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1. Introduction

The Industrial Internet of Things (Industrial IoT—IIoT) is the emerging core backbone construct for the
various cyber-physical systems constituting one of the principal dimensions of the 4th Industrial Revolution.
While initially born as a concept inside specific industrial applications of the generic IoT technologies, for the
optimization of the operational efficiency in automation and control, it quickly became the vehicle for the
achievement of the total convergence of Operational Technologies (OT) with Information Technologies (IT).
Today, it is already breaking the traditional borders of automation and control functions in the process
and manufacturing industry, towards a wider domain of functions and industries, embraced under the
dominant, global initiatives and architectural frameworks of Industry 4.0 (or Industrie 4.0) in Germany,
Industrial Internet in the US, Society 5.0 in Japan, and Made-in-China 2025 in China. As real-time embedded
systems are quickly achieving ubiquity in people’s everyday life and in industrial environments, and many
processes already depend on real-time cyber-physical systems and embedded sensors, IoT integration with
cognitive computing and real-time data exchanges is essential for real-time analytics and realization of
digital twins in smart environments and services under the various frameworks’ provisions [1,2]. In this
context, real-time sensor networks and systems for the Industrial IoT encompass multiple technologies and
raise significant design, optimization, integration, and exploitation challenges.

2. The Current Issue

The ten articles in this Special Issue provide advances of real-time sensor networks and systems
that are significant enablers of the Industrial IoT paradigm. In the relevant landscape, the wireless
networking technologies domain is centrally positioned, as expected. Seferagić et al. comparatively
discuss various alternatives for the engineering and deployment of industrial wireless sensor and
actuator networks (IWSAN) in [3]. In this work, LoRa, IEEE 802.11ah (Wi-Fi HaLow), Narrowband-IoT
(NB-IoT), WirelessHART, ISA100.11a, Bluetooth Low Energy (BLE), and IEEE 802.15.4g with IEEE
802.15.4e TSCH are reviewed and compared over multiple axes, including communication range, latency,
reliability, data rates, energy consumption, scalability, and spectrum regulations. WSAN reliability
and real-time performance are key aspects for effective and stable wireless control, and nearly half
of the articles of this Special Issue focus on the optimization of the quality of service offered by the
wireless stack. In this view, Park et al. propose and evaluate in [4] three different wireless transmission
scheduling schemes serving multiple and heterogeneous control systems. The reported results suggest
that the centralized Lyapunov-based scheduling approach stands closer to the ideal solution, and that
the distributed random access is a good candidate for control systems with a small number of control
loops. Furthermore, multipath retransmission in multiple channel deterministic wireless networks,
such as WirelessHART, are discussed by Wang et al. in [5], proposing the CEM-RM resource-scheduling
algorithm. Through simulations as well as data collected from real experimental setups, the authors
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demonstrate improved performance in terms of schedulability, end-to-end delay, and resource usage
efficiency compared to the M-LLF and M-RM scheduling policies. The WirelessHART protocol also
provides the context for Wu et al.’s research in [6], and especially the priority assignment for real-time
data flows mapped over the TDMA operation at the MAC layer. Cheng et al. address soft real-time
industrial applications over IEEE 802.11ah in [7]. In this work, the authors propose the channel-aware
contention window adaption (CA-CWA) algorithm, which improves the packet loss rate and average
delay by adapting the contention window based on the channel status. Along the wireless network
technologies, legacy wired real-time networks can play significant roles in the modern IIoT landscape,
as shown by Lee et al. in [8]. The authors propose a lightweight CAN virtualization technology for
virtual controllers containerized on top of an OS-based virtualization technology that provides virtual
CAN interfaces and buses at the device driver level.

Several articles in this Special Issue address important industrial IoT security and infrastructure
protection issues. Tedeschi et al. analyze the integration of modern IoT and legacy industrial equipment
for real-time machine condition monitoring applications, and the resulting security challenges in [9].
The authors propose a security-by-design approach that introduces real-time adaptation features for
device security through subsystem isolation and lightweight authentication. Similarly, the protection
of legacy devices in critical infrastructures is addressed by Fournaris et al. in [10]. The proposed
dedicated hardware security token (HST) supports a secure event log and real-time monitoring
mechanism for anomaly detection, thus isolating the typically insecure legacy OS logging mechanisms.
In connection to this, Wielgosz et al. introduce in [11] AI concepts in real-time smart sensors to detect
anomalies for the protection of superconducting industrial machinery. In particular, an embedded
Recurrent Neural Network (RNN) has been designed for a device protecting the main subsystem of
CERN’s Large Hadron Collider (LHC) accelerator. The proposed scheme demonstrates a low memory
footprint and architectural uniformity, allowing an efficient hardware implementation and a distributed
edge-computing cluster of sensors that reduce resource consumption, latency, and throughput. AI is
also the core technological domain exploited by Ntalianis et al. in [12], which is an excellent example of
the extended scope of today’s Industrial IoT. Specifically, the authors propose a deep CNN sparse coding
used for the classification of inhaler sounds in real-time directly on the time-domain, thus avoiding
computationally expensive feature extraction techniques and allowing for an efficient implementation
on constrained hardware and the integration with real-time IIoT technologies.

3. What Next?

The real-time performance of the evolving IIoT networks and systems is increasingly considered among
the major IIoT challenges, together with energy efficiency, security, and interoperability [13]. Coming as
a challenging requirement from various application domains, real-time operation is also recognized as a
mitigator of other horizontal challenges, such as energy efficiency or reliability. For example, the TSCH
operation of IEEE 802.15.4e is quite often proposed either as an energy efficiency measure, since nodes
can sleep until their precise communication slot time, or as a reliability enhancement, through its inherent
frequency hopping capability, which still requires perfect time synchronization [14]. Furthermore, timeliness
and security emerge as two major driving forces behind the increasing shift of processing towards the
edge, tightly coupled with AI capabilities in constrained embedded devices. The components needed to
build real-time wireless sensor network segments are already widely available. However, there is still open
space for tools and mechanisms that will master the complexity of configuring the scheduling functions
and other relevant specificities, including secure bootstrapping of extremely constrained structures in an
automatic or semi-automatic way, enabling both specialists and non-specialists to deploy and exploit these
new technologies. Most importantly though, the challenge consists in providing end-to-end timeliness
guarantees in complex paths of heterogeneous sensor networks and systems, that may also include heavier
real-time data analytics services over virtualized cloud infrastructures.

For all these reasons, we expect that the pressure for solutions will be increased with the upcoming
penetration of 5G [15] and the deployment of more and more complex infrastructures for critical
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monitoring and control, either inside the traditional process and manufacturing industry, or outside it,
in modern IIoT verticals, such as autonomous vehicles and V2V/V2I interactions, smart agriculture,
smart energy, smart buildings and cities, and many others.
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Abstract: Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator
Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors
and actuators in industrial environments not only enables wireless monitoring and actuation,
it also enables coordination of production stages, connecting mobile robots and autonomous
transport vehicles, as well as localization and tracking of assets. All these opportunities already
inspired the development of many wireless technologies in an effort to fully enable Industry 4.0.
However, different technologies significantly differ in performance and capabilities, none being
capable of supporting all industrial use cases. When designing a network solution, one must be aware
of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the
technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited
infrastructure cost and discusses their trade-offs in an effort to provide information for choosing
the most suitable technology for the use case of interest. The comparative discussion presented in
this paper aims to enable engineers to choose the most suitable wireless technology for their specific
IWSAN deployment.

Keywords: Industrial Internet of Things (IIoT); LoRa; IEEE 802.11ah; WiFi HaLow; Time Slotted
Channel Hopping (TSCH); Narrowband IoT (NB-IoT); Bluetooth Low Energy (BLE); BLE Long Range;
WirelessHART; ISA100.11a

1. Introduction

Industrial networks for process automation are deployed in sites which can be hundreds
of meters wide, hosting very dense networks consisted of hundreds or thousands of nodes.
Harsh industrial environments impose a number of challenges for wireless communications:
reliability, fault-tolerance and low latency being the biggest ones. Unpredictable variations in
temperature, humidity, vibrations and pressure make the industrial environments harsh, as well
as the presence of highly reflective (metal) objects and electromagnetic noise. Even though not
much data needs to be communicated in an industrial application, reliability and latency are critical,
that is, delivery of all data must be guaranteed in real-time. Wired networks have met these
requirements and are being used in spite of the high cost of wiring and the often present installation
difficulties (see Figure 1) because wireless solutions are not as robust as their wired counterparts.
Industrial automation systems in chemical industry, power plants, oil refineries or underground water
supply systems implement complex monitoring and control processes. Thousands of devices send
measured values (i.e., temperature, pressure, flow, position) to the actuators that control processes
and to the servers that coordinate the production phases. Wiring is generally both challenging and
costly (cca. 20 $/m): flammable, explosive and hot environments have to be avoided (e.g., in the
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presence of flammable gases in an oil refinery), remote or unavailable locations are hard to reach
and mobile nodes can hardly be connected at all. Although wired networks at this time cannot fully
be replaced by wireless networks in this domain, supervision and non-critical control with loose
enough requirements could be realized over wireless. In addition, significant constrains that limit
the practical deployments of wireless networks in such scenarios are battery capacity and power
consumption of the devices. Ideally, communication and power cables can be mitigated to enable a
fully wireless solution. For that, the devices should be energy efficient and able to power from a battery
for years. Moreover, wireless networks introduce logical benefits that could be used in maintenance
and commissioning, such as “plug-n-play” automation architectures to reduce downtime and speed-up
tests and “hot-swapping” faulty modules. In addition to control and supervision, global wireless plant
coverage could enable localization and tracking of parts in production, coordination of autonomous
transport vehicles and mobile robots [1].

Figure 1. Node density exponentially increases from the top (office network/Internet/Intranet) to the
bottom (machine- and device-level) in a typical automation system network hierarchy.

Industrial Wireless Sensor and Actuator Network (IWSAN) are gaining popularity in process
industries due to their advantage in lowering infrastructure cost and deployment effort. The advent
of Industry 4.0 already resulted in the successful use of IWSANs for monitoring applications and
non-critical open-loop control in factory automation. A few new wireless technologies, such as
WirelessHP [2], OFDMA wirelesscontrol [3], Real-Time-WiFi [4], Wireless network for Industrial
Automation and Process Automation (WIA-PA) [5], can replace extensive wiring on industrial
machinery, providing connectivity between machine parts with μs order of magnitude latency.
Even though they enable reliable and fast communication, the range of such networks is limited
to only a few meters, making them unsuitable for broad usage across an entire industrial site in
process automation or for reaching remote areas if infrastructure cost has to be kept low. Ranges up
to a few hundred meters are feasible with 802.15.4-based technologies such as WirelessHART [6],
ISA 100.11a [7], 802.15.4g [8] with Time Slotted Channel Hopping (TSCH) [9] and WIA-PA [10],
at the cost of other performance metrics. Sub-GHz wireless technologies, such as LoRa and SigFox,
further extend the coverage due to the better signal propagation characteristics (up to 15 km and
50 km respectively) but are not suitable for frequent critical traffic given their low data rates (up
to 50 kbps and 0.1 kbps respectively) which lead to very long transmission times in both uplink
and downlink. In downlink, long transmission times also limit the gateway to serve many nodes,
more so considering the duty cycle limitations [11]. Moreover, LoraWAN Class A and Sigfox only
allow downlink transmissions that immediately follow uplink, resulting in substantial downlink
delays due to buffering. NB-IoT experiences downlink delays due to buffering as well, when using
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the Power Saving Mode (PSM). The existing trade-off between the range and latency varies across
different technologies (cf. Figure 2), aiming to cover a variety of use cases. This paper explores the
aforementioned trade-offs and the conditions that enable the use of particular Internet of Things (IoT)
wireless technologies in heterogeneous sensor-actuator networks for mid-range communication able
to cover an industrial site ranging up to more than one kilometer in diameter.

Figure 2. Different wireless technologies have different range/latency capabilities. This article discusses
the trade-offs in mid-range technologies that could provide coverage of an entire industrial site (black
boxes) with sufficiently low latency.

Wireless Sensor Networks (WSNs) have been evaluated from different perspectives in the
state of the art literature. However, significantly smaller amount of research is conducted in the
context of IWSANs that have much more strict application requirements. An overview of key issues
and challenges of wireless technologies in industrial networks is surveyed in References [1,12–19].
Communication requirements and a general profile of a wireless fieldbus for low level short-range
factory automation systems are discussed in Reference [20]. References [13,21] discuss security and
Quality of Service (QoS) perspectives of IWSAN in industrial automation. Furthermore, an in-depth
review of recent advances in real-time IWSANs for industrial control systems is given in Reference [22],
with a focus on WirelessHART. Reference [22] reviews real-time scheduling and analytic techniques
for achieving real-time performance in Reference IWSANs. An extensive survey on wireless network
design for control systems is presented in Reference [17], briefly reviewing a few of the existing wireless
technologies in that context but mostly focusing on the joint design considerations of both control
systems and wireless networks. A comparative examination of ZigBee, WirelessHART, ISA100.11a
and WIA-PA in terms of network architecture and protocol design in the context of IWSAN is given in
Reference [19]. State of the art in Low-Power Wide-Area Network (LPWAN) solutions for Industrial
Internet of Things (IIoT) services is explored in Reference [23].

This paper takes a different approach and interprets the wireless standards from the practical
standpoint, offering the readers concrete values on achievable sampling rates, energy consumption,
scalability and coverage in practice. Both standard specifications and product datasheets provide
extensive low level data, and are insufficient on their own without additional empirical research.
This paper quantifies the existing trade-offs in wireless technologies for wireless sensor and actuator
networks with coverage of at least a couple of hundred meters, able to cover a production site or at
least a large part of it. Range is crucial in process automation for all slave nodes to be able to reach a
master node, considering that control is typically done by one or few master nodes (controllers) and a
large number of slave nodes (sensors and actuators) that take part in bidirectional communication with
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the controller and are spatially distributed over the entire site. This paper presents cost, scalability,
latency, reliability, range and energy consumption evaluation of wireless technologies with promising
range and latency potential, including LoRa, IEEE 802.11ah (Wi-Fi HaLow), Narrowband-IoT (NB-IoT),
WirelessHART, ISA100.11a, Bluetooth Low Energy (BLE) and 802.15.4g physical layer with 802.15.4e
TSCH on data-link layer. These technologies offer the possibility of a dense heterogeneous wireless
network deployment able to serve both actuators and sensors in critical applications, as well as provide
an infrastructure for supervisory traffic. Along with the practical limitations of each technology
with respect to the existing trade-offs between latency, throughput, coverage and scalability, a direct
projection of the aforementioned wireless technologies to their key performance indicators is made,
aiming to enable adequate network design in particular industrial applications.

The remainder of this article is organized as follows. The requirements and challenges that
industrial networks must comply with are summarized in Section 2. Section 3 presents a general
discussion of the key trade-offs in wireless network design in the context of the requirements, while in
Section 4 the discussed trade-offs are quantified for each particular technology. Overall discussion
and the experimental evaluation of energy consumption is presented in Section 5. Finally, Section 6
presents the conclusions.

2. Requirements and Challenges

The International Society of Automation (ISA) classified industrial systems into six classes [13]
on the basis of data urgency and operational requirements. These classes range from critical control
systems to monitoring systems, from the strictest requirements to the most relaxed ones respectively:

1. Safety systems—require immediate actions on events (usually in the order of tens or hundreds of
μs or a few ms).

2. Closed loop regulatory systems - control the system via feedback loops operating either
periodically or based on events. They may or may not have stricter timing requirements than
safety systems.

3. Closed loop supervisory systems—similar to regulatory systems with the difference that the
feedbacks are usually non-critical and event-based, for example, collecting statistical data and
reacting only when a certain trend is observed by issuing a notification or alarm.

4. Open loop control systems—where sensors collect data and store it to the central database.
An operator (human) analyzes the data and acts upon it if needed.

5. Alerting systems—send periodical or event-based alerts indicating different stages, for example,
heating up the boiler and alerting every once in a while to indicate the progress.

6. Information gathering systems—collect the data (logging) and forward the logs to a server.
These systems have no immediate operational consequence.

Wireless coverage of the entire industrial site may benefit classes 2–6, whereas class 1 requires a
solution combining both ultra-high reliability, redundancy and ultra-low latency, which is infeasible
with long range wireless considering the trade-offs. Performance requirements of different classes
are depicted in Figure 3. For site-wide coverage, a range of at least a few hundred meters is needed.
Site-wide coverage would enable multicasting measurements to several destinations, for example,
actuators, supervision systems, databases, enabling the support of different services for several classes
of industrial systems, making the network heterogeneous. Thus, site-wide IWSANs need to be scalable
enough to accommodate new nodes and provide QoS, considering that they are expected to run for
several decades. Different applications require different performance and services, as examples in
Table 1 show.
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Table 1. Cycle time and communication range requirements broadly vary over industrial automation
use-cases [12,24–26].

Application Range [m] Cycle Time

Building automation 10–200 100 ms—seconds
Monitoring and supervision 100–1000 seconds—days
Process control 50–500 10–1000 ms
Factory automation 10–50 0.5–100 ms
Automotive 1–10 1–100 ms
Interlocking and control 50–100 10–250 ms
Power-system protection 100–10 k 0.01 μs–50 ms
Event-based control 10–100 1–100 ms

Besides the key performance requirements illustrated in Figure 3, deployment cost,
energy consumption, interoperability, QoS and service differentiation come to focus especially when
considering heterogeneous networks. A wired fieldbus network is very expensive to deploy because
of tens of kilometers of cables needed to connect devices to their master nodes, the time needed
for deployment and the maintenance of such deployment. Lower deployment and implementation
costs are the prime motivations for the transition from wired to wireless solutions wherever possible.
Among wireless solutions, subscription fees for operator based networks also vary. Operator based
solutions are generally not ideal for industrial purposes as the dependence on the operator in case of
failure increases the repair time. However, reliable full-duplex operation of wired industrial networks
is a large advantage over wireless technologies that are the subject of this article. Namely, reliability
inherently suffers in the full-duplex wireless solutions because of the self-interference and increased
interference from the neighbours [27]. Opting for half-duplex instead causes the inability to send and
receive at the same time on the same channel, which in turn largely increases the latency in wireless
networks. IWSANs must operate in real time to serve class two systems. Specifically, closed loop
regulatory systems require IWSANs to sample, process and exchange the data between a sensor and
an actuator in a time frame that is less than the cycle time of the loop, with typical values ranging
from microseconds to hundreds of milliseconds (depending on the concrete process being controlled).
Critical applications (classes 1 and 2) also require redundancy, resistance to noise and robustness
against failure as they must ensure timely and successful delivery. In addition, the failure of one or a
few nodes must not compromise the operation of the network as whole.
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Figure 3. Different classes of industrial systems have significantly different performance requirements.

Many of the stated requirements are interconnected and there is no single technology that covers
all of them simultaneously. The inevitable trade-offs, their causes and consequences are elaborated in
the next section.

3. Trade-offs in Wireless Network Design

Providing wireless communication to heterogeneous applications, including the time-critical ones,
over a wide industrial site is a conflicting task. For example, l All three are partly determined by the
choice of frequency band and bandwidth but also with other design choices that create additional
interlocks between the performance parameters. These trade-offs, illustrated in Figure 4, complicate the
design of wireless solutions.

Figure 4. Network design choices (white rectangles) influence several performance properties
simultaneously (grey rectangles), thus creating the trade-offs between them.

3.1. The Transmission Range

The transmission range is mainly determined by the transmission power, typically limited
by regulations [11], the radio and propagation properties, as well as coding and modulation
complexity. If a radio transmits at a constant power, lowering this complexity rate permits the
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correct decoding of a weaker or more distorted signal by a receiver, thus extending the transmission
range. Also, higher frequency bands with more bandwidth available enable higher data rates and
faster data transmission but they also have worse penetration capabilities which reduces the range
in an industrial site full of obstacles. Range is largely determined by topology as well. Multi-hop
topologies extend the range at the expense of latency, design complexity and energy consumption
because of the need for synchronization of nodes, routing and so forth. In conclusion, low data rates at
low frequencies and multi-hop topologies are prolonging the range but they all increase latency.

3.2. Latency

Latency is reduced by increasing the data rate, in turn enabled by more complex codings and larger
bandwidths. Furthermore, multi-hop topologies increase the latency considering that forwarding
and routing introduce additional delays. In addition, computing a new route when a link fails
also introduces delay which can render multi-hop topologies useless in low-latency time-critical
applications. Medium Access Control (MAC) design has a significant impact on latency as well,
especially in IoT technologies where devices aim to sleep as long as possible to save energy, therefore
delaying transmissions and receptions. MAC protocols can be classified into four classes: (1) Fixed
Assignment Protocols where resources are divided among the nodes for a defined time duration,
(2) Demand Assignment Protocols where resources are provided to a node on demand, (3) Random
Access Protocols where resources are divided randomly and (4) Hybrid Protocols that combine fixed or
demand assignment with random access. Fixed Assignment Protocols such as Time Division Multiple
Access (TDMA) introduce determinism and achieve lower latency than random access protocols under
very high load, but under low load they waste resources by inefficient usage of the channel time,
where random access protocols achieve lower latency. Demand-based protocols are not suitable for
low-latency time-critical communications given that explicitly asking for resources every time takes up
bandwidth and adds up to latency. For heterogeneous industry applications, hybrid approaches are
the most promising given that they aim to combine the benefits of both fixed assignment and random
access protocols, while surpassing their limits at the same time and adapting to the network conditions.
In addition, retransmissions need to be kept a minimum as they also increase the latency.

3.3. Reliability

Reliability is determined by topology, MAC design and Modulation and Coding Scheme (MCS).
One of the major setbacks of wireless technologies in terms of reliability, in comparison to their wired
counterparts, is the inter- and intra-technology interference on air which can cause collisions and
increase packet loss. Technologies that operate in licensed bands reserve a part of the spectrum for
themselves, mitigating the issue. However, spectrum is a scarce resource and it comes at a high price.
Private deployments are not possible in reserved spectrum, disabling the possibility of local control over
a network. Shared spectrum, on the other hand, can be shared by any number of technologies which can
try and mitigate interference by channel hopping or using some MAC layer mechanisms such as Listen
Before Talk (LBT). Furthermore, in a single-hop networks, the success probability is entirely dependent
on a single link, opposed to multiple links in multi-hop networks. Reliability can be improved by
employing both retransmissions and repetitions at the MAC layer, which also add to the latency.
To reduce the number of retransmissions, error control techniques such as Forward Error Correction
(FEC) can be used. Coding schemes and modulation largely define reliability. Coding rates create
extra error checking bits that make modulation more reliable. Modulation schemes are more reliable
as they have fewer points on the constellation diagram but also slower. That makes Binary Phase Shift
Keying (BPSK) the slowest and the most reliable modulation compared to Quadrature Amplitude
Modulation (QAM) and Quadrature Phase Shift Keying (QPSK), given that it only accommodates
two points (one bit per burst). QPSK uses four constellations, whereas QAM can have any number of
points. Any increase in the number of points on the constellation diagram reduces the space between
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them, leaving fewer margins for error. This makes QAM the fastest modulation scheme but more
unreliable over longer distances.

3.4. Data Rate

Data rate is directly correlated with the available bandwidth and thus frequency band, on one
hand, and with modulation and coding scheme on the other. More bandwidth enables higher data
rates, while modulation techniques and coding schemes can further contribute to the achievable data
rate by encoding more data into the signal. Unlicensed wireless technologies operate either in sub-GHz
frequency bands (400 MHz, 800–900 MHz), in 2.4 GHz or in 5 GHz. Sub-GHz technologies generally
(although not universally) use narrower channels (few hundred kHZ) than those in GHz frequency
bands (22 MHz Wi-Fi, 2 MHz 802.15.4) and thus have more limited data rates than the GHz ones.

3.5. Energy Consumption

Energy consumption depends on data rate, topology and MAC design, as well as the hardware
design of course. Low data rates result in long transmission times, which increases the energy
consumption of the node and reduces the battery lifetime. Topology wise, nodes in multi-hop networks
consume more energy than in single-hop networks given that, besides their own transmissions and
receptions, they also need to forward other nodes’ packets. Energy-efficiency of data forwarding paths
give the routing protocols a strong influence over energy consumption as well. Complex coding and
decoding operations also contribute to energy consumption. For example, FEC has been omitted
in commercial 802.15.4 based networks due to the energy consumption of the decoding operation.
Nevertheless, employing FEC could reduce the overall energy consumption as less energy would be
spent on retransmissions and rescheduling [28]. Besides, MAC design has a significant impact on
energy consumption as it defines scheduling and hence the radio on and off times.

3.6. Scalability

Scalability is primarily determined by MAC design. Scheduling, contention resolution and other
MAC mechanisms work together to provide maximum network capacity. In single-hop networks,
the network capacity upon reaching the upper limit can only be extended by deploying more base
stations. However, in practice the density of such base stations is limited. Multi-hop networks
address this issue by allowing for wireless data forwarding, at the expense of overall throughput.
In TDMA-based protocols, network density is limited by the need for synchronization and time
division in combination with QoS requirements.

3.7. Spectrum Regulations

Another tackling design choice is the one between unlicensed Industrial, Scientific and
Medical (ISM) and licensed bands. On the one hand, worldwide permitted unlicensed operation
reduces the runtime costs but has no regulatory protection against interference by other wireless
networks operating in the same frequency band. On the other hand, even though licensed
bands prevent interference, they typically depend on an external operator. Therefore, network
issues cannot be immediately resolved on site, the external operator needs to resolve them.
This introduces administrative delays which are unaffordable in time-critical industrial applications.
Communication technologies operating in the unlicensed spectrum are maintained and managed
locally. However, several co-located or overlapping wireless networks operating in the same frequency
band will interfere with each other and can experience decreased QoS and extensive packet loss [14].
In an effort to alleviate coexistence issues in unlicensed spectrum, regulatory bodies have issued
a number of norms such as a Clear Channel Assessment (CCA) check before each transmission
by all devices, that is, a device has to sense if the channel is free by energy detection or other
types of Detect And Avoid (DAA) mechanisms [14]. Although the DAA mechanisms improve the
coexistence between the contending wireless nodes and networks, collisions can still occur. Apart from
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collisions, medium sensing adds to the latency and introduces non-determinism due to the medium
congestion. Aforementioned facts significantly limit the use of wireless solutions in closed loop control
applications in automation industry. A limiting regulation is present in unlicensed sub-GHz spectrum
as well. Devices with an operating range of 863–868 MHz in Europe, 916.5–927.5 MHz in Japan and
902–928 MHz in the US must comply with the maximum duty cycle limit of 2.8% and 10% for the,
Access Point (AP) provided that they support LBT and Adaptive Frequency Agility (AFA) features, 1%
otherwise [11].

4. Wireless Technologies for Industrial Applications

To support cyclic communication between sensors, actuators and controllers, sufficient throughput,
latency and range is needed. This paper only considers wireless technologies that have the potential to
enable real-time cyclic communication over a range comparable to the size of an industrial site, thus
larger than a hundred meters. In line with that, we consider the promising IIoT technologies to be
LoRa, IEEE 802.11ah and NB-IoT out of single-hop long range networks, WirelessHART, ISA100.11a,
BLE and 802.15.4g/e physical (PHY) with 802.15.4e TSCH MAC out of long range multi-hop networks.
The performance of each individual technology in terms of requirements presented in Section 2 and
trade-offs presented in Section 3 is discussed below.

4.1. Long Range Networks

Single-hop long range networks that have the potential to enable real-time cyclic communication
over a range comparable to the size of an industrial site are introduced in the remainder of this section.

4.1.1. LoRa

LoRa is a proprietary wireless data communication technology which specifies a PHY layer only.
A popular MAC for use with LoRa is the open LoRaWAN specification. LoRa PHY uses Semtech’s
proprietary Chirp Spread Spectrum (CSS) radio modulation to reduce receiver complexity while
achieving long range. CSS is resistant to Doppler effects and multipath fading. A LoRa receiver can
decode transmissions ~20 dB below the noise floor, enabling very long communication distances while
using very limited power. CSS is a spread spectrum technique where the signal is modulated by
chirp pulses whose frequency linearly varies, parametrized by the orthogonal Spreading Factors (SFs),
which can take values 7–12. The higher the SF, the longer packet transmission time and the more
reliable its reception. Therefore, high SFs improve robustness against interference and counteract
heavy multipath fading characteristic for indoor propagation and urban environments. This comes
at the cost of low data rates and much higher energy consumption. Considering 125 kHz channels,
the data rates range from 0.25 kbps to 5.47 kbps. These very low rates result in long transmission times
(and medium usage) even for small packets. For example, a 17-byte sensor reading would take over
1.5 s to transmit at SF12 and cca. 70 ms at SF7. Combining the LoRaWAN MAC and LoRa PHY data
rates results in an rather low network capacity per gateway of less than 0.02 MB per hour [29].

An experimental study on the range of LoRaWAN [30] showed that it can achieve ranges up to
7.5 km using SF10 and packets with 10 bytes of payload, resulting in 0% Packet Error Rate (PER) and
−126 dBm Received Signal Strength Indication (RSSI). When using the specification of the Wireless
M-Bus according to EM13757-4, 50 bytes of payload, Frequency Shift Keying (FSK) modulation with
an FSK deviation value of 50 kHz and a data rate of 100 kbps, LoRa achieves up to 1.35 km of range
with 0% PER and up to 3.6 km of range for <10% PER.

LoRaWAN is based on pure ALOHA, thus collisions pose the biggest issue in such networks given
the long air-times. According to LoRaWAN, edge-devices’ downloading needs determine their class:

• Class A devices have a single Receive Window (RW) scheduled immediately after a corresponding
uplink connection,

• Class B devices can schedule additional RWs,
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• Class C devices continuously listen and can receive almost anytime.

The more RWs, the more energy devices consume, that is, the power consumption increases over
the classes A through C.

LoRaWAN supports both confirmed and unconfirmed messages. However, downlink capability
of LoRaWAN networks is highly limited. With an increasing traffic load, RWs for sending
acknowledgements (ACKs) to confirmed messages are more frequently missed as the gateway cannot
transmit at the start of a RW due to the duty cycle restrictions. When a gateway sends an ACK in either
RW1 or RW2, it aborts all ongoing receptions further decreasing the Packet Delivery Ratio (PDR) [31].
Currently, various scheduling solutions are being investigated that aim to improve LoRaWAN capacity
and reliability, properties that are of interest to industrial IWSANs [32]. At this moment, even with the
adaptation of LoRa/LoRaWAN to TSCH mechanism, this technology can only fulfill requirements
for those industrial application scenarios classified to classes 3–6 that need cycle time in the order of
seconds in the best case scenario, or even minutes for very dense deployments [33]. Reference [34]
analyzed end-to-end latency of LoRaWAN in IIoT use cases and showed that LoRaWAN may be
applicable for a subset of IIoT use cases where lower SFs can achieve end-to-end delay below 400 ms.
Long distance transmissions ranging up to 15 km require a high SF and result in the end-to-end latency
well above one second, which is far beyond real-time availability of sensor data.

In conclusion, the LoRa PHY allows long range, but the low network capacity and current class A
MAC design restricts use cases to those with a combination of low data requirements, a majority of
uplink traffic and overall traffic volumes that remain far below the theoretical capacity.

4.1.2. IEEE 802.11ah/Wi-Fi HaLow

IEEE 802.11ah, marketed as Wi-Fi HaLow, can serve up to 8192 stations per AP, a much higher
value than the previous 802.11 iterations. In addition to the 1 km coverage, its relay functionality
can further increase both the network size and coverage. To limit interference between stations
and collisions, it introduces the Restricted Access Window (RAW) mechanism which combines the
deterministic and the stochastic channel access. RAW restricts the channel access for a specified
group of stations assigned to the time slots within the RAW. Stations assigned to specific slots
within a RAW contend for the medium in their corresponding slots employing Enhanced Distributed
Channel Access (EDCA)/Distributed Coordination Function (DCF). The stations are not allowed to
contend for the medium in RAW slots they are not assigned to. RAW configuration and assignment
is configurable and can change every beacon interval. RAW can reserve channel time for any group
of stations. It improves throughput in dense IoT networks where many stations contend for the
medium simultaneously. RAWs can contribute to introducing determinism in a network, if configured
accordingly. However, an arbitrary RAW configuration can also degrade network performance if
RAW is not configured with respect to the traffic patterns of the end devices. RAW duration can be
configured to any value between 500 μs and the beacon interval.

IEEE 802.11ah demonstrates robustness in industrial environments given that it has better
penetration capabilities than 2.4 GHz technologies due to sub-GHz frequency bands. It employs
Wi-Fi WPA3 for security and can be used for over-the-air software updates [35], besides monitoring
and control.

The minimal feasible cycle time in a 802.11ah network equals 2 or 4 beacon intervals, given that 2
to 4 hops are needed to complete a single cycle in a control loop in a star network: two if the controller is
wired to the AP and four otherwise. Each hop can only be executed in a single beacon interval. Beacon
intervals can be reduced in order to support low-latency loops but reducing the beacon intervals
makes the spectrum usage less efficient [36]. The minimal cycle time for a single 99.99% reliable
control loop with a wired controller is 32 ms and it can operate alongside 75 sensors reporting 64-byte
measurements every 1 s. Longer cycles enable the reliable support of more control loops, for example,
4 control loops with 64 ms cycle time and 70 sensors reporting every 1 s. IEEE 802.11ah can offer
differentiated QoS to different types of end nodes in a dense deployments [37,38]. In addition to classes
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3–6, this technology may be capable of providing QoS to class 2 as well, supporting low latency closed
loops (<100 ms) along with other non-critical traffic. However, the lower the latency requirement,
the fewer nodes the network can support due to the used up bandwidth. Hence, there is a trade-off
between the scalability and the latency that can be supported in practice. Given the lack of available
hardware at the market at this time, it is yet to be seen how does this technology perform in the real
world, outside of simulation studies.

4.1.3. Narrowband-IoT

NB-IoT aims to offer deployment flexibility allowing an operator to use only a small part of the
available spectrum for the technology. It targets ultra-low-end IoT applications. NB-IoT supports three
coverage classes, namely (1) normal, (2) robust and (3) extreme coverage class. Those correspond to the
Minimum Coupling Losses (MCLs) of 144 dB, 158 dB and 164 dB respectively. In NB-IoT, the uplink
latency consists of the system synchronization, broadcast information reading, random access,
resource allocation, data transmission and feedback response [39]. In uplink, NB-IoT makes use
of single- (20 kbps) and multi-tone (250 kbps) channels. A single-tone technology implies either 12
or 48 continuous sub-carriers with sub-carrier spacing of either 15 kHz or 3.75 kHz, respectively.
Multi-tone technology implies 12 continuous sub-carriers, with 15 kHz spacing, grouped in 3, 6 or 12
continuous sub-carriers. Spacing of 3.75 kHz results in higher coverage than 15 kHz spacing due to
the higher power spectral density, which makes the cell capacity 8% larger for 3.75 kHz-spacing [40].
In downlink, Orthogonal Frequency-Division Multiple-Access (OFDMA) is employed with sub-carrier
spacing of 15 kHz.

Recent measurements on an actual public NB-IoT network showed that the achievable application
layer throughput is significantly lower, at around 10 and 15 kbps for uplink and downlink,
respectively [41]. In terms of latency, a one-way latency of about 50 ms could be achieved under perfect
channel conditions for small packets of 8 bytes. However, for deep indoor scenarios, latency increased
to around 16 s for uplink and 8 s for downlink transmissions. Another experimental evaluation
of NB-IoT using two different commercial platforms in a public NB-IoT network has observed the
inconsistency in performance metrics, namely the energy consumption and latency [42]. The variability
of energy consumption results in an imprecise predictability of battery life and causes a difference
in performance of similar devices. Although NB-IoT is designed for delay-insensitive applications,
some cases cannot tolerate the variability of latency amounting to tens of seconds or even minutes.
Guaranteed reliability in NB-IoT comes at a cost of variability [42].

NB-IoT is superior than most of the competition in terms of range, security and availability.
However, its unpredictable latencies that can be in the order of seconds make it applicable for latency
insensitive processes only. Its random resource reservation procedures make the connection latency
high in dense networks. When connected, its throughput and latency can significantly vary depending
on channel conditions due to the repetitions and changes in MCSes. Even though the hardware is
inexpensive, NB-IoT comes with a subscription fee, while all other technologies listed in Tables 2 and 3
can be deployed privately. In conclusion, it is significantly more robust than competition which makes
it suitable for class 2 latency insensitive applications. It can also be used in classes 3–6.

4.2. Long Range Multi-hop Networks

Multi-hop networks not only extend the range but also substantially contribute to the reliability as
in mesh networks there are (typically) 2 or more paths from the source to the destination, meaning that
the loss of a link will not result in a communication failure like in single-hop networks. However, nodes
in multi-hop networks consume more energy because aside from their own packets, they also
must transmit and receive (forward) other nodes’ packets. Routing the packets adds up to latency
and complexity. Thus, even though the scalability of multi-hop networks is not explicitly limited,
deployments typically do not include more than 5 hops. The theoretical limit on the maximal
network density is based on the addressing space, which for most of the analyzed technologies

15



Sensors 2020, 20, 488

is 232, thus considered unlimited. However, the practical capacity limit is determined by the network
latency and individual device’s energy consumption. They both increase with the number of the
communication links in the network. In addition, bottlenecks can occur at one or more devices that
communicate directly with the gateway in a mesh network. Because of this, data traffic can significantly
increase resulting in the increase of the devices’ energy consumption. Also, the maximum achievable
update rate is greatly influenced by the network density given that high update rates generate more
traffic than low update rates.

4.2.1. WirelessHART

Along with the PHY, MAC, network and transport layer, the WirelessHART protocol stack also
includes the application layer. The application layer is HART, which is compatible with existing wired
HART solutions.

Both WirelessHART and ISA100.11a combine TDMA and frequency hopping at the MAC layer.
To access the channel, WirelessHART uses a two-dimensional matrix consisting of time slots and
15 available channels. Time slots are grouped in superframes which periodically repeat throughout the
entire network lifetime. Variable-length superframes are also supported and at least one superframe
must be enabled. Superframes can be added or removed during the operation of the network and they
are managed by the network/system manager. Time slot duration is fixed to 10 ms in WirelessHART.
This scheme allows multiple devices to transmit data at the same time using different channels.
However, a single device can only make use of a single channel per time slot. WirelessHART’s
(single) time slotted channel hopping mechanism also identifies noisy channels and blacklists them,
thereby greatly improving the network reliability. In addition, this technology can achieve up to
99.999% reliability by supporting mesh topologies [43]. Security in WirelessHART communication is
provided by the 128-bit Advanced Encryption Standard (AES) authentication.

WirelessHART is the oldest and the most experimentally evaluated wireless solution for
IIoT [44–47]. A study has demonstrated control over WirelessHART with the update rate of 20 ms [45].
However, this and similar studies evaluate the simplest variant of a WirelessHART network comprising
of a sensor, an actuator, an AP, a gateway (GW) and a network manager. Such a low update rate is
achievable only in star topologies and with very short superframes that disable scaling the network
up. Even though not more than 5 hops are advised in industrial networks, scaling WirelessHART
is possible (1) using multiple APs and (2) using several WirelessHART gateways connected to
a HART-over-IP backbone. This is very much needed in dense industrial environments as only
8 devices with 500 ms reporting period can be supported by a single AP [48]. In practice, a single
WirelessHART AP can support 25, 50, 80 or 100 devices at 1 s, 2 s, 4 s and 8 s reporting period
respectively. Both bidirectional (cyclic) traffic and an increment in hops doubles the latency or halves
the number of nodes. Hence, WirelessHART is eligible for use in classes 2–6 of industrial systems,
although it is limited either by latency or by scale.

4.2.2. ISA100.11a

The ISA100.11a protocol is designed for secure and reliable wireless operation for noncritical
monitoring, alerting, supervisory control, open- and closed-loop control applications (classes 2–6).
Although it is in many aspects similar to WirelessHART, unlike WirelessHART it provides flexibility
for customizing the operation of a system. It is based on 802.15.4 PHY and achieves a single-hop range
up to 100 m. The ISA100.11a utilizes TDMA and Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) on MAC layer, as well as graph routing and channel hopping which
improves reliability by avoiding busy channels. The CSMA/CA mode is commonly used for retries,
association requests, exception reporting and burst traffic. The use of any single channel is reduced
by the time-synchronized slots and channel hopping, resulting in the improvement of ISA100.11a’s
coexistence with other networks in the shared spectrum. Communication takes place in time-slots with
configurable constant lengths, varying from 10 ms to 12 ms. Time-slots are grouped in a superframe that
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periodically repeats in time. The length of the superframe is configurable and can differ for each node.
Generally, long-period superframes result in high latency and low bandwidth. However, they conserve
energy and contribute to the outspread allocation of digital bandwidth. Three methods are employed
for limiting the use of undesirable radio channels and reducing the interference with other wireless
networks: (1) CCA, (2) spectrum management and (3) and adaptive channel hopping. There are 15
(16 if the optional channel 26 is enabled) available channels to chose from in each time-slot. Three
channel hopping sequences are defined, along with five hopping patterns.

In dense deployments, ISA100.11a devices can join the network faster than WirelessHART devices,
as shown in Reference [49]. The WirelessHART network manager allows the initiation of the join
process for each transmission opportunity (TXOP) and allocates the resources for publishing data
during the join process. On the other hand, ISA100.11a employs dedicated advertisement links for
join process initiation. At the network startup, the ISA100.11a gateway acts as a join proxy. However,
each joined device may act as a join proxy, thus allowing more join opportunities. This results in
faster joining of ISA100.11a devices in a dense deployment but not when there are only few devices.
Reference [49] observed ISA100.11a to be slightly more reliable than WirelessHART, but also to have
larger latency than WirelessHART in a cyclic communication.

Unlike WirelessHART, not all devices in ISA100.11a network must have routing capability.
Without it, devices must be within one hop of a routing-capable device or the gateway. This significantly
constrains the network’s re-routing capability in case of link fading due to changes or movements in
the plant, making the network less adaptable to changes. In addition, even though the standard does
not impose a limit on the number of nodes, in practice it is only possible to connect up to 10 devices
reporting every 0.5 s to a single AP, 25 devices reporting every 1 s, 50 at 2 s, 80 at 4 s or 100 at 10 s [48].
Both bidirectional (cyclic) traffic and an increment in hops doubles the latency or halves the number of
nodes. This makes ISA100.11a suitable for application to classes 3–6, as well as to class 2 assuming
the specific requirements of a class 2 application are in line with the latency and scale constrains of
this technology.

4.2.3. Bluetooth Low Energy

Unlike classic Bluetooth which was designed as a point to point wire replacement, BLE provides
increased range with 1 Mbps data rates and recently introduced meshing. An experimental study [50]
observed the range of around 50 m indoors. The observed outdoors range for non line of sight scenarios
was 123 m and 165 m for 0 dBm and 9 dBm transmission gain respectively, versus 490 m and 790 m
in line of sight scenarios. Instead of Bluetooth’s 1-MHz wide 79 channels, BLE uses 40 channels of
2 MHz. It employs frequency hopping over 37 channels for (bidirectional) communication and 3 for
(unidirectional) advertising. Two MAC layer roles are defined for the devices in BLE, master and
slave. The master coordinates the medium access using a TDMA-based polling mechanism, in which
it periodically polls the slaves in their corresponding Connection Events (CEs) which are uniformly
spaced within a configurable periodic interval called a Connection Interval (CI). Frequency hopping is
employed in a way that each CE uses a different channel. The standard defines the CI duration as a
multiple of 1.25 ms in the range from 7.5 ms to 4 s. Therefore, the minimal cycle time equals the CI in a
BLE control loop. Considering that the sample/update rate in an industrial system should be 3–4 times
faster than the process time constant for condition monitoring and open loop control and 4–10 times
faster for regulatory closed loop control, the minimal cycle times achievable with BLE increase to
22.5 ms–30 ms for non-critical traffic and 30 ms–75 ms for regulatory loops. BLE is theoretically capable
of supporting 6 control loops exchanging 47-byte (max. size) packets with the minimal CI. Extending
the CI for n time units of 1.25 ms results in S control loops, as follows:

S =

⌊
7.5 ms + n · 1.25 ms + TGB

2 · 0.376 ms + 0.15 ms + TGB

⌋
(1)
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where 0.376 ms is the transmission duration of a 47-byte packet at 1 Mbps, 0.15 ms stands for an
Inter-Frame Spacing (IFS) and TGB (in ms) for implementation-specific guard band between two
successive CEs. This reasoning is based on the one-to-one mapping between control loops and CEs in
a single CI. Besides 2S transmissions in a CI, we must fit S IFSs between successive transmissions in
CEs and S−1 guard bands between CEs as well.

Bluetooth 5 provides the options to double the speed to 2 Mbit/s at the expense of range or
up to fourfold the range at the expense of data rate and eightfold the data broadcasting capacity of
transmissions by increasing the packet lengths. However, BLE’s limited range makes it unsuitable
for large scale IIoT deployments, as over 1000 basestations would have to be deployed to cover
the same area as a single Wi-Fi HaLow basestation. To overcome this issue, Bluetooth introduced
meshing. Communication in the Bluetooth Mesh standard in implemented using BLE advertising
and scanning on the 3 advertisement channels. The standard uses a flooding mechanism where each
node in the network repeats incoming messages, relaying them until the destination. Unlike in normal
BLE advertising, Bluetooth Mesh transmissions are not scheduled based on an advertising interval.
Instead, the nodes transmit after a random backoff time. In a Bluetooth Mesh network, increasing the
number of relaying neighbors from 1 to 10 reduces the 2-hop round-trip time (RTT) from 47 ms to
33 ms for 41-byte packets and 10 ms scanning interval [51]. Increasing the number of hops from 1 to
4 increases the RTT from 22 ms 88 ms. This is because the latency is influenced the most by the random
backoff mechanism. However, the absence of a random backoff would increase the collision probability,
decreasing the reliability and scalability of Bluetooth Mesh networks which makes it suitable only for
classes 4–6 of industrial applications.

4.2.4. Time Slotted Channel Hopping

A MAC layer with TSCH can operate on top of both 2.4 GHz- and sub-GHz 802.15.4-based PHY.
Assuming up to 4 hops, 802.15.4 networks that operate in unlicensed 2.4 GHz frequency bands can
achieve a range of up to 200 m. On the other hand, their sub-GHz counterparts based on 802.15.4 g can
reach up to 1 km single-hop range [52].

In TSCH mode, time is slotted and time slots are grouped in slot frames. Both the time-slot
duration and the number of slots in the slot frame are configurable. Slot duration is determined by the
time needed to transmit a packet and receive an ACK and typically amounts 6 ms–10 ms. The length of
the slot frame is based on the trade-off between energy consumption and throughput. Decreasing the
slot frames increases both the energy consumption and the throughput and vice versa. For cyclic
communication in a closed loop, a node would need two slots in a slot frame. The cycle could repeat
every slot frame, thus the cycle time trades off with the number of nodes in the network. A network
of two nodes could exchange packets with ~20 ms cycle time but 25 closed loops would increase the
minimal cycle time to 500 ms. Considering the best practices regarding the sampling in industrial
communications, the minimal cycle times achievable with TSCH in practice increase to 60 ms–80 ms
for non-critical traffic and 80 ms–200 ms for a single regulatory loop (2 s–5 s for 25 loops).

Besides time slotting, TSCH also utilizes channel hopping to diminish the impact of interference
and channel fading. Nodes communicate with each other over 16 orthogonal channels and retransmit
packets on different channels if initial attempts fail, thereby increasing reliability. Channel hopping
scheme could benefit the scalability and the aggregate throughput of the network if all channels were
used in a same time slot. However, this benefit is largely limited in industrial networks given that
all slave nodes communicate with the same master node in the network, as illustrated in Figure 1.
Unless a master node is able to send and receive on multiple channels simultaneously, which is not
the default capability, nodes will be forced not to transmit simultaneously, regardless of the channel
hopping scheme.

Furthermore, reliability of 2.4 GHz TSCH networks may be significantly reduced in the presence
of interference of co-located Wi-Fi networks, as shown in Reference [53]. When only a few channels
in the TSCH matrix are affected by interference, only an increase of the transmission latency due to

18



Sensors 2020, 20, 488

retransmissions could be expected. However in reality, the probability of eventual packet dropout is
no longer negligible because of the quite low default retry limit (4) and the fact that one Wi-Fi channel
overlaps many IEEE 802.15.4 channels (four to five). As Reference [53] shows, this results in an increase
of packet losses, in turn reducing the reliability. Reliability could be increased by increasing the retry
limit, hence trading off the latency and power consumption.

In conclusion, TSCH networks utilize the schedule on each node to achieve determinism and
robustness against channel fading, as well as to conserve energy. That robustness and determinism
makes TSCH suitable for class 2–6 industrial applications, assuming it can comply with the range
requirement. However, there is a strong trade-off between latency and scalability, given that multiple
channels cannot be used in parallel by different slave nodes due to the centralized master node.

5. Discussions

Key specifications of each technology introduced in Section 4 are listed in Tables 2 and 3. Note that
not all numbers in Tables 2 and 3 can be taken for granted as they do not depict the trade-offs, but
only present theoretical limits. NB-IoT operates in licensed spectrum. It can reach as far as its cellular
infrastructure goes, and it is inherently more reliable than technologies that operate in shared spectrum.
LoRa, IEEE 802.11ah and 802.15.4g operate in unlicensed sub-GHz frequency bands, which makes
their long range a feature of their physical layers. LoRa operates in 863–870 MHz frequency band
in Europe, offering three sub-bands at 864 MHz, 867 MHz and 868 MHz. Five 125 kHz channels
are defined in 867 MHz band and three in 864 MHz and 868 MHz band [54,55]. The three default
channels in 868 MHz band are to be implemented by every node, whereas the rest are optional. Wi-Fi
HaLow operates in 863–868 MHz band in Europe and defines five 1-MHz channels and two 2-MHz
channels [56]. Considering this, it is clear that Wi-Fi HaLow and LoRa’s optional channels overlap in
3 out of 7 Wi-Fi HaLow channels and do not interfere with each other otherwise, which makes their
parallel deployments possible. However, Wi-Fi HaLow can severely interfere with 802.15.4g [57], given
that they operate in the same bands. The 2.4 GHz unlicensed frequency band is widely utilized today
and the technologies that operate in this band must pay special attention to coexistence. WirelessHART,
ISA100.11a and 802.15.4e TSCH are all based on the 802.15.4 2.4 GHz PHY layer that operates in
sixteen 2 MHz-wide and 5 MHz-spaced channels in 2.4 GHz frequency band. They all employ
frequency-hopping to improve the reliability of their transmissions, as they make use of exactly the
same spectrum. Given their shorter single-hop ranges, these technologies employ multi-hop topologies
to extend their range.

Table 2. Technical properties (top) and key performance indicators (bottom) of sub-GHz wireless
technologies for the IIoT domain.

LoRa IEEE 802.11ah NB-IoT 802.15.4g TSCH

Band unlicensed sub-GHz unlicensed sub-GHz licensed (LTE band) unlicensed sub-GHz
Bandwidth 125 kHz/250 kHz 1/2/4/8/16 MHz 180 kHz 200 kHz–1.25 MHz
Topology star-of-stars star/tree cellular star, p2p mesh
Deployment private/operator-based private operator-based private

MAC LoRaWAN
hybrid LTE based

TSCH
EDCA/DCF OFDMA (DL) & SC-FDMA (UL)

Retransmissions yes yes yes yes

Reliability mechanisms
orthogonal SFs FEC, WPA1 (MIC), WPA2 (CCM)

FEC, ARQ FSK/O-QPSK/OFDM
32-bit MIC WPA3 (BIP-GMAC-256)

Range 15 km 1 km 20 km 1 km
Nodes per network unlimited 8192 52,247 per cell 6000
Data rate 250 bps–5.5 kbps/11 kbps/50 kbps 150 kbps–78 Mbps <250 kbps 6.25 kbps–800 kbps
Min. cycle time >1 s >20 ms >1.6 s > 20 ms

Orthogonal Frequency-Division Multiplexing (OFDM); Orthogonal Frequency-Division Multiple Access (OFDMA); Single Carrier FDMA (SC-FDMA); Uplink
(UL); Downlink (DL); Automatic Repeat reQuest (ARQ); Offset QPSK (OQPSK); Counter Mode Cipher Block Chaining Message Authentication Code (CCM);
Broadcast/Multicast Integrity Protocol (BIP); Galois Message Authentication Code (GMAC); Message Integrity Code (MIC).
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Table 3. Technical properties (top) and key performance indicators (bottom) of IIoT wireless
technologies based on 802.15.4 2.4 GHz PHY layer and BLE.

WirelessHART ISA100.11a BLE 802.15.4e TSCH

Band 2.4 GHz ISM 2.4 GHz ISM 2.4/5 GHz ISM 2.4 GHz ISM
Bandwidth 200 kHz–1.2 MHz 2 MHz 2 MHz 2 MHz/5 MHz
Topology mesh star/mesh/star-mesh p2p/star/mesh star, tree, mesh
Deployment private private private private

MAC
time sync., freq. hopping

TDMA / CSMA/CA (10–12 ms) TDMA
TSCH

TSMP (TDMA, 10ms) (TDMA/CSMA/CA)
Retransmissions yes yes yes yes

Reliability mechanisms
ARQ, FHSS ARQ, FHSS, DSSS FHSS, 24-bit CRC,

DSSS/OQPSK
DSSS, 32-bit MIC 32-to-128-bit MIC 32-bit MIC, FEC

Range <1.5 km (225 m) <1.5 km (100 m) <100 m/<1000 m <200 m
Nodes per network 30,000/hundreds per AP unlimited/thousands per GW unlimited unlimited
Data rate <250 kbps <250 kbps 125 kbps/1 Mbps/2 Mbps 250 kbps
Min. cycle time 500 ms 500 ms 50 ms 20 ms

Automatic Repeat reQuest (ARQ); Frequency-Hopping Spread Spectrum (FHSS); Direct Sequence Spread Spectrum (DSSS); Gateway (GW); Offset
QPSK (OQPSK); Message Integrity Code (MIC).

Wireless networks have the benefit of mitigating cabling for communication but the question of
power cables still remains. Ideally, power cables could also be mitigated when the devices can live
long enough drawing the power from the batteries available today. This is feasible for sufficiently
large cycle times. Therefore, it is important to also consider the energy consumption. To evaluate the
possibility of entirely wireless deployments that do not need power cables, an experimental energy
efficiency comparison between LoRa, NB-IoT, IEEE 802.11ah and IEEE 802.15.4g (Wi-SUN with TSCH)
was performed. The experiments combine energy consumption values of state-of-the-art off-the-shelf
radios obtained from their data sheet (cf. Table 4), with simulated performance analysis. At the
time of this study, no off-the-shelf radio was available for Wi-Fi HaLow and the same radio was
assumed as for 802.15.4g (Atmel AT86RF215), as it supports the required modulation and coding
schemes. The simulation experiments were performed using the ns-3 network simulator for LoRa [58],
NB-IoT [59] and Wi-Fi HaLow [60]. Using the 6TiSCH simulator, 802.15.4g was evaluated [61]. A single
device and a single gateway/AP is considered in the simulations. Hence, the results do not take into
account scalability or contention. To maintain simplicity, predictability and comparability of the results,
the experiments did not take into account any packet loss due to propagation errors, interference or
collisions. As such, the PHY and channel contribution to the energy consumption is limited to the
time-on-air of the radio for the reported packet sizes (including preamble and PHY/MAC header).
The main contribution of the results pertains to the energy consumption of the MAC layer protocols of
the considered technologies. For this reason, we used a simplified linear battery discharging model.

Table 4. Technology-specific parameters for energy consumption simulations.

IEEE 802.15.4g IEEE 802.11ah LoRaWAN NB-IoT

Radio module Atmel AT86RF215 SEMTECH SX1272 uBlox SARA N210
TX power (dBm) 14 23 20

Power (mA) 28/62/6.28/0.03 11.2/125/0.0015/0.0001 46/220/6/0.003
[RX/TX/idle/sleep]

Technology-specific 113 slots @ 40 ms per frame 4096 ms beacon interval no repetitions RRC: 10 s, DRX: 0 s,
parameters 2-FSK—100 kHz (50 kbps) MCS 10 —1 MHz (150 kbps) no ACK PSM: TI s

0.33% DIO and EB probability 1 RAW group, 1 slot no repetitions
Payload size 104 bytes 12 bytes

Microcontroller ARM Cortex M3 @ 32 MHz (3.38 mA power consumption)

Frequency Shift Keying (FSK); Enhanced Beacon (EB); DODAG Information Object (DIO); Destination Oriented Directed Acyclic Graph
(DODAG); Modulation and Coding Scheme (MCS); Restricted Access Window (RAW); Radio Resource Control (RRC); Power Saving Mode
(PSM); Transmission Interval (TI); Discontinuous Reception (DRX)

Wi-Fi HaLow is significantly more energy efficient than 802.15.4g with TSCH. This improvement
is due to the higher supported data rate that leads to shorter transmission times. This result is also
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reflected in the predicted battery lifetime shown in Figure 5. Given a sufficiently large battery of
2000 mAh, the lifetime of Wi-Fi HaLow is expected to be above 10 years for a 10-min transmission
interval, without battery replacement. For 802.15.4g, battery life expectancy is under 3 years in the
same scenario. For the long-range contenders, it is under a year, as shown in Figure 6b, except
the LoRaWAN SF7 that can live up to 7.5 years (cf. Figure 6a). The compared configurations of
802.15.4g and 802.11ah do not represent the best case scenario regarding energy consumption, as
both technologies are configured to use low data rates. However, the chosen settings result in similar
coverage range. In a line-of-sight scenario, 802.15.4g FSK-50 reaches a good PDR up to 700 m, while
FSK-200 goes up to 420 m [62]. For 802.11ah [63], MCS10 (150 kbps) has a range of 700 m to more
than 1000 m. For a higher data rate, 802.15.4g will achieve better energy efficiency but it’s achievable
range would be very different from that of MCS10 of 802.11ah. Similarly, 802.11ah will achieve better
energy efficiency for higher data rates (MCS10 represents the lowest possible data rate and thus the
worst case).

