

Theorem 4. Let E be a set of formulas and d a default. If (i) E is an extension of the default theory
〈W ∪ {c(d)}, D〉, (ii) W �3 p(d), and (iii) ¬j(d) ∩ E = ∅, then E is an extension of 〈W, D ∪ {d}〉.
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Proof. Assume that the preconditions of the theorem hold. Since E is an extension of 〈W ∪ {c(d)}, D〉,

E = ThDE
3 (W ∪ {c(d)}).

Furthermore, by the hypothesis W �3 p(d), we have p(d) ∈ ThDE∪{p(d)/c(d)}
3 (W). We thus get,

ThDE∪{p(d)/c(d)}
3 (W) = ThDE

3 (W ∪ {c(d)})

in view of part 2 of Lemma 2, and therefore,

E = ThDE∪{p(d)/c(d)}
3 (W).

By observing that the assumption ¬j(d) ∩ E = ∅ implies DE ∪ {p(d)/c(d)} = (D ∪ {d})E,
the result follows. ! 

3.2.2. Soundness and Completeness of B3

We are now in a position to prove soundness and completeness of B3.

Theorem 5 (Soundness). If Γ; Δ ⇒ Σ; Θ is provable in B3, then it is true.

Proof. We show that all axioms are true, and that the conclusions of all inference rules are true
whenever its premisses are true (resp., valid or refutable in case of rules (l1) and (l2)).

First of all, an axiom Γ; ∅ ⇒ ∅; ∅ is trivially true, because Th3(Γ) is the unique extension of the
default theory 〈Γ, ∅〉 and hence the unique witness of Γ; ∅ ⇒ ∅; ∅.

Assume that the premiss Γ | Γ | A of rule (l1) is valid. Then, Γ �3 A holds and we therefore
have A ∈ Th3(Γ). But Th3(Γ) is the unique extension of 〈Γ, ∅〉, so Th3(Γ) is the unique witness of
Γ; ∅ ⇒ A; ∅. Likewise, if the premiss Γ � Γ � A of rule (l2) is refutable, then A �∈ Th3(Γ), and therefore
Th3(Γ) is the (unique) witness of Γ; ∅ ⇒ ∅; A.

If the two premisses Γ; ∅ ⇒ Σ1; Θ1 and Γ; ∅ ⇒ Σ2; Θ2 of rule (mu) are true, then they must have
the same witness E = Th3(Γ). So, Σi ⊆ E and Θi ∩ E = ∅, for i = 1, 2, holds, and hence Σ1 ∪ Σ2 ⊆ E
and (Θ1 ∪Θ2) ∩ E = ∅ holds too, which means that E is also a witness of Γ; ∅ ⇒ Σ1, Σ2; Θ1, Θ2.

For showing the soundness of the rules d1, d2, and d3, we only deal with the case for d3; the other
two cases are similar. So, let E be a witness of Γ; Δ ⇒ Σ,¬LC; Θ. Then, E is an extension of 〈Γ, Δ〉,
Σ ∪ {¬LC} ⊆ E, and Θ ∩ E = ∅. Hence, ¬LC ∈ E and thus the default (A : B1, . . . , Bn/C) is not
active in E. By Theorem 2, it follows that E is an extension of 〈Γ, Δ ∪ {(A : B1, . . . , Bn/C)}〉. Moreover,
since Σ ⊆ E and Θ ∩ E = ∅, E is a witness of Γ; Δ, (A : B1, . . . , Bn/C) ⇒ Σ; Θ.

Finally, assume that the premisses of rule (d4) are true. Let E1 be a witness of

Γ; ∅ ⇒ A; ∅

and E2 a witness of
Γ, MC; Δ ⇒ Σ; Θ,¬B1, . . . ,¬Bn,¬LC.

Thus, E2 is an extension of 〈Γ ∪ {MC}, Δ〉 and {¬B1, . . . ,¬Bn,¬LC} ∩ E2 = ∅ holds. Moreover,
E1 is an extension of 〈Γ, ∅〉 with A ∈ E1, and therefore Γ �3 A. Hence, by Theorem 4, E2 is an
extension of

〈Γ, Δ ∪ {(A : B1, . . . , Bn/C)}〉.

Clearly, Σ ⊆ E2 and Θ ∩ E2 = ∅ holds, so E2 is a witness of Γ; Δ, (A : B1, . . . , Bn/C) ⇒ Σ; Θ. ! 

Theorem 6 (Completeness). If Γ; Δ ⇒ Σ; Θ is true, then it is provable in B3.
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Proof. Suppose S = Γ; Δ ⇒ Σ; Θ is true, with E as its witness. The proof proceeds by induction on
the cardinality |Δ| of Δ.

INDUCTION BASE. Assume |Δ| = 0. If Σ = Θ = ∅, then S is an axiom and hence provable in
B3. So suppose that either Σ �= ∅ or Θ �= ∅. Since Th3(Γ) is the unique extension of 〈Γ, ∅〉, we have
E = Th3(Γ). Furthermore, Σ ⊆ E and Θ ∩ E = ∅ holds. It follows that for any A ∈ Σ, the sequent
Γ | Γ | A is provable in SŁ3, and for any B ∈ Θ, the anti-sequent Γ � Γ � B is provable in RŁ3.
Repeated applications of rules (l1), (l2), and (mu) yield a proof of S in B3.

INDUCTION STEP. Assume |Δ| > 0, and let the statement hold for all default sequents Γ′; Δ′ ⇒
Σ′; Θ′ such that |Δ′| < |Δ|. We distinguish two cases: (i) There is some default in Δ which is active in
E, or (ii) none of the defaults in Δ is active in E.

If (i) holds, then there must be some default d = (A : B1, . . . , Bn/C) in Δ such that d is active in E
and Γ �3 A. Consider Δ0 := Δ \ {d}. Then, |Δ0| = |Δ| − 1 and Δ0 ∪ {d} = Δ. By Theorem 3, E is an
extension of 〈Γ ∪ {MC}, Δ0〉. Since d is active in E, {¬B1, . . . ,¬Bn,¬LC} ∩ E = ∅ holds and since E is
a witness of S = Γ; Δ ⇒ Σ; Θ, we have that Σ ⊆ E and Θ ∩ E = ∅. So, E is a witness of

S′ = Γ, MC; Δ0 ⇒ Σ; Θ,¬B1, . . . ,¬Bn,¬LC.

Since |Δ0| < |Δ|, by induction hypothesis there is some proof α in B3 of S′. Furthermore, Γ �3 A,
so there is some proof β of the sequent Γ | Γ | A in SŁ3. The following figure is a proof of S in B3 (note
that in this figure, the endsequents of α and β have been displayed explicitly for better clarity):

β
Γ | Γ | A

Γ; ∅ ⇒ A; ∅
(l1) α

Γ, MC; Δ0 ⇒ Σ; Θ,¬B1, . . . ,¬Bn,¬LC
Γ; Δ ⇒ Σ; Θ

(d4)

Now assume that (ii) holds, i.e., no default in Δ is active in E. Since |Δ| > 0, there is some default
d = (A : B1, . . . , Bn/C) in Δ such that Δ = Δ0 ∪ {d} with Δ0 := Δ \ {d}. Since d is not active in E,
according to Theorem 2, E is an extension of 〈Γ, Δ0〉. Furthermore, either:

• E ��3 A;
• there is some Bi0 ∈ {B1, . . . , Bn} such that ¬Bi0 ∈ E; or
• ¬LC ∈ E.

Consequently, E is either a witness of:

• Γ; Δ0 ⇒ Σ; Θ, A;
• Γ; Δ0 ⇒ Σ,¬Bi0 ; Θ; or
• Γ; Δ0 ⇒ Σ,¬LC; Θ.

Since |Δ0| < |Δ|, by induction hypothesis there is thus either:

• a proof α in B3 of Γ; Δ0 ⇒ Σ; Θ, A;
• a proof β in B3 of Γ; Δ0 ⇒ Σ,¬Bi0 ; Θ; or
• a proof γ in B3 of Γ; Δ0 ⇒ Σ,¬LC; Θ.

Therefore, one of the three figures below constitutes a proof of S (again, the respective endsequents
of α, β, and γ are explicitly shown):

α
Γ; Δ0 ⇒ Σ; Θ, A

Γ; Δ ⇒ Σ; Θ
(d1)

β
Γ; Δ0 ⇒ Σ,¬Bi0 ; Θ

Γ; Δ ⇒ Σ; Θ
(d2)

γ
Γ; Δ0 ⇒ Σ,¬LC; Θ

Γ; Δ ⇒ Σ; Θ
(d3).

! 
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4. A Sequent Calculus for Disjunctive Default Logic

We now introduce our sequent calculus for brave reasoning for disjunctive default logic which
we denote by BD. Again, the calculus comprises of three kinds of sequents:

(i) sequents for expressing validity in PL;
(ii) anti-sequents for expressing non-tautologies; and

(iii) special default inference rules reflecting brave reasoning in DLD.

As sequents for propositional logic, we use standard two-sided sequents in the sense of
Gentzen [23] and a corresponding calculus, LK, which is a slight simplification of the one originally
introduced by Gentzen. As a calculus for anti-sequents, we use the one due to Bonatti [37] which he
introduced in connection to his calculus for brave reasoning for standard default logic [7,55]; we will
denote this calculus by LKr (note that, independently from Bonatti [37], Goranko [38] developed a
similar calculus as part of his refutation systems for different modal logics).

4.1. Postulates of the Calculus

We start with defining the sequent calculus LK for classical sequents.

4.1.1. The Sequent Calculus LK

Definition 9. A (classical) sequent is an ordered pair of the form Γ → Σ, where Γ and Σ are finite sets of
formulas. Γ is the antecedent and Σ is the succedent of the sequent.

For a two-valued interpretation I, a sequent Γ → Δ is true under I if, whenever all formulas in Γ are true
under I, then at least one formula in Δ is true under I. Furthermore, a sequent is valid if it is true under each
interpretation.

Following customs, we write sequents of the form Γ ∪ {A} → Δ simply as “Γ, A → Δ”, and if
the antecedent or succedent of a sequent is the empty set, then it is omitted from the sequent.

Definition 10. The postulates of LK are as follows:

• axioms of LK are sequents of the form

– → �,
– ⊥ → , and
– A → A, where A is a formula;

and
• the inference rules of LK are those given in Figure 5.

Note that the last two rules in Figure 5 are the weakening rules of LK. Moreover, from the rules
of LK, we can easily obtain derived rules for the defined connectives ∧ , ∨ , and ≡ . For instance,
the derived rules for ∧ are as follows:

Γ, A → Σ
Γ, (A ∧ B) → Σ

(∧ → )1
Γ, B → Σ

Γ, (A ∧ B) → Σ
(∧ → )2

Γ → Σ, A Λ → Π, B
Γ, Λ → Σ, Π, (A ∧ B)

(→ ∧)
.

Soundness and completeness of LK is well known:
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Γ → Σ, A Λ, B → Π
Γ, Λ, (A ⊃ B) → Σ, Π

(⊃ →)
Γ, A → Σ, B

Γ → Σ, (A ⊃ B)
(→ ⊃)

Γ → Σ, A
Γ,¬A → Σ

(¬ →)
Γ, A → Σ

Γ → Σ,¬A
(→ ¬)

Γ → Σ
Γ, A → Σ

(wl) Σ → Γ
Σ → Γ, A

(wr)

Figure 5. Rules of the sequent calculus LK.

Proposition 6 ([23]). A sequent Γ → Σ is valid iff it is provable in LK.

In particular, the following relation follows immediately:

Corollary 2. For every formula A,

|=2 A iff the sequent → A is provable in LK.

4.1.2. The Anti-Sequent Calculus LKr

Now we introduce our complementary calculus LKr for axiomatising invalidity in propositional
logic, following Bonatti [37] (and Goranko [38]).

Definition 11. An anti-sequent is an ordered pair of the form Γ �→ Θ, where Γ and Θ are finite sequences
of formulas.

For a two-valued interpretation I, an anti-sequent Γ �→ Θ is refuted by I, or I refutes Γ �→ Θ, if every
formula in Γ is true under I and every formula in Θ is false under I. An anti-sequent Γ �→ Θ is refutable if
there is at least one interpretation that refutes Γ �→ Θ.

Hence, the anti-sequent Γ �→ Θ is refutable iff the classical sequent Γ → Θ is invalid.
Also, in accordance to the convention for classical sequents, we write “ �→ Θ” and “Γ �→ ” whenever Γ
or Θ is the empty set.

Definition 12. The postulates of LKr are as follows:

• the axioms of LKr are anti-sequents of the form Φ �→ Ψ, where Φ and Ψ are disjoint finite sets of atomic
formulas such that ⊥ /∈ Φ and � /∈ Ψ; and

• the inference rules of LKr are those depicted in Figure 6.

Γ �→ Θ, A
Γ, (A ⊃ B) �→ Θ

(⊃ �→ )r1
Γ, B �→ Θ

Γ, (A ⊃ B) �→ Θ
(⊃ �→ )r2

Γ, A �→ Θ, B
Γ �→ Θ, (A ⊃ B)

( �→⊃)r

Γ �→ Θ, A
Γ,¬A �→ Θ

(¬ �→ )r
Γ, A �→ Θ

Γ �→ Θ,¬A
( �→ ¬)r

Figure 6. Rules of the anti-sequent calculus LKr.

Note that, following the general pattern of complementary calculi, the inference rules of LKr have
only single premisses.
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We again can obtain corresponding derived rules for the defined connectives. Below we give the
ones for ∧ :

Γ, A, B �→ Θ
Γ, (A ∧ B) �→ Θ

(∧ �→ )r
Γ �→ Θ, A

Γ �→ Θ, (A ∧ B)
( �→ ∧)r1

Γ �→ Θ, B
Γ �→ Θ, (A ∧ B)

( �→ ∧)r2.

Soundness and completeness for LKr was shown by Bonatti [37] (and, independently,
by Goranko [38]):

Proposition 7. An anti-sequent Γ �→ Θ is refutable iff it is provable in LKr.

For formulas, we have then the following immediate corollary:

Corollary 3. For every formula A,

�|=2 A iff the anti-sequent �→ A is provable in LKr.

4.1.3. The Default-Sequent Calculus BD

We can now specify our calculus BD for brave reasoning in disjunctive default logic.

Definition 13. By a (brave) disjunctive default sequent we understand an ordered quadruple of the form
Γ; Δ ⇒ Σ; Θ, where Γ, Σ, and Θ are finite sets of formulas and Δ is a finite set of disjunctive defaults.

A disjunctive default sequent Γ; Δ ⇒ Σ; Θ is true iff there is an extension E of the disjunctive default
theory 〈Γ, Δ〉 such that Σ ⊆ E and Θ ∩ E = ∅; E is called a witness of Γ; Δ ⇒ Σ; Θ.

The default sequent calculus BD consists of sequents, anti-sequents, and disjunctive default
sequents. It incorporates the systems LK for sequents and LKr for anti-sequents, as well as additional
axioms and inference rules for disjunctive default sequents, similar to the case of B3.

Definition 14. The postulates of BD comprise the following items:

• all axioms and inference rules of LK and LKr;
• axioms of the form Γ; ∅ ⇒ ∅; ∅, where Γ is a finite set of formulas of PL; and
• the inference rules are those depicted in Figure 7.

Γ → A
Γ; ∅ ⇒ A; ∅ (l1)d

Γ �→ A
Γ; ∅ ⇒ ∅; A (l2)d

Γ; ∅ ⇒ Σ1; Θ1 Γ; ∅ ⇒ Σ2; Θ2

Γ; ∅ ⇒ Σ1, Σ2; Θ1, Θ2
(mu)d

Γ; Δ ⇒ Σ; Θ, A
Γ; Δ, (A : B1, . . . , Bn / C1| · · · |Cm) ⇒ Σ; Θ

(d1)
d

Γ; Δ ⇒ Σ,¬Bi; Θ
Γ; Δ, (A : B1, . . . , Bi, . . . , , Bn / C1| · · · |Cm) ⇒ Σ; Θ

(d2)
d

Γ; ∅ ⇒ A; ∅ Γ, Ci; Δ ⇒ Σ; Θ,¬B1, . . . ,¬Bn

Γ; Δ, (A : B1, . . . , Bn / C1| · · · |Ci| · · · |Cm) ⇒ Σ; Θ
(d3)

d

Figure 7. Additional rules of the calculus BD.

The informal meaning of the nonmonotonic inference rules is similar to the meaning of the rules
in B3:
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(i) rules (l1)d and (l2)d combine classical sequents and anti-sequents with disjunctive default
sequents, respectively;

(ii) rule (mu)d again allows the joining of information in case that no default is present; and
(iii) rules (d1)

d, (d2)
d, and (d3)

d are the default introduction rules, where rules (d1)
d and (d2)

d take
care of introducing non-active defaults, whilst rule (d3)

d allows to introduce an active default.

Before we turn to the adequacy of BD, let us again give an example to illustrate the calculus.

Example 6. Let us consider the disjunctive default theory from Example 4 dealing with Poole’s broken arms
scenario [52], which contains the defaults

: Ul ∧ ¬Bl
Ul

and
: Ur ∧ ¬Bl

Ur
,

together with the disjunctive default
Bl |Br.

This disjunctive default theory has the two extensions:

Th2({Bl , Ur}) and Th2({Br, Ul}).

Accordingly, the following disjunctive default sequent is true:

∅; (: ∅/Bl|Br), (: (Ul ∧ ¬Bl)/Ul), (: (Ur ∧ ¬Br)/Ur) ⇒ Bl, Ur,¬(Ul ∧ ¬Bl); Ul.

A proof, γ, of this sequent in BD is given below; it uses the two subproofs α and β:

• Proof α:

Ur, Bl �→ Ul , Br

Ur, Bl , Ur,¬Br �→ Ul
(¬ �→ )r

Ur, Bl , (Ur ∧ ¬Br) �→ Ul
(∧ �→ )r

Ur, Bl �→ Ul ,¬(Ur ∧ ¬Br)
( �→ ¬)r

Ur, Bl ; ∅ ⇒ ∅; Ul ,¬(Ur ∧ ¬Br)
(l2)d

• Proof β:

Bl → Bl
Bl → Ur, Bl

(wr)

Ur, Bl → Ur, Bl
(wl)

Ur, Bl ; ∅ ⇒ Ur, Bl ; ∅ (l1)d

Bl → Bl
Ur, Bl → Bl

(wl)

Ur, Bl ,¬Bl → ∅
(¬ → )

Ur, Bl , (Ul ∧ ¬Bl) → ∅
(∧ → )2

Ur, Bl → ¬(Ul ∧ ¬Bl)
(→ ∧)

Ur, Bl ; ∅ ⇒ ¬(Ul ∧ ¬Bl); ∅
(l1)d α

Ur, Bl ; ∅ ⇒ ¬(Ul ∧ ¬Bl); Ul ,¬(Ur ∧ ¬Br)
(mu)d

Ur, Bl ; ∅ ⇒ Bl , Ur,¬(Ul ∧ ¬Bl); Ul ,¬(Ur ∧ ¬Br)
(mu)d

• Proof γ:

∅ → �
∅; ∅ ⇒ �; ∅ (l1)d

∅ → �
Ur → � wl

Ur; ∅ ⇒ �; ∅ (l1)d β

Ur; (: ∅/Bl |Br) ⇒ Bl , Ur,¬(Ul ∧ ¬Bl);¬(Ur ∧ ¬Br), Ul
(d3)

d

∅; (: ∅/Bl |Br), (: (Ur ∧ ¬Br)/Ur) ⇒ Bl , Ur,¬(Ul ∧ ¬Bl),¬(Ul ∧ ¬Bl); Ul
(d3)

d

∅; (: ∅/Bl |Br), (: (Ul ∧ ¬Bl)/Ul), (: (Ur ∧ ¬Br)/Ur) ⇒ Bl , Ur,¬(Ul ∧ ¬Bl); Ul
(d2)

d
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4.2. Adequacy of the Calculus

Soundness and completeness of BD can be shown by similar arguments as in the case of B3.
We sketch the relevant details.

We again need some preparatory characterisations of extensions, dealing with the introduction of
active or non-active defaults.

We start with the notion of a reduct, adapted to the case of DLD, as introduced by Gelfond,
Lifschitz, Przymusinska, and Truszczyński [10].

In what follows, we use the following terminology: By a disjunctive inference rule, or simply a
disjunctive rule, r, we understand an expression of the form

A
C1| · · · |Cm

.

We say that a set S of formulas is closed under r if, whenever A ∈ S, then Ci ∈ S, for some
i ∈ {1, . . . , m}. Moreover, for a set R of disjunctive rules, we say that S is closed under R if S is closed
under each r ∈ R.

Definition 15. Let D be a set of disjunctive defaults and E a set of formulas. The DLD-reduct of D with
respect to E, denoted by Dd

E, is the set consisting of the following disjunctive inference rules:

Dd
E :=

{
A

C1| · · · |Cm

∣∣∣∣ A : B1, . . . , Bn

C1| · · · |Cm
∈ D and {¬B1, . . . ,¬Bn} ∩ E = ∅

}
.

A disjunctive rule
A

C1| · · · |Cm

is called DLD-residue of a default
A : B1, . . . , Bn

C1| · · · |Cm
.

We again allow ourselves to drop the prefix “DLD-” from “DLD-reduct” and “DLD-residue” if
no ambiguity can arise.

Towards our characterisation of extensions of disjunctive default theories, we introduce the
following notation:

Definition 16. For a set W of formulas and a set R of disjunctive rules, let CR(W) be the collection of all
sets which

(i) contain W,
(ii) are closed under propositional consequence, and

(iii) are closed under R.

Furthermore, let CnR(W) = min(CR(W)), i.e., CnR(W) contains all minimal sets satisfying (i)–(iii).

Note that, for a disjunctive default theory T = 〈W, D〉 and a set E of formulas, we obviously
have that:

ClT(E) = CDd
E(W) and ΔT(E) = CnDd

E(W).

From this, the following result is immediate:

Theorem 7. Let T = 〈W, D〉 be a disjunctive default theory. Then,

E is an extension of T iff E ∈ CnDd
E(W).
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Note furthermore that, if T = 〈W, D〉 is a standard default theory, i.e., if D contains no proper

disjunctive defaults, then clearly CnDd
E(W) = {ThDd

E
2 (W)} and E is an extension in the standard default

logic sense iff E = ThDd
E

2 (W), where ThDd
E

2 (W) is the deductive closure operator of classical derivability
extended by the (standard) inference rules in Dd

E.
We continue with the following pendant to activeness as defined earlier:

Definition 17. Let E be a set of formulas. A disjunctive default

A : B1, . . . , Bn

C1| · · · |Cm

is active in E iff E � A and {¬B1, . . . ,¬Bn} ∩ E = ∅.

We again employ our notation p(d) as in case of DL3, but now we define and j(d) for a default d,
but now we define

j′(d) := {B1, . . . , Bn} and c′(d) := {C1, . . . , Cm},

for d = (A : B1, . . . , Bn/C1| · · · |Cm).
We obtain the following results corresponding to Lemma 2 and Theorems 2–4, respectively:

Lemma 3. Let W and E be sets of formulas, R a set of disjunctive inference rules, and

r =
A

B1| · · · |Bn

a disjunctive inference rule. Then:

1. If A �∈ E and E ∈ CnR(W), then E ∈ CnR∪{r}(W).
2. If A ∈ E and E ∈ CnR∪{r}(W), then E ∈ CnR(W ∪ {B}), for some formula B ∈ {B1, . . . , Bn}.

Theorem 8. Let T = 〈W, D〉 be a disjunctive default theory, E a set of formulas, and d a disjunctive default
not active in E. Then, E is an extension of 〈W, D〉 iff E is an extension of 〈W, D ∪ {d}〉.

Theorem 9. Let E be a set of formulas and d a disjunctive default.

1. If E is an extension of 〈W, D ∪ {d}〉 and d is active in E, then E is an extension of 〈W ∪ {C}, D〉, for some
C ∈ c′(d).

2. If E is an extension of the disjunctive default theory 〈W ∪ {C}, D〉, for some C ∈ c′(d), W � p(d),
and ¬j′(d) ∩ E = ∅, then E is an extension of 〈W, D ∪ {d}〉.

From this, by similar arguments as in the case of B3, soundness and completeness of BD follows.

Theorem 10. A disjunctive default sequent Γ; Δ ⇒ Σ; Θ is provable in BD iff it is true.

5. Conclusions

In this paper, we introduced sequent-type calculi for brave reasoning for a three-valued version
of default logic [9] and for disjunctive default logic [10], following the method of Bonatti [7]. This form
of axiomatisation yielded a particular elegant formulation mainly due to their usage of anti-sequents.
In addition, the approach was flexible and could be applied to formalise different versions of
nonmonotonic reasoning. Indeed, other variants of default logic besides the versions studied here,
including justified default logic [12] and constrained default logic [13,14], have also been axiomatised
by this sequent method [60,61].

Related to the sequent approach discussed here are also works employing tableau methods.
In particular, Niemelä [62] introduces a tableau calculus for inference under circumscription.
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Other tableau approaches, however, do not encode inference directly, rather they characterise models
(resp., extensions) associated with a particular nonmonotonic reasoning formalism [63–66].

Variations of our calculi can be obtained by using different calculi for the underlying monotonic
logics. As far as the three-valued case is concerned, we opted for the style of calculi as discussed by
Rousseau [25] and Zach [26] because they naturally model the underlying semantic conditions of the
considered logic. Alternatively, we could have also used two-sided sequent and anti-sequent calculi
like the ones described by Avron [24] and Oetsch and Tompits [67], respectively. By employing such
two-sided sequents, however, one then deals with calculi having also “non-standard” inference rules
introducing two connectives simultaneously. Another prominent proof method for many-valued logics
are hypersequent calculi [57], which are basically disjunctions of two-sided sequents. However, to the
best of our knowledge, no rejection calculus based on hypersequents exist so far and establishing such
a system in particular for Ł3 would be worthwhile.

Another topic for future work is to develop calculi for sceptical reasoning for the considered
versions of default logic as well as for other variants of default logic discussed in the literature [12–14],
similar to the system for sceptical reasoning for standard default logic as introduced by Bonatti and
Olivetti [8]. In that work, they also introduced a different version of a calculus for brave default
reasoning—extending this calculus to DL3 and DLD would provide an alternative to the calculi
discussed here.
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15. Mikitiuk, A.; Truszczyński, M. Rational Default Logic and Disjunctive Logic Programming. In Proceedings
of the 2nd International Workshop on Logic Programming and Non-Monotonic Reasoning (LPNMR’93),
Lisbon, Portugal, 28–30 June 1993; Pereira, L.M., Nerode, A., Eds.; MIT Press: Cambridge, MA, USA, 1993;
pp. 283–299.

16. Zhou, Y.; Lin, F.; Zhang, Y. General Default Logic. Ann. Math. Artif. Intell. 2009, 57, 125–160. [CrossRef]
17. Yue, A.; Ma, Y.; Lin, Z. Four-Valued Semantics for Default Logic. In Proceedings of the 19th Conference

of the Canadian Society for Computational Studies of Intelligence (Canadian AI 2006), Lecture Notes in
Computer Science, Quebec City, QC, Canada, 7–9 June 2006; Lamontagne, L., Marchand, M., Eds.; Springer:
Berlin/Heidelberg, Germany, 2006; Volume 4013, pp. 195–205.

18. Antoniou, G.; Wang, K. Default Logic. In Handbook of the History of Logic, Volume 8: The Many Valued and
Nonmonotonic Turn in Logic; Gabbay, D., Woods, J., Eds.; North-Holland: Amsterdam, The Netherlands, 2007;
pp. 517–632.

19. Beyersdorff, O.; Meier, A.; Thomas, M.; Vollmer, H. The Complexity of Reasoning for Fragments of Default
Logic. J. Log. Comput. 2012, 22, 587–604. [CrossRef]

20. Łukasiewicz, J. O sylogistyce Arystotelesa. Sprawozdania Z Czynności I Posiedzeń Polskiej Akademii Umiejętności
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Abstract: In this paper, we propose Kripke-style models for the logics of evidence and truth
LETJ and LETF. These logics extend, respectively, Nelson’s logic N4 and the logic of first-degree
entailment (FDE) with a classicality operator ○ that recovers classical logic for formulas in its scope.
According to the intended interpretation here proposed, these models represent a database that
receives information as time passes, and such information can be positive, negative, non-reliable,
or reliable, while a formula ○A means that the information about A, either positive or negative,
is reliable. This proposal is in line with the interpretation of N4 and FDE as information-based
logics, but adds to the four scenarios expressed by them two new scenarios: reliable (or conclusive)
information (i) for the truth and (ii) for the falsity of a given proposition.

Keywords: Kripke models; logics of evidence and truth; paraconsistency

1. Introduction

The aim of this paper is to present Kripke-style models for the logics of evidence and truth LETJ
and LETF, introduced in [1,2]. Both are paraconsistent and paracomplete logics that extend respectively
Nelson’s logic N4 and the logic of first-degree entailment (FDE) with a classicality operator ○ that
recovers classical logic for formulas in its scope. The motivation for the logics of evidence and truth is
to model contexts of reasoning where one deals with positive and negative evidence, which can be
conclusive or non-conclusive. (On the notion of evidence, and N4 and FDE as evidence-preserving
logics, see [1] Section 2, [3] Section 3 and [2] Section 2.2.1.) Conclusive evidence is subjected to
classical logic, and non-conclusive to a paraconsistent and paracomplete logic that is N4 in the case
of LETJ and FDE in the case of LETF. According to the interpretation in terms of evidence and truth,
a pair of contradictory formulas A and ¬A expresses conflicting non-conclusive evidence for A and
¬A, and ○A means that there is conclusive evidence for the truth or the falsity of A. Conclusive
evidence is subjected to classical logic, and so when ○A holds, A is treated as true or false by the
formal systems. Thus, while A,¬A ⊬ B, in these logics it holds that ○A, A,¬A ⊢ B, which means that
conflicting evidence cannot be conclusive on pain of triviality. Both LETJ and LETF are logics of formal
inconsistency and undeterminedness [4–6]. Sound and complete valuation semantics were presented
for LETJ and LETF in [1,2], respectively.