Figure 6 illustrates the benefits of low power modes in the design of a technology. As shown in
the Figure, the lifetime of LoRaWAN devices is much higher than that of NB-IoT. Power consumption
of LoRaWAN devices in transmission (TX)/reception (RX) mode is the dominant factor of the overall
consumption, considering the very low power consumption in the idle/sleep mode (cf. Table 4).
This results in a large difference in lifetime between LoRaWAN devices that use SF7 and SF12. The
difference between SF7 and SF12 is especially large when the transmissions are frequent. The rarer the
transmissions, the smaller the difference between SF7 and SF12 as idle/sleep time prevails and the
TX/RX time becomes less significant in comparison to the idle/sleep time.

The larger difference in battery lifetime between NB-IoT MCS9 and MCS4 occurs due to the
better efficiency of MCS9 which reflects not only in data TX/RX but also in signaling between the
transmissions which adds up to the difference. The difference between MCS9 and MCS4 also reduces
as the traffic interval increases, similarly as the difference between spreading factors of LoRaWAN.
NB-IoT has higher data rate than LoRaWAN, thus it is more efficient in terms of TX/RX. However,
the NB-IoT hardware is less efficient in terms of energy consumption in all four modes, so LoRaWAN
becomes more energy efficient relative to NB-IoT. Higher data rates of NB-IoT cannot compensate for
the energy efficiency of LoRaWAN in the evaluated scenarios.

It is important to note that the shelf life also affects the battery life. The lifetimes illustrated in
Figures 5 and 6 represent the ideal cases which only take into account the consumption of a radio
and a microcontroller. Hence, the presented results do not take into account energy consumption of
peripherals, self-discharge of battery nor other power drains. For example, when considering only
radio and microcontroller, NB-IoT platform using MCS4 and MCS9 would need around 230 mAh
and 155 mAh respectively to run for three years. For the same time period, LoRaWAN radio and
microcontroller using SF7 and SF12 would consume 8 mAh and 47 mAh, when ignoring other power
drains and employing sleep mode (45 mAh and 83 mAh with idle mode). However, the above
mentioned factors need to be taken into account when estimating very long battery lives as they make
the largest part of energy consumption over a long time.

This paper focused mostly on PHY and MAC layer features of the considered wireless
technologies, even though some technologies also address commissioning, security, roaming and
other higher layer features. In addition to PHY and MAC, LoRaWAN defines a complete network
architecture, various device types, commissioning and security (network and application). Parameter
configurations and network management are generally implementer specific for all the considered
technologies. LoRaWAN is configurable in terms of many parameters such as:

• spreading factor (and thus data rate): fixed choice or adaptive,
• reliability: ACKs or multiple transmissions of the same packet without downlink ACKs,
• higher layer logic: raw payload or Internet Protocol (IP) compliant stack.
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Choosing the network setup for a certain scenario is not always straightforward, which motivated
using optimization techniques to choose the optimal parameters [64]. Moreover, LoRaWAN does not
impose the coordination of transmissions of class A devices, which might impact scalability in real
deployments. Similarly, Wi-Fi HaLow defines PHY and MAC layer, as well as layer 2 security upon
connecting. On top, IP compliant stack is to be used. Wi-Fi HaLow is highly configurable, defining a
multitude of different parameters to be configured such as MCS, RAW, Traffic Indication Map (TIM)
and others [37,65,66]. The configurable parameters can significantly influence the performance and
the lifetime of the network. Higher layers of NB-IoT can be both IP- and non-IP compliant. NB-IoT
also defines some configurable parameters such as extended Discontinuous Reception (eDRX) and
PSM timers. However, other settings are under control of the network operator. The standard
IEEE 802.15.4g/e TSCH defines PHY and MAC, with TSCH MAC layer specifying how to execute the
schedule but not how to define it. Given that a schedule significantly impacts the network performance,
there are standardization efforts in Internet Engineering Task Force (IETF) on scheduling functions but
there is also a choice between centralized and decentralized scheduling. WirelessHART and ISA100.11a
share a similar concept as TSCH. They have self-configuration capabilities greatly simplifying the
deployment. They define the full stack and are centrally managed by the network manager that makes
use of commands defined by the standard for network management [67]. They are out there for a long
while and are quite well understood. BLE also defines the entire stack as well as other aspects such
as commissioning. BLE has configurable parameters such as advertisement interval and connection
interval that influence its performance. Different combinations of the configurable parameters can
result in a different performance of any technology in various scenarios, thus the interdependence of
the configurable parameters needs to be empirically examined.
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Figure 5. Battery lifetime of a device (both radio and microcontroller) transmitting once every 10 min
for mid-range technologies (>1 km).

22



Sensors 2020, 20, 488

250 500 1000 1500 2000
Battery Capacity (mAh)

0

345

690

1381

2071

2761
3000

Ba
tte

ry
 li

fe
tim

e 
(d

ay
s)

NB-IoT (MCS4)
NB-IoT (MCS9)
LoRaWAN (SF12, idle)
LoRaWAN (SF12, sleep)
LoRaWAN (SF7, idle)
LoRaWAN (SF7, sleep)

(a)

250 500 1000 1500 2000
Battery Capacity (mAh)

0

50

100

150

200

250

300

350

Ba
tte

ry
 li

fe
tim

e 
(d

ay
s)

NB-IoT (MCS4)
NB-IoT (MCS9)
LoRaWAN (SF12, idle)
LoRaWAN (SF12, sleep)

(b)
Figure 6. Battery lifetime of a device (both radio and microcontroller) transmitting once every 10 min
for long-range technologies (<10 km). (b) is a subset of (a) where LoRaWAN SF7 is omitted for clarity.

6. Conclusions

LoRa, IEEE 802.11ah, NB-IoT, BLE, WirelessHART, ISA100.11a and TSCH can provide site-wide
network coverage if configured and deployed accordingly, at the cost of data rate and/or latency
and/or scalability. The trade-offs of the evaluated technologies are basically equivalent qualitatively
but greatly vary in quantity, as elaborated in Section 4. NB-IoT and LoRa have potential to serve
non-critical class 4–6 systems. On top, NB-IoT is more suitable for frequent downlink traffic because
of LoRaWAN’s downlink limitations, which makes it eligible for class 3 systems, as well as latency
insensitive class class 2 systems (regulating very slow processes). However, NB-IoT typically comes
with a subscription fee and due to the operator involvement, maintenance is slower. Thus, both
have pros and cons, as well as similarities. BLE could serve supervising non-critical systems given
its inherent unreliability in mesh topology and range limitations in star. TSCH, on the other hand,
provides necessary reliability for critical services but its scale and latency are limited by the typical
industrial fieldbus topology. WirelessHART, 802.15.4e TSCH and ISA100.11a are similar in terms of
both reliability and latency. They all operate in the same frequency band and they all employ channel
hopping to improve coexistence. Although they provide high data rates in comparison to other
technologies, mesh topology increases the latency and limits the scalability. Still, these technologies
are being deployed in class 2–6 systems. Finally, Wi-Fi HaLow trades data rate for range and latency
but can still support the lowest latencies compared to reviewed technologies in networks of limited
scale. Its star topology and novel MAC design contribute to high energy efficiency. Other technologies
exhibit various trade-offs as well, ergo the choice of appropriate technology for a certain application is
very challenging, given the number of options. This paper quantitatively evaluates the aforementioned
technologies, outlining their main advantages and disadvantages and enabling the appropriate choice
of the technology for an IWSAN of interest, considering the specific latency, reliability, scalability,
energy consumption, data rate and coverage requirements.
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Abstract: The transmission scheduling scheme of wireless networks for industrial control systems
is a crucial design component since it directly affects the stability of networked control systems.
In this paper, we propose a novel transmission scheduling framework to guarantee the stability of
heterogeneous multiple control systems over unreliable wireless channels. Based on the explicit
control stability conditions, a constrained optimization problem is proposed to maximize the
minimum slack of the stability constraint for the heterogeneous control systems. We propose three
transmission scheduling schemes, namely centralized stationary random access, distributed random
access, and Lyapunov-based scheduling scheme, to solve the constrained optimization problem with
a low computation cost. The three proposed transmission scheduling schemes were evaluated on
heterogeneous multiple control systems with different link conditions. One interesting finding is
that the proposed centralized Lyapunov-based approach provides almost ideal performance in the
context of control stability. Furthermore, the distributed random access is still useful for the small
number of links since it also reduces the operational overhead without significantly sacrificing the
control performance.

Keywords: transmission scheduling scheme; industrial internet of things; wireless networks;
industrial control systems; wireless networked control systems

1. Introduction

Industrial internet of things (IIoT) through wireless sensors and actuators have tremendous
potential to improve the efficiency of various industrial control systems in both process automation
and factory automation [1–5]. IIoTs are integrated systems of computation, wireless networking,
and physical systems, in which embedded devices are connected to sense, actuate, and control
the physical plants. In wireless networked control systems (WNCSs), the wireless sensors basically
measure the physical plants and transmit its information to the controllers. The controllers then
compute the control signal based on the received sensing information in order to manipulate the
physical plants through the actuators. The wireless networks of IIoTs provide many benefits such as
simple deployment, flexible installation and maintenance, and increased modularity in many practical
control systems with the low cost [1].

Unfortunately, the network constraints such as delays and losses can significantly degrade the
control performance and can even lead to unstable control systems [1,6]. In the control community,
extensive research has been conducted to analyze the communication effects on control systems and
design the control algorithm to handle its effects on the control performance [7]. Comparatively,
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much less work of wireless network design for control systems has been proposed. In fact, current
wireless networks do not offer guaranteed stability of heterogeneous multiple control systems over
lossy channels [1]. The main reason is that the numerous parameters of the control system and the
communication system influence each other due to the complex interactions among different layers.
It is important to understand how these communication constraints affect the control stability and
performance properties in a quantitative manner. The quantitative result is an important factor to
bridge the gap between control and communication layers for the efficient and stable control operations
using IIoTs. Furthermore, the communication protocol must guarantee the stability of all control-loops
since each industrial process affects the performance of overall connected control systems [7].

The transmission scheduling policies of sensors and controllers must efficiently optimize the
traffic generation instance and transmit slot allocation since it directly affects the network delay
and loss, and eventually leading to the stability issue of control systems. Decreasing the traffic
generation interval of sensors and controllers generally improves the performance of the control
system at the cost of lossy and delayed control feedback due to the increasing network congestion.
Moreover, increasing the traffic generation rate may not satisfy the schedulability constraint of the
communication system. Thus, the transmission scheduling must adjust its operations dependent on
the control system requirements and the link conditions.

The main contribution of the paper is to propose three transmission scheduling policies, namely
centralized stationary random access, distributed random access, and Lyapunov-based scheduling
scheme, of wireless networks to guarantee the stability of heterogeneous multiple control systems over
different lossy links. The three transmission scheduling policies are based on the max-min optimization
problem where the objective is to maximize the minimum slack of the stability constraint of the control
systems. We show the performance of the proposed scheduling schemes in terms of the stability region
of heterogeneous multiple control systems over different link conditions.

The paper is organized as follows. Section 2 discusses the related works on both control and
communication aspects. In Section 3, we present a general WNCS modeling framework to include both
communication constraints such as varying delays, packet losses, and sampling intervals. In Section 4,
an illustrative WNCS example is used to present the fundamental performance issues of general
communication protocols in terms of the control stability. Based on the fundamental observation,
we formulate a novel optimization problem for the transmission scheduling of wireless networks in
Section 5. We present three different scheduling schemes, namely centralized stationary random access,
distributed random access, and centralized Lyapunov-based schedule schemes, to solve the proposed
optimization problem in Sections 6–8, respectively. In Section 9, we analyze the robust performance
of the proposed three transmission scheduling schemes to guarantee the stability of heterogeneous
control systems. Finally, we summarize the contributions of the paper in Section 10.

Notations: Z+ denotes all nonnegative integers. Normal font x, bold font x, and calligraphic font
X denote scalar, vector, and set, respectively.

2. Related Works

In the control community, extensive research has been conducted to analyze control stability
and to design control algorithms by considering the communication constraints [1,7,8]. The control
community generally considers network imperfections and constraints such as the varying packet
dropouts, network delays, and traffic generation intervals [1]. Note that all these network factors
are highly correlated dependent on the assumptions of the NCS literature. However, most NCS
studies only consider some of the network effects, while ignoring the other factors, due to the high
complexity of the stability analysis. For instance, the network effects of packet dropouts are investigated
in [9,10], of time-varying sampling intervals in [11,12], and of delays in [6,13,14]. By considering the
structure of NCSs, previous works analyze the stability of control systems by using either only
wireless sensor–controller channel (e.g., [15,16]) or both sensor–controller and controller–actuator
(e.g., [8,17–19]).
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In [19], the explicit bounds on the maximum allowable transfer interval and the maximally
allowable delay are derived to guarantee the control stability of NCSs, by considering time-varying
sampling period and time-varying packet delays. If there are packet losses for the time-triggered
sampling, its effect is modeled as a time-varying sampling period from receiver point-of-view.
The maximum allowable transfer interval is the upper bound on the transmission interval for which
stability can be guaranteed. If the network performance exceeds the given requirements, then the
stability of the overall system could not be guaranteed. The developed results lead to tradeoff curves
between maximum allowable transfer interval and maximally allowable delay. These tradeoff curves
provide effective quantitative information to the network designer when selecting the requirements to
guarantee stability and a desirable level of control performance.

In the communication community, most existing approaches design the scheduling algorithms
to meet the delay constraint of each packet for a given traffic demand [20–23]. An interesting design
framework is proposed to minimize the energy consumption of the network, while meeting reliability
and delay requirements from the control application [24,25]. In [24], modeling of the slotted random
access scheme of the IEEE 802.15.4 medium access control (MAC) is developed by using a Markov
chain model. The proposed Markov chain model is used to derive the analytical expressions of
reliability, delay, and energy consumption. By using this model, an adaptive IEEE 802.15.4 MAC
protocol is proposed. The protocol design is based on a constrained optimization problem where the
objective function is the energy consumption of the network, subject to constraints on reliability and
packet delay. The protocol is implemented and experimentally evaluated on a testbed. Experimental
results show that the proposed algorithm satisfies reliability and delay requirements while ensuring a
longer network lifetime under both stationary and transient network conditions.

The cross-layer protocol solution, called Breath, is designed for industrial control applications
where source nodes attached to the plant must transmit information via multihop routing to a
sink [25]. The protocol is based on randomized routing, MAC, and duty-cycling to minimize the energy
consumption, while meeting reliability and packet delay constraints. Analytical and experimental
results show that Breath meets reliability and delay requirements while exhibiting a nearly uniform
distribution of the work load.

Since the joint design of controller and wireless networks necessitates the derivation of the
required packet loss probability and packet delay to achieve the desired control cost, we provided the
formulation of the control cost function as a function of the sampling period, packet loss probability,
and packet delay [26]. We first presented how the wireless network affects the performance of NCSs
by showing the feasible region of the control performance. By considering these results, the joint
design between communication and control application layers is proposed for multiple control systems
over the IEEE 802.15.4 wireless network. In particular, a constrained optimization problem is studied,
where the objective function is the energy consumption of the network and the constraints are the
packet loss probability and delay, which are derived from the desired control cost. We clearly observe
the tradeoff between the control cost and power consumption of the network.

Recently, a novel framework of communication system design is proposed by efficiently
abstracting the control system in the form of maximum allowable transmission interval and maximum
allowable delay constraints [27,28]. The transmission interval is the traffic generation interval of
successfully received information. The objective of the optimization is to minimize the total energy
consumption of the network while guaranteeing interval and delay requirements of the control system
and schedulability constraints of the wireless communication system. A schedulability constraint is
introduced as the sum of the utilization of the nodes, namely the ratio of the delay to the sampling
periods. The decision variables are the set of transmission rate and sampling period. The proposed
mixed-integer programming problem is converted to an integer programming problem based on
the analysis of optimality and relaxation [27]. Then, the centralized resource allocation algorithm
gives the suboptimal solution for the specific case of M-ary quadrature amplitude modulation and
earliest deadline first scheduling. For a fixed sampling period, the formulation is also extended for
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any non-decreasing function of the power consumption as the objective function, any modulation
scheme, and any scheduling algorithm in [28]. All related works [27,28] propose the centralized
algorithm to adapt the communication parameters for the homogeneous control systems over the
equal link condition.

In [29], the cross-layer optimized control protocol is proposed to minimize the worst-case
performance loss of multiple control systems over a multihop mesh network. The design approach
relies on a constrained max–min optimization problem, where the objective is to maximize the
minimum resource redundancy of the network and the constraints are the stability of the closed-loop
control systems and the schedulability of the communication resources. The stability condition of
the control system has been formulated in the form of stochastic transmission interval constraint [19].
The centralized algorithm gives the optimal solutions of the protocol operation in terms of the sampling
period, slot scheduling, and routing.

In comparison to these works [27–29], the transmission control policies of IIoTs must optimize
both traffic generation instance and transmit slot allocations to guarantee the stability of heterogeneous
control systems over different link conditions. The earliest deadline first scheduling only guarantees the
optimal performance for the homogeneous requirements [30]. Furthermore, the centralized approach
generally provides the optimal performance but at the cost of the monitoring and network control
overhead and single point failure problem. In this paper, we focus on the robust performance guarantee
of the control stability rather than the energy efficiency issue of wireless networks. In fact, researchers
have recently applied the IEEE 802.11 standards for the real-time control applications instead of
low-power wireless standards such as IEEE 802.15.4 and 802.15.3 [1,31,32].

3. System Model

Figure 1 illustrates the general structure of multiple control processes over wireless networks.
It consists of a number of plants and controllers, which are connected through wireless networks.
When the plant and controller are connected over wireless networks, it leads to the following operation
aspects of WNCSs in Figure 1.

Figure 1. General structure of wireless networked control systems.

• While each sensor operates in a time-driven fashion, both the controller and actuator operate in
an event-driven fashion. In general, wireless sensors transmit data in each assigned time slot
dependent on the transmission scheduling scheme. However, both the controller and actuator only
respond to newly received data over unreliable wireless links. We assume that the controllers are
collocated with the actuators since the control signal is more critical than the sensing information
in many practical NCSs [7].

• In [1], we defined three major metrics of WNCSs, namely sampling interval, packet dropout,
and packet delay. Two main reasons of packet dropouts are packet discard due to the control
algorithm and packet loss due to the wireless network itself. Most works of control systems
model the dropouts as prolongations of the sampling interval [6,19]. The reason is that a
new packet is transmitted at the next transmission time with new data if a packet is dropped.
Hence, both the controller and actuator observe the time-varying sampling interval even if the
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sensing and actuating links operate in a fixed time interval. The time-varying sampling interval
of successfully received information called transmission interval (TI) effectively captures the
essential characteristics of packet dropout and sampling interval [8,19]. The delays are generally
assumed to be smaller than the transmission intervals.

The uncertain time-varying TIs and time-varying delays provide the fundamental interactions
between control and communication layers [6,19,33]. In the next section, we describe more details of
mathematical modelings and assumptions.

3.1. Control Aspect

Consider a single-hop wireless network consisting with N sensor nodes and a controller, as shown
in Figure 1. Note that the controller is considered as a base station of a general star network topology.
We assume the slotted time with slot index k ∈ Z+. Let us denote the transmission time, ts, s ∈ Z+,
of sth successfully received packet at the controller. At each slot, the transmission scheduling policy
determines which of the nodes i ∈ {1, . . . , N} can access the network. When the sensor is allowed to
transmit, it measures the plant state and sends it over the wireless channel. The packet arrives after
the transmission delay δs at the controller. Hence, the controller only updates the plant state at time
ts + δs, ∀s ∈ Z+. Figure 2 illustrates the typical evolution of plant state updates at the controller.

Figure 2. Illustration of a typical evolution of plant state updates at the controller.

The transmission times of successfully received packet satisfy 0 ≤ t0 < t1 < t2 < . . . and there
exists δ > 0 such that the TIs hs = ts+1 − ts satisfy δ ≤ ts+1 − ts ≤ h̄ for ∀s ∈ Z+, where h̄ is the
maximum allowable transmission interval (MATI). Furthermore, we assume the maximum allowable
delay (MAD) in the sense that δs ∈ [0, δ̄], ∀s ∈ Z+, where 0 ≤ δ̄ ≤ h̄. To guarantee the stability, the TI
must satisfy δ ≤ ts+1 − ts ≤ h̄, s ∈ Z+ and the delays satisfy 0 ≤ δs ≤ min(δ̄, ts+1 − ts), ∀s ∈ Z+.
It implies that each transmitted packet arrives before the next sampling instance. Hence, the delay is
smaller than the TI.

In the control community, many studies are conducted to analyze the stability of control systems
for a given set of MATI and MAD values [6,19,33]. Hence, it is possible to derive the MATI and MAD
requirements as the set of network design parameters by using the stability analysis techniques.

3.2. Communication Aspect

Denote the set of i’s interfering links, Ci = {j : j ∈ N \ i} where N is the total set of nodes for
the star topology. Let ui(k) = 1 if the node i transmits during slot k, whereas ui(k) = 0 otherwise.
When ui(k) = 1 , node i generates a new packet and transmits it over the wireless channel to minimize
the delay. Hence, the packet delay is fixed to 1 time slot. Note that we motivate the fixed delay between
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traffic generation instance and transmission schedule through an illustrative example in Section 4.
The scheduling constraint is

N

∑
i=1

ui(k) ≤ 1, ∀k ∈ Z
+ (1)

It means that the centralized scheduling scheme selects at most one node for transmission at
any given time slot k. On the other hand, each node decides its transmission for the distributed
approach. We assume that the transmission scheduling algorithm is located at the controller for the
centralized approach.

Let di(k) be the random variable to indicate the successful packet transmission of node i to
the controller. If node i sends a packet at slot k, ui(k) = 1 and other nodes j ∈ Cj do not transmit,
then di(k) = 1 with probability pi ∈ (0, 1] and di(k) = 0 with probability 1 − pi. If node i does not
transmit, ui(k) = 0, then di(k) = 0 with probability one. We assume the heterogeneous link reliability
pi over different links. Hence, the expected delay becomes

E[di(k)] = piE[ui(k)]. (2)

4. Fundamental Observation

To analyze the stability of control systems, linear matrix inequality (LMI) conditions were
verified on the polytopic overapproximation in [6,19,33]. The LMI conditions were verified using the
YALMIP [34] and the SeDuMi solver [35]. We used the analytical technique of the control stability
in [33]. This technique effectively analyzes the stability to a given linear time-invariant (LTI) plant
model, a LTI controller model, and MATI and MAD bounds on the network uncertainties. In this
illustrative example, we first analyzed the batch reactor system [33,36] to demonstrate how stability
regions can be visualized. Then, we investigated the fundamental tradeoff between MATI and MAD
for the control stability. The network is assumed to incur

• uncertain time-varying TIs h ∈ [h, h̄]; and
• uncertain time-varying network delays d ∈ [d, min(h, d̄)].

We fixed h = 10 ms and d = 10 ms due to the slot duration of the typical industrial wireless
standards [37].

Figure 3 shows the stability region over different MATI, h̄ = 0.01, . . . , 1 s and MAD,
d̄ = 0.01, . . . , 0.58 s. The circle and rectangular marker present the stability and instability operating
region for a given MATI and MAD value. The solid line represents the assumption of the MATI and
MAD constraints, namely d̄ ≤ hs ≤ h̄, ∀s ∈ Z+. Clearly, as the MATI and MAD values increase, the
control system becomes unstable. In other words, the lower are the MATI and MAD values, the better
is the control system stability. It is not simple to approximate the boundary between stability and
instability region due to the complex stability analysis techniques in Figure 3. However, in general,
the MAD requirement of the stability becomes more strict as the MATI requirement is relaxed. Hence,
there is a fundamental tradeoff between MATI and MAD requirements for the stability guarantee of
control systems.
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Figure 3. Stability region over different MATI and MAD values. The circle and rectangular marker
present the stability and instability operating region of control systems for a given MATI and
MAD value.

Since the wireless medium is shared between nodes, we analyzed the performance of typical
access control schemes in the context of the control stability. In Figure 4, we provide the TI and the
delay performance of two well-known schemes, namely time division multiple access (TDMA) and
slotted Aloha over the stability region. The color bar shows the probability density function of the
TI and the delay measurements of different access schemes. Note that the stability region in Figure 4
is equal to that in Figure 3 with different X and Y scales. The medium access scheme guarantees the
control stability if it satisfies the network performance of both TI and the delay inside of the stability
region. Hence, the outage probability of the control stability is a good performance metric of wireless
networks in the context of the control stability.
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Figure 4. Transmission interval and delay of both TDMA and slotted Aloha schemes over the
stability region: (a) TDMA performance over stability region; and (b) slotted Aloha performance
over stability region.

Both access schemes rely on the time slotted mode with N = 5 and p = 0.3. TDMA uses a simple
round robin algorithm to assign the slot to each node of the network in Figure 4a. On the other hand,
each node randomly decides its transmission based on the traditional slotted Aloha mechanism in
Figure 4b. We set the optimal channel access probability of slotted Aloha to maximize the network
throughput [38].
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By comparing Figure 4a,b, we clearly observed the completely different network performances
over the stability region. Since each node of TDMA transmits its corresponding values on the assigned
slots, it generates the packet before the transmitting slot. Hence, the delay of the TDMA scheme
is constant to 1 time slot, 10 ms, as shown in Figure 4a. On the other hand, the slotted Aloha only
generates new packets after it successfully transmits the packets. Hence, the delay of the slotted
Aloha is equal to TI. This is the main reason for significantly different behaviors between TDMA and
slotted Aloha. In fact, the outage probability of the stability region of slotted Aloha is 0.06 while its
corresponding probability is 0 for the TDMA scheme.

The MATI requirement is around 0.89 s when the delay is 10 ms for the TDMA scheme. However,
as the MAD constraint is increased to 0.5 s, the MATI requirement becomes around 0.5 s, beyond which
the control systems are unstable, as shown in Figure 4b. Increasing the packer delay significantly
degrades the stability region. Note that the retransmission of old data to maximize the reliability
increases the delay and is generally not useful for control applications [7]. As we increase the MATI
requirement, the WNCS becomes more robust since it allows more number of packet losses. Hence,
it is great to minimize the time delay between packet generation instance and packet transmission to
maximize the MATI requirement and to simplify the protocol operation. This is the main reason of the
actual packet transmission right after the packet generation in Section 3.2. Hence, the transmission
scheduling policy controls both the packet generation instance and the actual packet transmission in
this paper.

5. Optimization Problem Formulation

A transmission scheduling policy is an essential component to meet the MATI requirement of
node i for a given network setup (N, h̄i, pi). Our objective was to design low complexity scheduling
schemes to optimize the TI performance with respect to the heterogeneous MATI requirements of
each node. In this section, we first introduce the performance metric called extended transmission
interval (ETI) of the network. Then, we formulate a constrained optimization problem to optimize the
ETI performance.

5.1. Extended Transmission Interval

Since the exact definition of TI is based on the discrete random event of packet receptions, it is not
an efficient performance metric to use for the transmission scheduling policy. Hence, we introduced a
continuous version of the TI metric, called the ETI metric. The extended transmission interval describes
how old the information is from the controller perspective.

Figure 5 illustrates the evolution of ETI for a given sequence of packet deliveries of node i. Let τi(k)
denote the positive integer to represent the ETI value of node i at slot k. We reset τi(k + 1) = 1 if the
controller receives a packet from node i at slot k. As a reminder, the received packet was generated
at the beginning of slot k. However, if the controller does not receive a packet, then we increase
τi(k + 1) = τi(k) + 1. Hence, the iterative update of τi(k) is

τi(k + 1) =

{
1 if di(k) = 1

τi(k) + 1 otherwise
(3)

Note that the ETI linearly increases when there is no packet reception, as shown in Figure 5.
The ETI constraint of each link is

lim
K→∞

1
K

K

∑
k=1

E[τi(k)] ≤ h̄i ∀i ∈ {1, . . . , N} (4)
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Since we are interested on the robust ETI performance with respect to the MATI requirement of
each node, we define the ETI slack of node i as h̄i − τi(k) at slot k. Hence, the expected value of the ETI
slack of node i is

lim
K→∞

1
K
E

[
K

∑
k=1

h̄i − τi(k)

]
∀i ∈ {1, . . . , N} (5)

Figure 5. Illustration of a typical evolution of ETI.

5.2. Optimization Problem

By considering the ETI metric with the robustness criterion, our objective is to maximize the
minimum ETI slack of the network. We formulate the constrained optimization problem

min η (6a)

s.t. lim
K→∞

1
K
E

[
K

∑
k=1

τi(k)− h̄i

]
≤ η ∀i ∈ {1, . . . , N} (6b)

N

∑
i=1

ui(k) ≤ 1 ∀k ∈ Z
+ (6c)

Equations (6b) and (6c) present the minimum ETI slack value constraint and the schedulability
constraint, respectively. The optimal solution of the optimization problem assigns more network
resources as h̄i decreases, i.e., more network resources for faster control systems.

In the following section, we propose three low-complex scheduling schemes based on the
optimization problem in Equation (6). Three transmission scheduling policies are centralized random
access scheme, distributed random access scheme, and centralized Lyapunov-based scheduling scheme.
The first two approaches are randomized methods and the third one is a deterministic approach in
order to assign the slot resources to all requirement sets h̄i, ∀i ∈ {1, . . . , N}.

6. Centralized Random Access Scheme

In this section, we propose the ETI optimization problem for the stationary randomized scheduling
scheme in a centralized manner. The controller selects node i with probability αi ∈ (0, 1] in each
time slot. Hence, the randomized scheduling scheme is the vector of scheduling probabilities
α = (α1, . . . , αN). They select nodes randomly based on the fixed scheduling probabilities α.

Since we consider the stationary random scheduling, we first derive the expected behavior of ETI
in the following proposition.
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Proposition 1. The long-term expected ETI of node i is

lim
K→∞

1
K

K

∑
k=1

E[τi(k)] =
1

piαi
(7)

Proof. The proof of Proposition 1 is provided in Appendix A.

By using Proposition 1 and the schedulability constraint of α, the optimization problem in
Equation (6) is reformulated as

min
α,η

η (8a)

s.t.
1

piαi
− h̄i ≤ η ∀i ∈ {1, . . . , N} (8b)

N

∑
i=1

αi ≤ 1 (8c)

Note that Equation (8c) represents the schedulability constraint.

Optimal Solution

Since the proposed optimization problem in Equation (8) is a convex problem, we obtain the
optimal stationary scheduling probabilities α∗ by analyzing the KKT conditions of the problem.
The Lagrange function of the problem is

L(α, η, λ, γ) = η +
N

∑
i=1

λi

(
1

piαi
− h̄i − η

)
+ γ

(
N

∑
i=1

αi − 1

)
(9)

where λ = (λ1, . . . , λN), λ ≥ 0 and γ are the Lagrange multipliers due to Equations (8b) and (8c),
respectively.

The KKT conditions are

• Stationarity with αi

∇αi L(η, αi, λi, γ) = 0 (10)

• Stationarity with η

∇η L(η, αi, λi, γ) = 0 (11)

• Complementary slackness of Equation (8b)

λi

(
1

piαi
− h̄i − η

)
= 0 (12)

• Complementary slackness of Equation (8c)

γ

(
N

∑
i=1

αi − 1

)
= 0 (13)
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• Primal feasibility

1
piαi

− h̄i − η ≤ 0 (14)

N

∑
i=1

αi ≤ 1 (15)

• Dual feasibility

λi ≥ 0, γ ≥ 0 (16)

The first stationarity condition, ∇αi L(αi, λi, γ) = 0, gives

λi

piα
2
i
= γ (17)

from the partial derivation. With a similar method, the second stationarity condition,
∇η L(η, αi, λi, γ) = 0, gives

N

∑
i=1

λi = 1 . (18)

We obtain that either γ = 0 or ∑N
i=1 αi = 1 from the complementary slackness of Equation (13).

However, Equation (17) implies γ > 0 since the value of γ is zero if λi = 0 or αi → ∞, which conflicts
the conditions of Equation (18) or αi ∈ (0, 1], respectively. Hence, we obtain

N

∑
i=1

αi = 1 (19)

since γ > 0. We separate node i into two groups, namely λi = 0 and λi > 0, based on the dual
feasibility λi ≥ 0.

If node i has λi = 0, then αi = 0 from Equation (17) since γ > 0. On the other hand, if node i has
λi > 0, then

αi =
1

(h̄i + η)pi
(20)

due to the complementary slackness of Equation (12). For any fixed value of γ > 0, the randomized
scheduling probability of node i is given by Equation (20).

Our objective is to find the optimal values to meet the constraints of Equations (19) and (20).
In Equation (20), η is only unknown variable to compute the scheduling probability. Hence, we first
find the optimal value of η∗ satisfying Equations (19) and (20). Now, let us derive the boundaries of η.
The minimum value of η is 1/pi − h̄i if αi = 1 from Equation (20). Hence, the feasible range of η is

1
pi

− h̄i ≤ η ≤ 0 . (21)

From Equation (20), a decreasing value of η, the probability αi increases. As η converges to
the lower bound, η → 1/pi − h̄i, Equation (19) becomes ∑N

i=1 αi ≥ 1. On the other hand, as η → 0,
then ∑N

i=1 αi = ∑N
i=1

1
h̄i pi


 1 due to Equation (20). Hence, there is a unique value of η∗ to meet

Equation (19) due to the monotonicity of αi with respect to η. By gradually increasing η from 1/pi − h̄i
and adjusting αi using Equation (20), we find the unique set of α∗ and η∗ that satisfies Equations (19)
and (20).
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Next, we compute the optimal set of λ∗ and γ∗. With a similar method, the boundaries of γ are

0 ≤ γ ≤ γ̄ = max
i∈{1,...,N}

1
piα

2
i

(22)

The upper bound of γ is derived from Equations (17) and (19). By gradually decreasing γ from γ̄,
we adjust λi = γpiα

2
i from Equation (17). We then obtain the optimal set of λ∗ and γ∗ for Equation (18).

Note that the unique vector (α∗, η∗, λ∗, γ∗) fulfills the KKT conditions.

7. Distributed Random Access Scheme

In this section, we present a distributed random access where each node decides its transmission
probability so that the minimum ETI slack of the network is maximized. Let us assume that each node
i transmits a packet with probability βi in each slot. As a reminder, the set of i’s interfering links is Ci.
Let β = (β1, . . . , βN) be the vector of transmission probabilities of all nodes. Hence, a transmission of
node i ∈ {1, . . . , N} is successful if and only if no node in Ci transmits during the transmission of node
i. Hence, the successful transmission probability of node i is

piβi ∏
j∈Ci

(1 − β j) (23)

By applying Equation (23) to Proposition 1, the long-term expected ETI of node i is

lim
K→∞

1
K

K

∑
k=1

E[τi(k)] =
1

piβi ∏j∈Ci
(1 − β j)

(24)

After substituting Equation (24) into Equation (4) of the ETI constraint, we obtain

1
pih̄iβi ∏j∈Ci

(1 − β j)
≤ 1 . (25)

Motivating by the network utility problem [39,40], we formulate a constrained optimization
problem to optimize the transmission probability of nodes. Our objective is to maximize the minimum
ETI slack with respect to h̄i of the network. After some manipulations of Equation (6), we propose the
max-min robust optimization problem

max
β,ψ

ψ (26a)

s.t. aiβi ∏
j∈Ci

(1 − β j) ≥ ψ ∀i ∈ {1, . . . , N} (26b)

where ai = pih̄i. Notice that ψ > 1 is necessary for the feasibility of ETI constraint of Equation (4).
Different fairness notions corresponding to different utility functions are discussed in [39,40].

Unfortunately, the proposed max-min robust problem in Equation (26) is a non-convex problem.
Next, we convert the problem in Equation (26) to a convex optimization problem in order to design
the distributed random access scheme.
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Proposition 2. The max-min robust problem in Equation (26) is equivalent to the following convex
programming problem

min
1
2

N

∑
i=1

ν2
i (27a)

s.t. νi ≤ log ai + log βi + ∑
j∈Ci

log(1 − β j) (27b)

νi = νj ∀i ∈ {1, . . . , N}, ∀j ∈ Ci (27c)

Proof. The proof of Proposition 2 is provided in Appendix B.

Optimal Solution

A distributed algorithm can effectively obtain the optimal access probability of the previous
convex optimization problem in Equation (27). In this section, we show how globally optimal access
probability is obtained in a distributed manner. When we replace the equality constraints νi = νj
of Equation (27) by two inequality constraints, νi ≤ νj and νi ≥ νj, the Lagrange function of the
problem is

L(β, ν, μ, ω) =
1
2 ∑

i∈N
ν2

i + ∑
i∈N

μi

⎛
⎝νi − log ai − log βi − ∑

j∈Ci

log(1 − β j)

⎞
⎠+ ∑

i∈{1,...,N}
∑
j∈Cj

ωi,j(νi − νj) (28)

where μ = (μ1, . . . , μN) and ω = (ωi,j, i ∈ {1, . . . , N}, j ∈ Ci) are the Lagrange multipliers and
ν = (ν1, . . . , νN).

Our basic idea is to apply the gradient project method for the dual problem maxβ,ν D(β, ν) where
the dual function is D(β, ν) = minβ,ν L(β, ν, μ, ω) [41]. By considering the stationarity condition of
the Lagrange function, they give ∂L

∂βi
= 0

βi =
μi

μi + ∑j∈Ci
μj

(29)

and ∂L
∂νi

= νi + μi + ∑j∈Ci
ωi,j − ωj,i = 0

ui =

[
−λi − ∑

j∈Li

(vi,j − vj,i)

]−
(30)

where [z]− = min(z, 0). Note that βi satisfies the constraints 0 ≤ βi ≤ 1. The Lagrange multipliers of
the gradient project method are adjusted in the direction of the gradient ∇D(β, ν):

μi(n + 1) =
[

μi(n) + εn
∂D
∂μi

]+
(31)

ωi,j(n + 1) =

[
ωi,j(n) + εn

∂D
∂ωi,j

]+
(32)

Here, εn > 0 is the step size at the nth iteration, and [z]+ = max(z, 0). The gradient are
∂D
∂μi

= νi − log ai − log βi − ∑j∈Ci
log(1 − β j) and ∂D

∂ωi,j
= νi − νj.
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8. Centralized Lyapunov-Based Scheduling Scheme

The Lyapunov optimization theory is extensively applied to the general communication and
queueing systems [42]. Using Lyapunov optimization techniques, we derive the centralized scheduling
scheme for the ETI optimization problem in Equation (6). The Lyapunov-based scheduling scheme
uses the feedback ETI state of nodes in order to reduce the value of the Lyapunov function. We define
the Lyapunov function to give a large positive scalar when nodes have high ETI with respect to the
MATI h̄i. Hence, the Lyapunov-based scheduling approach basically tries to minimize the growth of
its function.

Next, we define the fundamental components of the Lyapunov-based scheduling scheme, namely
Lyapunov function with notions of the ETI debt. Let us denote xi(k) as the ETI debt of node i at slot k.
The ETI debt of node i is

xi(k) = τi(k)− h̄i (33)

where h̄i is the MATI value and τi(k) is the ETI at slot k.
When the scheduling scheme does not meet the ETI requirement h̄i, then the value of the ETI

debt is positive. We define the positive part of the ETI debt, x+i (k) = max(xi(k), 0). As increasing debt
x+i (k) indicates to the scheduling scheme that node i needs more transmission slots to meet the MATI
requirement.

Let Sk = (x1(k), . . . , xN(k)) be a vector of network ETI dept states at slot k. Then, we define the
Lyapunov Function by

V(Sk) =
1
2

N

∑
i=1

[
(xi(k))2 + G(x+i (k))2

]
(34)

where G is a large positive value to emphasize the ETI constraints. Remark that V(Sk) is large when
nodes have high ETI with respect to the requirement or positive ETI debt.

Optimal Solution

To minimize the Lyapunov function, we introduce the Lyapunov drift

Δ(Sk) = E [V(Sk+1)− V(Sk)|Sk] (35)

Note that the Lyapunov drift measures the change of the Lyapunov function over time slots.
The Lyapunov-based scheduling scheme minimizes V(Sk) by reducing Δ(Sk) in every slot k.

The high computation complexity of V(Sk) prevents us from deriving the exact form of Δ(Sk).
Hence, we derive the upper bound of Δ(Sk) and apply it for the actual transmission scheduling scheme.

Proposition 3. The upper bound of Δ(Sk) is

Δ(Sk) ≤ −
N

∑
i=1

E[ui(k)|Sk]Pi(k) + Q(k) (36)

where Pi(k) and Q(k) are given by

Pi(k) = piτi(k)[xi(k) + 1 + G(x+i (k) + 1)] (37)

Q(k) =
N

∑
i=1

[
xi(k) +

τ2
i (k)
2

+ G

(
x+i (k) +

τ2
i (k)
2

)]
(38)

Proof. The proof of Proposition 3 is provided in Appendix C.
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We observe that both Pi(k) and Q(k) are functions of the network state Sk and setup parameters
(N, h̄i, pi). However, Q(k) of Equation (38) is not dependent on the scheduling decision ui(k). Hence,
in each slot k, the centralized Lyapunov-based scheduling scheme selects the node with maximum
value of Pi(k) to minimize the upper bound of Δ(Sk).

9. Performance Evaluation

In this section, we evaluate the performance of four transmission scheduling policies, namely
ideal scheduling scheme, centralized random access scheme, distributed random access scheme,
and centralized Lyapunov-based scheduling scheme. The ideal scheduling scheme optimizes the
transmission schedule based on the entire packet loss sequences of each link. Hence, it gives
the fundamental performance bounds even though it is not feasible to implement in practice.
We considered a star network topology where N sensor nodes contend to send data packets to
the controller. Each node has different sets of h̄i and pi. Note that each link i of the centralized
scheduling approach has equal pi for both uplink and downlink. Let us denote the maximum MATI
and minimum MATI of the network as hmax and hmin, respectively. With a similar method, we define
the maximum link reliability and minimum link reliability of the network pmax and pmin, respectively.
Then, the MATI and link reliability of node i are

h̄i =
hmax − hmin

N − 1
(i − 1) + hmin ∀i ∈ {1, . . . , N}, (39)

pi =
pmax − pmin

N − 1
(i − 1) + pmin ∀i ∈ {1, . . . , N}. (40)

The lower are the values of h̄i and pi, the more challenging are the constraints. Hence, the lower
node ID has more strict MATI requirement with worse link reliability. Each simulation ran K = N × 108

time slots.
Both centralized schemes of static random access and Lyapunov-based schedule need the resource

allocation message to assign the time slot to nodes. We assumed that both centralized schemes use one
additional slot to transmit the resource allocation message. The centralized solutions consume two
slots for the single data transmission while the distributed random access only requires one slot for the
data transmission. Since the packet delay is fixed to 1 time slot, we mainly analyzed the performance
of TI of different schemes.

Figure 6 shows the cumulative density function (CDF) of slack of ideal solution, centralized
random access, distributed random access, and Lyapunov-based approach with link reliability
pmin = 0.9, pmax = 1, MATI requirement hmin = 70, hmax = 100, and number of nodes N = 8. The slack
is the difference between MATI and TI measurements. As a reminder, the minimum slack of TI with
respect to MATI is the objective value of the proposed optimization problem. The higher is the slack,
the better is the robustness. Hence, a lower CDF is better than a higher CDF for the stability guarantee.
The Lyapunov-based scheduling scheme generally gives a lower CDF than other CDFs. However,
our objective was to maximize the worst slack of the network. In fact, the worst slack value of the
ideal solution is greater than the one of the Lyapunov-based approach in Figure 6. Hence, the ideal
solution still provides the optimal solution of our proposed optimization problem in Equation (6)
using the perfect knowledge of the packet loss sequences. The Lyapunov-based approach efficiently
improves the robust performance based on the feedback slack information between TI and MATI of
heterogeneous multiple control systems.
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Figure 6. CDF of slack of ideal solution, centralized random access, distributed random access, and
Lyapunov-based approach with N = 8.

On the other hand, there is a significant gap between ideal solution with two randomized
scheduling approaches, namely centralized random access and distributed random access. Note that
the centralized random access does not rely on any feedback information of TI. The interesting
observation is that the distributed random access generally performs better than the centralized one for
N = 8. Even though the distributed random access may incur the collisions with other transmissions,
each data transmission requires only one time slot. While the centralized random access has no
contention with other nodes, each data transmission consumes two time slots due to the resource
allocation message. Since the collision probability is low for the small number of nodes, the distributed
random access gives better robustness, as shown in Figure 6.

Another interesting point is the different percentile values between four schemes. While the four
schemes have similar 50th percentile values, the percentile difference between different approaches
increases as the percentage decreases. It means the worst case performance of the proposed approaches
is significantly different.

Figure 7 shows the minimum slack, average TI, and outage probability of four different schemes
as a function of different number of nodes N = 3, . . . , 30 with link reliability pmin = 0.9, pmax = 1,
and MATI requirement hmin = 50, hmax = 100. The outage probability is defined as the probability
that the TI value is greater than MATI, h̄i.

Let us first compare the performance between ideal solution and Lyapunov-based approach.
In Figure 7a,c, the ideal solution provides the lower outage probability and higher minimum slack
than the one of the Lyapunov-based approach. However, the average TI of the ideal solution is
slightly higher than the one of Lyapunov-based approach in Figure 7b. As a reminder, the objective
of the proposed optimization problem is to maximize the minimum TI slack with respect to MATI
requirements instead of minimizing average TI value of the network. The average TI is not explicitly
considered in the optimization problem.

While the Lyapunov-based approach is comparable with the ideal solution, both random accesses
show significantly different behaviors. In Figure 7, the centralized random access has an almost
constant gap of the minimum slack, average TI, and outage probability with the Lyapunov-based
approach over different number of nodes. On the other hand, the distributed random access
significantly degrades these performance metrics as increasing the number of nodes. By comparing two
random accesses, the distributed random approach provides better performance than the centralized
random access for the small number of nodes N ≤ 9. There is the fundamental stability limits of
the distributed random access approach due to the increasing collision probability dependent on the
number of nodes [38].
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Figure 8 shows the MATI requirement and the average TI of each node using different transmission
scheduling schemes with N = 9. As a reminder, the MATI requirement and link reliability become
more strict as decreasing node ID of the network. We observe that the average TI of the ideal
solution is decreasing as the MATI requirement becomes more strict for the lower node ID. However,
the Lyapunov-based approach is quite flat over different MATI requirements with respect to the ideal
solution. The node ID 1 provides the minimum slack of both ideal solution and Lyapunov-based
approach of the network. This is the main reason of the greater minimum slack of the ideal solution at
the cost of the higher average TI compared to the Lyapunov-based approach in Figure 7.
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Figure 7. Minimum slack, average TI, and outage probability of ideal solution, centralized random
access, distributed random access, and Lyapunov-based approach as a function of different number of
nodes N = 3, . . . , 30: (a) minimum slack vs. number of nodes; (b) average TI vs. number of nodes; and
(c) outage probability vs. number of nodes.

On the other hand, both random accesses significantly increase the average TI as the MATI
requirement becomes relaxed for the higher node ID. In both random accesses, the slack between
MATI and average TI is decreasing as the node ID increases. In fact, the minimum slack value of both
random accesses occurs at node ID 9.
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Figure 8. MATI requirement and average TI of each node using different transmission scheduling
schemes with N = 9.

While the centralized random access supports the stationary optimal resource allocation,
its operation requires the additional slots for the resource allocation message. In fact, each successful
data transmission of the centralized approaches needs both successful transmissions of the resource
allocation message and data packet. Hence, the performance of the random access is a complex
function of number of nodes, link reliability, and operational overhead. Figure 9 compares the channel
access probabilities of each node using both centralized random access and distributed random access
with N = 9. Both solutions of random accesses assign the higher access probability to the higher
priority node ID, i.e., lower node ID. While the channel access probability of distributed random access
is mush smoother for different nodes, the centralized random access approach sets the very high
channel access probability 0.58 for the most demanded node ID 1. In fact, both random accesses show
the over-allocation of slot resources to the most demanded node as shown in Figure 8.
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Figure 9. Access probability of each node using centralized random access and distributed random
access schemes with N = 9.

10. Conclusions

In this paper, we consider the transmission scheduling schemes of industrial wireless sensors
for heterogeneous multiple control systems over unreliable wireless channels. We first discuss the
fundamental tradeoffs of the TI and the packet delay of wireless networks for the control stability.
Based on the fundamental observation, we formulate the constrained optimization problem of
maximizing the minimum slack of the TI with respect to the maximum allowable requirement of all
network nodes. We propose three low-complex transmission scheduling schemes, namely centralized
stationary random access, distributed random access, and centralized Lyapunov-based scheduling
scheme, to solve the proposed optimization problem. The simulation results show that the centralized
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Lyapunov-based scheduling approach provides robust performance closer that is to the ideal solution
by using the feedback state information. Furthermore, the distributed random access is another good
candidate of the transmission scheduling for the small number of control loops.

The practical validation of the proposed scheduling scheme is critical in the context of industrial
setup [3]. Future investigations include the practical implementation of different scheduling schemes
using Zolertia sensors [43] based on the specifications of the IEEE 802.15.4 standard. Furthermore,
we are planning to extend the proposed framework to balance the control cost and the energy efficiency
while considering the additional constraints using the energy harvesting techniques [44].

Author Contributions: B.P., I.-J.Y., and P.P. conceived the main idea and the network model; J.N., J.-Y.C., and P.P.
contributed to data analysis and simulation; all authors contributed to write the paper.

Funding: The work was supported by the Basic Research Laboratory (BRL) of the National Research Foundation
(NRF-2017R1A4A1015744) and the NRF-2016R1C1B1008049 funded by the Korean government.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Proposition 1

Proof. In each slot k, the controller successfully receives a packet if the node is scheduled with
probability αi and the link condition is good with probability pi. Hence, the probability of successful
transmission of node i is piαi. Let us denote hi as the TI of successful received packet of node i. Then,
the sum of ETI is

K

∑
k=1

τi(k) = 1 + 2 + . . . + hi =
h2

i + hi

2

Note that hi follows P[hi = j] = piαi(1 − piαi)
j−1, ∀j ∈ Z+ since it is independent and identically

distributed. By using renewal theory, the expected ETI of node i becomes

1
K

K

∑
k=1

E[τi(k)] =
1

E[hi]

(
E[h2

i ] +E[hi]

2

)
(A1)

Hence, the long-term expected ETI of node i is

lim
K→∞

1
K

K

∑
k=1

E[τi(k)] =
E[h2

i ]

2E[hi]
+

1
2
=

1
piαi

(A2)

due to its generalization for renewal-reward processes [45].

Appendix B. Proof of Proposition 2

Proof. Since the logarithmic function is strictly increasing, each ETI constraint of Equation (26b) is
equivalently rewritten as ν ≤ log ai + log βi + ∑j∈Ci

log(1 − β j), ∀i ∈ {1, . . . , N} where ν = log ψ.
Hence, the constraint becomes

ν − log ai − log βi − ∑
j∈Ci

log(1 − β j) ≤ 0 . (A3)

Note that each constraint of Equation (A3) shows a convex set of (β, ν) with the monotonically
increasing logarithmic function. Hence, the optimization problem of Equation (26) is reformulated as
the following convex problem

max ν (A4a)

s.t. ν ≤ log ai + log βi + ∑
j∈Ci

log(1 − β j) . (A4b)

47



Sensors 2018, 18, 4284

Since we assume the fully connected graph of the single hop network, all νi must have equal
value, namely νi = νj for all i ∈ {1, . . . , N} and j ∈ Ci. By assuming aiβi ∏j∈Ci

(1 − β j) ≤ 1, we have
ν ≤ 0. Hence, maximizing ν is equivalent to minimize ν2 in the optimization problem. Therefore, it is
possible to rewrite the non-convex optimization problem in Equation (26) to the convex problem in
Equation (27).

Appendix C. Proof of Proposition 3

Proof. In this appendix, we obtain the upper bound of the Lyapunov drift Δ(Sk) of Equation (36).
Let us consider the network state Sk, the Lyapunov function V(Sk) in Equation (34), and the Lyapunov
drift Δ(Sk) in Equation (35). After plugging Equation (34) into Equation (35), we obtain

Δ(Sk) =
1
2

N

∑
i
E[x2

i (k + 1)− x2
i (k)|Sk] +

G
2

N

∑
i
E[(x+i (k + 1))2 − (x+i (k))2|Sk] (A5)

In Equation (A5), we derive the expressions of (x+i (k + 1))2 − (x+i (k))2 and x2
i (k + 1)− x2

i (k).
The ETI update of Equation (3) is rewritten as

τi(k + 1) = τi(k)(1 − di(k)) + 1 (A6)

By combining Equations (33) and (A6), the iteration of the ETI debt is

xi(k + 1) = xi(k)− τi(k)di(k) + 1, (A7)

where xi(1) = 0. Hence, (x+i (k + 1))2 becomes

(x+i (k + 1))2 = [max(xi(k)− τi(k)di(k) + 1, 0)]2 (A8)

≤ [max(x+i (k), 0)]2 (A9)

≤ (x+i (k))2 (A10)

Equation (A10) is rewritten as

(x+i (k + 1))2 − (x+i (k))2 ≤− 2τi(k)(x+i (k) + 1)di(k) + 2x+i (k) + τ2
i (k) . (A11)

By taking the expectation of Equation (A11), we compute the upper bound

E[(x+i (k + 1))2 − (x+i (k))2|Sk] ≤ −2τi(k)(x+i (k) + 1)piE(ui(k)|Sk) + 2x+i (k) + τ2
i (k) (A12)

With a similar method, we get

E[(xi(k + 1))2 − (xi(k))2|Sk] ≤ −2τi(k)(xi(k) + 1)piE[ui(k)|Sk] + 2xi(k) + τ2
i (k) (A13)

After substituting Equations (A12) and (A13) into the Lyapunov drift of Equation (A5), we obtain
the upper bound of Δ(Sk) as Equations (36)–(38).
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Abstract: With recent adoption of Wireless Sensor-Actuator Networks (WSANs) in industrial
automation, wireless control systems have emerged as a frontier of industrial networks. Hence,
it has been shown that existing standards and researches concentrate on the reliability and real-time
performance of WSANs. The multipath retransmission scheme with multiple channels is a key
approach to guarantee the deterministic wireless communication. However, the efficiency of resource
scheduling is seldom considered in applications with diverse data sampling rates. In this paper,
we propose an efficient resources scheduling algorithm for multipath retransmission in WSANs.
The objective of our algorithm is to improve efficiency and schedulability for the use of slot and
channel resources. In detail, the proposed algorithm uses the approaches of CCA (clear channel
assessment)-Embedded slot and Multiple sinks with Rate Monotonic scheme (CEM-RM) to decrease
the number of collisions. We have simulated and implemented our algorithm in hardware and
verified its performance in a real industrial environment. The achieved results show that the
proposed algorithm significantly improves the schedulability without trading off reliability and
real-time performance.

Keywords: Wireless Sensor and Actuator Networks (WSANs); multipath retransmission; resource
scheduling; realtime wireless communication; monitoring and control system

1. Introduction

The process automation industry continuously works towards minimizing the cost of production
and maintenance while improving the quality of their products. A step towards that goal is to
utilize wireless technologies, which offer advantages such as less maintenance, more flexibility, and
easy deployment in harsh industrial environments [1,2]. As one of the key technologies, industrial
Wireless Sensor-Actuator Networks (WSANs) will play a vital role in the Industry 4.0 framework
and Cyber Physical System (CPS) and will also be important for future smart factories and intelligent
manufacturing systems [3]. However, harsh conditions, such as complicated environments and
metal interference, result in more packet loss in WSAN transmissions compared with traditional
wireless sensor networks [4]. Additionally, application-driven industrial communication increases the
requirements of stringent reliability as well as time efficiency [5]. Within process automation, standards
such as WirelessHART, ISA100.11a, and IEEE (Institute of Electrical and Electronics Engineers) 802.15.4e
have been operational for nearly a decade, and there exists several researches that address support for
emerging applications, such as data aggregation [6], control, and safety [7,8]. All of the above standards
employ the Times-Slotted Channel Hopping (TSCH) Medium Access Control (MAC) protocol instead
of pure contention-based MAC protocol Carrier-Sense Multiple Access with Collision Avoidance
(CSMA/CA). The TSCH provides the capability of allocating a specific amount of bandwidth per
node in a preknown pattern [9,10]. Moreover, channel hopping addresses unreliability caused by
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multipath fading and narrow-band external interference. However, these issued standards do not give
specific link scheduling for efficient data transmission. An obstacle faced in guaranteeing deterministic
communication in industrial environments, however, is that the sensor node hardware is usually
equipped with an IEEE 802.15.4 compliant half-duplex single radio transceiver [11]. The resources such
as slot and channel are restricted, since the transceiver supports only up to 16 different channels [12].

Communication ranges of most sensor devices are limited to short distances due to low power
of transmission. Furthermore, obstacles in the wireless link or local interferences make single-hop
topology WSANs difficult to deploy. Therefore, data packets originating from a source device are
relayed to a destination device on end-to-end basis [13]. Thus, relaying packets in a multi-hop
wireless network should be performed by reserving timeslots to provide on-time packet delivery.
The unpredictable packet loss makes the retransmission scheme inevitably considered to achieve the
desired levels of reliability. Multipath routing is one of the essential retransmission schemes to improve
the robustness of end-to-end transmission in error-prone wireless communication environments [14].

However, multipath retransmission needs to be pre-allocated for more communication resources.
Thus, the efficiency of resource scheduling is supposed to be considered. Moreover, the industrial
WSAN is a technological paradigm that enables advanced and complex services by interconnecting
a possibly large number of low-complexity resource-constrained embedded devices equipped with
diverse sensors and actuators [15]. The incorporation that WSANs support the coexistence of
different sampling rates is imperative for a better industrial solution. At such instances, resource
scheduling needs to be considered for schedulability, since more collisions may exist in the process of
resource allocation.

Addressing the above problems, this paper proposes an efficient resource scheduling of CCA
(clear channel assessment)-Embedded slot and Multiple sinks with Rate Monotonic scheme (CEM-RM)
for multipath retransmission. The proposed CEM-RM scheme aims at periodic sensors, and we
assume that multiple sampling periods exist on scheduled sensor nodes. For event-driven sensors,
the CEM-RM scheme is also applicable. However, the maximum delay of packet transmission is the
length of a superframe. Since the time that events occur cannot be predicted accurately, the time of
waiting on communication resources increases the total end-to-end delay. The scheduling of CEM-RM
aims to deal with the problem of schedulability for multipath retransmission scheduling. Therefore,
first, we assume that the multipath routing graph of all the nodes can be successfully constructed.
Second, the IEEE 802.15.4-based radio transceivers support 16 channels on 2.4 GHz. The scheduling
of CEM-RM needs multiple channels; thus, we assume that at least eight channels can be used for
scheduling without interference. Finally the last assumption is that multiple sampling periods exist
on scheduled industrial flows and that the minimum period should not be less than the transmission
delay of nodes, which are at the greatest distance from the gateway. The main contributions of this
paper are listed as follows:

1. We analyze the resource scheduling principle for the multipath retransmission scheme based
on the WirelessHART standard, and we design a link release algorithm to cater the principle of
routing order in data flow.

2. We use the approaches of multiple sinks, CCA-embedded timeslot, and rate monotonic scheme to
respectively decrease the negative effects of collision, path crossing, and diverse period during
resources scheduling. Based on the above approaches, we propose an algorithm (CEM-RM) to
improve the schedulability of resources scheduling.

3. We finally simulate our proposed algorithm to prove the improvement of schedulability.
Additionally, we implement a WSAN system with our proposed scheduling in a real factory.
The practical experiments are conducted to prove the reliability and real-time performance.

The rest of the paper is organized as follows. Section 2 presents the related works, and Section 3
describes the system model and the principle of multipath retransmission scheme. Moreover, we
present the constraints during resources allocation. In Section 4, we present the proposed Link Release
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algorithm and CEM-RM algorithm in more detail. The simulation and experimental results are
illustrated in Section 5, and finally, we conclude our work in Section 6.

2. Related Works

The use of multiple channels in the TSCH MAC protocol enables benefits including diversity,
network scalability, and optimized scheduling. In the last couple of years, a notable trend in
multichannel MAC solutions can be seen in Reference [16]. Zhao et al. [17] present multichannel,
TSCH-based source-aware scheduling schemes for WSNs. The algorithm benefits from multiple
channels but fails to guarantee reliability. Dobslaw et al. [5] extend the SchedEx [18] scheme to a
multichannel scenario by introducing scalable integration in existing schemes. The authors also claim
to cut latencies around 20% in the schedules from ShedEx. Kim et al. [19] proposed a distributed
solution based on multichannel allocation that achieves max-min fairness among multiple flows.
However, the fairness of channel use in such approach needs to trade off throughput. Researches, such
as References [20–23], deeply exploit the use of multiple channels. The approaches proposed in these
literatures focus on decreasing the interferences while using multiple channels in their specific type of
WSNs. Therefore, this paper also makes full use of available channels to optimize TSCH scheduling.

Multipath routing allows multiple streams of information from source to sink, which significantly
increases the reliability of data reception, especially in industrial environments. Liew, Soung-Yue et al. [24]
propose a complete process of channel assignments for adaptive and energy-efficient data collection
protocol, which could schedule the node connectivity based on traffic load. Van Luu et al. [25] proposed
a scheduling algorithm for multipath routing structures, the objective of which is to reduce the message
complexity. Mo Sha et al. [26] propose a novel channel-hopping methods for the exchange of data
packages, which could prevent links, sharing the same destination from using channels with strong
correlations. Xi jin et al. [27] proposed a mixed criticality scheduling algorithm, which guarantees
the real-time performance and reliability requirements of data flows with different levels of criticality.
Through the empirical studies, the above researches also show that graph routing leads to significant
improvements over source routing in terms of worst-case reliability, where graph routing protocol is a
classical multipath transmission approach in the WirelessHART standard. However, none of these
researches simultaneously consider the effect of collision, path crossing, and diverse period on TSCH
scheduling, which also lacks concentration on schedulability in a large WSAN.

The gateway resides at the root of all graphs in a wireless network, and it can provide multiple
network access points, which are named sink nodes in this paper. The responsibility of a sink node is
to maintain the connection between wireless nodes and the gateway, where most researches regard a
sink node as a gateway [28]. However, the sink node is a hotspot and experiences more link conflicts
than other nodes do when we schedule a multi-hop routing graph. Due to the deadline of industrial
data transmission, this characteristic seriously decreases the schedulable ratio, especially in larger
networks. Therefore, this paper provides multiple sink nodes to avoid the link scheduling conflicts
and to improve the use of communication resources. In Reference [29], the authors apply the theory
of compressive sensing on a multi-sink wireless sensor network, which could improve the capability
for data gathering. However, the presented architecture of the network is not complicated enough to
support routing graphs. Multiple sinks are generally used in the distributed scenario to balance the
traffic load, which is responsible for packet collection as a substation [30–33]. In this paper, we realize
a multi-sink gateway to achieve a highly schedulable WSAN in a practical industrial application.

3. Network Model

3.1. Network Description

Deterministic communication heavily relies on resource scheduling management. Accordingly,
network management techniques adapted for industrial wireless mesh are critical. This paper adopts
centralized management to form a deterministic WSAN, the structure of which is shown in Figure 1.
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A network mainly consists of field nodes, multiple sinks, a gateway, and a centralized network manager.
All field nodes operate over low-power radios compliant with the IEEE 802.15.4-2006 standard,
which supports 16 channels in the 2.4 GHz ISM band. The TSCH MAC protocol is implemented in
this paper to guarantee deterministic communication. One time slot is 10 ms long and allows for
channel switching and the transmission of a single packet together with data-link acknowledgement
(DL-ACK). Time slots can be either dedicated or shared, where the shared time slot is amended to
CCA-Embedded Slot (CES) as proposed in Reference [34]. In a dedicated time slot (DTS), only a single
transmitter–receiver pair can communicate on any given channel, thereby not allowing channel reuse.
CES, in which multiple nodes are scheduled on the same channel, is mainly used for decreasing the
use of slots for path crossing.

Network 

Manager

Host

Gateway

Sinks
Nodes

Figure 1. The structure of an industrial wireless sensor-actuator network (WSAN) system.

To guarantee the reliability of the flow transmission, we adopt the graph routing retransmission
approach advised in the WirelessHART standard. As shown in Figure 2, packets can be sent by a
device which has two direct neighbors at least in a graph. One is the primary routing path (PRP),
and another is the alternative routing path (ARP). Each type of path has a receiving node for relaying
packets. A node should preferentially send packets along the PRP. If the transmission is failed in
PRP, the node will change to using ARP. In this paper, we assume that the multipath graph is already
generated by the network manager. Therefore, all the possible transmissions should be involved in a
slot and channel scheduling. The scheduling of slot and channel for all packet flows also has some
considerations and limitations in the following based on WirelessHART.
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Figure 2. An example of the graph routing retransmission scheme.

• The allocation of slot and channel based on graph routing is so that a device can send a packet at
most three times, including the first transmission and two retransmissions. The first transmission
and retransmission are along the PRP, and the second retransmission needs to change to be along
the ARP, where the changes of link includes the neighbor and channel.

• According to the above consideration, each flow consists of dedicated and abundant transmissions,
all which should be allocated for the slots and channels by the network manager. Moreover, each
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slot allocation should follow the routing orders, where the slot offset of next-hop transmission
and retransmissions should not be allocated before the slots of the previous-hop transmission.

3.2. System Model

We describe the model of a WSAN, which consists of field devices, multiple sinks, a gateway, and
a centralized network manager, as shown in Figure 1. We consider that the network can be modelled
as a graph G = (N, L), in which the set N = {n1, n2, . . . , sk} represents all the nodes, including field
devices ni and sinks sk. L is the link set, where the element lij in L indicates the connection state
between the nodes ni and nj. lij = 1 means ni and nj can directly communicate with each other.
x(ni, nj) represents a transmission with the direction from node ni to nj. Thus, for a link lij, xt,c(lij)
represents the transmission allocated on the time slot t and channel offset c. The length of a time
slot is denoted by κ. The actual channel can be calculated by (ASN + c) mod |C|, where ASN is the
absolute counting of slot advance and C is an available channel set. Thus, the channel scheduling is
only relevant to the assignment of channel offset. For example, xt,c(lij) = 1 represents that node ni
transmits a packet to node nj using channel c at slot t, otherwise, xt,c(lij) = 0. Based on the above
network model, all transmissions need to be scheduled by the TSCH MAC protocol. Thus, some
basic constraints expressed by Equations (1)–(4) should be considered, which seriously influence the
performance of transmission scheduling.

First, more than one transmissions cannot be occurred simultaneously in a certain slot and
channel unless nodes use some contention-based mechanism. Otherwise, one transmission may
generate wireless interference to interfere with the other transmissions.

∑
ni∈N

∑
nj∈N

xt,c(lij) ≤ 1, ∀t, ∀c ∈ C (1)

Second, the DL-ACK should be sent within one slot for reliability. Thus, a node can only transmit
to one neighbor at any slot.

∑
c∈C

∑
nj∈N

xt,c(lij) ≤ 1, ∀t (2)

Third, since a low-power node in the network only supports half-duplex wireless communication,
obviously, it cannot be the transmitter and the receiver simultaneously.

∑
c∈C

∑
ni∈N

xt,c(lij) + xt,c(lji) ≤ 1, ∀t (3)

Finally, multichannel transmission can make full use of slot and channel resources; however, the
number of available channels is limited. Thus, the number of transmissions cannot be beyond the
number of available channels.

∑
c∈C

∑
ni∈N

∑
nj∈N

xt,c(lij) ≤ |C|, ∀t (4)

We consider all the end-to-end deliveries in a network as a flow set, which is denoted by F =

{F0, F1, . . . , Fγ}. The number of flows that need to be scheduled is denoted as γ. A flow can be
characterized by Fk : 〈Xk, Ek, p′k, φk〉, where Xk = {xk(s1, d1), . . . , xk(sτ , dτ), . . . } is the collection of
all transmissions in a flow, Ek is the collection of transmission release orders related to the routing
order, and φk is the routing path from the first source node to the last destination node. sτ and dτ

are the source node and the destination node in a transmission, respectively. One of the elements
e(α, β) in Ek represents that the transmission xk(sβ, dβ) is released after all the transmissions xk(sα, dα).
Each Fk periodically generates a packet with the period p′k, and the flow should be finished before its
deadline dk.

All the slots for a flow construct a superframe which is repeated periodically. The supported
periods are defined as 2a · pm based on WirelessHART, where a is an integer and pm is the minimum
period among all flows. Without loss of generality, we transfer the period of all flows to the regular
period through Equation (5), since it can let the scheduling fit with the data period better.
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pk = pm · 2�log2
p′k
pm �, p′k ≥ pm, k = 0, 1, . . . , γ (5)

For example, assuming the basic period is 20 ms, then the supported periods can be 20 ms, 40 ms,
80 ms, and so on. All the superframes constitute a hyperframe, the period of which is the maximum
period among the superframes. The period is denoted as T and is expressed by Equation (6).

T = max{pk, k = 0, 1, . . . , γ} (6)

We use H[t][c] to denote which transmission is allocated on time slot t and channel c. The number
of slots in a hyperframe is denoted by |H| = T/κ. As an example, if the first transmission of flow F1

is allocated for slot 0 and channel offset 0, it can be expressed as H[0][0] = x1(s1, d1), otherwise, it is
H[0][0] = EMPTY if there is no transmission allocated to H[0][0]. We assume that the deadline of a
flow transmission is equal to its period in this paper. Thus, all the transmissions in a flow should be
scheduled within the period, where the constraint can be expressed by Equation (7).

t ≤ pk
κ

, ∀xk(sτ , nτ), k ∈ {0, 1, . . . , γ} (7)

4. The Proposed Scheduling

In this section, we introduce the CEM-RM algorithm for the multipath retransmission scheme
based on graph routing in WirelessHART. We also present the proposed approaches to make the
scheduling more efficient. The symbols and related functions used in the algorithms are listed
in Table 1.

Table 1. Symbols and functions.

Symbols Description

Di
the number of links lji in a subgraph, where the node ni is the
destination node.

H[t][c] the transmission allocated for time slot t and channel c

W the collection of time slots, which are already allocated for transmission
τ, where its element is �τ

Ct the collection of available channels at time slot t
Ωt the collection of all the transmissions allocated to time slot t
Ψt the collection of available sinks at time slot t

|Ct|, |Ψt| the number of corresponding elements in the collection

Functions Description

Add(y, Y) the function responsible for adding an element y into the collection Y
Del(y, Y) the function responsible for deleting an element y into the collection Y

ASort(Y, z) the function responsible for sorting all the elements in Y in ascending
order, according to feature z

4.1. Transmissions Release Algorithm

As mentioned before, the multipath scheme requires that a packet on a device is transmitted
three times at most, including initial transmission and two retransmissions. Thus, we first need to
generate all the transmissions and their corresponding orders for a flow before allocating slots and
channels. Algorithm 1 is the function of TransmissionRelease(F), which can generate all transmissions
and transmission orders for a flow, according to a given graph G. Actually, the period p and the
routing φ of the flow are already known and we mainly focus on producing the collections X and E
to complete the flow. The initial transmission and the first retransmission use PRP, and the second
retransmission uses ARP. A link in φ releases two transmissions if it is used for PRP; otherwise, it
releases only one transmission for ARP. To obtain all the transmissions, we traverse all the links in
φ from the source node to the destination node by a first in and first out (FIFO) pipe. Meanwhile,
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to generate the transmission order, we give each ni a transmission collection X′(ni), which involves
the already generated transmissions. The destination node of these transmissions is ni. A node will
be put into the FIFO and obliged to release the transmission until the number of transmissions in its
collection X′(ni) is equal to Di. Di is the in-degree of ni, which can be calculate by Equation (8).

Di = ∑ lji, lji ∈ φ (8)

To illustrate the function of TransmissionRelease(F), we consider the topology shown in Figure 2
as an example. The flow is generated by node n1 and transmitted to node n10. As shown in Figure 3,
the generated transmissions in X are in released sequence after executing Algorithm 1. For example,
the first released transmission is x(n1, n2), and the fourth is x(n2, n6). The transmissions in X also
need sequence collection E to further explain their routing order, where e(2, 4) represents that the 4th
transmission x(n2, n6) must occur after the second transmission x(n1, n2). The transmissions without
orders can occur simultaneously, which means they can be allocated for the same slot with different
channels. We can see that the two adjacent transmissions may not be in continuous order, such as
the 6th transmission x(n2, n4) and 7th transmission x(n3, n4). We also notice that E has two orders,
e(5, 18) and e(12, 18), where the transmission x(n6, n10) should go after the 5th and 12th transmissions.
Actually, we only need to comply with the latter order, e(12, 18), which should be considered in slot
and channel allocation.

Algorithm 1: TransmissionRelease(F)
Input: G = (N, L)
Output: F : 〈X, E〉

1 Initialize a FIFO and put the source node into FIFO;
2 Set each X′(ni) = ∅ and calculate each Di,ni ∈ φ;
3 α ← 1;
4 while FIFO �= ∅ do

5 Get ni from FIFO;
6 for each lij,nj ∈ φ do

7 if lij is PRP then

8 sα ← ni; dα ← nj;
9 sα+1 ← ni; dα+1 ← nj;

10 Add(e(α, α + 1), E);
11 for each x(sβ, dβ) ∈ X′(ni) do

12 Add(e(β, α), E);

13 Add(x(sα+1, dα+1), X′(nj));
14 α ← α + 2;
15 if |X′(nj)| = Dj then

16 Put nj into FIFO;

17 if lij is ARP then

18 sα ← ni; dα ← nj;
19 Add(e(α − 1, α), E);
20 Add(x(sα, dα), X′(nj));
21 α ← α + 1;
22 if |X′(nj)| = Dj then

23 Put nj into FIFO

24 return X, E;
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Figure 3. Generated transmissions and their transmission orders for an example flow.

4.2. CEM-RM Algorithm

The proposed scheduling algorithm CEM-RM is shown in Algorithm 2. Considering decreasing
the negative effect of the diverse period, path crossing, and conflict, the algorithm adopts three
approaches to improve schedulability.

Assuming that tα and cα respectively represent the slot offset and channel offset allocated to the
transmission xk(sα, dα) within a hyperframe. For a flow Fk, if there is e(α, β), the slot allocation must
satisfy tα < tβ. Meanwhile, all the slots tα + j · pk(j ≥ 0) are allocated to the transmission xk(sα, dα)

due to periodic characteristics. Since there exists node interference in the time slot, the objective of the
scheduling is to avoid these interference. However, the slot allocation for transmissions has different
periods. This causes more node interference, which reduces channel utilization. The given network
graph is schedulable (SCH) when the slot allocation of all the flows satisfies the above constraints
expressed by Equations (1)–(4) and (7); otherwise, it is unschedulable (UNSCH). As a classical
scheduling strategy, rate monotonic (RM) policy preferentially assigns communication resources
to the flow which possesses the shorter period [35]. We adopt RM policy as a basic strategy, where we
sort all the flows in ascending period at the beginning (line 2).

After individually tracing the RM-based scheduling, we notice that more transmissions need to
be scheduled for a node that is close to the gateway, especially for the sink node. As shown in Figure 4,
obviously, the sum of available communication resources is |H| · |C|, where we regard a slot with
a channel as a communication resource. On the one hand, the generated transmissions of all flows
cannot exceed the number of communication resources, which is expressed as follows:

γ

∑
k=0

|Xk| ≤ |H| · |C|, Fk ∈ F (9)

On the other hand, the number of available communication resources is pk · |C| when the flow
Fk ∈ F is to be scheduled. However, some of these available resources are occupied by the previous
k − 1 allocated flows. The condition that there are enough available resources for Fk is expressd
as follows:

k−1

∑
i=0

|Xi| ·
⌊

pk
pi

⌋
+ |Xk| ≤

⌊
pk
κ

⌋
· |C|, ∀Fk ∈ F′ (10)
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Figure 4. The communication resources for a hyperframe.

Algorithm 2: CEM-RM

1 Initialize Ct ← C, Ψt ← Ψ, t ∈ [0, |H| − 1] F′ ← ASort(F, pk);
Input: G, F, Ψ
Output: H[t][c], SCH or UNSCH

2 for each Fk ∈ F′ do

3 (Xk, Ek) ← TransmissionRelease(Fk);
4 t ← 0, τ ← 1, W ← ∅, temp ← τ;
5 q represents all the integers within [0, T/pk);
6 while Xk �= ∅ do

7 if t > pk/κ then

8 return UNSCH;

9 if τ �= temp ∧ ∃e(μ + τ) ∈ Ek then

10 temp ← τ;
11 μ ← μ′ | max(μ′ + τ), e(μ′, τ) ∈ Ek;
12 t ← �μ + 1, �μ ∈ W;

13 if sβ �∈ {sτ , dτ} ∧ sτ �∈ {sβ, dβ} ∧ |Ct| > 0, xk1(sβ, dβ) ∈ Ωt+q·pk then

14 if dτ = dβ then

15 if k = k1 ∧ dτ ∈ Ψ ∧ |Ψt| > 0 then

16 dτ ← sk, sk ∈ Ψt;
17 Del(sk, Ψt+q·pk )

18 else if k = k1 ∧ e(β, τ) �∈ Ek then

19 c ← c′ | H[t][c′] = xk(sβ, dβ);
20 Change H[t][c] to CES;
21 else

22 t ← t + 1;
23 Continue;

24 H[t][c] = xk(sτ , dτ), c ∈ Ct;
25 Del(xk(sτ , dτ), Xk);
26 Add(xk(sτ , dτ), Ωt+q·pk );
27 Del(c, Ct+q·pk );
28 �τ ← t; τ ← t + 1;

29 else

30 t ← t + 1;

31 return SCH,H;

The available resources are becoming more inadequate with the increase of data flow. The later
scheduled flows will meet more node interferences, especially at the end hop of a flow. This is
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because most transmissions share the sink node. A sink node cannot be involved in two transmissions
simultaneously at a slot, which results in low schedulability. Moreover, the interference caused by
one sink node makes it so that only one channel can be scheduled at the end of a hyperframe. Thus,
we adopt multiple sinks to reduce the interference caused by a single sink node during hyperframe
scheduling. Each slot possesses multiple available sinks to receive packets on different channels.
In CEM-RM, a transmission may suffer interference at one slot, which is caused by a sink node.
The algorithm will use the other available sink to avoid such interferences if at least one resource exists
at the slot (line 19).

Furthermore, one key adjustment for the slot employed in this paper is that we amended the
common shared slot to the CES. The multipath scheme provides an alternative relay node for possible
retransmissions. Actually, a packet is finally routed along one of these paths. Redundant resources
need to be assigned for avoiding conflict when the different routing paths share the same relay node.
Thus, merging the resources for the overlapping paths is an effective approach. However, the conflict
may be caused by the DL-ACK loss problem. A packet is simultaneously transmitted along more than
one path if one of the transmissions only loses a DL-ACK. The packet is still transmitted along the
original path. Considering this phenomenon deteriorates the reliability and costs extra energy, we
adopt an efficient approach of the CES.

At a CES, the timing structure of the transmitting node is shown in Figure 5 and the destination
node still accords with the standard. The main adaptation is to add CCA units (128 μs) in the TsTxOffset,
which is the 2120 ± 100 μs duration between the beginning of the slot and the start of the data frame
transmission. We respectively reserve 200 μs and 340 μs at the beginning and end of TsTxOffset for
some preparation of the slot and data frame. In CCA units, we adopt CCA mode 2 in IEEE 802.15.4
standard, where CCA shall report a busy medium upon the detection of a signal with the modulation
and spreading characteristics of an IEEE 802.15.4 compliant signal. The maximum number of CCA
units is 5 in this paper. Multiple source nodes will contend this slot by randomly selecting a CCA unit
to detect the state of a channel. Once a source node detects that the channel is free, it sends a preamble
signal to occupy the current slot during the remaining time TsTxOffset. Another source node will
detect the preamble; then, it stops to perform CCA and to give up using the current slot. The radio
chip may switch the state and channel in TsRxTx, which is less than 192 μs. We assume that there
are K transmissions with different source nodes and the same destination node. The probability of
successful contention is (K/5) · ∑4

j=0(j/5)K−1, K ≥ 0 and enough to guarantee the reliability of the
flow transmission, since the contention at CES occurs only when the DL-ACK is lost on the previous
link. The use of CES is to decrease abundant slot allocation and to increase slot use, which also results
in the increase of schedulable ratios.

CCA Unit

Channel is Idle

TsTxOffset TsMaxPacket

TsRxAckDelay

TsAckWait

Preamble signal

 TsRxTxPreparation Preparation

Figure 5. The structure of a CE (clear channel assessment-embedded) slot for the transmitting node.

With the use of the above three approaches, we designed the slot and channel allocation to avoid
node interference. The following two situations should be solved by the above approaches when
the allocation to a transmission xk1(sα, dα) meets the already allocated transmission xk2(sβ, dβ) in the
same slot.

(1) According to constraints expressed by Equations (1)–(3), two different transmissions (α �= β)

in a flow (k1 = k2) should be allocated for different slots if the source node of a transmission is the
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same as one of the nodes in another transmission. However, if dα = dβ and two transmissions are
allocated for the same slot exactly, those transmissions can use the same channel and the slot is changed
into a CES. With the assumption of α > β, the condition can be expressed as follows:

if sβ ∈ {sα, dα} ∨ sα ∈ {sβ, dβ} then

(tα �= tβ) = 1

else if dα �= dβ ∧ e(β, α) �∈ Ek1 then

((tα = tβ) ∧ (cα = cβ) ∧ (the resource is CES)) = 1

else ((tα �= tβ) ∨ (cα �= cβ)) = 1

(2) Accordingly, two transmissions in different flows (k1 �= k2) also should be allocated for
different slots if the source node of a transmission is the same as one of the nodes in another
transmission. Also, if dα = dβ �= sk, CES cannot be used for the transmissions in different flows.
However, if dα = dβ = sk, we can change dα to one of the other available sink nodes. In this scenario,
the above two transmissions can be allocated at the same slot with different channels. With the
assumption of pk1 > pk2 , q represents all integers within [0, pk1 /pk2). Therefore, the condition can be
expressed as follows:

if sβ ∈ {sα, dα} ∨ sα ∈ {sβ, dβ} then

(tα �= tβ + q · pk2) = 1

else if dα = dβ = sk ∧ |Ψt| > 0 then

((tα = tβ + q · pk2) ∧ (cα �= cβ)) = 1

else ((tα �= tβ + q · pk2) ∨ (cα �= cβ)) = 1

The above two conditions represent the situations of node interference and scheduling interference
in slot and channel scheduling. The difference between the designed algorithm and RM algorithms is
that we assign the communication resources by the order of each flow, instead of the slot sequence.
Thus, we traverse all the transmissions in each period-sorted flow (lines 3 and 6) and assign the slots
and channels to each transmission. To avoid interference, the scheduling should be adjusted when the
allocation meets these conditions. We add all assigned transmissions at time slot t into Ωt. We define Ct

and Ψt as the collections of available channels and sinks at time slot t, respectively. Their elements will
be removed by the Del() function when the corresponding channels or sinks have already assigned.
Moreover, �τ is used to record the slot offset allocated to the transmission τ in every flow, and it is
responsible for finding the earliest available slot which does not break the routing order (lines 11–13).
There could be several transmissions at a CES. Thus, changing a normal slot to a CES means that the
slot expands for multiple transmissions. With the above considerations, we can finally obtain the
scheduling table H when all transmissions are scheduled within their period.

In the algorithm, we define |NF| and |XF| as the maximum number of nodes and transmissions,
respectively, and they are all related to the length of the flow. For example, for a four-hop flow in a
routing tree topology, |NF| is less than 24. All the nodes have a PRP except the sink node and have an
ARP except the first-hop nodes and the sink node. Thus, |XF| is less than 2× (24 − 1) + 1× (23 − 1) = 37.
The number of iterations of the “for” loop in line 3 and the “while” loop in line 6 are O(γ) and O(|H|),
respectively. Moreover, the time complexities in line 2, line 4, line 11, and line 14 are O(γlog(γ)),
O(|NF|3), O(|XF|), and O(T/pm), respectively. Therefore, the time complexity in a worst case is
O(γlog(γ) + γ(|NF|3 + |H||XF|+ |H| · T/pm)). In practicality, the periods of different applications
could not have much difference; thus, |H| · T/pm could be ignored.

5. Simulations and Experiments

In this section, we evaluate the performance of the proposed algorithm by comparing with two
widely used real-time scheduling policies, RM and Least Laxity First (LLF) [36]. RM schedules a
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transmission based on the packet’s absolute deadline, while LLF schedules a transmission based on
the packet’s laxity, which is defined as the transmission’s deadline minus remaining transmission time.
The schedules of individual RM and LLF are not suitable with our applications due to the quantity
of nodes and period. Therefore, we also add multiple sinks into each compared scheduling policy
for fairness. Thus, we respectively denote the two schedules as M-RM and M-LLF in the following
simulations and experiments.

Different topology structures need different quantities of communication resources. Thus, four
kinds of topology structures are generated for comparison, which are denoted as Tp1, Tp2, Tp3,
and Tp4. We assume that the furthest leaf node is four hops away from the gateway in all topology
structures. In industrial wireless networks, since there is the requirement of reliable and real-time
performance, on the one hand, the big hop size can increase the rate of packet loss and, on the other
hand, the large network cannot cater the demand of transmission deadlines. In our experience, four
hops can overlap the general factory. Meanwhile, four hops can exactly overlap the experimental
factory in this paper. The difference between each topology structure is that the number of nodes on
each hop is generated according to different probabilities. For example, to generate one of the Tp1
topologies, we first traverse all the nodes, where the total number of nodes is determined previously.
The traverse approach stipulates that a node has a 0.3 probability of being on the first hop, a 0.3
probability of being on the second, a 0.3 probability of being on the third, and a 0.1 probability of being
on the fourth. Then, each node on the lower hop randomly selects two higher-level nodes as their
parents to be the major path and redundant path. Thus, all the topologies of the Tp1 structure may be
different from each other. Without loss of generality, we will stochastically generate enough topologies
of every kind of structure. With the same method, the other kinds of topologies are generated according
to the corresponding probabilities, which are listed in Table 2.

Table 2. The proportions of different types of topology.

Type of Topology
Probability

1st Hop 2nd Hop 3rd Hop 4th Hop

Tp1 0.5 0.3 0.1 0.1
Tp2 0.5 0.2 0.2 0.1
Tp3 0.4 0.3 0.2 0.1
Tp4 0.3 0.3 0.3 0.1

5.1. Simulations

Our simulations are presented to demonstrate the schedulability and effectiveness of our
scheduling. The algorithms have been written in C language, and the simulations have been performed
on a Windows machine with a 3.1-GHz Inter Core 3 processor. The following metrics are used for
performance analysis: (a) Schedulable ratio is measured as the percentage of test cases for which a
scheduling policy is able to schedule all transmissions. (b) Scheduling time is the total time required to
successfully make a complete hyperframe for all transmissions. (c) Average normalized bandwidth is
the ratio between the number of allocated resources and the total resources within a hyperframe after
scheduling. In simulations, we assume that every node generates a packet periodically and sends it to
the gateway along the routing graph. A packet is regarded as a flow without aggregation. The period
is randomly selected in the set {pm · 2a | ∀a ∈ [0, b]}, where b is the maximum exponent. A packet
belonging to a fourth-hop node needs at most 22 transmissions using the scheduling of multipath
scheme; thus, three values of pm(0.25 s, 0.5 s, 1 s) are tested in the simulations.

Figure 6 shows the schedulable ratio of the three scheduling policies with different parameter
configurations. The number of nodes ranges from 50 to 100. We randomly generate 8000 cases for
each node quantity and use the three algorithms to schedule the generated topologies separately.
The number of available channels is set to be the maximum, 16, for a better comparison, since several
cases using less channels are hardly scheduled with the existence of diverse periods. In Figure 6a–d,
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the three algorithms, which execute on each type of topology with pm = 1 s and b = 0, can
successfully schedule the majority of graphs. Obviously, the schedulable ratio drops in pace with
the increase of nodes; however, we can see that our proposed scheduling is almost unaffected with
these configurations. With the period shortened and diversified, the number of schedulable graphs
decreases dramatically. Figure 6e–h and Figure 6i–l show the results under the period configurations
of pm = 0.5 s, b = 1 and pm = 0.25 s, b = 2, respectively. They clearly indicate that the schedulable
ratio of CEM-RM is higher than that of M-LLF and M-RM. Especially, increasing the number of nodes
makes the gaps between CEM-RM and the others even bigger.
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Figure 6. A comparison of the schedulable ratios of the three algorithms with different periods
and topologies.
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The execution time of a scheduling can affect the performance of network formation and
rescheduling; thus, we have measured the average run time of the three algorithms. Each test with a
different number of nodes and algorithms includes 100 successfully scheduled graphs. To guarantee
that the tested graphs are more schedulable, we set pm = 0.5 s and b = 1 in all tests. As displayed in
Figure 7, the markers represent the average time of different algorithms with different numbers of
nodes and the lines show the trend of scheduling time as the number of nodes is increased. We can
obtain that the average execution times of M-LLF and M-RM are lower than 1264 ms, while the time
of our proposed scheduling is lower than 371 ms. The results indicate that CEM-RM is better for the
performance improvement of network formation or rescheduling.

 

Figure 7. Comparison of scheduling time of the three algorithms.

Moreover, Figure 8 shows the average requirement of the wireless bandwidth for our scheduling
and for the others. The normalized bandwidth is calculated by the ratio between the number of
allocated resources and total resources in a hyperframe. We also select the successfully scheduled
hyperframe with 100 nodes and the configuration of pm = 0.5 s, b = 1. As can be seen, the average
normalized bandwidths of Tp4 of M-LLF and M-RM are 0.918 and 0.906, respectively, which are
similar to each other, while CEM-RM only requires 0.627. The same conclusion also applies to
other types of topologies. This is because the number of transmissions is determined by a graph
in M-LLR and M-RM. However, CEM-RM adopts CES to solve the problem of overlapping paths
and to reduce the phenomenon of DL-ACK loss, which can decrease the number of dedicated slots
additionally. The remaining unscheduled resources can be allocated for network management to
improve network stability.

 

Figure 8. Comparison of average normalized bandwidth.
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5.2. Experiments

We also test the network performance of the scheduling policies in practice, where the performance
includes the reliability and end-to-end packet delay. Since the scheduling of M-LLF and M-RM follows
the basic policy (the number of retransmissions) in WirelessHART, their reliability and end-to-end
packet delay are only affected by the channel condition. Thus, we make comparisons only between
our scheduling and M-RM. The algorithms are executed on a developed WSAN system, which
is compatible with WirelessHART and also supports our applications. As shown in Figure 9, the
experiments are conducted in a 50 × 30 m2 factory in which the packet error rate is about 8% mainly
caused by metal and electromagnetic interference.

Nodes

Gateway

Figure 9. Experimental environment and deployment of field devices.

Our wireless nodes used to collect corresponding information are implemented on a LPC1769
mote with an AT86rf231 radio transceiver. In reality, we have three kinds of information to be collected,
which are temperature and humidity (HT) with a 1-s period, electrical information (EI) with a 0.5-s
period, and machine data (MD) with a 0.25-s period. Each kind of information is collected by different
versions of wireless node, respectively shown in Figure 10a–c. A total of 60 nodes consist of 30 HT
nodes (HTN), 15 EI nodes (EIN), and 15 MD nodes (MDN). The information of MD is collected
through a CAN (Controller Area Network) bus, and the EI is transmitted by RS485. The radio
transmission power is 3 dBm, and we use 10 of the available channels with lower packet error rates.
The multi-sink-based gateway with 8 sinks, a hard disk, and a wireless adaptor is shown in Figure 10d.
The communication between multiple sinks and the gateway is constructed by USB port. The metal
case is used to avoid dust and water to increase the lifetime. The generated topology is shown in
Figure 11, and the remaining experimental parameters are listed in Table 3.

Table 3. Experiment parameters.

Parameters Description

The number of nodes 60
The number of nodes in each hop 1-hop:26, 2-hop:18, 3-hop:10, 4-hop:6
Transmission rate 250 kb/s
Transmission rate 3 dBm
The number of CCA units at a CES 5
Maximum frame retries 3
Packet length 80 bytes
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(a) HTN (b) MDN (c) EIN (d) Gateway

Figure 10. The hardware of wireless nodes and gateway.

Gateway

: MDN

: HTN

: EIN

: PRP

: ARP

50m

3
0

m

Figure 11. Experiment topology.

On the one hand, we first measure the packet delivery ratio (PDR) of M-RM and CEM-RM,
as shown in Figure 12. The PDR represents the ratio between the number of packets that succeed in
arriving to the gateway on time and the total number of generated packets. Since the period of packet
generation is known previously, we can get the total number of packets of each node. Then, we gather
the statistic of the number of packets that successfully reach the gateway within their own deadline.
An experiment remains 20 min, and we assess the PDR every minute. The average PDRs of M-RM and
CEM-RM for 20 min are 0.971 and 0.973, respectively. We can observe that their PDR for every minute
vibrates over their average values because the condition of channels may change with time. The jitter
of our CEM-RM is a little higher than that of M-RM, where the minute-PDR standard variations of
M-RM and CEM-RM are 0.0042 and 0.0055, respectively. The time-varying channel has an effect on the
adopted CES to a certain extent. However, the average PDR is mainly the same, which means that the
schedulability of our proposed scheduling is improved but does not sacrifice reliability.

0 2 4 6 8 10 12 14 16 18 20

Time (minute)

0.95

0.96

0.97

0.98

0.99

1

P
D

R

M-RM

CEM-RM

Average PDR of M-RM

Average PDR of CEM-RM

Figure 12. The packet delivery ratios of CEM-RM and M-RM.

On the other hand, we measured the delay of end-to-end delivery between each hop node and
the gateway. The starting time of a packet is recorded at the time of its first transmission, while the
ending time is recorded at the packet reception in the gateway. Figure 13 shows the comparison
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of average end-to-end delays between M-RM and CEM-RM. Obviously, the delay of CEM-RM is
generally lower than that of M-RM. Moreover, as the routing hop increased, the average delay of our
proposed scheduling was much lower than that of M-RM. For the packets of four-hop nodes, the
average delay of our scheduling is about 32 ms lower than that of M-RM. The use of CES and multiple
sinks effectively decreases the end-to-end delay, and CES can also reduce the impact of the DL-ACK
loss phenomenon. The experimental results roughly indicate that our proposed scheduling not only
improves the efficiency of scheduling but also decreases the end-to-end delay.

 

Figure 13. Comparison of average end-to-end delay between CEM-RM and M-RM.

6. Conclusions

In this paper, we study the problem of how to improve the schedulability of communication
resources in industrial WSANs. Existing centralized approaches for multipath retransmission scheme
do not consider schedulability in the coexistence of diverse industrial applications. In this paper,
we propose a resources-scheduling algorithm based on the multipath retransmission scheme in the
WirelessHART standard. We use the approaches of RM policy, CES, and multiple sinks to reduce the
negative impact of diverse periods and to avoid node interference as far as possible. By simulation
and implementation in hardware, we compare our proposed CEM-RM algorithm with M-LLF and
M-RM scheduling policies. The achieved results show that our proposed solution outperforms the
aforementioned scheduling policies in terms of less use of communication resources, end-to-end
delay, and increase in schedulable ratio without jeopardizing network reliability and timeliness of
data packets.
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Abstract: WirelessHART is a wireless sensor network that is widely used in real-time demand
analyses. A key challenge faced by WirelessHART is to ensure the character of real-time data
transmission in the network. Identifying a priority assignment strategy that reduces the delay in
flow transmission is crucial in ensuring real-time network performance and the schedulability of
real-time network flows. We study the priority assignment of real-time flows in WirelessHART on
the basis of the multi-channel time division multiple access (TDMA) protocol to reduce the delay
and improve the ratio of scheduled. We provide three kinds of methods: (1) worst fit, (2) best fit,
and (3) first fit and choose the most suitable one, namely the worst-fit method for allocating flows
to each channel. More importantly, we propose two heuristic algorithms—a priority assignment
algorithm based on the greedy strategy for C (WF-C) and a priority assignment algorithm based on
the greedy strategy for U(WF-U)—for assigning priorities to the flows in each channel, whose time
complexity is O(max(N ∗ m ∗ log(m), (N − m)2)). We then build a new simulation model to simulate
the transmission of real-time flows in WirelessHART. Finally, we compare our two algorithms with
WF-D and HLS algorithms in terms of the average value of the total end-to-end delay of flow sets,
the ratio of schedulable flow sets, and the calculation time of the schedulability analysis. The optimal
algorithm WF-C reduces the delay by up to 44.18% and increases the schedulability ratio by up to
70.7%, and it reduces the calculation time compared with the HLS algorithm.

Keywords: WirelessHART network; delay analysis; real-time systems; multi-channel processing;
simulation modeling

1. Introduction

With the introduction of the Industry 4.0 concept, IoT devices face many challenges such as
sustainability and security, among which one of the most important is real-time performance [1,2].
In this paper, we propose two heuristic algorithms to assign priority to real-time flows in WirelessHART
networks, and focus on the real-time performance of these two algorithms. The WirelessHART network
is widely used in many fields, such as industrial manufacturing, automation control, and information
collection. WirelessHART includes HART, EDDL, and IEEE 802.15.4 protocols. The TDMA protocol is
widely used in wireless sensor networks, and it consists of the following devices [3].

1. Field devices are nodes in the WirelessHART network that can be regarded as source, transmission,
or destination nodes. These nodes can collect, transmit, or receive information if they function as
source, route, or destination nodes, respectively.

Sensors 2018, 18, 4242; doi:10.3390/s18124242 www.mdpi.com/journal/sensors71
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2. Gateway limits the range of the WirelessHART network and allocates an IP address to every node
to ensure that every node’s IP is unique. Hence, the source node that sends the information in the
network can be determined. Backtracking the information through the gateway is convenient and
accurate. The WirelessHART network has only one gateway.

3. The network manager is a global administrative unit for the WirelessHART network. It contains
all of the topological structure information of the network. When a new node wishes to join the
network, it has to obtain its own IP address from the gateway through the network manager.
The information of this new node, such as its neighbor nodes, is saved at the host by the
network manager.

Among the many protocols of the WirelessHART network, TDMA is to the most suitable for the
real-time feature, the veracity of dates, and the power requirement of the WirelessHART network [4].
In general, we consider the flows to be periodic; i.e., all flows send packets again after a certain interval.
Similarly, we can think of an aperiodic real-time flow as a real-time flow with an infinite length period.
Hence, the TDMA protocol is also suitable for acyclic real-time flows. The TDMA protocol allows
the time to be divided into several periodic frames, and each frame is divided into an equal numbers
of slots. To guarantee the real-time characteristic, a device is only allowed to send and receive data
in a specified slot. The TDMA protocol allows a source node to send many of the same packages to
the destination node through different routes. This guarantees the accuracy of data transmission by
increasing redundancy. Hence, we think of these same packets in different routes as separate flows in
this study. In other words, if a source node sends the same packets through k routes, then we think
of them as k-independent flows with the same period and deadline. The TDMA protocol also allows
nodes that do not send or receive data to enter sleep mode and meet the power requirement of the
WirelessHART network.

Real-time flow: The information collected by the source node in the WirelessHART network is
transmitted as a packet. We define a real-time flow (referred to as flow) as a packet sent from the
source node to the destination node. The most obvious difference between real-time flow and regular
flow is that real-time flow has strong real time. The real-time flow must be finished before its deadline.
Otherwise, there will be serious consequences, such as a system crash.

Priority assignment of flow: We consider a set of N flows, F = {F1, F2, ..., FN}, and a priority
assignment strategy f = {1, 2, ..., N}. The number of priorities is equal to the number of flows, and the
priorities are in a strict decreasing order, i.e., f1 > f2 > ... > fN . Hence, no two flows have the same
priority. Specifically, the priority of flow Fj is higher than that of flow Fi if and only if j < i. We consider
flow Fi with priority j. If the condition ∀Fi ∈ F, ∃j ∈ f , s.t. f : Fi = j is met. Furthermore, we say a
priority assignment strategy f is satiable if the flows in the set all meet their deadline.

Optimal priority assignment: We consider a schedulability test S and a priority assignment
algorithm A. If is a priority assignment policy is available for a flow set that is satisfied in schedulability
test S, A can also provide a satisfactory priority assignment. We then call A an optimal priority
assignment. In other words, if a flow set cannot be satisfied by using A assignment priority in the
schedulability test S, then no assignment algorithm can satisfy the flow set in schedulability test S.

The contributions of our work are as follows: (1) We transform the multi-channel flow model of
the WirelessHART network into a multi-processor real-time model of the CPU. We allocate the flows
to channels by using the worst fit algorithm. (2) We show that the problem of priority assignment in a
single channel makes the set of flows acceptable, which is an NP-complete (NPC) problem. Then we
propose two heuristic algorithms, namely, a priority assignment algorithm based on the greedy
strategy for C (WF-C) and a priority assignment algorithm based on the greedy strategy for U(WF-U).
(3) We build a new WirlessHART network simulation model according to the actual environment.
(4) We compare our two algorithms with WF-D and HLS algorithms in terms of the average value
of the total end-to-end delay of flow sets, ratio of schedulable flow sets, and calculation time of the
schedulability analysis.
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2. Background

We consider the WirelessHART network model with m channels based on the time division
multiple access (TDMA) protocol. Each channel is divided into several periodical frames, and each
frame is divided into slots with the same number. The length of every slot is 10 ms [5]. All information
in the WirelessHART network is transmitted as packets. We call the packet that is sent from the source
node to the destination node a flow.

Each node in the WirelessHART network can be viewed as a source, middle, or destination
node [6]. Every node in a slot can receive or send a packet. That is, flow Fi sent from node a to node b
costs one slot, and node b receiving it and sending it to node c also costs one slot. Each node can only
perform one type of function (either sending or receiving a packet) in one slot.

To ensure transmission accuracy, we allow a packet to be sent from the source node to the
destination node in different routes. The advantage of this policy is that can avoid blocking by the
disabled node, bad routes, or blacklisting. For example, we assume that a packet will be set from node
C to node D in Figure 1a. We send the same packet by two routes: (1) C → H → I → D and (2) C → D.
This packet cannot be transferred through Route (1) if the node I belongs to the blacklisting. However,
this packet can still be transferred through Route (2). Hence, we guarantee that this packet can be
received by node D by adding a route. In other words, this policy guarantees the accuracy of data
transmission by increasing redundancy.

(a) An example of a topology graph.

(b) The transmission operation of node C.

Figure 1. Cont.
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(c) The transmission operation of node D.

Figure 1. An example of transmission conflicts.

3. Real-Time Flow Model

We consider the set F with N flows mentioned above. A flow Fi, Fi ∈ F consists of three parameters
〈Ci, Ti, Di〉. That is, for a flow Fi, Ci is its execution time that contains the transmission time, Ti is its
minimum interval time between two consecutive jobs, and Di is its relative deadline. We also consider
that the real-time flow model is deadline-constrained, i.e., D ≤ T.

The utilization of flow Fi is denoted by Ui = Ci/Ti. We let ri and ai be the release and arrival
time of Fi, respectively. The ri is the instant that flow Fi sends its packet from the source node. ai is
the instant that the packet arrives at the destination node. Hence, the real transmission time of Fi is
ti = ai − ri + 1. We denote the end-to-end delay as delay = Ci + ti shown in Figure 2. The worst-case
end-to-end delay (WETED) of Fi as Ri.

Figure 2. The diagram of the relationship between parameters.

The multi-channel real-time flow model of the WirelessHART network can be transformed into a
multi-processor real-time model of a CPU [7,8]. On the basis of the model described above, m channels
can be transformed into m processors in the multi-processor model. n flows can be transformed into
n real-time tasks, and each task of the multi-processor model also has three parameters 〈Ci, Ti, Di〉.
WETED can be transformed into the worst-case response time (WCRT) of the multi-processor model.

4. The End-to-End Delay Analyze

In the WirelessHART network, the end-to-end delay is the time when a job of flow Fi is sent from
the source node to the destination node to receive and execute the carried packet. In this paper, the slot
is the smallest unit of time, which means that high-priority flows can no longer preempt low-priority
flows in one slot. A flow with high priority must wait until flows with low priority finish this slot.
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Flow Fi is blocked in two ways, namely, (1) channel contention and (2) transmission conflicts,
by flows with higher priorities.

4.1. Channel Contention

We consider a real-time flow model with m channels. When a free channel is present, the newly
released job of a flow is sent to the channel for execution. When no channel is idle, the newly released
high-priority job of a flow preempts the channel that transmits the low-priority job of the flow in the
beginning of the next slot. We use Ωi (t) to represent the total channel competition caused by Fi for all
the jobs of flows with a priority that is higher than that of flow Fi in time t.

For flow Fi, Ωi (t) cannot be accurately calculated if we use a global priority assignment strategy
in the multi-channel model. Considering that we do not know when the level-k busy period [9] starts,
we use the Ωi (t) upper bound [10–12] to calculate the upper bound of the WETED and set it to Ri.

4.2. Transmission Conflicts

In the WirelessHART network, when the topology is determined, the transmission conflict
between two flows with overlapping transmission routes is a constant [7]. For example, two flows
are shown in Figure 1a, Fi and Fj. We assume that Fj has higher priority than Fi, i.e., j < i. Flow Fi
sends a packet from node A, through nodes C, D, and F, to node G. Flow Fi sends a packet from node
B, through nodes C, H, and I, to node D. The common nodes of two flows are C and D. There are
two cases of transmission conflicts: (1) full transmission conflicts and (2) half transmission conflicts.
The two cases are going to cost two slots and one slot, respectively.

The example of the first case is shown in Figure 1a with node C. We assume that Fi and Fj arrive at
node C at the same time. The transmission operation of node C is shown in Figure 1b. We assume that
Fi and Fj arrive at Time Slot 1. Node C first costs two slots to receive the packet of flow Fj from node A
and sends it from node C to node D, respectively. Fi must wait for two slots because the priority of
Fi is lower than that of Fj. The packet of flow Fj then starts to be processed. Hence, the first case of
transmission conflicts of Fi is blocked for two slots by Fj at node C.

The example of the second case is shown in Figure 1a with node D. Like the first case, we also
assume that Fi and Fj arrive at node D at the same time. The transmission operation of node D is
shown in Figure 1c. We assume that Fi and Fj arrive at Time Slot 1. Different form the first case, Fi only
needs to wait for one slot because flow Fj ends at node D, i.e., node D do not need cost one slot to send
the packet of Fj to other nodes. Hence, the second case of transmission conflicts of Fi is blocked for one
slot by Fj at node D.

Therefore, Fi is blocked for three slots by Fj in this topology structure in the worst case. We define
Δ (i, j) as the transmission conflicts caused by Fj to Fi, where Fj has a higher priority than Fi.

4.3. Schedulability Test

If we know the priority assignment for the flow set, we can determine whether the flow set
is schedulable or not by calculating the end-to-end delay in the worst case [8]. We can obtain the
end-to-end delay in the worst case by calculating the minimum value of y in Equation (1), where t∗ is
the minimum t in Equation (2).

If one of a flow’s t or y is greater than its deadline, we call it unschedulable, or schedulable at
that priority. If all the flows in the set are schedulable, we say that this priority assignment policy
is satiable.

y = t∗ + ∑
j∈hp(i)

⌈
y
Tj

⌉
Δ(i, j) (1)

t =
⌊

Ωi(t)
m

⌋
+ Ci. (2)
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5. The Priority Assignment of Real-Time Flows Based on the Worst-Fit

In this section, we first introduce several algorithms (worst-fit, best-fit, and first-fit) to allocate the
flows and explain why we use the worst-fit. We then introduce several priority assignment algorithms
based on the worst-fit.

We think of the problem of allocating the flows to channels as a bin packing problem, since each
channel is equivalent to a processor and the utilization upper bound of the processor is 1. Hence,
we assume the channel as a bin with a capacity of 1. Each flow is viewed as cargo whose volume equals
its utilization. There are three state-of-the-art existing allocation methods: (1) worst-fit, (2) best-fit,
and (3) first-fit. The descriptions and characters of them are as follows:

1. Worst-fit is to allocate the flow to the channel with the maximum remaining capacity of all
channels each time. This method can make the use part of each channel more even.

2. Best-fit is to allocate the flow to the channel with the minimum remaining capacity of all channels
each time. This method can reduce the remaining resources of each channel as much as possible.

3. First-fit is to allocate the flow to the first channel, and the remaining utilization of this channel is
not less than the utilization of this flow. This method can reduce search time.

To make efficient use of each channel, our aim is to distribute the flow to each channel as evenly
as possible, while ensuring that the capacity of each channel is within the allowed range. Hence,
the worst-fit method is the best choice.

The multi-channel fixed priority transmission scheduling problem for WirelessHART networks
can be mapped to the CPU scheduling on a global multiprocessor platform [8] by Saifullah et al.
Similarly, we regard each channel for multiple channels WirelessHART networks as a homogeneous
and independent processor for CPU scheduling; i.e., each channel is mapped to a processor and there is
no interference between any two processors. We then distribute the flows to the channels, i.e., the flow
can be transmitted in a channel if and only if it has been distributed in this channel. At last we assign
priority to the set of flows in each channel.

This method avoids the analysis of channel contention and uses a new approach to analyze the
WETED accurately in Equation (3), where hp(i) is a set of flows that have a higher priority than Fi.
Ri can be calculated with Ci as the starting value.

Ri = Ci + ∑
j∈hp(i)

⌈
y
Tj

⌉
(Cj + Δ(i, j)). (3)

5.1. Method of Allocating Flows to Channels based on the Worst Fit

We assume that a set of N flows F = {F1, F2, ..., FN} exists in the WirelessHART network with m
channels. We denote Uk

sum as the total of the utilization of the k-th channel, and it can be calculated
with Equation (4). Similarly, we denote Usum as the total utilization of the set, which can be calculated
with Equation (5).

Uk
sum = ∑

Fi∈channel k
Ui. (4)

Usum =
m

∑
k=1

Uk
sum. (5)

A necessary condition for flow set schedulability on a multi-processor platform is Usum ≤ m,
where m is the number of processors. This condition means that the set can never be scheduled if
Usum > m. We also determine that the set can never be scheduled for a single channel if Uk

sum > 1.
We define several symbols to describe the worst-fit method as follows:
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• Rek : the current remaining utilization of the k-th channel;
• Chk : the set of flows that belong to Channel k;
• UChk : the set of flows that have not been assigned priority in the k-th channel;
• AChk : the set of flows that have already been assigned priority in the k-th channel;
• ReF : the set of flows that have not been allocated a channel;

• Cj
i : the execution time of flows Fj at priority i;

• Rj
i : the WETED of flows Fj at priority i.

Before the worst-fit algorithm begins, no flows are allocated to the channel. All flows are stored in
the set ReF. The flow in the set ReF is continuously allocated to the channel with the implementation
of the worst-fit algorithm. It terminates until all flows in ReF are allocated or until no channel can
accept the current allocated flow.

The steps to allocate flows to the channels are as follows:

1. Initialize Rek = 1, Chk = ∅, where k ∈ m, and then proceed to Step 2.
2. If set ReF is empty, then the priority assignment ends. Return True and the algorithm stops.

Otherwise, jump to Step 3.
3. Sort the remaining utilization in a descending order for each channel, and then jump to Step 4.
4. Allocate one flow Fi from set ReF into Channel 1. If Re1 − Ui < 0, then we denote the flow set

as unschedulable and return False. Otherwise, Re1 = Re1 − Ui. Delete Fi from ReF and jump to
Step 2.

Specifically, no channel can accommodate flow Fi if Channel 1 cannot accommodate it because
the channels have already been sorted in Step (2). We present a pseudo-code of the worst-fit method as
Algorithm 1.

Algorithm 1 The worst-fit algorithm.

Input: The set of flows F = {F1, F2, ..., FN}
Output: bool WF

1: function WORST-FIT

2: Rek ← 1, where k = {1, 2, ..., m}
3: Chk ← ∅, where k = {1, 2, ..., m}
4: for i = 1 to n do

5: sort Re in descending order
6: if Re1 − Ui < 0 then

7: return False
8: else

9: Ch1 = Ch1 ⋃ Fi
10: ReF = ReF − Fi
11: end if

12: end for

13: return True
14: end function

We can assign the priority of flows independently in the single channel if the worst-fit method
returns True in Algorithm 1.

We then consider the priority assignment in a single channel. As shown in Theorem 1, the problem
of priority assignment in a single channel (PAS) makes the set of flows acceptable, which is an NPC
problem. Hence, we propose two heuristic algorithms: a priority assignment algorithm based on the
greedy strategy for C (WF-C) and a priority assignment algorithm based on the greedy strategy for
U(WF-U). Both are based on an analysis of Equation (3).
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Theorem 1. The PAS problem is an NPC problem.

Proof of Theorem 1. First, we prove that the PAS problem is an NP problem. If we assign a priority
assignment strategy for a set of flows, we can easily determine the delay of each flow in polynomial
time according to Equation (3). By summing the delay of each flow, we can verify whether the total
delay can be satisfied or not under the priority assignment strategy. Thus, the PAS problem is an
NP problem.

Second, we prove that PAS is an NPC problem. During the maximum continuous working
time [13], if all flows have only one job instance, i.e., the inequality in Equation (6) is satisfied, where Ti
is the period of Fi, Fi ∈ F, then Equation (7) can be used to calculate the delay of flow Fi. Therefore,
solving the PAS problem can be transformed into solving the minimum delay of the lowest priority
(DLP) problem.

Ti ≤ ∑
j∈hp(i)

[
Cj + Δ(i, j)

]
. (6)

Ri = ∑
j∈hp(i)

(
Cj + Δ(i, j)

)
. (7)

We know that the traveling salesman problem (TSP) is an NPC problem [14]. We stipulate that
n cities in the TSP problem correspond to n flows in the DLP problem. We define Δ(i, j) + Cj as the
cost from city i to city j. We define the path from the starting city in the TSP problem as the sequence
from low priority to high priority in the DLP problem. Assuming that the starting city of the TSP
problem is s, the last arriving city is l, and the solution is ST, then the solution of the DLP problem is
ST − Δ(l, s). In summary, the TSP problem is reduced to a PAS problem. Thus, the PAS problem is an
NPC problem.

5.2. WF-C Algorithm and WF-U Algorithm

Through an analysis of Equation (3), we find that one of the most important factors that influence
WETED is the execution time of flow Fj with a higher priority than flow Fi. Thus, we start by assigning
the lowest priority to the flow set. According to the greedy strategy, the current priority is assigned to
the flow in UChk that has the maximum execution time in the schedulable flows. This algorithm can
avoid high priority flows with a long execution time causing too many blocks to low priority flows
and missing their deadline. The steps of the WF-C algorithm are as follows:

1. Initialize AChk = ∅ and UChk = Chk and then jump to Step 2.
2. The priority is assigned from the lowest priority, and if set UChk is empty, then the priority

assignment policy is returned and the algorithm ends. Otherwise, jump to Step 3.
3. Calculate the WETED of all flows in UChk at the current priority. If no flow meets its deadline,

then the algorithm returns False and the algorithm ends. Otherwise, jump to Step 4.
4. Assign the current priority to the flow in Step 2 that meets its deadline and has the longest

execution time. Then raise the current priority and jump to Step 2.

The pseudo-code of the WF-C method is shown in Algorithm 2.
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Algorithm 2 The WF-C algorithm.

Input: Chk

Output: the scheme of priority f
1: function WF-C
2: ACHk ← ∅
3: UCHk ← ACHk

4: for i = length(CHk) down to 1 do

5: Calculate all Rj
i , where j ∈ UChk

6: if all Rj
i > Dj, where j ∈ UChk then

7: return False
8: else

9: Fj ← i // where j = max
{

Cj
i

}
10: end if

11: end for

12: return f
13: end function

The WF-U algorithm is similar to the WF-C algorithm. The difference between these two
algorithms is the condition for determining priority of flows. The first three steps of the WF-U
algorithm are the same as those of the WF-C algorithm in Section 5.2, and the longest execution time is
replaced with the maximum utilization in Step 4.