It is well known that the logics FDE and N4 can be interpreted in terms of preservation of
information, the latter in the sense of [7,8]. In terms of information, a formula ○A can be read as
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meaning that the information about A is reliable, and LETJ and LETF can be interpreted in terms of
positive and negative information, which can be either reliable or unreliable. This idea fits Belnap and
Dunn’s proposal of interpreting FDE as a logic to be used by a computer that receives information
from different sources [9–11]. The semantic values True, False, Both and None, of what became known
as Belnap–Dunn 4-valued logic, express the circumstances in which the computer receives, respectively,
only positive, only negative, conflicting and no information at all, about a proposition A. In addition
to these four scenarios, LETJ and LETF are capable of representing two additional scenarios: when ○A
does not hold, we have the four scenarios above, but when ○A holds, exactly one among A and ¬A
holds, which means that the information about A, positive or negative, is reliable and subjected to
classical logic.

The Kripke-style models to be presented here are intended to represent a database that, as time
passes, receives information from different sources that may be either reliable or unreliable. Each stage
w represents one of the following six scenarios:

When w ⊮ ○A:

1. w ⊩ A, w ⊮ ¬A: at w the database has only the information that A is true;
2. w ⊮ A, w ⊩ ¬A: at w the database has only the information that A is false;
3. w ⊩ A, w ⊩ ¬A: at w the database has conflicting information about A;
4. w ⊮ A, w ⊮ ¬A: at w the database has no information about A.

When w ⊩ ○A:

5. w ⊩ A: at w the database has reliable information that A is true;
6. w ⊩ ¬A: at w the database has reliable information that A is false.

These six scenarios can be illustrated by the diagram below:

w2

p

w4

p, ○p

w5

p,¬p

w6

¬p, ○p

w3

¬p

w1

In stage w1, the database is empty and therefore has no information about p. In w2 it receives only
the information p, which in w2 is not taken as reliable. From w2, there are two possibilities: in w4 the
database receives the information that the information about p is reliable, which is expressed by ○p;
alternatively, in w5 the information ¬p is obtained, and so the information about p remains unreliable.
Analogous reasoning applies to w3, which may bifurcate into w5 or w6.

In the example above, nothing has been removed from the database. As we will see, LETJ requires
persistence for every formula, which means that once some information is inserted in the database
it cannot be removed. On the other hand, in the case of LETF, different persistence clauses may be
adopted to express different criteria for revising information.
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The remainder of this paper is structured as follows. Section 2 presents the models for LETJ and
proves soundness and completeness, and Section 3 does the same regarding LETF. Section 4 discusses
the persistence clauses that can be added to LETF for revisability of information and gives a proof that
the addition of these clauses to the semantics of LETF does not affect soundness, nor completeness.
Section 5 discusses some results related to how the classical behavior propagates across stages in LETJ
and LETF-models, and finally, Section 6, points out some possible further developments.

2. The Logic LETJ

The logic LETJ [1] is an extension of Nelson’s paraconsistent logic N4. An interpretation of
N4 in terms of positive and negative information can be found in [12]. In [8], a view according
to which paraconsistent logics should be interpreted without any ontological or epistemological
ingredients in terms of Dunn’s notion of information [7] is presented and defended. N4 is FDE plus
a semi-intuitionistic implication: Peirce’s law does not hold, but the equivalence between ¬(A → B)
and A ∧¬B holds. A Kripke semantics for N4 can be found in [13], p. 164, and it is essentially the local
conditions for ¬, ∨, ∧ that mimic the conditions of FDE, the local conditions for ¬(A → B) and the
intuitionistic global clause for→.

The language LJ of LETJ is composed of denumerably many sentential letters p1, p2, . . . , the unary
connectives ○ and ¬, the binary connectives ∧, ∨ and → and parentheses. The set of formulas of LJ ,
which we will also denote by LJ , is inductively defined in the usual way. Henceforth, Roman capitals
A, B, C, . . . will be used as metavariables for the formulas of LJ , while Greek capitals Γ, Δ, Σ, . . . will be
used as metavariables for sets of formulas.

Definition 1. The logic LETJ is defined over LJ by the following natural deduction rules:

A B ∧IA ∧ B
A ∧ B ∧EA

A ∧ B
B

A ∨IA ∨ B
B

A ∨ B
A ∨ B

[A]
⋮
C

[B]
⋮
C
∨EC

[A]
⋮
B → IA → B

A → B A → EB

¬A ¬∧ I
¬(A ∧ B)

¬B
¬(A ∧ B)

¬(A ∧ B)

[¬A]
⋮
C

[¬B]
⋮
C
¬∧ EC

¬A ¬B ¬∨ I
¬(A ∨ B)

¬(A ∨ B)
¬ ∨ E

¬A
¬(A ∨ B)
¬B

A ¬B ¬→ I
¬(A → B)

¬(A → B)
¬→ EA

¬(A → B)
¬B
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A DNI
¬¬A

¬¬A DNEA

○A A ¬A EXP○B
○A PEM○A ∨¬A

As is customary, enclosing a formula A in square brackets indicates that A is a discharged hypothesis.
The notion of a derivation in LETJ can be inductively defined along the lines of the definition presented
in [14] (pp. 35–36). It suffices to say here that a derivation is a tree of labeled formulas whose nodes
are either a hypothesis or the conclusion of applying one of the rules above to formulas that occur
previously in the tree. Given Γ ∪ {A} ⊆ LJ , the notation Γ ⊢J A will be used to express that there is
a derivation D in LETJ such that A is the last formula that occurs in D (its conclusion) and all of D’s
undischarged hypotheses belong to Γ. ⊢J A will be treated as a shorthand for ∅ ⊢ A. When there is no
risk of confusion, we shall write ⊢ instead of ⊢J .

Definition 2. A Kripke modelM for LETJ is a structure ⟨W,≤, v⟩ such that W is a non-empty set of stages,
the accessibility relation ≤ is a partial order on W, and v ∶ LJ ×W �→ {0, 1} is a valuation function satisfying
the following conditions, for every w ∈W:

1. v(A ∧ B, w) = 1 iff v(A, w) = 1 and v(B, w) = 1;
2. v(A ∨ B, w) = 1 iff v(A, w) = 1 or v(B, w) = 1;
3. v(¬¬A, w) = 1 iff v(A, w) = 1;
4. v(¬(A ∧ B), w) = 1 iff v(¬A, w) = 1 or v(¬B, w) = 1;
5. v(¬(A ∨ B), w) = 1 iff v(¬A, w) = 1 and v(¬B, w) = 1;
6. v(○A, w) = 1 only if exactly one of the following conditions obtains:

For every w′ ≥ w, v(A, w′) = 1 and v(¬A, w′) = 0;
For every w′ ≥ w, v(A, w′) = 0 and v(¬A, w′) = 1;

7. v(A → B, w) = 1 iff for every w′ ≥ w, if v(A, w′) = 1, then v(B, w′) = 1;
8. v(¬(A → B), w) = 1 iff v(A, w) = 1 and v(¬B, w) = 1;

P1. If v(A, w) = 1, then for every w′ ≥ w, v(A, w′) = 1, for every A ∈ LJ .

Given a Kripke modelM= ⟨W,≤, v⟩ and a stage w ∈W, we say that a formula A holds in w (M, w ⊩J A)
if, and only if, v(A, w) = 1.

Definition 3. Let Γ∪{A} ⊆ LJ . We say that A is a semantic consequence of Γ (Γ ⊧J A) if, and only if, for every
modelM= ⟨W,≤, v⟩ and every w ∈W, ifM, w ⊩J B, for every B ∈ Γ, thenM, w ⊩J A. A is said to be logically
valid if for every modelM and stage w ∈W,M, w ⊩ A. As in the case of ⊢J , we shall sometimes write ⊩ and ⊧
instead of ⊩J and ⊧J , respectively.

Note that Clause 6 of Definition 2 gives only a necessary condition for v(○A, w) = 1. This mimics
the clause for ○A of the non-deterministic valuation semantics proposed in [1] (p. 3805) and will be
important for the results presented later, specially in Section 4. We will now prove that LETJ is sound
and complete with respect to ⊧J .

Soudness and Completeness

Theorem 1. (Soundness Theorem) Let Γ ∪ {A} ⊆ L. If Γ ⊢ A, then Γ ⊧ A.

Proof. Suppose that Γ ⊢ A. We shall prove that Γ ⊧ A by induction on the number n of nodes in a
derivation D of A from Γ in LETJ . If n = 1, then A is the only formula that occurs in D and A ∈ Γ.
Since ⊧ is reflexive, it follows that Γ ⊧ A. Suppose now that n > 1 and that the result holds for every
derivation with fewer nodes than D. It is straightforward to check that for each ruleR of LETJ , if the
premises of R hold in w ∈ W, then so does its conclusion. Let us consider rule → I and leave the
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remaining cases to the reader: suppose that there is a derivation D1 of B from Γ ∪ {A} in LETJ , and let
D be the derivation (of A → B from Γ) obtained from D1 by applying rule → I. Since D1 has fewer
nodes than D, it follows that Γ, A ⊧ B (by the induction hypothesis). LetM = ⟨W,≤, v⟩ and w ∈ W
be such thatM, w ⊩ C, for every C ∈ Γ, and let w′ ≥ w be such that v(A, w′) = 1. Since by (P1) the
values of the elements of Γ in w remain the same in w′, it follows that M, w′ ⊩ C, for every C ∈ Γ.
Hence,M, w′ ⊩ B (since Γ, A ⊧ B and v(A, w′) = 1). Therefore, for every w′ ≥ w,M, w′ ⊩ A only if
M, w′ ⊩ B, i.e.,M, w ⊩ A → B.

Definition 4. (Regular set) Let Δ ⊆ LJ . Δ is a regular set if it satisfies the following three conditions (A regular
set, as defined here, corresponds to what is usually called a nontrivial prime theory. For the sake of convenience,
we shall adopt the former terminology throughout this paper.):

1. Δ is nontrivial: Δ ⊬ A, for some A ∈ LJ ;
2. Δ is closed: if Δ ⊢ A, then A ∈ Δ, for every A ∈ LJ ;
3. Δ is disjunctive (or prime): if Δ ⊢ A ∨ B, then Δ ⊢ A or Δ ⊢ B, for every A, B ∈ LJ .

Definition 5. Let Δ ∪ {A} ⊆ LJ . Δ is said to be maximal with respect to A if, and only if, (i) Δ ⊬ A and (ii)
Δ, B ⊢ A, for every B ∉ Δ.

Lemma 1. If Δ is maximal w.r.t. A, then Δ is a regular set.

Proof. In order to prove that Δ is a theory, suppose that Δ ⊢ B and that B ∉ Δ. Thus, Δ, B ⊢ A.
By the transitivity of ⊢, it follows that Δ ⊢ A, which contradicts the initial hypothesis. To prove that
Δ is a disjunctive set, suppose that Δ ⊢ B ∨ C and that Δ ⊬ B and Δ ⊬ C, that is, B ∉ Δ and C ∉ Δ.
Hence, Δ, B ⊢ A and Δ, C ⊢ A. Since Δ ⊢ B ∨ C, it then follows by rule ∨E that Δ ⊢ A, which also
contradicts the initial hypothesis.

Proposition 1. Let Γ ∪ {A} ⊆ LJ . If Γ ⊬ A, then there is a set Δ ⊇ Γ that is maximal w.r.t. A.

Proof. Let B1, B2, . . . be a fixed enumeration of LJ and let the sequence ⟨Γn⟩n∈N be defined by:

1. Γ0 = Γ

2. Γn+1 =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Γn if Γn, Bn ⊢ A

Γn ∪ {Bn} if Γn, Bn ⊬ A

It can then be proven by a straightforward induction on n that Γn ⊬ A, for every n ∈ N. Let Δ = ⋃n∈N Γn.
To prove that Δ ⊬ A, it suffices to notice that if A were derivable from Δ, then, by the compactness
of ⊢, it would also be derivable from Γn, for some n ∈ N. Now, suppose that C ∉ Δ and let n be such
that C = Bn. Since Bn ∉ Γn+1 (for Γn+1 ⊆ Δ), it follows by construction that Γn, Bn ⊢ A. Therefore,
Δ, C ⊢ A.

Lemma 2. Let Δ ⊆ LJ be a regular set and B, C ∈ LJ . Then:

1. B ∧C ∈ Δ iff B ∈ Δ and C ∈ Δ;
2. B ∨C ∈ Δ iff B ∈ Δ or C ∈ Δ;
3. ¬¬B ∈ Δ iff B ∈ Δ;
4. ¬(B ∧C) ∈ Δ iff ¬B ∈ Δ or ¬C ∈ Δ;
5. ¬(B ∨C) ∈ Δ iff ¬B ∈ Δ and ¬C ∈ Δ;
6. If ○B ∈ Δ, then one of the following conditions obtains:

For every regular set Σ ⊇ Δ, B ∈ Σ and ¬B ∉ Σ;
For every regular set Σ ⊇ Δ, B ∉ Σ and ¬B ∈ Σ;

7. B → C ∈ Δ iff for every regular set Σ ⊇ Δ, if B ∈ Σ, then C ∈ Σ;
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8. ¬(B → C) ∈ Δ iff B ∈ Δ and ¬C ∈ Δ.

Proof. Items (1)–(5) and (8) follow immediately from the definition of a regular set together with the
rules of LETJ . As for (6), suppose that ○B ∈ Δ. By PEM○, it follows that Δ ⊢ B ∨ ¬B, and so either
B ∈ Δ or ¬B ∈ Δ. Let Σ be a regular set such that Δ ⊆ Σ and suppose that B ∈ Δ. Since Δ ⊆ Σ, it then
follows that both ○B and B belong to Σ. Hence, ¬B ∉ Σ, for otherwise Σ would be trivial (in virtue of
rule EXP○ and the fact that Σ is a regular set). A similar reasoning suffices to show that if ¬B ∈ Δ, then
¬B ∈ Σ and B ∉ Σ, for every regular set Σ ⊇ Δ. Finally, to prove the left-to-right direction of (7), suppose
that B → C ∈ Δ and let Σ ⊇ Δ be a regular set such that B ∈ Σ. Since Δ ⊆ Σ, it follows that B → C ∈ Σ
and so, C ∈ Σ (by rule → E). As for the right-to-left direction, suppose that B → C ∉ Δ. By rule → I,
it follows that Δ, B ⊬ C. By Proposition 1 and Lemma 1, there is a regular set Δ′ ⊇ Δ ∪ {B} such that
C ∉ Δ′. Since Δ ∪ {B} ⊆ Δ′, B ∈ Δ′. Therefore, there is a regular set Σ ⊇ Δ such that B ∈ Σ and C ∉ Σ.

Proposition 2. If Δ is a regular set, then there is a modelM= ⟨W,≤, v⟩ and a stage w ∈W such that:

M, w ⊩ B if, and only if, B ∈ Δ, for every B ∈ LJ .

Proof. LetM= ⟨W,≤, w⟩ be such that:

1. W = {Σ ∶ Σ is a regular set};
2. ≤ = ⊆W ;
3. v ∶ LJ ×W �→ {0, 1} is defined by: v(B, Σ) = 1 iff B ∈ Σ, for every B ∈ LJ .

Since Δ is a regular set, Δ ∈W. It follows from the definition of v that v(B, Δ) = 1 if, and only if, B ∈ Δ.
However, in order to complete the proof we are still required to show that v is a valuation, i.e., that it
satisfies all clauses of Definition 2. ThatM satisfies clauses (1)–(8) is an immediate consequence of
Lemma 2 above. Note, moreover, that since ≤ has been defined as the set inclusion relation over W,M
also satisfies (P1).

Theorem 2. (Completeness Theorem)

Let Γ ∪ {A} ⊆ LJ . If Γ ⊧ A, then Γ ⊢ A.

Proof. Suppose that Γ ⊬ A. By Proposition 1 and Lemma 1, there is a regular set Δ ⊇ Γ such that
Δ ⊬ A. By Proposition 2, there is a modelM and a stage w ∈W such that for every B ∈ LJ ,M, w ⊩ B if,
and only if, B ∈ Δ. Therefore,M, w ⊩ C, for every C ∈ Γ (since Γ ⊆ Δ), andM, w ⊮ A (for A ∉ Δ).

3. From LETJ to LETF

The logic LETF was introduced in [2] as an extension of FDE equipped with both a classicality
operator ○ and a non-classicality operator ●, dual to ○—cf. [2] Section 3.1. (Hilbert and Gentzen-style
systems for FDE can be found in [15] Section 2.2.) LETF can also be obtained from LETJ by dropping
the implication and adding ●, with the respective rules, which say essentially that ●A holds if, and only
if, ○A does not hold. As far as we know, classical negation cannot be defined in LETF, so ● had to be
introduced as a primitive symbol. In the intended interpretation of the Kripke models presented here,
●A means that in the database there is no reliable information about A.

Definition 6. Let LF be the language obtained from LJ by replacing → by the unary connective ●. The logic
LETF results from adding the following rules to the set of LETJ’s→-free rules:

○A ●A ConsB
Comp

○A ∨ ●A

We shall use ⊢F to denote the derivability relation generated by LETF and abbreviate it to ⊢
whenever appropriate.
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Definition 7. A Kripke model M for LETF is a structure ⟨W,≤, v⟩ as in Definition 2, except that (7), (8)
and (P1) are replaced by:

7′. v(●A, w) = 1 iff v(○A, w) = 0

As in the case of LETJ, we say that A holds in w (M, w ⊩F A) if, and only if, v(A, w) = 1. The definition of
LETF’s semantic consequence relation, to be denoted by ⊧F, is like the one for LETJ (Definition 3), with the
obvious adjustments. When there is no risk of ambiguity, we write simply ⊩ and ⊧ instead of ⊩F and ⊧F.

Theorem 3. (Soundness Theorem) Let Γ ∪ {A} ⊆ LF. If Γ ⊢ A, then Γ ⊧ A.

Proof. Suppose that Γ ⊢ A. We shall prove that Γ ⊧ A by induction on the number n of nodes in a
derivation D of A from Γ in LETF. If n = 1, then D contains only one formula and so either A ∈ Γ or it
is the result of applying rule Comp. If A ∈ Γ, then Γ ⊧ A, by the reflexivity of ⊧. As for the latter case,
suppose that A is the formula ○B ∨ ●B and letM= ⟨W,≤, v⟩ and w ∈W be arbitrary. By Definition 7(7′),
v(○B, w) = 1 or v(●B, w) = 1. It then follows from clause (2) of Definition 7 that v(○B∨●B) = 1. Therefore,
M, w ⊩ A, and sinceM and w were arbitrary, we may conclude that Γ ⊧ A. Suppose now that n > 1
and that the result holds for every derivation with fewer nodes than D. It is straightforward to check
that for each rule R of LETF (other than Comp), if the premises of R hold in w ∈ W, then so does
its conclusion.

The proof of the completeness of LETF with respect to the class of models characterized in
Definition 7 is also similar to the one for LETJ , except for some minor differences. In particular,
the definitions of regular and maximal sets (Definitions 4 and 5), and the proofs of Lemma 1 and
Proposition 1 will carry over to the case LETF. Hence, we shall assume those results to hold without
presenting their proofs.

Lemma 3. Let Δ ⊆ LF be a regular set and B, C ∈ L. Then:

1. B ∧C ∈ Δ iff B ∈ Δ and C ∈ Δ;
2. B ∨C ∈ Δ iff B ∈ Δ or C ∈ Δ;
3. ¬¬B ∈ Δ iff B ∈ Δ;
4. ¬(B ∧C) ∈ Δ iff ¬B ∈ Δ or ¬C ∈ Δ;
5. ¬(B ∨C) ∈ Δ iff ¬B ∈ Δ and ¬C ∈ Δ;
6. If ○B ∈ Δ, then one of the following conditions obtains:

For every regular set Σ ⊇ Δ, B ∈ Σ and ¬B ∉ Σ;
For every regular set Σ ⊇ Δ, B ∉ Σ and ¬B ∈ Σ;

7′. ●B ∈ Δ iff ○B ∉ Δ.

Proof. Items (1)–(5) follow immediately from the definition of a regular set together with the rules
of LETF. As for (6), it can be proven exactly as in the proof of Lemma 2. Finally, to prove (7′) it suffices
to notice that if ○B, ●B ∈ Δ, then Δ would be trivial, and that either ○B ∈ Δ or ●B ∈ Δ (by rule Comp and
the assumption that Δ is regular).

Proposition 3. If Δ is a regular set, then there is a modelM= ⟨W,≤, v⟩ and a stage w ∈W such that:

M, w ⊩ B if, and only if, B ∈ Δ, for every B ∈ LF.

Proof. LetM= ⟨W,≤, v⟩ be such that:

1. W = {Σ ∶ Σ is a regular set};
2. ≤ = ⊆W ;
3. v ∶ LF ×W �→ {0, 1} is defined by: v(B, Σ) = 1 iff B ∈ Σ, for every B ∈ LF.
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Since Δ is a regular set, Δ ∈W. It then follows from the definition of v that v(B, Δ) = 1 if, and only if,
B ∈ Δ, for every B ∈ LF. By Lemma 3 above, Δ satisfies all clauses of Definition 7, and we are done.

Theorem 4. (Completeness Theorem)

Let Γ ∪ {A}. If Γ ⊧ A, then Γ ⊢ A.

Proof. Suppose that Γ ⊬ A. By (the LETF-analogues of) Proposition 1 and Lemma 1, there is a regular
set Δ ⊇ Γ such that Δ ⊬ A (and so A ∉ Δ). By applying Proposition 3, it then follows that there is a
modelM = ⟨W,≤, v⟩ and a stage w ∈ W such that for every B ∈ LF, v(B, w) = 1 if, and only if, B ∈ Δ.
Therefore,M, w ⊩ C, for every C ∈ Γ, butM, w ⊮ A, that is, Γ ⊭ A.

Although the persistence clause (P1) of Definition 2 is necessary for proving the soundness of
LETJ , it can be completely dispensed with in LETF. As we shall see in the next section, there are
some reasons why supplementing the semantics of LETF with some weaker versions of (P1) may be
desirable. Before we do so, it is worth noting that even in the absence of (P1), for formulas ○A, LETF
already requires the values of A or ¬A to be preserved across stages.

Proposition 4. LetM= ⟨W,≤, v⟩ and A ∈ L. For every w ∈W, it holds that:

1. If v(○A, w) = v(A, w) = 1, then v(A, w′) = 1, for every w′ ≥ w;
2. If v(○A, w) = v(¬A, w) = 1, then v(¬A, w′) = 1, for every w′ ≥ w.

Proof. This is an immediate consequence of clause (6) of Definition 7.

Thus, in LETF, whenever ○A holds in a certain stage w, both A and ¬A will retain their values in
every stage w′ accessible from w; and since exactly one of A or ¬A holds in w whenever ○A does, this
entails that exactly one of A or ¬A will hold in every such w′.

4. Persistence Clauses and Information Revision

In this section we explore different persistence relations that may hold in a Kripke model for
LETF and indicate how each of those relations may be useful for representing different criteria for
revising information.

Recall that, given a model M and a stage w ∈ W, v(A, w) = 1 expresses that positive
information A is available at w, while v(A, w) = 0 expresses that there is no such information in w.
Likewise, v(¬A, w) = 1 indicates the presence at w of negative information ¬A, whereas v(¬A, w) = 0
is to be interpreted as the lack of such information. When the information about A is reliable at w,
we have v(○A, w) = 1. For the sake of convenience, we may express the same thing more succinctly by
saying that the information conveyed by A (which may assume the form ¬B or ○B) is available at w
whenever v(A, w) = 1, and that no such information is available at w whenever v(A, w) = 0.

Now, how are we to understand the fact that A may assume different values in two ≤-related
stages? The following definitions may be of some help: given stages w, w′ ∈ W such that w ≤ w′,
we shall say that in w′ we have acquired the information conveyed by A whenever v(A, w) = 0 and
v(A, w′) = 1; and that we have revised that same information whenever v(A, w) = 1 and v(A, w′) = 0.
Using this new terminology, we can then describe the following four scenarios:

1. v(A, w) = 1 and v(A, w′) = 1: the information conveyed by A was available at w and it has not
been revised in the process of moving from w to w′ (i.e., it remained available);

2. v(A, w) = 1 and v(A, w′) = 0: the information conveyed by A was available at w but it has been
revised in the process of moving from w to w′;

3. v(A, w) = 0 and v(A, w′) = 0: the information conveyed by A was unavailable at w, nor was it
acquired in the process of moving from w to w′ (i.e., it remained unavailable);

4. v(A, w) = 0 and v(A, w′) = 1: the information conveyed by A was unavailable at w but it has been
acquired in the process of moving from w to w′.
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4.1. Persistence Conditions

Having the notions characterized in (1)–(4) at our disposal, we can now categorize the models of
LETF according to the different revisability relations that may or may not hold between formulas and
stages. In other words, we can distinguish classes of models in terms of the kinds of information that
are allowed to be revised.

Let a literal be a propositional letter or the negation of a propositional letter, and let basic
information be the (positive and negative) information conveyed by literals. The models of LETF can
be classified according to whether or not they satisfy one of the following persistence conditions:

P1. Total non-revisability

For every w′ ≥ w, if v(A, w) = 1, then v(A, w′) = 1.

P2. Non-revisability of reliable information

For every w′ ≥ w, if v(○A, w) = 1, then v(○A, w′) = 1.

P3. Non-revisability of reliable information and basic information

For every w′ ≥ w, if v(○A, w) = 1, then v(○A, w′) = 1;

For every w′ ≥ w, if v(p, w) = 1, then v(p, w′) = 1;

For every w′ ≥ w, if v(¬p, w) = 1, then v(¬p, w′) = 1.

Condition (P1), which was already present in LETJ , amounts to the constraint of total
non-revisability: it states that no information whatsoever is allowed to be revised at any stage. In other
words, every new piece of information acquired at a certain stage is always passed on to the subsequent
stages, leaving no room for data to be removed in the light of new information.

It is to be noted, however, that (P1) does not quite fit in the intended interpretation of LETF. This is
because if ●A were to always persist across stages, we would be prevented from acquiring reliable
information about A whenever that information had been previously deemed unreliable. On the other
hand, in the semantics for LETJ , total non-revisability was required because of the intuitionistic clause
for implication. Since ● is absent from LETJ , this does not represent a problem there, although the
presence of (P1) does prevent revising information in LETJ-models.

(P2) corresponds to the constraint that information already marked as reliable cannot be revised.
Thus, once ○A holds in a stage w, it cannot be removed at any stage w′ ≥ w. Recall that in Proposition 4
we have proved, even in the absence of (P2), that the fact that ○A holds in a certain stage w is already
sufficient for the non-revisability of either A or ¬A (which depends on which of A and ¬A actually
holds in w). However, this did not prevent the revisability of ○A itself; that is, it did not rule out such
models as:

w1
p

w2
p, ○p

w3
p

Requiring models to satisfy (P2) will, however, prevent situations in which A (¬A) is non-revisable
in virtue of ○A holding in a certain stage, even though ○A itself is allowed to be revised at any
further stage.

Another important aspect of (P2) is that it entails (actually, is equivalent to):

P2′. If v(●A, w′) = 1, then for every w ≤ w′, v(●A, w) = 1.

(P2′) says that if some information is unreliable at a stage w′, it must have been unreliable in every
stage w that precedes w′ (To prove that (P2) entails (P2′), suppose that v(●A, w′) = 1 and let w ≤ w′.
Suppose further that v(○A, w) = 1. By (P2), it then follows that v(○A, w′) = 1, which contradicts clause
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(7′) of Definition 7. Therefore, v(●A, w) = 1. Suppose now that M satisfies (P2′) and let w ∈ W be
such that v(○A, w) = 1. For any arbitrary w′ ≥ w, v(○A, w′) = 1 or v(●A, w′) = 1. If v(●A, w′) = 1, then
v(●A, w) = 1 (by (P2′)). This result contradicts clause (7′) of Definition 7. Therefore, v(○A, w′) = 1.).

Finally, (P3) adds to (P2) the requirement of non-revisability of basic information. This makes
sense if we think of a database in which only literals and formulas of the form ○p can be inserted.
Given a modelM that satisfies (P3), it can be easily proved that any formula A in which neither ○ nor
● occur will be preserved across ≤-related stages.

Proposition 5. LetM = ⟨W,≤, v⟩ and w ∈ W. Let A ∈ LF be such that neither ○ nor ● occur in A. IfM
satisfies (P3) and v(A, w) = 1, then for every w′ ≥ w, v(A, w′) = 1.

Proof. The result can be proved by a straightforward induction on the complexity of A; this proof is
left to the reader.

Concerning the result above, it is to be noted that the condition (P3) added to LETF does not
collapse into (P1) because (P3) does not apply to formulas like ●A, nor to formulas in which ○ and ●
appear in the scope of ¬.

The conditions (P1), (P2) and (P3) are not exhaustive. The idea of these models as representations of
information revision can be developed in different ways, even allowing revisability of reliable information.
We can think of different revisability conditions as different levels of access to the database.
Total non-revisability (P1) would be a level of access that can insert information but cannot remove
anything from the database. Non-revisability of reliable information (P2) fits the idea of two different
levels of access: a level-1 access that can only insert basic information but cannot remove nor mark
anything as reliable (i.e., cannot insert ○A), and a level-2 access that can remove any information not
marked as reliable and mark information as reliable (i.e., can insert and remove literals and insert ○A),
but still cannot remove or change reliable information, which is marked with ○. This does not mean,
however, that in both cases reliable information cannot be revised once and for all, but only that the
model is not able to represent, so to speak, a sort of higher level access to the database.

4.2. Adding Persistence to LETF

The reader may ask at this point what would be the result of adding the persistence clauses above
to the semantics of LETF. After all, it seems that modifying Definition 7 would restrict the class of
models originally characterized in the previous section and, as a result, we should expect LETF to
retain soundness but not completeness with respect to the new, more restricted, classes of models.
As we shall now see, though, this is not really the case, for no matter which persistence clause we
choose to supplement Definition 7 with, LETF will continue to be sound and complete with respect
to the new class of models. Let us first prove this fact and then explain why none of the persistence
clauses (P1)–(P3) interfere with the completeness of LETF.