The pseudo-code of the WF-U method is shown in Algorithm 3.

Algorithm 3 The WF-U algorithm.

Input: Chk

Output: the scheme of priority f
1: function WF-U
2: ACHk ← ∅
3: UCHk ← ACHk

4: for i = length(CHk) down to 1 do

5: Calculate all Rj
i , where j ∈ UChk

6: if all Rj
i > Dj, where j ∈ UChk then

7: return False
8: else

9: Fj ← i // where j = max
{

Uj
i

}
10: end if

11: end for

12: return f
13: end function

5.3. Time Complexity

In this section, we discuss the time complexity of the WF-C and WF-U algorithms. According
to Algorithms 2 and 3, we can find that the calculation steps of WF-C and WF-U are basically the
same, except that the condition for determining priorities are different. Hence, we just discuss the time
complexity of WF-C.

We assume there are m channels and a flow set with N flows. According to Algorithm 2, we know
that WF-C contains two parts, which are to allocate flows to channels and to assign priority to flows.
The time complexity of the first part, O(N ∗ m ∗ log(m)), is equivalent to the time complexity of
ordering N times for m processors (as is known, the time complexity of the quicksort of m elements is
m ∗ log(m)).
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According to Equation (3), we know that the number of calculations for a certain flow Fi depends
on the number of elements in hp(i). For example, we assume that |hp(i)| = k. We can then calculate
that the number of calculations for Fi is 3k (the 3 indicates three basic operations, the plus at the end of
Equation (3), the division, and the ceil). There are at most N − m + 1 flows in a channel by using the
worst-fit algorithm. We can derive that the time complexity of the second part is O((N − m)2) from
Algorithm 1.

From what has been discussed above, the time complexity of WF-C is O(X), where X is
max(N ∗ m ∗ log(m), (N − m)2). Moreover, the WF-U has the same time complexity as WF-C.

6. Simulation Experiment

In this section, we propose a new simulation model based on the reality, and conduct many
comparative experiments on the four algorithms, namely, a heuristic search (HLS) algorithm
(which adds two discriminant conditions to find a feasible solution based on changing priorities
of two tasks locally) [7], the worst case fit strategy for the deadline monotonic (WF-D) algorithm
(which sends flows into channels based on Algorithm 1, and then assigns priority by DM strategy),
the WF-C algorithm, and the WF-U algorithm.

We then compare the performance of these algorithms in terms of the average value of the total
end-to-end delay of flow sets, the ratio of schedulable flow sets, and the calculation time of the
schedulability analysis according to the experimental results.

On the basis of the actual environment [15–17], we define several symbols to describe our
simulation model in Table 1. We assume that the number of flows in each flow set is represented
by N. The number of channels in the WirelessHART network is m = 12 [7]. The total utilization of the
flow sets is generated from 0.05 to 0.9, with 0.05 as the step length. The range of the period is from
26 to 29 for every flow in the set [18]. Each flow’s execution time can be calculated by Ci = Ui × Ti.
Through Equation (3), we find that the transmission conflicts caused by Fj to Fi can be converted into
the execution time of flow Fj by proportion β, where β = Δ(i, j)/Cj. Hence, we assume the upper
bound of the transmission conflicts Tup = β × C. We define α as the cross ratio of a flow to other flows
in the set, that is, the number of flows in the collection that have common nodes with that flow in the
WirelessHART network.

Table 1. The symbols of simulation model.

Symbol Description

N The number of flows in the set.
m The number of channels.
α The cross ratio of a flow.
β The factor for upper bound of transmission conflicts.
δ The ratio of D to T.
Tup The upper bound of the transmission conflicts.

Under each utilization, we generate 1000 sets of flows and use the average value to represent the
characteristics of the flow sets. The experimental parameters are N = 100, α = 0.1, β = 1, δ = 1.

6.1. Average Value of the Total End-to-End Delay of Flow Sets

The average value of the total end-to-end delay of the flow sets are shown in Figure 3. The delay
of the four algorithms increases with the increase in the total utilization of flow sets. We set the
average value of total end-to-end delay of sets to zero, when none of the 1000 sets of tasks we generate
are available for scheduling. The average value of total end-to-end delay of flow sets becomes zero,
when the total utilization exceeds 0.65, by using HLS to assign priority because no set can be scheduled.
This means that there is not one set of the 1000 sets we generated that can be scheduled when the
utilization exceeds 0.65. In the same way, there is no set that can be scheduled by using WF-D,
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WF-C, or WF-U when the total utilization exceeds 0.85. At each utilization rate, the delay of the four
algorithms is sorted from high to low in the order of HLS, WF-D, WF-U, and WF-C. Among the four
algorithms, the optimal algorithm WF-C can reduce the delay by up to 44.18% compared with the
worst algorithm HLS when the utilization is 0.6.
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Figure 3. The average value of total end-to-end delay of flow sets.

6.2. Ratio of Schedulable Flow Sets

The ratio of schedulable flow sets refers to the ratio of the scheduled flow sets in the
1000 experimental sets. As shown in Figure 4, the ratio of schedulable flow sets by using the four
algorithms decreases from large to small as the total utilization of flow sets increases. When the total
utilization of the flow sets is 0.2, the HLS algorithm exhibits unschedulable flow sets, and when the total
utilization exceeds 0.6, all flow sets are unschedulable. Similarly, unschedulable flow sets appear when
the utilization of WF-D, WF-U, and WF-C algorithms is 0.25, 0.35, and 0.35, respectively. When the
utilization rate exceeds 0.85, none of the three algorithms has a schedulable flow set. The WF-C
algorithm increases the schedulability ratio by up to 70.7% compared with the HLS algorithm when
the utilization is 0.5.
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Figure 4. The ratio of scheduled of sets.
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6.3. Calculation Time of the Schedulability Analysis

The calculation time of the schedulability analysis represents the time consumed to verify that a
flow set is schedulable. The calculation time is shown in Figure 5. We review the WF-D algorithm above.
The WF-D only assigns priority according to the deadline of flows in each channel. Different from
WF-D, each time WF-C and WF-U assign a priority, they will calculate whether the flow is schedulable
under the current priority and choose the highest C and U from all the schedulable flows to assign this
priority. In other words, the WF-D algorithm has a pre-allocated priority according to the deadline
of the flows and does not need to spend time assigning the priority of the flows. That is why the
WF-D algorithm consumes the least amount of time among the four algorithms. As the utilization
rate increases, the feasible tree generated by the HLS algorithm increases, and searching for a feasible
solution consumes much time. When the utilization exceeds a certain value, due to the high utilization,
the number of initial feasible solutions generated by the HLS algorithm becomes smaller, as does the
solution space, so the calculation time becomes greatly reduced. Hence, the calculation time of the
HLS sharply drops when the utilization exceeds 0.8. The calculation times of the WF-C and WF-U are
much shorter than that of the HLS when the utilization is larger than 0.3.
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Figure 5. The calculation time of the schedulability analysis.

6.4. Effect of Other Parameters on the Model

To check the stability of our simulation model and algorithms (WF-C and WF-U), we performed
several experiments with changing input parameters. Figure 6a–c show the average value of the total
end-to-end delay of the flow sets, the ratio of schedulable flow sets, and the calculation time of the
schedulability analysis with N = 100, α = 0.05, β = 1, and δ = 1, respectively. The experiments with
N = 50, α = 0.05, β = 2, and δ = 0.8 are shown in Figure 7.

By observing and comparing the experimental results, we find that the overall trend of the four
algorithms remains unchanged even when the input is changed. In other words, the two algorithms
we proposed are superior to WF-D and HLS.
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(a) The average value of worst-case end-to-end delay of sets.
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(b) The ratio of scheduled of sets.
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Figure 6. Experiments with N = 100, α = 0.05, β = 1, and δ = 1.
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(a) The average value of the worst-case end-to-end delay of sets.
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Figure 7. Experiments with N = 50, α = 0.05, β = 2, and δ = 0.8.
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Comparative experiments indicate that the four algorithms are similar, even with different input
parameters. However, WF-C and WF-U are better than the HLS algorithm.

7. Related Work

Priority assignment and schedulability analysis of multi-channel real-time flows in the
WirelessHART network are usually treated as problems for multi-processor real-time tasks in a
CPU [8]. As a result, we do not know when the level-k busy period [9] begins. Therefore, the upper
bound of multiprocessor interference is usually calculated instead of the exact solution [19]. Tao
et al. proposed a mechanism which can allocate the requirements to user channels based on the
different priority levels and ensure that the user with the highest priority will immediately gain
channel access [20]. Hossam et al. proposed a new protocol called SS-MAC which can reduce nearly
30% in the worst-case delay [21]. Both Tao and Hossam assume that the deadline of every flow is fixed
at 250 ms. Compared with their model, our method, which randomly generates deadlines based on
utilization, can be adapted to the system, whose flow deadlines change dynamically. Wei Shen et al.
proposed a new scheduling policy called SAS-TDMA to improve the quality of service for the network
and reduce the delay for real-time communication [22]. This method improves the reliability of the
system in the heavy-noise environment. It is different from our method, which improves reliability by
adding redundancy. Furthermore, we use multiple channels to improve the efficiency of the system
compared to their method.

The fixed priority model has two global priority assignment strategies, namely, LS and HLS [7].
The LS and HLS algorithms are based on creating a feasible tree of priority assignment strategies
and cutting in accordance with the upper and lower bounds of WETED. Several priority assignment
strategies are available for multi-processors in the arbitrary deadline model [23–25].

Considering the reality, the energy of IoT devices (including wireless sensors) are powered by
batteries (IEEE 802.15.4). Therefore, reducing power has a very important value [26]. Weizhe et al.
proposed a trusted real-time scheduling model and a successful meta-heuristic method called shuffled
frog leaping algorithm (SFLA) [27] to reduce energy consumption. The node residual energy after data
flow transmission in linear wireless sensor networks from source nodes and relay nodes was evaluated
by Wang et al. [28].

8. Conclusions and Future Work

In this paper, we transform the multi-channel TDMA real-time flow model in the WirelessHART
network into a real-time task scheduling model in the CPU. On the basis of this transformation, we use
the worst-fit method to allocate flows to each channel and provide the calculation formula of the
WETED of flows in a single channel. Afterward, we present two heuristic algorithms, WF-C and WF-U,
to assign priority. Using the simulation model we built, we find that the two proposed algorithms
are more efficient than WF-D and HLS algorithms, and the WF-C algorithm is the most efficient.
Compared with HLS, the average value of the total end-to-end delay of WF-C can be reduced by up to
44.18%, and the ratio of schedulable flow sets can be increased by up to 70.7%.

In this paper, we assume that the real-time flows are preemption fixed priority flows. However,
there are many kinds of real-time flows such as non-preemption, preemption latency fixed priority
flows, and many kinds of dynamic priority real-time flows. The scheduling policy of these real-time
flows and the schedulability analysis of these real-time flows can be improved in the future. We intend
to propose a new schedulability analysis in the future, so as to reduce the calculation time and reduce
the time complexity of schedulability analysis, thus improving the computing efficiency of the system.
We also intend to propose a new method of priority assignment for other kinds of real-time flows in
the future, so as to improve the ratio of scheduled of sets and thus make the system more stable.
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Abstract: In 2016, the IEEE task group ah (TGah) released a new standard called IEEE 802.11ah, and
industrial Internet of Things (IoT) is one of its typical use cases. The restricted access window (RAW) is
one of the core MAC mechanisms of IEEE 802.11ah, which aims to address the collision problem in the
dense wireless networks. However, in each RAW period, stations still need to contend for the channel
by Distributed Coordination Function and Enhanced Distributed Channel Access (DCF/EDCA),
which cannot meet the real-time requirements of most industrial applications. In this paper,
we propose a channel-aware contention window adaption (CA-CWA) algorithm. The algorithm
dynamically adapts the contention window based on the channel status with an external interference
discrimination ability, and improves the real-time performance of the IEEE 802.11ah. To validate the
real-time performance of CA-CWA, we compared CA-CWA with two other backoff algorithms with
an NS-3 simulator. The results illustrate that CA-CWA has better performance than the other two
algorithms in terms of packet loss rate and average delay. Compared with the other two algorithms,
CA-CWA is able to support industrial applications with higher deadline constraints under the same
channel conditions in IEEE 802.11ah.

Keywords: wireless local area network; IEEE 802.11ah; industrial IoT; medium access
control; timeliness

1. Introduction

In recent years, wireless communication has been widely adopted in the field of industrial
communication systems [1,2]. Compared with traditional wired industrial communication systems [3]
(e.g., Fieldbus and Industrial Ethernet), wireless communication does not require the deployment of
expensive communication cables, and therefore they are cost-effective and easy to maintain. Thus, it is
also very attractive for industrial soft real-time applications, such as soft real-time control systems [4]
and multimedia embedded systems [5]. In soft real-time industrial systems, slight deadline misses
are tolerable, as long as their impact is below some functional threshold, although this may affect
quality of service and system accuracy to some extent. The tolerance degree depends on the different
requirements of underlying industrial applications. Thus, when designing soft real-time systems, it is
important to consider the deadline constraint and keep it below the threshold.

As one of the most widely deployed wireless technologies, IEEE 802.11 Wireless Local Area
Network (WLAN) becomes a good candidate for various industrial wireless applications with different
requirements [5,6]. However, WLAN was originally designed for high throughput applications.
When it is adopted in the industrial context, a few issues are still to be resolved, such as energy
efficiency, transmission range, interference and real-time performance. To provide a better support for
IoT communications, the IEEE task group ah (TGah) released a new standard, called IEEE 802.11ah
(marketed as Wi-Fi HaLow), and industrial automation is one of its typical use cases [7]. IEEE 802.11ah
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operates in the frequency band below 1 GHz, and supports up to 8192 nodes (sensors) in a WLAN
with the transmission range up to 1 km. To address the collision problem for such a dense wireless
network, the standard introduces a novel access mechanism called Restricted Access Window (RAW).
The core idea of RAW is to limit the number of stations accessing the channel by a grouping-based
medium access control (MAC) protocol. The stations are partitioned into groups, and the channel is
split into slots to decrease collision probability in networks with thousands of stations.

Timeliness is usually dealt with at the MAC layer. In 802.11ah MAC, RAW mechanism can
significantly reduce collisions and improve real-time performance. However, in each RAW slot, stations
still need to contend for the channel by Distributed Coordination Function and Enhanced Distributed
Channel Access (DCF/EDCA). While these MAC layer channel access schemes provide good real-time
performance under light traffic, they have severe problems under congested network conditions when
applied to real-time applications [8–10]. The original design intention of DCF/EDCA does not consider
the deadline requirements, leading to unpredictable real-time performance of the industrial systems.
Moreover, high external interference exists in the real industrial scenario, which brings high bit error
rates in device communication [11]. The interference can seriously affect the network performance,
which makes it harder to meet the real-time requirements of various industrial applications.

In this paper, the authors intend to improve the performance of the IEEE 802.11ah-based soft
real-time networks in industrial scenario. The main contributions of this paper are summarized
as follows:

• We propose a channel-aware contention window adaption (CA-CWA) algorithm, which
dynamically increases and decreases the CW according to the channel status in order to improve
the real-time performance of the RAW mechanism in IEEE 802.11ah.

• To eliminate the influence of the interference in real wireless environment, the CW adaption
process is integrated with an external interference discrimination method. This method
can improve the performance of CA-CWA algorithm effectively in the wireless environment
with interference.

The remainder of the paper is organized as follows. Section 2 reviews the background and related
work on this research. Section 3 presents the proposed CA-CWA algorithm in detail. Section 4 shows
simulation results of the proposed algorithm in detail. Finally, conclusions are given in Section 5.

2. Background

2.1. IEEE 802.11 DCF and EDCA

As a fundamental MAC mechanism of the IEEE 802.11, the Distributed Coordination Function
(DCF) is a simple and flexible scheme to share the medium among multiple stations. As shown in
Figure 1, in DCF, stations contend for the chance of channel access by Carrier Sense Multiple Access
mechanism with Collision Avoidance (CSMA/CA). When collisions happen, DCF adopts a Binary
Exponential Backoff (BEB) algorithm to alleviate the congestion [12]. Two separate and distinct
carrier-sensing functions are defined in IEEE 802.11 standard: Clear Channel Assessment (CCA) and
the Network Allocation Vector (NAV). CCA is physical carrier sense, which determines whether the
medium is idle or not, based on energy thresholds from the radio interface. NAV is virtual carrier
sense, which is an indicator for the station to avoid potential conflicts by overhearing stations.
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Figure 1. Example of the DCF mechanism.

Before starting a new transmission, each station must sense the status of the channel. The station
is permitted to initiate its transmission only if it finds the channel is idle in an additional random
backoff period plus a DCF Interframe Space (DIFS) duration. Otherwise, the transmission must be
frozen until the medium is idle again. The backoff duration is composed of a multiple of time slots.
Each active station generates a uniformly random backoff value from [0, CW − 1], where CW is the
contention window size. The backoff value is the number of time slots that a station has to wait
before transmission. In the first transmission, CW is set to minimal value CWmin, which is defined in
the standard. When the transmission fails, the CW is doubled until it reaches maximum CW value
CWmax. Once the CW reaches CWmax, the contention window is maintained at CWmax even if the next
transmissions are still unsuccessful. The CW is set back to CWmin after a successful data transmission
or when the retransmission counter exceeds the retry limit.

To provide priority-based QoS for real-time applications, IEEE 802.11e task group enhances
the DCF through a new channel access mechanism: Enhanced Distributed Channel Access (EDCA).
As illustrated in Figure 2, four Access Categories (ACs) are defined in EDCA, namely voice (AC_VO),
video (AC_VI), best-effort (AC_BE), and background (AC_BK) traffic. In EDCA, higher priority
traffic uses shorter arbitration inter-frame space (AIFS). When an internal traffic collision happens,
the higher priority access category obtains the data transmission chance, while the other ACs should
restart the backoff procedures. With EDCA, high-priority traffic has a higher transmission chance than
low-priority traffic by differentiating the backoff parameters for different ACs (Table 1).

Upper Layers

AC_VO AC_VI AC_BE AC_BK

Data Transmission

Figure 2. EDCA traffic priorities mapping.

Table 1. IEEE 802.11E EDCA parameter set.

AC CWmin CWmax AIFSN TAIFS

AC_VO 3 7 2 28 μs
AC_VI 7 15 2 28 μs
AC_BE 15 1023 3 37 μs
AC_BK 15 1023 7 73 μs
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Figure 3. IEEE 802.11ah RAW structure.

2.2. IEEE 802.11ah RAW

Although IEEE 802.11ah inherits most of the basic IEEE 802.11 MAC features, several innovative
MAC mechanisms are proposed to support the general requirements of the IoT applications. One of
these novel MAC features is Restricted Access Window (RAW).

The RAW mechanism aims to mitigate collisions in dense wireless networks, where a large
number of stations are contending for channel access simultaneously. Specifically, the channel time
is split into several intervals, namely the RAW periods and the shared channel airtime. As shown in
Figure 3, only a portion of stations, namely the RAW stations, from a specific group are allowed to
contend the channel in a particular RAW period. By contrast, all stations can compete for the channel
in the shared channel airtime. The AP is responsible for assigning each RAW period to a group of
stations by a beacon frame carrying a RAW Parameter Set (RPS), which is an information element
that specifies the RAW related information, including the stations belonging to the group and the
group start time. Besides, the RPS also contains the slot format, the number of RAW slots (Ns) and slot
duration count sub-fields, which jointly determine the RAW slot duration as follows:

D = 500 μs + C × 120 μs, (1)

where C is slot duration count sub-field, and D is the RAW slot duration. The number of RAW slots Ns

and C are determined by the slot format sub-field. If the slot format sub-field is set to 1, each RAW
period consists of at most eight RAW slots and the maximum value of C is 2047. Otherwise, each RAW
period consists of at most 64 RAW slots and the maximum value of C is 255.

To make EDCA compatible with the RAW mechanism, each station adopts two backoff states
of EDCA to manage data transmission inside and outside its assigned RAW slot, respectively [13].
The first backoff state is adopted outside RAW slots, in which all stations are permitted to compete
for the channel. For the first backoff state, the station freezes its backoff timer at the start of each
RAW period, and resumes the backoff timer at the end of the RAW period. The second backoff state is
adopted inside RAW slots, where only the designated group of stations is permitted to contend for
channel access. For the second backoff state, stations start backoff procedure at the start of their own
RAW slot, and terminate their backoff procedure at the end of their RAW slot.

2.3. Contention Window Adaption

In IEEE 802.11 networks, it is extensively accepted that the backoff algorithm plays a significant
role in achieving a high throughput and less medium access delay [14,15]. The IEEE 802.11 adopts
a binary exponential backoff algorithm by default. As described in Section 2.1, when collisions
happen, the BEB scheme simply exponentially doubles CW value to avoid repeated collisions, while it
always resets the CW value to CWmin after a successful transmission, assuming that the network
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is no longer congested. The fundamental problem is that BEB has no perception of the channel
state, thus the algorithm does not know how to obtain an appropriate CW value to provide a better
network performance.

Thus, considerable effort was devoted to improve the efficiency of the IEEE 802.11 backoff protocol.
Several feedback-based schemes [14–19] have been proposed for adapting the station backoff to the
present network conditions. In [16], an additional control is introduced on frame transmission for
adaptation of CW according to the present network congestion. Further, the authors of [17] tuned CW
by runtime estimation of the congestion condition and network status. In [14], the authors proposed
a solution CCCW, which dynamically adjusts the CW size in both of saturated and unsaturated traffic
conditions. The CW adaptation process in CCCW aims to achieve the optimal throughput. Recently,
the authors of [15] proposed a delay-aware CW scheme adaption scheme called D2D, which tunes CW
by the present delay level and channel congestion status of the network. However, these CW adaption
schemes do not consider the influence of error-prone channel on the CW adjustment. On the other
hand, several schemes [20,21] proposed the optimal configuration of the CW parameters in EDCA
according to a predefined set of performance criteria. However, the theoretically derived optimal
values rely on the actual measurement of network parameters such as number of contending stations,
which is difficult to measure precisely in the real dynamic wireless environment.

3. The Proposed CA-CWA Algorithm

To fulfill the requirements of the industrial soft real-time applications, it is a good solution to
improve the real-time performance of the IEEE 802.11ah networks by a better backoff algorithm.
As discussed in Section 2.3, the most critical issue in designing backoff algorithm is to make it fully
aware of the channel and network status. In industrial scenario, high external interference exists,
which brings high bit error rates in device communication. The interference will significantly degrade
the performance of the backoff algorithm in wireless channels [18,22]. Moreover, the designed CW
adaption algorithm also needs to be carefully optimized for the two distinct backoff states of the RAW
mechanism in IEEE 802.11ah, due to their different characteristics. To address these challenges, in this
section, we first introduce a congestion status estimation scheme with interference discrimination
ability by several observation measures. Then, a contention window adaption algorithm called
CA-CWA is designed based on the congestion status estimation. Finally, the proposed CW adaption
algorithm is integrated with the IEEE 802.11ah networks to provide better real-time performance.

3.1. Congestion Status Estimation

To provide a backoff algorithm in the 802.11 WLAN based on the congestion status, we need to
first consider how to estimate the current network congestion level based on the available observation
measures. In this work, we choose the parameter called channel busyness ratio (ρ) for capturing the
channel status, which refers to the literature [14,19]. The channel busyness ratio is defined as the rate
that a station finds the channel is busy during a certain time interval. Let Ti be the slot length of the ith
slot, in a given time interval which has n time slots, and the ratio ρ can be calculated as follows:

ρ =
∑n

i=1 αiTi

∑n
i=1 Ti

. (2)

where αi is the indicator function expressed as:

αi =

⎧⎪⎨
⎪⎩

1, if ith slot is busy

0, if ith slot is idle
. (3)

In the IEEE 802.11 standard, every station has the ability of carrier sensing. Thus, αi is easy to
obtain without any additional hardware modification. However, in a real wireless scenario, both
external interferences and transmission collisions can cause busy channels, which was not taken into
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account in the mentioned previous work. To obtain a more accurate estimation of αi, a method should
be designed to discriminate between the external interferences and transmission collisions. Let N
be the number of transmissions in a given period of time for an arbitrary station, and S of them are
transmitted successfully (ACK is received). On the other hand, suppose there are R slots in which
the station does not transmit, and I of them are idle, we can conduct the estimation of the collision
probability pc and the channel error probability pe by maximum likelihood estimation method [23]:

pc =
R − I

R
, (4)

pe = 1 − 1 − (N − S)/N
1 − pc

. (5)

With the collision probability pc and the channel error probability pe, the modified channel
busyness ratio (ρ′) can be calculated as follows:

ρ′ = pc

pc + pe

∑n
i=1 αiTi

∑n
i=1 Ti

. (6)

3.2. The Contention Window Adaption Scheme

In this section, we present the contention window adaption scheme based on the channel status
estimation. In a general backoff scheme, a station should randomly select a backoff value from the
interval [0, CW] before each transmission in order to avoid collision. Let Wk be the CW size of the kth
transmission attempt. The value of Wk in BEB algorithm can be calculated as follows. If the CW limit
CL (CL = [logω

CWmax
CWmin

]) is greater than the retry limit RL, then,

Wk = ωkCWmin. (7)

otherwise,

Wk =

⎧⎪⎨
⎪⎩

ωkCWmin, for k ∈ [0, CL]

CWmax, for k ∈ [CL, RL]
, (8)

where CWmax, CWmin, and ω are the maximum CW size, the minimum CW size, and the backoff
stage factor, respectively. In CA-CWA, only the CW update procedure is different from BEB after a
success transmission and a failure transmission. In a fixed interval Tρ, each station should observe the
channel, and calculate the modified channel busyness ratio ρ′ by Equation (6). Besides, to minimize the
estimation bias introduced by burst traffic or interference, CA-CWA adopts an Exponentially Weighted
Moving Average (EWMA) estimator to smoothen the estimated ρ′. In an arbitrary interval Tj

ρ, the value
of ρ′j is updated according to the following rules:

ρ
j
avg

′
= (1 − π)× ρ′j + πρ

j−1
avg

′
, (9)

where ρ′j is the estimated ρ′ in the interval Tj
ρ, ρ

j
avg

′
is the smoothed ρ′ value for CW adaption, and π is

the smoothing factor of the EWMA estimator, which determines the preserved number of historical
values in the smoothing process. The ρavg

′ is updated continuously in each estimating interval Tρ.
The value of Tρ should be set appropriately to reflect the recent channel state better.

As mentioned in Section 2.1, EDCA defines four traffic types with different priorities. To ensure
the priority mechanism still works properly, CA-CWA defines a decrement factor θ with different
values for each type of traffic. Based on θ, the station is able to adjust its CW dynamically according to

ρ
j
avg

′
. The decrement factor of nth priority traffic (θn) is defined as:
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θn = min{ωnρ
j
avg

′
, θmax}, n ∈ [1, 4] (10)

The traffic priority decreases gradually from n = 1 to n = 4, which ensures the higher priority class
is able to adjust the CW parameter with a smaller θ. θmax is a parameter that keeps the value of θ not be
too large. An excessive value of θ might cause the reset CW value to be greater than the previous CW
value. For each class n, CWn is updated after each successful transmission according to Equation (11):

CWn
new = max{CWn

min, θnCWn
old}, n ∈ [1, 4] (11)

where CWn
old is the CW value before an arbitrary successful transmission for class n, CWn

new is the
updated CW value after the successful transmission. After each unsuccessful transmission, the CW
of each class is doubled as long as the value of CW is less than CWmax, which is as same as the
mechanism in BEB. Based on the channel status estimation, the aforementioned design of backoff
adaption in CA-CWA follows a few principles which provide improved network performance in terms
of timeliness. In a highly congested channel, a station should avoid blind resetting its CW to CWmin
after a successful transmission. In CA-CWA, a station will select an appropriate (relatively high) CW
value according to the high value of θ in this situation. On the other hand, if the channel congestion
reduces, a station will also reduce the value of θ and ensure a lower CW to minimize the access delay.
In addition, to integrate CA-CWA into the IEEE 802.11ah protocol, CA-CWA defines a multiplier factor
λ for the first backoff state (free contention period) in IEEE 802.11ah. For each station, the minimal
CW is initialized to the product of the default CWmin and λ because the channel is more likely to be
congested. The CA-CWA algorithm is summarized in Algorithm 1, and a flowchart is illustrated in
Figure 4 to make the algorithm process more clear. The two functions defined in Algorithm 1 are the
two most upper arrows that appear in Figure 4. Besides, the specific values of the parameters in the
algorithm will be introduced in the simulation part.

Figure 4. CA-CWA algorithm.

95



Sensors 2019, 19, 3002

Algorithm 1 Channel-aware CW adaption algorithm.

1: function ESTMATION
2: for each fixed interval Tρ do
3: calculate ρ′ by Equation (6)
4: ρavg

′ ← calculate the smoothed ρ′ by Equation (9)
5: update ρavg

′
6: end for
7: end function
8:
9: function CA-CWA

10: /*initialization process*/
11: if second backoff state then
12: CWmin ← CWmin
13: else
14: CWmin ← λCWmin
15: end if
16: initialize other parameters
17:
18: while (1) do
19: ...
20: /*after a transmission triggered*/
21: if successful then
22: for n ∈ [1, 4] do
23: obtain ρavg

′
24: calculate θn by Equation (10)
25: update CWn by Equation (11)
26: transmission end (successful)
27: end for
28: else
29: if reach retry limit then
30: transmission end (failed)
31: else
32: CWn ← ωCWn
33: end if
34: end if
35: end while
36: end function

4. Performance Evaluation

In this section, we present our simulation results and analysis to demonstrate the real-time
performance of the CA-CWA algorithm in IEEE 802.11ah networks.

4.1. Simulation Environment

The CA-CWA algorithm was implemented in the NS-3 simulator with IEEE 802.11ah modules,
which is proposed in [24]. The simulation process was based on a general WLAN scenario, where
one AP was located in the center, and other stations were randomly distributed around it within
its communication range. Each station was installed with a UDP application that generated traffic
with the interval of 0.05 s, and the packet size was set to 100 bytes due to the characteristics of small
packet size in industrial scenario [25]. Only one transmission queue (AC_BE) was retained to focus on
the competition among stations under the RAW mechanism, and CWmin and CWmax were set to the
default values. The values of other network parameters were set by default according to Tian et al. [24].
On the other hand, the algorithm parameters were mainly determined by tests. For example, the
smoothing factor π adopted in EWMA is usually recommended to be in the interval between 0.75 and
0.95 according to Lucas and Saccucci [26]. To obtain the optimal value of π, the relationship between
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the smoothing factor π and the network average delay was obtained through a test simulation. In the
simulation, we adopted 10 non-RAW stations and 20 RAW stations, and the number of RAW slots Ns

was fixed to 1. The results are shown in Figure 5, and we finally set the value of π to 0.9 for the good
performance. The main network parameters in the simulations are listed in Table 2.

Table 2. Basic parameters in simulation.

Basic Parameters

Reception energy threshold −116.0 dbm
CCA threshold −119.0 dbm

Noise figure 3 db
Channel bandwidth 1 MHz

Path loss model Log-distance
Path loss exponent 3.67

Data rate 2.4 Mbps
Maximal distance between AP and stations 250 m

CWmin 15
CWmax 1023

UDP traffic interval 0.05 s
Packet payload size 100 bytes

RAW Parameters

RAW slot format 0
C 100
D 12.5 ms

Number of group 1

Algorithm Parameters

Tρ 5 ms
λ 0.2
ω 2
π 0.9

θmax 0.82

Figure 5. Smoothing factor effect on average delay.

4.2. Simulation Results

Because the proposed CA-CWA algorithm is mainly intended for industrial soft real-time
applications, the simulation environment was adjusted to make it similar to the wireless conditions in
industrial scenarios. According to the authors of [11,27], high interference exists in unstable and harsh
industrial environments, which causes high bit error rates (BER = 10−2–10−6) in industrial wireless
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communication. Thus, we adopted a loss model to introduce a packet loss ratio at approximately 2.5%.
Besides, CA-CWA was compared with two other backoff algorithms, namely BEB and CCCW [14].
BEB is the default backoff algorithm in IEEE 802.11 protocol, and CCCW is another CW adaption
algorithm based on the channel congestion status, which is described in Section 2.3.

In the simulation, we mainly focused on the real-time performance improvement that CA-CWA
algorithm can bring for IEEE 802.11ah in industrial scenario. Thus, we chose average delay, packet loss
ratio, and the delay distribution, which is the most important metric for the industrial soft real-time
systems, to test the network performance. These metrics can reflect the real-time performance of the
network very well. To eliminate random drift of the simulation results, each simulation was conducted
five times, and the results are the average of the five.

To validate the characteristics of the algorithms in IEEE 802.11ah more precisely, the simulation
was conducted in two simulation scenarios for the two backoff states.In the first simulation scenario,
the number of non-RAW stations NNRAW (the stations which not support RAW) was fixed to 10.
The number of RAW stations NRAW varied dynamically to obtain the real-time performance of the
algorithms in the second backoff state (the backoff used in the RAW period). Besides, as one of the key
parameters in the RAW mechanism, the number of RAW slots Ns was also set to distinct values (Ns = 1,
2 and 4) to show the influence of different RAW parameters on the network real-time performance. In
fact, the influence of Ns on network real-time performance has been discussed in the literature [28,29].
In simple terms, when Ns increases and the other RAW parameters remain unchanged, the network
delay will increase slightly under a lower load, but decrease slightly under a heavier load. The reason
is elaborated in in detail below along with the simulation results.

Table 3 illustrates the change of the values of the core parameters in CA-CWA when varying
the number of RAW stations, and Ns was set to 1. To show the channel state estimation process of

the CA-CWA in the simulation, we recorded the smoothed modified channel busyness ρ
j
avg

′
. In each

interval Tρ, ρ
j
avg

′
was updated by Equation (9). Here, we use ρ100

avg
′ to show the channel state because

ρavg
′ tended to be stable after one hundred updates. Besides, the backoff decrement factor θ1, which

was calculated by ρ100
avg

′, is also listed in the table. We observed that the value of ρ100
avg

′ and θ1 increased

as NRAW increased, which is consistent with our intuition. The values of the ρ100
avg

′ and θ1 were quite
similar when Ns was set to 2 and 4 in our simulation, and, therefore, the table only shows the change of
the values when Ns was set to 1. Moreover, it is easy to find the network real-time performance (average
delay and packet loss ratio) under each value of ρ100

avg
′ and θ1 by analyzing Figures 6 and 7. For example,

when NRAW equaled to 20, ρ100
avg

′ and θ1 were 89% and 0.82, respectively, and the corresponding delay
and packet loss ratio were 7.2 ms and 0, respectively.

Table 3. The calculated core algorithm value in the first scenario (Ns = 1).

NRAW 1 5 10 15 20 25 30 35 40 45 50

ρ100
avg

′ 2% 14% 35% 53% 89% 92% 94% 95% 98% 98% 98%

θ1 0.02 0.14 0.35 0.53 0.82 0.82 0.82 0.82 0.82 0.82 0.82

Figures 6 and 7 show the average delay and packet loss ratio of the different backoff algorithms
under different RAW parameter settings. We observed that the objective values associated with each
algorithm increased as the number of RAW stations increased. This is intuitively expected because the
network is more congested if there are more stations transmitting their data. Comparing Figure 6a–c,
we observed that the number of the RAW slots (Ns) can influence the delay performance slightly.
For example, when the network was not congested (NRAW < 15), the average delay increased if the
number of the RAW slots Ns increased. When NRAW = 15, the average delay shown in Figure 6a–c was
1.2 ms, 2.24 ms and 7 ms, respectively. The reason is that the RAW mechanism only allows stations
to transmit its data in its assigned slot. A station will wait for a longer time to transmit if there are
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more slots in a RAW. On the other hand, when the network is heavily loaded, adopting RAW can
slightly alleviate network congestion, and obtain a lower average delay (although it is not obvious).
The similar analysis result can be obtained for packet loss ratio when comparing Figure 7a–c.

(a) Average delay comparison when Ns = 1 (b) Average delay comparison when Ns = 2

(c) Average delay comparison when Ns = 4

Figure 6. Performance of average delay of each algorithm.

Figures 6 and 7 further show that the CA-CWA algorithm has better performance on average
delay and packet loss ratio than the other two algorithms, regardless of the different number of RAW
slots. We take the results in Figure 6a as an example; when NRAW was less than 15, all the three
backoff algorithms performed well due to the non-congested channel condition. However, when
NRAW was more than 20, the average delay of the network rose rapidly. In BEB, each station blindly
reset its contention window to CWmin after a successful transmission, which further aggravates the
degree of channel congestion. Thus, BEB has the worst performance on average delay among the
three algorithms. CCCW algorithm aims to optimize the network throughput by adaptive usage of
contention window size. It significantly reduces collisions of the stations, and the average delay was up
to 40% lower than the performance in BEB. However, CCCW does not consider the collisions caused
by interference, which results in the adjusted CW value not matching the real channel condition. Thus,
the average delay in CCCW was at most 30% higher comparing with the average delay in CA-CWA.
On the other hand, Figure 7a shows the packet loss performance of the three backoff algorithms. The
packet loss ratio of BEB increased dramatically from 5% to 23% when NRAW was 40. Compared with
BEB, the packet loss ratio decreased up to 37.5% and 62.3% in CCCW and CA-CWA, respectively, when
the network was congested (NRAW >= 35). A similar conclusion about average delay and packet loss
ratio can also be drawn from the results in Figures 6b,c and 7b,c.
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(a) Packet loss ratio comparison when Ns = 1 (b) Packet loss ratio comparison when Ns = 2

(c) Packet loss ratio comparison when Ns = 4

Figure 7. Performance of packet loss ratio of each algorithm.

To indicate the real-time performance of the three algorithms more intuitively, we also plot
histograms (Figure 8) to show the discrete distribution of the transmission delay in 10 RAW stations
(Figure 8a), 22 RAW stations (Figure 8b) and 40 RAW stations (Figure 8c) scenarios, respectively. In
Figure 8a, the end-to-end delay of 95% packets was below 10 ms in BEB, CCCW and CA-CWA, and
only 5% packet delay was distributed between 10 and 100 ms. This is because the channel was not
crowded in this scenario, and all the three backoff algorithms performed well. In the scenario shown
in Figure 8b, the network was slightly congested. The end-to-end delay in BEB was mainly distributed
between 100 and 1000 ms, which had the poorest performance among the three algorithms. By contrast,
the end-to-end delay of CCCW and CA-CWA was mostly less than 10 ms due to their feature of
CW adaption. Compared with BEB and CCCW, CA-CWA had 578% and 23.4% performance boost,
respectively, when considering the percentage of delay distributed below 10 ms. In the scenario shown
in Figure 8c, the end-to-end delay of the three algorithms was mainly distributed in the interval of
more than 1000 ms, due to the heavily congested channel condition. However, compared with the
other two algorithms, CA-CWA still had the largest proportion (17.8% for < 10 ms, and 21.3% for
10–100 ms) when considering the end-to-end delay distribution between 0 and 100 ms. In summary,
CA-CWA is able to support industrial applications with higher deadline constraints under the same
channel conditions in IEEE 802.11ah.

The second simulation scenario was to verify the real-time performance of the first backoff state
(the backoff used in the free contention period). Table 4 shows change of the values of the core
parameters in CA-CWA when varying the number of non-RAW stations. In this scenario, the number
of RAW stations NRAW was fixed to 20, and NNRAW varied from 0 to 40. As shown in Figure 9a,b, we
observed that the average delay and packet loss ratio rose rapidly when NNRAW only equaled 5 and 20,
respectively. This is because all stations could compete for channels in the first backoff state, which led
to more congestion of the channel. The performance comparison of the three algorithms was similar to
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the discussion in the first scenario, which is disccussed in the previous paragraph. Figure 9a,b shows
that the real-time performance of CA-CWA was superior to the other two algorithms too.

(a) End-to-end delay distribution (NRAW = 10) (b) End-to-end delay distribution (NRAW = 22)

(c) End-to-end delay distribution (NRAW = 40)

Figure 8. End-to-end delay distribution when Ns = 2.

(a) Average delay comparison. (b) Packet loss ratio comparison.

Figure 9. The real-time performance in the first backoff state.

Table 4. The calculated core algorithm value in the second scenario.

NRAW 1 5 10 15 20 25 30

ρ100
avg

′ 80% 92% 94% 95% 97% 98% 98%

θ1 0.80 0.82 0.82 0.82 0.82 0.82 0.82

5. Conclusions

In this paper, we propose a channel aware contention window adaption (CA-CWA) algorithm
for the real-time performance improvement of the IEEE 802.11ah-based industrial applications.
The CA-CWA scheme adapts the CW according to a measurement based parameter called channel
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busyness ratio. Moreover, to eliminate the influence of the interference in real wireless environment on
the algorithm, the channel busyness ratio is then modified with an interference discrimination method.
To validate the performance of the proposed algorithm, we compared the real-time performance of
CA-CWA with the other two algorithms, namely BEB and CCCW, in NS-3 simulator with IEEE 802.11ah
modules. The results illustrate that CA-CWA has better performance than the other two algorithms
in terms of packet loss rate and average delay. Moreover, CA-CWA has a lower delay distribution in
the congested wireless condition. Thus, compared with the other two algorithms, CA-CWA is able to
support industrial applications with higher deadline constraints under the same channel conditions in
IEEE 802.11ah. As for the future research work, we plan to introduce a model considering both backoff
schemes and RAW mechanism to provide a theoretical analysis of the network real-time performance,
as well as to develop a new channel state estimation method based on several novel mechanisms, such
as machine/deep learning techniques, to provide more accurate channel information.
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Abstract: The virtualization technology has a great potential to improve the manageability and
scalability of industrial control systems, as it can host and consolidate computing resources very
efficiently. There accordingly have been efforts to utilize the virtualization technology for industrial
control systems, but the research for virtualization of traditional industrial real-time networks, such as
Controller Area Network (CAN), has been done in a very limited scope. Those traditional fieldbuses
have distinguished characteristics from well-studied Ethernet-based networks; thus, it is necessary to
study how to support their inherent functions transparently and how to guarantee Quality-of-Service
(QoS) in virtualized environments. In this paper, we suggest a lightweight CAN virtualization
technology for virtual controllers to tackle both functionality and QoS issues. We particularly target
the virtual controllers that are containerized with an operating-system(OS)-based virtualization
technology. In the functionality aspect, our virtualization technology provides virtual CAN interfaces
and virtual CAN buses at the device driver level. In the QoS perspective, we provide a hierarchical
real-time scheduler and a simulator, which enable the adjustment of phase offsets of virtual controllers
and tasks. The experiment results show that our CAN virtualization has lower overheads than an
existing approach up to 20%. Moreover, we show that the worst-case end-to-end delay could be
reduced up to 78.7% by adjusting the phase offsets of virtual controllers and tasks.

Keywords: virtualization; controller area network; fieldbus; real-time; container

1. Introduction

The contemporary industrial control systems comprise many sensors, actuators, and controllers
connected through real-time networks. As the number of sensors and actuators in modern industrial
plants increases drastically, the manageability of the controllers that directly interact with sensors
and actuators in real-time becomes a serious concern. Accordingly, the demands for the flexibility
with regard to hosting and consolidation of the controllers in large and complex industrial plants are
constantly growing. For instance, to address the manageability and scalability in industrial control
systems, there is an active movement to exploit cloud computing technologies in the infrastructure of
smart manufacturing with the advent of the Industry 4.0 era [1–3].

In cloud computing, the virtualization is the key technology that provides the resource
isolation and security between virtual machines [4]. Thus, it is expected that the industrial control
software can also be efficiently deployed and executed in given computing resources by means of
virtualization, while satisfying the requirements on security by preventing unauthorized resource
access between virtual controllers. However, existing virtualization technologies in cloud computing
do not support essential components of industrial control systems. It is particularly important to
provide functional transparency and a real-time guarantee of industrial networks in virtualized
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environments. There were significant studies on network virtualization, but most of the existing
research focused on the performance optimization of Transmission Control Protocol/Internet Protocol
(TCP/IP) over Ethernet [5–10] or high-performance interconnects [11]. Although the Ethernet-based
industrial networks, such as EtherCAT [12] and PROFINET [13], are emerging, traditional fieldbuses,
such as Controller Area Network (CAN) [14], are still prevalent among the majority of control systems.
CAN is a bus-based network standardized in ISO 11898. In order to support CAN in virtualized
environments, we have to deal with following challenging issues:

• Support for sharing of the network interface: In order to allow several virtual controllers to share a
physical CAN network interface in an isolated manner, the run-time support should be capable
of multiplexing and demultiplexing the input/output (I/O) requests from multiple virtual
controllers. However, the protocol stacks of CAN (i.e., CANopen [15]) implicitly assume that the
CAN network interface can be dedicated to only one software controller.

• Emulation of the media access control: The characteristics of CAN are significantly different from
general purpose networks. For example, the CAN message identifier is used in bus arbitration;
that is, it is considered as a priority for bus arbitration. Thus, such characteristics have to be
emulated in virtualized environments to preserve the behavior of controllers.

• Low virtualization overheads: As the traditional hypervisor-based virtualization (e.g., Xen [4],
VMware [16], and VirtualBox [17]) adds significant run-time overheads, the operating-system
(OS)-based virtualization (e.g., Container [18,19]) is emerging. Accordingly, we need a CAN
virtualization technology that can be incorporated into the OS-based virtualization aiming to
minimize the virtualization overheads.

• Analysis of end-to-end delay: In virtualized environments, multiple virtual controllers share the
CPU resources; thus, the end-to-end delay of control loop highly depends on how the virtual
controllers are scheduled. Therefore, we need a mechanism to analyze the worst-case end-to-end
delay and minimize it to satisfy the requirements on real-time.

In this paper, we suggest a lightweight CAN virtualization technology for virtual controllers
that are containerized with an OS-based virtualization. Our study mainly focuses on how to
provide correct communication semantics and functionalities of industrial fieldbuses in OS-based
virtualization, while providing low overheads and Quality-of-Service (QoS). The proposed scheme
does not require any modifications of control applications and protocol stacks. There were also studies
to virtualize CAN, but these were hardware-level approaches [20] or targeted the hypervisor-based
virtualization [21]. We also suggest adjusting the phase offsets of virtual controllers and their tasks to
minimize the end-to-end delay. By adjusting the execution point of tasks that perform communication
over fieldbuses, we can improve the worst-case end-to-end delay. We implemented a simulation tool
that finds a sub-optimal phase combination of virtual controllers and tasks. Although the phasing
schemes were also discussed in other studies, these did not consider virtualized environments [22–25].
The performance measurement results show that our CAN virtualization technology hardly adds
additional overheads and reports lower overheads than a hypervisor-based virtualization up to 20%.
We also show that our phasing scheme can reduce the worst-case end-to-end delay by 47.0∼78.7%.

The rest of the paper is organized as follows: we discuss the related work in Section 2. We detail
the suggested design of CAN virtualization and its implementation in Section 3. In this section,
we present the device-driver-level CAN virtualization for containerized controllers and the simulation
tool for optimal phasing of controllers and their tasks. The performance measurement results are
presented in Section 4. Finally, we conclude this paper in Section 5.
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2. Related Work

The virtualization technology provides multiple virtual platforms, each of which can run their
own applications and system software on a single physical computing node. In legacy virtualization
approaches, the software layer that provides the virtual machines is called hypervisor or Virtual
Machine Monitor (VMM). A hypervisor can run on bare hardware (i.e., Type-1) or on top of an OS
(i.e., Type-2). We call the OS running on the virtual machine as guest OS. In the Type-2 environment,
the OS that hosts the hypervisor is called host OS. We can classify the virtualization technology into two:
full-virtualization and para-virtualization. The full-virtualization allows the legacy software as either
OS or applications to run in a virtual machine without any modifications. To do this, the hypervisors
usually perform the binary translation and emulate every detail of physical hardware instruction
sets. VMware [16] and VirtualBox [17] are examples of full-virtualization hypervisors. On the other
hand, the para-virtualization requires modifications of guest OS in order to minimize the virtualization
overhead. The hypervisors of para-virtualization provide guest OS with programming interfaces called
hypercalls. Consequently, the para-virtualization presents better performance than full-virtualization.
Xen [4] and XtratuM [26] are examples of para-virtualization hypervisors.

However, the para-virtualization also adds significant run-time overheads compared with the raw
(i.e., non-virtualized) systems. The emerging OS-based virtualization [18] in which the OS instance is
shared between the guest and the host domains does not induce significant overheads because the
OS takes care of virtualization without extra software layers, such as hypervisor and multiple OS
instances. In the OS-based virtualization, we call the guest domain as a container, and the OS has to
guarantee the resource isolation between containers. The Linux kernel, for instance, provides control
group (cgroup) and name space to guarantee the resource isolation with respect to resource usage and
security, respectively [27].

The virtualization technology is mainly utilized in the cloud computing systems, but it also
has very high potential of improving manageability and safety in industrial control systems.
For example, the partitioning defined by ARINC-653 [28] and AUTOSAR [29] to provide temporal
and spatial isolation between avionics and automobile applications can be ideally implemented
by the virtualization technology [30]. In addition, there were efforts to host industrial control
services in cloud infrastructures by virtualizing Programmable Logic Controllers (PLCs) and control
networks [1–3]. These efforts correspond to the trend of running PLCs on open platforms such as
PCs [31,32]. These studies have showed that the virtualization is a promising solution for providing
infrastructure consolidation, manageability, resiliency, and security in industrial control systems.
The existing studies, however, only targeted the Ethernet-based control networks, of which the
virtualization technologies are already available; thus, there were no thorough discussions on how to
host the traditional fieldbuses, such as CAN, in virtualized environments.

There has been significant research on network virtualization, which can be classified into network
interface virtualization and Software-Defined Networking (SDN). Most of the existing network
interface virtualization technologies focused on the performance optimization of TCP/IP over Ethernet
interfaces [5–10] or high-performance interconnects such as InfiniBand [11]. A widely accepted
approach is to provide multiple virtual network interfaces with the assistance of the network interface
card. Since this approach requires the support from the network devices, it is not suitable to apply
this to the fieldbus interface, which is not equipped with sufficient hardware resources to implement
multiple virtual network interfaces. Though there was an architectural research on efficient network
interface virtualization for CAN [20], it also highly depended on the assistance from a network interface
card. To address the manageability and flexibility in the network architecture, the SDN technology that
dissociates the control plane from data plane has been suggested [33]. There was a study to exploit
SDN for control systems [34], but this also targeted only Ethernet because the existing SDN technology
is limited primarily to IP-based networks.

Researchers also studied container scheduling for industrial IoT applications in cloud and fog
computing environments [35,36]. However, they targeted soft real-time applications. There were
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studies to provide hard real-time scheduling in fog computing infrastructures [37,38], but these focused
on task-level scheduling without consideration of container-level scheduling. In this paper, we study
hierarchical CPU scheduling that performs task- and container-level scheduling for hard real-time
control applications.

There is a lot of research on message scheduling [39–43] to meet the real-time constraints.
Guaranteeing service-level real-time in a CAN-based networked control system is also studied [44].
There are several research works on synchronization between distributed controllers [45–48]. In this
paper, we especially aim to adjust the phase offsets of virtual controllers and their tasks by means of
the global clock and improve the worst-case end-to-end delay. Sung et al. [25] showed the possibility
of synchronizing distributed control tasks by utilizing the global clocks of real-time control networks,
but they considered only communication tasks while overlooking the preemption by higher-priority
tasks. Kim and Kim [24], Kang et al. [23], and Lee at al. [22] exploited the global clock more positively
to adjust task phases for isochronous control on EtherCAT. Craciunas et al. [49] tried to decide the
optimal offset of tasks in terms of utility. However, previous studies did not consider the virtualized
environments, where we have to deal with the phase of guest domains as well as the phase of tasks.

3. Virtualization of Controller Area Network

In this section, we suggest a lightweight virtualization of the CAN fieldbus for containerized
virtual controllers. In addition, we implement a hierarchical real-time scheduler and a simulator to
guarantee the real-time requirements of virtual controllers.

3.1. Design Issues

We can consider four design alternatives for virtualization of industrial network interfaces
as shown in Figure 1. In the emulation scheme (Figure 1a), the hypervisor emulates the target
network interface and provides a channel to access the physical network interface that can be different
from the target interface. However, as mentioned in Section 2, the hypervisor-based virtualization
increases run-time overheads. Thus, we target the OS-based virtualization and consider virtual
controllers as containerized instances. In the relay scheme (Figure 1b), a daemon process manages
actual data transmission. The virtual controllers have to communicate with this daemon process
through Inter-Process Communication (IPC) channels to send and receive messages. This solution
is the only way to make the virtual controllers share the CAN interface without modifications of
underlying system software or hardware. However, this approach not only requires modifications of
control applications, but also induces a significant overhead due to IPC. The network interface capable
of self-virtualization (Figure 1c) provides the virtual interfaces by itself. However, since each virtual
interface is dedicated to a virtual controller, this alternative adds memory and computation overheads
onto the network interface. The industrial network interfaces are usually equipped with a low-speed
processing unit and low memory space; thus, many interfaces are not capable of accepting this design
choice. The driver-level virtualization (Figure 1d) is somewhat similar with self-virtualization but
virtual interfaces are provided by the device driver. Compared with relay and self-virtualization
approaches, the driver-level virtualization is superior in both performance and resource requirements.
We will describe the details of the driver-level virtualization in Section 3.2.

To satisfy the real-time requirements of the virtual controllers, we have to pay careful attention
to CPU scheduling. In virtualized environments, CPU scheduling is performed in a hierarchical
manner [50]; first, the scheduler assigns the CPU resources to a container; then, the tasks that belong to
the container are scheduled within the limit of the CPU resources assigned to the container. Legacy OS
in cloud systems, however, focus on limiting the resource usage of containers rather than guaranteeing
resources [51]. For instance, Linux keeps track of the resource usage of containers and throttles a
container’s resource usage if that container exceeds the limit. That is, Linux does not guarantee
resources but limits those. Thus, it is difficult to guarantee the deadlines of real-time applications.
Our hierarchical scheduler provides the resource reservation based on a periodic execution model
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and guarantees the deadlines of hard real-time tasks. We will describe the implementation of the
hierarchical real-time scheduler in Section 3.3. The end-to-end delay denoted as De2e in Figure 2 is
defined as the time from the beginning of the task that performs sensing and control to the completion
of the task that performs actuation. For the sake of simplicity, we assume that the sensing and control
operations are performed by a single task [24]. The sensing and control task sends control messages
periodically to the actuation task. Since the tasks of the virtual controllers communicate through
control networks, it is especially critical to decide when the tasks are scheduled and take part in
communication. The simple examples in Figure 3 show how CPU scheduling impacts end-to-end
delay. In these examples, Nodei runs two virtual controllers denoted as VCn. VC0 comprises two tasks,
τ0 and τ1. τ0 senses the plant, decides the control, and sends a control message to the actuation task
running on Nodej. τ1 can be a Human–Machine Interface (HMI) task, for example. We assume that
the sensing and control task, τ0, sends a message to the network at the finish time and the actuation
task receives a message at the start time. In Case 1 (Figure 3a), the CPU resource of Nodei is assigned
to VC0 in time slot 0 and two tasks are executed in succession. However, the actuation task on Nodej
runs long after the message arrives. Thus, the end-to-end delay becomes large. If τ0 decides a precise
control based on the current situation of the plant, the control executed at Nodej after a significant
delay may not correspond to the situation at that time. In Case 2 (Figure 3b), if the period of VC0 of
Nodei is two time slots, we can delay the execution of tasks in VC0 of Nodei to time slot 1 in which
the release point of τ0 is delayed even more. This results in a less end-to-end delay than Case 1, while
still guaranteeing the deadlines of containers and tasks. In this paper, we define the phase offset as
an intentional delay of execution of containers and tasks. We can also adjust the phase offset of the
actuation container as shown in Case 3 (Figure 3c), where the release point of the actuation task is
advanced from time slot 2 to 1. To find a sub-optimal combination of phase offsets, we implement a
simulator, which will be detailed in Section 3.4.

Figure 1. Alternatives for network interface virtualization.
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Figure 2. End-to-end delay of control loop.

Figure 3. End-to-end delay and phase offsets.

3.2. Driver-Level CAN Virtualization

As discussed in Section 3.1, the driver-level virtualization is more beneficial than the other
design alternatives when considering transparency, performance, and resource requirements all
together. Therefore, in this paper, we suggest the driver-level virtualization of CAN and study its
implementation issues in detail. Figure 4 shows the suggested design. In the device driver, there are
two main components to provide the CAN virtualization: virtual CAN interface that emulates the
behavior of the CAN network interface and virtual CAN bus that emulates the media access control.
A virtual controller owns exclusively an instance of the virtual CAN interface and is connected to a
virtual CAN bus.

To provide functional transparency for virtual controllers, we have to emulate the inherent
features and characteristics of CAN in the virtualized environments. The header of the CAN message
includes the 11-bit message identifier, which specifies the class of information the CAN message
represents (e.g., speed or torque of motors). The information that a specific identifier represents can
vary from system to system and is determined at the system design phase. The controllers broadcast
CAN messages tagging a message identifier according to its assignment rule and receive messages by
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specifying interesting message identifiers. It is to be noted that a CAN message specifies neither source
nor destination and is simply broadcast to all nodes in the same bus. The CAN device drivers and
CANopen allow only one task to receive messages of a specific identifier. If different tasks running on
the same node wish to receive the CAN messages of the same identifier, it is not guaranteed that all
tasks receive the messages properly. Only one task that issues the receiving operations before others
can receive the messages. To overcome this limitation and host several virtual controllers, we provide
the virtual CAN interfaces, which are created dynamically at the run time on demand and assigned
exclusively to a virtual controller. A virtual CAN interface has a pair of send and receive queues and
data structures for locking of the queues.

Figure 4. Driver-level Controller Area Network (CAN) virtualization.