Soundness and Completeness with Persistence

To prove that soundness and completeness will continue to hold with respect to the classes of
models corresponding to each of the persistence clauses (P1)–(P3), it will suffice to consider the class
generated by the most restrictive condition, (P1). In order to establish this result it will be convenient
to first introduce some preliminary notation. We shall use the symbol C to denote the class of models
originally characterized in Definition 7—i.e., models with no persistence constraints, except for those
stated in Proposition 4—and Ci (1 ≤ i ≤ 3) to denote the class that results from adding (Pi) to that
definition. Note that, for every i, Ci is properly included in C, C1 is properly included in both C2 and
C3, and C3 in C2, since every model that satisfies (P1) also satisfies (P2) and (P3), and every model that
satisfies (P3) satisfies (P2). Finally, ⊧i denotes the semantic consequence relation generated by the
models in Ci (We shall continue to use ⊢ and ⊧ as abbreviations for respectively ⊢F and ⊧F throughout
this section.). We can then prove that:
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Lemma 4. LetM= ⟨W,≤, v⟩ be a member of C and let w ∈W. Then there is a modelM1 = ⟨W1,≤1, v1⟩ in C1

and a stage w1 ∈W1 such thatM, w ⊩ B if, and only if,M1, w1 ⊩ B, for every B ∈ L.

Proof. LetM1 be defined by:

1. W1 = {w};
2. ≤1= {⟨w, w⟩}; and
3. v1 ∶ LF ×W1 → {0, 1} is a total function such that for every B ∈ LF:

v1(B, w) = 1 iff v(B, w) = 1

Given thatM1 has only one stage, v1 (vacuously) satisfies (P1). Hence, all we need to do in order to
complete the proof is to show that v1 satisfies all clauses of Definition 7. Since clauses (1)–(5) and (7′)
are all locally formulated, they follow immediately from the definition of v1. Concerning clause (6),
which is the only global clause among (1)-(7’), we may proceed as follows. Suppose that v1(○C, w) = 1.
Hence, v(○C, w) = 1, and so exactly one of (I) and (II) below obtains:

(I) For every w′ ∈W such that w′ ≥ w, v(C, w′) = 1 and v(¬C, w′) = 0;
(II) For every w′ ∈W such that w′ ≥ w, v(C, w′) = 0 and v(¬C, w′) = 1.

Suppose that (I) holds. Thus, v(C, w) = 1 and v(¬C, w) = 0, and, so, v1(C, w) = 1 and v1(¬C, w) = 0.
Since w is the only element of W1, we may conclude that for every w′ ∈ W1 such that w′ ≥ w,
v1(C, w′) = 1 and v1(¬C, w′) = 0 (and similarly in the case of (II)). When v1(○C, w) = 0, it follows
that v(○C, w) = 0, and there is nothing to be proved since clause 6 has just one direction and is vacuous
on this condition.

Theorem 5. Let Γ ∪ {A} ⊆ L. Then Γ ⊧ A if, and only if, Γ ⊧1 A.

Proof. Since every model that belongs to C1 also belongs to C, it follows immediately that if Γ ⊭1 A,
then Γ ⊭ A. As for the other direction, suppose that Γ ⊭ A. Hence, there is a model M in C and
a stage w ∈ W such that M, w ⊩ B, for every B ∈ Γ, and M, w ⊯ A. By Lemma 4 above, there is a
modelM1 = ⟨W1,≤1, v1⟩ in C1 and w1 ∈ W1 such thatM1, w1 ⊩ B, for every B ∈ Γ, andM1, w1 ⊮ A.
Therefore, Γ ⊭1 A.

Lemma 4 states that no matter how many stages a given modelM has, for each stage w ofM,
we can always find a corresponding model with exactly one stage w1 such that the same formulas
hold in both w and w1. Notice that because W1 contains only one stage,M1 (vacuously) satifies each
of the persistence clauses (P1)–(P3). This means that Lemma 4 and Theorem 5 would still be provable
in exactly the same way if C1 (and the corresponding consequence relation ⊧1) were replaced by either
C2 or C3. As a result, all of ⊧, ⊧1, ⊧2 and ⊧3 turn out to have the same extension which, together with
the soundness and completeness of LETF, yields:

Corollary 1. Let Γ ∪ {A} ⊆ LF. Then:

1. Γ ⊢ A iff Γ ⊧1 A;
2. Γ ⊢ A iff Γ ⊧2 A;
3. Γ ⊢ A iff Γ ⊧3 A.

How can LETF be sound and complete with respect to all of ⊧, ⊧1, ⊧2 and ⊧3, in spite of those
relations being characterized in terms of different classes of models? As we shall see, the reason has to
do with the fact that in the semantics for LETF there is no clause that states a sufficient condition for ○A
to hold in a given stage. Before we get to that, however, we first need to take a look at the soundness
and completeness proofs of LETF presented in the previous section, in order to make sure that they
would still work had we adopted any of those alternative notions of consequence relation.
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That the soundness theorem would continue to hold follows immediately from the fact each Ci
is included in C, which, in turn, implies that if ⊢ is sound with respect to the models in C, then it is
also sound with respect to models in the more restricted class Ci (given that Γ ⊧ A implies Γ ⊧i A).
Notice, moreover, that since nowhere in the proof of Theorem 3 was any of (P1)–(P3) appealed to,
the proof would work equally well had we adopted any of ⊧1, ⊧2, ⊧3 instead of ⊧.

Concerning the completeness theorem, we need to consider the modifications (if any) that would
be necessary if the proof were being formulated with respect to models satisfying one of (P1)–(P3).
As it turns out, there is precisely one place in the whole proof that requires more attention, viz.,
Proposition 3.

Recall that it was established in Proposition 3 that for any regular set Δ of formulas of LF, one can
find a modelM and a stage w ofM such that a formula holds in w if, and only if, it belongs to Δ.
While proving this result, the modelM was defined in such a way that its stages were all the regular
sets of LF, its accessibility relation ≤was taken to be the inclusion relation ⊆ over W, and its valuation
function was defined in terms of the characteristic function of each Σ ∈W. Now, had we proved this
result with respect to models that satisfy one of (P1)-(P3), we would have to make sure thatM did
indeed satisfy the corresponding clause. In the case of (P1), for example, this would require showing
that for every regular sets Σ and Σ′ such that Σ ≤ Σ′, the fact that formula A belongs to Σ implies that
it also belongs to Σ′ (and similarly for the other clauses). At this point, it becomes clear, however,
that this requirement, as well as the ones corresponding to the other clauses, was already satisfied in
the original proof of Proposition 3, given the way ≤was defined (i.e., in terms of ⊆). Hence, as in the
case of the proof of the soundness of LETF, the proof of its completeness would also remain unaltered.

Why does the adoption of any of the persistence clauses above bring no changes whatsoever
upon the corresponding deductive system? We can reach a better understanding of this fact by taking
a closer look at the proof of Lemma 4, for it is precisely because of that result that we are able to prove
the equivalence between ⊧, ⊧1, ⊧2 and ⊧3.

The proof tells us that given any modelM belonging to C and a stage w in this model, one can
always extract a modelM1 out ofM such that w is the only stage ofM1 and the same formulas hold
in w with respect to either model. That the semantic values of formulas containing no occurrences of
either ○ or ● are carried over to the new model is a consequence of the fact that the semantic conditions
of formulas formed with ¬,∧,∨ are all local, and so they do not depend on the values their subformulas
have at stages other than w.

There is no need to take formulas ●A into account here because their semantic conditions are
stated directly in terms of those for ○A. So let us consider what happens with formulas of the form ○A.
Assuming thatM, w ⊩ ○A, the only reason why ○A could fail to hold in w (w.r.t. M1) is if there were
some w′ ≥ w inM1 such that v(A, w′) = v(¬A, w′). However, since w is the only stage inM1 and
since A and ¬A inherit in M1 the values they had in M, this cannot happen. What if ○A did not
hold in the originalM? Could the elimination of all stages inM except for w also eliminate all the
counterexamples to ○A inM? The answer is ‘no’, and the reason for this is that the definition of a
Kripke model for LETF (with or without any of (P1)–(P3)) does not state any sufficient condition for ○A
to hold in a stage. If this were the case, then while moving fromM toM1 we would have no guarantee
that the (sufficient) condition for ○A to hold inM would not become satisfied in virtue of there being
fewer stages inM1 than inM—and so ○A would hold inM1, even though it failed to hold inM.
This situation is thus very different from what takes place in intuitionistic logic. For imagine what
would happen if we attempted to prove an analogue of Lemma 4 for intuitionistic logic. Although
every formula that holds in w in the original modelM would continue to hold in w in the new model
M1, it could well happen that a formula A → B that did not hold in w (w.r.t. M) would nonetheless
hold in w w.r.t. M1. This is because all the counter-examples to A → B could end up being eliminated
inM1. Notice that this phenomenon depends essentially on the fact that in order for A → B to hold in
a stage w in a Kripke model for intuitionistic logic, there can be no stage w′ ≥ w such that A holds in
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w′ and B does not hold in w′, which amounts to a sufficient condition for A → B to hold in w. And it is
precisely one such condition that is missing in the case of LETF’s ○ operator.

It is worth noting that, as a matter of fact, a semantics for LETF does not need a global clause
for ○, which means that from the strictly technical point of view, Kripke-style models for LETF collapse
into standard models. Nevertheless, the conceptual idea of Kripke models for intuitionistic logic,
in which propositions are proved as time passes, has an analogy with the idea of a database that
receives information as time passes. Moreover, if we change the ‘only if’ of the semantic clause for ○
(Definition 2 item 6) to an ‘if and only if’, we obtain an appealing sufficient condition for ○A: if at
a stage w we ‘look to the future’ and either across all stages A holds or across all stages ¬A holds,
then ○A holds in w (we return to this point in Section 6 below). Therefore, although strictly speaking
we have here ‘Kripke-style’ models rather than Kripke models, from the conceptual point of view our
proposal here seems to be quite justified.

Remark 1. In Omori and Sano [16], p. 162 we find Kripke models for the logic cBS4, which is an extension of
LETJ with the following axioms:

A3. A → ○A ≡ ¬A → ○A,
A8. ¬○A ≡ (A ≡ ¬A).

The semantics is given by Kripke models for N4 plus clauses tantamount to the following:

i. w ⊩ ○A iff ∀w′ ≥ w, (w′ ⊩ A and w′ ⊮ ¬A) or (w′ ⊮ A and w′ ⊩ ¬A);
ii. w ⊩ ¬○A iff ∀w′ ≥ w, w′ ⊩ A iff w′ ⊩ ¬A.

Omori and Sano adopt a Dunn-style relational semantics, with two relations ⊩+ and ⊩−, but the result is
the same, since w ⊩− A is equivalent to w ⊩+ ¬A. The logics cBS4, BD○ and BS4 discussed in [16] are indeed
related, respectively, to the logics of evidence and truth LETJ, LETF, and LETK (the latter is LETJ plus Peirce
Law, see [17], pp. 82–83). A more detailed analysis of the similarities and differences between these logics will be
done elsewhere.

Although the ‘only if’ direction of the semantic clause (i) is equivalent to the clause for ○ in LETJ (and in
LETF if persistence for ○A holds, see Section 4.2), the behavior of the classicality operator ○ in cBS4 is quite
different from its behavior in LETJ and LETF. A formula ¬○A in cBS4 has some analogy to a formula ●A in
LETF, since in the former ⊢ ○A ∨ ¬○A and ○A,¬○A ⊢ B hold. However, whether or not ○A holds in LETJ
and LETF is left undetermined even in those circumstances in which exactly one between A and ¬A holds.
The rationale for this is that the information that only A (or ¬A) holds may be reliable, and in this case ○A holds,
or unreliable, and so ○A does not hold. In LETF this can be expressed by the formulas A ∧ ○A and A ∧ ●A.
This feature of LETJ and LETF is essential for the intended interpretation in terms of positive and negative,
reliable or unreliable, information.

Modal interpretations for variants of the consistency operator have been proposed before. The first one
appears in [18] where ○A is defined as A → ◻A, obtaining a conceptualization of ○ that preserves all the
essential properties of a consistency connective (under a specific negation). In view of its definition, the semantic
interpretation of ○ depends naturally on a modal reading. This does not exactly signify assigning a possible-world
interpretation to ○, but rather defining a modal formula that behaves like ○. Later on, a modal approach for
consistency combined with modal negations was proposed in [19].

5. Some Properties of LETJ and LETF

The following properties clarify some aspects of LETJ and LETF that bear directly on their
intended interpretations:

Proposition 6. In LETJ and LETF the following inferences do not hold:

1. ○A ⊢ ○¬A;
2. ○A, ○B ⊢ ○(A ∗ B) (∗ ∈ {∨,∧});
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3. ○A, ○B ⊢ ○(A → B) (in LETJ only);
4. ●(A ∗ B) ⊢ ●A ∨ ●B (∗ ∈ {∨,∧}, in LETF only).

Proof. Left to the reader.

It is easy to find counterexamples for all the inferences above. The semantic values of the
conclusions are left undetermined by the premises because there is no sufficient condition for w ⊩ ○A.
As a consequence, in both LETJ and LETF propagation rules over {¬,∨,∧,→} do not hold. On the
other hand, let us say that a formula A behaves classically in LETJ or LETF if ⊢ A ∨¬A and A,¬A ⊢ B
hold; so in both LETJ and LETF, although they do not have propagation rules, the classical behavior
propagates over {¬,∨,∧,→}. More precisely:

Proposition 7. Suppose ○¬n1 A1, . . . , ○¬nm Am hold for ni ≥ 0 (where ¬ni , ni ≥ 0, represents ni occurrences of
negations before the formula Ai).

Then:

1. Any LETF-formula formed with A1, . . . , Am over {∧,∨,¬} behaves classically;
2. Any LETJ-formula formed with A1, . . . , Am over {∧,∨,¬ →} behaves classically.

Proof. Item (1) has been proved in [2], Fact 31. To prove (2), given that for any n ≥ 0, ○¬n A ⊢ A ∨¬A
and ○¬n A, A,¬A ⊢ B, it remains to be proved that: (i) ○¬n A, ○¬mB ⊢ (A → B) ∨ ¬(A → B) and
(ii) ○¬n A, ○¬mB, (A → B),¬(A → B) ⊢ C. The proofs of (i) and (ii) are left to the reader.

This result establishes that even though, say, ○p and ○q do not entail ○(p∨ q), ○(p∧ q), etc., they do
entail that every formula formed with p and q over {¬,∨,∧} has a classical behavior. Hence, if formulas
of the form ○A are required to persist across stages in LETF (i.e., if models are required to satisfy (P2)),
this behavior is also transmitted across ≤-related stages:

Proposition 8.

1. In LETJ, if w ⊩ ○¬n1 A1, ..., w ⊩ ○¬nm Am, then for any formula B formed with A1, . . . , Am over
{∧,∨,¬,→ }, and for any w′ ≥ w, B behaves classically in w′;

2. In LETF, assuming persistence for formulas ○A, if w ⊩ ○¬n1 A1, ..., w ⊩ ○¬nm Am, then for any formula B
formed with A1, . . . , Am over {∧,∨,¬}, and for any w′ ≥ w, B behaves classically in w′.

Proof. Item (1) follows from Proposition 7 item 2 above and the fact that persistence holds for every
formula in LETJ . Item (2) follows from Proposition 7 item 1 above and the persistence of every
formula ○A.

6. Final Remarks and Further Research

In this paper we proposed Kripke-style models for the logics LETJ and LETF introduced
respectively in [1,2]. The intended interpretation of these models is in terms of a database that
receives positive and negative information, that can be either unreliable or reliable, the reliable
information being subjected to classical logic. We claim that the semantics is sound with respect to this
intended interpretation.

A remarkable feature of these models is that there is no sufficient condition for ○A. This mimics
the fact that in the valuation semantics for LETJ and LETF different values for A and ¬A do not
imply ○A, and there is a rationale for this. The information that exactly one of either A or ¬A holds is
not enough, for we still need the information that such information is reliable. Note that this is what
distinguishes the scenarios 1 and 2 respectively from 5 and 6 mentioned in the Introduction.

There are no introduction rules for ○ in LETJ and LETF. The idea that the reliability of a formula
comes from outside the formal system is appealing, but it could be made more precise. The reliability
and conclusiveness of p and ¬p are expressed by logics of evidence and truth as the classicality of p.
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Although it is reasonable that no rule concludes ○p, and propositions 7 and 8 show that classical
behavior propagates over the standard propositional connectives, it could be an advantage to have
propagation rules for ○. This can be obtained simply by changing item 6 of Definition 2, and the
corresponding definition for LETF, putting an ‘if and only if’ in the place of ‘only if’. More precisely,
if we make the necessary condition for w ⊩ ○A also a sufficient condition, the consequent of the
result expressed by Proposition 8 becomes stronger: for any formula B formed with A1, . . . , Am over
{∧,∨,¬}, and for any w′ ≥ w, w′ ⊩ ○B. Investigating the consequences of such a change in the semantics
presented here, however, will be done elsewhere.

An algebraic semantics for N4 was proposed in [20] by means of the N4-lattices. In a similar
vein, it was proved in [21] Section 9.3 that the logic LETJ is sound and complete with respect to
Fidel-structures. As LETF can be defined from LETJ by dropping the implication and adding the
operator ● and the rules Cons and Comp, a natural conjecture is that both LETF and LETJ would
be algebraizable (or at least count with an algebraic semantics) by way of the non-deterministic
algebraization methods of [22]. This of course has still to be proved.
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Abstract: The aim of this article is to present a method of creating deontic logics as axiomatic theories
built on first-order predicate logic with identity. In the article, these theories are constructed as
theories of legal events or as theories of acts. Legal events are understood as sequences (strings) of
elementary situations in Wolniewicz′s sense. On the other hand, acts are understood as two-element
legal events: the first element of a sequence is a choice situation (a situation that will be changed
by an act), and the second element of this sequence is a chosen situation (a situation that arises as a
result of that act). In this approach, legal rules (i.e., orders, bans, permits) are treated as sets of legal
events. The article presents four deontic systems for legal events: AEP, AEPF, AEPOF, AEPOFI. In the
first system, all legal events are permitted; in the second, they are permitted or forbidden; in the third,
they are permitted, ordered or forbidden; and in the fourth, they are permitted, ordered, forbidden
or irrelevant. Then, we present a deontic logic for acts (AAPOF), in which every act is permitted,
ordered or forbidden. The theorems of this logic reflect deontic relations between acts as well as
between acts and their parts. The direct inspiration to develop the approach presented in the article
was the book Ontology of Situations by Boguslaw Wolniewicz, and indirectly, Wittgenstein’s Tractatus
Logico-Philosophicus.

Keywords: deontic logic; ontology of situations; semantics of law; formal theory of law;
Wittgenstein; Wolniewicz

1. Introduction

Boguslaw Wolniewicz in [1] created a formal ontology of situations. Based on his theory, in [2] I
proposed a certain semantics of norms. The approach presented in [2] allows a new understanding of
deontic logics, which I would like to present below.

Deontic logics formalize the concepts of obligation, prohibition and permission.
Deontic propositional logics use deontic operators whose arguments are sentences, including

compound sentences. Usually, deontic operators are defined similarly to modal (aletic) operators.
Following the modal logics, iterations of deontic operators are allowed.

Such an approach seems, at least sometimes, not to be intuitive.
Firstly, it does not seem reasonable to apply deontic operators to any sentences. What is the

meaning of the sentence “it is mandatory that Mount Everest is the highest mountain in the world”,
or “it is forbidden that 2 + 2 = 4”?

Secondly, it is not clear what intuitions regarding obligation, prohibition and permission correspond
to compound sentences preceded by deontic operators; for example,

O ((p ∧ q)→ q)→ (O (p ∧ q)→ O q),
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O (p→ (p ∨ q))→ (O p→ O (p ∨ q))?

Likewise, what would be the meaning of the sentence “it is mandatory (permitted, forbidden)
that if Mount Everest is the highest mountain in the world and 2 + 2 = 4 then 2 + 2 = 4”?

Thirdly, it is not clear what intuitions regarding obligation, prohibition and permission correspond
to iterated deontic operators; e.g., O P p, O O p. What does the phrase “it is obligatory that it is
permitted” or “it is obligatory that it is obligatory” mean?

Fourthly, such an approach is not free of paradoxical consequences; e.g., the widely discussed

O p→ O (p ∨ q)

(If it is obligatory to save a drowning person, then it is obligatory to save a drowning person or
drink coffee), or

F p→ O (p→ q)

(If it is forbidden to kill a man, then it is obligatory to rob this man after killing him).
One can find more information on propositional deontic logics and their paradoxical consequences

in [3–5].
In turn, deontic logics other than the propositional are often only partially formalized. On the

other hand, sometimes non-standard formal means are used. Operators’ arguments are people, norms,
acts, states of affairs, and sometimes combinations of the aforementioned. Interesting examples of
deontic systems built on a modal calculus of names can be found in [4], where sentences such as ”x at
the moment t can be y”, ”x at the moment t is obliged to be y”, ”x at the moment t is allowed to be
y”, ”x at the moment t is forbidden to be y” are considered. The advantage of such deontic systems is
that they usually capture more specific properties of deontic modalities than propositional deontic
logics allow, although the downside of such deontic systems, in addition to the formalization issues
mentioned above, is the lack of a clear concept as to what domain deontic sentences describe.

However, there are also deontic systems based on a previous in-depth analysis of the domain
to which deontic modalities relate. For example, in [6], permission, prohibition and obligation are
defined in terms of an action system. The author of [6] aptly assumes that deontic modalities do
not relate to states of affairs but to actions. It is actions that are prescribed, prohibited or allowed.
Deontic logic should therefore be based on an action system. Having a clear concept of the domain of
deontic modalities, the author provides his deontic logics with a strong semantic basis. This approach
avoids the paradoxes of propositional deontic logics. When assessing this direction of research as the
most promising, two points should be noted. First, actions (acts) are not the only events to which
deontic modalities relate. A good example is the so-called “consequence crimes”: the law does not
prohibit an act itself, but prohibits it if it produces certain effects. In this case, a sequence of situations
is prohibited, in which an act is only its initial fragment (and “legal causality” occurs between the act
and subsequent elements of the sequence). Deontic logic should therefore include a more general
concept than the concept of an act, namely the concept of a deontic event (I use the term “legal event”
in this sense). Secondly, it should be noted that an act can be a complex act not only as a sequence of
simple acts: situations constituting an act may themselves be complex. The act of saving two out of
three drowning people consists of rescuing two people and sacrificing the third. It would be good if
deontic logic could also describe such relations; that is, the relations between an act and its parts.

Bearing in mind the above, one may be tempted to create deontic logics which achieve the following:

(1) they shall correspond to the intuitions associated with concepts of obligation, prohibition and
permission more accurately than propositional deontic logics do;

(2) they shall use only standard logical tools and shall be based on a clear concept of the domain of
deontic modalities;

(3) they shall treat acts as a special case of deontic events;
(4) they shall describe the relations between acts and their parts.
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We intend to do this in the following part of this article. At the same time, we want to do this
using standard logical means; i.e., means of the first-order predicate logic.

2. Methods

In accordance with Stanislaw Lesniewski’s intuitive formalism, formal theories, including logical
ones, should have an intuitive interpretation. Of course, the clearer and more intuitive this interpretation
is, the better. Therefore, it is worth preceding the selection of axioms and rules of the theory with a
careful determination of the domain to be described by this theory.

Such an intuitive interpretation for deontic theories is provided by Boguslaw Wolniewicz’s
ontology of situations, which is a successful attempt to formally develop the ontology of situations
contained in Ludwig Wittgenstein’s Tractatus Logico-Philosophicus.

In [1], Wolniewicz formally described the logical space from Wittgenstein’s Tractatus. Wolniewicz
creates a mathematical model, namely the structure < SE, ≤ >, where SE is a non-empty set of objects
whose elements he calls “situations” (or “elementary situations”), and ≤ is a partial order. Wolniewicz
distinguishes in the SE set a set of elementary proper situations (SE”) and two inappropriate situations,
namely an empty situation (o) and an impossible situation (λ). Wolniewicz assumes that the structure
< SE, ≤ > is a complete lattice, so each subset of SE has, due to the relation ≤, its upper and lower
limits. In this lattice, o is the smallest element and λ is the largest; i.e., each elementary situation is
contained between the empty situation and the impossible situation. In Wolniewicz’s model, every
proper elementary situation is an atom or is made of atoms; i.e., elementary situations that cover
only the empty situation. The opposites of atoms are possible worlds; i.e., elementary situations that
are covered only by the impossible situation. Among the possible worlds, one is singled out as the
real world (w0). A set of elementary situations that are fragments of the real world is the set of real
situations, or facts. Other elementary situations are imaginary.

The Wolniewicz’s structure above corresponds to a static logical space: reality and alternative
worlds at some point of time. Meanwhile, the law orders, bans or permits a situation to be replaced by
another; one event shall be followed by another. To reflect these dynamics, in [2], each point of time
has a Wolniewicz’s structure assigned to it. This way, reality and alternative worlds are represented
not by individual possible worlds, but by sequences of possible worlds. Thus, while Wolniewicz’s
original structure can be compared to a picture of reality and alternative worlds, the elaborate structure
resembles a film tape.

This dynamic structure has logical events as its elements. A logical event is a non-empty, finite
sequence (string) of proper situations, such that each element of the sequence belongs to a different
Wolniewicz’s structure. Logical events that meet specific conditions are natural events.

Among natural events, one can distinguish legal events; i.e., natural events subject to legal
assessments. In [2], four types of legal events are distinguished:

(1) acts;
(2) multiacts;
(3) indirect acts;
(4) causal events.

The most important of these four types of legal events are acts. They are specific two-element
sequences of situations in Wolniewicz’s sense: the first element of the sequence is the choice situation
(the situation that will be changed by the act), and the second element is the chosen situation (the
situation that arises as a result of the act). Multiacts, indirect acts and causal acts are understood in the
following way:

MULTIACT = {<xn, xn+1, xn+2, . . . , xn+m >: for any i from n to n +m − 1 < xi, xi+1 > ε ACT},

INDIRECT_ACT = {<xn, xn+1, xn+2, . . . , xn+m >: for any i from n to n +m − 1 < xi, xi+1 > ε ACT

or <xi, xi+1 > ε DET},
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CAUSAL_EVENT = {<xn, xn+1, xn+2, . . . , xn+m >:< xn, xn+1 > ε ACT and for any i from n + 1 to
n +m − 1 <xi, xi + 1 > ε LEG},

where ACT is the set of acts, DET is the set of deterministic changes, and LEG is the set of changes
governed by so called “legal causal relations” (see [7]).

The above can be symbolically represented in the following way:

ACTS ⊂ LEGAL EVENTS ⊂ NATURAL EVENTS ⊂ LOGICAL EVENTS.

In this approach, the deontic concepts of obligation, prohibition and permission obtain a clear
interpretation in terms of sets: orders, bans and permits are simply sets of legal events. Orders, bans
and permits are called “legal rules”. To determine any deontic theory, it is sufficient to determine
relations between sets of legal events.

3. Results

3.1. First-Order Predicate Logic as the Basis of Deontic Theories

Deontic logics will be constructed below as theories built upon the classical first-order predicate
logic with identity.

As a result, the language and grammar of these deontic theories is the language and grammar of
classical first-order predicate logic with identity. No additional symbols or grammar rules will be used.

Non-specific axioms and rules of these deontic theories are as follows:

(1) axioms of classical predicate calculus (including substitutions of axioms of classical
propositional calculus);

(2) axioms for the identity predicate:

(a) ∀ x (x = x),
(b) ∀ x y (x = y y = x),
(c) ∀ x y z (x = y ∧ y = z→ x = z);

(3) rules of classical predicate calculus (including substitutions of rules of classical propositional
calculus).

The deontic theories which we will construct below can be divided into:

(1) theories of legal events;
(2) theories of simple acts;
(3) theories of compound acts.

3.2. Theories of Legal Events

The domain of theories of legal events is the set of events as understood in accordance with
Section 2. Thus, all propositions of these theories are propositions about events.

We distinguish five unary predicates:
LEV (x)—read “x is a legal event”;
PER (x)—read “x is a permitted event”;
FOR (x)—read “x is a forbidden event”;
OBL (x)—read “x is an ordered event”;
IRR (x)—read “x is an irrelevant event”.
The specific axioms of these theories are selected in such a way that they determine the relations

between sets of ordered, forbidden and permitted events.
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3.2.1. Theory 1: All Legal Events are Permitted (AEP)

Adding one specific axiom to non-specific axioms,
A1. ∀ x (LEV (x) PER (x)),
We will get a simple deontic theory: AEP.
This corresponds to the following Venn diagram:

PERMITTED EVENTS = LEGAL EVENTS 

AEP does not seem interesting from the point of view of logic.

3.2.2. Theory 2: All Legal Events are Either Permitted or Forbidden (AEPF)

By adding two specific axioms to non-specific axioms,
A1. ∀ x (LEV (x) (PER (x) ∨ FOR (x))),
A2.  ∃ x (PER (x) ∧ FOR (x)),
We will get a deontic theory: AEPF.
This corresponds to the following Venn diagram:

PERMITTED EVENTS FORBIDDEN EVENTS 

3.2.3. Theory 3: All Legal Events are Either Permitted or Ordered or Forbidden (AEPOF)

By adding three specific axioms to non-specific axioms,
A1. ∀ x (LEV (x) (OBL (x) ∨ PER (x) ∨ FOR (x))),
A2.  ∃ x (PER (x) ∧ FOR (x)),
A3. ∀ x (OBL (x)→ PER (x)),
We will get a deontic theory: AEPOF.
This corresponds to the following Venn diagram:

 PERMITTED EVENTS 
FORBIDDEN 

EVENTS ORDERED EVENTS 

3.2.4. Theory 4: All Legal Events are Either Permitted or Ordered or Forbidden or Irrelevant (AEPOFI)

By adding five specific axioms to non-specific axioms,
A1. ∀ x (LEV (x) (OBL (x) ∨ PER (x) ∨ FOR (x) ∨ IRR (x))),
A2.  ∃ x (PER (x) ∧ FOR (x)),
A3.  ∃ x (IRR (x) ∧ FOR (x)),
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A4.  ∃ x (PER (x) ∧ IRR (x)),
A5. ∀ x (OBL (x)→ PER (x)),
We will get a deontic theory: AEPOFI.
This corresponds to the following Venn diagram:

 PERMITTED EVENTS  

FORBIDDEN EVENTS 
ORDERED EVENTS 

  

IRRELEVANT EVENTS 

3.2.5. Existence of Legal Events

In the deontic theories set out above, we do not prejudge whether there are legal events.
To determine this, a specific axiom should be added to each of these systems:

A0. ∃ x LEV (x).

3.2.6. Selected Theorems of Legal Event Theories

Selected theorems of the theories of legal events are presented below. We omit proofs, because they
are quite simple and intuitive.

AEPF, AEPOF, AEPOFI include, in particular, the following theorems:
T1. ∀ x  (PER (x) ∧ FOR (x));
T2. ∀ x (  PER (x) ∨  FOR (x));
T3. ∀ x (PER (x)→  FOR (x));
T4. ∀ x (FOR (x)→  PER (x)).
Of course, we also have in AEPOF and AEPOFI the following theorems:
T5. ∀ x (OBL (x)→  FOR (x));
T6. ∀ x (FOR (x)→  OBL (x));
T7. ∀ x (  PER (x)→  OBL (x)).
Theorems T1–T7 have close equivalents in deontic propositional logics.
On the other hand, in AEPF and AEPOF, we have
T8. ∀ x (LEV (x)→ (PER (x) ∨ FOR (x)));
T9. ∀ x (LEV (x)→ (  PER (x)→ FOR (x)));
T10. ∀ x (LEV (x)→ (  FOR (x)→ PER (x)));
And consequently, we also have
T11. ∀ x (LEV (x)→ (PER (x)  FOR (x))) which follows from T3, T10;
T12. ∀ x (LEV (x)→ (FOR (x)  PER (x))) which follows from T4, T9.
Theorems T8–T12 have equivalents in deontic propositional logics. The predecessor of these

theorems indicates, however, that the relations described by the successor occur only for legal events
and not just for any events.

3.3. Theories of Simple Acts

The domain of the theories of acts is the set of situations as understood in accordance with
Section 2 above. Thus, all propositions of these theories are propositions about situations.

We distinguish four binary predicates:
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ACT (x, y)—read “replacement x by y is an act”;
PER (x, y)—read “replacement x by y is permitted”;
FOR (x, y)—read “replacement x by y is forbidden”;
OBL (x, y)—read “replacement x by y is ordered”.
The specific axioms of these theories are selected in such a way that they determine the relations

between sets of ordered, forbidden and permitted acts.
We consider only one such theory below, which is an extension of AEPOF.

3.3.1. Theory: All Acts are Either Permitted or Obligatory or Forbidden (AAPOF)

Every act is a legal event. Thus, the first three AAPOF-specific axioms are the exact counterparts
of the AEPOF-specific axioms:

A1. ∀ x y (ACT (x, y) (OBL (x, y) ∨ PER (x, y) ∨ FOR (x, y)));
A2.  ∃ x y (PER (x, y) ∧ FOR (x, y));
A3. ∀ x y (OBL (x, y)→ PER (x, y)).
These three axioms determine the relations between any situations x and y, forming one legal

event (i.e., forming a sequence of situations < x, y >).
The next three AAPOF-specific axioms define relations involving three situations, x, y, z,

forming two legal events (i.e., forming two sequences of situations: < x, y > and < x, z >).
Axiom A4 states that every act is a choice:
A4. ∀ x y (ACT (x, y)→ ∃ z (ACT (x, z) ∧ y � z))
(In each choice situation, there are at least two options).
Axiom A5 confirms that the orders are consistent:
A5. ∀ x y z (OBL (x, y)→ (y � z→ FOR (x, z))
(If in a choice situation x, an option y is ordered, then all other options are prohibited in x).
On the other hand, the axiom A6 states that not everything is forbidden:
A6. ∀ x y (FOR (x, y)→ ∃ z (ACT (x, z) ∧ y � z ∧  FOR (x, z)))
(If in a choice situation x, an option y is forbidden, then some other option is not forbidden in x).
As in the case of the theories of legal events, we do not prejudge whether acts exist. To determine

this, it would be necessary to add the specific axiom A0 to AAPOF:
A0. ∃ x y ACT (x, y).
(There are choice situations).

3.3.2. Selected Theorems of AAPOF that are Equivalent to Theorems of AEPOF

In AAPOF, we have exact equivalents of theorems T1–T12 of AEPOF:
T1. ∀ x y  (PER (x, y) ∧ FOR (x, y));
T2. ∀ x y (  PER (x, y) ∨  FOR (x, y));
T3. ∀ x y (PER (x, y)→  FOR (x, y));
T4. ∀ x y (FOR (x, y)→  PER (x, y));
T5. ∀ x y (OBL (x, y)→  FOR (x, y));
T6. ∀ x y (FOR (x, y)→  OBL (x, y));
T7. ∀ x y (  PER (x, y)→  OBL (x, y));
T8. ∀ x y (ACT (x, y)→ (PER (x, y) ∨ FOR (x, y)));
T9. ∀ x y (ACT (x, y)→ (  PER (x, y)→ FOR (x, y)));
T10. ∀ x y (ACT (x, y)→ (  FOR (x, y)→ PER (x, y)));
T11. ∀ x y (ACT (x, y)→ (PER (x, y)  FOR (x, y)));
T12. ∀ x y (ACT (x, y)→ (FOR (x, y)  PER (x, y))).

3.3.3. Selected AAPOF Theorems Specific to Acts

In AAPOF, we also have theorems that do not have their exact counterparts in AEPOF, which are
the consequences of adding specific axioms A4–A6 to the system:
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T13. ∀ x y z (OBL (x, y)→ (y � z→  PER (x, z))
(If an option y is ordered in a choice situation x, then no other option is permitted in x);
T14. ∀ x y z (OBL (x, y)→ (y � z→  OBL (x, z))
(If an option y is ordered in a choice situation x, then no other option is ordered in x);
T15. ∀ x y z (OBL (x, y) ∧ OBL (x, z)→ y = z)
(If, in a choice situation, two options are ordered, they are identical);
T16. ∀ x y z (y � z→  (OBL (x, y) ∧ OBL (x, z)))
(In any choice situation, different options cannot be ordered together);
T17. ∀ x y (FOR (x, y)→ ∃ z (y � z ∧ PER (x, z)))
(If an option y is forbidden in a choice situation x, then some other option z is permitted in x);
T18. ∀ x y (OBL (x, y)→ ∃ z (y � z ∧ FOR (x, z)))
(If an option y is ordered in a choice situation x, then some other option z is forbidden in x);
T19. ∀ x y z (y � z→ (OBL (x, y)→  PER (x, z)))
(If an option y is ordered in a choice situation x, then no other option is permitted in x);
T20. ∀ x y z (ACT (x, y) ∧ACT (x, z) ∧ y � z ∧ ∀w (ACT (x, w)→ (w = y ∨w = z))→  (FOR (x, y)

∧ FOR (x, z)))
(If there are exactly two options in a choice situation, both cannot be forbidden);
T21. ∀ x y z (ACT (x, y) ∧ ACT (x, z) ∧ y � z ∧ ∀ w (ACT (x, w)→ (w = y ∨ w = z))→ (FOR (x, y)

→ PER (x, z)))
(If, in a choice situation, there are exactly two options, then if one of them is forbidden, the other

is permitted);
T22. ∀ x y z (ACT (x, y) ∧ ACT (x, z) ∧ y � z ∧ ∀ w (ACT (x, w)→ (w = y ∨ w = z))→ (PER (x, y)

∨ PER (x, z)))
(If, in a choice situation, there are exactly two options, then at least one of them is permitted);
T23. ∀ x y z (ACT (x, y) ∧ ACT (x, z) ∧ y � z ∧ ∀ w (ACT (x, w)→ (w = y ∨ w = z))→ (  PER

(x, y)→ PER (x, z)))
(If, in a choice situation, there are exactly two options, then if one of them is not permitted,

the other is permitted);
T24. ∀ x y z w (FOR (x, y) ∧ ∀ z (FOR (x, z)→ y = z)→ (ACT (x, w) ∧w � y→ PER (x, w)))
(If, in a choice situation, exactly one option is prohibited, then any other option is permitted).

3.4. Theories of Compound Acts

In deontic propositional logics, deontic operators apply to conjunction or alternative of propositions;
for example,

O (p ∧ q)→ O p ∧ O q,

O p ∧ O q→ O (p ∧ q),

O p→ O (p ∨ q).

Such sentences are intended to formalize the intuition that an obligation, prohibition or permission
may relate to situations where one is part of the other.

This intuition can be expressed more precisely by developing AAPOF into the theory of compound
acts. We do this by adding axioms defining relations between situations, some of which are parts of
the others.

To do so, we need to distinguish further one unary predicate “AT (x)”, one binary predicate “ε
(x, y)” and one ternary predicate “= + (x, y, z)”:

AT (x)—read “x is an atomic situation”;
ε (x, y)—read “x is a part of y”;
= + (x, y, z)—read “x is the sum (composition) of y and z”.
Below, we will write “x ε y” instead of “ε (x, y)” and “x = y + z” instead of “= + (x, y, z)”.
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3.4.1. AAPOF for Compound Acts

First, we will list axioms that will determine when a situation is a part of another situation, when
a situation is the sum (composition) of other situations, and when a situation is an atomic situation.

We use Wolniewicz’s approach to define the relation of “being a part of”:
A7. ∀ x x ε x;
A8. ∀ x y z (x ε y ∧ y ε z→ x ε z);
A9. ∀ x y (x ε y ∧ y ε x→ x = y).
We also add the A10 axiom for atomic situations:
A10. ∀ x (AT (x) ∀ y (y ε x→ y = x))
(Every atom is a situation that has no proper parts).
Then, we introduce the sum (composition) of situations:
A11. x = y + z y ε x ∧ z ε x ∧ ∀w (AT (w)→ (w ε x→ (w ε y ∨w ε z)))
(A situation x is the sum (composition) of situations y and z, when they are parts of it, and each

atom of the situation x is a part of the situation y or a part of the situation z).
Using the concept of a part of situation, we can express the intuition that a part of a situation has

the same deontic modality as this situation:
A12. ∀ x x1 y y1 (x1 ε x ∧ y1 ε y→ (OBL (x, y)→ (ACT (x1, y1)→ OBL (x1, y1))));
A13. ∀ x x1 y y1 (x1 ε x ∧ y1 ε y→ (PER (x, y)→ (ACT (x1, y1)→ PER (x1, y1))));
A14. ∀ x x1 y y1 (x1 ε x ∧ y1 ε y→ (FOR (x, y)→ (ACT (x1, y1)→ FOR (x1, y1)))).
In turn, using the concept of the sum (composition) of situations, we can express intuition,

according to which any situation has the same deontic modality as its parts:
A15. ∀ x x1 x2 y y1 y2 (x = x1 + x2 ∧ y = y1 + y2 → (OBL (x1, y1) ∧ OBL (x2, y2)→ OBL (x, y)));
A16. ∀ x x1 x2 y y1 y2 (x = x1 + x2 ∧ y = y1 + y2 → (PER (x1, y1) ∧ PER (x2, y2)→ PER (x, y)));
A17. ∀ x x1 x2 y y1 y2 (x = x1 + x2 ∧ y = y1 + y2 → (FOR (x1, y1) ∧ FOR (x2, y2)→ FOR (x, y))).

3.4.2. Selected AAPOF Theorems Specific to Compound Acts

The consequences of adopting additional specific axioms A7–A17 include, but are not limited to,
the following examples:

T25. ∀ x x1 x2 y y1 y2 (x = x1 + x2 ∧ y = y1 + y2 → (OBL (x, y)→ (ACT (x1, y1) ∧ ACT (x2, y2)→
 (OBL (x1, y1) ∧ FOR (x2, y2))))

(If an act is ordered, it is not that one part of it is ordered and the other is forbidden);
T26. ∀ x x1 x2 y y1 y2 (x = x1 + x2 ∧ y = y1 + y2 → (OBL (x, y)→ (ACT (x1, y1) ∧ ACT (x2, y2)→

 (PER (x1, y1) ∧ FOR (x2, y2))))
(If an act is ordered, it is not that one part of it is permitted and the other is forbidden);
T27. ∀ x x1 x2 y y1 y2 (x = x1 + x2 ∧ y = y1 + y2 → (OBL (x, y)→ (ACT (x1, y1) ∧ ACT (x2, y2)→

 (FOR (x1, y1) ∨ FOR (x2, y2))))
(If an act is ordered, it is not that any part of it is forbidden);
T28. ∀ x x1 x2 y y1 y2 (x = x1 + x2 ∧ y = y1 + y2 → (OBL (x1, y1) ∧ OBL (x2, y2)→ PER (x, y)))
(If acts are ordered, their composition is permitted);
T29. ∀ x x1 x2 y y1 y2 (x = x1 + x2 ∧ y = y1 + y2 → (PER (x1, y1) ∧ PER (x2, y2)→  FOR (x, y)))
(If acts are permitted, their composition is not forbidden);
T30. ∀ x x1 x2 y y1 y2 (x = x1 + x2 ∧ y = y1 + y2 → (FOR (x1, y1) ∧ FOR (x2, y2)→  PER (x, y)))
(If acts are forbidden, their composition is not permitted).
The above relations are useful for reconstructing legal reasoning a maiori ad minus and a minori ad

maius, as well as for reconstructing other similar reasonings.
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4. Discussion

A comparison of axioms and theorems of considered deontic theories with axioms and theorems
of deontic propositional logics indicates that a number of properties of obligation, prohibition and
permission are similarly defined in both approaches.

In particular, the basic theorems of legal event theories, i.e., T1–T7, have close equivalents in
deontic propositional logics.

In turn, although theorems T8–T12 have equivalents in deontic propositional logics, their
predecessor indicates that successive relations occur only for legal events, not for any events.

For example, T12
∀ x (LEV (x)→ (FOR (x)  PER (x)))

is a counterpart to the definition of prohibition in propositional logics:

F p ≡def  P p.

Interestingly, in none of the four theories of legal events under consideration have we a counterpart
of the definition of obligation in propositional logics,

O p ≡def  P  p,

which is based on a definition from modal (aletic) logics:

� p ≡def  ♦  p.

This is because the expression “ P  p” has no equivalent in any of these theories.
However, this is not the case in theory of acts, where T19

∀ x y z (y � z→ (OBL (x, y)→  PER (x, z)))

is a counterpart of the aforementioned definition of obligation in propositional logics:

O p ≡def  P  p.

Although, of course, the following proposition is not an AAPOF’s theorem:

∀ x y z (y � z→ (OBL (x, y)  PER (x, z))).

Further, T16
∀ x y z (y � z→  (OBL (x, y) ∧ OBL (x, z)))

is a counterpart of the theorem
 (O p ∧ O  p),

while T20

∀ x y z (ACT (x, y) ∧ ACT (x, z) ∧ y � z ∧ ∀w (ACT (x, w)→ (w = y ∨w = z))→
 (FOR (x, y) ∧ FOR (x, z)))

is a counterpart of the theorem
 (F p ∧ F  p).

In turn, T22

∀ x y z (ACT (x, y) ∧ ACT (x, z) ∧ y � z ∧ ∀w (ACT (x, w)→ (w = y ∨w = z))→
(PER (x, y) ∨ PER (x, z)))
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is a counterpart of the theorem
P p ∨ P  p.

On the other hand, the A12 axiom

∀ x x1 y y1 (x1 ε x ∧ y1 ε y→ (OBL (x, y)→ (ACT (x1, y1)→ OBL (x1, y1))))

is a distant counterpart of the theorem

O (p ∧ q)→ O p.

In turn, axiom A15

∀ x x1 x2 y y1 y2 (x = x1 + x2 ∧ y = y1 + y2 → (OBL (x1, y1) ∧ OBL (x2, y2)→ OBL (x, y)))

is a distant counterpart of the theorem

O p ∧ O q→ O (p ∧ q).

Similarly, axiom A13

∀ x x1 y y1 (x1 ε x ∧ y1 ε y→ (PER (x, y)→ (ACT (x1, y1)→ PER (x1, y1))))

is a distant counterpart of the theorem

P (p ∧ q)→ P p.

While the axiom A16

∀ x x1 x2 y y1 y2 (x = x1 + x2 ∧ y = y1 + y2 → (PER (x1, y1) ∧ PER (x2, y2)→ PER (x, y)))

is a distant counterpart of the theorem

P p ∧ P q→ P (p ∧ q).

Similarly, the A14 axiom

∀ x x1 y y1 (x1 ε x ∧ y1 ε y→ (FOR (x, y)→ (ACT (x1, y1)→ FOR (x1, y1))))

is a distant counterpart of the proposition

F (p ∧ q)→ F p.

While the axiom A17

∀ x x1 x2 y y1 y2 (x = x1 + x2 ∧ y = y1 + y2 → (FOR (x1, y1) ∧ FOR (x2, y2)→ FOR (x, y)))

is a distant counterpart of the proposition

F p ∧ F q→ F (p ∧ q).

As can be seen, the axioms and theorems of the deontic theories constructed above are usually not
the exact equivalents of theorems of deontic propositional logics. They reflect additional restrictions
that are necessary for expressing obligation, prohibition and permission in accordance with intuition,
but which are inexpressible in propositional logics.
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5. Conclusions

Due to the discussed restrictions, the presented systems avoid the non-intuitive properties of
propositional deontic logics.

Firstly, deontic sentences do not apply to all domains. They are sentences about legal events,
and in particular about acts.

Secondly, in the presented systems we have no equivalents of many non-intuitive sentences of
propositional deontic logics, such as those considered in the introduction:

O ((p ∧ q)→ q)→ (O (p ∧ q)→ O q),

O (p→ (p ∨ q))→ (O p→ O (p ∨ q)).

It is a consequence of the accepted limitation that, in the presented systems, deontic sentences are
sentences about legal events, and not sentences about any states of affairs.

Thirdly, it is also noteworthy that—for obvious reasons—in the deontic theories presented above,
not even far counterparts of propositions that would include iterations of deontic operators exist.

Fourthly, the presented systems have no equivalents to the paradoxical statements of propositional
deontic logics such as those considered in the introduction:

O p→ O (p ∨ q),

F p→ O (p→ q).

Once again, it is a consequence of the accepted limitation that, in the presented systems, deontic
sentences are sentences about legal events, and not sentences about any states of affairs.

In addition, some axioms and theorems of the deontic theories presented above do not have
counterparts in propositional logics at all, and at the same time reflect important intuitions related to
deontic modalities. Examples include the A4, A5 and A6 axioms and some theorems obtained with the
help of these axioms.

Furthermore, thanks to Wolniewicz’s situation ontology, the presented systems are based on a
clear concept of deontic modalities: orders, bans and permits are simply sets of legal events.

In the presented approach, a distinction is also made between the deontic properties of any legal
events and the deontic properties of acts. The former are described in AEPF, AEPOF, AEPOFI. The latter
are expressed, e.g., by axioms A4 to A6 and A7 to A17 of the AAPOF system. Axioms such as A7 to
A17 of the AAPOF system also show that it is possible to formally consider the relations between an
act and its parts, which is important for the legal applications of deontic logics.

All this leads to the conclusion that deontic theories built on the first-order predicate logic and
inspired by Wolniewicz’s situation ontology are worthy of attention and development.
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Cut? Don’t eliminate, introduce!

Gentzen’s Hauptsatz is rightly considered to be a milestone in the development of structural proof
theory. For decades, it was thought that cut-elimination, yielding analyticity of the system, is a goal per
se. However, today, it is well-known that eliminating cuts frequently increases the size and length of
proofs. One can find examples showing that, in the worst case, cut-elimination produces non-elementarily
larger and longer proofs [1–3]. For this reason, techniques of cut-introduction are being studied in order
to shorten proofs (see [4,5]). In [4], it is shown that the technique of atomic cut-introduction is able to
provide an exponential compression in the length of proofs. In [5], the authors studied the introduction of
non-atomic formulas by the rule of cut.

Minimizing proofs is not the only reason to study proof systems with the rule of cut. Cut-formulas
represent lemmatas, introduced to a proof in order to improve its structure or to bring in a new concept.
It makes the proof more legible for a human. Instead of introducing cut to cut-free proofs (as is done
in the above-mentioned papers), it may be useful, or perhaps more natural, to study proofs constructed
within a cut-based system, i.e., a system in which the rule of cut cannot be eliminated. This approach is
present in [6,7], where the authors introduced sequent calculi which are cut-based. The calculi are actually
sequent-variants of tableau system KE.

What is the method of synthetic tableaux?

This paper presents the system of synthetic tableaux for First-Order Logic, which is an extension of the
method for Classical Propositional Logic presented by Urbański [8] and Urbański [9], but the inspiration
for the first-order version comes from D’Agostino [10] and Mondadori [11]. The method was explored
for some cases of propositional logics by Urbański [12] and Urbański [13]; however, an extension to the
first-order level substituted a challenging task. On the propositional level, the closest proof-theoretical
relative of the method of synthetic tableaux seems to be the calculus KI, which is an “inversion” of KE

Axioms 2019, 8, 133; doi:10.3390/axioms8040133 www.mdpi.com/journal/axioms
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(see [10,11] for KI and [14,15] for KE). However, the calculus for First-Order Logic presented here differs
substantially from the version of KI for First-Order Logic.

The system of synthetic tableaux presented here is equipped with the so-called rule of the Principle of
Bivalence, which is a form of cut. This rule is not eliminable from the system. In the case of system KE,
non-eliminable cut is the remedy the authors propose for the computational collapse of analytic tableau
system (in fact, of any proof system deprived of a representation of the principle of bivalence, see [14,15]).
The situation is exactly analogous in the case of the system of synthetic tableaux for the propositional level.
However, as may be expected, the situation complicates on the level of first-order; we demonstrate by
examples the problems with restricting the applications of cut to analytic applications. Possible solutions
to this problem will be examined in the future.

In Section 1, we describe the method of synthetic tableaux for the propositional case. In Section 2,
we make a reference to system KI, which is an inversion of the more famous KE. The completeness proof
presented in Section 3 was inspired by the completeness proofs of KI and KE with respect to an axiomatic
system. In Section 4, we sketch some results concerning relative complexity of proof systems. The results
motivate our research on proof systems like synthetic tableaux. In Sections 5–7, we describe the system
of synthetic tableaux for the First-Order Logic, together with the proofs of soundness and completeness.
Finally, Section 8 presents our strategy of extending the synthetic tableaux to first-order theories.

1. The Method of Synthetic Tableaux for CPL

Below, we present the synthetic tableaux system (ST-system, for short) for Classical Propositional
Logic (CPL, for short). We describe the rules of tableau construction and define the notion of proof. In the
case of CPL, there is exactly one binary branching rule and a collection of linear rules called synthetic or
synthesizing since they build complex formulas from their subformulas or from their negations. As the
reader shall see, there is a clear analogy between the synthesizing rules and natural-deduction rules
introducing a connective, or sequent-calculus rules.

We use LCPL for the language of CPL with ¬,→,∨,∧. By A, B, C, F, we refer to formulas of
LCPL. VAR is for the set of propositional variables, Sub(A) for the set of all subformulas of formula A,
understood in the usual manner. By ¬Sub(A), we mean the set of negations of the subformulas of A,
that is, ¬Sub(A) = {¬F : F ∈ Sub(A)}.

The number of linear rules depends on the number of logical connectives in the language; in the
account presented in [16], which we follow here, there is 10 such rules (displayed below in Table 1).

Table 1. Linear synthesizing rules of the ST-system for CPL.

B ¬B
¬B

B → C r1→
C

B → C r2→
¬C

¬(B → C)
r3→

B
B ∨ C r1

∨
C

B ∨ C r2
∨

¬C
¬(B ∨ C)

r3
∨

B
¬B

¬(B ∧ C)
r1
∧

¬C
¬(B ∧ C)

r2
∧

C
B ∧ C r3

∧
B

¬¬B
r¬

The premises of r3
→, r3

∨, and r3
∧ in Table 1 may occur in any order. If one wonders where, for example,

this “C” in r1
→ comes from, the following proviso comes to the rescue. A linear rule may be applied in

the construction of a synthetic tableau for formula A provided that each premise and conclusion of the
rule belongs to the set Sub(A) ∪ ¬Sub(A). Thus, in the case of rule r1

→, any C such that B → C is in
Sub(A) ∪ ¬Sub(A) is fine.
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The branching rule is simply the rule of cut on literals. Following the insight of D’Agostino (see [14,15])
we call it the “PB-rule”, or simply “PB”, from the Principle of Bivalence.

pi ¬pi
PB

Further, we say that the branching is performed on pi or that the PB-rule was applied with respect
to pi. As in the case of the synthetic rules, applications of the PB-rule are subject to a restriction: the
PB-rule may be applied with respect to pi in the construction of a synthetic tableau for formula A provided
that pi ∈ Sub(A). As a matter of fact, the restriction is built in the definition of a synthetic tableau (see
Definition 1). With this restriction, the branching rule permits only analytic atomic cuts (for the notion of
analytic cut, see [17–19]).

In the original account (see [8,16]), Mariusz Urbański defined the notion of synthetic inference, which
is a sequence of formulas regulated by the above rules in a well-defined manner. Then, the notion of proof
comes as a family of such interconnected sequences. The family-of-sequence account was motivated by
the close relationship between synthetic tableaux and the so-called erotetic search scenarios, which were
also defined as families of sequences, the so-called erotetic derivations. (Erotetic search scenario is a concept
defined on the grounds of the logic of questions called Inferential Erotetic Logic. The reader can find more
information about the relationship in [16]. The books by Urbański [9] and Urbański [20] contain broad
exposition of the matter but are written in Polish. For erotetic search scenarios, see [21], and, for Inferential
Erotetic Logic, the best recommendation is [22].) However, this is out of proof-theoretical tradition, where
proofs are usually trees or sequences, and nowadays erotetic search scenarios may also be defined as trees
(see [22,23]) so there is no need to stand by the sequence format. Below, we adopt the more common
account of trees.

Trees and tableaux. We assume the proof-theoretic account of trees as partially ordered sets. Branch
of a tree is its subset, which is a chain maximal with respect to inclusion. Below, in the proof of Lemma 2,
we use the notion of size of a finite tree, which is the number of nodes of the tree.

As is practiced in structural proof theory, tableaux (derivations, proofs) are defined as trees labeled
with formulas (or sequents, see ([24], p. 8), compare also [25]). Thus a (synthetic) tableau comes as a
labeled tree 〈X, R, �〉, where � is a function assigning formulas to nodes of 〈X, R〉. If T = 〈X, R, �〉 is a
labeled tree, then by rT we mean the root of T . The notion of proof in the ST-system for CPL is given by
the following definitions.

Definition 1. A synthetic tableau for formula A is a finite labeled tree

T = 〈X, R, �〉

generated by the rules: r1
→, r2

→, r3
→, r1

∨, r2
∨, r3

∨, r1
∧, r2

∧, r3
∧, r¬, PB, and such that

� : X \ {rT } −→ Sub(A) ∪ ¬Sub(A)

and each leaf is labeled either with A or with ¬A.

Definition 2. A proof of A in the ST-system is a synthetic tableau T for A such that each leaf of T is labeled with A.

Here are two examples of synthetic tableaux. The first one is a synthetic tableau for formula
(p → q)→ (¬q → ¬p) and is a proof of the formula in the ST-system. If a formula was obtained by
a linear rule, we indicate the rule to the right.
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Example 1. Let F = (p → q)→ (¬q → ¬p).

p

q
¬¬q (r¬)

¬q → ¬p (r1→)

F (r2→)

¬q
¬(p → q) (r3→)

F (r1→)

¬p
¬q → ¬p (r2→)

F (r2→)

The second example is a synthetic tableau for (p → q)→ (¬p → ¬q) and is not its proof, as the third
(from the left) branch of the tableau ends with the negation of this formula.

Example 2. Let F = (p → q)→ (¬p → ¬q).

p

q
¬¬p (r¬)

¬p → ¬q (r1¬)
F (r2→)

¬q
¬(p → q) (r3→)

F (r1→)

¬p
p → q (r1→)

q
¬¬q (r¬)

¬(¬p → ¬q) (r3→)

¬F (r3→)

¬q
¬p → ¬q (r2→)

F (r2→)

The above synthetic tableaux start with an application of the PB-rule. This is a general feature of the
system—since PB is the only no-premise rule, it must be the one starting the construction of a synthetic
tableau. Consequently, each synthetic tableau has more than one branch.

The system is sound and complete with respect to standard semantics for CPL; the most detailed
proofs of these facts may be found in [9] (in Polish). Soundness is proved indirectly by the use of the
concept of minimal error point. The idea is that, if A is not valid although it has a proof, then there must be
an element in the tableau, which “introduces error” into the structure. We search for the element trying to
establish the highest point in the structure of the tableau where the error appears. Then, a contradiction is
derived, as it occurs that every error must have some erroneous predecessor. Completeness is proved by
establishing a procedure of construction of a special kind of synthetic tableau, called canonical synthetic
tableau. Canonical synthetic tableau for formula A starts with successive branchings on all propositional
variables of A. If the number of distinct variables of A is k, then the number of branches of the canonical
synthetic tableau for A is 2k. In the margin, this result shows that the ST-system for CPL is a standard
proof system in the sense of D’Agostino and Mondadori (see, e.g., [14]), which is not at all surprising,
as synthetic tableaux for CPL in the canonical version constitute a formal representation of the familiar
truth-tables method.

In the case of ST-system for CPL, soundness and completeness may be proved by quite simple
techniques using, e.g., Hintikka sets and Hintikka’s Lemma. However, since we aim at FOL, we use
some more general tools. Completeness is proved with respect to axiomatic account, i.e., by simulating
Modus Ponens—this idea is taken from the works by D’Agostino and Mondadori, which we briefly refer in
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the next section. The proof of soundness is inspired by the use of semantic trees in the proofs for resolution
systems. Here, we rely on the version of this technique presented in [26].

There is one important difference between the version presented here and the original one by Urbański;
however, the difference does not influence the metalogical properties mentioned above. In the case of the
original system, the definition of synthetic inference warrants that, if pi is its term, then ¬pi is not. On the
level of a synthetic tableau, it means that the branching rule (our PB-rule) is never applied on the same
branch more than once with respect to the same propositional variable. This condition warrants consistency
of each synthetic inference. In the account presented here, this condition is neglected as it proved to be a
hindrance in designing the ST-system for FOL. There has been an attempt to generalize the ST-system to the
first-order case in a way which saves the property of consistent branch. The outcomes are presented in the
research report [27]; however, the basic metalogical results—soundness and completeness—are missing.