The CAN message identifier is also used in bus arbitration. When several controllers try to
access the CAN bus simultaneously, the controller that tries to send the message with the lowest
value of message identifier gains bus access. This means that the message identifier is considered as
a priority for bus arbitration, where the lower identifier value, the higher priority. Since the virtual
controllers are considered as separate CAN nodes in the virtualized environments, we need to arbitrate
the bus access among the virtual controllers. We emulate the behavior of media access control in
the virtualized environments by introducing the virtual CAN bus in the device driver as shown in
Figure 4. When the physical CAN interface is able to send a message, the virtual CAN bus searches
the send queues of all virtual CAN interfaces connected to the virtual bus, chooses the message that
has the lowest identifier value, and sends it to the physical CAN bus. Moreover, the virtual CAN
bus emulates the broadcast media. If a virtual controller sends a CAN message, it is sent out to the
physical CAN bus but also delivered to the other virtual controllers connected to the same virtual bus.
In non-virtualized environments, the propagation delay of messages on physical CAN bus is very
small; thus, the geographical order of controllers on the bus may not be a critical issue. However, the
virtual CAN bus copies messages to multiple virtual CAN interfaces to emulate the broadcasting media.
The overhead of this copy operation can expand the time differences between message arrival points
at local virtual CAN interfaces and remote CAN interfaces. Though we cannot provide a comparable
latency to the physical bus, to mitigate the side effect of the copy overhead, the virtual CAN bus copies
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the message to the local virtual CAN interfaces and then sends the message to physical CAN bus. In a
similar way, when a message is received from the physical CAN bus, the virtual CAN bus inserts the
message to the receive queues of all virtual interfaces connected to the virtual bus. Since filtering of
interesting messages is performed by the upper layers, we do not consider it at the virtual CAN bus.

The physical CAN interface in Figure 4 has multiple ports. The CAN interfaces in sensors or
actuators usually have a single port, but we generalize our design and implementation for multiple
ports because the computing nodes in cloud system can be equipped with a multi-port CAN interface.
This allows a single computing node to host multiple sets of virtual controllers that use different
CAN buses.

3.3. Hierarchical Real-Time Scheduling

As described in Section 3.1, we implement a hierarchical real-time scheduler for containerized
controllers on Linux. The scheduler uses a fixed-priority scheduling algorithm (e.g., rate monotonic
(RM) scheduling [52]) for both virtual controllers and tasks. We consider a set of periodic virtual
controllers (i.e., C = {VC0, VC1, · · · , VCn−1}) for each processor. Each virtual controller VCi is
containerized with a different set of periodic tasks and uses a separate name space. VCa has a
higher priority than VCb if a < b. We denote a virtual controller by VCi = (Πi, Θi, Δi,Ti), where
Πi is the period, Θi is the time duration reserved for each period, Δi | 0 ≤ Δi < Πi is the phase
offset (i.e., temporal offset from a certain reference time), and Ti is a set of periodic tasks, i.e., Ti =

{τi
0, τi

1, · · · , τi
k−1}. Task τi

a has a higher priority than task τi
b if a < b. A task is denoted as τi

j = (pi
j, ei

j, δi
j),

where pi
j is the period, ei

j is a range of execution time, and δi
j | 0 ≤ δi

j < pi
j is the task-level phase offset.

We assume that the relative deadline of each task is equal to its period. For the sake of simplicity, we
also assume that a processor and a physical bus are dedicated to a set of VCs (i.e., C) launched by a
tenant. If a processor is shared between multiple tenants that submit their Cs at arbitrary time points,
it is difficult to analyze and guarantee the end-to-end delay on the fly. In addition, if a physical bus
(and a virtual bus) is shared by different tenants, there can be conflicts between different definitions of
message identifiers of disparate Cs, which results in malfunctions. Once a C finishes, it releases the
processor and bus resources occupied so that another following C can be used. The applications at the
plant level (e.g., Supervisory Control and Data Acquisition (SCADA) [53]) may consist of multiple Cs.

The hierarchical real-time scheduler is implemented as a daemon process. The scheduler suspends
and resumes tasks by using signals. Once the system initialization is completed, the scheduler starts
the timer. We use a global timer synchronized across distributed nodes. Although the fieldbuses,
such as TTCAN [54] and EtherCAT [12], provide a global clock in distributed systems, we additionally
implement a global clock in software for cases where a hardware global clock is not supported.
Our software global clock is synchronized by using IEEE 1588 [55]. The scheduler releases a virtual
controller VCi at Δi. Then, the scheduler assigns the CPU resources to VCi for the duration Θi at every
period Πi. The task τi

j is released periodically after Δi + δi
j. The scheduler runs tasks based on their

period pi
j and execution time ei

j within the CPU utilization of VCi (i.e., Θi/Πi).

Figure 5 shows how the phases Δi and δi
j decide the release point of a task. In this example,

two virtual controllers (i.e., VC0 and VC1), each of which has two tasks, run on a single CPU. The first
periods of VC0 and VC1 starts at Δ0 and Δ1, respectively. We assume that the highest-priority task of
each virtual controller in this example has the zero phase offset (i.e., δ0

0 = 0 and δ1
0 = 0); thus, τ0

0 and
τ1

0 are released as soon as the first period of each VC begins, whereas τ0
1 and τ1

1 start being released
after Δ0 + δ0

1 and Δ1 + δ1
1, respectively. Since VC0 has a higher priority than VC1, the tasks of VC1 are

preempted by the tasks of VC0. For example, we can see that the execution of τ1
0 is delayed because it

is preempted by τ0
1 . We will discuss the adjustment of phases in more detail in the next subsection.
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Figure 5. Hierarchical real-time scheduling.

3.4. Phasing of Virtual Controllers and Tasks

The worst-case end-to-end delay is an important metric of QoS for industrial control
applications [56]. As we have discussed above, the worst-case end-to-end delay in virtualized
environments is strongly influenced by the phase offsets of virtual controllers and tasks (i.e., Δi and
δi

j). Researchers tried to find an optimal combinations of phase offsets by suggesting either an online
algorithm [23] or a simulation-based offline approach [22]. However, they did not consider the
virtualized environments. In this paper, we implement a simulator that performs a discrete-event
simulation and provides a sub-optimal phase combination for virtual controllers and tasks. It is to be
noted that the phase combination suggested by the simulator does not hinder the deadline guarantee
of containers and tasks.

The simulator consists of configuration manager, node objects, simulator kernel, phase search
manager, and log manager as shown in Figure 6. The configuration manager provides the user
interfaces to configure simulation parameters, such as attributes of virtual controllers, tasks, and target
fieldbus. The parameters are specified as an XML format and parsed by the configuration manager
at the initialization phase. The node objects are created according to the simulation parameters.
Each node object emulates a C. The simulation kernel emulates the run-time behavior of overall system
by performing hierarchical CPU scheduling and message transmission. Since the execution time of
tasks varies for every period in real systems, the exec-time generator emulates this by generating
time values in the range of ei

j with a uniform distribution. In addition, the event handler and fieldbus
interface components emulate system overheads, such as interrupt handling and Direct Memory
Access (DMA). The simulation results are gathered by the IPC module and saved into text files by the
log manager.
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Figure 6. Simulator.

3.5. Implementation

We implemented the CAN virtualization at the Linux device driver of the PEAK-System CAN
interface. In Linux, each port of the PEAK-System CAN interface is registered as a character device
file. The device file is an abstraction implemented by OS to provide basic user-level operations on
I/O devices. The applications and CANopen request the send and receive operations through the
file I/O system calls, and the virtual file system of Linux internally calls the I/O functions provided
by the device driver. In our implementation, a virtual CAN interface is created dynamically and
destroyed at the run time when an application or CANopen calls the open() and close() system
calls, respectively. A virtual CAN interface is exclusively assigned to a virtual controller. The send
and receive operations are commenced by the ioctl() system call. In the case of send operation, the
device driver first inserts the message to the send queue of the virtual interface, then seeks the message
that has the highest priority (i.e., lowest message identifier number) across the send queues of the
virtual interfaces, and not only sends the highest-priority message to the physical CAN interface, but
also copies it into the receive queues of the other virtual interfaces. Regarding the receive operation,
the interrupt handler in the device driver copies the received message into every receive queue of
the virtual interfaces that are connected to the same virtual CAN bus. The ioctl() system call with
receive command returns the message of desired identifier from the receive queue of the corresponding
virtual CAN interface. We identify the corresponding virtual CAN interface by using the file descriptor
passed by the system calls.

To force the container scheduler to behave like the RM scheduler, we set the period and runtime

attributes of cgroup into Πi and Θi, respectively. The Linux cgroup provides these attributes for
a container that consists of the tasks scheduled by a Linux real-time scheduler (i.e., SCHED_FIFO or
SCHED_RR). Then, it is guaranteed that the CPU usage of the container does not exceed the specified
runtime for every period. We set the priority of tasks into the priority of the container to which the
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tasks belong. In addition, since the Linux real-time schedulers do not support periodic task scheduling,
we implemented an overlay scheduler on Linux so that task scheduling can be performed with the
RM algorithm. The overlay scheduler maintains a list of the container control blocks, each of which
includes a list of task control blocks (i.e., Ti). A task control block includes the attributes of the task,
such as period pi

j and worst-case execution time Max(ei
j). The overlay scheduler selects a task to run

from the current container based on the RM algorithm and suspends/resumes tasks by using signals,
such as SIGSTOP and SIGCONT.

The current implementation of the simulation tool performs an exhaustive search to find a
sub-optimal phase combination; that is, it investigates all possible combinations of phase offsets by
shifting the phase offsets of containers and tasks by a given time unit. The simulation tool analyzes the
worst-case end-to-end delay of a phase combination by simulating the control loops for a given number
of iterations. Thus, the total simulation time and the accuracy of analysis highly depend on the time
unit generating phase combinations and the number of iterations to simulate. Although the current
implementation is enough to show the benefits of phasing for virtual controllers, further study is
needed to reduce the number of phase combinations investigated and reduce the total simulation time
without sacrificing the analysis accuracy. The simulator creates multiple processes as many as CPU
cores to run simulations for different phase offsets in parallel. Once the phase offsets of containers and
tasks are decided by the simulator, we set the parameters (i.e., Δi and δi

j) of the hierarchical scheduler
to the phase offset combination suggested.

3.6. Summary

In this subsection, we summarize how the suggested design and implementation address four
challenges listed in Section 1. First, to support sharing of the CAN interface between virtual controllers,
we proposed the virtual CAN interface and the virtual CAN bus as described in Section 3.2. A virtual
controller is assigned a separate virtual CAN interface and allowed to use only the assigned virtual
interface; that is, the other virtual interfaces of different virtual controllers are invisible as described in
Section 3.5. The virtual CAN interfaces of virtual controllers in the same C are connected through a
virtual CAN bus that takes care of multiplexing and demultiplexing of accessing to/from the physical
CAN interface. Thus, we can isolate the communication of each virtual controller with respect to
functionality, while allowing for sharing of the physical CAN interface.

Secondly, to emulate the media access control of CAN, the virtual CAN bus implements the bus
arbitration and message broadcasting as described in Section 3.2. In CAN, the message identifier is
used as the priority of messages in bus arbitration. As described in Section 3.5, the virtual CAN bus
chooses the message that has the lowest identifier number from the send queues of the virtual CAN
interfaces and sends it first. In addition, the virtual CAN bus implements message broadcasting by
copying the message sent from a virtual controller or received from the physical CAN interface into
the receive queues of the virtual interfaces connected to the same virtual CAN bus.

Thirdly, our driver-level CAN virtualization and hierarchical CPU scheduler support the OS-based
virtualization, aiming for low virtualization overheads. As we have discussed earlier, the OS-based
virtualization has lower overheads than the hypervisor-based virtualization. The CAN virtualization
suggested in Section 3.2 is implemented at the CAN device driver; thus, it is transparent to the
upper layers (i.e., OS kernel, CANopen, and applications) and harmonizes well with the OS-based
virtualization. Moreover, the hierarchical CPU scheduler suggested in Section 3.3 is implemented for
OS-based virtualization, targeting particularly containers and their tasks.

Finally, to analyze the end-to-end delay and enhance the worst-case end-to-end delay, we
suggested a simulation tool and hierarchical real-time scheduling in Sections 3.4 and 3.3, respectively.
The simulation tool analyzes the end-to-end delay with different phase offsets of containers and tasks
and suggests a phase offset combination that can provide a sub-optimal worst-case end-to-end delay.
The hierarchical real-time scheduler implements a global timer to synchronize between distributed
virtual controllers and can adjust phase offsets with the scheduling of periodic containers and tasks.
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4. Experimental Results

In this section, we analyze the overheads of our driver-level CAN virtualization. In addition,
we show how phasing of virtual controllers and tasks can improve the worst-case end-to-end delay in
the virtualized environments.

4.1. Comparisons with Hypervisor-Based Virtualization

Our CAN virtualization targets the OS-based virtualization aiming for less overheads. To analyze
the virtualization overheads, we measured the Round-Trip-Time (RTT) between two different physical
nodes connected through a CAN bus. Each node was equipped with an Intel i5 processor and a
PEAK-System CAN interface and installed the Linux operating system. We measured RTT between
two nodes that sent and received the same size messages in a ping-pong manner repeatedly for a given
number of iterations. In the experiments, we considered the message size only up to 8-byte because a
CAN frame can convey 8-byte payload in maximum. We drew a comparison between three cases: (i)
original setup without virtualization, (ii) OS-based virtualized environment, and (iii) hypervisor-based
virtualized environment. The original setup shows the base performance to be compared with. The
OS-based virtualization shows the performance of our design suggested in Section 3. To measure
the CAN virtualization overheads in hypervisor-based virtualization, we used the implementation
suggested by Kim et al. [21]. It is to be noted that we applied the hypervisor-based virtualization to only
one node, while measuring RTT on the other node that is not virtualized because the hypervisor-based
virtualization does not provide an accurate timer to guest domains. Similarly, we also applied the
OS-based virtualization to only one node for fairness. In addition, in the experiments, the virtual
controllers did not follow the periodic execution models described in Section 3.3 to measure pure
communication overheads, removing the impact of phase offsets and variable execution time of tasks.
We will analyze the impact of different phase offsets in the next subsection.

Figure 7 shows the average RTT for different message sizes. As we can see, the OS-based
virtualization hardly adds additional overheads compared with the original setup without virtualization,
whereas the hypervisor-based virtualization shows higher overheads up to 20%. The low overheads
of the OS-based virtualization is due to not only the absence of a hypervisor, but also our lightweight
driver-level CAN virtualization.

In addition, we represented the distribution of RTTs measured in Cumulative Distribution
Function (CDF) plots as shown in Figures 8–10. These graphs show the RTTs of 1, 4, and 8-byte
messages. As we have discussed, the OS-based virtualization shows a comparable performance to
a non-virtualized environment, while the hypervisor-based virtualization shows higher overheads.
Moreover, we can observe that the jitters (i.e., difference between maximum and minimum RTTs) in
OS-based virtualization are much less than those in hypervisor-based virtualization for all message
sizes. The jitters for 4-byte messages, for example, were 6 μs with OS-based virtualization and 72 μs
with hypervisor-based virtualization.
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Figure 7. Average Round-Trip-Time (RTT) of different message sizes.

Figure 8. Cumulative Distribution Function (CDF) of RTT in a non-virtualized case.

Figure 9. CDF of RTT in an operating-system(OS)-based virtualization case.
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Figure 10. CDF of RTT in a hypervisor-based virtualization case.

4.2. Analysis of Worst-Case End-to-End Delay

In Section 3, we suggested a hierarchical real-time scheduler and a simulator, which can improve
the worst-case end-to-end delay by adjusting the phase offsets of virtual controllers and tasks.
To measure the end-to-end delay, we ran virtual controllers with our driver-level CAN virtualization
on a master node equipped with an Intel i5 processor and a two-port PEAK-System CAN interface.
Two worker nodes equipped with an Intel i3 processor were connected to the different CAN ports of
the master node. In the experiments, we ran two virtual controllers, VC0 and VC1 on the master node,
each of which communicates to a worker node through a different CAN bus. Each worker node runs
only a single virtual controller (VC0 or VC1). We consider the scenario in which we run the virtual
controllers on general-purpose computing nodes provided by a cloud and have a capable of adjusting
phase offsets on both master and worker nodes. As defined in Section 3.1, the end-to-end delay (De2e)
is the time from the beginning of the sensing and control task at the master to the completion of the
actuation task at the worker. Our measurements were done in three steps. First, we randomly generated
three test sets as shown in Table 1. In each test set, we assumed that τ1 of VC0 and τ0 of VC1 performed
either sensing and control or actuation (denoted as (sc) and (a) in Table 1, respectively). Then, we ran
simulations for each test set to find a sub-optimal combination of phase offsets. The simulation
parameters are shown in Table 2. Finally, we applied the sub-optimal combinations suggested by the
simulator to our experimental system and measured the actual end-to-end delays of 1000 messages.

Figures 11 and 12 show the end-to-end delays of VC0 and VC1 of test set 0, respectively.
These graphs show the worst-case (denoted as MAX) and the best-case (denoted as MIN) delays
and compare the values actually measured on a real system with those simulated to show that the errors
by simulation are marginal (less than 2.5% for the worst-case end-to-end delay). As we can observe,
phasing reduces the worst-case end-to-end delay by 59.2% for VC0 and 47.0% for VC1, respectively.
Figures 13 and 14 show the end-to-end delay of every iteration. Although the error is often seen for
some specific iteration because the simulation environment (e.g., execution time of tasks) and the actual
system environment may be different at those points, it can be seen that the overall maximum and the
minimum values of the simulation results and the actual measurement results are similar.
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Table 1. Test sets (time unit: μs).

Test Sets of Virtual Period Duration
Tasks

Period Execution Time
Sets VCs Controllers (Π) (Θ) (p) (e)

0

Cmaster
0

VC0 2760 1000
τ0 5530 330
τ1(sc) 8800 580
τ2 9650 390

VC1 2970 1050
τ0(sc) 5950 310
τ1 7140 490
τ2 9980 550

Cworker0
0 VC0 100,000 95,000

τ0 5530 330
τ1(a) 8800 580
τ2 9650 390

Cworker1
0 VC1 100,000 95,000

τ0(a) 5950 310
τ1 7140 490
τ2 9980 550

1

Cmaster
1

VC0 4000 1500
τ0 2000 60
τ1(sc) 2000 100
τ2 4000 110

VC1 4000 1500
τ0(sc) 2000 50
τ1 2000 140
τ2 4000 120

Cworker0
1 VC0 100,000 95,000

τ0 2000 50
τ1(a) 2000 100
τ2 4000 100

Cworker1
1 VC1 100,000 950,000

τ0(a) 2000 50
τ1 2000 100
τ2 4000 100

2

Cmaster
2

VC0 2610 1100
τ0 5230 660
τ1(sc) 8840 470
τ2 9610 510

VC1 2840 1000
τ0(sc) 5680 440
τ1 10,580 650
τ2 11,090 420

Cworker0
2 VC0 100,000 95,000

τ0 5230 660
τ1(a) 8840 470
τ2 9610 510

Cworker1
2 VC1 100,000 95,000

τ0(a) 5680 440
τ1 10,580 650
τ2 11,090 420

Table 2. Simulation parameters.

Parameters Value

Phasing resolution 50 μs
Simulation iterations 1000
Simulation resolution 10 μs
Interrupt handling overhead 20 μs
Tx and Rx queue size 10
Fieldbus bandwidth 1 Mbps
Fieldbus forwarding delay 1 μs
Message size 8 bytes
Direct Memory Access (DMA) overhead 10 μs
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Figure 11. Max and min De2e of VC0 in test set 0.

Figure 12. Max and min De2e of VC1 in test set 0.

Figure 13. De2e distribution of VC0 in test set 0.

Figure 14. De2e distribution of VC1 in test set 0.

Figures 15–22 show the measurement results for the test sets 1 and 2. We again see that the
simulator can predict the worst-case end-to-end delays accurately and provide a sub-optimal phase
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combination successfully. In these experiments, the phasing scheme reduced the worst-case end-to-end
delay on a real system up to 78.7% with test set 1 and 58.0% with test set 2, respectively.

Figure 15. Max and min De2e of VC0 in test set 1.

Figure 16. Max and min De2e of VC1 in test set 1.

Figure 17. De2e distribution of VC0 in test set 1.

Figure 18. De2e distribution of VC1 in test set 1.
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Figure 19. Max and min De2e of VC0 in test set 2.

Figure 20. Max and min De2e of VC1 in test set 2.

Figure 21. De2e distribution of VC0 in test set 2.

Figure 22. De2e distribution of VC1 in test set 2.
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5. Conclusions

The virtualization technologies can provide efficient hosting and consolidation of computing
resources. Thus, several researchers tried to utilize the virtualization technologies in industrial control
systems and showed benefits with respect to manageability and scalability. However, the support for
traditional fieldbuses, such as CAN, in virtualized environments has not been studied thoroughly.
In this paper, to tackle both functionality and QoS issues of CAN in virtualized environments,
we suggested the lightweight CAN virtualization technology for containerized controllers. In the
functionality aspect, our driver-level virtualization technology provided the abstractions for virtual
CAN interfaces and virtual CAN buses, while preserving the transparency to system software and
applications. In the QoS perspective, we provided a hierarchical real-time scheduler and phasing
of virtual controllers and tasks. To provide a sub-optimal phase combination, we implemented a
simulator. The experiment results showed that our CAN virtualization that targeted the OS-based
virtualization had significantly lower overheads and less jitters compared with a hypervisor-based
virtualized environment. In addition, we showed that the worst-case end-to-end delay could be
reduced up to 78.7% by adjusting the phase offsets of virtual controllers and their tasks. As future
work, we plan to apply our virtualization technology to a large-scale system that consists of more
virtual controllers. To do this, we have to optimize the simulator, which currently takes several hours
to generate a sub-optimal phase combination for the test cases discussed in this paper.
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Abbreviations

The following abbreviations are used in this manuscript:

CAN Controller Area Network
CFD Cumulative Distribution Function
cgroup Control Group
DMA Direct Memory Access
HMI Human–Machine Interface
I/O Input/Output
OS Operating System
PLC Programmable Logic Controller
QoS Quality-of-Service
RM Rate Monotonic
RTT Round-Trip-Time
SCADA Supervisory Control and Data Acquisition
SDN Software-Defined Networking
TCP/IP Transmission Control Protocol/Internet Protocol
VC Virtual Controller
VMM Virtual Machine Monitor
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Abstract: The Internet of Things (IoT) has significant potential in upgrading legacy production
machinery with monitoring capabilities to unlock new capabilities and bring economic benefits.
However, the introduction of IoT at the shop floor layer exposes it to additional security risks with
potentially significant adverse operational impact. This article addresses such fundamental new
risks at their root by introducing a novel endpoint security-by-design approach. The approach is
implemented on a widely applicable production-machinery-monitoring application by introducing
real-time adaptation features for IoT device security through subsystem isolation and a dedicated
lightweight authentication protocol. This paper establishes a novel viewpoint for the understanding
of IoT endpoint security risks and relevant mitigation strategies and opens a new space of risk-averse
designs that enable IoT benefits, while shielding operational integrity in industrial environments.

Keywords: industrial IoT; security; legacy production machinery; real-time condition monitoring

1. Introduction

Industry 4.0 has a profound transformative effect on manufacturing environments, bringing in
Internet of Things (IoT) connectivity to enable interaction that goes beyond basic machine-to-machine
(M2M) communication. Such connectivity scales up the requirements of production data management
and leads towards data-driven service innovation in manufacturing, wherein data analytics play
a key role [1]. However, the potential arising from such enhanced connectivity is not sufficiently
addressed in legacy production machinery, which is often poorly connected [2]. The connectivity
capabilities of computer numerical controlled (CNC) machine tools remained constrained within
the standardised CNC programming data exchanges, and further limited by a lack of versatile open
application programming interfaces (APIs), making it difficult to monitor and control their functions
within the whole production process [3]. CNC machine tools may already support a number of
diagnostic services, which can be supplemented by additional sensors for direct or indirect monitoring.
Such upgrades can be fitted within a networked factory environment through, making the machinery
part of the Internet of Things (IoT) environment. IoT offers flexible means for connecting, as well as
augmenting even modern machinery through advanced real-time data acquisition and monitoring
services [4]. However, added connectivity brings in additional security and integrity risks for industrial
environments. While security management has received extensive attention in the information security
field, the functionality in production environments is delivered by the employed operational technology
at the physical edge, and as such, its endpoint security deserves further attention. The potential
operational impact that any security breaches may have on the integrity of industrial systems can be
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profound and need to be taken into account within the context of the targeted application domain at
design stage.

An abstract view of the nature of threats relevant to legacy production machinery is illustrated
in Figure 1, showing physical threats at the lower layer, human interaction ones are at the top,
and various types of technical threats in between. Physical threats involve actual physical tampering
and may have direct tangible impact, for example causing physical damage on machinery, production,
and infrastructure, or harm nearby personnel. Advanced technical threats refer to technology enabled
access to different network layers and may involve data and software tampering. Human interaction
threats are relevant to human interaction with technical systems.

 
Figure 1. Abstract view of threats for legacy production machinery monitoring. API: application
programming interfaces.

While connected and smart environments are gradually implemented in healthcare, industrial,
military, and transportation applications, security and privacy issues are increasingly highlighted as the
major sources of risks. Industrial systems, in particular, strongly depend on preserving their physical
and functional integrity, in additional to typical trust, identity, access control, and data protection
through mechanisms, and require due consideration at the design stage of any networking upgrade
to offer protection against multiple potential threats [5–7]. For example, permitting the cloning of
tags or signal replaying [8,9] may allow attackers to gain access to critical data, services, and facilities.
Information can be indirectly extracted from network, hardware, and software components, as some
IoT systems may be susceptible to reverse engineering [10]. Defence techniques to prevent such attacks
include cryptography [11], secure authentication protocols [12], improved resistance to cloning [13],
and automatic malware detection [14]. However, such countermeasures are not included by design in
typical industrial IoT endpoint devices, often either due to their resource-constraint nature, or through
lack of appropriate designs, allowing such devices to be exposed to threats targeting real-time machine
data access, tampering [15] with production machinery, modifying machining software or machine
code, cloning devices, as well as initiating denial of service (DoS) or reverse engineering processes.

128



Sensors 2019, 19, 2355

Various security approaches have been proposed to address or mitigate potential threats [16].
Established methodologies, such as STRIDE [17], first documented internally at Microsoft, involve
threat identification and modelling as key activities, while others, such as PASTA [18] take a
comprehensive application-oriented and risk-based perspective. While these methodologies have
been successfully applied in practice, they do not offer higher-level guidelines and do not sufficiently
address risks introduced at the endpoint-level of the IoT stack, considering the real-time application
context and integration with industrial control systems (ICSs), such as supervisory control and data
acquisition (SCADA), distributed control systems (DCS), and programmable logic controllers (PLC).
Non-internetworked industrial control and monitoring systems were not vulnerable to cyber-attacks
and there was limited or no clear direct physical integration between them and higher-tier enterprise
systems [19]. In contrast, in modern cyber physical systems (CPS) and cyber physical production systems
(CPPS) [20], supervisory control systems increasingly employ IoT connectivity to enable ubiquitous
real-time monitoring [21], thereby also increasing the risk of cyber-attacks [22,23]. The mitigation of
such risks needs to be introduced at the design or runtime stages [24,25]. Unsecured system operation
may result in a real loss of service or loss of industrial environment control [26], often facilitated by
obsolete versions of operating systems. The integration of IoT with ICS supports the aggregation of
factory data to feed into SCADA and enterprise systems, giving rise also to new security challenges.
The difference with previous generation SCADA systems is highlighted in Reference [27] where the
need to handle endpoint security at the IoT device level is emphasised, which can be considered from
a systems viewpoint, such as via SySML modelling of CPS agents [28]. The increasing incorporation
of IoT in CPPS has motivated the development of assessment and identification techniques for CPS
vulnerabilities, such as in the two-phased approach of Reference [29]. Specifically, phase one involves
representing various processes via an intersection mapping of cyber, physical, cyber-physical, and
human entities; and phase two introduces a decision tree-based structure for intuitive risk-based
vulnerability analysis (e.g., low, medium, and high risk) [30], in a way that bears similarity to STRIDE
and part of the PASTA methodology, but without the risk mitigation phase, demonstrating the approach
on an automotive manufacturer case. IoT-enabled (or to this effect hybrid) SCADA systems employing
wireless sensors network (WSN) may be vulnerable to external attacks. The impact of such threats to
SCADA components needs to be analysed to prioritise risks [31].

In contrast with conventional information technology (IT), ICS are operational technology
(OT) [32], acting to afford reliable real-time operations with required execution and safety properties
at real production time. Security incidents have raised safety concerns in CPPS. Manufacturing
enterprises have been the target of different cyber-attacks, aiming to acquire and gain access to
sensitive information [33,34], or have fallen victims to ransomware operations targeting to block the
computer access [35,36]. “Stuxnet” [37] was a notable worm attack which hit industrial PLC and
SCADA vulnerabilities of nuclear plants, by being capable of periodically changing the frequencies of
variable frequency drives, affecting centrifuge normal condition operation [38], even if the centrifuges
themselves were equipped with cyber and physical security systems. In order to detect unexpected
changes, enterprises often use quality control (QC) systems to alert for abnormal quality variations,
However, these need to be both robust and strong in covering a range of relevant variations, and to
be effective in this context they require threat analysis to better understand relationships between
QC, manufacturing, and cyber-physical systems at design stage [39]. It is therefore, important to
contextualise security approaches to the nature of CPS and ICS [40] and provide an analysis of security
threat types and vulnerabilities, with an outline of security methods for attack prevention, detection,
and recovery [41]. For example, in physical attacks, physical accessibility to the target device is by itself
the prime vulnerability; data tampering with IoT networking, software attacks exploiting vulnerabilities
inside IoT applications; and encryption attacks, involving breaking the system encryption are among
the possible threats [42,43]. No security approach in CPPS environments would be sufficient without
securing also the human interaction not only with computing and communication devices, but also
with physical production assets, to mitigate functional integrity risks.
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Focusing on IoT endpoints, device security can be supported by authentication mechanisms.
For instance, identity-based authentication based on software defined networking (SDN) can target the
distributed nature of wireless sensing in IoT, while consuming reduced resources, compared to public
key cryptography (PKC) approaches [44]. Alternative authentication protocols diversify their approach
between resource-rich and resource-constrained nodes. An example is the two-stage PAuthKey
protocol, with a registration stage for obtaining cryptography credentials and an authentication step
for establishing the communication [45]. Only resources-rich nodes communicate with the registration
authority and the communication with constrained-resource nodes is then authenticated via implicit
certificates. In practice, end-to-end security is applicable to the application layer, while lower layers
rely on media access control (MAC)-tier security [46]. Overall, such an approach delegates security
to edge nodes, enhancing resources efficiency. A hardware authentication method is presented in
Reference [47], wherein each device is equipped with a unique fingerprint, consisting of multiple
features, such as location, transmitter state, or physical object state. Alternatively, the authentication
scheme is linked to distributed denial of service (DDoS) attack prevention via an algorithm that collects
information from nodes to detect an attacker so as to prevent the working node from serving the
malicious attacks [48]. In Reference [49], a dual authentication based on certificates and using datagram
transport layer security (DTLS) between constrained IoT devices is proposed. An alternative approach
uses a lightweight key agreement protocol to ensure anonymity, data secrecy, and trust between
wireless sensor network (WSN) nodes in the IoT network [50]. In another network-centric approach,
privacy invasion targeting networking patterns can be mitigated through synthetic packet-injection to
hide real network traffic [51].

Considering that the intended functionality of CPPS is determined at the design stage, the same
should be the case for IoT security in production environments, taking into account the potential sources
of attacks and system vulnerabilities [52]. Therefore, understanding the nature and functionality of
industrial systems is a prerequisite to designing their IoT security. With this in mind, after analysing
and synthesising requirements for industrial systems, the Industrial Internet Consortium (IIC) has put
forward the Industrial Systems Security Framework (IISF) [53]. The key differentiating factor between
IISF and other IT or nonindustrial IoT security approaches lies in the joint handling of IT and OT.
Security is viewed upon from the perspective of the potential impact on the delivered functionality of
industrial systems, i.e., overall industrial systems’ trustworthiness. This is translated into a risk-based
framework, directly linking security threats to risks arising from their impact on industrial systems
trustworthiness. Recognising the ecosystem nature of IoT installations, IISF considers the whole system
lifecycle and the permeation of trust across the system life-cycle phases and the system actors involved
in them. IISF highlights the architecture view of IoT by considering security at the different layers of
the IoT implementation stack, starting from the shop floor IoT end points. The shop floor end points
include sensors, actuators, as well as connected production machines, which now become exposed to
cyber-attacks, and therefore, lessons learned from IoT security need to be applied to develop strategies
for networked production environments security. The IISF highlights the importance of the principle
of isolation when securing IoT endpoints. This refers to process isolation within the operating system,
container isolation implementing hardware or software-enforced boundaries, and virtual isolation
protecting individual virtual instances of a trusted execution environment. However, endpoint security
is still not sufficiently covered when upgrading legacy production equipment with IoT capabilities.
This fundamental baseline of IoT endpoint security in industrial environment is, therefore, the target
of the security thinking approach introduced in this paper, which includes:

• A novel risk-averse IoT endpoint security design thinking approach for industrial environments.
• An innovative IoT device security implementation of the design thinking approach, motivated by

the isolation principle and applied at the interfaces between the key components of an IoT endpoint
device and supported by a new lightweight authentication protocol with real-time features.

• Application of the above on a typical industrial case, that of production machinery monitoring.
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The paper is organised as follows: Section 2 introduces the new endpoint security design thinking
approach, comprising five stages. Section 3 analyses vulnerabilities when introducing IoT-enabled
monitoring in manufacturing environments and introduces a relevant threats taxonomy, corresponding
to the first two stages of the approach. Section 4 deals with stage 3 and employs an attack tree-modelling
methodology to analyse security when introducing IoT in such environments, and presents steps
taken to address them through adopting the subsystem isolation principle for an IoT data acquisition
unit (DAQ). Section 5 implements stage 4 and applies the proposed approach on a legacy production
machinery monitoring application. A representative implementation example case of the design
solution, tested against a set of typical selected key attack types, is presented in Section 6, which
corresponds to the final stage. Section 7 offers a discussion regarding limitations and further work,
while Section 8 presents the conclusion.

2. Design Thinking for IoT Security in Industrial Environments

Production machinery real-time monitoring is a major application target when introducing IoT in
industrial environments and IoT endpoint devices are a fundamental component for any IoT security
approach designed for such monitoring. Consistent with relevant recommendations and standards [54]
and taking into account the nature of the manufacturing domain, the present research proposes a
design thinking approach that clearly takes into account the application context and the context-specific
potential impact of security compromises, a process more aligned with PASTA rather than STRIDE.
The introduced systematic design thinking approach for IoT device security includes five key stages
(Figure 2). Feedback from each phase may reveal a need to reconsider analysis, modelling, design, and
implementation choices of all earlier phases.

Figure 2. Design thinking approach for Internet of Things (IoT) device security.
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(a) Baseline and context: This stage involves analysis of current practices in production environments.
An understanding of the application context and system component interfaces, which may be
exposed to security threats, is necessary to apply proposed concepts to a specific application target.

(b) Threat analysis: Having identified the high-level system interfaces which pose security
risks, this stage involves an analysis of key security issues and vulnerabilities related to the
implementation of IoT inside a production environment. Each vulnerability exploited by a threat
can create an adverse impact on system integrity. A taxonomy of threats is produced, classifying
them under the broader categories of physical, human interaction, and advanced technical ones.
For each threat, possible mitigation mechanisms are proposed, and impact risk assessment is
performed. Risk is quantified in three categories (High, Medium, and Low), consistent with
recommendations [55].

(c) Application and threat modelling: The third phase provides the application context needed for
an effective approach. It produces a more detailed model of the targeted system, along with its
interfaces and functionality. Modelling tools include data flow diagrams (DFD) [56] to understand
the permeation of data trust between components, and systematic threat modelling via attack
trees [57], which need to be checked for coverage of security threats.

(d) Threat mitigation: The fourth phase deals with design and implementation of security threats-
mitigation mechanisms. In the present work, an instance of the overall process is created and
applied to the real-time monitoring application relevant to production environments.

(e) Testing and validation: This includes testing and validation of the mitigation mechanisms against
selected threats. Testing may include simulation and functional testing, while validation may
be performed in a test or a controlled operational environment. Results from functional and
penetration testing can be fed back to improve the mitigation effectiveness. The functional aim of
the test in the selected application case is to deliver uninterrupted real-time monitoring.

Figure 3 shows a simplified flowchart for the proposed systematic approach applied to a real-time
monitoring application relevant to production environments. For illustration purposes, this lists three
types of attacks, namely network, system communication, and DAQ. These will be considered in more
detail in the context of analysing the selected application case in Sections 3 and 4, dealing with stages a,
b, and c of the approach. To demonstrate the application of the new approach, the implementation
and testing of mitigation mechanisms against denial of service (DoS) [58] and clone attacks [59] are
presented in Sections 5 and 6, corresponding with stages d and e. This involved the development of an
innovative IoT endpoint device security implementation, introducing a new lightweight authentication
protocol, consistent with the isolation principle and integrated in a prototype IoT DAQ device.
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Figure 3. Design thinking for IoT device security in production environments.
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3. Monitoring Systems Security in Industrial Environments

3.1. Baseline and Context

The proposed design thinking approach is applied on a widely employed application in industrial
environments, namely real-time condition monitoring (CM). CM refers to data acquisition and
processing to infer the state of a machine over time [60]. It enables the identification of recommended
maintenance actions based on the actual condition of monitored assets, rather than at predetermined
intervals, thus allowing a condition-based maintenance (CBM) strategy to be implemented [61].
The determination of an appropriate CM approach consistent with a CBM strategy involves cost–benefits
analysis, equipment audits, reliability and criticality audits, monitoring methods selection, data
acquisition and analysis, determination of appropriate maintenance actions, and review processes [62].
A typical real-time condition monitoring system for legacy production machinery comprises sensors,
a DAQ unit or microprocessor, computing resources, and adequate software [63], which may also be
compactly available as a data-logging device. Signals acquired via the DAQ are processed by dedicated
software, enabling the machine health to be determined. More advanced condition monitoring may
also involve prognostics, and maintenance action determination. In wireless sensing, measurements
can be acquired through a DAQ equipped with connectivity. Remote monitoring systems (RMS) [63]
may already employ network communication between monitored machinery and back-end systems,
or may involve retrofitting monitored assets with a communication device. RMS are applicable to
both production processes and products. Connected products are amongst the prime developments
which contributed to the concept of closed-loop product lifecycle management (PLM). IoT technologies
not only enable product connectivity but also create data flows that upgrade the value proposition
of product usage in operating environments [64,65]. Including IoT connectivity in such products
creates additional vulnerabilities and this applies to IoT-enabled production machinery too. Therefore,
the integration of IoT on legacy production machinery requires a rethinking of their security design [52].

Figure 4 offers an abstract view of a machinery real-time monitoring system highlighting potential
entry points for security attacks, assuming three standard communication types, namely wired
or wireless device peer-to-peer (P2P), fieldbus, and Ethernet, as part of stage one of the approach.
The networking enables data flows through sensors, PLCs, DCSs, programmable automation controllers
(PAC), and human-machine interfaces (HMI), which in turn can drive recommendations for maintenance
actions, and their planning and execution. This mapping can be looked upon from the viewpoint of the
ISA-95 reference architecture, as adapted and mapped in five layers by the European Union Agency
for Network and Information Security (ENISA) for the scope of smart manufacturing security [23].
Specifically, the field level of Figure 4 corresponds to Level 1, the control level to Level 2, the operator
level to Level 3, and the upper-level refers to the application context, which in this case refers to
interfaces exposed to devices accessing maintenance management and planning software and services,
corresponding to Level 4. Unless the permeation of trust in such an architecture is duly considered,
IoT-enabled industrial monitoring systems create increased security risks. Therefore, the additional
focus is on the interfaces exposed to attacks, as per the first stage of the design approach of this paper.
The next section provides an overview of threats analysis by threat type, applicable to industrial
environments, relevant to stage 2 of the approach, while stage 3 in Section 4 studies in detail data
interfaces and corresponding attack models for typical key security breaches in the studied problem,
namely network, system communication, and DAQ access.
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Figure 4. Legacy production machinery real-time monitoring system attack entry points. SCADA:
Supervisory control and data acquisition; DCS: Distributed control systems; PAC: Programmable
automation controllers; P2P: Peer-to-peer.

3.2. Threat Analysis

Threat analysis is the main activity in stage 2 of the process. The ISO27000 family of standards offers
a broadly adopted framework for information security, including recommendations for information
security management systems (ISMS, ISO/IEC 27001 [53]), where threat identification, as part of
security risk assessment (ISO27005) [66], is central to devising a security approach. Vulnerabilities
can be exploited by attack events to trigger security breaches, which, depending on the resulting
sequence of events, may cause adverse impacts. Such impacts need to be translated into security risk
mapping and quantification [67]. However, such recommendations are not specific enough to cover
monitoring architectures for legacy production machinery. Approaches relevant to cloud security risk
management [68] and lessons from other domains, such as finance, wherein cyber-attacks were already
the prime sources of money loss, highlight the need to perform a domain-specific threat analysis to
prevent adverse impacts [69]. Threat analysis is incomplete if it does not deal with application domain
considerations. ENISA has produced a threat taxonomy for Industry 4.0 [23], which classifies threats
into (a) nefarious activity or abuse; (b) eavesdropping, interception, or hacking; (c) physical attack;
(d) unintentional or accidental; (e) failures or malfunctions; (f) outages; (g) legal; and (h) disaster. In this
study, legacy production machinery and their monitoring systems define the application domain scope.
Considering the focus on operational technology, physical types of threat are of prime concern [70].
Furthermore, considering the roles of personnel in production operations, a second key category
would need to concentrate on human interactions. Finally, as advanced technology is involved in such
manufacturing environments, compared to legacy production ones, technical threats is a natural third
broad category. Therefore, the paper proposes that an appropriate high-level threat taxonomy should
analyse human interaction (HIT), advanced technical (ATT), and physical threats (PT). Automatic
operations are excluded from human–machine interactions and all operations that require human
intervention (semiautomatic and manual) are included within human interactions. The software and
network entry points are hard to enumerate and are subject to change. Entry points for hardware
attacks are fewer and moderately well determined but attack targets can be diverse, targeting for
example, information leakage [71], tampering [72], denial of service (DoS) [73], or cloning [59]. For each
threat type, threat analysis needs to identify and describe activities which may allow the relevant
vulnerability to be exploited (Table 1).
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Table 1. An example of threat analysis. HIT: Human interaction; ATT: Advanced technical; PT:
Physical threats.

Activity Description Impact Examples Countermeasure
Mechanisms

Threat Types

HIT ATT PT

1. Negligence
Errors and vulnerabilities
linked to the launch of a new
network within a production
environment.

Network delays or errors lead
to poor control or loss of
control over certain
production processes

Operations procedures to be
followed by personnel
installing or using the network

x

2. Social Engineering
Uses the human behaviour to
gain security access without
the victim realising the
manipulation.

Could cause system integrity
loss (e.g., data loss or
tampering, system process
malfunctions, poor product
quality, health and safety
issues).

Training about the social
engineering threat, company
policy, and procedures.

x

3. Denial of service (DoS)
Channel is flooded with data,
exhausting bandwidth.

Breakdown of network
control, causing loss of
production monitoring and
control capabilities

Network traffic analysis and
detection systems x

The potential harm that a threat may cause when exploiting vulnerabilities is assessed by rating the
impact in categories such as those recommended in the National Institute of Standards and Technology
(NIST) standard [55] (Table 2). Risk impact is linked to the functionality and integrity of the installation,
and so risk analysis needs to consider its specific context. Risk levels can be adapted for a finer risk
granularity if needed to serve specific application needs. The likelihood of the identified risks is then
assessed (Table 3) and the final risk impact is quantified as the product of risk impact and likelihood
(Table 4). IoT-enabled production assets create enhanced production data flows and therefore, DFD is
a fitting model to study security vulnerabilities of key system entities. DFDs employ symbols for key
processes and entities:

� External entities (EE), considered as end-point of a system;
� Processes (P), such as system or unit functionality;
� Data flows (DF), i.e., ways to transfer data;
� Data storage (DS), such as database or files for recorded information.

Table 2. Impact rating.

High (H)
The Threat Is Unacceptable and Immediate Measures Are Needed to Reduce It to

Preserve Data or System Integrity.

Medium (M)
The threat may be acceptable over the short term but countermeasures to reduce the

risk should be implemented.

Low (L)
The risks are acceptable. Measures to reduce risk can be taken in conjunction with

other actions, for example, during upgrades.

Table 3. Risk likelihood (chance rating).

High (H)
A Highly Motivated and Sufficiently Capable Threat-Source; Protection

Countermeasures Are Ineffective.

Moderate (M)
The source of the threat is motivated and capable, but some countermeasures in the

short term could hinder the success of attacks.

Low (L)
Limited motivation and capability of threat-source; the countermeasures are sufficient

to prevent the hazard.
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Table 4. Score rating (SR) = Impact rating × Chance rating.

Impact→→

Chance→→
Low (L) Moderate (M) High (H)

High (H) L × H =M M × H = H H × H = H
Moderate (M) L ×M = L M ×M =M H ×M = H

Low (L) L × L = L M × L = L H × L =M

Finally, Table 5 offers a threat classification scheme along with risk impact quantification and
applicable DFD modelling entities. Risks with high chance and impact are likely to occur, will have
a significant impact, and should be given priority for mitigation. Risk quantification in the tables
is indicative and actual risks in a specific implementation are likely to differ. An expert view of
risk quantification in such industrial settings is available by ENISA [23]. This type of analysis is a
necessary step to establish a sound baseline for designing a security approach to reduce risks for remote
monitoring when upgrading legacy equipment with IoT devices. Having concluded with the stage
2 of the proposed approach, stage 3 aims to produce more detailed threat analysis for the targeted
application domain, as described in the next section.

Table 5. Threats classification for IoT-enabled production environments.

Activity
Threat Types External

Entity (EE)
Data Flow

(DF)

Data
Store (DS)

Process
(P)

Impact
Rating

Chance
Rating

Score
RatingHIT ATT PT

Negligence X X M M M
Social Engineering X X X H L M

Tampering X X X X H L M
Physical Intrusions X X X X X H L M

User Misuse X X X H L M
Unauthorised remote accesses X X H L M

External hardware X X H L M
Physical destruction X X X H L M
Command injection X X X M L L

Denial of Service (DoS) X X X X H M H

Signal replaying X X X X M L L
Cloning X X X X H M H

Remote switch off X X X H L M
Signal blocking or jamming X X X H L M

Reverse engineering X X X X X H L M
Side-channel X X X X X H L M

Wireless zapping X X X M L L
Software compromise X X X X X H L M

Electromagnetic interference X X M L L
Cable cuts X X X H L M

Power fluctuation X X M M M
Voltage spikes X X H L M

Installation errors X X M L L
Takeover of an authorised

session X X X X X H L M

4. Application and Threat Modelling

4.1. Application Model and Data Interfaces

In the first part of stage 3 of the proposed approach, the application model considers key
components of a machinery monitoring architecture and their data interfaces (links), to enable studying
IoT security requirements in more detail. Following a representation similar to Reference [74],
a simplified mapping of data exchanges is shown in Figure 5.
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Figure 5. Abstract application model of the connected legacy production machinery. SCU: System
control unit.

The local architecture includes the workplace with a legacy production machine and the
IoT-enabled DAQ. The DAQ comprises three modules. The sensors module is physically attached
to the machine. Collected real-time data are processed in the control unit module and can be passed
to external or visual user interfaces. Transmitted data are sent to cloud-based systems, to the system
control unit (SCU), or a mixture of both via the communication module. The remote architecture stores,
manages, analyses, and visualises data on a dashboard to aid future actions. Such functionality is
offered through the cloud to end-user devices, which can reside inside the local architecture. The data
flows across the links are:

• Link 1: The environment includes the legacy production machinery, the DAQ modules, with access
to configuration and management web services.

• Link 2: Data acquired from the sensor module are sent to the control module.
• Link 3: The control module manages the authentication process and passes data to the

communication module.
• Link 4: The DAQ provides a user-interface to manage and visualise the data acquisition in

real-time, residing within the monitored facility.
• Link 5: The DAQ and the SCU exchange data between the sensors and the local architecture.
• Link 6: Interfaces offer data visualisation and support or trigger appropriate actions.
• Link 7: The SCU employs cloud access to offer machine data management to users.
• Link 8: The DAQ communicates with cloud services via the internet.
• Link 9: User devices are communicating with the cloud or server through the internet, exchanging

information relevant monitoring information.
• Link 10: Data management and visualisation services are made available to the user.
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The mapped links are likely attack-entry points for the manufacturing environment. Link 1 is an
entry point for physical threats, which can compromise the integrity of hardware devices, sensors,
systems, and data. An attack can occur through connection to web-based interface, which is an entry
point for software threats (e.g., viruses and trojans), as well as DoS and remote access control attack.
Data interfaces require physical access to components, which can be exposed to cloning, side-channel,
and reverse engineering attacks, but may also malfunction due to electromagnetic interference, voltage
spike, and power fluctuation. Links 2 and 3 are entry points for physical intrusion and tampering,
as well as cloning, side-channel, and reverse engineering. Links 4 and 5 are entry points for command
injection, software attacks, DoS, and cloning, as well as unauthorised remote access. Links 6, 7, 8, and
9 are entry points for attacks causing a network breakdown or system process malfunctions through
ATTs, such as DoS, command injections, reverse and social engineering attacks. Link 10 requires access
credentials and is an entry point for error and omission, unauthorised remote access, social engineering,
command injection, DoS, and software attacks. HITs are relevant to all interfaces and components and
may cause data loss, process malfunctions, and network breakdown. Having available an abstract
application and data exchange model helps towards application-specific threat modelling. DFDs
between subsystems create an understanding of the permeation of trust between boundaries. Figure 6
shows a simplified DFD for IoT-enabled monitoring. Dotted line rectangles denote trust boundaries of
subsystems; solid line rectangles represent external subsystems; arrows indicate data flows; interfaces
with external entities and storage are marked with a solid coloured rectangle (not part of DFD). Data
flows and trust boundaries constitute intermediate attach goals, and their modelling is the subject of
the next section.

Figure 6. Data flow diagram of the connected legacy production machinery. DAQ: Data acquisition.
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4.2. Threat Goals Modelling

The second part of stage 3 of the proposed approach deals with detailed threat modelling. In order
to devise mitigation mechanisms, it is of interest to further understand specific goals that an attacker
may set in pursuing attack targets. Focusing on the two high-risk priority attack threats (Table 5),
namely DoS and cloning, it is of interest to study potential attack intentions and consequences.
The main goals are: Gaining network or access, communication access to the supervisory and control
architecture [75], and modifying the DAQ [76]. The potential impacts of these goals are analysed in
Table 6, consistent with the reliability-oriented approach FMEA (failure mode and effects analysis).
Specifically, impacts could affect different functions, which in the case of a production machine could
be stated as [62]: P: Primary, affecting functions required to fulfil the machinery intended output
(e.g., production of an item); S: Secondary, supporting the primary function (e.g., managing coolant in
a machine tool); C: Control and protective, affecting the ability to control a process (e.g., adjusting feed
rate in machining) or protecting workers, equipment, or the environment (e.g., stopping machining
after tool breakage); I: Information, affecting ability to provide monitoring information for a function
(e.g., failure to provide or display temperature reading); and U: Interface, affecting the interaction
interface between two items. This makes the understanding of the potential consequences of an attack
more tangible and aids the design and development of impact mitigation. The attack goals are next
modelled, for example, via attack tree modelling, which is a common structured approach to illustrate
in a logical way the main goals of an attacker. The top tree node is a key attack target. Lower level
goals and individual malicious activities, which may contribute to reaching that goal, are located
below the main node. Steps between the lower nodes and the top node depict intermediate states or
attacker subgoals. This modelling is now applied for the machinery monitoring application, defining
attack trees for the identified threats (e.g., Tables 1 and 5) and specifically for each of the attack goals of
Table 6.

Table 6. Attack goals and impacts. P: Primary; S: Secondary; I: Information; U: Interface.

Attack Goal Impact Description Function Code

Network access

Inability to communicate with the DAQ I, U
Inability to communicate with the Cloud U
Inability to communicate with the SCU C, U

Inability to communicate with User Devices I, U
Inability to upgrade firmware I

System communication access
Inability to use the HMI I, U, P

Inability to use the DAQ modules I, C
Inability to use the legacy production machinery P, S

DAQ access
Inability to collect correct sensor data C, I

Inability to protect sensor data C, I
Inability to send data correctly C, I, U

4.2.1. Network Access

Gaining access to the network wherein the monitoring system operates, an attacker can use
malicious or fraudulent actions to gain access to data devices or server systems connected with the
network. Figure 7 shows the attack tree that models the network access threat goals. Typically,
enterprises may have a private and public network. Subject to access rights, these are exposed to
personnel, customers, partners, or suppliers. Within the intranet there may be parts of the architecture
which can be modified by access to the hardware for upgrading firmware, updating software,
and replacing components, whereas other entities do not require physical access to the architecture
and are only modified remotely. Upon gaining physical access to the hardware, the attacker can
further access the network through devices, cables or ports, radio interference, or wireless and wired
networking means. Without physical access, network access can be achieved via social engineering [77].
While encryption and a media access control (MAC) filter can be applied as security measures, spoofing
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attacks [78] can still be used to gain access to the network. An attacker can bypass strong encryption
methods (such as Pretty Good Privacy (PGP) or Advanced Encryption Standard (AES)), by obtaining
the encryption password mostly through social engineering, installing some malware for reading
the password, or by breaking into specific network devices via a side-channel method. If the system
devices are equipped with a weak encryption method, it may be easily broken with cryptography
attacks. On the extranet side, the system can be equipped with password authentication. An attacker
can use the dictionary method to guess the password, then bypass the firewall and gain access to the
local network.

4.2.2. System Communication Access

Remote access applications allow ubiquitous supervision and control through networked devices,
whilst HMIs allow enable control via a front machine panel. An attack may seek to gain access to the
communication system to compromise supervisory systems and modify machine or process parameters.
An attack tree analysis for this threat goal is shown in Figure 8. If there is no authentication requirement,
an attack can easily succeed in gaining access. When authentication is enforced, an attack may guess
the access key by the dictionary method [79], or bypass the password using a backdoor secret method,
such as chipset, cryptosystem, and an algorithmic structured query language (SQL) code injection [80].
When encryption is employed, the attack can obtain the key through a social engineering method
or malware injection. Systems without encryption are susceptible to man-in-the-middle (MITM)
method, where the attacker can spoof the system identity, waiting for a user to login and then save the
credentials for future access. If physical access to the HMI is gained, the attacker can use an infected
USB dongle to compromise the control system or employ reverse engineering to gain communication
or achieve this without physical access via social engineering.

4.2.3. Data Acquisition (DAQ) Access

Figure 9 displays the attack tree to acquire access to the DAQ. The side-channel method is one of
the simplest physical access methods, allowing DAQ access to make modifications, such as install new
firmware or patch, or replace hardware components. Using the network, the attacker can use SQL
injection [81] to gain access to user devices or gain authentication to infect the DAQ with malware,
and through the replay attack to spoof data. An attack can target DAQ access after remotely logging
in with credentials to launch a DoS attack and flood available bandwidth. Accessing the sensors,
the attacker can compromise hardware or software components to affect normal DAQ operation. When
sensor authentication is not employed, an attack can gain DAQ access using log files to spoof data.
From the extranet, an attack can gain DAQ access via the MITM method, SQL injection, or spoofing
sensor information, replay attack method, or flood its connection via DoS. Alternatively, an attacker
can remotely gain authentication to the cloud service and control the DAQ from there.

Attack tree modelling is a structured methodology for analysing security to drive the design
and implementation of appropriate mitigation mechanisms. The next section takes into account such
analysis to develop and test IoT endpoint device security for legacy production machinery monitoring.
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5. Threat Mitigation for IoT-Enabled Production Machinery

After the steps of Section 4 for threat analysis and application-specific modelling, stage 4 of the
proposed approach introduces mitigation mechanisms for priority risks. Retrofitting monitoring solutions
on machinery typically involves devices that integrate acquisition, processing, and transmission of data.
Such units are compact but may have security shortcomings. In some cases, they employ a single
communication protocol for real-time data transmission, which can be restrictive in the sense that if a
single communication protocol is compromised, the whole process integrity might be so too. However,
increasingly, IoT devices offer multiconnectivity options, which add more flexibility but still the choice
of protocol is preset and fixed in most cases. A typical IoT device includes I/O ports for sensing and
actuation (1st Module), CPU and memory (2nd Module), communications (3rd Module), and powering
options [82]. Each of them in order may be considered to extend the functionality of the previous one,
but in integrated IoT devices, their trust boundary encompasses them all together (Figure 10). Such a
device can be compromised if any of the three modules is compromised, for example, through cloning.
IoT endpoint security can benefit from the IISF principle of component or subsystem isolation and this
is adopted here. In contrast to monolithic devices, the proposed design choice is for a modular security
approach, by decomposing the overall trust boundary to create a separate trust boundary for each
component and implementing security mechanisms in the communication between them.

Figure 10. The IoT DAQ for legacy production machinery.

The Authentication Protocol

The authentication protocol for the modular IoT DAQ is illustrated in Figures 11 and 12. Specifically,
the flowchart in Figure 11 shows the process flow, while the DFD in Figure 12 depicts the data flow.
The protocol comprises four steps: Log identity authentication, encrypted communication, secure
connection, and authentication, and will be referred to as LCCA. All LCCA phases employ AES
cryptography. The phases are serially executed and failure to execute one as specified, results in
issuing a security alert. The LCCA protocol includes a set of keycodes, passwords, baud rates, and
frequency values as part of its mechanism to progress through the four phases and can be applied
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for the communication between the control module and the two other modules. The LCCA flow is
described next for the communication between the sensor and the control unit module (Figure 11).