2. System KI for CPL

Before synthetic tableaux were independently designed by Urbański, a system similar in spirit, called
KI, was considered by D’Agostino and Mondadori. Interestingly, both synthetic tableaux and KI were to
some extent inspired by Kalmár’s work (see [28]). Even the notion of synthetic rule occurs both in [10] and
in Urbański’s work.

KI is a system which satisfies Prawitz’ inversion principle with respect to a much better known system
KE. The latter was developed by Marco Mondadori in the late 1980s, and analyzed carefully by D’Agostino
and Mondadori [14,15]. Information about system KI can be found in Section 3.7 of [10] and in [11].

System KI for CPL is expressed in a language with truth signs ([10], the unsigned version is also
considered.) It contains introduction rules and the following version of the PB-rule:

t(A) f(A)

which is not restricted to propositional variables. As mentioned above, “PB” is for the Principle of Bivalence,
as the rule clearly embodies the idea that A is either true or false. When one accepts arbitrary formulas
to be introduced by the PB-rule, one must also accept inconsistencies on branches. This is the price to be
paid for the unrestricted use of cut. One of the foundational ideas of the method of synthetic tableaux by
Urbański was that they formalize reasoning in which the final conclusion is derived from all the possible
consistent sets of atoms that build it (this is the Kalmár’s inspiration). Hence, the restriction of the PB-rule
to syntactical atoms gains an additional justification, irrespective of efficiency of this kind of system.

On the other hand, if inconsistent branches are the price to be paid for unrestricted (and possibly
more efficient) use of cut, it is the price we can bear, especially when we realize that the price for consistent
branches is extremely high. The problem is that it is highly improbable to describe in the framework of a
restricted ST-system any logic which is not both propositional and extensional. Apparently, any finitely
valued logic that may be characterized by finite matrices, and only such logics, may be successfully described
in this framework. It explains why the only successful attempts to describe ST-systems where the cases of
CPL, three-valued extensional Ł3 (see [12]) and paraconsistent CLuN, which may be fully characterized by
semi-valuations (see [13]). Consistency of every branch is rather the property of these logics than a desired
property of ST-systems.

Going back to KI, since the system permits inconsistent branches, it needs the notions of an open
and a closed branch. A branch is called closed if, for some formula F, it contains both “t(F)” and “f(F)”,
otherwise it is called open.

The introduction rules of KI for CPL are displayed in Table 2. We quote the names of the rules
after [10].
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Table 2. Introduction rules of KI.

f(B)
t(B → C)

It→ 1
t(B)

t(B ∨ C)
It∨ 1

f(B)
f(B ∧ C)

If∧ 1
t(B)
f(¬B)

If¬

t(C)
t(B → C)

It→ 2
t(C)

t(B ∨ C)
It∨ 2

f(C)
f(B ∧ C)

If∧ 2
f(B)
t(¬B)

It¬

t(B) f(B) t(B)
f(C)

f(B → C)
If→

f(C)
f(B ∨ C)

If∨
t(C)

t(B ∧ C)
It∧

As the reader can see in Table 2, the introduction rules of KI for CPL are signed versions of the linear
(synthetic) rules of ST-system for CPL. In [11], the author considered system called canonical restriction
of KI, where the use of the PB-rule is restricted to atoms and a tree for A is built from its subformulas.
Thus, the canonical restriction of KI fully corresponds to ST-system by Urbański, modulo truth signs.
(More specifically, it is easy to see that the two systems for CPL, namely the canonical version of KI and
the ST-system of Urbański, polynomially simulate each other. We say more about this issue in Section 4.
For the notion of p-simulation, see [10].)

The notion of proof is introduced as follows. Let S be a finite set of signed formulas. S can be empty.
A KI-tree for S is an expansion tree regulated by the rules of KI, starting from the elements of S. When S is
empty, the origin of the tree is labeled with ∅.

Now, let Γ be a set of formulas (without the truth signs) and let A be a formula (with no truth sign).
A KI-proof of A from Γ is a KI-tree for {t(B) : B ∈ Γ}, such that t(A) occurs in every open branch. Finally,
A is a KI-theorem, symbolically �KI A, if A is provable from the empty set of formulas.

Completeness of this system has been proved by the authors with respect to the axiomatic system for
CPL. This has inspired us to use the same technique in proving completeness of the first-order version. It is
also worth mentioning that completeness of both KI and KE may be proved exactly by the same argument.

3. Completeness Proof with Respect to the Axiomatic Account of CPL

Here, we present how the completeness-proof strategy works for the case of KI and CPL in order to
use the same pattern in the completeness proof of the ST-system for FOL (see the next section).

The axiom schemes and the rule of Modus Ponens (MP, for short) presented in Table 3 constitute the
axiomatic proof system F for CPL. In the presentation, we rely on the conventions introduced in [29].

Table 3. Axiom schemes of F .

1. A → (B → A) 6. (A → B)→ ((A → ¬B)→ ¬A)
2. (A → B)→ ((A → (B → C))→ (A → C)) 7. ¬¬A → A
3. A → A ∨ B 8. A ∧ B → A
4. B → A ∨ B 9. A ∧ B → B
5. (A → C)→ ((B → C)→ (A ∨ B → C)) 10. A → (B → A ∧ B)

A → B A
B MP
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The proof of completeness requires a demonstration that every axiom scheme has its scheme of proof.
As an example, here is a scheme of KI-proof of Axiom 2. For conciseness, let:

F = (A → B)→ ((A → (B → C))→ (A → C))

Cons = (A → (B → C))→ (A → C)

∅

t(A)

t(B)

t(C)
t(A → C)
t(Cons)
t(F)

f(C)
f(B → C)

f(A → (B → C))
t(Cons)
t(F)

f(B)
f(A → B)

t(F)

f(A)

t(A → C)
t(Cons)
t(F)

All the other axioms of F may be easily proved in KI. The next theorem states that KI simulates the
only rule of F .

Theorem 1. If �KI A and �KI A → B, then �KI B.

Proof. (After [10,11].) Suppose that �KI A and �KI A → B, and let T1 and T2 stand for the proofs of,
respectively, formulas A and A → B. Then, the following tree:

∅

t(B) f(B)
...
T1

t(A)

f(A → B)
...
T2

. . . t(A)

f(A → B)
...
T2

is a KI-proof of B, since each branch, except for the leftmost one, goes through f(A → B) and ends with
t(A → B), thus the leftmost branch is the only open branch of the tree.

As mentioned above, this strategy of completeness proof requires unrestricted usage of the PB-rule in
the system. That would be a drawback of the system obviously, but we truly adore the Gentzen-like spirit
of the proof. We believe that the proof reveals important connections between axiomatic systems, Gentzen
sequent systems with cut, and KI or ST-systems but with unrestricted cut. We elaborate on this topic in the
next section.
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4. Synthetic Tableaux and Other Deductive Systems for CPL: A Note on Relative Complexity

There are another reasons to consider axiomatic systems, Gentzen sequent systems with cut, KI,
and ST-system with unrestricted cut, as belonging to one family of deductive systems. Below, we cite the
results established in [10,11], concerning the relative complexity of deductive systems for CPL. However,
it is not the aim of this paper to describe the formal tools and report all the details needed to establish the
quoted results. All this may be found in [30,31] (for the background), [10,11]. Our aim here is to indicate
the context in which the method of synthetic tableaux appears especially attractive.

That a proof system S′ linearly/polynomially simulates another proof system S means, informally,
that there is a function computable in linear/polynomial time which maps every proof of a formula A in S

to a proof of the same formula in S′.
Systems KE and KI (for CPL) can linearly simulate each other. We also know (see [11]) that the

canonical restriction of KI (that is, KI with the use of the PB-rule restricted to atoms) can linearly simulate
truth-tables, but not vice versa. Hence, canonical KI, as well as ST-system for CPL, are actually improvements
on truth-tables in terms of systems complexity. On the other hand, analytic restriction of KI, where
the PB-rule is restricted to subformulas of the formula to be proved, but is not restricted to atoms,
can polynomially simulate both truth-tables and the analytic tableau system (see [32]) but, again, not vice
versa. Finally, canonical KI, and thus also ST-system for CPL, cannot polynomially simulate the analytic
tableau system. Here is what we lose when cut is restricted to atoms.

Again, let S and S′ stand for propositional proof systems. Following D’Agostino [10], we write:
S′ ≤p S to mean that S polynomially simulates (p-simulates) S′. The inscription S′ ≡p S means that the
relation of p-simulation holds in both directions, and S′ <p S means that S p-simulates S′ but not vice
versa. The following holds (let us recall that the systems are considered as pertaining to CPL):

1. Gentzen system with cut ≡p Natural Deduction ≡p Frege systems
2. Resolution <p any system from (1)
3. Cut-free Gentzen system <p any system from (1)

It can also be shown that KE, and thus also KI, can linearly simulate Natural Deduction.
To sum up, it is clear that the presence of a version of cut increases efficiency of proof systems. All the

above pertains to systems for CPL; however, we believe that the relation between ST-systems, especially
with cut unrestricted, and axiomatic systems is worthy of further research. The use of unrestricted cut can
be beneficial if the system was used to support automated deduction with FOL. Clearly, the issue needs
further research.

5. The First-Order Case

The presentation of syntax, semantics, and axiomatic account of FOL is based on the conventions
introduced in [29].

FOL is expressed in language called LFOL, containing:

• propositional connectives: ¬,∧,∨,→;
• infinite set of variable symbols; we use x, y, z, . . . as metasymbols for variables;
• quantifiers (∃x), (∀x);
• function symbols of arbitrary arities; f , g, h, . . . are used as metasymbols, function symbols of arity 0

are called constant symbols; and
• relation symbols of arbitrary arities; P, Q, R, . . . are used as metasymbols.

The notions of term, atomic formula, and formula are defined in the usual manner, similarly for free
and bound occurrence of variable, and sentence. FORMLFOL

is for the set of all formulas of the language.
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We use t, s, . . . as metasymbols for terms. The result of substitution of term t for x in A is denoted by A(t/x),
and defined in the usual manner; int.al., whenever A(t/x) is considered, it is assumed that term t is free
for x in A. After [29], we adopt the simplifying conventions for denoting substitutions, according to which:

• If “A(x)” and “A(t)” are written in the same context, this means that A = A(x) is a formula and that
A(t) is A(t/x); using “A(x)” neither presupposes that x occurs free in A nor that it occurs in A at all.

• If “A(t)” and “A(s)” are written in the same context, then this is to mean that A is a formula, x is a
variable and A(t) = A(t/x), A(s) = A(s/x).

For semantics of FOL, we use:

• M = 〈M, fM〉 for an interpretation of LFOL, where M is the domain of M and fM is the interpreting
function; and

• σ, σ∗ for object assignments, that is, mappings from the set of variables to the domain M of M.

We write “M � A [σ]” for “formula A is satisfied in M under σ”, and “M � A” for “A is true in M”.

5.1. Axiomatic System

Axiomatic proof systemFFO for FOL contains the 10 axiom schemes listed in Table 3, and, additionally,
the following two axiom schemes, in which A is any formula and t is any term free for x in A.

11. A(t)→ (∃x)A(x); and
12. (∀x)A(x)→ A(t).

The set of rules of FFO contains MP and the following two quantifier rules of inference, where x does
not appear freely in C; “GC” is for the generalization over consequent and “GA” for the generalization
over antecedent.

C → A(x)
C → (∀x)A(x)

GC
A(x)→ C

(∃x)A(x)→ C
GA

FFO is sound and complete with respect to the model semantics referred to above (see [29]).

5.2. Synthetic-Tableaux System

The ST-system for FOL consists of the linear (synthesizing) rules, the PB-rule and the notion of proof.
In this case, the PB-rule is not a subject to any restrictions, thus:

F ¬F

may be applied at any time, in a tableau constructed for a formula A, and F is arbitrary. This unrestricted
form of cut (PB-rule) is necessary, as we have seen, to prove completeness of KI with respect to CPL in
the “Gentzen-way”. In the ST-system for FOL, the rule is left unrestricted for the same reason. However,
one can think of restrictions for practical applications. For example, it seems that there are no obstacles to
restrict F to be an element of Sub(A), but we do not consider this restriction here. Needless to say, no other
counterpart of cut elimination, except for possible restrictions of applicability of the rule, is possible in the
ST-system.

The linear rules of the system are those for propositional connectives, listed in Table 1, and the
following two rules for existential quantification, where t is a term free for x in A:

A(t)
(∃x)A(x)

r∃
¬A(t)

¬(∀x)A(x)
r¬∀
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As in the propositional case, the applications of linear rules could be restricted to the set of suitably
defined subformulas of the formula to be proved. The problem, however, lies in the notion of subformula.
First, it must take into account substitutions, to the effect that, e.g., A(t) is a subformula of (∃x)A(x). What
is more, however, the problem gets more complicated in the case of the global rules introduced below.
For this reason, we resign from the subformula restrictions in this version of the system.

For the next step, we need the notion of a subtableau of a tableau. Let R|Y stand for the restriction
of relation R to set Y. If T = 〈X, R〉 is a tree, then a subtree of T is any S = 〈Y, R|Y〉 such that: (i) Y ⊆ X;
(ii) if w is in Y, then each R-successor of w is in Y; and (iii) S has a root, that is, S is itself a tree. If T ,
together with a labeling function, is a synthetic tableau, then its subtrees, together with suitably restricted
labeling functions, may be considered as subtableaux of T ; however, we want the subtableaux to start with
a branching, just as tableaux do. Moreover, a restriction of the labeling function must leave the root empty.
The following example illustrates this idea.

Example 3. The second tree, T2, is a subtree of tree T1, and a subtableau of tableau T1. The third, T3, is not a subtree
of T1 since the node labeled with “f”, an R-successor of the node labeled with “d”, is missing. Finally, T4 is a subtree
of tree T1, but is not a subtableau of tableau T1, as it does not start with branching.

T1 T2 T3 T4

a

b

c

d

e f

g

d

e f

g d

e

g b

As in KI, we also need the following notion:

Definition 3. If for certain formula F, a branch of a labeled tree carries both F and ¬F, then we say that the branch
is closed, otherwise we say that the branch is open.

Every linear rule of ST-system for FOL considered so far is local in that it acts on a single branch
extending it with one node carrying the conclusion of the rule. The following rules for universal
generalization are global, since they act on each open branch of a subtableau which, in particular, may be the
whole tableau. Global rules are not necessary at the propositional level, but here we need it to incorporate
universal generalization. For clarity, we present the rules in a descriptive form.

UG1 If T ∗ is a subtableau of T such that every open branch of T ∗ ends with formula C → A(x),
where x does not occur freely in C, and no formula in T ∗ has been synthesized with the use of

a premise which is not on T ∗, then T may be extended by adding C → (∀x)A(x) to each open
branch of T ∗.

UG2 If T ∗ is a subtableau of T such that every open branch of T ∗ ends with formula A(x) → C,
where x does not occur freely in C, and no formula in T ∗ has been synthesized with the use of

a premise which is not on T ∗, then T may be extended by adding (∃x)A(x) → C to each open
branch of T ∗.

For preciseness, let us state the proviso written in bold in a more detailed way (we call it “the bold
proviso”, although it is rather quite moderate):

the bold proviso if a formula lying on a branch of T ∗ gets here by a local rule, then the premises
necessary to derive it precede it on the same branch of T ∗
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Naturally, it can happen that a premise is present somewhere above the subtableau T ∗, but
nevertheless the same formula must be “available” at the appropriate branch of T ∗.

Here is an example of a synthetic tableau where the global rules are applied. The first tree, T1,
is obtained by local linear rules (r∃, r2

→ on the left branch, and r¬∀, r1
→ on the right branch). Since x is not

free in (∃x)R(x, y), rule UG2 is applicable. One obtains a tree with formula (∃x)(∀y)R(x, y)→ (∃x)R(x, y)
in both leaves, to which UG1 is applied. In this way, tree T2 is obtained from T1 by UG2 and UG1. In both
cases, the subtableau T ∗ specified in the bold proviso is identical to the whole tableau, hence the proviso
is satisfied.

Example 4.

T1

R(x, y)
(∃x)R(x, y)

(∀y)R(x, y)→ (∃x)R(x, y)

¬R(x, y)
¬(∀y)R(x, y)

(∀y)R(x, y)→ (∃x)R(x, y)

T2

R(x, y)
(∃x)R(x, y)

(∀y)R(x, y)→ (∃x)R(x, y)
(∃x)(∀y)R(x, y)→ (∃x)R(x, y)

(∃x)(∀y)R(x, y)→ (∀y)(∃x)R(x, y)

¬R(x, y)
¬(∀y)R(x, y)

(∀y)R(x, y)→ (∃x)R(x, y)
(∃x)(∀y)R(x, y)→ (∃x)R(x, y)

(∃x)(∀y)R(x, y)→ (∀y)(∃x)R(x, y)

The above tableau illustrates also the difficulty with restricting the applications of the rules of
the system to subformulas of the formula to be proved. As mentioned above, the problem is in
defining the very notion of subformula in the case of a language with quantifiers. Considering the
above case, the definition would have to make formula (∀y)R(x, y) → (∃x)R(x, y) a subformula of
(∃x)(∀y)R(x, y) → (∀y)(∃x)R(x, y). Summarizing, the following definition abandons the restriction to
subformulas. Consequently, it abandons the reference of a synthetic tableau to a particular formula A.
However, the reference to a particular formula occurs in the notion of a proof.

Definition 4. A synthetic tableau in the ST-system for LFOL is a finite labeled tree T = 〈X, R, �〉 generated by:
the unrestricted PB-rule, the local linear rules r1

→, r2
→, r3

→, r1
∨, r2

∨, r3
∨, r1

∧, r2
∧, r3

∧, r¬, r∃, r¬∀ and/or the global rules
UG1, UG2, and such that:

� : X \ {rT } −→ FORMLFOL

Definition 5. A proof of A in the ST-system for FOL is a synthetic tableau T for A such that each leaf of an open
branch of T is labeled with A.

The first tree in Example 4 is a proof of formula (∀y)R(x, y)→ (∃x)R(x, y) in the ST-system, and the
second is a proof of (∃x)(∀y)R(x, y)→ (∀y)(∃x)R(x, y) in the ST-system.

Finally, here is the announced proof of the completeness of the ST-system for FOL with respect to FFO.

Theorem 2. Every axiom of FFO is provable in the ST-system for FOL.
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Proof. As to axiom Schemes 1–10, one example is presented in Section 3. The other proofs are easy to find.
Let us consider the quantifier cases.

For each axiom of the form A(t)→ (∃x)A(x), where t is free for x in A, there is the following tree:

(∃x)A(x)
A(t)→ (∃x)A(x)

¬(∃x)A(x)

A(t)
(∃x)A(x)

¬A(t)
A(t)→ (∃x)A(x)

where the application of R∃ on the second branch is permitted because t is free for x in A. Similarly,
the following tree:

(∀x)A(x)

A(t)
(∀x)A(x)→ A(t)

¬A(t)
¬(∀x)A(x)

¬(∀x)A(x)
(∀x)A(x)→ A(t)

constitutes a proof for an axiom of the form (∀x)A(x)→ A(t), where t is free for x in A.

Theorem 3. The ST-system for FOL can simulate the inference rules of FFO. More specifically:

1. If a formula of the form C → A(x), where x is not free in C, has a proof in the ST-system for FOL, then C →
(∀x)A(x) has it as well (rule GC).

2. If a formula of the form A(x) → C, where x is not free in C, has a proof in the ST-system for FOL,
then (∃x)A(x)→ C has it as well (rule GA).

3. If A and A → B have proofs in the ST-system for FOL, then there is also a proof of B (rule MP).

Proof. The result is obvious in the case of the rules of Universal Generalization—rules GC and GA are
simulated by UG1 and UG2, respectively. Suppose that a formula of the form C → A(x), where x is not
free in C, has a proof T in the ST-system for FOL. Since T is its own subtableau, the “bold proviso” is
satisfied. Thus, an application of UG1 results in a proof of C → (∀x)A(x). The reasoning is analogous in
the case of rule GA.

For the case of MP, the proof of Theorem 1 may be repeated in the first-order setting. Thus, suppose
that A and A → B have proofs T1 and T2 (respectively) in the ST-system for FOL. Then, the tree displayed
on Figure 1, page 13, is a proof of B in the ST-system for FOL, since the leftmost branch is the only open
branch of the tree.

Now, we can explain why the rules of universal generalization need the “bold proviso”. Consider the
following simplified versions of UG1 and UG2:

UG10 If T is a proof of formula C → A(x) in ST-system, where x does not occur freely in C, then each
open branch of T may be extended with C → (∀x)A(x). The result is a proof of C → (∀x)A(x).

UG20 If T is a proof of formula A(x)→ C in ST-system, where x does not occur freely in C, then each
open branch of T may be extended with (∃x)A(x)→ C. The result is a proof of (∃x)A(x)→ C.
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B ¬B
...
T1

A
¬(A → B)

...
T2

. . . A
¬(A → B)

...
T2

Figure 1. A simulation of MP.

The problem shows up when one tries to conduct the proof of Theorem 3 for MP. We cannot simply
“glue” trees T1, T2 with the branch starting with ¬B, because the potential applications of UG10, UG20 in
T1, T2 would miss their justification: with the left branch (with formula B), the relevant tableaux would
no longer be proofs of the respective premises C → A(x)/A(x) → C. Thus, the restriction concerning
subtableaux is necessary to save our strategy of proving completeness via axiomatic system. It remains an
open question whether the ST-system with UG10, UG20 instead of UG1, UG2 is complete.

Theorem 4. Suppose that A is a formula such that M � A for every interpretation M of LFOL. Then, A has a
proof in the ST-system for FOL.

Proof. Since A is valid, we know that A has a proof P in FFO. By Theorems 2 and 3, and by induction on
the length of P , A has a proof in the ST-system.

5.3. Derivability of Universal Generalization

We have shown that the ST-system for FOL is complete with respect to FFO. However, it may seem
more natural to use the more common form of universal generalisation:

if � A(x), then � (∀x)A(x)

instead of GC and GA. Consequently, one may consider a counterpart of universal generalization in the
synthetic tableaux framework. Below, we show that such a rule is derivable.

Theorem 5. Let A(x) be a formula which is provable in the ST-system for FOL. Then, (∀x)A(x) is also provable.

Proof. Let D be an ST-proof of A(x), and let d1, . . . , dn stand for the open branches of D (by Definition 5,
each open branch ends with the formula A(x)). First, by using r2

→ with formula A(x) as the premise,
we add (∃x)A(x) → A(x) to each di (1 ≤ i ≤ n). Since x is not free in the antecedent, we transform the
tree into a proof of (∃x)A(x)→ (∀x)A(x) by UG1. The result is displayed on Figure 2. Finally, we extend
each open branch of the tableau by means of the application of the following sequence of rules: PB-rule
peformed on (∀x)A(x), then on the right branch, (∃x)A(x) is derived from A(x) by r∃, with x as term t (x is
free for x in A). Then, the last formula is derived by r3

→. Naturally, the branch is closed. The derivation is
displayed on Figure 3.
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di
...

A(x)
(∃x)A(x)→ A(x)

=⇒ D

...
d1

A(x)
(∃x)A(x)→ A(x)

(∃x)A(x)→ (∀x)A(x)

. . . ...
dn

A(x)
(∃x)A(x)→ A(x)

(∃x)A(x)→ (∀x)A(x)

Figure 2. Universal Generalization, part 1.

di
...

A(x)
(∃x)A(x)→ A(x)

(∃x)A(x)→ (∀x)A(x)

(∀x)A(x) ¬(∀x)A(x)
(∃x)A(x)

¬((∃x)A(x)→ (∀x)A(x))

Figure 3. Universal Generalization, part 2.

The only possibly open branches in the modified tree are those going through di, A(x) and ending
with (∀x)A(x). Thus, we have obtained an ST-proof of that formula.

Theorem 5 shows that the following global rule is derivable in the ST-system for FOL:

UG If T is a proof of formula A(x) in the ST-system for FOL, then each open branch of T may be
extended by adding (∀x)A(x). The result is a proof of (∀x)A(x) in the system.

The rule is not a subject to any restriction akin to the bold proviso. Again, this follows from the strategy
adopted at the metalevel, that is, from the fact that in the proof of Theorem 5 we act on the whole tableau
of A(x). We use this version of generalization in the formalization of first-order theories in Section 8.

5.4. System KI for FOL

At the end of this section, let us refer briefly to the version of KI for FOL. The construction of the
system is described in [11]. The author found the system by putting sequences of formulas into nodes of
a KI-tree, which enables him to formulate restrictions on the rules introducing quantifiers on a branch.
The rules presented there are local and they actually deal with quantifiers in a manner characteristic to
analytic tableaux. For this reason, it is hard to compare the system of KI and the ST-system for FOL. Thus,
we conclude with the modest remark that the main difference between the ST-system for FOL and KI for
FOL lies in the treatment of quantifiers: KI treats quantifiers in a way characteristic to analytic tableau
systems, whereas the ST-system deals with quantifiers by the use of global rules and unrestricted cut,
which makes it more similar to natural-deduction or Gentzen systems.

6. Soundness of the ST System for FOL

Let us start with the following observation:

Lemma 1. Each local rule of the ST-system for FOL preserves the property of being satisfied under an object
assignment σ in an interpretation M of LFOL.
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Proof. We consider r1
→ and R∃. The other cases are analogous.

Suppose that, for some interpretation M and σ in M, M |= ¬B [σ]. Then, M �|= B [σ] and thus
M |= A → B [σ]. This argument shows that if the premise of rule r1

→ is satisfied under σ in M, then the
conclusion is satisfied as well.

Suppose that t is free for x in A, and that M |= A(t) [σ]. Let u stand for the interpretation of term t in
M under σ. Let σ∗ stand for an object assignment in M such that σ∗(x) = u and σ∗(y) = σ(y) for every
y �= x. Then, M |= A(x) [σ∗]. This means that M |= (∃x)A(x) [σ].

The following fact expresses the Principle of Bivalence with respect to the satisfaction relation in
model-theoretic semantics.

Fact 1. Let M and σ be arbitrary, and let F stand for an arbitrary formula.

M |= F [σ] or M |= ¬F [σ].

The idea of the proof of Lemma 2 comes from using semantic trees in the proof of resolution systems
(see [26], Section 3.8 for details).

We say that a branch B of a synthetic tableau T is compatible with σ in M iff for every formula F that
labels B, it is the case that M |= F [σ]. Let us observe that:

Fact 2. If a branch of a synthetic tableau is compatible with some object assignment σ, then the branch cannot
be closed.

Lemma 2. Let T be a synthetic tableau. Let M be an arbitrary but fixed interpretation and let σ stand for an
arbitrary but fixed object assignment in M. There is a branch B of T which is compatible with σ in M.

Proof. The proof is by induction on the size of T , that is, the number of its nodes.
Base case. The smallest possible synthetic tableau is an empty root. (By Definition 4, a synthetic

tableau is a finite tree, and a tree must have a root. Hence, it follows that a one-element tree, containing
the root only, is the smallest possible synthetic tableau.) Since there is no label, T is compatible with any
assignment of an arbitrary model.

Induction step. Assume the following induction hypothesis: for synthetic tableaux of size up to n,
for any σ of an arbitrary model M, there is a branch in the tableau compatible with σ. Suppose that the
size of T is n + 1. We need to consider the last rule that acted upon the tableau.

Suppose that it was the PB-rule. Let T ∗ stand for the tableau to which the rule was applied,
and assume that B∗ is the particular branch that the rule acted upon. T ∗ has n− 1 nodes, thus, by the
induction hypothesis, there is a branch B in T ∗ compatible with σ in M. If the branch is not B∗, then
it is present also in the tableau T , and thus it follows that there is a branch in T compatible with σ in
M, as required. If B = B∗, then, by Fact 1, one of the two branches created from B∗ by the PB-rule is
compatible with σ in M.

Now, suppose that the last rule applied was a local linear rule. Then, we consider a tableau T ∗ to
which the rule was applied, we use the induction hypothesis, and—similarly as in the above case—we
conclude that, if the branch of T ∗ compatible with σ is the one modified by the local rule, then, by Lemma 1,
the resulting branch of T is compatible with σ in M.

Finally, the difficult case. The last rule applied was one of the general rules; suppose that it was UG1,
the reasoning is analogous in the case of UG2. Let T ∗ be the synthetic tableau to which the rule was
applied. The size of T ∗ is not grater than n, thus, by the induction hypothesis, there is a branch B∗ in T ∗

245



Axioms 2019, 8, 133

compatible with σ in M. By Fact 2, the branch must be open, so it has a formula of the form C → A(x) in
its leaf, where x does not occur freely in C.

Suppose that M �|= C → (∀x)A(x) [σ]. Therefore, M |= C [σ] and M �|= (∀x)A(x) [σ]. Hence,
it follows that there is an object u such that if σ∗ is an object assignment in M such that σ∗(x) = u
and σ∗(y) = σ(y) for each y �= x, then (i) M �|= A(x) [σ∗]. Since x does not occur freely in C, still (ii)
M |= C [σ∗]. However, since T ∗ satisfies the induction hypothesis, it satisfies the hypothesis also with
respect to object assignment σ∗ in M. Thus, there is an open branch of T ∗ compatible with σ∗. Each open
branch of T ∗ ends with C → A(x), thus M |= C → A(x) [σ∗]. However, this contradicts the previous
Arrangements (i) and (ii). Thus, it follows that M |= C → (∀x)A(x) [σ]. Hence, the branch resulting from
B∗ is compatible with σ in M.

Theorem 6. If A has a proof in the ST-system for FOL, then A is valid.

Proof. Suppose that T is a proof of A and that A is not valid. Let M be an arbitrary (but fixed)
interpretation of LFOL, and let σ be an arbitrary (but fixed) object assignment in M such that M �|= A [σ].
By the previous lemma, there is a branch B of T compatible with σ. The branch must be open, and since T
is a proof of A, the formula labels the leaf of B. Thus, M |= A [σ], which is a contradiction.

7. Some Further Remarks on Relations between the ST-System and the Axiomatic System

Despite finishing the completeness proof, for some time, the first author was not able to prove
anything interesting in the system. Let us illustrate the difficulties with the following formula F, where x
does not occur free in A (for simplicity, we omit the xs after A and B):

F = (∀x)(A → B)→ (A → (∀x)B)

The first attempt to prove F was the following:

A

(∀x)B
A → (∀x)B

F

¬(∀x)B
¬(A → (∀x)B)

(∀x)(A → B)

B
¬F

...

¬B
¬(A → B)

¬(∀x)(A → B)
F

¬(∀x)(A → B)
F

¬A
A → (∀x)B

F

which is not satisfactory; the branch with ¬F should be closed, but it is not clear how to derive a
contradiction. In a system of analytic tableaux, one would instantiate on ¬∀xB introducing some ¬B(a),
but in this system ¬B(a) may only come by branching, and the problem then is with closing the left branch
with B(a) on it. The first author overcame this difficulty after recalling a proof of the formula in axiomatic
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system FFO:

1. (∀x)(A → B)→ (A → B) Axiom 12
2. ((∀x)(A → B)→ (A → B))→ ((∀x)(A → B) ∧ A → B) Thesis of FOL

3. (∀x)(A → B) ∧ A → B MP:2,1
4. (∀x)(A → B) ∧ A → (∀x)B GC:3
5. ((∀x)(A → B) ∧ A → (∀x)B)→ ((∀x)(A → B)→ (A → (∀x)B)) Thesis of FOL

6. (∀x)(A → B)→ (A → (∀x)B) MP:5,4

In the second line of the proof, the converse of the exportation law is used in order to generalize on B.
This is the point.

The following tree represents a proof of formula C = (∀x)(A → B) ∧ A → (∀x)B, where x does not
occur free in A, in the ST-system. In the subtableau starting with A, the leaves are derived by UG1.

A

B
(∀x)(A → B) ∧ A → B

(∀x)(A → B) ∧ A → (∀x)B

¬B
¬(A → B)

¬(∀x)(A → B)
¬((∀x)(A → B) ∧ A)

(∀x)(A → B) ∧ A → B
(∀x)(A → B) ∧ A → (∀x)B

¬A
¬((∀x)(A → B) ∧ A)

(∀x)(A → B) ∧ A → (∀x)B

Finally, Figure 4 presents a proof of F where the problematic branch is closed by contradicting formula C.
We need to use it, since without “importing” A to the antecedent we cannot generalize on B. Let us also
explain that the fourth (from the left) branch contains a kind of a detour: formula (∀x)(A → B) ∧ A → B
is derived here to make UG1 applicable in the subtableau starting with A. After deriving formula C,
we need to extend the branch with F (obtained by r1

→, which is a local rule), to make the tree a proof of
F. The whole tableau is a good example illustrating the fact that the synthetic tableaux system is not a
“tableau system” in the common sense of the term.

The interesting reflection is that about the relation between the axiomatic system and that of ST.
The latter may seem bizarre, if an axiomatic proof is needed in order to get a hint on how to prove a
formula. It appears that heuristics of proving theorems in axiomatic systems may serve also as heuristics
of proving theorems in the ST-system. What is the benefit, if any? Does it work also the other way round,
that is, is it the case that heuristics suitable for the ST-system can work for axiomatic systems as well?

At the moment, we are not able to answer this questions satisfactorily. However, the example with
formula F sheds some light in this darkness. Although we need a hint to prove it, the use of the PB-rule
is still restricted to subformulas (as mentioned above, the notion of subformula must take into account
all substitutions) of formula F. The more complex formulas are built from the “atoms” introduced by
the PB-rule. Albeit this “composition” derives us from the set of subformulas of F, it does so only via
the export-import manipulation necessary to generalize on the consequent. This may be a matter of the
particular form of rules for universal generalization in this ST-system.
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A

B
(∀x)(A → B) ∧ A → B

C

(∀x)B
A → (∀x)B

F

¬(∀x)B
¬(A → (∀x)B)

(∀x)(A → B)
(∀x)(A → B) ∧ A

¬C

¬(∀x)(A → B)
F

¬B
¬(A → B)

¬(∀x)(A → B)
¬((∀x)(A → B) ∧ A)
(∀x)(A → B) ∧ A → B

C
F

¬A
A → (∀x)B

F

Figure 4. A proof of F.

8. ST-Systems for First-Order Theories

In [33], the authors presented a strategy of transforming axioms of certain forms into sequent calculus
rules, in order to obtain a sequent calculus for a given first-order theory. In this section, we show that
similar techniques may be applied beyond the domain of structural proof theory.

8.1. Universal Axioms

After Negri and von Plato [33], by universal axioms we mean sentences of LFOL of the following form:

(∀x1) . . . (∀xk)(A1 ∧ . . . ∧ An → B1 ∨ . . . ∨ Bm) (ax)

where Ai and Bj are atomic formulas. For simplicity, in this section, we assume that both conjunction and
disjunction may have an arbitrary number of arguments. We show how the universal axioms can be
converted into ST-rules. When n, m ≥ 1, the rule has one of the forms indicated below.

A1

...
An

(R1
ax)B1 ∨ . . . ∨ Bm

A1

...
An

(R1∗
ax)B1 | . . . | Bm

A1 ∧ . . . ∧ An
(R2

ax)B1 ∨ . . . ∨ Bm

A1 ∧ . . . ∧ An
(R2∗

ax)B1 | . . . | Bm

Rules (R1∗
ax) and (R2∗

ax) cause branching to m subtrees. If the local rules for ∨ and ∧ are present in the
system, then each of the four rules may be derived from any of the other three. We show two examples
of such derivations below, the others are easy to find. On the left: rule (R1

ax) is assumed, rule (R1∗
ax) is

derived. On the right: rule (R2∗
ax) is assumed, rule (R1

ax) is derived.
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A1
...

An

B1 ∨ . . . ∨ Bm

B1 ¬B1

B2 ¬B2

...
...

¬Bm

¬(B1 ∨ . . . ∨ Bm)

A1
...

An

A1 ∧ . . . ∧ An

B1
B1 ∨ . . . ∨ Bm

. . . Bm

B1 ∨ . . . ∨ Bm

The general scheme of the proof of (ax) in an ST-system, assuming only atomic cuts and rule (R1
ax),

looks as follows:

A1

A2

...

An

B1 ∨ . . . ∨ Bm

A1 ∧ . . . ∧ An → B1 ∨ . . . ∨ Bm

...

¬A2

¬(A1 ∧ . . . ∧ An)

A1 ∧ . . . ∧ An → B1 ∨ . . . ∨ Bm

¬A1
¬(A1 ∧ . . . ∧ An)

A1 ∧ . . . ∧ An → B1 ∨ . . . ∨ Bm

If we allow cut-formulas to be non-atomic, we can use the second rule and the proof can be simplified:

A1 ∧ . . . ∧ An

B1 ∨ . . . ∨ Bm

A1 ∧ . . . ∧ An → B1 ∨ . . . ∨ Bm

¬(A1 ∧ . . . ∧ An)

A1 ∧ . . . ∧ An → B1 ∨ . . . ∨ Bm

Further, for universal axioms (ax) with n = 0 and m ≥ 1, we obtain the following no-premises rules:

B1 ∨ . . . ∨ Bm
(R∅1

ax ) B1 | . . . | Bm
(R∅1∗

ax )

At each stage of a derivation, one can introduce the formula (in the case of (R∅1
ax )) or extend a tree by

means of m subtrees (in the case of (R∅1∗
ax )). As before, each of this rule is derivable from the other.

If n ≥ 1 and m = 0, the rules can be formulated as follows:
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A1

...
An

(R∅2
ax )C

A1 ∧ . . . ∧ An
(R∅2∗

ax )C

C is an arbitrary formula. If we had Falsum (⊥) in the language, we could put C = ⊥. Again, these rules
are inter-derivable in the system. Below to the left, we assume (R∅2∗

ax ) and derive (R∅2
ax ); and vice versa to

the right, where F is for ¬(A1 ∧ . . . ∧ An):

A1
...

An

A1 ∧ . . . ∧ An (r3
∧)

C (R∅2∗
ax )

A1 ∧ . . . ∧ An

A1

A2

...
An

C (R∅2
ax )

...
F

¬A2

F

¬A1
F

8.2. First Example: Identity

We show how to use the general approach in order to tackle the First-Order Logic with identity. First,
we have to extend the language LFOL by means of a special predicate symbol, =, representing identity.
Axiomatic system for FOL with identity, F=

FO, can be obtained from FFO by the addition of the following
two axioms:

(∀x)(x = x) (re f=)

ti = tj ∧ A(ti)→ A(tj//ti) (rep=)

where the notation “A(tj//ti)” indicates that some occurrences (possibly all of them) of a term ti in a
formula A has been replaced by a term tj. Similarly as in the case of substitutions, if a formula of the form
A(tj//ti) is considered, it is assumed that the replacement operation was performed “correctly”, that is,
the variables of ti are not bounded in A, and tj is free for each variable of ti in A.

According to the introduced strategy, the axioms correspond to the following two rules:

(R∅1
re f=)t = t

ti = tj

A(ti) (R1
rep=)A(tj//ti)

The assumed semantics is model-theoretic, with the identity predicate interpreted as identity in the
domain in every interpretation. The rules have a local character, therefore, for the soundness of the whole
ST-system, it is enough to check that they have a property expressed in Lemma 1. We skip the details.

ST-system for FOL with identity results from the system designed for FOL in Section 5 by means of
extending the latter with the two rules for identity. Let us call the resulting calculus ST=

FOL.

Theorem 7 (Completeness). If a formula is provable in F=
FO, then it is also provable in ST=

FOL.

Proof. We know that all the rules of inference of F=
FO can be simulated in ST=

FOL (Theorem 3). What we
have to show is that both axioms are derivable in our system. This is in fact the case as the following
derivations show. The first axiom is derivable by:
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x = x
(∀x)(x = x)

¬(x = x)
x = x

The derivation starts with branching on x = x. Then, on the right, we use rule (R∅1
re f=), to introduce

x = x, which makes the branch closed. Now, the only open branch of the tree is the left one, where the
rule UG is applied (let us recall that it is derivable in the ST-system for FOL).

The second axiom, (rep=), is derivable by means of the following tree:

ti = tj

A(ti)

A(tj//ti)

(rep=)

¬A(ti)

¬(ti = tj ∧ A(ti))

(rep=)

¬(ti = tj)

¬(ti = tj ∧ A(ti))

(rep=)

This finishes the proof.

In some systems for FOL with identity, such as natural deduction system (see [33]), it is possible to
use a version of the replacement rule restricted solely to atomic formulas. In our setting, such a rule would
have the following form:

ti = tj

P(ti) (repAt)
P(tj//ti)

Naturally, the formulas expressing symmetry and transitivity of identity:

(∀x)(∀y)(x = y → y = x) (sym=)

(∀x)(∀y)(∀x)(x = y ∧ y = z → x = z) (trans=)

are derivable in ST=
FOL, and both are derivable by the use of (repAt). Figure 5 presents a derivation of

(sym=). In Figure 6, (trans=) is proved, where on the leftmost branch rule (repAt) is used with x = y for
A(ti), y = z for ti = tj, and x = z for A(tj).

x = y

y = x
x = y → y = x

(sym=) (UG× 2)

¬(y = x)
x = x (R∅1

re f=)

y = x (repAt)

¬(x = y)
x = y → y = x

(sym=) (UG× 2)

Figure 5. Symmetry.
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x = y

y = z
x = z (repAt)

x = y ∧ y = z → x = z
(trans=) (UG× 3)

¬(y = z)
¬(x = y ∧ y = z)

x = y ∧ y = z → x = z
(trans=) (UG× 3)

¬(x = y)
¬(x = y ∧ y = z)

x = y ∧ y = z → x = z
(trans=) (UG× 3)

Figure 6. Transitivity.

8.3. Second Example: Partial Order

The second example of a first-order theory is that of a partial order. We add to the language LFOL a
new predicate symbol, ≤, and we build F≤

FO by adding two specific axioms to FFO:

(∀x)(x ≤ x) (re f≤)

(∀x)(∀y)(∀z)(x ≤ y ∧ y ≤ z → x ≤ z) (trans≤)

Following the presented strategy, we transform the first axiom into the following rule:

(R∅1
re f≤)x ≤ x

which states that at each branch x ≤ x can be synthesized without any additional information present.
The second axiom corresponds to the rule:

x ≤ y
y ≤ z

(R1
trans≤)x ≤ z

We can synthesize x ≤ z on the condition that we have already synthesized x ≤ y and y ≤ z.
If we add these two rules to STFOL, we obtain a system which we call: ST≤FOL.

Theorem 8 (Completeness). If a formula is provable in F≤
FO, then it is also provable in ST≤FOL.

Proof. Again, we can derive the rules of inference of F≤
FO as in Theorem 3. We show how the axioms can

be derived.
The first axiom is derivable in a manner similar to reflexivity axiom in FOL with identity:

x ≤ x
(∀x)(x ≤ x)

¬(x ≤ x)
x ≤ x

The second axiom is derived as displayed on Figure 7.
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x ≤ y

y ≤ z
x ≤ z (R1

trans≤)
x ≤ y ∧ y ≤ z → x ≤ z
(trans≤) (UG× 3)

¬(y ≤ z)
¬(x ≤ y ∧ y ≤ z)

x ≤ y ∧ y ≤ z → x ≤ z
(trans≤) (UG× 3)

¬(x ≤ y)
¬(x ≤ y ∧ y ≤ z)

x ≤ y ∧ y ≤ z → x ≤ z
(trans≤) (UG× 3)

Figure 7. A proof of (trans≤).

The tree displayed on Figure 8 represents a proof of formula F = ¬(x ≤ z)→ (¬(x ≤ y) ∨ ¬(y ≤ z)).
The formula has been synthesized on every open branch. There is one closed branch containing both x ≤ z
and its negation.

x ≤ z
¬¬(x ≤ z)

F

¬(x ≤ z)

x ≤ y

y ≤ z
x ≤ z

¬(y ≤ z)
¬(x ≤ y) ∨ ¬(y ≤ z)

F

¬(x ≤ y)
¬(x ≤ y) ∨ ¬(y ≤ z)

F

Figure 8. A proof of F = ¬(x ≤ z)→ (¬(x ≤ y) ∨ ¬(y ≤ z)).

As in the case of identity, the issue of soundness is settled by verifying that the additional local rules
satisfy Lemma 1.

Let us note that the theory of liner order can be obtained from the theory of partial order by means of
the addition of the linearity axiom:

x ≤ y ∨ y ≤ x (lin≤)

which corresponds to one of the following rules:

x ≤ y ∨ y ≤ x
(R∅1

lin≤
)

x ≤ y | y ≤ x
(R∅1∗

lin≤
)

One can easily show that the ST-system for liner order is capable of simulating corresponding
axiomatic system, which implies completeness.

9. Conclusions

In this paper, we describe a synthetic tableaux system for First-Order Logic and a general strategy
for providing proof systems for some of its axiomatic extensions. We show that the resulting systems are
complete with respect to the corresponding axiomatic systems. Synthetic tableaux method was developed
to formalize direct validity checking and was inspired by Kalmár’s completeness proof (see [28]). ST
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system for First-Order Logic is different from the system for propositional logic, due to the fact that one
has to introduce global rules, which act on the whole proof tree, while on the propositional level local rules
are sufficient.

The rule of cut is, in a sense, essential to this method—it is the rule which starts every derivation
introducing the information needed to synthesize more complex formulas. The presence of the cut rule in a
system may be an advantage and a disadvantage at the same time. From the proof search oriented perspective,
an application of the cut rule is problematic: the rule is unrestricted, so finding the right formula to cut on
is hard, even if cut is restricted to subformulas of a goal-formula only. On the other hand, once the right
cut formula has been found, the resulting proof may have significantly smaller size than that of proofs
constructed by more mechanical methods; we indicate this issue in Section 4.

A step in the same direction has been made before in [34]. The authors proposed a proof procedure
for First-Order Logic based on tableaux method with the cut rule. Our work is similar to this proposal in
the sense that the cut rule is used while proving theorems and not as the post-processing tool employed to
transform already existing derivations to reduce their size. The main difference between the approach in [34]
and our approach concerns the proof method used and the form of syntactic structures being processed—in
the cited work, the rules act on clauses, whereas our solution does not assume deriving a clausal form.

Finally, we wish to point out some open problems related to the introduced systems. Clearly, there
is a connection between Frege systems and ST method, which we think should be further investigated.
In particular, a question arises whether proof heuristics working well in one system can be transferred to
the other. Another problem pertains to the lack of a subformula property being an effect of unrestricted cut
applications. Is there a way to restrict the class of formulas appearing in a proof tree for a given formula?
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Abstract: The systems of arithmetic discussed in this work are non-elementary theories. In this
paper, natural numbers are characterized axiomatically in two different ways. We begin by recalling
the classical set P of axioms of Peano’s arithmetic of natural numbers proposed in 1889 (including
such primitive notions as: set of natural numbers, zero, successor of natural number) and compare
it with the set W of axioms of this arithmetic (including the primitive notions like: set of natural
numbers and relation of inequality) proposed by Witold Wilkosz, a Polish logician, philosopher and
mathematician, in 1932. The axioms W are those of ordered sets without largest element, in which
every non-empty set has a least element, and every set bounded from above has a greatest element.
We show that P and W are equivalent and also that the systems of arithmetic based on W or on P, are
categorical and consistent. There follows a set of intuitive axioms PI of integers arithmetic, modelled
on P and proposed by B. Iwanuś, as well as a set of axioms WI of this arithmetic, modelled on the W
axioms, PI and WI being also equivalent, categorical and consistent. We also discuss the problem of
independence of sets of axioms, which were dealt with earlier.

Keywords: axiomatizations of arithmetic of natural and integers numbers; second-order theories;
Peano’s axioms; Wilkosz’s axioms; axioms of integer arithmetic modeled on Peano and Wilkosz
axioms; equivalent axiomatizations; metalogic; categoricity; independence; consistency

1. Introduction

The notion of natural numbers counts amongst the oldest, being one of the most universal
abstract notions. Natural numbers belong to the fundamental subject of study of theoretical arithmetic
concerned with defining all kinds of numbers, as well as studying their properties and relations
between numbers of the same or different kinds. Theoretical arithmetic deals with examination of
different types of numbers and their axiomatization, including that of natural numbers and integers.
While defining its notions, we base ourselves on second-order logic and set theory.

In the paper, we will discuss some different axiomatizations of arithmetic of natural numbers
NA and arithmetic of integer numbers IA (the presentation is based on results originally published in
Polish by various authors, and which, as a consequence of their being available only in Polish, are not
known among the vast majority of mathematical logicians). Presented theories will be non-elementary
second-order theories and alphabet of languages which will assume two sorts of variables: individual
variables and variables ranging over sets of individuals, i.e., natural numbers or integers, respectively.

We will start with the original axiomatization of NA proposed by Giuseppe Peano [1] by the set P
of axioms on which is based the deductive system PA (the axiomatic non-elementary deductive theory;
for short: the system PA) and will compare it with the little known axiomatization of the arithmetic NA

by the set W of axioms, which was provided by Witold Wilkosz [2], a Polish logician, mathematician
and philosopher of Kraków. The deductive system based on Wilkosz’s set W of axioms will be denoted
by WA.

Axioms 2019, 8, 103; doi:10.3390/axioms8030103 www.mdpi.com/journal/axioms257
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Then, we will expand both sets P and W of axioms to the sets of axioms of arithmetic of integer
numbers IA, which are modeled on them: the set of axioms PI by Iwanuś [3] and mine WI [4,5], which
will be compared with each other and also with the set SI of axioms given by Sierpiński [6].

We will also give several metalogical theorems of the systems of arithmetic, which are presented.

2. Two Simple Axiomatizations of NA

2.1. Peano’s Axioms for PA

Historically, the first axiomatic system of arithmetic of natural numbers, which is characterized
by unique simplicity, was that presented by Italian mathematician Giuseppe Peano in 1889, in his
book in Latin [1]. The essential ideas of axiomatization of NA were first published by Dedekind [7]
in 1888. Peano’s axioms specify the ideas, but there can be no doubt concerning the originality of
Peano’s work (see [8], p. 101). Peano’s original formulation of the axioms assumes the following three
primitive notions: number (positive integer) N, unity 1 and the successor of a number; the modern set
memberships relation ∈ comes from Peano’s relation ε (is) that he used in [1] (see [8], chapter VII). The
most modern formulations of Peano’s axioms use 0 as the “first” natural number instead of 1 and the
set of all natural numbers as N. In this work the successor of a number is a unary function defined on
natural numbers and denoted by the symbol *. In modern presentations, Peano’s axioms are written
using the symbolism of mathematical logic and set theory. They are axioms of a non-elementary theory
of natural numbers, including set theory. Recollecting them, we use the convention that the individual
variables m, n, k, l, . . . ranging over the set N, while those of X, Y, Z . . . over subsets of the set N.
Peano’s axioms of the system PA are the following:

P1. 0 ∈ N,
P2. n* ∈ N,
P3. n* � 0,
P4. m* = n*⇒m = n,
P5. 0 ∈ X ∧ ∀k ∈ X (k* ∈ X)⇒ N ⊆ X (the induction principle).

Axioms P1–P4 are elementary ones, whereas axiom P5, called induction axiom, is an axiom of the
2nd order, a non-elementary one. In the first-order Peano arithmetic (elementary arithmetic) which
is weaker than PA (see, e.g., [9], chapter II, section 7, chapter III, section 5 and [10], chapter 5), it is
reformulated by the induction axiom schema. The induction axiom is applied in inductive proofs of
theorems of the form T(n), where n denotes a natural number.

If T(n) with the free variable n is an expression of arithmetic NA and T(0) is its true expression
and from the assumption that T(k) is true for k ≥ 0 it follows that T(k*)—its truthfulness for number
k*—then T(n) is true for any natural number of set N. Such proofs are based on the following schema
of the rule of inductive proof of theorem T(n) for all n:

T (0)
T(k)⇒ T (k*) for any k ≥ 0
———————————–
T(n) for any n ∈ N

In proofs of theorems based on the set of axioms P, the following generalized theorems on
induction are also made use of:

T1. m ∈ X ∧ ∀k ∈ X (m ≤ k⇒ k* ∈ X)⇒ ∀n ∈ N (m ≤ n⇒ n ∈ X),
T2. ∀m (∀k <m (k ∈ X)⇒m ∈ X))⇒ ∀n ∈ N (n ∈ X).

In compliance with T1, if any set of natural numbers to which m belongs satisfies the condition
that for each number k of the set, which is not smaller than m, its successor k* also belongs to this set,
then to this set belong all the natural numbers not smaller than m. With m = 0, T1 = P5. With theorem
T1 corresponds the rule of inductive proof based on the following schema:

258



Axioms 2019, 8, 103

T(m) for m ∈N
T(k)⇒T(k*) for k ≥m
——————————–
T(n) for all n ≥m, n ∈ N

In compliance with T2, if each natural number m satisfies the condition: if any number smaller
than m belongs to a given set of natural numbers, then m also belongs to this set, then each natural
number does. With theorem T2 corresponds the rule of inductive proof based on the following schema:

for each m ∈N
T(k)⇒ T(m) for any k <m
———————————–
T(n) for all n ∈ N

The proof of theorem T1 is based on the induction axiom P5 and the elementary theorems of
system PA, whereas in the proof of theorem T2 the minimum principle and the elementary theorems
of system PA are made use of. The former follows from the induction principle P5 and requires
introducing additional definitions into system PA, including the definition of relation of less than, <,
and that of non-greater than, ≤.

It can be proved that the induction principle P5, the maximum principle Pmax and the minimum
principle Pmin are equivalent to one another on the basis of the elementary theorems of system PA,
since the following relations of implication hold:

P5→ Pmax→ Pmin→ T2→ P5

where
Pmax. In any non-empty set of natural numbers for which there is an upper bound element, there

is the greatest number. Symbolically:

∃k (k ∈ X) ∧ ∃n∀m∈X (m ≤ n)⇒ ∃n∈X∀m∈X (m ≤ n).

Pmin. In any non-empty set of natural numbers, there is the least number. Symbolically:

∃k (k ∈ X)⇒ ∃n∈X∀m∈X (n ≤m).

Thus, we obtain the first metalogical theorem:
MT1. The principles P5, Pmax and Pmin are mutually equivalent on the basis of the elementary

theorems of system PA.

Remark. Each of these non-elementary expressions could then be the only non-elementary axiom of arithmetic
of natural numbers NA if—from it and suitably selected elementary axioms—each elementary theorem follows
(cf. Słupecki et al. [11] and Sierpiński [6]).

The principles Pmax and Pmin are noted in system PA by means of relations of less than, <, or
non-greater than, ≤, but the former is defined by means of the operation of addition +.

The definitions of the relation < and that of ≤ in system PA are the following:

D3. m < n⇔ ∃k ∈ N \ {0} (m + k = n),
D4. m ≤ n⇔m = n ∨m < n.

The definitions of the operations of addition + and multiplication · are recursive in PA:

D1a. m + 0 = 0,
b. m + n* = (m + n)*.
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D2a. m·0 = 0,
b. m·n* =m·n +m.

These operations satisfy the well-known properties of a commutative semi-ring with unity
(1 = 0*), and it can be proved that the relation < (relation ≤ ) in PA well-orders set N (we differentiate
two well-known notions of a relation ordering a set: strict ordering (<) a set and weak ordering (≤)
a set).

The structure < N, +, ., 0, 1, ≤ > is an ordered commutative semi-ring.

2.2. Wilkosz’s Axioms for System WA

The primitive notions in Wilkosz’s axiomatic system WA are: the set of natural numbers N and
the relation of less than, <. We write Wilkosz’s axioms, accepting that the variables m, n, l, k, . . . run
over set N, X is a subset of N.

W1. ∃n (n∈ N)—there is a natural number,
W2. m � n⇒m < n ∨ n <m—trichotomy,
W3. (m < n⇒ ~ (n <m))—anti-symmetry of relation <,
W4. m < n ∧ n < k⇒m < k—transitivity of relation <,
W5. m < n⇒m, n ∈ N—the field of relation < is set N,
W6. ∃k (k ∈ X)⇒ ∃n∈X∀m∈X (n ≤m)—the minimum principle,
W7. ∃k (k ∈ X) ∧ ∃n∀m∈X (m ≤ n)⇒ ∃n∈X∀m∈X (m ≤ n)—the maximum principle,
W8. ~∃m∀n (m � n⇒ n <m)—there is not the greatest number in set N.
It is easy to see that in system WA, the relation <well-orders set N (in the sense of strict order).
Relation <—a primitive notion in Wilkosz’s system WA—is a notion defined in Peano’s system PA (see
D3), and the primitive notions of system PA, which are not primitive ones in Wilkosz’s system WA, are
defined in it in the following way:

(1) k = 0⇔ ∀n (k ≤ n)—0 is the least natural number,
(2) k = n*⇔ k ∈{m ∈ N | n <m} ∧ ∀i ∈{m ∈ N | n <m}(k ≤ i)—n* is the least natural number among
numbers greater than n.

Relation ≤ less than or equal (not greater) has the following definition:
m ≤ n⇔m = n ∨m < n.

It can be proved that the definitions (1) and (2) are correct: there is precisely one natural number k
satisfying the definiens of definition (1) and there is precisely one number k (the successor of number
n), which satisfies the definiens of definition (2). In the proofs the axioms W2–W4 are used.

Relying on, in Wilkosz’s system WA, the definitions of zero and the successor function of a natural
number, we can define the operations of addition + and multiplication, in the same way as in system
PA (by means of definitions D1a,b and D2a,b).

2.3. Equivalence of the Deductive Systems PA and WA

It needs reminding that, in accordance with Tarski’s inferential definition of two equivalent sets
of sentences of a deductive system (see [12]), two sets of sentences are equivalent if sets of all their
consequences (deduced from them sentences) are equal. Thus, most often, for the equivalence of
axiomatic deductive system the following definition (cf. [13,14]) is used:

(*) Two axiomatic deductive systems are equivalent if the set of axioms and definitions of one
of them is equivalent to the set of axioms and definitions of the other system, i.e., if each axiom and
definition of one of them is a theorem or definition of the other system and the other way round—each
axiom and definition of the other system is a theorem or definition of the first system.

Let us note that
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(i1) Axioms of system WA are theorems of system PA since W1 follows directly from P1; W8 follows
from the fact that in system PA there holds the theorem that n < n* for any n ∈ N, and n* ∈ N
(P2); W3–W5 in PA follow from the theorem that N is a set ordered by the relation <; W6 and W7
(principles minimum and maximum, respectively) follow from the induction axiom P5 (see MT1).

(i2) Definitions (1) and (2) of zero and the successor of a natural number in WA are theorems in
system PA.

(i3) Definitions of the operations addition and multiplication in system WA are the same as in
system PA.

(i4) Each axiom and definition of system WA is a theorem or definition in system PA.

On the other hand

(j1) Axioms of system PA are theorems of system WA, since from the correctness of definitions (1) and
(2) in WA, in particular axioms P1 and P2 follow; also P3 is a theorem in WA, because if it would
be possible that n* = 0, then it would follow from (1) that n* ≤ n and from (2) that n < n*, and
hence that 0 ≤ n and n < 0, that is on the basis of W3: ~0 < n and n = 0, that is 0 < 0, which leads
to contradiction according to W3; next, P4 follows from (2) and from the property of relation <,
as one ordering set N. Axiom P5—the induction principle follows from those of maximum and
minimum (W7 and W6; see MT1).

(j2) Definition D3 of relation < in PA can be derived from axioms and definitions of system WA.
(j3) Each axiom and definition of system PA is a theorem of system WA.

From (i4) and (j3), in compliance with (*), we obtain the following metatheorem:
MT2. The systems of PA and WA are equivalent.
This equivalence was sketched in the booklet by Wilkosz [2] under the title Arytmetyka liczb

całkowitych (The Arithmetic of Integers). Equivalence of Wilkosz’s and Peano’s systems was the subject
of my MA thesis.

2.4. Independence of Axioms in Systems PA and WA

As is well known from Gödel’s first incompleteness theorem given in 1931 [15], no finite set of
axioms of natural numbers is complete, or even each infinite, countable set of axioms of arithmetic is
incomplete. There arises the problem, however, whether it is possible to reduce the number of axioms
of PA and WA without depleting the set of theorems which can be proved about natural numbers.