Phase 0: Start

• The system initialises the set of keycodes, passwords, baud rate, and frequency relationships to be
used, and then enters a sleep mode (START), waiting for the first connection.

Phase 1: Log identity authentication

• This phase handles the log identity between the modules. Specifically, if the control unit module
recognises the sensor module log identity, the protocol proceeds, otherwise the process freezes. In our
example log identities (and to the same purpose baud rate, frequency values, and passwords) are
prestored in a dictionary embedded in each module, but algorithmic approaches to dynamically create
them could be employed instead.

Phase 2: Encrypted communication

• This step sets an agreed value for the data transfer rate (baud rate) between the control unit and
sensor modules. In this way, the two modules engage in a handshake process. The LCCA algorithm
sets the initial rate (baud rate 1) and at real-time every fixed time period (in this example, 3 ms)
the algorithm changes the control unit rate with a new rate value (baud rate 2), according to (based
on frequency x in Figure 11) a formula known in advance between the modules. Upon agreement,
data exchange progresses, and all data transfers are encrypted. Any mismatch between the two,
which may arise as a result of a security breach, will pause communication and set the system to sleep
mode, issuing an alert. Once encrypted communication is established, the process advances to the next
stage, otherwise, the connection is closed and returns to phase 1.

Phase 3: Secured connection

• This phase covers the connection between the control unit and the sensor module. Once encrypted
communication is established, the control module will expect to receive a frequency value from the
sensor module to set a new connection rate at predetermined intervals (set here every 3 milliseconds).
If the frequency value is recognised by the control unit module, the protocol continues to the next phase,
otherwise will pause communication and set the system to sleep mode, issuing an alert. The modules
establish connection, and the control module sends the new frequency in a continuous loop employing
the baud rate agreed in phase 2.

Phase 4: Authentication

• In this phase, the sensor module alphanumeric password is checked by the control unit. An admissible
alphanumeric password is a combination of a minimum of eight characters, including lowercase and
uppercase, numbers, and symbols. Additional measures prevent using the same password twice;
dictionary words, or sequences; usernames or information that might become publicly associated
with the user. If the control unit module does not recognise the password, authentication ends
unsuccessfully, and the process moves back to step 3.

The DFD of Figure 12 is a detailed version of Figure 6 to illustrate the data flow through the trust
boundaries when the IoT device is equipped with the added security provisions. Instead of the single
trust boundary around the IoT device, there are now three trust boundaries, one for each module,
and an overall boundary is highlighted for the whole machine equipped with the IoT device. Next,
an implementation instance of the LCCA mitigation mechanism and its testing are presented.
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Figure 11. Log identity authentication, encrypted communication, secure connection, and authentication
(LCCA) protocol.

 

Figure 12. Data flow diagram of the connected legacy production machinery.

146



Sensors 2019, 19, 2355

6. Pilot Implementation and Testing

This section describes the final stage of our security design approach and presents an implementation
instance focusing on mitigation mechanisms for DoS and clone attacks, which are considered typical threats,
are relevant to production environments, and were marked with a high impact score in the earlier
analysis. The hypothesis of the experiments is that of a DoS or clone attack succeeding. This could be
achieved through a number of intermediate goals, as shown in the relevant attack tree in Section 5. Once
successful, the attacks aim to deprive the IoT device of vital resources and to compromise monitoring
data. The mitigation mechanisms follow the principle of modularity and the LCCA protocol described
in the previous section. The objective of the testing is to assess the ability of the implemented approach
to avert these two types of attacks. An industrial DMG NTX 1000 CNC Mill Turn Centre (twin-spindle
turning centre with five-axes milling capability) was employed for the experiments. The remainder of
this section describes the physical instantiation of the IoT DAQ unit and the mitigation mechanisms
testing DoS and cloning attacks.

6.1. DoS Attack

This section describes the implementation of the mitigation mechanism for the DoS attack. The test
was run during the warm-up phase of the machine tool operation. The functional objective was to
introduce the IoT DAQ for real-time monitoring of signals, such as acceleration and temperature from
the machine spindle, then send the encrypted sensor data to a server (ownCloud) integrated into a
raspberry pi 2 model band gain authentication to access and visualise data. The IoT modules are
emulated through Arduino Uno units. The attack goal was to generate a DoS situation to jam the IoT
device, affecting its battery life and communications, or gain access to monitored machine parameters,
such as the spindle temperature and acceleration. The attack tree in Figure 9, shows attack paths that
can lead to achieving the target. The modular IoT DAQ is shown in Figure 13. The control unit module
is equipped with a 32 GB SD card to store data and its CPU runs the authentication protocol. The sensor
module comprises a bottom layer that includes the sensors, the CPU and memory of the control module
and the battery to supply the entire IoT unit during data acquisition and protocol execution; and a top
layer that includes a relay board to manage data acquisition and apply the mitigation mechanism.

 
Figure 13. Prototype of modular IoT DAQ.

The control unit module is equipped with code to calculate CPU and RAM usage. If the control
unit does not identify correct credentials, i.e., valid keycode between the modules, the data acquisition
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and transmission processes are interrupted, sending an alert message to the user device. A snapshot of
the user device screen during monitoring real-time data is shown in Figure 13c, where current data are
shared with end-user devices and are visualised. The web-server, cloud, or end-user device are attack
points, exposing the monitoring device to a DoS attack aiming to take down its operational capacity.

A DoS attack emulation scenario was set up (Figure 14) and includes:

1. The machine tool equipped with the sensor module on the spindle;
2. A hub for a monitoring service provider equipped with an API to make available, through the

local network, the machine tool state and performance;
3. End-user devices used to monitor the machine tool anywhere and anytime;
4. The cloud service for processing, analysing, and planning maintenance interventions.

Figure 14. An external DoS attack.

All communications apply AES 256 encryption. The test aimed to simulate a denial of service
(DoS) [73] via the network. The attacker gained network access through any of the earlier mentioned
methods and is ready to generate connection requests to the communication module using its source
address rather than the attack target. In this way, the communication module will respond affirmatively
to the connection request not by the attacker but to the target of the attack. The result is a vicious
circle that will quickly exhaust the targeted resources and flood the network with traffic (Figure 15).
The attack generates an infinite request for access after spoofing the IP of the system through a fake
source address and bypassing the firewall. At the same time, the targeted systems attempt to access the
data when the sensor module seeks to exchange condition monitoring data with the control module.
The large number of responses from the control module causes bandwidth exhaustion and hence a
crash. An Arduino Uno was used for generating a connection request to the communication module,
so as to affect the targeted device. The control unit module is connected to the sensor module via
COM3 port and the communication module through the COM10 port. The attacker, after gaining the
network authentication, could take down the capacity of the control module generating an autonomous
function, able to generate infinite access requests, delay services, and reduce the battery life.
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Figure 15. A DoS attack process.

As a result of this attack, the control unit will output the estimated ratio of CPU usage as shown
in Figure 16 for the control unit module:

CPU utilisation (%) =
CPU Idlecountintime f rame × 100

Maximum number o f CPU Idlecountintime f rame

The CPU utilisation procedure includes two phases:

• Phase 1: The real-time operating clock (RTOC) is used to estimate CPU/core utilization. The scheduler
system tick is used for this purpose, as it is based on timer interrupt, which is considered as a
relatively accurately measure of elapsed time.

• Phase 2: Counting maximum idle count; an estimation is obtained through observing idle counts
during a measurement period. If no task is performed (besides the timer interrupt) this represents
the maximum number of idle counts and corresponds to 0% utilisation. Estimation accuracy
errors tend to become insignificant when the CPU utilization measurement period is sufficiently
large. After calculation of maximum idle counts, no code or task can be added to the idle task.

The CPU utilisation is contrasted against the expected average value for this device, which in
this case was known to be 71% without any attacks. The initialisation stage when starting the CPU
generates a level of 22% usage and this is due to a delay of the function printer at the screen. Reaching
100% is a strong indication that the CPU is under attack. In our case, the DoS attack materialises by
running our application via a host computer on the intranet. The control unit and transmitter module
exchange information using the LCCA protocol (Figure 11) to detect significant deviations from the
expected standard operation. If the DoS attack occurs on the current available channel for exchanging
data (for example, on the Wi-Fi module circled red in Figure 14), the control module recognises the
attack and shuts off the current communication path. The scope of this test was to perform an end
to end functional testing without fully emulating any kind of DoS attack or their formal mitigation
mechanisms. The aim was to illustrate how the isolation principle is applied through the LCCA
protocol to reduce relevant security risks. The simple detection technique can nonetheless be replaced
by a more sophisticated mechanism, while following a similar isolation principle in the communication
between modules.
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Figure 16. A DoS attack initiated via infected USB dongle.

6.2. Cloning Attack

In the second test, the attacker gains access to the communication module by the social engineering
method or via bypassing the firewall. The mitigation mechanism is to use the control unit module
to read the authentication key and detect abnormal states. When some of the hardware or software
parameters (e.g., voltage, current, system memory, CPU usage, connection buses, or IDs) change in
unexpected ways, the control unit module closes the current connection with the malicious hardware
or software components and initiates an alternative way for exchanging data with the target. In the
scenario of Figure 16, the attacker gains physical access to the sensor module and is able to clone it
using fake modules equipped with reprogrammed the firmware. Figure 17 shows the authentication
process between two modules of the modular IoT DAQ. For each connection between the modules,
the control unit module generates a new unique authentication key (Step 1). The key is stored within
the sensor module in a buffer of characters under a private class that does not allow modifications by
other users (Step 2). The last phase (Step 3) checks the sensor unique key and compares it to the one in
the control unit module buffer. If the sensor unique key matches the key inside the control buffer unit,
the sensor module gets access to phase 2 of the authentication protocol (Figure 11). Upon guessing the
authentication key, the attacker gains access to the target device and initiates the DoS attack. Figure 18
shows the DoS attack when an infected USB dongle is employed for upgrading an infected kernel
inside of the machine [83]. Such an attack may employ multiple attacking nodes, which together form
a botnet. A botnet is a network controlled by a master bot and is made up of devices infected by
specialised malware, known as bots or zombies [84]. In a cloning attack of a wireless sensor network
architecture, once a sensor node is compromised, the adversaries can easily capture other sensor
nodes and deploy several clones that have legitimate access to the network (legitimate IDs, passwords,
and other security credentials) [85]. The cloning attack affects the mobile communication protocol
as well. Subscriber identity module (SIM) cloning by physical access is a simple process and the
attacker must have a software program, a SIM reader, and a SIM chip writer [86]. Such examples
highlight the risk of cloning attacks, which can be addressed by cryptography or physically unclonable
functions (PUFs) [87]. In the IoT DAQ the control unit module is the master that controls all operations
and requires protection. The cloning attack involves tampering with the sensor and communication
modules, aiming to compromise the architecture integrity and modify the behaviour of the modules.
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Figure 17. Control unit and sensor; communication module authentication process.

 
Figure 18. Authentication method vs. the distributed denial of service (DDoS) attack with infected
USB dongle.

Figure 18 illustrates also the mitigation approach effect for the cloning attack in case the attacker
guesses the key. The control module analyses data from the sensor and communication modules
to detect deviation between the original and the clone sensor behaviour. When the clone sensor is
identified, the control module disables all communication with the clone sensor. Figure 19 shows two
different cases of sensor communication. In the first case, the control module is connected with the
original sensor (green module); reading parameters, such as ID, password, CPU usage, static RAM
(SRAM) byte sketch size; and hardware parameters through the INA219 sensor (power supply and
current). At the second case (bottom), the clone sensor (amber module) shows the same hardware
and software of the original sensor but the malicious code for compromising the monitoring system is
also included. To detect signs of a cloning attack, the control module monitors changes in CPU usage,
power supply and current, comparing them against typical values. In addition, the control unit reads
the sketch byte size to understand the credibility of the sensor module. The sketch byte size is stored
into the microcontroller SRAM and show the unique value of the sketch. If the adversary seeks to
modify the code to add the malicious part and leave the rest of the sensor module the same as the
original, the control module can recognise it as a clone module and will not share any information
with it because of the deviation of sketch byte size and level of usage of SRAM. Physical parameters
can help to single out unexpected changes to hardware parameters. The authentication ID control
mechanism brings the probability of successful cloning threat events to a lower level, reducing the
impact score rating.
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Figure 19. Reading byte between two modules.

7. Discussion and Related Future Work

The large amount of interconnected things for advance manufacturing brings new cyber risks.
Production environments are strongly characterised by jointly involving OT and IT and the potential
impact of any security breaches on the integrity of industrial systems can be very tangible and highly
critical. Cyber security must therefore be a vital part of the design, operations, and strategy processes,
and should be considered from the very beginning of any new connected Industry 4.0 driven initiative.

The reported work introduced a systematic design thinking approach to attack the new risks
arising with the Industry 4.0 connectivity. The new approach draws parallels with previous and ongoing
activities (e.g., PASTA, IISF, ENISA) but is positioned towards the concrete context of retrofitting
legacy production machinery with IoT-enabled monitoring capabilities all the way from the study of
requirements, and through threat and application modelling, all the way to threat mitigation design,
implementation, and testing with prime focus on IoT endpoint security. As an exemplar of dealing
with this challenge, this paper introduced a new security hardware IoT device for remote monitoring
application in a production environment, which is managed through a flexible but strong lightweight
authentication protocol and mechanisms for isolation between the key subsystems of an IoT endpoint
device. This was tested through a real-world case study where security flaws were deliberately
introduced, a qualitative risk assessment was applied, and relevant risks were mitigated.

Overall, the main paper contribution is in the overall design thinking approach, while several
additional contributions which were included, such as the new authentication protocol implementing in
effect the isolation principle at the IoT endpoint subsystem level. However, the principle of subsystem
isolation goes well beyond physical or subsystem interfaces isolation. IoT deployments now make
extensive use of containerisation technologies and IoT devices can themselves be put under this context
through container engines and container APIs [88], which can link endpoint devices to an extended
system of IoT-enabled application services [89]. Significant ongoing research currently targets the
extension of IoT resources orchestration to jointly include both edge nodes and the cloud [90]. Based
on the above, the research presented in this paper opens up several threads for further work:
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• Comprehensive mitigation mechanisms for the range of identified threats. While the reported
work presented an implementation example of the design thinking approach, which included
specific instances of mitigation mechanisms relevant to preventing DoS and clone attack threats,
any alternative and more comprehensive mechanism can be employed instead but would still
need to be included within the context of an overall design approach for IoT security.

• Eventually, any introduced mitigation mechanism needs to be scrutinised for effective protection
against attacks. The reported work intention was to present the multistage design thinking
approach, with mitigation being a concrete step within this. Any final deployment of adopted
solutions needs to be preceded by extensive and systematic testing against attacks. Such a testing
will need to consider simulation or indeed emulation of attacks, as well as mechanisms for their
systematic generation [90].

• The reported work includes risk assessment and mitigation as part of the five-stage systematic
approach. However, risk quantification was only indicative and of qualitative nature. Further
work is needed in the direction of systematic risk quantification, including approaches for data-
and evidence-driven risk quantification [91]. While this is highly important for IoT endpoint
devices, overall IoT network security is only as good as its weakest link and a weak node may
have scalable negative impacts to the whole IoT network. Further work needs to put into such a
context any risk-based approach to security and duly take into account complexity considerations.

• The isolation principle in IoT is effectively applied through virtualisation and containerisation
technologies, as expressed, for example, by the IISF. While such technologies were more applicable
to cloud services, they are increasingly expanded and implemented at the edge node level.
IoT endpoint device security can strongly benefit via joint physical and virtual isolation, and
future research need to align relevant research with such IoT architecture patterns [89,90].

• Organisations seeking to adopt security-by-design approaches would benefit from methodologies
and tools that assist in appropriate prioritisation of any upgrades related to security. It is futile to
implement the most sophisticated approach for part one aspect of security, when others are left
too weak. Maturity assessment methods and tools are helpful to this end. Future work would
need to look how to best place a design thinking approach, such as the one presented in this paper,
within the context of overall organisational security maturity management [92].

8. Conclusions

This paper introduced a novel endpoint security design approach to address security issues when
upgrading production machinery with IoT connectivity to deliver real-time condition monitoring for
legacy production machinery. The approach considers best practice and guidelines to formulate a
new domain-specific approach, contributing to bridging the gap between introducing IoT connectivity
at the shop floor and shielding system and operational integrity. The main concepts of the new
approach are the application-aware viewpoint, as opposed to generic security measures, the adoption
of the principle of subsystem isolation, and the development of a new multistage but lightweight
authentication protocols, which are all contributing to increasing the required complexity of any
attack approach to achieve compromising the IoT device and associated monitoring and production
processes. The concrete implementation of this approach was demonstrated through two industrial
legacy machinery attack scenarios based on different attack entry points, for DoS and cloning attacks.
The approach enables the mapping and prioritisation of threats and risks in a domain-specific
application-oriented way, which, in turn, allows the identification of priorities for intervening with
mitigation approach and lowers integrity risks.

While the new approach and its implementation focuses on the key design aspects, rather than on
any single sophisticated detection mechanism, it is worth noticing that the employed mechanisms can
be upgraded to introduce stronger detection, and therefore, response capabilities. Future research needs
to target such capabilities but will need to develop a systematic approach for testing. The risk-based
part of the methodology needs to evolve further from qualitative to quantitative, and be linked to the
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results of the testing phase to improve security performance. Production environments are considerably
different from others due to the dominant presence of OT, which may imply significant operational
impacts. It is for this reason, that dedicated testbeds and domain-specific security metrics need to be
developed and employed in a systematic testing and evaluation process, while for the detection and
response mechanism, other sophisticated algorithmic and other approaches could be used as part of
the overall methodology for IoT device endpoint security protection. Overall, this paper included a
discussion with leads to further research (Section 7), pointing out the need for further research in the
direction of (a) comprehensive mitigation mechanisms; (b) systematic test generation and validation of
solutions; (c) automated and data-driven risk assessment; (d) impact of endpoint vulnerabilities on
overall IoT network security; (e) virtual isolation, IoT edge node containerisation and virtual–physical
nodes orchestration; (f) systematic maturity assessment and management for IoT security.
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DoS Denial of Service
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OT Operational Technology
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PAC Programmable Automation Controller
PLC Programmable Logic Controller
PLM Product Lifecycle Management
RMS Remote Monitoring System
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SCU System Control Unit
SQL Structured Query Language
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Abstract: Critical infrastructures and associated real time Informational systems need some security
protection mechanisms that will be able to detect and respond to possible attacks. For this reason,
Anomaly Detection Systems (ADS), as part of a Security Information and Event Management (SIEM)
system, are needed for constantly monitoring and identifying potential threats inside an Information
Technology (IT) system. Typically, ADS collect information from various sources within a CI system using
security sensors or agents and correlate that information so as to identify anomaly events. Such sensors
though in a CI setting (factories, power plants, remote locations) may be placed in open areas and left
unattended, thus becoming targets themselves of security attacks. They can be tampering and malicious
manipulated so that they provide false data that may lead an ADS or SIEM system to falsely comprehend
the CI current security status. In this paper, we describe existing approaches on security monitoring in
critical infrastructures and focus on how to collect security sensor–agent information in a secure and
trusted way. We then introduce the concept of hardware assisted security sensor information collection
that improves the level of trust (by hardware means) and also increases the responsiveness of the sensor.
Thus, we propose a Hardware Security Token (HST) that when connected to a CI host, it acts as a secure
anchor for security agent information collection. We describe the HST functionality, its association with a
host device, its expected role and its log monitoring mechanism. We also provide information on how
security can be established between the host device and the HST. Then, we introduce and describe the
necessary host components that need to be established in order to guarantee a high security level and
correct HST functionality. We also provide a realization–implementation of the HST overall concept in a
FPGA SoC evaluation board and describe how the HST implementation can be controlled. In addition,
in the paper, two case studies where the HST has been used in practice and its functionality have been
validated (one case study on a real critical infrastructure test site and another where a critical industrial
infrastructure was emulated in our lab) are described. Finally, results taken from these two case studies
are presented, showing actual measurements for the in-field HST usage.

Keywords: security; hardware design; trust; cryptography; anomaly detection
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1. Introduction

In recent years, many critical infrastructures (CIs) around the world adopted various Information
and Communication Technologies (ICT) advances, in an effort to become more flexible and cost effective.
However, this adaptation was not made carefully and with a thorough evaluation on the implications it
introduced to their security. Numerous new devices with advanced computation power and connectivity
capabilities are constantly been installed in CIs and the—once closed and isolated CI systems—are
becoming more and more vulnerable to new types of threats and attacks. Various reports and research
teams have proved how dangerous this situation is. For example, a team called “SCADA StrangeLove
team” was able, back in 2013, to get full control of various industrial infrastructures (energy, oil and gas,
chemical and transportation CIs). They claimed to have found more than 60,000 online control systems that
were exposed. Furthermore, even though nowadays CIs are more secure, the number and sophistication
of cyberattacks is still increasing [1]. There is a critical need to fortify CIs to the maximum possible, since a
major cyberattack in one of them may cause severe problems not only at a technical level but also in the
economy, public safety, etc. [2].

On the other hand, protecting CI systems is a highly complicated task. A large number of diverse
security systems and protection mechanisms must collaborate [3,4]. Solutions like Anomaly Detection
Systems (ADS), Intrusion Detection (IDS), Antivirus tools for Malwares and Ransomwares, DDoS
protection, Endpoint security, Hardware, protection for CI devices, Access control, etc., are just few
of the technical tools that can be used to fortify such complex environments [5]. In addition, apart from
the technical parts, a CI security must also include human training (personnel, users, etc.), Private-Public
Partnerships, Assessments, Vulnerability Analyses, etc.

Usually the above security tools and solutions are integrated inside a Unified Threat Management
(UTM) system or a Security Information and Event Management (SIEM) system. The difference between
a SIEM and a UTM is that the SIEM does not exactly integrate security components but only collects
reporting information (e.g., logs, reports, events, etc.) and combines it with input from other sources in
order to “assemble a puzzle” which would eventually identify a possible security risk.

Inside this wide area of security solutions, this work examines innovations on a very specific aspect
of CI protection—the design of trusted sensors for Anomaly Detection Systems (ADS) and SIEMs. An ADS
can be described as a solution which extends the functionality of an Intrusion Detection System (IDS).
In particular, the ADS not only monitors very specific, predetermined network metrics but also collects
information from multiple other sources to estimate the security status of an IT system. Such sources can
be distributed sensors inside a CI that generate logs which are collected by a centralized ADS or SIEM
analyzer. The success rate of an ADS detection process (small false positives or negatives number) heavily
relies on the quality ADS analyzer algorithm (Machine Learning techniques are also used nowadays)
and the accuracy of the collected data [6,7]. Obviously, data from maliciously manipulated sensors can
lead an ADS in producing false results and keep CI administration ignorant or falsely alert on a possible
cybersecurity attack [8,9].

In this paper, we review the option of using hardware means in order to secure sensors’ ADS/SIEM
transmitted data, instilling trust in the overall process. In addition, extending the work in [2], we propose
a Hardware Security Token to be physically connected to legacy CI devices and act as a trusted ADS
sensor for failed access attempts as well as a mechanism for providing authentication and integrity to
sensor’s collected data. In the paper, we analyze the HST architecture and approach and we describe
how it can achieve a level of trust in the associated host device using an appropriate security protocol.
We also describe the main HST functionality achievable through the use of a dedicated host software
program for accessing the HST as well as the HST log reporting mechanism on the ADS monitoring system.
Then we describe a realization–implementation of the HST using an FPGA SoC evaluation board and
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we show how the HST services can be accessed. Finally, in the paper, two case studies using the HST in
practice are described (one case study on a real critical infrastructure test site and another where a critical
industrial infrastructure was emulated in our lab) and results are presented showing the HST capabilities
in practice. The rest of the paper is organized as follows. In Section 2, an overview of a CI ADS sensors is
made, security issues that may arise are described and a relevant threat model is presented. In Section 3,
mechanisms to create trusted ADS sensors are described and in Section 4 the hardware assisted sensor
approach, architecture, and functionality are proposed. Section 5 provides a realization of the HST along
with use case scenarios of its usage and Section 6 concludes the paper.

2. Critical Infrastructure Security Monitoring System Anomaly Detection Sensors

Considering the security threats and challenges that many critical infrastructures have, there is a considerable
need to continuously monitor such infrastructures during their regular operation for security anomalies
that can be linked to some security attack [10–13]. Typical IT systems have a series of well-developed
tools that, using a wide range of technologies and methods, can detect, respond and mitigate security
attacks. The generic category of run-time monitoring systems may comprise of various components like
intrusion detection systems (IDS), zero-vulnerability malware detectors and anomaly detectors that are all
interconnected under a Security Information and Event Management (SIEM) system [7,14]. The Runtime
monitoring Anomaly Detection mechanism is usually responsible for the correlation between various
events and logs to extract security alerts and make attack mitigation suggestions. However, CI runtime
security monitoring must consider the CI specificities that differ from those of a typical IT system [15,16].

CI systems (CIS) have a close association with the physical world (they monitor and respond to physical
processes), thus they constitute an ideal realization of cyberphysical systems (or system of systems) and
should be approached in that way in terms of security. According to [6], there are four basic characteristics
that distinguish a CIS from typical IT systems in terms of runtime security intrusion detection. Due to their
connection between the cyber and the physical world, the CIS devices measure physical phenomena and
perform physical processes that are governed by the laws of physics. Thus, a CIS security monitoring system
must perform physical process monitoring. Furthermore, typical CIS use many OT components, thus they
are highly focused on automation and time driven processes that realize closed control loops operating with
no human intervention (and its associated unpredictability). This kind of behavior focuses on Machine to
Machine communications, increases the regularity and predictability of the CIS activities and makes them
attractive to attackers [3]. Thus, the CIS security monitoring system should be able to monitor regularly closed
control loops. Thirdly, the attack surface of a CIS is considerably broader than that of an IT system. CISs consist
of many heterogeneous subsystems, including IT and OT devices. They follow a broad range of different,
not IT related, control protocols like ISA 100, Modbus, CAN, etc. Some of these devices and protocols have
proprietary software or standards that may make IT countermeasures unfitting [2,5]. This reason along with
the fact that a successful CIS attack has high impact and thus high payoff, attracts very skilled attackers that
can mount very sophisticated attacks on CPSs and CIS [13]. Such attacks are usually very hard to discover and
document. Attackers exploit CIS zero-day vulnerabilities which would render many IT security monitoring
toolsets useless (e.g., knowledge-based toolsets [6]).

Lastly, many CIS consist of legacy hardware that is difficult to modify or physically access. Such
components may be partially analog, have very limited installed software resources and can be dictated
by physical processes. The biggest challenge in such legacy devices is how to install security monitoring
sensors on them and how to predict/model their behavior correctly in order to detect possible anomalies.
Since legacy devices do not have many computational resources, it becomes hard for the monitoring
system to retain its real-time responsiveness when collecting security metrics from them.
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Runtime Security monitoring in the CIS domain, considering the above specificities, can take various
forms. Monitoring relies on two core functions—the collection of data from various CIS sources and
the analysis of data in a dedicated runtime security monitoring subsystem. To achieve appropriate data
collection, the security monitoring system must deploy security agent software on the monitored CIS
devices or introduce virtual entities (Virtual Machines) for data collection within the CIS infrastructure.
All collected data are analyzed in the CIS runtime security monitoring system that uses data mining,
machine learning, pattern recognition or statistical data analysis to extract metrics on security issues that
may take place inside the CIS at runtime. Such issues may be possible incidents, threats that can be binary
characterized as bad/good or continuously characterized by a specific significance grade. The performance
of the security monitoring system is measured by the False Positive Rate (FPR), the False Negative Rate
(FNR) and the True Positive Rate (TPR). The system is also measured in terms of incident detection
latency and consumed resources number, computational overhead, excessive network traffic and power
consumption [6].

The functionality and services SIEM and ADS applications provide can be considered a necessity and
an integral component of a CIS security monitoring system. The basis of their functionality lies in the
collection of various metrics reporting the health of a computing system and its network done by a broad
network of local and remote sensor entities. These programs vary from honeypots, package analyzers,
port scanner to antivirus or antimalware solutions. As a valuable source of ADS input data, one can
consider the various OS activities, such as successful or failed authentication and authorization, collected
by the OS’ system log manager. The purpose of the above is for those sensors to track specific activities,
log them and provide the necessary information to the ADS when some prerequisites defined by the
security administrator are met. The collection of those events can be in real time or near real time, aiding
the security administrators with visual cues in their attempt to monitor the overall system’s security status
and informing them of abnormalities that may lead to a compromised system. ADS sensors typically can
be deployed as a software program installed on a host machine.

The heterogeneity CIS exhibit is directly reflected in the diverse nature of the sensors necessary to
collect and log information for a CIS ADS. This variety of sensors, coupled with the critical nature of the
overall system and the exposure various CI devices have on the CI premises (remote locations, power
plants, factories) greatly increases the risk of successful device tampering or manipulation by an adversary.
This type of compromise (often executed on the hardware level) is mostly ignored by the device’s software
ADS sensor and often leads to data manipulation of the ADS logging mechanism. As an implication,
the ADS is provided with fabricated data, leading to either the suppression of real or creation of false
anomaly events on the security monitoring mechanism.

2.1. Threat Model

There exist only a few works that attempt to ensure trust in the information collection mechanism
from a network’s end points of a CIS security monitoring and ADS system [17–19]. Some approaches rely
on securing the communication channel between end device and ADS/IDS monitoring system [18] or rely
on securing the end node itself by ad-hoc, trusted computing based, mechanisms [17,20]. Without loss
of generality, we can assume that the main threats on the end point security monitoring sensors can be
associated with attacks on a CIS end node that disrupt the sensor logging mechanism. This disruption can
be achieved by manipulation of the communication channel between the device’s sensor and the remote
ADS/security monitor leading to integrity or authenticity threats or can be achieved by hijacking the CIS
node itself. In the second case, our threat model also considers that it is realistic for an attacker to gain
access to the CIS nodes physical storage disk and not have full control of the node’s memory (the attacker
does not have root access to the CIS node’s operating system). We also consider in our threat model

164



Sensors 2020, 20, 3092

threats related to physical attacks using some invasive (tampering), semi invasive (fault injection) or non
invasive attack (side channel analysis), since we can assume that CIS end nodes may be left unattended in
hostile environments [21,22]. We also consider failed identification and authentication and failed access
attempts on the node or the sensor itself as active threats. Such failures should be logged and sent in a
trusted/secure way to the anomaly detection security monitor system for analysis.

3. Introducing Trust on Software Sensors

In cases when there is a need to instill trust on a computing system, a very efficient method involves
the introduction of a trusted computing base (TCB). This level of trust is usually achieved through the
inclusion of a hardware component (a security token) in the device’s architecture. Through this secure
environment, the TCB is able to act as a point of reference for the overall system, acting as a root of
trust. Apart from the security critical operations, this secure computation environment (TCB) can also
be considered hard to tamper with [23]. Both industry and academia have proposed several approaches
for the most efficient way this hardware root of trust mechanism should be realized. One of the most
important approaches is the specifications provided by Trusted Computing Group (TCG), which aims to
instill trust on a system by guarding critical data (private keys), by blocking the execution of potentially
harmful code and by attesting the system’s trust level to other entities. Even from boot time, the system’s
security status is monitored continuously in order to achieve this level of trust, usually further enhanced by
hardware mechanisms included in the TCB. Since software solutions do not provide adequate protection
individually, TCG specifies a Hardware Security Module called the Trusted Platform Module (TPM),
capable of acting as trust anchor within a computer system [24,25].

3.1. Using Trusted Platform Modules

For a CI device to be considered trusted, the inclusion of a TPM chip is of paramount importance,
coupled with the necessary software stack embedded in the OS kernel in order to support the TCG trusted
computing functionality. As a result, a TCG Trusted computing enabled device is capable of creating a
secure environment to execute an ADS sensor’s software code [17]. Despite the broad adoption of TPMs in
Personal Computer use, they are not yet utilized in the CI domain and cyberphysical systems. This issue
is also present in the majority of embedded devices or CI control elements (e.g., Programmable Logic
Controllers—PLCs). For these types of devices without a TPM and constrained in resources and power
consumption, TCG’s suggestion is the use of the Device Identifier Composition Engine (DICE) mechanism,
which nonetheless is far from adopted in CI system OT and IT end nodes that are not PCs.

3.2. Using Virtual Environments

An additional approach that can be used to instill trust in a CI device is Hardware virtualization.
The general concept is the creation of isolated execution environments that under certain conditions can
be considered trusted. Using this technique, critical or sensitive applications and their accompanying data
can be directed towards these trusted areas of virtual machines (VMs) running on virtualized hardware.
By expanding this logic, an isolated OS has the ability to operate on such a VM. If access to this VM is
under the control of a Trusted Computing Base (TCB) program on the CPU, the OS can be considered
secure and isolated from any other untrusted VM running [23]. This process of an employed TCB running
over the device hardware as a hypervisor structure has various implementation problems in practice, like
hardware constraints, system real time behavior, scheduling and access control rights. Apart from TCG’s
TPM that offers support for virtualization, solutions based on hardware virtualization (i.e., virtualization
assisted through a processor Instruction Set) have been developed for AMD and Intel based systems [26].
In the embedded system domain, though, the type of constraints imposed eliminate the option of using
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hardware virtualization. The most similar solution for this category of devices is the ARM TrustZone
technology [27], which enables the creation of trusted and nontrusted execution environments.

4. Proposed Approach for Legacy Systems

While the newest IT based CI devices may have some mechanism of instilling trust, typical CI control
devices that constitute the backbone of a CI control loop still have legacy processing units that are not
created for security but rather for safety and high, real time, responsiveness. Security Monitoring loggers
installed on such devices need to rely on an execution environment that is capable of supporting the ADS
sensors’ functionality and that is protected from malicious entities. To achieve high security in legacy
devices, it has been proposed in several works to introduce external security tokens that can be considered
trusted [23,28–30]. Having that in mind, extending the work in [2], we propose a Hardware Security Token
(HST) that could be used as an external security element on legacy devices in order to instill a level of trust
on collected ADS sensor logs and provide a series of security services to an associated host device and
user. In the following subsections we extend, expand and analyze the HST architecture, functionality and
services thus structuring a complete solution for CI legacy device security protection.

4.1. Hst Architecture

The HST is a synchronous System on Chip (SoC) device based on an ARM microprocessor with TrustZone
support (e.g., ARM Cortex A processor class) that is connected through an AMBA AXI bus to a series of
cryptographic accelerator peripheral IP cores and storage elements like RAM, ROM, and NVRAM memory
modules. The cryptography accelerator peripherals act as a security element of the ARM Trustzone enabled
processor and consist of an RSA signature unit, an Elliptic Curve (EC) Point Operation unit (ECPO), a SHA256
hash function unit as well as a symmetric key encryption/decryption and key generation unit (using the AES
algorithm), following an architecture similar to the one presented in [29]. All the HST IP cores are protected
against semi-invasive and non invasive attacks [23,31,32]. The HST, using the above cryptographic peripherals,
is capable of generating and verifying digital signatures and certificates, performing key agreement schemes
like Elliptic Curve Diffie Hellman Ephemeral (ECDHE) protocol or Needham–Schroeder–Lowe protocol
as well as AES based encryption/decryption (AES-CBC, AES-CCM) and authenticated message integrity
schemes (HMAC). In addition, the HST has a series of Input/Output Interfaces including CAN bus, USB
and Ethernet. The outline of the Hardware-Software hybrid architecture is presented in Figure 1. As can
be seen in the above figure, all SoC components are interconnected in the Central Interconnect bus. Apart
from hardware IPs, the HST has a software stack that is capable of controlling and coordinating all hardware
assisted security operations (using customized Cryptographic IP drivers and cryptography libraries) as well
as all communication (through a serial console interface) with an HST host machine. Finally, in the Figure 1,
special mention should be made to the non volatile RAM unit which is realized as a QSPI Flash memory. This
memory acts as storage space for all cryptographic, sensitive, information like public private keys, symmetric
keys, HST states, users, etc.

The AMBA AXI (Central Interconnect) bus provides access to the cryptographic accelerator peripheral
IP cores using the software stack. This stack implements a software component that is executed in the ARM
cortex A trusted environment. The software component also handles the communication between the HST
and the host. During its operation, it polls for an input command given by the host to the HST and collects
all the necessary data each specific command requires. The required drivers that enable the stable operation
of each IP core are included in this software component. Thus, the input data that have been collected
during the command issuance are being propagated to the corresponding cryptographic peripheral for
the output result to be calculated. Once this process is completed, our custom Crypto-Library is able to
correctly perform a plethora of security protocols and algorithms that inherently depend on the operations
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our IP Cores provide. Protocols or algorithms that the Crypto-Library features are authenticated message
integrity (HMAC), certificate generation and verification, digital signature schemes (ECDSA) as well as
many utility operations (key generation, key validation, communication with Flash storage, etc.). The HST
outputs to the host through a secure channel the correct output data of the corresponding command.

Figure 1. Hardware Security Module Architecture.

The NVRAM (flash memory) module embedded on the Zynq 7000 series FPGA board can support the
validity and functionality of the HST operations in a wide range of various use cases by offering a secure,
self-contained and HST controllable storage area where sensitive information can be saved. A typical
configuration of an HST’s flash memory contents can be viewed in Figure 2.

Figure 2. HSM NAND Flash memory contents.
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First and foremost, stored in the flash memory are all the HST specific information, including the HST
ID, status and the highly sensitive private and public RSA and ECC key pairs. The remaining available
storage can be utilized in order to store multiple host entries, each containing all the necessary information
of the corresponding host. More specifically, a host entry consists of basic host information, including
host ID, host type, host status and a copy of the Password Hash that has been generated during the host
initialization phase. Additionally, each host’s RSA and ECC public keys are securely stored in the flash
memory, along with a certificate that verifies the aforementioned keys (usually an ecdsa-with-sha256 based
X-509 certificate due to storage limitations).

Apart from the above mentioned hardware structure, the HST has a dedicated software execution
core that is retrieved from the HST flash memory and is loaded in the ARM processor RAM. This software
core has dedicated components for the HST communication with the external world. More specifically,
the software core enables the HST, extending the functionality described in [2,29], to connect through USB
cable to a Host device and through Ethernet to an IP network. The USB serial communication channel
serves as a secure means of communication between the Host device and the HST while the Ethernet based
IP communication channel serves as a mean of communication between the HST and a remote ADS security
monitor and analyzer. Apart from that, the HST software core is responsible for interfacing and usage
of the hardware acceleration cryptography IP Cores (for the computationally demanding cryptography
operations) using dedicated IP Core drivers. The HST software core also implements lightweight security
operations that do not need hardware acceleration as well as security operations that during computations
need some dedicated Hardware IP core output. Finally, the HST software core implements the HST API
that the HST uses in order to communicate with the associated host device. The HST software component
is being used in order to achieve two main operations, the host to HST associated functionality and the
HST logging mechanism.

4.2. Host to Hst Functionality

The HST can be used in order to identify and authenticate a host device, to collect a series of log
entries from the host devices and to transmit them through a secure channel to the ADS monitoring
system. In addition, the HST is capable of providing individually, security services to the host devices like
certificate generation/verification, digital signatures, key agreement and secure channel establishment.
Apart from the actual HST component, the above functionality is manifested through the use of a dedicated
software component (HST/host software component) on the host device that acts as a proxy between
the Host and the HST. The HST/host software component is operating on an untrusted environment in
host device, so it should be assumed that it should not store sensitive information on the host device in
a non secure way. This component is also responsible for the authentication of both the host user and
the host device to the overall ADS monitoring system. It also generates appropriate log entries using the
syslog protocol and secures those entries using the HST. It does not solely rely on the Linux OS syslog
mechanism but it also has a dedicated syslog client embedded in its structure in order to minimize a
potential attacker’s involvement in the logging approach. Finally, the HST/host software component
can rely on the HST commands and messages that are issued by the host user using a dedicated HST
Command Line Interface (HST CLI) as well as execute HST CLI scripts.

To achieve a secure use of the HST/host software component and its access to the HST, the approach
followed in [2] is adopted and extended. Initially, it can be assumed without lose of generality that before
deployment, the HST undergoes an initialization phase. The used and host device that are going to use
the HST register their interest in a trusted entity (a trusted host) that uses the registration information
(an initial password for the user and a device ID for the host machine) to associate these entities with
the HST and the its user. The registration information will be used by the trusted entity to prepare the

168



Sensors 2020, 20, 3092

HST for deployment. More specifically, the HST in its secure processing and storage core will generate a
salt (a random value) for the provided password and use both these inputs in a Key Derivation Function
(KDF) to create a symmetric cryptography key Q = Qinit. Apart from the above information, the HST
will be used by the Trusted entity in order to generate an Asymmetric cryptography key pair (public
and private key) and a associated certificate. This information will act as a secure token and will be
encrypted using Q. The trusted entity stores in the HST the host/used ID, the salt, the hash outcome of
the password and the host’s public key. Finally, the HST generates its own Asymmetric Cryptography
public/private key pair. The trusted entity concludes the initialization phase by registering the host to
the HST by providing the encrypted host key pair and certificate. The host can store this information in
its storage areas (a hard drive disk or flash drive). An attacker that intercepts, copies and analyzes these
files will fail to retrieve the key pair since he will not know the password nor the salt. Retrieving this
information is very hard for an attacker since the password should not be stored in the host machine nor
in the associated HST while the salt is only stored in the HST secure area. Only by a user knowing the
password and providing it to the host device connected to the HST associated with this device can he get
access to the keys and use the HST services (this acts as a two factor authentication). Failure to provide the
appropriate password will generate a log entry (an abnormal event) that will be transmitted through the
HST Ethernet dedicated channel to the ADS (using the HST logging mechanism). Taking into account
that the HST is considered trusted, the ADS security monitor can trust that the HST sensor’s collected
input is not tampered. To achieve that, the entry is digitally signed with the specific HST’s Asymmetric
Cryptography key. It can be assumed that the ADS has knowledge of all the HST sensors’ Asymmetric
Cryptography public keys and their associated certificates.

When the Initialization phase is finalized, the HST-host system can be deployed in a CI system and
provide security services and secure logging. A CI host device and its associated HST are fully connected
through USB and the HST services become available when a secure session is established between the pair.

The host–HST secure session establishment follows the key agreement scheme proposed in Figure 3.
The presented protocol, extending the work in [2], supports a two factor authentication mechanism by
combining information of user (user password) and device (the host device secure token). The protocol is
built around the Elliptic Curve Diffie Helman Ephemeral (ECDHE) key exchange mechanism for generating
a (AES) session key and establishing a secure channel between the host and the HST. The proposed protocol
extends the ECDHE by providing a mechanism for securely unlocking during execution the host secure
token provided during registration without revealing sensitive information in the process (based on the
provided threat/attack model of Section 2.1). Initially, the host user requests to be connected to the HST and
thus provides the registered password to the Host device. Note that there is not any form of the password
(in clear, encrypted or hashed) stored (apart from the host’s memory) in the host device (e.g., there is no
password file). The host device just uses this password to generate its hash function digest. Upon receiving
the password by the user (along with the associated username), the HST/host software component
installed in the host device sends a request to the HST to receive the HST only stored salt (salt1) in order to
decrypt the host secure token (i.e., the encrypted host’s/User’s Certificate and key pair) that is stored in
the host disk. The HST then, internally, generates a nonce value that provides replay attack protection,
retrieves the hash function digest of the password (that is securely stored) as well as the stored salt (salt1),
generates a new salt (salt2) to achieve forward security, concatenates the nonce with salt1 and salt2 and
digitally signs the outcome with the HST private key (KHpr). Then, the HST concatenates the generated
digital signature, the nonce (a random number), the HST stored salt (salt1) and a newly generated salt
value (salt2) and using a Symmetric Key encryption algorithm (EK(): AES) with key the password’s hash
function digests. Finally, the HST creates a digital signature N = DSKHpr (K|nonce|salt1|salt2) and uses
it in the encrypted result EK(N|nonce|salt1|salt2) that eventually sends as a reply to the user’s request.
Upon receipt of such message, the host generates his own version of password Hash function digest K and
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tries to decrypt the symmetric key encrypted message EK(N|nonce|salt1|salt2). Then he can extract the
salt (salt1) and through a KDF that uses the password and salt1, recreate the key Q that is necessary to
access the stored secure token (user’s certificate and keys). By retrieving the nonce, salt1 and salt2 and by
calculating K, the user can verify the digital signature N using the HST public key and prove that the HST
has knowledge of the password digest K. Using the retrieved Host Asymmetric Encryption Keys stored
only in memory, the host then sends a digital signature of the nonce to the HST, thus verifying knowledge
of both the nonce and his private key (EKpr ). Then, the ECDHE key agreement scheme is executed using
the host retrieved key pair. The outcome of ECDHE is a common session key S that can be used for
encrypting the remaining traffic between host and HST. The Certificate and Asymmetric cryptography
keys are encrypted using the result of a KDF that has as inputs the password along with the new salt
(salt2). This result is stored back to the host storage area.

Establishing a secure channel, where traffic is encrypted between the HST and the host, the HST/host
software component can forward requests for security services as well as send log messages that will be
transmitted with integrity and authenticity through the HST dedicated Ethernet IP communication to the
ADS. Integrity and authenticity are achieved by digitally signing the log entries with the retrieved HST
Asymmetric Cryptography keys.

Host DeviceHost User Trusted HST

generate nonce
generate new salt -> salt2
K=Hash(password)
N=DS (K,nonce|salt1|salt2),KHpr

E (N|nonce|salt1|salt2)K

provide password

request salt

E (nonce)Kpr

Generate K= Hash(password)
Decrypt EK(N|nonce|salt1|salt2)

Find Q=KDF(password, salt1)
Decrypt Certificate DQ(cert)

Obtain certificate’s
Host key pair (K ,K )pu pr

Verify DS (K,nonce|salt1|salt2)KHpr

new session key S

Use Q’=KDF(password, salt2)
Encrypt Certificate with Q’: EQ’(cert)

Store Encrypted Certificate

E (N|nonce|salt1|salt2)K

verify nonce

Perform ECDHE

new session key S
Store new salt -->salt2

Encrypted Stored
Certificate file: E (cert)Q

HST public key: KHpu

Secure storage:
salt1,
K=Hash(password),

HST key pair: ( )KHpu pr,KH
Host Public Key ( )Kpu

Secure communication
channel

Figure 3. The proposed session key agreement protocol.

4.3. Host-Hsm Logging Mechanism

When a security related incident is taking place, it can be detected by the HST/host software
component. A log entry is then generated to either be stored using the syslog protocol in the auth.log
of the Linux OS as a syslog entry in the host device or to be generated internally in the HST/host
software component and forwarded if confidentiality, integrity and authenticity are confirmed to a remote
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ADS through the HST. Such security incidents can range between possible cryptanalytic attacks, loss of
connection between the host and the HST, password authentication failure and many others. The proposed
logging mechanism ought to be flexible and simple to use, while containing a sufficient amount of
information that can be scaled up according to the application’s needs. Through this scope, each log entry
is a JSON message that includes information related to a specific event in the following format (Table 1):

Table 1. HSM Log entry JSON structure.

HSM Log Entry JSON Structure

{
“HostID”:<integer>,
“HostIP”:<integer>,
“HostState”:<string>,
“HSTid”:<integer>,
“timestamp”:<integer>,
“event”:{

“type”:<integer>,
“failure”:<integer>,
“severity”:<integer>

}
“comments”: <string>

The above structure is always digitally signed with the keys that are stored inside the HST (the host/
HST software component does not have access to them). Note that the above log format can be expanded
with relative ease to include additional fields of varying type, producing a more detailed log entry that
conveys a complete overview of an event with adequate information. The first five basic fields of this
JSON array format are necessary for the correct identification of the specific unit that produces a log entry,
as well as the exact time the log was generated. The "HostState" field provides characterization of the host
state relative to the HST. There exist two states in which a CI host can be in, administration and user. In the
administrator (admin) state, the host user can gain full access to the HSM services and features, including
the ability to store other host entries to the HST flash memory, as was analyzed previously. In the user
state, however, the host user lacks the authorization to add new host entries to the HST. The core of the log
entry containing the most important information is the "event" array. Its first field, "type", is an integer
number indicating the type of event that has been logged. In its current HST realization, the acceptable
values of this field are the following types:

• 0: Message integrity validation event.
• 1: Password based host to HST session initiation.
• 2: HST availability.
• 3: Security channel failure.

Directly linked to the above, the field "failure" is an integer number that indicates if the occurred event
of the type specified in "type" has failed (failure = 1) or if it has concluded normally (failure = 0). The last
field encapsulated in the "event" is the "severity" one, signifying the importance in terms of security impact
in cases where event failure is detected. A value of 0 indicates low severity, while the maximum value
of 3 marks the logged event with the highest severity. In the final JSON field "comments", additional
information related to the logged event can be provided. After generation, the log entry is sent to the ADS
monitoring system, containing all the necessary information about the host device, the logged event and its
severity. Accordingly, the level of trust and confidence by the ADS is enhanced, providing simultaneously
valuable details that aid the appropriate management of the inflicted node or device.

171



Sensors 2020, 20, 3092

5. Hst Practical Conceptualization–Realization

In order to further promote the functionality and applicability of the HST concept and highlight its
importance as a flexible and scalable system that provides solutions to many different security problems,
CI systems along with trustworthy anomaly detection, in this section we describe a realization of the proposed
solution that was implemented during the EU project “CIPSEC:Enhancing Critical Infrastructure Protection
with innovative SECurity framework” and that is being expanded in EU projects “CONCORDIA” [33] and
“CPSoSaware” [34]. In this realization we specify the HST CLI environment and show its practicality in
promoting and accessing the HST security services. Consistency and ease of upgrading should be essential
characteristics of this CLI, focusing on scalability and adaptability to a wide range of security scenarios
that need to be implemented in multiple CI Systems. These scenarios can vary from simple End-to-End
secure channel establishment, to appropriate secure and trusted logging and even to a PKI-like scheme that
manages host public keys. In its current realization, the HST is implemented in a Digilent Zedboard device
that includes the Zynq 7000 series SoC with ARM Cortex A9 processor and an FPGA fabric on chips (used
for the implementation of the HST Hardware IP cores).

5.1. Case Study Hst Cli for Cryptographic Application Programming

The availability of a variety of IP cores, as well as the sufficiently powerful Cortex-A9 processing unit
offer the ability of implementing numerous cryptographic and security protocols available today. These
operations can be accessed directly from the host machine through an in-house built serial CLI. The serial
console component accepts commands for execution that adhere to a specific format. Its general structure
is as follows: "command [options] [HostID] [data]". For example, in order to execute the Hash-based Message
Authentication Code (HMAC) protocol, the host sends to the HST through the serial secure communication
channel the command "hmac [key] [message]", where [key] is a secret shared key and [message] the input
data of the algorithm. In cases when a command requires extra information related to a specific host like
an ECC public key, an extra [HostID] field must be added, providing to the HST the ability to extract and
use the correct host entry located in its flash memory.

The HST’s hardware board cryptographic features can be accessed through the HST/Host software
component. This tool is developed for Linux OS based Host machines and is currently realized for 32 bit
and 64 bit x86 Linux platforms as well as ARM Linux platforms. During operation, two different modes are
available. In the HST Console mode the various CLI commands are transmitted directly to the HST through
a terminal console. In the HST OS mode, on the contrary, all HST commands are given as arguments upon
our Linux based HST/host software component executable or as CLI scripts. As it is apparent, OS mode
provides greater functionality and flexibility, enabling the development and easy deployment of different
applications that want to take advantage of the HST’s features. The overall CLI approach that is being
used resembles the openssl library approach with the extension of hardware and dedicated trusted tokens
use (hardware in the loop concept, i.e., the HST).

5.2. Hst as a Certificate Authority

In a plethora of industrial and CI systems, sensitive information is being exchanged continuously by
a wide range of different host machines. This exchange is often exposed to attacks both at a physical and
network level, as many hardware sensors and host devices operate in a variety of hostile environments.
This is even more prevalent in many Legacy systems that inherently lack strong security design principles.
Thus, in such cases the HST functionality can be extended to offer support of certificate management for
the different host devices that a CI utilizes, promoting a unique host–HST module as a pseudo Certificate
Authority (CA).
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Typically, in this scenario, most of the host devices operate in user mode, meaning they cannot add another
host entry in the HST’s flash memory other than their own entry during the host initialization phase due to
the lack of elevated privileges. Each host device has already generated and stored a host ECC private and
public key pair. Acting as a pseudo-CA, a host–HST module is operated in admin mode. As already mentioned,
a host in admin state is authorized to store additional information on the flash memory module embedded in its
corresponding HST. With the functionality our Crypto-Library offers, the CA can receive Certificate Signing
Requests (CSR) from any user host operating in the same network as the CA. The CA then checks the validity of
the digitally signed CSR and upon successful validation generates an ECC Certificate bound to the specific user
host. The Certificate is stored on the CA’s corresponding host entry and sent through the network to the host
that requested it. Through this process, the CA is in possession of all the user Hosts’ certificates and updates
this list whenever a new host is added to the network or a Host regenerates its ECC key pair. Any host from
this point forward can request from the CA another host’s certificate, in order to validate the authenticity of its
public key and consequentially the ownership of the corresponding private one. Using this PKI-like structure,
greater trust is instilled upon the different hosts’ communication than utilizing a basic digital signature scheme
without the existence of a CA.

5.3. Real-World Test Case Hst Validation

The functionality of the HST has been practically deployed for assessment in two specific CI testbed
scenarios. For this purpose, the HST is extended to include a Raspberry Pi module connected to the
Zynq 7000 series FPGA board (Zedboard) through a USB serial communication channel. This Pi module,
connected to the IP network with either Ethernet or Wi-Fi connection emulates a standalone host machine.
In a similar manner, we assume there exist identical host–HST pairs operating across a CI. Such a
configuration can be seen in Figure 4.

Figure 4. Raspberry Pi and Zedboard host-HSM configuration.
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5.3.1. Test Case A

The HST can be used to provide End-to-End encryption, integrity and authentication between CI
network domains. This functionality in the proposed HST can be related to anomalous behavior since
repeated failures in data integrity and authentication constitute a cyberthreat and may signal the beginning
of elaborate attack schemes (e.g., advanced Distributed Denial of Service). Having this rationale in
mind, the HST concept was adapted accordingly in order to offer the above described functionality.
A practical evaluation of the approach was realized in the Deutsche Bahn (DB) NETZE (Germany railways
interlocking mechanism provider) infrastructure testing where the host–HST pair was able to capture and
redirect UDP packets (used in the RaSTA industrial control protocol used in the DB railway interlocking
actuators) destined for another host device in a secure way under a Man-in-the-Middle attack (MitM) and
Man-at-the-End (MATE) scenario. The overall use case test configuration is presented in Figure 5. In this
mode, the host is exclusively communicating with its associated HST that is responsible for handling the
network traffic related to the host machine. The source of this traffic (UDP packets) that is forwarded
to the host’s HST, can either be encrypted information from another host–HST pair or data that needs
to be encrypted before being forwarded to a destination host–HST pair (in order to achieve End-to-End
secure communication). For a mechanism like this to operate properly, the involved HSTs (one for each
end point host) execute a key exchange protocol to generate a common shared session key. After this
establishment, the raw data a particular host wishes to send to another host must firstly be encrypted
and authenticated by the HST (using for example authenticated encryption or encryption and MAC
mechanisms) and attached to a UDP packet. The UDP packet is then sent through the network accordingly
to the correct destination host–HST pair, where the ciphertext is decrypted and its authenticity–integrity
validated, thus revealing the original raw data to the destination host. Utilizing this design philosophy,
two hosts can effectively establish a secure channel of communication even over IP, taking advantage of
the encryption and decryption services only the HSTs can provide. The logging mechanism on the HST is
permanently active in the above mentioned activities in order to detect any failure in the overall process
(e.g., wrong key establishment, faulty session establishment, no authentic message, non authentic host
user that tries to access the HST, password attacks on the HST or the host, etc.), then the ADS monitoring
system is informed through an HST dedicated wireless network channel (instead of an ethernet wired one)
due to the testing site policy restrictions. In the validation process of the use case, for integrity HMAC
with SHA256 was used, for secure session Establishment ECDHE was used and secure communication
was done using AES CCM mode. The exchanged UDP messages as well as the log entry messages to the
ADS were digitally signed using ECDSA (using secp256r1 ECC) with SHA256.

To validate the above use case and measure the response time of the HST, a MiTM and MATE attack
was mounted. In the MiTM attack scenario a malicious user tried to compromise the message integrity
and authenticity of the messages during transmission. In the MATE attack scenario, a malicious user tries
to bypass the security of the HST, by performing a dictionary attack to find the HST passwords and also
maliciously alters log entries of the host device in order to hide its identity. In both the scenarios, all the
attacks were captured by the HSTs and the malicious activities were reported to the anomaly detection
system. In Figures 6 and 7, the ADS log entries and resulting events are presented.
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Figure 5. Use Case A: Achieving Confidentiality and Integrity under Man-in-the-Middle (MiTM) and Man-at-
the-End (MATE) attack.

Figure 6. Use Case A: Anomaly Detection and Security Information and Event Management (SIEM) log entries.

Figure 7. Use Case A: Anomaly Detection and SIEM extracted events.

5.3.2. Test Case B

A very common CI setup consists of a SCADA industrial monitoring system facility that collects
information from in-field deployed sensors (e.g., temperature sensors). To emulate the above setup,
a test case scenario was created that consists of a server (emulating the SCADA system) and a client
(emulating the deployed temperature sensor). Typically, values from the sensor are transmitted through an
unprotected channel (e.g., using Modbus protocols) to the SCADA system that is responsible for the fine
tuning of the climate conditions in the CI facility. This configuration is prone to Man-in-the-Middle attacks
from an adversary that alters the transmitted message and potentially causes severe damage to expensive
CI equipment. The emulation process emulates the above scenario using two HST–host configurations as
described above and seen in Figure 4 that are connected through a wireless network as a server and a client.
One of the HST–host pairs has soldered on the host side (Raspberry Pi) a Pimoroni Enviro pHAT [35],
which features a BMP280 temperature/pressure sensor. This sensor is continuously polling for a new
temperature value, transmitting it through unprotected UDP packets to the emulated temperature control
system. To mount a MitM attack, the Ettercap [36] Open Source tool for Linux was used. Under an
unprotected communication channel (without HST), a successful MitM attack was executed, successfully
altering the temperature value from its usual range to an extreme one and causing the temperature
control system to react accordingly, with unwanted consequences. In order to demonstrate the validity of
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both the attack and the applied solution, a message integrity mechanism based on hash-based message
authentication code (HMAC) is deployed during the communication. The message is hashed and any
possible alteration to it is detected by the HST, leading to the rejection of the specific packet. A message
integrity failure event is then logged appropriately by the host–HST logging mechanism and transmitted
to an operating ADS or SIEM in a similar way as in the Test Case A.