It can be shown that
MT3a. The set of axioms of PA arithmetic system is independent (Sierpiński [6]).
b. The set of axioms of WA system is dependent and can be reduced to the set:
{W1, W3, W5, W6, W7, W8}.
Axiom W2 follows from axiom W6, while axiom W4 follows from axioms W3, W5 and W6.
Hence, it follows that the axioms of the theory of well-ordered sets in regard to relation < can be

based on axioms W3, W5 and W6, while Wilkosz’s system WA can be based on the axioms:

W1′. ∃n (n∈ N)—there is a natural number,
W2.’ ∀m∃n (m ≤ n)—in set N there is not the greatest number,
W3.’ ∀m∀n (m < n⇔ ~ (n <m))—asymmetry of relation < in N,
W4.’ ∃k (k ∈ X)⇒ ∃n∈X∀m∈X (n ≤m)—the minimum principle,
W5.’ ∃k (k ∈ X) ∧ ∃n∀m∈X (m ≤ n)⇒ ∃n∈X∀m∈X (m ≤ n)—the maximum principle.

To prove independence of the axioms one can, as it is known, use the method of interpretation,
which consists in finding such an interpretation of primitive terms of the given system that makes all
the axioms, apart from one, e.g., Ai, true at the interpretation. If we find it, then the given axiom Ai is
independent from the others.
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2.5. Categoricity of Arithmetic Systems PA and WA

Let us recall the definition of the notion of categoricity (see, e.g., [16–18]):
(**) A deductive system is categorical if and only if all its models are isomorphic.
As we mentioned, PA and WA as second-order, non-elementary systems, as well as elementary

Peanos arithmetic, are not complete, yet we can show that they are categorical (cf. [7,10,18,19], chapter 8).
A model of Peano’s arithmetic system PA is each triple <N, 0, S > assigned to the triple <N, 0, * >

of primitive terms of system PA, where N is an infinite set, 0 ∈N, and S: N→ N, which satisfies Peano’s
axioms P1–P5.

A model of Wilkosz’s arithmetic system WA is each tuple <N,  > assigned to the tuple < N, < >
of primitive terms of WA system, where N is an infinite, countable set and  a binary relation with the
field N, which satisfies Wilkosz’s axioms W1–W8 (W1′–W5′).

(m1) Two models of PA: P1 = <N1, 01, S1 > and P2 = <N2, 02, S2 > are isomorphic if and only if
there is bijection f: N1 → N2 such that f is homomorphism from P1 to P2, that is f(01) = 02 and
f(S1(m)) = S2(f(m)) for any m ∈ N1.

(m2) Two models of WA: W1 = <N1,  1 > and W2 = <N2,  2 > are isomorphic if and only if there is
bijection f: N1 → N2 being homomorphism from W1 to W2, that is m  1 n⇒ f (m)  2 f(n) for any
m, n ∈ N1. Dedekind already in [7] proved that

(m3) Each two models of arithmetic system PA are isomorphic. In the book by Słupecki et al. [11],
there is a proof that

(m4) Each two models of arithmetic system WA are isomorphic.

Hence, we have the metalogic corollary:
MT4. The deductive systems PA and WA of natural numbers arithmetic NA are categorical; they

are in power ℵ0, so they are aleph-null categorical systems.
Thus, Peano’s and Wilkosz’s second-order systems have only one model, up to isomorphism.
This is not so when we consider the systems of arithmetic of natural numbers as systems

(elementary theories) of the first-order. According to the upward Löwenheim–Skolem’s theorem, there
are non-standard models of Peano’s elementary arithmetic system of all infinite cardinality (see e.g., [9],
chapter III, section 5, [20], chapterVI).

2.6. Set-Theoretical Models for PA and WA

Peano’s arithmetic possesses a “natural” set-theoretical model deriving from Frege.
Let N be an infinite set of all cardinal numbers of finite subsets of any (infinite) set U, i.e.,

N = {card(X) | X ∈ Fin(U)},

where Fin(U) is the smallest family of sets to which the empty set ∅ belongs and which is closed under
the relation S:

X S Y⇔ ∃x ∈ U \ X (Y = X ∪ {x)) for any X, Y ∈ Fin (U).

The formal definition of the set Fin (U) is the following:

Fin (U) = ∩{A ⊆ P(U)
∣∣∣ ∅ ∈ A ∧ ∀X ∈ A ∃Y ∈ A (X S Y ⇒ Y ∈ A)

}
.

(mP) The set-theoretical model for PA is the triple < N, card (∅), S* >,
where for m = card(X) and X S Y, S*(m) =m + 1 = card(Y), for X, Y ∈ Fin (U).
(mW) The set-theoretical model for WA is the triple < N, ≺ >,
where ≺ is the relation of less than for the cardinal numbers of set N:

m ≺ n⇔m � n ∧ n �m,
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m � n⇔ ∃X,Y (card(X) =m ∧ card(Y) = n ∧ ∃Z ⊆ Y(card (Z) =m)).

From (mP) and (mW) we get two next metalogic corollaries:
MT5. PA and WA systems are consistent.
(since it follows from the theorem of categoricity (MT4) that all theorems of these systems are true,

because they are true in each model of these systems).
MT6. Systems PA and WA are (treated as) fragments of set theory.
As we know, the theorem MT6 is of great importance to studies on the foundations of mathematics.

3. Simple Axiomatizations of Arithmetic of Integers, Based on Systems PA and WA

Axiomatic systems for integer arithmetic IA are most often based on notions of operations of
addition and multiplication defined on the set I of integers. In this part of the work, we will give
an axiomatization of integer arithmetic IA modelled on the systems PA and WA respectively for the
arithmetic of natural numbers NA, extending these systems accordingly and comparing them with
Sierpiński’s system SIA [6], including addition and multiplication as its primitive notions.

3.1. Iwanuś’s Axioms for IA, Modelled on the Axioms of System PA

We will give here two systems of axioms proposed by Bolesław Iwanuś [3] for IA system. They
are interesting due to their intuitive character. The first system based on them will be denoted as
P1IA, and the other one—P2IA. The primitive notions of P1IA are: set N* of all non-negative integers,
set *N of all non-positive numbers, integer 0 and two unary operations in N*∪*N of successor and
predecessor of an integer. The successor and the predecessor of integer i will be denoted as i* and *i,
respectively. In the intuitive meaning, i* = i + 1 and *i = i – 1.

We assume that i, j, k, l, . . . are variables ranging over the set N*∪*N, while variables A, B, C . . .
range over the subsets of this set.

3.1.1. Axioms of System P1IA Are the Symmetric Axioms for Numbers of the Sets N* and *N:

A*1. 0 ∈ N*, *A1. 0 ∈*N,
A*2. i ∈ N*⇒ i* ∈ N*, *A2. i ∈ *N⇒ *i ∈ *N,
A*3. i ∈ N*⇒ i* � 0, *A3. i ∈ *N⇒ *i � 0,
A*4. 0 ∈ A ∧ ∀i ∈ A (i* ∈ A)⇒ N* ⊆ A, *A4. 0 ∈ A ∧ ∀i ∈ A (*i ∈ A)⇒ *N ⊆ A.

A5. i ∈ N*∪*N⇒ *(i*) = i = (*i)*.
Axioms A*1–A*3 and *A1–*A3 are modelled on those of Peano (P1–P3). Axioms A*4 and *A4

correspond to that of induction P5. Axiom A5 establishes relations between the successor and
the predecessor operation and does not allow identification of these notions with each other, nor
identification of sets N* and *N. The set I of all integers is defined as follows:

D0. I = N* ∪ *N.
The counterparts of Peano’s axiom P4
i, j ∈ N* ∧ i* = j*⇒ i = j and i, j ∈ *N ∧ *i = *j⇒ i = j

are direct consequences of A5.
It is easy to notice that with the assumption that the set I of integers is a primitive notion of the

system of arithmetic IA, the symmetrical axioms of P1IA can be replaced by weaker ones, deriving
from Słupecki in [11]:

A1. 0 ∈ I,
A2. i ∈ I⇒ i*,*i ∈ I,
A3. i ∈ I⇒ i* � i,
A4, A ⊆ I ∧ 0 ∈ A ∧∀i ∈ A (i*, *i ∈ A)⇒ I =A,
A5. i ∈ I⇒ (*i)* = *(i*) = i,

In this system, there are theorems that, to a certain extent, are similar to Peano’s axiom A3, which
are in force:
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(i ∈ I ∧ i � *0)⇒ i* � 0,
(i ∈ I ∧ i � 0*)⇒ *i � 0.

In Iwanuś’s system P1IA, there are the following definitions of the operations of: addition +,
subtraction − and multiplication:

DI1 a. i + 0 = i, DI2 a. i – 0 = i, DI3a. i·0 = i,
b. i + j* = (i + j)*, b. i − j* = *(i − j), b. i·j* = i·j + i,
c. i +*j = * (i + j), c. i −*j = (i − j) *, c. i·*j = i·j – i.

It is assumed that 1 = 0* and it is proved that

I1. *N = (I – N*) ∪ {0}, I2. k = j – i⇔ i + k = j,
I3. i* = i + 1, I4. *i = i –1.

In proofs of the theorems of system P1IA the following meta-theorem is made use of:
MT7. If α is an expression of system P1IA, in which—beside primitive notions—there are

exclusively the defined terms + and ·, then α is a theorem of this system if expression αd, dual with
respect to α, is a thesis of this system; expression αd is dual to α, when the terms:

N*, *N, ( )*, *( ), +, ·

which occur in it, are substituted in each place of their appearance with the following ones, respectively:

*N, N*,*( ), ( )*, +, ·

In proofs of theorems on the basis of axioms A*4 and *A4, the following rules of mathematical
induction for integers based on the given below schemata are applied:

T(0) T(0)
T(k)⇒T(k*) for any k ≥ 0 T(k)⇒ T(k*) ∧ T(*k) for any k
——————————— —————————————-
T(i) for any i ∈ N* T(i) for any i ∈ I

Remark 1. On the basis of system P1IA one can prove all the axioms of the commutative ring.

The inequality relation less-than, <, in I is determined by the following definition added to P1IA:

DI4. i < j⇔ ∃k ∈ N*\{0} (i + k = j).

Remark 2. In system P1IA, one can prove all the theorems of arithmetic of integers IA relating to relation <.

3.1.2. The Other System of Arithmetic of Integers Built by Iwanuś [3] and Modelled on System PA

The system is denoted by P2IA and based only on the following three primitive notions:
set I of all integers, the function of successor * and number 0.
The following formulas are the axioms of system P2IA:

(I1) i ∈ I⇒ ∃j ∈ I (i = j*),
(I2) i, j ∈ I ∧ i* = j*⇒ i = j,
(I3) ∃A ⊆ I (0 ∈ A ∧ ∀i ∈A (i*∈ A ∧ i* � 0),
(I4) A ⊆ I ∧ 0 ∈ A ∧ ∀i ∈A (i* ∈ A ∧∃j ∈A (i = j*))⇒ I ⊆ A.

Axiom I3 assumes the existence of a certain subset of set I, about which—on the base of the above
accepted set of axioms—it can be proved that it is isomorphic due to function * to the set of all natural
numbers. Axiom I4 is a postulate of induction in the set of integers.
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If we introduce into system P2IA still one more primitive term N (as a name of a subset of set I
which is isomorphic to the set of natural numbers), then axiom I3 can be substituted with the following
set of axioms:

I3a. N ⊆ I,
b. 0 ∈ N,
c. i ∈ N⇒ i* ∈ N,
d. i ∈ N⇒ i* � 0.

Axiom I3 is weaker than axioms I3a–d, because I3 follows from these axioms, although not all of
I3a–d follow from I3.

In P2IA system the primitive notions of P1IA system are defined in the following way:

DI1′. i, j ∈ I⇒ (*i = j⇔ i = j*),
DI2′. i ∈ N*⇔ ∀A ⊆ I (0 ∈ A ∧∀j ∈A (j* ∈ A))⇒ i ∈ A,
DI3′. i ∈ *N⇔ ∀A ⊆ I (0 ∈ A ∧∀j ∈A (*j ∈ A))⇒ i ∈ A.

All the remaining definitions of system P1IA are the same in system P2IA.
Iwanuś proves that
MT8. Systems P1IA and P2IA are equivalent.
B. Iwanuś also proves in [3] that these systems are equivalent to Sierpiński’s system of arithmetic

of integers SIA [6], based on primitive notions: the set I, operations of addition + and multiplication ·,
zero 0, one 1 and the set N*, satisfying the axioms of the ring without zero divisors:

R1. i, j ∈ I⇒ i + j ∈ I ∧ i · j ∈ I,
R2. i, j, k ∈ I⇒ i + j = j + i ∧ i · j = j · i ∧ (i + j) + k = i + (j + k) ∧ (i · j)·k = i·(j · k) ∧ i·(j + k) = i · j + i · k,
R3. ∀i, j ∈I ∃ k∈ I(i + k = j),
R4. ∀i ∈ I (i + 0 = i) ∧ ∀i ∈ I (i·1 = i) ∧ 1 ∈ I,
R5. i, j ∈ I ∧ i · j = 0⇒ i = 0 ∨ j = 0,
R6. N* ⊂ I, R7. 0 ∈ N*, R8. i ∈ N*⇒ i +1 ∈ N*,
R9. 0 ∈ A ∧ ∀i ∈ A (i* ∈ A)⇒ N* ⊆ A,
R10. ∀i ∈ A\N* ∃j ∈ N* (i + j = 0).

Definitions of primitive terms of system P1IA are introduced into system SIA as follows:

DS1. *N = (I\N*) ∪ {0},
DS2. k = j – i⇔ i + k =j,
DS3. i* = i + 1,
DS4. *i = i – 1.

Definition DI4 of relation < of system P1IA is the same as in system SIA.
MT9. System P1IA (P2IA system), modelled on Peano’s system of natural numbers arithmetic

PA, and system SIA are equivalent.

3.2. Axioms of the System of Integer Arithmetic WIA Modelled on Wilkosz’s System WA

The primitive notions of the system of integer arithmetic WIA, modelled on Wilkosz’s system
WA, are the following: set I of all integers, integer zero 0 and less-than relation < in set I. The relation
of weak inequality ≤ is determined by the definition (i, j, k, . . . run over I):

D0. i ≤ j⇔ i < j ∨ i = j.
The axioms of system WIA which are presented by Wybraniec-Skardowska [4,5] are the

following expressions:

W′1. 0 ∈ I,
W′2. i, j ∈ I⇒ (i < j ∨ i = j ∨ j < i),
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W′3. i, j ∈ I⇒ (i < j⇒ ~ (j < i)),
W′4. i, j, k ∈ I ∧ (i < j ∧ j < k)⇒ i < k,
W′5. ∀i ∈ I ∃j ∈ I (i < j) – in I there is not the greatest number,
W′6. ∀i ∈ I ∃j ∈ I (j < i) – in I there is not the smallest number,
W′7. A ⊆ I ∧ ∃i ∈ A ∃i ∈ I ∀j ∈ A (i < j)⇒ ∃i ∈ A∀j ∈ A (i ≤ j),
W′8. A ⊆ I ∧ ∃i ∈ A ∃i ∈ I ∀j ∈ A (j < i)⇒ ∃i ∈ A∀j ∈ A (j ≤ i).

According to W’7, in each non-empty set of integers, which has a lower bound, there is the smallest
number, while, according to W’8, in each non-empty set of integers, which has an upper bound, there
exists the greatest number.

The content of axioms W’7 and W’8 is close to the principles of minimum and maximum of
arithmetic WA. The axioms of system WIA state that relation < orders set I, yet do not state that it
well-orders the set.

In system WIA one can define the notion of successor and that of predecessor of an integer as well
as the notions of sets N* and *N, which are primitive notions in Iwanuś’s system P1IA. Let us note first
that in system WIA it is possible to prove the theorem:

A ⊆ I ∧ ∃i ∈ A ∧ ∃i ∈ I∀j ∈ A (i < j)⇒ ∃1k ∈ A∀j ∈ A (k ≤ j). (1)

Condition (1) allows introducing correctly the definition of minimum in set A:
DW1. A ⊆ I ∧ ∃i ∈ A ∧ ∃i ∈ I∀j ∈ A (i ≤ j)⇒ (k =min (A)⇔ k ∈ A ∧ ∀j ∈ A (k ≤ j)).
It follows from Condition (1) and DW1 that there is a unique minimum, min (A), when A ⊆ I,

A � ∅ and set A has a lower bound.
Let

G(i) = {j∈ I | i < j}.

Hence G(i) � ∅ (see W’5) and ∃1k ∈G(i)∀j ∈G(i) (k ≤ j) (see Condition (1)); then on the basis of DW1

∃1k ∈ I (k =min (G(i)). (2)

The successor of an integer i is introduced by means of the definition:
DW2. i* =min(G(i)) – i* is the smallest integer which is greater than i.
DW3. N* = {i ∈ I | 0 ≤ i}.
The following corollary which is dual to Condition (1):

A ⊆ I ∧ ∃i ∈ A ∧ ∃i ∈ I∀j ∈ A (j < i)⇒ ∃1k ∈ A∀j ∈ A (j ≤ k). (3)

permits introducing the definition of maximum of a certain set of integers:
DW4. A ⊆ I ∧ ∃i ∈ A ∧ ∃i ∈ I∀j ∈ A (j ≤ i)⇒ (k =max(A)⇔ k ∈ A ∧∀j ∈ A (j ≤ k)).
Let L(i) = {j∈ I | j < i}.
Hence L(i) � ∅ (see W’6) and ∃1k ∈ L(i)∀j ∈ L(i) (j ≤ k) (see Condition (3)) then on the basis of DW4

the predecessor of integer i is defined as the greatest integer less than i, that is
DW5. *i =max(L(i)),
and set *N is defined as follows
DW6. *N = {i ∈ I | i ≤ 0}.

3.3. Equivalence of Systems P1IA and WIA

Remark 3. With the definitions of the primitive notions of system P1IA, given in system WIA, all the axioms
and definitions P1IA become theorems of definitions in system WIA.
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The definitions of addition and multiplication, which are accepted in P1IA are the same in system
WIA, while definition DI4 of relation < accepted in system P1IA is a theorem in system WIA.

Thus, it follows from Remarks 3 and 2 and MT8 that
MT10. System WIA is equivalent to those of Iwanuś P1IA and P2IA.
It follows from the above and MT9 that
MT11. All the systems of integer arithmetic: WIA, P1IA, P2IA and SIA are mutually equivalent.
In particular,
MT12. System P1IA modelled on Peano’s system PA and system WIA modelled on Wilkosz’s

system WA are equivalent.

3.4. Independence of the Axioms in P1IA and WIA

The axioms of the integer arithmetic system P1IA can, as Iwanuś proved, be reduced by one axiom
A*3 or *A3. If we found an axiom system of P1IA on those of A*1–A*4 and *A1, *A2 and *A4, then
axiom *A3 can be proved. It follows from A*1, A*2, and A5 as well as from theorems of this system:

*0 N* and i ∈N*⇒ (i *N ∨ i = 0).
MT13. The set of axioms of system P1IA can be based on an independent set of axioms A*1–A*4

and *A1, *A2, *A4, and A5.
The independence of these axioms was proved by interpretation in integer arithmetic IA. The

primitive terms of the tuple <N*, *N, i*, *i, 0> correspond to the elements of a tuple in the form
<A, B, f(i), G(i), a0>, respectively, which does not satisfy only one axiom of P1IA. When we apply
the denotation:

“N + ” denotes a set of non-negative integers,
“N − ” denotes a set of non-positive integers,
“E+ ” denotes a set of even non-negative integers;
“E− ” denotes a set of even non-positive integers, then the tuple:
<N + \ {0}, N -, i + 1, i – 1, 0> does not satisfy A*1,
<N +, N - \ {0}, i + 1, i – 1, 0> does not satisfy *A1,
<N + \ {1}, N -, i + 1, i - 1, 0> does not satisfy A*2,
<N +, N - \ {-1}, i +1, i - 1, 0> does not satisfy *A2,

<{0, 1}, {0, 1}, f1(i), g1(i), 0>, where f1(i) = g1(i ) = {1 f or i=0
0 f or i�0 does not satisfy A*3,

<N +, E-, i + 2, i – 2, 0> does not satisfy A*4,
<E+, N -, i + 2, i – 2, 0> does not satisfy *A4,

<{0, 1}, N-, f2(i), i – 1, 0>, where f2(i) = {i+1 f or i≤0
1 f or i>0 does not satisfy A5a,

<N +, {0, 1}, i + 1, g2( i), 0>, where g2( i) = {i−1 f or 0≤i
−1 f or i<0 does not satisfy A5b,

when A5 is substituted by two axioms:
A5a. i ∈ N* ∪ *N⇒ *(i*) = I; A5b. i ∈ N* ∪ *N⇒ (*i)* = i.

It is also possible to reduce the system of the primitive notions of P1IA system by one primitive
notion—zero 0—since the following expression:

i = 0⇔ i ∈ N* ∧ i ∈*N
is a theorem of P1IA.
On the other hand,
MT14. The set of axioms I1—I4 of Iwanuś’s P2IA system is an independent set.
It is so, since applying the following interpretation:

1. I→ N +, i*→ |i | +1, 0→ 0, – I1 is not satisfied,
2. I→ E + ∪ {1}, i*→ i + 1, if i � 0, and i*→ 1, for i = 1, 0→ 0 – I2 is not satisfied,
3. I→ {0,1}, i*→ 1 - |i |, 0→ 0, – I3 is not satisfied,
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4. I→ set of integers Z, i*→ i + 2, 0→ 0, – I4 is not satisfied.

It can also be justified that
MT15. The set of axioms of WIA system is an independent set.

3.5. Categoricity of the Axiomatic Systems of Integers Arithmetic IA

The classical model of P2IA system is the triple <Z, *, 0>, where Z is the set of all integers. The
classical model of WIA system is the triple <Z, 0, < >.

It can be proved (cf. [11]) that
MT16. Every two models of WIA system are isomorphic, therefore WIA system is categorical in

power ℵ0.
A model of WIA system is every triple <ϑ, 0, ≺ > corresponding to that of <I, 0, < > of the primitive

terms of WIA, in which ϑ is an infinite set of cardinality ℵ0, 0 ∈ ϑ, and ≺ is a binary relation satisfying
axioms A’1–A’8 of WIA system.

The following theorem is true:
If an axiomatic system has the property that all its models are isomorphic, then each equivalent system has

the same property.
Thus, from meta-theorems MT11 and MT16 follows the conclusion:
MT17. All the systems of integer arithmetic, which are presented in this work, are categorical in

power of ℵ0.
Thus, it is not only system WIA modelled on Wilkosz’s system WA which is categorical, but also

Iwanuś’s system P1IA (P2IA) modelled on Peano’s system PA is categorical.
A separate proof that system SIA is also categorical is given in the book by Sierpiński [6].
All deductive systems of integer arithmetic presented in this paper have a standard model and all

their models are isomorphic (MT17), so all the theorems of these systems are true. Hence, it follows that
MT18. The systems P1IA, P2IA, SLA and WIA of integer arithmetic are consistent.
All these systems are mutually equivalent.

4. Final Comments

� Theorems of categoricity of the systems of natural numbers and the integer systems answer—in
a sense—the following question: To what extent do our axioms characterize natural numbers
(respectively, integers)? It follows from them that each set which has properties expressed in our
axioms is the same as the set of natural numbers (resp., integers), that is it is isomorphic.

The axioms given for systems PA and WA as well as, respectively, P1IA (P2IA) and WIA,
characterize very strongly natural numbers (respectively, integers).

� It follows from the given considerations that from the point of view of set theory, the set of
axioms of integer arithmetic systems P1IA and P2IA, modelled on Peano’s axioms of system
PA of natural numbers arithmetic, and the set of axioms of system WIA modeled on Wilkosz’s
axioms of system WA of natural numbers arithmetic, have equal rights, similarly as the set of
axioms of systems PA and WA. The subject of the discussion can be—as it may seem—solely one
problem: Which of the set of axioms is more intuitive or more useful in the didactic process?

Wilkosz’s system WA and system WIA of the similar axiomatic character seem to be of certain
greater value. The former (WA) can be acknowledged to arise as a result of studies of the natural
model—one that forms the primary study of teaching in the early years of elementary school. As it
appears, though, the problem of which of the systems discussed here can play its role in a better way
as the curriculum of early education may be settled exclusively through psycho-sociological research
in schools.
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� Let us also note that the built systems of integer arithmetic, modelled on the systems of arithmetic
of natural numbers of Peano and Wilkosz, were treated as respective extensions of the latter, since
the set of natural numbers N in Peano’s system PA, with the function of successor * and zero 0 ∈
N, is isomorphic with a proper subset of set I of integers in the system of integer arithmetic P1IA,
that is to set N*⊂ I, function * in N* and zero 0 ∈ N*, whereas the set of natural numbers N in
Wilkosz’s system of natural numbers arithmetic WA, with zero 0 ∈ N and relation less-than < in
N, is isomorphic with the proper subset N* ⊂ I in the system of integers arithmetic WIA, with
zero 0 ∈ N* and relation < in N*.

� It follows from the remark above that arithmetic of integers can be defined not only through
giving a set of axioms, but as an extension of arithmetic of natural numbers by the well-known
method of construction, as well.

� So, it follows from MT6 that both integer systems P1IA (P2IA) and WIA can be treated as
fragments of set theory.
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1. Introduction

The difference between typical instances and atypical instances in a natural categorization process
has been introduced by E. Rosh and studied by cognitive psychology [1,2] and AI. A lot of the
knowledge representation systems are expressed using fuzzy concepts but a degree of membership
raises some problems for natural categorizations (especially for classification problems in anthropology,
ethnology, archeology, and linguistics, but also in ontologies): atypical instances of a concept
cannot be apprehended adequately by different degrees from a prototype. Other formal approaches,
as paraconsistent logics or non-monotonic logics, often conceptualize atypical objects as exceptions.
An alternative approach was developed with the logic of typical and atypical instances (LTA) [3] and
logic of determination of objects (LDO) [4]. In order to give a logical approach of typicality/atypicality
associated to a concept we distinguish explicitly, in LTA, a conceptual property f (“concept” or predicate
in the Frege’s approach and classical logic) from a concept ˆf, associated to a conceptual property
and characterized by an intension and by an essence, a part of the intension. A typical instance of a
concept inherits all properties of intension; an atypical instance inherits only properties of essence,
but it is a full member of the category associated to a concept and not a member with a weak degree
of membership. In natural categorization, there are often exceptions which do not inherit some
properties of the essence; the exceptions cannot be considered as atypical instances as they belong to
the boundary of the category, that is the difference between the extension of a conceptual property
and the extension of the corresponding concept (the set of all instances inheriting all properties of the
essence). In LDO a typical object τf is introduced, which is canonically associated to a concept ˆf. Object
τf is an abstract object such that it is the best representative object of the concept. From τf more or less
objects are explicitly built that fall under the concept ˆf, in using a functional composition of different
determination operators δk associated to conceptual properties k (in general not in the intension of the
concept). When a property δk is the negation of a conceptual property of the intension of a concept,
the generated object becomes an atypical object. All typical and atypical objects generated from τf
by determination operators belong to the expansion of the concept ˆf that contains the extension of
fully determinate instances of the concept. Some compositions of determination operators (incoherent
compositions) can build objects that are out of the category associated to a concept.
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In LTA the types of fully determined objects are extended objects to “exceptions”.
This paper is organized in six sections as follows: Introduction, the logic of determination of

objects (LDO), a formal description of the logic of determination of objects (LDO) as a preordered set
model, the logic of typical and atypical instances (LTA), LTA as a quasi topology structure, conclusions.

The works directly related to this work are [3–7].
The novelties of this paper are:

• Theorem 1 which represents a fundamental theorem for the model of the LDO. It asserts that the
LDO structure can be represented by a Galois lattice;

• The quasi topology structure (QTS) of the fully determinate objects Ext f in LTA.

2. The Logic of Determination of Objects (LDO)

2.1. Informal Description

The logic of determination of objects (LDO) is a non-classical logic of concepts and objects.
It contains a theory of typicality. It is due to Jean-Pierre Desclés [8] and described as a logical model
in [4]. LDO is defined within the framework of combinatory logic [9] with functional types.

LDO is inspired by the semantics of natural languages. It solves some problems that classical
logic cannot describe and solve:

• It supplys a solution for the mismatch between logic categories and linguistic categories (adjectives,
intransitive verbs often represented by unary predicates);

• It considers the determination as a logic operator in order to represent linguistic expression as a
book, a red book, a book which is on the table;

• It reconsiders the duality of extension–intension via its theory of typicality; the entension and the
intension of a concept are no longer in duality.

The LDO has a structural part and an inferential part.
Its structural part is formed by a triple of:

1. A network of concepts;
2. A set of objects;
3. A type theory.

LDO was described as an typed applicative system in the Curry′s sense [9]. A concept is an
operator, an object is an operand in Curry′s sense [9] where a conceptual proprerty is an operator
and an object is always an operand (on the applicative systems and combinatory logic as a logical
formalism of operators composed and transformed by an intrinsic way, see the book of J.-P. Desclés, G.
Guibert and B. Sauzay [10]). With every concept f, the following are canonically associated [4]:

• An object called typical object τf, which represents the concept f as an object. This object is
completely (fully) indeterminate;

• A determination operator σf, constructing an object more determinate than the object to which it
is applied;

• The intension of the concept f, Int f, conceived as the class of all concepts that the concept f
«includes», that is, a semantic network of concepts structured by the relation «IS-A»;

• The essence of a concept f, Ess f; it is the class of concepts such that they are inherited by all objects
falling under the concept f;

• The expanse of the concept f, Exp f, which contains all more or less determinate objects to whom
the concept f can be applied;

• A part of the expanse is the extension Ext f of the concept f; it contains all fully (completely, totally)
determinate objects such that the concept f applies to.
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From the viewpoint of determination, in LDO, objects are of two kinds: fully (completely, totally)
determinate objects and more or less determinate objects. From the viewpoint of some of their
properties, LDO captures two kinds of objects: typical objects and atypical objects. The typical objects
in Exp f inherit all concepts of Int f. The atypical objects in Exp f inherit only some concepts of Int f.