5.4. Results and Discussion

Typically, the main issues when it comes to security agents/sensors is that they should be able to
respond in time when an attack is taking place or is about to take place, to remain secure under the
presence of attacks (hostile environment) and to be able to capture all events associated with a threat or
an attack. In this subsection, the measurement results collected during the validation process of the two
test cases are presented. It should be noted that the key difference of the HST in terms of response time is
the hardware accelerated security primitives that are employed. Thus, the collected measurements are
focused on the computation delay for each cryptography primitive operation employed in the test cases
that is assisted through hardware means. In Table 2, the time delay accounted from the pointed message is
inputted to the HST until it is processed and finally transmitted to the ADS (or a CI end node) is presented
for the HST HMAC message integrity and the End-to-End secure communication mechanism (using
AES CCM). As it can be observed, the execution time for these operations, due to hardware acceleration,
is considerably small if the delays introduced by the communication channel between the HST and the host
are also taken into account. When measuring the benefit of hardware implementation versus software ones
individually for each security primitive operation inside the HST, as expected, our hardware approach fairs
considerably better than purely software designs. For example, using hardware acceleration, an HMAC
with SHA256 operation delays 42s̆ec for small byte length inputs versus 62s̆ec when using only software
code (67% improvement). Similar improvement appears when the input byte length increases. In addition,
for ECDSA digital signature scheme operations, the hardware accelerated solution needed 14.3 ms for
signing and 23.7 ms for verification of signatures (using secp256r1 ECCs) versus 24.9 ms and 43.2 ms
respectively using only software code (57% improvement in speed).

Table 2. Full execution time of HMAC-SHA256 and AES CCM encryption mechanisms.

Runtime Benchmark

16B 64B 128B 256B

HMAC 0.049 s 0.061 s 0.071 s 0.092 s
AES 0.052 s 0.067 s 0.089 s 0.135 s

6. Conclusions

In this paper, we propose an approach on how to collect information from CI device ADS sensors that
can be trusted and are not tampered with. This approach was based on a hardware assisted dedicated
security service provider, the HST, that supports a secure event log and monitoring mechanism. In our
approach, the goal is to move securing of security related logs, needed by an ADS, from the Operating
System of a CI host (that can be considered insecure) to the HST dedicated hardware module. The HST
performs operations in a secure environment and has sole knowledge of cryptography keys that are used
for providing confidentiality, integrity and authenticity of the logging mechanism. Thus, even if an attacker
manages to compromise the CI host system, he still does not have knowledge of the security keys and
also does not have access to the log monitoring mechanism (which in our proposal is fully manifested in
the HST). In the paper, we analyzed the proposed approach based on the above described concept and
detailed the HST functionality as well as the functionality of the associated HST–host security component
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deployed in the host device. We also described how the log mechanism could be realized (using JSON data
structures) and also provided a practical realization of the HST concept. After describing a manifestation
of the HST command line interface, we also described cases study scenarios where the HST can be used to
provide even additional services to the secure log monitoring and reporting mechanism.
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Abstract: Sensing the voltage developed over a superconducting object is very important in order
to make superconducting installation safe. An increase in the resistive part of this voltage (quench)
can lead to significant deterioration or even to the destruction of the superconducting device.
Therefore, detection of anomalies in time series of this voltage is mandatory for reliable operation
of superconducting machines. The largest superconducting installation in the world is the main
subsystem of the Large Hadron Collider (LHC) accelerator. Therefore a protection system was built
around superconducting magnets. Currently, the solutions used in protection equipment at the LHC
are based on a set of hand-crafted custom rules. They were proved to work effectively in a range
of applications such as quench detection. However, these approaches lack scalability and require
laborious manual adjustment of working parameters. The presented work explores the possibility of
using the embedded Recurrent Neural Network as a part of a protection device. Such an approach
can scale with the number of devices and signals in the system, and potentially can be automatically
configured to given superconducting magnet working conditions and available data. In the course
of the experiments, it was shown that the model using Gated Recurrent Units (GRU) comprising
of two layers with 64 and 32 cells achieves 0.93 accuracy for anomaly/non-anomaly classification,
when employing custom data compression scheme. Furthermore, the compression of proposed
module was tested, and showed that the memory footprint can be reduced four times with almost no
performance loss, making it suitable for hardware implementation.

Keywords: anomaly detection; recurrent neural networks; neural networks compression; LHC

1. Introduction

The benefit of using superconductivity in industrial applications is well understood.
However actual application of superconducting devices is still limited by difficulties in the maintenance
of cryogenic stability of superconducting cables and coils. In many cases, it is hard to design
safe superconducting circuit. A small mechanical rearrangement releases enough energy to initiate
local avalanche process (quench) leading to loss of superconducting state and next to overheating
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of the machine and then even to melting. Therefore superconducting machines require a special
protection system.

In general, such a system consists of data producers and processing servers. The producers are
electronic devices located close to individual superconducting machines which require protection.
This device (producer) is capable of collecting and processing data and generating the activation signal
for local actuators. The servers are capable of storing and analyzing data delivered by producers
through the network.

The overarching research goal is to improve data processing within the producers and to move
a part of the analysis task into them in order to reduce network load. The preliminary results
of this research were presented in Ref. [1], which focused on testing the suitability of Recurrent
Neural Networks (RNNs) for this application. In this work, the additional aspects for hardware
implementation, especially model compression, are explored.

The presented research main contributions are as follows:

• development of a neural algorithm dedicated to detecting anomaly occurring in the voltage time
series acquired on the terminals of superconducting machines in electrical circuits,

• design and verification of the complete processing flow,
• introduction of the RNN-based solution for edge computing which paves the way for low-latency

and low-throughput hardware implementation of the presented solution,
• development of a system level model suited for future experiments with the adaptive grid-based

approach; the software is available online (see Supplementary Material section).

1.1. Protection System for Superconducting Machinery

One of the biggest superconducting systems is installed at the Large Hadron Collider (LHC)
accelerator at the European Organization for Nuclear Research (CERN). Despite its scientific purpose,
the LHC should be considered as a huge industrial system. The final product of this factory is the
total number of particle collisions. During the steady operation, every second, 40,000,000 collisions
are performed in three different interaction points. The LHC consists of a chain of superconducting
magnets. The chain is located in an underground circular tunnel, 100 m under the Earth’s surface.
The Figure 1 presents the view on the magnet’s chain. The perimeter of the tunnel is about 27 km long.
Superconducting magnets, responsible for shaping the beam trajectory, are crucial elements of the
accelerator that require permanent monitoring. The details of the design of the LHC accelerator are
described in Ref. [2].

When the LHC collides particles, even a tiny fraction of energy stored in each proton beam can
cause a magnet to leave the superconducting state. Such an occurrence is named a quench, and it
can severely damage the magnets in case of machine protection procedures failure. These procedures
mainly relay on triggering the power down of the whole accelerator when resistive part of voltage on
one superconducting element exceeds a predefined threshold. This study concerns only a protection
system of superconducting elements inside the LHC.

A protection system known as Quench Protection System (QPS) has been installed at the LHC since
the beginning and it successfully works since ten years of the LHC operation. The detailed description
of the existing system can be found in Refs. [3,4]. The protection unit, visible in Figure 1, installed under
the magnet performs acquisition, processing and buffering of samples of voltage existing between
terminals of the superconducting coil. These units are end-points of a massive distributed system
covering the whole length of the LHC. The acquisition is performed using Analog-to-Digital Converter
(ADC). The processing relies on filtering and compensation of inductive voltage. The pure resistive
voltage is compared with the threshold, and the output of comparator activates actuators and generates
trigger signals for other subsystems of the LHC. The actuators are also included to the yellow rack
installed under each magnet in the tunnel (see Figure 1). The task of actuators is to inject energy to the
objective coil in order to heat it homogeneously.
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Figure 1. The LHC tunnel. The blue cryostat contains superconducting main dipole magnets.
The protection unit is visible on the floor under the magnet (yellow rack). The photo taken by
A.S. in 2007.

The data is continuously buffered in a circular buffer. Some of the samples (both total and resistive
voltage) are directly transmitted to the CERN Accelerator Logging Service (CALS) database in the
cloud. The CALS serves permanent monitoring of almost every device in the CERN’s accelerator’s
complex. The sampling rate for this service is very low, in the best case it is 10 Hz (100 ms). The circular
buffer consists of two parts. The first part is filled with samples all the time in a circular manner.
The second part is filled only in case of triggering or in case of a request sent by an operator. A trigger
(or a request) freezes first part of the buffer. Then the whole buffer is transmitted to a cloud and stored
in a dedicated database Post Mortem (PM) System. Examples of voltage time series taken from this
database are presented in Figure 2. The sampling rate of the PM data is much higher, and in our case,
it is 500 Hz (2 ms).

Figure 2. The presentation of a contents of URES field of two PM data files for one of the superconducting
magnets (with electrical current 600 A). The voltage range of the ADC is from −256 mV to 256 mV.
Time 0 ms refers to trigger (request) time stored in the field QUENCHTIME in the PM data files.

The presented protection system underwent many upgrades introduced during breaks of the LHC
operation. However, the emergence of new superconducting materials opens a question concerning
detection algorithms for application in the future protection system again. Such experiments are
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conducted in SM18 CERN’s facility (see Figure 3), currently testing the magnets for the High Luminosity
LHC phase.

Figure 3. Test facilities of SM18 for testing MQXFS inner triplet quadrupole magnet, including the rack
used for the data acquisition and tests (photos provided by E.M.).

1.2. State of the Art

Anomaly and novelty detection methods have been researched over many years [5–7] which
resulted in the development of many successful algorithms. They may be in general divided into
three different categories of density-based, distance-based and parametric methods. In addition
to the standard procedures, neural algorithms in a majority of cases employing RNN-based
architectures [8–11] slowly pave the way to the basic set of the anomaly detection procedures.

Training dataset is different for novelty and outlier detection. In novelty detection, it is not
contaminated by anomalies—all outliers need to be removed beforehand. On the contrary, the training
procedure of the outlier detection model involves incorporating anomalous data into the training
dataset. Both flows employ an unsupervised approach as a training procedure, although some of
the procedures may be boosted using some external hyper-parameters such as contamination factor,
thresholds or max features that are taken into account in the training process.

In this work three different algorithms were used as a baseline for the RNN-based approach
proposed by the authors: Elliptic Envelope, Isolation Forest (IF), and One-Class Support Vector Machine
(OC-SVM) [12–18]. Elliptic Envelope belongs to a set of methods with an underlying assumption of
known distribution (usually Gaussian) for normal data and all the points distant from the center of the
ellipse are considered outliers. The Mahalanobis distance [19] is used as a measure of distance and an
indicator that a given data point may be considered as an outlier.

Another useful method, invented in 2008, is the Isolation Forest [20] which performs anomaly
detection using the random forest. The underlying concept of this approach is based on an idea of a
random selection of features and a random selection of split within the tree nodes between maximum
and minimum values of the selected features. A concept of the decision function in IF algorithm
defines deviation of an averaged path over a forest of random trees. Random partitioning creates
significantly shorter paths for anomalies which results from the fact that outliers are concentrated close
to extreme values of features which in turn locates them on the border of the trees.

OC-SVM is usually considered to be a novelty-detection method, and the training data should not
contain outliers. It performs well in high-dimensional space where there is no assumption regarding
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the distribution of the underlying data. However, if the data is well distributed (e.g., Gaussian) the
Isolation Forest or Elliptic Envelope may perform better.

The presented methods assume the spatial structure of the data with no temporal relationships.
There is a set of methods such as ESD, ARIMA, Holt-Winters [21,22] which take time component
into account and have proven to be effective. However, due to their complexity, it is challenging to
implement them in very low-latency systems in hardware.

When detecting anomalies in time series, RNNs are both scalable and adaptable which is
critical when it comes to design and implementation of complex anomaly detection systems [23–25].
RNNs were introduced long ago [26] and have been successfully applied in many domains [8],
according to the authors’ knowledge, there are no studies on the performance of compressed RNNs in
anomaly detection. Nevertheless, several works on effective quantization and compression of RNNs
are available [27,28]. Consequently, decision was made to explore the feasibility and performance of
several compression techniques of RNNs in low-latency anomaly detection domain of LHC machinery
monitoring. Furthermore, the adopted approach addresses both data and coefficients quantization
with in-depth analysis of correlation of employing different techniques.

2. Materials and Methods

2.1. Quantization Algorithm

2.1.1. Previous Work

In the authors’ previous works concerning superconducting magnets monitoring Root-Mean-
Square Error (RMSE) [24] and both static [23] and adaptive data quantization [1,25] approaches were
used. Based on experiments conducted and described therein, a conclusion can be drawn that RNNs
can be used to model magnets behavior and detect anomalous occurrences.

The initially introduced RMSE approach had several drawbacks, the main of which was a necessity
to select an arbitrary detection threshold. In Ref. [23], the static quantization was used, mapping
the input data into a set of m equal-width bins. This method, however, resulted in sub-par results,
stemming from the uneven distribution of the samples in the bins, up to the point where nearly all
samples occupied only one or two bins (see static samples counts in Figure 4).

Figure 4. Samples per bin for PM dataset URES channel (m = 32). Note the logarithmic scale.

In Ref. [25], an approach based on adaptive data quantization and automatic thresholds selection
was introduced. Adaptive data quantization resulted in much better use of bins and consequently
significantly improved the accuracy results. Its principle of operation is mapping the input space to a
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fixed number of categories (bins) in such a way, that all categories have (ideally) the same samples
cardinality (see Appendix A.1 for more details). Resulting bins widths are uneven, explicitly adjusted
to each of the input signal channels (see adaptive samples counts in Figures 4 and 5 to compare bin
edges generated with various approaches).

(a)

(b)
Figure 5. Full (a) and zoomed-in (b) bin edges for PM dataset URES channel (m = 32). Please note
that adaptive quantization algorithm effectively yields only 10 bins, since some edges values occur
multiple times.

2.1.2. Other Quantization Approaches

The drawback of adaptive algorithm is that it can effectively generate fewer bins than requested
when some values occur in the dataset in significant numbers (see Figure 5). To mitigate this
effect, which became apparent when working with PM data, a modification of adaptive algorithm,
called recursive_adaptive, was introduced. The m + 1 initially found edges are treated as candidates,
and if duplicates are detected, the recursive process is started. At first, the duplicated edges are added
to the final edges list, and all repeating values are removed from the dataset. Then, the remaining
data is used as an entry point to find m + 1–number of final edges new edge candidates. The process is
repeated until there are no duplicates in candidate edges or there is no more data left in the dataset.
As a result of this process, the bins are more evenly used.

An alternative edge-finding algorithm, called cumulative_amplitude, is based on the idea of
equalizing the sum of the samples amplitudes in each bin. As in adaptive algorithm, before edges
selection, the samples are normalized and sorted. Then, the threshold value is computed as a sum of
amplitudes of samples left in the dataset divided by the required edges number (see Appendix A.2 for
equations). Contrary to the adaptive approach of determining the edges based on the samples count,
in cumulative_amplitude the edge value is chosen when the sum of samples’ amplitudes crosses this
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threshold. As a result, the maximal values are not grouped with smaller ones. It may, however, level the
differences between smaller values, that may contain crucial information. In the implementation,
the concept described above was modified to also use recursive duplication removal, with the threshold
value determined anew for each recursion level.

2.2. Implementation Overview

The presented anomaly detection system was created in Python, using Keras [29] library, with both
Theano [30] and Tensorflow [31] backends depending on availability. The reference methods were
implemented using scikit-learn [32] library. It is prepared to work with normalized data, with all the
available data (both training and testing) used during the normalization process. The focal system
modules and data flow can be seen in Figure 6.

The number of input categories (in_grid), the bins’ edges calculation algorithm (in_algorithm),
the history window length (look_back), the model and its hyper-parameters used during the anomaly
detection process and other options are specified in the configuration file. The particular setup is also
saved while results are reported, ensuring the particular test environment can be recreated even if
configuration included several possible values. Each of the input channels is quantized using the same
grid/algorithm combination.

Figure 6. High-level system architecture. c© 2018 IEEE. Reprinted, with permission, from Wielgosz, M.;
Skoczeń, A.; Wiatr, K. Looking for a Correct Solution of Anomaly Detection in the LHC Machine
Protection System. 2018 International Conference on Signals and Electronic Systems (ICSES), 2018,
pp. 257–262 [1].

The model is an abstraction layer over the actual classifier. Currently implemented models include
Random (for baseline testing), Elliptic Envelope, Isolation Forest, OC-SVM, Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU).

Depending on the system configuration (Figure 6), some models can be used for either
classification or regression. In the regression mode, the model is trained on data without anomalies and
yields the output that needs to be further processed by the analyzer to obtain anomaly detection results.

In the classification mode, used in the experiments presented in this paper, the model is trained
using data containing anomalies (except for models belonging to the novelty detection category).
Instead of trying to predict the next (quantized) value, it directly classifies the sample as either anomaly
or not.

The models can be roughly divided into the ones working with either spatial (Elliptic Envelope,
Isolation Forest, OC-SVM) or temporal data (LSTM, GRU). Relevant data preprocessing and
structuring, as well as model training and testing, is coordinated by one of the possible detectors.
The model/detector combination used in particular setup is defined in configuration file. This option
ensures the system extensibility since the detector does not need to know about all possible models
in advance.

Currently, the experiments are carried out using the software implementation of the system.
The target system, however, will need to be implemented in hardware to ensure it complies with
latency requirements. To fit the Neural Network (NN) model onto the Field-Programmable Gate
Array (FPGA) or Application-Specific Integrated Circuit (ASIC) board, it needs to be compressed while
retaining the high accuracy (Figure 7). The ready module can potentially be used as a stand-alone
detector or in conjunction with the currently used system (Figure 8).
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Figure 7. Design flow for hardware implementation. c© 2018 IEEE. Reprinted, with permission,
from Wielgosz, M.; Skoczeń, A.; Wiatr, K. Looking for a Correct Solution of Anomaly Detection in the
LHC Machine Protection System. 2018 International Conference on Signals and Electronic Systems
(ICSES), 2018, pp. 257–262 [1].

Figure 8. Proposed system. c© 2018 IEEE. Reprinted, with permission, from Wielgosz, M.; Skoczeń, A.;
Wiatr, K. Looking for a Correct Solution of Anomaly Detection in the LHC Machine Protection System.
2018 International Conference on Signals and Electronic Systems (ICSES), 2018, pp. 257–262 [1].

2.3. Model Complexity Reduction

Deep Learning models have a range of features which render them superior to other similar
Machine Learning models. However, they usually have high memory footprint as well as require
substantial processing power [33]. Computing requirements are especially crucial when it comes
to embedded implementation of Deep Learning models in edge processing nodes like in the case
of the system described in this paper. Fortunately, there are multiple ways to mitigate these issues
and preserve all the benefits of the models, for example by using techniques such as pruning and
quantization [28].

During a quantization, a floating-point number x from a quasi-continuous space of IEEE-754
notation is mapped to fixed-point value q, represented using total bits. The total is conventionally
equal to 8 or 16, which are bit-widths supported by GPUs and the latest embedded processors.
For FPGA and ASIC it is, however, possible to use an arbitrary number of bits. The quantization is
done separately for each layer’s weights W .

2.3.1. Linear Quantization

The linear quantization used during experiments can be described by the following equation:

q = s · clip
(⌊

x
s
+

1
2

⌋
, 1 − 2total−1, 2total−1 − 1

)
, (1)

where scaling factor:

s =
1

2total−1−�log2 max(W)� (2)

and clipping function:

clip(a, min, max) =

⎧⎪⎪⎨
⎪⎪⎩

min if a < min,

a if min ≤ a ≤ max,

max otherwise.

(3)
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2.3.2. MinMax Quantization

The minmax quantization used during experiments can be described by the following equation:

q = s ·
⌊

x − min(W)

s
+

1
2

⌋
+ min(W), (4)

where scaling factor:

s =
max(W)− min(W)

2total − 1
. (5)

Also tested was log_minmax quantization, where:

q = sign(x) · eminmax(ln |x|) (6)

2.3.3. Hyperbolic Tangent Quantization

The tanh quantization used during experiments can be described by the following equation:

q = arctanh
(

s ·
⌊

tanh(x) + 1
s

+
1
2

⌋
− 1
)

, (7)

where scaling factor:

s =
2

2total − 1
. (8)

The main idea behind coefficients quantization is using a dynamic range of the available number
representation to its fullest, and meet the requirements of the hardware platform to be used for
deploying the system at the same time. In our implementation, the so-called dynamic fixed-point
notation was used. It allows emulating fixed-point number representation using floating-point
container. It is worth noting that most of edge computing platforms require linear quantization due
to the fixed, a priori defined size of internal registers and arithmetic processing elements. FPGA and
custom-designed ASIC which this work is targeting have no such limitation.

3. Results

A series of experiments were conducted to practically examine performance of the proposed
methods. Different configurations of the module setup were used in order to expose impact of
different parameters of the proposed algorithm on the overall performance of the anomaly detection
system. Furthermore, the performance of the proposed solution was compared with a range of
state-of-the-art algorithms.

3.1. Dataset

The dataset used in the experiments contained 2500 series retrieved from PM database,
with 64-16-20 training-validation-testing split. 2415 of those series had a length of 1248 samples,
while the remaining 85 series had a length of 1368 samples. For each of the series, the four input
channels were available:

UDIFF—total voltage measured between terminals of superconducting coil,
URES—resistive voltage extracted from the total voltage UDIFF using the electric current IDCCT,
IDCCT—current flowing through superconducting coil measured using Hall sensor, and
IDIDT—time derivative of the electric current IDIDT calculated numerically.

Anomalies were marked based on the value of QUENCHTIME field found in PM data, with each
anomaly starting at the indicated point and continuing until the end of a series. As such, the data can
be considered to be weakly labelled. 874 training and 225 testing series contained anomalies and over
26% of samples in the dataset were marked. Over 84% of the anomalies had a length of 750 samples,
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over 7%—566, and over 4%—1320. The length of the remaining anomalies varied between 214 and
908 samples.

Before the start of experiments, the data was normalized. The example data series (and results)
visualizations can be seen in Figures 9 and 10. Even in just those two figures, it can be seen that the
quenches vary in shape and it is really difficult to find apparent similarities just by visual examination.
This makes tasks of data labeling and manual verification of the detection results not feasible without
heavy experts involvement.

Figure 9. Example single series results visualization (in_grid = 32, in_algorithm = adaptive,
look_back = 256). Red line across all subplots marks the QUENCHTIME and gray spans indicate the
anomalies found by the system.
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Figure 10. Example single series results visualization (in_grid = 32, in_algorithm = recursive_adaptive,
look_back = 128). Red line across all subplots marks the QUENCHTIME and gray spans indicate the
anomalies found by the system.

3.2. Quality Measures

During the experiments two main quality measures were used: F-measure and accuracy.
While F-measure is better suited to evaluate the results of anomaly detection, in case of PM data
the relative lack of imbalance between anomalous and normal samples (especially factoring in the
required history length) makes the accuracy also a viable metric.

Additionally, the NN models quantization results are usually measured in terms of accuracy, so its
usage allows to relate our results with others found in literature. For example, the drop in accuracy
resulting from quantization should be no higher than one percentage point [34].

An accuracy can be defined as:
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accuracy =
tp + tn

tp + tn + fp + fn
, (9)

where:

• tp—true positive—item correctly classified as an anomaly,
• tn—true negative—item correctly classified as a part of normal operation,
• fp—false positive—item incorrectly classified as an anomaly,
• fn—false negative—item incorrectly classified as a part of normal operation.

An F-measure is calculated using two helper metrics, a recall (10), also called sensitivity, and a
precision, also called specificity (11):

recall =
tp

tp + fn
, (10)

precision =
tp

tp + fp
. (11)

The β parameter controls the recall importance in relevance to the precision when calculating an
F-measure:

Fβ = (1 + β2) · recall · precision
recall + β2 · precision

. (12)

During the experiments two β values were used, 1 and 2, to show the impact of the recall on the
final score. Recall as a quality assessment measure reflect an ability of an algorithm to find all entities.
On the other hand precision, describes several found entities were correctly classifier. Those measures
have to some extent opposite effect on each other. This means that raise of precision usually leads to a
drop of recall and vice-versa.

The Receiver Operating Characteristic (ROC) curve is a graph used to analyze the operation of
the binary classifiers as the one presented in this work. It shows the performance of the model taking
into account all classification thresholds. True Positive Rate (recall) is plotted as a function of False
Positive Rate (1 − precision). When a classification threshold is lowered, the classifier tends to classify
more input data items as positive, which leads to an increase of both fp and tp.

To derive quantitative conclusions from ROC curve Area Under Curve (AUC) may be employed.
It measures the whole two-dimensional area under the ROC curve. It may be considered as an integral
operation performed from points (0,0) to (1,1) on a ROC graph. AUC values fall into a range between 0
and 1. A model whose predictions are 100% wrong has an AUC of 0.0, the one which works perfectly
hasAUC of 1.0.

3.3. History Length and Data Quantization

The initial experiments attempted to determine the impact of history length (look_back) and
quantization levels (in_grid) on RNN models performance. Models were trained on full dataset and
four channels for 7 epochs, with batch size equal to 16,384.

Use of dynamic range of the data representation is one of the most important indicators of
the quantization algorithm effectiveness since it affects the potential information loss due to the
lack of a proper representation capacity, i.e., ‘wasting’ resources on empty bins, while other bins
contain ‘too many’ of the values or the number of bins could be reduced altogether. Figure 11 shows
that recursive and cumulative adaptive approaches provide full grid use in contrast to adaptive
quantization method which exhibits significant grid underuse.

Experiments with different sizes of in_grid were conducted and it turned out that this parameter
has a very little impact on the performance of the model (see Figure 12). Aside from in_grid = 8,
which universally performs the worst regardless of the used algorithm, other values yield similar
results starting with look_back = 128. This allows reducing the size of the input (in_grid) to 32
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which can be encoded using 5 bits. The biggest impact on the performance has look_back which was
presented in Figures 13–15 and Table 1. The models with look_back of 512 reach AUC close to 0.98
and significantly outperform the models with look_back of 16. It also can be seen that in current
tests only setups with look_back = 256 and look_back = 512 were capable of reaching the recall = 1,
ensuring all anomalies were found, while retaining high precision. The avoidance of false negatives is
crucial in this use case, since quench after-effects, resulting in the equipment destruction, can be both
dangerous and extremely costly.

It is also worth to keep in mind that the developed model is supposed to work in highly
demanding environment where response latency is a critical factor which decides how much time other
sections of the global protection system have to execute their procedures. Thus the work needs to be
done towards reducing discrepancy in AUC value between setups of different look_back. For instance,
AUC for look_back = 64 is 0.87 and for look_back = 256 equals to 0.97 (see Figure 13).

Table 1. The parameters of NN built with GRU cells for three different algorithms (two layers, 64 and
32 cells + Dense, in_grid = 32).

In_Algorithm Look_Back Accuracy F1 Score F2 Score

adaptive

16 0.8462 0.6722 0.6167
32 0.8506 0.7031 0.6687
64 0.8611 0.7376 0.7124

128 0.8838 0.7973 0.7835
256 0.9162 0.8743 0.8796
512 0.9543 0.9474 0.9522

recursive_adaptive

16 0.8507 0.6920 0.6481
32 0.8543 0.7022 0.6561
64 0.8652 0.7350 0.6928

128 0.8868 0.8040 0.7939
256 0.9172 0.8746 0.8749
512 0.9571 0.9506 0.9560

cumulative_amplitude

16 0.8436 0.6609 0.5999
32 0.8473 0.6664 0.5968
64 0.8562 0.7115 0.6620

128 0.8853 0.7927 0.7622
256 0.9231 0.8830 0.8805
512 0.9669 0.9625 0.9779

Figure 11. Grid use for various in_grid values and in_algorithm. ad—adaptive, ra—recursive_adaptive,
ca—cumulative_amplitude.
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Figure 12. F1 score as a function of look_back for several in_grid and in_algorithm values.
Dashed line shows Random baseline model performance for the same look_back.

The comparative tests were run using full training set (samples_percentage = 1). The goal was
to study the behavior of the RNN-based methods and other classic anomaly detection methods with
respect to the quantization algorithm. Most of the tests were run using single URES input channel
(Table 2), with additional experiments using four input channels run for RNN-based methods (Table 3).

As a baseline, the Random model was used. It generates predictions by respecting the training
set’s class distribution (“stratified” strategy). Since it ignores the input data entirely, its results do not
depend on the in_algorithm choice. This model performance turned out to be at the level of 0.6334.

For the other models’ tests, based on the previous experiments, the values of look_back = 256
and in_grid = 32 were selected as providing a good tradeoff between resources consumption
and the results quality. For the spatial methods, the history vector was flattened. The amount
of contamination (the proportion of outliers in the data set) was calculated based on the whole training
set and passed to the methods. For the Elliptic Envelope, all points were included in the support of
the raw Minimum Covariance Determinant (MCD) estimate. The OC-SVM was tested with both 332
Radial Basis Function (RBF) and linear kernel, with RBF kernel coefficient (γ) equal to 0.1 and an upper
bound on the fraction of training errors and a lower bound of the fraction of support vectors (ν) equal
to 0.95 ∗ contamination + 0.05. Each of the RNNs had the same testing architecture (two layers, with 64
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cells in the first one and 32 cells in second, followed by fully connected layer) and was trained for
seven epochs.

Figure 13. The ROC curve for algorithm adaptive (in_algorithm = adaptive, in_grid = 32,
GRU (two layers, 64 and 32 cells) + Dense).

Figure 14. The ROC curve for algorithm recursive_adaptive (in_algorithm = recursive_adaptive,
in_grid = 32, GRU (two layers, 64 and 32 cells) + Dense).
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Figure 15. The ROC curve for algorithm cumulative_amplitude (in_algorithm = cumulative_amplitude,
in_grid = 32, GRU (two layers, 64 and 32 cells) + Dense).

Table 2. Testing accuracy (20% of dataset). All models were run with in_grid = 32 and look_back = 256,
using single input channel (URES), NNs were trained for 7 epochs. The best result is marked in bold.

Model
In_Algorithm

Adaptive Recursive_Adaptive Cumulative_Amplitude

Random (stratified) 0.6334 0.6334 0.6334
Elliptic Envelope 0.6700 0.7775 0.6700
Isolation Forest 0.7947 0.7596 0.8094

OC-SVM (RBF kernel) 0.3300 0.8232 0.3300
OC-SVM (linear kernel) 0.2959 0.7881 0.2528

GRU (two layers, 64 and 32 cells) 0.8928 0.9005 0.8842
LSTM (two layers, 64 and 32 cells) 0.8271 0.8552 0.7402

Table 3. Testing accuracy (20% of dataset). Models were run with in_grid = 32 and look_back = 256,
using four input channels (URES, UDIFF, IDCCT, IDIDT), NNs were trained for 7 epochs. The best result
is marked in bold.

Model
In_Algorithm

Adaptive Recursive_Adaptive Cumulative_Amplitude

GRU (two layers, 64 and 32 cells) 0.9235 0.9300 0.8842
LSTM (two layers, 64 and 32 cells) 0.9194 0.9092 0.9023

It is worth noting that the presented methods such as OC-SVM, Isolation Forest, or Elliptic
Envelope are more sensitive to the data distribution and perform well for specific kind of underlying
data (i.e., specific distribution or feature extraction which can bring the original data to this distribution
before the methods are applied). In the case of the presented CERN data, the distribution is not always
stable (varies across setups and magnets). It is also worth noting that the distribution as such does
not tell much about temporal aspects of the analyzed data. It may happen that the signals of the
same distribution have different temporal shape. This is even more pronounced for more temporarily
complex signals (see Figures 9 and 10).
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3.4. Coefficients Quantization

Table 4 shows results of coefficients quantization for the neural models from Tables 2 and 3 using
several different methods. For all methods, the quantization above the ten bits yields results nearly
identical to original. A significant drop in accuracy is observed below 8 bits of representation. It may
be noted (Table 3) that for lower number of bits the performance oscillates between ≈0.7 and ≈0.3
which means classifying all the features as one category.

Table 4. Coefficients Quantization Results for GRU (two layers, 64 and 32 cells) + Dense, trained on
four input channels. Accuracy as a function of bit-width.

Bits Method
In_Algorithm

Adaptive Recursive_Adaptive Cumulative_Amplitude

Original Model 0.9235 0.9300 0.8842

10

linear 0.9236 0.9287 0.8841
minmax 0.9233 0.9300 0.8841
log_minmax 0.9235 0.9298 0.8842
tanh 0.9232 0.9283 0.9232

9

linear 0.9236 0.9279 0.8838
minmax 0.9237 0.9295 0.8842
log_minmax 0.9231 0.9293 0.8843
tanh 0.9219 0.9260 0.8842

8

linear 0.9206 0.9257 0.8830
minmax 0.9238 0.9311 0.8838
log_minmax 0.9207 0.9283 0.8844
tanh 0.9161 0.9143 0.8836

7

linear 0.9177 0.3989 0.8850
minmax 0.9194 0.9250 0.8841
log_minmax 0.9218 0.9236 0.8833
tanh 0.9131 0.9033 0.8851

6

linear 0.8952 0.9008 0.8871
minmax 0.9144 0.8839 0.8842
log_minmax 0.9111 0.9076 0.8844
tanh 0.8702 0.8782 0.8788

5

linear 0.3722 0.8442 0.8802
minmax 0.9031 0.9058 0.8810
log_minmax 0.3948 0.8878 0.8812
tanh 0.8247 0.3306 0.8670

4

linear 0.8500 0.2745 0.8587
minmax 0.8678 0.8702 0.8775
log_minmax 0.8649 0.3848 0.8734
tanh 0.7491 0.8464 0.3017

3

linear 0.7928 0.8135 0.8190
minmax 0.3391 0.7900 0.8530
log_minmax 0.7664 0.8023 0.8564
tanh 0.6922 0.2833 0.7985

2

linear 0.3006 0.6700 0.7065
minmax 0.7371 0.3391 0.3466
log_minmax 0.7908 0.7369 0.3110
tanh 0.7216 0.7549 0.2309

1

linear 0.6700 0.3300 0.3300
minmax 0.6706 0.7003 0.6717
log_minmax 0.7171 0.7459 0.2121
tanh 0.7171 0.7459 0.2121
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4. Discussion and Conclusions

The protection system for superconducting machinery existing at the LHC is a vast distributed
system installed around the whole circular tunnel. It consists of many individual units connected
with a dedicated network. The approach used to design protection units is hard to scale and requires
laborious manual adjustment of working parameters. The presented work explores the possibility
of using the RNN to build a protection device of a new generation. The idea is to perform on-line
analysis inside local protection unit using data acquired with a much higher sampling rate without
sending such a massive amount of data to the cloud.

One of the main advantages of the proposed methodology is the simplicity of the parameters
setting and adjustment through a complete workflow. Only the model architecture and data
quantization levels need to be selected, and even those can be automatically optimized. Additionally,
since the solution is based on NNs, it can be extended (scaled) to use more sensors (or data streams)
or even incorporate text tags (present in many cases in historical CERN superconducting magnets
data), while keeping the overall architectural design the same, even for various types of magnets. It is
also possible to fine-tune or retrain RNN-based modules when data has changed (e.g., underlying
architecture was modified or aged) when in the traditional approach it would require reconsideration
and restructuring of the existing solution. This architectural uniformity makes it a good candidate
for implementation in a distributed edge-computing cluster of sensors, trained in an end-to-end
fashion. Such a holistic approach can significantly reduce overall resources consumption, latency,
and throughput.

The conducted experiments showed that using large look_back significantly boost the
performance of the model, while the number of quantization levels (in_grid) as low as 32 is sufficient
for the task. The framework demonstrated to be capable of achieving 93% of testing accuracy for
GRU (two layers, 64 and 32 cells). The accuracy results are affected by the weak labeling of the data,
e.g., sometimes the system labels as anomalous samples occurring for a bit before QUENCHTIME
marker. Such results lower the accuracy, while in fact being the desired outcome. The proposed system
also often creates a ‘gap’ in the anomaly, at which point the system shutdown signal would already be
sent (such example can be seen in Figure 9). Considering that, the availability of the data manually
labeled by experts could improve the system performance.

The coefficients quantization level should also be considered a meta-parameter of the model
optimization. Experiments showed that the selection of any value equal to or above 8 bits does not lead to
noticeable performance degradation. Careful choice of the quantization level may allow reducing memory
footprint even more; however, it must be noted that below 8 bits the accuracy of the model oscillates.

Overall, due to the relatively small size of the neural models and the possibility of significantly
reducing their memory footprint (4×) with a minimal performance loss, the presented model is a good
candidate for hardware implementation in FPGA or ASIC.

Supplementary Materials: The software of presented anomaly detection system is available online at https:
//bitbucket.org/maciekwielgosz/anomaly_detection.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC Analog-to-Digital Converter
ASIC Application-Specific Integrated Circuit
AUC Area Under Curve
CALS CERN Accelerator Logging Service
CERN European Organization for Nuclear Research
EP Electronics for Protection Section
FPGA Field-Programmable Gate Array
GRU Gated Recurrent Unit
IF Isolation Forest
LHC Large Hadron Collider
LSTM Long Short-Term Memory
MCD Minimum Covariance Determinant
MPE Machine Protection and Electrical Integrity Group
NN Neural Network
OC-SVM One-Class Support Vector Machine
PM Post Mortem
QPS Quench Protection System
RBF Radial Basis Function
RMSE Root-Mean-Square Error
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
TE Technology Department

Appendix A. Data Quantization

This section presents the equations that can help to better understand the data quantization
performed during experiments.

Appendix A.1. Adaptive Data Quantization

Adaptive data quantization principle of operation is mapping the input space to a fixed number
of categories (bins) in such a way, that all categories have (ideally) the same samples cardinality as
described by Equations (A1) and (A3) (see Table A1 for notation).

Snorm
Πqa(m)
===⇒ Sqa : {0 . . . m − 1}1×n , (A1)

Πqa(m) :
∧

x∈Snorm

∨
y∈Sqa

y =

⎧⎪⎪⎨
⎪⎪⎩

edgesy � x · m < edgesy+1

if x < 1

y = m − 1 if x = 1,

(A2)

edges :
∧

0�y�m
edgesy =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if y = 0
srt_samplesy·� n

m �
if 0 < y < m

1 if y = m.

(A3)

Appendix A.2. Cumulative Amplitude Data Quantization

Cumulative_amplitude method is based on the idea of equalizing the sum of the samples amplitudes
in each bin. As in adaptive algorithm, before edges selection, the samples are normalized and sorted.
Then, the threshold value Θm is computed as a sum of amplitudes of samples left in the dataset divided
by the required edges number (A4).

199



Sensors 2018, 18, 3933

Θm =
∑ srt_samples

m
, (A4)

edges :
∧

0�y�m
edgesy =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if y = 0
srt_samplesidx(y)

if 0 < y < m
1 if y = m,

(A5)

idx(y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1 if y = 0

min(k) :

⎛
⎝ k

∑
i=idx(y−1)+1

|srt_samplesi|
⎞
⎠ � Θm

if 0 < y < m.

(A6)

Contrary to the adaptive approach of determining the edges based on the samples count,
in cumulative_amplitude the edge value is chosen when the sum of samples’ amplitudes crosses this
threshold (A5)–(A6).

Table A1. Notation used in quantizaton Equations (A1)–(A6).

Symbol Meaning

n number of samples
m number of classes (categories, bins); m ∈ N>0

Snorm normalized input space
Sqa signal space after adaptive quantization

edgesi i-th quantization edge, see (A3)

srt_samplesi
i-th sample in the ascending sorted array of all
available signal samples
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Abstract: Effective management of chronic constrictive pulmonary conditions lies in proper and
timely administration of medication. As a series of studies indicates, medication adherence can
effectively be monitored by successfully identifying actions performed by patients during inhaler
usage. This study focuses on the recognition of inhaler audio events during usage of pressurized
metered dose inhalers (pMDI). Aiming at real-time performance, we investigate deep sparse
coding techniques including convolutional filter pruning, scalar pruning and vector quantization,
for different convolutional neural network (CNN) architectures. The recognition performance has
been assessed on three healthy subjects following both within and across subjects modeling strategies.
The selected CNN architecture classified drug actuation, inhalation and exhalation events, with 100%,
92.6% and 97.9% accuracy, respectively, when assessed in a leave-one-subject-out cross-validation
setting. Moreover, sparse coding of the same architecture with an increasing compression rate
from 1 to 7 resulted in only a small decrease in classification accuracy (from 95.7% to 94.5%),
obtained by random (subject-agnostic) cross-validation. A more thorough assessment on a larger
dataset, including recordings of subjects with multiple respiratory disease manifestations, is still
required in order to better evaluate the method’s generalization ability and robustness.

Keywords: deep sparse coding; convolutional neural networks; signal analysis; respiratory diseases;
medication adherence

1. Introduction

The respiratory system is a vital structure vulnerable to airborne infection and injury.
Respiratory diseases are leading causes of death and disability across all ages in the world.
Specifically, nearly 65 million people suffer from chronic obstructive pulmonary disease (COPD) and
3 million die from it each year. About 334 million people suffer from asthma, the most common
chronic disease of childhood, affecting 14% of all children globally [1]. The effective management
of chronic constrictive pulmonary conditions lies, mainly, in the proper and timely administration
of medication. However, as recently reported [2], a large proportion of patients use their inhalers
incorrectly. Studies have shown that possible technique errors can have an adverse impact on clinical
outcome for users of inhaler medication [3,4]. Incorrect inhaler usage and poor adherence were found
to be associated with high COPD assessment test scores [5], short durations of COPD, high durations
of hospitalization and high numbers of exacerbations.

Several methods have been introduced to monitor a patient’s adherence to medication. As a
series of studies indicate, effective medication adherence monitoring can be defined by successfully
identifying actions performed by the patient during inhaler usage. Several inhaler types are available
in the market, among which the pressurized metered dose inhalers and dry powder inhalers are the
most common. In any case, the development of a smart inhaler setup, that allows better monitoring
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and direct feedback to the user independently of the drug type, is expected to lead to more efficient
drug delivery, thereby becoming the main product used by patients.

The pMDI usage technique is characterized as successful, if a certain sequence of actions is
followed [6]. Appropriate audio based monitoring could help patients synchronize their breath with
drug activation and remind them to keep their breath after inhalation, for a sufficient amount of
time. Several methodologies that engage electronic monitoring of medication adherence, have been
introduced in the past two decades [7], aiming to alter patient behavioural patterns [8,9]. In the field of
inhaler based health monitoring devices, a recent comprehensive review by Kikidis et al. [10] provides
a comparative analysis of several research and commercial attempts in this direction. Cloud based
self-management platforms and sensor networks constitute the next step towards effective medication
adherence and self-management of respiratory conditions [11,12].

In all cases, it is crucial to successfully identify audio events related to medication adherence. In this
direction, several approaches have been proposed in the literature, presenting mainly decision trees or
other state of the art classifiers, applied on a series of extracted features. However, the aforementioned
methodologies come with high computational cost, limiting the applicability of monitoring medication
adherence to offline processing or online complex distributed cloud-based architectures, that are able
to handle the need for resources. Therefore, the demand for computationally fast, yet highly accurate,
classification techniques still remains.

Motivated by the aforementioned open issues, this study lies on the same track as several
data-driven approaches [13–15], presenting a method that recognizes the respiration and drug delivery
phases on acoustic signals derived from pMDI usage. The main focus of this work is the investigation
of acceleration aspects, namely filter pruning, scalar pruning and vector quantization, applied on
convolutional neural networks (CNNs). The adaptation of such strategies allows to reduce computational
complexity and improve performance and energy efficiency. The CNNs are trained to differentiate four
audio events, namely, drug actuation, inhalation, exhalation and other sounds. Five different CNN
architectures are investigated and the classification accuracy is examined as a function of compression
rate. More specifically, the benefits of this work can be summarized in the following points:

• The presented methods are applied directly on the time-domain avoiding computationally
expensive feature extraction techniques.

• The overall classification accuracy for the proposed CNN architecture is high (95.7%–98%),
for both within and across subjects cross-validation schemes.

• A compression rate by a factor of 7.0 can be achieved with accuracy dropping only by 1%.
• The investigated deep sparse coding oriented strategies (Implementation of this work and a part

of the dataset used to validate it, is available online at: https://github.com/vntalianis/Deep-
sparse-coding-for-real-time-sensing-of-medication-adherence), namely filter pruning and vector
quantization, allow compliance with real-time requirements and open the path for adaptation of
the inhaler device into Internet of Things (IoT).

The rest of the paper is organized as follows: Section 2 presents an extensive overview on
relevant literature, Section 3 describes the CNN architectures and our methodology to enforce sparsity,
Section 4 presents the experimental setup and the evaluation study and, finally, Section 5 provides
future directions on the analysis of inhaler sounds.

2. Related Work

This section examines classical and data-driven approaches on classification of inhaler sounds.
Early methodologies encompass electronic or mechanical meters integrated into the device,
activated with the drug delivery button. Howard et al. [16] reported the existence of several such
devices, able to record the time of each drug actuation, or the total number of them. The use of audio
analysis came up later as a method, which can characterize the quality of inhaler usage, while, also,
monitoring the timings of each audio event. The classical audio analysis involves transformation
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of the time-domain into a set of features, mainly, in the frequency domain, including Spectrogram,
Mel-Frequency Ceptral Coefficients (MFCCs), Cepstrogram, Zero-Crossing Rate (ZCR), Power Spectral
Density (PSD) and Continuous Wavelet Transform (CWT). Subsequently, audio-based evaluation
employs the extracted features via classification approaches to locate and identify medication-related
audio events.

Holmes et al. [17–19] designed decision trees in the scientific sub-field of blister detection and
respiratory sound classification. This study includes detection of drug activation, breath detection and
inhalation-exhalation differentiation and provides feedback, regarding to patient adherence. As a first
step, the audio signal is segmented into frames of specific length, with overlaps. The mean power
spectral density is calculated for defined frequencies and is used as a threshold to differentiate between
blister and non-blister sounds. Also, the maximum normalized amplitude and the time duration are used
to remove false positive sounds. The algorithm, then, examines the mean PSD, in specific frequency
band, as the last threshold for blister sounds categorization. At the second stage, this algorithmic
approach detects breath sounds. In this case, the audio signal is first filtered to remove high frequency
components above a threshold, using a low-pass type I 6th order Chebyshev filter. Many window
techniques exist for the design of Finite Impulse Response (FIR) and Infinite Impulse Response (IIR)
Filters [20–22], such as Hamming, Hanning and Blackman for FIR Filter design, and Butterworth and
Chebyshev for IIR Filters.

After signal segmentation, one set of 12 MFCCs is calculated for each frame, forming a short-time
Cepstrogram of the signal. Ruinskiy et al. [23] perform singular value decomposition to capture
the most important characteristics of breath sounds obtained from MFCC calculations. They set an
adaptive threshold, according to the lowest singular vector in the inhaler recording, and mark the
singular vectors above this threshold as potential breath events. For the last threshold, at this stage,
the ZCR is extracted for each frame. Finally, the algorithms find the differentiation between inhalations
and exhalations. The mean PSD of identified breaths is calculated for a determined frequency band
and is used as a threshold for classification. Then, the standard deviation of the ZCR was found to be
higher for inhalations in comparison to exhalations and a value is set, from empirical observations.

Taylor et al. [24,25] used the CWT to identify pMDI actuations, in order to quantitatively
assess the inhaler technique, focusing only on the detection of inhaler actuation sounds. As a step
forward data-driven approaches learn by example from features and distributions found in the data.
Taylor et al. [26] compared Quadratic Discriminant Analysis (QDA) and Artificial Neural Network
(ANN) based classifiers using MFCC, Linear Predictive Coding, ZCR and CWT features.

Nousias et al. [13,27] compared feature selection and classification strategies using Spectrogram,
Cepstrogram and MFCC with supervised classifiers, such as Random Forest (RF), ADABoost and
Support Vector Machines (SVMs), demonstrating high classification accuracy.

Pettas et al. [15] employed a deep learning based approach using the Spectrogram as a tool to
develop a classifier of inhaler sounds. The Spectrogram is swept across the temporal dimension with
a sliding window with length w = 15 moving at a step size equal to a single window. The features
of each sliding window are inserted into a recurrent neural network with long-short memory units
(LSTM), demonstrating high performance in transitional states where mixture of classes appear.

Ntalianis et al. [14] employed five convolutional networks, applied directly in the time-domain,
and showed that CNNs can automatically perform feature extraction and classification of audio
samples with much lower computational complexity, at similar or higher classification accuracy than
classical approaches. Each model uses a vector of n = 4000 samples reshaped in a two-dimensional array
(250 × 16), that is introduced in the deep CNN. Evaluation was limited to five-fold cross-validation in
a subject-agnostic way, in which different samples from the same subject might be part of the training
and test set, respectively.

This study aims to build upon previous CNN-based approaches for the identification of inhaler
events, by investigating also acceleration strategies. CNNs have been established as a reliable
state-of-the-art, data-driven approach for biosignal classification [28–32]. The adaptation of acceleration
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approaches, including filter pruning, scalar pruning and vector quantization, aims to lead to lower
computational complexity and higher energy efficiency, facilitating IoT targeted implementations.
In Section 4 we present the classification accuracy of the aforementioned studies, aiming to compare
results of previous studies with our current approach.

3. Monitoring Medication Adherence through Deep Sparse Convolutional Coding

This section provides a comprehensive analysis of the deep architecture employed to perform the
inhaler audio classification. Based on a main convolutional neural network architecture, five different
variations are being investigated. Furthermore, compression and acceleration strategies, namely filter
and scalar values pruning and vector quantization, are also being analyzed.

3.1. Convolutional Neural Network Architecture

The CNN architecture, presented in Figure 1, consists of three convolutional layers with a
max-pooling layer, a dropout function [33] and four fully connected layers. Using this structure,
five different CNNs were developed as presented in Table 1. For the convolutional kernels the stride is
set equal to one with zero padding, in order to keep the shape of the output of each filter constant and
equal to its input’s dimensionality. Every model utilizes the same sequence of layers, but with a different
number of filters in the convolutional layers, or a different number of neurons in the fully connected
layers, or different activation functions. Specifically, Table 1 presents the stacked layers for each model,
the values of dropout layers, the number of filters in each convolutional layer, the number of neurons in
fully connected layers and the activation function. In the fifth model, we select Exponential Linear Unit
(ELU), due to the fact that the recordings contain both negative and positive values and ELU, in contrast
to ReLu, does not zero out negative values. As far as the training parameters is concerned, the learning
rate is set to 0.001, the batch size is equal to 100 and the categorical cross entropy loss function is
employed. Training is executed through 5-fold cross validation with 20 epochs and Adam optimizer.
In order to train the five CNN architectures, raw recordings in the time domain are directly used as
input. The initial audio files contain multiple events, namely inhalation, exhalation, drug delivery and
environmental noise. The final stage of preprocessing contains the formation of sound samples of 0.5 s
duration (i.e., 4000 samples) collected with a sliding step of 500 samples. Only samples with unique
classes are retained in the dataset. For a given convolutional layer, the previous layer’s feature maps are
convolved with learnable kernels and passed through the activation function to form the output feature
map described by Equation (1).

x�j = f

⎛
⎝ ∑

i∈Mj

(
x�−1

i ∗ k�
ij

)
+ b�j

⎞
⎠ , (1)

where Mj represents a selection of input feature maps. The output is fed to a set of four dense layers.
The aforementioned architectures were chosen experimentally to keep the classification accuracy high
and, simultaneously, the computational complexity as low as possible. We also experimented with
both shallower and deeper architectures, but did not observe any further improvement.
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Table 1. Convolutional neural network (CNN) architecture variations for tested models.

Layers Layer Parameters Model 1 Model 2 Model 3 Model 4 Model 5

Convolutional Layer

Filters 16 16 8 8 16

Kernel Size 4 × 4 4 × 4 4 × 4 4 × 4 4 × 4

Activation Function ReLu ReLu ReLu ReLu ELU

Max Pooling Kernel Size 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

Dropout 0.2 0.2 0.2 0.2 0.2

Convolutional Layer

Filters 16 16 8 8 16

Kernel Size 5 × 5 5 × 5 5 × 5 5 × 5 5 × 5

Activation Function ReLu ReLu ReLu ReLu ELU

Max Pooling Kernel Size 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

Dropout 0.1 0.1 0.1 0.1 0.1

Convolutional Layer

Filters 16 16 8 8 16

Kernel Size 6 × 6 6 × 6 6 × 6 6 × 6 6 × 6

Activation Function ReLu ReLu ReLu ReLu ELU

Max Pooling Kernel Size 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2

Dense
Neurons 64 64 64 64 64

Activation Function ReLu ReLu ReLu ReLu ELU

Dense
Neurons 128 32 32 128 128

Activation Function ReLu ReLu ReLu ReLu ELU

Dense
Neurons 64 16 16 64 64

Activation Function ReLu ReLu ReLu ReLu ELU

Dense
Neurons 4 4 4 4 4

Activation Function ReLu ReLu ReLu ReLu ELU

Test Loss 0.2413 0.2459 0.1891 0.2040 0.2145

Test Accuracy 0.9440 0.9397 0.9483 0.9586 0.9570

For the implementation we used NumPy and SciPy, mainly for data mining and numerical
computation tasks, as they are the fundamental packages to define, optimize and evaluate mathematical
expressions, for scientific computing. These libraries also optimize the utilization of GPU and CPU,
making the performance of data-intensive computation even faster. We developed this approach using
Scikit-learn, which is built on top of the two aforementioned libraries and, also, using Tensorflow,
which focuses on building a system of multi-layered nodes (multi-layered nodes system with high-level
data structures). That allowed us to train and run the convolutional networks on either CPU or GPU.
We, furthermore, used Pandas, which focuses on data manipulation and analysis (grouping, combining,
filtering, etc.) and Keras, which is a high-level neural networks API, running on top of Tensorflow.
Lastly, we used Matplotlib, as a standard Python library for data visualization (2D plots and graphs).
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Figure 1. CNN Architecture.

3.2. Filter Pruning

In order to reduce the computational requirements of the developed CNN architectures,
we performed filter pruning as described in Reference [34], aiming to remove the less significant
kernels in the convolutional layers, without deteriorating performance. In particular, we evaluate the
contribution of each kernel, at the output of the layer, by calculating the sum of its absolute weights.
For a convolutional layer with an input feature map of

xi ∈ �hi×wi×ni , (2)

where hi, wi, ni are the height, the width and the number of channels of the input respectively,
the output feature response has a shape of

xi+1 ∈ �hi+1×wi+1×ji+1 , (3)

after applying ji+1 filters with a kernel matrix k ∈ �k1×k2×ni . The filter pruning process can be
summarized in the following steps:

1. Compute the sum sj = ∑ni
l=1 ∑ k of the absolute values of the weights in each filter.

2. Sort sj and remove n filters with the lowest sum sj.
3. The rest of the weights remain unchanged.

For the filter pruning operation, two different approaches can be employed. Each layer can be
pruned independently from others, referred to as independent pruning, or by ignoring the removed
filters, also referred to as greedy pruning. The removal of a filter in the i-th layer leads to the removal
of the corresponding feature map, which in turn leads to the removal of the kernels that belong to the
i + 1th layer and are applied on the aforementioned feature map. So, with independent pruning we
sort the filters by taking into consideration the sum of the weights in these kernels. On the other hand,
greedy pruning does not include them in the computation of the sum. Note that both approaches
produce a weight matrix with the same dimensions and differ only on the filters chosen to be pruned.
Additionally, in order to affect the accuracy of the prediction model as less as possible, two training
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strategies can be followed: (1) Prune once and retrain. This approach executes the pruning procedure
first and only after all layers are processed the classifier is retrained so that its classification accuracy
reaches its initial value. (2) Iterative pruning and retraining. In contrast to the first approach, with this
method, when a layer is pruned, the rest of the network is immediately retrained, before the following
layer is pruned. In this way, we let the weights of the model adjust to the changes occurred in previous
layers, thus retaining its classification accuracy.

3.3. Pruning Scalar Values

The parameters kk1,k2,ni
of the different filters within each layer of a CNN are distributed in a

range of values, with standard deviation σ. Weights very close to zero have an almost negligible
contribution to a neuron’s activation. To this end, a threshold � ∈ [�min, �max] is defined so that

kk1,k2,ni
= 0 i f |kk1,k2,ni

| < � · σ, (4)

�min and �max define the range of values during hyperparameter optimization and were set
experimentally to �min = 0.1 and �max = 1.0. It is important to clarify that we employ the standard
deviation in order to control the maximum number of parameters to be pruned. Finally, this method
was evaluated by directly carrying out pruning on every layer of the classifier and by retraining the
layers that follow the pruned one.

3.4. Vector Quantization

3.4.1. Scalar Quantization

One way to decrease the number of parameters in a layer is to perform scalar quantization to
them [35]. For example, for a fully connected layer with weight matrix W ∈ �m×n, we can unfold the
matrix so that W ∈ �1×m·n and perform k-means clustering as described by the following formula:

min
m·n
∑

i

Ncl

∑
j

∥∥wi − cj
∥∥2

2 . (5)

The codebook can be extracted from the Ncl cluster centers cj produced by the k-means algorithm.
The initial parameters are then assigned with cluster indexes to map them to the closest center.
Consequently, we can reconstruct the initial weight matrix W as:

Ŵij = cz (6)

where
min

z

∥∥Wij − cz
∥∥2

2 . (7)

In respect to the convolutional layers, first, we have to decide on which dimension the k-means
algorithm is going to be applied [36]. In the i + 1 convolutional layer, the weight matrix is a
4-dimensional tensor W ∈ �k1×k2×ni×ni+1 , where ni is the number of channels of the input feature map
and ni+1 the number of channels of the output feature map. It is preferable to perform k-means along
the channels of the output feature maps in order to reduce the computational requirements by reusing
pre-computed inner products.