The inferential part of LDO contains axioms and rules of inferences. Some of the rules decide of
the typicality of an object as regard with some concept [4]. In [11], we analysed the nature of these
rules issued from the theory of typicality of LDO versus the paraconsistence. More precisely, we show
that the rule establishing that an object that is an atypical object of a concept in the frame of the LDO
is a particular case of the RA1 rule of Da Costa [12]. We arrive at the following interpretation of the
weakening of the principle of contradiction (¬(B ∧ ¬B)) contained by the RA1 rule inside the LDO:
an object obtained by a LDO-rule using this form of the weakening of the principle of contradiction
(¬(B ∧ ¬B)) is an atypical object. From the point of view of managing negation, we can conclude that
LDO is a particular case of a paraconsistent logic. For its power of description and especially for its
basic notions (to emphasise the distinction between object and concept and between extention and
intension), we can state that LDO is a description logic capturing at least one more cognitive feature:
the typicality of objects.

2.2. Formal Description of LDO

LDO can be regarded as a formal theory of concepts and objects.
LDO = (F , O, T) where:
F is the set of concepts, O is the set of objects, T is a type theory. A concept is an operator, whereas

an object is always an operand. Types are associated with concepts and objects.
The types theory of LDO is a theory of functional types [9] containing:

• Primitive types are: J individual entity type, H truth value (sentence) type;
• Functional type constructor: F;
• Rules.

The rules of the type theory are:

• Primitive types are types;
• If α and β are types, then Fαβ is a type;
• All types are obtained by one of the above rules.

In LDO:

• All objects are operands of type J; all propositions are of type H;
• All concepts are operators of type FJH.

An expression X of type α is specified by: X: α.
The applicative scheme that expresses the application of a concept to an object is:

f: FJH   x: J 

--------------------------------- 

f (x): H 

If f(x) is true, that is f(x) = T one says that “the object x falls under the concept f”, if f(x) is false,
that is f(x) = ⊥ one says that “the object x does not fall under the concept f”. In LDO, N1 is the operator
of negation defined as:

(N1 f) (x) = T, if and only if (f x) = ⊥
It has the classical logic property: (N1 (N1g)) = g.
In LDO, N0 is the negation of a sentence defined as:
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N0(f (x)) = T, if and only if f (x) = ⊥
LDO is an applicative language of different types of operators (on functional types, [4]) applied to

operands of different types; it is composed of:

• Objects of type J and concepts of type FJH.
• Predicates defined on individual objects (concepts of type FJH) and the relators between individuals

with respective types FJFJH, FJFJFJH, etc.);
• Proposition of type of H;
• Connectives between propositions are of the type FHFHH;
• Fregean quantifiers: simple quantifiers with the type FFJHH; restricted quantifiers with the type

FFJHFFJHH;
• Operators of negation with the type FHH (classical negation) defined only on propositions.

2.3. Basic Operators of LDO

2.3.1. The Constructor of the “Typical Object”: the Operator τ

This operator denoted by τ and called the constructor of the typical object builds an object totally
indeterminate starting from a concept. Its type is FFJHJ; it canonically associates to each concept f,
an indeterminate object τf, called “typical object”. Its applicative scheme is:

τ: FFJHJ}   f: FJH  

--------------------------------- 

τf: J  

The object τf, is the “best representative object of the concept f; it is totally indeterminate, typical
and abstractly represents the concept f in the form of an “any typical object whatever” This expression
was chosen to encode the notion captured by the word “quelconque” in French. The typical object
τf associated with f is unique. For example, if we take as concept f, the concept “to-be-a-man” then,
the typical object associated is “a-man”. For the concept f, “to-be-a-computer”, τf is “a-computer”:

2.3.2. The Operator of Determination: the Operator δ

The operator δ, called the constructor of determination operators, builds a determination operator,
starting from a given concept.

The operator δ canonically associates a determination operator of the type FJJ to each concept f.
The type of operator δ is FFJHFJJ. Its applicative scheme is:

δ: FFJHFJJ  f: FJH 

------------------------------- 

δf: FJJ 

A determination operator δ is an operator which being applied to an object x constructs another
object y: y = ((δf) x) (We use the prefixed notation of a function, that is (f x) for f(x)). The object y is
more determinate than the object x, by means of the determination added by δ. For example, if the
concept f is “to-be-red”, then δf is “red”; if f is “to-be-on-the-table, then δf is “which-is-on-the-table”.
The determination δf, “to-be-red” applied to the object “a-book” gives the more determinate object
“a-red-book”.

Determinations can be composed of each other. A chain of determination Δ is a finite string of
the form Δ = δg1 o δg2, . . . , o δgn. The composition of determinations is associative and supposed to
be commutative.
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2.3.3. Objects in LDO

More or Less Determinate Objects

A more or less determinate object is an object recursively obtained starting from the object τf by:

• τf is a more or less determinate object;
• If δf is a chain of determinations, then y = ((δg1 o δg2, . . . , o δgn) x) = (δg1 (δg2 ( . . . , δgn(x), . . . ))

is a more or less determinate object;
• Each more or less determinate object is obtained by the above rules.

Fully Determinate Objects

An object x is fully (totally) determinate if and only if for each determination δg we have:
(δg x) = x
In LDO, objects are of two kinds from the point of view of their “determination”:

• More or less determinate objects;
• Fully determinate objects.

Nevertheless, all of them are of type J.

2.3.4. Concepts and Objects

Classes of Concepts Associated with a Concept f

In LDO we postulate the existence of two classes of concepts corresponding to a given concept f:
The intension of a concept f, Int f being the class of all concepts subsumed (included) by concept f;

for example, the concepts “to-have-two-legs” and “to-have-a-mind” are both in the intension of the
concept “to-be-a-man”; if f is “to-be-a-bird”, then in its intension there is the concept “to-fly”.

The essence of a concept f, Ess f is the class of all concepts necessarily included by f.
The class Ess f is included in Int f. The concept “to-be-a-man” has the concept “to-have-two-legs”

in its intension but not in its essence. As for the concept “to-have-a-mind” it is right in the essence of
the concept “to-be-a-man”. In other words, the essence of a concept f is the set of concepts necessarily
comprised in f. If we remove a concept g from the essence of f, we “destroy” the concept f; it remains
not the same. If a concept g is in the essence of a concept f, then the negation of g cannot belong to this
essence. For the concept “to-be-a-bird”, the concept “to-fly” is in its intension but not in its essence.

Classes of Objects Associated with a Concept f

The LDO has two classes of objects associated with a concept:
Expansion (etendue in French (the Port Royal logic talks about “etendue”)). The expansion of f,

denoted by Exp f is the set of all objects of (more or less determinate or fully determinate) to which f
can be applied:

Exp(f) = {x/f(x) = T}
Extension. The extension of f, denoted by Ext f is the set of all objects fully determinate) to which

f can be applied:
Ext(f) = {x/f(x) = T}

2.3.5. Theory of Typicality in LDO

Let us take a concept f. From the point of view of inheritance of concepts in their intension, the
objects falling under it are of two kinds: typical objects of f and atypical objects of f.
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Typical Object of f

An object x falling under f is a typical object of f if and only if:
For each chain of determination Δ constructs x starting from τf and for each determination along

the chain we have:

• Either each determination concept is in the intension of f and its negation is not in the intension
of f;

• Or if there is a determination concept such that itself and its negation are in the intension of f,
then this determination concept belongs to the characteristic intension of x;

• Roughly speaking, a typical object of f is an object that inherits all the concepts of the intension of
f, Int f.

Atypical Object of f

An object x falling under f is an atypical object of f if and only if:
There is a chain of determination Δ construct x starting from τf such that:

• Either there is a determination concept that it is not in the intension of f, but its negation belongs
to this intension;

• Or if all determination concepts are in the intension of f, then x has an atypical “ascendant”
as object.

Roughly speaking, an atypical object of f is an object that does not inherit all the concepts of the
intension of f, Int f.

The typicality in LDO is based on the notion of determination.

2.3.6. The Logic of Determination of Objects (LDO) as a Deductive System

The contributions of the LDO to logic consist more in its structural part than in its deductive part.
As system of deduction LDO is a natural deduction system in Gentzen sense with types associated to
objects. It contains two types of inferences: typicality inferences inside the typical objects field and
inferences inside the atypical objects field.

3. A Formal Description of the Logic of Determination of Objects (LDO) as a Preordered
Set Model

In the LDO such as it is presented above, the set F can be seen as a collection of properties.
From the functional point of view, the concept f, as element f ∈ F is an operator. From the structural
point of view, it is a couple (Ess f, Int f), with Ess f and Int f being subsets of F . We can organize F
as a preordered set by the relation (→) between two concepts. Between the concepts f and g one can
consider that g is more primary than f. It is defined by:

g→f if g is one of the properties of f (1)

Objects as elements of O are ranked by the relation —>. It is defined by:

For any objects o1, o2 ∈ O, o1 —> o2 iff the object o2 is more determinate than the object o1 (2)

The set O is organized in this way as a preordered set.
In Figure 1, the couple (F , O) corresponding to a concept f and to the object τf is represented

by a graph. The vertices of this graph are properties in the upper side, the objects in the lower side.
The arrows correspond to the two order relations above. In the upper side the subsets Ess f (in red)
and Int f (in blue) are shown. The set NInt f (in green) is the set of negations of some properties of f
concerning, eventually, atypical objects corresponding to τf.
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Figure 1. The preordered set model of the logic of determination of objects (LDO).

One can remark that vertices both in the concept (properties) side and in the objects side are
organized on levels. In the upper side the properties on the same level are supposed to be independent.
The length of a chain g→nf can be interpreted as the number of properties in depth subsumed by the
concept f.

In the lower side a level corresponds to the number of determinations between τf and the objects
of the level. This is 1Det τf are the objects obtained from τf by a single determination, 2Det τf are the
objects obtained from τf by two determinations, etc. These objects are more or less determinate objects.
The last level of objects is the level of completely determinate objects i.e. the level of Ext f.

One can remark that the entire model of Figure 1 is a special network formed by two preordered
sets. The difference between this model and the approach in [4] consists in the fact that the structural
part of LDO is described now in terms of filters and ideals [13], not only in terms of sets.

Figure 2 represents the network corresponding to a concept f and its typical indeterminate object
τf of LDO. This network is composed by two parts the sub-network of concepts in the upper side F
and the sub-network of objects in the lower side (O). In the whole network, the vertex f corresponding
to the concept f in the upper side and the vertex τf corresponding to the fully indeterminate object are
identified as a single and same vertex (f, τf).

We remark that we can build a pair of a filter and an ideal (F,I) [13], the filter being in the upper
sideF , the ideal in the lower sideO. Such a pair is the subset of the whole network and it represents the
mathematical modeling of the relation between a concept and some of its underlying objects. Roughly
speaking, a route of the network in Figure 2 is structured top-down by two sub-networks: the concepts
sub-network corresponding to F , and the objects sub-network corresponding to O.

A route from left to right of the sub-network F brings out the intension of a concept f and the
essence of the concept f. The intension of a concept f, Int f (in blue) is formed by the sub-network
in the upper side up to the concept f included it. The essence of a concept f Ess f (in green) is a
sub-network of Int f included f. The arrows correspond to the order relation from Equation (1). We can
remark the sub-network NInt f (in red) which is the part corresponding to negation of concept in
intension. Because of the LDO theory of typicality, a negation of a concept is described explicitly in
NInt f. The vertices corresponding to negation are linked to their positive (not negated) counterparts
by a green line. The arrow related with a negation is dotted in red.

Typical objects are represented in the sub-network O by black-green double circles. Atypical
objects are represented by red-rose double circles in O. The last level is the level of fully determinate
typical objects Ext τ and of fully determinate atypical objects Ext α. Dotted arrows correspond to
relation in Equation (2).

277



Axioms 2019, 8, 104

Figure 2. The network of LDO.

The Galois Connexion and the Galois Lattice of LDO

The analysis of Figure 2 carried out above leads us to define a Galois connection on the couple
(F , O).

Definition 1 [14]. A Galois connection between two preordered sets (P ≤ P) and (Q ≤ Q) is a couple of functions
m1 and m2 such that:

m1: (P ≤ P)→ (Q ≤ Q), m2: (Q ≤ Q)→ (P ≤ P) with
For all p ∈ P, p ≤ P m2(m1(p)) and for all q ∈ Q, q ≤ P m1(m2(q)).

(3)

Definition 2 [13]. A couple ((P(P), ⊆), (P(Q, ⊆))) is called a Galois lattice.

In the case of LDO formal model, one supposes both networks O and F to be finite.
Let us denote by Fil the set of all filters in F and by P(Fil) the power set of Fil. In the same way,

we denote by Id all the ideals in O and P(Id) the power set of Id. We take P(Fil) as P from Definition 1.
The role of Q from Definition 1 is played by P(Id).

Remark 1. In the double network (F , O) there are several types of filters and ideals:

• A single filter corresponding to the intension Int f denoted by FInt (in Figure 2, in black);
• A single ideal corresponding to all typical objects denoted by IExtτ (in Figure 2, in magenta);
• Several filters containing concepts from the intension Int f and, in the counterpart NInt f (see Figure 2)

negations of concepts in Int f. Such a filter is denoted by FInt-NInt;
• Several ideals containing some typical and some atypical objects. Such an ideal is denoted by Ityp-atyp.

278



Axioms 2019, 8, 104

Definition 3. Let us define m1: (P(Fil), ⊆)→ (P(Id), ⊆) and) by:

m1(FInt-NInt) = Extτ if FInt-NInt; = FInt

m1(FInt-NInt) = Ityp-atyp otherwise
(4)

and m2: (P(Id), ⊆)→ (P(Fil), ⊆) by:

m2(Ityp-atyp) = FInt if Ityp-atyp = Extτ
m2(Ityp-atyp) = FInt-NInt otherwise

(5)

Theorem 1. The couple (m1, m2) is a Galois connection on the double network ((P(Fil) ⊆), (P(Id) ⊆))).

Corollary 1. The double network ((P(Fil), ⊆), (P(Id), ⊆))) is the Galois lattice associated to the LDO model.

4. The Logic of Typical and Atypical Instances (LTA)

The logic of typical and atypical instances (LTA) is a logic that distinguishes the concept f from
the property f. The property is an element of F, and the concept is the quadruple:

ˆf = < f, Ess f, Int f, NInt f > (6)

A concept ˆf is the quadruple formed by the property, the intension, the essence and, eventually,
the set of negations of some concepts from intension. This logic extends the logic of determination
of objects.

LTA allows us to make the whole problem slightly more complex by taking into account
objects which being no longer atypical, are nevertheless on the external outer edges of the category,
so apprehended as being related to the category but no longer belonging to it. Otherwise, ontologies of
domains are structured networks of concepts and of classes of objects. Generally, in these ontologies,
the problem of typical/atypical is not considered. Inside these ontologies only some objects are treated
as exceptions without doing a deep “logical” analysis (especially the analysis of intensions) establishing
that an object must be considered as an atypical object internal to the category or as an object on the
edges of the category, and so “almost belonging” to it but not “belonging entirely”.

We start with an example that is the analysis of a concept with the resulting categorization when
one takes into account some properties of this concept and its typical objects. This example is about
the typical and atypical objects of the class of inhabitants of a city.

Example.
The concept “living-in-X (inhabitant-of-X)” contains the property “to-be-inhabitant-of-X”.

This concept has an intension containing properties “to-have-rights” and “to-have-duties”. These
properties imply “to-be-protected-by-law” and “to-respect-the-law”, respectively. All inhabitants of
the city are not substitutable for one another. Some of them, the citizens, have the citizenship of the
country, the others (e.g., the foreigners residing in the city) do not. All citizens must pay taxes and after
age of 18 they have the right to vote. The foreigners pay taxes but, generally, they do not have the right
to vote, though in some countries some foreigner residents who are not citizens also have the right to
vote providing that, however, they are residents and have paid taxes for five years. One must consider
also inhabitants without fixed residence (homeless) being not irregular residents (“sans papiers”).
They lose (at least in some categorizations) some of their rights (such as the access to health care) and
they are not considered constrained to certain duties (e.g., to pay taxes). The lattice of the concepts F
corresponding to the concept f inhabitant-of-X is presented in Figure 3. The lattice of objects of the
same concept f is presented in Figure 4.
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Figure 3. The concept lattice of the concept “To-be inhabitant of a city X”.

Figure 4. The objects lattice of the object “An inhabitant of a city X”.

We can see from Figure 3, for example that the property to-be-a-citizen-under-18 years generates
an atypical object “a-citizen-under-18-years” because it is related to the property “not-right-to-vote”
represented in Figure 4.

In Figure 4, we can see two particular objects “an-irregular-inhabitant” and “a-homeless”. The first
one is determined only by two properties “to-have-an-address” and “to-be-an inhabitant-of-X”,
both belonging to the intension of “to-be-an inhabitant-of-X” (green arrow). The second one is
determined only by “to-be-an inhabitant-of-X” (blue arrow). So, they both are “exceptions” but
with a status different from the status of typical objects or atypical objects of the concept “to-be-an
inhabitant-of-X”. The object “an-irregular-inhabitant” has the property “to-be-an inhabitant of the city”
and the property “to-have-an-address” both belonging to the intension of “to-be-an inhabitant-of-X”.
The object “a-homeless” just falls under the property “to-be-an inhabitant-of-X”.
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Informal Description of LTA Versus LDO

• In LTA the vertices of F are properties, a concept is represented by entire lattice F . That is because
it is based by the difference between property and concept.

• In LTA in the part of objects O, there are at least two categories of objects unless typical objects
and atypical objects:

• Strong exceptions (the “homeless”, in Example);
• Weak exceptions (the “irregular inhabitant” in Example).

The difference between LDO and LTA is the following:

• The LDO describes the structure of a concept f;

The LTA structure, by integrating several type of objects, considers a network having several
networks (F , O) (Figure 2) interrelated corresponding to concepts f, g, . . . , h that is {(f, τf), (g, τg), . . . ,
(h,τh)}.

5. LTA as a Quasi Topology Structure

5.1. Quasi Topology Structure (QTS) Definition

Definition 4 [5]. Let <X, O> be a topological space where X denotes the space and O denotes the topology.
We say that a set E from this space is structured by a quasi topology or it has a quasi topology structure (QTS) if
there exists two open sets O1 and O2 of O, and two closed sets F1 and F2 such that:

O2 ⊂ O1 ⊆ E ⊆ F1 ⊂ F2 (7)

with:
O1 is the biggest open set contained in E, that is O1 = Int (E), (8)

F1 is the smallest closed set containing E, that is F1 = Cl(E), (9)

O2 is the biggest open set strictly contained in O1, (10)

F2 is the smallest closed set strictly containing F1. (11)

The set O2 is said to be the strict interior of E; the set O1 is the large interior of E. The set F2 is said
to be the large closure of E and the set F1 the strict closure of E.

The internal boundary, the external boundary, the strict boundary and the large boundary of E are
defined by:

Int-bound(E) = F1 − O2, (12)

Ext-bound(E) = F2 − O1, (13)

Large-bound(E) = Int-bound(E) ∪ Ext-bound(E), (14)

Bound(E) = Cl(E) - Int(E) = F1 - O1. (15)

The above definition is presented in an intuitive way in Figure 5.
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Figure 5. The quasi topology structure of a set E in a topological space.

Remark 2. In this definition, the structure of quasi topology (QTS) is limited to topological space X being a
topological space. In [15], we extended the QTS to some types of approximation spaces (rough sets spaces) by
replacing the notions of openness and closure by the corresponding notions of rough sets.

5.2. The QTS of the LTA

The background framework is the systems of two networks of type from Figure 2, one associated
to a network Ff, corresponding to the concept ˆf = <f, Ess f, Int f, NInt f>, the other Fg, corresponding
to concept ˆg = < g, Ess g, Int g, NInt g >.

The space X from Definition 4 is the entire set of fully determinate objects of Of and Og, namely
Ext f ∪ Ext g. We define a QTS on the fully determinate objects related to the concept ˆf.

There are four relations between fully determinate objects related to ˆf. These relations are defined
based on the structure of Ff.

• The objects verifying all the properties from Ess f and Int f. These objects are typical objects.
They form the set O2;

• The objects verifying all the properties from Ess f and at least one property of NInt f. These objects
are atypical objects. They form the set O′2;

• The objects verifying some properties from Ess f and some properties of Int. These objects are
weak exceptions. They form the set F1;

• The objects verifying only the property f as property. These objects are strong exceptions.
They form the set F2.

Definition 5. Let us define the following relations on the approximation space X = Ext f ∪ Ext g:

• typ f (o1,o2) defined by:

for all o1, o2, typ (o1,o2) iff o1,o2 are typical objects.

It is an equivalent relation. All typical objects form an equivalent class;
• atyp kf (o1,o2) defined by:

for all o1, o2, typ (o1,o2) iff o1, o2 are atypical objects with k their degree of atypicality.
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There are n relations atypk, f for k = 1, . . . , n, where n is the degree of atypicality. The degree of typicality
of an object o is the number of properties of NInt verifying by this object. All the atypical objects having the
same degree of atypicality are considered to be equivalent;

• wexi f (weak exception) defined by:

For all o1, o2, wexi f (o1, o2) iff o1, o2 are both objects falling under the same number of properties of Ess f.

There are m relations wexi, f for i = 1, . . . . m if Ess f has m properties. All the objects falling under the
same number of properties of Ess f are considered to be equivalent;

• strongex f (strong exception) defined by:

strongex f (o) iff o in an object verifying only the property f.

The relation strongex f is an unary (function prototype length 1);

Remark 3. All the relations above are defined as relations between objects but as regarding of the LDO structure
(interrelated) related to the concept ˆf. For this reason, their names are followed by f.

In LTA, a set E of objects belonging to Ext f ∪ Ext g but analyzed regarding to concept ˆf contains
objects that are directly related to concept ˆf as the typical objects of f and the atypical objects of f,
and other objects which are related to the property f but belong to the structure corresponding to
another concept g.

Theorem 2. Let us denote by (atyp f)* = ∪k=1, . . . n (atypk f)* and by (wex f)* = ∪i=1, . . . m wexi f. A subset,
set E of the approximation space (Ext f ∪ Ext g, typ f ∪ (atyp f)*, (wex f) *∪ strongex f) has the following
QTS structure:

O2 = Exttyp f

O1 = (Exttyp f ∪ (Extatyp f)*)

F1 = Extwex f

F2 = Extstrongex f

We can easily prove that O2 is the lower approximation of E as regarding to the relation typ f, O1 is
the lower approximation of E as regarding to the relation typ f ∪ (atyp f)*, F1is the upper approximation
of E as regarding to the relation (wex f)* and F2 is the upper approximation of E as regarding to the
relation strongex f.

It is obvious that O2 ⊂ O1 ⊆ E ⊆ F1 ⊂ F2.

Remark 4. This QTS structure in an approximation space is a hybridization built up with four relations and
the lower and the upper approximation of a set regarding to them.

We call this structure the QTS structure associated to a set of fully determinate objects in LTA.

6. Conclusions

In this paper a mathematical model of the logic of determination of objects (LDO) introduced
in [4] is presented. The novelty of this model is the fact that it describes the structural level of LDO by
notions of preordered sets and lattices. To represent the conceptual structure of LDO as a network
allows us to extend the main theorem of formal concept analysis [13] stating that the lattice of concepts
is a Galois lattice to LDO by establishing a Galois lattice associated to LDO network by Theorem 1.
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A mathematical model of the logic of typical and atypical Instances (LTA) [3] is also described as
an extension of LDO model. In the case of LTA we give a quasi topology structure (QTS) [6,7] to a set
of objects related to a concept.

The LDO and its associated Galois lattice theorem allows a computer software for analysis and
categorization inside ontologies to be built.

The QTS structure in LTA represents a type of approximation different from those existing until
now. It can be also useful as a model in a computer-based tool of categorization.
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Abstract: In this review, I will discuss the historical importance of “The Significance of the New Logic”
by Quine. This is a translation of the original “O Sentido da Nova Lógica” in Portuguese by Carnielli,
Janssen-Lauret, and Pickering. The American philosopher wrote this book in the beginning of the
1940s, before a major shift in his philosophy. Thus, I will argue that the reader must see this book as
an introduction to an important period in his thinking. I will provide a brief summary of the chapters,
remarking on valuable features in each of them and positions Quine abandoned in his later work.

Keywords: quine; logic; ontology

The book “Significance of the New Logic” (SNL) [1] is a translation of Quine’s “O Sentido da
Nova Lógica” [2]. He published the original in Portuguese as the result of a period of time spent
visiting the Free School of Sociology and Politics , by that time connected to the University of São
Paulo. The publication represents a stage in which the American philosopher was on the verge of
a philosophical turn. Not long after this period, Quine published the important papers “Notes on
Existence and Necessity”, “On What There is” and “Two Dogmas of Empiricism”. Most of Quine’s
writings were in English. Thus, it has not been difficult for scholars to have access in full to most
originals. However, in the 1940s, which was a period of maturation in Quine’s philosophy, he has been
writing in Portuguese, and this translation fills a historical gap Quine scholars were hoping for.

Carnielli, Janssen-Lauret and Pickering explore in many details the context in which Quine wrote
this book. They are successful in presenting the Brazilian philosophical background, especially as
regards their relative absence in the analytical scenario. In this respect, the book intended to further
introduce the Brazilians to analytic philosophy. Discussions and techniques developed by Frege,
Russell, Carnap, Tarski, Gödel and others are therefore the primary topics in the volume.

We note that Quine intended SNL to be a textbook. As such, the volume fails to give an updated
overview of techniques and it uses outdated language. However, SNL can now be regarded as a
picture of Quine’s view on logic in the early 1940s. It is wrong to regard the book only as a textbook.
The way Quine develops the logical apparatus and his preparatory remarks are the result of a very
distinct philosophical position. By a close examination of his writing, we realize he was arguing for an
extensional, nominalistic leaning ontology and a rather reluctant logicist position.

The latter part of the book is dedicated to a discussion on themes such as ontology and its
relation with philosophy of language and logic. He drafts in Portuguese the first version of his later
work: “Notes on Existence and Necessity”. Thus, he exits the scope of a pure textbook, including
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contemporary discussions on ontology and philosophy of mathematics. These topics are accompanied
by the flavour of the inner conflict that suggests parts of Quine’s mature philosophy.

Quine divides the book into an introduction and four parts: (1) Theory of composition, (2) Theory
of quantification, (3) Identity and Existence, (4) Class, Relation and Number.

The introduction in Quine’s SNL starts with a brief analysis of the new logic as opposed with
Aristotelian logic. He attributes this new development to two main reasons: Cantor’s set theory and
Russell’s paradox discovery. New developments on infinite quantities by Cantor urged mathematicians
to develop reliable tools, since even good mathematical intuition could lead to error as they handle
infinite sets. As Quine argues, “We must explore the ocean that Cantor discovered by navigating
blindly”. We thus need a precise and truth preserving tool. Russell’s paradox leads to an even stronger
need for further scrutiny on logical development once the proof of the paradox relies on a tacitly
accepted principle. Still in this introduction, Quine expresses a logicist belief, not a position he holds
in the mature phase of his work. He knew Gödel’s incompleteness results and the impact it should
have on the theory of classes being part of logic. However, he was confident that the virtual theory of
classes avoids ontological commitments in many mathematical theories. It is interesting to find Quine
defending with confidence that mathematics is reducible to logic. But even more surprising is to see
his reluctance with the definition of logic. Though not conventionalist, his characterization of logic
still relies on concepts as truth and the “essential occurrence” of logical terms.

In the first part, Quine exposes the theory of composition. He explores distinctions between
statements and sentences that are not statements. He rejects non-declarative statements and sentences
that are dependent indexical terms from logical analysis. Another notable feature of his exposition is
the fact that he insists on a simple logical vocabulary with only “∼” for negation and “.” for conjunction.
I may attribute this, as Janssen-Lauret says in the introduction, to the influence of the Principia or by
his parsimonious tendencies. Notwithstanding, Quine does not explore reasons for this preference.

Quine develops quantification theory in the second part of the book. He emphasises the problems
of quantification in its relation to natural language. Thus, he introduces each quantificational term by
first evoking misconceptions about words such as “All,” “Some,” and “Everything.” Quine’s concerns
with ontology are manifest when he discusses logical pronouns, as he hints at his ontological
conceptions later developed in “On What There is.” A drawback of Quine’s discussion is the absence
of a proof-system, as logicians now do by defining the turnstile “�.” He bases his conclusions on the
truth table method and axioms introduced to quantifiers. There is an interesting section, called the
Practical Aspect, in which he defends quantificational logic to insurance companies. This usage is not
standard for the period. Now, logic modeling of this kind of problem is routine in computer science
and engineering.

The relation between philosophical issues and logic is the main concern in the later parts of the
book. The third part of the book focuses on problems about identity. It is in this part we find the original
draft of the paper “Notes on Existence and necessity.” I found it interesting to contrast this version
with the one published in The Journal of Philosophy. The translators provided many clarifying notes on
the main differences between the two versions. They had shown that, in some points, the undecided
Quine in SNL became convinced of some positions by the time of the paper.

The last part of the book focuses on the theory of classes. Quine describes a theory of classes (now
referred to as single-sorted NBG) instead of the now more standard choice for set theories. This choice
may be for a weak hope that a virtual theory of classes would avoid ontological commitments.
In opposition, a set theory would from the start be committed to abstract entities. He later dismisses
this hope. But here we can understand the hesitant logicist influence on the American author. At this
point in Quine’s career, he was still adherent to logicist ideas as he held some positivist tendencies.
Nonetheless, he argues for a fundamental difference between classes and aggregates, emphasising
how the latter cannot account for what we may express with the former. This represents a profound
downside to logicism and positivism. As Quine argues, “the theory of classes, in contrast with logic
in the strict sense, implies an ontology.” Particularly important, this contradicts his own statements
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in the introduction, where he declares himself committed to logicism and to a form of nominalism.
He thus retreats from reducing mathematical theories to logic, restricting the scope to the reduction
of the mathematical language. In this balance, he sets forth a tentative argument of indispensability.
He later develops a virtual theory of classes, which gives hope for eliminating ontological commitment
in the theory of classes. But he adds: “Arithmetic depends on the real theory of classes, with all of its
ontological presuppositions.”

This translation is of major importance for any Quine scholar. Apart from the good quality of
the translation, the book is full of clarifying remarks. The introductory paper by Janssen-Lauret gives
a valuable general picture of this specific time of Quine’s thinking. Moreover, reviving the picture
of now established ideas may be a good source for finding new angles to reframe old questions.
Philosophers of logic, logicians, naturalist philosophers, and people interested in the history of ideas
may find great insight in the ideas expressed in the book.
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