3.4.2. Product Quantization

The main concept of product quantization is to split the vector space into multiple sub-spaces
and perform quantization in each subspace separately. In this way, we are able to better exploit
the redundancy in each subspace [35]. In particular, let a weight matrix of a fully connected layer
W ∈ �m×n. We partition it column-wise so that:
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W = [W1, W2, ..., Ws], (8)

where Wi ∈ �m×(n/s). We apply k-means clustering in each submatrix Wi:

min
n/s

∑
z

Ncl

∑
j

∥∥∥wi
z − ci

j

∥∥∥2

2
, (9)

where wi
z represents the z-th column of the sub-matrix Wi and ci

j the column of the sub-codebook

Ci ∈ �m×Ncl . The reconstruction process is performed based on the assigned cluster and the codebook
for every sub-vector wi

z. So, the reconstructed matrix is:

Ŵ = [Ŵ1, Ŵ2, ..., Ŵs], where (10)

ŵi
j = ci

j, where min
j

∥∥∥wi
z − ci

j

∥∥∥2

2
. (11)

It is important to highlight, that product quantization can be performed to either the x-axis or the
y-axis of W, but most importantly the partitioning parameter s must divide n.

Regarding the convolutional layers, following the same idea as in scalar quantization, we split the
initial space vector into sub-spaces along the channel axis and we perform k-means at the same dimension.
Let a convolutional layer have n channels. Then, its weight matrix has a shape of W ∈ �k×k×c×n.
Introducing the splitting parameter s, each sub-space has a shape of Wl ∈ �k1×k2×ni×(ni+1/s).

3.5. Compression Rate and Computational Complexity

The objectives of the aforementioned algorithms are to reduce the storage requirements as well as
the computational complexity of the classifier. This section provides an insight of the computation of
compression and theoretical speed up that pruning and quantization achieve. As mentioned above,
pruning causes sparsity by forcing weights to become zero. Consequently, these weights are not stored
in memory achieving a compression rate, described by the following expression. This equation is used
to compute the extent of the compression for a model when filter pruning is applied as well.

compression rate =
number o f parameters in not pruned model

number o f non zero parameters a f ter pruning
(12)

On the other hand, quantizing with k-means clustering results in a more complex expression for
the compression rate, because it depends on the magnitude of both codebook and the index matrix.
In particular, for scalar quantization in fully connected layer, the codebook contains Ncl values and
only log2Ncl bits are necessary to encode the centers. Thus, if 32-bit (single-precision) representation is
used for the calculations, the total amount of bits required to store is 32 · k + m · n · log2 (Ncl) and the
compression rate that this method achieves, per layer, is:

32 × m × n
32 × k + m × n × log2 (Ncl)

. (13)

However, the burden of memory requirements due to the codebook is considered negligible,
comparing to the requirements of index matrix. Therefore the compression rate can be approximated
with the simpler formula [35]:

32/log2Ncl (14)

In case of the convolutional layers the k-means algorithm is performed on the channels axis.
Therefore the number of the weights required to be stored is:

new_weights = k1 × k2 × ni × Ncl , (15)
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instead of the initial, which is:

old_weights = k1 × k2 × ni × ni+1 (16)

and the compression rate can be computed by the following formula:

32 × old_weights

32 × new_weights+ ch × log2(Ncl)
. (17)

Note that the index matrix contains only as many positions as the number of channels in the
convolutional layer. This lies on the fact that by performing clustering along the channels axis,
we produce filters with the same weight values, thus we only need to map the initial filters to the new
ones. Finally, the compression rate that product quantization approach presented in Section 3.4.2 can
achieve, per layer, in the fully connected layer, is calculated by:

32 × m × n
32 × m × Ncl × s + n × log2(Ncl × s)

. (18)

For this method both the cluster indexes and the codebook for each sub-vector should be stored.
Regarding the convolutional layers, performing the k-means algorithm with Ncl clusters along the
channels the compression rate is calculated by:

32 × k1 × k2 × ni × ni+1

32 × k1 × k2 × ni × Ncl × s + ni+1 × log2Ncl
. (19)

Next, we present the gain in floating point operations required to perform the classification task,
when the aforementioned techniques are employed. Among these methods, pruning scalar values
and scalar quantization on fully connected layer do not offer any computational benefit. The zeroed
out weights are scattered inside the weight matrix of each layer and, therefore, they do not form a
structural pattern. For example, this method does not guarantee that all zeroed out weights belong
to a certain kernel or to a certain neuron. On the other hand, with filter pruning, we remove whole
filters, reducing efficiently the computational burden. In a convolutional layer the amount of necessary
operations depends on the dimensionality of the input feature map and the number of the weights in
the layer. The total number of floating point operations in a convolutional layer is:

ni+1 × ni × k1 × k2 × hi+1 × wi+1, (20)

where ni is the number of channels of the input feature map, k the dimensionality of the kernel,
ni+1 the channels of the output feature map and hi+1, wi+1 the height and the width of the layer’s
output, respectively. The product of ni+1 · ni · k1 · k2 determines the amount of the weights that the
layer contains.

The pruning of a single filter saves ni · k1 · k2 · hi+1 · wi+1 operations from the current layer and
ni+2 · k1 · k2 · hi+2 · wi+2 from the next layer. These additional operations can be avoided, because the
certain kernels of the next convolutional layer are also removed. Specifically, the aforementioned
kernels are applied on pruned feature maps.

Regarding the fully connected layer, the amount of floating point operations (flops) can be directly
calculated from the dimensions of the weight matrix of a layer. For the weights matrix W ∈ �m×n,
the number of flops is calculated as m · n. The value of m corresponds to the dimension of the
layer’s input and n to the dimension of its output, which is equal to the number of neurons in each
layer. In order to reduce the number of flops in a fully connected layer, we should remove neurons,
decreasing the dimensionality of the layer’s output.

Performing scalar quantization in convolutional layers with Ncl clusters along the channel axis,
we need to execute Ncl · ni · k1 · k2 · hi+1 · wi+1 operations per layer which results in a ratio of:

211



Sensors 2020, 20, 2363

Ncl × ni × k1 × k2 × hi+1 × wi+1

ni+1 × ni × k1 × k2 × hi+1 × wi+1
(21)

and by introducing the splitting parameter s to perform product quantization, the previous ratio becomes:

Ncl × s × ni × k1 × k2 × hi+1 × wi+1

ni+1 × ni × k1 × k2 × hi+1 × wi+1
. (22)

Finally, performing product quantization on fully connected layers with Ncl clusters and s
sub-spaces, the ratio of the flops required after quantization, to the flops required before quantization,
is calculated as

m × Ncl × s
m × n

=
Ncl × s

n
. (23)

4. Experimental Procedure And Evaluation

4.1. Data Acquisition

Audio recordings from pMDI use were received, using a standard checklist of steps, recommended
by National Institute of Health (NIH) guidelines, as it was essential to ensure that the actuation sounds
were accurately recorded. The data were acquired from three subjects, between 28 and 34 years old,
who all used the same inhaler device loaded with placebo canisters. The recordings were performed
in an acoustically controlled indoor environment, free of ambient noise, at the University of Patras,
to reflect possible use in real-life conditions and to ensure accurate data acquisition. The study
supervisors were responsible for inhaler actuation sounds and respiratory sounds and followed a
protocol, that defined all the essential steps of pMDI inhalation technique. Prior training of the
participants, on this procedure, allowed to reduce the experimental variability and increase the
consistency of action sequences. Each participant annotated in written form the onset and duration of
each respiratory phase, during the whole experiment. Also, the annotation of the different actions was
subsequently verified and completed by a trained researcher and based on visual inspection of the
acquired temporal signal. In total, 360 audio files were recorded with a duration of twelve seconds
each [13–15].

The acoustics of inhaler use were recorded as mono WAV files, at a sampling rate of 8000 Hz.
After quantization, the signal had a resolution (bit depth) of 16 bits/sample. Throughout the processing
of the audio data, no further quantization on the data took place, except the quantization of the CNN
weights into clusters of similar values of the convolutional and fully connected layer. The device for
the recordings is presented in Reference [13]. Figure 2 depicts an overview of the processing pipeline.
The sensor’s characteristics are 105 dB-SPL sensitivity and 20 Hz–20 kHz bandwidth. Each recording
contains a full inhaler usage case. The first person (male) submitted 240 audio files, the second person
(male) 70 audio files and the third subject (female) 50 audio files. Each subject, at first, breathes out and
after bringing the device to their mouth he/she starts to inhale. Simultaneously, the subject presses the
top of the inhaler to release the medication and continues to inhale until having taken a full breath.
Then, breath holding follows for about 10 s and, finally, exhaling.

In order to train and test the proposed classifier, the audio recordings were segmented into inhaler
activation, exhalation, inhalation, and noise (referring to environmental or other sounds) by a human
expert using a graphical annotation tool [13]. A user interface visualizes the audio samples while
the user selects parts of the audio files and assigns a class. The annotated part is stored in a separate
audio file. A full audio recording timeseries example is presented in Figure 3, colored according to the
annotated events. Any signal part that has not been annotated, was considered as noise, during the
stage of validation. This dataset has the potential to allow in-depth analysis of patterns on sound
classification and data analysis of inhaler use in clinical trial settings.
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Figure 2. Overview of the processing pipeline.

Figure 3. Annotated audio file of 12 s. Red color corresponds to inhalation, cyan to exhalation, green to
drug activation and black to other sounds.

Each sound sample has a total duration of 0.5 s, sampled with 8 kHz sampling rate and 16-bit
depth. The audio files used for training and testing were loaded through appropriate libraries in a
vector of 4000 × 1 dimension and, then, reshaping is performed in order to employ two-dimensional
convolutions. In particular, the first 16 samples are placed in the first row of the matrix, the next
16 samples in the second, and so on, until a 250 × 16 matrix is constructed. An example of the
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reshaping procedure is given in Figure 4, while Figure 5 visualizes examples of sounds per class after
this reshaping procedure.

Figure 4. Illustration of reshaping of a vector into a two-dimensional matrix.

(a) Sound of drug class after reshaping (b) Sound of exhale class after reshaping

(c) Sound of inhale class after reshaping (d) Sound of noise class after reshaping

Figure 5. Visualization of the segmented audio files for each respiratory phase after the reshaping procedure.

4.2. Evaluation Schemes

The training and assessment of the five CNN models is performed in three different
cross-validation settings. Firstly, we consider the Multi Subject modeling approach. In this case,
the recordings of all three subjects are used to form a large dataset, which is divided in five equal parts
used to perform five-fold cross-validation, thereby allowing different samples from the same subject
to be used in training and test set, respectively. This validation scheme was followed in previous
work [14] and thus performed, also, here for comparison purposes.
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The second case includes the Single Subject setting, in which the performance of the classifier is
validated through training and testing, within each subject’s recordings. Specifically, the recordings of
each subject are split in five equal parts, to perform cross-validation. The accuracy is assessed for each
subject separately and, then, the overall performance of the classifier is calculated by averaging the
three individual results.

Finally, Leave-One-Subject-Out (LOSO) method is employed. With this approach we use the
recordings of two subjects for training and the recordings of the third subject for testing. This procedure
is completed, when all subjects have been used for testing, and the accuracy is averaged to obtain the
overall performance of the classifiers.

4.3. Results

4.3.1. Comparison with Relevant Previous Work

In order to better assess the contribution of the proposed approach, we first summarize in Table 2
the classification performance of previous state of the art algorithms that were presented in Section 2.
In more details, Holmes et al. [17] presented, in 2012, a method that differentiates blister and non-blister
events with an accuracy of 89.0%. A year later, Holmes et al. [18,19], also, developed an algorithm that
recognizes blister events and breath events (with an accuracy of 92.1%) and separates inhalations from
exhalations (with an accuracy of more than 90%). Later, Taylor et al. developed two main algorithms
for blister detection [26,37] based on Quadratic Discriminant Analysis and ANN, and achieved an
accuracy of 88.2% and 65.6%, respectively. Nousias et al. in Reference [13] presented a comparative
study between Random Forest, ADABoost, Support Vector Machines and Gaussian Mixture Models,
reaching the conclusion that RF and GMM yield a 97% to 98% classification accuracy on the examined
dataset, when utilizing MFCC, Spectrogram and Cepstrogram features.

Pettas et. al [15] developed a recurrent neural network with long short term memory (LSTM),
which was tested on the same dataset with this study and using the same modeling schemes, that is,
SingleSubj, MultiSubj and LOSO. For the subject-specific modeling case the overall prediction accuracy
was 94.75%, with higher accuracy in the prediction of breathing sounds (98%). Lower accuracy is
demonstrated in drug administration and environmental sounds. Much higher accuracy is reported
for MultiSubj modeling, where the training samples are obtained from all subjects and shuffled
across time. It yielded a drug administration prediction accuracy of 93%, but a lower prediction
accuracy of environmental sounds (79%), demonstrating a total of 92.76% accuracy over all cases.
Furthermore, the LOSO validation demonstrated similar results, with the SingleSubj case. The high
classification accuracy obtained by LSTM-based deep neural networks, is also in agreement with
other studies [13,19]. Specifically, the recognition of breathing sounds is more accurate than the drug
administration phase, which reaches a value of 88%, while the overall accuracy is 93.75%. In order
to compare our approach with previous studies, we followed the same validation strategies for each
different convolutional neural network architecture and summarize the comparative results in Table 3.

From Tables 2 and 3, it is apparent that the classification accuracy achieved by our approach
does not exceed the performance of the relevant state of the art approaches. In fact, our approach
performs, similarly, with the methods developed by Holmes et al. [17,18], Taylor et al. [24] and
Pettas et al. [15], but the approach of Nousias et al. [13] outperforms our algorithm, mainly, for the
drug and environmental noise classes. However, the utilization of a CNN architecture in the time
domain allows for an implicit signal representation, that circumvents the need of additional feature
extraction (e.g., in the spectral domain) and, thereby, results in significantly lower execution times.
We compare the computational cost of Model 5 of our method with the Random Forest algorithm
presented in Reference [13], both executed in the same machine (Intel(R) Core(TM) i5-5250U CPU @
2.7 GHz). The results are summarized in Figure 6.
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Table 2. State of the Art with multi-subject validation setting.

Accuracy per Class (%)
Overall Accuracy (%)

Drug Inhale Exhale Noise

Holmes et al. (2012) 89.0 - - - 89.0

Holmes et al. (2013-14) 92.1 91.7 93.7 - 92.5

Taylor et al. (2017) QDA 88.2 - - - 88.2

ANN 65.6 - - - 65.6

Nousias et al. (2018)

SVM

MFCC 97.5 97.7 96.1 96.7 97.0

SPECT 97.5 94.9 58.9 95.4 86.6

CEPST 99.4 98.6 98.2 98.8 98.7

RF

MFCC 97.1 96.7 95.9 95.1 96.2

SPECT 97.7 98.0 97.0 96.5 97.3

CEPST 99.0 98.2 97.4 96.5 97.7

ADA

MFCC 97.5 96.9 96.8 93.6 96.2

SPECT 98.8 98.4 97.0 97.9 98.0

CEPST 99.2 97.5 97.4 97.9 98.0

GMM

MFCC 96.7 97.7 96.1 96.3 96.7

SPECT 99.2 98.2 93.3 88.4 94.8

CEPST 99.4 98.6 99.2 96.9 98.5

Proposed Approach

Model 1 88.4 99.4 92.2 85.7 94.4

Model 2 83.9 99.1 97.5 81.9 94.0

Model 3 86.4 98.9 94.5 80.2 94.8

Model 4 83.6 98.7 96.2 83.4 95.9

Model 5 86.7 97.9 98.3 85.5 95.7

Table 3. State of the Art with all validation settings.

Accuracy per Class (%)
Overall Accuracy (%)

Drug Inhale Exhale Noise

Pettas et al. (2019)
Single Subject 83.0 98.0 98.0 87.0 94.8

Multi Subject 93.0 96.0 98.0 79.0 92.8

LOSO 88.0 98.0 96.0 86.0 93.8

Proposed Approach

Model 1

Single Subject 71.5 99.3 98.1 93.1 97.4

Multi Subject 88.4 99.4 92.2 85.7 94.4

LOSO 100.0 96.3 98.8 - 93.2

Model 2

Single Subject 76.7 99.7 96.6 80.9 97.6

Multi Subject 83.9 99.1 97.5 81.9 94.0

LOSO 100.0 93.6 95.4 - 83.4

Model 3

Single Subject 65.3 99.6 98.9 84.2 97.5

Multi Subject 86.4 98.9 94.5 80.2 94.8

LOSO 100.0 92.2 89.0 - 98.0

Model 4

Single Subject 68.4 99.6 99.0 84.9 98.2

Multi Subject 83.6 98.7 96.2 83.4 95.9

LOSO 85.7 82.6 99.2 - 86.0

Model 5

Single Subject 85.0 99.5 99.5 95.0 98.0

Multi Subject 86.7 97.9 98.3 85.5 95.7

LOSO 100.0 92.6 97.9 - 96.2
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Figure 6. Comparison of the computational cost of our approach and other studies. Boxplots from left
to right: RF with multiple features (mean time: 7.5 s), RF with only STFT (mean time: 0.6 s) and Model
5 of our CNN (mean time: 0.4 s).

This figure highlights the gain in computational speed up of our approach, compared to the
time consuming Random Forest algorithm with feature extraction. Specifically, Figure 6 shows that
classification by RF, using multiple features, requires more than 7 s, whereas the CNN Model 5 requires
less than half a second. Finally, it is important to note that our approach is faster even when only STFT
is extracted and used as input to the Random Forest.

4.3.2. Pruning Scalar Weights

In order to evaluate the performance of this algorithm, we present the classification accuracy
as well as the compression rate, when no retraining is applied, in Table 4. The parameter l,
which determines the threshold for pruning, varies from 0.1 to 1.0 with a step of 0.1. It is clear
that when increasing the parameter l and consequently the threshold for pruning, the accuracy of the
classifier decays. Among the five models, more robust to changes appears to be Models 1, 4 and 5,
because they retain their performance above 90%, even when the parameter l is set to 0.8. On the other
hand, model 3 and 4 show the worst performance dropping below 90% for intermediate values of l.

The results, presented in Table 5, corresponding to the approach that employs the retraining
technique, show that the classifiers are able to adapt to the changes made in the previous layers,
retaining their high accuracy, independently of the threshold defined by l and σ. It is worth mentioning
that with this approach the lowest classification accuracy is 93% achieved by model 3, whereas model 5
reaches up to 96%, improving its initial performance. Additionally, we are able to compress the
architectures two times more than the previous approach, where retraining process is not included.
This occurs because retraining the network results in larger standard deviation of the weights in each
layer, but with their mean value almost equal to zero. Thus, more weights will be zeroed out.

It should be highlighted that pruning scalar values can only reduce the memory requirements
since there are fewer non zero weights. However, it does not perform structural pruning, meaning that
it is uncertain if the pruned parameters belong to a particular filter or a neuron and therefore it does
not improve the computational time.
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Table 4. Evaluation of the performance for the developed architectures with the method of pruning
scalar weights without retraining. Factor l corresponds to the percentage of the standard deviation
used to determine the threshold for pruning.

Factor l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Model 1

Loss 0.24 0.25 0.24 0.24 0.24 0.23 0.26 0.31 0.38 0.51

Accuracy (%) 94.83 94.14 93.97 93.97 93.80 93.97 93.45 91.91 90.01 87.60

Compression Rate 1.08 1.18 1.29 1.42 1.58 1.79 1.99 2.25 2.55 2.91

Model 2

Loss 0.24 0.26 0.28 0.33 0.60 0.69 1.54 0.98 0.97 1.34

Accuracy (%) 93.97 93.45 93.28 91.56 84.16 82.09 58.86 65.95 69.53 55.93

Compression Rate 1.08 1.19 1.31 1.45 1.63 1.84 2.10 2.40 2.77 3.19

Model 3

Loss 0.19 0.19 0.19 0.23 0.24 0.38 0.74 1.44 1.67 1.56

Accuracy (%) 94.83 94.83 94.32 93.11 92.95 87.77 74.69 56.45 51.80 43.02

Compression Rate 1.08 1.19 1.31 1.45 1.64 1.84 2.08 2.39 2.74 3.1712

Model 4

Loss 0.20 0.20 0.19 0.18 0.19 0.19 0.19 0.22 0.48 0.82

Accuracy (%) 95.69 95.69 95.69 95.52 95.18 95.18 95.00 93.97 85.71 75.21

Compression Rate 1.08 1.17 1.28 1.41 1.56 1.74 1.94 2.17 2.45 2.78

Model 5

Loss 0.21 0.21 0.21 0.20 0.20 0.21 0.21 0.39 0.31 0.64

Accuracy (%) 95.70 95.87 95.87 95.87 95.53 95.01 94.50 88.83 90.20 79.89

Compression Rate 1.08 1.17 1.29 1.42 1.57 1.76 1.98 2.24 2.54 2.89

Table 5. Evaluation of the performance for the developed architectures with the method of pruning
scalar weights with retraining. Factor l corresponds to the portion of standard deviation used to
determine the threshold for pruning.

Factor l 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Model 1

Loss 0.54 0.53 0.66 0.60 0.65 0.53 0.58 0.48 0.50 0.56

Accuracy (%) 94.32 95.35 94.32 95.00 94.83 94.66 95.18 94.83 95.52 95.00

Compression Rate 1.09 1.20 1.35 1.55 1.81 1.90 2.48 2.84 3.26 3.72

Model 2

Loss 0.51 0.57 0.53 0.52 0.48 0.64 0.61 0.54 0.50 0.51

Accuracy (%) 93.80 94.32 94.14 94.66 94.49 94.32 94.66 95.00 95.18 94.49

Compression Rate 1.09 1.22 1.38 1.62 1.74 2.35 2.81 3.28 3.74 4.28

Model 3

Loss 0.39 0.53 0.55 0.56 0.49 0.40 0.45 0.44 0.43 0.41

Accuracy (%) 94.66 94.83 94.14 93.63 94.83 93.80 94.14 93.45 93.45 93.97

Compression Rate 1.09 1.22 1.39 1.61 1.90 2.00 2.59 3.00 3.47 3.92

Model 4

Loss 0.44 0.52 0.49 0.60 0.43 0.52 0.50 0.50 0.47 0.50

Accuracy (%) 95.52 95.18 95.35 95.18 94.83 94.83 95.00 95.00 95.18 94.83

Compression Rate 1.09 1.20 1.35 1.55 1.63 2.11 2.44 2.82 3.21 3.63

Model 5

Loss 0.48 0.55 0.54 0.49 0.51 0.24 0.34 0.40 0.38 0.39

Accuracy (%) 95.70 95.70 95.87 95.53 96.04 95.01 95.01 94.55 94.50 94.50

Compression Rate 1.09 1.20 1.32 1.52 1.78 5.24 5.56 6.03 6.60 7.14

4.3.3. Pruning Filters in Convolutional Layers

In this section, we present the results for the evaluation of all five developed models, after applying
the filter pruning method according to which the filters with the smallest magnitude are removed.
We tested the classification accuracy of the pre-trained models for multiple combinations of pruned
filters and, additionally, we investigated the effect of iterative pruning and retraining. For every model
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we chose to leave at least one filter at each convolutional layer. Thus, for Models 1, 2, 5 the number of
the removed filters varies from 1 to 15, whereas for Models 3, 4 it is between 1 and 7. Tables 6 and 7
present the performance of the models in terms of test loss and test accuracy, as well as results for the
compression and the theoretical speed up of each architecture.

Table 6. Results for filter pruning with no retraining.

Pruned Filters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Model 1

Loss 0.22 0.20 0.23 0.24 0.71 1.22 0.85 1.59 1.31 1.48 2.32 2.10 2.09 1.79 1.77

Accuracy (%) 93.97 93.80 93.97 93.97 78.66 59.38 66.95 44.92 49.05 49.40 37.52 46.99 46.30 24.44 16.87

Compression Rate 1.06 1.14 1.22 1.31 1.41 1.53 1.67 1.83 2.02 2.25 2.52 2.86 3.30 3.88 4.67

Flops 0.89 0.78 0.68 0.59 0.50 0.42 0.35 0.28 0.22 0.17 0.12 0.09 0.06 0.03 0.01

Model 2

Loss 0.24 0.25 0.67 2.58 1.35 0.85 1.08 0.66 0.80 0.88 1.13 1.24 1.28 1.46 1.47

Accuracy (%) 93.80 94.15 76.07 51.63 62.48 74.18 69.88 71.25 63.51 70.74 58.00 34.42 27.37 16.87 16.87

Compression Rate 1.08 1.16 1.26 1.38 1.52 1.68 1.89 2.13 2.44 2.84 3.39 4.17 5.38 7.51 12.17

Flops 0.89 0.78 0.68 0.59 0.50 0.42 0.35 0.28 0.22 0.17 0.12 0.08 0.05 0.03 0.01

Model 3

Loss 1.16 4.90 2.25 1.35 1.40 1.47 1.66 - - - - - - - -

Accuracy (%) 71.43 27.37 25.13 37.18 29.60 35.28 35.28 - - - - - - - -

Compression Rate 1.14 1.33 1.59 1.96 2.53 3.53 5.72 - - - - - - - -

Flops 0.79 0.61 0.44 0.31 0.19 0.10 0.04 - - - - - - - -

Model 4

Loss 0.22 0.61 2.78 9.03 1.64 8.08 1.68 - - - - - - - -

Accuracy (%) 94.15 80.38 57.38 16.87 21.69 16.87 16.87 - - - - - - - -

Compression Rate 1.10 1.23 1.38 1.56 1.80 2.12 2.55 - - - - - - - -

Flops 0.79 0.61 0.45 0.31 0.20 0.11 0.05 - - - - - - - -

Model 5

Loss 0.33 2.44 1.56 0.52 0.48 0.53 0.72 1.14 1.26 1.21 1.90 1.67 1.79 1.61 1.64

Accuracy (%) 93.64 66.95 67.99 78.83 79.69 78.83 71.60 47.50 42.68 40.79 35.97 35.46 34.08 35.46 35.46

Compression Rate 1.06 1.14 1.22 1.31 1.41 1.53 1.67 1.83 2.02 2.25 2.52 2.86 3.30 3.88 4.67

Flops 0.89 0.78 0.68 0.59 0.50 0.42 0.35 0.28 0.22 0.17 0.13 0.09 0.0568 0.03 0.01

Table 7. Results for filter pruning with iterative retraining.

Pruned Filters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Model 1

Loss 0.40 0.38 0.47 0.42 0.40 0.39 0.39 0.36 0.32 0.25 0.26 0.2704 0.29 0.20 0.25

Accuracy (%) 94.32 95.18 94.32 94.49 95.18 95.18 94.32 94.66 95.01 94.84 94.84 93.63 92.08 94.32 92.94

Compression Rate 1.06 1.14 1.22 1.31 1.41 1.53 1.67 1.83 2.02 2.25 2.52 2.86 3.30 3.88 4.67

Flops 0.89 0.78 0.68 0.59 0.50 0.42 0.35 0.28 0.22 0.17 0.13 0.09 0.06 0.03 0.01

Model 2

Loss 0.40 0.50 0.37 0.36 0.34 0.25 0.32 0.30 0.29 0.36 0.27 0.21 0.21 0.26 1.32

Accuracy (%) 93.97 93.46 95.18 93.80 94.15 95.52 94.15 94.66 93.97 93.46 94.66 94.66 93.97 93.11 35.46

Compression Rate 1.08 1.16 1.26 1.38 1.52 1.68 1.88 2.12 2.43 2.84 3.39 4.17 5.38 7.51 12.17

Flops 0.89 0.78 0.68 0.59 0.50 0.42 0.36 0.28 0.22 0.17 0.12 0.08 0.05 0.03 0.01

Model 3

Loss 0.33 0.32 0.25 0.26 0.20 0.18 0.27 - - - - - - - -

Accuracy (%) 93.63 94.15 94.84 93.29 93.80 94.15 91.05 - - - - - - - -

Compression Rate 1.14 1.33 1.59 1.96 2.53 3.53 5.72 - - - - - - - -

Flops 0.79 0.61 0.44 0.31 0.19 0.10 0.04 - - - - - - - -

Model 4

Loss 0.37 0.33 0.36 0.25 0.28 0.23 0.35 - - - - - - - -

Accuracy (%) 95.87 94.49 95.15 94.84 93.80 92.94 87.78 - - - - - - - -

Compression Rate 1.10 1.23 1.38 1.56 1.80 2.12 2.55 - - - - - - - -

Flops 0.79 0.61 0.45 0.31 0.20 0.11 0.05 - - - - - - - -

Model 5

loss 0.28 0.32 0.30 0.31 0.2854 0.28 0.23 0.32 0.29 0.31 0.26 0.2545 0.25 0.22 0.22

Accuracy (%) 94.66 95.52 95.52 94.49 95.52 95.00 94.84 94.84 95.00 94.49 93.46 94.15 95.18 93.46 93.11

Compression Rate 1.06 1.14 1.22 1.31 1.41 1.53 1.67 1.83 2.02 2.25 2.52 2.86 3.30 3.88 4.67

Flops 0.89 0.78 0.68 0.59 0.50 0.42 0.35 0.28 0.22 0.17 0.13 0.09 0.06 0.03 0.01

In Table 6 we observe that the classification accuracy of every model is significantly deteriorating,
even at low compression rates. The reason for this is that filter pruning is employed on pre-trained
models and therefore the values of their weights are not the optimal for the new, shallower architectures.
In addition, Model 2 can be compressed at a larger scale than the others, due to its architecture. It has the
most filters in the convolutional layers and, at the same time, the smallest number of neurons in the fully
connected layers, as shown in Table 1, with the amount of parameters belonging to convolutional layers
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being approximately 19% of the total number of parameters, whereas for the other models it is 16% or
lower. Note that even with half of the filters removed, the compression rate is low, indicating that the
majority of the weights belongs to the fully connected layer. On the other hand, the removal of a filter
reduces the computational requirements. For example, when we prune 2 out of 16 filters from model 1,
the new, more shallow, architecture requires the 78% of the initial floating point operations to perform
the classification task, providing a reduction of over 20%. Approaching the maximum number of the
pruned filters (leaving only one filter), the required operations are, as expected, considerably reduced
to only 1% of the operations required by un-pruned models.

A countermeasure against the drop of classification accuracy, due to filter removal, is the utilization
of retraining technique, as described in Section 3.2. The results of filter pruning method with iterative
retraining are shown in Table 7. It can be observed that the classification accuracy for all models
except from Models 2, 4 remains over 90%, whereas for Models 2, 4 it drops to 35% and 87% when
15/16 and 7/8 filters are pruned in each layer, respectively. Thus, by applying this method we can
significantly reduce the computational time without sacrificing efficiency. A characteristic example is
Model 5, which reaches up to 95% classification accuracy, even with 13 filters pruned. For the same
model, the respective performance achieved without retraining is 34%, while for both cases, the pruned
models require 5% of the operations needed by the initial un-pruned architecture.

4.3.4. Quantizing Only the Convolutional Layers

To evaluate the performance of the vector quantization method, we applied both scalar and
product quantization to convolutional layers, as well as to fully connected layers of the network.
This paragraph shows the classification accuracy of the developed models with respect to the
compression rate and the number of required floating point operations, when the quantization methods
are applied only on convolutional layers. As mentioned earlier, both scalar and product quantization
are performed along the channel’s dimension. We tested different combinations regarding the number
of clusters and the value of the splitting parameter s.

In particular, for scalar quantization the number of clusters varies between 1 and 8, whereas for
product quantization we tried s = 1, 2, 4 and the maximum number of clusters was set to 8, 4,
2 respectively. Note that for s = 1 we essentially perform scalar quantization. Table 8 shows the
classification accuracy and the achieved compression, as well as the speed up in terms of flops. It is
clear, that by increasing the number of clusters and therefore the number of filters that contain different
kernels, the accuracy of the classifiers increases as well. This originates from the fact that with more
different filters more features of the input can be extracted in convolutional layers. It should be also
mentioned that the compression rate achieved by this method, is lower than the rate achieved by filter
pruning. This happens because an index matrix is required, to map the filters in the codebook to the
filters in the original structure, which increases the memory requirements.

Concerning the amount of required operations in convolutional layers, as described before, it can
be reduced with this approach by reusing pre-computed inner products. In particular, for similar
convolutional kernels we only need to convolve one of them with the input feature map and then the
result is shared. Then, the biases are added and the result passes the activation and pooling function,
to produce the input feature map of the next layer. It is worth mentioning that the percentage of
the required operations is directly proportional to the percentage of the filters needed to be stored.
For example, clustering of 16 filters to 4 clusters causes a 25% reduction in required floating point
operations. Again, comparing the flops for filter pruning and scalar quantization, the first is more
efficient. This is because the removal of a filter reduces the dimensions of the next layer’s input feature
map which is not the case for the scalar quantization.

Next, we evaluate the effect of product quantization on the performance of the models.
Similarly, to scalar quantization on convolutional layer, we examine the fluctuation of the accuracy
with respect to compression rate and the ratio of the required floating operations of the quantized
architectures to the amount of flops for the initial structure, as shown in Table 9. The splitting parameter
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takes the values 1, 2, 4. As s increases, the number of clusters in each subspace decreases, since there
are fewer filters. Because both the separation of the weight matrix of each layer and the k-means
algorithm are performed on the channel axis, when s = 1 the results are identical to those with scalar
quantization. Additionally, the increase in the value of s result in a slight decrease in the classification
accuracy of the model. For example, Model 1 with s = 1 and clusters = 4 reaches an accuracy of
93%, whereas with s = 2 and clusters = 2, a combination that produces 4 distinct filters in each layer,
leads to 91%. This decrease indicates that apart from how many filters we group together, it is also
crucial which filters are grouped. By splitting the original space in smaller sub-spaces, we narrow the
available combinations of filters and, thus, filters that differ a lot from each other could be combined
forming one cluster.

Table 8. Results for scalar quantization on convolutional layers only.

Number of Clusters 1 2 3 4 5 6 7 8

Model 1

Loss 4.61 0.38 0.33 0.26 0.25 0.23 0.24 0.24

Accuracy (%) 16.87 90.36 92.94 94.32 94.84 94.84 94.84 94.66

Compression Rate 1.18 1.16 1.15 1.14 1.12 1.11 1.10 1.09

Flops 0.07 0.13 0.19 0.26 0.32 0.38 0.44 0.50

Model 2

Loss 4.35 0.28 0.25 0.22 0.23 0.23 0.24 0.25

Accuracy (%) 16.87 92.08 93.80 94.32 94.32 94.32 94.66 94.32

Compression Rate 1.18 1.17 1.15 1.13 1.12 1.10 1.10 1.08

Flops 0.07 0.13 0.19 0.25 0.32 0.38 0.44 0.50

Model 3

Loss 10.57 0.40 0.25 0.20 0.20 0.18 0.19 0.19

Accuracy (%) 16.87 89.16 93.80 94.49 94.84 95.01 94.84 94.84

Compression Rate 1.10 1.08 1.07 1.05 1.04 1.03 1.01 1.00

Flops 0.14 0.26 0.38 0.51 0.63 0.75 0.88 1.00

Model 4

Loss 10.88 1.08 0.24 0.22 0.22 0.22 0.21 0.20

Accuracy 16.87 72.80 95.18 95.87 95.52 95.52 95.70 95.87

Compression Rate 1.07 1.06 1.05 1.04 1.03 1.01 1.01 1.00

Flops 0.14 0.26 0.39 0.50 0.63 0.75 0.88 1.00

Model 5

Loss 1.78 0.65 0.24 0.22 0.21 0.21 0.21 0.21

Accuracy (%) 35.49 83.47 94.49 95.18 95.35 95.52 95.35 95.70

Compression Rate 1.18 1.16 1.15 1.14 1.12 1.11 1.10 1.09

Flops 0.07 0.13 0.19 0.26 0.32 0.38 0.44 0.50

It is also important to note that the increase of the s parameter leads to a slight decrease of the
compression rate. This is because with higher values of the splitting parameter, the lowest number of
clusters in the weight matrix is increased as well. For example, for s = 1 and clusters = 4, the amount
of different filters is 4, but if we set s = 2 the respective amount would be 8, since we form 4 clusters
in each subspace. Therefore, for the minimum number of clusters (1 cluster) and for s = 1, one filter
will be created. For s = 2, two distinct filters will be formed and finally for s = 4, four filters will have
different weight values.

Concerning the performance of the architectures, with respect to the computational complexity,
we observe in Table 9 that 75% of the initial flops can be avoided for Models 1, 2, 5 without any drop
in classification accuracy. On the other hand, for the remaining models we save 50% of the initial
required operations, with no drop in classification accuracy. For s = 2, we are able to cut the majority
for the operations with Models 1, 2, 5 reaching up to 94% accuracy with 38% of the initial amount of
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floating point operations. However, in order to achieve a classification accuracy higher than 90% we
can reduce the amount of the operations by half at most. At 0.5 of the initial number of flops, model 3
reaches up to 95% and model 4 to 93%.

Table 9. Product quantization for all combinations of s and clusters on convolutional layers only.

Splitting Parameter s = 1 s = 2 s = 4

Clusters 1 2 3 4 5 6 7 8 1 2 3 4 1 2

Model 1

Loss 4.61 0.35 0.33 0.26 0.23 0.23 0.24 0.24 2.89 0.35 0.28 0.27 2.65 0.22

Accuracy (%) 16.87 91.74 92.94 93.80 94.66 95.18 94.66 94.66 16.87 91.91 94.15 93.46 39.76 94.66

compression rate 1.18 1.16 1.15 1.14 1.12 1.11 1.10 1.09 1.16 1.14 1.11 1.09 1.14 1.09

Flops 0.07 0.13 0.19 0.26 0.32 0.38 0.44 0.50 0.13 0.26 0.38 0.50 0.25 0.50

Model 2

Loss 4.35 0.27 0.25 0.22 0.22 0.23 0.23 0.24 1.69 0.28 0.23 0.24 1.24 0.26

Accuracy (%) 16.87 91.91 93.63 94.32 94.49 94.49 94.66 94.66 37.00 92.94 93.97 94.32 53.87 93.11

Compression Rate 1.21 1.20 1.18 1.16 1.15 1.13 1.12 1.10 1.20 1.16 1.13 1.10 1.16 1.10

Flops 0.0690 0.13 0.19 0.25 0.32 0.38 0.44 0.50 0.13 0.25 0.38 0.50 0.25 0.50

Model 3

Loss 10.57 0.45 0.27 0.20 0.20 0.19 0.19 0.19 10.30 0.28 0.20 0.1892 2.21 0.19

Accuracy (%) 16.87 45.13 27.00 20.17 19.91 18.84 18.62 18.92 17.04 95.01 95.01 94.83 38.21 94.84

Compression Rate 1.10 1.08 1.07 1.05 1.04 1.03 1.01 1.00 1.08 1.05 1.03 1.00 1.05 1.00

Flops 0.14 0.26 0.38 0.51 0.63 0.75 0.88 1.00 0.26 0.51 0.75 1.00 0.50 1.00

Model 4

Loss 10.88 1.00 0.22 0.22 0.23 0.22 0.21 0.20 11.93 0.28 0.25 0.20 4.41 0.20

Accuracy (%) 16.87 74.35 95.70 96.04 95.52 95.52 95.70 95.87 16.87 93.46 95.35 95.87 37.52 95.87

Compression Rate 1.07 1.06 1.05 1.04 1.03 1.02 1.01 1.00 1.06 1.04 1.02 1.00 1.04 1.00

Flops 0.14 0.26 0.39 0.51 0.63 0.75 0.88 1.00 0.26 0.51 0.75 1.00 0.51 1.00

Model 5

Loss 1.78 0.65 0.23 0.21 0.21 0.21 0.21 0.21 2.01 0.64 0.22 0.21 1.69 0.29

Accuracy (%) 35.59 83.99 94.32 95.01 95.70 95.35 95.70 96.04 35.46 83.47 94.66 95.35 47.85 91.91

Compression Rate 1.18 1.16 1.15 1.14 1.12 1.11 1.10 1.09 1.16 1.14 1.11 1.09 1.14 1.09

Flops 0.07 0.13 0.19 0.26 0.32 0.38 0.44 0.50 0.13 0.26 0.38 0.50 0.26 0.50

To sum up, quantizing convolutional layers using k-means algorithm, either with the scalar or the
product method, we can compress the structure and at the same time we can speed up the production
of the output feature map and, consequently, the prediction of the classifier. Between these two benefits,
the computation gain is greater, since we efficiently can remove up to 75% of the operations required
initially, whereas the maximum compression rate achieved reaches up to 1.2. This result is consistent
with the theory suggesting that convolutional layers are computationally expensive and they do not
add excessive memory requirements. Finally, for product quantization, increasing the value of the
parameter s, the performance of the classifier is deteriorated.

4.3.5. Quantizing Only Fully Connected Layer

Similarly, in this paragraph we present the results for scalar and product quantization, but in
this case they are performed on the fully connected layers. For this approach we selected to perform
quantization with k-means at the y axis of the weights matrix. In this way, we force the neurons to have
the same output response and, therefore, we are able to reduce the computational requirements of the
layers. Subsequently, we compare the requirements in storage and computation between convolutional
and fully connected layer and validate that convolutions are time consuming, whereas fully connected
layers significantly increase memory requirements. For Models 1, 2, 5 we perform scalar quantization
with number of clusters up to 128 and for Models 3, 4 up to 52. We also executed tests for s = 1, 2, 4 and
clusters up to 32, 16, 8 respectively. It is important to mention that because we force some neurons to
have the same output, we do not perform quantization at the output layer of the classifier i.e the last
fully connected layer.

From the results shown in Table 10 it is clear that Models 1, 5, which share the same
structure, have the same behaviour retaining their initial performance until a compression rate of
4.6. Furthermore, we are able to achieve a larger compression for Models 3, 4 because both of them
have the shallowest convolutional structure, with three convolutional layers of 8 filters in each layer.
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This means that for these models the weights of fully connected layers occupy a greater portion of
the total amount of the trainable parameters. It is important to highlight that we can compress model
4 more than six times and yet achieve a high classification accuracy up to 93%. Finally, for Models
2, 3 the maximum number of clusters is 52 because the last layer contains 16 × 4 = 64 weights and
therefore there is no reason to increase it further. Also, as described above, scalar quantization does
not contribute to the speed up of the classification task and this is why Table 10 does not contain the
flops that the quantized models require.

Table 10. Results for scalar quantization on fully connected layers only.

Number of Clusters 1 4 8 16 24 32 40 52 64 72 96 112 128

Model 1

Loss 1.38 0.18 0.23 0.23 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24

Accuracy (%) 35.46 93.97 94.49 95.00 94.15 94.49 94.32 94.32 94.32 94.66 94.49 94.49 94.94

Compression Rate 6.08 4.61 4.12 3.71 3.51 3.38 3.28 3.17 3.09 3.05 2.94 2.89 2.84

Model 2

Loss 1.38 0.44 0.18 0.26 0.25 0.26 0.27 0.26 - - - - -

Accuracy (%) 16.87 86.75 94.66 93.97 93.80 93.63 93.46 93.63 - - - - -

Compression Rate 5.26 4.15 3.76 3.43 3.26 3.15 3.07 2.98 - - - - -

Model 3

Loss 1.39 0.26 0.18 0.18 0.18 0.19 0.19 0.19 - - - - -

Accuracy (%) 16.87 91.91 95.00 95.35 94.84 95.00 95.00 94.49 - - - - -

Compression Rate 9.56 6.23 5.30 4.60 4.27 4.06 3.91 3.74 - - - - -

Model 4

Loss 0.35 0.23 0.19 0.20 0.21 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Accuracy 35.46 93.29 95.52 95.87 95.70 96.04 95.87 95.87 95.70 96.04 95.87 95.70 95.70

Compression Rate 12.44 7.26 5.10 5.10 4.69 4.43 4.25 4.04 3.90 3.81 3.65 3.53 3.45

Model 5

Loss 1.37 0.19 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

Accuracy (%) 35.46 94.32 95.70 95.52 95.00 95.87 95.52 95.70 95.87 95.70 95.87 95.87 95.70

Compression Rate 6.08 4.61 4.12 3.71 3.51 3.38 3.28 3.17 3.09 3.05 2.94 2.89 2.84

The next approach to compress and accelerate the fully connected layers is product quantization
through k-means algorithm. Tables 11 and 12 present the classification accuracy, compression rate as
well as the extent of the reduction of floating point operations for different number of clusters and
different values of the splitting parameter s. In Table 11 Models 2, 3 we stop at 12 clusters, because they
have a fully connected layer with 16 neurons and therefore there is no point in increasing the number
of clusters beyond 12. Recall that quantization is performed on the columns of the weight matrix,
that is, on the output response of a layer. It should be noted that the achieved compression rate
is higher as the number of clusters is increasing than the respective rate with scalar quantization.
This lies on the fact that the index matrix for this approach is smaller than the index matrix for scalar
quantization, containing as many slots as the neurons in each layer are. Furthermore, the difference in
the compression rate between the models is due to the difference between their structure. For example,
Model 4 has smaller convolutional layers from Models 1, 2, 5 and larger fully connected layer from
Model 3 resulting in a higher compression rate. Moreover, it is clear that by quantizing fully connected
layers we do not have any gain in computational cost, since the smallest ratio with an acceptable
performance is 0.977, which means that the quantized model needs to execute 97.7% of initial amount
of floating point operations. Finally, Table 12 shows the performance of the classifiers for s = 2 and 4.
In this case, it should be highlighted that increasing the value of s the classification accuracy of the
models decreases, despite the same compression rate. For example, model 1 achieves a classification
accuracy of 94% with s = 2 and 4 clusters but for s = 4 and 2 clusters its accuracy drops to 90%.
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Table 11. Product quantization for all combinations of clusters and s = 1 on fully connected layer only.

Splitting Parameter s = 1

Clusters 1 2 4 8 12 16 20 24 28 32

Model 1

Loss 1.39 0.59 0.22 0.24 0.24 0.24 0.24 0.24 0.24 0.24

Accuracy (%) 35.46 80.03 94.49 93.97 94.84 94.14 94.32 94.15 94.49 94.32

Compression Rate 6.16 6.14 6.11 6.05 5.99 5.93 5.88 5.82 5.77 5.72

Flops 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Model 2

Loss 1.40 0.47 0.41 0.31 0.25 - - - - -

Accuracy 16.87 83.30 88.12 92.25 93.80 - - - - -

Compression Rate 5.29 5.27 5.25 5.20 5.16 - - - - -

Flops 0.99 0.99 0.99 0.99 0.99 - - - - -

Model 3

Loss 1.40 0.76 0.19 0.19 0.20 - - - - -

Accuracy (%) 35.46 63.85 94.32 95.18 94.66 - - - - -

Compression Rate 9.74 9.69 9.59 9.41 9.24 - - - - -

Flops 0.99 0.99 0.99 0.99 0.99 - - - - -

Model 4

Loss 1.37 0.57 0.17 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Accuracy (%) 35.97 84.68 94.84 95.69 95.52 95.69 95.52 95.52 95.87 95.87

Compression Rate 13.12 13.03 12.86 12.57 12.31 12.05 11.81 11.59 11.37 11.15

Flops 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99

Model 5

Loss 1.36 0.41 0.21 0.20 0.21 0.21 0.21 0.21 0.21 0.21

Accuracy (%) 35.46 88.81 95.35 95.52 95.87 95.87 96.04 96.04 95.70 95.70

Compression Rate 6.16 6.14 6.11 6.05 5.99 5.93 5.88 5.82 5.77 5.72

Flops 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table 12. Product quantization for all combinations of clusters and s = 2, 4 on fully connected layer only.

Splitting Parameter s = 2 s = 4

Clusters 1 2 4 8 12 16 1 2 4 8

Model 1

Loss 1.38 0.52 0.22 0.23 0.24 0.24 1.39 0.38 0.22 0.23

Accuracy (%) 35.46 90.01 94.14 94.14 93.97 94.49 35.46 90.53 93.97 94.15

Compression Rate 6.14 6.11 6.05 5.93 5.82 5.72 6.11 6.04 5.93 5.72

Flops 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Model 2

Loss 1.40 0.47 0.31 - - - 1.37 0.76 - -

Accuracy 16.87 81.41 91.05 - - - 16.87 76.25 - -

Compression Rate 5.27 5.25 5.20 - - - 5.25 5.20 - -

Flops 0.99 0.99 0.99 - - - 0.99 0.99 - -

Model 3

Loss 1.43 0.64 0.95 - - - 1.48 0.37 - -

Accuracy (%) 16.87 79.69 94.84 - - - 16.87 90.71 - -

Compression Rate 9.69 9.59 9.41 - - - 9.59 9.41 - -

Flops 0.99 0.99 0.99 - - - 0.99 0.99 - -

Model 4

Loss 1.37 0.57 0.18 0.20 0.20 0.20 1.38 0.46 0.21 0.20

Accuracy (%) 37.00 85.54 95.35 95.70 95.52 95.70 36.60 88.12 95.01 95.52

Compression Rate 13.03 12.86 12.57 12.06 11.59 11.15 12.86 12.57 12.06 11.15

Flops 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Model 5

Loss 1.36 0.35 0.19 0.21 0.21 0.21 1.37 0.35 0.21 0.20

Accuracy (%) 35.46 91.74 95.18 95.87 95.52 96.04 35.46 89.84 94.66 95.70

Compression Rate 6.14 6.11 6.05 5.93 5.82 5.72 6.11 6.05 5.93 5.72

Flops 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
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4.3.6. Combining Filter Pruning and Quantization

Finally, we investigate the combination of the aforementioned methods by applying filter pruning
in the convolutional layers and quantization on fully connected layers. In this way, we are able to
reduce the requirements of the classifier in both memory and computational power. The approach of
the iterative training is selected for filter pruning, since it yields better results than the approach with
no retraining. Firstly, we perform filter pruning in order to exploit the fact that the weights adjust to
the changes and, then, quantization algorithm, either scalar or product, is executed. Below, we present
the classification accuracy of the developed architecture, with respect to the amount of the pruned
feature maps in convolutional layers and the number of clusters in fully connected layer.

Figure 7 shows how classification accuracy changes as the number of pruned feature maps or
the clusters, produced with scalar quantization, increases. It is clear that the accuracy of all models,
apart from model 2, depends mostly on the number of clusters in fully connected part of the classifier.
When we perform k means on it, with clusters equal to 1, the classification accuracy drops to 35%
(Models 1, 2, 4, 5) and 16% (Model 3). Model 2 reaches 91% or above when 14 out of 16 filters have
been removed and for 8 clusters in each fully connected layer. However, when we prune 15 out of
16 filters its accuracy drops to 35% without improving when the number of clusters is increasing.
On the other hand, the rest of the models keep their classification accuracy at high levels, even when
their convolutional layers are left with only one filter. The best architectures seem to be Models 1 and 5,
which achieve an accuracy over 90% with 8 clusters and even with 15 out of 16 filters removed.

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

(e) Model 5

Figure 7. Classification accuracy of the different models in Table 1 that include filter pruning and scalar
quantization. The horizontal axes represent the number of pruned feature map and number of clusters
in fully connected layer, respectively.

Next, we proceed to the evaluation of combining filter pruning method with product quantization
along y axis of the weight matrix of the fully connected layer. Figure 8 shows the classification accuracy
of the developed models, versus the number of pruned feature maps and the number of clusters in each
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subspace, when the value of splitting parameter s is set equal to 1. For Models 1, 4, 5 the maximum
amount of clusters is 32 whereas for Models 2, 3 is 12. Again, the parameter that affects mostly the
performance of the classifier is the number of clusters produced by k-means algorithm. For cluster = 1,
hence when we force all neurons to have the same output response, the classification accuracy drops
dramatically to 35% (Models 1, 5) and 16% (Models 2, 3, 4). It is also clear that the highest classification
accuracy can be achieved with intermediate values of the parameters. For example, model 5 reaches up
to 95.52% accuracy, which is the highest among our architectures, after pruning 7 feature maps and for
8 clusters in fully connected layer achieving 8 times compression of the initial structure. For the same
level of compression model 1 achieves 94.66% (pruned f eature maps = 7, clusters = 8), model 2 93.97%
(pruned f eature maps = 7, clusters = 8), model 3 reaches up to 93.8% (pruned f eature maps = 2,
clusters = 4) and model 4 to 95.01% (pruned f eature maps = 3, clusters = 8).

(a) Classification accuracy for model 1 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(b) Classification accuracy for model 2 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(c) Classification accuracy for model 3 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(d) Classification accuracy for model 4 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(e) Classification accuracy for model 5 with respect to the various
combinations of pruned feature map and the clusters in fully
connected layer.

Figure 8. Classification accuracy for models in Table 1 for the approach that include filter pruning and
product quantization with s = 1.

Increasing the splitting parameter s to the value of 2 we take the results presented in Figure 9.
Similarly to the results obtained from the previous experiments increasing the number of clusters
in each subspace of the weight matrix we are able to improve the performance of the classifier.
Again, the highest classification accuracy, 95.52%, is achieved by model 5 when we prune 3 filters
from the convolutional layer and quantize the neural network at the back end, with 8 clusters in
each subspace, leading to a compression factor of 3.5. However, we can compress it by a factor of
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5 and at the same time achieve an accuracy up to 95.35%, which is an acceptable trade off between
accuracy and compression, by quantizing it with 4 clusters instead of 8. For this compression rate
model 1 yields 94.49% (pruned f eature maps = 3, clusters = 4), model 2 reaches up to 93.11% accuracy
(pruned f eature maps = 5, clusters = 4), model 3 up to 92.6% (pruned f eature maps = 1, clusters = 4)
and model 4 achieves an accuracy of 94.66% (pruned f eature maps = 3, clusters = 8). It is important
to note that in order to achieve a compression rate of 8, we need, for model 5, to prune 7 filters and
quantize with 4 clusters, but with a drop at classification accuracy of 2% achieving 93.97%. This result
is consistent with those presented in previous sections, where it is shown that increasing the value of
parameter s, the accuracy of the classifier at the same level of compression decreases.

(a) Classification accuracy for model 1 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(b) Classification accuracy for model 2 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(c) Classification accuracy for model 3 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(d) Classification accuracy for model 4 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(e) Classification accuracy for model 5 with respect to the various
combinations of pruned feature map and the clusters in fully
connected layer.

Figure 9. Classification accuracy for models in Table 1 for the approach that include filter pruning and
product quantization with s = 2.

Finally, Figure 10 presents the results for the classification accuracy with respect to the number of
pruned feature maps and the number of clusters when the splitting parameter s is set to 4. For this
approach the highest classification, 95.52%, is achieved by Model 5 for the number of pruned filters
set equal to five and for four clusters, which results in a compression rate of 4. The following table
presents the number of clusters and pruned filters for each model, with a compression rate equal to 4.

Table 13 summarizes the results from the combination of filter pruning and scalar quantization in
fully connected layers for the five proposed models and for the same compression rate. It can be seen
that Models 1, 4, 5 yield similar classification accuracy despite the fact that Model 4 has fewer filters,
while Models 2 and 3, which contain fewer parameters in the fully connected layer, fail to reach the
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same level of accuracy. In other words we can achieve high performance, even twith limited number of
filters, as long as we retain enough parameters at the fully connected layer. Overall, when comparing
the compression techniques, Model 5 seems to achieve the best performance in most of the MultiSubj
evaluation experiments. This fact, along with its superiority in SingleSubj and LOSO validation
schemes, indicates that Model 5 is the most preferable among the five architectures.

(a) Classification accuracy for model 1 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(b) Classification accuracy for model 2 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(c) Classification accuracy for model 3 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(d) Classification accuracy for model 4 with respect to
the various combinations of pruned feature map and
the clusters in fully connected layer.

(e) Classification accuracy for model 5 with respect to the various
combinations of pruned feature map and the clusters in fully
connected layer.

Figure 10. Classification accuracy for models in Table 1 for the approach that include filter pruning
and product quantization with s = 4.

Table 13. Number of clusters and pruned filters for each model with a compression rate equal to 4.

Model Accuracy Pruned Feature Maps Clusters Compression Rate

1 95.01% 5 4 4

2 92.43% 2 2 4

3 91.74% 1 1 4

4 95.35% 5 4 4

5 95.52% 5 4 4

5. Conclusions

Asthma adds an important socioeconomic burden both in terms of medication costs and disability
adjusted life years. The accurate and timely assessment of asthma is the most significant factor towards
preventive and efficient management of the disease. It outlines the need to examine the technological
limitations for real time monitoring of pMDI usage, in order to create easy to use tools for safe and
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effective management. In this paper, we discussed on current medication adherence monitoring
techniques, addressing related aspects that promote adherence with novel sensing capabilities.
We, also, investigated acceleration approaches employing convolutional neural networks, trained to
classify and identify respiration and medication adherence phases. Employing CNNs directly on
the time domain, facilitated lower memory and processing power requirements. Evaluation studies
demonstrate that the presented CNN-based approach results in faster execution time, requiring 0.4 s to
perform a classification, whereas computationally expensive feature extraction approaches have a mean
execution time of 7.5 s. Aiming at acceleration and compression we furthermore applied deep sparse
coding strategies, namely filter pruning, scalar values pruning and vector quantization. Different CNN
architectures were employed in order to assess the performance of deep sparse coding under various
settings. The goal of such methodologies is to speed up the neural network outcome, allowing for
real-time implementation, adaptable to IoT architectures and devices. Specifically, we achieve
a compression rate of 6.0 in several cases, while maintaining a classification accuracy of 92%.
The proposed work provides an experimental evaluation at a key area with renewed research interest,
characterized by a high potential for novel improvements related to deep neural networks compression
and acceleration. However, our approach is validated only through recordings of three healthy subjects
resulting in a small dataset. More experiments with recordings from both healthy and subjects with
respiratory disease should be carried out in order to thoroughly assess the presented approach and
validate its potential in monitoring medication adherence.
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